Filed on behalf of Godo Kaisha IP Bridge 1

By: Neil F. Greenblum (ngreenblum@gbpatent.com) Greenblum & Bernstein, P.L.C. 1950 Roland Clarke Place Reston, VA 20191 Tel: 703-716-1191 Fax: 703-716-1180

UNITED STATES PATENT AND TRADEMARK OFFICE

BEFORE THE PATENT TRIAL AND APPEAL BOARD

TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LIMITED, Petitioner,

v.

GODO KAISHA IP BRIDGE 1, Patent Owner.

> Case IPR2016-01246¹ U.S. Patent No. 7,126,174

PATENT OWNER'S CURRENT EXHIBIT LIST (As of March 24, 2017)

Mail Stop PATENT BOARD, PTAB Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450

DOCKET

¹ Case IPR2016-01247 has been consolidated with this proceeding.

PATENT OWNER'S CURRENT EXHIBIT LIST (As of March 24, 2017)

Exhibit No.	Description	Newly Submitted
2001	Substitute Declaration of Dr. E. Fred Schubert, Ph.D. in support of Patent Owner's Preliminary Response filed in IPR2016-01246 on October 5, 2016.	Served only
2002	Schematic illustration of the Chemical Mechanical Polishing process from Steigerwald, Murarka, and Gutmann, <i>Chemical Mechanical Planarization of</i> <i>Microelectronic Materials</i> (1997).	
2003	Schematic illustration of the Chemical Mechanical Polishing process from the Motorola Company. SCSolutions.com. Accessed September 30, 2016. http://www.scsolutions.com/chemical-mechanical- planarization-cmp-controllers-0.	
2004	Photograph of a Chemical Mechanical Polishing Tool from the Applied Materials Company. BusinessWire.com. Accessed October 5, 2016. http://www.businesswire.com/news/home/20040711 005007/en/Applied-Materials-Revolutionizes- Planarization-Technology-Breakthrough-Reflexion.	
2005	Troxel, Boning, McIlrath "Semiconductor Process Representation." <i>Wiley Encyclopedia of Electrical</i> <i>and Electronics</i> , pp.139–147 (1999).	
2006	U.S. Patent No. 6,052,319 to Jacobs.	
2007	U.S. Patent No. 6,952,656 to Cordova et al.	

IPR2016-01246; IPR2016-01247 U.S. Patent No. 7,126,174

Exhibit No.	Description	Newly Submitted
2008	Hunt, "Low Budget Undergraduate Microelectronics Laboratory." <i>University</i> <i>Government Industry Microelectronics Symposium</i> , pp.81-87 (2006).	
2009	U.S. Patent No. 7,074,709 to Young.	
2010	Burckel, "3D-ICs created using oblique processing." Advanced in Patterning Materials and Processes XXXIII, pp. 1–12 (2016).	
2011	Substitute Declaration of Dr. E. Fred Schubert, Ph.D. in support of Patent Owner's Preliminary Response filed in IPR2016-01247 on October 7, 2016.	Served only
2012	Declaration of Dr. E. Fred Schubert, Ph.D. in support of Patent Owner's Response filed in IPR2016-01246 on March 24, 2017.	х
2013	Thompson, L. F. "An Introduction to Lithography." <i>Introduction to Microlithography</i> , ACS Symposium Ser., American Chemical Society, pp. 1-13 (1983).	х
2014	CA1275846 C to Roland et al.	X
2015	U.S. Patent No. 5,314,843 to Yu et al.	X
2016	U.S. Patent No. 5,231,306 to Meikle et al.	X
2017	U.S. Patent No. 4,529,621 to Ballard.	X
2018	U.S. Patent No. 5,310,624 to Ehrlich.	X
2019	U.S. Patent No. 5,097,422 to Corbin, II et al.	X
2020	Declaration of Amanda Dove.	X
2021	U.S. Patent No. 4,952,524 to Lee et al.	Х

DOCKET A L A R M Find authenticated court documents without watermarks at <u>docketalarm.com</u>.

Exhibit No.	Description	Newly Submitted
2022	Bryant, A.; Haensch, W.; Geissler, S; Mandelman, Jack; Poindexter, D.; and Steger, M. "The Current- Carrying Corner Inherent to Trench Isolation." <i>IEEE Electron Device Letters</i> , Vol. 14, No. 8, pp. 412-414 (1993).	X
2023	Ohe, Kikuyo; Odanaka, Shinji; Moriyama, Kaori; Hori, Takashi; and Fuse, Genshu. "Narrow-Width Effects of Shallow Trench-Isolated CMOS with n+- Polysilicon Gate." <i>IEEE Transactions on Electron</i> <i>Devices</i> , Vol. 36, No. 6, pp. 1110-1116 (1989).	X
2024	Shigyo, N.; Wada, T.; Fukuda, S.; Hieda, K., Hamamoto, T.; Watanabe, H.; Sunouchi, K.; and Tango, H. "Steep Subthreshold Characteristic and Enhanced Transconductance of Fully-Recessed Oxide (Trench) Isolated 1/4 µm Width MOSFETs." <i>1987 International Electron Devices Meeting</i> , pp. 636-639 (1987).	X
2025	Furukawa, T., and Mandelman, J.A. "Process and Device Simulation of Trench Isolation Corner Parasitic Device." <i>Journal Of The Electrochemical</i> <i>Society</i> , Vol. 135, No. 8, p. 358C, Item 236 (1988).	X
2026	"Structural Analysis Sample Report" downloaded from https://www.chipworks.com/TOC/Structural_Analy sis_Sample_Report.pdf (2008).	X
2027	U.S. Patent No. 4,776,922 to Bhattacharyya et al.	Х

IPR2016-01246; IPR2016-01247 U.S. Patent No. 7,126,174

Exhibit No.	Description	Newly Submitted
2028	Subbanna, S.; Ganin, E.; Crabbé, E.; Comfort, J.; Wu, S.; Agnello, P.; Martin, B.; McCord, M.; Newman, H. Ng. T.; McFarland, P.; Sun, J.; Snare, J.; Acovic, A.; Ray, A.; Gehres, R.; Schulz, R.; Greco, S.; Beyer, K.; Liebmann, L.; DellaGuardia, R.; Lamberti, A. "200 mm Process Integration for a 0.15 µm Channel-Length CMOS Technology Using Mixed X-Ray / Optical Lithography." <i>Proceedings</i> <i>of 1994 IEEE International Electron Devices</i> <i>Meeting</i> , pp. 695-698 (1994).	Х
2029	Chung, J.; Jeng, MC.; Moon, J.E.; Wu, A.T.; Chan, T.Y.; Ko, P.K.; Hu, Chenming. "Deep- Submicrometer MOS Device Fabrication Using a Photoresist-Ashing Technique." <i>IEEE Electron</i> <i>Device Letters</i> , Vol. 9. No. 4, pp. 186-188 (1988).	х
2030	Tanaka, Tetsu; Suzuki, Kunihiro; Horie, Hiroshi; Sugii, Toshihiro. "Ultrafast Low-Power Operation of p ⁺ -n ⁺ Double-Gate SOI MOSFETS." <i>1994</i> <i>Symposium on VLSI Technology Digest of Technical</i> <i>Papers</i> , pp. 11-12 (1994).	Х
2031	WIPO Publication No. WO 90/05377 to Lowrey.	X
2032	Kaufman, F. B.; Thompson, D. B.; Broadie, R. E.; Jaso, M. A.; Guthrie, W. L.; Pearson, D. J.; and Small, M. B. "Chemical-Mechanical Polishing for Fabricating Patterned W Metal Features as Chip Interconnects." <i>Journal of The Electrochemical</i> <i>Society</i> , Vol. 138, No. 11, pp. 3460-3465 (1991).	Х

DOCKET A L A R M

Explore Litigation Insights

Docket Alarm provides insights to develop a more informed litigation strategy and the peace of mind of knowing you're on top of things.

Real-Time Litigation Alerts

Keep your litigation team up-to-date with **real-time alerts** and advanced team management tools built for the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal, State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm's cloud-native docket research platform finds what other services can't. Coverage includes Federal, State, plus PTAB, TTAB, ITC and NLRB decisions, all in one place.

Identify arguments that have been successful in the past with full text, pinpoint searching. Link to case law cited within any court document via Fastcase.

Analytics At Your Fingertips

Learn what happened the last time a particular judge, opposing counsel or company faced cases similar to yours.

Advanced out-of-the-box PTAB and TTAB analytics are always at your fingertips.

API

Docket Alarm offers a powerful API (application programming interface) to developers that want to integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your attorneys and clients with live data direct from the court.

Automate many repetitive legal tasks like conflict checks, document management, and marketing.

FINANCIAL INSTITUTIONS

Litigation and bankruptcy checks for companies and debtors.

E-DISCOVERY AND LEGAL VENDORS

Sync your system to PACER to automate legal marketing.