O RO R

. US005434913A
United States Patent [19] (111 Patent Number: 5,434,913
Tung et al. [451 Date of Patent: Jul. 18, 1995
54 AUDIO SUBSISTIMEOR emv

SYSTEM Computer Conferencing: IBM scientists demo proto-

type of affordable computer conferencing system, Nov.

[75] Inventors: Peter Tung, Beaverton; Ben Vrvilo, 2, 1992. EDGE, on & about AT&T, v7, n223, p. 22.
Portland, both of Oreg.
Primary Examiner—James L. Dwyer
[73] Assignee: Intel Corporation, Santa Clara, Calif. Assistant Examiner—Scott Wolinsky
[21] Appl No.: 158246 Attorney, Agent, or Firm—Steve Mendelsohn; William
ppl. No.: A H. Murray
[22] Filed: Nov. 24, 1993 [57] ABSTRACT
[S1] Tt CLE oo HO04M 3/56 An audio task Fesiding on an audio/communications
[52] US.CL 379/202; 395,200 board of an audio subsystem in a computer conferenc-
’ 395 /162’ ing system. An audio manager and an audio applications
[58] Field of Search 395/800, 162; 379/202, programming interfgce reside on a host processor of: the
379/205, 203, 204 computer conferencing system. The audio task receives
local analog audio signals, generates local compressed
[56] References Cited audio signals corresponding to the local analog audio
signals, and passes the local compressed audio signals to
US. PATENT DOCUMENTS - a communications subsystem of the computer confer-
4,475,193 10/1984 - BIOWR ...oeerveecrecvenmermereresnenns 379/202 encing system for transmission over a communications
g’gfiggg lg;’igg? ?ndo Eitnal' Al g;g; gg link to a remote computer conferencing system. The
5073926 12/1991 Somii ts:i < ememsseeneneees 379753 audio task receives remote compressed audio signals
5157491 1071992 K“z“ ﬂe @ s 379/205 from the communications subsystem and generates re-
S231490 771993 Dangi ot ol o 353/143 ~ mOte decompressed audio signals corresponding to the
5315633 5/1994 ChAMPA wrovooorrmrerore 348/16 ~ remote compressed audio signal for local playback.
5,319,793 6/1994 Hancock et al. 395/800
5,335,321 8/1994 Harney et al. ..cccoocecreveeecnen 395/162 16 Claims, 32 Drawing Sheets
102 104 102 104
CAMERA MICROPHONE CAMERA MICROPHONE
ANALOG ANALOG ANALOGG ANALOG
YIDEO AUDIO YIDEO AUDIO
A \ A A
100 ' 100
1 CONFERENCING ISDN NETWORK CONFERENCING f
SYSTEM SYSTEM
A (DIGITAL) B
110
ANALOG ANALOG ANALOG ANALOG
YIDEO AUDIO VIDEO AUDIO
A\ \ A A
MONITOR SPEAKER MONITOR SPEAKER

c cooc

106

108 106 108

CISCO SYSTEMS, INC. Ex. 1131 Page 1

Sheet 1 of 32 5,434,913

July 18, 1995

U.S. Pafent

CISCO SYSTEMS, INC. Ex. 1131 Pagé 2

w 1 U: 80T 907
YINVIIS HOLINOW YINVIdS HOLINOW
A J A
o1any 03d1A o1any 03GIA
90TYNY 00TYNY S0TVNY DOTYNY
orT
g \ (V1I910) y
NI1SAS A AN W3LSAS
INIONFYIINOD NYOMLIN NGSI ONIJONIYIINOD
00t A 007
A A A
orany 0301A orany 0301A
90TYNY 90TYNY 90TYNY 90TYNY
INOHJOMOIN YYINYD INOHJOUDIN YUINYD
vOT Z0T vOT 207
T ‘oId

Sheet 2 of 32 5,434,913

July 18, 1995

U.S. Patent

|

140)! Ot1
INOHAOHOIH NaSI
Hou4 Ho4/01

H

<01
VYIHYD
Hodd

b

801
YINIAS
oL

Q¥vod KrOJ/01aNY

a4voa O3GIA

...ﬂ..*‘AVMw

mwﬁumw.\\\,

ﬂL

802 snd vsI

001

MWAva.n\\\,

AYONIN ONY
40SS3304d 1SOH

90T
> YOLINOH
oL

"¢ "OId

CISCO SYSTEMS, INC. Ex. 1131 Page 3

Sheet 3 of 32 5,434,913

July 18, 1995

U.S. Patent

8072

sng vSI

HOY4/01

JOVAYILNI

Sng VSI

2T € sng o3aIA J!cﬂm
mwmuuw —p| YILYIANOD ER " ¥0SS3304d
Ko a/v 030IA J4NLdYD 030IA 1aX1d
80¢ 90¢ ¥0¢g 20¢
02
€ "OId

CISCO SYSTEMS, INC. Ex. 1131 Page 4

Sheet 4 of 32 5,434,913

July 18, 1995

U.S. Patent

AYOWIN

80¢
sng vsI
HoW4/01
mwm&m «—] TvHauvH TOVAYIINI %Mmu%w.a
o 0/ 010 sna Vsl WLIOIG
] < <
oT¥ S0V 90V
140!
INOHAOUDTH
Hou4
ozﬂaﬁm] VNI
HOY4/01 NasI
0¥
902
¥ "old

14Vi%

CISCO SYSTEMS, INC. Ex. 1131 Page 5

U.S. Patent July 18, 1995 Sheet 5 of 32 - 5,434,913

FIG. 5.
100
202 AUDIO/VIDEO oATA conrerencine) 204
CONFERENCING APPN APPLICATION
506~ CONFERENCING API
=10 | 512 514
<08 5 — 17 -
\ VIDEO API COMM API AUDIO API WAVE API
|
516 B VIDEO COMM AUDIO
MANAGER MANAGER MANAGER 594
522 51/8 520/ <
\J VIDEO CAPTURE WAVE
DRIVER DRIVER
526, HOST|INTERFACE rJDSP INTERFACE
530 228 532
N\ VIDEO BOARD DSP | S~
MICROCODE INTERFACE
536 534
— =
AUDIO HOST DEVICE WAVE
538 S TASK ORIVER TASK
COMM
TASK U540

CISCO SYSTEMS, INC. Ex. 1131 Page 6

Sheet 6 of 32 5,434,913

July 18, 1995

U.S. Patent

oray 1=

1o
orany 15

HINOILIANOD-34d
% dNY oIdnv

Sh-ry _.1

Sne-S

Sna-S

902

Sh-rY _.1

YMvids

Ho¥d33

8072
Sng vsI
oY 4/0L
M
3300) orany JOV4YILNI ZHREE NZE WYHS
Y¥SI/dsa dS0 1e202€ 11 _
- HY95Z
HY4Q

JAREL!
SSvdAg

118]-2¢t
INIT T04LNOD TYIYIS
LINOYID dIH)
DOTYNY Y311 FOVIYILINT NOSI 16-9
¥ NOILYT0SI $80283d SN3IN3IS
ENLELEILNN
dS0 / NOSI
LIN¥ID dIHD
DOYNY ¥31114d JOVAYIINT NOSI 1 16-9
9 NOILYT0SI $80283d SNINIIS
‘9 "9OId

CISCO SYSTEMS, INC. Ex. 1131 Page 7

U.S. Patent July 18, 1995 Sheet 7 of 32 5,434,913

FIG. 7.
502,504
[CONFERENCING APPLICATION
f | A
70 10 LS i
Ik : :
! CONFERENCING FINITE CONFERENCING e 704 |
{ STATE MACHINE PRIMITIVE VALIDATOR }
] |
I |
2 A rJ A A %
702
: Y y f708 E
|
:706 CONFERENCING PRINITIVE DISPATCHER {
: L"l ¥ - i
} [4 4 I
| | CONFERENCING i
: CALLBACK 1 ;
} ;
1 1
{]
i !
| |
{
{ 710 com :
: CALLBACK |
a ~ s
1 Y vy v A :
I
: COMM VIDEO AUDIO :
! PRIMITIVE PRIMITIVE| |PRIMITIVE :
I [
: r_) 4 Iy L\ E
i 712 716 720 i
| !
A Y Y
COMM VIDEO AUDIO
NANAGER MANAGER MANAGER
518 516 520

CISCO SYSTEMS, INC. Ex. 1131 Page 8

Sheet 8 of 32 5,434,913

July 18, 1995

U.S. Patent

Swa | qod
paj1oadxaun
Auy/A41 30N
- dnbupy

d3LI3NNO2

1100
7da20oy

[10032813y

da31ivo

A4130N [[DD

HAHATTV)

dnbuoy

SWwa [QO
pajoadxaun
Auy /A4 130N
dnbuoy

(1noaw! 3)dnbuoy

[[DO95DW

dATTVI

Ve
O
—

TEMS, INC. Ex. 1131 Pagehg

uo! 3021411080
2d2200w0
0

CISC

5,434,913

e N4

Sheet 9 of 32

Aougsaq

1995

July 18,

U.S. Patent

om&QGMM\utoum*
[[V2UAS
doug

[OoJFUOD
AD|4d01S/14D3S
oun [iID 4
80UNO0S3aYy
8] qQDU3A023JUf]

PADYHAD |

SWVHHLS HLOWATYH

6 Ol

©
-8

08)d015 /14038
[:\oc\@ﬁn
dous
JOJIUOH W
8SNDy Y
Jojruopn =
AD|4d0}5/714035 &8
pussdo}s,/1403S w

ElNIAAl

8unjio_f
82UN0S38Y

fou1s50 8] qDUBA029JUN

CISCO SYST

SAWVAHLS TVIOT

Sheet 10 of 32 5,434,913

July 18, 1995

U.S. Patent

SWD U {GD I/ 0l "9Id y Wsow 1 JGD U9/ m
JJ0/U0)3SND4A »

/(J440,/U0)8sNodA 5% o &
(uo) -

A0 [dp 2 WEO.M&QOLO\“ (uo) T

JA40/UO) 8SNDHA ;

/(340/u0fu031uopy 1O i

(&

4

(v0) 5
upyuliia 9Jn3do)A
(440)
upulA

(449)
8Jn)dooA

IS0 [IA

CISCO SYSTEMS

9SO [IA

IS0 [IA

uadp

3S0 | I/ 2509

WVALLS NIVHEAVId HLOWNAYT AVHAYLS HHNLdVI TVIOT

U.S. Patent July 18, 1995 Sheet 11 of 32 5,434,913

FIiG. 11.
516
1102
VIDEO MANAGER 1108
LIBRARY
[oLL] l"}
RECY
NETW
SENDMESSAGE o) |
INTERFACE 1106
1104 ¢
AY VCAPT YPLAY A¥§Z?§
[EXE] [EXE]
HWND HWND {~.]
1 i
1110
XMIT

VfW: YIDEO CAPTURE DRIYER
PLAYBACK (CODEC)

N_522

CISCO SYSTEMS, INC. Ex. 1131 Page 12

U.S. Patent July 18, 1995 Sheet 12 of 32 5,434,913

12.

FIG.
[

=

CISCO SYSTEMS, INC. Ex. 1131 Page 13

Sheet 13 of 32 5,434,913

July 18, 1995

U.S. Patent

LR O I I I O I I Y I R I I I I D L R T I T I T T T R T T NN R N S S SO OGP OO O,

£ "HIA ; _
. I
MH 01dnvy ™\ X 4/1 dSa ayvos
g0t ﬂ
MINT&A kS .
. _
F21A30 23009 - 966G w.w / \@m
oranv 03831S | : 1SO0H
_ bOC 1

1274

nnnnnnnnnnnn

oranv
d3SSFHIN00

0N/

SNviS
¥

04INGI

¢ @UvVod JA4 NASI

ors

HINTHA dSd

4/1 dSd
mmmm e .

4 0 8 0 ¢ 0 5 0 0 00 0 0 0 e 00 s

CISCO SYSTEMS, INC. Ex. 1131 Page 14

HINTHA
JAVM

Lyes

\QN@

HIOVNYH
orany

IdY o1anvy Idv 3AWM

ﬂwum

c0c ISOH Id

sz

Sheet 14 of 32 5,434,913

July 18, 1995

U.S. Patent

J07 1 UOKI37S 163y W N. .UNRN

(uo)
ujpul Ty

(449)
uju! Ty

9509y

uadpy

9SOV

AVHAYLS MIVHAVId HALONHY

(J &O\COy 40} 1 UoHY
5 (uo)
JOJIUCH J491S103YY
« JJo/uo » 0} 1 UOHY Mot v
(uo)
8.n)do)y
aJnydoyy

9s0/[JY

950/ 9y

AVIYLS HINLAVI TVIOT

INC. Ex. 1131 Page 15

CISCO SYSTEMS

Sheet 15 of 32 5,434,913

July 18, 1995

U.S. Patent

¢r O1d (y ooe

C R (VS) /]

\ / vol S

901 i MH olpny ! M

o m

JOAI I 821A3(] YN ERILEY, “

X82pPoJp/ VS X893P0JA/ VA w

()indor K wisor y()ooro01 ()234701 K 30un05701 § ()126701 2

(JOATJ] 9[GD34IDIS) (JOALJ(] 3]QD3ID)S) A

L dss/ uo| ssauddng/oya3) _ dsa/ uoj ssauddng /oys3) _=M|.

A v s J ' 3

(" JOAL I 3]qGDNIDIS) (JOA T h o

L 140 2[qo%2015 o

JXU, 43771 1ds/a9x1 JXU 42771 1ds/uox1 Q

a0 gl .u) 0 \ 141 m\ : rg \ 1711 m\ N, 2po5 5277 2
(" uapoosp %a.% SQ (48p0d WIdaY)

Zoporap morm) m\:.\q mEm«uEm 206G Lm_ZQ mESGE ™ opos morm)
- ~ 0: s&\ 0: s&\ sa r ~

J8P0I3P HSI 43P0 HSI

\s3u16u3 uoyssauduoy) " 9051 ™ (s3usbuy uoyssa.duoy)

dwojsew!y diJis
i ()20[107D]

AViAdHL
HIVEAVId

JOAT U] m\co«uﬁmu

T&\

()1ndss

40

()994470/ *

dwojsawi| puaddy
()19675s

@\

JOAL] m\nc«ugmu

AVAHdHL
AL NLdVI

cosl

Sheet 16 of 32 5,434,913

July 18, 1995

U.S. Patent

NVYHI~IS0TI7SY J1ITdNOITA 1303475V
1NN - - - 1NN
& TOHNYHII I SY = NVHI 7507975V
MH 01anY ONVINOD_SH1 S TAHNVHIITY SV MH 01anv
* - 90£1 555 90¢< ! _/ *
NINIYA FDIA3A YININA FIIA3A
VS ASVYIL WW0OO avsS
oLt — + o Z0E1—~ + F%D
SYIN 1 SYIA A
x%&m AJLON ¢ o S¥ \é.ﬂmm
JLTTMOITN1IIF4SY - -
- LINT I A B 1 —
1nd=5s X0 NVH 30105V &%@zéum“@m“ 19675S
NIVGAV Td "SI FINLAIVITSHL
QVIMHL MOVEAY Td 196755 QYIHHL FNLAYI
Z0G!
pos! ' &INIYA 1 3d]d
1nd~SsS nd=ss
dantea| 08409
19675S MINIYA Z3d1d
NGS | NaS | .Q N. .UN&

CISCO SYSTEMS, INC. Ex. 1131 Page 17

U.S. Patent July 18, 1995

Sheet 17 of 32

FIG. 17.
UPPER
LAYERS
HOST (WINDOWS)
TII.DLL
202 ‘\’
DLM.DLL

532-\

ROLM.DLL

DSP INTERFACE

AUDIO/COMM
BOARD (SPOX)
206

CONTROL (D CHAN)

D CHAN DRIVER

DATA COMM TASKS

B CHAN DRIVERS

5,434,913

CISCO SYSTEMS, INC. Ex. 1131 Page 18

434,913

b

Sheet 18 of 32 5

1995

July 18,

U.S. Patent

I 9OIA JOMINOD + VIVA °
STINNVHO TWNLYIA —--—-- - S
T04INOD ———— &
™
011 TANNVHO @ -
{ [ONI TTYNOIS i
14°) | ors | : m
STINNVHO 8 Z _ y
=
-
- ot |_ T ?
- - :.11!1111!!1“1 90z
Z-Q¥v08 | 1 -04Y08O
HHOD \ \ WW0OZ
90Z X 1 ©
I ANLT \ Niels \
LINT IO /
\
~ \'zoz
\1 -1SOH

c0s

140 \
ddVvV vivQd \

™~ \
/ HOV.LS \WHOO
\

\
\
\

U.S. Patent July 18, 1995 Sheet 19 of 32 5,434,913

END SESSION BEGIN SESSION
REJECT CONN) \\ CONN REJECTED
/ \
/
CONN
REQUEST
REQUEST ELUE

!
/
/

CLOSE CONN /
_~"CONN ACCEPTED

-

ACCEPT CONN
CONNCTED

REJECT CHAN

REQUESTED

ACCEPT
CHAN

AN CHAN REJECTED
N

CLOSE CHAN
CHAN |

| CcHAN

) ACCEPTED
——— ACTIVE REQUEST O STATE
——— RESULT OF REQUEST

FIG. 19

CISCO SYSTEMS, INC. Ex. 1131 Page 20

U.S. Patent July 18, 1995 Sheet 20 of 32 5,434,913

INCOMING OUTGOING
CALL CALL

APP calls T1]

Conn Requested MakeConnect ion

Alloc Alloc
Send Connection DLM
Reqg. to APP MakeConn

AWAIT LOCAL
RESP

AWAIT REMOTE
RESP

Call
APP Accepts Conn
DLM AcceptConn Progress Accepted
AWAIT ACCEPT Conn Accepted
RESP
Control Channel
handshake
ESTABL ISHED

Send Cb7nection
Establ ished
.]?[(;. 22(7 Notification to APP

CISCO SYSTEMS, INC. Ex. 1131 Page 21

U.S. Patent July 18, 1995 Sheet 21 of 32 5,434,913

(Connection in CONN_ALIVE state)

DLM open channel 0

AWAIT CTL
OPEN

Channel open notification
Send heartbeat

AWAIT Alive
Message

Receive heartbeat

CIL_ESTABL | SHED

(connection in CONN_ESTAB state)

FIG. 21

CISCO SYSTEMS, INC. Ex. 1131 Page 22

U.S. Patent July 18, 1995 Sheet 22 of 32 5,434,913

RECEIVE SEND
CHANNEL CHANNEL
Chan Request CTL Msg. APP calls TIl QpenChannel
Alloc T11 and DLM chan Alloc T11 and DLM chan

DLMOpen DLMOpen

CHANLARATT_OLM_OPN_RX CHAN_AWAT T_OLM_OPN_TX

DLM Channel Opened
Open ROLM Channel
Send Chan Req to APP

OLM Channel Opened
Send Open CTL Msg.

AWAIT LOCAL RESP

AWAIT REM RESP

APP Accepts Receive accept CIL Msg.
Send accept CIL Msg. Open RDLM Channel

Send Chan Accepted to APP

FIG. 22

CISCO SYSTEMS, INC. Ex. 1131 Page 23

Sheet 23 of 32 5,434,913

July 18, 1995

U.S. Patent

£ TOIA

01 J4Dd| YJOM]ION
U0l 3021 4130U JUIAS SNOUOJIUASY - -

[]02

WoJy UJNJSJ |NJSS820NS

Jabouow uwoy 0} /09

DDA 1393y
J3 [PUDHUDY) IS 163y

J3 [PUDHUDY)J97S 163Y

| duuby) 1da2oy

| duubyyuadp
UDWUDY) I3 7S 1 D3y

uo! 3299uu0)1dasdy

uolssasulbag

JIVIAHINT HHOO

R EN e T g EY Y EREYY

JussDIog

viva

03Ld32IV TINNYHI

—~—

1S3N03Y TINNVHO

1d399v NOI1LI3NNOI
|I|‘

— e ——
——— .

JTIVNVH HWHO0I

_—

— ———— —
e ——

e e

1S3N03Y4 193NNOID

NHOMLAN

JTIVNVAH WHOO

D10(pUsS

YSTEMS, INC. Ex. 1131 Page 24

J3 | PUDHUDY) 43S 163 in
o
J9 [UDHUOY)J37S 163y 9

, c
| 8uuby) 1dasay

Jauupyyuadp
UDHUDY)J31S 1b8Yy
uo | 329uU0) 35O
uoissasulbag

HJIVIHILINT WWNOD

U.S. Patent

July 18, 1995

(BITS)

32

32

32

32

32

32

32

32

32

32

16

FIG. 24.

(FIELD)

Sheet 24 of 32

{pData

dwBufferLength

|

dwBytesUsed

|

dwTimeCaptured

|

dwUser

dwF lags

dwReserved[0]

dwReserved[1]

dwReserved([2]

dwReserved(3]

|

Type

Message

Data ...

5,434,913

CISCO SYSTEMS, INC. Ex. 1131 Page 25

U.S. Patent

July 18, 1995

(BITS)

16

16

32

32

16

16

8/MY

- FIG. 25.

(FIELD)

VersionNumber

Flags

DataSize

Reserved!

ImageHeight

InageWidth

UYquant

l

Yquant

l

Stifistrip

StillThresh(low)/
FilterThresh(high)

Mot ionYectors{]

Huffman Data

Sheet 25 of 32

5,434,913

CISCO SYSTEMS, INC. Ex. 1131 Page 26

U.S. Patent July 18, 1995 Sheet 26 of 32 5,434,913

FIG. 26.

(BITS) (FIELD)

30 Timestamp

1 Reserved
|

1 Mute

|2 mo = me|

0- Data

CISCO SYSTEMS, INC. Ex. 1131 Page 27

U.S. Patent July 18, 1995 Sheet 27 of 32 5,434,913

FIG. 27.
(BITS) (FIELD)
8 Control
P
16 Length
|
16 CRC
PR
0- Data

CISCO SYSTEMS, INC. Ex. 1131 Page 28

U.S. Patent July 18, 1995 Sheet 28 of 32 5,434,913

FIG. 28.
(BITS) (FIELD)
8 Flag HDLC FLAG
 —————
8 DestID b
————
8 SrclD
- |
. H H
8 PktNo E D
A L
1
S0P D C
1 EOP ; D
————— A
2 Rsvd T
s ——— A
4 fragNo &
oneessss————
0- Data
Jsssssssssssss——t -
16 CRC HDLD CRC
Iemsessanmm——
8 Flag HLLC FLAG

CISCO SYSTEMS, INC. Ex. 1131 Page 29

U.S. Patent July 18, 1995 Sheet 29 of 32 5,434,913

T11-DLM SESSION & CONNECTION ESTABL | SHMENT
Tii DOLM DLM TI
DLM _BeginSession \ / DLM BeginSession
DLM _MakeConnect ion OLM Listen
\ /
\N
T~
CONN_REQUESTED
OLM_AcceptConnect ion
/
"’/—_\
- B T - .
CONN_ESTABL | SHEL CONN_ESTABL | SHED

TI1-DLM CONNECTION & SESSION TEARDOWN

Ti1 DOLM DLM 71l
DLM_CloseConnect ion
\
__
- T —
CONN_CLOSE_COMPLETE CONN_CLOSE_NOTIFY

DLM_EndSession \ / DLM_EndSession

— —)
— —

T~

et
SESS_CLOSED SESS_CLOSED

FIG. 29

CISCO SYSTEMS, INC. Ex. 1131 Page 30

Sheet 30 of 32 5,434,913

July 18, 1995

U.S. Patent

0& " OI1Ad FANLOILIHOYY DISVE QV08 I/
Sng vsi
|
2\3\ Y avoo-349 (AdYH) WYYS XZg
N e 3 D107 FOVASILINI Some *
1o o oranv olany vy IE2028 14 WYHa H9GZ
o1dnv :
e EE,
I T
| 2ISV OA |
“ JOVAYIINI 1£9 “
| |
| |
| |
Gr-ry §ALTIS ® 5902834 || o7aH ZEXE ZEXZ |
SNg-s - NOILY OS] SNINIIS [4/1 1ss [s.0414 S.0414 |
AVTRY “ | |
| |
Go-ry | §3L715 ® coza3d || oaH ZEXZ
sng-s NOILVTOS] snanFIs [471 1ss [T s.04i4 | |1 WI¥3s|
| |

‘"NNOO JINAOW
HOLVHITIIOV

CISCO SYSTEMS, INC. Ex. 1131 Page 31

Sheet 31 of 32 5,434,913

July 18, 1995

U.S. Patent

re "Old

FHINLIOFLIHIOYY JDISVE DISY IA

-~

sng 0/1 ovs|

118 & d3x3idl LI

> JOVAYIINI SNg 0/1

d0LS 'S0l d

JOVAYIINT TVIYIS FINAON YOLVYIF TV

LON &0 O71GH

STINNVHO-8
ISS 30I1S-3NI17

7’
AN

JOVIYIINI 28

1ON &0 O710H

JOVIYIINI 18

JOVAYIINT TINNVHI-8 3015-3N1T

1ON &0 O710H

STTINNVYHO-8
ISS J01S5-3INOHd

7
AN

JIOVIYIINI 28

10N &0 O'IGH

JOVAYFINI 18

S.0414

%E&S; _dzzwa,m 301S-INOHd

SYFLST193Y
w8079

-

/1
Snd
Ndo

CISCO SYSTEMS, INC. Ex. 1131 Page 32

Sheet 32 of 32 5,434,913

July 18, 1995

U.S. Patent

& THOIA m e
EE§ S
[T f———m— ' Ly ¢ 4 v
1d0d + FOVAIINI 2 3oy s57iN] =
INf—= oo, SHEISI . Wove33 —=
H\I..‘nll'.ll Bl KDQQ b o 2 0 0 0 0 0 “ “ |
. NIG | o1 ovs — . 4311864V
a1 500710 / : - g
INAS A :
o] : e ese
SUVLS FGaINDD gy /! NOHd - :
AV o0] 0wy : m\w&ﬁ%
bl 9 e ONAS |+ v vzeeesecensnnnns
4 FOVIIINI dST * CIOMLS
A b1 caoew
s, Fa N .
=4 t—t—=1 [Zex5962 mvaa)|
o, " "Dy |l
.| ZPI13S NO - _
wwm | s23009 [zexnze mves ||
B —={ “Hy7-n A ol szl 1o i
g L A50hm 19 !
‘ e i

WOYd33
914N0OJ

0-CINI S36041S viva Yaav
£€-1£00CSWI

CISCO SYSTEMS, INC. Ex. 1131 Page 33

5,434,913

1

AUDIO SUBSYSTEM FOR COMPUTER-BASED
CONFERENCING SYSTEM

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to audio/video confer-
encing, and, in particular, to systems for real-time audio,
video, and data conferencing in windowed environ-
ments on personal computer systems.

2. Description of the Related An

It is desirable to provide real-time audio, video, and
data conferencing between personal computer (PC)
systems operating in windowed environments such as
those provided by versions of Microsoft ® Windows
operating system. There are difficulties, however, with
providing real-time conferencing in non-real-time win-
dowed environments.

It is accordingly an object of this invention to over-
come the disadvantages and drawbacks of the known
art and to provide real-time audio, video, and data con-
ferencing between PC systems operating in non-real-
time windowed environments.

It is a particular object of the present invention to
provide real-time audio, video, and data conferencing
between PC systems operating under a Microsoft ®
Windows operating system.

Further objects and advantages of this invention will
become apparent from the detailed description of a
preferred embodiment which follows.

SUMMARY OF THE INVENTION

The present invention is an audio subsystem for a
computer conferencing system. An audio task resides
on an audio/communications board of the computer
conferencing system. An audio manager and an audio
applications programming interface reside on a host
processor of the computer conferencing system. The
audio task receives local analog audio signals, generates
local compressed audio signals corresponding to the
local analog audio signals, and passes the local com-
pressed audio signals to a communications subsystem of
the computer conferencing system for transmission
over a communications link to a remote computer con-
ferencing system. The audio task receives remote com-
pressed audio signals from the communications subsys-
tem and generates remote decompressed audio signals
corresponding to the remote compressed audio signal
for local playback.

BRIEF DESCRIPTION OF THE DRAWINGS

Other objects, features, and advantages of the present
invention will become more fully apparent from the
following detailed description of the preferred embodi-
ment, the appended claims, and the accompanying
drawings in which:

FIG. 1 is a block diagram representing real-time
point-to-point audio, video, and data conferencing be-
tween two PC systems, according to a preferred em-
bodiment of the present invention;

FIG. 2 is a block diagram of the hardware configura-
tion of the conferencing system of each PC system of
FIG. 1;

FIG. 3 is a block diagram of the hardware configura-
tion of the video board of the conferencing system of
FIG. 2;

5

20

25

30

35

45

50

55

65

2

FIG. 4 is a block diagram of the hardware configura-
tion of the audio/comm board of the conferencing sys-
tem of FIG. 2;

FIG. 5 is a block diagram of the software configura-
tion of the conferencing system of each PC system of
FIG. 1;

FIG. 6 is a block diagram of a preferred embodiment
of the hardware configuration of the audio/comm
board of FIG. 4;

FIG. 7 is a block diagram of the conferencing inter-
face layer between the conferencing applications of
FIG. 5, on one side, and the comm, video, and audio
managers of FIG. 5, on the other side;

FIG. 8 is a representation of the conferencing call
finite state machine (FSM) for a conferencing session
between a local conferencing system (i.e., caller) and a
remote conferencing system (i.e., callee);

FIG. 9 is a representation of the conferencing stream
FSM for each conferencing system participating in a
conferencing session;

FIG. 10 is a representation of the video FSM for the
local video stream and the remote video stream of a
conferencing system during a conferencing session;

FIG. 11 is a block diagram of the software compo-
nents of the video manager of the conferencing system
of FIG. 5;

FIG. 12 is a representation of a sequence of N walk-
ing key flames;

FIG. 13 is a representation of the audio FSM for the
local audio stream and the remote audio stream of a
conferencing system during a conferencing session;

FIG. 14 is a block diagram of the architecture of the
audio subsystem of the conferencing system of FIG. 5;

FIG. 15 is a block diagram of the interface between
the audio task of FIG. 5 and the audio hardware of
audio/comm board of FIG. 2;

FIG. 16 is a block diagram of the interface between
the audio task and the comm task of FIG. 5;

FIG. 17 is a block diagram of the comm subsystem of
the conferencing system of FIG. 5;

FIG. 18 is a block diagram of the comm subsystem
architecture for two conferencing systems of FIG. 5
participating in a conferencing session;

FIG. 19 is a representation of the comm subsystem
application FSM for a conferencing session between a
local site and a remote site;

FIG. 20 is a representation of the comm subsystem
connection FSM for a conferencing session between a
local site and a remote site;

FIG. 21 is a representation of the comm subsystem
control channel handshake FSM for a conferencing
session between a local site and a remote site;

FIG. 22 is a representation of the comm subsystem
channel establishment FSM for a conferencing session
between a local site and a remote site;

FIG. 23 is a representation of the comm subsystem
processing for a typical conferencing session between a
caller and a callee;

FIG. 24 is a representation of the structure of a video
packet as sent to or received from the comm subsystem
of the conferencing system of FIG. 5;

FIG. 25 is a representation of the compressed video
bitstream for the conferencing system of FIG. §;

FIG. 26 is a representation of a compressed audio
packet for the conferencing system of FIG. 5;

FIG. 27 is a representation of the reliable transport
comm packet structure;

CISCO SYSTEMS, INC. Ex. 1131 Page 34

5,434,913

3

FIG. 28 is a representation of the unreliable transport
comm packet structure;

FIG. 29 are diagrams indicating typical connection
setup and teardown sequences;

FIGS. 30 and 31 are diagrams of the architecture of 5

the audio/comm board; and
FIG. 32 is a diagram of the audio/comm board envi-
ronment.

DESCRIPTION OF THE PREFERRED
EMBODIMENT(S)

Point-To-Point Conferencing Network

Referring now to FIG. 1, there is shown a block
diagram representing real-time point-to-point audio,
video, and data conferencing between two PC systems,
according to a preferred embodiment of the present
invention. Each PC system has a conferencing system
100, a camera 102, a microphone 104, a monitor 106,
and a speaker 108. The conferencing systems communi-
cate via an integrated services digital network (ISDN)
110. Each conferencing system 100 receives, digitizes,
and compresses the analog video signals generated by
camera 102 and the analog audio signals generated by
microphone 104. The compressed digital video and
audio signals are transmitted to the other conferencing
system via ISDN 110, where they are decompressed
and converted for play on monitor 106 and speaker 108,
respectively. In addition, each conferencing system 100
may generate and transmit data signals to the other
conferencing system 100 for play on monitor 106. In a
preferred embodiment, the video and data signals are
displayed in different windows on monitor 106. Each
conferencing system 100 may also display the locally
generated video signals in a separate window.

Camera 102 may be any suitable camera for generat-
ing NSTC or PAL analog video signals. Microphone
104 may be any suitable microphone for generating
analog audio signals. Monitor 106 may be any suitable
monitor for displaying video and graphics images and is
preferably a VGA monitor. Speaker 108 may be any
suitable device for playing analog audio signals and is
preferably a headset.

Conferencing System Hardware Configuration

Referring now to FIG. 2, there is shown a block
diagram of the hardware configuration of each confer-
encing system 100 of FIG. 1, according to a preferred
embodiment of the present invention. Each conferenc-
ing system 100 comprises host processor 202, video
board 204, audio/comm board 206, and industry stan-
dard architecture (ISA) bus 208.

Referring now to FIG. 3, there is shown a block
diagram of the hardware configuration of video board
204 of FIG. 2, according to a preferred embodiment of
the present invention. Video board 204 comprises ISA
bus interface 310, video bus 312, pixel processor 302,
video random access memory (VRAM) device 304,
video capture module 306, and video analog-to-digital
(A/D) converter 308.

Referring now to FIG. 4, there is shown a block
diagram of the hardware configuration of audio/comm
board 206 of FIG. 2, according to a preferred embodi-
ment of the present invention. Audio/comm board 206
comprises ISDN interface 402, memory 404, digital
signal processor (DSP) 406, ISA bus interface 408, and
audio input/output (I/0) hardware 410.

20

25

35

45

55

65

4

Conferencing System Software Configuration

Referring now to FIG. 5, there is shown a block
diagram of the software configuration each conferenc-
ing system 100 of FIG. 1, according to a preferred
embodiment of the present invention. Video microcode
530 resides and runs on pixel processor 302 of video
board 204 of FIG. 3. Comm task 540 and audio task 538
reside and run on DSP 406 of audio/comm board 206 of
FIG. 4. All of the other software modules depicted in
FIG. 5 reside and run on host processor 202 of FIG. 2.

Video, Audio, and Data Processing

Referring now to FIGS. 3, 4, and 5, audio/video
conferencing application 502 running on host processor
202 provides the top-level local control of audio and
video conferencing between a local conferencing sys-
tem (i.e., local site or endpoint) and a remote conferenc-
ing system (i.e., remote site or endpoint). Audio/video
conferencing application 502 controls local audio and
video processing and establishes links with the remote
site for transmitting and receiving audio and video over
the ISDN. Similarly, data conferencing application 504,
also running on host processor 202, provides the top-
level local control of data conferencing between the
local and remote sites. Conferencing applications 502
and 504 communicate with the audio, video, and comm
subsystems using conferencing application program-
ming interface (API) 506, video API 508, comm API
5§10, and audio API 512. The functions of conferencing
applications 502 and 504 and the APIs they use are
described in further detail later in this specification.

During conferencing, audio I/0 hardware 410 of
audio/comm board 206 digitizes analog audio signals
received from microphone 104 and stores the resulting
uncompressed digital audio to memory 404 via ISA bus
interface 408. Audio task 538, running on DSP 406,
controls the compression of the uncompressed audio
and stores the resulting compressed audio back to mem-
ory 404. Comm task 540, also running on DSP 406, then
formats the compressed audio format for ISDN trans-
mission and transmits the compressed ISDN-formatted
audio to ISDN interface 402 for transmission to the
remote site over ISDN 110.

ISDN interface 402 also receives from ISDN 110
compressed ISDN-formatted audio generated by the
remote site and stores the compressed ISDN-formatted
audio to memory 404. Comm task 540 then reconstructs
the compressed audio format and stores the compressed

"audio back to memory 404. Audio task 538 controls the

decompression of the compressed audio and stores the
resulting decompressed audio back to memory 404. ISA
bus interface then transmits the decompressed audio to
audio I/O hardware 410, which digital-to-analog
(D/A) converts the decompressed audio and transmits
the resulting analog audio signals to speaker 108 for
play. .

Thus, audio capture/compression and decompres-
sion/playback are preferably performed entirely within
audio/comm board 206 without going through the host
processor. As a result, audio is preferably continuously
played during a conferencing session regardless of what
other applications are running on host processor 202.

Concurrent with the audio processing, video A/D
converter 308 of video board 204 digitizes analog video
signals received from camera 102 and transmits the
resulting digitized video to video capture module 306.
Video capture module 306 decodes the digitized video

CISCO SYSTEMS, INC. Ex. 1131 Page 35

5,434,913

5

into YUV color components and delivers uncom-
pressed digital video bitmaps to VRAM 304 via video
bus 312. Video microcode 530, running on pixel proces-
sor 302, compresses the uncompressed video bitmaps
and stores the resulting compressed video back to
VRAM 304. ISA bus interface 310 then transmits via
ISA bus 208 the compressed video to host interface 526
running on host processor 202.

Host interface 526 passes the compressed video to
video manager 516 via video capture driver 522. Video
manager 516 calls audio manager 520 using audio API
512 for synchronization information. Video manager
516 then time-stamps the video for synchronization
with the audio. Video manager 516 passes the time-
stamped compressed video to communications (comm)
manager 518 using comm application programming
interface (API) 510. Comm manager 518 passes the
compressed video through digital signal processing
(DSP) interface 528 to ISA bus interface 408 of audio/-
comm board 206, which stores the compressed video to
memory 404. Comm task 540 then formats the com-
pressed video for ISDN transmission and transmits the
ISDN-formatted compressed video to ISDN interface
402 for transmission to the remote site over ISDN 110.

ISDN interface 402 also receives from ISDN 110
ISDN-formatted compressed video generated by the
remote site system and stores the ISDN-formatted com-
pressed video to memory 404. Comm task 540 recon-
structs the compressed video format and stores the
resulting compressed video back to memory 404. ISA
bus interface then transmits the compressed video to
comm manager 518 via ISA bus 208 and DSP interface
528. Comm manager 518 passes the compressed video
to video manager 516 using comm API 510. Video
manager 516 decompresses the compressed video and
transmits the decompressed video to the graphics de-
vice interface (GDI) (not shown) of Microsoft ® Win-
dows for eventual display in a video window on moni-
tor 106.

For data conferencing, concurrent with audio and
video conferencing, data conferencing application 504
generates and passes data to comm manager 518 using
conferencing API 506 and comm API 5 10. Comm
manager 518 passes the data through board DSP inter-
face 532 to ISA bus interface 408, which stores the data
to memory 404. Comm task 540 formats the data for
ISDN transmission and stores the ISDN-formatted data
back to memory 404. ISDN interface 402 then transmits
the ISDN-formatted data to the remote site over ISDN
110.

ISDN interface 402 also receives from ISDN 110
ISDN-formatted data generated by the remote site and
stores the ISDN-formatted data to memory 404. Comm
task 540 reconstructs the data format and stores the
resulting data back to memory 404. ISA bus interface
408 then transmits the data to comm manager 518, via
ISA bus 208 and DSP interface 528. Comm manager
518 passes the data to data conferencing application 504
using comm API 510 and conferencing API 506. Data
conferencing application 504 processes the data and
transmits the processed data to Microsoft ® Windows
GDI (not shown) for display in a data window on moni-
tor 106.

Preferred Hardware Configuration for Conferencing
System

Referring again to FIG. 2, host processor 202 may be
any suitable general-purpose processor and is preferably

20

25

30

35

40

45

50

55

65

6

an Intel ® processor such as an Intel ® 486 micro-
processor. Host processor 202 preferably has at least 8
megabytes of host memory. Bus 208 may be any suitable
digital communications bus and is preferably an Indus-
try Standard Architecture (ISA) PC bus.

Referring again to FIG. 3, video A/D converter 308
of video board 204 may be any standard hardware for
digitizing and decoding analog video signals that are
preferably NTSC or PAL standard video signals. Video
capture module 306 may be any suitable device for
capturing digital video color component bitmaps and is
preferably an Intel ® ActionMedia ® II Capture Mod-
ule. Video capture module 306 preferably captures
video as subsampled 4:1:1 YUV bitmaps (i.e., YUV9 or
YVU9). Memory 304 may be any suitable computer
memory device for storing data during video processing
such as a random access memory (RAM) device and is
preferably a video RAM (VRAM) device with at least
1 megabyte of data storage capacity. Pixel processor
302 may be any suitable processor for compressing
video data and is preferably an Intel ® pixel processor
such as an Intel ® 1750 ® Pixel Processor. Video bus
312 may be any suitable digital communications bus and
is preferably an Intel ® DVI®) bus. ISA bus interface
310 may be any suitable interface between ISA bus 208
and video bus 312, and preferably comprises three In-
tel ® ActionMedia ® Gate Arrays and ISA configura-
tion jumpers.

Referring now to FIG. 6, there is shown a block
diagram of a preferred embodiment of the hardware
configuration of audio/comm board 206 of FIG. 4. This
preferred embodiment comprises:

Two 4-wire S-bus RJ-45 ISDN interface connectors,
one for output to ISDN 110 and one for input from
ISDN 110. Part of ISDN interface 402 of FIG. 4.

Standard bypass relay allowing incoming calls to be
redirected to a down-line ISDN phone (not shown)
in case conferencing system power is off or confer-
encing software is not loaded. Part of ISDN inter-
face 402.

Two standard analog isolation and filter circuits for
interfacing with ISDN 110. Part of ISDN interface
402,

Two Siemens 8-bit D-channel PEB2085 ISDN inter-
face chips. Part of ISDN interface 402.

Texas Instruments (TT) 32-bit 33 MHz 320c31 Digital
Signal Processor. Equivalent to DSP 406.

Custom ISDN/DSP interface application specified
integrated circuit (ASIC) to provide interface be-
tween 8-bit Siemens chip set and 32-bit TTI DSP.
Part of ISDN interface 402.

256 Kw Dynamic RAM (DRAM) memory device.
Pan of memory 404.

32 Kw Static RAM (SRAM) memory device. Part of
memory 404.

Custom DSP/ISA interface ASIC to provide inter-
face between 32-bit TI DSP and ISA bus 208. Part
of ISA bus interface 408.

Serial EEPROM to provide software jumpers for
DSP/ISA interface. Part of ISA bus interface 408.

Audio Codec 4215 by Analog Devices, Inc. for sam-
pling audio in format such as ADPCM, DPCM, or
PCM format. Part of audio 1/0 hardware 410.

Analog circuitry to drive audio I/O with internal
speaker for playback and audio jacks for input of
analog audio from microphone 104 and for output
of analog audio to speaker 108. Part of audio 1I/0O
hardware 410.

CISCO SYSTEMS, INC. Ex. 1131 Page 36

5,434,913

7

Referring now to FIGS. 30 and 31, there are shown
diagrams of the architecture of the audio/comm board.
The audio/comm board consists basically of a slave
ISA interface, a TMS320C31 DSP core, an ISDN BRI
S interface, and a high quality audio interface.

The C31 Interface is a 32-bit non-multiplexed data
port to the VC ASIC. It is designed to operate with a
27-33 Mhz C31. The C31 address is decoded for the
ASIC to live between 400 000H and 44F FFFH. All
accesses to local ASIC registers (including the FIFQ’s)
are 0 wait-state. Accesses to the I/0 bus (locations 440
000H through 44F FFFH) have 3 wait states inserted.
Some of the registers in the ASIC are 8 and 16 bits wide.
In these cases, the data is aligned to the bottom (bit 0
and up) of the C31 data word. The remainder of the bits
will be read as a “0”. All non-existent or reserved regis-
ter locations will read as a “0”.

The B-channel interfaces provide a 32-bit data path to
and from the B1 and B2 ISDN data channels. They are
FIFO buffered to reduce interrupt overhead and la-
tency requirements. The Line-side and Phone-side in-
terfaces both support transparent data transfer—used
for normal phone-call,1 FAX, modem and H.221 for-
matted data. Both interfaces also support HDLC for-
matting of the B data per channel to support V.120
“data data™ transfer.

The receive and transmit FIFO’s are 2 words deep, a
word being 32 bits wide (C31 native data width). Full,
half and empty indications for all FIFO’s are provided
in the B-channel status registers. Note that the polarity
of these indications vary between receive and transmit.
This is to provide the correct interrupt signaling for
interrupt synchronized data transfer.

The transparent mode sends data received in the
B-channel transmit FIFO’s to the SSI interface of the
ISACs. The transmitted data is not formatted in any
way other than maintaining byte alignment (i.e., bits 0,
8, 16, 24 of the FIFO data are always transmitted in bit
0 of the B-channel data). The written FIFO data is
transmitted byte 0 first, byte 3 last—where byte 0 is bits
0 through 7, and bit 0 is sent first.

Transparent mode received data is also byte aligned
to the incoming B-channel data stream and assembled as
byte 0, byte 1, byte 2, byte 3. Receive data is written
into the receive FIFO after all four types have arrived.

The ISAC 1/0 Interface provides an 8 bit multi-
plexed data bus used to access the Siemens PEB2085s
(ISAC). The 8 bits of 1/0O address come from bits 0
through 7 of the C31 address. Reads and writes to this
interface add 3 wait-states to the C31 access cycle.
Buffered writes are not supported in this version of the
ASIC.

Each ISAC is mapped directly into its own 64 byte
address space (6 valid bits of address). Accesses to the
ISAC are 8 bits wide and are located at bit positions 0 to
7 in the C31 32 bit word. Bits 8 through 23 are returned
as “0”’s on reads.

The PB2085’s provide the D-channel access using
this interface.

The Accelerator Module Interface is a high band-
width serial communication path between the C31 and
another processor which will be used to add MIPs to
the board. Certain future requirements such as g.728
audio compression will require the extra processing
power.

The data transfers are 32 bit words sent serially at
about 1.5 Mbits/s. The VC ASIC buffers these transfers
with FICOs which are 2 words deep to reduce interrupt

5

15

20

25

30

40

45

55

65

8

overhead and response time requirements. The status
register provide flags for FIFO full, half, empty and
over/under-run (you should never get an under-run).
Any of these can be used as interrupt sources as selected
in the Serial Port Mask register.

The following paragraphs describe the ISA interface
of the audio/comm board. The ISA interface is the gate
array that provides an interface between the multi-func-
tion board and the ISA bus. Further, the ASIC will
control background tasks between a DSP, SAC, and
Analog Phone line interfaces. The technology chosen
for the ASIC is the 1 micron CMOS-6 family from
NEC.

Referring now to FIG. 32, there is shown a diagram
of the audio/comm board environment. The following
is a description of the signal groups.

_ISA Bus Signals
The address enable signal is used to de-gated
the CPU and other devices from the bus
during DMA cycles. When this signal is active
(high) the DMA controller has control of the
bus. The ASIC does not respond to bus cycles
when AEN is active.
The 1/0 16-bit chip select is used by 16-bit
I/0 devices to indicate that it can
accommodate a 16-bit transfer. This signal is
decoded off of address only.
This is an active low signal indicating the an
1/0 write cycle is being performed.
This is an active low signal indicating the an
1/0 read cycle is being performed.
These signals are interrupt requests. An
interrupt request is generated when an IRQ
is raised from a low to a high. The IRQ must
remain high until the interrupt service routine
acknowledges the interrupt.
This signal is used to initialize system logic
upon power on.
The system bus high enable signal indicates
that data should be driven onto the upper
byte of the 16-bit data bus.
These are the system address lines used to
decode I/0 address space used by the board.
This scheme is compatible with the ISA bus.
These addresses are valid during the entire
command cycle.
These are the system data bus lines.

_DSP Signals
HICLK is the DSP primary bus clock. All
events in the primary bus are referenced to
this clock. The frequency of this clock is half
the frequency of the clock driving the DSP.
See the TMS320C31 data manual chapter 13.
These are the DSP 32-bit data bus. Data lines
16, 17, and 18 also interface to the EEPROM.
Note that the DSP must be in reset and the
data bus tri-stated before access to the
EEPROM. This date bus also supplies the
board ID when the read while the DSP is
reset (see HAUTOID register).
This is the DSP active low reset signal.
These DSP address lines are used to decode
the address space by the ASIC.
This signal indicates whether the current DSP
external access is a read (high) or a
write (fow)
This is an active low signal form the DSP
indicating that the current cycle is to the
primary bus.
This signal indicates that the current cycle
being performed on the primary bus of the
DSP can be completed.
The Hold signal is an active low signal used to
request the DSP relinquish control of the
primary bus. Once the hold has been
acknowledge all address, data and status lines
are tri-stated until Hold is released. This signal
will be used to implement the DMA and

AEN

IOCS16#

IoW#

IOR#

IRQ3, IRQ4,
IRQ5, IRQY,
IRQIO, IRAIL,
IRQIS
RESET

SBHE#

SA(9:0)

SD(15:0)

HICLK

D(31:0)

C31_RST#
A23-A0
R/W#
STRB#

RDY#

HOLD#

CISCO SYSTEMS, INC. Ex. 1131 Page 37

5,434,913

9 10
-continued -continued
DRAM Refresh. N LPSENSLI1 Linel off hook loop current sense. If this

HOLDA# This is the Hold Acknowledge signal which is signal is low and BYPSRLY1 is high it
the active low indication that the DSP has indicates the Set 1 has gone off hook. If the
relinquished control of the bus. 5 signal is low and the BYPSRLY1 is low it

INT2# This C31 interrupt is used by the ASIC for indicates that the board has gone off hook.

DMA and Command interrupts. This signal is not latched and therefore is a

INTE1# Interrupt the C31 on COM Port events. Real-time-signal.

INTO# Analog Phone Interrupts. LPSENSPH1 Set 1 off hook loop current sense. If this

Memory Signals signal is low it indicates the Set 1 has gone

MEMWR1# These signals are active low write strobes for 10 off hook. This can OHIX take place when

and MEMWR2# memory banks 1 and 2. BYPSRLY1 is low. This signal is not latched

B1OE#, These signals are active low output enables and therefore is a Real-time-signal.

B20E# for memory banks 1 and 2. LPSENSL2 Line2 off hook loop current sense. If this

SR_CS# This is a active low chip selected for the signal is low and BYPSRLY2 is high it
SRAM that makes up bank2. indicates the Set 1 has gone off hook. If the

CAS# This the active low column address strobe to 15 signal is low and the BYPSRLY2 is low it
the DRAM. indicates that the board has gone off hook.

RAS# This the active low row address strobe to This signal is not latched and therefore is 2
the DRAM. Real-time-signal.

HID12, These signals are a 12 and 24 nS delay of LPSENSPH2 Set 2 off hook loop current sense. If this

HI1D24 the HICLK. signal is low it indicates the Set 1 has gone off

MUX Maux is the signal that controls the external 20 hook. This can only take place when
DRAM address mux. When this signal is low BYPSRLY2 is low. This signals is not latched
the CAS addresses are selected and when it is and therefore is a Real-time-signal.
high the RAS addresses are selected. RINGDETLI Line 1 Ring Detect. If this input signal is low

EEPROM Signals the Line is ringing. o o

EESK This is the EEPROM clock signal. This signal RINGDETL2 E:?i_ ::’_n Iehirslg nlﬂ);;e;:t If this input signal is low
is muitiplexed with the DSP data signal ID16. 25 7 o .

This si . . N CALLDETL2 Call Detect for Line 1. This signal is cleared
in ress;tgnal can only be valid while the DSP is low by software to detect 1200 baud FSK data
R . between the first and second rings.

EEDI This is the input data signal to the EEPROM. CALLDETL2 Call Detect for Line 2. This signal is cleared
This signal is multiplexed with the DSP data low by software to detect 1200 baud FSK data
i:inﬂtl g;ggg‘fss:ﬁ z;lsectan only be valid 10 between the first and second rings.

EEDO This is the data output of the EEPROM. PDOHL1 Pulse Dial fo hook for Line 1. This sxgx.ml is
This signal is multiplexed with the DSP data pulsed to dial phone numbers on pulse dial
signal D18. This signal can only be valid systems. It is also used to take the line off
while the DSP is in reset. PDOHL2 Putse Dist O ook for Line 2. This sigaal i

EECS This is the chip select signal for the u]::d tl dial hoo oF bIZ < & ? 51%1.] " 1
EEPROM. This signal is NOT multiplexed 35 p 0 dial plione nuMLErs on puise Al
and can only be drive active (HIGH) during ;ystle(ms.hlt 1§ also used to take the line off

OOK when 10w.
%?:;S:ﬁdio Codec (SAC) BYPSRLY1 and 2 This is an active low output signal controlling
— the Bypass Relay output. When high the board

SP.DC This signal controls the SAC mode of is by-passed and the Line (1 or 2) is connected
operation. When this signal is high the SAC the desk Set (1 or 2).
is. in data or master mode. When this signal is 40 LOOPDIS
1w the SAC is in control or slave mode. SWCLR#

SP_SCLK This is the Soundport clock input signal. This . .

e L . Miscellaneous Signals
clock will either originate from the Soundport - - .
or the ASIC. 6.144MHZ This a 6.144 MHz clock signal used to drive

SP_SDIN This serial data input from the Soundport. The the module that can attached to the board. The
data here is shifted in on the falling edge of module will then use this signal to synthesize
the SP_CLK. 45 any frequency it requires.

SP_SDOUT This is the serial data output signal for the TEST1, TEST2, These are.four test pins used by the
Soundport. The data is shifted out on the TEST3, TEST4 ASIC designers two decrease ASIC
rising edge of the SP_CLK. manufacturing test vectors. The TEST2

SP_FSYNC This is the frame synchronization signal for the pin is the output of the nand-

Soundport. This signal will originate from the tree used by ATE.

ASIC when the Soundport is in slave mode or 50 VDD, V83

the Soundport is being programmed in control

mode. When the Soundport is in master mode . . .

the frame sync will originate from the Those skilled in the art will understand that the pres-

Soundport and will have a frequency equal to ent invention may comprise configurations of audio/-

the sample rate. comm board 206 other than the preferred configuration
CODEC Signals 55 of FIG. 6

24.576MHZ This clock signal is used to derive clocks used e
‘é"c‘)%‘l‘_:‘élc IASiC and the 2.048MHz Software Architecture for Conferencing System

clock.

COD_FS1, These signals are the CODEC frame syncs, The software architecture of conferencing system

COD_FSz, each signal correspond to one of the 100 shown in FIGS. 2 and 5 has three layers of abstrac-

DOC_FS3, four CODECs. 60 .- . .

COD._FS4 tion. A computer supported collaboration (CSC) infra-

COD_SDOUT This signal is the serial data output signal of structure layer comprises the hardware (i.e., video
the CODES.))) board 204 and audio/comm board 206) and host/board

COD_SDIN g‘scsé)%‘é c‘:ss"he serial data input signal to driver software (i.e., host interface 526 and DSP inter-

COD._SCLK This a 2.048MHz clock used to clock data in face 528) to support video, audio, and comm, as well as

and out of the four CODECs. The serial data
is clocked out on the rising edge and in on
the falling edge.

Analog Phone Signals

65

the encode method for video (running on video board
204) and encode/decode methods for audio (running on
audio/comm board 206). The capabilities of the CSC

CISCO SYSTEMS, INC. Ex. 1131 Page 38

5,434,913

11
infrastructure are provided to the upper layer as a de-
vice driver interface (DDI). ,

A CSC system software layer provides services for
instantiating and controlling the video and audio
streams, synchronizing the two streams, and establish-
ing and gracefully ending a call and associated commu-
nication channels. This functionality is provided in an
application programming interface (API). This API
comprises the extended audio and video interfaces and
the communications APIs (i.e., conferencing API 506,
video API 508, video manager 516, video capture
driver 522, comm API 510, comm manager 518, Wave
API 514, Wave driver 524, audio API 512, and audio
manager 520).

. A CSC applications layer brings CSC to the desktop.

The CSC applications may include video annotation to
video mail, video answering machine, andio/video/-
data conferencing (i.e., audio/video conferencing appli-
cation 502 and data conferencing application 504), and
group decision support systems.

Audio/video conferencing application 502 and data
conferencing application 504 rely on conferencing API
§06, which in turn relies upon video API 508, comm
API 510, and audio API 512 to interface with video
manager 516, comm manager 518, and audio manager
520, respectively. Comm API 510 and comm manager
518 provide a transport-independent interface (TII) that
provides communications services to conferencing ap-
plications 502 and 504. The communications software of
conferencing system 100 supports different transport
mechanisms, such as ISDN (e.g., V.120 interface),
SW56 (e.g., BATP’s Telephone API), and LAN (e.g.,
SPX/IPX, TCP/IP, or NetBIOS). The TII isolates the
conferencing applications from the underlying trans-
port layer (i.e., transport-medium-specific DSP inter-
face 528). The TII hides the network/connectivity spe-
cific operations. In conferencing system 100, the TII
hides the ISDN layer. The DSP interface 528 is hidden
in the datalink module (DLM). The TII provides ser-
vices to the conferencing applications for opening com-
munication channels (within the same session) and dy-
namically managing the bandwidth. The bandwidth is
managed through the transmission priority scheme.

In a preferred embodiment in which conferencing
system 100 performs software video decoding, AVI
capture driver 522 is implemented on top of host inter-
face 526 (the video driver). In an alternative preferred
embodiment in which conferencing system 100 per-
forms hardware video decoding, an AVI display driver
is also implemented on top of host interface 526.

The software architecture of conferencing system
100 comprises three major subsystems: video, audio,
and communication. The audio and video subsystems
are decoupled and treated as “data types” (similar to
text or graphics) with conventional operations like
open, save, edit, and display. The video and audio ser-
vices are available to the applications through video-
management and audio-management extended inter-
faces, respectively.

Audio/Video Conferencing Application

Audio/video conferencing application 502 imple-
ments the conferencing user interface. Conferencing
application 502 is implemented as a Microsoft ® Win-
dows 3.1 application. One child window will display
the local video image and a second child window will
display the remote video image. Audio/video confer-

10

20

25

30

35

45

50

55

65

12

encing application 502 provides the following services
to conferencing system 100:

Manage main message loop.

Perform initialization and registers classes.

Handle menus.

Process toolbar messages.

Handles preferences.

Handles speed dial setup and selections.

Connect and hang up.

Handles handset window

Handle remote video.

Handle remote video window.

Handle local video.

Handle local video window.

Data Conferencing Application

Data conferencing application 504 implements the
data conferencing user interface. Data conferencing
application is implemented as a Microsoft ® Windows
3.1 application. The data conferencing application uses
a “shared notebook” metaphor. The shared notebook
lets the user copy a file from the computer into the
notebook and review it with a remote user during a call.
When the user is sharing the notebook (this time is
called a “meeting™), the users see the same information
on their computers, users can review it together, and
make notes directly into the notebook. A copy of the
original file is placed in the notebook, so the original
remains unchanged. The notes users make during the
meeting are saved with the copy in a meeting file. The
shared notebook looks like a notebook or stack of paper.
Conference participants have access to the same pages.
Either participant can create a new page and fill it with
information or make notes on an existing page.

Conferencing API

Conferencing API 506 of FIG. 5 facilitates the easy
implementation of conferencing applications 502 and
504. Conferencing API 506 of FIG. 5 provides a generic
conferencing interface between conferencing applica-
tions 502 and 504 and the video, comm, and audio sub-
systems. Conferencing API 506 provides a high-level
abstraction of the services that individual subsystems
(i.e., video, audio, and comm) support. The major ser-
vices include:

Making, accepting, and hanging-up calls.

Establishing and terminating multiple communication

channels for individual subsystems.

Instantiating and controlling local video and audio.

Sending video and audio to a remote site through the

network.

Receiving, displaying, and controlling the remote

video and audio streams.
Conferencing applications 502 and 504 can access these
services through the high-level conferencing API 506
without worrying about the complexities of low-level
interfaces supported in the individual subsystems.

In addition, conferencing API 506 facilitates the inte-
gration of individual software components. It minimizes
the interactions between conferencing applications 502
and 504 and the video, audio, and comm subsystems.
This allows the individual software components to be
developed and tested independent of each other. Con-
ferencing API 506 serves as an integration point that
glues different software components together. Confer-
encing API 506 facilitates the portability of audio/video
conferencing application 502.

CISCO SYSTEMS, INC. Ex. 1131 Page 39

5,434,913

13

Conferencing API 506 is implemented as a Microsoft
Windows Dynamic Link Library (DLL). Conferencing
API 506 translates the function calls from conferencing
application 502 to the more complicated calls to the
individual subsystems (i.e., video, audio, and comm).
The subsystem call layers (i.e., video API 508, comm
API 510, and audio API 512) are also implemented in
DLLs. As a result, the programming of conferencing
API 506 is simplified in that conferencing API 506 does
not need to implement more complicated schemes, such
as dynamic data exchange (DDE), to interface with
other application threads that implement the services
for individual subsystems. For example, the video sub-
system will use window threads to transmit/receive
streams of video to/from the network.

Conferencing API 506 is the central control point for
supporting communication channel management (i.e.,
establishing, terminating channels) for video and audio
subsystems. Audio/video conferencing application 502
is responsible for supporting communication channel
management for the data conferencing streams.

Referring now to FIG. 7, there is shown a block
diagram of the conferencing interface layer 700 be-
tween conferencing applications 502 and 504 of FIG. 5,
on one side, and comm manager 518, video manager
516, and audio manager 520, on the other side, accord-
ing to a preferred embodiment of the present invention.
Conferencing API 506 of FIG. 5 comprises conferenc-
ing primitive validator 704, conferencing primitive dis-
patcher 708, conferencing callback 706, and conferenc-
ing finite state machine (FSM) 702 of conferencing
interface layer 700 of FIG. 7. Comm API 510 of FIG. 5
comprises comm primitive 712 and comm caliback 710
of FIG. 7. Video API 508 of FIG. 5 comprises video
primitive 716 of FIG. 7. Audio API 5 12 of FIG. §
comprises audio primitive 720 of FIG. 7.

Conferencing primitive validator 704 validates the
syntax (e.g., checks the conferencing call state, channel
state, and the stream state with the conferencing finite
state machine (FSM) 702 table and verifies the correct-
ness of individual parameters) of each API call. If an
error is detected, primitive validator 704 terminates the
call and returns the error to the application immedi-
ately. Otherwise, primitive validator 704 calls confer-
encing primitive dispatcher 708, which determines
which subsystem primitives to invoke next.

Conferencing primitive dispatcher 708 dispatches and
executes the next conferencing API primitive to start or
continue to carry out the service requested by the appli-
cation. Primitive dispatcher 708 may be invoked either
directly from primitive validator 704 (i.e., to start the
first of a set of conferencing API primitives) or from
conferencing callback 706 to continue the unfinished
processing (for asynchronous API calls). Primitive dis-
patcher 708 chooses the conferencing API primitives
based on the information of the current state, the type of
message/event, and the next primitive being scheduled
by the previous conferencing API primitive.

After collecting and analyzing the completion status
from each subsystem, primitive dispatcher 708 either (1)
returns the concluded message back to the conferencing
application by returning a message or invoking the
application-provided callback routine or (2) continues
to invoke another primitive to continue the unfinished
processing.

There are a set of primitives (i.e., comm primitives.
712, video primitives 716, and audio primitives 720)
implemented for each API call. Some primitives are

15

20

25

30

40

45

50

60

65

14
designed to be invoked from a callback routine to carry
out the asynchronous services.

The subsystem callback routine (i.e., comm callback
710) returns the completion status of an asynchronous
call to the comm subsystem to conferencing callback
706, which will conduct analysis to determine the
proper action to take next. The comm callback 710 is
implemented as a separate thread of execution (vthread-
.exe) that receives the callback Microsoft ® Windows
messages from the comm manager and then calls VCI
DLL to handle these messages.

Conferencing callback 706 returns the completion
status of an asynchronous call to the application. Con-
ferencing callback 706 checks the current message/e-
vent type, analyzes the type against the current confer-
encing API state and the next primitive being scheduled
to determine the actions to take (e.g., invoke another
primitive or return the message to the application). If
the processing is not complete yet, conferencing call-
back 706 selects another primitive to continue the rest
of the processing. Otherwise, conferencing caltback 706
returns the completion status to the application. The
conferencing callback 706 is used only for comm related
conferencing API functions; all other conferencing API
functions are synchronous.

The major services supported by conferencing API
506 are categorized as follows:

Call and Channel Services (establish/terminate a

conference call and channels over the call).

Stream Services (capture, play, record, link, and con-

trol the multimedia audio and video streams).

Data Services (access and manipulate data from the

multimedia streams).

Interfacing with the Comm Subsystem

Conferencing API 506 supports the following comm
services with the comm subsystem:

Call establishment-—place a call to start a conference.

Channel establishment—establish four comm chan-
nels for incoming video, incoming audio, outgoing
video, and outgoing audio. These 4 channels are
opened implicitly as part of call establishment, and
not through separate APIs. The channel APIs are
for other channels (e.g., data conferencing).

Call termination—hang up a call and close all active
channels.

Call Establishment

Establishment of a call between the user of confer-
encing system A of FIG. 1 and the user of conferencing
system B of FIG. 1 is implemented as follows:

Conferencing APIs A and B call BeginSession to
initialize their comm subsystems.

Conferencing API A calls MakeConnection to dial
conferencing API B’s number.

Conferencing API B receives a CONN_RE-
QUESTED callback.

Conferencing API B sends the call notification to the
graphic user interface (GUI); and if user B accepts
the call via the GUI, conferencing API B proceeds
with the following steps.

Conferencing API B calls AcceptConnection to ac-
cept the incoming call from conferencing API A.

Conferencing APIs A and B receives CONN_AC-
CEPTED message.

Conferencing APIs A and B call RegisterChanMgr
for channel management.

CISCO SYSTEMS, INC. Ex. 1131 Page 40

5,434,913

15

Conferencing API A calls OpenChannel to open the
audio channel.

Conferencing API B receives the Chan__Requested
callback and accepts it via AcceptChannel.

Conferencing API A receives the Chan_Accepted 5
callback.

The last three steps are repeated for the video chan-
nel and the control channel.

Conferencing API A then sends the business card
information on the control channel, which confer-
encing API B receives.

Conferencing API B then turns around and repeats
the above 6 steps (i.e., opens its outbound channels
for audio/video/control and sends its business card
information on its control channel).

Conferencing APIs A and B then notify the confer-
encing applications with a CFM_ACCEP-
T_NTFY callback.

Channel Establishment

Video and audio channel establishment is implicity
done as part of call establishment, as described above,
and need not be repeated here. For establishing other
channels such as data conferencing, the conferencing
API passes through the request to the comm manager,
and sends the comm manager’s callback to the user’s
channel manager.

io

15

20

25

Call Termination

Termination of a call between users A and B is imple- 30

mented as follows (assuming user A hangs up):

Conferencing API A unlinks local/remote video/au-
dio streams from the network.

Conferencing API A then calls the comm manager’s
CloseConnection.

The comm manager implicitly closes all channels,
and sends Chan__Closed callbacks to conferencing
API A.

Conferencing API A closes its remote audio/video
streams on receipt of the Chan_Closed callback
for its inbound audio/video channels, respectively.

Conferencing API A then receives the CONN__
CLOSE_RESP from the comm manager after the
call is cleaned up completely. Conferencing API A
notifies its application via a CFM_HAN-
GUP_NTFY.

In the meantime, the comm manager on B would
have received the hang-up notification, and would
have closed its end of all the channels, and notified
conferencing API B via Chan_Closed.

Conferencing API B closes its remote audio/video
streams on receipt of the Chan__Closed callback
for its inbound audio/video channels, respectively.

Conferencing API B unlinks its local audio/video
streams from the network on receipt of the Chan__ 55
Closed callback for its outbound audio/video chan-
nels, respectively.

Conferencing API B then receives a CONN_.
CLOSED notification from its comm manager.
Conferencing API B notifies its application via 60
CFM_HANGUP_NTFY.

Interfacing with the Audio and Video Subsystems

35

45

50

Conferencing API 506 supports the following ser-
vices with the audio and video subsystems:
Capture/monitor/transmit local video streams.
Capture/transmit local audio streams.

Receive/play remote streams.

65

16
Control local/remote streams.
Snap an image from local video stream.
Since the video and audio streams are closely synchro-
nized, the audio and video subsystem services are de-
scribed together.

Capture/Monitor/Transmit Local Streams

The local video and audio streams are captured and
monitored as follows:
Call AOpen to open the local audio stream.
Call VOpen to open the local video stream.
Call ACapture to capture the local audio stream from
the local hardware.
Call VCapture to capture the local video stream from-
the local hardware.
Call VMonitor to monitor the local video stream.
The local video and audio streams are begun to be
sent out to the remote site as follows:
Call ALinkOut to connect the local audio stream to
an output network channel.
Call VLinkOut to connect the local video stream to
an output network channel.
The monitoring of the local video stream locally is
stopped as follows:
Call VMonitor(off) to stop monitoring the local
video stream.

Receive/Play Remote Streams

Remote streams are received from the network and
played as follows:

Call AOpen to open the local audio stream.

Call VOpen to open the local video stream.

Call ALinkIn to connect the local audio stream to an
input network channel.

Call VLinkIn to connect the local video stream to an
input network channel.

Call APlay to play the received remote audio stream.

Call VPlay to play the received - remote video stream.

Control Local/Remote Streams

The local video and audio streams are paused as fol-
lows:
Call VLinkout(off) to stop sending local video on the
network. :
Call AMaute to stop sending local audio on the net-
work. v
The remote video and audio streams are paused as
follows:
If CF_PlayStream(off) is called, conferencing API
calls APlay(off) and VPlay(off).
The local/remote video/audio streams are controlied
as follows:
Call ACntl to control the gains of a local audio
stream or the volume of the remote audio stream.
Call VCntl to control such parameters as the bright-
ness, tint, contrast, color of a local or remote video
stream.

Snap an Image from Local Video Streams

A snapshot of the local video stream is taken and
returned as an image to the application as follows:
Call VGrabframe to grab the most current image
from the local video stream.
Conferencing API 506 supports the following func-
tion calls by conferencing applications 502 and 504 to
the video, comm, and audio subsystems:

CISCO SYSTEMS, INC. Ex. 1131 Page 41

5,434,913

17

18

-continued

CF__Init Reads in the conferencing configuration
parameters (e.g., pathname of the directory
database and directory name in which the
conferencing software is kept) from an
initialization file; loads and initializes the
software of the comm, video, and audio
subsystems by allocating and building
internal data structures; allows the
application to choose between the message
and the callback routines to return the event
notifications from the remote site.

Makes a call to the remote site to establish a
connection for conferencing. The call is
performed asynchronously.

Accepts 2 call initiated from the remote site
based on the information received in the
CFM_CALL_NTFY message.

Rejects incoming call, if appropriate, upon
receiving a CFM_CALL_NTFY message.
Hangs up a call that was previously
established; releases all resources, including
all types of streams and data structures,
allocated during the call.

Returns the current state of the specified
call.

Starts the capture of analog video signals
from the local camera and displays the
video in the local__video.-window which
is pre-opened by the application. This
function allows the user to preview his/her
appearance before sending the signals out to
the remote site.

Starts the reception and display of remote
video signals in the remote__video__window,
which is pre-opened by the application;
starts the reception and play of remote audio
signals through the local speaker.

Destroys the specified stream group that
was created by CF_CapMon or
CF_PlayRcvd. As part of the destroy
process, all operations (e.g., sending/
playing) being performed on the stream
group will be stopped and all allocated
system resources will be freed.

Uses AMute to turn on/off the mute
function being performed on the audio
stream of a specified stream group. This
function will temporarily stop or restart
the related operations, including playing and
sending, being performed on this stream
group. This function may be used to hold
temporarily one audio stream and provide
more bandwidth for other streams to use.
Takes a snapshot of the video stream of the
specified stream group and returns a still
image (reference) frame to the application
buffers indicated by the hBuffer handle.
Controls the capture or playback functions
of the local or remote video and audio
stream groups.

Uses ALinkOut to pause/unpause audio.
Returns the current state and the audio
video control block (AVCB) data structure,
preallocated by the application, of the
specified stream groups.

Stops/starts the playback of the remote
audio/video streams by calling
APlay/VPlay.

CF__ MakeCall

CF__AcceptCall

CF__RejectCall

CF_HangupCall

CF__GetCallState

CF_CapMon

CF__PlayRcvd

CF_Destroy

CF_Mute

CF__SnapStream

CF__Control

CF__SendStream

CF__GetStreamlInfo

CF__PlayStream

These functions are defined in further detail later in this
specification in a section entitled “Data Structures,
Functions, and Messages.”

In addition, conferencing API 506 supports the fol-
lowing messages returned to conferencing applications
502 and 504 from the video, comm, and audio subsys-
tems in response to some of the above-listed functions:

CFM_CALL_NTFY Indicates that a call request

10

15

20

25

30

35

45

50

55

initiated from the remote site has
been received.

Indicates that a call state/progress
notification has been received from
the local phone system support.
Indicates that the remote site has
accepted the call request issued
locally. Also sent to the accepting
application when CF_AcceptCall
completes.

Indicates that the remote site has
rejected or the local site has failed
to make the call.

Indicates that the remote site has
hung up the call.

CFM_PROGRESS..NTFY

CFM_ACCEPT_NTFY

CFM_REJECT_NTFY

CFM_HANGUP._NTFY

Referring now to FIG. 8, there is shown a representa-
tion of the conferencing call finite state machine (FSM)
for a conferencing session between a local conferencing
system (i.e., caller) and a remote conferencing system
(i.e., callee), according to a preferred embodiment of
the present invention. The possible conferencing call
states are as follows:

CCST_NULL Null State — state of uninitialized
caller/callee.
CCST_IDLE Idle State — state of caller/callee ready

to make/receive calls.

Calling state — state of caller trying to
call callee.

Called state — state of callee being
called by caller.

Call state — state of caller and callee
during conferencing session.

A hangup or call cleanup is in progress.

CCST_CALLING
CCST._.CALLED
CCST_CONNECTED

CCST._CLOSING

At the CCST_CONNECTED state, the local applica-
tion may begin capturing, monitoring, and/or sending
the local audio/video signals to the remote application.
At the same time, the local application may be receiving
and playing the remote audio/video signals.

Referring now to FIG. 9, there is shown a representa-
tion of the conferencing stream FSM for each confer-
encing system participating in a conferencing session,
according to a preferred embodiment of the present
invention. The possible conferencing stream states are
as follows:

CSST_INIT Initialization state — state of

local and remote streams after
CCST_CONNECTED state is

first reached.

Capture state — state of local stream being
captured. Receive state — state of remote
stream being received.

Fail state — state of local/remote stream
after resource failure.

CSST_ACTIVE

CSST_FAILURE

Conferencing stream FSM represents the states of both
the local and remote streams of each conferencing sys-
tem. Note that the local stream for one conferencing
system is the remote stream for the other conferencing
system.

In a typical conferencing session between a caller and
a callee, both the caller and callee begin in the
CCST_NULL call state of FIG. 8. The conferencing
session is initiated by both the caller and callee calling
the function CF_Init to initialize their own conferenc-
ing systems. Initialization involves initializing internal
data structures, initializing communication and configu-

CISCO SYSTEMS, INC. Ex. 1131 Page 42

5,434,913

19

ration information, opening a local directory data base,
verifying the local user’s identity, and retrieving the
user’s profile information from the database. The CF_I-
nit function takes both the caller and callee from the
CCST_NULL call state to the CCST_IDLE call
state. The CF_Init function also places both the local
and remote streams of both the caller and callee in the
CSST_INIT stream state of FIG. 9.

Both the caller and callee call the CF_CapMon func-
tion to start capturing local video and audio signals and
playing them locally, taking both the caller and callee
local stream from the CSST__INIT stream state to the
CSST_ACTIVE stream state. Both the caller and cal-
lee may then call the CF_Control function to control
the local video and audio signals, leaving all states un-
changed.

The caller then calls the CF_MakeCall function to
initiate a call to the callee, taking the caller from the
CCST_IDLE call state to the CCST_CALLING call
state. The callee receives and processes a CFM_CAL-
L_NTFY message indicating that a call has been
placed from the caller, taking the callee from the
CCST_IDLE call state to the CCST_CALLED call
state. The callee calls the CF_AcceptCall function to
accept the call from the caller, taking the callee from
the CCST_CALLED call state to the CCST_CON-
NECTED call state. The caller receives and processes
a CFM_ACCEPT_NTFY message indicating that the
callee accepted the call, taking the caller from the
CCST_.CALLING call state to the CCST_CON-
NECTED call state.

Both the caller and callee then call the CF_.
PlayRevd function to begin reception and play of the
video and audio streams from the remote site, leaving
all states unchanged. Both the caller and callee call the
CF_SendStream function to start sending the locally
captured video and audio streams to the remote site,
leaving all states unchanged. If necessary, both the
caller and callee may then call the CF_Control func-
tion to control the remote video and audio streams,
again leaving all states unchanged. The conferencing
session then proceeds with no changes to the call and
stream states. During the conferencing session, the ap-
plication may call CF._Mute, CF_PlayStream, or CF
SendStream. These affect the state of the streams in the
audio/video managers, but not the state of the stream
group.

When the conferencing session is to be terminated,
the caller calls the CF_HangupCall function to end the
conferencing session, taking the caller from the
CCST_CONNECTED call state to the CCST_IDLE
call state. The callee receives and processes a CFM_.
HANGUP_NTFY message from the caller indicating
that the caller has hung up, taking the callee from the
CCST_CONNECTED call state to the CCST_IDLE
call state.

Both the caller and callee call the CF_Destroy func-
tion to stop playing the remote video and audio signals,
taking both the caller and callee remote streams from
the CSST_ACTIVE stream state to the CSST_INIT
stream state. Both the caller and callee also call the
CF_Destroy function to stop capturing the local video
and audio signals, taking both the caller and callee local
streams from the CSST_ACTIVE stream state to the
CSST..INIT stream state.

This described scenario is just one possible scenario.
Those skilled in the art will understand that other sce-

5

10

20

25

30

35

45

50

55

60

65

20
narios may be constructed using the following addi-
tional functions and state transitions:

If the callee does not answer within a specified time
period, the caller automatically calls the CF-.Han-
gupCall function to hang up, taking the caller from
the CCST_CALLING call state to the CCST_I-
DLE call state.

The callee calls the CF_RejectCall function to reject
a call from the caller, taking the callee from the
CCST_CALLED call state to the CCST_IDLE

- call state. The caller then receives and processes a
CFM_REJECT_NTFY message indicating that
the callee has rejected the caller’s call, taking the
caller from the CCST_CALLING call state to the
CCST_IDLE call state.

The callee (rather than the caller) calls the CF_Han-
gupCall function to hang up, taking the caliee from
the CCST_CONNECTED call state to the
CCST_IDLE call state. The caller receives a
CFM_HANGUP_NTFY message from the cal-
lee indicating that the callee has hung up, taking
the caller from the CCST_CONNECTED call
state to the CCST_IDLE call state.

The CF_GetCallState function may be called by either
the caller or the callee from any call state to determine
the current call state without changing the call state.
During a conferencing session, an unrecoverable
resource failure may occur in the local stream of either
the caller or the callee causing the local stream to be
lost, taking the local stream from the CSST_ACTIVE
stream state to the CSST_FAILURE stream state.
Similarly, an unrecoverable resource failure may occur
in the remote stream of either the caller or the callee
causing the remote stream to be lost, taking the remote
stream from the CSST_ACTIVE stream state to the
CSST_FAILURE stream state. In either case, the local
site calls the CF__Destroy function to recover from the
failure, taking the failed stream from the CSST_FAIL-
URE stream state to the CSST_INIT stream state.

The CF_GetStreamlnfo function may be called by
the application from any stream state of either the local
stream or the remote stream to determine information
regarding the specified stream groups. The CF_Snap-
Stream and CF_RecordStream functions may be calied
by the application for the local stream in the
CSST_ACTIVE stream state or for the remote stream
(CF_RecordStream only) in the CSST_ACTIVE
stream state. All of the functions described in this para-
graph leave the stream state unchanged.

Video Subsystem

The video subsystem of conferencing system 100 of
FIG. 5 comprises video API 508, video manager 516,
video capture driver 522, and host interface 526 running
on host processor 202 of FIG. 2 and video microcode
530 running on video board 204. The following sections
describe each of these constituents of the video subsys-
tem.

Video API

Video API 508 of FIG. 5 provides an interface be-
tween audio/video conferencing application 502 and
the video subsystem. Video API 508 provides the fol-
lowing services:

Capture Service Captures a single video stream continuously

from a local video hardware source, for

CISCO SYSTEMS, INC. Ex. 1131 Page 43

5,434,913

21

-continued

22

-continued

exampie, a video camera or VCR, and
directs the video stream to a video software
output sink (i.e., a network destination).
Monitors the video stream being captured
from the local video hardware in the local
video window previously opened by the
application.

Note: This function intercepts and displays a
video stream at the hardware board when
the stream is first captured. This operation is
similar to a “Short circuit” or a UNIX tee
and is different from the “play” function.
The play function gets and displays the
video stream at the host. In conferencing
system 100, the distinction between

monitor and play services is that one is on
the board and the other at the host. Both are
carried out on the host (i.e., software
playback). Rather, the distinction is this:
monitor service intercepts and displays, on
the local system, a video stream that has
been captured with the local hardware
(generated locally). By contrast, play
service operates on a video stream that has
been captured on a remote system’s
hardware and then sent to the local system
{generated remotely).

Suspends capturing or playing of an active
video stream; resumes capturing or playing
of a previously suspended video stream.
Grabs the most current complete still image
(called a reference frame) from the specified
video stream and returns it to the
application in the Microsoft ® DIB
(Device-Independent Bitmap) format.

Monitor Service

Pause Service

Image Capture

Play Service Plays a video stream continuously by
consuming the video frames from a video
software source (i.e., a network source).

Lipk-In Service Links a video network source to be the

input of a video stream played locally. This
service allows applications to change
dynamically the software input source of a
video stream.

Links a network source to be the output of a
video stream captured locaily. This service
allows applications to change dynamically
the software output source of a video
stream.

Controls the video stream *“on the fly,”
including adjusting brightness, contrast,
frame rate, and data rate.

Returns status and information about a

Link-Out Service

Control Service

Information Service

specified video stream.
Initialization/ Initializes the video subsystem and
Configuration calculates the cost, in terms of system

resources, required to sustain certain video
configurations. These costs can be used by
other subsystems to determine the optimum
product configuration for the given system.

Video API 508 supports the following function calls
by audio/video conferencing application 502 to the
video subsystem:

VOpen Opens a video stream with specified attributes by
allocating all necessary system resources (e.g.,
internal data structures) for it.

Starts/stops capturing a video stream from a local
video hardware source, such as 2 video camera
or VCR.

Starts/stops monitoring a video stream captured
from local a video camera or VCR.

Starts/stops playing a video stream from a
network, or remote, video source. When starting
to play, the video frames are consumed from a
network video source and displayed in 2 window
pre-opened by the application.

Links/unlinks a network . . . to/from a specified
video stream, which will be played/is being played

VCapture

‘VMonitor

VPlay

VLinkIn

10

15

20

25

30

35

45

50

55

65

locally.

Links/unlinks a network . . . to/from a specified
video stream, which will be captured/is being
captured from the local camera or VCR.

Grabs the most current still image (reference
frame) from a specified video stream and returns
the frame in an application-provided buffer.
Starts/stops pausing a video stream captured/
played locally.

Controls a video stream by adjusting its
parameters (e.g., tint/contrast, frame/data rate).
Returns the status (VINFO and state) of a video
stream.

Closes a video stream and releases all system
resources allocated for this stream.

Initializes the video subsystem, starts capture and
playback applications, and calculates system
utilization for video configurations.

Shuts down the video subsystem and stops the
capture and playback applications.

Calculates and reports the percentage CPU
utilization required to support a given video
stream.

VLinkOut

VGrabframe

VPause

VCntl

VGetlnfo

VClose

VInit

VShutdown

VCost

These functions are defined in further detail later in this
specification in a section entitled “Data Structures,
Functions, and Messages.”

Referring now to FIG. 10, there is shown a represen-
tation of the video FSM for the local video stream and
the remote video stream of a conferencing system dur-
ing a conferencing session, according to a preferred
embodiment of the present invention. The possible
video states are as follows:

VST_INIT Initial state — state of local and remote video
streams after the application calls the CF_Init
function.

VST_OPEN QOpen state — state of the local/remote video

stream after system resources have been
allocated.

Capture state ~— state of local video stream
being captured.

Link-out state — state of local video stream
being linked to video output (e.g., network
output channel or output file).

VST..CAPTURE

VST_LINKOUT

VST_LINKIN Link-in state — state of remote video stream
being linked to video input (e.g., network
input channel or input file).

VST_PLAY Play state — state of remote video stream
being played.

VST_ERROR Error state — state of local/remote video

stream after a system resource failure occurs.

In a typical conferencing session between a caller and
a callee, both the local and remote video streams begin
in the VST_INIT video state of FIG. 10. The applica-
tion calis the VOpen function to open the local video
stream, taking the local video stream from the VST_I-
NIT video state to the VST_OPEN video state. The
application then calls the VCapture function to begin
capturing the local video stream, taking the local video
stream from the VST__OPEN video state to the VST_.
CAPTURE video state. The application then calis the
VLinkOut function to link the local video stream to the
video output channel, taking the local video stream
from the VST_CAPTURE video state to the VST__
LINKOUT video state.

The application calls the VOpen function to open the
remote video stream, taking the remote video stream
from the VST_INIT video state to the VST_OPEN
video state. The application then calls the VLinkin
function to link the remote video stream to the video

CISCO SYSTEMS, INC. Ex. 1131 Page 44

5,434,913

23

input channel, taking the remote video stream from the
VST_OPEN video state to the VST_LINKIN video
state. The application then calls the VPlay function to
begin playing the remote video stream, taking the re-
mote video stream from the VST_LINKIN video state
to the VST_PLAY video state. The conferencing ses-
sion proceeds without changing the video states of ei-
ther the local or remote video stream.

When the conferencing session is to be terminated,
the application calls the VClose function to close the
remote video channel, taking the remote video stream
from the VST_PLAY video state to the VST_INIT
video state. The application also calls the VClose func-
tion to close the local video channel, taking the local
video stream from the VST_LINKOUT video state to
the VST_INIT video state.

This described scenario is just ome possible video
scenario. Those skilled in the art will understand that
other scenarios may be constructed using the following
additional functions and state transitions:

The application calls the VLinkOut function to un-
link the local video stream from the video output
channel, taking the local video stream from the
VST_LINKOUT video state to the VST_CAP-
TURE video state.

The application calls the VCapture function to stop
capturing the local video stream, taking the local
video stream from the VST_CAPTURE video
state to the VST_OPEN video state.

The application calls the VClose function to close the
local video stream, taking the local video stream
from the VST_OPEN video state to the VST_I-
NIT video state.

The application calls the VClose function to close the
local video stream, taking the local video stream
from the VST_CAPTURE video state to the
VST_INIT video state.

The application calls the VClose function to recover
from a system resource failure, taking the local
video stream from the VST_ERROR video state
to the VST_INIT video state. '

The application calls the VPlay function to stop play-
ing the remote video stream, taking the remote
video stream from the VST_PLAY video state to
the VST_LINKIN video state.

The application calls the VLinkIn function to unlink
the remote video stream from the video input chan-
nel, taking the remote video stream from the
VST_LINKIN video state to the VST_OPEN
video state.

The application calls the VClose function to close the
remote video stream, taking the remote video
stream from the VST_OPEN video state to the
VST_INIT video state.

The application calls the VClose function to close the
remote video stream, taking the remote video
stream from the VST_LINKIN video state to the
VST_INIT video state.

The application calls the VClose function to recover
from a system resource failure, taking the remote
video stream from the VST_ERROR video state
to the VST_INIT video state.

The VGetlInfo and VCntl functions may be called by
the application from any video state of either the local
or remote video stream, except for the VST_INIT
state. The VPause and VGrabFrame functions may be
called by the application for the local video stream from
either the VST_CAPTURE or VST_LINKOUT

20

25

30

35

45

50

55

60

65

24
video states or for the remote video stream from the
VST_PLAY video state. The VMonitor function may
be called by the application for the local video stream
from either the VST_CAPTURE or VST_LINK-
OUT video states. All of the functions described in this
paragraph leave the video state unchanged.

Video Manager

Referring now to FIG. 11, there is shown a block
diagram of the software components of video manager
(VM) 516 of FIG. 5, according to a preferred embodi-
ment of the present invention. Video manager 516 is
implemented using five major components:

Library (VM DLL 1102) A Microsoft ® Windows
Dynamic Link Library (DLL) that provides
the library of functions of video API 508.
(VCapt EXE 1104) A Microsoft ® Windows
application (independently executable control
thread with stack, message queue, and data)
which controls the capture and distribution of
video frames from video board 204.

(VPlay EXE 1106) A Microsoft ® Windows
application which controls the playback (i.e.,
decode and display) of video frames received
from either the network or a co-resident
capture application.

(Netw DLL 1108) A Microsoft ® Windows
DLL which provides interfaces to send and
receive video frames across a network or in a
local loopback path to a co-resident playback
application. The Netw DLL hides detaiis of
the underlying network support from the
capture and playback applications and
implements (in a manner hidden from those
applications) the local loopback function.
(AVSync DLL 1110) A Microsoft ® Windows
DLL which provides interfaces to enable the
synchronization of video frames with a
separate stream of audio frames for the -
purposes of achieving “lip-synchronization.”
AVSync DLL 1110 supports the
implementation of an audio-video
synchronization technique described later in
this specification.

Capture

Playback

Network Library

Audio-Video

Synchronization
Library

The five major components, and their interactions, de-
fine how the VM implementation is decomposed for the
purposes of an implementation. In addition, five tech-
niques provide full realization of the implementation:

Stream Restart A technique for initially starting, and
restarting, a video stream. If a video stream
consists entirely of encoded “delta” frames,
then the method of stream start/restart
quickly supplies the decoder with a ‘“key”
or reference frame. Stream restart is used
when a video stream becomes out-of-sync
with respect to the audio.

An aundio-video synchronization technique
for synchronizing a sequence, or stream, of
video frames with an external audio source.
A technique by which the video stream bit
rate is controlled so that video frame data
co-exists with other video conferencing
components. This technique is dynamic in
nature and acts to “throttle” the video
stream (up and down) in response to higher
priority requests (higher than video data
priority) made at the network interface.

A technique by which multiple video
formats are used to optimize transfer,
decode, and display costs when video frames
are moved between video board 204 and
host processor 202. This technique balances
video frame data transfer overhead with
host processor decode and display overhead

Synchronization

Bit Rate Throttling

Multiple Video
Formats

CISCO SYSTEMS, INC. Ex. 1131 Page 45

5,434,913

25

-continued

in order to implement efficiently a local
video monitor.

A self-calibration technique which is used to
determine the amount of motion video PC
system can support. This allows
conferencing system 100 to vary video
decode and display configurations in order
to run on a range of PC systems. It is
particularly applicable in software-

playback systems.

Self-Calibration

Capture/Playback Video Effects

This sub section describes an important feature of the
VM impiementation that has an impact on the imple-
mentation of both the capture and playback applications
(VCapt EXE 1104 and VPlay EXE 1106). One of the
key goals of VM capture and playback is that while
local Microsoft ® Windows application activity may
impact local video playback, it need not effect remote
video playback. That is, due to the non-preemptive
nature of the Microsoft ® Windows environment, the
VPlay application may not get control to run, and as
such, local monitor and remote playback will be halted.

5

10

20

However, if captured frames are delivered as a part of 25

capture hardware interrupt handling, and network in-
terfaces are accessible at interrupt time, then captured
video frames can be transmitted on the network, regard-
less of local conditions.

With respect to conferencing system 100, both of 30

these conditions are satisfied. This is an important fea-
ture in an end-to-end conferencing situation, where the
local endpoint is unaware of remote endpoint process-
ing, and can only explain local playback starvation as a
result of local activity. The preferred capture and play-
back application design ensures that remote video is not
lost due to remote endpoint activity.

Video Stream Restart

The preferred video compression method for confer-
encing system 100 (i.e., ISDN rate video or IRV) con-
tains no key frames (i.e., reference frames). Every frame
is a delta (i.e., difference) frame based on the preceding
decoded video frame. In order to establish a complete
video image, IRV dedicates a small part (preferably
1/85th) of each delta frame to key frame data. The part
of an IRV delta frame that is key is complete and does
not require inter-frame decode. The position of the key
information is relative, and is said to “walk” with re-
spect to a delta frame sequence, so that the use of partial
key information may be referred to as the “walking key
frame.”

Referring now to FIG. 12, there is shown a represen-
tation of a sequence of N walking key frames. For a
walking key frame of size i/N, the kth frame in a se-
quence of N frames, where (k < =N), has its kth compo-
nent consisting of key information. On decode, that kth
component is complete and accurate. Provided frame
k+1 is decoded correctly, the kth component of the
video stream will remain accurate, since it is based on a
kth key component and a k+1 correct decode. A com-
plete key frame is generated every N flames in order to
provide the decoder with up-to-date reference informa-
tion within N flames.

For a continuous and uninterrupted stream of video
frames, the walking key frame provides key information
without bit-rate fluctuations that would occur if a com-
plete key frame were sent at regular intervals. How-

35

40

45

55

65

26

ever, without a complete key frame, video startup re-
quires collecting all walking key frame components,
which requires a delay of N flames. If video startup/re-
start occurs often, this can be problematic, especially if
N is large. For example, at 10 flames per second (fps)
with N=83, the startup/restart time to build video from
scratch is 8.5 seconds.

In order to accelerate IRV stream startup and restart,
an IRV capture driver “Request Key Frame” interface
is used to generate a complete key frame on demand.
The complete key frame “compresses” N flames of
walking key flames into a single frame, and allows im-
mediate stream startup once it is received and decoded.
Compressed IRV key flames for (160X 120) video im-
ages are approximately 6-8 KBytes in length. Assuming
an ISDN bandwidth of 90 kbits dedicated to video,
ISDN key frame transmission takes approximately
0.5-0.6 seconds to transmit. Given a walking key frame
size of 1/85 (N=85), and a flame rate of 10 fps, use of a
complete key flame to start/restart a video stream can
decrease the startup delay from 8.5 secs to approxi-
mately % sec.

In order for walking key frame compression to be
successful, the delta frame rate must be lowered during
key frame transmission. Delta flames generated during
key frame transmission are likely to be “out-of-sync”
with respect to establishing audio-video synchroniza-
tion, and given the size of a key frame, too many delta
flames will exceed the overall ISDN bandwidth. The
IRV capture driver bit rate controller takes into ac-
count key frame data in its frame generation logic and
decreases frame rate immediately following a key
frame.

A key frame once received may be “out-of-sync”
with respect to the audio stream due to its lengthy trans-
mission time. Thus, key frames will be decoded but not
displayed, and the video stream will be “in-sync” only
when the first follow-on delta frame is received. In
addition, the “way-out-of-sync” window is preferably
sized appropriately so that key frame transmission does
not cause the stream to require repeated restarts.

Once it is determined that a stream requires restart,
either as part of call establishment or due to synchroni-
zation problems, the local endpoint requiring the restart
transmits a restart control message to the remote cap-
ture endpoint requesting a key frame. The remote cap-
ture site responds by requesting its capture driver to
generate a key frame. The key frame is sent to the local
endpoint when generated. The endpoint requesting the
restart sets a timer immediately following the restart
request. If a key frame is not received after an adequate
delay, the restart request is repeated.

Audio/Video Synchronization

Video manager 516 is responsible for synchronizing
the video stream with the audio stream in order to
achieve “lip-synchronization.” Because of the overall
conferencing architecture, the audio and video subsys-
tems do not share a common clock. In addition, again
because of system design, the audio stream is a more
reliable, lower latency stream than the video stream.
For these reasons, the video stream is synchronized by
relying on information regarding capture and playback
audio timing.

For VM audio/video (A/V) synchronization, audio
stream packets are timestamped from an external clock
at the time they are captured. When an audio packet is
played, its timestamp represents the current audio play-

CISCO SYSTEMS, INC. Ex. 1131 Page 46

5,434,913

27
back time. Every video frame captured is stamped with
a timestamp, derived from the audio system, that is the
capture timestamp of the last audio packet captured. At
the time of video playback (decode and display, typi-
cally at the remote endpoint of a video conference), the
video frame timestamp is compared with the current
audio playback time, as derived from the audio system.

Two windows, or time periods, 8; and 83, are defined,
with 81 < 8y, as part of VM initialization. Let Vrbe the
timestamp for a given video frame, and let Arbe the
current audio playback time when the video frame is to
be played.. A/V synchronization is defined as follows:

1. If |A7~V 7| =8, then the video stream is “in-
sync” and played normally (i.e., decoded and dis-
played immediately).

2. If 31<|A7—V 1| =8, then the video stream is
“out-of-sync™ and a “hurry-up” technique is used
to attempt re-synchronization. If a video stream
remains out-of-sync for too many consecutive
frames, then it becomes “way-out-of-sync” and
requires a restart.

3. If 8,< | Ar—V 7|, then the video stream is “way-
out-of-sync” and requires a restart.

Because of the overall design of conferencing system
100, a video stream sent from one endpoint to another is
“behind” its corresponding audio stream. That is, the
transmission and reception of a video frame takes longer
than the transmission and reception of an audio frame.
This is due to the design of video and audio capture and
playback sites relative to the network interface, as well
as video and audio frame size differences. In order to
compensate for this, the audio system allows capture
and playback latencies to be set for an audio stream.
Audio capture and playback latencies artificially delay
the capture and playback of an audio stream.

As part of the VLinkOut function, video manager 516
calls audio manager 520 to set an audio capture latency.
As part of the VLinkIn function, video manager 516
calls audio manager 520 to set an audio playback la-
tency. Once the latencies are set, they are preferably not
changed. The capture and playback latency values are
specified in milliseconds, and defined as part of VM
initialization. They may be adjusted as part of the Cali-
bration process.

In order to attempt re-synchronization when a stream
is not too far “out-of-sync” as defined by the above
rules, an feature called “Hurry-up” is used. When pass-
ing a video frame to the codec for decode, if hurry-up is
specified, then the codec performs frame decode to a
YUV intermediate format but does not execute the
YUV-to-RGB color conversion. Though the output is
not color converted for RGB graphics display, the
hurry-up maintains the playback decode stream for
following frames. When Hurry-up is used, the frame is
not displayed. By decreasing the decode/display cost
per frame and processing frames on demand (the num-
ber of frames processed for playback per second can
vary), it is possible for a video stream that is out-of-sync
to become in-sync.

Bit Rate Throttling

Conferencing system 100 supports a number of differ-
ent media: audio, video, and data. These media are
prioritized in order to share the limited network (e.g.,
ISDN) bandwidth. A priority order of (highest-to-low-
est) audio, data, and video is designated. In this scheme,
network bandwidth that is used for video will need to
give way to data, when data conferencing is active

5

15

20

25

30

35

40

45

50

55

65

28

(audio is not compromised). In order to implement the
priority design, a mechanism for dynamically throttling
the video bit stream is used. It is a self-throttling system,
in that it does not require input from a centralized bit
rate controller. It both throttles down and throttles up a
video bit stream as a function of available network
bandwidth.

. A latency is a period of time needed to complete the
transfer of a given amount of data at a given bit rate.
For example, for 10 kbits at 10 kbits/sec, latency=1. A
throttle down latency is the latency at which a bit
stream is throttled down (i.e., its rate is lowered), and a
throttle up latency is the latency at which a bit stream is
throttled up (i.e., its rate is increased).

Multipie Video Formats

Conferencing system 100 presents both a local moni-
tor display and a remote playback display to the user. A
digital video resolution of (160X 120) is preferably used
as capture resolution for ISDN-based video conferenc-
ing (i.e., the resolution of a coded compressed video
stream to a remote site). (160X 120) and (320X 240) are
preferably used as the local monitor display resolution.
(320< 240) resolution may also be used for high-resolu-
tion still images. Generating the local monitor display
by decompressing and color converting the compressed
video stream would be computationally expensive. The
video capture driver 522 of FIG. § simultaneously gen-
erates both a compressed video stream and an uncom-
pressed video stream. Video manager 516 makes use of
the uncompressed video stream to generate the local
monitor display. Video manager 516 may select the
format of the uncompressed video stream to be either
YUV-9 or 8-bits/pixel (bpp) RGB—Device Indepen-
dent Bitmap (DIB) format. For a (160X 120) local moni-
tor, the uncompressed DIB video stream may be dis-
played directly. For a (320X 240) monitor, a (160X 120)
YUV-9 format is used and the display driver “doubles”
the image size to (320X 240) as part of the color conver-
sion process.

In the RGB and YUV-9 capture modes, RGB or
YUYV data are appended to capture driver IRV buffers,
so that the capture application (VCapt EXE 1104) has
access to both fully encoded IRV frames and either
RGB or YUV data. Conferencing system 100 has cus-
tom capture driver interfaces to select either RGB cap-
ture mode, YUV capture mode, or neither.

Self-Calibration

CPU, 1/0 bus, and display adapter characteristics
vary widely from computer to computer. The goal of
VM self-calibration is to support software-based video
playback on a variety of PC platforms, without having
to “hard-code” fixed system parameters based on
knowledge of the host PC. VM self-calibration mea-
sures a PC computer system in order to determine the
decode and display- overheads that it can support. VM
self-calibration also offers a cost function that upper-
layer software may use to determine if selected display
options, for a given video compression format, are sup-
ported.

There are three major elements to the self-calibration:

1. The calibration of software decode using actual

video decompress cycles to measure decompres-
sion costs. Both RGB/YUV capture mode and
IRV frames are decoded in order to provide accu-
rate measurement of local (monitor) and remote
video decode. YUV (160X120) and YUV

CISCO SYSTEMS, INC. Ex. 1131 Page 47

5,434,913

29
(320X 240) formats are also decoded (color con-
verted) to provide costs associated with the YUV
preview feature of the video subsystem.

2. A calibration of PC displays, at varying resolu-
tions, using actual video display cycles to measure
display costs.

3. A video cost function, available to applications,
that takes as input frame rate, display rate, display
resolution, video format, and miscellaneous video
stream characteristics, and outputs a system utiliza-
tion percentage representing the total system cost
for supporting a video decompress and display
having the specified characteristics.

The calibration software detects a CPU upgrade or
display driver modification in order to determine if
calibration is to be run, prior to an initial run on a newly
installed system.

VMDLL

Referring again to FIG. 11, video manager dynamic
link library (VM DLL) WB is a video stream “object
manager.” That is, with few exceptions, all VM DLL
interfaces take a “Video Stream Object Handle”
(HVSTRM) as input, and the interfaces define a set of
operations or functions on a stream object. Multiple
stream objects may be created.

Video API 508 defines all of external interfaces to
VM DLL WB. There are aiso a number of VM internal
interfaces to VM DLL WB that are used by VCapt
EXE WC, VPlay EXE WD, Netw DLL WE, and
AVSync DLL WF for the purposes of manipulating a
video stream at a lower level than that available to
applications. The vm.h file, provided to applications
that use VM DLL WF, contains a definition of all EPS
and VM internal interfaces. EPS interfaces are prefixed
with a2 ‘V’; VM internal interfaces are prefixed with a
‘VM’. Finally, there are a number of VM private inter-
faces, available only to the VM DLL code, used to
implement the object functions. For example, there are
stream object validation routines. The self-calibration
code is a separate module linked with the VM DLL
code proper.

Video API calls, following HYSTRM and parameter
validation, are typically passed down to either VCapt
or VPlay for processing. This is implemented using the
Microsoft ® Windows SDK SendMessage interface.
SendMessage takes as input the window handle of the
target application and synchronously calls the main
window proc of that application. As part of VM initial-
ization, VM starts execution of the applications, VCapt
and VPlay. As part of their WinMain processing, these
applications make use of a VMRegister interface to
return their window handle to VM DLL WB. From
registered window handles, VM DLL WB is able to
make use of the SendMessage interface. For every
video API interface, there is a corresponding parameter
block structure used to pass parameters to VCapt or
VPlay. These structures are defined in the vm.h file. In
addition to the WinExec startup and video API inter-
face calls, VM DLL WB can also send a shutdown
message to VCapt and VPlay for termination process-
ing.

Immediately following the successful initialization of
VCapt and VPlay, VM 516 calls the interface
‘videoMeasure’ in order to run self-calibration. The
VCost interface is available, at run-time, to return mea-
surement information, per video stream, to applications.

5

15

20

25

30

35

45

50

60

65

30

VCapt EXE

The video capture application (VCapt EXE WC)
implements all details of video frame capture and distri-
bution to the network, including:

Control of the video board capture driver.

Video format handling to support IRV and

RGB/YUV capture mode.

Video frame capture callback processing of captured
video frames.

Copy followed by PostMessage transfer of video
frames to local playback application (VPlay EXE).

Transmission, via Netw DLL WE, of video frames to
the network.

Mirror, zoom, camera video attributes, and miscella-
neous capture stream control processing.

Restart requests from a remote endpoint.

Shutdown processing.

VCapt EXE WC processing may be summarized as a
function of the Microsoft ® Windows messages as fol-
lows:

WINMAIN

Initialize application.

Get VCapt EXE initialization (INI) settings.

Open video board capture driver.

Register window handle (and status) with VM DLL
WB.

Enter Microsoft ® Windows message loop.

WM_VCAPTURE_CALL (ON)

Register audio callback with audio manager 520.

Set audio capture latency with audio manager 520.

Initialize the video board capture stream based on
stream object attributes.

WM_VLINKOUT_CALL (ON)

Register Netw callback handler for transmission
completion handling.

Initialize bit rate throttling parameters.

WM_MONITOR _DATA_RTN

Decrement reference count on video frame (user

context buffers).
WM_PLAY DATA_RTN

Add buffer back to capture driver.

This message is only in loopback case of remote play-
back—preferably for testing only.
WM_RESTART_STREAM

Request key frame from capture driver.
WM_VCNTL_CALL

Adjust video stream controls based on VCntl param-
eters (from VM DLL WB).

WM_PLAYBACK

Get stream format type (IRV, YUV).

Set video board RGB/YUYV capture mode controls:
If IRV (160X 120) playback then RGB; if IRV
320X 240 playback, then YUV,

This message is from local playback application (VPlay
EXE WD) in response to local window (monitor) size
changes. .

WM_SHUTDOWN

Disable capture; includes closing the capture driver.

Un-initializes capture application.

DestroyWindow.

VCapt Capture Callback is a key component of the
VCapt EXE application. VCapt Capture Callback pro-
cesses individual frames received, in interrupt context,
from the capture driver (ISVR.DRYV). The main steps
of callback processing are:

Time stamp the video frame using AVSync DLL

WF.

CISCO SYSTEMS, INC. Ex. 1131 Page 48

5,434,913

31

Set the packet sequence number of the frame (for
network error detection).

If the video stream is in the Monitor state, then copy
the frame out of interrupt context into a local moni-
tor playback frame first-in first- out (FIFO) device.
If the video format is YUV, then only the frame
header is copied, since YUV data does not go to
the network, and is not “real-time.”

If the video stream is in the LinkOut state of FIG. 10,
then call the NETWSendFrame function to send
the frame to the remote playback site, and then add
the frame buffer back to the capture driver. Also,
use interface DataRateThrottleDown to adjust the
video bit rate, as needed.

VPlay EXE

The video playback application (VPlay EXE WD)
implements all details of video playback, including:

Opening an instance of the IRV playback codec for

each playback stream: local monitor and remote
playback.

Maintaining display mode attributes for each stream,

based on playback window sizes.

Maintain palette “awareness” for each video stream.

Receive video frames for decompress and display.

Filter video frames using AVSync DLL WF and

playback frame FIFO state.

Restart video stream as necessary.

Decompress video frames via Microsoft ® Windows

3.1 SendDriverMessage Codec interface.
Display video frames via Microsoft ® GDI or Draw-
DIB interfaces.

Handle VM DLL messages generated as a result of

video API interface calls.

Handle application shutdown.

In order to encapsulate decode and display attributes
for a video stream in a “Display Object,” references to
a Display Object are passed to internal VPlay proce-
dures. The structure of the Display Object is defined in
the vplay.h include file.

VPlay EXE WD processing may be summarized as 2
function of the Microsoft ® Windows messages as fol-
lows:

WINMAIN

Initialize application.

Get VPlay initialization (INI) settings.

Register window handle (and status) with VM DLL

WB.

Enter Microsoft ® Windows message loop.
WM_TIMER

Kill the outstanding restart timer.

If the stream associated with the message is still in the

restart state, then RestartStream.

Initialize the video board capture stream based on

stream object attributes.
WM_MONITOR_DATA

Validate stream state (MONITOR) and video frame

data.

ProcessPlayFrame.

Set reference count to 0 (copy frame FIFO).
WM_PLAY_DATA

Validate stream state (PLAY) and video frame data.

ProcessPlayFrame.

NETWPostFrame to return frame buffer to the net-

work.
WM_VMONITOR_CALL (ON)

Get video stream attributes and determine internal

stream playback values.

15

20

25

30

35

45

50

35

65

32
Set up codec for stream; set up decompress struc-
tures.
RestartStream.

WM_VPLAY_CALL (ON)

Get video stream attributes and determine internal
stream playback values.

Set up codec for stream; set up decompress struc-
tures.

RestartStream.

WM_VLINKIN_CALL (ON)

AVRegisterMonitor to set AVSync audio manager
callback.

AVSetLatency to set audio manager playback la-
tency.

NETWRegisterIn to register receive data complete
callbacks from network and post video frame net-
work buffers.

WM_VCNTL_CALL

Adjust video stream controls (via codec) based on

VCnil parameters (from VM DLL WB).
WM_VGRABFRAME__CALL

Copy out the current RGB display buffer for the

stream.
WM_MEASURE_BEGIN

Turn on video statistics gathering.
WM_MEASURE_END

Return decode and display playback statistics for the
stream.

WM_MEASURE_BEGIN

Turn on video statistics gathering.
WM_SHUTDOWN

Clean up codec.

DestroyWindow.

Unregister Class.

The ‘ProcessPlayFrame’ procedure is a key compo-
nent of the playback application (VPlay EXE WD). It
processes individual frames received, in user context,
from either the VCapt capture callback, in the case of
local monitor playback, or from the Netw receive data
complete caliback, in the case of remote playback. The
main steps of ‘ProcessPlayFrame’ processing are:

Send the video frame through the ‘SyncFilter'.

If the frame is “way-out-of-sync,” then restart the
stream.

If the frame is “out-of-sync,” then ‘hurry_up’=-
TRUE.

Else, ‘hurry_up’=FALSE.

Based on the stream display frequency attribute, de-
termine if the frame should be displayed. If the
frame is not to be displayed, then ‘hurry_up’=-
TRUE; else ‘hurry_up’=FALSE.

If the stream is REMOTE, then decode with IRV
decompress.

If the stream is LOCAL, then:

If the stream is IRV (i.e., not RGB/YUV capture
mode), then decode with IRV decompress;

Else if the stream is RGB capture mode, then copy
to RGB display buffer;

Else if the stream is YUV capture mode, then de-
code with IRV Color Convert;

Else if the stream is YUV, then decode with IRV
Color Convert;

If all frames have been decompressed (no more
frames in playback frame FIFO) and ‘hurry_up=-
=FALSE, then Display Frame.

SyncFilter, a procedure used by ProcessPlayFrame,

is implemented as follows:

CISCO SYSTEMS, INC. Ex. 1131 Page 49

5,434,913

33

If the playback frame Fifo length is >AV-
FrameHighWaterMark, then return (*‘way-out-of-
sync”).

If the stream is REMOTE, then if there is a Frame
Packet Sequence Number Error, then return
(“way-out-of-sync™).

If the stream is REMOTE, then return (AV-
FrameSync (StreamObject, FramePtr)).

The first test is important: It states that the number of
flames queued for playback has exceeded a high water
mark, which indicates that VPlay EXE WD has been
starved and the stream playback is “way-out-of-sync.”
The AVFrameSync interface (AVSync DLL WF) is
preferably only used with remote streams, since local
streams do not have the concept of an associated audio
playback time.

DisplayFrame, a procedure used by ProcessPlay-
Frame, is implemented as follows: Based on the stream
Display Object mode, use Microsoft ® Windows
DrawDib, BitBlt, or StretchBIlt to display the frame.
The display mode is a function of playback window size
and video format resolution.

RestartStream is a procedure that handles details of
stream restart. Its implementation is:

Clear the playback frame FIFO (the ClearFrameFifo
procedure recycles queued video flames to the
network or VCapt, as needed).

Set the stream state to ‘RESTART".

If the stream is LOCAL, then:

If YUV/RGB capture mode is not enabled, then
PostMessage (WM_STREAM__RESTART, 0,
0) to VCapt EXE WC indicating a key frame
request. If YUV/RGB capture mode is enabled,
then every captured frame contains a RGB or
YUV capture mode key frame, and a key frame
request is unnecessary.

Else (stream is REMOTE) NETWSendCntl
(WM_RESTART_STREAM) to have the net-
work send a restart control message; Set the Key
Frame Request timer.

One of the more important areas of the VPlay imple-
mentation is its ““Palette Awareness” logic. In order that
video displays retain proper colors in a palettized envi-
ronment, VPlay must respond to a Microsoft ® Win-
dows palette change and get new palette messages. To
accomplish this, VPlay “hooks” the window specified
in the WM_VPLAY_CALL message parameter
block, so that palette messages to the “hooked” window
will be transmitted to a procedure within VPlay that
properly handles the palette management.

Netw DLL

Network library (Netw DLL 1108) provides a library
of network interfaces designed to hide the capture and
playback applications from details of the underlying
network service, including:

Management of network buffers.

Asynchronous interrupt-time calibacks when data is

received or transmission is complete.

Video frame and control message transmission.

Compaction of video frame headers, from Mi-

crosoft ® Video for Windows (VIW) defined
headers to packed headers suitable for low-band-
width networks (e.g., ISDN).

Transparent local loopback of video frames (supports

single machine testing of video subsystem).

Netw DLL WE defines a ‘SUPERVIDEOHDR’
structure, which is an extension of the “‘VIDEOHDR’

15

20

25

30

35

45

50

55

65

34
structure defined by Microsoft ® Video for Windows.
The VIDEOHDR structure is used by VFW capture
and playback applications on a single PC. The SUPER-
VIDEOHDR contains the VIDEOHDR structure,
plus VM-specific control information, an area where
VIDEOHDR data can be compacted for network
transmission, and a contiguous frame data buffer. The
contiguity of the SUPERVIDEOHDR structure al-
lows the VW structure to be used without modification
by VCapt and VPlay (which are also VW applica-
tions), while at the same time allowing a video frame to
be transmitted on the network in a single operation.
The interfaces provided by the Netw DLL are as
follows:
NETWCallbackIn—Callback used for VLinkIn
streams; processes received data from the network.
NETWCallbackOut—Callback used for VLinkOut
streams; processes send completions from the net-
work.
NETWInit—Initializes network buffers.
NETWRegisterIn—Register a network input chan-
nel and post buffers for receiving data.
NETWRegisterOut—Register a network output
channel.
NETWSendCntl—Send a control message.
NETWSendFrame—Send a video frame.
NETWPostFrame—Post a video frame buffer to the
network interface.
NETWCleanup—Un-initialize NETW support; buff-
ers, etc.

AVSync DLL

AVSync DLL WF provides a library of interfaces
designed to support the capture and playback applica-
tions in the implementation of the audio-video synchro-
nization technique, including:

Implementing audio system callbacks used to deliver

timestamp values.

Implementing audio system latency settings.

Maintaining capture stream and playback stream

timestamps.

Video frame comparison with video stream times-

tamp values.

The interfaces provided by the AVSync DLL are as
follows:

AVInit—Initialization. Includes getting critical AV

sync values from INI file.

AVRegisterMonitor—Register timestamp callback

for a video stream.

AVUnRegisterMonitor—Unregister timestamp call-

back for a video stream.

AVSetALatency—Set a capture or playback audio

latency value.

AVReSetALatency—Reset a capture or playback

audio latency value.

AVFifoHighWaterMark—Return a configuration-

defined value for the high water mark of a video
frame FIFO. (Used in VPlay SyncFilter.)

AVFrameTimeStamp—Time stamp a video frame

with an associated audio capture time stamp.

AVFrameSync—Determine if a video frame is “in-

sync” as defined for “in-sync,” “out-of-sync,” and
“way-out-of-sync™ disclosed earlier in this specifi-
cation.

Video Capture Driver

Video capture driver 522 of FIG. 5 follows driver
specifications set forth in the Microsoft ® Video for

CISCO SYSTEMS, INC. Ex. 1131 Page 50

5,434,913

35

Windows (VfW) Developer Kit documentation. This
documentation specifies a series of application program
interfaces (APIs) to which the video capture driver
responds. Microsoft ® Video for Windows is a Mi-
crosoft extension to the Microsoft ® Windows operat-
ing system. VfW provides a common framework to
integrate andio and video into an application program.
Video capture driver 522 extends the basic Microsoft ®
API definitions by providing six “custom” APIs that
provide direct control of enhancements to the standard
VEW specification to enable and control bit rate throt-
tling and local video monitoring.

Bit rate throttling controls the bit rate of a transmit-
ted video conference data stream. Bit rate throttling is
based on two independent parameters: the quality of the
captured video image and the image capture frame rate.
A user of conferencing system 100 is able to vary the
relative importance of these two parameters with a
custom capture driver API. A high-quality image has
more fine detail information than a low-quality image.

The data bandwidth capacity of the video conference
communication channel is fixed. The amount of cap-
tured video data to be transmitted is variable, depending
upon the amount of motion that is present in the video
image. The capture driver is able to control the amount
of data that is captured by changing the quality of the
next captured video frame and by not capturing the next
video frame (“dropping” the frame).

The image quality is determined on a flame-by-frame
basis using the following equation:

(TargetSize — ActualFrameSize)

Quality = ConstantScaleFactor

Quality is the relative image quality of the next captured
frame. A lower Quality number represents a lower
image quality (less image detail). TargetSize is the de-
sired size of a captured and compressed frame. Target-
Size is based on a fixed, desired capture frame rate.

Normally, the capture driver captures new video
frames at a fixed, periodic rate which is set by the audi-
o/video conference application program. The capture
driver keeps a running total of the available communi-
cation channel bandwidth. When the capture driver is
ready to capture the next video frame, it first checks the
available channel bandwidth and if there is insufficient
bandwidth (due to a large, previously captured frame),
then the capture driver delays capturing the next video
frame until sufficient bandwidth is available. Finally,
the size of the captured video flame is subtracted from
the available channel bandwidth total.

A user of conferencing system 100 may control the
relationship between reduced image quality and
dropped flames by setting the minimum image quality
value. The minimum image quality value controls the
range of permitted image qualities, from a wide range
down to a narrow range of only the best image qualities.

Bit rate throttling is implemented inside of the video
capture driver and is controlled by the following VIW
extension APIs:

CUSTOM_SET_DATA_RATE Sets the data rate of the
communications channel.
Sets the minimum image
quality value.

Sets the desired capture
frame rate.

CUSTOM_SET._QUAL_PERCENT

CUSTOM_.SET_FPS

20

25

30

35

40

45

50

55

60

65

36

The local video monitoring extension to VIW gives
the video capture driver the ability to output simulta-
neously both a compressed and a non-compressed
image data stream to the application, while remaining
fully compatible with the Microsoft ® VfW interface
specification. Without local video monitoring, the audi-
o/video conferencing application program would be
required to decompress and display ‘the image stream
generated by the capture driver, which places an addi-
tional burden on the host processor and decreases the
frame update rate of the displayed image.

The VW interface specification requires that com-
pressed image data be placed in an output buffer. When
local video monitoring is active, an uncompressed copy
of the same image frame is appended to the output
buffer immediately following the compressed image
data. The capture driver generates control information
associated with the output buffer. This control informa-
tion reflects only the compressed image block of the
output buffer and does not indicate the presence of the
uncompressed image block, making local video moni-
toring fully compatible with other VfW applications. A
“reserved,” 32-bit data word in the VFW control infor-
mation block indicates to a local video monitor aware
application that there is a valid uncompressed video
image block in the output buffer. The application pro-
gram may then read and directly display the uncom-
pressed video image block from the output buffer.

The uncompressed image data may be in either De-
vice Independent Bitmap (DIB) or YUV9 format. DIB
format images may be displayed directly on the com-
puter monitor. YUV9 format images may be increased
in size while retaining image quality. YUV9 images are
converted into DIB format before they are displayed on
the computer monitor.

The capture driver allows the uncompressed video
image to be captured either normally or mirrored (re-
versed left to right). In normal mode, the local video
monitoring image appears as it is viewed by a video
camera—printing appears correctly in the displayed
image. In mirrored mode, the local video monitoring
image appears as if it were being viewed in a mirror.

The CUSTOM_SET_DIB_CONTROL extension
API controls the local video monitoring capabilities of
the video capture driver.

Custom APIs for Video Capture Driver

The CUSTOM_SET_FPS message sets the frame
rate for a video capture. This message can only be used
while in streaming capture mode.

The CUSTOM_SET_KEY message informs the
driver to produce one key frame as soon as possible.
The capture driver will commonly produce one delta
frame before the key. Once the key frame has been
encoded, delta flames will follow normally.

The CUSTOM_SET_DATA_RATE message in-
forms the driver to-set an output data rate. This data
rate value is in KBits per second and typically corre-
sponds to the data rate of the communications channel
over which the compressed video data will be transmit-
ted.

The CUSTOM_SET_QUAL_PERCENT message
controls the relationship between reducing the image
quality and dropping video frames when the com-
pressed video data stream size exceeds the data rate set
by the CUSTOM_SET_DATA__RATE message. For
example, a CUSTOM_SET_QUAL_PERCENT
value of 0 means that the driver should reduce the

CISCO SYSTEMS, INC. Ex. 1131 /Page 51

5,434,913

37
image quality as much as possible before dropping
frames and a value of 100 means that video frames
should be dropped before the image quality is lowered.

The CUSTOM_SET_DIB_CONTROL message
controls the 8-bit DIB/YUV9 format image output
when the IRV compression format has been selected.
The IRV driver is able to simultaneously generate the
IRV compressed data stream plus an uncompressed
image in either DIB or YUVY format. If enabled, the
IRV driver can return the DIB image in either (80} 60)
or (160:< 120) pixel resolution. The (160X 120) image is
also available in YUV9 format. All images are available
in either mirrored (reversed left to right) or a normal
image. This API controls the following four parame-
ters:

DIB enable/disable

Mirrored/normal image

The DIB image size

Image data format
The default condition is for the uncompressed image to
be disabled. Once set, these control flags remains in
effect until changed by another CUS-
TOM_SET__DIB_CONTROL message. The uncom-
pressed image data is appended to the video data buffer
immediately following the compressed IRV image data.
The uncompressed DIB or YUV9 data have the bottom
scan-line data first and the top scan-line data last in the
buffer.

The CUSTOM_SET_VIDEO message controls the
video demodulator CONTRAST, BRIGHTNESS,
HUE (TINT), and SATURATION parameters. These
video parameters are also set by the capture driver at
initialization and via the Video Control dialog box.

Video Microcode

The video microcode 530 of FIG. 5 running on video
board 204 of FIG. 2 performs video compression. The
preferred video compression technique is disclosed in
later sections of this specification starting with the sec-
tion entitled “Compressed Video Bitstream.”

Audio Subsystem

The audio subsystem provides full duplex audio be-
tween two conferencing systems 100. The audio streams
in both directions preferably run virtually error free,
and do not break up due to activity on host processor
202. While the video subsystem is responsible for syn-
chronizing video with audio, the audio subsystem pro-
vides an interface to retrieve synchronization informa-
tion and for control over audio latency. The synchroni-
zation information and latency conmtrol is provided
through an interface internal to the audio and video
subsystems.

The audio subsystem provides an interface for con-
trol of the audio streams. Qutput volume, selection of an
audio compression method, sample size, and sample rate
are examples of audio attributes that may be selected or
adjusted through the interface. In addition to control-
ling audio attributes, the audio subsystem provides an
interface to send audio streams out to the network,
receive and play audio streams from the network, and
monitor the local audio stream.

When audio/comm board 206 is not being used for
video conferencing, the Microsoft ® Wave 514 inter-
face provides access to the stereo audio codec (SAC).
Wave driver 524 supports all of the predefined Mi-
crosoft (R) sample rates, full duplex audio, both eight
and sixteen bit samples, and mono or stereo audio.

38
Wave driver 524 provides the audio subsystem with a
private interface that allows the Wave driver to be
disabled.

In a preferred embodiment, the Microsoft ® Wave
interface performs record and playback of audio during
a conferencing session. To achieve this, the audio sub-
system and the Wave implementation cooperate during
video conferencing so that the audio stream(s) can be
split between the Wave interface and the source/sink of
the audio subsystem.

Referring now to FIG. 13, there is shown a block

. diagram of the architecture of the audio subsystem,

15

20

25

35

45

55

60

65

according to a preferred embodiment of the present
invention. The audio subsystem is structured as a “DSP
application.” Conforming with the DSP architecture
forces the audio subsystem’s implementation to be split
between host processor 202 and audio/comm board
206. Conceptually, audio tasks on the audio/comm
board communicate directly with a counterpart on the
host processor. For example, Wave driver 524 (on the
host processor) communicates directly with Wave task
534 (on the audio/comm board). In FIG. 13, these com-
munications are represented by broken lines represent-
ing virtual connections.

The bulk of the audio subsystem is implemented on
the audio/comm board as a Spectron SPOX ® DSP
operating system task. The portion of the audio subsys-
tem on the host processor provides an interface to con-
trol the SPOX ® operating system audio task. The
programming interface to the audio subsystem is imple-
mented as 2 DLL on top of DSP interface 528. The
DLL will translate all function calls into DSP messages
and respond to messages passed from audio task 538 to
the host processor.

The audio task 538 (running on the audio/comm
board) responds to control information and requests for
status from audio manager 520 (running on the host
processor). The audio task is also responsible for hard-
ware monitoring of the audio input source on the audio
output sink. A majority of the audio task’s execution
time is spent fulfilling its third and primary responsibil-
ity: full duplex audio communication between two con-
ferencing systems.

The conferencing application’s interface to the audio
subsystem is implemented on the host processor, and
the audio processing and control is implemented on the
audio/comm board as a SPOX® operating system
task. These two software components interface with
each other through messages passed through the DSP
interface 528 of FIG. 5.

Referring again to FIG. 1, in order for the audio
subsystem to achieve full duplex communication be-
tween two conferencing systems, there is a network
connection (i.e., ISDN line 110) between two confer-
encing systems. Both conferencing systems run the
same software. This allows the audio task on one con-
ferencing system to communicate with another instanti-
ation of itself on the other conferencing system. The
ISDN connection is full duplex. There are two B-Chan-
nels in each direction. Logical audio channels flowing
through the ISDN connection are provided by the
network tasks and have no physical representation. The
audio task on each of the conferencing systems is re-
sponsible for playing back the compressed audio gener-
ated on the remote system, and for transferring the
compressed audio generated locally to the remote sys-
tem.

CISCO SYSTEMS, INC. Ex. 1131 Page 52

5,434,913

39

Referring now to FIGS. 1 and 13, audio samples
generated on conferencing system A are first sampled
by microphone 104, digitized by the stereo audio codec
(SAC), filtered and compressed by the stack of device
drivers 1304, and delivered to the audio task 538. The
audio task packetizes the compressed audio (by time
stamping the audio information), and then sends the
audio to comm task 540 for delivery to the remote sys-
tem. The audio samples consumed (i.e., played back) by
conferencing system A are delivered by the comm task
after conferencing system B has gone through the same
process as conferencing system A to generate and send
a packet. Once conferencing system A has the audio
packet generated by conferencing system B, the comm
task records the time stamp, and sends the packet down
the device stack 1302 to be decompressed and sent to
the codec (i.e., audio hardware 1306). As the remote
audio samples are being transferred to the codec, the
codec may mix them with local audio samples (depend-
ing on whether the local system is in the monitor state
or not), and finally sends the samples to the attached
speaker 108.

Audio API

Referring again to FIG. 5, the audio API 512 for the
audio subsystem is an internal programming interface
used by other software components of the conferencing
system, specifically video manager 516 and the confer-
encing API 506. The audio APIis a library that is linked
in with the calling application. The audio API translates
the procedural interface into DriverProc messages. See
Microsoft ® Device Driver Development Kit (DDK)
and Software Development Kit (SDK) for the defini-
tions of the DriverProc entry point and installable de-
vice drivers. The audio API layer also keeps the state
machine for the audio subsystem. This allows the state
machine to be implemented only once for every imple-
mentation of the audio subsystem.

Audio API 512 of FIG. 5 provides an interface be-
tween audio/video conferencing application 502 and
the audio subsystem. Audio API 512 provides the fol-
lowing services:

Capture Service Captures a single audio stream continuously
from 2 local audio hardware source, for
example, a microphone, and directs the
audio stream to a audio software output sink
(i.e., 2 network destination).

Monitors the audio stream being captured
from the local audio hardware by playing
the audio stream locally.

Note: This function intercepts and displays a
audio stream at the hardware board when
the stream is first captured. This operation is
similar to a “Short circuit” or a UNIX tee
and is different from the “play” function.
The play function gets and displays the
audio stream at the host.

Monitor Service

Play Service Plays an audio stream continuously by
consuming the audio data from an audio
software source (i.e., a network source).

Link-In Service Links an audio network source to be the

input of an audio stream played locally. This
service allows applications to change
dynamically the software input source of an
audio stream.

Links a network source to be the output of
an audio stream captured locally. This
service allows applications to change
dynamically the software output source of
an audio stream.

Controls the audio stream “on the fly,”
including adjusting gain, volume, and

Link-Out Service

Control Service

5

10

20

25

45

50

55

65

40

-continued

latency.

Returns requested information regarding the
specified video stream.

Initialize at OPEN time.

Information Service

Initialization/
Configuration

Audio API 512 supports the following function calls
by audio/video conferencing application 502 to the
audio subsystem:

AGetNumDevs Retrieves the number of different audio
managers installed on the system.

Fills the ADevCaps structure with
information regarding the specified audio
manager.

Opens an audio stream with specified
attributes by allocating all necessary system
resources (e.g., internal data structures) for it.
Starts/stops capturing an audio stream from a
local audio hardware source, such as a
microphone.

Starts/stops monitoring an audio stream
captured from a local microphone.
Starts/stops playing an audio stream by
consuming the audio data from an audio
network source.

Links/unlinks a network input channel or an
input file to/from the specified audio stream
that will be played or is being played locally.
Links/unlinks a network output channel
to/from the specified audio stream that will be
captured or is being captured from the local
microphone.

Controls an audio stream by adjusting its
parameters (e.g., gain, volume).

Returns the status (AINFO and state) of an
audio stream.

Closes an audio stream and releases all system
resources allocated for this stream.

Registers an audio stream monitor.

Returns the packet number of the current
audio packet being played back or recorded.

AGetDevCaps

AOpen

ACapture

AMonitor

APlay

ALinkIn

ALinkOut

ACntl
AGetInfo
AClose

ARegisterMonitor
APacketNumber

These functions are defined in further detail later in this
specification in a section entitled “Data Structures,
Functions, and Messages.”

Referring now to FIG. 14, there is shown a represen-
tation of the audio FSM for the local audio stream and
the remote audio stream of a conferencing system dur-
ing a conferencing session, according to a preferred
embodiment of the present invention. The possible
audio states are as follows:

AST_INIT Initial state — state of local and remote audio
streams after the application calls the CF_Init
function.

Open state — state of the local/remote audio
stream after system resources have been
allocated.

Capture state — state of local audio stream
being captured.

Link-out state — state of local audio stream
being linked/unlinked to audio output ‘(e.g.,
network output channel or output file).
Link-in state — state of remote audio stream
being linked/unlinked to audio input (e.g.,
network input channel or input file).

Play state — state of remote audio stream
being played.

Error state — state of local/remote audio
stream after a system resource failure occurs.

AST_OPEN

AST_CAPTURE

AST_LINKOUT
AST_LINKIN

AST_PLAY

AST_ERROR

In a typical conferencing session between a caller and
a callee, both the local and remote audio streams begin

CISCO SYSTEMS, INC. Ex. 1131 Page 53

5,434,913

41

in the AST_INIT audio state of FIG. 14. The applica-
tion calls the AOpen function to open the local audio
stream, taking the local audio stream from the AST_I-
NIT audio state to the AST__OPEN audio state. The
application then calls the ACapture function to begin
capturing the local audio stream, taking the local audio
stream from the AST_OPEN audio state to the AS-
T_CAPTURE audio state. The application then calls
the ALinkQOut function to link the local audio stream to
the audio output channel, taking the local audio stream
from the AST_CAPTURE audio state to the AS-
T_LINKOUT audio state.

The application calls the AOpen function to open the
remote audio stream, taking the remote audio stream
from the AST_INIT audio state to the AST_OPEN
audio state. The application then calls the ALinkIn
function to link the remote audio stream to the audio
input channel, taking the remote audio stream from the
AST_OPEN audio state to the AST_LINKIN audio
state. The application then calls the APlay function to
begin playing the remote audio stream, taking the re-
mote audio stream from the AST__LINKIN audio state
to the AST_PLAY audio state. The conferencing ses-
sion proceeds without changing the audio states of ei-
ther the local or remote audio stream.

When the conferencing session is to be terminated,
the application calls the AClose function to close the
remote audio channel, taking the remote audio stream
from the AST_PLAY audio state to the AST_INIT
audio state. The application also calls the AClose func-
tion to close the local audio channel, taking the local
aundio stream from the AST_LINKOUT audio state to
the AST_INIT audio state.

This described scenario is just one possible audio
scenario. Those skilled in the art will understand that
other scenarios may be constructed using the following
additional functions and state transitions:

The application calls the ALinkOut function to un-
link the local audio stream from the audio output
channel, taking the local audio stream from the
AST_LINKOUT audio state to the AST_CAP-
TURE audio state.

The application calls the ACapture function to stop
capturing the local audio stream, taking the local
audio stream from the AST_CAPTURE audio
state to the AST_OPEN audio state.

The application calls the AClose function to close the
local audio stream, taking the local audio stream
from the AST_OPEN audio state to the AST_I-
NIT audio state.

The application calls the AClose function to close the
local audio stream, taking the local audio stream
from the AST_CAPTURE audio state to the AS-
T_INIT audio state.

The application calls the AClose function to recover
from a system resource failure, taking the local
audio stream from the AST_ERROR audio state
to the AST_INIT audio state.

The application calls the APlay function to stop play-
ing the remote audio stream, taking the remote
audio stream from the AST_PLAY audio state to
the AST_LINKIN audio state.

The application calls the ALinkIn function to unlink
the remote audio stream from the audio input chan-
nel, taking the remote audio stream from the AS-
T_LINKIN audio state to the AST_OPEN audio
state.

5

25

45

55

60

65

42

The application calls the AClose function to close the
remote audio stream, taking the remote audio
stream from the AST_OPEN audio state to the
AST_INIT audio state.

The application calls the AClose function to close the
remote audio stream, taking the remote audio
stream from the AST_LINKIN audio state to the
AST_INIT audio state.

The application calls the AClose function to recover
from a system resource failure, taking the remote
audio stream from the AST_ERROR audio state
to the AST_INIT audio state.

The AGetDevCaps and AGetNumDevs functions
may be called by the application from any audio state of
either the local or remote audio stream. The AGetlnfo,
ACntl, and APacketNumber functions may be called by
the application from any audio state of either the local
or remote audio stream, except for the AST_INIT
state. The AMonitor function may be called by the
application for the local audio stream from either the
AST_CAPTURE or AST_LINKOUT audio states.
The ARegisterMonitor function may be called by the
application for the local audio stream from the AS-
T_LINKOUT audio state or for the remote audio
stream from either the AST_LINKIN or AST_PLAY
audio states. All of the functions described in this para-
graph leave the audio state unchanged.

Audio Manager

The function of audio manager 520 of FIGS. 5 and
13, a Microsoft ® Windows installable device driver, is
to interface with the audio task 538 running on the
audio/comm board 206 through the DSP interface 532.
By using the installable device driver model, many
different implementations of the audio manager may
co-exist on the same machine. Audio manager 520 has
two logical parts:

A device driver interface (DDI) that comprises the

messages the device driver expects, and

An interface with DSP interface 528.

Audio Manager Device Driver Interface

The device driver interface specifies the entry points
and messages that the audio manager’s installable device
driver supports. The entry points are the same for ail
installable device drivers (i.e., Microsoft ® WEP, LIB-
ENTRY, and DriverProc). All messages are passed
through the DriverProc entry point. Messages concern-
ing loading, unloading, initializing, opening, closing,
and configuring the device driver are predefined by
Microsoft ®). Those messages specific to the audio man-
ager are defined in relation to the constant
MSG_AUDIO_MANAGER (these message will
range from DRV_RESERVED to DRV_USER as
defined in Microsoft ® WINDOWS.H). All messages
that apply to an audio stream are serialized (i.e., the
application does not have more than one message per
audio stream pending).

The installable device driver implementing the audio
manager responds to the open protocol messages de-
fined by Microsoft ®. The expected messages (gener-
ated by a Microsoft ® OpenDriver SDK call to install-
able device drivers) and the drivers response are as
follows:

DRV_LOAD Reads any configuration parameters

associated with the driver. Allocates any

CISCO SYSTEMS, INC. Ex. 1131 Page 54

5,434,913

43

-continued

memory required for execution. This call is

only made the first time the driver is

opened.

Set up the Wave driver to work with the 5
audio manager. Ensures that an audio/comm
board is installed and functional. For
audio/comm board 206 of FIG. 2, this
means the DSP interface 532 is accessible.
This call is only made the first time the
driver is opened.

Allocates the per application data. This
includes information such as the callback
and the application instance data. If this is
an input or output call, starts the DSP audio
task and sets up communication between
host processor and the DSP audio task (e.g.,
sets up mail boxes, registers callbacks). The
audio manager may be opened once for
input, once for output (i.e., it supports

one full duplex conversation), and any
number of times for device capabilities
query. This call is made each time
OpenDriver is cailed.

DRV_ENABLE

10

DRV_OPEN

15

20

These three messages are generated in response to a
single application call (OpenDriver). The OpenDriver
call is passed a pointer to the following structure in the 95
1Param? of the parameter of the call:

typedef struct Open AudioManagerStruct.

BOOL GetDevCaps;

LPACAPS IpACaps; 30
DWORD SynchronousError;

LPAINFO Alnfo;

DWORD dwCallback;

DWORD dwCallbackInstance;

DWORD dwFlags;

DWORD wField; 35

} OpenAudioManager, FAR * IpOpenAudioManager;

All three messages receive this parameter in their
1Param2 parameter. If the open is being made for either
capture or playback, the caller is notified in response to 40
an asynchronous event (i.e., DSP_OPEN generated by
dspOpenTask). If the open is being done in order to
query the devices capabilities (indicated by the field
OpenAudioManager with GetDevCaps being set to
TRUE), the open is synchronous and only fails if the 45
board cannot be accessed.

The DRV_OPEN handler always checks for error
conditions, begins execution of the audio thread, and
allocates per audio stream state information. Once the
open command sets state indicating that a DRV_O- 50
PEN is pending, it will initiate execution of the audio
thread via the DSP interface.

dspOpenTask posts a callback when the audio thread
has successfully begun. This callback is ignored unless it
indicates an error. The task will call back to the audio 55
driver once it has allocated all the necessary resources
on the board. The callback from the DSP interface sets
the internal state of the device driver to indicate that the
thread is running. Once the task has responded, a
DRV._OPEN message call back (i.e.,, post message) 60
back to the caller of the open command with the follow-
ing values:

Param1 equals A_OK, and

Param2 contains the error message returned by the

board.

The installable device driver will respond to the close
protocol messages defined by Microsoft ®. The ex-
pected messages (generated by the Microsoft ® SDK

65

44
CloseDriver call to installable device drivers) and the
drivers response are as follows:

DRV_CLOSE Frees the per application data allocated in
DRV_.OPEN message.

DRV_DISABLE Shuts down the DSP audio task. Enables the
Wave driver and Wave task. Frees all
memory allocated during DRV_LOAD.

DRV_FREE Ignored.

This call sequence is symmetric with respect to the call
sequence generated by OpenDriver. It has the same
characteristics and behavior as the open sequence does.
Namely, it receives one to three messages from the
CloseDriver call dependent on the driver’s state and it
generates one callback per CloseDriver call. Three
messages are received when the driver’s final instance is
being closed. Only the DRV_CLOSE message is gen-
erated for other CloseDriver calls.

DRV_CLOSE message closes the audio thread that
corresponds to the audio stream indicated by
HASTRM. The response to the close message is in
response to a message sent back from the board indicat-
ing that the driver has closed. Therefore, this call is
asynchronous. There is a race condition on close. The
audio task could close down after the close from the
DRYV has completed. If this is the case, the DRIVER
could be unloaded before the callback occurs. If this
happens, the callback will call into nonexistent code.
The full driver close sequence is preferably generated
on the last close as indicated by the SDK. See Mi-
crosoft ® Programmers Reference, Volume 1: Over-
view, pages 445-446). -

The instaliable device driver implementing the host
portion of the audio subsystem recognizes specific mes-
sages from the audio API layer. Messages are passed to
the driver through the SendDriverMessage and are
received by DrvProc. The messages and their expected
parameters are:

Message 1Paramil 1Param?2
AM_CAPTURE BOOL LPDWORD
AM_MUTE BOOL LPDWORD
AM_PLAY BOOL LPDWORD
AM_LINKIN FAR * ALinkStruct ~LPDWORD
AM__LINKOUT FAR * ALinkStruct LPDWORD
AM_CTRL FAR * ControlStruct LPDWORD
AM__REGISTERMON LPRegisterinfo LPDWORD
AM_PACKETNUMBER NULL NULL

AM_CAPTURE Message

The AM_CAPTURE message is sent to the driver
whenever the audio manager function ACapture is
called. This message uses Paraml to pass a boolean
value and Param2 is used for a long pointer to a
DWORD where synchronous errors can be returned.
The stream handle will be checked to ensure that it is a
capture stream, and that there is not a message pending.
The state is not checked because the interface module
should keep the state. If an error state is detected, the
appropriate error message will be returned. The BOOL
passed in Param2 indicates whether to start or stop
capturing. A value of TRUE indicates capturing should
start, a value of FALSE that capturing should be
stopped. ACAPTURE_TMSG is sent to the audio task
running on the audio/comm board and the message
pending flag is set for that stream. When the audio task
receives the message via the DSP interface, it will

CISCO SYSTEMS, INC. Ex. 1131 Page 55

5,434,913

45

change its state and call back to the driver. When the
driver receives this callback, it will cail back/post mes-
sage to the appropriate entity on the host processor, and
cancel the message pending flag. This call is a toggle, no
state is kept by the driver, and it will call the DSP
interface regardless of the value of the BOOL.
AM_MUTE Message

The AM_MUTE message is sent to the driver when-
ever the audio manager function AMute is called. This
message uses Paraml to pass a boolean value and Pa-
ram2 a long pointer to a DWORD for a synchronous
error value. The stream handle is checked to ensure that
it is a capture stream, and that no messages are pending.
If an error state is detected, the appropriate error mes-
sage is returned. The BOOL passed in Param1 indicates
whether to start or stop muting. A value of TRUE
indicates muting should start, a value of FALSE that
muting should be turned off. The driver posts the mes-
sage AMUTE_TMSG to the audio task through the
DSP interface, and sets the message pending flag. When
the driver receives this callback, it will call back/post
message to the appropriate entity on the host processor,
and then cancel the message pending flag.
AM_PLAY Message

The AM_PLAY message is sent to the driver when-
ever the audio manager function APlay is called. This
message uses Param1 to pass an audio manager stream
handle (HASTRM) and Param2 to pass a boolean
value. The APlay message handler checks the stream
handle to ensure that it is a playback stream, and verifies
that there is not a message pending against this stream.
If an error is detected, a call back/post message is made
immediately. The BOOL passed in Parami indicates
whether to start or stop playing the remote stream. A
value of TRUE indicates that playback should start, a
value of FALSE that playback should stop. The
APLAY_TMSG is posted to the audio task through
the DSP interface and the message pending flag is set
for this stream. When the callback is processed, the
caller is notified (via callback/post message), and finally
the message pending flag for this stream is canceled.
AM_LINKIN Message

The AM_LINKIN message is sent to the driver
whenever the audio manager function ALinkIn is
called. Param1 passes the Audio Manager stream han-
dle (HASTRM). 1Param2 contains a pointer to the
following structure:

typedef struct ._ALinkStruct {
BOOL ToLink;
CHANID Chanld;

} ALinkStruct, FAR * lpALinkStruct;

ToLink contains a BOOL value that indicates whether
the stream is being linked in or unlinked (TRUE is
linked in and FALSE is unlinked). If no error is de-
tected and ToLink is TRUE, the channel and the play-
back stream should be linked together. This is done by
sending the Audio Task the ALINKIN_TMSG mes-
sage with the channel ID as a parameter. This causes
the Audio Task to link up with the specified comm
channel and begin playing incoming audio. Channel ID
is sent as a parameter to ALINKIN_TMSG implying
that the channel ID is valid in the board environment as
well as the host processor. In response to this message,
the audio manager registers with the comm task as the
owner of the stream.

20

50

55

60

65

46

Breaking the link between the audio stream handle
and the channel ID is done when the ToLink field is set
to FALSE. The audio manager sends the ALIN-
KIN_TMSG to the task along with the channel ID.
Since the link is made, the audio task responds to this
message by unlinking the specified channel ID (e, it
does not play any more audio).

Errors that the host task will detect are as follows:

The channel ID does not represents a valid read

stream.

The audio stream handle is already linked or unlinked

(detected on host processor).

The audio stream handle is not a playback handle.
If those or any interface errors (e.g., message pending)
are detected, the callback associated with this stream is
notified immediately. If no errors are detected, the
ALINKIN_TMSGS is issued to the DSP interface and
the message pending flag is set for this stream. Upon
receiving the callback for this message, the callback
associated with this stream is made, and finally the mes-
sage pending flag is unset.

AM_LINKOUT Message

The AM_LINKOUT message is sent to the driver
whenever the audio manager function ALinkOut is
called. Param1 passes the audio manager stream handle
(HASTRM). 1Param2 contains a pointer to the follow-
ing structure:

typedef struct _ALinkStruct {
BOOL ToLink;
CHANID Chanld;

} ALinkStruct, FAR * IpALinkStruct;

ToLink contains 2a BOOL value that indicates whether
the stream is being linked out or unlinked (TRUE is
linked out and FALSE is unlinked). If no error is de-
tected and ToLink is TRUE, the channel and the audio
in stream should be linked together. This is done by
sending the Audio Task the ALINKOUT_TMSG mes-
sage with the channel ID as a parameter. The Audio
Task responds to this by sending audio over the logical
channel through the comm task. Channel ID is sent as a
parameter to ALINKOUT_TMSG implying that the
channel ID is valid in the board environment as well as
on the host processor.

Breaking the link between the audio stream handle
and the channel ID is done when ToLink field is set to
FALSE. The audio manager sends the ALIN-
KOUT_TMSG to the task along with the channel ID.
Since the link is made, the Audio Task responds to this
message by unlinking the specified channel ID (i.e., it
does not send any more audio).

Errors that the host task detects are as follows:

The channel ID does not represents a valid write

stream.

The audio stream handle is already linked or unlinked

(detected on the host processor).

The audio stream handle is not an audio handle.

If those or any interface errors (e.g., message pending)
are detected, the callback associated with this stream is
notified immediately. If no errors are detected, the
ALINKOUT_.TMSG is issued to the DSP interface
and the message pending flag is set for this stream. Upon
receiving the callback for this message, the callback
associated with this stream is made, and finally the mes-
sage pending flag is unset.

AM_CRTL Message

CISCO SYSTEMS, INC. Ex. 1131 Page 56

5,434,913

47
The AM_CRTL message is sent to the driver when-
ever the audio manager function ACtrl is called. Pa-
ram1 contains the HASTRM (the audio stream handle)
and Param2 contains a long pointer to the following
structure:

typedef struct _ControlStruct {
LPAINFO IpAinfo;
DWORD flags;

} ControlStruct, FAR * IpControlStruct;

The flags field is used to indicate which fields of the
AINFO structure pointed to by 1pAinfo are to be con-
sidered. The audio manager tracks the state of the audio
task and only adjust it if the flags and AINFO structure
actually indicate change.

Error checking will be for:

Valid audio stream state.

Values and fields adjusted are legal.

Pending calls on the current stream.

If there are any errors to be reported, the audio man-
ager immediately issues a callback to the registered
callback indicating the error.

If there are no errors, the audio manager makes the
audio stream state as pending, saves a copy of the struc-
ture and the adjustment to be made, and begins making
the adjustments one by one. The adjustments are made
by sending the audio task the ACNTL_TMSG mes-
sage with three arguments in the dwArgs array. The
arguments identify the audio stream, the audio attribute
to change, and the new value of the audio attribute.
Each time the audio task processes one of these mes-
sages, it generates a callback to the audio manager. In
the caliback, the audio manager updates the stream’s
attributes, removes that flag from the flags field of the
structure (remember this is an intetnal copy), and sends
another ACNTL_TMSG for the next flag. Upon re-
ceiving the callback for the last flag, the audio manager
calls back the registered callback for this stream, and
unsets the pending flag for this stream.
AM_REGISTERMON Message

The AM_REGISTERMON message is sent to the
driver whenever the audio manager function ARegis-
terMonitor is called. Param2 contains a LPDWORD
for synchronous error messages and Param1 contains a
long pointer to the following structure:

typedef struct_RegisterMonitor {

DWORD dwCallback;
DWORD dwCallbackInstance;
DWORD dwflags;

DWORD dwRequestFrequency;
LPDWORD IpdwSetFrequency

} RegisterMonitor, FAR * LPRegisterMonitor;

The audio manager calls this routine back with informa-
tion about the status of the audio packet being recor-
ded/played back by the audio task. There may only be
one callback associated with a stream at a time. If there
is already a monitor associated with the stream when
this call is made, it is replaced.

Errors detected by the audio manager are:

Call pending against this audio stream.

Bad stream handle.
These errors are reported .to the callback via the func-
tions return values (i.e., they are reported synchro-
nously).

5

10

15

20

25

30

35

40

45

50

55

60

65

48

If the registration is successful, the audio manager
sends the audio task a AREGISTERMON__TMSG via
the DSP Interface. The first DWORD of dwArgs array
contains the audio stream ID, and the second specifies
the callback frequency. In response to the AREGIS-
TERMON_TMSG, the audio task calls back with the
current audio packet number. The audio task then gen-
erates a callback for every N packets of audio to the
audio manager. The audio manager callback generates a
callback to the monitor function with AM_PACK-
ET._.NUMBER as the message, A_OK as PARAM1,
and the packet number as PARAM2. When the audio
stream being monitored is closed, the audio manager
calls back the monitor with A_STREAM_CLOSED
as PARAML1.

AM_PACKETNUMBER Message

The AM_PACKETNUMBER message is sent to
the driver whenever the audio manager function
APacketNumber is called. Paraml and Param2 are
NULL. If 2 monitor is registered for this stream handie,
the audio task is sent a APACKETNUMBER_TMSG
message. In response to this message, the audio task
calls back the andio manager with the current packet
number. The audio manager in turn calls back the regis- -
tered monitor with the current packet number.

This is one of the few calls/messages that generates
both synchronous and asynchronous error messages.
The messages have been kept asynchronous whenever
possible to be consistent with the programming model.
Synchronous errors that are detected are:

The stream has no monitor registered.

Bad HASTRM handle.

If there is no monitor registered (i.e., no callback func-
tion to call) or if the HASTRM handle is invalid (again
no callback to call), the error is given synchronously
(i.e., as a return value to the function). Asynchronous
errors are as follows:

There is a call pending on this audio stream.

The stream is in an invalid state (i.e., not AS-

T_LINKOUT or AST_PLAY).
The asynchronous errors are given to the monitor func-
tion, not the callback registered with the audio stream
on open.

Audio Manager Interface with the DSP Interface

This section defines the messages that flow between
the audio task 538 on the audio/comm board 206 and
the installable device driver on the host processor 202.
Messages to the audio task are sent using dspPostMes-
sage. The messages that return information from the
audio task to the host driver are delivered as callback
messages.

Host Processor to Audio/Comm Board Messages

All messages from the host processor to the audio/-
comm board are passed in a DSPMSG structure as the
dwMsg field. Additional parameters (if used) are speci-
fied in the dwArgs DWORD array, and are called out
and defined in each of the following messages:

ACAPTURE_TMSG: Causes the audio task to start

or stop the flow of data from the audio source. This
message is a toggle (i.e., if the audio is flowing, it is
stopped; if it is not, it is started).

AMUTE_TMSG: Toggles the codec into or takes it

out of muting mode.

APLAY_TMSG: Toggles playback of audio from a

network source.

CISCO SYSTEMS, INC. Ex. 1131 Page 57

5,434,913

49

ALINKIN_TMSG: Connects/disconnects the audio
task with a virtual circuit supported by the net-
work task. The virtual circuit ID is passed to the
audio task in the first DWORD of the dwArgs
array. The virtual circuit (or channel ID) is valid in
both the host processor and the audio/comm board
environment.

ALINKOUT_TMSG: Connects the audio task with
a virtual circuit supported by the network task.
The virtual circuit ID is passed to the audio task in
the first DWORD of the dwArgs array.

AREGISTERMON_TMSG: Registers a monitor on
the specified stream. The stream ID is passed to the
audio task in the first DWORD of the dwArgs
array, the second contains the notification fre-
quency.

APACKETNUMBER..TMSG: Issues a callback to
the Audio Manager defining the current packet
number for this stream. The stream ID is passed to
the audio task in the first DWORD of the dwArgs
array.

ACNTL_TMSG: Sets the value of the specified
attribute on the audio device. Three elements of the
dwArgs array are used. The first parameter is the
stream ID, the second indicates the audio attribute
to be adjusted, and the third is the value of the
audio attribute.

Audio/Comm Board to Host Processor Messages

All messages from the audio/comm board to the host
processor are passed back through the registered call-
back function. The message from the DSP task to the
host driver are received in the dwParam1 parameter of
the registered callback function.

Each message sent to the audio task (running on the
audio/comm board) from the host processor is returned
by the audio/comm board through the callback func-
tion. Each time a message is sent to the audio/comm
board, a DSPMSG is generated from the audio/comm
board to respond. The message is the same message
.that was sent to the board. The parameter is in
DSPMSG.dwArgs[STATUS_INDEX]. This parame-
ter is either ABOARD_SUCCESS or an error code.
Error codes for each of the messages from the board
were defined in the previous section of in this specifica-
tion.

Messages that cause response to host processor action
other than just sending messages (e.g., starting the audio
task through the DSP interface) are as follows:

AOPEN_TMSG Message returned in
response to the

device opening

properly (i.e., called in
response to dspOpenTask).
Once the installable driver
receives the
AOPEN__TMSG from the
board, it sends a data stream
buffer to the task containing
additional initialization
information (e.g.,
compression and SAC
stream stack and initial
attributes). Once the task
has processed this
information, it sends an
ASETUP_TMSG message
to the host.

This message is delivered to
the host when the

ASETUP_TMSG

ACHANNEL_HANGUP_TMSG

10

25

35

50

55

65

50

-continued

Communication subsystem
notifies the task that the
channel upon which it was
transmitting/receiving audio
samples went away.

Wave Audio Implementation

The DSP Wave driver design follows the same archi-
tecture as the audio subsystem (i.e., split between the
host processor and the audio/comm board). For full
details on the Microsoft ® Wave interface, see the Mi-
crosoft ® Multimedia Programmer’s Reference. Some
of the control functions provided by the audio manager
are duplicated in the Wave/Media Control Interface.
Others, such as input gain or input and output device
selection, are controlled exclusively by the Media con-
trol interface.

Audio Subsystem Audio/Comm Board-Resident
Implementation

The audio task 538 of FIGS. 5 and 13 is actually a pair
of SPOX ® operating system tasks that execute on the
audio/comm board 206 and together implement capture
and playback service requests issued by the host proces-
sor side of the audio subsystem. Referring again to FIG.
13, the audio task connects to three other subsystems
running under SPOX ®) operating system:

1. The audio task connects to and exchanges messages
with the host processor side of the audio subsystem
via the host device driver 536 (DSH_HOST).
TMB__getMessage and TMB_postMessage calls
are used to receive messages from and route mes-
sages to the audio manager 520 through the host
device driver 536.

2. The audio task connects to the audio hardware on
the audio/comm board via a stream of stackable
drivers terminated by the SAC device driver. This
connection is bi-directional. Stackable drivers on
the stream running from the SAC driver to the
audio task include the compression driver and au-
tomatic gain control driver.

3. The audio task connects with comm task 540 (the
board-resident portion of the comm subsystem) via
a mailbox interface exchanging control messages
and a streams interface for exchanging data. The
streams interface involves the use of pipe drivers.
Ultimately, the interface allows the audio task to
exchange compressed data packets of audio sam-
ples across ISDN lines with a peer audio task run-
ning on an audio/comm board located at the re-
mote end of a video conference.

The audio task is composed of two SPOX ® operat-
ing system tasks referred to as threads for the purposes
of this specification. One thread handles the capture
side of the audio subsystem, while the other supports
the playback side. Each thread is created by the host
processor side of the audio subsystem in response to an
OpenDriver call issued by the application. The threads
exchange compressed audio buffers with the comm task
via a streams interface that involves bouncing buffers
off a pipe driver. Control messages are exchanged be-
tween these threads and the comm task using the mail-
box interface which is already in place for transferring
messages between DSP tasks and the host device driver
536.

CISCO SYSTEMS, INC. Ex. 1131 Page 58

5,434,913

51

The playback thread blocks waiting for audio buffers
from the comm task. The capture thread blocks waiting
for audio buffers from the SAC. While active, each
thread checks its dedicated control channel mailbox for
commands received from the host processor as well as
unsolicited messages sent by the comm task. A control
channel is defined as the pair of mailboxes used to com-
municate between a SPOX ®) operating system task and
its DSP counterpart running on the host processor.

Audio Task Interface with Host Device Driver

The host processor creates SPOX ® operating sys-
tem tasks for audio capture and playback. Among the
input parameters made available to these threads at
entry is the name each thread will use to create a stream
of stackable drivers culminating in the SAC device
driver. Once the tasks are created, they send an AOPE-
N_TMSG message to the host processor. This prompts
the host processor to deliver a buffer of additional infor-
mation to the task. One of the fields in the sent structure
is a pathname such as:

“/tsp/gsm:0/mxr0/esp/V Cadc8K”

The task uses this pathname and other sent parameters
to complete its initialization. When finished, it sends an
ASETUP_TMSG message to the host signaling its
readiness to receive additional instructions.

In most cases, the threads do not block while getting
messages from TMB_MYMBOX or posting messages
to TMB_HOSTMBOX. In other words, TMB__
getMessage and TMB_putMessage are called with
timeout=0. Therefore, these mailboxes are preferably
of sufficient depth such that messages sent to the Host
by the threads are not dropped. The dspOpenTask
1pdspTaskAttrs “nMailboxDepth” parameter are pref-
erably set higher than the defauit value of 4. The audio
task/host interface does not support a data channel.
Thus, the “nToDsp” and “nFromDsp” fields of dspO-
penTask IpdspTaskAttrs are preferably set to O.

Audio Task Interface with Audio Hardware

Referring now to FIG. 15, there is shown a block
diagram of interface between the audio task 538 and the
audio hardware of audio/comm board 206 of FIG. 13,
according to a preferred embodiment of the present
invention. FIG. 15 illustrates how input and output
streams to the audio hardware might look after success-
ful initialization of the capture and playback threads,
respectively.

On the capture side, audio data is copied into streams
by the SAC device driver 1304 (the SAC). The buffer
comes from a pool allocated to this IO_.SOURCE
driver via IO_free() calls. The data works its way up to
the capture thread 1502 when the latter task issues an
SS_get() call. The data is transformed each time it
passes through a stackable driver. The mixer/splitter
driver 1510 may amplify the audio signals or it may split
the audio stream sending the second half up to the host
to allow for the recording of a video conference. The
data is then compressed by the compression driver
1508. Finally, timestamp driver 1506 appends a times-
tamp to the buffer before the capture thread receives it
completing the SS_get(). The capture thread 1502 ei-
ther queues the buffer internally or calls I0_free() (de-
pending on whether the capture thread is trying to
establish some kind of latency or is active but unlinked),

10

50

55

65

52
or the capture thread sends the buffer to the comm task
via the pipe driver interface.

On the playback side, audio data is received in
streams buffers piped to the playback thread 1504 from
the comm task. The playback thread internally queues
the buffer or frees the buffer by passing the ‘buffer back
to the pipe driver; or the playback thread calls SS_put()
to send the buffer down the playback stream ultimately
to the SAC 1304 where the samples are played. First,
the timestamp is stripped off the buffer by timestamp
driver 1506. Next, the buffer is decompressed by de-
compression driver 1508. Prior to it being played, the
audio data undergoes one or more transformations mix-
ing in other sound or amplifying the sound (mixer/split-
ter driver 1510), and reducing or eliminating echoes
(echo/suppression driver 1512). Once the data has been
output to the sound hardware, the containing buffer is
ready to be freed back up the stream satisfying an
IO_alloc() issued from the layers above.

Timestamp Driver

The video manager synchromizes with the audio
stream. Therefore, all the audio task needs to do is
timestamp its stream and provide an interface allowing
visibility by the video manager into this timestamping.
The interface for this is through the host processor
requests AREGISTERMON_TMSG and APACK-
ETNUMBER_TMSG. The timestamp is a 32-bit quan-
tity that is initialized to 1, incremented for each block
passed to the audio task from the JO_SOURCE stack
and added to the block. The timestamp is stripped from
the block once received by the audio task executing on
the remote node.

The appending and stripping of the timestamp is done
by the timestamp driver 1506 of FIG. 15. Performing
the stamping within a separate driver simplifies the
audio task threads by removing the responsibility of
setting up and maintaining this header. However, in
order to implement the APACKETNUM-
BER.__TMSG host command, the threads are able to
access and interpret this header in order to determine
the packet number.

On the capture side of the audio task, the capture
thread will have allocated stream buffers whose size is
large enough to contain both the packet header as well
as ‘the compressed data block. The timestamp driver
deals with each buffer as a SPOX ® operating system
IO_Frame data type. Before the flames are 10—
free()ed to the compression stackable driver below, the
timestamp driver subtracts the size of the packet header
from the frame’s current size. When the frame returns to
the timestamp driver via I0_get(), the driver appends
the timestamp by restoring the size to “maxsize” and
filling the unused area with the new header. The han-
dling is reversed for the playback side. Buffers received
from the comm task contain both the compressed data
block and header. The timestamp driver strips the
header by reducing “size” to “maxsize” minus the
header size.

(De)Compression Drivers

In a preferred embodiment, the DSP architecture
bundles the encode and decode functions into one
driver that is always stacked between the audio task and
the host processor. The driver performs either com-
press or decompress functions depending on whether it
is stacked within an IO_SINK or IO_SOURCE
stream, respectively. Under this scheme, the audio task

CISCO SYSTEMS, INC. Ex. 1131 Page 59

5,434,913

53
only handles uncompressed data; the stackable driver
compresses the data stream on route to the host proces-
sor (JO_SINK) and decompresses the stream if data is
being read from the host processor (IO_SOURCE) for
playback.

In an alternative preferred embodiment, the audio
task deals with compressed data in fixed blocks since
that is what gets stamped or examined on route to or
from the ISDN comm task, respectively. In this em-
bodiment, the DSP architecture is implemented by the
DXF transformation driver 1508. Either driver may be
placed in an IO_SOURCE or IO_SINK stream.

Due to the audio subsystem’s preference to manage
latency reliably, the audio task threads know how much
capture or playback time is represented by each com-
pressed data sample. On the capture side, this time may
be calculated from the data returned by the compres-
sion driver via the DCO_FILLEXTWAVEFOR-
MAT control command. DCO_ExtWaveFormat data
fields “nSamplesPerSec” and “wBitsPerSample” may
be used to calculate a buffer size that provides control
over latency at a reasonable level of granularity.

Consider the following example. Suppose we desire
to increase or decrease latency in 50 millisecond incre-
ments. Suppose. further that a DCO_FILLEXT-
WAVEFORMAT command issued to the compression
driver returns the following fields:

nChannels = 1
nSamplesPerSec = 8000
nBlockAlign = 0
wBitsPerSample = 2

If we assume that compressed samples are packed into
each 32-bit word contained in the buffer, then one TI
C31 DSP word contains 16 compressed samples. The
buffer size containing 50 ms worth of data would be:

words = (8000%& X 0.05 Sec)+ j6-amples _ o5
word

To this quantity, the capture thread adds the size of the
packet header and uses the total in allocating as many
streams buffers as needed to service its IO_SOURCE
stream.

On the receiving side, the playback thread receives
the packet containing the buffer of compressed data.
The DCO_FILLEXTWAVEFORMAT control com-
mand is supported by the encoder, not the decoder
which the playback thread has stacked in its IO_SINK
stream. In fact, the thread has to send the driver a
DCG_SETEXTWAVEFORMAT command before it
will decompress any data. Thus, we need a mechanism
for providing the playback thread a DCO_Ext-
WaveFormat structure for handshaking with decom-
pression driver prior to entering the AST__PLAY state.

Mixer/Splitter Driver

The mixer/splitter driver 1510 (i.e., the mixer) is a
stackable driver that coordinates multiple accesses to
the SAC 1304, as required by conferencing. The mixer
allows multiple simultaneous opens of the SAC for both
input and output and mixes the channels. The mixer also
supports priority preemption of the control-only SAC
device “sacctrl.” .

The SPOX (®) operating system image for the audio/-
comm board has mappings in the device name space to

20

25

30

35

45

55

65

54

transform references to SAC devices into a device stack
specification that includes the mixer. For example, a
task that attempts to open “/sac” will actually open
“/mxrl/sac”. The mapping is transparent to the task.
To avoid getting mapped through the mixer, an alterna-
tive set of names is provided. The alternative names
consist of the standard device name prefixed with
“VC”. For example, to open the device “adc8K” with-
out going through the mixer, a task would use the name
“/VCadc8K”. To obtain priority access to the SAC, the
software opens the device “/mxr0/VCadc8K”.

For output operation, the software opens the mixer
with device ID 0; any other client opens the mixer with
device ID 1. Device ID 0 may be opened only once;
when it is, all other currently open channels are muted.
That is, output to the channel is discarded. Subsequent
opens of device ID 1 are allowed if the sample rate
matches. Device ID 1 may be opened as many times as
there are channels (other than channel 0). All opens
after the first are rejected, if the sample rate does not
match the first open. When more than one channel is
open and not muted, the output of ail of them is mixed
before it is passed on to the SAC.

For input operations, the software opens the mixer
with device ID 0; any other client opens the mixer with
device ID 1. Device ID 0 may be opened only once;
when it is, if channel 1 is open, it is muted. That is, get
operations return frames of silence. Device ID 1 may be
opened once before channel 0 is open (yielding channel
1: normal record operation). Device ID 1 may also be
opened once after channel 0 is opened (yielding channel
2: conference record operation). In the second case, the
sample rate must match that of channel 0. Channel 1
returns data directly from the SAC (if it is not muted).
Channel 0 returns data from the SAC mixed with data
from any output channels other than channel 0. This
allows the user to play back a recording during a video
conference and have it sent to the remote participant.
Channel 2 returns data from the SAC mixed with the
output to the SAC. This provides the capability of re-
cording both sides of conference.

There are four control channels, each of which may
be opened only once. They are prioritized, with channel
0 having the highest priority, and channel 3 having the
lowest. Only the open channel with the highest priority
is allowed to control the SAC. Non-conferencing soft-
ware, which opens “/sacctrl”, is connected to channel
3, the lowest priority channel.

Mizxer Internal Operation

For output operation, the mixer can, in theory, sup-
port any number of output channels. The output chan-
nels are all equivalent in the sense that the data from all
of them is mixed to form the output sent to the SAC.
However, there is one channel that is designated the
main channel. The. first channel opened that is not
muted is the main channel. When the main channel is
closed, if there are any other non-muted channels open,
one of them is promoted to be the main channel. Open-
ing channel 0 (conference output) mutes any channels
open at the time and channel 0 cannot be muted. Thus,
if channel 0 is open, it is always the main channel. Any
open output channel that is not than the main channel is
called an auxiliary channel.

When an I0_put operation is performed on a non-
muted auxiliary channel, the frame is placed on the
channel’s ready list. When an IO_put operation is per-

CISCO SYSTEMS, INC. Ex. 1131 Page 60

5,434,913

55

formed on the main channel, data from the auxiliary
channels’ ready lists are mixed with the frame, and the
frame is passed immediately through to the SAC. If an
auxiliary channel is not ready, it will be ignored (and a
gap will occur in the output from that channel); the
main channel cannot be held up waiting for an auxiliary
channel.

When an IO_put operation is performed on a muted
channel, the frame is placed directly on the channel’s
free list. The driver then sleeps for a period of time
(currently 200 ms) to simulate the time it would take for
the data in the frame to be played. This is actually more
time than it would normally take for a block of data to
be played; this reduces the CPU usage of muted chan-
nels.

An IO_alloc operation on the main channel is passed
directly through to the SAC; on other channels, it re-
turns a frame from the channel’s free list. If a frame is
not available, it waits on the condition freeFrameAvail-
able. When the condition is signaled, it checks again
whether the channel is the main channel. If the main
channel was closed in the meantime, this channel may
have been promoted.

The mixer does not allocate any frames itself. All the
frames it manages are those provided by the task by
calling IO_free or IO_put. For an auxiliary channel,
frames passed to IO_free are placed on the channel’s
free list. These are ‘then returned to the task when it
calls I0_alloc. After the contents of a frame passed to
I0_put have been mixed with the main channel, the
frame is returned to the channel’s free list. Since I/O
operations on the main channel (including I0_free and
10__alloc) are passed through to the SAC, no buffer
management is done by the mixer for the main channel,
and the free list and the ready list are empty. However,
the mixer does keep track of all frames that have been
passed through to the SAC by IO_free or IO_put and
returned by 10_get or IO_alloc. This is done to allow
for the case where the main channel is preempted by
opening the priority channel. In this case, all frames that
have been passed to the SAC are recalled and placed on
the mixer’s free list for that channel.

Another special case is when the main channel is
closed, and there is another open non-muted channel. In
this case, this other channel is promoted to be the main
channel. The frames on its ready list are passed immedi-
ately to IO_put to be played, and the frames on its free
list are passed to IO_free. These frames are, of course,
counted, in case the new main channel is preempted
again.

For output mixing, a frame on the ready list of an
auxiliary channel is mixed with both the main output
channel and with input channel 0 (conference input), if
it is open. I/O operations on these two channels are
running independently, so the mixer does not know
which channel will perform 1/0 first, or whether oper-
ations on the two will strictly alternate, or even if they
are using the same frame size. In practice, if the confer-
ence input channel is open, the main output channel is
conference output, and the two use the same frame size;
however, the mixer does not depend on this. However,
the auxiliary channel typically will not be using the
same frame size as either of the main channels.

To handle this situation, the mixer uses two lists and
two index pointers and a flag for each channel. The
ready list, where frames are placed when they arrive,
contains frames that contain data that needs to be mixed
with both the input and the output channel. When ei-

15

20

25

30

35

40

45

50

55

60

65

56

ther the input side or the output side has used all the
data in the first frame on the ready list, the frame is
moved to the mix list. The flag is set to indicate whether
the mix list contains data for the input side or the output
side. If the mix list is empty, both sides take data from
the ready list. When all the data in a frame on the mix
list has been used, the frame is moved to the free list.

Mixing operations are done in units of a main-channel
frame. This may take a portion of an auxiliary channel
frame or it may take parts of more than one. The mixing
routine loops over the main channel frame. Each pass
through the loop, it determines which auxiliary channel
frame to mix from, takes as much data from that frame
as it can, and moves that frame to a new list if necessary.
The auxiliary channel frame to mix from is either the
first frame on the mix list, if it is non-empty and the flag
is set to indicate that data has not been used from that
frame yet, or the first frame on the ready list. The index,
either inReadyIndex or outReadylndex, specifies the
first unused sample of the frame.

For example, suppose mixing is with the main input
channel (conference in), and the data for an auxiliary
output channel is such that the read list contains two
frames C and D and the mix list contains two frames A
and B, wherein mixFlags equals MXR_IN-
PUT_DATA and inReadyIndex equals 40. Assume
further that the frame size on the main channel is 160
words and the frame size on the auxiliary channel is 60
words.

The first time through the loop in mix__frame, the mix
list is not empty, and the mix flag indicates that the data
on the mix list is for the input channel. The unused 20
samples remaining in the first frame on the mix list are
mixed with the first 20 samples of the main channel
frame. InReadyIndex is incremented by 20. Since it is
now equal to 60, the frame size, we are finished with the
frame. The output channel is finished with it, since it is
on the mix list, so the frame is moved to the free list and
set InReadylndex to O.

The second time through the loop, mix_index is 20.
All 60 samples are mixed out of the first frame on the
mix list, and the frame is moved to the free list.

The third time through the loop, mix._index is 80.
The mix list is empty. All 60 samples are mixed out of
the first frame on the ready list. Again the frame is
finished, but this time it came from the ready list, so it is
moved to the mix list. The mix flag is changed to indi-
cate that the mix list now contains data for the output
channel. OutReadylIndex is not changed, so the output
channel will still staff mixing from the same offset in the
frame that it would have used if the frame had not been
touched.

The fourth time through the loop, mix _index is 140.
The mix list is not empty, but the mix flag indicates that
the data on the mix list is for the output channel, so it is
ignored. The remaining 20 samples are mixed from the
first frame on the ready list. All the data in the frame has
not been used, so it is left on the ready list; the next time
a frame is processed on the main input channel, process-
ing continues where it left off. After mixing is complete,
the ready list contains only frame D, the mix list con-
tains only frame C, mixFlags equals MXR_OUT-
PUT_DATA, and inReadyIndex equals 20.

After each step described, the data structures are
completely self-consistent. In a more typical situation,
the frames on the auxiliary channel will be much larger
(usually 1024 words), and only a portion of a frame will
be used for each frame on the main channel. However,

CISCO SYSTEMS, INC. Ex. 1131 Page 61

5,434,913

57

the processing is always similar to one or two of the
four steps described in the example.

For input operations, unlike the output channels, the
three input channels have distinctly different semantics.
The main channel is always channel 0 if it is open, and
channel 1 if channel 0 is not open. Channel 1 will always
be muted if it is open when channel 0 is opened, and
cannot be opened while channel 0 is open. Channel 2 is
never the main channel; it can be opened only while
channel 0 is open, and will be muted if channel 0 is
closed.

Operation of the main channel is similar to the opera-
tion described for output. When I0__get or I0_free is
called, the request is passed on to the SAC. For channel
0, when the frame is returned from the SAC, any output
ready on auxiliary output channels is mixed with it
before the frame is returned to the caller.

When channel 2 (conference record) is open, output
frames on channel 0 (conference output) and input
frames on channel 0 (conference input) (including the
mixed auxiliary output) are sent to the function recor-
d—frame. Record_frame copies these frames to flames
allocated from the free list for channel 2, mixes the input
and output channels, and places the mixed frames on the
ready list. When IO_get operation is performed on
channel 2, it retrieves a frame from the ready list, block-
ing if necessary until one is available. If there is no
frame on the free list when record._frame requires one,
the data will not be copied, and there will be a dropout
in the recording; however, the main channe] cannot be
held up waiting for the record channel.

For conference record mixing, record_frame needs
to mix frames from both conference input and confer-
ence output into a frame for channel 2. Again, 1/0
operations on the conference channels are running inde-
pendently. The mixer uses the mix list of the conference
record channel as a holding place for partially mixed
frames. readyIndex contains the number of samples in
the first frame on the mix list which are completely

20

25

30

35

mixed. The frame size contains the total number of 40

samples from either channel that have been placed in
the frame. The difference between the frame size and
readyIndex is the number of samples that have been
placed in the frame from one channel but not mixed
with the other. The flag mixFlags indicates which chan-
nel these samples came from.

Mixing operations are done in units of a main-channel
frame, as for output. This may take a portion of a record
channel frame or it may take parts of more than one.
The mixing routine loops over the main channel frame.
Each pass through the loop, it does one of the follow-
ing:

1. If the mix list contains data from the other channel,
mix with the first frame on the mix list. readyIndex
indicates the place to start mixing. If the frame is
now fully mixed, move it to the ready list.

. If the mix list contains data from this channel (or
equal parts from both channels), and there is free
space in the last frame on the mix list, copy the data
into that frame. The frame size indicates the place
to start copying.

3. If neither of the above is true, allocate a new frame

from the free list and add it (empty) to the mix list.
On the next iteration, case 2 will be done.

To provide mutual exclusion within the mixer, the
mixer uses a semaphore. Every mixer routine that ma-
nipulates any of the data for a channel first acquires the
semaphore. The semaphore mechanism is very similar

45

50

55

60

65

58

to the monitor mechanism provided by SPOX ®) oper-
ating system. There are two major differences: (1) a task
within a SPOX ® operating system monitor cannot be
suspended, even if a higher priority task is ready to run,
and (2) when a task within a SPOX ®) operating system
monitor is suspended on a condition, it implicitly re-
leases ownership of all monitors. In the mixer, it is nec-
essary to make calls to routines which may block, such
as IO_alloc, while retaining ownership of the critical
region. The semaphore is released when a task waits for
a mixer-specific condition (otherwise, no other task
would be able to enter the mixer to signal the condi-
tion), but it is not released when the task blocks on some
condition unrelated to the mixer, such as within the
SAC.

Echo Suppression Driver

The echo suppression driver (ESP) 1512 is responsi-
ble for suppressing echoes prevalent when one or both
users use open speakers (rather than headphones) as an
audio output device. The purpose of echo suppression is
to permit two conferencing systems 100 connected by a
digital network to carry on an audio conversation utiliz-
ing a particular microphone and a plurality of loud-
speaker device choices without having to resort to
other measures that limit or eliminate acoustic feedback
(“coupling”) from loudspeaker to microphone.

Specifically, measures obviated by the ESP include:

An audio headset or similar device to eliminate
acoustic coupling.

A commercial “speakerphone” attachment that
would perform the stated task off the PC and
would add cost and complexity to the user.

The ESP takes the form of innovations embedded in the
context of art known variously as “half-duplex speaker-
phones” or “half-duplex hands-free telephony” or
“echo suppression.” The ESP does not relate to art
known as “echo cancellation.”

The general ideas of “half-duplex hands-free tele-
phony” are current practice. Electronic hardware (and
silicon) exist that embody these ideas. The goal of this
technology is to eliminate substantially acoustic cou-
pling from loudspeaker to microphope by arranging
that substantial microphone gain is never coincident
with substantial speaker power output when users are
speaking.

The fundamental idea in current practice is the fol-
lowing: Consider an audio system consisting of a receiv-
ing channel connected to a loudspeaker and a transmit-
ting channel connected to a microphone. If both chan-
nels are always allowed to conduct sound energy freely
from microphone to network and from network to
loudspeaker, acoustic coupling can result in which the
sound emanating from the loudspeaker is received by
the microphone and thus transmitted back to the remote
station which produced the original sound. This “echo”
effect is annoying to users at best and at worst makes
conversation between the two stations impossible. In
order to eliminate this effect, it is preferable to place an
attenuation device on each audio channel and dynami-
cally control the amount of attenuation that these de-
vices apply by a central logic circuit. This circuit senses
when the remote microphone is receiving speech and
when the local microphone is receiving speech. When
neither channel is carrying speech energy, the logic
permits both attenuators to pass audio energy, thus
letting both stations receive a certain level of ambient
noise from the opposite station. When a user speaks, the

CISCO SYSTEMS, INC. Ex. 1131 Page 62

5,434,913

59

logic configures the attenuators such that the micro-
phone energy passes through to the network and the
network audio which would otherwise go to the
speaker is attenuated (this is the “talk state”). When on
the other hand speech is being received from the net-
work and the local microphone is not receiving speech,
the logic configures the attenuators conversely, such
that the network speech is played by the speaker and
the microphone’s acoustic energy is muted by the atten-
uator on that channel (this is the “listen state).

The ESP operates without a separate dedicated
speakerphone circuit device. The ESP operates over a
network featuring an audio codec that is permitted to
distort signal energies without affecting the perfor-
mance of the algorithm. The ESP effectively distributes
computational overhead such that redundant signal
processing is eliminated.

The ESP is a distributed digital signal processing
algorithm. In the following, the algorithm is spoken of
as “distributed,” meaning that two instantiations of it
reside on the two conferencing systems connected by a
digital network, and their operation is interdependent).
“Frame energy” means a mean sum of the squares of the
digitized audio samples within a particular time segment
called a “frame.”

The instantaneous configuration of the two attenua-
tions is encoded as a single integer variable, and the
attenuations are implemented as a fractional multiplier
as a computational function of the variable.

In order to classify a signal as speech, the algorithm
utilizes a frame energy threshold which is computed as
an offset from the mathematical mode of a histogram in
which each histogram bin represents the count of
frames in a particular energy range. This threshold
varies dynamically over time as it is recalculated. There
exists a threshold for each of the two audio channels.

Since both stations need access to the threshold estab-
lished at a particular station (in that one station’s trans-
mit stream becomes the other station’s receive stream),
the threshold is shared to both instantiations of the
algorithm as an out-of-band network signal. This obvi-
ates the need for both stations to analyze the same sig-
nal, and makes the stations immune to any losses or
distortion caused by the audio codec.

The energy of a transmitted audio frame is embedded
within a field of the communication format which
carries the digitally-compressed form of the frame. In
this way, the interactive performance of the station pair
is immune from any energy distortion or losses involved
in the audio codec.

The ESP makes possible hands-free operation for
video teleconferencing products. It is well-known that
hands-free audio conversation is a much more natural
conferencing usage model than that of an audio headset.
The user is freed from a mechanical attachment to the
PC and can participate as one would at a conference
table rather than a telephone call.

Audio Task Interface with Comm Task

The interface between the audio task to the audio
hardware is based on SPOX@® operating system
streams. Unfortunately, SPOX® operating system
streams connect tasks to source and sink device drivers,
not to each other. Audio data are contained within
SPOX ®) operating system array objects and associated
with streams. To avoid unnecessary buffer copies, array

10

—

5

20

25

35

45

50

60

60

objects are passed back and forth between the comm
and audio subsystems running on the audio/comm
board using SPOX ® operating system streams and a
pipe driver. The actual pipe driver used will be based on
a SPOX ® operating driver called NULLDEYV. Like
Spectron’s version, this driver simply redirects buffers it
receives as an JO_SINK to the IO_SOURCE stream;
no buffer copying is performed. Unlike Spectron’s pipe
driver, however, NULLDEYV does not block the re-
ceiving task if no buffers are available from the sending
stream and discards buffers received from the
IO_SOURCE stream if no task has made the
IO_SINK stream connection to the driver. In addition,
NULLDEYV will not block or return errors to the
sender. If no free buffers are available for exchange
with the sender’s live buffer, NULLDEV returns a
previously queued live buffer. This action simulates a
dropped packet condition.

Setup and teardown of these pipes will be managed
by a message protocol between the comm task and
audio task threads utilizing the existing TMB mailbox
architecture built into the Mikado DSP interface.

The interface assumes that the comm task is running,
an ISDN connection has been established, and channel
ID’s (i.e., virtual circuit ID’s) have been allocated to the
aundio subsystem by the conferencing API. The capture
and playback threads become the channel handlers for
these 1D’s. The interface requires the comm task first to
make available to the audio threads the handle to its
local mailbox TMB_MYMBOX. This is the mailbox a
task uses to receive messages from the host processor.
The mailbox handle is copied to a global memory loca-
tion and retrieved by the threads using the global data
package discussed later in this specification.

Message Protocol

Like the comm task, the audio task threads use their
own TMB_MYMBOX mailboxes for receiving mes-
sages from the comm task. For the purpose of illustra-
tion, the capture thread, playback thread and comm
task mailboxes are called TMB_CAPTURE, TMB__.
PLAYBACK, and TMB_COMMMSG, respectively.
The structure of the messages exchanged through these
mailboxes is based on TMB_Msg defined in “TMB.H”
such that:

typedef struct TMB_Msg {

Int msg;

Uns words[TMB_MSGLEN];
} TMB_Msg;

The messages that define this interface will be described
via examples. Currently, specific message structures
and constants are defined in the header file “AS.H”.
Referring now to FIG. 16, there is shown a block
diagram of the interface between the audio task 538 and
the comm task 540 of FIGS. 5 and 13, according to a
preferred embodiment of the present invention. For
audio capture, when the capture thread receives an
ALINKOUT_TMSG message from the host proces-
sor, it sends an AS_REGCHANHDLR message to the
TMB_COMMMSG mailbox. The message contains an
on-board channel ID, a handle to the mailbox owned by
the capture thread, and a string pointer to the pipe.

typedef struct AS_OPENMSG {

CISCO SYSTEMS, INC. Ex. 1131 Page 63

5,434,913

61 62
-continued

Uns msg; /* msg == AS_REGCHANHDLR. */

Uns Channel_1D; /* On board channel ID */

TMB_MBox mailBox; /* Sending Task’s mailbox. */

String DevName; /* Device name to open. */
} AS_OPENMSG;
Channel _ID is used to retrieve channel specific infor- and returning status to the capture thread via a message

mation. The task stores this information in the global directed to TMB_CAPTURE such that:

TMB_Msg message;
CommAudioDataPir pCAData;
AS_OPENMSG audio;
typedef struct AS_INFOMSG {
Uns msg; /* AS_CLOSE_CHAN or AS_STATUS */
Uns Channel__ID; /* On board channel ID */
Uns statusCode; /* Status Code */
Uns statusExtra; /* Additional status info */
} AS_INFOMSG *comm ;
TMB__getMessage (TMB__COMMMSG, (TMB._Msg)&audio, 0);
pCAData= (CommAudioDataPtr) GD__getAddress(audio.Channel__ID);
< validate pCAData fields and open audio.DevName>
comm = (AS__INFOMSG *} &message;
comm-—>msg = AS_STATUS;
comm — > Channel_ID = audio.Channel _ID;
comm -~ >statusCode = AS_REGCHANHDLR__OK;
TMB__postMessage (audio.mailbox, comm, 0);

name space. A pointer to this space is retrieved via the If the comm task detects an error, the statusCode and

routine GD.__getAddress(ID). The information has the statusExtra fields are set to the appropriate error codes

following structure: defined in the section Status and Error Codes.

30 The capture thread subsequently receives stream
buffers filled with time stamped and compressed audio

typedef struct COMM_AUDIO_DATA {

struct { data from the input driver stack_ via Ss_geto calls and
unsigned int 30, routes them to the comm task via the pipe driver. After
unsigned int initialized :1; each SS_put() to the pipe driver, the capture thread
unsigned int read L 35 notifies the comm task that an incoming buffer is on the
%;S‘“" JocalID: way via an AS_RECEIVECOMPLETE status mes-
Uns remotelD; sage.

} CommAudioData, *CommAudioDataPtr;

audio = (AS_INFOMSG *) &message;

This structure is declared in “AS.H”. From this struc- 40 audio— >msg = AS_STATUS;
ture, the comm task can determine if the buffer is initial- audio—> Channel _ID = AS_CAPTURE_CHAN;
ized (it always should be or the audio tasks would not be audio—>statusCode = AS_RECEIVECOMPLETE;

TMB_postMessage (TMB__.COMMMSG, audio, 0);

calling), if the task is expecting to read or write data
to/from the network (if read is 1, the comm task will .
open the pipe for write and put data from the network 45 The comm task sends the buffers to the ISDN nger

there), and finally the local and remote IDs of the net- which transmits the data frame on the audio output’s
work channels. ISDN virtual channel.

The following pseudo code illustrates the actions Between each input streams buffer processed, the
performed by the capture thread to establish a link with ~ capture thread checks TMB_CAPTURE for new re-
the comm task: 50 quests messages from the comm task or the host proces-
AS__OPENMSG *audio;

TMB_Msg message;

CommAaudioDataPtr pCAData;

pCAData = (CommAudicDataPtr) GD_getAddress(AS_CAPTURE__CHAN)
< set pCAData fields>

audio = (AS__OPENMSG *) &message;

audio— >msg = AS._REGCHANHDLR;

audio— >Channel .ID = (Uns) AS_CAPTURE_CHAN;

audio— >mailBox = (TMB_MBox) TMB_CAPTURE;

audio - >DevName = (String) “/null”;
TMB__postMessage(TMB_COMMMSG, audio, 0);

The comm task’s first action will be to call GD__getAd-

dress() and retrieve an address to the CommAudioData

structure. It validates the structure using the local and 65 sor. When a second ALINKOUT_TMSG message is
remote IDs linking the thread with the appropriate received from the host processor, the capture thread
ISDN channel. Finally, the comm task responds by stops sending data buffers to the pipe driver and notifies
connecting to its end of andio->DevName (“/null”) the comm task of its intention to terminate the link:

CISCO SYSTEMS, INC. Ex. 1131 Page 64

5,434,913

63 64
-continued
audio = (AS_INFOMSG *) &message; comm — >Channel_ID = Channel ID;
audio— >msg = AS_CLOSE_CHAN; comm — >statusCode = AS RECEIVECOMPLETE;
audio ~ >Channel _ID = AS__CAPTURE_CHAN; TMB__postMessage (TMB_PLAYBACK, comm, 0);
TMB...postMessage (TMB_COMMMSG, audio, 0); 5

The playback thread collects each buffer and outputs
Capture treats the ALINKOUT_TMSG message as 2 the audio data by SS_put()’ing each buffer down the
toggle: the first receipt of the message establishes the driver stack to the SAC 1304.
link, the second receipt terminates it. The comm task 1o The handing of the second ALINKIN_TMSG re-
first closes its half of the pipe driver and then terminates ™ quest received from the host processor is the same as on

its connection with the capture thread via an AS_. the capture side. The playback thread closes “/null2”
CLOSE_CHAN.__OK message. and uses AS_CLOSE._CHAN to sever its link with the
comm task.

— - - At any time during the link state, problems with or a
zﬁﬁ_i‘é‘;i;eﬁjgslﬁ;ﬁeum 13 normal shutdown of the ISDN logical channel may
comm— >statusCode = AS_CHANCLOSE_OK; generate a hang-up condition. The comm task notifies
TMB._postMessage (TMB_CAPTURE, comm, 0); the capture and/or playback thread via the unsolicited

status message AS_COMM_HANGUP_NOTIFY:

On the other side of the audio task, the playback thread 59
waits for the ALINKIN_TMSG message from the host

. . = (AS_INFOMSG *) & ;
processor after first opening the IO_SINK side of a §§$_>(msg = ‘A‘(s?_STGA'I)‘USt:1 e
second pipe driver “/null2”. When that message finally comm-->Channel_ID = Channel ID;
arrives, the playback thread opens the communication com—;szzusgofe = ZSQ—N?S)IZIM:NGUP_NOTIFY;
pathway to the comm task and registers as the audio 55 fF~ >SEms=XTR = €04 SO0
input channel handler via an AS_REGCHANHDLR Tmo bapronco comm o ook of
message. Like the capture thread, the playback thread
supplies the channel ID, its response mailbox, and a
string pointer to the second pipe driver:

In response, the threads close the channel, notifying the

pCAData = (CommAudioDataPtr) GD_getAddress(AS_PLAYBACK__CHAN)
<set pCAData fields>

audio = (AS__OPENMSG *) &message;

audio— >msg = AS_REGCHANHDLR;

audio— >Channel ID = (Uns) AS_PLAYBACK_CHAN;

audio— >mailBox = (TMB_MBox) TMB_PLAYBACK;

audio— >DevName = (String) */null2”;

TMB_postMessage (TMB_COMMMSG, audio, 0);

host processor in the process.

Exactly as with the capture thread, the comm task be- 4, As defined in “AS.H”, the following are status and

haves as follows:

TMB__getMessage (TMB_COMMMSG, (TMB_Msg)&audio, 0);
pCAData= (CommAudioDataPtr) GD_getAddress(audio.Channel ID);
< validate pCAData fields and open audio.DevName >

comm = (AS_INFOMSG *) &message;

comm->msg = AS_STATUS;

comm— >Channel_ID = audio.Channel__ID;

comm — >statusCode = AS_REGCHANHDLR__OK;
TMB_postMessage (audio.mailbox, comm, 0);

Once this response is received, the playback thread error codes for the statusCode field of AS_STATUS

blocks waiting for notification of input buffers delivered messages:
AS__REGCHANHDLR_OK AS_REGCHANHDLR request succeeded.
AS_REGCHANHDLR._FAIL AS_REGCHANHDLR request failed.
AS_CHANCLOSE_OK AS_CHANCLOSE request succeeded.
AS_CHANCLOSE_FAIL AS_CHANCLOSE request failed.
AS_COMM_HANGUP_NOTIFY Open channel closed.
AS__RECEIVECOMPLETE Data packet has been sent to NULLDEV.
AS_LOST__DATA One or more data packets dropped.

Regarding buffer management issues, the audio task
maintain a dynamically configurable amount of latency
on the audio streams. To do this, both audio task threads

by the comm task to its side the pipe driver. After each
buffer is put to pipe, the comm task notifies the play-

back thread: 65 have control over the size of the buffers that are ex-
changed with the comm task. As such, the comm task

comm = (AS_INFOMSG *) &message; adopts the buffer size for the streams assigned it by the
comm—>msg = AS_STATUS; audio task. In addition, the number of buffers which

CISCO SYSTEMS, INC. Ex. 1131 Page 65

5,434,913

65
exist within the NULLDEV link between the comm
task and an audio task thread are defined by the threads.
Mechanisms for implementing this requirement in-
volves the following steps:

1. Both audio task threads create their SPOX ®) oper-
ating system stream connections to the NULL-
DEYV pipe driver before registering with the comm
task. Each thread issues an SS_create() specifying
the buffer size appropriate for the audio compres-
sion method and time stamp framing to be per-
formed on each buffer. In addition, the attrs.nbufs
field is set to the desired number of buffers avail-
able for queuing audio data within the NULLDEV
link.

2. When setting up its NULLDEV streams, the
comm task sets the SS__create() buffer size parame-
ter to —1 specifying that a “device-dependent
value will be used for the stream buffer size”. See
SPECTRON’s SPOX ® Application Programming
Reference Manual, Version 1.4, page 173. In addi-
tion, the attrs.nbufs are set to 0 ensuring that no
additional buffers are added to the NULLDEV
link.

3. After opening the stream, the comm task will query
for the correct buffer size via an SS_sizeof() call.
Thereafter, all buffers it receives from the capture
thread and all buffers it delivers to the playback
thread are this size. It uses this size when creating
the SA_Array object used to receive from and
send buffers to NULLDEV.

The comm task preferably performs no buffering of live
audio data. Communication between audio task end-
points is unreliable. Because audio data is being cap-
tured, transmitted, and played back in real time, it is
undesirable to have data blocks retransmitted across an
ISDN channel.

Whether unreliable transmission is supported or not
for the audio stream, the NULLDEYV driver drops data
blocks if live buffers back up. NULLDEV does not
allow the sender to become buffer starved. It continues
to exchange buffers with the task issuing the SS_put().
If no free buffers are available to make the exchange,
NULLDEY returns the live buffer waiting at the head
of its ready queue.

Global Data Package

The SPOX ®) operating system image for the audio/-
comm board contains a package referred to as the
Global Data Package. It is a centralized repository for
global .data that is shared among tasks. The interfaces to
this package are defined in “GD.H”. The global data is
contained in a GBLDATA struct that is defined as an
array of pointers:

typedef struct GBLDATA {
Ptr availableData[MAX__GLOBALS];
} GBLDATA;

Like all SPOX ®) operating system packages, the global
data package contains an initialization entry point
GD_init() that is called during SPOX® operating
system initialization to set the items in GBLDATA to
their initial values. Tasks that wish to access the global
data will contain statements like the following to obtain
the contents of the GBLDATA structure:

15

20

66

Ptr pointerToGlobalObject;
pointerToGlobalObject = GD__getAdress(OBJECT..NUMBER);

In a preferred embodiment, there is no monitor or sema-
phore associated with the global data. So by conven-
tion, only one task will write to an item and all others
will only read it. For example, all data pointers are set
to NULL by GD_.init(). A pointer such as availa-
bleData[CommMBox] would then be filled in by the
comm task during its initialization with the following
sequence:

pointerToGlobalData= GD_-getAddress(AS_COMMMBOX);
pointerToGlobalData— >CommMBox= TMB_MYMBOX;

Tasks that wish to communicate to the comm task can
check that the task is present and obtain its mailbox
handle as follows:

pointerToGlobalData= GD_getAddress(AS_COMMMBOX);
if (pointerToGlobalData — >CommMBox = NULL) {

25 /* COMMTASK is present */
TMB_.postMessage (pointerToGlobalData — >CommMBox ,
aMessage,
timeQutValue);
}
else {
30 /* IT IS NOT */
}
NULLDEYV Driver
35 The SPOX ® operating system image for the audio/-

45

50

55

65

comm board contains a device driver that supports
interprocess communication though the stream (SS)
package. The number of distinct streams supported by
NULLDEV is controlled by a defined constant
NBRNULLDEVS in NULLDEV.H. Currently,
NULLDEYV supports two streams. One is used for the
audio task capture thread to communicate with the
comm task. The other is used by the playback thread to
communicate with the comm task. The assignment of
device names to tasks is done by the following two
constants in ASTASK.H:

#define AS_CAPTURE__PIPE
#define AS_PLAYBACK_PIPE

“/null”
“/nuli2”

Support for additional streams may be obtained by
changing the NBRNULLDEVS constant and recom-
piling NULLDVR.C. The SPOX ®) operating system
config file is also adjusted by adding additional device
name strings to this section as follows:

driver NULLDEV __driver {
“/null”: devid = 0;
“/null2”: devid = 1;

The next device is the sequence has devid=2.
SS..get() calls to NULLDEV receive an error if
NULLDEV’s ready queue is empty. It is possible to
SS_put() to 2 NULLDEYV stream that has not been
opened for SS_get() on the other end. Data written to
the stream in this case is discarded. In other words,

CISCO SYSTEMS, INC. Ex. 1131 Page 66

5,434,913

67

input live buffers are simply appended to the free queue.
SS_put() never returns an error to the caller. If no
buffers exist on the free queue for exchange with the
incoming live buffer, NULLDEYV removes the buffer at
the head of the ready queue and returns it as the free
buffer.

Comm Subsystem

The communications (comm) subsystem of confer-
encing system 100 of FIG. 5 comprises comm API 510,
comm manager 518, and DSP interface 528 running on
host processor 202 of FIG. 2 and comm task 540 run-
ning on audio/comm board 206. The comm subsystem
provides connectivity functions to the conferencing
application programs 502 and 504. It maintains and
manages the session, connection, and the virtual chan-
nel states. All the connection control, as well as data
communication are done through the communication
subsystem.

Referring now to FIG. 17, there is shown a block
diagram of the comm subsystem of conferencing system
100 of FIG. 5, according to a preferred embodiment of
the present invention. The comm subsystem consists of
the following layers that reside both on host processor

202 and the audio/comm board 206:
Transport independent interface (TIL.DLL),
Reliable datalink module
(DIM.DLL+KPDAPIDLL, where KPDA-
PI.DLL is the back-end of the DLM which com-
municates with the DSP interface), and

Datalink module.

TILDLL and RDLM.DLL reside entirely on the host
processor. Datalink module comprises DLM.DLL re-
siding on the host processor, and control (D channel),
D channel driver, data comm tasks, and B channel driv-
ers residing on audio/comm board 206.

The comm interface provides a “transport indepen-
dent interface” for the conferencing applications. This
means that the comm interface hides all the network
dependent features of the conferencing system. In a
preferred embodiment, conferencing system 100 uses
the ISDN Basic Rate Interface (BRI) which provides
2*64 KBits/sec data (B) channels and one signaling (D)
channel (2B+D). Alternative preferred embodiment
may use alternative transport media such as local area
networks (ILANs) as the communication network.

Referring now to FIG. 18, there is shown a block
diagram of the comm subsystem architecture for two
conferencing systems 100 participating in a conferenc-
ing session, according to a preferred embodiment of the
present invention. The comm subsystem provides an
asynchronous interface between the audio/comm board
206 and the conferencing applications 502 and 504.

The comm subsystem provides all the software mod-
ules that manage the two ISDN B channels. The comm
subsystem provides a multiple virtual channel interface
for the B channels. Each virtual channel is associated
with transmission priority. The data queued for the
higher priority channels are transmitted before the data
in the lower priority queues. The virtual channels are
unidirectional. The conferencing applications open
write-only channels. The conferencing applications
acquire read-only channels as a result of accepting a
open channel request from the peer. The DLM supports
the virtual channel interface.

During a conferencing session, the comm subsystem
software handles all the multiplexing and inverse multi-
plexing of virtual channels over the B channels. The

20

25

40

45

55

65

68

number of available B channels (and the fact that there
is more than one physical channel available) is not a
concern to the application.

The comm subsystem provides the D channel signal-
ing software to the ISDN audio/comm board. The
comm subsystem is responsible for providing the ISDN
B channel device drivers for the ISDN audio/comm
board. The comm subsystem provides the ISDN D
channel device drivers for the ISDN audio/comm
board. The comm software is preferably certifiable in
North America (U.S.A., Canada). The signaling soft-
ware is compatible with NI1, AT&T Custom, and
Northern Telecom DMS-100.

The comm subsystem provides an interface by which
the conferencing applications can gain access to the
communication hardware. The goal of the interface is

-to hide the implementation of the connectivity mecha-

nism and provide an easy to use interface. This interface
provides a very simple (yet functional) set of connection
control features, as well as data communication fea-
tures. The conferencing applications use virtual chan-
nels for data communication. Virtual channels are sim-
plex, which means that two virtual channels are open
for full duplex communication between peers. Each
conferencing application opens its outgoing channel
which is write-only. The incoming (read-only) channels
are created by “accepting” an “open channel” request
from the peer.

gMUX Multiple Channel Streaming Module

The QSource Multiple Channel Streaming Module
(gMUX) is based on the need to utilize the high band-
width of two bearer (B) channels (each at 64 kbps) as a
single high-speed channel for the availability of multiple
upper layer users. This section specifies the various
interfaces ‘between QSource gMUX module and other
QSource modules or application modules to achieve
this objective.

QSource qMUX is a data link provider for one or
more end-to-end connected upper layers to exchange
data between themselves at a higher data rate than is
possible over a single bearer (B) channel. qMUX ac-
cepts messages from upper layer providers and utilizes
both B channels to transfer the data. On the receiving
end, qMUX will reassemble received buffers from
Layer 1 in sequential order into a user message and
deliver the message to the awaiting upper layer. There
is no data integrity insured by gqMUX. There is no
Layer 2 protocol (i.e., LAPB) used in the transmission
of packets between the two endpoints; however, pack-
ets are transmitted using HDLC framing. Throughout
this section, the term ULP means Upper Layer Process
or gMUX User.

gMUX is a data link provider process that receives
user data frames from upper layers (data link user) and
equally distributes them over the two B channels. This
achieves a higher bandwidth for an upper layer than if
a single B channel was used. Several higher processes
can be multiplexed through the gqMUX process, each
being assigned its own logical channel through gMUX.
This logical channel is known as a QMUX logical identi-
fier (gLI).

A priority is assigned to each qL1 as it is opened. This
priority ensures that buffers of higher priority are sent
before buffers of lesser priority are transmitted over the
B channels. This enables an upper layer, whose design
ensures a smaller bandwidth usage, to be handled in a

CISCO SYSTEMS, INC. Ex. 1131 Page 67

5,434,913

69

more timely manner, ensuring a more rapid exchange of
data between the two end users.

gMUX is an unreliable means of data transfer be-
tween two end users. There is no retransmission of
message data. Although received packets are delivered
to the higher requesting layers, there is no guarantee of
data integrity maintained between the two cooperating
gMUX processes. Packets may be lost between the two
endpoints because there is no Layer 2 protocol (i.e.,
LAPB) used in the transmission of packets between the
two endpoints; however, packets are transmitted using
HDLC framing. In order to provide reliability, a trans-
port provider such as TPO (modified to work with
gMUX) is preferably used as a ULP. gMUX considers a
message as one or more data buffers from the higher
layer. These chained buffers are unchained, assigned
sequence numbers within the message sequence, and
transferred to the far end. Each buffer contains a se-
quence number that reflects its place within the mes-
sage.

At the receiving end, the buffers are reassembled into
messages and delivered to the awaiting upper layer.
Message integrity is not guaranteed. Messages are dis-
carded on the receiving end if buffers are not received
before final reassembly and delivery.

All messages transmitted by qMUX are preferably
split into an even number of buffers, independent of
message size. Two processes, namely SM2 and SCUD,
split messages into equal buffers. In an alternative pre-
ferred embodiment, messages are split after exceeding a
specific size (160 octets). Splitting messages into an
even number of buffers, regardless of size, ensures
timely delivery of data. In another alternative preferred
embodiment, qMUX transmits a message contained in a
single buffer.

Upper layers ensure that both endpoints are synchro-
nized on their qLI (logical channel identifier) and prior-
ity. Once both B channels are established, the ULP
establishes a gqMUX logical interface with the gMUX
process. This qLI, assigned by the ULP, allows for the
transfer of data between gMUX and the ULP. This qLI
assignment may be transferred or reassigned to another
ULP, by use of the qgMUX_BIND_REQUEST primi-
tive. The qL.I may be used by only one ULP at a time.
The maximum gLI value in a system is defined as a
startup parameter MAX_TOGICAL_CHANNELS).
A ULP requesting a qL.I when all of the assignable qL.I
are in use is denied.

If a message is received for a qLI that is not assigned,
then the message is discarded. A received message has
the sending gLI and the intended receiver’s qL.I con-
tained in the message. If the ULP assigned to the qLI
does not have an outstanding request to receive data
when a message is received, the message is discarded as
well.

A gLI of 0 (zero) is used as a control channel for a
ULP requesting assignment as a controlling ULP. The
controlling qLI may be used to synchronize the two end
ULPs cooperating in the data exchange.

When a gL1 is requested, the requesting ULP assigns
a priority for the handling of messages. Those ULPs
requiring a high throughput with very little bandwidth
should request a high priority to its messages. Priority is
valid for outgoing messages only; that is, the priority is
used when the buffer is queued to the B channel driver.

Data transfer between the ULP and gMUX is per-
formed on a message basis. A message is defined to be
one or more data buffers containing user data. The

20

25

35

45

50

55

60

65

70

buffers are dis-assembled, assigned sequence numbers,
and transferred over the available bandwidth of the two
B channels in their assigned priority order, and re-
assembled on the far-end for delivery to a requesting
ULP. Should a fragment of the message not be deliv-
ered, the entire message is discarded; no retransmission
of the message or its- parts are attempted by gMUX.

End-to-End flow control is not performed by gMUX.
Before buffers are queued to layer 1, the queue depth is
checked. If the number of buffers on a B-channel queue
exceeds 15, the message is discarded, and notification
given to the ULP.

gMUX maintains 2 message window per gLI that
effectively buffers incoming messages. This guards
against network transit delays that may exist due to the
two bearer channels in use. The current size of the
message window is three. For example, it is possible for
gMUX to have completely assembled message numbers
2 and 3, while waiting for the final part of message 1.
When message 1 is completely assembled, all three are
then queued, in message order, to the appropriate ULP.
If any part of message 4 is received before message 1 is
complete, message 1 is discarded and the ULP notified.
The message window then slides to include messages 2,
3, and 4. Since messages 2 and 3 are complete, they are
forwarded to the ULP and the window slides to mes-
sage 4.

The following primitives are sent from the ULP to
gMUX:

Indicates the message carries
application data. The
message is comprised of one
or more QSource system
buffers.

A request by a ULP for a
qLT assignment. Both B
channels are assumed to be
connected at this time; the
state of the two B channels
is unaltered. This request
can also be used to request a
controlling qLI (0) for a
ULP

qMUX__DATA_REQUEST

qMUX_ATTACH_REQUEST

A request by a ULP to have
the specified gLI bound to
the requesting ULP. All
subsequent received traffic is
directed to the requesting
ULP.

Used by a ULP to end its
usage of a qL.I. All
subsequent messages
received are discarded for
this gLI. This is used by a
ULP to end the logical
connection and reception of
data.

qMUX_BIND_REQUEST

gqMUX_DEATTACH_REQUEST

The following primitives are sent from gMUX to the
ULP: ’

Indicates that user data is
contained in the message. The
message is one or more
QSource system buffers.
Acknowledges to the ULP
that a previously received
primitive was received
successfully. The gLI is
returned within the
acknowledgement.
Informs the ULP that a

gqMUX_DATA__INDICATION

qMUX_OK_ACK

gUMX_ERROR__ACK

CISCO SYSTEMS, INC. Ex. 1131 Page 68

5,434,913

71

-continued

previously issued ‘request was
invalid. The primitive in error
and the associated qLI (if
valid) are conveyed back to
the ULP.

The following primitives are exchanged between PH
(B channel Driver) and

gMUX: |

PH_DATA_REQUEST Used to request that the user data
contained in the QSource system
buffer be transmitted on the
indicated B channel.

PH_DATA _JINDICATION Used to indicate to gqMUX that the

user data in the QSource system
buffer is intended for an ULP. This
particular buffer may only be a
part of 2 message.

The following example of the usage of gMUX by two
cooperating ULPs (referred to as ULP-A and ULP-B)
assumes that a connection has already been established:

The session manager sends a QMUX__CONNEC-
T_REQ primitive to gMUX that states that both
B-channels are available. ULP-A and ULP-B es-
tablish both B Channels at their respective ends.

ULP-A issues a gMUX_ATTACH_REQUEST for
a controlling gLI to gMUX, and two gMUX_AT-
TACH_REQUESTs for a data exchange path.
The first path is for sending and the second is for
receiving data.

ULP-B also issues a gMUX_ATTACH_REQUEST
for a controlling qLI (of zero) to gMUX, and two
gMUX_ATTACH_REQUESTs for a data ex-
change path. ULP assigns zero for the controlling
qL1I requests and gLI 5 and 6 for ULP-A and gLI
5 and 6 for LP-B.

ULP-A formats a peer-to-peer (ULP-A to ULP-B)
request for informing ULP-B that messages for
ULP-A should be directed over qLI 6. ULP-A

10

15

20

25

30

35

sends the message via qMUX over the controlling

qLl
ULP-B also formats a peer-to-peer (ULP-B to ULP-
A) request for informing ULP-A that messages for
ULP-B should be directed over qLI 6. ULP-B
sends the message via gMUX over the controlling
qLL
ULP-A receives the request from ULP-B from the
controlling qLI. A response is formatted which
gives the gLI for ULP-A as 6 and ULP-B as 6. It is
sent to gMUX for transfer over the controlling
gLl
ULP-B receives the request from ULP-A from the
controlling qLI. A response is formatted which
gives the gL1 for ULP-B as 6 and ULP-A as 6. It is
sent to gMUX for transfer over the controlling
qlLl.
Once both ULP peers have received the responses to
their peer-to-peer requests, they an exchange data.
The following scenario illustrates the interface and
design of gMUX for the exchange of data/video/audio:
ULP-A issues a gMUX_DATA_REQUEST over
gLl 5 for delivery at the far-end to qLI 6. The
message was segmented into two QSource system
buffers by SM2/SCUD and sent to the B channels
as follows:

45

50

55

65

72

Segment one: marked as START_OF_MES-
SAGE, sending gLI is 5, receiving qLI is 6,
sequence number is 1 (one). It is sent to the B
channel driver for B channel 1 with a primitive
of PH_DATA_REQ.

Segment two: marked as END__OF_MESSAGE,
sending qLI is 5, receiving qLI is 6, sequence
number is 2 (two). It is sent to the B channel
driver for B channel 2 with a primitive of
PH_DATA_REQ.

gMUX at the receiving end receives the buffers as
follows:

Segment one: received from B channel driver on B
channel 1. Buffer has header of STAR-
T_OF_MESSAGE, sequence number 1. State
is now AWAITING_EOM for gLI 6.

Segment two: END_OF_MESSAGE received.
Buffer is chained to buffer two. Primitive is made
gMUX_DATA_INDICATION and sent to
the ULP-B who had bound itself to gLI 6. State
is now set to AWAITING_STAR-
T_OF_MESSAGE.

The above activity occurs during the message window
for this qLI. The message window is currently set at
three. A message window exists on a gL basis.

Comm API

Comm API 510 of FIG. 5 provides an interface be-
tween conferencing applications 502 and 504 and the
comm subsystem. Comm API 510 consists of a tran-
sport-independent interface (TILDLL of FIG. 17). The
TII encapsulates the network driver routines provided
to the upper-layer modules (ULMs).

Comm API 510 provides the following services and
functions:

Initialization Commands

BeginSession: Begins a comm session. Only one
“thread” of execution is allowed to begin the
comm session for a given media. This thread
specified the session handler, which is the focal
point of all the connection management events.
All connection related events are given to the
session handler.

EndSession: Ends a comm session.

Connection Control Commands

MakeConnection: Makes connection to a remote
peer. A MakeConnection command sends a con-
nection request to the session handler of the
specified “address™.

CloseConnection: Closes a connection. This com-
mand closes all the open virtual channels and the
connection. All the relevant handlers are notified
of the events caused by this command.

AcceptConnection: Accepts a peer’s request for
connection. The session handler of the applica-
tion which has received a connection request
issues this command, if it wants to accept the
connection.

RejectConnection: Rejects a peer’s request for
connection.

Virtual-Channel Management .

RegisterChanMgr: Registers the piece of code that
will handle channel events. This call establishes a
channel manager. The job of channel manager is
to field the “open channel” requests from the
connected peer.

RegisterChanHandler: Registers the piece of code
that will handle data events. The channel han-

CISCO SYSTEMS, INC. Ex. 1131 Page 69

5,434,913

73
dler is notified of the data related events, such as
receipt of data and completion of sending of a
data buffer.

74

channels (e.g., reliability, priority, number of errors,
number of receives and transmissions). These functions

are as follows:

Connection Management Functions

RegisterChanMgr

RegisterChanHandler

OpenChannel

AcceptChannel

RejectChannel
CloseChannel

Data Exchange Functions

SendData
ReceiveData

Communications Statistics Functions

Registers a callback or an application window whose message
processing function will handle low-level notifications generated
by data channel initialization operations. This function is
invoked before any OpenChannel calls are made.

Registers a callback or an application window whose message
processing function will handle low-level notifications generated
by data channel input/output (I/0) activities. The channels that
are opened will receive CHAN_DATA__SENT, and the accepted
channels will receive CHAN__RECV_COMPLTE.

Requests a sub-channel connection from the peer application.
The result of the action is given to the application by invoking
the callback routine specified in the RegisterChanHandler. The
application must specify an ID for this transaction. This ID is
passed to the callback routine or posted in a message.

Note: All Connection requests are for establishing connections
for sending data. The receive channels are opened as the result

GetChanlnfo
GetChanStats
GetTiiStats

of accepting a ConnectChannel request.

A peer application can issue AcceptChanne] in response to a
CHAN_REQUEST (OpenChannel) message that has been
received. The result of the AcceptChannel call is 2 one-way
communication sub-channel for receiving data. Incoming data
notification will be sent to the callback or window application
(via PostMessage) to the ChannelHandler.

Rejects an OpenChannel request (CHAN_REQUEST message)
from the peer.

Closes a sub-channel that was opened by AcceptChannel or
ConnectChannel.

Sends data. Data is normally sent via this mechanism.

Receives data. Data is normally received through this mechanism.
This call is normally issued in response to a DATA_AVAILABLE
message.

Returns channel information.
Returns various statistical information about 2 channel.
Returns various statistical information about a TII channel.

OpenChannel: Opens a virtual channel for sending
data.

AcceptChannel: Accepts a virtual channel for re-
ceiving data.

RejectChannel: Rejects the virtual channel re-
quest.

CloseChannel: Closes an open channel.

“Data” exchange

SendData: Sends data over a virtual channel.

ReceiveData: Posts buffers for incoming data over
a virtual channel.

Communications Statistics

GetChanlInfo: Returns information about a given
channel (e.g., the reliability and priority of the
channel).

GetChanStats: Returns statistical information
about a given channel (e.g., number of transmis-
sions, receives, errors).

GetTiiStats: Returns statistical information about
the current TII channels.

Transport-Independent Interface

Comm API 510 supports calls to three different types
of transport-independent interface functions by confer-
encing applications 502 and 504 to the comm subsystem:
connection management functions, data exchange func-
tions, session management, and communications statis-
tics functions. Connection management functions pro-
vide the ULM with the ability to establish and manage
virtual channels for its peers on the network. Data ex-
change functions control the exchange of data between
conferencing systems over the network. Communica-
tions statistics functions provide information about the

45

50

55

60

65

These functions are defined in further detail later in this
specification in a section entitled “Data Structures,
Functions, and Messages.”

In addition, comm API 510 supports three types of
messages and callback parameters returned to confer-
encing applications 502 and 504 from the comm subsys-
tem in response to some of the above-listed functions:
session messages,” connection messages, and channel
messages. Session messages are generated in response to
change of state in the session. Connection messages are
generated in response to the various connection-related
functions.

Message and Callback Parameters

This section describes the parameters that are passed
along with the messages generated by the communica-
tion functions. The events are categorized as follows:

Connection Events: Connection-related messages
that are sent to the session handler (e.g., connection
request, connection accepted, connection closed).

Channel Events: Channel-related messages that are
handled by the channel manager (e.g., channel
request, channel accepted, channel closed).

Data Events: Events related to data communication
(e.g., data sent, receive completed). These events
are handled by the channel handlers. Each virtual
channel has a channel handler.

Session Handler Messages

The following messages are generated in response to
the various connection related functions:

CISCO SYSTEMS, INC. Ex. 1131 Page 70

5,434,913
75

CONN_REQUESTED

wParam
lparam

CONN_ACCEPTED

wParam
1Param

CONN_REJECTED
wParam
Param

CONN_TIMEOUT
1Param

CONN_ERROR

wParam

1Param
CONN_CLOSED

wParam
CONN_CLOSE_RESP

wParam

1Param

SESS_CLOSED
wParam

Connection handle
Pointer to incoming connection information

structure:

WORD Session handle

LPTADDR Pointer to caller’s address
LPCONN_CHR Pointer to connection attributes
}

Response to MakeConnection or AcceptConnection
request.

Connection handle

Pointer to connection information structure:
DWORD Transld (specified by user in
earlier request)
LPCONN_CHR Pointer to connection attributes
}

Response to MakeConnection request.

Reason

TransId (specified by application in earlier

request)

Response to MakeConnection request).

Transld (specified by application in earlier

request)

Indication of connection closed due to fatal

error.

Connection handle

Error

Indication of remote Close.

Connection handle

Response to CloseConnection request.

Connection handle

Transld (specified by application in earlier Close
request)

Response to EndSession request.

Session handle

Channel Manager Messages 35

The following messages are generated in response to
the various channel management functions as described
with the function definitions:

76

-continued

1Param

wParam

CHAN_REQUESTED
wParam
Iparam

CHAN_ACCEPTED
wParam
TParam

CHAN_REJECTED
1Param

CHAN_CLOSED
wParam
CHAN__CLOSE_RESP
wParam
1Param

Indication of remote OpenChannel request.
Channel handle
Pointer to Channel Request information structure:

DWORD TransId (to be preserved in
Accept/RejectChannel)

HCONN Connection handle

LPCHAN_INFO Pointer to CHAN_INFO passed by

} remote application

Response to OpenChannel request.

Channel handle

TransID specified by application in OpenChannel

request

Response to OpenChannel request.

TransID specified by application in OpenChannel
request

Indication of remote CloseChannel.

Channel handle

Response to CloseChannel request.

Channel handle

TransID specified by application in CloseChannel

Channel Handler Messages
The following messages are generated in response to

the various channel I/0 functions as described with the

function definitions:

1Param

65 CHAN_DATA_LOST
wParam

CHAN_DATA_SENT
wParam

1Param

CHAN_RCV._.COMPLETE

TransID specified by application
in SendData

Response to ReceiveData.
Actual bytes received

TransID specified by application
in ReceiveData

Bytes discarded
TransID specified by application

Response to SendData.
Actual bytes sent

CISCO SYSTEMS, INC. Ex. 1131 Page 71

5,434,913

77

Data Structures

The following are the important data structures for
the comm subsystem:

TADDR, LPTADDR: Address structure for caller/-
callee.

CHAN_INFO, LPCHAN_INFO: Chanrel informa-
tion structure.

CONN_CHR, LPCONN_CHR: Connection Attri-
butes structure.

The comm subsystem provides two different methods
of event notification to the conferencing applications:
Microsoft ® Windows messages and callbacks. A con-
ferencing application program instructs the comm sub-
system as to which method should be used for notifica-
tion of different events. Microsoft ® Windows mes-
sages employ the Microsoft ® Windows messaging
mechanism to notify the conferencing application that
an event has occurred. For callbacks, the comm subsys-
tem calls a user procedure when an event has taken
place. There are restrictions on what the conferencing
application may or may not do within a callback rou-
tine.

Referring now to FIG. 19, there is shown a represen-
tation of the comm subsystem application finite state
machine (FSM) for a conferencing session between a
local conferencing system (i.e., local site or caller) and
a remote conferencing system (i.e., remote site or cal-
iee), according to a preferred embodiment of the pres-
ent invention. The possible application states are as
follows:

INIT Initial or null state

IN_SESSION Conferencing session begun

CONN...IN Incoming connection request received from
remote site

CONN_OUT Outgoing connection request made to remote site

CONNCTED Connection accepted (by local site for incoming
connection and by remote site for outgoing
connection)

CHAN_IN Incoming channel request received from remote
site

CHAN_OUT Outgoing channel request made to remote site

RECEIVE Incoming channel accepted by local site

SEND Outgoing channel accepted by remote site

Referring now to FIG. 20, there is shown a represen-
tation of the comm subsystem connection FSM for a
conferencing session between a local site and a remote

10

20

25

35

45

. R . 50
site, according to a preferred embodiment of the present

invention. The possible connection states are as follows:

NULL Null state

IDLE 1dle state
AWAIT_LOCAL_RESP Awaiting response from local site
AWAIT_ACCEPT_RESP Awaiting acceptance response
AWAIT_REMOTE_RESP Awaiting response from remote site
ALIVE Connection is alive
ESTABLISHED Connection is established

Referring now to FIG. 21, there is shown a represen-
tation of the comm subsystem control channel hand-
shake FSM for a conferencing session between a local
site and a remote site, according to a preferred embodi-
ment of the present invention. The possible control
channel handshake states are as follows:

55

60

65

NULL Null state
AWAIT _CTL..OPEN Awaiting opening of control
channel 0

AWAIT_ALIVE_MESSAGE Awaiting message that control
channel is alive

CTL_ESTABLISHED Control channel established

Referring now to FIG. 22, there is shown a represen-
tation of the comm subsystem channel establishment
FSM for a conferencing session between a local site and
a remote site, according to a preferred embodiment of
the present invention. The possible channel establish-
ment states are as follows:

NULL
IDLE
CHAN_AWAIT_DLM_OPN_RX

Null state

Idle state

Awaiting DLM to open
receive channel
Awaiting local application
response to request to
open receive channel
Receive channel open
Awaiting DLM to open
send channel

Awaiting remote
application response to
reguest to open send
channel

Send channel open

AWAIT_LOCAL._RESP
CHAN_RECEIVING
CHAN_AWAIT_DILM_OPN_TX

AWAIT_REM._RESP

CHAN__SENDING

Referring now to FIG. 23, there is shown a represen-
tation of the comm system processing for a typical con-
ferencing session between a caller and a callee, accord-
ing to a preferred embodiment of the present invention.
Both the caller and callee call the BeginSession function
to begin the conferencing session. The caller then calls
the MakeConnection function to initiate a connection to
the callee, which causes a ConnectRequest message to
be sent to the callee. The callee responds by calling the
AcceptConnection function, which causes a Connec-
tAccept message to be sent to the caller and the callee.

Both the caller and callee then call the RegisterChan-
Man function to register the channel. Both the caller
and callee then call the OpenChannel function to open
a channel to the other, which causes ChannelRequest
messages to be exchanged between the caller and callee.
Both the caller and callee call the AcceptChannel func-
tion to accept the channel requested by the other, which
causes ChannelAccepted messages to be exchanged
between the caller and callee. Both the caller and callee
call the RegisterChanHandler function two times to
register both the incoming and outgoing channels.

The callee calls the ReceiveData function to be ready
to receive data from the caller. The caller then calls the
SendData function, which causes conferencing data to
be sent to the callee. The caller receives a locally gener-
ated DataSent message with the sending of the data is
complete. The callee receives a ReceiveComplete mes-
sage when the receipt of the data is complete. Note that
the caller does not receive a message back from the
callee that the data was successfully received by the
callee.

The scenario of FIG. 23 is just one possible scenario.
Those skilled in the art will understand that other sce-
narios may be constructed using other function calls
and state transitions.

CISCO SYSTEMS, INC. Ex. 1131 Page 72

5,434,913

79

Comm Manager

The comm manager 518 of FIG. 5 comprises three
dynamically linked libraries of FIG. 17: transport inde-

pendent interface (TII), reliable datalink module 5

(RDLM.DLL) and datalink module interface
(DLM.DLL). The DLM interface is used by the TII to
access the services of the ISDN audio/comm board
206. Other modules (i.e., KPDAPLDLL and
DSP.DRV) function as the interface to the audio/-
comm board and have no other function (i.e., they pro-
vide means of communication between the host proces-
sor portion of the DLM and the audio/comm portion of
the DLM. The host processor portion of the DLM (i.e.,
DLM.DLL) uses the DSP interface 528 of FIG. §
(under Microsoft ® Windows 3.x) to communicate
with the ISDN audio/comm board side portions. The
DLM interface and functionality must adhere to the
DLM specification document.

The TII provides the ability to specify whether or not
a virtual channel is reliable. For reliable channels, T1I
employs the RDLM to provide reliability on a virtual
channel. This feature is used to indicate that the audio
and video virtual channels are unreliable, and the data
virtual channel is reliable.

Data Link Manager

The DLM subsystem maintains multiple channels
between the clients and ‘supports data transfers up to
64K per user message. The upper layer using DLM
assumes that message boundaries are preserved (i.e.,
user packets are not merged or fragmented when deliv-
ered to the upper layer at the remote end).

Before data can be transferred via DLM, the two
communicating machines each establish sessions and a
connection is set up between them. This section details
the functions used to establish sessions and connections.
DLM provides the following functions for call control:

DLM_BeginSession
DLM_EndSession
DLM_Listen
DLM_MakeConnection
DLM__AcceptConnection
DLM__RejectConnection
DELM__CloseConnection

The following calls should be allowed in an interrupt
context: DLM_MakeConnection, DLM__AcceptCon-
nection, DLM__RejectConnection, and DLM_Close-
Connection. These functions may generate the follow-
ing callbacks to the session callback Shandler, described
below.

CONN_REQUESTED
CONN_ESTABLISHED
CONN__REJECTED
CONN_CLOSE_.COMPLETE
CONN_CLOSE_NOTIFY
SESS_CLOSED
SESS_ERROR
CONN_ERROR

Most of the session and connection management
functions of the DLM are asynchronous. They initiate
an action and when that action is complete, DLM will

15

20

25

30

35

80
call back to the user via the session callback. The calling
convention for the callback is as follows:

void FAR PASCAL ConnectionCallback (LPEVENTSTRUCT
Event);
Event is a far pointer to a structure:

j:truct EVENTSTRUCT
WORD EventType;
WORD Status;
BYTE DimlId;
BYTE Mdmid;
DWORD DimSessionld;
DWORD DimConnld;
DWORD Token;
LPTADDR Addr;
} LPCONNCHR Characteristics;
where:
EventType Specifies the type of event which triggered the

callback.

Status Indicates the status of the event.

Dimild Unique ID of the DLM performing the callback.
(Equals 0 for ISDN.)

MdmlId Unique ID of the MDM that processed the
event. (Equals 0 for ISDN.)

DimSessionld Indicates the Session ID, assigned by DLM, on
which this event occurred. (Equals 0 for ISDN.)

DImConnld Indicates the Connection Id, assigned by DLM,
on which this event occurred. (Equals 0 for
ISDN.)

Token The token value was given in the call to initiate
an action. When the callback notifies the user
that the action is complete, the token is returned
in this field.

Addr Specifies the LPTADDR of the caller.

Characteristics This field is a LPCONNCHR to the connection

characteristics.

For each function defined below which generates a
callback, all of the fields of the DLM event structure
are listed. If a particular field contains a valid value
during a callback, an X is placed in the table for the
callback. Some fields are only optionally returned by

40 the DLM (and underlying MDMs). Optional fields are

45

50

55

60

65

noted with an ‘O’ in the tables. If a pointer field is not
valid or optionally not returned the DLM will pass a
NULL pointer in its place. The upper layer should not
assume that pointer parameters such as LPEVENT-
STRUCT, LPTADDR, and LPCONNCHR are in
static memory. If the upper layer needs to process them
in a context other than the callback context it should
make a private copy of the data.

DLM__BeginSession: Prepares DLM for subsequent connection
establishment. It is done at both ends

before a connection is made or accepted.

WORD DLM__BeginSession(BYTE Dimld,
BYTE Mdmld,
LPTADDR LocalAddress
FARPROC SessionCaliback,
LPDWORD IpDImSessionld);
Parameters: .
Dimld: Global identifier of the DLM that is to be used.(= 0
for ISDN)
Mdmld: Global identifier of the MDM that is to be used.(= 0
for ISDN)

LocalAddress Far Pointer to a TADDR at which the local
connection will be made. This may not be
relevant for DLMs such as ISDN.

SessionCallback Callback function for the session responses.

IpDImSessionld Output parameter, the session ID allocated.

(ISDN will return a Session Id = Q). Only a
single session need be supported by ISDN.

Return Value: Status Indication

E_NOSESSION Session could not be opened.

E_IDERR DimID parameter does not match the DLM

CISCO SYSTEMS, INC. Ex. 1131 Page 73

5,434,913

81 82
-continued -continued
1D of the called library. LPTADDR RemoteAddress);
Local Callbacks: Parameters:
None DimSessionID: Session identifier returned in
Peer Callbacks: 5 DLM__BeginSession,
None Characteristics Desired characteristics of the connection.
This function does not perform a listen. Session IDs are unique Passed uninterpreted to the lower layers.
across all DL Ms. Uniqueness is guaranteed. Token Uninterpreted token returned to the upper
DILM_EndSession: Ends the specified session at the given layer in the response callback.
address. Any outstanding connections RemoteAddress Address on the remote site on which to make
and/or channels on the session and their 10 the connection.
callbacks are completed before the local Return Value: Status Indication
SESS_CLOSED callback. E__SESSNUM DimSessionID is not valid.
WORD DLM__EndSession (DWORD DlmSessionld); E__SESSUNUSED Session is not in use.
Parameters: E_SESSCLOSED Session has been closed.
DimSessionld: Session identifier returned in E_SESSNOTOPEN Session is not open.
DILM__BeginSession 15 E-IDERR Session is not active on this DLM.
Return Value: Status Indication E_NOCONN Unable to allocate local connection.
E_SESSNUM DlmSessionID is not valid. Local Callbacks:
E__SESSUNUSED Session is not in use. CONN_ESTABLISHED
E_SESSCLOSED Session has been closed. CONN_REJECTED
E_SESSNOTOPEN Session is not open. Event
E_IDERR Session is not active on this DLM. 20 Parameter CONN_REJECTED CONN_ESTABLISHED
Local Callbacks: EventType X X
SESS_CLOSED Status X X
Event Parameter SESS..CLOSED Dimld X X
EventType X Mdmld X X
Status X DILMSession X X
DimId X 1d
MdmId X 25 DLMConnld X
DLMSessionId X Token X X
DLMConnld Addr O
Token Char- X
Addr acteristics
Characteristics Peer Callbacks:
Peer Callbacks: 30 CONN_REQUESTED Satisfies a previous DLM.__Listen on
NONE this address.
DLM__Listen: Initiates a listen on the specified connection. Event Parameter CONN_REQUESTED
‘When an incoming connection request arrives, EventType X
asynchronous notification is done to the Session Status X
callback function. The Listen stays in effect Dimid X
until DLM__EndSession is performed. 35 Mdmld X
WORD DLM.__Listen ODWORD DimSessionld, DILMSessionld X
LPCONNCHR « Characteristics); DLMConnld X
Parameters: Token
DimSessionID Session identifier returned in Addr X
DLM_BeginSession. Characteristics X
Characteristics Desired characteristics of an incoming 40 DLM.__AcceptConnection: Accepts an incoming connection
connection. Passed uninterpreted to the request.
lower layers. WORD DLM__AcceptConnection{DWORD DimConrID,
Return Value: Status indication DWORD Token);
E_.SESSNUM DimSessionID is not valid. Parameters:
E__SESSUNUSED Session is not in use. DimConnlD: Connection identifier returned previously in the
E_SESSCLOSED Session has been closed. 45 CONN_REQESTED callback.
E_SESSNOTOPEN Session is not open. Token Uninterpreted DWORD returned to the caller in
E_IDERR Session is not active on this DLM. the CONN_ESTABLISHED response callback.
Local Callbacks: Return Value: Status Indication
CONN_REQUESTED E__SESSNUM ConnlID is not valid.
Event Parameter CONN_REQUESTED E__SESSUNUSED Session is not in use.
EventType X 50 E_SESSNOTOPEN Session is not open.
Status X E_IDERR ConnlD does not refer to a connection on
DlimId X this DLM.
Mdmid X E_CONNNUM ConnlD is not valid.
DLMSessionld X E_CONNUNUSED Connection is not in use.
DLMConnld X E_CONNSTATE Connection has been closed or is already
Token open.
Addr X 55 Local Callbacks:
Characteristics X CONN_ESTABLISHED
Peer Callbacks: Event Parameter CONN_ESTABLISHED
None EventType X
DLM_MakeConnection: Makes a connection to the specified Status X
address. It generates a callback when Dimid X
the connection is complete which 60 Mdmid X
provides the DLM connection ID to be DI MSessionld X
used in all further operations on this DLMConnld X
connection. Connection IDs are unique Token X
across all DLMS. Uniqueness is Addr O
guaranteed. (ISDN support a single Characteristics X
connection, with a Connection Id = 0). g5 Peer Callbacks:
‘WORD DLM_MakeConnection CONN_ESTABLISHED Satisfies a previous
(DWORD DimSessionlId, DLM__MakeConnection on this
LPCONNCHR Characteristics, address.
DWORD Token, Event Parameter CONN__ESTABLISHED

CISCO SYSTEMS, INC. Ex. 1131 Page 74

5,434,913

83 84

-continued -continued
EventType X Addr
Status X Characteristics
Dimld X
Mdmld X 5) .
DLMSessionld X Referring now to FIG. 29, there are shown diagrams
DLMConnld X indicating typical connection setup and teardown se-
Token X uences
Addr O q :
Characteristics X

DLM_ RejectConnection: Rejects an incoming connection

request. It returns a WORD status.
WORD DLM_ RejectConnection(DWORD DImConnld) ;
Parameters:

DimConnlD: Connection identifier returned in the
CONN_REQESTED callback.

Return Value: Status Indication

E__SESSNUM ConnlID is not valid.

E_SESSUNUSED Session is not in use.
E_SESSNOTOPEN Session is not open.

E_IDERR ConnID does not refer to a connection on
this DLM.
E._CONNNUM ConnlD is not valid.

E_CONNUNUSED Connection is not in use.

E__CONNSTATE Connection has been closed or is already
open.

Local Callbacks:

None

Peer Callbacks:

CONN_REJECTED Satisfies a previous
DLM__MakeConnection on this address.

Event Parameter CONN_REJECTED

EventType

Status

DlmId

MdmiId

DLMSessionld

DLMConnld

Token

Addr

Characteristics

DLM_CloseConnection: Tears down an established connection.

This call is allowed only for
connections that are established.
WORD DLM__CloseConnection(DWORD DimConnld,

MR XM MK

DWORD Token);

Parameters:

DImConnID: Connection identifier returned in the
CONN_ESTABLISHED callback or
through a call to DLM_MakeConnection.

Token Uninterpreted value returned to the upper
layer in the response callback.

Return Value: Status Indication

E_SESSNUM ConnlID is not valid.

E_SESSUNUSED Session is not in use.
E_SESSNOTOPEN2 Session is not open.

E_IDERR ConnID does not refer to 2 connection on
this DLM.
E_CONNNUM ConnlD is not valid.

E_CONNUNUSED Connection is not in use.
E_CONNCLOSED Connection has been closed already.
Local Callbacks:

CONN_CLOSE_COMPLETE
Event Parameter CONN_CLOSE_COMPLETE
EventType
Status
Dlmid
Mdmld
DILMSessionld
DLMConnld
Token
Addr
Characteristics
Peer Callbacks:
CONN_CLOSE_NOTIFY
Event Parameter CONN_CLOSE_NOTIFY
EventType
Status
Dimld
Mdmld
DLMSessionld
DLMConnld
Token

P4 a4

P

10

15

20

25

30

35

45

50

55

65

Interfaces—Channel Management & Data Transfer

Once connections are established between two ma-
chines, DLM will provide the user with multiple logical
channels on the connections. This section details the
functions and callbacks used to set up, tear down, and
send data on channels. DLM has the following entry
points for channel management and data transfer.

DLM_Open
DLM_Send
DLM__PostBuffer
DLM_Close
DLM__GetCharacteristics

Each of these functions is callable from an interrupt or
callback context. These functions generate callbacks
into the user’s code for completion of a send operation,
receipt of data, and events occurring on a given chan-
nel. These callbacks are described and their profiles
given a later section of this specification.

DILM_Open Initializes a new data channel for a connection. It
does not communicate with the remote site. Its role
is simply to declare the channel identifier to the
DLM so that incoming and outgoing packets can
then use the given channel.

WORD DLM..Open(DWORD ConniD,

BYTE ChannellD,
LPCHANCHR Characteristics,
FARPROC EventCallback,
FARPROC ReceiveCallback,
FARPROC SendCallback)

Parameters:

ConnID: Connection on which to open the channel.

ChannellD Identifier of the channel to open, between

0 and N where N is implementation
defined. The value of 255 is reserved to
indicate an unknown or invalid channel
in callback functions.

Characteristics Desired characteristics of the channel.

EventCaliback Callback function for events occurring on

this channel. (This includes all events
except for data received and send
complete)

ReceiveCaliback Callback function for data reception on

this channel.

SendCallback Callback function for data seat on this

channel.

Return Value: Status Indication

E_NOCHAN Unable to allocate channel ID or ID

already in use.

E_SESSNUM ConnlD is not valid.

E_SESSUNUSED Session is not in use.

E_SESSCLOSED Session has been closed.

E_SESSNOTOPEN Session is not open.

E_IDERR ConnlID does not refer to a connection on
this DLM.
E_CONNNUM ConnlID is not valid.

E_CONNUNUSED Connection is not in use.
E_CONNCLOSED Connection has been closed.
E_CONNNOTOPEN Connection is not currently open.
Local Callbacks: .
CHANNELOPEN callback to the event callback for this
channel.
DLM_Send Entry point for sending data via the DLM.
WORD DLM._Send(DWORD ConnlID,
BYTE FAR *Buffer,

CISCO SYSTEMS, INC. Ex. 1131 Page 75

5,434,913

E_CHANUNUSED
E__CHANCLOSED

Originating channel is not in use.
Originating channel is closed.

E__NOMEM Unable to allocate enough memory to
perform the send.

E__INTERNAL An internal error has occurred within
the DLM.

Local Callbacks:

Callback to the send complete function for this channel when this
buffer is posted to the net.

The return value of DLM_Send specifies the syn-
chronous status of the send. If it indicates success, the
request has been accepted to be sent on the network for
this channel and at some time the send complete call-
back will be activated for this buffer. Between the call
to DLM__Send and the send complete callback, the user
must not change the contents of the buffer. When the
callback occurs, DLM is finished with the buffer and
the user is free to alter it in any fashion. The DLM does
not guarantee that the call to DLM _Send completes
before the send complete callback occurs. If the syn-
chronous status indicates that the send operation has
failed, the send complete callback will not be activated
for this buffer and the buffer is immediately available
for modification by the user.

DLM_PostBuffer Supplies buffers to DLM in which to place
incoming data.
WORD DLM_PostBuffer(OWORD ConnlID,
BYTE FAR *Buffer,

WORD BufferSize,
BYTE ChannellD,
DWORD CallerToken)
Parameters:
ConnID: Connection to use.
Buffer Far pointer to the user buffer to use.
BufferSize Size of the user buffer in bytes.
ChannellD Local channel to use this buffer for.
CallerToken Token which will be returned to the user
in the data receive callback for this
buffer.
Return Value: Status Indication
E_NOCHAN ChannellD is not valid or is closed.
E_SESSNUM ConnlID is not valid.
E__SESSUNUSED Session is not in use.
E_SESSCLOSED Session has been closed.
E_SESSNOTOPEN Session is not open.
E_IDERR ConnlD does not refer to a connection on

this DLM.

25

30

35

45

55

60

65

85 86
-continued -continued

WORD BufferSize, E_CONNNUM ConnlD is not valid.

BYTE OriginatingChannel, E_CONNUNUSED Connection is not in use.

BYTE ReceivingChannel, E__.CONNCLOSED Connection has been closed.

DWORD CallerToken) 5 E_CONNNOTOPEN Connection is not currently open.
Parameters: E_CHANNUM ChannellD is not valid.
ConnlD: Connection to use. E_CHANUNUSED Channel is not in use.
Buffer Far pointer to the user buffer to send. E_CHANCLOSED Channel is closed.
BufferSize Number of bytes in the user buffer. E._NOMEM Unable to allocate enough memory to

_ OriginatingChannel Local channel on which to send the data. store the buffer.

ReceivingChannel Channel ID from the remote machine which 10 E..INTERNAL An internal error has occurred within the

receives the data. DILM.
CallerToken Token which will be returned to the user in Local Callbacks:

the send compilete callback for this buffer. Callback to the data receive function for this channel when DLM
Return Value: Status Indication loads the uvser buffer with incoming data.
E_NOCHAN Originating channel is not valid or is

closed. 15 . s
E_SESSNUM ConnlID is not valid. The return value is a word indicating the status of the
E_SESSUNUSED Session is not in use. operation. If it indicates success, the buffer has been
E_SESSCLOSED ~ Session has been closed. enqueuned for the given channel and will be used for
E__SESSNOTOPEN Session is not open.
E_IDERR ConnID does not refer to a connection on incoming data. If it indicates failure, a receive callback
this DLM. 50 Will never occur for this buffer. DLM preserves the
g—ggNNNUMSED Sgnnm‘is not valid. order of buffers on data receives. Provided that no
—CONNUNU nnection is not in use. :

E_CONNCLOSED CGonnection has been closed. errors occur, the first buffer postgd will be the first one
E_CONNNOTOPEN Connection is not currently open. used for data, the second one will be the second used,
E_CHANNUM Originating channel ID is not valid. etc.

DLM__Close Used to close a previously opened channel.
WORD DLM__Close(WORD ConnID,

BYTE Channel)
Parameters:
ConnlD: Connection on which to close the channel.
Channel Local channel to close.
Return Value: Status Indication
E_SESSNUM ConnlD is not valid.

E__SESSUNUSED
E_SESSCLOSED
E_SESSNOTOPEN

Session is not in use.
Session has been closed.
Session is not open.

E_IDERR ConnlD does not refer to a connection on
this DL.M.
E_CONNNUM ConnlID is not valid.

E__CONNUNUSED
E_CONNCLOSED
E_CONNNOTOPEN
E_.CHANNUM
E_CHANUNUSED
E_..CHANCLOSED

Connection is not in use.
Connection has been closed.
Connection is not cerrently open.
Channel is not valid.

Channel is not in use.

Channel is already closed.

Local Callbacks:
Callback to the event callback function for this channel with the
CHANNELCLOSED event after the close has completed.

The function DLM__Close shuts down a given chan-
nel. All future references to this channel are considered
invalid. It performs a forced shutdown in that the call-
back functions for all pending sends and receives are
immediately activated with a status value indicating
that a close occurred. DLM does not guarantee that the
call to DLM_Close will return before the callback is
activated.

DLM_GetCharacteristics Gets relevant data about the DLM (2
- synchronous call).

WORD DLM._GetCharacteristics(LPCHARSTRUCT

Characteristics)

Parameters:

LPCHARSTRUCT Far pointer to the characteristics structure
to be filled by this call.

Local Calibacks:

None

Send Callback

The send complete callback is activated whenever
data has been extracted from a user’s buffer and en-
queued for transmission. It is not a guarantee that the

CISCO SYSTEMS, INC. Ex. 1131 Page 76

5,434,913

87
data has actually been delivered to the remote site. The
entry point for the send complete callback is defined
SendCallback parameter to DLM__Open. This is a far
pointer to a far pascal function defined as follows.

void FAR PASCAL SendCallback(DWORD ConnID,

BYTE FAR *BufferSent,
WORD ByteCount,
BYTE OriginatingChannel,
BYTE ReceivingChannel,
DWORD Token,
WORD StatusOfSend)
Parameters:
ConnlID: Connection on which data was sent.
Buffer Far pointer to the user buffer sent.
BufferSize Number of bytes sent to the network.
OriginatingChannel ~ Local channel on which to the data was
sent.
ReceivingChannel Channel ID from the remote machine which
will receive the data.
CallerToken Token which was given in the call to
DLM_Send for this buffer.
Data Receive Callback

The data receive callback is activated when data has
arrived on the network for a particular channel. The
entry point for the data receive callback is defined in the
ReceiveCallback parameter to DLM__Open, described
below. It must be a far pointer to a far pascal function
defined as follows:

void FAR PASCAL ReceiveCallback(DWORD ConnlD,

BYTE FAR
*BufferReceived,
WORD ByteCount,
BYTE
OriginatingChannel,
BYTE ReceivingChannel
DWORD Token,
WORD StatusOfReceive)
Parameters:
ConnlD: Connection on which the data was received.
BufferReceived The user supplied buffer that was received.
ByteCount The number of bytes received.
OriginatingChannel ~ Channel identifier of the channel on the
remote machine which sent the data.
ReceivingChannel Channel identifier on the local machine that
received the data.
Token Token value that was given in
DLM__PostBuffer when this buffer was
posted to DLM.
StatusOfReceive Status of the operation.

The StatusOfReceive parameter can be any of the
following values:
E_OK

E_TOOSMALL

Indicates that the receive succeeded.
Indicates that the beginning of a data packet
has arrived and the given buffer was
enqueued but it is too small to contain the
entire data packet.

Indicates that the buffer was in the receive
queue when the channel on the local
machine was closed.

Indicates that a data packet has arrived and
there is no buffer in the queue for the
receiving channel.

Indicates that part of a data packet has been
dropped, either by the network or by
internal memory limitations of the MDM or
DLM. The buffer represents everything
received up to the dropped data.

E_CLOSED

E_DATADROP

E_PARTIAL

The state of the parameters depends on the status of the
operation.” The table below lists all possible status val-
ues correlating them with the values returned in the
other parameters, and entry of Valid indicates that this

10

20

N

5

30

35

45

50

55

65

88

parameter contains meaningful data. The connection ID
is always valid.

Re-
Byte- Original ceiving
Status Buffer Count Channel Channel Token
E_OK Valid Valid Valid Valid Valid
E_TOOSMALL Valid Valid Valid
E_CLOSED Valid Valid Valid
E_DATADROP NULL Valid Valid
E_PARTIAL Valid Valid Valid Valid Valid

When errors E_TOOSMALL, E_DATADROP or
E_PARTIAL are returned the upper layer may not
depend on the contents of the returned data buffer.

EventCallback Activated when an action compietes for a given
channel. The entry point for the channel event
callback is defined in the EventCallback
parameter to DLM__Open. It is a far pointer to a
far pascal function defined as follows.

void FAR PASCAL EventCallback@WORD ConnlD,

BYTE Channel,
WORD Event,
. WORD Status)
Parameters:
ConnlD: Connection on which the event
occurred.
Channel Channel on which the event occurred.
Event The type of the event
Status Status of the operation.

The event may be any of the following values.

CHANNEL_OPEN The given channel has been opened and
is now available for data transfer.

CHANNEL_CLOSED The given channel has been closed.

DSP Interface

The ISDN comm task 540 of FIG. 5 which run on the
ISDN audio/comm board 206 of FIG. 2 communicate
with the host processor 202 via the DSP interface 528.
The host processor operates under Microsoft ® Win-
dows 3.x environment.

Comm Task

The comm task 540 of FIG. 5 communicates with the
audio task 538 on the ISDN audio/comm board 206.
The channel ID of the audio virtual channel is accessi-
ble to both the host processor and the audio/comm
board. The model is as follows:

A channel is opened by the host processor or an open

channel request is granted by the host processor.

The host processor signals the audio task on the audi-
o/comm board that a channel is accepted/opened
on its behalf.

The audio task on the audio/comm board notifies the
comm task that all incoming (if the channel was
accepted) or outgoing (if the channel was opened)
will be handled by the on-board audio task.

Application-Level Protocols

The application-level protocols for conferencing sys-
tem 100 of FIG. § are divided into those for the video,
audio, and data streams.

Video Protocol

Referring now to FIG. 24, there is shown a represen-
tation of the structure of a video packet as sent to or
received from the comm subsystem, according to a
preferred embodiment of the present invention. Source

CISCO SYSTEMS, INC. Ex. 1131 Page 77

5,434,913

89

video is video that is captured (and optionally moni-
tored) on the local conferencing system and sent to the
comm subsystem for transmission to a remote system.
Sink video is video that is captured remotely, received
from the comm subsystem, and played back on the local
system. The first ten fields (i.e., those from IpData
through dwReserved[3]) are defined by Microsoft ®) as
the VIDEOHDR structure. See the Microsoft ® Pro-
grammer’s Guide in the Microsoft ® Video for Win-
dows Development Kit. The video packet fields are
defined as follows:

IpData
dwBufferLength

Long pointer to the video frame data buffer.
Length of the data buffer pointed to by
IpData, in bytes.

Length of bytes used in the data buffer.

Time, in milliseconds, between the current
frame and the beginning of the capture session.
This field is preferably used to carry a
timestamp used to synchronize audio and video
frames at the receiving endpoint.

Reserved for application use.

Information about the data buffer, defined
flags are:
VHDR..DONE

dwBytesUsed
dwTimeCaptured

dwUser
dwFlags

Data buffer is ready
for the application.
Data buffer is
queuved pending
playback.

Data buffer is a key
frame.

Data buffer has
been prepared for
use by the driver.

VHDR_INQUEUE

VHDR_KEYFRAME

VHDR__PREPARED

Reserved for driver use.

Type of the packet, defined types are:
VDATA (=1) Video data packet.
VCNTL (=2) Control packet.

Unused for video data packets. For control
packets, may be one of the following:
RESTART (=WM__USER+550h) Request
for a key frame.

‘When a RESTART control packet is sent, no
video frame data is sent. WM__USER is a
Microsoft @ Windows defined value and is
preferably 400h. RESTART indicates the
video stream needs to be restarted to recover
from problems. WM_USER is a

Microsoft ®) -defined constant, indicating
that all values greater than this number are
application-defined constants.

Compressed video frame data.

dwReserved
Type

Message

Data

Video data packets are used to exchange actual video
frame data and are identified by the Type field. In this
case, the video software redirects the VIDEOHDR
IpData pointer to the Data array which starts at the end
of the packet. In this way, the packet header and data
are kept contiguous in linear memory. The VI-
DEOHDR dwBufferLength field is used to indicate the
actual amount of video data in the buffer and therefore
the amount of data to be sent/received. Note that the
receiving application must redirect lpData to its copy of
Data since the memory pointer only has local signifi-
cance. In a preferred embodiment, Data length has an
upper bound of 18K bytes.

Compressed Video Bitstream

Referring now to FIG. 25, there is shown a represen-
tation of the compressed video bitstream for conferenc-
ing system 100, according to a preferred embodiment of
the present invention. Each compressed video bitstream
represents one frame of video data stored in the Data
field for a video data packet of FIG. 24. The video
compression/decompression method associated with

15

20

25

30

35

45

65

90

the compressed video bitstream of FIG. 25 is used for
low-data-rate, relatively-low-frame-rate, teleconferenc-
ing applications. The method preferably operates at
approximately (160X 120) resolution, a data rate of ap-
proximately 100 Kb/sec, and a frame rate of around 10
frames/sec. Under these conditions, the compressed
video bitstream may be encoded or decoded in real-time
by an Intel ® i750 ® processor, or decoded in real-time
by an Intel ® architecture processor such as an Intel ®
80386, 80486, or Pentium ®) processor.

The fields of the compressed video bitstream of FIG.
25 are defined as follows:

VersionNumber
Flags

Compression method ID.
Contains various flag bits defined as follows:
FLAGS_MV 1
FLAGS_FILTER 2
FLAGS_STILL_IMAGE 4
FLAGS_STILL _BLKS 8
Size of the bitstream in units of bits.
Reserved field.
Height of image in pixels.
Width of image in pixels.
Base quantization value for the U and V
planes.
Base quantization value for the Y plane.
Strip of blocks encoded as still blocks (for
delta images only). If StillStrip = 0, there
is no still strip. Otherwise, the strip of blocks
is determined as follows. Consider the blocks
of the Y, V, and U planes in raster order as a
linear sequence of blocks. Divide this
sequence of blocks into groups of 4 blocks,
and number each group with the sequential
integers 1, 2, 3, etc. These numbers correspond
to the value of StillStrip. In a preferred
embodiment, all planes have dimensions that
are integer multiples of 4.
Locations of additional blocks in the image
that are encoded as still blocks (only if the
FLAGS_STILL._BLKS flag is set). The rule
for identifying these blocks is based on the
quantization value quant for each block as
determined during the decoding procedure.
A block is a still block if

quant <= StillThresh
These still blocks are independent of the
blocks in the still strip, which are encoded
as still blocks regardiess of their quant values.
Blocks to which the loop filter is to be applied
(only if the FLAGS_FILTER flag is set) The
rule for applying the loop filter is to apply it
to a block if

quant < = FilterThresh
Array describing the motion vectors used in
decoding the image (only present if the
FLAGS_MV flag is set). There is one
8-bit motion vector field for each (16X 16)
block in the image.
The compressed data for the image.

DataSize
Reservedl
ImageHeight
ImageWidth
UVquant

Yquant
StillStrip

StillThresh

FilterThresh

MotionVectors[]

huffman data

FLAGS_MYV indicates whether motion vectors are
present in the bitstream (i.e., whether the MotionVec-
tors[] array is present). A delta frame with FLAG-
S MV =0 is interpreted as one in which all the motion
vectors are 0. FLAGS_FILTER indicates whether the
loop filter is enabled for this image. If enabied, then the
loop filter may be used on each block in the image, as
determined by the value of FilterThresh. FLAGS_S-
TILL_IMAGE indicates whether the image is a still
frame or a delta (non-still) frame. A still frame is one in
which all blocks are encoded as still blocks. In a delta
frame, most blocks are delta blocks, but there may be a
strip of still blocks in the image, as specified by the
StiliStrip field, and there may be additional still blocks
as determined by the value of StillThresh. FLAGS__S-

CISCO SYSTEMS, INC. Ex. 1131 Page 78

92
-continued

5,434,913
still

“additional

91

TILL_BLKS indicates whether

WOOVLOVVYVOVVNNNO TN NNV NNOVINONNNSYESEITYTrTTTTNNnNNOLNINBETEIET T TFON A OO OO

WOODLOLOLVVYNMmUnOn@uymunununmunununmnmmunn nnunnomnmninnngeg sttt nuninnunnuningdt sttt trtnononmmnononmn

NNV NNInNnnNInngdttTrTrTTnNnnntgrrTrTtnNninttdrrITrFtrnmnmnoanINNNOONNFTENAANANN OO

NNMNNOVOVNINNINNNMNGtTIITTNNETIIIITNNNTETRI LI OOONOOMOONTTANANNNGN

. o~
FA
TN NOOT T I TN INININTE LT LT T NN AN TFTANANNATTELTOAMNNMONOEMANONE@ONOONMTETANNNNNNO® >>
Aa
o=
w
=+
+
5%
.aW
T @
N’
=

NN nOoOOTnnErTnNnnnnntgorrTsrTnntnnnTTnntnongtgtstTtnnnnmnmunnnntTannnoontdTnaNNNNO®

There is one motion vector per (16 X 16) block of the Y

plane, listed in block raster-scan order. The number of
array, can be determined from ImageHeight and Image-

Width as:
In each byte of the MotionVector[] array, the upper 4

(16X 16) blocks in the image, and hence the size of this
bits specifies the X component of the motion vector and
65 the lower 4 bits specifies the Y component (both in
two’s-complement notation). Both components of the
motion vector are between +7 and —7, inclusive. The
motion vectors preferably apply to the Y plane only; the

w (=] [wy Al (=
—t N o oy w A sl

55
60

e
(3]

VRO WWWVM NN ERNERNERENRYVOOOVOOOVOYWOOVOYWOVOVOVOWOWOWOWOLOOVNNNN®NMNWNIANNWNNINWNWNININD\D

VOO0 VRWWII RS OYVVOVOVOVYOOVOVOOVYWOLVOVYWOYOOWOLOONNINNNNNNNININDN NN NGYDO

NP ROV OVOVYCVYNR RNV NIEENNVNAOVOOVNNNNINOIMNOVOVNNnNNYYNNNNNInNNTETESEttTnnnn

NN OOV OYR NNV NN NNV NNNNEINNOVOYONNNnNnNNVYMnININNNnNntTE T nnnn

VOV OREROONNNNOVORE NN VERENNOLNNYYNNNNNNOOYYFFTTONOOYTETETFTN NNt NS

VOOV VO NOYOEE NNV ERENNNNNYOVNNINNINOVOYTITTTNNOOTFETNN NN NN <

M NNOOER O FTGFT N NV EF T NN LT TNV OTTNNNNNOVOTETTTNNMOVOTITIIT DN TN

MNOOVURRONENNOUONERYT NIRRT NN NOOYNTNNINNOOVONSTYEIFNMOVONEITNNINNNES Sttt N ton

the value selected for use at the beginning of a plane, 10
and is used for the entire plane unless changed by a

NEWAQ code inserted in the bitstream. The preferred 16

a number in the range 0-15 that indicates one of a set of 5
quantization matrices are:

sixteen (8 X8) quantization matrices, with O indicating

blocks™ are enabled for this image. If enabled, then any
block with quantization value less than or equal to Still-
Thresh is coded as a still block. A quantization value is
the coarsest quantization and 15 indicating the finest.
The UVquant and Yquant variables are referred to as
base quantization values. The base quantization value is

CISCO SYSTEMS, INC. Ex. 1131 Page 79

5,434,913

93

U and V planes are processed by the decoder using
motion vectors of 0.

Y

Video Decoding Procedure

For conferencing system 100, images are encoded in
a 9-bit YUV format (i.e., YUV 4:1:1 format), in which
there are three 8-bit planes of pixels (Y, U, and V) with
U and V subsampied by 43X in both directions. Each
plane is subdivided-into a grid of (8 X 8) blocks of pixels,
and each block is encoded using a frequency-domain
transform. The planes are encoded in the order Y, V,
and U, and within each plane the blocks are traversed in
raster-scan order.

If a given plane’s dimensions are not evenly divisible
by 8, “partial blocks” at the right or bottom edges will
occur. Partial blocks are encoded by padding them out
to the full (8 X 8) size (using whatever method the en-
coder chooses, such as replicating the last column and-
/or row or pixels) and encoding them as if they were
full blocks. In the decoder, such blocks are recon-
structed by first decoding the full (8 X 8) block but then
writing only the partial block to the final image bitmap
in memory. The decoder can determine the location and
sizes of partial blocks entirely from its knowledge of the
image dimensions (ImageHeight and ImageWidth).

Each (8x8) block is encoded using a transform
method. Instead of the discrete cosine transform
(DCT), a simpler transform known as the discrete slant
transform (IDST) is used. The DST is almost as good at
the DCT, in terms of compression and quality, but is
simpler and faster for both an Intel ®) i750 ® processor
and an Intel ® architecture processor such as an In-
tel ® 80386, 80486, or Pentium ® processor to com-
pute.

All the data in the bitstream, after the header, is Huff-
man encoded. Unlike H.261 and MPEG, which have a
muitiplicity of Huffman tables, for conferencing system
100, a single Huffman table is used for encoding all
values. This single Huffman table is:

codes
0 xx 4
10 xxx 8
110 xxxx 16
1110 xxxxx 32
11110 xxxxxx 64
111110 xxxxxx 64
111110 xxxxxx 64
Total 252

This table defines 252 Huffman codes of lengths 3, 5, 7,
9, 11, 12, and 13 bits. Only the first 231 of these Huffman
codes are preferably used; the remaining ones are re-
served for future expansion.

In the pseudo-code below, the function huffdec()
appears. This function does a huffman-decoding opera-
tion on the next bits in the bitstream, and returns the
index of the code word in a lexicographically-ordered
list, like so:

Code word Value returned
000 [¢]
001 1
010 2
011 3
10000 4
10001 5
10010 6

20

25

30

35

45

50

55

65

9

-continued

Code word

etc.

Value returned

The first step in decoding a block is to decode what are
known as the “run/value pairs” (or run/val pairs, for
short) for the block. Each run/val pair represents one
non-zero DST frequency-domain coefficient.

This procedure also updates the current quantization
value (held in the variable quant) when a NEWQ code
is received from the bitstream. The value of quant is
initialized at the start of each plane (Y, U, and V) to
either Yquant or UVquant, but may be adjusted up or
down by NEWQ codes in the bitstream. Note the fol-
lowing important rule, not made explicit by the pseudo-
code below: a NEWQ code may preferably only occur
at the beginning of a block. A decoder may use this fact
to make decoding faster, since it need not check for
NEWQ codes in the middle of parsing a block.

The procedure for decoding the run/val pairs and
NEWQ codes is as follows:

k=0

while (1)

{
v = huffdec();
if (v == EOB)

break;
else if (v == NEWQ)
quant + = tosigned(huffdec()) ;

else if (v == ESC) // get explicit run,val from
V74 bitstream
{
runfk+ +] = huffdec() + 1;
valfk+ +] = tosigned(huffdec() | (huffdec() < < 6));
else V74 lookup run,val in tables
{

run[k+ -] == runtbl[v];
valfk++] = valtbl[v] ;

The function tosigned() converts from an unsigned
number to a non-zero signed number, as follows:

tosigned(n)
{

v=@m>>D+
fm&l)v=—v
return(v);

This conversion is used on both the quantization change
and the explicit value read after an ESC, both of which
are non-zero signed numbers. EOB, ESC, and NEWQ
are specific decoded values defined as follows:

EOB =0
ESC = 30
NEWQ = 6

Finally, runtblf] and valtbl[] are preferably defined as
follows:

runtbl[] = {

—
-
w
LSS

CISCO SYSTEMS, INC. Ex. 1131 Page 80

5,434,913

95 96
-continued
4 4 5 6 6 3 1 2 for (i=0; i<8 i+ +)
1 3 1 27 1 0 2 for (j=0; j<8; j++)
7 9 8 4 1 5 1 1 coeffli] [i] = 0;
2 4 2 8 10 3 13 15 start at position “— 1’ on the scan path (one step “before”
1 1 1 1 1 1 2 15 0) for (each run/val pair)
1 4 1 7 9 14 7 2 {
7 20 11 3 5 4 16 5 step forward by ‘run’ positions on the scan path
% } ; ; } 21 3? 2;) deposit ‘val’ at the new position
2 12 13 13 29 12 13 14 10
4 31 29 28 28 30 10 10
10 1 10 12 10 21 9 9 The next step is to dequantize the block of coeffici-
:1;8 ;; }é ?53; }‘9‘ g ;g ;g ents. This is done by applying quantization matrix num-
2 21 220 2 2 20 16 2 berquant, asfollows:
26 16 15 32 15 27 15 18 5
17 17 25 17 11 24 25 16
2 3 i 3 3 3 3 2 for 1=0;i<8; i+ +)
3 2 3 4 4 3 3 3 for G=0; j<8& j++)
3 3 4 3 3 1 1 1 coeffli] [j] = coeff]i] [j] << qmatrix[quant] [i] [j] ;
1 2 1 1 1 1 1 1
2 2 2 9 2 2 2 2 . L o
2 6 6 6 6 6 9 6 20 The next step is to undo “DC prediction,” which is
P predict]
6 6 6 ?; 2 8 7 8 ysed to further compress the DC coefficient coeff]0][0]
Z Z 1 s s i ‘; Z in still blocks. If the block being decoded is a still block
either because this is a still image, or because this block
6 s s 5 5 5 5 (this is a still image, o :
} is part of the still strip ina relative 1m:age), DC. predic-
valtbl[] = { 0 1 1 21 1 -2 o) 25 tion is undone by applying the following equations:
-3 3 -1 1 2 4 -4 -1
1 -1 1 -1 1 —2 —6 2 coeff[0][0]+ =prevDC
5 2 -5 -3 -1 6 0 3
1 1 1 -2 -7 2 -9 10 prevDC=coeff[0][0]
-5 2 5 -1 -1 3 1 =103
—1§ -1 ‘1‘ 1; g ‘i’ —} ‘; —i The value of prevDC is initialized to 8*128 at the start
3 i 1 4 7 21 s of each image pla:11e.]
6 17 —-15 —14 11 12 -1 13 The next step is to transform the (8X8) coefficient
4 15 —4 -6 —16 -1 —18 1 array into the spatial domain. This is done by applying
-1 % —% —i i } f —i 35 an (8x 1) DST to each of the 8 rows and 8 columns of
_; 2 2 -3 _3 2 2 5 coeff[]f]. The (8X 1) DST can be described as follows:
1 -1 2 1% 2 2 -1 1
-1 1 2 1 -2 -2 -1 2
-1 -2 41 1 2 -2 1 —1 slant8 X1 (s,d,fwd) // s = src array, d = dst array,
1 -2 2 1 1 -1 —2 -2 int s 1,d[J,fwd; // fwd = 1 for forward xform, 0 for
21 1 =2 -1 1 -1 2 40 // inverse
10 —4 —22 -6 -7 -9 —8& 11 {
—10 12 6 —8 —9 10 -3 9 int r1,12,r3,r4,r5,r6,x7,18;
8 7 =7 5 =5 21 2 19 int t,tl,*p;
21 10 16 —17 —19 —20 18 22 if (fwd)
8 7 -7 —2 -8 -9 —11 -—12 {
9 6 5 4 3 —4 -3 -—245 p=s
-3 =5 2 3 2 -2 -5 =3 rl = *p++;
5 4 3 —4 7 =7 9 8 12 = *p++;
6 5 —5 3 -3 -4 6 —6 13 = *p++;
-6 - 5 -6 4 3 -3 -5 4 = *p++;
} 15 = *p++;
50 AP
17 = *p++;
The next step in decoding is to convert the mn/val 18 = *p++;
pairs into an (8 X 8) block of DST coefficients, as fol- SlantPartl;
L SlantPart2;
lows: Deﬁpe the scan path through an (8 X 8) matrix by SlantPart3;
the following numbers: SlantPartd;
55 p=4d;
4+ =1l
0 1 4 9 17 18 37 38 *p++ =14
2 3 8 10 19 25 39 45 p++ =18
5 7 11 14 24 26 44 46 *p++ =15
6 12 13 15 27 32 47 53 *p++ =12
6 20 23 28 31 33 52 s4 60 *Pt+ = 16;
21 2 29 30 34 35 55 60 *pt++ =13
36 40 43 43 51 56 59 61 *p++ =17
41 2 49 50 57 58 62 63 }
else
{
where the scan path is found by traversing these num- 65 p=s
bers in increasing order. The (8 X 8) block of DST coef- L="p++;
. . . 4 = *pt+;
ficients coeff]8][8] is created by the following proce- 18 = *ptt;
dure: 15 = *p++;

CISCO SYSTEMS, INC. Ex. 1131 Page 81

5,434,913

97 98
-continued where array[][] is the result of the DST calculation,
- prev([i[] is the (8 X 8) block of pixels from the previous
:‘é - ,gii’ image, and clamp0_255() is a function that clamps a
13 = *pt+: value to the range (0,255). The previous block is the one
r7 = *p+ 4 5 in the same spatial location as the block in the current
2}:’:11::;‘;’ image, but offset by the motion vector for that block,
SlantPart2 which is either determined from the MotionVector
SlantPartl; array (if processing the Y plane) or is O (if processing
p= 4 the U or V plane, or if FLAGS_MV==0).
,gi: = 2 10 During decoding the loop filter may need to be selec-
ot =13 tively applied. If the FLAGS_FILTER flag is set, and
*p4++ = r4; if a block is not a still block, and if the quantization
pt+ =15 value for a block satisfies
*p++ =16
} :gii z :‘éz 15 quant < =FilterThresh
} and if the block is not empty (i.e., does not consist of
only EOB), then the loop filter is applied to prev[] be-
where butterfly(x,y) is the following operation: fore adding the array[l[] deltas. The preferred loop filter
20 js a filter with kernel as follows:
butterfly(x,y):
t = x+y; 1 . 1
y =x-y; x
x=1t 1 . 1
25
and SlantPartl, SlantPart2, SlantPart3, SlantPart4 are where the pixel marked x is replaced by:
four macros defined as follows:
x=(a+b+c+d)>>2
#define Slantpart]\ 30 where a,b,c,d are the four pixels in the corners of the
Egig;‘gi (3 3) block. On the edges of an (8X8) block, 2 one-
bﬂy(r5,rg); \ dimensional (1 0 1) kernel is preferably used. The corner
e bﬂs’f(rﬁé?éz\ pixels of the block are preferably not filtered.
efine »slan:
bly(r1,r2);\ 35 Intra/Inter Decision Rules
;ﬁ;eé;(r,z)ri)\ A certain class of motion compensated video com-
reflect(r8,17); pression systems encode certain blocks in motion com-
#define SlantPart3\ pensated difference images as “intra” blocks and others
:ggiig{ 40 as “inter” blocks. The decision to encode a block as an
bfly(r7,e3); intra or inter block is based on a decision rule which is
bily(r4,r8); referred to as the “intra/inter decision rule”. This sec-
#deﬁn: i“‘”stp "“(4; 2 4 > >13) tion describes a preferred method for generating an
r5—=rr4~— r(x':>>> 3)+— r(r5>>>> Dt intra/inter decision rule for conferencing system 100.
4=t 45 The intra/inter decision rule generated by this method
#define reflect(s1,s2) | is (1) computationally simple, (2) encoded implicitly
52==51_';'2(s_1 22>>2)>‘;)(f?51>>1);>\l).\ (requiring no bits for differentiating intra vs. inter
sl=1t ’ blocks, (3) adaptive to spatiotemporal image content,
and (4) statistically optimal in providing a means of
The (8 X 1) DSTs are preferably performed in the fol- 30 gnlfge;ce::;??:;ul;:ween motion compensation artifacts
lowing order: rows ﬁr.st, theq column§ ; (Domg_ columns The conventional objective of encoding some blocks
follﬁlwed At;ty rgvnfs 8t ;es 85 hglhtllgsc’:}}ffe:ﬁn& m:lorregt as intra in motion compensated difference frames is to
iﬁirc:ﬁltm e(rs ;g)lgartr ae e(m? r)eferabf, A ght-s;iﬂ?e?:lst:n reduce the number of bits required to encode those
3 bits. and tghen clampec){ to tllie range)E—- 128, 127) ifi 55 blocks that have low spatial variation but high temporal
delta ’block or to the range (0, 255), if a still’bloclé variation. The objective of encoding some blocks as
If the blc’:»ck being decoded ’is a s’till block. 1o n;ore intra in difference frames is to reduce §he effects of yigh
processing is required. The DST c alculation’ produces frequency motion compensation artifacts (sometimes
the block of reconstn.lct ed pixels to be written to the referred to as “mosquitoes” in the literature) without
image 60 having to use (computationally expensixge_) loop tf"llter-
. . : . ing. An area in a motion compensated difference frame
blgcf:;l:; ?iggistlﬁlgtge dd;ci:xo;:c}slz azli c;?ge:gz;.ﬂmk’ the that exhibits mosquitoes when encoded as a quantized
) difference will instead appear blurred if encoded as a
quantized intra.
for (i=0; i<8; i+ +) 65 The preferred technique for generating an intra/inter

for (=0; j<8& j++)
imageli] [j] = clamp0_255(prev(i] [i] + arrayfi] (]} ;

decision rule for a given motion compensated video
compression system works as follows:
Given:

CISCO SYSTEMS, INC. Ex. 1131 Page 82

5,434,913

99
1. A transform
2. A set of N quantizers for Inter blocks (Q1, Q2, . . .
» QN)
3. A set of M quantizers for Intra blocks (K1, K2, . .
., KN)
4. A set of “training data” that is representative of the
application in hand.
Let SAD(i,j) denote the “Sum of absolute differences”
for block (i,j) in a motion compensated difference im-
age.
Step 1

For each Quantizer Qi, perform the following opera-

tion:

a. Compress the training data, using Qi as the quan-
tizer for all the blocks in the all the motion compen-
sated difference images.

b. By a visual observation of the (compressed and
decompressed) training image sequences, collect
all blocks that contain perceptible mosquitoes.

c. From the set of blocks collected in (b), find the
block with the lowest SAD. Denote the SAD of
the block with the lowest SAD as LSADI (corre-
sponding to quantizer Qi).

d. From the set of blocks collected in (b), select a
subset of n blocks with the lowest SADs in the set.

e. For each block in the subset collected in (d), deter-
mine the number of bits required to encode the
block. Let B be the average number of bits required

. to encode a block in the subset. For each intra
quantizer Kj, determine the average number of bits
BKj required to encode a block in the subset as an
intra (using quantizer Kj). From the set {BK1,
BK2, . .., BKM}, find j such that |B-BKj] is
minimized. Kj is the intra quantizer assigned to Qi.

Step 2

From Step 1, for each Qj, there is a corresponding
LSADi which is the lowest SAD value for which there
are perceptible motion compensation artifacts and an
intra quantizer Kj. The intra/inter decision rule is de-
fined as follows:

For each block (p,q) in a motion compensated differ-
ence frame, given a quantizer Qi (as determined by
an external quantizer selection process) the block is
encoded as intra if and only if SAD(p,q)>LSADI.
Intra quantizer Kj is used to encode the block.

A major advantage of the intra/inter decision rules
generated by this technique is that the intra/inter deci-
sion is implicit in the method and is known to both the
encoder and decoder. Therefore, it does not need to be
explicitly transmitted and thus requires no bits.

Post Reconstruction Loop Filtering

This section describes a preferred method of “loop
filtering™ for conferencing system 100 for the reduction
of high frequency artifacts associated with motion com-
pensated video compression for the present invention.
A traditional loop filtering operation operates on the
previously decoded (reference) image. Certain blocks
of the previously decoded image are low-pass filtered
prior to motion compensation. This reduces the high
frequency content in the reference block and, as a re-
sult, the high frequency content in the final output.

In the preferred method of loop filtering, a low-pass
filter is applied to certain blocks after the motion com-
pensation and addition operation to generate a filtered
reconstructed image. This approach to loop filtering
has two major advantages:

5

10

40

45

50

55

60

65

100

1. It is easier to implement, since the motion estima-
tion and differencing operations may be merged into
one operation.

2. It has a greater low-pass filtering effect on the

reconstructed image since the final image is filtered
instead of the reference image only. '

Adaptive Loop Filter Switching Criteria

This section describes a preferred method for gener-
ating a criterion for the switching (“on” or “off”) of a
loop filter in conferencing system 100. The loop filter
switching criterion generated by this method is better
adapted to the spatiotemporal image content and pro-
vides a differentiation between motion compensation
artifacts and scene features. A traditional loop filtering
operation operates on the previously decoded (refer-
ence) image. Certain macroblocks (typically 16X 16
areas) of the previously decoded image are low-pass
filtered prior to motion compensation. This reduces the
high frequency content in the reference macroblock
and, as a result, the high frequency content in the final
output.

The objective of loop filtering is to reduce high fre-
quency artifacts associated with residual quantization
noise in motion compensated difference images. Ideally,
only those macroblocks should be filtered that exhibit
such motion compensation artifacts. A criterion for
deciding whether or not a given macroblock should be
loop filtered or not is referred to as the “loop filter
switching criterion.”

A conventional loop filter switching criterion is to
apply a loop filter if the macroblock has a non-zero
motion vector and not to apply it if the motion vector
for the given macroblock is the zero vector. A major
drawback of this criterion is that it filters macroblocks
that have non-zero motion but no motion compensation
artifacts. :

The preferred method for generating a loop filter
switching criterion works as follows:

Given

1. A transform

2. A set of N Quantizer (Q1, Q2, ..., QN)

3. A set of representative “training data” for the ap-
plication at hand.

Let SAD(,j) denote the “Sum of absolute differences”
for Macroblock (i,j) in a motion compensated difference
image.
Step 1

For each Quantizer Qi, perform the following opera-
tion:

a. Compress the training data, using Qi as the quan-
tizer for all the macroblocks in the all the motion
compensated difference images.

b. By a visual observation of the (compressed and
decompressed) training image sequences, collect
all macroblocks-that contain perceptible high fre-
quency motion compensation artifacts (sometimes
referred to as “mosquitoes” in the literature).

c. From the set of macroblocks collected in (b), find
the macroblock with the lowest SAD. Denote the
SAD of the macroblock with the lowest SAD as
LSAD:i (corresponding to quantizer Qi).

Step 2

From Step 1, for each Qj, there is a corresponding
LSADi which is the lowest SAD value for which there
are perceptible motion compensation artifacts. The loop
filter switching criterion is defined as follows:

CISCO SYSTEMS, INC. Ex. 1131 Page 83

5,434,913

101
For each Macroblock (p,q) in a motion compensated
difference frame, given a quantizer Qi (as deter-
mined by an external quantizer selection process)
the loop filter is applied if only if SAD(p,q)>L-
SADiI.

Design of Quantization Tables

This section describes a preferred method for design-
ing quantization tables to be used for quantization in
conferencing system 100. This preferred method ex-
ploits the perceptual properties of the human visual
system in a statistical sense to arrive at quantization
tables that minimize perceived quantization artifacts at a
given effective bit rate.

In conventional video compression systems, the
quantization process is spatially adaptive. Different
regions in the image are quantized using different quan-
tizers. In a transform-based video compression system
that uses linear quantization, the quantization operation
may be completely specified by a table of numbers, each
of which corresponds to the (linear) quantizer step size
to be used to quantize a specific frequency band in the
transform domain.

The present invention relates to the design of the
quantization table Q[8][8] for conferencing system 100.
The design process is as follows:

Given

1. Transform-based conferencing system 100

2. A set of video sequences that are representative of

the application at hand

3. A specification of target bitrate (or compression

ratio) for the application.

Objective

To design a set of N quantization tables Q1, Q2, .. .,
QN such that:

a. QN/2 results in target bitrate for typical video

sequences.

b.Q1, ..., QN meet a specified dynamic range speci-

fication. For a given video sequence, the bitrate
generated using Q1 should be about K times the
bitrate generated by QN. Here K is the dynamic
range specification and is usually dependant on the
variability of the allocated channel bandwidth of
the channel over which the compressed video bit-
stream is being transmitted.

. Q1, ..., QN minimize the perceived artifacts in the
processed (compressed and decompressed) video
sequence at their point of operation (in terms of bit
rate).

Procedure

Step 1. Design of Q1

Q1 is the weakest quantizer table and is designed so as
to generate no perceptible artifacts at the expense of a
bitrate that is potentially much higher than Target Bi-
trate. Q1 is designed as follows:

Set Q[i][jl=1 for all i,j (all frequency bands)

Starting from the lowest frequency band to the high-
est frequency band,

For each band (i,j),

a. Increment QIil[j]

b. Use Q[8][8] as the quantizer in the given video

compression system

c. If there are any perceivable artifacts in the pro-

cessed video sequence,
i. Decrement Q[i[[j]
ii. Goto the next band

Else goto (a)

20

30

35

45

50

55

65

102

The above process generates a quantizer table (Q1)
that is at the perceptual threshold, referred to as the
perceptual threshold quantizer (PTQ).

Step 2. Design of Q2, Q3, ..., QN/2

Let B1 be the bitrate generated using quantizer Q1
with a typical video sequence. Let BT be the target
bitrate. The objective now is to design Q2, Q3, . . .
QN/2 such that QN/2 generates target bitrate (BT) for
typical sequences and Q2, Q3, . . ., QN/2—1 generate
monotonically decreasing intermediate bitrates between
B1 and BT. From the perspective of a bitrate controller,
it is desirable to have a linear decrease in bitrate with
quantizer table index. Tables Q2, Q3, ..., QN/2 are
designed with this requirement in mind. The following
is the design procedure for tables Q2,Q3, ..., QN/2:

Let dB=(B1—BT)/(N/2).

Set Q2=Q1

For each quantizer Qk, k=2 to N/2

Starting from the highest frequency band to the low-
est frequency band,

For each band (i,j)

a. Set Qk=Qk—1

b. Increment all Qk{i][j] with the same horizontal or
vertical frequency

c. Use QK[8][8] as the quantizer in the given video
compression system

d. If the bitrate is reduced by dB,

i. Save the state of Qk[8][8]
ii. Goto the next band at 1

Else goto 2.

e. Amongst the quantizer states saved in (d)(i), select
that quantizer that has the least perceptible artifacts
for typical video. This is the choice for Qk.

Step 3. Design of QN/2+1, ..., QN.

From the perspective of a bitrate controller, it is
desirable to have a progressively increasing decrease in
bitrate with quantizer table index from table N/2--1 to
table N. The design of tables QN/2+1, ..., QN is the
same as the design for tables 2, . . . ,N/2 except that for
each new table, dQ increases instead of remaining con-
stant. The magnitudes of the dQs for quantizers
QN/2+1, ..., QN depend on the desired dynamic
range in bitrate and the manner of decrease in bitrate
with quantizer table index. For example, if the desired
dynamic range is BT to BT/4 from QN/2 to QN and
the decrease in bitrate is logarithmic then

dON/2 + 1) = dOWN/2)

for i = (N/2 + 2) to (N/2)

dQi = kdQi — 1

dQ(N/2 + 1) + dQ(N/2 + 2) + ... + dQN = BT — BT/4
dO(N/ZX1 + Kk + k*k + k** + ...) = 3BT/4

(A + k + k% + k%% + ...) = 3BT/4/(dON/2)
(1+2+3+4+...4 (N2 — D)logk = log(3BT/4/dON/2)
logk = log(3BT/4/dQN/2)/N/4

k = (3BT/4/dQN/2) to the power 4/N

Adaptive Transform Coefficient Scanning

This section describes a preferred method of trans-
form coefficient scanning in conferencing system 100, a
transform-based image and video compression system,
that exploits the properties of the transform and the
associated quantization technique to generate coeffici-
ent scan orders that generate the lowest bitrates. The
image (for image compression) or motion compensated
difference (for motion compensated video compression)
is transformed. The transformed coefficients are quan-
tized. The transformed quantized coefficients are

CISCO SYSTEMS, INC. Ex. 1131 Page 84

5,434,913

103

scanned in a certain order from a two dimensional array
to a one dimensional array. This one dimensional array
is re-represented by a run-length—value (RV) represen-
tation. This representation is then entropy coded and
the result transmitted or stored to be decoded.

The preferred method applies to the “scan” part of
the processing where the quantized transformed coeffi-
cients are scanned from a two dimensional array to a
one dimensional array. The purpose of this scanning is
to facilitate efficient representation by a RV representa-
tion. The same scan-order is applied to every block in
the representation.

The preferred method of scanning involves the fol-
lowing operations:

Given

1. A transform.

2. A set of N quantizers (typically quantization matri-

ces) denoted by Q1, Q2, ..., QN.

3. Representative “training” data for the target appli-

cation.
Step 1

For each quantizer Qi, generate quantized trans-
formed blocks for all of the training data.
Step 2

Compute the average amplitude for each of the trans-
form coefficients from the quantized transformed
blocks for all the training data.

Step 3

Sort the average amplitudes computed in Step 2.
Step 4

For quantizer Qi, the scan order Si is generated by

the locations of the (amplitude sorted) coefficients from
Step 3. The largest coefficient is the first in the scan
order and the smallest is the last.
Using this preferred method, a scan order Si is gener-
ated for each quantizer Qi. In the encode and decode
process, for each block for which Qi is used as the quan-
tizer, Si is used as the scan order.

The advantage of this invention over previous scan-
ning techniques is that due to the adaptive scan orders,
the RV representations are more efficient and for a
given quantizer, fewer bits are required to encode a
given block than with conventional non-adaptive zig-
zag scanning.

Spatially Adaptive Quantization

This section describes a preferred method of spatially
adaptive quantization for conferencing system 100. The
preferred method provides a means of efficiently encod-
ing motion compensated difference images. A conven-
tional non-adaptive quantization technique simply takes
a given quantizer for each frame and applies that quan-
tizer uniformly to every macroblock (16X 16 area) in
the image. An adaptive quantization technique applies
different quantizers to different macroblocks in a given
frame. Information about which quantizer has been
applied to which block is also encoded and transmitted.

The preferred method of spatially adaptive quantiza-
tion is based on the “sum of absolute difference” (SAD)
that has already been computed for each macroblock by
the motion estimation subroutine. The preferred quan-

tizer selection method works as follows:
Step 1

The mean SAD for the entire frame is computed.
This denoted by MSAD.

Step 2

For each macroblock, if the SAD of the macroblock
is lower than the mean, then it is assigned a finer quan-

15

20

25

30

40

45

50

55

65

104

tizer than the mean quantizer (which is the global quan-
tizer for this frame passed down by the bit-rate control-
ler). Conversely, if the SAD in the macroblock is higher
than the mean, then it is assigned a coarser quantizer.

In a case where there are 16 quantizers, numbered 1
through 16 with higher numbers denoting finer quantiz-
ers, let SAD(},j) be the SAD associated with the current
macroblock (1,j). Let MSAD be the mean SAD in the
frame. Let Q(i,j) denote the quantizer assigned to the
current macroblock. Let QG denote the global quan-
tizer for the frame. Then Q(,j) is assigned as:

Q.))=0G+8*log2
((SAD(;)+ 2MSAD)/(2SAD(;,)+ MSAD))

Q(,j) is saturated to the range (1,16) after performing
the above operation.

There are 2 major advantages of the preferred spa-
tially adaptive quantization technique over conven-
tional technigues:

1. The spatial adaptation is based on values that have
already been computed in the motion estimation
routine. Therefore the spatial adaptation process is
computationally simple.

2. The spatial adaptation process generates an optimal
quality image given the bit-budget of the current
frame by distributing bits to different macroblocks
in proportion to the perceived effect of quantiza-
tion on that macroblock.

Fast Statistical Decode

Host processor 202 preferably performs fast statistical
decoding. Fast statistical decoding on host processor
202 allows time efficient decoding of statistically coded
data (e.g., Huffman decoding). Moreover, since statisti-
cal Huffman coding uses code words that are not fixed
(bit) length, the decoding of such codewords is gener-
ally accomplished one bit at a time. The preferred
method is as follows:

1. Get next input bit and juxtapose with bits already in

potential codeword (initially none).

2. If potential codeword is a complete codeword,
then emit “symbol”, eliminate bits in potential
codeword, and go to (1). Otherwise, if potential
codeword is not a complete codeword, then go to
.

The preferred method of the present invention provides
decoding of one “symbol” in one operation, as follows:
a. Get next (fixed number) several input bits.

b. Use the input bits to select a symbol and emit
symbol.
c. Go to (a).

The statistical code used is designed to be “instanta-
neous,” which means that no codeword “A” is a “pre-
fix” of any codewords “B”. This allows a lookup table
to be constructed which may be indexed by a potential
codeword, unambiguously yielding a symbol corre-
sponding to the codeword. The potential codeword is
guaranteed to contain a complete codeword since it
starts with a codeword, and it is as long as the longest
codeword.

Contrast, Brightness, and Saturation Controls

This section describes a preferred integer implemen-
tation of contrast, brightness, and saturation controls
for the present invention for adjusting and for applica-
tion of the controls to realtime video. The implementa-
tion has two parts. The first is 2 method of generating

CISCO SYSTEMS, INC. Ex. 1131 Page 85

5,434,913

105
translation tables to implement adjustable brightness,
contrast, and saturation controls. The second is a
method of using the tables to change the appearance of
video being displayed.

The generation of the tables uses integer operations in
the generation of tables that express floating point rela-
tions. Prior to application of any controls, the video
data consists of a description of the Y, V, and U compo-
nents at 8 bits per value. The problem is to provide a
translation from the decoded Y values to Y values that
reflect the current setting of the brightness and contrast
controls, and further to provide a translation from the
decoded U and V values to U and V values that reflect
the current setting of the saturation control.

The method begins with an identity translation table
(fix)=x). As controls are changed, the identity transla-
tion becomes perturbed cumulatively. In the case of
brightness, control changes are indicated by a signed
biased value providing both direction and magnitude of
the desired change. The current translation table are
changed into fix)=x—k, for x> =k, and f(x)=0 for
0< =x<k (decrease) or f(x)=x+k, for x<=255—k,
and fix)=255 for 255> =x>255—k (increase).

In the case of contrast, control changes are indicated
by a scaled fractional value. The value indicated “n”
represents “(n+1)/SCALE” change: a “change” of
(SCALE-1) yields no change, 2 change of (SCALE)
yields a change by 1/SCALE in each of the translation
table wvalues. The definition of contrast as y'=(n-
*(y—128))+ 128 (for 8 bit values) is then provided by
subtracting 128 from the transiation table value, multi-
plying by SCALE, multiplying ‘by the indicate control
change value, and then dividing by SCALE twice to
remove the scale multiple implied in the representation
of the control change value, and the multiply explicitly
performed here. 128 is then added to the modified trans-
lation table value and the result is clamped to the range
of 0 to 255 inclusive.

This method avoids the use of floating point arithme-
tic in the computation of the proper translation table
values. In the definition offered of “contrast” the value
“n” is a floating point number. Saturation is simply
contrast as applied to the chrominance data, and is han-
dled in the same way as the contrast control, but with a
different copy of the translation table.

The translation tables are made available to the host
processor in the same locale as the data that they are
used to translate: after generation of the modified trans-
lation tables, the tables are appended to the data area for
the luminance and chrominance, at known fixed offsets
from the start of same data areas (on a per instance basis,
each video window has its own copy of this data.) This
allows the host processor to access the translation tables
with a 1 processor clock penalty in address generation
(for an Intel ®) 486 microprocessor; there is no penalty
on an Intel ® Pentium ®) processor), and with a high
degree of locality of reference, and no pointer register
reloads (due to the fixed offset.)

The translation of the decoded Y, V, and U values is
performed by reading and translating eight values and
then writing the eight translated values as two 32-bit
values to the destination. This is important to Intel ®
architecture microprocessors, and in particular is im-
portant to the Intel (R) 486 processor, which usually runs
with a write saturated bus.

For the method of performing the translation, the BX
register is assumed to contain zeroes in the high order
8(24) bits. The low order 8 bits are loaded with the

20

25

40

45

60

65

106

value to translate, and the value is used as the base
register with an index register (set to the offset of the
translation table +base of data buffer) in an indirect load
to accomplish the translation. The destination of the
load is changed as the operation is repeated over multi-
ple values, until register storage is exhausted, at which
point the translated values are written out and the cycle
repeats. The process here described executes at a sus-
tained three or four clocks per value translated.

Audio Protocol

Referring now to FIG. 26, there is shown a represen-
tation of a compressed audio packet for conferencing
system 100, according to a preferred embodiment of the
present invention. Source audio is audio that is captured
(and optionally monitored) at the local system and sent
to the comm subsystem for transmission. Sink audio is
audio that is received from the comm subsystem for
playback on the local system. Audio is preferably han-
dled on audio/comm board 206 and not on host proces-
sor 202. The compressed audio packet of FIG. 26 is that
which is actually sent/received from the communica-
tions subsystem and not necessarily that manipulated by
an application on the host ‘processor. The audio packet
fields are defined as follows:

Timestamp Value used to synchronize audio and video frames at
the receive endpoint. The audio stream preferably
generates timestamps as a master clock that are
copied to the captured video frames before

transmission.

Reserved Reserved field.

Mute Bit indicates whether or not the audio stream is
muted or not. The audio is muted when the bit is set.
‘When the Mute bit is set, no audio data is sent.

Data Compressed audio data.

The length of the audio data is not explicitly specified in
the packet header. A receiving endpoint’s comm sub-
system reassembles an audio packet and therefore im-
plicitly knows the length and can report it to its applica-
tion. The length of an audio packet is a run-time param-
eter and depends on the compression method and the
amount of latency desired in the system. The preferred
audio compression/decompression method implemen-
tation has 100 msecond latency, which translates to 200
bytes of compressed audio data per packet.

Compressed Audio Bitstream

The preferred audio stream for conferencing system
100 is a modification of the European Groupe Speciale
Mobile (GSM). GSM was developed in the context of
the standardization of the European digital mobile ra-
dio. It resulted from the combination of the Regular-
Pulse Excitation/Linear-Predictive-Coding codec de-
veloped by Philips (Germany) with the Multi-Pulse-
Excitation/Linear-Predictive-Coding codec devised by
IBM (France). For further information, see the ETSI-
GSM Technical Specification, GSM 06.10, version
3.2.0, UDC 621.396.21, published by the European
Telecommunication Standards Institute in Valbonne
Cedex, France.

The data rate of the standard GSM codec is 13.0
kbits/sec. The preferred GSM implementation for con-
ferencing system 100 has a bit rate of 16 kbits/sec. The
mean opinion score (MOS) quality rating of the pre-
ferred GSM implementation is 3.54. It is not prone to
rapid quality degradation in the presence of noise. The

CISCO SYSTEMS, INC. Ex. 1131 Page 86

5,434,913

107
relative complexity is about 2 MOPSs/s. Due to imple-
mentation processing considerations, the standard GSM
implementation is adjusted to yield the preferred GSM
implementation. In addition, headers are added to pro-
vide extra control information, such as frame counting
and muting.

In order to save processing, the 260-bit audio frame is
not packed. This results in a 320-bit frames. These
frames occur every 20 mseconds. This increases the bit
rate from 13 kbits/sec to 16 kbits/sec. The composition
of the preferred audio frame is as follows:

108

is no guarantee as to the correctness of the data deliv-
ered. Some applications will use the unreliable commu-
nication services, such as audio and video. For applica-
tions requiring guaranteed delivery of data, reliability is
built on the basic unreliable service. Application data is
an example of a data type requiring reliable transport;
control information between peer processes is another.

Reliable Transport Comm Protocols

Referring now to FIG. 27, there is shown a represen-
tation of the reliable transport comm packet structure,
according to a preferred embodiment of the present
invention. For reliable transport, conferencing system

typedef { unsigned int larl: 6; /* stp para- A >
struct meters */ 100 preferably uses a protocol akin to LAPB. Since
unsigned int lar2: 6; 15 transport is preferably on ISDN B-channels, which are
zz:;gnzg 2: }:r"i 2 assumed to have already been set up, there is no need to
unsiged int lars: x include those portions of LAPB that deal with circuit
unsigned int laré: 4 establishment and teardown (e.g. SABM, FRMR, UA,
unsigned int lar7: 3 and DISC). Therefore, the preferred reliable transport
unsigned int far; 5} STP; 20 comm protocol is void of those portions. The fields of
typedef { unsigned int lag 7 .
struct unsigned int gain % /* lip para- the preferred reliable transport comm packet are de-
meters */ fined as follows:
unsigned int grid 2; /* 1pe para-
meters */
unsigned int xmax 6 . . 25 Control Defines the type of packet and relays acknowledgment
unsigned int x0 3 /7 pulse‘ ampli- information. The types of packets are: Information (I),
)) tude*/ Receiver Ready (RR), Receiver Not Ready (RNR),
unsigned int x1 3; and Reject (REJ).
unsigned int x2 3 Length Length of the client data portion of the packet, in
unsigned int x3 3 bytes.
unsigned int x4 3 30 CRC Cyclic redundancy check code.
unsigned int x5 3 Data Client data of length specified by the Length field.
unsigned int x6 3
unsigned int x7 3;
uosigned int x8 3 For an Information (I) packet, the format of the con-
unsigned int x9 3; .
unsigned int x10 2 trol field is as follows:
unsigned int x11 3 35
unsigned int x12 3} LTP_RPE
typedef { STP frame; (Bit) 0 1-3 4 5-7
struct LTP_RPE subframe(d) ; } GSMBITS; (Field) 0 NS P NR
The result of not packing these structs on a Texas In- 40 The NS bit field is used to refer to a send sequence

struments ® C31 DSP, a 32-bit processor, is a 320-bit
frame. At a frame rate of 50 frames/sec, the data rate is
16.0 kbits/sec.

A header has also been added to groups of frames.
The length of the header is one 32-bit word. The MSB
is 2 mute flag (1=mute). The remaining bits represent a
timestamp. This time stamp is not actually time, but is
preferably a frame counter. The initial value of it is
arbitrary. It is therefore a relative number representing
the progress of audio frames and usable for synchroni-
zation.

Data Protocol

Data packets are inside TII packets. The data confer-
encing application will have its own protocol inside the
TII protocol stack.

Communication-Level Protocols

The application-level audio, video, and data packets
described in the previous section are sent to the comm
subsystem for transmission to the remote site. The
comm subsystem applies its own data structure to the
application-level packets, which the comm subsystem
treats as generic data, and defines a protocol for trans-
port. In a preferred embodiment of the present inven-
tion, the basic transport is unreliable. That is, at the
basic level, there is no guarantee that application data
will reach the destination site and, even if it does, there

45

50

55

65

number. NS is interpreted as specifying to the receiving
site the next packet to be sent. The NR bit field is used
to refer to a receive sequence number. It is used to
acknowledge to a sender that the receiver has received
packet NR-1 and is expecting packet NR. The P bit field
is the LAPB poll bit and is are not used in the preferred
embodiment. All sequence numbers are modulo-8
meaning that at most 7 packets can be outstanding. It is
the responsibility of the transmitting sites to assure that
they do not have more than 7 packets outstanding. An
Information packet is used to send client data. The
receive acknowledgment can be piggybacked on in the
NR bit field.

The Receiver Ready (RR), Receiver Not Ready
(RNR), and Reject (REJ) packets are supervisory pack-
ets that are used for acknowledgment, retransmission,
and flow control. They are not used to carry client data.

For a Receiver Ready (RR) packet, the format of the
control field is as follows:

-

3 4 5-7
PF NR

(Bit) 0
(Field) 1 0

o N
o

The PF bit field is the LAPB poll/final bit and is not
used in the preferred embodiment. The RR packet is
used in two cases. The first case is to acknowledge
packet receipt when there are no packets pending trans-

CISCO SYSTEMS, INC. Ex. 1131 Page 87

5,434,913

109
mission on which to piggyback the acknowledgment.
The second case is when the link is idle. In this case, an
RR packet is sent periodically to assure the remote site
that the local site is still alive and doing well.
For a Receiver Not Ready (RNR) packet, the format
of the control field is as follows:

(Bit) 0 2
(Field) 1 0 1 0

—
w

4 5-7
PF NR

The RNR packet is sent by a receiver to indicate to the
remote site that the remote site should stop sending
packets. Some condition has occurred, such as insuffi-
cient receive buffers, rendering the remote site unable
to accept any further packets. The RNR packet is in-
tended to be used for temporary flow control. When the
remote site is able to accept more packets it issues an
RR frame.

For a Reject (REJ) packet, the format of the control
field is as follows:

(Bit) 0 1 2 3 4 5.7
(Field) 1 0 0 1 PF NR

The REJ packet is sent as a form of negative acknowl-
edgment. The receiver of an REJ packet interprets the
NR bit field as a request to retransmit all packets from
NR to the most currently sent, inclusive.

Unreliable Transport Comm Protocols

At the lowest layer of conferencing system 100, an
unreliable protocol is preferably used to transport data
on the ISDN B-channels. For those applications requir-
ing reliability, the reliable protocol discussed in the
previous section is added on top of the unreliable proto-
col discussed in this section. The unreliable protocol sits
atop of HDLC framing which the unreliable protocol
uses for actual node-to-node transport of packets. Even
though HDLC framing is used, a data link protocol is
not implemented. In particular, there is no guarantee
that data packets will be delivered or that they will be
uncorrupted at the receive node of a link. The CRC
validation of the HDLC is used to detect corrupted
data.

The unreliable protocol provides for logical channels
and virtualization of the two Basic Rate ISDN B-chan-
nels. Logical channels are local site entities that are
defined between the DLM and TII is layer and the
client (i.e., application program) using them. The logi-
cal channels provide the primary mechanism clients use
to send multiple data types (e.g., audic, video, data).
The layer services multiplex these data types together
for transmission to the remote sites.

In a preferred embodiment, logical channel zero is
used as a control channel. Site peers (i.e., two confer-
encing systems in a conferencing session) use this con-
trol channel to exchange information on their use of
other logical channels. Logical channels are half-
duplex. Therefore, two channels are necessary to send
and receive data. A priority attribute is associated with
a logical channel (and therefore with a data type). The
unreliable protocol asserts that higher priority data will
always be sent ahead of lower priority data when both
are pending. Priorities are assigned by an API call to the
TII services. Audio has the highest priority, then data,
and last video.

10

20

25

30

35

40

45

50

55

65

110

Although the ISDN Basic Rate Interface (BRI) de-
fines two physical 64 kbit/second B-channels for data,
the services at both DLM and TII virtualize the sepa-
rate B-channels as a single 128 kbit/second channel.
Client data types, defined by their logical channels, are
multiplexed into a single virtual stream on this channel.
In a preferred embodiment, this inverse multiplexing is
accomplished by breaking all packets into an even num-
ber of fragments and alternating transmission on the
two physical B-channel connections. Initially, after
channel establishment, the first fragment is sent on the
Bl-channel, the second on the B2-channel, etc. At the
receiving site, fragments are collected for reassembly of
the packet.

Referring now to FIG. 28, there is shown a represen-
tation of the unreliable transport comm packet struc-
ture, according to a preferred embodiment of the pres-
ent invention. The fields of the preferred unreliable
transport comm packet are defined as follows:

Flag
DestID

Standard HDLC Flag field.

The receiving site’s logical channel identifier. The
transmitting site peer acquires this ID by
communicating to the remote site before exchanging
data. This is done using a control logical channel (i.e.,
channel zero).

The sending site’s logical channel identifier. The type
of data in the packet can be determined by knowing the
logical channel ID-to-data type mapping. The current
implementation uses the following mapping: The
mapping is from DLM channels to TII channels, which
occur at the TII level. At the time the TII channel is
opened for a datatype, TII dynamically assigns unique
DLM channels for different data types in ascending
order starting from one (1).

The packet sequence number. Distinguished from the
FragNo field which counts the fragments within a
packet. The PktNo field is used by the receiving site
peer to implement a sliding window protocol. This
allows packet buffering which is used to compensate
for transmission delays.

If the SOP bit is set, then the current fragment is the
start of a packet.

If the EOP bit is set, then the current fragment is the
end of a packet.

Reserved field.

The fragment sequence number. Distinguished from the
PktNo field which counts the number of whole packets.
The FragNo is used by the receiving site peer to
reassemble fragments into packets. The SOP and EOP
fields are used to locate the start and end of a whole
packet, respectively.

The data field.

Standard HDLC CRC field.

Standard HDLC Flag field.

SrcID

PktNo

Sorp
EOP

Rsvd
FragNo

Data
CRC
Flag

Data Structures, Functions, and Messages

This section contains the data structures and defini-
tions of the functions and messages for conferencing
API 506, video API 508, audio API 512, and comm
API 510.

Conferencing API Data Structures, Functions, and
Messages

Conferencing API 506 utilizes the following data
types:

LPHCALL Pointer to a call handie.

LPAVCB Pointer to an Aundio Video Control
Block (AVCB).

LPCCB Pointer to a Configuration Control
Block (CCB).

LPBITMAPINFO Pointer to a Microsoft ® Windows

CISCO SYSTEMS, INC. Ex. 1131 Page 88

5,434,913

111 112
-continued -continued
BITMAPINFO structure that defines a CCST_CALLING Calling State
DIB (Device-Independent Bitmap). CCST_ACCEPTING Accepting State

LPHSTGRP
LPABBUSCARDINFO

Pointer to the handle of a stream group.
Pointer to a ABBUSCARDINFO,
which defines the personal card
information, from Address Book.
Contains business card information;
format is specified by the GUL

Conferencing API 506 utilizes the following struc- 10

tures that are passed to conferencing API 506 in func-
tion calls (e.g., CF_Init, CF_CapMon) and then passed

CCST_CALLED
CCST_CLOSING
Conferencing Channel States:

Called state
Closing State

CHST__READY Ready State
CHST_OPEN Opened state
CHST_OPENING Opening state
CHST_SEND Send state
CHST_RECV Recv state
CHST_RESPONDING Responding state

CHST_.CLOSING
Conferencing Stream States:

Closing state

by conferencing API 506 to the audio/video managers: CSST_INIT Init state
CSST_ACTIVE Active state
CSST_FAILED Failure state

MCB (Media Control Block)

>> WORD wType Media type:
>> CFMT_AUDIO — Audio Type (e.g., narrow or wide band)
>> CFMT._VIDEO — Video Type

CCB (Configuration Control Block)

>> WORD wVersion Version Number

>> MCB mtMedia[] list of Media types supported by the system.

AVCB (Audio Video Control Block)

>> WORD wType Local or remote AVCB type:

>> CFAVCB_LOCAL — local AVCB type

>> CFAVCB_REMOTE — remote AVCB type

>> Union {

>> // local AVCB

>> struct {

>> WORD wAIn Audio input hardware source

>> WORD wAGain Gain of the local microphone

>> WORD wAMute On/Off flag for audio muting

>> WORD wVIn Video input source

>> DWORDdwVDRate Maximum video data rate

>> WORD wVContrast Video contrast adjustment

>> WORD wVTint Video tint adjustment

>> WORD wVBrightness Video brightness adjustment

>> WORD wVColor Video color adjustment

>> WORD wVMonitor On/Off flag for local video monitoring

>> WORD wVMute On/Off flag for local video muting. As the flag is
turned on/off, it will temporarily stop or restart the
related operations, including playing and sending,
being performed on this stream group. This can be
temporarily hold one video stream and provide
more bandwidth for other streams to use. For
example, a video stream can be paused while an
audio stream continues, to speed up a file transfer.

>> } localcb

>> // remote AVCB

>> struct

>> WORD wAOut Audio output hardware destination

>> WORD wAVol Volume of the local speaker

>> WORD wAMute On/Off flag for audio muting

>> WORD wVOut Video output source

>> WORD wVContrast Video contrast adjustment

>> WORD wVTint Video tint adjustment

>> WORD wVBrightness Video brightness adjustment

>> WORD wVColor Video color adjustment

>> WORD wVMute On/Off flag for local video muting

} remotecb
>> } .
>> // ADDR Information — the address to be used for the conf. application to make a
Connection/call, via issuing the CF_MakeCall with the remote site.

>> // NOTE: This is the same as the TADDR structure defined by TIL

>> struct {

>> WORD wType Type of Address, e.g., phone number, internet

>> address, etc.

>> WORD wSize Size of the following address buffer

>> LPSTR lpsAddrBuf Address buffer

>>

Conferencing API 506 utilizes the following constants:

65 CStatus Return Values:

Conferencing Call States:

CF_OK
CCST_NULL Null State CF_ERR_PATHNAME
CCST_IDLE Idle State CF_ERR__CCB
CCST_CONNECTED Connected state CF_ERR_AVCB

CISCO SYSTEMS, INC. Ex. 1131 Page 89

5,434,913

113 114
-continued -continued
CF_ERR_TOO_MANY_CAPTURE FuncName (WORD wMessage, WORD wParam, LONG
CF_ERR_.CALLBACK 1Param)
CF_ERR_FIELD wMessage: the Window message type (e.g.,
CF_ERR_STATE 5 CFM__XXXX__NTFY)
CF_ERR_CARDINFO wParam: the Call Handle
CF_ERR_STRGRP 1Param: additional Information which is message-specific
CF_ERR_FFORMAT NOTE: the parameters of the callback function are equivalent to
CF._ERR_HANDLE the last three parameter passed to a Window message handler
CF_ERR_PHONE# function (Win 3.1).
CF_ERR_TIMEOUT 10
CF_ERR_INSUFF_BUFSIZE
CF_ERR_CALL CF_Uninit
CF_ERR_RESOURCE_FAIL This function writes out the conferencing configura-
tion parameters back to the initialization file (e.g.,
In the above return values, CF_ERR__xxx means that 15 C:\ cyborg \ VCOIlf.iIli), unioads and uninitializes the
the “xxx” parameter is invalid. software of video, comm., and audio subsystems. In
The functions utilized by conferencing API 506 are addition, this function relinquishes the phone resource
defined as follows: acquired with CF_.Init.
CF Init
This function reads in the conferencing configuration 29 CStates CF_Uninit (LPCCE IpCab)

parameters (e.g., directory names in which the confer- input

encing system software are kt?P_t) from an mlt.la!l?,at‘lon IpCcb: the handle to the configuration control block that

file (e.g., c: cyborg vconf.ini), loads and initializes contains the configuration information.

the software of video, comm., and audio subsystems. In Valid state(s) to issue:

addition, this function acquires the phone resource that 5 CCST_IDLE

P . - State after execution:

no other applications can access the resource until this CCST._NULL

application makes a call to CF_Uninit later to relin- Return values:

quish the phone resource. CF_OK

Also, it allows the application to choose between the TBD
i d the callback interfaces to return th Status Message:

messaging and the callback interfaces to return the 30 CFM_UNINIT_NTFY: Unlnit complete.

event notifications. The callback interface allows the Communication

conferencing software to call a user designated function Call Management]) } o

to notify the application of incoming events. The mes- Tl'fe. Call Management functions will provxdq the apphcanon the

. A . . ability to establish and manage calls/connections to its peers on
saging interface allows the conferencing to notify the the network.

application of incoming events by posting messages to 35

application message queues. The parameters to the

function varying depending on the notification method =~ CF—MakeCall .

chosen. This function makes a call to the remote site to estab-

lish a call/connection for the video conferencing. This
40 call will be performed asynchronously.

CStatus CF_Init(LPSTR IpIniFile, After all related operations for CF_MakeCall is
LPADDR IpLocalAddr, eventually complete, the callback routine (or the mes-
LPCONN_CHR IpConnAttributes, ified in the CF_Init f . will ret th
WORD wFlag, sage) spec fied in the CF_Init function return the
CALLBACK cbAppCall, status of this call.

. LPCCB 1pCcb)) 45 The peer application will receive a CFM_CAL-

input IpIniFile: ;_3: pathname to the conferencing INI L_NTFY caliback/message as a result of this call.

IpLocalAddr: pointer to the local address

IpConnAttributes pointer to the attributes requested for

incoming calls CStatus CF_MakeCall (LPADDR IpAddress,

wFlag: Indicates the type of notification to be used: LPCONN..CHR lp_ConAt-

CALLBACK_FUNCTION for callback interface 50 tributes,

CALLBACK__WINDOW for post message LPABBUSCARDINFQ IpabCardInfo,

interface WORD TimeOut,
cbAppCall: the callback routine or the message interface to . LPMTYPE IpMedia)
return the notifications from the input

remote site to the application. IpAddress: pointer to the address structure of the
output 55 destination (or Callee),.

IpCeb: returns the handle to the configuration control IpConnAttributes pointer to the attributes requested for the

block, preallocated by the call. |
application that contains the configuration IpabCardInfo: pointer to business card information of the
information. caller.

Valid state(s) to issue: wTimeOut: Number of seconds to wait for peer to pickup

Null State 60 the phone.
State after execution: IpMedia: pointer to a list of desirable media types.
CCST_IDLE If a null pointer is specified, the default
Return values: (best possibility) will be selected.
CF_OK Valid state(s) to issue:
CF_ERR_PATHNAME CCST_IDLE
CF_ERR_CCB 65 State after execution:
CF_ERR..CALLBACK CCST_CALLING
CF_ERR_RESOURCE_FAIL Return values:
CF_ERR_ALREADY__INITIALIZED CF_OK
Callback routine: CF_ERR_STATE

CISCO SYSTEMS, INC. Ex. 1131 Page 90

5,434,913

115 116
-continued -continued

CF_ERR_HANDLE CCST_CALLED
CF_ERR_RESOURCE_FAIL State after execution:

Peer Messages: CCST_IDLE
A CFM_CALL_NTFY message will be delivered to the 5 Retumn values:
remote site to indicate the call request. CF_OK

Status Messages: CF_ERR_STATE
CFM_ACCEPT_NTFY: The peer process has accepted CF_ERR_RESOURCE_FAIL

the call
CFM_PROGRESS_NTFY: The optional progress
information of the call
CF_PROG_DIAL_TONE
CF_PROG_DIALING
CF__PROG_RINGBACK
CFM_REJECT_NTFY: The error reported for the
call
CF_REJ_TIMEOUT
CF_REJ_ADDRESS
CF._REJ_NETWORK__BUSY
CF_REJ_STATION_BUSY
CF_REJ_RESOUCE_FAIL

CF__AcceptCall

This function is issued to accept a call request, re-
ceived as part of the CFM_CALL_NTFY call-
back/message, that was initiated from the peer.

Both sides will receive a CFM_ACCEPT_NTFY
callback/message as a result of this call.

CStatus CF_AcceptCall (HCALL hCall,
LPABBUSCARDINFO IpabCallee,
LPMTYPE IpMedia)
input
hCall: handle to the call (returned by the
CFM_CALL_NTFY message).
IpabCallee: pointer to ABBUSCARDINFO of the callee who
issues this function.
IpMedia: pointer to a list of desirable media types. If a

null pointer is specified, the default (best
possibility) will be selected.
Valid state(s) to issue:
CCST_CALLED
State after execution:
CCST__ACCEPTING
Return values:
CF_OK
CF_ERR_STATE
CF_ERR_CARDINFO
CF_ERR_HANDLE
CF_ERR_RESOURCE_FAIL
Peer Messages:
A CFM_ACCEPT_NTFY message will be received by the
remote site.
Status Messages:
A CFM_ACCEPT_NTFY message will be received by the
accepting site.

CF_RejectCall

Upon receiving a CFM_CALL_NTFY message,
this function can be issued to reject the incoming call
request. In fact, this function neither picks up the in-
coming call, nor sends a rejection message to the re-
mote. Instead, it will simply ignore the call notification
and let the peer application time-out. This would avoid
the unnecessary telephone charge or the unpleasant
rejection to the caller.

The peer application will receive a CFM_TIMEOU-
T_NTFY callback/message as a result of this call.

CStatus CF_RejectCall (HCALL hCall)
input
hCall: handle to the call (returned by the
CFM..CALL_NOTIFY message).
Valid state(s) to issue:

10

15

20

30

35

45

50

55

65

Peer Messages:
A CFM_REJECT_NTFY message will be resulted to the
remote app

Status Messages:
none

CF_HangupCall

This function hangs up a call that was previously
established. It releases all system resources, including
all types of streams, channels, and data structures, allo-
cated during this call.

CStatus CF._HangupCall (HCALL hCall)

nput
hCall: handle to the call
Valid state(s) to issue:
CCST_CONNECTED
State after execution:
CCST_CLOSING
Return values:
CF__OK
CF_ERR_STATE
CF_ERR_RESOURCE_FAIL
Peer Message:
A CFM_HANGUP_NTFY message will be delivered to the
remote site.
Status Message:
A CFM_HANGUP_NTFY message will be delivered to the
local site when the Hangup is complete.

CF_GetCalllnfo
This function returns the current status information
of the specified call.

CStatus CF_GetCalllnfo (HCALL hCall,

LPCONN_CHR IpConnAt-
) tributes,
LPWORD IpwState,
LPMTYPE IpMedia
LPABBUSCARDINFO IpabCard-
Info)

input

hCali: handie to the call

output

IpwState: current call state

IpConnAttributes: Connection Attributes

ipMedia: a list of selected media types used for this

call. Note that this list can be different
from the desired list.
IpabCardInfo: peer’s business card information
Valid state(s) to issue:
all call states
State after execution:
unchanged
Return values:
CF_OK
CF_ERR_RESOURCE_FAIL
CF_ERR_HANDLE
Channel Management
These Channel Management functions will provide the application
the ability to establish and manage virtual channels to its peers
on the network.

CF_RegisterChanMgr

This function registers a callback or an application
window whose message processing function will handle
notifications generated by network channel initializa-

CISCO SYSTEMS, INC. Ex. 1131 Page 91

5,434,913

117

tion operations. This function must be invoked before
any CF__OpenChannel calls are made.

CStatus CF__RegisterChanMgr (HCALL hCall,
WORD wFlag,
CALLBACK cbNetCall)
input
hCall: handle to the call
wflag: Indicates the type of notification to be used:
CALLBACK_FUNCTION for callback interface
CALLBACK_WINDOW for post message
interface
cbNetCall: Either a pointer to a callback function, or 2

window handle to which messages will be posted,
depending on flags.
Valid state(s) to issue:
call state
CCST_CONNECTED

State after execution:
call state

CCST_CONNECTED
Return values:
CF_OK
CF_ERR.HANDLE
Callback routine format:
FuncName(UINT Message, WPARAM wparam, LPARAM
Iparam)
M The message type
wParam: ‘Word parameter passed to function
JParam: Long parameter passed to function
NOTE: the callback function parameters are equivalent to the
second, third, as fourth parameters that are delivered to a
Window message handler function (Win 3.1).
Status Messages: none
Peer Messages: none

CF__OpenChannel

This routine requests to open a network channel with
the peer application. The result of the action is given to
the application by invoking the callback routine speci-
fied by the call to CF_RegisterChanMgr. The applica-
tion must specify an ID for this transaction. This ID is
passed to the caliback routine or posted in a message.

Note that the channels to be opened by the CF__O-
penChannel call is always “write-only”, whereas the
channels to be opened by the CF_AcceptChannel call
is always “read-only”.

CStatus CF_OpenChannel(HCALL hCall, LPCHAN__INFO
1pChan, DWORD dwTransID)

input
hCall:
IpChan:

handle to the call.

Pointer to a channel structure. Filled by
application.

The structure contains:

- A channel number.

- Priority of this channel relative to other
channels on this connection. Higher numbers
represent higher priority.

- Timeout value for the channel

- Reliability of the channel.

- Channel specific information. See
CHAN_INFO definition in TII.

An application defined identifier that is returned
with status messages to identify the channel
request that the message belongs to.

Valid state(s) to issue:

call state

CCST_CONNECTED
channel state

CHST_READY
State after execution:
call state

CCST_CONNECTED
channel state

CHST__OPENING

dwTransID:

10

15

20

25

30

35

40

45

50

55

65

118
-continued
Return values:
CF_OK
CF_ERR_HANDLE
CF_ERR_STATE
CF_ERR_PRIORITY

CF_ERR..NO_CHANMGR
CF_ERR_CHAN_NUMBER
CF_ERR_CHAN_INUSE
Status Messages:
CFM_CHAN_ACCEPT_NTFY: The peer process has
accepted request.
The Peer process has
rejected request.
No answer from peer

CFM_CHAN._REJECT_NTFY:

CFM_CHAN._TIMEOUT_NTFY:
Peer Messages:
CFM_CHAN_OPEN_NTFY:

CF_AcceptChannel

A peer application can issue AcceptChannel in re-
sponse to a CFM_CHAN_OPEN_NTFY (Open-
Channel) message that has been received. The result of
the AcceptChannel call is a one-way network channel
for receiving data.

Note that the channels to be opened by the CF_O-
penChannel call is always “write-only”, whereas the
channels to be opened by the CF_AcceptChannel call
is always “read-only”.

CStatus CF__AcceptChannel(HCHAN hChan, DWORD
dwTransID)

input
hChan: handle to the channel
dwTransID: A user defined identifier that was received as part

of the CFM_CHAN_OPEN_NTFY message.
Valid state(s) to issue:
callstate

CCST_CONNECTED
channel state

CHST_RESPONDING
State after execution:
call state
CCST_CONNECTED
channel state

CHST. OPEN
Return values:
CF_OK
CF_ERR_HANDLE
CF_ERR_STATE
CF_ERR_CHAN_NUM
Status Messages: none
Peer Messages:
CFM__CHAN_ACCEPT_NTFY The TransID is sent in
1Param.

CF_RejectChannel
This routine rejects an
CHAN_OPEN_NTFY from the peer.

CFM._

CStatus CF_RejectChannel(HCHAN hChan, DWORD
dwTransID)

input
hChan: Handle to the channel.
dwTransID: A user defined identifier that was receive as part

of the CFM_CHAN_OPEN_NTFY message.

Valid state(s) to issue:
call state

CCST__CONNECTED
channel state

CHST_RESPONDING
State after execution:
call state

CCST_CONNECTED

CISCO SYSTEMS, INC. Ex. 1131 Page 92

5,434,913

119 120
-continued -continued

channel state Window message handler function (Win 3.1).

CHST..READY Status Messages: none
Return values: Peer Messages: none

CF_OK 5

CF_ERR_HANDLE

CF_ERR_STATE CF__CloseChannel

CF_ERR_CHAN_NUM This routine will close a network channel that was

Status Messages: none
Peer Messages:
CFM._CHAN_REJECT_NTFY The TransID is sent as
TParam.

CF_RegisterChanHandler

This function registers a callback or an application
window whose message processing function will handle
notifications generated by network channel IO activi-
ties. The channels that are opened will receive
CFM_DATA_SENT_NTFY, and the accepted
channels will receive CFM_RECV_COMP-
LTE_NTFY.

CStatus CF__RegisterChanHandler(HCHAN hChan, WORD

wFlag, CALLBACK cbChanHandleCall)

input

hChan: handle to the channel.

wFlag: Indicates the type of notification to be used:
CALLBACK_FUNCTION for callback interface

CALLBACK_WINDOW for post message interface
NOCALLBACK for polled status interface.
cbChanHandleCall:

Either a pointer to a callback function, or a window handle
to which messages will be posted, depending on flags.
Valid state(s) to issue:
call state
CCST_CONNECTED
channel state

CHST_OPEN
State after execution:
call state

CCST_.CONNECTED
channel state

CHST_SEND (FOR OUTGOING CHANNEL)

CHST_RECYV (FOR INCOMING CHANNEL)
Return values:

CF_OK

CF_ERR_HANDLE

CF_ERR_STATE

CF._ERR_CHAN_NUMBER
Callback routine format:

FuncName(UINT Message, WPARAM wParam, LPARAM

1Param)

Message: The message type

wParam: Word parameter passed to function

1Param: Long parameter passed to function (TransID)
NOTE that the callback function parameters are equivalent to the
second, third, as fourth parameters that are delivered to a

10

20

25

30

35

45

50

opened by CF_AcceptChannel or CF_OpenChannel.
The handler for this channel is automatically de-regis-
tered.

CStatus CF_CloseChannel(HCHAN hChan, DWORD
dwTransID)
input
hChan: handle to the Channel to be closed.
dwTransID: An application defined identifier that is returned
with the response notification.
Valid state(s) to issue:
call state
CCST_CONNECTED
channel state
CHST_SEND, CHST_RECV, CHST_OPEN
State after execution:
call state
CCST_.CONNECTED
channel state
CHST_CLOSING
Return values:
CF_OK
CF_ERR_HANDLE
CF_ERR_STATE
Status Messages:
CFM_CHAN_CLOSE_NTFY:
Peer Messages:
CFM_CHAN_CLOSE_NTFY:

Data Exchange

All the data communication is done in “message pass-
ing” fashion. This means that any send will satisfy any
receive on a specific channel, regardless of the length of
the sent data and the receive buffer length. If the length
of the sent message is greater than the length of the
posted receive buffer the data will be truncated.

All these calls are “asynchronous”, which means that
the data in the send buffer must not be changed until a
CFM_DATA_SEND_NTFY notification has been
sent to the application, and the contents of receive
buffer is not valid untili a CFM_RECV_COM-
PLETE_NTFY has been received for that channel.

CF_SendData

Send data to peer. If there are no receive buffers
posted on the peer machine, the data will be lost.

CStatus CF_SendData(HCHAN hChan,
LPSTR IpsBuffer, WORD Buflen, DWORD dwTransID)

input
hChan:
Ipsbuffer:
Buflen:
dwTransID:

call state

Handle to the channel.

A pointer to the buffer to be sent.

The length of the buffer in bytes.

This is a user defined transaction ID which will be passed to the
channel handler along with other status message data to identify the
transaction that the response belongs to.

Valid state(s) to issue:

CCST_CONNECTED

channel state

CHST_SEND
State after execution:

! call state

CCST_..CONNECTED

channel state

CISCO SYSTEMS, INC. Ex. 1131 Page 93

5,434,913

121

-continued

122

CHST_SEND
Return values:
CF_0OK
CF_ERR_CHAN_NUMBER
CF._.ERR_STATE
CF_CHAN_TRAN_FULL
Status Messages:
CFM_DATA__SENT_NTFY

(Channel transaction table full)

Tells the application that the data has been extracted from the buffer and it

is available for reuse.
CFM._DATA_LOST._NTFY

This message will be delivered to the caller if the data could not be sent.

Peer Messages:
CFM.__RECV_COMPLETE_NTFY
indicates that data was received.
CFM_CHAN_DATA _LOST_NTFY
this message will be delivered to the peer if there are
no RecvData calls pending.

CF_RecvData

Data is received through this mechanism. Normally 20

this call is issued in order to post receive buffers to the
system. When the system has received data in the given
buffers, the Channel Handler will receive a CFM._..
RECV_COMPLETE_NTFY.

-continued

Valid state(s) to issue:
call state
CCST_CONNECTED
channel state
Any except CHST_NULL, CHST_READY

CStatus CF_RecvData (HCHAN hChan, LPSTR IpsBuffer, WORD Buflen,

DWORD dwTransID)

input

hChan: Handle to the channel

IpsBuffer: A pointer to the buffer to be filled in.

Buflen: The length of the buffer in bytes. Max. bytes to receive.
dwTransID:

This is a user defined transaction ID which will be passed to the

channel handler along with other status message to identify the

transaction that the response belongs to.
Valid state(s) to issue:
call state
CCST..CONNECTED
channel state
CHST_RECV
State after execution:
call state
CCST_CONNECTED
channel state
CHST_RECV
Return values:
CF_OK
CF_ERR _CHAN_NUMBER
CF_ERR_STATE
CF_CHAN_TRAN_FULL
Status Messages:
CFM_.RECV_COMPLETE_NTFY
indicates that data was received.
CFM_CHAN_DATA _1.OST_NTFY

(Channel transaction table full)

indicates that the buffer was too small for an incoming data message, or
some other data error. The contents of the data buffer are undefined.

Peer Messages:
none
Communication Control & Statistics

CF._Get

Chanlnfo

This function will return various statistical informa-
tion about a channel. For examples: Bandwidth infor-
mation, number of sends/second, number of receives/-
second, etc. Full set of statistical information will be
defined at a later time.

CStatus CF_GetChaninfo(HCHAN hChan, LPCHAN_INFO
IpCsInfo)

input

hChan: Handle to the specified Channel

1pCsInfo: Pointer to a CHAN_INFO struct.

65

State after execution:
call state
CCST_CONNECTED
channel state
UNCHANGED
Return values:
CF_OK
CF_ERR_CHAN_NUMBER
Status Messages: none
Peer Messages: none

Capture, Record, & Playback

These “convenience” calls will provide the applica-
tion the ability to capture, record, and playback the
audio/video streams from the specified source (e.g.,

CISCO SYSTEMS, INC. Ex. 1131 Page 94

5,434,913

123

from the local Audio/Video HW or from the Network)
and/or to the specified sync (e.g., local Audio/Video
HW, File, or Network).)
CF_CapMon

This function starts the capture of video signals from
the local camera and displays them (via the HW “moni-
tor” function) in the local_video_window which is
pre-opened by the application. Also, it starts the capture
of audio signals from the local microphone and plays
them back through the local speaker. Note that as part
of the capture function, this “monitor” function is
slightly different from the “play” function described
later in “CF PlayRcvd” and “CF PlayStream”. The
“monitor” function is a low-overhead display operation
supported by the Video hardware that moves uncom-
pressed digital video from camera to the monitor
screen. Therefore, this function only works for local
video stream. For the remote video stream received
from the network, the “Play” function must be used to
display it on the screen (see later section for more de-
tails). Also, the monitor function can be turned on/off
later using CF_ControlStream calls.

This function allows the user to preview his/her
appearance and sound before sending the signals out to
the remote.

CStatus CF_CapMon (HWND hWnd, LPHSTGRP IphStgrp,
IpAlnfo, IpVInfo)

input
hWnd: handle to the local._video__window pre-opened by the
application

Pointer to AINFO structure describing Audio stream
attributes

Pointer to VINFO structure describing Video stream
attributes

IpAlnfo:
1pVInfo:

output
IphStgrp: pointer to the handle of a stream group to be
captured
Valid state(s) to issue:

CSST_INIT
State after execution:

CSST_ACTIVE

Return values:

CF_OK
CF_ERR_TOO_MANY_CAPTURE
CF_ERR_HANDLE
CF_ERR_RESOURCE_FAIL

CF_PlayRcvd

This function starts the reception and display (via the
software “Play” function) of remote video signals in the
remote..video_window which is pre-opened by the
application. Also, it starts the reception and play of
remote audio signals back through the local speakers.
The “Play” function that is automatically invoked as
part of this function can be later turned on/off by the
application by issuing calls to CF_PlayStream.

Note that the call can only be correctly issued after
the phone connection is made. Otherwise, “CF_ER-
R_STATE” will be returned by the call. Also,

CStatus CF_PlayRcvd (HWND hWnd, HCALL hCall,
LPHSTGRP IphStgrp)

input

hWnd: handle to the remote__video_window pre-opened by the
application

hCall: handle to the call

IpAlnfo: Pointer to AINFO structure describing Audio stream
attributes

IpViInfo: Pointer to VINFO structure describing Video stream
attributes

20

25

30

35

45

50

55

65

124
-continued
output
IphStgrp: pointer to the handle to a stream group to be

received
Valid state(s) to issue:
CCST._CONNECTED & CSST_INIT
State after execution:
CCST_CONNECTED & CSST_ACTIVE
Returmn values:

CF_OK

CF_ERR_HANDLE
CF_ERR_STATE
CF_ERR_RESOURCE_FAIL

CF_PlayStream
This function starts or stops playing the captured
video and audio streams of a specified stream group.

CStatus CF.__PlayStream (HWND hWnd, HSTGRP hStgrp, Word
wFlag)
input
hWnd: handle to the “Play” window pre-opened by the
application
hStgrp: handle to the stream group
wFlag: start/stop flag
Valid state(s) to issue:

CSST.ACTIVE
State after execution:

CSST_ACTIVE
Return values:

CF..OK

CF_ERR_STATE
CF_ERR__STRGP
CF._ERR_HANDLE
CF_ERR_RESOURCE_FAIL

CF_RecordStream

This function starts or stops recording the captured
video and audio streams of a specified stream group into
a specified file. Currently, the only supported file for-
mat is AVI File. Also, recording streams in a file will
overwrite, instead of append, to an existing file.

CStatus CF_RecordStream (HSTGRP hStgrp, Word wFormat,
‘Word wFlag, LPSTR IpFile)

input
hStgrp:
wFormat:
wFlag:
IpFile:

handle to the stream group
the file format for recording
start/stop flag
the pathname to the AVI file to record the A/V
streams
Valid state(s) to issue:
CSST_ACTIVE
State after execution:
CSST_ACTIVE
Return values:

CF_OK

CF_ERR_STATE
CF_.ERR_STRGP
CF_ERR_RESOURCE_FAIL
CF_ERR_FILE

Stream Control & Status

These “convenience™ calls will provide the applica-
tion the ability to control and obtain the status informa-
tion of the specified stream group.
CF_ControlStream

This function set the parameters to control the cap-
ture or playback functions of the local or remote video
and audio stream groups.

CStatus CF_ControlStream (HSTGRP hStgrp, WORD wfield,

CISCO SYSTEMS, INC. Ex. 1131 Page 95

5,434,913

125

-continued

126

-continued

LPAVCB IpAvch)

input

hStgrp: handle to a stream group

wiield: field of the AVCB to be modified, the valid fields 3
for local and remote AVCB are listed below:
TBD

IpAvcb: Pointer to the AVCB

Valid state(s) to issue:

al] states except CSST_INIT
State after execution:

unchanged
Return values:

CF..OK

CF_ERR_FIELD
CF_ERR_STRGP
CF_ERR_STATE
CF_ERR_RESOURCE__FAIL

10

15

CF_GetStreamInfo

This function returns the current state and the
AVCB, preallocated by the application, of the specified 20
stream groups.

CStatus CF_GetStreamInfo (LHSTGRP hStgrp, LPWORD

IpwState, LPAVCB IpAvcb) 25
input

hStgrp: handle to a stream group

output

IpwState: return current application state
IpAvch: return the pointer to the AVCB preallocated by the
application.
Valid state(s) to issue:
all states
State after execution:
unchanged
Return values:
CF_OK
CF_ERR_RESOURCE..FAIL

30

35

CF_DestroyStream

This function destroys the specified stream group
that was created by CF._CapMon or CF_PlayRcvd. 40
As part of the destroy process, all operations (e.g., sen-
ding/playing) being performed on the stream group
will be stopped and all allocated system resources will
be freed.

hCall: handle to the call

hStgrp: handle to the stream group

wFlag: start/stop flag

Valid state(s) to issue:
CSST_ACTIVE

State after execution:
CSST_ACTIVE

Return values:

CF_OK

CF__ERR_STATE
CF_ERR_STRGP
CF_ERR_CALL
CF_ERR__RESOURCE_FAIL

CF_Mute

This function stops or resumes sending the captured
video and audio streams of a specified stream group to
the remote site.

CStatus CF._Mute (HCALL hCall, HSTGRP hStgrp, Word

wFlag)

input

hCall: handle to the call

hStgrp: handle to the stream group

wFlag: start/stop flag

Valid state(s) to issue:
CSST_ACTIVE

State after execution:
CSST_ACTIVE

Return values:

CF_OK

CF_ERR_STATE
CF_ERR_STRGP
CF_ERR_CALL
CF_ERR_RESOURCE_FAIL

CF__SnapStream

This function takes a snapshot of the video stream of
the specified stream group and returns a still image
(reference) frame in a buffer allocated by the VCI DLL
to the application. Currently, the only supported image
format is DIB.

CStatus CF__SnapStream (HSTGRP hStgrp, WORD wFormat,
LPDWORD Ipdwbufsize, LPBITMAPINFO IpDib)

45 input
hStgrp: handle to a stream group
CStatus CF_DestroyStream (HSTGRP hStgrp) wFormat: still image format)
input output
hi;g;p y };n)d le to a stream group to be destroyed Ipdwbufsize: size of the returned buffer.
Valid state(s) to issue: L) .)
All stream states except CSST_INIT 50 1pDib: pDoIinIfer to the DIB buffer allocated by the VCI
State after execution: Valid state(s) to issuei
T SO
—_— State after execution:
CF_OK unchanged
CF_ERR_STGRP Return values:
33 CF_OK
Network Linking ggj“—ggg;j
These “convenience” calls will provide the applica- CE_ERR_BUFFER
tion the ability to start/stop sending active captured CF__ERR_INSUFF_BUFSIZE
audio/video streams to the network. 60 CF_ERR_RESOURCE_FAIL

CF_SendStream

This function starts or stops sending the captured
video and audio streams of a specified stream group to
the remote.

65

CStatus CF__SendStream (HCALL hCall, HSTGRP hStgrp,
Word wFlag)

mgut

The messages utilized by conferencing API 506 are
defined as follows:

This section describes the messages generated by
VCI and the parameters that are passed along with
them.

Call Messages
CFM_CALL_NTFY

CISCO SYSTEMS, INC. Ex. 1131 Page 96

5,434,913

127
This is a notification message that the system has just
received a call request initiated from the remote site.
CFM_CALL_NTFY

Returned Parameters

wParam HCALL handle to the call. This handle
should be used to accept/reject the
call.

pointer to a structure containing

incoming call info:

IParam LPV_CBACK

LPADDR Pointer to address
of Caller

LPCONN_CHR Pointer to
Connection
Attributes

Valid Call States To Receive the Notification:
CCST_IDLE

State after receiving the message:
CCST_CALLED

CFM_PROGRESS_NTFY

This is a notification message that returns the status of

the call in progress from the phone system.

CFM_PROGRESS_NTFY
Returned Parameters

wParam HCALL
1Param DWORD
Valid wSubstate values:

CF_PROG_DIAL_TONE
CF_PROG_DIALING
CF_.PROG_RINGBACK

Valid Call States To Receive the Notification:
CCST-.CALLING

State after receiving the message:
CCST_CALLING

CFM_ACCEPT_NTFY

The remote site has accepted the call request issued locally.

CFM__ACCEPT_NTFY

Returned Parameters

wParam HCALL

handle to the call in progress
substate of the call

handle to the call.

IParam LPV_CBACK pointer to a structure containing

call info:

{

LPCONN_CHR Pointer to
Connection
Attributes

LPABBUSCARDINFO Pointer to
Business-
Card info
of peer

LPMTYPE Pointer to
Media
Types
structure

}

Valid Call States To Receive the Notification:
CCST__ACCEPTING/CCST_CALLING

State after receiving the message:
CCST_CONNECTED

CFM_REJECT_NTFY
The connection/call can not be made due to the situa-
tion described in the substates.

CFM_REJECT_NTFY

Returned Parameters

Iparam DWORD

Valid wSubstate values:
CF_REJ_TIMEOUT
CF_REJ_ADDRESS
CF_REJ_NETWORK__BUSY
CF_REJ_STATION_BUSY
CF_REJ_RESOUCE_FAIL

Valid Call States To Receive the Notification:

substate of the call

10

15

20

25

30

35

45

50

55

65

128

-continued

CCST_CALLING
State after receiving the message:
CCST_IDLE

CFM_HANGUP_NTFY
The remote site has hung up the call, or this is a
response to a locally initiated Hangup.

CFM_HANGUP__NTFY
Returned Parameters
wParam HCALL handle to the call
Valid Call States To Receive the Notification:
CCST_CONNECTED and CCST_CLOSING
State after receiving the message:
CCST_IDLE

Channel Messages

The following messages are generated in response to
the various channel related functions as described with
the function definitions.
CFM_CHANACCEPT_NTFY

This is a notification message indicating that the peer
has accepted the Open Channel request (via issuing a
CF_Accept_—Channel call).

CFM_CHAN_ACCEPT_NTFY

Returned Parameters
wParam HCHAN Handle to the channel to be used

subsequently by the application.

1Param DWORD TransID provided by the application,
that identifies the application
transaction related to this
notification.

Valid States To Receive the Notification:

call state

CCST—_CONNECTED
channel state

CHST_.OPENING
State after receiving the message:
call state

CCST_.CONNECTED
channel state

CHST_OPEN

CFM_CHAN_REJECT_NTFY

This is a notification message indicating that the peer
has rejected the Open Channel request (via issuing a
CF._RejectChannel).

CFM__CHAN_REJECT_NTFY
Return Parameters

1Param DWORD Trans ID provided by the application,
that identifies the application
transaction related to this
notification.

Valid States To Receive the Notification:

call state

CCST__CONNECTED
channel state

CHST..OPENING
State after receiving the message:
call state

CCST_CONNECTED
channel state

CHST_READY

CFM_CHAN_TIMEOUT_NTFY

This is a notification message indicating that the peer
has failed to answer the Open Channel request before
the local timer expires.

CISCOVSYSTEMS, INC. Ex. 1131 Page 97

5,434,913

129

130

-continued

CFM__CHAN_TIMEOUT..NTFY
This is a notification message indicating that the peer has
failed to answer the open Channel request before the local timer
expires.
CFM._CHAN_TIMEOUT_NTFY
Returned Parameters
Param DWORD TransID provided by the application,
that identifies the application
transaction related to this
notification.
Valid States To Receive the Notification:
call state

CCST_CONNECTED
channel state

CHST_OPENING
State after receiving the message:
call state

CCST__.CONNECTED
channel state

CHST_READY

CFM_CHAN_OPEN_NTFY

This is a notification message indicating that the peer
has initiated an Open Channel request (via issuing a
CF_Open_Channel call).

CFM_CHAN._ OPEN_NTFY
Returned Parameters
wParam HCHAN Handle to the Channel to be used

subsequently by the application.

IParam LPV_CBACK Pointer to info about incoming
channel request
DWORD Transld (to be
used in Accept/
Reject Channel)
HCALL Handle to
Connection
LPCHAN_INFO Channel Info
} passed by peer
Valid States To Receive the Notification:
call state

CCST_..CONNECTED
channel state
CHST_READY
State after receiving the message:
call state
CCST_CONNECTED
channel state
CHST_RESPONDING

CFM_CHAN_CLOSE_NTFY

This is a notification message indicating that the peer
has initiated a Close Channel request (via issuing a
CF__Close__Channel call). This may also be in response
to a locally initiated Close Channel.

CFM._.CHAN_CLOSE_NTFY
Returned Parameters
wParam HCHAN
1Param DWORD

Handle to the Channel
If the callback is a remote Close
indication, 1Param = 0
If the callback is a response to a
locally initiated CloseChannel
IParam = TransiD specified by app.
Valid States To Receive the Notification:
call state

CCST_CONNECTED
channel state

CHST_SEND, CHST_RECV, CHST_OPEN
State after receiving the message:
call state

CCST_CONNECTED
channel state

10

15

20

25

30

35

45

55

65

CHST_READY

CFM_DATA_SENT_NTFY

This is a notification message indicating that the data
in the buffer has been sent out (via the previous call to
the CF_Send__Data). The data buffer used in the CF___
Send_Data is now available for reuse.

CFM.__DATA_SENT..NTFY
Returned Parameters
wParam WORD
Param DWORD

The actual number of bytes sent.
TransID provided by the application,
that identifies the application transaction
related to this notification.
Valid States To Receive the Notification:
call state
CCST_CONNECTED
channel state
CHST_SEND
State after receiving the message:
call state
CCST_CONNECTED
channel state
CHST_SEND

CFM_RCV_COMPLETE_NTFY

This is a notification message indicating that the sys-
tem has received data in the buffer posted by the appli-
cation (via issuing CF_RecvData calls).

CFM_RCV_COMPLETE_NTFY
Returned Parameters
wParam WORD
1Param DWORD

The actual number of bytes received
TransID provided by the application,
that identifies the application
transaction related to this

notification.

Valid States To Receive the Notification:
call state

CCST_CONNECTED
channel state

CHST._RECV
State after receiving the message:
call state

CCST..CONNECTED
channel state
CHST_RECV

CFM_DATA_LOST_NTFY

This is a notification message indicating that the data
sent is lost because the peer had no data buffers avail-
able to receive it. This message will be delivered to both
the sender and the receiver applications.

CFM._DATA_LOST_NTFY
Returned Parameters
wParam WORD
1Param DWORD

Number of bytes lost
TransID provided by the application,
that identifies the application
transaction related to this
notification.
Valid States To Receive the Notification:
call state

CCST_CONNECTED
channel state

CHST_SEND
CHST_OPEN
State after receiving the message:
call state
CCST__CONNECTED
channel state
UNCHANGED

CISCO SYSTEMS, INC. Ex. 1131 Page 98

131

~continued

5,434,913

Video API Data Structures, Functions, and Messages

Video API 508 utilizes the following data types:

10

VSTATUS Video subsystem interface return status type.
WORD (16-bit) value.

HVSTRM Handle to a video stream

LPHVSTRM Pointer to the handle to a video stream

LPVINFO Pointer to a video information (VINFO)
structure

HVCCB Handle to the Video Configuration Control
Block (VCCB)

LPCHANID Pointer to the network channel ID

(CHANID)

Video API 508 utilizes the following structures:

132
-continued
V_ERR general error occurred in the system
V_ERR_VINFO invalid VINFO
V_ERR_HWND invalid window handle
V_ERR_STATE invalid stream state to issue this
function
V_ERR_HVSTRM invalid stream handle
V_ERR_CHANID invalid network channel
V_ERR_RSCFAIL system resource failure
V_ERR_FLAG duplicated operation or invalid flag
V_ERR_FIELD invalid VINFO field

The functions utilized by video API 508 are defined
as follows:
VOpen

3.12 Structure Types
VINFO (Video Stream Information)
>> WORD wType
>> WORD wReserved
>> DWORD dwFlags
>> WORD wContrast
>> WORD wTint
>> WORD wSaturation
>> WORD wBrightness
>> WORD wDisplayRate
>> WORD wReserved2
>> Union {
>> // local video stream
>> struct {
>> WORD wCaptureSource
* >>
>> WORD wCaptureFormat
>>
>> DWORD wCaptureDriver
>> WORD wDataRate
>> WORD wMaxFrameRate
>> WORD wQualityPercent
>>
>>
>>
>>
>>
>> } local
>> // remote video stream
>> struct {
>> WORD wPlaybackTarget
>>
>>
>> WORD wReserved
>>
>> } remote
>>
>> HASTRM hAStrm
>>
>> 1

Local or remote video

stream

DWORD alignment, future

use
Flags bits: various
exclusive attributes
Contrast adjustment
Color adjustment
Saturation value

Brightness adjustment
Monitor/Playback window
BIt rate; <= IRV frame

rate

DWORD alignment, future

use

Video capture source

(placeholder)

Video capture format

ARV, YUV-9, etc.)
Four CC code

Maximum video data rate

(kbits/sec)

1-30

0-100; 0 = Lowest
quality, least
number of frames
dropped; 100 =
Highest quality,
most number of
frames dropped

Video playback
hardware
(placeholder)
Alignment, future
use

Associated audio
stream, as needed

Video API 508 utilizes the following constants:

Constants

State values:
VST_INIT Init state
VST_OPEN Open state
VST_CAPTURE Capture state
VST_PLAY Play state
VST _LINKIN Link In state
VST_LINKOUT Link Out state
VST_ERROR Error state

Status Values
V._OK for successful return (=0)

65

This function opens a video stream. An info structure
specifies stream attributes. Caller specifies window mes-
sages or callback function for stream event notification.
Stream event notification is TBD.

VSTATUS VOpen (LPVINFO lpVInfo, LPHVSTRM IphVStrm,
DWORD dwCallback,

DWORD dwCallbackInstance, DWORD dwFlags,

int far * IpwField)
input
IpVinfo: pointer to the video information structure,
VINFO, with specified attributes. If a

CISCO SYSTEMS, INC. Ex. 1131 Page 99

133

~continued

5,434,913

134

NULL LPVINFO is specified, the default
attributes set up as part

VSTATUS VMonitor(HVSTRM hVStrm, HWND hWhnd,
BOOL bFlag)

of configuration will be used. input
dwCallback: Specifies the address of a callback 5 hVStrm: handle to 2 video stream.
function or a handle to a window. In the hWnd: handle to a window, pre-opened by the app, in which
case of a window, the low-order word is monitoring is to take place.
used. Messages sent to a callback function If bFlag=FALSE, then the previously specified
are similar to messages sent to a window, monitor window is disassociated from the stream
except they have two DWORD (and the specified window is ignored).
parameters instead of a UINT and a 10 bFlag: On/Off flag. Off=FALSE and ON==TRUE.
DWORD parameter. See the Microsoft Valid state(s) to issue:
Multimedia Programmer’s Guide, pp. 5-10 VST_CAPTURE/VST_LINKOUT
for guidelines in writing a callback State after execution:
function. unchanged
dwCallbackInstance: Specifies user instance data passed to the Return values:
callback. Unused if dwcallback is a 15 V_OK for successful return
window. V_ERR_STATE invalid stream state to issue this
dwFlags: VOpen flags parameter; flag values OR’d function
into parameter. V_ERR_FLAG duplicated operation
For parameter dwcallback, values are: V_ERR_HVSTRM invalid stream handle
CALLBACK_FUNCTION indicates V__ERR_HWND invalid window handle
callback function used. 20 V_ERR_RSCFAIL system resource failure
CALLBACK _WINDOW indicates
window handle. .

output 3.3.4. VLinkOut

VSTATUS: returned parameter; see return values, Link a network video sink to a video stream for re-

below. mote transmission. Usage: Local capture to network
IphVstrm: pointer to an opened video stream handle, 25 output.
returned if VSTATUS=V__OK.

IpwField: a field in VINFO was incorrect. This
parameter is valid only when VSTATUS VSTATUS VLinkOut(HVSTRM hVStrm, HCHAN hChan,
returns the value: BOOL bFlag)
V_ERR_VINFO. A —1 indicates it
VINFO was more generally in error. 30 .

Valid state(s) to issue: hAStrm handle to the video stream.)

hChan channel handle of the video output sink.
VST_INIT If bFlag=FALSE, then th iousl ified

State after successful execution (V_OK): ag=rALSE, then the previously specifie
VST_OPEN chan_nel is dxsassoc':la_ted from the stream (and the

Return values: i speclﬁed charme! is ignored).)

B — 35 bFlag link or unlink flag. Link=TRUE; Unlink=
V_OK for successful return (=0) FALSE.

V_ERR_VINFO invalid VINFO Valid state(s) to issue:
V_ERR_RSCFAIL system resource failure VST_CAPTURE (VLinkOut - link)
VST_LINKOUT (VLinkOut - unlink)
State after execution:
3.3.2..VCaptE1re . . 40 VST_CAPTURE —> VST_LINKOUT
This function starts/stops capturing a video stream VST_LINKOUT 3 VST_CAPTURE

from a local video hardware source, such as a video Return values:

camera or VCR. The captured video can be displayed V_.OK for successful return

in a window by using the VMonitor function. A capture V_ERR_STATE invalid stream state .

source is not explicitly defined but implied to be the 4 V—ERR_CHANID ’;l‘;;]‘f S‘:;:;zrk channel for video

local video capture hardware and driver. V_ERR_RSCFAIL system resource failure

VSTATUS VCapture (HVSTRM hVStrm, BOOL bFlag) 3.3.5. VLinkIn

input Link a network video source to a video stream for

hVStrm: handle to a video stream. 50 playback. Usage: Network input to local playback.

bFlag: On/Off flag. Off =FALSE and ON=TRUE.

Valid state(s) to issue:

VST_OPEN (VCapture - on) VSTATUS VLinkIn(HVSTRM hVStrm, HCHAN hChan,
VST_CAPTURE (VCapture - off) BOOL bFlag)

State after execution: 55 input
VST_OPEN —> VST_CAPTURE hVStrm: handle to the video stream.

VST. . CAPTURE —> VST_OPEN hChan: channel handle of the video input source.

Return values: If bFlag=FALSE, then the previously specified
V_OK for successful return (=0) :;aggﬂdig;aﬁ??;gof;%? the stream (and the
V-ERR_STATE ;ﬁ‘;‘;‘(‘);“m state to issue this g0 PFlag link or unlink flag. Link=TRUE; Unlink=FALSE.
V_ERR_HVSTRM invalid stream handile g‘rI:a.?nI?SE, then Chanld is disassociated from the
V_ERR_RSCFAIL system resource failure Valid state(s) to issue:

VST__OPEN VLinkIn - link)

VMonitor VST__LINK.IN VLinkin - unlink)

This function starts/stops monitoring (displaying 65 State after execution:
o . > VST_OPEN —> VST_LINKIN

video in a window) a video stream captured from local VST_LINKIN -5 VST_OPEN

video camera or VCR. The capture source is specified Return values:

in the VCapture function; see above. V_OK for successful return

CISCO SYSTEMS, INC. Ex. 1131 Page 100

5,434,913

135
-continued .
V_ERR_STATE invalid stream state
V_ERR_CHANID invalid network channel for video
input source
V_ERR_RSCFAIL system resource failure
3.3.6. VPlay

This function starts/stops playing a linked-in video
stream by consuming a video stream from a video net-
work source and displaying it in 2 window. Specifics of
the video network source are assigned the stream using
the VLinkIn function; see above.

VSTATUS VPlay(HVSTRM hVStrm, HWND hWnd,
BOOL bFlag)

input

hVStrm: handle to the video stream.

hWnd: handle to a window pre-opened by the app.
bFlag: start play or stop play flag. Play=TRUE; Stop

Play=FALSE.

If stop play, then hWnd is disassociated from the

stream (and the specified window is ignored).
Valid state(s) to issue: -
(VPlay - on)

VST_LINKIN
VST_PLAY (VPlay - off)
State after execution:
VST_PLAY —> VST_LINKIN
VST_LINKIN —> VST_PLAY
Return values: :
V_OK for successful return
V ERR_STATE invalid stream state to issue this .
function
V_ERR_HVSTRM invalid stream handle
V_ERR_RSCFAIL system resource failure
V_ERR_FLAG duplicated operation
VPause

This function pauses or unpauses a video stream cap-
tured or played locally.
NOTE: This function is currently unimplemented. Its
function has been found to be available via combina-
tions of the other stream functions. To pause a local
stream, use VMonitor (off); to pause the remote stream,
use VPlay (off). To mute the local video stream, at the
remote site, use VLinkOut (off).

VSTATUS VPause(HVSTRM hVStrm, BOOL bFlag)
input
hVStrm: handle to the video stream.
bFlag: PauseOn/PauseOff flag. PauseOn=TRUE;
PauseOff=FALSE.
Valid state(s) to issue:
VST__CAPTURE

VST_PLAY
VST_LINKOUT

State after execution:
Unchanged

Return values:
V_OK for successful return
V_ERR_STATE invalid stream state to issue this

function

V_ERR_HVSTRM invalid stream handle
V_ERR_FLAG duplicated operation
V_ERR_RSCFAIL system resource failure

3.3.8. VGrabframe

This function grabs the most current still image (key
frame) from a specified video stream. The frame is re-
turned in a DIB format. VGrabframe allocates the DIB
bits buffer, and the user must free it. The user provides

15

20

25

30

35

45

50

55

65

136
the DIB BITMAPINFO structure, of maximum extent,
which is of fixed length.

VSTATUS VGrabframe(HVSTRM hVStrm, LPSTR FAR
*Iplpvbits, LPBITMAPINFO lpbmi)

input
hVStrm:
Ipbmi:

handle to the video stream.

pointer to a DIB BITMAPINFO structure. The
BITMAPINFO must have an extent equal to a
bmiColors array with 256 entries, giving a
BITMAPINFO structure of maximum length.
output
Iplpvbits: pointer to a pointer to a DIB image buffer that is
allocated by the video manager and freed by the
application. Windows GlobalAlloc

(with memory attributes

GMEM_MOVEABLE GMEM_SHARE)
and GlobalLock are used to allocate the DIB bits
memory.

Valid state(s) to issue:
VST_MONITOR
VST_PLAY

State after execution:
Unchanged

Return values:

V__.OK
V_.ERR_STATE

for successful return

invalid stream state to issue this
function

invalid stream handle

system resource failure

V_ERR_HVSTRM
V_ERR_RSCFAIL

VCntl
This function controls a video stream by adjusting its
parameters (e.g., Tint/Contrast, Frame/Data Rate).

VSTATUS VCntl (HVSTRM hVStrm, LPVINFO IpVinfo,
‘WORD wField)

input
hVStrm handle to the video stream
output
IpVInfo pointer to the video information structure, VINFO,
that was preallocated by the apps, but filld by the
vide manager.
wField field value to be changed.
Valid state(s) to issue:
all states except VST_INIT
State after execution:
unchanged
Return values:
V_OK for successful return
V_ERR_HVSTRM invalid stream handle
V_ERR_STATE invalid stream state to issue
this function
V_ERR_FIELD invalid VINFO field
V_ERR__LPVINFO invalid VINFO pointer
V_ERR_RSCFAIL system resource failure

3.3.10. VGetlInfo
This function returns the status of a video stream.

VSTATUS VGetlnfo(HHVSTRM hVStrm, LPVINFO IpVinfo,
LPWORD lpwState)

input
hVStrm:
output
IpVinfo:

handle to the video stream.

handle to the video information structure, VINFO, that
was preallocated by the apps, but filled by the video
manager
pointer to 2 WORD where the state of the specified
stream can be returned.
Valid state(s) to issue:

all states except VST__INIT
State after execution:

unchanged
Return values:

V_.OK

IpwState:

for successful return

CISCO SYSTEMS, INC. Ex. 1131 Page 101

5,434,913

137 138
-continued -continued
V_ERR_STATE invalid stream state to issue this V_ERR: general error
function
V_ERR_HVSTRM invalid stream handle
V__ERR_LPVINFO invalid VINFO pointer 5 VCost
This function gives the percentage utilization of the
VClose CPU required to support a given video stream.
This function closes a video stream and releases all . Theftfuriinor} dcan be calle:d .r.et;.)aelgtecgy, ia;ctl Ztuagy
system resources allocated for the stream. 1me attel Lhe v1deo manager 1s imtialize Vv « cate 2;
10 Repeated calls can be used to determine an “optimal
configuration of local and remote video windows.
VSTATUS VClose(HVSTRM hVStrm)
input
hVStrm: handle to the video stream. VSTATUS VCost(wRes, wDispFreq, wFrameRate, wFormat,
Valid state(s) to issue: dwFlags, 1pwCost)
All STATES except in VST_INIT 13 input
State after execution: wRes: resolution of a video display window.
STINIT wDispFreq: display frequency of a video display window.
Return values: Display frequency is a function of the
V_OK for successful return FrameRate.
V_ERR_HVSTRM invalid stream handle 1 = All frames; 2 = Every other frame; 3 =
20 Every third frame; etc. 0 = no frames
i X displayed.
3.4. Video Subsystem Functions wFrameRate: captured video frame rate (fps). For IRV, this
The subsystem functions are used to manage and is typically 1015 fps.]
return information about the video subsystem as a “Format defines the video compression algorithm.
.. e s qs e Currently supported values are:
whole. This includes subsystem initialization, shut- 75 CAPT_FORMAT_IRV
down, and cost, or utilization, information. CAPT_FORMAT_YUV
3.4.1. VInit dwFlags: Flags which further specify specific video
This function initializes the video subsystem. Capture attributes.
.. . Currently supported values are:
and playback applications can be started. Windows INI LOCAL_STREAM (= 0 X 1)
file entries are used to configure the subsystem. 30 REMOTE_STREAM (= 0 X 2)
Subsystem initialization also includes the measure- These values specify whether the video in
ment of the CPU and display subsystem (graphics .. question originates locally or remotely.
adapter) in order to provide video cost information; see P . . R
IpwCost: pointer to a WORD where a system utilization
VCost, below. value can be returned. The value returned is a
35 system utilization percentage. It is O or
greater. Values greater than 100 can be
VSTATUS ViInit(dwinitFlags) returned.
input Return values:
dwinitFlags: initialization flags. Flag bits are OR’d to determine V_OK: for successful return
interface options. Current flag bits are: V_ERR: general error
VM_CAPT_INIT: start capture 40
application
VM_PLAY_INIT: start playback A A
application Audio API Data Structures, Functions, and Messages
Retorn values:_ Audio API 512 utilizes the following data types:
V_OK: for successful return udio utilizes the following data types:
V_ERR: general error 45
HASTRM Handle to an audio stream
3.4.2. VShutdown LPHASTRM Pointer to the handle of an audio stream
: : TEEYCRE T : AINFO Audio information structure
This function uninitializes, or S.tOp'S , the video subsys- LPAINFO Pointer to an audio information structure
tem. Capture and playback applications are stopped. ACCB Audio Compression Control Block
50 LPACCB Pointer to the Audio Compression Control Block
ADEVCAPS Audio Device Capabilities structure
VSTATUS VShutdown() LPACAPS Pointer to the Audio Device Capabilities structure
Return values: STATUS Status code returned by Audio Subsystem

V_OK: for successful return

Audio API 512 utilizes the following structures:

ADevCaps
OUT WORD

OUT WORD
OUT WORD
OUT char

OUT DWORD

OUT WORD

wVersion Version of the audio
manager

wMid Manufacturer ID

wPid Product ID

szPname[MAXPNAMELE NULL terminated string

Nj containing the name of
the audio manager

dwFormats Sample wave formats
supported by subsystem
when no compression is
used

wChannels Number of audio channels

supported by driver

CISCO SYSTEMS, INC. Ex. 1131 Page 102

5,434,913

139 140
-continued
(mono (1) or stereo (2))
IN WORD nAcceptCoders Size of ACCB array
referenced by 1pACCB
OUT WORD nReturnCoders Number of ACCB
structures returned in
ACCB array referenced by
1pACCB
IN LPACCB 1pACCB Pointer to an array of
ACCSB structures. There
should be an ACCB
structure per supported
compression algorithm.
ACCB (Audio Compression Control Block)
char szProdName{MAXCOMP Name of
RESS] Compression
Algorithm
WAVEFORMAT wf Wave format as
defined Microsoft
Multimedia
Programmer’s
Reference
WORD wBitsPerSample Number of bits per
sample per
channel.
WORD cbExtraSize Extra number in
bytes of the
WAVEFORMAT
structure.
WORD wAvgCompRation Specifies the
average
compression ratio
provided by the
compression device
WORD samplesPerFrame The smallest
number of audio
samples required
by the compression
device to generate
. a frame.
AINFO (IN/OUT Information of an Audio Stream)
WORD wType Local or remote audio
stream
WORD wCompress Index into compression
table
DWORD dwResolution Resolution in
milliseconds with
which Audio Manager
can adjust latency on
an audio stream
DWORD dwLatency Milliseconds of
latency from the time
the audio packet is
recorded to the time
it is put on the
network.
Union {
// local audio stream
struct {
WORD win Audio input hardware
source
WORD wGain Gain of the local
microphone
WORD wAux Volume of the monitor
audio stream.
} local
// remote audio stream
struct {
‘WORD wOut Audio output hardware
destination
WORD wVol Volume of the local
speaker
} remote
Audio API 512 utilizes the following constants: -continued
65 AST_CAPTURE Capture state
AST_PLAY Play state
State values: AST_LINKIN Link In state
AST_INIT Init state AST_LINKOUT Link Out state
AST_OPEN Open state AST_ERROR Error state

CISCO SYSTEMS, INC. Ex. 1131 Page 103

5,434,913

141 142
-continued -continued

Status values: NO CHANGE
A_OK successful return Return values:
A _ERR_STATE invalid stream state Number of Audio Manager available on the system.
A_ERR_HASTRM invalid stream handle 5
A_ERR_ILPAINFO invalid AINFO pointer
A_ERR_FIELD invalid AINFO field AGetDevCaps (Synchronous) o
A_ERR_LPHCHAN invalid network channel This function fills the ADevCaps structure with in-
A_ERR _RSCFAIL system resource failure formation regarding the specified Audio Manager.
A_ERR_STREAM too many outstanding audio streams
A_ERR_PENDING call pending on the audio subsystem 10
A—ERR_NODEV invalid Audio Manager device AStatus AGetDevCaps (UINT wDeviceID, LPACAPS IpCaps)
A_ERR_NOCALLBACK APacketNumber issued without a M .

registered callback function wDevicelD: Identifies the Audio Manager to query.
A_STREAM__CLOSED Hang-up received on an audio Use a integer from O to ‘one less than the

stream 15 number of installed audio managers.
A_ERR_NOSUPPORT Feature not supported in current 1pCaps: Specifies a far pointer to an ADevCaps

release of Audio Manager

The functions utilized by audio API 512 are defined

as follows:

AGetNumDevs or Alnit (Synchronous)

This function retrieves the number of different Audio

structure. An array of ACCB structures
must be allocated to receive a list of audio
compression algorithms supported by the
Audio Manager. The ADevCaps fields
1pACCB and wAcceptCoders should

be set to reference this array and the
array size, respectively.

20

Valid state(s) to issue:
ANY

Managers installed on the system. AGetNumDevs and
Alnit perform the same function. Alnit exists for sym-

metry with the Video Manager

State after execution:
NO CHANGE

25 Return values:

UINT AGetNumDevs (void) or Alnit (void)
Valid state(s) to issue:

ANY
State after execution:

A_OK:
A_ERR _NODEV:

for successful return
invalid wDevicelD

AOpen (Asynchronous or Synchronous)
This function opens an audio stream with specified
attributes.

30

AStatus AOpen (LPAINFO IpAlnfo, UINT wDevicelD, DWORD dwCallback,

DWORD dwCallbackInstance, DWORD dwFlags,
LPWORD lpwField, LPHASTRM IphAStrm)

input

IpAlnfo: The audio information structure, Alnfo,
with specified attributes. NOTE: normally
wCompress is set to 0; this will select
the default coder to be used on the audio
stream.

wDevicelD: Identifies the Audio Manager to use. The
value can range from zero 1o one less than
the value returned by AGetNumDevs.

dwCallback: Based on value of dwFags, specifies the
address of a callback function or a handle
to a window.

dwCallbackinstance: Specifies user instance data passed to the
callback. This parameter is not used when
dwCallback is a windows handle.

dwFlags: Defines whether the application interface

to Audio Manager will be asynchronous or
synchronous. If dwFlags is
CY_CALLBACK__NONE, the interface is
synchronous and dwCallback is a Window
handle used by the audio subsystem to

block while the underlying asynchronous

audio manager completes its service. IF
dwFlags is CY_CALLBACK_FUNCTION or
CY_CALLBACK _WINDOW, the interface is

State after execution:

AST_OPEN

Return messages/Callbacks

AM_OPEN:

Posted at callback time. The value of Paraml

is one of the values defined in Paraml Values
below. The value of Param? is a HASTRM if
Paraml is A_OK.

Return/Paraml Values:

A_OK: for successful return

A_ERR _STREAM: too many outstanding audio streams
A_ERR__LPAINFO: invalid AINFQO pointer
A_ERR_FIELD: invalid AINFO Field(s)
A_ERR_RSCFAIL: system resource failure
A_ERR_PENDING: open call pending on the audio subsystem
A_ERR_NOSUPPORT: invalid dwFlags field

CISCO SYSTEMS, INC. Ex. 1131 Page 104

5,434,913

143

-continued

AStatus AOpen (LPAINFO IpAlnfo, UINT wDevicelD, DWORD dwCallback,
DWORD dwCallbackInstance, DWORD dwFlags,

LPWORD IpwField, LPHASTRM IphAStrm)

A_ERR_NODEV:

invalid wDeviceID

ACapture (Asynchronous or Synchronous)
This function starts/stops capturing an audio stream 10

from a local audio hardware source, such as a micro-

phone.

AStatus ACapture(HASTRM hAStrm, BOOL bFlag)

imput

hAStrm:

bFlag:

Valid state(s) to issue:
AST_OPEN
AST._.CAPTURE
State after execution:
AST_OPEN
AST_CAPTURE
Return Messages/Callbacks
AM_CAPTURE

Return/Param1 Values:
A_OK:
A_ERR_STATE:
A_ERR _HASTRM:
A_ERR_RSCFAIL:
A_ERR_FLAG:
A_ERR_PENDING:

handle of an audio stream
on/off flag.

(ACapture - on)
(ACapture - off)

-> AST..CAPTURE
-> AST_OPEN

Posted at callback time. The value
of Param1 is one of the values
defined in Paraml Values below.
The value of Param? is the state of
the stream: TRUE means
capturing, FALSE means capture
disabled.

for successful return

invalid stream state

invalid stream handle

system resource failure

duplicated operation

call pending on the audio subsystem
for this stream.

AMute (Asynchronous or Synchronous)

This function starts/stops muting of an audio stream

15

20

25

30

35

captured from local microphone or being played back 0

on the speakers.

AStatus AMute(HASTRM hAStrm, BOOL bFlag)

input
hAStrm:

bFlag:
Valid state(s) to issue:

pointer to the handle of an
audio stream
on/off flag.

AST_CAPTURE/AST_LINKOUT

AST_LINKIN/AST_PLAY

State after execution:
Unchanged

Return Messages/Callbacks
AM_MUTE:

Param! Values:
A_OK:
A_ERR_STATE:
A_ERR_FLAG:
A_ERR_HASTRM:
A_ERR_RSCFAIL:
Return values:
A_OK:
A_ERR_PENDING:

Posted at callback time.
The value of Param1 is
one of the values defined
in Paraml Values below.
The value of Param? is the
state of the stream: TRUE
means muting, FALSE
means muting is disabled.

for successful return
invalid stream state
duplicated operation
invalid stream handle
system resource failure

for successful return
call pending on the audio
subsystem for this stream.

45

50

35

65

14

This function starts/stops playing an audio stream
received from a network source. See details in “ALin-

kIn”.

AStatus APlay(HASTRM hAStrm, BOOL bFlag);

input

hAStrm:

bFlag:

Valid state(s) to issue:
AST_LINKIN
AST_PLAY

State after execution:
AST_LINKIN
AST_PLAY

Return Messages/Callbacks

AM__PLAY:

Return/Param] Values:

A _OK:
A_ERR_STATE:
A_ERR_HASTRM:
A_FRR_FLAG:
A_ERR_RSCFAIL:
A_ERR_PENDING:

handle to the audio stream
on/off flag.

(APlay - on)
(APlay - off)

-> AST__PLAY
-> AST_LINKIN

Posted at callback time. The value
of Param] is one of the values
defined in Paraml Values below.
The value of Param? is the state of
the stream: TRUE means playing,
FALSE means play disabled.

for successful return

invalid stream state

invalid stream handle

duplicated operation

system resource failure

call pending on the audio subsystem

. for this stream.

ALinkIn (Asynchronous or Synchronous)

This function links/unlinks an input network channel
to/from the specified audio stream. Once linked, the
audio stream can be played on the local speakers/head-
phones via the APlay function defined earlier.

AStatus ALinkIn (HASTRM hAStrm, LPHCHAN IphChant,

BOOL bFlag)
input
hAStrm:
IphChan:

bFlag:

Valid state(s) to issue:
AST_OPEN
AST_LINKIN

State after execution:
AST_OPEN
AST_LINKIN

Return Messages/Callbacks

AM__LINKIN:

Return/Param] Values:
A_OK:
A_ERR_STATE:
A_ERR_HASTRM:
A_ERR_FLAG:
A_ERR_IPHCHAN:

A_ERR_PENDING
A__ERR_RSCFAIL

handle to the audio stream

pointer to a channel handle
identifying the audio network input
source

link or unlink flag.

(ALinKIn - link)
(ALinkIn - unlink)

-> AST_LINKIN
-> AST_OPEN

Posted at callback time. The value
of Paraml is one of the values
defined in Param1 Values below.
The value of Param? is the state of
the stream: TRUE means linked,
FALSE means unlinked.

for successful return

invalid stream state

invalid stream handle

duplicated operation

invalid network channel handle for
audio input source

call pending on the audio subsystem
system resource failure

APlay (Asynchronous or Synchronous)

ALinkOut (Asynchronous and Synchronous)

CISCO SYSTEMS, INC. Ex. 1131 Page 105

5,434,913

145
This function links/unlinks an output network chan-
nel to/from the specified audio stream that will be cap-
tured or is being captured from the local microphone.

146

AGetlInfo (Asynchronous and Synchronous)
This function returns the AINFO and state of an

audio stream.

5
AStatus A__LinkOut(HASTRM hAStrm, LPHCHAN Iphchan, AStatus AGetInfo(HASTRM hAStrm, LPAINFO IpAlnfo,
BOOL bFlag); LPWORD IpwState)
input input
hAStrm: handle to the audio stream hAStrm: handle to the audio stream
iphChan: pointer to a channel handle output
P. polnter | Quiput
identifying the network output 10 IpAinfo: pointer to the handle of AINFO
d.estmatlon' that was preallocated by the apps,
bFlag: X link or unlink flag. but filled by the audio manager
Valid state(s) to issue: IpwState: state of the specified stream
AST_CAPTURE (ALinkOut - link) valid state(s) to issue:
AST._LINKOUT {(ALinkOut - unlink) all states except AST_INIT
State after execution: 15 State after execution:
AST_CAPTURE -> AST_LINKOUT unchanged
AST_LINKOUT -> AST_CAPTURE Return Messages/Callbacks
Return Messages/Callbacks AM_GETINFO: Posted at callback time. If there is
AM__LINKOUT: Posted at cailback time. The value an error, the value of Paraml is
of Paraml-is one of the values one of the values listed below in
defined in Param] Values below. 20 Param! Values and Param2 is
The value of Param? is the state of ZERO (i.e. if Param2 == 0
the stream: TRUE means linked, ERROR;). If the command is
FALSE means unlinked. successful, both Param] and
Ret 1 Val - Param? are ZERO.
et/ Faram == Return/Paraml Values:
A_OK: for successful return
A_ERR_STATE: invalid stream state 25 A_OK: for successful return
A_ERR_HASTRM: invalid stream handle A_ERR_STATE: invalid stream state
o _ERR _ FLAG: duplicated operation A_ERR_HASTRM: invalid stream handle
A_ERR_LPHCHAN: invalid network channel for audio A_ERR_LPAINFO: invalid AINFO pounter
output source A_ERR_RSCFAIL: system resource failure
A_ERR _RSCFAIL: system resource failure A_ERR_PENDING: call pending on this audio stream.
A_ERR_PENDING: call pending on this audio stream. 30

ACnt] (Asynchronous or Synchronous)

This function can be used to control the amount of

latency on an audio stream. In addition, the gains of an 35

audio stream being captured or the volume of an audio
stream being played back can also be set. Finally, the
locally captured audio input can be monitored by set-
ting the wAux AINFO field.

AStatus ACntl(HASTRM hAStrm, LPAINFO IpAlnfo, WORD

wField)
input
hAStrm:

IpAlnfo:

wkField:

Valid state(s) to issue:

all states except AST__INIT
State after execution:
unchanged

Return Messages/Callbacks

AM__CNTL:

Return/Param1 Values:

A_OK:
A_ERR_HASTRM:
A_ERR_STATE:
A_ERR_IPAINFO:
A_ERR_FIELD:
A_ERR_RSCFAIL:
A_ERR_PENDING:

handie to the audio stream
pointer to the audio information
structure, Alnfo, with specified
attributes.

the selected field of Alnfo to
change.

Posted at callback time. If there is
an error, the value of Paraml is
one of the values listed below in
Param! Values and Param? is
ZERO (i.e. if Param2 == Q)
ERROR;). If the command is
successful, the value of Param1 is
wField and the value of Param? is
the pointer IpAlnfo passed to the
call ACntl.

for successful return

invalid stream handle

invalid stream state

invalid AINFO pointer

invalid AINFO Field

system resource failure

call pending on this audio stream.

45

50

35

65

AClose (Asynchronous and Synchronous)
This function closes an audio stream and releases all
system resources allocated for this stream.

AStatus AClose(HASTRM hAStrm)

input
hAStrm:
Valid state(s) to issue:

handle to the andio stream

All STATES except in

AST__INIT

State after execution:

AST_INIT

Return Messages/Callbacks

AM__CLOSE: Posted at callback time. Param] is
one of the Param] Values listed

below. Param?2 is the stream
handle passed to AClose.
Return/Param] Values:

A_OK: for successful return
A_ERR _HASTRM: invalid stream handle
A_ERR _PENDING: call pending on this audio stream.

ARegisterMonitor (Asynchronous)

This function registers an audio stream monitor. The
Audio Manager maintains a packet count on each open
stream. This count represents a running clock where the
elapse time since the initiation of the audio stream is
simply the packet count times the latency represented
by each packet. Initiation here refers to the moment a
local audio stream enters the AST CAPTURE state.
Users of the audio subsystem gain access to this clock
source via an audio stream monitor.

AStatus ARegisterMonitor({ASTRM hAStrm, DWORD
dwCallback, DWORD dwCallbackInstance, DWORD dwFlags,

DWORD dwRequestFrequency, LPDWORD
IpdwSetFrequency)
input
hAStrm: handle to the audio stream

CISCO SYSTEMS, INC. Ex. 1131 Page 106

5,434,913

147

-continued

148

-continued

AStatus ARegisterMonitor(HASTRM hAStrm, DWORD
dwCallback, DWORD dwCallbackInstance, DWORD dwFlags,

AST_LINKOUT
State after execution:

DWORD dwRequestFrequency, LPDWORD NO CHANGE
IpdwSetFrequency) 5 Return M /Callbacks
dwCallback: Specifies the address of a callback AM_PACKETNUMBER: .
function or a handle to a window. of Paraml is one of the values
dwCallbackInstance: ~ Specifies user instance data passed to the 1
callback. This parameter is not used with Param? is the current packet
windows callbacks. R
dwFlags: Specifies whether the parameter 10 latency (in milliseconds).
dwCallback is 2 Window handle or a Paraml Values:
function. If it is a Window handle, the A _OK: for successful return
value is set to A_STREAM._CLOSED: for successful return
CY_CALLBACK_WINDOW. If it is a Return values:
function, dwFlags is set to 15 A-OK: for successful return
CY_CALLBACK_FUNCTION. A_ERR_STATE: invalid stream state
dwRequestFrequency: Specifies the period (in milliseconds) the A_ERR_HASTRM: invalid stream handle
Audio Manager should playback or A_ERR_PENDING:
record audio before reporting the current A_ERR_NOCALLBACK:
elapsed time to the caller. A value of zero ARegisterMonitor
means don’t callback (use
APacketNumbser to force 2 callback). 20
output AShutdown (Synchronous) .
lpdwSetFrequency: ~ The Audlilo Ma:;ger rz:iur(ns via this far This function forcefully closes all open audio streams
pointer the actual period (in : :
milliseconds) between and unloads any open Audio Manager drivers.
AM_PACKETNUMBER
callbacks. This number will be set as 25 -
close as possible to dwRequestFrequency BOOL AShutdownAPacketNumber (void)
based on the resolution of latency Valid state(s) to issue:
associated with the audio stream (see any state accept AST_INIT
AINFO field dwResolution). State after execution:
Valid state(s) to issue: AST_INIT
AST_PLAY, AST_LINKIN, AST_CAPTURE, 30 Return Messages/Callbacks
AST_LINKOUT none
callback Return values:
void CALLBACK AudioManagerFunc(hAStrm, Message, TRUE: for SI?\ccmsful retum
dwCallbackInstance, dwParam1, dwParam?2)
AudioManagerFunc is a place holder for the function name
provided by the caller. The function must be included in an 35 Comm API Data Structures, Functions, and Messages
EXPORT statement in a DLL. The callback must also be locked .
in memory as it is called at interrupt time. Since this callback Comm API 510 utilizes the following data types:
is executed in an interrupt context, limited functionality is
available to it ’
Callback Parameters: typedef HSESS, FAR *LPHSESS;
HASTRM hAStrm Audio stream to which callback 40 WORD
applies. typedef HCONN, FAR *LPHCONN;
UINT Message Message returned by the audio WORD
subsystem. typedef HCHAN, FAR *LPHCHAN;
DWORD dwCallbackInstance caller specific instance data. WORD
DWORD dwParam] Stream status. 4
DWORD dwParam2 Current packet number 45 // TII RETURN CODE VALUES.
multiplied by the packet v
latency (in milliseconds) typedef enum_TSTATUS
State after execution: {
NO CHANGE SUCCESSFUL = 0,
Return Messages/Callbacks PRIORITY IN USE = 1,
AM._PACKETNUMBER: Posted at callback time. 50 CHAN_TRAD_FULL = 2,
Param] Values: CHANL..INVALID = 3,
x . CONN_BAD_ID = 4
A_OK: for successful return 4
A_STREAM_CLOSED for successful return DRIVER _NOT_INSTALLED = 5,
Return values: HANDLE_INVALID = 6,
—_— INVALID._CONTROL_OP = 7,
A_OK: for successful return INVALID_INFOTYPE = 8,
A_FERR_STATE: invalid stream state 55 NO_CHAN_MGR = 9,
A_ERR_HASTRM: invalid stream handle NO_DATA_AVAIL = 10,
A_ERR_PENDING: call pending on this audio stream.

Posted at callback time. The value
defined in Param1 Values below..

number multiplied by the packet

call pending on the audio subsystem
callback must be registered with

APacketNumber (Asynchronous)

This function returns the elapsed time (in millisec- 60
onds) since the packet on an audio stream was captured.

AStatus APacketNumber(HASTRM hAStrm)

input
hAStrm:
Valid state(s) to issue:

handle to the audio stream

AST_LINKOUT, AST_PLAY, AST_CAPTURE,

CISCO SYSTEMS, INC. Ex. 1131 Page

65

NO_OPEN_CHAN = 1],
NO_SESSION = 12,
NO_CONNECTION = 13,
NO_CONNECT_REQUEST = 14,
RELIABLE_OPS_PENDING = 15,
REQUEST_WITHDRAWN = 16,
TOO_MANY_SESSIONS = 17,
TRAD_INVALID = 18,
TRANSPORT_ERR = 19,
INVALID_PARM = 20,
ALREADY_CONNECTED = 21,
GLOBAL_ALLOC_FAIL = 22,
INVALID_STATE = 23,
NO_PKT_BUFS = 24,
GALLOC_ERR = 25,

// session handle
// connection handle

// channel handle

107

5,434,913

149 150
-continued -continued
TOO_MANY_CONN = 26, . = CHAN_STATS}

TOO__MANY_CHAN_MGR = 27,
TOO_MANY_CHANNELS = 28,

} TI1 = STATS, FAR *LP_TII_STATS;

//

WATCHDOG_TIMEOUT = 29 5 // Address Structure
} TSTATUS; //
// typedef struct tag_ TADDR {
// CONNECTION ATTRIBUTES STRUCTURE WORD AddressType;
// WORD AddressLength;
typedef CONNCHARACTS CONN__CHR, BYTE Address[80];
FAR *LPCONN_CHR; 10 } TADDR, FAR *LPTADDR;
// //
// CHANNEL INFO STRUCTURE // Connection Characteristics
// //
typedef struct tagCHAN_INFO typedef struct tag = CONNCHARACTS }
{ WORD Quality;
WORD Id; 15 WORD BitRate;
WORD State; } CONNCHARACTS, FAR *LPCONNCHARACTS;
WORD Timeout;
BYTE Priority;
BYTE Reliability; Comm API 510 utilizes the following constants:
BYTE Info[16]; // User Info
} CHAN_INFO, FAR *LPCHAN__INFQ; 20
" #define BITRATE__112KB 0
CONNECTION INFO STRUCTURE #define BITRATE_120KB 1
7 #define BITRATE_ 128KB 2
typedef struct tagCONN_INFO #define CHAN__ACCEPTED FIRST_TIL_MSG +1
{ #define CHAN_BADID FIRST__TIL_MSG +2
WORD wstate; o5 #define CHAN._CLOSED FIRST_TII_MSG +3
WORD wNumInChans; #define CHAN_DATA__AVAIL FIRST.__TI._MSG +4
WORD wNumOutChans; #define CHAN_DATA_SENT FIRST..TIL_MSG +5
} CONN_INFO, FAR *LPCONN_INFOQ; #define CONN_CLOSE_RESP FIRST_TIL_MSG -+6
4 #define CHAN__RCV_COMPLETE FIRST_TII_MSG +7
// 1Param structure for Session handler #define CHAN._ REJECTED FIRST_TIL_MSG +8
// (in cases where multiple parameters are returned via 1Param) #define CHAN_REJECT_NCM FIRST_TIL_MSG +9
7/ 30 #define CHAN_REQUESTED FIRST_TIL_MSG +10
typedef struct tagSESS = CB { #define CHAN_TIMEOUT FIRST_TIL_MSG +11
union tagSESS_EV { #define CONN_ACCEPTED FIRST_TI_MSG +12
struct tagConRegq { #define CONN_CLOSE_RESP FIRST_TII_MSG +13
HSESS hSess; #define CONN_CLOSED FIRST_.TII_MSG +14
LPTADDR 1pCallerAddr; #define CONN_REJECTED FIRST_TII_MSG +15
LPCONN = CHR IlpAttributes; 35 #define CONN_REQUESTED FIRST_TII_MSG +16
} ConReq; #define CONN_TIMEOUT FIRST__TII_MSG +17
struct tagConAcc { #define CHAN_LOST._DATA FIRST_TII_MSG +18
DWORD dwTransld; #define COMM_INTER- FIRST_TI_MSG +19
LPCONN = CHR IpAtiributes; NAL_ERROR
} ConAcc; #define CONN_ERROR FIRST_TIL.MSG +20
} SESS EV; 4 #define SESS_CLOSED FIRST_TIL.MSG +21
} SESS..CB, FAR *LPSESS_CB; #define CONN_PROGRESS FIRST__TII_MSG +22
7/ #define TRANI_ERR FIRST__TH_MSG +99
// 1Param structure for Channel Manager //
// (in cases where multiple parameters are returned via 1Param) // CONN_PROGRESS substates. These will be returned in
typedef struct tagCHANMGR_CB { wParam.
union tagCHANMGR = EV { as 7/
struct tagChanReq { #define T_PRG_BUSY 1
DWORD dwTransId; #define T_PRG_RINGING 2
HCONN hConn; #define T_PRG.__OTHER 3 // place-holder for
LPCHM_INFO 1pChanlnfo; othercodes
} ChanReg; “ . .
} CHANMGR = EV; 50 // CONN_REJECTED substates. These will be returned in
} CHANMGR__CB, FAR *LPCHANMGR = CB; ‘/V/Pamm-
24
// Structure for Channel Statistics #define T_REJ_BUSY 1
7/ #define T_REJ_REJECTED 2
typedef struct CHAN_STATS = tag { #define T_REJ_NET_CONGESTED 3
DWORD Tx: #define T_REJ_NO_RESPONSE 4
DWORD Rx; 55 #define T_REJ_NET_FAIL 5
DWORD Err; #define T_REJ_INTERNAL 6
DWORD OkNotify; /Y . o
DWORD ErrNotify; // Flag indicating multiple connections allowed for session (in
DWORD ErrNotifyBuf; // BeginSession)
DWORD NopNotify; 4
DWORD Bytes; 60 #define MULTI_CONN._SESS 0 X 8000
DWORD OkNotifyBytes; 7/
DWORD ErrNotifyBytes; // T11 Channel States (returned by GetChanlInfo)
} CHAN_STATS, FAR *LP_CHAN_STATS; //
7/ #define T_CHAN_NULL 0 X 00
// Structure for TII Statistics ##define T_CHAN_SENDING 0 X 06
/7 65 #define T..CHAN_RECEIVING 0 X 07
#define MAX_CHAN_STATS 17
t ef struct TIL_STATS __ta, . e
ype(Ii)WORD RoundT%iéLatencyMS; The functions utilized by comm API 510 are defined
CHAN = STATS ChanStats below. One or two groups of messages may be listed

CISCO SYSTEMS, INC. Ex. 1131 Page 108

151

5,434,913

along with each function description: status messages
and peer messages. A status message is a callback/mes-
sage that the caller will receive in response to the func-
tion call. Peer messages are notifications that will be
delivered to the peer application as a result of invoking 5

the function.

Session Management

Functions in this section will initialize all the internal

structures of the Comm sub-system and enable the
plication to initiate and receive calls.

ap- 10

BeginSession Initializes the software and hardware of the
appropriate modules of the comm subsystem. It
also designates the method that the comm
subsystem is to use to notify the application
of incoming calls and related events. Two
types of event notification are supported:
callbacks and messaging. The callback
interface allows the comm system to call a user
designated function to notify the application
of incoming events. The messaging interface
allows the comm system to notify the
application of incoming events by posting
messages to application message queues. The
parameters to the function vary depending on
the notification method chosen. BeginSession
is not allowed in interrupt/callback contexts.
TSTATUS BeginSession (LPTADDR 1pLocalAddr,
LPCONN_CHR 1pConnAttributes,
WORD Flags, LPVOID CaliBack,
LPHSESS 1pSessionHandle)
Pointer to the local address at which to listen for
incoming calls. The Listen stays in effect until
the session is ended. Notification for all
connection events for this local address will be
sent to the specified Callback.
1pConnAttributes Pointer to the Connection Attributes for
incoming calls.
Indicates the type of notification to be used:
CALLBACK_FUNCTION for¢allback interface
CALLBACK._WINDOW for post message interface
CallBack: Either a pointer to a callback function, or a
window handle to which messages will be posted,
depending on flags. The “callback” will become
the “Session Handler” for this session.
1pSessionHandle Pointer to the Session Handle to be returned
synchronously. This Session Handle is used
by the application to initiate outgoing calls.
It will also be returned to the Session
Handler with incoming call notifications for
this session.

1pLocalAddr

Flags:

Return values:

SUCESSFUL

DRIVER_NOT_INSTALLED
TOO_MANY_SESSIONS

Callback routine format:

FuncName(UINT Message, WPARAM wParam, LPARAM

1Param)
N,

The ot type

wParam: Word parameter passed to function

1Param: Long parameter passed to function
All the connection related activities are handled by the session
handler.
The callback function parameters are equivalent to the second,
third, and fourth parameters that are delivered to a Microsoft ®
Windows message handler function (Win 3.1).
Status Messages: none
Peer Messages: none

15

20

25

30

35

45

50

55

EndSession Closes all the open connections and prevents the
application from receiving and originating calls for
the specified session.

TSTATUS EndSession (HSESS SessionHandle, BOOL

ForceClose) !

SessionHandle

ForceClose:

Session Handle
If true, then close session even if reliable

65

152
-continued
channels having pending operations are open.
Return values:
SUCESSFUL End session was successfully

initiated.

Couldn’t close due to
uncompleted operations
channels designated as
reliable.

RELIABLE__OPS_PENDING

Status Messages:
SESS_CLOSED: EndSession complete.
Peer Messages: none

Connection Management

These calls provide the ULM the ability to establish
and manage connections to its peers on the network.

MakeConnection Attempts to connect to a peer application. The
Session Handler (callback routine or the
message handler) for the specified Session
will receive status of the connection. When
the connection is accepted by the peer, the
Connection Handle will be given to the
Session Handler. The peer session will receive
a CONN__REQUESTED callback/message
as a result of this call.

TSTATUS MakeConnection (HSESS Sessionhandle,
DWORD Transld, LPTADDR
1pCaliceAddr, LPCONN_CHR
1pConnAttributes, WORD
Timeout, WORD
ChanMgrFlags, LPVOID
ChanMgr)

Handle for session, obtained via

BeginSession.

User defined identifier which will be

returned to the Session Handler along with

the response notification.

Pointer to the address structure

(containing a phone number, IPaddress

etc.) of callee.

Pointer to the connection attributes.

Number of seconds to wait for peer to

pickup the phone.

The Channel Manager for this connection.

This is either a pointer to a callback

function, or a window handle to which

messages will be posted, depending on
chanMgrFlags. The Channel Manager may
also be set up separately via

RegisterChanMgr.

Indicates the type of notification to be

used for the Channel Manager:

CALLBACK_FUNCTION for callback

interface

CALLBACK_WINDOW for post message

interface

SessionHandle

Transld
ipCalleeAddr:
1pConnAttributes

Timeout:

ChanMgr:

ChanMgrflags:

Return values:
Status Messages (sent to the Session Handler):

CONN._ACCEPTED: The peer process has accepted the call
CONN_REJECTED: The Peer process has rejected the cail
CONN_TIMEOUT: No answer from peer

CONN_BUSY: Called destination is busy.

Peer Messages:

CONN_REQUESTED .

AcceptConnection Issued in response to a
CONN_REQUESTED callback/message that
has been received (as a consequence of a
MakeConnection call issued by a peer).
AcceptConnection notifies the peer
that the connection request has been accepted.
The local Session Handler will also receive an
asynchronous notification when the Accept
operation is complete.

TSTATUS AcceptConnection (HCONN hconn, WORD

CISCO SYSTEMS, INC. Ex. 1131 Page 109

5,434,913

153

-continued

154

ChanMgrFlags,

LPVOID ChanMgr)
hConn: Handle to the connection (received as part of the

CONN_REQUESTED callback/message).

ChanMgr: The Channel Manager for this connection. This
is either a pointer to a callback function, or
a window handle to which messages will be
posted, depending on ChanMgrFlags. The
Channel Manager may also be set up separately
via RegisterChanMgr.
Indicates the type of notification to be used
for the Channel Manager:
CALLBACK_FUNCTION for callback

ChanMgrflags:

interface
CALLBACK_WINDOW for post message
interface
Return values:
SUCESSFUL The Accept operation has been
initiated.
HANDLE_INVALID The handle was invalid

REQUEST_WITHDRAWN The connect request was

withdrawn (peer session was

terminated).
NO_CONNECT_REQUEST There was no connect request to
be accepted.
Status Messages:
CONN_.ACCEPTED
Peer Messages:
CONN_ACCEPTED

RejectConnection Issued in response to a
CONN_REQUESTED callback/message
that has been received (as a consequence
of a MakeConnection call issued by
a peer). RejectConnection notifies the peer
that the connection request has been rejected.

TSTATUS RejectConnection (HCONN hConn)

hConn: Handle to the connection (received as part of the

CONN_REQUESTED callback/message).

Return values:

SUCESSFUL Connection reject was returned
to peer.

The handle was invalid

The connect request was
withdrawn

There was no connect request to

be rejected

HANDLE_INVALID
REQUEST_WITHDRAWN

NO_CONNECT _REQUEST
Status Messages: none

Peer Messages:
CONN_REJECTED

CloseConnection Closes the connection that was opened after an
AcceptConnection or an accepted call after a
MakeConnection function.

TSTATUS CloseConnection (HCONN hConn, BOOL Force,

DWORD Transld)

hConn: Handle to the connection to be closed.

Force: If true, then close the connection regardless of any
pending operations on reliable channels.

Transld User specified identifier which will be returned to

the local Session Handler with the asynchronous
response notification (CONN_CLOSE_RESP).
Return values:

SUCESSFUL Disconnect initiated.
HANDLE_INVALID The handle was invalid
NO_CONNECTION Connection was not open
RELIABLE_OPS_PENDING Could not close due to pending

operations on channels
designated as reliable.
Status Messages:
CONN_.CLOSE_RESP
Peer Messages:
CONN_.CLOSED

10

15

20

25

30

35

45

50

55

65

RegisterChanMgr Registers a callback or an application window
whose message processing function will handle
low level notifications generated by data
channel initialization operations. This
function is invoked before any channels can be
opened or accepted. As part of connection
establishment (MakeConnection,
AcceptConnection), a default Channel
Manager may be installed for a connection.
The RegisterChanMgr function allows the
application to override the default Channel
Manager for specific Channel IDs.

TSTATUS RegisterChanMgr (HCONN hconn, WORD Flags,
LPVOID CallBack, WORD
Chanld)

Handle to the Connection

Indicates the type of notification to be used:

CALLBACK.__FUNCTION for callback interface

CALLBACK__WINDOW for post message interface

Either a pointer to a callback function, or a window

handle to which messages will be posted, depending

on flags. All Channel Manager callbacks

Specifies the Channel Id for which the Channel

Manager is being installed. It corresponds to the

Channel Id Number specified in the CHM __INFO

structure; it is defined by the application and is not to

be confused with the Channel Handle assigned by

TII for a channel. A value of 0x0FFFF indicates all

Channel] Ids.

Returp values:

SUCESSFUL Channel Manager registered.
HANDLE_INVALID The handle was invalid

Callback routine format:

FuncName (UINT Message, WPARAMwParam wParam, LPARAM
1Param)

Message: The message type

wParam: Word parameter passed to function

{Param: Long parameter passed to function

The callback function parameters are equivalent to the second,
third, and fourth parameters that are delivered to a Microsofts ®
‘Windows message handler function (Win 3.1).

Status Messages: none

Peer Messages: none

hConn:
Flags:

CaliBack:

Chanld

OpenChannel Regquests a sub...channel connection from the peer

application. The result of the action is given to

the application by invoking the Channel Manager.

The application specifies an ID for this transaction.

This ID is returned to the Channel Manager when

the request is complete, along with the Channel

Handle (if the request was accepted by the peer).

All Openchannel requests are for establishing

channels for sending data. The receive channels

are opened as the result of accepting a peer’s

OpenChannel request.

TSTATUS OpenChannel (HCONN hconn, LPCHAN _INFO
1pChanlnfo, DWORD TransID)

Handle for the Connection.

Pointer to a channel information structure. Filled

by application. The structure contains:

© A channel ID number (application_defined).

o Priority of this channel relative to other

channels on this connection. Higher numbers

represent higher priority.

o Timeout value for the channel

o Reliability of the channel.

o Length of the channel specific field.

© Channel specific information.

This structure is delivered to the Channel Manager

on the peer side along with the

CHAN__REQUESTED notification.

A user defined identifier that is returned with

response messages to identify the channel

request.

Return values:

SUCESSFUL

HANDLE_INVALID

BANDWIDTH_NA

NO_SESSION

hConn:
1pChaninfo:

TransID:

Channel request was sent.

The Connection handle was invalid.
Bandwidth is not available.
BeginSession has not been called.

CISCO SYSTEMS, INC. Ex. 1131 Page 110

5,434,913

155

-continued

156

-continued

NO_CHAN _MGR RegisterChanmgr has not Been called.

CHAN_ID _INVALID The channel number is not in the valid
range

CHAN__INUSE The channel number is already is use.

Status Messages: |

CHAN_ACCEPTED: The peer process has accepted request.

CHAN__REJECTED: The Peer process has rejected request.

CHM__TIMEOUT: No answer from peer

Peer Messages:

CHAN_REQUESTED

AcceptChannel A peer application can issue AcceptChannel in
response to a CHAN_REQUESTED
(OpenChannel) message that has been received.
The result of the AcceptChannel call is a
one-way communication sub-channel for
receiving data.
TSTATUS AcceptChannel (HCHAN hchan, DWORD TransID)
hchan: Handle to the Channel (that was received as part of
the CHAN_REQUESTED callback/message)
TransID: The idenfifier that was received as part of the
CHAN_REQUESTED notification.
Return values:
SUCESSFUL Channel request was sent.
CHAN_INVALID The Channel handle was invalid
Status Messages: none
Peer Messages:
CHAN_ACCEPTED

RejectChannel Rejects an OpenChannel request
(CHAN_REQUESTED message) from the
peer.

TSTATUS RejectChannel (HCHAN hChan, DWORD TransID)

hChan: Handle to the Channel (that was received as part of

the CHAN _REQUESTED callback/message)

TransID: The identifier that was received as part of the

CHAN_REQUESTED message.

Return values:

SUCESSFUL Reject request was sent.
CHAN_INVALID The Channel handle was invalid.
Status Messages: none

Peer Messages:

CHAN_REJECTED

RegisterChanHandler Registers a callback or an application

. window whose message processing
function will handle low level
notifications generated by data channel 10
activities. The channels that are opened
will receive CHAN_DATA__SENT, and
the accepted channels will receive
CHAN_RECV_COMPETE.

TSTATUS RegisterChanHandler (HCHAN hchan, WORD Flags,

LPVOID CallBack)

hChan: Channel Handle.

Flags: Indicates the type of notification to be used:
CALLBACK_FUNCTION for callback interface
CALLBACK._.WINDOW for post message interface
NOCALLBACK for polled status interface.

CallBack: Either a pointer to a callback function, or a window
handle to which messages will be posted, depending
on flags.

Return values:

SUCESSFUL Channel Handler installed.
CHAN_INVALID The Channel handle was invalid
Callback routine format:
FuncName (UINT Message, wParam, LPARAM 1Param)
Message: The message type
wParam: Word parameter passed to function (e.g. bytes
received)
1Param: Long parameter passed to function
The callback function parameters are equivalent to the second,

10

15

20

25

30

35

45

50

55

65

third, and fourth parameters that are delivered to a Microsoft ®
Windows message handler function (Win 3.1).

Status Messages: none

Peer Messages: none

CloseChannel Closes a sub-channel that was opened by
AcceptChanne] or Open Channel. The handler for
this channel is automatically de_.registered.

TSTATUS CloseChannel (HCHAN hChan, DWORD Transld)

hChan: The handle to the Channel to be closed.

Transld A user specified identifier that will be returned to

Ir the local Channel Manager along with the response

notification (CHAN_CLOSE_RESP).

Return values:

SUCESSFUL Channel Close has been initiated.
CHAN_INVALID Invalid channel handle.

Status Messages:

CHAN..CLOSE._RESP

Peer Messages:

CHAN__CLOSED

Data Exchange

All the data communication is done in “message pass-
ing” fashion. This means that a send satisfies a receive
on a specific channel, regardless of the length of the sent
data and the receive buffer length. If the length of the
sent message is greater than the length of the posted
receive buffer, the data is discarded. All these calls are
“asynchronous”, which means that the data in the send
buffer is not changed until a “data-sent” event has been
sent to the application, and the contents of receive
buffer are not valid until a ,,received-complete” event
has been detected for that channel.

SendData Sends data to peer. If there are no receive buffers

posted on the peer machine, the data will be lost.

TSTATUS SendData (HCHAN hChan, LPSTR Buffer, WORD

Buflen, DWORD TransID)

hChan: Handle to channel opened via OpenChannel.

Buffer: A pointer to the buffer to be sent.

Buflen: The length of the buffer in bytes.

TransID: This is a user defined transaction ID which will be
passed to the local channel handler along with the
status message to identify the transaction.

uz,1/8 Return values:

SUCESSFUL Data queued for transmission.
CHAN_INVALID Invalid channel handle.
CHAN_TRANFULL Channel transaction table full.
Status Messages:

CHAN_DATA_SENT Tells the application that the data
has been extracted from the
buffer and it is available for
reuse.

CHAN_DATA_LOST This message will be delivered to
the caller if the data could not be
sent.

Peer Messages:

CHAN_DATA_LOST . This message will be delivered to
the peer if an adequate

ReceiveData buffer is not posted.
CHAN_RECV__COMPLETE Indicates that data was received.

ReceiveData Data is received through this mechanism.
Normally this call is issued in order to post
receive buffers to the system. When the system has
received data in the given buffers, the Channel
Handler will receive a
“CHAN_RECV_COMPLETE” notification.

TSTATUS ReceiveData (HCHAN hChan, LPSTR Buffer,

CISCO SYSTEMS, INC. Ex. 1131 Page 111

5,434,913

157

-continued

WORD Buflen, DWORD TransID)

hChan: Handle to channel handle opened via AcceptChannel.

Buffer: A pointer to the buffer to be filled in.

Buflen: The length of the buffer in bytes. Max. bytes to
receive.

TransID: This is a user defined transaction ID which will be
passed to the channe] handler along with the status
message to identify the transaction. This ID and
the number of bytes actuaily received are returned
as part of the CHAN_RECV_COMPLETE
notification.

Return values:

SUCESSFUL Receive buffer was posted.

CHAN_.INVALID Invalid channel handle.

CHAN_TRANFULL

Status Messages:
CHAN_RECV_COMPLETE
ChAN_DATA_10ST

Channel transaction TABLE full.

Indicates that data was received.
This message will be delivered if
the buffer is inadequate for a data
message received from the peer.
Peer Messages:

none

Communicatons Statistics

GetTIIStats Return statistics for the TII subsystem. See

TII_STATS structure for details.

TSTATUS FAR PASCAL._export GetChanStats (IN BOOL

bResetFlag, OUT LP_TII_STATS 1pTIIStats)

bResetFlag: Boolean Reset statistics if true.

1pTIIStats: Pointer to the TIL_STATS structure.

Return values: none

Status Messages: none

Peer Messages: none

GetChanStats. Return statistics for the given Channel. See
CHAN__STATS structure for details.

TSTATUS FAR PASCAL _export GetChanStats(IN HCHAN
hChan, IN BOOL bResetFlag,
OUT LP_CHAN_.STATS
1pChanStats)

hChan: Channel handle

bResetFlag: Boolean reset statistics if true.

1pChanStats: Pointer to the CHAN...STATS structure.

Return values:

CHAN_INVALID The channel handle was invalid.
Status Messages: none

Peer Messages: none

GetChanInfo This function will return various statistical
information about a channel (e.g., priority,
reliability).

TSTATUS GetChaninfo (HCHAN hchan, LPCHAN_INFO

1pChaniInfo)

hChan: Handle to channel

1pChanlinfo: Pointer to channel info (to be returned by

the call).

Return values:
CHAN_INVALID
Status Messages: none
Peer Messages: none

Invalid channel handle.

ALTERNATIVE EMBODIMENTS

In a preferred embodiment of conferencing system
100, video encoding is implemented on video board 204
and video decoding is implemented on host processor
202. In an alternative preferred embodiment of the pres-
ent invention, video encoding and decoding are both
implemented on video board 204. In another alternative
preferred embodiment of the present invention, video
encoding and decoding are bother implemented on the
host processor.

In a preferred embodiment of conferencing system
100, audio processing is implemented by audio task 538
on audio/comm board 206. In an alternative preferred
embodiment of the present invention, audio processing

10

15

20

25

30

35

45

50

60

65

158
is implemented by Wave driver 524 on host processor
202.

In a preferred embodiment, conferencing systems 100
communicate over an ISDN network. In alternative
preferred embodiments of the present invention, alter-
native transport media may be used such as Switch 56,
a local area network (LAN), or a wide area network
(WAN).

In a preferred embodiment, two conferencing sys-
tems 100 participate in a conferencing session. In alter-
native preferred embodiments of the present invention,
two or more conferencing systems 100 may participate
in a conferencing session.

In a preferred embodiment, the local sources of ana-
log video and audio signals are a camera and a micro-
phone, respectively. In alternative preferred embodi-
ments of the present invention, analog audio and/or
video signals may have alternative sources such as being
generated by a VCR or CD-ROM player or received
from a remote source via antenna or cable.

In a preferred embodiment, conferencing system 100
compresses and decompresses video using the IRV
method for purposes of video conferencing. Those
skilled in the art will understand that the IRV method
of video compression and decompression is not limited
to video conferencing, and may be used for other appli-
cations and other systems that rely on or utilize com-
pressed video.

In a preferred embodiment, conferencing system 100
compresses and decompresses video using the IRV
method. Those skilled in the art will understand that
alternative conferencing systems within the scope of the
present invention may use methods other than the IRV
method for compressing and decompressing video sig-
nals.

In a preferred embodiment, conferencing system 100
uses the IRV method to compress and decompress a
sequence of video images. In alternative embodiments
of the present invention, the IRV method may be used
to compress and/or decompress a single image either in
a conferencing system or in some other application.

It will be further understood that various changes in
the details, materials, and arrangements of the parts
which have been described and illustrated in order to
explain the nature of this invention may be made by
those skilled in the art without departing from the prin-
ciple and scope of the invention as expressed in the
following claims.

What is claimed is:

1. An audio subsystem for a computer conferencing
system having a general-purpose host processor, com-
prising:

(a) a capture thread for:

(1) receiving local audio signals;

(2) compressing the local audio signals to generate
local compressed audio signals; and

(3) passing the local compressed audio signals to a
communications subsystem of the computer con-
ferencing system for transmission over a commu-
nications link to a remote computer conferenc-
ing system; and

(b) a playback thread for:

(1) receiving remote compressed audio signals
from the communications subsystem, the remote
compressed audio signals having been transmit-
ted by the remote computer conferencing system
over the communications link; and

CISCO SYSTEMS, INC. Ex. 1131 Page 112

5,434,913

159

(2) decompressing the remote compressed audio
signals to generate remote decompressed audio
signals for local playback, wherein the capture
thread is separate from the playback thread,
wherein:

the capture thread and the playback thread are exe-
cuted by a digital signal processor of the computer
conferencing system;

wherein the host processor controls the execution of
the capture thread and the playback thread.

2. The audio subsystem of claim 1, wherein:

the capture thread comprises:

(1) a capture SAC (Stereo Audio Codec) device
driver for receiving the local audio signals;

(2) a capture echo/suppression driver for reducing
echoes in the local audio signals;

(3) a capture mixer/splitter driver for amplifying
the local audio signals and for splitiing the local
audio signals for recording;

(4) a compression driver for compressing the local
audio signals; and

(5) a capture timestamp driver for appending times-
tamps to the local compressed audio signals; and

the playback thread comprises:

(1) a playback timestamp driver for stripping times-
tamps from the remote compressed audio signals;

(2) a decompression driver for decompressing the
remote compressed audio signals;

(3) a playback mixer/splitter driver for amplifying
the remote decompressed audio signals and for
splitting the remote decompressed audio signals
for recording;

(4) a playback echo/suppression driver for reduc-
ing echoes in the remote decompressed audio
signals; and

(5) a playback SAC device driver for transmitting
the remote decompressed audio signals for local
playback.

3. The audio subsystem of claim 1, wherein the digital
signal processor is part of a combined audio/communi-
cations board of the computer conferencing system and
wherein the audio subsystem further comprises:

(c) an audio manager executed by the host processor
for controlling the operations of the audio subsys-
tem; and

(d) an audio applications programming interface exe-
cuted by the host processor for providing an inter-
face between an application and the audio subsys-
tem.

4. A computer conferencing system, comprising:

an audio subsystem adapted for residing partially in a
general-purpose host processor of the computer
conferencing system and partially in an audio
board of the computer conferencing system,
wherein the audio subsystem comprises:

(1) a capture thread for:

(i) receiving local audio signals;

(ii) compressing the local audio signals to generate
local compressed audio signals; and

(iii) passing the local compressed audio signals to a
communications subsystem of the computer con-
ferencing system for transmission over a commu-
nications link to a remote computer conferenc-
ing system; and

(2) a playback thread for:

(i) receiving remote compressed audio signals from
the communications subsystem, thé remote com-
pressed audio signals having been transmitted by

10

20

25

35

45

50

65

160
the remote computer conferencing system over
the communications link; and

(ii) decompressing the remote compressed audio
signals to generate remote decompressed audio
signals for local playback, wherein the capture
thread is separate from the playback thread,
wherein:

the capture thread and the playback thread are exe-
cuted by a digital signal processor of the computer
conferencing system;

wherein the host processor controls the execution of
the capture thread and the playback thread.

5. The system of claim 4, wherein:

the capture thread comprises:

(i) a capture SAC (Stereo Audio Codec) device
driver for receiving the local audio signals;

(ii) a capture echo/suppression driver for reducing
echoes in the local audio signals;

(iii) a capture mixer/splitter driver for amplifying
the local audio signals and for splitting the local
audio signals for recording;

(iv) a compression driver for compressing the local
audio signals; and

(V) a capture timestamp driver for appending times-
tamps to the local compressed audio signals; and

the playback thread comprises:

(i) a playback timestamp driver for stripping times-
tamps from the remote compressed audio signals;

(ii) a decompression driver for decompressing the
remote compressed audio signals;

(i) a playback mixer/splitter driver for amplifying
the remote decompressed audio signals and for
splitting the remote decompressed audio signals
for recording;

(iv) a playback echo/suppression driver for reduc-
ing echoes in the remote decompressed audio
signals; and

(v) a playback SAC device driver for transmitting
the remote decompressed audio signals for local
playback.

6. The system of claim 4, wherein the audio subsys-
tem further comprises:

(3) an audio manager executed by the host processor
for controlling the operations of the audio subsys-
tem; and

(4) an audio applications programming interface exe-
cuted by the host processor and for providing an
interface between an application and the audio
subsystem.

7. An audio subsystem for a computer conferencing
system having a general-purpose host processor, com-
prising:

(a) a capture thread for:

(1) receiving local audio signals;

(2) compressing the local audio signals to generate
local compressed audio signals; and

(3) passing the local compressed audio signals to a
communications subsystem of the computer con-
ferencing system for transmission over a commu-
nications link to a remote computer conferenc-
ing system; and

(b) a playback thread for:

(1) receiving remote compressed audio signals
from the communications subsystem, the remote
compressed audio signals having been transmit-
ted by the remote computer conferencing system
over the communications link; and

CISCO SYSTEMS, INC. Ex. 1131 Page 113

5,434,913

161

(2) decompressing the remote compressed audio
signals to generate remote decompressed audio
signals for local playback, wherein the capture
thread is separate from the playback thread,
wherein:

the capture thread comprises two or more capture

drivers, wherein the two or more capture drivers

comprise two or more of:

(1) a capture SAC (Stereo Audio Codec) device
driver for receiving the local audio signals;

(2) a capture echo/suppression driver for reducing
echoes in the local audio signals;

(3) a capture mixer/splitter driver for amplifying
the local audio signals and for splitting the local
audio signals for recording;

(4) a compression driver for compressing the local
audio signals; and

(5) a capture timestamp driver for appending times-
tamps to the local compressed audio signals; and

the playback thread comprises two or more playback

drivers, wherein the two or more playback drivers
comprise two or more of:

(1) a playback timestamp driver for stripping times-
tamps from the remote compressed audio signals;

(2) a decompression driver for decompressing the
remote compressed audio signals;

(3) a playback mixer/splitter driver for amplifying
the remote decompressed audio signals and for
splitting ‘the remote decompressed audio signals
for recording;

(4) a playback echo/suppression driver for reduc-
ing echoes in the remote decompressed audio
signals; and

(5) a playback SAC device driver for transmitting
the remote decompressed audio signals for local
playback.

8. The audio subsystem of claim 7, wherein:

the capture thread comprises:

(1) a capture SAC device driver for receiving the
local audio signals;

(2) a capture echo/suppression driver for reducing
echoes in the local audio signals;

(3) a capture mixer/splitter driver for amplifying
the local audio signals and for splitting the local
audio signals for recording;

{4) a compression driver for compressing the local
audio signals; and

(5) a capture timestamp driver for appending times-
tamps to the local compressed audio signals; and

the playback thread comprises:

(1) a playback timestamp driver for stripping times-
tamps from the remote compressed audio signals;

(2) a decompression driver for decompressing the
remote compressed audio signals;

(3) a playback mixer/splitter driver for amplifying
the remote decompressed audio signals and for
splitting the remote decompressed audio signals
for recording;

(4) a playback echo/suppression driver for reduc-
ing echoes in the remote decompressed audio
signals; and

(5) a playback SAC device driver for transmitting
the remote decompressed audio signals for local
playback.

9. The audio subsystem of claim 7, wherein the cap-
ture thread and the playback thread are executed by a
digital signal processor of the computer conferencing
system and wherein the host processor controls the

15

20

25

30

35

45

50

65

162
execution of the capture thread and the playback
thread.

10. The audio subsystem of claim 7, wherein the digi-
tal signal processor is part of a2 combined audio/com-
munications board of the computer conferencing sys-
tem and wherein the audio subsystem further com-
prises:

(c) an audio manager executed by the host processor
for controlling the operations of the audio subsys-
tem; and

(d) an audio applications programming interface exe-
cuted by the host processor for providing an inter-
face between an application and the audio subsys-
tem.

11. The audio subsystem of claim 7, wherein:

the capture thread comprises:

(1) a capture SAC device driver for receiving the
local audio signals;

(2) a capture echo/suppression driver for reducing
echoes in the local audio signals;

(3) a capture mixer/splitter driver for amplifying
the local audio signals and for splitting the local
audio signals for recording;

(4) a compression driver for compressing the local
audio signals; and

(5) a capture timestamp driver for appending times-
tamps to the local compressed audio signals;

the playback thread comprises:

(1) a playback timestamp driver for stripping times-
tamps from the remote compressed audio signals;

(2) a decompression driver for decompressing the
remote compressed audio signals;

(3) a playback mixer/splitter driver for amplifying
the remote decompressed audio signals and for
splitting the remote decompressed audio signals
for recording;

(4) a playback echo/suppression driver for reduc-
ing echoes in the remote decompressed audio
signals; and

(5) a playback SAC device driver for transmitting
the remote decompressed audio signals for local
playback;

the capture thread and the playback thread are exe-
cuted by a digital signal processor of the computer
conferencing system;

the host processor controls the execution of the cap-
ture thread and the playback thread;

the digital signal processor is part of a combined
audio/communications board of the computer con-
ferencing system; and

the audio subsystem further comprises:

(c) an audio manager executed by the host processor
for controlling the operations of the audio subsys-
tem; and

(d) an audio applications programming interface exe-
cuted by the host processor for providing an inter-
face between an application and the audio subsys-
tem.

12. A computer conferencing system, comprising:

an audio subsystem adapted for residing partially in a
general-purpose host processor of the computer
conferencing system and partially in an audio
board of the computer conferencing system,
wherein the audio subsystem comprises:

(1) a capture thread for:

(i) receiving local audio signals;

(ii) compressing the local audio signals to generate
local compressed audio signals; and

CISCO SYSTEMS, INC. Ex. 1131 Page 114

5,434,913

163

(iii) passing the local compressed audio signals to a
communications subsystem of the computer con-
ferencing system for transmission over a commu-
nications link to a remote computer conferenc-
ing system; and

(2) a playback thread for:

(i) receiving remote compressed audio signals from
the communications subsystem, the remote com-
pressed audio signals having been transmitted by
the remote computer conferencing system over
the communications link; and i

(ii) decompressing the remote compressed audio
signals to generate remote decompressed audio
signals for local playback, wherein the capture
thread is separate from the playback thread,
wherein:

the capture thread comprises two or more capture
drivers, wherein the two or more capture drivers
comprise two or more of:

(1) a capture SAC (Stereo Audio Codec) device
driver for receiving the local audio signals;

(2) a capture echo/suppression driver for reducing
echoes in the local audio signals;

(3) a capture mixer/splitter driver for amplifying the
local audio signals and for splitting the local audio
signals for recording;

(4) a compression driver for compressing the local
audio signals; and

(5) a capture timestamp driver for appending times-
tamps to the local compressed audio signals; and

the playback thread comprises two or more playback
drivers, wherein the two or more playback drivers
comprise two or more of:

(1) a playback timestamp driver for stripping times-
tamps from the remote compressed audio signals;

(2) a decompression driver for decompressing the
remote compressed audio signals;

(3) a playback mixer/splitter driver for amplifying
the remote decompressed audio signals and for
splitting the remote decompressed audio signals for
recording;

(4) a playback echo/suppression driver for reducing
echoes in the remote decompressed audio signals;
and

(5) a playback SAC device driver for transmitting the
remote decompressed audio signals for local play-
back.

13. The system of claim 12, wherein:

the capture thread comprises:

(i) a capture SAC device driver for receiving the
local audio signals;

(ii) a capture echo/suppression driver for reducing
echoes in the local audio signals;

(iii) a capture mixer/splitter driver for amplifying
the local audio signals and for splitting the local
audio signals for recording;

(iv) a compression driver for compressing the local
audio signals; and

(v) a capture timestamp driver for appending times-
tamps to the local compressed audio signals; and

the playback thread comprises:

(i) a playback timestamp driver for stripping times-
tamps from the remote compressed audio signals;

(ii) a decompression driver for decompressing the
remote compressed audio signals;

10

20

25

30

35

45

50

55

65

164

(iii) a playback mixer/splitter driver for amplifying
the remote decompressed audio signals and for
splitting the remote decompressed audio signals
for recording;

(iv) a playback echo/suppression driver for reduc-
ing echoes in the remote decompressed audio
signals; and

(v) a playback SAC device driver for transmitting
the remote decompressed audio signals for local
playback.

14. The system of claim 12, wherein the capture

thread and the playback thread are executed by a digital
signal processor of the audio board and wherein the
host processor controls the execution of the capture
thread and the playback thread.

15. The system of claim 12, wherein the audio subsys-

tem further comprises:

(3) an audio manager executed by the host processor
for controlling the operations of the audio subsys-
tem; and

(4) an audio applications programming interface exe-
cuted by the host processor for providing an inter-
face between an application and the audio subsys-
tem.

16. The system of claim 12, wherein:

the capture thread comprises:

(i) a capture SAC device driver for receiving the
local audio signals;

(ii) a capture echo/suppression driver for reducing
echoes in the local audio signals;

(iii) a capture mixer/splitter driver for amplifying
the local audio signals and for splitting the local
audio signals for recording;

(iv) a2 compression driver for compressing the local
audio signals; and

(v) a capture timestamp driver for appending times-
tamps to the local compressed audio signals;

the playback thread comprises:

(i) a playback timestamp driver for stripping times-
tamps from the remote compressed audio signals;

(ii) a decompression driver for decompressing the
remote compressed audio signals;

(iii) a playback mixer/splitter driver for amplifying
the remote decompressed audio signals and for
splitting the remote decompressed audio signals
for recording; .

(iv) a playback echo/suppression driver for reduc-
ing echoes in the remote decompressed audio
signals; and

(v) a playback SAC device driver for transmitting
the remote decompressed audio signals for local
playback;

the capture thread and the playback thread are exe-
cuted by a digital signal processor of the audio
board;

the host processor controls the execution of the cap-
ture thread and. the playback thread; and

the audio subsystem further comprises:

(3) an audio manager executed by the host proces-
sor and for controlling the operations of the
audio subsystem; and

(4) an audio applications programming interface
executed by the host processor for providing an
interface between an application and the audio

subsystem.
* x % * *

CISCO SYSTEMS, INC. Ex. 1131 Page 115

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 5,434,913
DATED : July 18, 1995
INVENTOR(S) Peter Tung and Ben Vrvilo

It is certified that error appears in the above-identified patent and that said Leters Patent is hereby
corrected as shown below:

Column 160, line 48, delete “and”.
Column 161, line 29, delete “‘the™ and insert therefor —the--.

Column 164, line 60, delete “and™.

Signed and Sealed this
Twenty-third Day of April, 1996

Attest: 6««1 W

BRUCE LEHMAN

Anesling Oﬁ?cer Commussioner of Patents und Trademarks

