
.
-
.

Bright House Networks - Ex. 1049, Page 1

Library of Congress Cataloging in Publication Data

Tanenbaum, AndrewS. 1944-.
Computer networks I Andrew S. Tanenbaum. -- 3rd ed.

p. em.
Includes bibliographical references and index.
ISBN 0-13-349945-6
!.Computer networks. I. Title.

TK5105.5.T36 1996
004.6--dc20

Editorial/production manager: Camille Trentacoste
Interior design and composition: Andrew S. Tanenbaum
Cover design director: Jerry Votta
Cover designer: Don Martinetti, DM Graphics, Inc.

96-4121
CIP

Cover concept: AndrewS. Tanenbaum, from an idea by Marilyn Tremaine
Interior graphics: Hadel Studio
Manufacturing manager: Alexis R. Heydt
Acquisitions editor: Mary Franz
Editorial Assistant: Noreen Regina

© 1996 by Prentice Hall PTR
Prentice-Hall, Inc.
A Simon & Schuster Company
Upper Saddle River, New Jersey 07458

The publisher offers discounts on this book when ordered in bulk quantities. For more information,
contact:
Corporate Sales Department, Prentice Hall PTR, One Lake Street, Upper Saddle River, NJ 07458.
Phone: (800) 382-3419; Fax: (201) 236-7141. E-mail: corpsales@prenhall.com

All rights reserved. No part of this book may be reproduced, in any form or by any means, without
permission in writing from the publisher.

All product names mentioned herein are the trademarks of their respective owners.

Printed in the United States of America
10 9 8 7 6 5 4

ISBN 0-13-349945-6

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto
Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo
Simon & Schuster Asia Pte. Ltd., Singapore
Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

Bright House Networks - Ex. 1049, Page 2

CONTENTS

PREFACE

1 INTRODUCTION

1.1 USES OF COMPUTER NETWORKS 3
1.1.1 Networks for Companies 3
1.1.2 Networks for People 4
1.1.3 Social Issues 6

1.2 NETWORK HARDWARE 7
1.2.1 Local Area Networks 9
1.2.2 Metropolitan Area Networks 10
1.2.3 Wide Area Networks 11
1.2.4 Wireless Networks 13
1.2.5 Internetworks 16

1.3 NETWORK SOFTWARE 16
1.3 .1 Protocol Hierarchies 17
1.3.2 Design Issues for the Layers 21
1.3.3 Interfaces and Services 22
1.3.4 Connection-Oriented and Connectionless Services 23
1.3.5 Service Primitives 25
1.3.6 The Relationship of Services to Protocols 27

1.4 REFERENCE MODELS 28
1.4.1 The OSI Reference Model 28
1.4.2 The TCP/IP Reference Model 35
1.4.3 A Comparison of the OSI and TCP Reference Models 38
1.4.4 A Critique of the OSI.Model and Protocols 40
1.4.5 A Critique of the TCP/IP Reference Model 43

1.5 EXAMPLE NETWORKS 44
1.5.1 Novell NetWare 45
1.5.2 The ARPANET 47
1.5.3 NSFNET 50
1.5.4 The Internet 52
1.5.5 Gigabit Testbeds 54

vi

XV

1

Bright House Networks - Ex. 1049, Page 3

CONTENTS

1.6 EXAMPLE DATA COMMUNICATION SERVICES 56
1.6.1 SMDS-Switched Multimegabit Data Service 57
1.6.2 X.25 Networks 59
1.6.3 Frame Relay 60
1.6.4 Broadband ISDN and ATM 61
1.6.5 Comparison of Services 66

1.7 NETWORK STANDARDIZATION" 66
1. 7.1 Who's Who in the Telecommunications World 67
1.7.2 Who's Who in the International Standards World 69
1.7.3 Who's Who in the Internet Standards World 70

1.8 OUTLINE OF THE REST OF THE BOOK 72

1.9. SUMMARY 73

vii

2 THE PHYSICAL LAYER 77

2.1 THE THEORETICAL BASIS FOR DATA COMMUNICATION 77
2.1.1 Fourier Analysis 78
2.1.2 Bandwidth-Limited Signals 78
2.1.3 The Maximum Data Rate of a Channel 81

2.2 TRANSMISSION MEDIA 82
2.2.1 Magnetic Media 82
2.2.2 Twisted Pair 83
2.2.3 Baseband Coaxial Cable 84
2.2.4 Broadband Coaxial Cable 85
2.2.5 Fiber Optics 87

2.3 WIRELESS TRANSMISSION 94
2.3.1 The Ele~tromagnetic Spectrum 94
2.3.2 Radio Transmission 97
2.3.3 Microwave Transmission 98
2.3.4 Infrared and Millimeter Waves 100
2.3.5 Lightwave Transmission 100

2.4 THE TELEPHONE SYSTEM 102
2.4.1 Structure of the Telephone System 103
2.4.2 The Politics of Telephones 106
2.4.3 The Local Loop 108
2.4.4 Trunks and Multiplexing 118
2.4.5 Switching 130

Bright House Networks - Ex. 1049, Page 4

viii CONTENTS

2.5 NARROWBAND ISDN 139
2.5.1 ISDN Services 140
2.5.2 ISDN System Architecture 140
2.5.3 The ISDN Interface 142
2.5.4 Perspective on N-ISDN 143

2.6 BROADBAND ISDN AND ATM 144
2.6.1 Virtual Circuits versus Circuit Switching 145
2.6.2 Transmission in ATM Networks 146
2.6.3 ATM Switches 147

2.7 CELLULAR RADIO 155
2.7.1 Paging Systems 155
2.7.2 Cordless Telephones 157
2.7.3 Analog Cellular Telephones 157
2.7.4 Digital Cellular Telephones 162
2.7.5 Personal Communications Services 162

2.8 COMMUNICATION SATELLITES 163
2.8.1 Geosynchronous Satellites 164
2.8.2 Low-Orbit Satellites 167
2.8.3 Satellites versus Fiber 168

2.9 SUMMARY 170

3 THE DATA LINK LAYER

3.1 DATA LINK LAYER DESIGN ISSUES 176
3.1.1 Services Provided to the Network Layer 176
3 .1.2 Framing 179

· 3.1.3 Error Control 182
3.1.4 Flow Control 183

3.2 ERROR DETECTION AND CORRECTION 183
3.2.1 Error-Correcting Codes 184
3 .2.2 Error-Detecting Codes 186

3.3 ELEMENTARY DATA LINK PROTOCOLS 190
3.3.1 An Unrestricted Simplex Protocol 195
3.3.2 A Simplex Stop-and-Wait Protocol 195
3.3.3 A Simplex Protocol for a Noisy Channel 197

175

Bright House Networks - Ex. 1049, Page 5

CONTENTS

3.4 SLIDING WINDOW PROTOCOLS 202
3.4.1 A One Bit Sliding Window Protocol 206
3.4.2 A Protocol Using Go Back n 207
3.4.3 A Protocol Using Selective Repeat 213

3.5 PROTOCOL SPECIFICATION AND VERIFICATION 219
3.5.1 Finite State Machine Mode~ 219
3.5.2 Petri Net Models 223

3.6 EXAMPLE DATA LINK PROTOCOLS 225
3.6.1 HDLC-High-level Data Link Control 225
3.6.2 The Data Link Layer in the Internet 229
3.6.3 The Data Link Layer in ATM 235

3.7. SUMMARY 239

4 THE MEDIUM ACCESS SUBLA YER

4.1 THE CHANNEL ALLOCATION PROBLEM 244
4.1.1 Static Channel Allocation in LANs and MANs 244
4.1.2 Dynamic Channel Allocation in LANs and MANs 245

4.2 MULTIPLE ACCESS PROTOCOLS 246
4.2.1 ALOHA 246
4.2.2 Carrier Sense Multiple Access Protocols 250
4.2.3 Collision-Free Protocols 254
4.2.4 Limited-Contention Protocols 256
4.2.5 Wavelength Division Multiple Access Protocols 260
4.2.6 Wireless LAN Protocols 262
4.2.7 Digital Cellular Radio 266

4.3 IEEE STANDARD 802 FOR LANS AND MANS 275
4.3.1 IEEE Standard 802.3 and Ethernet 276
4.3.2 IEEE Standard 802.4: Token Bus 287
4.3.3 IEEE Standard 802.5: Token Ring 292
4.3.4 Comparison of 802.3, 802.4, and 802.5 299
4.3.5 IEEE Standard 802.6: Distributed Queue Dual Bus 301
4.3.6 IEEE Standard 802.2: Logical Link Control 302

ix

243

Bright House Networks - Ex. 1049, Page 6

X CONTENTS

4.4 BRIDGES 304
4.4.1 Bridges from 802.x to 802.y 307
4.4.2 Transpar~nt Bridges 310
4.4.3 Source Routing Bridges 314
4.4.4 Comparison of 802 Bridges 316
4.4.5 Remote Bridges 317

4.5 HIGH-SPEED LANS 318
4.5.1 FDDI 319
4.5.2 Fast Ethernet 322
4.5.3 HIPPI-High-Performance Parallel Interface 325
4.5.4 Fibre Channel 326

4.6 SATELLITE NETWORKS 327
4.6.1 Polling 328
4.6.2 ALOHA 329
4.6.3 FDM 330
4.6.4 TDM 330
4.6.5 CDMA 333

4.7 SUMMARY 333

5 THE NETWORK LAYER

5.1 NETWORK LAYER DESIGN ISSUES 339
5.1.1 Services Provided to the Transport Layer 340
5.1.2 Internal Organization of the Network Layer 342
5.1.3 Comparison of Virtual Circuit and Datagram Subnets 344

5.2 ROUTING ALGORITHMS 345
5.2.1 The Optimality Principle 347
5.2.2 Shortest Path Routing 349
5 .2.3 Flooding 351 "'
5.2.4 Flow-Based Routing 353
5.2.5 Distance Vector Routing 355
5.2.6 Link State Routing 359
5.2.7 Hierarchical Routing 365
5.2.8 Routing for Mobile Hosts 367
5.2.9 Broadcast Routing 370
5 .2.1 0 Multicast Routing 372

339

Bright House Networks - Ex. 1049, Page 7

CONTENTS xi

5.3 CONGESTION CONTROL ALGORITHMS 374
5.3 .1 General Principles of Congestion Control 37 6
5.3.2 Congestion Prevention Policies 378
5.3.3 Traffic Shaping 379
5.3.4 Flow Specifications 384
5.3.5 Congestion Control in Virtual Circuit Subnets 386
5.3.6 Choke Packets 387 @

5.3.7 Load Shedding 390
5.3.8 Jitter Control 392
5.3.9 Congestion Control for Multicasting 393

5.4 INTERNETWORKING 396
5.4.1 How Networks Differ 399
5.4.2 Concatenated Virtual Circuits 401
5.4.3 Connectionless Internetworking 402
5.4.4 Tunneling 404
5.4.5 Internetwork Routing 405
5.4.6 Fragmentation 406
5.4.7 Firewalls 410

5.5 THE NETWORK LAYER IN THE INTERNET 412
5.5.1 The IP Protocol 413
5.5.2 IP Addresses 416
5.5.3 Subnets 417
5.5.4 Internet Control Protocols 419
5.5.5 The Interior Gateway Routing Protocol: OSPF 424
5.5.6 The Exterior Gateway Routing Protocol: BGP 429
5.5.7 Internet Multicasting 431
5.5.8 Mobile IP 432
5.5.9 CIDR-Classless InterDomain Routing 434
5.5.10 IPv6 437

5.6 THE NETWORK LAYER IN ATM NETWORKS 449
5.6.1 Cell Formats 450
5.6.2 Connection Setup 452
5.6.3 Routing and Switching 455
5.6.4 Service Categories 458
5.6.5 Quality of Service 460
5.6.6 Traffic Shaping and Policing 463
5.6.7 Congestion Control 467
5.6.8 ATM LANs 471

5.7 SUMMARY 473

Bright House Networks - Ex. 1049, Page 8

xii CONTENTS

6 THE TRANSPORT LAYER 479

6.1 THE TRANSPORT SERVICE 479
6.1.1 Services Provided to the Upper Layers 479
6.1.2 Quality of Service 481
6.1.3 Transport Service Primitives 483

6.2 ELEMENTS OF TRANSPORT PROTOCOLS 488
6.2.1 Addressing 489
6.2.2 Establishing a Connection 493
6.2.3 Releasing a Connection 498
6.2.4 Flow Control and Buffering 502
6.2.5 Multiplexing 506
6.2.6 Crash Recovery 508

6.3 A SIMPLE TRANSPORT PROTOCOL 510
6.3.1 The Example Service Primitives 510
6.3.2 The Example Transport Entity 512
6.3.3 The Example as a Finite State Machine 519

6.4 THE INTERNET TRANSPORT PROTOCOLS (TCP AND UDP) 521
6.4.1 The TCP Service Model 523
6.4.2 The TCP Protocol 524
6.4.3 The TCP Segment Header 526
6.4.4 TCP Connection Management 529
6.4.5 TCP Transmission Policy 533
6.4.6 TCP Congestion Control 536
6.4.7 TCP Timer Management 539
6.4.8 UDP 542
6.4.9 Wireless TCP and UDP 543

6.5 THE ATM AAL LAYER PROTOCOLS 545
6.5.1 Structure of the ATM Adaptation Layer 546
6.5.2 AAL 1 547
6.5.3 AAL 2 549
6.5.4 AAL 3/4 550
6.5.5 AAL 5 552
6.5.6 Comparison of AAL Protocols 554
6.5.7 SSCOP-Service Specific Connection-Oriented Protocol 555

6.6 PERFORMANCE ISSUES 555
6.6.1 Performance Problems in Computer Networks 556
6.6.2 Measuring Network Performance 559

Bright House Networks - Ex. 1049, Page 9

CONTENTS

6.6.3 System Design for Better Performance 561
6.6.4 Fast TPDU Processing 565
6.6.5 Protocols for Gigabit Networks 568

6.7 SUMMARY 572

xiii

7 THE APPLICATION LAYER 577

7.1 NETWORK SECURITY 577
7.1.1 Traditional Cryptography 580
7.1.2 Two Fundamental Cryptographic Principles 585
7.1.3 Secret-Key Algorithms 587
7.1.4 Public-Key Algorithms 597
7 .1.5 Authentication Protocols 60 I
7 .1.6 Digital Signatures 613
7 .1. 7 Social Issues 620

7.2 DNS-DOMAIN NAME SYSTEM 622
7.2.1 The DNS Name Space 622
7.2.2 Resource Records 624
7.2.3 Name Servers 628

7.3 SNMP-SIMPLE NETWORK MANAGEMENT PROTOCOL 630
7.3.1 The SNMP Model 631
7.3.2 ASN.1-Abstract Syntax Notation 1 633
7.3.3 SMI-Structure of Management Information 639
7.3.4 The MIB-Management Information Base 641
7.3.5 The SNMP Protocol 642

7.4 ELECTRONIC MAIL 643
7 .4.1 Architecture and Services 645
7.4.2 The User Agent 646
7 .4.3 Message Formats 650
7.4.4 Message Transfer 657
7 .4.5 Email Privacy 663

7.5 USENET NEWS 669
7.5.1 The User View ofUSENET 670
7.5.2 How USENET is Implemented 675

Bright House Networks - Ex. 1049, Page 10

xiv CONTENTS

7.6 THE WORLD WIDE WEB 681
7.6.1 The Client Side 682
7 .6.2 The Server Side 685
7.6.3 Writing a Web Page in HTML 691
7.6.4 Java 706
7.6.5 Locating Information on the Web 720

7.7 MULTIMEDIA 723
7.7.1 Audio 724
7.7.2 Video 727
7.7.3 Data Compression 730
7.7.4 Video on Demand 744
7.7.5 MBone-Multicast Backbone 756

7.8 SUMMARY 760

8 READING LIST AND BIBLIOGRAPHY

8.1 SUGGESTIONS FOR FURTHER READING 767
8.1.1 Introduction and General Works 768
8.1.2 The Physical Layer 769
8.1.3 The Data Link Layer 770
8.1.4 The Medium Access Control Sublayer 770
8.1.5 The Network Layer 771
8.1.6 The Transport Layer 772
8.1.7 The Application Layer 772

8.2 ALPHABETICAL BIBLIOGRAPHY 775

INDEX 795

767

Bright House Networks - Ex. 1049, Page 11

2 INTRODUCTION CHAP. 1

computers, while large institutions had at most a few dozen. The idea that within

20 years equally powerful computers smaller than postage stamps would be mass

produced by the millions was pure science fiction.

The merging of computers and communications has had a profound influence

on the way computer systems are organized. The concept of the "computer

center" as a room with a large computer to which users bring their work for pro-

cessing is now totally obsolete. The old model of a single computer serving all of

the organization's computational needs has been replaced by one in which a large

ntunber of separate but interconnected computers do the job. These systems are

called computer networks. The design and organization of these networks are

the subjects of this book.
Throughout the book we will use the term "computer network" to mean an

interconnected collection of nutononious computers. Two computers are said to

be interconnected if they are able to exchange information. The connection need

not be via a copper wire; fiber optics, microwaves, and communication satellites

can also be used. By requiring the computers to be autonomous, we wish to

exclude from our definition systems in which there is a clear master/slave rela-

tion. If one computer can forcibly start, stop, or control another one, the comput-

ers are not autonomous. A system with one control unit and many slaves is not a

network; nor is a large computer with remote printers and terminals.

There is considerable confusion in the literature between a computer network

and a distributed system. The key distinction is that in a distributed system, the

existence of multiple autonomous computers is transparent (i.e., not visible) to the

user. He' can type a command to run a program, and it runs. It is up to the

operating system to select the best processor, find and transport all the input files

to that processor, and put the results in the appropriate place.

In other words, the user of a distributed system is not aware that there are

m«ltiple processors; it looks like a virtual uniprocessor. Allocation of jobs to pro-

cessors and files to disks, movement of files between where they are stored and

where they are needed, and all other system functions must be automatic.

With a network, users must explicitly log onto one machine, explicitly submit

jabs remotely, explicitly move files around and generally handle all the network

management personally. With a distributed system, nothing has to be done expli-

citly; it is all automatically done by the system without the users' knowledge.

In effect, a distributed system is a software system built on top of a network.

The software gives it a high degree of cohesiveness and transparency. Thus the

distinction between a network and a distributed system lies with the software

(especially the operating system), rather than with the hardware.

Nevertheless, there is considerable overlap between the two subjects. For

example, both distributed systems and computer networks need to move files

around. The difference lies in who invokes the movement, the system or the user.

f "He" should be read as "he or she" throughout this book.

Bright House Networks - Ex. 1049, Page 12

~{

`~

SEC. 11 U~E~ CC~F COMPUTER NETWORKS 3 ~^-,y

Although this book primarily focuses on networks, many of the topics are also ~ ,~

important in distributed systems. For more information about distributed systems, ~ $'_

see (Coulouris et al., 1994; Mullender, 1993; and Tanenbaum, 1995). -~~>
r.~
.f

11. USES OF COMPUTER NETWORKS
i

Before we start to examine the technical issues in detail, it is worth devoting

some time to pointing out why people are interested in computer networks and

what they can be used for. s.
_-~-

1.1.1. Networks for Companies -

Many organizations have a substantial number of computers in operation,

often located far apart. For example, a company with many factories may have a

computer at each location to keep track of inventories, monitor productivity, and

do the local payroll. Initially, each of these computers may have worked in isola-

tion from the others, but at some point, management may have decided to connect

them to be able to extract and correlate information about the entire company.

Put in slightly more general form, the issue here is resource sharing, and the

goal is to make all programs, equipment, and especially data available to anyone

on the network without regard to the physical location of the resource and the
user. In other words, the mere fact that a user happens to be 1000 km away fiom

his data should not prevent him from using the data as though they were local.
This goal may be summarized by saying that it is an attempt to end the "tyranny
of geography."

A second goal is to provide high reliability by having alternative sources of
supply. For example, all files could be replicated on two or three machines, so if
one of them is unavailable (due to a hardware failure), the other copies could be
used. In addition, the presence of multiple CPUs means that if one goes down, the
others may be able to take over its work, although at reduced performance. For
military, banking, air traffic control, nuclear reactor safety, and many other appli-
cations, the ability to continue operating in the face of hardware problems is of
utmost importance.

Another goal is saving money. Small computers have a much better

price/performance ratio than large ones. Mainframes (room-size computers) are
roughly a factor of ten faster than personal computers, but they cost a thousand
times more. This imbalance has caused many systems designers to build systems
consisting of personal computers, one per user, with data kept on one or more
shared file server machines. In this model, the users are called clients, and the
whole arrangement is called the client-server model. It is illustrated in Fig. 1-l.

In the client-server model, communication generally takes the form of a
request message from the client to the server asking for some work to be done.

Bright House Networks - Ex. 1049, Page 13

4

Client
process

INTRODUCTION

Client machine Server machine

0 0

Request

Reply

Fig. 1-1. The client-server model.

CHAP. I

Server
process

The server then does the work and sends back the reply. Usually, there are many
clients using a small number of servers.

Another networking goal is scalability, the ability to increase system perfor­
mance gradually as the workload grows just by adding more processors. With
centralized mainframes, when the system is full, it must be replaced by a larger
one, usually at great expense and even greater disruption to the users. With the
client-server model, new clients and new servers can be added as needed.

Yet another goal of setting up a computer network has little to do with tech­
nology at all. A computer network can provide a powerful communication
medium among widely separated employees. Using a network, it is easy for two
or more people who live far apart to write a report together. When one worker
makes a change to an on-line document, the others can see the change immedi­
ately, instead of waiting several days for a letter. Such a speedup makes coopera­
tion among far-flung groups of people easy where it previously had been impossi­
ble. In the long run, the use of networks to enhance human-to-human communi­
cation will probably prove more important than technical goals such as improved
reliability.

1;1.2. Networks for People

The motivations given above for building computer networks are all essen­
tially economic and technological in nature. If sufficiently large and powerful
mainframes were available at acceptable prices, most companies would simply
choose to keep all their data on them and give employees terminals connected to
them. In the 1970s and early 1980s, most companies operated this way. Com­
puter networks only became popular when networks of personal computers
offered a huge price/performance advantage over mainframes.

Starting in the 1990s, computer networks began to start delivering services to
private individuals at home. These services and the motivations for using them

Bright House Networks - Ex. 1049, Page 14

SEC. 1.1 USES OF COMPUTER NETWORKS 5

are quite different than the "corporate efficiency" model described in the previ­
ous section. Below we will sketch three of the more exciting ones that are starting
to happen:

1. Access to remote information.

2. Person-to-person communication.

3. Interactive entertainment.

Access to remote information will come in many forms. One area in which.it
is already happening is access to financial institutions. Many people pay their
bills, manage their bank accounts, and handle their investments electronicaliy.
Home shopping is also becoming popular, with the ability to inspect the on-line
catalogs of thousands of companies. Some of these catalogs will soon provide the
ability to get an instant video on any product by just clicking on the product's
name.

Newspapers will go on-line and be personalized. It will be possible to tell the
newspaper that you want everything about corrupt politicians, big fires, scandals
involving celebrities, and epidemics, but no football, thank you. At night while
you sleep, the newspaper will be downloaded to your computer's disk or printed
on your laser printer. On a small scale, this service already exists. The next step
beyond newspapers (plus magazines and scientific journals) is the on-line digital
library. Depending on the cost, size, and weight of book-sized notebook comput­
ers, printed books may become obsolete. Skeptics should take note of the effect
the printing press had on the medieval illuminated manuscript.

Another application that falls in this category is access to information systems
like the current World Wide Web, which contains information about the arts, busi­
ness, cooking, government, health, history, hobbies, recreation, science, sports,
travel, and too many other topics to even mention.

All of the above applications involve interactions between a person and a
remote database. The second broad category of network use will be person-to­
person interactions, basically the 21st Century's answer to the 19th Century's tele­
phone. Electronic mail or email is already widely used by millions of people and
will soon routinely contain audio and video as well as text. Smell in messages
will take a bit longer to perfect.

Real-time email will allow remote users to communicate with no delay, possi­
bly seeing and hearing each other as well. This technology makes it possible to
have virtual meetings, called videoconference, among far-flung people. It is
sometimes said that transportation and communication are having a race, and
whichever wins will make the other obsolete. Virtual meetings could be used for
remote school, getting medical opinions from distant specialists, and numerous
other applications.

Worldwide newsgroups, with discussions on every conceivable topic are
already commonplace among a select group of people, and this will grow to

Bright House Networks - Ex. 1049, Page 15

6 INTRODUCTION CHAP. 1

include the population at large. These discussions, in which one person posts a
message and all the other subscribers to the newsgroup can read it, run the gamut
from humorous to impassioned.

Our third category is entertainment, which is a huge and growing industry.
The killer application here (the one that may drive all the rest) is video on
demand. A decade or so hence, it may be possible to select any movie or televi­
sion program ever made, in any country, and have it displayed on your screen
instantly. New films may become interactive, where the user is occasionally
prompted for the story direction (should Macbeth murder Duncan or just bide his
time?) with alternative scenarios provided for all cases. Live television may also
become interactive, with the audience participating in quiz shows, choosing
among contestants, and so on.

On the other hand, maybe the killer application will not be video on demand.
Maybe it will be game playing. Already we have multiperson real-time simula­
tion games, like hide-and-seek in a virtual dungeon, and flight simulators with the
players on one team trying to shoot down the players on the opposing team. If
done with goggles and 3-dimensional real-time, photographic-quality moving
images, we have a kind of worldwide shared virtual reality.

In short, the ability to merge information, communication, and entertainment
will surely give rise to a massive new industry based on computer networking.

1.1.3. Social Issues

The widespread introduction of networking will introduce new social, ethical,
political problems (Laudon, 1995). Let us just briefly mention a few of them; a
thorough study would require a full book, at least. A popular feature of many net­
works are newsgroups or bulletin boards where people can exchange messages
with like-minded individuals. As long as the subjects are restricted to technical
topics or hobbies like gardening, not too many problems will arise.

The trouble comes when newsgroups are set up on topics that people actually
care. about, like politics, religion, or sex. Views posted to such groups may be
deGpJy offensive to some people. Furthermore, messages need not be limited to
text. High-resolution color photographs and even short video clips can now easily
be transmitted over computer networks. Some people take a live-and-let-live
view, but others feel that posting certain material (e.g., child pornography) is sim­
ply unacceptable. Thus the debate rages.

People have sued network operators, claiming that they are responsible for the
contents of what they carry, just as newspapers and magazines are. The inevitable
response is that a network is like a telephone company or the post office and can­
not be expected to police what its users say. Stronger yet, having network opera­
tors censor messages would probably cause them to delete everything with even
the slightest possibility of their being sued, and thus violate their users' rights to
free speech. It is probably safe to say that this debate will go on for a while.

Bright House Networks - Ex. 1049, Page 16

SEC. 1.1 USES OF COMPUTER NETWORKS 7

Another fun area is employee rights versus employer rights. Many people
read and write email at work. Some employers have claimed the right to read and
possibly censor employee messages, including messages sent from a home termi­
nal after work. Not all employees agree with this (Sipior and Ward, 1995).

Even if employers have power over employees, does this relationship also
govern universities and students? How about high schools and students? In 1994,
Carnegie-Mellon University decided to fum off the incoming message stream for
several newsgroups dealing with sex because the university felt the material was
inappropriate for minors (i.e., those few students under 18). The fallout from this
event will take years to settle.

Computer networks offer the potential for sending anonymous messages. 'In
some situations, this capability may be desirable. For example, it provides a way
for students, soldiers, employees, and citizens to blow the whistle on illegal
behavior on the part of professors, officers, superiors, and politicians without fear
of reprisals. On the other hand, in the United States and most other democracies,
the law specifically permits an accused person the right to confront and challenge
his accuser in court. Anonymous accusations cannot be used as evidence.

In short, computer networks, like the printing press 500 years ago, allow ordi­
nary citizens to distribute their views in different ways and to different audiences
than were previously possible. This new-found freedom brings with it many
unsolved social, political, and moral issues. The solution to these problems is left
as an exercise for the reader.

1.2. NETWORK HARDWARE

It is now time to turn our attention from the applications and social aspects of
networking to the technical issues involved in network design. There is no gen­
erally accepted taxonomy into which all computer networks fit, but two dimen­
sions stand out as important: transmission technology and scale. We will now
examine each of these in turn.

Broadly speaking, there are two types of transmission technology:

1. Broadcast networks.

2. Point-to-point networks.

Broadcast networks have a single communication channel that is shared by all
the machines on the network. Short messages, called packets in certain contexts,
sent by any machine are received by all the others. An address field within the
packet specifies for whom it is intended. Upon receiving a packet, a machine
checks the address field. If the packet is intended for itself, it processes the
packet; if the packet is intended for some other machine, it is just ignored.

As an analogy, consider someone standing at the end of a corridor with many
rooms off it and shouting "Watson, come here. I want you." Although the packet

Bright House Networks - Ex. 1049, Page 17

28 INTRODUCTION CHAP. 1

are free to change their protocols at will, provided they do not change the service

visible to their users. In this way, the service and the protocol are completely

decoupled.
An analogy with programming languages is worth making. A service is like

an abstract data type or an object in an object-oriented language. It defines opera-

tions that can be performed on an object but does not specify how these operations

are implemented. A protocol relates to the implementation of the service and as

such is not visible to the user of the service.

Many older protocols did not distinguish the service from the protocol. In

effect, a typical layer might have had a service primitive SEND PACKET with the

user providing a pointer to a fully assembled packet. This arrangement meant that

all changes to the protocol were immediately visible to the users. Most network

designers now regard such a design as a serious blunder.

1.4. REFERENCE MODELS

Now that we have discussed layered networks in the abstract, it is time to look
at some examples. In the next two sections we will discuss two important net-
work architectures, the OSI reference model and the TCP/IP reference model.

1.4.1. The OSI Reference Model

The OSI model is shown in Fig. 1-16 (minus the physical medium). This
model is based on a proposal developed by the International Standards Organiza-
tion (ISO) as a first step toward international standardization of the protocols used
in the various layers (Day and Zimmermann, 1983). The model is called the ISO
OSI (Open Systems Interconnection) Reference Model because it deals with
connecting open systems—that is, systems that are open for communication with
other systems. We will usually just call it the OSI model for short.

The OSI model has seven layers. The principles that were applied to arrive at
the seven layers are as follows:

1. A layer should be created where a different level of abstraction is
needed.

2. Each layer should perform a well defined function.

The function of each layer should be chosen with an eye toward
defining internationally standardized protocols.

4. The layer boundaries should be chosen to minimize the information
flow across the interfaces.

5. The number of layers should be large enough that distinct functions
need not be thrown together in the same layer out of necessity, and
small enough that the architecture does not become unwieldy.

Bright House Networks - Ex. 1049, Page 18

SEC. 1.4 REFERENCE MODELS 29
;~

Below we will discuss each layer of the model in turn,
starting at the bottom ~

layer. Note that the OSI model itself is not a network
architecture because it does ~-- ~.

not specify the exact services and protocols to be u
sed in each layer. It just tells ~ s~`

what each layer should do. However, ISO has also pr
oduced standards for all the ~r~~

layers, although these are not part of the reference m
odel itself. Each one has ~

been published as a separate international standard. c
i

Layer
Name of unit ~

exchanged ~

~~ Application protocol ~ •`

f _ - 7 Application ~----------------------------------► Application APDU t

2 IInterface

Presentation protocol
~ - 6 Presentation ~--------------------------------

-~ Presentation PPDU

Interface I I
Session protocol

5 Session ~------------------ - Session SPDU u

I I
~ ~ Transport protocol

4 Transport ------► Transport TPDU

Communication subnet boundary

I internal subnet protocol I

3 Network ~--- ~ Network ~~ Network ~- --► Network Packet

I I I

2 Data link ~-- ~ Data link ~-- Data link ~- -- ► Data link Frame

~.

I I~'
1 Physical ~- Physical ~--~ Physical ~- -~ Physical Bit ``

~~
Host A Router Router Host B ~';r

Network layer host-router protocol

Data link layer host-router protocol
,,

Physical layer host-router protocol

Fig. 1-16. The OSI reference model.

The Physical Layer

The physical layer is concerned with transmitting raw
 bits over a communi-

cation channel. The design issues have to do with mak
ing sure that when one side

sends a 1 bit, it is received by the other side as a 1
bit, not as a 0 bit. Typical

Bright House Networks - Ex. 1049, Page 19

30 INTRODUCTION CHAP. 1

questions here are how many volts should be used to represent a 1 and how many

fora 0, how many microseconds a bit lasts, whether transmission may proceed

simultaneously in loth directions, how the initial connection is established and

how it is torn down when both sides are finished, and how many pins the network

connector has and what each pin is used for. The design issues here largely deal

with mechanical, electrical, and procedural interfaces, and the physical transmis-

sion medium, which lies below the physical layer.

The Data Link Layer

The main task of the data link layer is to take a raw transmission facility and

transform it into a line that appears free of undetected transmission. errot•s to the

network layer. It accomplishes this task by having the sender break the input data

up ,into data frames (typically a few hundred or a few thousand bytes), transmit

the frames sequentially, and process the acknowledgement frames sent back by

the receiver. Since the physical layer merely accepts and transmits a stream of

bits without any regard to meaning or structure, it is up to the data link layer. to

create and recognize frame boundaries. This can be accomplished by attaching

special bit patterns to the beginning and end of the frame. If these bit patterns can

accidentally occur in the data, special care must be taken to make sure these pat-

terns are not incorrectly interpreted as frame delimiters.

A noise burst on the line can destroy a frame completely. In this case, the

data link layer software on the source machine can retransmit the frame. How-

ever, multiple transmissions of the same frame introduce the possibility of dupli-

cate frames. A duplicate frame could be sent if the acknowledgement frame from

the receiver back to the sender were lost. It is up to this layer to solve the prob-

lems caused by damaged, lost, and duplicate frames. The data link layer may

offer several different service classes to the network layer, each of a different

quality and with a different price.

Another issue that arises in the data link layer (and most of the higher layers

as well) is how to keep a fast transmitter from drowning a slow receiver- in data.

.Some traffic regulation mechanism must be employed to let the transmitter know

how much buffer space the receiver has at the moment. Frequently, this flow

regulation and the error handling are integrated.

If the line can be used to transmit data in both directions, this introduces a

new complication that the data link layer software must deal with. The problem is

that the acknowledgement frames for A to B traffic compete for the use of the .line

with data frames for the B to A traffic... A clever solution (piggybacking) .has .been.

devised; we will discuss it in detail later.

Broadcast networks have an additional issue in the data link layer: how to

control access to the shared channel. A special sublayer of the data link layer, the

medium access sublayer, deals with this problem.

Bright House Networks - Ex. 1049, Page 20

q-~1U ~~ c~ ~ —
~~

SEC. L4 REFERENCE MODELS 31

The Network Layer

The network layer is concerned with controlling the operation of the subnet.

A key design issue is deter niiling how packets are routed from source to destina-

tion. Routes can be based on static tables that a~-e "wired into" the network and

t•arely changed. They can also be determined at the start of each conversation, for

example a terminal session. Finally, they call be highly dynamic, being deter-

mined .anew for each packet, to reflect the current network load.

If too many packets are present in the subnet at the wine time, they will get in

each other's way, forming bottlenecks. The cont~•ol _ of such congestion also

belongs to the network layer.__
Since the operators of the subnet may well expect remuneration for their

efforts, there is often some accounting functi~~n built into the network layer. At

the very least, the software must count how many packets or characters or bits are

sent by each customer, to produce billing information. When a packet crosses a

national border, with different rates on each side, the accounting can become

complicated.
When a packet has to travel from one network to another to get to its destina-

tion, many problems can arise. The addressing used by the second network may

be different from the first one. The second one may not accept the packet at all

because it is too large. The protocols may differ, and so on. It is up to the net-

work layer to overcome all these problems to allow heterogeneous networks to be

interconnected.
In broadcast networks, the routing problem is simple, so the network layer is

often thin or even nonexistent.

The Transport Layer

The basic function of _the. transport layer is to accept data from the session

la~ei~, split it up into smaller. units if need be, pass these to the network layer, and

ensure that the pieces all arrive correctly at the other end. Furthermore, all this

must be done efficiently, and in a way that isolates the upper layers fi-om the inev-

itable changes in the hardware technology.

Under normal conditions, the transport layer creates a distinct neework con-

nection for each transport connection required by the session layer; If the trans-

port connection requires a high throughput, however, the transport layer might

createmultiple network connections, dividing the data among the network con-

nections to improve throughput. On the other hand, if creating or maintaining a

network connection is expensive, the transport layer might multiplex several

n•ansport connections <~nto the same network connection to reduce the cost. In all

cases, the transport layer is required to make the inulriplexing transparent to the

session layer.
The transport layer also deCermines what type of service to provide the session

~~

~..
c~
~~

t

~~

Bright House Networks - Ex. 1049, Page 21

~W,;.
32 INTRODUCTION CHAP. 1

~~
layer, and ultimately, the users of the network. The most popular type of transport
connection is an error-free point-to-point channel that delivers messages or bytes
in the order in which they were sent. However, other possible kinds of transport
service are transport of isolated messages with no guarantee about the order of
delivery, and broadcasting of messages to multiple destinations. The type of ser-
vice is determined when the connection is established.

The transport layer is a true end-to-end layer, from source to destination. In
other words, a program on the source machine carries on a conversation with a
similar program on the destination machine, using the message headers and con-
trol messages. In the lower layers, the protocols are between each machine and its
immediate neighbors, and not by the ultimate source and destination machines,
which may be separated by many routers. The difference between layers 1
through 3, which are chained, and layers 4 through 7, which are end-to-end, is
illustrated in Fig. 1-16.

Many hosts are multiprogrammed, which implies that multiple connections
will be entering and leaving each host. There needs to be some way to tell which
message belongs to which connection. The transport header (H4 in Fig. 1-11) is
one place this information can be put.

In addition to multiplexing several message streams onto one channel, the
transport layer must take care of establishing and deleting connections across the
network. This requires some kind of naming mechanism, so that a process on one
machine has a way of describing with whom it wishes to converse. There must
also be a mechanism to regulate the flow of information, so that a fast host cannot
overrun a slow one. Such a mechanism is called flow control and plays a key
role in the transport layer (also in other layers). Flow control between hosts is
distinct from flow control between routers, although we will later see that similar
principles apply to both.

The Session Layer

The session layer allows users on different machines to establish sessions
between them. A session allows ordinary data transport, as does the transport
layer, but it also provides enhanced services useful in some applications. A ses-
s on might be used to allow . a user to log into a remote timesharing system or to
transfer a file between two machines.

One of the services of the session layer is to manage dialogue control. Ses-
sions can allow traffic to go in bath directions at the same time,, ar in only one
direction at a time. If traffic can only go one way at a time (analogous to a single
railroad track), the session layer can help keep track of whose turn it is.

A related session service is token management. For some protocols,.. it is
essential that both sides do not attempt the same operation at the same time. To
manage these activities, the session layer provides tokens. that can be exchanged.
Only the side holding the token may perform the critical operation.

Bright House Networks - Ex. 1049, Page 22

~~

SEC. 1.4 REFERENCE MODELS 33

Another session service is synchronization. Consider the problems that

might occur when trying to do a 2-hour file transfer between t
wo machines with a

1-hour mean time between crashes. After each transfer was
 aborted, the whole

transfer would have to start over• again and would probably
 fail again the next

time as well. To eliminate this problem, the session layer pro
vides a way to insert

checkpoints into the data stream, so that after a crash, only. th
e data transferred

after the last checkpoint have to be repeated.

The Presentation Layer

The presentation layer performs certain functions that are re
quested suffi-

ciently often to warrant finding a general solution for them
, rather than letting

each user solve the problems. In particular, unlike all the low
er layers, which are

just interested in moving bits reliably from here to there, the pre
sentation layer is

concerned with the syntax and semantics of the information tr
ansmitted.

A typical example of a presentation service is encoding data
in a standard

agreed upon way. Most user programs do not exchange rand
om binary bit strings.

They exchange things such as people's names, dates, amou
nts of money, and

invoices. These items are represented as character strings,
 integers, floating-point

numbers, and data structures composed of several simpler it
ems. Different com-

puters have different codes for representing character• st
rings (e.g., ASCII and

Unicode), integers (e.g., one's complement and two's complem
ent), and so on. In

order to make it possible for computers with different repre
sentations to commun-

icate, the data structures to be exchanged can be defined in an
 abstract way, along

with a standard encoding to be used "on the wire." The. presentation. . layer

.manages.. these abstract data structures and converts from the
 representation. used

inside the computer to the network standard representation
and back.

The Application Layer

The_. application layer contains a variety _of protocols t
hat are commonly

needed. For example, there at•e hundreds of incompatible
terminal types in the

world. Consider the plight of a full screen editor that is
supposed to work over a

network with many different terminal types, each with
different screen layouts,

escape sequences for inserting and deleting text, moving th
e cursor, etc.

One way to solve this problem is to define an abstract networ
k virtual termi-

nal that editors and other programs can be written to deal
 with. To handle each

terminal type, a piece of software must be written to map t
he functions of ehe net-

work virtual terminal onto the meal terminal. For example,
 when the editor moves

the virtual terminal's cursor to the upper left-hand corn
er of the screen, this

software must issue the proper command sequence to the re
al terminal to get its

cursor there too. All the virtual terminal software is in the applic
ation_layer.

Another application layer function is file transfer. Different file
systems have

.___
~ ~

v
~.;

o

~~

s

Bright House Networks - Ex. 1049, Page 23

;;;;,~
34 INTRODUCTION CHAP. 1

different file naming conventions, different ways of representing text lines, and so
on. Transferring a file between two different systems requires handling these and
other- incompatibilities. This work, too, belongs to the application layer, as do
electronic mail, remote job entry, directory lookup, and various other general-
purpose and special-purpose facilities.

Data Transmission in the OSI Model

Figure 1-17 shows an example of how data can be transmitted using the OSI
model. The sending process has some data it wants to send to the receiving pro-
cess. It gives the data to the application layer, which then attaches the application
header, AH (which may be null), to the front of it and gives the resulting item to
the presentation layer.

Sending Receiving
Process Process

Data

- ----- ---------
Application Application

layer
Application protocol AH Data

layer
----------------- --------- ---------

Presentation Presentation
layer

Presentation protocol PH Data
layer

----------------------- ------------ ---- — ---
S as eon Session protocol SH Data

S a er ny
------------------- ---------------- --------- y

Transport Transport
TH Data Transport

layer protocol layer
---------------------------------- ------

Network Network NH Data Network
layer protocol layer

------------ ----------------------- ---------
Data link DH Data DT Data link

layer layer
------------ -----

Physical Bits Physical
layer laver

Actual data transmission path

Fig. 1-17. An example of how the OSI model is used. Some of the headers may
be null. (Source: H.C. Folts. Used with permission.)

The presentation layer may transform this item in various ways and possibly
add a header to the front, giving the result to the session layer. It is important to
realize that the presentation layer is not aware of which portion of the data given
to it by the application layer is AH, if any, and which is true user data.

This process is repeated until the data reach the physical layer, where they are
actually transmitted to the receiving machine. On that machine the various

Bright House Networks - Ex. 1049, Page 24

~~

SEC. 1.4 REFERENCE MODELS 35

headers are stripped off one by one as the message propag
ates up the layers until

it finally arrives at the receiving process.

The key idea throughout is that although actual data transmiss
ion is vertical in

Fig. 1-17, each layer is programmed as though it were hori
zontal. When the send-

ing transport layer, for example, gets a message from the ses
sion layer, it attaches

a transport header and sends it to the receiving transport l
ayer. From its point of

view, the fact that it must actually hand the message to the
network layer on its

own machine is an unimportant technicality. As an analog
y, when a Tagalog-

speaking diplomat is addressing the United Nations, h
e thinks of himself as

addressing the other assembled diplomats. That, in fact, he is
really only speaking

to his translator is seen as a technical detail.

1.4.2. The TCP/IP Reference Model

Let us now turn from the OSI reference model to the refer
ence model used in

the grandparent of all computer networks, the ARPANET
, and its successor, the

worldwide Internet. Although we will give a brief histo
ry of the ARPANET later,

it is useful to mention a few key aspects of it now.
The ARPANET was a

research network sponsored by the DoD (U.S. Department
 of Defense). It eventu-

ally connected hundreds of universities and government insta
llations using leased

telephone lines. When satellite and radio networks wer
e added later, the existing

protocols had trouble interworking with them, so a new
reference architecture was

needed. Thus the ability to connect multiple networks toge
ther in a seamless way

was one of the major design goals from the very beg
inning. This architecture

later became known as the TCP/IP Reference Model, af
ter its two primary pro-

tocols. It was first defined in (Cerf and Kahn, 1974). A la
ter perspective is given

in (Leiner et al., 1985). The design philosophy behind th
e model is discussed in

(Clark, 1988).
Given the DoD's worry that some of its precious hosts,

 routers, and internet-

work gateways might get blown to pieces at a moment's
 notice, another major

goal was that the network be able to survive loss of subtlet
hardware, with existing

conversations not being broken off. In other words, DoD
 wanted connections to

remain intact as long as the source and destination ma
chines were functioning,

even if some of the machines or transmission lines in b
etween were suddenly put

out of operation. Furthermore, a flexible architecture
was needed, since applica-

tions with divergent requirements were envisioned, rang
ing from transferring files

to real-time speech transmission.

The Internet Layer

All these requirements led to the choice of apacket-switch
ing network based

on a connectionless internetwark layer. This layer, calle
d the Internet layer, is

the linchpin that holds the whole architecture together. I
ts job is to permit hosts to

'~
'i4.^f<

____ ~
~ ~

<~
ra

c
ti

car

`s
~L

Bright House Networks - Ex. 1049, Page 25

~:~
36 INTRODUCTION CHAP. 1

inject packets into any network and have them travel independently to the d
estina-

lion (potentially on a different network). They may even arrive in a
different

order than they were sent, in which case it is the job of higher layers to
rearrange

them, if in-order delivery is desired. Note that "internet" is used here in
a generic

sense, even though this layer is present in the Internet.

The analogy here is with the (snail) mail system. A person ca
n drop a

sequence of international letters into a mail box in one country, and w
ith a little

luck, most of them will be delivered to the correct address in the destina
tion coun-

try. Probably the letters will travel through one ar more internatio
nal mail gate-

ways along the way, but this is transparent to the users. Furthermore,
 that each

country (i.e., each network) has its own stamps, preferred envelope size
s, and

delivery rules is hidden from the users.

The Internet layer defines an official packet format and protocol cal
led IP

(Internet Protocol). The job of the Internet layer is to deliver IP packets
 where__

they are supposed to go. Packet routing is clearly the major issue here
, as is

avoiding congestion. For these reasons, it is reasonable to say that t
he TCP/IP

Internet layer is very similar in functionality to the OSI network laye
r. Figure

1-18 shows this correspondence.

OSI TCP/IP

7 Application Application

6 Presentation Not present

5 Session
in the model

4 Transport ~ _ > Transport

', 3 Network ~, , Internet

2 Data link Host-to-network

1 Physical

Fig. 1-18. The TCP/IP reference model.

The Transport Layer

The layer above the Internet layer in the TCP/IP model is now usually cal
led

the transport layer. It is designed to allow peer entities on the. source and
 desti-

nation. hosts to carry on a conversation, the same as in the OSI transport layer
.

Two end-to-end protocols have been defined here. The first one, TCP

(Transmission Control Protocol) is a reliable connection-oriented protocol
that..

allows a byte stream originating on one machine to be delivered without er
ror on

Bright House Networks - Ex. 1049, Page 26

~~l ~~ ~~—
~c

SEC. 1.4 REFERENCE MODELS 37

any other machine in the Internet. It fragments the incoming byte stream into ~
___.
discrete messages and passes each one onto the Internet layer. At the destination,

the receiving TCP process reassembles the received messages into the output
._.,,

stream. TCP also handles flow control to make sure a fast sender cannot swamp a

slow receiver with more messages than it can handle.
'

The second protocol in this layer, UDP User Datagram Protocol), is an

unreliable, connectionless .protocol for applications that do not want TCP's ~i

sequencing or flow control and wish to provide their own. It is also widely used..
~ .

for one-shot, client-server type request-reply queries a~1d applications in which

prompt delivery is more important. than accurate delivery, such as transmix
ting ~

speech or video. The relation of IP, TCP, and UDP is shown in Fig. 1-]9. Since
 ~

the model was developed, IP has been implemented on many other networks.
~

Protocols

Networks

TELNET FTP SMTP DNS

TCP UDP

IP

ARPANET SATNET
Packet LANradio

Fig. 1-19. Protocols and networks in Che TCP/IP model initially.

The Application Layer

Layer (OSI names)

Application

Transport

Network

Physical +
data link

The TCP/IP model does not have session or presentation layers. No need for

them was perceived,. so they were not included. Experience with the OSI model

has proven this view correct: they are of little use to most applications. ---

On top of the transport layer is the application layex. It colitains all the

higher-level protocols. The early ones included virtual terminal (TELNET), file

transfer (FTP), and electronic mail (SMTP), as shown in Fig. 1-19. The virtual~~_ —_
terminal protocol allows a user on one machine to Iqg into a distant machine andr,
work there. The file transfer' protocol provides a way to move data efficiently

from one machine to another. Electidn'ic~snail was originally just a kind of file

tran`sfet, but later a specialized protocol was developed for it. Many other proto-

cols have been added to these over the years, such as the Domain Name Service

(DNS) for mapping host names onto.. their. network addresses, NNTP, the protocol........

used for moving news articles around, and HTTP, the protocol. used for fe
tching

pages on the World Wide Web, and many others.

Bright House Networks - Ex. 1049, Page 27

:f;;.
38 INTRODUCTION CHAP. 1

The Host-to-Network Layer

Below the Internet layer is a great void. The TCP/IP reference model
 does

'-' not really say much about what happens here, except to point out that th
e host has

to connect to the network using some protocol so it can send IP packe
ts over it.

This protocol is not defined and varies from host to host and networ
k to network.

Books and papers about the TCP/IP model rarely discuss it.

1.4.3. A Comparison of the OSI and TCP Reference Models

The OSI and TCP/IP reference models have much in common. Bot
h are

based on the concept of a stack of independent protocols. Also, the functi
onality

of the layers is roughly similar. For example, in both models the lay
ers up

through and including the transport layer are there to provide an end-
to-end

network-independent transport service to processes wishing to com
municate.

These layers form the transport provider. Again in both models, the layers
 above

transport are application-oriented users of the transport service.

Despite these fundamental similarities, the two models also have many diff
er-

ences. In this section we will focus on the key differences between the two
 refer-

ence models. It is important to note that we are comparing the reference
models

here, not the corresponding protocol stacks. The protocols themselves will
be dis-

cussed later. For an entire book comparing and contrasting TCP/IP and OS
I, see

(Piscitello and Chapin, 1993).

r Three concepts are central to the OSI model:

1. Services

2. Interfaces

3. Protocols

Probably the biggest contribution of the OSI model is to make the dist
inction

between these three concepts explicit. Each layer performs some services
for the

layer above it. The service definition tells what the layer does, not how entit
ies

above it access it or how the layer works.

A layer's'; interface tells the processes above it how to access it. It specifies

what the parameters are and what results to expect. It, too, says nothing about

how the layer works inside.

Finally, the peer.:. protocols; used in a layer are the layer's own business. It can

use any protocols it wants to, as long as it gets the job done (i.e., provides
the

offered services). It can also change them at will without affecting software in

higher layers.
These ideas fit very nicely with modern ideas about object-oriented program-

ming. An object, like a layer, has a set of methods (operations) that processes

Bright House Networks - Ex. 1049, Page 28

~~ ~~ ~r~

SEC. 1.4 REFERENCE MODELS 39

outside the object can invoke. The semantics of these methods define the set of

services that the object offers. The methods' paraineteis and results form the

object's interface. The code internal to the object is its protocol and is not visible

or of any concern outside the object.
The TCP/IP model did not originally clearly distinguish between service,

interface, and. protocol, although people have tried to retrofit it after the fact eo

make it more OSI-like. For example, the only real services offered by the Internet

layer are SEND IP PACKET and RECEIVE IP PACKET.

As a consequence, the protocols in the OSI model are better hidden than in tie `

TCP/IP model and can be replaced relatively easily as the technology changes.

Being able to make such changes is one of the main purposes of having layered

protocols in the first place.
The OSI reference model was devised before the protocols were invented.

This ordering means that the model was not biased toward one particular set of

protocols, which made it quite general. The down side of this ordering is that the

designers did not have much experience with the subject and did not have a good

idea of which functionality to put in which layer.

Far example, the data link layer originally dealt only with point-to-point net-

works. When broadcast networks came around, a new sublayer had to be hacked

into the model. When people started to build real networks using the OSI model

and existing protocols, it was discovered that they did not match the required ser-

vic~ specifications (wonder of wonders), so convergence sublayers had to be

grafted onto the model to provide a place for papering over the differences.

Finally, the committee originally expected that each country would have one net-

work, run by the government and using the OSI protocols, so no thought was

given to internetworking. To make a long story short, things did not turn out that

way.
With the TCP/IP the reverse was true: the protocols came first, and the model'

was really just a description of the existing protocols. There was no problem with

the protocols fitting the model. They fit perfectly. The only trouble was that the

model did not fit any other protocol stacks. Consequently, it was not especially

useful for describing other non-TCP/IP networks.
Turning from philosophical matters to more specific ones, an obvious differ'

ence between the two models is the number of layers: the OSI model has seven

layers and the TCP/IP has four layers. Both have (inter)network, transport, and

application layers, but the other layers are different.

Another difference is in the area of connectionless versus connection-oriented

communication. The OSI model supports both connectionless and connection-

oriented communication in the network layer, but only connection-oriented com-

munication in the transport layer, where it counts (because the transport service is

visible to the users). The TCP/IP model has only one mode in the network layer

(connectionless) but supports both modes in the transport layer, giving the users a

choice. This choice is especially important for simple request-response protocols.

~ ~

~-.~

s~

~-~-

Bright House Networks - Ex. 1049, Page 29

~'

:.

40 INTRODUCTION CHAP. 1

1.4.4. A Critique of the OSI Model and Protocols

Neither the OSI model and its protocols nor the TCP/IP model and its proto-
cols are perfect. Quite a bit of criticism can be, and has been; directed at both of
them. In this section and the next one, we will look at some of these criticisms.
We will begin with OSI and examine TCP/IP afterward.

At the time the second edition of this book was published (1989), it appeared
to most experts in the field that the OSI model and its protocols were .going to take
over the world and push everything else out of their way. This did not happen.
Why? A look back at some of the lessons may be useful. These lessons can be
summarized as:

I. Bad timing.

2. Bad technology.

3. Bad implementations.

4. Bad politics.

Bad Timing

First let us look at reason one: bad timing. The time at which a standard is
established is absolutely critical to its success. David Clark of M.I.T. has a theory
of standards that he calls the apocalypse of the two elephants, and which is illus-
trated in Fig. 1-20.

i
T
.;

U
Q

Time —►

Fig. 1-20. The apocalypse of the two elephants

This figure shows the amount of activity surrounding a new subject. When
the subject is first discovered, there is a burst of research activity in the form of
discussions, papers, and meetings. After a while this subsides, corporations dis-
cover the subject, and the billion-dollar wave of investment hits.

Bright House Networks - Ex. 1049, Page 30

~~ ~~ ~~ ~~

SEC. 1.4 REFERENCE MODELS 41 ~~

It is essential that the standards be written in the trough between the two ._ ~~

"elephants." If they are written too ea~~ly, before the research is finished, the sub- ~ ~.

ject may still be poorly understood, which leads to bad standards. If they are wt-it- ~;

ten too late, so many companies may have already made major• investments in dif- ~`-'

ferent ways of doing things that the standards are effectively ignored. If the inter-
~

val between the two elephants is very short (because everyone is in a hurry to get
c;~

starCed), the people developing the standards may get crushed.
~

It now appears that the standard OSI protocols got crushed. The competing

TCP/IP protocols were already in widespread use by research universiCies by the

time the OSI protocols appeared. While the billion-dollar wave of investment had s

not yet hit, the academic market was large enough that many vendors had begun ~

cautiously offering TCP/IP products. When OSI came around, they did not want

to support a second protocol stack until they were forced to, so there were no ini-

tial offerings. With every company waiting for every other company to go first,

no company went first and OSI never happened.

Bad Technology

The second reason that OSI never caught on is that both the model and the

protocols are flawed. Most discussions of the seven-layer model give the impres-

sion that the number and contents of the layers eventually chosen were the only

way, or at least the obvious way. This is far from true. The session layer has lit-

tle use in most applications, and the presentation layer is nearly empty. In fact,

the British proposal to ISO only had five layers, not seven. In contrast to the ses-

sion and presentation layers, the data link and network layers are so full that sub-

sequent work has split them into multiple sublayers, each with different functions.

Although hardly anyone ever admits it in public, the real reason that the OSI

model has seven layers is that at the time it was designed, IBM had a proprietary

seven-layer protocol called SNATM (Systems Network Architecture). At that

time, IBM so dominated the computer industry that everyone else, including tele-

phone companies, competing computer companies, and even major governments,

were scared to death that IBM would use its market clout to effectively force

everybody to use SNA, which it could change whenever it wished. The idea

behind OSI was to produce an IBM-like reference model and protocol stack that

would become the world standard, and controlled not by one company, but by a

neutral organization, ISO.
The OSI model, along with the associated service definitions and protocols, is

extraordinarily complex. When piled up, the printed standards occupy a signifi-

cant fraction of a meter of paper. They are also difficult to implement and ineffi-

cient in operation. In this context, a riddle posed by Paul Mockapetris and cited in

(Rose, 1993) comes to mind:

Q: What do you get when you cross a mobster with an international standard?

A: Someone who makes you an offer you can't understand.

Bright House Networks - Ex. 1049, Page 31

42 INTRODUCTION CHAP. 1

In addition to being incomprehensible, another problem with OSI is that some

functions, such as addressing, flow control, and error control reappear again and

again in each layer. Saltzer et al. (1984), for example, have pointed out that to be

effective, error control must be done in the highest layer, so that repeating it over

and over in each of the lower layers is often unnecessary and inefficient.

Another issue is that the decision to place certain features in particular layers

is not always obvious. The virtual terminal handling (now in the application

layer) was in the presentation layer during much of the development of the stand-

ard. It was moved to the application layer because the committee had trouble

deciding what the presentation layer was good for. Data security and encryption

were so controversial that no one could agree which layer to put them in, so they

were left out altogether. Network management was also omitted from the model

for similar reasons.
Another criticism of the original standard is that it completely ignored con-

nectionless services and connectionless protocols, even though most local area

networks work that way. Subsequent addenda (known in the software world as

bug fixes) corrected this problem.

Perhaps the most serious criticism is that the model is dominated by a com-

munications mentality. The relationship of computing to communications is

barely mentioned anywhere, and some of the choices made are wholly inappropri-

ate to the way computers and software work. As an example, consider the OSI

primitives, listed in Fig. 1-14. In particular, think carefully about the primitives

and how one might use them in a programming language.

The CONNECT.request primitive is simple. One can imagine a library pro-

cedure, connect, that programs can call to establish a connection. Now think

about CONNECT.indication. When a message arrives, the destination process has

to be signaled. In effect, it has to get an interrupt—hardly an appropriate concept

for programs written in any modern high-level language. Of course, in the lowest

layer, an indication (interrupt) does occur.

If the program were expecting an incoming call, it could call a library pro-

cedure receive to block itself. But if this were the case, why was receive not the

primitive instead of indication? Receive is clearly oriented toward the way com-

puters work, whereas indication is equally clearly oriented toward the way tele-

phones work. Computers are different from telephones. Telephones ring. Com-

puters do not ring. In short, the semantic model of an interrupt-driven system is

conceptually a poor idea and totally at odds with all modern ideas of structured

programming. This and similar problems are discussed by Langsford (1984).

Bad Implementations

Given the enormous complexity of the model and the protocols, it will come

as no surprise that the initial implementations were huge, unwieldy, and slow.

Everyone who tried them got burned. It did not take long for people to associate

Bright House Networks - Ex. 1049, Page 32

~~ ~~ ~~

SEC. 1.4 REFERENCE MODELS 43

"OSI" with "poor quality." While the products got better in the course of time,

the image stuck.
In contrast, one of the first implementations of TCP/IP was part of Berkeley

UNIX " and was quite good (not to mention, free). People began using it quickly,

which led to a large user community, which led to improvements, which led to an

even larger community. Here the spiral was upward instead of downward.

Bad Politics

On account of the initial implementation, many people, especially in

academia, thought of TCP/IP as part of UNIx, and UNIx in the 1980s in academia

was not unlike parenthood (then incorrectly called motherhood) and apple pie.

OSI, on the other hand, was thought to be the creature of the European

telecommunication ministries, the European Community, and later the U.S.

Government. This belief was only partly true, but the very idea of a bunch of

government bureaucrats trying to shove a technically inferior standard down the

throats of the poor researchers and programmers down. in the trenches actually

developing computer networks did not help much. Some people viewed this

development in the same light as IBM announcing in the 1960s that PL/I was the

language of the future, or DoD correcting this later by announcing that it was

actually Ada".
Despite the fact that the OSI model and protocols have been less than a

resounding success, there are still a few organizations interested in it, mostly

European PTTs that still have a monopoly on telecommunication. Consequently a

feeble effort has been made to update OSI, resulting in a revised model published

in 1994. For what was changed (little) and what should have been changed (a

lot), see (Day, 1995).

1.4.5. A Critique of the TCP/IP Reference Model

The TCP/IP model and protocols have their problems too. First, the model

does not clearly distinguish the concepts of service, interface, and protocol. Good

software engineering practice requires differentiating between the specification

and the implementation, something that OSI does very carefully, and TCP/IP does

not. Consequently, the TCP/IP model is not much. of a guide for designing new

networks using new technologies.
Second, the TCP/IP model is not at all general and is poorly suited to describ-

ing any protocol stack other than TCP/IP. Trying to describe SNA using the

TCP/IP model would be nearly impossible, for example.

Third, the host-to-network layer is not really a layer at all. in the normal sense

that the term is used in the context of layered protocols. It is an interface

(between the network and data link layers). The distinction between an interface

and a layer is a crucial one and one should not be sloppy about it.

.~

,~ sue.

c>
S =~'

a
t

~'

s

Bright House Networks - Ex. 1049, Page 33

44 INTRODUCTION CHAP

Fourth, the TCP/IP model does not distinguish (or even mention) the physic
al

and data link layers. These are completely different. The physical layer has to
do

with the transmission characteristics of copper wire, fiber optics, and wi
reless

communication. The data link layer's job is to delimit the start and end
of frames

and get them from one side to the other with the desired degree of reliabili
ty. A

proper model should include both as separate layers. The TCP/IP model do
es not

do this.
Finally, although the IP and TCP protocols were carefully thought out, a

nd

well implemented, many of the other protocols were ad hoc, generally pro
duced

by a couple of graduate students hacking away until they got tired. The pr
otocol

implementations were then distributed free, which resulted in their becomi
ng

widely used, deeply entrenched, and thus hard to replace. Some of them are a b
it

of an embarrassment now. The virtual terminal protocol, TELNET, for exa
mple,

was designed for aten-character per second mechanical Teletype terminal.
It

knows nothing of graphical user interfaces and mice. Nevertheless, 25 years
later,

it is still in widespread use.

In summary, despite its problems, the OSI model (minus the session a
nd

presentation layers) has proven to be exceptionally useful for discussing comput
er

networks. In contrast, the OSI protocols have not become popular. The reverse is

true of TCP/IP: the model is practically nonexistent, but the protocols are wide
ly

Lased. Since computes• scientists like to have their cake and eat it, too, in this bo
ok

we will use a modified OSI model but concentrate primarily on the TCP/IP a
nd

related protocols, as well as newer ones such as SMDS, frame relay, SONET
, and

ATM. In effect, we will use the hybrid model of Fig. 1-21 as the framework for

this book.

5

4

3

2

1

Application layer

Transport layer

Network layer

Data Link layer

Physical layer

Fig. 1-21. The hybrid reference model to be used in this book.

1.5. EXAMPLE NETWORKS

Numerous networks are currently operating around the world. Some of these

are public networks run by common cai-~iers or PTTs, others are research ne
t-

works, yet others are cooperative networks run by their users, and still others a
re

commercial or corporate networks. In the following sections we will take a look

Bright House Networks - Ex. 1049, Page 34

~~ ~~c~l—
~~

SBG 'L6 EXAMPLE DATA COMMUNICATION SERVICES 6l i ~~

usage ~1ust be below a predetermined level. In retuf-~Z, the carrier charges much
~ -~

less for a virtual line than a physical one.
~

In addition to competing with leased lines, frame relay also competes with
...,

X.25 permanent virtual circuits, except that it operates at higher speeds, usually
c;

1.5 Mbps, and provides fewer features.

Frame relay provides a minimal service, primarily a way to determine the

start and end of each frame, and detection of transmission errors. If a bad frame is

received, the frame relay service simply discards it. It is up to the user to discover
~ .

that a frame is missing and take the necessary action to recover. Unlike X.25,
~

frame relay does not provide acknowledgements or normal flow control It does ~

have a bit in the header, however, which one end of a connection can set to indi-
s

cate to the othet~ end that problems exist. The use oP this bit is up to the users.

1.6.4. Broadband I5DN and ATM

Even. if the above services become popular, the telephone companies are still

faced with a far more fundamental problem: multiple networks. POTS (Plain Old

Telephone Service) and Telex use the old circuit-switched network. Each of the

new data services such as SMDS and frame relay uses its own packet-switching

network. DQDB is different from these, and the internal telephone company call

management network (SSN 7) is yet another network. Maintaining all these

separate networks is a major headache, and there is another netwoY-k, cable televi-

sion, that the telephone companies do not control and would like to.

The perceived solution is to invent a single new network for the future that

will replace the entire telephone system and all the specialized networks with a

single integrated network for all kinds of information transfer. This new network

will have a huge data rate compared to all existing networks and services and will

make it possible to offer a large variety of new services. This is not a small proj-

ect, and it is certainly not going to happen overnight, but it is now under way.

The new wide area service is called B-ISDN (Broadband Integrated Ser-

vices Digital Network). It will offer video on demand, live television from many

sources, full motion mulrimedia electronic mail, CD-quality music, LAN inter-

connection, high-speed data transport for science and industry and many other ser-

vices that have not yet even been thought of, all over the telephone line.

The underlying technology that makes B-ISDN possible is called ATM

(Asynchronous Transfer Mode) because it is not synchronous (tied to a master

clock), as most long distance telephone lines are. Note that the acronym ATM

here has nothing to do with the Automated Teller Machines many banks provide

(although an ATM machine can use an ATM network to talk to its bank).

A gY~eat deal of work has already been done on ATM and on the B-ISDN sys-

tem that uses it, although there is more ahead. For more information on this sub-

ject, see (Fischer et al., 1994; Gasman, 1994; Goralski, 1995; Kim et al., 1.994;

Kyas, 1995; McDysan and Spohn, 1995; and Stallings, 1995a).

Bright House Networks - Ex. 1049, Page 35

62 INTRODUCTION CHAP.

The basic idea behind ATM is to transmit all information in small, fixed-size
packets called cells. The cells are 53 bytes long, of which 5 bytes are header and
48 bytes are payload, as shown in Fig. 1-29. ATM is both a technology (hidden
from the users) and potentially a service (visible to the users). Sometimes the ser-
vice is called cell relay, as an analogy to frame relay.

Bytes 5 48

Header User data

Fig. 1-29. An ATM cell.

The use of acell-switching technology is a gigantic break with the 100-year
old tradition of circuit switching (establishing a copper path) within the telephone
system. There are a variety of reasons why cell switching was chosen, among
them are the following. First, cell switching is highly flexible and can handle
both constant rate traffic (audio, video) and variable rate traffic (data) easily.
Second, at the very high speeds envisioned (gigabits per second are within reach),
digital switching of cells is easier than using traditional multiplexing techniques,
especially using fiber optics. Third, for television distribution, broadcasting is
essential; cell switching can provide this and circuit switching cannot.

ATM networks are connection-oriented. Making a call requires first sending
a message to set up the connection. After that, subsequent cells all follow the

\ same path to the destination. Cell delivery is not guaranteed, but their order. is. If
cells 1 and 2 are sent in that order, then if both arrive, they will arrive in that
order, never first 2 then 1.

~ ATM networks are organized like traditional WANs, with lines and switches
r~ (routers). The intended speeds for ATM networks are 155 Mbps and 622 Mbps,

with the possibility of gigabit speeds later. The 155-Mbps speed was chosen
because this is about what is needed to transmit high definition television. The
exact choice of 155.52 Mbps was made for compatibility with AT&T's SONET
transmission system. The 622 Mbps speed was chosen so four 155-Mbps chan-
nels could be sent over it. By now it should be clear why some of the gigabit
testbeds operated at 622 Mbps: they used ATM.

When ATM was proposed, virtually all the discussion (i.e., the hype) was
about video on demand to every home and replacing the telephone system, as
described above. Since then, other developments have become important. Many
organizations have run out of bandwidth on their campus or building-wide LANs
and are being forced to go to some kind of switched system that has more
bandwidth than does a single LAN. Also, in client-server computing, some appli-
cations need the ability to talk to certain servers at high speed. ATM is certainly a
major candidate for both of these applications. Nevertheless, it is a bit of a let-
down to go from a goal of trying to replace the entire low-speed analog telephone

Bright House Networks - Ex. 1049, Page 36

SEC. 1.6 EXAMPLE DATA COMMUNICATION SERVICES 63

system with ahigh-speed digital one to a goal of trying connect all the Ethernets ~ ~~

on campus. LAN interconnection using ATM is discussed in (Kayak, 1995; New- ~ ~~

man, 1994; and Truong et al., 1995). c

It is also worth pointing out that different organizations involved in ATM ~~~''

have different (financial) interests. The long-distance telephone carriers and

PTTs are mostly interested in using ATM to upgrade the telephone system and ~ o

compete with the cable TV companies in electronic video distribution. The com- ~

pater vendors see campus ATM LANs as the big moneymaker (for them). All c~s~

these competing interests do not make the ongoing standardization process any

easier, faster, or more coherent. Also, politics and power withitl the organization

standardizing ATM (The ATM Forum) have considerable influence on where

ATM is going.

The B-ISDN ATM Reference Model

Let us now turn back to the technology of ATM, especially as used in the

(future) telephone system. Broadband ISDN using ATM has its own reference

model, different from the OSI model. and also different from the TCP/IP model.

This model is shown in Fig. 1-30. It consists of three layers, the physical, ATM,

and ATM adaptation layers, plus whatever the users want to put on top of that.

Plane management

Layer management

Control plane ~ User plane

Upper layers Upper layers

CS ___ ATM adaptation layer ------
SAR

ATM layer

TC Physical layer------- ------
PMD

CS: Convergence sublayer

SAR: Segmentation and
reassembly sublayer

TC: Transmission convergence
sublayer

PMD: Physical medium
dependent sublayer

Fig. 1-30. The B-ISDN ATM reference model.

1

The physical layer deals with the physical medium: voltages, bit timing, aild

various other issues. ATM does not prescribe a particular set of rules, but instead

says that ATM cells may be sent on a wire or fiber by themselves, but they may

also be packaged inside the payload of other carrier systems. In other words,

ATM has been designed to be independent of the transmission medium.

The ATM layer deals with cells and cell transport. It defines the layout of a

cell and tells what the header fields mean. It also deals with establishment and

release of virtual circuits. Congestion control is also located here.

Bright House Networks - Ex. 1049, Page 37

::.ti

64 INTRODUCTION CHAP. 1

~;~r Because most applications do not want to work directly with cells (although

some may), a layer above the ATM layer has been defined that allows users to

send packets lat~ger than a cell. The ATM interface segments these packets,

transmits the cells individually, and reassembles them at the other end. This layer

is the AAL (ATM Adaptation Layer).
Unlike the earlier two-dimensional reference models, the ATM model is

defined as being three-dimensional, as shown in Fig. 1-30. The user plane deals

with data transport, flow control, error correction, and other user functions. In

contrast, the control plane is concerned with connection management. The layer

and plane management functions relate to resource management and interlayer
coordination.

The physical and AAL layers are each divided into two sublayers, one at the

bottom that does the work and a convergence sublayer on top that provides the

proper interface to the layer above it. The functions of the layers and sublayers

are given in Fig. 1-31.

OSI ATM ATM
layer layer sublayer Functionality

CS Providing the standard interface (convergence)

3/4 AAL ----- --- ------------------------~
SAR Segmentation and reassembly

Flow control

2/3 ATM
Cell header generation/extraction
Virtual circuiUpath management
Cell multiplexing/demultiplexing

Cell rate decoupling
Header checksum generation and verification

p TC Cell generation
Packing/unpacking cells from the enclosing envelope
Frame generation

------ Physical ----- --------- ------------------

1 PMD Bit timing
Physical network access

Fig. 1-31. The ATM layers and sublayers, and their functions.

The PMD (Physical Medium Dependent) sublayer interfaces to the actual
cable. It moves the bits on and off and handles the bit timing. For different car-
riers and cables, this layer will be different.

The other sublayer of the physical layer is the TC (Transmission Conver-
gence) sublayer. When cells are transmitted, the TC layer sends them as a string
of bits to the PMD layer. Doing this is easy. At the other end, the TC sublayer
gets a pure incoming bit stream from the PMD sublayer. Its job is to convert this

Bright House Networks - Ex. 1049, Page 38

SEC. 1.6 EXAMPLE DATA COMMUNICATION SERVICES 65

bit stream into a cell stream for the ATM layer. It handles all the issues related to

telling where cells begin and end in the bit stream. In the ATM model, this func-

tionality is in the physical layer. In the OSI model and in pretty much all other

networks, the job of framing, that is, turning a raw bit stream into a sequence of

frames or cells, is the data link layer's task. For that reason we will discuss it in

this book along with the data link layer, not with the physical layer.

As we mentioned earlier, the ATM layer manages cells, including their gen-

eration and transport. Most of the interesting aspects of ATM are located here. It

is a mixture of the OSI data link and network layers, but it is not split into sub-

layers.
The AAL layer is split into a SAR (Segmentation And Reassembly) sub-

layer and a CS (Convergence Sublayer). The lower sublayer breaks packets up

into cells on the transmission side and puts them back together again at the desti-

nation. The upper sublayer makes it possible to have ATM systems offer different

kinds of services to different applications (e.g., file transfer and video on demand

have different requirements concerning error handling, timing, etc.).

Perspective on ATM

To a considerable extent, ATM is a project invented by the telephone industry

because after• Ethernet was widely installed, the computer industry never rallied
around any higher-speed network technology to make it standard. The telephone

companies filled this vacuum with ATM, although in October 1991, many com-
puter vendors joined with the telephone companies to set up the ATM Forum, an

industry group that will guide the future of ATM.
Although ATM promises the ability to deliver information anywhere at speeds

soon to exceed 1 Gbps, delivering on this promise will not be easy. ATM is basi-

cally high-speed packet-switching, a technology the telephone companies have lit-

tle experience with. What they do have, is a massive investment in a different
technology (circuit switching) that is in concept unchanged since the days of

Alexander Graham Bell. Needless to say, this transition will not happen quickly,

all the more so because it is a revolutionary change rather than an evolutionary

one, and revolutions never go smoothly.
The economics of installing ATM worldwide also have to be considered. A

substantial fraction of the existing telephone system will have to be replaced.

Who will pay for this? How much will consumers be willing to pay to get a

movie on demand electronically, when they can get one at the local video store for

a couple of dollars? Finally, the question of where many of the advanced services

are provided is crucial. If they are provided by the network, the telephone com-
panies will profit from them. If they are provided by computers attached to the
network, the manufacturers and operators of these devices make the profits. The
users may not care, but the telephone companies and computer vendors certainly

do, and this will surely affect their interest in making ATM happen.

.___ ~

cU

~-
t
w
s~

i.

.--~

Bright House Networks - Ex. 1049, Page 39

66 INTRODUCTION CHAP. 1

,y 1.6.5. Comparison of Services

The reader may be wondering why so many incompatible and overlapping
services exist, including DQDB, SMDS, X.25, frame relay, ATM, and more. The
underlying reason is the 1984 decision to break up AT&T and foster competition
in the telecommunications industry. Different companies with different interests
and technologies are now free to offer whatever services they think there is a
demand for, and many of them are doing this with a vengeance.

To recap some of the services we have touched on in this chapter, DQDB is
an unswitched MAN technology that allows 53-byte cells (of which 44 are pay-
load) to be sent down long wires within a city. SMDS is a switched datagram
technology for sending datagrams anywhere in a network at 45 Mbps. X.25 is an
older connection-oriented networking technology for transmitting small variable-
sized packets at 64 kbps. Frame relay is a service that provides virtual leased
lines at speeds around 1.5 Mbps. Finally, ATM is designed to replace the entire
circuit-switched telephone system with cell switching and be able to handle data
and television as well. Some differences between these competitors are summar-
ized in Fig. 1-32.

Frame ATM
Issue DQDB SMDS X.25 Relay AAL

Connection oriented Yes No Yes Yes Yes

Normal speed (Mbps) 45 45 .064 1.5 155

Switched No Yes Yes No Yes

Fixed-size payload Yes No No No No

Max payload 44 9188 128 1600 Variable

Permanent VCs No No Yes Yes Yes

Multicasting No Yes No No Yes

Fig. 1-32. Different networking services.

1.7. NETWORK STANDARDIZATION

Many network vendors and suppliers exist, each with their own ideas of how
things should be done. Without coordination, there would be complete chaos, and
users would be able to get nothing done. The only way out is to agree upon some
network standards.

Not only do standards allow different computers to communicate, but they
also increase the market for products adhering to the standard, which leads to

Bright House Networks - Ex. 1049, Page 40

102 THE PHYSICAL LAYER CHAP. 2

2.4. THE TELEPHONE SYSTEM

When two computers owned by the same company or organization and
located close to each other need to communicate, it is often easiest just to run a
cable between them. LANs work this way. However, when the distances are
large, or there are many computers, or the cables would have to pass through a
public road or other public right of way, the costs of running private cables are
usually prohibitive. Furthermore, in just about every country in the world, string­
ing private transmission lines across (or underneath) public property is also ille­
gal. Consequently, the network designers must rely upon the existing telecom­
munication facilities.

These facilities, especially the PSTN, (Public Switched Telephone Net­
work), were usually designed many years ago, with a completely different goal in
mind: transmitting the human voice in a more or less recognizable form. Their
suitability for use in computer-computer communication is often marginal at best,
but the situation is rapidly changing with the introduction of fiber optics and digi­
tal technology. In any event, the telephone system is so tightly intertwined with
(wide area) computer networks, that it is worth devoting considerable time study­
ing it.

To see the order of magnitude of the problem, let us make a rough but illustra­
tive comparison of the properties of a typical computer-computer connection via a
local cable and via a dial-up telephone line. A cable running between two com­
puters can transfer data at memory speeds, typically 107 to 108 bps. The error
rate is usually so low that it is hard to measure, but one error per day would be
considered poor at most installations. One error per day at these speeds is
equivalent to one error per 1012 or 1013 bits sent.

In contrast, a dial-up line has a maximum data rate on the order of 104 bps
and an error rate of roughly 1 per 105 bits sent, varying somewhat with the age of
the telephone switching equipment involved. The combined bit rate times error
rate performance of a local cable is thus 11 orders of magnitude better than a
voice-grade telephone line. To make an analogy in the field of transportation, the
ratio of the cost of the entire Apollo project, which landed men on the moon, to

, the cost of a bus ride downtown is about 11 orders of magnitude (in 1965 dollars:
40 billion to 0.40).

The trouble, of course, is that comp.uter systems designers are used to working
with computer systems, and when suddenly confronted with another system
whose performance (from their point of view) is 11 orders of magnitude worse, it
is not surprising that much time and effort have been devoted to trying to figure
out how to use it efficiently. On the other hand, the telephone companies have
made massive strides in the past decade in upgrading equipment and improving
service in certain areas. In the following sections we will describe the telephone
system and show what it used to be and where it is going. For additional informa­
tion about the innards of the telephone system see (Bellamy, 1991).

Bright House Networks - Ex. 1049, Page 41

SEC. 2.4 THE TELEPHONE SYSTEM 103

2.4.1. Structure of the Telephone System

When Alexander Graham Bell patented the telephone in 1876 (just a few
hours ahead of his rival, Elisha Gray), there was an enormous demand for his new
invention. The initial market was for the sale of telephones, which came in pairs.
It was up to the customer to string a single wire between them. The electrons
returned through the earth. If a terephone owner wanted to talk to n other tele­
phone owners, separate wires had to be strung to all n houses. Within a year, the
cities were covered with wires passing over houses and trees in a wild jumple. It
became immediately obvious that the model of connecting every telephone to
every other telephone, as shown in Fig. 2-14(a) was not going to work. ·

(a) (b) (c)

Fig. 2-14. (a) Fully interconnected network. (b) Centralized switch. (c) Two­
level hierarchy.

To his credit, Bell saw this and formed the Bell Telephone Company, which
opened its first switching office (in New Haven, Connecticut) in 1878. The com­
pany ran a wire to each customer's house or office. To make a call, the customer
would crank the phone to make a ringing sound in the telephone company office
to attract the attention of an operator, who would then manually connect the caller
to the callee using a jumper cable. The model of a single switching office is illus­
trated in Fig. 2-14(b).

Pretty soon, Bell System switching offices were springing up everywhere and
people wanted to make long-distance calls between cities, so the Bell system
began to connect the switching offices. The original problem soon returned: to
connect every switching office to every other switching office by means of a wire
between them quickly became unmanageable, so second-level switching offices
were invented, After a while, multiple second-level offices were needed, as shown
in Fig. 2-14(c). Eventually, the hierarchy grew to five levels.

By 1890, the three major parts of the telephone system were in place: the
switching offices, the wires between the customers and the switching offices (by
now balanced, insulated, twisted pairs instead of open wires with an earth return),
and the long-distance connections between the switching offices. While there

Bright House Networks - Ex. 1049, Page 42

104 THE PHYSICAL LAYER CHAP. 2

have been improvements in all three areas sihce then, the basic Bell System model
has remained essentially intact for over 100 years. For a shoh technical history of
the telephone system, see (Hawley, 1991).

At present, the telephone system is organized as a highly redundant, mul­
tilevel hierarchy. The following description is highly simplified but gives the
essential flavor nevertheless. Each telephone has two copper wires coming out of
it that go directly to the telephone company's nearest end office (also called a
local central office). The distance is typically 1 to 10 km, being smaller in cities
than in rurai areas.

In the United States alorie there are about 19,000 end offices. The concatena­
tion of the area code and the first three digits of the telephone number uniquely
specify an end office, which is why the rate structure uses this information. The
two-wire connections between each subscriber's telephone and the end office are
known in the trade as the local loop. If the world's local loops were stretched out
end to end, they would extend to the moon and back 1000 times.

At one time, 80 percent of AT&T' s capital value was the copper in the local
loops. AT&T was then, in effect, the world's largest copper mine. Fortunately,
this fact was not widely known in the investment community. Had it been known,
some corporate raider might have bought AT&T, terminated all telephone service
in the United States, ripped out all the wire, and sold the wire to a copper refiner
to get a quick payback.

If a subscriber attached to a given end office calls another subscriber attached
to the same end office, the switching mechanism within the office sets up a direct
electrical connection between the two local loops. This connection remains intact
for the duration of the call.

If the called telephone is attached to another end office, a different procedure
has to be used. Each end office has a number of outgoing lines to one or more
nearby switching centers, called toll offices (or if they are within the same local
area, tandem offices). These lines are called toll connecting trunks. If both the
caller's and callee' s end offices happen to have a toll connecting trunk to the same
toll office (a likely occurrence if they are relatively close by), the connection may
be established within the toll office. A telephone network consisting only of tele­
phones (the small dots), end offices (the large dots) and toll offices (the squares)
is shown in Fig. 2-14(c).

If the caller and callee do not have a toll office in common, the path will have ..
to be established somewhere higher up in the hierarchy. There are primary, sec-
tional, and regional offices that form a network by which the toll offices are con­
nected. The toll, primary, sectional, and regional exchanges communicate with
each other via high bandwidth intertoll trunks (also called interoffice trunks).
The number of different kinds of switching centers and their topology (e.g., may
two sectional offices have a direct connection or must they go through a regional
office?) varies from country to country depending on its telephone density. Figure
2-15 shows how a medium-distance connection might be routed.

Bright House Networks - Ex. 1049, Page 43

SEC. 2.4

Telephone

Local
loop

End
office

Toll
connecting

trunk

THE TELEPHONE SYSTEM

Intermediate
Toll switching Toll

office office(s) office

\ Veof, high/
bandwidth

intertoll
trunks

End
office

Toll
connecting

trunk

Fig. 2-15. Typical circuit route for a medium-distance call.

105

Telephone

Local
loop

A variety of transmission media are used for telecommunication. Local loops
consist of twisted pairs nowadays, although in the early days of telephony, uninsu­
lated wires spaced 25 em apart on telephone poles were common. Between
switching offices, coaxial cables, microwaves, and especially fiber optics are
widely used.

In the past, signaling throughout the telephone system was analog, with the
actual voice signal being transmitted as an electrical voltage from source to desti­
nation. With the advent of digital electronics and computers, digital signaling has
become possible. In this system, only two voltages are allowed, for example -5
volts and +5 volts.

This scheme has a number of advantages over analog signaling. First is that
although the attenuation and distortion are more severe when sending two-level
signals than when using modems, it is easy to calculate how far a signal can prop­
agate and still be recognizable. A digital regenerator can be inserted into the line
there, to restore the signal to its original value, since there are only two possibili­
ties. A digital signal can pass through an arbitrary number of regenerators with no
loss in signal and thus travel long distances with no information loss. In contrast,
analog signals always suffer some information loss when amplified, and this loss
is cumulative. The net result is that digital transmission can be made to have a
low error rate.

A second advantage of digital transmission is that voice, data, music, and
images (e.g., television, fax, and video) can be interspersed to make more effi­
cient use of the circuits and equipment. Another advantage is that much higher
data rates are possible using existing lines.

A third advantage is that digital transmission is much cheaper than analog
transmission, since it is not necessary to accurately reproduce an analog
waveform after it has passed through potentially hundreds of amplifiers on a tran­
scontinental call. Being able to correctly distinguish a 0 from a 1 is enough.

Finally, maintenance of a digital system is easier than maintenance of an ana­
log one. A transmitted bit is either received correctly or not, making it simpler to
track down problems.

Consequently, all the long-distance trunks within the telephone system are

Bright House Networks - Ex. 1049, Page 44

106 THE PHYSICAL LAYER CHAP. 2

rapidly being converted to digital. The old system used analog transmission over
copper wires; the new one uses digital transmission over optical fibers.

In summary, the telephone system consists of three major components:

l. Local loops (twisted pairs, analog signaling).

2. Trunks (fiber optics or microwave, mostly digital).

3. Switching offices.

After a short digression on the politics of telephones, we will come back to each
of these three components in some detail. For the local loop, we will be con­
cerned with how to send digital data over it (quick answer: use a modem). For the
long-haul trunks, the main issue is how to collect multiple calls together and send
them together. This subject is called multiplexing, and we will study three dif­
ferent ways to do it. Finally, there are two fundamentally different ways of doing
switching, so we will look at both of these.

2.4.2. The Politics of Telephones

For decades prior to 1984, the Bell System provided both local and long dis­
tance service throughout most of the United States. In the 1970s, the U.S. govern­
ment came to believe that this was an illegal monopoly and sued to break it up.
The government won, and on Jan. 1, 1984, AT&T was broken up into AT&T
Long Lines, 23 BOCs (Bell Operating Companies), and a few other pieces. The
23 BOCs were grouped together into seven regional BOCs (RBOCs) to make
them economically viable. The entire nature of telecommunication in the United
States was changed overnight by court order (not by an act of Congress).

The exact details of the divestiture were described in the so-called MFJ
(Modified Final Judgment), an oxymoron if ever there was one (if the judgment
could be modified, it clearly was not final). This event led to increased competi­
tion, better service, and lower prices to consumers and businesses. Many other
countries are now considering introducing competition along similar lines.

To make it clear who could do what, the United States was divided up into
about 160 LATAs (Local Access and Transport Areas). Very roughly, a LATA
is about as big as the area covered by one area code. Within a LATA, there is
normally one LEC (Local Exchange..Carrier) that has a monopoly on traditional
telephone service within the LATA. The most important LECs are the BOCs,
although some LATAs contain one or more of the 1500 independent telephone
companies operating as LECs. In geographically large LA T As (mostly in the
West), the LEC may handle long distance calls within its own LATA but may not
handle calls going to a different LATA.

All inter-LATA traffic is handled by a different kind of company, an IXC
(lntereXchange Carrier). Originally, AT&T Long Lines was the only serious
IXC, but now MCI and Sprint are well-established competitors in the IXC

Bright House Networks - Ex. 1049, Page 45

SEC. 2.4 THE TELEPHONE SYSTEM 107

business. One of the concerns at the breakup was to ensure that all the IXCs
would be treated equally in terms of line quality, tariffs, and the number of digits
their customers would have to dial to use them. The way this is handled is illus­
trated in Fig. 2-16. Here we see three example LA T As, each with several end
offices. LAT As 2 and 3 also have a small hierarchy with tandem offices (intra­
LATA toll offices).

LATA 1

IXC #1's
toll office

LATA2

IXC #2's
toll office

LATA3

Fig. 2-16. The relationship of LATAs, LECs, and IXCs. All the circles are
LEC switching offices. Each hexagon belongs to the IXC whose number is in it.

Tandem
office

End
office

Any IXC that wishes to handle calls originating in a LATA can build a
switching office called a POP (Point of Presence) there. The LEC is required to
connect each IXC to every end office, either directly, as in LATAs 1 and 3, or
indirectly, as in LATA 2. Furthermore, the terms of the connection, both techni­
cal and financial, must be identical for all IXCs. In this way, a subscriber in, say,
LATA 1, can choose which IXC to use for calling subscribers in LATA 3.

As part of the MFJ, the IXCs were forbidden to offer local telephone service
and the LECs were forbidden to offer inter-LATA telephone service, although
both were free to enter other businesses, such as operating ftied chicken restau­
rants. In 1984, that was a fairly unambiguous statement. Unfortunately, technol­
ogy has a way of making the law obsolete. Neither cable television nor cellular
phones were covered by the agreement. As cable television went from one way to
two way, and cellular phones exploded in popularity, both LECs and IXCs began
buying up or merging with cable and cellular operators.

By 1995, Congress saw that trying to maintain a distinction between the vari­
ous kinds of companies was no longer tenable and drafted a bill to allow cable TV

Bright House Networks - Ex. 1049, Page 46

108 THE PHYSICAL LAYER CHAP. 2

companies, local telephone companies, long distance carriers, and cellular opera­
tors to enter one another's businesses. The idea was that any company could then
offer its customers a single integrated package containing cable TV, telephone,
and information services, and that different companies would compete on service
and price. The bill was enacted into law in February 1996. As a result, the U.S.
telecommunications landscape is currently undergoing a radical restructuring.

2.4.3. The Local Loop

For the past 100 years, analog transmission has dominated all communication.
In particular, the telephone system was originally based entirely on analog signal­
ing. While the long-distance trunks are now largely digital in the more advanced
countries, the local loops are still analog and are likely to remain so for at least a
decade or two, due to the enormous cost of converting them. Consequently, when
a computer wishes to send digital data over a dial-up line, the data must first be
converted to analog form by a modem for transmission over the local loop, then
converted to digital form for transmission over the long-haul trunks, then back to
analog over the local loop at the receiving end, and finally back to digital by
another modem for storage in the destination computer. This arrangement is
shown in Fig. 2-17.

Customer premises
equipment

Digital
(short cable)

Analog
(local

Digital
(telephone
company

Analog
(local

'T Codoc (~ cs'T
End

office
Toll

office
End

office

Customer premises
equipment

Digital
(short cable)

Fig. 2-17. The use of both analog WJd digital transmission for a computer to
computer call. Conversion is done by the modems and codecs.

While this situation is not exactly ideal, such is life for the time being, and
students of networking should have some understanding of both analog and digital
transmission, as well as how the conversions back and forth work. For leased
lines it is possible to go digital from start to finish, but these are expensive and are
only useful for building intracompany private networks.

In the following sections we will look briefly at what is wrong with analog

Bright House Networks - Ex. 1049, Page 47

SEC. 2.4 THE TELEPHONE SYSTEM 109

transmission and examine how modems make it possible to transmit digital data
over analog circuits. We will also look at two common modem interfaces, RS-
232-C and RS-449.

Transmission Impairments

Analog signaling consists of varying a,. voltage with time to represent an infor­
mation stream. If transmission media were perfect, the receiver would receive
exactly the same signal that the transmitter sent. Unfortunately, media are not
perfect, so the received signal is not the same as the transmitted signal. For digi­
tal data, this difference can lead to errors.

Transmission lines suffer from three major problems: attenuation, delay dis­
tortion, and noise. Attenuation is the loss of energy as the signal propagates out­
ward. On guided media (e.g., wires and optical fibers), the signal falls off loga­
rithmically with the distance. The loss is expressed in decibels per kilometer.
The amount of energy lost depends on the frequency. To see the effect of this fre­
quency dependence, imagine a signal not as a simple waveform, but as a series of
Fourier components. Each component is attenuated by a different amount, which
results in a different Fourier spectrum at the receiver, and hence a different signal.

If the attenuation is too much, the receiver may not be able to detect the signal
at all, or the signal may fall below the noise level. In many cases, the attenuation
properties of a medium are known, so amplifiers can be put in to try to compen­
sate for the frequency-dependent attenuation. The approach helps but can never
restore the signal exactly back to its original shape.

The second transmission impairment is delay distortion. It is caused by the
fact that different Fourier components travel at different speeds. For digital data,
fast components from one bit may catch up and overtake slow components from
the bit ahead, mixing the two bits and increasing the probability of incorrect
reception.

The third impairment is noise, which is unwanted energy from sources other
than the transmitter. Thermal noise is caused by the random motion of the elec­
trons in a wire and is unavoidable. Cross talk is caused by inductive coupling
between two wires that are close to each other. Sometimes when talking on the
telephone, you can hear another conversation in the background. That is cross
talk. Finally, there is impulse noise, caused by spikes on the power line or other
causes. For digital data, impulse noise can wipe out one or more bits.

Modems

Due to the problems just discussed, especially the fact that both attenuation
and propagation speed are frequency dependent, it is undesirable to have a wide
range of frequencies in the signal. Unfortunately, square waves, as in digital data,

Bright House Networks - Ex. 1049, Page 48

110 THE PHYSICAL LAYER CHAP. 2

have a wide spectrum and thus are subject to strong attenuation and delay distor­
tion. These effects make baseband (DC) signaling unsuitable except at slow
speeds and over short distances.

(a)

(b)

(c)

(d)

0 0 0 0

I
I
I
I
I

0

! t ! I I

~\hasech!nge(~

0

Fig. 2-18. (a) A binary signal. (b) Amplitude modulation. (c) Frequency modu­
lation. (d) Phase modulation.

0

To get around the problems associated with DC signaling, especially on tele­
phone lines, AC signaling is used. A continuous tone in the 1000- to 2000-Hz
range, called a sine wave carrier is introduced. Its amplitude, frequency, or
phase can be modulated to transmit information. In amplitude modulation, two
different voltage levels are used to represent 0 and 1, respectively. In frequency
modulation, also known as frequency shift keying, two (or more) different tones
are used. In the simplest form of phase modulation, the carrier wave is systemat­
ically shifted 45, 135, 225, or 315 degrees at uniformly spaced intervals. Each
phase shift transmits 2 bits of information. Figure 2-18 illustrates the three forms
of modulation. A device that accepts a serial stream of bits as input and produces

Bright House Networks - Ex. 1049, Page 49

SEC. 2.4 THE TELEPHONE SYSTEM 111

a modulated carrier as output (or vice versa) is called a modem (for modulator­
demodulator). The modem is inserted between the (digital) computer and the
(analog) telephone system.

To go to higher and higher speeds, it is not possible to just keep increasing the
sampling rate. The Nyquist theorem says that even with a perfect 3000-Hz line
(which a dial-up telephone is decidedly not), there is no point in sampling faster
than 6000 Hz. Thus all research on faster modems is focused on getting more bits
per sample (i.e., per baud).

Most advanced modems use a combination of modulation techniques to
transmit multiple bits per baud. In Fig. 2-19(a), we see dots at 0, 90, 180, and 270
degrees, with two amplitude levels per phase shift. Amplitude is indicated by the
distance from the origin. In Fig. 2-19(b) we see a different modulation scheme, in
which 16 different combinations of amplitude and phase shift are used. Thus
Fig. 2-19(a) has eight valid combinations and can be used to transmit 3 bits per
baud. In contrast, Fig. 2-19(b) has 16 valid combinations and can thus be used to
transmit 4 bits per baud. The scheme of Fig. 2-19(b) when used to transmit 9600
bps over a 2400-baud line is called QAM (Quadrature Amplitude Modulation) .

•
•

•
•
• • • • • •

(a) (b)

Fig. 2-19. (a) 3 bits/baud modulation. (b) 4 bits/baud modulation.

Diagrams such as those of Fig. 2-19, which show the legal combinations of
amplitude and phase, are called constellation patterns. Each high-speed modem
standard has its own constellation pattern and can talk only to other modems that
use the same one (although most modems can emulate all the slower ones). The
ITU V.32 9600 bps modem standard uses the constellation pattern of Fig. 2-19(b),
for example.

The next step above 9600 bps is 14,400 bps. It is called V.32 bis. This speed
is achieved by transmitting 6 bits per sample at 2400 baud. Its constellation pat­
tern has 64 points. Fax modems use this speed to transmit pages that have been
scanned in as bit maps. After V.32 bis comes V.34, which runs at 28,800 bps.

Bright House Networks - Ex. 1049, Page 50

112 THE PHYSICAL LAYER CHAP. 2

With so many points in the constellation pattern, even a small amout of noise
in the detected amplitude or phase can result in an etTor, and potentially 6 bad
bits. To reduce the chance of getting an error, many modems add a parity bit, giv­
ing 128 points in the constellation pattern. The coding of the points is carefully
done to maximize the chance of detecting etTors. The coding that does this is
called trellis coding.

A completely different approach to high-speed transmission is to divide the
available 3000-Hz spectrum into 512 tiny bands and transmit at, say, 20 bps in
each one. This scheme requires a substantial processor inside the modem, but has
the advantage of being able to disable frequency bands that are too noisy.
Modems that use this approach normally have V.32 or V.34 capability as well, so
they can talk to standard modems.

Many modems now have compression and error correction built into the
modems. The big advantage of this approach is that these features improve the
effective data rate without requiring any changes to existing software. One popu­
lar compression scheme is MNP 5, which uses run-length encoding to squeeze out
runs of identical bytes. Fax modems also use run-length encoding, since runs of
Os (blank paper) are very common. Another scheme is V.42 bis, which uses a
Ziv-Lempel compression algorithm also used in Compress and other programs
(Ziv and Lempel, 1977).

Even when modems are used, another problem can occur on telephone lines:
echoes. On a long line, when the signal gets to the final destination, some of the
energy may be reflected back, analogous to acoustic echos in the mountains. As
an illustration of electromagnetic echoes, try shining a flashlight from a darkened
room through a closed window at night. You will see a reflection of the flashlight
in the window (i.e., some of the energy has been reflected at the air-glass junction
and sent back toward you). The same thing happens on transmission lines, espe­
Cially at the point where the local loop terminates in the end office.

The effect of the echo is that a person speaking on the telephone hears his
own words after a short delay. Psychological studies have shown that this is
annoying to many people, often making them stutter or become confused. To
eliminate the problem of echoes, echo suppressors are installed on lines longer
than 2000 km. (On short lines the echoes come back so fast that people are not
bothered by them.) An echo suppressor is a device that detects human speech
coming from one end of the connection and suppresses all signals going the other
way. It is basically an amplifier than can be switched on and off by a control sig­
nal produced by a speech detection circuit.

When the first person stops talking and the second begins, the echo suppressor
switches directions. A good echo suppressor can reverse in 2 to 5 msec. While it
is functioning, however, information can only travel in one direction; echoes can­
not get back to the sender. Figure 2-20(a) shows the state of the echo suppressors
while A is talking to B. Figure 2-20(b) shows the state after B has started talking.

The echo suppressors have several properties that are undesirable for data

Bright House Networks - Ex. 1049, Page 51

SEC. 2.4 THE TELEPHONE SYSTEM

Echo suppressor

(a)

(b)

Two wire circuit

Fig. 2-20. (a) A talking to B. (b) B talking to A.

113

communication. First, it they were not present, it would be possible to transmit in
both directions at the same time by using a different frequency band for each
direction. This approach is called full-duplex transmission. With echo suppres­
sors, full-duplex transmission is impossible. The alternative is half-duplex
transmission, in which communication can go either way, but only one at a time.
A single railroad track is half-duplex. Even if half-duplex transmission is ade­
quate, it is a nuisance because the time required to switch directions can be sub­
stantial. Furthermore, the echo suppressors are designed to reverse upon detecting
human speech, not digital data.

To alleviate these problems, an escape hatch has been provided on telephone
circuits with echo suppressors. When the echo suppressors hear a pure tone at
2100 Hz, they shut down and remain shut down as long as a carrier is present.
This arrangement is one of the many examples of in-band signaling, so called
because the control signals that activate and deactivate internal control functions
lie within the band accessible to the user. In general the trend is away from in­
band signaling, to prevent users from interfering with the operation of the system
itself. In the United States, most of the in-band signaling is gone, but in other
countries it still exists.

An alternative to echo suppressors are echo cancelers. These are circuits that
simulate the echo, estimate how much it is, and subtract it from the signal
delivered, without the need for mechanical relays. When echo cancelers are used,
full-duplex operation is possible. For this reason, echo cancelers are rapidly
replacing echo suppressors in the United States and other large countries.

Bright House Networks - Ex. 1049, Page 52

114 THE PHYSICAL LAYER CHAP. 2

RS-232-C and RS-449

The interface between the computer or terminal and the modem is an example
of a physical layer protocol. It must specify in detail the mechanical, electrical,
functional, and procedural interface. We will now look closely at two well­
known physical layer standards: RS-232-C and its successor, RS-449.

Let us start with RS-232-C, the third revision of the original RS-232 standard.
The standard was drawn up by the Electronic Industries Association, a trade
organization of electronics manufacturers, and is properly referred to as EIA RS-
232-C. The international version is given in CCITT recommendation V.24, which
is similar but differs slightly on some of the rarely used circuits. In the standards,
the terminal or computer is officially called a DTE (Data Terminal Equipment)
and the modem is officially called a DCE (Data Circuit-Terminating Equip­
ment).

The mechanical specification is for a 25-pin connector 47.04 ± .13 mm wide
(screw center to screw center), with all the other dimensions equally well speci­
fied. The top row has pins numbered 1 to 13 (left to right); the bottom row has
pins numbered 14 to 25 (also left to right).

The electrical specification for RS-232-C is that a voltage more negative than
-3 volts is a binary 1 and a voltage more positive than +4 volts is a binary 0. Data
rates up to 20 kbps are permitted, as are cables up to 15 meters.

The functional specification tells which circuits are connected to each of the
25 pins, and what they mean. Figure 2-21 shows 9 pins that are nearly always
implemented. The remaining ones are frequently omitted. When the terminal or
computer is powered up, it asserts (i.e., sets to a logical I) Data Terminal Ready
(pin 20). When the modem is powered up, it asserts Data Set Ready (pin 6).
When the modem detects a carrier on the telephone line, it asserts Carrier Detect
(pin 8). Request to Send (pin 4) indicates that the terminal wants to send data.
Clear to Send (pin 5) means that the modem is prepared to accept data. Data are
transmitted on the Transmit circuit (pin 2) and received on the Receive circuit
(pin 3).

Other circuits are provided for selecting the data rate, testing the modem,
, , clocking the data, detecting ringing signals, and sending data in the reverse direc­

tion on a secondary channel. They are hardly ever used in practice.
The procedural specification is the protocol, that is, the legal sequence of

events. The protocol is based on action-reaction pairs. When the terminal asserts
Request to Send, for example, the modem replies with Clear to Send, if it is able
to accept data. Similar action-reaction pairs exist for other circuits as well.

It commonly occurs that two computers must be connected using RS-232-C.
Since neither one is a modem, there is an interface problem. This problem is
solved by connecting them with a device called a null modem, which connects
the transmit line of one machine to the receive line of the other. It also crosses
some of the other lines in a similar way. A null modem looks like a short cable.

Bright House Networks - Ex. 1049, Page 53

SEC. 2.4 THE TELEPHONE SYSTEM

Protective Ground (1)

Transmit (2)

Receive (3)

Request to Send (4)

Computer Clear to Send (5) Modem
"'::

or Data Set Ready (6)
terminal

Common Return (7)

Carrier Detect (8)

Data Terminal Ready (20)

Fig. 2-21. Some of the principal RS-232-C circuits. The pin numbers are given
in parentheses.

115

RS-232-C has been around for years. Gradually, the limitation of the data rate
to not more than 20 kbps and the 15-meter maximum cable length have become
increasingly annoying. EIA had a long debate about whether to try to have a new
standard that was compatible with the old one (but technically not very advanced)
or a new and incompatible one that would meet all needs for years to come. They
eventually compromised by choosing both.

The new standard, called RS-449, is actually three standards in one. The
mechanical, functional, and procedural interfaces are given in RS-449, but the
electrical interface is given by two different standards. The first of these, RS-
423-A, is similar to RS-232-C in that all its circuits share a common ground. This
technique is called unbalanced transmission. The second electrical standard,
RS-422-A, in contrast, uses balanced transmission, in which each of the main
circuits requires two wires, with no common ground. As a result, RS-422-A can
be used at speeds up to 2 Mbps over 60-meter cables.

The circuits used in RS-449 are shown in Fig. 2-22. Several new circuits not
present in RS-232-C have been added. In particular, circuits for testing the
modem both locally and remotely were included. Due to the inclusion of a
number of two-wire circuits (when RS-422-A is used), more pins are needed in
the new standard, so the familiar 25-pin connector was dropped. In its place is a
37-pin connector and a 9-pin connector. The 9-pin connector is required only if
the second (reverse) channel is being used.

Fiber in the Local Loop

For advanced future services, such as video on demand, the 3-kHz channel
currently used will not do. Discussions about what to do about this tend to focus
on two solutions. The straightforward one-running a fiber from the end office

Bright House Networks - Ex. 1049, Page 54

116 THE PHYSICAL LAYER CHAP. 2

RS-232-C CCITTV .24 RS-449

Code Pin Circuit Code Pin Circuit Code Pin Circuit

AA 1 Protective ground 101 1 Protective ground 1
AB 7 Signal ground 102 7 Signal ground SG 19 Signal ground

sc 37 Send common
RC 20 Receive common

BA 2 Transmitted data 103 2 Transmitted data SD 4,22 Send data
BB 3 Received data 104 3 Received data RD 6,24 Receive data

CA 4 Request to send 105 4 Request to send RS 7,25 Request to send
CB 5 Clear to send 106 5 Ready for sending cs 9,27 Clear to send
cc 6 Data set ready 107 6 Data set ready DM 11' 29 Data mode
CD 20 Data terminal ready 108 20 Data terminal ready TR 12, 30 Terminal ready
CE 22 Ring indicator 125 22 Calling indicator IC 15 Incoming call
CF 8 Line detector 109 8 Line detector RR 13, 31 Receiver ready
CG 21 Signal quality 110 21 Signal quality so 33 Signal quality
CH 23 DTE rate 111 23 DTE rate SR 16 Signaling rate
Cl 18 DCE rate 112 18 DCE rate Sl 2 Signaling indicators

IS 28 Terminal in service
136 New signal NS 34 New signal
126 11 Select frequency SF 16 Select frequency

DA 24 DTE timing 113 24 DTE timing n 17,25 Terminal timing
DB 15 DCE timing 114 15 DCE timing ST 5,23 Send timing
DD 17 Receiver timing 115 17 Receiver timing RT 8,26 Receive timing

H Ql

SBA 14 Transmitted data 118 14 Transmitted data SSD 3 Send data
SBB 16 Received data 119 16 Received data SRD 4 Receive data
SCA 19 Request to send 120 19 Line signal SRS 7 Request to send
SCB 13 Clear to send 121 13 Channel ready scs 8 Clear to send
SCF 12 Line detector 122 12 Line detector SRR 2 Receiver ready

(j) LL 10 Localloopback
RL 14 Remote loopback
TM 18 Test mode

ss 32 Select stand by
SB 36 Standby indicator

Fig. 2-22. Comparison ot'"RS-232-C, V.24, and RS-449.

into everyone's house is called FTTH (Fiber To The Home). This solution fits
in well with the current system but will not be economically feasible for decades.
It is simply too expensive.

An alternative solution that is much cheaper is FTTC (Fiber To The Curb).
In this model, the telephone company runs an optical fiber from each end office
into each neighborhood (the curb) that it serves (Paff, 1995). The fiber is

Bright House Networks - Ex. 1049, Page 55

-
SEC. 2.4 THE TELEPHONE SYSTEM 117

terminated in a junction box that all the local loops enter. Since the local loops
are now much shorter (perhaps 100 meters instead of 3 km), they can be run at
higher speeds, probably around 1 Mbps, which is just enough for compressed
video. This design is shown in Fig. 2-23(a).

(a)

~House

(b)

Fig. 2-23. Fiber to the curb. (a) Using the telephone network. (b) Using theca­
ble TV network.

In this manher, multiple videos (or other information channels) can pour down
the fiber at high speed and be split over the twisted pairs at the end. By sharing a
1-Gbps fiber over 100 to 1000 customers, the cost per customer can be reduced,
and consideraOly higher bandwidth can be provided than now. Going appreciably
above I Mbps for long distances with the existing twisted pairs is impossible.
Thus in the long term, all the twisted pairs will have to be replaced by fiber.
Whether the intermediate solution of FTTC should be used for the time being or

Bright House Networks - Ex. 1049, Page 56

118 THE PHYSICAL LAYER CHAP. 2

FTTH should be the goal from the beginning is a matter of some debate within the
telephone industry.

An alternative design using the existing cable TV infrastructure is shown in
Fig. 2-23(b). Here a multidrop cable is used instead of the point-to-point system
characteristic of the telephone system. It is likely that both Fig. 2-23(a) and
Fig. 2-23(b) will coexist in the future, as telephone companies and cable TV
operators become direct competitors for voice, data, and possibly even television
service. For more information about this topic, see (Cook and Stern, 1994; Miki,
1994b; and Mochida, 1994).

2.4.4. Trunks and Multiplexing

Economies of scale play an important role in the telephone system. It costs
essentially the same amount of money to install and maintain a high-bandwidth
trunk as a low-bandwidth trunk between two switching offices (i.e., the costs
come from having to dig the trench and not from the copper wire or optical fiber).
Consequently, telephone companies have developed elaborate schemes for multi­
plexing many conversations over a single physical trunk. These multiplexing
schemes can be divided into two basic categories: FDM (Frequency Division
Multiplexing), and TDM (Time Division Multiplexing). In FDM the frequency
spectrum is divided among the logical channels, with each user having exclusive
possession of some frequency band. In TDM the users take turns (in a round
robin), each one periodically getting the entire bandwidth for a little burst of time.

AM radio broadcasting provides illustrations of both kinds of multiplexing.
The allocated spectrum is about 1 MHz, roughly 500 to 1500kHz. Different fre­
quencies are allocated to different logical channels (stations), each operating in a
portion of the spectrum, with the interchannel separation great enough to prevent
interference. This system is an example of frequency division multiplexing. In
addition (in some countries), the individual stations have two logical subchannels:
music and advertising. These two alternate in time on the same frequency, first a
burst of music, then a burst of advertising, then more music, and so on. This

·situation is time division multiplexing.
Below we will examine frequency division multiplexing. After that we will

see how FDM can be applied to fiber optics (wavelength division multiplexing).
Then we will turn to TDM, and end wjth an advanced TDM system used for fiber
optics (SONET).

Frequency Division Multiplexing

Figure 2-24 shows how three voice-grade telephone channels are multiplexed
using FDM. Filters limit the usable bandwidth to about 3000 Hz per voice-grade
channel. When many channels are multiplexed together, 4000 Hz is allocated to
each channel to keep them well separated. First the voice channels are raised in

Bright House Networks - Ex. 1049, Page 57

130 THE PHYSICAL LAYER CHAP. 2

repeaters, which just amplify and regenerate the bits, but do not change or process
them in any way.

The line sublayer is concerned with multiplexing multiple tributaries onto a
single line and demultiplexing them at the other end. To the line sublayer, the
repeaters are transparent. When a multiplexer puts out bits on a fiber, it expects
them to arrive at the next multiplexer unchanged, no matter how many repeaters
are used in between. The protocol in the line sublayer is thus between two multi­
plexers and deals with issues such as how many inputs are being multiplexed
together and how. In contrast, the path sublayer and protocol deal with end-to­
end issues.

2.4.5. Switching

From the point of view of the average telephone engineer, the phone system is
divided into two parts: outside plant (the local loops and trunks, since they are
outside the switching offices), and inside plant (the switches). We have just
looked at outside plant. Now it is time to examine inside plant.

Two different switching techniques are used inside the telephone system: cir­
cuit switching and packet switching. We will give a brief introduction to each of
them below. Then we will go into circuit switching in detail, because that is how
the current telephone system works. Later in the chapter we will go into packet
switching in detail in the context of the next generation telephone system, broad­
band ISDN.

Circuit Switching

When you or your computer places a telephone call, the switching equipment
within the telephone system seeks out a physical "copper" (including fiber and
radio) path all the way from your telephone to the receiver's telephone. This tech­
nique is called circuit switching and is shown schematically in Fig. 2-34(a).
Each of the six rectangles represents a carrier switching office (end office, toll
office, etc.). In this example, each office has three incoming lines and three out­
going lines. When a call passes through a switching office, a physical connection
is (conceptually) established between the line on which the call came in and one
of the output lines, as shown by th; dotted lines.

In the early days of the telephone, the connection was made by having the
operator plug a jumper cable into the input and output sockets. In fact, there is a
surprising little story associated with the invention of automatic circuit switching
equipment. It was invented by a 19th Century undertaker named Almon B.
Strowger. Shortly after the telephone was invented, when someone died, one of
the survivors would call the town operator and say: "Please connect me to an
undertaker." Unfortunately for Mr. Strowger, there were two undertakers in his

Bright House Networks - Ex. 1049, Page 58

SEC. 2.4 THE TELEPHONE SYSTEM 131

town, and the other one's wife was the town telephone operator. He quickly saw
that either he was going to have to invent automatic telephone switching equip­
ment or he was going to go out of business. He chose the first option. For nearly
100 years, the circuit switching equipment used worldwide was known as
Strowger gear. (History does not record whether the now-unemployed switch­
board operator got a job as an information operator, answering questions such as:
What is the phone number of an undertaker?

The model shown in Fig. 2-34(a) is highly simplified of course, because parts
of the "copper" path between the two telephones may, in fact, be microwave
links onto which thousands of calls are multiplexed. Nevertheless, the basic id~a
is valid: once a call has been set up, a dedicated path between both ends exists and
will continue to exist until the call is finished. '

Computer

(a) \
I

(b)

Physical copper
connection set up
when call is made

Switching office

Packets queued up
for subsequent
transmission

Fig. 2-34. (a) Circuit switching. (b) Packet switching.

An important property of circuit switching is the need to set up an end-to-end
path before any data can be sent. The elapsed time between the end of dialing and
the start of ringing can easily be 10 sec, more on long-distance or international
calls. During this time interval, the telephone system is hunting for a copper path,
as shown in Fig. 2-35(a). Note that before data transmission can even begin, the
call request signal must propagate all the way to the destination, and be

Bright House Networks - Ex. 1049, Page 59

132 THE PHYSICAL LAYER CHAP. 2

acknowledged. For many computer applications (e.g., point-of-sale credit verifi­
cation), long setup times are undesirable.

Q)

E
F

j

Call request signal

• r------r------

r------

/{
Time
spent

hunting
for an

outgoinf
trunk

Data

AB BC CD
trunk trunk trunk - - -

A B c D

(a)

Propagation
delay

Call
accept
signal

~
t

Msg

-

A

-
Msg Queui

delay

- I
ng

Msg

f--.

B c D

(b)

Pkt 1

Pkt2
Pkt 1

Pkt3
Pkt2

Pkt3

A B

(c)

Fig. 2-35. Timing of events in (a) circuit switching, (b) message switching,
(c) packet switching.

Pkt 1

Pkt 2

Pkt3

c D

As a consequence of the copper path between the calling parties, once the
setup has been completed, the only delay for data is the propagation time for the
electromagnetic signal, about 5 msec per 1000 km. Also as a consequence of the
established path, there is no danger ~f congestion-that is, once the call has been
put through, you never get busy signals, although you might get one before the
connection has been established due to lack of switching or trunk capacity.

An alternative switching strategy is message switching, shown in Fig. 2-
35(b). When this form of switching is used, no physical copper path is established
in advance between sender and receiver. Instead, when the sender has a block of
data to be sent, it is stored in the first switching office (i.e., router) and then for­
warded later, one hop at a time. Each block is received in its entirety, inspected

Bright House Networks - Ex. 1049, Page 60

SEC. 2.4 THE TELEPHONE SYSTEM 133

for errors, and then retrqnsmitted. A network using this technique is called a
store-and-forward network, as mentioned in Chap. 1.

The first electromechanical telecommunication systems used message switch­
ing, namely for telegrams. The message was punched on paper tape off-line at the
sending office, and then read in and transmitted over a communication line to the
next office along the way, where it was punched out on paper tape. An operator
there tore the tape off and read it in on one of the many tape readers, one per out­
going trunk. Such a switching office was called a torn tape office.

With message switching, there is no limit on block size, which means th;tt_
routers (in a modern system) must have disks to buffer long blocks. It also means
that a single block may tie up a router-router line for minutes, rendering message
switching useless for interactive traffic. To get around these problems, packet
switching was invented. Packet-switching networks place a tight upper limit on
block size, allowing packets to be buffered in router main memory instead of on
disk. By making sure that no user can monopolize any transmission line very long
(milliseconds), packet-switching networks are well suited to handling interactive
traffic. A further advantage of packet switching over message switching is shown
in Fig. 2-35(b) and (c): the first packet of a multipacket message can be forwarded
before the second one has fully arrived, reducing delay and improving throughput.
For these reasons, computer networks are usually packet switched, occasionally
circuit switched, but never message switched.

Circuit switching and packet switching differ in many respects. The key
difference is that circuit switching statically reserves the required bandwidth in
advance, whereas packet switching acquires and releases it as it is needed. With
circuit switching, any unused bandwidth on an allocated circuit is just wasted.
With packet switching it may be utilized by other packets from unrelated sources
going to unrelated destinations, because circuits are never dedicated. However,
just because no circuits are dedicated, a sudden surge of input traffic may
overwhelm a router, exceeding its storage capacity and causing it to lose packets.

In contrast, with circuit switching, when packet switching is used, it is
straightforward for the routers to provide speed and code conversion. Also, they
can provide error correction to some extent. In some packet-switched networks,
however, packets may be delivered in the wrong order to the destination. Reor­
dering of packets can never happen with circuit switching.

Another difference is that circuit switching is completely transparent. The
sender and receiver can use any bit rate, format, or framing method they want to.
The carrier does not know or care. With packet switching, the carrier determines
the basic parameters. A rough analogy is a road versus a railroad. In the former,
the user determines the size, speed, and nature of the vehicle; in the latter, the car­
rier does. It is this transparency that allows voice, data, and fax to coexist within
the phone system.

A final difference between circuit and packet switching is the charging algo­
rithm. Packet carriers usually base their charge on both the number of bytes (or

Bright House Networks - Ex. 1049, Page 61

134 THE PHYSICAL LAYER CHAP. 2

packets) carried and the connect time. Furthermore, transmission distance usually
does not matter, except perhaps internationally. With circuit switching, the
charge is based on the distance and time only, not the traffic. The differences are
summarized in Fig. 2-36.

Item Circuit-switched Packet-switched

Dedicated "copper" path Yes No

Bandwidth available Fixed Dynamic

Potentially wasted bandwidth Yes No

Store-and-forward transmission No Yes

Each packet follows the same route Yes No

Call setup Required Not needed

When can congestion occur At setup time On every packet

Charging Per minute Per packet

Fig. 2-36. A comparison of circuit-switched and packet-switched networks.

Both circuit switching and packet switching are so important, we will come
back to them shortly and describe the various technologies used in detail.

The Switch Hierarchy

It is worth saying a few words about how the routing between switches is
done within the current circuit-switched telephone system. We will describe the
AT&T system here, but other companies and countries use the same general prin­
ciples. The telephone system has five classes of switching offices, as illustrated
in Fig. 2-37. There are 10 regional switching offices, and these are fully intercon­
nected by 45 high-bandwidth fiber optic trunks. Below the regional offices are 67
sectional offices, 230 primary offices, 1300 toll offices, and 19,000 end offices.

, The lower four levels were originally connected as a tree.
Calls are generally connected at the lowest possible level. Thus if a sub­

scriber connected to end office 1 calls another subscriber connected to end office
1, the call will be completed in that,..office. However, a call from a customer
attached to end office 1 in Fig. 2-37 to a customer attached to end office 2 will
have to go toll office 1. However, a call from end office 1 to end office 4 will
have to go up to primary office 1, and so on. With a pure tree, there is only one
minimal route, and that would normally be taken.

During years of operation, the telephone companies noticed that some routes
were busier than others. For example, there were many calls from New York to
Los Angeles. Rather than go all the way up the hierarchy, they simply installed
direct trunks for the busy routes. A few of these are shown in Fig. 2-37 as

Bright House Networks - Ex. 1049, Page 62

SEC. 2.4

2 3 4 5

,

, , , , , ,

, , , , ,

THE TELEPHONE SYSTEM

, ,

, , , , ,

200 Million telephones

135

10 Regional
offices
(fully
interconnected)

19,000

1300 Toll

19,000 End
offices

Fig. 2-37. The AT&T telephone hierarchy. The dashed lines are direct trunks.

dashed lines. As a consequence, many calls can now be routed along many paths.
The actual route chosen is generally the most direct one, but if the necessary
trunks along it are full, an alternative is chosen. This complex routing is now pos­
sible because a switching machine, like the AT&T 5 ESS, is in fact just a general
purpose computer with a large amount of very specialized I/0 equipment.

Crossbar Switches

Let us now turn from how calls are routed among switches to how individual
switches actually work inside. Several kinds of switches are (or were) common
within the telephone system. The simplest kind is the crossbar switch (also
called a crosspoint switch), shown in Fig. 2-38. In a switch with n input lines
and n output lines (i.e., n full duplex lines), the crossbar switch has n 2

Bright House Networks - Ex. 1049, Page 63

SEC. 2.4 THE TELEPHONE SYSTEM 139

to line 0, and so on. In essence, the switch has moved a byte from input line 4 to
output line 0, another byte from input line 7 to output line 1, and so on. Viewed
from the outside, the whole arrangement is a circuit switch, even though there are
no physical connections.

The time slot interchanger works as follows: When an input frame is ready to
be processed, each slot (i.e., each byte in the input frame) is written into a RAM
buffer inside the interchanger. The slots Me written in order, so buffer word i
contains slot i.

After all the slots of the input frame have been stored in the buffer, the output
frame is constructed by reading out the words again, but in a different order. A
counter goes from 0 to n - 1. At step j, the contents of word j of a mapping table
is read out and used to address the RAM table. Thus if word 0 of the mapping
table contains a 4, word 4 of the RAM buffer will be read out first, and the first
slot of the output frame will be slot 4 of the input frame. Thus the contents of the
mapping table determine which permutation of the input frame will be generated
as the output frame, and thus which input line is connected to which output line.

Time division switches use tables that are linear in the number of lines, rather
than quadratic, but they have another limitation. It is necessary to store n slots in
the buffer RAM and then read them out again within one frame period of 125
f.!sec. If each of these memory accesses takes T microsec, the time needed to pro­
cess a frame is 2nT microsec, so we have 2nT = 125 or n = l25!2T. For a
memory with 100-nsec cycle time, we can support at most 625 lines. We can also
turn this relation around and use it to determine the required memory cycle to sup­
port a given number of lines. As with a crossbar switch, it is possible to devise
multistage switches that split the work up into several parts and then combine the
results in order to handle larger numbers of lines.

2.5. NARROWBAND ISDN

For more than a century, the primary international telecommunication infras­
tructure has been the public circuit-switched telephone system. This system was
designed for analog voice transmission and is inadequate for modern communica­
tion needs. Anticipating considerable user demand for an end-to-end digital ser­
vice (i.e., not like Fig. 2-17 which is part digital and part analog), the world's tele­
phone companies and PTTs got together in 1984 under the auspices of CCITT and
agreed to build a new, fully digital, circuit-switched telephone system by the early
Part of the 21st Century. This new system, called ISDN (Integrated Services
Digital Network), has as its primary goal the integration of voice and nonvoice
services. It is already available in many locations and its use is growing slowly.
In the following sections we will describe what it does and how it works. For
further information, see (Dagdeviren et al., 1994; and Kessler, 1993).

Bright House Networks - Ex. 1049, Page 64

140 THE PHYSICAL LAYER CHAP. 2

2.5.1. ISDN Services

The key ISDN service will continue to be voice, although many enhanced
features will be added. For example, many corporate managers have an intercom
button on their telephone that rings their secretaries instantly (no call setup time).
One ISDN feature is telephones with multiple buttons for instant call setup to
arbitrary telephones anywhere in the world. Another feature is telephones that
display the caller's telephone number, name, and address on a display while ring­
ing. A more sophisticated version of this feature allows the telephone to be con­
nected to a computer, so that the caller's database record is displayed on the
screen as the call comes in. For example, a stockbroker could arrange that when
she answers the telephone, the caller's portfolio is already on the screen along
with the current prices of all the caller's stocks. Other advanced voice services
include call forwarding and conference calls worldwide.

Advanced nonvoice services are remote electricity meter reading, and on-line
medical, burglar, and smoke alarms that automatically call the hospital, police, or
fire department, respectively, and give their address to speed up response.

2.5.2. ISDN System Architecture

It is now time to look at the ISDN architecture in detail, particularly the
customer's equipment and the interface between the customer and the telephone
company or PTT. The key idea behind ISDN is that of the digital bit pipe, a con­
ceptual pipe between the customer and the carrier through which bits flow.
Whether the bits originated from a digital telephone, a digital terminal, a digital
facsimile machine, or some other device is irrelevant. All that matters is that bits
can t1ow through the pipe in both directions.

The digital bit pipe can, and normally does, support multiple independent
channels by time division multiplexing of the bit stream. The exact format of the
bit stream and its multiplexing is a carefully defined part of the interface specifi­
cation for the digital bit pipe. Two principal standards for the bit pipe have been
developed, a low bandwidth standard for home use and a higher bandwidth stan-

. dard for business use that supports multiple channels that are identical to the home
use channel. Furthermore, businesses may have multiple bit pipes if they need
additional capacity beyond what the s~ndard business pipe can provide.

In Fig. 2-4l(a) we see the normal configuration for a home or small business.
The carrier places a network terminating device, NTl, on the customer's premises
and connects it to the ISDN exchange in the carrier's office, several kilometers
away, using the twisted pair that was previously used to connect to the telephone.
The NTI box has a connector on it into which a passive bus cable can be inserted.
Up to eight ISDN telephones, terminals, alarms, and other devices can be con­
nected to the cable, similar to the way devices are connected to a LAN. From the
customer's point of view, the network boundary is the connector on NT 1.

Bright House Networks - Ex. 1049, Page 65

SEC. 2.5 NARROWBAND ISDN 141

--------Customer's office----------1---- Carrier's office

Customer's equipment

r---------
1
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

(a)

------------------------------1
I
I
I
I
I
I
I
I
I
I
I
I
I

To :
carrier's :
internal :
network:

I
I
I

_____________________________ j

Carrier's equipment

--------Customer's office---------..1·---- Carrier's office

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I ___________________________________ J

Customer's equipment

r---------
1
I
I
I
I
I
I
I
I
I
I
I

Tl
I
I

Digital
bit pipe

(b)

------------------------------1
I
I
I
I
I
I
I
I
I
I
I

To :
carrier's :

¢:=:=:n internal :
network 1

I
I
I
I
I

-----------------------------~
Carrier's equipment

Fig. 2-41. (a) Example ISDN system for home use. (b) Example ISDN system
with a PBX for use in large businesses.

Bright House Networks - Ex. 1049, Page 66

142 THE PHYSICAL LAYER CHAP. 2

For large businesses, the model of Fig. 2-41(a) is inadequate because it is
common to have more telephone conversations going on simultaneously than the
bus can handle. Therefore, the model of Fig. 2-41 (b) is used. In this model we
find a device, NT2, called a PBX (Private Branch eXchange), connected to NT 1
and providing the real interface for telephones, terminals and other equipment.
An ISDN PBX is not very different conceptually from an ISDN switch, although
it is usually smaller and cannot handle as many conversations at the same time.

CCITT defined four reference points, called R, S, T, and U, between the
various devices. These are marked in Fig. 2-41. The U reference point is the con­
nection between the ISDN exchange in the carrier's office and NTl. At present it
is a two-wire copper twisted pair, but at some time in the future it may be
replaced by fiber optics. The T reference point is what the connector on NT1 pro­
vides to the customer. The S reference point is the interface between the ISDN
PBX and the ISDN terminals. The R reference point is the connection between
the terminal adapter and non-ISDN terminals. Many different kinds of interfaces
will be used at R.

2.5.3. The ISDN Interface

The ISDN bit pipe supports multiple channels interleaved by time division
multiplexing. Several channel types have been standardized:

A - 4-kHz analog telephone channel
B - 64-kbps digital PCM channel for voice or data
C - 8- or-16 kbps digital channel
D - 16-kbps digital channel for out-of-band signaling
E - 64-kbps digital channel for internal ISDN signaling
H - 384-, 1536-, or 1920-kbps digital channel

It was not CCITT' s intention to allow an arbitrary combination of channels on the
digital bit pipe. Three combinations have been standardized so far:

1. Basic rate: 28 + 1D

2. Primary rate: 238 + 1D (U.S. and Japan) or 308 + lD (Europe)

3. Hybrid: lA + lC *"

The basic rate and primary rate channels are illustrated in Fig. 2-42.
The basic rate should be viewed as a replacement for POTS (Plain Old Tele­

phone Service) for home or small business use. Each of the 64-kbps B channels
can handle a single PCM voice channel with 8-bit samples made 8000 times a
second (note that 64 kbps means 64,000 here, not 65,536). Signaling is on a
separate 16-kbps D channel, so the full 64 kbps are available to the user (as in the
CCITT 2.048-Mbps system and unlike the U.S. and Japanese Tl system).

Bright House Networks - Ex. 1049, Page 67

SEC. 2.5 NARROWBAND ISDN

81 to B2 t D (16 kbps)
Basic rate

--~------------~

(a) (b)

Fig. 2-42. (a) Basic rate digital pipe. (b) Primary rate digital pipe.

143

Because ISDN is so focused on 64-kbps channels, we refer to it as N-ISDN (Nar­
rowband ISDN), to contrast it with broadband ISDN (ATM) to be discussed
later.

The primary rate interface is intended for use at the T reference point for
businesses with a PBX. It has 23 B channels and 1 D channel (at 64 kbps) in the
United States and Japan and 30 B channels and 1 D channel (at 64 kbps) in
Europe. The 23B + lD choice was made to allow an ISDN frame fit nicely on
AT&T's T1 system. The 30B + 1D choice was made to allow an ISDN frame fit
nicely in CCITT's 2.048 Mbps system. The 32nd time slot in the CCITT system
is used for framing and general network maintenance. Note that the amount of D
channel per B channel in the primary rate is much less than in the basic rate, as it
is not expected that there will be much telemetry or low bandwidth packet data
there.

2.5.4. Perspective on N-ISDN

N-ISDN was a massive attempt to replace the analog telephone system with a
digital one suitable for both voice and nonvoice traffic. Achieving worldwide
agreement on the interface standard for the basic rate was supposed to lead to a
large user demand for ISDN equipment, thus leading to mass production,
economies of scale, and inexpensive VLSI ISDN chips. Unfortunately, the
standardization process took years and the technology in this area moved very
rapidly, so that once the standard was finally agreed upon, it was obsolete.

For home use, the largest demand for new services will undoubtedly be for
video on demand. Unfortunately, the ISDN basic rate lacks the necessary
bandwidth by two orders of magnitude. For business use, the situation is even
bleaker. Currently available LANs offer at least 10 Mbps and are now being
replaced by 100-Mbps LANs. Offering 64-kbps service to businesses in the 1980s
was a serious proposition. In the 1990s, it is a joke.

Oddly enough, ISDN may yet be saved, but by a totally unexpected applica­
tion: Internet access. Various companies now sell ISDN adaptors that combine
the 2B + D channels into a single 144-kbps digital channel. Many Internet service
providers also support these adaptors. The result is that people can access the

Bright House Networks - Ex. 1049, Page 68

144 THE PHYSICAL LAYER CHAP. 2

Internet over a 144-kbps fully digital link, instead of a 28.8-kbps analog modem
link. For many Internet users, gaining a factor of five for downloading World
Wide Web pages full of graphics is a service worth having. While B-ISDN at 155
Mbps is even better, N-ISDN at 144 kbps is here now for an affordable price, and
that may be its main niche for the next few years.

2.6. BROADBAND ISDN AND ATM

When CCITT finally figured out that narrowband ISDN was not going to set
the world on fire, it tried to think of a new service that might. The result was
broadband ISDN (B-ISDN), basically a digital virtual circuit for moving fixed­
size packets (cells) from source to destination at 155 Mbps (really 156 Mbps, as
mentioned earlier). Since this data rate is even enough for (uncompressed)
HDTV, it is likely to satisfy even the biggest bandwidth hogs for at least a few
years.

Whereas narrowband ISDN was a timid first step into the digital age, broad­
band ISDN is a bold leap into the unknown. The benefits are enormous, such as a
bandwidth increase over narrowband ISDN by a factor of 2500, but the challenges
are equally huge (Armbruster, 1995).

To start with, broadband ISDN is based on ATM technology, and as we dis­
cussed briefly in Chap. 1, ATM is fundamentally a packet-switching technology,
not a circuit-switching technology (although it can emulate circuit switching fairly
well). In contrast, both the existing PSTN and narrowband ISDN are circuit­
switching technologies. An enormous amount of engineering experience in cir­
cuit switching will be rendered obsolete by this change. Going from circuit
switching to packet switching is truly a paradigm shift.

As if that were not enough, broadband ISDN cannot be sent over existing
twisted pair wiring for any substantial distance. This means that introducing it
will require ripping out most of the local loops and putting in either category 5
twisted pair or fiber (Stephens and Banwell, 1995). Furthermore, space division
and time division switches cannot be used for packet switching. They will all
have to be replaced by new switches based on different principles and running at
much higher speeds. The only things that can be salvaged are the wide area fiber
trunks. "'

In short, throwing out 100 years' accumulated knowledge plus an investment
in both inside plant and outside plant worth many hundreds of billions of dollars is
not exactly a small step to be taken lightly. Nevertheless, it is clear to the tele­
phone companies that if they do not do it, the cable television companies, thinking
about video on demand, probably will. While it is likely that both the existing
PSTN and narrowband ISDN will be around for a decade or perhaps even longer,
the long-term future probably lies with ATM, so we will study it in great detail in
this book, starting with the physical layer in this chapter.

Bright House Networks - Ex. 1049, Page 69

SEC. 3.6 EXAMPLE DATA LINK PROTOCOLS 229

3.6.2. The Data Link Layer in the Internet

The Internet consists of individual machines (hosts and routers), and the com­
munication infrastructure that connects them. Within a single building, LANs are
widely used for interconnection, but most of the wide area infrastructure is built
up from point-to-point leased lines. In Chap. 4, we will look at LANs; here we
will examine the data link protocols used on point-to-point lines in the Internet.

In practice, point-to-point communicat'ion is primarily used in two situations.
First, thousands of organizations have one or more LANs, each with some number
of hosts (personal computers, user workstations, servers, and so on) along with ·a
router (or a bridge, which is functionally similar). Often, the routers are intercorw­
nected by a backbone LAN. Typically, all connections to the outside world go
through one or two routers that have point-to-point leased lines to distant routers.
It is these routers and their leased lines that make up the communication subnets
on which the Internet is built.

The second situation where point-to-point lines play a major role in the Inter­
net is the millions of individuals who have home connections to the Internet using
modems and dial-up telephone lines. Usually, what happens is that the user's
home PC calls up an Internet provider, which includes commercial companies
like America Online, CompuServe, and the Microsoft Network, but also many
universities and companies that provide home Internet connectivity to their stu­
dents and employees. Sometimes the home PC just functions as a character­
oriented terminal logged into the Internet service provider's timesharing system.
In this mode, the user can type commands and run programs, but the graphical
Internet services, such as the World Wide Web, are not available. This way of
working is called having a shell account.

Alternatively, the home PC can call an Internet service provider's router and
then act like a full-blown Internet host. This method of operation is no different
than having a leased line between the PC and the router, except that the connec­
tion is terminated when the user ends the session. With this approach, all Internet
services, including the graphical ones, become available. A home PC calling an
Internet service provider is illustrated in Fig. 3-26.

For both the router-router leased line connection and the dial-up host-router
connection, some point-to-point data link protocol is required on the line for fram­
ing, error control, and the other data link layer functions we have studied in this
chapter. Two such protocols are widely used in the Internet, SLIP and PPP. We
will now examine each of these in turn.

SLIP-Serial Line IP

SLIP is the older of the two protocols. lt was devised by Rick Adams in 1984
to connect Sun workstations to the Internet over a dial-up line using a modem.
The protocol, which is described in RFC 1055, is very simple. The workstation

Bright House Networks - Ex. 1049, Page 70

230 THE DATA LINK LAYER CHAP. 3

User's home Internet provider's office
r-------------------------1
: Modems :

I
I
I
I
I
I
I
I
I
I
I
I
I

I I
I I

Client process
using TCP/IP

Dial-up
telephone line

! ~r~-------7---
: : TCP/IP connection
: : using SLIP or PPP
I I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I __ ..J I I

L----------------------------------1
Router

process

Fig. 3-26. A home personal computer acting as an Internet host.

just sends raw IP packets over the line, with a special flag byte (OxCO) at the end
for framing. If the flag byte occurs inside the IP packet, a form of character stuff­
ing is used, and the two byte sequence (OxDB, OxDC) is sent in its place. If OxDB
occurs inside the IP packet, it, too, is stuffed. Some SLIP implementations attach
a flag byte to both the front and back of each IP packet sent.

More recent versions of SLIP do some TCP and IP header compression.
What they do is take advantage of the fact that consecutive packets often have
many header fields in common. These are compressed by omitting those fields
that are the same as the corresponding fields in the previous IP packet. Further­
more, the fields that do differ are not sent in their entirety, but as increments to the
previous value. These optimizations are described in RFC 1144.

Although it is still widely used, SLIP has some serious problems. First, it
does not do any error detection or correction, so it is up to higher layers to detect
and recover from lost, damaged, or merged frames.

Second, SLIP supports only IP. With the growth of the Internet to encompass
networks that do not use IP as their native language (e.g., Novell LANs), this res­
triction is becoming increasingly serious.

Third, each side must know the other's IP address in advance; neither address
can be dynamically assigned during"'setup. Given the current shortage of IP
addresses, this limitation is a major issue as it is impossible to give each home
Internet user a unique IP address.

Fourth, SLIP does not provide any form of authentication, so neither party
knows whom it is really talking to. With leased lines, this is not an issue, but with
dial-up lines it is.

Fifth, SLIP is not an approved Internet Standard, so many different (and
incompatible) versions exist. This situation does not make interworking easier.

Bright House Networks - Ex. 1049, Page 71

SEC. 6.3 A SIMPLE TRANSPORT PROTOCOL 521

the actions following the wakeup also count. For example, if a CALL REQUEST

packet comes in and a process was asleep waiting for it, the transmission of the
CALL ACCEPT packet following the wakeup counts as part of the action for CALL

REQUEST. After each action is performed, the connection may move to a new
state, as shown in Fig. 6-21.

The advantage of representing the protocol as a matrix is threefold. First, in
this form it is much easier for the programmer to systematically check each com­
bination of state and event to see if an action is required. In production imple­
mentations, some of the combinations would be used for error handling. ~n.

Fig. 6-21 no distinction is made between impossible situations and illegal ones.
For example, if a connection is in waiting state, the DISCONNECT event is impossi­
ble because the user is blocked and cannot execute any primitives at all. On the
other hand, in sending state, data packets are not expected because no credit has
been issued. The arrival of a data packet is a protocol error.

The second advantage of the matrix representation of the protocol is in imple­
menting it. One could envision a two-dimensional array in which element a [i] li]
was a pointer or index to the procedure that handled the occmTence of event i
when in state j. One possible implementation is to write the transport entity as a
short loop, waiting for an event at the top of the loop. When an event happens,
the relevant connection is located and its state is extracted. With the event and
state now known, the transport entity just indexes into the array a and calls the
proper procedure. This approach gives a much more regular and systematic
design than our transport entity.

The third advantage of the finite state machine approach is for protocol
description. In some standards documents, the protocols are given as finite state
machines of the type of Fig. 6-21. Going from this kind of description to a work­
ing transport entity is much easier if the transport entity is also driven by a finite
state machine based on the one in the standard.

The primary disadvantage of the finite state machine approach is that it may
be more difficult to understand than the straight programming example we used
initially. However, this problem may be partially solved by drawing the finite
state machine as a graph, as is done in Fig. 6-22.

6.4. THE INTERNET TRANSPORT PROTOCOLS (TCP AND UDP)

The Internet has two main protocols in the transport layer, a connection­
oriented protocol and a connectionless one. In the following sections we will
study both of them. The connection-oriented protocol is TCP. The connection­
less protocol is UDP. Because UDP is basically just IP with a short header added,
we will focus on TCP.

TCP (Transmission Control Protocol) was specifically designed to provide
a reliable end-to-end byte stream over an unreliable internetwork. An

Bright House Networks - Ex. 1049, Page 72

522 THE TRANSPORT LAYER CHAP. 6

CONNECT
(

TIMEOUT
I

IDLE

{CLEAR REO CALL REO I
_a 1-

0 z w w w a: z
WAITING 1- _J z QUEUED (j) _J 0 ::J <(0 0 (j)

l CALLACC
0) LISTEN

ESTAB-
DATA, LISHED RECEIVE

{ CLEAR REO ~)~ l SEND DATA,
SENDING z

CLEAR REO
RECEIVING

0
0
(j)

0

DISCON-
NECTING

~ CLEAR REO, CLEAR CONF

Fig. 6-22. The example protocol in graphical form. Transitions that leave the
connection state unchanged have been omitted for simplicity.

internetwork differs from a single network because different parts may have
wildly different topologies, bandwidths, delays, packet sizes, and other parame­
ters. TCP was designed to dynamically adapt to properties of the internetwork
and to be robust in the face of many kinds of failures.

TCP was formally defined in RFC 793. As time went on, various errors and
inconsistencies were detected, and the requirements were changed in some areas.
These clarifications and some bug :(jxes are detailed in RFC 1122. Extensions are
given in RFC 1323.

Each machine supporting TCP has a TCP transport entity, either a user pro­
cess or part of the kernel that manages TCP streams and interfaces to the IP layer.
A TCP entity accepts user data streams from local processes, breaks them up into
pieces not exceeding 64K bytes (in practice, usually about 1500 bytes), and sends
each piece as a separate IP datagram. When IP datagrams containing TCP data
arrive at a machine, they are given to the TCP entity, which reconstructs the origi­
nal byte streams. For simplicity, we will sometimes use just "TCP" to mean the

Bright House Networks - Ex. 1049, Page 73

SEC. 6.4 THE INTERNET TRANSPORT PROTOCOLS (TCP AND UDP) 523

TCP transport entity (a piece of software) or the TCP protocol (a set of rules).
From the context it will be clear which is meant. For example, in "The user gives
TCP the data," the TCP transport entity is clearly intended.

The IP layer gives no guarantee that datagrams will be delivered properly, so
it is up to TCP to time out and retransmit them as need be. Datagrams that do
arrive may well do so in the wrong order; it is also up to TCP to reassemble them
into messages in the proper sequence. In short, TCP must furnish the reliability
that most users want and that IP does not provide.

6.4.1. The TCP Service Model

TCP service is obtained by having both the sender and receiver create end
points, called sockets, as discussed in Sec. 6.1.3. Each socket has a socket
number (address) consisting of the IP address of the host and a 16-bit number
local to that host, called a port. A port is the TCP name for a TSAP. To obtain
TCP service, a connection must be explicitly established between a socket on the
sending machine and a socket on the receiving machine. The socket calls are
listed in Fig. 6-6.

A socket may be used for multiple connections at the same time. In other
words, two or more connections may terminate at the same socket. Connections
are identified by the socket identifiers at both ends, that is, (socket], socket2). No
virtual circuit numbers or other identifiers are used.

Port numbers below 256 are called well-known ports and are reserved for
standard services. For example, any process wishing to establish a connection to
a host to transfer a file using FTP can connect to the destination host's port 21 to
contact its FTP daemon. Similarly, to establish a remote login session using TEL­
NET, port 23 is used. The list of well-known ports is given in RFC 1700.

All TCP connections are full-duplex and point-to-point. Full duplex means
that traffic can go in both directions at the same time. Point-to-point means that
each connection has exactly two end points. TCP does not support multicasting or
broadcasting.

A TCP connection is a byte stream, not a message stream. Message bound­
aries are not preserved end to end. For example, if the sending process does four
512-byte writes to a TCP stream, these data may be delivered to the receiving pro­
cess as four 512-byte chunks, two 1024-byte chunks, one 2048-byte chunk (see
Fig. 6-23), or some other way. There is no way for the receiver to detect the
unit(s) in which the data were written.

Files in UNIX have this property too. The reader of a file cannot tell whether
the file was written a block at a time, a byte at a time, or all in one blow. As with
a UNIX file, the TCP software has no idea of what the bytes mean and no interest
in finding out. A byte is just a byte.

When an application passes data to TCP, TCP may send it immediately or
buffer it (in order to collect a larger amount to send at once), at its discretion.

Bright House Networks - Ex. 1049, Page 74

524 THE TRANSPORT LAYER

IP header \ / TCP header

IE IE IE
(a)

CHAP. 6

I A B c D

(b)

Fig. 6-23. (a) Four 512-byte segments sent as separate IP datagrams. (b) The
2048 bytes of data delivered to the application in a single READ call.

However, sometimes, the application really wants the data to be sent immediately.
For example, suppose a user is logged into a remote machine. After a command
line has been finished and the carriage return typed, it is essential that the line be
shipped off to the remote machine immediately and not buffered until the next
line comes in. To force data out, applications can use the PUSH flag, which tells
TCP not to delay the transmission.

Some early applications used the PUSH flag as a kind of marker to delineate
messages boundaries. While this trick sometimes works, it sometimes fails since
not all implementations of TCP pass the PUSH flag to the application on the
receiving side. Furthermore, if additional PUSHes come in before the first one
has been transmitted (e.g., because the output line is busy), TCP is free to collect
all the PUSHed data into a single IP datagram, with no separation between the
various pieces.

One last feature of the TCP service that is worth mentioning here is urgent
data. When an interactive user hits the DEL or CTRL-C key to break off a
remote computation that has already begun, the sending application puts some
control information in the data stream and gives it to TCP along with the
URGENT flag. This event causes TCP to stop accumulating data and transmit
everything it has for that connection immediately.

When the urgent data are received at the destination, the receiving application
·. i.s interrupted (e.g., given a signal in UNIX terms), so it can stop whatever it was

doing and read the data stream to find the urgent data. The end of the urgent data
is marked, so the application knows when it is over. The start of the urgent data is
not marked. It is up to the application to figure that out. This scheme basically
provides a crude signaling mechanism and leaves everything else up to the appli­
cation.

6.4.2. The TCP Protocol

In this section we will give a general overview of the TCP protocol. In the
next one we will go over the protocol header, field by field. Every byte on a TCP
connection has its own 32-bit sequence number. For a host blasting away at full

Bright House Networks - Ex. 1049, Page 75

SEC. 6.4 THE INTERNET TRANSPORT PROTOCOLS (TCP AND UDP) 525

speed on a 10-Mbps LAN, theoretically the sequence numbers could wrap around
in an hour, but in practice it takes much longer. The sequence numbers are used
both for acknowledgements and for the window mechanism, which use separate
32-bit header fields.

The sending and receiving TCP entities exchange data in the form of seg­
ments. A segment consists of a fixed 20-byte header (plus an optional part) fol­
lowed by zero or more data bytes. The TCI? software decides how big segments
should be. It can accumulate data from several writes into one segment or split
data from one write over multiple segments. Two limits restrict the segment size ..
First, each segment, including the TCP header, must fit in the 65,535 byte IP pay­
load. Second, each network has a maximum transfer unit or MTU, and each
segment must fit in the MTU. In practice, the MTU is generally a few thousand
bytes and thus defines the upper bound on segment size. If a segment passes
through a sequence of networks without being fragmented and then hits one
whose MTU is smaller than the segment, the router at the boundary fragments the
segment into two or more smaller segments.

A segment that is too large for a network that it must transit can be broken up
into multiple segments by a router. Each new segment gets its own IP header, so
fragmentation by routers increases the total overhead (because each additional
segment adds 20 bytes of extra header information in the form of an IP header).

The basic protocol used by TCP entities is the sliding window protocol.
When a sender transmits a segment, it also starts a timer. When the segment
arrives at the destination, the receiving TCP entity sends back a segment (with
data if any exists, otherwise without data) bearing an acknowledgement number
equal to the next sequence number it expects to receive. If the sender's timer goes
off before the acknowledgement is received, the sender transmits the segment
again.

Although this protocol sounds simple, there are many ins and outs that we will
cover below. For example, since segments can be fragmented, it is possible that
part of a transmitted segment arrives and is acknowledged by the receiving TCP
entity, but the rest is lost. Segments can also arrive out of order, so bytes
3072-4095 can arrive but cannot be acknowledged because bytes 2048-3071 have
not turned up yet. Segments can also be delayed so long in transit that the sender
times out and retransmits them. If a retransmitted segment takes a different route
than the original, and is fragmented differently, bits and pieces of both the original
and the duplicate can arrive sporadically, requiring a careful administration to
achieve a reliable byte stream. Finally, with so many networks making up the
Internet, it is possible that a segment may occasionally hit a congested (or broken)
network along its path.

TCP must be prepared to deal with these problems and solve them in an effi­
cient way. A considerable amount of effort has gone into optimizing the perfor­
mance of TCP streams, even in the face of network problems. A number of the
algorithms used by many TCP implementations will be discussed below.

Bright House Networks - Ex. 1049, Page 76

526 THE TRANSPORT LAYER CHAP. 6

6.4.3. The TCP Segment Header

Figure 6-24 shows the layout of a TCP segment. Every segment begins with a
fixed-format 20-byte header. The fixed header may be followed by header
options. After the options, if any, up to 65,535- 20- 20 = 65,495 data bytes may
follow, where the first 20 refers to the IP header and the second to the TCP
header. Segments without any data are legal and are commonly used for
acknowledgements and control messages.

-------------- 32 Bits--------------

Source port Destination port

Sequence number

Acknowledgement number

TCP u A p R s F
header R c s s y I Window size
length G K H T N N

Checksum Urgent pointer

~~ - ~~ Options (0 or more 32 bit words)

Data (optional) I I
Fig. 6-24. The TCP header.

Let us dissect the TCP header field by field. The Source port and Destination
pprt fields identify the local end points of the connection. Each host may decide
for itself how to allocate its own ports starting at 256. A port plus its host's IP
address forms a 48-bit unique TSAP. The source and destination socket numbers
together identify the connection. ""

The Sequence number and Acknowledgement number fields perform their
usual functions. Note that the latter specifies the next byte expected, not the last
byte correctly received. Both are 32 bits long because every byte of data is num­
bered in a TCP stream.

The TCP header length tells how many 32-bit words are contained in the TCP
header. This information is needed because the Options field is of variable length,
so the header is too. Technically, this field really indicates the start of the data

Bright House Networks - Ex. 1049, Page 77

SEC. 6.4 THE INTERNET TRANSPORT PROTOCOLS (TCP AND UDP) 527

within the segment, measured in 32-bit words, but that number is just the header
length in words, so the effect is the same.

Next comes a 6-bit field that is not used. The fact that this field has survived
intact for over a decade is testimony to how well thought out TCP is. Lesser pro­
tocols would have needed it to fix bugs in the original design.

Now come six I-bit flags. URG is set to I if the Urgent pointer is in use. The
Urgent pointer is used to indicate a byte.,offset from the current sequence number
at which urgent data are to be found. This facility is in lieu of interrupt messages.
As we mentioned above, this facility is a bare bones way of allowing the sender tp
signal the receiver without getting TCP itself involved in the reason for the inter­
rupt.

The ACK bit is set to I to indicate that the Acknowledgement number is valid.
If ACK is 0, the segment does not contain an acknowledgement so the Acknowl­
edgement number field is ignored.

The PSH bit indicates PUSHed data. The receiver is hereby kindly requested
to deliver the data to the application upon arrival and not buffer it until a full
buffer has been received (which it might otherwise do for efficiency reasons).

The RST bit is used to reset a connection that has become confused due to a
host crash or some other reason. It is also used to reject an invalid segment or
refuse an attempt to open a connection. In general, if you get a segment with the
RST bit on, you have a problem on your hands.

The SYN bit is used to establish connections. The connection request has
SYN = l and ACK = 0 to indicate that the piggyback acknowledgement field is not
in use. The connection reply does bear an acknowledgement, so it has SYN = I
and ACK = I. In essence the SYN bit is used to denote CONNECTION REQUEST and
CONNECTION ACCEPTED, with the ACK bit used to distinguish between those two
possibilities.

The FIN bit is used to release a connection. It specifies that the sender has no
more data to transmit. However, after closing a connection, a process may con­
tinue to receive data indefinitely. Both SYN and FIN segments have sequence
numbers and are thus guaranteed to be processed in the correct order.

Flow control in TCP is handled using a variable-size sliding window. The
Window size field tells how many bytes may be sent starting at the byte acknowl­
edged. A Window size field of 0 is legal and says that the bytes up to and includ­
ing Acknowledgement number- I have been received, but that the receiver is
currently badly in need of a rest and would like no more data for the moment,
thank you. Permission to send can be granted later by sending a segment with the
same Acknowledgement number and a nonzero Window size field.

A Checksum is also provided for extreme reliability. It checksums the header,
the data, and the conceptual pseudoheader shown in Fig. 6-25. When performing
this computation, the TCP Checksum field is set to zero, and the data field is pad­
ded out with an additional zero byte if its length is an odd number. The checksum
algorithm is simply to add up all the I6-bit words in I' s complement and then to

Bright House Networks - Ex. 1049, Page 78

528 THE TRANSPORT LAYER CHAP. 6

take the l 's complement of the sum. As a consequence, when the receiver per­
forms the calculation on the entire segment, including the Checksum field, the
result should be 0.

Source address

Destination address

00000000 I Protocol= 6 I TCP segment length

Fig. 6-25. The pseudoheader included in the TCP checksum.

The pseudoheader contains the 32-bit IP addresses of the source and destina­
tion machines, the protocol number for TCP (6), and the byte count for the TCP
segment (including the header). Including the pseudoheader in the TCP checksum
computation helps detect misdelivered packets, but doing so violates the protocol
hierarchy since the IP addresses in it belong to the IP layer, not the TCP layer.

The Options field was designed to provide a way to add extra facilities not
covered by the regular header. The most important option is the one that allows
each host to specify the maximum TCP payload it is willing to accept. Using
large segments is more efficient than using small ones because the 20-byte header
can then be amortized over more data, but small hosts may not be able to handle
very large segments. During connection setup, each side can announce its max­
imum and see its partner's. The smaller of the two numbers wins. If a host does
not use this option, it defaults to a 536-byte payload. All Internet hosts are
required to accept TCP segments of 536 + 20 = 556 bytes.

For lines with high bandwidth, high delay, or both, the 64 KB window is often
a problem. On a T3 line (44.736 Mbps), it takes only 12 msec to output a full64
kB window. If the round trip propagation delay is 50 msec (typical for a trans-

., continental fiber), the sender will be idle 3/4 of the time waiting for acknowledge­
ments. On a satellite connection, the situation is even worse. A larger window
size would allow the sender to keep pymping data out, but using the 16-bit Win­
dow size field, there is no way to express such a size. In RFC 1323, a Window
scale option was proposed, allowing the sender and receiver to negotiate a win­
dow scale factor. This number allows both sides to shift the Window size field up
to 16 bits to the left, thus allowing windows of up to 232 bytes. Most TCP imple­
mentations now support this option.

Another option proposed by RFC 1106 and now widely implemented is the
use of the selective repeat instead of go back n protocol. If the receiver gets one
bad segment and then a large number of good ones, the normal TCP protocol will

Bright House Networks - Ex. 1049, Page 79

SEC. 6.4 THE INTERNET TRANSPORT PROTOCOLS (TCP AND UDP) 529

eventually time out and retransmit all the unacknowledged segments, including all
those that were received correctly. RFC 1106 introduced NAKs, to allow the
receiver to ask for a specific segment (or segments). After it gets these, it can
acknowledge all the buffered data, thus reducing the amount of data retransmitted.

6.4.4. TCP Connection Management

Connections are established in TCP using the three-way handshake discussed
in Sec. 6.2.2. To establish a connection, one side, say the server, passively waits.
for an incoming connection by executing the LISTEN and ACCEPT primitives, either
specifying a specific source or nobody in particular.

The other side, say the client, executes a CONNECT primitive, specifying the
IP address and port to which it wants to connect, the maximum TCP segment size
it is willing to accept, and optionally some user data (e.g., a password). The CON­

NECT primitive sends a TCP segment with the SYN bit on and ACK bit off and
waits for a response.

When this segment arrives at the destination, the TCP entity there checks to
see if there is a process that has done a LISTEN on the port given in the Destination
port field. If not, it sends a reply with the RST bit on to reject the connection.

Q)

1

Host 1 Host 2 Host 1

(a) (b)

Fig. 6-26. (a) TCP connection establishment in the normal case. (b) Call colli­
sion.

Host 2

If some process is listening to the port, that process is given the incoming
TCP segment. It can then either accept or reject the connection. If it accepts, an
acknowledgement segment is sent back. The sequence of TCP segments sent in
the normal case is shown in Fig. 6-26(a). Note that a SYN segment consumes 1
byte of sequence space so it can be acknowledged unambiguously.

Bright House Networks - Ex. 1049, Page 80

530 THE TRANSPORT LAYER CHAP. 6

In the event that two hosts simultaneously attempt to establish a connection
between the same two sockets, the sequence of events is as illustrated in Fig. 6-
26(b). The result of these events is that just one connection is established, not two
because connections are identified by their end points. If the first setup results in
a connection identified by (x, y) and the second one does too, only one table entry
is made, namely, for (x, y).

The initial sequence number on a connection is not 0 for the reasons we dis­
cussed earlier. A clock-based scheme is used, with a clock tick every 4 j.tsec. For
additional safety, when a host crashes, it may not reboot for the maximum packet
lifetime (120 sec) to make sure that no packets from previous connections are still
roaming around the Internet somewhere.

Although TCP connections are full duplex, to understand how connections are
released it is best to think of them as a pair of simplex connections. Each simplex
connection is released independently of its sibling. To release a connection, either
party can send a TCP segment with the FIN bit set, which means that it has no
more data to transmit. When the FIN is acknowledged, that direction is shut down
for new data. Data may continue to flow indefinitely in the other direction, how­
ever. When both directions have been shut down, the connection is released.
Normally, four TCP segments are needed to release a connection, one FIN and
one ACK for each direction. However, it is possible for the first ACK and the
second FIN to be contained in the same segment, reducing the total count to three.

Just as with telephone calls in which both people say goodbye and hang up the
phone simultaneously, both ends of a TCP connection may send FIN segments at
the same time. These are each acknowledged in the usual way, and the connec­
tion shut down. There is, in fact, no essential difference between the two hosts
releasing sequentially or simultaneously.

To avoid the two-army problem, timers are used. If a response to a FIN is not
forthcoming within two maximum packet lifetimes, the sender of the FIN releases
the connection. The other side will eventually notice that nobody seems to be
listening to it any more, and time out as well. While this solution is not perfect,
given the fact that a perfect solution is theoretically impossible, it will have to do.
In practice, problems rarely arise.

The steps required to establish and release connections can be represented in a
finite state machine with the 11 states listed in Fig. 6-27. In each state, certain
events are legal. When a legal event happens, some action may be taken. If some

"' other event happens, an error is reported.
Each connection starts in the CLOSED state. It leaves that state when it does

either a passive open (LISTEN), or an active open (CONNECT). If the other side
does the opposite one, a connection is established and the state becomes ESTAB­
LISHED. Connection release can be initiated by either side. When it is complete,
the state returns to CLOSED.

The finite state machine itself is shown in Fig. 6-28. The common case of a
client actively connecting to a passive server is shown with heavy lines-solid for

Bright House Networks - Ex. 1049, Page 81

SEC. 6.4 THE INTERNET TRANSPORT PROTOCOLS (TCP AND UDP) 531

State Description

CLOSED No connection is active or pending

LISTEN The server is waiting for an incoming call

SYN RCVD A connection request has arrived; wait for ACK
g,.

SYN SENT The application has started to open a connection

ESTABLISHED The normal data transfer state

FIN WAIT 1 The application has said it is finished

FIN WAIT 2 The other side has agreed to release

TIMED WAIT Wait for all packets to die off

CLOSING Both sides have tried to close simultaneously

CLOSE WAIT The other side has initiated a release

LAST ACK Wait for all packets to die off

Fig. 6-27. The states used in the TCP connection management finite state
machine.

the client, dotted for the server. The lightface lines are unusual event sequences.
Each line in Fig. 6-28 is marked by an event/action pair. The event can either be
a user-initiated system call (CONNECT, LISTEN, SEND, or CLOSE), a segment arrival
(SYN, FIN, ACK, or RST), or in one case, a timeout of twice the maximum packet
lifetime. The action is the sending of a control segment (SYN, FIN, or RST) or
nothing, indicated by-. Comments are shown in parentheses.

The diagram can best be understood by first following the path of a client (the
heavy solid line) then later the path of a server (the heavy dashed line). When an
application on the client machine issues a CONNECT request, the local TCP entity
creates a connection record, marks it as being in the SYN SENT state, and sends a
SYN segment. Note that many connections may be open (or being opened) at the
same time on behalf of multiple applications, so the state is per connection and
recorded in the connection record. When the SYN+ACK arrives, TCP sends the
final ACK of the three-way handshake and switches into the ESTABLISHED state.
Data can now be sent and received.

When an application is finished, it executes a CLOSE primitive, which causes
the local TCP entity to send a FIN segment and wait for the corresponding ACK
(dashed box marked active close). When the ACK arrives, a transition is made to
state FIN WAIT 2 and one direction of the connection is now closed. When the
other side closes, too, a FIN comes in, which is acknowledged. Now both sides
are closed, but TCP waits a time equal to the maximum packet lifetime to guaran­
tee that all packets from the connection have died off, just in case the acknowl­
edgement was lost. When the timer goes off, TCP deletes the connection record.

Bright House Networks - Ex. 1049, Page 82

532 THE TRANSPORT LAYER CHAP. 6

,
I
I
I

I
I
I

,·--------------------

RST/-

SYN/SYN + ACK

(Start)
CONNECT/SYN

CLOSE/-

SEND/SYN

(simultaneous open)

: (Data transfer state)
I

\ ACKI-
'------------------ SYN + ACKIACK

CLOSE/FIN I
I
I

(Step 3 of the three-way handshake)
I

CLOSE/FIN I
\ FIN/ACK
'

(Active close)
~-----------------(P~~~~v-e-\

r--------- ---------------------------------------,
I

: FIN/ACK
I
I
I
I
I
I
I

: ACKI- ACK/-
1

Close)

: FIN+ ACKIACK ,---.L..----,
I
I
I

: FIN/ACK

!LAsT~
~

I
I] __ _________ J

(Timeout/)

(Go back to start)

Fig. 6-28. TCP connection management finite state machine. The heavy solid
line is the normal path for a client. The heavy dashed line is the normal path for
a server. The light lines are unusual ewnts.

Now let us examine connection management from the server's viewpoint.
The server does a LISTEN and settles down to see who turns up. When a SYN
comes in, it is acknowledged and the server goes to the SYN RCVD state. When
the server's SYN is itself acknowledged, the three-way handshake is complete and
the server goes to the ESTABLISHED state. Data transfer can now occur.

When the client has had enough, it does a CLOSE, which causes a FIN to
arrive at the server (dashed box marked passive close). The server is then

Bright House Networks - Ex. 1049, Page 83

SEC. 6.4 THE INTERNET TRANSPORT PROTOCOLS (TCP AND UDP) 533

signaled. When it, too, does a CLOSE, a FIN is sent to the client. When the
client's acknowledgement shows up, the server releases the connection and
deletes the connection record.

6.4.5. TCP Transmission Policy

Window management in TCP is not directly tied to acknowledgements as it is
in most data link protocols. For example, suppose the receiver has a 4096-byte
buffer as shown in Fig. 6-29. If the sender transmits a 2048-byte segment that is,
correctly received, the receiver will acknowledge the segment. However, since it"
now has only 2048 of buffer space (until the application removes some data from
the buffer), it will advertise a window of 2048 staitirtg at the next byte expected.

Sender
Application
doesa2K­
write

Application
does a 3K
write

Sender is
blocked

Sender may
send up to 2K -

ACK = 2048 WIN = 2048

Fig. 6-29. Window management in TCP.

Receiver Receiver's
buffer

0 4K

I Empty

2K

Full

Application
~~-- reads 2K

2K

Now the sender transmits another 2048 bytes, which are acknowledged, but
the advertised window is 0. The sender must stop until the application process on

Bright House Networks - Ex. 1049, Page 84

534 THE TRANSPORT LAYER CHAP. 6

the receiving host has removed some data from the buffer, at which time TCP can
advertise a larger window.

When the window is 0, the sender may not normally send segments, with two
exceptions. First, urgent data may be sent, for example, to allow the user to kill
the process running on the remote machine. Second, the sender may send a 1-byte
segment to make the receiver reannounce the next byte expected and window
size. The TCP standard explicitly provides this option to prevent deadlock if a
window announcement ever gets lost.

Senders are not required to transmit data as soon as they come in from the
application. Neither are receivers required to send acknowledgements as soon as
possible. For example, in Fig. 6-29, when the first 2 KB of data came in, TCP,
knowing that it had a 4-KB window available, would have been completely
correct in just buffering the data until another 2 KB came in, to be able to transmit
a segment with a 4-KB payload. This freedom can be exploited to improve per­
formance.

Consider a TELNET connection to an interactive editor that reacts on every
keystroke. In the worst case, when a character arrives at the sending TCP entity,
TCP creates a 21-byte TCP segment, which it gives to IP to send as a 41-byte IP
datagram. At the receiving side, TCP immediately sends a 40-byte acknowledge­
ment (20 bytes of TCP header and 20 bytes of IP header). Later, when the editor
has read the byte, TCP sends a window update, moving the window 1 byte to the
right. This packet is also 40 bytes. Finally, when the editor has processed the
character, it echoes it as a 41-byte packet. In all, 162 bytes of bandwidth are used
and four segments are sent for each character typed. When bandwidth is scarce,
this method of doing business is not desirable.

One approach that many TCP implementations use to optimize this situation
is to delay acknowledgements and window updates for 500 msec in the hope of
acquiring some data on which to hitch a free ride. Assuming the editor echoes
within 500 msec, only one 41-byte packet now need be sent back to the remote
user, cutting the packet count and bandwidth usage in half.

Although this rule reduces the load placed on the network by the receiver, the
sender is still operating inefficiently by sending 41-byte packets containing 1 byte
.of data. A way to reduce this usage is known as Nagle's algorithm (Nagle,
· 1984). What Nagle suggested is simple: when data come into the sender one byte
at a time, just send the first byte and buffer all the rest until the outstanding byte is

·~

acknowledged. Then send all the buffered characters in one TCP segment and
start buffering again until they are all acknowledged. If the user is typing quickly
and the network is slow, a substantial number of characters may go in each seg­
ment, greatly reducing the bandwidth used. The algorithm additionally allows a
new packet to be sent if enough data have trickled in to fill half the window or a
maximum segment.

Nagle's algorithm is widely used by TCP implementations, but there are times
when it is better to disable it. In particular, when an X-Windows application is

Bright House Networks - Ex. 1049, Page 85

SEC. 6.4 THE INTERNET TRANSPORT PROTOCOLS (TCP AND UDP) 535

being run over the Internet, mouse movements have to be sent to the remote com­
puter. Gathering them up to send in bursts makes the mouse cursor move errati­
cally, which makes for unhappy users.

Another problem that can ruin TCP performance is the silly window syn­
drome (Clark, 1982). This problem occurs when data are passed to the sending
TCP entity in large blocks, but an interactive application on the receiving side
reads data 1 byte at a time. To see the1Jroblem, look at Fig. 6-30. Initially, the
TCP buffer on the receiving side is full and the sender knows this (i.e., has a win­
dow of size 0). Then the interactive application reads one character from the T~p
stream. This action makes the receiving TCP happy, so it sends a window update
to the sender saying that it is all right to send 1 byte. The sender obliges and
sends 1 byte. The buffer is now full, so the receiver acknowledges the 1-byte seg­
ment but sets the window to 0. This behavior can go on forever.

Application reads 1 byte

l
~~~R99rn tor'Bo:ti.mor~~Y:t~::·· ' .j 

I 
Window update segment sent 

I Header I I 
l 

New byte arrives 

l I 
1 Byte 

Fig. 6-30. Silly window syndrome. 

Clark's solution is to prevent the receiver from sending a window update for 1 
byte. Instead it is forced to wait until it has a decent amount of space available 
and advertise that instead. Specifically, the receiver should not send a window 
update until it can handle the maximum segment size it advertised when the con­
nection was established, or its buffer is half empty, whichever is smaller. 

Furthermore, the sender can also help by not sending tiny segments. Instead, 
it should try to wait until it has accumulated enough space in the window to send a 
full segment or at least one containing half of the receiver's buffer size (which it 
must estimate from the pattern of window updates it has received in the past). 

 
 

Bright House Networks - Ex. 1049, Page 86



536 THE TRANSPORT LAYER CHAP. 6 

Nagle's algorithm and Clark's solution to the silly window syndrome are 
complementary. Nagle was trying to solve the problem caused by the sending 
application delivering data to TCP a byte at a time. Clark was trying to solve the 
problem of the receiving application sucking the data up from TCP a byte at a 
time. Both solutions are valid and can work together. The goal is for the sender 
not to send small segments and the receiver not to ask for them. 

The receiving TCP can go further in improving performance than just doing 
window updates in large units. Like the sending TCP, it also has the ability to 
buffer data, so it can block a READ request from the application until it has a large 
chunk of data to provide. Doing this reduces the number of calls to TCP, and 
hence the overhead. Of course, it also increases the response time, but for nonin­
teractive applications like file transfer, efficiency may outweigh response time to 
individual requests. 

Another receiver issue is what to do with out of order segments. They can be 
kept or discarded, at the receiver's discretion. Of course, acknowledgements can 
be sent only when all the data up to the byte acknowledged have been received. If 
the receiver gets segments 0, 1, 2, 4, 5, 6, and 7, it can acknowledge everything up 
to anq including the last byte in segment 2. When the sender times out, it then 
retransmits segment 3. If the receiver has buffered segments 4 through 7, upon 
receipt of segment 3 it can acknowledge all bytes up to the end of segment 7. 

6.4.6. TCP Congestion Control 

When the load offered to any network is more than it can handle, congestion 
builds up. The Internet is no exception. In this section we will discuss algorithms 
that have been developed over the past decade to deal with congestion. Although 
the network layer also tries to manage congestion, most of the heavy lifting is 
done by TCP because the real solution to congestion is to slow down the data rate. 

In theory, congestion can be dealt with by employing a principle borrowed 
from physics: the law of conservation of packets. The idea is not to inject a new 
packet into the network until an old one leaves (i.e., is delivered). TCP attempts 
to achieve this goal by dynamically manipulating the window size. 

'The first step in managing congestion is detecting it. In the old days, detect­
ing congestion was difficult. A timeout caused by a lost packet could have been 
caused by either (1) noise on a transmissiou. line or (2) packet discard at a cong­
ested router. Telling the difference was difficult. 

Nowadays, packet loss due to transmission errors is relatively rare because 
most long-haul trunks are fiber (although wireless networks are a different story). 
Consequently, most transmission timeouts on the Internet are due to congestion. 
All the Internet TCP algorithms assume that timeouts are caused by congestion 
and monitor timeouts for signs of trouble the way miners watch their canaries. 

Before discussing how TCP reacts to congestion, let us first describe what it 
does to try to prevent it from occurring in the first place. When a connection is 

 
 

Bright House Networks - Ex. 1049, Page 87



l 

SEC. 6.4 THE INTERNET TRANSPORT PROTOCOLS (TCP AND UDP) 537 

established, a suitable window size has to be chosen. The receiver can specify a 
window based on its buffer size. If the sender sticks to this window size, prob­
lems will not occur due to buffer overflow at the receiving end, but they may still 
occur due to internal congestion within the network. 

In Fig. 6-31, we see this problem illustrated hydraulically. In Fig. 6-31(a), we 
see a thick pipe leading to a small-capacity receiver. As long as the sender does 
not send more water than the bucket can COJltain, no water will be lost. In Fig. 6-
31 (b), the limiting factor is not the bucket capacity, but the internal carrying capa­
city of the network. If too much water comes in too fast, it will back up and some 
will be lost (in this case by overflowing the funnel). 

~ ""Transmission 
~ rate adjustment 

Transmission 
network 

Small-capacity 
receiver~ 

(a) (b) 

Internal 
congestion 

Fig. 6-31. (a) A fast network feeding a low-capacity receiver. (b) A slow net­
work feeding a high-capacity receiver. 

The Internet solution is to realize that two potential problems exist-network 
capacity and receiver capacity-and to deal with each of them separately. To do 
so, each sender maintains two windows: the window the receiver has granted and 
a second window, the congestion window. Each reflects the number of bytes the 
sender may transmit. The number of bytes that may be sent is the minimum of the 
two windows. Thus the effective window is the minimum of what the sender 

 
 

Bright House Networks - Ex. 1049, Page 88



538 THE TRANSPORT LAYER CHAP. 6 

thinks is all right and what the receiver thinks is all right. If the receiver says 
"Send 8K" but the sender knows that bursts of more than 4K clog the network up, 
it sends 4K. On the other hand, if the receiver says "Send 8K" and the sender 
knows that bursts of up to 32K get through effortlessly, it sends the full 8K 
requested. 

When a connection is established, the sender initializes the congestion win­
dow to the size of the maximum segment in use on the connection. It then sends 
one maximum segment. If this segment is acknowledged before the timer goes 
off, it adds one segment's worth of bytes to the congestion window to make it two 
maximum size segments and sends two segments. As each of these segments is 
acknowledged, the congestion window is increased by one maximum segment 
size. When the congestion window is n segments, if all n are acknowledged on 
time, the congestion window is increased by the byte count corresponding to n 
segments. In effect, each burst successfully acknowledged doubles the congestion 
window. 

The congestion window keeps growing exponentially until either a timeout 
occurs or the receiver's window is reached. The idea is that if bursts of size, say, 
1024, 2048, and 4096 bytes work fine, but a burst of 8192 bytes gives a timeout, 
the congestion window should be set to 4096 to avoid congestion. As long as the 
congestion window remains at 4096, no bursts longer than that will be sent, no 
matter how much window space the receiver grants. This algorithm is called slow 
start, but it is not slow at all (Jacobson, 1988). It is exponential. All TCP imple­
mentations are required to support it. 

Now let us look at the Internet congestion control algorithm. It uses a third 
parameter, the threshold, initially 64K, in addition to the receiver and congestion 
windows. When a timeout occurs, the threshold is set to half of the current 
congestion window, and the congestion window is reset to one maximum seg­
ment. Slow start is then used to determine what the network can handle, except 
that exponential growth stops when the threshold is hit. From that point on, suc­
cessful transmissions grow the congestion window linearly (by one maximum seg­
ment for each burst) instead of one per segment. In effect, this algorithm is guess­
ing that it is probably acceptable to cut the congestion window in half, and then it 

, , gradually works its way up from there. 
· · As an illustration of how the congestion algorithm works, see Fig. 6-32. The 

maximum segment size here is 1024 bytes. Initially the congestion window was 
64K, but a timeout occurred, so the"' threshold is set to 32K and the congestion 
window to 1K for transmission 0 here. The congestion window then grows 
exponentially until it hits the threshold (32K). Starting then it grows linearly. 

Transmission 13 is unlucky (it should have known) and a timeout occurs. The 
threshold is set to half the current window (by now 40K, so half is 20K) and slow 
start initiated all over again. When the acknowledgements from transmission 14 
start coming in, the first four each double the congestion window, but after that, 
growth becomes linear again. 

 
 

Bright House Networks - Ex. 1049, Page 89



SEC. 6.4 THE INTERNET TRANSPORT PROTOCOLS (TCP AND UDP) 539 

44 

40 

36 
Threshold 

(iJ 32 -----------------~---
"' Q) 

:;, 
.0 28 .2 
g 
5: 24 
0 

"0 
c 
'§': 20 

Threshold 

- / _________ _ 
c 
0 

"'ffl 16 Q) 
Ol c 
0 
0 12 

8 

4 

0 
0 2 4 6 8 10 12 14 16 18 20 22 24 

Transmission number 

Fig. 6-32. An example of the Internet congestion algorithm. 

If no more timeouts occur, the congestion window will continue to grow up to 
the size of the receiver's window. At that point, it will stop growing and remain 
constant as long as there are no more timeouts and the receiver's window does not 
change size. As an aside, if an ICMP SOURCE QUENCH packet comes in and is 
passed to TCP, this event is treated the same way as a timeout. 

Work on improving the congestion control mechanism is continuing. For 
example, Brakmo et al. (1994) have reported improving TCP throughput by 40 
percent to 70 percent by managing the clock more accurately, predicting conges­
tion before timeouts occur, and using this early warning system to improve the 
slow start algorithm. 

6.4. 7. TCP Timer Management 

TCP uses multiple timers (at least conceptually) to do its work. The most 
important of these is the retransmission timer. When a segment is sent, a 
retransmission timer is started. If the segment is acknowledged before the timer 
expires, the timer is stopped. If, on the other hand, the timer goes off before the 
acknowledgement comes in, the segment is retransmitted (and the timer started 
again). The question that arises is: How long should the timeout interval be? 

 
 

Bright House Networks - Ex. 1049, Page 90



540 THE TRANSPORT LAYER CHAP. 6 

This problem is much more difficult in the Internet transport layer than in the 
generic data link protocols of Chap. 3. In the latter case, the expected delay is 
highly predictable (i.e., has a low variance), so the timer can be set to go off just 
slightly after the acknowledgement is expected, as shown in Fig. 6-33(a). Since 
acknowledgements are rarely delayed in the data link layer, the absence of an 
acknowledgement at the expected time generally means the frame or the acknowl­
edgement has been lost. 

0.2 
g 
:0 
ctl 
.0 e 
0.. 

0.1 

T 

20 30 40 
Round trip time (msec) 

(a) 

50 

g 
:0 
ctl 
.0 e 
0.. 

0.2 

0.1 

Round trip time (msec) 

(b) 

Fig. 6-33. (a) Probability density of acknowledgement arrival times in the data 
link layer. (b) Probability density of acknowledgement arrival times for TCP. 

TCP is faced with a radically different environment. The probability density 
function for the time it takes for a TCP acknowledgement to come back looks 
more like Fig. 6-33(b) than Fig. 6-33(a). Determining the round-trip time to the 
destination is tricky. Even when it is known, deciding on the timeout interval is 
also difficult. If the timeout is set too short, say T 1 in Fig. 6-33(b), unnecessary 
retransmissions will occur, clogging the Internet with useless packets. If it is set 
too long, (T 2 ), performance will suffer due to the long retransmission delay when­
ever a packet is lost. Furthermore, the mean and variance of the acknowledge­
ment arrival distribution can change rapidly within a few seconds as congestion 
builds up or is resolved. 

The solution is to use a highly dynamic algorithm that constantly adjusts the 
timeout interval, based on continuous measurements of network performance. 
The algorithm generally used by TCP is due to Jacobson (1988) and works as fol­
lows. For each connection, TCP maintains a variable, RTT, that is the best current 
estimate of the round-trip time to the destination in question. When a segment is 
sent, a timer is started, both to see how long the acknowledgement takes and to 

 
 

Bright House Networks - Ex. 1049, Page 91



SEC. 6.4 THE INTERNET TRANSPORT PROTOCOLS (TCP AND UDP) 541 

trigger a retransmission if it takes too long. If the acknowledgement gets back 
before the timer expires, TCP measures how long the acknowledgement took, say, 
M. It then updates RTF according to the formula 

RTF = aRTF + (1 - a)M 

where a is a smoothing factor that determines how much weight is given to the 
old value. Typically a= 7/8. "" 

Even given a good value of RTF, choosing a suitable retransmission timeout is 
a nontrivial matter. Normally, TCP uses ~RTF, but the trick is choosing~- In the 
initial implementations, ~ was always 2, but experience showed that a constant 
value was inflexible because it failed to respond when the variance went up. 

In 1988, Jacobson proposed making ~ roughly proportional to the standard 
deviation of the acknowledgement arrival time probability density function so a 
large variance means a large ~ and vice versa. In particular, he suggested using 
the mean deviation as a cheap estimator of the standard deviation. His algorithm 
requires keeping track of another smoothed variable, D, the deviation. Whenever 
an acknowledgement comes in, the difference between the expected and observed 
values, I RTF - M I is computed. A smoothed value of this is maintained in D by 
the formula 

D =aD+ (1 -a) I RTF- M I 

where a may or may not be the same value used to smooth RTF. While D is not 
exactly the same as the standard deviation, it is good enough and Jacobson 
showed how it could be computed using only integer adds, subtracts, and shifts, a 
big plus. Most TCP implementations now use this algorithm and set the timeout 
interval to 

Timeout= RTF+ 4*D 

The choice of the factor 4 is somewhat arbitrary, but it has two advantages. First, 
multiplication by 4 can be done with a single shift. Second, it minimizes unneces­
sary timeouts and retransmissions because less than one percent of all packets 
come in more than four standard deviations late. (Actually, Jacobson initially said 
to use 2, but later work has shown that 4 gives better performance.) 

One problem that occurs with the dynamic estimation of RTF is what to do 
when a segment times out and is sent again. When the acknowledgement comes 
in, it is unclear whether the acknowledgement refers to the first transmission or a 
later one. Guessing wrong can seriously contaminate the estimate of RTF. Phil 
Karn discovered this problem the hard way. He is an amateur radio enthusiast 
interested in transmitting TCP/IP packets by ham radio, a notoriously unreliable 
medium (on a good day, half the packets get through). He made a simple pro­
posal: do not update RTF on any segments that have been retransmitted. Instead, 
the timeout is doubled on each failure until the segments get through the first 
time. This fix is called Karn's algorithm. Most TCP implementations use it. 

 
 

Bright House Networks - Ex. 1049, Page 92



542 THE TRANSPORT LAYER CHAP. 6 

The retransmission timer is not the only one TCP uses. A second timer is the 
persistence timer. It is designed to prevent the following deadlock. The receiver 
sends an acknowledgement with a window size of 0, telling the sender to wait. 
Later, the receiver updates the window, but the packet with the update is lost. 
Now both the sender and the receiver are waiting for each other to do something. 
When the persistence timer goes off, the sender transmits a probe to the receiver. 
The response to the probe gives the window size. If it is still zero, the persistence 
timer is set again and the cycle repeats. If it is nonzero, data can now be sent. 

A third timer that some implementations use is the keepalive timer. When a 
connection has been idle for a long time, the keepalive timer may go off to cause 
one side to check if the other side is still there. If it fails to respond, the connec­
tion is terminated. This feature is controversial because it adds overhead and may 
terminate an otherwise healthy connection due to a transient network partition. 

The last timer used on each TCP connection is the one used in the TIMED 
WAIT state while closing. It runs for twice the maximum packet lifetime to make 
sure that when a connection is closed, all packets created by it have died off. 

6.4.8. UDP 

The Internet protocol suite also supports a connectionless transport protocol, 
UDP (User Data Protocol). UDP provides a way for applications to send encap­
sulated raw IP datagrams and send them without having to establish a connection. 
Many client-server applications that have one request and one response use UDP 
rather than go to the trouble of establishing and later releasing a connection. UDP 
is described in RFC 768. 

--------------32 Bits--------------

Source port Destination port 

UDP length UDP checksum 

Fig. 6-34. The UDP header. 

A UDP segment consists of an 8-byte header followed by the data. The 
"' header is shown in Fig. 6-34. The two ports serve the same function as they do in 

TCP: to identify the end points within the source and destination machines. The 
UDP length field includes the 8-byte header and the data. The UDP checksum 
includes the same format pseudoheader shown in Fig. 6-25, the UDP header, and 
the UDP data, padded out to an even number of bytes if need be. It is optional 
and stored as 0 if not computed (a true computed 0 is stored as all ls, which is the 
same in 1 's complement). Turning it off is foolish unless the quality of the data 
does not matter (e.g., digitized speech). 

 
 

Bright House Networks - Ex. 1049, Page 93



SEC. 6.4 THE INTERNET TRANSPORT PROTOCOLS (TCP AND UDP) 543 

6.4.9. Wireless TCP and UDP 

In theory, transport protocols should be independent of the technology of the 
underlying network layer. In particular, TCP should not care whether IP is run­
ning over fiber or over radio. In practice, it does matter because most TCP imple­
mentations have been carefully optimized based on assumptions that are true for 
wired networks but which fail for wireless ll€tworks. Ignoring the properties of 
wireless transmission can lead to a TCP implementation that is logically correct 
but has horrendous performance. 

The principal problem is the congestion control algorithm. Nearly all TCP 
implementations nowadays assume that timeouts are caused by congestion, not by 
lost packets. Consequently, when a timer goes off, TCP slows down and sends 
less vigorously (e.g., Jacobson's slow start algorithm). The idea behind this 
approach is to reduce the network load and thus alleviate the congestion. 

Unfortunately, wireless transmission links are highly unreliable. They lose 
packets all the time. The proper approach to dealing with lost packets is to send 
them again, and as quickly as possible. Slowing down just makes matters worse. 
If, say, 20 percent of all packets are lost, then when the sender transmits 100 
packets/sec, the throughput is 80 packets/sec. If the sender slows down to 50 
packets/sec, the throughput drops to 40 packets/sec. 

In effect, when a packet is lost on a wired network, the sender should slow 
down. When one is lost on a wireless network, the sender should try harder. 
When the sender does not know what the network is, it is difficult to make the 
correct decision. 

Frequently, the path from sender to receiver is inhomogeneous. The first 
1000 km might be over a wired network, but the last 1 km might be wireless. 
Now making the correct decision on a timeout is even harder, since it matters 
where the problem occurred. A solution proposed by Bakne and Badrinath 
(1995), indirect TCP, is to split the TCP connection into two separate connec­
tions, as shown in Fig. 6-35. The first connection goes from the sender to the base 
station. The second one goes from the base station to the receiver. The base sta­
tion simply copies packets between the connections in both directions. 

Fig. 6-35. Splitting a TCP connection into two connections. 

 
 

Bright House Networks - Ex. 1049, Page 94



544 THE TRANSPORT LAYER CHAP. 6 

The advantage of this scheme is that both connections are now homogeneous. 
Timeouts on the first connection can slow the sender down, whereas timeouts on 
the second one can speed it up. Other parameters can also be tuned separately for 
the two connections. The disadvantage is that it violates the semantics of TCP. 
Since each part of the connection is a full TCP connection, the base station 
acknowledges each TCP segment in the usual way. Only now, receipt of an 
acknowledgement by the sender does not mean that the receiver got the segment, 
only that the base station got it. 

A different solution, due to Balakrishnan et al. (1995), does not break the 
semantics of TCP. It works by making several small modifications to the network 
layer code in the base station. One of the changes is the addition of a snooping 
agent that observes and caches TCP segments going out to the mobile host, and 
acknowledgements coming back from it. When the snooping agent sees a TCP 
segment going out to the mobile host but does not see an acknowledgement com­
ing back before its (relatively short) timer goes off, it just retransmits that seg­
ment, without telling the source that it is doing so. It also generates a retransmis­
sion when it sees duplicate acknowledgements from the mobile host go by, invari­
ably meaning that the mobile host has missed something. Duplicate acknowl­
edgements are discarded on the spot, to avoid having the source misinterpret them 
as a sign of congestion. 

One disadvantage of this transparency, however, is that if the wireless link is 
very lossy, the source may time out waiting for an acknowledgement and invoke 
the congestion control algorithm. With indirect TCP, the congestion control algo­
rithm will never be started unless there really is congestion in the wired part of the 
network. 

The Balakrishnan et al. paper also has a solution to the problem of lost seg­
ments originating at the mobile host. When the base station notices a gap in the 
inbound sequence numbers, it generates a request for a selective repeat of the 
missing bytes using a TCP option. Using these two fixes, the wireless link is 
made more reliable in both directions, without the source knowing about it, and 
without changing the semantics of TCP. 

While UDP does not suffer from the same problems as TCP, wireless com-
"• ~nunication also introduces difficulties for it. The main trouble is that programs 

use UDP expecting it to be highly reliable. They know that no guarantees are 
given, but they still expect it to be near,.perfect. In a wireless environment, it will 
be far from perfect. For programs that are able to recover from lost UDP mes­
sages, but only at considerable cost, suddenly going from an environment where 
messages theoretically can be lost but rarely are, to one in which they are con­
stantly being lost can result in a performance disaster. 

Wireless communication also affects areas other than just performance. For 
example, how does a mobile host find a local printer to connect to, rather than use 
its home printer? Somewhat related to this is how to get the WWW page for the 
local cell, even if its name is not known. Also, WWW page designers tend to  

 
Bright House Networks - Ex. 1049, Page 95



SEC. 6.4 THE INTERNET TRANSPORT PROTOCOLS (TCP AND UDP) 545 

assume lots of bandwidth is available. Putting a large logo on every page 
becomes counterproductive if it is going to take 30 sec to transmit at 9600 bps 
every time the page is referenced, irritating the users no end. 

6.5. THE A TM AAL LAYER PROTOCOLS 

It is not really clear whether or not A TM has a transport layer. On the one 
hand, the ATM layer has the functionality of a network layer, and there is anothe~: 
layer on top of it (AAL), which sort of makes AAL a transport layer. Some 
experts agree with this view (e.g., De Prycker, 1993, page 112). One of the proto­
cols used here (AAL 5) is functionally similar to UDP, which is unquestionably a 
transport protocol. 

On the other hand, none of the AAL protocols provide a reliable end-to-end 
connection, as TCP does (although with only very minor changes they could). 
Also, in most applications another transport layer is used on top of AAL. Rather 
than split hairs, we will discuss the AAL layer and its protocols in this chapter 
without making a claim that it is a true transport layer. 

The AAL layer in ATM networks is radically different than TCP, largely 
because the designers were primarily interested in transmitting voice and video 
streams, in which rapid delivery is more important than accurate delivery. 
Remember that the ATM layer just outputs 53-byte cells one after another. It has 
no error control, no flow control, and no other control. Consequently, it is not 
well matched to the requirements that most applications need. 

To bridge this gap, in Recommendation I.363, ITU has defined an end-to-end 
layer on top of the ATM layer. This layer, called AAL (ATM Adaptation 
Layer) has a tortuous history, full of mistakes, revisions, and unfinished business. 
In the following sections we will look at it and its design. 

The goal of AAL is to provide useful services to application programs and to 
shield them from the mechanics of chopping data up into cells at the source and 
reassembling them at the destination. When ITU began defining AAL, it realized 
that different applications had different requirements, so it organized the service 
space along three axes: 

1. Real-time service versus nonreal-time service. 

2. Constant bit rate service versus variable bit rate service. 

3. Connection-oriented service versus connectionless service. 

In principle, with three axes and two values on each axis, eight distinct services 
can be defined, as shown in Fig. 6-36. ITU felt that only four of these were of any 
use, and named them classes A, B, C, and D, as noted. The others were not sup­
ported. Starting with ATM 4.0, Fig. 6-36 is somewhat obsolete, so it has been 
presented here mostly as background information to help understand why the 

 
 

Bright House Networks - Ex. 1049, Page 96



7 
THE APPLICATION LAYER 

Having finished all the preliminaries, we now come to the application layer, 
where all the interesting applications can be found. The layers below the applica­
tion layer are there to provide reliable transport, but they do not do any real work 
for users. In this chapter we will study some real applications. 

However, even in the application layer there is a need for support protocols to 
allow the real applicatlonsto function. ~Accordingly, we will.look at three of these 
before starting with the applications themselves. The first area is§ecurity, which 
is not a single protocol, but a large number of concepts and protocols that can be 
used to ensure privacy where needed. The second is Q~S;w&!Ch. handles naming 
within the Internet. The third support protocol is for 11~!~ork management. After 
that, we will examine four real applications: electronic mail, USENET (net news), 
the World Wide Web, and finally, multimedia. 

7.1. NETWORK SECURITY 

For the first few decades of their existence, computer networks were primarily 
used by university researchers for sending email, and by corporate employees for 
sharing printers. Under these conditions, security did not get a lot of attention. 
But now, as millions of ordinary citizens are using networks for banking, shop­
ping, and filing their tax returns, network security is looming on the horizon as a 

577 
 
 

Bright House Networks - Ex. 1049, Page 97



578 THE APPLICATION LAYER CHAP. 7 

potentially massive problem. In the following sections, we will study network 
security from several angles, point out numerous pitfalls, and discuss many algo­
rithms and protocols for making networks more secure. 

Security is a broad topic and covers a multitude of sins. In its simplest form, 
it is concerned with making sure that nosy people cannot read, or worse yet, 
modify messages intended for other recipients. It is concerned with people trying 
to access remote services that they are not authorized to use. It also deals with 
how to tell whether that message purportedly from the IRS saying: "Pay by Fri­
day or else" is really from the IRS or from the Mafia. Security also deals with the 
problems of legitimate messages being captured and replayed, and with people 
trying to deny that they sent certain messages. 

Most security problems are intentionally caused by malicious people trying to 
gain some benefit or harm someone. A few of the most common perpetrators are 
listed in Fig. 7-1. It should be clear from this list that making a network secure 
involves a lot more than just keeping it free of programming errors. It involves 
outsmarting often intelligent, dedicated, and sometimes well-funded adversaries. 
It should also be clear that measures that will stop casual adversaries will have lit­
tle impact on the serious ones. 

Adversary Goal 

Student To have fun snooping on people's email 

Hacker To test out someone's security system; steal data 

Sales rep To claim to represent all of Europe, not just Andorra 

Businessman To discover a competitor's strategic marketing plan 

Ex-employee To get revenge for being fired 

Accountant To embezzle money from a company 

Stockbroker To deny a promise made to a customer by email 

Con man To steal credit card numbers for sale 

Spy To learn an enemy's military strength 

Terrorist To steal germ warfare secrets 

"" Fig. 7-1. Some people who cause security problems and why. 

Network security problems can be divided roughly into four intertwined areas: 
secrecy, authentication, nonrepudiation, and integrity control. Secrecy has to do 
with keeping information out of the hands of unauthorized users. This is what 
usually comes to mind when people think about network security. Authentication 
deals with determining whom you are talking to before revealing sensitive infor­
mation or entering into a business deal. Nonrepudiation deals with signatures: 

 
 

Bright House Networks - Ex. 1049, Page 98



SEC. 7.1 NETWORK SECURITY 579 

How do you prove that your customer really placed an electronic order for ten 
million left-handed doohickeys at 89 cents each when he later claims the price 
was 69 cents? Finally, how can you be sure that a message you received was 
really the one sent and not something that a malicious adversary modified in tran­
sit or concocted? 

All these issues (secrecy, authentication, nonrepudiation, and integrity con­
trol) occur in traditional systems, toef; but with some significant differences. 
Secrecy and integrity are achieved by using registered mail and locking docu-
ments up. Robbing the mail train is harder than it was in Jesse James' day. , '· 

Also, people can usually tell the difference between an original paper docu­
ment and a photocopy, and it often matters to them. As a test, make a photocopy 
of a valid check. Try cashing the original check at your bank on Monday. Now 
try cashing the photocopy of the check on Tuesday. Observe the difference in the 
bank's behavior. With electronic checks, the original and the copy are indistin­
guishable. It may take a while for banks to get used to this. 

People authenticate other people by recognizing their faces, voices, and 
handwriting. Proof of signing is handled by signatures on letterhead paper, raised 
seals, and so on. Tampering can usually be detected by handwriting, paper, and 
ink experts. None of these options are available electronically. Clearly, other 
solutions are needed. 

Before getting into the solutions themselves, it is worth spending a few 
moments considering where in the protocol stack network security belongs. There 
is probably no one single place. Every layer has something to contribute. In the 
physical layer, wiretapping can be foiled by enclosing transmission lines in sealed 
tubes containing argon gas at high pressure. Any attempt to drill into a tube will 
release some gas, reducing the pressure and triggering an alarm. Some military 
systems use this technique. 

In the data link layer, packets on a point-to-point line can be encoded as they 
leave one machine and decoded as they enter another. All the details can be han­
dled in the data link layer, with higher layers oblivious to what is going on. This 
solution breaks down when packets have to traverse multiple routers, however, 
because packets have to be decrypted at each router, leaving them vulnerable to 
attacks from within the router. Also, it does not allow some sessions to be pro­
tected (e.g., those involving on-line purchases by credit card) and others not. 
Nevertheless, link encryption, as this method is called, can be added to any net­
work easily and is often useful. 

In the network layer, firewalls can be installed to keep packets in or keep 
packets out. We looked at firewalls in Chap. 5. In the transport layer, entire con­
nections can be encrypted, end to end, that is, process to process. Although these 
solutions help with secrecy issues and many people are working hard to improve 
them, none of them solve the authentication or nonrepudiation problem in a suffi­
ciently general way. To tackle these problems, the solutions must be in the appli­
cation layer, which is why they are being studied in this chapter. 

 
 

Bright House Networks - Ex. 1049, Page 99



580 THE APPLICATION LAYER CHAP. 7 

7 .1.1. Traditional Cryptography 

Cryptography has a long and colorful history. In this section we will just 
sketch some of the highlights, as background information for what follows. For a 
complete history, Kahn's (1967) book is still recommended reading. For a 
comprehensive treatment of the current state-of-the-art, see (Kaufman et al., 1995; 
Schneier, 1996; and Stinson, 1995). 

Historically, four groups of people have used and contributed to the art of 
cryptography: the military, the diplomatic corps, diarists, and lovers. Of these, the 
military has had the most important role and has shaped the field. Within military 
organizations, the messages to be encrypted have traditionally been given to 
poorly paid code clerks for encryption and transmission. The sheer volume of 
messages prevented this work from being done by a few elite specialists. 

Until the advent of computers, one of the main constraints on cryptography 
had been the ability of the code clerk to perform the necessary transformations, 
often on a battlefield with little equipment. An additional constraint has been the 
difficulty in switching over quickly from one cryptographic method to another 
one, since this entails retraining a large number of people. However, the danger 
of a code clerk being captured by the enemy has made it essential to be able to 
change the cryptographic method instantly, if need be. These conflicting require­
ments have given rise to the model of Fig. 7-2. 

Passive ~ A Active 
intruder Intruder intruder 

just can alter 

listenr-s-----~ ~----m-,essages 
Plaintext, P-

Encryption Decryption 
method method 

Encryption 
key, k 

Ciphertext, C = Ek(P) 

Fig. 7-2. The encryption model. 

Decryption 
key 

Plaintext 

The messages to be encrypted, known as the plaintext, are transformed by a 
function that is parametrized by a key. The output of the encryption process, 
known as the ciphertext, is then transmitted, often by messenger or radio. We 
assume that the enemy, or intruder, hears and accurately copies down the com­
plete ciphertext. However, unlike the intended recipient, he does not know what 
the decryption key is and so cannot decrypt the ciphertext easily. Sometimes the 

 
 

Bright House Networks - Ex. 1049, Page 100



SEC. 7.1 NETWORK SECURITY 601 

dollars for the next version, so "A" (Leonard Adleman) was out of luck. 
Although it has been patched up again, the knapsack algorithm is not considered 
secure and is rarely used. 

Other public-key schemes are based on the difficulty of computing discrete 
logarithms (Rabin, 1979). Algorithms that use this principle have been invented 
by El Gamal (1985) and Schnorr (1991 ). 

A few other schemes exist, 9Uch as those based on elliptic curves (Menezes 
and Vanstone, 1993), but the three major categories are those based on the diffi­
culty of factoring large numbers, computing discrete logarithms, and determining 
the contents of a knapsack from its weight. These problems are thought to be 
genuinely difficult to solve because mathematicians have been working on them 
for many years without any great breakthroughs. 

7.1.5. Authentication Protocols 

Authentication is the technique by which a process verifies that its communi­
cation partner is who it is supposed to be and not an imposter. Verifying the iden­
tity of a remote process in the face of a malicious, active intruder is surprisingly 
difficult and requires complex protocols based on cryptography. In this section, 
we will study some of the many authentication protocols that are used on insecure 
computer networks. 

As an aside, some people confuse authorization with authentication. Authen­
tication deals with the question of whether or not you are actually communicating 
with a specific process. Authorization is concerned with what that process is per­
mitted to do. For example, a client process contacts a file server and says: "I am 
Scott's process and I want to delete the file cookbook.old." From the file server's 
point of view, two questions must be answered: 

1. Is this actually Scott's process (authentication)? 

2. Is Scott allowed to delete cookbook.old (authorization)? 

Only after both questions have been unambiguously answered in the affirmative 
can the requested action take place. The former question is really the key one. 
Once the file server knows whom it is talking to, checking authorization is just a 
matter of looking up entries in local tables. For this reason, we will concentrate 
on authentication in this section. 

The general model that all authentication protocols use is this. An initiating 
user (really a process), say, Alice, wants to establish a secure connection with a 
second user, Bob. Alice and Bob are sometimes called principals, the main char­
acters in our story. Bob is a banker with whom Alice would like to do business. 
Alice starts out by sending a message either to Bob, or to a trusted key distribu­
tion center (KDC), which is always honest. Several other message exchanges 

 
 

Bright House Networks - Ex. 1049, Page 101



602 THE APPLICATION LAYER CHAP. 7 

follow in various directions. As these message are being sent, a nasty intruder, 
Trudy,t may intercept, modify, or replay them in order to trick Alice and Bob or 
just to gum up the works. 

Nevertheless, when the protocol has been completed, Alice is sure she is talk­
ing to Bob and Bob is sure he is talking to Alice. Furthermore, in most of the pro­
tocols, the two of them will also have established a secret session key for use in 
the upcoming conversation. In practice, for performance reasons, all data traffic 
is encrypted using secret-key cryptography, although public-key cryptography is 
widely used for the authentication protocols themselves and for establishing the 
session key. 

The point of using a new, randomly-chosen session key for each new connec­
tion is to minimize the amount of traffic that gets sent with the users' secret keys 
or public keys, to reduce the amount of ciphertext an intruder can obtain, and to 
minimize the damage done if a process crashes and its core dump falls into the 
wrong hands. Hopefully, the only key present then will be the session key. All 
the permanent keys should have been carefully zeroed out after the session was 
established. 

Authentication Based on a Shared Secret Key 

For our first authentication protocol, we will assume that Alice and Bob 
already share a secret key, KAB (In the formal protocols, we will abbreviate Alice 
as A and Bob as B, respectively.) This shared key might have been agreed upon 
on the telephone, or in person, but, in any event, not on the (insecure) network. 

This protocol is based on a principle found in many authentication protocols: 
one party sends a random number to the other, who then transforms it in a special 
way and then returns the result. Such protocols are called challenge-response 
protocols. In this and subsequent authentication protocols, the following notation 
will be used: 

A, B are the identities of Alice and Bob 
Ri 's are the challenges, where the subscript identifies the challenger 
ki are keys, where i indicates the owner; Ks is the session key 

The message sequence for our first shared-key authentication protocol is 
shown in Fig. 7-12. In message 1, Alice sends her identity, A, to Bob in a way 

"' that Bob understands. Bob, of course, has no way of knowing whether this mes-
sage came from Alice or from Trudy, so he chooses a challenge, a large random 
number, R8 , and sends it back to "Alice" as message 2, in plaintext. Alice then 
encrypts the message with the key she shares with Bob and sends the ciphertext, 
KA8 (R8 ), back in message 3. When Bob sees this message, he immediately 
knows that it came from Alice because Trudy does not know KAB and thus could 
t I thank Kaufman 1 et ai.

23 
(1995) for revealing her name. 

 
 

Bright House Networks - Ex. 1049, Page 102



SEC. 7.1 NETWORK SECURITY 603 

not have generated it. Furthermore, since Rs was chosen randomly from a large 
space (say, 128-bit random numbers), it is very unlikely that Trudy would have 
seen Rs and its response from an earlier session. 

Q) 

.52 
<( 

Fig. 7-12. Two-way authentication using a challenge-response protocol. 

At this point, Bob is sure he is talking to Alice, but Alice is not sure of any­
thing. For all Alice knows, Trudy might have intercepted message 1 and sent 
back Rs in response. Maybe Bob died last night. To find out whom she is talking 
to, Alice picks a random number, RA and sends it to Bob as plaintext, in message 
4. When Bob responds with KAs(RA), Alice knows she is talking to Bob. If they 
wish to establish a session key now, Alice can pick one, K5 , and send it to Bob 
encrypted with KAB. 

Although the protocol of Fig. 7-12 works, it contains extra messages. These 
can be eliminated by combining information, as illustrated in Fig. 7-13. Here 
Alice initiates the challenge-response protocol instead of waiting for Bob to do it. 
Similarly, while he is responding to Alice's challenge, Bob sends his own. The 
entire protocol can be reduced to three messages instead of five. 

-

Q) 

.52 
<( 

2 

A,RA 

Rs, KAs (RA) 

3 
KAB (Rs) 

-

..0 
0 
Ill 

~ 

Fig. 7-13. A shortened two-way authentication protocol. 

Is this new protocol an improvement over the original one? In one sense it is: 
it is shorter. Unfortunately, it is also wrong. Under certain circumstances, Trudy 
can defeat this protocol by using what is known as a reflection attack. In partic­
ular, Trudy can break it if it is possible to open multiple sessions with Bob at  

 
Bright House Networks - Ex. 1049, Page 103



604 THE APPLICATION LAYER CHAP. 7 

once. This situation would be true, for example, if Bob is a bank and is prepared 
to accept many simultaneous connections from teller machines at once. 

Trudy's reflection attack is shown in Fig. 7-14. It starts out with Trudy claim­
ing she is Alice and sending Rr. Bob responds, as usual, with his own challenge, 
R8 . Now Trudy is stuck. What can she do? She does not know KA8 (R8 ). 

r- 1 r--
A,RT 

2 
Rs. KAs (Rr) 

>- 3 "0 A,R6 
.0 

::l 0 

~ CD 
4 

Rs2. KAB (Rs) 
} Sooood ""''" 

5 

- KAB (Rs) 
'----

} First session 

Fig. 7-14. The reflection attack. 

She can open a second session with message 3, supplying the R8 taken from 
message 2 as her challenge. Bob calmly encrypts it and sends back KA8 (R8 ) in 
message 4. Now Trudy has the missing information, so she can complete the first 
session and abort the second one. Bob is now convinced that Trudy is Alice, so 
when she asks for her bank account balance, he gives it to her without question. 
Then when she asks him to transfer it all to a secret bank account in Switzerland, 
he does so without a moment's hesitation. 

The moral of this story is: 

Designing a correct authentication protocol is harder than it looks. 

Three general rules that often help are as follows: 

1. Have the initiator prove who she is before the responder has to. In 
this case, Bob gives away valuable information before Trudy has to 
give any evidence of who she is. 

2. Have the initiator and responder use different keys for proof, even if 
this means having two shared kt!ys, KAs and K' AB. 

3. Have the initiator and responder draw their challenges from different 
sets. For example, the initiator must use even numbers and the 
responder must use odd numbers. 

All three rules were violated here, with disastrous results. Note that our first 
(five-message) authentication protocol requires Alice to prove her identity first, so 
that protocol is not subject to the reflection attack. 

 
 

Bright House Networks - Ex. 1049, Page 104



SEC. 7.1 NETWORK SECURITY 605 

Establishing a Shared Key: The Diffie-Hellman Key Exchange 

So far we have assumed that Alice and Bob share a secret key. Suppose that 
they do not? How can they establish one? One way would be for Alice to call 
Bob and give him her key on the phone, but he would probably start out by say­
ing: "How do I know you are Alice and not Trudy?" They could try to arrange a 
meeting, with each one bringing a passport, a drivers' license, and three major 
credit cards, but being busy people, they might not be able to find a mutually 
acceptable date for months. Fortunately, incredible as it may sound, there is a 
way for total strangers to establish a shared secret key in broad daylight, even, 
with Trudy carefully recording every message. 

The protocol that allows strangers to establish a shared secret key is called the 
Diffie-Hellman key exchange (Diffie and Hellman, 1976) and works as follows. 
Alice and Bob have to agree on two large prime numbers, n, and g, where 
(n- 1)/2 is also a prime and certain conditions apply to g. These numbers may 
be public, so either one of them can just pick n and g and tell the other openly. 
Now Alice picks a large (say, 512-bit) number, x, and keeps it secret. Similarly, 
Bob picks a large secret number, y. 

Alice initiates the key exchange protocol by sending Bob a message contain­
ing (n, g, gx mod n), as shown in Fig. 7-15. Bob responds by sending Alice a 
message containing gY mod n. Now Alice takes the number Bob sent her and 
raises it to the xth power to get (g Y mod n l. Bob performs a similar operation to 
get (gx mod n )Y. By the laws of modular arithmetic, both calculations ·yield 
gxy mod n. Lo and behold, Alice and Bob now share a secret key, gxy mod n. 

Alice 
picks x 
r---

Bob 
picks y 

1------1 n, g, gx mod n 1----1 

2 ,----...., .0 
1------1 gY mod n 1------l S 

Alice computes 
(gY mod n)x 
= gxy mod n 

Bob computes 
(gx mod n)Y 
= gxy mod n 

Fig. 7-15. The Diffie-Hellman key exchange. 

Trudy, of course, has seen both messages. She knows g and n from message 
1. If she could compute x and y, she could figure out the secret key. The trouble 
is, given only gx mod n, she cannot find x. No practical algorithm for computing 
discrete logarithms modulo a very large prime number is known. 

To make the above example more concrete, we will use the (completely 
unrealistic) values of n = 47 and g = 3. Alice picks x = 8 and Bob picks y = 10. 

 
 

Bright House Networks - Ex. 1049, Page 105



606 THE APPLICATION LAYER CHAP. 7 

Both of these are kept secret. Alice's message to Bob is (47, 3, 28) because 
38 mod 47 is 28. Bob's message to Alice is (17). Alice computes 178 mod 47, 
which is 4. Bob computes 28 10 mod 47, which is 4. Alice and Bob have 
independently determined that the secret key is now 4. Trudy has to solve the 
equation J' mod 47 = 28, which can be done by exhaustive search for small 
numbers like this, but not when all the numbers are hundreds of bits long. All 
currently-known algorithms simply take too long, even using a massively parallel 
supercomputer. 

Despite the elegance of the Diffie-Hellman algorithm, there is a problem: 
when Bob gets the triple (47, 3, 28), how does he know it is from Alice and not 
from Trudy? There is no way he can know. Unfortunately, Trudy can exploit this 
fact to deceive both Alice and Bob, as illustrated in Fig. 7-16. Here, while Alice 
and Bob are choosing x andy, respectively, Trudy picks her own random number, 
z. Alice sends message 1 intended for Bob. Trudy intercepts it and sends mes­
sage 2 to Bob, using the correct g and n (which are public anyway) but with her 
own z instead of x. She also sends message 3 back to Alice. Later Bob sends 
message 4 to Alice, which Trudy again intercepts and keeps. 

Alice 
picks x 
-

Q) 

.~ 
<{ 

-

1 

3 

n, g, gx mod n 

gz mod n 

Trudy 
picks z 
-

>-
'0 
::J 

~ 

'-----

2 
n, g, gz mod n 

4 
gY mod n 

Fig. 7-16. The bucket brigade attack. 

Bob 
picks y 
,-------

.0 
0 
co 

-

Now everybody does the modular arithmetic. Alice computes the secret key 
· as gxz mod n, and so does Trudy (for messages to Alice). Bob computes 
.· gYz mod nand so does Trudy (for messages to Bob). Alice thinks she is talking to 

Bob so she establishes a session key (with Trudy). So does Bob. Every message 
that Alice sends on the encrypted session is captured by Trudy, stored, modified if 
desired, and then (optionally) passed on to Bob. Similarly in the other direction. 
Trudy sees everything and can modify all messages at will, while both Alice and 
Bob are under the illusion that they have a secure channel to one another. This 
attack is known as the bucket brigade attack, because it vaguely resembles an 
old-time volunteer fire department passing buckets along the line from the fire 
truck to the fire. It is also called the (wo)man-in-the-middle attack, which 
should not be confused with the meet-in-the-middle attack on block ciphers. For­
tunately, more complex algorithms can defeat this attack. 

--
 
 

Bright House Networks - Ex. 1049, Page 106



SEC. 7.1 NETWORK SECURITY 607 

Authentication Using a Key Distribution Center 

Setting up a shared secret with a stranger almost worked, but not quite. On 
the other hand, it probably was not worth doing in the first place (sour grapes 
attack). To talk ton people this way, you would need n keys. For popular people, 
key management would become a real burden, especially if each key had to be 
stored on a separate plastic chip card. "' 

A different approach is to introduce a trusted key distribution center (KDC). 
In this model, each user has a single key shared with the KDC. Authentication 
and session key management now goes through the KDC. The simplest known' 
KDC authentication protocol involving two parties and a trusted KDC is depicted 
in Fig. 7-17. 

A, KA (B, K8) l;l~ ~--~~---K-8 -(A-.-K-8)~~----~•1 S 

Fig. 7-17. A first attempt at an authentication protocol using a KDC. 

The idea behind this protocol is simple: Alice picks a session key, K5 , and 
tells the KDC that she wants to talk to Bob using Ks. This message is encrypted 
with the secret key Alice shares (only) with the KDC, KA- The KDC decrypts this 
message, extracting Bob's identity and the session key. It then constructs a new 
message containing Alice's identity and the session key and sends this message to 
Bob. This encryption is done with Ks. the secret key Bob shares with the KDC. 
When Bob decrypts the message, he learns that Alice wants to talk to him, and 
which key she wants to use. 

The authentication here happens for free. The KDC knows that message 1 
must have come from Alice, since no one else would have been able to encrypt it 
with Alice's secret key. Similarly, Bob knows that message 2 must have come 
from the KDC, whom he trusts, since no one else knows his secret key. 

Unfortunately, this protocol has a serious flaw. Trudy needs some money, so 
she figures out some legitimate service she can perform for Alice, makes an 
attractive offer, and gets the job. After doing the work, Trudy then politely 
requests Alice to pay by bank transfer. Alice then establishes a session key with 
her banker, Bob. Then she sends Bob a message requesting money to be 
transferred to Trudy's account. 

Meanwhile, Trudy is back to her old ways, snooping on the network. She 
copies both message 2 in Fig. 7-17, and the money-transfer request that follows it.  

 
Bright House Networks - Ex. 1049, Page 107



608 THE APPLICATION LAYER CHAP. 7 

Later, she replays both of them to Bob. Bob gets them and thinks: "Alice must 
have hired Trudy again. She clearly does good work." Bob then transfers an 
equal amount of money from Alice's account to Trudy's. Some time after the 
50th message pair, Bob runs out of the office to find Trudy to offer her a big loan 
so she can expand her obviously successful business. This problem is called the 
replay attack. 

Several solutions to the replay attack are possible. The first one is to include 
a timestamp in each message. Then if anyone receives an obsolete message, it 
can be discarded. The trouble with this approach is that clocks are never exactly 
synchronized over a network, so there has to be some interval during which a 
timestamp is valid. Trudy can replay the message during this interval and get 
away with it. 

The second solution is to put a one-time, unique message number, usually 
called a nonce, in each message. Each party then has to remember all previous 
nonces and reject any message containing a previously used nonce. But nonces 
have to be remembered forever, lest Trudy try replaying a 5-year-old message. 
Also, if some machine crashes and it loses its nonce list, it is again vulnerable to a 
replay attack. Timestamps and nonces can be combined to limit how long nonces 
have to be remembered, but clearly the protocol is going to get a lot more compli­
cated. 

A more sophisticated approach to authentication is to use a multiway 
challenge-response protocol. A well-known example of such a protocol is the 
Needham-Schroeder authentication protocol (Needham and Schroeder, 1978), 
one variant of which is shown in Fig. 7-18. 

,------ 1 - -
AA, A, B 

u 
0 

2 ~ 

~ KA (AA, B, K8 , Ks(A, K8 )) r-_ 
Q) 

3 ..0 .>1 0 
~ Ks(A, Ks), Ks (AA2) co 

4 
Ks (AA2 -1), As 

.. 5 
Ks (As -1) 

- '----

Fig. 7-18. The Needham-Schroeder authentication protocol. 

The protocol begins with Alice telling the KDC that she wants to talk to Bob. 
This message contains a large random number, RA, as a nonce. The KDC sends 
back message 2 containing Alice's random number, a session key, and a ticket 
that she can send to Bob. The point of the random number, RA, is to assure Alice 
that message 2 is fresh, and not a replay. Bob's identity is also enclosed in case 
Trudy gets any funny ideas about replacing B in message 1 with her own identity 

 
 

Bright House Networks - Ex. 1049, Page 108



SEC. 7.1 NETWORK SECURITY 609 

so the KDC will encrypt the ticket at the end of message 2 with Kr instead of K8 . 

The ticket encrypted with K8 is included inside the encrypted message to prevent 
Trudy from replacing it with something else on the way back to Alice. 

Alice now sends the ticket to Bob, along with a new random number, RA 2 , 

encrypted with the session key, K5. In message 4, Bob sends back K5(RA 2 - 1) to 
prove to Alice that she is talking to the real Bob. Sending back K5(RA 2 ) would 
not have worked, since Trudy could just ha<Ve stolen it from message 3. 

After receiving message 4, Alice is now convinced that she is talking to Bob, 
and that no replays could have been used so far. After all, she just generated RA 2' , 

a few milliseconds ago. The purpose of message 5 is to convince Bob that it is 
indeed Alice he is talking to, and no replays are being used here either. By having 
each party both generate a challenge and respond to one, the possibility of any 
kind of replay attack is eliminated. 

Although this protocol seems pretty solid, it does have a slight weakness. If 
Trudy ever manages to obtain an old session key in plaintext, she can initiate a 
new session with Bob replaying the message 3 corresponding to the compromised 
key and convince him that she is Alice (Denning and Sacco, 1981). This time she 
can plunder Alice's bank account without having to perform the legitimate service 
even once. 

Needham and Schroeder later published a protocol that corrects this problem 
(Needham and Schroeder, 1987). In the same issue of the same journal, Otway 
and Rees (1987) also published a protocol that solves the problem in a shorter 
way. Figure 7-19 shows a slightly modified Otway-Rees protocol. 

,---- -
1 

A, B, R, KA (A, B, R, RA) 

,---- 2/ A, KA (A, B, R, RA), I Q) 

I B, KB (A, B, R, RB) I 
.0 

.s:! 0 
<{ ell 

() 
0 
::.:: 3 

4 KB(RB, Ks) 
KA(RA, Ks) 

'---- - -

Fig. 7-19. The Otway-Rees authentication protocol (slightly simplified). 

In the Otway-Rees protocol, Alice starts out by generating a pair of random 
numbers, R, which will be used as a common identifier, and RA which Alice will 
use to challenge Bob. When Bob gets this message, he constructs a new message 
from the encrypted part of Alice's message, and an analogous one of his own. 
Both the parts encrypted with KA and K8 identify Alice and Bob, contain the com­
mon identifier, and contain a challenge. 

The KDC checks to see if the R in both parts is the same. It might not be 
because Trudy tampered with R in message 1 or replaced part of message 2. If 

 
 

Bright House Networks - Ex. 1049, Page 109



610 THE APPLICATION LAYER CHAP. 7 

the two Rs match, the KDC believes that the request message from Bob is valid. 
It then generates a session key and encrypts it twice, once for Alice and once for 
Bob. Each message contains the receiver's random number, as proof that the 
KDC, and not Trudy, generated the message. At this point both Alice and Bob are 
in possession of the same session key and can start communicating. The first time 
they exchange data messages, each one can see that the other one has an identical 
copy of K5 , so the authentication is then complete. 

Authentication Using Kerberos 

An authentication protocol used in many real systems is Kerberos, which is 
based on a variant of Needham-Schroeder. It is named for a multiheaded dog in 
Greek Mythology that used to guard the entrance to Hades (presumably to keep 
undesirables out). Kerberos was designed at M.I.T. to allow workstation users to 
access network resources in a secure way. Its biggest difference with Needham­
Schroeder is its assumption that all clocks are fairly-well synchronized. The pro­
tocol has gone through several iterations. V4 is the version most widely used in 
industry, so we will describe it. Afterward, we will say a few words about its suc­
cessor, V5. For more information, see (Neuman and Ts'o, 1994; and Steiner et 
al., 1988). 

Kerberos involves three servers in addition to Alice (a client workstation): 

Authentication Server (AS): verifies users during login 
Ticket-Granting Server (TGS): issues "proof of identity tickets" 
Bob the server: actually does the work Alice wants performed 

AS is similar to a KDC in that it shares a secret password with every user. The 
TGS's job is to issue tickets that can convince the real servers that the bearer of a 
TGS ticket really is who he or she claims to be. 

To start a session, Alice sits down at a arbitrary public workstation and types 
her name. The workstation sends her name to the AS in plaintext, as shown in 
Fig. 7-20. What comes back is a session key and a ticket, KTGs(A, K5 ), intended 

Jor the TGS. These items are packaged together and encrypted using Alice's 
·secret key, so that only Alice can decrypt them. Only when message 2 arrives, 
does the workstation ask for Alice's password. The password is then used to gen-

"" erate KA, in order to decrypt message 2 and obtain the session key and TGS ticket 
inside it. At this point, the workstation overwrites Alice's password, to make sure 
that it is only inside the workstation for a few milliseconds at most. If Trudy tries 
logging in as Alice, the password she types will be wrong and the workstation will 
detect this because the standard part of message 2 will be incorrect. 

After she logs in, Alice may tell the workstation that she wants to contact Bob 
the file server. The workstation then sends message 3 to the TGS asking for a 
ticket to use with Bob. The key element in this request is Krcs(A, K5), which is 

 
 

Bright House Networks - Ex. 1049, Page 110



SEC. 7.1 

-

2 

3 
Q) 

.S! 
<( 4 

~ 

'---

NETWORK SECURITY 

1 -

~ (f) 
<( 

KA (K8, KTGs (A, K8)) 

-
KrGs (A, K8), B, Ks (t) 

Ks (B, KA6), K6 (A, KAs ) 

51 K6 (A, KAB ), KAB (t) I 

61 KA6 (t+1) I 

Fig. 7-20. The operation of Kerberos V4. 

Login 

-
(f) 
C) 
1-

c___ 

Get a 
ticket 

611 

·1-;l Do the 

-L:_Jwork 

encrypted with the TGS's secret key and is used as proof that the sender really is 
Alice. The TGS responds by creating a session key, KAB• for Alice to use with 
Bob. Two versions of it are sent back. The first is encrypted with only K5 , so 
Alice can read it. The second is encrypted with Bob's key, K8 , so Bob can read 
it. 

Trudy can copy message 3 and try to use it again, but she will be foiled by the 
encrypted timestamp, t, sent along with it. Trudy cannot replace the timestamp 
with a more recent one, because she does not know K5 , the session key Alice uses 
to talk to the TGS. Even if Trudy replays message 3 quickly, all she will get is 
another copy of message 4, which she could not decrypt the first time and will not 
be able to decrypt the second time either. 

Now Alice can send KAB to Bob to establish a session with him. This 
exchange is also timestamped. The response is proof to Alice that she is actually 
talking to Bob, not to Trudy. 

After this series of exchanges, Alice can communicate with Bob under cover 
of KAs. If she later decides she needs to talk to another server, Carol, she just 
repeats message 3 to the TGS, only now specifying C instead of B. The TGS will 
promptly respond with a ticket encrypted with Kc that Alice can send to Carol 
and that Carol will accept as proof that it came from Alice. 

The point of all this work is that now Alice can access servers all over the net­
work in a secure way, and her password never has to go over the network. In fact, 
it only had to be in her own workstation for a few milliseconds. However, note 
that each server does its own authorization. When Alice presents her ticket to 
Bob, this merely proves to Bob who sent it. Precisely what Alice is allowed to do 
is up to Bob. 

Since the Kerberos designers did not expect the entire world to trust a single 
authentication server, they made provision for having multiple realms, each with 
its own AS and TGS. To get a ticket for a server in a distant realm, Alice would 
ask her own TGS for a ticket accepted by the TGS in the distant realm. If the 

 
 

Bright House Networks - Ex. 1049, Page 111



612 THE APPLICATION LAYER CHAP. 7 

distant TGS has registered with the local TGS (the same way local servers do), 
the local TGS will give Alice a ticket valid at the distant TGS. She can then do 
business over there, such as getting tickets for servers in that realm. Note, how­
ever, that for parties in two realms to do business, each one must trust the other's 
TGS. 

Kerberos V5 is fancier than V4 and has more overhead. It also uses OSI 
ASN.l (Abstract Syntax Notation 1) for describing data types and has small 
changes in the protocols. Furthermore, it has longer ticket lifetimes, allows tick­
ets to be renewed, and will issue postdated tickets. In addition, at least in theory, 
it is not DES dependent, as V4 is, and supports multiple realms. 

Authentication Using Public-Key Cryptography 

Mutual authentication can also be done using public-key cryptography. To 
start with, let us assume Alice and Bob already know each other's public keys (a 
nontrivial issue). They want to establish a session, and then use secret-key cryp­
tography on that session, since it is typically 100 to 1000 times faster than public­
key cryptography. The purpose of the initial exchange then is to authenticate each 
other and agree on a secret shared session key. 

This setup can be done is various ways. A typical one is shown in Fig. 7-21. 
Here Alice starts by encrypting her identity and a random number, RA, using 
Bob's public (or encryption) key, £ 8 . When Bob receives this message, he has no 
idea of whether it came from Alice or from Trudy, but he plays along and sends 
Alice back a message containing Alice's RA, his own random number, R8, and a 
proposed session key, K5 . 

- -

E8 (A, RA) 

Q) 2 .0 g EA (RA, Rs, Ks) 0 
<( co 

3 
Ks (Rs) 

Fig. 7-21. Mutual authentication using public-key cryptography. 

When Alice gets message 2, she d¥crypts it using her private key. She sees 
RA in it, which gives her a warm feeling inside. The message must have come 
from Bob, since Trudy has no way of determining RA. Furthermore, it must be 
fresh and not a replay, since she just sent Bob RA. Alice agrees to the session by 
sending back message 3. When Bob sees R8 encrypted with the session key he 
just generated, he knows Alice got message 2 and verified RA. 

What can Trudy do to try to subvert this protocol? She can fabricate message 
1 and trick Bob into probing Alice, but Alice will see an RA that she did not send 
and will not proceed further. Trudy cannot forge message 3 convincingly because 

 
 

Bright House Networks - Ex. 1049, Page 112



SEC. 7.1 NETWORK SECURITY 613 

she does not know R8 or Ks and cannot determine them without Alice's private 
key. She is out of luck. 

However, the protocol does have a weakness: it assumes that Alice and Bob 
already know each other's public keys. Suppose that they do not. Alice could 
just send Bob her public key in the first message and ask Bob to send his back in 
the next one. The trouble with this approach is that it is subject to a bucket bri­
gade attack. Trudy can capture Alice's-message to Bob and send her own public 
key back to Alice. Alice will think she has a key for talking to Bob, when, in fact, 
she has a key for talking to Trudy. Npw Trudy can read all the messagt:(S 
encrypted with what Alice thinks is Bob's public key. 

The injtial public-key exchange can be avoided by having all the public keys 
stored in a public database. Then Alice and Bob can fetch each other's public 
keys from the database. Unfortunately, Trudy can still pull off the bucket brigade 
attack by intercepting the requests to the database and sending simulated repliys 
containing her own public key. After all, how do Alice and Bob know that the 
replies came from the real data base and not from Trudy? 

Rivest and Shamir (1984) have devised a protocol that foils Trudy's bucket 
brigade attack. In their interlock protocol, after the public key exchange, Alice 
sends only half of her message to Bob, say, only the even bits (after encryption). 
Bob then responds with his even bits. After getting Bob's even bits, Alice sends 
her odd bits, then Bob does too. 

The trick here is that when Trudy gets Alice's even bits, she cannot decrypt 
the message, even though Trudy has the private key. Consequently, she is unable 
to reencrypt the even bits using Bob's public key. If she sends junk to Bob, the 
protocol will continue, but Bob will shortly discover that the fully assembled mes­
sage makes no sense and realized that he has been spoofed. 

7.1.6. Digital Signatures 

The authenticity of many legal, financial, and other documents is determined 
by the presence or absence of an authorized handwritten signature. And photo­
copies do not count. For computerized message systems to replace the physical 
transport of paper and ink documents, a solution must be found to these problems. 

The problem of devising a replacement for handwritten signatures is a diffi­
cult one. Basically, what is needed is a system by which one party can send a 
"signed" message to another party in such a way that 

1. The receiver can verify the claimed identity of the sender. 

2. The sender cannot later repudiate the contents of the message. 

3. The receiver cannot possibly have concocted the message himself. 

The first requirement is needed, for example, in financial systems. When a 
customer's computer orders a bank's computer to buy a ton of gold, the bank's 

 
 

Bright House Networks - Ex. 1049, Page 113



614 THE APPLICATION LAYER CHAP. 7 

computer needs to be able to make sure that the computer giving the order really 
belongs to the company whose account is to be debited. 

The second requirement is needed to protect the bank against fraud. Suppose 
that the bank buys the ton of gold, and immediately thereafter the price of gold 
drops sharply. A dishonest customer might sue the bank, claiming that he never 
issued any order to buy gold. When the bank produces the message in court, the 
customer denies having sent it. 

The third requirement is needed to protect the customer in the event that the 
price of gold shoots up and the bank tries to construct a signed message in which 
the customer asked for one bar of gold instead of one ton. 

Secret-Key Signatures 

One approach to digital signatures is to have a central authority that knows 
everything and whom everyone trusts, say Big Brother (BB). Each user then 
chooses a secret key and carries it by hand to BB's office. Thus only Alice and 
BB know Alice's secret, KA, and so on. 

When Alice wants to send a signed plaintext message, P, to her banker, Bob, 
she generates KA (B, RA, t, P) and sends it as depicted in Fig. 7-22. BB sees that 
the message is from Alice, decrypts it, and sends a message to Bob as shown. The 
message to Bob contains the plaintext of Alice's message and also the signed 
message Kss(A, t, P), where t is a timestamp. Bob now carries out Alice's 
request. 

K8 (A, RA• t, P, K88 (A, t, P)) 

Fig. 7-22. Digital signatures with Big Brother. 

What happens if Alice later denies ~ending the message? Step 1 is that every­
one sues everyone (at least, in the United States). Finally, when the case comes to 
court and Alice vigorously denies sending Bob the disputed message, the judge 
will ask Bob how he can be sure that the disputed message came from Alice and 
not from Trudy. Bob first points out that BB will not accept a message from Alice 
unless it is encrypted with KA, so there is no possibility of Trudy sending BB a 
false message from Alice. 

Bob then dramatically produces Exhibit A, Kss(A, t, P). Bob says that this is 
a message signed by BB which proves Alice sent P to Bob. The judge then asks 

 
 

Bright House Networks - Ex. 1049, Page 114



SEC. 7.1 NETWORK SECURITY 615 

BB (whom everyone trusts) to decrypt Exhibit A. When BB testifies that Bob is 
telling the truth, the judge decides in favor of Bob. Case dismissed. 

One potential problem with the signature protocol of Fig. 7-22 is Trudy 
replaying either message. To minimize this problem, timestamps are used 
throughout. Furthermore, Bob can check all recent messages to see if RA was 
used in any of them. If so, the message is discarded as a replay. Note that Bob 
will reject very old messages based oll"'the timestamp. To guard against instant 
replay attacks, Bob just checks the RA of every incoming message to see if such a 
message has been received from Alice in the past hour. If not, Bob can safely 
assume this is a new request. 

Public-Key Signatures 

A structural problem with using secret-key cryptography for digital signatures 
is that everyone has to agree to trust Big Brother. Furthermore, Big Brother gets 
to read all signed messages. The most logical candidates for running the Big 
Brother server are the government, the banks, or the lawyers. These organizations 
do not inspire total confidence in all citizens. Hence, it would be nice if signing 
documents did not require a trusted authority. 

Fortunately, public-key cryptography can make an important contribution 
here. Let us assume that the public-key encryption and decryption algorithms 
have the property that E(D(P)) = P in addition to the usual property that 
D(E(P)) = P. (RSA has this property, so the assumption is not unreasonable.) 
Assuming that this is the case, Alice can send a signed plaintext message, P, to 
Bob by transmitting Es(DA(P)). Note carefully that Alice knows her own 
(private) decryption key, DA, as well as Bob's public key, Es, so constructing this 
message is something Alice can do. 

When Bob receives the message, he transforms it using his private key, as 
usual, yielding DA (P), as shown in Fig. 7-23. He stores this text in a safe place 
and then decrypts it using EA to get the original plaintext. 

Transmission line 
Alice's computer Bob's computer 

Alice's Bob's Bob's Alice's 
P-- private key, 1----- public key, private key, f---- public key, --P 

DA Es 

1 
Ds EA 

Fig. 7-23. Digital signatures using public-key cryptography. 

To see how the signature property works, suppose that Alice subsequently 
denies having sent the message P to Bob. When the case comes up in court, Bob  

 
Bright House Networks - Ex. 1049, Page 115



616 THE APPLICATION LAYER CHAP. 7 

can produce both P and DA (P). The judge can easily verify that Bob indeed has a 
valid message encrypted by D A by simply applying EA to it. Since Bob does not 
know what Alice's private key is, the only way Bob could have acquired ames­
sage encrypted by it is if Alice did indeed send it. While in jail for perjury and 
fraud, Alice will have plenty of time to devise interesting new public-key algo­
rithms. 

Although using public-key cryptography for digital signatures is an elegant 
scheme, there are problems that are related to the environment in which they 
operate rather than with the basic algorithm. For one thing, Bob can prove that a 
message was sent by Alice only as long as D A remains secret. If Alice discloses 
her secret key, the argument no longer holds, because anyone could have sent the 
message, including Bob himself. 

The problem might arise, for example, if Bob is Alice's stockbroker. Alice 
tells Bob to buy a certain stock or bond. Immediately thereafter, the price drops 
sharply. To repudiate her message to Bob, Alice runs to the police claiming that 
her home was burglarized and her key was stolen. Depending on the laws in her 
state or country, she may or may not be legally liable, especially if she claims not 
to have discovered the break-in until getting home from work, several hours later. 

Another problem with the signature scheme is what happens if Alice decides 
to change her key. Doing so is clearly legal, and it is probably a good idea to do 
so periodically. If a court case later arises, as described above, the judge will 
apply the current EA to D A (P) and discover that it does not produce P. Bob will 
look pretty stupid at this point. Consequently, it appears that some authority is 
probably needed to record all key changes and their dates. 

In principle, any public-key algorithm can be used for digital signatures. The 
de facto industry standard is the RSA algorithm. Many security products use it. 
However, in 1991, NIST (National Institute of Standards and Technology) pro­
posed using a variant of the El Gamal public-key algorithm for their new Digital 
Signature Standard (DSS). El Gamal gets its security from the difficulty of 
computing discrete logarithms, rather than the difficulty of factoring large 
numbers. 

As usual when the government tries to dictate cryptographic standards, there 
was an uproar. DSS was criticized foi· being 

1. Too secret (NSA designed the protocol for using El Gamal). 

2. Too new (El Gamal has not yet been thoroughly analyzed). 

3. Too slow (10 to 40 times slower than RSA for checking signatures). 

4. Too insecure (fixed 512-bit key). 

In a subsequent revision, the fourth point was rendered moot when keys up to 
1024 bits were allowed. It is not yet clear whether DSS will catch on. For more 
details, see (Kaufman et al., 1995; Schneier, 1996; and Stinson, 1995). 

 
 

Bright House Networks - Ex. 1049, Page 116



SEC. 7.1 NETWORK SECURITY 617 

Message Digests 

One criticism of signature methods is that they often couple two distinct func­
tions: authentication and secrecy. Often, authentication is needed but secrecy is 
not. Since cryptography is slow, it is frequently desirable to be able to send 
signed plaintext documents. Below we will describe an authentication scheme 
that does not require encrypting the enti.re message (De Jonge and Chaum, 1987). 

This scheme is based on the idea of a one-way hash function that takes an 
arbitrarily long piece of plaintext and from it computes a fixed-length bit st~;iqg. 
This hash function, often called a message digest, has three important properties: 

1. Given P, it is easy to compute MD(P). 

2. Given MD(P), it is effectively impossible to find P. 

3. No one can generate two messages that have the same message digest. 

To meet criterion 3, the hash should be at least 128 bits long, preferably more. 
Computing a message digest from a piece of plaintext is much faster than 

encrypting that plaintext with a public-key algorithm, so message digests can be 
used to speed up digital signature algorithms. To see how this works, consider the 
signature protocol of Fig. 7-22 again. Instead of signing P with Kss(A, t, P), BB 
now computes the message digest by applying MD to P, yielding MD(P). BB 
then encloses Kss(A, t, MD(P)) as the fifth item in the list encrypted with Ks that 
is sent to Bob, instead of Kss(A, t, P). 

If a dispute arises, Bob can produce both P and Kss(A, t, MD(P)). After Big 
Brother has decrypted it for the judge, Bob has MD(P), which is guaranteed to be 
genuine, and the alleged P. However, since it is effectively impossible for Bob to 
find any other message that gives this hash, the judge will easily be convinced that 
Bob is telling the truth. Using message digests in this way saves both encryption 
time and message transport and storage costs. 

Message digests work in public-key cryptosystems, too, as shown in Fig. 7-
24. Here, Alice first computes the message digest of her plaintext. She then signs 
the message digest and sends both the signed digest and the plaintext to Bob. If 
Trudy replaces P underway, Bob will see this when he computes MD(P) himself . 

P, DA (MD (P)) 
.0 
0 
co 

Fig. 7-24. Digital signatures using message digests. 

A variety of message digest functions have been proposed. The most widely 
used ones are MD5 (Rivest, 1992) and SHA (NIST, 1993). MDS is the fifth in a 

 
 

Bright House Networks - Ex. 1049, Page 117



618 THE APPLICATION LAYER CHAP. 7 

series of hash functions designed by Ron Rivest. It operates by mangling bits in a 
sufficiently complicated way that every output bit is affected by every input bit. 
Very briefly, it starts out by padding the message to a length of 448 bits (modulo 
512). Then the original length of the message is appended as a 64-bit integer to 
give a total input whose length is a multiple of 512 bits. The last precomputation 
step is initializing a 128-bit buffer to a fixed value. 

Now the computation starts. Each round takes a 512-bit block of input and 
mixes it thoroughly with the 128-bit buffer. For good measure, a table con­
structed from the sine function is also thrown in. The point of using a known 
function like the sine is not because it is more random than a random number gen­
erator, but to avoid any suspicion that the designer built in a clever trapdoor 
through which only he can enter. IBM's refusal to disclose the principles behind 
the design of the S-boxes in DES led to a great deal of speculation about trap­
doors. Four rounds are performed per input block. This process continues until 
all the input blocks have been consumed. The contents of the 128-bit buffer form 
the message digest. The algorithm has been optimized for software implementa­
tion on 32-bit machines. As a consequence, it may not be fast enough for future 
high-speed networks (Touch, 1995). 

The other major message digest function is SHA (Secure Hash Algorithm), 
developed by NSA and blessed by NIST. Like MD5, it processes input data in 
512-bit blocks, only unlike MD5, it generates a 160-bit message digest. It starts 
out by padding the message, then adding a 64-bit length to get a multiple of 512 
bits. Then it initializes its 160-bit output buffer. 

For each input block, the output buffer is updated using the 512-bit input 
block. No table of random numbers (or sine function values) is used, but for each 
block 80 rounds are computed, resulting in a thorough mixing. Each group of 20 
rounds uses different mixing functions. 

Since SHA's hash code is 32 bits longer than MD5's, all other things being 
equal, it is a factor of 232 more secure than MD5. However, it is also slower than 
MD5, and having a hash code that is not a power of two might sometimes be an 
inconvenience. Otherwise, the two are roughly similar technically. Politically, 
MD5 is defined in an RFC and used heavily on the Internet. SHA is a govern-

.. ment standard, and used by companies that have to use it because the government 
tells them to, or by those that want the extra security. A revised version, SHA-1, 
has been approved as a standard by N~T. 

The Birthday Attack 

In the world of crypto, nothing is ever what it seems to be. One might think 
that it would take on the order of 2m operations to subvert an m-bit message dig­
est. In fact, 2m12 operations will often do using the birthday attack, an approach 
published by Y uval (1979) in his now-classic paper "How to Swindle Rabin." 

 
 

Bright House Networks - Ex. 1049, Page 118



SEC. 7.1 NETWORK SECURITY 619 

The idea for this attack comes from a technique that math professors often use 
in their probability courses. The question is: How many students do you need in a 
class before the probability of having two people with the same birthday exceeds 
l/2? Most students expect the answer to be way over l 00. In fact, probability 
theory says it is just 23. Without giving a rigorous analysis, intuitively, with 23 
people, we can form (23 x 22)/2 = 253 different pairs, each of which has a proba­
bility of l/365 of being a hit. In this light, it. is not really so surprising any more. 

More generally, if there is some mapping between inputs and outputs with n 
inputs (people, messages, etc.) and k possible outputs (birthdays, message digests,,, 
etc.), there are n(n- 1)/2 input pairs. If n(n- 1)/2 > k, the chance of having i!t 
least one match is pretty good. Thus, approximately, a match is likely for n > -Yk. 
This result means that a 64-bit message digest can probably be broken by generat­
ing about 232 messages and looking for two with the same message digest. 

Let us look at a practical example. The Dept. of Computer Science at State 
University has one position for a tenured faculty member and two candidates, 
Tom and Dick. Tom was hired two years before Dick, so he goes up for review 
first. If he gets it, Dick is out of luck. Tom knows that the department chairper­
son, Marilyn, thinks highly of his work, so he asks her to write him a letter of 
recommendation to the Dean, who will decide on Tom's case. Once sent, all 
letters become confidential. 

Marilyn tells her secretary, Ellen, to write the Dean a letter, outlining what 
she wants in it. When it is ready, Marilyn will review it, compute and sign the 
64-bit digest, and send it to the Dean. Ellen can send the letter later by email. 

Unfortunately for Tom, Ellen is romantically involved with Dick and would 
like to do Tom in, so she writes the letter below with the 32 bracketed options. 

Dear Dean Smith, 
This [letter I message] is to give my [honest I frank] opinion of Prof. Tom 

Wilson, who is [a candidate I up] for tenure [now I this year]. I have [known I 
worked with] Prof. Wilson for [about I almost] six years. He is an [outstanding I 
excellent] researcher of great [talent I ability] known [worldwide I internationally] 
for his [brilliant I creative] insights into [many I a wide variety of] [difficult I chal­
lenging] problems. 

He is also a [highly I greatly] [respected I admired] [teacher I educator]. His 
students give his [classes I courses] [rave I spectacular] reviews. He is [our I the 
Department's] [most popular I best-loved] [teacher I instructor]. 

[In addition I Additionally] Prof. Wilson is a [gifted I effective] fund raiser. 
His [grants I contracts] have brought a [large I substantial] amount of money into 
[the I our] Department. [This money has I These funds have] [enabled I permitted] 
us to [pursue I carry out] many [special I important] programs, [such as I for 
example] your State 2000 program. Without these funds we would [be unable I 
not be able] to continue this program, which is so [important I essential] to both of 
us. I strongly urge you to grant him tenure. 

 
 

Bright House Networks - Ex. 1049, Page 119



620 THE APPLICATION LAYER CHAP. 7 

Unfortunately for Tom, as soon as Ellen finishes composing and typing in this 
letter, she also writes a second one: 

Dear Dean Smith, 
This [letter I message] is to give my [honest I frank] opinion of Prof. Tom 

Wilson, ;who is [a candidate I up] for tenure [now I this year]. I have [known I 
worked with] Tom for [about I almost] six years. He is a [poor I weak] researcher 
not well known in his [field I area]. His research [hardly ever I rarely] shows 
[insight in I understanding of] the [key I major] problems of [the I our] day. 

Furthermore, he is not a [respected I admired] [teacher I educator]. His stu­
dents give his [classes I courses] [poor I bad ] reviews. He is [our I the 
Department's] least popular [teacher I instructor], known [mostly I primarily] 
within [the I our] Department for his [tendency I propensity] to [ridicule I embar­
rass] students [foolish I imprudent] enough to ask questions in his classes. 

[In addition I Additionally] Tom is a [poor I marginal] fund raiser. His [grants 
I contracts] have brought only a [meager I insignificant] amount of money into 
[the I our] Department. Unless new [money is I funds are] quickly located, we 
may have to cancel some essential programs, such as your State 2000 program. 
Unfortunately, under these [conditions I circumstances] I cannot in good [consci­
ence I faith] recommend him to you for [tenure I a permanent position]. 

Now Ellen sets up her computer to compute the 232 message digests of each letter 
overnight. Chances are, one digest of the first letter will match one digest of the 
second letter. If not, she can add a few more options and try again during the 
weekend. Suppose that she finds a match. Call the "good" letter A and the 
"bad" one B. 

Ellen now emails letter A to Marilyn for her approval. Marilyn, of course, 
approves, computes her 64-bit message digest, signs the digest, and emails the 
signed digest off to Dean Smith. Independently, Ellen emails letter B to the Dean. 

After getting the letter and signed message digest, the Dean runs the message 
digest algorithm on letter B, sees that it agrees with what Marilyn sent him, and 
fires Tom. (Optional ending: Ellen tells Dick what she did. Dick is appalled and 
breaks off with her. Ellen is furious and confesses to Marilyn. Marilyn calls the 
Dean. Tom gets tenure after all.) With MD5 the birthday attack is infeasible 
because even at 1 billion digests per J'econd, it would take over 500 years to com­
pute all 264 digests of two letters with 64 variants each, and even then a match is 
not guaranteed. 

7.1.7. Social Issues 

The implications of network security for individual privacy and society in 
general are staggering. Below we will just mention a few of the salient issues. 

Governments do not like citizens keeping secrets from them. In some 
 
 

Bright House Networks - Ex. 1049, Page 120



SEC. 7.1 NETWORK SECURITY 621 

countries (e.g., France) all nongovernmental cryptography is simply forbidden 
unless the government is given all the keys being used. As Kahn (1980) and Sel­
fridge and Schwartz ( 1980) point out, government eavesdropping has been prac­
ticed on a far more massive scale than most people could dream of, and govern­
ments want more than just a pile of indecipherable bits for their efforts. 

The U.S. government has proposed an encryption scheme for future digital 
telephones that includes a special feature to allow the police to tap and decrypt all 
telephone calls made in the United States. The government promises not to use 
this feature without a court order, but many people still remember how former ,• 
FBI Director J. Edgar Hoover illegally tapped the telephones of Martin Luther 
King, Jr. and other people in an attempt to neutralize them. The police say they 
need this power to catch criminals. The debate on both sides is vehement, to put 
it mildly. A discussion of the technology involved (Clipper) is given in (Kaufman 
et al., 1995). A way to circumvent this technology and send messages that the 
government cannot read is described in (Blaze, 1994; and Schneier, 1996). Posi­
tion statements on all sides are given in (Hoffman, 1995). 

The United States has a law (22 U.S.C. 2778) that prohibits citizens from 
exporting munitions (wau11a.teriel), such as tanks and jet fighters, without authori­
zation from the DoD. For purposes of this law, cryptographic software is classi­
fied as a munition. Phil Zimmermann, who wrote PGP (Pretty Good Privacy), an 
email protection program, has been accused of violating this law, even though the 
government admits that he did not export it (but he did give it to a friend who put 
it on the Internet where foreigners could obtain it). Many people regarded this 
widely-publicized incident as a gross violation of the rights of an American 
citizen working to enhance people's privacy. 

Not being an American does not help. On July 9, 1986, three Israeli research­
ers working at the W eizmann Institute in Israel filed a U.S. patentapplication for 
~ new di.gital signature scheme that they had invented. They spent the next 6 
months discussing their research at conferences all over the world. On Jan. 6, 
1987, the U.S. patent office told them to notify all Americans who knew about 

,their n~sulis that disclosure of the research would subject them to two years in 
prison, a 1 0,000-dollar fine, or both. The patent office also wanted a list of all 
foreign nationals who knew about the research. To find out how this story turned 
out, see (Landau, 1988). 

Patents are another hot topic. Nearly all public-key algorithms are patented. 
Patent protection lasts for 17 years. The RSA patent, for example, expires on 
Sept. 20, 2000. 

Network security is politicized to an extent few other technical issues are, and 
rightly so, since it relates to the difference between a democracy and a police state 
in the digital era. The March 1993 and November 1994 issues of Communica­
tions of the ACM have long sections on telephone and network security, respec­
tively, with vigorous arguments explaining and defending many points of view. 
Chapter 25 of Schneier's security book deals with the politics of cryptography 

 
 

Bright House Networks - Ex. 1049, Page 121



622 THE APPLICATION LAYER CHAP. 7 

(Schneier, 1996). Chapter 8 of his email book does too (Schneier, 1995). Privacy 
and computers are also discussed in (Adam, 1995). These references are highly 
recommended for readers who wish to pursue their study of this subject. 

7.2. DNS-Domain Name System 

Programs rarely refer to hosts, mailboxes, and other resources by their binary 
network addresses. Instead of binary numbers, they use ASCII strings, such as 
tana@art.ucsb.edu. Nevertheless, the network itself only understands binary 
addresses, so some mechanism is required to convert the ASCII strings to network 
addresses. In the following sections we will study how this mapping is accom­
plished in the Internet. 

Way back in the ARPANET, there was simply a file, hosts.txt, that listed all 
the hosts and their IP addresses. Every night, all the hosts would fetch it from the 
site at which it was maintained. For a network of a few hundred large timesharing 
machines, this approach worked reasonably well. 

However, when thousands of workstations were connected to the net, every­
one realized that this approach could not continue to work forever. For one thing, 
the size of the file would become too large. However, even more important, host 
name conflicts would occur constantly unless names were centrally managed, 
something unthinkable in a huge international network. To solve these problems, 
DNS (the Domain Name System) was invented. 

The essence of DNS is the invention of a hierarchical, domain-based naming 
scheme and a distributed database system for implementing this naming scheme. 
It is primarily used for mapping host names and email destinations to IP addresses 
but can also be used for other purposes. DNS is defined in RFCs 1034 ancl1035. 

Very briefly, the way DNS is used is as follows. To map a name onto an IP 
address, an application program calls a library procedure called the resolver, 
passing it the name as a parameter. The resolver sends a UDP packet to a local 
DNS server, which then looks up the name and returns the IP address to the 

·resolver, which then returns it to the caller. Armed with the IP address, the pro-
. ·gram can then establish a TCP connection with the destination, or send it UDP 

packets. 

7.2.1. The DNS Name Space 

Managing a large and constantly changing set of names is a nontrivial prob­
lem. In the postal system, name management is clone by requiring letters to 
specify (implicitly or explicitly) the country, state or province, city, and street 
address of the addressee. By using this kind of hierarchical addressing, there is no 
confusion between the Marvin Anderson on Main St. in White Plains, N.Y. and 
the Marvin Anderson on Main St. in Austin, Texas. DNS works the same way.  

 
Bright House Networks - Ex. 1049, Page 122



~d~

SEC. 7.6 THE W012LD WIDE WEB 6g1

7.6. THE WORLD WIDE WEB

The World Wide Web is an architectural framework for accessing lin]<ed

documents spread out over thousands of machines all over the Internet. In 5

years, it went from being a way to distribute high-energy physics data to the appli-

cation that millions of people think of as being "The Internet." Its enormous

popularity stems from the fact that it has a colorful graphical interface that is easy

for beginners to use, and it provides an enormous wealth of information on almost

every conceivable subject, from aboriginals to zoology.
The Web (also known as WWW) began in 1989 at CERN, the European

center for nuclear research. CERN has several accelerators al which large teams

of scientists from the participating European countries carry out research in parti-

ele physics. These teams often hive members from half a dozen or more colin-

tries. Most experiments are highly complex, and require years of advance plan-

ning and equipment construction. The Web grew out of the need to have these

large teams of internationally dispersed researchers collaborate using a constantly

changing collection of reports, blueprints, drawings, photos, and other documents.

The initial proposal for a web of linked documents came fi-om CERN physi-

cist Tim Berners-Lee in March 1989. The first (text-based) prototype was opera-

tional 18 months later. In December 1991, a public demonstration was given at

the Hypertext '91 conference in San Antonio, Texas. Development continued

during the next year, culminating in the release of the first graphical interface,

Mosaic, in February 1993 (Vetter et a1., 1994).
Mosaic was so popular that a year later, its author, Marc Andreessen left flee

National Center for Supercomputing Applications, where Mosaic was developed,

to Form a company, Netscape Communications Corp., whose goal was to develop

clients, servers, and other Web software. When Netscape went public in 1995,

investors, apparently thinking this was the next Microsoft, paid 1.5 billion dollars

for the stock. This record was all the snore surprising because the company had

only one product, was operating deeply in the red, and had anno~inced in its pros-

pectus that it did not expect to make a profit for the foreseeable future.

In 1994, CERN and M.I.T. signed all agreement setting up the World Wide

Web Consortium, an organizarion devoted to further developing the Web,

standardizing protocols, and encouraging interoperability between sites. Berners-

Lee became the director. Since then, hundreds of universities and companies

have joined the consortium. M.I.T. runs the U.S. part of the consortium and the

French t-esearch center, INRIA, runs the European part. Although there are more

books about the Web than you can shake a stick at, the best place to get up-to-date

information about the Web is (naturally) on the Web itself. The consortiwn's

home page can be found at http://wrvw.w3.o~•g . Interested readers are referred

there for links to pages covering all of the consortium's documents and activities.

In the following sections we will describe how the Web appeals to the user,

and, especially, how it works inside. Since the Web is basically aclient-server

 
 

Bright House Networks - Ex. 1049, Page 123



6g2 THE APPLICATION LAYER CHAP. 7

system, we will discuss both the client (i.e., user) side and the ser
ver side. Then

we will examine the language in which Web pages are written (HT
ML and Java).

& ~ Finally, comes an examination of how to find information on the W
eb.

7.6.1. The Client Side

From the users' point of view, the Web consists of a vast, wor
ldwide collec-

tion of documents, usually just called pages for short. Each pa
ge may contain

links (pointers) to other, related pages, anywhere in the world. Use
rs can follow a

link (e.g., by clicking on it), which then takes them to the page poin
ted to. This

process can be repeated indefinitely, possibly traversing hundreds of l
inked pages

while doing so. Pages that point to other pages are said to use hype
rtext.

Pages are viewed with a program called a browser, of which 
Mosaic and

Netscape are two popular ones. The browser fetches the page r
equested, inter-

prets the text and formatting commands that it contains, and displa
ys the page,

properly formatted, on the screen. An example is given in Fig. 7-
58(a). Like

many Web pages, this one starts with a title, contains some information, 
and ends

with the email address of the page's maintainer. Strings of text that
 are links to

other pages, called hyperlinks, are highlighted, either by underlining
, displaying

them in a special color, or both. To follow a link, the user places the c
ursor on the

highlighted area (using the mouse or the arrow keys) and selects it (by c
licking a

mouse button or hitting ENTER). Although nongraphical browsers, such
 as Lynx,

exist, they are not as popular as graphical browsers, so we will concen
trate on the

latter. Voice-based browsers are also being developed.

Users who are curioLis about the Department of Animal Psychology can 
learn

more about it by clicking on its (underlined) name. The browser then
 fetches the

page to which the name is linked and displays it, as shown in Fig. 7-58(
b). The

underlined items here can also be clicked on to fetch other pages, and so
 on. The

new page can be on the same machine as the first one, or on a machine
 halfway

around the globe. The user cannot tell. Page fetching is done by the 
browser,

without any help from the user'. If the user ever returns to the main page,
 the links

that have already been followed may be shown with a dotted underlin
e (and possi-

bly adifferent color) to distinguish them from links that have not been f
ollowed.

Note that clicking on the Campus lriformation line in the main page d
oes nothing.

It is not underlined, which means that it is just text and is not linked t
o another

page.
Most browsers have numerous buttons and features to make it easier to 

navi-

gate the Web. Many have a button for going back to the previous page,
 a button

for going forward to the next page (only operative after the user has g
one back

from it), and a button for going straight to the user's own home pag
e. Most

browsers have a button or menu item to set a bookmark on a given pag
e and

mother one to display the list of bookmarks, making it possible to revis
it any of

 
 

Bright House Networks - Ex. 1049, Page 124



SEC. 7.6 THE WORLD WIDE WEB 683

WELCOME TO THE UNIVERSITY OF EAST PODUNK'S WWW HOME PAGE

• Campus Information

❑ Admissions information

❑ Campus map
❑ Directions to caws

❑ The UEP student body

• Academic Departments

❑ Department of Animal Psychology

❑ Department of Alternative Studies

❑ Department of Microbiotic Cookina

❑ Department of Nontraditional Studies

❑ Department of Traditional Studies

Webmaster @ eastpodunk.edu

(a)

THE DEPARTMENT OF ANIMAL PSYCHOLOGY

• Information for prospective majors

• Personnel

❑ Faculty members

❑ Graduate students

❑ Nonacademic staff

• Research Projects

• Positions available

• Our most popular courses

❑ Dealing with herbivores

❑ Horse management

❑ Negotiatingwith your het

❑ User-friendly doghouse construction

• Full list of courses

Webmaster@ animalpsyc.eastpodunk.edu

(b)

Fig. 7-58. (a) A Web page. (b) The page reached by clicking on
Department of Animal Ps, cagy

 
 

Bright House Networks - Ex. 1049, Page 125



~~~' ~ 684 THE APPLICATION LAYER CHAP. 7

~~r' them with a single mouse click. Pages can also be saved to disk or printed.

Numerous options are generally available for controlling the screen layout and

setting various user preferences. A comparison of nine browsers is given in (Ber-

ghel, 1996).
In addition to having ordinary text (not underlined) and hypertext (under-

lined), Web pages can also contain icons, line drawings, maps, and photographs.

Each of these can (optionally) be linked to another page. Clicking on one of these

.... . elements causes the browser to fetch the linked page and display it, the same as

clicking on text. With images such as photos and maps, which page is fetched

next inay depend on what part of the image was clicked on.

Not all pages are viewable in the conve►ltional way. For example, some pages
consist of audio tracks, video clips, or both. When hyperCext pages are mixed

with other media, the result is called hypermedia. Some browsers can display all

kinds of hypermedia, btiit others cannot. Instead they check a configuration file to
Y'.~'

=°i~~7~ see how to handle the received data. Normally, the configuration file gives the

name of a program, celled an external viewer, or a helper application, to be rLin

with the incoming page as input. If no viewer is eon~igured, the browser usually

asks the user to choose one. If no viewer exists, the user can tell the browser to

save the incoming page to a disk file, ar to discard it. Helper applications for pro-

dacing speech are making it possible for even blind users to access [he Web.

Other helper applications contain interpreters for speei~l Web l~ngu~ges, making

it possible to download and tun programs from Web pales. This mechanism

makes it possible to extend the functionality of the Web itself,

Many Web pages contain I~rge images, which take a long time to load. For

example, fetching an uncompressed 640 x 480 (VGA) image with 24 bits per

pixel (922 KB) takes about 4 minutes over a 28.8-kbps modem line. Same

__,a browsers deal with the slow loading of images by first fetching and displaying the

text, then getting the images. This strategy gives the user something to read while

the images are coming in and also allows the user to kill the load if the page is not

s~lfficiently interesting to warrant waiting. An alternative strategy is to provide an

option to disable the automatic fetching and display of images.

Some page writers attempt to placate potentially bored Llsers by displaying

images in a special way. First the image quickly appears in a coarse resolution.

Then the details are gradually filled in. For the user, seeing the whole image after

a few seconds, albeit at low resolution, is often preferable to seeing it built up

slowly from the top, scan line by scan line.

Some Web pages contain forms that request the user to enter information.

Typical applications of these forms are searching a database for auser-supplied

item, ordering a product, or participating in a public opinion survey. Other Web

pages contain maps that allow users to click on them to zoom in or get informa-

tion about some geographical area. Handling forms and active (clickable) maps

requires more sophisticated processing than just fetching a known page. We will

describe later how these features are implemented.

Bright House Networks - Ex. 1049, Page 126

SEC. 7.6 THE WORLD WIDE WEB 685

Solve browsers use the local disk to cache pages that they have fetched.

Before a page is fetched, a check is made to see if it is in the local cache. If so, it

is only necessary to check if the page if still up to date. If so, the page need not be

loaded again. As a result, clicking on the BACK button to see the previous page is

normally very fast.

To lost a Web b3-owser, a machine must be directly on the Internet, or at least

have a SLIP or PPP connection to a router or other machine that is directly on the

Internet. This requirement exists because the way a browser fetches a page is to

establish a TCP connection to the machine where the page is, and then send a

message over the connection asking for the page. If it cannot establish a TCP

connection to an arbitrary machine on the Internet, a browser will not work.

Sometimes the lengths that people will go to get Web access are amazing. At

least one company is offerif~g Web-by-Fax service. A client without Internet

access calls up the Web-by-Fax server and logs in using the telephone keypad.

He then types in a code identifying the Web page desired and it is faxed to the

caller's fax machine.

7.6.2. The Server Side

Every Web site has a server process listening to TCP port 80 for incoming

connections from clients (normally browsers). After a connection has been esta-

blished, the clietlt sends one request and the server sends one reply. Then the con-

nection is released. The protocol that defines the legal requesCs and replies is

called HTTP. We will study it in some detail below, but a simple example using

it may provide a reasonable idea of how Web serveY-s work. Figure 7-59 shows

how the various parts of the Web model fit together.

For this example, we can imagine that the user has just clicked on some piece

of text or perhaps on an icon that points to the page whose name (URL—Uniform

Resource Locator) is littp://www.w3.org/hypertext/WWW/TheProject.htnil. We

will also explain URLs later on in thischapter. For the moment, it is sufficient to

know that a URL has three parts: the name of the protocol (hztp), the name of the

machine where the page is located (wrvw.w3.org), and the naive of the file con-

taining the page (hypertext/WWW/T12eProject.html). The steps that occur between

the user's click and the page being displayed are as follows:

1. The browser determines the URL (by seeing what was selected).

2. The browser- asks DNS for the IP address of www. w3. ofg.

3. DNS replies with 18.23.0.23.

4. The browser makes a TCP connection to port 80 on 18.23.023.

5. It then sends aGET/hypertext/WWW/TheProject.html command.

6. The www.w3.org server sends the file ThePr-oject.ht~nl.

Bright House Networks - Ex. 1049, Page 127

fi

686 THE APPLICATION LAYER CHAP. 7

t.~;

Server Server
Client abc.com xyz.com

Current page
displayed by
browser o ~

Hyperlink

~~~uii
it,,,« to abacom — Hyperlink

~~~ri~~ nu~,r

Browser ~~v~t~, to xyz.com ""'~~
program _,

~~ ~ ̀ /~`~ Disk HTTP Disk HTTP

Server Server

HTTP used over
~'". ~ this TCP connection

l The Inter e

Fig. 7-59. The parts of the Web model.

7. The TCP connection is released.

8. The browser displays all the text in TheProjectJitml.

9. The browser fetches and displays all images in ThePr~ject.html.

Many browsers display which step they are currently executing in a status line

at the bottom of the screen. In this way, when the performance is poor, the user

can see if it is due to DNS not responding, the server not responding, or simply

network congestion during page transmission.

It is worth noting that for each in-line image (icon, drawing, photo, etc.) on a

page, the browser establishes a new TCP connection to the relevant server to fetch

the..image. Needless to say, if a page contains many icons, all on the same server,

establishing, rising, and releasing a new connection for each one is not wildly effi-

cient, but it keeps the implementation simple. Future revisions of the protocol

will address the efficiency issue. One proposal is given in (Mogul, 1995).

Because HTTP is an ASCII protocol like SMTP, it is quite easy for a person

at a terminal (as opposed to a browser) to directly talk to Web servers. All that is

needed is a TCP connection to port 80 on the server. The simplest way to get

such a connection is to use the Telnet program. Figure 7-60 shows a scenario of

how this can be done. In this example, the lines marked C: are typed in by the

user (client), the lines marked T: are produced by the Telnet program, and the

lines marked S: are produced by the server at M.I.T.

Bright House Networks - Ex. 1049, Page 128

SEC. 7.6 THE WORLD WIDE WEB 687

C: telnet www.w3.org 80
T: Trying 18.23.0.23 ...
T: Connected to www.w3.org.
l": Escape character is '~]'.
C: GET /hypertext/WWW/TheProject.html NTTP/1.0
C:

S: HTTP/1.0 200 Document follows
S: MIME-Version: 1 A
S: Server: CERN/3.0
S: Content-Type: texUhtml
S: Content-Length: 8247
S:
S: <HEAD> <TITLE> The World Wide Web Consortium (W3C) </TITLE> </HEAD>

S: <BODY>
S: <H1>

S: The World Wide Web Consortium </H1> <P>
S:
S: The World Wide Web is the universe of network-accessible information.

S: The World Wide Web Consortium

S: exists to realize the full potential of the Web. <~'>
S:
S: W3C works with the global community to produce
S: specifications and
S: reference software .
S: W3C is funded by industrial
S: members
S: but its products are freely available to all. <P>
S:
S: In this document:
S: <menu>
S: Web Specifications and Development Areas

S: Web Software
• S: The World Wide Web and the Web Community

S: Getting involved with the W3C

S: </menu>
S: <P> <HR>
S: <P> W3C is hosted by the
S: Laboratory for Computer Science at

S: MIT ,and
S: in Europe by INRIA .
S: </BODY>

Fig. 7-60. A sample scenario for obtaining a Web page.

Bright House Networks - Ex. 1049, Page 129

688 THE APPLICATION LAYER CHAP. 7

~~~~` Readers are encouraged to by this scenario personally (preferably from a

UNtx system, because some other systems do not return the com~ection status).

Be sure to note the spaces and the protocol version on the GET line, and the blank

line following the GET line. As an aside, the actual text that will be received will

differ from what is shown in Fig. 7-60 for three reasons. First, the example output

here has been abridged and edited to make it fit on one page. Second, it has been

cleaned up somewhat to avoid embarrassing the author, who no doubt expected

z thousands of people to ermine the formatted page, but zero people to scrutinize

the HTML that produced it Third, the contents of the page are constantly being

revised. Nevertheless, this example should give a reasonable idea of how HTTP

works.
What the example shows is the following. The client, in this case a person,

but normally a browser, first connects to a particular host and then sends a com-

t ~ mand asking for a particular page and specifying a particular protocol and version

to use (HTTP/1.0). Ot~ line 7, the server responds with ~ status line telling the

protocol it is using (the same as the client) and the code 200, meaning OK. This

line is followed by an RFC 822 MIME message, of which five of the header lines

are shown in the figure (several others have been omitted to save space). Then

comes a blank line, followed by the message body. For sending a picture, the

'~ Cofiterit-Type field might be

Content-Type: Image/G I F

In this way, the MIME types allow arbitrary objects to be sent in a standard way.

As an aside, the MIME Content-Transfer-E~2coclirig header is not needed because

TCP allows arbitrary byte streams, even pictures, to be sent without modification.

The meaning of the commends within angle brackets used in the sample page will

be discussed later in this chapter.
Not all servers speak HTTP. In particular, many older servers use the FTP,

Gopher, or other protocols. Since a great deal of useful information is available

on FTP and Gopher servers, one of the design goals of the Web was to make this

information available to Web users. One solution is to have the browser use these

.protocols when speaking to an FTP or Gopher server. Some of them, in fact, use

this solution, but making browsers understand every possible protocol makes them

Linnecessarily large.
Instead, a different solution is often used: proxy servers (Luotonen and Altis,

1994). A proxy server is a kind of gateway that speaks HTTP to the browser but

FTP, Gopher, or some other protocol to the server. It accepts HTTP requests and

translates them into, say, FTP i~eq~iests, so the browser does not have to under-

stand any protocol except HTTP. The proxy server can be a program running on

the same machine as the browser, but it can also be on afree-standing machine

somewhere in the network serving many browsers. Figure 7-61 shows the differ-

enee between a browser that can speak FTP and one that uses a proxy.
 
 

Bright House Networks - Ex. 1049, Page 130



SEC. 7.6 THE WORLD WIDE WEB 689

HTTP 
FTP Request

FTP

Browser 
Server

FTP Reply

HTTP 
HTTP Request FTP Request

FTP —~ FTP

Browser 
Proxy Server

HTTP Reply FTP Reply

Fig. 7-61. (a) A browser that speaks FfiP. (U) A browser that does not.

Often users cats configure their browsers with proxies for protocols that the

browsers do not speak. Iii this way, the range of information sow-ces to which the

browser has access is increased.

In addition to acting as a go-between foi~ unknown protocols, proxy servers

1?ave a number of other important functions, such as caching. A caching proxy

server collects and keeps all the pages that pass through it. When a user asks for a

page, tl~e proxy server checks to see if it has the page. If so, it call check to see if

the page is sti11 current. In the event that the page is still current, it is passed to

the user. Otherwise, a new copy is fetched.

Finally, an organization can put a proxy server inside its firewall to allow

users to access the Web, but without giving them full Interact access. In this con-

figuration, users can talk to the proxy server, but it is the proxy server that con-

tacts remote sites and fetches pages otl behalf of its clients. This mechanism cau

be used, for example, by high schools, to block access to Web sites the principal

feels are inappropriate for tender young minds.

For information about one of the more popular Web servers (NCSA's HTTP

dae-moil) and its perforulance, see (Katz et al., 1994; and Kwan et al., 1995).

~ITTP—HyperText Transfer Protocol

The standard Web transfer proCocol is HTTP (HyperText Transfer Prota

col). Each inCeraction consists of one ASCII request, followed by otle RFC 822

MIME-like response. Although the use of TCP for the transport conriectiarl is

very common, it is not formally required by the standard. If ATM networks

become reliable enough, the HTTP requests and replies could be carried in AAL 5

messages just as well.
HTTP is constantly evolving. Several versions are in use and others are antler

development. The material presented below is relatively basic and is unlikely to

change in concept, bl~~ some details nay be a little different in future versions.

 
 

Bright House Networks - Ex. 1049, Page 131



690 THE APPLICATION LAYER CHAP. 7

The HTTP protocol consists of two fairly distinct items: the set of requests

from browsers to servers and the set of responses going back the other way. W
e

will now treat each of these in turn.

All the newer versions of HTTP support two kinds of requests: simple

requests and full requests. A simple request is just a single GET line nami
ng the

.. page desired, without the protocol version. The response is just the raw pag
e,

with no headers, no MIME, and no encoding. To see how this works, try maki
ng

a Telnet connection to port 80 of www. w3. org (as shown in the first line of

Fig. 7-60) and then type

GET /hypertext/WWW/TheProject.html

but without the HTTP/1.0 this time. The page will be returned with no indicati
on

of its content type. This mechanism is needed for backward compatibility. Its u
se

will decline as browses and servers based on full requests become standard.

Full requests are indicted by the presence of the protocol version on the GET

request line, as in Fig. 7-60. Requests may consist of multiple lines, followed 
by

a blank line to indicate the end of the request, which is why the blank
 line was

needed in Fig. 7-60. The first line of a full request contains the comman
d (of

which GET is but one of the possibilities), the page desired, and the

protocol/version. Subsequent lines contain RFC 822 headers.

Although HTTP was designed for use in the Web, it has been intentionally

made more general than necessary with an eye to future object-oriented ap
plica-

tions. For this reason, the first word on the full request line is simply the na
me of

the method (command) to be executed on the Web page (or general object). T
he

built-in methods are listed in Fig. 7-62. When accessing general objects, addi-

tional object-specific methods may also be available. The names are case sens
i-

tive, so, GET is a legal method but get is not.

Method Description

GET Request to read a Web page

HEAD Request to read a Web page's header

PUT Request to store a Web page

POST Append to a named resource (e.g., a Web page)

DELETE Remove the Web page

LINK Connects two existing resources

UNLINK Breaks an existing connection between two resources
-- -- —

Fig. 7-62. The built-in HTTP request methods.

The GET method requests the server to send the page (by which we mean

object, in the most general case), suitably encoded in MIME. However, if 
the

 
 

Bright House Networks - Ex. 1049, Page 132



SEC. 7.6 THE WORLD WIDE WEB 691

GET request is followed by an If-Modified-Since header, the server only sends the

data if it has been modified since the date supplied. Using this mechanism, a

browser that is asked to display a cached page can conditionally ask fot• it from

the server, giving the modification time associated with the page. If the cache

page is will valid, the server just sends back a status line announcing Chat fact,

thus eliminaCing the overhead of transferring the page again.

The HEAD method just asks for the message header, without the actual page.

This method can be used to get a page's time of last modification, to collect infor-

mation for indexing put-poses, or just to test a URL for validity. Conditional

HEAD requests do not exist.

The PUT method is Che reverse of GET: instead of reading the page, it writes

the page. This method makes it possible to build a collection of Web pages on a

remote server. The body of the request contains the page. It may be encoded

using MIME, in which case the lines following the PUT might include Content-

Type and authentication headers, to prove that the caller- indeed has permission to

perform the requested operation.

Somewhat similar to PU7' is the POST method. It too bears a URL, but

instead of replacing the existing data, the new data is "appended" to it in some

generalized sense. Posting a message to a news group or adding a file to a bul-

letin board system are examples of appending in this context. It is clearly the

intention here to have the Web take over the fuuctionaliry of the USENET news

system.
DELETE does what you might expect: it removes the page. As with PUT,

authentication and permission play a major role here. There is no guarantee that

DELETE succeeds, since even if the remote HTTP server is willing to delete the

page, the underlying file may have a mode that forbids the HTTP server from

modifying or removing it.

The LINK and UNLINK methods allow connections to be established between

existing pages or other resources.

Every request gets a response consisting of a status line, and possibly addi-

tional information (e.g., all or part of a Web page). The status line can bear the

code 200 (OK), or any one of a variety of error codes, for example 304 (not modi-

fied), 400 (bad request), ar~ 403 (forbidden).

The HTTP standards describe message headers and bodies in considerable

detail. Suffice iC to say that these are very close to RFC 822 MIME messages, so

we will not look at them het~e.

7.6.3. Writing a Web Page in HTNIL

Web pages are written in a language called HTML (HyperText Markup

Language). HTML allows users to produce Web pages that include text, graph-

ics, and pointers to other Web pages. We will begin our study of HTML with

these pointers, since they are the glue that holds the Web together.

 
 

Bright House Networks - Ex. 1049, Page 133



` 592 THE APPLICATION LAYER

URLs—Uniform Resource Locators

~, ,.
We have repeatedly said that Web pages may contain pointers to oth

er Web

pages. Now it is time to see how these pointers are implemented. Wh
en the Web

was first created, it was immediately apparent that having one page 
point to

another Web page required mechanisms for naming and locating page
s. In partio-

alai-, there were three questions that had to be answered before a se
lected page

could be displayed:

1. What is the page called?

2. Where is the page located?

3. How can the page be accessed?

If every page were somehow assigned a unique name, there would
 not be any

ambiguity in identifying pages. Nevertheless, the problem would no
t be solved.

Consider a parallel between people and pages. In the United States, almo
st every-

one has a social security number, which is a unique identifier, as no tw
o people

have the same one. Nevertheless, aimed only with a social security nu
mber, there

is no way to find the owner's address, and certainly no way to tell 
whether you

should write to the person in English, Spanish, or• Chinese. The Web h
as basically

the same problems.
The solution chosen identifies pages in a way that solves all three proble

ms at

once. Each page is assigned a URL (Uniform Resource Locator
) that effec-

tively serves as the page's worldwide name. URLs have three parts: 
the protocol

(also called a scheme), the DNS name of the machine on which
 the page is

located, and a local name uniquely indicating the specific page (usual
ly just a file

name on the machine where it resides). For example, the URL for the
 author's

department is

http://www.cs.vu. n I/we Icome. htm

This URL consists of three parts: the protocol (http), the DNS name
 of the host

(www.cs.vu.ril), and the file name (welcome.html), with certain punctuation

-separating the pieces.

Many sites have certain shortcuts for file names built in. For example,user
/

might be mapped onto user's WWW directory, with the convention 
that a refer-

ence to the directory itself implies a certain file, say, index.html. Thus the

author's home page can be reached at

http://www.cs.vu.nl/-ast/

even though the actual file name is different. At many sites, a null file 
name

defaults to the organization's home page.

Now it should be clear- how hypertext works. To make a piece of text clic
k-

able, the page writer must provide two items of information: the clickable 
text to 
 

Bright House Networks - Ex. 1049, Page 134



SEC. 7.6 THE WORLD WIDE WEB 693

be displayed. and the URL of the page to go to if the text is selected. When the

text is selected, the browser looks up the host name using DNS. Now armed with

the host's IP address, the browser then establishes a TCP connection to the host.

Over that connection, it sends the file name using the specified protocol. Bingo.

Back comes the page. This is precisely what we saw in Fig. 7-60.

This URL scheme is open-ended in the sense that it is straightfot-ward to have

p~•otocols other than HTTP. In fact, URLs for various other common protocols

have been defined, and many browsers understand them. Slightly simplified

forms of the more common ones are listed in Fig. 7-63.

Name Used for Example

http Hypertext (HTML) http://www.cs.vu.ni/~ast/

ftp FTP ftp://ftp.cs.vu.nl/pub/minix/README

file Local file /usr/suzanne/prog.c

news News group news:comp.os.minix

news News article news:AA01 342231 1 2@cs.utah.edu

gopher Gopher gopher://gopher.tc.umn.edu/11/Libraries

mailto Sending email mailto:kim@acm.org

telnet Remote login telnet://www.w3.org:80

Fig. 7-63. Some common URLs.

Let us briefly go over the list. The http protocol is the Web's native language,

the one spoken by HTTP servers. It supports all the methods of Fig. 7-62, as well

as whatever object-specific methods are needed.

The ftp protocol is used to access files by FTP, the Internet's file transfer pro-

tocol. FTP has been around more than two decades and is well entrenched.

Numerous FT'P servers all over the world allow people anywhere on the InCernet

to log in and download whatever files have been placed on the FTP server. The

~Veb does not change this; it just makes obtaining files by FTP easier, as FTP has

a somewhat arcane interface. In due course, FTP will probably vanish, as there is

no particular advantage for a site to run an FTP server instead of an HTTP server,

which can do everything that the FTP server can do, and more (although there are

some arguments about efficiency).

It is possible to access a local file as a Web page, either by using the file pro-

tocol, or more simply, by just naming it. This approach is similar to using FTP

but does not require having a server. Of course, it only works for local files.

The views protocol allows a Web user to call up a news article as though it

were a Web page. This means that a Web browser is simultaneously a news

reader. In face, many browsers have buttons oi• menu items to make reading

USENET news even easier than using standard news readers.
 
 

Bright House Networks - Ex. 1049, Page 135



694 THE APPLICATION LAYER CHAP. 7

Two formats are supported for the news protocol. The first forma
t specifies a

newsgroup and can be used to get a list of articles from a preconf
igured news site.

The second one requires the identifier of a specific news article to 
be given, in this

case AA013~223112 @ cs. Utah. edu. The browser then fetches 
the given article

from its preconfigured news site using the NNTP protocol.

The gopher protocol is used by the Gopher system, which was 
designed at the

University of Minnesota and named after the school's athletic 
teams, the Golden

Gophers (as well as being a slang expression meaning "go f
or", i.e., go fetch).

Gopher predates the Web by several years. It is an informati
on retrieval scheme,

conceptually similar to the Web itself, but supporting only text
 and no images.

When a user logs into a Gopher server, he is presented with 
a menu of files and

directories, any of which can be linked to another Gopher menu
 anywhere in the

world.

~~ ~ G~phet's big advantage over the Web is that it works very well wit
h 25 x 80

ASCII terminals, of which there are still quite a few around, and 
because it is text

based, it is very fast. Consequently, there are thotiisands of Go
pher servers all

over the world. Using the gopher protocol, Web users can ac
cess Gopher and

have each Gopher menu presented as a clickable Web page. Tf you
 are not fami-

liar with Gopher, try the example given in Fig. 7-63 or have yo
ur favorite Web

search engine look for "gopher."

Although the example given does not illListr~~te it, it is also possi
ble to send a

complete query to a Gopher server using the gopher+ protocol. W
hat is displayed

is the result of querying the remote Gopher server.

The last two protocols do not really have the flavor of fetching
 Web pages,

and are not supported by all browsers, but are useful anyway. Th
e ~~iailto protocol

allows Llsers to send email from a Web browser. The way to do t
his is to click on

the OPEN button and specify a URI~ consisting of rnnilto: fol
lowed by the

recipient's email address. Most browsers will respond by poppin
g up a form con-

taining slots for the subject end other header lines and space for ty
ping the mes-

sage.
The telnet protocol is used to establish an on-line connection

 to a remote

machine. It is used the same way as the Telnet program, which is 
not surprising,

since most browsers just call the Telnet program as a helper appli
cation. As an

exercise, try the scenario of Fig. 7-60 again, but now using a Web 
browser.

In short, the URLs have been designed to not only allow users to 
navigate the

Web, but to deal with FTP, news, Gopher, email, anti telnet as wel
l, making all

the specialized user interface programs for those other services unn
ecessary, and

thus integrating nearly all Internet access into a single program, t
he Web browser.

If it were not for the fact that this scheme was designed by a physics
 researcher, it

could easily piss for the output of some software company's adver
tising dep~rt-

ment.
Despite all these nice properties, the growing use of the Web has turne

d up an

!< inherent weakness in the URL scheme. A URL points to one spec
ific host. For

 
 

Bright House Networks - Ex. 1049, Page 136



SEC. 7.6 THE WORLD WIDE WEB 695

pages that are heavily referenced, it is desirable to have multiple copies far apart,

to reduce the network traffic. The trouble is that URLs do not provide any way to

reference a page without simult~ileously telling where it is. There is no way to

say: "I want page xyz, but I do not care where you get it." To solve this problem

and make it possible to replicate pages, the IETF is working on a system of URIs

(Universal Resource Identifiers). A URI can be thought of as a generalized

URL. This topic is the subject of much current 1-esearch.

Although we hive discussed only absolute URLs here, relative URLs also

exist. The difference is analogous to the difference between the absolute file

name /use/a.st/foobar and just, foobar when the context is unambiguously defined.

HTML—HyperText Markup Language

Now that we have a good idea of how URLs work, it is time to look at HTML

itself. HTML is an application of ISO standard 8879, SGML (Standard Gen-

eralized Markup Language), but specialized to hypel•text and adapted to the

Web.
As mentioned earlier, HTML is a markup language, a language fog- describing

how documents are to be formatted. The term "markup" comes from the old days

when copyeditors actually marked up documents to tell the printer—in those days,

a human being—which fonts to use, and so on. Markup languages thus contain

explicit commands for formatting. For example, in HTML, <B> means start

boldface mode, and </B> means leave boldface mode. The advantage of a

markup language over one with no explicit markup is that writing a browser for it

is straightforward: the browser simply has to understand the markup commands.

TeX atld troff ate other well-known examples of markup languages.

Documents written in a markup language can be contrasted to documents pro-

duced with a WYSIWYG (What You See Is What You Get) word processor, such

as MS-Word" or WordPerfect ". These systems may store their tiles with hidden

embedded markup so they can reproduce them later, but not all of them work this

way. Word processol-s for the Macintosh, for example, keep the formatting infor-

nzation in separate data structures, not as commands embedded in the user files.

By embedding the mal-ku~ commands within each HTML file and standardiz-

ing them, it becomes possible for any Web browser to read and t~eformat any Web

page. Being able to reformat Web pages after receiving them is crucial because a

page may have beets pi-odllced full screen oi~ a 1024 x 768 display with 24-bit

color but may have to be displayed in a small window on a 640 x 480 screen with

8-bit color. Proprietary WYSIWYG word processors cannot be used on the Web

because their internal. markup languages (if any) are not standardized across ven-

dors, machi»es and operating systems. Also, they do not handle reformatting for

different-sized windows and different resolution displays. However, word pro-

cessing programs can offer the option of swing documents in HTML instead of in

the vendor's proprietary format, and some of then already do.

 
 

Bright House Networks - Ex. 1049, Page 137



~'~i i 696 THE APPLICATION LAYER CHAP. 7

Like HTTP, HTML is in a constant state of flux. When Mosaic was the only
browser, the language it interpreted, HTML I.O, was the de facto standard. When
new browsers came along, there was a need for a formal Internet standard, so the
HTML 2.0 standard was produced. HTML 3.0 was initially created as a research
effort to add many new features to HTML 2.U, including tables, toolbars,
mathematical formulas, advanced style sheets (for defining page layout and the
meaning of symbols), and more.

The official standardization of HTML is being managed by the WWW Con-
sortium, but various browser vendors have added their own ad hoc extensions.
These vendors hope to get people to write Web pages using their extensions, so
readers of these pages will need the vendor's browser to propzrly interpret the
pages. This tendency does not make HTML standardization any easier.

Below we will give a brief introduction to HTML, just to give an idea of what
>:i:_:~ it is like. While it is certainly possible to write HTML documents with any stand-

Ord editor, and many people do, it is also possible to use special HTML editors
that do most of the work (but correspondingly give the user less control over all
the details of the final result).

A proper Web page consists of a head and a body enclosed by <HTML> and
</HTML> tags (formatting commands), although most browsers do not complain

>~ if these tags are missing. As can be seen from Fig. 7-64(a), the head is bracketed
by the <HEAD> and </HEAD> tags and the body is bracketed by the <BODY>
and </BODY> tags. The commands inside the tags are called directives. Most
HTML tags have this format, that is, <SOMETHING> to mark the beginning of
something and </SOMETHING> to mark its end. Numerous other examples of
HTML are easily available. Most browsers have a menu item vlEw SOURCE or
something like that. Selecting this item displays the current page's HTML source,
instead of its formatted output.

Tags can be in either lowercase or uppercase. Thus <HEAD> and <head>
mean the same thing, but the former stands out better for human readers. Actual

~~ layout of the HTML document is irrelevant. HTML parsers ignore extra spaces
and carriage returns since they have to reformat the text to make it fit the current
display area. Consequently, white spice can be added at will to make HTML
documents more readable, something most of them are badly in need of. As
another consequence, blank lines cannot be used to separate paragraphs, as they
are simply ignored. An explicit tag is required.

Some tags have (named) parameters. For example

<IMG SRC="abc" ALT="foobar">

is a tag, <IMG>, with parameter SRC set equal to c~bc and parameter ALT set
equal to.fool~ar. For each tag, the HTML standat•d gives a list of what the permit-
ted parameters, if any, are, and what they mean. Because each parameter is
named, the order in which the parameters are given is not significant.

 
 

Bright House Networks - Ex. 1049, Page 138



SEC. 7.6 THE WORLD WIDE WEB 697

<HTML> <HEAD> <TITLE> AMALGAMATED WIDGET, INC. </TITLE> </HEAD>

<BODY> <H1> Welcome to AWI's Home Page </H1>

<IMG SRC="http://www.widget.com/images/logo.gif" ALT="AWI Logo"> <BR>

We are so happy that you have chosen to visit <B> Amalgamated Widget's</B>

home page. We hope <I> you </I> will find all the information you need here.

<P>Below we have links to information about our many fine products.

You can order electronically (by WWW), by telephone, or by fax. <HR>

<H2> Product information </H2>
<UL> <LI> <A HREF="http://widget.com/products/big"> Big widgets </A>

<LI> <A HREF="http://widget.com/products/little"> Little widgets </A>

</U L>
<H2> Telephone numbers </H2>
<UL> <LI> By telephone: 1-800-WIDGETS

<LI> By fax: 1-415-765-4321
</UL> </BODY> </HTML>

(a)

Welcome to AWI's Home Page
;,

E '~ ~ ,,
o~~ ~ ~`

We are so happy that you have chosen to visit Amalgamated Widgets home page. We hope

you will find all the information you need here.

Below we have links to information about our many fine products. You can order electronically

(by WWW), by telephone, or by FAX.

Product Information

• Big widgets

• Little widgets

Telephone numbers

• 1-800-WIDGETS

• 1-415-765-4321

(b)

Fig. 7-64. (a) The HTML for a sample Web page. (b) The formatted page.

 
 

Bright House Networks - Ex. 1049, Page 139



~'~~ 698 THE APPLICATION LAYER CHAP. 7

Technically, HTML documents are written in the ISO 8859-1 Latin-1 charac-

ter set, but for users whose keyboards only support ASCII, escape sequences are

present for the special characters, such as e. The list of special characters is given

in the standard. All of them begin with an ampersand and end with a semicolon.

For example, &egrave; produces e and &eacute; produces e. Since <, >, and &

have special meanings, they can be expressed only with their escape sequences,

&lt; &gt; and &amp; respectively.

The main item in the head is the title, delimited by <TITLE> and </TITLE>,

but certain kinds of meta-information may also be present. The title itself is not

displayed on the page. Some browsers use it to label the page's window.

Let us now take a look at some of the other features illustrated in Fig. 7-64.

All of the tags used in Fig. 7-64 and some others are shown in Fig. 7-65. Head-

ings are generated by an <Hn> tag, where n is a digit in the range 1 to 6. <H1> is

the most important heading; <H6> is the least important one. It is up to the

browser to render these appropriately on the screen. Typically the lower num-

bered headings will be displayed in a larger and heavier font. The browser may

also choose to use different colors for each level of heading. Typically <H1>

headings are large and boldface with at least one blank line above and below. In

"' contrast, <H2> headings are in a smaller font, and with less space above and

below.
The tags <B> and <I> are used to enter boldface and italics mode, respec-

tively. If the browser is not capable of displaying boldface and italics, it must use

some other method of rendering them, for example, using a different color for

each or perhaps reverse video. Instead of specifying physical styles such as bold-

face and italics, authors can also use logical styles such as <DN> (define), <EM>

(weak emphasis), <STRONG> (strong emphasis), and <VAR> (program vari-

ables). The logical styles are defined in a document called a style sheet. The

advantage of the logical styles is that by changing one definition, all the variables

can be changed, for example, from italics to a constant width font.

HTML provides various mechanisms for making lists, including nested lists.

The <UL> tag starts an unordered list. The individual items, which are marked

with the <LI> tag in the source, appear with bullets (•) in front of them. A vari-

~`, ant of this mechanism is <OL>, which is for ordered lists. When this tag is used,

the <LI> items are numbered by the browser. A third option is <MENU>, which

typically produces a more compact list on the screen, with no bullets and no

numbers. Other than the use of different starting and ending tags, <UL>, <OL>,

and <MENU> have the same syntax and similar results.

In addition to the list mechanisms shown in Fig. 7-65, there are two others

that are worth mentioning briefly. <DIR> can be used for making short tables.

Also, <DL> and </DL> can make definition lists (glossaries) with two-part

entries, whose parts are defined by <DT> and <DD> respectively. The first is for

the name, the second for its meaning. These features are largely superseded by

the (more general and complex) table mechanism, described below.

 
 

Bright House Networks - Ex. 1049, Page 140



SEC. 7.6 THE WORLD WIDE WEB 699

Tag Description

<HTML> ... </HTML> Declares the Web page to be written in HTML

<HEAD> ... </HEAD> Delimits the page's head

<TITLE> ... </TITLE> Defines the title (not displayed on the page)

<BODY> ... </BODY> Delimits the page's body

<Hn> ... </Hn> Delimits a level n heading

<B> ... </B> Set ... in boldface

<I> ... </I> Set ... in italics

<UL> ... </UL> Brackets an unordered (bulleted) list

<OL> ... </OL> Brackets a numbered list

<MENU> ... </MENU> Brackets a menu of <LI> items

<LI> Start of a list item (there is no </LI>)

<BR> Force a break here

<P> Start of paragraph

<HR> Horizontal rule

<PRE> ... </PRE> Preformatted text; do not reformat

<IMG SRC="..."> Load an image here

<A HREF="..."> ... </A> Defines a hyperlink

Fig. 7-65. A selection of common HTML Cags. So
me have addiCional parameters.

The <BR>, <P>, and <HR> tags all indicate a bou
ndary between sections of

text. The precise format can be determined by t
he style sheet associated with the

page. The <BR> tag just forces a line break. Ty
pically, browsers do not insert a

blank line after <BR>. In contrast, <P> starts a
 paragraph, which might, for

.example, insert a blank line and possibly some
 indentation. (Theoretically, </P>

exists to mark the end of a paragraph, but it is rar
ely used; most HTML authors do

not even know it exists.) Finally, <HR> forces
 a break and draws a horizontal

line across the screen.

HTML 1.0 had no ability to display tables or 
other formatted information.

Worse yet, if the HTML writer carefully forma
tted a table by judicious use of

spaces and carriage returns, browsers would ignor
e all the layout and display the

page as if all the formatted material were unform
atted. To prevent browsers from

messing up carefully laid out text, the <PRE> an
d </PRE> tags were provided.

They are instructions to the browser to just display 
everything in between literally,

character for character, without changing anything. 
As Che table and other fancy

layout features become more widely implemente
d, the need for <PRE> will

 
 

Bright House Networks - Ex. 1049, Page 141



700 THE APPLICATION LAYER CHAP. 7

diminish, except for program listings, for which most programmers will tolerate
no formatting other than their own.

HTML allows images to be included in-line on a Web page. The <IMG> tag
specifies that an image is to be loaded at the current position in the page. It can
have several parameters. The SRC parameter gives the URL (or URI) of the
image. The HTML standard does not specify which graphic formats are permit-
ted. In practice, all browsers support GIF files and many support JPEG files as
well. Browsers are free to support other formats, but this extension is a two-edged
sword. If a user is accustomed to a browser that supports, say, BMP files, he may
include these in his Web pages and later be surprised when other browsers just .
ignore all of his wonderful art.

Other parameters of <IMG> are ALIGN, which controls the alignment of the
image with respect to the text baseline (TOP, MIDDLE, BOTTOM), ALT, which

~" provides text to use instead of the image when the user has disabled images, and
ISMAP, a flag indicating that the image is an active map.

Finally, we come to hyperlinks, which use the <A> (anchor) and </A> tags.
Like <IMG>, <A> has variol~s parameters, including HREF (the URL), NAME
(the hyperlink's name), and METHODS (access methods), among others. The text

~'~'` between the <A> and </A> is displayed. If it is selected, the hyperlink is fol-
lowed to a new page. It is also permitted to put an <IMG> image there, in which
case clicking on the image also activates the hyperlink.

As an example, consider the following HTML fragment:

<A HREF="http://www.nasa.gov"> NASA's home page </A>

When a page with this fragment is displayed, what appears on the screen is

NASA's home page

If the user subsequently clicks on this text, the browser immediately fetches the
page whose URL is http://tivwvv.nascz.gov and displays it.

As a second example, now consider

<A HREF="http://www.nasa.gov"> <IMG SRC="shuttle.gif" ALT="NASA"> </A>

When displayed, this page shows a picture (e.g., of the space shuttle). Clicking nn
the picture switches to NASA's home page, just as clicking on the underlined text
did in the previous example. If the user has disabled automatic image display, the
text NASA will be displayed where the picture belongs.

The <A> tag can take a parameter NAME to plant a hyperlink, so it can be
referred to from within the page. For example, some Web pages start out with a
clickable table of contents. By clicking on an item in the table of contents, the
user jumps to the corresponding section of the page.

One feature that HTML 2.0 did not include and which many page authors
missed, was the ability to create tables whose entries could be clicked on to active
hyperlinks. As a consequence, a large amount of work was done to add tables to

 
 

Bright House Networks - Ex. 1049, Page 142



SEC. 7.6 THE WORLD WIDE WEB 701

HTML 3.0. Below we give a very brief introduction to tables, just to capture the

essential flavor.
An HTML table consists of oue or more rows, each consisting of one or more

cells. Cells can contain a wide range of material, including text, figures, and even

other tables. Cells can be merged, so, foi• example, a heading can span multiple

columns. Page authors have limited control over the layout, including alignment,

border styles, and cell margins, but the browsers have the final say in rendering

tables.
An HTML table definition is listed in Fig. 7-66(a) and a possible rendition is

shown in Fig. 7-66(b). This example just shows a few of the basic features of

HTML tables. Tables are started by the <TABLE> tag. Additional information

can be provided to describe general properties of the table.

The <CAPTION> tag can be used to provide a figure caption. Each row is

started with a <TR> (Table Row) tag. The individual cells are marked as <TH>

(Table Header) or <TD> (Table Data). The distinction is made to allow browsers

to use different renditions for them, as we have done in the example.

Numerous other tags are also allowe-d in tables. They include ways to specify

horizontal and verticalcell alignments, justification within a cell, borders, group-

ing of cells, units, and more.

Forms

HTML 1.0 was basically one way. Users could call up pages fi•om informa-

tion providers, but it was difficult to send information back the other• way. As

snore and more commercial organizations began using the Web, there was a large

demand for two-way traffic. For example, many companies wanted to be able to

take orders for products via their Web pages, software vendot•s wanted to distri-

bute software via the Web and have customers fill out their registration cards

electronically, and companies offering Web searching wanted to have their custo-

mers be able to type in search keywords.

These demands led to the inclusion of forms starting in HTML 2.0. Forms

contain boxes or buttons that allow users to fill in information or make choices

and them send the information back to the page's owner. They use the <INPUT>

tag for phis purpose. It has a variety of parameters for determinitlg the size,

nature, and usage of the box displayed. The most common forms ai-e blank fields

for accepting user text, boxes that can be checked, active maps, and SUBMIT but-

totls. The example of Fig. 7-67 illustrates soiree of these choices.

Let us start our discussion of forms by going over this example. Like all

forms, this one is enclosed between the <FORM> and </FORM> tags. Text not

enclosed in a tag is just displayed. All the usual tags (e.g., <B>) are allowed in a

form. Three kinds of input boxes are used in this form.

The fast kind of input box follows the text "Name". The box is 46 characters

wide and expects the user to type in a string, which is then stored in the variable 
 

Bright House Networks - Ex. 1049, Page 143



702 THE APPLICATION LAYER CHAP. 7
y -,

i' i
<`

~'' <HTML> <HEAD> <TITLE> A sample page with a table </TITLE> </HEAD>
,~ ; <BODY>

<TABLE BORDER=ALL RULES=ALL>
<CAPTION> Some Differences between HTML Versions </CAPTION>
<COL ALIGN=LEFT>
<COL ALIGN=CENTER>
<COL ALIGN=CENTER>
<COL ALIGN=CENTER>
<TR> <TH>Item <TH>HTML 1.0 <TH>HTML 2.0 <TH>HTML 3.0
<TR> <TH> Active Maps and Images <TD> <TD> x <TD> x
<TR> <TH> Equations <TD> <TD> <TD> x
<TR> <TH> Forms <TD> <TD> x <TD> x
<TR> <TH> Hyperlinks x <TD> <TD> x <TD> x

;~~' <TR> <TH> Images <TD> x <TD> x <TD> x
`~< <TR> <TH> Lists <TD> x <TD> x <TD> x

<TR> <TH> Toolbars <TD> <TD> <TD> x

'~ <TR> <TH> Tables <TD> <TD> <TD> x
</TABLE> </BODY> </HTML>

<~~ . ~a)

Some Differences between HTML Versions
Item HTML 1.0 HTML 2.0 HTML 3.0
Active Maps and Images x x
Equations x
Forms x x
Hyperlinks x x x
Ima es x x x
Lists x x x
Toolbars x
Tables X

Fig. 7-66. (a) An HTML table. (b) A possible rendition of this table.

customer for later processing. The <P> tag instructs the browser to display subse-
quent text and boxes on the next line, even if there is room on the cnnent line. By
using <P> and other layout tags, the author of the page can control the look of the
form on the screen.

The next line of the form asks for the user's street address, 40 columns wide,
also on a line by itself. Then comes a line asking for the city, state, and colmtry.
No <P> tags are used between the fields here, so the browser displays them all on
one line if they will fit. As far as the browser is concerned, this paragraph just
contains six items: three strings alternating with three boxes. It displays them
linearly from left to right, going over to a new line whenever the current line 

 
Bright House Networks - Ex. 1049, Page 144



SEC. 7.6 THE WORLD WIDE WEB 7O3

<HTML> <HEAD> <TITLE> AWI CUSTOMER ORDERING FORM </TITLE> </HEAD>

<BODY>
<H1> Widget Order Form </H1>
<FORM ACTION="http://widget.com/cgi-bin/widgetorder" METHOD=POST>

Name <INPUT NAME="customer" SIZE=46> <P>
street Address <INPUT NAME="address" SIZE=40> <P>
City <INPUT NAME="city" SIZE=20> State <INPUT NAME="state" SIZE =4>

Country <INPUT NAME="country" SIZE=10> <P>
Credit card # <INPUT NAME="cardno" SIZE=10>
Expires <INPUT NAME="expires" SIZE=4>
M/C <INPUT NAME="cc" TYPE=RADIO VALUE="mastercard">
VISA <INPUT NAME="cc" TYPE=RADIO VALUE="visacard"> <P>
Widget size Big <INPUT NAME="product" TYPE=RADIO VALUE="expensive">

Little <INPU7 NAME="product" TYPE=RADIO VALUE="cheap">
Ship by express courier <INPUT NAME="express" TYPE=CHECKBOX> <P>

<INPUT TYPE=SUBMIT VALUE="Submit order"> <P>
Thank you for ordering an AWI widget, the best widget money can buy!
</FORM> </BODY> </HTML>

(a)

Widget Order Form

Name

Street address

City State ~ Country ——~

Credit card # ~--~ Expires ~ M/C ~ Visa O

Widget size Big O Little O Ship by express courier

Submit order

Thank you for ordering an AWI widget, the best widget money can buy!

~IJ1

Fig. 7-67. (a) The HTML Por an order form. (b) The formatted page.

cannot hold the next item. Thus it is conceivable that on a 1024 x 768 screen all

three strings and their corresponding boxes will appear on the same line, but on a

640 x 480 screen they might be split over two lines. In the worst scenario, the

word "Country" is at the e»d of one line and its box is at the beginnitlg of the

next line. There is no way to tell the browser to force the box adjacent to the text.

 
 

Bright House Networks - Ex. 1049, Page 145



7O4 THE APPLICATION LAYER CHAP. 7

The next line asks for' the credit card number and expiration date. Transmit-

ting credit card numbers over the Internet should only be done when adequate

security measures have been taken. For example, some, but not all, browsers

encrypt information sent by users. Even then, secure communication and key

management are complicated matters and are subject to many kinds of attacks, as

we saw earlier.
Following the expiration date we encounter a new feature: radio buttons.

These are used when a choice must be made among two or more alternatives. The

intellectual model here is a car radio with half a dozen buttons for choosing sta-

tions. The browser displays these boxes in a form that allows the user to select

and deselect them by clicking on them (or using the keyboard). Clicking on one

of them turns off all the other ones in the same group. The visual presentation

depends on the graphical interface being used. It is up to the browser to choose a

form that is consistent with Windows, Motif, OS/2 Warp, ar whatever windowing

system is being used. The widget size also uses two radio buttons. The two

groups are distinguished by their NAME field, not by static scoping using some-

thing like <RADIOBUTTON> ... </RADIOBUTTON>.

The VALUE parameters are used to indicate which radio button was pushed.

Depending on which of the credit card options the user has chosen, the variable cc

will be set to either the string "mastercard" or the stt~ing "visac~rd".

After the two sets of radio buttons, we come to the shipping option,

represented by a box of type CHECKBOX. It can be either on or off. Unlike

radio buttons, where exactly one out of the set must be chosen, each box of type

CHECKBOX can be on or off, independently of all the others. For example, when

ordering a pizza via Electropizza's Web page, the user -can choose sardines c~nd

onions af2d pineapple (if she can stand it), but she cannot choose small and

medium and large for the same pizza. The pizza toppings would be represented

by three separate boxes of type CKECKBOX, whereas the pizza size would be a

set of radio buttons.
As an aside, for very long lists from which a choice must be made, radio but-

tons are somewhat inconvenient. Therefore, the <SELECT> and </SELECT>

tags are provided to bracket a list of alternatives, but with the semantics of radio

buttons (unless the MULTIPLE parameter is given, in which case the semantics

are those of checkable boxes). Some browsers render the items between

<SELECT> and </SELECT> as a pop-tzp menu.
We have now seen two of the built-in types for the <INPUT> tag: RADIO and

CHECKBOX. In fact, we have already seen a third one as well: TEXT. Because

this type is the default, we did not bother to include the parameter TYPE =TEXT,

but we could have. Two other types are PASSWOKD and TEXTAREA. A PASS-

WORD box is the same as a TEXT box, except that the characters are not

displayed as they are typed. A TEXTAREA box is also the same as a TEXT box,

except that it can contain multiple lines.
Getting back to the example of Fig. 7-67, we now come across an example of

 
 

Bright House Networks - Ex. 1049, Page 146



SEC. 7.6 THE WORLD WIDE WEB 7O5

a SUBMIT button. When this is clicked, the user information on the form is sent
back to the machine that provided the form. Like all the other types, SUBMIT is a
reserved word that the browser understands. The VALUE string here is the label
on the button and is displayed. All boxes can have values; we only needed that
feature here. For TEXT boxes, the contents of the VALUE field are displayed

along with the form, but the user cai7 edit or erase it. CHECKBOX and RADIO
boxes can also be initialized, but with a field called CHECKED (because VALUE

just gives the text, but does not indicate a preferred choice).
The browser also understands the RESET button. When clicked, it resets the_

form to its initial state.
Two snore types are worth noting. The first is Che HIDDEN type. This is out-

put only; it cannot be clicked or modified. For example, when working through a

series of pages throughout which choices have to be made, previously made

choices might be of HIDDEN type, to prevent them from being changed.
Our last type is IMAGE, which is for active n7aps (and other- clickable

images). When the user clicks on the neap, the (x, y) coordinates of the pixel

selected (i.e., the current mouse position) are stored in variables aild the form is

automatically rreturned to the owner for further processing.
Forms can be submitted in three ways: using the submit button, clicking on an

active map, or typing ENTER on a one-item TEXT form. When a form is submit-

ted, some action must be taken. The action is specified by the parameters of the
<FORM> tag. The ACTION parameter specifies the URL (or URI) to tell about

the submission, and the METHOD parameter tells which method to use. The

order of these (and all other) parameters is not significant.
The way the form's variables are sent back to the page's owner depends on

the value of the METHOD parameter. For GET, the only way to return values is

to cheat: they are appended to the URL, separated by a question mark. This

approach can result in URLs that are thousands of characters long. Nevertheless,

this method is frequently used because it is simple.
If the POST method (see Fig. 7-62) is used, the body of the message contains

the form's variables and their values. The & is used to separate fields; the +

represents the space character. For example, the response to the widget form

might be

customer=John+Doe&address=100+Main+St.&city=White+Plains&
state=NY&country=USA&cardno=1234567890&expires=6/98&cc=mastercard&
product=cheap&express=on

The string would be sent. back to the server as one line, not three-. If a CHECK-

BOX is not selected, it is omitted from the string. It is up to the server to make

sense of this string.
Fortunately, a standard for handling forms' data is already available. It is

called CGI (Common Gateway Interface). Let us consider a common way of

 
 

Bright House Networks - Ex. 1049, Page 147



_ - _

7O6 THE APPLICATION LAYER CHAP. 7

using it. Suppose that someone has an interesting database (e.g., an index of Web

pages by keyword and topic) and wants to make it available to Web users. The

CGI way to make the database available is to write ascript (or program) that

interfaces (i.e., gateways) between the database and the Web. This script is given

a URL, by convention in the directory cgi-bin. HTTP servers know (or can be

told) that when they have to invoke a method on a page located in cgi-bin, t
hey

are to interpret the file name as being an executable script or program and star
t it

up.
Eventually, some user opens the form associated with our widget script and

has it displayed. After the form has been filled out, the user clicks on the SU
B-

MIT button. This action causes the browser to establish a TCP connection to the

URL listed in the form's ACTION parameter—the script in the cgi-bin directory.

Then the browser invokes the operation specified by the form's METHOD, usu-

ally POST. The result of this operation is that the script is started and presented

(via the TCP connection, on standard input) with the long string given above. In

addition, several environment variables are set. For example, the environment

variable CONTEN'l1.ENGTH tells how long the input string is.

At this point, most scripts need to parse their input to put it in a more con-

venient form. This goal can be accomplished by calling one of the many libraries

or script procedures available. The script can then interact with its database in

any way it wishes. For example, active maps normally use CGI scripts to take

different actions depending on where the user pointed.

CGI scripts can also produce output and do many other things as well as

accepting input from forms. If a hyperlink points to a CGI script, when that link

is invoked, the script is started up, with several environment variables set to pro-

vide some information about the user. The script then writes a file (e.g. an HTML

page) on standard output, which is shipped to the browser and interpreted there.

This mechanism makes it possible for the script to generate custom Web pages on

the spot.
For better or worse, some Web sites that answer queries have a database of

advertisements that can be selectively included in the Web page being con-

structed, depending on what the user is looking for. If the user is searching for

"cai" a General Motors ad might be displayed, whereas a search for "vacation"

might produce an ad from United Airlines. These ads usually include clickable

text and pictures.

7.6.4. Java

HTML makes it possible to describe how static Web pages should appear,

including tables and pictures. With the cgi-bin hack, it is also possible to have a

limited amount of two-way interaction (forms, etc.). However, rapid interaction

with Web pages written in HTML is not possible. To make it possible to have

 
 

Bright House Networks - Ex. 1049, Page 148



I COMPUTER NETWORKING I 

THIRD EDITION 

OMPUTER NETWORKS 
ANDREW S. T ANENBAUM 

I SBN 0 - 13 - 349945 - 6 

111 1111 111111111 111111111 111111111111 111 

xeeeoucorR 
Used Very Good - Computer 
Networks  

 
Bright House Networks - Ex. 1049, Page 149




