Streaming consistency: a model for efficient MPSoC design

J.W. van den Brand and M. Bekooij
NXP Research
contact: jan.willem.v.d.brand @nxp.com

Abstract

Multiprocessor systems-on-chip (MPSoC) with dis-
tributed shared memory and caches are flexible when it
comes to inter-processor communication but require an ef-
ficient memory consistency and cache coherency solution.

In this paper we present a novel consistency model,
streaming consistency, for the streaming domain in which
tasks communicate through circular buffers. The model al-
lows more reordering than release consistency and, among
other optimizations, enables an efficient software cache co-
herency solution and posted writes.

We also present a software cache coherency implemen-
tation and discuss a software circular buffer administration
that does not need an atomic read-modify-write instruction.

A small experiment demonstrates the potential perfor-
mance increase of posted writes in MPSoCs with high com-
munication latencies.

Keywords: streaming, memory consistency, cache co-
herency, MPSoC, NoC

Track, topic area: T1 Systems-on-a-chip/in-a-package,
multi-processors

1 Introduction

In this paper, we consider heterogeneous Multiprocessor
Systems-on-Chip (MPSoCs) with distributed shared mem-
ory (DSM) and caches. In DSM, a single shared address
space is distributed over multiple physical memories. Pro-
cessors communicate through shared memory.

An architecture with a number of processors P with
caches $ and with multiple physical memories is shown in
Figure 1. The processors communicate through an intercon-
nect which can be a bus or a Network-on-Chip (NoC). Ex-
amples of real architectures with a similar structure are the
TI OMAP platform [5], Philips Semiconductors’ Viper [8]
and Silicon Hive architectures [3].

Multiprocessor systems in which processors communi-
cate through shared memory via caches require a cache co-
herency solution and a memory consistency model. Cache
coherency assures that processors observe up-to-date data

P
5] [[
I
interconnect
’mem’— ’mem’— ’mem’—
P P P

Figure 1. Multiprocessor system with background
memory.

in the cache. We are not aware of efficient hardware cache
coherency solutions for MPSoCs with NoCs. Therefore, we
use a software cache coherency solution for such systems.

A memory consistency model defines the order in which
memory operations from one processor appears to other
processors. It affects both performance and programming
model. Many consistency models have been proposed
for high performance computers. Sequential consistency
(SC) [15] is a model that allows no reordering of memory
operations. This is natural from a programmers perspec-
tive. Relaxing the ordering constraints enables pipelining of
shared memory accesses, which can significantly improve
performance, especially for high communication latencies.

The release consistency model (RC) [10] relaxes many
of the SC ordering constraints. RC requires a programmer
to use acquire and release synchronization sections. It al-
lows many hardware optimizations compared to SC [1].

In this paper, we propose a new consistency model,
streaming consistency (StrC), which is targeted at the
streaming domain. Examples of streaming applications
are MPEG4 [7], Digital Radio Mondiale [13] and face
recognition [14]. StrC allows more reordering and thus
more pipelining than RC. Furthermore, it enables optimiza-
tions such as efficient software cache coherency and posted
writes. These optimizations are desirable for MPSoCs, es-
pecially when a NoC interconnect is used.

IF[F.

COMPUTER
SOCIETY

10th Euromicro Conference on Digital System Design Architectures, Methods and Tools (DSD 2007)
0-7695-2978-X/07 $25.00 © 2007 IEEE

DOCKET

_ ARM

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

The key contribution of this paper is the introduction of
a new consistency model, StrC, which allows more reorder-
ing than RC and which enables optimizations.

This paper is organized as follows. In Section 2 we dis-
cuss related work. Then, in Section 3 we give a brief intro-
duction to cache coherency and memory consistency. Ex-
isting consistency models and hardware solutions are dis-
cussed and we show why these solutions are not well suited
for MPSoCs. In Section 4 we present the StrC model that
fits such systems. In Section 5 we present software solu-
tions for cache coherency and circular buffer administra-
tion. Section 6 shows the potential performance increase of
StrC by means of an experiment. Section 7 concludes.

2 Related work

Memory consistency for MPSoCs is discussed in [17].
Release consistency (RC) is chosen as consistency model
but it is not made clear why this model fits their purposes.
Our consistency model allows more reordering than RC and
enables several optimizations.

n [18], a heterogeneous architecture is presented to
which applications modeled as Kahn Process Networks
(KPN) are mapped. Buffers are mapped to background
memory. The work allows caches to be placed in so called
shells and argues, as we do, that a more efficient cache co-
herency mechanism is possible due to explicit communica-
tion. The used caches are dedicated to streaming data. We
use a generic cache with minor adjustments that is used for
streaming data as well as program data and instructions.

Experimental results in [11] show, in the context of high
performance computing, that the performance gain of us-
ing relaxed models can be significant (10-40%) compared
to strict models in systems with networks.

In [6], the coupling between memory abstraction and in-
terconnect is discussed. Cache coherency for NoC based
MPSoCs is identified as a challenging issue. Snooping and
directory based solutions are mentioned as unlikely candi-
dates. We also discard these hardware solutions (see Sec-
tion 3.4). We use a software cache coherency solution.

Experiments in [1] show that software cache coherency
solutions perform comparable to hardware solutions for a
broad class of programs. It is shown that for well-structured
programs the software based approaches out-perform hard-
ware based approaches.

3 Cache coherency and memory consistency

In this section we give a short introduction to cache co-
herency and memory consistency. We give examples of po-
tential coherency and consistency problems and we discuss
existing consistency models. Finally we describe widely
used hardware solutions for cache coherency and memory
consistency and we explain why we think that they are not
well suited for MPSoCs with NoCs.

3.1 Cache coherency

Processors in a cached shared memory multiprocessor
environment can observe different data for the same mem-
ory address. This occurs when writes from one processor
are not propagated to caches of other processors. For in-
stance, in case of a write-back cache, write data goes by
default to the cache and not to background memory. With-
out a cache coherency policy, this data is only visible for the
processor that performed the write.

Caches that have a write through policy propagate all
writes to shared memory. That does not mean that no cache
coherency policy is required. On a read, the cache con-
troller marks the fetched line associated to the read address
as valid. The write of another processor to the same ad-
dress is not visible to the first processor without a cache
coherency policy.

We illustrate cache coherency with the following exam-
ple. Consider the communicating tasks in Figure 2 which
are mapped on two cached processors, P; and P». Note
that the print instruction implies a read operation. First
the task of P, writes to A. The value of A is propagated
to shared memory if the cache of P, has a write through
policy. Next, on the read action of P5, its cache fetches
the value of A from shared memory marking the associated
cache line as valid and the task prints the result A = 1. Then
P, writes another value to A which is again propagated to
shared memory. However, on the next read, the cache of P,
will return the old value of A, A = 1, because its line was
marked valid.

A similar problem occurs if the cache of P; has a write
back policy. The value of A would then not be propagated
to shared memory in the first place and the cache of P will
read a unknown value from memory.

P, P,
A= 1;

print A;
A= 2;

print A;

Figure 2. Cache coherency problem.

In a cache coherent system, data of all memory ad-
dresses that involve interprocessor communication must be
observed with the same value for all involved processors. A
cache coherency policy is necessary to assure this.

3.2 Memory consistency

Every multiprocessor system in which processors com-
municates through a shared memory should have a mem-
ory consistency model that defines how ordering of mem-
ory accesses are handled. Shared memory accesses can be
conflicting and non-conflicting. Accesses to a shared ad-
dress are said to be conflicting if they come from different

IF[F.

10th Fiiramicrn Confaranca nan Ninital Quetam Nacinn ArchitactiiraceMathade and Tanle (NQN 20N7) NAADITT D

DOCKET

_ ARM

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

processors and at least one of them is a write. The behav-
ior of a program on a conflicting access depends on the or-
der in which the accesses are observed between processors.
In order to write a program that exhibits correct functional
behavior, a programmer must know what the ordering be-
havior of the system is. Reordering of memory operations
is only allowed if local program order of the processor is
maintained (e.g a write followed by a read from the same
address can never be reordered).

The memory consistency model of a shared memory sys-
tem specifies the order in which memory operations will
appear to execute to the programmer. Consider for exam-
ple the tasks in Figure 3, taken from [4], where the ordering
of operations influences functional behavior. The intention
of this program is clear; processor P; communicates vari-
able A to processor P, through shared memory and uses a
flag (shared variable) for synchronization. The underlying
assumption is that the write of A becomes visible to P» be-
fore the write to flag. If this assumption fails, the program
will not fulfill the programmer’s expectation.

The consistency model determines the programmer’s
view on shared memory and therefore has a major influence
on the programming model.

P, P,
A= 1; while (flag == 0);
flag = 1; print A;

Figure 3. Event synchronization through a flag.

3.3 Existing consistency models

There are many different memory consistency models
proposed in literature (see for instance [2, 4]). These consis-
tency models target off-chip multiprocessor systems such as
high performance computers with limited resource and en-
ergy consumption constraints.

Here we discuss sequential consistency [15] (SC), pro-
cessor consistency [1] (PC) and release consistency [10]
(RC). The models differ in the amount of reordering that
is allowed. Reordering can enable pipelining of shared
memory accesses. A model is relaxed compared to another
model if it allows more reordering and thus enables more
pipelining of shared memory accesses. More relaxed mod-
els are introduced to allow more pipelining.

SC requires program order to be maintained among all
operations. Every task appears to issue complete mem-
ory operations one at a time and atomically in program or-
der [4]. Writes issued by different processors appear in the
same order to all processors (write atomicity). This is very
natural from a programmer’s point of view. For instance, the
example from Figure 3 executes perfectly in a SC system.
Unfortunately, this very intuitive model poses restrictions
on hardware and compiler optimizations [2].

The PC model relaxes the ordering rules defined by the
SC model. In this model, writes issued by a single proces-
sor are observed at another processor in the same order as
they are issued. However, writes issued by different pro-
cessors do not appear in the same order to all processors
and therefore it does not satisfy write atomicity. It reflects
the reality of complex interconnects where the latencies be-
tween nodes differ for different processor pairs. Because
writes in the PC model are guaranteed to appear in order,
the example in Figure 3 will work correctly. However, pro-
grams written with the SC model in mind are not guaranteed
to work in a processor consistent system. The example in
Figure 4 taken from [4] shows a program that can fail under
PC but works under SC due to write atomicity. P reads A
which is written by P; and then writes B which in turn is
used by P5 as synchronization flag. Without write atomicity
There is no guarantee that the latest version of A, A = 1,
is visible to P53 before B = 1 is visible to P5. The wrong
value is printed even if all processors receive write data in
the order issued by the processors.

PC also allows reads that follow a write to a different
address on the same processor to be reordered with respect
to each other. Reads can be issued while a write is still in
transfer.

Py P, Ps
A = 1; —»while (A == 0);
B=1;,— while(B == 0);
print A;

Figure 4. Importance of write atomicity for SC.

RC, introduced in [10], is an even more relaxed model.
For this model, shared memory accesses are categorized and
different ordering requirements can apply to different cate-
gories. In RC terminology, a conflicting access is competing
if there is a chance that a read and write occur simultane-
ously; otherwise it’s a non-competing access. A conflicting
access is made non-competing by using synchronization.
There are two types of synchronization accesses; acquire
and release.

A system is RC if the following conditions hold (taken
from [10]):

(a) Before a non-competing load or store access is al-
lowed to perform with respect to another processor, all pre-
vious acquire accesses must be performed and,

(b) before a release access is allowed to perform with
respect to any other processor, all previous non-competing
load and store accesses must be performed, and

(c) competing accesses (e.g. acquire and release ac-
cesses) are processor consistent with respect to one another.

The conditions give ordering requirements between non-
competing and competing accesses and between competing
accesses. There are no ordering requirements between non-

Il[l"

10th Fiirnmicra Confarence nn Ninital Svstem Necinn Architectiires Methonds and Tanls (DSD 2007\ (NANDITTED

DOCKET

_ ARM

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

competing accesses.

A program written with PC in mind is not guaranteed
to work on a system with RC. The example of Figure 3
which executed perfectly under PC will have consistency
problems because the shared memory accesses are not cat-
egorized and no synchronization is added to resolve unde-
sired competing accesses.

The diagram in Figure 5 taken from [12] shows the or-
dering requirements for shared memory accesses to differ-
ent addresses from a processor in a multiprocessor system
for different consistency models. For each model, a pro-
gram is shown with shared memory accesses. The arrows
denote ordering constraints. SC allows no reordering, PC
allows reordering of writes followed by a read. RC allows
reordering of all shared memory accesses to different ad-
dresses outside the synchronization section and inside syn-
chronization sections.

Sequential Processor Release
consistency consistency consistency
= A A

/ “

W
I
™

acquire (S); acquire) ;

/

Figure 5. Comparison of three different consis-
tency models.

RC offers extensive pipelining possibilities. In Section 4
we present a consistency model targeted at streaming ap-
plications that is more relaxed than RC to allow even more
pipelining.

3.4 Hardware solutions

Shared memory architectures that constantly monitor a
bus for transactions (snooping bus) have an advantage when
it concerns cache coherency and memory consistency solu-
tions. The bus provides a global view on all memory op-
erations. Caches can observe all memory transactions by
snooping the bus and take appropriate action when a trans-
action takes place that concerns data in the cache. Also,
ordering of reads and writes according to the selected con-
sistency model can be assured by stalling bus transactions.

However, buses pose limitations on bandwidth. In prac-
tice no more than 16 processors are connected to a single
shared bus. Moreover, we consider MPSoCs with NoC
interconnects. Such interconnects do not provide global
observability of memory transactions. To the best of our
knowledge, there are no snooping solutions for NoCs and it
seems unlikely that efficient solutions will be found.

Directory based cache coherency approaches are better
suited for network interconnects. In a directory based sys-
tem, processors and caches assure that they do not violate
cache coherency and memory consistency by issuing re-
quests and notifications to a storage place (directory) that
maintains state of all relevant transactions. For cache co-
herency, the directory is notified of all relevant changes of
cache state by processors and is therefore capable of deter-
mining which cache contains the requested data.

The request and notification communication consume a
significant amount of bandwidth, especially when a strict
consistency model is used such as SC. The directory mem-
ory and control makes the hardware significantly more ex-
pensive than bus snooping hardware. Finally, the communi-
cation from cache to directory and back and then from cache
to cache or from memory to cache introduces more latency.
This latency results in additional processor stall cycles.

Therefore we conclude that both bus snooping and
directory-based approaches are not well suited for MPSoC
embedded systems with NoC interconnects. In the next sec-
tion we present a consistency model that enables an efficient
software solution.

4 Streaming consistency

The previous section discussed existing consistency
models which were designed for high performance com-
puters. This section presents a novel consistency model,
streaming consistency (StrC), targeted at the streaming do-
main. It allows more pipelining than RC and enables op-
timizations such as an efficient software cache coherency
solution which fits MPSoCs with NoCs. First we give a def-
inition of StrC. Then, in Section 4.2 optimizations enabled
by StrC are presented.

4.1 Streaming consistency model

StrC targets systems that run streaming applications. In-
ter processor communication in such systems is performed
by sharing units of data through circular buffers that are lo-
cated in shared memory. These circular buffers can have
multiple producers and consumers.

As for RC, StrC only has ordering constraints with re-
spect to acquire and release calls. However, StrC associates
these synchronization variables to circular buffers. A sys-
tem is streaming consistent if the following conditions hold:

(a) before an access to a circular buffer b is allowed to
be performed with respect to any other processor, the asso-
ciated acquire access, acquire(b), must be performed, and

Il[l"

10th Fiirnmicra Confarence nn Ninital Svstem Necinn Architectiires Methonds and Tanls (DSD 2007\ (NANDITTED

DOCKET

_ ARM

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

(b) before a release(b) access is allowed to perform
with respect to any other processor, the access to the cir-
cular buffer b to which the release is associated must be
performed, and

(c) acquire and release accesses for a circular buffer are
processor consistent with respect to each other, and

(d) circular buffers are only allowed to be accessed
within synchronization sections.

StrC allows reordering of synchronization sections that
are associated to different buffers, i.e. such synchronization
sections are allowed to overtake each other. This is differ-
ent from RC where synchronization sections can overlap but
can never overtake each other. RC conditions allow overlap
as long as all accesses are performed before the following
release and after the preceding acquire. Figure 6(a), taken
from [10], shows the overlap possibilities for RC. Synchro-
nization sections can never overtake preceding synchroniza-
tion sections.

acquire

K acquire
memory

access memory
access

memory

release =

(a) RC

| acquire(S,) | | acquire(S,) |

shared mem
access

shared mem
access

| release(S,) | | release(S,) |

(b) StrC

Figure 6. Overlap possibilities for SC, RC and StrC.

The example in Figure 7 illustrates why these ordering
constraints are crucial for RC. The example shows two pro-
cesses, Py and P». P; writes a value to a outside a synchro-
nization section and writes a value to b inside a synchroniza-
tion section. The RC conditions guarantee that the write to
a is visible to other processors after the release. P, uses a
and b. Availability of a after the release is guaranteed by
the RC conditions. This kind of implicit synchronization is
not allowed in StrC as every write or read to shared mem-
ory must take place inside a synchronization section and is
associated to that section. Therefore, StrC has no ordering
constraints between synchronization sections that are asso-
ciated to different buffers as shown in Figure 6(b).

An example of an application that can exploit the over-
take possibility of StrC is shown in Figure 8. It shows a
streaming application where data is read from bufferl fol-

10th Furnmicra Confarance nn Dinital Quetem Dacinn Architectiiree Mathnde and Tanle (DSND 2007\

[A)OCKET

LARM

P, Py

a=1
acquire (S;)
b =2

release (S;)
acquire (S;)
c=5D
release (S;)
d=a+ c

Figure 7. Implicit synchronization in RC.

lowed by a computation with the obtained data followed by
a write of the new value to buffer2 over and over again. The
read from bufferl for the second iteration can start imme-
diately after the first read. The read from bufferl can be
pipelined with the computation and the write to buffer2.

On a RC system, the acquire of bufferl for the second
iteration has to wait for the acquire of buffer2 of the first
iteration. Also, bufferl can not be released before buffer2 is
released. This limits the pipelining possibilities.

while (true)
{
acquire (bufferl);
a=read (bufferl);

release (bufferl);

//data available?

//release space

b=computation(a);

acquire (buffer2);
write (buffer2,b);

release (buffer2);

//space available?

//release data

(a) Code

computation: [comp.] [comp. | [comp. |

[r(out1) | r(butt) | ribuf1) |

communication:

[wibuf2) | w(buf2) | w(buf2) |

- 5
time

(b) Overlap

Figure 8. StrC overlap example.

StrC relaxes RC. In StrC, the ordering constraints only
have to be obeyed with respect to a certain circular buffer.
A program written for StrC will run properly on a RC sys-
tem because a program written for a more relaxed model
executes properly on a system with a stricter model.

Concerning the programming model, StrC requires pro-
grammers to explicitly program shared memory communi-
cation through circular buffers in synchronization sections.
Streaming applications expose this explicit communication.
StrC does therefore not complicate programming.

Besides more pipelining possibilities, StrC also enables
optimizations which are presented in the next section.

1EE l"

Find authenticated court documents without watermarks at docketalarm.com.

NOANADITTCD

https://www.docketalarm.com/

Nsights

Real-Time Litigation Alerts

g Keep your litigation team up-to-date with real-time
alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm’s cloud-native
O docket research platform finds what other services can't.
‘ Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips

° Learn what happened the last time a particular judge,

/ . o
Py ,0‘ opposing counsel or company faced cases similar to yours.

o ®
Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

-xplore Litigation

Docket Alarm provides insights to develop a more
informed litigation strategy and the peace of mind of

knowing you're on top of things.

API

Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND

LEGAL VENDORS

Sync your system to PACER to
automate legal marketing.

WHAT WILL YOU BUILD? @ sales@docketalarm.com 1-866-77-FASTCASE

