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£7“ = {lk—n + lk-l-m k 9* '1' 1 + lo + l2,,, k = n

Furthermore, by using
N N

H cos’ qku _~_1— a2 Z qkzk=1 k=l

the Pe expression given by (26) is approximated by

{I — JW (sin qou/u) (1 —~ a2 ‘El qkz)Pg:

- exp (—a2u2/2) du/7:}/2
ll

erfc (qo/0) + (2n)‘“’(qo/03) exp (‘I02/202) :1 qt”

2 erfc (1/a) + (21r)'“2a exp (— 1/2a2) IE1 e,,2. (37)
Thus, (37) gives the approximate minimum average probability
of error and (36) gives the approximate solution of (25) explicitly

in terms of the known I,,,,,, k = —N,---,N, n = —N,---,N.
Finally, we observe that the technique used in this correspon-
dence for the analysis of intersymbol interference in a binary
low-pass pulse-communication system is also readily applicable
to a binary or a quadriphase bandpass phase-shift-keyed (PSK)
communication system.
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Polyphase Codes With Good Periodic Correlation Properties
DAVID C. CHU

Abstract—This correspondence describes the construction of complex
codes of the form exp ion, whose discrete circular autocorrelations are
zero for all nonzero lags. There is no restriction on code lengths.

Polyphase codes with a periodic autocorrelation function that
is zero everywhere except at a single maximum per period have
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been described by Frank and Zadoff [1] and Heimiller The
lengths of such codes are restricted to perfect squares. It will be
shown that codes with the same correlation properties can be

constructed for any code length. The method is borrowed from
the work of Schroeder [3] in connection with synthesis of low
peak-factor signals.

Consider a code {ak} of length N composed of unity modulus
complex numbers, i.e.,

ak = exp iack, k = 0,1,---,N -1. (1)

The autocorrelation function {xj} is defined as follows:
zv—1

X0 = 2 akak* (2)k=0

N—j—1 1v—1

x, = Z aka,’:+J + Z a,,a,’,"+,~_N, j = 1,2,-~-, N— 1.k=0 k=N-J

(3)

It is claimed that for any code length N, the phases a,, can be

chosen such that for j = 1,2,- - -, N — 1, xj vanishes. The single
maximum of magnitude N occurs at xo.

Consider first the case that N is even. We claim that if

.Mk2

a,.=expz 1’; , (4)

where M is an integer relatively prime to N, then

x,=o, j= 1,2,---,N— 1.

From (3)

N:1_expiAl—n
N—J-1 .A4n I

x, = kgo exp :7 [k2 — (k + 1)2] + k=N_J N

-[k2 —(k+;'— M2]. ;'= 1,2,---,N— 1. (5)
Note that

Mn
‘~k+'—N’

expzN( J )

ll

exp i% (k + j)’ exp —i27rM(k + j) exp i7zNM
.M7r
»—k+'2, Nee.

exptN( 1) vn

The two summations of (5) may be combined.

N—l Al

x.- = A exp if [k2 — (k +132]
"T1 M1:

= .g4A _2k._ Q
kgoexpt N[ 1 1]

-2N—1 -k

= exp—iM,f,’ H [exp —tL1’f’] , ;=1,2,---,N—1
= 0. (6)

The last step comes from the fact that since M and N are
relatively prime, then exp —i(27rM/N) is a primitive Nth root

of unity. Therefore, exp — i(27rMj/N) is an Nth root of unity but
not equal to 1 for the range ofj shown in (6). Finally, we employ
the theorem
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N—1

where r is an Nth root of unity and r 95 1.
Consider next the case of N odd. We claim that if

a = exp l.M7rk(k + 1)
k [V 9

(7)

where M is relatively prime to N, then

x,=O, j=l,2,---,N-l.

Substituting (7) into (3), we have

x, = N’:i:1exp1'¥V7-t[k(k + 1) - (k + j)(k + j +1)]
1v—1

+ 2 expiM[k(k+1)—(k+j—N)k=N-J" N

-(k+j+1—N)]. (8)

With some manipulation, one can show that for odd N,

expigf-[7E[(k+j-N)(k+j+l—N)]

= exp i? we + i)(k + 1 +1)1 (9)
and the two summations in (8) can be combined into one:

N——1 M»

x, = k:j0 exp pf [k(k + 1) — (k + j)(k +1‘ +1)]
N-1 M

= Z expiil-2jk—j2—i]k=0 N

,M , , "-1 .2 M‘ "

= exp -17; [](] + 1)] kg‘) [exp -1 ”NJ]
= 0, j = l,- ~ -, N — 1 and Mrelatively prime to N.

Thus a code of any length N may be phase coded by either (4)
or (7), respectively, depending on whether N is even or odd, and
the resulting code will have the desired correlation properties.
Trivial variations such as cyclic shifts, addition of a constant to

rxk, or conjugating the entire code obviously will not affect the

autocorrelation function analogously to the aperiodic case [4].
In addition, certain linear phase shifts of the form exp 1' (27rqk/N),

where q is any integer, when introduced into the code also will
not affect the correlation. To show this, let the modified sequence

be {bk} where

i27zq

bk = ak exp T . (10)

Substituting bk for a,, in (3)

N—j—1 2
x, = 2 a,,a,’f+,~exp iflI(k - k —j)k=O N

N—1

+ aka,}*+j_Nexpi—2lq(k—k—j+ N)k==N-J N

-2 - N—j—l N—1

= exp -1-7fl1( 2 a,,a,’f+,- + Z a,,a,f+J-_N)N k=0 k=N-J'

=0, j=1,2,---,N-1 (11)

as the quantity inside the parentheses vanishes.
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A Stochastic Model for Burst-Correcting Convolutional
Decoders

PHILIPPE PIRET

Abstract—A stochastic model is described for the decoder of an optimal
burst-correcting convolutional code. From this model, an upper bound is
obtained for 13, the error probability per word after decoding.

INTRODUCTION

Recent papers [5], [6], use stochastic models to analyze
decoders. We use here similar methods to upperbound the error
probability after decoding of an optimal binary burst-error-
correcting convolutional code.

A burst of r consecutive words followed by a guard space G

of r(n + k)/(n — k) correct words [1] is always correctable by
an optimal type-B2 code. Optimal codes for this bound are well

known [2], [3] and the practical construction of a type-B2 code
for arbitrary r requires only the construction of a type-B2 code
with r = 1. This last code is called basic, and codes with r > 1
are obtained by interlacing.

A basic code can be defined as the set of all binary semi-

infinite sequences orthogonal to the matrix A constructed by
indefinitely displacing the binary matrix B by (n — k) rows lower
at each time (Fig. l).

The matrix B defining a code can be divided into K sub-

matrices B,:

where each B, has (n — k) rows.
We shall consider systematic codes such that the last (n - k)

columns of B0 form an identity matrix, and for 1‘ 96 0 the last
(11 - k) columns of B, are zero. We also restrict our study to
nonsingular codes, i.e., codes defined by a matrix B whose first
n rows form a nonsingular matrix. This family includes the

Berlekamp-Preparata codes as a subclass [2], [3]. Optimal
codes can be constructed if (n - k) is a factor of (n + k). We
suppose that (n - k) and n are relatively prime. Otherwise a

shorter code exists, with the same rate and correcting capability

and no larger guard space G [7]. The only possible values of
(rt - k) are thus 1 and 2 for n odd and 1 for It even.

Let x be a received semi-infinite sequence of the code repre-

sented as a column vector; then Ax is the syndrome sequence.
Each word of x can be decoded by looking at N elements of

Ax [4], where N, the number of rows of the matrix B, is given
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