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1. Background

1.1. The system

Thermal barrier coatings (TBCS) are widely used in turbines for propulsion and

power generation [l—9]. They comprise thermally insulating materials having suificient

thickness and durability that they can sustain an appreciable temperature difference

between the load bearing alloy and the coating surface. The benefit of these coatings

results from their ability to sustain high thermal gradients in the presence of adequate

back-side cooling. Lowering the temperature of the metal substrate prolongs the life

of the component: whether from environmental attack, creep rupture, or fatigue. In

addition, by reducing the thermal gradients in the metal, the coating diminishes the

driving force for thermal fatigue. Both of these benefits can be traded off in design for

greater component durability, or for reduced cooling air or for higher gas temperature/

improved system efliciency. As a result, TBCS have been increasingly used in turbine

engines. Successful implementation has required comprehensive testing protocols,

facilitated by engineering models [9—l2]. Expanded application to more demanding

scenarios (Fig. 1) requires that their basic thermo-mechanical characteristics be

understood and quantified. This need provides the opportunities and challenges
discussed in this article.

There are four primary constituents in a thermal protection system (Fig. 2). They

comprise (i) the TBC itself, (ii) the superalloy substrate, (iii) an aluminum containing

bond coat (BC) between the substrate and the TBC, and (iv) a thermally grown

oxide (TGO), predominantly alumina, that forms between the TBC and the BC. The

TBC is the insulator, the TGO on the BC provides the oxidation protection and the

alloy sustains the structural loads. The TGO is a reaction product. Each of these

elements is dynamic and all interact to control the performance and durability.
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Fig. 1. Schematic indicating the operating domain for TBCs and the challenge for a new generation of
materials.  
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The thermal barrier coating is a thermally insulating, “strain tolerant” oxide. Zirconia

has emerged as the preferred material, stabilized into its cubic/tetragonal forms by

the addition of yttria in solid solution. This material has low thermal conductivity

(~l W/m2 K) with minimal temperature sensitivity (Fig. 3) [13,83]. The thermal

resistance at lower temperatures corresponds to a phonon mean free path governed by

structural vacancy scattering. Complex oxides having even lower conduction are being

investigated, but there is no aflirmation of their viability as TBCS. Strain tolerance is

designed into the material to avoid instantaneous delamination from the thermal

expansion misfit. Two methods are used to deposit strain-tolerant TBCS. Electron

beam physical Vapor deposition (EB-PVD) evaporates the oxide from an ingot and

directs the vapor onto the preheated component [2,5, 14]. The deposition conditions are

designed to create a columnar grain structure with multiscale porosity (Fig. 2) that pro-

vides the strain tolerance and also reduces the thermal conductivity (to about 0.5 W/m K,

Fig. 3). Air plasma spray (APS) deposition is a lower cost alternative [l5—l7]. The

deposition is designed to incorporate intersplat porosity and a network of crack—like

voids that again provides some strain tolerance, while lowering the thermal conductivity.

The thermally grown oxide has a major influence on TBC durability [8—l2,l8—20].

The bond coat alloy is designed as a local Al reservoir (Fig. 2), enabling cc-alumina

to form in preference to other oxides, as oxygen ingresses through the TBC (which is

ill
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Fig. 2. The four major elements of a thermal barrier system: each element changes with exposure/cycling.
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1 transparent to oxygen). Alumina is the preferred oxide because of its low oxygen

diffusivity and superior adherence. This layer develops extremely large residual

compressions (3-6 GPa, Fig. 4), as the system cools to ambient, primarily because of

its thermal expansion misfit with the substrate (Fig. 5, Table 1) [2l—27]. Stresses also

arise during TGO growth [19,21]. They are much smaller (generally less than l GPa),
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Fig. 3. The thermal conductivity of several insulating oxides illustrating the major role of solid solutions
in aifecting phonon transport.
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Fig. 4. Ambient residual compressions measured in the TGO developed on several alloy systems (after

[21]).
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