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ABSTRACT . In this paper we present some conditions which are sufficient for 
a mapping to have periodic points. 

THEORE:M. If/ is a mapping of the space X into X and there exist subcontinua 
Hand K of X such that (1) every subcontinuum of K has the fixed point property, 
(2) / [K) and every .mbcontinuum of /[HI are in class W , (3) / [K l contains H, 
(4) /[HI contains HUK, and (5) ifn is a positive integer such that (llH)-n(K) 
intersects K ,, then n = 2, then K contains periodic points off of every period 
greater than 1. 

Also incltuded is a fixed point lemma: 
LEMMA. Suppose f is a mapping of the space X int.o X and K is a subcontinuum 

of X such that /[Kl contains K. If ( 1) every subcontinuum of K has the fixed point 
property, and (2) every subcontinuum of / [Kl is in clCUiS W, then there is a point 
x of K such t:hat f(x ) = x . 

Further we show that: If f is a mapping of [O, II into [O, II and f has 
a periodic point which is not a power of 2, then lim{ [O, lj, /} contains an 
indecomposable continuum. Moreover, for each positive integer i, there is a 
mapping of {O, ll into [O, 11 with a periodic point of period 2; and having a 
hereditarily decomposable inverse limit. 

1. Introduction. In his book, An Introduction to Chaotic Dynamical Systems 
13, Theorem 10.2, p . 62], Robert L. Devaney includes a proof of Sarkovskii s' The­
orem. Consider the following order on the natural numbers: 3 t> 5 t> 7 t> · · · t> 2 · 3 t> 

2·51> · · · 1> 22 · 3 1> ~?2 · 5 t> · · · t> 23 · 31> 23 · 51> · · · 1> 23 1>22 1> 2 1> 1. Suppose f: R --+ R 
is continuous. If k 1> m and f has a periodic point of prime period k, then f has a 
periodic point of period m. In working through a proof of this theorem for k = 3, 
the author discove1red the main result of this paper- Theorem 2. For an al!ternate 
proof of Sarkovskii's Theorem for k = 3, see also [7]. For a further look at this 
theorem for ordered spaces see [13]. 

By a continuum we mean a compact connected metric space and by a mapping 
we mean a continuous function. By a periodic point of period n for a mapping f of a 
continuum Minto Mis meant a point. x such that r(x) = x. The statement that 
x has prime period n means that n is the least integer k such that f k ( x) = x . A 
continuum M is saiid to have the fixed point property provided if f is a mapping of M 
into M there is a p1oint x such that f(x) = x. A mapping f of a continuum X onto 
a continuum Mis said to be weakly confluent provided for each subcontinuum K of 
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644 W. T. INGRAM 

M some component of 1- 1 ( K) is thrown by f onto K. A continuum is said to be in 
Class W provided every mapping of a continuum onto it is weakly confluent. T he 
continuum T is a tri.od provided there is a su bcontinuum K of T such that T - K has 
a t least three components. A continuum is atriodic provided it does not contain a 
triod. A continuum M is unicoherent provided if M is the union of two subcontinua 
H and K , then the common part of H and K is connected. A continuum is 
hereditarily unicoherent provided each of its subcontinua is unicoherent. If f is 
a mapping of a space X into X, t he inverse limit of the inverse limit sequence 
{Xi. /i} where, for each i, Xi is X and /; is f will be denoted lim{X, !}. For 
the inverse sequence {X; , /i}, the inverse limit is the subset of the product of the 
sequence of spaces Xi, X2 , ... to which the point (xi, x2 ,. .. ) belongs if and only 
if fi(Xi+ i) = X;. 

There has been considerable interest in periodic homeomorphisms of continua 
where a homeomorphism h is called periodic provided there is an integer n such that 
hn is the identity. Wayne Lewis has shown (8] that for each n there is a chainable 
continuum with a periodic homeomorphism of period n. A theorem of Michel Smith 
and Sam Young [14] should be compared with Theorem 3 of this paper. Smith and 
Young show that if a chainable continuum M has a periodic homeomorphism of 
period greater than 2, t hen M contains an indecomposable continuum. In this 
paper we consider the question of the existence of periodic points in mappings of 
continua. 

2. A fixed point theorem. The problem of finding a periodic point of period 
n for a mapping f is, of course, the same as the problem of finding a fixed point 
for r . Not surprisingly, we need a fixed point theorem as a lemma to the main 
theorem of this paper. The following theorem, which the author finds interesting 
in its own right, should be compared with an example of Sam Nadler (11] of a 
mapping with no fixed point of a disk to a containing disk. A corollary to Theorem 
1 is the well-known corresponding result for mappings of intervals. 

THEOREM I. Suppose X is a space, f is a mapping of X into X, and K is a 
subcontinuum of X such that f [K] contains K. If (1) every subcontinuum of K has 
the fixed point property, and (2) every subcontinuum of f[KJ is in Class W, then 
there is a point x of K such that f(x) = x. 

PROOF. Since /[K] is in Class Wand K is a subset of /[K], there is a subcon.­
t inuum K1 of K such that /[Ki] = K. Then /IK1:K1 -> K is weakly confluent 
since every subcont inuum of J[K] is in Class W; thus there is a subcontinuum K2 
of K1 such that /[K2] = K1 . Since K 1 is in Class W, / IK2: K2 -> K 1 is weakly 
confluent; therefore there is a subcontinuum K3 of K2 such that /[K3J = K2· Con­
t inuing this process there exists a monotonic decreasing sequence Kli K 2 , K3, .. . 
of subcontinua of K such that J[Ki+i] = K i for i = 1, 2, 3, .. . . Let H denote 
the common part of all the terms of this sequence and note that ![H J = H , since 
![HJ = !lni>O Ki] = ni>O / [Ki] = ni>O Ki = H . Since JIH throws H onto H 
and H has the fixed point property, there exists a point x of H (and therefore of 
K) such that /(x) = x. 

REMARK. Note that (1) and (2) of the hypothesis of Theorem I are met if /[K] 
is chainable ([12, Theorem 4, p. 236 and 4], respectively), while (2) is met if /[KJ is 
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CONCERNING P ERIODIC POINTS IN MAPPINGS OF CONTINUA 645 

atriodic and acyclic [l ] and (1) is met by planar, tree-like continua such that each 
two points of a subcontinuum L lie in a weakly chainable subcontinuum of L [10]. 

3. Periodic points. In this section we prove the main result of the paper. 

THEOREM 2. If f is a mapping of the space X into X and there exist subcon­
tinua H and K of X such that ( 1) every subcontinuum of K has the fixed point 
property, (2) f[K] and every subcontinuum of f[H] are in class W, (3) /[K] con­
tains H , (4) ![HJ contains H U K, and (5) if n is a positive integer such that 
(JIH)-n(K) intersects K , then n = 2, then K contains periodic points off of 
every period greater than I . 

PROOF. Suppose n ~ 2. There is a sequence H 1 , H2, ... , Hn- l of subcontinua 
of H such that / [H1] = K (note that JIH is weakly confluent) and /[Hi+il = Hi 
for i = 1, 2, .. . , n - 2 (in case n > 2). There is a subcontinuum Kn of K so that 
! [Kn] = Hn-1 · Thus, r[Kn] = Kand so r [Kn] contains Kn, so, by Theorem 
1, there is a point x of Kn such that r(x) = x. We must show that if j < n 
then Ji(x ) is not x. If j < n and Ji(x) = x, then j = n - 2 and x is in H2 • 

Since r(x) = x and r -2 (x ) = x, f 2 (x) = x. Since x is in (J IH)- 2 (K ), x is in 
(J IH )- 4 (K) and in K contrary to (5) of the hypothesis. Therefore, x is periodic 
of prime period n. 

REMARK. If f is a mapping of the continuum M into itself and f has a periodic 
point of period k, then the mapping of lim{M, J} induced by f has periodic points 
of period k, e.g. (x,Jk- I(x) , ... ,f(x), x , ... ). Thus, although Theorem 2 does not 
directly apply to homeomorphisms, it may be used to conclude the existence of 
homeomorphisms with periodic points. 

COROLLARY. If M is a chainable continuum, f is a mapping of Minto M, and 
there are subcontinua Hand K of M such that f[K] = H , /[HJ contains HuK, and 
if (!IH)-n(K) intersects K then n = 2 then f has periodic points of every period. 
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FIGURE 1 
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EXAMPLE. Let f be the mapping of the simple triod T to itself given in [5]. 
The mapping f is represented in Figure 1 above. Letting H = [O, A/2] and K = 
[B/3, B/2] it follows from Theorem 2 that f has periodic points of every period. 

EXAMPLE. Let f be the mapping of the simple t riod T to itself given in [2]. 
T he mapping f is represented in Figure 2 below. Letting H = [O, 3B/8] and 
K = [C /32, C /8], it follows from Theorem 2 that f has periodic points of every 
period. 
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F IGURE 2 

EXAMPLE. Let f be the mapping of the unit circle S1 to itself given by f (z) = z2 . 

Letting H = { ei0 IO S () S 311" / 4} and K = { eio 111" S () S 311" /2}, it follows from 
Theorem 2 that f has periodic points of every period. Similarly, if f is a mapping 
of S 1 onto itself which is homotopic to zn for some n > 1, then f has periodic 
points of every period. 

H 

z2 

K 
FIGURE 3 

COROLLARY. If f is a mapping of an interval to itself with a periodic point of 
period 3, then f has periodic points of every period. 
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PROOF. To see this it is a matter of noting that the hypothesis of Theorem 2 is 
met. We indicate the proof for one of two cases and leave the second similar case 
to the reader. Suppose a, b and c are points of the interval with a < b < c and 
J(a) = b, J(b) = c and f(c) =a [the other case is f(a) = c, f(b) =a and /(c) = b]. 

If J-I ( c) is nondegenerate, then there exist mutually exclusive intervals H and 
K lying in [b, c] and [a, b], respectively, so that f [H J is [a, c] and f[ K] is (b, c) and 
Theorem 2 applies. 

Suppose 1-1(c) = {b}. Choose K lying in [a,b] and H lying in (b,c] so that 
/(K] = [b, c] and / (H J = [a, c] . For each i , denote by H; the set (!IH)- 1(K). Note 
that a is not in H; for i = 1, 2, 3, ... soc is not in H; for i = 2, 3, 4, ... and thus b 
is not in H; for i = 3, 4, .... Further, bis not in H 1 since c is not in K. Thus, if 
H; intersects K, then i = 2. Consequently, the hypothesis of Theorem 2 is met. 

REMARK. Condition (5) of Theorem 2 seems a bit artificial. A more natural 
condition the author experimented with in its place is a requirement that H and 
K be mutually exclusive. In fact, in each of the examples, the H and K given 
are mutually exclusive. However, replacing condition (5) with this proved to be 
undesirable in that the Sarkovskii Theorem for k = 3 is not a corollary to Theorem 
2 if the alternate condition is used. That condition (5) may not be replaced by 
t he assumption that H and K are mutually exclusive can be seen by the following. 
For the function f: (0, I] --+ [O, l J, which is piecewise linear and conta ins the points 
(0, t), ( ! , 1) and ( 1, 0), there do not exist mutually exclusive intervals H and K 
such that / [H J contains HuK and /[K] contains H . To see this suppose Hand K 
are such mutually exclusive intervals. By Theorem 2, K contains a periodic point 
of f of period 3. Note t hat / 3 has only four fixed points: 0, t, ~, and 1. Since ~ 
is a fixed point for f, K must contain one of 0, ! , and 1. We complete the proof 
by showing that each of these possibilities leads to a contradiction. 

(1) Suppose 0 is in K. Then 1 is in H since 1-1 (0) = {l } and ![HJ contains K. 
But since 1- 1(1) = { t }, t is in both Hand K. 

(2) Suppose 1 is in K. Since 1- 1 (1) = {! } , ! is in H. Since 1-1(!) = {O, V 
and Hand K do not intersect 0 is in Hand ~ is in K. But, 1-1 (0) = {l} so 1 is 
inH. 

(3) Suppose ! is in K. As before, one of 0 and i is in H . Since J-1(0) = {1}, 
if 0 is in H t hen 1 is in both H and K . Thus ~ is in H. Then 1-1 ( i) contains 
two points, i and one less than ! , so P1 = i is in H. Since 1-1 (Pi ) contains two 
points, ~ and one between ~ and ~, k is in K. Thus, 1- 1 

( k) = !~ is in H . Since 
r 1 (!~) contains two points, ~~ and one less than ! , P2 = ~~ is in H. Continuing 
this process, we get a sequence Pi, P2, . . . of points of H which converges to ! . 
Thus t is in H. 

4. Periodic points and indecomposablllty. In this section we show that 
under certain conditions the existence of a periodic point of period three in a map­
ping of a continuum M to itself implies that lim{M, !} contains an indecomposable 
continuum. Of course the result is not true in general since a rotation of 8 1 by 120 
degrees yields a homeomorphism of 8 1 and a copy of 8 1 for the inverse limit. 

THEOREM 3. Suppose J is a mapping of the continuum M into itself and x is 
a point of M which is a periodic point of f of period three. If M is atriodic and 
hereditarily tmicoherent, then lirn{M, !} contains an indecomposable continuum. 
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