

MYLAN PHARMS. INC. EXHIBIT 1044 PAGE 1

Library of Congress Cataloging-in-Publication Data

Barton, Allan F. M.

CRC handbook of solubility parameters and other cohesion parameters / Allan F. M. Barton. -- 2nd ed.

p. cm

Includes bibliographical references and index.

ISBN 0-8493-0176-9

I. Solubility. 2. Cohesion. I. Title

QD543.B22 1991

541.3'42--dc20

91-18630 CIP

This book represents information obtained from authentic and highly regarded sources. Reprinted material is quoted with permission, and sources are indicated. A wide variety of references are listed. Every reasonable effort has been made to give reliable data and information, but the author and the publisher cannot assume responsibility for the validity of all materials or for the consequences of their use.

All rights reserved. This book, or any parts thereof, may not be reproduced in any form without written consent from the publisher.

Direct all inquiries to CRC Press, Inc., 2000 Corporate Blvd., N.W., Boca Raton, Florida 33431.

e 1991 by CRC Press, Inc.

International Standard Book Number 0-8493-0176-9

Library of Congress Card Number 91-18630

Printed in the United States of America 1234567890

MYLAN PHARMS. INC. EXHIBIT 1044 PAGE 2

Chapter 2

THERMODYNAMICS

Molecular materials exist as liquids and solids over certain ranges of temperature and pressure because in some circumstances the liquid and solid states are more stable than the gaseous state; that is, there are energetic advantages in having the molecules arranged in either random or ordered close-packed configurations. In these condensed phases, the strong attractive or cohesive forces existing between the molecules give rise to considerable negative potential energies relative to vapor phase molecules which have negligible potential energy arising in this way. (Ionic liquids and crystals have even stronger attractive forces arising from coulombic interactions.)

2.1 COHESIVE ENERGY

If U is defined as the molar internal energy (the molar potential energy of a material relative to the ideal vapor at the same temperature), then U has a numerically negative value for a condensed material. It follows, therefore, that the molar cohesive energy (the energy associated with the net attractive interactions of the material and defined as -U) has a positive value.

For a liquid, if it is assumed that the intramolecular properties (those associated with individual molecules) are identical in gaseous and liquid states (which is true except in the case of complex molecules: see Section 14.9) it can be seen that the molar cohesive energy can be divided into two parts:

- 1. The molar vaporization energy, $_1\Delta_{\rm g}U$, required to vaporize one mole of the liquid to its saturated vapor
- 2. The energy, ${}_{g}\Delta_{\infty}U$, required to expand the saturated vapor to infinite volume at constant temperature; that is, the energy necessary to completely separate the molecules

As presented by Polak,1 this can be expressed

$$-U = {}_{1}\Delta_{g}U + {}_{g}\Delta_{\infty}U = {}_{1}\Delta_{g}u + \int_{V=g_{V}}^{V=\infty} (\partial U/\partial V)_{T} dV$$
 (1)

where V is the molar volume. The molar cohesive energy -U can be subdivided also according to the relationship

$$-U = {}_{1}\Delta_{g}H + {}_{g}\Delta_{\omega}H - RT + p_{s}{}^{1}V$$
 (2)

where $_1\Delta_gH$ is the molar vaporization enthalpy; $_g\Delta_\omega H$ is the enthalpy change (increase) on isothermally expanding 1 mol of saturated vapor to zero pressure; p_s is the saturation vapor pressure at temperature T; 1V is the molar volume of the liquid (the superscript l is frequently omitted if there is no chance of ambiguity); and R gas constant (8.31441 J K $^{-1}$ mol $^{-1}$). At pressures below atmospheric pressure (that is, at temperatures below the normal boiling point) $_g\Delta_\omega H$ and $p_s^{-1}V$ are usually negligible compared with $_1\Delta_g H$ and RT:

$$-U = {}_{1}\Delta_{g} U = {}_{1}\Delta_{g}H - RT$$
(3)

However, at higher pressures the other terms cannot be neglected, and in fact at the critical point ${}_{1}\Delta_{g}H$ is zero, so Equation 3 erroneously leads to a negative value for the cohesive

energy while the full Equation 2 correctly predicts a small positive cohesive energy at the critical point. Values of ${}_{1}\Delta_{g}H$, ${}_{1}\Delta_{g}U$, and -U for various liquids at their normal boiling points in Table 1 illustrates typical variations in these quantities.

Svoboda and co-workers²⁻⁷ have recently considered the cohesive energies of liquids in some detail, and Table 2 summarizes their recommended 25°C values.

2.2 COHESIVE PRESSURE AND THE HILDEBRAND PARAMETER

The stabilizing or cohesive effect in condensed phases can be expressed in terms of the cohesive pressure which is dimensionally identical with the cohesive energy density (cohesive energy per unit volume),

$$c = -U/V \tag{4}$$

Cohesive energy density was the basis of the original definition by Hildebrand and Scott⁸⁻¹⁰ of what is now generally called the Hildebrand solubility parameter or *Hildebrand parameter*,

$$\delta = c^{1/2} = (-U/V)^{1/2} \approx (\Delta_g U/V)^{1/2}$$
 (5)

This parameter was intended for nonpolar, nonassociating systems, but the concept has been extended to all types of systems.

The term "solubility" parameter, which has been used widely, is really too restrictive for a quantity that may be used to correlate such a wide range of physical and chemical properties. The name "cohesion parameter" is preferred by the author for the group of parameters with dimensions of (pressure) that includes the Hildebrand parameter as defined in Equation 5. Use of the proposed alternative title "interaction parameter" would result in confusion with the polymer-liquid interaction parameter χ (Chapter 13) and several other binary interaction parameters characterizing pairs of substances.

The title "solubility parameter" and the form of Equation 5 suggest a close link between the phenomena of "solubility" or "miscibility" and those of "cohesion" and "vaporization." This similarity can be appreciated by considering what happens in a mixing process: the "like" molecules of each component in a mixture become separated from one another by what approximates to an infinite distance, comparable in some respects to what happens in the vaporization process. The Hildebrand parameter is sometimes called the "total" cohesion parameter, δ_t , because there are various "component" cohesion parameters, but the subscript "t" is usually omitted if this can be done without ambiguity.

From Equations 3 and 5 it is clear that the Hildebrand parameter of a liquid may be readily evaluated if the molar volume and molar vaporization enthalpy have been determined at the required temperature, and if that temperature is well below the normal boiling point of the liquid:

$$\delta = ({}_{1}\Delta_{g} H - RT)^{1/2}/V^{1/2}$$
 (6)

This density and enthalpy information is readily available for some liquids, but for many other liquids and for all polymers, solids, and surfaces it is necessary to use indirect evaluation methods, described in subsequent chapters, for the estimation of cohesion parameters.

Table 3 lists selected values of Hildebrand parameters, molar volumes and molar vaporization enthalpies at 25°C, reported by Hildebrand, Prausnitz, and Scott¹⁰ and presented here in SI units (see Section 2.5). The vaporization enthalpies are corrected for expansion energy at the ormal boiling

s of liquids in

ND

n terms of the usity (cohesive

(4)

ildebrand and or Hildebrand

(5)

scept has been

too restrictive and chemical the group of eter as defined would result several other

e link between nd "vaporizaixing process: m one another what happens d the "total" arameters, but

liquid may be en determined boiling point

(6)

but for many rect evaluation rameters. and molar vaand presented for expansion

TABLE 1

Calculated Values of Molar Vaporization Enthalpies, Molar Vaporization
Energies and Molar Cohesive Energies for Liquids at their Normal Boiling
Points

Liquid	<i>t</i> ₀/°C	$_{1}\Delta_{\mathbf{g}}H/\mathbf{k}\mathbf{J}$ mol^{-1}	$\Delta_{\underline{z}}U/kJ$ mol ⁻¹	~ <i>U/</i> kJ mol - 1
Acetone, 2-propanone	56.1	29.7	27.0	27.2
Ammonia	-33.3	23.5	21.5	27.2
Aniline	184.2	43.9	40.2	21.7
Benzene	80.1	30.8	27.9	40.5
Bromine	58.7	29.3	26.6	28.2
Bromobenzene	155.9	37.6	34.2	26.8
Bromoethane, ethyl bromide	38.4	26.8	24.3	34.5
Butane	-0.5	22.4	20.3	24.5
1-Butanol	117.5	43.6	40.5	20.5
2-Butanol	108.0	42.9	39.9	40.8
tert-Butanol	82.9	39.9	37.1	40.2
1-Butene	-6.3	22.1	20.0	37.4
cis-2-Butene	3.7	23.3	21.1	20.2
trans-2-Butene	0.9	22.8	20.6	21.3
Carbon disulfide	46.2	26.7	24.1	20.8
Chlorobenzene	131.7	35.4	32.2	24.3
Chloroethane, ethyl chloride	12.2	24.6	22.3	32.5
1-Chloropropane, propyl chloride	46.6	27.5	25.0	22.5
o-Cresol, 2-methylphenol	190.8	45.5	41.8	25.2
m-Cresol, 3-methylphenol	202.2	48.1	44.2	42.2
p-Cresol, 4-methylphenol	201.8	48.0	44.2	44.6
Cyclohexane	80.7	30.0	27.2	44.5 27.4
Cyclopentane	49.3	27.3	24.7	1000000
1,2-Dibromoethane, ethylene dibromide	131.5	36.1	32.8	25.0
Dichlorodifluoromethane	-29.8	20.1	18.1	33.1
1,1-Dichloroethane	57.3	29.0	26.3	18.3
1,2-Dichloroethane, ethylene dichloride	83.7	32.2	29.3	26.6
Dichloromethane	39.8	28.1	25.6	29.5
Diethyl ether	34.6	26.5	24.1	25.8 24.3
Dimethylamine	6.9	24.7	22.5	22.7
2,2-Dimethylbutane	49.7	26.3	23.7	
2,3-Dimethylbutane	58.0	27.3	24.7	24.0
Dimethyl ether	-24.8	21.5	19.5	25.0 19.7
2,2-Dimethylpropane, neopentane	9.5	22.7	20.5	20.8
Ethanol	78.3	39.4	36.6	36.9
Ethyl acetate	77.1	32.1	29.4	29.7
Ethylbenzene	136.2	35.8	32.5	32.9
Ethyl formate	54.0	29.9	27.3	27.5
Ethyl propionate	98.9	33.9	31.0	31.3
Heptane	98.4	31.9	28.9	29.3
Hexane	68.7	28.9	26.2	26.6
1-Hexene	63.3	28.3	25.7	26.0
cis-2-Hexene	68.8	29.0	26.3	26.6
trans-2-Hexene	68.0	28.9	26.2	26.5
cis-3-Hexene	66.8	28.8	26.1	26.4
trans-3-Hexene	67.3	29.0	26.3	26.6
Hydrazine	113.1	41.5	38.4	38.5
2-Propanol	82.2	40.6	37.8	38.1
Methanol	64.5	36.4	33.7	33.9
Methyl acetate	56.9	30.4	27.7	28.0
Methylamine	-6.4	26.2	24.0	24.2
2-Methylbutane, isopentane	27.9	24.7	22.3	22.6
Methyl formate	31.8	28.5	26.0	26.2

TABLE 1 (continued)

Calculated Values of Molar Vaporization Enthalpies, Molar Vaporization Energies and Molar Cohesive Energies for Liquids at their Normal Boiling Points

Liquid	t _b /°C	_i ∆ _g H/kJ mol ^{−1}	$_{1}\Delta_{g}U/kJ$ mol^{-1}	U/kJ mol - 1
2-Methylpentane	60.3	27.9	25.2	25.5
2-Methylpropane, isobutane	-11.4	21.2	19.1	19.3
2-Methylpropene, isobutylene	-6.9	22.1	20.0	20.2
Methyl propionate	79.4	32.1	29.3	29.6
Octane	125.7	34.6	31.4	31.9
Pentane	36.1	25.8	23.4	23.7
1-Pentene	29.5	25.3	22.9	23.1
cis-2-Pentene	36.5	26.4	23.9	24.1
trans-2-Pentene	36.3	26.1	23.7	24.0
Phenol	181.8	46.6	43.0	43.4
Propane	-42.1	18.8	17.0	17.1
1-Propanol	97.2	41.1	38.4	38.7
Propionic acid	141.0	42.3	39.0	39.3
Propyl acetate	101.5	34.1	31.2	31.5
Propylene, propene	-47.7	18.5	16.7	16.8
Tetrachloromethane	76.6	30.4	27.6	27.9
1.2,3,5-Tetramethylbenzene	198.0	42.5	38.8	39.2
1,2,4,5-Tetramethylbenzene	196.8	42.4	38.7	39.1
Toluene, methylbenzene	110.6	33.4	30.3	30.6
Trichloromethane, chloroform	61.7	29.1	26.4	26.7
Trimethylamine	2.9	24.1	21.9	22.1
1,2,3-Trimethylbenzene	176.1	39.9	36.3	36.7
1,2,4-Trimethylbenzene	169.4	39.3	35.8	36.2
Water	100.0	40.8	37.8	37.9
o-Xylene,1,2-dimethylbenzene	144.4	36.7	33.4	33.7
m-Xylene, 1,3-dimethylbenzene	139.1	36.2	32.9	33.3
p-Xylene,1,4-dimethylbenzene	138.3	35.9	32.7	33.0

Adapted from Polak, J., Collect. Czech. Chem. Commun., 31, 1483, 1966

to the ideal gas state where possible. Substances that are solids at 25°C have been treated as subcooled liquids (see Chapter 12). Similar information on cohesive energy densities was provided by Varushchenko, Loseva, and Druzhina⁴¹ for 1,1,- 1,1- and α,ω -dichloro-nalkanes, from which the Hildebrand parameters in Table 3a were evaluated.

The basis of the cohesion parameter approach to interactions may be stated as follows. A material with a high δ value requires more energy for dispersal than is gained by mixing it with a material of low cohesion parameter, so immiscibility results. On the other hand, two materials with similar δ values gain sufficient energy on mutual dispersion to permit mixing. This concept is attractive for practical applications because it aims to predict the properties of a system using only the properties of its individual components: in principle no information on the properties of the mixed system is required.

It is necessary to emphasize that the Hildebrand parameter is fundamentally a liquid state property. When gases are considered (Chapter 11) they are treated as hypothetical "liquid" solutes at atmospheric pressure, and substances that are solids at normal temperatures are treated as subcooled liquids (Chapter 12). As defined here, Hildebrand parameters cannot be calculated directly from vaporization enthalpies or sublimation enthalpies without taking into account their liquid-state basis. Lawson's list of "solubility parameters" of the elements 13,14 (Table 4) is a useful set of cohesion parameters, (although they are not Hildebrand parameters if they are calculated directly from enthalpies of vaporization or sub-

tion

TABLE 2 Rounded Values of Cohesive Energies at 25°C

iling	
- U/kJ mol-1	
25.5 19.3 20.2 29.6	
31.9 23.7 23.1 24.1 24.0	
43.4 17.1 38.7 39.3 31.5	
16.8 27.9 39.2 39.1	
30.6 26.7 22.1 36.7	
36.2 37.9 33.7 33.3 33.0	
en treated	
isities was ichloro-n-	
s follows. by mixing her hand, to permit redict the principle	
y a liquid pothetical il temper- arameters	
s without s' of the not Hil-	

n or sub-

Formula	Compound	− U/kJ mol-1
C ₂ H ₆	Ethane	7.7
C ₃ H ₈	Propane	13.9
C4H10	Butane	19.2
	Isobutane	17.6
C_5H_{12}	Pentane	24.3
	Isopentane	22.8
	Neopentane	19.9
C ₆ H ₁₄	Hexane	29.3
	Branched hexanes	26—28
C7H16	Heptane	34.2
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Branched heptanes	30—33
C_8H_{18}	Octane	39.1
	Branched octanes	33-41
C ₉ H ₂₀	Nonane	
2.0	Branched nonanes	44.0
$C_{10}H_{22}$	Decane	36—40
10 22	Branched decanes	48.9
$C_{11}H_{24}$	Undecane	45—47
-1124	Branched undecanes	54.0
$C_{12}H_{26}$	Dodecane	48—52
-1220	2,2,4,6,6-Pentamethylheptane	59.0
$C_{13}H_{28}$	Tridecane	46.5
C ₁₄ H ₃₀	Tetradecane	64.0
C ₁₅ H ₃₂	Pentadecane	68.8
C ₁₆ H ₃₄	Hexadecane	73.6
C ₁₇ H ₃₆	Heptadecane	78.9
C ₃ H ₆	Cyclopropane	83.5
C ₄ H ₈	Cyclobutane	15.7
C ₅ H ₈	Spiropentane	21.5
C ₃ H ₁₀	Cyclopentane	25.2
C ₆ H ₁₂	Cycloalkanes	26.3
C ₂ H ₁₂	1-Methylbicyclo[3.1.0]hexane	29—31
C ₇ H ₁₄	Cycloalkanes	32.4
C ₈ H ₁₆	Cycloalkanes	32—34
C ₉ H ₁₆	1,4-Dimethylbicyclo[2.2.1]heptane	36—39
C ₉ H ₁₈	Cycloalkanes	36.4
C ₁₀ H ₂₀	Cycloalkanes	42—43
C ₁₁ H ₂₂	Pentylcyclohexane	45
C ₁₂ H ₂₂	Cyclohexylcyclohexane	51.4
C ₃ H ₆	Propylene	55.5
C ₄ H ₆	1,2-Butadiene	13.7 21.2
0.000	1,3-Butadiene	
	1-Butyne	19.0 21.3
C ₄ H ₈	1-Butene	
3. 8	2-Butenes	18.4
C5H10	Alkenes	20
C ₆ H ₁₂	2,3-Dimethyl-2-butene	23—25 30.2
C ₈ H ₁₄	Alkynes	4042
C ₈ H ₁₆	1-Octene	38.0
C ₁₀ H ₂₀	1-Decene	48.0
C ₁₂ H ₂₄	1-Dodecene	58.3
C ₁₆ H ₃₂	1-Hexadecene	
C ₆ H ₆	Benzene	77.8
C ₆ H ₁₀	Cyclohexene	31.5
C ₇ H ₈	Toluene	31.1
C ₈ H ₁₀	Alkylbenzenes	35.6
		40—41

TABLE 2 (continued) Rounded Values of Cohesive Energies at 25°C

Formula	Compound	$-U/kJ \text{ mol}^{-1}$
C ₈ H ₁₂	4-Vinyl-4-cyclohexene	37.1
(20) (20):	cis, cis-1,5-Cyclooctadiene	40.9
C ₂ H ₁₀	Alkylbenzenes	43—48
	cis-5-Ethylidenebicyclo[2.2.1]-2-heptene	41.7
C9H14	2,3-Dimethylbicyclo[2.2.1]-2-heptene	39.7
$C_{10}H_{14}$	Alkylbenzenes	45-49
$C_{12}H_{16}$	Cyclohexylbenzene	57.5
C ₆ F ₆	Hexafluorobenzene	33.3
C ₆ HF ₅	Pentafluorobenzene	33.9
$C_6H_4F_2$	Difluorobenzenes	32—34
C ₆ H ₅ F	Fluorobenzene	32.2
C ₂ H ₃ F ₅	2,3,4,5,6-Pentafluorotoluene	38.7
C ₇ H ₅ F ₃	(TrifluoromethyI)benzene	35.2
C ₂ H ₂ F	4-Fluorotoluene	37.0
C_8F_{18}	Octadecafluorooctane	38.7
C ₈ H ₁₇ F	1-Fluorooctane	47.2
C ₉ F ₁₈	Octadecafluoropropylcyclohexane	40.6
C ₁₀ F ₁₈	Octadecafluorodecahydronaphthalenes	43
$C_{10}F_{20}$	Perfluoro-2-methylpropylcyclohexane	44.3
CCl ₄	Tetrachloromethane	30.1
CHCl ₃	Trichloromethane	28.9
CH ₂ Cl ₂	Dichloromethane	26.5
C ₂ Cl ₄	Tetrachloroethylene	37.2
C,HCl ₃	Trichloroethylene	32.1
C ₂ H ₂ Cl ₂	1.1-Dichloroethylene	24.3
C ₂ H ₂ Cl ₄	1,1,2,2-Tetrachloroethane	43.3
C ₂ H ₃ Cl ₃	1,1,1-Trichloroethane	30.1
C2113C13	1,1,2-Trichloroethane	37.8
C ₂ H ₄ Cl ₂	1,1-Dichloroethane	28.3
C2114C12	1,2-Dichloroethane	32.7
C ₁ H ₆ Cl ₂	1,3-Dichloropropane	38.3
C ₃ H ₇ Cl	I-Chloropropane	26.1
C ₄ H ₈ Cl ₂	1,2-Dichlorobutane	37.1
C4118C12	1,4-Dichlorobutane	43.9
C ₄ H ₉ Cl	1-Chlorobutane	31.2
C411gC1	Isobutyl chloride	29.3
	sec-Butyl chloride, 2-chlorobutane	29.2
	tert-Butyl chloride	26.7
C ₅ H ₁₀ Cl ₂	1,2-Dichloropentane	41.4
C31110C12	1,5-Dichloropentane	48.2
C _s H ₁₁ Cl	Chloropentanes	34—36
C ₆ H ₅ Cl	Chlorobenzene	38.5
C ₆ H ₁₂ Cl ₂	1,2-Dichlorohexane	45.7
	1-Chlorohexane	40.4
C ₆ H ₁₃ Cl C ₇ H ₁₅ Cl	1-Chloroheptane	45.2
	1-Chloroctane	49.9
C _k H ₁₇ Cl	1-Chlorododecane	68.7
C ₁₂ H ₂₅ Cl C ₁₆ H ₃₃ Cl	1-Chlorohexadecane	89.3
CHBr ₃	Tribromomethane	43.6
	Dibromomethane	34.6
CH ₂ Br ₂	Bromomethane	20.8
CH₃Br		39.3
C ₂ H ₄ Br ₂	1,2-Dibromoethane	25.8
C ₂ H ₃ Br	Bromoethane	30.4
C ₃ H ₅ Br	Allyl bromide	39.2
C ₃ H ₆ Br ₂	1,2-Dibromopropane	45.0
	1,3-Dibromopropane	43.0

Formula	Compound	- U/kJ mol-
C ₃ H ₇ Br	Bromopropanes	
C ₄ H ₈ Br ₂	1,4-Dibromobutane	2830
	1,2-Dibromo-2-methylpropane	50.6
C ₄ H ₉ Br	Alkyl bromides	40.9
C ₅ H ₁₁ Br	1-Bromopentane	30-34
C ₆ H ₅ B ₁	Bromobenzene	38.8
C ₆ H ₁₃ r	1-Bromohexane	42.1
C ₂ H ₁₅ Br	1-Bromoheptane	43.4
C ₈ H ₁₇ Br	1-Bromooctane	48.1
$C_{12}H_{25}Br$	1-Bromododecane	53.3
$C_{16}H_{33}Br$	1-Bromohexadecane	72.3
C2H4I	Iodoethane	91.9
C ₃ H ₇ I	Iodopropanes	29.6
C4HoI	Iodobutanes	32-34
C ₅ H ₁₁ I	1-Iodopentane	3338
C ₆ H ₁₃ I	1-Iodohexane	42.8
C ₂ Br ₂ ClF ₃		47.3
C ₂ Br ₂ F ₄	1,2-Dibromochlorotrifluoroethane	32.6
C ₂ Cl ₃ F ₃	1,2-Dibromotetrafluoroethane	26.1
C2HBrCIF3	Trichlorotrifluoroethanes	26
C ₂ H ₄ BrCl	Bromochlorotrifluoroethanes	27-28
C ₃ Cl ₂ F ₆	1-Bromo-2-chloroethane	35.7
C ₃ H ₂ Cl ₃ F ₃	1,2-Dichlorohexafluoropropane	24.8
$C_3H_3Cl_2F_3$	1,1,1-Trichloro-3,3,3-trifluoropropane	34.3
C ₃ H ₆ BrCl	1,1-Dichloro-3,3,3-trifluoropropane	31.7
C ₆ CIF ₅	1-Bromo-3-chloropropane	41.6
CH ₅ N	Chloropentafluorobenzene	38.6
C ₂ H ₇ N	Methylamine	21.4
$C_2H_8N_2$	Dimethylamine	23.0
	1,2-Ethanediamine, ethylene diamine	42.5
C ₃ H ₉ N	Propylamine	29.0
	Isopropylamine	26.2
CHN	Trimethylamine	19.7
$C_3H_{10}N_2$	1,3-Propanediamine	47.7
CHA	N-Methyl-1,2-ethanediamine	42.7
C ₄ H ₁₁ N	Butylamines	29-33
C ₅ H ₁₃ N	Propylamines	31—38
C ₆ H ₇ N	Aniline	53.4
C ₆ H ₁₃ N	Cyclohexylamine	41.2
C ₆ H ₁₅ N	Hexylamines	32—43
C,H,N	Benzylamine	57.7
C ₇ H ₁₇ N	Heptylamines	40-48
C ₈ H ₁₁ N	N,N-Dimethylaniline	50.4
C ₈ H ₁₉ N	Octylamines	47—50
C ₉ H ₂₁ N	Tripropylamine	43.7
C ₂ N ₂	Ethanedinitrile	18.4
C₂H₃N	Ethanenitrile, acetonitrile	30.9
C ₃ H ₅ N	Propanenitrile, propionotrile	33.7
C,H ₅ N	Butenenitriles, allyl cyanide	37—38
CHIL	Cyclopropanecarbonitrile	39.5
C ₄ H ₇ N	Butanenitriles	
C ₅ H ₇ N	Pentenenitriles	35-37
a	Cyclobutanecarbonitrile	41—43
C ₅ H ₉ N	Pentanenitriles	41.9
C ₆ H ₇ N	1-Cyclopentenecarbonitrile	35-41
C ₆ H ₉ N	Cyclopentanecarbonitrile	42.5
$C_6H_{11}N$	Hexanenitrile, capronitrile	41.0
		45.4

TABLE 2 (continued)
Rounded Values of Cohesive Energies at 25°C

Formula	Compound	$-U/kJ \text{ mol}^{-1}$
C ₂ H ₉ N	1-Cyclohexenecarbonitrile	51.1
$C_7H_{11}N$	Cyclohexanecarbonitrile	49.4
C _B H ₁₅ N	Octanenitrile	54.3
$C_{10}H_{19}N$	Decanenitrile	64.4
$C_{11}H_{21}N$	Undecanenitrile	68.7
C ₁₂ H ₂₃ N	Dodecanenitrile	73.6
C14H27N	Tetradecanenitrile	82.8
C ₄ H ₄ N ₂	Pyridazine	51.0
	Pyrimidine	47.3
	Pyrrole	42.9
C ₄ H ₉ N	Pyrrolidine	35.0
C ₅ H ₅ N	Pyridine	37.7
C ₆ H ₇ N	Methylpyridines, picoline	40-42
C ₂ H ₂ N	Dimethylpyridines	43-48
$C_8H_{11}N$	Trimethylpyridines	48
$C_8H_{16}N_2$	3,3,6,6-Tetramethyl-3,4,5,6-tetrahydropyridazine	47.6
CH ₆ N ₂	Methylhydrazine	38.0
C2H8N2	Dimethylhydrazines	33-37
C ₅ H ₁₂ N ₂	1-(Methylazo)butane	33.9
$C_6H_{14}N_2$	Azopropane	37.4
	2-(Isopropylazo)propane	33.4
$C_8H_{18}N_2$	Azobutane	46.8
	2-(tert-Butylazo)-2-methylpropane	36.6
$C_{12}H_{26}N_2$	2-(tert-Butylazo)-2,4,4-trimethylpentane	51.1
$C_{16}H_{34}N_2$	2,2'-Azo-(2,4,4-trimethylpentane)	64.1
C ₂ H ₆ O	Dimethyl ether	16.8
C ₄ H ₁₀ O	Ethers	25
$C_4H_{10}O_2$	1,2-Dimethoxyethane	34.0
C ₅ H ₁₂ O	Butyl methyl ethers	28—30
an 0	Ethyl propyl ethers	28—29
$C_5H_{12}O_2$	1-Ethoxy-2-methoxyethane	37.4
CHO	Diethoxymethane Butyl vinyl ethers	33.3 32—34
C ₆ H ₁₂ O	Methyl pentyl ethers	33—34
C ₆ H ₁₄ O	Butyl ethyl ethers	31—34
	Dipropyl ethers	30—33
$C_6H_{14}O_2$	2-Methoxy-1-propoxyethane	41.2
06111402	Diethoxyethane	40.8
C ₆ H ₁₄ O ₃	Bis(ethoxymethyl)ether	42.2
C ₇ H ₈ O	Methyl phenyl ether	44.4
C ₇ H ₁₆ O	Ethers	32-40
C ₇ H ₁₆ O ₂	Diethers	43-45
C7H16O4	3,5,7,9-Tetraoxoundecane	51.2
C ₈ H ₁₀ O	Ethyl phenyl ether	48.6
C ₈ H ₁₈ O	Ethers	35-44
C ₈ H ₁₈ O ₂	Diethers	48-49
C ₈ H ₁₈ O ₃	Diethylene glycol diethyl ether	55.9
C9H20O	Ethers	42-50
$C_9H_{20}O_2$	1-Butoxy-2-propoxyethane	52.2
$C_{10}H_{22}O$	Ethers	48—55
$C_{10}H_{22}O_2$	1,2-Dibutoxyethane	56.3
C ₁₁ H ₂₄ O	Ethers	58—60
$C_{12}H_{26}O$	Ethers	6263
CH4O	Methanol	35.4
C₂H ₆ O	Ethanol	40.0
C₃H ₈ O	1-Propanol	45.0 43.0
	2-Propanol	43.0

TABLE 2 (continued) Rounded Values of Cohesive Energies at 25°C

Formula	Compound	− U/kJ mol ⁻¹
$C_4H_{10}O$	1-Butanol	49.9
	Other butanols	44-48
C ₅ H ₁₀ O	Cyclopentanol	55.2
C ₅ H ₁₂ O	1-Pentanol	54.6
	Other pentanols	48—53
$C_6H_{12}O$	Cyclohexanol	59.5
C6H14O	1-Hexanol	59.1
	Other hexanols	52-58
$C_7H_{16}O$	1-Heptanol	64.3
C ₈ H ₁₀ O	Dimethylphenols	62—80
C ₈ H ₁₈ O	1-Octanol	68.5
C ₉ H ₂₀ O	1-Nonanol	74.4
$C_{10}H_{22}O$	1-Decanol	79.0
C ₁₁ H ₂₄ O	1-Dodecanol	89.5
C ₁₄ H ₃₀ O	1-Tetradecanol	99.7
C₂H₄O	Ethanal, acetaldehyde	23.7
C₃H ₆ O	Propanal	27.5
CHO	2-Propanone, acetone	28.8
C ₄ H ₈ O	2-Butanone, methyl ethyl ketone	32.4
C_5H_8O	Cyclopentanone	40.3
CHO	Cyclopropyl methyl ketone	37.0
C ₅ H ₈ O ₂	2,4-Pentanedione	40
C ₅ H ₁₀ O	Pentanones Cyclohexanone	34—36
C ₆ H ₁₀ O	Hexanones	43.4
$C_6H_{12}O$ $C_7H_{10}O$	Dicyclopropyl ketone	36-41
C ₇ H ₁₀ O	Heptanones	51.2 39—45
C ₈ H ₁₆ O	2,2,4-Trimethyl-3-pentanone	40.8
C ₉ H ₁₄ O	2-Hexahydroindanone	5455
C ₉ H ₁₆ O	Dimethyl-3,5-heptanediones	53.6
C ₉ H ₁₈ O	Nonanones	4354
C ₁₀ H ₁₆ O	trans-8-Methyl-2-hexahydroindanone	55.8
C ₁₀ H ₁₈ O ₂	2,2,6-Trimethyl-3,5-heptanedione	55.3
C ₁₀ H ₂₀ O	2,2,5,5-Tetramethyl-3-hexanone	46.3
C11H20O2	2,2,6,6-Tetramethyi-3,5-heptanedione	57.1
C11H22O	Undecanones	50—65
$C_{12}H_{24}O$	2-Dodecanone	69.4
CH ₂ O ₂	Formic acid	43.8
$C_2H_4O_2$	Acetic acid	49.1
C ₃ H ₆ O ₂	Propionic acid	52.5
$C_4H_8O_2$	Butyric acids	5156
$C_2H_4O_2$	Methyl formate	26
$C_3H_6O_2$	Esters	30
C ₄ H ₈ O ₂	Esters	33—35
$C_5H_6O_2$	Methyl cyclopropanecarboxylate	38.8
$C_5H_{10}O_2$	Esters	3537
$C_6H_{10}O_2$	Methyl cyclobutanecarboxylate	42.3
CH O	Ethylene glycol diacetate	59.0
C ₆ H ₁₂ O ₂	Esters	36-41
$C_7H_{14}O_2$ $C_8H_8O_2$	Esters Mathyl hanzoute	39-46
$C_8H_8O_2$ $C_8H_{14}O_4$	Methyl benzoate	53.1
C ₈ H ₁₆ O ₂	Ethylene glycol dipropanoate Esters	65.1
C ₉ H ₁₄ O ₆	Triacetin	49
C ₉ H ₁₈ O ₂	Methyl octanoate	83.3 53.9
C ₁₀ H ₁₈ O ₄	Ethylene glycol dibutanoate	70.7
-10-18-4		10.7

TABLE 2 (continued) Rounded Values of Cohesive Energies at 25°C

Formula	Compound	$-U/kJ \text{ mol}^{-1}$
$C_{10}H_{20}O_{2}$	Methyl nonanoate	59.5
$C_{11}H_{22}O_2$	Methyl decanoate	64.3
C12H20O6	Tripropionin	88.9
C ₁₂ H ₂₄ O ₂	Methyl undecanoate	69.0
C ₁₃ H ₂₆ O ₂	Methyl dodecanoate	74.7
C14H28O2	Methyl tridecanoate	80.2
C15H26O6	Gleyerol tributyrate	104.6
C ₁₅ H ₃₀ O ₂	Methyl tetradecanoate	84.5
$C_{16}H_{32}O_2$	Methyl pentadecanoate	91.0
C ₂ H ₄ O	Oxirane, ethylene oxide	23.0
C ₃ H ₄ O ₂	B-Propiolactone	44.6
C₃H ₆ O	Methyloxirane, propylene oxide	25.8
-30-	Oxetane, trimethylene oxide	27.7
C ₄ H ₄ O	Furan	25.2
C ₄ H ₄ O ₂	Diketene	40.4
C ₄ H ₄ O	Tetrahydropyran	29.7
$C_4H_8O_2$	1,3-Dioxane	36.7
Q4-18-12	1,4-Dioxane	36.2
$C_sH_{10}O$	3,3-Dimethyloxetane	31.6
0311100	Tetrahydropyran	32.2
C ₅ H ₁₀ O ₃	1,3,6-Trioxacyclooctane	46.3
C ₈ H ₁₆ O ₄	1,4,7,10-Tetraoxacyclododecane	63.2
$C_{10}H_{20}O_5$	1,4,7,10,13-Pentaoxacyclopentadecane	77.1
$C_3H_8O_2$	2-Methoxyethanol, methyl cellosolve®	42.7
C4H10O2	2-Ethoxyethanol, cellosolve	45.8
C ₅ H ₁₀ O ₃	Diethyl carbonate	41.1
-310-3	2-Methoxyethyl acetate methyl cellosolve acetate	47.8
$C_5H_{12}O_2$	Propoxyethanols	4850
$C_6H_{12}O_3$	2-Ethoxyethyl acetate cellosolve acetate	50.2
-012-3	Ethoxymethyl propanoate	47.4
$C_6H_{14}O_2$	2-Butoxyethanol, butyl cellosolve	54.1
C ₇ H ₁₄ O ₃	2-Propoxyethyl acetate	53.1
C ₈ H ₁₆ O ₃	2-Butoxyethyl acetate, butyl cellosolve acetate	57.1
CS ₂	Carbon disulfide	25.2
C₂H ₆ S	Dimethyl sulfide	26.5
C ₂ H ₆ S ₂	Dimethyl disulfide	35.4
C ₃ H ₈ S	Ethyl methyl sulfide	29.5
C ₄ H ₁₀ S	Methyl propyl sulfide	33.8
7. 49.	Isopropyl methyl sulfide	31.8
	Diethyl sulfide	33.4
C ₄ H ₁₀ S ₂	Diethyl disufide	42.7
C ₅ H ₁₂ S	Dialkyl sulfides	33—38
$C_5H_{12}S_2$	Bis(ethylthio)methane	48.3
C ₆ H ₁₄ S	Dialkyl sulfides	3743
$C_6H_{14}S_2$	1,2-Bis(ethylthio)ethane	57.0
00000000000000000000000000000000000000	Dipropyl disulfide	56.7
$C_8H_{18}S$	Dialkyl sulfides	4150
C ₈ H ₁₈ S ₂	Dialkyl disulfides	52—60
C ₂ H ₆ S	Ethanethiol, ethyl mercaptan	25.1
C2H6S2	1,2-Ethanedithiol	42.2
C₃H ₈ S	Propanethiols	27—30
C ₃ H ₈ S	1,3-Propanedithiol	47.2
C ₄ H ₁₀ S	1,4-Butanedithiol	29—34
$C_4H_{10}S_2$	Cyclopentanethiol	39.0
C5H12S	Pentanethiols	33—39
$C_5H_{12}S_2$	1,5-Pentanedithiol	56.8

TABLE 2 (continued)
Rounded Values of Cohesive Energies at 25°C

Form	ola Compound	- U/kJ mol⁻¹
C ₆ H ₆ S	Benzenethiol	190
C ₆ H ₁₂ S	Cyclohexanethiol	45.1
C10H22S	1-Decanethiol	42.1
C3H6S	Thiacyclobutane	63.0
C ₄ H ₄ S	Thiophene	33.5
C4H6S	Dihydrothiophenes	32.3
C4H8S	Thiacyclopentane	35—38
C ₅ H ₆ S	Methylthiophenes	37.0
C ₅ H ₁₀ S	Thiacyclohexane	36—37
CN ₄ O ₈	Tetranitromethane	40.1
CH ₃ NO	Formamide	47.5
CH ₃ NO ₂	Nitromethane	57.7
C.H.NO	N-Methylformamide	35.9
C ₃ H ₇ NO	N-Ethylformamide	53.7
-3-4/210	N,N-Dimethylformamide	56.0
C ₄ H ₉ NO	N-Ethylacetamide	44.4
-49-10	N,N-Dimethylacetamide	62.4
	N-Methylpropionamide	47.8
	N,N-Diethylformamide	62.4
C ₅ H ₁₁ NO	N-Propylacetamide	47.8
03.411.10		67.3
	N-Isopropylacetamide	63.9
C ₆ H ₅ NO ₂	N-Methylisobutyramide Nitrobenzene	64.6
C ₆ H ₉ NO ₃		52.5
C ₆ H ₁₃ NO	Triacetamide	57.9
C6111314O	N-Butylacetamide	72.5
CH NO	N,N-Diethylacetamide	51.6
C ₈ H ₁₄ N ₂ O C ₈ H ₈ N ₂ O	N-Nitrosodipropylamine	49.2
$C_{10}H_{11}NO_2$	N-Nitroso-di-tert-buylamine	43.5
$C_{10}H_{11}NO_2$ C_4H_8OS	N,N-Diacetylaniline	68.1
	Ethyl thiolethanoate	37.5
C ₅ H ₁₀ OS	Propyl thiolethanoate	41.6
CHOO	1-Methylethyl thiolethanoate	39.8
C ₆ H ₁₀ OS	Butyl thiolethanoate	45.6
CHNE	1,1-Dimethylethyl thiolethanoate	40.5
C₄H₅NS	4-Methylthiazole	41.4
-	Halogen-substituted ethers	30-52
	Halogen-substituted esters	44-49
	Halogen-substituted diones	28—35

Selected and adapted from Majer, V. and Svoboda, V., Enthalpy of Vaporization of Organic Compounds, IUPAC Chemical Data Series No. 32, Blackwell, Oxford, 1985.

limation of solids) and thermodynamics of liquid metal solutions can be discussed in terms of cohesion parameters. 40,42 Alternative definitions of cohesion parameters for compressed gases are described in Section 11.3,

2.3 THERMODYNAMIC EQUATION OF STATE

Any expression linking the state properties of a material is known as an "equation of state". The most fundamental equation of state is the thermodynamic equation of state, which follows from basic thermodynamic relationships and involves pressure p, molar volume ν , absolute temperature T, and the molar internal energy U:

TABLE 3
Selected Values of Hildebrand Parameters at 25°C

	6.2		$_{1}^{1}\Delta_{e}H$ or $_{1}^{2}\Delta_{\infty}H$	
Formula	Substance	V/cm³ mol-1	kJ mol⁻¹	8/MPa ^{1/2}
	Elemen	ts		
Br_2	Bromine	51	30.7	23.5
I_2	Iodine	59	(<u></u>)	28.8
S ₈	Sulfur	135	-	25.4
P_4	Phosphorus	70	52.7	26.8
	Tetrahali	des		
CCl ₄	Tetrachloromethane, carbon tetrachloride	97	32.8	17.6
SiCI	Silicon tetrachloride, tetrachlorosilane	115	30.1	15.5
SiBr	Silicon tetrabromide, tetrabromosilane	127	43.4	18.0
GeCl ₄	Germanium tetrachloride	115	33.8	16.6
SnCl ₄	Stannic chloride	118	40.0	17.8
SnI ₄	Stannic iodide	151	82.1	23.9
	Other Inorganic	ompounds		
OsO ₄	Osmium tetroxide	58	41.0	25.8
MoF ₆	Molybdenum hexafluoride	84	26.6	17.0
WF ₆	Tungsten hexafluoride	88	26.2	16.4
UF ₆	Uranium hexafluoride	96	30	18.2
Si(CH ₃)	Tetramethylsilane, silicon tetramethyl	136	24.3	12.7
	Aliphatic Hydro	carbons		
			Contraction .	178 Aug 1752
C ₅ H ₁₂	Pentane	116	26.8	14.5
	Isopentane, 2-methylbutane	117	25.2	13.9
	Neopentane, 2,2-dimethylpropane	122	22.4	12.7
C ₆ H ₁₄	Hexane	132	31.7	14.9
C7H16	Heptane	148	36.6	15.1
C_8H_{18}	Octane	164 166	41.5	15.3
CH	Isooctane, 2,2,4-trimethylpentane Hexadecane	294	35.1	14.1 16.4
C ₁₆ H ₃₄ C ₅ H ₁₀	Cyclopentane	95	81.1 28.7	16.6
C ₅ H ₁₀	Cyclohexane	109	33.1	16.8
C ₂ H ₁₄	Methylcyclohexane	128	35.4	16.0
C ₆ H ₁₂	1-Hexene	126	30.7	14.9
C ₈ H ₁₆	1-Octene	158	40.6	15.5
C ₆ H ₁₀	1,5-Hexadiene	118	31.8	15.8
	Aromatic Hydro	carbons		
CH	Renzena	PO	22.0	10.0
C ₆ H ₆ C ₇ H ₈	Benzene Toluene, methylbenzene	89	33.9	18.8
	Ethylbenzene	107	38.0	18.2
C ₈ H ₁₀	o-Xylene, 1,2-dimethylbenzene	123 121	42.3 43.4	18.0 18.4
	m-Xylene, 1,3-dimethylbenzene	123	43.4	
	p-Xylene, 1,4-dimethylbenzene	124	42.4	18.0 18.0
C ₉ H ₁₂	Propylbenzene	140	46.2	17.6
-9x112	Mesitylene, 1,3,5-trimethylbenzene	140	47.5	18.0
C_8H_8	Styrene, ethenylbenzene	116	43.9	19.0
$C_{10}H_8$	Naphthalene	123	45.5	20.3
$C_{14}H_{10}$	Anthracene	(150)		20.3
14 10	Phenanthrene	158	_	20.0

18.0 18.4

18.0

18.0

17.6

18.0 19.0 20.3

20.3

20.0

TABLE 3 (continued) Selected Values of Hildebrand Parameters at 25°C

100	Formula	a Substance	\$7/3 1-1	₁ Δ ₋ H	400-00-00-00-00-00-00-00-00-00-00-00-00-
		Daniel Co.	V/cm³ mol-1	kJ mol-1	8/MP
		Fluoroca	rbons		
23.5	C ₆ F ₁₄	Perfluorohexane			
28.8	C ₇ F ₁₆	Perfluoroheptane	205	32.4	12.
25.4	C ₆ F ₁₂	Perfluorocyclohexane	226	36.4	12
26.8	C ₇ F ₁₄	Perfluoro(methylcyclohexane)	170	28.9	12.
		in the state of th	196	33.1	12.
100		Other Fluoroo	chemicals		
17.6	(C₄F₀)₂N	Perfluorotributylamine	12722		
15.5	C ₄ Cl ₂ F ₆	Dichlorohexafluorocyclobutane	360	54.4	12.
18.0	C ₄ Cl ₃ F ₇	2,2,3-Trichloroheptafluorobutane	142	-	14.:
16.6	C ₂ Cl ₃ F ₃	1,1,2-Trichloro-1,2,2,-trifluoroethane	165	35.6	14.
17.8	C ₁ F ₁₅ H	Pantadoosfinand	120	27.5	14.:
23.9	C71 1511	Pentadecafluoroheptane	215	37.7	12.9
		Other Aliphatic Halog	gen Compounds		
status .	CH ₂ Cl ₂	Dichloromethane, methylene dichloride		N2621 T	
25.8	CHCI,	Trichloromethane, chloroform	64	28.6	20.0
17.0	CCI ₄	Tetrachloromethane, carbon tetrachlorie	81	31.0	18.8
16.4	CHBr ₃	Tribromomethane, bromoform	97	32.8	17.6
18.2	CH ₃ I	Iodomethane, methyl iodide	88	43.1	21.5
12.7	CH ₂ I ₂	Diiodomethane, methylene diiodide	63	28.0	20.3
	C ₂ H ₃ Cl	Chloroethane, ethyl chloride	81	-	24.1
	C ₂ H ₅ Br	Bromoethane, ethyl bromide	74	23.8	17.0
100	C ₂ H ₃ I	Iodethane, ethyl iodide	75	27.2	18.2
4.5	C ₂ H ₄ Cl ₂		81	32.2	19.2
3.9	2114012	1,2-Dichloroethane, ethylene dichloride	79	34.7	20.3
2.7	$C_2H_4Br_2$	1,1-Dichloroethane, ethylidene dichloride	85	32.2	18.6
1.9	C ₂ H ₃ Cl ₃	1,2-Dibromoethane, ethylene dibromide	90	41.4	20.9
5.1	C ₂ H ₂ Cl ₂	1,1,1-Trichloroethane	100	32.6	17.4
5.3	$C_2 \cap_2 C_{12}$	cis-1,2-Dichloroethylene	76	28.9	18.6
.1	C2Cl4	trans-1,2-Dichloroethylene	78	28.5	18.4
.4	C2C14	Tetrachloroethylene	103	39.7	19.0
.6					(0.5 8.7)
.8		Other Aliphatic Co	mpounds		
.0	Ce	O. 1. 11 10 1			
9	CS ₂	Carbon disulfide	61	28.0	20.5
5	C ₃ H ₈ O ₂	Dimethoxymethane, methylal	89	27.6	16.8
8	C ₄ H ₁₀ O	Diethyl ether	105	26.6	15.1
91	Adapted from Reinhold, Pri	Hildebrand, J. H., Prausnitz, J. M., and Scott, Rocton, NJ, 1970.	L. L., Regular and Rela	uted Solutions, v	an Nostra
		and the control of the state of			
2.1		$(\partial U/\partial V)_T = T(\partial p/\partial V)_T = T(\partial P$			

$$(\partial U/\partial V)_{\tau} = T(\partial p/\partial T)_{\tau} - p$$

Many liquids have values of $(\partial p/\partial T)V$ and $(\partial U/\partial V)T$ which are functions only of the molar volume within experimental precision over reasonably wide temperature and pressure ranges. 15,16 Because they show this simple behavior, these functions have been given special names and symbols. The internal pressure is

$$\pi \equiv (\partial U/\partial V)_T \tag{8a}$$

and the isochoric (constant volume) thermal pressure coefficient is

TABLE 3a Molar Volumes and Hildebrand Parameters of Dichloro-Substituted n-Alkanes at 25°C

	V/cm³ mol-1	δ/MPa ^{1/}
1,1-Dichloroethane	84.8	18.3
1,1-Dichloropropane	100.5	18.0
1,1-Dichlorobutane	116.9	17.8
1,1-Dichloropentane	133.8	17.9
1,1-Dichlorohexane	150.7	17.8
1,1-Dichloroheptane	167.3	17.8
1,1-Dichlorooctane	183.6	17.8
1,1-Dichlorononane	199.2	17.7
1,1-Dichloroundecane	233.2	17.6
1,2-Dichloroethane	79.4	20.3
1,2-Dichloropropane	98.2	18.5
1,2-Dichlorobutane	114.3	18.0
1,2-Dichloropentane	131.2	17.8
1,2-Dichlorohexane	148.1	17.6
1,2-Dichloroheptane	164.4	17.8
1,2-Dichlorooctane	181.2	17.8
1,2-Dichlorononane	197.9	17.7
1,2-Dichloroundecane	232.0	17.6
1,3-Dichloropropane	95.8	20.0
1,4-Dichlorobutane	112.1	19.8
1,5-Dichloropentane	128.7	19.4
1,6-Dichlorohexane	145.9	19.7
1,7-Dichloroheptane	162.6	19.6
1,8-Dichlorooctane	179.5	19.6
1,10-Dichlorodecane	213.2	19.4
2,2-Dichloropropane	104.2	16.9

$$\beta \equiv (\partial p/\partial T)_{v} \tag{9a}$$

Thus, Equation 7 can be written

$$\pi = t\beta - p \tag{8b}$$

The thermal pressure coefficient β is related to the isothermal compressibility κ and the thermal expansion coefficient α by

$$\beta = \alpha/\kappa \tag{9b}$$

and from Equation 7, neglecting p, which is usually much smaller than the other term,

$$\pi = T\beta = T\alpha/\kappa \tag{10}$$

The internal pressure results from the forces of attraction between molecules in condensed phases exceeding the forces of repulsion, and although there is obviously a close connection between internal pressure and cohesive pressure, they are not equivalent: the cohesive pressure c is a measure of the total molecular cohesion per unit volume (an integral quantity), while the internal pressure π is the instantaneous isothermal volume derivative of the internal energy (a differential quantity). The expression

$$\pi = nc \tag{11}$$

TABLE 4
Cohesion Parameters and Atomic Volumes of the Elements

	Atomic	Atomic volume	$[(\Delta H - RT)/V]^{1/2}$	
Element	number	cm³ mol-1	MPa ^{1/2}	T/K
Actinium	39	22.6	139	298
Aluminum	13	10	180	298
Antimony	51	18.2	119	0.0000000000000000000000000000000000000
Argon	18	23.9	16	298
Arsenic	33	13.1	149	28
Astatine	85	13.1	149 n	28
Barium	56	39.2	57	298
Beryllium	4	4.4	258	
Bismuth	83	21.3	99	298
Boron	5	4.7	346	298
Bromine	35	(25.5)	66	298
Cadmium	48	13.0		298
Calcium	20	26.0	93	298
Carbon	6	5.3	83	298
Cerium	58	20.7	366	298
Cesium	55	70.1	141	298
Chlorine	17		34	298
Chromium	24	(19.3)	79	298
Cobalt	27	7.2	235	298
	29	6.7	253	298
Copper	66	7.1	219	298
Dysprosium		19.0	121	298
Erbium	68	13.3	127	298
Europium	63	29.0	78	298
Fluorine	9	(10.3)	88	298
Francium	87	73.0	32	298
Gadolinium	64	20.0	131	298
Gallium	31	11.8	152	298
Germanium	32	13.6	166	298
Gold	79	10.2	190	298
Hafnium	72	13.6	227	298
Helium	2	19.5	2.2	1
Holmium	67	18.8	125	298
Hydrogen	1	(6.7)	254	298
Indium	49	15.7	124	298
Iodine	53	(25.7)	64	298
lridium V	77	8.5	279	298
Iron	26	7.1	243	298
Krypton	36	32.0	17	121
Lanthanum	57	22.4	138	298
Lead	82	18.3	104	298
Lithium	3	13.0	112	298
Lutetium	71	17.8	153	298
Magnesium	12	14.0	103	298
Manganese	25	7.4	196	298
Mercury	80	14.8	64	298
Molybdenum	42	9.4	265	298
Neodymium	60	20.6	124	298
Neon	10	16.8	11	24
Nickel	28	6.6	255	298
Niobium	41	10.8	260	298
Nitrogen	7	(11.4)	203	298
Osmium	76	8.4	305	298
Oxygen	8	(8.5)	171	298
Palladium	46	8.9	206	298
Phosphorus	15	16.9	139	298

(9a)

(8b)

ity k and the

(9b)

ther term,

(10)

in condensed se connection the cohesive gral quantity), of the internal

(11)

TABLE 4 (continued)
Cohesion Parameters and Atomic Volumes of the Elements

Element	Atomic number	Atomic volume cm ³ mol ⁻¹	$\frac{[(\Delta H - RT)/V]^{1/2}}{MPa^{1/2}}$	T/K
Platinum	78	9.1	249	298
Polonium .	84	22.6	80	298
Potassium	19	45.5	45	298
Praseodymium	59	20.8	131	298
Promethium	61	20.3	115	298
Protoactinium	91	15.0	192	298
Radium	88	38.8	67	298
Radon	86	50.5	60	208
Rhenium	75	8.9	297	298
Rhodium	45	8.3	259	298
Rubidium	37	55.9	38	298
Ruthenium	44	8.3	279	298
Samarium	62	20.1	102	298
Scandium	21	15.1	150	298
Selenium	34	16.5	112	298
Silicon	14	12.1	194	298
Silver	47	10.3	167	298
Sodium	11	23.7	68	298
Strontium	38	33.7	70	298
Sulfur	16	15.5	134	298
Tantalum	73	10.9	267	298
Technetium	43	8.6	273	298
Tellurium	52	20.5	98	298
Terbium	64	19.3	140	298
Thallium	81	17.3	102	298
Thorium	90	19.9	170	298
Thulium	69	18.2	116	298
Tin	50	16.3	136	298
Titanium	22	10.6	211	298
Tungsten	74	9.5	296	298
Uranium	92	12.5	205	298
Vanadium	23	8.4	248	298
Xenon	54	36.8	19	166
Ytterbium	70	24.9	82	298
Yttrium	39	19.9	144	298
Zinc	30	9.2	120	298
Zirconium	40	14.1	208	298

No data available.

Adapted from Lawson, D. D., Proc., DOE Chemical/Hydrogen Energy Contractor Review Systems, CONF-771131, National Technical Information Service, Springfield, VA, 1978, 109. See also Tables 24 and 25, Chapters 5, for liquid metals.

with n an empirical parameter can be used (see next section). Although n approaches a value of unity for nonpolar liquids, it can be considerably less than or greater than unity for other liquids, as shown in Table 12, Chapter 7.

The internal pressure π is in some ways a more satisfactory quantity than the cohesive pressure c or the Hildebrand parameter ($\delta = c^{\nu 2}$) to describe the macroscopic resultant of molecular interactions. This is because π is defined thermodynamically and because it may be evaluated directly and unambiguously in some situations. The effects on reaction kinetics and other properties of change in solvent internal pressure parallel those resulting from external pressure variation, and are experimentally simpler to achieve. The relationship

its

Review ., 1978,

298 298

166 298

298 298

roaches a value unity for other

in the cohesive pic resultant of because it may action kinetics resulting from he relationship between π and c is considered in more detail in Section 7.5, where the internal pressure is shown to provide one method of estimating the Hildebrand parameter values for simple liquids, and component cohesion parameters for more complex liquids. Sharma and Das¹⁸⁻²¹ and Wilson^{22,23} are among those who have considered various aspects of equations of state, cohesion parameters, and internal pressure.

2.4 EMPIRICAL EQUATIONS OF STATE

In the course of numerous attempts to analyze and rationalize the nature of intermolecular forces, many empirical equations of state have been proposed. The most used equation, of course, is the ideal gas law,

$$pV = RT \tag{12}$$

but the next best known is the van der Waals equation of state24-26

$$(p + a/V^2)(V - b) = RT$$
 (13)

The thermodynamic equation of state (Equation 7) and the van der Waals equation can be rewritten as follows to yield a direct comparison:

$$p + (\partial U/\partial V)_T = T(\partial p/\partial T)_V \tag{14}$$

$$p + a/V^2 = TR/(V - b) \tag{15}$$

It is then possible to define a van der Waals liquid as one that obeys the equation

$$(\partial U/\partial V)_T = a/V^2 \tag{16}$$

Integrating,

$$U = -a/V^2 \tag{17}$$

If $U = - {}_{1}\Delta_{e}^{g}U$ (Equation 3), then

$$a = V_1 \Delta_g U = V^2 c = V^2 \delta^2$$
 (18)

and

$$(\partial U/\partial V)_{T} = {}_{1}\Delta_{\rho}U/V = c = \delta^{2}$$
 (19)

This very simple relationship between the Hildebrand parameter and van der Waals a parameter has been shown approximately true for some liquids. 8-10,27-29 More generally, 30-32

$$U = -a/V^{\alpha} \tag{20}$$

which, with the assumption that the vapor is ideal, leads to

$$(\partial U/\partial V)_{\rm T} = n(\Delta_{\nu}U/V) \tag{21}$$

so the deviation of n from unity (Table 12, Chapter 7) can be used as a measure of the extend of deviation of a real liquid from a van der Waals liquid.

McGowan³³ classified three main types of property (or combination of properties) for liquids:

- Those which are constant for all unassociated liquids, such as the characteristic pressure, p. (4455 MPa)
- Those (most properties) which vary with temperature
- Those which vary between compounds but which do not depend on temperature, such as the parachor (Section 6.3) and also the van der Waals a and b parameters

The estimation of both the parameters a and b and cohesion parameters from characteristic atomic volumes and characteristic pressure was discussed.

Equations of state are considered further in Chapter 7.

2.5 UNITS AND CONVERSION FACTORS

The internal pressure is expressed in pressure units (preferably in the SI unit, the pascal, $1 \text{ Pa} \equiv 1 \text{ N m}^{-2}$), but in the past the cohesive pressure or cohesive energy density has been given units of energy per unit volume, often cal cm⁻³. As internal pressure and cohesive pressure are dimensionally identical, it is logical to use a common unit. Also, although the units cal cm⁻³ for cohesive pressure and cal^{1/2} cm^{-3/2} for solubility parameters are still used widely, eventual conversion to the SI units is inevitable, and these units are used throughout this book. It is not now appropriate to honor the founder of the solubility parameter concept by adopting the "hildebrand" as the title of the non-SI unit cal^{1/2} cm, ^{-3/2} as originally suggested by Taylor, ³⁴ and a more permanent form of recognition is desirable. This is achieved by calling the original thermodynamic or "total" cohesion parameter, as defined in Equation 5 or 6, the *Hildebrand parameter*.

From many points of view, the most appropriate and convenient unit for cohesion parameters is MPa^{1/2}, which is numerically identical with J^{1/2} cm^{-3/2} and with MJ^{1/2} m^{-3/2}. This conforms to the SI conventions, is of convenient numerical size (1 cal^{1/2} cm^{-3/2} being approximately 2 MPa^{1/2}), and can be written in compact form. Tables 5 and 6 list some conversion factors for pressure units and for cohesion parameter units.

In Chapter 6 the quantity $(-UV)^{1/2}$ is introduced, with dimensions

$$(energy)^{1/2}$$
 $(volume)^{1/2}$ $(amount)^{-1} = (pressure)^{1/2}$ $(volume)$ $(amount)^{-1}$

and the conversion to SI units is

$$(energy)^{1/2}$$
 (volume)^{1/2} (amount)⁻¹ = (pressure)^{1/2} (volume) (amount)⁻¹
1 cal^{1/2} cm^{3/2} mol⁻¹ = 2.0455 U^{1/2} cm^{3/2} mol⁻¹ (MPa^{1/2} cm³ mol⁻¹)

In Chapter 7, dimensionless coefficients have been converted from cal^{1/2} cm^{-3/2} atm^{-1/2} using

$$1 \text{ cal}^{1/2} \text{ cm}^{-3/2} \text{ atm}^{-1/2} = 6.4260$$

and the parameter $A=\delta^2 V^{1/3} \ \gamma^{-1}$ in Chapter 17 has been converted to $\mathrm{mol}^{-1/3}$ from call $\mathrm{erg}^{-1} \ \mathrm{mol}^{-1/3}$ by using 4.184×10^7 as a multiplying factor. In Chapter 6, for the normal lyoparachor and true lyoparachor,

$$1 \text{ cal}^{4/5} \text{ g}^{-4/5} \text{ cm}^3 \text{ mol}^{-1} = 3.143 \text{ J}^{4/5} \text{ g}^{-4/5} \text{ cm}^3 \text{ mol}^{-1}$$

$$1 \text{ cal}^{3/4} \text{ g}^{-3/4} \text{ cm}^3 \text{ mol}^{-1} = 2.925 \text{ J}^{3/4} \text{ g}^{-3/4} \text{ cm}^3 \text{ mol}^{-1}$$

The dipole moment is frequently quoted in the non-SI debye unit,

of properties) for

aracteristic pres-

imperature, such rameters

m characteristic

unit, the pascal, lensity has been re and cohesive so, although the ers are still used used throughout ameter concept 32 as originally sirable. This is eter, as defined

it for cohesion th MJ^{1/2} m^{-3/2}. ^{/2} cm^{-3/2} being nd 6 list some

1t) - 1 - 1)

m-3/2 atm-1/2

1-1/3 from cal

TABLE 5
Pressure Units and Conversion Factors

	cal cm -3	MPa (J cm ⁻³)	atm	bar	kg cm⁻²	mmHg (0°C)
1 cal cm ⁻³ 1 MPa (J cm ⁻³)	0.239 01	4.184 0	41.292 9 9.869 2	41.840	42.665	31 383
I atm	0.024 217	0.101 325	2.002 2	10.000 1.013 25	10.197 2 1.033 23	7 500.6
I bar I kg cm ⁻²	0.023 901 0.023 439	0.100 000	0.986 92	-	1.033 23	760.00 750.06
1 mmHg (0°C)	0.000 031 865	0.098 066 0.000 133 322	0.967 84 0.001 315 78	0.9806 0.001 332 22	0.001 359 5	735.56

TABLE 6
Cohesion Parameter Units and Conversion Factors

	$cal^{1/2} can^{-3/2}$	MPa ^{1/2} (J ^{1/2} cm ^{-3/2})	atm ^{1/2}
I cal ^{1/2} cm ^{-3/2}		2.045 5	6.4260
I MPa ^{1/2} (J ^{1/2} cm ^{-3/2})	0.488 88	E S	3.1415
1 atm ^{1/2}	0.155 62	0.318 32	

 $1 D = 3.336 \times 10^{-30} C m$

Density conversions are made using

1 lb (US gal)
$$^{-1}$$
 = 0.11983 g cm $^{-3}$

2.6 MIXTURES

For mixing to be possible, the Gibbs free energy of mixing at constant pressure must be negative:

$$\Delta_{\rm m} G_{\rm p} = \Delta_{\rm m} H_{\rm p} - T \Delta_{\rm m} S_{\rm p} < 0 \tag{22}$$

The entropy change $\Delta_m S_p$, of a mixing process is usually positive, but in order to predict if mixing will take place, it is necessary to evaluate the enthalpy term, $\Delta_m H_p$. When this term is negative, or positive and less than $T\Delta_m S_p$, mixing can occur. Because of the temperature dependence of the entropy term, if the temperature of a mixture is decreased spontaneous "unmixing" (phase separation) may occur, although it is also possible for metastable homogeneous systems to exist.

Through thermodynamic relationships, cohesion parameters can also provide information on the properties of the components within mixtures. Differentiation of the Gibbs free energy of mixing with respect to the amount of substance i provides the chemical potential ${}^{i}\mu^{o}$ in the pure liquid. The chemical potential is also known as the relative partial molar Gibbs free energy, or the Gibbs free energy of dilution, and can be subdivided into enthalpy of dilution and entropy of dilution terms. The activity, ${}^{i}a$, of component i follows from

$$RT \ln {}^{i}a = {}^{i}\mu - {}^{i}\mu^{\circ} \tag{23}$$

The usual approach to the study of thermodynamic properties of mixtures or solutions is to determine the changes in the values of certain characteristic properties when the components

are mixed. In doing this, the concept of an *ideal mixture* or *ideal solution* is valuable in describing the idealized behavior of mixtures, as in the same way the ideal gas law describes the idealized, limiting behavior of expanded gases. It is demonstrated in most general physical chemistry textbooks that the thermodynamic definition of an ideal mixture (a mixture in which the activity equals the mole fraction composition over the entire composition range and over a nonzero range of temperature and pressure) leads to the following properties:

- 1. There is no volume change during the formation of an ideal mixture from its components, $\Delta_m V = 0$. (The volume change on mixing can be determined experimentally by dilatometry.)
- 2. There is no enthalpy change in the system when the components are mixed at a fixed total pressure; that is, there is a zero heat of mixing, $\Delta_m H = 0$. (Experimentally, there would be no temperature change observed in a thermally isolated system during an ideal mixing process.)
- 3. There is an entropy change during mixing equal to that occurring during the formation of an ideal gas mixture due to the extra degrees of freedom created by the mixing process. This is sometimes called the combinatorial entropy, and for equal-sized, low molecular mass components the molar entropy of mixing is

$$\Delta_m S = -R \sum_i i_x \ln i_x \tag{24}$$

where x is the mole fraction of component i. (Each mole fraction x is less than unity, so $\ln x$ is negative and the overall $\Delta_m S$ term is positive.) Different relative molecular sizes of the components reduce the number of possible combinations, and $\Delta_m S$ is less than the ideal value (Section 13.2).

4. The resulting molar Gibbs free energy change during the formation of an ideal mixture is therefore completely provided by the entropy gained by each component:

$$\Delta_{m} G = \Delta_{m} H - T \Delta_{m} S = RT \sum_{i} {}^{i}x \ln {}^{i}x$$
 (25)

 The components forming an ideal mixture are always completely miscible in all proportions.

Another way of considering an ideal mixture is on the molecular level: an ideal mixture is one in which the different types of molecules, i and j for example, behave exactly as if they were surrounded by molecules of their own kind; that is, all intermolecular interactions are equivalent. This is discussed further below.

In nonideal mixtures, the Gibbs free energy change for the mixing process is not equal to the ideal value, and the "excess" Gibbs free energy change on mixing is³⁵

$${}^{\mathrm{E}}\Delta_{\mathrm{m}} G = \Delta_{\mathrm{m}} G - RT \sum_{i} {}^{i}x \ln {}^{i}x \tag{26}$$

This function may be considered either from the point of view of the mixed system as the excess G^E of the Gibbs free energy of the nonideal mixture relative to that of the ideal mixture, or from the point of view of the mixing process as the excess $^E\Delta_m$ G of the nonideal Gibbs free energy of mixing relative to the ideal Gibbs free energy of mixing. Similarly, the excess entropy of mixing is defined

$${}^{\mathrm{E}}\Delta_{\mathrm{m}} S = \Delta_{\mathrm{m}} S + R \left({}^{i}x \ln {}^{j}x \, {}^{i}x \ln {}^{j}x \right) \tag{27}$$

An ideal mixture follows $Raoult's\ law$, which states that the partial pressure, p, of any component i is given by

is valuable in s law describes eneral physical (a mixture in position range g properties:

from its comexperimentally

ixed at a fixed nentally, there em during an

the formation by the mixing tal-sized, low

(24)

is than unity, ve molecular d $\Delta_m S$ is less

.deal mixture ent;

(25)

e in all pro-

I mixture is ly as if they ractions are

is not equal

(26)

f the ideal e nonideal Similarly,

(27)

p, of any

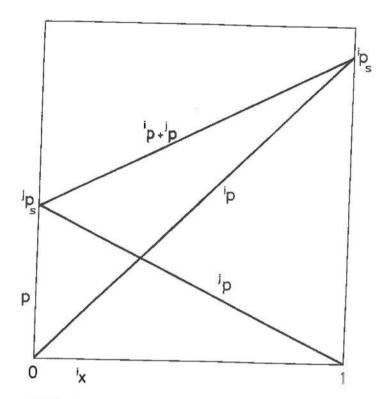


FIGURE 1. Total and partial vapor pressures in an ideal binary mixture at constant temperature.

$$^{\prime}p = {^{\prime}}x^{\prime}p_{s} \tag{28}$$

where ^{i}x is the mole fraction of component i in the mixture and $^{i}p_{s}$ is the saturation pressure of component i. This ideal behavior is illustrated in Figure 1. A real system with behavior close to ideal is tetrachloromethane-cyclohexane.

Negative deviations from Raoult's law (Figure 2) occur when interactions between unlike molecules (i - j interactions) are markedly stronger than like-pair interactions. Moderate positive deviations (Figure 3) are usual, and occur when there is little or no specific interaction between any of the molecules. Strong positive deviations result from situations where molecules of one or more of the components undergo strong self-interaction, but only normal interactions with other components, as in alcohol-hydrocarbon mixtures. Very strong positive deviations from Raoult's law lead to liquid-liquid immiscibility (Section 2.7).

Nonideality is also frequently described in terms of activity coefficients. Except for the special case of an ideal mixture, the activity a of component i is not equal to its mole fraction value x, and it is therefore convenient to define the activity coefficient f_x such that

$${}^{i}f_{x} = {}^{i}a^{i}x$$
 (29)

The Gibbs free energy change on mixing is then expressed

$$\Delta_{m} G = RT \sum_{i} x \ln x + RT \sum_{i} a = \ln x + RT \sum_{i} x \ln x$$
(30)

and from Equation 26,

$${}^{\rm E}\Delta_{\rm m} G = RT \sum_i {}^{i}x \ln {}^{i}f_{\rm x} \tag{31}$$

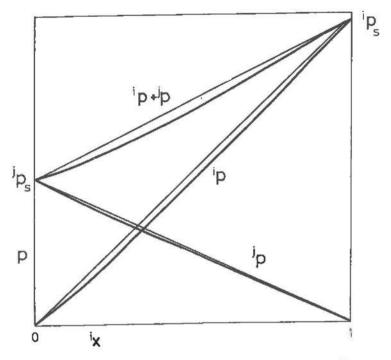


FIGURE 2. Total and partial vapor pressures at constant temperature for a system with negative deviations from Raoult's law.

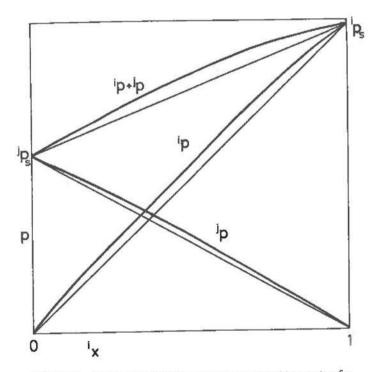


FIGURE 3. Total and partial vapor pressures at constant temperature for a system with moderate positive deviations from Raoult's law.

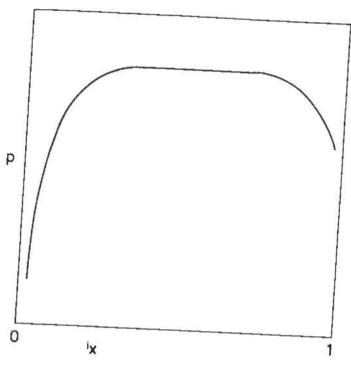


FIGURE 4. Total vapor pressure in equilibrium with a partially miscible pair of liquids, at constant temperature.

Hildebrand's definition 36,37 of a regular solution arises from the separation of the Gibbs free energy of mixing at constant pressure into entropy and enthalpy components (Equation 22): "A regular solution is one involving no entropy change when a small amount of one of its components is transferred to it from an ideal solution of the same composition, the total volume remaining unchanged." In other words, a solution of mixture described as "regular" is one which, despite a nonideal (nonzero, either positive or negative) enthalpy of formation, has an ideal entropy of formation. This can occur only if the random distribution of molecules persists even in the presence of i-j interactions which differ from the original i-i and j-j interactions. The concept has proven valuable in the development of an understanding of miscibility criteria and of deviations from ideality. Unfortunately, although the term "regular solution" has come into general use, the usage does not always conform with its original definition. The definition in terms of an ideal entropy of mixing forms the most useful reference state and should be retained. When molecules of different sizes are mixed, an alternative entropy of mixing term is required, as described subsequently (Section 13.2).

2.7 PHASE SEPARATION

It was stated in the previous section that when there are strong self-interactions in the components of a mixture and weaker interactions between components, there occur strong positive deviations from Raoult's law which can lead to liquid-liquid immiscibility. In Figure 4, which can be compared with Figures 1 to 3, the flat portion of the pressure-composition curve represents the miscibility gap.

The possibility of this type of behavior can be investigated in an alternative way by plotting the excess Gibbs free energy of mixing (Equation 26) against the mole fraction.³⁹ If this curve has no point of inflexion and is concave upward (Figure 5a), the binary mixture

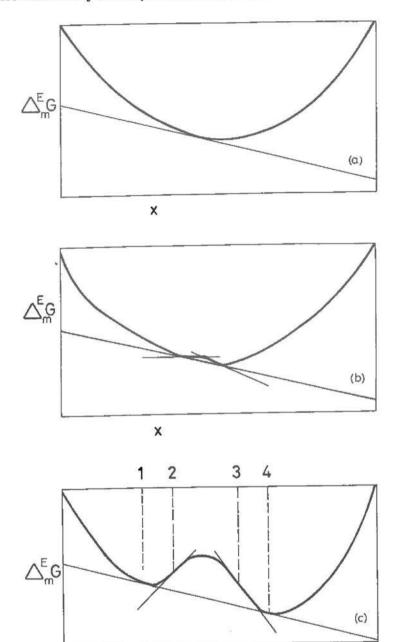


FIGURE 5. Excess Gibbs free energy of a binary mixture as a function of mole fraction: (a) miscibility in all proportions; (b) onset of demixing; (c) existence of two regions of stability, two regions of metastability, and one region of instability. (Adapted from Dayantis, J., *Plast. Mod. Elastomeres*, 29(2), 58, 1977.)

X

is stable at all compositions and no phase separation occurs. If the curve has two upwardfacing concavities separated by a convex section and two points of inflexion (Figure 5c), there is a region of total instability, two metastable regions and, at either end of the composition range, two regions of binary mixture stability. An attempt to obtain a mixture with a composition between points 2 and 3 leads to two phases with compositions represented by points 2 and 4 defined by the double tangent to the curve. Curve 5b is the limiting case, defining a critical miscibility situation where the two points of inflexion coincide. As the temperature of some liquid-liquid systems is decreased, the behavior may be represented by each of Figures 5a, b, and c in turn as complete miscibility at higher temperatures changes to phase separation at lower temperatures. The temperature corresponding to diagram (b) is then called the (upper) critical solution temperature, UCST. Polymer-liquid, polymer-polymer systems (Section 13.3) and a very few liquid-liquid systems, like aqueous amine solutions, exhibit a second critical solution temperature as the temperature of the mixture

It should also be noted that useful polymer-polymer and polymer-liquid dispersions and metastable solutions can be produced from thermodynamically incompatible systems if the ingredients can be mixed in the appropriate thermodynamic conditions and then prevented from demixing when the conditions are changed (Chapter 16).

REFERENCES

- 1. Polak, J., Heat of vaporization and cohesion energy of liquids, Collect. Czech. Chem. Comm., 31, 1483,
- 2. Majer, V., Svoboda, V., Pošta, A., and Pick, J., Enthalpy data of liquids. XXII. Determination of heats of vaporization and some other thermodynamic quantities for three fluorinated halogen ethanes, Collect. Czech. Chem. Commun., 46, 817, 1981.
- 3. Svoboda, V., Charvatova, V., Majer, V., and Pick, J., Enthalpy data on liquids. XXIV. Determination of heats of vaporization and other thermodynamic quantities for four alklycycloparaffins, Collect. Czech. Chem. Commun., 46, 2983, 1981.
- Svoboda, V., Cohesion energy of liquids, Chem. Listy. 76, 389, 1982.
- 5. Uchytilová, V., Majer, V., and Svoboda, V., Enthalpies of vaporization and cohesive energies of 2chloro-1,1,2-trifluoroethyl ethyl ether, 2-chloro-1,1,2-trifluoroethyl propyl ether, 2-chloro,1,2-trifluoroethyl chloromethyl ether and 2-chloro-1,1,2-trifluororthyl difluoromethyl ether, J. Chem. Thermodyn., 16, 475,
- 6. Majer, V., Svoboda, V., and Lencka, M., Enthalpies of vaporization and cohesive energies of pyridine and isomeric methylpyridines, J. Chem. Thermodyn., 16, 1019, 1984.
- 7. Majer, V. and Svoboda, V., Enthalpies of Vaporization of Organic Compounds, IUPAC Chemical Data Series No. 32, Blackwell, Oxford, 1985.
- 8. Hildebrand, J. H. and Scott, R. L., Solubility of Non-Electrolytes, 3rd ed., Reinhold, New York, 1950; Dover, New York, 1964.
- 9. Hildebrand, J. H. and Scott, R. L., Regular Solutions, Prentice-Hall, Englewood Cliffs, NJ, 1962.
- 10. Hildebrand, J. H., Prausnitz, J. M., and Scott, R. L., Regular and Related Solutions, Van Nostrand-Reinhold, Princeton, NJ, 1970.
- 11. Teas, J. P., Re solubility parameters, J. Paint Technol., 40, 104, 1968.
- 12. Gardon, J. L. and Teas, J. P., Solubility parameters, in Treatise on Coatings, Vol. 2, Part II, Myers, R. R. and Long, J. S., Eds., Marcel Dekker, New York, 1976, chap. 8, 413.
- 13. Lawson, D. D., Applications of solubility parameters. Part I, Proc. DOE Chemical/Hydrogen Energy Contractor Review Systems, (Pasadena, CA, 1977), CONF-771131, National Technical Information Service, Springfield, VA, 1978, 109.
- 14. England, C., Lawson, D. D., and Hrubes, J. D., Superconductivity, cohesive energy density, and electronatom ratio in metals, J. Appl. Phys. 52, 2923, 1981.
- 15. Barton, A. F. M., Internal pressure. A fundamental liquid property, J. Chem. Educ., 48, 156, 1971.
- 16. Barton, A. F. M., The Dynamic Liquid State, Longman, London, 1974.
- 17. Ouellette, R. J. and Williams, S. H., Internal solvent pressure. I. A demonstration of the effect of internal solvent pressure on conformational equilibria, J. Am. Chem. Soc., 93, 466, 1971.

- 48
 - Sharma, B. K., A new method of estimation of solubility parameter of liquids, *Indian J. Pure Appl. Phys.*, 124, 939, 1976; Solubility parameter and evaluation of some thermodynamic properties of simple liquids, *Indian J. Pure Appl. Phys.*, 15, 633, 1977.
 - Sharma, B. K., Internal pressure-temperature behaviour and lattice Gruneisen constant of polymers, Acustica, 48, 121, 1981.
 - Sharma, B. K., Statistical thermodynamics of liquids. I. An equation of state and solubility parameter, Acustica, 49, 164, 1981.
 - Sharma, B. K. and Das, N., Internal pressure-temperature behavior and solubility parameter of liquids, Indian J. Pure Appl. Phys., 19, 668, 1981.
 - Wilson, G. M., Interpretation of Trouton's law, solubility parameters, molecular size and polarity in relation to equation of state properties, Abs. Pap. Am. Chem. Soc., 189, (Apr.), 110, 1985.
 - 23. Wilson, G. M., Interpretation of Trouton's law in relation to equation of state properties, Am. Chem. Soc. Symp. Ser., 300, (Equations of State), 520, 1986.
 - Del Rio, F., Guzman, F., and Mier y Teran, L., THe van der Waals model and the theory of solutions, Chem. Phys. Lett., 35, 274, 1975.
 - 25. Haward, R. N., Modified van der Waals equation for liquids, Trans. Faraday Soc., 62, 828, 1966.
 - 26. Rowlinson, J. S., Legacy of van der Waals, Nature (London), 224, 414, 1973.
 - Hildebrand, J. H., Compressibilities and thermal pressure coefficients of certain liquids, Phys. Rev., 34, 649, 1929.
 - Hildebrand, J. H., Solubility of Non-Electrolytes, 2nd ed., Reinhold, New York, 1936; (Russian translation), Gonti, Moscow-Leningrad, 1938.
 - Hildebrand, J. H. and Carter, J. M., A study of van der Waals forces between tetrahalide molecules, J. Am. Chem. Soc., 54, 3592, 1932.
 - 30. Frank, H. S., Free volume and entropy in condensed systems. II. Liquids, J. Chem. Phys. 13, 493, 1945.
 - 31. Fried, V. and Schneier, G. B., Some comments on cohesion energies of liquids, J. Phys. Chem., 72,
 - Amoras, J., Solana, J. R., and Villar, E., Behaviour of the internal pressure of liquids in accordance with variations in temperature, volume and cohesive energy density, Mater. Chem. Phys., 10, 557, 1984.
 - McGowan, J. C., The estimation of solubility parameters and related properties of liquids, J. Chem. Tech. Biotechnol., 34A, 38, 1984.
 - 34. Taylor, N. W., in Modern Chemistry for the Engineer and Scientist, Robertson, G. R., Ed., McGraw-Hill, New York, 1957, p 183.
 - Eckert, C. A., Introduction to theories of solutions and application to phase equilibria, in Solutions and Solubilities, Part II, Dack, M. R. J., Ed., John Wiley & Sons-Interscience, New York, 1976, chap. 9.
 - 36. Hildebrand, J. H., Solubility. XII. Regular solutions, J. Am. Chem. Soc., 51, 66, 1929.
 - 37. Hildebrand, J. H., Order from chaos, Science, 150, 441, 1965.
 - 38. Hildebrand, J. H., The term 'regular solution,' Nature (London), 168, 868, 1951.
 - 39. Dayantis, J., The Hildebrand parameter. Solubility of polymers, Plast. Mod. Elastomers, 29(2), 58, 1977.
 - Bowersox, D. F., Thermodynamic properties of selected solutes in liquid metal solutions, U.S.A.E.C., CONF-690801, 565-75, 1969.
 - Varushchenko, R. M., Loseva, O. L., and Druzhinina, A. I., Energies of evaporation of dichloroalkanes, Zh. Fiz. Khim., 62, 2329, 1988; Russ. J. Phys. Chem., 62, 1204, 1988.
 - Yatsenko, S. P. and Dieva, G. N., Solubility of high-melting metals in molten indium, Zh. Fiz. Khim., 47, 2948, 1973; Russ. J. Phys. Chem., 47, 1658, 1973.

Chem., 78.

. Coatings,

id polymers

1979. Positronium

Innihilation

and angular

e anions in

dependence

ienyl ether,

anihilation,

Chapter 4

REGULAR SOLUTIONS AND THE HILDEBRAND PARAMETER

The Hildebrand parameter developed from regular solution theory, but whereas a regular solution is an idealized concept (a mixture in which the partial excess entropy is zero), the Hildebrand parameter, the geometric mean approximation, and the component cohesion parameters to be introduced in the next chapter are general concepts. These originated in regular solutions, but also can be applied to varying extents of other types of solution. This distinction is important, but is not always made.

4.1 GEOMETRIC MEAN APPROXIMATION

As introduced in Section 2.6, a regular solution has an ideal entropy of formation, arising from a completely random molecular distribution, despite the existence of interactions which lead to a nonideal (non-zero) enthalpy of formation. This effectively restricts regular mixtures to those systems in which only dispersion forces are important, because the orientation effects of polar molecules cause nonrandom molecular distributions. The extent of the dispersion effect depends on the ionization potential and the polarizability of the molecules concerned (Equation 6, Chapter 3). Ionization potentials, I, and intermolecular distances, r, do not usually vary greatly for different pairs of adjacent molecules, and to a good approximation

$${}^{i}I + {}^{j}I \approx 2({}^{i}I {}^{j}I)^{1/2}$$
 (1)

and

$$r \approx 2({}^{l}r\,{}^{l}r)^{1/2} \tag{2}$$

This forms the basis of the geometric mean relation for dispersion interactions,

$${}^{ij}U_d = {}^{i}U_d^{1/2} {}^{j}U_d^{1/2} \tag{3}$$

which is a major approximation in cohesion parameter theory. Early in the development of the cohesion parameter concept, the geometric mean approximation was tested experimentally on eight mixtures of tetrahalomethanes. Hildebrand and Carter¹ verified to within 1% the relationship

$${}^{ij}a = ({}^{i}x {}^{i}a^{1/2} + {}^{j}x {}^{j}a^{1/2})^{2}$$
 (4)

where $a = TV^2\beta$ (Equations 10 and 16, Chapter 2) for the mixture i-j and the components i and j, which would follow from

$${}^{ij}a = {}^{i}x^{2} {}^{i}a + {}^{j}x^{2} {}^{j}a + 2{}^{i}x {}^{j}x {}^{ij}a$$
 (4a)

if ${}^{ij}a = ({}^{i}a^{j}a)^{1/2}$. Further tests were made by Scatchard et al.² and Staveley et al.³, and the geometric mean approximation can be considered to be justified, at least in favorable circumstances, although discussion on its validity continues⁴⁻⁹. Empirical correction methods for deviations are described in Section 5.7.

4.2 HILDEBRAND-SCATCHARD EQUATION

The regular solution equation for the internal energy of mixing at constant volume, based

on the pioneering work of van der Waals¹⁰ and van Laar,^{11,12} was derived on semitheoretical grounds by Scatchard^{13,14} and Hildebrand¹⁵⁻¹⁹ and popularized by J. H. Hildebrand, R. L. Scott, J. M. Prausnitz, and others.²⁰⁻³⁵

The energy of mixing for 1 mol of solution is

$$\Delta_{m} U_{v} = (^{i}x \,^{i}V + ^{j}x \,^{j}V) \,^{ij}A \,^{i}\phi \,^{j}\phi \qquad (5)$$

$$= {}^{i}V({}^{i}x + m{}^{j}x){}^{i}A{}^{i}\varphi {}^{j}\varphi \qquad (6)$$

In these equations, x is the mole fraction, V is the molar volume, m is the ratio of molar volumes, and ϕ is the volume fraction:

$$m = {}^{j}V/{}^{i}V = ({}^{j}M){}^{i}M)({}^{i}\rho{}^{j}\rho)$$

$$(7)$$

$${}^{i}\phi = {}^{i}V {}^{i}x/({}^{i}V {}^{j}x + {}^{i}V {}^{i}x) = {}^{i}x/(m {}^{j}x + {}^{i}x)$$
 (8)

$${}^{i}\phi = {}^{j}V {}^{j}x/({}^{j}V {}^{j}x + {}^{i}V {}^{i}x) = m {}^{j}x/(m {}^{j}x + {}^{i}x),$$
 (9)

The superscripts i and j identify the components of the binary mixture, i being the solvent and j the solute if this distinction is made. ${}^{i}A$ is a measure of the change of the cohesion pressure or energy density associated with the i-j mixing process, called the exchange energy density or exchange cohesive pressure, and given by

$${^{ij}}A = {^{i}}c + {^{j}}c - 2 {^{ij}}c$$
 (10)

where the ${}^{ij}c$ term is the cohesive pressure characteristic of the intermolecular forces acting between molecules of type i and j. This equation can be appreciated in a simple fashion by considering what happens when unit volumes of components i and j are mixed: two i-j interactions are formed for each pair of i-i and j-j interactions broken. It should be noted that ${}^{ij}A$ is not simply the difference between the cohesive pressure of components i and j; this quantity (${}^{i}c - {}^{j}c$) has been termed 36 the "mutual cohesion factor", but has not proved of great value in correlating the properties of materials.

The interchange cohesive pressure ${}^{y}A$ can be used simply as an empirical parameter for a particular i-j pair of series of mixtures, like the physical interaction parameter of Harris and Prausnitz, 37 but this does not make full use of the opportunity to develop a method to provide information on mixtures from data on individual components. This is where the relationship between ${}^{y}A$ and the individual Hildebrand parameters ${}^{t}\delta$ and ${}^{t}\delta$ is important.

The Hildebrand parameters for the substances are defined by Equation 5, Chapter 2, so

$$^{i}\delta^{2} = {^{i}}_{C} = \Delta^{i}U/^{i}V \text{ and } ^{j}\delta^{2} = {^{j}}_{C} = \Delta^{j}U/^{j}V$$
 (11)

Using the geometric mean approximation, Equation 3,

$${}^{y}c = ({}^{i}c {}^{j}c)^{1/2}$$
 (12)

SO

$${}^{ij}A = ({}^{i}c^{1/2} - {}^{j}c^{1/2})^{2} = ({}^{i}\delta - {}^{j}\delta)^{2}$$

$$= {}^{i}\delta^{2} + {}^{j}\delta^{2} - 2{}^{ij}c$$
(13)

and the Hildebrand-Scatchard equation can be written

20

theoretical and, R. L.

(5)

(6)

of molar

(7)

(8)

(9)

he solvent cohesion exchange

(10)

ces acting ashion by two i-j be noted ts i and j; not proved

ameter for of Harris method to where the portant. pter 2, so

(11)

(12)

(13)

$$\Delta_{m} U_{v} = (^{i}x \,^{i}V + ^{j}x \,^{j}V) \,^{ij}A \,^{i}\phi \,^{j}\phi$$

$$= (^{i}x \,^{i}V + ^{j}x \,^{j}V) \,(^{i}\delta - ^{i}\delta)^{2} \,^{i}\phi \,^{j}\phi \qquad (14)$$

This provides the basis of the cohesion parameter approach to liquid miscibility and other properties. The Hildebrand-Scatchard equation, although a very simple predictive relationship, is still proving useful.⁸⁸⁻⁹¹

One of the most important derived properties is the activity coefficient. The partial molar energy of transfer of component j is obtained by differentiating Equation 5 with respect to the amount of j, and assuming an ideal entropy of transfer, the resulting expression for the activity coefficient is

$$RT \ln^{j} f_{\tau} = RT \ln^{(j} a^{j} x) = {}^{j} V^{i} \Phi^{2} {}^{i} A = {}^{j} V^{i} \Phi^{2} ({}^{i} \delta - {}^{j} \delta)^{2}$$
 (15)

Similarly,

$$RT \ln {}^{i}f_{x} = RT \ln ({}^{i}a/{}^{i}x) = {}^{i}V {}^{j}\phi^{2} {}^{ij}A = {}^{j}V {}^{j}\phi^{2} ({}^{i}\delta - {}^{j}\delta)^{2}$$
(15a)

Expanding Equation 15,

$$RT \ln {}^{i}f_{x} = {}^{j}V/[({}^{i}V {}^{i}x) / ({}^{j}V {}^{j} \propto + {}^{i}V {}^{i}x)]^{2} ({}^{i}\delta - {}^{j}\delta)^{2}$$
 (15b)

In dilute solutions, ${}^{i}V^{i}X \ll {}^{i}V^{i}X$, and in infinitely dilute solutions ${}^{i}\varphi = 1$, so

$$RT \ln i f_x^{\infty} = i V i A = i V (\delta - i \delta)^2$$
 (16)

A more general expression for the limiting infinite dilution activity coefficient of component j with molar volume ${}^{j}V$ in a multicomponent mixture is

$$RT \ln i f_x^{\infty} = i V (\delta - \overline{\delta})^2$$
 (17)

where δ is the volume fraction average Hildebrand parameter (Equation 41). If the *i* and *j* molecules differ appreciably in size, inclusion of the Flory-Huggins size effect term is necessary (Section 13.2). This involves replacing $-R \ln ix$ in the entropy of mixing with

$$-R \left[\ln ^{i} \phi + ^{j} \phi (1 - ^{j} V / ^{j} V) \right]$$

and leads to

$$RT \ln {}^{i}f_{x} = {}^{i}V {}^{j}\phi^{2} {}^{ij}A + RT[\ln {}^{i}\phi/x + {}^{j}\phi(1 - {}^{i}V/{}^{j}V)]$$
 (18)

or

$$\ln {}^{i}a = {}^{i}V {}^{j}\Phi^{2} {}^{ij}A/(RT) + \ln {}^{i}\Phi + {}^{j}\Phi (1 - {}^{i}V/V)$$
 (19)

For solute j,

$$RT \ln^{j} f_{x} = {}^{j}V {}^{i} \phi^{2} {}^{i}A + RT [\ln^{j} \phi / {}^{j}x + {}^{i} \phi (1 - {}^{j}V / {}^{i}V)]$$
 (20)

and for infinitely dilute solutions of j in i where $^{i}\phi = 1$ and $^{j}\phi /^{j}x = ^{j}V /^{i}V$,

$$RT \ln^{\prime} f_{x}^{\infty} = \sqrt{V} \sqrt[4]{A} + RT [\ln(\sqrt{V}/\sqrt{V}) + 1 - \sqrt{V}/\sqrt{V}]$$
(21)

OF

$$\ln {}^{j}f_{x}^{\infty} = \sqrt{V/(RT)} \, {}^{ij}A + {}^{ij}d \qquad (21a)$$

where the Flory-Huggins combinatorial size effect term is

$${}^{ij}d = \ln({}^{i}V/{}^{i}V) + 1 - {}^{j}V/{}^{i}V$$
 (21b)

The upper critical solution temperature, UCST, (Section 2.7) for an i-j mixture can be found from the Gibbs free energy of mixing (excess term plus ideal term: see Section 2.6),

$$\Delta_{m}G = {}^{E}\Delta_{m}G + {}^{I}\Delta_{m}G = RT\left(ix \ln ix if_{x} + ix \ln ix if_{x}\right)$$
(22)

Insertion of the Hildebrand-Scatchard expression for a binary mixture gives

$$\Delta_{\rm m} G/(RT) = (ix iV + ix iV) ijA i\phi i\phi + ix \ln ix + ix \ln ix$$
 (23)

$$\Delta_{\rm m} G/(RT) = [{}^{i}x {}^{j}x {}^{i}V {}^{j}V ({}^{i}\delta - {}^{i}\delta)^{2}]/({}^{i}x {}^{i}V + {}^{j}x {}^{j}V) + {}^{i}x \ln{}^{i}x + {}^{j}x \ln{}^{j}x$$
(23a)

The second and third derivatives of the Gibbs free energy of mixing with respect to mole fraction are set equal to zero, corresponding to the situation illustrated in Figure 5b, Chapter 2, and the simultaneous solution yields

$$\dot{x} = [iV - (iV^2 + iV^2 - iV)V]/(iV - iV)$$
(24)

$$T_{cs} = 2^{i}x^{j}x^{i}V^{2}^{j}V^{2}^{ij}A/[R(^{i}x^{i}V + ^{j}x^{j}V)^{3}]$$
 (24)

or

$$T_{cs} = 2^{i}x^{j}x^{i}V^{2}V^{2} (i\delta - i\delta)^{2}/[R(ix^{i}V + jx^{j}V)^{3}]$$
 (25a)

If the molar volumes are close in value, V = V, and

$$T_{cs} = V({}^{i}\delta - {}^{j}\delta)^{2}/(2R)$$
 (26)

The relationships between T_{cs} and δ for hydrocarbons and film-forming materials have been explored by Mandik³⁸. The rest of the liquid (1)-liquid (2) phase boundary can also be determined, with the equations

$$RT \ln({}^{i}x_{1}/{}^{i}x_{2}) = {}^{j}V ({}^{j}\varphi_{2} {}^{2} - {}^{j}\varphi_{1}^{2})({}^{i}\delta - {}^{j}\delta)^{2}$$
(27)

$$RT \ln({}^{j}x_{1}{}^{j}x_{2}) = {}^{i}V ({}^{i}\varphi_{2}{}^{2} - {}^{i}\varphi_{1}^{2})({}^{i}\delta - {}^{j}\delta)^{2}$$
 (27a)

or by means of the corresponding equations with ${}^{ij}A$ replacing $({}^{ij}\delta - {}^{i}\delta)^2$. The experimental UCST may be used to evaluate ${}^{ij}A$, which is then used to generate the whole phase boundary curve. In partially miscible systems, dispersion forces usually dominate over polar and specific effects, and the regular solution model is usually a good approximation.

If Flory-Huggins entropy is substituted for ideal mixing entropy, the corresponding expression for the critical solution temperature is

xture can be Section 2.6),

ect to mole 5b, Chapter

nave been n also be

(27)

rimental oundary olar and

ponding

$$T_{cs} = 2^{ij}A^{i}V^{j}V/(^{i}V^{1/2} + ^{j}V^{1/2})^{2}$$

or

$$T_{cs} = 2 (^{i}\delta - ^{j}\delta)^{2} {^{i}V} {^{j}V} / (^{i}V^{1/2} + ^{j}V^{1/2})^{2}$$
(28)

For the situation of the limiting miscibility of component j (such as water) in component i (such as a low permittivity organic liquid), where the high-j (organic) solution can be considered to be in equilibrium with pure i (water), it is possible to derive an expression for the solubility of j in i (water in the organic phase). If $f_x = f_x$, Equation 21 can be written in terms of the mole fraction solubility of j in i, f_x (solubility of water in the organic phase):

$$-RT \ln {}^{j}x_{s} = {}^{j}V {}^{ij}A + RT(\ln {}^{j}V | {}^{i}V + 1 - {}^{j}V | {}^{i}V)$$
 (29)

If ${}^{j}V \approx {}^{t}V$,

$$-RT \ln {}^{j}x_{s} = {}^{j}V {}^{ij}A \tag{29a}$$

The interchange cohesive pressure "A may be expanded, (Equation 13),

$$^{ij}A = ^{j}\delta^{2} + ^{i}\delta^{2} - 2^{ij}c$$

and the value of ^{ij}c can be used as a measure of the degree of interaction or liquid-liquid (water-organic, for example) complexing. ³⁹ Equation 29a further simplifies with the geometric mean approximation to

$$-RT \ln {}^{j}x_{s} = {}^{j}V({}^{i}\delta - {}^{i}\delta)^{2}$$
(30)

$$-RT \ln {}^{i}x_{s} = {}^{i}V ({}^{i}\delta - {}^{j}\delta)^{2}$$
(30a)

as used in early studies.40

4.3 LIMITATIONS OF THE HILDEBRAND-SCATCHARD EQUATION

It should be noted that the Hildebrand-Scatchard equation provides an expression in terms of the constant volume internal energy of mixing, not the constant pressure enthalpy of mixing which is the quantity usually measured in experimental determinations. Although these are identical if there is no volume change on mixing, the effect of volume changes, which are particularly significant at high temperatures, is to produce a disparity between $\Delta_m U_v$ and $\Delta_m H_p$ which is typically of the same order of magnitude as $\Delta_m U_v$.

In the opinion of the author, the Hildebrand-Scatchard expression and the equations derived from it are best considered as relatively simple semi-empirical equations that have sufficient theoretical foundation on a molecular level to work reasonably well, so no formal derivation is provided here. Accounts emphasizing physical significance and making comparisons with other liquid theories have been published. 43-48 Several modifications incoporate polar and association effects (Chapter 5).

It is instructive to summarize the assumptions made in the original derivation as they highlight the strengths and weaknesses of the resulting equation:

- 1. It is assumed that the interaction forces act between the centers of the molecules.
- 2. It is assumed that the interactions are *additive*: the interaction between a pair of molecules is not influenced by the presence of other molecules.

- 3. It is assumed that the mixing is random, with neither i-j, j-j, nor i-j nearest neighbor situations being favored, and the distribution is temperature independent.
- 4. The constant pressure change of volume on mixing is assumed zero with the numbers of nearest neighbors of a molecule in the mixture and in the pure state being considered to be the same.
- 5. The geometric mean approximation, Equation 12, already has been discussed.

These assumptions are not, of course, generally valid, but they produce an equation which has proven valuable both in its own right and as a starting point for other empirical expressions.

Entropy factors are not taken into account in regular solution theory, but when cohesion parameters are used to define the limits of solubility (which corresponds to $\Delta_m G_p$ in Equation 22, Chapter 2, being equal to zero), it follows that $\Delta_m H_p = T \Delta_m S_p$, and entropy is an inherent part of the resulting prediction.⁴⁹ In order to establish phase conditions, Gibbs free energies or chemical potentials must be evaluated. Lee⁴⁵ has developed "irregular solution theory" by incorporating "hard convex body" entropic effects, and has carried out numerical calculations for binary mixtures (Section 7.6).

As well as the theoretical shortcomings, there is a computational problem with cohesion parameters due to the lack of accurate data. Bagley and Scigliano⁴² have demonstrated this in the case of a mixture of two typical organic liquids, both with $V=100~{\rm cm}^3~{\rm mol}^{-1}$, but with ΔU values of 3.3 and 3.8 mol ⁻¹. If the ΔU value used for the first component is only 5% too high, the correct $\Delta_m U_v$ would be 100% higher. Variations of several percent in reported values of vaporization energies are not unusual, even for common solvents. Another assumption implicit in the Hildebrand-Scatchard equation is that the quantity $(-UV)^{1/2}$ is additive. Not only does this quantity appear to be additive in many systems on a solute-solvent basis, but also to a considerable extent for atoms or groups of atoms within molecules. These additive constants, named group molar attraction constants (Section 6.4), are of considerable value in the estimation of cohesion parameters.

An interesting extension of the Hildebrand-Scatchard equations assumes that the intermolecular forces between polyatomic molecules are not of a central type but peripheral in nature, so it is possible to refer the intermolecular potential energy or cohesion energy to the surface of the molecules and to derive a "surface" modification of the Hildebrand-Scatchard equation. Although it has been claimed that this method is more widely applicable than the original, correlations have not been studied extensively so far.

4.4 MIXED LIQUIDS AND MULTICOMPONENT SYSTEMS

Practical good solvents may be blends of poor solvents or even of nonsolvents, 92 and it is therefore important to be able to evaluate the effective cohesion parameters of liquid mixtures. Although other factors such as viscosity, volatility, and cost must also be considered in solvent formulation, the effective cohesion parameters are particularly valuable.

For ternary systems, an example of the simplest Hildebrand parameter approach is the prediction that for three phases to coexist

$$|\delta - \delta| / MPa^{1/2} \le 5 \le |\delta - \delta| / MPa^{1/2}$$

as observed for diamyl ether-acetonitrile-glycerol. ⁵³ In a few cases, vaporization enthalpies (1,4-dioxane-water, ⁵⁴ hexane-cyclohexanone ⁵⁵) or condensation enthalpies (trichloromethane-acetone, trichloromethane-ether ⁵⁶) of binary mixtures have been determined experimentally, but usually it is necessary to evaluate cohesion parameters from the properties of the pure components. Mixed solvents are commonly encountered in polymer systems (Section

i-j nearest
 dependent.
 the numbers
 g considered

ussed.

nation which rical expres-

ien cohesion in Equation itropy is an , Gibbs free tlar solution it numerical

th cohesion istrated this mol⁻¹, but ient is only percent in ts. Another – UV^{1/2} is n a solute-molecules. 4), are of

es that the peripheral ion energy ildebrandapplicable

MS

nts, 92 and of liquid onsidered 3. ach is the

nthalpies hloromed experiperties of (Section 16.6), and in this connection Table 9 of Chapter 8 contains Hildebrand parameters of various liquid mixtures. Binary liquids are also of pharmaceutical importance, and cohesion parameters have been used extensively for this purpose by Martin and co-workers. 57-62 (See also Sections 5.7 and 12.2.)

On the basis of the assumptions made in the derivation of cohesion parameter expressions, 29 the effective Hildebrand parameter δ of a binary liquid mixture is

$$\overline{\delta} = (i \phi i \delta + i \phi j \delta)/(i \phi + i \phi)$$
(31)

where ϕ is the volume fraction (Equation 8), predicting that the effective Hildebrand parameter of a mixture is volume-wise proportional to the Hildebrand parameters of its components. When the value of the Hildebrand parameter $^k\delta$ of solute k in the mixed solvent lies between the Hildebrand parameters $^i\delta$ and $^i\delta$ of the two component liquids, the solute should be completely miscible when the ratio $^i\phi/\!\!/\phi$ is adjusted so that $^k\delta=\overline{\delta}$, even if liquids i and j individually are nonsolvents for k.

By definition, the volume fractions must total unity,

i
 $\phi + ^{j}\phi + ^{k}\phi = 1$

so if $^k \varphi$ is small,

and

$$\overline{\delta} = {}^{i} \varphi {}^{i} \delta + {}^{j} \varphi {}^{j} \delta \tag{32}$$

As a special case, if ${}^{i}V \approx {}^{j}V$,

$$\overline{\delta} \approx {}^{i}x {}^{i}\delta + {}^{j}x {}^{j}\delta \tag{32a}$$

The more general expression for the effective Hildebrand parameter is

$$\overline{\delta} = \sum_{i} {}^{i} \varphi {}^{i} \delta / \sum_{i} {}^{i} \varphi \tag{32b}$$

It is of interest that the critical solution temperatures have been shown (for the hydrocarbon-aniline systems) also to be additive on a volume fraction basis:⁶²

$$\overline{T}_{cs} = \sum_{i} {}^{i}T_{cs} {}^{i}\phi$$

Equation 32 has been found to give excellent results in predicting the properties of C_4 and C_5 hydrocarbon vapor-liquid systems (Section 11.5) and the solubilities of gases in mixtures of benzene and 1,1,2-trichloro-1,2,2-trifluoroethane (Freon 113) (Section 11.2), but this equation is not always quantitatively accurate.⁶³ It is certainly true in general terms that the addition of a nonsolvent may improve the solubility of a solute in a solvent, and even that a solute may be soluble in a mixture of two or more nonsolvents. An example of this "cosolvency"⁶⁴ is diethyl ether ($\delta = 15.1 \text{ MPa}^{1/2}$) and ethanol ($\delta = 26.0 \text{ MPa}^{1/2}$) as a solvent mixture for cellulose nitrate ($\delta = 23 \text{ MPa}^{1/2}$). However, frequently when the solute solubility (kx_k) is plotted against δ (a curve which by regular solution theory should be a parabola, as indicated in Section 12.1), asymmetrical curves are observed, with the maximum value of kx_k not appearing at ${}^k\delta$ and the maximum being lower than ideal. For example, the solubility of 2-nitro-5-methylphenol (${}^k\delta = 21.9 \text{ MPa}^{1/2}$) is shown in Figure 1 for two binary liquid systems, cyclohexane-diiodomethane and ethanol-hexane. Also, it is possible for the "solvent power" of a mixture to be less than that of its components, a phenomenon which has been called "cononsolvency".⁶⁵

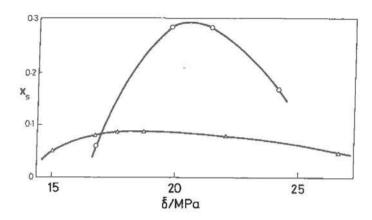


FIGURE 1. Variation in the solubility of 2-nitro-5-methylphenol as a function of the effective Hildebrand parameter of the binary solvent mixtures cyclohexane-diiodomethane (O) and ethanol-hexane (Δ) at 25°C. (Adapted from Buchowski, H., Domanska, U., and Ksiazczak, A., Pol. J. Chem., 53, 1127, 1979.)

The relations between Hamaker constants, originally developed in a microscopic model for adhesion 66,67 for bodies of materials i and j embedded in medium k are of interest in connection with this, showing on the basis of the geometric mean rule that the interaction of two different materials with a third medium in which they are immersed can be stronger than the interaction between the materials themselves, so spontaneous separation can occur as a result of dispersion forces only.

Purkayastha and Walkley⁶⁸ attempted to improve on Equation 32 by defining an effective volume fraction, ϕ^* , which reflects the preferential "solvation" by one of the liquid components:

$$\overline{\delta} = {}^{i}\delta {}^{i}\phi * + {}^{j}\delta {}^{j}\phi * \tag{33}$$

In those cases where ko is small, then

$$^{i}\varphi^{*} + ^{j}\varphi^{*} = 1 \tag{33a}$$

and the effective volume fractions are related to the true volume fractions ϕ by

$${}^{i}\varphi^{*}/{}^{j}\varphi^{*} = [{}^{i}\varphi({}^{k}\delta - {}^{j}\delta)^{2}]/[{}^{j}\varphi({}^{k}\delta - {}^{i}\delta)^{2}]$$
(34)

In other words, the effective volume fractions are themselves related to the bulk volume fractions in terms of the Hildebrand parameters, in such a way that they are inversely proportional to the ratios of the enthalpies of mixing of the solute k in each of the pure solvents i and j. An alternative equation based on Christian's⁶⁹ idea of a Boltzmann factor in the enthalpy of complex formation was proposed by Nakanishi and Asakura⁷⁰ for iodine in mixed liquids. Other approaches to the problem of complex formation in solution are discussed in section 7.9.

More generally, for a multicomponent mixture²⁹ the excess Gibbs free energy of mixing is

$${}^{E}\Delta_{m}G = (\Sigma_{i} {}^{i}x {}^{i}V)({}^{1}/_{2} \Sigma_{i} \Sigma_{j} {}^{ij}A {}^{i}\phi) + RT \Sigma_{i} {}^{i}x \ln ({}^{i}\phi/{}^{i}x)$$

$$(35)$$

where ${}^{ij}A = {}^{ji}A$ and ${}^{ii}A = {}^{ij}A = 0$. The second term is the Flory-Huggins correction for size effect (Section 13.2), but if ${}^{i}x = {}^{i}\phi$ for every component, that is if

$$^{\prime}V = ^{\prime}V = ^{\prime}V$$
 . . .

then

$${}^{\mathrm{E}}\Delta_{\mathrm{m}}G = (\Sigma_{i}{}^{i}x{}^{i}V)({}^{1}/_{2}\Sigma_{i}\Sigma_{j}{}^{ij}A{}^{i}\varphi{}^{j}\varphi)$$
(36)

The activity coefficient of component n is obtained from the partial derivative (constant T, p, and n for $i \neq k$)

$$RT \ln({}^{k}a/{}^{k}x) = RT \ln {}^{k}f_{x} = [(\partial {}^{l}n {}^{E}\Delta_{m}G)/\partial {}^{k}n]$$
(37)

where in is the amount of substance i and in is the total amount of substance. This can be shown to be

$$RT \ln {}^{k}f_{x} = {}^{k}V \sum_{i} \sum_{j} ({}^{ik}A - {}^{1}/{}_{2} {}^{ij}A) {}^{i}\phi {}^{j}\phi + RT [\ln ({}^{k}\phi/{}^{k}x) + 1 - {}^{k}\phi/{}^{k}x]$$
(38)

Only if $x = \phi$ for all i does this equation reduce to

$$RT \ln {}^{k}f_{x} = {}^{k}V \sum_{i} \sum_{j} ({}^{ik}A - {}^{i}/_{2} {}^{ij}A) {}^{i}\varphi {}^{j}\varphi$$
(39)

and with Equation 13,

$$RT \ln {}^kf_x = {}^kV ({}^k\delta - \overline{\delta})^2$$
 (40)

where the effective Hildebrand parameter of the mixture is

$$\overline{\delta} = \sum_{i} {}^{i} \phi {}^{i} \delta \tag{41}$$

the summation extending over all components, including the solute k when the volume fraction $^k \varphi$ is appreciable.

There has been considerable discussion on the prediction of optimum solvent mixtures for polymers (Section 16.6), and Hansen parameters have proven very convenient for representation as three-dimensional vectors (Section 14.5). The vector representation was introduced by Froehling, Koenhen, Bantjes, and Smolders;⁷¹ this was improved by Rigbi⁷² and by Froehling and Hillegers.⁷³ Behnken⁷⁴ extended the analysis to the problem of finding the best solvent mixtures with any number of components by means of readily available multiple regression programs. The only requirement is that the program should permit fitting the general equation

$$y = b_1 x_1 + b_2 x_2 + \ldots = b_k x_k$$
 (42)

without a leading constant term, and the input variables needed for the computer can be calculated by hand from the Hansen parameters of the polymer and liquid components.

Equations incorporating experimentally determined composition dependence of vaporization enthalpy may be used⁷⁵ for calculating the Hildebrand parameter of binary liquid mixtures in an extension of the methods described in Section 7.2.

4.5 SOLVENT SPECTRA

A list of liquids may be compiled with gradually increasing Hildebrand parameter values

copic model f interest in interaction be stronger n can occur

an effective liquid com-

(33)

(33a)

(34)

k volume inversely the pure nn factor or iodine ution are

f mixing

(35)

tion for

TABLE 1 Liquids for Hildebrand Parameter Spectra, Divided According to HydrogenBonding Capability

Liquids with Poor Hydrogen-Bonding Capability

14.3
15.1
16.0
17.4
18.2
19.4
20.5
21.7
22.7
24.1
26.0

Liquids with Moderate Hydrogen-Bonding Capability

Diethyl ether	15.1
Diisobutyl ketone	16.0
Butyl acetate	17.4
Methyl propionate	18.2
Dibutyl phthalate	19.0
1,4-Dioxane	20.3
Dimethyl phthalate	21.9
2,3-Butylene carbonate	24.8
Propylene carbonate	27.2
Ethylene carbonate	30.1

Liquids with Strong Hydrogen-Bonding Capability

2-Ethylhexanol	19.4
Methyl isobutyl carbinol, 1,2-dimethyl- propanol	20.5
2-Ethylbutanol	21.5
1-Pentanol	22.3
1-Butanol	23.3
1-Propanol	24.3
Ethanol	26.0
Methanol	29.7

Adapted from Burrell, H., Polymer Handbook, Brandrup, J. and Immergut, E. H., Eds., John Wiley & Sons, New York, 1966, IV—341 and 1975, IV—337.

to form a "solvent spectrum" its most common form (Table 1), it includes subdivision into categories of hydrogen-bonding ability. The Hildebrand parameter of a solute is taken as the midpoint of the range of liquid Hildebrand parameters which provides complete miscibility. "Fine control" over liquid Hildebrand parameter values can be provided using mixtures of liquids, the effective Hildebrand parameter of a mixture being calculated by Equation 31, or to some extent by changing the temperature. The ASTM D3121 test method for polymer solubility ranges (Table 9, Chapter 8) uses liquid mixtures to provide a spectrum of closely spaced Hildebrand parameters. For polymers (section 14.3), either the dissolution behavior of a polymer of the swelling of a slightly cross-linked analog of the polymer of

TABLE 2 Hildebrand Parameters and Molar Volumes for Cholesterol and Triglycerides

		6/MPa ^{1/2}	V/cm³ mol-1
Cholesterol		20.7	362
Triglyceride	C24:0	20.4	476
	C30:0	20.0	572
	C36.0	19.4	669
	C42:0	18.9	765
	C48:0	18.6	862
	C54:0	17.9	959
	C54:3	18.5	943
	C54:6	19.1	927

Adapted from Arul, J., Boudreau, A., Makhlouf, J., Tardif, R., and Gressier, B., J. Dairy Res., 55, 361, 1988.

interest in a series of liquids may be studied, the polymer being assigned the δ value of the liquid providing the greatest solubility or the maximum swelling coefficient. This method may also be applied to high-molecular-weight mineral oils, dyes and similar compounds, from maxima in solubilities determined in liquids with various Hildebrand parameters. Thus, for the study of the distribution of cholesterol between the liquid fractions of milk fat, ⁸⁷ Hildebrand parameters were determined by solvent spectrum and molar volumes by group contribution (Table 2). Other physical properties that can be studied include viscosity and related characteristic quantities such as grease dropping point (Section 14.7). In the case of solids (Section 12.1), the solute mole fraction solubility can be plotted against the solvent Hildebrand parameter to provide the solute δ value at the peak of the curve.

4.6 WILSON EQUATION

Both the Hildebrand-Scatchard model for molecules of similar size and the Flory-Huggins model for very dissimilar molecules (Section 13.2) assume zero enthalpy of mixing: athermal solutions.

Wilson^{9,46,84} consider the situation where components differ in intermolecular forces as well as molecular size; that is, where there are non-zero enthalpies of mixing. It was assumed that the Gibbs free energy change on mixing was given by a relation similar to the athermal Flory-Huggins equation, expressed in terms of "local" volume fractions ξ , and that probabilities of molecules occurring in each others' vicinities were given by Boltzmann factors, including interaction energies (${}^{y}g - {}^{u}g$) and (${}^{y}g - {}^{u}g$).

For polymers, a similar equation using local volume fractions and interaction energy differences has been developed by Heil and Prausnitz^{85,86} (Section 13.8).

REFERENCES

- Hildebrand, J. H. and Carter, J. M., A study of van der Waals forces between tetrahalide molecules, J. Am. Chem. Soc., 54, 3592, 1932.
- Scatchard, G., Wood, S. E., and Mochel, J. M., Vapor-liquid equilibrium, V. Carbon tetrachloridebenzene mixtures, J. Am. Chem. Soc., 62, 712, 1940.
- Staveley, L. A. K., Tupman, W. I., and Hart, K. R., Some thermodynamic properties of the systems benzene + ethylene chloride, benzene + carbon tetrachloride, acetone + chloroform and acetone + carbon disulfide, Trans. Faraday Soc., 51, 323, 1955.

- 4. Reed, T. M., III, The theoretical energies of mixing for fluorocarbon-hydrocarbon mixtures, J. Phys. Chem., 59, 425, 1955; The polarizabilities of molecules in liquid mixtures, J. Phys. Chem., 63, 1798,
- 5. Sonnich Thomsen, E., The Energy of Mixing of Non-Polar Liquids. Reflections upon the Hildebrand Theory, Thesis, Royal Danish School of Pharmacy, Copenhagen, 1965.
- 6. Sonnich Thomsen, E., The energy of mixing of non-polar liquids. Reflections upon the theories of Prigogine and Hildebrand, Dansk Kemi, 47(3), 35, 1966.
- 7. Sonnich Thomsen, E., Solubility Parameters, Farmaceuten, 29(3), 44, 1966; Present state of the solubility parameter theory, Mitt. Chem. Gesell, DDR, 16, 150, 1969.
- 8. Sonich Thomsen, E., Interaction between unlike nonpolar molecules: correction of the geometric mean rule. 1. Basic derivations. 2. Dilute systems. 3. Energies of mixing, Acta Chem. Scand., 25, 260, 1971; 25, 265, 1971; 26, 2100, 1972.
- 9. Acree, W. E., Jr., Thermodynamic Properties of Nonelectrolyte Solutions, Academic Press, Orlando, FL,
- 10. van der Waals, J. D., Z. Phys. Chem., 5, 133, 1890.

66

- 11. van Laar, J. J., Sechs Vortrage uber das Thermodynamische Potential, F. Vieweg, Braunschweig, 1906.
- 12. van Laar, J. J., The vapor pressure of binary mixtures, Z. Phys. Chem., 72, 723, 1910; Theory of vapor pressure of binary mixtures, Z. Phys. Chem., 83, 599, 1913; Relation between the deviation of the vapor pressure of binary mixtures of normal compounds from the straight line, and the heat of mixing, Z. Phys. Chem., A. 137, 421, 1928.
- 13. Scatchard, G., Equilibria in non-electrolyte solutions in relation to the vapor pressures and densities of the components, Chem. Rev., 8, 321, 1931.
- 14. Scatchard, G., Equilibrium in nonelectrolyte mixtures, Chem. Rev., 44, 7, 1949.
- 15. Hildebrand, J. H., Solubility, J. Am. Chem. Soc., 38, 1452, 1916.
- 16. Hildebrand, J. H., Solubility. III. Relative values of internal pressures and their practical application, J. Am. Chem. Soc., 41, 1067, 1919.
- 17. Hildebrand, J. H., Compressibilities and thermal pressure coefficients of certain liquids, Phys. Rev., 34, 649, 1929
- 18. Hildebrand, J. H., Solubility. XII. Regular solutions, J. Am. Chem. Soc., 51, 66, 1929.
- 19. Hildebrand, J. H., Solubility of Non-Electrolytes, 2nd ed., Reinhold, New York, 1936; Russian translation, GONTI, Moscow-Leningrad, 1938.
- 20. Hildebrand, J. H., A critique of the theory of solubility of non-electrolytes, Chem. Rev., 44, 37, 1949.
- 21. Hildebrand, J. H., The term 'regular solution', Nature (London), 168, 868, 1951.
- 22. Hildebrand, J. H., A simple correlation of gas solubilities, J. Phys. Chem., 58, 671, 1954.
- 23. Hildebrand, J. H., Order from chaos, Science, 150, 441, 1965.
- 24. Hildebrand, J. H., Operation on swollen theories with Occam's razor, in Structure-Solubility Relationships in Polymers (Proc. Symp., 1976), Harris, F. W. and Seymour, R. W., Eds., Academic Press, New York,
- 25. Hildebrand, J. H., Absence of outer non-bonding electrons in methyl groups affects solubility parameters, Ind. Eng. Chem. Fundam., 17, 365, 1978.
- 26. Hildebrand, J. H., An improvement in the theory of regular solutions, Proc. Natl. Acad. Sci. U.S.A., 76, 6040, 1979.
- 27. Hildebrand, J. H. and Dymond, J. H., Effect of methyl groups upon the solvent power of aliphatic liquids, Proc. Natl. Acad. Sci. U.S.A., 54, 1001, 1965.
- 28. Hildebrand, J. H. and Lamoreaux, R. H., Solubility of gases in liquids; fact and theory, Ind. Eng. Chem. Fundam., 13, 110, 1974.
- 29. Hildebrand, J. H., Prausnitz, J. M., and Scott, R. L., Regular and Related Solutions, van Nostrand-Reinhold, Princeton, NJ, 1970.
- 30. Hildebrand, J. H. and Scott, R. L., Solubility of Non-Electrolytes, 3rd ed., Reinhold, New York, 1950; Dover, New York, 1964.
- 31. Hildebrand, J. H. and Scott, R. L., Regular Solutions, Prentice-Hall, Englewood Cliffs, NJ, 1962.
- 32. Scott, R. L., Thesis, Princeton, 1945.
- 33. Scott, R. L., The solubility of fluorocarbons, J. Am. Chem. Soc., 70, 4090, 1948.
- 34. Scott, R. L., Theoretical models and real solutions, Disc. Faraday Soc., 15, 44, 1953.
- 35. Staverman, A. J., Cohesion forces and phase theory of binary liquid systems, Rec. Trav. Chim. Pays-Bas, 60, 827, 1941.
- 36. Edelmann, E., The cohesion factor concept and the solubility of macromolecular substances, FATIPEC (Fed. Assoc. Tech. Ind. Peint. Vernis, Emaux Encres Impr. Eur. Cont.) Congr., 7, 160, 1964.
- 37. Harris, H. G. and Prausnitz, J. M., Thermodynamics of solutions with physical and chemical interactions, Ind. Eng. Chem. Fundam., 8, 180, 1969.
- 38. Mandik, L., Dissolving capacity of hydrocarbon solvents for film forming substances. Critical solution point and solubility parameter, Chem. Prum., 16, 545, 1966.

nixtures, J. Phys. Them., 63, 1798,

z the Hildebrand

ories of Prigogine

of the solubility

geometric mean, 25, 260, 1971;

38, Orlando, FL.

ischweig, 1906. Theory of vapor ion of the vapor tixing, Z. Phys.

and densities of

application, J.

2hys. Rev., 34,

ian translation,

44, 37, 1949.

4...

Relationships

ty parameters,

Sci. U.S.A.,

r of aliphatic

y, Ind. Eng.

an Nostrand-

York, 1950;

IJ, 1962.

Chim. Pays-

s, FATIPEC 4.

interactions,

cal solution

- 39. Kirchnerova, J. and Cave, G. C. B., The solubility of water in low-dielectric systems. Can. J. Chem., 54, 3909, 1976.
- Black, C., Joris, G. G., and Taylor, H. S., The solubility of water in hydrocarbons, J. Chem. Phys., 16, 537, 1948.
- 41. Battino, R., Volume changes on mixing for binary mixtures of liquids, Chem. Rev., 71, 5, 1971.
- Bagley, E. B. and Scigliano, J. M., Polymer solutions, in Solutions and Solubilities, Part II, Dack, M. R. J., Ed., John Wiley & Sons-Interscience, New York, 1976, Chap. 16.
- Ashton, N. F., McDermott, C., and Brench, A., Chemistry of extraction of nonreacting solutes, in Handbook of Solvent Extraction, Lo., T. C., Baird, M. H. I., and Hanson, C., Eds., John Wiley & Sons-Interscience, New York, 1983, chap. 1, 3.
- 44. Kaelble, D. H., Physical Chemistry of Adhesion, John Wiley & Sons-Interscience, New York, 1971.
- Lee, L. L., A molecular theory of solubility parameters: generalization to polar fluid mixtures, Fluid Phase Equil., 35, 77, 1987.
- Prausnitz, J. M., Molecular Thermodynamics of Fluid Phase Equilibria, Prentice-Hall, Englewood Cliffs, NJ, 1969.
- Prausnitz, J. M., Lichtenthaler, R. N., and Gomez de Azevedo, E., Molecular Thermodynamics of Fluid Phase Equilibria, 2nd ed., Prentice-Hall, Englewood Cliffs, NJ, 1986.
- Brandts-Buys, L. and Huyskens, P., Limitations of the concept of 'solubility parameter', FATIPEC (Fed. Assoc. Tech Ind. Peint. Vernis, Emauz Encres Impr. Eur. Cont.) Congr., 16 (Liege), 191, 1982.
- 49. Hansen, C. M., Characterization of surfaces by spreading liquids, J. Paint Technol., 42, 660, 1970.
- Drahos, J., Liquid-vapor equilibrium. LXXVII. Comparison of the volume and surface modifications of the regular solution model, Collect. Czech. Chem. Commun., 43, 805, 1978.
- Drahos, J., Wichterle, I., and Hala, E., A generalized method for calculation and prediction of vaporliquid equilibria at high pressures, Fluid Phase Equil., 1, 1973, 1977/78.
- Erdös, E., Liquid-vapor equilibriums. XV. Calculation of the constants in the van Laar equation from the properties of the pure components, Collect. Czech. Chem. Commun., 21, 1528, 1956.
- Sazonov, V. P. and Gudkina, L. V., Liquid-phase equilibria between the components of the ternary system diamyl ether-acetonitrile-glycerol, Zh. Prik. Khim., 47, 2515, 1974; J. Appl. Chem. U.S.S.R., 47, 2587, 1974.
- Stallard, R. D. and Amis, E. S., Heat of vaporization and other properties of dioxane, water and their mixtures, J. Am. Chem. Soc., 74, 1781, 1952.
- Iscan, M., The solubility of aniline in the mixture of n-hexane + cyclohexane, Istanbul Univ. Fen. Fak. Mecm. Ser.C., 39, 195, 1974—1976 (pub. 1977).
- Lui, P. C. K. and Donnelly, H. G., Determination of liquid-mixture solubility parameters and interaction energy densities, Am. Inst. Chem. Eng. J., 19, 574, 1973.
- Martin, A., Paruta, A. N., and Adjei, A., Extended Hildebrand solubility approach: methylxanthines in mixed solvents, J. Pharm. Sci., 70, 1115, 1981.
- Martin, A. and Miralles, M. J., Extended Hildebrand solubility approach: solubility of tolbutamide, acetohexamide, and sulfisomidine in binary solvent mixtures, J. Pharm. Sci., 71, 439, 1982.
- Martin, A., Wu, P. L., Adjei, A., Lindstrom, R. E., and Elworthy, P. H., Extended Hildebrand solubility approach and the log linear solubility equation, J. Pharm. Sci., 71, 849, 1982.
- Martin, A., Wu, P. L., Adjei, A., Mehdlzadeh, M., James, K. C., and Metzler, C., Extended Hildebrand solubility approach: testosterone and testosterone propionate in binary solvents, J. Pharm. Sci., 71, 1334, 1982.
- Wu, P. L. and Martin, A., Extended Hildebrand solubility approach: p-hydroxybenzoic acid in mixtures of dioxane and water, J. Pharm. Sci., 71, 849, 1982.
- Mandik, L., Additivity of the critical solution temperatures of hydrocarbons with aniline, Collect. Czech. Chem. Commun., 31, 3869, 1966.
- Purkayastha, A. and Walkley, J., Studies in solubility parameter theory for mixed solvent systems, Can. J. Chem., 50, 834, 1972.
- 64. Burrell, H., Solubility parameters, Interchem. Rev., 14, 3-16 and 31-46, 1955.
- Wolf, B. A. and Willms, M. M., Measured and calculated solubility of polymers in mixed solvents: cononsolvency, Makromol. Chem., 179, 2265, 1978.
- Hamaker, H. C., The London-van der Waals attraction between spherical particles, Physica (Utrecht), 4, 1058, 1937.
- Visser, J., Colloid and other forces in particle adhesion and particle renewal (a review), in Deposition and Filtration of Particles from Gases and Liquids, Society of Chemical Industry, London, 1978.
- Purkayastha, A., Studies in Regular Solution Theory, Thesis, Simon Fraser University, British Columbia, 1971; Diss. Abstr. Int. B, 32, 1406, 1971.
- Christian, S. D., Solvent effects on molecular complex formation. Pyridine-iodine system, J. Am. Chem. Soc., 91, 6514, 1969.

- 70. Nakanishi, K. and Asakura, S., Solubility of iodine in mixed solvents. A case study of preferential solvation in non-polar and associated solutions, J. Phys. Chem., 81, 1745, 1977.
- 71. Froehling, P. E., Koenhen, D. M., Bantjes, A., and Smolders, C. A., Swelling of linear polymers in mixed swelling agents; predictability by means of solubility parameters, Polymer, 17, 835, 1976.
- 72. Rigbi, Z., Prediction of swelling of polymers in 2 and 3 component mixtures, Polymer, 19, 1229, 1978.
- 73. Froehling, P. E. and Hillegers, L. T., Solubility parameters of ternary solvent mixtures. Calculation of the solvent composition with maximum polymer interaction, Polymer, 22, 261, 1981.
- 74. Behnken, D. W., Calculation of optimum multicomponent solvent compositions for polymers using a multiple regression program, Polymer, 24, 193, 1983.
- 75. Mizerovskii, L. N. and Belova, O. V., Calculation of the solubility parameter of binary mixtures of liquids and copolymers, Vysakomol. Soedin. Ser. A., 29, 1236, 1987; Polym. Sci. U.S.S.R., 29, 1987.
- 76. Burrell, H., Solubility parameters for film formers, Off. Dig. Fed. Paint Varn. Prod. Clubs, 27, 726,
- 77. Lazurin, E. A., Samorodov, V. T., and Kosmodemyanskli, L. V., Determination of solubility parameters of mineral oils, Promst. Sint. Kauch. No.8, 10, 1980; Int. Polym. Sci. Tech., 8(12), T12, 1981.
- 78. Piskarev, V. A. and Radushkevich, R. L., Method for determining the compatibility of bitumens with elastomers, Polim. Stroit. Mater., 42, 163, 1975.
- 79. Vasitakos, N. P. and Lawson, D. D., Solubility parameter spectroscopy in coal extraction, Liq. Fuels
- 80. Siddlqui, S. A., Studies of solvent dyeing. Part I: Preparation of disperse dyes and determination of their solubility parameters, Text. Res. J., 51, 527, 1981.
- 81. Siddiqui, S. A. and Needles, H. L., Solubility parameters, Text. Res. J., 52, 570, 1982.
- 82. Siddiqui, S. A., Determining the solubility parameter of dyes; Dye solubility by solubility method, Am. Dyest. Rep., 72(3), 30, 1983; 2(4), 36, 1983.
- 83. Burrell, H., Solubility parameter values, in Polymer Handbook, Brandrup, J. and Immergut, E. H., Eds., John Wiley & Sons-Interscience, New York, 1966, IV-341; 2nd ed., 1975, IV-337.
- 84. Wilson, G. M., Vapor-liquid equilibrium. XI. A new expression for the excess free energy of mixing, J. Am. Chem. Soc., 86, 127, 1964.
- 85. Heil, J. F., Phase Equilibria in Multi-Component Polymer Solutions, Doctoral Dissertation, University of California, Berkeley, 1965; Diss. Abstr., 26, 7196, 1966.
- 86. Heil, J. F. and Prausnitz, J. M. Phase equilibria in polymer solutions, Am. Inst. Chem. Eng. J., 12,
- 87. Arul, J., Boudreau, A., Makhlouf, J., Tardif, R., and Gressier, B., Distribution of cholesterol in milk fat fractions, J. Dairy Res., 55, 361, 1988.
- 88. Tucker, S. A., Murral, D. J., Oswalt, B. M., Halmic, J. L., and Acree, W. E., Jr., Solubility of anthracene in binary toluene and alkane solvent mixtures, Phys. Chem. Liq., 18, 279, 1988.
- 89. Bissell, M., Chittick, C. E., and Acree, W. E., Jr., Solubility of anthracene in binary solvent mixtures containing tetrahydrofuran, Fluid Phase Equil., 41, 187, 1988.
- 90. McCargar, J. W. and Acree, W. E., Jr., Thermochemical investigations of associated solutions, VI. Mole fraction versus volume fraction based equilibrium constants; Solubility of carbazole in binary chloroalkane and dibutyl ether solvent mixtures, J. Solution Chem., 17, 1081, 1988 and 18, 151, 1989.
- 91. Wallach, J. R., Tucker, S. A., Oswalt, B. M., Murral, D. J., and Acree, W. G., Jr., Solubility of pyrene in binary solvent mixtures containing dibutyl ether, J. Chem. Eng. Data, 34, 70, 1989.
- 92. Durbut, P. and Broze, G., Application of the solubility parameter theory to fatty soil removal, Commun. Jorn. Cons. Esp. Deterg., 20, 383, 1989.

Chapter 5

EXPANDED COHESION PARAMETERS

So far in this development of the cohesion parameter approach to miscibility and other interaction properties, the existence of polar interactions and of specific effects such as hydrogen bonding has been neglected while the traditional Hildebrand description of regular or near-regular systems was explored.

Accommodation of interactions which do not conform to geometric mean behavior (Section 4.1) has been approached in two main ways. On the one hand empirical corrections have been made for geometric mean deviations (Section 5.7), and on the other the Hildebrand parameter has been subdivided into various component cohesion parameters. The most general formalism was introduced by Karger, Keller, Snyder, and Eon, ¹⁻⁸ who developed it for the optimization of chromatographic selectivity, although it has proved too cumbersome for widespread use so far. The most widely used method has been a three-component parameter proposed by Hansen⁹⁻³⁰ for the empirical description of polymer-liquid systems (Section 5.9). There have been several other variations developed for practical applications, the one with most promise being perhaps that of Beerbower, Martin, and Wu, ^{31,32} (Section 5.12) which provides an acceptable compromise between rigor and simplicity.

To be generally useful, theories or models attempting to systematize the behavior of matter must deal with molecular interactions by providing information about their origins and natures as well as about their strengths. The cohesive properties characteristic of the condensed states of matter are produced by the various intermolecular forces described in Chapter 3. The cohesive pressures ${}^{i}c$, ${}^{j}c$, and ${}^{ij}c$ represent the resultant effect of these forces acting between molecules of types i and j, and from Equation 10, Chapter 4, the cohesive pressure of the mixture relative to the components is

$${^{ij}}A = {^i}c + {^j}c - 2{^{ij}}c$$

where

$${}^{i}c = {}^{i}\delta^{2}$$
 and ${}^{j}c = {}^{j}\delta^{2}$

5.1 DISPERSION

Dispersion or London forces, which can be considered as arising from the fluctuating dipoles which result from a positive nucleus and a negative electron "cloud" in each atom, occur in all molecules, whether polar or not. The dispersion cohesive pressure of a pure material i is here denoted c_d , and the corresponding cohesion parameter, d_d , is defined by

$$- {}^{i}U_{d}{}^{i}V = {}^{i}C_{d} = {}^{i}\delta_{d}^{2}$$
 (1)

It can be shown on the basis of London theory that the nonpolar, dispersive interactions between unlike molecules of types i and j provide a contribution to the cohesive pressure which is approximated by the geometric mean of the individual values and is given by

$${}^{ij}c_d = ({}^{i}c_d {}^{j}c_d)^{1/2} = {}^{i}\delta_d {}^{j}\delta_d$$
 (2)

A simple interpretation of this "geometric mean" behavior is that the interaction is of a "symmetrical" nature: each member of a pair of molecules interacts by virtue of the same property, the polarizability. (The ionization potentials, which also appear in Equation 6, Chapter 3, have similar values for most organic compounds, i.e., $I \approx I$.) It follows that

$${}^{ij}A_d = {}^{i}\delta_d^2 + {}^{j}\delta_d^2 - 2 {}^{i}\delta_d {}^{j}\delta_d = ({}^{i}\delta_d - {}^{j}\delta_d)^2$$
 (3)

For nonpolar molecules, dispersion forces should make the only contributions to the cohesive pressure, so from Equation 5, Chapter 2,

$${}^{\prime}\delta_{d} = (\Delta U / {}^{\prime}V)^{1/2} \tag{4}$$

However, it is of interest that hydrocarbons possessing methyl groups show iodine solution behaviors consistent with Hildebrand parameter values significantly greater than those given by Equation 4, even though the solutions are violet in color and therefore "non-associated" (unlike the straw-colored aqueous solutions, for example). In fact, the extent of deviation from Equation 4, $[\delta - (\Delta U/V)^{1/2}]$, is proportional to the number of methyl groups in these molecules, 33,34 a fact attributed to a variation in the extent of the dispersion forces in molecules with a high proportion of saturated C-H bonding.

The dispersion cohesion parameter can be calculated by the homomorph method (Sections 6.7 and 6.8) or from the refractive index (Section 8.2). Beerbower and Jensen³⁵ have reviewed the correlation between dispersion properties and the "softness" in the Pearson "hard or soft" acid-base concept (Section 5.12).

5.2 ORIENTATION

Orientation effects that result from dipole-dipole or Keesom interactions occur between molecules which have permanent dipole moments. The orientation cohesive pressure of a pure material i is denoted c_0 , and the corresponding orientation cohesion parameter, δ_0 , is defined by

$$- {}^{i}U_{o} / {}^{i}V = {}^{i}C_{o} = {}^{i}\delta_{o}^{2}$$

$$(5)$$

Like dispersion forces, these are "symmetrical" interactions depending on the same property of each molecule, which in this case is the dipole moment as shown in Equation 4, Chapter 3. It follows that the geometric mean approximation is well obeyed for orientation interactions even between unlike molecules. For polar molecules that may be represented by spherical force fields with small ideal dipoles at their centers, this contribution to the cohesive pressure in mixtures of i and j molecules is

$${}^{ij}c_{o} = ({}^{i}c_{o}{}^{j}c_{o})^{1/2} = {}^{i}\delta_{o}{}^{j}\delta_{o}$$
 (6)

The interchange cohesive pressure due to orientation is

$${}^{ij}A_o = ({}^{i}\delta_o - {}^{j}\delta_o)^2 \tag{7}$$

Keller, Karger, and Snyder⁵ and Munafo, Buchmann, Hô Nam-Tran and Kesselring³⁷ are among those to have discussed the evaluation of orientation and induction components from dipole moments and relative permittivities: see also Section 8.2.

5.3 INDUCTION

Dipole induction effects arise from dipole-induced dipole or Debye interactions occurring between molecules with permanent dipole moments and any other neighboring molecules, whether polar or not, and result in an induced nonuniform charge distribution. In contrast to dispersion and orientation interactions, dipole induction interactions are "unsymmetrical", involving the dipole moment of one molecule and the polarizability of the other (Chapter

3). Consequently, the cohesive pressure term for induction in a pure material i involves the product δ_i δ_d , where δ_i is the induction cohesion parameter. Similarly, in a mixture of i and j

$${}^{ij}C_{i} = {}^{i}\delta_{i}{}^{j}\delta_{d} + {}^{j}\delta_{i}{}^{i}\delta_{d}$$
 (8)

Therefore it can be shown that

$${}^{ij}A_{i} = 2 {}^{i}\delta_{i} {}^{i}\delta_{d} + 2 {}^{j}\delta_{i} {}^{j}\delta_{d} - 2 {}^{j}\delta_{i} {}^{i}\delta_{d} - 2 {}^{i}\delta_{i} {}^{j}\delta_{d}$$
 (9)

$$= 2(i\delta_d - i\delta_d)(i\delta_i - i\delta_i)$$
 (10)

5.4 LEWIS ACID-BASE

Lewis acid-base or electron donor-acceptor interactions, which have been reviewed frequently,* can be denoted by the equation

$$A + D \Rightarrow A....D$$
Lewis acid Lewis base Lewis acid-base complex

Electron-pair Electron-pair acceptor (EPA) donor (EPD)

Electrophile Nucleophile Adduct

The Lewis acid-base complex is formed by an overlap between a filled electron orbital of sufficiently high energy in the donor molecule and a vacant orbital of sufficiently low energy (high electron affinity) in the acceptor molecule. This type of interaction differs from a "normal" chemical bond in that only one type of molecule (the donor) supplies the pair of electrons, rather than each type of molecule supplying one electron. More than one electron must be involved, and coordination of the Lewis acid to the Lewis base must occur. Electron-pair donors are of three types:

- n-EPD molecules, where the electrons donated are the lone pair of n (nonbonding) electrons of hetero atoms in compounds such as R₂O, R₃N, R₂SO, where R is an alkyl group
- 2. σ-EPD molecules, which donate the electron-pair of a σ-bond, as in alkyl halides and cyclopropane
- π-EPD molecules, using the pair of π-electrons of unsaturated and aromatic compounds such as alkenes, alkylbenzenes and polycyclic aromatics

Electron-pair acceptor molecules also may be divided into three groups:

- ν-EPA, in which the lowest orbital is a vacant (ν) valence orbital of a metal atom, such as Ag⁺ and some organometallics
- 2. σ -EPA, which use a nonbonding σ orbital, as in halogens or interhalogens
- π-EPA, in the case of molecules with a π-bond system (aromatic and unsaturated compounds) with electron-withdrawing substituents, for example, aromatic polynitro compounds, halogenated benzoquinones, and tetracyanoethylene

For example: Arnett;³⁸ Bent;^{39,40} Coetzee and Ritchie;⁴¹ Drag, Lim, and Matwiyoff;^{42,43,47} Jensen;^{44,46} Reichardt;⁴⁸ and Wrona.⁴⁹

Many authors have pointed out that electron donating and accepting properties can be discussed in terms of acid-base cohesion parameters. $^{1-6,50-55}$ Lewis acid-base interactions are "unsymmetrical", involving a donor and an acceptor with different roles (rather than two equivalent participants as in dispersion interactions, which are "symmetrical"). It is apparent, therefore, that it is necessary to use two separate cohesion parameters for each partner to characterize these interactions, and this may be done in terms of a Lewis acid cohesion parameter (δ_a) and a Lewis base cohesion parameter (δ_b), in a manner analogous to that for induction interactions:

$${}^{ij}A_{ab} = 2 \left({}^{i}\delta_{a} - {}^{j}\delta_{a} \right) \left({}^{i}\delta_{b} - {}^{j}\delta_{b} \right) \tag{12}$$

Clearly from this equation the maximum interaction ("Aab large and negative) occurs when

$${}^{i}\delta_{a} = {}^{j}\delta_{b} = 0, {}^{ij}A_{ab} = -2 {}^{j}\delta_{a} {}^{i}\delta_{b}$$

$$(13)$$

and when

72

$${}^{j}\delta_{a} = {}^{i}\delta_{b} = 0, {}^{ij}A_{ab} = -2{}^{i}\delta_{a}{}^{j}\delta_{b}$$
 (14)

When ${}^{ij}A_{ab}$ is large and negative, exothermic mixing is possible, in contrast to mixing being restricted to athermic or endothermic processes, which is the case when only dispersion and polar forces exist. These acid-base cohesion parameters have something in common with the four-parameter acid-base equation of Drago (Section 7.12).

In those situations where donor-acceptor complexes are formed to such an extent that there is an appreciable proportion of identifiable new compound in the mixture, it may be necessary to evaluate the cohesion parameters of this new species so that it can be used in the estimation of thermodynamic properties such as activity coefficients. Approaches to this problem have included using the arithmetic mean of the donor and acceptor parameters⁵⁶ and volume-weighted averages (Equation 31, Chapter 4).⁵⁷ The topic is considered further in Section 7.9.

Acid-base interactions are not restricted to solutions, but occur in all types of systems, including pigment dispersions^{54,55} (as illustrated in later chapters).

5.5 HYDROGEN BONDING ASSOCIATION

Hydrogen-bonding interaction is a particular type of Lewis acid-base reaction in which the electron acceptor is a Brönsted acid. A convenient definition is that a hydrogen bond is a second bond formed to another atom by a covalently bound hydrogen atom. In the following scheme, atoms X and Y have electronegativities (relative tendencies of the bonded atom to attract electrons) higher than that of H, for example, C, N, P, O, S, F, Cl, Br, or I:

The classification by Pimentel and McClellan⁵⁸ of liquids according to their hydrogenbonding characteristics has been used widely:^{53,59}

Proton donor, such as trichloromethane

 Proton acceptor, such as ketones, aldehydes, esters, ethers, tertiary amines, aromatic hydrocarbons, alkenes

Proton donor/acceptor, such as alcohols, carboxylic acids, water, primary and sec-

ondary amines

Proton non-donor/non-acceptor such as alkanes, carbon disulfide, tetrachloromethane

On this basis, it is possible to predict immediately in a qualitative way the extent of contribution that hydrogen bonding is likely to make to the interchange cohesive pressure, ${}^{\theta}A_{ab}$. Any net increase in the extent of hydrogen bonding as a result of mixing decreases ${}^{\theta}A_{ab}$ and so favors miscibility. Thus, miscibility is enhanced if hydrogen bonds are formed when two liquids without hydrogen bonding (such as trichloromethane and acetone) are mixed, while it is reduced if hydrogen bonding in the component liquids is destroyed (as in water being mixed with an alkane).

It is apparent that two pairs of parameters to characterize these interactions are necessary, and this may be done using the Lewis acid-base formalism, Equation 12.

$${}^{ij}A_{ab} = 2 \left({}^{i}\delta_{a} - {}^{j}\delta_{a} \right) \left({}^{i}\delta_{b} - {}^{j}\delta_{b} \right) \tag{17}$$

In this situation the parameters δ_a and δ_b are then equivalent to the parameters σ and τ proposed by Small.⁶⁰ Rider^{61,62} developed an alternative two-parameter donor-acceptor model for predicting polymer-liquid interactions (Section 7.12); the parameters in this model are determined from experimental information including frequency shifts, solubilities, and acid-base properties.

Variations in properties resulting from hydrogen-bonding interactions can be looked at from other points of view. Chastrette and co-workers⁶³ have observed from multivariate statistical analysis of solubility information that a liquid may have more than one point in hyperspace associated with it: for different chemical applications one point is more relevant than the other.

Another approach to hydrogen bonding is to consider it as a chemical reaction (as suggested in the previous section), producing new molecules which then interact with the other components. Renon and Prausnitz, ⁶⁴ Wiehe and Bagley, ⁶⁵ and Bagley and Chen⁶⁶ have studied the relatively simple situation of an alcohol mixed with an alkane. This can be considered as a self-associated component (the alcohol) interacting with a nonassociated component (the alkane), and suggests a clear division into "chemical" (subscript C) and "physical" (subscript P) interactions. It is assumed that the alcohol exists in solution in the form of linear, hydrogen-bonded polymers which interact with each other by physical processes only. In terms of excess Gibbs free energies of mixing,

$${}^{\mathrm{E}}\triangle_{\mathrm{m}} G = {}^{\mathrm{E}}\triangle_{\mathrm{m}} G_{\mathrm{C}} + {}^{\mathrm{E}}\triangle_{\mathrm{m}} G_{\mathrm{P}}$$
 (18)

where $^{\rm E}\Delta_{\rm m}$ $G_{\rm P}$ is given by an expression of the form of Equation 35, Chapter 4, and $^{\rm E}\Delta_{\rm m}$ $G_{\rm C}$ is an expression involving an equilibrium constant describing the hydrogen bonding. A similar procedure was used for acetylene in various hydrogen-bonding liquids. ⁶⁷ Kirchnerova and Cavé⁶⁸ assumed water-organic complexes when discussing the solubility of water in low permittivity liquids in terms of cohesion parameters, and defined $-U_{\rm h}$ as the cohesive energy corresponding to the energy change associated with the notional process of real water being converted into a hypothetical liquid of dipolar monomers.

In situations where only hydrogen bond dimerization is significant, correction can be made in the cohesion parameter values in the simpler manner⁶⁹ illustrated in Equation 20, Chapter 6. Examples are carboxylic acids,

and glycol ethers such as Cellosolves® and Carbitols®

In such cases the result is that the dimer has a cohesion parameter significantly different from that of the monomer, and so is expected to have different solubility characteristics. This is in agreement with the observation that a material like acetic acid is soluble in such diverse liquids as water and heptane. Thus, in polar liquids these compounds are capable of interacting as if they are polar, while in nonpolar liquids the polar interactions are "self-contained" or "internal" and the dimeric molecules tend to behave in a nonpolar manner. Hoy⁶⁹ proposed that this ability to assume the character of the environment be termed chameleonic, after the reptile which is able to adopt the color of its background. The dimerization of several carboxylic acids has been assessed in terms of cohesion parameters. ⁷⁰⁻⁷²

Huyskens, Haulait-Pirson, Siegel and Kapuku^{153,154,162} preferred to consider hydrogen bonds in liquids as the cohesive forces with the longest lifetime, and introduced the concept of "mobile disorder". Accommodation of such variations in cohesion properties by means of corrections to the geometric mean approximation is discussed in Section 5.7. Nisbet⁷⁵ took intramolecular hydrogen bonding into account by considering the formation of all possible pseudo ring structures in alcohol molecules, with interaction energies evaluated for dispersion, polar, and hydrogen-bonding components. Three- and four-membered rings are illustrated by:

Martin, Wu, Liron, and Cohen's proposed an approach to the chameleonic behavior problem in drug solutions which assumed a virtual solute cohesion parameter Λ made up of a constant, invariant Hildebrand parameter δ and a variable (chameleonic) term Γ which depends on the Walker solute-solvent interaction parameter ${}^{\theta}K$ (see Section 5.7):

$${}^{j}\Lambda^{2} = {}^{j}\delta^{2} + {}^{j}\Gamma^{2} \tag{19}$$

The variable cohesion parameter of a solute obtained from observations of interactions with relatively polar liquids would then be designated not $^{1}\delta$ but $^{1}\Lambda$, and the (invariant) Hildebrand parameter would be determined from vaporization enthalpy as proposed originally, or by interaction with relatively nonpolar liquids with which it formed near-regular solutions.

he

are

9)

Kamlet, Doherty, Taft, and Abraham⁷⁴ incorporated cohesion parameters in their linear solvation energy approach to self-association in water and alcohols; further details appear in Chapter 8.

5.6 COMBINATION OF COMPONENT COHESION PARAMETERS

One of the assumptions central to the cohesion approach to interactions is that the various contributions to the cohesive pressure of a fluid (either pure or mixed) are additive, so the interchange cohesive pressure or exchange energy density for a system is:

where ${}^{i}\delta_{t}$ is the Hildebrand parameter or total cohesion parameter for component i (evaluated from vaporization energy — see Chapter 7) and related to the component parameters by

$${}^{\prime}\delta_{t}^{2} = {}^{\prime}\delta_{d}^{2} + {}^{\prime}\delta_{o}^{2} + 2 {}^{\prime}\delta_{i}{}^{\prime}\delta_{d} + 2 {}^{\prime}\delta_{a}{}^{\prime}\delta_{b}$$

$$(23)$$

or, omitting the superscript i and subscript t for simplicity when there is no ambiguity possible:

$$\delta^2 = \delta_d^2 + \delta_o^2 + 2\delta_i \delta_d + 2\delta_a \delta_b \tag{24}$$

It is clear that two types of term appear in these equations, quadratic terms (symmetrical) for dispersion and orientation, and double product or cross terms (unsymmetrical) for induction and acid-base interactions. The geometric mean assumption (Equation 12, Chapter 4) is clearly inadequate for the total or Hildebrand parameters in the presence of these cross terms:

$${}^{ij}c = ({}^{i}c {}^{j}c)^{1/2} = {}^{i}\delta {}^{j}\delta$$
 (25)

The approach taken by Karger, Snyder, and Eon* was to calculate the dispersion term from the refractive index, the induction and orientation terms from the dipole moment and molar volume (or δ_i from retention volumes in gas-liquid chromatography), and 2 δ_a δ_b by difference. The original estimates of these component cohesion parameters for a few common liquids are presented in Table 1. The origins of the various types of cohesion properties of different liquids with similar total cohesion parameters are here apparent, although the precise values of the individual parameters are open to question. A related set of parameters is introduced in Section 5.13.

If hydrogen-bonding capability is absent, it is reasonable to exclude the acid and base components; such an approach was taken by Melder and Ebber, 76-79 allowing an emphasis on dispersion, orientation, and induction components. Ignat and Melder subsequently determined the components of the cohesion parameters of alcohols (Table 2), based on the experimental activity coefficients of alcohols in nonpolar liquids and the partial enthalpies of dissolution in water (for which component values also appear in Table 2). Later, they 161

TABLE 1
Five-Component Cohesion Parameters of Liquids in Order of Increasing
Hildebrand Parameter¹⁻⁴

	8/MPa ^{1/2}					V/cm³mol	
Liquid	δ_{ι}	δ_d	δ_{σ}	δ,	$\delta_{\rm s}$	$\delta_{\rm b}$	
Perfluoroalkanes	~12	~12	_	-	2.1		
Pentane	14.5	14.5	_	-	_	1000	115
Diisopropyl ether	14.5	14.1	2.1	0.2	-	6.1	102
Hexane	14.9	14.9		-		-	131
Diethyl ether	15.3	13.7	4.9	1.0	-	6.1	105
Triethylamine	15.3	15.3	-	1578 T.A.		9.2	140
Cyclohexane	16.8	16.8	-			200	108
Chloropropane, 1-chloropro-	17.2	14.9	5.9	1.2	_	1.4	88
pane Tetrachloromethane	17.6	17.6	-	-		1.0	97
Diethyl sulfide	17.6	16.8	3.5	0.5	-	5.3	108
Ethyl acetate	18.2	14.3	8.2	2.1		5.5	98
Propylamine	18.2	14.9	3.5	0.4	3.7	11.3	82
Bromoethane	18.2	16.0	6.3	1.2		1.6	77
Toluene	18.2	18.2	_		-	1.2	107
Tetrahydrofuran	18.6	15.5	7.2	1.6	-	7.6	82
Benzene	18.8	18.8	1.2			1.2	89
Trichloromethane	19.0	16.6	6.1	1.0	13.3	1.0	81
	19.4	14.5	9.6	2.5	15.5	6.5	90
Methyl Ethyl ketone	19.4	13.9	10.4	3.1		6.1	7.07
Acetone, 2-propanone							74
1,2-Dichloroethane	19.8	16.8	8.6	1.0		1.4	79
Anisole, methoxybenzene	19.8	18.6	4.3	0.8	-	3.5	109
Chlorobenzene	19.8	18.8	3.9	0.6	17-73	2.1	102
Bromobenzene	20.2	19.6	3.1	0.4		2.1	105
Iodomethane	20.2	19.0	5.1	0.6		1.4	62
1,4-Dioxane	20.7	16.0	10.6	2.1	-	9.4	86
Hexamethylphosphoramide	21.5	17.2	7.0	3.5		8.2	176
Pyridine	21.7	18.4	7.8	2.1		10.0	81
Acetophenone	21.7	19.6	5.5	1.4	-	6.8	117
Benzonitrile	21.9	18.8	7.0	2.1		4.7	103
Propionitrile	22.1	14.1	13.5	3.7	-	4.3	71
Quinoline	22.1	21.1	3.7	0.6		8.6	118
N,N-Dimethylacetamide	22.1	16.8	9.6	3.3	-	9.2	92
Nitroethane	22.5	14.9	12.3	4.5	-	2.1	71
Nitrobenzene	22.7	19.4	7.4	2.3		2.1	103
Tricresyl phosphate	23.1	19.6	5.1	3.1	-	(?)	316
N,N-Dimethylformamide	24.1	16.2	12.7	4.9	-	9.4	77
1-Propanol	24.5	14.7	5.3	0.8	12.9	12.9	75
Dimethylsulfoxide	24.5	17.2	12.5	4.3		10.6	71
Acetonitrile	24.7	13.3	16.8	5.7	-	7.8	53
Phenol	24.7	19.4	4.7	0.8	19.0	4.7	92
Ethanol	26.0	13.9	7.0	1.0	14.1	14.1	59
Nitromethane	26.4	14.9	17.0	6.1	-	2.5	54
γ-Butyrolactone	26.4	16.4	14.7	6.5		(?)	77
Propylene carbonate	27.2	20.0	12.1	4.9	-	(?)	85
Diethylene glycol	29.2	16.8	8.2	1.2	10.8	10.8	96
Methanol	29.7	12.7	10.0	1.6	17.0	17.0	41
Ethylene glycol	34.8	16.4	13.9	2.3	12.5	12.5	56
Formamide	39.3	17.0	(?)	(?)	(large)	(large)	40
Water	47.9	12.9	(?)	(?)	(large)	(large)	18

TABLE 2
Five-Component Cohesion Parameters for Alcohols

			8/1	/IPa ^{1/2}		
Liquid	$\delta_{_{d}}$	δα	δ,	δ,	δ_{b}	δι
1-Propanol	14.9	6.7	4.5	4.8	23.5	25.0
Isobutanol, 2-methyl-1-propanol	15.0	5.8	3.4	3.8	22.8	25.0
1-Butanol	15.3	5.4	3.1	4.6	22.6	23.1
2-Butanol, sec-butanol	15.2	5.4	3.2	3.5		23.8
1-Pentanol, amyl alcohol	15.7	4.7	2.9	3.7	23.3	22.8
1-Hexanol	15.9	3.7	1.7	2000	21.9	22.8
Cyclohexanol	17.3	5.4	2.9	4.0	21.5	22.1
1-Octanol	16.2	3.1		2.1	21.2	22.7
1-Nonanol	16.3		1.8	3.6	17.8	21.1
1-Decanol	577.77	2.8	1.7	3.4	17.2	20.7
Anisole	16.4	2.0	0.9	3.8	16.8	20.5
Butyl acetate	18.5	3.5	1.4	0.0	16.5	30.2
	15.0	4.0	2.4	0.0	19.7	17.7
Nitrobenzene	19.4	7.4	2.2	0.0	15.7	22.7
Water	12.9	31.4	20.8	34.1	22.3	

Adapted from Ignat, A. V. and Melder, L. I., Zh. Prikl. Khim. (Leningrad), 60, 1136, 1987; 62, 419, 1989; J. Appl. Chem. U.S.S.R., 60, 1070, 1987; 62, 376, 1989; Eesti NSV Tead. Akad. Toim. Keem., 36(1), 45, 1987.

TABLE 3

Total and Component Cohesion Parameters for Some Lipophilic Liquids

	_	_		8/МРа	1/2		
Liquid	$\delta_d^{\ n}$	$\delta_{\mathfrak{o}}{}^{\mathfrak{b}}$	$\delta_{l}^{\;b}$	δ_{p}^{c}	δ_{h}^{d}	δį°	δ,r
Octanoic acid	16.2	0.7	0.0	1.2	11.2	_	19.8
1-Decanol	16.5	2.7	0.6	5.1	11.1	_	20.5
 1,2-Propanediyl dinonanoate, propylene gly- col dipelargonate 	16.6	0.9	0.1	2.3	7.6	18.0	18.4
Dodecane	16.1	0.0	0.0	0.0	0.0	_	16.1
2-Octyldodecanol	16.9	0.5	0.0	1.2	8.7	19.2	19.0
Isopropyl tetradecanoate, isopropyl myristate	16.4	0.9	0.1	2.0	5.7	17.6	17.5
1,2,3-Propanetriyl trioctanodecanoate, glyc- erol tricaprylocaprate	16.8	0.8	0.1	2.2	8.2	18.0	18.8

- Refractive index.
- b Dipole moment and refractive index.
- $\delta_p^2 = \delta_o^2 + 2\delta_i \delta_d$
- $\delta_h^2 = \delta_t^2 \delta_d^2 \delta_n^2$
- Gas-liquid chromatography.
- f Group addition. 82

Adapted from Munafo, A., Buchmann, M., Hô Nam-Tran, and Kesselring, U. W., J. Pharm. Sci., 77, 169, 1988.

evaluated the component cohesion parameters for polar liquids, from the activity coefficients of alcohols dissolved in them.

Munafo, Buchmann, Hô Nam-Tran, and Kesselring³⁷ (see Table 3) evaluated for some lipophilic liquids all components, except for separation of δ_a and δ_b , from chromatographic measurements and molecular properties after comparing the various methods, including that of Fedors.⁸²

5.7 EMPIRICAL CORRECTIONS FOR GEOMETRIC MEAN DEVIATIONS

Comparison of the equations in Section 4.2 and 5.6 shows that the original Hildebrand-Scatchard equation can be considered as a simplified form of a more general relationship. Many equations of intermediate simplification also have been used.

One of the specific simplifications in the Hildebrand-Scatchard equation was the use of the geometric mean approximation, Equation 25, and there have been several approaches to the accommodation of deviations from geometric mean behavior. Walker⁸³ proposed the dimensionless specific interchange coefficient, ¹¹K, which has values between 0.98 and 1.06 for many liquids,

$${}^{ij}c = {}^{ij}K ({}^{i}c {}^{j}c)^{1/2}$$
(26)

SO

$${}^{ij}A = {}^{i}c + {}^{j}c - 2 {}^{ij}K {}^{i}c^{1/2} {}^{j}c^{1/2}$$
 (27)

$$= {}^{t}\delta^{2} + {}^{t}\delta^{2} - 2 {}^{tt}K {}^{t}\delta {}^{t}\delta$$
 (28)

This parameter was given the symbol f by Reed^{84,85} and Sonnich Thomsen⁸⁶⁻⁸⁸ and also divided into several factors corresponding to different correction terms. Prausnitz and coworkers and others⁸⁹⁻⁹³ used the dimensionless constant 6l (with a magnitude on the order of 10^{-2} to 10^{-1}), characteristic of a given pair of materials and almost independent of temperature and composition,

$${}^{y}c = ({}^{i}c {}^{j}c)^{1/2} (1 - {}^{y}l)$$
 (29)

and of course this is related to "K by

$$^{\eta}l = 1 - {^{\eta}K} \tag{30}$$

so the empirical expression for interchange cohesive pressure, Equation 16, becomes

$${}^{ij}A = ({}^{i}\delta - {}^{j}\delta)^2 + 2{}^{ij}l {}^{i}\delta {}^{j}\delta$$
 (31)

from which it is clear that the effect of the correction factor is most pronounced when $\delta \approx 10^{-10}$. Examples are given in Table 4.

Martin et al. 94-96 in studies of drug solubilities proposed the binary interaction parameter "W, which in terms of "A is defined by

$${}^{ij}A = ({}^{i}\delta^{2} + {}^{j}\delta^{2} - 2 {}^{ij}W) = ({}^{i}\delta - {}^{j}\delta)^{2} + 2 ({}^{i}\delta {}^{j}\delta - {}^{ij}W)$$
(32)

They also showed⁹⁷ that these parameters are simply three different representations of deviations from the geometric mean mixing approximation,

$$1 - {}^{ij}l = {}^{ij}W/({}^{i}\delta {}^{j}\delta) = {}^{ij}K$$
(33a)

or

AN

debrandtionship.

roaches osed the nd 1.06

(26)

(27)

(28)

d also
id coorder
ent of

(29)

(30)

(31)

8 ≈

eter

32)

de-

la)

TABLE 4
Binary Interaction Parameters for Solutes in Cryogenic Liquids

		Recommended range	
		for use of given "I,	Maximum error,
Solute(j)-solvent(i)	41	T/K	100 Xobs - Xcate Xobs
Acetylene-carbon dioxide	0.04	170—188	5
Acetylene-ethane	0.11	150—177	30
Acetylene-ethylene	0.02	100160	25
Acetylene-methane	0.10	105—135	40
Acetylene-nitrogen	0.07	77	
Acetylene-oxygen	0.18	90	
Argon-methane	0.00	72—83	2
Argon-nitrogen	0.00	70—83	ī
Argon-oxygen	0.06	63—83	25
Butane-oxygen	0.08	90	40
Carbon dioxide-acetylene	-0.02	175—190	3
Carbon dioxide-butane	0.09	140200	20
Carbon dioxide-ethane	0.08	110—170	15
Carbon dioxide-ethylene	0.00	140—170	10
Carbon dioxide-methane	-0.02	110—140	10
Carbon dioxide-nitrogen	-0.18	77	10
Carbon dioxide-oxygen	0.03	90	
Carbon dioxide-propane	0.08	120-200	10
Carbon dioxide-propylene	0.01	130—210	20
Ethane-ethylene	0.01		20
Ethane-oxygen	0.03	60—75	20
Ethylene-nitrogen	0.06	70—85	35
Ethylene-oxygen	0.06	75—90	15
Hydrogen sulfide-butane	0.05	140170	25
Hydrogen sulfide-ethane	0.07	120—160	30
Hydrogen sulfide-ethylene	-0.01	120—185	15
Hydrogen sulfide-methane	0.04	120—150	40
Hydrogen sulfide-propane	0.06	140—170	45
Hydrogen sulfide-propylene	-0.005	130—180	5
Methane-ethane	0.01	- 100	3
Methane-ethylene	0.01		-
Methane-nitrogen	-0.02	70—90	5
Methane-oxygen	0.05	70-90	3
Nitrogen-hydrogen	0	26—33	3
Nitrogen-oxygen	0	20 55	
Propane-oxygen	0.02	60—70	115
Propylene-nitrogen	-0.01	65—80	75
Propylene-oxygen	0.05	65—75	30

Adapted from Preston, G. T. and Prausnitz, J. M., Ind. Eng. Chem. Proc. Des. Dev., 9, 264, 1970.

$${}^{ij}W = {}^{ij}K {}^{i}\delta {}^{j}\delta \tag{33b}$$

Although values of ${}^{ij}K$ are never very different from unity, these small differences can account for large variations in solubilities. The application by Martin and co-workers of this geometric mean correction to the Hildebrand-Scatchard equation and polynomial regression to fit complex solutes in various solvents is outlined in Chapter 12. More recently, Li et al. Pproposed the parameter ${}^{ij}\delta'$ defined such that

$${}^{ij}\delta' = {}^{ij}W^{1/2} = ({}^{ij}K {}^{i}\delta {}^{j}\delta)^{1/2} = (1 - {}^{ij}l)^{1/2} ({}^{i}\delta {}^{j}\delta)^{1/2}$$
 (34)

which has the advantage that the relationship of this correction parameter to 'δ and 'δ is clear, and that it retains the cohesion parameter dimensions of (pressure)^{1/2}.

Mikos and Peppas¹⁶⁵ employed the geometric mean correction parameter ^{ij}l in the correlation of polymer-liquid interaction parameters (Section 13.5) for hydrophilic copolymers with water, using

$$\chi_{\rm H} = {}^{i}V/(RT)[({}^{i}\delta - {}^{j}\delta)^{2} + 2 {}^{ij}l {}^{j}\delta {}^{j}\delta]$$

with ^{ij}l ranging from -0.15 to -0.25 depending on copolymer composition and volume fraction. For example, they obtained -0.25 for poly(methacrylic acid) and -0.18 for poly(2-hydroxyethyl methacrylate) extrapolated to infinite dilution in water at 25°C, values which may be compared with the generally lower magnitudes in Table 4. This parameter is negative for the hydrogels, consistent with specific effects such as hydrogen bonding favoring dissolution.

The virtual Hildebrand parameter $^{j}\Lambda$ (Section 5.5) is related to ^{ij}W by the parabolic relationship⁷³

$$-2^{ij}W = {}^{j}\Lambda^2 - 2^{i}\delta^{j}\Lambda - {}^{j}\delta^2$$
(35)

The geometric mean corrections ${}^{il}l$ for systems of testosterone propionate and unsaturated hydrocarbons were found to fit a rectilinear function of the branching ratio of the hydrocarbon liquids, and for related esters there was a good correlation between ${}^{il}l$ and infrared carbonyl stretching frequencies. 100

It is apparent that ${}^{i}8'$, ${}^{i}l$, ${}^{i}K$, and ${}^{i}W$ are binary parameters which depend in a complex manner on many properties of i and j, and are usually determined by empirical means, for example, from liquid phase activity coefficients, when Equation 15, Chapter 4, becomes

$$RT \ln f_x = {}^{j}V {}^{i}\phi^{2} \{ ({}^{i}\delta - {}^{j}\delta)^2 + 2 {}^{ij}l {}^{i}\delta {}^{j}\delta \}$$
 (36)

They also may be determined from gas phase data^{88,92,101-105} where

$${}^{ij}T_c = ({}^{i}T_c {}^{j}T_c)^{1/2} (1 - {}^{ij}k)$$
 (37)

Although the parameters ^{il}l and ^{il}k are not identical, because the former reflects some liquid phase aspects absent from gas mixtures, they are often of comparable magnitude.

For the particular case of bonding energy E, for polar interactions, Pauling 106 suggested

$$^{ij}E/\text{ kJ mol}^{-1} = (^{i}E)^{1/2}/\text{ kJ mol}^{-1} + 125(^{i}X - ^{j}X)^{2}$$
 (38)

where X is the electronegativity. The resulting expression in terms of cohesion pressures is

$$^{ij}c = (^{i}c^{j}c)^{1/2} + k(^{i}X - ^{j}X)^{2}/(^{i}V^{j}V)^{1/2}$$
 (39)

where k has been taken as 125 kJ mol⁻¹ for intermetallic solutions. ¹⁰⁷

The presence of molecular quadrupole moments introduces significant deviations from geometric mean behavior. In analyzing data on the solubility of solid carbon dioxide in liquid hydrocarbons, Myers and Prausnitz^{102,108} calculated the ideal solubility (see Section 12.1) and assumed that the activity coefficient of carbon dioxide (referred to its pure subcooled liquid) was given by Equation 15, Chapter 4:

$$RT \ln {}^{j}f_{x} = {}^{ij}A {}^{j}V {}^{i}\varphi^{2}$$
 (40)

where N is the molar volume of subcooled liquid carbon dioxide, ϕ is the volume fraction of the liquid hydrocarbon, and N is the interchange cohesive pressure of subcooled liquid

the corolymers

volume poly(2which egative ng dis-

rabolic

(35)

urated arbon bonyl

nplex s, for nes

(36)

(37)

quid

sted

38)

3 is

39)

m in

on b-

))

n d

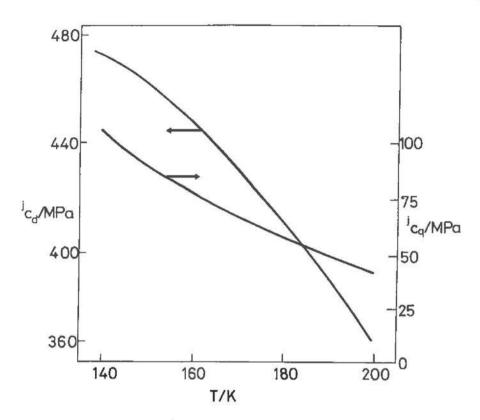


FIGURE 1. Dispersion and quadrupole cohesive pressures of subcooled liquid carbon dioxide as functions of temperature. (Adapted from Myers, A. L. and Prausnitz, J. M., *Ind. Eng. Chem. Fund.*, 4, 209, 1965.)

carbon dioxide with liquid hydrocarbons (Equation 10, Chapter 4). However, since the quadrupole moment of carbon dioxide makes an appreciable contribution to its cohesive pressure, the cohesive pressures were separated into two parts due to dispersion (d) forces and quadrupole (q) forces before the geometric mean approximation was used:

$${}^{j}c = {}^{j}c_{d} + {}^{j}c_{q} \text{ and } {}^{i}c = {}^{i}c_{d} + {}^{i}c_{q}$$
 (41)

The relative estimated values of dispersion and quadrupole cohesive pressures for subcooled liquid carbon dioxide are shown in Figure 1 (note the different scales) and the sum (Equation 41) is shown in Figure 2. In mixtures, the geometric mean approximation retained for the dispersion interactions, ${}^{i}c_{q}$ was evaluated from theoretical expressions, and the total cohesive pressure was given by

$${}^{ij}c = ({}^{i}C_{d}{}^{j}C_{d})^{1/2} + {}^{ij}C_{q} + {}^{ij}C_{ab}$$
 (42)

The last term is a measure of the tendency of carbon dioxide (with Lewis acid properties) to complex with unsaturated hydrocarbons, and was evaluated by difference (Figure 3). Since the complex formation is exothermic, ${}^{y}c_{ab}$ rises with falling temperature and becomes relatively more important in such low temperature systems. The full expression for the interchange cohesive pressure is thus

$${}^{ij}A = {}^{i}c + {}^{j}c - 2 {}^{ij}c = {}^{i}c + {}^{j}c - 2 [({}^{i}c_{d}{}^{j}c_{d})^{1/2} + {}^{ij}c_{a}]$$
(43)

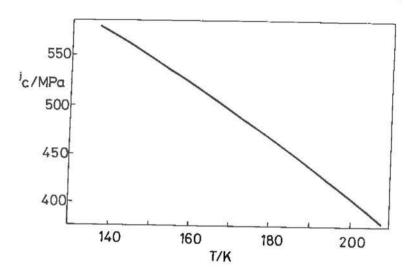


FIGURE 2. Cohesive pressure of subcooled liquid carbon dioxide as a function of temperature. (Adapted from Myers, A. L. and Prausnitz, J. M., Ind. Eng. Chem. Fund., 4, 209, 1965.)

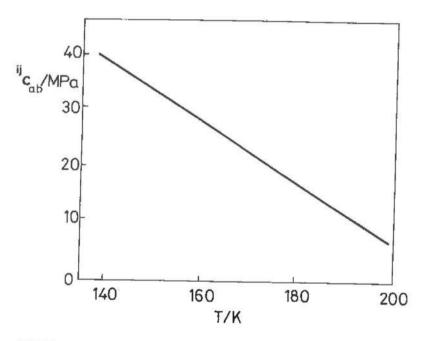


FIGURE 3. Acid-base complex contribution to the cohesive pressure of carbon dioxidealkene mixtures as a function of temperature. (Adapted from Myers, A. L. and Prausnitz, J. M., Ind. Eng. Chem. Fund., 4, 209, 1965.)

5.8 POLAR-NONPOLAR COHESION PARAMETERS

Van Arkel, ³⁶ Small, ⁶⁰ and Prausnitz and co-workers ^{102,109-114} divided the total cohesion parameter into two main components, defining a nonpolar cohesion parameter (δ_{λ}) and a polar parameter (δ_{τ}). Although this tends to neglect induction interactions, these may be taken care of by an additional parameter. More of a problem from a practical point of view is the omission of specific interactions. Polar-nonpolar parameters are related to the Hildebrand parameter (total cohesion parameter) by

$$\delta^2 = \delta_\lambda^2 + \delta_\tau^2 \tag{44}$$

and comparison with Equation 24 suggests that δ_{λ} can be identified with δ_{d} and that δ_{τ} corresponds to δ_{0} .

In their evaluation of δ_{λ} and δ_{τ} for polar liquids, Blanks and Prausnitz¹¹⁰ used the homomorph concept. This is discussed in Section 6.7, but basically it is a method which assumes that the polar energy of vaporization is the difference between the experimentally determined total energy of vaporization and the energy of vaporization of a nonpolar liquid having molecules very nearly the same size and shape as those of the polar liquid. Tables 5a and 5b list those polar and nonpolar cohesion parameter values.

Weimer and Prausnitz^{111,113} also published values of polar and nonpolar cohesion parameters for polar liquids; again alcohols and acids were omitted because of their strong hydrogen-bonding properties (Tables 6 and 7). These parameters, evaluated at several temperatures, used homomorph data (Figures 6 to 8, Chapter 6) which were rather different from those of Blanks and Prausnitz, and the numerical values differ slightly. Yet another set of values was presented by Helpinstill and Van Winkle¹¹⁵ (Tables 8 and 9).

These polar-nonpolar cohesion parameters can be used in a similar way to Hildebrand parameters to evaluate the interchange cohesion pressure, and from this the derived quantities such as energy of mixing. All three sets of data have been tabulated here because each set is still in use, and as stressed in Section 6.10, it is essential to use self-consistent sets of cohesion parameters. Their application to various systems is now summarized, first for nonpolar-nonpolar systems, then for polar-nonpolar and polar-polar systems.

For a mixture of nonpolar liquids (i.e., when only dispersion forces occur),

$${}^{ij}A = {}^{i}c + {}^{j}c - 2 {}^{ij}c = {}^{i}\delta_{\lambda}^{2} + {}^{j}\delta_{\lambda}^{2} - 2 {}^{i}\delta_{\lambda}{}^{j}\delta_{\lambda}$$
 (45)

$$= ({}^{i}\delta_{\lambda} - {}^{j}\delta_{\lambda})^{2} = ({}^{i}\delta - {}^{j}\delta)^{2}$$

$$\tag{46}$$

as used in Equation 13, Chapter 4.

For interaction between a polar substance (i) and a nonpolar substance (j), a term ${}^{i}\Psi$ is included for the i-j induction pressure, so the expression for the interchange cohesive pressure is

$${}^{ij}A = {}^{i}c + {}^{j}c - 2 {}^{ij}c = {}^{i}\delta_{\lambda}^{2} + {}^{i}\delta_{\lambda}^{2} + {}^{j}\delta_{\lambda}^{2} - 2 ({}^{i}\delta_{\lambda} {}^{j}\delta_{\lambda} + {}^{ij}\Psi)$$

$$(47)$$

$$= (^{i}\delta_{\lambda} - ^{j}\delta_{\lambda})^{2} + ^{i}\delta_{\tau}^{2} - 2 {^{ij}}\Psi$$
 (48)

As indicated in Equation 4, Chapter 3, the orientation energy (unlike the induction and dispersion energies) has a temperature dependence, so Equation 48 should reflect this, and a more complete expression is

TABLE 5a Molar Volumes and Hildebrand Parameters of Nonpolar Liquids at 25°C

Alkanes Methane	53° 69° 85°	9.6*
	69ª 85ª	
Pat	69ª 85ª	
Ethane	85ª	
Propane		11.6
Butane	101.4	12.7
Isobutane, 2-methylpropane	105.5	13.5
Pentane	116.1	12.8
Isopentane, 2-methy/butane	117.4	14.3
Neopentane, 2,2-dimethylpropane	123.3	13.8
Hexane	131.6	12.5
Heptane	147.5	14.8 15.2
2,2,3-Trimethylbutane	146.1	
Octane	163.5	14.2
Isooctane, 2,2,4-trimethylpentane	166.1	15.5 14.0
Nonane	179.7	15.6
Decane	195.9	15.8
Dodecane	228.6	16.0
Tetradecane	261.3	16.2
Hexadecane	294.1	16.3
Octadecane	326.9	16.4
Eicosane	359.8	16.5
Alkenes		
Ethylene	63°	11.3*
Propylene	79ª	12.5
1-Butylene	95.3	13.7
cis-2-Butylene	91.2	14.7
trans-2-Butylene	93.8	14.7
Isobutylene, 2-methylpropene	95.4	13.7
1,3-Butadiene	88.0	14.5
Isoprene	100.8	15.2
Cycloalkanes		
Cyclopentane	94.7	16.6
Cyclohexane	108.7	16.7
Methylavalahanan	128.3	16.0

TABLE 5a (continued) Molar Volumes and Hildebrand Parameters of Nonpolar Liquids at 25°C

Liquid	V/cm3 mol-1	8/MPa ^{1/2}
Aromai	tics	
Benzene	89.4	18.7
Toluene, methylbenzene	106.9	18.2
Ethylbenzene	123.1	18.0
o-Xylene, 1,2-dimethylbenzene	121.2	18.4
m-Xylene, 1,3-dimethylbenzene	123.5	18.0
p-Xylene, 1,4-dimethylbenzene	123.9	17.9
Propylbenzene	140.1	17.7
Mesitylene, 1,3,5-trimethylbenzene	140	18.0
Styrene, ethenylbenzene	115.6	19.0
Tetrahydronaphthalene, tetralin	-	19.4
Tetrachloromethane, carbon tetra- chloride	97.1	17.6

Estimated from gas solubility data.¹¹⁴

Adapted from Blanks, R. F. and Prausnitz, J. M., Ind. Eng. Chem. Fundam., 3, 1, 1964.

$${}^{ij}A = ({}^{i}\delta_{\lambda} - {}^{j}\delta_{\lambda})^{2} + (T \downarrow T) {}^{i}\delta_{\tau}^{2} - 2{}^{ij}\Psi$$

$$\tag{49}$$

where T_{\star} is the temperature at which the polar parameter δ_{τ} was obtained. The tables in this section show that δ_{λ} also varies with temperature, but to a smaller extent, and an alternative (and preferred) procedure is to evaluate all cohesion parameters at the temperatures at which they will be used.

Theory suggests that the induction term, ${}^{ij}\Psi$, should depend on the product ${}^{j}\delta_{\lambda}$, where ${}^{j}\delta_{\lambda}$ is the cohesion parameter of the nonpolar component. When evaluated experimentally by difference the correlation in Figure 4 was observed. Weimer 102,111,113 found that activity coefficient data (Section 7.5) for infinitely dilute solutions of hydrocarbons (j) in polar liquids (i) could be correlated well by expressing the induction parameter ${}^{ij}\Psi$ as proportional to the square of the polar cohesion parameter ${}^{ij}\delta_{\lambda}^{2}$:

- For linear and cyclic alkanes, ${}^{ij}\Psi = 0.40 {}^{i}\delta_{\tau}^{2}$
- For the alkene 1-pentene, ${}^{ij}\Psi = 0.42 {}^{i}\delta_{7}^{2}$
- For the aromatic hydrocarbon benzene, ${}^{ij}\Psi = 0.45 {}^{i}\delta_{-}^{2}$

In other words, this empirical induction cohesive pressure term is related to the polar cohesive pressure of the polar liquid and to the *class* of the hydrocarbon, but is not directly dependent on the cohesive pressure of the hydrocarbon. Weimer and Prausnitz¹¹³ explained this on the basis of the polar molecule interacting with only one carbon-carbon bond during a collision, so the interchange cohesive pressure depends on the polarizability of the carbon-carbon bond, which increases in the order

Although these correlations were obtained in conditions of high concentrations of the polar component and therefore are expected to be of limited applicability, they provide a simple method of screening polar liquids for use in hydrocarbon separations. For example, the

Liquids	V/cm³mol-1	Nonpolar, δ _λ /MP2 ^{1/2}	Polar, δ ₊ /MPa ^{1/2}	Homomorph
	Halogen	Compounds		
Trichloromethane, chloroform	80.7	15.8	10.0	Figure 5 Chapter 6
Chloroethane, ethyl chloride	73	14.9	9.0	Figure 5, Chapter 6 Figure 5, Chapter 6
 1,2-Dichloroethane, ethylene dich- loride 	79.4	16.1	11.9	Figure 5, Chapter 6
1, I-Dichloroethane	84.8	15.5	10.3	Isobutane
1,1,1-Trichloroethane	100.4	15.8	8.9	The second second
Trichloroethylene	90.2	16.3	9.6	Neopentane Isopentane
1,2-Dibromoethane	87	16.9	13.0	Eignes 5 Chantage
Chlorobenzene	102.1	18.9	6.0	Figure 5, Chapter 6 Toluene
	Ker	tones		
Acetone, 2-propanone	74.0	15.5	12.5	Figure 5, Chapter 6
Methyl ethyl ketone, 2-butanone	90.2	15.9	10.3	Figure 5, Chapter 6
Methyl propyl ketone	107.5	15.8	9.1	- Baro of Chapter o
Methyl isobutyl ketone	125.8	15.3	8.5	Isohexane
Methyl amyl ketone	140.8	15.9	8.6	Figure 5, Chapter 6
Dipropyl ketone	140.7	15.8	8.8	Figure 5, Chapter 6
Hexamethyl ketone	157.5	15.9	8.4	Figure 5, Chapter 6
Mesityl oxide	115.6	17.1	7.8	2-Methylpentene
	Est	ers		
Ethyl acetate	98.5	15.2	10.7	
Propyl acetate	115.7	15.6	10.6	Figure 5, Chapter 6
Butyl acetate	132.5	15.6	8.8	Figure 5, Chapter 6
Amyl acetate, pentyl acetate	148.9	15.6	8.7	Figure 5, Chapter 6
Ethyl propionate	115.5	15.6	8.6 9.2	Figure 5, Chapter 6 Figure 5, Chapter 6
	Ethe	ers		•
Diethyl ether	104.8	14.5	120	100
Methyl isopropyl ether	103.8	14.3	4.6	Figure 5, Chapter 6
1,4-Dioxane	85.7	14.4	5.5	Isobutane
	65.7	17.5	9.5	Cyclopentane
	Miscella	neous		
Nitropropane	90.4	16.4	13.4	Discours & Charles
Acetonitrile	52.9	16.2	18.0	Figure 5, Chapter 6
Propionitrile	70.3	16.3	14.7	Figure 5, Chapter 6 Figure 5, Chapter 6

Adapted from Blanks, R. F. and Prausnitz, J. M., Ind. Eng. Chem. Fundam., 3, 1, 1964.

ability of a solvent to "distinguish" between a saturated hydrocarbon and an unsaturated hydrocarbon depends primarily on the solvent having a large cohesive pressure (large cohesive energy and small molar volume).

In systems where both components are polar, induction interactions may be considered to be negligibly small in comparison with dipole-dipole interactions. If specific interactions are also negligible, the interchange cohesive pressure is

TABLE 6
Molar Volumes and Nonpolar Cohesion Parameters of
Hydrocarbons at Various Temperatures

Liquid	t/°C	V/cm³mol-1	δ _λ /MPa ¹
Propane	25	89.5	13.4
Butane	25	101.4	14.2
Pentane	0	111.8	15.2
	25	116.2	14.7
	45	120.3	14.2
Hexane	0	127.3	15.6
	25	131.6	15.0
	45	135.4	14.5
	60	138.7	14.2
	100	148.0	13.4
Heptane	25	147.4	15.3
44-000 4 00-000 000	60	154.3	14.5
	100	164.0	13.6
Decane	25	195.9	16.1
	60	203.4	15.1
	100	213.0	14.2
Hexadecane	25	294.1	17.9
	60	303.6	16.4
	100	315.4	15.1
Cyclopentane	25	94.7	16.8
Methylcyclopentane	25	113.1	16.2
Cyclohexane	0	105.6	17.5
	25	108.7	16.8
	45	111.5	16.4
	60	113.6	16.4
	100	119.4	15.2
Methylcyclohexane	0	124.8	16.7
	25	128.3	16.1
	45	131.3	15.6
	60	133.7	15.3
	100	140.4	14.5
Ethylcyclohexane	25	143.1	16.4
	60	148.5	15.6
1-Butene	25	95.3	14.5
1-Pentene	0	106.1	15.4
	25	110.4	14.8
	45	113.1	14.4
1,3-Butadiene	25	88.0	15.2
Benzene	25	89.4	18.8
	45	91.7	18.3
	60	93.4	17.9
	100	98.8	16.9
Toluene, methylbenzene	25	106.8	18.3
*	45	109.2	17.8
	60	111.0	17.4
	100	116.2	16.6
Ethylbenzene	25	123.1	18.4
p-Xylene, 1,4-dimethylbenzene	25	123.9	18.1
Mesitylene, 1,3,5-trimethylbenzene	25	139.6	18.2
, , , , , , , , , , , , , , , , , , ,	20	137.0	10.2

Adapted from Weimer, R. F. and Prausnitz, J. M., Hydrocarbon Process. Petr. Ref., 44, 237, 1965.

TABLE 7

Molar Volumes, Nonpolar Cohesion Parameters, and Polar Cohesion
Parameters of Polar Liquids at Various Temperatures in Order of
Increasing Polarity

Liquid	t/°C	V/cm³mol-1	Nonpolar, δ _x /MPa ^{1/2}	Polar, δ ₂ /MPa ^{1/2}
Acetophenone	25	117.4	19.3	7.6
Tetrahydrofuran	0	79.3	17.6	7.6
	25	81.7	17.0	7.9
	45	85.0	16.5	7.6
Pyridine	25	80.9	20.2	7.1 7.6
	60	83.9	19.1	7.8
	100	87.4	18.1	8.0
Cyclohexanone	25	104.2	18.1	8.3
Chloroethane	25	74.1	15.1	8.8
Diethyl ketone, 3-pentanone	0	103.3	16.4	9.3
	25	106.4	15.9	9.1
	45	108.9	15.4	8.9
	60	110.7	15.1	8.8
21 (2.00) e	100	116.1	14.4	8.5
Diethyl carbonate	25	121.9	16.1	9.2
Bromoethane	25	75.1	15.6	9.9
3. •• 3. · · · · · · · · · · · · · · · · · ·	45	77.3	15.2	9.5
Nitrobenzene	25	102.7	19.8	10.0
Di-(2-chloroethyl) ether	0	109.7	17.8	11.7
	25	117.8	17.1	10.7
Trimethyl phosphate	25	116.2	17.3	10.7
Iodoethane	25	81.1	15.7	10.7
Maria II	45	83.0	15.2	10.5
Methyl ethyl ketone, 2-butanone	0	87.3	16.2	11.3
	25	90.1	15.6	10.9
	45	92.6	15.2	10.6
	60	94.5	14.9	10.4
Cyclonoster	100	99.9	14.1	10.0
Cyclopentanone 2,4-Pentanedione	25	89.5	17.8	11.0
2.5-Herandian	25	103.0	16.5	11.6
2,5-Hexanedione, acetylacetone Diethyl oxalate	25	117.7	17.3	12.0
Dictilyi Oxalate	0	132.7	17.8	12.3
	25	136.2	17.1	12.1
2-Nitropropane	45	139.3	16.6	12.1
Methoxyacetone	25	90.7	16.3	12.3
- Additional and the second se	25	93.2	16.2	12.5
Acetone, 2-propanone	45	96.0	15.5	12.1
a propuloit	0	72.3	16.2	12.9
	25	74.0	15.7	12.6
	45 60	76.2	15.2	12.2
	100	78.1	15.0	11.9
Dimethyl carbonate	25	83.4	14.1	11.2
Butyronitrile	0	85.0	15.9	12.7
	25	85.4 87.9	16.8	13.3
	45	90.1	16.3	12.8
2,3-Butanedione, diacetyl	25	87.8	15.9	12.6
	45	90.4	15.8	13.0
Aniline	25	91.5	15.4	12.6
	60	94.3	20.1 19.2	13.0
	100	97.9	18.3	12.8
1-Nitropropane	25	89.5		12.7
V-Methyl-2-pyrrolidone	25	96.6	16.5 18.7	13.1
2		20.0	10./	13.4

TABLE 7 (continued)

Molar Volumes, Nonpolar Cohesion Parameters, and Polar Cohesion

Parameters of Polar Liquids at Various Temperatures in Order of

Increasing Polarity

Liquid	t/°C	V/cm³mol-1	Nonpolar, δ _λ /MPa ^{1/2}	Polar, δ,/MPa ^{1/2}
Acetic anhydride	25	95.0	16.1	14.5
Propionitrile	0	68.7	16.9	15.2
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	25	70.9	16.3	14.7
	45	72.9	15.9	14.2
	60	74.4	15.6	13.9
	100	79.0	14.9	13.2
Citraconic anhydride	25	89.7	19.3	14.8
Methoxyacetonitrile	25	75.2	16.5	15.0
Furfural	0	81.4	19.2	15.9
	25	83.2	18.5	15.6
	45	84.8	18.0	15.1
	60	85.9	17.7	15.2
	100	89.4	16.9	14.6
Nitroethane	25	72.1	16.4	15.7
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	45	73.6	16.1	15.3
N,N-Dimethylacetamide	0	90.7	17.6	16.2
.,,,	25	93.2	17.0	15.7
	45	95.3	16.5	15.4
y-Butyrolactone	25	77.1	19.4	16.4
N,N-Dimethylformamide	0	75.5	17.5	17.0
	25	77.4	17.0	16.5
	45	79.0	16.5	16.2
	60	80.2	16.2	15.9
	100	83.8	15.5	15.3
3-Chloropropionitrile	25	77.7	17.3	17.9
Acetonitrile	0	51.1	16.9	19.1
	25	52.6	16.4	18.4
	45	54.4	16.1	17.7
	60	55.5	15.8	17.3
	100	58.9	15.1	16.3
Ethylenediamine	25	67.3	16.6	19.2
	60	69.7	15.9	18.5
	100	72.9	15.2	17.7
Nitromethane	25	54.3	16.5	19.3
	45	55.3	16.2	18.9
	60	56.3	15.9	18.5
	100	59.3	15.2	17.6
Dimethylsulfoxide	25	71.3	17.5	19.4

Adapted from Weimer, R. F. and Prausnitz, J. M., Hydrocarbon Process. Petr. Ref., 44, 237, 1965.

$${}^{ij}A = ({}^{i}\delta_{\lambda} - {}^{j}\delta_{\lambda})^{2} + ({}^{i}\delta_{\tau} - {}^{j}\delta_{\tau})^{2}$$

$$(50)$$

or, taking the effect of temperature into account as in Equation 49,

$${}^{ij}A = ({}^{i}\delta_{\lambda} - {}^{j}\delta_{\lambda})^{2} + (T_{\nu}/T)({}^{i}\delta_{\tau} - {}^{i}\delta_{\tau})^{2}$$

$$(51)$$

Helpinstill and Van Winkle¹¹⁵ extended the correlation of Weimer and Prausnitz¹¹³ to polar-polar situations, defining the new parameter ¹⁰ψ to include both polar-polar and polar-nonpolar systems:

TABLE 8

Molar Volumes, Nonpolar Cohesion Parameters and Polar Cohesion
Parameters of Hydrocarbons at Various Temperatures

Liquid	t/°C	V/cm³mol-1	Nonpolar, δ _λ /MPa ^{1/2}	Polar, δ _τ /MPa ^{1/2}
Propane	0	83.1	14.2	0.0
	25	89.4	13.4	0.0
Butane	0	96.7	14.8	0.0
	25	101.4	14.2	0.0
	45	106.0	13.8	0.0
1-Butene	0	90.3	14.8	2.9
w	25	95.3	14.1	2.7
Pentane	0	111.8	15.3	0.0
	25	116.1	14.6	0.0
	45	120.3	14.2	0.0
	60	122.9	13.9	0.0
1-Pentenc	100	131.4	13.5	0.0
1-r emene	0 25	106.0	15.4	2.5
	45	110.1 113.0	14.8	2.2
	60	115.9	14.4	2.1
	100	121.6	14.0 13.5	1.9
Hexane	0	127.3	15.5	1.5
	25	131.6	15.0	0.0
	45	135.4	14.5	0.0
	60	138.7	14.2	0.0
	100	148.0	13.5	0.0
1-Hexene	0	121.6	15.7	2.1
	25	125.9	15.1	1.9
	45	129.5	14.7	1.7
	60	132.4	14.3	1.6
	100	140.7	13.7	1.3
Heptane	0	143.8	15.9	0.0
	25	147.4	15.3	0.0
	45	151.9	14.8	0.0
	60	154.3	14.5	0.0
1 11	100	164.0	13.7	0.0
1-Heptene	45	145.5	14.8	1.4
	60	148.4	14.6	1.3
Decane	100 25	156.8	13.9	0.9
Cyclopentane	0	195.8	15.8	0.0
Эрторонино	25	91.9 94.7	17.4	0.0
	45	97.4	16.8 16.1	0.0
	60	99.4	15.8	0.0 0.0
	100	105.2	14.9	0.0
Cyclohexane	0	105.5	17.3	0.0
	25	108.7	16.6	0.0
	45	111.5	16.1	0.0
	60	113.6	15.8	0.0
	100	119.4	14.9	0.0
Ethylcyclohexane	25	143.3	16.2	0.7
Butylcyclohexane	25	176.4	16.1	0.6
Веплепе	0	86.9	19.6	0.0
	25	89.4	18.8	0.0
	45	91.6	18.2	0.0
	60	93.4	18.3	0.0
Ethylbenzene	100	98.8	17.0	0.0
- my woman	25	123.1	18.1	0.4

TABLE 8 (continued)

Molar Volumes, Nonpolar Cohesion Parameters and Polar Cohesion

Parameters of Hydrocarbons at Various Temperatures

Liquid	t/°C	V/cm³mol-1	Nonpolar, δ _λ /MPa ^{1/2}	Polar, δ ₊ /MPa ^{1/2}
Butylbenzene	25	156.8	18.0	0.3
p-Xylene, 1-4-dimethylbenzene	0	121.0	18.8	0.0
<i>p</i> 12,10110, 1 , 11111111,	25	123.9	18.1	0.0
	45	126.8	17.5	0.0
	60	128.7	17.1	0.0
	100	134.1	16.4	0.0
Mesitylene, 1,3,5-trimethylbenzene	0	136.5	19.1	0.0
industry terror a project and	25	139.8	18.0	0.0
	45	142.7	17.5	0.0
	60	144.8	17.1	0.0
	100	150.8	16.3	0.0
1,4-Diethylbenzene	0	153.1	18.7	0.0
1,1 21041/100	25	156.9	17.9	0.0
	45	159.8	17.4	0.0
	60	162.0	17.0	0.0
	100	168.6	16.2	0.0
Toluene, methylbenzene	0	104.0	19.0	1.7
Toldono, International	25	106.8	18.2	(1.4)
	45	109.2	17.8	1.3
	60	110.8	17.4	1.2
	100	115.9	16.6	1.0

Adapted from Helpinstill, J. G. and Van Winkle, M., Ind. Eng. Chem. Proc. Des. Dev., 7, 213, 1968.

$${}^{ij}A = ({}^{i}\delta_{\tau} - {}^{j}\delta_{\lambda})^{2} + ({}^{i}\delta_{\tau} - {}^{j}\delta_{\tau})^{2} - 2 {}^{ij}\psi$$
 (52a)

Following a procedure similar to that of Weimer and Prausnitz, they used activity coefficient data for hydrocarbons in polar systems and evaluated the parameter ${}^{ij}\psi$ by difference. It was found to be a linear function of $({}^{i}\delta_{\tau} - {}^{j}\delta_{\tau})^{2}$,

- For alkanes, ${}^{ij}\psi = 0.40 ({}^{i}\delta_{\tau} {}^{j}\delta_{\tau})^2$
- For the alkene, 1-pentene, $\psi = 0.22 (\delta_{\tau} \delta_{\tau})^2$
- For aromatic hydrocarbons, $i\psi = 0.48 (i\delta_{\tau} i\delta_{\tau})^2$

It follows from this form of the dependence of $^{ij}\psi$ on δ_{τ} that Equation 52a can be rewritten as²⁵

$${^{ij}}A = ({^{i}}\delta_{\lambda} - {^{j}}\delta_{\lambda})^2 + {^{ij}}b ({^{i}}\delta_{\tau} - {^{j}}\delta_{\tau})^2$$
 (52b)

Values found for the induction cohesive pressure correction factor ^{y}b in various situations are listed in Table 10. These examples are not all strictly comparable, but the departure from unity gives an idea of the extent of "correction" necessary as a result of the simple model used.

In terms of the component parameters in Equation 22 (Section 5.6), the induction parameter may be expressed

$$i^{i}\Psi = {}^{i}\delta_{i}{}^{j}\delta_{d} + {}^{i}\delta_{d}{}^{j}\delta_{i} + {}^{i}\delta_{o}{}^{j}\delta_{o}$$
 (53)

Liquid	tf°C	V/cm³mol-1	Nonpolar, δ _λ /MPa ^{1/2}	Połar, δ _τ /MPa ^{1/2}
Acetone, 2-propanone	0	72.3	16.1	12.0
	25	74.0	15.7	12.9
	45	76.2	15.7	12.3
	60	78.1	14.9	11.9
	100	83,4	14.2	12.8
Acetonitrile	0	51.1	16.9	10.9 19.0
	25	52.6	16.4	18.2
	45	54.4	16.0	17.5
	60	55.5	15.8	17.3
	100	58.9	15.1	16.3
Acetophenone	0	115.0	20.3	10.1
	25	117.4	19.6	8.1
	45	119.8	19.0	8.0
Aniline	25	91.5	20.1	13.5
	60	94.3	19.1	13.7
	100	97.9	18.2	12.2
1-Butanol	25	92.8	15.9	17.2
Butyl acetate	25	131.5	15.6	7.0
y-Butyrolactone	25	77.0	19.6	15.4
Butyronitrile	0	85.4	16.9	12.8
	25	87.9	16.3	12.4
Chi-	45	90.1	15.9	12.1
Chloropropionitrile	0	75.5	17.8	19.8
	25	77.7	17.2	18.7
Contract	45	79.7	16.8	18.0
Cyclopentanone	25	89.2	18.2	9.4
Diethyl carbonate	0	118.6	16.7	9.6
	25	121.9	16.1	9.0
Diethyl ketone, 3-pentanone	45	124.8	15.6	8.8
Diemyr ketone, 5-pentanone	0	103.3	16.4	10.4
	25	106.4	15.8	9.8
Diethyl oxalate	45	108.9	15.4	9.4
Diediyi oxalaje	0	132.7	17.9	13.0
	25	136.2	16.6	13.2
N,N-Dimethylacetamide	45	139.3	16.1	12.8
1111 Dinemytacetainae	0 25	90.7	17.6	16.1
	45	93.2	16.9	14.8
N,N-Dimethylformamide	0	95.3	16.5	14.2
	25	75.5 77.4	17.7	16.1
	45	77.4	17.1	15.5
	60	80.2	16.6	14.9
	100	83.8	16.3	15.2
Dimethylsulfoxide	25	71.3	15.6	14.2
•	60	73.8	17.3	19.2
	100	77.2	16.6	18.7
Ethanol	25	58.7	15.9 16.0	18.4
Ethyl acetate	25	98.5	15.5	21.9
	60	103.3	14.8	9.2
Ethyl butyl ketone	25	139.8	16.1	8.8
	60	146.0	15.3	7.4
Ethylene chlorohydrin	25	66.9	16.5	7.5 19.1
	60	68.6	15.9	19.1
	100	77.9	15.1	17.3
				- 1 17

TABLE 9 (continued)

Molar Volumes, Nonpolar Cohesion Parameters and Polar Cohesion

Parameters of Polar Liquids at Various Temperatures

Liquid	t/°C	V/cm³mol-1	Nonpolar, δ _λ /MPa ^{1/2}	Polar, δ/MPa ^{1/2}
Ethylenediamine	0	65.6	17.1	19.9
) Tan 4 - 2 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	25	67.3	16.6	19.1
	45	68.7	16.2	18.4
	60	69.7	15.9	18.1
	100	72.9	15.2	17.4
Ethylene glycol	25	56.0	17.3	31.3
Furfural	0	81.4	19.3	16.1
Contraction of the second	25	83.2	18.7	15.4
	45	84.8	18.2	14.9
	60	86.9	17.9	15.0
	100	89.4	16.9	14.4
Methyl Cellosolve®	25	79.4	16.1	15.7
	60	82.3	15.5	15.3
	100	86.0	14.8	16.1
Methyl ethyl ketone, 2-butanone	0	87.3	16.3	11.4
The Company of the Co	25	90.1	15.8	11.0
	45	92.6	15.1	10.5
	60	94.5	15.0	10.6
	100	100.0	14.2	10.0
N-Methyl-2-pyrrolidone	0	94.5	19.2	10.0
All the contrast of the contrast that the contrast to the	25	96.6	18.5	
	45	98.6	17.9	7.6
	60	99.6	17.8	13.0
	100	103.3	16.9	12.3
Nitrobenzene	25	102.7	20.1	9.5
	60	105.5	19.3	8.7
	100	109.1	18.2	9.1
Nitromethane	0	53.1	17.3	20.7
	25	54.3	16.8	20.0
	45	55.3	16.4	19.4
	60	56.3	16.1	18.4
	100	59.3	15.4	16.8
Acetylacetone, pentanedione	25	103.1	17.5	10.8
1-Pentanol, amyl alcohol	25	108.7	16.1	14.7
Phenol	25	89.3	20.2	13.0
	100	95.2	18.2	13.9
1-Propanol	25	75.2	15.9	18.9
2-Propanol, isopropanol	25	77.0	15.6	19.0
Propionitrile	0	68.7	16.9	15.1
	25	70.9	16.3	14.7
	45	72.9	15.9	14.4
	60	74.4	15.6	14.1
- 14	100	79.0	14.8	13.7
Pyridine	0	78.7	20.8	9.3
	25	80.9	20.2	7.9
	45	82.9	19.6	6.5
	60	83.9	19.2	6.2
2 B	100	87.4	18.1	6.6
2-Pyrrolidone	25	76.5	20.1	14.1
Tatuahudaafuu	45	77.4	20.2	13.3
Tetrahydrofuran	0	79.3	17.7	8.1
	25	81.8	17.1	7.4

Adapted from Helpinstill, J. G. and Van Winkle, M., Ind. Eng. Chem. Proc. Des. Dev., 7, 213, 1968.

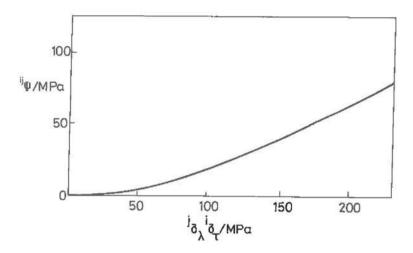


FIGURE 4. Contribution of induction interactions to interchange cohesive pressure at 25°C. (Adapted from Blanks, R. F. and Prausnitz, J. M., Ind. Eng. Chem. Fund., 3, 1, 1964.)

TABLE 10
Values of Induction Cohesive Pressure Correction
Factor (*b)

Component i		
(interacting with liquid f)	üЬ	Ref.
Induction-free system	1.00	-
Alkane	0.21	113
Alkane	0.20	115
Alkene	0.17	113
Alkene	0.55	115
Aromatic	0.10	113
Aromatic	0.05	115
Vapor of j	0.63	120
Vulcanized polyisoprene (natural rubber)	0.19	118
Polymers, surfactants, pigments ^b	0.25	9

* From surface free energy, Equation 17, Chapter 17.

Based on Equation 55, and Equation 25, Chapter 17 (the validity of which have been questioned).

Adapted from Hansen, C. M. and Beerbower, A., Kirk-Oihmer Encyclopedia of Chemical Technology, 2nd ed., Standen, A., Ed., Interscience, New York, 1971, 889. (Related data appear in Table 13.)

Further development of these ideas led to the MOSCED (modified separation of cohesive energy density) method (Sections 5.13 and 7.8).

For the special case of a solute in a supercritical solvent (Sections 11.3 and 12.2), Kramer and Thomas¹⁵⁷ neglected the polar and hydrogen-bonding contributions to the cohesive properties of the solvent in its supercritical state while retaining these contributions for the solute and introducing a binary interaction parameter ${}^{y}\beta$ for solute-solvent interactions so Equation 52b simplified to

$${}^{y}A = ({}^{t}\delta_{d} - {}^{j}\delta_{d})^{2} + {}^{j}\delta_{\tau}^{2} - {}^{y}\beta$$
(52c)

Seidel and Bittrich¹¹⁶ from a theoretical model evaluated polar contributions to the enthalpy of vaporization, giving totals which for liquids without hydrogen bonding were in good agreement with experiment.

5.9 HANSEN PARAMETERS

Hansen⁹⁻³⁰ proposed a practical extension of the Hildebrand parameter method to polar and hydrogen-bonding systems, primarily for use in polymer-liquid interactions (Section 14.5). It was assumed that dispersion, polar, and hydrogen-bonding parameters were valid simultaneously, related by Equation 54, with the values of each component being determined empirically on the basis of many experimental observations:

$$\delta_t^2 = \delta_d^2 + \delta_p^2 + \delta_h^2 \tag{54}$$

These parameters are listed in Table 11. Hansen's total cohesion parameter, δ_t , should equal the Hildebrand parameter, although the two quantities may differ for materials with specific interactions when they are determined by different methods. The three component parameters were plotted on a set of three mutually perpendicular axes.

For liquids, the dispersion component, δ_d , obtained by homomorph methods (Section 6.7) was subtracted from the total cohesive property, and the remainder was split into hydrogen-bonding and polar contributions so as to optimize the description of the miscibility behavior of all the polymer-liquid systems investigated (comprising several polymers and many liquids). Both empirical relations (Section 8.2) such as Böttcher's equation¹¹⁷ and group methods (Section 6.8) were used. Once the three component parameters for each liquid were evaluated, the set of parameters for each polymer could be determined. Burrell⁵⁰ pointed out that methods such as this tend to distort the relative magnitudes of the various intermolecular effects, the polar contribution to the cohesive pressure usually being very small in relation to that of hydrogen bonding in those situations where hydrogen bonds exist.

Other Hansen parameter values are presented in Table 12. These data, which draw on earlier results of Hansen, ^{10,11} as well as on other calculations and observations of elastomer swelling, are based on compilations by Beerbower and Dickey¹¹⁸ and by Gardon and Teas. ¹¹⁹ Their inclusion is warranted because they provide information on a wide range of pure and mixed liquids. In addition, Table 18 (Section 5.11) presents Hansen parameters for an even wider range of liquids, calculated by the semi-empirical methods described in Sections 5.11 and 7.2.

Occasional negative values of the component parameters have been attributed to the center of maximum interaction lying closer to the axis than the radius of the solubility sphere (see below). The scale on the dispersion axis was doubled with the aim of providing approximately spherical "volumes" of solubility which were drawn up for each solute and then compared with the point locations in this space for each liquid (Figure 5). The distance of the liquid coordinates (${}^i\delta_a$, ${}^i\delta_p$, ${}^i\delta_h$) from the center point (${}^i\delta_a$, ${}^i\delta_p$, ${}^i\delta_h$) of the solute sphere of solubility is

$${}^{ij}R = [4({}^{i}\delta_{d} - {}^{j}\delta_{d})^{2} + ({}^{i}\delta_{p} - {}^{j}\delta_{p})^{2} + ({}^{i}\delta_{h} - {}^{j}\delta_{h})^{2}]^{1/2}$$
(55)

This may be expressed in a form similar to that of Equation 52b, with b=0.25 and $\delta_{\tau}^2=\delta_p^2+\delta_h^2$:

$${}^{ij}A = ({}^{i}\delta_{d} - {}^{j}\delta_{d})^{2} + 0.25 \left[({}^{i}\delta_{p} - {}^{j}\delta_{p})^{2} + ({}^{i}\delta_{h} - {}^{j}\delta_{h})^{2} \right]$$
 (56)

The distance ${}^{i}R$ in Equation 55 can be compared with the radius ${}^{j}R$ of a solute sphere of solubility, and if ${}^{i}R < {}^{j}R$ there is a high likelihood of the liquid i dissolving j. This was

TABLE 11 Hausen and Beerbower's 1971 Parameters for Liquids at 25°C

drocarbons 18.4 16.0 16.0 16.8 16.8 16.8 16.8 16.8 16.8 16.9 16.9 16.9 18.8 17.8 17.8 18.0 18.0 18.0 19.2 20.7 18.0 18.0 19.2 20.7 18.0 18.0 19.2 20.7 18.0 18.0 19.2 20.7 18.0 18.0 19.6 20.7 18.0 19.6 20.7 18.0 10.0 18.0		I om cmo/A	u	4		
Alkanes 101.4 14.1 0.0 0.0 116.2 14.5 0.0 0.0 117.4 13.7 0.0 0.0 117.4 13.7 0.0 0.0 117.4 15.3 0.0 0.0 117.5 15.3 0.0 0.0 117.6 14.9 0.0 0.0 117.7 15.8 0.0 0.0 117.9 15.8 0.0 0.0 117.9 16.8 0.0 0.0 118.3 0.0 0.0 0.0 128.3 16.6 0.0 0.0 128.3 16.0 0.0 0.0 128.4 16.6 0.0 0.0 128.5 16.6 0.0 0.0 128.6 16.6 0.0 0.0 128.7 16.8 0.0 0.0 128.8 0.0 0.0 0.0 128.9 18.8 0.0 0.0 111.5 19.2 2.0 3.9 20 113.6 18.8 0.6 1.0 4.1 11 113.8 20.7 0.8 1.0 13.9 20.7 0.8 1.4 13.1 11.5 19.2 2.0 13.1 11.5 19.2 2.0 13.1 17.8 1.0 3.1 13.1 17.8 0.6 11.4 13.2 17.8 0.6 11.4 13.3 18.0 0.0 0.0 13.4 2.1 21.5 13.6 19.6 2.0 2.0 15.6 18.1 15.6 2.9 22.1		A Verilla III III	õ	ග්	డ్డ్	ශ්
101.4 14.1 0.0 0.0 0.0 116.2 14.5 0.0 0.0 0.0 117.4 13.7 0.0 0.0 0.0 131.6 14.9 0.0 0.0 0.0 0.0 147.4 15.3 0.0 0.0 0.0 0.0 0.0 175.5 0.0 0.0 0.0 0.0 175.7 15.8 0.0 0.		Alkane	90			
101.4 14.1 0.0 0.0 116.2 14.5 0.0 0.0 117.4 13.7 0.0 0.0 131.6 14.9 0.0 0.0 163.5 15.3 0.0 0.0 165.1 14.3 0.0 0.0 195.9 15.8 0.0 0.0 195.9 15.8 0.0 0.0 108.7 16.8 0.0 0.0 128.3 16.0 0.0 0.0 128.3 16.0 0.0 0.0 11.8 0.0 0.0 0.0 11.0 15.9 18.8 0.0 0.0 11.1 11.5 19.2 2.0 3.9 111.5 19.2 2.0 3.9 111.6 18.6 0.0 0.1 113.8 20.7 0.8 4.7 2.1 113.8 20.7 0.8 4.7 2.1 114.1 21.3 17.8 0.6 11.4 11.4 115.0 18.0 0.0 0.0 114.1 17.8 1.0 0.6 114.1 17.8 1.0 0.6 115.1 17.8 0.6 1.0 115.1 17.8 0.6 1.0 115.1 17.8 0.6 1.0 115.1 17.8 0.6 1.0 115.1 17.8 0.0 0.0 115.1 17.1 17.8 0.0 0.0 115.1 17.1 17.1 17.1 17.1 17.1 17.1 17.1						
116.2 14.5 0.0 0.0 0.0 117.4 13.7 0.0 0.0 0.0 117.4 13.7 0.0 0.0 0.0 117.4 15.3 0.0 0.0 0.0 0.0 0.0 147.4 15.3 0.0 0.0 0.0 0.0 195.9 15.8 0.0		101.4	14.1	0.0	00	
117.4 13.7 0.0 0.0 14.5 14.9 0.0 0.0 14.5 15.5 0.0 0.0 166.1 14.3 0.0 0.0 179.7 15.8 0.0 0.0 179.7 15.8 0.0 0.0 228.6 16.0 0.0 0.0 236.8 16.6 0.0 0.0 108.7 16.8 0.0 0.0 128.3 16.0 0.0 0.0 158.9 18.0 0.0 0.0 159.9 18.0 0.0 0.0 159.9 18.0 0.0 0.0 111.5 19.2 2.0 3.9° 121.2 17.8 1.0 4.1 121.2 17.8 1.0 3.1 138.8 20.7 0.8 4.7 156.9 18.0 0.0 0.0 156.9 18.0 0.0 156.9 18.0 0.0 156.9 18.0 0.0 156.9 18.0 0.0 156.9 18.0 0.0 156.9 18.0 0.0 156.9 18.0 0.0 156.9 18.0 0.0 156.9 18.0 0.0 156.9 18.0 0.0 156.9 18.0 156.9 18.0 0.0 156.9 18.0 156.9 18.0 0.0 156.9 18.0 0.0 156.9 18.0 0.0 156.9 18.0 0.0 156.9 18.0 0.0 156.9 18.0 0.0 156.9 18.0 0.0 156.9 18.0 0.0 156.9 18.0 0.0 156.9 18.0 0.0 156.9 18.0 0.0 156.9 18.0 0.0 156.9 18.0 0.0 156.9 18.0 0.0 156.9 18.0 0.0 156.9 18.0 0.0 156.9 18.0 156.9 18.0 0.0 156.9 18.0 0.0 156.0 18.0 156.0 18.0 156.0 18.0 156.0 18.0 156.0 18.0 156.0 18.0 156.0 18.0 156.0 18.0 156.0 18.0 156.0 18.0 156.0 18.0 156.0 18.0 156	and the	116.2	14.5	0.0	0.0	14.1
131.6 14.9 0.0 0.0 0.0 14.7 15.3 15.5 0.0	Cutanic	117.4	13.7	0.0	0.0	14.5
tane 147.4 15.3 0.0 0.0 0.0 163.5 15.3 0.0		131.6	14 0	2 0	0.0	13.7
tane 163.5 15.5 0.0 0.0 0.0 179.7 15.8 0.0 0.0 0.0 0.0 179.7 15.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0		147.4	14.7	0.0	0.0	14.9
tane 166.1 14.3 0.0 0.0 0.0 179.7 15.8 0.0 0.0 0.0 0.0 0.0 195.9 15.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0		163 €	10.0	0.0	0.0	15.3
179.7 14.3 0.0 0.0 179.7 15.8 0.0 0.0 195.9 15.8 0.0 0.0 228.6 16.0 0.0 0.0 359.8 16.4 0.0 0.0 108.7 16.8 0.0 0.0 128.3 16.0 0.0 0.0 156.9 18.8 0.0 0.0 159.9 18.0 0.0 0.0 159.9 18.1 0.0 0.0 18.4 18.4 0.0 0.0 18.5 1.0 3.1 18.6 1.0 3.1 18.8 20.7 0.8 18.8 20.7 0.8 18.9 18.0 0.0 18.9 18.0 0.0 18.9 18.0 0.0 18.9 18.0 0.0 18.4 19.5 2.0 18.6 19.6 2.0 18.7 2.1 18.8 20.7 0.8 18.4 20.7 0.8 18.4 20.7 0.8 18.4 20.7 0.8 18.4 20.7 20.0 18.4 20.5 18.6 20.0 2.9 18.7 21.5 18.6 19.6 2.0 18.4 20.5 18.6 18.0 18.7 18.8	e, isooctane	166.1	5.51	0.0	0.0	15.5
179.7 15.8 0.0 0.0 0.0 228.6 15.8 0.0		1,001	14.3	0.0	0.0	14.2
228.6 15.8 0.0 0.0 228.6 16.0 0.0 0.0 294.1 16.4 0.0 0.0 108.7 16.8 0.0 0.0 156.9 18.8 0.0 0.0 156.9 18.0 0.0 0.0 156.9 18.0 0.0 0.0 111.5 19.2 2.0 3.9 115.6 18.6 1.0 4.1 1123.1 17.8 1.0 3.1 113.8 20.7 0.8 4.7 113.8 20.7 0.8 4.7 114.0 2.1 115.9 18.0 0.0 0.0 115.1 17.8 0.0 115.1 17.1 17.1 17.1 17.1 17.1 17.1 17.1		1.9.1	15.8	0.0	0.0	U.\$1
228.6 16.0 0.0 0.0 0.0 294.1 16.4 0.0 0.0 0.0 359.8 16.6 0.0 0.0 0.0 108.7 16.8 0.0 0.0 0.0 156.9 18.8 0.0 0.0 0.0 159.9 18.0 0.0 0.0 106.8 18.0 0.0 0.0 111.5 19.2 2.0 3.9 115.6 18.6 1.0 4.1 11.1 123.1 17.8 0.6 1.4 123.1 17.8 0.6 1.4 138.8 20.7 0.8 4.7 138.8 20.7 0.8 4.7 136.9 18.0 0.0 0.6 154.1 21.5 19.6 2.0 2.9 154.1 21.5 18.0 0.0 0.6 156.9 18.0 0.0 0.0		195.9	15.8	0.0	0.0	15.8
294.1 16.4 0.0 0.0 0.0 10.8 359.8 16.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		228.6	16.0	0.0	0.0	15.8
359.8 16.6 0.0 0.0 10.0 108.7 16.8 0.0 0.0 0.0 0.0 0.0 128.3 16.0 0.0 0.0 0.0 0.0 128.3 16.0 0.0 0.0 0.0 0.0 0.0 156.9 18.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		294.1	16.4	0.0	0.0	16.0
alin 168.7 16.8 0.0 0.0 1.0 128.3 16.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0		359.8	16.6	0.0	0.0	16.4
alin 128.3 10.0 0.0 0.2s 128.3 16.0 0.0 0.0 0.0 1.0 156.9 18.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		108 7	16.0	0.0	0.0	16.6
alin 156.9 18.8 0.0 1.0 1.0 1.0 156.9 18.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		1363	10.0	0.0	0.2	16.8
Arotnatic Hydrocarbons 89.4 18.4 0.0° 2.0 111.5 19.2 2.0 3.9° 115.6 18.6 1.0 4.1 123.1 17.8 1.0 3.1 138.8 20.7 0.8 4.7 2 136.0° 19.6° 2.0 3.9° 14 2.0 3.9° 25nc 139.8 18.0 0.0 0.6 11 136.0° 19.6° 2.0 2.9 154.1 21.5 10.0 2.1 156.9 18.0 0.0 0.0	ene, decalin	C.021	16.0	0.0	1.0	16.0
Arotnatic Hydrocarbons 89.4 18.4 0.0° 2.0 106.8 18.0 1.4 2.0 111.5 19.2 2.0 3.9° 115.6 18.6 1.0 4.1 123.1 17.8 1.0 3.1 138.8 20.7 0.8 4.7 136.0° 19.6° 2.0 154.1 21.5 1.0 2.1 155.9 18.0 0.0	ialene	5.001	18.8	0.0	0.0	10 0
89.4 18.4 0.0° 2.0 116.8 18.0 1.4 2.0 111.5 19.2 2.0 3.9° 115.6 18.6 1.0 4.1 121.2 17.8 1.0 3.1 123.1 17.8 0.6 1.4 1.4 138.8 20.7 0.8 4.7 136.0° 19.6° 2.0 2.9 154.1 21.5 1.0 2.1 156.9 18.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		6,961	18.0	0.0	0.0	18.0
89.4 18.4 0.0° 2.0 106.8 18.0 1.4 2.0 111.5 19.2 2.0 3.9° 115.6 18.6 1.0 4.1 123.1 17.8 1.0 3.1 138.8 20.7 0.6 1.4 136.0° 19.6° 2.0 2.9 154.1 21.5 1.0 2.1 156.9 18.0 0.0 0.6		Aromatic Hydro	carbons			
89.4 18.4 0.0° 2.0 106.8 18.0 1.4 2.0 111.5 19.2 2.0 3.9° 115.6 18.6 1.0 4.1 123.1 17.8 0.6 1.4 138.8 20.7 0.8 4.7 136.0° 19.6° 2.0 2.9 154.1 21.5 1.0 2.1 156.9 18.0 0.0 0.6		9				
106.8 18.0 1.4 2.0 111.5 19.2 2.0 3.9 15.0 15.6 18.6 1.0 4.1 121.2 17.8 1.0 4.1 123.1 17.8 0.6 1.4 138.8 20.7 0.8 4.7 136.0 136.0 19.6 2.0 2.9 154.1 21.5 1.0 2.1 156.9 18.0 0.0 0.0 0.0		89.4	18.4	0.0		
111.5 19.2 2.0 3.9° 115.6 18.6 1.0 4.1 121.2 17.8 1.0 4.1 123.1 17.8 0.6 1.4 138.8 20.7 0.8 4.7 136.0° 19.6° 2.0 2.9 154.1 21.5 1.0 2.1		106.8	18.0	2:-	7.0	9.81
zenc 136.0° 19.6° 2.0 3.9° 115.6 115.6 11.0 4.1 121.2 17.8 1.0 3.1 1.4 138.8 20.7 0.8 4.7 136.0° 136.0° 19.6° 2.0 2.9 154.1 21.5 1.0 2.1 156.9 18.0 0.0		111.5	0.00	1.4	2.0	18.2
2enc 13.0 18.6 1.0 4.1 12.2 17.8 1.0 3.1 1.4 138.8 20.7 0.8 4.7 139.8 18.0 0.0 0.6 154.1 21.5 1.0 2.9 154.1 21.5 1.0 2.1 156.9 18.0 0.0 0.0		7 4 1 1	7.61	2.0	3.6	203
zene 123.1 17.8 1.0 3.1 1.4 1.8 20.7 0.6 1.4 1.4 1.8 18.0 0.0 0.6 1.4 1.4 1.5 1.0 1.6 1.4 1.4 1.5 1.0 1.6 1.6 1.6 1.6 1.0 1.0 1.0 1.1 1.6 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	phycha	0.01	18.6	1.0	4	0.00
2cmc 123.1 17.8 5.1 138.8 20.7 0.6 1.4 139.8 18.0 0.0 0.6 136.0* 19.6* 2.0 2.9 154.1 21.5 1.0 2.1 156.9 18.0 0.0	200	121.2	17.8	10		0.61
Zenc 138.8 2.7. 0.0 1.4 1.4 1.9.8 18.0 0.0 0.6 1.6 1.9.6 2.0 2.9 1.54.1 21.5 1.0 2.1 1.56.9 18.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		123.1	17.8	2.0	3.1	18.0
20.7 0.8 4.7 139.8 18.0 0.0 0.6 136.0° 19.6° 2.0 2.9 154.1 21.5 1.0 2.1 156.9 18.0 0.0		138.8	200	0,0	1.4	17.8
136.0° 19.6° 2.0 0.6 154.1 21.5 1.0 2.1 156.9 18.0 0.0	hylbenzene	130 8	7.07	0.8	4.7	212
136.0° 19.6° 2.0 2.9 154.1 21.5 1.0 2.1 156.9 18.0 0.0	etralin	139.8	18.0	0.0	90	7.17
21.5 1.0 2.1		136.0°	19.6	2.0	0.0	18.0
18.0 0.0		154.1	21.5	10	۷.۷	20.0
		156.9	18.0	0:0	1.7	21.6

Chevoundame, methy choride S54 153 170	Tetrahydronaphthalene, tetralin Diphenyl 1,4-Diethylbenzene	136.0° 154.1 156.9	18.0 19.6⁴ 21.5 18.0	0.0 2.0 1.0 0.0	0.6 2.9 2.1 0.6	18.0 20.0 21.6 18.0
Halohydrocarbons ride 55.4 15.3° 6.1 m 22 m 21 m 22 72.9 18.2 6.3 63.9 18.2 65.0 17.4 5.7 72.9 12.3 6.3 72.9 15.8 3.1 72.9 15.8 3.1 72.9 15.8 3.1 72.9 17.0 6.8 80.7 17.0 6.8 80.7 17.8 3.1 80.7 17.8 3.1 80.7 17.8 3.1 80.7 17.8 3.1 80.7 17.8 3.1 80.7 17.8 3.1 80.7 17.8 3.1 80.7 17.8 3.1 80.7 17.8 3.1 80.7 17.8 3.1 80.7 17.8 3.1 80.7 17.8 3.1 80.7 17.8 3.1 80.7 17.8 3.1 80.7 17.8 3.1 80.7 17.8 3.1 80.7 17.8 3.1 80.7 17.8 3.1 80.0 6.3 80.7 17.8 3.1 80.0 6.3 80.0 6.3 80.0 0.0 80						
Halohydrocarbons Halohydrocarbons						
Halohydrocarbons ride 55.4 15.3° 6.1 3.9 65.0 17.4 5.7 18.2 6.3 6.1 65.0 17.4 5.7 17.9 12.3 6.3 65.1 3.5 17.9 12.3 6.3 65.1 3.5 17.9 12.3 6.3 17.0 6.8 3.1 17.0 6.8 3.1 17.0 6.8 3.1 17.0 17.0 6.8 17.1 17.0 6.8 17.1 17.0 6.8 17.1 17.0 6.8 17.1 17.0 6.8 17.1 17.0 6.8 17.1 17.0 6.8 17.1 17.0 6.8 17.1 17.0 6.9 17.1 17.0 6.5 17.1 17.0 6.5 17.1 17.0 6.5 17.1 17.0 6.5 17.1 17.0 6.5 17.1 17.0 6.5 17.1 17.0 6.5 17.1 17.0 6.5 17.1 17.0 6.5 17.1 17.0 6.5 17.1 17.0 6.5 17.1 17.0 6.5 17.1 17.0 6.5 17.1 17.0 6.5 17.1 17.0 6.5 17.1 17.0 6.5 17.1 17.0 6.5 17.1 17.0 6.5 17.1 17.0 6.5 17.1 17.0 6.3 17.1 17						
ride 65.4 15.3° 6.1 3.9 6.1 3.9 an 22 72.9 12.3 6.3 6.1 3.5 72.9 12.3 6.3 5.7 5.7 6.9 12.3 6.3 5.7 6.9 12.3 6.3 5.7 6.9 12.3 6.3 5.7 6.9 12.3 6.3 5.7 6.9 12.3 6.3 5.7 75.4 15.8 3.1 5.7 75.4 15.8 3.1 5.7 75.4 15.8 3.1 5.7 75.4 15.8 3.1 5.7 75.4 15.8 3.1 5.7 75.4 15.8 3.1 5.7 75.4 15.8 3.1 5.7 75.4 15.8 3.1 5.7 75.4 15.8 3.1 5.7 75.4 15.8 3.1 5.7 75.4 15.8 3.1 5.7 75.4 15.8 3.1 5.7 75.4 15.8 3.1 5.7 75.4 15.8 3.1 5.7 75.4 15.8 3.1 5.7 75.4 15.8 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0		Halohydro	carbons			
63.9 18.2 6.3 6.1 nn 22 72.9 17.4 5.7 3.5 nn 21 75.4 15.8 3.1 5.7 3.5 nn 21 76.9 17.4 5.7 6.1 5.7 6.1 6.1 6.3 5.7 7.7 6.1 6.2 6.3 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 <th< td=""><td>Chloromethane, methyl chloride</td><td>55.4</td><td>15.3</td><td>6.1</td><td>3.9</td><td>17.0</td></th<>	Chloromethane, methyl chloride	55.4	15.3	6.1	3.9	17.0
nn 22	Bromochloromethane	63.9	18.2	6.3	6.1	20.3
15. 15. 15. 15. 15. 15. 15. 15. 15. 15.	Chlorodifluoromethane, Freon 22	72.9	17.4	5.7	3,5	18.6
## 15.6.9 15.8 3.1 5.7 79.0 17.0 6.8 4.5 80.7 17.0 6.8 4.5 80.7 17.8 3.9 5.5 80.7 17.8 3.9 5.5 80.7 17.8 3.9 5.5 80.7 17.8 3.9 5.5 80.7 17.8 3.9 5.5 80.7 17.8 3.9 5.5 80.7 17.8 3.9 5.5 80.7 17.8 3.9 5.5 80.8 16.6 8.2 0.4 87.5 21.5 4.1 6.1 87.5 21.5 4.1 6.1 87.5 21.5 4.1 6.1 88.1 16.1 7.8 2.0 80.0 1.0 92.3 12.3 80.1 10.4 17.0 4.3 2.0 80.0 10.4 17.0 4.3 80.1 10.2 19.0 80.2 11.8 5.1 80.2 11.8 5.1 80.3 11.8 80.4 11.8 80.6 12.7 80.6 12.7 80.6 12.7 80.7 11.8 80.8 80.8 12.1 80.9 80.0	Dichlorofluoromethane, Freon 21	75.4	15.8	3.1	7.7	14.9
79.0 17.0 6.8 4.5 Binodide 80.5 17.8 3.9 5.5 In chloride 80.5 17.8 3.9 5.5 In chloride 80.5 17.8 3.9 5.5 In chloride 84.8 16.6 8.2 0.4 In chloride 87.0 19.0 6.8 12.1 In chloride 87.0 19.0 6.8 12.1 In chloride 87.1 16.1 7.8 2.0 In cord 88.1 16.1 7.8 2.0 In cord 88.1 16.1 7.8 2.0 In cord 88.1 16.1 7.8 2.0 In cord 90.2 18.0 2.1 0.0 In cord 97.1 17.8 0.0 0.0 In cord 97.2 17.3 2.9 2.9 In cord 97.2 17.3 2.9 2.9 In cord 10.0 4.3 2.1	Bromoethane, ethyl bromide	6.97	15.8	3.1	5.7	17.0
liiotide 80.5 17.8 3.9 5.5 m chloride 84.8 16.6 8.2 0.4 m showinde 87.0 19.0 6.8 12.1 m strict 12 12.1 12.1 12.1 12.1 12.1 12.1 12.1	1.2-Dichlorethene athulane dichloride	79.0	17.0	8.9	4.5	18.8
m echloride 84.8 17.8 3.1 5.5 m echloride 84.8 16.6 8.2 0.4 are brounide 8.7 17.8 3.1 5.7 are fibrornide 87.0 19.0 6.8 12.1 oride 87.0 19.0 6.8 12.1 oride 88.1 16.1 7.8 2.0 son 12 92.3 12.3 2.0 0.0 on 11 92.8 15.3 2.1 0.0 on 11 92. 17.0 4.3 2.0 oride 97.1 17.8 0.0 0.0 oride 97.1 17.8 0.0 0.0 oride 97.1 17.8 0.0 0.0 oride 97.2 12.3 2.1 0.0 oride 97.1 17.8 0.0 0.0 oride 90.2 18.8 5.1 9.4 oride 100.4 17.0 4.3 2.0 oride 100.4 17.0 4.3 2.0 oride 90.2 18.8 5.1 9.4 oride 100.4 17.0 19.0 6.5 2.7 oride 100.2 18.8 7.2 2.7 oride 90.0 0.0 oride 9.7 1 18.8 0.0 oride 90.7 1 18.8 19.0 0.0 oride 90.7 1 18.8 18.8 18.8 18.8 18.8 18.8 18.8	Diodomethane, methylene diiodide	4.6/	19.0	7.4	4.1	20.9
me chloride ### 16.6 ### 16.6 ### 16.6 ### 5.11 ### 5.11 ### 5.11 ### 5.11 ### 6.11 ###	Trichloromethane, chloroform	80.7	17.8	3,9	5.5	19.0
atic bromide atic bromide atic bromide atic brownide atic brow	1,1-Dichloroethane, ethylidene chloride	84.8	16.6	2.7	5.7	19.0
m 87.0 19.0 6.8 12.1 m 88.1 16.1 7.8 2.0 90.2 18.0 3.1 5.3 on 11 92.8 15.3 2.0 0.0 on 11 97.0 9.6 2.5 0.0 intrachloride 97.1 17.8 0.0 on 11 17.0 17.0 4.3 2.1 incethylene 101.1 19.0 6.5 2.9 incethylene 104.9 16.4 5.5 2.1 incethylene 105.3 20.5 5.5 4.1 incethylene 105.3 20.5 5.5 5.1 incethylene 105.3 20.5 5.1 incethylene 105.3 20.5 5.1 incethylene 105.3 20.5 5.1 incethylene 105.3 20.5 5.1 incethylene 105.3 20.0 0.0 incethylene 105.3 20.0 0.0 incethylene 105.5	1,1-Dibromoethane, ethylidene bromide	11	18.4	5.1	6.5	20.3
oride 88.1 16.1 7.8 2.0 90.2 18.0 3.1 5.3 on 11 92.8 15.3 2.1 0.0 on 11 97.0 9.6 2.5 0.0 tetrachloride 97.1 17.8 0.0 0.6 loo.4 17.0 4.3 2.1 roethylene 101.1 19.0 6.5 2.9 ne 104.9 16.4 5.5 2.9 105.2 18.8 5.1 9.4 110.8 22.7 5.1 8.2 111.8 0.0 o. Freon 113 119.2 14.7 1.6 0.0 c. Freon 113 12.1 17.4 5.5 114.0 20.3 3.1 4.1 1187.0 12.5 0.0 0.0 o. 0.0 227.3 12.5 0.0 0.0 o. 0.0	Tribromomethane, tropped dibromide	87.0	19.0	8.9	12.1	23.9
eon 12 92.3 18.0 17.8 2.0 on 11 92.3 12.3 2.0 0.0 12.3 92.3 12.3 2.0 0.0 0.0 92.8 15.3 2.1 0.0 96 100.4 17.0 96 2.5 0.0 0.6 100.4 17.0 17.8 0.0 0.6 100.4 17.0 19.0 4.3 2.1 100.1 19.0 16.4 5.5 2.1 105.2 112.8 19.2 115.0 18.8 22.7 21.1 19.2 115.0 118.8 22.7 21.1 19.0 21.1 19.0 20.3 3.1 4.1 19.0 20.3 3.1 4.1 19.0 20.3 3.1 4.1 19.0 20.3 3.1 19.0 0.0 0.0 20.0 20.0 0.0 0.0 20.0 20.0	1-Chloropropane, propyl chloride	C: / S	21.5*	4.1	6.1	22.7ª
eon 12 92.3 12.3 2.0 0.0 0.0 11 92.8 15.3 2.0 0.0 0.0 15.3 2.1 0.0 0.0 0.0 10.4 17.0 17.8 0.0 0.6 100.4 17.0 4.3 2.1 0.6 100.4 100.1 19.0 6.5 2.1 100.1 19.0 4.3 2.0 2.1 100.1 19.0 4.3 2.0 2.0 104.9 16.4 5.5 2.1 105.2 112.8 19.2 6.3 3.3 115.0 116.8 22.7 5.1 8.2 2.7 116.8 22.7 5.1 116.8 22.7 5.1 116.8 22.7 5.1 116.0 0.0 12.7 116.0 0.0 12.7 118.0 0.0 0.0 22.7 118.0 0.0 0.0 0.0 22.7 118.0 0.0 0.0 0.0 22.7 118.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Trichloroethylene	90.2	18.0	× . ×	2.0	17.8
on 11 92.8 15.3 2.1 0.0 97.0 9.6 9.6 2.5 0.0 0.6 100.4 17.0 17.8 0.0 0.6 0.6 100.4 17.0 4.3 2.1 0.6 101.1 19.0 6.5 2.9 2.0 102.1 19.0 4.3 2.1 2.0 102.1 19.0 4.3 2.1 2.0 104.9 16.4 5.5 2.1 105.2 18.8 5.1 9.4 105.3 2.0 112.8 19.2 6.3 3.3 3.3 3.3 3.3 4.1 115.0 12.7 116.8 22.7 5.1 8.2 2.7 116.8 22.7 116.0 0.0 12.1 117.0 12.7 12.8 12.3 117.4 5.5 0.0 0.0 0.0 227.3 12.5 0.0 0.0 0.0	Dichlorodifluoromethane, Freon 12	92.3	12.3	2.0	0.0	19.0
tetrachloride 97.0 9.6 2.5 0.0 tetrachloride 97.1 17.8 0.0 0.6 100.4 17.0 4.3 2.1 101.1 19.0 6.5 2.9 102.1 19.0 6.5 2.9 102.1 19.0 6.5 2.9 105.2 18.8 5.1 9.4 105.3 20.5 5.5 4.1 112.8 19.2 6.3 3.3 115.0 18.8 7.2 2.7 116.8 22.7 5.1 8.2 117.0 12.7 1.8 0.0 121.3 17.4 5.5 2.1 140.0 20.3 3.1 4.1 187.0 19.2 6.3 3.1 187.0 19.2 6.3 21.4 11.6 0.0 217.4 12.5 0.0 0.0 227.3 12.5 0.0 0.0 227.3 12.5 0.0 0.0	Romotriflionomethane	92.8	15.3	2.1	0.0	15.4
roethylene 10.4 17.0 0.0 0.6 10.4 17.0 4.3 2.1 10.1 19.0 6.5 2.9 2.1 102.1 19.0 6.5 2.9 2.1 105.2 19.0 6.5 2.9 2.0 105.2 19.0 6.5 2.0 2.0 105.2 19.0 6.5 5.5 2.1 105.3 20.5 5.5 4.1 112.8 19.2 6.3 3.3 115.0 115.0 115.0 12.7 116.8 22.7 116.8 22.7 116.8 22.7 117.0 12.7 1.8 0.0 12.1 117.0 12.7 1.8 0.0 12.1 140.0 20.3 3.1 4.1 187.0 19.2 5.3 4.1 196.0 12.5 0.0 0.0 0.0 227.3 12.5 0.0 0.0 0.0 0.0	Tetrachloromethane, carbon tetrachloride	97.0	9.6	2.5	0.0	6.6
roethylene 101.1 19.0 6.5 2.9 ne 104.9 16.4 5.5 2.0 105.2 18.8 5.1 2.0 105.3 20.5 5.5 2.1 105.3 20.5 5.5 4.1 112.8 19.2 6.3 3.3 115.0 18.8 7.2 2.7 116.8 22.7 5.1 8.2 117.0 12.7 1.8 0.0 121.3 17.4 5.5 2.1 140.0 20.3 3.1 4.1 187.0 19.2 6.3 3.1 187.0 19.2 6.3 0.0 227.3 12.5 0.0 0.0 227.3 12.5 0.0 0.0	1,1,1-Trichloroethane	100,4	17.0	0.0	9.0	17.8
ne 102.1 19.0 4.3 2.0 105.2" 18.8 5.1 5.1 2.1 105.2" 18.8 5.1 9.4 105.3 20.5 5.5 5.1 9.4 105.3 112.8 19.2 6.3 3.3 115.0 18.8" 7.2 2.7 116.8 22.7 5.1 8.2 117.0 12.7 1.8 0.0 119.2 14.7 1.6 0.0 119.2 14.7 1.6 0.0 119.2 14.7 1.6 0.0 119.2 14.7 1.6 0.0 119.2 14.7 1.6 0.0 119.2 5.3 4.1 119.2 196.0 12.5 0.0 0.0 0.0 27.7 12.5 0.0 0.0 0.0 27.7 12.5 0.0 0.0 0.0 12.5 0.0 0.0 0.0 12.5 0.0 0.0 0.0 12.5 0.0 0.0 0.0 12.5 0.0 0.0 0.0 12.5 0.0 0.0 0.0 12.5 0.0 0.0 0.0 0.0 12.5 0.0 0.0 0.0 0.0 12.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Tetrachloroethylene, perchloroethylene	101.1	0.61	6.5	2.9	20.3
105.2° 16.4 5.5 2.1 105.2° 18.8 5.1 9.4 105.3 20.5 5.5 4.1 112.8 19.2 6.3 3.3 115.0 18.8° 7.2 2.7 116.8 22.7 5.1 8.2 117.0 12.7 1.8 0.0 121.3 17.4 5.5 2.1 140.0 20.3 3.1 4.1 187.0 19.2 5.3 4.1 196.0 12.5 0.0 0.0 27.7.3 12.5 0.0 0.0	Butyl chloride 1-chlorobutana	102.1	0.61	4.3	2.0	19.6
e, Freon 114° 105.3 105.3 105.3 105.3 105.3 105.3 115.0 115.0 116.8 127.7 117.0 127.7 12	1,1,2,2-Tetrachloroethane	105.2	10.4	S. 50	2.1	17.4
L12.8 19.2 6.3 4.1 115.0 18.8° 7.2 2.7 116.8 22.7 5.1 8.2 117.0 12.7 1.8 0.0 121.3 17.4 5.5 2.1 140.0 20.3 3.1 4.1 187.0 19.2 5.3 4.1 196.0 12.5 0.0 0.0 227.3 12.5 0.0 0.0	Bromobenzene	105.3	20.5	7.0	9.4	21.6
115.0 18.8° 7.2 2.7 16.8 22.7 16.8 22.7 16.8 22.7 16.8 22.7 17.2 2.7 17.2 17.0 12.7 1.8 0.0 17.4 17.4 5.5 2.1 140.0 20.3 3.1 4.1 187.0 19.2 5.3 4.1 196.0 12.5 0.0 0.0 227.3 12.5 0.0 0.0 0.0	o-Dichlorobenzene	112.8	19.2		. t.	21.7
116.8 22.7 5.1 8.2 117.0 12.7 1.8 0.0 e, Freon 113 119.2 14.7 1.6 0.0 121.3 17.4 5.5 2.1 140.0 20.3 3.1 4.1 187.0 19.2 5.3 4.1 196.0 12.5 0.0 0.0 227.3 12.5 0.0 0.0	Benzyl chloride	115.0	18.8"	7.2	5.6	20.3
e, Freon 114° 117.0 12.7 1.8 0.0 19.2 14.7 1.6 0.0 121.3 17.4 5.5 2.1 140.0 20.3 3.1 4.1 187.0 19.2 5.3 4.1 196.0 12.5 0.0 0.0 227.3 12.5 0.0 0.0	1,1,2,2-1 etrabromoethane°	116.8	22.7	5.1	2.00	7 74 7
119.2 14.7 1.6 0.0 121.3 17.4 5.5 2.1 140.0 20.3 3.1 4.1 187.0 19.2 5.3 4.1 196.0 12.5 0.0 0.0 227.3 12.5 0.0 0.0	1,2-Dichlordriffhorsethane, Freon 114°	117.0	12.7	1.8	0.0	12.8
121.3 17.4 5.5 2.1 140.0 20.3 3.1 4.1 187.0 19.2 5.3 4.1 196.0 12.5 0.0 0.0 227.3 12.5 0.0 0.0	Cyclohexyl chloride	119.2	14.7	1.6	0.0	14.7
ef) 227.3 12.5 0.0 0.0 227.3 12.5 0.0 0.0	1-Bromonaphthalene	140.0	4.71	5.5	2.1	18.4
a ⁴) 196.0 12.5 0.0 0.0 0.0 217.4 12.5 0.0 0.0 0.0 227.3 12.5 0.0 0.0	Trichlorobiphenyl	187.0	19.2	3.I	4.	20.9
227.3 12.5 0.0 0.0 0.0	Perfluor(methylcyclohexane)	196.0	12.5	0.0	1.4 0.0	20.3
227.3 12.5 0.0 0.0	Perfluor(dimethylcyclohexane*)	217.4	12.5	0.0	0.0	12.5
	remuoroueplane	227.3	12.5	0.0	0.0	12.1

TABLE 11 (continued) Hansen and Beerbower's 1971 Parameters for Liquids at 25°C

	1		8/MPa ^{1/2}	2/12	
No.	V/cm² mol-1	ν _ο	ô	ශ්	ιģ
	Ethers	22			7
The second second					
I WIZII	72.5	17.0	•		
Epichlorohydrin	i c	0.71	8.1	5.3	18.6
Tetrahydrofuran	6.61	19.0	10.2	7 6	0.15
1 4-Dioxone	81.7	16.8	5.7		6.1.5
District of the second	85.7	19.0	- 0	0.0	19.4
Dimethoxymethane, methylal	000	2 6	1.0	7.4	20.5
Diethyl ether	9:50	13.1	7.00	8.6	17.5
Bis(2-chloroethyl) ether	104.8	14.5	2.9	2	0 51
Anicolo mothornhome	117.6	18.8	0.6		17.0
Ti con inculary benzene	119.1	17.8		7.7	21.6
DI-(2-methoxyethyl) ether	142 0	0 0	T.	6.8	19.5
Dibenzyl ether	0.74	13.8	6.1	9.2	10.3
Di-O chloroismanni A	192.7	17.4	3.7		17.0
S. (2 cancerolasophopy), emer	146.0	10.0		t	19.3
Bis-(m-phenoxyphenol) ether	373.0	0.51	8.2	5.1	21.3
	0.076	19.6	3.1	5.1	20.5
	Votes				
	wernines	Si .			
Acetone, 2-propanone					
Methyl ethyl ketone 2-butanone	0.4%	15.5	10.4	7.0	0.00
Cyclohexanone	90.1	16.0	0.0		20.0
Died 11	104.0	17.8	2 7	7.	0.61
Dietayl ketone	106.4	0 4	0.1	5.1	19.6
Mesityl oxide	115.6	17.0	9.7	4.7	18.1
Acetophenone	113.0	16.4	6.1	6.1	18.0
Methyl isohutyl ketone	11/.4	19.6	9.8	7.7	0.01
Mother income 1-4	125.8	15.3	1 9		8.17
Metalyi Isdamyi ketone	142.8	16.0		4.1	17.0
Isophorone	150 5	10.0	2.7	4.1	17.4
Diisobutyl ketone	2.00	10.0	200	7.4	19.9
	1///1	16.0	3.7	4.1	16.0
					10.9

	20.2	24.4	17.1	21.5		29.6	26.3	18.7	18.7	27.3	19.7	18.1	25.3	17.9	22.8	17.4	16.8	20.0	17.1	16.5	22.1	20.6	22.3	20.6	20.2	22.3	23.1	18.1	15.3	15.2	15.5	18.2	15.4
	11.3	5.1	7.0	5.3		5.1	7.4	7.6	7.6	4.1	6.8	7.24	10.2	6.1	7.2	6.3	6.3	10.6	7.0	5.9	4.9	4.1	9.2	4.5	4.1	3.1	4.5	4.3	3.7	4.1	3.7	3.1	3.5
	8.0	14.9	5.3	7.4		21.7	9.91	7.2	7.2	18.0	10.0	5.3	16.0	3.1	14.7	3.7	3.7	4.7	3.1	2.9	10.8	8.2	11.5	9.6	8.6	11.3	12.3	6.3	3.9	4.5	3.9	7.0	3.7
ydes	14.7	18.6	14.7	19.4	22	19.4	19.0	15.5	15.5	20.0	15.6	15.8*	8.91	16.6	15.8	15.8	15.1	16.0	15.3	15.1	18.6	18.4	16.8	17.6	17.8	19.0	19.0	16.4	14.3	13.9	14.5	16.6	14.5
Aldehydes	57.1	83.2	88.5	101.5	Esters	0.99	76.8	7.67	80.2	85.0	92.6	98.5	6.66	121	131.5	132.5	133.5	136.2	148.8	163	163	166.8	171.0	861	266	306	316	345	330	339	340	377	382
	Acetaldehyde	Furfural, 2-furancarboxyaldehyde	Butyraldehyde, butanal	Benzaldchyde		Ethylene carbonate	y-Butyrolactone	Methyl acetate	Ethyl formate	Propylene-1,2-carbonate	Ethyl chloroformate	Ethyl acetate	Trimethyl phosphate	Diethyl carbonate	Diethyl sulfate	Butyl acetate	Isobutyl acetate	2-Ethoxyethyl acetate, Cellosolve® acetate	Isoamyl acetate	Isobutyl isobutyrate	Dimethyl phthalate	Ethyl cinnamate	Triethyl phosphate	Diethyl phthalate	Dibutyl phthalate	Butyl benzyl phthalate	Tricresyl phosphate	Tributyl phosphate	Isopropyl palmitate	Dibutyl schacate	Methyl oleated	Dioctyl phthalate	Dibutyl stearate*

Hansen and Beerbower's 1971 Parameters for Liquids at 25°C TABLE 11 (continued)

Liquid			8/MPa ^{1/2}	2/18	
3	V/cm² mol-1	eg.	တို	భ	100
	Nitrogen Compounds	spunoduo		řé	5
Acetonitrile					
Acrylonitrile, 2-propenenitrile	52.6	15.3	18.0	. 7	3
Propionitrile	67.1	16.4	17.4	0.1	24.4
Bulvronitrile	70.9	15.3	1 0 7	8.0	24.8
Benzonielle	87.0	15.3	14.3	5.5	21.7
Misser	102 6		12.5	5.1	20.4
Mirromethane	54.2	4./1	0.6	3.3	10 0
Nitroethane	5.40	15.8	18.8	2.1	17.3
2-Nitropropane	71.5	16.0	15.5	4.5	1.62
Nitrobenzene	6.98	16.2	12.1	7	7.77
Ethanolamine, 2-aminosthanal	102.7	20.0	×	7 .	20.6
Ethylenediamine	60.2	17.2	15.6	4.1	22.2
1 1-Dimethylkydani-	67.3	16.6	0.0	21.3	31.5
2. Downstia	76.0	15.2	0.0	17.0	25.3
P. T. MIGHIOODE	76.4	5.01	5.9	11.0	10.8
Fyname	000	17.4	17.4	11.3	200
Propylamine	600	19.0	00.00	2.0	40.4
Morpholine	83.0	17.0	4.9		21.8
Aniline	87.1	18.8	4.0	0.0	19.7
N-Methyl-2-nymolidone	91.5	19.4	-	7.6	21.5
Butylamine 1 kmin	96.5	180	1.0	10.2	22.6
Diethylanic, 1-Dulanamine	0.66	16.24	12.3	7.2	22.9
Diet i	103.2	14.0	4.5	%°O.°	18.6
Dietaylenetriamine	10801	6.4.	2.3	6.1	16.3
Cyclohexylamine	115.2	20,01	13.3	14.3	25.8
Cumofine	2.011	17.4	3.1	9.9	0.01
Dipropylamine	0.911	19.4	7.0	7.6	70.0
Formamide	136.9	15.3	14	2. 4	0.27
N,N-Dimethylformamide	39.8	17.2	26.2	- · ·	15.9
N.N-Dimethylacetramida	77.0	17.4	12.5	19.0	36.6
Tetramethylman	92.5	16.8	1.5.7	11.3	24.8
Howard	120.4	16.0	C.11	10.2	22.7
rickaniculyi phosphoramide	1757	0.00	8.2	11.1	717
	1.0.1	73.7	8.6	11.3	
					4.5.4

21.7		20.5	26.7	0.00	17.4		19.4	31.5	22.3		29.6	26.5	31.0	25.7	24.5	23.5	23.6	24.3	22.1	22.7	23.8	22.4	21.7	21.2	20.8	19.9	21.6	19.9	24.8	
11.1		9.0	10.2	12.3	2.1		3.9	9.91	10.2"		22.3	19.4	17.6	16.8	17.4	16.4	14.7	13.1	14.5	16,0	13.7	13.5	13.9	13.5	10.8	12.3	12.5	10.2	16.4	
8.2		0.0	16.4	19.4	3.1		10.6	19.2	11.7		12,3	80.80	18.8	10.8	6.8	6.1	7.0	0.7	7.5	5.7	6.3	4.1	4.5	4.3	8.2	3.3	7.6	6.5	9.2	
23.2	pounds	20.5	18.4	19.0	17.0	Anhydrides	15.8	18.6	16.0*	slo	15.1	15.8	17.2	16.2	16.0	15.8	17.0	16.0	15.8	15.1	18.4	17.4	16.0	15.8	15.8	15.3	16.0	15.8	16.2	
175.7	Suffur Compounds	0.09	74.3	75	108.2	Acid Halides and Anhydrides	71.0	8.99	94.5	Alcohols	40.7	58.5	68.3	68.4	75.2	76.8	2.48	01.5	92.0	92.8	103.6	106.0	109.0	123.2	124.2	127.2	115	149	79.1	
Hexamethyl phosphoramide		Carbon disulfide	Difficultion of the Difficulties Ethansthiole other Descriptions	Dimethyl sulfone	Diethyl sulfide		Acetyl chloride	Succinic anhydride ^b	Acetic anhydride		Methanol	Ethanol	Ethylene cyanohydrin, hydracrylonitrile	Allyl alcohol, 2-propen-1-ole	1-Propanol	2-Propanol	5-Cntoropropanol	I-Butanoi	2-Butanol	Isobutanol, 2-methyl-1-propanol	Benzyl alcohol, benzenemethanol	Cyclohexanol	1-Pentanol, amyl alcohol	2-Ethyl-1-butanol	Diacetone alcohol	1,3-Dimethyl-1-butanol	Ethyl lactate	Butyl lactate	Ethylene glycol monomethyl ether, methyl Cellosolve®	

TABLE 11 (continued)
Hansen and Beerbower's 1971 Parameters for Liquids at 25°C

			8/MPa ^{1/2}	Z/18t	
nmhrz	V/cm³ mol~1	ű	රේ	, o	υč
Dotation					
Diethylene glycol monomethyl ether, Cellosolve®	8.76	16.2	9.2	14.3	
tol®	118.0	16.2	7.8	12.7	23.5
Diethylene glycol monoethyl ether. Carbirol®	0 001	ă			0.22
Ethylene glycol monobutyl ether, butyl Cellosolve®	130.9	16.2	9.2	12.3	22 3
2-Ethyl-1-hexanol	167.0	16.0	5.1	12.3	20.8
i-Octanol	157.0	16.0	3.3	11.9	20.2
2-Octanol	150.7	17.0	3.3	11.9	21.02
Diethylene glycol monobuty! ether hutyl Carbisola	1.96.1	16.2	4.9	11.1	2.12
1-Decanol	1/0.6	16.0	7.0	10.6	20.7
Tridecyl alcohol 3 1 Hidamand	191.8	17.6	2.7	10.0	4.02
'Nonv' nhanows astronid	242	14.3	1 6	0.07	20.4
Ologi alaskal o	275	16.8	10.1	0.6	17.2
Orbyl alconol, y-octadecen-1-old	316	14.3	10.7	4.8	21.4
Inemylene glycol mono-oleyl ether	418 5	7	7.7	8.0	16.6
		13.3	3.1	8.4	16.0
	Acids	sl			
Formic acid, methanoic acid					
Acetic acid, ethanoic acid	37.8	14.3	11,9	16.6	
Benzoic acidb	57.1	14.5	8.0	13.5	6.42
Ruturic acid 1 because	100	18.2, 21.5	70 57	10.0	4.12
Ortanoio coide	110	14.9	7.7.	×	21.8, 24.3
Other acid	159	15.1	i c	10.6	18.8
Ofeic acid, 9-octadecenoic acid	320	1.6.1	5.5	8.2	17.5
Steame acid, octadecanoic acidb	302	14.3	3.1	5.5	15.6
	047	10,4	3.3	5.5	17.6
	Phenols	sle			
Phenol					
1,3-Benzenediol, resorcinol	87.5	18.0	5.9	14.9	,
	87.5	18.0	8.4	21.7	24.1
				7.15	29.0

		18.0	. % . 4	21.1	24.1 29.0
m-Cresol, 3-methylphenol	104.7	18.0	5.1	12.9	22.7
	109.5	18.0	8.2	13.3	23.8
	129	16.0	8.0	12.3	21.7
	231	16.6	4.1	9.2	19.4
	18.0	15.6	16.0	42.3*	47.8
	Polyhydric Alcohols	Alcohols			
Ethylene glycol, 1,2-ethanediol	55.8	17.0	11.0	26.0	32.9
Glycerol, 1,2,3-propanetriol	73.3	17.4	12.1	29.3	36.1
Propylene glycol, propanediol	73.6	16.8	9.4	23.3	30.2
	89.9	16.6	10.0	21.5	28.9
	95.3	16.2	14.7	20.5	29.9
	114.0	16.0	12.5	9.81	27.5
	123.0	15.8	8.4	17.8	25.2
hinronylone gland femined isomera					

Adapted from Hansen, C. M. and Beerbower, A., Kirk-Othmer Encyclopedia of Chemical Technology, 2nd ed., Standen, A., Ed., Interscience, New York, 1971, Suppl. Vol., 889.

u

Altered from previously published 1967 value; additional values based on 1967 data appear in Table 12.

Solid, treated as subcooled liquid.

Values uncertain.

Impure commercial product of this nominal formula.

Subsequently recalculated by Wu, P. L., Beerbower, A., and Martin, A., J. Phurm. Sci., 71, 1285, 1982. Subsequently recalculated in 1974 as reported by Beerbower, A., Wu, P. L., and Martin, A., J. Pharm. Sci., 73, 179, 1984.

TABLE 12 Hansen Parameters for Liquids, Refrigerants, and Liquid Mixtures at 25°C, Based on 1967 Data

***		δ/MPa ^{1/}	ž.
Liquids	δ_d	δ_{p}	$\delta_{\rm h}$
Acetic acid, ethanoic acid	14.5	8.0	10.5
Acetone, 2-propanone	15.6	12.3, 10.4ª	13.5
Acetonitrile	15.3	18.0	7.0
Acetophenone	17.6	8.6°	6.1
Acetyl chloride	15.84	10.6ª	3.7*
Acrylonitrile, 2-propenenitrile	16.4	17.4	3.9
Aniline, benzeneamine	19.4, 20.1°	5.1, 7.4	6.8
Benzaldehyde	19.4	7.4	10.2, 12.3° 5.3
Benzene	18.4	1.0	2.1
Benzoic acid	18.2	7.0	9.8
Benzonitrile	17.4*	13.3*	5.10
Benzyl alcohol, benzenemethanol	18.4	6.3	
Benzyl chloride, (chloromethyl)benzene	17.6, 18.8	7.2	13.7
Biphenyl	21.1*	1.0*	2.7 2.0°
Bromobenzene	19.0	5.5	
Bromoethane	16.6°	8.0°	2.1
1-Bromonaphthalene	20.3*	3.14	5.1*
Butane	13.7, 14.1*	0.0	4.1*
1,3-Butanediol	16.6	10.0*	0.0
I-Butanol	16.0	5.7	21.5
2-Butanol	15.8	5.7	15.8
Butyl acetate	15.8	3.7	14.5
Butylamine, 1-butanamine	15.6	3.7	6.3
Butyl Carbitol®, 2-(2-butoxyethoxy)ethanol	16.0, 16.4	7.0	7.2
Butyl Cellosolve, 2-butoxyethanol	16.0	5.1, 6.3	10.6
Butyl chloride, 1-chlorobutane	16.2*	5.5	12.3, 12.1*
Butyl lactate	15.5*	6.5*	2.00
Butyraldehyde, butanal	14.7	9.8	10.2*
Butyronitrile	15.3*	12.5*	5.1, 7.2
Carbitol®, 2-(2-ethoxyethoxy)ethanol	16.2	9.2	5.1*
Carbon disulfide	20.5, 20.3*	0.0	14.3
Castor oil	15.6	2.9	0.6, 0.0
Cellosolve®, 2-ethoxyethanol	16.2	9.2	9.2
Cellosolve® acetate, 2-ethoxyethyl acetate	16.0	4.7	14.3
Chlorobenzene	18.6, 19.0ª	4.3	10.6
Chlorobromomethane	17.4	5.7	4.1, 2.0
Chlorodifluoromethane	12.3	6.3ª	3.5
Chlorofluoroethane	11.9°	5.7°	5.7*
Chloromethane	15.3*	6.1*	4.13
1-Chloropropane	16.0°	7.8ª	3.9
3-Chloropropanol	17.64	5.74	2.0*
Cresol, methylphenol	18.0	5.1	I4.7ª
Cyclohexane	16.7	0.0	12.9
Cyclohexanol	17.4	4.1	0.0
Cyclohexanone	17.8	6.3, 8.4°	13.5 5.1
Cyclohexylamine	17.4ª	3. I*	
Cyclohexyl chloride	19.4*	5.5°	6.5*
-Decanol	16.0*	3.5*	2.0 ^a
Diacetone alcohol	15.8	8.2	8.2 ⁴
Dibenzyl ether	17.4	3.7	10.8
Diisobutyl ketone	16.0	3.7	7.4
Dibutyl phthalate	16.8	8.6	4.1
Dibutyl sebacate	13.9	4.5	4.1
-Dichlorobenzene	19.2	6.3	4.I 3.3

lased

TABLE 12 (continued)
Hansen Parameters for Liquids, Refrigerants, and Liquid Mixtures at 25°C, Based on 1967 Data

		8/MPa ^{1/2}	
Liquids	δ_d	δ_p	$\delta_{\mathbf{h}}$
2,2-Dichlorodiethyl ether	18.8*	9.0°	3.1*
Dichlorodifluoromethane	12.3ª	2.04	0.0ª
1.1-Dichloroethane	16.6°	8.2*	0.4*
1,2-Dichloroethane, ethylene dichloride	18.8	5.3	4.1
Dichloroethylene	17.0	4.7	7.2
Dichloromethane, methylene dichloride	18.2	6.3	6.1
1,2-Dichlorotetrafluoroethane	12.7*	1.8ª	0.0
Diethylamine	14.94	2.3°	6.1ª
1,4-Diethylbenzene	17.8a	0.0*	0.6a
Diethyl carbonate	16.6*	3.1*	6.14
Diethylene glycol, 2-hydroxyethyl ether	16.2, 15.8°	14.7	20.5
Diethylene triamine	16.8	13.3a	14.3*
Diethyl ether, 1,1'-oxybisethane	14.5	2.9, 4.9	5.1, 2.0*
Diethyl ketone	15.8°	7.6ª	4.7*
Diethyl sulfate	15.8	14.7	7.2
Diethyl sulfide	16.0°	6.3ª	2.0
Difluoroethane	9.2*	10.2*	5.74
Dimethoxymethane, formal, methylal	15.1*	1.8	8.6°
N,N-Dimethylformamide	17.4, 17.0°	13.7, 13.3°	11.3, 9.2
1,1-Dimethylhydrazine	15.3	5.9	11.1
Dimethyl siloxane	12.1	0.0	0.0
Dimethylsulfone	19.0 ^a	19.4	12.3*
Dimethylsulfoxide	18.4	16.4	10.2
Dioctyl phthalate	16.6	7.0	3.1
1,4-Dioxane, diethylene oxide	19.0, 17.6°	1.8, 8.6ª	7.4, 4.1
Diphenyl, 1,1'-biphenyl	21.5	1.0	2.1
Dipropylamine	15.3°	1.4*	4.1*
Dipropylene glycol	16.0°	13.3°	23.9
Epichlorohydrin	19.0*	10.2	3.7*
Ethanol	15.8	8.8	19.4
Ethanolamine	17.2	15.6°	21.3"
Ethyl acetate	15.1, 15.3°	5.3	9.2
Ethylbenzene	17.8	1.0, 0.6	3.1, 1.4°
2-Ethylbutanol	15.8*	4.34	13.5°
Ethyl carbonate	19.4	21.7ª	5.1
Ethyl chloroformate	15.6	10.0	6.8
Ethyl cinnamate	18.4	8.2	4.1
Ethylene glycol, 1,2-ethancdiol	17.0, 16.8 ^a	11.1	26.0
Ethyl formate	15.5*	8.4ª	8.4*
2-Ethylhexanol	16.0°	3.3ª	11.9°
Ethyl lactate	16.0°	7.6*	12.5°
Formamide	17.2	26.2°	19.0
Furan	17.8°	1.8*	5.3*
Furfural, 2-furancarboxyaldehyde	16.8	14.9	5.1
Furfuryl alcohol, 2-furanmethanol	17.4	7.6	15.1
Glycerol, 1,2,3-propanetriol	17.4	12.1	29.3
Heptane	15.3	0.0	0.0
Нехапе	14.7, 14.9°	0.0	0.0
1-Hexanol	15.8 ^a	4.3ª	13.5*
Hexylene glycol	15.8	8.4	17.8
Isoamyl acetate	15.3	3.1	7.0
Isobutyl acetate	15.1*	3.7*	6.3ª
Isobutyl isobutyrate	15.1*	2.9	5.9ª
570			

TABLE 12 (continued)
Hansen Parameters for Liquids, Refrigerants, and Liquid Mixtures at 25°C, Based on 1967 Data

	1	δ/MPa ^{1/2}	
Liquids	δ_d	δ_p	$\delta_{\mathbf{k}}$
Isohexano!	15.0	0.4040	
Isononyl phenol	15.8	4.3	13.5
Isononyl phenoxyethanol	16.6	4.1	9.2
Isooctane, 2,2,4-trimethylpentane	16.8	10.2	8.4
Isopentane, 2-methylbutane	14.3	0.0	0.0
Isophorone	13.7	0.0	0.0
Mesityl oxide	16.64	8.2°	7.4
Methanol, methyl alcohol	16.4	7.2	6.1
Methoxymethanol	15.4, 15.1	12.3	22.3
Methyl acetate	16.2ª	9.2	16.4
Methyl amyl ketone	15.6	7.2	7.6
Methyl Carbitol®, 2-(2-methoxyethoxy)ethanol	16.0	5.7	4.1
Methyl Cellosolve®, 2-methoxyethanol	16.2*	7.8"	12.7
Methyl ethyl ketone, 2-butanone	16.2	9.2	16.4
Methyl isoamyl ketone	16.0	9.0	5.1
Methyl isobutyl carbinol, 1,2-dimethylpropanol	16.0*	5.7	4.1*
Methyl isobutyl ketone, 4-methyl-2-pentanone	15.3*	3.3*	12.3
Methyl oleate	15.3	6.1	4.1, 5.7
N-Methyl-2-pyrrolidone	14.5	3.9	3.7
Morpholine	18.0*	12.3	14.6*
Naphthalene	18.8	4.9"	9.2"
Nitrobenzene	19.2	2.1	5.9
Nitroethane	17.6	12.3	4.1
Nitromethane	16.0°	15.5°	4.5*
2-Nitropropane	15.8	18.8	5.1
Octane	16.2*	12.14	4.10
1-Octanol	15.3*	0.0*	0.0
Oleic acid	16.2*	7.04	10.6°
Oleyl tricthylene glycol ether	14.3	3.1	5.5
Pentane	13.3	3.1	8.4
I-Pentanol	14.3*	0.0	0.0*
Phenol	16.0	4.5*	13,9*
Phenoxyethanol	18.0	5.9	14.9
1-Propanol	17.8	5.3	12.3
2-Propanol	16.0	6.8, 6.14	17.4, 17.6°
Propionitrile	15.8, 15.5°	7.2, 9.0	16.0, 16.84
Propylamine	15.3 ^a	12.3*	8.2
Propylene carbonate	15.5°	4.10	11.3
Propylene carbonate Propylene glycol, propanediol	20.1	18.0	4.1
Pyridine	16.8	9.4	23.3
2-Pyrrolidone	19.0	8.8	5.9
	19.4*	17.4*	11.3*
Resorcinol, 1,3-benzenediol	18.0	8.4	21.1
Stearic acid, octadecanoic acid	16.4	3.3	5.5
Styrene, ethenylbenzene Succinic anhydride	18.6	1.0	4.1
etrachloroethane	18.6	19.2	16.6
etrachloroethylene	18.8	4.1	2.3
	19.0	6.6	2.9
etrachloromethane, carbon tetrachloride	17.8	0.0	0.6
etrahydrofuran	16.8*	5.7ª	8.0°
etrahydronaphthalene	19.2ª	2.0"	2.9
oluene, methylbenzene	18.0	1.4	2.1
ribromomethane, bromoform	17.8	4.1	8.01
ributyl phosphate	16.4	6.3	4.3

TABLE 12 (continued)
Hansen Parameters for Liquids, Refrigerants, and Liquid Mixtures at 25°C, Based on 1967 Data

		δ/MPa ^{1/2}	<u> </u>
Liquids	δ_d	δ_{p}	$\delta_{\mathtt{h}}$
Trichloroethane	17.0	4.3	2.1
Trichloroethylene	18.0	3.1	5.3
Trichloromethane, chloroform	17.8, 17.6ª	3.1	5.7
Tricresyl phosphate	19.0	12.3	4.5
Triethylene glycol	16.0	10.4	18.6
Water	12.3	31.3	34.2
o-Xylene, 1,2-dimethylbenzene	17.8	1.0	3.1
Refrig	gerants		
R11, CCl.F, trichlorofluoromethane	15.3	2.1	0.0
R12, CCl ₂ F ₂ dichlorodifluoromethane	12.3	2.1	0.0
R13, CClF ₃ chlorotrifluoromethane	4.9	1.8	0.0
R21, CCl ₂ FH, dichlorofluoromethane	15.8	3.1	5.7
R22, CClF ₂ H, chlorodifluoromethane	12.3	6.3	5.7
R40, CClH ₃ , chloromethane	15.6	6.1	3.9
R113, C ₂ Cl ₃ F ₃ , 1,1,2-trichloro-1,2,2-trifluoroethane	14.7	1.6	0.0
R114, C ₂ Cl ₂ F ₄ , 1,2-dichlorotetrafluoroethane	12.7	1.8	0.0
R115, C ₂ ClF ₅ , chloropentafluoroethane	9.8	1.8	0.0
R13B1, CBrF ₃ , choropental doloremant	9.6	2.5	0.0
R142b, C ₂ ClF ₂ H ₃ , chlorodifluoroethane	11.9	5.7	4.1
R152a, C ₂ F ₂ H ₄ difluoroethane	9.2	10.2	5.7
C318, c-C ₄ F ₈ , perfluorocyclobutane	11.7	1.2	0.0
Liquid !	Mixtures		
ASTM fuel 'A', isooctane, 2,2,4-trimethylpentane	14.3	0.0	0.0
ASTM fuel 'B'	15.3	0.4	0.6
ASTM fuel 'C' (calculated)	16.2	0.8	1.0
ASTM oil #1	13.9	0.0	0.0
ASTM oil #2	15.6	0.6	0.2
ASTM oil #3	16.6	1.0	0.4
Auto brake fluid	15.8	6.1	10.2
Auto transmission fluid	14.3	0.4	0.6
Linseed oil	13.9	3.5	3.7
MIL-L-7808 (ester)	14.3	2.9	3.1
MIL-H-8446 (silicate)	14.5	6.1	7.6
MIL-H-5606 (Petr.)	14.7	0.8	0.6
Motor oil-SAE 20W	14.7	0.4	0.4
Neats foot oil	14.3	2.9	3.7
Phosphate hydraulic	14.5	10.4	4.5
Sperm oil	14.3	2.1	2.7
Turpentine	16.4	1.4	0.4
Water-glycol hydraulic fluid	14.3	18.8	22.5

From Gardon and Teas where the values differ from those of Beerbower and Dickey.

Adapted from Beerbower, A. and Dickey, J. R., Am. Soc. Lubric. Eng. Trans., 12, 1, 1969, with alternative and additional values from Gardon, J. L. and Teas, J. P., in Treatise on Coatings, Vol. 2, Characterization of Coatings: Physical Techniques, Part II, Myers, R. R. and Long, J. S., Eds., Marcel Dekker, New York, 1976, chap. 3.

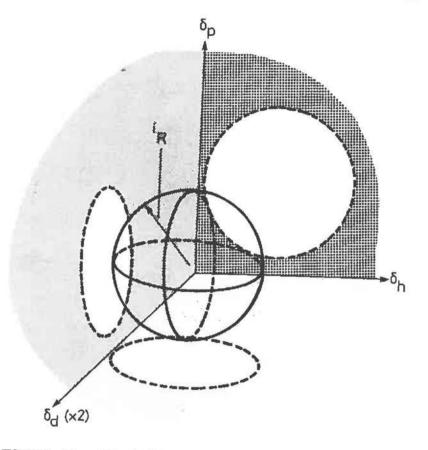


FIGURE 5. Representation of a Hansen parameter solubility sphere and its projections on three axial planes. (Adapted from Beerbower, A. and Dickey, J. R., Am. Soc. Lubric. Eng. Trans. 12, 1, 1969.)

found to work well, despite the fact that Equation 55 is very different from the more theoretically justified Equation 21. The "sphere" can be projected onto the three planes passing through two axes and the origin, to provide circles in two-dimensional graphs, as illustrated in Figure 5. Hansen parameters also are related to component free energies of surfaces (Section 17.3). 120

The incorporation of the numerical factor 4 in Equation 55 does not appear necessary to provide spherical interaction volumes; 121,122 the apparent non-spherical representations which were observed were the result of the restricted range of δ_d values compared with the δ_p and δ_b ranges, and an equation based on Equation 54 is just as satisfactory:

$${}^{ij}r = {}^{ij}A^{1/2} = [({}^{i}\delta_{d} - {}^{j}\delta_{d})^{2} + ({}^{i}\delta_{p} - {}^{j}\delta_{p})^{2} + ({}^{i}\delta_{h} - {}^{j}\delta_{b})^{2}]^{1/2}$$
(57)

Hansen¹⁵⁵ has also defined the relative energy difference as the ratio ${}^{ij}R/R$, so if this number is less than 1.0, liquid i is predicted to be a solvent for j, with values greater than unity indicating progressively poorer solvents. Applications to several materials of biological interest appear in Table 12a.

Brench^{123,124} proposed for component i in a mixture with effective Hansen parameters $\overline{\delta}_d$, $\overline{\delta}_p$, and $\overline{\delta}_h$ the relationship

$${}^{ij}A = ({}^{i}\delta_{d} - \overline{\delta}_{d})^{2} + {}^{i}b \left[({}^{i}\delta_{p} - \overline{\delta}_{p})^{2} + ({}^{i}\delta_{h} - \overline{\delta}_{h})^{2} \right]$$

$$(58)$$

TABLE 12a Hansen Parameters for Some Biological Materials, for Use With the 1971 Hansen Liquid Parameters of Table 11

	S		δ/MPa ^{1/2}	{	
	δ_d	δ_{p}	$\delta_{\rm b}$	δ_{i}	JR.
Lard, 23°C	17.8	2.7	4.4	18.4	8.0
Lard, 37°C	15.9	1.2	5.4	16.8	12.0
Water	15.1	20.4	16.5	30.3	18.1
Blood serum	23.2	22.7	30.6	44.6	20.5
Sucrose	21.7	26.3	29.6	45.1	20.4
Urea	20.9	18.7	26.4	38.5	19.4
Keratin (psoriasis scales)	24.6	11.9	12.9	30.3	19.0
Lignin	20.6	13.9	15.3	29.2	11.8

* For 1% solutions in water; preferred value, amines not included.

Adapted from Hansen, C. M. and Anderson, B. H., Am. Ind. Hyg. Assoc., 49, 301, 1988.

where 'b is a Hansen weighting factor, a property of component i, with values (Table 13) comparable to those of 'b in Table 10. These values have been interpreted physically 124 on the basis that the dispersion forces represent a "billiard ball" effect over the whole molecule, while the polar and hydrogen-bonding terms are localized on groups and thus not uniformly distributed.

Numerical results for polymers are quoted in Section 14.5, together with the application of vector methods to the interaction of liquid mixtures with polymers. Hansen parameters are applied to solid solubilities in Chapter 12. In some applications, only two of the three Hansen parameters are used, so that the locations of liquids may be displayed on two-dimensional, projected maps. Figure 6 shows the range of δ_p versus δ_h locations for major liquid groups, regions of overlap predicting mutual miscibility; this technique may be applied to the formulation of extraction systems. ¹²⁵ Solubility ranges for polymers may be represented in the same way (Section 15.1).

The original "Hansen parameters" were determined as outlined above, but very similar parameters have been obtained by alternative calculation methods, 126 as indicated in Section 5.11, with Hoy's major set of values being reported below in Table 17.

There is considerable variation in the Hansen parameters reported for water (Table 14). A study of the solubilities of a variety of organic compounds in water26,155 provides the values in the last three entries of this Table. The δ_h and δ_t values are considerably lower than and inconsistent with those previously reported, which appear to be appropriate for solutions of water in organic liquids. (Grunwald127 discussed aqueous solutions in terms of components described as "isodelphic" (unchanged thermodynamic state of solvent during the solution process) and "lyodelphic" (partial molar contributions due to solute perturbation of solvent network). Use of the regular solution model gave a water total cohesion parameter of 29 MPa1/2, consistent with the "organics in water" value.) This variability in Hansen parameter values is a fundamental problem associated with the use of δ_h rather than the more appropriate δ_a and δ_b to represent the hydrogen-bonding cohesion, and attempts to reconcile the divergent δ_h values are futile. The reservations originally expressed by Tawn¹²⁸ on Hansen parameters are still valid: this method of describing interactions between liquids and potential solutes is neither as simple as the Burrell method (Sections 4.5, 14.3) nor as complete as a full set of component cohesion parameters. However, the recent values provided by Hansen¹⁵⁵ for "1% solutions in water" (Table 12a) acknowledge the problem and provide a guide to behavior in hydrogen-bonded systems. Clearly the use of separate Lewis acid

TABLE 13 Values of Hansen Weighting Factor

W 1	- 1
Liquid	83

Hydrocarbons

Hexane	0.22
Heptane	0.20
Isooctane	0.17
Cyclohexane	0.19
Benzene	0.15
Toluene	0.064
Ethylbenzene	0.12
Styrene	0.13

Chlorinated Hydrocarbons

Trichloromethane	0.22
Tetrachloromethane	0.24
Trichloroethylene	0.20
Tetrachloroethylene	0.24
1.1.2-Trichloroethane	0.18

Ketones

Acetone	0.14
Methyl ethyl ketone	0.14
Methyl isobutyl ketone	0.13

Esters

Methyl acetate	0.16
Ethyl acetate	0.14
Propyl acetate	0.16
Butyl acetate	0.19
Amyl acetate, pentyl ace- tate	0.19
Ethyl propionate	0.20
Ethyl butyrate	0.19

Alcohols

Methanol	0.26
Ethanol	0.20
1-Propanol	0.24
2-Propanol	0.20
1-Butanol	0.24
2-Butanol	0.19
Isobutanol	0.23
tert-Butanol	0.20
1-Pentanol	0.19
1-Hexanol	0.28
sec-Octanol	0.23
Ethylene glycol	0.31
Glycerol	0.20

Carboxylic Acid

Acetic	acid	0.12
	The state of the s	

TABLE 13 (continued) Values of Hansen Weighting Factor

Liquid

Nitrogen-Containing Liquids

Ethylenediamine	0.29
Pyridine	0.11

Lipids

Diolein	0.20
Triolein	0.16
Trilinolein	0.17
Olive oil	0.18
Oleic acid	0.18

Other Liquids

1.4-Dioxane	0.10
Furfural	0.26
Propylene carbonate	0.41
Water	0.32

Adapted from Ashton, N. F., McDermott, C., and Brench, A., in *Handbook of Solvent Extraction*, Lo, T. C., Baird, M. H. I., and Hanson, C., Eds., John Wiley & Sons-Interscience, New York, 1983, 3.

and Lewis base component parameters would be superior, but more cumbersome, in providing an approximate representation of the "unsymmetrical" interactions.

5.10 FRACTIONAL THREE-COMPONENT COHESION PARAMETERS

Teas¹²⁹ showed that for several polymer-liquid systems it is possible to use fractional cohesive pressures plotted on a triangular chart to represent miscibility limits:

$$U_{s}/U = \delta_{s}^{2}/\delta_{t}^{2}; U_{s}/U = \delta_{s}^{2}/\delta_{t}^{2}; U_{b}/U = \delta_{s}^{2}/\delta_{t}^{2}$$
 (59)

where

$$\delta_t^2 = \delta_d^2 + \delta_p^2 + \delta_h^2 \tag{60}$$

and

$$U = U_{\rm d} + U_{\rm p} + U_{\rm h} \tag{61}$$

This method was used by Vial^{130,131} (Table 15), but Teas^{119,129,132} chose instead to use fractional cohesion parameters, which may be defined

$$f_{d} = \frac{\delta_{d}}{\delta_{d} + \delta_{p} + \delta_{h}}; f_{p} = \frac{\delta_{p}}{\delta_{d} + \delta_{p} + \delta_{h}}; f_{h} = \frac{\delta_{h}}{\delta_{d} + \delta_{p} + \delta_{h}}$$
(62)

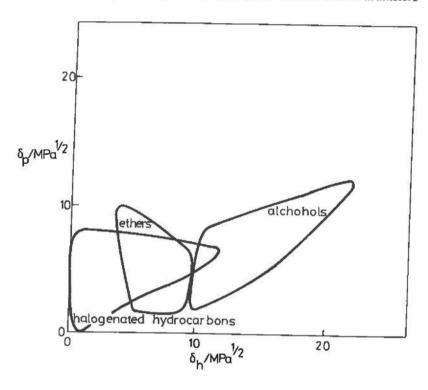


FIGURE 6. Hansen paremeter $\delta_p - \delta_h$ locations for major liquid groups: (A) ethers, halogenated hydrocarbons, and alcohols; (B) esters, aromatic hydrocarbons, ketones, and phenols; (C) aldehydes, polyhydric alcohols, unionized acids, and alkanes; and (D) proton donors (acids, phenols, amines, alcohols, polyhydric alcohols). (Adapted from Klein, E., Eichelberger, J., Eyer, C., and Smith, J., Water Res., 9, 807, 1975.)

The fractional cohesion parameters of Gardon and Teas¹¹⁹ in Table 16 are calculated from the data published by Hansen and Skaarup in 1967; also included are the values of Teas^{28,129} based on Hansen's earlier publication,¹⁰ as these have been widely used. The fractional cohesion parameters defined in Equation 62 have the advantage of spreading the data points more uniformly over the triangular chart, but the disadvantage that they are completely empirical, without even the limited theoretical justification of Hansen parameters. Examples of fractional maps for polymers are shown in Figures 16 to 33, Chapter 15.

The triangular representations make the simplifying assumption that the total cohesion parameter, δ_t , is constant for all materials, and that the *relative* magnitudes of the three contributions (dispersion forces, polar interactions, hydrogen bonding) determine the extent of miscibility. Inspection of tables of Hansen parameter values shows that although there is much greater variation in δ_p and δ_h than in δ_t , the total cohesion parameter is not even approximately constant.

5.11 OTHER TWO- AND THREE-COMPONENT COHESION PARAMETERS

If it is assumed that the cohesive energy (-U) is made up of an additive combination of contributions from nonpolar or dispersive interactions $(-U_d)$, polar interactions $(-U_p)$, and hydrogen-bonding or similar specific association interactions $(-U_b)$,

$$-U = -U_{\rm d} - U_{\rm p} - U_{\rm h} \tag{63}$$

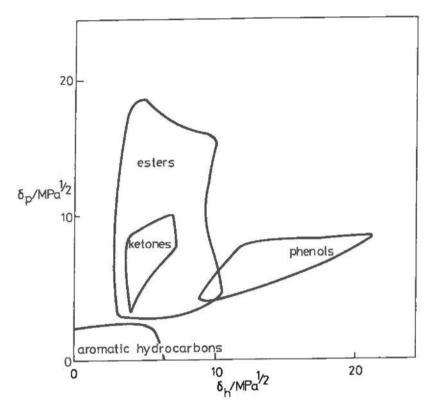


FIGURE 6B.

FIGURE 6C.

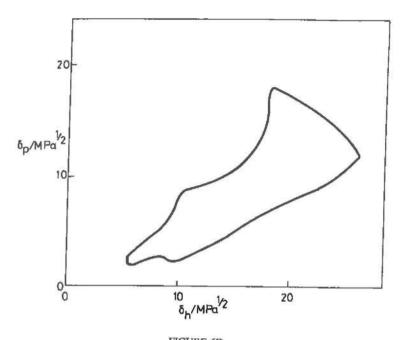


FIGURE 6D.

TABLE 14 Hansen Parameters for Water

		8/MPa1	2			
$\delta_{\rm d}$	$\delta_{\rm p}$	δ_{h}	$\delta_{\rm t}$	JR.	Source	Ref.
12	23	40	48	-	Table 18	126
12	31	34	48	-	Table 12	10, 11, 118
16	16	42	48	-	Table 11	25
20	18	18	32	15	Organic liquids in water	26
15	20	17	30	18	1% solutions in water, Table 12a	155
		-	33—36	-	Aqueous phase in solvent extraction	158
	_	_	29	-	Grunwald	127

then it follows that the corresponding cohesive pressures and cohesion parameters can be defined so that

$$-U/V = -U_{d}/V - U_{p}/V - U_{h}/V$$
 (64)

$$\delta_t^2 = \delta_d^2 + \delta_p^2 + \delta_h^2 \tag{65}$$

as seen in Equation 54, and

$${}^{ij}A = ({}^{i}\delta_{d}{}^{i}\delta_{d} - {}^{j}\delta_{d})^{2} + ({}^{i}\delta_{p} - {}^{j}\delta_{p})^{2} + ({}^{i}\delta_{h} - {}^{j}\delta_{h})^{2}$$
(66)

This method was developed by Hansen^{9-30,155} (Section 5.10) on an empirical basis and by means of semiempirical equations^{28,117,120} but it may also be used for theoretical subdivisions of the Hildebrand parameter with other bases. With the aid of relationships of the type indicated in Section 8.2, the Hansen parameters can be described in terms of molecular parameters related to intermolecular forces and molecular sizes.¹³³

Null and Palmer^{111,134,135} extended the polar-nonpolar cohesion parameter concept of

TABLE 15
Fractional Cohesive Pressures in Order of Increasing Total Value

Liquid	$\delta_r/MPa^{1/2}$	100 U _d /U	100 U _p /U	100 U _y /U
Hexane	14.8	100.0	0.0	0.0
Diethyl ether	15.6	85.8	3.4	10.8
Dissobutyl ketone	16.7	89.3	4.8	5.9
Cyclohexane	16.7	100.0	0.0	0.0
Isoamyl acetate	17.0	80.1	3.2	16.7
Butyl acetate	17.3	82.1	4.5	13.4
1,1,1-Trichloroethane	17.5	92.6	6.0	1.4
Methyl isobutyl ketone	17.5	81.2	13.0	5.8
Tetrachloromethane, carbon tetrachloride	17.7	100.0	0.0	0.0
Toluene, methylbenzene	18.2	98.1	0.6	1.3
Ethyl acetate	18.6	67.2	8.2	24.6
Benzene	18.7	98.5	0.3	1.2
Trichloromethane, chloroform	18.8	88.1	2.6	9.3
Methyl ethyl ketone, 2-butanone	19.0	70.2	22.5	7.3
Trichloroethylene	19.0	89.5	2.6	7.9
Styrene, ethenylbenzene	19.0	95.1	0.3	4.6
Tetrahydronaphthalene, tetralin	19.4	96.7	1.1	2.2
Tetrahydrofuran	19.5	74.6	8.6	16.8
Ethylglycol acetate	19.6	65.2	5.7	29.1
Acetophenone	19.8	77.8	18.8	3.4
Isophorone	19.9	69.4	16.9	13.7
1,4-Dioxane	19.9	86.3	0.8	12.9
1,2-Dichloroethane, ethylene dichloride	20.0	88.7	7.1	4.2
Acetone, 2-propanone	20.0	60.5	27.4	12.1
Cyclohexanone	20.2	76.4	17.2	6.4
Dichloromethane, methylene dichloride	20.3	81.0	9.8	9.2
2-Nitropropane	20.5	61.6	34.4	4.0
Pyridine	21.7	76.1	16.4	7.5
Nitrobenzene	21.7	64.9	31.6	3.5
Cyclohexanol	22.4	60.3	3.3	36.4
Nitroethane	22.7	49.3	46.8	3.9
1-Butanol	23.1	47.6	6.1	46.3
Acetonitrile	24.0	39.4	54.3	6.3
	24.5	41.9	7.6	50.5
1-Propanol	24.7	42.6	13.8	43.6
Methylglycol N,N-Dimethylformamide	24.8	49.1	30.4	20.5
Nitromethane	25.2	39.5	56.3	4.2
Ethanol	26.4	35.5	11.0	53.5
	26.4	47.6	37.6	14.8
Dimethylsulfoxide	28.9	32.8	12.0	55.2
1,3-Butanediol	29.2	26.2	17.2	56.6
Methanol Distribution almost	29.2	28.9	24.3	46.8
Diethylene glycol			24.5	
Ethanolamine	31.7	29.6 26.3		45.9
Glycol	33.3		11.3	62.4
Formamide	36.4	22.0	51.0	27.0
Water	48.1	6.6	42.6	50.8

Adapted from Vial, J., C.R. Acad. Sci. Ser. C, 270, 683, 1970; and Thesis, Faculty of Science, Paris,

Section 5.8 by defining a parameter described here as δ_{ξ} to represent the cohesive pressure due to association or hydrogen bonding:

$$\delta_t^2 = \delta_\lambda^2 + \delta_\tau^2 + \delta_\xi^2 \tag{67}$$

Comparison of Equations 65 and 67 with the five-parameter Equation 24 suggests

(65)

by ons

/pc llar

of

TABLE 16 Fractional Hansen Parameters of Liquids, Plasticizers and Oils

Compound	$\delta_t/MPa^{1/2}$ 100 f_d		100f _p	$100f_h$	
	Liqu	iids			
Acetic acid, ethanoic acid	(21.2)	(40)	(19)	(41)	
Acetic anhydride	(22.2)	(36)	(37)	(27)	
Acetone, 2-propanone	20.1	47(50)	32(37)	21(13)	
Acetonitrile	24.6	39(41)	45(43)	16(16)	
Acetophenone, 1-phenylethanone	19.8	59(58)	29(25)	12(17)	
Acetyl chloride	19.4	52	35	13	
Acrylonitrile, 2-propenenitrile	21.7	41	43	16	
Aniline	24.6(22.6)	50(55)	19(21)	31(24)	
Benzaldehyde	21.3	61(57)	23(16)	16(27)	
Benzene	18.8	78(76)	8(7)	14(17)	
Benzonitrile	22.1	48	37	15	
Benzyl alcohol, benzenemethanol	24.6	48	16 25	36	
Benzyl chloride	20.3 21.5	66 88	4	9 8	
Biphenyl, diphenyl Bromobenzene	20.5	72	21	7	
Bromoethane, ethyl bromide	18.2	56	27	17	
1-Bromonaphthalene	21.1	74(68)	11(18)	15(14)	
Butane	14.1	100	0	0	
1,3-Butanediol	28.8	34(35)	21(17)	45(48)	
1-Butanol	23.3	43(43)	15(14)	42(43)	
Butyl acetate	17.4	60(60)	13(16)	17(24)	
Butylamine, 1-butanamine	17.6	59	14	27	
Butyl Carbitol®, diethylene glycol monobutyl ether	20.1	46	18	36	
Butyl Cellosolve®, ethylene glycol monobutyl ether	20.5(21.0)	46(46)	18(20)	36(34)	
Butyl lactate	19.2	48(52)	20(22)	32(26)	
Butyraldehyde, butanal	18.4	50	33	17	
Butyric acid, butanoic acid	(23.1)	(53)	(13)	(34)	
γ-Butyrolactone	26.2	44(43)	39(36)	17(21)	
Butyronitrile	20.5	44(48)	41(39)	15(13)	
Carbitol [®] , diethylene glycol monoethyl ether	21.3	48	23	29	
Carbitol® acetate, diethylene glycol monoethyl ether acetate	19.4	54	33	13	
Carbon disulfide	20.3	88(86)	8(7)	4(7)	
Cellosolve [®] , ethylene glycol monoethyl ether	22.1(24.3)	42(43)	20(20)	38(37)	
Cellosolve® acetate, ethylene glycol monomethyl ether acetate	19.2	51(50)	15(34)	34(16)	
Chlorobenzene	19.6	65(70)	17(15)	18(15)	
1-Chlorobutane	17.2	68(66)	24(23)	8(11)	
Chlorodifluoromethane, Freon 22	14.9	50	26	24	
Chlorofluoroethane	14.1	55	26	19	
Chloromethane, methyl chloride	17.0	61	24	15	
1-Chloropropane, propyl chloride	17.4	62 46	30	8 39	
3-Chloropropanol	23.7 22.7	50(49)	15 14(17)		
m-Cresol, 3-methylphenol Cyclohexane	16.8	94	2	36(34) 4	
Cyclohexanol	22.5	50	12	38	
Cyclohexanore	20.3	55(56)	28(22)	17(22)	
Cyclohexylamine	(18.5)	(63)	(15)	(22)	
Cyclohexyl chloride	19,4(18.4)	70(68)	21(24)	9(8)	
Decane	15.8	100	0	0	
1-Decanol	19.2	58	13	29	

TABLE 16 (continued)
Fractional Hansen Parameters of Liquids, Plasticizers and Oils

Compound	$\delta_{\rm r}/{\rm MPa}^{1/2}$ 100 $f_{\rm d}$		100f _p	$100f_{\rm h}$	
Diacetone alcohol	20.3	45(37)	24(29)	31(34)	
Dibenzyl ether	19.2	61	13	36	
Diisobutyl ketone	16.6	67	16	17	
a-Dichlorobenzene	20.5	67(69)	22(15)	11(16)	
2,2-Dichlorodiethyl ether	21.1	61(54)	29(37)	10(9)	
Dichlorodifluoromethane, Freon 12	12.5	86	14	0	
1,1-Dichloroethane	18.4	66	33	2	
1,2-Dichloroethane, ethylene dichloride	20.1	67(63)	19(23)	14(14)	
Dichloromethane, methylene dichloride	19.8	59	21	20	
1,2-Dichloroetetrafluoroethane, Freon	12.9	87	13	0	
Diethylamine	16.4	64(62)	10(19)	26(19)	
1,4-Diethylbenzene	18.0	97	0	3	
Diethyl carbonate	18.0	64	12	24	
Diethyl ether, 1,1'-oxybisethane	15.6	64(67)	13(23)	23(10)	
Diethyl ketone, 3-pentanone	18.2	56	27	17	
Diethyl sulfate	22.7	42	39	19	
Diethyl sulfide	17.4	77(66)	14(26)	9(8)	
Diethylene glycol	29.9	31(25)	29(30)	40(45)	
Diethylenetriamine	25.8	38	30	32	
Difluoroethane	14.9	37	40	23	
Dimethoxymethane, formal, methylal	17.4	59(57)	7(32)	34(11)	
N,N-Dimethylformamide	24.8	41	32	27	
Dimethylsiloxane	12.1	100	0	0	
Dimethyl sulfone	29.9	38	38	24	
Dimethylsulfoxide	26.4	41(37)	36(33)	23(30)	
1,4-Dioxane, diethylene oxide	20.7	67(58)	7(28)	26(14)	
Dipentene	17.4	75	20	5	
Dipropylamine	16.2	74(72)	7(12)	19(16)	
Dipropylene glycol, oxybispropanol	31.7	35(30)	26(25)	39(45)	
Epichlorohydrin, (chloromethyl)oxirane	21.9	58	31	11	
Ethanol	26.2	36(36)	18(19)	46(45)	
Ethanolamine	31.5	32(31)	29(32)	40(39)	
Ethyl acetate	18.4	51	18(37)	31(17) 10(15)	
Ethylbenzenc	18.0	87(80)	3(5) 10	42	
2-Ethylbutanol	21.3	48	31	21	
Ethyl chloroformate	19.6	48	26	26	
Ethyl formate	19.4	48	9(6)	41(41)	
2-Ethylhexanol	20.3	50(53) 44	21(23)	35(33)	
Ethyl lactate	21.1	42	47	11	
Ethyl carbonate	29.7	30(32)	18(17)	52(51)	
Ethylene glycol, 1,2-ethanediol	33.3 36.4	28	42	30	
Formamide		(33)	(20)	(47)	
Formic acid	(24.9) 24.3	46	41	13	
Furfural, 2-furancarboxyaldehyde	18.6	71(65)	7(12)	22(23)	
Furan	24.3	43	19	38	
Furfuryl alcohol, 2-furanmethanol	36.2(43.1)	25(26)	23(22)	52(52)	
Glycerol, 1,2,3-propanetriol	15.3	100	0	0	
Heptane	21.5	47	14	39	
1-Heptanol	14.9	100(96)	0(2)	0(2)	
Hexane	21.9	47	13	40	
1-Hexanol	17.2	60	12(27)	28(13)	
Isoamyl acetate Isobutyl acetate	16.6	60	15	25	
1500uty1 accuate	1000000				

TABLE 16 (continued)
Fractional Hansen Parameters of Liquids, Plasticizers and Oils

Compound	δ_t /MPa ^{1/2}	$100f_a$	100f _p	100f _h
Technical inchantants	16 6/16 0)			200
Isobutyl isobutyrate Isononyl phenol	16.6(16.0)	63(63)	12(22)	25(15)
	19.4	55	14	31
Isophorone	19.8	51(52)	25(25)	24(23)
Mesityl oxide Methanol	18.6	55	24	21
	29.3	30(31)	22(23)	48(46)
Methoxymethanol	24.8	39	22	39
Methyl acetate Methyl Carbitol®, diethylene glycol monomethyl ether	19.4 22.7(22.1)	45 44(44)	36 21(22)	19 35(34)
Methyl Cellosolve®, ethylene glycol monomethyl ether	24.6	39	22	39
Methyl Cellosolve® acetate, ethylene glycol monomethyl ether acetate	20.3	46	17	37
Methyl ethyl ketone, 2-butanone	(19.0)	(53)	(30)	(17)
Methyl formate	20.7	46	22	(17)
Methyl isoamyl ketone	17.6	62(58)	20(22)	32
Methyl isobutyl carbinol	19.8	50(51)	10(7)	18(20)
Methyl isobutyl ketone	17.6	58(56)	200000000000	40(42)
N-Methyl 2-pyrrolidone	22.9	48	22(23) 32	20(21)
Morpholine	21.7	57(53)	15(21)	
Naphthalene	20.3	70	8	28(26) 22
Nitrobenzene	21.7	52(59)	36(29)	12(12)
Nitroethane	22.7	44(47)	43(42)	13(11)
Nitromethane	25.2	40(41)	47(46)	13(11)
2-Nitropropane	20.5	50(58)	37(33)	13(13)
Octane	15.1	100	0	0
1-Octanol	20.5	53	9	38
1-Pentanol, amyl alcohol	22.7(21.7)	46(47)	13(12)	41(41)
Pentane	14.3	100	0	0
Phenol	24.1	46	15	39
1-Propanol	24.6	40	16	44
Propionitrile	21.9	43	34	23
Propyl acetate	18.0	57	15	28
Propylene carbonate	27.1	48(48)	38(43)	14(9)
Propylene glycol, propanediol	30.3	34(39)	16(15)	50(46)
Pyridine	21.7	56(56)	26(22)	18(22)
2-Pyrrolidone	28.4	41	36	23
Resorcinol, 1,3-benzenediol	29.1	38	18	44
Styrene, ethenylbenzene	19.0	78(76)	4(9)	18(15)
Tetrachloroethane	21.7	56	15	19
Tetrachloroethylene	20.3	67	23	10
Tetrachloromethane, carbon tetrachlo- ride	17.8	85	2	13
Tetrahydrofuran	19.4	55(55)	19(22)	26(23)
Tetrahydronaphthalene, tetralin	19.4	80(83)	8(4)	12(13)
Toluene, methylbenzene	18.2	80(78)	7(6)	13(16)
Tribromomethane, bromoform	21.5	54	13	33
Trichloroethane	17.6	70(68)	19(17)	11(15)
Trichloroethylene	19.0	68	12	20
Trichloromethane, chloroform	17.8	85	2	13
Triethylene glycol	26.6	36	23	41
Water	48.1	18(19)	28(22)	54(58)
Xylene, dimethylbenzene (mixed iso- mers)	18.0	83(82)	5(6)	12(12)

TABLE 16 (continued)
Fractional Hansen Parameters of Liquids, Plasticizers and Oils

Compound	$\delta_{\ell}/MPa^{1/2}$	$100f_d$	$100f_p$	$100f_b$
	Plasti	cizers		
Butyl stearate	15.3	67	17	16
Dibutyl maleate	17.2	60	12	28
Dibutyl phthalate	20.1	57	29	14
Dibutyl sebacate	15.1	62	20	18
Dimethyl phthalate	22.1	48	38	14
Dioctyl adipate	18.2	64	23	13
Dioctyl phthalate	18.2	62	26	12
Ethyl cinnamate	20.7	60	27	13
Methyl oleate	15.6	67	17	16
Tricresyl phosphate	24.8	51	30	29
Trimethyl phosphate	25.4	39	37	24
Tributyl phosphate	18.0	45	35	20
Trioctyl adipate	-	62	24	14
	Oils and Comn	nercial Solvents		
Castor oil	18.2	56	11	33
Linseed oil (white refined)	14.9	66	17	17
Neats foot oil	14.7	69	14	17
Sperm oil	14.5	75	11	14
Mineral oil (white refined)	14.5	100	0	0
Pine oil	16.6	70	14	16
Cottonseed oil	14.9	67	15	18
Mineral spirits	==	90	4	6
VM & P naphtha	-	94	3	3 1
Odorless mineral spirits	14000	98	1	1
Turpentine		77	18	5

Adapted from Gardon, J. L. and Teas, J. P., Treatise on Coatings, Vol. 2, Characterization of Coatings: Physical Techniques, Part II, Myers, R. R. and Long, J. S., Eds., Marcel Dekker, New York, 1976, chap. 8. Values in parentheses are from the earlier publication of Teas, J. P., J. Paint Technol., 40(516), 19, 1968, for those cases where differences occur.

$$\delta_{\lambda}^2 \approx \delta_d^2$$
 (68)

$$\delta_{\tau}^2 \approx \delta_p^2 \approx \delta_o^2 \, + \, 2 \delta_i \delta_d \tag{69}$$

$$\delta_{\xi}^{2} \approx \delta_{b}^{2} \approx 2\delta_{a}\delta_{b} \tag{70}$$

The association parameter δ_{ξ} was obtained from the entropy and enthalpy of association as defined by Wiehe and Bagley, ^{65,136,137} who had investigated the activity coefficients in mixtures of alcohols with nonpolar liquids and developed multiparameter equations for their correlation (Section 7.5). Wiehe, in unpublished work cited in Reference 156, also developed an alternative two-component formalism:

$$\delta^2 \,=\, \delta_c^2 \,+\, \delta_f^2$$

where δ_c is a measure of ability to form "complexes" and δ_f is a measure of ability to interact by field forces which do not depend on orientation ($\delta_f \approx \delta_d$). These cohesion parameters, which were used for solvent selection by two-dimensional mapping, are collected in Table 16a.

Hoy¹²⁶ determined nonpolar, polar, and hydrogen-bonding parameters by semi-empirical methods which involved:

TABLE 16a
Two-Component Complexing — Field Force
Cohesion Parameters for Liquids

	δ/MPa ^{1/2}					
Liquid	δ_t	δ_r	δ _e			
Acetone	19.7	15.0	12.8			
Acetonitrile	24.8	15.3	19.5			
Acetophenone	21.6	17.5	12.7			
Benzene	18.7	18.3	4.0			
Butyl acetate	17.8	15.7	8.3			
Carbon disulfide	20.3	20.3	0.0			
Chlorobenzene	19.8	19.2	4.7			
Cyclohexane	16.8	16.8	0.0			
Cyclohexanone	21.3	17.4	12.3			
Dibromomethane	21.3	20.2	6.7			
o-Dichlorobenzene	20.5	19.8	5.6			
1,2-Dichloroethane	20.2	19.2	6.1			
Dichloromethane	20.2	18.2	8.7			
Dimethylsulfoxide	26.4	18.4	19.0			
N,N-Dimethylacetamide	22.1	17.4	13.6			
N,N-Dimethylformamide	24.1	19.1	14.7			
1,4-Dioxane	20.7	18.4	9.5			
Ethyl acetate	18.2	15.2	10.0			
Ethylbenzene	18.1	17.9	2.9			
Heptane	15.3	15.3	0.0			
Hexane	14.9	14.9	0.0			
Iodomethane	20.9	20.1	5.7			
Methylcyclohexane	16.0	16.0	0.0			
Methyl ethyl ketone	19.3	15.9	11.0			
Nitromethane	26.4	16.7	20.5			
Styrene	19.1	18.7	4.1			
Tetrachloromethane	17.5	17.5	0.0			
Tetrahydrofuran	19.5	16.8	9.8			
Toluene	18.3	18.1	2.7			
Trichloroethylene	18.7	18.2	4.6			
Trichloromethane	18.7	17.1	6.2			
1,1,1-Trichloroethane	17.5	16.9	4.8			
p-Xylene	18.1	18.0	0.8			

Adapted from Dickerson, C. G. and Wiehe, I. A., Pac. Chem. Eng. Congr. (Proc.), 2(1), 243, 1977.

- 1. Evaluation of the total cohesion parameter or Hildebrand parameter δ_t as outlined in Section 7.2.
- Separation of the total cohesion parameter by calculation of the aggregation number
 (α) from a regression analysis of molar volumes as a function of ratio of boiling point
 to critical temperature as well as molecular weight, and density

$$\log \alpha = 3.39066 T_b / T_c - 0.15848 - \log (M/\rho)$$
 (71)

The ratio T_b/T_c may be estimated from Lyderson's equation,

$$(T_b/T_c = 0.567 + \Sigma_z \triangle_T - (\Sigma_z \triangle_T)^2$$
(72)

and the Δ_T values (critical temperature Lyderson group constants) were provided by Hoy, ¹²⁵ also (Table 17), so it is possible to estimate the component cohesion parameters

TABLE 17 Lyderson Group Constants

	10 ² ^z ∆ _T			
Group, z	Aliphatic	Cyclic	10 ² ⁴ Δ ^P _T	
-CH ₃	2.0		2.26	
-CH ₂ -	2.0	1.3	2.00	
>CH ₂	1.2	1.2	1.31	
>C<	0.0	-0.7	0.40	
=CH ₂	1.8	222	1.92	
=CH-	1.8	1.1	1.84	
=C<	0.0	1.1	1.29	
=CH- (aromatic)		1.1	1.78	
=C (aromatic)	-	1.1	1.49	
-O-	2.1	1.4	1.75	
	_	2.7	2.67	
>O (epoxide) -COO-	4.7		4.97	
	4.0	3.3	4.00	
>C=0	4.8	1,52	4.45	
-CHO	8.6		8.63	
-(CO ₂ O)	3.9		3.90	
-COOH	8.2	-	3.43	
-OH→	8.2		4.93	
-OH (primary)	8.2		4.40	
-OH (secondary)	8.2		5.93	
-OH (tertiary)	3.5		6.00	
-OH (phenolic)	3.1	-	3.45	
-NH ₂	3.1	2.4	2.74	
-NH-	1.4	0.7	0.93	
>N-	0.6	0.7	5.39	
C=N	5.4	-	5.39	
-NCO	6.2		5.46	
HCON<	7.1	_	8.43	
-CONH-	5.4	<u> </u>	7.29	
-CON<	7.1		8.97	
-CONH ₂	7.8	N.S.	9.38	
-CONH-	1.5	0.8	3.18	
-S-	1.5		1.5	
-SH	1.7	-	3.11	
-Cl (primary)	1.7		3.17	
-Cl (secondary)	3.4	_	5.21	
-Cl ₂ (twin)	1.7		2.45	
-Cl (aromatic)	1.0		3.92	
-Br	1.0	_	3.13	
-Br (aromatic)	1.8		0.6	
-F	1.2		-	
-I	-		0.5	
Conjugation			-0.10	
Cis double bond			-0.20	
Trans double bond			1.18	
4-membered ring			0.3	
5-membered ring	_	# <u>V</u>	- 0.35	
6-membered ring			0.69	
7-membered ring		-	0.07	

TABLE 17 (continued) Lyderson Group Constants

	102 4	10 ² ^c \Delta_T			
Group, z	Aliphatic ·	Cyclic	$10^2 z \Delta_T^P$		
Ortho		-	0.15		
Meta	-		0.10		
Para	-	-	0.60		
Bicycloheptyl	-	-	0.34		
Tricyclodecane	-	-	0.95		

Adapted from Hoy, K. L., The Hoy Tables of Solubility Parameters, Union Carbide Corporation, Solvents and Coatings Materials Division, South Charleston, WV, 1985.

knowing only the density and structure, although the accuracy is limited by the approximations made.

Calculation of the hydrogen-bonding parameter from

$$\delta_{h} = \delta_{t} \left[(\alpha - 1)/\alpha \right]^{1/2} \tag{73}$$

 Evaluation of the polar parameter by a group molar attraction method based on Equation 34, Chapter 6, with the data of Table 7, Chapter 6:

$$\delta_{p} = \delta_{t} \left[\sum_{z} F_{p} / (\alpha \sum_{z} {}^{z}F) \right]^{1/2}$$
(74)

Calculation of the nonpolar parameter δ_d by difference (Equation 65).

Hoy's values of δ_t , δ_d , δ_p , and δ_h are included in Table 18. Estimates of three-component parameters for phenol, resorcinol, and about 50 alkyl derivatives have been published by Lille, Kundel, and Eisen¹³⁸ (Table 19). Stekol'shchikov, Krivtsova, and Ratner¹³⁹ have calculated values for hydrocarbons and a few other liquids (Table 20) by various semi-empirical methods based on correlations with physical properties (Section 8.2), and have compared them with literature data. Martin, Wu, and Beerbower^{140,141} used three-component cohesion parameters in their study of solubilities of solids in polar and nonpolar liquids (Section 12.2).

Hoy's dispersion components, δ_d , being evaluated by difference, may be considered less reliable than those of Hansen, which were evaluated directly by homomorph methods. On the other hand, Hansen's method introduces small hydrogen-bonding components to the aromatic liquids. The positron method for evaluation of multicomponent cohesion parameters for liquids, mentioned in Section 3.6, may be able to provide more correct separations of the components. The positronium (Ps) state in pure liquids is considered a "bubble" state as a result of strong repulsive interactions with liquid molecules at short distances. It has been suggested by Mogensen¹⁴² that hydrogen bonds in the liquid are not broken when the Ps bubble is formed, so most of the molecules in its vicinity continue to participate in hydrogen bonding to the same extent as in the bulk liquid. Consequently, the Ps "pick off" rates should be able to be used to determine either δ_d or $(\delta_d^2 + \delta_p^2)^{1/2}$, permitting evaluation of δ_h by optimization of solubility behavior. The positron method seems to show correct component values; correlation with the Hansen δ_d values is better than with the Hoy δ_d results, whereas the $(\delta_d^2 + \delta_p^2)^{1/2}$ correlation is better with the Hoy data than with the Hansen figures, and the hydrogen-bonding components in Hansen's values for aromatic liquids are not supported.

TABLE 18 Hoy's Cohesion Parameters for Liquids (and Solids as Subcooled Liquids) at 25°C

				δ/MPa ^{1/2}			
Liquid	M/g mol-1	ρ/g cm ⁻³	δ_d	δ_p	$\delta_{\rm h}$	δ,	
Acetaldehyde	44.1	0.771	11.5	10.6	12.7	20.2	
Acetic acid, ethanoic acid	60.1	1.044	13.9	12.2	18.9	26.5	
Acetic anhydride	102.1	1.075	10.0	11.3	15.7	21.8	
Acetone, 2-propanone	58.1	0.785	13.0	9.8	11.0	19.7	
Acetonitrile	41.1	0.776	10.3	11.1	19.6	24.8	
Acetophenone, 1-phenylethanone	120.2	1.024	16.1	11.9	8.2	21.6	
1-Acetoxy-1,3-butadiene	112.1	0.947	14.2	9.9	8.7	19.4 19.5	
Acetylacetone, 2,4-pentanedione	100.1	0.968	11.3	11.8	10.7 12.2	20.1	
Acrolein, 2-propenal	56.1	0.835	11.4	11.1 12.8	17.9	25.9	
Acrylic acid, 2-propenoic acid	72.1	1.040	13.5 10.6	12.5	14.0	21.6	
Acrylonitrile, 2-propenenitrile	53.1	0.801	14.0	9.5	8.3	18.8	
Allyl acetate	100.1 142.2	1.032	13.4	11.3	10.5	20.5	
Allyl acetoacetate	58.1	0.848	13.0	11.8	18.7	25.7	
Allyl alcohol, 2-propen-1-ol	76.5	0.931	13.8	8.9	7.3	18.0	
Allyl chloride, 3-chloropropene	67.1	0.830	12.3	11.8	13.2	21.6	
Allyl cyanide, 3-butenenitrile	104.2	1.025	13.9	12.8	20.8	28.1	
N-(2-Aminoethyl)ethanolamine	129.2	0.978	15.6	11.7	9.0	21.4	
N-(2-Aminoethyl)piperazine	144.2	0.981	16.1	10.2	7.3	20.4	
N-(3-Aminopropyl)morpholine Amyl alcohol, see 1-Pentanol	2.11.	7.15					
sec-Amyl alcohol, see 2-Pentanol	88.2	0.815	14.5	9.1	13.9	22.0	
prim. active Amyl alcohol, 2-methyl-1-							
butanol							
tert-Amyl alcohol, 2-methyl-2-butanol	88.2	0.805	13.8	10.0	12.4	21.1	
Benzene	78.1	0.874	16.1	8.6	4.1	18.7	
Benzyl alcohol, benzenemethanol	108.1	1.042	14.7	12.2	15.6	24.6	
Benzyl Cellosolve®	152.2	1.064	14.2	10.2	13.8	22.3	
N,N-(Bis(3-aminopropyl))methylamine	145.3	0.897	14.3	9.9	10.1	20.1	
Bromobenzene	157.0	1.486	18.4	8.2	0.0	20.1	
2-Bromobutane, sec-butyl bromide	137.0	1.251	16.9	4.4	3.0	17.7	
Bromochloromethane	129.4	1.919	16.9	11.1	6.5	21.2	
Bromoethane, ethyl bromide	109.0	1.447	16.2	5.1	6.6	18.2	
o-Bromostyrene	183.1	1.408	17.7	9.6	0.0	20.1	
o-Bromotoluene	171.0	1.437	17.9	8.8	0.0	20.0	
p-Bromotoluene	171.0	1.391	17.7	8.4	0.0	19.6 18.6	
Bromotrichloromethane	198.3	1.998	12.0	13.8	3.1	15.1	
1,3-Butadiene	54.1	0.614	13.0	6.3	4.5 11.6	24.1	
Butadiene dioxide	86.1	1,106	16.5	13.1 0.0	0.0	13.5	
Butane	58.1	0.572	13.5 15.0	13.6	27.0	33.7	
1,4-Butanediol	90.1	1.013 0.806	15.0	10.0	15.4	23.7	
1-Butanol, butyl alcohol	74.1	0.802	14.5	9.1	14.8	22.7	
2-Butanol, sec-butyl alcohol	74.1 56.1	0.588	12.7	4.2	2.9	13.6	
1-Butene	56.1	0.614	12.9	3.8	5.8	14.6	
cis-2-Butene	56.1	0.597	13.1	3.6	4.2	14.2	
trans-2-Butene	86.1	0.770	14.2	6.4	6.2	16.8	
cis-1-Butenyl methyl ether	86.1	0.780	13.9	6.2	6.4	16.5	
trans-2-Butenyl methyl ether	146.2	0.879	14.2	7.4	11.7	19.9	
3-Butoxybutanol Butoxydipropylene glycol	190.3	0.911	14.5	8.2	7.0	18.1	
Butoxycthoxypropanol	176.3	0.925	13.6	7.8	11.6	19.6	
	116.2	0.876	14.5	7.8	6.8	17.8	
Butyl acetate sec-Butyl acetate	116.2	0.867	13.7	7.7	5.0	16.5	
Butyl acetoacetate	158.2	0.963	13.6	9.5	10.3	19.5	
Butyl accordate Butyl acrylate	128.2	0.895	14.0	8.3	6.8	17.7	
Butylamine	73.1	0.734	13.6	8.1	8.0	17.7	
and the same of th							

ap-

73)

ion

14)

by ve ii-

nt ds

d

e s

s e

1

TABLE 18 (continued)
Hoy's Cohesion Parameters for Liquids (and Solids as Subcooled Liquids) at 25°C

				δ/MPa ^{1/2}			
Liquid	M/g mol	-1 ρ/g cr	n^{-3} δ_d	δ_{r}	δ	δ,	
Butylaniline	149.2	0.923	160			100 NO. 100	
Butylbenzene	134.2	0.85			E		
Butyl benzoate	178.2	1.001	27.77	200			
Butyl butyrate	144.2	0.865			8 153		
Butyl Carbitol®	162.2	0.948		100000		2 570	
Butyl Carbitol acetate	204.3	0.974		10000			
Butyl Cellosolve®	118.2	0.896		27.1			
Butyl Cellosolve® acetate	160.2	0.936		1000			
Butyl chloride, see chlorobutane	100.2	0.930	14.4	8.0	7.8	18.2	
Butyl cyclohexane	140.3	0.794	16.1	2.4		8	
Butylcyclohexylamine	155.3	0.839		2.4	2000		
Butylcyclopentane	126.2	0.779	16.1	6.3			
Butylene glycol, butanediol	90.1	1.001	12.3	2.9			
Butylene oxide	72.1	0.824		12.2			
Butylethanolamine	117.2	0.888	15.0 14.4	8.0			
Butyl ether, 1,1'-oxybisbutane	130.2	0.764		9.1	15.0		
Butyl ethyl Cellosolve®	146.2	0.833	14.6	4.3	4.5		
Butyl isopropenyl ether	114.2	0.784	14.4	6.0	6.2		
Butyl lactate	146.2	0.764	15.2	6.2	1.8	16.5	
Butyl methyl Cellosolve®	132.2	0.841	12.5 14.6	9.6	12.3	20.0	
Butyl-a-methylbenzylamine	177.3	0.890		6.3	6.7	17.2	
Butyl 6-methyl-3-cyclohexane carboxylate	196.3	0.939	15.3 15.4	7.9	4.1	17.7	
2-Butyloctanol	186.3	0.831	14.5	7.5	2.2	17.3	
Butyl salicylate	194.2	1.069		6.3	10.0	18.8	
o-Butyltoluene	148.2	0.865	15.6 16.6	11.2	5.4	19.9	
m-Butyltoluene	148.2	0.853	16.5	6.1	0.0	17.7	
p-Butyltoluene	148.2	0.851	16.5	6.0	0.0	17.5	
Butyraldehyde, butanal	72.1	0.796	13.1	5.9	0.0	17.5	
Butyric acid, butanoic acid	88.1	0.953	15.8	8.9	9.6	18.6	
Butyric anhydride	158.2	0.962	13.1	10.2	15.8	24.5	
γ-Butyrolactone	86.1	1.122	18.6	10.2 12.2	8.9	18.8	
Butyronitrile	69.1	0.786	13.3	10.6	14.0	26.3	
€-Caprolactone	114.1	1.071	19.1	9.9	12.0	20.8	
Carbitol® acetate	176.2	1.004	14.4	9.9	14.4	25.9	
Carbitol	134.2	0.983	13.0	8.9	9.4	19.4	
Carbon disulfide	76.1	1.256	10.9	16.6	14.1	21.2	
Cellosolve® acetate	132.2	0.968	14.4	9.0	4.3	20.3	
Cellosolve acrylate	144.2	0.976	14.2	9.4	8.9 8.7	19.1	
Cellosolve	90.1	0.925	13.0	9.1	15.2	19.1	
2-Chloroallylidene diacetate	192.6	1.202	14.9	11.8	7.5	21.9	
Chlorobenzene	112.6	1.098	17.4	9.4	0.0	20.4	
2-Chloro-1,3-butadiene	88.5	0.949	15.0	7.5		19.7	
1-Chlorobutane, butyl chloride	92.6	0.880	15.3	6.9	3.5	17.2	
2-Chlorobutane, sec-butyl chloride	92.6	0.867	14.9	6.9	2.4	17.1	
2-Chloroethyl acetate	122.6	1.140	15.1	11.4	9.6	16.6	
2-Chloroethyl ethyl ether	108.6	0.992	14.4	8.5	7.5	21.2	
Chloroform, see trichloromethane			170.0-0.00	0.0	7.5	18.4	
1-Chloropropane, propyl chloride	78.5	0.885	14.4	7.2	6.0	17.2	
2-Chloropropane, isopropyl chloride	78.5	0.856	14.2	7.3	4.3	17.2 16.5	
o-Chlorostyrene	138.6	1.093	17.1	9.4	0.0	19.6	
p-Chlorostyrene	138.6	1.080	17.2	9.2	0.0	19.5	
Crotonaldehyde, 2-butenal	70.1	0.847	13.4	10.5	11.5	20.5	
Cyclohexane	84.2	0.774	16.5	3.1	0.0	16.8	
Cyclohexanol, cyclohexyl alcohol	100.1	0.956	13.8	8.6	15.3	22.3	
Cyclohexanone	98.2	0.942	15.6	9.4	11.0	21.3	
						41.3	

TABLE 18 (continued)
Hoy's Cohesion Parameters for Liquids (and Solids as Subcooled Liquids) at 25°C

			δ/MPa ^{1/2}			
Liquid	M/g mol ⁻¹	ρ/g cm ⁻³	δ_d	δ_{p}	$\delta_{\mathtt{h}}$	δι
1-Cyclohexyldecane	224.4	0.814	15.9	1.9	0.0	16.1
I-Cyclohexyldodecane	252.5	0.818	15.9	1.8	0.0	16.0
1-Cyclohexylheptane	182.3	0.806	16.0	2.1	0.0	16.1
1-Cyclohexylnonane	210.4	0.811	16.0	1.9	0.0	16.1
1-Cyclohexyloctane	196.4	0.809	16.0	2.0	0.0	16.1
1-Cyclohexylundecane	238.4	0.815	15.9	1.8	0.0	16.0
Cyclopentane	70.1	0.739	16.1	3.9	0.6	16.5
Cyclopentanone	84.1	0.944	16.2	11.1	8.8	21.5
Cyclopentene	68.1	0.765	15.3	5.8	4.1	16.9
2-Cyclopentenyi alcohol	84.1	0.976	15.4	11.5	16.5	25.3
1-Cyclopentyldecane	210.4	0.806	17.2	2.4	1.3	17.4
1-Cyclopentylheptane	168.3	0.796	16.6	2.6	0.0	16.8
1-Cyclopentylhexane	154.3	0.791	16.5	2.7	0.0	16.7
1-Cyclopentylnonane	196.4	0.803	17.0	2.4	0.0	17.1
1-Cyclopentyloctane	182.3	0.800	16.7	2.5	0.0	16.9
1-Cyclopentylpentane	140.3	0.786	16.2	2.8	0.0	16.5
1-Cyclopentylundecane	224.4	0.808	17.2	2.3	1.2	17.4
Decane	142.3	0.725	15.8	0.0	0.0	15.8
1-Decanol, decyl alcohol	158.3	0.826	15.4	7.0	11.6	20.5
2-Decanol, sec-decyl alcohol	158.3	0.821	13.8	6.2	9.8	18.0
1-Decene	140.3	0.736	15.7	3.3	1.3	16.0
Decylbenzene	218.4	0.850	16.5	5.0	0.0	17.3
Diacetone alcohol	116.2	0.934	10.7	11.4	12.6	20.0
Diallylamine	97.2	0.783	13.5	8.5	7.5	17.6
1,1-Diallyloxyethane	142.2	0.871	13.3	8.0	6.2	16.7
3,3'-Diaminodipropylamine	131.2	0.925	13.7	11.5	12.9	22.1
1,3-Diaminopropane	74.1	0.882	13.9	12.9	14.7	24.0
o-Dibromobenzene	235.9	1.973	18.5	10.0	0.0	21.0
Dibutylamine	129.3	0.757	14.6	5.6	5.7	16.7
Dibutyl Carbitol®	218.3	0.880	14.3	6.1	7.1	17.0
Dibutyl Cellosolve®	174.3	0.832	14.6	5.5	6.1	16.8
N,N-Dibutylethanolamine	173.3	0.856	13.2	6.0	9.9	17.6
Dibutyl fumarate	228.3	0.981	14.2	8.6	8.0	18.4
Dibutylisopropanolamine	187.3	0.837	13.2	5.8	8.8	16.9
Dibutyl maleate	228.3	0.990	14.1	8.6	8.4	18.5
Dibutyl phthalate	278.4	1.042	15.9	9.5	8.1	20.2
o-Dichlorobenzene	147.0	0.298	18.0	9.8	0.0	20.5
m-Dichlorobenzene	147.0	0.281	17.6	9.5	0.0	20.0
p-Dichlorobenzene	147.0	0.239	17.5	9.2	0.0	19.8
1,1-Dichloroethane, ethylidenc chloride	99.0	1.168	13.8	10.5	5.6	18.3
1,2-Dichloroethane, ethylene dichloride	99.0	1.246	14.2	11.2	9.1	20.2
Di(2-Chloroethoxy)methane	173.0	1.226	13.4	10.2	12.6	21.1
Di(2-Chloroethyl) ether	143.0	1.214	15.4	11.0	9.1	21.0
Dichloroisopropyl ether	171.1	1.106	15.2	9.7	4.6	18.6
Dichloromethane, methylene dichloride	84.9	1.316	13.4	11.7	9.6	20.2
1,3-Dichloropropane, propylene dichloride	113.0	1.150	14.4	10.4	5.4	18.5
2,3-Dichloropropanol	129.0	1.355	12.2	13.6	16.4	24.6
Dicrotylpropional	184.3	0.870	14.6	7.1	6.6	17.5
Di(1,3-dimethylbutyl)amine	185.4	0.781	14.4	4.9	1.5	15.3
1,1-Diethoxybutane	146.2	0.823	13.8	6.2	4.9	15.9
1,1-Diethoxyethane	118.2	0.821	13.5	6.8	5.1	15.9
2,5-Diethoxytetrahydrofuran	161.2	0.962	14.4	7.7	5.9	17.3
Diethoxytriglycol	206.3	0.950	14.2	7.5	8.8	18.3
Diethylamine	73.1	0.701	13.4	7.0	6.3	16.5

TABLE 18 (continued) Hoy's Cohesion Parameters for Liquids (and Solids as Subcooled Liquids) at 25° C

T :				δ/MPa ^{1/2}			
Liquid	M/g mol	-1 ρ/g cn	a^{-3} δ_d	$\delta_{\rm p}$	δ_b	δ_t	
Diethylaminoethylamine	116.2	0.815	5 14.0	7.		IN 82200	
3-(Diethylamino)propylamine	130.2	0.823			3.00		
1,2-Diethylbenzene	134.2	0.874		1500		il mini	
1,3-Diethylbenzene	134.2	0.858		6.5			
1,4-Diethylbenzene	134.2	0.856		6.3	3 9335	0.5	
Diethyl Carbitol®	162.2	0.902		6.2	2 2000		
Diethyl Cellosolve®	118.2	0.835		7.1	-	1,77.7.7	
Diethylene glycol, 2,2'-oxybisethanol	106.1	1.113		6.7 12.3			
Diethylenetriamine	103.2	0.948	V (0.000 5.86)	13.1			
N,N-Diethylethanolamine	117.2	0.879	13.1	7.3	14.7		
Diethyl 2-ethylhexanal	202.3	0.835	14.2	5.3	12.0	(7)70777	
Diethyl 2-ethyl-3-methylglutarate	230.2	0.976	13.6	8.0	4.9	1000	
Diethyl fumarate	172.2	1.046	13.8	10.3	6.7	100 m	
3,3-Diethylhexane	142.3	0.762	15.7	0.0	9.3	19.5	
3,4-Diethylhexane	142.3	0.749	15.4	0.0	0.0	15.7	
Di(3-ethylhexyl)amine	241.5	0.801	14.6	4.2	0.0	15.4	
Di(2-ethylhexyl) ether	242.5	0.807	14.9	3.3	4.8	16.0	
Diethylisopropanolamine	131.2	0.841	12.4	6.7	4.2	15.9	
Diethyl ketone, 3-pentanone	86.1	0.809	14.5	8.7	9.7	17.1	
Diethyl maleate	172.2	1.063	14.3	10.5	7.6	18.5	
3,3-Diethylpentane	128.3	0.749	15.4	0.0	9.9	20.3	
2,2-Diethylpentanol	144.3	0.853	14.2	7.3	0.0	15.4	
Diethyl phthalate	222.3	1.114	15.0	10.9	10.6 8.5	19.2	
Diethyl pimelate	216.3	0.988	14.4	8.5		20.4	
Diethyl succinate	172.2	1.035	14.3	9.8	8.3 9.4	18.6	
3,9-Diethyl-6-tridecanol	256.5	0.843	14.4	5.2	7.5	19.7	
Diglycolamine	105.1	1.051	11.9	11.1	19.2	17.0	
Diglycol chlorohydrin	124.6	1.168	13.3	12.1	17.1	25.1	
Diglycol diacetate	190.2	1.108	14.7	10.7	11.2	24.8	
Dihexylamine	185.4	0.785	15.1	4.8	6.1	21.3 17.0	
Dihexyl ether	186.4	0.789	15.1	3.7	5.2	16.4	
1,1-Diisobutoxyethane	174,3	0.815	14.2	5.8	2.6	15.6	
Diisobutylene	112.2	0.711	13.9	3.4	0.0	14.3	
Diisobutyl ketone	142.2	0.802	14.5	6.8	3.9	16.5	
1,1-Diisopropoxyethane	146.2	0.810	13.6	6.2	1.7	15.1	
Diisopropylamine	101.2	0.712	13.8	6.2	2.0	15.2	
Diisopropylethanolamine	145.3	0.870	14.1	6.9	10.5	18.9	
Diisopropyl maleate Diketene	200.2	1.005	14.4	9.6	7.2	18.7	
	84.1	1.108	14.5	13.5	12.7	23.6	
1,3-Dimethoxybutane	118.2	0.844	14.2	6.7	6.0	16.9	
1,1-Dimethoxyethane	90.1	0.845	13.0	7.8	6.8	16.6	
1,1-Di(methoxyethoxy)ethane	178.2	0.971	13.8	8.4	8.8	18.4	
1,1-Di(methoxyethoxy)methane	164.2	0.991	14.0	8.8	10.0	19.3	
1,1-Dimethoxy-2-methylpropane Dimethoxytetraglycol	118.2	0.839	13.5	7.0	4.7	15.9	
3-(Dimethylamino)propionitrile	222.3	1.007	14.5	8.4	10.3	19.7	
3-(Dimethylamino)propylamine	98.2	0.866	14.3	10.5	11.4	21.1	
Di(α-methylbenzyl) ether	102.2	0.812	14.6	8.5	7.9	18.6	
2,2-Dimethylbutane	226.3	0.997	16.3	8.9	0.0	18.6	
2,3-Dimethylbutane	86.2	0.643	13.7	0.0	0.0	13.7	
2,2-Dimethylbutanol	86.2	0.656	14.2	0.0	0.0	14.2	
2,3-Dimethylbutanol	102.2	0.824	14.6	8.7	12.1	20.8	
2,4-Dimethylbutanol	102.2	0.826	14.1	8.5	12.2	20.5	
2,3-Dimethyl-2-butanol	102.2	0.809	14.2	8.5	11.4	20.1	
	102.2	0.819	13.4	9.4	10.7	19.6	