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The Mechanics and Physics of Thin Film Decohesion and its Measurement

A.BAGCHI AND A.G. EVANS
Division of Applied Sciences, Harvard University, Cambridge, Massachusetts 02138
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Abstract. The intent of this review is to utilize the mechanics of thin films in order to define quantitative procedures
for predicting interface decohesion motivated by residual stress. The emphasis is on the role of the interface debond
energy, especially methods for measuring this parameter in an accurate and reliable manner. Experimental results
for metal films on dielectric substrates are reviewed and possible mechanisms are discussed.

Keywords:

Notation T external stress
U~ stored energy

a crack half length Wad work of adhesion
ay initial crack size Y dimensionless quantity for the
A section area K -calibration
b Burgers vector o Dundurs parameter (Eq. (2.3))
c constant 3 B second Dundurs parameter (Eq. (2.3))
Ci constants related to thin film decohesion y interaction angle (Eq. (2.31))
D dislocation free zone near crack 5 location of neutral axis
E Young's modulus g strain

plane strain value of E n thickness ratio, h/H
E* average modulus (Eq. (2.9)) 6 polar angle
g strain energy release rate K curvature
Gss steady-state G by cracking number
AGg reduced G caused by bending m shear modulus
h film thickness v Poisson’s ratio
he critical superlayer thickness & loading combination (Eq. (2.38))
H substrate thickness I non-dimensional Gss
! sectional modulus oij stress tensor
f stress intensity factor ORr residual stress

characteristic length

prescribed length to define the mode mixity
moment

constant related to Dundurs parameters

(Eq. (2.33))

yield strength

peak stress for the cohesive zone rupture
mode mixity angle

mode mixity defined at a prescribed
length

%
‘i

edge force w relative loading phase
r distance from crack tip r fracture energy
] Ry plastic zone size Ty interface fracture energy
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I substrate fracture energy

T'p plastic dissipation

To plastic dissipation for the cohesive zone
rupture

A normalized location of neutral axis, §/ H

€ oscillation index (Eq. (2.5))

P modulus ratio, E/E,

1. Introduction

The number of applications for thin films and multilay-
ers that take advantage of their special mechanical, ther-
mal, electronic and optical characteristics has steadily
increased. The associated technologies include multi-
chip modules, thermal and oxidation protection coat-
ings, wear and abrasion resistance coatings, etc. In
general, the layers are deposited by vapor deposition
(either physical or chemical). One of the problems, that
has limited the more widespread use of such systems,
has been the incidence either of interface decohesion
or of delamination within one of the brittle constituents
motivated by residual stresses [1-5]. Such stresses are
inevitable in vapor deposited layers and are exacer-
bated when the constituent materials have vastly dif-
fering thermomechanical properties, such as polymers
on metals and metals on ceramics. The stresses arise
for two reasons. (1) Intrinsic stresses develop during
deposition [6]. These stresses persist, unless they are
relaxed by plastic deformation or annealing. (2) The
mismatch in thermal expansion induces stresses when
the temperature is changed [7].

Controlling the stress in order to inhibit decohesion
and delamination without compromising the functional
characteristics of the system is not usually an option.
Instead, thermomechanical design of muiltilayer sys-
tems to resist these failure modes is required. This goal
is crucially dependent upon the attainment of an ade-
quate interface debond toughness, I';. The toughness
requirement is manifest in the fail-safe design solution,
(1, 8]

T; > hok/EX (1.1)
where h is the film thickness, E is its appropriate
Young’s modulus (plane strain or biaxial plane stress),
or is the residual stress and A.is a cracking number
(of the order unity). When Eq. (1.1) is satisfied, there
is insufficient energy stored in the film to permit an

interface crack to propagate and the film must remain

attached to the substrate.
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In order to implement this fail-safe criterion, meth.
ods for the accurate measurement of I'; on the actya]
interfaces of relevance must exist. The principal in-
tent of the present review is to describe and analyze
the available methods with the objective of identifying
those capable of providing the quantitative information
needed to apply Eq. (1.1). There have been several re-
views on aspects of this topic. These include surveys
of test methods, [9-12] the thermomechanical integrity
of films and multilayers [13], the mechanics of crack
growth along interfaces [14], residual stresses and their
origin [15]. The present review differs from these by
focusing on the quantitative aspects of thin film deco-
hesion and its measurement. Most thin film adhesion
tests empirically infer the adhesive strength by subject-
ing the film to some external loading (like scratching,
pulling or inflating) and measuring the load at which
decohesion occurs. These tests are simple and effec-
tive for routine ranking of bond quality. However, they
do not measure I';, because the strain energy release
rate cannot be deconvoluted from the work done by
the external load [12]. An ideal test should duplicate
the practical situation as closely as possible and be able
to modulate the available strain energy. It must aiso
explicitly incorporate the contribution to decohesion
from the residual stress. The test methods are assessed
against this ideal.

2. Mechanics of Thin Film Decohesion
2.1. Basic Principles

Most decohesion problems of interest involve films
subject toresidual tension. This case is given the major
emphasis in the present article. Relatively few remarks
are made about the corresponding problem when the
films are in compression. Films in tension are able
to decohere from the substrate by relaxing the resid-
ual stress in the film above the interface crack. For
the simplest case of a thin, homogeneous film sub-
ject to uniform residual stress on a thick substrate, the
steady-state energy release rate, Gg, for an interface
crack is given by the strain energy in the film. The
non-dimensional form for a film is,

I = E_'gss/o';zgh (21)

where T1 is a non-dimensional quantity of the order

" unity. The same form arises for other problems, but

its numerical magnitude differs, as elaborated below.
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