
1 APPLE 1001

(12) United States Patent
Fallon et al.

US007 1 8 l 608B2

(10) Patent No.:

(45) Date of Patent:

US 7,181,608 B2

Feb. 20, 2007

(54)

(75)

(73)

(*)

(21)

(22)

(65)

(60)

(51)

(52)
(58)

(56)

SYSTEMS AND METHODS FOR
ACCELEILATED LOADING OF OPERATING
SYSTEMS AND APPLICATION PROGRAMS

Inventors: James J. Fallon, Arrnonk, NY (US);
John Buck, Oceanside, NY (US); Paul
F. Pickel, Bethpage, NY (US); Stephen
J. MeEerlain, New York, NY (US)

Realtime Data LLC, New York, NY
(US)

Assignee:

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 223 days.

Appl. No.: 09/776,267

Filed: Feb. 2, 2001

Prior Publication Data

US 2002/0069354 A1 Jun. 6, 2002

Related U.S. Application Data

Provisional application No. 60/180,114, filed on Feb.
3, 2000.

Int. Cl.
G06F 9/24

G06F 9/00 (2006.01)
G06F 13/00 (2006.01)
U.S. Cl. 713/2:713/1;711/113
Field of Classification Search 713/2,

713/], 100; 711/170, 118,113
See application file for complete search history.

References Cited

(2006.01)

U.S. PA'l'HN'l'])()(IUMl*',N'l'S

4,127,518 A ll/1978 Coy eta].

DATA

COMPRESSION

ENGINE

4,302,775 A ll/1981 Widergren et al.
4,394,774 A 7/1983 Widcrgrcn ct al.
4,574,351 A 3/1986 Dang et :1].

(Continued)

FOREIGN PATENT DOCUMENTS

DE 4127518 A1 2/1992

((Ior1tinued)

OTHER PUBLICATIONS

IBM, Fast Dos Soft Boot, Feb. 1, 1994, vol, 37, Issue 2B, pp.
185-136.*

(Continued)

Primary E.mn'n’ner—Thon1as Lcc
Assistant Examz'ner—Suresh K Suryawanshi
(74) Attorney, Agent, or Fz'rm—Fish & Neave IP Group of
Ropes & Gray LLP

(57) ABSTRACT

Systems and methods are provided for accelerated loading
of operating system and application programs upon system
boot or application launch. In one aspect, a method for
providing accelerated loading of an operating system
includes maintaining a list of boot data used for booting a
computer system, preloading the boot data upon initializa-
tion of the computer system, and servicing requests for boot
data from the computer system using the preloaded boot
data. The boot data may comprise program code associated
with an operating system of the computer system, an appli-
cation program, and a combination thereof. The boot data is
retrieved from a boot device and stored in a cache memory
device. The boot data is stored in a compressed format on the
boot device and the preloaded boot data is decompressed
prior to transmitting the preloaded boot data to the request-
ing system.

31 Claims, 13 Drawing Sheets

APPLE 1001

2

4,593,324
4,682,150
4,730,348
4,754,351
4,804,959
4,870,415
4,872,009
4,876,541
4,888,812
4,906,995
4,929,946
4,953,324
4,965,675
5,028,922
5,045,848
5,045,852
5,046,027
5,049,881
5,097,261
5,113,522
5,121,342
5,150,430
5,159,336
5,175,543
5,179,651
5,187,793
5,191,431
5,204,756
5,209,220
5,212,742
5,226,176
5,227,893
5,231,492
5,237,460
5,237,675
5,243,341
5,243,348
5,247,638
5,247,646
5,263,168
5,270,832
5,287,420
5,293,379
5,307,497
5,309,555
5,355,498
5,357,614
5,379,036
5,379,757
5,381,145
5,394,534
5,396,228
5,400,401
5,403,639
5,406,278
5,406,279
5,412,384
5,414,850
5,420,639
5,452,287
5,461,679
5,467,087
5,471,206
5,479,587
5,486,826
5,495,244
5,506,844
5,506,872
5,530,845
5,533,051
5,535,356

U.S. PATENT DOCUMENTS

D>B>>Il>D>I>>>D>>>21>II>iI>>>>I1>D>i>II>D>>>D>>il>>i1>iI>>>>>>il>I1>D>>D>>>>D>il>iI>>.>>>3>I>i>D>I>>>D>>D>il>iI>D>II>>>I1>>D>I1>{I>
6/1986
7/1987
3/1988
6/1988
2/1989
9/1989

10/1989
10/1989
12/1989
3/1990
5/1990
9/1990

10/1990
7/1991
9/1991
9/1991
9/1991
9/1991
3/1992
5/1992
6/1992
9/1992

10/1992
12/1992

1/1993
2/1993
3/1993
4/1993
5/1993
5/1993
7/1993
7/1993
7/1993
8/1993
8/1993
9/1993
9/1993
9/1993
9/1993

11/1993
12/1993
2/1994
3/1994
4/1994
5/1994

10/1994
10/1994

1/1995
1/1995
1/1995
2/1995
3/1995
3/1995
4/1995
4/1995
4/1995
5/1995
5/1995
5/1995
9/1995

10/1995
11/1995
11/1995
12/1995

1/1996
2/1996
4/1996
4/1996
6/1996
7/1996
7/1996

Ohkubo et al.
Mathcs ct al.
MacCrisken

Wright
Makansi et a],
Van Maren et al.

Tsukiyama et al.
Storer
Dinan et al.
Swanson
O’l3rien el al.
Herrmann
Hori et al.

Huang
Fascenda
Mitchell et al.
Taalfe et 21].
Gibson et al.

Langdon, Jr. et al.

US 7,181,608 B2
Page 2

Dinwiddie, Jr. et al.
Szymborski
Chu
Rabin et al.
Lantz
Taalfe et al.
Keith et al.

Ilasegawa el al.
Chevion et al.

Hiyama et al.
Normile et al.

Westaway et al.
Ett

Dangi et al.
Miller et al.
Hannon, J1‘.
Seroussi et al.
Jackson
O‘Brien et al.
Osterlund et al.
Toms et al.
Balkanski et al.
Barrett
Carr

Fcigenbaum ct al.
Akins et al.
Provino et al.
Pattisam et al,
Storer

Hiyama et al.
Allen et al.
Kulakowski et al.
Garahi
Wasilewski et al.
Belsan et al,

Graybill et al.
Anderson et al.

Chang et al.
Whiting
Perkins
Dicccco
Normile et al.
Chu
Allen et al.

Campbell et al.
Remillard

Jeong et al.
Rao
Mohler
Hiatt et al.
James
Kim et al.

........ .. 713/l

5,537,658
5,557,551
5,557,668
5,557,749
5,561,824
5,574,952
5,576,953
5,583,500
5,590,306
5,596,674
5,604,824
5,606,706
5,612,788
5,613,069
5,615,017
5,621,820
5,623,623
5,623,701
5,627,534
5,627,995
5,629,732
5,630,092
5,635,632
5,635,932
5,642,506
5,649,032
5,652,795
5,652,857
5,652,917
5,654,703
5,655,138
5,666,560
5,668,737
5,671,389
5,675,333
5,694,619
5,696,927
5,703,793
5,715,477
5,717,393
5,717,394
5,719,862
5,721,958
5,724,475
5,729,228
5,748,904
5,757,852
5,771,340
5,778,411
5,781,767
5,784,572
5,787,487
5,796,864
5,799,110
5,805,932
5,808,660
5,809,176
5,809,337
5,812,789
5,818,368
5,818,369
5,818,530
5,819,215
5,825,424
5,832,037
5,832,126
5,836,003
5,838,996
5,839,100
5,841,979
5,847,762
5,861,824
5,861,920

>-3>il>>D>B>>>3>>3>B>Il>>D>>>>D>>D>3>>>>>>3>>>D>>>1?->>>Il>>3>>3>>L1>>>B>>>>3>>>D>>>>B>>i1>>>D>>>>3>>>B>>>>
7/1996
9/1996
9/1996
9/1996

10/1996
11/1996
11/1996
12/1996
12/1996

1/1997
2/1997
2/1997
3/1997
3/1997
3/1997
4/1997
4/1997
4/1997
5/1997
5/1997
5/1997
5/1997
6/1997
6/1997
6/1997
7/1997
7/1997
7/1997
7/1997
8/1997
8/1997
9/1997
9/1997
9/1997

10/1997
12/1997
12/1997
12/1997
2/1998
2/1998
2/1998
2/1998
2/1998
3/1998
3/1998
5/1998
5/1998
6/1998
7/1998
7/1998
7/1998
7/1998
8/1998
8/1998
9/1998
9/1998
9/1998
9/1998
9/1998

10/1998
10/1998
10/1998
10/1998
10/1998
11/1998
11/1998
11/1998
11/1998
11/1998
l 1/1998
12/1998

1/1999
1/1999

Bakke et al.
Craft

Brady
Norris
Carreiro et al.

Brady et al.
Hugentobler
Allen et al.
Watanabe et al,
Bhandari et al.
Chui et al.
Takamoto ct al.
Stone
Walker
Choi

Rynderman et al.
Kim et al.
Bakke et al.
Craft
Miller et al.
Moskowitz ct al.
Carreiro et al.

Fay et al.
Shinagawa et al.
Lee
Burt et al.
Dillon et al.
Shimoi et al.

Maupin et al.
Clark, 11
Kikinis
Moertl et al.
Iler
Saliba
Boursier et al.
Konno
Mac I)o11ald ct al.
Wise et al.
Kikinis
Nakano et al.
Schwartz et al,
Lee et al.
Kikinis
Kirsten
Frzmaszek et al.

Huang et al.
Jericevic et al,
Nakazato et al.
DeMoss et al,
Inoue et al.
Rostoker et al.
Hashimoto et al.
Callahan
Israelsen et al.
Kawashima et al.
Sekine et al.

Yajima

Canlield et al.
Dobson et al.
Canfield et al.
Park
Tanaka
Sadeh
deCa.rmo

Wegener
Schulhof et al.
Canfield

Ryu et al.
Mead et al.

3

5,867,167
5,870,036
5,870,087
5,872,530
5,883,975
5,886,655
5,889,961
5,915,079
5,917,438
5,920,326
5,936,616
5,949,355
5,955,976
5,960,465
5,964,842
5,968,149
5,973,630
5,974,471
5,982,723
5,991,515
5,996,033
6,000,009
6,002,411
6,003,115
6,011,901
6,014,694
6,026,217
6,028,725
6,031,939
6,032,148
6,061,398
6,073,232
6,075,470
6,094,634
6,097,520
6,104,389
6,105,130
6,128,412
6,141,053
6,145,069
6,169,241
6,172,936
6,173,381
6,182,125
6,192,082
6,195,024
6,226,667
6,226,740
6,253,264
6,272,627
6,272,628
6,282,641
6,309,424
6,317,714
6,330,622
6,345,307
6,421,387
6,434,168
6,434,695
6,442,659
6,449,682
6,452,602
6,463,509
6,487,640
6,489,902
6,513,113
6,529,633
6,539,456
6,542,644

>3i>>I1>I1>I>>.>>>I1>>i>iI>I>>>D>>>3>3>i>D>>>D>Cl>3>>D>>D>>>>>il>>D>>
B1
B1
B1'’'‘
B1
B1
B1
B1"‘
B1*
B1
B1
B1
B1
B1
B1
B1
B1
B1
B1
B1"‘
B1
B1
B1
B1"‘
B1
B2
B1
B1
B2""
B1

2/1999
2/1999
2/1999
2/1999
3/1999
3/1999
3/1999
6/1999
6/1999
7/1999
8/1999
9/1999
9/1999
9/1999

10/1999
10/1999
10/1999
10/1999
11/1999
11/1999
11/1999
12/1999
12/1999
12/1999

1/2000
1/2000
2/2000
2/2000
2/2000
2/2000
5/2000
6/2000
6/2000
7/2000
8/2000
8/2000
8/2000

10/2000
10/2000
11/2000

1/2001
1/2001
1/2001
1/2001
2/2001
2/2001
5/2001
5/2001
6/2001
8/2001
8/2001
8/2001

10/2001
11/2001
12/2001
2/2002
7/2002
8/2002
8/2002
8/2002
9/2002
9/2002

10/2002
11/2002
12/2002

1/2003
3/2003
3/2003
4/2003

Deering
Franaszek et al.
Chau

Domyo el al.
N arita et al.
Rust
Dobbek

US 7,181,608 B2
Page 3

Vondran, Jr. et al.
Ando
Rentschler et al.

Torborg, Jr. et al.
Panaoussis
Ilealh
Adams
Packard

Jaquette et al.
Heath
Belt
Kamatani
Fall et al.
Cl1iu—Hao

Brady
Dye
Spear et al.
Kirsten
Aharoni et al.
Adiletta
Blumenau
Gilbert et al.
Wilkes
Satoh et al.
Kroeker et al.
Little et al.

Yahagi et al.
Kadnier
Ando
Wu ct al.
Satoh
Saukkonen

Dye
Shimizu
Kitazaki

Dye
Borella et al.

Moriarty et al.
Fallon
Matthews et al.

Aguilar et al.
Christensen
Fallon

........ .. 711/137

........... .. 713/1

........ .. 711/170

........ .. 709/203

Del Castillo et al.
Schaefer
Booth
Rhee
Kari
Esfahani et al. ..
Blumenau
Toorians
Morein
Teoman et al.

Lipasti
Heath

Kobayashi
Easwar et al.
Stewart
Satoh

........... .. 713/2

........ .. 711/137

........ .. 711/113

6,590,609
6,601,104
6,604,158
6,606,040
6,606,413
6,609,223
6,618,728
6,624,761
6,661,839
6,704,840
6,711,709
6,745,282
6,748,457
6,856,651
6,888,893
7,054,493

2001/0032128
2002/0037035
2002/0104891
2002/0126755
2003/0034905
2003."0084238
2003/0142874

FOREIGN PATENT DOCUMENTS

0164677
0185098
0283798
0405572
0493130
0718751
0587437
0595406
0718751
2162025

06051989 A *
9188009

11149376
WO 9414273
WO 9429852
WO 9502873
WO 9748212

OTHER PUBLICATIONS

Rice, Robert F., “Some Practical Universal Noiseless Coding Tech-
niques", Jet Propulsion Laboratory, Pasadena, California, JPL Pub-
licatlon 79-22, Mar. 15, 1979.
Anderson, J., et al. “Codec squeezes color teleconferencing through
digital telephone lines”, Electronics 1984, pp. 13-15.
Venbrux, Jack, “A VLSI Chip Set for High-Speed Lossless Data
Compression”, IEEE Trans. On Circuits and Systems for Video
Technology, vol. 2, No. 44, Dec. 1992, pp. 381-391.
“Operating System Platform Abstraction Method", IBM Technical
Disclosure Bulletin, Feb. 1995, vol. 38, Issue No. 2, pp. 343-344.
Murashita, K., et al., “High-Speed Statistical Compression using
Self-organized Rules and Predetern1ined Code Tables”, IEEE, 1996
Data Compression Conference.
Coene, W., et al. “A Fast Route For Application of Rate-distortion
Optimal Quantization in an MPEG Video Encoder” Proceedings of
the International Conference on Image Processing, US., New York,
IEEE, Sep. 16, 1996, pp. 825-8286.
Rice, Robert, “Lossless Coding Standards for Space Data Systems”,
IEEE 1058-6393/97, pp. 577-585.
Yeh, Pen-Shu, “The CCSDS Lossless Data Compression Recom-
mendation for Space Applications”, Chapter 16, Lossless Compres-
sion Handbook, Elsevier Science (USA), 2003, pp. 311-3263.

B1
B1
B1
B2
B1
B1
B1
B2
B1
B2 *
B1
B2
B2
B2
B2
B2
A1
Al
Al
A1
A1
A1
A1

7/2003
7/2003
8/2003
8/2003
8/2003
8/2003
9/2003
9/2003

12/2003
3/2004
3/2004
6/2004
6/2004
2/2005
5/2005
5/2006

10/2001
3/2002
8/2002
9/2002
2/2003
5/2003
7/2003

Kitade et al.
Fallon
Fallon
Abdal
Zeineh

Wolfgang
Rail
Fallon
Ishida et al.
Nalawadi et al. 711/118
York
Okada ct al.
Fallon

Singh
Li et al.
Schwartz

Kepecs
Singh
Otto
Li et al.
Anton ct al.
Okada et al.
Schwartz

EP
EP
EP
EP
EP
EP
EP
EP
EP
GB
JP
JP
JP
W0
W0
W0
W0

12/1985
6/1986
9/1988
6/1990

12/1991
6/1992
9/1993
5/1994
6/1996
1/1986
2/1994
1/1996
6/1999
6/1994

12/1994
1/1995
6/1997

A3

* cited by examiner

4

—._®_n_

US 7,181,608 B2

mammmE:s_oozo_mz<n_xmmo22:IIIIICIIIIIIIIIIIIICIIIIIIIIIIIIUIIIIIII.IIIIIIIIIIIIIIIIIIllI.!II|II.IIIIIIIII mm_o<#_Ez_mamminWmz_ezm_m_ moEmm:z_mxoézo_m$E_2ooF9%:HvaaE3
U.S. Patent

5

US 7,181,608 B2U.S. Patent Feb. 20,2007 Sheet 2 of 13

N._U_u_mamzo_mz<n_xm_moz_<s_
m_o<u_E:,__mamm_.

mo<n_mm_._.z_vaa 0._

O:om._.<o_om_n_8gm!
mowmmoomm

mo_>m_o200..m:m<s__>_<mmom;
_

mam._<oO._

I

mo$9

III

m._._:om_o.5$28

wmam;$5%_8>mos_m__>_m.__._.<._o>.zoz

E15mozmsazom
E

%
8

6

US 7,181,608 B2U.S. Patent Feb. 20,2007 Sheet 3 of 13

m

9.mm__.:o
ImfiéomE2mamama._<oo._a%mommwooimonae

or.

macawmomo._.n_<o<mazoazém

w._._:om_on5mason.wEmammE:s_ou
5N

_._m<._n=_>_om
.~

7

US 7,181,608 B2U.S. Patent Feb. 20, 2007 Sheet 4 of 13

o_oo._5m§_s_éSE

m_o_>m_oo_w9Em_<_>_s_EooE

m._.Som_o.5E22wmam$5n__>_8EOE:m._=5o>-zoz

$15moImséom

8

EHém

US 7,181,608 B2

3m8209M3m
5

W.Lmommaogmomma7 am $o§m;__v_w_n_mm,2m$o§m:z:_m_n_
U.S. Patent

a
.8

m.G_n_gasam_§s_§oE

mom

IQ.EEO
mm

mcama.5$30“.

amm:152200I£85azomaoog

9

U.S. Patent Feb. 20, 2007 Sheet 6 of 13 Us 7,181,608 B2

ENSURE ENOUGH 58

so DELAY FOR VOLATILE

AS3597 DSP |I_I\(I)I'T||AI;Ll|)ZIA\'(f|IT)T\I
RESET 3'G"'AL TO BE COMPLETE

51
COPY nsp BOOT LOADER LATCH DATA BYTE 59

FROM NON VOLATILE INTO VOLATILE

LOGIC DEVICE LOGIC DEVICE

so

52 DSP BEGINS
EXECUTION CHECK BYTE

COUNT LESS THAN N0 3

A

53 CONFIGURE I/O PORTS PRE§,,':f8'EF'E°
FOR VOLATILE LOGIC A

DEVICE PROGRAMMING °
YES

54 61
INITIALIZE VOLATILE DSP READS NEXT DATA

LOGIC DEVICE BYTE OF DEVTCE
PROGRAM DATA

55 READ 62

CONFIGURATION

DATA '“°%%“IEII‘ILS”E

CLEAN BYTE 63
COUNTER LOAD DATA BYTE

AND INTO DSP IIO

64
READ 1ST

CONFIGURATION

DATA BYTE

DELAY 20 nsec

AND

 57 LOAD 1ST LATCH INTO
CONFIGURATION PROGRAMMABLE

DATA BYTE LOGIC
INTO DSP I/O DEVICE

10

U.S. Patent Feb. 20, 2007 Sheet 7 of 13 Us 7,181,608 B2

DSP READ LAST

DATA BYTE & LATCH INTO

VOLATILE LOGIC

DEVICE

AND

POLL VOLATILE LOGIC

DEVICE TO ENSURE

PROGRAMMING

COMPLETE

66

PROGRAMMING

SUCCESSFUL

CONTINUE DATA STORAGE
CONTROLLER

INITIALIZATION 68

FLAG ERROR

REPEAT

ENTIRE PROCESS

FIG. 6b

10

11

U.S. Patent Feb. 20, 2007 Sheet 8 of 13 Us 7,181,608 B2

RETREIVE REQUESTED

BOOT DATA FROM DISK

BOOT PROCESS

COMPLETE

?

12

U.S. Patent Feb. 20, 2007 Sheet 9 of 13 Us 7,181,608 B2

75

 POWEFI-UP

OR SYSTEM

RESET
75 YES '

77 RETRIEVE & READ LIST

PREFETCH DATA BLOCKS

SPECIFIED IN LIST
78

79 COMMENCE BOOT PROCESS

RECEIVE READ REQUEST

FOR BOOT DATA

0
IS

REQUESTED

BOOTDATA ‘°’§§é’I%'§\§Eé"é5?aTT%S;II'f
PRELQADED

2 N0

FIETFIIEVE REQUESTED BOOT

DATA FROM BOOT DEVICE

3

UPDATE LIST TO INCLUDE

BOOT DATA NOT PREVIOUSLY

SPECIFIED IN LIST

84

IS ANY BOOT

DATA NOT REQUESTED N0
DURING BOOT

PROCESS
9

UPDATE LIST TO EXCLUDE

BOOT DATA NOT PREVIOUSLY

SPECIFIED IN LIST

FIG. 7b

12

13

U.S. Patent Feb. 20, 2007 Sheet 10 of 13 Us 7,181,608 B2

RECEIVE REQUEST FOR APPLICATION

DATA ASSOICATED WITH

LAUNCHED APPLICATION

LAUNCH

PROCESS

COMPLETE

?

STORE LIST

FIG. 8a

13

14

U.S. Patent Feb. 20, 2007 Sheet 11 of 13 Us 7,181,608 B2

APPLICATION

LAUNCHED

?

REQUESTED

APPLICATION DATA

PRELOADED

?

SERVICE REQUEST USING

PRELOADED

APPLICATION DATA

101 N0

RETRIEVE REMAINDER OF

APPLICATION DATA

FROM DISC

UPDATE LIST TO INCLUDE

APPLICATION DATA NOT

PREVIOUSLY SPECIFIED IN LIST

UPDATE LIST TO EXCLUDE

APPLICATION

DATA PREVIOUSLY

SPECIFIED IN LIST

FIG. 8b

14

15

U.S. Patent Feb. 20, 2007 Sheet 12 of 13 Us 7,181,608 B2

%z_s§§55%SE38%
l"—'_'_'—'—' '_'-"—'

 m._®_u_&:I'I‘I|IIIUIIIIIIIIIII‘IIIIIIIIIIIIIIIIIIIII|I|IIINIIIIIin.m$8o_,m_._§___§oo._o_H,%_W_,M._¢_m<Mmw.%smgooozmv_.,§Eas§2z_.35mgooozmS5

Q2m:E,_=§Eu_=m
E58%

L-_.__....-__.-__-

15

16

US 7,181,608 B2

Feb. 20, 2007

¢oE_$$o._.=._zE<._.<n_
2GE\2:_:...................................!.._m5Easeweflm.._m_Eu_..5m..._s_>_<m...E.._Ea5&8sfigoaamo:_5ma§Ea_,___,_§_5EaSE5_gfiooogommmmmmzoo_afiooomo

U.S. Patent

16

17

US 7,181,608 B2

1
SYSTEMS AND METHODS FOR

ACCELERATED LOADING OF OPERATING
SYSTEMS AND APPLICATION PROGRAMS

(IR()SS-RlCl"lLRIINCH 'l'() Rll,I.A'l'|",])
APPLICATION

This application is based on a U.S. provisional application
Ser. No. 60/180,114, filed on Feb. 3, 2000, which is fully
incorporated herein by reference.

BACKGROUND

1. Technical Field

The present invention relates generally to systems and
methods for providing accelerated loading of operating
system and application programs upon system boot or
application launch and, more particularly, to data storage
controllers employing lossless and/or lossy data compres-
sion and decompression to provide accelerated loading of
operating systems and application programs.

2. Description of the Related Art
Modern computers utilize a hierarchy of memory devices.

To achieve maximum performance levels, modem proces-
sors utilize onboard memory and on board cache to obtain
high bandwidth access to both program and data. Limita-
tions in process technologies currently prohibit placing a
sufiicient quantity of onboard memory for most applications.
Thus, in order to olfer suflicient memory for the operating
system(s), application programs, and user data, computers
often use various forms of popular oif-processor high speed
memory including static random access memory (SRAM),
synchronous dynamic random access memory (SDRAM),
synchronous burst static ram (SBSRAM). Due to the pro-
hibitive cost of the high-speed random access memory,
coupled with their power volatility, a third lower level of the
hierarchy exists for non-volatile mass storage devices.

Furthermore, mass storage devices olfer increased capac-
ity and fairly economical data storage. Mass storage devices
(such as a “hard disk”) typically store the operating system
of a computer system, as well as applications and data and
rapid. access to such data is critical l.o system performance.
The data storage and retrieval bandwidth of mass storage
devices, however, is typically much less as compared with
the bandwidth of other elements of a computing system.
Indeed, over the last decade, although computer processor
performance has improved by at least a factor of 50,
magnetic disk storage performance has only improved by a
factor of 5. Consequently, memory storage devices severely
limit the performance of consumer, entertainment, ofiice,
workstation, servers, and mainframe computers for all disk
and memory intensive operations.

The ubiquitous lntemet combined with new multimedia
applications has put tremendous emphasis on storage volu-
metric density, storage mass density, storewidth, and power
consumption. Specifically, storage density is limited by the
number olibits that are encoded in a mass storage device per
unit volume. Similarly mass density is defined as storage bits
per unit mass. Storewidth is the data rate at which the data
may be accessed. There are various ways of categorizing
storewidth in terms, several of the more prevalent metrics
include sustained continuous storewidth, burst storewidth,
and random access storewidth, all typically measured in
megabytes/sec. Power consumption is canonically defined in
terms of power consumption per bit and may be specified
under a number of operating modes including active (While
data is being accessed and transmitted) and standby mode.

10

15

20

25

30

35

40

45

50

55

60

65

2

Hence one fairly obvious limitation within the current art is
the need for even more volume, mass, and power eflicient
data storage.

Magnetic disk mass storage devices currently employed
in a variety of home, business, and scientific computing
applications suffer from significant seek-time access delays
along with profound read/write data rate limitations. Cur-
rently the fastest available disk drives support only a sus-
tained output data rate in the tens of megabytes per second
data rate (MB/sec). This is in stark contrast to the modern
Personal Computer’s Peripheral Component Interconnect
(PCI) Bus’s low end 32 bit/33 Mhz input/output capability
of 264 MB/sec and the PC’s internal local bus capability of
800 MB/sec.

Another problem within the current art is that emergent
high performance disk interface standards such as the Small
Computer Systems Interface (SCSI-3), Fibre Channel, AT
Attachment UltraDMA/66/100, Serial Storage Architecture,
and Universal Serial Bus ofler only higher data transfer rates
through intermediate data buJ.lering in random access
memory. These interconnect strategies do not address the
fundamental problem that all modem magnetic disk storage
devices for the personal computer marketplace are still
limited by the same typical physical media restrictions. In
practice, faster disk access data rates are only achieved by
the high cost solution of simultaneously accessing multiple
disk drives with a technique known within the art as data
striping and redundant array of independent disks (RAID).

RAID systems often afl°ord the user the benefit of
increased data bandwidth for data storage and retrieval. By
simultaneously accessing two or more disk drives, data
bandwidth may be increased at a maximum rate that is linear
and directly proportional to the number of disks employed.
Thus another problem with modem data storage systems
utilizing RAID systems is that a linear increase in data
bandwidth requires a proportional number of added disk
storage devices.

Another problem with most modem mass storage devices
is their inherent unreliability. Many modem mass storage
devices utilize rotating assemblies and other types of elec-
tromechanical components that possess failure rates one or
more orders of magnitude higher than equivalent solid-state
devices. RAID systems employ data redundancy distributed
across multiple disks to enhance data storage and retrieval
reliability. In the simplest case, data may be explicitly
repeated on multiple places on a single disk drive, on
multiple places on two or more independent disk drives.
More complex techniques are also employed that support
various trade-ofi°s between data bandwidth and data reliabil-

ity.
Standard types of RAID systems currently available

include RAID Levels CI, 1, and 5. The configuration selected
depends on the goals to be achieved. Specifically data
reliability, data validation, data storage/retrieval bandwidth,
and cost all play a role in defining the appropriate RAID data
storage solution. RAID level 0 entails pure data striping
across multiple disk drives. This increases data bandwidth at
best linearly with the number of disk drives utilized. Data
reliability and validation capability are decreased. A failure
of a single drive results in a complete loss of all data. Thus
another problem with RAID systems is that low cost
improved bandwidth requires a significant decrease in reli-
ability.

RAID Level 1 utilizes disk mirroring where data is
duplicated on an independent disk subsystem. Validation of
data amongst the two independent drives is possible if the
data is simultaneously accessed on both disks and subse-

17

18

US 7,181,608 B2

3

quently compared. This tends to decrease data bandwidth
from even that of a single comparable disk drive. In systems
that offer hot swap capability, the failed drive is removed and
a replacement drive is inserted. The data on the failed drive
is then copied in the background while the entire system 5
continues to operate in a performance degraded but fully
operational mode. Once the data rebuild is complete, normal
operation resumes. Hence, another problem with RAID
systems is the high cost of increased reliability and associ-
ated decrease in performance.

RAID Level 5 employs disk data striping and parity error
detection to increase both data bandwidth and reliability
simultaneously. A minimum of three disk drives is required
for this technique. In the event of a single disk drive failure,
that drive may be rebuilt from parity and other data encoded
on disk remaining disk drives. In systems that offer hot swap
capability, the failed drive is removed and a replacement
drive is inserted. The data on the failed drive is then rebuilt

in the background while the entire system continues to
operate in a performance degraded but fully operational
mode. Once the data rebuild is complete, normal operation
resumes.

l0

15

Thus another problem with redundant modem mass stor-
age devices is the degradation of data bandwidth when a
storage device fails. Additional problems with bandwidth
limitations and reliability similarly occur within the art by
all other forms of sequential, pseudo-random, and random
access mass storage devices. These and other limitations
within the current art are addressed by the present invention.

25

30

SUMMARY OF THE INVENTION

The present invention is directed to systems and methods
for providing accelerated loading of operating system and
application programs upon system boot or application
launch and, more particularly, to data storage controllers
employing lossless and/or lossy data compression and
decompression to provide accelerated loading of operating
systems and application programs.

In one aspect of the present invention, a method for
providing accelerated loading of an operating system coni-
prises the steps of: maintaining a list of boot data used for
booting a computer system; preloading the boot data upon
initialization ofthe computer system; and servicing requests
for boot data from the computer system using the preloaded
boot data. The boot data may comprise program code
associated with an operating system ofthe computer system,
an application program, and a combination thereof. In a
preferred embodiment, the boot data is retrieved from a boot
device and stored in a cache memory device.

35

40

45

50

In another aspect, the method for accelerated loading of
an operating system comprises updating the list of boot data
during the boot process. The step of updating comprises
adding to the list any boot data requested by the computer
system not previously stored in the list and/or removing
from the list any boot data previously stored in the list and
not requested by the computer system.

In yet another aspect, the boot data is stored in a com-
pressed format on the boot device and the preloaded boot
data is decompressed prior to transmitting the preloaded
boot data to the requesting system.

In another aspect, a method for providing accelerated
launching of an application program comprises the steps of:
maintaining a list of application data associated with an
application program; preloading the application data upon

55

60

65

4

launching the application program; and servicing requests
for application data from a computer system using the
preloaded application data.

In yet another aspect, a boot device controller for provid-
ing accelerated loading of an operating system of a host
system comprises: a digital signal processor (DSP); a pro-
grammable logic device, wherein the programmable logic
device is programmed by the digital signal processor to (i)
instantiate a first interface for operatively interfacing the
boot device controller to a boot device and to (ii) instantiate
a second interface for operatively interfacing the boot device
controller to the host system; and a non-volatile memory
device, for storing logic code associated with the DSP, the
first interface and the second interface, wherein the logic
code comprises instructions executable by the DSP for
maintaining a list of boot data used for booting the host
system, preloading the boot data upon initialization of the
host system, and servicing requests for boot data from the
host system using the preloaded boot data. The boot device
controller fiirther includes a cache memory device for stor-
ing the preloaded boot data.

The present invention is realized due to recent improve-
ments in processing speed, inclusive of dedicated analog and
digital hardware circuits, central processing units, (and any
hybrid. combinations thereof), that, coupled. with advanced
data compression and decompression algorithms are
enabling of ultra high bandwidth data compression and
decompression methods that enable improved data storage
and retrieval bandwidth

These and other aspects, features and advantages, of the
present invention will become apparent from the following
detailed description of preferred embodiments that is to be
read in connection with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a data storage controller
according to one embodiment of the present invention;

FIG. 2 is a block diagram ol‘ a data storage controller
according to another embodiment of the present invention;

FIG. 3 is a block diagram of a data storage controller
according to another embodiment of the present invention;

FIG. 4 is a block diagram of a data storage controller
according to another embodiment of the present invention;

FIG. 5 is a block diagram of a data storage controller
according to another embodiment of the present invention;

FIGS. 6a and 61) comprise a flow diagram of a method for
initializing a data storage controller according to one aspect
of the present invention;

FIGS. 7a and 7b comprise a flow diagram of a method for
providing accelerated loading of an operating system and/or
application programs upon system boot, according to one
aspect of the present invention;

FIGS. 8a and 8b comprise a flow diagram of a method for
providing accelerated loading of application programs
according to one aspect of the present invention;

FIG. 9 is a diagram of an exemplary data compression
system that may be employed in a data storage controller
according to the present invention; and

FIG. 10 is a diagram of an exemplary data decompression
system that may be employed in a data storage controller
according to the present invention.

18

19

US 7,181,608 B2

5
DETAILED DESCRIPTION OF PREFERRED

EMBODIMENTS

In the following description, it is to be understood that
syste1n elements having equivalent or similar l'uncLionalily
are designated with the same reference numerals in the
Figures. It is to be further understood that the present
invention may be implemented in various forms of hard-
ware, software, firmware, or a combination thereof. Prefer-
ably, the present invention is implemented on a computer
platform including hardware such as one or more central
processing units (CPU) or digital signal processors (DSP), a
random access memory (RAM), and input/output (I/O)
interface(s). The computer platform may also include an
operating system, microinstruction code, and dedicated pro-
cessing hardware utilizing combinatorial logic or finite state
machines. The various processes and functions described
herein may be either part of the hardware, microinstruction
code or application programs that are executed via the
operating system, or any combination thereof.

It is to be further understood that, because some of the
constituent system components described herein are prefer-
ably implemented as software modules, the actual system
connections shown in the Figures may dilfer depending
upon the manner in that the systems are programmed. It is
to be appreciated that special purpose microprocessors,
dedicated hardware, or and combination thereof may be
employed to implement the present invention. Given the
teachings herein, one of ordinary skill in the related art will
be able to contemplate these and similar implementations or
configurations of the present invention.

1. System Architectures

The present invention is directed to data storage control-
lers that provide increased data storage/retrieval rates that
are not otherwise achievable using conventional disk con-
troller systems and protocols to store/retrieve data to/from
mass storage devices. The concept of “accelerated” data
storage and retrieval was introduced in U.S. patent applica-
tion Ser. No. 09.:"266,394, filed Mar. 11, 1999, entitled
“System and Methods For Accelerated Data Storage and
Retrieval”, which is now U.S. Pat. No. 6,601,104 and U.S.

patent application Ser. No. 09/481,243, filed Jan. 11, 2000,
entitled “System and Methods For Accelerated Data Storage
and Retrieval,” which is now U.S. Pat. No. 6,604,158, both
ofwhich are commonly assigned and incorporated herein by
reference. In general, as described in the above-incorporated
applications, “accelerated” data storage comprises receiving
a digital data stream at a data transmission rate which is
greater than the data storage rate of a target storage device,
compressing the input stream at a compression rate that
increases the elfective data storage rate of the target storage
device and storing the compressed data in the target storage
device. For instance, assume that a mass storage device
(such as a hard disk) has a data storage rate of 20 megabytes
per second. If a storage controller for the mass storage
device is capable 01' compressing an input data stream will1
an average compression rate of 3:1, then data can be stored
in the mass storage device at a rate of 60 megabytes per
second, thereby efi’"ectively increasing the storage bandwidth
(“storewid ”) of the mass storage device by a factor of
three. Similarly, accelerated data retrieval comprises retriev-
ing a compressed digital data stream from a target storage
device at the rate equal to, e.g., the data access rate of the
target storage device and then decompressing the com-
pressed data at a rate that increases the elfective data access
rate of the target storage device. Advantageously, acceler-

10

15

25

30

35

40

45

50

55

60

65

6

ated data storage/retrieval mitigates the traditional bottle-
neck associated with, e.g., local and network disk accesses.

Referring now to FIG. 1, a high level block diagram
illustrates a data storage controller 10 according to one
embodiment of the present invention. The data storage
controller 10 comprises a data compression engine 12 for
compressing/decompressing data (preferably in real-tirne or
psuedo real-time) stored/retrieved from a hard disk 11 (or
any other type of mass storage device) to provide acceler-
ated data storage/retrieval. The DCE 12 preferably employs
the data compression/decompression techniques disclosed in
U.S. Ser. No. 09/210,491 entitled “Content Independent
Data Compression Method and System,” filed 011 Dec. 11,
1998, which is now U.S. Pat. No. 6,195,024 which is
commonly assigned and which is fully incorporated herein
by reference. It is to be appreciated that the compression and
decompression systems and methods disclosed in U.S. Ser.
No. 09/210,491 are suitable for compressing and decom-
pressing data at rates, which provide accelerated data storage
and retrieval. A detailed discussion of a preferred “content
independent” data compression process will be provided
below.

The data storage controller 10 further comprises a cache
13, a disk interface (or disk controller) 14 and a bus interface
15. The storage controller 10 is operatively connected to the
hard disk 12 via the disk controller 14 and operatively
connected to an expansion bus (or main bus) 16 of a
computer system via the bus interface 15. The disk interface
14 may employ a known disk interface standard such as
UltraDMA, SCSI, Serial Storage Architecture, FibreCl1ar1-
nel or any other interface that provides suitable disk access
data rates. In addition, the storage controller 10 preferably
utilizes the American National Standard for Information

Systems (ANSI) AT Attachment Interface (ATA/ATAPI-4)
to connect the data storage controller 10 to the hard disk 12.
As is known in the art, this standard defines the connectors
and cables for the physical interconnects between the data
storage controller and the storage devices, along with the
electrical and logical characteristics of the interconnecting
signals.

Further, the bus interface 15 may employ a known stan-
dard such as the PCI (Peripheral Component Interconnect)
bus interface for interfacing with a computer system. The
use of industry standard interfaces and protocols is prefer-
able, as it allows the storage controller 10 to be backwards
compatible and seamlessly integrated with current systems.
However in new designs the present invention may be utilize
any suitable computer interface or combination thereof.

It is to be understood that although FIG. 1 illustrates a
hard disk 12, the storage controller 10 may be employed
with any form of memory device including all fomis of
sequential, pseudo-random, and random access storage
devices. Storage devices as known within the current art
include all forms of random access memory, magnetic and
optical tape, magnetic and optical disks, along with various
other forms of solid-state mass storage devices. The current
invention applies to all forms and manners of memory
devices including, but not limited to, storage devices utiliz-
ing magnetic, optical, and chemical techniques, or any
combination thereof. In addition, the cache 13 may comprise
volatile or non-volatile memory, or any combination thereof.
Preferably, the cache 13 is implemented in SDRAM (static
dynamic random access memory).

The system of FIG. '1 generally operates as follows. When
data is read from disk by the host computer, data flows from
the disk 11 through the data storage controller 10 to the host
computer. Data is stored in one of several proprietary

19

20

US 7,181,608 B2

7

compression formats on the disk 11 (e.g., “content indepen-
dent” data compression). Data blocks are pre-specified in
length, comprised of single or multiple sectors, and are
typically handled in fractional or whole equivalents of
tracks, e.g. 1/2 track, whole track, multiple tracks, etc. To
read disk data, a DMA transfer is setup from the disk
interface 14 to the onboard cache memory 13. The disk
interface 14 comprises integral DMA control to allow trans-
fer of data from the disk 11 directly to the onboard cache 13
without intervention by the DCE 12. It should be noted that
the DCE 12 acts as a system level controller and sets-up
specific registers within both the disk interface 14 and bus
interface 15 to facilitate DMA transfers to and from the

cache memory 13. To initiate a transfer from the disk 11 to
the cache 13, the DMA transfer is setup via specifying the
appropriate command (read disk), the source address (disk
logical block number), amount of data to be transferred
(number of disk logical blocks), and destination address
within the onboard cache memory 13. Then, a disk data
interrupt signal (“DISKINT#”) is cleared (if previously set
and not cleared) and the command is initiated by writing to
the appropriate address space. Once data has been read from
disk 11 and placed into onboard cache memory 13, the
DlSKINT# interrupt is asserted notifying the DCE 12 that
requested data is now available in the cache memory 13.
Data is then read by the DMA controller within the DCE 12
and placed into local memory for subsequent decompres-
sion. The decompressed data is then DMA transferred from
the local memory of the DCE 12 back to the cache memory
13. Finally, data is DMA transferred via the bus interface
controller 15 from the cache memory 13 to the bus 16. It is
to be understood that in the read mode, the data storage
controller acts as a bus master. A bus DMA transfer is then

setup via specifying the appropriate command (write to host
computer), the source address within the cache memory 13,
the quantity of data words to be transferred (transfers are
preferably in 4 byte increments), and the destination address
on the host computer. When a bus 16 read or Write trans-
action has completed, the appropriate interrupt signals (re-
spectively referred to as PCIRDINT# and PCIWR1NT#) are
asserted to the DCE 12. Either of these interrupts are cleared
by a corresponding interrupt service routines through a read
or write to the appropriate address of the DCE 12.

Similarly, when data is written to the disk 11 from the host
computer, data flows from the host computer through the
data storage controller 10 and onto disk 11. Data is normally
received from the host computer in uncompressed (raw)
format and is compressed by the DCE 12 and stored on the
disk 11. Data blocks from the host are pre-specified in length
and are typically handled in blocks that are a fixed multiplier
higher than fractional or whole equivalents of tracks, eg. 1/2
track, whole track, multiple tracks, etc. This multiplier is
preferably derived from the expected average compression
ratio that is selected when the disk is formatted with the

virtual file management system. To read host computer data,
a bus DMA transfer is setup from the host bus 16 to the
onboard cache memory 13. The bus interface controller 15
comprises integral DMA control that allows large block
transfers from the host computer directly to the onboard
cache 13 without intervention by the DCE 12. The bus
interface controller 15 acts as a host computer Bus Master
when executing such transfer. Once data has been read from
the host and placed into onboard cache memory 13, the data
is read by the onboard DMA controller (residing on the DCE
12) and placed into local memory for subsequent compres-
sion. The compressed data is then DMA transferred from the
local memory of the DCE 12 back to the cache memory 13.

5

10

15

25

30

35

40

45

50

55

60

65

8

Finally, data is DMA transferred via the disk controller 14
from the cache 13 to the disk 11.

As discussed in greater detail below, upon host computer
power-up or external user reset, the data storage controller
'10 initializes the onboard interfaces ‘I4, '15 prior to release
of the extemal host bus 16 from reset. The processor of the
host computer then requests initial data from the disk 11 to
facilitate the computer’s boot-up sequence. The host com-
puter requests disk data over the Bus 16 via a command
packet issued from the host computer. Command packets are
preferably eight words long (in a preferred embodiment,
each word comprises 32 bits). Commands are written from
the host computer to the data storage controller 10 with the
host computer as the Bus Master and the data storage
controller 10 as the slave. The data storage controller 10
includes at least one Base Address Register (BAR) for
decoding the address of a command queue of the data
storage controller 10. The command queue resides within
the cache 13 or within onboard memory of the DCE 12.

When a command is received from the host computer, an
interrupt (referred to herein as PClCMDINT#) is generated
to the DCE processor. The eight-word command is read by
the DCE 12 and placed into the command queue. Because
the commands occupy a very small amount of memory, the
location of the command queue is at the discretion of
software and the associated system level performance con-
siderations. Commands may be moved from the bus inter-
face 16 to the command queue by wither explicit reads and
writes by the DCE processor or, as explained below, by
utilizing programmed DMA from an Enhanced DMA Con-
troller (EDMA) residing on the DCE 12. This second
technique may better facilitate system throughput by allow-
ing the EDMA to automatically load commands while the
highly pipelined data compression and decompression pro-
cessing in the DCE is executed fully undisturbed.

The DCE 12, disk interface 14 and bus interface 15
commonly share the cache 13. As explained in detail below,
the storage controller 10 preferably provides maximum
system bandwidth by allowing simultaneous data transfers
between the disk 12 and cache 13, the DCE 12 and the cache
13, and the expansion bus 16 and the cache 13. This is
realized by employing an integral l)MA (direct memory
access) protocol that allows the DCE 12, disk interface 14
and bus interface 15 to transfer data without interrupting or
interfering with other ongoing processes. In particular, as
explained in detail below, an integral bandwidth allocation
controller (or arbitrator) is preferably employed to allow the
DCE 12, disk controller 14, and bus interface 15 to access
the onboard cache with a bandwidth proportional to the
overall bandwidth of the respective interface or processing
element. The bandwidth arbitration occurs transparently and
does not introduce latency in memory accesses. Bandwidth
division is preferably performed with a high degree of
granularity to minimize the size of requisite onboard buffers
to synchronize data from the disk interface 14 and bus
interface 15.

It is to be appreciated that the implementation ofa storage
controller according to the present invention significantly
accelerates the performance of a computer system and
significantly increases hard disk data storage capacity. For
instance, depending on the compression rate, for personal
computers running standard Microsoft Windows® based
business application software, the storage controller pro-
vides: (1) an increase of n:l in disk storage capacity(for
example, assuming a compression ration of 3:1, a 20
gigabyte hard drive eifectively becomes a 60 gigabyte hard
drive) (2) a significant decrease in the computer boot-up

20

21

US 7,181,608 B2

9

time (tum-on and operating system load) and the time for
loading application software and (3) User data storage and
retrieval is increased by a factor of nzl.

Referring now to FIG. 2, a block diagram illustrates a data

storage controller 20 according to another embodiment of 5
the present invention. More specifically, FIG. 2 illustrates a
PCB (printed circuit board) implementation of the data
storage controller 10 of FIG. 1. The storage controller 20
comprises a DSP (digital signal processor) 21 (or any other
micro-processor device) that implements the DCE. 12 of
FIG. 1. The storage controller 21 further comprises at least
one programmable logic device 22 (or volatile logic device).
The programmable logic device 22 preferably implements
the logic (program code) for instantiating and driving both
the disk interface 14 and the bus interface 15 and for

providing full DMA capability for the disk and bus inter-
faces 14, 15. Further, as explained in detail below, upon host
computer power-up and/or assertion of a system-level
“reset” (e.g., PCI Bus reset), the USP 21 initializes and
programs the programmable logic device 22 before of the
completion of initialization of the host computer. This
advantageously allows the data storage controller 20 to be
ready to accept and process commands from the host com-
puter (via the bus 16) and retrieve boot data from the disk
(assuming the data storage controller 20 is implemented as
the boot device and the hard disk stores the boot data (e.g.,
operating system, el.c.)).

The data storage controller 20 fL1rther comprises a plu-
rality of memory devices including a RAM (random access
memory) device 23 and a ROM (read only memory) device
24 (or FLASH memory or other types of non-volatile
memory). The RAM device 23 is utilized as on-board cache
and is preferably implemented as SDRAM (preferably, 32
megabytes minimum). The ROM device 24 is utilized for
non-volatile storage of logic code associated with the DSP
21 and configuration data used by the DSP 21 to program the
programmable logic device 22. The ROM device 24 pref-
erably comprises a one time (erasable) programmable
memory (OTP-EPROM) device.

The DSP 21 is operatively connected to the memory
devices 23, 24 and the programrnable logic device 22 via a
local bus 25. The DSP 21 is also operatively connected to the
programmable logic device 22 via an independent control
bus 26. The programmable logic device 22 provides data 45
flow control between the DSP 21 and the host computer
system attached to the bus 16, as well as data flow control
between the DSP 21 and the storage device. A plurality of
external I/O ports 27 are included for data transmission
and/or loading of one programmable logic devices. Prefer- 50
ably, the disk interface 14 driven by the programmable logic
device 22 supports a plurality of hard drives.

The storage controller 20 further comprises computer
reset and power up circuitry 28 (or “boot configuration
circuit”) for controlling initialization (either cold or warm
boots) of the host computer system and storage controller
20. A preferred boot configuration circuit and preferred
computer initialization systems and protocols are described
in U.S. patent application Ser. No. 09/775,897, filed con-
currently herewith, which is commonly assigned and incor-
porated herein by reference. Preferably, the boot configura-
tion circuit 28 is employed for controlling the initializing
and programming the programmable logic device 22 during
configuration of the host computer system (i.e., while the
CPU of the host is held in reset). The boot configuration
circuit 28 ensures that the programmable logic device 22
(and possibly other volatile or partially volatile logic

10

15

25

30

35

40

55

60

65

21

10

devices) is initialized and programmed before the bus 16
(such as a PCI bus) is fully reset.

In particular, when power is first applied to the boot
configuration circuit 28, the boot configuration circuit 28
generates a control siyal to reset the local system (e.g.,
storage controller 20) devices such as a DSP, memory, and
I/O interfaces. Once the local system is powered-up and
reset, the controlling device (such as the DSP 21) will then
proceed to automatically determine the system enviromnent
and configure the local system to work within that environ-
ment. By way of example, the DSP 21 of the disk storage
controller 20 would sense that the data storage controller 20
is on a PCI computer bus (expansion bus) and has attached
to it a hard disk on an IDE interface. The DSP 21 would then

load the appropriate PCI and IDE interfaces into the pro-
grammable logic device 22 prior to completion of the host
system reset. It is to be appreciated that this can be done for
all computer busses and boot device interfaces including:
PCI, NuBus, ISA, Fiber Channel, SCSI, Ethemet, DSL,
ADSL, IDE, DMA, Ultra DMA, and SONET. Once the
programmable logic device 22 is configured for its environ-
ment, the boot device controller is reset and ready to accept
commands over the computer/expansion bus 16. Details of
the boot process using a boot device comprising a program-
mable logic device will be provided below.

It is to be understood that the data storage controller 20
may be utilized as a controller for transmitting data (com-
pressed or uncompressed) to and from remote locations over
the DSP I/O ports 27 or system bus 16, for example. Indeed,
the I/O ports 27 of the DSP 21 may be used for transmitting
data (compressed or uncompressed) that is either retrieved
from the disk 11 or received from the host system via the bus
16, to remote locations for processing and/or storage.
Indeed, the I/O ports may be operatively connected to other
data storage controllers or to a network communication
channels. Likewise, the data storage controller 20 may
receive data (compressed or uncompressed) over the I/O
ports 27 of the DSP 21 from remote systems that are
connected to the I/O ports 27 of the DSP, for local processing
by the data storage Controller 20. For instance, a remote
system may remotely access the data storage controller (via
the I/O ports of the DSP or system bus 16) to utilize the data
compression, in which case the data storage controller
would transmit the compressed data back to the system that
requested compression.

The DSP 21 may comprise any suitable commercially
available DSP or processor. Preferably, the data storage
controller 20 utilizes a DSP from Texas Instruments’ 320

series, C62x family, of DSPs (such as TMS32OC621lGFN-
150), although any other DSP or processor comprising a
similar architecture and providing similar functionalities
may be employed. The preferred DSP is capable of up to 1.2
billion instructions per second. Additional features of the
preferred DSP include a highly parallel eight processor
single cycle instruction execution, onboard 4K byte LIP
Program Cache, 4K LlD Data Cache, and 64K byte Unilied
L2 Program/Data Cache. The preferred DSP further com-
prises a 32 bit External Memory Interface (EMIF) that
provides for a glueless interface to the RAM 23 and the
non-volatile memory 24 (ROM). The DSP further comprises
two multi-channel bufiered serial ports (MCBSPS) and two
32 bit general purpose timers. Preferably, the storage con-
troller disables the I/O capability of these devices and
utilizes the I/O ports of the DSP as general purpose I/O for
both programming the programmable logic device 22 using
a strobed eight bit interface and signaling via a Light

22

US 7,181,608 B2

11

Emitting Diode (LED). Ancillary DSP features include a 16
bit Host Port Interface and full JTAG emulation capability
for development support.

The programmable logic device 22 may comprise any
form of volatile or non-volatile memory. Preferably, the 5
programmable logic device 22 comprises a dynamically
reprogrammable FPGA (field programmable gate array)
such as the commercially available Xilinx Spartan Series
XCS40XL-PQ240-5 FPGA. As discussed in detail herein,
the FPGA instantiates and drives the disk and bus interfaces

14, 15.
The non-volatile memory device 24 preferably comprises

a 128 Kbyte M27W1 01 -80K one time (erasable) progran1-
mable read only memory, although other suitable non-
volatile storage devices may be employed. The non-volatile
memory device 24 is decoded at a designated memory space
in the DSP 21. The non-volatile memory device 24 stores the
logic for the DSP 21 and configuration data for the pro-
grammable logic device 22. More specifically, in a preferred
embodiment, the lower 80 Kbytcs of the non-volatile
memory device 24 are utilized for storing DSP program
code, wherein the first 1 k bytes are utilized for the DSP’s
boot loader. Upon re configuration circuit 28), the first 1 K
of memory of the non-volatile memory device 24 is copied
into an internal RAM of the DSP 21 by eg, the DSP’s
Enhanced DMA Controller (EDMA). Although the boot
process begins when the CPU of the host system is released
from external reset, the transfer of the boot code into the
DSP and the DSP’s initialization of the programmable logic
device actually occurs while the CPU of the host system is
held in reset. After completion of the 1 K block transfer, the
DSP executes the boot loader code and continues thereafter

with executing the remainder of the code in non-volatile
memory device to program the programmable logic device
22.

More specifically, in a preferred embodiment, the upper
48 K bytes of the non-volatile memory device 24 are utilized
for storing configuration data associated with the program-
mable logic device 22. If the data storage controller 20 is
employed as the primary boot storage device for the host
computer, the logic for instantiating and driving the disk and
bus interfaces ‘I4, '15 should be stored on the data storage
controller 20 (although such code may be stored in remotely
accessible memory locations) and loaded prior to release of
the host system bus 16 from “reset”. For instance, revision 45
2.2 of the PCI Local Bus specification calls for a typical
delay of 100 msec from power-stable before release of PCI
Reset. In practice this delay is currently 200 msec although
this varies amongst computer manufacturers. A detailed
discussion of the power-on sequencing and boot operation of 50
the data storage controller 20 will be provided below.

FIG. 3 illustrates another embodiment of a data storage
controller 35 wherein the data storage controller 35 is
embedded within the motherboard of the host computer
system. This architecture provides the same functionality as 55
the system of FIG. 2, and also adds the cost advantage of
being embedded on the host motherboard. The system
comprises additional RAM and ROM memory devices 23a,
24a, operatively connected to the DSP 21 via a local bus
25a.

FIG. 4 illustrates another embodiment of a data storage
controller. The data storage controller 40 comprises a PCB
implementation that is capable of supporting RAID levels
0,1 and 5. This architecture is similar to those of FIGS. 1 and

2, except that a plurality of programmable logic devices 22,
22a are utilized. The programmable logic device 22 is
dedicated to controlling the bus interface 15. The program-

10

15

25

30

35

40

60

65

12

mable logic device 22a is dedicated to controlling a plurality
of disk interfaces 14, preferably three interfaces. Each disk
interface 14 can connect up to two drives. The DSP in
conjunction with the programmable logic device 22a can
operate at RAID level 0, 1 or 5. At RAID level 0, which is
disk striping, two interfaces are required. This is also true for
RAID level 1, which is disk mirroring. At RAID level 5, all
three interfaces are required.

FIG. 5 illustrates another embodiment of a data storage
controller according to the present invention. The data
storage controller 45 provides the same functionality as that
of FIG. 4, and l1as the cost advantage of being embedded
within the computer system motherboard.

II. Initializing a Programmable Logic Device

As discussed above with reference to FIG. 2, for example,
the data storage controller 20 preferably employs an onboard
Texas Instruments TMS320C62ll Digital Signal Processor
(DSP) to program the onboard Xilinx Spartan Series
XCS40XL FPGA upon power-up or system level PCI reset.
The onboard boot configuration circuit 28 ensures that from
system power-up and/or the assertion of a bus reset (e.g.,
PCI reset), the DSP 21 is allotted a predetermined amount of
time (preferably a minimum of 10 msec) to boot the DSP 21
and load the programmable logic device 22. Because of a
potential race condition between either the host computer
power-up or assertion of PCI Bus reset and configuration of
the programmable logic device 20 (which is used for con-
trolling the boot device and accepting PCI Commands), an
“Express Mode” progarnming mode for configuring the
Sparta.nXL family XCS40XL device is preferably employed.
The XCS40XL is factory set to byte-wide Express-Mode
programming by setting both the Ml/M() bits of the
XCS40XL to 0x0. Further, to accommodate express mode
programming of the programmable logic device 22, the DSP
21 is programmed to utilize its serial ports reconfigured as
general purpose I/O. However, after the logic device 22 is
programmed, the DSP 21 may then reconfigure its serial
ports for use with other devices. Advantageously, using the
same DSP ports for multiple purposes alfords greater flex-
ibility while minimizing hardware resources and thus reduc-
ing product cost.

The volatile nature of the logic device 22 effectively
affords the ability to have an unlimited number of hardware
interfaces. Any number of programs for execution by the
programmable logic device 22 can be kept in an accessible
memory location (EPROM, hard disk, or other storage
device). Each program can contain new disk interfaces,
interface modes or subsets thereof. When necessary, the DSP
21 can clear the interface currently residing in the logic
device 22 and reprogram it with a new interface. This feature
allows the data storage controller 20 to have compatibility
with a large number of interfaces while minimizing hard-
ware resources and thus reducing product cost.

A preferred protocol for programming the programmable
logic device can be summarized in the following steps: (1)
Clearing the configuration memory; (2) Initialization; (3)
Configuration; and (4) Start-Up. When either of three events
occur: the host computer is first powered-up or a power
failure and subsequent recovery occurs (cold boot), or a
front panel computer reset is initiated (warm boot), the host
computer asserts RST# (reset) on the PCI Bus. As noted
above, the data storage controller 20 preferably comprises a
boot configuration circuit 28 that senses initial host com-
puter power tum-on and/or assertion of a PCI Bus Reset

22

23

US 7,181,608 B2

13

(“PCI RST#”). It is important to note that assuming the data
storage controller 20 is utilized in the computer boot-up
sequence, it should be available exactly 5 clock cycles after
the PCI RST# is deasserted, as per PCI Bus Specification
Revision 2.2. While exact timings vary from computer to
computer, the typical PCI bus reset is asserted for approxi-
mately 200 msec from initial power t11rn-on.

In general, PCI RST# is asserted as soon as the comput-
er’s power exceeds a nominal threshold of about 1 volt
(although this varies) and remains asserted for 200 msec
thereafter. Power failure detection of the 5 volt or 3.3 volt

bus typically resets the entire computer as if it is an initial
power-up event (i.e., cold boot). Front panel resets (warm
boots) are more troublesome and are derived from a
debounced push-button switch input. Typical front panel
reset times are a minimum of 20 msec, although again the
only governing specification limit is 1 msec reset pulse
width.

As discussed in detail below, it may not be necessary to
reload the programmable logic device 22 each time the DSP
is reset. The boot configuration circuit 20 preferably com-
prises a state machine output signal that is readable by the
DSP 21 to ascertain the type of boot process requested. For
example, with a front-panel reset (warm boot), the power
remains stable on the PCI Bus, thus the programmable logic
device 22 should not require reloading.

Referring now to FIG. 6, a flow diagram illustrates a

method for initializing the programmable logic device 22

according to one aspect of the invention. In the following

discussion, it is assumed that the programmable logic device

22 is always reloaded, regardless ofthe type of boot process.

Initially, in FIG. 6a, the DSP 21 is reset by asserting a DSP
reset signal (step 50). Preferably, the DSP reset signal is
generated by the boot circuit configuration circuit 28 (as
described in the above-incorporated U.S. Ser. No. 09/775,
897 While the DSP reset signal is asserted (e.g., active low),
in reset and is initialized to a prescribed state. Upon deas-
sertion of the DSP Reset signal, the logic code for the DSP

(referred to as the “boot loader”) is copied from the non-
volatile logic device 24 into memory residing in the DSP 21
(step 51). This allows the DSP to execute the initialization
ofthe programmable logic device 22. In a preferred embodi-
ment, the lower 1 K bytes of EPROM memory is copied to

the first 1 k bytes of DSP’s low memory (0x0000 0000
through 0x0000 03FF). As noted above, the memory map-
ping of the DSP 21 maps the CH1 memory space located at
0x9000 0000 through 0x9001 FFFF with the OTP EPROM.
In a preferred embodiment using the Texas Instrument DSP
TMS320c62l lGFN-150, this ROM boot process is executed

by the EDMA controller of the DSP. It is to be understood,
however, that the EDMA controller may be instantiated in
lhe programmable logic device (Xilinx), or shared between
the DSP and programmable logic device.

After the logic is loaded in the DSP 21, the DSP 21 begins
execution out of the lower 1 K bytes of memory (step 52).

In a preferred embodiment, the DSP 21 initializes with at
least the functionality to read EPROM Memory (CE1)
space. Then, as described above, the DSP preferably con-
llgurcs its serial ports as general purpose I/O (step 53).

Next, the DSP 21 will initialize the programmable logic
device 22 using one or more suitable control signals. (step

l0

15

25

30

35

40

45

50

55

60

65

14

54). After initialization, the DSP 21 begins reading the

configuration data of the programmable logic device 22

from the non-volatile memory 24 (step 55). This process

begins with clearing a Data Byte Counter and then reading

the first data byte beginning at a prespecified memory

location in the non-volatile memory 24 (step 56). Then, the

first output byte is loaded into the DSP’s I/O locations with

LSB at D0 and MSB at D7 (step SD. Before the first byte

is loaded to the logic device 22, a prespecified time delay

(e.g., 5 usec) is provided to ensure that the logic device 22

has been initialized (step 58). In particular, this time delay

should be of a duration at least equal to the internal setup

time of the programmable logic device 22 from completion

of initialization. Once this time delay has expired, the first

data byte in the I/O bus 26 of the DSP 21 is latched into the

programmable logic device 22 (step 59).

Next, a determination is made as to whether the Data Byte
Counter is less than a prespecified value (step 60). If the
Data Byte Counter is less than the prespecified value (afi‘ir-
mative determination in step 60), the next successive data
byte for the programmable logic device 22 is read from the

non-volatile memory 24 (step 61) and the Data Byte Counter
is incremented (step 62).

Next, the read data byte is loaded into the I/O of the DSP
(step 63). A time delay of, e.g., 20 nsec is allowed to expire
before the data byte is latched to the programmable logic
device to ensure that a minimum data set-up time to the

programmable logic device 21 is observed (step 64) and the
process is repeated (return to step 60). It is to be appreciated
that steps 60-64 may be performed while the current data
byte is being latched to the programmable logic device. This
provides “pipeline” programming of the logic device 22 and
minimizes programming duration.

When the Data Byte Counter is not less than the prespeci-

fied count value negative determination in step 60), as

shown in FIG. 6b, the last data byte is read from the

non-volatile memory and latched to the programmable logic

device 22, and the DSP 21 will then poll a control signal

generated by the programmable logic device 22 to ensure

that the programming of the logic device 22 is successful

(step 65). If programming is complete (aflirmative determi-

nation in step 66), the process continues with the remainder

of the data storage controller initialization (step 67). Other-

wise, a timeout occurs (step 68) and upon expiration of the
timeout, an error signal is provided and the programming

process is repeated (step 69).

III. Data Storage and Retrieval Protocols

A detailed discussion of operational modes of a data

storage controller will now be provided with reference to the

embodiment of FIG. 2 (although it is to be understood that

the following discussion is applicable to all the above-

described embodiments). The data storage controller 20

utilizes a plurality of commands to implement the data

storage, retrieval, and disk maintenance functions described

herein. Each command preferably comprises eight thirty-
two bit data words stored and transmitted in little endian

format. The commands include: Read Disk Data; Write Disk

23

24

US 7,181,608 B2

15

Data; and Copy Disk Data, for example. For example, a
preferred format for the “Read Disk Data” command is:

31 16 15 8 7 0

Command ParametersCommand Packet Number Command Type
0000h to FFFFI1 00h (00h)

Starting Block Address (Least Significant Word)

00h

04h

Starting Block Address (Most Significant Word) 0311

Number of Blocks (Least Significant Word) 0Ch

10hNumber of Blocks (Most Significant Word)

Destination Address (Least Significant Word) 14h

Destination Address (Most Significant Word) 18h

Checksum lChReserved

The host computer commands the data storage controller

20 over the PCI Bus 16, for example. Upon computer
power-up or reset, the host computer issues a PCI Bus Reset
with a minimum pulse width of 100 msec (in accordance
with PCI Bus Specification Revision 2.2). Upon completion
of the PCI Bus reset, the data storage controller 20 is fully
initialized and waiting for completion of tlie PCI conligu-
ration cycle. Upon completion of the PCI configuration
cycles, the data storage controller will wait in an idle state
for the first disk command.

During operation, the host operating system may issue a
command to the data storage controller 20 to store, retrieve,
or copy specific logical data blocks. Each command is
transmitted over the PCI Bus 16 at the Address assigned to
the Base Address Register (BAR) of the data storage con-
troller 20.

The commands issued by the host system to the data
storage controller and the data transmitted to and from the
data storage controller are preferably communicated via a 32
bit, 33 MHz, PCI Data Bus. As noted above, the PCI
Interface is preferably housed within the onboard Xilinx
Spartan XCS40XL-5 40,000 field programmable gate array
which instantiates a PCI 32, 32 Bit, 33 MHz PCI Bus

Interface (as per PCI Bus Revision 2.2).

The PCI Bus interface operates in Slave Mode when
receiving commands and as a Bus Master when reading or
writing data. The source and destination for all data is
specified within each command packet. When setting up
data transfers, the Enhanced Direct Memory Access
(EDMA) Controller of the DSP (or the Xilinx) utilizes two
Control Registers, a 16 Word Data Write to PCI Bus FIFO,
a 16 Word Data Read From PCI Bus FIFO, and a PCI Data
Interrupt (PCIDATINT). The 32 Bit PCI Address Register
holds either the starting Source Address for data storage
controller Disk Writes where data is read from the PCI Bus,
or the starting Destination Address for data storage control-
ler Disk Reads where data is written to the PCI Bus. The

second control register is a PCI Count Register that specifies
the direction of the data transfer along with the number of 32
bit Data words to be written to or from the PCI bus.

Data is written to the PCI Bus from the DSP via a 16 Word

PCI Data Write FIFO located within a prespecified address
range. Data writes from the DSP to anywhere within the
address range place that data word in the next available
location within the FIFO. Data is read from the PCI Bus to
the DSP via a 16 Word PCI Data Read FIFO located within

10

15

25

30

35

40

45

50

55

60

65

16

a prespecified address range and data read by the DSP from
anywhere within this address range provides the next data
word from the FIFO.

After completion of the Xilinx initialization by the DSP
and subsequent negation of the PCI Bus Reset signal (RS'l'#)
by the host computer’s PCI Bridge, the data storage con-
troller is ready to accept commands from the host computer
via the PCI Bus. When accepting commands it should be
noted that the data storage controller is a PCI Target (Slave)
Device. Commands are preferably fixed in length at exactly
8 (thirty-two bit) words long. Commands are written from
the host computer to the data storage controller via the PCI
Bus utilizing the data storage controller’s Base Address
Register 0 (BARO). The PCI Bus Reset initially sets the
Command FIFO’s Counter to zero and also signals the
Xilinx’s PCI Bus State Controller that the Command FIFO

is empty and enable to accept a command.
Whenever a data write occurs within the valid data range

of BARO, the data word is accepted from PCI Bus and
placed in the next available memory position within the
Command FIFO. When the last of the 8 thirty-two bit data
words is accepted by the PCI Bus (thus completing the
command, i.e. last word for the command FIFO to be full),
the PCI Bus State Controller is automatically set to Target
Abort (within same PCI Transaction) or Disconnect Without
Data for all subsequent PCI transactions that try to writes to
BARO. This automatic setting is the responsibility of the
Xilinx PCI Data Interface.

The PCI Command FIFO State Controller then asserts the

Command Available Interrupt to the DSP. The DSP services
the Command Available Interrupt by reading the command
data from a prespecified address range. It should be noted
that the command FIFO is read sequentially from any data
access that reads data within such address range. It is the
responsibility of the DSP to understand that the data is read
sequentially from any order of accesses within the data
range and should thus be stored accordingly.

Upon completion of the Command Available Interrupt
Service Routine the DSP executes a memory read or write
to desired location within the PCI Control Register Space
mapped into the DSP’s CE3 (Xilinx) memory space. This
resets the Command 1’Il"() (Iounter back to zero. Next, the

DSP executes a memory read or write to location in the DSP
Memory Space that clears the Command Available Interrupt.
Nested interrupts are not possible since the PCI Bus State
Machine is not yet able to accept any Command Data at
BARO. Once the Command Available Interrupt routine has
cleared the interrupt and exited, the DSP may then enable the
PCI State Machine to accept a new command by reading or
writing to PCI Command Enable location within the PCI
Command FIFO Control Register Space.

A preferred architecture has been selected to enable the
data storage controller to operate on one command at a time
or to accept multiple prioritized commands in filture imple-
mentations. Specifically, the decoupling of the Command
Available Interrupt Service Routine from the PCI State
Machine that accepts Commands at BARO enables the
DSP’s “operating system kernel” to accept additional com-
mands at any time by software command. In single com-
mand operation, a command is accepted, the Command
Available Interrupt Cleared, and the Command executed by
the data storage controller in PCI Master Mode prior to the
enabling of the PCI State machine to accept new commands.

In a prioritized multi-command implementation, the
“operating system kernel” may elect to immediately accept
new commands or defer the acceptance of new commands
based upon any software implemented decision criteria. In

24

25

US 7,181,608 B2

17

one embodiment, the O/S code might only allow a pre-
specified number of commands to be queued. In another
embodiment, connnands might only be accepted during
processor idle time or when the DSP is not executing time
critical (i.e. highly pipelined) compress/decompress rou-
tines. In yet another embodiment, various processes are
enabled based upon a pre-emptive prioritized based sched-
uling system.

As previously stated, the data storage controller retrieves
commands from the input command FIFO in 8 thirty-two bit
word packets. Prior to command interpretation and execu-
tion, a con1mand’s checksum value is computed to verify the
integrity of the data command and associated parameters. If
the checksum fails, the host computer is notified of the
command packet that failed utilizing the Command Protocol
Error Handler. Once the checksum is verified the command

type and associated parameters are utilized as an oifset into
the command “pointer” table or nay other suitable com-
mand/data structure that transfers control to the appropriate
command execution routine.

Commands are executed by the data storage controller
with the data storage controller acting as a PCI Master. This
is in direct contrast to command acceptance where the data
storage controller acts as a PCI Slave. When acting as a PCI
Bus Master, the data storage controller reads or writes data
to the PCI Bus utilizing a separate PCI Bus Data FIFO
(distinct & apart from the Command FIFO). The PCI Data
FIFO is 64 (thirty-two bit) words deep and may be utilized
for either data reads or data writes from the DSP to the PCI

Bus, but not both simultaneously.
For data to be written from the data storage controller to

the Host Computer, the DSP must first write the output data
to the PCI Bus Data FIFO. The Data FIFO is commanded to

PCI Bus Data Write Mode by Writing to a desired location
within the Xilinx (CE3) PCI Control Register Space. Upon
PCI Bus Reset the default state for the PCI Data FIFO is

write mode and the PCI Data FIFO Available Internipt is
cleared. The PCI Data FIFO Available Interrupt should also
be software cleared by writing to a prespecified location.
Preferably, the first task for the data storage controller is for
system boot-up or application code to be downloaded from
disk. For reference, PCI Data Read Mode is commanded by
writing to location BFFO 0104. The PCI Bus Reset initializes
the Data FIFO Pointer to the first data of the 64 data words

within the FIFO. However this pointer should always be
explicitly initialized by a memory write to location BFFO
0108. This ensures that the first data word written to the

FIFO by the DSP performing the data write anywhere in
address range B000 0000 to B000 OIFF is placed at the
beginning of the FIFO. Each subsequent write to any loca-
tion within this address range then places one thirty-two bit
data word into the next available location within the PCI

Data FIFO. The FIFO accepts up to 64 thirty-two bit data
words although it should be clearly understood that not all
data transfers to and from the PCI Bus will consist of a full

FIFO. Counting the number of thirty-two bit data words
written to the PCI Data FIFO is the responsibility of the DSP
Code. It is envisioned that the DSP will, in general, use 64
word DMA data transfers, thus alleviating any additional
processor overhead.

When the data has been transferred from the DSP to the

PCI Data FIFO, the PCI Bus Controller also needs the
address of the PCI Target along with the number of data
words to be transmitted. In the current data storage control-
ler implementation, the PCI Bus Address is thirty-two bits
wide, although future PCI bus implementations may utilize
multiword addressing and/or significantly larger (64 bit &

I0

15

25

30

35

40

45

50

55

60

65

18

up) address widths. The single thirty-two bit address word is
written by the DSP to memory location aaaa+0x10 in the
PCI Control Register Space.

Finally, the PCI Bus Data Write transaction is initiated by
writing the PCI |)ata l"ll*'() word count to a prespecified
memory address. The word count value is always decimal 64
or less (0x3F). When the count register is written the value
is automatically transferred to the PCI Controller for execut-
ing the PCI Bus Master writes.

When the PCI Bus has completed the transfer of all data
words within the PCI Data FIFO the PCI Data FIFO

Available Interrupt is set. The DSP PCI Data FIFO Available
Interrupt handler will then check to see if additional data is
waiting or expected to be written to the PCI Data Bus. If
additional data is required the interrupt is cleared and the
data transfer process repeats. Ifno additional data is required
to be transferred then the interrupt is cleared and the routine
must exit to a system state controller. For example, if the
connnand is complete then master mode must be disabled
and then slave mode (command mode) enabled—assumi11g
a single command by command execution data storage
controller.

For data to be read by the data storage controller from the
Host Computer, the DSP must command the PCI Bus with
the address and quantity of data to be received.

The PCI Data FIFO is commanded to PCI Bus Data Read

Mode by writing to a desired location within the Xilinx
(CE3) PCI Control Register Space. Upon PCI Bus Reset the
default state for the PCI Data FIFO is Write Mode and the

PCI Data FIFO Full Interrupt is cleared. The PCI Data FIFO
Full Interrupt should also be cleared via software by writing
to such location. The PCI Bus Reset also initializes the PCI
Data FIFO Pointer to the first data word of the available 64

data words within the FIFO. However this pointer should
always be explicitly initialized by a memory write to pre-
specified location.

For data to be read from the PCI Bus by the data storage
controller, the Xilinx PCI Bus Controller requires the
address of the PCI Target along with the number of data
words to be received. hi the current data storage controller
implementation, the PCI Bus Address is thirty-two bits wide,
although future PCI bus implementations may utilize mul-
tiword addressing and/"or significantly larger (64 bit & up)
address widths. The single thirty-two bit address word is
written by the DSP to prespecified memory location in the
PCI Control Register Space.

Finally, the PCI Bus Data Read transaction is initiated by
writing the PCI Data FIFO word count to prespecified
memory address. The word count value is always decimal 64
or less (0x3F). When the count register is written the value
is automatically transferred to the PCI Controller for execut-
ing the PCI Bus Master Read.

When the PCI Bus has received all the requested data
words PCI Data FIFO Full Interrupt is set. The DSP PCI
Data FIFO Full Interrupt handler will then check to see if
additional data is waiting or expected to be read from the
PCI Data Bus. Ill additional data is required. the interrupt is
cleared and the data receipt process repeats. If no additional
data is required to be transferred, then the interrupt is cleared
and the routine exits to a system state controller. For
example, if the command is complete then master mode
must be disabled and then slave mode (command mode)
enabled—assuming a single command by command execu-
tion data storage controller.

It is clearly understood that there are other techniques for
handling the PCI Data transfers. The current methodology
has been selected to minimize the complexity and resource

25

26

US 7,181,608 B2

19

utilization of the Xilinx Gate Array. It should also be
understood that the utilization of asynchronous memory
reads and writes to initialize system states and synchronize
events at a software level aids in both hardware and system
level debug at the expense of increase software overhead.
Subsequent embodiments of the gate array may automate
resource intensive tasks if system level performance man-
dates.

IV. Memory Bandwidth Allocation

The onboard cache of the data storage controller is shared
by the DSP, Disk Interface, and PCI Bus. The best case,
maximum bandwidth for the SDRAM memory is 70 mega-
words per second, or equivalently, 280 megabytes per sec-
ond. The 32 bit PCI Bus interface has a best case bandwidth

of 132 megabytes per second, or equivalently 33 megawords
per second. In current practice, this bandwidth is only
achieved in short bursts. The granularity of PCI data bursts
to/from the data storage controller is governed by the PCI
Bus interface data buifer depth of sixteen words (64 bytes).
The time division multiplexing nature of the current PCI
Data Transfer Buifering methodology cuts the sustained PCI
bandwidth down to 66 megabytes/second.

Data is transferred across the ultraDMA disk interface at

a maximum burst rate of 66 megabytes/second. It should be
noted that the burst rate is only achieved with disks that
contain onboard cache memory. Currently this is becoming
more and more popular within the industry. However assum-
ing a disk cache miss, the maximum transfer rates from
current disk drives is approximately six megabytes per
second. Allotting for technology improvements over time,
the data storage controller has been designed for a maximum
sustained disk data rate of 20 megabytes second (5 mega-
words/second). A design challenge is created by the need for
continuous access to the SDRAM memory. Disks are physi-
cal devices and it is necessary to continuously read data from
disk and place it into memory, otherwise the disk will incur
a fall rotational latency prior to continuing the read trans-
action. The maximum SDRAM access latency that can be
incurred is the depth of the each of the two disk FIFO s or
sixteen data. Assuming the FIFO is sixteen words deep the
n1axi.1num latency t.ime for emptying the other disk FIFO
and restoring it to the disk interface is sixteen words at 5
megawords per second or (1 6x3 .2 usec):1 usec. Each EMIF
clock cycle is 14.2857 nsec, thus the maximum latency
translates to 224 clock cycles. It should be noted that
transfers across the disk interface are 16 bits wide, thus the
FPGA is required to translate 32 bit memory transfers to 16
bit disk transfers, and vice-versa.

The DSP services request for its external bus from two
requestors, the Enhanced Direct Memory Access (EDMA)
Controller and an external shared memory device controller.
The DSP can typically utilize the full 280 megabytes of bus
bandwidth on an 8 k through 64 K byte (2 k word through
16 k word) burst basis. It should be noted that the SDRAM
memory is not utilized for interim processing storage, and as
such bandwidth is only utilized in direct proportion to disk
read and write commands.

For a single read from disk transaction data is transferred
from and DMA transfer into SDRAM memory. This data is
then DMA transferred by the DSP into onboard DSP
memory, processed, and re transferred back to SDRAM in
decompressed format (3 words for every one word in).
Finally the data is read from SDRAM by the PCI Bus
Controller and placed into host computer memory. This
equates to eight SDRAM accesses, one Write from disk, one
read by the DSP, three writes by the DSP and three by the

10

15

25

30

35

40

45

50

55

60

65

20

PCI Bus. Disk write transactions similarly require eight
SDRAM accesses, three from the PCI, three DSP reads, one
DSP write, and one to the disk.

Neglecting overhead for setting up DMA transfers, arbi-
tration latencies, and memory wait states for setting up
SDRAM transactions, the maximum DSRA theoretical
SDRAM bandwidth limit for disk reads or writes is 280/8

megabytes second or 35 megabytes second. It should be
noted that the best case allocation of SDRAM bandwidth

would be dynamic dependent upon the data compression and
decompression ratios. Future erihancements to the data stor-

age controller will utilize a programmable timeslice system
to allocate SDRAM bandwidth, however this first embodi-
ment will utilize a fixed allocation ratio as follows:

If all three requesters require SDRAM simultaneously:

PCI Bus Interface 3/8
DSP Accesses 4/8
UltraDMA Disk Interface 1/8

If only the PCI Bus and DSP require SDRAM:

PCI Bus Interface
DSP Accesses

4/8
4/8

If only the DSP and Disk require SDRAM:

DSP Accesses
UltraDMA Disk Interface

6/8
2/8

If only the PCI Bus and Disk require SDRAM:

PCI Bus Interface
UltraDMA Disk Interface

6/8
2/8

If only one device requires SDRAM it receives the full
SDRAM bandwidth. It should be noted that difl"erent ratios

may be applied based upon the anticipated or actual com-
pression and/or decompression ratios. For example in the
case of all three requestors active the following equation
applies. Assume that data storage accelerator achieves a
compression ratio A:B for example 3: 1. The Numerator and
denominators of the various allocations are defined as fol-
lows:

PCI Bus Interface A/K
DSP Accesses (A+B)/K
UltraDMA Disk Interface B/K

Where Further define a sum K equal to the sum of the
numerators of the PCI Bus interface fraction, the DSP
Access fraction, and the UltraDMA Disk Interfaces, i.e.

K=2(A+B). Similarly:

26

27

US 7,181,608 B2

21

If only the PCI Bus and DSP require SDRAM:

PCI Bus Interface
DSP Accesses

(A+B)/K
(A+B)/K

If only the DSP and Disk require SDRAM:

DSP Accesses
Ult'_raDMA Disk Intcrfacc

2A/K
2B/K

If only the PCI Bus and Disk require SDRAM:

PCI Bus Interface
Ult'_raDMA Disk Interface

2A/K
2B/K

It should be noted that the resultant ratios may all be scaled
by a constant in order to most effectively utilize the band-
widths of the internal busses and external interfaces. In

addition each ratio can be scale by an adjustment factor
based upon the time required to complete individual cycles.
For example if PCI Bus interface takes 20% longer than all
other cycles, the PCI time slice should be adjusted longer
accordingly.

V. Instant Boot Device for Operating System, Application
Program and Loading

Typically, with conventional boot device controllers, after
reset, the boot device controller will wait for a command
over the computer bus (such as PCI). Since the boot device
controller will typically be reset prior to bus reset and before
the computer bus starts sending commands, this Wait period
is unproductive time. The initial bus commands inevitably
instruct the boot device controller to retrieve data from the

boot device (such as a disk) for the operating system. Since
most boot devices are relatively slow compared to the speed
of most computer busses, a long delay is seen by the
computer user. This is evident in the time it takes for a
typical computer to boot.

It is to be appreciated that a data storage controller
(having an architecture as described herein) may employ a
technique of data preloading to decrease the computer
system boot time. Upon host system power-up or reset, the
data storage controller will perform a self-diagnostic and
program the programmable logic device (as discussed
above) prior to completion of the host system reset (e.g., PCI
bus reset) so that the logic device can accept PCI Bus
commands after system reset. Further, prior to host system
reset, the data storage controller can proceed to pre-load the
portions of the computer operating system from the boot
device (e.g., hard disk) into the on-board cache memory. The
data storage controller preloads the needed sectors of data in
the order in which they will be needed. Since the same
portions of the operating system must be loaded upon each
boot process, it is advantageous for the boot device control-
ler to preload such portions and not wait until it is com-
manded to load the operating system. Preferably, the data
storage controller employs a dedicated IO charmel of the
DSP (with or without data compression) to pre-load com-
puter operating systems and applications.

Once the data is preloaded, when the computer system bus
issues its first read commands to the data storage controller

10

15

25

30

35

40

45

50

55

60

65

22

seeking operating system data, the data will already be
available in the cache memory ofthe data storage controller.
The data storage controller will then be able to instantly start
transmitting the data to the system bus. Before transmission
to the bus, if the data was stored in compressed format on the
boot device, the data will be decompressed. The process of
preloading required (compressed) portions of the operating
system significantly reduces the computer boot process time.

In addition to preloading operating system data, the data
storage controller could also preload other data that the user
would likely Want to use at startup. An example of this
would be a frequently used application such as a word
processor and any number of document files.

There are several techniques that may be employed in
accordance with the present invention that would allow the
data storage controller to know what data to preload from the
boot device. One technique utilizes a custom utility program
that would allow the user to specify what applications/data
should be preloaded.

Another technique (illustrated by the llow diagram of
FIGS. 7a and 7b) that may be employed comprises an
automatic process that requires no input from the user. With
this technique, the data storage controller maintain a list
comprising the data associated with the first series of data
requests received by the data storage controller by the host
system after a power-on/reset. In particular, referring to FIG.
7a, during the computer boot process, the data storage
controller will receive requests for the boot data (step 70). In
response, the data storage controller will retrieve the
requested boot data from the boot device (e.g., hard disk) in
the local cache memory (step 71). For each requested data
block, the data storage controller will record the requested
data block number in a list (step 72). The data storage
controller will record the data block number of each data

block requested by the host computer during the boot
process (repeat steps 70-72). When the boot process is
complete (affirmative determination in step 73), the data
storage controller will store the data list on the boot device
(or other storage device) (step 74).

Then, upon each subsequent power-on/reset (aflirrnative
result in step 75), the data storage controller would retrieve
and read the stored list (step 76) and proceed to preload the
boot data specified on the list (i.e., the data associated with
the expected data requests) into the onboard cache memory
(step 77). It is to be understood that the depending on the
resources of the given system (e.g., memory, etc.), the
preloading process may be completed prior to commence-
ment of the boot process, or continued alter the boot process
begins (in which case booting and preloading are performed
simultaneously).

When the boot process begins (step 78) (i.e., the storage
controller is initialized and the system bus reset is deas-
serted), the data storage controller will receive requests for
boot data (step 79). If the host computer issues a request for
boot data that is pre-loaded in the local memory of the data
storage controller (alflrmative result in step 80), the request
is immediately serviced usi.ng the preloaded boot data (step
81). If the host computer issues a request for boot data that
is not preloaded in the local memory of the data storage
controller (negative determination in step 80), the controller
will retrieve the requested data from the boot device, store
the data i.r1 the local memory, and then deliver the requested
boot data to the computer bus (step 82). In addition, the data
storage controller would update the boot data list by record-
ing any changes in the actual data requests as compared to
the expected data requests already stored in the list (step 83).
Then, upon the next boot sequence, the boot device con-

27

28

US 7,181,608 B2

23

troller would pre-load that data into the local cache memory
along with the other boot data previously on the list.

Further, during the boot process, if no request is made by
the host computer for a data block that was pre-loaded into
the local memory of the data storage controller (afiirmative
result in step 84), then the boot data list will be updated by
removing the non-requested data block from the list (step
85). Thereafter, upon the next boot sequence, the data
storage controller will not pre-load that data ir1to local
memory.

VI. Quick Launch for Operating System, Application Pro-
gram, and Loading

It is to be appreciated that the data storage controller
(having an architecture as described herein) may employ a
technique of data preloading to decrease the time to load
application programs (referred to as “quick launch”). Con-
ventionally, when a user launches an application, the file
system reads the first few blocks of the file off the disk, and
then the portion of the loaded software will request via the
file system what additional data it needs from the disk. For
example, a user may open a spreadsheet program, and the
program may be configured to always load a company
spreadsheet each time the program is started. In addition, the
company spreadsheet may require data from other spread-
sheet files.

In accordance with the present invention, the data storage
controller may be configured to “remember” what data is
typically loaded following the launch of the spreadsheet
program, for example. The data storage controller may then
proceed to preload the company spreadsheet and all the
necessary data in the order is which such data is needed.
Once this is accomplished, the data storage controller can
service read commands using the preloaded data. Before
transmission to the bus, if the preloaded data was stored in
compressed format, the data will be decompressed. The
process of preloading (compressed) program data signifi-
cantly reduces the time for launching an application.

Preferably, a custom utility program is employed that
would allow the user to specify what applications should be
made ready for quick launch.

FIGS. 8a and 8b comprise a flow diagram of a quick
launch method according to one aspect of the present
invention. With this technique, the data storage controller
maintains a list comprising the data associated with launch-
ing an application. In particular, when an application is first
launched, the data storage controller will receive requests for
the application data (step 90). In response, the data storage
Controller will retrieve the requested. application data from
memory (e.g., hard disk) and store it in the local cache
memory (step 91). The data storage controller will record the
data block number of each data block requested by the host
computer during the launch process (step 92). When the
launch process is complete (aflirmative determination in step
93), the data storage controller will store the data list in a
designated memory location (step 94).

Then, referring to FIG. 8b, upon each subsequent launch
of the application (afiirmative result in step 95), the data
storage controller would retrieve and read the stored list
(step 96) and then proceed to preload the application data
specified on the list (i.e., the data associated with the
expected data requests) into the onboard cache memory
(step 97). During the application launch process, the data
storage controller will receive requests for application data
(step 98). If the host computer issues a request for applica-
tion data that is pre-loaded in the local memory of the data
storage controller (afiinnative result in step 99), the request

10

15

25

30

35

40

45

50

55

60

65

24

is immediately serviced using the preloaded data (step 100).
If the host computer issues a request for application data that
is not preloaded in the local memory of the data storage
controller (negative result in step 99), the controller will
retrieve the requested data from the hard disk memory, store
the data in the local memory, and then deliver the requested
application data to the computer bus (step 101). In addition,
the data storage controller would update the application data
list by recording any changes in the actual data requests as
compared to the expected data requests already stored in the
list (step 102).

Further, during the launch process, if no request is made
by the host computer for a data block that was pre-loaded
into the local memory of the data storage controller (aifir-
mative result in step 103), then the application data list will
be updated by removing the non-requested data block from
the list (step 104). Thereafier, upon the next launch sequence
for the given application, the data storage controller will not
pre-load that data into local memory.

It is to be understood that the quick boot and quick launch
methods described above are preferably implemented by a
storage controller according to the present invention and
may or may not utilize data compression/decompression by
the DSP. However, it is to be understood that the quick boot
and quick launch methods may be implemented by a sepa-
rate device, processor, or system, or implemented in soft-ware.

VII. Content Independent Data Compression
It is to be understood that any conventional compression/

decompression system and method (which comply with the
above mentioned constraints) may be employed in the data
storage controller for providing accelerated data storage and
retrieval in accordance with the present invention. Prefer-
ably, the present invention employs the data compression/
decompression techniques disclosed in the above-incorpo-
rated U.S. Ser. No. 09/210,491.

Referring to FIG. 9, a detailed block diagram illustrates an
exemplary data compression system 110 that may be
employed herein. Details of this data compression system
are provided in U.S. Ser. No. 09/210,491. In this embodi-
ment, the data compression system 110 accepts data blocks
from an input data stream and stores the input data block in
an input buffer or cache 115. It is to be understood that the
system processes the input data stream in data blocks that
may range in size from individual bits through complete files
or collections of multiple files. Additionally, the input data
block size may be fixed or variable. A counter 120 counts or
otherwise enumerates the size of input data block in any
convenient units including bits, bytes, words, and double
words. It should be noted that the input bulfer 115 and
counter 120 are not required elements of the present inven-
tion. The input data bulfer 115 may be provided for buffering
the input data stream in order to output an uncompressed
data stream in the event that, as discussed in fiirther detail
below, every encoder fails to achieve a level of compression
that exceeds an a priori specified minimum compression
ratio threshold.

Data compression is perfonned by an encoder module 125
which may comprise a set of encoders E1, E2, E3 . . . En.
The encoder set E1, E2, E3 . . . En may include any number
“n” (where n may=l) of those lossless encoding techniques
currently well known within the art such as run length,
Huflfinan, Lempel-Ziv Dictionary Compression, arithmetic
coding, data compaction, and data null suppression. It is to
be understood that the encoding techniques are selected
based upon their ability to elfectively encode dilferent types
of input data. It is to be appreciated that a full complement

28

29

US 7,181,608 B2

25

of encoders are preferably selected to provide a broad
coverage of existing and future data types.

The encoder module 125 successively receives as input
each of the bufiered input data blocks (or unbuifered input
data blocks from the counter module 120). Data compres-
sion is performed by the encoder module 125 wherein each
ofthe encoders E1 . . . En processes a given input data block
and outputs a corresponding set of encoded data blocks. It is
to be appreciated that the system alfords a user the option to
enable/disable any one or more of the encoders E1 . . . En
prior to operation. As is understood by those skilled in the
art, such feature allows the user to tailor the operation of the
data compression system for specific applications. It is to be
further appreciated that the encoding process may be per-
formed either in parallel or sequentially. In particular, the
encoders E1 through En of encoder module 125 may operate
in parallel (i.e., simultaneously processing a given input data
block by utilizing task multiplexing on a single central
processor, via dedicated hardware, by executing on a plu-
rality of processor or dedicated hardware systems, or any
combination thereof). In addition, encoders E1 through En
may operate sequentially on a given unbuffered or bufiered
input data block. This process is intended to eliminate the
complexity and additional processing overhead associated
with multiplexing concurrent encoding techniques on a
single central processor and/or dedicated hardware, set of
central processors and/or dedicated hardware, or any achiev-
able combination. It is to be further appreciated that encod-
ers of the identical type may be applied in parallel to
enhance encoding speed. For instance, encoder E1 may
comprise two parallel Huffman encoders for parallel pro-
cessing of an input data block.

A bufier/counter module 130 is operatively connected to
the encoder module 125 for buifering and counting the size
01' each of the encoded data blocks output from encoder
module 125. Specifically, the buifer/counter 130 comprises
a plurality of bulferfcounters BC1, BC2, BC3 . . . BC1], each
operatively associated with a corresponding one of the
encoders E1 . . . En. A compression ratio module 135,
operatively connected to the output bufl"er/counter 130,
determines the compression ratio obtained for each of the
enabled encoders 15,1. . . ltn by taking the ratio of the size of
the input data block to the size of the output data block
stored in the corresponding buffer/counters BC1 . . . BCn. In
addition, the compression ratio module 135 compares each
compression ratio with an a priori-specified compression
ratio threshold limit to determine if at least one of the

encoded data blocks output from the enabled encoders
E1 . . . En achieves a compression that exceeds an a
priori-specified threshold. As is understood by those skilled
in the art, the threshold limit may be specified as any value
inclusive of data expansion, no data compression or expan-
sion, or any arbitrarily desired compression limit. A descrip-
tion module 138, operatively coupled to the compression
ratio module 135, appends a corresponding compression
type descriptor to each encoded data block which is selected
for output so as to indicate the type of compression format
of the encoded data block. A data compression type descrip-
tor is defined as any recognizable data token or descriptor
that indicates which data encoding technique has been
applied to the data. It is to be understood that, since encoders
of the identical type may be applied i.n parallel to enhance
encoding speed (as discussed above), the data compression
type descriptor identifies the corresponding encoding tech-
nique applied to the encoded data block, not necessarily the
specific encoder. The encoded data block having the greatest
compression ratio along with its corresponding data com-

10

15

25

30

35

40

45

50

55

60

65

26

pression type descriptor is then output for subsequent data
processing, storage, or transmittal. If there are no encoded
data blocks having a compression ratio that exceeds the
compression ratio threshold limit, then the original unen-
coded input data block is selected for output and a null data
compression type descriptor is appended thereto. A null data
compression type descriptor is defined as any recognizable
data token or descriptor that indicates no data encoding has
been applied to the input data block. Accordingly, the
unencoded input data block with its corresponding null data
compression type descriptor is then output for subsequent
data processing, storage, or transmittal.

Again, it is to be understood that the embodiment of the
data compression engine of FIG. 9 is exemplary of a
preferred compression system which may be implemented m
the present invention, and that other compression systems
and methods known to those skilled in the art may be
employed for providing accelerated data storage in accor-
dance with the teachings herein. Indeed, i.n another embodi-
ment of the compression system disclosed in the above-
incorporated U.S. Pat. No. 6,195,024, a timer is included to
measure the time elapsed during the encoding process
against an a priori-specified time limit. When the time limit
expires, only the data output from those encoders (in the
encoder module 125) that have completed the present encod-
ing cycle are compared to determine the encoded data with
the highest compression ratio. The time limit ensures that the
real-time or pseudo real-time nature of the data encoding is
preserved. In addition, the results from each encoder in the
encoder module 125 may be buffered to allow additional
encoders to be sequentially applied to the output of the
previous encoder, yielding a more optimal lossless data
compression ratio. Such techniques are discussed in greater
detail in the above-incorporated U.S. Pat. No. 6,195,024.

Referring now to FIG. 10, a detailed block diagram
illustrates an exemplary decompression system that may be
employed herein or accelerated data retrieval as disclosed in
the above-incorporated U.S. Pat. No. 6,195,024. In this
embodiment, the data compression engine 180 retrieves or
otherwise accepts compressed data blocks from one or more
data storage devices and inputs the data via a data storage
interface. It is to be understood that the system processes the
input data stream in data blocks that may range in size from
individual bits through complete files or collections of
multiple files. Additionally, the input data block size may be
fixed or variable.

The data decompression engine 180 comprises an input
buflie-r 155 that receives as input an uncompressed or com-
pressed data stream comprising one or more data blocks.
The data blocks may range in size from individual bits
through complete files or collections of multiple files. Addi-
tionally, the data block size may be fixed or variable. The
input data bulfer 55 is preferably included (not required) to
provide storage of input data for various hardware imple-
mentations. A descriptor extraction module 160 receives the
bulfered (or unbuifered) input data block and then parses,
lexically, syntactically_._ or otherwise analyzes the input data
block using methods known by those skilled in the art to
extract the data compression type descriptor associated with
the data block. The data compression type descriptor may
possess values corresponding to null (no encoding applied),
a single applied encoding technique, or multiple encoding
techniques applied in a specific or random order (in accor-
dance with the data compression system embodiments and
methods discussed above).

A decoder module 165 includes one or more decoders

D1 . . . Dn for decoding the input data block using a decoder,

29

30

US 7,181,608 B2

27

set of decoders, or a sequential set of decoders correspond-
ing to the extracted compression type descriptor. The decod-
ers D1 . . . Dn may include those lossless encoding tech-
niques currently well known within the art, including: run
length, I Iutfman, l,empel-7.iv Dictionary Compression,
arithmetic coding, data compaction, and data null suppres-
sion. Decoding techniques are selected based upon their
ability to effectively decode the various different types of
encoded input data generated by the data compression
systems described above or originating from any other
desired source.

As with the data compression systems discussed in US.
Pat. No. 6,195,024, the decoder module 165 may include
multiple decoders of the same type applied in parallel so as
to reduce the data decoding time. An output data buffer or
cache 170 may be included for buffering the decoded data
block output from the decoder module 165. The output
buffer 70 then provides data to the output data stream. It is
to be appreciated by those skilled m the art that the data
compression system 180 may also include an input. data
counter and output data counter operatively coupled to the
input and output, respectively, ofthe decoder module 165. In
this manner, the compressed and corresponding decom-
pressed data block may be counted to ensure that sufficient
decompression is obtained for the input data block.

Again, it is to be understood that the embodiment of the
data decompression system 180 of FIG. 10 is exemplary of
a preferred decompression system and method which may
be implemented in the present invention, and that other data
decompression systems and methods known to those skilled
in the art may be employed for providing accelerated data
retrieval in accordance with the teachings herein.

Although illustrative embodiments have been described
herein with reference to the accompanying drawings, it is to
be understood that the present invention is not limited to
those precise embodiments, and that various other changes
and modifications may be affected therein by one skilled in
the art without departing from the scope or spirit of the
invention. All such changes and modifications are intended
to be included within the scope of the invention as defined
by the appended claims.

What is claimed is:

1. A method for providing accelerated loading of an
operating system, comprising the steps of:

maintaining a list ofboot data used for booting a computer
system;

initializing a central processing unit of the computer
system;

preloading the boot data into a cache memory prior to
completion of initialization of the central processing
unit of the computer system, wherein preloading the
boot data comprises accessing compressed boot data
from a boot device; and

servicing requests for boot data from the computer system
using the preloaded boot data after completion of
initialization of the central processing unit of the com-
puter system, wherein servicing requests comprises
accessing compressed boot data from the cache and
decompressing the compressed boot data at a rate that
increases the efiective access rate of the cache.

2. The method of claim 1, wherein the boot data com-
prises program code associated with one of an operating
system of the computer system, an application program, and
a combination thereof.

3. The method of claim 1, wherein the preloading is
performed by a data storage controller connected to the boot
device.

10

15

25

30

40

45

50

55

60

65

28

4. The method of claim 1, further comprising updating the
list of boot data.

5. The method of claim 4, wherein the step of updating
comprises adding to the list any boot data requested by the
computer system not previously stored in the list.

6. The method of claim 4, wherein the step of updating
comprises removing from the list any boot data previously
stored in the list and not requested by the computer system.

7. A system for providing accelerated loading of an
operating system of a host system comprising:

a digital signal processor (DSP) or controller;
a cache memory device; and
a non-volatile memory device, for storing logic code

associated with the DSP or controller, wherein the logic
code comprises instructions executable by the DSP or
controller for maintaining a list of boot data used for
booting the host system, for preloading the compressed
boot data into the cache memory device prior to
completion of initialization of the central processing
unit of the host system, and for decompressing the
preloaded compressed boot data, at a rate that increases
the effective access rate of the cache, to service requests
for boot data from the host system after completion of
initialization of the central processing unit of the host
system.

8. The system of claim 7, wherein the logic code in the
non-volatile memory device further comprises program
instructions executable by the DSP or controller for main-
taining a list of application data associated with an applica-
tion program; preloading the application data upon launch-
ing the application program, and servicing requests for the
application data from the host system using the preloaded
application data.

9. The method of claim 1, further comprising:
maintaining a list of application data associated with an

application program;
preloading the application data into the cache memory

prior to completion of initialization of the central
processing unit of the computer system, wherein pre-
loading the application data comprises accessing com-
pressed application data from a boot device; and

servicing requests for application data from the computer
system using the preloaded application data after
completion of initialization of the central processing
unit of the computer system, wherein servicing requests
comprises accessing compressed application data from
the cache and decompressing the compressed applica-
tion data.

10. The method of claim 1, further comprising a data
compression engine for compressing, wherein the compress-
ing provides the compressed boot data and the data com-
pression engine provides the compressed boot data to the
boot device.

11. The method of claim 1, wherein the decompressing is
provided by a data compression engine.

12. The method of claim 1, further comprising a data
compression engine for compressing, wherein the compress-
ing provides the compressed boot data, the data compression
engine provides the compressed boot data to the boot device,
and the decompressing is provided by the data compression
engine.

13. The method of claim 1, wherein the compressed boot
data is accessed via direct memory access.

'14. The method of claim '1, wherein Huffman encoding is
utilized to provide the compressed boot data.

15. The method of claim 1, wherein Lempel-Ziv encoding
is utilized to provide the compressed boot data.

30

31

US 7,l8l,608 B2

29

16. The method of claim 1, wherein a plurality of encod-
ers are utilized to provide the compressed boot data.

17. The method of claim 1, wherein a plurality of encod-
ers in a parallel Configuration are utilized to provide the
compressed boot data.

18. The system of claim 7, wherein Huffman encoding is
utilized to provide the compressed boot data.

19. The system of claim 7, wherein Lempel-Ziv encoding
is utilized to provide the compressed boot data.

20. The system of claim 7, wherein a plurality ofencoders
are utilized to provide the compressed boot data.

21. The system of claim 7, wherei.n a plurality ofencoders
in a parallel configuration are utilized to provide the com-
pressed boot data.

22. A method comprising:
maintaining a list ofboot data used for booting a computer

system;
initializing a central processing unit of the computer

system;
preloading boot data in compressed form, based on the list

of boot data, from a boot device into a cache memory
prior to completion of initialization of the central
processing unit;

servicing requests for boot data from the computer system
using the preloaded compressed boot data after comple-
tion of initialization of the central processing unit,
wherein servicing requests comprises accessing the
compressed boot data from the cache and decompress-
ing the compressed boot data with a data compression
engine and the data compression engine being operable
to compress additional boot data and store the addi-
tional compressed boot data to the boot device.

23. The method of claim 22, wherein Huffman encoding
is utilized by the data compression engine to compress the
additional boot data.

24. The method of claim 22, wherein Lempel-Ziv is
utilized by the data compression engine to compress the
additional boot data.

25. The method of claim 22, wherein a plurality of
encoders are utilized by the data compression engine to
compress the additional boot data.

10

15

25

30

40

31

30

26. The method of claim 22, wherein a plurality of
encoders in a parallel configuration are utilized by the data
compression engine to compress the additional boot data.

27. A system comprising:

a boot device;
a processor;

cache memory; and

non-volatile memory for storing logic code for use by the
processor, the logic code being used for:

maintaining a list associated with boot data, wherein
the boot data is used in booting a lirsl system;

preloading compressed boot data associated to the list
into the cache memory prior to completion of ini-
tialization of a central processing unit of the first
system; and

servicing requests for the compressed boot data from
the first system after completion of initialization of
the central processing unit; and

a data compression engine for decompressing the com-
pressed boot data accessed from the cache memory for
use in responding to the servicing requests and for
compressing additional boot data and storing the addi-
tional compressed boot data to the boot device.

28. The system of claim 27, wherein I luffman encoding is
utilized by the data compression engine to compress the
additional boot data.

29. The system of claim 27, wherein Lempel-Ziv is
utilized by the data compression engine to compress the
additional boot data.

30. The system of claim 27, wherein a plurality of
encoders are utilized by the data compression engine to
compress the additional boot data.

31. The system of claim 27, wherein a plurality of
encoders in a parallel configuration are utilized by the data
compression engine to compress the additional boot data.

K it-

