
lllllllllllllllllllllllllllIlllllllllllllllllllllllllllllllllllIIIIIIIHIII
_ USO05434913A

UIlltBd States Patent [19] [11] Patent Number: 5,434,913
Tung et a1. [45] Date of Patent: Jul. 18, 1995

[54] AUDIO SUBSYS'I'EM FOR
COMPUTER-BASED CONFERENCING
SYSTEM

OTHER PUBLICATIONS

Computer Conferencing: IBM scientists demo proto
type of affordable computer conferencing system, Nov.

[75] Inventors: Peter Tung, Beaverton; Ben Vrvilo, 2’ 1992_ EDGE’ on & about AT&T’ V7, 11223’ p, 22_
Portland, both of Greg.

Primary Examiner—.larnes L. Dwyer
[73] Assignee: Intel Corporation, Santa Clara, Calif. Assistant Examiner-Scott Wolinsky
[21] A 1 N 158 246 Attorney, Agent, or Firm—-Steve Mendelsohn; William

pp . 0.: , H. Murray

[22] Filed: Nov. 24, 1993 [57] ABSTRACI‘

[51] Int. 01.6 HD4M 3/56 An audi° task ,residing °n 3,11 audio/communicating
[52] us. (:1. 379/202; 395/800; Pwd °f a“ “(11° ‘Subsystem “1 a COmPuF“ °°Y%fe“?“°'

395/162 ing system. An audio manager and an audio applications
[58] Field of Search ______________ u 395/800’ 162; 379/202, programming interface reside on a host processor of: the

379/205 203 204 computer conferencing system. The audio task receives
’ ’ local analog audio signals, generates local compressed

[56] References Cited audio signals corresponding to the local analog audio
U S PATENT DOCUMENTS signals, and passes the local compressed audio signals to

' ‘ ' a communications subsystem of the computer confer

4,475,l93 10/1984 Brown 379/202 encing system for transmission over a communications
4,333,795 12/1989 AndO e} 31 -- 379/53 link to a remote computer conferencing system. The
5,014,267 5/1991 Tompi‘ms ct a1‘ " """"" " 370/62 audio task receives remote compressed audio signals

snuzuktllet a1‘ """""""" from the communications subsystem and generates re
5Z231Z492 7/1993 Dangig:al:":::............12: 358/143 mote decompress“ audio Signals correspmding to the
5,315,633 5/1994 remote compressed audio signal for local playback.
5,319,793 6/1994
5,335,321 8/1994 16 Claims, 32 Drawing Sheets

102 102 104

CANERA MICROPHONE CANERA MICROPHONE

ANALOG ANALOG ANALOG ANALOG

VIDEO AUDIO VIDEO AUDIO

V V V V

100 ' 100
1 CONFERENCING ISDN NETWORK CONFERENCING f

SYSTEN SYSTEN

A (DIGITAL) B

1 1 0

ANALOG ANALOG ANALOG ANALOG

VIDEO AUDIO VIDEO AUDIO

V l l V

KINITOR SPEAKER NONITOR SPEAKER

106 108 106 108

CISCO SYSTEMS, INC. Ex. 1131 Page 1

CISCO SYSTEMS, INC. Ex. 1131 Page 2

U.S. Pafent July 18, 1995 Sheet 1 of 32 5,434,913

Oofi

mofi
zm¥<w¢m

oHe=<ao4<z<o~a=<co4<z<
wzo=¢omu_=

VOH
m

=mHm>mozHuzmzwmzou

oofi
mo__zo=

ema_>oo4<2<omcH>co.<z<
<¢m:<u

NOH

ofifi
2:23xxoghmzzamfia.D_L

mo“
xmx<m¢m

oHa=<co4<z<oH==<oc.<z<
mzo=mc¢uH=

vofi
<

=mpm>mozHuzmmww2ou

mod
¢ohHzo=

omaH>co.<z<omaH>oo.<z<
<zm=<u

Ncfi

Ocfi

clsco SYSTEMS, Inc. Ex. 1131 Pagé 2

US. Patent July 18, 1995 Sheet 2 of 32 5,434,913

2: o H ~ No“ M26525; :5 5:6 55 65>: 5:

we“

52% T 22 228532 is 22>

Fvom

EKR _ _

wcm ma <2

2%.. 2: 11+ “Maw:

“058% 5%

E

NQNR

CISCO SYSTEMS, INC. Ex. 1131 Page 3

U.S. Patent July 18, 1995 Sheet 3 of 32 5,434,913

wow m2 <2 65>: BEBE 2m <2

mg mg 22> 1.1.6:“
luv @558 :22 .2; “8&5;

SE 3 82> 25: 82> E:

won mom won Non

vow

CISCO SYSTEMS, INC. Ex. 1131 Page 4

CISCO SYSTEMS, INC. Ex. 1131 Page 5

U.S. Patent July 18, 1995 Sheet 4 of 32 5,434,913

MwAV.~mm¥<ugm
mwfivmw

m~A.mwmam<mH53>:

.v.o_m

MwA.,V

CISCO SYSTEMS, INC. Ex. 1131 Page 5

US. Patent July 18, 1995 Sheet 5 of 32 Y 5,434,913

F IG . 5 .

100

502 AUDIO/VIDEO DATA CONFERENCING 5 04
CONFERENCING APPN APPLICATION

506'\ CONFERENCING API

5 10 I‘ 5 1 Z 5 1 4

508 in A_, r‘, [J
‘\- VIDEO API coMM API AUDIO API MAvE API

1
5 1 6 ‘L VIDEO coMM AUDIO

MANAGER MANAGER MANAGER 5 24

g
522 518 520 ‘J

‘1 VIDEO CAPTURE NAvE
DRIVER DRIVER

5 26, HOST INTERFACE DSP INTERFACE

5 28
530_ VIDEO BOARD DSP I532

NICROCODE INTERFACE

5 36 5 34
% H

AUDIO HOST DEVICE NAME

5 3 8 f TASK DRIVER TASK

cGNN

TASK 1'5 40

CISCO SYSTEMS, INC. Ex. 1131 Page 6

US. Patent July 18, 1995 Sheet 6 of 32 5,434,913

2e: -H 5c I 22: F mamlm wON

wON ma <2 51:2

3

E8 052 55:5 2.2 v.2 5m 55528.5 552 ,2 52m : _

a E 922

. 5.0m 5%

855

5 .NM

“z: SE8 2%

:85 EU
8:: ~55 5:52 22 :3

a 22:62 as? miss.

5 E:

E: w x

$22 2 \ E2

E2: 25
was: as: 55:5 .52 :2

a 22:62 was: 25$

.@ AIL

CISCO SYSTEMS, INC. Ex. 1131 Page 7

CISCO SYSTEMS, INC. Ex. 1131 Page 8

U.S. Patent July 18, 1995 Sheet 7 of 32 5,434,913

FIG. 7.

502.504

CONFERENCING APPLICATION

CONFERENCING FINITE

STATE MACHINE

CONFERENCING

PRINITIVE VALIDATOR
706 CONFERENCING PRINITIVE DISPATCHER

CONFERENCING

CALLBACK

7711() coMM

CALLBACK

coMM VIDEO AUDIO

PRIMITIVE PRIMITIVE PRIMITIVE

716 720

coMM VIDEO AUDIO

MANAGER MANAGER MANAGER

518 516 520

CISCO SYSTEMS, INC. Ex. 1131 Page 8

CISCO SYSTEMS, INC. Ex. 1131 Page 9

U.S. Patent July 13, 1995 Sheet 8 of 32 5,434,913

mEm\QOLQUmQumixmcbx:<\®..E2.Q3951:oU“.0m.s.m&@202:8m~m~.~»:G

:00ummoov.

msm\noci%Qfi.be9omixmcbPxc<\\C..321Qzmcclm
PMam5..M_._..

:239?:EEuqmoovs
A:32§.>..em

S

238::Cqamcatm

\Eumxo:

NMQNVQ

US. Patent July 18, 1995 Sheet 9 of 32 5,434,913

\oLummQ

\obcou \SEQBQESW
$520k muLaommm 2QoLm>oomLtb ngmbui

A9395

0. .UNK omkqoum.\tgmx IESQ Qocm. \o?cou mmbol Loicoz @Eq?mbé? 3.0339963
.uLbIQb. moLaommt mgoLmioomLcb .WSQQKBM. QQGQQ

CISCO SYSTEMS, INC. Ex. 1131 Page 10

US. Patent July 18, 1995 Sheet 10 of 32 5,434,913

33> ERFMEM. v3 v5» "3% MEQSQK

t3

QB» ESQSQ.

335 §

5e 32§§
CISCO SYSTEMS, INC. Ex. 1131 Page 11

US. Patent July 18, 1995 Sheet 11 of 32 5,434,913

F IG . 1 1 .

5 1 6

1 102

VIDEO MANAGER 1 108
LIBRARY

[nu] \
REcvv

NETW
SENDMESSAGE [on] m
INTERFACE 1 106

1104 H
‘\- VCAPT VPLAY [EXE] [5x51

m0 Rm 8
I I

1 1 10

xm

Vf'W: VIDEO CAPTURE DRIVER

PLAYBACK (CODEC)

1.522 I

CISCO SYSTEMS, INC. Ex. 1131 Page 12

U.S. Patent July 18, 1995 Sheet 12 of 32 5,434,913

FIG. 12.
I1]

CISCO SYSTEMS, INC. Ex. 1131 Page 13

CISCO SYSTEMS, INC. Ex. 1131 Page 14

U.S. Patent July 18, 1995 Sheet 13 of 32 5,434,913

O00COO0000IO0O0OOO0000OOIooononoontoooooolaoouloo000000
mw~..m-u~EI&m_3.5moimqQMQQUQ~Qb<BmmtmkmEmQmi\&Q

m.§,.\mmmoimq

Go:.3has
mmmm......

CISCO SYSTEMS, INC. Ex. 1131 Page 14

E3MEEma.6328

mm

9%

QnI¢nQQQQ¢II

Q\Q\:\qmmmmmq:8

\Qv~Q\Qb<
NKWSNswamcm

3?‘MES:
Em

newaxiom9.;ZQWN

CISCO SYSTEMS, INC. Ex. 1131 Page 15

U.S. Patent July 18, 1995 Sheet 14 of 32 5,434,913

LOQ.~:o§LmNm...%..€
22E«E.2.‘

32
E«E.=..

s<§-E.m.Mb<9»«GREezmm
VN.U~n~

«.xo.o\Co»Lou..:95».

«:8
A2.E§Lmumxmmmw.33.:av‘«.?B\:€L3..cox?

252.3Mfibkkwb$63
clsco SYSTEMS, Inc. Ex. 1131 Page 15

CISCO SYSTEMS, INC. Ex. 1131 Page 16

U.S. Patent July 18, 1995 Sheet 15 of 32 5,434,913

QN65%8285

3.

SnK

Lm<..CQmo.§....QL..§.CQ.8.§mq%...B§\eak%ubc.§\2%33:3§:mxE38:32C8é..E.§s%:EQ33:L.§.CQm3u«oB,m.Lm>.CQm3c«uS.w
:o..mm...CQq:.w\ocum.

qmm\:o..mm...Eqa.:.w\ocumIas.>§.CQm3c«u3..w

Qmm\

L.§.CQm3o«oSm.

L3F.\Qm.\Lmx.$.L3Q..\Q.w\..$x.$

gmboumb:38:35:o..mm...Cn8u

kmS.~LQw3o«uSmo§£mmE.£Scam.

.>§.ZQm3o«uE.wosfimmstbtmQQ<QVNKQB..3&b&&vG

QfiwfimkkbE:VNR

EmNNQWN

sco SYSTEMS, Inc. Ex. 1131 Page 16

QUOUib\3\<_seven:893.35=o..mm.....a§u

CISCO SYSTEMS, INC. Ex. 1131 Page 17

U.S. Patent July 18, 1995 Sheet 16 of 32 5,434,913

zwtulmmcdim...E.3o.§.P..._EBmam<3%:x..1I2§uu§d:a..3%:2:EQ3.S%2g_¢8..<Q%§:8msS%2§8mmzm<atEm?
momN

E::365¢9%

mm:5.5.6239%

 xm«R3.369

 No.935Non;vow;..w&.§Emm..<.§asHt§..$§§§Qxufim.m.:%8§§%.%;-xufim..--:22a§§§u.41.3mm§.§c.§d....<.§<§a§d..%Emmm

kw<9SQIME
Q5%:kb<9»«Q0.

mm»:1«GIWVE
Qv.m&I.~mkbxQ«G

me?

89mmimqGEE
uzqamm

 1%?.§§8mm52%mmmi>52zqfl.©N.U~.R
Q-I

CISCO SYSTEMS, INC. Ex. 1131 Page 17

US. Patent July 18, 1995 Sheet 17 of 32 5,434,913

F IG . 17 .

UPPER
LAYERS

HOST (moons)
m.o

202 \ LL RDULDLL
DULDLL

532 ‘\- DSP INTERFACE

comm (0 cm) 0m com TASKS

mum/com
BOARD (Sm) :1 cm DRIVER s CHAN DRIVERS

206

CISCO SYSTEMS, INC. Ex. 1131 Page 18

CISCO SYSTEMS, INC. Ex. 1131 Page 19

U.S. Patent July 18, 1995 Sheet 18 of 32 5,434,913

N

3 ~~~~~ —~ - 3%
In

" _.Ll_ ___

H g H
I‘H 3 g

I! E
‘E

II «v Q ., co
<o§& <3 LT} " N‘
00$.. 2 ‘$5

___U_'_'______ ‘W:=_u~,2, ,2, .
II II II ’ 5 5 E

03 Q R‘
II § “‘

O

H <z

& ‘-2
<t Q an

E L314
1: 2m2m

II Q 1! §*5
II ’’T:_ "‘_ 03

~14
QT‘!-

EE.<
, ES‘;

um:

! 1

00 * :
cu , - rq II

8 gé ‘°
o§g
903%CISCO YSTEMS, INC. Ex. 1131 Page 19

US. Patent July 18, 1995 Sheet 19 0f 32 5,434,913

END sass/01v BEG 1N SESSION

REJECT c0/v/v / \\ c0/v/v REJEC TED
/ \

/

corwv
REQUEST

REQUEST CONN I

/
/

CL OSE CONN /
/

/ / co/v/v ACCEPTED
/

ACCEPT CONN

CONNCTED

REJECT CHAN \
\ \CHAN REJEC r50

\

@ OPEN
CL OSE CHAN
CHAN 1

ACCEPT // CHAN
CHAN , ACCEPTED

-—— ACTIVE REQUEST 0 STATE

“""-' RESULT OF REQUEST

FIG. 19
CISCO SYSTEMS, INC. Ex. 1131 Page 20

CISCO SYSTEMS, INC. Ex. 1131 Page 21

U.S. Patent July 18, 1995 Sheet 20 of 32 5,434,913

LNCOMTNG

CALL
OUTGOLNC

CALL

APP calls Tl!

Conn Requested MakeCannectian

Send Connection DLM
Rea. to APP MbkeCbnn

AWAIT LOCAL

RESP

 AWAIT REMONE

RESP

Call

APP Accepts Progress
DLM.AcceptConn

Conn

Accepted

 AWMIT ACCEPT Conn Accepted
RESP

Contra] Channel

handshake

£3L%%l9£D

Segd Ccnnectianstab ished

.I?[(;. E?() Nbtification to APP

CISCO SYSTEMS, INC. Ex. 1131 Page 21

CISCO SYSTEMS, INC. Ex. 1131 Page 22

U.S. Patent July 18, 1995 Sheet 21 of 32 5,434,913

(Cbnnection in CONWLAL/ME state)

DLM qpen channel 0

AW%lT CTL

OPEN

Channel open notification

Send heartbeat

AWMlT'Alive

Message

Receive heartbeat

CH_ESD%1L9£D

(connection in CONN_ESTAB state)

FIG. 21

CISCO SYSTEMS, INC. Ex. 1131 Page 22

CISCO SYSTEMS, INC. Ex. 1131 Page 23

U.S. Patent July 18, 1995 Sheet 22 of 32 5,434,913

RECEIVE SEND

CHANNEL CHANNEL

Chan Request CTL Msg. APP calls 7I I OpenChannel
A/lac Ill and OLA! chan A/lac TI] and DUI chan

DLMOpen DLMOpen

C’-WLAMAI/'_OU/.0PfLRX O‘WLAWAlf_OUL09‘UX

DLM Channel Opened 0”, Channe/ Opened
Open RDLM Channel

Send Chan Req to APP

AWA/7 LOCAL RESP AWAIT REM RESP

APP Accepts Receive accept CTL Alsg.
Send accept 671 4459- Open RD/.M Channel

Send Chan Accepted to APP

Send Open CTL Msg.

FIG. 22

CISCO SYSTEMS, INC. Ex. 1131 Page 23

CISCO SYSTEMS, INC. Ex. 1131 Page 24

U.S. Patent July 18, 1995 Sheet 23 of 32 5,434,913

mm65%u...toé«noimzlllullli.28EoéE33Sammmuuzma........in
:o.:8.C.Zo:“:96maocogucxmwlililuln

Lmmatas5:092:8
mwe\Qsoumx..~meekEmmsoqI.l|.IuI\|.\11/|\I\|‘

YSTEMS, INC. Ex. 1131 Page 24

c:59..~monkoQUQEQMWLm>o:cI:EBL.£m..mmkam>o:oI:cc,uL3m..mm.<s.§uc%c%o§m.s.$. ..,.:n:§Sc%8m..gemEccocgqmuuwTwtcccuuqmouvx cEcééfiqs538.:.§<2$GEccuficmqetoxcocuamumxmamE8.‘.§:.§<\<8:o::c5L3m.§ok
:3wumtcouQQmufix

:o..mmm,.w:..mum

MflekshzEHQVZVEEEQU

:3mmmmEmum

RNQVZVE2:8MbV.m~E:2~3369.5<k~>m.a>:3:50

CISCO SYSTEMS, INC. Ex. 1131 Page 25

U.S. Patent July 18, 1995 Sheet 24 of 32 5,434,913

FIG. 24.

(BITS) (FIELD)

32 |pData

32 dwBufferLength

32 dwBytesUsed

32 dwTimeCaptured

32 dwUser

32 dwFIags

32 dwReserved[O]

32 dwReserved[1]

32 dwReserved[2]

32 dwReserved[3]

16 Type

16 Message

0- Data ...

CISCO SYSTEMS, INC. Ex. 1131 Page 25

CISCO SYSTEMS, INC. Ex. 1131 Page 26

U.S. Patent July 18, 1995 Sheet 25 of 32 5,434,913

.FIG. 25.

(BITS) (FIELD)

8

8

88

88

88

8

8

8

8

8 Sti I lThresh(|ow)/
Fi lterThresh(high)

8-

clsco SYSTEMS, Inc. Ex. 1131 Page 26

CISCO SYSTEMS, INC. Ex. 1131 Page 27

U.S. Patent July 18, 1995 Sheet 26 of 32 5,434,913

FIG. 26.

(BITS) (FIELD)

30 Timestamp

1 Reserved

1 Mute gm...:..m=|
0- Data

clsco SYSTEMS, Inc. Ex. 1131 Page 27

CISCO SYSTEMS, INC. Ex. 1131 Page 28

U.S. Patent July 18, 1995 Sheet 27 of 32 5,434,913

FIG. 27.

(BITS) (FIELD)

CISCO SYSTEMS, INC. Ex. 1131 Page 28

CISCO SYSTEMS, INC. Ex. 1131 Page 29

U.S. Patent July 18, 1995 Sheet 28 of 32 5,434,913

FIG. 28.

(BITS)

8 LC FLAG

s 1 1

8

H H

8 E D

1 A L
D C

1 g D
A

2 T

A

4 1

0- 1

16 HDLD CRC

® I '... ’.._(1 W1 F"1G3

clsco SYSTEMS, Inc. Ex. 1131 Page 29

CISCO SYSTEMS, INC. Ex. 1131 Page 30

U.S. Patent July 18, 1995 Sheet 29 of 32 5,434,913

TII-OLM SESSION & CONNECTION ESTABLISHMENT

TI 1 DLM DLM TI 1

Ol_M_BeginSession DLA{__Begin$ession

DLAl__HakeConnect Ion DLALL isten

\ ‘ -5.

C0/VALREOUESTEO

DL/.I__Accep t Connect ion

.4’?

COMVLESTABL ISIE CONN_ES7.431. /SHED

TI I —OLM CONNECTION & SESSION TEARDOMV

T] I DLM DLM

OLALCIoseconnect ion

4‘? \

COMLCLOSLCOAPLETE CO/W_Cl_OSE_NOT/FY

DUL5nd59$$l'0f7 Ol.l«LEnd5‘ess ion

SESS_CL OSEO 5ESS_CL OSEO 9

FIG. 29

CISCO SYSTEMS, INC. Ex. 1131 Page 30

CISCO SYSTEMS, INC. Ex. 1131 Page 31

5,434,913U.S. Patent July 18, 1995 Sheet 30 of 32

an

05%

QZQUIMEQQ.13¢‘Q\Q\:\Qmg12k%>5:<3295nth.a>5:<32

mkbxPE\:8?Q\mEQkvfimbx.mmommmmWZMSMxmmmommmmmzmsm.\M

a\.Qk<1Swe<:._EmK2~
7

_I

mam32

ExamExmwxmm<2 KnownE:55xmmw
E

IIIiIIIIIIIIIIIlIIII!1u_
,.:m<U\._

mu<.»<E2\R69.5:mnxmabGmm.EC
NMXN,m..Qh<k

NMXNm.c.:.mh.\\slmmm

3%miGm

II|IIlIIIIIIIIIIIIIIIIll..2209M»3QQ\<mE«Gm.300<
CISCO SYSTEMS, INC. Ex. 1131 Page 31

CISCO SYSTEMS, INC. Ex. 1131 Page 32

U.S. Patent July 18, 1995 Sheet 31 of 32 5,434,913

Nm.

Em

m.§,SE2..G~>\,3m<m...:m<bx.
mamQ\\Q<..w\

EmmQmxmwit.3:mB<.EE2\mamo\\n1bkm.mQgQ85%;:Exam1338:QExmd8<
md22§oxm‘GmmEm-m>:4

B2%3%m§Q~E>:E

md2z$c-m‘\mmm3,m.1m2QIl

x92950.51mufimbiNm.§E..§Ed22§u-mmemésmmmwmzm\ommEma.5

CISCO SYSTEMS, INC. Ex. 1131 Page 32

CISCO SYSTEMS, INC. Ex. 1131 Page 33

U.S. Patent July 18, 1995 Sheet 32 of 32 5,434,913

myWW§8Sm5”%§<E>=IEExams9% It%.IES:Ekbxyx«WKK\\QKWv$.Quzxmu.
SE28.\\\....>§§hxdmweEé§eE§otllmnoooooocoooocxmgm:»8§§EQ8HEmqfim

$2233

N3

M24IIEsk\\$9:4

QsN.:<\mmmpfimE_\QQQQVnminoommmfi

Emmfi.328
CISCO SYSTEMS, INC. Ex. 1131 Page 33

CISCO SYSTEMS, INC. Ex. 1131 Page 34

5,434,913
1

AUDIO SUBSYSTEM FOR COMPUTER-BASED
CONFERENCING SYSTEM

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to audio/video confer-
encing, and, in particular, to systems for real-time audio,
video, and data conferencing in windowed environ-
ments on personal computer systems.

2. Description of the Related An
It is desirable to provide real-time audio, video, and

data conferencing between personal computer (PC)
systems operating in windowed environments such as
those provided by versions of Microsoft® Windows
operating system. There are difficulties, however, with
providing real-time conferencing in non-real-time win-
dowed environments.

It is accordingly an object of this invention to over-
come the disadvantages and drawbacks of the known
art and to provide real-time audio, video, and data con-
ferencing between PC systems operating in non-real-
time windowed environments.

It is a particular object of the present invention to
provide real-time audio, video, and data conferencing
between PC systems operating under a Microsoft®
Windows operating system.

Further objects and advantages of this invention will
become apparent from the detailed description of a
preferred embodiment which follows.

SUMMARY OF THE INVENTION

The present invention is an audio subsystem for a
computer conferencing system. An audio task resides
on an audio/communications board of the computer
conferencing system. An audio manager and an audio
applications programming interface reside on a host
processor of the computer conferencing system. The
audio task receives local analog audio signals, generates
local compressed audio signals corresponding to the
local analog audio signals, and passes the local com-
pressed audio signals to a communications subsystem of
the computer conferencing system for transmission
over a communications link to a remote computer con-
ferencing system. The audio task receives remote com-
pressed audio signals from the communications subsys-
tem and generates remote decompressed audio signals
corresponding to the remote compressed audio signal
for local playback.

BRIEF DESCRIPTION OF THE DRAWINGS

Other objects, features, and advantages of the present
invention will become more fully apparent from the
following detailed description of the preferred embodi-
ment, the appended claims, and the accompanying
drawings in which:

FIG. 1 is a block diagram representing real-time
point-to-point audio, video, and data conferencing be-
tween two PC systems, according to a preferred em-
bodiment of the present invention;

FIG. 2 is a block diagram of the hardware configura-
tion of the conferencing system of each PC system of
FIG. 1;

FIG. 3 is a block diagram of the hardware configura-
tion of the video board of the conferencing system of
FIG. 2;

5

10

15

20

25

30

35

45

50

55

60

65

2

FIG. 4 is a block diagram of the hardware configura-
tion of the audio/comm board of the conferencing sys-
tem of FIG. 2;

FIG. 5 is a block diagram of the software configura-
tion of the conferencing system of each PC system of
FIG. 1;

FIG. 6 is a block diagram of a preferred embodiment
of the hardware configuration of the audio/comm
board of FIG. 4;

FIG. 7 is a block diagram of the conferencing inter-
face layer between the conferencing applications of
FIG. 5, on one side, and the com, video, and audio
managers of FIG. 5, on the other side;

FIG. 8 is a representation of the conferencing call
finite state machine (FSM) for a conferencing session
between a local conferencing system (i.e., caller) and a
remote conferencing system (i.e., callee);

FIG. 9 is a representation of the conferencing stream
FSM for each conferencing system participating in a
conferencing session;

FIG. 10 is a representation of the video FSM for the
local video stream and the remote video stream of a

conferencing system during a conferencing session;
FIG. 11 is a block diagram of the software compo-

nents of the video manager of the conferencing system
of FIG. 5;

FIG. 12 is a representation of a sequence of N walk-
ing key flames;

FIG. 13 is a representation of the audio FSM for the
local audio stream and the remote audio stream of a

conferencing system during a conferencing session;
FIG. 14 is a block diagram of the architecture of the

audio subsystem of the conferencing system of FIG. 5;
FIG. 15 is a block diagram of the interface between

the audio task of FIG. 5 and the audio hardware of

audio/comm board of FIG. 2;
FIG. 16 is a block diagram of the interface between

the audio task and the com task of FIG. 5;
FIG. 17 is a block diagram of the com subsystem of

the conferencing system of FIG. 5;
FIG. 18 is a block diagram of the comm subsystem

architecture for two conferencing systems of FIG. 5
participating in a conferencing session;

FIG. 19 is a representation of the comm subsystem
application FSM for a conferencing session between a
local site and a remote site;

FIG. 20 is a representation of the comm subsystem
connection FSM for a conferencing session between a
local site and a remote site;

FIG. 21 is a representation of the comm subsystem
control channel handshake FSM for a conferencing
session between a local site and a remote site;

FIG. 22 is a representation of the com subsystem
channel establishment FSM for a conferencing session
between a local site and a remote site;

FIG. 23 is a representation of the comm subsystem
processing for a typical conferencing session between a
caller and a callee;

FIG. 24 is a representation of the structure of a video
packet as sent to or received from the com subsystem
of the conferencing system of FIG. 5;

FIG. 25 is a representation of the compressed video
bitstream for the conferencing system of FIG. 5;

FIG. 26 is a representation of a compressed audio
packet for the conferencing system of FIG. 5;

FIG. 27 is a representation of the reliable transport
comm packet structure;

CISCO SYSTEMS, INC. Ex. 1131 Page 34

CISCO SYSTEMS, INC. Ex. 1131 Page 35

5,434,913
3

FIG. 28 is a representation of the unreliable transport
comm packet structure;

FIG. 29 are diagrams indicating typical connection
setup and teardown sequences;

FIGS. 30 and 31 are diagrams of the architecture of
the audio/comm board; and

FIG. 32 is a diagram of the audio/comm board envi-
ronment.

DESCRIPTION OF THE PREFERRED

EMBODIMENT(S)

Point-To-Point Conferencing Network

Referring now to FIG. 1, there is shown a block

diagram representing real-time point-to-point audio,
video, and data conferencing between two PC systems,
according to a preferred embodiment of the present
invention. Each PC system has a conferencing system
100, a camera 102, a microphone 104, a monitor 106,
and a speaker 108. The conferencing systems communi-
cate via an integrated services digital network (ISDN)
110. Each conferencing system 100 receives, digitizes,
and compresses the analog video signals generated by
camera 102 and the analog audio signals generated by
microphone 104. The compressed digital video and
audio signals are transmitted to the other conferencing
system via ISDN 110, where they are decompressed
and converted for play on monitor 106 and speaker 108,
respectively. In addition, each conferencing system 100
may generate and transmit data signals to the other
conferencing system 100 for play on monitor 106. In a
preferred embodiment, the video and data signals are
displayed in different windows on monitor 106. Each

conferencing system 100 may also display the locally
generated video signals in a separate window.

Camera 102 may be any suitable camera for generat-
ing NSTC or PAL analog video signals. Microphone
104 may be any suitable microphone for generating
analog audio signals. Monitor 106 may be any suitable
monitor for displaying video and graphics images and is
preferably a VGA monitor. Speaker 108 may be any
suitable device for playing analog audio signals and is
preferably a headset.

Conferencing System Hardware Configuration

Referring now to FIG. 2, there is shown a block
diagram of the hardware configuration of each confer-
encing system 100 of FIG. 1, according to a preferred
embodiment of the present invention. Each conferenc-
ing system 100 comprises host processor 202, video
board 204, audio/comm board 206, and industry stan-
dard architecture (ISA) bus 208.

Referring now to FIG. 3, there is shown a block
diagram of the hardware configuration of video board
204 of FIG. 2, according to a preferred embodiment of
the present invention. Video board 204 comprises ISA
bus interface 310, video bus 312, pixel processor 302,
video random access memory (VRAM) device 304,
video capture module 306, and video analog-to-digital
(A/D) converter 308.

Referring now to FIG. 4, there is shown a block
diagram of the hardware configuration of audio/comm
board 206 of FIG. 2, according to a preferred embodi-
ment of the present invention. Audio/comm board 206

comprises ISDN interface 402, memory 404, digital
signal processor (DSP) 406, ISA bus interface 408, and
audio input/output (I/O) hardware 410.

5

10

15

20

25

30

35

45

50

55

60

65

4

Conferencing System Software Configuration

Referring now to FIG. 5, there is shown a block
diagram of the software configuration each conferenc-
ing system 100 of FIG. 1, according to a preferred
embodiment of the present invention. Video microcode
530 resides and runs on pixel processor 302 of video
board 204 of FIG. 3. Com task 540 and audio task 538
reside and run on DSP 406 of audio/comm board 206 of

FIG. 4. All of the other software modules depicted in
FIG. 5 reside and run on host processor 202 of FIG. 2.

Video, Audio, and Data Processing

Referring now to FIGS. 3, 4, and 5, audio/video

conferencing application 502 running on host processor
202 provides the top-level local control of audio and
video conferencing between a local conferencing sys-
tem (i.e., local site or endpoint) and a remote conferenc-
ing system (i.e., remote site or endpoint). Audio/video
conferencing application 502 controls local audio and
video processing and establishes links with the remote
site for transmitting and receiving audio and video over
the ISDN. Similarly, data conferencing application 504,
also running on host processor 202, provides the top-
level local control of data conferencing between the
local and remote sites. Conferencing applications 502
and 504 communicate with the audio, video, and comm

subsystems using conferencing application program-
ming interface (API) 506, video API 508, com API
510, and audio API 512. The functions of conferencing
applications 502 and 504 and the APIs they use are
described in further detail later in this specification.

During conferencing, audio I/O hardware 410 of
audio/comm board 206 digitizes analog audio signals
received from microphone 104 and stores the resulting
uncompressed digital audio to memory 404 via ISA bus
interface 408. Audio task 538, running on DSP 406,
controls the compression of the uncompressed audio
and stores the resulting compressed audio back to mem-
ory 404. Comm task 540, also running on DSP 406, then
formats the compressed audio format for ISDN trans-
mission and transmits the compressed ISDN-formatted
audio to ISDN interface 402 for transmission to the
remote site over ISDN 110.

ISDN interface 402 also receives from ISDN 110

compressed ISDN-formatted audio generated by the
remote site and stores the compressed ISDN-formatted
audio to memory 404. Comm task 540 then reconstructs
the compressed audio format and stores the compressed
audio back to memory 404. Audio task 538 controls the
decompression of the compressed audio and stores the
resulting decompressed audio back to memory 404. ISA
bus interface then transmits the decompressed audio to
audio I/O hardware 410, which digital-to-analog
(D/A) converts the decompressed audio and transmits
the resulting analog audio signals to speaker 108 for
play. -

Thus, audio capture/compression and decompres-
sion/playback are preferably performed entirely within
audio/comm board 206 without going through the host
processor. As a result, audio is preferably continuously
played during a conferencing session regardless ofwhat
other applications are nmning on host processor 202.

Concurrent with the audio processing, video A/D
converter 308 of video board 204 digitizes analog video
signals received from camera 102 and transmits the
resulting digitized video to video capture module 306.
Video capture module 306 decodes the digitized video

CISCO SYSTEMS, INC. Ex. 1131 Page 35

CISCO SYSTEMS, INC. Ex. 1131 Page 36

5,434,913
5

into YUV color components and delivers uncom-
pressed digital video bitmaps to VRAM 304 via video
bus 312. Video microcode 530, running on pixel proces-
sor 302, compresses the uncompressed video bitmaps
and stores the resulting compressed video back to
VRAM 304. ISA bus interface 310 then transmits via

ISA bus 208 the compressed video to host interface 526
nmning on host processor 202.

Host interface 526 passes the compressed video to
video manager 516 via video capture driver 522. Video
manager 516 calls audio manager 520 using audio API
512 for synchronization information. Video manager
516 then time-stamps the video for synchronization
with the audio. Video manager 516 passes the time-
stamped compressed video to communications (comm)
manager 518 using comm application programming
interface (API) 510. Comm manager 518 passes the
compressed video through digital signal processing
(DSP) interface 528 to ISA bus interface 408 of audio/—
comm board 206, which stores the compressed video to
memory 404. Comm task 540 then formats the com-
pressed video for ISDN transmission and transmits the
ISDN-formatted compressed video to ISDN interface
402 for transmission to the remote site over ISDN 110.

ISDN interface 402 also receives from ISDN 110

ISDN-formatted compressed video generated by the
remote site system and stores the ISDN-formatted com-
pressed video to memory 404. Comm task 540 recon-
structs the compressed video format and stores the
resulting compressed video back to memory 404. ISA
bus interface then transmits the compressed video to
com manager 518 via ISA bus 208 and DSP interface
528. Comm manager 518 passes the compressed video
to video manager 516 using comm API 510. Video
manager 516 decompresses the compressed video and
transmits the decompressed video to the graphics de-
vice interface (GDI) (not shown) of Microsoft ® Win-
dows for eventual display in a video window on moni-
tor 106.

For data conferencing, concurrent with audio and
video conferencing, data conferencing application 504
generates and passes data to com manager 518 using
conferencing API 506 and com API 5 10. Comm
manager 518 passes the data through board DSP inter-
face 532 to ISA bus interface 408, which stores the data
to memory 404. Comm task 540 formats the data for
ISDN transmission and stores the ISDN-formatted data

back to memory 404. ISDN interface 402 then transmits
the ISDN-formatted data to the remote site over ISDN
110.

ISDN interface 402 also receives from ISDN 110

ISDN-formatted data generated by the remote site and
stores the ISDN-formatted data to memory 404. Comm
task 540 reconstructs the data format and stores the

resulting data back to memory 404. ISA bus interface
408 then transmits the data to com manager 518, via
ISA bus 208 and DSP interface 528. Comm manager
518 passes the data to data conferencing application 504
using comm API 510 and conferencing API 506. Data
conferencing application 504 processes the data and
transmits the processed data to Microsoft ® Windows
GDI (not shown) for display in a data window on moni-
tor 106.

Preferred Hardware Configuration for Conferencing

System

Referring again to FIG. 2, host processor 202 may be
any suitable general-purpose processor and is preferably

10

15

20

25

30

35

45

50

55

65

6

an Intel ® processor such as an Intel ® 486 micro-
processor. Host processor 202 preferably has at least 8
megabytes ofhost memory. Bus 208 may be any suitable
digital communications bus and is preferably an Indus-
try Standard Architecture (ISA) PC bus.

Referring again to FIG. 3, video A/D converter 308
of video board 204 may be any standard hardware for
digitizing and decoding analog video signals that are
preferably NTSC or PAL standard video signals. Video
capture module 306 may be any suitable device for
capturing digital video color component bitmaps and is
preferably an Intel ® ActionMedia ® II Capture Mod-
ule. Video capture module 306 preferably captures
video as subsampled 4:1:l YUV bitmaps (i.e., YUV9 or
YVU9). Memory 304 may be any suitable computer
memory device for storing data during video processing

such as a random access memory (RAM) device and is
preferably a video RAM (VRAM) device with at least
1 megabyte of data storage capacity. Pixel processor
302 may be any suitable processor for compressing
video data and is preferably an Intel ® pixel processor
such as an Intel ® i750® Pixel Processor. Video bus
312 may be any suitable digital communications bus and
is preferably an Intel ® DVI ® bus. ISA bus interface
310 may be any suitable interface between ISA bus 208
and video bus 312, and preferably comprises three In-
tel ® ActionMedia ® Gate Arrays and ISA configura-
tion jumpers.

Referring now to FIG. 6, there is shown a block
diagram of a preferred embodiment of the hardware
configuration of audio/comm board 206 of FIG. 4. This
preferred embodiment comprises:

Two 4—wire S-bus RJ-45 ISDN interface connectors,

one for output to ISDN 110 and one for input from
ISDN 110. Part of ISDN interface 402 of FIG. 4.

Standard bypass relay allowing incoming calls to be
redirected to a down-line ISDN phone (not shown)
in case conferencing system power is off or confer-
encing software is not loaded. Part of ISDN inter-
face 402.

Two standard analog isolation and filter circuits for
interfacing with ISDN 110. Part of ISDN interface
402.

Two Siemens 8-bit D-channel PEB2085 ISDN inter-

face chips. Part of ISDN interface 402.
Texas Instruments (TI) 32-bit 33 MHz 320c3l Digital

Signal Processor. Equivalent to DSP 406.
Custom ISDN/DSP interface application specified

integrated circuit (ASIC) to provide interface be-
tween 8-bit Siemens chip set and 32-bit TI DSP.
Part of ISDN interface 402.

256 Kw Dynamic RAM (DRAM) memory device.
Pan of memory 404.

32 Kw Static RAM (SRAM) memory device. Part of
memory 404.

Custom DSP/ISA interface ASIC to provide inter-
face between 32-bit TI DSP and ISA bus 208. Part
of ISA bus interface 408.

Serial EEPROM to provide software jumpers for
DSP/ISA interface. Part of ISA bus interface 408.

Audio Codec 4215 by Analog Devices, Inc. for sam-
pling audio in format such as ADPCM, DPCM, or
PCM format. Part of audio I/O hardware 410.

Analog circuitry to drive audio V0 with internal
speaker for playback and audio jacks for input of
analog audio from microphone 104 and for output
of analog audio to speaker 108. Part of audio I/O
hardware 410.

CISCO SYSTEMS, INC. Ex. 1131 Page 36

CISCO SYSTEMS, INC. Ex. 1131 Page 37

5,434,913
7

Referring now to FIGS. 30 and 31, there are shown
diagrams of the architecture of the audio/comm board.

The audio/comm board consists basically of a slave
ISA interface, a TMS32OC3l DSP core, an ISDN BRI
S interface, and a high quality audio interface. .

The C31 Interface is a 32-bit non-multiplexed data
port to the VC ASIC. It is designed to operate with a
27-33 Mhz C31. The C31 address is decoded for the
ASIC to live between 400 OOOH and 44F FFFH. All

accesses to local ASIC registers (including the FIFO’s)
are 0 wait-state. Accesses to the I/O bus (locations 440
OOOH through 44F FFFH) have 3 wait states inserted.
Some of the registers in the ASIC are 8 and 16 bits wide.

In these cases, the data is aligned to the bottom (bit 0
and up) of the C31 data word. The remainder of the bits

will be read as a “O”. All non-existent or reserved regis-
ter locations will read as a “O”.

The B-channel interfaces provide a 32-bit data path to
and from the B1 and B2 ISDN data channels. They are
FIFO buffered to reduce interrupt overhead and la-
tency requirements. The Line-side and Phone-side in-
terfaces both support transparent data transfer—used
for normal phone-call,1 FAX, modem and H.221 for-
matted data. Both interfaces also support HDLC for-
matting of the B data per channel to support V.120
“data data” transfer.

The receive and transmit FIFO’s are 2 words deep, a
word being 32 bits wide (C31 native data width). Full,
half and empty indications for all FIFO’s are provided
in the B-channel status registers. Note that the polarity
of these indications vary between receive and transmit.

This is to provide the correct interrupt signaling for
interrupt synchronized data transfer.

The transparent mode sends data received in the
B-channel transmit FIFO’s to the SSI interface of the

ISACs. The transmitted data is not formatted in any
way other than maintaining byte alignment (i.e., bits 0,
8, 16, 24 of the FIFO data are always transmitted in bit
0 of the B-charmel data). The written FIFO data is
transmitted byte 0 first, byte 3 last—where byte 0 is bits
0 through 7, and bit 0 is sent first.

Transparent mode received data is also byte aligned
to the incoming B-channel data stream and assembled as
byte 0, byte 1, byte 2, byte 3. Receive data is written

into the receive FIFO after all four types have arrived.
The ISAC I/O Interface provides an 8 bit multi-

plexed data bus used to access the Siemens PEB2085s
(ISAC). The 8 bits of I/O address come from bits 0
through 7 of the C31 address. Reads and writes to this

interface add 3 wait-states to the C31 access cycle.
Buffered writes are not supported in this version of the
ASIC.

Each ISAC is mapped directly into its own 64 byte
address space (6 valid bits of address). Accesses to the
ISAC are 8 bits wide and are located at bit positions 0 to
7 in the C31 32 bit word. Bits 8 through 23 are returned
as “O”s on reads.

The PB2085’s provide the D-charmel access using
this interface.

The Accelerator Module Interface is a high band-
width serial communication path between the C31 and
another processor which will be used to add MIPS to

the board. Certain future requirements such as g.728
audio compression will require the extra processing
power,

The data transfers are 32 bit words sent serially at
about 1.5 Mbits/s. The VC ASIC buffers these transfers

with FICOs which are 2 words deep to reduce interrupt

l0

15

20

25

30

35

45

50

55

65

8

overhead and response time requirements. The status

register provide flags for FIFO full, half, empty and
over/under-run (you should never get an under-run).
Any of these can be used as interrupt sources as selected
in the Serial Port Mask register.

The following paragraphs describe the ISA interface
of the audio/comm board. The ISA interface is the gate
array that provides an interface between the mu1ti-func-
tion board and the ISA bus. Further, the ASIC will
control background tasks between a DSP, SAC, and
Analog Phone line interfaces. The technology chosen
for the ASIC is the 1 micron CMOS-6 family from
NBC.

Referring now to FIG. 32, there is shown a diagram
of the audio/comm board environment. The following
is a descriptionof the signal groups.

ISA Bus Siggals
The address enable signal is used to de-gated
the CPU and other devices from the bus
during DMA cycles. When this signal is active
(high) the DMA controller has control of the
bus. The ASIC does not respond to bus cycleswhen AEN is active.

The I/0 16-bit chip select is used by 16-bit
I/O devices to indicate that it can
accommodate a 16-bit transfer. This signal is
decoded off of address only.
This is an active low signal indicating the an
I/O write cycle is being performed.
This is an active low signal indicating the an
1/0 read cycle is being performed.
These signals are interrupt requests. An
interrupt request is generated when an IRQ
is raised from a low to a high. The IRQ must
remain high until the interrupt service routine
acknowledges the interrupt.
This signal is used to initialize system logic
upon power on.
The system bus high enable signal indicates
that data should be driven onto the upper
byte of the 16-bit data bus.
These are the system address lines used to
decode I/0 address space used by the board.
This scheme is compatible with the ISA bus.
These addresses are valid during the entire
command cycle.
These are the system data bus lines.

DSP Sigr_1aIs
HICLK is the DSP primary bus clock. All
events in the primary bus are referenced to
this clock. The frequency of this clock is half
the frequency of the clock driving the DSP.
See the TMS320C3l data manual chapter 13.
These are the DSP 32-bit data bus. Data lines
16, 17, and 18 also interface to the EEPROM.
Note that the DSP must be in reset and the
data bus tri-stated before access to the
EEPROM. This date bus also supplies the
board ID when the read while the DSP is
reset (see HAUTOID register).
This is the DSP active low reset signal.
These DSP address lines are used to decode
the address space by the ASIC.
This signal indicates whether the current DSP
external access is a read (high) or a
write (low)
This is an active low signal form the DSP
indicating that the current cycle is to the
primary bus.
This signal indicates that the current cycle
being performed on the primary bus of the
DSP can be completed.
The Hold sigial is an active low signal used to
request the DSP relinquish control of the
primary bus. Once the hold has been
acknowledge all address, data and status linfi
are tri-stated until Hold is released. This signal
will be used to implement the DMA and

AEN

IOCSl6#

IOW#

IOR#

IRQ3, IRQ4,
mos, IRQ9,
IRQIO, IRA11,
IRQl5

RESET

SBI-IE#

SA(9:0)

SD(l5:O)

HICLK

D(3l:0)

C3 l_RST#
A23—A0

R/W#

STRB#

RDY#

HOLD#

CISCO SYSTEMS, INC. Ex. 1131 Page 37

CISCO SYSTEMS, INC. Ex. 1131 Page 38

I-IOLDA#

INT2#

INTE1#
INTO#

MEMWI-Ll#
and MEMWR2#
B lOE#,
B20E#
SlLCS#

CAS#

RAS#

HlDl2,
HIDZ4
MUX

EESK

EEDI

EEDO

EECS

SP.._DC

SP_SCLK

SP_SDIN

SP_.SDOUT

SP_FSYNC

24.576MHZ

COD_FS 1,
COD_FS2,
DOC_.FS3,
COD_FS4
COD__SDOUT

COD_SDIN

COD_..SCLK

5,434,913
9

-continued
DRAM Refresh. ‘
This is the Hold Acknowledge signal which is
the active low indication that the DSP has

relinquished control of the bus.
This C31 interrupt is used by the ASIC for
DMA and Command interrupts.
Interrupt the C31 on COM Port events.
Arnalog Phone Interrupts.

Memogy Sign_nals
These signals are active low write strobes for
memory banks 1 and 2.
These signals are active low output enables
for memory banks 1 and 2.
This is a active low chip selected for the
SRAM that makes up bank2.
This the active low column address strobe to
the DRAM.
This the active low row address strobe to
the DRAM.
These signals are a 12 and 24 n5 delay of
the I-IICLK.
Mux is the signal that controls the external
DRAM address mux. When this signal is low
the CAS addresses are selected and when it is
high the RAS addresses are selected.

EEPROM Siggals
This is the EEPROM clock signal. This signal
is multiplexed with the DSP data signal lDl6.
This signal can only be valid while the DSP is
in reset.
This is the input data signal to the EEPROM.
This signal is multiplexed with the DSP data
signal D17. This signal can only be valid
while the DSP is in reset.

This is the data output of the EEPROM.
This signal is multiplexed with the DSP data
signal D18. This signal can only be valid
while the DSP is in reset.
This is the chip select signal for the
EEPROM. This signal is NOT multiplexed
a.nd can only be drive active (HIGH) during
DSP reset.

Stereo Audio Codec gSAC!
This signal controls the SAC mode of
operation. When this signal is high the SAC
is_in data or master mode. When this signal is
lw the SAC is in control or slave mode.
This is the Soundport clock input signal. This
clock will either originate from the Soundport
or the ASIC.
This serial data input from the Soundport. The
data here is shifted in on the falling edge of
the SP_CLK.
This is the serial data output signal for the
Soundport. The data is shifted out on the
rising edge of the SP__CLK.
This is the frame synchronization signal for the
Soundport. This signal will originate from the
ASIC when the Soundport is in slave mode or
the Soundport is being programmed in control
mode. When the Soundport is in master mode
the frame sync will originate from the
Soundport and will have a frequency equal to
the sample rate.

CODEC Sigals
This clock signal is used to derive clocks used
within the ASIC and the 2.04-8M1~Iz
CODEC clock.
These signals are the CODEC frame syncs,
each signal correspond to one of the
four CODECs.

This signal is the serial data output signal of
the CODES.
This signal is the serial data input signal to
the CODECS.
This a 2.048MHz clock used to clock data in
and out of the four CODECS. The serial data
is clocked out on the rising edge and in on
the falling edge.

Analog Phone Siggals

l0

15

20

25

30

35

45

50

55

65

10

-continued
LPSENSL l

LPSENSPH1

LPSENSL2

LPSENSPH2

RINGDETL 1

RINGDETL2

CALLDETL2

CALLDETL2

PDOHL 1

PDOHL2

BYPSRLYl and 2

LOOPDIS
SWCLR#

6. 144-MHZ

TESTl, TEST2,
TEST3, TEST4

VDD, VSS

Linel off hook loop current sense. If this
signal is low and BYPSRLYI is high it
indicates the Set 1 has gone off hook. If the
signal is low and the BYPSRLYl is low it
indicates that the board has gone off hook.
This signal is not latched and therefore is a
Real-time-signal.
Set 1 off hook loop current sense. If this
signal is low it indicates the Set 1 has gone
off hook. This can only take place when
BYPSRLYI is low. This signal is not latched
and therefore is a Real-time—signal.
Line2 off hook loop current sense. If this
signal is low and BYPSRLY2 is high it
indicates the Set 1 has gone off hook. If the
signal is low and the BYPSRLY2 is low it
indicates that the board has gone off hook.
This signal is not latched and therefore is a
Real-time-signal.
Set 2 off hook loop current sense. If this
signal is low it indicates the Set 1 has gone off
hook. This can only take place when
BYPSRLY2 is low. This signals is not latched
and therefore is a Real-time-signal.
Line 1 Ring Detect. If this input signal is low
the Line is ringing.
Line 2 Ring Detect. If this input signal is low
the Line is ringing.
Call Detect for Line 1. This signal is cleared
low by software to detect 1200 baud FSK data
between the first and second rings.
Call Detect for Line 2. This signal is cleared
low by software to detect 1200 baud FSK data
between the first and second rings.
Pulse Dial Off hook for Line 1. This signal is
pulsed to dial phone numbers on pulse dial
systems. It is also used to take the line off
hook when low.
Pulse Dial Off hook for Line 2. This signal is
pulsed to dial phone numbers on pulse dial
systems. It is also used to take the line off
hook when low.
This is an active low output signal controlling
the Bypass Relay output. When high the board
is by-passed and the Line (1 or 2) is connected
the desk Set (1 or 2).

Miscellaneous Signals
This a 6.144 MHz clock signal used to drive
the module that can attached to the board. The
module will then use this signal to synthesize
any frequency it requires.
These are four test pins used by the
ASIC designers two decrease ASIC
manufacturing test vectors. The TEST2
pin is the output of the nand-
tree used by ATE.

Those skilled in the art will understand that the pres-
ent invention may comprise configurations of audio/-
comm board 206 other than the preferred configuration
of FIG. 6.

Software Architecture for Conferencing System

The software architecture of conferencing system
100 shown in FIGS. 2 and S has three layers of abstrac-
tion. A computer supported collaboration (CSC) infra~
structure layer comprises the hardware (i.e., video
board 204 and audio/comm board 206) and host/board
driver software (i.e., host interface 526 and DSP inter-
face 528) to support video, audio, and com, as well as
the encode method for video (running on video board
204) and encode/decode methods for audio (running on
audio/comm board 206). The capabilities of the CSC

CISCO SYSTEMS, INC. Ex. 1131 Page 38

CISCO SYSTEMS, INC. Ex. 1131 Page 39

5,434,913
11

infrastructure are provided to the upper layer as a de-
vice driver interface (DDI). ,

A CSC system software layer provides services for
instantiating and controlling the video and audio
streams, synchronizing the two streams, and establish-
ing and gracefully ending a call and associated commu-
nication charmels. This functionality is provided in an
application programming interface (API). This API
comprises the extended audio and video interfaces and

the communications APIs (i.e., conferencing API 506,
video API 508, video manager 516, video capture
driver 522, com API 510, com manager 518, Wave
API 514, Wave driver 524, audio API 512, and audio
manager 520).

A CSC applications layer brings CSC to the desktop.
' The CSC applications may include video armotation to

video mail, video answering machine, audio/video/-
data conferencing (i.e., audio/video conferencing appli-
cation 502 and data conferencing application 504), and
group decision support systems.

Audio/Video conferencing application 502 and data
conferencing application 504 rely on conferencing API
506, which in turn relies upon video API 508, comm
API 510, and audio API 512 to interface with video

manager 516, com manager 518, and audio manager
520, respectively. Comm API 510 and comm manager
518 provide a transport-independent interface (TII) that
provides communications services to conferencing ap-

10

15

20

25

plications 502 and 504. The communications software of 30
conferencing system 100 supports different transport
mechanisms, such as ISDN (e.g., V.120 interface),
SW56 (e.g., BATP’s Telephone API), and LAN (e.g.,
SPX/IPX, TCP/IP, or NetBIOS). The TII isolates the
conferencing applications from the underlying trans-
port layer (i.e., transport-medium-specific DSP inter-
face 528). The TII hides the network/connectivity spe-
cific operations. In conferencing system 100, the TII
hides the ISDN layer. The DSP interface 528 is hidden

in the datalink module (DLM). The TII provides ser-
vices to the conferencing applications for opening com-
munication charmels (within the same session) and dy-
namically managing the bandwidth. The bandwidth is
managed through the transmission priority scheme.

In a preferred embodiment in which conferencing
system 100 performs software video decoding, AVI
capture driver 522 is implemented on top of host inter-
face 526 (the video driver). In an alternative preferred
embodiment in which conferencing system 100 per-
forms hardware video decoding, an AVI display driver
is also implemented on top of host interface 526.

The software architecture of conferencing system
100 comprises three major subsystems: video, audio,
and communication. The audio and video subsystems
are decoupled and treated as “data types” (similar to
text or graphics) with conventional operations like
open, save, edit, and display. The video and audio ser-
vices are available to the applications through video-
management and audio-management extended inter-
faces, respectively.

Audio/Video Conferencing Application

Audio/video conferencing application 502 imple-
ments the conferencing user interface. Conferencing
application 502 is implemented as a Microsoft ® Win-
dows 3.1 application. One child window will display
the local video image and a second child window will
display the remote video image. Audio/video confer-

35

45

50

55

65

12

encing application 502 provides the following services
to conferencing system 100:

Manage main message loop.
Perform initialization and registers classes.
Handle menus.

Process toolbar messages.
Handles preferences.
Handles speed dial setup and selections.
Connect and hang up.
Handles handset window
Handle remote video.
Handle remote video window.
Handle local video.
Handle local video window.

Data Conferencing Application

Data conferencing application 504 implements the
data conferencing user interface. Data conferencing
application is implemented as a Microsoft ® Windows
3.1 application. The data conferencing application uses
a “shared notebook” metaphor. The shared notebook
lets the user copy a file from the computer into the

notebook and review it with a remote user during a call.
When the user is sharing the notebook (this time is
called a “meeting”), the users see the same information
on their computers, users can review it together, and
make notes directly into the notebook. A copy of the
original file is placed in the notebook, so the original
remains unchanged. The notes users make during the
meeting are saved with the copy in a meeting file. The
shared notebook looks like a notebook or stack ofpaper.
Conference participants have access to the same pages.
Either participant can create a new page and fill it with
information or make notes on an existing page.

Conferencing API

Conferencing API 506 of FIG. 5 facilitates the easy
implementation of conferencing applications 502 and
504. Conferencing API 506 ofFIG. 5 provides a generic
conferencing interface between conferencing applica-
tions 502 and 504 and the video, comm, and audio sub-
systems. Conferencing API 506 provides a high-level
abstraction of the services that individual subsystems
(i.e., video, audio, and com) support. The major ser-
vices include:

Making, accepting, and hanging-up calls.
Establishing and terminating multiple communication

channels for individual subsystems.
Instantiating and controlling local video and audio.
Sending video and audio to a remote site through the

network.

Receiving, displaying, and controlling the remote
video and audio streams.

Conferencing applications 502 and 504 can access these
services through the high-level conferencing API 506
without worrying about the complexities of low-level
interfaces supported in the individual subsystems. ‘

In addition, conferencing API 506 facilitates the inte-
gration of individual software components. It minimizes
the interactions between conferencing applications 502
and 504 and the video, audio, and com subsystems.
This allows the individual software components to be
developed and tested independent of each other. Con-
ferencing API 506 serves as an integration point that
glues different software components together. Confer-
encing API 506 facilitates the portability ofaudio/video
conferencing application 502.

CISCO SYSTEMS, INC. Ex. 1131 Page 39

CISCO SYSTEMS, INC. Ex. 1131 Page 40

5,434,913
13

Conferencing API 506 is implemented as a Microsoft
Windows Dynamic Link Library (DLL). Conferencing
API 506 translates the function calls from conferencing

application 502 to the more complicated calls to the
individual subsystems (i.e., video, audio, and com).
The subsystem call layers (i.e., video API 508, com
API 510, and audio API 512) are also implemented in
DLLs. As a result, the programming of conferencing
API 506 is simplified in that conferencing API 506 does
not need to implement more complicated schemes, such
as dynamic data exchange (DDE), to interface with
other application threads that implement the services
for individual subsystems. For example, the video sub-
system will use window threads to transmit/receive
streams of video to/from the network.

Conferencing API 506 is the central control point for
supporting communication channel management (i.e.,
establishing, terminating channels) for video and audio
subsystems. Audio/video conferencing application 502
is responsible for supporting communication channel
management for the data conferencing streams.

Referring now to FIG. 7, there is shown a block
diagram of the conferencing interface layer 700 be-
tween conferencing applications 502 and 504 of FIG. 5,
on one side, and com manager 518, video manager
516, and audio manager 520, on the other side, accord-
ing to a preferred embodiment of the present invention.
Conferencing API 506 of FIG. 5 comprises conferenc-
ing primitive validator 704, conferencing primitive dis-
patcher 708, conferencing callback 706, and conferenc-
ing finite state machine (FSM) 702 of conferencing
interface layer 700 of FIG. 7. Com API 510 of FIG. 5
comprises comm primitive 712 and com callback 710
of FIG. 7. Video API 508 of FIG. 5 comprises video
primitive 716 of FIG. 7. Audio API 5 12 of FIG. 5
comprises audio primitive 720 of FIG. 7.

Conferencing primitive validator 704 validates the
syntax (e.g., checks the conferencing call state, channel
state, and the stream state with the conferencing finite
state machine (FSM) 702 table and verifies the correct-
ness of individual parameters) of each API call. If an
error is detected, primitive validator 704 terminates the
call and returns the error to the application immedi-
ately. Otherwise, primitive validator 704 calls confer-
encing primitive dispatcher 708, which determines
which subsystem primitives to invoke next.

Conferencing primitive dispatcher 708 dispatches and
executes the next conferencing API primitive to start or
continue to carry out the service requested by the appli-
cation. Primitive dispatcher 708 may be invoked either
directly from primitive validator 704 (i.e., to start the
first of a set of conferencing API primitives) or from
conferencing callback 706 to continue the unfinished
processing (for asynchronous API calls). Primitive dis-
patcher 708 chooses the conferencing API primitives
based on the information of the current state, the type of
message/event, and the next primitive being scheduled
by the previous conferencing API primitive.

After collecting and analyzing the completion status
from each subsystem, primitive dispatcher 708 either (1)
returns the concluded message back to the conferencing
application by returning a message or invoking the
application-provided callback routine or (2) continues
to invoke another primitive to continue the unfinished
processing.

There are a set of primitives (i.e., comm primitives.
712, video primitives 716, and audio primitives 720)
implemented for each API call. Some primitives are

10

15

20

25

30

35

45

50

55

60

65

14

designed to be invoked from a callback routine to carry
out the asynchronous services.

The subsystem callback routine (i.e., comm callback
710) returns the completion status of an asynchronous
call to the com subsystem to conferencing callback
706, which will conduct analysis to determine the
proper action to take next. The com callback 710 is
implemented as a separate thread of execution (vthread-
.exe) that receives the callback Microsoft ® Windows
messages from the comm manager and then calls VCI
DLL to handle these messages.

Conferencing callback 706 returns the completion
status of an asynchronous call to the application. Con-
ferencing callback 706 checks the current message/e-
vent type, analyzes the type against the current confer-
encing API state and the next primitive being scheduled
to determine the actions to take (e.g., invoke another
primitive or return the message to the application). If
the processing is not complete yet, conferencing call-
back 706 selects another primitive to continue the rest
of the processing. Otherwise, conferencing callback 706
returns the completion status to the application. The
conferencing callback 706 is used only for com related
conferencing API functions; all other conferencing API
functions are synchronous.

The major services supported by conferencing API
506 are categorized as follows:

Call and Channel Services (establish/terminate a
conference call and channels over the call).

Stream Services (capture, play, record, link, and con-
trol the multimedia audio and video streams).

Data Services (access and manipulate data from the
multimedia streams).

Interfacing with the Comm Subsystem

Conferencing API 506 supports the following comm
services with the com subsystem:

Call establishment—place a call to start a conference.
Channel establishment-—establish four comm chan-

nels for incoming video, incoming audio, outgoing
video, and outgoing audio. These 4 channels are
opened implicitly as part of call establishment, and
not through separate APIs. The channel APIs are
for other channels (e.g., data conferencing).

Call termination—-hang up a call and close all active
channels.

Call Establishment

Establishment of a call between the user of confer-

encing system A of FIG. 1 and the user of conferencing
system B of FIG. 1 is implemented as follows:

Conferencing APIs A and B call BeginSession to
initialize their comm subsystems.

Conferencing API A calls MakeConnection to dial
conferencing API B’s number.

Conferencing API B receives a CONN._RE-
QUESTED callback.

Conferencing API B sends the call notification to the
graphic user interface (GUI); and if user B accepts
the call via the GUI, conferencing API B proceeds
with the following steps.

Conferencing API B calls AcceptConnection to ac-
cept the incoming call from conferencing API A.

Conferencing APIs A and B receives CONN_AC-
CEPTED message.

Conferencing APIs A and B call RegisterChanMgr
for channel management.

CISCO SYSTEMS, INC. Ex. 1131 Page 40

CISCO SYSTEMS, INC. Ex. 1131 Page 41

vices with the audio and video subsystems:

5,434,913
15

Conferencing API A calls OpenChaImel to open the
audio channel.

Conferencing API B receives the Chan.._Requested
callback and accepts it via AcceptCha1mel.

Conferencing API A receives the Chan__Accepted 5
callback.

The last three steps are repeated for the video chan-
nel and the control channel.

Conferencing API A then sends the business card
information on the control channel, which confer-
encing API B receives.

Conferencing API B then turns around and repeats
the above 6 steps (i.e., opens its outbound channels
for audio/video/control and sends its business card

information on its control channel).
Conferencing APIs A and B then notify the confer-

encing applications with a CFM_ACCEP-
T_.NTFY callback.

Channel Establishment

Video and audio chaimel establishment is implicity

l0

15

20

done as part of call establishment, as described above,
and need not be repeated here. For establishing other
channels such as data conferencing, the conferencing
API passes through the request to the com manager,
and sends the comm manager’s callback to the user’s
channel manager.

25

Call Termination

Termination of a call between users A and B is imple- 30
mented as follows (assuming user A hangs up):

Conferencing API A unlinks local/remote video/au-
dio streams from the network.

Conferencing API A then calls the comm manager’s
CloseConnection.

The comm manager implicitly closes all channels,
and sends Chan_Closed callbacks to conferencing
API A.

Conferencing API A closes its remote audio/video
streams on receipt of the Chan__Closed callback
for its inbound audio/video channels, respectively.

Conferencing API A then receives the CONN_
CLOSE_RESP from the comm manager after the
call is cleaned up completely. Conferencing API A
notifies its application via a CFM_HAN-
GUP._NTFY.

In the meantime, the com manager on B would
have received the hang-up notification, and would
have closed its end of all the channels, and notified
conferencing API B via Chan._Closed.

Conferencing API B closes its remote audio/video
streams on receipt of the Chan__Closed callback
for its inbound audio/video channels, respectively.

Conferencing API B unlinks its local audio/video
streams from the network on receipt of the Chan... 55
Closed callback for its outbound audio/video chan-

nels, respectively.
Conferencing API B then receives a CONN_.

CLOSED notification from its comm manager.
Conferencing API B notifies its application via 60
CFM_I-IANGUP_NTFY.

35

45

50

Interfacing with the Audio and Video Subsystems

Conferencing API 506 supports the following ser-
65

Capture/monitor/transmit local video streams.
Capture/transmit local audio streams.
Receive/play remote streams.

16
Control local/remote streams.

Snap an image from local video stream.
Since the video and audio streams are closely synchro-
nized, the audio and video subsystem services are de-
scribed together.

Capture/Monitor/Transmit Local Streams

The local video and audio streams are captured and
monitored as follows:

Call AOpen to open the local audio stream.
Call VOpen to open the local video stream.
Call ACapture to capture the local audio stream from

the local hardware.

Call VCapture to capture the local video stream from-
the local hardware.

Call VMonitor to monitor the local video stream.

The local video and audio streams are begun to be
sent out to the remote site as follows:

Call ALinkOut to connect the local audio stream to

an output network channel.
Call VLinkOut to connect the local video stream to

an output network channel.
The monitoring of the local video stream locally is

stopped as follows:
Call VMonitor(oft) to stop monitoring the local

video stream.

Receive/Play Remote Streams

Remote streams are received from the network and

played as follows:
Call AOpen to open the local audio stream.
Call VOpen to open the local video stream.
Call ALinkIn to connect the local audio stream to an

input network charmel.
Call VLinkIn to connect the local video stream to an

input network channel.
Call APlay to play the received remote audio stream.
Call VP1ay to play the receivedwremote video stream.

Control Local/Remote Streams

The local video and audio streams are paused as fol-
lows:

Call VLinkout(ofi) to stop sending local video on the
network. '

Call AMute to stop sending local audio on the net-
work. V

The remote video and audio streams are paused as
follows:

If CF_PlayStream(off) is called, conferencing API
calls AP1ay(off) and VPlay(off).

The local/remote video/audio streams are controlled
as follows:

Call ACntl to control the gains of a local audio
stream or the volume of the remote audio stream.

Call VCnt1 to control such parameters as the bright-
ness, tint, contrast, color of a local or remote video
stream.

Snap an Image from Local Video Streams

A snapshot of the local video stream is taken and
returned as an image to the application as follows:

Call VGrabframe to grab the most current image
from the local video stream.

Conferencing API 506 supports the following func-
tion calls by conferencing applications 502 and 504 to
the video, comm, and audio subsystems:

CISCO SYSTEMS, INC. Ex. 1131 Page 41

CISCO SYSTEMS, INC. Ex. 1131 Page 42

5,434,913
17

CF_Init Reads in the conferencing configuration
parameters (e.g., pathname of the directory
database and directory name in which the
conferencing software is kept) from an
initialization file; loads and initializes the
software of the com, video, and audio
subsystems by allocating and building
internal data structures; allows the
application to choose between the message
and the callback routines to return the event
notifications from the remote site.
Makes a call to the remote site to establish a
connection for conferencing. The call is
performed asynchronously.
Accepts a call initiated from the remote site
based on the information received in the
CFM_CALL_NTFY message.
Rejects incoming call, if appropriate, upon
receiving a CFM_.CALL_NTI-‘Y message.
Hangs up a call that was previously
established; releases all resources, including
all types of streams and data structures,
allocated during the call.
Returns the current state of the specified
call.
Starts the capture of analog video signals
from the local camera and displays the
video in the locaL_.video.._window which
is pre-opened by the application. This
function allows the user to preview his/her
appearance before sending the signals out to
the remote site.
Starts the reception and display of remote
video signals in the remote_video.window,
which is pre-opened by the application;
starts the reception and play of remote audio
signals through the local speaker.
Destroys the specified stream group that
was created by CF_.CapMon or
CF_PlayRcvd. As part of the destroy
process, all operations (e.g., sending/
playing) being performed on the stream
group will be stopped and all allocated
system resources will be freed.
Uses AMute to turn on/off the mute
function being performed on the audio
stream of a specified stream group. This
function will temporarily stop or restart
the related operations, including playing and
sending, being performed on this stream
group. This function may be used to hold
temporarily one audio stream and provide
more bandwidth for other streams to use.
Takes a snapshot of the video stream of the
specified stream group and returns a still
image (reference) frame to the application
buffers indicated by the hBuffer handle.
Controls the capture or playback functions
of the local or remote video and audio
stream groups.
Uses ALinkOut to pause/unpause audio.
Returns the current state and the audio
video control block (AVCB) data structure,
preallocated by the application, of the
specified stream groups.
Stops/starts the playback of the remote
audio/video streams by calling
APlay/VPlay.

CF_..MakeCall

CF_.AcceptCall

CF...RejectCall

CF...HangupCall

CF__GetCallState

CF_CapMon

CF_PlayRcvd

CF_Destroy

CF_Mute

CF__SnapStream

CF_Control

CF_.SendStream
CF..._GetStreamInfo

CF._P1ayStream

These functions are defined in further detail later in this

specification in a section entitled “Data Structures,
Functions, and Messages.”

In addition, conferencing API 506 supports the fol-
lowing messages returned to conferencing applications
502 and 504 from the video, com, and audio subsys-
tems in response to some of the above-listed functions:

CFM._CALL_N'l'FY Indicates that a call request

l0

15

20

25

30

35

45

50

55

65

18

-continued
initiated from the remote site has
been received.
Indicates that a call state/progress
notification has been received from
the local phone system support.
Indicates that the remote site has
accepted the call request issued
locally. Also sent to the accepting
application when CF_AcceptCall
completes.
Indicates that the remote site has
rejected or the local site has failed
to make the call.
Indicates that the remote site has
hung up the call.

CFM_.PROGRESS_..NTFY

CFM_ACCEPT_N'1'FY

CFM_RE.TECT__NTFY

CFlVLHANGUP_.NTFY

Referring now to FIG. 8, there is shown a representa-
tion of the conferencing call finite state machine (FSM)
for a conferencing session between a local conferencing
system (i.e., caller) and a remote conferencing system
(i.e., callee), according to a preferred embodiment of
the present invention. The possible conferencing call
states are as follows:

CCST_NULL Null State —— state of uninitialized
caller/callee.

CCST_.IDLE Idle State — state of caller/callee ready
to make/receive calls.
Calling state — state of caller trying to
call callee.
Called state -—— state of callee being
called by caller.
Call state — state of caller and callee
during conferencing session.
Ahangup or call cleanup is in progress.

CCST_CALLING

CCST._CALLED

CCST_CONNECTED

CCST..CLOSING

At the CCST-CONNECTED state, the local applica-
tion may begin capturing, monitoring, and/or sending
the local audio/video signals to the remote application.
At the same time, the local application may be receiving
and playing the remote audio/video signals.

Referring now to FIG. 9, there is shown a representa-
tion of the conferencing stream FSM for each confer-
encing system participating in a conferencing session,
according to a preferred embodiment of the present
invention. The possible conferencing stream states are
as follows:

CSST__INIT Initialization state — state of
local and remote streams after
CCST_CONNECTED state is
first reached.
Capture state —- state of local stream being
captured. Receive state — state of remote
stream being received.
Fail state — state of local/remote stream
after resource failure.

CSST_ACTIVE

CSST_FAILURE

Conferencing stream FSM represents the states of both
the local and remote streams of each conferencing sys-
tem. Note that the local stream for one conferencing
system is the remote stream for the other conferencing
system.

In a typical conferencing session between a caller and
a callee, both the caller and callee begin in the
CCST_NULL call state of FIG. 8. The conferencing
session is initiated by both the caller and callee calling
the function CF_Init to initialize their own conferenc-

ing systems. Initialization involves initializing internal
data structures, initializing communication and configu-

CISCO SYSTEMS, INC. Ex. 1131 Page 42

CISCO SYSTEMS, INC. Ex. 1131 Page 43

5,434,913
19

ration information, opening a local directory data base,
verifying the local user’s identity, and retrieving the
user’s profile information from the database. The CF_I-
nit function takes both the caller and callee from the
CCST_NULL call state to the CCST_IDLE call

state. The CF_Init function also places both the local
and remote streams of both the caller and callee in the
CSST_INIT stream state of FIG. 9.

Both the caller and callee call the CF_CapMon func-
tion to start capturing local video and audio signals and
playing them locally, taking both the caller and callee
local stream from the CSST_INIT stream state to the
CSST_ACTIVE stream state. Both the caller and cal-

lee may then call the CF_Control function to control

the local video and audio signals, leaving all states un-
changed.

The caller then calls the CF_MakeCall function to

initiate a call to the callee, taking the caller from the
CCST_IDLE call state to the CCST_CALLING call

state. The callee receives and processes a CFM_CAL-
L_NTFY message indicating that a call has been
placed from the caller, taking the callee from the
CCST_IDLE call state to the CCST_CALLED call

state. The callee calls the CF._AcceptCall function to
accept the call from the caller, taking the callee from
the CCST_CALLED call state to the CCST_CON-

NECTED call state. The caller receives and processes
a CFM_ACCEPT_NTFY message indicating that the
callee accepted the call, taking the caller from the
CCST_CALLING call state to the CCST_CON-
NECTED call state.

Both the caller and callee then call the CF_.

PlayRcvd function to begin reception and play of the
video and audio streams from the remote site, leaving
all states unchanged. Both the caller and callee call the
CF_SendStream function to start sending the locally
captured video and audio streams to the remote site,
leaving all states unchanged. If necessary, both the
caller and callee may then call the CF_Control func-
tion to control the remote video and audio streams,
again leaving all states unchanged. The conferencing
session then proceeds with no changes to the call and
stream states. During the conferencing session, the ap-
plication may call CF..Mute, CF._PlayStream, or CF
SendStream. These affect the state of the streams in the

audio/video managers, but not the state of the stream
group.

When the conferencing session is to be terminated,
the caller calls the CF_HangupCall function to end the
conferencing session, taking the caller from the
CCST_CONNECTED call state to the CCST_IDLE

call state. The callee receives and processes a CFM_
HANGUP__NTFY message from the caller indicating
that the caller has hung up, taking the callee from the
CCST_CONNECTED call state to the CCST_IDLE
call state.

Both the caller and callee call the CF_Destroy func-
tion to stop playing the remote video and audio signals,
taking both the caller and callee remote streams from
the CSST_ACTIVE stream state to the CSST_INIT
stream state. Both the caller and callee also call the

CF_Destroy function to stop capturing the local video
and audio signals, taking both the caller and callee local
streams from the CSST_ACTIVE stream state to the
CSST_INIT stream state.

This described scenario is just one possible scenario.
Those skilled in the art will understand that other sce-

5

20

25

30

35

45

50

55

60

20

narios may be constructed using the following addi-
tional functions and state transitions:

If the callee does not answer within a specified time
period, the caller automatically calls the CF._Han-
gupCall function to hang up, taking the caller from
the CCST_CALLING call state to the CCST_I-
DLE call state.

The callee calls the CF_RejectCall function to reject
a call from the caller, taking the callee from the
CCST_CALLED call state to the CCST_IDLE

. call state. The caller then receives and processes a
CFM_REJECT_NTFY message indicating that
the callee has rejected the caller’s call, taking the
caller from the CCST_CALLING call state to the
CCST_IDLE call state.

The callee (rather than the caller) calls the CF_Han-
gupCall function to hang up, taking the callee from
the CCST_CONNECTED call state to the
CCST_IDLE call state. The caller receives a

CFM_I-l’.ANGUP_NTFY message from the cal-
lee indicating that the callee has hung up, taking
the caller from the CCST_CONNECTED call
state to the CCST_IDLE call state.

The CF_GetCallState function may be called by either
the caller or the callee from any call state to determine
the current call state without changing the call state.

During a conferencing session, an unrecoverable
resource failure may occur in the local stream of either
the caller or the callee causing the local stream to be
lost, taking the local stream from the CSST_ACTIVE
stream state to the CSST_FAILURE stream state.

Similarly, an unrecoverable resource failure may occur
in the remote stream of either the caller or the callee

causing the remote stream to be lost, taking the remote
stream from the CSST_ACTIVE stream state to the

CSST_FAILURE stream state. In either case, the local
site calls the CF_Destroy f1lI1Ct‘lOI1 to recover from the
failure, taking the failed stream from the CSST_FAIL-
URE stream state to the CSST_INIT stream state.

The CF_GetStreamlnfo function may be called by
the application from any stream state of either the local
stream or the remote stream to determine information

regarding the specified stream groups. The CF_Snap-
Stream and CF_RecordStream functions may be called
by the application for the local stream in the
CSST_ACTIVE stream state or for the remote stream

(CF_RecordStream only) in the CSST_ACTIVE
stream state. All of the functions described in this para-
graph leave the stream state unchanged.

Video Subsystem

The video subsystem of conferencing system 100 of
FIG. 5 comprises video API 508, video manager 516,
video capture driver 522, and host interface 526 running
on host processor 202 of FIG. 2 and video microcode

530 running on video board 204. The following sections
describe each of these constituents of the video subsys-
tem.

Video API

Video API 508 of FIG. 5 provides an interface be-
tween audio/video conferencing application 502 and
the video subsystem. Video API 508 provides the fol-
lowing services:

Capture Service Captures a single video stream continuously
from a local video hardware source, for

CISCO SYSTEMS, INC. Ex. 1131 Page 43

CISCO SYSTEMS, INC. Ex. 1131 Page 44

5,434,913
21

-continued

example, a video camera or VCR, and
directs the video stream to a video software

output sink (i.e., a network destination).
Monitors the video stream being captured
from the local video hardware in the local
video window previously opened by the
application.
Note: This function intercepts and displays a
video stream at the hardware board when
the stream is first captured. This operation is
similar to a “Short circuit” or a UNIX tee
and is different from the “play” function.
The play function gets and displays the
video stream at the host. In conferencing
system 100, the distinction between
monitor and play services is that one is on
the board and the other at the host. Both are
carried out on the host (i.e., software
playback). Rather, the distinction is this:
monitor service intercepts and displays, on
the local system, a video stream that has
been captured with the local hardware
(generated locally). By contrast, play
service operates on a video stream that has
been captured on a remote system's
hardware and then sent to the local system
(generated remotely).
Suspends capturing or playing of an active
video stream; resumes capturing or playing
of a previously suspended video stream.
Grabs the most current complete still image
(called a reference frame) from the specified
video stream and returns it to the

application in the Microsoft ® DIB
(Device—Independcnt Bitmap) format.

Monitor Service

Pause Service

Image Capture

Play Service Plays a video stream continuously by
consuming the video frames from a video
software source (i.e., a network source).

Link-In Service Links a video network source to be the
input of a video stream played locally. This
service allows applications to change
dynamically the software input source of a
video stream.
Links a network source to be the output of a
video stream captured locally. This service
allows applications to change dynamically
the software output source of a video
stream.
Controls the video stream “on the fly,”
including adjusting brightness, contrast,
frame rate, and data rate.
Returns status and information about a

Link-Out Service

Control Service

Information Service
specified video stream.

Initialization/ Initializes the video subsystem and
Configuration calculates the cost, in terms of system

resources, required to sustain certain video
configurations. These costs can be used by
other subsystems to detemiine the optimum
product configuration for the given system.

Video API 508 supports the following fimction calls
by audio/video conferencing application 502 to the
video subsystem:

VOpen Opens a video stream with specified attributes by
allocating all necessary system resources (e.g.,
internal data structures) for it.
Starts/stops capturing a video stream from a local
video hardware source, such as a video camera
or VCR.
Starts/stops monitoring a video stream captured
from local a video camera or VCR.
Starts/stops playing a video stream from a
network, or remote, video source. When starting
to play, the video frames are consumed from a
network video source and displayed in a window
pre-opened by the application.
Links/unlinks a network . . . to/from a specified
video stream, which will be played/is being played

VCapture

VMon.itor

VLinkIn

10

15

20

25

30

35

45

50

55

60

65

22

-continued

locally.
Links/unlinks a network . . . to/from a specified
video stream, which will be captured/is being
captured from the local camera or VCR.
Grabs the most current still image (reference
frame) from a specified video stream and returns
the frame in an application-provided buffer.
Starts/stops pausing a video stream captured/
played locally.
Controls 22 video stream by adjusting its
parameters (e.g., tint/contrast, frame/data rate).
Returns the status (VINFO and state) of a video
stream.

Closes a video stream and releases all system
resources allocated for this stream.
Initializes the video subsystem, starts capture and
playback applications, and calculates system
utilization for video configurations.
Shuts down the video subsystem and stops the
capture and playback applications.
Calculates and reports the percentage CPU
utilization required to support a given videostream.

VLinkOut

VGrabframe

VPause

VCntl

VGetInfo

VClose

Vlnit

Vshutdown

VCost

These functions are defined in further detail later in this

specification in a section entitled “Data Structures,
Functions, and Messages.”

Referring now to FIG. 10, there is shown a represen-
tation of the video FSM for the local video stream and

the remote video stream of a conferencing system dur-
ing a conferencing session, according to a preferred
embodiment of the present invention. The possible
video states are as follows:

VST_INIT Initial state — state of local and remote video
streams after the application calls the Cl”-‘_Init
function.

VST_OPEN Open state — state of the local/remote video
stream after system resources have been
allocated.
Capture state -- state of local video stream
being captured.
Link-out state —- state of local video stream
being linked to video output (e.g., network
output channel or output file).

VST...CAPTURE

VST_LINKOUT

VST_LINKIN Link-in state — state of remote video stream
being linked to video input (e.g., network
input channel or input file).

VST_PLAY Play state — state of remote video stream
being played.

VST_ERROR Error state — state of local/remote video
stream after a system resource failure occurs.

In a typical conferencing session between a caller and
a callee, both the local and remote video streams begin
in the VST_.INIT video state of FIG. 10. The applica-
tion calls the VOpen function to open the local video
stream, taking the local video stream from the VST_._I-
NIT video state to the VST_OPEN video state. The

application then calls the VCapture function to begin
capturing the local video stream, taking the local video
stream from the VST__OPEN video state to the VST__

CAPTURE video state. The application then calls the
VLinkOut function to link the local video stream to the

video output channel, taking the local video stream
from the VST_CAPTURE video state to the VST._
LINKOUT video state.

The application calls the VOpen function to open the
remote video stream, taking the remote video stream
from the VST_INIT video state to the VST_OPEN

video state. The application then calls the VLinkln
function to link the remote video stream to the video

CISCO SYSTEMS, INC. Ex. 1131 Page 44

CISCO SYSTEMS, INC. Ex. 1131 Page 45

5,434,913
23

input channel, taking the remote video stream from the
VST_OPEN video state to the VST_LINKIN video

state. The application then calls the VPlay function to
begin playing the remote video stream, taking the re-
mote video stream from the VST_LINKIN video state

to the VST_PLAY video state. The conferencing ses-
sion proceeds without changing the video states of ei-
ther the local or remote video stream.

When the conferencing session is to be terminated,
the application calls the VClose function to close the
remote video charmel, taking the remote video stream
from the VST_PLAY video state to the VST_INIT

video state. The application also calls the VClose func-
tion to close the local video channel, taking the local
video stream from the VST_LINKOUT video state to
the VST_INIT video state.

This described scenario is just one possible video
scenario. Those skilled in the art will understand that

other scenarios may be constructed using the following
additional functions and state transitions:

The application calls the VLinkOut function to un-
link the local video stream from the video output
charmel, taking the local video stream from the
VST_LINKOUT video state to the VST_CAP-
TURE video state.

The application calls the VCapture function to stop
capturing the local video stream, taking the local
video stream from the VST_CAPTURE video
state to the VST_OPEN video state.

The application calls the VClose function to close the
local video stream, taking the local video stream
from the VST_OPEN video state to the VST_I-
NIT video state.

The application calls the VClose function to close the
local video stream, taking the local video stream
from the VST_CAPTURE video state to the
VST_INIT video state.

The application calls the VClose function to recover
from a system resource failure, taking the local
video stream from the VST_ERROR video state
to the VST_INIT video state. '

The application calls the VPlay function to stop play-
ing the remote video stream, taking the remote
video stream from the VST_PLAY video state to
the VST_LINKIN video state.

The application calls the VLinkIn function to unlink
the remote video stream from the video input chan-
nel, taking the remote video stream from the
VST_LINKIN video state to the VST.OPEN
video state.

The application calls the VClose function to close the
remote video stream, taking the remote video
stream from the VST_OPEN video state to the
VST_INIT video state.

The application calls the VClose function to close the
remote video stream, taking the remote video
stream from the VST_LINKIN video state to the
VST_INIT video state.

The application calls the VClose function to recover
from a system resource failure, taking the remote
video stream from the VST_ERROR video state
to the VST_INIT video state.

The VGetInfo and VCntl functions may be called by
the application from any video state of either the local
or remote video stream, except for the VST_INIT
state. The VPause and VGrabFrame functions may be
called by the application for the local video stream from
either the VST_CAPTURE or VST_LINKOUT

10

15

20

25

30

35

45

50

55

65

24
video states or for the remote video stream from the

VST_PLAY video state. The VMonitor function may
be called by the application for the local video stream
from either the VST_CAPTURE or VST_LINK-
OUT video states. All of the functions described in this

paragraph leave the video state unchanged.

Video Manager

Referring now to FIG. 11, there is shown a block
diagram of the software components of video manager
(VM) 516 of FIG. 5, according to a preferred embodi-
ment of the present invention. Video manager 516 is
implemented using five major components:

Libra.ry (VM DLL 1102) A Microsoft ® Windows
Dynamic Link Library (DLL) that provides
the library of functions of video API 508.
(VCapt EXE 1104) A Microsoft ® Windows
application (independently executable control
thread with stack, message queue, and data)
which controls the capture and distribution of
video frames from video board 204.
(VPlay EXE 1106) A Microsoft ® Windows
application which controls the playback (i.e.,
decode and display) of video frames received
from either the network or a co-resident
capture application.
(Netw DLL 1108) A Microsoft ® Windows
DLL which provides interfaces to send and
receive video frames across a network or in a

local loopback path to a co-resident playback
application. The Netw DLL hides details of
the underlying network support from the
capture and playback applications and
implements (in a manner hidden from those
applications) the local loopback function.
(AVSync DLL 1110) A Microsoft ® Windows
DLL which provides interfaces to enable the
synchronization of video frames with a
separate stream of audio frames for the ’
purposes of achieving “lip-synchronization.”
AVSync DLL 1110 supports the
implementation of an audio-video
synchronization technique described later in
this specification.

Capture

Playback

Network Library

Audio-Video
Synchronization
Library

The five major components, and their interactions, de-
fine how the VM implementation is decomposed for the
purposes of an implementation. In addition, five tech-
niques provide full realization of the implementation:

Stream Restart A technique for initially starting, and
restarting, a video stream. If a video stream
consists entirely of encoded “delta” frames,
then the method of stream start/restart
quickly supplies the decoder with a “key"
or reference frame. Stream restart is used
when a video stream becomes out-of-sync
with respect to the audio.
An audio-video synchronization technique
for synchronizing a sequence, or stream, of
video frames with an external audio source.
A.technique by which the video stream bit
rate is controlled so that video frame data
co-exists with other video conferencing
components. This technique is dynamic in
nature and acts to “throttle” the video

stream (up and down) in response to higher
priority requests (higher than video data
priority) made at the network interface.
A technique by which multiple video
formats are used to optimize transfer,
decode, and display costs when video frames
are moved between video board 204 and
host processor 202. This technique balances
video frame data transfer overhead with
host processor decode and display overhead

Synchronization

Bit Rate Throttling

Multiple Video
Formats

CISCO SYSTEMS, INC. Ex. 1131 Page 45

CISCO SYSTEMS, INC. Ex. 1131 Page 46

5,434,913
25

-continued

in order to implement efficiently a local
video monitor.
A self-calibration technique which is used to
determine the amount of motion video PC
system can support. This allows
conferencing system 100 to va.ry video
decode and display configurations in order
to run on a range of PC systems. It is
particularly applicable in software-
playback systems.

Self-Calibration

Capture/Playback Video Effects

This sub section describes an important feature of the
VM implementation that has an impact on the imple-
mentation ofboth the capture and playback applications
(VCapt EXE 1104 and VPlay EXE 1106). One of the
key goals of VM capture and playback is that while
local Microsoft® Windows application activity may
impact local video playback, it need not effect remote
video playback. That is, due to the non-preemptive
nature of the Microsoft® Windows environment, the
VPlay application may not get control to run, and as
such, local monitor and remote playback will be halted.

5

10

15

20

However, if captured frames are delivered as a part of 25
capture hardware interrupt handling, and network in-
terfaces are accessible at interrupt time, then captured
video frames can be transmitted on the network, regard-
less of local conditions.

With respect to conferencing system 100, both of 30
these conditions are satisfied. This is an important fea-
ture in an end-to-end conferencing situation, where the
local endpoint is unaware of remote endpoint process-
ing, and can only explain local playback starvation as a
result of local activity. The preferred capture and play-
back application design ensures that remote video is not
lost due to remote endpoint activity.

Video Stream Restart

The preferred video compression method for confer-
encing system 100 (i.e., ISDN rate video or IRV) con-
tains no key frames (i.e., reference frames). Every frame
is a delta (i.e., difference) frame based on the preceding
decoded video frame. In order to establish a complete
video image, IRV dedicates a small part (preferably
1/85th) of each delta frame to key frame data. The part
of an IRV delta frame that is key is complete and does
not require inter-frame decode. The position of the key
information is relative, and is said to “walk” with re-

spect to a delta frame sequence, so that the use of partial
key information may be referred to as the “walking key
frame.”

Referring now to FIG. 12, there is shown a represen-
tation of a sequence of N walking key frames. For a
walking key frame of size i/N, the kth frame in a se-
quence of N frames, where (k< =N), has its kth compo-
nent consisting of key information. On decode, that kth
component is complete and accurate. Provided frame
k+l is decoded correctly, the kth component of the
video stream will remain accurate, since it is based on a

kth key component and a k+l correct decode. A com-
plete key frame is generated every N flames in order to
provide the decoder with up-to-date reference informa-
tion within N flames.

For a continuous and uninterrupted stream of video
frames, the walking key frame provides key information
without bit-rate fluctuations that would occur if a com-

plete key frame were sent at regular intervals. How-

35

45

50

55

65

26

ever, without a complete key frame, video startup re-
quires collecting all walking key frame components,
which requires a delay of N flames. If video startup/re-
start occurs often, this can be problematic, especially if
N is large. For example, at 10 flames per second (fps)
with N:85, the startup/restart time to build video from
scratch is 8.5 seconds.

In order to accelerate IRV stream startup and restart,
an IRV capture driver “Request Key Frame” interface
is used to generate a complete key frame on demand.
The complete key frame “compresses” N flames of
walking key flames into a single frame, and allows im-
mediate stream startup once it is received and decoded.
Compressed IRV key flames for (160X 120) video im-
ages are approximately 6-8 KBytes in length. Assuming
an ISDN bandwidth of 90 kbits dedicated to video,

ISDN key frame transmission takes approximately
0.5-0.6 seconds to transmit. Given a walking key frame
size of 1/85 (N=85), and a flame rate of 10 fps, use ofa
complete key flame to start/restart a video stream can
decrease the startup delay from 8.5 secs to approxi-
mately § see.

In order for walking key frame compression to be
successful, the delta frame rate must be lowered during
key frame transmission. Delta flames generated during
key frame transmission are likely to be “out-of-sync”
with respect to establishing audio-video synchroniza-
tion, and given the size of a key frame, too many delta
flames will exceed the overall ISDN bandwidth. The

IRV capture driver bit rate controller takes into ac-
count key frame data in its frame generation logic and
decreases frame rate immediately following a key
frame.

A key frame once received may be “out-of-sync”
with respect to the audio stream due to its lengthy trans-
mission time. Thus, key frames will be decoded but not
displayed, and the video stream will be “in-sync” only
when the first follow-on delta frame is received. In

addition, the “way-out-of-sync” window is preferably
sized appropriately so that key frame transmission does
not cause the stream to require repeated restarts.

Once it is determined that a stream requires restart,
either as part of call establishment or due to synchroni-
zation problems, the local endpoint requiring the restart
transmits a restart control message to the remote cap-
ture endpoint requesting a key frame. The remote cap-
ture site responds by requesting its capture driver to
generate a key frame. The key frame is sent to the local
endpoint when generated. The endpoint requesting the
restart sets a timer immediately following the restart
request. If a key frame is not received after an adequate
delay, the restart request is repeated.

Audio/Video Synchronization
Video manager 516 is responsible for synchronizing

the video stream with the audio stream in order to

achieve “lip-synchronization.” Because of the overall
conferencing architecture, the audio and video subsys-
tems do not share a common clock. In addition, again
because of system design, the audio stream is a more
reliable, lower latency stream than the video stream.
For these reasons, the video stream is synchronized by
relying on information regarding capture and playback
audio timing.

For VM audio/video (A/V) synchronization, audio
stream packets are timestamped from an external clock
at the time they are captured. When an audio packet is
played, its timestamp represents the current audio play-

clsco SYSTEMS, Inc. Ex. 1131 Page 46

CISCO SYSTEMS, INC. Ex. 1131 Page 47

5,434,913
27

back time. Every video frame captured is stamped with
a timestamp, derived from the audio system, that is the
capture timestamp of the last audio packet captured. At
the time of video playback (decode and display, typi-
cally at the remote endpoint of a video conference), the
video frame timestamp is compared with the current
audio playback time, as derived from the audio system.

Two windows, or time periods, 81 and 82, are defined,
with 81 <82, as part of VM initialization. Let Vrbe the
timestamp for a given video frame, and let AT be the
current audio playback time when the video frame is to
be played.. A/V synchronization is defined as follows:

1. If |AT--VT] _S_81, then the video stream is “in-
sync” and played normally (i.e., decoded and dis-
played immediately).

2. If 81< |AT—VT|§62, then the video stream is
“out-of-sync” and a “hurry-up” technique is used
to attempt re-synchronization. If a video stream
remains out-of-sync for too many consecutive
frames, then it becomes “way-out-of-sync” and
requires a restart.

3. If 82< |AT—-V7-I , then the video stream is “way-
out-of-sync” and requires a restart.

Because of the overall design of conferencing system
100, a video stream sent from one endpoint to another is
“behind” its corresponding audio stream. That is, the
transmission and reception ofa video frame takes longer
than the transmission and reception of an audio frame.
This is due to the design of video and audio capture and
playback sites relative to the network interface, as well
as video and audio frame size differences. In order to

compensate for this, the audio system allows capture
and playback latencies to be set for an audio stream.
Audio capture and playback latencies artificially delay
the capture and playback of an audio stream.

As part of the VLinkOut function, video manager 516
calls audio manager 520 to set an audio capture latency.
As part of the VLinkIn -function, video manager 516
calls audio manager 520 to set an audio playback la-
tency. Once the latencies are set, they are preferably not
changed. The capture and playback latency values are
specified in milliseconds, and defined as part of VM
initialization. They may be adjusted as part of the Cali-
bration process.

In order to attempt re-synchronization when a stream
is not too far “out-of-sync” as defined by the above
rules, an feature called “Hurry-up” is used. When pass-
ing a video frame to the codec for decode, ifhurry-up is
specified, then the codec performs frame decode to a
YUV intermediate format but does not execute the

YUV-to-RGB color conversion. Though the output is
not color converted for RGB graphics display, the
hurry-up maintains the playback decode stream for
following frames. When Hurry-up is used, the frame is
not displayed. By decreasing the decode/display cost
per frame and processing frames on demand (the num-
ber of frames processed for playback per second can
vary), it is possible for a video stream that is out-of-sync
to become in-sync.

Bit Rate Throttling

Conferencing system 100 supports a number of differ-
ent media: audio, video, and data. These media are

prioritized in order to share the limited network (e.g.,
ISDN) bandwidth. A priority order of (highest-to-low-
est) audio, data, and video is designated. In this scheme,
network bandwidth that is used for ‘video will need to

give way to data, when data conferencing is active

5

l0

15

20

25

30

35

45

50

55

65

28

(audio is not compromised). In order to implement the
priority design, a mechanism for dynamically throttling
the video bit stream is used. It is a self-throttling system,
in that it does not require input from a centralized bit
rate controller. It both throttles down and throttles up a
video bit stream as a function of available network
bandwidth.

. A latency is a period of time needed to complete the
transfer of a given amount of data at a given bit rate.
For example, for 10 kbits at 10 kbits/sec, latency: 1. A
throttle down latency is the latency at which a bit
stream is throttled down (i.e., its rate is lowered), and a
throttle up latency is the latency at which a bit stream is
throttled up (i.e., its rate is increased).

Multiple Video Formats

Conferencing system 100 presents both a local moni-
tor display and a remote playback display to the user. A
digital video resolution of (160X 120) is preferably used
as capture resolution for ISDN-based video conferenc-
ing (i.e., the resolution of a coded compressed video
stream to a remote site). (160>< 120) and (320X240) are
preferably used as the local monitor display resolution.
(320X240) resolution may also be used for high-reso1u-
tion still images. Generating the local monitor display
by decompressing and color converting the compressed
video stream would be computationally expensive. The
video capture driver 522 of FIG. 5 simultaneously gen-
erates both a compressed video stream and an uncom-
pressed video stream. Video manager 516 makes use of
the uncompressed video streamto generate the local
monitor display. Video manager 516 may select the
format of the uncompressed video stream to be either
YUV-9 or 8-bits/pixel (bpp) RGB—Device Indepen-
dent Bitmap (DIB) format. For a (l60>< 120) local moni-
tor, the uncompressed DIB video stream may be dis-
played directly. For a (320>< 240) monitor, a (l6OX120)
YUV-9 format is used and the display driver “doubles”
the image size to (320>< 240) as part of the color conver-
sion process.

In the RGB and YUV-9 capture modes, RGB or
YUV data are appended to capture driver IRV buffers,
so that the capture application (VCapt EXE 1104) has
access to both fully encoded IRV frames and either
RGB or YUV data. Conferencing system 100 has cus-
tom capture driver interfaces to select either RGB cap-
ture mode, YUV capture mode, or neither.

Self-Calibration

CPU, I/O bus, and display adapter characteristics
vary widely from computer to computer. The goal of
VM self-calibration is to support software-based video
playback on a variety of PC platforms, without having
to “hard-code” fixed system parameters based on
knowledge of the host PC. VM self-calibration mea-
sures a PC computer system in order to determine the
decode and display- overheads that it can support. VM
self-calibration also offers a cost function that upper-
layer software may use to determine if selected display
options, for a given video compression format, are sup-
ported.

There are three major elements to the self-calibration:
1. The calibration of software decode using actual

video decompress cycles to measure decompres-
sion costs. Both RGB/YUV capture mode and
IRV frames are decoded in order to provide accu-
rate measurement of local (monitor) and remote
video decode. YUV (l6OXl20) and YUV

CISCO SYSTEMS, INC. Ex. 1131 Page 47

CISCO SYSTEMS, INC. Ex. 1131 Page 48

5,434,913
29

(320><240) formats are also decoded (color con-
verted) to provide costs associated with the YUV
preview feature of the video subsystem.

2. A calibration of PC displays, at varying resolu-
tions, using actual video display cycles to measure
display costs.

3. A video cost function, available to applications,
that takes as input frame rate, display rate, display
resolution, video format, and miscellaneous video
stream characteristics, and outputs a system utiliza-
tion percentage representing the total system cost
for supporting a video decompress and display
having the specified characteristics.

The calibration software detects a CPU upgrade or

display driver modification in order to determine if
calibration is to be run, prior to an initial run on a newly
installed system.

VM DLL

Referring again to FIG. 11, video manager dynamic
link library (VM DLL) WB is a video stream “object
manager.” That is, with few exceptions, all VM DLL
interfaces take a “Video Stream Object Handle”
(HVSTRM) as input, and the interfaces define a set of
operations or functions on a stream object. Multiple
stream objects may be created.

Video API 508 defines all of external interfaces to
VM DLL WB. There are also a number of VM internal

interfaces to VM DLL WB that are used by VCapt
EXE WC, VP1ay EXE WD, Netw DLL WE, and
AVSync DLL WF for the purposes of manipulating a
video stream at a lower level than that available to

applications. The vm.h file, provided to applications
that use VM DLL WF, contains a definition of all EPS
and VM internal interfaces. EPS interfaces are prefixed
with a ‘V’; VM internal interfaces are prefixed with a
‘VM’. Finally, there are a number of VM private inter-
faces, available only to the VM DLL code, used to
implement the object functions. For example, there are
stream object validation routines. The self—ca1ibration
code is a separate module linked with the VM DLL
code proper.

Video API calls, following HVSTRM and parameter
validation, are typically passed down to either VCapt
or VPlay for processing. This is implemented using the
Microsoft® Windows SDK SendMessage interface.
SendMessage takes as input the window handle of the
target application and synchronously calls the main
window proc of that application. As part of VM initial-
ization, VM starts execution of the applications, VCapt
and VPlay. As part of their WinMain processing, these
applications make use of a VMRegister interface to
return their window handle to VM DLL WB. From

registered window handles, VM DLL WB is able to
make use of the SendMessage interface. For every
video API interface, there is a corresponding parameter
block structure used to pass parameters to VCapt or
VPlay. These structures are defined in the vm.h file. In
addition to the WinExec startup and video API inter-
face calls, VM DLL WB can also send a shutdown

message to VCapt and VPlay for termination process-
mg.

Immediately following the successful initialization of
VCapt and VPlay, VM 516 calls the interface
‘videoMeasure’ in order to rim self-calibration. The

VCost interface is available, at run-time, to return mea-

surement information, per video stream, to applications.

5

10

15

20

25

30

35

45

50

55

65

30

VCapt EXE

The video capture application (VCapt EXE WC)
implements all details of video frame capture and distri-
bution to the network, including:

Control of the video board capture driver.
Video format handling to support IRV and

RGB/YUV capture mode.
Video frame capture callback processing of captured

video frames.

Copy followed by PostMessage transfer of video
frames to local playback application (VPlay EXE).

Transmission, via Netw DLL WE, of video frames to
the network.

Mirror, zoom, camera video attributes, and miscella-
neous capture stream control processing.

Restart requests from a remote endpoint.
Shutdown processing.
VCapt EXE WC processing may be summarized as a

function of the Microsoft ® Windows messages as fol-
lows:
WINMAIN

Initialize application.
Get VCapt EXE initialization (INI) settings.
Open video board capture driver.
Register window handle (and status) with VM DLL

WB.

Enter Microsoft ® Windows message loop.
WM_VCAPTURE__CALL (ON)

Register audio callback with audio manager 520.
Set audio capture latency with audio manager 520.
Initialize the video board capture stream based on

stream object attributes.
WM_VLlNKOUT_CALL (ON)

Register Netw callback handler for transmission
completion handling.

Initialize bit rate throttling parameters.
WM_MONITOR_.DATA.RTN

Decrement reference count on video frame (user
context buffers).

WM._PLAY_DATA_RTN

Add buffer back to capture driver.
This message is only in loopback case of remote play-
back—preferably for testing only.
WM_RESTART_STREAM

Request key frame from capture driver.
WM__VCNTL_CALL

Adjust video stream controls based on VCntl param-
eters (from VM DLL WB).

WM_PLAYBACK

Get stream format type (IRV, YUV).
Set video board RGB/YUV capture mode controls:

If IRV (160>< 120) playback then RGB; if IRV
320x24-O playback, then YUV.

This message is from local playback application (VPlay
EXE WD) in response to local window (monitor) size
changes. »
WM._SHUTDOWN

Disable capture; includes closing the capture driver.
Un-initializes capture application.
DestroyWindow.
VCapt Capture Callback is a key component of the

VCapt EXE application. VCapt Capture Callback pro-
cesses individual frames received, in interrupt context,
from the capture driver (ISVR.DRV). The main steps
of callback processing are:

Time stamp the video frame using AVSync DLL
WF.

CISCO SYSTEMS, INC. Ex. 1131 Page 48

CISCO SYSTEMS, INC. Ex. 1131 Page 49

5,434,913
31

Set the packet sequence number of the frame (for
network error detection).

If the video stream is in the Monitor state, then copy
the frame out of interrupt context into a local moni-
tor playback frame first-in first- out (FIFO) device.
If the video format is YUV, then only the frame
header is copied, since YUV data does not go to
the network, and is not “real-time.”

If the video stream is in the LinkOut state of FIG. 10,
then call the NETWSendFrame function to send

the frame to the remote playback site, and then add
the frame buffer back to the capture driver. Also,
use interface DataRateThrottleDown to adjust the
video bit rate, as needed.

VPlay EXE

The video playback application (VPlay EXE WD)
implements all details of video playback, including:

Opening an instance of the IRV playback codec for
each playback stream: local monitor and remote
playback.

Maintaining display mode attributes for each stream,
based on playback window sizes.

Maintain palette “awareness” for each video stream.
Receive video frames for decompress and display.
Filter video frames using AVSync DLL WF and

playback frame FIFO state.
Restart video stream as necessary.

Decompress video frames via Microsoft ® Windows
3.1 SendDriverMessage Codec interface.

Display video frames via Microsoft ® GDI or Draw-
DIB interfaces.

Handle VM DLL messages generated as a result of
video API interface calls.

Handle application shutdown.
In order to encapsulate decode and display attributes
for a video stream in a “Display Object,” references to
a Display Object are passed to internal VPlay proce-
dures. The structure of the Display Object is defined in
the vplay.h include file.

VPlay EXE WD processing may be summarized as a
function of the Microsoft ® Windows messages as fol-
lows:
WINMAIN

Initialize application.
Get VPlay initialization (INI) settings.
Register window handle (and status) with VM DLL

WB.

Enter Microsoft ® Windows message loop.
WM_TIMER

Kill the outstanding restart timer.
If the stream associated with the message is still in the

restart state, then RestartStream.

Initialize the video board capture stream based on
stream object attributes.

WM_MONITOR_DATA

Validate stream state (MONITOR) and video frame
data.

ProcessPlayFrame.

Set reference count to 0 (copy frame FIFO).
WM_PLAY_DATA

Validate stream state (PLAY) and video frame data.
ProcessPlayFrame.
NETWPostFrame to return frame buffer to the net-

work.

WM_VMONITOR_CALL (ON)
Get video stream attributes and determine internal

stream playback values.

10

15

20

25

30

35

45

50

55

65

32

Set up codec for stream; set up decompress struc-
tures.

Restartstream.

WM_VPLAY_CALL (ON)
Get video stream attributes and determine internal

stream playback values.
Set up codec for stream; set up decompress struc-

tures.

Restartstream.

WM_VLINKIN_CALL (ON)
AVRegisterMonitor to set AVSync audio manager

callback.

AVSetLatency to set audio manager playback la-
tency.

NETWRegisterIn to register receive data complete
callbacks from network and post video frame net-
work buffers.

WM_VCNTL_CALL

Adjust video stream controls (via codec) based on
VCnt1 parameters (from VM DLL WB).

WM_VGRABFRAME._CALL

Copy out the current RGB display buffer for the
stream.

WM_MEASURE_BEGIN

Turn on video statistics gathering.
WM_.MEASURE._END

Return decode and display playback statistics for the
stream.

WM_MEASURE_BEGIN

Turn on video statistics gathering.
WM_SHUTDOWN

Clean up codec.
Destroywindow.
Unregister Class.

The ‘ProcessPlayFrame’ procedure is a key compo-
nent of the playback application (VPlay EXE WD). It
processes individual frames received, in user context,
from either the VCapt capture callback, in the case of
local monitor playback, or from the Netw receive data
complete callback, in the case of remote playback. The
main steps of ‘ProcessPlayFrame’ processing are:

Send the video frame through the ‘SyncFilter’.
If the frame is “way—out-of-sync,” then restart the

stream.

If the frame is “out-of-sync,” then ‘hurry_up’=—
TRUE.

Else, ‘hurry._up’=FALSE.
Based on the stream display frequency attribute, de-

termine if the frame should be displayed. If the
frame is not to be displayed, then ‘hurry_up’=-
TRUE; else ‘hurry_up’=FALSE.

If the stream is REMOTE, then decode with IRV
decompress.

If the stream is LOCAL, then:

If the stream is IRV (i.e., not RGB/YUV capture
mode), then decode with IRV decompress;

Else if the stream is RGB capture mode, then copy
to RGB display buffer;

Else if the stream is YUV capture mode, then de-
code with IRV Color Convert;

Else if the stream is YUV, then decode with IRV
Color Convert;

If all frames have been decompressed (no more
frames in playback frame FIFO) and ‘hurry_up=-
=FALSE, then Display Frame.

SyncFi1ter, a procedure used by ProcessPlayFrame,
is implemented as follows:

CISCO SYSTEMS, INC. Ex. 1131 Page 49

CISCO SYSTEMS, INC. Ex. 1131 Page 50

5,434,913
33

If the playback frame Fifo length is >AV-

FrameHighWaterMark, then return (“‘way-out-of-
sync”).

If the stream is REMOTE, then if there is a Frame

Packet Sequence Number Error, then return
(“way-out-of-sync”).

If the stream is REMOTE, then return (AV-
Framesync (StreamObject, FramePtr)).

The first test is important: It states that the number of
flames queued for playback has exceeded a high water
mark, which indicates that VPlay EXE WD has been
starved and the stream playback is “way-out-of-sync.”
The AVFrameSync interface (AVSync DLL WF) is
preferably only used with remote streams, since local
streams do not have the concept of an associated audio
playback time.

DisplayFrame, a procedure used by ProcessPlay-
Frame, is implemented as follows: Based on the stream
Display Object mode, use Microsoft ® Windows
DrawDib, BitB1t, or StretchBlt to display the frame.
The display mode is a function of playback window size
and video format resolution.

Restartstream is a procedure that handles details of
stream restart. Its implementation is:

Clear the playback frame FIFO (the ClearFrameFifo
procedure recycles queued video flames to the
network or VCapt, as needed).

Set the stream state to ‘RESTART’.

If the stream is LOCAL, then:

If YUV/RGB capture mode is not enabled, then
PostMessage (WM__STREAM_RESTART, O,
0) to VCapt EXE WC indicating a key frame
request. If YUV/RGB capture mode is enabled,
then every captured frame contains a RGB or
YUV capture mode key frame, and a key frame
request is unnecessary.

Else (stream is REMOTE) NETWSendCntl
(WM_RESTART_STREAM) to have the net-
work send a restart control message; Set the Key
Frame Request timer.

One of the more important areas of the VP1ay imple-
mentation is its “Palette Awareness” logic. In order that
video displays retain proper colors in a palettized envi-
ronment, VPlay must respond to a Microsoft ® Win-
dows palette change and get new palette messages. To
accomplish this, VP1ay “hooks” the window specified
in the WM_VPLAY_CALL message parameter
block, so that palette messages to the “hooked” window
will be transmitted to a procedure within VPlay that
properly handles the palette management.

Netw DLL

Network library (Netw DLL 1108) provides a library
of network interfaces designed to hide the capture and
playback applications from details of the underlying
network service, including:

Management of network buffers.
Asynchronous interrupt-time callbacks when data is

received or transmission is complete.
Video frame and control message transmission.
Compaction of video frame headers, from Mi-

crosoft ® Video for Windows (VfW) defined
headers to packed headers suitable for low-band-
width networks (e.g., ISDN).

Transparent local loopback of video frames (supports
single machine testing of video subsystem).

Netw DLL WE defines a ‘SUPERVIDEOHDR’

structure, which is an extension of the ‘VIDEOHDR’

10

15

20

25

30

35

4-0

45

50

55

65

34

structure defined by Microsoft ® Video for Windows.
The VIDEOHDR structure is used by VFW capture
and playback applications on a single PC. The SUPER-
VIDEOHDR contains the VIDEOHDR structure,

plus VM-specific control information, an area where
VIDEOHDR data can be compacted for network
transmission, and a contiguous frame data buffer. The
contiguity of the SUPERVIDEOHDR structure al-
lows the VfW structure to be used without modification

by VCapt and VPlay (which are also VfW applica-
tions), while at the same time allowing a video frame to
be transmitted on the network in a single operation.

The interfaces provided by the Netw DLL are as
follows:

NETWCal1backIn—Callback used for VLinl<In

streams; processes received data from the network.
NETWCal1backOut--Callback used for VLinkOut

streams; processes send completions from the net-
work.

NETWInit—Initializes network buffers.

NETWRegisterIn——Register a network input chan-
nel and post buffers for receiving data.

NETWRegisterOut—Register a network output
channel.

NETWSendCntl—Send a control message.
NETWSendFrame—Send a video frame.
NETWPostFrame—Post a video frame buffer to the

network interface.

NETWC1eanup—Un-initialize NETW support; buff-
ers, etc.

AVSync DLL

AVSync DLL WF -provides a library of interfaces
designed to support the capture and playback applica-
tions in the implementation of the audio-video synchro-
nization technique, including:

Implementing audio system callbacks used to deliver
timestamp values.

Implementing audio system latency settings.
Maintaining capture stream and playback stream

timestamps.
Video frame comparison with video stream times-

tamp values.
The interfaces provided by the AVSync DLL are as

follows:

AVInit—-Initialization. Includes getting critical AV
sync values from INI file.

AVRegisterMonitor—Register timestamp callback
for a video stream.

AVUnRegisterMonitor—Unregister timestamp call-
back for a video stream.

AVSetALatency—Set a capture or playback audio
latency value.

AVReSetALatency-—Reset a capture or playback
audio latency value.

AVFifoHighWaterMark—Return a configuration-
defmed value for the high water mark of a video
frame FIFO. (Used in VP1ay SyncFilter.)

AVFrameTimeStamp--Time stamp a video frame
with an associated audio capture time stamp.

AVFrameSync—Determine if a video frame is “in-
sync” as defined for “in-sync,” “out—of-sync,” and
“way-out-of-sync” disclosed earlier in this specifi-
cation.

Video Capture Driver

Video capture driver 522 of FIG. 5 follows driver
specifications set forth in the Microsoft® Video for

CISCO SYSTEMS, INC. Ex. 1131 Page 50

CISCO SYSTEMS, INC. Ex. 1131 Page 51

5,434,913
35

Windows (VfW) Developer Kit documentation. This
documentation specifies a series of application program
interfaces (APIs) to which the video capture driver
responds. Microsoft ® Video for Windows is a Mi-
crosoft extension to the Microsoft ® Windows operat-
ing system. VfW provides a common framework to
integrate audio and video into an application program.
Video capture driver 522 extends the basic Microsoft ®
API definitions by providing six “custom” APIs that
provide direct control of enhancements to the standard
VfW specification to enable and control bit rate throt-
tling and local video monitoring.

Bit rate throttling controls the bit rate of a transmit-
ted video conference data stream. Bit rate throttling is
based on two independent parameters: the quality of the
captured video image and the image capture frame rate.
A user of conferencing system 100 is able to vary the
relative importance of these two parameters with a
custom capture driver API. A high-quality image has
more fine detail information than a low-quality image.

The data bandwidth capacity of the video conference
communication channel is fixed. The amount of cap-
tured video data to be transmitted is variable, depending
upon the amount of motion that is present in the video
image. The capture driver is able to control the amount
of data that is captured by changing the quality of the
next captured video frame and by not capturing the next
video frame (“dropping” the frame).

The image quality is determined on a flame-by-frame
basis using the following equation:

glargetsize — ActualFrameSize[
Quamy = ConstantScaleFactor

Quality is the relative image quality of the next captured
frame. A lower Quality number represents a lower
image quality (less image detail)‘. TargetSize is the de-
sired size of a captured and compressed frame. Target-
Size is based on a fixed, desired capture frame rate.

Normally, the capture driver captures new video
frames at a fixed, periodic rate which is set by the audi-
0/video conference application program. The capture
driver keeps a running total of the available communi-
cation channel bandwidth. When the capture driver is
ready to capture the next video frame, it first checks the
available charmel bandwidth and if there is insufficient

bandwidth (due to a large, previously captured frame),
then the capture driver delays capturing the next video
frame until sufficient bandwidth is available. Finally,
the size of the captured video flame is subtracted from
the available charmel bandwidth total.

A user of conferencing system 100 may control the
relationship between reduced image quality and
dropped flames by setting the minimum image quality
value. The minimum image quality value controls the
range of permitted image qualities, from a wide range
down to a narrow range of only the best image qualities.

Bit rate throttling is implemented inside of the video
capture driver and is controlled by the following VfW
extension APIs:

CUSTOM_.SET_DATA_RATE Sets the data rate of the
communications channel.

CUSTOM_SET__QUAL..PERCEN'l" Sets the minimum image
quality value.
Sets the desired capture
frame rate.

CUSTOM..SET_.FPS

10

15

20

25

30

35

45

50

55

60

65

36

The local video monitoring extension to VfW gives
the video capture driver the ability to output simulta-
neously both a compressed and a non-compressed
image data stream to the application, while remaining
fully compatible with the Microsoft® VfW interface
specification. Without local video monitoring, the audi-
o/video conferencing application program would be
required to decompress and display ‘the image stream
generated by the capture driver, which places an addi-
tional burden on the host processor and decreases the
frame update rate of the displayed image.

The VfW interface specification requires that com-
pressed image data be placed in an output buffer. When ‘
local video monitoring is active, an uncompressed copy
of the same image frame is appended to the output
buffer immediately following the compressed image
data. The capture driver generates control information
associated with the output buffer. This control informa-
tion reflects only the compressed image block of the
output buffer and does not indicate the presence of the
uncompressed image block, making local video moni-
toring fully compatible with other VfW applications. A
“reserved,” 32-bit data word in the VFW control infor-
mation block indicates to a local video monitor aware

application that there is a valid uncompressed video
image block in the output buffer. The application pro-
gram may then read and directly display the uncom-
pressed video image block from the output buffer.

The uncompressed image data may be in either De-
vice Independent Bitmap (DIB) or YUV9 format. DIB
format images may be displayed directly on the com-
puter monitor. YUV9 format images may be increased
in size while retaining image quality. YUV9 images are
converted into DIB format before they are displayed on
the computer monitor.

The capture driver allows the uncompressed video
image to be captured either normally or mirrored (re-
versed left to right). In normal mode, the local video
monitoring image appears as it is viewed by a video
camera—printing appears correctly in the displayed
image. In mirrored mode, the local video monitoring
image appears as if it were being viewed in a mirror.

The CUSTOM__SET_DIB_CONTROL extension

API controls the local video monitoring capabilities of
the video capture driver.

Custom APIs for Video Capture Driver

The CUSTOM_SET_FPS message sets the frame
rate for a video capture. This message can only be used
while in streaming capture mode.

The CUSTOM_SET__KEY message informs the
driver to produce one key frame as soon as possible.
The capture driver will commonly produce one delta
frame before the key. Once the key frame has been
encoded, delta flames will follow normally.

The CUSTOM_SET_DATA_RATE message in-
forms the driver to-set an output data rate. This data
rate value is in KBits per second and typically corre-
sponds to the data rate of the communications charmel
over which the compressed video data will be transmit-
ted.

The CUSTOM_SET_QUAL_PERCENT message
controls the relationship between reducing the image
quality and dropping video frames when the com-
pressed video data stream size exceeds the data rate set
by the CUSTOM_SET_DATA._RATE message. For
example, a CUSTOM_SET_.QUAL_PERCENT
value of 0 means that the driver should reduce the

clsco SYSTEMS, Inc. Ex. 1131 /Page 51

CISCO SYSTEMS, INC. Ex. 1131 Page 52

5,434,913
37

image quality as much as possible before dropping
frames and a value of 100 means that video frames

should be dropped before the image quality is lowered.
The CUSTOM_SET__DIB_CONTROL message

controls the 8-bit DIB/YUV9 format image output
when the IRV compression format has been selected.
The IRV driver is able to simultaneously generate the
IRV compressed data stream plus an uncompressed
image in either DIB or YUV9 format. If enabled, the
IRV driver can return the DIB image in either (80X 60)
or (l60>< 120) pixel resolution. The (16OX 120) image is
also available in YUV9 format. All images are available
in either mirrored (reversed left to right) or a normal
image. This API controls the following four parame-
ters:

DIB enable/disable

Mirrored/normal image
The DIB image size
Image data format

The default condition is for the uncompressed image to
be disabled. Once set, these control flags remains in
effect until changed by another CUS-
TOM_SET_DIB_CONTROL message. The uncom-

pressed image data is appended to the video data buffer
immediately following the compressed IRV image data.
The uncompressed DIB or YUV9 data have the bottom
scan-line data first and the top scan-line data last in the
buffer.

The CUSTOM_SET..VIDEO message controls the
video demodulator CONTRAST, BRIGHTNESS,

HUE (TINT), and SATURATION parameters. These
video parameters are also set by the capture driver at
initialization and via the Video Control dialog box.

Video Microcode

The video microcode 530 of FIG. 5 running on video
board 204 of FIG. 2 performs video compression. The
preferred video compression technique is disclosed in
later sections of this specification starting with the sec-
tion entitled “Compressed Video Bitstream.”

Audio Subsystem

The audio subsystem provides full duplex audio be-
tween two conferencing systems 100. The audio streams
in both directions preferably run virtually error free,
and do not break up due to activity on host processor
202. While the video subsystem is responsible for syn-
chronizing video with audio, the audio subsystem pro-
vides an interface to retrieve synchronization informa-
tion and for control over audio latency. The synchroni-
zation information and latency control is provided
through an interface internal to the audio and video
subsystems.

The audio subsystem provides an interface for con-
trol ofthe audio streams. Output volume, selection ofan
audio compression method, sample size, and sample rate
are examples of audio attributes that may be selected or
adjusted through the interface. In addition to control-
ling audio attributes, the audio subsystem provides an
interface to send audio streams out to the network,

receive and play audio streams from the network, and
monitor the local audio stream.

When audio/comm board 206 is not being used for
video conferencing, the Microsoft ® Wave 514 inter-
face provides access to the stereo audio codec (SAC).
Wave driver 524 supports all of the predefined Mi-
crosoft® sample rates, full duplex audio, both eight
and sixteen bit samples, and mono or stereo audio.

10

38

Wave driver 524 provides the audio subsystem with a
private interface that allows the Wave driver to be
disabled.

In a preferred embodiment, the Microsoft® Wave
interface performs record and playback of audio during
a conferencing session. To achieve this, the audio sub-
system and the Wave implementation cooperate during
video conferencing so that the audio stream(s) can be
split between the Wave interface and the source/sink of
the audio subsystem.

Referring now to FIG. 13, there is shown a block
- diagram of the architecture of the audio subsystem,

15

20

25

30

35

45

50

55

65

according to a preferred embodiment of the present
invention. The audio subsystem is structured as a “DSP
application.” Conforming with the DSP architecture
forces the audio subsystem’s implementation to be split
between host processor 202 and audio/comm board
206. Conceptually, audio tasks on the audio/comm
board communicate directly with a counterpart on the
host processor. For example, Wave driver 524 (on the
host processor) communicates directly with Wave task
534 (on the audio/comm board). In FIG. 13, these com-
munications are represented by broken lines represent-
ing virtual connections.

The bulk of the audio subsystem is implemented on
the audio/comm board as a Spectron SPOX® DSP
operating system task. The portion of the audio subsys-
tem on the host processor provides an interface to con-
trol the SPOX ® operating system audio task. The
programming interface to the audio subsystem is imple-
mented as a DLL on top of DSP interface 528. The
DLL will translate all function calls into DSP messages

and respond to messages passed from audio task 538 to
the host processor.

The audio task 538 (running on the audio/comm
board) responds to control information and requests for
status from audio manager 520 (running on the host
processor). The audio task is also responsible for hard-
ware monitoring of the audio input source on the audio
output sink. A majority of the audio task’s execution
time is spent fulfilling its third and primary responsibil-
ity: full duplex audio communication between two con-
ferencing systems.

The conferencing application’s interface to the audio
subsystem is implemented on the host processor, and
the audio processing and control is implemented on the
audio/comm board as a SPOX ® operating system
task. These two software components interface with
each other through messages passed through the DSP
interface 528 of FIG. 5.

Referring again to FIG. 1, in order for the audio
subsystem to achieve full duplex communication be-
tween two conferencing systems, there is a network
connection (i.e., ISDN line 110) between two confer-
encing systems. Both conferencing systems run the
same software. This allows the audio task on one con-

ferencing system to communicate with another instanti-
ation of itself on the other conferencing system. The
ISDN connection is full duplex. There are two B-Chan-
nels in each direction. Logical audio chaxmels flowing
through the ISDN connection are provided by the
network tasks and have no physical representation. The
audio task on each of the conferencing systems is re-
sponsible for playing back the compressed audio gener-
ated on the remote system, and for transferring the
compressed audio generated locally to the remote sys-
tem.

CISCO SYSTEMS, INC. Ex. 1131 Page 52

CISCO SYSTEMS, INC. Ex. 1131 Page 53

5,434,913
39

Referring now to FIGS. 1 and 13, audio samples
generated on conferencing system A are first sampled
by microphone 104, digitized by the stereo audio codec
(SAC), filtered and compressed by the stack of device
drivers 1304, and delivered to the audio task 538. The

audio task packetizes the compressed audio (by time
stamping the audio information), and then sends the
audio to com task 540 for delivery to the remote sys-
tem. The audio samples consumed (i.e., played back) by
conferencing system A are delivered by the com task
after conferencing system B has gone through the same
process as conferencing system A to generate and send
a packet. Once conferencing system A has the audio
packet generated by conferencing system B, the com
task records the time stamp, and sends the packet down
the device stack 1302 to be decompressed and sent to
the codec (i.e., audio hardware 1306). As the remote
audio samples are being transferred to the codec, the
codec may mix them with local audio samples (depend-
ing on whether the local system is in the monitor state
or not), and finally sends the samples to the attached
speaker 108.

Audio API

Referring again to FIG. 5, the audio API 512 for the
audio subsystem is an internal programming interface
used by other software components of the conferencing
system, specifically video manager 516 and the confer-
encing API 506. The audio API is a library that is linked
in with the calling application. The audio API translates
the procedural interface into DriverProc messages. See
Microsoft ® Device Driver Development Kit (DDK)
and Software Development Kit (SDK) for the defini-
tions of the DriverProc entry point and installable de-
vice drivers. The audio API layer also keeps the state
machine for the audio subsystem. This allows the state
machine to be implemented only once for every imple-
mentation of the audio subsystem.

Audio API 512 of FIG. 5 provides an interface be-
tween audio/video conferencing application 502 and
the audio subsystem. Audio API 512 provides the fol-
lowing services:

Capture Service Captures a single audio stream continuously
from a local audio hardware source, for
example, a microphone, and directs the
audio stream to a audio software output sink
(i.e., a network destination).
Monitors the audio stream being captured
from the local audio hardware by playing
the audio stream locally.
Note: This function intercepts and displays a
audio stream at the hardware board when
the stream is first captured. This operation is
similar to a “Short circuit” or a UNIX tee
and is different from the “play” function.
The play function gets and displays the
audio stream at the host.

Monitor Service

Play Service Plays an audio stream continuously by
consuming the audio data from an audio
software source (i.e., a network source).

Link-In Service Links an audio network source to be the
input of an audio stream played locally. This
service allows applications to change
dynamically the software input source of an
audio stream.

Links a network source to be the output of
an audio stream captured locally. This
service allows applications to change
dynamically the software output source of
an audio stream.

Controls the audio stream “on the fly,”
including adjusting gain, volume, and

Link-Out Service

Control Service

5

10

15

20

25

30

35

45

50

55

65

40

-continued

latency.
Returns requested information regarding the
specified video stream.
Initialize at OPEN time.

Information Service

Initialization/
Configuration

Audio API 512 supports the following function calls
by audio/video conferencing application 502 to the
audio subsystem:

AGetNumDevs Retrieves the number of different audio
managers installed on the system.
Fills the ADevCaps structure with
information regarding the specified audio
manager.
Opens an audio stream with specified
attributes by allocating all necessary system
resources (e.g., internal data structures) for it.
Starts/stops capturing an audio stream from a
local audio hardware source, such as a
microphone.
Starts/stops monitoring an audio stream
captured from a local microphone.
Starts/stops playing an audio stream by
consuming the audio data from an audio
network source.
Links/unlinks a network input channel or an
input file to/from the specified audio stream
that will be played or is being played locally.
Links/unlinks a network output channel
to/from the specified audio stream that will be
captured or is being captured from the local
microphone.
Controls an audio stream by adjusting its
parameters (e.g., gain, volume).
Returns the status (AINFO and state) of an
audio stream.

Closes an audio stream and releases all system
resources allocated for this stream.
Registers an audio stream monitor.
Returns the packet number of the current
audio packet being played back or recorded.

AGetDevCaps

AOpen

ACapture

AMonitor

APlay

ALinkIn

ALinl<Out

ACntl

AGetInfo

AClose

ARegisterMonitor
APacketNumber

These functions are defined in further detail later in this

specification in a section entitled “Data Structures,
Functions, and Messages.”

Referring now to FIG. 14, there is shown a represen-
tation of the audio FSM for the local audio stream and

the remote audio stream of a conferencing system dur-
ing a conferencing session, according to a preferred
embodiment of the present invention. The possible
audio states are as follows:

AST__INI'l‘ Initial state — state of local and remote audio
streams after the application calls the CF_Init
function.
Open state — state of the local/remote audio
stream after system resources have been
allocated.
Capture state — state of local audio stream
being captured.
Link-out state — state of local audio stream
being linked/unlinked to audio output '(e.g.,
network output channel or output file).
Link-in state — state of remote audio stream
being linked/unlinked to audio input (e.g.,
network input channel or input file).
Play state — state of remote audio stream
being played.
Error state — state of local/remote audio
stream after a system resource failure occurs.

AST_OPEN

AST_CAPTURE

AST_LINKOUT

AST_LINKIN

AST_PLAY

AST_ERROR

In a typical conferencing session between a caller and
a callee, both the local and remote audio streams begin

CISCO SYSTEMS, INC. Ex. 1131 Page 53

CISCO SYSTEMS, INC. Ex. 1131 Page 54

5,434,913
41

in the AST..INIT audio state of FIG. 14. The applica-
tion calls the AOpen function to open the local audio
stream, taking the local audio stream from the AST_I-
NIT audio state to the AST_OPEN audio state. The

application then calls the ACapture function to begin
capturing the local audio stream, taking the local audio
stream from the AST_OPEN audio state to the AS-

T_.CAPTURE audio state. The application then calls
the ALinkOut function to link the local audio stream to

the audio output channel, taking the local audio stream
from the AST_CAP'I'URE audio state to the AS-
T_LINKOUT audio state.

The application calls the AOpen function to open the
remote audio stream, taking the remote audio stream
from the AST_INIT audio state to the AST_OPEN

audio state. The application then calls the ALinkIn
function to link the remote audio stream to the audio

input channel, taking the remote audio stream from the
AST_OPEN audio state to the AST_LINKIN audio

state. The application then calls the APlay function to
begin playing the remote audio stream, taking the re-
mote audio stream from the AST_LINKIN audio state

to the AST_PLAY audio state. The conferencing ses-
sion proceeds without changing the audio states of ei-
ther the local or remote audio stream.

When the conferencing session is to be terminated,
the application calls the AClose fimction to close the
remote audio channel, taking the remote audio stream
from the AST_PLAY audio state to the AST_INIT

audio state. The application also calls the AClose func-
tion to close the local audio channel, taking the local
audio stream from the AST_LINKOUT audio state to
the AST_INIT audio state.

This described scenario is just one possible audio
‘scenario. Those skilled in the art will understand that

other scenarios may be constructed using the following
additional functions and state transitions:

The application calls the ALinkOut function to un-
link the local audio stream from the audio output
channel, taking the local audio stream from the
AST_LINKOUT audio state to the AST_CAP-
TURE audio state.

The application calls the ACapture function to stop
capturing the local audio stream, taking the local
audiopstream from the AST.._CAPTURE audio
state to the AST_OPEN audio state.

The application calls the AClose function to close the
local audio stream, taking the local audio stream
from the AST_OPEN audio state to the AST_I-
NIT audio state.

The application calls the AClose function to close the
local audio stream, taking the local audio stream
from the AST_CAPTURE audio state to the AS-
T_INIT audio state.

The application calls the AClose function to recover
from a system resource failure, taking the local
audio stream from the AST_ERROR audio state
to the AST_INIT audio state.

The application calls the AP1ay function to stop play-
ing the remote audio stream, taking the remote
audio stream from the AST_PLAY audio state to
the AST_LINKIN audio state.

The application calls the ALinkIn function to unlink
the remote audio stream from the audio input chan-
nel, taking the remote audio stream from the AS-
T_LINKIN audio state to the AST_OPEN audio
state.

10

15

20

25

30

35

45

50

55

65

42

The application calls the AClose function to close the
remote audio stream, taking the remote audio
stream from the AST_OPEN audio state to the
AST_INIT audio state.

The application calls the AClose function to close the
remote audio stream, taking the remote audio
stream from the AST_LINKIN audio state to the
AST_INIT audio state.

The application calls the AClose function to recover
from a system resource failure, taking the remote
audio stream from the AST_ERROR audio state
to the AST_INIT audio state.

The AGetDevCaps and AGetNumDevs functions
may be called by the application from any audio state of
either the local or remote audio stream. The AGetInfo,

ACnt1, and APacketNumber functions may be called by
the application from any audio state of either the local
or remote audio stream, except for the AST_INIT
state. The AMonitor function may be called by the
application for the local audio stream from either the
AST_CAP'TURE or AST_LINKOUT audio states.

The ARegisterMonitor function may be called by the
application for the local audio stream from the AS-
T_LINKOUT audio state or for the remote audio
stream from either the AST_LINKIN or AST_PLAY

audio states. All of the functions described in this para-
graph leave the audio state unchanged.

Audio Manager

The function of audio manager 520 of FIGS. 5 and
13, a Microsoft ® Windows installable device driver, is
to interface with the audio task 538 running on the
audio/comm board 206' through the DSP interface 532.
By using the installable device driver model, many
different implementations of the audio manager may
co-exist on the same machine. Audio manager 520 has
two logical parts:

A device driver interface (DDI) that comprises the
messages the device driver expects, and

An interface with DSP interface 528.

Audio Manager Device Driver Interface

The device driver interface specifies the entry points
and messages that the audio manager’s installable device
driver supports. The entry points are the same for all
installable device drivers (i.e., Microsoft ® WEP, LIB-
ENTRY, and DriverProc). All messages are passed
through the DriverProc entry point. Messages concern-
ing loading, unloading, initializing, opening, closing,
and configuring the device driver are predefined by
Microsoft ®. Those messages specific to the audio man-
ager are defined in relation to the constant
MSG_AUDIO__MANAGER (these message will
range from DRV_RESERVED to DRV_USER as
defined in Microsoft ® WINDOWS.H). All messages
that apply to an audio stream are serialized (i.e., the
application does not have more than one message per
audio stream pending).

The installable device driver implementing the audio
manager responds to the open protocol messages de-
fined by Microsoft ®. The expected messages (gener-
ated by a Microsoft ® OpenDriver SDK call to install-
able device drivers) and the drivers response are as
follows:

DRV_LOAD Reads any configuration parameters
associated with the driver. Allocates any

clsco SYSTEMS, Inc. Ex. 1131 Page 54

CISCO SYSTEMS, INC. Ex. 1131 Page 55

5,434,913
43

-continued

memory required for execution. This call is
only made the first time the driver is
opened.
Set up the Wave driver to work with the
audio manager. Ensures that an audio/comm
board is installed and functional. For
audio/comm board 206 of FIG. 2, this
means the DSP interface 532 is accessible.
This call is only made the first time the
driver is opened.
Allocates the per application data. This
includes information such as the callback
and the application instance data. If this is
an input or output call, starts the DSP audio
task and sets up communication between
host processor and the DSP audio task (e.g.,
sets up mail boxes, registers callbacks). The
audio manager may be opened once for
input, once for output (i.e., it supports
one full duplex conversation), and any
number of times for device capabilities
query. This call is made each time
OpenDriver is called.

DRV_ENABLE

DRV_OPEN

These three messages are generated in response to a
single application call (OpenDriver). The OpenDriver
call is passed a pointer to the following structure in the
lParam2 of the parameter of the call:

typedef struct Open AudioManagerStruct.
BOOL GetDevCaps;
LPACAPS lpACaps;
DWORD SynchronousError;
LPAINFO Alnfo;
DWORD dwCallback;
DWORD dwCallbacklnstance;
DWORD dwFlags;
DWORD wField;

} OpenAudioManager, FAR ‘ lpOpenAudioManager;

All three messages receive this parameter in their
lParam2 parameter. If the open is being made for either
capture or playback, the caller is notified in response to
an asynchronous event (i.e., DSP_.OPEN generated by
dspOpenTask). If the open is being done in order to
query the devices capabilities (indicated by the field
OpenAudioManager with GetDevCaps being set to
TRUE), the open is synchronous and only fails if the
board carmot be accessed.

The DRV_OPEN handler always checks for error
conditions, begins execution of the audio thread, and
allocates per audio stream state information. Once the
open command sets state indicating that a DRV_O-
PEN is pending, it will initiate execution of the audio
thread via the DSP interface.

dspOpenTask posts a callback when the audio thread
has successfully begun. This callback is ignored unless it
indicates an error. The task will call back to the audio

driver once it has allocated all the necessary resources
on the board. The callback from the DSP interface sets
the internal state of the device driver to indicate that the

thread is running. Once the task has responded, a
DRV_OPEN message call back (i.e., post message)
back to the caller ofthe open command with the follow-
ing values:

Paraml equals A._OK, and
Param2 contains the error message returned by the

board.

The installable device driver will respond to the close
protocol messages defined by Microsoft ®. The ex-
pected messages (generated by the Microsoft ® SDK

10

15

20

25

30

35

45

50

55

65

44

CloseDriver call to installable device drivers) and the
drivers response are as follows:

DRV_CLOSE Frees the per application data allocated in
DRV_OPEN message.

DRV_DISABLE Shuts down the DSP audio task. Enables the
Wave driver and Wave task. Frees all

memory allocated during DRV_LOAD.
DRV_FREE Ignored.

This call sequence is symmetric with respect to the call
sequence generated by OpenDriver. It has the same
characteristics and behavior as the open sequence does.
Namely, it receives one to three messages from the
CloseDriver call dependent on the driver’s state and it
generates one callback per CloseDriver call. Three
messages are received when the driver’s final instance is
being closed. Only the DRV_CLOSE message is gen-
erated for other CloseDriver calls.

DRV_CLOSE message closes the audio thread that
corresponds to the audio stream indicated by
HASTRM. The response to the close message is in
response to a message sent back from the board indicat-
ing that the driver has closed. Therefore, this call is
asynchronous. There is a race condition on close. The
audio task could close down after the close from the

DRV has completed. If this is the case, the DRIVER
could be unloaded before the callback occurs. If this

happens, the callback will call into nonexistent code.
The full driver close sequence is preferably generated
on the last close as indicated by the SDK. See Mi-
crosoft® Programmers Reference, Volume 1: Over-
view, pages 445-446). '

The installable device driver implementing the host
portion of the audio subsystem recognizes specific mes-
sages from the audio API layer. Messages are passed to
the driver through the SendDriverMessage and are
received by DrvProc. The messages and their expected
parameters are:

 Message lParaml lParam2
AM_CAPTURE BOOL LPDWORD
AM__MU'I"E BOOL LPDWORD
AM_PLAY BOOL LPDWORD
AM_LlNKIN FAR ‘ ALinkStruct LPDWORD
AM..LINKOUT FAR " ALinkStruct LPDWORD
AM.._CTRL FAR ‘ Controlstruct LPDWORD
AM_REGISTERMON LPRegisterlnfo LPDWORD
AM_PACKETNUMBER NULL NULL

AM_CAPTURE Message
The AM_CAPTURE message is sent to the driver

whenever the audio manager function ACapture is
called. This message uses Paraml to pass a boolean
value and Param2 is used for a long pointer to a
DWORD where synchronous errors can be returned.
The stream handle will be checked to ensure that it is a

capture stream, and that there is not a message pending.
The state is not checked because the interface module

should keep the state. If an error state is detected, the
appropriate error message will be returned. The BOOL
passed in Param2 indicates whether to start or stop
capturing. A value of TRUE indicates capturing should
start, a value of FALSE that capturing should be
stopped. ACAPTURE__TMSG is sent to the audio task
nmning on the audio/comm board and the message
pending flag is set for that stream. When the audio task
receives the message via the DSP interface, it will

CISCO SYSTEMS, INC. Ex. 1131 Page 55

CISCO SYSTEMS, INC. Ex. 1131 Page 56

5,434,913
45

change its state and call back to the driver. When the

driver receives this callback, it will call back/post mes-
sage to the appropriate entity on the host processor, and
cancel the message pending flag. This call is a toggle, no
state is kept by the driver, and it will call the DSP
interface regardless of the value of the BOOL.
AM_MUTE Message

The AM_.MUTE message is sent to the driver when-
ever the audio manager function AMute is called. This
message uses Paraml to pass a boolean value and Pa-
ram2 a long pointer to a DWORD for a synchronous
error value. The stream handle is checked to ensure that

it is a capture stream, and that no messages are pending.
If an error state is detected, the appropriate error mes-

sage is returned. The BOOL passed in Paraml indicates
whether to start or stop muting. A value of TRUE
indicates muting should start, a value of FALSE that
muting should be turned off. The driver posts the mes-
sage AMUTE_TMSG to the audio task through the
DSP interface, and sets the message pending flag. When
the driver receives this callback, it will call back/post
message to the appropriate entity on the host processor,
and then cancel the message pending flag.
AM_PLAY Message

The AM__PLAY message is sent to the driver when-
ever the audio manager function APlay is called. This
message uses Paraml to pass an audio manager stream
handle (HASTRM) and Param2 to pass a boolean
value. The APlay message handler checks the stream
handle to ensure that it is a playback stream, and verifies
that there is not a message pending against this stream.
If an error is detected, a call back/post message is made
immediately. The BOOL passed in Paraml indicates
whether to start or stop playing the remote stream. A
value of TRUE indicates that playback should start, a
value of FALSE that playback should stop. The
APLAY_TMSG is posted to the audio task through
the DSP interface and the message pending flag is set
for this stream. When the callback is processed, the
caller is notified (via callback/post message), and finally
the message pending flag for this stream is canceled.
AM_LINKIN Message

The AM._LINK1N message is sent to the driver
whenever the audio manager function ALinkIn is
called. Paraml passes the Audio Manager stream han-
dle (HASTRM). 1Param2 contains a pointer to the
following structure:

typedef struct ._ALinl<Struct {
BOOL ToLink;
CHANID Chanld;

} ALinkStruct, FAR ‘ lpALinkStruct;

ToLink contains a BOOL value that indicates whether

the stream is being linked in or unlinked (TRUE is
linked in and FALSE is unlinked). If no error is de-
tected and ToLink is TRUE, the charmel and the play-
back stream should be linked together. This is done by
sending the Audio Task the ALINKIN_TMSG mes-
sage with the channel ID as a parameter. This causes
the Audio Task to link up with the specified comm
channel and begin playing incoming audio. Charmel ID
is sent as a parameter to ALINKIN_TMSG implying
that the channel ID is valid in the board environment as

well as the host processor. In response to this message,
the audio manager registers with the com task as the
owner of the stream.

l0

15

20

25

30

35

45

50

55

65

46

Breaking the link between the audio stream handle
and the channel ID is done when the ToLink field is set

to FALSE. The audio manager sends the ALIN-
KIN_TMSG to the task along with the channel ID.
Since the link is made, the audio task responds to this
message by unlinking the specified channel ID (i.e., it
does not play any more audio).

Errors that the host task will detect are as follows:

The channel ID does not represents a valid read
stream.

The audio stream handle is already linked or unlinked
(detected on host processor).

The audio stream handle is not a playback handle.
If those or any interface errors (e.g., message pending)
are detected, the callback associated with this stream is
notified immediately. If no errors are detected, the
ALINKIN._TMSGS is issued to the DSP interface and

the message pending flag is set for this stream. Upon
receiving the callback for this message, the callback
associated with this stream is made, and finally the mes-

sage pending flag is unset.
AM_.LINKOUT Message

The AM_LINKOUT message is sent to the driver
whenever the audio manager function ALinkOut is
called. Paraml passes the audio manager stream handle
(HASTRM). 1Param2 contains a pointer to the follow-
ing structure:

typedef struct _ALinkStruct {
BOOL ToLink;
CHANID Chanld;

} ALinkStruct, FAR ‘ lpALinkStruct;

ToLink contains a BOOL value that indicates whether

the stream is being linked out or unlinked (TRUE is
linked out and FALSE is unlinked). If no error is de-
tected and ToLink is TRUE, the channel and the audio

in stream should be linked together. This is done by
sending the Audio Task the ALINKOUT_TMSG mes-
sage with the channel ID as a parameter. The Audio
Task responds to this by sending audio over the logical
channel through the com task. Channel ID is sent as a
parameter to ALINKOUT_TMSG implying that the
channel ID is valid in the board environment as well as

on the host processor.
Breaking the link between the audio stream handle

and the channel ID is done when ToLink field is set to

FALSE. The audio manager sends the ALIN-
KOUT_TMSG to the task along with the channel ID.
Since the link is made, the Audio Task responds to this

message by unlinking the specified channel ID (i.e., it
does not send any more audio).

Errors that the host task detects are as follows:

The channel ID does not represents a valid write
stream.

The audio stream-handle is already linked or unlinked
(detected on the host processor).

The audio stream handle is not an audio handle.

If those or any interface errors (e.g., message pending)
are detected, the callback associated with this stream is
notified immediately. If no errors are detected, the
ALINKOUT__TMSG is issued to the DSP interface

and the message pending flag is set for this stream. Upon
receiving the callback for this message, the callback
associated with this stream is made, and finally the mes-

sage pending flag is unset.
AM_CRTL Message

CISCO SYSTEMS, INC. Ex. 1131 Page 56

CISCO SYSTEMS, INC. Ex. 1131 Page 57

5,434,913
47

The AM_CRTL message is sent to the driver when-
ever the audio manager function ACtrl is called. Pa-
raml contains the HASTRM (the audio stream handle)
and Param2 contains a long pointer to the followingstructure:

typedef struct _ControlStruct {
LPAINFO lpAinfo;
DWORD flags;

} Controlstruct, FAR ‘ lpControlStruct;

The flags field is used to indicate which fields of the
AINFO structure pointed to by 1pAinfo are to be con-
sidered. The audio manager tracks the state of the audio
task and only adjust it if the flags and AINFO structure
actually indicate change.

Error checking will be for:
Valid audio stream state.

Values and fields adjusted are legal.
Pending calls on the current stream.

If there are any errors to be reported, the audio man-
ager immediately issues a callback to the registered
callback indicating the error.

If there are no errors, the audio manager makes the
audio stream state as pending, saves a copy of the struc-
ture and the adjustment to be made, and begins making
the adjustments one by one. The adjustments are made
by sending the audio task the ACNTL_TMSG mes-
sage with three arguments in the dwArgs array. The
arguments identify the audio stream, the audio attribute
to change, and the new value of the audio attribute.
Each time the audio task processes one of these mes-
sages, it generates a callback to the audio manager. In
the callback, the audio manager updates the stream’s
attributes, removes that flag from the flags field of the
structure (remember this is an internal copy), and sends
another ACNTL_TMSG for the next flag. Upon re-
ceiving the callback for the last flag, the audio manager
calls back the registered callback for this stream, and
unsets the pending flag for this stream.
AM_REGISTERMON Message

The AM_.REGISTERMON message is sent to the
driver whenever the audio manager function ARegis-
terMonitor is called. Param2 contains a LPDWORD

for synchronous error messages and Paraml contains a
long pointer to the following structure:

typedef struct_RegisterMonitor {
DWORD dwCallback;
DWORD dwCallbackInstance;
DWORD dwflags;
DWORD dwRequestFrequency;
LPDWORD lpdwSetFrequency
} RegisterMonitor, FAR ‘ LPRegisterMonitor;

The audio manager calls this routine back with informa-

tion about the status of the audio packet being recor-
ded/played back by the audio task. There may only be
one callback associated with a stream at a time. If there 50
is already a monitor associated with the stream when

this call is made, it is replaced.
Errors detected by the audio manager are:
Call pending against this audio stream.
Bad stream handle.

These errors are reported .to the callback via the func-
tions return values (i.e., they are reported synchro-
nously).

5

10

15

20

25

30

35

40

45

50

55

65

48

If the registration is successful, the audio manager
sends the audio task a AREGISTERMON_TMSG via

the DSP Interface. The first DWORD of dwArgs array
contains the audio stream ID, and the second specifies
the callback frequency. In response to the AREGIS-
TERMON_TMSG, the audio task calls back with the

current audio packet number. The audio task then gen-
erates a callback for every N packets of audio to the

audio manager. The audio manager callback generates a
callback to the monitor function with AM_PACK-

ET_NUMBER as the message, A_OK as PARAM1,
and the packet number as PARAM2. When the audio

stream being monitored is closed, the audio manager
calls back the monitor with A__STREAM_CLOSED
as PARAM1.

AM_PACKETNUMBER Message
The AM_PACKETNUMBER message is sent to

the driver whenever the audio manager function
APacketNumber is called. Paraml and Param2 are

NULL. If a monitor is registered for this stream handle,
the audio task is sent a APACKETNUMBER_.TMSG

message. In response to this message, the audio task
calls back the audio manager with the current packet

number. The audio manager in turn calls back the regis- '
tered monitor with the current packet number.

This is one of the few calls/messages that generates
both synchronous and asynchronous error messages.
The messages have been kept asynchronous whenever
possible to be consistent with the programming model.
Synchronous errors that are detected are:

The stream has no monitor registered.
Bad HASTRM handle.

If there is no monitor registered (i.e., no callback func-
tion to call) or if the HASTRM handle is invalid (again
no callback to call), the error is given synchronously
(i.e., as a return value to the function). Asynchronous
errors are as follows:

There is a call pending on this audio stream.
The stream is in an invalid state (i.e., not AS-

T.._LINKOUT or AST_PLAY).
The asynchronous errors are given to the monitor func-
tion, not the callback registered with the audio stream
on open.

Audio Manager Interface with the DSP Interface

This section defines the messages that flow between
the audio task 538 on the audio/comm board 206 and

the installable device driver on the host processor 202.
Messages to the audio task are sent using dspPostMes-
sage. The messages that return information from the
audio task to the host driver are delivered as callback
messages.

Host Processor to Audio/Comm Board Messages

All messages from the host processor to the audio/-
comm board are passed in a DSPMSG structure as the

dwMsg field. Additional parameters (if used) are speci-
fied in the dwArgs DWORD array, and are called out
and defined in each of the following messages:

ACAPTURE_TMSG: Causes the audio task to start

or stop the flow of data from the audio source. This

message is a toggle (i.e., if the audio is flowing, it is
stopped; if it is not, it is started).

AMUTE_TMSG: Toggles the codec into or takes it
out of muting mode.

APLAY_TMSG: Toggles playback of audio from a
network source.

CISCO SYSTEMS, INC. Ex. 1131 Page 57

CISCO SYSTEMS, INC. Ex. 1131 Page 58

5,434,913
49

ALINKIN_TMSG: Connects/disconnects the audio

task with a virtual circuit supported by the net-
work task. The virtual circuit ID is passed to the
audio task in the first DWORD of the dwArgs

array. The virtual circuit (or channel ID) is valid in
both the host processor and the audio/comm board
environment.

ALINKOUT_TMSG: Connects the audio task with

a virtual circuit supported by the network task.
The virtual circuit ID is passed to the audio task in
the first DWORD of the dwArgs array.

AREGISTERMON_TMSG: Registers a monitor on
the specified stream. The stream ID is passed to the
audio task in the first DWORD of the dwArgs
array, the second contains the notification fre-
quency.

APACKETNUMBER..TMSG: Issues a callback to

the Audio Manager defining the current packet
number for this stream. The stream ID is passed to
the audio task in the first DWORD of the dwArgs
array.

ACNTL_..TMSG: Sets the value of the specified
attribute on the audio device. Three elements ofthe

dwArgs array are used. The first parameter is the
stream ID, the second indicates the audio attribute

to be adjusted, and the third is the value of the
audio attribute.

Audio/Comm Board to Host Processor Messages

All messages from the audio/comm board to the host
processor are passed back through the registered call-
back function. The message from the DSP task to the
host driver are received in the dwParam1 parameter of
the registered callback function.

Each message sent to the audio task (running on the
audio/comm board) from the host processor is returned
by the audio/comm board through the callback func-
tion. Each time a message is sent to the audio/comm
board, a DSPMSG is generated from the audio/comm
board to respond. The message is the same message
.that was sent to the board. The parameter is in
DSPMSG.dwArgs[STATUS_INDEX]. This parame-
ter is either ABOARD_SUCCESS or an error code.

Error codes for each of the messages from the board
were defined in the previous section of in this specifica-
tion.

Messages that cause response to host processor action
other than just sending messages (e.g., starting the audio
task through the DSP interface) are as follows:

AOPEN_TMSG Message returned in
response to the
device opening
properly (i.e., called in
response to dspOpenTask).
Once the installable driver
receives the
AOPEN_._TMSG from the
board, it sends a data stream
buffer to the task containing
additional initialization
information (e.g.,
compression and SAC
stream stack and initial
attributes). Once the task
has processed this
information, it sends an
ASETUP._TMSG message
to the host.
This message is delivered to
the host when the

ASETUP._TMSG

AC1-IANNEL_HANGUP_TMSG

10

15

20

25

30

35

45

50

55

65

50

-continued

Communication subsystem
notifies the task that the

channel upon which it was
transmitting/receiving audio
samples went away.

Wave Audio Implementation

The DSP Wave driver design follows the same archi-
tecture as the audio subsystem (i.e., split between the
host processor and the audio/comm board). For full
details on the Microsoft ® Wave interface, see the Mi-
crosoft® Multimedia Programmer’s Reference. Some
of the control functions provided by the audio manager
are duplicated in the Wave/Media Control Interface.
Others, such as input gain or input and output device
selection, are controlled exclusively by the Media con-
trol interface.

Audio Subsystem Audio/Comm Board-Resident
Implementation

The audio task 538 of FIGS. 5 and 13 is actually a pair

of SPOX ® operating system tasks that execute on the
audio/comm board 206 and together implement capture
and playback service requests issued by the host proces-
sor side of the audio subsystem. Referring again to FIG.
13, the audio task connects to three other subsystems

running under SPOX ® operating system:
1. The audio task connects to and exchanges messages

with the host processor side of the audio subsystem
via the host device driver 536 (DSH_HOST).
TMB.._getMessage and TMB_postMessage calls
are used to receive messages from and route mes-
sages to the audio manager 520 through the host
device driver 536.

2. The audio task connects to the audio hardware on
the audio/comm board via a stream of stackable

drivers terminated by the SAC device driver. This
connection is bi-directional. Stackable drivers on

the stream running from the SAC driver to the
audio task include the compression driver and au-
tomatic gain control driver.

3. The audio task connects with comm task 540 (the

board-resident portion of the com subsystem) via
a mailbox interface exchanging control messages
and a streams interface for exchanging data. The
streams interface involves the use of pipe drivers.
Ultimately, the interface allows the audio task to
exchange compressed data packets of audio sam-
ples across ISDN lines with a peer audio task run-
ning on an audio/comm board located at the re-
mote end of a video conference.

The audio task is composed of two SPOX ® operat-
ing system tasks referred to as threads for the purposes
of this specification. One thread handles the capture
side of the audio subsystem, while the other supports
the playback side. Each thread is created by the host
processor side of the audio subsystem in response to an
OpenDriver call issued by the application. The threads
exchange compressed audio buffers with the com task
via a streams interface that involves bouncing buffers

off a pipe driver. Control messages are exchanged be-
tween these threads and the com task using the mail-
box interface which is already in place for transferring
messages between DSP tasks and the host device driver
536.

CISCO SYSTEMS, INC. Ex. 1131 Page 58

CISCO SYSTEMS, INC. Ex. 1131 Page 59

5,434,913
51

The playback thread blocks waiting for audio buffers
from the com task. The capture thread blocks waiting
for audio buffers from the SAC. While active, each
thread checks its dedicated control channel mailbox for

commands received from the host processor as well as
unsolicited messages sent by the com task. A control
channel is defined as the pair of mailboxes used to com-
municate between a SPOX ® operating system task and
its DSP counterpart nmning on the host processor.

Audio Task Interface with Host Device Driver

The host processor creates SPOX ® operating sys-
tem tasks for audio capture and playback. Among the

input parameters made available to these threads at
entry is the name each thread will use to create a stream
of stackable drivers culminating in the SAC device
driver. Once the tasks are created, they send an AOPE-
N_TMSG message to the host processor. This prompts
the host processor to deliver a buffer ofadditional infor-
mation to the task. One of the fields in the sent structure

is a pathname such as:

“/tsp/gsm:0/mxr0/esp/VCadc8K"

The task uses this pathname and other sent parameters
to complete its initialization. When finished, it sends an
ASETUP_TMSG message to the host signaling its
readiness to receive additional instructions.

In most cases, the threads do not block while getting

messages from TMB_MYMBOX or posting messages
to TMB_HOSTMBOX. In other words, TMB_.

getMessage and TMB_putMessage are called with
timeout=O. Therefore, these mailboxes are preferably
of sufficient depth such that messages sent to the Host
by the threads are not dropped. The dspOpenTask
1pdspTaskAttrs “nMailboxDept ” parameter are pref-
erably set higher than the default value of 4. The audio
task/host interface does not support a data charmel.
Thus, the “nToDsp” and “nFromDsp” fields of dspO-
penTask lpdspTaskAttrs are preferably set to 0.

Audio Task Interface with Audio Hardware

Referring now to FIG. 15, there is shown a block
diagram of interface between the audio task S38 and the
audio hardware of audio/comm board 206 of FIG. 13,

according to a preferred embodiment of the present
invention. FIG. 15 illustrates how input and output
streams to the audio hardware might look after success-
ful initialization of the capture and playback threads,
respectively.

On the capture side, audio data is copied into streams
by the SAC device driver 1304 (the SAC). The buffer
comes from a pool allocated to this IO_SOURCE
driver via IO_free0 calls. The data works its way up to
the capture thread 1502 when the latter task issues an
SS_get0 call. The data is transformed each time it
passes through a stackable driver. The mixer/splitter
driver 1510 may amplify the audio signals or it may split
the audio stream sending the second half up to the host
to allow for the recording of a video conference. The
data is then compressed by the compression driver
1508. Finally, timestamp driver 1506 appends a times-
tamp to the buffer before the capture thread receives it
completing the SS_get0. The capture thread 1502 ei-
ther queues the buffer internally or calls IO__free0 (de-
pending on whether the capture thread is trying to
establish some kind of latency or is active but unlinked),

10

15

20

25

30

35

45

50

55

65

52

or the capture thread sends the buffer to the com task
via the pipe driver interface.

On the playback side, audio data is received in
streams buffers piped to the playback thread 1504 from
the com task. The playback thread internally queues
the buffer or frees the buffer by passing the ‘buffer back

to the pipe driver; or the playback thread calls SS_put0
to send the buffer down the playback stream ultimately
to the SAC 1304 where the samples are played. First,
the timestamp is stripped off the buffer by timestamp
driver 1506. Next, the buffer is decompressed by de-

compression driver 1508. Prior to it being played, the
audio data undergoes one or more transformations mix-
ing in other sound or amplifying the sound (mixer/split-
ter driver 1510), and reducing or eliminating echoes
(echo/suppression driver 1512). Once the data has been
output to the sound hardware, the containing buffer is
ready to be freed back up the stream satisfying an
IO_alloc0 issued from the layers above.

Timestamp Driver

The video manager synchronizes with the audio
stream. Therefore, all the audio task needs to do is

timestamp its stream and provide an interface allowing
visibility by the video manager into this timestamping.
The interface for this is through the host processor
requests AREGISTERMON_TMSG and APACK-
ETNUMBER_TMSG. The timestamp is a 32-bit quan-
tity that is initialized to l, incremented for each block
passed to the audio task from the IO_SOURCE stack
and added to the block. The timestamp is stripped from
the block once received by the audio task executing on
the remote node.

The appending and stripping of the timestamp is done
by the timestamp driver 1506 of FIG. 15. Performing
the stamping within a separate driver simplifies the
audio task threads by removing the responsibility of
setting up and maintaining this header. However, in
order to implement the APACKETNUM-
BER__TMSG host command, the threads are able to

access and interpret this header in order to determine
the packet number.

On the capture side of the audio task, the capture
thread will have allocated stream buffers whose size is

large enough to contain both the packet header as well
as ‘the compressed data block. The timestamp driver
deals with each buffer as a SPOX ® operating system
IO__Frame data type. Before the flames are IO...
free0’ed to the compression stackable driver below, the
timestamp driver subtracts the size of the packet header
from the frame’s current size. When the frame returns to

_the timestamp driver via IO_getO, the driver appends
the timestamp by restoring the size to “maxsize” and
filling the unused area with the new header. The han-
dling is reversed for the playback side. Buffers received
from the com task contain both the compressed data
block and header. The timestamp driver strips the
header by reducing “size” to “maxsize” minus the
header size.

(De)Compression Drivers

In a preferred embodiment, the DSP architecture
bundles the encode and decode functions into one

driver that is always stacked between the audio task and
the host processor. The driver performs either com-
press or decompress functions depending on whether it
is stacked within an IO_SINK or IO_SOURCE

stream, respectively. Under this scheme, the audio task

CISCO SYSTEMS, INC. Ex. 1131 Page 59

CISCO SYSTEMS, INC. Ex. 1131 Page 60

5,434,913
53

only handles uncompressed data; the stackable driver
compresses the data stream on route to the host proces-
sor (IO_SINK) and decompresses the stream if data is

being read from the host processor (IO_SOURCE) for
playback.

In an alternative preferred embodiment, the audio
task deals with compressed data in fixed blocks since
that is what gets stamped or examined on route to or
from the ISDN comm task, respectively. In this em-
bodiment, the DSP architecture is implemented by the
DXF transformation driver 1508. Either driver may be
placed in an IO_SOURCE or IO_SINK stream. _

Due to the audio subsystem’s preference to manage
latency reliably, the audio task threads know how much
capture or playback time is represented by each com-
pressed data sample. On the capture side, this time may
be calculated from the data returned by the compres-
sion driver via the DCO__FILLEXTWAVEFOR—
MAT control command. DCO_ExtWaveFormat data

fields “nSamplesPerSec” and “wBitsPerSample” may
be used to calculate a buffer size that provides control
over latency at a reasonable level of granularity.

Consider the following example. Suppose we desire
to increase or decrease latency in 50 millisecond incre-
ments. Suppose further that a DCO_FILLEXT-
WAVEFORMAT command issued to the compression
driver returns the following fields:

rzchannels = 1

nSamp1esPerSec —- 8000
nBlo<:kAlign = O
wBitsPerSample = 2

If we assume that compressed samples are packed into
each 32-bit word contained in the buffer, then one TI

C31 DSP word contains 16 compressed samples. The
buffer size containing 50 ms worth of data would be:

words = {8000%“? x 0.05 Secj+ 16 = 25word

To this quantity, the capture thread adds the size of the
packet header and uses the total in allocating as many
streams buffers as needed to service its IO_SOURCE
stream.

On the receiving side, the playback thread receives
the packet containing the buffer of compressed data.
The DCO_FILLEXTWAVEFORMAT control com-

mand is supported by the encoder, not the decoder
which the playback thread has stacked in its IO_SINK
stream. In fact, the thread has to send the driver a
DCO_SETEXTWAVEFORMAT command before it

will decompress any data. Thus, we need a mechanism
for providing the playback thread a DCO_Ext-
WaveFormat structure for handshaking with decom-
pression driver prior to entering the AST_PLAY state.

Mixer/Splitter Driver

The mixer/splitter driver 1510 (i.e., the mixer) is a
stackable driver that coordinates multiple accesses to
the SAC 1304, as required by conferencing. The mixer
allows multiple simultaneous opens of the SAC for both
input and output and mixes the channels. The mixer also
supports priority preemption of the control-only SAC
device “sacctrl.” -

The SPOX ® operating system image for the audio/-
comm board has mappings in the device name space to

10

15

20

25

30

35

45

50

55

65

54
transform references to SAC devices into a device stack

specification that includes the mixer. For example, a
task that attempts to open “/sac” will actually open
“/mxrl/sac”. The mapping is transparent to the task.
To avoid getting mapped through the mixer, an alterna-
tive set of names is provided. The alternative names
consist of the standard device name prefixed with
“VC”. For example, to open the device “adc8K” with-
out going through the mixer, a task would use the name
“/VCadc8K”. To obtain priority access to the SAC, the
software opens the device “/mxr0/VCadc8K”.

For output operation, the software opens the mixer
with device ID 0; any other client opens the mixer with
device ID 1. Device ID 0 may be opened only once;
when it is, all other currently open channels are muted.
That is, output to the charmel is discarded. Subsequent
opens of device ID 1 are allowed if the sample rate
matches. Device ID 1 may be opened as many times as
there are channels (other than channel 0). All opens
after the first are rejected, if the sample rate does not
match the first open. When more than one channel is
open and not muted, the output of all of them is mixed
before it is passed on to the SAC.

For input operations, the software opens the mixer
with device ID 0; any other client opens the mixer with
device ID 1. Device ID 0 may be opened only once;
when it is, if charmel 1 is open, it is muted. That is, get
operations return frames of silence. Device ID 1 may be
opened once before channel 0 is open (yielding channel
1: normal record operation). Device ID 1 may also be
opened once after channel 0 is opened (yielding channel
2: conference record operation). In the second case, the
sample rate must match that of channel 0. Channel 1
returns data directly from the SAC (if it is not muted).
Channel 0 returns data from the SAC mixed with data

from any output chaimels other than channel 0. This
allows the user to play back a recording during a video
conference and have it sent to the remote participant.
Channel 2 returns data from the SAC mixed with the

output to the SAC. This provides the capability of re-
cording both sides of conference.

There are four control channels, each of which may
be opened only once. They are prioritized, with channel
0 having the highest priority, and channel 3 having the
lowest. Only the open channel with the highest priority
is allowed to control the SAC. Non-conferencing soft-
ware, which opens “/sacctrl”, is connected to channel
3, the lowest priority channel.

Mixer Internal Operation

For output operation, the mixer can, in theory, sup-
port any number of output charmels. The output chan-
nels are all equivalent in the sense that the data from all
of them is mixed to form the output sent to the SAC.
However, there is one channel that is designated the
main channel. The. first channel opened that is not
muted is the main chaimel. When the main channel is

closed, if there are any other non-muted channels open,
one of them is promoted to be the main channel. Open-
ing cha.nnel 0 (conference output) mutes any channels
open at the time and channel 0 caimot be muted. Thus,
if channel 0 is open, it is always the main channel. Any
open output channel that is not than the main channel is
called an auxiliary channel.

When an IO_.put operation is performed on a non-
muted auxiliary channel, the frame is placed on the
channel’s ready list. When an IO_put operation is per-

clsco SYSTEMS, Inc. Ex. 1131 Page so

CISCO SYSTEMS, INC. Ex. 1131 Page 61

5,434,913
55

formed on the main channel, data from the auxiliary
channels’ ready lists are mixed with the frame, and the
frame is passed immediately through to the SAC. If an
auxiliary channel is not ready, it will be ignored (and a
gap will occur in the output from that channel); the
main channel carmot be held up waiting for an auxiliary
channel.

When an IO_put operation is performed on a muted
channel, the frame is placed directly on the channel’s
free list. The driver then sleeps for a period of time
(currently 200 ms) to simulate the time it would take for
the data in the frame to be played. This is actually more
time than it would normally take for a block of data to
be played; this reduces the CPU usage of muted chan-
nels.

An IO_al1oc operation on the main charmel is passed
directly through to the SAC; on other channels, it re-
turns a frame from the channel’s free list. If a frame is

not available, it waits on the condition freeFrarneAvail-

able. When the condition is signaled, it checks again
whether the channel is the main charmel. If the main

channel was closed in the meantime, this channel may
have been promoted.

The mixer does not allocate any frames itself. All the
frames it manages are those provided by the task by
calling IO_free or IO_put. For an auxiliary channel,
frames passed to IO_free are placed on the channel’s
free list. These are ‘then returned to the task when it

calls IO_al1oc. After the contents of a frame passed to
IO_put have been mixed with the main channel, the
frame is returned to the channel’s free list. Since I/O

operations on the main channel (including IO_free and
IO_al1oc) are passed through to the SAC, no buffer
management is done by the mixer for the main channel,
and the free list and the ready list are empty. However,
the mixer does keep track of all frames that have been
passed through to the SAC by IO_free or IO_put and
returned by IO_get or IO_al1oc. This is done to allow
for the case where the main channel is preempted by
opening the priority chaimel. In this case, all frames that
have been passed to the SAC are recalled and placed on
the mixer’s free list for that channel.

Another special case is when the main channel is
closed, and there is another open non-muted charmel. In
this case, this other channel is promoted to be the main
channel. The frames on its ready list are passed immedi-
ately to IO_put to be played, and the frames on its free
list are passed to IO_free. These frames are, of course,
counted, in case the new main channel is preempted
again.

For output mixing, a frame on the ready list of an
auxiliary chaimel is mixed with both the main output
channel and with input channel 0 (conference input), if
it is open. I/O operations on these two channels are
running independently, so the mixer does not know
which channel will perform I/O first, or whether oper-
ations on the two will strictly alternate, or even if they
are using the same frame size. In practice, if the confer-
ence input channel is open, the main output channel is
conference output, and the two use the same frame size;
however, the mixer does not depend on this. However,
the auxiliary channel typically will not be using the
same frame size as either of the main charmels.

To handle this situation, the mixer uses two lists and

two index pointers and a flag for each channel. The
ready list, where frames are placed when they arrive,
contains frames that contain data that needs to be mixed

with both the input and the output charmel. When ei-

10

15

20

25

30

35

40

45

50

55

65

56

ther the input side or the output side has used all the
data in the first frame on the ready list, the frame is
moved to the mix list. The flag is set to indicate whether
the mix list contains data for the input side or the output
side. If the mix list is empty, both sides take data from
the ready list. When all the data in a frame on the mix
list has been used, the frame is moved to the free list.

Mixing operations are done in units of a main-chaimel
frame. This may take a portion of an auxiliary charmel
frame or it may take parts of more than one. The mixing
routine loops over the main charmel frame. Each pass
through the loop, it determines which auxiliary channel
frame to mix from, takes as much data from that frame
as it can, and moves that frame to a new list if necessary.
The auxiliary channel frame to mix from is either the
first frame on the mix list, if it is non-empty and the flag
is set to indicate that data has not been used from that

frame yet, or the first frame on the ready list. The index,
either inReadyIndex or outReadyIndex, specifies the
first unused sample of the frame.

For example, suppose mixing is with the main input
channel (conference in), and the data for an auxiliary
output chaimel is such that the read list contains two
frames C and D and the mix list contains two frames A

and B, wherein mixFlags equals MXR_IN-
PUT_DATA and inReadyIndex equals 40. Assume
further that the frame size on the main channel is 160

words and the frame size on the auxiliary channel is 60
words.

The first time through the loop in mix._frame, the mix
list is not empty, and the mix flag indicates that the data
on the mix list is for the input channel. The unused 20
samples remaining in the first frame on the mix list are
mixed with the first 20 samples of the main channel
frame. InReadyIndex is incremented by 20. Since it is
now equal to 60, the frame size, we are finished with the
frame. The output channel is finished with it, since it is
on the mix list, so the frame is moved to the free list and
set InReadyIndex to 0.

The second time through the loop, mix_.index is 20.
All 60 samples are mixed out of the first frame on the
mix list, and the frame is moved to the free list.

The third time through the loop, mix._index is 80.
The mix list is empty. All 60 samples are mixed out of
the first frame on the ready list. Again the frame is
finished, but this time it came from the ready list, so it is
moved to the mix list. The mix flag is changed to indi-
cate that the mix list now contains data for the output
channel. OutReadyIndex is not changed, so the output
channel will still staff mixing from the same offset in the
frame that it would have used if the frame had not been
touched.

The fourth time through the loop, mix_index is 140.
The mix list is not empty, but the mix flag indicates that
the data on the mix list is for the output channel, so it is
ignored. The remaining 20 samples are mixed from the
first frame on the ready list. All the data in the frame has
not been used, so it is left on the ready list; the next time
a frame is processed on the main input channel, process-
ing continues where it left off. After mixing is complete,
the ready list contains only frame D, the mix list con-
tains only frame C, mixFlags equals MXR..OUT-
PUT_DATA, and inReadyIndex equals 20.

After each step described, the data structures are
completely self-consistent. In a more typical situation,
the frames on the auxiliary channel will be much larger
(usually 1024 words), and only a portion of a frame will
be used for each frame on the main charmel. However,

cisco SYSTEMS, Inc. Ex. 1131 Page 61

CISCO SYSTEMS, INC. Ex. 1131 Page 62

5,434,913
57

the processing is always similar to one or two of the
four steps described in the example.

For input operations, unlike the output charmels, the
three input channels have distinctly different semantics.
The main channel is always channel 0 if it is open, and
channel 1 if chaimel 0 is not open. Channel 1 will always
be muted if it is open when chaimel 0 is opened, and
cannot be opened while chaimel 0 is open. Channel 2 is
never the main channel; it can be opened only while
channel 0 is open, and will be muted if charmel 0 is
closed.

Operation of the main channel is similar to the opera-
tion described for output. When IO._get or IO_free is
called, the request is passed on to the SAC. For channel
0, when the frame is returned from the SAC, any output
ready on auxiliary output channels is mixed with it
before the frame is returned to the caller.

When charmel 2 (conference record) is open, output
frames on channel 0 (conference output) and input
frames on charmel 0 (conference input) (including the
mixed auxiliary output) are sent to the function recor-
d...frame. Record_frame copies these frames to flames
allocated from the free list for charmel 2, mixes the input
and output channels, and places the mixed frames on the
ready list. When IO_.get operation is performed on
channel 2, it retrieves a frame from the ready list, block-
ing if necessary until one is available. If there is no
frame on the free list when record_frame requires one,
the data will not be copied, and there will be a dropout
in the recording; however, the main channel cannot be
held up waiting for the record cliaimel.

For conference record mixing, record_frame needs
to mix frames from both conference input and confer-
ence output into a frame for channel 2. Again, I/O
operations on the conference channels are running inde-
pendently. The mixer uses the mix list of the conference
record channel as a holding place for partially mixed
frames. readylndex contains the number of samples in
the first frame on the mix list which are completely

l0

15

20

25

30

35

mixed. The frame size contains the total number of 40

samples from either channel that have been placed in
the frame. The difference between the frame size and

readylndex is the number of samples that have been
placed in the frame from one channel but not mixed
with the other. The flag mixFlags indicates which chan-
nel these samples came from.

Mixing operations are done in units of a main-charmel
frame, as for output. This may take a portion of a record
channel frame or it may take parts of more than one.
The mixing routine loops over the main channel frame.
Each pass through the loop, it does one of the follow-
ing:

1. If the mix list contains data from the other charmel,
mix with the first frame on the mix list. readylndex
indicates the place to start mixing. If the frame is
now fully mixed, move it to the ready list.

2. If the mix list contains data from this channel (or
equal parts from both charmels), and there is free
space in the last frame on the mix list, copy the data
into that frame. The frame size indicates the place
to start copying.

3. If neither of the above is true, allocate a new frame

from the free list and add it (empty) to the mix list.
On the next iteration, case 2 will be done.

To provide mutual exclusion within the mixer, the
mixer uses a semaphore. Every mixer routine that ma-
nipulates any of the data for a channel first acquires the
semaphore. The semaphore mechanism is very similar

45

50

55

65

58

to the monitor mechanism provided by SPOX ® oper-
ating system. There are two major differences: (1) a task
within a SPOX ® operating system monitor cannot be
suspended, even if a higher priority task is ready to run,
and (2) when a task within a SPOX ® operating system
monitor is suspended on a condition, it implicitly re-
leases ownership of all monitors. In the mixer, it is nec-
essary to make calls to routines which may block, such
as IO_a.lloc, while retaining ownership of the critical
region. The semaphore is released when a task waits for
a mixer-specific condition (otherwise, no other task
would be able to enter the mixer to signal the condi-
tion), but it is not released when the task blocks on some
condition unrelated to the mixer, such as within the
SAC.

Echo Suppression Driver

The echo suppression driver (ESP) 1512 is responsi-
ble for suppressing echoes prevalent when one or both
users use open speakers (rather than headphones) as an
audio output device. The purpose of echo suppression is
to permit two conferencing systems 100 connected by a
digital network to carry on an audio conversation utiliz-
ing a particular microphone and a plurality of loud-
speaker device choices without having to resort to
other measures that limit or eliminate acoustic feedback

(“coupling”) from loudspeaker to microphone.
Specifically, measures obviated by the ESP include:
An audio headset or similar device to eliminate

acoustic coupling.
A commercial “speakerphone” attachment that

would perform the stated task off the PC and
would add cost and complexity to the user.

The ESP takes the form of innovations embedded in the

context of art known variously as “half-duplex speaker-
phones” or “half-duplex hands-free telephony” or
“echo suppression.” The ESP does not relate to art
known as “echo cancellation.”

The general ideas of “half-duplex hands-free tele-
phony” are current practice. Electronic hardware (and
silicon) exist that embody these ideas. The goal of this
technology is to eliminate substantially acoustic cou-
pling from loudspeaker to microphone by arranging
that substantial microphone gain is never coincident
with substantial speaker power output when users are
speaking.

The fundamental idea in current practice is the fol-
lowing: Consider an audio system consisting ofa receiv-
ing charmel connected to a loudspeaker and a transmit-
ting channel connected to a microphone. If both chan-
nels are always allowed to conduct sound energy freely
from microphone to network and from network to
loudspeaker, acoustic coupling can result in which the
sound emanating from the loudspeaker is received by
the microphone and thus transmitted back to the remote
station which produced the original sound. This “echo”
effect is aimoying to users at best and at worst makes
conversation between the two stations impossible. In
order to eliminate this effect, it is preferable to place an
attenuation device on each audio channel and dynami-
cally control the amount of attenuation that these de-
vices apply by a central logic circuit. This circuit senses
when the remote microphone is receiving speech and
when the local microphone is receiving speech. When
neither channel is carrying speech energy, the logic
permits both attenuators to pass audio energy, thus
letting both stations receive a certain level of ambient
noise from the opposite station. When a user speaks, the

CISCO SYSTEMS, INC. Ex. 1131 Page 62

CISCO SYSTEMS, INC. Ex. 1131 Page 63

5,434,913
59

logic configures the attenuators such that the micro-
phone energy passes through to the network and the
network audio which would otherwise go to the
speaker is attenuated (this is the “talk state”). When on
the other hand speech is being received from the net-
work and the local microphone is not receiving speech,
the logic configures the attenuators conversely, such
that the network speech is played by the speaker and
the microphone’s acoustic energy is muted by the atten-
uator on that channel (this is the “listen state ”).

The ESP operates without a separate dedicated
speakerphone circuit device. The ESP operates over a
network featuring an audio codec that is permitted to
distort signal energies without affecting the perfor-
mance of the algorithm. The ESP effectively distributes
computational overhead such that redundant signal
processing is eliminated.

The ESP is a distributed digital signal processing
algorithm. In the following, the algorithm is spoken of
as “distributed,” meaning that two instantiations of it
reside on the two conferencing systems connected by a
digital network, and their operation is interdependent).
“Frame energy” means a mean sum of the squares of the
digitized audio samples within a particular time segment
called a “frame.”

The instantaneous configuration of the two attenua-
tions is encoded as a single integer variable, and the
attenuations are implemented as a fractional multiplier
as a computational function of the variable.

In order to classify a signal as speech, the algorithm
utilizes a frame energy threshold which is computed as
an offset from the mathematical mode of a histogram in
which each histogram bin represents the count of
frames in a particular energy range. This threshold
varies dynamically over time as it is recalculated. There
exists a threshold for each of the two audio channels.

Since both stations need access tb the threshold estab-

lished at a particular station (in that one station’s trans-
mit stream becomes the other station’s receive stream),
the threshold is shared to both instantiations of the

algorithm as an out-of-band network signal. This obvi-
ates the need for both stations to analyze the same sig-
nal, and makes the stations immune to any losses or
distortion caused by the audio codec.

The energy of a transmitted audio frame is embedded
within a field of the communication format which

carries the digitally-compressed form of the frame. In
this way, the interactive performance of the station pair
is immune from any energy distortion or losses involved
in the audio codec.

The ESP makes possible hands-free operation for
video teleconferencing products. It is well-known that
hands-free audio conversation is a much more natural

conferencing usage model than that of an audio headset.
The user is freed from a mechanical attachment to the

PC and can participate as one would at a conference
table rather than a telephone call.

Audio Task Interface with Comm Task

The interface between the audio task to the audio

hardware is based on SPOX® operating system
streams. Unfortunately, SPOX® operating system
streams connect tasks to source and sink device drivers,
not to each other. Audio data are contained within

SPOX ® operating system array objects and associated
with streams. To avoid unnecessary buffer copies, array

10

15

20

25

30

35

45

50

55

60

objects are passed back and forth between the com
and audio subsystems running on the audio/comm
board using SPOX ® operating system streams and a
pipe driver. The actual pipe driver used will be based on
a SPOX® operating driver called NULLDEV. Like
Spectron’s version, this driver simply redirects buffers it
receives as an IO_SINK to the IO_SOURCE stream;
no buffer copying is performed. Unlike Spectron’s pipe
driver, however, NULLDEV does not block the re-

ceiving task if no buffers are available from the sending
stream and discards buffers received from the
IO_SOURCE stream if no task has made the

IO_SINK stream connection to the driver. In addition,
NULLDEV will not block or return errors to the

sender. If no free buffers are available for exchange
with the sender’s live buffer, NULLDEV returns a
previously queued live buffer. This action simulates a
dropped packet condition.

Setup and teardown of these pipes will be managed
by a message protocol between the com task and
audio task threads utilizing the existing TMB mailbox
architecture built into the Mikado DSP interface.

The interface assumes that the com task is running,
an ISDN connection has been established, and channel
ID’s (i.e., virtual circuit ID’s) have been allocated to the
audio subsystem by the conferencing API. The capture
and playback threads become the channel handlers for
these ID’s. The interface requires the com task first to
make available to the audio threads the handle to its
local mailbox TMB_MYMBOX. This is the mailbox a

task uses to receive messages from the host processor.
The mailbox handle is copied to a global memory loca-
tion and retrieved by the threads using the global data
package discussed later in this specification.

Message Protocol

Like the com task, the audio task threads use their

own TMB_MYMBOX mailboxes for receiving mes-
sages from the com task. For the purpose of illustra-
tion, the capture thread, playback thread and com
task mailboxes are called TMB_CAPTURE, TMB_

PLAYBACK, and TMB_COMMMSG, respectively.
The structure of the messages exchanged through these
mailboxes is based on TMB_Msg defined in “TMB.H”
such that:

typedef struct TMB_Msg {
Int msg;
Uns words[TMB_MSGLEN'];

} TMB_Msg;

The messages that define this interface will be described
via examples. Currently, specific message structures
and constants are defined in the header file “AS.H”.

Referring now to FIG. 16, there is shown a block
diagram of the interface between the audio task 538 and
the com task 540 'of FIGS. 5 and 13, according to a
preferred embodiment of the present invention. For
audio capture, when the capture thread receives an
ALINKOUT_TMSG message from the host proces-
sor, it sends an AS_REGCHANI-IDLR message to the
TMB_COMMMSG mailbox. The message contains an
on-board channel ID, a handle to the mailbox owned by
the capture thread, and a string pointer to the pipe.

typedef struct AS_0PENMSG {

CISCO SYSTEMS, INC. Ex. 1131 Page 63

CISCO SYSTEMS, INC. Ex. 1131 Page 64

5,434,913
6261

-continued

Uns msg; /‘ msg == AS_REGCI-IANHDLR. ’/
Uns Channe1_ID; /’ On board channel ID ‘/
TMB_MBox mailBox; /‘ Sending Task’s mailbox. */
String DevName; /‘ Device name to open. ‘/

} AS_OPENMSG;

Channel_ID is used to retrieve channel specific infor-
mation. The task stores this information in the global

and returning status to the capture thread via a message
directed to TMB._CAPTURE such that:

TMB_Msg message;
CommAudioDataPtr pCADat2:
AS_OPENMSG audio;
typedef struct AS_INFOMSG {Uns

Uns
Uns
Uns

msg; /* AS._.CLOSE_CHAN or AS_STATUS "/
Channel_lD; /* On board channel ID */
statusCode; /‘ Status Code */
statusExtra; /* Additional status info */

} AS_.INFOMSG ‘comm ;
'l'MB_.getMessage (TMB_COMMMSG, (TMB._Msg)&audio, O);
pCAData= (Com.mAudioDataPtr) GD__getAddress(audio.Channel_ID);
<va.lidate pCAData fields and open audio.DevName>
comm = (AS_..INFOMSG ’) &message;
comm——>msg = AS_STATUS;
comm—>ChanneL._lD = audio.Channel_ID;
comm-—->statusCode = AS__REGCl-IANI-lDLR__OK;
'l'MB_postMessage (audio.mailbox, com, 0);

name space. A pointer to this space is retrieved via the
routine GD..get.Address(ID). The information has the
following structure:

typedef struct COMM_AUDIO_DATA {
struct {

unsigned int :30;
unsigned int initialized :1;
unsigned int read :1;

} bool;
Uns 1ocalID;
Uns remoteID;

} CommAudioData, ‘CommAudioDataPtr;

This structure is declared in “AS.H”. From this struc-
ture, the com task can determine if the buffer is initial-
ized (it always should be or the audio tasks would not be
calling), if the task is expecting to read or write data
to/from the network (if read is 1, the com task will
open the pipe for write and put data from the network
there), and finally the local and remote IDs of the net-
work charmels.

The following pseudo code illustrates the actions
performed by the capture thread to establish a link with
the com task:

AS._OPENMSG ‘audio;
TMB_Msg message;
CommAudioDataPtr pCAData;

30

35

40

45

50

If the comm task detects an error, the statusCode and

statusExtra fields are set to the appropriate error codes
defined in the section Status and Error Codes.

The capture thread subsequently receives stream
buffers filled with time stamped and compressed audio
data from the input driver stack via SS__get() calls and
routes them to the com task via the pipe driver. After
each SS_put() to the pipe driver, the capture thread
notifies the com task that an incoming buffer is on the
way via an AS__RECEIVECOMPLETE status mes-
sage.

audio = (AS_INFOMSG ‘) &message;
audio— >msg = AS._STATUS;
audio— >ChanneL_ID = AS._CAP'I'URE_CHAN;
audio— >statusCode = AS__RECEIVECOMPLETE;
TMB_postMessage (TMB_._COMMMSG, audio, 0);

The com task sends the buffers to the ISDN driver

which transmits the data frame on the audio output’s
ISDN virtual channel.

Between each input streams buffer processed, the
capture thread checks TMB..CAPTURE for new re-
quests messages from the comm task or the host proces-

pCAData = (Con:unAudioDataPtr) GD_getAddress(AS_.CAPTURE._CI-IAN)
<set pCAData fields)
audio = (AS_OPENMSG ‘) &message;
audio—>msg = AS_REGCHANI-IDLR;
audio-—— >Channel.ID = (Uns) AS__CAP'l‘URE_CI-IAN;
audio— >mailBox = (TMB_MBox) 'l'MB_CAPTURE;
audio— >DevName = (String) “/null”;
TMB_postMessage(TMB_.COMMMSG, audio, 0);

The com task’s first action will be to call GD._getAd-
dress() and retrieve an address to the CommAudioData
structure. It validates the structure using the local and 65 sor. When a second ALINKOUT_TMSG message is
remote IDs linking the thread with the appropriate
ISDN channel. Finally, the com task responds by
connecting to its end of audio->DevName (“/nu1l”)

received from the host processor, the capture thread
stops sending data buffers to the pipe driver and notifies
the com task of its intention to terminate the link:

clsco SYSTEMS, Inc. Ex. 1131 Page 64

CISCO SYSTEMS, INC. Ex. 1131 Page 65

5,434,913
63 64

-continued

audio = (AS.._INFOMSG ’) &message; comrn—>Channel_ID = Chaniiel_ID;
audio— >msg = AS_CLOSE_CHAN; comm-—>statusCode = AS RECEIVECOMPLETE;
audio—— >ChanneL_ID = AS__CAP'I‘URE_CI-IAN; TMB_postMessage (TMB.PLAYBACK, comm, 0);
TMB._postMessage (TMB_COMMMSG, audio, 0); 5

The playback thread collects each buffer and outputs
C3Pt“1"5 treats the ALINK0UT—TMSG message 35 3 the audio data by SS._put0’ing each buffer down the.
toggle: the first receipt of the message establishes the driver stack to the SAC 1304_

link, the second receipt terminates it. The comm task 10 The handing of the Seeohd ALINKIN_TMSG re-
til‘-5t 010535 "5 halt Of the P1Pe df1Ve1' and then termmates quest received from the host processor is the same as on
its °0m1e°ti°h With the Capture thread Via an AS— the capture side. The playback thread closes “/nul12”
CL0SE—CHAN—0K message- and uses AS_CLOSE__CHAN to sever its link with the

com task.

At any time during the link state problems with or a_> = AS_STATUS; 15 ’ _
,C,:::_>3S,ime1__1D = Cha,me1_1D; normal shutdown of the ISDN logical channel may
comm—>statusCode = AS_CHANCLOSE_0K; generate a hang-up condition. The com task notifies
TMB~P°5tMeSS38° (1'MB—CAP'1URE> °°mmr 0): the capture and/or playback thread via the unsolicited

status message AS._COMM._HANGUP_NOTIFY:

On the other side of the audio task, the playback thread 20
waits for the ALINKIN_TMSG message from the host _ , _

processor after first opening the IO_SINK side of a >(::g_I=N§_g:dsS'1(‘3A'1)*1§L5t?essage’
second pipe driver “/nu112”. When that message finally comm-— >Cliannel_ID = channe1_ID;
arrives, the playback thread opens the communication °°mm->$t3t“5C°de = A5-—C0MM—HANGUP—N0T1FY:- - — E = MUX

pathway to the comm task and registers as the audio 25 §r'fi‘;‘_p;:?I:5sa;‘?<T§§_PLA$£;3:gK or
input channel handler via an AS_REGCHANHDLR TMS_CAp'rURE>’ comm, 0);
message. Like the capture thread, the playback thread
supplies the channel ID, its response mailbox, and a
String pointer to the Second pipe driver: In response, the threads close the charmel, notifying the

pCAData = (CommAudioDataPtr) GD_getAddress(AS_PLAYBACK._CI-IAN)
<set pCAData fields)
audio = (AS__OPENMSG ‘) &message;
audio—>msg = AS_REGCHANHDLR;
audio— >Channel ID = (Uns) AS_PLAYBACK_CI-IAN;
audio— >mai1Box = ('l'MB_MBox) TMB_PLAYBACK;
audio—>DevName = (String) “/null2”;
TMB_postMessage (TMB_COMMMSG, audio, 0);

host processor in the process.
Exactly as with the capture thread, the com task be- 40 AS defined in “AS H” the following are status andhaves as follows:

TMB_getMessage ('1'MB_COMMMSG, (TMB_Msg)&audio, 0);
pCAData= (CommAudioDataPtr) GD_getAddress(audio.Channel_ID);
<validate pCAData fields and open audio.DevName>
comm = (AS_INFOMSG ‘) &message;
conim—->msg = AS_STATUS;
comm—->Channel_ID = audio.Channel_ID;
comm—>statusCode = AS_REGCHANl-IDLLOK;
TMB_.postMessage (audio.mailbox, com, 0);

Once this response is received’ the playback thread error codes for the statusCode field of AS_STATUS
blocks waiting for notification of input buffers delivered messages’

AS._REGCl-IAN!-IDLR_OK AS_REGCHANHDLR request succeeded.
AS_REGCHANHDLR__FAIL AS_REGCHANHDLR request failed.
AS_CHANCLOSE_OK AS_CI-IANCLOSE request succeeded.
AS_CHANCLOSE_FAIL AS...CHANCLOSE request failed.
AS_COMM__I-IANGUP_NOTIFY Open channel closed.
AS_.RECEIVECOMPLETE Data packet has been sent to NULLDEV.
AS_LOST__DATA One or more data packets dropped.

Regarding buffer management issues, the audio task
maintain a dynamically configurable amount of latency
on the audio streams. To do this, both audio task threads

by the com task to its side the pipe driver. After each
buffer is put to pipe, the com task notifies the play-

back thread‘ 65 have control over the size of the buffers that are ex-
changed with the comm task. As such, the com task

comm __. (ASJNFOMSG .) gemegsage; adopts the buffer size for the streams assigned it by the
comm—>msg = AS_STATUS; audio task. In addition, the number of buffers which

clsco SYSTEMS, Inc. Ex. 1131 Page 65

CISCO SYSTEMS, INC. Ex. 1131 Page 66

5,434,913
65

exist within the NULLDEV link between the com

task and an audio task thread are defined by the threads.
Mechanisms for implementing this requirement in-
volves the following steps:

1. Both audio task threads create their SPOX ® oper-
ating system stream connections to the NULL-
DEV pipe driver before registering with the com
task. Each thread issues an SS_create0 specifying
the buffer size appropriate for the audio compres-
sion method and time stamp framing to be per-
formed on each buffer. In addition, the attrs.nbufs
field is set to the desired number of buffers avail-

able for queuing audio data within the NULLDEV
link.

2. When setting up its NULLDEV streams, the
comm task sets the SS_create0 buffer size parame-

ter to —-l specifying that a “device-dependent
value will be used for the stream buffer size”. See

SPECTRON’s SPOX ® Application Programming
Reference Manual, Version 1.4, page 173. In addi-
tion, the attrs.nbufs are set to 0 ensuring that no
additional buffers are added to the NULLDEV
link.

3. After opening the stream, the com task will query
for the correct buffer size via an SS_sizeof() call.
Thereafter, all buffers it receives from the capture
thread and all buffers it delivers to the playback
thread are this size. It uses this size when creating
the SA_Array object used to receive from and
send buffers to NULLDEV.

The com task preferably performs no buffering of live
audio data. Communication between audio task end-

points is unreliable. Because audio data is being cap-
tured, transmitted, and played back in real time, it is
undesirable to have data blocks retransmitted across an
ISDN charmel.

Whether unreliable transmission is supported or not
for the audio stream, the NULLDEV driver drops data

blocks if live buffers back up. NULLDEV does not
allow the sender to become buffer starved. It continues

to exchange buffers with the task issuing the SS_put0.
If no free buffers are available to make the exchange,
NULLDEV returns the live buffer waiting at the head
of its ready queue.

Global Data Package

The SPOX ® operating system image for the audio/—
comm board contains a package referred to as the
Global Data Package. It is a centralized repository for
global .data that is shared among tasks. The interfaces to
this package are defined in “GD.H”. The global data is
contained in a GBLDATA struct that is defined as an

array of pointers:

typedef struct GBLDATA {
Ptr avai1ableData[MAX_GLOBALS];

} GBLDATA;

Like all SPOX ® operating system packages, the global
data package contains an initialization entry point
GD_.init() that is called during SPOX ® operating
system initialization to set the items in GBLDATA to
their initial values. Tasks that wish to access the global
data will contain statements like the following to obtain
the contents of the GBLDATA structure:

10

15

20

25

30

35

45

50

55

60

65

66

Ptr pointerToGlobalObject;
pointcrToGlobal0bject = GD_getAdress(OBJECT._NUMBER);

In a preferred embodiment, there is no monitor or sema-
phore associated with the global data. So by conven-
tion, only one task will write to an item and all others
will only read it. For example, all data pointers are set
to NULL by GD_..init0. A pointer such as availa-
bleData[CommMBox] would then be filled in by the
com task during its initialization with the following
sequence:

pointerToG1obalData= GD__getAddress(AS_COMMMBOX);
pointerToGlobalData— >CommMBox= TMB_MYMBOX;

Tasks that wish to communicate to the comm task can

check that the task is present and obtain its mailbox
handle as follows:

pointerToGlobalData= GD_getAddress(AS_.COMMMBOX);
if (pointerToGlobalData— >CommMBox != NULL) {

/’ COMMTASK is present */
TMB_.postMessage (pointerToGlobalData—- >CommMBox ,

aMessage,
timeOutValue);

}
else {

/‘ IT IS NOT */
}

NULLDEV Driver

The SPOX ® operating system image for the audio/-
comm board contains a device driver that supports
interprocess communication though the stream (SS)
package. The number of distinct streams supported by
NULLDEV is controlled by a defined constant
NBRNULLDEVS in NULLDEV.H. Currently,

NULLDEV supports two streams. One is used for the
audio task capture thread to communicate with the
com task. The other is used by the playback thread to
communicate with the com task. The assignment of
device names to tasks is done by the following two
constants in ASTASK.H:

#define AS_._CAPTURE._PIPE
#define ASJLAYBACILPIPE

“/null”
“/null2“

Support for additional streams may be obtained by
changing the NBRNULLDEVS constant and recom-
piling NULLDVR.C. The SPOX® operating system
config file is also adjusted by adding additional device
name strings to this section as follows:

driver NULLDEV__driver {
“/null”: devid = 0;
“/mlllz”: devid = 1;

};

The next device is the sequence has devid=2.
SS_get() calls to NULLDEV receive an error if

NULLDEV’s ready queue is empty. It is possible to
SS_put0 to a NULLDEV stream that has not been
opened for SS_get0 on the other end. Data written to
the stream in this case is discarded. In other words,

CISCO SYSTEMS, INC. Ex. 1131 Page 66

CISCO SYSTEMS, INC. Ex. 1131 Page 67

5,434,913
67

input live buffers are simply appended to the free queue.
SS..put0 never returns an error to the caller. If no
buffers exist on the free queue for exchange with the
incoming live buffer, NULLDEV removes the buffer at
the head of the ready queue and returns it as the free
buffer. V

Comm Subsystem

The communications (comm) subsystem of confer-
encing system 100 of FIG. 5 comprises comm API 510,
com manager 518, and DSP interface 528 running on
host processor 202 of FIG. 2 and com task 540 run-
ning on audio/comm board 206. The comm subsystem
provides connectivity functions to the conferencing
application programs 502 and 504. It maintains and
manages the session, connection, and the virtual chan-
nel states. All the connection control, as well as data
communication are done through the communication
subsystem.

Referring now to FIG. 17, there is shown a block
diagram of the com subsystem of conferencing system
100 of FIG. 5, according to a preferred embodiment of
the present invention. The comm subsystem consists of
the following layers that reside both on host processor
202 and the audio/comm board 206:

Transport independent interface (TII.DLL),
Reliable datalink module

(DLM.DLL+KPDAPI.DLL, where KPDA-
PI.DLL is the back-end of the DLM which com-

municates with the DSP interface), and
Datalink module.

TII.DLL and RDLM.DLL reside entirely on the host
processor. Datalink module comprises DLM.DLL re-
siding on the host processor, and control (D channel),
D charmel driver, data comm tasks, and B charmel driv-
ers residing on audio/comm board 206.

The com interface provides a “transport indepen-
dent interface” for the conferencing applications. This
means that the com interface hides all the network

dependent features of the conferencing system. In a
preferred embodiment, conferencing system 100 uses
the ISDN Basic Rate Interface (BRI) which provides
2*64 KBits/sec data (B) channels and one signaling (D)
channel (2B+D). Alternative preferred embodiment
may use alternative transport media such as local area
networks (LANs) as the communication network.

Referring now to FIG. 18, there is shown a block
diagram of the com subsystem architecture for two
conferencing systems 100 participating in a conferenc-
ing session, according to a preferred embodiment of the
present invention. The com subsystem provides an
asynchronous interface between the audio/comm board
206 and the conferencing applications 502 and 504.

The com subsystem provides all the software mod-
ules that manage the two ISDN B channels. The com
subsystem provides a multiple virtual channel interface
for the B charmels. Each virtual charmel is associated

with transmission priority. The data queued for the
higher priority charmels are transmitted before the data
in the lower priority queues. The virtual channels are
unidirectional. The conferencing applications open
write-only charmels. The conferencing applications
acquire read-only charmels as a result of accepting a
open channel request from the peer. The DLM supports
the virtual channel interface.

During a conferencing session, the com subsystem
software handles all the multiplexing and inverse multi-
plexing of virtual channels over the B channels. The

5

10

15

20

25

30

35

45

50

55

65

68

number of available B channels (and the fact that there
is more than one physical channel available) is not a
concern to the application.

The com subsystem provides the D charmel signal-
ing software to the ISDN audio/comm board. The
com subsystem is responsible for providing the ISDN
B charmel device drivers for the ISDN audio/comm

board. The com subsystem provides the ISDN D
charmel device drivers for the ISDN audio/comm

board. The comm software is preferably certifiable in
North America (U.S.A., Canada). The signaling soft-
ware is compatible with N11, AT&T Custom, and
Northern Telecom DMS-100.

The com subsystem provides an interface by which
the conferencing applications can gain access to the
communication hardware. The goal of the interface is

-to hide the implementation of the connectivity mecha-
nism and provide an easy to use interface. This interface
provides a very simple (yet functional) set of connection
control features, as well as data communication fea-
tures. The conferencing applications use virtual chan-
nels for data communication. Virtual channels are sim-

plex, which means that two virtual channels are open
for full duplex communication between peers. Each
conferencing application opens its outgoing channel
which is write-only. The incoming (read-only) charmels
are created by “accepting” an “open charmel” request
from the peer.

qMUX Multiple Charmel Streaming Module

The QSource Multiple Channel Streaming Module
(qMUX) is based on the need to utilize the high band-
width of two bearer (B) channels (each at 64 kbps) as a
single high-speed channel for the availability ofmultiple
upper layer users. This section specifies the various
interfaces ‘between QSource qMUX module and other
QSource modules or application modules to achieve
this objective.

QSource qMUX is a data link provider for one or
more end-to-end connected upper layers to exchange
data between themselves at a higher data rate than is
possible over a single bearer (B) channel. qMUX ac-
cepts messages from upper layer providers and utilizes
both B channels to transfer the data. On the receiving
end, qMUX will reassemble received buffers from
Layer 1 in sequential order into a user message and
deliver the message to the awaiting upper layer. There
is no data integrity insured by qMUX. There is no
Layer 2 protocol (i.e., LAPB) used in the transmission
of packets between the two endpoints; however, pack-
ets are transmitted using HDLC framing. Throughout
this section, the term ULP means Upper Layer Process
or qMUX User.

qMUX is a data link provider process that receives
user data frames from upper layers (data link user) and
equally distributes them over the two B charmels. This
achieves a higher bandwidth for an upper layer than if
a single B channel was used. Several higher processes
can be multiplexed through the qMUX process, each
being assigned its own logical charmel through qMUX.
This logical channel is known as a qMUX logical identi-
fier (qLI).

A priority is assigned to each qLI as it is opened. This
priority ensures that buffers of higher priority are sent
before buffers of lesser priority are transmitted over the
B channels. This enables an upper layer, whose design
ensures a smaller bandwidth usage, to be handled in a

CISCO SYSTEMS, INC. Ex. 1131 Page 67

CISCO SYSTEMS, INC. Ex. 1131 Page 68

5,434,913
69

more timely manner, ensuring a more rapid exchange of
data between the two end users.

qMUX is an unreliable means of data transfer be-
tween two end users. There is no retransmission of

message data. Although received packets are delivered
to the higher requesting layers, there is no guarantee of
data integrity maintained between the two cooperating
qMUX processes. Packets may be lost between the two
endpoints because there is no Layer 2 protocol (i.e.,
LAPB) used in the transmission of packets between the
two endpoints; however, packets are transmitted using
HDLC framing. In order to provide reliability, a trans-
port provider such as TPO (modified to work with
qMUX) is preferably used as a ULP. qMUX considers a
message as one or more data buffers from the higher
layer. These chained buffers are unchained, assigned
sequence numbers within the message sequence, and
transferred to the far end. Each buffer contains a se-

quence number that reflects its place within the mes-
sage.

At the receiving end, the buffers are reassembled into
messages and delivered to the awaiting upper layer.
Message integrity is not guaranteed. Messages are dis-
carded on the receiving end if buffers are not received
before final reassembly and delivery.

All messages transmitted by qMUX are preferably
split into an even number of buffers, independent of
message size. Two processes, namely SM2 and SCUD,
split messages into equal buffers. In an alternative pre-
ferred embodiment, messages are split after exceeding a
specific size (160 octets). Splitting messages into an
even number of buffers, regardless of size, ensures
timely delivery of data. In another alternative preferred
embodiment, qMUX transmits a message contained in a
single buffer.

Upper layers ensure that both endpoints are synchro-
nized on their qLI (logical charmel identifier) and prior-
ity. Once both B channels are established, the ULP
establishes a qMUX logical interface with the qMUX
process. This qLI, assigned by the ULP, allows for the
transfer of data between qMUX and the ULP. This qLI
assignment may be transferred or reassigned to another
ULP, by use of the qMUX_..BIND__REQUEST primi-
tive. The qLI may be used by only one ULP at a time.
The maximum qLI value in a system is defined as a
startup parameter (MAX_LOGICAL_CHANNELS).
A ULP requesting a qLI when all of the assignable qLI
are in use is denied.

If a message is received for a qLI that is not assigned,
then the message is discarded. A received message has
the sending qLI and the intended receiver’s qLI con-
tained in the message. If the ULP assigned to the qLI
does not have an outstanding request to receive data
when a message is received, the message is discarded as
well.

A qLI of 0 (zero) is used as a control channel for a
ULP requesting assignment as a controlling ULP. The
controlling qLI may be used to synchronize the two end
ULPs cooperating in the data exchange.

When a qLI is requested, the requesting ULP assigns
a priority for the handling of messages. Those ULPs
requiring a high throughput with very little bandwidth
should request a high priority to its messages. Priority is
valid for outgoing messages only; that is, the priority is
used when the buffer is queued to the B channel driver.

Data transfer between the ULP and qMUX is per-
formed on a message basis. A message is defined to be
one or more data buffers containing user data. The

10

15

20

25

30

35

45

50

55

65

70

buffers are dis-assembled, assigned sequence numbers,
and transferred over the available bandwidth of the two

B channels in their assigned priority order, and re-
assembled on the far-end for delivery to a requesting
ULP. Should a fragment of the message not be deliv-
ered, the entire message is discarded; no retransmission
of the message or its- parts are attempted by qMUX.

End-to-End flow control is not performed by qMUX.
Before buffers are queued to layer 1, the queue depth is
checked. If the number of buffers on a B—channel queue
exceeds 15, the message is discarded, and notification
given to the ULP.

qMUX maintains a message window per qLI that
effectively buffers incoming messages. This guards
against network transit delays that may exist due to the
two bearer channels in use. The current size of the

message window is three. For example, it is possible for
qMUX to have completely assembled message numbers
2 and 3, while waiting for the final part of message 1.
When message 1 is completely assembled, all three are
then queued, in message order, to the appropriate ULP.
If any part of message 4 is received before message 1 is
complete, message 1 is discarded and the ULP notified.
The message window then slides to include messages 2,
3, and 4. Since messages 2 and 3 are complete, they are
forwarded to the ULP and the window slides to mes-

sage 4.
The following primitives are sent from the ULP to

qMUX:

Indicates the message carries
application data. The
message is comprised of one
or more QSource system
buffers.
A request by a ULP for a
qLI assignment. Both B
channels are assumed to be
connected at this time; the
state of the two B channels
is unaltered. This request
can also be used to request a
controlling qLI (O) for a
ULP.
A request by a ULP to have
the specified qLI bound to
the requesting ULP. All
subsequent received traffic is
directed to the requesting
ULP.
Used by a ULP to end its
usage of a qLI. All
subsequent messages
received are discarded for
this qLI. This is used by a
ULP to end the logical
connection and reception of
data.

qMUx.DA'rA_REQUEsr

qMUX_A'lTACH_REQUEST

qMU}LBIND_REQUEST

qMU7L_DEATTACH__REQUEST

The following primitives are sent from qMUX to the
ULP: '

qMU7L_DATA_.lNDICA'1"ION Indicates that user data is
contained in the message. The
message is one or more
QSource system buffers.
Acknowledges to the ULP
that a previously received
primitive was received
successfully. The qLI is
returned within the
acknowledgement.
Informs the ULP that a

qMUX_OK_ACK

qUMx__ERRoR_AcK

CISCO SYSTEMS, INC. Ex. 1131 Page 68

CISCO SYSTEMS, INC. Ex. 1131 Page 69

5,434,913
71

-continued

previously issued ‘request was
invalid. The primitive in error
and the associated qLI (if
valid) are conveyed back to
the ULP.

The following primitives are exchanged between PH
(B channel Driver) and

QMUX:
PH_DATA_REQUEST Used to request that the user data

contained in the QSource system
buffer be transmitted on the
indicated B channel.

PH_DATA_lNDlCATION Used to indicate to qMUX that the
user data in the QSource system
buffer is intended for an ULP. This
particular buffer may only be a
part of a message.

The following example of the usage of qMUX by two
cooperating ULPs (referred to as ULP-A and ULP-B)
assumes that a connection has already been established:

The session manager sends a QMUX_CONNEC-
T_REQ primitive to qMUX that states that both
B-channels are available. ULP-A and ULP-B es-

tablish both B Channels at their respective ends.
ULP-A issues a qMUX_ATTACH.REQUEST for

a controlling qLI to qMUX, and two qMUX_AT-
TACH_REQUESTs for a data exchange path.
The first path is for sending and the second is for
receiving data.

ULP-B also issues a qMUX_.ATTACH_REQUEST
for a controlling qLI (of zero) to qMUX, and two
qMUX_ATTACH_REQUESTs for a data ex-
change path. ULP assigns zero for the controlling
qLI requests and qLI 5 and 6 for ULP-A and qLI
5 and 6 for LP-B.

ULP-A formats a peer-to-peer (ULP-A to ULP-B)
request for informing ULP-B that messages for
ULP-A should be directed over qLI 6. ULP-A

5

10

15

20

25

30

35

sends the message via qMUX over the controlling _
qLI.

ULP-B also formats a peer-to-peer (ULP-B to ULP-
A) request for informing ULP-A that messages for
ULP-B should be directed over qLI 6. ULP-B
sends the message via qMUX over the controlling
qLI.

ULP-A receives the request from ULP-B from the
controlling qLI. A response is formatted which
gives the qLI for ULP-A as 6 and ULP-B as 6. It is
sent to qMUX for transfer over the controlling
qLI.

ULP-B receives the request from ULP-A from the
controlling qLI. A response is formatted which
gives the qLI for ULP-B as 6 and ULP-A as 6. It is
sent to qMUX for transfer over the controlling
qLI.

Once both ULP peers have received the responses to
their peer-to-peer requests, they an exchange data.

The following scenario illustrates the interface and
design of qMUX for the exchange of data/video/audio:

ULP-A issues a qMUX_DATA__REQUEST over
qLI 5 for delivery at the far-end to qLI 6. The
message was segmented into two QSource system
buffers by SM2/SCUD and sent to the B charmels
as follows:

45

50

55

65

72

Segment one: marked as START_OF_MES-
SAGE, sending qLI is 5, receiving qLI is 6,
sequence number is 1 (one). It is sent to the B
channel driver for B channel 1 with a primitive
of PH_DATA_REQ.

Segment two: marked as END...OF.MESSAGE,
sending qLI is 5, receiving qLI is 6, sequence
number is 2 (two). It is sent to the B channel
driver for B channel 2 with a primitive of
PH_DATA_REQ.

qMUX at the receiving end receives the buffers as
follows:

Segment one: received from B channel driver on B
channel 1. Buffer has header of STAR-

T...OF_MESSAGE, sequence number 1. State
is now AWAITING_EOM for qLI 6.

Segment two: END_OF_MESSAGE received.
Buffer is chained to buffer two. Primitive is made

qMUX._DATA_INDICATION and sent to
the ULP-B who had bound itself to qLI 6. State
is now set to AWAITING_STAR-
T..OF_MESSAGE.

The above activity occurs during the message window
for this qLI. The message window is currently set at
three. A message window exists on a qLI basis.

Comm API

Comm API 510 of FIG. 5 provides an interface be-
tween conferencing applications 502 and S04 and the
com subsystem. Comm API 510 consists of a tran-
sport-independent interface (TII.DLL of FIG. 17). The
TII encapsulates the network driver routines provided
to the upper-layer modules (ULMs).

Comm API 510 provides the following services and
functions:

Initialization Commands

Beginsessionz Begins a com session. Only one
“thread” of execution is allowed to begin the
com session for a given media. This thread
specified the session handler, which is the focal
point of all the connection management events.
All connection related events are given to the
session handler.

Endsessionz Ends a com session.
Connection Control Commands

MakeConnection: Makes connection to a remote

peer. A MakeConnection command sends a con-
nection request to the session handler of the
specified “address”.

CloseConnection: Closes a connection. This com-

mand closes all the open virtual channels and the
connection. All the relevant handlers are notified

of the events caused by this command.
AcceptConnection: Accepts a peer’s request for

connection. The session handler of the applica-
tion which has received a connection request
issues this command, if it wants to accept the
connection.

RejectConnection: Rejects a peer’s request for
connection.

Virtual-Channel Management .
RegisterChanMgr: Registers the piece of code that

will handle channel events. This call establishes a

chatmel manager. The job of channel manager is
to field the “open charme ” requests from the
connected peer.

RegisterChanHandler: Registers the piece of code
that will handle data events. The channel han-

CISCO SYSTEMS, INC. Ex. 1131 Page 69

CISCO SYSTEMS, INC. Ex. 1131 Page 70

5,434,913
73

dler is notified of the data related events, such as

receipt of data and completion of sending of a
data buffer.

74

channels (e.g., reliability, priority, number of errors,
number of receives and transmissions). These functions
are as follows:

Connection Management Functions
RegisterChanMgr

RegisterChanI-Iandler

OpenChannel

AcceptChannel

RejectChannel

CloseChannel

Data Exchange Functions
SendData
ReceiveData

Communications Statistics Functions
GetChanInfo
GetChanStats
GetTiiStats

Registers a callback or an application window whose message
processing function will handle low-level notifications generated
by data channel initialization operations. This function is
invoked before any OpenChannel calls are made.
Registers a callback or an application window whose message
processing function will handle low-level notifications generated
by data channel input/output (I/O) activities. The channels that
are opened will receive CHAN_DATA_SENT, and the accepted
channels will receive CHAN_RECV_COMPI.TE.
Requests a sub—channel connection from the peer application.
The result of the action is given to the application by invoking
the callback routine specified in the RegisterChanHandler. The
application must specify an ID for this transaction. This ID is
passed to the callback routine or posted in a message.
Note: All Connection requests are for establishing connections
for sending data. The receive channels are opened as the result
of accepting a ConnectChannel request.
A peer application can issue AcceptChannel in response to a
CHAN_REQUEST (OpenChannel) message that has been
received. The result of the Acceptchannel call is a one-way
communication sub—channel for receiving data. Incoming data
notification will be sent to the callback or window application
(via PostMessage) to the Channel}-Iandler.
Rejects an OpenChannel request (C!-IAN_REQUEST message)
from the peer.
Closes a sub-channel that was opened by AcceptChannel or
ConnectChannel.

Sends data. Data is normally sent via this mechanism.
Receives data. Data is normally received through this mechanism.
This call is normally issued in response to a DATLAVAILABLE
message.

Returns channel information.
Returns various statistical information about a channel.
Returns various statistical information about a TII channel.

OpenChanne1: Opens a virtual channel for sending
data.

AcceptCharmel: Accepts a virtual channel for re-
ceiving data.

RejectChannel: Rejects the virtual channel re-
quest.

CloseCha.nnel: Closes an open channel.
“Data” exchange

SendData: Sends data over a virtual charmel.

ReceiveData: Posts buffers for incoming data over
a virtual channel.

Communications Statistics

GetChanInfo: Returns information about a given
channel (e.g., the reliability and priority of the
charmel).

GetChanStats: Returns statistical information

about a given channel (e.g., number of transmis-
sions, receives, errors).

GetTiiStats: Returns statistical information about
the current TII channels.

Transport-Independent Interface
Comm API 510 supports calls to three different types

of transport-independent interface functions by confer-
encing applications 502 and 504 to the com subsystem:
connection management functions, data exchange func-
tions, session management, and communications statis-
tics functions. Connection management functions pro-
vide the ULM with the ability to establish and manage
virtual channels for its peers on the network. Data ex-
change functions control the exchange of data between
conferencing systems over the network. Communica-
tions statistics functions provide information about the

These functions are defined in further detail later in this

specification in a section entitled “Data Structures,
Functions, and Messages.”

In addition, comm API 510 supports three types of
messages and callback parameters returned to confer-
encing applications 502 and 504 from the com subsys-
tem in response to some of the above-listed functions:
session messages,’ connection messages, and channel
messages. Session messages are generated in response to
change of state in the session. Connection messages are
generated in response to the various connection—related
functions.

50

45

Message and Callback Parameters

This section describes the parameters that are passed
along with the messages generated by the communica-
tion functions. The events are categorized as follows:

Connection Events: Connection-related messages
that are sent to the session handler (e.g., connection
request, connection accepted, connection closed).

Channel Events: Channel-related messages that are
handled by the channel manager (e.g., channel
request, channel accepted, channel closed).

Data Events: Events related to data communication

(e.g., data sent, receive completed). These events
are handled by the channel handlers. Each virtual
channel has a channel handler.

55

60

65 Session Handler Messages
The following messages are generated in response to

the various connection related functions:

clsco SYSTEMS, Inc. Ex. 1131 Page 70

CISCO SYSTEMS, INC. Ex. 1131 Page 71

5,434,913
75 76

CONN_RE UESTED
wParam Connection handle
lparam Pointer to incoming connection information

structure:

{
WORD Session handle
LPTADDR Pointer to caller’s address
LPCONN_CHR Pointer to connection attributes
}

CONN_ACCI-ZPTED Response to Ma.keConnection or AceeptConnection
request.

wParam Connection handle
lParam Pointer to connection information structure:

{
DWORD Transld (specified by user in

earlier request)
LPCONN_CHR Pointer to connection attributes
}

CONN_REJECTED Response to MakeConnection request.
wParam Reason

lParam Transld (specified by application in earlier
request)

CONN_TIMEOUT Response to MakeConnection request).
lParam Transld (specified by application in earlier

request)
CONN_ERROR Indication of connection closed due to fatal

error.
wParam Connection handle
lParam Error

CONN_CLOSED Indication of remote Close.
wParam Connection handle

CONN_CLOSE_RESP Response to CloseConnection request.
wParam Connection handle

lParam Transld (specified by application in earlier Close
request)

SESS_CLOSED Response to Endsession request.
wParam Session handle

Channel Manager Messages 35 ‘Continued

The following messages are generated in response to lpamm :1‘§“;1£3:p;°‘fi°d by apPh°"m°“
the various charmel management functions as described cHAN_RCV_c0MpLE-1-E Response to Receivepam
with the function definitions: wParam Actual bytes received

CI-IAN_REQUESTED Indication of remote OpenChannel request.
wParam Channel handle
lparam Pointer to Channel Request information structure:

{
DWORD Transld (to be preserved in

Accept/RejectChannel)
HCONN Connection handle
LPCHAN_INFO Pointer to CHAN_INFO passed by

remote application
}

CI-IAN...ACCEPTED Response to OpenChannel request.
wParam Channel handle
lParam 'l‘ransID specified by application in OpenChannel

request
CI-IAN_REJECTED Response to OpenChannel request.

lParam TransID specified by application in OpenChannel
request

CI-IAN.._CLOSED Indication of remote CloseChannel.
wParam Channel handle

CI-IAN_CLOSE_RESP Response to C1oseChaxmel request.
wParam Channel handle
lParam TransID specified by application in C1oseCharmel

Channel Handler Messages

The following messages are generated in response to

the various channel I/0 functions as described with the lParam Trglsfl? spgcgled by application- - - in ecexve a

function defuutions: 65 CHAN__DA.I.A_LOsT
wParam Bytes discarded

. lParam TransID specified by application
CHAN_.DAT.ILSENT Response to SendData.

wParam Actual bytes sent

clsco SYSTEMS, Inc. Ex. 1131 Page 71

CISCO SYSTEMS, INC. Ex. 1131 Page 72

5,434,913
77

Data Structures

The following are the important data structures for
the com subsystem:
TADDR, LPTADDR: Address structure for caller/—

callee.

CHAN_INFO, LPCHAN_INFO: Channel informa-
tion structure.

CONN_CHR, LPCONN__CHR: Connection Attri-
butes structure.

The com subsystem provides two different methods
of event notification to the conferencing applications:
Microsoft ® Windows messages and callbacks. A con-
ferencing application program instructs the com sub-
system as to which method should be used for notifica-
tion of different events. Microsoft® Windows mes-
sages employ the Microsoft ® Windows messaging
mechanism to notify the conferencing application that
an event has occurred. For callbacks, the com subsys-
tem calls a user procedure when an event has taken
place. There are restrictions on what the conferencing
application may or may not do within a callback rou-
tine.

Referring now to FIG. 19, there is shown a represen-
tation of the com subsystem application finite state
machine (FSM) for a conferencing session between a
local conferencing system (i.e., local site or caller) and
a remote conferencing system (i.e., remote site or cal-
lee), according to a preferred embodiment of the pres-
ent invention. The possible application states are as
follows:

INIT Initial or null state
IN..SESSION Conferencing session begun
CONN..IN Incoming connection request received from

remote site

CONN_OUT Outgoing connection request made to remote site
CONNCTED Connection accepted (by local site for incoming

connection and by remote site for outgoing
connection)

Cl-IAN_IN Incoming channel request received from remote
site

CI-IAN_OUT Outgoing channel request made to remote site
RECEIVE Incoming channel accepted by local site
SEND Outgoing channel accepted by remote site

Referring now to FIG. 20, there is shown a represen-
tation of the com subsystem connection FSM for a
conferencing session between a local site and a remote
site, according to a preferred embodiment of the present
invention. The possible connection states are as follows:

NULL Null state
IDLE Idle state

AWAIT_LOCAL_RESP Awaiting response from local site
AWAI'I'_ACCEP'I‘_RESP Awaiting acceptance response
AWAlT_REMO'I'E_RESP Awaiting response from remote site
ALIVE Connection is alive
ESTABLISHED Connection is established

Referring now to FIG. 21, there is shown a represen-
tation of the com subsystem control channel hand-
shake FSM for a conferencing session between a local
site and a remote site, according to a preferred embodi-
ment of the present invention. The possible control
channel handshake states are as follows:

10

15

20

25

30

35

40

45

50

55

60

65

NULL Null state

AWAIT_.CTL__0PEN Awaiting opening of control
channel 0

AWAlT_ALIVE_MESSAGE Awaiting message that control
channel is alive

CTL__ESTABLISHED Control channel established

Referring now to FIG. 22, there is shown a represen-
tation of the comm subsystem charmel establishment
FSM for a conferencing session between a local site and
a remote site, according to a preferred embodiment of
the present invention. The possible channel establish-
ment states are as follows:

NULL
IDLE
CHAN_AWAIT_DLM_OPN_._RX

Null state
Idle state
Awaiting DLM to open
receive channel

Awaiting local application
response to request to
open receive channel
Receive channel open
Awaiting DLM to open
send channel

Awaiting remote
application response to
request to open send
channel

Send channel open

AWAIT__LOCAL_RESP

CHAN._RECEIVING
CI-IAN_.AWAIT._DLM_OPN_TX

AWAIT_REM._RESP

CI-IAN_SENDING

Referring now to FIG. 23, there is shown a represen-
tation of the com system processing for a typical ‘con-
ferencing session between a caller and a callee, accord-
ing to a preferred embodiment of the present invention.
Both the caller and callee call the Beginsession function
to begin the conferencing session. The caller then calls
the MakeConnection function to initiate a connection to

the callee, which causes a ConnectRequest message to
be sent to the callee. The callee responds by calling the
AcceptConnection function, which causes a Connec-
tAccept message to be sent to the caller and the callee.

Both the caller and callee then call the RegisterChan-
Man function to register the channel. Both the caller
and callee then call the OpenChannel function to open
a channel to the other, which causes ChannelRequest
messages to be exchanged between the caller and callee.
Both the caller and callee call the AcceptCha.nnel func-
tion to accept the channel requested by the other, which
causes CharmelAccepted messages to be exchanged
between the caller and callee. Both the caller and callee

call the RegisterChanHandler function two times to
register both the incoming and outgoing channels.

The callee calls the ReceiveData function to be ready
to receive data from the caller. The caller then calls the

SendData function, _which causes conferencing data to
be sent to the callee. The caller receives a locally gener-
ated DataSent message with the sending of the data is
complete. The callee receives a ReceiveComplete mes-
sage when the receipt of the data is complete. Note that
the caller does not receive a message back from the
callee that the data was successfully received by the
callee.

The scenario of FIG. 23 is just one possible scenario.
Those skilled in the art will understand that other sce-

narios may be constructed using other function calls
and state transitions.

clsco SYSTEMS, Inc. Ex. 1131 Page 72

CISCO SYSTEMS, INC. Ex. 1131 Page 73

5,434,913
79

Comm Manager

The com manager 518 of FIG. 5 comprises three
dynamically linked libraries of FIG. 17: transport inde-
pendent interface (TII), reliable datalink module
(RDLM.DLL) and datalink module interface
(DLM.DLL). The DLM interface is used by the TII to
access the services of the ISDN audio/comm board

206. Other modules (i.e., KPDAPI.DLL and
DSP.DRV) function as the interface to the audio/-
comm board and have no other function (i.e., they pro-
vide means of communication between the host proces-
sor portion of the DLM and the audio/comm portion of
the DLM. The host processor portion of the DLM (i.e.,
DLM.DLL) uses the DSP interface 528 of FIG. 5
(under Microsoft ® Windows 3.x) to communicate
with the ISDN audio/comm board side portions. The
DLM interface and functionality must adhere to the
DLM specification document.

The TII provides the ability to specify whether or not
a virtual channel is reliable. For reliable channels, TII

employs the RDLM to provide reliability on a virtual
channel. This feature is used to indicate that the audio

and video virtual channels are unreliable, and the data
virtual channel is reliable.

Data Link Manager

The DLM subsystem maintains multiple channels
between the clients and ‘supports data transfers up to
64K per user message. The upper layer using DLM
assumes that message boundaries are preserved (i.e.,
user packets are not merged or fragmented when deliv-
ered to the upper layer at the remote end).

Before data can be transferred via DLM, the two
communicating machines each establish sessions and a
connection is set up between them. This section details
the functions used to establish sessions and connections.

DLM provides the following functions for call control:

DLM_BeginSession
DLM_EndSession
DLM_Listen
DLlvL.MakeConnection
DLM_AcceptConnection
DLM_RejectConnection
DLM_C1oseConnection

The following calls should be allowed in an interrupt
context: DLM_MakeConnection, DLM._AcceptCon-
nection, DLM_.RejeetConnection, and DLM_Close—
Connection. These functions may generate the follow-
ing callbacks to the session callback Shandler, described
below.

CONN_REQUESTED
CONN_I-ESTABLISHED
CONN_REJECTED
CONN_.CLOSE_.COMPLETE
CONN_CLOSE_NOTIFY
SESS_CLOSED
SESS_ERROR
CONN_.ERROR

Most of the session and connection management
functions of the DLM are asynchronous. They initiate
an action and when that action is complete, DLM will

5

10

15

20

25

30

35

40

45

50

55

60

65

80

call back to the user via the session callback. The calling
convention for the callback is as follows:

void FAR PASCAL ConnectionCallback (LPEVENTSTRUCT
Event);

Event is a far pointer to a structure:

jztruct EVENTSTRUCT
WORD EventType;
WORD Status;
BYTE Dlmld;
BYTE Mdmld;
DWORD DlmSessionId;
DWORD D1mOonnId;
DWORD Token;
LPTADDR Addr;

} LPCONNCHR Characteristics;where:

EventType Specifies the type of event which triggered the
callback.

Status Indicates the status of the event.
Dlmld Unique ID of the DLM performing the callback.

(Equals 0 for ISDN.)
Mdmld Unique ID of the MDM that processed the

event. (Equals O for ISDN.)
Dlrnsessionld Indicates the Session ID, assigned by DLM, on

which this event occurred. (Equals 0 for ISDN.)
DlmConnId Indicates the Connection Id, assigned by DLM,

on which this event occurred. (Equals 0 for
ISDN.)

Token The token value was given in the call to initiate
an action. When the callback notifies the user
that the action is complete, the token is returned
in this field.

Addr Specifies the LPTADDR of the caller.
Characteristics This field is a LPCONNCHR to the connection

characteristics.

For each function defined below which generates a
callback, all of the fields of the DLM event structure
are listed. If a particular field contains a valid value
during a callback, an X is placed in the table for the
callback. Some fields are only optionally returned by
the DLM (and underlying MDMs). Optional fields are
noted with an ‘O’ in the tables. If a pointer field is not
valid or optionally not returned the DLM will pass a
NULL pointer in its place. The upper layer should not
assume that pointer parameters such as LPEVENT-
STRUCT, LPTADDR, and LPCONNCHR are in

static memory. If the upper layer needs to process them
in a context other than the callback context it should

make a private copy of the data.

DLM_BeginSession: Prepares DLM for subsequent connection
establishment. It is done at both ends
before a connection is made or accepted.

WORD DLM_BeginSession(BYTE Dlmld,
BYTE Mdmld,
LPTADDR LocalAddress
FARPROC Sessioncallback,
LPDWORD lpDlmSessionId);

Parameters: .
Dlmldz Global identifier of the DLM that is to be used.(= 0

for ISDN)
Mdmld: Global identifier of the MDM that is to be used.(= O

for ISDN)
LocalAddress Far Pointer to a TADDR at which the local

connection will be made. This may not be
relevant for DLMS such as ISDN.

SessionCallback Callback function for the session responses.
lpDlmSessionld Output parameter, the session ID allocated.

(ISDN will return a Session Id = 0). Only a
single session need be supported by ISDN.

Return Value: Status Indication
E._NOSESSlON Session could not be opened.
E_IDERR DlmID parameter does not match the DLM

clsco SYSTEMS, Inc. Ex. 1131 Page 73

CISCO SYSTEMS, INC. Ex. 1131 Page 74

5,434,913

81

-continued

ID of the called library.
Local Callbacks:
None
Peer Callbacks:
None
This function does not perform a listen. Session IDs are unique
across all DLMS. Uniqueness is guaranteed.
DLM_EndSession: Ends the specified session at the given

address. Any outstanding connections
and/or channels on the session and their
callbacks are completed before the local
SESS_CLOSED callback.

WORD DLM_EndSession (DWORD DlmSessionId);
Parameters:
Dlmsessionld: Session identifier returned in

DLM_BeginSession
Return Value: Status Indication
E_SESSNUM D1mSessionID is not valid.
E__SESSUNUSED
E._SESSCLOSED
E_SESSNOTOPEN
E_IDERR
Local Callbacks:
SESS_CLOSED
Event Parameter
EventType
Status
Dlmld
Mdmld
DLMSessionId
DLMConnId
Token
Addr
Characteristics
Peer Callbacks:

NONE
DLM_Listen: Initiates a listen on the specified connection.

When an incoming connection request arrives,
asynchronous notification is done to the Session
callback function. The Listen stays in effect
until DLM_EndSession is performed.

WORD DLM...Listen (DWORD Dlmsessionld,

Session is not in use.
Session has been closed.
Session is not open.
Session is not active on this DLM.

SESS..CLOSED

><><><><><

LPCONNCHR ‘ Characteristics);
Parameters:
DlmSessionID Session identifier returned in

DLM_BeginSession.
Characteristics Desired characteristics of an incoming

connection. Passed uninterpreted to the
lower layers.

Return Value: Status indication
E_.SESSNUM DlmSessionID is not valid.
E_SESSUNUSED
E_SESSCLOSED
E_SESSNO'l'OPEN
E_IDERR
Local Callbacks:

CONN_R.EQUESTED
Event Parameter CONN_REQUESTED
EventType
Status
Dlmld
Mdmld
DLMSessionId
DLMConnId
Token
Addr
Characteristics
Peer Callbacks:
None
DLM_MakeConnection: Makes a connection to the specified

address. It generates a callback when
the connection is complete which
provides the DLM connection ID to be
used in all further operations on this
connection. Connection IDs are unique
across all DLMS. Uniqueness is
guaranteed. (ISDN support a single
connection, with a Connection Id = 0).

WORD DLM_MakeConnection

Session is not in use.
Session has been closed.
Session is not open.
Session is not active on this DLM.

><><><><><><><1><

(DWORD Dlmsessionld,
LPCONNCI-IR Characteristics,
DWORD Token,

10

20

25

30

35

45

50

55

65

82

-continued

LPTADDR RemoteAddress);
Parameters:
DlrnSessionID: Session identifier returned in

DLM_BeginSession,
Characteristics Desired characteristics of the connection.

Passed uninterpreted to the lower layers.
Token Uninterpreted token returned to the upper

layer in the response callback.
RemoteAddress Address on the remote site on which to make

the connection.
Return Value: Status Indication
E__SESSNUM DlrnSessionID is not valid.
E_.SESSUNUSED
E_SESSCLOSED
E_.SESSNOTOPEN
E._IDERR
E_NOCONN
Local Callbacks:

CONN_ES'l‘ABLISHED
CONN_REJECTED

Event
Parameter
EventType
Status
Dlrnld
Mdmld
DLMSession
Id
DLMConnId
Token
Addr
Char-
acteristics
Peer Callbacks:
CONN_REQUESTED Satisfies a previous DLM__Listen on
this address.
Event Parameter

Session is not in use.
Session has been closed.
Session is not open.
Session is not active on this DLM.
Unable to allocate local connection.

CONN_REJECTED CONN._ESTABLISI-IED

N><><><.’><>< ><Q><><><><><><><
CONN_REQUESTED

EventType X
Status X
Dlmld X
Mdrnld X
DLMSessionId X
DLMConnId X
Token
Addr X
Characteristics X
DL1VL_AcceptConnection: Accepts an incoming connection

request.
WORD DLM..AcceptConnection(DWORD D1mConnID,

DWORD Token);
Parameters:
DlmConnID: Connection identifier returned previously in the

CONN._.REQESTED callback.
Token Uninterpreted DWORD returned to the caller in

the CONN_.ESTABLISl-[ED response callback.
Return Value: Status Indication
E_.SESSNUM ConnID is not valid.
E_.SESSUNUSED
E_SESSNOTOPEN

Session is not in use.
Session is not open.

E_.IDERR ConnID does not refer to a connection on
this DLM.

E..CONNNUM ConnID is not valid.
E_CONNUNUSED
E_CONNSTATE

Connection is not in use.
Connection has been closed or is already
open.

Local Callbacks:
CONN_.ESTABLISHED

Event Parameter CON'N_ESTABLlSI-IED
EventType
Status
Dlrnld
Mdmld
DLMSessionId
DLMConnId
Token
Addr
Characteristics
Peer Callbacks:
CON'N_ESTABLISHED Satisfies a previous

DLM__MakeConnection on this
address.

CONN__ESTABLISl-IED

><O><><><><><><><
Event Parameter

CISCO SYSTEMS, INC. Ex. 1131 Page 74

CISCO SYSTEMS, INC. Ex. 1131 Page 75

5,434,913
83 84

-continued -continued

EventType X Addr
Status X Characteristics
Dlmld X

Mdmld X 5 _ _
DLMSessionId X Referring now to FIG. 29, there are shown diagrams
DLMCOHHM X indicating typical connection setup and teardown se-
T°ke" X quences.Addr QCharacteristics X

DLM_RejectConnection: Rejects an incoming connection 10 Interfaces Channel Management & Data Transfer
request. It returns a WORD status.

WORD DLM_RejectConnection(DWORD D1mConnId) ;
Parameters:
DlmConnID: Connection identifier returned in the

CONN_REQESTED callback.
Return Value: Status Indication
E_SESSNUM ConnID is not valid.
E__SESSUNUSED
E_Sl-ISSNOTOPEN

Session is not in use.
Session is not open.

E_IDERR ConnID does not refer to a connection on
this DLM.

E_CONNNUM ConnID is not valid.
E_CONNUNUSED
E_CONNSTATE

Connection is not in use.
Connection has been closed or is already
open.

Local Callbacks:
None

Peer Callbacks:

CONN_REJECTED Satisfies a previous
DLM_MakeConnection on this address.

Event Parameter CONN_REJECTED
EventType
Status
Dlmld
Mdmld
DLMSessionId
DLMConnId
Token
Addr
Characteristics
DLM_CloseConnection: Tears down an established connection.

This call is allowed only for
connections that are established.

WORD DLM_CloseConnection(DWORD DlmConnId,

><><><><><><

DWORD Token);
Parameters:
DlmConnID: Connection identifier returned in the

CONN_ESTABLISHED callback or
through a call to DLM_MakeConnection.

Token Uninterpreted value returned to the upper
layer in the response callback.

Return Value: Status Indication
E_SESSNUM ConnID is not valid.
E_SESSUNUSED
E_SESSNOTOPEN2

Session is not in use.
Session is not open.

E_IDERR ConnID does not refer to a connection on
this DLM.

E_CONNNUM ConnID is not valid.
E_CONNUNUSED
E_CONNCLOSED
Local Callbacks:

CONN_CLOSE_COMPLETE
Event Parameter CONN_CLOSE_COMPLETE
EventType
Status
Dlmld
Mdmld
DLMSessionId
DLMConnId
Token
Addr
Characteristics
Peer Callbacks:
CONN_CLOSE_NOTIFY
Event Parameter CONN_CI.OSE_NOTIFY
EventType
Status
Dlmld
Mdmld
DLMSessionId
DLMConnId
Token

Connection is not in use.
Connection has been closed already.

><><><><><><><><><><><><><

20

25

30

35

45

50

55

65

Once connections are established between two ma-

chines, DLM will provide the user with multiple logical
charmels on the connections. This section details the

functions and callbacks used to set up, tear down, and
send data on channels. DLM has the following entry
points for channel management and data transfer.

DLM_0pen
DLM_Send
DLM_..PostBuffer
DLM_Close
DLM_GetCharacteristics

Each of these functions is callable from an interrupt or
callback context. These functions generate callbacks
into the user’s code for completion of a send operation,
receipt of data, and events occurring on a given chan-
nel. These callbacks are described and their profiles
given a later section of this specification.

DLM_0pen Initializes a new data channel for a connection. It
does not communicate with the remote site. Its role
is simply to declare the channel identifier to the
DLM so that incoming and outgoing packets can
then use the given channel.

WORD DLM._0pen(DWORD ConnID,
BYTE ChannelID,
LPCHANCI-IR Characteristics,
FARPROC EventCallback,
FARPROC ReceiveCallback,
FARPROC SendCallback)Parameters:

ConnID:
ChannelID

Connection on which to open the channel.
Identifier of the channel to open, between
0 and N where N is implementation
defined. The value of 255 is reserved to
indicate an unknown or invalid channel
in callback functions.

Characteristics Desired characteristics of the channel.
EventCallback Callback function for events occurring on

this channel. (This includes all events
except for data received and send
complete)

ReceiveCa1lback Callback function for data reception on
this channel.

SendCallback Callback function for data sent on this
channel.

Return Value: Status Indication
E_NOCI-IAN Unable to allocate channel ID or ID

already in use.
E_SESSNUM ConnID is not valid.
E_SESSUNUSED
E_SESSCLOSED
E._SESSNOTOPEN

Session is not in use.
Session has been closed.
Session is not open.

E_IDI-ERR ConnID does not refer to a connection on
this DLM.

E_CONNNUM ConnID is not valid.
E_CONNUNUSED Connection is not in use.
E_CONNCLOSED Connection has been closed.
E_CONNNOTOPEN Connection is not currently open.
Local Callbacks: «

CHANNELOPEN callback to the event callback for this
channel.

DLM_Send Entry point for sending data via the DLM.
WORD DLM_Send(DWORD ConnID,

BYTE FAR ‘Buffer,

CISCO SYSTEMS, INC. Ex. 1131 Page 75

CISCO SYSTEMS, INC. Ex. 1131 Page 76

5,434,913
85

-continued

WORD Buffersize,
BYTE OriginatingChannel,
BYTE ReceivingChanne1,
DWORD Ca1lerToken)

Parameters:
ConnID: Connection to use.
Buffer Far pointer to the user buffer to send.
Buffersize Number of bytes in the user buffer.

_ OriginatingChannel Local channel on which to send the data.
ReceivingChannel Channel ID from the remote machine which

receives the data.
Cal1erToken Token which will be returned to the user in

the send complete callback for this buffer.
Return Value: Status Indication
E_NOCHAN Originating channel is not valid or is

closed.
E_.SESSNUM ConnID is not valid.
E_SESSUNUSED Session is not in use.
E_SESSCLOSED Session has been closed.
E__.SESSNOTOPEN Session is not open.
E_IDERR ConnID does not refer to a connection on

this DLM.
E_CONNNUM ConnID is not valid.
E_CONNUNUSED Connection is not in use.
E_CONNCLOSED Connection has been closed.
E_CONNNO'I'OPEN
E_CHANNUM
E_.Cl-IANUNUSED

Connection is not currently open.
Originating channel ID is not valid.
Originating channel is not in use.

E_CI-IANCLOSED Originating channel is closed.
E_NOMEM Unable to allocate enough memory to

perform the send.
E_IN'l'ERNAL An internal error has occurred within

the DLM.
Local Callbacks:
Callback to the send complete function for this channel when this
buffer is posted to the net.

The return value of DLM_Send specifies the syn-
chronous status of the send. If it indicates success, the
request has been accepted to be sent on the network for
this channel and at some time the send complete call-
back will be activated for this buffer. Between the call

to DLM_Send and the send complete callback, the user
must not change the contents of the buffer. When the
callback occurs, DLM is finished with the buffer and
the user is free to alter it in any fashion. The DLM does
not guarantee that the call to DLM_Send completes
before the send complete callback occurs. If the syn-
chronous status indicates that the send operation has
failed, the send complete callback will not be activated
for this buffer and the buffer is immediately available
for modification by the user.

DLM_PostBuffer Supplies buffers to DLM in which to place
incoming data.

WORD DLM__PostBuffer(DWORD ConnID,
BYTE FAR ‘Buffer,
WORD BufferSize,
BYTE ChannellD,
DWORD CallerToken)

Parameters:
ConnID: Connection to use.
Buffer Far pointer to the user buffer to use.
BufferSize Size of the user buffer in bytes.
ChannellD Local channel to use this buffer for.
CallerToken Token which will be returned to the user

in the data receive callback for this
buffer.

Return Value: Status Indication
E..NOCl-IAN ChannellD is not valid or is closed.
E_SESSNUM ConnID is not valid.
E_SESSUNUSED Session is not in use.
E_SESSCLOSED Session has been closed.
E__SESSNOTOPEN Session is not open.
E_IDER.R ConnID does not refer to a connection on

this DLM.

10

15

20

25

30

35

45

50

55

60

65

86

-continued
ConnID is not valid.
Connection is not in use.
Connection has been closed.

Connection is not currently open.
ChannellD is not valid.

E_CONNNUM
E_CON'NUNUSED
E__CONNCLOSED
E_CONNNOTOPEN
E_CI-IANNUM
E...CI-IANUNUSED Channel is not in use.
E_CH.ANCLOSED Channel is closed.
E_NOMEM Unable to allocate enough memory to

store the buffer.
E__INTERNAL An internal error has occurred within the

DLM.
Local Callbacks:
Callback to the data receive function for this channel when DLM
loads the user buffer with incoming data.

The return value is a word indicating the status of the
operation. If it indicates success, the buffer has been
enqueued for the given channel and will be used for
incoming data. If it indicates failure, a receive callback
will never occur for this buffer. DLM preserves the
order of buffers on data receives. Provided that no

errors occur, the first buffer posted will be the first one
used for data, the second one will be the second used,
etc.

DLM..Close Used to close a previously opened channel.
WORD DLM__C1ose(WORD ConnID,

BYTE Channel)
Parameters:
ConnID: Connection on which to close the channel.
Channel Local channel to close.
Return Value: Status Indication
E_SESSNUM ConnID is not valid.
E_.SESSUNUSED
E_SESSCLOSED
E_SESSNOTOPEN

Session is not in use.
Session has been closed.
Session is not open.

E_IDERR ConnID does not refer to a connection on
this DLM.

E_CONNNUM ConnID is not valid.
E_.CONN'UNUSED Connection is not in use.
E_CONNCLOSED Connection has been closed.
E_CONNNOTOPEN
E_..CHANNUM
E_CI-IANUNUSED
E._Cl-IANCLOSED
Local Callbacks:
Callback to the event callback function for this channel with the
CHANNELCLOSED event after the close has completed.

Connection is not currently open.
Channel is not valid.
Channel is not in use.
Channel is already closed.

The function DLM_Close shuts down a given chan-
nel. All future references to this channel are considered

invalid. It performs a forced shutdown in that the call-
back functions for all pending sends and receives are
immediately activated with a status value indicating
that a close occurred. DLM does not guarantee that the
call to DLM_Close will return before the callback is
activated.

DLM_GetCharacteristics Gets relevant data about the DLM (a
- synchronous call).

WORD DLM__GetCharacteristics(LPCHARSTRUCT
Characteristics)
Parameters:

LPCHARSTRUCT Far pointer to the characteristics structure
to be filled by this call.

Local Callbacks:
None

Send Callback

The send complete callback is activated whenever
data has been extracted from a user’s buffer and en-

queued for transmission. It is not a guarantee that the

CISCO SYSTEMS, INC. Ex. 1131 Page 76

CISCO SYSTEMS, INC. Ex. 1131 Page 77

5,434,913
87

data has actually been delivered to the remote site. The
entry point for the send complete callback is defined
SendCal1back parameter to DLM.._Open. This is a far
pointer to a far pascal function defined as follows.

void FAR PASCAL SendCallback(DWORD ConnID,

BYTE FAR ‘Buffersent,
WORD ByteCount,
BYTE OriginatingChannel,
BYTE ReceivingChannel,
DWORD Token,
WORD StatusOiSend)

Parameters:
ConnID: Connection on which data was sent.
Buffer Far pointer to the user buffer sent.
Buffersize Number of bytes sent to the network.
OriginatingChannel Local channel on which to the data was

sent.

ReceivingChannel Channel ID from the remote machine which
will receive the data.

CallerToken Token which was given in the call to
DLM_Send for this buffer.

Data Receive Callback
The data receive callback is activated when data has

arrived on the network for a particular charmel. The
entry point for the data receive callback is defined in the
ReceiveCal1back parameter to DLM_Open, described
below. It must be a far pointer to a far pascal function
defined as follows:

void FAR PASCAL ReceiveCallback(DWORD ConnID,
BYTE FAR
“BufferReceived,
WORD ByteCount,
BYTE

OriginatingCha.nnel,
BYTE ReceivingChannel
DWORD Token,
WORD StatusOfReceive)

Parameters:
ConnID: Connection on which the data was received.
BufferReceived The user supplied buffer that was received.
ByteCount The number of bytes received.
Originatingchannel Channel identifier of the channel on the

remote machine which sent the data.

ReceivingCha.nnel Channel identifier on the local machine that
received the data.

Token Token value that was given in
DLM_PostBuffer when this buffer was
posted to DLM.

StatusOfReceive Status of the operation.
The StatusOfReceive parameter can be any of the
following values:
E_OK
E_TOOSMALL

Indicates that the receive succeeded.
Indicates that the beginning of a data packet
has arrived and the given buffer was
enqueued but it is too small to contain the
entire data packet.
Indicates that the buffer was in the receive
queue when the channel on the local
machine was closed.
Indicates that a data packet has arrived and
there is no buffer in the queue for the
receiving channel.
Indicates that part of a data packet has been
dropped, either by the network or by
internal memory limitations of the MDM or
DLM. The buffer represents everything
received up to the dropped data.

E_CLOSED

E_DATADROP

E_PARTIAL

The state of the parameters depends on the status of the
operation.’ The table below lists all possible status val-
ues correlating them with the values returned in the
other parameters, and entry of Valid indicates that this

10

15

20

25

30

35

45

50

55

65

88

parameter contains meaningful data. The connection ID
is always valid.

Re-

Byte- Original ceiving
Status Buffer Count Channel Channel Token

E_OK Valid Valid Valid Valid Valid
E_TOOSMALL Valid Valid Valid
E_CLOSED Valid Valid Valid
E_DATADROP NULL Valid Valid
E_.PARTIAL Valid Valid Valid Valid Valid

When errors E_TOOSMALL, E_DATADROP or

E__PARTIAL are returned the upper layer may not
depend on the contents of the returned data buffer.

EventCallback Activated when an action completes for a given
channel. The entry point for the channel event
callback is defined in the EventCallback
parameter to DLM_Open. It is a far pointer to a
far pascal function defined as follows.

void FAR PASCAL EventCallback(DWORD ConnID,
BYTE Chatmel,
WORD Event,

. WORD Status)
Parameters:
ConnID: Connection on which the event

occurred.
Channel Channel on which the event occurred.
Event The type of the event
Status Status of the operation.
The event may be any of the following values.
CI-IANNEL_OPEN The given channel has been opened and

is now available for data transfer.
CI-IANNEL_CLOSED The given channel has been closed.

DSP Interface

The ISDN comm task 540 ofFIG. 5 which run on the
ISDN audio/comm board 206 of FIG. 2 communicate

with the host processor 202 via the DSP interface 528.
The host processor operates under Microsoft® Win-
dows 3.x environment.

Comm Task

The com task 54-0 of FIG. 5 communicates with the
audio task 538 on the ISDN audio/comm board 206.
The channel ID of the audio virtual channel is accessi-

ble to both the host processor and the audio/comm
board. The model is as follows:

A channel is opened by the host processor or an open
channel request is granted by the host processor.

The host processor signals the audio task on the audi-
o/comm board that a channel is accepted/opened
on its behalf.

The audio task on the audio/comm board notifies the

com task that all incoming (if the charmel was
accepted) or outgoing (if the charmel was opened)
will be handled by the on-board audio task.

Application-Level Protocols

The application-level protocols for conferencing sys-
tem 100 of FIG. 5 are divided into those for the video,
audio, and data streams.

Video Protocol

Referring now to FIG. 24, there is shown a represen-
tation of the structure of a video packet as sent to or
received from the com subsystem, according to a
preferred embodiment of the present invention. Source

CISCO SYSTEMS, INC. Ex. 1131 Page 77

CISCO SYSTEMS, INC. Ex. 1131 Page 78

5,434,913
89

video is video that is captured (and optionally moni-
tored) on the local conferencing system and sent to the
com subsystem for transmission to a remote system.
Sink video is video that is captured remotely, received
from the com subsystem, and played back on the local
system. The first ten fields (i.e., those from lpData
through dwReserved[3]) are defined by Microsoft ® as
the VIDEOHDR structure. See the Microsoft ® Pro-
grammer’s Guide in the Microsoft® Video for Win-
dows Development Kit. The video packet fields are
defined as follows:

lpData
dwBufferLength

Long pointer to the video frame data buffer.
Length of the data buffer pointed to by
lpData, in bytes.
Length of bytes used in the data buffer.
Time, in milliseconds, between the current
frame and the beginning of the capture session.
This field is preferably used to carry a
timestamp used to synchronize audio and video
frames at the receiving endpoint.
Reserved for application use.
Information about the data buffer, defined
flags are:
VI-IDR_.DONE

dwBytesUsed
dwTimeCaptured

dwUser
dwFlags

Data buffer is ready
for the application.
Data buffer is
queued pending
playback.
Data buffer is a key
frame.
Data buffer has
been prepared for
use by the driver.

VHDR_INQUEUE

VHDR_KI-ZYFRAME

VHDR__PRI-ZPARED

Reserved for driver use.
Type of the packet, defined types are:
VDATA (=1) Video data packet.
VCNTL (=2) Control packet.
Unused for video data packets. For control
packets, may be one of the following:
RESTART (=WM_..USER+550h) Request
for a key frame.
When a RESTART control packet is sent, no
video frame data is sent. WM_..USER is a

Microsoft ® Windows defined value and is
preferably 400h. RESTART indicates the
video stream needs to be restarted to recover
from problems. WM._USER is a
Microsoft ® -defined constant, indicating
that all values greater than this number are
application-defined constants.
Compressed video frame data

dwReserved

Message

Data

Video data packets are used to exchange actual video
frame data and are identified by the Type field. In this
case, the video software redirects the VIDEOHDR

lpData pointer to the Data array which starts at the end
of the packet. In this way, the packet header and data
are kept contiguous in linear memory. The V1-
DEOHDR dwBufferLength field is used to indicate the
actual amount of video data in the buffer and therefore
the amount of data to be sent/received. Note that the

receiving application must redirect lpData to its copy of
Data since the memory pointer only has local signifi-
cance. In a preferred embodiment, Data length has an
upper bound of 18K bytes.

Compressed Video Bitstream

Referring now to FIG. 25, there is shown a represen-
tation of the compressed video bitstream for conferenc-
ing system 100, according to a preferred embodiment of
the present invention. Each compressed video bitstream
represents one frame of video data stored in the Data
field for a video data packet of FIG. 24. The video
compression/decompression method associated with

10

15

20

25

30

35

45

50

55

60

65

90

the compressed video bitstream of FIG. 25 is used for
low—data-rate, relatively-low-frame-rate, teleconferenc-
ing applications. The method preferably operates at
approximately (l60X 120) resolution, a data rate of ap-
proximately IOO Kb/sec, and a frame rate of around 10
frames/sec. Under these conditions, the compressed
video bitstream may be encoded or decoded in real-time

by an Intel ® i750 ® processor, or decoded in real-time
by an Intel ® architecture processor such as an Intel ®
80386, 80486, or Pentium ® processor.

The fields of the compressed video bitstream of FIG.
25 are defined as follows:

VersionNumber
Flags

Compression method ID.
Contains various flag bits defined as follows:
FLAGS__MV 1
FLAGS__FILTER 2
FLAGS_STILL_.IMAGE 4
FLAGS_S'l‘ILL.._BLKS 8
Size of the bitstream in units of bits.
Reserved field.
Height of image in pixels.
Width of image in pixels.
Base quantization value for the U and V
planes.
Base quantization value for the Y plane.
Strip of blocks encoded as still blocks (for
delta images only). If Stillstrip = 0, there
is no still strip. Otherwise, the strip of blocks
is determined as follows. Consider the blocks
of the Y, V, and U planes in raster order as a
linear sequence of blocks. Divide this
sequence of blocks into groups of 4 blocks,
and number each group with the sequential
integers 1, 2, 3, etc. These numbers correspond
to the value of StillStrip. In a preferred
embodiment, all planes have dimensions that
are integer multipls of 4.
Locations of additional blocks in the image
that are encoded as still blocks (only if the
FLAGS_STILL._BLKS flag is set). The rule
for identifying these blocks is based on the
quantization value quant for each block as
determined during the decoding procedure.
A block is a still block if

quant <= StillThresh
These still blocks are independent of the
blocks in the still strip, which are encoded
as still blocks regardless of their quant values.
Blocks to which the loop filter is to be applied
(only if the FLAGS_FILTER flag is set) The
rule for applying the loop filter is to apply it
to a block if

quant <= FilterThresh
Array describing the motion vectors used in
decoding the image (only present if the
FLAGS__MV flag is set). There is one
8-bit motion vector field for each (l6>< 16)
block in the image.
The compressed data for the image.

DataSize
Reserved 1
Image}-{eight
Imagewidth
UVquant

Yquant
Stil1Strip

StillThresh

FilterThresh

MotionVectors[]

huffman data

FLAGS_MV indicates whether motion vectors are

present in the bitstream (i.e., whether the MotionVec-
torsl] array is present). A delta frame with FLAG-
S__MV=0 is interpreted as one in which all the motion
vectors are 0. FLAGS_FILTER indicates whether the

loop filter is enabled for this image. If enabled, then the
loop filter may be used on each block in the image, as
determined by the value of FilterThresh. FLAGS_S-
TILL_IMAGE indicates whether the image is a still
frame or a delta (non-still) frame. A still frame is one in
which all blocks are encoded as still blocks. In a delta

frame, most blocks are delta blocks, but there may be a
strip of still blocks in the image, as specified by the
StillStrip field, and there may be additional still blocks
as determined by the value of StillThresh. FLAGS...S-

CISCO SYSTEMS, INC. Ex. 1131 Page 78

CISCO SYSTEMS, INC. Ex. 1131 Page 79

92
5,434,913

91
TILL_BLKS indicates whether

:15.4.0668Yomm.rm.m.mhmCftTahS.Itrniv.V..
6666665555555555555555555555554.4.444444555555554444444433333333

UdCCf.....§..0anmmhvmmme
66665555555555555555555555555544444444555555554444444433333333Oeettnencw

Mflmhv,.ono.m.m.8a.noP,9%mmmmé1e
555566555555554444445544444455444444443333335533333344.22222233UeXC..Wm

Modammymmm
d(\.@tE555566555555554444445544.44.445544.4.4.4.4.4.4.333333553333_334422222233%t@€B7.W..

:.D.
.mPéemVn...m)+Ptrrgm.0nmnnam.mma...®>.mom.mev.my44556644445555444444553333445533334444333333553333334422222233>>

VS“:amMomm;fixt.L..+€CStbfi.e
44556644445555444444553333445533334444333333553333334422222233%.M.mwmm

e.1.1mmmdombmmmmamawemm4maa
44556633445555334444553333445533334444333333553333334433222233

S.l)C.m1,wc,h«<$.33
44556643445555434444554333445543334444433333554333334433222233fl&XWfia“fi3oum.m

/O.1f.mmamwmmmmmm
Um3m.5,0,5wwmfi

mS“additional

blocks” are enabled for this image. If enabled, then any
block with quantization value less than or equal to Still-
Thresh is coded as a still block. A quantization value is
a number in the range 0-15 that indicates one of a set of 5
sixteen (8X8) quantization matrices, with 0 indicating
the coarsest quantization and 15 indicating the finest.
The UVquant and Yquant variables are referred to as
base quantization values. The base quantization value is
the value selected for use at the beginning of a plane, 10
and is used for the entire plane unless changed by a
NEWQ code inserted in the bitstream. The preferred 16
quantization matrices are:

OOOODODOODDOOOOO777777777777-/-/776666666666666666666666665555555555555555660000ODDOD000000077777777777777776666666666666666666666665555555555555555667777778866666677555555775555556655555566555555665s55555544444455557777-/—/0ODOr°r°66z°a°-/-/S5555577S55555665555556655555S665555555S444444555s6666778855556677555555775555556655555566444455664444555544444455446666a/70000555566-/75555557755555566555555664444556644445555444444554455667788445566774455557744555566445555664.44.4556644445555444444553355667788545566775455557754.5555665455556654445566544455555444445543
clsco SYSTEMS, Inc. Ex. 1131 Page 79

CISCO SYSTEMS, INC. Ex. 1131 Page 80

5,434,913
93

U and V planes are processed by the decoder using
motion vectors of 0. \

Video Decoding Procedure

For conferencing system 100, images are encoded in
a 9-bit YUV format (i.e., YUV 4:1:l format), in which
there are three 8-bit planes of pixels (Y, U, and V) with
U and V subsampled by 4X in both directions. Each
plane is subdivided-into a grid of (8 X 8) blocks of pixels,
and each block is encoded using a frequency-domain
transform. The planes are encoded in the order Y, V,
and U, and within each plane the blocks are traversed in
raster-scan order.

If a given plane’s dimensions are not evenly divisible
by 8, “partial blocks” at the right or bottom edges will
occur. Partial blocks are encoded by padding them out
to the full (8X 8) size (using whatever method the en-
coder chooses, such as replicating the last column and-
/or row or pixels) and encoding them as if they were
full blocks. In the decoder, such blocks are recon-

structed by first decoding the full (8 X 8) block but then
writing only the partial block to the final image bitmap
in memory. The decoder can determine the location and
sizes of partial blocks entirely from its knowledge of the
image dimensions (ImageHeight and ImageWidth).

Each (8 X 8) block is encoded using a transform
method. Instead of the discrete cosine transform

(DCT), a simpler transform known as the discrete slant
transform (DST) is used. The DST is almost as good at
the DCT, in terms of compression and quality, but is
simpler and faster for both an Intel ® i750 ® processor
and an Intel ® architecture processor such as an In-
tel® 80386, 80486, or Pentium® processor to com-
pute.

All the data in the bitstream, after the header, is Huff-
man encoded. Unlike H.261 and MPEG, which have a

multiplicity of Huffman tables, for conferencing system
100, a single Huffman table is used for encoding all
values. This single Huffman table is:

|ssseams1111110 xxxxxx
Total N U! N

This table defines 252 Huffman codes of lengths 3, 5, 7,
9, ll, 12, and 13 bits. Only the first 231 of these Huffman
codes are preferably used; the remaining ones are re-
served for future expansion.

In the pseudo-code below, the function huffdeco
appears. This function does a huffman-decoding opera-
tion on the next bits in the bitstream, and returns the

index of the code word in a lexicographically-ordered
list, like so:

Code word Value returned

000 0
001 l
010 2
011 3

10000 4
10001 5
10010 6

5

l0

15

20

25

30

35

40

45

50

55

65

94

-continued
Code word

etc.

Value returned

The first step in decoding a block is to decode what are
known as the “run/value pairs” (or run/val pairs, for
short) for the block. Each run/val pair represents one
non-zero DST frequency-domain coefficient.

This procedure also updates the current quantization
value (held in the variable quant) when a NEWQ code
is received from the bitstream. The value of quant is
initialized at the start of each plane (Y, U, and V) to
either Yquant or UVquant, but may be adjusted up or
down by NEWQ codes in the bitstream. Note the fol-
lowing important rule, not made explicit by the pseudo-
code below: a NEWQ code may preferably only occur
at the beginning of a block. A decoder may use this fact
to make decoding faster, since it need not check for
NEWQ codes in the middle of parsing a block.

The procedure for decoding the run/val pairs and
NEWQ codes is as follows:

k = 0;
while (1)
{

v = huffdec() ;
if (v == EOB)

break;
else if (v == NEWQ)

quant + = tosigned(huffdec()) ;
else if (v ESC) // get explicit run,val from

// bitstream
{

run[k+ +] = huffdec() + 1;
val[k+ +] = tosigned(huffdec() I, (huffdec() << 6));

else
{

// lookup run,val in tables

run[k++] = runtb1[v];

} val[k++] = valtbl[v] ;
}

The function tosignedo converts from an unsigned
number to a non-zero signed number, as follows:

tosigned(n)
{

V = (11 >> 1) + l;
if(n&1)v = ——v;
return(v);

}

This conversion is used on both the quantization change
and the explicit value read after an ESC, both of which
are non-zero signed numbers. EOB, ESC, and NEWQ
are specific decoded values defined as follows:

EOB = o
ESC = 30
NEWQ = 6

Finally, runtbll] and valtbl[] are preferably defined as
follows:

runtbl[] = {

tdlxi

CISCO SYSTEMS, INC. Ex. 1131 Page 80

CISCO SYSTEMS, INC. Ex. 1131 Page 81

5,434,913
95

—continued
4 4 5 6 6 3 1 2
1 3 1 2 7 1 0 2
7 9 8 4 1 5 1 1
2 4 2 8 10 3 13 1
1 1 1 1 1 11 2 15
1 4 1 7 9 14 7 21
7 20 11 3 5 4 16 5
2 1 1 1 1 1 32 1
1 1 2 2 1 24 1 27

12 12 13 13 29 12 13 14
14 31 29 28 28 30 10 10
10 11 10 12 10 21 9 9
30 31 11 23 14 19 18 19
19 21 18 18 19 22 23 20
22 21 20 22 22 20 16 26
26 16 15 32 15 27 15 18
17 17 25 17 17 24 25 16
2 3 1 3 3 3 3 2
3 2 3 4 4 3 3 3
3 3 4 3 3 1 1 1
1 2 1 1 1 1 1 1
2 2 2 9 2 2 2 2
2 6 6 6 6 6 9 6
6 6 6 8 8 8 7 8
7 7 7 7 5 5 4 4
4 4 4 4 4 4 5 4
6 5 5 5 5 5 5

}
valtbl[] = { 0 -1 1 -1 1 -2 o 2

-3 3 -1 1 2 4 -4 -1
1 -1 1 -1 1 -2 -6 -2
5 2 -5 -3 -1 6 0 3
1 1 1 -2 -7 2 -9 10

-5 2 5 -1 -1 3 1 -10
-8 -11 7 3 9 -1 4 -1

-13 4 -12 2 -1 1 -3 -1
-2 1 1 4 -2 7 -1 -4

6 17 -15 -14 11 12 -1 13
14 15 -4 -6 -16 -1 -13 1

-1 2 -2 -1 1 1 2 -2
-1 1 -1 -1 1 -1 1 2

3 -2 -2 -2 K -3 2 2 31 -1 2 1 2 2 -1 1
-1 1 2 1 -2 -2 -1 2
-1 -2 -1 1 2 -2 1 -1

1 -2 2 1 1 -1 -2 -2
2 1 1 -2 -1 1 -1 2

-10 -4 -22 -6 -7 -9 -8 11
-10 12 6 -8 -9 10 -3 9

8 7 -7 5 -5 21 20 19
-21 10 16 -17 -19 -20 18 22

8 7 -7 -2 -8 -9 -11 -12
9 6 5 4 3 -4 -3 -2

-3 -5 2 3 2 -2 -5 -3
5 4 3 -4 7 -7 9 8
6 5 -5 3 -3 -4 6 -6

-6 - 5 -6 4 3 -3 -5
}

The next step in decoding is to convert the mn/val
pairs into an (8><8) block of DST coefficients, as fol-
lows: Define the scan path through an (8 X 8) matrix by
the following numbers:

0 l 4 9 17 18 37 38
2 3 8 10 I9 25 39 45
5 7 ll 14 24 26 44 46
6 12 13 15 27 32 47 53

16 20 23 28 31 33 52 54
21 22 29 30 34 35 55 60
36 40 43 48 51 56 59 61
41 42 49 50 57 58 62 63

where the scan path is found by traversing these num-
bers in increasing order. The (8 X 8) block of DST coef-
ficients coeff[8][8] is created by the following proce-
dure:

U1

9-- O

1- Us

20

25

30

35

45

50

55

65

96

for (i=0; i<8; i+ +)
for (j=0;j<8;j++)

Ooefilil [i] = 0;
start at position “— 1’ on the scan path (one step “before”

({J) for (each run/val pair)
step forward by ’run' positions on the scan path
deposit ‘val’ at the new position

}

The next step is to dequantize the block of coeffici-
ents. This is done by applying quantization matrix num-
ber quant, as follows:

for (i=0; i<3; 1+ -1-)
501' (.1=0;.l<3§.l+ +)

C0355] U] = 00¢‘-fill] [1] << qmatrixlquantl [3] [1] §

The next step is to undo “DC prediction,” which is
used to further compress the DC coefficient coeff[0][0]
in still blocks. If the block being decoded is a still block
(either because this is a still image, or because this block
is part of the still strip in a relative image), DC predic-
tion is undone by applying the following equations:

coeff[0][0] + =prevDC

prevDC=coeff[0][0]

The value of prevDC is initialized to 8*128 at the start
of each image plane.

The next step is to transform the (8><8) coefficient
array into the spatial domain. This is done by applying
an (8X1) DST to each of the 8 rows and 8 columns of
coeffflfl. The (8 X 1) DST can be described as follows:

sla.nt8)< 1 (s,d,fwd)
int $[],d[Lfwd;

{

// s = src array, d = dst array,
// fwd = 1 for forward xform, 0 for
// inverse

int rl,r2,r3,r4,r5,r6,r7,r8;
int t,t1,'P;
if (fwd)

Iunnnu” I{I§fly! ’U’U'O’U’U +++++ fiiii
‘p+ +;

= ‘P+ +;_ 8!

SlantPartl;
SlantPart2;
SlantPart3;
SlantPart4;
P = d;
$++=n;
"p++ = r4;
‘p++ = r8;
‘p++ = r5;
*p++ = r2;
’P++ = r6;
‘P++ = r3;
‘p++ = r7;

5‘o35~f‘n’3-E1:R:.’_‘.'° I
-u + +

&&5‘».'.‘.'° nnunflGII§“‘ 'O’U'U’U ++++ xiii

CISCO SYSTEMS, INC. Ex. 1131 Page 81

CISCO SYSTEMS, INC. Ex. 1131 Page 82

5,434,913
97

-continued

r2 = ‘p++;
r6 = ‘p++;
r3 = ‘p++;
r7 = "p++;
SlantPart4;
SlantPart3;
SlantPart2;
SlantPartl;

d;
*p++ = r1;
*p++ r2;
"p++
‘p++ r4;
‘p++ = r5;
"p++ :6;
‘p++ = r7;
‘p++ r8;

where butterfly(x,y) is the following operation:

butterfly(x,y):
t = x+y;
y = x—y;
x = t;

and SlantPart1, SlantPart2, SlantPart3, SlantPart4 are
four macros defined as follows:

#def1ne Slantpartl\
bfly(rl,r4); \
bfly(r2,r3); \
bfly(r5,r8); \
bflY(t6,t7);

#dciine SlantPart2\
bfly(rl,r2); \
reflect(r4,r3);\
bfly(r5,r6);\
reflect(r8,r7);

#define SlantPart3\
bfly(rl ,r5);\
bfly(r2,r6); \
bfly(r7,r3);\
bfly(r4,r8);

#define SlantPart4\
t = r5 ~ (r5>>3) + (r4>>1);\
r5 = r4 — (r4> >3) — (r5>>l);\
1'4 = t;

#define reflect(sl,s2)\
t = s1 + (s1>>2) + (sZ>>l);\
s2 = —s2 — (s2> >2) + (sl>>l);\
S1 = t;

The (8X 1) DSTs are preferably performed in the fol-
lowing order: rows first, then columns. (Doing columns
followed by rows gives slightly different, incorrect
results.) After doing the (8X 1) DSTs, all 64 values in
the resulting (8 X 8) array are preferably right-shifted by
3 bits, and then clamped to the range (- 128, 127), if a
delta block, or to the range (0, 255), if a still block.

If the block being decoded is a still block, no more
processing is required. The DST calculation produces
the block of reconstructed pixels to be written to the
image.

If the block being decoded is a relative block, the
block of reconstructed pixels is calculated as:

for (i=0, i<8; i+ +)
for (j=0;j<8;j++)

imagelil U] = ck-mp0-—255(prev[i] U] + arraylil D1);

10

15

20

25

30

35

45

50

55

65

98

where array[][] is the result of the DST calculation,
prevflfl is the (8X 8) block of pixels from the previous
image, and clamp0_2550 is a function that clamps a
value to the range (0,255). The previous block is the one
in the same spatial location as the block in the current
image, but offset by the motion vector for that block,
which is either determined from the MotionVector

array (if processing the Y plane) or is 0 (if processing
the U or V plane, or if FLAGS_MV= =0).

During decoding the loop filter may need to be selec-
tively applied. If the FLAGS_FILTER flag is set, and
if a block is not a still block, and if the quantization
Value for a block satisfies

quant < =Fi1terThresh

and if the block is not empty (i.e., does not consist of
only EOB), then the loop filter is applied to prev[| be-
fore adding the arrayfl[] deltas. The preferred loop filter
is a filter with kernel as follows:

where the pixel marked x is replaced by:

x=(a+b+c+d)> >2

where a,b,c,d are the four pixels in the corners of the
(3><3) block. On the edges of an (8><8) block, a one-
dimensional (l 0 1) kernel is preferably used. The corner
pixels of the block are preferably not filtered.

Intra/Inter Decision Rules

A certain class of motion compensated video com-
pression systems encode certain blocks in motion com-
pensated difference images as “intra” blocks and others
as “inter” blocks. The decision to encode a block as an
intra or inter block is based on a decision rule which is
referred to as the “intra/inter decision rule”. This sec-

tion describes a preferred method for generating an
intra/inter decision rule for conferencing system 100.
The intra/inter decision rule generated by this method
is (1) computationally simple, (2) encoded implicitly
(requiring no bits for differentiating intra vs. inter
blocks, (3) adaptive to spatiotemporal image content,
and (4) statistically optimal in providing a means of
differentiation between motion compensation artifacts
and scene features.

The conventional objective of encoding some blocks
as intra in motion compensated difference frames is to
reduce the number of bits required to encode those
blocks that have low spatial variation but high temporal
variation. The objective of encoding some blocks as
intra in difference frames is to reduce the effects of high
frequency motion compensation artifacts (sometimes
referred to as “mosquitoes” in the literature) without
having to use (computationally expensive) loop filter-
ing. An area in a motion compensated difference frame
that exhibits mosquitoes when encoded as a quantized
difference will instead appear blurred if encoded as a
quantized intra.

The preferred technique for generating an intra/inter
decision rule for a given motion compensated video
compression system works as follows:
Given:

clsco SYSTEMS, Inc. Ex. 1131 Page 32

CISCO SYSTEMS, INC. Ex. 1131 Page 83

5,434,913
99

1. A transform

2. A set of N quantizers for Inter blocks‘(Q1, Q2, . . .
, QN)

3. A set of M quantizers for Intra blocks (K1, K2, . .
. , KN)

4. A set of “training data” that is representative of the
application in hand.

Let SAD(i,j) denote the “Sum of absolute differences”
for block (i,j) in a motion compensated difference im-
age.

Step 1

For each Quantizer Qi, perform the following opera-tion:

a. Compress the training data, using Qi as the quan-
tizer for all the blocks in the all the motion compen-
sated difference images.

b. By a visual observation of the (compressed and
decompressed) training image sequences, collect
all blocks that contain perceptible mosquitoes.

c. From the set of blocks collected in (b), find the
block with the lowest SAD. Denote the SAD of

the block with the lowest SAD as LSADi (corre-
sponding to quantizer Qi).

d. From the set of blocks collected in (b), select a
subset of 11 blocks with the lowest SADs in the set.

e. For each block in the subset collected in (d), deter-
mine the number of bits required to encode the
block. Let B be the average number ofbits required

. to encode a block in the subset. For each intra

quantizer Kj, determine the average number ofbits
BKj required to encode a block in the subset as an
intra (using quantizer Kj). From the set {BK1,

BK2, . . . , BKM}, find j such that [B-BKj] is
minimized. Kj is the intra quantizer assigned to Qi.

Step 2

From Step 1, for each Qi, there is a corresponding
LSADi which is the lowest SAD value for which there

are perceptible motion compensation artifacts and an
intra quantizer Kj. The intra/inter decision rule is de-
fined as follows:

For each block (p,q) in a motion compensated differ-
ence frame, given a quantizer Qi (as determined by
an external quantizer selection process) the block is
encoded as intra if and only if SAD(p,q)> LSADi.
Intra quantizer Kj is used to encode the block.

A major advantage of the intra/inter decision rules
generated by this technique is that the intra/inter deci-
sion is implicit in the method and is known to both the
encoder and decoder. Therefore, it does not need to be

explicitly transmitted and thus requires no hits.

Post Reconstruction Loop Filtering

This section describes a preferred method of “loop
filtering” for conferencing system 100 for the reduction
ofhigh frequency artifacts associated with motion com-
pensated video compression for the present invention.
A traditional loop filtering operation operates on the
previously decoded (reference) image. Certain blocks
of the previously decoded image are low-pass filtered
prior to motion compensation. This reduces the high
frequency content in the reference block and, as a re-

sult, the high frequency content in the final output.
In the preferred method of loop filtering, a low-pass

filter is applied to certain blocks after the motion com-
pensation and addition operation to generate a filtered
reconstructed image. This approach to loop filtering
has two major advantages:

5

10

15

20

25

30

35

45

50

55

60

65

100

1. It is easier to implement, since the motion estima-
tion and differencing operations may be merged into
one operation.

2. It has a greater low-pass filtering effect on the
reconstructed image since the final image is filtered
instead of the reference image only. '

Adaptive Loop Filter Switching Criteria

This section describes a preferred method for gener-
ating a criterion for the switching (“on” or ‘‘off’) of a
loop filter in conferencing system 100. The loop filter
switching criterion generated by this method is better

adapted to the spatiotemporal image content and pro-
vides a differentiation between motion compensation
artifacts and scene features. A traditional loop filtering
operation operates on the previously decoded (refer-
ence) image. Certain macroblocks (typically 16X 16
areas) of the previously decoded image are low-pass
filtered prior to motion compensation. This reduces the
high frequency content in the reference macroblock
and, as a result, the high frequency content in the final
output.

The objective of loop filtering is to reduce high fre-
quency artifacts associated with residual quantization
noise in motion compensated difference images. Ideally,
only those macroblocks should be filtered that exhibit

such motion compensation artifacts. A criterion for
deciding whether or not a given macroblock should be

loop filtered or not is referred to as the “loop filter
switching criterion.”

A conventional loop filter switching criterion is to
apply a loop filter if the macroblock has a non-zero
motion vector and not to apply it if the motion vector
for the given macroblock is the zero vector. A major
drawback of this criterion is that it filters macroblocks

that have non-zero motion but no motion compensation
artifacts. '

The preferred method for generating a loop filter
switching criterion works as follows:
Given

1. A transform

2. A set of N Quantizer (Q1, Q2, . . . , QN)
3. A set of representative “training da ” for the ap-

plication at hand.
Let SAD(i,j) denote the “Sum of absolute differences”

for Macroblock (i,j) in a motion compensated difference
image.
Step 1

For each Quantizer Qi, perform the following opera-tlon:

a. Compress the training data, using Qi as the quan-
tizer for all the macroblocks in the all the motion

compensated difference images.
b. By a visual observation of the (compressed and

decompressed) training image sequences, collect
all macroblocksthat contain perceptible high fre-
quency motion compensation artifacts (sometimes
referred to as “mosquitoes” in the literature).

c. From the set of macroblocks collected in (b), find
the macroblock with the lowest SAD. Denote the
SAD of the macroblock with the lowest SAD as

LSADi (corresponding to quantizer Qi).
Step 2

From Step 1, for each Qi, there is a corresponding
LSADi which is the lowest SAD value for which there

are perceptible motion compensation artifacts. The loop
filter switching criterion is defined as follows:

cISco SYSTEMS, INC. Ex.‘ 1131 Page 83

CISCO SYSTEMS, INC. Ex. 1131 Page 84

5,434,913
101

For each Macroblock (p,q) in a motion compensated
difference frame, given a quantizer Qi (as deter-
mined by an external quantizer selection process)
the loop filter is applied if only if SAD(p,q)>L-
SADi.

Design of Quantization Tables

This section describes a preferred method for design-
ing quantization tables to be used for quantization in
conferencing system 100. This preferred method ex-
ploits the perceptual properties of the human visual
system in a statistical sense to arrive at quantization
tables that minimize perceived quantization artifacts at a
given effective bit rate.

In conventional video compression systems, the
quantization process is spatially adaptive. Different
regions in the image are quantized using different quan-
tizers. In a transform-based video compression system
that uses linear quantization, the quantization operation
may be completely specified by a table of numbers, each
of which corresponds to the (linear) quantizer step size
to be used to quantize a specific frequency band in the
transform domain.

The present invention relates to the design of the
quantization table Q[8][8] for conferencing system 100.
The design process is as follows:
Given

1. Transform-based conferencing system 100
2. A set of video sequences that are representative of

the application at hand
3. A specification of target bitrate (or compression

ratio) for the application.
Objective

T0 design a set of N quantization tables Q1, Q2, . . . ,
QN such that:

a. QN/2 results in target bitrate for typical video
sequences.

b. Q1, . . . , QN meet a specified dynamic range speci-
fication. For a given video sequence, the bitrate
generated using Q1 should be about K times the
bitrate generated by QN. Here K is the dynamic
range specification and is usually dependant on the
variability of the allocated channel bandwidth of
the channel over which the compressed video bit-
stream is being transmitted.

. Q1, . . . , QN minimize the perceived artifacts in the
processed (compressed and decompressed) video
sequence at their point of operation (in terms of bit
rate).

Procedure

Step 1. Design of Q1
Q1 is the weakest quantizer table and is designed so as

to generate no perceptible artifacts at the expense of a
bitrate that is potentially much higher than Target Bi-
trate. Q1 is designed as follows:

Set Q[i][i]=1 for all i,j (all frequency bands)
Starting from the lowest frequency band to the high-

est frequency band,
For each band (i,j),
a. Increment Q[i][i]
b. Use Q[8][8] as the quantizer in the given video

compression system
c. If there are any perceivable artifacts in the pro-

cessed video sequence,
i. Decrement Q[i[[j]

Goto the next band

Else goto (a)

l0

15

20

25

30

35

45

50

55

60

65

102

The above process generates a quantizer table (Q1)
that is at the perceptual threshold, referred to as the
perceptual threshold quantizer (PTQ).
Step 2. Design of Q2, Q3, . . . , QN/2

Let Bl be the bitrate generated using quantizer Q1
with a typical video sequence. Let BT be the target
bitrate. The objective now is to design Q2, Q3, . . .
QN/2 such that QN/2 generates target bitrate (BT) for
typical sequences and Q2, Q3, . . . , QN/2-1 generate
monotonically decreasing intermediate bitrates between
B1 and BT. From the perspective of a bitrate controller,
it is desirable to have a linear decrease in bitrate with

quantizer table index. Tables Q2, Q3, . . . , QN/2 are
designed with this requirement in mind. The following
is the design procedure for tables Q2,Q3, . . . , QN/2:

Let dB=(B1—BT)/(N/2).
Set Q2=Q1
For each quantizer Qk, k=2 to N/2
Starting from the highest frequency band to the low-

est frequency band,
For each band (i,j)
a. Set Qk=Qk-1
b. Increment all Qk[i][j] with the same horizontal or

vertical frequency
c. Use Qk[8][8] as the quantizer in the given video

compression system
d. If the bitrate is reduced by dB,

i. Save the state of Qk[8][8]
Goto the next band at l

Else goto 2.
e. Amongst the quantizer states saved in (d)(i), select

that quantizer that has the least perceptible artifacts
for typical video. This is the choice for Qk.

Step 3. Design of QN/2+1, . . . , QN.
From the perspective of a bitrate controller, it is

desirable to have a progressively increasing decrease in
bitrate with quantizer table index from table N/2+1 to
table N. The design of tables QN/2+1, . . . , QN is the
same as the design for tables 2, . . . ,N/2 except that for
each new table, dQ increases instead of remaining con-
stant. The magnitudes of the dQs for quantizers
QN/2+1, . . . , QN depend on the desired dynamic
range in bitrate and the manner of decrease in bitrate
with quantizer table index. For example, if the desired
dynamic range is BT to BT/4 from QN/2 to QN and
the decrease in bitrate is logarithmic then

dQ(N/2 + 1) = dQ(N/2)
for i = (N/2 + 2) to (N/2)
dQi = kdQi _ 1
dQ(N/2 + 1) + dQ(N/2 + 2) + . .. + dQN = BT — BT/4
dQ(N/2)(1 + k + k*k + k’k‘k + . . .) = 3BT/4
(1 + k + k’k + k*k*k + . . .) = 3BT/4/(dQN/2)
(1 + 2 + 3 + 4 + . . . + (N/2 — 1))logk = log(3BT/4/dQN/2)
logk = log(3BT/4/dQN/2)/N/4
k = (3BT/4/dQN/2) to the power 4/N

Adaptive Transform Coefficient Scanning

This section describes a preferred method of trans-
form coefficient scanning in conferencing system 100, a
transform-based image and video compression system,
that exploits the properties of the transform and the
associated quantization technique to generate coeffici-
ent scan orders that generate the lowest bitrates. The
image (for image compression) or motion compensated
difference (for motion compensated video compression)
is transformed. The transformed coefficients are quan-
tized. The transformed quantized coefficients are

CISCO SYSTEMS, INC. Ex. 1131 Page 84

CISCO SYSTEMS, INC. Ex. 1131 Page 85

5,434,913
103

scanned in a certain order from a two dimensional array
to a one dimensional array. This one dimensional array
is re-represented by a run-length——value (RV) represen-
tation. This representation is then entropy coded and
the result transmitted or stored to be decoded.

The preferred method applies to the “scan” part of
the processing where the quantized transformed coeffi-
cients are scanned from a two dimensional array to a
one dimensional array. The purpose of this scanning is
to facilitate efficient representation by a RV representa-
tion. The same scan-order is applied to every block in
the representation.

The preferred method of scanning involves the fol-
lowing operations:
Given

1. A transform.

2. A set of N quantizers (typically quantization matri-
ces) denoted by Q1, Q2, . . . , QN.

3. Representative “training” data for the target appli-
cation.

Step 1
For each quantizer Qi, generate quantized trans-

formed blocks for all of the training data.
Step 2

Compute the average amplitude for each of the trans-
form coefficients from the quantized transformed
blocks for all the training data.
Step 3

Sort the average amplitudes computed in Step 2.
Step 4

For quantizer Qi, the scan order Si is generated by
the locations of the (amplitude sorted) coefficients from
Step 3. The largest coefficient is the first in the scan
order and the smallest is the last.

Using this preferred method, a scan order Si is gener-
ated for each quantizer Qi. In the encode and decode
process, for each block for which Qi is used as the quan-
tizer, Si is used as the scan order.

The advantage of this invention over previous scan-
ning techniques is that due to the adaptive scan orders,
the RV representations are more efficient a.nd for a
given quantizer, fewer bits are required to encode a
given block than with conventional non-adaptive zig-
zag scanning.

Spatially Adaptive Quantization

This section describes a preferred method of spatially
adaptive quantization for conferencing system 100. The
preferred method provides a means of efficiently encod-
ing motion compensated difference images. A conven-
tional non-adaptive quantization technique simply takes
a given quantizer for each frame and applies that quan-
tizer uniformly to every macroblock (16)< 16 area) in
the image. An adaptive quantization technique applies
different quantizers to different macroblocks in a given
frame. Information about which quantizer has been
applied to which block is also encoded and transmitted.

The preferred method of spatially adaptive quantiza-
tion is based on the “sum of absolute difference” (SAD)
that has already been computed for each macroblock by
the motion estimation subroutine. The preferred quan-

tizer selection method works as follows:

Step 1
The mean SAD for the entire frame is computed.

This denoted by MSAD.
Step 2

For each macroblock, if the SAD of the macroblock

is lower than the mean, then it is assigned a finer quan-

5

10

15

20

25

30

35

45

50

55

65

104

tizer than the mean quantizer (which is the global quan-
tizer for this frame passed down by the bit-rate control-
ler). Conversely, if the SAD in the macroblock is higher
than the mean, then it is assigned a coarser quantizer.

In a case where there are 16 quantizers, numbered 1
through 16 with higher numbers denoting finer quantiz-
ers, let SAD(i,j) be the SAD associated with the current
macroblock (i,j). Let MSAD be the mean SAD in the
frame. Let Q(i,j) denote the quantizer assigned to the
‘current macroblock. Let QG denote the global quan-
tizer for the frame. Then Q(i,j) is assigned as:

Q(z;;)=QG+s~=1og2
((sAD(i.;)+2MsAD)/(2sAD(t1)+MsAD))

Q(i,j) is saturated to the range (1,l6) after performing
the above operation.

There are 2 major advantages of the preferred spa-
tially adaptive quantization technique over conven-
tional techniques:

1. The spatial adaptation is based on values that have
already been computed in the motion estimation
routine. Therefore the spatial adaptation process is
computationally simple.

2. The spatial adaptation process generates an optimal
quality image given the bit-budget of the current
frame by distributing bits to different macroblocks
in proportion to the perceived effect of quantiza-
tion on that macroblock.

Fast Statistical Decode

Host processor 202 preferably performs fast statistical
decoding. Fast statistical decoding on host processor
202 allows time efficient decoding of statistically coded
data (e.g., Huffman decoding). Moreover, since statisti-
cal Huffman coding uses code words that are not fixed
(bit) length, the decoding of such codewords is gener-
ally accomplished one bit at a time. The preferred
method is as follows:

1. Get next input bit and juxtapose with bits already in
potential codeword (initially none).

2. If potential codeword is a complete codeword,
then emi “symbol”, eliminate bits in potential
codeword, and go to (1). Otherwise, if potential
codeword is not a complete codeword, then go to
(1).

The preferred method of the present invention provides
decoding of one “symbol” in one operation, as follows:

a. Get next (fixed number) several input bits.
b. Use the input bits to select a symbol and emit

symbol.
c. Go to (a).

The statistical code used is designed to be “instanta-
neous,” which means that no codeword “A” is a “pre-
fix” of any codewords “B”. This allows a lookup table
to be constructed which may be indexed by a potential
codeword, unambiguously yielding a symbol corre-
sponding to the codeword. The potential codeword is
guaranteed to contain a complete codeword since it
starts with a codeword, and it is as long as the longest
codeword.

Contrast, Brightness, and Saturation Controls

This section describes a preferred integer implemen-
tation of contrast, brightness, and saturation controls
for the present invention for adjusting and for applica-
tion of the controls to realtime video. The implementa-
tion has two parts. The first is a method of generating

CISCO SYSTEMS, INC. Ex. 1131 Page 85

CISCO SYSTEMS, INC. Ex. 1131 Page 86

5,434,913
105

translation tables to implement adjustable brightness,
contrast, and saturation controls. The second is a

method of using the tables to change the appearance of
video being displayed.

The generation of the tables uses integer operations in
the generation of tables that express floating point rela-
tions. Prior to application of any controls, the video
data consists of a description of the Y, V, and U compo-
nents at 8 bits per value. The problem is to provide a
translation from the decoded Y values to Y values that

reflect the current setting of the brightness and contrast
controls, and further to provide a translation from the
decoded U and V values to U and V values that reflect

the current setting of the saturation control.
The method begins with an identity translation table

(fix)=x). As controls are changed, the identity transla-
tion becomes perturbed cumulatively. In the case of
brightness, control changes are indicated by a signed
biased value providing both direction and magnitude of
the desired change. The current translation table are
changed into fix)=x—k, for x> =k, and f(x)=0 for
0<=x<k (decrease) or f(x)=x+k, for x<=255—k,
and f1x)=255 for 255> =x>255—k (increase).

In the case of contrast, control changes are indicated
by a scaled fractional value. The value indicated “n”
represents “(n+ l)/SCALE” change: a “change” of
(SCALE-1) yields no change, a change of (SCALE)
yields a change by 1/SCALE in each of the translation
table values. The definition of contrast as y’=(n-
“(y— l28))+ 128 (for 8 bit values) is then provided by
subtracting 128 from the translation table value, multi-
plying by SCALE, multiplying ‘by the indicate control
change value, and then dividing by SCALE twice to
remove the scale multiple implied in the representation
of the control change value, and the multiply explicitly
performed here. 128 is then added to the modified trans-
lation table value and the result is clamped to the range
of O to 255 inclusive.

This method avoids the use of floating point arithme-
tic in the computation of the proper translation table
values. In the definition offered of “contrast” the value

“n” is a floating point number. Saturation is simply
contrast as applied to the chrominance data, and is han-
dled in the same way as the contrast control, but with a
different copy of the translation table.

The translation tables are made available to the host

processor in the same locale as the data that they are
used to translate: after generation of the modified trans-
lation tables, the tables are appended to the data area for
the luminance and chrominance, at known fixed offsets

from the start of same data areas (on a per instance basis,
each video window has its own copy of this data.) This
allows the host processor to access the translation tables
with a 1 processor clock penalty in address generation
(for an Intel ® 486 microprocessor; there is no penalty
on an Intel® Pentium® processor), and with a high
degree of locality of reference, and no pointer register
reloads (due to the fixed offset.)

The translation of the decoded Y, V, and U values is

performed by reading and translating eight values and
then writing the eight translated values as two 32-bit
values to the destination. This is important to Intel ®
architecture microprocessors, and in particular is im-
portant to the Intel ® 486 processor, which usually runs
with a write saturated bus.

For the method ofperforming the translation, the BX
register is assumed to contain zeroes in the high order
8(24) bits. The low order 8 bits are loaded with the

10

15

20

25

30

35

45

50

55

65

106
value to translate, and the value is used as the base

register with an index register (set to the offset of the
translation table+base ofdata buffer) in an indirect load
to accomplish the translation. The destination of the
load is changed as the operation is repeated over multi-
ple values, until register storage is exhausted, at which
point the translated values are written out and the cycle
repeats. The process here described executes at a sus-
tained three or four clocks per value translated.

Audio Protocol

Referring now to FIG. 26, there is shown a represen-
tation of a compressed audio packet for conferencing
system 100, according to a preferred embodiment of the
present invention. Source audio is audio that is captured
(and optionally monitored) at the local system and sent
to the comm subsystem for transmission. Sink audio is
audio that is received from the comm subsystem for
playback on the local system. Audio is preferably han-

dled on audio/comm board 206 and not on host proces-
sor 202. The compressed audio packet of FIG. 26 is that
which is actually sent/received from the communica-
tions subsystem and not necessarily that manipulated by
an application on the host ‘processor. The audio packet
fields are defined as follows:

Timestamp Value used to synchronize audio and video frames at
the receive endpoint. The audio stream preferably
generates timestamps as a master clock that are
copied to the captured video frames before
transmission.

Reserved Reserved field.
Mute Bit indicates whether or not the audio stream is

muted or not. The audio is muted when the bit is set.
When the Mute bit is set, no audio data is sent.

Data Compressed audio data

The length of the audio data is not explicitly specified in
the packet header. A receiving endpoint’s comm sub-
system reassembles an audio packet and therefore im-
plicitly knows the length and can reportit to its applica-
tion. The length of an audio packet is a run-time param-
eter and depends on the compression method and the
amount of latency desired in the system. The preferred
audio compression/decompression method implemen-
tation has 100 msecond latency, which translates to 200
bytes of compressed audio data per packet.

Compressed Audio Bitstream

The preferred audio stream for conferencing system
100 is a modification of the European Groupe Speciale
Mobile (GSM). GSM was developed in the context of
the standardization of the European digital mobile ra-
dio. It resulted from the combination of the Regular-
Pulse Excitation/Linear-Predictive-Coding codec de-
veloped by Philips (Germany) with the Multi-Pulse-
Excitation/Linear-Predictive-Coding codec devised by
IBM (France). For further information, see the ETSI-
GSM Technical Specification, GSM 06.10, version
3.2.0, UDC 621.396.2l, published by the European
Telecommunication Standards Institute in Valbonne

Cedex, France.
The data rate of the standard GSM codec is 13.0

kbits/sec. The preferred GSM implementation for con-
ferencing system 100 has a bit rate of 16 kbits/sec. The
mean opinion score (MOS) quality rating of the pre-
ferred GSM implementation is 3.54. It is not prone to
rapid quality degradation in the presence of noise. The

clsco SYSTEMS, Inc. Ex. 1131 Page 86

CISCO SYSTEMS, INC. Ex. 1131 Page 87

5,434,913
107

relative complexity is about 2 MOPSS/s. Due to imple-
mentation processing considerations, the standard GSM
implementation is adjusted to yield the preferred GSM
implementation. In addition, headers are added to pro-
vide extra control information, such as frame counting
and muting.

In order to save processing, the 260-bit audio frame is
not packed. This results in a 320-bit frames. These
frames occur every 20 mseconds. This increases the bit

rate from 13 kbits/sec to 16 kbits/sec. The composition
of the preferred audio frame is as follows:

typedef { unsigned int larl: 6; /‘ stp para-
struct meters ‘/

unsigned int 1ar2: 6;
unsigned int 1ar3: 5;
unsigned int lar4: 5;
unsigned int lar5: 4;
unsigned int lar6: 4;
unsigned int lar7: 3;
unsigned int lar8: 3; } STP;

typedef { unsigned int lag 7;
struct unsigned int gain 2; /‘ ltp para-

meters ‘/
unsigned int grid 2; /“' rpe para-

meters ‘/
unsigned int xmax 6;
unsigned int x0 3; /‘ pulse ampli-

tude‘/
unsigned int x1 3;
unsigned int x2 3;
unsigned int x3 3;
unsigned int x4 3;
unsigned int x5 3;
unsigned int x6 3;
unsigned int x7 3;
unsigned int x8 3;
unsigned int x9 3;
unsigned int x10 3;
unsigned int x11 3;
unsigned int x12 3; } LTP_RPE

typedef { STP frame;
struct LTP_RPE subframe(4) ; } GSMBITS;

The result of not packing these structs on a Texas In-
struments® C31 DSP, a 32-bit processor, is a 320-bit
frame. At a frame rate of 50 frames/sec, the data rate is
16.0 kbits/sec.

A header has also been added to groups of frames.
The length of the header is one 32-bit word. The MSB

is a mute flag (1 =mute). The remaining bits represent a
timestamp. This time stamp is not actually time, but is
preferably a frame counter. The initial value of it is

arbitrary. It is therefore a relative number representing
the progress of audio frames and usable for synchroni-
zation.

Data Protocol

Data packets are inside TII packets. The data confer-
encing application will have its own protocol inside the
TII protocol stack.

Communication-Level Protocols

The application-level audio, video, and data packets
described in the previous section are sent to the com
subsystem for transmission to the remote site. The
com subsystem applies its own data structure to the
application-level packets, which the com subsystem
treats as generic data, and defines a protocol for trans-
port. In a preferred embodiment of the present inven-
tion, the basic transport is unreliable. That is, at the
basic level, there is no guarantee that application data
will reach the destination site and, even if it does, there

10

15

20

25

30

35

40

45

50

55

65

108

is no guarantee as to the correctness of the data deliv-
ered. Some applications will use the unreliable commu-

nication services, such as audio and video. For applica-
tions requiring guaranteed delivery of data, reliability is
built on the basic unreliable service. Application data is
an example of a data type requiring reliable transport;
control information between peer processes is another.

Reliable Transport Comm Protocols

Referring now to FIG. 27, there is shown a represen-
tation of the reliable transport comm packet structure,
according to a preferred embodiment of the present
invention. For reliable transport, conferencing system
100 preferably uses a protocol akin to LAPB. Since
transport is preferably on ISDN B-channels, which are
assumed to have already been set up, there is no need to
include those portions of LAPB that deal with circuit
establishment and teardown (e.g. SABM, FRMR, UA,
and DISC). Therefore, the preferred reliable transport
comm protocol is void of those portions. The fields of
the preferred reliable transport comm packet are de-
fined as follows:

Control Defines the type of packet and relays acknowledgment
information. The types of packets are: Information (I),
Receiver Ready (RR), Receiver Not Ready (RNR),
and Reject (REJ).

Length Length of the client data portion of the packet, in
bytes.

CRC Cyclic redundancy check code.
Data Client data of length specified by the Length field.

For an Information (I) packet, the format of the con-
trol field is as follows:

(Bit) 0
(Field) 0

1-3 4
NS P

5-7
NR

The NS bit field is used to refer to a send sequence
number. NS is interpreted as specifying to the receiving
site the next packet to be sent. The NR bit field is used
to refer to a receive sequence number. It is used to
acknowledge to a sender that the receiver has received
packet NR-1 and is expecting packet NR. The P bit field
is the LAPB poll bit and is are not used in the preferred
embodiment. All sequence numbers are modulo-8
meaning that at most 7 packets can be outstanding. It is
the responsibility of the transmitting sites to assure that
they do not have more than 7 packets outstanding. An
Information packet is used to send client data. The
receive acknowledgment can be piggybacked on in the
NR bit field.

The Receiver Ready (RR), Receiver Not Ready
(RNR), and Reject (REJ) packets are supervisory pack-
ets that are used for acknowledgment, retransmission,
and flow control. They are not used to carry client data.

For a Receiver Ready (RR) packet, the format of the
control field is as follows:

(Bit) 0 2 3 4 5-7
(Field) 1 o 0 PF NRQ»:

The PF bit field is the LAPB poll/fmal bit and is not
used in the preferred embodiment. The RR packet is
used in two cases. The first case is to acknowledge
packet receipt when there are no packets pending trans-

CISCO SYSTEMS, INC. Ex. 1131 Page 87

CISCO SYSTEMS, INC. Ex. 1131 Page 88

1 5,434,913
109

mission on which to piggyback the acknowledgment.
The second case is when the link is idle. In this case, an
RR packet is sent periodically to assure the remote site
that the local site is still alive and doing well.

For a Receiver Not Ready (RNR) packet, the format 5
of the control field is as follows:

(Bit) 0
(Field) 1

2 3 4 5-7
PF NR©>—A :- O

10

The RNR packet is sent by a receiver to indicate to the
remote site that the remote site should stop sending
packets. Some condition has occurred, such as insuffi-
cient receive buffers, rendering the remote site unable 15
to accept any further packets. The RNR packet is in-
tended to be used for temporary flow control. When the
remote site is able to accept more packets it issues an
RR frame.

For a Reject (RED packet, the format of the control 20
field is as follows:

(Bit) 0
(Field) l

3 4 5-7
PF NR©v—- ON »-

25

The REJ packet is sent as a form of negative acknowl-
edgment. The receiver of an RBI packet interprets the
NR bit field as a request to retransmit all packets from
NR to the most currently sent, inclusive. 30

Unreliable Transport Comm Protocols

At the lowest layer of conferencing system 100, an
unreliable protocol is preferably used to transport data
on the ISDN B-channels. For those applications requir-
ing reliability, the reliable protocol discussed in the
previous section is added on top of the unreliable proto-
col discussed in this section. The unreliable protocol sits
atop of HDLC framing which the unreliable protocol
uses for actual node-to-node transport of packets. Even
though HDLC framing is used, a data link protocol is
not implemented. In particular, there is no guarantee
that data packets will be delivered or that they will be
uncorrupted at the receive node of a link. The CRC
validation of the HDLC is used to detect corrupted
data.

The unreliable protocol provides for logical channels
and virtualization of the two Basic Rate ISDN B-chan-

nels. Logical charmels are local site entities that are
defined between the DLM and TII is layer and the
client (i.e., application program) using them. The logi-
cal channels provide the primary mechanism clients use
to send multiple data types (e.g., audio, video, data).
The layer services multiplex these data types together
for transmission to the remote sites.

In a preferred embodiment, logical charmel zero is
used as a control channel. Site peers (i.e., two confer-
encing systems in a conferencing session) use this con-
trol charmel to exchange information on their use of
other logical channels. Logical channels are half- 60
duplex. Therefore, two channels are necessary to send
and receive data. A priority attribute is associated with
a logical channel (and therefore with a data type). The
unreliable protocol asserts that higher priority data will
always be sent ahead of lower priority data when both 65
are pending. Priorities are assigned by an API call to the
TII services. Audio has the highest priority, then data,
and last video.

35

45

50

55

110

Although the ISDN Basic Rate Interface (BRI) de-
fines two physical 64 kbit/second B-channels for data,
the services at both DLM and TII virtualize the sepa-
rate B-channels as a single 128 kbit/second channel.
Client data types, defined by their logical channels, are
multiplexed into a single virtual stream on this channel.
In a preferred embodiment, this inverse multiplexing is
accomplished by breaking all packets into an even num-
ber of fragments and alternating transmission on the
two physical B-charmel connections. Initially, after
charmel establishment, the first fragment is sent on the
B1-charmel, the second on the B2-channel, etc. At the

receiving site, fragments are collected for reassembly of
the packet.

Referring now to FIG. 28, there is shown a represen-
tation of the unreliable transport comm packet struc-
ture, according to a preferred embodiment of the pres-
ent invention. The fields of the preferred unreliable
transport comm packet are defined as follows:

Flag
DestID

Standard HDLC Flag field.
The receiving site’s logical channel identifier. The
transmitting site peer acquires this ID by
communicating to the remote site before exchanging
data. This is done using a control logical channel (i.e.,
channel zero).
The sending site’s logical channel identifier. The type
of data in the packet can be determined by knowing the
logical channel ID-to—data type mapping. The current
implementation uses the following mapping: The
mapping is from DLM channels to TII channels, which
occur at the T11 level. At the time the TII channel is
opened for a datatype, TII dynamically assigns unique
DLM channels for different data types in ascending
order starting from‘ one (1).
The packet sequence number. Distinguished from the
FragNo field which counts the fragments within a
packet. The PktNo field is used by the receiving site
peer to implement a sliding window protocol. This
allows packet buffering which is used to compensate
for transmission delays.
If the SOP bit is set, then the current fragment is the
start of a packet.
If the EOP bit is set, then the current fragment is the
end of a packet.
Reserved field.
The fragment sequence number. Distinguished from the
PktNo field which counts the number of whole packets.
The FragNo is used by the receiving site peer to
reassemble fragments into packets. The SOP and EOP
fields are used to locate the start and end of a whole
packet, respectively.
The data field.
Standard HDLC CRC field.
Standard HDLC Flag field.

SrcID

PktNo

SOP

EOP

Rsvd

FragNo

Data
CRC
Flag

Data Structures, Functions, and Messages

This section contains the data structures and defini-

tions of the functions and messages for conferencing
API 506, video API 508, audio API 512, and comm
API 510.

Conferencing API Data Structures, Functions, and
Messages

Conferencing API 506 utilizes the following data
types:

LPHCALL Pointer to a call handle.
LPAVCB Pointer to an Audio Video Control

Block (AVCB).
LPCCB Pointer to a Configuration Control

Block (CCB).
LPBITMAPINFO Pointer to a Microsoft ® Windows

CISCO SYSTEMS, INC. Ex. 1131 Page 88

CISCO SYSTEMS, INC. Ex. 1131 Page 89

5,434,913

111 112

-continued -continued

BITMAPINFO structure that defines a CCST_CALLING Calling State
DIB (Device-Independent Bitmap). CCST_ACCEPTING Accepting State

LPHSTGRP Pointer to the handle of a stream group. CCST_CALLED Called state
LPABBUSCARDINFO Pointer to a ABBUSCARDINFO, 5 CCST_CLOSING Closing State

which defines the personal card Conferencing Channel States:
information, from Address Book. CHS1-__READy Ready state
Contains business card information; CHST___opEN opened State
format is specified by the GUI. CHsT_opEN1NG opening stateCl-lST_SEND Send state

. . . . 10 CHST_RECV R tat

Conferencing API 506 utilizes ‘the following struc- CHST_RESpOND1NG ec‘;{:Spf,nding State
tures that are passed to conferencing API 506 in func- CHST_CLOSING Closing state
tion calls (e.g., CF_Init, CF_CapMon) and then passed C°“fefen°i“ swam State!“
by conferencing API 506 to the audio/video managers: C55T—1N1T 111" StateCSST_ACTIVE Active state

CSST_FAILED Failure state

MCB (Media Control Block)
> > WORD wType Media type:
> > CFMT_AUDIO — Audio Type (e.g., narrow or wide band)
> > CFMT_VlDEO — Video Type
CCB (Configuration Control Block)
> > WORD wVersion Version Number
> > MCB mtMediafl list of Media types supported by the system.
AVCB (Audio Video Control Block)
> > WORD wType Local or remote AVCB type:
> > CFAVCB_LOCAL — local AVCB type
> > CFAVCB_REMOTE —— remote AVCB type
> > Union {
> > // local AVCB
> > struct {
> > WORD wAIn Audio input hardware source
> > WORD wAGain Gain of the local microphone
> > WORD wAMute On/Off flag for audio muting
> > WORD wVIn Video input source
> > DWORDdwVDRate Maximum video data rate
> > WORD wVContrast Video contrast adjustment
> > WORD wVTint Video tint adjustment
> > WORD wVBrightness Video brightness adjustment
> > WORD wVCo1or Video color adjustment
> > WORD wVMonitor On/Off flag for local video monitoring
> > WORD wVMute On/Off flag for local video muting. As the flag is

turned on/off, it will temporarily stop or restart the
related operations, including playing and sending,
being performed on this stream group. This can be
temporarily hold one video stream and provide
more bandwidth for other streams to use. For
example, a video stream can be paused while an
audio stream continues, to speed up a file transfer.

> > } localcb
> > // remote AVCB
> > struct {
> > WORD wAOut Audio output hardware destination
> > WORD wAVol Volume of the local speaker
> > WORD wAMute On/Off flag for audio muting
> > WORD wVOut Video output source
> > WORD wVContrast Video contrast adjustment
> > WORD wVTint Video tint adjustment
> > WORD wVBrightness Video brightness adjustment
> > WORD wVCo1or Video color adjustment
> > WORD wVMute On/Off flag for local video muting

} remotecb
> > } -
> > // ADDR Information — the address to be used for the conf. application to make a

Connection/call, via issuing the CF_MakeCall with the remote site.
> > // NOTE: This is the same as the TADDR structure defined by TII.
> > struct {
> > WORD w'l‘ype Type of Address, e.g., phone number, intemet
> > address, etc.
> > WORD wSize Size of the following address buffer

> > } LPSTR lpsAddrBuf Address buffer> >

Conferencing API 506 utilizes the following constants:

65 CStatus Return Values:

Coiiferencin Call States: C}:-_oK
CCST_NULL Null State CF_.ERR_PATl-[NAME
CCST_IDLE Idle State CF._.ERR_CCB
CCST_CONNEC’I'ED Connected state CF_ERR_AVCB

CISCO SYSTEMS, INC. Ex. 1131 Page 89

CISCO SYSTEMS, INC. Ex. 1131 Page 90

5,434,913
113

-continued
CF_ERLTOO_MANY_CAPTURE
CF._.ERR__CALLBACK
CF_ERR__FIELD
CF_ERlL_STATE
CF_ERLCARDINFO
CF_ERR_STRGRP
CF_ERR_FFORMAT
CF._ERILHANDLE
CF_ERR_PHONE#
CF__._ERR_'I'IMEOUT
CF__ERR_INSU'FF_BUFSIZE
CF_ERR..CALL
CF_ERLRESOURCE__I-‘AIL

In the above return values, CF_ERR__xxx means that

the “xxx” parameter is invalid.
The functions utilized by conferencing API 506 are

defined as follows:
CF Init

This function reads in the conferencing configuration
parameters (e.g., directory names in which the confer-
encing system software are kept) from an initialization
file (e.g., c: cyborg vconf.ini), loads and initializes
the software of video, com., and audio subsystems. In
addition, this function acquires the phone resource that
no other applications can access the resource until this
application makes a call to CF_Uninit later to relin-
quish the phone resource.

Also, it allows the application to choose between the
messaging and the callback interfaces to return the
event notifications. The callback interface allows the

conferencing software to call a user designated function
to notify the application of incoming events. The mes-
saging interface allows the conferencing to notify the
application of incoming events by posting messages to
application message queues. The parameters to the
function varying depending on the notification method
chosen.

CStatus CF_.Init(LPSTR 1pIniFile,
LPADDR 1pLocalAddr,
LPCONN_CHR lpConnAttributes,
WORD wFlag,
CALLBACK cbAppCal1,
LPCCB 1pCcb)

input lpIniFile: the pathname to the conferencing INIfile.
lpLocalAddr: pointer to the local address
lpConnAttributes pointer to the attributes requested for

incoming calls
wF1ag: Indicates the type of notification to be used:

CALLBACILFUNCTION for callback interface
CALLBACK__.WINDOW for post message

interface

cbAppCall: the callback routine or the message interface toreturn the notifications from the
remote site to the application.

output
lpCcb: returns the handle to the configuration control

block, preallocated by the
application that contains the configuration
information.

Valid state(s) to issue:
Null State

State after execution:
CCST_IDLE

Return values:
CF_OK
CF_ERR_PATI-INAME
CF_ERLCCB
CF_..ERR...CALLBACK
CF_ERP_RESOURCE_FAlL
CF...ERR__.ALREADY_.INlTIALIZED

Callback routine:

l0

15

20

25

30

35

45

50

55

65

114

-continued

FuncName (WORD wMessage, WORD wParam, LONG
lParam)

wMessage: the Window message type (e.g.,
CFM_.XXXX_NTFY)

wParam: the Call Handle

lParam: additional Information which is message-specific
NOTE: the parameters of the callback function are equivalent to
the last three parameter passed to a Window message handler
function (Win 3.l).

CF_Uninit

This function writes out the conferencing configura-
tion parameters back to the initialization file (e.g.,
c: \cyborg \vconf.ini), unloads and uninitializes the
software of video, comm., and audio subsystems. In
addition, this function relinquishes the phone resource
acquired with CF_.Init.

CStatus CF_Uninit (LPCCB 1pCcb)
input
lpCcb: the handle to the configuration control block that

contains the configuration information.
Valid state(s) to issue:

CCST_IDLE
State after execution:

CCST_NULL
Return values:

CF_.OK
TBD

Status Message:
CFM_UNINIT__NTFY:

Communication
Call Management
The Call Management functions will provide the application the
ability to establish and manage calls/connections to its peers onthe network.

Unlnit complete.

CF_MakeCall

This function makes a call to the remote site to estab-

lish a call/connection for the video conferencing. This
call will be performed asynchronously.

After all related operations for CF_MakeCall is
eventually complete, the callback routine (or the mes-
sage) specified in the CF._Init function will return the
status of this call.

The peer application will receive a CFM_CAL-
L_NTFY callback/message as a result of this call.

CStatus CF_MakeCall (LPADDR lpAddress,
LPCONN__CI-IR lpConAt-

tributes,
LPABBUSCARDINFO lpabCa.rdInfo,
WORD TimeOut,
LPMTYPE lpMedia)

input
lpAddress: pointer to the address structure of the

destination (or Callee),.
1pConnAttributes pointer to the attributes requested for the

call.

lpabCa.rdInfo: pointer to business card information of the
caller.

wTime0ut: Number of seconds to wait for peer to pickup
the phone.

1pMedia: pointer to a list of desirable media types.
If a null pointer is specified, the default
(best possibility) will be selected.

Valid state(s) to issue:
CCST_IDLE

State after execution:
CCST_CALLING

Return values:
CF..OK
CF_ERR_STA'l'E

CISCO SYSTEMS, INC. Ex. 1131 Page 90

CISCO SYSTEMS, INC. Ex. 1131 Page 91

5,434,913

115 116

-continued -continued
CF_ERR_I-IANDLE CCST_CALLED
CFjRR_RESOURCE_.FAIL State after execution:

Peer Messages: CCST_IDLE
A CFM_CALL._NTFY message will be delivered to the 5 Return values:
remote site to indicate the call request. CF_OK

Status Messages: CF_ERR__STATE
CFM_ACCEPT_NTFY: The peer process has accepted CF_.ER1LRE50URCE—FAIL

the call Peer Messages:
CFM_PROGRESS__NTFY: The optional progress A CFM_REJECT_NTFY message will be resulted to the

information of the call 10 remote app
CF_PROG_DIAL_TONE Status Messages:
CF_PROG_DIALING 110118
CF._PROG_RINGBACK

CFM_REJ"EC'I‘_NTFY: The error reported for the
call CF_HangupCaJ]

CF—REJ—T1ME0UT 15 This function hangs up a call that was previouslyCF_REJ_ADDRESS
CF._REJ_NETWORK__BUSY
CF_REJ_STA'l"ION_BUSY
CF_REJ_RESOUCE_.FAIL

CF_AcceptCall 20
This function is issued to accept a call request, re-

ceived as part of the CFM_.CALL_NTFY call-
back/message, that was initiated from the peer.

Both sides will receive a CFM_ACCEPT._NTFY 25
callback/message as a result of this call.

CStatus CF_AcceptCall (HCALL hCall,
LPABBUSCARDINFO lpabCallee,
LPMTYPE lpMedia) 30

input
hCall: handle to the call (returned by the

CFM_CALL_NTFY message).
lpabCallee: pointer to ABBUSCARDINFO of the callee who

issues this function.

lpMedia: pointer to a list of desirable media types. If a 35
null pointer is specified, the default (best
possibility) will be selected.

Valid state(s) to issue:
CCST_CALLED

State after execution:
CCS'I‘..ACCEPTING

Return values:
CF_OK
CF_ERR_STATE
CFiRR_CARDINFO
CF_ERR_I-IANDLE
CF_ERR_RESOURCE_FAIL

Peer Messages:
A CFM_ACCEPT_NTFY message will be received by theremote site.

Status Messages:
A CFM_ACCEPl'_NTFY message will be received by the
accepting site.

45

50

CF__RejectCall

Upon receiving a CFM_CALL_NTFY message,
this function can be issued to reject the incoming call
request. In fact, this function neither picks up the in- 55
coming call, nor sends a rejection message to the re-
mote. Instead, it will simply ignore the call notification
and let the peer application time-out. This would avoid
the unnecessary telephone charge or the unpleasant
rejection to the caller.

The peer application will receive a CFM_.TIMEOU-
T_NTFY callback/message as a result of this call.

CStatus CF_RejectCall (HCALL hCall)
input
hCall:

65

handle to the call (returned by the
CFM_CALL_NOTIFY message).

Valid state(s) to issue:

established. It releases all system resources, including
all types of streams, channels, and data structures, allo-
cated during this call.

CStatus CF_.HangupCall (HCALL hCall)
input
hCall: handle to the call
Valid state(s) to issue:

CCST_CONNECTED
State after execution:

CCST_CLOSING
Return values:

CF_OK
CF___ERlLSTATE
CF_ERR_RESOURCE_FAIL

Peer Message:
A CFM_I-IANGUP_N'l'FY message will be delivered to theremote site.

Status Message:
A CFM_HANGUP_N’l'.'FY message will be delivered to the
local site when the Hangup is complete.

CF__GetCallInfo
This function returns the current status information

of the specified call.

CStatus CF_GetCallInfo (I-{CALL hCall,
LPCONN_.CHR lpConnAt-

_ tributes,
LPWORD lpwState,
LPMTYPE lpMedia
LPABBUSCARDINFO lpabCard-

Info)
input
hCall: handle to the call
ougput
lpwState: current call state
lpConnAttributes: Connection Attributes
lpMedia: a list of selected media types used for this

call. Note that this list can be different
from the desired list.

lpabCardInfo: peer’s business card information
Valid state(s) to issue:

all call states
State after execution:

unchanged
Return values:

CF_OK
CF_ERlLJ{ESOURCE_FAIL
CF_ERR_l-IANDLE

Charmel Management
These Channel Management functions will provide the application
the ability to establish and manage virtual channels to its peerson the network.

CF_RegisterChanMgr
This function registers a callback or an application

window whose message processing function will handle
notifications generated by network channel initializa-

CISCO SYSTEMS, INC. Ex. 1131 Page 91

CISCO SYSTEMS, INC. Ex. 1131 Page 92

5,434,913
117

tion operations. This function must be invoked before
any CF_.OpenCharmel calls are made. i

CStatus CF__RegisterChanMgr(HCALL hCall, 5WORD wFlag,
CALLBACK cbNetCa.ll)

input
hCall: handle to the call

wflag: Indicates the type of notification to be used:
CALLBACK_FUNCTION for callback interface
CALLBACK_WlNDOW for post message

interface
Either a pointer to a callback function, or a
window handle to which messages will be posted,
depending on flags.

Valid state(s) to issue:
call state

CCST._CONNECTED
State after execution:
call state

CCST_CONNECTED
Return values:

CF_OK
CF_ERR__HANDLE

Callback routine format:

FuncNarne(UINT Message, WPARAM wparam, LPARAM
lparam)
Message: The message type
wParam: Word parameter passed to function
lParam: Long parameter passed to function

NOTE: the callback function parameters are equivalent to the
second, third, as fourth parameters that are delivered to a
Window message handler function (Win 3.1).
Status Messages: none
Peer Messages: none

10

cbNetCall:

20

25

30

CF_OpenChanne1
This routine requests to open a network channel with

the peer application. The result of the action is given to
the application by invoking the callback routine speci-
fied by the call to CF..RegisterChanMgr. The applica-
tion must specify an ID for this transaction. This ID is
passed to the callback routine or posted in a message.

Note that the channels to be opened by the CF_O-
penChannel call is always “write-only”, whereas the
channels to be opened by the CF_AcceptChannel call
is always “read—only”.

35

40

CStatu.s CF_.OpenChanneI(‘l-ICALL hCall, LPCHAN_.INFO 45
lpChan, DWORD dwTransID)
input
hCall:
1pChan:

handle to the call.

Pointer to a channel structure. Filled by
application.
The structure contains:

- A channel number.
- Priority of this channel relative to other

channels on this connection. Higher numbers
represent higher priority.

- Timeout value for the channel
- Reliability of the channel.
- Channel specific information. See

Cl-lAN_INFO definition in T11.
An application defined identifier that is returned
with status messages to identify the channel
request that the message belongs to.

Valid state(s) to issue:
call state

CCST_CONNEC’l'ED
channel state

CHST__READY
State after execution:
call state

CCST_CONNECTED
channel state

CHST_.OPENING

50

55

dwTransID:

65

118

-continued
Return values:

CF_._OK
CF_ERR_I-IANDLE
CF_ERR__STATE
CF-_ERR_PRIORl'I'Y
CF_ERR_N0_Cl-IANMGR
CF._ERlLCHAN_NUMBER
CF_ERlLCHAN__lNUSE

Status Messages:
CFM_CHAN_ACCEP’I‘_N'l'FY: The peer process has

accepted request.
The Peer process has
rejected request.
No answer from peer

CFM_.CHAN._REJECT_NTFY:

CFM_CHAN_.TIMEOUT_NTFY:
Peer Massages:

CFM__CHAN_OPEN_NTFY:

CF_JlcceptChannel
A peer application can issue AcceptChannel in re-

sponse to a CFM__CHAN_OPEN_NTFY (Open-
Channel) message that has been received. The result of
the AcceptChannel call is a one-way network channel
for receiving data.

Note that the channels to be opened by the CF_O-
penChannel call is always “write-only”, whereas the
channels to be opened by the CF._AcceptChannel call
is always “read-only”.

CStatus CF_AcceptChannel(I-ICI-IAN hChan, DWORD
dwTransID)
input
hChan: handle to the channel

dwTranslD: A user defined identifier that was received as part
of the CFM_CHAN_OPEN_N'I‘FY message.

Valid state(s) to issue:
call state

CCST_CONNECTED
channel state

CI-lST_RESPONDING
State after execution:
call state

CCST_.CONNECTED
channel state

CHST_.OPEN
Return values:

CF__OK
CF_.ER1L.I-IANDLE
Cl-‘_ERR_STATE
CF_ERR_CHAN_NUM

Status Messages: none
Peer Messages:

CFM_.CHAN_ACCEPT_NTFY The TransID is sent in
lParam.

CF_.RejectChannel
This routine rejects an

CHAN._OPEN_NTFY from the peer.

CFM...

CStatus CFJ{ejectChannel(HCHAN hChan, DWORD
dwTransID)
input
hChan: Handle to the channel.
dwTransID: A user defined identifier that was receive as part

of the CFM_CHAN_OPEN_NTFY message.
Valid state(s) to issue:
call state

CCST_._CON'NEC’I'ED
channel state

CHST_RESPONDING
State after execution:
call state

CCST_CONNECTED

CISCO SYSTEMS, INC. Ex. 1131 Page 92

CISCO SYSTEMS, INC. Ex. 1131 Page 93

5,434,913
119 120

-continued -continued

channel state Window message handler function (Win 3.1).
CH5-f___READY Status Messages: none

Return Values: Peer Messages: none
CF_OK 5
CF_.ERR_I-{ANDLE

CF_ERR_STA'fECF_ERR_CHAN__NUM This routine will close a network channel that was
Status Messages: none
Peer Messages:

CFM_CHAN_REJECT_NTFY The TransID is sent as
lParam.

10

CF_RegisterChanHandler
This function registers a callback or an application

window whose message processing function will handle 15
notifications generated by network charmel IO activi-
ties. The chaimels that are opened will receive
CFM_DATA_SENT_.NTFY, and the accepted
channels will receive CFM_RECV_COMP-
LTE_NTFY. 20

CStatus CF_RegisterChanl-Iandler(I-ICI-IAN hChan, WORD
wFlag, CALLBACK cbChanHandleCall)
input
hChan: handle to the channel.
wFlag: Indicates the type of notification to be used:

CALLBACK_.FUNCTION for callback interface

25

CALLBACILWINDOW for post message interface
NOCALLBACK for polled status interface.

cbChanHandleCa]l:

Either a pointer to a callback function, or a window handle 30
to which messages will be posted, depending on flags.

Valid state(s) to issue:
call state

CCST_CONNECTED
channel state

CHST_OPEN
State after execution:
call state

CCST...CONNECTED
channel state

CHST_SEND (FOR OUTGOING CHANNEL)
CHST_RECV (FOR INCOMING CHANNEL)

Return values:
CF_OK
CF_ERR_I-IANDLE
CF__..ERR_STATE
CF__ERR_CHAN_NUMBER

Callback routine format:
FuncName(UINT Message, WPARAM wParam, LPARAM
lParam)
Message: The message type
wParam: Word parameter passed to function
lParam: Long parameter passed to function (TransID)

NOTE that the callback function parameters are equivalent to the
second, third, as fourth parameters that are delivered to a

35

45

50

opened by CF_AcceptChannel or CF_OpenCharmel.
The handler for this chaxmel is automatically de-regis-
tered.

CStatus CF_CloseChannel(I-ICHAN hChan, DWORD
dwTransID)
input
hChan: handle to the Channel to be closed.
dwTransID: An application defined identifier that is returned

with the response notification.
Valid state(s) to issue:
call state

CCST_CONNECTED
channel state

CHST_SEND, CI-lST_RECV, CHST_OPEN
State after execution:
call state

CCST_CONNECTED
channel state

CHST_CLOSING
Return values:

CF_OK
CF_ERR_HANDLE
CF_ERR_S'I‘ATE

Status Messages:
CFM_CHAN_CLOSE_NTFY:

Peer Messages:
CFM_CHAN_CLOSE_NTFY:

Data Exchange
All the data communication is done in “message pass-

ing” fashion. This means that any send will satisfy any
receive on a specific charmel, regardless of the length of
the sent data and the receive buffer length. If the length
of the sent message is greater than the length of the
posted receive buffer the data will be truncated.

All these calls are “asynchronous”, which means that
the data in the send buffer must not be changed until a
CFM_DATA_SEND._NTFY notification has been

sent to the application, and the contents of receive
buffer is not valid until a CFM_RECV_.COM-
PLETE_NTFY has been received for that charmel.

CF_SendData

Send data to peer. If there are no receive buffers
posted on the peer machine, the data will be lost.

CStatus CF_SendData(I-[CHAN hChan,
LPSTR lpsBuffer, WORD Buflen, DWORD dwTransID)
input
hChan: Handle to the channel.
lpsbuffer: A pointer to the buffer to be" sent.
Butlen: The length of the buffer in bytes.
dwTransID: This is a user defined transaction ID which will be passed to the

channel handler along with other status message data to identify the
transaction that the response belongs to.

Valid state(s) to issue:
call state

CCST_CONNEC'I'ED
channel state

CHST_SEND
State after execution:

' call state
CCST_CONNECTED

channel state

CISCO SYSTEMS, INC. Ex. 1131 Page 93

CISCO SYSTEMS, INC. Ex. 1131 Page 94

5,434,913
121

-continued

122

CHST_.SEND

Return values:
CF_OK
CF_ERR_..CHAN_NUMBER
CF...ERR_S'I‘ATE
CF_.CHAN_TRAN._FULL

Status Messages:
CFM_DA'l"A__SEN'I‘_NTFY

(Channel transaction table full)

Tells the application that the data has been extracted from the buffer and it
is available for reuse.

CFM_DA’l'.0_LOST._NTFY
This message will be delivered to the caller if the data could not be sent.

Peer Messages:
CFM._RECV_COMPLETE_N'I‘FY

indicates that data was received.
CFNLCHAN_DATA.LOST_NTFY

this message will be delivered to the peer if there are
no RecvData calls pending.

CF__RecvData

Data is received through this mechanism. Normally 20
this call is issued in order to post receive buffers to the
system. When the system has received data in the given
buffers, the Channel Handler will receive a CFM_.-
RECV_COMPLETE_NTFY.

-continued

Valid state(s) to issue:
call state

CCST_CONNI-ZCTED
channel state

Any except CHST_NULL, CHST__READY

CStatus CF_RecvData (HCHAN hChan, LPSTR lpsBuffer, WORD Buflen,
DWORD dwTransID)
input
hChan:
lpsBuffer:
Buflen:
dwTransID:

Handle to the channel
A pointer to the bufi”er to be filled in.
The length of the buffer in bytes. Max. bytes to receive.
This is a user defined transaction ID which will be passed to the
channel handler along with other status message to identify the
transaction that the response belongs to.

Valid s1ate(s) to issue:
call state

CCS'I'...CONNECTED
channel state

CHST_RECV
State after execution:
call state

CCST_CONNEC1'ED
channel state

CI-IST_RECV
Return values:

CF..OK
CF_ERR...CHAN_NUMBER
CF._ERlLSTATE
CF_CHAN...'I‘RAN_FULL

Status Messages:
CFM__RECV_COMPLE'l'E_N'I‘FY

indicates that data was received.
CFM__CI-1AN_DATA_.LOST_NTFY

(Channel transaction table full)

indicates that the bufier was too small for an incoming data message, or
some other data error. The contents of the data buffer are undefined.

Peer Messages:none
Communication Control & Statistics

CF_Get
Chanlnfo
This function will return various statistical informa-

tion about a channel. For examples: Bandwidth infor-
mation, number of sends/second, number of receives/- 60
second, etc. Full set of statistical information will be
defined at a later time.

CStatus CF_GetChanInfo(HCHAN hChan, LPCHAN__INFO
lpcslnfo)
input
hChan: Handle to the specified Charmel
lpCsInfo: Pointer to a CHAN_INFO struct.

65

State after execution:
call state

CCST_CONNECTED
channel state

UNCHANGED
Return values:

CF_OK
CF._ERR__CHAN_NUMBER

Status Messages: none
Peer Messages: none

Capture, Record, & Playback
These “convenience” calls will provide the applica-

tion the ability to capture, record, and playback the
audio/video streams from the specified source (e.g.,

CISCO SYSTEMS, INC. Ex. 1131 Page 94

CISCO SYSTEMS, INC. Ex. 1131 Page 95

5,434,913
123

from the local Audio/Video HW or from the Network)
and/or to the specified sync (e.g., local Audio/Video
HW, File, or Network). ‘
CF_CapMon

This function starts the capture of video signals from 5
the local camera and displays them (via the HW “moni-
tor” function) in the local_video._window which is
pre-opened by the application. Also, it starts the capture
of audio signals from the local microphone and plays
them back through the local speaker. Note that as part 10
of the capture function, this “monitor” function is
slightly different from the “play” function described
later in “CF PlayRcvd” and “CF PlayStream”. The
“monitor” function is a low-overhead display operation
supported by the Video hardware that moves uncom-
pressed digital video from camera to the monitor
screen. Therefore, this function only works for local
video stream. For the remote video stream received

from the network, the “Play” function must be used to
display it on the screen (see later section for more de- 20
tails). Also, the monitor function can be turned on/off

15

later using CF_ControlStream calls.
This function allows the user to preview his/her

appearance and sound before sending the signals out to
the remote. 25

CStatus CF_CapMon (HWND hWnd, LPHSTGRP lphStgrp,
lpAInfo, lpVInfo)

i_n_2I_It_ 30
hWnd: handle to the local_video_window pre-opened by the

application
lpAInfo: Pointer to AINFO structure describing Audio stream

attributes

lpVInfo: Pointer to VINFO structure describing Video stream

attributes 35output
lphStgrp: pointer to the handle of a stream group to be

captured
Valid state(s) to issue:

CSST_INIT
State after execution:

CSST_ACTIVE 40
Return values:

CF_OK
CF_ERlL_TOO_MANY_CAPTURE
CF_ERR_I-IANDLE

CF_ERR__RESOURCE_FAIL 45

CF_PlayRcvd

This function starts the reception and display (via the
software “Play” function) of remote video signals in the
remote..video_window which is pre-opened by the 50
application. Also, it starts the reception and play of
remote audio signals back through the local speakers.
The “Play” function that is automatically invoked as
part of this function can be later turned on/off by the
application by issuing calls to CF_PlayStream.

Note that the call can only be correctly issued after
the phone connection is made. Otherwise, “CF_ER-
R_STATE” will be returned by the call. Also,

55

CStatus CF_PlayRcvd (HWND hWnd, HCALL hCall,
LPHSTGRP lphStgrp)
input
hWnd: handle to the remote_video_window pre-opened by the

application
hCalI: handle to the call 55
lpAInfo: Pointer to AINFO structure describing Audio streamattributes

lpVInfo: Pointer to VINFO structure describing Video streamattributes

124

-continued

output
lphStgrp: pointer to the handle to a stream group to be

received
Valid state(s) to issue:

CCST...CONNECTED & CSST_INIT
State after execution:

CCST_CONNEC’l'ED & CSST_AC’I‘IVE
Return values:

CF_._OK
CF_ERR_HANDLE
CF_ERR_STATE
CF_ERR_RESOURCE_FAlL

CF_PlayStream

This function starts or stops playing the captured
video and audio streams of a specified stream group.

CStatus CF_P1ayStream (HWND hWnd, HSTGRP hStgrp, Word
wFlag)
input
hWnd: handle to the “Play” window pre-opened by the

application
hStgrp: handle to the stream group
wFlag: start/stop flag
Valid state(s) to issue:

CSST._ACTIVE
State after execution:

CSST_AC’I‘IVE
Return values:

CF.._OK
CF_ERR__STATE
CF_ERlLSTRGP
CF.__.ERlLHANDLE
CF_ERR_RESOURCE_FAIL

CF_RecordStream

This function starts or stops recording the captured
video and audio streams ofa specified stream group into
a specified file. Currently, the only supported file for-
mat is AVI File. Also, recording streams in a file will
overwrite, instead of append, to an existing file.

CStatus CF_RecordStream (HSTGRP hStgrp, Word wFormat,
Word wFlag, LPSTR lpFile)
input

handle to the stream group
the file format for recording
start/stop flag
the pathname to the AVI file to record the A/V
streams

Valid state(s) to issue:
CSST_ACTIVE

State after execution:
CSST__AC’I‘IVE

Return values:
CF_OK
CF_ERlLSTATE
CF__ERlLSTRGP
CF_ERIL_RESOURCE_FAIL
CF_ERR._.FILE

Stream Control & Status

These “convenience” calls will provide the applica-
tion the ability to control and obtain the status informa-
tion of the specified stream group.
CF_ControlStream

This function set the parameters to control the cap-
ture or playback functions of the local or remote video
and audio stream groups.

CStatus CF_ControlStream (HSTGRP hstgrp, WORD wfield,

CISCO SYSTEMS, INC. Ex. 1131 Page 95

CISCO SYSTEMS, INC. Ex. 1131 Page 96

5,434,913
125

-continued

LPAVCB 1pAvcb)
input
hStgrp: handle to a strum group
wfield: field of the AVCB to be modified, the valid fields 5for local and remote AVCB are listed below:

TBD

lpAvcb: Pointer to the AVCB
Valid state(s) to issue:

all states except CSST_INIT
State after execution:

unchanged
Return values:

CF_..OK
CF.._ERR__Fl'ELD
CF..ERR_STRGP
CF_ERR__STATE
CF___ERR._RESOURCE_FAIL

10

CF_GetStreamInfo
This function returns the current state and the

AVCB, preallocated by the application, of the specified 2°
stream groups.

CStarus CF_GetStreamInfo (LI-ISTGRP hStgrp, LPWORD
lpwState, LPAVCB lpAvcb)
input
hStgrp: handle to a stream group
output
lpwstatez return current application state
lpAvcb: return the pointer to the AVCB preallocated by the

application.
Valid state(s) to issue:

all states
State after execution:

unchanged
Return values:

CF_OK
CF._ERR_RESOURCE._FAIL

25

30

35

CF_DestroyStream

This function destroys the specified stream group
that was created by CF_CapMon or CF_PlayRcvd. 40
As part of the destroy process, all operations (e.g., sen-
ding/playing) being performed on the stream group
will be stopped and all allocated system resources will
be freed.

45

CStatus CF_DestroyStream (I-ISTGRP hStgrp)
input
hStgrp: handle to a stream group to be destroyed
Valid state(s) to issue:

All stream states except CSST_INIT
State after execution:

CSST_INIT
Return values:

CF_OK
CF_ERR_STGRP

50

55

Network Linking
These “convenience” calls will provide the applica-

tion the ability to start/stop sending active captured
audio/video streams to the network.
CF_SendStream

This function starts or stops sending the captured
video and audio streams of a specified stream group to
the remote.

60

65

CStatus CF_SendStream (HCALL hCa1l, HSTGRP hStgrp,
Word wFlag)
input

126

—continued
hCall: handle to the call
hStgrp: handle to the stream group
wFlag: start/stop flag
Valid state(s) to issue:

CSST_ACTIVE
State after execution:

CSST_ACTIVE
Return values:

CF__OK
CF_.ER.R_STATE
CF_ERR_.STRGP
CF__ERR_.CALL
CF_ERIL.RESOURCE__FAIL

CF_Mute

This function stops or resumes sending the captured
video and audio streams of a specified stream group to
the remote site.

CStatus CF_Mute (HCALL hCal1, HSTGRP hStgrp, Word
wFlag)
input
hCall: handle to the call

hStgrp: handle to the stream group
wFlag: start/stop flag
Valid state(s) to issue:

CSST...ACTIVE
State after execution:

CSST_.ACTIVE
Return values:

CF_OK
CF_._.ERlLSTATE
CIF_ERlLSTRGP
CF_ERR_CALL
CF_ERLRESOURCEJAIL

CF__SnapStream
This function takes a snapshot of the video stream of

the specified stream group and returns a still image
(reference) frame in a buffer allocated by the VCI DLL
to the application. Currently, the only supported image
format is DIB.

Cstatus CF__SnapStream (HSTGRP hStgrp, WORD wFormat,
LPDWORD lpdwbufsize, LPBITMAPINFO 1pDib)
input
hStgrp:
wFormat:
011 ut

lpdwbufsize:
lpDib:

handle to a stream group
still image format)

size of the returned buffer.
pointer to the DIB buffer allocated by the VCI
DLL.

Valid state(s) to issue:
CSST_ACTIVE

State after execution:
unchanged

Return values:
CF_OK
CF_ERR_STATE
CF_ERR_STRGP '
CF_ERR__BUFFER
CF_ERK_INSUFF_BUFSIZE
CF_ERILRESOURCE_FAIL

The messages utilized by conferencing API 506 are
defined as follows:

This section describes the messages generated by
VCI and the parameters that are passed along with
them.

Call Messages
CFM_CALL._NTFY

CISCO SYSTEMS, INC. Ex. 1131 Page 96

CISCO SYSTEMS, INC. Ex. 1131 Page 97

5,434,913
127

This is a notification message that the system has just
received a call request initiated from the remote site.
CFM_CALL_NTFY

Returned Parameters
wParam HCALL handle to the call. This handle

should be used to accept/reject thecall.

lParam LPV_CBACK pointer to a structure containing

i{ncoming call info: 10
LPADDR Pointer to address

of Caller
LPCONN_CI-IR Pointer to

Connection

Attributes 15Valid Call States To Receive the Notification:
CCST_IDLE

State after receiving the message:
CCST_CALLED

20
CFM_PROGRESS_NTFY

This is a notification message that returns the status of
the call in progress from the phone system.

CFM_PROGRESS_NTFY
Returned Parameters

wParam HCALL handle to the call in progress
lParam DWORD substate of the call
Valid wSubstate values: -

CF_PROG._.DIAL_TONE
CF_PROG_DIALING
CF._PROG_RINGBACK

Valid Call States To Receive the Notification:
CCST_.CALLING

State after receiving the message:
CCST_CALLlNG

CFM_ACCEPT_NTFY

The remote site has accepted the call request issued locally.
CFM_.ACCEPT_NTFY
Returned Pa.rameters
wParam HCALL
lParam LPV_CBACK

25

30

35

handle to the call.

pointer to a structure containing

izall info: 40
LPCONN_CHR Pointer to

Connection
Attributes

LPABBUSCARDINFO Pointer to

Business- ‘ 45Card info
of peer

LPMTYPE Pointer to
Media
Types

} structure 50Valid Call States To Receive the Notification:
CCST_ACCEPTING/CCST.CALLING

State after receiving the message:
CCST_CONNEC’l'ED

55
CFM_REJECT_NTFY

The connection/call can not be made due to the situa-
tion described in the substates.

CFM_REJECT__NTFY
Returned Parameters
lparam DWORD substate of the call
Valid wSubstate values:

CF_REJ_TIMEOU'I‘
CF_REJ._ADDRESS
CF_REJ_NETWORK_BUSY
CF_REJ_STATION_BUSY
CF_REJ_RESOUCE_FAIL

Valid Call States To Receive the Notification:

65

128

-continued
CCST._CALLING

State after receiving the message:
CCST_IDLE

CFM_HANGUP_NTFY

The remote site has hung up the call, or this is a
response to a locally initiated Hangup.

CFM_HANGUP._N'I‘FY
Returned Parameters

wParam HCALL handle to the call
Valid Call States To Receive the Notification:

CCST_CONNEC'l"ED and CCST_CLOSING
State after receiving the message:

CCST_IDLE

Cha.nne1 Messages

The following messages are generated in response to
the various channel related functions as described with
the function definitions.
CFM_CHANACCEPT__NTFY

This is a notification message indicating that the peer
has accepted the Open Chaimel request (via issuing a
CF_Accept__ChaIme1 call).

CFM_CHAN_ACCEPT_NTFY
Returned Parameters

wParam I-[CHAN Handle to the channel to be used
subsequently by the application.

lParam DWORD TransID provided by the application,
that identifies the application
transaction related to this
notification.

Valid States To Receive the Notification:
call state

CCST_CONNEC'l'ED
channel state

CI-IST._OPENING

State after receiving the message:call state
CCST..CONNECTED

channel state
CHST_OPEN

CFM_CHAN_REJECT_NTFY

This is a notification message indicating that the peer
has rejected the Open Channel request (via issuing a
CF._RejectChannel).

CFM__CH.AN_REJEC'I'_NTFY
Return Parameters

lParam DWORD Trans ID provided by the application,
that identifies the application
transaction related to this
notification.

Valid States To Receive the Notification:
call state

CCST_CONNECTED
channel state

CI-IST...0PENING

State after receiving the message:call state
CCST_.CONNECTED

channel state
CHST_READY

CFM_CHAN_TIMEOUT_NTFY

This is a notification message indicating that the peer
has failed to answer the Open Charmel request before
the local timer expires.

CISCOVSYSTEMS, mc. Ex. 1131 Page 97

CISCO SYSTEMS, INC. Ex. 1131 Page 98

5,434,913
129

CFM_.CI-IAN_TIMEOU'I‘_._N'I'FY
This is a notification message indicating that the peer has
failed to answer the open Channel request before the local timer
expires. 5
CI-'M._CHAN_TIMEOU'I'_.NTFY
Returned Parameters
lParam DWORD TransID provided by the application,

that identifies the application
transaction related to this
notification.

Valid States To Receive the Notification:
call state

CCST_.CONNECTED
channel state

CHST_OPENING

10

State after receiving the message: 15call state
CCST_.CONNECTED

channel state
CHST_READY

CFM_CHAN__OPEN_NTFY 2°

This is a notification message indicating that the peer
has initiated an Open Channel request (via issuing a
CF._Open_Channel call).

25
CFM_CHAN_._OPEN_NTFY
Returned Parameters
wParam HCI-IAN Handle to the Channel to be used

subsequently by the application.

IParam LPV._CBACK Pointer to info about incoming 30channel request
{
DWORD Transld (to be

used in Accept/
Reject Channel)

I-ICALL Handle to
Connection 35

LPCI-IAN_INFO Channel Info
passed by peer

}
Valid States To Receive the Notification:
call state

CCS’l”..CONNECI’ED 40
channel state

CHST_.READY

State after receiving the message:
call state

CCST_CONNECTED
channel state 45

CHST_Rl-ISPONDING

CFM._CHAN_.CLOSE_NTFY

This is a notification message indicating that the peer
has initiated a Close Channel request (via issuing a 50
CF_.Close_Channel call). This may also be in response
to a locally initiated Close Channel.

CFM._CHAN_CLOSE_N'I'FY
Returned Parameters
wParam HCHAN
lParam DWORD

55

Handle to the Channel
If the callback is a remote Close
indication, lPararn = 0
If the callback is a response to a
locally initiated CloseChannel
lParam = TransID specified by app.

Valid States To Receive the Notification:
call state

CCST_CONNECTED
channel state

CHST_SEND, CHST_RECV, CHST_0PEN
State after receiving the message:
call state

CCST_CONNEC'I'ED
channel state

65

130

—continued
Cl-IST__READY

CFM_DATA_._SENT_NTFY

This is a notification message indicating that the data
in the buffer has been sent out (via the previous call to
the CF..Send._Data). The data buffer used in the CF__
Send__Data is now available for reuse.

CFM__.DATA._SEN'I‘__NTFY
Returned Parameters
wParam WORD
lParam DWORD

The actual number of bytes sent.
TransID provided by the application,
that identifies the application transaction
related to this notification.

Valid States To Receive the Notification:
will state
_ CCST_CONNECTED
channel state

CHST_SEND
State after receiving the message:
call state

CCST_CONNECTED
channel state

CI-lST._SEND

CFM_RCV._COMPLETE._NTFY

This is a notification message indicating that the sys-
tem has received data in the buffer posted by the appli-
cation (via issuing CF_.RecvData calls).

CFM_.RCV_COMPLETE__NTFY
Returned Parameters
wPararn WORD
lParam DWORD

The actual number of bytes received
TransID provided by the application,
that identifies the application
transaction related to this
notification.

Valid States To Receive the Notification:
call state

CCST__CONNECTED
channel state

CHST..RECV
State after receiving the message:
call state

CCST..CONNECTED
channel state

CHST_RECV

CFM_DATA_LOST_NTFY

This is a notification message indicating that the data
sent is lost because the peer had no data buffers avail-
able to receive it. This message will be delivered to both
the sender and the receiver applications.

Cl-'-'M_._DATA_LOST_NTFY
Returned Parameters
wPara.m WORD
lParam DWORD

Number of bytes lost
TransID provided by the application,
that identifies the application
transaction related to this
notification.

Valid States To Receive the Notification:
call state

CCST_CONNECTED
channel state

CI-IST_SEND
CI-lST__OPEN

State after receiving the message:
call state

CCST._CONNECTED
channel state

UNCHANGED

CISCO SYSTEMS, INC. Ex. 1131 Page 98

CISCO SYSTEMS, INC. Ex. 1131 Page 99

131

-continued

Video API Data Structures, Functions, and Messages
Video API 508 utilizes the following data types:
VSTATUS Video subsystem interface return status type.

WORD (16-bit) value.
HVSTRM Handle to a video stream
LPHVSTRM Pointer to the handle to a video stream
LPVINFO Pointer to a video information (VINFO)

structure '
HVCCB Handle to the Video Configuration Control

Block (VCCB)
LPCHANID Pointer to the network channel ID

Video API 508 utilizes the following structures:

3.1.2. Structure Types
VINFO (Video Stream Information)

> > WORD wType

> > WORD wReserved

> > DWORD dwI-‘lags

> > WORD wContrast
> > WORD wTint
> > WORD wsaturation
> > WORD WBl'lghtnCSS
> > WORD wDisp1ayRate

> > WORD wReserved2

> > Union {
> > // local video stream
> > struct {
> > WORD wcapturesource

‘ > >
> > WORD wCaptureFormat
> >
> > DWORD wCaptureDriver
> > WORD wDataRate

> > WORD wMaxFrameRate
> > WORD wQualityPercent

> >
> >
> >
> >
> >
> > } local
> > // remote video stream
> > struct {
> > WORD wPlaybackTarget
> >
> >
> > WORD wReserved
> >
> > } remote
> >
> > HASTRM hAStrm
> >
> > }

(CHANID)

5,434,913

Local or remote video
stream

DWORD alignment, futureuse

Flags bits: various
exclusive attributes
Contrast adjustment
Color adjustment
Saturation value
Brightness adjustment
Monitor/Playback window
Blt rate; < = IRV frame
rate

DWORD alignment, futureuse

Video capture source
(placeholder)
Video capture format
(IRV, YUV-9, etc.)
Four CC code
Maximum video data rate
(kbits/sec)
1-30
0-100; 0 = Lowest
quality, least
number of frames
dropped; 100 =
Highest quality,
most number of
frames dropped

Video playback
hardware
(placeholder)
Alignment, futureuse

Associated audio
stream, as needed

V_ERR
V_£RlLVINFO
V._ERR_I-IWND

5 V_ERlLSTATE

V_ER.lLI-IVSTRM
V..ERR._CHANID
V_ERLRSCFAIL
V_ERR_FLAG

10 V_ERR.FIELD

132

-continued

general error occurred in the system
invalid VINFO
invalid window handle
invalid stream state to issue this
function
invalid stream handle
invalid network channel
system resource failure
duplicated operation or invalid flag
invalid VINFO field

The functions utilized by video API 508 are defined
as follows:

VOpen

Constants
State values:

VST_INIT
VST_OPEN
VST_CAP'I'URE
VST_PLAY
VST._LINKIN
VST_LINKOUT
VST._ERROR

Status Values
V__OK

Video API 508 utilizes the following constants:

Init state
Open state
Capture state
Play state
Link In state
Link Out state
Error state

for successful return (=0)

65

This function opens a video stream. An info structure
specifies stream attributes. Caller specifies window mes-
sages or callback function for stream event notification.
Stream event notification is TBD.

VSTATUS VOpen (LPVINFO lpVInfo, LPHVSTRM lphVStrm,
DWORD dwCa1lback,

DWORD dwCa.llbackInstance, DWORD dwFlags,
int far * lpwField)

input
1pVinfo: pointer to the video information structure,

VINFO, with specified attributes. If a

clsco SYSTEMS, INC. Ex. 1131 Page 99

CISCO SYSTEMS, INC. Ex. 1131 Page 100

5,434,913
133

—continued

NULL LPVINFO is specified, the default
attributes set up as part
of configuration will be used.

dwCallback: Specifies the address of a callback 5
function or a handle to a window. In the
case of a window, the low-order word is
used. Messages sent to a callback function
are similar to messages sent to a window,
except they have two DWORD
parameters instead of a UINT and a 10
DWORD parameter. See the Microsoft
Multimedia Programmer’s Guide, pp. 5-10
for guidelines in writing a callback
function.

dwCallbackInstance: Specifies user instance data passed to the
callback. Unused if dwcallback is a 15
window.

dwFlags: VOpen flags parameter; flag values OR’d
into parameter.
For parameter dwcallback, values are:

CALLBACK_FUNCTION indicates
callback function used. 20
CALLBACK_WINDOW indicates
window handle.

output
VSTATUS: returned parameter; see return values,

below.

lphVstrm: pointer to an opened video stream handle, 25returned if VSTATUS=V._OK.
lpwField: a field in VINFO was incorrect. This

parameter is valid only when VSTATUS
returns the value:
V._ERR_VIN'FO. A -1 indicates

VINFO was more generally in error. 30
Valid state(s) to issue:

VS'l‘...INIT

State after successful execution (V_0K):
VST_OPEN

Return values:

V_0K for successful return (=0) 35V.__ER}LVINFO invalid VINFO
V_.ERR__.RSCFAIL system resource failure

3.3.2. VCapture 40
This function starts/stops capturing a video stream

from a local video hardware source, such as a video

camera or VCR. The captured video can be displayed
in a window by using the VMonitor function. A capture

source is not explicitly defined but implied to be the 45
local video capture hardware and driver.

VSTATUS VCapture (HVSTRM hVStrrn, BOOL bFlag)
input
hVStrm: handle to a video stream. 50
bFlag: On/Off flag. Off=FALSE and ON=TRUE.
Valid statgs] to issue:

VST_OPEN (VCapture - on)
VS’l'_CAP’I'URE (VCapture - off)

State after execution:

55
VST_.OPEN — > VST_CAPTURE
VST_..CAPTURE — > VST_OPEN

Return values:

V_OK for successful return (=0)
V__ERR_..STATE invalid stream state to issue this

function 50
V_ERR_HVS'I'RM invalid stream handle
V_.ERR_RSCFAIL system resource failure

VMonitor

This function starts/stops monitoring (displaying 65
video in a window) a video stream captured from local
video camera or VCR. The capture source is specified
in the VCapture function; see above.

134

VSTATUS VMonitor(I-IVSTRM hVStrm, HWND hWnd,
BOOL bFlag)
input
hVStrm: handle to a video stream.

hWnd: handle to a window, pre-opened by the app, in which
monitoring is to take place.
If bFlag=FALSE, then the previously specified
monitor window is disassociated from the stream
(and the specified window is ignored).

bF1ag: On/Off flag. Off: FALSE and 0N=TRUE.
Valid state(s) to issue:

VST_CAP’l'URE/VST._LINKOUT
State after execution:

unchanged
Return values:

V__OK for successful return
V_ERR_.STATE invalid stream state to issue this

function

V_ERR_FLAG duplicated operation
V_..ERR_HVSTRM invalid stream handle
V__ERR__HWND invalid window handle
V_ERR..RSCFAIL system resource failure

3.3.4. VLinkOut

Link a network video sink to a video stream for re-

mote transmission. Usage: Local capture to network
output.

VSTATUS VLinkOut(l-IVSTRM hVStrm, HCHAN hChan,
BOOL bFlag)
input
hAStrm handle to the video stream.
hChan channel handle of the video output sink.

If bF1ag=FALSE, then the previously specified
channel is disassociated from the stream (and the
specified channel is ignored).

bFlag link or unlink flag. Link=TRUE; Unlink=
FALSE.

Valid stategsg to issue:
VST__CAP’l'URE
VST__LINKOUT

State after execution:
VST_CAPTURE

(VLinkOut - link)
(VLinkOut - unlink)

— > VST_LINKOUT

VST_LINKOUT — > VS'l‘_CAP'l'URE
Return values:

V_.OK for successful return
V_ERR_STATE invalid stream state
V._.ER}LCHANID invalid network channel for video

output source
V_ERR...RSCFAIL system resource failure

3.3.5. VLinkIn

Link a network video source to a video stream for

playback. Usage: Network input to local playback.

VSTATUS VLinkIn(I-IVSTRM hVStrm, HCHAN hChan,
BOOL bFlag)
input
hVStrm: handle to the video stream.

hChan: channel handle of the video input source.
If bFlag=FALSE, then the previously specified
channel is disassociated from the stream (and the
specified channel is ignored).

bFlag: link or unlink flag. Link=TRUE; Unlink=FALSE.
If FALSE, then Chanld is disassociated from the
stream.

Valid statgsl to issue:
VST_OPEN VLinkIn - link)
VST__LINKIN VLinkIn - unlink)

State after execution:

VST_OPEN — > VST_LlNKIN
VST_LINKIN — > VST_OPEN

Return values:
V_OK for successful retum

CISCO SYSTEMS, INC. Ex. 1131 Page 100

CISCO SYSTEMS, INC. Ex. 1131 Page 101

5,434,913
135

-continued .
V_ERR_S'I‘ATE invalid stream state
V_ERR__.Cl-IANID invalid network channel for video

input source
V_ERR_RSCFAIL system resource failure 5

3.3.6. VPlay
This function starts/stops playing a linked-in video

stream by consuming a video stream from a video net- 10
work source and displaying it in a window. Specifics of
the video network source are assigned the stream using
the VLinkIn function; see above.

VSTATUS VPlay(HVSTRM hVStrm, HWND hWnd, 15
BOOL bFlag)
input
hVStrm: handle to the video stream.

hWnd: handle to a window pre—opened by the app.
bFlag: start play or stop play flag. Play=TRUE; Stop 20

Play=FALSE.
If stop play, then hWnd is disassociated from the
stream (and the specified window is ignored).

Valid stategsg to issue: -
VST_LINKIN (VPlay - on)
VST_PLAY (VPlay - off) 25

State after execution:

VST_PLAY — > VST_LINKIN
VST_LINKIN — > VST_PLAY

Return values: '

V_0K for successful return 30V ERR_STA'l'E invalid stream state to issue this .
function

V_ERR_HVSTRM invalid stream handle
V__ERR_RSCFAlL system resource failure
V_ERR_.FLAG duplicated operation

35
VPause

This function pauses or unpauses a video stream cap-
tured or played locally.
NOTE: This function is currently unimplemented. Its
function has been found to be available via combina- 40

tions of the other stream functions. To pause a local
stream, use VMonitor (off); to pause the remote stream,
use VPlay (oft). To mute the local video stream, at the
remote site, use VLinkOut (oft).

45

VSTATUS VPause(I-IVSTRM hVStrrn, BOOL bFlag)
input
hVStrm: handle to the video stream.

bFlag: PauseOn/PauseOff flag. PauseOn=TRUE; 50PauseOff=FALSE.

Valid stategsz to issue:
VST_.CAPI'URE
VST_PLAY
VST_LINKOU'I‘

State after execution: 55
Unchanged

Return values:
V_OK for successful return
V_ERR__STATE invalid stream state to issue this

function
V_ERR_.HVSTRM invalid stream handle 60
V_ERR_..FLAG duplicated operation
V_ERR__RSCFAIL system resource failure

3.3.8. VGrabframe

This function grabs the most current still image (key 65
frame) from a specified video stream. The frame is re-
turned in a DIB format. VGrabframe allocates the DIB

bits buffer, and the user must free it. The user provides

136
the DIB BITMAPINFO structure, of maximum extent,

which is of fixed length.

VSTATUS VGrabframe(HVSTRM hVStrm, LPSTR FAR
*lplpvbits, LPBITMAPINFO lpbmi)
input
hVStrm:

lpbmi:
handle to the video stream.
pointer to a DIB BITMAPINFO structure. The
BITMAPINFO must have an extent equal to a
bmiColors array with 256 entries, giving a
BITMAPINFO structure of maximum length.

output
lplpvbits: pointer to a pointer to a DIB image buffer that is

allocated by the video manager and freed by the
application. Windows GlobalAlloc
(with memory attributes
GMEM_MOVEABLE GMEM_SI-IARE)
and Globa1Lock are used to allocate the DIB bits
memory.

Valid stategsg to issue:
VST_MONITOR
VST_PLAY

State after execution:
Unchanged

Return values:
V__OK
V._ERlLSTATE

for successful return
invalid stream state to issue this
function
invalid stream handle
system resource failure

V_.ERK_I-IVSTRM
V_ERR..RSCFAIL

VCnt1

This function controls a video stream by adjusting its
parameters (e.g., Tint/Contrast, Frame/Data Rate).

VSTATUS VCntl (HVSTRM hVStrm, LPVINFO lpVInfo,
WORD wField)
input
hVStrm handle to the video stream
output
lpVInfo pointer to the video information structure, VINFO,

that was preallocated by the apps, but filld by the
vide manager.

wField field value to be changed.
Valid state(s) to issue:

all states except VS'I‘_INI'l‘
State after execution:

unchanged
Return values:

V_OK for successful return
V_ERR_I-IVSTRM invalid stream handle
V_ERR_S'I‘ATE invalid stream state to issue

this function
V._ERR_FIELD invalid VINFO field
V_ERR_.LPVINFO invalid VINFO pointer
V_ERR__RSCFAIL system resource failure

3.3.10. VGetInfo
This function returns the status of a video stream.

VSTATUS VGetInfo(l-IVSTRM hVStrm, LPVINFO lpVInfo,
LPWORD lpwState)
input
hVStrm:
output
lpVInfo:

handle to the video stream.

handle to the video information structure, VINFO, that
was preallocated by the apps, but filled by the video
manager
pointer to a WORD where the state of the specified
stream can be returned.

Valid state(s) to issue:
all states except VST__.INIT

State after execution:
unchanged

Return values:
V_.OK

lpwState:

for successful return

CISCO SYSTEMS, INC. Ex. 1131 Page 101

CISCO SYSTEMS, INC. Ex. 1131 Page 102

5,434,913
137

—continued
V._ERlLS'I‘ATE invalid stream state to issue this

function
V.ERR__I-IVSTRM invalid stream handle

V_ERR_LPVINFO invalid VINFO pointer 5

VClose
This function closes a video stream and releases all

system resources allocated for the stream. 10

VSTATUS VClose(HVSTRM hVStrm)
input
hVStrm: handle to the video stream.
Valid state(s) to issue:

All STATES except in VST._INlT 15State after execution:
ST_INIT

Return values:
V_OK for successful return

V__ERR_HVSTRM invalid stream handle 20

3.4. Video Subsystem Functions
The subsystem functions are used to manage and

return information about the video subsystem as a
whole. This includes subsystem initialization, shut- 25
down, and cost, or utilization, information.
3.4.1. Vlnit

This function initializes the video subsystem. Capture
and playback applications can be started. Windows INI
file entries are used to configure the subsystem. 30

Subsystem initialization also includes the measure-
ment of the CPU and display subsystem (graphics
adapter) in order to provide video cost information; see
VCost, below.

35

vsrarus VInit(dwInitFlags)
input
dwlnitF1ags: initialization flags. Flag bits are OR’d to determine

interface options. Current flag bits are:

VM_CAPT_lNIT: start. capture 40application
VM_PLAY_INIT: start playback

application
Return values:

V_OK: for successful return

V_ERR: general error 45

3.4.2. VShutdown

This function uninitializes, or stops, the video subsys-
tem. Capture and playback applications are stopped.

50

VSTATUS VShutdown()
Return values:

V_OK: for successful return

138

-continued

V__ERR: general error

VCost

This function gives the percentage utilization of the
CPU required to support a given video stream.

The function can be called repeatedly, and at any
time after the video manager is initialized (VInit called).
Repeated calls can be used to determine an “optimal”
configuration of local and remote video windows.

VSTATUS VCost(wRes, wDispFreq, wFrameRate, wFoz-mat,
dwFlags, lpwCost)
1.“.E‘.1£_
wRes: resolution of a video display window.
wDispFreq: display frequency of a video display window.

Display frequency is a function of the
FrameRate.
1 = All frames; 2 = Every other frame; 3 =
Every third frame; etc. 0 = no frames
displayed.

wFrameRate: captured video frame rate (fps). For IRV, this
is typically 10-15 fps.

wFormat: defines the video compression algorithm.
Currently supported values are:
CAPT_FORMAT_IRV
CAPT_.FORMA'l"__YUV

dwFlags: Flags which further specify specific video
attributes.
Currently supported values are:
LOCAL_STREAM (= 0 x 1)
REMOTE._S'I'REAM (= O X 2)
These values specify whether the video in
question originates locally or remotely.

output
lpwCost: pointer to a WORD where a system utilization

value can be returned. The value returned is a

system utilization percentage. It is 0 or
greater. Values greater than 100 can be
returned.

Return values:
V__OK-. for successful return
V_ERR: general error

Audio API Data Structures, Functions, and Messages

Audio API 512 utilizes the following data types:

HASTRM Handle to an audio stream
LPHASTRM Pointer to the handle of an audio stream
AINFO Audio information structure
LPAINFO Pointer to an audio information structure
ACCB Audio Compression Control Block
LPACCB Pointer to the Audio Compression Control Block
ADEVCAPS Audio Device Capabilities structure
LPACAPS Pointer to the Audio Device Capabilities structure
STATUS Status code returned by Audio Subsystem

Audio API 512 utilizes the following structures:

ADevCaps
OUT WORD

OUT WORD
OUT WORD
OUT char

OUT DWORD

OUT WORD

wVersion Version of the audio
manager

wMid Manufacturer ID
wPid Product ID
szPname[MAXPNAMELE NULL terminated string
N] containing the name of

the audio manager
dwFormats Sample wave formats

supported by subsystem
when no compression is
used

wChannels Number of audio channels
supported by driver

clsco SYSTEMS, Inc. Ex. 1131 Page 102

CISCO SYSTEMS, INC. Ex. 1131 Page 103

5,434,913

139 140

-continued

(mono (1) or stereo (2))
IN WORD nAoceptCoders Size of ACCB array

referenced by lpACCB
OUT WORD nRetumCoders Number of ACCB

structures returned in

ACCB array referenced by
lpACCB

IN LPACCB 1pACCB Pointer to an array of
ACCB structures. There
should be an ACCB
structure per supported
compression algorithm.

ACCB gAudio Compression Control Block!
char szProdName[MAXCOMP Name of

RESS] Compression
Algorithm

WAVEFORMAT wf Wave format as
defined Microsoft
Multimedia
Programmer’s
Reference

WORD wBitsPerSample Number of bits per
sample per
channel.

WORD cbExtraSize Extra number in
bytes of the
WAVEFORMAT
structure.

WORD wAvgCompRation Specifies the
average
compression ratio
provided by the
compression device

WORD samplesPerFrame The smallest
number of audio

samples required
by the compression
device to generate

- a frame.

AINFO QN/OUT Information of an Audio Stream!
WORD wType Local or remote audiostream

WORD wCompress Index into compressiontable
DWORD dwkesolution Resolution in

milliseconds with
which Audio Manager
can adjust latency on
an audio stream

DWORD dwLatency Milliseconds of
latency from the time
the audio packet is
recorded to the time
it is put on the

network.
Union {

// local audio stream
struct {
WORD wIn Audio input hardwaresource
WORD wGain Gain of the local

microphone
WORD wAux Volume of the monitor

audio stream.
} local

// remote audio stream
struct {
WORD wOut Audio output hardware

destination
WORD wVol Volume of the local

speaker
} remote
}

Audio API 512 utilizes the following constants: -continued

55 AST_CAPTURE Capture state
AST_PLAY Play state

§ AS'l‘_LINKIN Link In state
AST_INIT Init state AS'l‘_LINKOUT Link Out state
AST_OPEN Open state AST_ERROR Error state

CISCO SYSTEMS, INC. Ex. 1131 Page 103

CISCO SYSTEMS, INC. Ex. 1131 Page 104

5,434,913

141 142

-continued -continued
Status values: NO CHANGE

A___OK successful return Remm V31‘-‘E55 _ _4 ERR__S'rA'I'E invalid stream smtc Number of Audio Manager available on the system.
A_ERR_HASTRM invalid stream handle 5
19_ERR__LPAINFO invalid AINFO pointer

A_ERR__i=1ELD invalid AINFO field AG€t_D6VCa_PS (SYI1Chr0n011S) _ _
A__ERR_LPHCI-IAN invalid network channel This function fills the ADevCaps structure with m-
1‘~—ERR——R5CFA1L System f°$°“F°e failure _ formation regarding the specified Audio Manager.A_ERR._STREAM too many outstanding audio streams
A_ERILPENDING call pending on the audio subsystem 10

A—ERR—N°DEV :‘u‘;f‘;:rA“d‘° Mmge‘ d“"‘°° AStatus AGetDevCaps (UINT wDeviceID, LPACAPS lpCaps)
A_ERR__NOCALLBACK APacketNumber issued without a _ I

registered C311-back function wDeviceID: Identifies the Audio Manager to query.
A_STREAM_CLOSED Hang-up received on an audio U55 3 integer from 0 t0 0119 ‘C55 than the

stream 15 number of installed audio managers.
A_ERR_NOSUPPORT Feature not supported in current 1l3C3P5¢ Specifies 3 fa’ Pommr "3 3“ AD5"C3P5

releue of Audio Manager

The functions utilized by audio API 512 are defined
as follows:

AGetNumDevs or Alnit (Synchronous)
This function retrieves the number of different Audio

20

structure. An array of ACCB structures
must be allomted to receive a list of audio
compression algorithms supported by the
Audio Manager. The ADevCaps fields
lpACCB and wAcceptCoders should
be set to reference this array and the
array size, respectively.

Valid state(s) to issue:

Managers installed on the system. AGetNumDevs and ANY ‘

Alnit perform the same function. AInit exists for sym- Isq‘g°C‘;1fi:3§é°£“”°“‘
metry with the Video Manager 25 Rem,“ values,

L_OK: for successful return
A_ERR_NODEV: invalid wDeviceID

UINT AGetNumDevs (void) or Alnit (void)
Valid state(s) to issue:
ANY
State after execution: 30

AOpen (Asynchronous or Synchronous)
This function opens an audio stream with specified

attributes.

AStatus AOpen (LPAINFO lpAInfo, UINT wDeviceID, DWORD dwCa1lback,
DWORD dwCa.llbackInstance, DWORD dwFlags,

LPWORD lpwField, LPHASTRM lphAStrm)

wDeviceID:

dwCallback:

dwCallbackInstance:

dwFlags:

State after execution:
AST__OPEN

The audio information structure, Alnfo,
with specified attributes. NOTE: normally
wCompress is set to 0; this will select
the default coder to be used on the audio
stream.

Identifies the Audio Manager to use. The
value can range from zero to one less than
the value returned by AGetNumDevs.
Based on value of dwl-‘ags, specifies the
address of a callback function or a. handle
to a window.
Specifies user instance data passed to the
callback. This parameter is not used when
dwCallback is a windows handle.

Defines whether the application interface
to Audio Manager will be asynchronous or
synchronous. If dwFlags is
CY_CALLBACK__NONE, the interface is
synchronous and dwCallback is a Window
handle used by the audio subsystem to
block while the underlying asynchronous
audio manager completes its service. IF
dwFlags is CY__CALLBACK_FUNCTION or
CY__CALLBACK_WINDOW, the interface is

Return messageslCallbacks
AM_OPEN: Posted at callback time. The value of Paraml

is one of the values defined in Paraml Values
below. The value of Param2 is a HASTRM if
Paraml is A_OK.

Return/Paraml Values:
A_OK: for successful return
A.ERILSTREAM: too many outstanding audio streams
A_ERR__LPAINFO: invalid AINFO pointer
A_ERR_FIELD: invalid AINFO Field(s)
A_ERR_RSCFAIL: system resource failure
A_ER1Ll'-‘ENDING: open call pending on the audio subsystem
1LERR_NOSUI-‘PORT: invalid dwFlags field

CISCO SYSTEMS, INC. Ex. 1131 Page 104

CISCO SYSTEMS, INC. Ex. 1131 Page 105

5,434,913
143

-continued

144

AStatus AOpen (LPAINFO lpAInfo, UINT wDeviceID, DWORD dwCallback,
DWORD dwcallbacklnstance, DWORD dwFlags,

LPWORD lpwField, LP]-IASTRM lphAStrm)
A.._ERlLNODEV: invalid wDeviceID

ACapture (Asynchronous or Synchronous)
This function starts/stops capturing an audio stream 10

from a local audio hardware source, such as a micro-
phone.

AStatus ACapture(I-IASTRM hAStrm, BOOL bFlag)

. 15
input
hAStrm: handle of an audio stream
bFlag: on/off flag.
Valid state(s) to issue:
AST_OPEN (ACapture - on)

AST._.CAPTURE (ACapture - oft) 20State after execution:
AST_OPEN -> AST._CAPTURE
AST_CAPTURE -> AST_OPEN
Return Messages/Callbacks
AM_CAPTURE Posted at callback time. The value

of Paraml is one of the values
defined in Paraml Values below. 25
The value of Param2 is the state of
the stream: TRUE means
capturing, FALSE means capture
disabled.

Return/Paraml Values:

A_OK: for successful return 30
A_ERR__STA'1"E: invalid stream state
A_ERR _HASTRM: invalid stream handle
A_ERR._RSCFAIL: system resource failure
A__ERR_FLAG: duplicated operation
A_ERR_.PENDING: call pending on the audio subsystem

for this stream. 35

AMute (Asynchronous or Synchronous)
This function starts/stops muting of an audio stream

captured from local microphone or being played back
on the speakers.

AStatus AMute(HASTRM hAStrm, BOOL bFlag)
input

hAStrm: pointer to the handle of an 45audio stream
bF1ag: on/off flag.
Valid state(s) to issue:
AST__CAPTURE/AST_LINKOUT
AST_LINKIN/AST.PLAY

State after execution: 50Unchanged
Return Messages/Callbacks
AM__MUTE: Posted at callback time.

The value of Paraml is
one of the values defined
in Paraml Values below.
The value of Paraml is the 55
state of the stream: TRUE
means muting, FALSE
means mufing is disabled.Paraml Values:

A_OK: for successful return
A_ERR_.STATE: invalidstream state 60
A_.ERRJ=LAG: duplicated operation
A._ERR_I-IASTRM: invalid stream handle
A_ERR_RSCFAIL: system resource failureReturn values:
A_OK: for successful return

A_ERR_PENDING: call pending on the audio 55
subsystem for this stream.

APlay (Asynchronous or Synchronous)

This function starts/stops playing an audio stream
received from a network source. See details in “ALin-
kln”.

AStatus APlay(I-IASTRM hAStrm, BOOL bFlag);
input
hAStrm: handle to the audio stream
bFlag: on/off flag.
Valid stategs) to issue:
AST_LINKIN (APlay - on)
AST_PLAY (APlay - oft)
State after execution:

AST_LINKIN -> AST._PLAY
AST_PLAY -> AST_LINKIN
Return Messages/Callbacks
AM...PLAY: Posted at callback time. The value

of Paraml is one of the values
defined in Paraml Values below.
The value of Param2 is the state of
the stream: TRUE means playing,
FALSE means play disabled.

Retum/Paraml Values:
A_OK: for successful return
A_ERR_STATE: invalid stream state
A_ERR_I-IASTRM: invalid stream handle
1L.ERR_FLAG: duplicated operation
A_ERR_.RSCFAIL: system resource failure
A__ERR_PENDING: call pending on the audio subsystem

_ for this stream.

ALinkIn (Asynchronous or Synchronous)
This function links/unlinks an input network charmel

to/from the specified audio stream. Once linked, the
audio stream can be played on the local speakers/head-
phones via the APlay fimction defined earlier.

AStatus ALinkIn (HASTRM hAStrm, LPHCHAN lphChant,
BOOL bFlag)
input
hAStrm: handle to the audio stream
lphChan: pointer to a channel handle

identifying the audio network inputsource

bFlag: link or unlink flag.
Valid stategsg to issue:
AST_OPEN (ALinkIn - link)
AST_LINKIN (ALinkIn - unlink)
State after execution:
AST_OPEN -> AST_LINKIN
AST_LINKIN -> AST_OPEN
Return Messages/Callbacks
AM_LINKIN: Posted at callback time. The value

of Paraml is one of the values
defined in Paraml Values below.
The value of Pa.ram2 is the state of
the stream: TRUE means linked,
FALSE means unlinked.

Return/Paraml Values:
A_OK: for successful return
A_.ERILSTATE: invalid stream state
A_ERILHAS'l'RM: invalid stream handle
A_ERL_FLAG: duplicated operation
A_ERR_LPI-ICHAN: invalid network channel handle for

audio input source
A_ERR_PENDING call pending on the audio subsystem
A....ERR_RSCFAIL system resource failure

ALinkOut (Asynchronous and Synchronous)

CISCO SYSTEMS, INC. Ex. 1131 Page 105

CISCO SYSTEMS, INC. Ex. 1131 Page 106

5,434,913
145

This function 1inks/unlinks an output network chan-
nel to/from the specified audio stream that will be cap-
tured or is being captured from the local microphone.

AStatus A_..LinkOut(HASTRM hAStn'n, LPHCHAN 1phcha.n,
BOOL bFlag);
input
hAStrm: handle to the audio stream
lphChan: pointer to a channel handle

identifying the network output
destination

bFlag: link or unlink flag.
Valid statgs) to issue:
AST.__CAP'I'URE
AS'l‘..LINKOUT
State after execution:
AST_CAPTURE
AST_LINKOUT

Return Messages/Callbacks
AM__LINKOUT:

(ALinkOut — link)
(ALinkOut - unlink)

—> AST_LINKOUT
-> AST_CAPTURE

Posted at callback time. The value
of Paraml-is one of the values
defined in Paraml Values below.
The value of Param2 is the state of
the stream: TRUE means linked,
FALSE means unlinked.

Retum/Paraml Values:
LOK: for successful return
A.ERLSTATE: invalid stream state
A_ERL_HASTRM: invalid stream handle
A_I-ERR _FLAG: duplicated operation
A.._ERR._LPI-ICHAN: invalid network channel for audio

output source
A_ERR _RSCFAIL: system resource failure
A_ERR_PENDING: call pending on this audio stream.

ACntl (Asynchronous or Synchronous)
This function can be used to control the amount of

latency on an audio stream. In addition, the gains of an
audio stream being captured or the volume of an audio
stream being played back can also be set. Finally, the
locally captured audio input can be monitored by set-
ting the wAux AINFO field.

AStatus ACntl(HASTRM hAStrrn, LPAINFO lpAInfo, WORD
wField)
1112111
hAStrm: handle to the audio stream
1 Alnfo: Jitter to the audio informationP P0

structure, Alnfo, with specified
attributes.

wField: the selected field of Alnfo to
change.

Valid state(s) to issue:
all states except AST_INIT
State after execution:
unchanged
Return Messages/Callbacks
AM_CNTL: Posted at callback time. If there is

an error, the value of Paraml is
one of the values listed below in
Paraml Values and Param2 is
ZERO (i.e. if Param2 == 0)
ERROR;). If the command is
successful, the value of Paraml is
wField and the value of Param2 is
the pointer lpAInfo passed to the
call ACntl.

Return/Paraml Values:
A__0K: for successful return
A_.ERR_HASTRM: invalid stream handle
A_ERR..STATE: invalid stream state
A_ERR_LPAIN1'-‘O: invalid AINFO pointer
A_ERR_._F1ELD: invalid AINFO Field
A_ERR_RSCFAIL: system resource failure
A.ERR_...PENDING: call pending on this audio stream.

l0

15

20

25

30

35

45

50

55

65

146

AGetInfo (Asynchronous and Synchronous)
This function returns the AINFO and state of an

audio stream.

AStatus AGetInfo(I-IASTRM hAStrm, LPAINFO lpAlnfo,
LPWORD lpwState)
input
hAStrm: handle to the audio stream
output
1pAInfo: pointer to the handle of AINFO

that was preallocated by the apps,
but filled by the audio manager

lpwState: state of the specified stream
valid state(s) to issue:
all states except AST_INlT
State after execution:
unchanged
Return Messages/Callbacks
AM_GETINFO: Posted at callback time. If there is

an error, the value of Paraml is
one of the values listed below in
Paraml Values and Param2 is
ZERO (i.e. if Param2 = = 0)
ERROR;). If the command is
successful, both Paraml and
Param2 are ZERO.

Return/Paraml Values:
A_OK: for successful return
A.ERILSTATE: invalid stream state
A_ERR__I-IASTRM: invalid stream handle
A_ERR_.LPAINFO: invalid AINFO pointer
A.ERR_RSCFAIL: system resource failure
A__ERR_PENDING: call pending on this audio stream.

AClose (Asynchronous and Synchronous)
This function closes an audio stream and releases all

system resources allocated for this stream.

Astatus AC1ose(HASTRM hAStrm)
input
hAStrm:
Valid state(s) to issue:
All STATES except in
AST__INIT
State after execution:
AST_..INIT

Return Messages/Callbacks
AM_.CLOSE:

handle to the audio stream

Posted at callback time. Paraml is
one of the Paraml Values listed
below. Param2 is the stream
handle passed to AClose.

Return/Paraml Values:
A_0K: for successful return
A__ERR _I-IASTRM: invalid stream handle
A__ERR__PENDING: call pending on this audio stream.

ARegisterMonitor (Asynchronous)
This function registers an audio stream monitor. The

Audio Manager maintains a packet count on each open
stream. This count represents a rurming clock where the
elapse time since the initiation of the audio stream is
simply the packet count times the latency represented
by each packet. Initiation here refers to the moment a
local audio stream enters the AST CAPTURE state.

Users of the audio subsystem gain access to this clock
source via an audio stream monitor.

Astatus ARegisterMonitor(HASTRM hAStrm, DWORD
dwcallback, DWORD dwCallbackInstance, DWORD dwFlags,

DWORD dwRequestFrequency, LPDWORD
 lpdwSetFrequency)

input
hAStrm: handle to the audio stream

CISCO SYSTEMS, INC. Ex. 1131 Page 106

CISCO SYSTEMS, INC. Ex. 1131 Page 107

5,434,913
147

-continued

AStatus ARegisterMonitor(I-IASTRM hAStrm, DWORD
dwCallback, DWORD dwCallbackInstance, DWORD dwFlags,

DWORD dwRequestFrequency, LPDWORD
lpdwSetFrequency) 5

dwCallback: Specifies the address of a callback
function or a handle to a window.

dwCallbacklnstance: Specifies user instance data passed to the
callback. This parameter is not used with

windows callbacks. 10dwFlags: Specifies whether the parameter
dwCallback is a Window handle or a
function. If it is a Window handle, the
value is set to
CY_CALLBACK_WINDOW. If it is a
function, dwFlags is set to
CY__CALLBACK_l-VUNCTION. 15

dwRequestFrequency: Specifies the period (in milliseconds) the
Audio Manager should playback or
record audio before reporting the current
elapsed time to the caller. A value of zero
means don’t callback (use
APacketNumber to force a callback). 20

output
lpdwSetFrequency: The Audio Manager returns via this far

pointer the actual period (in
milliseconds) between
AM_PACKETNUMBER
callbacks. This number will be set as 25
close as possible to dwRequestFrequency
based on the resolution of latency
associated with the audio stream (see
AINFO field dwResolution).

Valid state(s) to issue:
AST_PLAY, AST_LINKIN, AST_CAPTURE, 30
AST_LINKOUT
callback

void CALLBACK AudioManagerFunc('hAStrm, Message,
dwCallbackInstance, dwParaml, dwParam2)
AudioManagerFunc is a place holder for the function name
provided by the caller. The function must be included in an 35
EXPORT statement in a DLL. The callback must also be locked
in memory as it is called at interrupt time. Since this callback
is executed in an interrupt context, limited functionality is
available to it ’
Callback Parameters:

I-IASTRM hAStrm Audio stream to which callback 40
applies.

UINT Message Message returned by the audio
subsystem.

DWORD dwCallbackInstance caller specific instance data.
DWORD dwPa.ram1 Stream status.
DWORD dwParam2 Current packet number 45

multiplied by the packet
latency (in milliseconds)

State after execution:
NO CHANGE
Return Messages/Callbacks
AM._PACKETNUMBER: Posted at callback time. 50Paraml Values:

L_OK: for successful return
A_STREAM_CLOSED for successful return
Return values:
A_0K: for successful return
A_ERR_STATE: invalid strea.m state 55
A._ERR_I-IASTRM: invalid stream handle
A_ERR_PENDlNG: call pending on this audio stream.

APacketNumber (Asynchronous)
This function returns the elapsed time (in mil1isec- 60

onds) since the packet on an audio stream was captured.

AStatus APacketNumber(l-IASTRM hAStrm)
input
l1AStrm:
Valid state(s) to issue:

AS'l‘_LINKOU'I‘, AST_PLAY, AST_CAP’l'URE,

65

handle to the audio stream

148

-continued
AST_LINKOUT

State after execution:
NO CHANGE

Return Messages/Callbacks
AM_PACKETNUMBER: Posted at callback time. The value

of Paraml is one of the values
defined in Paraml Values below..
Param2 is the current packet
number multiplied by the packet
latency (in milliseconds).

Paraml Values:
A_OK:
A._STREAl\'L_CLOSED:
Return values:

for successful return
for successful return

call pending on the audio subsystem

A_OK: for successful return
A_ERR_STATE: invalid stream state
A_ERR_I-IASTRM: invalid stream handle
A_ERR_PENDING:
A_ERR_NOCALLBACK: callback must be registered with

ARegisterMonitor

AShutdown (Synchronous)
This function forcefully closes all open audio streams

and unloads any open Audio Manager drivers.

BOOL AShutdownAPacketNumber (void)
Valid state(s) to issue:

any state accept AST_IN1T
State after execution:

AST_INIT

Return Messages/Callbacksnone
Return values:

TRUE: for successful return

Comm API Data Structures, Functions, and Messages

Comm API 510 utilizes the following data types:

typedef HSESS, FAR ‘LPHSESS;
WORD
typedef l-ICONN, FAR *LPHCONN;
WORD

typedef HCHAN, FAR 'LPHCHAN;WORD
//
// TII RETURN CODE VALUES.
//

iypedef enum_TSTATUS
SUCCESSFUL = 0,
PRIORITY IN USE = 1,
CHAN_TRAD_FULL = 2,
CHAN._INVALID = 3,
CONN_BAD_ID = 4,
DRIVER_NOT_.INSTALLED = 5,
HANDLE_lNVALID = 6,
INVALID...CONTROL_OP = 7,
INVALID_lNFOTYPE = 8,
NO_CHAN_MGR = 9,
NO_DATA_AVAIL = 10,
NO_OPEN_CI-IAN = 11,
NO_SESSION = 12,
NO_CONNECTION = 13,
NO_CONNECT_REQUEST = 14,
RELIABLE_OPS_PENDING = 15,
REQUEST_WlTl-IDRAWN = 16,
TOO_MANY_SESSIONS = 17,
TRAD._INVALID = 18,
TRANSPORT_ERR = 19,
INVALID_PARM = 20,
ALREADY_CONNECTED = 21,
GLOBAL..ALLOC_FAIL = 22,
INVALID_STATE = 23,
NO_PKT_BUFS = 24,
GALLOC_ERR = 25,

// session handle

// connection handle

// channel handle

CISCO SYSTEMS, INC. Ex. 1131 Page 107

CISCO SYSTEMS, INC. Ex. 1131 Page 108

149

-continued

'1'OO_MANY__CONN = 26, ‘
TOO__MANY_CHAN_MGR = 27,
TOO_MANY_CHANNELS = 28,
WATCI-IDOG_TIMEOUT = 29
} TSTATUS;

//
// CONNECTION A'I'I'RIBUTES STRUCTURE
//
typedef CONNCHARACTS CONN__CHR,
FAR ‘LPCONN._CI-IR;
//
// CHANNEL INFO STRUCTURE
//
typedef struct tagCHAN_INFO
{

WORD Id;
WORD State;
WORD Timeout;
BYTE Priority;
BYTE Reliability;
BYTE lnfo[16]; // User Info

} CHAN_INFO, FAR ‘LPCHANJNFO;
//
CONNECTION INFO STRUCTURE
//
typedef struct tagCONN_INFO
{

WORD wstate;
WORD wNumInChans;
WORD wNumOutChans;

} CONN__INI-‘O, FAR "LPCONN__INFO;
//
// lParam structure for Sssion handler
// (in cases where multiple parameters are returned via 1Pararn)
//

typedef struct tagSESS = CB {
union tagSESS_EV {

struct tagConReq {
HSESS hSess;
LPTADDR lpCa1lerAddr;
LPCONN = CI-IR 1pAttributes;

} ConReq;
struct tagConAcc {

DWORD dwTransId;
LPCONN = CHR 1pAttributes;

} ConAcc;
} SESS EV;

} SESS-CB, FAR 'LPSESS_CB;
//
// lParam structure for Channel Manager
// (in cases where multiple parameters are returned via 1Param)
typedef struct tagCHANMGR_CB {

union tagCHANMGR = EV {
struct tagChanReq {

DWORD dwTransId;
HCONN hConn;
LPCHM_lNFO 1pCl-lanlnfo;

} ChanReq;
} CHANMGR = EV;

} CHANMGR_CB, FAR ‘LPCHANMGR = CB;
//
// Structure for Channel Statistics
//

typedef struct CHAN_STATS = tag {
DWORD Tx;
DWORD Rx;
DWORD Err;
DWORD OkNotify,
DWORD ErrNotify;
DWORD ErrNotifyBuf;
DWORD NopNotify;
DWORD Bytes;
DWORD OkNotifyBytes;
DWORD ErrNotifyBytes;

} CHAN_STATS, FAR ‘LP_CI-IAN__STATS;
//
// Structure for TII Statistics
//
#define MAX_CHAN_STATS 17
typedef struct TII_STATS _tag {

DWORD RoundTripLatencyMs;
CHAN = STATS Chanstats

5,434,913

10

20

25

30

35

45

50

55

65

150

-continued

[MAX = CHAN_STATS];
} TII = STATS, FAR ‘LP_TII_S'I‘ATS;
//
// Address Structure
//

typedef struct tag_.TADDR {
WORD AddressType;
WORD AddressLength;
BYTE Address[80];

} TADDR, FAR ‘LPTADDR;
//
// Connection Characteristics
//

typedef struct tag = CONNCHARACTS }WORD
WORD

Quality;
BitRate;

} CONNCHARACTS, FAR ‘LPCONNCHARACTS;

Comm API 510 utilizes the following constants:

#define BITRATE_1 12KB
#define BITRATE_12OKB
#define BITRATE...l28KB
#define CHAN_ACCEPTED
#define CHAN_BADID
#det'1ne CHAN._CLOSED
#define CHAN_DATA_._AVAIL
#def1ne CHAN_DATA_.SENT
#define CONN_CLOSE_RESP
#define CHAN__RCV._.COMPLETE
#define CHAN_._REJECTED
#define CHAN_.REJECT_NCM
#def1ne CHAN_REQUESTED
#define CHAN_TIMEOUT
#define CONN4°1CCEPTED

#define CONN_CLOSE_R]_ESP#define CONN_.CLOSED
#define CONN_.REJECTED
#define CONN...REQUESTED
#define CONN_TIMEOUT
#define CHAN_LOST._.DATA
#def1ne COMM._INTER-
NAL_ERROR
#define CONN_ERROR
#define SESS_CLOSED
#define CONN_PROGRESS
#define TRANLERR
//

0
1
2
FIRST_TII_MSG +1
FIRST_TII_.MSG +2
FIRST_TII_MSG +3
FIRST__TII__MSG +4
FIRST...TII_MSG +5
FIRST_TII._MSG +6
FIRST_TII_MSG +7
FIRST_TII_MSG +8
FIRST_TII_MSG +9
FIRST.__TII__MSG +10
FIRST_TII_MSG +11
FIRST_TII_MSG +12
FIRST_TII_.MSG +13
FIRST_TII_MSG +14
FIRST_TII_MSG +15
FIRST_TIl_MSG +16
FIRST__TII_MSG +17
FIRST_TII_MSG +18
FIRST_..TII._MSG +19

FIRST_.TIL_MSG +20
FIRST_TIL._MSG +21
FIRST__TII_MSG +22
FIRST__TII_MSG +99

// CONN_PROGRESS substates. These will be returned inwParam.
//
#define T_PRG_BUSY
#define T_PRG_RINGING
#define T_PRG__OTHER
othercodes
//

1
2

3 // place-holder for

// CONN_REJECTED substates. These will be returned in
wPa.ram.
//
#define T_REJ_BUSY
#def'me T_REJ_REJECTED
#define T_RE.L.NET_CONGESTED
#define T_REJ__NO__RESPONSE
#define T_REJ_NET_FAIL
#def1ne T_REJ_.INTERNAL
//

O\UI-8kLnt\2>—-
// Flag indicating multiple connections allowed for session (in
// Beginsession)
//
#define MULTLCONN._SESS 0 X 8000
//
// T11 Channel States (returned by GetChanInfo)
//
#define T_CHAN_NULL 0 X 00
#define T_CHAN_SENDING 0 X 06
#define T__CHAN__RECEIVING O X 07

The functions utilized by comm API 510 are defined
below. One or two groups of messages may be listed

clsco svsrems, mc. Ex. 1131 Page 103

CISCO SYSTEMS, INC. Ex. 1131 Page 109

5,434,913
151

along with each function description: status messages
and peer messages. A status message is a cal1back/mes-
sage that the caller will receive in response to the func-
tion call. Peer messages are notifications that will be
delivered to the peer application as a result of invoking
the function.

Session Management

Functions in this section will initialize all the internal

structures of the Com sub-system and enable the ap-
plication to initiate and receive calls.

Initializes the software and hardware of the

appropriate modules of the com subsystem. It
also designates the method that the com
subsystem is to use to notify the application
of incoming calls and related events. Two
types of event notification are supported:
callbacks and messaging. The callback
interface allows the com system to call a user
designated function to notify the application
of incoming events. The messaging interface
allows the com system to notify the
application of incoming events by posting
messages to application message queues. The
parameters to the function vary depending on
the notification method chosen. BeginSession
is not allowed in interrupt/callback contexts.

TSTATUS Beginsession (LPTADDR lpLocalAddr,
LPCONN_.CI-{R lpConnAttributes,
WORD Flags, LPVOID CallBack,
LPHSESS lpSessionHand1e)

Pointer to the local address at which to listen for
incoming calls. The Listen stays in effect until
the session is ended. Notification for all
connection events for this local address will be
sent to the specified Callback.

lpConnAttributes Pointer to the Connection Attributes for
incoming calls.

Flags: Indicates the type of notification to be used:
CALLBACK_FUNCTION forcallback interface
CALLBACK._.WINDOW for post message interface

Beginsession

lpLocalAddr

CallBack: Either a pointer to a callback function, or a
window handle to which messages will be posted,
depending on flags. The “callback” will become
the “Session Handler” for this session.

lpSessionI-Iandle Pointer to the Session Handle to be returned
synchronously. This Session Handle is used
by the application to initiate outgoing calls.
It will also be retumed to the Session
Handler with incoming call notifications for
this session.

Return values:
SUCESSFUL
DRIVER_NOT_INSTALLED
TOO_MANY_SESSIONS
Callback routine format:
FuncName(UINT Message, WPARAM wParam, LPARAM
lParam)

_Message: The message type
wParam: Word parameter passed to function
1Param: Long parameter passed to function

All the connection related activities are handled by the sessionhandler.

The callback function parameters are equivalent to the second,
third, and fourth parameters that are delivered to a Microsoft ®
Windows message handler function (Win 3.1).
Status Messages: none
Peer Messages: none

EndSession Closes all the open connections and prevents the
application from receiving and originating calls for
the specified session.

TSTATUS Endsession (HSESS Session!-Iandle, BOOL
ForceClose) '
SessionHandle
ForceClose:

Session Handle
If true, then close session even if reliable

5

10

15

20

25

30

35

45

50

55

65

152

-continued

channels having pending operations are open.
Return values:

SUCESSFUL End session was successfully
initiated.
Couldn't close due to
uncompleted operations
channels designated as
reliable.

R.ELIABLE._OPS_.PENDING

Status Messages:
SESS_CLOSED: EndSession complete.
Peer Messages: none

Connection Management

These calls provide the ULM the ability to establish
and manage connections to its peers on the network.

MakeConnection Attempts to connect to a peer application. The
Session Handler (callback routine or the
message handler) for the specified Session
will receive status of the connection. When
the connection is accepted by the peer, the
Connection Handle will be given to the
Session Handler. The peer session will receive
a CONN..REQUESTED callback/message
as a result of this call.

TSTATUS MakeConnection (HSESS Sessionhandle,
DWORD Transld, LPTADDR
1pCalleeAddr, LPCONN_CI-IR
lpConnAttributes, WORD
Timeout, WORD
ChanMgrFlags, LPVOID
ChanMgr)

Handle for session, obtained via
Beginsession.
User defined identifier which will be
returned to the Session Handler along with
the response notification.
Pointer to the address structure
(containing a phone number, IPaddress
etc.) of callee.
Pointer to the connection attributes.
Number of seconds to wait for peer to
pickup the phone.
The Channel Manager for this connection.
This is either a pointer to a callback
function, or a window handle to which
messages will be posted, depending on
chanMgrFlags. The Channel Manager may
also be set up separately via
RegisterChanMgr.
Indicates the type of notification to be
used for the Channel Manager:
CALLBACK_FUNCTION for callback
interface
CALLBACILWINDOW for post message
interface

SessionHandle

Transld

lpCalleeAddr:

lpConnAttributes
Timeout:

ChanMgr:

ChanMgrflags:

Retum values:
Status Messages (sent to the Session Handler):
CONN_ACCEPTED: The peer process has accepted the call
CONN_REJECTED: The Peer process has rejected the call
CONN_TIMEOUT: No answer from peer
CONN_BUSY: Called destination is busy.
Peer Messages:
CONN_REQUESTED .

AcceptConnection Issued in response to a
CONN_REQUESTED callback/message that
has been received (as a consequence of a
MakeConnection call issued by a peer).
AcceptConnection notifies the peer
that the connection request has been accepted.
The local Session Handler will also receive an
asynchronous notification when the Accept
operation is complete.

TSTATUS AcceptConnection (HCONN hconn, WORD

CISCO SYSTEMS, INC. Ex. 1131 Page 109

CISCO SYSTEMS, INC. Ex. 1131 Page 110

5,434,913
153

-continued

ChanMgrFlags,
LPVOID ChanMgr)

hConn: Handle to the connection (received as part of the
CONN_REQUI-ZSTED callback/message). 5

ChanMgr: The Channel Manager for this connection. This
is either a pointer to a callback function, or
a window handle to which messages will be
posted, depending on ChanMgrFlags. The
Channel Manager may also be set up separately
via RegisterChanMgr.
Indicates the type of notification to be used
for the Channel Manager:
CALLBACK__FUNCTION for callback

l0
ChanMgrflags:

interface

CALLBACK__WlNDOW for post message
interface 1 5

Return values:

SUCESSFUL The Accept operation has been
initiated.

I-IANDLI-I_.INVALID The handle was invalid
REQUES'I‘__WITI-IDRAWN The connect request was

withdrawn (peer session was 20
terminated).

NO_CONNECI'_REQUEST There was no connect request to
be accepted.

Status Messages:
CONN..ACCEP'I‘ED

Peer Messages: 25
CONN_ACCEPTED

Rejectconnection Issued in response to a
CONN_REQUESTED callback/message
that ha been received (as a consequence
of a MakeConnection call issued by
a peer). RejectConnection notifies the peer
that the connection request has been rejected.

TSTATUS RejectConnection (I-[CONN hConn)
hConn: Handle to the connection (received as part of the

CONN..REQUESTED callback/message).
Return values:

30

35

SUCESSFUL Connection reject was returned
to peer.

HANDLE_INVALID The handle was invalid 40REQUEST_WITHDRAWN The connect request was
withdrawn

NO_CONNECT_REQUEST There was no connect request to
be rejected

Status Messages: none
Peer Messages:
CONN_REJEC'l‘ED 45

CloseConnection Closes the connection that was opened after an
AcceptConnection or an accepted call after a
MakeConnection function.

TSTATUS CloseConnection (HCONN hConn, BOOL Force,
DWORD Transld)
hConn: Handle to the connection to be closed.
Force: If true, then close the connection regardless of any

pending operations on reliable channels.
User specified identifier which will be returned to
the local Session Handler with the asynchronous
response notification (CONN...CLOSE_RESP).

Return values:
SUCESSFUL
HANDLE_INVALID
NO_CONNECTION
RELlABLE_0PS_PENDING

50

55
Transld

Disconnect initiated.
The handle was invalid
Connection was not open
Could not close due to pending
operations on channels
designated as reliable.

Status Messages:
CONN_CLOSE_RESP
Peer Messages:
CONN_CLOSED

65

154

RegisterChanMgr Registers a callback or an application window
whose message processing function will handle
low level notifications generated by data
channel initialization operations. This
function is invoked before any channels can be
opened or accepted. As part of connection
establishment (Ma.keConnection,
AcceptConnection), a default Channel
Manager may be installed for a connection.
The RegisterChanMgr function allows the
application to override the default Channel
Manager for specific Channel IDs.

TSTATUS RegisterChanMgr (I-ICONN hconn, WORD Flags,
LPVOID CallBack, WORD
Chanld)

Handle to the Connection
Indicates the type of notification to be used:
CALLBACIL_FUNCTION for callback interface
CALLBACK__WINDOW for post message interface
Either a pointer to a callback function, or a window
handle to which messages will be posted, depending
on flags. All Channel Manager callbacks
Specifies the Channel Id for which the Channel
Manager is being installed. It corresponds to the
Channel Id Number specified in the CHM __INI-70
structure; it is defined by the application and is not to
be confused with the Channel Handle assigned by
TII for a channel. A value of OXOFFFF indicates all
Channel Ids.

Return values:

SUCESSFUL Channel Manager registered.
I-IANDLI-l_INVALID The handle was invalid
Callback routine format:

FuncName (UINT Message, WPARAMwParam wParam, LPARAM
lParam)
Message: ‘Hie message type
wPara.m: Word parameter passed to function
1Param: Long parameter passed to function
The callback function parameters are equivalent to the second,
third, and fourth parameters that are delivered to a Microsofts ®
Windows message handler function (Win 3.1).
Status Messages: none
Peer Messages: none

hConn:
Flags:

CallBack:

Chanld

OpenCha.nnel Requests a sub._channel connection from the peer
application. The result of the action is given to
the application by invoking the Channel Manager.
The application specifies an ID for this transaction.
This ID is returned to the Channel Manager when
the request is complete, along with the Channel
Handle (if the request was accepted by the peer).
All Openchannel requests are for establishing
channels for sending data. The receive charmels
are opened as the result of accepting a peer’s
OpenChanne1 request.

TSTATUS OpenChannel (HCONN hconn, LPCI-IAN _INFO
lpChanInfo, DWORD Tra.nsID)

Handle for the Connection.
Pointer to a channel information structure. Filled
by application. The structure contains:
0 A channel ID number (app1ication_defned).
0 Priority of this channel relative to other
channels on this connection. Higher numbers
represent higher priority.
0 Timeout value for the channel

0 Reliability of the channel.
° Length of the channel specific field.
0 Channel specific information.
This structure is delivered to the Channel Manager
on the peer side along with the
CI-IAN__REQUESTED notification.
A user defined identifier that is returned with
response messages to identify the channel
request.

Return values:
SUCESSFUL
HANDLE._INVALID
BANDWIDTILNA
NO__SESSION

hConn:
1pChanInfo:

Tra.nsID:

Channel request was sent.
The Connection handle was invalid.
Bandwidth is not available.
Beginsession has not been called.

CISCO SYSTEMS, INC. Ex. 1131 Page 110

CISCO SYSTEMS, INC. Ex. 1131 Page 111

5,434,913
155

-continued

NO_CI-IAN _MGR RegisterChanmgr has not been called.
CHAN_lD _INVALID The channel number is not in the valid

range
CHAN._INUSE The channel number is already is use. 5
Status Messages:
CHAN_ACCEl7I'ED: The peer process has accepted request.
CI-IAN_RI-JECTED: The Peer process has rejected request.
CI-IM._.TIMEOUT: No answer from peer
Peer Messages:
CI-IAN_REQUESTED 10

AcceptChannel A peer application can issue Acceptchannel in
response to a CI-IAN_REQUESTED
(OpenChannel) message that has been received.
The result of the AcceptChannel call is a
one-way communication sub—channel for
receiving data.

TSTATUS AcceptChannel (I-ICI-IAN hchan, DWORD TransID)
hchan: Handle to the Channel (that was received as part of

the CI-IAN_REQUESTED callback/message)
TransID: The identifier that was received as part of the

CHAN_REQUESTED notification.
Return values:

SUCESSFUL Channel request was sent.
CHAN_INVALID The Channel handle was invalid
Status Messages: none
Peer Messages:
CHAN_ACCEPTED

15

20

25

30

RejectChannel Rejects an OpenChanne1 request
(CHAN_REQUESTED message) from the
peer.

TSTATUS RejectChannel (HCHAN hChan, DWORD TransID)
hChan: Handle to the Channel (that was received as part of

the CHAN _REQUESTED callback/message)
TransID: The identifier that was received as part of the

CHAN_REQUESTED message.
Return values:

SUCESSFUL Reject request was sent.
CHAN_INVALID The Channel handle was invalid.
Status Messages: none
Peer Messages:
Cl-IAN._..REJECTED

35

45

Registers a callback or an application
window whose message processing
function will handle low level
notifications generated by data channel 10
activities. The channels that are opened
will receive CHAN_DATA_SENT, and
the accepted channels will receive
Cl-IAN_RECV_COMPETE.

TSTATUS RegisterChanI-Iandler (HCHAN hchan, WORD Flags,
LPVOID CallBack)
hChan: Channel Handle.
Flags: Indicates the type of notification to be used:

CALLBACK_FUNCTION for callback interface
CALLBACK..WINDOW for post message interface
NOCALLBACK for polled status interface.
Either a pointer to a callback function, or a window
handle to which messages will be posted, depending
on flags.

Return values:
SUCESSFUL Channel Handler installed.
CHAN_INVALID The Channel handle was invalid
Callback routine format:
FuncName (UINT Message, wParam, LPARAM lParam)

Message: The message type
wParam: Word parameter passed to function (e.g. bytes

received)
lParam: Long parameter passed to function

The callback function parameters are equivalent to the second,

RegisterChanHandler

50

55

CallBack:

65

156

-continued

third, and fourth parameters that are delivered to a Microsoft ®
Windows message handler function (Win 3.1).
Status Messages: none
Peer Messages: none

CIoseChannel Closes a sub-channel that was opened by
AcceptChannel or Open Channel. The handler for
this channel is automatically de..registered.

TSTATUS CloseChannel (HCHAN hChan, DWORD Transld)
hChan: The handle to the Channel to be closed.
Transld A user specified identifier that will be returned to
L.r the local Channel Manager along with the response

notification (CHAN_.CLOSE_RESP).
Return values:
SUCESSFUL Charmel Close has been initiated.
CHAN_INVALID Invalid channel handle.
Status Messages:
CI-lAN__.CLOSE..RESP
Peer Messages:
CHAN_CLOSED

Data Exchange

All the data communication is done in “message pass-
ing” fashion. This means that a send satisfies a receive
on a specific channel, regardless of the length of the sent
data and the receive buffer length. If the length of the
sent message is greater than the length of the posted
receive buffer, the data is discarded. All these calls are
“asynchronous”, which means that the data in the send
buffer is not changed until a “data-sent” event has been
sent to the application, and the contents of receive
buffer are not valid until a ,,received-complete” event
has been detected for that channel.

SendData Sends data to peer. If there are no receive buffers
posted on the peer machine, the data will be lost.

TSTATUS SendData (I-ICI-IAN hChan, LPSTR Buffer, WORD
Bullen, DWORD TransID)
hChan: Handle to channel opened via Openchannel.
Buffer: A pointer to the buffer to be sent.
Buflen: The length of the bufier in bytes.
TransID: This is a user defined transaction ID which will be

passed to the local channel handler along with the
status message to identify the transaction.

uz,l/8 Return values:
SUCESSFUL
CHAN_INVALID
CI-IAN_TRANFULL

Status Messages:

Data queued for transmission.
Invalid channel handle.
Channel transaction table full.

Cl-IAN_DATA_SENT Tells the application that the data
has been extracted from the
buffer and it is available for
reuse.

Cl-IAN_DATA_LOST This message will be delivered to
the caller if the data could not be
sent.

Peer Messages:
CHANJ)ATA_LOST , This message will be delivered to

the peer if an adequate
ReceiveData buffer is not posted.

CHAN_RECV_.COMPLETE Indicates that data was received.

ReceiveData Data is received through this mechanism.
Normally this call is issued in order to post
receive buffers to the system. When the system has
received data in the given buffers, the Channel
Handler will receive a
“Cl-IAN_RECV_COMPLETE" notification.

TSTATUS ReceiveData (HCHAN hChan, LPSTR Buffer,

CISCO SYSTEMS, INC. Ex. 1131 Page 111

CISCO SYSTEMS, INC. Ex. 1131 Page 112

5,434,913
157

-continued

WORD Buflen, DWORD TransID)
hChan: Handle to channel handle opened via AcceptChannel.
Buffer: A pointer to the buffer to be filled in.
Buflcn: The length of the buffer in bytes. Max. bytes to 5receive.

This is a user defined transaction ID which will be

passed to the channel handler along with the status
message to identify the transaction. This ID and
the number of bytes actually received are returned
as part of the CHAN.RECV_COMPLETE
notification.

Return values:
SUCESSFUL
CHAN_..INVALID
CI-IAN_'l'RANFULL

Status Messages:
CI-IAN..RECV_COMPLETE
ChAN_DATA_LOST

TransID:

10

Receive buffer was posted.
Invalid channel handle.
Channel transaction TABLE full.

1 5
Indicates that data was received.

This message will be delivered if
the buffer is inadequate for a data
message received from the peer.

Peer Messages:none 20

Communicatons Statistics

GetTIIStats 25Return statistics for the TII subsystem. See
TII_STATS structure for details.

TSTATUS FAR PASCAL._export GetChanStats (IN BOOL
bResetFlag, OUT LP_TIl_STATS lpTIIStats)
bResetFlag: Boolean Reset statistics if true.
lpTIIStats: Pointer to the TILSTATS structure.
Return values: none
Status Messages: none
Peer Messages: none
GetChanStats Return statistics for the given Channel. See

CI-IAN_STATS structure for details.
TSTATUS FAR PASCAL _export GetChanStats(IN I-ICI-IAN

hChan, IN BOOL bResetFlag,
OUT LP_CHAN__STATS
1pCl1anStats)

Channel handle
Boolean reset statistics if true.
Pointer to the CI-IAN.._STATS structure.

30

35

hChan:
bResetFlag:
1pChanStats:
Return values:
Cl-IAN__INVALID The channel handle was invalid.
Status Messages: none
Peer Messages: none
Getchanlnfo This function will return various statistical

information about a channel (e.g., priority,
reliability).

TSTATUS GetChanlnfo (HCHAN hchan, LPCI-IAN_INFO
1pChanInfo)
hChan:
1pChanInfo:

45

Handle to channel
Pointer to channel info (to be returned by
the call).

Return values:
CHAN_INVALID
Status Messages: none
Peer Messages: none

Invalid channel handle. 50

ALTERNATIVE EMBODIMENTS

In a preferred embodiment of conferencing system
100, video encoding is implemented on video board 204
and video decoding is implemented on host processor
202. In an alternative preferred embodiment of the pres-
ent invention, video encoding and decoding are both
implemented on video board 204. In another alternative
preferred embodiment of the present invention, video
encoding and decoding are bother implemented on the
host processor.

In a preferred embodiment of conferencing system
100, audio processing is implemented by audio task 538
on audio/comm board 206. In an alternative preferred
embodiment of the present invention, audio processing

55

65

158

is implemented by Wave driver 524 on host processor
202.

In a preferred embodiment, conferencing systems 100
communicate over an ISDN network. In alternative

preferred embodiments of the present invention, alter-
native transport media may be used such as Switch 56,
a local area network (LAN), or a wide area network
(WAN).

In a preferred embodiment, two conferencing sys-
tems 100 participate in a conferencing session. In alter-
native preferred embodiments of the present invention,
two or more conferencing systems 100 may participate
in a conferencing session.

In a preferred embodiment, the local sources of ana-
log video and audio signals are a camera and a micro-
phone, respectively. In alternative preferred embodi-
ments of the present invention, analog audio and/or
video signals may have alternative sources such as being
generated by a VCR or CD-ROM player or received
from a remote source via antenna or cable.

In a preferred embodiment, conferencing system 100
compresses and decompresses video using the IRV
method for purposes of video conferencing. Those
skilled in the art will understand that the IRV method

of video compression and decompression is not limited
to video conferencing, and may be used for other appli-
cations and other systems that rely on or utilize com-
pressed video.

In a preferred embodiment, conferencing system 100
compresses and decompresses video using the IRV
method. Those skilled in the art will understand that

alternative conferencing systems within the scope of the
present invention may use methods other than the IRV
method for compressing and decompressing video sig-
nals.

In a preferred embodiment, conferencing system 100
uses the IRV method to compress and decompress a
sequence of video images. In alternative embodiments
of the present invention, the IRV method may be used
to compress and/or decompress a single image either in
a conferencing system or in some other application.

It will be further understood that various changes in
the details, materials, and arrangements of the parts
which have been described and illustrated in order to

explain the nature of this invention may be made by
those skilled in the art without departing from the prin-
ciple and scope of the invention as expressed in the
following claims.

What is claimed is:

1. An audio subsystem for a computer conferencing
system having a general-purpose host processor, com-
prising:

(a) a capture thread for:
(1) receiving local audio signals;
(2) compressing the local audio signals to generate

local compressed audio signals; and
(3) passing the local compressed audio signals to a

communications subsystem of the computer con-
ferencing system for transmission over a commu-
nications link to a remote computer conferenc-
ing system; and

(b) a playback thread for:
(1) receiving remote compressed audio signals

from the communications subsystem, the remote
compressed audio signals having been transmit-
ted by the remote computer conferencing system
over the communications link; and

CISCO SYSTEMS, INC. Ex. 1131 Page 112

CISCO SYSTEMS, INC. Ex. 1131 Page 113

signal processor is part of a combined audio/communi-
cations board of the computer conferencing system and
wherein the audio subsystem further comprises:

5,434,913
159

(2) decompressing the remote compressed audio
signals to generate remote decompressed audio
signals for local playback, wherein the capture
thread is separate from the playback thread,
wherein: 5

the capture thread and the playback thread are exe-
cuted by a digital signal processor of the computer
conferencing system;

wherein the host processor controls the execution of
the capture thread and the playback thread.

2. The audio subsystem of claim 1, wherein:
the capture thread comprises:

(1) a capture SAC (Stereo Audio Codec) device
driver for receiving the local audio signals;

(2) a capture echo/suppression driver for reducing
echoes in the local audio signals;

(3) a capture mixer/splitter driver for amplifying
the local audio signals and for splitting the local
audio signals for recording;

(4) a compression driver for compressing the local
audio signals; and

(5) a capture timestamp driver for appending times-
tamps to the local compressed audio signals; and

the playback thread comprises:
(1) a playback timestamp driver for stripping times-

tamps from the remote compressed audio signals;
(2) a decompression driver for decompressing the

remote compressed audio signals;
(3) a playback mixer/splitter driver for amplifying

the remote decompressed audio signals and for
splitting the remote decompressed audio signals
for recording;

(4) a playback echo/suppression driver for reduc-
ing echoes in the remote decompressed audio
signals; and

(5) a playback SAC device driver for transmitting
the remote decompressed audio signals for local
playback.

3. The audio subsystem ofclaim 1, wherein the digital

10

15

20

25

30

35

(c) an audio manager executed by the host processor
for controlling the operations of the audio subsys-
tem; and

(d) an audio applications programming interface exe-
cuted by the host processor for providing an inter-
face between an application and the audio subsys-
tem.

4. A computer conferencing system, comprising:
an audio subsystem adapted for residing partially in a

general-purpose host processor of the computer
conferencing system and partially in an audio
board of the computer conferencing system,
wherein the audio subsystem comprises:

(1) a capture thread for:
(i) receiving local audio signals;
(ii) compressing the local audio signals to generate

local compressed audio signals; and
(iii) passing the local compressed audio signals to a 60

communications subsystem of the computer con-
ferencing system for transmission over a commu-
nications link to a remote computer conferenc-
ing system; and

(2) a playback thread for:
(i) receiving remote compressed audio signals from

the communications subsystem, the remote com-
pressed audio signals having been transmitted by

45

50

55

65

160

the remote computer conferencing system over
the communications link; and

(ii) decompressing the remote compressed audio
signals to generate remote decompressed audio
signals for local playback, wherein the capture
thread is separate from the playback thread,
wherein:

the capture thread and the playback thread are exe-
cuted by a digital signal processor of the computer
conferencing system;

wherein the host processor controls the execution of
the capture thread and the playback thread.

5. The system of claim 4, wherein:

the capture thread comprises:
(i) a capture SAC (Stereo Audio Codec) device

driver for receiving the local audio signals;
(ii) a capture echo/suppression driver for reducing

echoes in the local audio signals;
(iii) a capture mixer/splitter driver for amplifying

the local audio signals and for splitting the local
audio signals for recording;

(iv) a compression driver for compressing the local
audio signals; and

(V) a capture timestamp driver for appending times-
tamps to the local compressed audio signals; and

the playback thread comprises:
(i) a playback timestamp driver for stripping times-

tamps from the remote compressed audio signals;
(ii) a decompression driver for decompressing the

remote compressed audio signals;
(iii) a playback mixer/splitter driver for amplifying

the remote decompressed audio signals and for
splitting the remote decompressed audio signals
for recording;

(iv) a playback echo/suppression driver for reduc-
ing echoes in the remote decompressed audio
signals; and

(v) a playback SAC device driver for transmitting
the remote decompressed audio signals for local
playback.

6. The system of claim 4, wherein the audio subsys-
tem further comprises:

(3) an audio manager executed by the host processor
for controlling the operations of the audio subsys-
tem; and

(4) an audio applications programming interface exe-
cuted by the host processor and for providing an
interface between an application and the audio
subsystem.

7. An audio subsystem for a computer conferencing
system having a general-purpose host processor, com-
prising:

(a) a capture thread for:
(1) receiving local audio signals;
(2) compressing the local audio signals to generate

local compressed audio signals; and
(3) passing the local compressed audio signals to a

communications subsystem of the computer con-
ferencing system for transmission over a commu-
nications link to a remote computer conferenc-
ing system; and

(b) a playback thread for:
(1) receiving remote compressed audio signals

from the communications subsystem, the remote
compressed audio signals having been transmit-
ted by the remote computer conferencing system
over the communications link; and

CISCO SYSTEMS, INC. Ex. 1131 Page 113

CISCO SYSTEMS, INC. Ex. 1131 Page 114

5,434,913
161

(2) decompressing the remote compressed audio
signals to generate remote decompressed audio
signals for local playback, wherein the capture
thread is separate from the playback thread,
wherein:

the capture thread comprises two or more capture
drivers, wherein the two or more capture drivers
comprise two or more of:
(1) a capture SAC (Stereo Audio Codec) device

driver for receiving the local audio signals;
(2) a capture echo/suppression driver for reducing

echoes in the local audio signals;
(3) a capture mixer/splitter driver for amplifying

the local audio signals and for splitting the local
audio signals for recording;

(4) a compression driver for compressing the local
audio signals; and

(5) a capture timestamp driver for appending times-
tamps to the local compressed audio signals; and

the playback thread comprises two or more playback
drivers, wherein the two or more playback drivers
comprise two or more of:
(1) a playback timestamp driver for stripping tirnes-

tamps from the remote compressed audio signals;
(2) a decompression driver for decompressing the

remote compressed audio signals;
(3) a playback mixer/splitter driver for amplifying

the remote decompressed audio signals and for
splitting ‘the remote decompressed audio signals
for recording;

(4) a playback echo/suppression driver for reduc-
ing echoes in the remote decompressed audio
signals; and

(5) a playback SAC device driver for transmitting
the remote decompressed audio signals for local
playback.

8. The audio subsystem of claim 7, wherein:
the capture thread comprises:

(1) a capture SAC device driver for receiving the
local audio signals;

(2) a capture echo/suppression driver for reducing
echoes in the local audio signals;

(3) a capture mixer/splitter driver for amplifying
the local audio signals and for splitting the local
audio signals for recording;

(4) a compression driver for compressing the local
audio signals; and

(5) a capture timestamp driver for appending times-
tamps to the local compressed audio signals; and

the playback thread comprises:
(1) a playback timestamp driver for stripping times-

tamps from the remote compressed audio signals;
(2) a decompression driver for decompressing the

remote compressed audio signals;
(3) a playback mixer/splitter driver for amplifying

the remote decompressed audio signals and for
splitting the remote decompressed audio signals
for recording;

(4) a playback echo/suppression driver for reduc-
ing echoes in the remote decompressed audio
signals; and

(5) a playback SAC device driver for transmitting
the remote decompressed audio signals for local
playback.

9. The audio subsystem of claim 7, wherein the cap-
ture thread and the playback thread are executed by a
digital signal processor of the computer conferencing
system and wherein the host processor controls the

10

15

20

25

30

35

45

50

55

65

162

execution of the capture thread and the playback
thread.

10. The audio subsystem of claim 7, wherein the digi-
tal signal processor is part of a combined audio/com-
munications board of the computer conferencing sys-
tem and wherein the audio subsystem further com-
prises:

(c) an audio manager executed by the host processor
for controlling the operations of the audio subsys-
tem; and

(d) an audio applications programming interface exe-
cuted by the host processor for providing an inter-
face between an application and the audio subsys-
tem.

11. The audio subsystem of claim 7, wherein:
the capture thread comprises:

(1) a capture SAC device driver for receiving the
local audio signals;

(2) a capture echo/suppression driver for reducing
echoes in the local audio signals;

(3) a capture mixer/splitter driver for amplifying
the local audio signals and for splitting the local
audio signals for recording;

(4) a compression driver for compressing the local
audio signals; and

(5) a capture timestamp driver for appending times-
tamps to the local compressed audio signals;

the playback thread comprises:
(1) a playback timestamp driver for stripping times-

tamps from the remote compressed audio signals;
(2) a decompression driver for decompressing the

remote compressed audio signals;
(3) a playback mixer/splitter driver for amplifying

the remote decompressed audio signals and for
splitting the remote decompressed audio signals
for recording;

(4) a playback echo/suppression driver for reduc-
ing echoes in the remote decompressed audio
signals; and

(5) a playback SAC device driver for transmitting
the remote decompressed audio signals for local
playback;

the capture thread and the playback thread are exe-
cuted by a digital signal processor of the computer
conferencing system;

the host processor controls the execution of the cap-
ture thread and the playback thread;

the digital signal processor is part of a combined
audio/communications board of the computer con-
ferencing system; and

the audio subsystem further comprises:
(c) an audio manager executed by the host processor

for controlling the operations of the audio subsys-
tem; and

(d) an audio applications programming interface exe-
cuted by the host processor for providing an inter-
face between an application and the audio subsys-
tem.

12. A computer conferencing system, comprising:
an audio subsystem adapted for residing partially in a

general-purpose host processor of the computer
conferencing system and partially in an audio
board of the computer conferencing system,
wherein the audio subsystem comprises:

(1) a capture thread for:
(i) receiving local audio signals;
(ii) compressing the local audio signals to generate

local compressed audio signals; and

CISCO SYSTEMS, INC. Ex. 1131 Page 114

CISCO SYSTEMS, INC. Ex. 1131 Page 115

5,434,913
163

(iii) passing the local compressed audio signals to a
communications subsystem of the computer con-
ferencing system for transmission over a commu-
nications link to a remote computer conferenc-
ing system; and

(2) a playback thread for:
(i) receiving remote compressed audio signals from

the communications subsystem, the remote com-
pressed audio signals having been transmitted by
the remote computer conferencing system over
the communications link; and _

(ii) decompressing the remote compressed audio
signals to generate remote decompressed audio
signals for local playback, wherein the capture
thread is separate from the playback thread,
wherein:

the capture thread comprises two or more capture
drivers, wherein the two or more capture drivers
comprise two or more of:

(1) a capture SAC (Stereo Audio Codec) device
driver for receiving the local audio signals;

(2) a capture echo/suppression driver for reducing
echoes in the local audio signals;

(3) a capture mixer/splitter driver for amplifying the
local audio signals and for splitting the local audio
signals for recording;

(4) a compression driver for compressing the local
audio signals; and

(5) a capture timestamp driver for appending times-
tamps to the local compressed audio signals; and

the playback thread comprises two or more playback
drivers, wherein the two or more playback drivers
comprise two or more of:

(l) a playback timestamp driver for stripping times-
tamps from the remote compressed audio signals;

(2) a decompression driver for decompressing the
remote compressed audio signals;

(3) a playback mixer/splitter driver for amplifying
the remote decompressed audio signals and for
splitting the remote decompressed audio signals for
recording;

(4) a playback echo/suppression driver for reducing
echoes in the remote decompressed audio signals;
and

(5) a playback SAC device driver for transmitting the
remote decompressed audio signals for local play-
back.

13. The system of claim 12, wherein:
the capture thread comprises:

(i) a capture SAC device driver for receiving the
local audio signals;

(ii) a capture echo/suppression driver for reducing
echoes in the local audio signals;

(iii) a capture mixer/splitter driver for amplifying
the local audio signals and for splitting the local
audio signals for recording;

(iv) a compression driver for compressing the local
audio signals; and

(v) a capture timestamp driver for appending times-
tamps to the local compressed audio signals; and

the playback thread comprises:
(i) a playback timestamp driver for stripping times-

tamps from the remote compressed audio signals;
(ii) a decompression driver for decompressing the

remote compressed audio signals;

5

10

15

20

25

30

35

45

50

55

65

164

(iii) a playback mixer/splitter driver for amplifying
the remote decompressed audio signals and for
splitting the remote decompressed audio signals
for recording;

(iv) a playback echo/suppression driver for reduc-
ing echoes in the remote decompressed audio
signals; and

(v) a playback SAC device driver for transmitting
the remote decompressed audio signals for local
playback.

14. The system of claim 12, wherein the capture
thread and the playback thread are executed by a digital
signal processor of the audio board and wherein the
host processor controls the execution of the capture
thread and the playback thread.

15. The system of claim 12, wherein the audio subsys-
tem further comprises:

(3) an audio manager executed by the host processor
for controlling the operations of the audio subsys-
tem; and

(4) an audio applications programming interface exe-
cuted by the host processor for providing an inter-
face between an application and the audio subsys-
tem.

16. The system of claim 12, wherein:
the capture thread comprises:

(i) a capture SAC device driver for receiving the
local audio signals;

(ii) a capture echo/suppression driver for reducing
echoes in the local audio signals;

(iii) a capture mixer/splitter driver for amplifying
the local audio signals and for splitting the local
audio signals for-recording;

(iv) a compression driver for compressing the local
audio signals; and

(v) a capture timestamp driver for appending times-
tamps to the local compressed audio signals;

the playback thread comprises:
(i) a playback timestamp driver for stripping times-

tamps from the remote compressed audio signals;
(ii) a decompression driver for decompressing the

remote compressed audio signals;
(iii) a playback mixer/splitter driver for amplifying

the remote decompressed audio signals and for
splitting the remote decompressed audio signals
for recording; -

(iv) a playback echo/suppression driver for reduc-
ing echoes in the remote decompressed audio
signals; and

(v) a playback SAC device driver for transmitting
the remote decompressed audio signals for local
playback;

the capture thread and the playback thread are exe-
cuted by a digital signal processor of the audio
board;

the host processor controls the execution of the cap-
ture thread and the playback thread; and

the audio subsystem further comprises:
(3) an audio manager executed by the host proces-

sor and for controlling the operations of the
audio subsystem; and

(4) an audio applications programming interface
executed by the host processor for providing an
interface between an application and the audio
subsystem. * It * * *

CISCO SYSTEMS, INC. Ex. 1131 Page 115

CISCO SYSTEMS, INC. Ex. 1131 Page 116

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENT NO. : 5.434.913

DATED : July 18, 1995

lNVENTOR(S) : Peter Tung and Ben Vrvilo

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby
corrected as shown below:

Column 160, line 48, delete “and”.

Column 161, line 29, delete “the” and insert therefor -the-.

Column 164, line 60, delete “and”.

Signed and Sealed this

Twenty-third Day of April, 1996

Emu“
BRUCE LEHMAN

Anesling 0jfiC‘£’f’ Cnmmtumnrr nf Pul(nI.\ and Trudrmarkx

