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Table 1. Copper removal rate and selectivity to barrier films for various copper CMP slurries at a platen speed of
43 rpm and a wafer pressure of 4.0 psi.

As shown in Table I, either slurry A or B can be
used in the single slurry process since they have
a high copper removal rate. Slurry C is well
suited for clearing barrier layers since the copper
removal rate in this slurry is comparable to
barrier removal rates. An ideal single step slurry
would polish Cu and the barrier film at similar

removal rates (low selectivity to ban'ier) and
would also have a very low removal rate for the

field oxide (high selectivity to Si02).
Additionally, such an ideal slurry would remove

RefledanceIntensitycm 98§E
Time (a)

residual Cu and barrier without dishing Cu
interconnects and eroding the dielectric layer.

The majority of the single slurry process
discussed in the present work was carried out

with slurry A. The dependence of the copper
dishing and oxide erosion on the process
parameters such as slurry flow rate, platen speed
and wafer pressure was investigated with this

slurry. In every case, end-point was detected with
the ISRM system. All wafers were 10% over-

polished after the end-point was detected. Figure
1 shows a end-point trace of a blanket copper
film containing Ta barrier film.

 
Figure 1. ISRM trace of a blanket copper film containing Ta barrier. End-point is shown by the dotted line.

1998 IEEEISEMI Advanced Semiconductor Manufacturing confonnce
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Figure 2. Dependence of copper dishing and oxide erosion on slurry (slurry A) flow rate. Platen speed and wafer
pressure were held constant. Dishing was measured on a 50mm thick- line (pitch 15.0mm) while erosion was
measured at a 0.5mm thick line (pitch 1.0mm).

As shown in Figure 1, difiérent point is reached. Figures 2-4 show the extent cf
interfaces of the film stock can be accurately copper dishing observed in a 50pm copper line
detected with the end-point system. The amount and extent of oxide erosion observed in a 0,5|.lm
of over-polish in a single slurry process is feature as process parameters such as slurry flow
defined as the percent polish time afler the end- rate, wafer pressure and platen speed are varied.‘.-'3 . -
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Figure 4. Dependence of copper dishing oxide erosion on wafer pressure (slurry A). Platcn speed and slurry
flow rate were held constant. Dishing
at 0.5mm line ‘(pitch 1.0mm).

Data in Figure 2 show that copper dishing
is somewhat higher at high slurry flow rates.
This may be caused by continued chemical
etching of copper. Also, the copper dishing is
relatively high at higher platen speeds and higher

a "A
---A-.--SlunyB
-—-O_%_S_lunyA
---I-- SlurryB '

was measured on 50mm feature (pitch .150mm) while erosion was measured

wafier pressures. Both the oxide erosion and

copper dishing appear to linearly increase with
platen speed as well as the wafer pressure
(Figures 3 and 4).
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Figure 5. Comparison of copper dishing and oxide erosion of single slurry process under identical experimental
conditions (slurry A and slurry B). Copper dishing on slurry B is relatively smaller compared to that of slurry A.
Both slurries have similar oxide erosion perfonnance.
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Figure 6. Static copper etch rate at room temperature (slurry. A and Slurry B).

shown in Figure 6, static co r etch rate cf
‘.7 ~.s1ufryAis.considerably'hi_gl1er’ that ofslurry

Therefore, slurry B reduces static etching

the barrier ‘removal and over-polish,
.' 'leadirig»_to lower copper dishing“ levels. _Because

In order to improvethe dishing in‘ a.
single slurry process, another slurry formulation
(slurry B) was evaluated. 5 the
extent of dishing and erosion observed, with
single slurry processes (slur’ry——A,,and slurry»-B). _ _ _ _
under identical polishing cendifions. .It is seen .j0ftI_1e<impr:oved dishing performance of_3slun-y B
that dishing and erosion 'of's‘_lurry “B (comparedto slurry A), slurry B ‘was selected as
is somewhat improved "asto sliii3){~A.,_*’. — _fl1e first step slurry for the tvvoaislurry process
Improved dishing in- s4lurry‘Bnfayberel;tiéd5to=a’ ~. ,
low static etchmte<ofslurry=ZB , ._. g
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Polish Time (3)

' ‘ f 100 b d ad for one slurry (slurry A) process and two slurry
mung ° m “I P yh end-point and :1, :2, :3In the case of one slurry process, EP is the time to re

t2,_ and B are the over polish times with slurry
Figure 7. Comparison of copper
(slurry B and slurry C) processes.
are the over polish times. In the case of the two slurry process, tl,
C.
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Figure 11. Comparison of total copper loss (dishing + erosion) for one slurry (slurry A) and two slurry (slurry B
+ slurry C) processes in a variety of copper line sizes.

As seen in Figure 11, the two slun'y process

significantly reduces the amount of total copper
loss (dishing + erosion) in copper lines
compared to the single slurry process. The data

presented in Figure 11 were derived from the

measurements made with a high resolution

profilometer. These data are in good agreement
with the electrically measured copper thickness

for single and two slurry processes (Figure 12)

measured with a short loop test pattern.
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Figure 12. Comparison of electrically measured copper thickness for one slurry (slurry A) and two slurry (slurry
B + slurry C) processes. Measurements were performed on a 10 m xl0m Van der Pauw structure.

The data displayed in Figure 12 were measured
on l0uxl0u Van der Pauw structures. As

expected, the wafers processed with slurry A
show heavy copper loss in the line structures. It

can be seen that about 40% of additional copper
is lost by performing 20% over-polish after end-
point detection. However, in the case of two

slurry process, only 10% copper is lost when
polishing was stopped at end-point.

362
1998 IEEEISEMI Advanced semiconductor Manufacturing Conference
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