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The Mechanics and Physics of Thin Film Decohesion and its Measurement
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Abstract. The intent of this review is to utilize the mechanics of thin films in order to define quantitative procedures
for predicting interface decohesion motivated by residual stress. The emphasis is on the role of the interface debond
energy, especially methods for measuring this parameter in an accurate and reliable manner. Experimental results
for metal films on dielectric substrates are reviewed and possible mechanisms are discussed.
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Notation T external stress

U ' stored energy

crack half length Wad work of adhesion
initial crack size Y dimensionless quantity for the

section area K-calibration

Burgers vector cx Dundurs parameter (Eq. (2.3))
constant 33 ,5 second Dundurs parameter (Eq. (2.3))

constants related to thin film decohesion y interaction angle (Eq. (2.31))

dislocation free zone near crack 8 location of neutral axis

Young’s modulus 5 strain

plane strain value of E n thickness ratio, h/H
average modulus (Eq. (2.9)) 9 polar angle

strain energy release rate tc curvature

steady-state Q A cracking number
reduced Gs; caused by bending p. shear modulus
film thickness v Poisson’s ratio

critical superlayer thickness 3;‘ loading combination (Eq. (2.38)) ’
substrate thickness 1'1 non-dimensional Q55

sectional modulus cr,-,- stress tensor

stress intensity factor GR residual stress
characteristic length 0'0 _ yield strength

prescribed length to define the mode mixity g* peak stress for the cohesive zone rupture
moment 1/r mode mixity angle

constant related to Dundurs parameters \ mode mixity defined at a prescribed

(Eq. (2.33)) length

edge force cu relative loading phase
7' ’ distance from crack tip I‘ fracture energy

R0 plastic zone size ' l‘,- interface fracture energy
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I‘, substrate fracture energy

I‘,, plastic dissipation
To plastic dissipation for the cohesive zone

rupture

A normalized location of neutral axis, 8/H

6 oscillation index (Eq. (2.5))

2 modulus ratio, E1 /E2

1. Introduction

The number of applications for thin films and multilay-

ers that take advantage oftheir special mechanical, ther-

mal, electronic and optical characteristics has steadily

increased. The associated technologies include multi-

chip modules, thermal and oxidation protection coat-

ings, wear and abrasion resistance coatings, etc. In

general, the layers are deposited by vapor deposition

(either physical or chemical). One of the problems, that
has limited the more widespread use of such systems,
has been the incidence either of interface decohesion

or of delamination within one of the brittle constituents

motivated by residual stresses [l-5]. Such stresses are

inevitable in vapor deposited layers and are exacer-

bated when the constituent materials have vastly dif-

fering thermomechanical properties, such as polymers
on metals and metals on ceramics. The stresses arise

for two reasons. ( 1) Intrinsic stresses develop during

deposition [6]. These stresses persist, unless they are

relaxed by plastic deformation or annealing. (2) The

mismatch in thermal expansion induces stresses when

the temperature is changed [7].

Controlling the stress "in order to inhibit decohesion

and delamination without compromising the functional

characteristics of the system is not usually an option.

Instead, thermomechanical design of multilayer sys-

tems to resist these failure modes is required. This goal

is crucially dependent upon the attainment of an ade-

quate interface debond toughness, F,-. The toughness

requirement is manifest in the fail-safe design solution,

[1,8]

1*, 2 ha;/EA (1.1)

where h is the film thickness, 1:? is its appropriate

Young’s modulus (plane strain or biaxial plane stress),

OR is the residual stress and Ais a cracking number

(of the order unity). When Eq. (1.1) is satisfied, there

is insufficient energy stored in the film to,permit an

interface crack to propagate and the film must remain ,
attached to the substrate.

In order to implement this fail-safe criterion, meth-

ods for the accurate measurement of l‘,- on the actua1

interfaces of relevance must exist. The principal in-

tent of the present review is to describe and analyze

the available methods with the objective of identifying
those capable of providing the quantitative information

needed to apply Eq. (1.1). There have been several re-

views on aspects of this topic. These include surveys

of test methods, [9-12] the thermomechanical integrity
of films and multilayers [13], the mechanics of crack

growth along interfaces [14], residual stresses and their

origin [15]. The present review differs from these by

focusing on the quantitative aspects of thin film deco-
hesion and its measurement. Most thin film adhesion

tests empirically infer the adhesive strength by subject-

ing the film to some external loading (like scratching,

pulling or inflating) and measuring the load at which

decohesion occurs. These tests are simple and effec-

tive for routine ranking of bond quality. However, they

do not measure 1",-, because the strain energy release

rate cannot be deconvoluted from the work done by

the external load [12]. An ideal test should duplicate

the practical situation as closely as possible and be able

to modulate the available strain energy. It must also

explicitly incorporate the contribution to decohesion
from the residual stress. The test methods are assessed

against this ideal.

2. Mechanics of Thin Film Decohesion

2.1. Basic Principles

Most decohesion problems of interest involve films

subject to residual tension. This case is given the major

emphasis in the present article. Relatively few remarks

are made about the corresponding problem when the

films are in compression. Films in tension are able

to decohere from the subsuate by relaxing the resid-
ual stress in the film above the interface crack. For

the simplest case of a thin, homogeneous film sub-

ject to uniform residual stress on a thick substrate, the

steady-state energy release rate, Qss, for an interface

crack is given by the strain energy in the film. The
non-dimensional form for a film is,

H = Ea./atth (2.1)

where 1'1 is a non-dimensional quantity of the order
‘ unity. The same form arises for other problems, but

its numerical magnitude differs, as elaborated below-
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