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Abstract

A chemical mechanical polishing (CMP)
process for copper damascene has been developed
and characterized on a second generation,
multiple platen polishing tool. Several
formulations of experimental copper slurries
containing alumina abrasive particles were
evaluated for their selectivity of copper to Ta,
TaN and PETEOS film. The extent of copper
dishing and oxide erosion of these slurries is
investigated with various process parameters
such as slurry flow rate, platen speed and wafer
pressure. The amount of dishing and erosion is
found to be largely dependent on process
parameters as well as the slurry composition. It
is shown that the extent of oxide erosion and
copper dishing can be significantly reduced by
using a two slurry copper polish process (one
slurry to polish copper and another to polish
barrier layers) in conjunction with an optical end-
point detection system.

Introduction

The trend in semiconductor. industry
continues to move towards faster miniaturized
integrated circuits for ever increasing device
packing densities.'” As device architectures are
scaled down to submicrometer dimensions, RC
delay of metal interconnects plays an important
role on the device performance. In order to
increase the switching speed, RC delay of metal
interconnects must be reduced. Aluminum,
interconnects widely used in present VLSI
devices, raises reliability concerns with the
shrinking device dimensions which rules out the
possibility of using Al in future submicron
devices. Because of the superior conductivity
(resistivity of copper is about 1.7 pQ-cm
compared to 3.0 uQ-cm for aluminum), higher
resistance to electromigration (electromigration
limit for copper is 10’ A/cm’ and that for
aluminum is 10° A/em®) and reduced
susceptibility to joule heating, copper is being

0-7803-4380-8/98/$10.00 1998 IEEE
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considered as a potential candidate for the
replacement of aluminum in future metal
interconnects.” However, patterning copper via
traditional dry etch techniques is problematic
mainly due to lack of volatile copper compound
formation at low temperatures. This difficulty can
be overcome by following an alternative approach
using metal inlay structures such as single and
dual damascene in conjunction with chemical
mechanical polishing (CMP). **

In a Damascene approach, the dielectric
layer is patterned and etched using standard
procedures. Barrier and copper films are then
deposited on the patterned surface. Next, the
copper surface topography is removed by CMP.
Another challenge in copper technology is
developing a good deposition technique for
copper. A good barrier layer material is
necessary to prevent diffusion of copper into
silicon. The barrier layer must be thin to
minimize the resistance of contact holes, vias and
metal lines. In addition, the barrier layer must
be able to be planarized with a CMP process.
Materials such as Ta, TaN, and TiN are the
most commonly studied barrier layers for copper
and are planarized using CMP process.
Although many techniques such as sputtering
(PVD), chemical vapor deposition (CVD) and
electro-chemical deposition (ECD) are currently
being considered as film deposition options,
further refinements of deposition parameters are

necessary in order to obtain more uniform copper
films.

Although CMP offers an attractive solution
for implementing copper technology in integrated
circuits, many challenges exist in developing a
manufacturable copper CMP process. The key
process issues which must be taken into account
in developing a production worthy copper CMP
process include control of within-wafer
uniformity, wafer-to-wafer uniformity, copper
dishing, oxide erosion, corrosion and post CMP

1998 IEEE/SEMI Advanced Semiconductor Manufacturina Conference
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cleaning. In view of space limitations, this

paper focuses only on the characterization of two
key CMP process issues namely copper dishing
and oxide erosion. In general, copper dishing is
defined as the difference in height between the
lowest point of a single copper line/bond pad
(usually at the center of the structure) and the
surrounding oxide film. Oxide erosion is defined
as the difference in the oxide layer thickness
within an array of line structures before and after
CMP processing (Therefore, the total copper loss
of a given feature during CMP is the sum of
erosion and dishing).

Both copper dishing and oxide erosion can
generate a significant amount of surface non-
planarity which cause various process integration
problems. They reduce the dielectric spacing and
amount of copper in the interconnects, thus
leading to increased interconnect resistance and
deterioration of device performance. Hence, it is
vital to develop a CMP process with minimum
copper dishing and oxide erosion. The extent of
copper dishing and oxide erosion is found to be
heavily dependent on CMP consumables (slurry,
pad), process parameters (wafer pressure, platen
speed) as well as device features (line width,
spacing). In this paper, we describe the
reduction of dishing with the use of multiple
polishing steps and multiple polishing slurries
in conjunction with an optical end-point system.

Experimental Procedures

Copper CMP was carried out on Applied
Materials Mirra® polisher using Titan™
polishing heads. The experiments were
performed by using polyurethane pads and
several experimental copper CMP slurries which
use alumina abrasive particles. All slurries were
provided by Cabot Corporation. Hydrogen
peroxide oxidizer was added to each slurry and
mixed well prior to polishing. —Slurry was
continuously agitated during the experiments.
Wafer pressure was varied between 1.0 psi and
6.0 psi, platen speed was varied between 33 rpm
to 143 rpm and slurry flow rate was varied
between 75 ml/min and 220 ml/min. In every
case the end-point was detected with the ISRM
system. The Laser based ISRM module is
embedded in the polishing platen. When the
laser beam is incident on the film surface during
polishing, the ISRM system probes the film
surface, collects and processes data, and displays
a real time signal. This process continues until
a pre-set end point is reached. Data are collected
only when the laser beam is incident on the film
surface, therefore, the ISRM signal does not
depend on process parameters such as platen

Page 10 of 18
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velocity, down force, slurry flow rate or pad
hardness.

The wafers used in this study contained test
structures with different line widths and spacings.
Copper deposition was carried out with either
PVD, CVD and/or ECD techniques. The barrier
layers were either Ta or TaN. In the case of a
single slurry process the same slurry was used to
polish copper and barrier layers. In the case of
two-step copper polish process, one slurry was
used to polish copper and the other slurry was
used to polish the remaining barrier layers.
Copper polishing was carried out on the first
platen and the barrier layer was polished on the
second platen. The buff and rinse step was
accomplished on the third platen. In both cases,
multiple polishing steps were used. ~During
some of the single slurry processes, one or more
polishing steps were carried out on the first
platen and the rest of the steps were carried out
on the second platen. Again one buff and rinse
step was done on the third platen. All the
erosion and dishing measurements were
performed with a Tencor HRP200 high
resolution profilometer.

Results and Discussion

The main contribution to copper dishing
and oxide erosion comes from over-polishing,
which is often necessary to assure complete
removal of copper and barrier residues across the
entire wafer. The uniformity variations of the
copper thickness of the as deposited wafers can
make the CMP step problematic. In the ideal
case, one would like to fully planarize the copper
layer before reaching the barrier layers.
Depending on the slurry chemistry, the same
slurry or a different slurry can be used to polish
residual copper and the barrier layers thus
creating a structure with metal inlaid in
dielectric. Large differences in chemical reactivity
of copper and tantalum result in dissimilar
polishing rates of the two layers. In the case of
single slurry processing, the barrier removal rate
is significantly lower than that of copper. Hence,
during barrier polishing, the exposed copper
feature dishes due to continued chemical and
mechanical action. Table I shows the copper
removal rates and selectivities of copper to barrier
layers for the slurries used in this study.

1998 IEEE/SEMI Advanced Semiconductor Manufacturing Conference



Slurry A Slurry B Slurry C
Cu Removal Rate (A/min) 7500 5900 169
Cu:Ta selectivity 47:1 30:1 il
Cuw:TaN selectivity 19:1 11:1 2
CwPETEOS selectivity 137:1 207:1 ~'3.1

Page 11 of 18

Table I. Copper removal rate and selectivity to barrier films for various copper CMP slurries at a platen speed of

43 rpm and a wafer pressure of 4.0 psi.

As shown in Table [, either slurry A or B can be
used in the single slurry process since they have
a high copper removal rate. Slurry C is well
suited for clearing barrier layers since the copper
removal rate in this slurry is comparable to
barrier removal rates. An ideal single step slurry
would polish Cu and the barrier film at similar
removal rates (low selectivity to barrier) and
would also have a very low removal rate for the
field oxide (high selectivity to SiO,).
Additionally, such an ideal slurry would remove

id o

Cu-->Ta

B

Reflectance Intensity (%)
g B

8

8

Time (s)

residual Cu and barrier without dishing Cu
interconnects and eroding the dielectric layer.

The majority of the single slurry process
discussed in the present work was carried out
with slurry A. The dependence of the copper
dishing and oxide erosion on the process
parameters such as slurry flow rate, platen speed
and wafer pressure was investigated with this
slurry. In every case, end-point was detected with
the ISRM system. All wafers were 10% over-
polished after the end-point was detected. Figure
1 shows a end-point trace of a blanket copper
film containing Ta barrier film.

Figure 1. ISRM trace of a blanket copper film containing Ta barrier. End-point is shown by the dotted line.
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Figure 2. Dependence of copper dishing and oxide erosion on slurry (slurry A) flow rate. Platen speed and wafer
pressure were held constant. Dishing was mcasured on a 50mm thick line (pitch 150mm) while erosion was
measured at a 0.5mm thick line (pitch 1.0mm).

As shown in Figure 1, different point is reached. Figures 2-4 show the extent of
interfaces of the film stack can be accurately copper dishing observed in a SOpm copper line
detected with the end-point system. The amount and extent of oxide erosion observed in a 0.5um
of over-polish in a single slurry process is feature as process parameters such as slurry flow
defined as the percent polish time after the end- rate, wafer pressure and platen speed are varied.
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aten speed (slurry A). Slurry flow rate and wafer

dishing and oxide erosion on pl
Figure 3. Dependence of copper dishing p GRI ]

pressure were kept constant. Dishing was measured on a 50mm feature (pitc
measured at 0.5mm line (pitch 1.0mm).
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Figure 4. Dependence of copper dishing and oxide erosion on wafer pressure (slurry A). Platen speed and slurry

flow rate were held constant. Dishing was measured on 50mm feature (pitch 150mm) while erosion was measured
at 0.5mm line (pitch 1.0mm).

Data in Figure 2 show that copper dishing wafer pressures. Both the oxide erosion and
is somewhat higher at high slurry flow rates, copper dishing appear to linearly increase with
This may be caused by continued chemical platen speed as well as the wafer pressure
etching of copper. Also, the copper dishing is (Figures 3 and 4).

relatively high at higher platen speeds and higher

0500
g 4
lurry A
:g 0400 ---A-- Slurry B
'g —@—Slurry A
&0 0300 - -l -- SlunryB
A 0200
.
0500 4 9 b k] V]

Line Width ()

Figure 5. Comparison of copper dishing and oxide erosion of single slurry process under identical experimental

conditions (slurry A and slurry B). Copper dishing on slurry B is relatively smaller compared to that of slurry A.
Both slurries have similar oxide erosion performance.
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In order to improve the dishing in a
single slurry process, another slurry formulation
(slurry B) was evaluated. Figure 5 compares the
extent of dishing and erosion observed with
single slurry processes (slurry A and slurry B)
under identical polishing conditions. It is seen
that dishing and erosion performance of slurry B
is somewhat improved as compared to slurry A.
Improved dishing in slurry B may be related to a
low static etch rate of slurry B (Figure

.

EP EP+t1

100 120 140 160 180 20
Time (s)

Figure 6. Static copper etch rate at room temperature (slurry A and Slurry B).

shown in Figure 6, static copper etch rate of
slurry A is considerably higher than that of slurry
B. Therefore, slurry B reduces static etching
during the barrier removal and over-polish,
leading to lower copper dishing levels. Because
of the improved dishing performance of slurry B
(compared to slurry A), slurry B was selected as
the first step slurry for the two-slurry process

- evaluations.

EP +1t3

EP +12

Polish Time (s)

Figure 7. Comparison of copper d
(slurry B and slurry C) processes.

are the over polish times. In the case of the two slurry process, tl, 2

(c;

ishing of 100 mm bond pad for one slurry (slurry A) process and two slurry
In the case of one slurry process, EP is the time to reach end-point and tl, 12, t3

. and 3 are the over polish times with slurry
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In the two slurry polish process, copper
was polished to the barrier layer with slurry B
followed by removal of the barrier layer with
slurry C. It is very important to remove all the
copper with slurry B before using slurry C since
slurry C has a very low copper removal rate.
Figure 7 compares the copper dishing observed
in a 100pum copper line with one slurry process
as well as the two slurry process. Slurry A was
used only in the one slurry process to clear the
film stack all the way down to the oxide layer.
In the case of the two slurry process approach,
slurry B was used to polish copper. With the
use of ISRM, polishing was stopped when
copper was cleared to the Ta layer. Slurry C was
used to polish the Ta layer and for evaluation of
overpolish effects after reaching oxide. As shown

05 p

g & R

Normalized Dishing

=

in Figure 7, although the extent of dishing
increases as a function of the amount of over
polish for both processes, the two slurry process
considerably reduces the amount of copper
dishing. In the case of the single slurry process,
the extent of dishing significantly increases with
the amount of over-polish.

Because of the significant uniformity
variation of the incoming wafers, in some copper
wafers, copper dishing was observed even at a
20% under-polish (Figure 8).  As shown in
Figure 8 the amount of copper dishing linearly
increases with the extent of over polish.
Therefore, unnecessary over-polishing should be
avoided and could be greatly reduced by using a
reliable end-point detection system.

(%) Over Polish

Figure 8. Effect of over polish on the extent of dishing

were buffed with oxide slurry.

Furthermore, it was found that many of the
irregularities observed in the single slurry
process could be significantly reduced with the
two slurry process. Figures 9 and 10 show the
dependence of copper dishing and oxide erosion
on various copper features for one slurry process

in 100 m bond pads (slurry A). After polishing the wafers

360

as well as for two slurry process. As shown in
these figures it is very clear that two slurry
process results in significantly improved copper
dishing and oxide erosion performances. Figure
11 compares the total copper loss in various
copper lines for single and two slurry processes.
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Figure 9. Comparison of copper dishing of various copper features for one slurry (slurry A) process and two
slurry (slurry B + slurry C) processes.

1.000

2

Normalized Erosion
2

0.000

05 4 9 5
Line Width (u)

de erosion on various features for one slurry (slurry A) process and two slurry

Figure 10. Comparison of oxi
Pattern density varies from 55% to 80%.

(slurry B + slurry C) processes.
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Figure 11. Comparison of total copper loss (dishing + erosion) for one slurry (slurry A) and two slurry (slurry B

+ slurry C) processes in a variety of copper line sizes.

As seen in Figure 11, the two slurry process
significantly reduces the amount of total copper
loss (dishing + erosion) in copper lines
compared to the single slurry process. The data
presented in Figure 11 were derived from the

measurements made with a high resolution
profilometer. These data are in good agreement
with the electrically measured copper thickness
for single and two slurry processes (Figure 12)
measured with a short loop test pattern.

g

3

8

Normalized Copper Thickness

8

Slurry A, 20%
overpolish

Slurry A, End-
pointed

Slurry B + C, End-
pointed

Figure 12. Comparison of electrically measured copper thickness for one slurry (slurry A) and two slurry (slurry
B + slurry C) processes. Measurements were performed on a 10 m x10m Van der Pauw structure.

The data displayed in Figure 12 were measured
on 10ux10p Van der Pauw structures. As
expected, the wafers processed with slurry A
show heavy copper loss in the line structures. It
can be seen that about 40% of additional copper
is lost by performing 20% over-polish after end-
point detection. However, in the case of two
slurry process, only 10% copper is lost when
polishing was stopped at end-point.
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Conclusion

Copper dishing and oxide erosion
encountered in CMP can be largely reduced by
implementing a two slurry process as well as
implementing multiple process steps. Use of an
accurate end-point system can lead to substantial
reduction in copper dishing and oxide erosion.
Further improvements to slurry chemistry and
copper deposition techniques are highly desirable
for improving the extent of copper dishing and
oxide erosion observed in current CMP
processes. Also, the use of multiple polishing
platens greatly simplifies two slurry CMP
process. The combination of the polishing tool,
end-point system, slurry chemistry and process
optimization pave the way for a production
worthy CMP process.
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