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Randomized Adaptive Algorithms for Mosaicing Systems®

SUMMARY  Given a set of still images taken from a hand-
held camera, we present a fast method for mosaicing them into
a single blended picture. We design time- and memory- efficient
still image mosaicing algorithms based on geometric point fea-
ture matchings that can handle both arbitrary rotations and large
zoom factors. We discuss extensions of the methodology to re-
lated problems like the recovering of the epipolar geometry for
3d reconstruction and object recognition tasks.

key words: image processing, registration, warping , mosaicing,
point pattern matching, bucketting

1. Introduction

Mosaicing (also called image stitching) consists of tak-
ing a sequence of still image pictures and providing a
collection of transformations to join/merge them into
one blended picture (see Figure 1 and 9). Many soft-
ware companies already propose stitchers for creat-
ing panoramas and browsers for navigating through
them via environment maps (image-based rendering
systems). Basically, those programs proceed as follows:
(1) find or ask for camera parameters, (2) warp images
according to these parameters (lines bend to quadratic
curves) and (3) stitch images by means of a 1d- or 2d-
translation and eventually small tilting, and (4) adjust
and blend color intensities. Panoramic images do not
preserve lines. We refer the reader to the course note [2]
for an up-to-date survey on image registration and im-
age warping techniques.

In this paper, we consider perspective mosaicing
where straightness of lines is preserved. Our method is
automatic and does not assume any user input nor any
a priori knowledge of the camera parameters. Images
can also be taken by several pinhole cameras having
different intrinsic/extrinsic parameters. In the case of
images taken by an ideal pinhole-model camera from (a)
the same three-dimensional viewpoint or (b) a planar
surface taken from two different viewpoints, the trans-
formations related these images are known to be homo-
graphies (also called collineations [3]), linear transfor-
mations defined up to a scalar factor, in the projective
plane P2. A key difference from panoramic mosaicing
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is that we can interpret the composite stitching as the
image that would have been taken by a bigger sensing
device (e.g., CCD).

There are two widely used techniques that have
been used so far in the past for mosaicing: the first one
consists of image registration where the collineation is
often restricted to similitudes on the plane (id. trans-
lation, rotation and scaling). Local image registra-
tion is usually either performed by gradient descent or
Levenberg-Marquadt optimization procedure. Global
image registration is reached (sometimes) by hierar-
chical matching using pyramidal image representation.
The second method is based on Fourier principles and is
called the phase correlation method. This technique es-
timates a global 2d translation by computing the phase
differences of the respective image frequency signals but
loses the perspective information as it goes to the fre-
quency domain. Moreover for large rotations or differ-
ent zoom scales, this method fails. Szeliski and Shum
presented an elegant and robust method for creating
full mosaics and texturing them onto a polyhedron [4],
given rough image matchings.

Our proposed fully automatic method handles
large zoom (=~ x3) and arbitrary rotation values while
keeping the running time attractive for responsive ap-
plications. Its current limitations, as discussed in sec-
tion 6, are mostly due to the detection of reliable fea-
tures (sometimes called “repeatable” or “stable” fea-
tures) in images having large different scalings rather
than the matching process in itself. Indeed, our method
is based on planar point set pattern matching having
a given precision tolerance. As the zoom range grows,
say linearly, the tolerance window needs more than lin-
ear growth because of the detected feature imprecisions.
Our method is based on Monte-Carlo/Las Vegas algo-
rithms that combine both randomization and geometric
feature selection.

Mosaicing is a core technology used in composite
scanning, image-based rendering (e.g., new view gener-
ation without having fine 3d model description), high-
definition pictures, image compression, image stabiliza-
tion, etc. Still image mosaicing techniques largely differ
from video mosalclng technlques [5] because no v1de0
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correspondences efficiently.
2. Feature-based mosaicing

Let I; and I, be two pictures taken from the same
optical center. We first start by detecting geomet-
ric feature (points, edges, triple junctions, etc.) sets
81 = {L17"'7Ln1} (n1 = |81|) and 82 = {Rl,...,Rn2}
(ny = |Sz]). For example, points are extracted by
a Harris-Stephens corner detector or even more reli-
ably (at the expense of a small increase of the running
time) by a Kanade-Lucas-Tomasi’s intensity gradient
approach. A collineation or homography is defined by
the pairing L; <+ R; of 4 points {L;}; of S; with 4 other
points {R;}; of S» in general position. Let H be such
a transformation. Let L; and @); be the pixel points in
image I, and I, that are the respective perspective pro-
jection of the same physical three-dimensional points
M;. Using the homogeneous 2d coordinates for L; and
R;, we get:

332 hi1 hiz his s
Ri=| y; | =HLi=| har ha hos Yi
ZZ' h31  hsy  hss Zi

Let P =

be 3x4 matri-

with L; = (Z%) and R, = (44%).
(LT Ly Ly L) and Q = (Ry R, By Ry
ces. Then, we get H = QPT(PPT)~!

PSRN N

DOCKET

_ ARM

IEICE TRANS. INF. & SYST., VOL. 7?7 JULY 2000, NO. 7?? 7?7 2000

correspondences, we have as many as 4!("}) (") pos-
sible transformations (Example: for ny = ny = 40 we
have more than 200 billion induced homographies. In
comparison, we have only about 1.2 millions panoramic
transformations). The naive algorithm which consists
in scoring one-by-one each homography and reporting
one which has the best score is therefore not scaleable
(O(n®) homographies, where n = max{n,n2}).
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CAMCORDERS
ETC...

optic zoom x10s
digital zoom x100s

Image Understanding, Data Fusion

Image 1 Image 2
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Fig. 2 Registration process synopsis: Geometric filtering se-
lects potential feature candidates (feature space) that generate
plausible transformations, i.e. reasonable zoom values, not too
large rotations, etc. (transformation space)

If we consider anchored corners (a corner point
and two half-line segments emanating from it) as fea-
tures [6], the homography can be found by pairing only
two anchored corners. Although the running time in-
creases for detecting these elaborated templated fea-
tures by non-linear minimization techniques, the core
bottleneck is still the O(n*) combinatorics of the all-
pairing approach. In this paper, we present an efficient
scheme to select only a few (homographies) of them
that are plausible to give birth to potential solutions.

The outline of the proposed algorithm is as follows
(see also Figure 2):

e Extract features from images (e.g. corners).

e Give a set T of homographies satisfying geometric
constraints and matching at least a given fraction
of the point sets.

. Score each homography of T and choose one with
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e Perform local optimization (subpixel analysis) on
features. This step is required because we deal with
pixels and not points! We can use also a gradient
descent or Levenberg-Marquadt method on pixel
intensities.

e Perform local optimization by perturbating coeffi-
cients of the homography matrix (compensate for
lens aberration).

e Warp images (deghosting techniques and pixel am-
plification).

o Correct intensity and blend images.
3. Scoring transformations

Once a transformation H has been chosen as a potential
candidate (H is induced by 4 correspondence pairs), we
have to evaluate its score. We initially attach to each
detected feature a vector of characteristics describing
the neighborhood where the feature has been extracted
(e.g., intensity values, qualitative measures). We say
that a point L; in &; matches a point R; in Sy for
a collineation H if dy(R;,HL;) £ € (for some pre-
scribed € = 0) and if their corresponding qualitative
features correlate satisfactorily. We call this match an
e-match. Let HS; be the set of points {HL|L € S }.
The common feature points are called inliers and fea-
tures present in only one of the two images are called
outliers.

We distinguish between four families of scorings
that exhibit trade-offs between running time and relia-
bility of their scores:

(1) Pixel Cross-Corellation. We use as a scoring
function for H the zero mean cross-correlation
on subwindows centered at extracted points.
On RGB pictures, a pixel p with color triple
(pRr,pa,pe) has intensity I(p) = 0.3pr+0.59pq+
0.11pg. The quality is defined as follows:

> pew I (Hp) — I(p))?
Vo TED) /3000 I

where W is the correlation window.

QH) =

(2) The Haussdorf matching. Each point R € S is
associated to its closest neighbor of HS; provided
that its distance is less than a prescribed € (see
Figure 3). Eventually several points of S may
be attached to the same point of HS; (especially
when zoom factors differ). Each associated pair
of points defines an edge of the graph whose nodes

cn Al ot 2 TTC 1 C (O TN O 1N

DOCKET

_ ARM

distance that takes into account inliers/outliers.)
This measure, however, is not suitable for differ-
ent image scalings.

(3) The bottleneck matching. The bottleneck
measure [7], [8] reflects in a better way the 1 <> 1
matching of point sets. We consider the complete
bipartite graph G = (HS;,S»,E), where £ is the
set of all weighted edges e = (L, R) where w(e) =
dy(L, R). Let G be the restricted bipartite graph
of G containing all edges of weights less than e:
Gg. = (HSl,Sz,ge), st. & = {(HL“R]”L@ €
S1,Rj € S2,d2(HL;, R;) < €}. The bottleneck
matching is a maximum matching®, often not per-
fect matching, of G, (see Figure 3, bottom).

Fig. 3
(down).

Haussdorf matching (top). Bottlebeck matching

(4) Discrete approximate matching.
Since our point sets are dense and of bounded di-
ameter (namely the image diameter), we can use
bucketting techniques. For each point L € HS;
we check whether there is a point R € Sy in its
neighborhood (see Figure 4).

We report the number of matching points ap-
proximately. (Buckets introduce an inherent V2-
approximation factor). Note that the motif of the
boolean bucket can be computed beforehand and
does not depend on H but on S,.

Running times.
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Fig. 4  Boolean bucket on set Sa: grey buckets are marked to

contain a point of Sz in their neighborhood.

to the number of features). (2) can be computed effi-
ciently in O(n logn)-time using Voronoi diagrams but is
not appropriate for different scalings. (We may use the
hardware graphics pipeline as suggested in [9] to accel-
erate this computation.) (3) requires more processing
time; Efrat and Itai [8] using an implicit form of the
geometric graph reported nearly O(n?)-time algorithm
for computing a longuest matching that minimizes the
maximum edge length among all matched edges. More
precisely, let m = || be the number of edges of G,
and n = n; + no be the number of vertices. Per-
fect/maximum matchings in general weighted graph,
where one wants to minimize the sum of matched edges,
require O(n?) time [10] using the so-called Hungarian
method. On the other hand, on unweighted bipartite
graphs, a maximum matching can be found whenever it
exists in time O(m+/n) [11]. When considering geomet-
ric graphs, i.e., graphs obtained from a geometric scene,
Vaidya [12] gave an O(n?)-time algorithm for matching
two points sets so that the sum of the matched edges
is minimized. Considering the L, distance instead of
the L, distance, Vaidya obtained an O(n?log® n)-time
algorithm. Later on, those results where improved by
Agarwal et al. [13] to O(n?*7) for any arbitrary small
positive v > 0. Very recently, Efrat and Itai [14] using
an implicit form of the geometric graph reported nearly
O(n%)—time algorithm for computing a longuest match-
ing that minimizes the maximum edge length among all
matched edges. Further refinements of their algorithm
has been achieved by using dynamic data-structures for
fat objects [15]. (See also the work of Heffernan and
Schirra [16] for approximation schemes.)

(4) is evaluated in linear time but only gives an
approximation of the size of the common point set.

Another classic approach to point set pattern
matching, first developed by Huttenlocher et al. [17], is
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rithms start with a given 4d box containing an optimal
solution, splits the current box into sub-boxes, kill some
of them (those where the current best solution is better
than any solution provided by them) and branch on the
remaining active sub-boxes. The process stops when-
ever an “acceptable” solution is found (depends on the
required precision). Very recently, those methods have
been extended using alignment as in Mount et al. [18]
and, Hagedoorn and Veltkamp [19].

To sum up, when scoring transformation H, we
first check that we have a large common point set using
(4). If so, we refine the score by using either (2) or (3)
depending on the zoom factor of H. Finally, we spend
more time computing the score by applying (1) for the
remaining transformations.

In the following section, we focus on how to re-
port a pool of candidate transformations in which our
solution is likely to be.

4. Geometric filtering

The basic idea of geometric filtering is to constrain the
properties of feature matchings. We can input geomet-
ric constraints like zoom value (e.g., in range [%,4]) and
rotations (e.g., between [—60 deg, 45 deg]), and a preci-
sion tolerance € (each feature can be moved into a ball
centered at it of radius €). Loosely speaking, we are
interested in finding large common point sets, that is
a set of transformations that match at least a number
of points greater than a given threshold. (For example
if we want to recover the epipolar geometry, we may
ask for at least 7 matching pairs of points). We do not
choose a largest common point set because of matching
artefacts’ but it is very likely that our transformation
lies in the ones matching large point sets.

If no value of the threshold of the size of a large
common point set is given, the system can estimate
it in order to run into given time bounds. For any
planar transformation 7', we associate a characteristic
vector v(T') = (zoom(T'),angle(T")), where zoom(T') is
the zoom value of T" and angle(T') is the rotation an-
gle from the x-axis. The algorithm can report lexico-
graphically the transformations T3, T5, ... (that is such
that v(71) £ v(T») £ ...) so that two job processes can
run simultaneously: (1) reporting potential transforma-
tions (2) scoring the transformations and determining
if a plausible transformation has been found so far.

Let « be the percentage of points required to match
up to an absolute error € (that is max{[«a|S1[], [a|S2|]}
points at least). Parameter « is useful in practice since
it reflects the perspective distribution of common fea-
ture points, inliers, and possibly occluding parts (hid-
den features or outliers). For example, a 50% overlap
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Lo/k ] 1] 2] 3] 4] 5 |
0.15 | 6.1 | 55 | 327.0 [ 1199.3 | 13238.3
0.20 | 7.2 | 264 | 77.1 | 689.6 | 18586.1
0.35 |29 84| 19| 595 | 3214

0.5 | 2.1 3.7 7.8 25.6 30.7
0.60 | 1.7 2.7 5 12.2 14
0.75 | 1.4 2 2.2 3.5 4.2

Table1l  Number of times, [, that the program enters the while
loop before finding a good tuple (1 £ k < 5) which defines an
(a, €)-match. We used the pseudo-random generator drand48().

at constant zoom with 50% of outliers of n = 40 point
features, will match around 10 features (ie. a = 0.25).
We are looking for a («, €)-match, i.e. a transformation
H that matches at least an points up to some error
tolerance e.

Algorithm 1 The core selection algorithm
1: H=1d

2: while not found a (a, €)-matching homography H
do
3:  Choose r points S] from S;
4:  Draw at random a k-tuple P; from Sj
5:  while not STOP do
6: Draw at random a k-tuple Pa: k = | P3| points
of 82
7: (* We use geometric FILTERING *)
8: for all permutations P} or P2 do
9: Compute the homography H that perfectly
matches tuple P; to tuple P}
10: if S7 is a (A, €)-match in S; then
11: if S is a (o, €)-match in Sy then
12: if the characteristics of matched points
correlate satisfactorily then
13: SToPp
14: end if
15: end if
16: end if
17: end for

18:  end while
19: end while

Let k be the number of features required in &; and
in Sy for computing a basic transformation that per-
fectly matches pair by pair these 2k features (edges,
corners, triple junctions, etc.). Using corners, we have
k set to 4. Since we know that a significant propor-
tion of points in &; will e-match, choosing at random
a k-tuple P; and computing all induced homographies
with all other k-tuples of Sy will lead to the more effi-
cient (by a square root factor) Monte-Carlo algorithm.
Table 1 shows experimentally the number of times we

1 b . c 3 1 7 4.1 (.1 1.4 L
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straints imposed by the selection of P;. We call it geo-
metric filtering and it allows both in practice and the-
ory to speed up the algorithm significantly. For sake of
simplicity, let us assume that we look for a translation
and a rotation matching features of I; into I,. Each
detected feature point p lies in a ball B(p,u). We set
€ = 4 in order to take into account the fuzziness of
our features. Let p* denote the “visual” feature point
that our feature extraction algorithm have approached
by p (p* € B(p,p)). Given any two feature points, we
have |d2(pT,p3) — da(p1,p2)| £ 2p. Let Ly, Ly € S; be
corner points in image I (resp. image I») that have
been drawn randomly. Assuming uniform scaling fac-
tor, instead of comparing (L1, Ly) to all pairs (R;, R;),
we choose for every point R; € S» as candidate for the
second point R;, all the points inside the ring whose
center is R; with minimum circle B(R;, d> (L1, L2) —2u)
and width 4p (see Figure 5). This can be done easily
using buckets (as depicted in Figure 5) and extend nat-
urally to zoom ranges and angle sectors. We balance
the preprocessing time of building the buckets with the
processing time of querying it according to the intrinsic
difficulty of the point set (see [1] for details). The idea
depicted in Figure 8 is that we can count possibly faster
than reporting points inside the annuli query. Therefore
we can adapt the size of the buckets in order to acco-
modate the batched ring queries faster. Indeed, loosely
speaking, having a too fine bucket costs much prepro-
cesing time but answer queries quickly, while having
a coarse-sized bucket is fast to build but queries take
more time as illustrated in Fig 8.
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