
-.-..
00
~

®

The
Complete and
Unabridged

Foreword, Bill Gates
General Editor, Ray Duncan

---'"'------------~--- --

Canon Exhibit 1108

The

Encyclopedia

Canon Exhibit 1108

·.~

The

Encyclopedia

Microsoft Press
Redmond, Washington

1988

Ray Duncan, General Editor

Foreword by Bill Gates
Canon Exhibit 1108

Published by
Microsoft Press
A Division of Microsoft Corporation
16011 NE 36th Way, Box 97017, Redmond, Washington 98073-9717
Copyright © 1988 by Microsoft Press
All rights reserved No part of the contents of this book
may be reproduced or transmitted in any form or by any means
without the written permission of the publisher

Library of Congress Cataloging in Publication Data
The MS-DOS encyclopedia : versions 1 O through 3 .2 /
editor, Ray Duncan

p cm
Includes indexes
1 MS-DOS (Computer operating system) I Duncan, Ray, 1952-
II Microsoft Press
QA76 76 063M74 1988 87-21452
005 4'4~-dc19 CIP
ISBN l-55615-174-8

Printed and bound in the United States of America

123456789RMRM321098

Distributed to the book trade in the
United States by Harper & Row

Distributed to the book trade in
Canada by General Publishing Company, ltd

Distributed to the book trade outside the
United States and Canada by Penguin Books Ltd

Penguin Books ltd , Harmondsworth, Middlesex England
Penguin Books Australia ltd Ringwood, Victoria, Australia
Penguin Books NZ ltd, 182-190 Wairau Road, Auckland 10, New Zealand

British Cataloging in Publication Data available

IBM®, IBM AT®, PS/2®, and Top View® are registered trademarks of International Business Machines Corporation
GW-BASIC®, Microsoft® MS® MS-DOS®, SOFTCARD® and XENIX® are registered trademarks of
Microsoft Corporation

Microsoft Press gratefully acknowledges permission to reproduce material listed below
Page 4: Courtesy The Computer Museum
Pages 5, 11, 42: Intel 4004, 8008, 8080, 8086, and 80286 microprocessor photographs Courtesy Intel Corporation
Page 6: Reprinted from Popular Electronics, January 1975 Copyright © 1975 Ziff Communications Company
Page 13: Reprinted with permission of Rod Brock
Page 16: Reprinted with permission of The Seattle Times Copyright© 1983
Pages 19, 34, 42: IBM PC advertisements and photographs of the PC, PC/XT~ and PC/AT reproduced with
permission of International Business Machines Corporation Copyright© 1981, 1982, 1984 All rights reserved
Page 21: 'Big IBM's 1 ittle Computer' Copyright© 1981 by The New York Times Company Reprinted by
permission
' IBM Announces Ne.w Microcomputer System· Reprinted with permission of Info World Copyright© 1981
IBM really gets personal" Reprinted with permission of Personal Computing Copyright© 1981
'Personal Computer from IBM Reprinted from DATA MAI ION Magazine October 1981 Copyright © by Cahners

Publishing Company
IBM's New line likely to Shake up the Market for Personal Computers Reprinted by permission of I he Wall

Street journal Copyright© Dow Jones & Company, Inc. 1981 All Rights Re.served
Page 36: Irresistible DOS 3 O and "The Ascent of DOS Reprinted from PC Tech journal
December 1984 and October 1986 Copyright© 1984 1986 Ziff Communications Company
' MS~DOS 2 00: A Hands-On Tutorial" Reprinted by permission of PC World from Volume 1, Issue 3 March 1983,
published at 501 Second Street, Suite 600, San Francisco, CA 94107

Special thanks to Bob O'Rear; Aaron Reynolds, and Kenichi Ikeda

r
I
I

l

Encyclopedia Staff

Editor-in-Chief: Susan Lammers

Editorial Ditector: Patricia Pratt

Senior· Editor: Dorothy l Shattuck

Senior· Technical Editor: David l Rygmyr

Special Projects Editor: Sally A. Brunsman

Editorial Coordinator: Sarah Hersack

Associate Editors and Technical Editots:
Pamela Beason, Ann Becherer, Bob Combs,
Michael Halvorson, Jeff Hinsch, Dean Holmes,
Chris Kinata, Gary Masters, Claudette Moore,
Steve Ross, Roger Shanafelt, Eric Stroo,
Lee I ho mas, JoAnne Woodcock

Copy Chief: Brianna Morgan Prooffeaders:
Kathleen Atkins, Julie Carter, Elizabeth
Eisenhood, Matthew Eliot, Patrick Forgette,
Alex Hancock, Richard Isomaki, Shawn Peck,
Alice Copp Smith

Editorial Assistants: Wallis Bolz, Charles Brod,
Stephen Brown, Pat Erickson, Debbie Kem, Susanne
McRhoton, Vilm Nguyen, Cheryl VanGeystel

Index: Shane-Aimstrong Information Services

Production: larry Anderson, Jane Bennett, Rick
Bourgoin, Darcie S Fur Ian, Nick Gregoric, Peggy
Herman, Iisa Iversen, Rebecca Johnson, Ruth Pettis,
Russell Steele, Jean Ifenary, Joy Ulskey

Matketing and Sales Dir'ectol! James Brown

Dir'ector of Pt'Oduction: Christopher D Banks

Publishei·: Min S Yee

Canon Exhibit 1108

i
'

Contributors

Ray Duncan, Genet·alEditm Duncan received a BA. in Chemistry from the University of Califor-
nia, Riverside, and an M D. from the University of California, Los Angeles, and subsequently received
specialized training in Pediatrics and Neonatology at the Cedars-Sinai Medical Center in Los Angeles He
has written many articles for personal computing magazines, including BYTE PC Magazine, Dr. Dobb's
Journal and 'So/talk/PC, and is the author of the Microsoft Press book Advanced MS-DO.S He is the
founder of Laboratory Microsystems Incorporated a software house specializing in FORJ H interpreters
and compilers

Sreve Bostwick Bostwick holds a B.S in Physics from the University of California, Los Angeles, and
has over 20 years' experience in scientific and commercial data processing. He is president of Query
Computing Systems, Inc , a software firm specializing in the creation of systems for applications that
interface microcomputers with specialized hardware He is also an instructor for the UCI A Extension
Department of Engineering and Science and helped design their popular Microprocessor Hardware and
Software Engineering Certificate Program

Keith Burgoyne Born and raised in Orange County, California, Burgoyne began programming in
1974 on IBM 370 mainframes. In 1979, he began developing microcomputer products for Apples,
TRS"80s, Ataris, Commodores, and IBM PCs He is presently Senior Systems Engineer at Local Data of
Ibrrance, California, which is a major producer of IBM 3174/3274 and System 3X protocol conversion
products His pr~vious writing credits include numerous user manuals and tutorials

Robert A. Byet's Byers is the author of the bestselling Everyman '.s Database Primer. He is presently
involved with the Emerald Bay database project with RSPI and Migent, Inc

Thom Hogan During 11 years working with personal computers, Hogan has been a software devel-
oper, a programmer, a technical writer, a marketing manager; and a lecturer He has written six books
numerous magazine articles, and four manuals. Hogan is the author of the forthcoming Microsoft Press
book PC Programmer '.s Sourcebook.

/imK,yk Kyle has 23 years' experience in computing Since 1967 he has been a systems program­
mer with strong telecommunications orientation His interest in microcomputers dates from 1975 He is
currently MIS Administrator for BI I Systems, Inc , the OEM Division of Banclec Inc manufacturers of
MICR equipment for the banking industry He has written 14 books and numerous magazine articles
(mostly on ham radio and hobby electronics) and has been primary Forum Administrator for Computer
Language Magazine s Cl MFORUlvI on CompuServe since early 1985

Gordon Letwin I.etwin is Chief Architect Systems Software Microsoft Corporation He is the author
of Jn')fde OS/2, published by Microsoft Press

Charles Petzold Petzold holds an M S in Mathematics from Stevens Institute of Technology Before
launching his writing career, he worked 10 years in the insurance industry, programming and teaching
programming on IBM mainframes and PCs He is the author of the Microsoft Press book Programming
Windows 2 0, a contributing editor to PC Magazine and a frequent contributor to the Microsoft ~ystems
Journal

Chip Rabi'IWWitz Rabinowitz has been a programmer for 11 years He is presently chief program­
mer for Productivity Solutions, a microcomputer consulting firm based in Pennsylvania and has been
Forum Administrator for the CompuServe MICROSOFT SIG since 1986

Contributors Vii

Canon Exhibit 1108

viii

Jim Tomlin Tomlin holds a B S and an M.S in Mathematics He has programmed at Boeing
Microsoft, and Opcon and has taught at Seattle Pacific. University He now heads his own company in
Seattle, which specializes in PC systems programming and industrial machine vision applications

Richard Wilton Wilton has programmed extensively in PI /1, FORTRAN, FORTH, C, and several
assembly languages He is the author of Programmer ·s Guide to PC & PS/2 Video ~ystems, published
by Microsoft Press

Van WolveTton A professional writer since 1963, Wolverton has had bylines as a newspaper reporter,
editorial writer, political columnist, and technical writer He is the author of Running },f.S-DOS and
S'upercha-rging MS-DOS, both published by Microsoft Press

Willlam Wong Wong holds engineering and computer science degrees from Georgia Ie.-ch and
Rutgers University He is director of PC labs and president of Logic Fusion Inc. His interests include
operating systems, computer languages, and artificial intelligence He has written numerous magazine
articles anda book on MS-DOS

/oAnne Woodcock Woodcock, a former senior editor at Microsoft Press, has been a writer for
Encyclopaedia Britannica and a freelance and project editor on marine biological studies at the
University of Southern California She is co-editor (with Michael Halvorson) of _KEND< at Wor:k and
co-author (with Peter Rinearson) of Microsoft Word Style Sheets both published b'y Microsoft Press

Special Technical Advisor
Mark Zbikowski

Technical Advisors

Paul Allen Michael Geary
Steve Ballmer Bob Griffin
Reuben Borman Doug Hogarth
Rob Bowman James W Johnson
John Butler Kaame-1 Kermaani
Chuck Carroll Adrian King
Mark Chamberlain Reed Koch
David Chell James Landowski
Mike Colee Chris I.arson
Mike Courtney I ho mas 1.ennon
Mike Dryfoos DanLipkie
Rachel Duncan Jl..1arc McDonald
Kurt Eckhardt Bruce McKinney
Eric Evans Pascal Martin
Rick Farmer Estelle Mathers
Bill Gates Bob Matthews

The MS-DOS Encyclopedia

David Melin John Pollock
Char !es Mergentime Aaron Reynolds
Randy Nevin Darryl Rubin
Dan Newell Ralph Ryan
Tani Newell Karl Schulmeisters
David Norris Rajen Shah
IYiike O'Leary Barry Shaw
BobORear Anthony Short
Mike Olsson Ben Slivka
Iarry Osterman JonSmirl
Ridge Ostling Betty Stillmaker
Sunil Pai John Stoddard
I im Paterson Dennis Tillman
Gary Perez Greg Whitten
Chris Peters Natalie Yount
Charles Petzold Steve Zeck

I
I

Contents

Foreword by Bill Gates

Preface by Ray Duncan

Introduction

Section I: The Development of MS-DOS

Section II: Programming in the MS-DOS Environment

Part A: Structur·e of MS-DOS

Article 1: An Introduction to MS-DOS 51
Article 2: I he Components of MS-DOS 61
Article 3: MS-DOS Storage Devices 85

Part B: Progr'alllDling for· MS-DOS

Article 4:
Article 5:
Article 6:
Article 7:
Article 8:

Structure of an Application Program 107
Character Device Input and Output 149
Interrupt-Driven Communications 167
File and Record Management 247
Disk Directories and Volume Labels 279

Article 9: Memory Management 297
Article 10: I he MS-DOS EXEC Function .321

PartC: CustomizingMS-DOS

Article 11: I erminate-and-Stay-Resident Utilities 347
Article 12: Exception Handlers 385
Article 13: Hardware Interrupt Handlers 409
Article 14: Writing MS-DOS Filters 429
Article 15: Installable Device Drivers 44/

Part D: Dir·ections of MS-DOS

Article 16: Writing Applications for Upward Compatibility 489
Article 17: Windows 499

Part E: Progr·amming Tools

Article 18: Debugging in the MS-DOS Environment 541
Article 19: Object Modules 643
Article 20: The Microsoft Object linker 701

Contents

xiii

X'V

xvii

1

47

ix
Canon Exhibit 1108

Section ill: User Commands

Introduction 725

User commands are listed in alphabetic order I his section includes ANSI .SYS,
BAICH, CONFIG SYS, DRIVER SYS, EDI IN, RAMDRIVE SYS, and VDISKSYS

Section IV: Programming Utilities

Introduction 963

CREF 967
EXE2BIN 971
EXEMOD 974
EXEPACK 977
IIB 980
lINK 987
MAKE 999
MAPSYM 1004
MASM 1007

Micr'Osoft Debugger,;:

DEBUG 1020
SYMDEB 1054
CodeView 1157

Section V: System Calls

Introduction 1177

System calls are listed in numeric order

Appendixes

x

Appendix A:
AppendixB:
AppendixC:
AppendixD:
AppendixE:
AppendixF:
AppendixG:
AppendixH:
Appendix!:
Appendix):
AppendixK:
Appendix I:
AppendixM:
AppendixN:
AppendixO:

MS-DOS Version 3 3 1433
Critical Error Codes 1459
Extended Error Codes 1461
ASCII and IBM Extended ASCII Character Sets 1465
EBCDIC Character Set 1469
ANSI SYS Key and Extended Key Codes 1471
File Control Block (FCB) Structure 1473
Program Segment Prefix (PSP) Structure 1477
8086/8088/80286/80386 Instruction Sets 1479
Common MS-DOS Filename Extensions 1485
Segmented (New) EXE File Header Format 1487
Intel Hexadecimal Object File Format 1499
8086/8088 Software Compatibility Issues 1507
An Object Module Dump Utility 1509
IBM PC BIOS Calls 1513

The MS-DOS Encyclopedia

723 Indexes 1531

Subject 1533
Commands and System Calls 1565

961

1175

1431

Contents xi

Canon Exhibit 1108

Foreword

Microsoft's MS-DOS is the most popular piece of software in the world It runs on more
than 10 million personal computers worldwide and is the foundation for at least 20,000
applications-the largest set of applications in any computer environment As an industiy
standard for the family of 8086-based microcomputers, MS-DOS has had a central role in
the personal computer revolution and is the most significant and enduring factor in fwc
thering Microsoft's original vision- a computer for every desktop and in every home The
challenge of maintaining a single operating system over the entire range of 8086-based
microcomputers and applications is incredible, but Microsoft has been committed to meet­
ing this challenge since the release of MS-DOS in 1981 The true measure of our success
in this effort is MS-DOS's continued prominence in the microcomputer industry

Since MS-DOS's creation, more powerful and much-improved computers have entered the
marketplace, yet each new version of MS-DOS reestablishes its position as the foundation
for new applications as well as for old Tb explain this extraordinary prominence, we must
look to the origins of the personal computer industry. The tlu·ee most significant factors in
the creation of MS-DOS were the compatibility revolution, the development of Microsoft
BASIC and its widespread acceptance by the personal computer industry, and IBM's deci­
sion to build a computer that incorporated 16-bit technology

I he compatibility revolution began with the Intel 8080 microprocessor I his technolog­
ical breakthrough brought unprecedented opportunities in the emerging microcomputer
industry, promising continued improvements in power, speed, and cost of desktop com­
puting. In the minicomputer market, every hardware manufacturer had its own special
instruction set and operating system, so software developed for a specific machine was in­
compatible with the machines of other hardware vendors This specialization also meant
tremendous duplication of effort - each hardware vendor had to write language compilers,
databases, and other development tools to fit its particular machine. Microcomputers
based on the 8080 microprocessor promised to change all this because different manu­
facturers would b~y the same chip with the same instruction set

From 1975 to 1981(the8-bit era of microcomputing), Microsoft convinced virtually
every personal computer manufacturer- Radio Shack, Commodore, Apple, and dozens
of others- to build Microsoft BASIC into its machines For the first time, one common lan­
guage cut across all hardware vendor lines The success of our BASIC demonstrated the
advantages of compatibility: IO their great benefit, users were finally able to move appli­
cations from one vendor's machine to another

Most machines produced dwing this early period did not have a built-in disk drive
Gradually, however, floppy disks, and later fixed disks, became less expensive and more
common, and a number of disk-based programs, including WordStar and dBASE, entered
the market A standard disk operating system that could accommodate these develop­
ments became extremely important, leading lifeboat, Microsoft, and Digital Research all to
support CP/M-80, Digital Research's 8080 DOS

Foreword xi'ii

Canon Exhibit 1108

xiv

The 8-bit era proved the imp01tance of having a multiple-manufacturer standard that
permitted the free interchange of programs It was imp01tant that software designed for
the new 16-bit machines have this same advantage No personal computer manufacturer in
1980 could have predicted with any accuracy how quickly a third-party software industry
would grow and get behind a strong standard-a standard that would be the software
industry's lifeblood The intricacies of how MS-DOS became the most common 16-bit
operating system, in part through the w01k we did for IBM, is not the key point here The
key point is that it was inevitable for a popular operating system to emerge for the 16-bit
machine, just as Microsoft's BASIC had prevailed on the 8-bit systems

It was overwhelmingly evident that the personal computer had reached broad acceptance
in the market when Time in 1982 named the personal computer "Man of the Year" MS­
DOS was integral to this acceptance and popularity, and we have continued to adapt
MS-DOS to supp01t more powerful computers without sac1ificing the compatibility that is
essential to keeping it an industry standard The presence of the 80386 microprocessor
guarantees that continued investments in Intel-architecture software will be worthwhile

Our goal with The M.S-DOS Encyclopedia is to provide the most thorough and accessible
resource available anywhere for MS-DOS programmers The length of this book is many
times greater than the source listing of the fir st version of MS-DOS- evidence of the
growing complexity and sophistication of the operating system I he encyclopedia will be
especially useful to software developers faced with preserving continuity yet enhancing
the portability of their applications

Our thriving industry is committed to exploiting the advantages offered by the protected
mode introduced with the 80286 microprocess01 and the virtual mode introduced with the
80386 microprocess01 MS-DOS will continue to play an integral part in this eff01t faster
and more powerful machines running Microsoft OS/2 mean an exciting fliture of multi­
tasking systems, networking, improved levels of data protection, better hardware memory
management for multiple applications, stunning graphics systems that can display an inno­
vative graphical user interface, and communication subsystems MS-DOS version 3, which
runs in real mode on 80286-based and 80386-based machines, is a vital link in the Family
API of OS/2 Users will continue to benefit from ou1 commitment to improved operating­
system performance and usability as the foture unfolds

Bill Gates

The M'S-DOS Encyclopedia

Preface

In the space of six years, MS-DOS has become the most widely used computer operating
system in the world, running on more than 10 million machines. It has grown, matured,
and stabilized into a flexible, easily extendable system that can support netwm king,
graphical user interfaces, nearly any peripheral device, and even CD ROMs containing
massive amounts of on-line information MS-DOS will be with us for many years to come
as the platform for applications that run on low-cost, 8086/8088-based machines

Not surprisingly, the success of MS-DOS has drawn many Wiiters and publishers into its
01 bit The number of books on MS-DOS and its commands, languages, and applications
dwarfs the list of titles for any other operating system Why, then, yet another book on
MS-DOS? And what can we say about the operating system that has not been said already?

First, we have written and edited The MSCDOS Encyclopedia with one audience in mind:
the community of working programmers We have therefore been free to bypass elemen­
tary subjects such as the number of bits in a byte and the interpretation of hexadecimal
numbers Instead, we have emphasized detailed technical explanations, working code ex­
amples that can be adapted and incorporated into new applications, and a systems view of
even the most common MS-DOS commands and utilities

Second, because we were not subject to size restrictions, we have explored topics in depth
that other MS-DOS books mention only briefly, such as exception and error handling,
interrupt-driven communications, debugging strategies, memory management, and install­
able device drivers We have commissioned definitive articles on the relocatable Object
modules generated by Microsoft language translators, the operation of the Microsoft Ob­
ject linker, and terminate-and-stay-resident utilities We have even interviewed the key
developers of MS-DOS and drawn on their files and bulletin boards to offer an entertain­
ing, illustrated account of the origins of Microsoft's standard-setting operating system

Finally, by combining the viewpoints and experience of non-Microsoft programmers and
writers, the expe1tise and resources of Microsoft software developers, and the publishing
know-how of lvlicrosoft Press, we have assembled a unique and comprehensive reference
to MS-DOS services, commands, di1ectives, and utilities In many instances, the manu­
scripts have been reviewed by the autho1s of the Microsoft tools described

We have made eve1y effort during the creation of this book to ensure that its contents are
timely and trustworthy In a work of this size, however, it is inevitable that errors and omis­
sions will occur If you discover any such errors, please b1ing them to our attention so that
they can be repaired in future printings and thus aid your fellow prog1amme1s To this
end, Microsoft Press has established a bulletin board on MCI Mail for posting corrections
and comments. Please refer to page xvi' for more information

Ray Duncan

Preface xv

Canon Exhibit 1108

xvi

Updates to Tiie MS-DOS Encyclopedia

Periodically, the staff of The MS' DOS Encyclopedia will publish updates ~ontairiiijg
clarifications ·or coriections to- the information -p_res_eilted in_ thi~ _curre!lt;editiSn. __ !o __ ob_-·
tain·iriformation about receiving these updates, .. pleasec.hecktlie·appropr.iate.·boxon.\he
business reply card in the back of this book, or send yournameand ~ddress to :MScDOS
Encyclopedia Update Iriformation, c/o Microsoft Press, 16011NE36thway, Box.97017,
Redmond, WA 98073-9717 · ·

·llull<:tin•Board•Servke

Microsoft Press is sponsoring a loulletinboard ontvjC! Mafrforpo~\i~g~dreceivingcor­
rections and comm.entsfor The.MS-DOS Encyclopedia. Jb,use.this serVice, ·log on. to MCI
Mail and, .after receiving the, prompt, type

VIEW -;(E:nt er>

The Bulletin.Board name. prompt wilLbedisplayed. Then.type

MSFRESS -<Enter>

to connect to the Microsoft Press bulletin board. A list ()ft he individllf!I MlcrosoftPress
bulletin boards will be displayed; simply choose.MSPressDOSENCYAo eht.er the en­
cyclopedia's bulletin boa1d.

Special Co1IlparuonDiskOffeJ:' ..

MicrosoftPress has created a set.of valuable, time saving companion diskst0 !IheM§-DOS
Encyclopedia, They.contain·the·1·outines·.and.func.tionaLprograms:that·~re Listedth;oughc
out. this book ~thousands of .lines of executable code Conveniently organized, these
disks will save you hours oftyping time and allow you to start using the code immediately
The companion disks are only availabledirectly fwm Mi~rosoft Press To ()Ider, use the
special bind -in card in the back of the book or send $49.95· for each set of. disks, plus sales
tax ifapplicable and $5 50 per disk for domestic postage and handling,. $8 00 per disk for
foreign orders, to: Microsoft Press,.Attn: Companion DiskOffer,.219I920thAve SE, Box
3011, Bothell, WA 98041,3011 Please specify5,25-inchor 3 Scinchformat Paymentmustbe
in US funds You may pay by check or money order (payable.to Microsoft Press), or by.
American Express, VISA, oI MasterCard; pleasednclude-your:credit Card :nuffibei: and ,ex­
piration date All domestic ordets are shipped '2nd day ait upon .re~eipt of order .by
Microsoft

CA residents 5% plus local option tax, CI7-So/o, FL 6%, MA-5%, .1'vil\f 6°10; MO' 4 225o/o, _N-Y-4o/o,pius local
option-tax, WAState78%

The MS-D05 Encyclopedia

Introduction

The MS'DOS Encyclopedia is the most comprehensive reference work available on
Microsoft's industry-standard operating system Written for experienced microcomputer
users and programmers, it contains detailed, version-specific information on all the
MS-DOS commands, utilities, and system calls, plus atticles by recognized experts in
specialized areas of MS-DOS programming. This wealth of material is organized into
major topic areas, each with a format suited to its content Special typographic conven­
tions are also used to clarify the material

Organization of the Book

The MS'DOS Encyclopedia is organized into five major sections, plus appendixes Each
section has a unique internal organization; explanatory introductions are included where
appropriate

Section I, The Development of MS-DOS, presents the history of Microsoft's standard­
setting operating system fr~m its immediate predecessors through version 3 2 Numerous
photographs, anecdotes, and quotations ate included

Section II, Programming in the Ms.:.nos Environment, is divided into five parts: Structure
of MS-DOS, Programming for MS-DOS, Customizing MS-DOS, Directions of MS-DOS, and
Programming Tools Each part contains several articles by acknowledged experts on these
topics The articles include numerous figures, tables, and programming examples that pro­
vide detail about the subject

Section III, User Commands, presents all the MS-DOS internal and external commands in
alphabetic order, including ANSI SYS, BATCH, CONFIG SYS, DRIVER SYS, EDLIN,
RAMDRIVE SYS, and VDISKSYS Each command is presented in a structwe that allows
the experienced user to quickly review syntax and restrictions on variables; the less­
experienced user can refer to the detailed discussion of the command and its uses

Section IV, Programming Utilities, uses the same format as the User Commands section to
present the Microsoft programming aids, including the DEBUG, SYMDEB, and Code View
debuggers Although some of these utilities are supplied only with Microsoft language
products and are not included on the !vIS-DOS system or supplemental disks, their use is
intrinsic to programming for MS-DOS, and they are therefOre included to create a com­
prehensive reference

Introduction xvii

Canon Exhibit 1108

Section V, System Calls, documents Interrupts 20H through 27H and Intenupt 2FH The
Interrupt 21H £Unctions are listed in individual entries. I his section, like the User Com­
mands and Programming Utilities sections, presents a quick review of usage for the ex­
perienced user arid also provides extensive notes for the less-experienced programmer

The 15 appendixes provide quick-reference materials, including a summary of MS-DOS
version 3 3, the segmented (new) EXE file header format, an object file dump utility, and
the Intel hexadecimal object file format. Much of this material is organized into tables or
bulleted lists for ease of use

I he book includes two indexes - one organized by subject and one organized by com­
mand name or system-call number The subject index provides comprehensive references
to the indexed topic; the command index references only the major entry for the com­
mand or system call

Program Listings

The MS-DOS Encyclopedia contains numerous program listings in assembly language, C,
and QuickBASIC, all designed to run on the IBM PC family and compatibles Most of these
programs are complete utilities; some are routines that can be incorporated into function­
ing programs Vertical ellipses are often used to indicate where additional code would be
supplied by the user to create a more functional program. All program listings are heavily
commented and are essentially self-documenting

The programs were tested using the Microsoft Macro Assembler (MASM) version 4 0, the
Microsoft C Compiler version 4 0, orthe Microsoft QuickBASIC Compiler version 2 O

The functional programs and larger routines are also available on disk Instructions for
ordering are on the page preceding this introduction and on the mail-in card bound into
this volume

Typography and Terminology

Because The MS-DOS Encyclopedia was designed for an advanced audience, the reader
generally will be familiar with the notation and typographic conventions used in this
volume However, for ease of use, a few special conventions should be noted

Typographic conventions

Capital letters are used for MS-DOS internal and external commands in text and syntax
lines. Capital letters are also Used for filenames in text

xviii The MS-DO.S Encyclopedia

Italic font indicates userc..supplied variable names, procedure names in text, parameters
whose values are to be supplied by the user, reserved words in the C programming lan­
guage, messages and return values in text, and, occasionally, emphasis

A typographic distinction is made between lowercase 1 and the numeral 1 in both text and
program listings

Cross .. references appear in the form SECTION NAME: PART NAME, COMMAND NAME, oR IN­
TERRUPT NUMBER: Article Name or Function Number

Color indicates user input and program examples

Terminology

Although not an official IBM name, the term PG'DOS in this book means the IBM imple­
mentation of MS-DOS If PC-DOS is referenced and the information differs from that for
the related MS-DOS version, the PC-DOS version number is included. To avoid confUsion,
the term DOS is never used without a modifier

I he names of special function keys are spelled as they are shown on the IBM PC keyboard.
In particular, the execute key is called Enter, not Retwn When <E'nter> is included in a
user-entry line, the user is to press the Enter key at the end of the line

The common key combinations, such as Ctrl-C and Ctr 1-Z, appear in this form when the
actual key to be pressed is being discussed but are written as Control-C, Control-Z, and so
forth when the resulting code is the true reference I hus, an article might reference the
Control-Chandler but state that it is activated when the user presses Ctrl-C

Unless specifically indicated, hexadecimal numbers are used throughout. I hese numbers
are always followed by the designation H (h in the code portions of program listings)
Ranges of hexadecimal values are indicated with a dash- for example, 07-0AH

The notation (morn) appears in italic atthe bottom of program listings and tables that are
continued on the next page I he complete caption or table title appears on the fir st page
of a continued element and is designated C'ontinued on subsequent pages

Introduction xi.x

Canon Exhibit 1108

Canon Exhibit 1108

1975

The Development of MS-DOS

To many people who use personal computers, MS-DOS is the key that unlocks the power
of the machine .. It is their most visible connection to the hardware hidden inside the
cabinet, and it is through MS-DOS that they can run applications and manage disks and
disk files

In the sense that it opens the door to doing work with a personal computer; MS-DOS is
indeed a key, and the lock it fits is the Intel 8086 family of microprocessors .. MS-DOS and
the chips it works with are, in fact, closely connected- so closely that the story of
MS-DOS is really part of a larger history that encompasses not only an operating system
but also a microprocessor and, in retrospect, part of the explosive growth of personal
computing itself.

Chronologically, the history of MS-DOS can be divided into three parts. First came the
formation of Microsoft and the events preceding Microsoft's decision to develop an
operating system. Then came the creation of the first version of MS-DOS. Finally, there is
the continuing evolution of MS-DOS since its release in 1981

Much of the story is based on technical developments, but dates and facts alone do not
provide an adequate look at the past. Many people have been involved in creating MS-DOS
and directing the lines along which it continues to grow To the extent that personal opin­
ions and memories are appropriate, they are included here to provide a foller picture of
the origin and development of MS-DOS

Before MS-DOS

The role of International Business Machines Corporation in Microsoft's decision to create
MS-DOS has been well publicized. But events, like inventions, always build on prior ac­
complishments, and in this respect the roots of MS-DOS reach farther back, to four hard­
ware and software developments of the 1970s: Microsoft's disk-based and stand-alone
versions of BASIC, Digital Research's CP/M-80 operating system, the emergence of the
8086 chip, and a disk operating system for the 8086 developed by Tim Paterson at a hard­
ware company called Seattle Computer Products

Microsoft and BASIC

On the surface, BASIC and MS-DOS might seem to have little in common, but in terms of
file management, MS-DOS is a direct descendant of a Microsoft version of BASIC called
Stand-alone Disk BASIC

Before Microsoft even became a company, its founders, Paul Allen and Bill Gates, de­
veloped a version of BASIC for a revolutionary small computer named the Altair; which
was introduced in January 1975 by Micro Instrumentation Telemetry Systems (MITS) of

Section I The Development of MSCDQS 3

Canon Exhibit 1108

1975

4

The Altair: Christened one evening shortly before its appearance on the cover of Popular Electronics
magazine, the computer was named for the night's destination of the star·ship Enterprise The photograph
clearly shows the input switches on the front panel of the cabinet

Albuquerque, New Mexico. Though it has long been eclipsed by other, more powerful
makes and models, the Altair was the first "personal" computer to appear in an environ­
ment dominated by minicomputers and mainframes It was, simply, a metal box with a
panel of switches and lights for input and output, a power supply, a motherboard with 18
slots, and two boards One board was the central processing unit, with the 8-bit Intel 8080
microprocessor at its heart; the other board provided 256 bytes of random-access memory
This miniature computer had no keyboard, no monitor, and no device for permanent
storage, but it did possess one great advantage: a price tag of $397

Now, given the hindsight of a little more than a decade of microcomputing history, it is
easy to see that the Altair's combination of small size and affordability was the thin edge
of a wedge that, in just a few years, would move everyday computing power away from
impersonal monoliths in climate-controlled rooms and onto the desks of millions of
people .. In 1975, however, the computing environment was still primarily a matter of data
processing for specialists rather than personal computing for everyone. Thus when 4 KB

The MS-DOS Encyclopedia

1975

Intel's 4004, 8008, and 8080 chips At the top lefi is the 4-bit 4004, which was named for the appm.ximate
number of old-fashioned transistors it replaced At the bottom left is the 8-bit 8008, which addressed 16 KB of
memory; this was the chip used in the Traf-0-Data tape-reader built by Paul Gilbert. At the r·ight is the 8080,
a faster 8-bit chip that could address 64 KB of memory The brain of the MITS Altair, the 8080 was, in many
respects, the chip on which the personal computing industry was built The 4004 and 8008 chips wem
developed early in the 1970s; the 8080 appeared in 1974

memory expansion boards became available for the Altair, the software needed most by its
users was not a word processor or a spreadsheet, but a programming language - and the
language first developed for it was a version of BASIC written by Bill Gates and Paul Allen

Gates and Allen had become friends in their teens, while attending Lakeside School in
Seattle. They shared an intense interest in computers, and by the time Gates was in the
tenth grade, they and another friend named Paul Gilbert had formed a company called
Traf-0-Data to produce a machine that automated the reading of 16-channel, 4-digit,
binary-coded decimal (BCD) tapes generated by traffic-monitoring recorders This ma­
chine, built by Gilbert, was based on the Intel 8008 microprocessor, the predecessor
of the 8080 in the Altair

Section I I he Development of MS-DOS 5
Canon Exhibit 1108

1975

6

HOW TO "READ" FM TUNER SPECIFICATIONS

~lll!!~!!!£!~t~~
PROJECT BREAKTHROUGH!

World's First Minicomputer Kit
to Rival Commercial Models ••.

"ALTAIR 8800" SAVE OVER $1000

ALSO IN THIS ISSUE:

•An Under-$90 Scientific Calculator Project
• CCD's-TV Camera Tube Successor?
• Thyristor-Controlled Photoflashers

TEST REPORTS:
Technics 200 Speaker System
Pioneer RT· 1011 Open-Reel Recorder
Tram Diamond .. 40 CB AM Transceiver
Edmund Scientific "Kirlian" Photo Kit
Hewlett-Packard 5381 Frequency Counter

The fanuar y 1975 cover of Popular
Electionics magazine,featunng the
machine that caught the imaginations
of thousands of like-minded electron­
ics enthusiasts - among them, Paul
Allen and Bill Gates

Although it was too limited to serve as the central processor for a general-purpose compu­
ter, the 8008 was undeniably the ancestor of the 8080 as far as its architecture and instruc­
tion set were concerned Thus Traf-0-Data's work with the 8008 gave Gates and Allen a
head start when they later developed their version of BASIC for the Altair.

Paul Allen learned of the Altair from the cover story in the January 1975 issue of Popular
Electronics magazine Allen, then an employee of Honeywell in Boston, convinced Gates,
a student at Harvard University, to develop a BASIC for the new computer. The two wrote
their version of BASIC for the 8080 in six weeks, and Allen flew to New Mexico to demon­
strate the language for MITS. The developers gave themselves the company name of
Microsoft and licensed their BASIC to MITS as Microsoft's first product

Though not a direct forerunner of MS-DOS, Altair BASIC, like the machine for which it was
developed, was a landmark product in the history of personal computing. On another
level, Altair BASIC was also the first link in a chain that led, somewhat circuitously, to Tim
Paterson and the disk operating system he developed for Seattle Computer Products for
the 8086 chip.

The MSCDOS Encyclopedia

1

[5il<C:wY)l

[sT'r,l()p]

[rP.£-r-HJ

~f (2:'>':-rt>fl

[i\\SMsTZ ...)

.,_.,. (1_ 6~k

l
,,,.,ter +• "-"x-t \,-{ (2.~~1<:;)
~'"'"'") 1,,,.(> ->;. (2 i...,r.)
clo<-•~ct~<' "" 1,..:,_ c~ hole \))
7.-e,o l '1 b~~)

"- ~V(<°l a bee ~ ~"-C~ l 1.:. >
7-1'.:<o ('- ''r -/es/

S1~rl.,_ va.nwbk.s. <;;; "7k; f"<r vo,taA~
'2 b 1-le;. '(lve fke >t-..,...

'f r.~tC> 1wt +1-<L val~,
<~p-e0t -for "'"cl, \J,,,_,;,:;j(z;:.
Arr-41 .,.._;,.,,bl.~.;,

I~~~~ h1:::1\1 l V<t/,;..<.5 -

e..e..r.._,,,h .+'br -e~.::-l ''"'°'Y
/oeu<d 1,~~f I>'· .Q,._ .s-/a~

F~ 5f"'-Cv (>r ~,,..., k '" krt>)
\'Y>o«t eta>..+ .51-cY ,,,-fry
Sto..c\'-- I

bo+f""' of sJ-.,,.cf::'. / f~t lo~o:t1v-f•r stn•f5

{"'-2.. 71'"=-
Cu.cl'e.w\- s.-tn·,j ... sa.7.<2-
5/r\. \N G-.S

"''1~s+ W-ac~,~ /be,..{1,;...,

Loading Software

Software fr-om ,'HTS will be pro­
vided in a checksunvned format.
There will be a bootstrap loader'
that you key in manually (less than
25 bytes}. This will read a check­
S\111 loader (the 'bin' loader) which
W'ill be a.bout 120 bytes,,

f'or audio cassette loading the
boot.strap and checksum loaders will
be longer. All of this will be ex­
plained in detail in a cover package
that will go out with all soft..,are

F'or loading non-checksummed
paper tapes hu-e is a shor't program:

STKLOC: OW GtTNE".t
(2 bytes··fl low bvte of

GETNcil address
112 high byte of

Gt:THEW' address)

S1"AR'T': tX! H1 0
;.ETIIOI: LX! SP, S'T'l<LOC

IN <flag·· input ch.annel>
RAL ;get input ready bit
RNZ ;ready?
IN <data-inout channel>

CHGLOC: CPI <Qij.J ::: INX B>
R!IZ
INR A
STA CHGLOC
PJ:T

(22 bytes}

Punch a pape:r· tape with leader,
a 043 start byte, the byte to be
stored at loc O, the byte to be
stored at l. -· - - etc Start at
START, making sure the memory the
loader is in is unorotected. :1ake
sure you don't wipe out the loader
by loading on top of it.,

1'o run this again change CHGLOC
back to CPI ... 376.

1976

On the left, Bill Gates '.s original handwritten notes describing memory configuration for Altair BASIC On
the right, a short bootstrap program written by Gates for Altair users; published in thefuly 1975 edition of the
MITS user newsletter, Computer Notes

From paper tape to disk

Gates and Allen's early BASIC for the Altair was loaded from paper tape after the bootstrap
to load the tape was entered into memory by flipping switches on the front panel of the
computer In late 1975, however, MITS decided to release a floppy-disk system for the
Altair-the first retail floppy-disk system on the market As a result, in February 1976
Allen, by then Director of Software for MITS, asked Gates to write a disk-based version of
Altair BASIC The Altair had no operating system and hence no method of managing files,
so the disk BASIC would have to include some file-management routines .. It would, in
effect, have to function as a rudimentary operating system.

Section I The Development ofMSCDOS 7

Canon Exhibit 1108

1977-1978

Microsoft, 1978, Albuquerque,
New Mexico Top row, left to right
Steve Wood, Bob Wallace, Jim Lane
Middle row, left to right. Bob O'Rear,
Bob Greenberg, Marc McDonald,
Gordon Letwin Bottom row, left to
right. Bill Gates, Andrea Lewis;
Marla Wood, Paul Allen

Gates, still at Harvard University, agreed to write this version of BASIC for MITS .. He went
to Albuquerque and, as has often been recounted, checked into the Hilton Hotel with a
stack of yellow legal pads. Five days later he emerged, yellow pads filled with the code for
the new version of BASIC Arriving at MITS with the code and a request to be left alone,
Gates began typing and debugging and, after another five days, had Disk BASIC running
on the Altair

This disk-based BASIC marked Microsoft's entry into the business of languages for per­
sonal computers - not only for the MITS Altair, but also for such companies as Data
Terminals Corporation and General Electric. Along the way, Microsoft BASIC took on
added features, such as enhanced mathematics capabilities, and, more to the point in
terms of MS-DOS, evolved into Stand-alone Disk BASIC, produced for NCR in 1977

Designed and coded by Marc McDonald, Stand-alone Disk BASIC included a file­
management scheme called the FAT, or file allocation table that used a linked list for man­
aging disk files .. The FAT, born during one of a series of discussions between McDonald
and Bill Gates, enabled disk-allocation information to be kept in one location, with
"chained" references pointing to the actual storage locations on disk Fast and flexible,
this file-management strategy was later used in a stand-alone version of BASIC for the 8086
chip and eventually, through an operating system named M-DOS, became the basis for the
file-handling routines in MS-DOS.

M-DOS

8

During 1977 and 1978, Microsoft adapted both BASIC and Microsoft FORTRAN for an
increasingly popular 8-bit operating system called CP/M At the end of 1978, Gates and
Allen moved Microsoft from Albuquerque to Bellevue, Washington The company con­
tinued to concentrate on programming languages, producing versions of BASIC for the
6502 and the TI9900

The MSCDQS Encyclopedia

CP/M

,/

. . o.;~>~, the
. star:ddrdfor

mlc1Gcompuler
.. .· · soffvveJre

---~- .. °"~~~~--menfsJnc::lude: software tor microprocessors

. MACR0-80' PACKAGE Cm~1ocotobleosiem.
c '·bier n6o1..t hOS o~complete,M.t\CRO AOC!IJ!y including· if&' •
. IRPC;T.?EPEAI local vork:tbles.ancH:xrrM. ti.sting c-0r;trc1 ona

"1 ~ ','1XlfiditiOl}f.'.llossemb~.have'been glBOlfyenhonced ·A'"lO~
. pfus--' !t:eassemb!er .is ,"'Q.Nfwrce.os fost 05 pr&J!OJS versions

:THAT'S MICROSOFt

; • .. The MAcro.ao Pdcl<age, !llC!uding Microscffs L1r.king.Looder
" ond:·Gios:s·Reference Program: >?OY f'YJ\ft be pur.;nored sepO':
·O!elyfrom·FORTR/w.8Ct S•ngle CQ0{'.$200 Mcn1.,.;ol Sl5 f\l'ACf:(().
·an is included inFQRTRAN-80 VefS!On :H)

·MBASIC -· NEW RELEASE The new\m;onso M"'5tc ,n. \
~.eludes long voriatAe- names, vOJloble length 1ecords, aynomic stnng

spoqe olloCcf .. o~·\ WH~LE;Vvtr-;D, qo-:ected Jiles. ond -ct-\Cil1lng '.".iifh ~· \

~::~~~~~i·~:~=~~~;~~t,~~t1;;i.~~~~~:~~~~~~~o.
'_'Ma~L 520

... _ _ · ~noaf,\~~crosoft

..

£Dff.·;8. 0 PAC.·.KAG.E (.CP/M ve. rsio.nonly).The r.ostes'.te.·><ed'.'°' ... ·n··.ew .. th· .. '.''9' ore on the rr.-orl(et No morErseach1ng '!hough 1,1e5 or CfVP11C cornrr.onds 'rus fOr;do~, - . hoooenina 0 11

.. ~::i~C:·~~~~1~'::fi~~;~~~1~J1~~~~~~g:;;:r:;,1~-~;~~ - the·t,me -
onctbrr.ar/Jl!_es.Si11g!e~opyS120 t-Aarr..soJ· S10

_,. ~ANSl 74 C6BOt-80\Snow.010;loDlew.thfuuyte;;tecnSAtvi1mo1oveq1nreroct:ve
_ .11.CCEPT/[)!SRAY. CCPv and EXTEND Single copy 5750 Mrn1llo! SZ,'

''PREVfEW OFIJPCOMING PRODUCTSA~KlilOiZ·BO il'<s:c ""°"''"'"w.~ .
• , PO'ting1h'esarne,fealul'es rn; cv 1n!eroreter. ihe 1ong;a.va1te<:;1 80~/Z-.90 AFt rnierpre- ·: _

ter, ono ocompiete set O! svsterris. software orodums.tor oath 1he 8Ui36 ond Z80C0

1978

A Microsoft advertisementfrom the
January 1979 issue of Byte magazine
mentioning some products and the
machines they ran on In the lower
right corner is an announcement of
the company'.s move to Bellevue,
Washington

During this same period, Marc McDonald also worked on developing an 8-bit operating
system called M-DOS (usually pronounced "Midas" or "My DOS") Although it never
became a real part of the Microsoft product line, M-DOS was a true multitasking operating
system modeled after the DEC TOPS-10 operating system. M-DOS provided good perfor­
mance and with a more flexible FAT than that built into BASIC, had a better file-handling
structure than the up-and-coming CP/M operating system At about 30 KB, however,
M-DOS was unfortunately too big for an 8-bit environment and so ended up being rele­
gated to the back room. As Allen describes it, "Trying to do a large, foll-blown operating
system on the 8080 was a lot of work, and it took a lot of memory The 8080 addresses only
64 K, so with the success of CP/M, we finally concluded that it was best not to press on
with that"

In the volatile microcomputer era of 1976 through 1978, both users and developers of per­
sonal computers quickly came to recognize the limitations of running applications on top
of Microsoft's Stand-alone Disk BASIC or any other language. MITS, for example, scheduled

Section I The Development of MS-DOS 9
Canon Exhibit 1108

1978

10

a July 1976 release date for an independent operating system for its machine that used the
code from the Altair's Disk BASIC In the same year, Digital Research, headed by Gary
Kildall, released its Control Program/Monitor; or CP/M.

CP/M was a typical microcomputer software product of the 1970s in that it was written by
one person, not a group, in response to a specific need that had not yet been filled. One of
the most interesting aspects of CP/M's history is that the software was developed several
years before its release date - actually, several years before the hardware on which it
would be a standard became commercially available.

In 1973, Kildall, a professor of computer science at the Naval Postgraduate School in
Monterey, California, was working with an 8080-based small computer given him by Intel
Corporation in return for some programming he had done for the company. Kildall's
machine, equipped with a monitor and paper-tape reader, was certainly advanced for the
time, but Kildall became convinced that magnetic-disk storage would make the machine
even more efficient than it was.

Trading some programming for a disk drive from Shugart, Kildall first attempted to build
a drive controller on his own. Lacking the necessary engineering ability, he contacted a
friend, John Torode, who agreed to handle the hardware aspects of interfacing the compu­
ter and the disk drive while Kildall worked on the software portion - the refinement of an
operating system he had written earlier that year.. The result was CP/M.

The version of CP/M developed by Kildall in 1973 underwent several refinements. Kildall
enhanced the CP/M debugger and assembler, added a BASIC interpreter, and did some
work on an editor, eventually developing the product that, from about 1977 until the ap­
pearance of the IBM Personal Computer; set the standard for 8-bit microcomputer operat­
ing systems.

Digital Research's CP/M included a command interpreter called CCP (Console Command
Processor), which acted as the interface between the user and the operating system itself,
and an operations handler called BDOS (Basic Disk Operating System), which was
responsible for file storage, directory maintenance, and other such housekeeping chores.
For actual input and output- disk I/0, screen display, print requests, and so on - CP/M
included a BIOS (Basic Input/Output System) tailored to the requirements of the hardware
on which the operating system ran.

For file storage, CP/M used a system of eight-sector allocation units For any given file, the
allocation units were listed in a directory entry that included the filename and a table giv­
ing the disk locations of 16 allocation units .. If a long file required more than 16 allocation
units, CP/M created additional directory entries as required. Small files could be accessed
rapidly under this system, but large files with more than a single directory entry could re­
quire numerous relatively time-consuming disk reads to find needed information

At the time, however, CP/M was highly regarded and gained the support of a broad base of
hardware and software developers alike. Quite powerful for its size (about 4KB), it was, in
all respects, the undisputed standard in the 8-bit world, and remained so until, and even
after, the appearance of the 8086.

The MS-DOS Encyclopedia

The8086

The 16-bit Intel 8086 chip, introduced in 1978
Much [aster and far more powerful than its 8-bit
predecessor the 8080, the 8086 had the ability to
address one megabyte of memory

1978

When Intel released the 8-bit 8080 chip in 1974, the Altair was still a year in the future
The 8080 was designed not to make computing a part of everyday life but to make house­
hold appliances and industrial machines more intelligent By 1978, when Intel introduced
the 16-bit 8086, the microcomputer was a reality and the new chip represented a major
step ahead in performance and memory capacity .. The 8086's full 16-bit buses made it fast-·
er than the 8080, and its ability to address one megabyte of random-access memory was a
giant step beyond the 8080's 64 KB limit Although the 8086 was not compatible with the
8080, it was architecturally similar to its predecessor and 8080 source code could be me­
chanically translated to run on it This translation capability, in fact, was a major influence
on the design of Tim Paterson's operating system for the 8086 and, through Paterson's
work, on the first released version of MS-DOS

When the 8086 arrived on the scene, Microsoft, like other developers, was confronted with
two choices: continue working in the familiar 8-bit world or tum to the broader horizons
offered by the new 16-bit technology. For a time, Microsoft did both. Acting on Paul Allen's
suggestion, the company developed the SoftCard for the popular Apple II, which was
based on the 8-bit 6502 microprocessor. The SoftCard included a Z80 microprocessor and
a copy of CP/M-80 licensed from Digital Research. With the Sofl:Card, Apple II users could
run any program or language designed to run on a CP/M machine.

It was 16-bit technology, however, that held the most interest for Gates and Allen, who
believed that this would soon become the standard for microcomputers .. Their optimism
was not universal- more than one voice in the trade press warned that industry invest­
ment in 8-bit equipment and software was too great to successfully introduce a new stan­
dard. Microsoft, however, disregarded these forecasts and entered the 16-bit arena as it
had with the Altair: by developing a stand-alone version of BASIC for the 8086.

Section I The Development of MS-DOS 11

Canon Exhibit 1108

1979-1980

At the same time and, coincidentally, a few miles south in Tukwila, Washington, a major
contribution to MS-DOS was taking place. Tim Paterson, working at Seattle Computer
Products, a company that built memory boards, was developing an 8086 CPU card for use
in an S-100 bus machine.

86-DOS

12

Paterson was introduced to the 8086 chip at a seminar held by Intel in June 1978 He had
attended the seminar at the suggestion of his employer, Rod Brock of Seattle Computer
Products .. The new chip sparked his interest because, as he recalls, "all its instructions
worked on both 8 and 16 bits, and you didn't have to do everything through the accumu­
lator. It was also real fast- it could do a 16-bit ADD in three clocks .. "

After the seminar, Paterson -again with Brock's support- began work with the 8086
He finished the design of his first 8086 CPU board in January 1979 and by late spring had
developed a working CPU, as well as an assembler and an 8086 monitor.. In June, Paterson
took his system to Microsoft to try it with Stand-alone BASIC, and soon after, Microsoft
BASIC was running on Seattle Computer's new board

During this period, Paterson also received a call from Digital Research asking whether
they could borrow the new board for developing CP/M-86. Though Seattle Computer did
not have a board to loan, Paterson asked when CP/M-86 would be ready. Digital's represen­
tative said December 1979, which meant, according to Paterson's diary, "we'll have to live
with Stand-alone BASIC for a few months after we start shipping the CPU, but then we'll be
able to switch to a real operating system."

Early inJune, Microsoft and Tim Paterson attended the National Computer Conference
in New York Microsoft had been invited to share Lifeboat Associates' ten-by-ten foot
booth, and Paterson had been invited by Paul Allen to show BASIC running on an S-100
8086 system. At that meeting, Paterson was introduced to Microsoft's M-DOS, which he
found interesting because it used a system for keeping track of disk files- the FAT devel­
oped for Stand-alone BASIC-that was different from anything he had encountered.

After this meeting, Paterson continued working on the 8086 board, and by the end of the
year; Seattle Computer Products began shipping the CPU with a BASIC option

When CP/M-86 had still not become available by April 1980, Seattle Computer Products
decided to develop a 16-bit operating system of its own. Originally, three operating sys­
tems were planned: a single-user system, a multiuser version, and a small interim product
soon informally christened QDOS (for Quick and Dirty Operating System) by Paterson

Both Paterson (working on QDOS) and Rod Brock knew that a standard operating system
for the 8086 was mandatory if users were to be assured of a wide range of application soft­
ware and languages. CP/M had become the standard for 8-bit machines, so the ability to
mechanically translate existing CP/M applications to run on a 16-bit system became one of
Paterson's major goals for the new operating system To achieve this compatibility, the sys­
tem he developed mimicked CP/M-80's functions and command structure, including its
use of file control blocks (FCBs) and its approach to executable files.

The MS-DOS Encyclopedia

1980

GO 16-BIT NOW - WE HAVE MADE IT EASY

An advertisement for
the Seattle Computer
Products 8086 CPU,
with 86-DOS; published
in the December 1980
issue of Byte

8086
8 Mhz. 2-card CPU Set

WITH 86-DOS® $ 595
ASSEMBLED, TESTED, GUARANTEED

With our 2 ·card 8086 CPU set you can upgrade your Z806·
bit S · 100 system to run three hmes as fast by swappmg !he
CPUs. lf you use our 15 .. b1t memory, 11 will run five times as
last. Up to 64K of your static 8-bit memory may be used m the
8086's 1 ··megabyte addressing range A switch allows either 4
or 8 Mhz. operation Memory access requirements at 4 Mhz
exceed 500 nsec

The EPROM mom tor allows you to display, alter and
search memory do inputs and outputs, and boot your disk
Debugging aids include register display and change single
steppmg, and execute w11h breakpoints

The set includes a serrat port with programmable baud rate.
four independent programmable 16·-bit hmers (two may be
combmed tor a time ·Of-day clock), a parallel m and parallel out
port. and an interrupt controller with 15 inputs. External power
may be applied lo the timers to maintam the clock during
system power-off time. Total power: 2 amps al + BV less than
100 ma. at + 16V and a! ·16V

86··DOS'•, our $195 8086 single user disk opera!rng
sy~tem, is provided without add1t1onal charge It allows
functions such as console J O of characters and strings and
random or sequencial reading and wr111ng to named disk Illes
While 1t has a different lormat from GP M, 11 performs s1m11ar
cans plus some extensions {CP 'M 1s a registered trademark of
Digital Research Corporation) Its construction allows relative
ly easy configuration of I 0 to different hardware. D!fectly
supported are the Tarbell and Cromemco disk con1rollers

The 86-DOS • package includes an 8086 resident as·
sembler. a Z80 to 8086 source code translator a ut1!11y to read
files written 1n CP Mand convert them to !he 86·DOS format a
line editor and disk maintenance util1t1es 01 s1gnihcance to
Z80 users is the ability of the translator to accept Z80 source

8116 16-BIT MEMORY
This board was designed lor !he 1980s It is configured as

1 SK by 8 bits when accessed by an 8 .. b1t processor and
configured SK by 16 bits when used with a 16· bit processor
The conf1gurat1on switching is automatic and is done by the
card sampling the · sixieen request signal sent out by all $
100 IEEE 16 ·bi! CPU boards The card has au the high noise
1mmun1ty features of our well known PLUS AAM cards as well
as extended addressing" Extended addressing is a replace
ment for bank select. It makes use of a total of 24 address lines
to g1vP ei directly addressable range ol over 16 megabytes
(For otaer systems, a switch will cause the card to ignore the
1op 8 address Imes) This card ensures that your memory
board purchase will no1 soon be obsolete It is guaranteea to
run without wait states w1!h our 8086 CPU se1 using an8 Mhz
clock Sh1ppedfroms1ock Pnces 1-4 $280:5·9 S260 10 up
5240

code written for GP M, translate this to 8086 source code.
assemble the source code. and then run the program on the
8086 processor under 86 ·DOS. This a!lows !he conversion at
any Z80 program, !or which source code is available to run on
the much higher performance 8086

BASIC-86 by Microsoft 1s available tor the 8086 at $350
Several firms are working on application programs Call for
curren! software status

All sottware licensed tor use on a single computer only
Non-disclosure agreements required Shipping from stock to
one week. Bank cards. personal checks CODsokay There is
a 1 O··day return pnv1lege All boards are guaranteed one year
- both parts and labor Shipped prepaid by air 1n US and
Canada. Foreign purchases must be prepaid m US funds
Arso add $10 per board for overseas air shipment

f'+_ eattle Computer Products, Inc. ~ 1114 Industry Dnve Sean!& WA 98188

!206) 575 1830

At the same time, however, Paterson was dissatisfied with certain elements of CP/M, one
of them being its file-allocation system, which he considered inefficient in the use of disk
space and too slow in operation. So for fast, efficient file handling, he used a file allocation
table, as Microsoft had done with Stand-alone Disk BASIC and M-DOS. He also wrote a
translator to translate 8080 code to 8086 code, and he then wrote an assembler in Z80
assembly language and used the translator to translate it

Four months after beginning work, Paterson had a functioning 6 KB operating system,
officially renamed 86-DOS, and in September 1980 he contacted Microsoft again, this time
to ask the company to write a version of BASIC to run on his system.

Section I The Development ofMS-DOS 13
Canon Exhibit 1108

1980

IBM

While Paterson was developing 86-DOS, the third major element leading to the creation of
MS~~OS was gaining force at the opposite end of the country.. IBM, until then seemingly
oblivious to most of the developments in the microcomputer world, had turned its atten­
tion to the possibility of developing a low-end workstation for a market it knew well: busi­
ness and business people.

On August 21, 1980, a study group of IBM representatives from Boca Raton Florida visited
Microsoft This group, headed by a man named Jack Sams, told Microsoft ~fIBM's interest
in developing a computer based on a microprocessor. IBM was, however, unsure of micro­
computing technology and the microcomputing market Traditionally, IBM relied on long
development cycles - typically four or five years - and was aware that such lengthy
design periods did not fit the rapidly evolving microcomputer environment

One of IBM's solutions-the one outlined by Sams's group-was to base the new
machine on products from other manufacturers. All the necessary hardware was available,
but the same could not be said of the software. Hence the visit to Microsoft with the ques­
tion: Given the specifications for an 8--bit computer, could Microsoft write a ROM BASIC for
it by the following April?

Microsoft responded positively, but added questions of its own: Why introduce an 8-bit
computer? Why not release a 16-bit machine based on Intel's 8086 chip instead? At the end
of this meeting- the first of many- Sams and his group returned to Boca Raton with a
proposal for the development of a low-·end, 16-bit business workstation. The venture was
named Project Chess.

One month later, Sams returned to Microsoft asking whether Gates and Allen could still
by April 1981, provide not only BASIC but also FORTRAN, Pascal, and COBOL for the new
computer.. This time the answer was no because, though Microsoft's BASIC had been
designed to run as a stand-alone product, it was unique in that respect- the other lan­
guages would need an operating system Gates suggested CP/M-86, which was then still
under development at Digital Research, and in fact made the initial contact for IBM Digital
Research and IBM did not come to any agreement, however

Microsoft, meanwhile, still wanted to write all the languages for IBM - approximately 400
KB of code .. But to do this within the allotted six-month schedule, the company needed
some assurances about the operating system IBM was going to use. Further, it needed
specific information on the internals of the operating system, because the ROM BASIC
would interact intimately with the BIOS

The turning point

14

That state of indecision, then, was Microsoft's situation on Sunday, September 28, 1980,
when Bill Gates, Paul Allen, and Kay Nishi, a Microsoft vice president and president of
ASCII Corporation in Japan, sat in Gates's eighth-floor corner office in the Old National
B~nk Building in Bellevue, Washington. Gates recalls, "Kay and I were just sitting there at
mght and Paul was on the couch. Kay said, 'Got to do it, got to do it ' It was only 20 more K

The MS-DOS Encyclopedia

1980

of code at most- actually, it turned out to be 12 more K on top of the 400 .. It wasn't that big
a deal, and once Kay said it, it was obvious. We'd always wanted to do a low-end operating
system, we had specs for low-end operating systems, and we knew we were going to do
one up on 16-bit."

At that point, Gates and Allen began looking again at Microsoft's proposal to IBM. Their
estimated 400 KB of code included four languages, an assembler, and a linker To add an
operating system would require only another 20 KB or so, and they already knew of a
working model for the 8086: Tim Paterson's 86-DOS. The more Gates, Allen, and Nishi
talked that night about developing an operating system for IBM's new computer, the more
possible - even preferable - the idea became.

Allen's first step was to contact Rod Brock at Seattle Computer Products to tell him that
Microsoft wanted to develop and market SCP's operating system and that the company had
an OEM customer for it. Seattle Computer Products, which was not in the business of
marketing software, agreed and licensed 86-DOS to Microsoft. Eventually, SCP sold the
operating system to Microsoft for $50,000, favorable language licenses, and a license back
from Microsoft to use 86-DOS on its own machines

In October 1980, with 86-DOS in hand, Microsoft submitted another proposal to IBM. This
time the plan included both an operating system and the languages for the new computer.
Time was short and the boundaries between the languages and the operating system were
unclear, so Microsoft explained that it needed to control the development of the operating
system in order to guarantee delivery by spring of 1981 In November, IBM signed the
contract

Creating MS-DOS

At Thanksgiving, a prototype of the IBM machine arrived at Microsoft and Bill Gates, Paul
Allen, and, primarily, Bob O'Rear began a schedule of long, sometimes hectic days and
total immersion in the project. As O'Rear recalls, "If I was awake, I was thinking about
the project."

The first task handled by the team was bringing up 86-DOS on the new machine .. This was
a challenge because the work had to be done in a constantly changing hardware environ­
ment while changes were also being made to the specifications of the budding operating
system itself.

As part of the process, 86-DOS had to be compiled and integrated with the BIOS, which
Microsoft was helping IBM to write, and this task was complicated by the media .. Paterson's
86-DOS-not counting utilities such as EDLIN, CHKDSK, and INIT (later named
FORMAT)-arrived at Microsoft as one large assembly-language program on an 8-inch
floppy disk The IBM machine, however; used 5114-inch disks, so Microsoft needed to de­
termine the format of the new disk and then find a way to get the operating system from
the old format to the new.

Section I The Development ofMS-DOS 15

Canon Exhibit 1108

1980--1981

16

Paul Allen and
Bill Gates (1982)

This work, handled by O'Rear, fell into a series of steps. First, he moved a section of code
from the 8-inch disk and compiled it Then, he converted the code to Intel hexadecimal
format Next, he uploaded it to a DEC-2020 and from there downloaded it to a large Intel
fixed-disk development system with an In-Circuit Emulator The DEC-2020 used for this
task was also used in developing the BIOS, so there was additional work in downloading
the BIOS to the Intel machine, converting it to hexadecimal format, moving it to an IBM
development system, and then crossloading it to the IBM prototype

Defining and implementing the MS-DOS disk format-different from Paterson's 8-inch
format-was an added challenge. Paterson's ultimate goal for 86-DOS was logical device
independence, but during this first stage of development, the operating system simply had
to be converted to handle logical records that were independent of the physical record size

Paterson, still with Seattle Computer Products, continued to work on 86-DOS and by the
end of 1980 had improved its logical device independence by adding fonctions that
streamlined reading and writing multiple sectors and records, as well as records of variable
size .. In addition to making such refinements of his own, Paterson also worked on dozens
of changes requested by Microsoft, from modifications to the operating system's startup
messages to changes in EDLIN, the line editor he had written for his own use Throughout
this process, IBM's security restrictions meant that Paterson was never told the name of the
OEM and never shown the prototype machines until he left Seattle Computer Products and
joined Microsoft in May 1981

And of course, throughout the process the developers encountered the myriad loose ends,
momentary puzzles, bugs, and unforeseen details without which no project is complete
There were, for example, the serial card interrupts that occurred when they should not
and, frustratingly, a hardware constraint that the BIOS could not accommodate at first and
that resulted in sporadic crashes during early MS-DOS operations

The MS-DOS Encyclopedia

r 1 I I 11 'I '1 \~ j ! > I • \:\

1980--1981

Bob O'Rear'.s sketch of
the steps involved in
moving 86-DOS to the
IBM prototype

Section I The Development ofMS-DOS 17
Canon Exhibit 1108

18

1980-1981

Q f'- I

'f(-... c;)S .• ~~ fi)Rtrtl\-T Tu ~ ~ ~~ 1~
~fD ~~ ~9'1>1"1\~.

r(i.. (fm4! t:""' ~- ~"\{. .b:r-eo iiu~ sP11e.e: k <1.. ~ r "'~ ~ c~J .. .,,.,. 3q) b i.s.,

r•· 7 .. cJ..w,_ ...:f- l;iS-?:?.~ ~;_.,.·'I{._ 'e-r.D~

'ff- ~W1' cJu.Jt ~ .sve.~1 ~
'(,_ vcJ...,;. ~. tol>UAI t.h-f J1r f.t.. Q.....7?- tk,_ ~

o.,, ~ ~ ""t~ N~;- G, .i... ..,t .,..t

f IL~ f--. C#U!:r'.- elf.~. ~ a..P...:es.

Part ofBob O'Rear's "laundry" list of operating-system changes and corrections for early April 1981 Around
this time, interim beta copies were shipped to IBM/or testing

The MS-DOS Encyclopedia

''My own IBM computer
Imagine thaf'

Presenting the IBM of
Personal Computers.

"Dad, can I use
the IBM computer

&., C' nl tonight?''
'IJ ~n.-!

~~
n b "'~m""'"'"' '°~""'"'"""·""''oo"°"""gh•ttwilldioc~·
~
~ phenomenon It whal makes a computer uck-and what it can do. They

t"'1 E~~~~·";~lS~=bo:,,rry~~ ~cr=e::::::::7:~~=~ports ~- - ,....,. u~ (and learn how to type in the process). Your kids might

I ~ a tee Or evenge1so"compuiersmart," they'llstaftwriting

I when your their own programs in BASIC or P.lscal

t, , I)jLJw~"~u,gh0 ter Ultimately, an IBM Personal Compuler can be one
~ ~ < ~""' ofthebcst mvcsuncntsyoumake in your family's future

to use your metal racquet Someurnes you let them. Often And one of the k:a5t expensive. Starting at less lhan
you don't. But when they start asking to use yoW" IBM :st600 there's a system that. with tlle addition of one

Personal Compmer, it's beuer to say yes.
Sccause learnmg about computers 15 a subject your

kids can study and enJOy at home.
It's also a fact that the IBM Personal Computer can

be as useful in your home as it is in your office To help
plan the furmly budget for mstance Or to compute

anything from mterest paid to calones consumed You
cm even tap directly mto the Dow)ooe5 data bank with
your telephone and an ~pensive adaptcr;

Butassw:elyasanlBMl'ersorlaJComputer
can help you, it can also help your children

Becaw.e Just by playing games or dr.lwmg

simple dev1<:e hook.s up to y<.JUr home 1V and uses your

audiocasseuerc:corder
To introduce your furmly to tlle IBM PersonaJ

Computer, V1S1t any Compurerl.3nd® store or Sears
Business Sysi:ems Center. Or see it all at one of our IBM
Product Centers (1be IBM Nauonal Accounts Division
will serve busmess customers who want to purchase m
qu;u:mty.)

And remember. When your kids ask to use your
IBM Personal Compmer, let them. But just make

sureyoucaoger1rback.Afterailyourson's

1981

The 1981 debut ofthe
IBM Personal
Computer:

In spite of such difficulties, however, the new operating system ran on the prototype for
the first time in February 1981 In the six months that followed, the system was continually
refined and expanded, and by the time of its debut in August 1981, MS-DOS, like the IBM
Personal Computer on which it appeared, had become a functional product for home
and office use.

Section I The Development ofMS-DOS 19

Canon Exhibit 1108

1981

Version!

The first release of MS-DOS, version 1.0, was not the operating system Microsoft envi­
sioned as a final model for 16-bit computer systems. According to Bill Gates, "Basically,
what we wanted to do was one that was more like MS-DOS 2, with the hierarchical file
system and everything. the key thing [in developing version 1.0] was my saying, 'Look,
we can come out with a subset first and just go upward from that.'"

This first version -Gates's subset of MS-DOS-was actually a good compromise be­
tween the present and the future in two important respects: It enabled Microsoft to meet
the development schedule for IBM and it maintained program-translation compatibility
withCP/M

Available only for the IBM Personal Computer, MS-DOS 1.0 consisted of 4000 lines of
assembly-language source code and ran in 8 KB of memory In addition to utilities such
as DEBUG, EDLIN, and FORMAT, it was organized into three major files. One file,
IBMBIO.COM, interfaced with the ROM BIOS forthe IBM PC and contained the disk and
character input/output system. A second file, IBMDOS COM, contained the DOS kernel, in­
cluding the application-program interface and the disk-file and memory managers. The
third file, COMMAND COM, was the external command processor -the part of MS-DOS
most visible to the user

To take advantage of the existing base of languages and such popular applications as
WordStar and dBASE II, MS-DOS was designed to allow software developers to mechan­
ically translate source code for the 8080 to run on the 8086.. And because of this link,
MS-DOS looked and acted like CP/M-80, at that time still the standard among operating
systems for microcomputers Like its 8-bit relative, MS-DOS used eight-character filenames
and three-character extensions, and it had the same conventions for identifying disk drives
in command prompts .. For the most part, MS-DOS also used the same command language,
offered the same file services, and had the same general structure as CP/M. The resem­
blance was even more striking at the programming level, with an almost one-to-one cor­
respondence between CP/M and MS-DOS in the system calls available to application
programs.

New Features

20

MS-DOS was not, however, a CP/M twin, nor had Microsoft designed it to be inextricably
bonded to the IBM PC Hoping to create a product that would be successful over the long
term, Microsoft had taken steps to make MS-DOS flexible enough to accommodate
changes and new directions in the hardware technology- disks, memory boards, even
microprocessors - on which it depended The first steps toward this independence from

The MS-DOS Encyclopedia

1981

igest Big LB..M.'s Little Computer Retail Sales
In US. Up

lji•:ii1tti:i•!il£ii·i:mif1ii!lf&Zu:ti· ~~i::!i· :mccm:11li·•ii] l 3% in July Its Desk-Top
Model Brings

--·~·-~-• ANewlmage - - ,,. -~- ~.-.... ~. -- ·-· __ ,
~-------_r;·:::::::.:;.:-:-:;;.'7':;;;.~·:;;:·''";:,; .. -·;,;.·.·;-;;_.:;..:;;m; ... :::,.:.._~ _j_ ____ _,_ _ _._ ... _,-='--i'":::""' r '"

!TTtt;l<U0-

But Analysts
Are Dubious of
General Upturn

IBM's New Line Likely to Shake Up
The Market for Personal Computers

bll'extrasruns
aiystll\J.ior
n~Sl'Stem"s
··n same~

1

Nam l'aE MU:aNonlputer 1Jsas k~~~ ~:-;.;;
----------------------~-----~ ~:U~JM

IBMAnnouncesNewMicrocomputerSystem ~~~;~t;~
~--=-------'-------'-""''-=-"'--'-------It's Officia4 One surprise

By 7bmn Hopn, IW St4/l
NEW'<'ORK.NY-ll1lhu'J>m<Wh)m'ihox.tli.I '""'''""'"""!Wlljlpl><:t">llhclBMr ... ,1111 OUl'lOOK
"":lbloe u><lhi<'r:ui lllM l'mi<>nal ("''"""'~ >1 il<><'a R>t•n f~,.,..,_,. "-'f">tl«l .,rh<r"'
Wh<th<rorn<01h.llw1H""'""""<ik<1unth< tnfii1Xlt>lfsl<.urnp.>1crl=<l.tht-"'"""Y•"""<d
m1CT01<umpul1f1111.-.lu:o"·'""'"'"""'"""""n. '"""'"'"'"""(.onll"f"<•nlll!IMl't<><lu•'1(.<r>

for'"""""'"'l'"'-'""'"""~""""><lm~ ll"nll'1111><...-lll"""''"l'cr>o"""«-.nrru<cr

IBM really gets personal ::::.~~~=;~:.::i: ::"::::·~:,::-::.i.;:"'::·::.
tm<llxl•"1l1••f'loo.-,,•O'"Uhl:rM"ti=.UUI m.._'fun<
cipOl<:d.llx·Jo...,ull"'"''""°""""''"""'"- Thcrn<->:""1o"'"'ll'IM.!lllf;htlytri)thcr

=tr,,.:=~ lo tht- In~"""'"'"_.·~ ~n1':.:7'..:=~==n:(~;;,_

PERSONAL COMPUTERS

PERSONAL
COMPUTER
FROM IBM
The mainframer's long ..
awaited entry into the personal
computing market aims for
corporate as well as home
users.
Withuncharacteristicbutresoundingfan
fare. IBM ended the summer·s mosl popular
guessinggameforthemdustrybyinmxluc·
ing ns Personal Computer. Highly compa
rable to offerings from arch··contenders Ap
pie.and Radio Shack. the ma<:hine repre­
sen1sseveralnewtacksforthelcadingcom·
pulermanufacturerasi1auempts1ohi1chits
wagon to one of !he fas1es1 growing scg
mcnts of the industry

The computer which is designed to
appeal to home users as well as corporate
professionals, ranges in pnce from SJ ,565
for a bare ·bones configuration to $6.300 for
the full -blown model It will be sold through

Sears and Computerland computer retail
s1ores as well as directly 10 large corporate
and educational users. IBM says., poinimg
out that it has set up a special national mar­
keting team 10 handle such volume orders

Donald Estridge. the anicula1e di
rec1or of IBM"s enuy systems business who
braved strobes and movie lights at the ma
chine's Waldorf Astoria inlroduc1ion, de
clines 10 say how many personnel have been
dedicated to the national marketing effort.
but says u will be selling in volumes of 20
machines or more Several weeks after !he
unveiling. he said response so far ~ad been
''very, very good ' with orders bemg taken
but no deliveries 10 be made before this
month

In addition to lhe game of Adven ·
ture. which Estridge said has been thor
oughly exercised by his Boca Raton, Fla.,
staff, IBM has decked out the machine widl
an array of packaged applications programs
!hat are expected to make it a1uactive to the
corporate user.

Among these are the popular Visi­
Calc spreadsheet package from Personal
Software. accounting packages from Man
agement Science America's Peachuec Soft
ware operation. and Information Unlimit··
ed's EasyWriter word processing system
Although IBM wouldn't say, more indepcn
dently developed packages are certain to be
offered for the computer as well as package~

L----------------nr;;i=ona1;;;;;;ur<~:;;;i.-.;,put~u==\:""=
Computer Tht unit, perhaps surprisingly, pla~
music and includes game softwan: w say notlling
ofthesraodardfeaturesavailable

Tix.: machine is unpn:ssive. It's starling price is a
mere Jl565. Forthai price the buyer gets the 83-
kc:y keyboard, the compuic:r itseU: based on ao
8088 miaoprocessor, and J6k of main memory.
This mirumal configuration cao use a tape casocne
for mass storage and a television :>e:t (with an rf

modulator) for a display. (The machine is fully FCC
certified for home opcralion as a class B
computing device)

IBMi.<;.rognlZantofthefac.1thaithismirumaUy
configured. machine probably won '1 last a serious
compu1er1Sl: long before he wants to expand The
company otJers upgraded versions Of the machine.
and will scU them in differenl conligw"al:ions. For
examp!e,thefumlistsamoretypicalconfiguraUon
tor home or school as 64k of main memory one cfuk

continued on page 17

A sampling of the headlines and newspaper articles that abounded when IBM announced its Personal
Computer:

Section I The Development ofMS-DOS 21
Canon Exhibit 1108

1981

22

MICROSOFT
QUARTERLY

This policy is espeQa)ly advan- Paul Allen plex operat!Ons. such as lloahng

~=~;1~e;:~:;00~~~~01 ~----~ porn1arn:1grapnrcsrouhnes Microsoft
~~~~0~~~~~~:a~- JBMBreaksthe =~1~;~~~~1flVeS COBOL 
par~:==supportSlhe 16-BitBarrier ~:v~~~~~~~~~~v:' PassesGSA 
run\llTlesystemusedwlthpre- =:;1wit11oormacnine Validation 
~":r:!:

5

i1!~°:arv the~rr:~i~=:~:::X 011:1~~:~~~ent ~----~ 
!O their appilcaboos, there IS ter 15 Its 8088 CPU ISM'sctlo<ce looks as !hough the •ndUS11'f 15 .\/11crosott is always con-

:~~~s'.~~~~.~ ~::::=1:~0:,as ~~~::~e~1;;;~ddl· ~=~~~~!:~;::~! 
This change rn !he lion to lhe M!Closofl software government. !he largest user 

BASCOM royalty pol!Cy reflects already proYTded !Of the IBM of computer equipment and 
Mrcrosotrs W'5h to increase the Personal Compuler we re software 1n the worid, has de 
number ol appOc.allOl'I packages plannmg a tuU ~neot 15-bt !an- veloped tests fOf comp~ance 
on the market. This policy guages and end·user software wittl aoo 1mplementanon of 
change. lhe add11lon ol CHAIN tools. Appticaaon pad<ages are standards for compilers. T est1ng 
with COMMON andlhe 1m rapidlybemgadapted!Othe olcomp1lers, ca!!edvaltda1ron 
plementa1ion of the run~me 16·bl environment. espeoa~y is performed by govemmenl 1n· 
modulemake8ASCOM a much those programs alreadywnllen specters. wnoare1ndependent 
more 1tex1bieand powertlJ! fool m Microsolt BASIC of software developers 
fortheappl1cauooprogrammer The·'Mnch pm· ofMICfOSOft's Microsoft submitted its 

BASCOM 5.31savailable new.1&blt producthne!cr!he COBOLcompler (under the 
now !Of CP/M systems. 8086/8088 isour compact. CP/M operating system) tor 
rncludlng the Apple llWflh the flexibleoperafingsyslem. MS· validation. The General 
Microsoft Softcard. Microsolt P..,IA<on Vicel'<o<oden1 "'""°'oft DOS. MS·OOSisthepnmaiy SeMCesAdm1rnslrat1on (GSA) 
IS commated to supporting on the vageofchangmg tor operahng system on the JBM perlcrmed the vahdallOn testS 
BASCOM and the BASIC the past 10 monlhs: first. the Personal Computer. We've and valldated Microsolt COBOL 
interpreceron many processors industry shesltancyovera ma1ntrunedcompallbihtvwllh asalow-mtermedta!e1mplemen 
and operanng systems, thus senous 16-bd sol!ware exist111g GP IM 2.x operatrng ta!1on of !he 1974 ANSI standard 
assunngthatappbcallonpro- com1T11tmenthasr1nallybeen sys1emca1Js.so1t'sast1aight- forCOBOL 
gramscreatedwithBASCOM brol<:en:andsecond.!he torwardprocesstoconvert8080 Why1sM1erosottconcerned 
have. and Wiit contrnue to have capabi~hes of the 16-blt and zao programs to run under about standards. and why did 
Ille broadestposs1blemarke! processorsarefina"ybeinq MS.OOS. MS.DOS also pro- wesucm1! Mocroson COBOL 

put !o some really exc1t1ng uses v1des a lulure upgrade path lmvahdabon? Mik•e Orr COBOL I 
A 16-bil processor gives 1o!tle XENIX muJb..user mutti product manager, offered !he 

software de519ners many tasking environm0flt oiner following reason.s 
advantages1nherentman 1mportantleaturesolMS.OOS (cor111nuedonback) 
enhancoo 1nstrucnon sel. For include error recovery. device 
example.wevetakenaCJvan· 1ndepenoentl/O.andbu11t-1n 
tageoltheexpandedaddress· vanablelengthdiskreadsand I 
ing1nourMS·LiNl<.ahnkertor wm~. Wharisnowlhestan-

~~~~;: ~r.::::::. _J doublethesizeexecutableon bamerhasbeencrossedand 
an8-bltrunbme Apphcafions !hetechnicalcapabl~llasotthe
programs can be more sophis-. 1&bit processors are being
t;catedint11e1rleatures,human apprec1ated,Mlcfosottexpects
eng1neennglactors, andm to see many l&bt personal
solvingproblemstnat1nvolve computer.i. ll'san1ndustrymove
larger amoonls ol data. we've anticipated for qui!e some

Thelargernumberolreg- time and.given the rTIOmefltum
isterswilhthe80B6/ao88pro- ollBM 1tshouklsoonbe1ntuu
cessorsalsomeans that com· swmg

A page from Microsojt'.s third-quarter
report for 1981

specific hardware configurations appeared in MS-DOS version 1.0 in the form of device­
independent input and output, variable record lengths, relocatable program files, and a
replaceable command processor.

MS-DOS made input and output device-independent by treating peripheral devices as if
they were files. To do this, it assigned a reserved filename to each of the three devices it
recognized: CON for the console (keyboard and display), PRN for the printer, and AUX for
the auxiliary serial ports .. Whenever one of these reserved names appeared in the file con­
trol block of a file named in a command, all operations were directed to the device, rather
than to a disk file .. (A file control block, or FCB, is a 37-byte housekeeping record located
in an application's portion of the memory space It includes, among other things, the file­
name, the extension, and information about the size and starting location of the file
on disk)

Such device independence benefited both application developers and computer users ..
On the development side, it meant that applications could use one set of read and write
calls, rather than a number of different calls for different devices, and it meant that an ap­
plication did not have to be modified if new devices were added to the system. From the

The MS-DOS Encyclopedia

1981

user's point of view, device independence meant greater flexibility. For example, even if a
program had been designed for disk I/0 only, the user could still use a file for input or
direct output to the printer

Variable record lengths provided another step toward logical independence In CP/M, logi­
cal and physical record lengths were identical: 128 bytes. Files could be accessed only in
units of 128 bytes and file sizes were always maintained in multiples of 128 bytes. With
MS-DOS, however, physical sector sizes were of no concern to the user. The operating sys­
tem maintained file lengths to the exact size in bytes and could be relied on to support logi­
cal records of any size desired

Another new feature in MS-DOS was the relocatable program file. Unlike CP/M, MS-DOS
had the ability to load two different types of program files, identified by the extensions
COM and .EXE. Program files ending with COM mimicked the binary files in CP/M. They

were more compact than .. EXE files and loaded somewhat faster, but the combined pro­
gram code, stack, and data could be no larger than 64 KB.. A EXE program, on the other
hand, could be much larger because the file could contain multiple segments, each of
which could be up to 64KB .. Once the segments were in memory, MS-DOS then used part
of the file header, the relocation table, to automatically set the correct addresses for each
segment reference.

In addition to supporting .. EXE files, MS-DOS made the external command processor,
COMMAND.COM, more adaptable by making it a separate relocatable file just like any
other program. It could therefore be replaced by a custom command processor; as long
as the new file was also named COMMAND.COM

Performance

Everyone familiar with the IBM PC knows that MS-DOS eventually became the dominant
operating system on 8086-based microcomputers .. There were several reasons for this, not
least of which was acceptance of MS-DOS as the operating system for IBM's phenomenally
successfol line of personal computers But even though MS-DOS was the only operating
system available when the first IBM PCs were shipped, positioning alone would not neces­
sarily have guaranteed its ability to outstrip CP/M-86, which appeared six months later.
MS-DOS also offered significant advantages to the user in a number of areas, including the
allocation and management of storage space on disk .

Like CP/M, MS-DOS shared out disk space in allocation units .. Unlike CP/M, however,
MS-DOS mapped the use of these allocation units in a central file allocation table - the
FAT - that was always in memory Both operating systems used a directory entry for
recording information about each file, but whereas a CP/M directory entry included an al­
location map- a list of sixteen 1 KB allocation units where successive parts of the file
were stored- an MS-DOS directory entry pointed only to the first allocation unit in the
FAT and each entry in the table then pointed to the next unit associated with the file. Thus,
CP/M might require several directory entries (and more than one disk access) to load a file

Section I The Development ofMS-DOS 23

Canon Exhibit 1108

1981

larger than 16 KB, but MS-DOS retained a complete in-memory list of all file components
and all available disk space without having to access the disk at all. As a result, MS-DOS's
ability to find and load even very long files was extremely rapid compared with CP/M's

Two other important features - the ability to read and write multiple records with one
operating-system call and the transient use of memory by the MS-DOS command
processor-=provided further efficiency for both users and developers.

The independence of the logical record from the physical sector laid the foundation for the
ability to read and write multiple sectors. When reading multiple records in CP/M, an appli­
cation had to issue a read function call for each sector:, one at a time. With MS-DOS, the ap­
plication could issue one read function call, giving the operating system the beginning
record and the number of records to read, and MS-DOS would then load all of the corre­
sponding sectors automatically

Another innovative feature of MS-DOS version 1.0 was the division of the command pro­
cessor, COMMAND.COM, into a resident portion and a transient portion. (There is also a
third part, an initialization portion, which carries out the commands in an AUTOEXEC
batch file at startup. This part of COMMAND.COM is discarded from memory when its
work is finished) The reason for creating resident and transient portions of the command
processor had to do with maximizing the efficiency of MS-DOS for the user: On the one
hand, the programmers wanted COMMAND.COM to include commonly requested func­
tions, such as DIR and COPY, for speed and ease of use; on the other hand, adding these
commands meant increasing the size of the command processor, with a resulting decrease
in the memory available to application programs. The solution to this trade-off of speed
versus utility was to include the extra functions in a transient portion of COMMAND.COM
that could be overwritten by any application requiring more memory. To maintain the in­
tegrity of the flinctions for the user, the resident part of COMMAND.COM was given the
job of checking the transient portion for damage when an application terminated. If neces­
sary, this resident portion would then load a new copy of its transient partner into memory

EaseofUse

24

In addition to its moves toward hardware independence and efficiency, MS-DOS included
several services and utilities designed to make life easier for users and application devel­
opers. Among these services were improved error handling, automatic logging of disks,
date and time stamping of files, and batch processing

MS-DOS and the IBM PC were targeted at a nontechnical group of users, and from the
beginning IBM had stressed the importance of data integrity. Because data is most likely
to be lost when a user responds incorrectly to an error message, an effort was made to in­
clude concise yet unambiguous messages in MS-DOS. To forther reduce the risks of misin­
terpretation, Microsoft used these messages consistently across all MS-DOS functions and
utilities and encouraged developers to use the same messages, where appropriate, in their
applications

The MS-DOS Encyclopedia

0

0

0

Package Contents

1 diskette, with the following files'
COMMAND • COM
MSDOS .. COM
EDLIN.COM
DEBUG.COM
FILCOM.COM

1 MS-DOS Disk Operating System Manual

System Requirements

l'he MS-DOS Operat.i.ng System requires SK bytes of memory

0

0

0

Introduction

Features and Benefits of MS-DOS
Using This Manual
Syntax Notation
MS-DOS Structure and Characteristics

Chapter l Genel:'.al MS-DOS Commands
l. 1 Control Function Characters
1.2 Special Editing Commands
1 3 Disk Errors

Chapter 2

Prompt
2.2 Filenames
2. 3 Commands
2.3 1 Internal Commands
2 3 . 2 External Commands

Chapter 3

3 , l Invoking EDI IN
3. 2 Commands
3. 2 1 command Parameters
3. 2, 2 Interline Commands
3 3 Er:ror Messages

Chapter 4

4 , 1 Invoking DEBUG
4.2 Commands
4. 2 l command Parameters
4. 2 , 2 Command Descriptions
4 3 Error Messages

Chapter 5

5 .1 Invoking FILCOM
5 .2 Comman<ls
5. 2 . 1 Filenames
5.2 2 Switches
5 , 3 Examples

Chapter 6 Instructions for Single Disk Drive Users

Two pagesfmm Microsoft'.s MS-DOS version 1 0 manual On the left, the system '.s requirements - 8 KB of
memory, on the right, the 118-page manual'.s complete table of contents

1981

In a further attempt to safeguard data, MS-DOS also trapped hard enors - such as critical
hardware errors - that had previously been left to the hardware-dependent logic Now
the hardware logic could simply report the nature of the error and the operating system
would handle the problem in a consistent and systematic way. MS-DOS could also trap the
Control-C break sequence so that an application could either protect against accidental
termination by the user or provide a graceful exit when appropriate

To reduce errors and simplify use of the system, MS-DOS also automatically updated mem­
ory information about the disk when it was changed. In CP/M, users had to log new disks
as they changed them - a cumbersome procedure on single-disk systems or when data
was stored on multiple disks .. In MS-DOS, new disks were automatically logged as long as
no file was currently open

Another new feature -one visible with the DIR command-was date and time stamping
of disk files. Even in its earliest forms, MS-DOS tracked the system date and displayed it at
every startup, and now, when it turned out that only the first 16 bytes of a directory entry

Section 1 The Development ofMS-DOS 25
Canon Exhibit 1108

1981-1982

were needed for file-header information, the MS-DOS programmers decided to use some
of the remaining 16 bytes to record the date and time of creation or update (and the size of
the file) as well

Batch processing was originally added to MS-DOS to help IBM. IBM wanted to run
scripts - sequences of commands or other operations- one after the other to test various
functions of the system. To do this, the testers needed an automated method of calling
routines sequentially. The result was the batch processor, which later also provided users
with the convenience of saving and running MS-DOS commands as batch files.

Finally, MS-DOS increased the options available to.a program when it terminated. For ex­
ample, in less sophisticated operating syste~s, applications and other programs remained
in memory only as long as they were active; when terminated, they were removed from
memory. MS-DOS, however, added a terminate-and-stay-·resident function that enabled a
program to be locked into memory and, in effect, become part of the operating-system
environment until the computer system itself was shut down or restarted.

The Marketplace

26

When IBM announced the Personal Computer, it said that the new machine would run
three operating systems: MS-DOS, CP/M-86, and SofTech Microsystem's p-System Of the
three, only MS-DOS was available when the IBM PC shipped. Nevertheless, when MS-DOS
was released, nine out of ten programs on the Info World bestseller list for 1981 ran under
CP/M-80, and CP/M-86, which became available about six months later, was the operating
system of choice to most writers and reviewers in the trade press ..

Understandably, MS-DOS was compared with CP/M-80 and, later, CP/M-86. The main con­
cern was compatibility: To what extent was Microsoft's new operating system compatible
with the existing standard? No one could have foreseen that MS-DOS would not only catch
up with but supersede CP/M. Even Bill Gates now recalls that "our most optimistic view of
the number of machines using MS-DOS wouldn't have matched what really ended up
happening."

To begin with, the success of the IBM PC itself surprised many industry watchers. Within a
year, IBM was selling 30,000 PCs per month, thanks in large part to a business community
that was already comfortable with IBM's name and reputation and, at least in retrospect,
was ready for the leap to personal computing. MS-DOS, of course, benefited enormously
from the success of the IBM PC - in large part because IBM supplied all its languages and
applications in MS-DOS format

But, at first, writers in the trade press still believed in CP/M and questioned the viability of
a new operating system in a world dominated by CP/M·80. Many assumed, incorrectly, that
a CP/M-86 machine could run CP/M-80 applications Even before CP/M-86 was available,
Future Computing referred to the IBM PC as the "CP/M Record Player" - presumably in
anticipation of a vast inventory of CP/M applications for the new computer- and led its
readers to assume that the PC was actually a CP/M machine.

The MS-DOS Encyclopedia

1981-1982

Microsoft, meanwhile, held to the belief that the success of IBM's machine or any other 4
16-bit microcomputer depended ultimately on the emergence of an industry standard for a
16-bit operating system. Software developers could not afford to develop software for even
two or three different operating systems, and users could (or would) not pay the prices the
developers would have to charge if they did. Furthermore, users would almost certainly
rebel against the inconvenience of sharing data stored under different operating-system
formats .. There had to be one operating system, and Microsoft wanted MS-DOS to be
the one

The company had already taken the first step toward a standard by choosing hardware
independent designs wherever possible .. Machine independence meant portability, and
portability meant that Microsoft could sell one version of MS-DOS to different hardware
manufacturers who, in turn, could adapt it to their own equipment Portability alone,
however, was no guarantee of industry-wide acceptance. To make MS-DOS the standard,
Microsoft needed to convince software developers to write programs for MS-DOS .. And in
1981, these developers were a little confused about IBM's new operating system.

An operating system by any other name ...

A tangle of names gave rise to one point of confusion about MS-DOS. Tim Paterson's
"Quick and Dirty Operating System" for the 8086 was originally shipped by Seattle
Computer Products as 86-DOS .. After Microsoft purchased 86-DOS, the name remained
for a while, but by the time the PC was ready for release, the new system was known as
MS-DOS .. Then, after the IBM PC reached the market, IBM began to refer to the operating
system as the IBM Personal Computer DOS, which the trade press soon shortened to
PC-DOS .. IBM's version contained some utilities, such as DISKCOPY and DISKCOMP, that
were not included in MS-DOS, the generic version available for license by other manufac­
turers. By calling attention to these differences, publications added to the confusion about
the distinction between the Microsoft and IBM releases of MS-DOS.

Further complications arose when Lifeboat Associates agreed to help promote MS-DOS but
decided to call the operating system Software Bus 86. MS-DOS thus became one of a line
of trademarked Software Bus products, another of which was a product called SB-80,
Lifeboat's version of CP/M-80

Finally, some of the first hardware companies to license MS-DOS also wanted to use their
own names for the operating system. Out of this situation came such additional names as
COMPAQ-DOS and Zenith's Z-DOS

Given this confusing host of names for a product it believed could become the industry
standard, Microsoft finally took the lead and, as developer; insisted that the operating sys­
tem was to be called MS-DOS. Eventually, everyone but IBM complied.

Developers and MS-DOS
Early in its career, MS-DOS represented just a small fraction of Microsoft's business­
much larger revenues were generated by BASIC and other languages .. In addition, in the
first two years after the introduction of the IBM PC, the growth of CP/M-86 and other

Section I The Development of MS-DOS 27

Canon Exhibit 1108

1981-1982

28

environments nearly paralleled that of MS-DOS. So Microsoft found itself in the unenviable
position of giving its support to MS-DOS while also selling languages to run on CP/M-86,
thereby contributing to the growth of software for MS-DOS's biggest competitor

Given the uncertain outcome of this two-horse race, some other software developers
chose to wait and see which way the hardware manufacturers would jump. For their part,
the hardware manufacturers were confronting the issue of compatibility between operat­
ing systems. Specifically, they needed to be convinced that MS-DOS was not a maverick­
that it could perform as well as CP/M-86 as a base for applications that had been ported
from the CP/M-80 environment for use on 16-bit computers.

Microsoft approached the problem by emphasizing four related points in its discussions
with hardware manufacturers:

• First, one of Microsoft's goals in developing the first version of MS-DOS had always
been translation compatibility from CP/M-80 to MS-DOS software

• Second, translation was possible only for software written in 8080 or 280 assembly
language; thus, rteither MS-DOS nor CP/M-86 could run programs written for other
8-bit processors, such as the 6800 or the 6502

• Third, many applications were written in a high-level language, rather than in assem­
bly language.

• Fourth, most of those high-level languages were Microsoft products and ran on
MS-DOS

Thus, even though some people had originally believed that only CP/M-86 would auto­
matically make the installed base of CP/M-80 software available to the IBM PC and other
16-bit computers, Microsoft convinced the hardware manufacturers that MS-DOS was, in
actuality, as flexible as CP/M-86 in its compatibility with existing-and appropriate­
CP/M-80 software.

MS-DOS was put at a disadvantage in one area, however, when Digital Research convinced
several manufacturers to include both 8080 and 8086 chips in their machines. With 8-bit
and 16-bit software used on the same machine, the user could rely on the same disk format
for both types of software .. Because MS-DOS used a different disk format, CP/M had the
edge in these dual-processor machines - although, in fact, it did not seem to have much
effect on the survival of CP/M-86 after the first year or so

Although making MS-DOS the operating system of obvious preference was not as easy as
simply convincing hardware manufacturers to offer it, Microsoft's list of MS-DOS custom­
ers grew steadily from the time the operating system was introduced. Many manufacturers
continued to offer CP/M-86 along with MS-DOS, but by the end of 1983 the technical supe­
riority of MS-DOS (bolstered by the introduction of such products as Lotus 1-2-3) carried
the market For example, when DEC, a longtime holdout, decided to make MS-DOS the pri­
mary operating system for its Rainbow computer, the company mentioned the richer set of
commands and "dramatically" better disk performance of MS-DOS as reasons for its
choice over CP/M-86

The MS-DOS Encyclopedia

MS-DOS

Standard Operating System tor 8086 Micros

MS-DOS 1s a disk operating system from M1crosott for
808618088 m1croprocessors.lnlernaltona!BusmessMechines
Corp chose MS-DOS (called IBM Peroonal Computer DOS) to
beitsoperatmgsystemofcho1celor1tsPersona!Computer
M1crosolra agreements with 1BM and se11eral other ma1or
compulermanulacturersmd1catethalend-usersystems

What Makes MS·DOS Important?

All ol Microsoft's languages fSAS!C Interpreter. BASIC
Comprler. FORTRAN, COBOL. Pascal) are available
immediately under MS-DOS. Users of MS-DOS are assured
that thelf operating syslem wif! be the lirst that Microsoft will
supp0!1 when any new products or major releases are
announced.lnaddition.1na8-b1tvers1onsolM1crosott"s
languages ere upward compatible W•th the 16-bit veraions
Thus, application programs written m 8-bll M1crosott
languages can be run under MS-DOS with little or no
modihcatron. Microsoft wants lo encourage both the
tranaport1ngof8·blt!o16-bitsoftware andthedevelopmentol
newt6··bitoof!ware

Here a1e Iha meior teatures that make MS-DOS the operating
syi1tempeoplewanttouaeon8086machmes

• Ee1yConvenlonfrom8060to808fl

MS-DOS allows es much transportability ol 8-btt mechme
language sottware as is possible. MS-DOS emulales
system cells IO CP/M-BO. Sy simply runnmg assembly
lenguagesourcecodethroughthelnlelconverston
program, almost all 8080 programs will work without
modif1cat1on. In most cases. a conversion 10 MS·DOS is
easier than conversion lo other operaling systems

• Drtte.t lnd1pendenl 110

MS· DOS simplifies 1/0 to dltlerent devlcllS on the UNIX
conceptAsinglesetofl/OcallstreatsaUdeviceselike
from !he user's perspective. There is no need to rewrite
programs when a new device 15 added to the system
Simply OPEN the device end READ or WRITE. A!so.
dev1ceindepenoentl/Oassuresthatdifferenlcontrol
cheracters(specificallyTAB)arehendledthesameb1·
tned1fferentdeV?ces

The Future of MS-DOS

M1crosott plans to enhance MS·DOS. The add1t1onai
addressingspaceoflha8086processormakesmull1··laskinga

Additional MS-DOS Features and Benefits

• Written Enllntly In 8086 A•sembly U.n11ua11•

Th1sprOV1des,1gnif1c11ntspeed1mprov11me<11sOYer
oper11tmgsystemsthat11r11!11rgelytransl11tedfromthe1r8·
bitcounterpans

• FulEfficlttntFli.Struclu1'9

The formal ellminales lhe need for exlents. · minimizes
accesstolhed1rec1orytrack.andprovideslorduphcate
d1recioryinformationandverlfyal!erwnte

• NoNMdloLoglnDbks

Aslongasnof1le1scurrentlyopen,lhereisnoneet110
log in a new disk by 1yping Con!rol·C. This greally
improves usabilily for smgle diak system users and for
peoplewhohketos1orethe1rda1aonseparated1skettes

• No Phyalelll Flle/Dlak Siu Umtullon

Unlike users of opera.ling systems that ere hm1ted to 8
megabytes. MS-DOS users would not have to break a 24
megabyteharddiskintolhreeseparatedrives

runnu:ig MS·DOS will bewrC!ely ava11ab1e 1n me near fulure.
making MS-DOS the standarCI low-ena operating system for
8086 micros. Wny •S MS ·DOS becoming popular? MS-DOS 1s
en important advance m m1crocompu1er operaung sys1ems

• Adv•nced EN'Or Reconry Procedures

MS·· DOS doesnt simply fade away when errors occur JI
a disk error occurs al any time durmg any program. MS­
DOS will retry lhe opera11on three times. ll !he opera11on
cannot be completed successfully. MS-DOS w11f return
anerrormes:sage.thenwartfortheuseftoenlera
response. Theusercanatlemp!recoveryratherthan
reboottheoperahngsystem

• Complete Program ReJOCfltabllll)'

MS·DOS is a truly relocatable operetmg system. No! only
cantheM1crosoftrelocatable!1nkingloaderprov1detor
separate segments bul also the COMMAND pr0grem 1n
MS·DOS relocates the modules dunng loadmg ra!her
than loadmg them to preset addresses. Thus, MS-DOS
does not have the 64K program space lim1tabon of otner
operetmgsystems

• Powerful,FlexibleFlleCMt11elertstlet

MS-DOS has no practical 11m11 on file or disk size. MS
DOS uses <I· byte XENIX OS compatible logical po•nlers
forlile and disk capacity up to4 gigabyte$

W1thm a single d1skelle the user of MS· DOS can nave
l1!esold1fferen!log1calrecord!engths.MS-DOS1s
designedtob1ockanddeb1ock 1tsownphys1calsectors
028 •Snot a sacred number m MS-DOS

MS-DOS remembers the exact end ol Irle marker Thus
sh.:iu!doneopenafilew1!halog1ca1recordlengtho1ner
than !he physical record length. MS·DOS remembers
exact1ywherethaf1leendstothebyte.rather1han
roundedto128bytes.Th1saJlev1alestheneed!orlorcmg
Con1ro:-Z'sorthehkeattheendofahle

Plans for MS-DOS also include disk buflemig. graphics and
cursorpos1llomng.kan11support mult.-userandhardd1sk

part1eular1y auractive ennancemenl. An upward m1gra11on path support and networking

totheXENtXoperatingsystemlhroughXENIXcompatlt>le _J
systemcalls.'"p1pes··and"'tork1ng""1sanotherplanned

c_____oohoo~m•_"'_ --

1981-1982

• No OY1rhe1d for Non-·128··B)'le Ph)l•lcal Seeter,..

Onedoesnolhavatoworryabouldifferentphys1cal
sector sizes when wntmg a BIOS

• Tlme/DateSlamps

Th1saHev1ates,lormstance.tho:lneedtorecompileahleri
!he!1meont1terelocatabfel1Je1smorerecentthanonthe
source file

• LllebOGIAuoct.lt'•

Theworld'slargestindependentdrstributorol
m1crocompu1er software has chosen to support MS··DOS
as its low-end t6-b1t opera11ng system. Recognizing !he
important m1grat1on path from tne 8-brl Jevet to XENIX
OS Lileboa! will be offenng a wide range ol software !or
the MS-DOS envrronmerrt

• 100"/olBMCompallbl•

JBM is offering sottware runmng under MS-DOS IBM hes
announced Microsoft BASIC and M1crosott Pascal. along
with accountmg. hnancial plannmg and word processing
software running under MS-DOS

Microsoft Inc.
t0800NEEtghth.Surte819
Bellevue,WA98004
206-455-8080 Telex328945

A Microsoft original equipment manufacturer (OEM) marketing brochure describing the strengths of MS-DOS

Section I The Development of MS-DOS 29
Canon Exhibit 1108

1982-1983

Version2

After the release of PC-specific version 1.0 of MS-DOS, Microsoft worked on an update
that contained some bug fixes. Version 1.1 was provided to IBM to run on the upgraded PC
released in 1982 and enabled MS-DOS to work with double-sided, 320 KB floppy disks ..
This version, referred to as 125 by all but IBM, was the first version of MS-DOS shipped by
other OEMs, including COMPAQ and Zenith.

Even before these intermediate releases were available, however; Microsoft began plan­
ning for foture versions of MS-DOS. In developing the first version, the programmers had
had two primary goals: running translated CP/M-80 software and keeping MS-DOS small
They had neither the time nor the room to include more sophisticated features, such as
those typical of Microsoft's UNIX-based multiuser, multitasking operating system, XENIX.
But when IBM informed Microsoft that the next major edition of the PC would be the
Personal Computer XT with a 10-megabyte fixed disk, a larger, more powerful version of
MS-DOS- one closer to the operating system Microsoft had envisioned from the start­
became feasible

There were three particular areas that interested Microsoft: a new, hierarchical file system,
installable device drivers, and some type of multitasking. Each of these features contrib­
uted to version 2.0, and together they represented a major change in MS-DOS while still
maintaining compatibility with version 1.0.

The File System

30

Primary responsibility for version 2 .. 0 fell to Paul Allen, Mark Zbikowski, and Aaron
Reynolds, who wrote (and rewrote) most of the version 2 .. 0 code The major design issue
confronting the developers, as well as the most visible example of its difference from ver­
sions 1.0, 1.1, and 1.25, was the introduction of a, hierarchical file system to handle the file­
management needs of the XT's fixed disk.

Version LO had a single directory for all the files on a floppy disk That system worked well
enough on a disk of limited capacity, but on a 10-megabyte fixed disk a single directory
could easily become unmanageably large and cumbersome

CP/M had approached the problem of high-capacity storage media by using a partitioning
scheme that divided the fixed disk into 10 user areas equivalent to 10 separate floppy-disk
drives. On the other hand, UNIX, which had traditionally dealt with larger systems, used
a branching, hierarchical file structure in which the user could create directories and
subdirectories to organize files and make them readily accessible .. This was the file­
management system implemented in XENIX, and it was the MS-DOS team's choice for
handling files on the XT's fixed disk

Ihe MS-DOS Encyclopedia

1982-1983

The MS-DOS version 1 0 manual next to the ver:sion 2.0 manual

Partitioning, IBM's initial choice, had the advantages of familiarity, size, and ease of imple­
mentation. Many small-system users - particularly software developers - were already
familiar with partitioning, if not overly fond of it, from their experience with CP/M Devel­
opment time was also a major concern, and the code needed to develop a partitioning
scheme would be minimal compared with the code required to manage a hierarchical file
system. Such a scheme would also take less time to implement

However, partitioning had two inherent disadvantages. First, its functionality would
decrease as storage capacity increased, and even in 1982, Microsoft was anticipating sub­
stantial growth in the storage capacity of disk-based media. Second, partitioning de­
pended on the physical device. If the size of the disk changed, either the number or the
size of the partitions must also be changed in the code for both the operating system and
the application programs. For Microsoft, with its commitment to hardware independence,
partitioning would have represented a step in the wrong direction

A hierarchical file structure, on the.other hand, could be independent of the physical
device. A disk could be partitioned logically, rather than physically And because these
partitions (directories) were controlled by the user, they were open-ended and enabled
the individual to determine the best way of organizing a disk

Ultimately, it was a hierarchical file system that found its way into MS-DOS 2 0 and even­
tually convinced everyone that it was, indeed, the better and more flexible solution to the
problem of supporting a fixed disk The file system was logically consistent with the
XENIX file structure, yet physically consistent with the file access incorporated in versions
1 x, and was based on a root, or main, directory under which the user could create a sys­
tem of subdirectories and sub-subdirectories to hold files. Each file in the system was iden­
tified by the directory path leading to it, and the number of subdirectories was limited only
by the length of the pathname, which could not exceed 64 characters

In this file structure, all the subdirectories and the filename in a path were separated
from one another by backslash characters, which represented the only anomaly in the
XENIX/MS-DOS system of hierarchical files. XENIX used a forward slash as a separator,
but versions 1 x of MS-DOS, borrowing from the tradition of DEC operating systems,
already used the forward slash for switches in the command line, so Microsoft, at IBM's
request, decided to use the backslash as the separator instead. Although the backslash

Section I The Development ofMS-DOS 31

Canon Exhibit 1108

1982-1983

character created no practical problems, except on keyboards that lacked a backslash, this
decision did introduce inconsistency between MS-DOS and existing UNIX-like operating
systems. And although Microsoft solved the keyboard problem by enabling the user to
change the switch character from a slash to a hyphen, the solution itself created compati­
bility problems for people who wished to exchange batch files.

Another major change in the file-management system was related to the new directory
structure: In order to folly exploit a hierarchical file system, Microsoft had to add a new
way of calling file services

Versions l.x of MS-DOS used CP/M-like structures called file control blocks, or FCBs, to
maintain compatibility with older CP/M-80 programs. The FCBs contained all pertinent
information about the size and location of a file but did not allow the user to specify a file
in a different directory. Therefore, version 2 .. 0 of MS-DOS needed the added ability to ac­
cess files by means of handles, or descriptors, that could operate across directory lines.

In this added step toward logical device independence, MS-DOS returned a handle when­
ever an MS-DOS program opened a file. All further interaction with the file involved only
this handle .. MS-DOS made all necessary adjustments to an internal structure - different
from an FCB - so that the program never had to deal directly with information about the
file's location in memory. Furthermore, even if foture versions of MS-DOS were to change
the structure of the internal control units, program code would not need to be rewritten -
the file handle would be the only referent needed, and this would not change

Putting the internal control units under the supervision of MS-DOS and substituting
handles for FCBs also made it possible for MS-DOS to redirect a program's input and out­
put A system function was provided that enabled MS-DOS to divert the reads or writes
directed to one handle to the file or device assigned to another handle. This capability was
used by COMMAND.COM to allow output from a file to be redirected to a device, such as a
printer, or to be piped to another program. It also allowed system cleanup on program
terminations

Installable Device Drivers

32

At the time Microsoft began developing version 2 .0 of MS-DOS, the company also realized
that many third-party peripheral devices were not working well with one another. Each
manufacturer had its own way of hooking its hardware into MS-DOS and if two third-party
devices were plugged into a computer at the same time, they would often conflict or fail.

One of the hallmarks of IBM's approach to the PC was open architecture, meaning that
users could simply slide new cards into the computer whenever new input/output de­
vices, such as fixed disks or printers, were added to the system. Unfortunately, version
1.0 of MS-DOS did not have a corresponding open architecture built into it-the BIOS

The MS-DOS Encyclopedia

1982-1983

contained all the code that permitted the operating system to run the hardware. If inde- 4
pendent hardware manufacturers wanted to develop equipment for use with a computer
manufacturer's operating system, they would have to either completely rewrite the device
drivers or write a complicated utility to read the existing drivers, alter them, add the code
to support the new device, and produce a working set of drivers .. If the user installed more
than one device, these patches would often conflict with one another.. Furthermore, they
would have to be revised each time the computer manufacturer updated its version
of MS-DOS

By the time work began on version 2.0, the MS-DOS team knew that the ability to install
any device driver at run time was vital. They implemented installable device drivers by
making the drivers more modular. Like the FAT, IO.SYS (IBMBIOCOM in PC-DOS)
became, in effect, a linked list- this time, of device drivers - that could be expanded
through commands in the CONFIG.SYS file on the system boot disk Manufacturers could
now write a device driver that the user could install at run time by including it in the
CONFIGSYS file. MS-DOS could then add the device driver to the linked list

By extension, this ability to install device drivers also added the ability to supersede a pre­
viously installed driver-for example, the ANSLSYS console driver that supports the ANSI
standard escape codes for cursor positioning and screen control.

Print Spooling

At IBM's request, version 2 .0 of MS-DOS also possessed the undocumented ability to per­
form rudimentary background processing- an interim solution to a growing awareness of
the potentials of multitasking

Background print spooling was sufficient to meet the needs of most people in most situa­
tions, so the print spooler, PRINT COM, was designed to run whenever MS-DOS had
nothing else to do. When the parent application became active, PRINTCOM would be in­
terrupted until the next lull. This type of background processing, though both limited and
extremely complex, was exploited by a number of applications, such as SideKick

Loose Ends and a New MS-DOS

Hierarchical files, installable device drivers, and print spooling were the major design
decisions in version 20. But there were dozens of smaller changes, too

For example, with the fixed disk it was necessary to modify the code for automatic logging
of disks. This modification meant that MS-DOS had to access the disk more often, and file
access became much slower as a result. In trying to find a solution to this problem, Chris
Peters reasoned that, if MS-DOS had just checked the disk, there was some minimum time

Section I The Development of MS-DOS 33
Canon Exhibit 1108

1982-1983

Two members of the
IBM line of personal
computers for which
versions 1 and 2 of
MS-DOS were devel­
oped On the left, the
original IBM PC (verc
sion 1.0 of MS-DOS);
on the right, the IBM
PC/XT (version 2 0)

a user would need to physically change disks If that minimum time had not elapsed, the
current disk information in RAM -whether for a fixed disk or a floppy-was probably
still good

Peters found that the fastest anyone could physically change disks, even if the disks were
damaged in the process, was about two seconds .. Reasoning from this observation, he had
MS-DOS check to see how much time had gone by since the last disk access. If less than
two seconds had elapsed, he had MS-DOS assume that a new disk had not been inserted
and that the disk information in RAM was still valid. With this little trick, the speed of file
handling in MS-DOS version 2 0 increased considerably.

Version 2 0 was released in March 1983, the product of a surprisingly small team of six de­
velopers, including Peters, Mani Ulloa, and Nancy Panners in addition to Allen, Zbikowski,
and Reynolds. Despite its complex new features, version 2 .. 0 was only 24 KB of code
Though it maintained its compatibility with versions 1.x, it was in reality a vastly different
operating system. Within six months of its release, version 2 .. 0 gained widespread public
acceptance In addition, popular application programs such as Lotus 1-2-3 took advantage
of the features of this new version of MS-DOS and thus helped secure its foture as the
industry standard for 8086 processors

Versions 2.1 and 2.25

34

The world into which version 2 .. 0 of MS-DOS emerged was considerably different from the
one in which version l 0 made its debut When IBM released its original PC, the business
market for microcomputers was as yet undefined- if not in scope, at least in terms of who
and what would dominate the field A year and a half later, when the PC/XT came on the
scene, the market was much better known. It had, in fact, been heavily influenced by IBM
itself There were still many MS-DOS machines, such as the Tandy 2000 and the Hewlett
Packard HP150, that were hardware incompatible with the IBM, but manufacturers of new
computers knew that IBM was a force to consider and many chose to compete with the
IBM PC by emulating it Software developers, too, had gained an understanding of busi­
ness computing and were confident they could position their software accurately in the
enormous MS-DOS market

The MS-DOS Encyclopedia

1983

In such an environment, concerns about the existing base of CP/M software faded as
developers focused their attention on the fast-growing business market and MS-DOS
quickly secured its position as an industry standard. Now, with the obstacles to MS-DOS
diminished, Microsoft found itself with a new concern: maintaining the standard it had
created. Henceforth, MS-DOS had to be many things to many people .. IBM had require­
ments; other OEMs had requirements .. And sometimes these requirements conflicted ..

Hardware Developers

When version 2 .. 0 was released, IBM was already planning to introduce its PCjr.. The PCjr
would have the ability to run programs from ROM cartridges and, in addition to using half~
height 5114-inch drives, would employ a slightly different disk-controller architecture .. Be­
cause of these differences from the standard PC line, IBM's immediate concern was for a
version 2 . .1 of MS-DOS modified for the new machine.

For the longer term, IBM was also planning a faster, more powerful PC with a 20-megabyte
fixed disk This prospect meant Microsoft needed to look again at its file-management sys­
tem, because the larger storage capacity of the 20-megabyte disk stretched the size limita­
tions for the file allocation table as it worked in version 2 .0.

However, IBM's primary interest for the next major release of MS-DOS was networking.
Microsoft would have preferred to pursue multitasking as the next stage in the develop­
ment of MS-DOS, but IBM was already developing its IBM PC Network Adapter, a plug-in
card with an 80188 chip to handle communications .. So as soon as version 2 O was released
the MS-DOS team, again headed by Zbikowski and Reynolds, began work on a networkin~
version (3 0) of the operating system

Meanwhile ...

The international market for MS-DOS was not significant in the first few years after the
release of the IBM PC and version 10 of MS-DOS IBM did not, at first, ship its Personal
Computer to Europe, so Microsoft was on its own there in promoting MS-DOS. In 1982, the
company gained a significant advantage over CP/M-86 in Europe by concluding an agree­
ment with Victor, a software company that was very successfol in Europe and had already
licensed CP/M-86.. Working closely with Victor, Microsoft provided special development
support for its graphics adaptors and eventually convinced the company to offer its pro­
ducts only on MS-DOS. In Japan, the most popular computers were Z80 machines, and
given the country's huge installed base of 8-bit machines, 16-bit computers were not taking
hold. Mitsubishi, however, offered a 16-bit computer.. Although CP/M-86 was Mitsubishi's
original choice for an operating system, Microsoft helped get Multiplan and FORTRAN
running on the CP/M-86 system, and eventually won the manufacturer's support for
MS-DOS.

Section I The Development ofMS-DOS 35

Canon Exhibit 1108

1983

36

DOSl.O

Irresistible
DOS 3.0

The Ascent
of DOS

• Hands On: Operating Systmts

MS-DOS 2.00: A
Hands-On Tutorial

Alt"°"tJ>rht°""°",,.._,,,o{,hrlBMPmoM/Com.
P1'ierXTf'dbbtJrhtll<tuilmna/ILTU•11ttwil,,,g,tht
lowt......,.,ofMICOSO{t'sD~ Opoat"'6.!)ost""
{DOS2.00/,,,.,"""-donrht-d;ry,,,..,ha
~at <>f/M~ ... ~IOalJ
l'C.,_,fo•mt1fldlmtthr/lawof# .. b.,wtt1ttht
PC's~,,,,,Jpmpbrn>Jdntrca.1"'sarticktak"
a~/"°""'"""'ofthos<.,,na,,umtnlf,,,.P«Wly

::"t>c':!':"""ftlmgrystmt""""'""°"''"Pk

E..,.bdouth.latts.$etolchangc;.MS...!Xli,....
oneofrhcbeabuyslorth.PC.l'orS40.......,,.1.lllol
1h.,p>ock>ge".""'bl~onodcmr,a~le-kecpong$)'Sttm,
b.tcltp«><e$Wlg,almk<rondd<bug!""llrarn,aod""'<h
mort Manyi=n<ouchonly1kcSoJrfacoolili"~
Monof1h<irt1mo,.open11nthoappl"""°"'tnv1mn­
mernofar>tCP"'lta$tdprognm.TI..1ypkalword
rm<""'"!:~.1or ... mp1c.1'2ro!yU>«•ny
D05cornm..-.1$b=de.FORMATandCO!'Y.Some
..... ioucl>onb.tcltpro«>.,ng•nddodobo,...dn~
=~~ycorn,,..nd.=ngwtld«1n:bor(dobol

Tue .. iclcompu1tr....,,on10.orh«h>nd,ha>

:u,,.::~P=~~s':.::~~:S.~"'t:
•>11mui.11ngpack•g<for1hos<...,,.,.nd<tln>ffltt1ng•ll
10."""1!e.11=Y""gorloronly~11.....,.,ldbo .. bor·

'""'"'"'"''""'P<"''
Thcforn1offiles
DOS2.0011<il...,.••1tt•strllctllt<dfihngoymm.lnd"'
typ<oi:•=ngome<U>root,orb.1<:.d1m:mryholds•
°"''"'nnumbuolfi!u.~of1hes.:fib•,.m.m..l"''
d>,.cnonn;they•R••:tu;<llysub.l>roao<i<sof1n.rooi
direaoryand«1nron1:1rnfiles•n<lwbd11tct0n<>lh•m­
.>~

A sample of the reviews that appear'f!d
with each new version ojMS-DOS

In the software arena, by the time development was underway on the 2.x releases of
MS-DOS, Microsoft's other customers were becoming more vocal about their own needs
Several wanted a networking capability, adding weight to IBM's request, but a more tJrgent
need for many- a need not shared by IBM at the time -was support for international
products. Specifically, these manufacturers needed a version of MS-DOS that could be sold
in other countries- a version of MS-DOS that could display messages in other languages
and adapt to country-specific conventions, such as date and time formats

Microsoft, too, wanted to internationalize MS-DOS, so the MS-DOS team, while modifying
the operating system to support the PCjr, also added fonctions and a COUNTRY command
that allowed users to set the date and time formats and other country-dependent variables
in the CONFIGSYS file

The MS-DOS Encyclopedia

1983

NEC PC-9800 Series Personal Computer

:U,OY7f MS-DOS ii'-;' V 3. 10
Copyright 1981, 1985 Microsoft Corp I NEC Corporation

ii::iWOiJitv!JOJt1'<:'-t
~l~!;t, fJ v /' r r 7 1 7··o:; NECDIC SYS ·-z:-t

CCMAAND N -:l 3~ 3 10

A>DIR IW

r717'. A' O)·r'1:>::70),f,'9 "'-.b.7--<JJ;!;t KAYA! RYU
7'1 v:7 r· 111;1: A,¥BIN -

CHKDSK EXE COPY2 Cc:t1 ~~}~ §&:j
FC EXE FIND EXE FORMAT EXE
MORE Cc:t1 SPEED Cc:t1 SWITCH Cc:t1

20 @OJ7 71 Jv;bi'5 l'.J t·t·
3so44ao ''1 r· ;Oitv!JOJJill·<:'-t

i\ll;'.'J".MS-DOS

ATIRIB EXE
DISKCOPY Cc:t1
KEY Cc:t1
SYS EXE

EXE
SYS
EXE
Cc:t1

<

A Kanji scT'f!en with
the MS-DOS copyright
message

At about the same time, another international requirement appeared The Japanese market
for MS-DOS was growing, and the question of supporting 7000 Kanji characters (ideo­
grams) arose. The difficulty with Kanji is that it requires dual-byte characters For English
and most European character sets, one byte corresponds to one character Japanese char~
acters, however, sometimes use one byte, sometimes two. This variability creates prob­
lems in parsing, and as a result MS-DOS had to be modified to parse a string from the
beginning, rather than back up one character at a time

This support for individual country formats and Kanji appeared in version 2 .01 of MS-DOS
IBM did not want this version, so support for the PCjr, developed by Zbikowski, Reynolds,
Ulloa, and Eric Evans, appeared separately in version 2.1, which went only to IBM and did
not include the modifications for international MS-DOS.

Different customers, different versions

As early as version 125, Microsoft faced the problem of trying to satisfy those OEM cus­
tomers that wanted to have the same version of MS-DOS as IBM Some, such as COMPAQ,
were in the business of selling 100-percent compatibility with IBM. For them, any differ­
ence between their version of the operating system and IBM's introduced the possibility of
incompatibility. Satisfying these requests was difficult, however, and it was not until ver­
sion 3 J that Microsoft was able to supply a system that other OEMs agreed was identical
with IBM's

Before then, to satisfy the OEM customers, Microsoft combined versions 2 .1 and 2 01 to
create version 2.11 Although IBM did not accept this because of the internationalization
code, version 2 Jl became the standard version for all non-IBM customers running any
form of MS-DOS in the 2 x series Version 2 .. 11 was sold worldwide and translated into
about 10 different languages Two other intermediate versions provided support for
Hangeul (the Korean character set) and Chinese Kanji

Section I The Development of MS-DOS 37 Canon Exhibit 1108

1983

Software Concerns

38

After the release of version 2 .0, Microsoft also gained an appreciation of the importance­
and difficulty- of supporting the people who were developing software for MS-DOS

Software developers worried about downward compatibility .. They also worried about
upward compatibility .. But despite these concerns, they sometimes used programming
practices that could guarantee neither. When this happened and the resulting programs
were successfol, it was up to Microsoft to ensure compatibility

For example, because the information about the internals of the BIOS and the ROM inter­
face had been published, software developers could, and often did, work directly with the
hardware in order to get more speed This meant sidestepping the operating system for
some operations .. However, by choosing to work at the lower levels, these developers lost
the protection provided by the operating system against hardware changes .. Thus, when
low-level changes were made in the hardware, their programs either did not work or did
not run cooperatively with other applications.

Another software problem was the continuing need for compatibility with CP/M. For
example, in CP/M, programmers would call a fixed address in low memory in order to re­
quest a fonction; in MS-DOS, they would request operating-system services by executing a
software interrupt To support older software, the first version of MS-DOS allowed a pro­
gram to request functions by either method. One of the CP/M-based programs supported
in this fashion was the very popular WordStar. Since Microsoft could not make changes in
MS-DOS that would make it impossible to run such a widely used program, each new ver­
sion of MS-DOS had to continue supporting CP/M-style calls

A more pervasive CP/M-related issue was the use of FCB-style calls for file and record
management The version 1.x releases of MS-DOS had used FCB-style calls exclusively, as
had CP/M. Version 2 0 introduced the more efficient and flexible handle calls, but Microsoft
could not simply abolish the old FCB-style calls, because so many popular programs used
them. In fact, some of Microsoft's own languages used them So, MS-DOS had to support
both types of calls in the version 2 x series. To encourage the use of the new handle calls,
however, Microsoft made it easy for MS-DOS users to upgrade to version 2 .0. In addition,
the company convinced IBM to require version 2 0 for the PC/XT and also encouraged
software developers to require 2 .0 for their applications

At first, both software developers and OEM customers were reluctant to require 2 0
because they were concerned about problems with the installed user base of 1.0
systems-requiring version 2.0 meant supporting both sets of calls. Applications also
needed to be able to detect which version of the operating system the user was running
For versions 1 x, the programs would have to use FCB calls; for versions 2.x, they would
use the file handles to exploit the flexibility of MS-DOS more fully

All told, it was an awkward period of transition, but by the time Microsoft began work on
version 3 O and the support for IBM's upcoming 20-megabyte fixed disk, it had become
apparent that the change had been in everyone's best interest

The MSCDQS Encyclopedia

L

1983-1984

Version3

The types of issues that began to emerge as Microsoft worked toward version 3 .0, MS-DOS
for networks, exaggerated the problems of compatibility that had been encountered
before.

First, networking, with or without a multitasking capability, requires a level of cooperation
and compatibility among programs that had never been an issue in earlier versions of
MS-DOS As described by Mark Zbikowski, one of the principals involved in the project,
"there was a very long period of time between 2.J and 3 0-almost a year and a half Dur­
ing that time, we believed we understood all the problems involved in making DOS a net­
"'.'orking product [But] as time progressed, we realized that we didn't fully understand it,
either from a compatibility standpoint or from an operating-system standpqint We knew
very well how it [DOS] ran in a single-tasking environment, but we started going to this
new environment and found places where it came up short"

In fact, the great variability in programs and programming approaches that MS-DOS
supported eventually proved to be one of the biggest obstacles to the development of a
sophisticated networking system and; in the longer term, to the addition of true
multitasking

Further, by the time Microsoft began work on version 3 .0, the programming style of the
:vis-n,os team had changed considerably. The team was still small, with a core group of
JUSt five people: Zbikowski, Reynolds, Peters, Evans, and Mark Bebic But the concerns for
maintainability that had dominated programming in larger systems had percolated down
to the MS-DOS environment Now, the desire to use tricks to optimize for speed had to be
tempered by the need for clarity and maintainability, and the small package of tightly
written code that was the early MS-DOS had to be sacrificed for the same reasons

Version3.0

All told, the work on versi<?n 3 .0 of MS-DOS proved to be long and difficult. For a year and
a half, Microsoft grappled with problems of software incompatibility, remote file manage­
ment, and logical device independence at the network level.. Even so, when IBM was ready
to announce its new Personal Computer AT, the network software for MS-DOS was not
quite ready, so in August 1984, Microsoft released version 3 Oto IBM without network
software.

Version 3 0 supported the AT's larger fixed disk, its new CMOS clock, and its high-capacity
12-megabyte floppy disks .. It also provided the same international support included earlier
in versions 2.01and2.11 These features were made available to Microsoft's other OEM
customers as version 3 05

Section I The Development ofMScDQS 39
Canon Exhibit 1108

1983-1984

<

7
/GETEoFI

/ - /
't' -

Ro~
\ fLusH&iF ...:::..1c11c.c"FW.sttr-?i BoFWR\TE

'-.. ' :tr I\

i GETB\JFFR
tL-'::':!=-~GE"\StJFFRB
~

1983-1984

l f.~rrerff_dir I c.

'----r--L1'TR~•~"'!J5P~A!TH'!J· I A>LIMJ<w•~ec) 0

- JVAL.lt>ATECPS.\ .-

,----i··-l ~+ -J /1.<.t'
--! GET.PPB\-,"""'~

PftT/1

\ Nc:x.rsFc..
~ / -

Ro~

40

/' W» ol>'fa.cs C.U.)

~~~I/o 
,~,Hf\.b ~-'--~~~~~~~~~~~ 

~---------~~,,.. r ( ~,,,., 
L---------------:7 Ffl.5 

Aaron Reynolds :S diagram of version :3 O's network support, sketched out to enable him to add the fail option 
to Interrupt 24 and find all places where existing parts of MS-DOS were affected Even after networ·king had 
become a reality, Reynolds kept thts diagram pinned to hi.s office wall simply because 'it was so much work 
to put together: " 

The MS-DO.S Encyclopedia 

bWf'o 

Section I. The Development ofMS-DO.S 41 
Canon Exhibit 1108



1983-1984 

42 

The Intel 80286 micro­
processor, the chip at 
the heart of the IBM 
PC#iT, Which is shown 
beside it Version 3 0 of 
iltfS-DOS developed/or 
this machine, offered 
support for networks 
and the PC/AT 's 1 2-
megabyte floppy disk 
drive and built-in 
Gl105 clock 

But version 3 O was not a simple extension of version 2.0 In laying the foundation for net­
wo1king, the MS-DOS team had completely redesigned and rewritten the DOS kernel 

Different as it was from version 1 0, version 2 0 had been built on top of the same structure 
For example, whereas file requests in MS-DOS 1 0 used FCBs, requests in version 2 0 used 
file handles Howevei, the version 2 0 handle calls would simply parse the pathname and 
then use the underlying FCB calls in the same way as version 10 The redirected input and 
output in version 2 O further complicated the file-system requests When a program used 
one of the CP/M-compatible calls for character input or output, MS-DOS 2 0 first opened a 
handle and then turned it back into an FCB call at a lower level Version 3 0 eliminated this 
redundancy by eliminating the old FCB input/output code of versions 1and2, replacing it 
with a standard set of 1/0 calls that could be called directly by both FCB calls and handle 
calls The look-alike calls for CP/M-compatible character I/0 were included as part of the 
set of handle calls As a result of this restructu1ing, these calls were distinctly faster in 
version 3 0 than in version 2 0 

lvlore important than the elimination of inefficiencies, however, was the fact that this new 
structure made it easier to handle network requests under the ISO Open System Intercon­
nect model Niicrosoft was using fOr networking. The ISO model describes a number of 
protocol layers, ranging from the application-to-application intertace at the top level down 
to the physical link-plugging into the network-at the lowest level. In the middle is the 
transport layer, which manages the actual transfer of data Th~ layers above the transport 
layer belong to the realm of the operating system; the layers below the transport layer are 
traditionally the domain of the network software or hardware 

On the IBM PC network, the uansport layer and the server functions were handled by 
IBM's Network Adapte1 card and the task of MS-DOS was to supp01t this hardware For its 
other OEM customers, however, Microsoft needed to supply both the transport and the 
server functions as software. Although version 3 0 did not provide this general-purpose 
networking software, it did provide the basic support for IBM's networking hardware 

The support for IBM consisted ofredirect01 and sharer software MS-DOS used an ap­
proach to networking in which remote requests were routed by a redirector that was able 

The MS-DO.S Encyclopedia 

1984 

to interact with the tlansport layer of the network The tlansport layer was composed of 
the device drivers that could rellably tlansfer data from one part of the network to another 
Just before a call was sent to the newly designed low-level file I/0 code, the operating sys­
tem determined whether the call was local or remote A local call would be allowed to fall 
through to the local file I/0 code; a remote call would be passed to the redirector which, 
working with the operating system, would make the resources on a remote machine 
appear as if they were local. 

Version3.1 

Both the redirector and the sharer interfaces for IBM's Network Adapter card were in place 
in version 3 0 when it was delivered to IBM, but the redirector itself wasn't ready Version 
3 1, completed by Zbikowski and Reynolds and released three months later,. completed this 
network support and made it available in the form of Microsoft Networks for use on non­
IBM network cards 

Microsoft Networks was built on the concept of "services" and "consumers." Services 
were provided by a file server, which was part of the Networks application and ran on a 
computer dedicated to the task. Consumers were pro gr ams on various network machines 
Requests for information were passed at a high level to the file server; it was then the 
responsibility of the flle server to determine where to find the information on the disk 
I he requesting programs- the consumers -did not need any knowledge of the remote 
machine, not even what type of file system it had 

I his ability to pass a high-level request to a remote server without having to know the 
details of the server's file structure allowed another level of generalization of the system 
In MS-DOS 3 1, different types of file systems could be accessed on the same network It 
was possible, for example, to access a XENIX machine across the network fr om an 
MS-DOS machine and to read data from XENIX files 

Microsoft Networks was designed to be hardware independent Yet the variability of the 
classes of programs that would be using its structures was a major problem in developing 
a networking system that would be transparent to the user. In evaluating this variability, 
Microsoft identified three types of programs: 

• First were the MS-DOS-compatible programs These used only the documented 
software-interrupt method of requesting services from the operating system and 
would run on any MS-DOS machine without problems 

• Second were the MS-DOS-based programs. These would run on IBM-compatible 
computers but not necessarily on all MS-DOS machines 

• Third were the programs that used undocumented features of MS-DOS or that 
addressed the hardware directly. These programs tended to have the best perfor­
mance but were also the most difficult to support 

Of these, Microsoft officially encouraged the writing of MS-DOS-compatible programs for 
use on the network 

Section L The Development oj~t!S-DO.S 43 

Canon Exhibit 1108



Network concerns 

The file-access module was changed in version 3 .0 to simplify file management on the 
network, but this did not solve all the problems for instance, MS-DOS still needed to han­
dle FCB requests from programs that used them, but many programs would open an FCB 
and never close it One of the functions of the server was to keep track of all open files 
on the network, and it ran into difficulties when an FCB was opened 50 or 100 times and 
never closed Tb solve this problem, Microsoft introduced an FCB cache in version 3 1 that 
allowed only fow FCBs to be open at any one time. If a fifth FCB was opened, the least re­
cently used one was closed automatically and released In addition, an FCBS command 
was added in the CONFIG SYS file to allow the user or network manager to change the 
maximum number of FCBs that could be open at any one time and to protect some of the 
FCBs from automatic closure 

In general, the logical device independence that had been a goal of MS-DOS acquired new 
meaning-and generated new problems-with networking. One problem concerned 
printers on the network Commonly, networks are used to allow several people to share a 
printer I he network could easily accommodate a program that would open the printer, 
write to it, and close it again Some programs, however, would try to use the direct IBM 
BIOS interface to access the printer To handle this situation, Microsoft's designers had to 
develop a way for MS-DOS to intercept these BIOS requests and filter out the ones the 
server could not handle Once this was accomplished, version 3 1 was able to handle most 
types of printer output on the network in a transparent manner 

Version 3.2 

44 

In January 1986, Microsoft released another revision of MS-DOS, version 3 .2, which 
supported 31/2-inch floppy disks Version 3 2 also moved the formatting function for a 
device out of the FORMAT utility routine and into the device driver, eliminating the need 
for a special hardware-dependent program in addition to the device driver. It included a 
sample installable-block-device driver and, finally, benefited the users and manufacturers 
of IBM-compatible computers by including major rewrites of the MS-DOS utilities to 
increase compatibility with those of IBM 

The MS-DOS Encyclopedia 

1987 

The Future 

Since its appearance in 1981, MS-DOS has taken and held an enviable position in the 
microcomputer environment Not only has it "taught" millions of personal computers 
"how to think," it has taught equal millions of people how to use computers. Many highly 
soph1st1cated computer users can trace their first encounter with these machines to the 
original IBM PC and version 1 0 of MS-DOS. The MS-DOS command interface is the one 
with which they are comfortable and it is the MS-DOS file structure that, in one way or 
another, they wander through with familiarity 

Microsoft has stated its commitment to ensuring that, for the foreseeable futwe MS-DOS 
:-'ill ~o~tinue to evolve and grow, changing as it has done in the past to satisfy ;he needs of 
rts m1ll1ons of users In the long term, MS-DOS, the product of a surprisingly small group of 
gifted people, wrll undoubtedly remain the industry sWndard for as long as 8086-based 
(and to some extent, 80286-based) microcomputers exist in the business world I he story 
of MS-DOS will, of course, remain even longer For this operating system has earned its 
place in microcomputing history 

foAnne Woodcock 

Section I The Development ojMS'-DOS 45 
Canon Exhibit 1108



Canon Exhibit 1108



Part A 
Structure of MS-DOS 

Canon Exhibit 1108



Article 1: An Introduction to MS-DOS 

Article I 
An Introduction to MS-DOS 

An operating system is a set of interrelated supervisory programs that manage and control 
computer processing. In general, an operating system provides 

• Storage management 
• Processing management 
• Security 
• Human interface 

Existing operating systems for microcomputers tall into three major categories: ROM 
monitors, traditional operating systems, and operating environments I he general char ac­
ter is tics of the three categories are listed in fable 1-1 

Table 1-1.. Characteristics of the Jbr·ee Major· Types of Operating Systems. 

Traditional 
ROM Operating Operating 
Monitor· System Envit·onment 

Complexity Low Medium High 
Built on Hardware BIOS Operating system 
Delivered on ROM Disk Disk 
Programs on ROM Disk Disk 
Peripheral support Physical Logical Logical 
Disk access Sector File system File system 
Example PC ROM BIOS MS-DOS Microsoft Windows 

A ROM monitor is the simplest type of operating system It is designed for a particular 
hardware configuration and provides a program with basic-and often direct-access to 
peripherals attached to the computer Programs coupled with a ROM monitor are often 
used for dedicated applications such as controlling a microwave oven or controlling the 
engine of a car 

A traditional microcomputer operating system is built on top of a ROM monitor, or BIOS 
(basic input/output system), and provides additional features such as a file system and log­
ical access to peripherals (i,ogical access to peripherals allows applications to run in a 
hardware-independent manner ) A traditional operating system also stores programs in 
files on peripheral storage devices and, on request, loads them into memory for execution 
MS-DOS is a traditional operating system 

An operating environment is built on top of a traditional operating system I he operating 
environment provides additional services, such as common menu and forms support, that 

Section II Programming in the MS'-DO.S Environment 51 

Canon Exhibit 1108



Part A:. Structure of MS-DOS 

simplify program operation and make the user interface more consistent Microsoft 
Windows is an operating environment 

MS-DOS System Components 

The Microsoft Disk Operating System, MS-DOS, is a traditional microcomputer operating 
system that consists of five major components: 

• The operating-system loader 
• The MS-DOS BIOS 
• I he MS-DOS kernel 
• The user interface (shell) 
• Support programs 

Each of these is introduced briefly in the following pages See PROGRAMMING IN I HE 
MS-DOS ENVIRONMENT: SrnucruRE oF Ms-oos: The Components of MS-DOS 

The operating-system loader 

I he operating-system loader brings the operating system from the startup disk into RAM 

The complete loading process, called bootstrapping, is often complex, and multiple 
loaders may be involved (I he term bootstrapping came about because each level pulls up 
the next part of the system, like pulling up on a pair of bootstraps ) For example, in most 
standard MS-DOS-based microcomputer implementations, the ROM loader, which is the 
first program the microcomputer executes when it is turned on or restarted, reads the disk 
bootstrap loader from the first (boot) sector of the startup disk and executes it The disk 
bootstrap loader, in tum, reads the main portions of MS-DOS- MSDOS SYS and IO SYS 
(IBMDOS COM and IBMBIO COM with PC-DOS)- from conventional disk files into mem­
ory I he special module SYSINII within MSDOS SYS then initializes MS-DOS's tables and 
buffers and discards itself See PROGRAMMING IN THE MS-DOS ENVIRONMENT: Srnuc­
IURE OF MS-DOS: MS-DOS Storage Devices 

CT he term loader is also used to refer to the portion of the operating system that brings 
application programs into memory for execution This loader is different from the ROM 
loader and the operating-system loader) 

The MS-DOS BIOS 

52 

I he MS-DOS BIOS, loaded from the file IO SYS during system initialization, is the layer of 
the operating system that sits between the operating-system kernel and the hardware. An 
application performs input and output by making requests to the operating-system kernel, 
which, in tum, calls the MS-DOS BIOS routines that access the hardware directly See 
SYSTEM CAILS. This division of function allows application programs to be written in a 
hardware-independent manner 

The MS-DOS BIOS consists of some initialization code and a collection of device drivers 
(A device driver is a specialized program that provides support for a specific device such as 

The MS-DO.S Encyclopedia 

Article 1: An Introduction to MS-DOS 

a display or serial port.) The device drivers are responsible for hardware access and for the 
interrupt support that allows the associated devices to signal the microprocessor that they 
need service 

The device drivers contained in the file IO.SYS, which are always loaded during system 
initialization, are sometimes referred to as the resident drivers. With MS-DOS versions 2 .0 
and later, additional device drivers, called installable drivers, can optionally be loaded dur­
ing system initialization as a result of DEVICE directives in the system's configuration file 
See PROGRAMMING IN I HE MS-DOS ENVIRONMENT: CusroMrZING MS-Dos: Installable 
Device Drivers; USER COMMANDS: CONFIG svs:DEVICE 

The MS-DOS kernel 

The services provided to application programs by the MS-DOS kernel include 

• Process control 
• Memory management 
• Peripheral support 
• A file system 

The MS-DOS kernel is loaded from the file MS DOS SYS during system initialization 

Process contt'Ol 

Process, or task, control includes program loading, task execution, task termination, task 
scheduling, and intertask communication 

Although MS-DOS is not a multitasking operating system, it can have multiple programs 
residing in memory at the same time One program can invoke another; which then 
becomes the active (foreground) task When the invoked task terminates, the invoking 
program again becomes the foreground task Because these tasks never execute simulta­
neously, this stack-like operation is still considered to be a single-tasking operating 
system 

MS-DOS does have a few "hooks" that allow certain programs to do some multitasking 
on their own For example, terminate-and-stay-resident (TSR) programs such as PRINT 
use these hooks to perform limited concurrent processing by taking control of system 
resources while MS-DOS is ''idle," and the Microsoft Windows operating environment 
adds support for nonpreemptive task switching 

The traditional intertask communication methods include semaphores, queues, shared 
memory, aod pipes Of these, MS-DOS formally supports only pipes (A pipe is a logical, 
unidirectional, sequential stream of data that is written by one program and read by 
another.) I he data in a pipe resides in memory or in a disk file, depending on the imple­
mentation; MS-DOS uses disk files for intermediate storage of data in pipes because it 
is a single-tasking operating system 

MemotT management 

Because the amount of memory a program needs varies fr om program to program, the 
traditional operating system ordinarily provides memory·-management functions Memory 

Section II. Programming in the MS-DOS Environment 53 
Canon Exhibit 1108



Part A: Structure of fl.1S-DOS 

requirements can also vary during prog1am execution, and memo1y management is 
especially necessary when two or more programs are present in memory at the same time 

MS-DOS memory management is based on a pool of variable-size memory blocks The 
two basic memory-management actions are to allocate a block from the pool and to return 
an allocated block to the pool MS-DOS allocates program space from the pool when the 
program is loaded; programs themselves can allocate additional memory from the pool 
Many pro gr ams perform their own memory management by using a local memory pool, or 
heap- an additional memory block allocated from the operating system that the applica­
tion program itself divides into blocks for use by its various routines See PROGRAMMING 
IN THE MS-DOS ENVIRONMENT: PROGRAMMING FOR MS-Dos: Memory M~nagement 

Peripher·al support 

The operating system provides peripheral support to programs through a set of operating­
system calls that are translated by the operating system into calls to the appropriate device 
d1ive1 

Peripheral support can be a direct logical-to-physical-device translation or the operating 
system can interject additional features or translations Keyboards, displays, and printers 
usually require only logical-to-physical-device translations; that is, the data is transferred 
between the application program and the physical device with minimal alterations, if any, 
by the operating system 1 he data provided by clock devices, on the other hand, must be 
transformed to operating-system-dependent time and date formats Disk devices-and 
block devices in general -have the greatest number of features added by the operating 
system See 1 he File System below 

As stated earlier, an application need not be concerned with the details of peripheral 
devices or with any special features the devices might have Because the operating system 
takes care of all the logical-to-physical-device translations, the application program need 
only make requests of the operating system 

The file system 

54 

The file system is one of the largest portions of an operating system A file system is built 
on the storage medium of a block device (usually a floppy disk or a fixed disk) by mapping 
a directory structure and files onto the physical unit of storage A file system on a disk 
contains, at a minimum, allocation information, a directory, and space for files See 
PROGRAMMING IN THE MS-DOS ENVIRONMENT: SIRUCIURE OF MS-DOS: MS-DOS 
Storage Devices 

The file allocation information can take various fOrms, depending on the opera ting sys­
tem, but all forms basically track the space used by files and the space available for new 
data ·The directory contains a list of the files stored on the device, their sizes, and informa­
tion about where the data for each file is located 

Several different approaches to file allocation and directory entries exist MS-DOS uses a 
particular allocation method called a file allocation table (FAT) and a hierarchical directory 

The MS-DO,S Encyclopedia 

Article L An Introduction to MS-DOS 

structure See PROGRAMMING IN THE MS-DOS ENVIRONMENT: SrnucrnRE oF MS-Dos: 
MS-DOS Storage Devices; PROGRAMMING FOR MS-Dos: Disk Directories and Volwne labels 

The file granularity available through the operating system also varies depending on the 
implementation. Some systems, such as MS-DOS, have files that are accessible to the byte 
level; others are restricted to a fixed record size 

File systems are sometimes extended to map character devices as if they were files These 
device "files" can be opened, closed, read from, and written to like normal disk files, but 
all transactions occur directly with the specified character device Device files provide a 
useful consistency to the environment for application programs; MS-DOS supports such 
files by assigning a reserved logical name (such as CON or PRN) to each character device 

The user interface 

The user interface for an operating system, also called a shell or command processor, is 
generally a conventional program that allows the user to inter act with the operating sys­
tem itself The default MS-DOS user interface is a replaceable shell program called 
COMMAND COM 

One of the fllirdamental tasks of a shell is to load a program into memory on request and 
pass control of the system to the program so that the program can execute When the pro­
gram terminates, control returns to the shell, which prompts the user for anothe1 com-· 
mand. In addition, the shell usually includes functions for file and directory maintenance 
and display In theory, most of these functions could be provided as programs, but making 
them resident in the shell allows them to be accessed more quickly. The tradeoff is mem­
ory space versus speed and flexibility Early microcomputer-based operating systems pro­
vided a minimal number of resident shell commands because of limited memory space; 
modem operating systems such as MS-DOS include a wide variety of these functions as 
int ex nal commands 

Support programs 

The MS-DOS software includes support programs that provide access to operating-system 
facilities not supplied as resident shell commands built into COMMAND COM Because 
these programs are stored as executable files on disk, they are essentially the same as ap­
plication programs and MS-DOS loads and executes them as it would any other program 

The support programs provided with MS-DOS, often referred to as external commands, 
include disk utilities such as FORMAT and CHKDSK and more general support programs 
such as EDIIN (a line-oriented text editor) and PRINT (a TSR utility that allows files to be 
printed while another program is running) See USER COMMANDS 

MS-DOS releases 

MS-DOS and PC-DOS have been released in a number of forms, starting in 1981 See THE 
DEVEIOPMENT OF MS-DOS. The major MS-DOS and PC-DOS implementations are sum­
marized in the following table 

Section II Programmtng in the MS-DOS Environment 55 

Canon Exhibit 1108



Part A: Structure of MS-DOS 

56 

Veision 

PC-DOS 1.0 

PC-DOS 1.1 
MS-DOS 125 
MS-DOS/PC-DOS 2 .0 

PC-DOS 21 
MS-DOS 211 

MS-DOS/PC-DOS 3 0 

MS-DOS/PC-DOS 31 
MS-DOS/PC-DOS 32 

MS-DOS/PC-DOS 3 3 

Date 

1981 

1982 
1982 
1983 

1984 

1984 
1986 

1987 

Special Charncteiistics 

First operating system for the IBM PC 
Record-oriented files 

Double-sided-clisk support 
First OEM release of MS-DOS 
Operating system for the IBM PC/XT 

UNIX/XENIX-like file system 
Installable device drivers 
Byte-oriented files 
Support for fixed disks 

Operating system for the IBM PCjr 
Internationalization support 

2 Ox bug fixes 
Operating system for the IBM PC/AT 

Support for 12 MB floppy disks 
Support for large fixed clisks 
Support for file and record locking 
Application control of print spooler 

Support for MS Networks 
.3 5-inch floppy-disk support 

Disk track formatting support added to 
device drivers 

Support for the IBM PS/2 
Enhanced internationalization support 
Improved file-system performance 
Partitioning support for disks with capacity 
above32MB 

PC-DOS version 1 O was the first commercial version of MS-DOS It was developed for the 
original IBM PC, which was typically shipped with 64 KB of memory or less MS-DOS and 
PC-DOS versions 1 x were similar in many ways to CP/M, the popular operating system for 
8-bit microcomputers based on the Intel 8080 (the predecessor of the 8086) These ver­
sions of MS-DOS used a single-level file system with no subdirectory support and did not 
support installable device drivers or networks Programs accessed files using file control 
blocks (FCBs) similar to those found in CP/M progrruns File operations were record 
oriented, again like CP/M, although record sizes could be vruied in MS-DOS 

Although they retained compatibility with versions 1 x, MS-DOS and PC-DOS versions 2 x 
represented a major change In addition to providing support for fixed disks, the new ver­
sions switched to a hierarchical file system like that found in UNIX/XENIX and to file­
handle access instead of FCBs (A file handle is a 16-bit number used to reference an inter­
nal table that MS-DOS uses to keep track of currently open files; an application program 
has no access to this internal table) The UNIX/XENIX-style file functions allow files to be 
t:r·eated as a byte st:r·eam instead of as a collection of records Applications can read or write 
1 to 65535 bytes in a single operation, starting at any byte offset within the file Filenames 

The MS-DOS Encyclopedia 

Article 1: An Introduction to MS-DOS 

used for opening a file are passed as text strings instead of being pru sed into an PCB 
Installable device drivers were another major enhancement 

MS-DOS and PC-DOS versions 3 .x added a number of valuable featmes, including support 
for the added capabilities of the IBM PC/AT: for lruger-capacity disks, and for file-locking 
and record-locking functions. Network support was added by providing hooks for a redi­
rector (an additional operating-system module that has the ability to redirect local system 
service requests to a remote system by means of a local area network) 

With all these changes, MS-DOS remains a traditional single-tasking operating system It 
provides a large number of system services in a transparent fashion so that, as long as they 
use only the MS-DOS-supplied services and refrain from using hardware-specific opera­
tions, applications developed for one MS-DOS machine can usually rnr;con another 

Basic MS-DOS Requirements 

Foremost among the requirements for MS-DOS is an Intel 8086-compatible microproces­
sor See Specific Hardware Requirements below 

The next requirement is the ROM bootstrap loader and enough RAM to contain the 
MS-DOS BIOS, kernel, and shell and an application program The RAM must start at ad­
dress OOOO:OOOOH and, to be managed by MS-DOS, must be contiguous. The upper limit 
for RAM is the limit placed upon the system by the 8086 frunily-1 MB 

The final requirement for MS-DOS is a set of devices supported by device drivers, includ­
ing at least one block device, one character device, and a clock device The block device is 
usually the boot disk device (the disk device from which MS-DOS is loaded); the character 
device is usually a keyboard/clisplay combination for interaction with the user; the clock 
device, required for time-of-day and date support, is a hardware counter driven in a sub­
multiple of one second 

Specific hardware requirements 

MS-DOS uses several hardware components and has specific requirements for each I hese 
components include 

• An 8086-frunily microprocessor 
• Memory 
• Peripheral devices 
• A ROM BIOS (PC-DOS only) 

The micr·oprocessor· 

MS-DOS runs on any machine that uses a microprocessor that executes the 8086/8088 
instruction set, including the Intel 8086, 80C86, 8088, 80186, 80188, 80286, and 80386 and 
the NEC V20, V30, and V40 

5ection 11 Programming in the MS-DOS Environment 57 
Canon Exhibit 1108



Part A: Structure of MS-DOS 

The 80186 and 80188 are versions of the 8086 and 8088, integrated in a single chip with 
direct memory access, timer; and interrupt support functions. PC-DOS cannot usually run 
on the 80186 or 80188 because these chips have internal interrupt and interface register 
addresses that conflict with addresses used by the PC ROM BIOS See PROGRAMMING 
JN THE MS-DOS ENVIRONMENT: Cus roMIZING MS-Dos: Hardware Interrupt Handlers 
MS-DOS, however, does not have address requirements that conflict with those interrupt 
and inte:i:face areas 

The 80286 has an extended instrnction set and two operating modes: real and protected 
Real mode is compatible with the 8086/8088 and runs MS-DOS Protected mode, used by 
operating systems like UNIX/XENIX and MS OS/2, is partially compatible with real mode 
in terms of instructions but provides access to 16 MB of memory versus only 1 MB in real 
mode (the limit of the 8086/8088) 

The 80386 adds further instructions and a third mode called virtual 86 mode The 80386 
instructions operate in either a 16-bit or a 32-bit environment MS-DOS can run on the 
80386 in real or virtual 86 mode, although the latter requires additional support in the form 
of a virtual machine monitor such as Windows /386 

Memory r·~quirements 

58 

At a minimuru, MS-DOS versions 1 x require 64 KB of contiguous RAM from the base of 
memory to do usefUl work; versions 2 x and 3.x need at least 128 KB The maximum is 
1 MB, although most MS-DOS machines have a 640 KB limit for IBM PC compatibility 
MS-DOS can use additional noncontiguous RAM for a RAMdisk if the proper device driver 
is included. (Other uses for noncontiguous RAM include buffers for video displays, fixed 
disks, and network adapters ) 

PC-DOS has the same minimum memory requirements but has an upper limit of 640 KB 
on the initial contiguous RAM, which is generally referred to as conventional memory 
This limit was imposed by the architecture of the original IBM PC, with the remaining 
area above 640 KB reserved for video display buffers, fixed disk adapters, and the ROM 
BIOS Some of the reserved areas include 

Base Address Size (bytes) Description 

AOOO:OOOOH lOOOOH (64 KB) EGA video buffer 
BOOO:OOOOH lOOOH (4 KB) Monochrome video buffer 
B800:0000H 4000H (16 KB) Color/graphics video buffer 
C800:0000H 4000H (16 KB) Fixed-disk ROM 
FOOO:OOOOH lOOOOH ( 64 KB) PC ROM BIOS and ROM BASIC 

The bottom 1024 bytes of system RAM (locations 00000-003FFH) are used by the micro­
processor for an inte1Tupt vector table- that is, a list of addresses for interrupt handler 
routines MS-DOS uses some of the entries in this table, such as the vectors for interrupts 
20H through 2FH, to store addresses of its own tables and routines and to provide linkage 
to its services for application programs The IBM PC ROM BIOS and IBM PC BASIC use 
many additional vectors for the same purposes. 

The MS-DOS Encyclopedia 

Article 1: An Introduction to MS-DOS 

Petiphetal devices 

MS-DOS can support a wide variety of devices, including floppy disks, fixed disks, CD 
ROMs, RAMdisks, and digital tape drives The required peripheral support for MS-DOS is 
provided by the MS-DOS BIOS or by installable device drivers . 
Five logical devices are provided in a basic MS-DOS system: 

Device Name 

CON 
PRN 
AUX 

CLOCK$ 
Varies (A - El 

Description 

Console input and output 
Pr inter output 
Auxiliary input and output 
Date and time support 
One block device 

These five logical devices can be implemented with a BIOS supporting a minimum of 
three physical devices: a keyboard and display, a timer or clock/calendar chip that can 
provide a hardware interrupt at regular intervals, and a block storage device In such a 
minimum case, the printer and auxiliary device are simply aliases for the console device 
However, most MS-DOS systems support several additional logical and physical devices 
See PROGRAMMING INT HE MS-DOS ENVIRONMENT: PROGRAMMING FOR Ms-Dos: 
Character Device Input and Output 

The MS-DOS kernel provides one additional device: the NUl device NUI is a "bit 
bucket" - that is, anything written to NUI is simply discarded Reading from NUI always 
returns an end-of-file marker One common use for the NUI device is as the reditected 
output device of a command or application that is being run in a batch file; this redirection 
prevents screen clutter and disruption of the batch file's menus and displays 

fheROMBIOS 

MS-DOS requires no ROM support (except that most bootstrap loaders reside in ROM) 
and does not care whether device-driver support resides in ROM or is part of the MS-DOS 
JO SYS file loaded at initialization PC-DOS, on the other hand, uses a very speciflc ROM 
BIOS The PC ROM BIOS does not provide device drivers; rather, it provides support rou­
tines used by the device drivers found in IBMBIO COM (the PC-DOS version ofJO SYS) 
The support provided by a PC ROM BIOS includes 

• Power-on self test (POST) 
• Bootstrap loader 
• Keyboard 
• Displays (monochrome and color/graphics adapters) 
• Serial ports 1and2 
• Parallel pr inter ports 1, 2, and 3 
• Clock 
• Print screen 

Section JI Programming in the MS'--DOS Environment 59 

Canon Exhibit 1108



Part A: Structure of MS-DOS 

The PC ROM BIOS loader routine searches the ROM space above the PC-DOS 640 KB limit 
for additional ROMs The IBM fixed-disk adapter and enhanced graphics adapter (EGA) 
contain such ROMs (The fixed-disk ROM also includes an additional loader routine that 
allows the system to start from the fixed disk) 

Summary 

60 

MS-DOS is a widely accepted traditional operating system Its consistent and well-defined 
interface makes it one of the easier operating systems to adapt and program 

MS-DOS is also a growing operating system- each version has added more features yet 
made the system easier to use for both end-users and programmers. In addition, each ver­
sion has included more support for different devices, from 5 25-inch floppy disks to high­
density 3 5-inch floppy disks As the hardware continues to evolve and user needs become 
more sophisticated, MS-DOS too will continue to evolve 

William Wong 

lhe MS-DOS Encyclopedia 

Article 2: !he Components of MS-DOS 

Article 2 
The Components of MS-DOS 

MS-DOS is a modular operating system consisting of multiple components with special- ·~ 
ized functions. When MS-DOS is copied into memory during the loading process, many of 
its components are moved, adjusted, or discarded However; when it is running, MS-DOS 
is a relatively static entity and its components are predictable and easy to study Therefore, 
this article deals first with MS-DOS in its running state and later with its loading behavior 

The Major Elements 

MS-DOS consists of three major modules: 

Module 

MS-DOS BIOS 
MS-DOS kernel 
MS-DOS shell 

MS-DOS Filename 

IO SYS 
MSDOSSYS 
COMMAND COM 

PC-DOS Filename 

IBMBIO.COM 
IBMDOS.COM 
COMMAND.COM 

During system initialization, these modules are loaded into memory, in the order given, 
just above the interrupt vector table located at the beginning of memory All three modules 
remain in memory until the computer is reset or twned off (The loader and system initial­
ization modules are omitted from this list because they are discarded as soon as MS-DOS 
is running. See loading MS-DOS below) 

The MS-DOS BIOS is supplied by the original equipment manufacturer (OEM) that 
distributes MS-DOS, usually for a particular computer See PROGRAMMING IN THE 
MS-DOS ENVIRONMENT: SrnucrURE OF Ms-nos: An Introduction to MS-DOS The kernel 
is supplied by Microsoft and is the same across all OEMs for a particular version of 
MS-DOS-that is, no modifications are made by the OEM The shell is a replaceable 
module that can be supplied by the OEM or replaced by the user; the default shell, 
COMMAND COM, is supplied by Microsoft 

The MS-DOS BIOS 

The file IO SYS contains the MS-DOS BIOS and the MS-DOS initialization module, 
SYSINII. The MS-DOS BIOS is customized for a particular machine by an OEM SYSINII 
is supplied by Microsoft and is put into IO SYS by the OEM when the file is created See 
Loading MS-DOS below 

'Section II Programming in the MS-DOS Environment 61 
Canon Exhibit 1108



Part A: Structure of MS-DOS 

The MS-DOS BIOS consists of a list of resident device drivers and an additional initializa­
tion module created by the OEM The device drivers appear first in IO SYS because they 
remain resident after IO SYS is initialized; the MS-DOS BIOS initialization routine and 
SYSINII are usually discarded after initialization 

The minimum set olresident device drivers is CON, PRN, AUX, CIOCK$, and the driver 
for one block device The resident character-device drivers appear in the driver list before 
the resident block-device drivers; installable characteHlevice drivers are placed ahead of 
the resident device drivers in the list; installable block-device drivers are placed after the 
resident device drivers in the list This sequence allows installable character-device drivers 
to supersede resident drivers. The NUI device driver, which must be the first driver in the 
chain, is contained in the MS-DOS kernel 

Device driver code can be split between IO SYS and ROM For example, most MS-DOS sys­
tems and all PC-DOS--compatible systems have a ROM BIOS that contains primitive device 
support routines. These routines are generally used by resident and installable device 
d1ivers to augment routines contained in RAM (Placing the entire driver in RAM makes 
the driver dependent on a particular hardware configuration; placing part of the driver in 
ROM allows the MS-DOS BIOS to be paired with a particular ROM interface that remains 
constant for many different hardwar·e configwations ) 

The IO SYS file is an absolute program image and does not contain relocation information 
Ihe routines in IO SYS assume that the CS register contains the segment at which the file is 
loaded. Thus, IO SYS has the same 64KB restriction as a COM file See PROGRAMMING 
IN THE MS-DOS ENVIRONMENT: l'RoGRAMMING FOR Ms-nos: Structure of an Application 
Program larger IO SYS files are possible, but all device driver headers must lie in the first 
64 KB and the code must rely on its own segment arithmetic to access routines outside 
the first 64 KB 

The MS-DOS kernel 

62 

The MS-DOS kernel is the heart of MS-DOS and provides the functions found in a tradi­
tional operating system It is contained in a single proprietary file, MSDOS.SYS, supplied 
by Microsoft Corporation The kernel provides its support functions (referred to as system 
functions) to application programs in a hardware-independent manner and, in tw·n, is iso­
lated from hardware characteristics by relying on the driver routines in the MS-DOS BIOS 
to perform physical input and output operations 

The MS-DOS kernel provides the following services through the use of device drivers: 

• File and directory management 
• Characte1 device input and output 
• Time and date support 

It also provides the following non-device-related functions: 

• Memo1y management 
• Task and environment management 
• Country-specific configw a ti on 

The 1MS-DOS Encyclopedia 

Article 2: I he Components of MS-DOS 

Programs access system functions using software interrupt (INT) instructions MS-DOS 
reserves Intenupts 20H through 3FH for this purpose The MS-DOS interrupts are 

Intenupt 

20H 
21H 
22H 
23H 
24H 
25H 
26H 
27H 
28H-2EH 
2FH 
30H-3FH 

Name 

Terminate Program 
MS-DOS Function Calls 
Terminate Routine Address 
Control-C Handler Address 
Critical Error Handler Address 
Absolute Disk Read 
Absolute Disk Write 
I'erminate and Stay Resident 
Reserved 
Multiplex 
Rese1ved 

Interrupt 21H is the main source of MS-DOS services The Intenupt 21H !Unctions are 
implemented by placing a function number in the AH register, placing any necessary 
parameters in other registers, and issuing an INT 21H instruction (MS-DOS also supports 
a call instruction interface for CP/M compatibility The function and parameter registers 
differ from the interrupt interface The CP/M interface was provided in MS-DOS version 1 0 
solely to assist in movement of CP/M-based applications to MS-DOS New applications 
should use Intenupt 21H functions exclusively ) 

MS-DOS version 2 0 introduced a mechanism to modify the operation of the MS-DOS BIOS 
and kernel: the CONFIG SYS flle. CONFIG SYS is a text file containing command options 
that modify the size or configuration of internal MS-DOS tables and cause additional de­
vice drivers to be loaded Ihe file is read when MS--DOS is first loaded into memory See 
USER COMMANDS: CONFrG .SYS 

The MS-DOS shell 

The shell, or command interpreter, is the first program started by MS-DOS after the 
MS-DOS BIOS and kernel have been loaded and initialized It provides the interface 
between the kernel and the user The default MS-DOS shell, COMMAND COM, is a 
command-oriented inte1face; other shells may be menu-driven 01 screen-oriented 

COMMAND COM is a replaceable shell. A number of commercial products can be used 
as COMMAND COM replacements, or a programmer can develop a customized shell. The 
new shell program is installed by renaming the program to COMMAND COM or by using 
the SHEU command in CONFIG SYS The latter method is preferred because it allows 
initialization parameters to be passed to the shell program 

Section IL Programming in the MS-DO.S Environment 63 

Canon Exhibit 1108



Part A: Structure of MS-DOS 

COMMAND COM can execute a set of internal (built-in) commands, load and execute 
programs, or interpret batch files Most of the internal commands support file and direc­
tory operations and manipulate the program environment segment maintained by 
COMMAND COM The programs executed by COMMAND COM are .COM or EXE files 
loaded from a block device. The batch ( BAI) files supported by COMMAND COM pro­
vide a limited programming language and are therefore useful for performing small, 
frequently used series of MS-DOS commands In particular, when it is first loaded by 
MS-DOS COMMAND COM searches for the batch file AUTOEXEC BAI and interprets it, if 
found, b~fore taking any other action COMMAND COM also provides default terminate, 
Control-C and critical error handlers whose addresses are stored in the vectors for Inter­
rupts 22H, 23H, and 24H See PROGRAMMING IN THE MS-DOS ENVIRONMENT: 
Cus I'OMIZING MS-oos: Exception Handlers 

COMMAND .. COM's split petsonality 

COMMAND.COM is a conventional COM application with a slight twist Ordinarily, a 
COM program is loaded into a single memory segment COMMAND.COM starts this way 

but then copies the nonresident portion of itself into high memory and keeps the resident 
portion in low memory I he memory above the resident portion is released to MS-DOS 

The effect of this split is not apparent until after an executed program has terminated 
and the resident portion of COMMAND COM regains control of the system I he resident 
portion then computes a checksum on the area in high memory where the noru esident 
portion should be, to determine whether it has been overwritten If the checksum matches 
a stored value, the noruesident portion is assumed to be intact; other·v.tise, a copy of the 
noruesident portion is reloaded from disk and COMMAND COM continues its normal 
operation 

This "split personality" exists because MS-DOS was originally designed for systems with a 
limited amount of RAM The nonresident portion of COMMAND COM, which contains the 
built-in commands and batch-file-processing routines that are not essential to regaining 
control and reloading itself, is much larger than the resident portion, which is responsible 
for these tasks Thus, permitting the nonresident portion to be overwritten frees additional 
RAM and allows larger application programs to be run 

Command execution 

64 

COMMAND.COM interprets commands by first checking to see if the specified command 
matches the name of an internal command If so, it executes the command; otherwise, it 
searches for a COM, EXE, or BAI file (in that order) with the specified name If a COM 
or EXE program is found, COMMAND COM uses the MS-DOS EXEC function (Interrupt 
21H Function 4BH) to load and execute it; COMMAND COM itself interprets BA:I files 
If no file is found, the message Bad command orfile name is displayed 

Although a command is usually simply a filename without the extension, MS-DOS versions 
3 O and later allow a command name to be preceded by a full pathname If a path is not 
explicitly specified, the COMMAND COM search mechanism uses the contents of the 

The MS:-DOS Encyclopedia 

Article 2: The Components of MS-DOS 

PA:TH environment variable, which can contain a list of paths to be searched for com­
mands. The search starts with the current directory and proceeds through the directories 
specified by PA:IH until a file is found or the list is exhausted for example, the PATH 
specification 

PAIR C:\BIN;D:\BIN;E:\ 

causes COMMAND COM to search the current directory, then C:\BIN, then D:\BIN, and 
finally the root directory of drive E COMMAND COM searches each directory for a match­
ing COM, EXE, or BAT file, in that order, before moving to the next directory 

MS-DOS environments 

Version 2 .0 introduced the concept of environments to MS-DOS An environment is a 
paragraph-aligned memory segment containing a concatenated set of zero-terminated 
(ASCIIZ) variable-length strings of the form 

variable-value 

that provide such information as the current search path used by COMMAND COM to find 
executable files, the location of COMMAND COM itself, and the format of the user prompt 
I he end of the set of strings is marked by a null string - that is, a single zero byte. A 
specific environment is associated with each program in memory through a pointer con­
tained at offset 2CH in the 256-byte program segment prefix (PSP) The maximum size of 
an environment is 32 KB; the default size is 160 bytes 

If a program uses the EXEC function to load and execute another program, the contents of 
the new program's environment are provided to MS-DOS by the initiating program- one 
of the parameters passed to the MS-DOS EXEC function is a pointer to the new program's 
environment The default environment provided to the new program is a copy of the 
initiating program's environment 

A program that uses the EXEC function to load and execute another program will not 
itself have access to the new prograin's environment, because MS-DOS provides a pointer 
to this environment only to the new program Any changes made to the new program's en­
vironment during program execution are invisible to the initiating program because a 
child program's environment is always discarded when the child program terminates 

The system's master environment is normally associated with the shell COMMAND COM 
COMMAND COM creates this set of environment strings within itself from the contents 
of the CONFIG SYS andAUIOEXEC BAI files, using the SET', PATH, and PROMPT com­
mands. See USER COMMANDS: AUTOEXEC BAr; coNFIG SYS In MS-DOS version 3 2, the 
initial size of COMMAND COM's environment can be controlled by loading 
COMMAND COM with the IE parameter, using the SHEIL directive in CONF IG SYS 
for example, placing the line 

SHELl=COMMAND COM /E:2048 /P 

Section II Programming in theM5-DOS'Environment 65 
Canon Exhibit 1108



Part A: Structure of MS-DOS 

in CONFIG .SYS sets the initial size of COMMAND CO M's environment to 2 KB (The IP 
option prevents COMMAND COM from terminating, thus causing it to remain in memory 
until the system is turned off or restaited) 

I he SE I command is used to display or change the COMMAND COM environment con­
tents SET with no parameters displays the list of all the environment strings in the envi­
ronment A typical listing might show the following settings: 

COMSPEC=A:\COMMAND COM 

PAIH=C:\;A:\;B:\ 

PROMPI=$p $d $t$_$n$g 

I'MP=C: \ IEMP 

The following is a dump of the environment segment containing the previous environment 
example: 

0 1 2 3 4 5 6 7 8 9 A 8 c D E F 

0000 43 4F 40 53 50 45 43 30-41 3A SC 43 4F 4D 40 41 COMSPEC=A:\COMMA 

0010 4E 44 2E 43 4F 40 00 S0-41 54 48 30 43 3A SC 38 ND COM.PAIH=C:\; 

0020 41 3A SC 38 42 3A SC 00-50 52 4F 40 50 54 30 24 A:\;B:\ PROMPI=$ 

0030 70 20 20 24 64 20 20 24-74 24 SF 24 6E 24 67 00 p Sd $t$_$n$g 

0040 S4 40 50 30 43 3A SC 54-45 40 so 00 00 00 00 00 1MP=C:\IEMP 

A SE I command that specifies a variable but does not specify a value for it deletes the vari­
able from the environment 

A program can ignore the contents of its environment; however, use of the environment 
can add a great deal to the flexibility and configurability of batch files and application 
programs 

Batch files 

66 

Batch files are text files with a BAI extension that contain MS-DOS user and batch com­
mands Each line in the file is limited to 128 bytes See USER COMMANDS: BATCH Batch 
files can be created using most text editors, including EDl!N, and short batch files can 
even be created using the COPY command: 

C>COPY CON SAMPLE BAI <Enter> 

I he CON device is the system console; text entered from the keyboard is echoed on the 
screen as it is typed The copy operation is terminated by pressing Ctrl-Z (or the F6 key on 
IBM-compatible machines), followed by the Enter key 

Batch files are interpreted by COMMAND COM one line at a time In addition to the stan­
dard MS-DOS commands, COMMAND COM's batch-file interpreter supports a number of 
special batch commands: 

Command 

ECHO' 
FOR' 

Meaning 

Display a message 
Execute a command for a list of files 

The i\tlS-DO.S Encyclopedia 

(more) 

Article 2: I he Components of MS-DOS 

Command 

GOTO' 
IF' 
PAUSE 
REM 
SHIFT• 

Meaning 

Transfer control to another point 
Conditionally execute a command 
Wait for any key to be pressed 
Insert comment line 
Access more than 10 parameters 

•MS-DOS versions 2.0 and later 

Execution of a batch file can be terminated before completion by pressing Ctrl-C or 
Ctrl-Break, causing COMMAND COM to display the prompt 

Ierminate batch job? (Y/N) 

1/0 r·edir·ection 

1/0 redirection was introduced with MS-DOS version 2 0 The redirection facility is imple­
mented within COMMAND COM using the Interrnpt 21H system fonctions Duplicate File 
Handle ( 45H) and force Duplicate File Handle ( 46H) COMMAND COM uses these func­
tions to provide both redirection at the command level and a UNIX/XENIX-like pipe 
facility 

Redirection is transparent to application programs, but to take advantage of redirection, an 
application program must make use of the standard input and output file handles The in­
put and output of application programs that directly access the screen or keyboard or use 
ROM BIOS functions cannot be redirected 

Redirection is specified in the command line by Rrefixing file or device names with the 
special characters>,>>, and< Standard output (default= CON) is redirected using> and 
>>followed by the name of a file or character device The former character creates a new 
file (or overwrites an existing file with the same name); the latter appends text to an exist­
ing file (or creates the file if it does not exist) Standard input (default= CON) is redirected 
with the< character followed by the naine of a file or character device See also PRO­
GRAMMING IN THE MS-DOS ENVIRONMENT: CusroMIZING Ms-oos: Writing MS-DOS 
Filters 

The redirection facility can also be used to pass information from one program to an­
other through a "pipe." A pipe in MS-DOS is a special file created by COMMAND COM 
COMMAND COM redirects the output of one program into this file and then redirects this 
file as the input to the next program The pipe symbol, a ve1tical bar(:), separates the p10-
gram names Multiple prograin names can be piped together in the same command line: 

C>DIR * * SORI : MORE <Enter> 

This command is equivalent to 

C>DIR * * > PIPEO <Enter> 

C>SORI < PIPED > PIPE1 <Enter> 

C>MORE < PIPE1 <Enter> 

Section 11 Programming in the MS-DOS Environment 67 

Canon Exhibit 1108



Part A: Structure of MS-DOS 

The concept of pipes came from UNIX/XENIX, but UNIX/XENIX is a multitasking oper­
ating system that actually runs the programs simultaneously UNIX/XENIX uses memory 
buffers to connect the programs, whereas MS-DOS loads one program at a time and passes 
information through a disk file 

Loading MS-DOS 

Getting MS-DOS up to the standard A> prompt is a complex process with a number of 
variations This section discusses the complete process normally associated with MS-DOS 
versions 2 0 and later (MS-DOS versions 1 x use the same general steps but lack support for 
various system tables and installable device drivers ) 

MS-DOS is loaded as a result of either a "cold boot" or a "warm boot " On IBM-compatible 
machines, a cold boot is performed when the computer is first turned on or when a hard­
ware reset occurs A cold boot usually performs a power-on self test (POST) and deterc 
mines the amount of memory available, as well as which peripheral adapters are installed 
the POST is ordinarily reserved for a cold boot because it takes a noticeable amount of 
time For example, an IBM-compatible ROM BIOS tests all conventional and extended 
RAM (RAM above 1 MB on an 80286-based or 80.386-based machine), a procedure that 
can take tens of seconds A warm boot, initiated by simultaneously pressing the Ctr 1, Alt, 
and Del keys, bypasses these hardware checks and begins by checking for a bootable disk 

A bootable disk normally contains a small loader program that loads MS-DOS from the 
same disk See PROGRAMMING IN THE MS-DOS ENVIRONMENT: SrnucruRE m MS-Dos: 
MS-DOS Storage Devices The body of MS-DOS is contained in two files: IO SYS and 
MSDOS SYS (IBMBIO COM and IBMDOS.COM with PC-DOS) IO SYS contains the 
Microsoft system initialization module, SYSINII; which configures MS-DOS using either 
default values or the specifications in the CONFIG SYS file, if one exists, and then starts up 
the shell program (usually COMMAND COM, the default) COMMAND COM checks for an 
AUTO EXEC.BAT file and interprets the file if found (Other shells might not support such 
batch files ) Finally, COMMAND COM prompts the user for a command (The standard 
MS-DOS prompt is A> if the system was booted from a floppy disk and C> if the system 
was booted from a fixed disk) Each of these steps is discussed in detail below 

The ROM BIOS, POST, and bootstrapping 

68 

All 8086/8088-compatible microprocessors begin execution with the CS:IP set to 
FFFF:OOOOH, which typically contains a jump instruction to a destination in the ROM BIOS 
that contains the initialization code for the machine CI his has nothing to do with MS-DOS; 
it is a feature of the Intel microprocessors) On IBM-compatible machines, the ROM BIOS 
occupies the address space from FOOO:OOOOH to this jump instruction Figure 2-1 shows the 
location of the ROM BIOS within the 1 MB address space Supplementary ROM support 
can be placed before (at lower addresses than) the ROM BIOS 

All interrupts are disabled when the microprocessor starts execution and it is up to the 
initialization routine to set up the interrupt vectors at the base of memory 

The MS'-DOS Encyclopedia 

,------------,- FFFF:OOOFH(l MB) 

ROM BIOS - FFFF:OOOOH 
f--------<- FOOO:OOOOH 

Other ROM and RAM 

r--------1+- IopofRAM 
(AOOO:OOOOH for IBM PC) 

Free RAM 

~------~- OOOO:OOOOH 

Figure 2-1 Memory layout at startup 

Article 2: I he Components of MS-DOS 

The initialization routine in the ROM BIOS-the POST procedure-typically deter­
mines what devices are installed and operational and checks conventional memor)r (the 
first 1 MB) and, for 80286-based or 80.386-based machines, extended memory (above 1 
MB) The devices are tested, where possible, and any problems are reported using a series 
of beeps and display messages on the screen 

When the machine is found to be operational, the ROM BIOS sets it up for normal opera­
tion First, it initializes the interrupt vector table at the beginning of memory and any inter­
rupt controllers that reference the table The interrupt vectortable area is located horn 
OOOO:OOOOH to 0000:03FFH On IBM-compatible machines, some of the subsequent mem­
ory (starting at address 0000:0400H) is used for table storage by various ROM BIOS rou­
tines (Figure 2-2) The beginning load address for the MS-DOS system files is usually in 
the range 0000:0600H to 0000:0800H 

Next, the ROM BIOS sets up any necessary hardware interfaces, such as direct memory 
access (DMA) controllers, serial ports, and the like Some hardware setup may be done 
before the interrupt vector table ar·ea is set up. For example, the IBM PC DMA controller 
also provides refresh for the dynamic RAM chips and RAM cannot be used until the 
refresh DMA is running; therefore, the DMA must be set up first 

Some ROM BIOS implementations also check to see if additional ROM BIOSs are installed 
by scanning the memory from AOOO:OOOOH to FOOO:OOOOH for a particular sequence of sig­
nature bytes If additional ROM BIOSs are found, their initialization routines are called to 
initialize the associated devices. Examples of additional ROMs for the IBM PC family are 
the PC/XT's fixed-disk ROM BIOS and the EGA ROM BIOS 

I he ROM BIOS now starts the bootstrap procedure by executing the ROM loader routine 
On the IBM PC, this routine checks the first floppy-disk drive to see if there is a bootable 

Section II. Programming in the MS'-DO.S Environment 
Canon Exhibit 1108



Part A: Structure of MS-DOS 

70 

,-------~ +-- FFFF:OOOFH(l MB) 

ROM BIOS +-- FFFF:OOOOH 

1------------1 +-- FOOO:OOOOH 

Other ROM and R.Ai.\1 

I---------.,..._ !op of RAM 
(AOOO:OOOOH fo; IBM PC) 

Free RAM 

f-------_,+-- 0000:0600H 
ROM BIOS tables 

l---'-'-'-----"-------1 +-- 0000:0400H 

Interrupt vectors 

'-----------' +-- OOOO:OOOOH 

Figure 2-2 I he interrupt vector table and the ROM BIO.Stable 

disk in it If there is not, the routine then invokes the ROM associated with another boot­
able device to see if that device contains a bootable disk I his procedure is repeated until 
a bootable disk is found or until ail bootable devices have been checked without success, 
in which case ROM BASIC is enabled 

Bootable devices can be detected by a number of proprietary means I he IBM PC ROM 
BIOS reads the first sector on the disk into RAM (Figure 2-3) and checks for an 8086-family 
short or long jump at the beginning of the sector and for AA55H in the last word of the sec­
tor. This signature indicates that the sector contains the operating-system loader. Data 
disks-those disks not set up with the MS-DOS system files- usually cause the ROM 
loader routine to display a message indicating that the disk is not a bootable system disk 
I he customary recovery procedure is to display a message asking the user to inse1t 
another disk (with the operating system files on it) and press a key to try the load opera­
tion again The ROM loader routine is then typically reexecuted from the beginning so 
that it can repeat its normal search procedure 

When it finds a bootable device, the ROM loader routine loads the operating-system loader 
and transfers control to it I he operating-system loader then uses the ROM BIOS services 
through the in ten upt table to load the next part of the operating system into low memory 

Before it can proceed, the operating-system loade1 must know something about the con­
figuration of the system boot disk (Figure 2-4) MS-DOS-compatible disks contain a data 
structure that contains this information This structure, known as the BIOS parameter 
block (BPB), is located in the same sector as the operating-system loader. From the con­
tents of the BPB, the operating-system loader calculates the location of the root directory 

The MS-DOS Encyclopedia 

ROM BIOS 

Other ROM and RAM 

Possible free RAM 

Boot sector 

Free RAM 

ROM BIOS tables 

Interrupt vectors 

+-- FFFF:OOOFH(l MB) 

+-- FFFF:OOOOH 

+-- FOOO:OOOOH 

.,..._ Top of RAM 
(AOOO:OOOOH for IBM PC) 

.,..._ Arbitrary location 

+-- 0000:0600H 

+-- 0000:0400H 

+-- OOOO:OOOOH 

Figure 2-3 A loaded boot sector. 

Boot sector .,..._ First sector on the disk 

Reserved 
(optional) 

FAT'#! 

FAI'#2 

Root directory 

IO SYS 

MSDOS SYS 

File data area 

Figure 2-4 Boot-disk configuration 

Article 2: I he Components of MS-DOS 

5ection fl Programming in the MS'-DOS Environment 71 

Canon Exhibit 1108



Part A: Structure of MS-DOS 

72 

for the boot disk so that it can verify that the first two entries in the root directory rue 
IO SYS andMSDOSSYS For versions of MS-DOS through 3.2, these files must also be the 
first two files in the file data area, and they must be contiguous (The operating-system 
loader usually does not check the file allocation table [FAT] to see if!O SYS and 
MS DOS SYS are actually stored in contiguous sectors ) See PROGRAMMING IN THE 
MS-DOS ENVIRONMENT: STRUCTURE OF Ms-Dos: MS-DOS Storage Devices 

Next, the operating-system loader reads the sectors containing IO SYS and MSDOS SYS 
into contiguous areas of memory just above the ROM BIOS tables (Figure 2-5) (An alterna­
tive method is to take advantage of the operating-system loader's final jump to the entry 
point in IO SYS and include routines in IO SYS that allow it to load MSDOSSYS) 

Finally, assuming the file was loaded without any errors, the operating-system loader 
transfers control to IO SYS, passing the identity of the boot device The operating-system 
loader is no longer needed and its RAM is made available for other pUiposes 

- FFFF:OOOFH(l MB) 

ROM BIOS 

- FOOO:OOOOH 

Other ROM and RAM 

....- IopofRAM 
(AOOO:OOOOH fm IBM PC) 

Possible free RAM 

Boot sector +- Arbitrary location 

Free RAM 

MSDOSSYS 

- SYSINII 
IO SYS ......- MS-DOS BIOS (resident device drivers) 

ROM BIOS tables 
- Q000:0600H 

- 0000:0400H 
Interrupt vectors 

- OOOO:OOOOH 

Figur·e2-5 IO SYS andMSDOS SYS loaded 

The MS-DOS Encyclopedia 

Article 2: I he Components of MS-DOS 

MS-DOS system initialization (SYSINIT) 

MS-DOS system initialization begins after the operating-system loader has loaded IO SYS 
and MSDOS SYS and transferred control to the beginning of IO SYS Tb this point, there 
has been no standard loading procedme imposed by MS-DOS, although the IBM PC load­
ing procedure outlined here has become the de facto standard for most MS-DOS machines 
When control is transferred to IO SYS, however, MS-DOS imposes its standards 

The IO SYS file is divided into three modules: 

• The resident device drivers 
• The basic MS-DOS BIOS initialization module 
• The MS-DOS system initialization module, SYSINII 

The two initialization modules are usually discarded as soon as MS-DOS is completely 
initialized and the shell program is running; the resident device drivers remain in memory 
while MS-DOS is running and are therefore placed in the first part of the IO SYS file, 
before the initialization modules 

The MS-DOS BIOS initialization module ordinarily displays a sign-on message and the 
copyright notice for the OEM that created IO SYS. On IBM-compatible machines, it then 
examines entries in the inter1upt table to determine what devices were found by the ROM 
BIOS at POST time and adjusts the list of resident device drivers accordingly This adjust­
ment usually entails removing those drivers that have no corresponding installed hard­
ware. The initialization routine may also modify internal tables within the device drivers 
The device driver initialization routines will be called later by SYSINIT: so the MS-DOS 
BIOS initialization routine is now essentially finished and control is transferred to the 
SYSINII module 

SYSINII locates the top of RAM and copies itself there. It then transfers control to the copy 
and the copy proceeds with system initialization The first step is to move MSDOS SYS, 
which contains the MS-DOS kernel, to a position immediately following the end of the 
resident portion of IO SYS, which contains the resident device drivers This move over­
writes the original copy of SYSINIT and usually all of the MS-DOS BIOS initialization rou­
tine, which are no longer needed The resulting memory layout is shown in Figure 2-6 

SYSINIT then calls the initialization routine in the newly relocated MS-DOS kernel This 
routine performs the internal setup for the kernel, including putting the appropriate values 
into the vectors for Interrupts 20H through 3F H 

The MS-DOS kernel initialization routine then calls the initialization function of each 
resident device driver to set up vectors for any external hardware interrupts used by the 
device Each block-device driver returns a pointer to a BPB for each drive that it supports; 
these BPBs are inspected by SYSINII to find the largest sector size used by any of the 
drivers See PROGRAMMING IN THE MS-DOS ENVIRONMENT: STRUCTURE oF MS-Dos: 
MS-DOS Storage Devices The kernel initialization routine then allocates a sector buffer the 
size of the largest sector found and places the NUI device driver at the head of the device 
driver list 

Section II Programming in the MS-DOS Environment 7.3 
Canon Exhibit 1108



Part A: Structure of MS-DOS 

74 

ROM BIOS 

Other ROM and RAM 

SYS!Nll 

Free RAM 

MS-DOS kernel 
(MSDOS SYS) 

MS-DOS BIOS 
(JO SYS) 

ROM BIOS tables 

Interrupt vectors 

- FFFF:OOOFH(l MB) 

- FOOO:OOOOH 

...,___ TopofRAM 
(AOOO:OOOOH for IBM PC) 

...,___ Resident device drivers 

- 0000:0600H 

- 0000:0400H 

- OOOO:OOOOH 

Figure 2-6 SYS/NIT and M5DOS SYS relocated 

The kernel initialization routine's final operation before returning to SYSINIT is to display 
the MS-DOS copyright message The loading of the system portion of MS-DOS is now com­
plete and SYSINIT can use any MS-DOS function in conjunction with the resident set of 

device drivers 

SYSINIT next attempts to open the CONFIG SYS file in the root directory of the boot 
drive If the file does not exist, SYSINIT uses the default system parameters; if the file is 
opened, SYSINIT reads the entire file into high memory and converts all characters to 
uppercase The file contents are then processed to determine such settings as the number 
of disk buffers, the number of entries in the file tables, and the number of entries in the 
drive translation table (depending on the specific commands in the file), and these struc­
tures are allocated following the MS-DOS kernel (Figure 2-7) 

Then SYSINIT processes the CONFIG SYS text sequentially to determine what installable 
device drivers are to be implemented and loads the installable device driver files into 
memory after the system disk buffers and the file and drive tables Installable device driver 
files can be located in any directory on any drive whose driver has already been loaded 
Each installable device driver initialization function is called after the device driver file is 
loaded into memory I he initialization procedure is the same as for resident device drivers, 
except that SYSINI1 uses an address returned by the device driver itself to determine 
where the next device driver is to be placed See PROGRAMMING IN THE MS-DOS ENVI­
RONMENT: CusroMIZING Ms-oos: Installable Device Drivers 

The MS-D05 Encyclopedia 

Article 2: I he Components of MS-DOS 

- FFFF:OOOFH(l MB) 
ROM BIOS 

- FOOO:OOOOH 

Other ROM and RAM 

..._. Top of RAM 
(AOOO:OOOOH for IBM PC) 

SYS!Nll 

Free RAM 

Installable 
device drivers 

File control blocks 

Disk buffers 

MS-DOS tables 

MS-DOS kernel 
(MSDOSSYS) 

MS-DOS BIOS 
(JO SYS) 

...,___ Resident device drivers 

ROM BIOS tables - 0000:0600H 

- 0000:0400H 
Interrupt vectors 

- OOOO:OOOOH 

Figure 2-7 Table.s allocated and installable device drivers loaded 

1 ike resident device drivers, installable device drivers can be discarded by SYS I NIT if the 
device driver initialization routine determines that a device is inoperative or nonexistent 
A discarded device driver is not included in the list of device d1ivers Installable char acte1c 

device drivers supersede resident character-device drivers with the same name; installable 
block-device d1ivers cannot supe1sede resident block-drivers and are assigned drive letters 
following those of the resident block-device drivers 

Section IL Programming in the M5-D05 Environment 75 

Canon Exhibit 1108



Part A: Structure of MS-DOS 

SYSINIT now closes all open files and then opens the three character devices CON, PRN, 
and AUX The console (CON) is used as standard input, standard output, and standard 
error; the standard printer poit is PRN (which defaults to IPTl); the standard auxiliary port 
is AUX (which defaults to COMl) Installable device drivers with these names will replace 
any resident versions 

Starting the shell 

SYSINIT's last function is to load and execute the shell program by using the MS-DOS 
EXEC function. See PROGRAMMING IN I HE MS-DOS ENVIRONMENT: PROGRAMMING 
FOR MS·· Dos: I he MS-DOS EXEC Function I he SHEU statement in CONF I G SYS specifies 
both the name of the shell program and its initial parameters; the default MS-DOS shell is 
COMMAND.COM. The shell program is loaded at the start of free memory after the 
installable device drivers or after the last internal MS-DOS file control block if there are 
no installable device drivers (Figure 2-8) 

COMMAND.COM 

76 

COMMAND COM consists of three parts: 

• A resident po1tion 
• An initialization module 
• A transient portion 

The resident portion contains support for termination of pro gr ams started by 
COMMAND COM and presents critical-error messages. It is also responsible for re­
loading the tiansient po1tion when necessa1y 

The initialization module is called once by the resident portion First, it moves the tran­
sient portion to high memory (Compare Figures 2-8 and 2-9) I hen it processes the 
parameters specified in the SHEU command in the CONF IG SYS file, if any See USER 
COMMANDS: COMMAND Next, it processes the AUI OEXEC BAT file, if one exists, and 
finally, it transfers control back to the resident portion, which frees the space used by the 
initialization module and transient po1tion I he relocated transient portion then displays 
the MS-DOS user prompt and is ready to accept commands 

I he tiansient po1tion gets a command fi:om either the console or a batch file and executes 
it Commands are divided into three catego1ies: 

• Inte1nal commands 
e Batch files 
• External commands 

Internal commands are routines contained within COMMAND COM and include opera­
tions like COPY or ERASE Execution of an internal command does not overwrite the tran­
sient po1tion. Internal commands consist of a keyword, sometimes followed by a list of 
command-specific pat ameters 

The MS-DOS Encyclopedta 

-'! 

-+-- FFFF:OOOFH(l MB) 
ROM BIOS 

-+-- FOOO:OOOOH 

Other ROM and RAM 

SYSINII 

Free RAM 

COMMAND COM 
(transient) 

COMMAND.COM 
(initialization) 

COMMAND.COM 
(resident) 

Installable 
device drivers 

File control blocks 

Disk buffers 

MS-DOS tables 

MS-DOS kernel 
(MSDOS .SYS) 

MS-DOS BIOS 
(10 SYS) 

ROM BIOS tables 

Interrupt vectors 

.,...__ Top of RAM 
(AOOO:OOOOH for IBM PC) 

.,.._ Resident device drivers 

-+-- 0000:0600H 

-+-- 0000:0400H -OOOO:OOOOH 

Figure 2-8 COMMAND COM loaded 

Article 2: I he Components of MS-DOS 

Section IL Programming in the MS-DOS Environment 77 
Canon Exhibit 1108



Part A: Structure of MS-DOS 

78 

ROM BIOS 

Other ROM and RAM 

COMMAND .COM 
(transient) 

Free RAM 

COMMAND COM 
(resident) 

Installable 
device drivers 

File control blocks 

Disk buffers 

MS-DOS tables 

MS--DOS kernel 
(MSDOS SYS) 

MS-DOS BIOS 
(IOSYS) 

ROM BIOS tables 

Interrupt vectors 

+- FFFF:OOOFH(l MB) 

+- FOOO:OOOOH 

..-- IopofRAM 
(AOOO:OOOOH for IBM PC) 

..__ Resident device drivers 

+- 0000:0600H 

+- Q000:0400H 

+- OOOO:OOOOH 

Figure 2-9 COMMAND COM after relocation 

Batch files are text files that contain internal commands, external commands, batch-file 
directives, and nonexecutable comments See USER COMMANDS: BATCH 

External commands which are actually executable programs, are stored in separate 
files with COM and 'EXE extensions and are included on the MS-DOS distribution disks 
See PROGRAMMING IN THE MS-DOS ENVIRONMENT: PROGRAMMING FOR Ms-nos: ~trnc­
ture of an Application Program. These programs are invoked with the name of the file 
without the extension. (MS-DOS versions 3 x allow the complete pathname of the external 

command to be specified ) 

The MS-DOS Encyclopedia 

Article 2: The Components of MS-DOS 

External commands are loaded by COMMAND COM by means of the MS-DOS EXEC func­
tion. Ihe EXEC function loads a program into the free memory area, also called the tran­
sient program area (TPA), and then passes it control. Control returns to COMMAND COM 
when the new program terminates Memory used by the program is released unless it is a 
terminate-and-stay-resident (TSR) program, in which case some of the memory is retained 
for the resident portion of the program See PROGRAMMING IN IHE MS-DOS ENVIRON­
MENT: CUSTOMIZING Ms-nos: ·rerminate-and-Stay-Resident Utilities 

After a program terminates, the resident portion of COMMAND.COM checks to see if the 
transient portion is still valid, because if the program was large, it may have overwritten 
the transient portion's memory space The validity check is done by computing a check-· 
sum on the tlansient portion and comparing it with a stored value If the checksums do 
not match, the resident portion loads a new copy of the transient portion from the 
COMMAND COM file 

Just as COMMAND COM uses the EXEC function to load and execute a program, pro­
grams can load and execute other programs until the system runs out of memory Figure 
2-10 shows a typical memory configuration for multiple applications loaded at the same 
time I he active task - the last one executed- ordinarily has complete control over the 
system, with the exception of the hardware interrupt handlers, which gain control 
whenever a hardware interrupt needs to be serviced 

MS-DOS is not a multitasking operating system, so although several programs can be resi­
dent in memory, only one program can be active at a time. The stack-like nature of the 
system is apparent in Figure 2-10 Ihe top program is the active one; the next program 
down will continue to run when the top program exits, and so on until conti·ol returns to 
COMMAND COM RAM-resident programs that remain in memory after they have termi­
nated are the exception In this case, a program lowe1 in memory than another program 
can become the active program, although the one-active-process limit is still in effect 

A custom shell progi·am 

The SHEII directive in the CONFIG SYS file can be used to replace the system's default 
shell, COMMAND COM, with a custom shell Nearly any program can be used as a system 
shell as long as it supplies default handlers for the Control-C and critical error exceptions 
For example, the pro gr am in Figure 2-11 can be used to make any application program 
appear to be a shell program-if the application program terminates, SHEll COM 
restarts it, giving the appearance that the application program is the shell program 

SHEll COM sets up the segment registers for operation as a COM file and reduces the 
program segment size to less than 1 KB It then initializes the segment values in the param­
eter table for the EXEC function, because COM files cannot set up segment values within a 
program The Control-C and critical error interrupt handler vectors are set to the address of 
the main program loop, which tries to load the new shell program. SHEll COM prints a 
message if the EXEC operation fails The loop continues forever and SHEll COM will 
never return to the now-discarded SYSINII that started it 

Section II Programming in the il1S'-D05 Environment 79 

Canon Exhibit 1108



Part A: Structure of MS-DOS 

80 

ROM BIOS 

Other ROM and RAM 

COMMAND.COM 
(transient) 

Free RAM 

Program #3 
(active) 

Program #2 

Program #1 

COMMAND COM 
(resident) 

Installable 
device drivers 

File control blocks 

Disk buffers 

MS-DOS tables 

MS-DOS kernel 
(MSDOS SYS) 

MS-DOS BIOS 
(IO SYS) 

ROM BIOS tables 

Interrupt vectors 

- FFFF:OOOFH(l MB) 

- FOOO:OOOOH 

+- lopofRAM 
(AOOO:OOOOH for IBM PC) 

-+-- Resident device drivers 

- 0000:0600H 

- 0000:0400H 

- OOOO:OOOOH 

Figure 2-10 Multiple programs loaded 

The MS:..DQS Encyclopedia 

Article 2: The Components of MS-DOS 

SHEll ASM A simple program to run an application as an 

MS-DOS shell program Ihe program name and 

startup parameters must be adjusted before 

SHEII is assembled 

Written by William Wong 

Io create SHEIL.COM: 

C>MASM SHEll: 

C>IINK SHEII; 

C>EXE2BIN SHEII .EXE SHEII COM 

stderr equ 2 

er equ Odh 

lf equ Oah 

standard error 

ASCII carriage return 

ASCII linefeed 

cseg segment para public 'CODE' 

start 

start 

Set up DS, ES, and SS:SP to run as COM 

assume 

proc 

mov 

add 
mov 

mov 

mov 

mov 

push 

push 

push 

ret 
endp 

cs:cseg 

far 

ax, cs 

ax, 1 Oh 

ds,ax 

ss, ax 

sp,offset 

ax, offset 

c' 
de 
ax 

stk 

shell 

set up segment registers 

AX = segment after PSP 

; set up stack pointer 

push original CS 

push segment of shel~ 

push offset of shell 

jump to shell 

Mein program running as COM 

cs, DS, SS = cseg 

Original CS value on top of stack 

assume cs:cseg,ds:cseg,ss:cseg 

seg_size equ ( ((offset last) - (offset start}) + 1 Ofh) /16 
shell proc 

pop 

mov 

mov 

int 

mov 

mov 

mov 

mov 

mov 

near 

ee 
bx, seg_size 

ah,4ah 

21h 

cmci_seg,ds 

fcb1_seg,ds 

fcb2_seg, ds 

ES segment to shrink 

BX new segment size 

AH modify memory block 

free excess memory 

setup segments in 

parameter block fo.:::- EXEC 

dx,offset main_loop 

ax, 2523h AX = set Control-C handler 

Figure 2-11 A simple program to run an application as an MS'-DOS shell 

Section II Programming in the MS-DOS Environment 

(more) 

81 

Canon Exhibit 1108



Part A: Structure of MS-DOS 

82 

int 

mov 
mov 

int 

2lh ; set handler to DS:DX 

dx,offset main_loop 
ax, 2524h AX = set critical error handler 

21 h set handler to OS: DX 
Note: OS is equal to CS 

main_loop: 

push 

push 

ds 
es 

save segment registers 

shell 

mov 

mov 

mov 

mov 

mov 

int 
mov 

mov 

pop 

pop 

jnc 

mov 

mov 

call 

cs:stk_seg,ss save stack pointer 

cs:stk_off,sp 
dx,offset pgm_name 

bx,offset par_blk 
ax, 4b00h AX = EXEC/run program 

21h carry = EXEC failed 

ss,cs:stLseg 
sp, cs: stk_off 

es 
ds 

restore stack pointer 

restore segment registers 

main_loop ; loop if program run 

dx,offset loa~sg 
cx,loa~sg_length 

print display error message 

mov ah, OSh AH = read without echo 

wait for any character 

execute forever 
int 21 h 

Jmp main_loop 

endp 

Print s-cring 

DS:DX 

ex 
address of string 

size 

print proc near: 

mov ah,40h 

mov bx, stderr 

int 21h 

ret 

print endp 

Message strings 

loacLmsg db cr,lf 

AH "" write to file 
BX = file handle 

print string 

db 'Cannot load program.' ,cr,lf 

db 'Press any key to try again ',cr,lf 

loacLmsg_length equ $-loa~sg 

?rogram data area 

0 

0 

stack segment pointer 
save area dur:ing EXEC 

stk_seg dw 

stk_off dw 
pgffi___Jlame db '\NEWSHEil COM',0 ; any program will do 

Figure 2-11 Continued 

The Ms:.. nos Encyclopedia 

(more) 

par_blk 

cmd_seg 

fcb1_seg 

fcb2_seg 
cmd_line 

fcb1 

fcb2 

stk 
last 

cseg 

dw 
dw 
dw 
dw 
dw 
dw 
dw 

db 

db 

db 

db 

db 

db 

db 

dw 
dw 
equ 

ends 

end 

0 
offset 

0 
offset 

0 

offset 

0 
0,cr 

0 

11 dup 

25 dup 

0 
11 dup 

25 dup 

200 dup 

0 

$ 

start 

Figure 2-11 Continued 

cmd_line 

fcbl 

fcb2 

{' ') 

{ 0 ) 

{' ') 

{ 0 ) 

{ 0 ) 

Article 2: I he Components of MS-DOS 

use current environment 

command-line address 
fill in at initialization 

default FCB Jf1 

fill in at initialization 

default FCB #2 
fill in at initialization 

actual command line 

program stack area 

last address used 

SHEll COM is very short and not too smart It needs to be changed and rebuilt if the name 
of the application program changes A simple extension to SHEll - call it XSHEll -
would be to place the name of the application program and any parameters in the com­
mand line. XS HE I 1 would then have to parse the program name and the contents of the 
two FCBs needed for the EXEC !Unction The CONFIG SYS line for starting this shell 
would be 

SHELL=XSHELL \SHElL-\DEMO EXE PARAM1 PARAM2 PARAM3 

SHEll COM does not set up a new environment but simply uses the one passed to it 

William Wong 

Section Il Programming in the M.s:..no.s Environment 83 

Canon Exhibit 1108



Article 3: MS-DOS Storage Devices 

Article3 
MS-DOS Storage Devices 

Application programs access data on MS-DOS storage devices through the MS-DOS file­
system support that is part of the MS-DOS kernel The MS-DOS kernel accesses these 
storage devices, also called block devices, through two types of device drivers: resident 
block-device drivers contained in IO SYS and installable block-device drivers loaded 
from individual files when MS-DOS is loaded. See PROGRAMMING IN THE MS-DOS 
ENVIRONMENT: SrnucrnRE OF MS-DOS: The Components of MS-DOS; CusmMIZING 
Ms-nos: Installable Device Drivers 

MS-DOS can handle almost any medium, recording method, or other variation for a storage 
device as long as there is a device driver for it MS-DOS needs to know only the sector size 
and the maximum number of sectors for the device; the appropriate translation between 
logical sector number and physical location is made by the device driver Information 
about the number of heads, tracks, and so on is required only for those partitioning pro­
grams that allocate logical devices along these boundaries See I ayout of a Partition below 

The floppy-disk drive is perhaps the best-known block device, followed by its faster 
cousin, the fixed-disk drive Other MS-DOS media include RAMdisks, nonvolatile 
RAMdisks, removable hard disks, tape drives, and CD ROM drives With the proper device 
driver, MS-DOS can place a file system on any of these devices (except read-only media 
such as CD ROM) 

This article discusses the structure of the file system on floppy and fixed disks, starting 
with the physical layout of a disk and then moving on to the logical layout of the file sys­
tem. The scheme examined is for the IBM PC fixed disk 

Structure of an MS-DOS Disk 

The structure of an MS-DOS disk can be viewed in a number of ways: 

• Physical device layout 
• Logical device layout 
• Logical block layout 
• MS-DOS file system 

The physical layout ofa disk is expressed in terms of sectors, tracks, and heads The logical 
device layout, also expressed in terms of sectors, tracks, and heads, indicates how a logical 
device maps onto a physical device A partitioned physical device contains multiple logical 
devices; a physical device that cannot be partitioned contains only one Each logical device 

Section II Programming in the M5'D05 Environment 85 
Canon Exhibit 1108



Part A: Structure of MS-DOS 

has a logical block layout used by MS-DOS to implement a file system. These various 
views of an MS-DOS disk are discussed below See also PROGRAMMING IN THE MS-DOS 
ENVIRONMENT: PROGRAMMING FOR Ms-oos: File and Record Management; Disk Directo­
ries and Volume labels 

Layout of a physical block device 

The two major block-device implementations are solid-state RAMdisks and rotating mag­
netic media such as floppy or fixed disks Both implementations provide a fixed amount of 
storage in a fixed number of randomly accessible same-size sectors 

RAM disks 

A RAMdisk is a block device that has sectors mapped sequentially into RAM Thus, the 
RAMdisk is viewed as a large set of sequentially numbered sectors whose addresses are 
computed by simply multiplying the sector number by the sector size and adding the base 
address of the RAMdisk sector buffer Access is fast and efficient and the access time to any 
sector is fixed, making the RAJ\'ldisk the fastest block device available However, there are 
significant drawbacks to RAMdisks. First, they are volatile; their contents are irretrievably 
lost when the computer's power is turned off (although a special implementation of the 
RAMdisk known as a nonvolatile RAMdisk includes a battery backup system that ensures 
that its contents are not lost when the computer's power is turned off). Second, they are 
usually not portable 

Physical disks 

86 

Floppy-disk and fixed-disk systems, on the other hand, store information on revolving 
platters coated with a special magnetic material The disk is rotated in the drive at high 
speeds-approximately 300 revolutions per minute (rpm) for floppy disks and 3600 rpm 
for fixed disks. (The term "fixed" refers to the fact thatthe medium is built permanently 
into the drive, not to the motion of the medium) Fixed disks are also referred to as "hard" 
disks, because the disk itself is usually made from a rigid material such as metal or glass; 
floppy disks are usually made from a flexible material such as plastic 

A transduce1 element called the read/write head is used to read and write tiny magnetic 
regions on the rotating magnetic medium I he regions act like small bar magnets with 
north and south poles The magnetic regions of the medium can be logically oriented 
toward one or the other of these poles- orientation toward one pole is interpreted as a 
speclfic binary state (1 or O) and orientation toward the other pole is interpreted as the 
opposite bina1y state A change in the direction of orientation (and hence a change in the 
binary value) between two adjacent regions is called a flux reversal, and the density of a 
particular disk implementation can be measured by the numbe1 of regions per inch reli­
ably capable of flux reversal Higher densities of these regions yield higher-capacity disks 
I he flux density of a particular system depends on the drive mechanics, the character is­
tics of the read/write head, and the magnetic properties of the medium 

The read/write head can encode digital information on a disk using a numbe1 of recording 
techniques, including frequency modulation (FM), modlfied frequency modulation (MFM), 

Ihe MS-DOS Encyclopedia 

Article 3: J\fS-DOS Storage Devices 

run length limited (Rll) encoding, and advanced run length limited (AR11) encoding 
Each technique offers double the data encoding density of the previous one The associ­
ated control logic is more complex for the denser techniques 

Tracks 
A read/write head reads data from or writes data to a thin section of the disk called a 
track, which is laid out in a circular fashion around the disk (Figure 3-1) Standard 5 25-
inch floppy disks contain either 40 (0-39) or 80 (0-79) tracks per side like-numbered 
tracks on either side of a double-sided disk are distinguished by the number of the read/ 
write head used to access the track For example, track 1 on the top of the disk is identified 
as head 0, track l; track 1 on the bottom of the disk is identified as head 1, track 1 

Tracks can be either spirals, as on a phonograph record, or concentr'ic rings Computer 
media usually use one of two types of concentric rings The first type keeps the same num­
ber .of sectors on each track (see Sectors below) and is rotated at a constant angular veloc­
ity (CAY) The second type maintains the same recording density across the entire surface 
of the disk, so a track neat the center of a disk contains fewer sectors than a track near the 
perimeter This latter type of disk is rotated at different speeds to keep the medium under 
the magnetic head moving at a constant linear velocity ( ClV) 

Figure 3-1 The physical layout oj a CAV 9--sector, 5 25-inch floppy di.sk 

Most MS-DOS computers use CAV disks, although a CLY disk can store more sectors using 
the same type of medium. This difference in storage capacity occurs because the limiting 
factor is the flux density of the medium and a CAY disk must maintain the same number 
of magnetic flux regions per sector on the interior of the disk as at the perimete1 Thus, 
the sectors on or near the perimeter do not use the full capability of the medium and the 
heads, because the space reserved for each magnetic flux region on the perimeter is larger 
than that available near the center of the disk. In spite of their greater storage capacity, 
however, CLY disks (such as CD ROMs) usually have slower access times than CAY disks 
because of the constant need to fine-tune the motor speed as the head moves from track to 
track Thus, CAY disks are preferred for MS-DOS systems 

Section ll Programming in the MS-DOS Environment 87 

Canon Exhibit 1108



Part A: Structure of MS-DOS 

88 

Heads 
Simple disk systems use a single disk, or platter, and use one or two sides of the platter; 
more complex systems, such as fixed disks, use multiple platters Disk systems that use 
both sides of a disk have one read/write head per side; the heads are positioned over the 
track to be read from or written to by means of a positioning mechanism such as a solenoid 
or servomotor I he heads are ordinarily moved in unison, using a single head-movement 
mechanism; thus, heads on opposite sides of a platter in a double-sided disk system 
typically access the same logical track on their associated sides of the platter (Performance 
can be increased by increasing the number of headsJo as many as one head per II ack, 
eliminating the positioning mechanism However,·because they are quite expensive, such 
multiple-head systems are generally found only on high-performance minicomputers and 
mainframes ) 

I he set of like-numbered ttacks on the two sides of a platter (or on all sides of all platters 
in a multiplatter system) is called a cylinder Disks are usually partitioned along cylinders 
Tracks and cylinders may appear to have the same meaning; however, the term track is 
used to defi_ne a concentric ring containing a specific number of sectors on a single side of 
a single platter, whereas the term cylinder refers to the number of like-numbered tracks on 
a device (Figure 3-2) 

----------------:C ___ Side o, track 7 

Side 1, 
track 7 

cylinder 

Side 2. track 7 
'--- Side 3 track 7 

Figure 3-2 Tracks and cylinder·s on a fixed-disk system 

Sector·s 
Each track is divided into equal-size portions called sectors. Ihe size of a sector is a power 
of 2 and is usually gr eater than 128 bytes- typically, 512 bytes 

Floppy disks are either hard-sectored or soft-sectored, depending on the disk drive and 
the medium Hard-sectored disks are implemented using a series of small holes near the 

The MS-DO.S Encyclopedia 

Article 3: MS-DOS Storage Devices 

center of the disk that indicate the beginning of each sector; these holes are read by a 
photosensor/lED pair built into the disk drive. Soft-sectored disks are implemented by 
magnetically marking the beginning of each sector when the disk is formatted A soft­
sectored disk has a single hole near the center of the disk (see Figure 3-1) that marks the 
location of sector 0 for reference when the disk is formatted or when error detection is per­
formed; this hole is also read by a photosensor/LED pair Fixed disks use a special imple­
mentation of soft sectors (see below) A hard-sectored floppy disk cannot be used in a 
disk drive built for use with soft-sectored floppy disks (and vice versa) 

In addition to a fixed number of data bytes, both sector types include a certain amount of 
overhead information, such as error cor1 ection and sector identification, in each sector 
The structure of each sector is implemented during the formatting process 

Standard fixed disks and 5 25-inch floppy disks generally have from 8to17 physical sec­
tors per !tack Sectors are numbered beginning at 1 Each sector is uniquely identified by a 
complete specification of the read/write head, cylinder number, and sector number Ib 
access a particular sector, the disk drive controller hardware moves all heads to the speci­
fied cylinder and then activates the appropriate head for the read or write operation 

The read/write heads are mechanically positioned using one of two hardware implemen­
tations The first method, used with floppy disks, employs an "open-loop" servomecha­
nism in which the softwar·e computes where the heads should be and the hardware moves 
them there (A servomechanism is a device that can move a solenoid or hold it in a fixed 
position) An open-loop system employs no feedback mechanism to determine whether 
the heads were positioned correctly-the hardwar·e simply moves the heads to the 
requested position and returns an error if the information read there is not what was 
expected. The positioning mechanism in floppy-disk drives is made with close tolerances 
because if the positioning of the heads on two drives differs, disks written on one might 
not be usable on the other 

Most fixed disk systems use the second method- a "closed-loop" servomechanism that 
reserves one side of one platter for positioning information This information, which indi­
cates where the tracks and sectors are located, is written on the disk at the factory when 
the drive is assembled Positioning the read/write heads in a closed-loop system is actually 
a two-step process: First, the head assembly is moved to the approximate location of the 
read or write operation; then the disk controller reads the closed-loop servo infor ma ti on, 
compares it to the desired location, and fine-tunes the head position accordingly I his 
fine-tuning approach yields faster access times and also allows for higher-capacity disks 
because the positioning can be more accurate and the distances between tracks can 
therefore be smaller Because the "servo platter" usually has positioning information on 
one side and data on the other, many systems have an odd number of read/write heads 
for data 

Intedeaving 
CAV MS-DOS disks are described in terms of bytes per sector, sectors per ttack, number of 
cylinders, and number of read/write heads Overall access time is based on how fast the 
disk rotates (rotational latency) and how fast the heads can move from ttack to track 
(track-to-track latency) 

Section Il Programming in the MS'-DO.S Environment 89 
Canon Exhibit 1108



Part A; Structure of MS-DOS 

On most fixed disks, the sectors on the disk are logically or physically numbered so that 
logically sequential sectors are not physically adjacent (Figure 3-3) The underlying princi­
ple is that, because the controller cannot finish processing one sector before the next 
sequential sector arrives under the read/write head, the logically numbered sectors must 
be staggered around the track I his staggering of sectors is called skewing or, more com­
monly, interleaving A 2-to-1 (211) interleave places sequentially accessed sectors so that 
there is one additional sector between them; a 3J interleave places two additional sectors 
between them A slower disk controller needs a larger interleave factor A 3:1 interleave 
means that three revolutions are required to read all sectors on a track in numeric order 

Rotation direction 

0 5 

13 8 

Figure 3-3 A 3 1 interleave 

One approach to improving fixed-disk performance is to decrease the interleave ratio 
I his generally requires a specialized utility program and also requires that the disk be 
reformatted to adjust to the new layout Obviously, a 1:1 interleave is the most efficient, 
provided the disk controller can process at that speed The normal interleave for an IBM 
PC/AI and its standard fixed disk and disk controller is 311, but disk controllers are avail­
able for the PC/AT that are capable of handling a 1:1 interleave Floppy disks on MS-DOS­
based computers all have a 1:1 interleave ratio 

Layout of a partition 

90 

for several reasons, large physical block devices such as fixed disks are often logically par­
titioned into smaller logical block devices (Figure 3-4} for instance, such partitions allow 
a device to be shared among different operating systems Partitions can also be used to 
keep the size of each logical device within the PC-DOS 32 MB restriction (important for 
large fixed disks) MS-DOS permits a maximum of four partitions 

A partitioned block device has a partition table located in one sector at the beginning of 
the disk This table indicates where the logical block devices are physically located. (Even 
a partitioned device with only one partition usually has such a table ) 

The MS-DOS Encyclopedia 

r 
' 

Article 3: MS-DOS Storage Devices 

Partition 2 

[

Partition 1 

I :cartition 4 

Figure 3-4 A partitioned disk 

Under the MS-DOS partitioning standard, the first physical sector on the fixed disk con­
tains the partition table and a bootstrap program capable of checking the partition table 
for a bootable partition, loading the bootable partition's boot sector, and transferring con­
trol to it The partition table, located at the end of the first physical sector of the disk, can 
contain a maximum of four entries: 

Offset Ft·om 
Statt of Sectot· Size (bytes) Description 

OlBEH 16 Partition #4 
OlCEH 16 Par titian #3 
OlDEH 16 Partition #2 
OlEEH 16 Partition #l 
OlFEH 2 Signature AA55H 

1 he partitions are allocated in reverse order Each 16-byte entry contains the following 
information: 

Offset Ft·om 
Statt of Entty 

OOH 
OlH 

Size (bytes) 

1 
1 

Description 

Boot indicator 
Beginning head 

(more) 

Section II Programming in the MS-DOS Environment 91 

Canon Exhibit 1108



Part A: Structure of MS-DOS 

92 

Offset Fr·om 
Start of Entry Size (bytes) Description 

02H 1 Beginning sector 

03H 1 Beginning cylinder 

04H 1 System indicator 

05H 1 Endinghead 

06H 1 Ending sector 

07H 1 Ending cylinder 

OSH 4 Starting sector (relative to beginning 
of disk) 

OCH 4 Number of sectors in partition 

The boot indicator is zero for a nonbootable partition and SOH for a bootable (active) parti­
tion. A fixed disk can have only one bootable partition (When setting a bootable partition, 
partition programs such as FDISK reset the boot indicators for all other partitions to zero ) 
See USER COMMANDS: FDISK 

1 he system indicators are 

Code 

OOH 
OlH 
04H 

Meaning 

Unknown 
MS-DOS, 12-bit FAT 
MS-DOS, 16-bit FAT 

Each partition's boot sector is located at the start of the partition, which is specified in 
terms of beginning head, beginning sector, and beginning cylinder numbers This infor­
mation) stored in the partition table in this order, is loaded into the DX and CX registers by 
the PC ROM BIOS loader routine when the machine is turned on or restarted The stalting 
sector of the partition relative to the beginning of the disk is also indicated The ending 
head, sector, and cylinder numbers, also included in the partition table, specify the last ac­
cessible sector fOr the partition I he total number of sectors in a partition is the difference 
between the starting and ending head and cylinder numbers times the number of sectors 
per cylinder 

MS-DOS versions 2 O through 3 2 allow only one MS-DOS partition per partitioned device 
Various device drivers have been implemented that use a different partition table that 
allows more than one MS-DOS partition to be installed, but the secondary MS-DOS parti­
tions are usually accessible only by means of an installable device driver that knows about 
this change (Even with additional MS-DOS partitions, a fixed disk can have only one boot­
able partition) 

The MS-DOS Encyclopedia 

Article 3: MS-DOS Storage Devices 

Layout of a file system 

Block devices are accessed on a sector basis The MS-DOS kernel, through the device 
driver; sees a block device as a logical fixed-size array of sectors and assumes that the array 
contains a valid MS-DOS file system The device driver, in turn, translates the logical sector 
requests from MS-DOS into physical locations on the block device 

The initial MS-DOS file system is written to the storage medium by the MS-DOS FORMAT 
program. See USER COMMANDS: FORMAT The general layout for the file system is shown 
in Figure 3-5 

OEM identification BIOS parameter block. Loader routine 
Reserved area 

~. 

File allocation table (FA!) #1 

Possible additional copies of FAT 

Root disk directory 

L--- -

[ -----------==-~ 
Files area __J 

.Figure 3-5 The M5-D05 file system 

The boot sector is always at the beginning of a partition It contains the OEM identifica­
tion, a loader routine, and a BIOS parameter block (BPB) with information about the 
device, and it is followed by an optional area of reserved sectors See The Boot Sector 
below The reserved area has no specific use, but an OEM might require a more complex 
loader routine and place it in this area The file allocation tables (FAI's) indicate how the 
file data area is allocated; the root directory contains a fixed number of directory entries; 
and the file data area contains data files, subdirectory files, and free data sectors 

Section II Programming in the MS-DOS Environment 93 
Canon Exhibit 1108



Part A: Structure of MS-DOS 

All the areas just described - the boot sector, the FAT, the root directory, and the file data 
area-are of fixed size; that is, they do not change after FORMAT sets up the medium 
The size of each of these areas depends on various factors. For instance, the size of the FAT 
is pwportional to the file data area The root directory size ordinarily depends on the type 
of device; a single-sided floppy disk can hold 64 entries, a double-sided floppy disk can 
hold 112, and a fixed disk can hold 256 (RAMdisk drivers such as RAMDRIVE SYS and 
some implementations ofFORMAI allow the number of directory entries to be specified) 

I he file data area is allocated in terms of clusters A cluster is a fixed number of con­
tiguous sectors Sector size and cluster size must Qe-a power of 2 I he sector size is usually 
512 bytes and the cluster size is usually 1, 2, or 4 KB, but larger sector and cluster sizes are 

possible Commonly used MS-DOS cluster sizes are 

Disk Type Sectors/Cluster 

Single-sided floppy disk 1 
Double-sided floppy disk 2 
PC/AT fixed disk 4 
PC/XI fixed disk 8 
Other fixed disks 16 
Other fixed disks 32 

•Assumes 512 bytes per sector 

Bytes/Cluster" 

512 
1024 
2048 
4096 
8192 

16384 

In general, larger cluster sizes are used to support larger fixed disks Although smaller clus­
ter sizes make allocation more space-efficient, larger clusters are usually more efficient for 
random and sequential access, especially if the clusters for a single file are not sequentially 

allocated 

I he file allocation table contains one entry per cluster in the file data area Doubling the 
sectors per cluster will also halve the number of FAT entries fOr a given partition See The 

File Allocation Table below 

The boot sector· 

94 

I he boot sector (Figure 3-6) contains a BIOS parameter block, a loader routine, and some 
other fields useful to device drivers. The BPB describes a number of physical parameters 
of the device, as well as the location and size of the other areas on the device. I he device 
driver returns the BPB information to MS-DOS when requested, so that MS-DOS can deter­

mine how the disk is configured 

Figure 3-7 is a hexadecimal dump of an actual boot sector The first 3 bytes of the boot sec­
tor shown in Figure 3-7 would be E9H 2CH OOH if a long jump were used instead of a short 
one (as in early versions of MS-DOS) The last 2 bytes in the sector, SSH andAAH, are a 
fixed signature used by the loader routine to verify that the sector is a valid boot sector 

The MS-DO.S Encyclopedia 

I 
1 
I 

I 

1 
l 

Article 3: MS-DOS Storage Devices 

OOH 

03H 

OBH 

ODH 

OEH 

!OH 

l!H 

13H 

15H 

16H 

18H 

!AH 

JCH 

!EH 

E9 XX XX or EB XX 90 

OEM name and version (8 bytes) 

Bytes per sector (2 bytes) 

Sectors per allocation unit (1 byte) 

Reserved sectors, starting at O (2 bytes) 

NumberofFAis(l byte) 

Number of root-directory entries (2 bytes) 

Total sectors in logical volume (2 bytes) 

Media descriptor byte 

Number of sectors per FAT' (2 bytes) 

Sectors per track (2 bytes) 

Number of heads (2 bytes) 

Number of hidden sectors (2 bytes) 

Loader routine 

l 
BPB 

J 

~:::;; 3-6 Map of the boot sector of anMS-DO.S di.sk Bytes OBH through 17H are the BIOS parameter block 

I he BPB information contained in bytes OBH through 17H indicates that there are 

512 bytes per sector 
2 sectors per cluster 
1 reserved sector (for the boot sector) 
2 FA:Ts 

112 root directory entries 
1440 sectors on the disk 
F9H media descriptor 

3 sectors per FAT 

Section 11 Programming in the MS-DOS Environment 95 

Canon Exhibit 1108



Part A: Structure of MS-DOS 

0 2 3 4 5 6 7 8 9 A B c E 

0000 EB 20 90 20 20 20 20 20 20 k-. 

0010 00 02 00 00 00 00 00 p y 

0020 00 OA 00 OF 02 25 02-09 2A FF so F6 DA 02 FA 
- ' * .Pv ' 

0030 BS co 07 BE DB BC 00 7C-33 CO 8E DO BE CO FB FC 8@ X< : 3@ .P @{: 

0180 OA 44 69 73 6B 20 42 6F-6F 74 20 46 61 69 6C 75 .Disk Boot Failu 

0190 72 65 OD OA OD OA 4E 6F-6E 20 53 79 73 74 65 60 re Non-System 

01AO 20 64 69 73 6B 20 6F 72-20 64 69 73 6B 20 .65 72 disk or disk er 

01BO 72 6F 72 OD OA 52 65 70-6C 61 63 65 20 61 6E 64 ror .Replace and 

01CO 20 70 72 65 73 73 20 61-6E 79 20 6B 65 79 20 77 press any key w 

0100 68 65 6E 20 72 65 61 64-79 OD QA 00 00 00 00 00 hen ready 

01EO 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 

01FO 00 00 00 00 00 00 00 00-00 00 00 00 00 00 55 AA • 

Figure 3-7 Hexadecimal dump of an MS-D05 boot sector: The BPB is highlighted 

Additional infmmation immediately aftet the BPB indicates that there at·e 9 sectors per 
track, 2 read/write heads, and 0 hidden sectrns 

The media descriptor, which appears in the BPB and in the first byte of each FAI: is used to 
indicate the type of medium currently in a drive. !BM-compatible media have the follow­

ing descriptors: 

Descriptor' Media Type MS-DOS Vet'sions 

OF8H Fixed disk 2,3 

OFOH 3 5-inch, 2-sided, 18 sectrn 32 

OF9H 3 5-inch, 2-sided, 9 sectrn 32 

OF9H 5 25-inch, 2-sided, I5 sectrn 3x 

OFCH 5 25-inch, I-sided, 9 sectot 2x, 3x 

OFDH 5 25-inch, 2-sided, 9 sectrn 2 x, .3x 

OFEH 5 25-inch, I-sided, 8 sectrn lx,2x,3x 

OFFH 5 25-inch, 2-sided, 8 sectrn 1 x (except I 0), 2, 3 

OFEH 8-inch, 1-sided, single-density 

OFDH 8-inch, 2-sided, single-density 

OFEH 8-inch, I-sided, double-density 

OFDH 8-inch, 2-sided, double-density 

The MS'-DOS Encyclopedia 

Article 3: MS-DOS Storage Devices 

The file allocation table 

The file allocation table provides a map to the storage locations of files on a disk by indi­
cating which clusters are allocated to each file and in what ordet:·Tb enable MS-DOS to 
locate a file, the file's directory entry contains its beginning FAT entry nwnbet This FAT 
entry, in turn, contains the entry number of the next cluster if the file is larger than one 
cluster or a last-cluster nwnber if there is only one clustet associated with the file. A file 
whose size implies that it occupies 10 clusteIS will have 10 FAT entries and 9 FAT links 
(The set of links fat a patticular file is called a chain ) 

Additional copies of the FAT are used to provide backup in case of datnage to the first, 
or primaty, FAT; the typical floppy disk or fixed disk contains two FATs. The FATs at·e 
atranged sequentially after the boot sector, with some possible intervening reserved area 
MS-DOS rndinarily uses the piimaty FAT but updates all FATs when a change occurs 
It also compares all FATs when a disk is first accessed, to make sure they match 

MS-DOS suppmts two types of FAT: One uses 12-bit links; the othet, introduced with 
version 3 0 to accommodate latge fixed disks with more than 4087 clusters, uses 16-bit 
links 

The first two entries of a FAT are always reserved and are filled with a copy of the media 
desciiptrn byte and two (fat a 12-bit FAT) or three (fat a 16-bit FAI) OFFH bytes, as shown 
in the following dwnps of the first I6 bytes of the FAT: 

I2-bit FAT: 

F9 FF Ff 03 40 00 FF 6F-00 07 FO FF 00 00 00 00 

16-bit FAT: 

F8 FF FF FF 03 00 04 00-FF FF 06 00 07 00 FF FF 

The remaining FAT entries have a one-to-one relationship with the clusters in the file data 
area Each clustet's use status is indicated by its crnresponding FAT value (FORMAT in­
itially mat ks the FAT entry for each cluster as free) The use status is one of the following: 

12-bit 16-bit Meaning 

OOOH OOOOH Free cluster 
OOIH OOOlH Unused code 
FFO-FF6H FFFO-FFF6H Reserved 
FFIB FF FIB Bad clustet; cannot be used 
FF8-FFFH FFFS-FFFFH last clustet of file 
All other values All other values link to next cluster in file 

Section II Programming in the MS-DOS Environment 97 Canon Exhibit 1108



- _-:.:,,,_- _,- -- ;-

Part A: Structure of MS-DOS 

98 

If a FAT entry is nonzero, the corresponding cluster has been allocated A free cluster is 
found by scanning the FAT from the beginning to find the first zero value Bad clusters are 
ordinarily identified during formatting Figure 3-8 shows a typical FAT chain 

FAientry: 0 

FFDH FFFH 003H 
(4093) (4095) (3) 

005H 
(5) 

FF7H 006H 
(4087) (6) 

Unusable 

Unused; not available 

Disk is double-sided, double-density 

FFFH OOOH 
(4095) (0) 

Ftgure 3-8 Space allocation in the PAI for a typical MS-DOS disk 

8 

OOOH 
(0) 

9 

OOOH 
(0) continues 

Unused; available cluster 

Free FAT entries contain a link value of zero; a link value of 1 is never used 1 hus, the first 
allocatable link number, associated with the first available cluster in the file data ruea, is 2, 
which is the number assigned to the first physical cluster in the file data ruea Figure 3-9 
shows the relationship of files, FAT entries, and clusters in the file data area 

There is no logical difference between the operation of the 12-bit and 16-bit FAT entries; 
the difference is simply in the storage and access methods Because the 8086 is specifically 
designed to manipulate 8- or 16-bit values efficiently, the access procedure for the 12-bit 
FAT is more complex than that for the 16-bit FAT (see Figures 3-10 and 3-11) 

Special considet'ations 
The FAT is a highly efficient bookkeeping system, but various tradeoffs and problems can 
occur One tradeoff is having a prutially filled cluster at the end of a file This situation 
leads to an efficiency problem when a large cluster size is used, because an entire cluster is 
allocated, regrudless of the number of bytes it contains For example, ten 100-byte files on a 
disk with 16 KB clusters nse 160 KB of disk space; the same files on a disk with 1 KB clus­
ters use only 10 KB-a difference of 150KB,or15 times less storage used by the smaller 
cluster size On the other hand, the 12-bit FAT routine in Figure 3-10 shows the difficulty 
(and therefore slowness) of moving through a large file that has a long linked list of many 
small clusters. Therefore, the nature of the data must be considered: large database appli­
cations work best with a larger cluste1 size; a smaller cluster size allows many small text 
files to fit on a disk (The programmer writing the device driver for a disk device ordinarily 
sets the cluster size ) 

I he MS:-DO.S Encyclopedia l 
I. 

Article 3: MS-DOS Storage D ev.....,_,, 

12-bit FAT: 

Reserved 003H FFFH 007H OOOH 

Al M M M F9 FF FF 03 

[SJ FF [SJ 07 

ro ~J 
00 00 

004H 006H FFFH 

16bitFAI: 

Reserved 

0003H 0004H FFFFH 

111111 
03 00 04 00 FF FF 

0006H 0007H EFFFH OOOOH 

11111111 
06 00 07 00 EF EF 00 00 

F8 FF 

FAI entry: 0 1 2 3 4 5 6 8 

12-bitFAI: 003H 004H FFFH 006H 
Reserved 

007H FFFH OOOH 

16-bitFAI: 0003H 
continues 

0006H 0007H FFFEH OOOOH 

Directory entry 

FllEl TXT 
( oints to FAI en 2) 

FllE2. TXT 
( oints to FA1 en 5) C--------------1 

File data area Corresponding FAT en tty 

FllEl IXI 2 

FllE! IXI 3 

FllEl IXI 4 

F!1E2 IXI 5 

Fl1E2 IXI 6 

Fl1E2 IXI 7 

Unused (available) 8 

Figure 3-9 Correspondence between the FAI and the file data area 

Section 11 Programming 'in the k15-D05 Environment 99 
Canon Exhibit 1108



Part A: Structure of MS-DOS 

100 

----Obtain the next link number from a 12-bit EAI 

current entry number 
Parameters: 

ax 
ds:bx address of FAI (must be contiguous) 

Returns: 
ax = next link number 

Uses: ax, bx, ex 

next12 proc near 
add bx, ax ds:bx = partial index 

shr ax, 1 ax = offset/2 
carry = no shift needed 

push£ save carry 

add bx, ax ds: b:X = next cluster number 

mov ax, [bx) ax = next cluster number 

po pf cairy = no shift needed 

jc shift skip if using top 12 bits 

and ax, Offfh ax lower 12 bits 

ret 

shift: mov cx,4 ex shift count 

shr ax, cl ax top 12 bits in lower 12 

ret 

next12 endp 

Figure 3-10 A<Isembly-language routine to acce<J.S a 12-bit FAT'. 

----Obtain the next link number from a 16-bit EAI 

Parameters: 
ax current entry number 
ds:bx address of EAI (must be contiguous) 

Returns: 
ax next link number 

Uses; ax, bx, ex 

next.16 proc near 
add ax, ax ax = word offset 

index 

bits 

add 
mov 

bx, ax 
ax, [bx] 

ds:bx = next link numbeI index 
ax = next link number 

ret 
next 16 endp 

Figure 3-11 Assemb~y-language routine to access a 16-bit FAT'. 

The MS-DOS Encyclopedia 

Problems with cor1 upted directories or F.A:TS, induced by such events as power failures 
and programs running wild, can lead to greater problems if not conected The MS-DOS 
CHKDSK program can detect and fix some of these problems See USER COMMANDS: 
CHKDSK For example, one common problem is dangling allocation lists caused by the 
absence of a directory entry pointing to the start of the list I his situation often results 
when the directory entry was not updated because a file was not closed before the com­
puter was turned off or restarted I he effect is relatively benign: I he data is inaccessible, 
but this limitation does not affect other file allocation operations CHKDSK can fix this 
problem by making a new directory entry and linking it to the list 

Another difficulty occurs when the file size in a directory entry does not match the file 
length as computed by traversing the linked list in the FAT This problem can result in 
improper operation of a program and in error responses from MS-DOS 

A more complex (and rarer) problem occurs when the directory entry is properly set up 
but all or some portion of the linked listis also referenced by another directory entry The 
problem is grave, because writing or appending to one file changes the contents of the 
other file This error usually causes severe data and/or directory corruption or causes the 
system to crash 

A similar difficulty occurs when a linked list terminates with a free cluster instead of a 
last-cluster number If the free cluster is allocated before the error is corrected, the 
problem eventually reverts to the preceding problem. An associated difficulty occurs if a 
link value of 1 or a link value that exceeds the size of the FAT is encountered 

In addition to CHKDSK, a number of commercially available utility programs can be used 
to assist in F.A:I maintenance. For instance, disk reorganizers can be used to essentially 
rearrange the FAT and adjust the directory so that all files on a disk are laid out sequentially 
in the file data area and, of course, in the FAT 

The root dir'ectoi·y 

Directory entries, which are 32 bytes long, are found in both the root directory and the 
subdirectories. Each entry includes a filename and extension, the file's size, the starting 
F.'.AT entry, the time and date the file was created or last revised, and the file's attributes 
I his structure resembles the format of the CP/M-style file control blocks (FCBs) used by 
the MS-DOS version 1 x file functions See PROGRAMMING IN I HE MS-DOS 
ENVIRONMENT: PROGRAMMING FOR Ms-nos: Disk Directories and Volume labels 

The MS-DOS file-naming convention is also derived from CP/M: an eight-character file­
name followed by a three-character file type, each left aligned and padded with spaces if 
necessary Within the limitations of the character set, the name and type are completely 
arbitrary. The time and date stamps are in the same format used by other MS-DOS func­
tions and reflect the time the file was last written to 

Figure 3-12 shows a dump of a 512-byte directory sector containing 16 directory entries 
(Each entry occupies two lines in this example) The byte at offset OABH, containing a 
lOH, signifies that the entry starting at OAOH is for a subdirectory I he byte at offset 160H, 
containing OE5H, means that the file has been deleted I he byte at offset SBH, containing 

'Section II: Programming in the MS-DOS Environment 101 

Canon Exhibit 1108



Part A: Structure of MS-DOS 

102 

the value OSH, indicates that the directory entry beginning at offset SOH is a volume label 
Finally the zero byte at offset lEOH marks the end of the directory, indicating that the sub­
sequent entries in the directory have never been used and therefore need not be searched 

(versions 2. 0 and later) 

Q 23456789ABCDEF 

0000 49 4E 20 20 20 20 20 20-53 59 53 27 00 00 00 00 
0010 00 00 00 00 00 00 59 53-89 OB 02 00 01 12 00 00 
0020 4E 53 44 4E 53 20 20 20-53 59 53 27 00 00 00 00 
0030 00 00 00 00 00 00 41 49-52 QA 07 00 C9 43 00 00 
0040 41 4E 53 49 20 20 20 20-53 59 53 20 00 00' 00 00 
0050 00 00 00 00 00 00 41 49-52 OA 18 00 76 07 00 00 
0060 58 54 41 4C 4B 20 20 20-45 58 45 20 00 00 00 00 
0070 00 00 00 00 00 00 F7 70-38 09 23 02 84 OB 01 00 
0080 4C 41 42 45 4C 20 20 20-20 20 20 08 00 00 00 00 
0090 00 00 00 00 00 00 BC 20-2A 09 00 00 00 00 00 00 
OOAO 4C 4E 54 55 53 20 20 20-20 20 20 10 00 00 00 00 
OOBO 00 00 00 00 00 00 EO 0A-E1 06 A6 01 00 00 00 00 
OOCO 4C 54 53 4C 4F 41 44 20-43 4F 40 20 00 00 00 00 
ODDO 00 00 00 00 00 00 ED 0A-E1 06 A7 01 AO 27 00 00 
OOEO 40 43 49 2D 53 46 20 20-58 54 4B 20 00 00 00 00 
OOFO 00 00 00 00 00 00 46 19-32 OD 81 01 79 04 00 00 
0100 58 54 41 4C 4B 20 20 20-48 4C 50 20 00 00 00 00 
0110 00 00 00 00 00 00 CS 60-73 07 A3 02 AF 88 00 00 
0120 54 58 20 20 20 20 20 20-43 4F 40 20 00 00 00 00 
0130 00 00 00 00 00 00 05 61-65 OC 39 01 E8 20 00 00 
0140 43 4F 40 40 41 4E 44 20-43 4F 40 20 00 00 00 00 
0150 00 00 00 00 00 00 41 49-52 0~ 27 00 55 3F 00 00 
0160 ES 32 33 20 20 20 20 20-45 58 45 20 00 00 00 00 
0170 00 00 00 00 00 00 9C B2-85 OB 42 01 80 5F 01 00 
0180 47 44 20 20 20 20 20 20-44 52 56 20 00 00 00 00 
0190 00 00 00 00 00 00 EO OA-El 06 9A 01 58 08 00 00 
01A0 4B 42 20 20 20 20 20 20-44 52 56 20 00 00 00 00 
0180 00 00 00 00 00 00 EO 0A-E1 06 90 01 60 01 00 00 
01CO 50 52 20 20 20 20 20 20-44 52 56 20 00 00 00 00 
0100 00 00 00 00 00 00 EO OA-E1 06 9E 01 49 01 00 00 
01EO 00 F6 F6 F6 F6 f6 F6 F6-F6 F6 F6 F6 F6 F6 F6 F6 
01F0 F6 F6 F6 E6 F6 F6 F6 F6-F6 F6 F6 F6 f6 F6 F6 F6 

Figure 3-12 He·x;adecimai dump of a 512-byte directory sector 

IO SYS' 
YS Q 

MSDOS SYS' 
AIR IC 

ANSI SYS 
AIR v 

XIAIK EXE 

w}B If 

LABEI 
* D R. 

101US 
a & a 

IISLOAD COM 
a ' 

MCI-SF XrK 
F 2 1 y 

XIAIK HIP 

Ems If I 
IX COM 

ae 9 .h 

COMMAND COM 
AIR ' U? 

e23 EXE 
2 B _ 

GD ORV 

a 

KB ORV 

a 
PR ORV 

a I 

The sector shown in Figure 3-12 is actually an example of the first directory se~tor in~~ 
root directory of a bootable disk Notice that IO SYS and MSDOS SYS are the lust two hies 
in the directory and that the file attribute byte (offset OBH in a directory entry) has a 
binary value of OOlOOlll, indicating that both files have hidden (bit 1- 1), system (bit 0 - 1), 
and read-only (bit 2 -1) attributes Ihe archive bit (bit 5) is also set, markmg the hies for 

possible backup 

The MS'-DOS Encyclopedia 

I 
l 
I 
l 

Article 3: MS-DOS Storage Devices 

I he root directory can optionally have a special type of entry called a volume label, iden­
tified by an attribute type of OSH, that is used to identify disks by name A root directory 
can contain only one volume label I he root directory can also contain entries that point to 
subdirectories; such entries are identified by an attribute type of lOH and a file size of zero 
Programs that manipulate subdirectories must do so by tracing through their chains of 
clusters in the FA:I 

Two other special types of directory entries are found only within subdirectories These 
entries have the filenames .. and .... and correspond to the current directory and the parent 
directory of the cur rent directory I hese special entries, sometimes called directory 
aliases, can be used to move quickly through the directory stiucture 

I he maximum pathname length supported by MS-DOS, excluding a drive specifier but 
including any filename and extension and subdirectory name separators, is 64 characters 
Ihe size of the directory structure itself is limited only by the number of root directory 
entries and the available disk space 

The file ar·ea 

The file area contains subdirectories, file data, and unallocated clusters The area is 
divided into fixed-size clusters and the use for a particular cluster is specified by the corte­
sponding FA'.T entry 

Other MS-DOS Storage Devices 

As mentioned earlier; MS-DOS supports other types of storage devices, such as magnetic­
tape drives and CD ROM drives Tape drives aie most often used for archiving and for 
sequential transaction processing and therefore are not discussed here 

CD RO Ms are compact laser discs that hold a massive amount of information-- a single 
side of a CD ROM can hold almost 500 MB of data However, there are some drawbacks to 

' current CD ROM technology For instance, data cannot be written to them-the informa-
tion is placed on the compact disk at the factory when the disk is made and is available on 
a read-only basis In addition, the access time for a CD ROM is much slower than for most 
magnetic-disk systems Even with these limitations, however, the ability to hold so much 
information makes CD ROM a good method for storing large amounts of static information 

Wrlliam Wong 

Sectfon 11 Programming in the MS-DOS Environment 103 

Canon Exhibit 1108



~, 

PartB 
Programming for MS-DOS 

I 

l 
I 

I 
-l 

Canon Exhibit 1108



Al:ticle 4: Structure of an Application Program 

Article4 
Structure of an Application Program 

Planning an MS-DOS application program requires serious analysis of the program's size 
I his analysis can help the programmer determine which of the two program styles sup­
ported by MS-DOS best suits the application. The EXE program structure provides a large 
program with benefits resulting from the extra 512 bytes (or more) of header that preface 
all EXE files On the other hand, at the cost of losing the extra benefits, the COM program 
structure does not burden a small program with the overhead of these extra header bytes 

Because COM programs start their lives as EXE programs (before being converted by 
EXE2BIN) and because several aspects of application programming under MS-DOS 
remain similar regardless of the program structure used, a solid under standing of EXE 
structures is beneficial even to the programmer who plans on writing only COM pro­
grams Therefore, we'll begin our discussion with the structure and behavior of EXE 
programs and then look at differences between COM programs and EXE programs, 
including restrictions on the structure and content of COM programs 

The .EXE Program 

The EXE program has several advantages over the COM program for application design 
Considerations that could lead to the choice of the EXE format include 

• Extremely large programs 
• Multiple segments 
• Overlays 
• Segment and far address constants 
• Long calls 
• Possibility of upgrading programs to MS OS/2 protected mode 

I'he principal advantages of the .EXE format are provided by the file header Most 
important, the header contains information that permits a program to make direct seg­
ment address references-a requirement if the program is to grow beyond 64 KB 

I he file header also tells MS-DOS how much memory the program requires I his informa­
tion keeps memory not required by the program from being allocated to the program­
an important consideration if the program is to be upgraded in the fllture to run efficiently 
under MS OS/2 protected mode 

Before discussing the EXE program structure in detail, we'll look at how EXE programs 
behave 

5ection 11 Programming in the M5-D05 Environment 107 

Canon Exhibit 1108



Part B: Programming for MS-DOS 

Giving control to the .EXE program 

Figure 4-1 gives an example of how a EXE program might appear in n;emory when 
MS-DOS first gives the program control. The diagram shows Microsoft s preferred pro­
gram segment arrangement 

Any segments with class 
STACK 

All segments Any segments witll class 

declared BSS 

as part of group Any DGROUP segments 
DGROUP not shown elsewhere 

Any segments with class 
BEGDAIA 

Start segment 

and start of lllo-
1 program image 

(load module) ___ _ 

Any segments with class names 

ending with CODE 

Program segment prefix (PSP) 

-CSP 

-C SS 

-C IP 

... cs 

1-C DSES 

Fig Ure 4-1 The EXE program. memor:r map diagram with register pointers 

Before transferring control to the .EXE program, MS-DOS initializes various areas of . 
memory and several of the microprocessor's registers I he following d1scuss1on explains 
what to expect from MS-DOS before it gives the EXE program control 

The pr·ogram segment prefix 

108 

The program segment prefix (PSP) is not a direct result of any progr~m code Rather, this 
special 256-byte (16-paragraph) page of memory is built by MS-DOS in front of all EXE 
and COM programs when they are loaded into memory Although the PSP does contain 
several fields of use to newer programs, it exists primarily as a remnant of CP/M -
Microsoft adopted the PSP for ease in porting the vast number of programs available under 
CP/M to the MS-DOS environment Figure 4-2 shows the fields that make up the PSP 

PSP OOOOH (Terminate [old Warm Boot! Vector) The PSP begins with an 8086-family 
INT 20H instruction, which the program can use to transfer control back to MS-DOS The 
PSP includes this instruction at offset OOH because this address was the WBOOT (Warm 
Boot/Terminate) vector under CP/M and CP/M programs usually terminated by jumping 
to this vector I his method of termination should not be used in newer programs S'ee 
Terminating the EXE Program below 

PSP 0002H (Addre« oflast Segment Allocated to Program) MS-DOS introduced the word 
at offset 02H into the PSP It contains the segment address of the paragraph following the 
block of memory allocated to the program This address should be used only to determine 
the size or the end of the memory block allocated to the program; it must not be con~ 
sidered a pointer to free memory that the program can appropriate In most cases this ad­
dress will not point to free memory, because any free memory will already have been 

The MS'-D05 Encyclopedia 

Article 4: Structure of an Application Program 

lxH 

xOH xlH x2H x3H x4H x5H x6H x7H x8H x9H xAH xBH xCH xDH xEH xFH 

INT 20H End alloc Resv. Far call to MS-DOS fn handler Prev tenninate address Prev Ctrl c 

OCDH 20H seg Jo seg hi 9AH ofs lo ofs hi seg lo seg hi ofs lo ofs hi seg lo seg hi ofs lo ofs hi 

address Prev critical error address Reserved 
seg lo seg hi ofs lo ofs hi seg lo "'8 hi 

. Reserved 
Environ seg eserved , 2'H I 

. seg lo seg hi 

~~-~-~~--'-~-~.Rt;:e:;;se~rv~e;;d~ .. ~~--'---~==;:~='.:::::::::":::::":::'._ MS-DOS 2.0 
3xH LJ and later only 

.. Reserved 

SxH lNT21HandREIF Reserved 
OCDH 21H OCBH 

6xH / / 
_ e / n a 

.. Primary file control block (PCB) 

/ m / e / E / x / 1 /ooH/ooH/ooH OOH 
7xH Secondary file control block (FCB) 

e name Ex OOHOOHOOHOOH 

Primary PCB 

d F 

Secondary PCB 

d F I 

Reserved 

8xH Command tail and default disk transfer area (DTA) (continues through OFFH). 

un [ 

Figure 4-2 The program -segment prefix (PSP) 

allocated to the program unless the program was linked using the /CPARMAXAII.OC 
switch. Even when /CPARMAXAILOC is used, MS-DOS may fit the program into a block 
of memory only as big as the program requires Well-behaved programs should acquire 
additional memory only through the MS-DOS function calls provided for that purpose 

PSP 0005H (MS-DOS Function Call [old BDOS} Vector) Offset 05H is also a hand-me­
down from CP/M This location contains an 8086-family far (intersegment) call instruction 
to MS-DOS's function request handler (Under CP/M, this address was the Basic Disk Oper­
ating System [BDOS] vector, which served a similar purpose ) This vector should not be 
used to call MS-DOS in newer programs The System Calls section of this book explains 
the newer, approved method for calling MS-DOS MS-DOS provides this vector only to sup­
port CP/M-style programs and therefore honors only the CP/M-style functions (00-24H) 
through it 

PSP OOOAH-0015H (Parent's 22H, 23H, and 24H Interrupt Vector Save) MS-DOS uses 
offsets OAH through 15H to save the contents of three program-specific interrupt vectors 
MS-DOS must save these vectors because it permits any program to execute another pro­
gram (called a child process) through an MS-DOS function call that returns control to the 
original program when the called program terminates Because the original program 
resumes executing when the child program terminates, MS-DOS must restore these three 

Section 11 Programming in the MS'-DOS Environment 109 Canon Exhibit 1108



Part B: Programming fOr MS-DOS 

110 

intenupt vectors for the original program in case the called program changed them The 
three vectors involved include the pro gr am termination handler vector (Int en upt 22H), 
the Control-C/Control-Break handler vector (Interrupt 23H), and the critical error handler 
vector (Interrupt 24H). MS-DOS saves the original preexecution contents of these vectors 
in the child program's PSP as doubleword fields beginning at offsets OAH for the program 
termination handler vector; OEH for the Control-C/Control-Break handler vector, and 12H 

fo1 the critical error handler vector. 

PSP 002CH (Segment Address a/Environment) Under MS-DOS versions 2 0 and later, the 
word at offset 2CH contains one of the most usefU.l pieces of information a program can 
find in the PSP-the segment address of the first paragraph of the MS-DOS enviromnent 
This pointer enables the program to search through the enviromnent for any configm a ti on 
or directory search path strings placed there by users with the SE I command 

PSP 0050H (New MS-DOS Call Vector) Many programmers disregard the contents of offset 
50H I he location consists simply of an IN I 21H instruction followed by a RE IF A EXE 
program can call this location using a far call as a means of accessing the MS-DOS function 
handler Of course, the program can also simply do an INT 21H directly, which is smaller 
and faster than calling SOH Unlike calls to offset OSH, calls to offset SOH can request the 

full range of MS-DOS functions 

PSP 005CH (Default hie Control Block J) and PSP 006CH (Default File Control Block 2) 
MS-DOS parses the first two parameters the user enters in the command line following the 
program's name If the first parameter qualifies as a valid (limited) MS-DOS filename 
(the name can be preceded by a drive letter but not a directory path), MS-DOS initializes 
offsets SCH through 6BH with the first 16 bytes of an unopened file control block (FCB) for 
the specified file. If the second parameter also qualifies as a valid MS-DOS filename, 
MS-DOS initializes offsets 6CH through 7BH with the first 16 bytes of an unopened FCB for 
the second specified file If the user specifies a directory path as part of either filename, 
MS-DOS initializes only the drive code in the associated FCB Many p10grammers no 
longer use this feature, because file access using FCBs does not support directory paths 

and other newer MS-DOS features 

Because FCBs expand to 37 bytes when the file is opened, opening the first FCB at offset 
SCH causes it to grow from 16 bytes to 37 bytes and to overwrite the second FCB Similarly, 
opening the second FCB at offset 6CH causes it to expand and to overwrite the first part of 
the command tail and default disk transfer area (DIA) (The command tail and default 
DTA are described below) To use the contents of both default FCBs, the program should 
copy the FCBs to a pair of 37-byte fields located in the program's data area The p10gram 
can use the first FCB without moving it only alter relocating the second FCB (il necessary) 
and only by performing sequential reads or writes when using the first FCB To perform 
random reads and writes using the first FCB, the prog1ammer must either move the first 
FCB or change the default DIA address Otherwise, the first FCB's random record field will 
overlap the start of the default DTA See PROGRAMMING IN I HE MS-DOS ENVIRON­
MENT: PROGRAMMING FOR Ms-nos: File and Record Management 

The MS-DO.S Encyclopedia 

1 

I 
I 
'1 

Article 4: Structure of an Application Program 

PS~ ~~~H (Command Tail and Default DTA) I he default DTA resides in the entire sec­
on a. . 128 bytes) of the PSP MS-DOS uses this area of memory as the default record 
buffer if the program uses the FCB-style file access functions. Again, MS-DOS inherited 
thrs location from CP/M (MS-DOS p10vides a function the program can call to chan e the 
a.ddress MS-DOS will use as the current DTA See SYSTEM CAIIS· I 21H· g tion lAH) B ' . NIERRUPI • Fune-
. . . · ecause the default D TA serves no purpose until the program erforms some 

Irle actrvrty that requires it, MS-DOS places the command tail in this area fa, the progra 
to examme. The command tail consists of any text the user types following the pwgra::: 
n~e when executmg the program Normally, an ASCII space (20H) is the first character mt.: command tail, but any cha1acter MS-DOS recognizes as a separatoI can occupy this 
posrtron MS-DOS stores the command-tail text starting at offset SlH and always places an 
ASCII carnage return ( ODH) at the end of the text As an additional aid, it places the len h 
of the command tar! at offset 80H This length includes all characters except the final O[;H 
For example, the command line 

C>DOII WIIH CLASS <Enter> 

will result in the program DO!T being executed with PSP:0080H containing 

08 20 57 49 54 48 20 43 4C 41 53 53 OD 

len sp w I I H sp c L A s 

The stack 

S er 

Because EXE-style programs did not exist under CP/M, MS-DOS expects EXE programs 
to oper~te rn strrctly MS-DOS fashion For example, MS-DOS expects the EXE program to 
supply its own stack (Figure 4-1 shows the program's stack as the top box in the diagram) 

Micros~ft'~ high-level-language compilers create a stack themselves, but when writing in 
a~sem. Y language the programmer must specifically declare one or more segments with 
~;f; STACK c~mbine type. Ifth.e p10grammer declares multiple stack segments, possibly in 

1
. erent sou1ce modules, the linker combines them into one large segment. see Cont.I· l-
mg the EXE Program's Structure below 

0 

Many ~rog1a~mers declare thei1 stack segments as preinitialized with some recognizable 
repeatmg stung such as •STACK This makes it possible to examine the program's stack in 
memory (usmg a debugger such as DEBUG) to determine how much stack space the pro­f' ~m ;ctually used On the other hand, if the stack is left as uninitialized memory and 
m e at the.end. of the EXE p10gram, it will not require space within the .EXE file (The 

reason forthrs will become · · h · - more apparent w en we examine the structure of a EXE file) 

Note; When multiple stack segments have been declar·ed in different ASM files th 
Mrcrosoft Object linker (lINK) conectly allocates the total amount of stack spa~e s~eci­
hed rn all the source modules, but the initialization data from all modules is overlapped 
module by module at the high end of the combined segment 

An important difference between COM and EXE programs is that MS-DOS . · ·t·al· 
a COM . . , k . prernr r 12es 

p1og1am s stac with a termination address before transfetring control to the pro-
gram. MS-DOS does not do this for EXE programs, so a EXE program cannot simply 
execute an 8086-family RE I 1nst1uction as a means of terminating 

Section fl Programming in the MS-DOS Environment 111 

Canon Exhibit 1108



Part B: Programming for MS-DOS 

Note:· In the assembly-language files generated for a Microsoft C program or for programs 
in most other high-level-languages, the compiler's placement of a RET instruction at the 
end of the main function/ subroutine/ procedure might seem confusing After all, MS-DOS 
does not place any return address on the stack The compiler places the RE T at the end of 
main because main does not receive control directly from MS-DOS A library initializa­
tion routine receives control from MS-DOS; this routine then calls main When main per­
forms the RE I', it returns control to a library termination routine, which then terminates 

back to MS-DOS in an approved manner 

Preallocated memory 

112 

While loading a .EXE program, MS-DOS performs several steps to determine the initial 
amount of memory to be allocated to the program First, MS-DOS reads the two values the 
linker places near the start of the .EXE header: The first value, MINAILOC, indicates the 
minimum amount of extra memory the program requires to start executing; the second 
value, MAXALLOC, indicates the maximum amount of extra memory the program would 
like allocated before it starts executing Next, MS-DOS locates the largest free block of 
memory available If the size of the program's image within the .EXE file combined with 
the value specified for MINAlIOC exceeds the memory block it found, MS-DOS returns 
an error to the process trying to load the program If that process is COMMAND COM, 
COMMAND COM then displays a Program too big to fit in memory error message and 
terminates the user's execution request If the block exceeds the program's MINAILOC 
requirement, MS-DOS then compares the memory block against the program's image 
combined with the MAXAIIOC request If the free block exceeds the maximum memory 
requested by the program, MS-DOS allocates only the maximum request; otherwise, it 
allocates the entire block MS-DOS then builds a PSP at the start of this block and loads 
the program's image from the .EXE file into memory following the PSP 

This process ensures that the extra memory allocated to the program will immediately 
follow the program's image The same will not necessarily be true for any memory 
MS-DOS allocates to the program as a result of MS-DOS function calls the program per­
forms during its execution Only function calls requesting MS-DOS to increase the initial 
allocation can guarantee additional contiguous memory (Of course, the granting of such 
increase requests depends on the availability of free memory following the initial 

allocation) 

Programmers writing EXE programs sometimes find the lack of keywords or compiler/ 
assembler switches that deal with MINAlIOC (and possibly MAXAll OC) confusing. The 
programmer never explicitly specifies a MINA! IOC value because I INK sets MINAI IOC 
to the total size of all uninitialized data and/or stack segments linked at the very end of the 
program The MINAlIOC field allows the compiler to indicate the size of the initialized 
data fields in the load module without actually including the fields themselves, resulting in 
a smaller EXE program file For IINK to minimize the size of the .EXE file, the program 
must be coded and linked in such a way as to place all uninitialized data fields at the end 
of the program Microsoft high-level-language compilers handle this automatically; 
assembly-language programmers must give IINK a little help 

The MS-DOS Encyclopedia 

Article 4: Structure of an Application Program 

::te:· Beginni~g and even advanced assembly-language programmers can easily fall into 
argument with the assembler over field addressing when attempting to place data f Id 

after the code in the source file This argument can be avoided if programmers use th~e s 
SEGMENT and GROUP assembler directives See Controlling the .EXE Program's Str· _ 
ture below uc 

No reliable method exists for the linker to determine the correct MAXAIIOC value 
requrred by the EXE program. Therefore, IINK uses a "safe" value ofFFFFH which 
causes MS-DOS to allocate all of the largest block of free memory-which is ~sually II 
free memory- to the pro . u l . . . . a h' h. ha gram. n ess a program specifically releases the memory for 
w 1c it s no use, it denies multitasking supervisor programs such as IBM's T y· 
any memory in h' ht dd , op iew, w 1c o execute a itional programs-hence the rule that a well- ~ 
behaved program rd eases unneeded memory during its initialization. Unfortunate! , this 
m':".'ory conservation approach.provides no help if a multitasking supervisor supp~ts the 
ab1hty to load several programs mto memory without executing them Therefore, ro-
grams that have correctly established MAXAILOC values actually are well-beha ~ 
programs ve 

To this end, newer versions of Microsoft IINK include the /CPARMAXALLOC · h 
~o permit specification of the maximum amount of memory required by the pr::~m Th 
CPARMAXAIIOC switch can also be used to set MAXAIIOC to a value that is known toe 

be l;';s than MINAIIOC For example, specifying a MAXAlIOC value of 1 (/CP:l) forces 
MS- OS to allocate only MINAlIOC extra paragraphs to the program In addition 
Microsoft supplies. a program called EXEMOD with most of its languages This pr~gram 
permits mod1f1cat1on of the MAXAlIOC field in the headers of existing EXE programs 
See Modifying the EXE File Header below 

The registers 

Figure 4-1 gives .a general indication of how MS-DOS sets the 8086-family registers 
before transfernng control to a EXE program MS-DOS d t · f · · . . al . . e ermines most o the original 
register v ues from information the linker places in the EXE file header at the start of th 
EXE file e 

MS-DOS sets. the SS register ID the segment (paragraph) address of the start of any seg­
ments declared with the STACK combine type and sets the SP register to the offset from SS 
of the byte immediately after the combined stack segments (If no stack segment is 
declared, MS-DOS sets SS:SP to CS:OOOO ) Because in the 8086-fumily architecture a stack 
g10ws from high to low memory addresses, this effectively sets SS:SP to point to the base of 
~e-:ck Therefore, if the programmer declares stack segments when writing an assem-

y . gu~ge.prog1am, the program will not need to initialize the SS and SP registers 
M~~10soft s high-level-language compilers handle the creation of stack segments automati­
ca Y In both cases, the linker determines the initial SS and SP values and places them in 
the header at the start of the .EXE program file 

Unlike its handling of the SS and SP registers, MS-DOS does not initialize the DS and ES 
registers to any data areas of the EXE program Instead, it points DS and ES to the start of 

Section IL Programming in the MS-DOS Environment 113 
Canon Exhibit 1108



Part B: Programming for MS DOS 

114 

the PSP It does this for two primary reasons: First, MS-DOS uses the DS and ES registers to 
tell the program the address of the PSP; second, most programs start by exammmg the 
command tail within the PSP Because the program starts without DS pomtmg to the data 
segments the program must initialize DS and (optionally) ES to pomt to the data segments 
before it ;tarts trying to access any fields in those segments Unlike COM programs, EXE 
programs can do this easily because they can make di1ect references to segments, as 

follows: 

MOV AX,SEG DAIA__SEGMENI_OR_GROUP_N~ 

MOV DS,AX 

MOV ES,AX 

· · · l' d · t · DS and ES· the compiler High-level-language programs need not 1n1t1a 1ze an main a1n , 
and library support routines do this 

In addition to pointing DS and ES to the PSP, MS-DOS also sets AH and Al to reflect the 
validity of the drive identifiers it placed in the two FCBs contamed m .the PSP .MS: DOS. 8.et~ 
Al to OFFH if the first FCB at PSP:OOSCH was initialized with a nonexistent dnve .identifier, 
otherwise, it sets Al to zero Similarly, MS-DOS sets AH to reflect the dnve identifier 

placed in the second FCB at PSP:006CH 

When MS-DOS analyzes the first two command-line parameters following the program 
name in order to build the first and second FCBs, it treats any character followed by a 
colon as a drive prefix If the drive prefix consists of a lowercase letter (ASCII a through. 
z) MS-DOS starts by converting the character to uppercase (ASCII A through Z) Then it 
subtracts 40H from the chatacter, regardless of its original value This ~onverts the drive 
prefix letters A through z to the drive codes OlH through lAH, as requued by the two 
FCBs. Finally, MS-DOS places the drive code in the appropnate FCB 

This process does not actually preclude invalid drive specifications from being placed in 
the FCBs F0t instance, MS-DOS will accept the drive prefix ! : and place a dnve code of 
OElH in the FCB (! - 21H; 21H- 40H - OElH) However, MS-DOS will then check the dnve 
code to see if it represents an existing drive attached to the co~~ute1 and will pass a value 
of OFFH to the program in the appropriate register (Al or AH) if it does not 

As a side effect of this process, MS-DOS accepts@: as a valid drive prefix because the 
subtraction of 40H converts the@ character (40H) to OOH MS-DOS accepts the OOH value 
as valid because a OOH drive code represents the current default drive MS-DOS will leave 
the FCB's drive code set to OOH rather than translating it to the code for the default dnve 
because the MS-DOS function calls that use FCBs accept the OOH code 

Finally, MS-DOS initializes the CS and IP registers, transferring control to the program's 
entry point Programs developed using high-level-language compilers usually receive con­
trol at a libraiy initialization routine A programmer writing an assembly-la~gu~ge pro­
gram using the Microsoft Macro Assembler (MASM) can declare any label withm the 

I he MS-DOS Encyclopedia 

I 

I 
i 

Article 4: Structure of an Application Program 

program as the entry point by placing the label after the END statement as the last line of the 
program: 

END ENIRY_pQINI_lABEL 

With multiple source files, only one of the files should have a label following the END 
statement. If more than one source file has such a label, lINK uses the first one it encoun­
te1s as the ent1y point 

I he other processor registers (BX, CX, DX, BP, SI, and DI) contain unknown values when 
the program receives control from MS-DOS Once again, high-level-language program­
mers can ignore this tact-the compiler and libra1y support routines deal with the situa­
tion However, assembly-language programmers should keep this fact in mind It may give 
needed insight sometime in the future when a prog1 am functions at certain times and 
not at others 

In many cases, debuggers such as DEBUG and SYMDEB initialize uninitialized registers to 
some predictable but undocumented state. for instance, some debuggers may predictably 
set BP to zero before starting program execution However, a program must not rely on 
such debugger actions, because MS-DOS makes no such promises Situations like this 
could account for a program that fails when executed directly under MS-DOS but works 
fine when executed using a debugger 

Terminating the .EXE program 

After MS-DOS has given the EXE program control and it has completed whatever task 
it set out to perform, the program needs to give control back to MS-DOS Because of 
MS-DOS's evolution, five methods of program termination have accumulated- not 
including the several ways MS-DOS allows programs to terminate but remain resident 
in memory 

Before using any of the termination methods supported by MS-DOS, the program should 
always close any files it had open, especially those to which data has been written or 
whose lengths were changed Under versions 2 0 and later, MS-DOS closes any files 
opened using handles However, good programming practice dictates that the program 
not rely on the operating system to close the program's files. In addition, programs written 
to use shared files under MS-DOS versions 3 0 and later should release any file locks before 
closing the files and terminating 

fhe Terminate Pr"Ocess with Return Code function 

Of the five ways a program can terminate, only the Inte1rupt 21H Terminate Process with 
Return Code function ( 4CH) is recommended for programs running under MS-DOS ver­
sion 2 0 or later. I his method is one of the easiest approaches to terminating an.y pro­
gram, regardless of its structure 01 segment register settings I he Terminate Process with 
Return Code function call simply consists of the following: 

MOV 

MOV 

IN1 

AH,4CH 

Al,REIURN_CODE 

21H 

;load the MS-DOS function code 

;load the termination code 

;call MS-DOS to terminate program 

Section fl Programming in the MS-DOS Environment 115 

Canon Exhibit 1108



Part B: Programming for MS-DOS 

116 

The example loads the AH register with the Terminate Process with Return Code function 
code Then it loads the Al register with a return code Normally, the return code repre­
sents the reason the program terminated or the result of any operation the program 

performed 
A program that executes another program as a child process can rec:over and analyze the 
child program's return code if the child process used this termination method likewise, 
the child process can recover the RETURN_CODE returned by any program it executes as 
a child process When a program is terminated usi.r)gthis method and control returns to 
MS-DOS, a batch (BAT) file can be used to test the terminated program's return code 

using the IFERROfilEVEL statement 

Only two general conventions have been adopted for the value of RETURN_ CODE: 
First, a RETURN_CODE value of OOH indicates a normal no-error termination of the 
prograin; second, increasing RE TURN_ CODE values indicate increasing severity of con­
ditions unde1 which the program terminated For instance, a compiler could use the 
RETURN_CODE OOH if it found no errors in the source file, OlH if it found only warning 

errors, or OZH if it fOund severe eITOIS 

If a program has no need to return any special RETURN_ CODE values, then the following 
instructions will suffice to terminate the program with a RETURN_CODE of OOH: 

MOY 

!NI 

AX,4C00H 

218 

Apart from being the approved termination method, I erminate Process with Return Ccxie 
is easier to use with .EXE programs than any other termination method because all other 
methods require that the CS register point to the start of the PSP when the program termi­
nates. 1 his restriction causes problems for EXE programs because they have code seg­
ments with segment addresses different from that of the PSP 

I he only problem with Terminate Process with Return Code is that it is not available under 
MS-DOS versions earlier than 2 .0, so it cannot be used if a program must be compatible 
with early MS-DOS versions However, Figure 4-3 shows how a program can use the 
approved termination method when available but still remain pre-2 0 compatible See The 

Warm Boot/ Terminate Vector below 

IEXl SEGMENI PARA PUBlIC 'CODE' 

ASSUME CS:IEXI,DS:NOIHING,ES:NOIHING,SS:NOIHING 

IERM-VECIOR DD 

ENIRYJROC PROC FAR 

;save pointer to termination vector in PSP 

MOV WORD PIR CS:IERM_VECIOR+0,0000h ;save offset of Warm Boot vector 

MOV WORD PIR CS:IERM_VECIOR+2,DS 
;save segment address of PSP 

Figure 4-3. Ter minatingproper ly under a~y MS~DOS vetsion 
(more) 

The MS-DO.S Encyclopedia 

T 
I 

Article 4: Structure of an Application Program 

;*****Place main task here***** 

;determine which MS-DOS version is active, take jump if 2 0 or later 

MOV 
INI 

OR 

JNZ 

AH,30h 

21h 

Al,AI 
IERM._0200 

;terminate under pre-2 0 MS-DOS 

JMP CS: IEruLVECIOR 

;load Get MS-DOS Version Number function 

;call MS-DOS to get version number 

;see if pre-2 0 MS-DOS 

;jump if 2 0 or later 

; jump to \'/arm Boot vector in PSP 

:terminate under MS-DOS 2 O or later 

IEruL0200: 

MOV AX, 4C00h 

INI 21h 

ENIRY_FROC ENDP 

IEXI ENDS 

END ENIRY_FROC 

Figure 4-3 Continued 

The Ter·minate Program intenupt 

:load MS-DOS termination function code 

;and return code 
:call MS-DOS to terminate 

;define entry point 

code 

:;:fore MS-DOS version 2 0, t~rminating with an approved method meant executing 
INT 20H mstruct1on, the Terminate Program inteIIupt The INT 20H inst. ct' 

replaced as the ap . d . . . ru 10n was rovi prove termination method for two primary reasons: First, it did not 
P de a means whereby programs could return a termination code· second CS had 
to pomt to the PSP before the INT 20H instruction was executed ' ' 

T ~0e restriction placed on the value of CS attermination did not pose a problem for COM 
P . grams because they execute with CS pointing to the beginning of the PSP A EXE ro­
gr am, on the other hand, executes with CS pointing to various code segments of the ~o­
~ram, and the value of CS cannot be changed arbitrarily when the program is readyt~ 
erm1~ate .. Beca~se of.this, few EXE programs attempt simply to execute a Terminate Pro­

ghram mt en upt from directly within their own code segments Instead, they usually use 
t e te1m1nat1on method discussed next 

Ihe Warm Boot/Ter·minate vector 

The earlier discussion of_the structure of the PSP briefly covered one older method a EXE 
;~~~: ~use to terminate: Offset OOH within the PSP contains an INT 20H instruction 

t e program can Jump m order to terminate MS-DOS adopted this techni ue to 
suf port the many CP/M programs ported to MS-DOS Under CP/M, this PSP locatio;; was 
1.e e11ed to as th~ Warm Boot vector because the CP/M operating system was always 
reloaded from disk (rebooted) whenever a program terminated 

Section II Programming in the M5-DOS Environment 117 
Canon Exhibit 1108



Part B: Programming for MS-DOS 

Because offset OOH in the PSP contains an INT 20H instruction, jumping to that location 
terminates a program in the same manner as an INT 20H included directly within the pro­
gram, but with one imprntant difference: By jumping to PSP:OO.°°H, the program sets the 
cs register to point to the beginning of the PSP, thereby satlsfymg the only restncllon 
imposed on executing the Terminate Program interrupt Th~ d1sc~ss1on of MS-DOS Func­
tion 4CH gave an example of how a EXE program can termrnate via PSP:OOOOH The ex­
ample first asks MS-DOS for its version number and then termrnates via PSP:OOOOH only 
under versions of MS-DOS earlier than 2 O Programs can also use PSP:OOOOH under 
MS-DOS versions 2 o and later; the example uses Function 4CH simply because it rs 

preferred under the later MS-DOS versions 

The RE1 instruction 

118 

The other popular method used by CP/M programs to terminate involved simply execut­
ing a REI instruction This worked because CP/M pushed the address of the Warm Boot 
vectOI onto the stack before giving the program control MS-DOS provides this support 
only for COM-style programs; it does not push a termination address onto the stack 

before giving EXE programs control 

The programmer who wants to use the REI instruction to return to MS-DOS can use the 

variation of the Figure 4-3 listing shown in Figure 4-4 

IEXI SEGMENI PARA PUBIIC 'CODE' 

ASSUME CS:IEXI,DS:NOIHING,ES:NOIHING,SS:NOIHING 

ENIRY_FROC PROC FAR ;make proc FAR so REI will be FAR 

;Push pointer to termination vector in PSP 
PUSH OS ;push PSP' s segment address 

XOR 

PUSH 

AX,AX 

AX 

***** Place main task here 

: ax '"' O ,. offset of Warm Boot vector in PSP 

;push Warm Boot vector offset 

* * * * * 

;Determine which MS-DOS version is active, take jump if 2 0 or later 

MOV 

INI 

OR 
JNZ 

AH,30h 

21h 

AI,Al 

IEruL0200 

;load Get MS-DOS Version Number function code 

;call MS-DOS to get version number 

;see if pre-2 0 MS-DOS 

;jump if 2 0 or later 

;Ierminate under pre-2 o MS-DOS (this is a FAR proc, so REI will be FAR) 
REI ;pop PSP:OOH into cs:IP to terminate 

Figure 4-4 Using RET to return control to MS-DOS 

The MS-DOS Encyclopedia 

(more) 

: 

,, 
' 

I 
·~ 

Article 4: Structure of an Application Program 

;Ierminate under MS-DOS 2 0 or later 

IERM...0200: 

MOV AX,4C00h 

!NI 21h 

ENIRY-..PROC ENDP 

IEXI ENDS 

END ENIRY_FRQC 

FJ"gure 4-4 Continued 

Ihe Terminate Process function 

;AH = MS-DOS Ierminate Process with Return Code 

; function code, AI = return code of OOH 

;call MS-DOS to terminate 

;declare the program's entry point 

The final method for terminating a EXE program is Intenupt 21H Function OOH (Termi­
nate Process) I his method maintains the same restriction as all other older termination 
methods: CS must point to the PSP Because of this restriction, EXE programs typically 
avoid this method in favor of terminating via PSP:OOOOH, as discussed above for programs 
executing under versions of MS-DOS earlier than 2 0 

Terminating and staying r·esident 

A EXE program can use any of several additional termination methods to return con-
trol to MS-DOS but still remain resident within memory to service a special event See 
PROGRAMMING IN THE MS-DOS ENVIRONMENT: CusmMrZING Ms-nos: Terminate-and­
Stay-Resident Utilities 

Structure of the .EXE files 

So far we've examined how the EXE program looks in memory, how MS-DOS gives the 
program control of the computer, and how the program should return control to MS-DOS 
Next we'll investigate what the program looks like as a disk file, before MS-DOS loads it 
into memory Figure 4-5 shows the general structure of a EXE file 

The file header· 

Unlike COM program files, EXE program files contain information that permits the 
EXE program and MS-DOS to use the full capabilities of the 8086 family of microproces­
sors. I he linker places all this extra inf01mation in a header at the start of the EXE file 
Although the .EXE file structure could easily accommodate a header as small as 32 bytes, 
the linker never creates a header smaller than 512 bytes CT his minimum header size corre­
sponds to the standard record size preferred by MS-DOS) The EXE file header contains 
the following information, which MS-·DOS reads into a temporary work area in memory 
f01 use while loading the EXE program: 

00-0lH (EXE Signature) MS,DOS does not rely on the extension ( EXE 01 COM) to 
dete1mine whether a file contains a COM or a EXE program Instead, MS-DOS recognizes 
the file as a EXE program if the first 2 bytes in the header contain the signature 4DH SAH 

Section II Programming in the MS-DOS Environment 119 

Canon Exhibit 1108



Part B: Programming for MS-DOS 

120 

xOH xlH x2H x3H x4H x5H x6H x7H x8H x9H xAH xBH xCH xDH xEH xFH 

Signature t Page Si File Pages Reloc Items Header Paras MINAL~OC . OC PreRel~ SS 
OxH ... 4DH SAH 0 byt · byt o byt · byt o byt . byt lo byt hi byt Io byt hi byt lo byt ht byt o byt byt 

Initial SP Neg Chksum Initial IP Pre Reloc cs. Reloc Tb~ Ofs Overlay !'l"um Reserved 
lxH ... ofs Io ofs hi lo byt hi byt ofs lo ofs hi seg lo seg hi lo byt hi byt lo byt byt 

UseReloc 
Thl Ofs at I SH 
(offset is from 
start of file) 

Seg Relocanon Ptr #1 

Seg Relocation Ptr #n-3 Seg Relocation Ptr#n-2 Seg Relocation Ptr #n- l 
~~~hl~~~hl~~fuhl~~~hl~~fuhl~~~hl~~ 

Use Header

Paras at 08H (:::::=---~-----=======~;::;;=;;:::::::==::::===--
(load module 11111- .A.
always starts on
paragraph boundary)

End of file 11111-
1

_ Program image ·­

(load module)
'I'

I_ - - - -

.Figure4-5 Structure of a .EXE file

- - - -~ - - - - - - - - ~- ·- - - -
Use L.ast Pa e Size at 02H Final 512-byte page as

indicated by File Pages at 04H
'I'

- - - - - - - -

UseReloc

(ASCII characters M and Z) If either or both of the signature bytes contain other values,
MS-DOS assumes the file contains a COM program, regardless of the extension The
reverse is not necessarily true-that is, MS-DOS does not accept the file as a .EXE pro­
gram simply because the file begins with a .EXE signature The file must also pass sever al

other tests

02-03H (Last Page Size) I he word at this location indicates the actual number of bytes
in the final 512-byte page of the file This word combines with the following word to deter-

mine the actual size of the file
1
,

04-05H (File Pages) I his word contains a count of the total number of SU-byte pages
required to hold the file If the file contains 1024 bytes, this word contains the value 0002H;
if the file contains 1025 bytes, this word contains the value 0003H The previous word (last
Page Size, 02-03H) is used to determine the number of valid bytes in the final 512-byte
page Thus, if the file contains 1024 bytes, the last Page Size word contains OOOOH because
no bytes overflow into a final partly used page; if the file contains 1025 bytes, the last Page
Size word contains OOOIH because the final page contains only a single valid byte (the

1025th byte)

06-07H (Relocation Items) This word gives the number of entries that exist in the reloca­
tion pointer table See Relocation Pointer fable below

The MS-DOS Encyclopedia

Article 4: Structure of an Application Program

08-09H (HeaderParagraphs) I his word gives the size of the EXE file header in 16-byte
paragraphs It indicates the offset of the program's compiled/assembled and linked image
(the load module) within the .EXE file. Subtracting this word from the two file-size words
starting at 02H and 04H reveals the size of the program's image. The header always spans
an even multiple of 16-byte paragraphs. For example, if the file consists of a 512-byte
header and a 513-byte program image, then the file's total size is 1025 bytes As discussed
before, the last Page Size word (02-03H) will contain OOOIH and the File Pages word
(04-05H) will contain 0003H Because the header is 512 bytes, the Header Paragraphs
word (08-09H) will contain 32 (0020H) (That is, 32 paragraphs times 16 bytes per par·a­
graph totals 512 bytes) By subtracting the 512 bytes of the header from the 1025-byte total
file size, the size of the program's image can be determined-in this case, 513 bytes

OA -OBH (MINALLOC) I his word indicates the minimum number of 16-byte paragraphs
the program requires to begin execution in addition to the memory required to hold
the program's image. MINAllOC normally represents the total size of any uninitialized
data and/or stack segments linked atthe end of the program l!NK excludes the
space reserved by these fields from the end of the EXE file to avoid wasting disk space
If not enough memory remains to satisfy MINAllOC when loading the program, MS­
DOS returns an error to the process trying to load the program If the process is
COMMAND COM, COMMAND COM then displays a Program too big tofit in memory
error message. The EXEMOD utility can alter this field if desired. See Modifying the EXE
File Header below

OC-ODH (MAXALLOC) This word indicates the maximum number of 16-byte paragraphs
the program would like allocated to it before it begins execution MAXAl LOC indicates
additional memory desired beyond that required to hold the program's image. MS-DOS
uses this value to allocate MAXAllOC extra paragraphs, if available If MAXAILOC para­
graphs are not available, the program receives the largest memory block available- at
least MINAllOC additional paragraphs The programmer could use the MAXAllOC field
to request that MS-DOS allocate space for use as a print buffer or as a program-maintained
heap, for example

Unless otherwise specified with the /CPARMAXAllOC switch at link time, the linker sets
MAXAllOC to FFFFH This causes MS-DOS to allocate all of the largest block of memory
it has available to the program To make the program compatible with multitasking super­
visor programs, the programmer should use /CPARMAXAllOC to set the true maximum
number of extra paragraphs the program desires The EXEMOD utility can also be used
to alter this field

Note.:· If both MIN Al lOC and MAXAl LOC have been set to OOOOH, MS-DOS loads the
program as high in memory as possible. l!NK sets these fields to OOOOH if the /HIGH
switch was used; the EXEMOD utility can also be used to modify these fields

OE-OFH (Initial SS Value) This word contains the paragraph address of the stack segment
relative to the start of the load module At load time, MS-DOS relocates this value by adding
the program's start segment address to it, and the resulting value is placed in the SS regis­
ter before giving the program control. (The start segment corresponds to the first segment
boundary in memory following the PSP)

Section II Programming in the MS-DO.S Environment 121
Canon Exhibit 1108

Part B: Programming for MS-DOS

122

10-llH (Initial SP Value) This word contains the absolute value that MS-DOS loads
into the SP registe1 before giving the program control Because MS-DOS always loads pro­
g1ams staiting on a segment address bounda1y, and because the linker knows the size of
the stack segment, the linker is able to dete1 mine the correct SP offset at link time; there­
fore, MS-DOS does not need to adjust this value at load time The EXEMOD utility can be

used to alte1 this field

12-13H (Complemented ctzecksum) This word contains the one's complement of the
summation of all words in the EXE file. Current versions of MS-DOS basically ignore this
word when they load a EXE program; however, future versions might not When LINK
generates a EXE file, it adds together all the contents of the EXE file (including the EXE
heade1) by treating the entire file as a long sequence of 16-bit words. During this addition,
LINK gives the Complemented Checksum word (12-13H) a tempora1y value of OOOOH If
the file consists of an odd number of bytes, then the final byte is treated as a word with a
high byte of OOH. Once llNK has totaled all words in the EXE file, it pe1fo1ms a one's
complement operation on the total and records the answer in the EXE file heade1 at
offsets 12-13H. The validity of a EXE file can then be checked by pe1forming the same
word-totaling process as llNK pe1f01 med The total should be F FFF H, because the total
will include LINK's calculated complemented checksum, which is designed to give the file

the FF FF H total

An example 7-byte EXE file illustI ates how EXE file checksums are calculated (This
is a totally fictitious file, because EXE headers are never smalle1 than 512 bytes) If this fic­
titious file contained the bytes 8CH C8H 8EH D8H BAH lOH B4H, then the file's total
would be calculated using C88CH + D88EH + lOBAH + OOB4H ~ 1B288H (Ove1flow past 16
bits is ignored, so the value is interp1 eted as B288H) If this were a valid EXE file, then
the B288H total would have been FFF F H instead

14-15H (Initial IP Value) This word contains the absolute value that MS-DOS loads into
the IP register in orde1 to transfer control to the prograin Because MS-DOS always loads
programs starting on a segment address boundary, the linke1 can calculate the correct IP
offset from the initial CS register value at link time; therefore, MS-DOS does not need

to adjust this value at load time

16-17H (Pre-Relocated Initial CS Value) This word contains the initial value, relative to
the start of the load module, that MS-DOS places in the CS register to give the EXE pro­
gram conuol MS-DOS adjusts this value in the same manne1 as the initial SS value before

loading it into the CS register

18-19H (Relocation Table Qjf5et) This word gives the offset from the stait of the file to
the relocation pointer table This word must be used to locate the relocation pointe1 table,
because va1iable-length information pertaining to prog1am overlays can occur before the
table, thus causing the position of the table to vaty

1A -lBH (Overlay Number) I his word is normally set to OOOOH, indicating that the EXE
file consists of the resident, 01 p1imaiy, part of the prog1am This numbe1 changes only in
files containing programs that use overlays, which are sections of a program that remain

lhe MS-DO.S Encyclopedia

Cl
I

Article 4: Structure of an Application Program

on disk until the ?rogram actually requires them These program sections are loaded into
m~mory by s?ec1al ?v:rlay managing routines included in the run-time libraries supplied
with some MICrosoft high-level-language compilers

I he preceding section of the header (00-lBH) is known as the formatted area. Optional
information used by high-level-language overlay managers can follow this formatted area
Unless the program in the EXE file incorporates such information the relocation pointer
table immediately follows the fo1matted header area '

R~lo~ation Pointer Table Ihe relocation pointer table consists of a list of pointers to words
wrthin the EXE program image that MS-DOS must adjust before giving the program con­
trol I hese words consist of references made by the program to the segments that make up
th.e prog1am MS-DOS must ad1ust these segment address references when it loads the pro­
gram, because 1t can load the program into memory sta1ting at any segment address
boundary

Each pointer in the table consists of a doubleword. The fir st word contains an offset fr om
the s_egment address given in the second word, which in turn indicates a segment address
relatrve to the start of the load module Ibgethe1, these two words point to a third word
within the load module that must have the sta1t segment address added to it (I he start seg­
ment conesponds to the segment address at which MS-DOS started loading the program's

EXE File

Rel Seg Ref=003CH
Abs Seg Ref'=25DIH

Load module

Relocation pointer
0002H:0005H -

Relocation pointer table

Formatted header area

End of file

~ 0002H:0005H
+2595H
2597H:0005H

s tart of file

Figure 4-6 The E'KE/ile relocation procedure

Memory

Load module
Start Seg
2595H ~·!--------

Program segment prefix

Section II Programming in the MS-DO.S Environment 12.3

Canon Exhibit 1108

Part B: Programming for MS-DOS

image, immediately following the PSP) Figure 4-6 shows the entire procedure MS-DOS

performs for each relocation table entry

The load module
The load module starts where the EXE header ends and consists of the fully linked image
of the program The load module appeats within the .EXE file exactly as it would appeat in
memory if MS-DOS were to load it at segment address OOOOH The only changes MS-DOS
makes to the load module involve relocating any direct segment references

Although the .EXE file contains distinct segment images within the load module, it pro­
vides no information for separating those individual segments from one another Existing
versions of MS-DOS ignore how the program is segmented; they simply copy the load
module into memory, relocate any direct segment references, and give the program

control.

Loading the .EXE program
So far we've covered all the characteristics of the EXE program as it resides in memory
and on disk We've also touched on all the steps MS-DOS performs while loading the .EXE
program from disk and executing it The following list recaps the .EXE program loading
process in the order in which MS-DOS performs it:

1 MS-DOS reads the formatted area of the header (the first lBH bytes) from the EXE

file into a work area
2 MS-DOS determines the size of the largest available block of memory
3 MS-DOS determines the size of the load module using the last Page Size (offset

OZH), File Pages (offset 04H), and Header Paragraphs (offset 08H) fields from the
header An example of this process is in the discussion of the Header Paragraphs

field
4 MS·-DOS adds the MINAUOC field (offset OAH) in the header to the calculated load-

module size and the size of the PSP (100H bytes) If this total exceeds the size of the
largest available block, MS-DOS terminates the load process and returns an error to
the calling process If the calling process was COMMAND COM, COMMAND COM
then displays a Program too big tofit in memory error message

5 MS-DOS adds the MAXAUOC field (offset OCH) in the headerto the calculated
load-module size and the size of the PSP If the memory block found earlier exceeds
this calculated total, MS-DOS allocates the calculated memory size to the program
from the memory block; if the calculated total exceeds the block's size, MS-DOS

allocates the entire block
6 If the MINAUOC and MAXAllOC fields both contain OOOOH, MS-DOS uses the

calculated load-module size to determine a start segment MS-DOS calculates the
start segment so that the load module will load into the high end of the allocated
block. If either MINAUOC or MAXAI IOC contains nonzero values (the normal
case), MS-DOS establishes the statt segment as the segment following the PSP

7 MS-DOS loads the load module into memory starting at the start segment

124 TheMS:--DOSEncyclopedia

Article 4; Structure of an Application Program

8. MS-DOS reads the relocation pointers into a work area and relocates the load mod­
ule's direct segment references, as shown in Figure 4-6

9 MS-DOS builds a PSP in the first lOOH bytes of the allocated memory block While
building the two FCBs within the PSP, MS-DOS determines the initial values for the
Al and AH registers

10 MS-DOS sets the SS and SP registers to the values in the header after the start seg­
ment is added to the SS value

11 MS-DOS sets the DS and ES registers to point to the beginning of the PSP
12 MS-DOS transfers control to the EXE program by setting CS and IP to the values in

the header after adding the statt segment to the CS value

Controlling the .EXE program's structure

We've now covered almost every aspect of a completed EXE program. Next, we'll discuss
how to control the structure of the final .EXE program from the source level We'll statt by
covering the statements provided by MASM that permit the programmer to define the
structure of the program when programming in assembly language Then we'll cover the
five standard memory models provided by Microsoft's C and FORTRAN compilers (both
version 4 0), which provide predefined structuring over which the programmer has
limited control

The MASM SEGMENT directive

MASM's SEGMENT directive and its associated ENDS directive mark the beginning and
end of a program segment. Program segments contain collections of code or data th3.t have
offset addresses relative to the same common segment address

In addition to the required segment name, the SEGMENT directive has three optional
parameters:

segname SEGMENT [align] [combine] ['class']

With MASM, the contents of a segment can be defined at one point in the source file and
the definition can be resumed as many times as necessary throughout the remainder of
the file When MASM encounters a SEGMENT directive with a segname it has previously
encountered, it simply resumes the segment definition where it left off This occurs regard­
less of the combine type specified in the SEGMENT directive-the combine type influ­
ences only the actions of the linker See The combine Type Patameter below

The align type parameter'
The optional align patameter lets the programmer send the linker an instruction on how
to align a segment withininemory In reality, the linker can align the segment only in rela­
tion to the start of the program's load module, but the result remains the same because
MS-DOS always loads the module aligned on a paragraph (16-byte) boundary (The PAGE
align type creates a special exception, as discussed below)

The following alignment types are permitted:

BYTE This align type instructs the linker to statt the segment on the byte immediately
following the previous segment BYTE alignment prevents any wasted memory between
the previous segment and the BYTE-aligned segment

Section IL Programming in the MS-DOS Environment 125

Canon Exhibit 1108

Part B: Programming for MS-DOS

126

A minor disadvantage to BYTE alignment is that the 8086-family segment registers might
not be able to directly address the start of the segment in all cases Because they can
address only on paragraph boundaries, the segment registers may have to point as many
as 15 bytes behind the start of the segment This means that the segment size should not
be more than 15 bytes short of 64 KB The linker adjusts offset and segment address referc
ences to compensate for differences between the physical segment start and the paragraph

addressing boundary

Another possible concern is execution speed on true 16-bit 8086-family microprocessors
When using non-8088 microprocessors, a program Can actually run faster if the instruc­
tions and word data fields within segments are aligned on word boundaries This permits
the 16-bit processors to fetch full words in a single memory read, rather than having to per­
form two single-byte reads The EVEN directive tells MASM to align instructions and data
fields on word boundaries; however, MASM can establish this alignment only in relation to
the start of the segment, so the entire segment must start aligned on a word or larger
boundary to guarantee alignment of the items within the segment

WORD This align type instructs the linker to start the segment on the next word bound­
ary Word boundaries occur every 2 bytes and consist of all even addresses (addresses in
which the least significant bit contains a zero) WORD alignment permits alignment of data
fields and instructions within the segment on word boundaries, as discussed for the BYTE
alignment type. However, the linker may have to waste 1 byte of memory between the pre­
vious segment and the word-aligned segment in order to position the new segment on a

word boundary

Another minor disadvantage to WORD alignment is that the 8086-family segment registers
might not be able to directly address the start of the segment in all cases Because they can
address only on paragraph boundaries, the segment registers may have to point as many as
14 bytes behind the start of the segment. This means that the segment size should not be
more than 14 bytes short of 64 KB. The linker adjusts offset and segment address ref ere
ences to compensate for differences between the physical segment start and the paragraph

addressing bounda1y

PARA This align type instructs the linker to start the segment on the next paragraph
boundary The segments default to PARA if no alignment type is specified Paragraph
boundaries occur every 16 bytes and consist of all addresses with hexadecimal values end­
ing in zero (OOOOH, OOlOH, 0020H, and so forth) Paragraph alignment ensures that the
segment begins on a segment register addressing boundary, thus making it possible to ad­
dress a full 64 KB segment Also, because paragraph addresses are even addresses, PARA
alignment has the same advantages as WORD alignment The only real disadvantage to
PARA alignment is that the linker may have to waste as many as 15 bytes of memory
between the previous segment and the paragraph-aligned segment

PAGE This align type instructs the linkerto start the segment on the next page boundary
Page boundaries occur every 256 bytes and consist of all addresses in which the low
address byte equals zero (OOOOH, OlOOH, 0200H, and so forth) PAGE alignment ensures

The MS'-DOS Encyclopedia

I
I

I
I

l
I
I

.. j .,

Article 4: Structure of an Application Program

only that the linker positions the segment on a page bounda1y relative to the stait of the
load module. Unfortunately, this does not also ensure alignment of the segment on an
absolute page within memory, because MS-DOS only guarantees alignment of the entire
load module on a paragraph boundary

When a programmer declares pieces of a segment with the same name in different source
modul.es, the align type specified for each segment piece influences the alignment of that
specific piece of the segment .for example, asswne the following two segment declara­
tions appear in different source modules:

__DAIA SEGMENI PARA PUBIIC 'DAIA'

DB '123 1

__DAIA ENDS

__DAIA SEGMENI PARA PUBIIC 'DAIA'

DB '456'

__DAIA ENDS

The linker starts by aligning the first segment piece located in the first object module on a
paragraph boun~ary, as requested. When the linker encounters the second segment piece
m the second object module, it aligns that piece on the first paragraph boundaiy following
the first segment piece. This results in a 13-byte gap between the first segment piece and
the second I he segment pieces must exist in separate source modules for this to occur If
the segment p.iec~s e~ist in the same source module, MASM assumes that the second seg­
ment declaiation is simply a resumption of the first and creates an object module with
segment declarations equivalent to the following:

_DAIA SEGMENI PARA PUBIIC 'DAIA'
DB '123'

DB '456'

__DATA ENDS

rhecombine type parameter·
The optional combine parameter allows the programmer to send directions to the linker
on how to combine segments with the same 5egname occurring in different object mod­
ules. If no combine type is specified, the linker treats such segments as if each had a dif­
ferent segname The combine type has no effect on the relationship of segments with
different segnames MASM and lINK both supprnt the following combine types:

PUBIIC This combine type instructs the linker to concatenate multiple seginents having
the same 5egname into a single contiguous segment. I he linker adjusts any address refer­
ences to labels within the concatenated segments to reflect the new position of those
labels relative to the start of the combined segment This combine type is useful for ac­
cessing code or data in different sow·ce modules using a common segment register value

STACK .T.his combine type operates similarly to the PUBlIC combine type, except for
two additional effects: The STACK type tells the linker that this segment comprises part of
the program's srack and initialization data contained within STACK segments is handled
differently than in PUBlIC segments. Declaring segments with the STACK combine type
permits the lmker to determine the initial SS and SP register values it places in the EXE

Section II: Programming in the MS'-DO.S Environment 127

4

Canon Exhibit 1108

Part B: Programming for MS-DOS

128

file header. Normally, a programmer would declare only one STACK segment in one of the
source modules. If pieces of the stack are declared in different source modules, the linker
will concatenate them in the same fashion as PUBIIC segments. HoweveI, initialization
data declar·ed within any S I'.ACK segment is placed at the high end of the combined STACK
segments on a module-by-module basis Thus, each successive module's initialization data
overlays the previous module's data. At least one segment must be declared with the
STACK combine type; otherwise, the linker will issue a warning message because it can­
not determine the program's initial SS and SP values (The warning can be ignored if the
program itself initializes SS and SP)

COMMON I his combine type instructs the linker to overlap multiple segments having
the same segname. The length of the resulting segment reflects the length of the longest
segment declar·ed If any code or data is declar·ed in the overlapping segments, the data
contained in the final segments linked replaces any data in previously loaded segments
This combine type is useful when a data area is to be shared by code in different source

modules

MEMORY Microsoft's IINK treats this combine type the same as it treats the PUBl!C
type MASM, however, supports the MEMORY type for compatibility with other linkers
that use Intel's definition of a MEMORY combine type

AT address This combine type instructs l!NK to pretend that the segment will reside at
the absolute segment address l!NK then adjusts all address references to the segment in
accordance with the masquerade I INK will not create an image of the segment in the
load module, and it will ignore any data defined within the segment. I his behavior is con­
sistent with the fact that MS-DOS does not support the loading of program segments into
absolute memory segments All programs must be able to execute from any segment ad­
dress at which MS-DOS can find available memory The SEGMENT AT address combine
type is useful for creating templates of various areas in memory outside the pro gr am For
instance, 5EGMENT AT OOOOH could be used to create a template of the 8086-family inter­
rupt vectors. Because data contained within SEGMENT A:I address segments is suppressed
by l!NK and not by MASM (which places the data in the object module), it is possible to
use OBJ files generated by MASM with another linker that supports ROM or other absolute
code generation should the programmer require this specialized capability

The class type par'3Jiletef'
The class parameter provides the means to organize different segments into classifications
For instance, here are three source modules, each with its own separate code and data
segments:

;Module "A"
A_DAIA SEGMENI PARA PUBIIC 'DAIA'

;Module "A" data fields
A....DAIA ENDS
A_CODE SEGMENI PARA PUBIIC 'CODE'

;Module "A" code
A_CQDE ENDS

END

(more)

The MS'-D05 Encyclopedia

Article 4: Structure of an Application Program

;Module "B"
B--.DA'IA SEGMENI PARA PUBlIC 'DAIA'
;Module "B" data fields
B--.DA'.IA ENDS
B_CQDE SEGMENI PARA PUBIIC 'CODE'
;Module "B" code
B_CODE ENDS

END

;Module "C"
C___DAIA SEGMENI PARA PUBIIC 'DAIA'
; Module "C" data fields
C_DAIA ENDS
C_CQDE SEGMENI PARA PUBIIC 'CODE'
;Module "C'' code
C_CQDE ENDS

END

If the 'CODE' and 'DATA' cla5S types are removed from the SEGMENT directives shown
above, the linker organizes the segments as it encounters them If the pr~grammer speci­
fies the modules to the linker in alphabetic order, the linker produces the following
segment ordering:

A....DA'.IA
A_CQDE
B_DATA
B_CODE
C--.DA'.IA
C_CQDE

However; if the programmer specifies the cla-s.s types shown in the sample source mod­
ules, the linker organizes the segments by classification as follows:

'DAIA' class:

'CODE' class:

A....DArA
B_DAIA
C_DAIA

A_CODE
B_CODE
C_CODE

Notice that the linker still organizes the classifications in the order in which it encounters
the segments belonging to the various classifications To completely control the order in
which the linker organizes the segments, the programmer must use one of three basic
approaches The preferred method involves using the /DOSSEG switch with the linker
This produces the segment ordering shown in Figure 4-1 The second method involves
creating a special source module that contains empty SEGMENT-ENDS blocks for all the
segm,ents declared in the vaI ious other source modules I he programmer creates the list
in the order the segments are to be arranged in memory and then specifies the OBJ file for
this module as the first file for the linker to process This procedure establishes the order
of all the segments before IINK begins processing the other program modules, so the

Section IL Programming in the MS-DO,S Environment 129
Canon Exhibit 1108

Part B: Programming for MS-DOS

130

programmer can declare segments in these other modules in any convenient order. For
instance, the following source module rearranges the result of the previous example so
that the linke1 places the 'CODE' class before the 'DAT11.' class:

A-CODE SEGMENI PARA PUBIIC 'CODE'

A-CODE ENDS

S_CODE SEGMENI PARA PUBlIC 'CODE I

B_CODE ENDS

C_CODE SEGMENI PARA PUBIIC 'CODE'

C_CQDE ENDS

A.J)AIA SEGMENI PARA PUBIIC 'DAIA'

A.J)AIA ENDS

B___DAIA SEGMENI PARA PUBLIC 'DAIA'

B___DAIA ENDS

C___DAIA SEGMENI PARA PUBIIC 'DAIA'

C___DAIA ENDS

END

Rather than creating a new module, the third method places the same segment ordering
list shown above at the start of the first module containing actual code or data that the
programmer will be specifying fm the linker This duplicates the approach used by
Microsoft's newer compilers, such as C version 4 0

The ordeling of segments within the load module has no direct effect on the linke1's
adjustment of address references to locations within the various segments Only the
GROUP directive and the SEGMENT directive's combine patameter affect address
adjustments performed by the linker See The MASM GROUP Directive below

Note:· Ce1tain olde1 versions of the IBM Macro Assembler wrote segments to the object
file in alphabetic 01de1 regardless of their order in the source file These olde1 versions can
limit efforts to control segment ordering Upgrading to a new version of the assembler is

the best solution to this problem

Ordeting segments to shrink the .. EXE file
Co1rect segment ordering can significantly decrease the size of a EXE program as it
resides on disk This size-reduction ordering is achieved by placing all uninitialized data
fields in their own segments and then controlling the linker's ordering of the program's
segments so that the uninitialized data field segments all reside at the end of the program
When the program modules are assembled, MASM places infmmation in the object mod­
ules to tell the linker about initialized and uninitialized areas of all segments I he linke1
then uses this info1mation to prevent the wt iting of uninitialized data areas that occur at
the end of the prog1 am image as part of the resulting EXE file Tb account for the memory
space required by these fields, the linker also sets the MINAilOC field in the EXE file
header to represent the data area not wiitten to the file MS-DOS then uses the MINAilOC
field to reallocate this missing space when loading the program

The MS-DOS Encyclopedia

Article 4: Structure of an Application Program

The MASM GROUP dit·ective

The MASM GROUP directive can also have a strong impact on a EXE program Ho
the GROUP directive has no effect on the arrangement of program segments withi;::~­
ory Rather, GROUP associates program segments for addressing purposes

The GROUP directive has the following syntax:

grpname GROUP <egname,<egname, <egname,

1.his diiective causes the linkerto adjust all address references to labels within any speci­
fied <egname to be relative to the start of the declared group The start of the group is de­
termmed at lmk time The g10up starts with whichever of the segments in the GROUP list
the linker places lowest in memory

I~at the GROUP directive neither causes nor requires contiguous airangement of the
g~~~ped ,se~ments creates some interesting, although not necessarily desirable, possi­
b1ht1es For .instance, it permits the programmer to locate segments not belonging to the
declared g10up between segments that do belong to the group The only restriction im­
posed on the declared group is that the last byte of the last segment in the gwup must
occm withm 64 KB of the sta1t of the group Figure 4-7 illustiates this type of segment
arrangement:

r -LABEL_C ~
r t LABEL_B ~

64 KB Offset to
maximum LABEL B

j
Offset to T -

LABEL C ~-----

1
-t LABEL_A ~

Offset to
LABEL A ... -

SEGMENI_C
(listed with GROUP directive)

SEGMENI_B
{not listed with GROUP directive)

SEGME<'H_A
(listed with GROUP directive)

Figure 4-7 Noncontiguous segments in the same GROUP

Warning: One of the most confusing aspects of the GROUP directive 1e!ates to MASM'
OFFSE.T operator T. he GROUP directive affects only the offset addresses generated by s
such duect addressing instructions as

MOV AX,FIElD_IABEL

but it has no effect on immediate address values generated by such instructions as

MOV AX,OFFSEI FIELD_LABEI

5ection JI Programming in the MS-D05 Environment 131
Canon Exhibit 1108

Part B: Programming for MS-DOS

Using the OFFSET operator on labels contained within grouped segments requires the

following approach:

MOV AX,OFFSEI GROUP.-NAME:FIEID_lABEl

The programmer must explicitly request the oflset from the group base, because MASM
defines the result of the OFFSET operator to be the offset of the label from the start of its

segment, not its group

Structuring a small pmgram with SEGMENT and GR()UP

132

Now that we have analyzed the functions performed by the SEGMENT and GROUP direc­
tives, we'll put both directives to work structuring a skeleton program The program,
shown in Figures 4-8, 4-9, and 4-10, consists of three source modules (MODUlE_A,
MODUlE_B, and MODUlE_C), each using the following four program segments:

Segment Definition

_TEXT
_DATA

The code or program text segment
I he standard data segment containing preinitialized data fields the pro-

CONST

gram might change
I he constant data segment containing constant data fields the program

will not change
The "block storage segment/space" segment containing uninitialized data _BSS

fields•

•Programmers familiar with the IBM 1620/1630 or CDC 6000 and Cyber assemblers may recognize BSS as
'block started at symbol, which reflects an equally appropriate, although somewhat more elaborate, defini­

tion of the abbreviation Other common translations of BSS, such as blank static storage, misrepresent the
segment name, because blanking of BSS segments does not occur- the memory contains undetermined

values when the program begins execution

;Source Module MODUIE_A

;Predeclare all segments to force the linker's segment ordering **·************

_IEXI SEGMENI BYIE PUBIIC 'CODE'

_IEXI ENDS

_DAIA SEGMENI WORD PUBIIC 'DAIA'

_DAIA ENDS

CONSI SEGMENI WORD PUBlIC 'CONSI'

CONS I ENDS

_BSS SEGMENI WORD PUBIIC 'BSS'

_BSS ENDS

Figure 4-8 Structuring a EXEpr·ogram MODULE'_A

The MS-DOS Encyclopedia

(more)

SIACK SEGMENI PARA SIACK 'SIACK'

STACK ENDS

DGROUP GROUP _DAIA,CONSI,_BSS,SIACK

Arcicle 4: Structure of an Application Program

;Constant declarations ***

CONS I SEGMENI WORD PUBLIC 'CONSI'

CONSI_FIEID-.A DB 'Const ant A' ;declare a MODUIE_A constant

CONS I ENDS

;Preinitialized data fields **

_OAIA SEGMENT WORD PUBIIC 'DAIA'

DAIAJ IEID-.A DB 'Data A' ;declare a MODUIE_A preinitialized field

_DAIA ENDS

; Uninitialized data fields * ***·* * * * * * * * * * * ******* *** **·* * * ** ** * **** ***** * * * * * **

_BSS SEGMENI WORD POBIIC 'BSS'

BSS_FIEID-.A DB 5 DUP {?) ;declare a MODUIE_A uninitialized field

_BSS ENDS

;Program text **

_IEXI SEGMENI BYIE PUBIIC 'CODE'

ASSUME CS:_IEXI,DS:DGROUP,ES:NOIHING,SS:NOIHING

EX I RN PROC_B:NEAR

EX I RN PROC_C : NEAR

PROC_A PROC NEAR

CALI PROC_B

CAII PROC_C

MOV AX,4COOH

IN! 21H

PROC-.A ENDP

_IEXI ENDS

Figure4-8 Continued

:label is in _IEXI segment (NEAR)
;label is in _IEXI segment (NEAR}

;call into MODUIE_B

;call into MODUIE_C

;terminate (MS-DOS 2 0 or later only)

(more)

Section II: Programming in the MS'-DOS Environment 133
Canon Exhibit 1108

Part B: Programming for MS-DOS

134

;Stack ***

SIACK SEGMENI PARA SIACK 'SIACK'

DW
SIACK____BASE

128 DUP(?)

lABEl WORD

SIACK ENDS

END PROC_A

Figure 4-8 Continued

;Source Module MODUIE-B

;declare some space to use as stack

; declare PROC_J:\. as entry point

:Constant declarations ***

CONS I SEGMENI WORD PUBLIC 'CONS!'

CONSI_FIEID-8 DB r Constant BI ;declare a MODUIE_B constant

CONSr ENDS

;Preinitialized data fields **

_DAIA SEGMENT WORD PUBLIC 'OA1A'

DAI.LF IEI O_B DB 'Data B' ;declare a MODUIE_B preinitialized field

_DAIA ENDS

:Uninitialized data fields ***

_ESS SEGMENI WORD PUBIIC 'SSS'

BSS_EIEID-8 DB 5 OUP {?) ;declare a MODUIE_B uninitialized field

_BSS ENDS

;Program text ***"****************

DGROUP GROUP _DAIA,CONSI,-8SS

_IEXI SEGMENI BYIE PUBIIC 'CODE'

ASSUME cs:_IEXI,DS:DGROUP,ES:NOIHING,SS:NOIHING

Figure 4-9 S'tr uctur ing a EXE program: JlfODULE_B (more)

The MS-DOS Encyclopedia

i
i
f

I

.j
!

i
I

I
I
:)

Article 4: Structure of an Application Program

PUBIIC PROC__B :reference in MODULE_A

PROC_E PROC NEAR

REI

PROG___B ENDP

_IEXI ENDS

END

Figure 4-9 Continued

;Source Module MODUIE_C

;Constant declarations ***

CONS I SEGMENI WORD PUBLIC 'CONS!'

CONS 1---.E IEI D_C DB 'Constant C' :declare a MODUIE_C constant

CONS I ENDS

;Preinitialized data fields **

_OAIA SEGMENI WORD PUBIIC 'DAIA'

DA'IAJIELD_C DB 'Data C' ;declare a MODUIE_C preini~ialized field

_DA'IA ENDS

;Uninitialized data fields ***

-13SS SEGMENI WORD PUBLIC 'SSS'

BSSJIEID_C DB 5 DUP (?) ;declare a MODUIE_C uninitialized field

_BSS ENDS

~Program text **

DGROUP GROUP _OAIA,CONSI,-8SS

_IEXI SEGMENI B~IE PUBLIC 'CODE'

ASSUME cs:_IEXI,DS:DGROUP,ES:NOIHING,SS:NOIHING

Figure 4-10 S'tructuring a E.X.E program: MODUIE_C (more)

Section II Programming in the MS'-DOS Environment 135
Canon Exhibit 1108

Part B: Programming for MS-DOS

136

PUBlIC PROC_C ;referenced in MODUIE_A

PROC_C PROC NEAR

REI

PROC_C ENDP

_IEXI ENDS

END

Figure 4-10 Gbntinued

I his example creates a small memory model program image, so the linked program can
have only a single code segment and a single data segment - the simplest standard form
of a .EXE program See Using Microsoft's Contemporary Memory Models below

Jn addition to declaring the four segments already discussed, MODUIE_A declares a
STACK segment in which to define a block of memory for use as the program's stack and
also defines the linking order of the five segments Defining the linking order leaves the
programmer free to declare the segments in any order when defining the segment con­
tents- a necessity because the assembler has difficulty assembling pro gr ams that use

forward refer enc es

With Microsoft's MASM and IINK on the same disk with the ASM files, the following com­

mands can be made into a batch file:

MASM SIRUCA;

MASM SIRUCB;
MASM SIRUCC;
LINK SIRUCA+SIRUCB+SIRUCC/M;

I hese commands will assemble and link all the ASM files listed, producing the memory
map report file STRUCA MAP shown in Figure 4-11

Start Stop Length Name

OOOOOH OOOOCH OOOODH _IEXl

OOOOEH 0001FH 00012H _DAIA

00020H 0003DH 0001EH CONSI

0003EH 0004EH 000118....BSS

000508 0014FH 00100H SIACK

origin Group

0000:0 DGROUP

Address

OOOO:OOOB
OOOO:OOOC

Publics by Name

PROC_B

PROC_C

Class
CODE

DAIA

CONS I

BSS

SIACK

Figure 4-11 Structuring a EXE program memor:y map report

The MS-DO.S Encyclopedia

(more)

-t

J
-!

Article 4: Structure of an Application Program

Address

0000: OOOB
OOOO:OOOC

Publics by Value

PROC--13
PROC_C

Program entry point at 0000:0000

Figure 4-11 Continued

I he above memory map report represents the memory diagram shown in Figure 4-12

DGROUP
addressing "'1-

base

Absolute
address

00150H

00050H

0004FH

0004AH

00049H

00044H

00043H

0003EH

00034H

0002AH

00020H

OOOlAH

00014H

OOOOEH

OOOODH

OOOOCH

OOOOBH

OOOOOH

..

..

- - - -

- - - - -
- - - - - -

- - - - - -
- - - - - -

·DGROUP - -
Group -

- - - - - -

- - - - - -
- - - -
- - - - - -

- - - - - -
- - - - -

- - - - CODE
- - - - Class

STACK STACK (A)
Class

PARA align gap

BSS (C) ·- - - -
BSS - !WORD align gap

Class -
BSS (B)

IWORD align gap
- - - -

BSS (A)

CONST -
CONST(C)

Class - CONST(B)

CONST(A)

DATA - DATA(C)

Class - DATA(B)

DATA(A)

WORD align gap

TEXT(C) - - -
TEXT(B)

- - -
TEXT(A)

Figure 4-12 Structure oj'the sample EKE program

Using Microsoft's contemporary memory models

Size in bytes

256

-5 T
5

5

10

10

10

6

6

6

15

l
+ 30

+ +
18

+
+

1 13

11 +

321

Now that we've analyzed the various aspects of designing assembly-language EXE pro­
grams, we can look at how Microsoft's high-level-language compilers create EXE pro­
grams from high-level-language source files Even assembly-language programmers will
find this discussion of interest and should seriously consider using the five standard
memory models outlined here

This discussion is based on the Microsoft C Compiler version 4 .0, which, along with the
Microsoft FOR I RAN Compiler version 4 .0, incorporates the most contemporary code
generator currently available These newer compilers generate code based on three to five

Section 11 Programming in the 111S-DO.S Environment 137
Canon Exhibit 1108

Part B: Programming for MS-DOS

138

of the following standard programmercselectable program structures, referred to as mem­
ory models The discussion of each of these memory models will center on the model's
use with the Microsoft C Compiler and will close with comments regarding any differences

for the Microsoft FORTRAN Compiler

Small (C compiler switch IA S) This model, the default, includes only a single code seg­
ment and a single data segment All code must fit within 64 KB, and all data must fit within
an additional 64 KB Most C program designs fall into this category Data can exceed the
64 KB limit only if the fai and huge attributes aie used, forcing the compiler to use far
addressing, and the linker to place far and huge data items into separate segments The
data-size-threshold switch described for the compact model is ignored by the Microsoft C
Compiler when used with a small model The C compiler uses the default segment name
_TEXT for all code and the default segment name _DATA for ail non-far/huge data
Microsoft FORT RAN programs can generate a semblance of this model only by using the
/NM (name module) and /AM (medium model) compiler switches in combination with the

near attiibute on all subprogram declarations

Medium (G and FORTRAN compiler witch /AM) This model includes only a single data
segment but breaks the code into multiple code segments All data must fit within 64 KB,
but the 64 KB restriction on code size applies only on a module-by-module basis Data can
exceed the 64 KB limit only if the fai and huge attributes aie used, forcing the compiler to
use far addressing, and the linker to place fai and huge data items into separate segments
The data-size-threshold switch described for the compact model is ignored by the
Microsoft C Compiler when used with a medium model The compiler uses the default seg­
ment name _DATA for all non-fai/huge data and the template module~I EXT to create
names for all code segments The module element of module _TEXT indicates where the
compiler is to substitute the name of the source module For example, if the source module
HElPFUNC C is compiled using the medium model, the compiler creates the code seg­
ment HElPFUNC_TEXI The Microsoft FORTRAN Compiler version 4 0 directly supports

the medium model

Compact (C compiler switch/AC) This model includes only a single code segment but
breaks the data into multiple data segments All code must fit within 64 KB, but the data is
allowed to consume all the remaining available memory The Microsoft C Compiler's op­
tional data-size-threshold switch (/Gt) controls the placement of the larger data items into
additional data segments, leaving the smaller items in the default segment for faster access
Individual data items within the program cannot exceed 64 KB under the compact model
without being explicitly declai·ed huge The compiler uses the default segment name
_TEXT for all code segments and the template module#_Dli.TA to create names for all data
segments I he module element indicates where the compile1 is to substitute the source
module's name; the # element represents a digit that the compiler changes for each addi­
tional data segment required to hold the module's data The compiler staits with the digit 5
and counts up. for example, if the name of the source module is HElPFUNC C, the com­
piler names the first data segment HE1PFUNC5__DATA FORTRAN programs can generate
a semblance of this model only by using the /NM (name module) and /AL (laige model)
compiler switches in combination with the near attribute on all subprogram declaiations

Ihe MS-DOS Encyclopedia

Article 4: Structure of an Application Program

~:;:~~sa;~ FORT~N compiler switch/AL) This model creates multiple code and data
. · e c_omp1 er treats data 1n the same manner as it does for the com act model

and treats code m th.e same manner as it does for the medium model Th M' p f
FORTRAN Com ·1 . 4 d . e 1croso t p1 er ver s1on 0 irectly supports the large model

Huge (G and FORTRAN compiler switch/AH) Allocation of segments under the hu e
model follows the same rules as forthe laige model. The diff . . · h · d · · g
items can exceed 64 KB Under the huge model th ·1 erence is t at m !Vldual data
c d t · d ' e comp1 er generates the necessaiy

t~ek~~r~:P;:c:sr::r~s 0:e~%~:.t:.a~~;.~:::~r~~~~;~~~~ 7i~:~:~~:.~:~~e~::%::yan1sfih~rming
ma es the huge model · ll f l fi is cessor that used r . ~~ecm y us~ u or porting a program originally written for a pro-

. . . . mear a ressmg T e speed penalties the program pays in exchan e fi
this ~ddr essmg freedom require serious consideration If the program actually co ;. or
any ala structures exceeding 64 KB, it probably contains on] a fe n ms

:~:~~ide u:~n~he huge .model by explicitly declaring those 1e: dat: i::~~~s c~~~~
1

~~~;st 
. g. Y ord withm the source module. This prevents penalizing all the non-hu e 
1temsw1thextraaddressmgmath TheMicrosoftFORIRANC ·1 · 4 ·. g 
supports the huge model omp1 er version 0 duectly 

F:gure 4-1~ ~hows an example of the segment arrangement created by a large/huge model 
P ogram e .example assumes two source modules: MSCA c and MSCB c Each s . 

:J:~~:~;~1:c~1~: ~nough d;ta to cau~e the compiler to create two extra data segm:~:sc:Or 
. . . . 1ag1am oes nots ow all the various segments that occur as a result of 
~:kde1~ w1thd tbhe run-time library or as a result of compiling with the intention of using the 

iew e ugger. 

Groups Classes Segment s 
STACK STACK 

BSS 
c_common 

DGROUP BSS 

CONST CONST 

DATA DATA 

FAR_BSS FAR BSS 

,MSCB6 DATA 

FAR_DAIA MSCB5 DATA 

MSCA6 DAT' 

MSCA5 DATA 

TEXT 
CODE MSCB_TEXT 

MSCA TEXT 

'4 SMClH: Program stack 

.if SM: All uninitialized global items. CLH: Empty 

<1111 SMCLH: All uninitialized non-ffil/huge items 

<11111 SMCLH: Constants (floating point constraints segment addresses etc) 

<lllfll SMCLH: All items that don't end up anywhere else 

<11111 SM: Nonexistent, CLH: All uninitialized global items 

-1111 From MSCB only: SM: Far/huge items CLH: Items larger than threshold 

... From MSCB only: SM: Far/huge items CLH: Items larger than threshold 

... From MSCA only: SM: Far/huge items CLH: Items larger than threshold 

<11111 From MSCA only: SM: Far/huge items, CLH: Items larger than threshold 

<11111 SC: All code, MLH: Run-time library code only 

<11111 SC: Nonexistent MLH: MSCB C Code 

<11111 SC: Nonexistent MLH: MSCA.C Code 

S = Small model 
M = Medium model 
C = Compact model 

L =Large model 
H = Huge model 

Figure 4-13 General structure of a 1l1icrosoft G program 

Section Il Programming in the MS-D05 Environment 139 

Canon Exhibit 1108



Part B: Programming for MS-DOS 

Note that if the program declares an extremely large number of small data items, it can 
exceed the 64 KB size limit on the default data segment (_DATA) regardless of the memory 
model specified This occurs because the data items all fall below the data-size-tlueshold 
limit (compiler /Gt switch), causing the compiler to place them in the _DATA segment 
Lowering the data size threshold or explicitly using the far attribute within the source 

modules eliminates this problem 

Modifying the .EXE file header 

140 

With most of its language compilers, Microsoft supplies a utility program called EXEMOD 
See PROGRAMMING UT 1111 JES: EXEMOD This utility allows the programmer to display 
and modify ce1tain fields contained within the .EXE file header Following are the heade1 
fields EXEMOD can modify (based on EXEMOD version 4 O): 

MAXALLOC This field can be modified by using EXEMOD's /MAX switch Because 
EXEMOD operates on EXE files that have aheady been linked, the /MAX switch can be 
used to modify the MAXAUOC field in existing EXE prog1 ams that contain the default 
MAXAlLOC value of FFFFH, provided the programs do not 1ely on MS-DOS's allocating 
all free memmy to them EXEMOD's /MAX switch functions in an identical manne1 to 

l!NK's /CPARMAXAllOC switch 

MINALLOC This field can be modified by using EXEMOD's /MIN switch Unlike the case 
with the MAXAI IOC field, most programs do not have an arbitrary value for MIN All OC 
MINAllOC nmmally represents uninitialized memoiy and stack space the linke1 has com­
piessed out of the EXE file, so a programme1 should never reduce the MINAILOC value 
within a .EXE pro gr am written by someone else. If a program requires some minimum 
amount of exua dynamic memmy in addition to any static fields, MINAI I OC can be in­
creased to ensure that the program will have this extra memory before receiving control If 
this is done, the program will not have to verify that MS-DOS allocated enough memmy to 
meet program needs Of course, the same result can be achieved without EXEMOD by 
declaring this minimum extra memmy as an uninitialized field at the end of the prog1 am 

Initial SP Value This field can be modified by using the /STACK switch to increase m 
decrease the size of a progiam's stack Howeve1, modifying the initial SP value fm pro­
giams developed using Microsoft language compile! versions earlie1 than the following 
may cause the programs to fail: C version 3 0, Pascal ve1sion 3.3, and FORTRAN version 
3 3 Other language compilers may have the same restriction The /STACK switch can also 
be used with progiams developed using MASM, provided the stack space is linked at the 
end of the program, but it would probably be wise to change the size of the STACK seg­
ment declaiation within the pwgram instead The linker also provides a /STACK switch 

that pe1frn ms the same pu1pose 

Note:· With the /H switch set, EXEMOD displays the cwrent values of the fields within 
the EXE header This switch should not be used with the othe1 switches EXEMOD also 

displays field values if no switches are used 

The MS-D05 Encyclopedia 

J 
i ;! 

Article 4: Structure of an Application Program 

Warning:· EXEMOD also functions correctly when used with packed EXE files created 
using EXEPACK OI the /EXEPACK linker switch Howeve1, it is imprntant to use the 
EXEMOD version shipped with the linker or EXEPACK utility. Possible futwe changes in 
the packing method may result in incompatibilities between EXEMOD and nonassociated 
linkeI/EXEPACK versions 

Patching the .EXE program using DEBUG 

Every experienced programmer knows that programs always seem to have at least one 
unspotted enrn If a prog1 am has been distributed to other users, the programme! will 
probably need to provide those users with collections when such bugs come to light One 
inexpensive updating approach used by many large companies consists of mailing out 
single-page instructions explaining how the user can patch the program to correct the 
problem 

Progiam patching usually involves loading the program file into the DEBUG utility sup­
plied with MS-DOS, stming new bytes into the progiam image, and then saving the pro­
gram file back to disk Unfrntunately, DEBUG cannot load a EXE pwgram into memoiy 
and then save it back to disk in EXE fo1mat. The programmer mustt1ick DEBUG into 
patching EXE progiam files, using the procedure outlined below See PROGRAMMING 
UTI1111ES: DEBUG 

Note:· Users should be 1eminded to make backup copies of their progiam before attempt­
ing the patching procedu1 e 

1 

2 

3 

4 

Rename the EXE file using a filename extension that does not have special meaning 
for DEBUG (Avoid .EXE, COM, and HEX) Fm instance, MYPROG BIN serves well as 
a tempora1y new name frn MYPROG.EXE because DEBUG does not recognize a file 
with a .BIN extension as anything special DEBUG will load the entire image of 
MYPROG .BIN, including the .EXE header and relocation table, into memmy sta1ting 
at offset lOOH within a COM-style program segment (as discussed previously) 
locate the area within the load module section of the EXE file image that requires 
patching The previous discussion of the EXE file image, together with compilei/ 
assembler listings and linker memory map reports, provides the information neces­
sary to locate the en or within the EXE file image DEBUG loads the file image stall­
ing at offset lOOH within a COM-style program segment, so the programme! must 
compensate for this offset when calculating addresses within the file image Also, the 
compiler listings and linker memory map reports provide addresses relative to the 
start of the program image within the EXE file, not 1elative to the start of the file 
itself Therefore, the programmer must first check the information contained in the 
EXE file header to dete1mine where the load module (the program's image) staits 

within the file 
Use DEBUG's E (Enter Data) or A (Assemble Machine Inst1 uctions) command to 
insert the corrections. (Normally, patch instructions to users would simply give an 
address at which the user should apply the patch The user need not know how to 
determine the address) 
After the patch has been applied, simply issue the DEBUG W (Write File 01 Sectms) 
command to write the corrected image back to disk under the same filename, pro­
vided the patch has not increased the size of the progiam If progiam size has 

Section II: Programming in the MS-DO.S Environment 141 
Canon Exhibit 1108



Part B: Programming for MS-DOS 

increased, first change the appropriate size fields in the EXE header at the start of the 
file and use the DEBUG R (Display or Modify Registers) command to modify the BX 
and CX registers so that they contain the file image's new size Then use the W com­
mand to write the image back to disk under the same name 

5 Use the DEBUG Q (Quit) command to return to MS-DOS command level, and then 
rename the file to the original .EXE filename extension 

.EXE summary 

To summarize, the EXE program and file structures provide considerable flexibility in the 
design of programs, providing the programmer with the necessary freedom to produce 
large-scale applications Programs written using Microsoft's high-level-language compilers 
have access to five standardized program structure models (small, medium, compact, 
large, and huge} These standardized models are excellent examples of ways to structure 

assembly-language programs 

The .COM Program 

142 

The majority of differences between COM and EXE programs exist because .COM 
program files are not prefaced by header information Therefore, COM programs do not 
benefit from the features the EXE header provides. 

The absence of a header leaves MS-DOS with no way of knowing how much memory the 
COM program requires in addition to the size of the program's image. Therefore, MS-DOS 
must always allocate the largest free block of memory to the COM program, regardless of 
the program's true memory requirements As was discussed for .EXE programs, this allo­
cation of the largest block of free memory usually results in MS-DOS's allocating all 
remaining free memory- an action that can cause problems fo1 multitasking supervisor 

programs 

1 he .EXE program header also includes the direct segment address 1 elocation pointer 
table Because they lack this table, COM programs cannot make address references to the 
labels specified in SEGMENT directives, with the exception of SEGMENT AT address 
directives If a .COM program did make these references, MS-DOS would have no way of 
adjusting the addresses to correspond to the actual segment address into which MS-DOS 
loaded the program See Creating the COM Program below 

The COM program suucture exists primarily to support the vast number of CP/M pro­
grams ported to MS-DOS Currently, COM programs are most often used to avoid adding 
the 512 bytes or more of EXE header information onto small, simple programs that often 

do not exceed 512 bytes by themselves 

The COM program structure has another advantage: Its memory organization places the 
PSP within the same address segment as the rest of the program 1 hus, it is easier to access 

fields within the PSP in COM programs 

The M5-DO.S Encyclopedia 

Article 4: Structure of an Application Program 

Giving control to the .COM program 

After allocating the largest block of free memrny to the COM program, MS-DOS builds 
a P.SP m the lowest lOOH bytes of the block No difference exists between the PSP MS-DOS 
bmlds for COM programs and the.PSP it builds for EXE programs Also with EXE pro­
grams, MS-DOS determines the initial values for the Al and AH registers at this time and 
then loads the entire COM-file image into memrny immediately following the PSP 
Because COM files have no file-size header fields, MS-DOS relies on the size recorded in 
th~ disk d!rec;tory to.dete'.mine the size of the program image It loads the program exactly 
as it appears m the file, without checking the file's contents. 

MS-DOS then sets the DS, ES, and SS segment registers to point to the start of the PSP If -
able to allocate at least 64 KB to the program, MS-DOS sets the SP register to offset FFFFH 
+ 1 (OOOOH) to establish an initial stack; if less than 64 KB are available for allocation to the 
program, MS-DOS sets the SP to 1 byte past the highest offset owned by the program. In 
either case, .MS-.DOS then pushes a single word of OOOOH onto the program's stack for 
use in term1nat1ng the prog1 am 

Finally, MS-DOS transfers control to the program by setting the CS register to the PSP's 
segment address and the IP register to OlOOH. This means that the program's entry point 
must exist at the ve1y start of the program's image, as shown in later examples 

Figure 4-14 shows the overall structure of a COM program as it receives control from 
MS-DOS 

SP=FFFEH* 
I 

COM program image ~ 

.COM program memory image 
• 

OClH I OOH I 
Remaining free memory 

within first 64 KB allocated 
to .COM program 

(provided a full 64 KB was available) 

COM program image from file 

... IP=OIOOH 
Program segment prefix 

... CS,DS,ES,SS 

*The SP and 64 KB values are dependent upon 
MS-DOS having 64 KB or more of memory 
available to allocate to the COM program 
at load time 

Figure 4-14 T'he COM program memory map diagram with registerpointers 

5ection 11 Programming in the MS:.. nos Environment 

64KB* 

1 

143 

Canon Exhibit 1108



Part B: Programming for MS-DOS 

Terminating the .COM pr'Ogram 
A COM program can use all the termination methods described for EXE programs but 
should still use the MS-DOS Interrupt 21H Terminate Process with Return Code funcllon 
( 4CH) as the preferred method If the COM program must remain compatible with ver­
sions of MS-DOS ear lier than 2 O, it can easily use any of the older termination methods, 
including those described as difficult to use from EXE programs, because COM programs 
execute with the CS register pointing to the PSP as required by these methods 

Creating the .COM program 

144 

A COM program is created in the same manner as a .EXE program and then converted 
using the MS-DOS EXE2BIN utility See PROGRAMMING UTUIIIES: EXE2BIN 

Certain restrictions do apply to COM programs, however First, COM programs cannot 
exceed 64 KB minus lOOH bytes for the PSP minus 2 bytes for the zero word initially 

pushed on the stack 

Next, only a single segment - or at least a single addressing group - should exist within 
the program The following two examples show ways to structure a COM program to sat­
isfy both this restriction and MASM's need to have data fields precede program code m the 

source file 

COMPROG 1 ASM (Figure 4-15) declares only a single segment ( COMSEG), so no special 
considerations apply when using the MASM OFFSET operator See The MASM GROUP 
Directive above COMPROG2 ASM (Figure 4-16) declar·es separate code (CSEG) and data 
(DSEG) segments, which the GROUP directive ties into a common addressing block 
Thus, the programmer can declare data fields at the start of the source file and have the 
linker place the data fields segment ( DSEG) after the code segment ( CSEG) when it links 
the program, as discussed for the EXE program structure This second example simulates 
the program structuring provided under CP/M by Microsoft's old Macro-SO (MSO) macro 
assembler and link-SO (LSO) linker The design also expands easily to accommodate 
COMMON or other additional segments 

COMSEG SEGMENI BYIE PUBllC 'CODE' 
ASSUME CS:COMSEG,DS:COMSEG,ES:COMSEG,SS:COMSEG 

ORG 01 OOH 

BEGIN; 
JMP SIARI ;skip over data fields 

;Place your data fields here. 

SIAR I: 
;Place your program text here 

MOV AX,4C00H ;terminate {MS-DOS 2 0 or later only) 

INI 21H 

COMSEG ENDS 
END BEGIN 

Figure 4-15 COM program with data at star·t 

The MS:-DO.S Encyclopedia 

I 
I 
' 
I 
I 
I 
I 

i] 
:j 

'I lt 

Article 4: Structure of an Application Program 

CSEG SEGMENI BYIE PUBlIC 'CODE' ;establish segment order 
CSEG ENDS 
DSEG SEGMENI BYIE PUBIIC 'DAIA' 
DSEG ENDS 
COMGRP GROUP CSEG,DSEG ;establish joint address base 
DSEG SEGMENI 
;Place your data fields here 
DSEG ENDS 
CSEG SEGMENI 

ASSUME CS:COMGRP,DS:COMGRP,ES:COMGRP,SS:COMGRP 
ORG 0100H 

BEGIN: 

;Place your program text here Remember to use 
;OFFSEI COMGRP:IABEI whenever you use OFFSEI 

MOV AX,4C00H ;terminate (MS-DOS 2 0 or later only) 
!NI 21 H 

CSEG ENDS 
END BEGIN 

~Figure 4-16 COM program with data at end 

These examples demonstrate other significant requirements for producing a functioning 
COM program For instance, the ORG OlOOH statement in both examples tells MASM to 

start assembling the code at offset lOOH within the encompassing segment This corre­
sponds to MS-DOS's transferring control to the program at IP ~ OlOOH In addition, the 
entry-point label (BEGIN) immediately follows the ORG statement and appears again as a 
parameter to the END statement Ibgether, these factors satisfy the requirement that COM 
programs declar·e their entry point at offset lOOH If any factor is missing, the MS-DOS 
EXE2BIN utility will not properly convert the EXE file produced by the linker into a COM 
file Specifically, if a COM program declares an entry point (as a parameter to the END 
statement) that is at neither offset OlOOH nor offset OOOOH, EXE2BIN rejects the EXE file 
when the programmer atrempts to convert it If the program fails to declare an entry point 
or declares an entry point at offset OOOOH, EXE2BIN assumes that the EXE file is to be 
converted to a binary image rather than to a COM image When EXE2BIN converts a EXE 
file to a non- COM binary file, it does not strip the extra lOOH bytes the linker places in 
front of the code as a result of the ORG OlOOH instruction Thus, the program actually 
begins at offset 200H when MS-DOS loads it into memory, but all the program's address 
references will have been assembled and linked based on the lOOH offset As a result the 
program- and probably the rest of the system as well -is likely to crash ' 

A COM program also must not contain direct segment address references to any segments 
that make up the program Thus, the .COM program cannot reference any segment labels 
or reference any labels as long (FAR) pointers. (1 his rule does not prevent the program 
from referencing segment labels declared using the SEGMENT A:T address directive ) 
Following are various examples of direct segment address references that are not per'­
mitted as part of COM programs: 

Section Il Programming in the MS-DOS Environment 145 

Canon Exhibit 1108



Part B: Programming for MS-DOS 

PRQC_lli. PROC FAR 

PROC_A ENDP 
CALI PROC_A :intersegment call 

JMP PROC_A ;intersegment jump 

or 

EX1RN PROCJl.:FAR 

CAll PRQC_A ; intersegment call 

JMP PRQC_A ;intersegment jump 

or 

MOV AX,SEG SEG_A ; segment address 

DD LABEL_A ;segment:offset pointer 

Finally, COM programs must not declare any segments with the STACK combine type If 
a program declares a segment with the STACK combine type, the linker will insert initial 
SS and SP values into the EXE file header, causing EXE2BIN to reject the EXE file A COM 
program does not have explicitly declared stacks, although it can reserve space in a non-
S TACK combine type segment to which it can initialize the SP register after it receives 
control. The absence of a stack segment will cause the linker to issue a harmless warning 

message 

When the program is assembled and linked into a EXE file, it must be converted into a 
binary file with a COM extension by using the EXE2BIN utility as shown in the following 

example for the file YOURPROG EXE: 

C>EXE2BIN YOURPROG YOURPROG.COM <Enter> 

It is not necessary to delete or rename a EXE file with the same filename as the COM 
file before trying to execute the COM file as long as both remain in the same directory, 
because MS-DOS's order of execution is COM files first, then EXE files, and finally BAI 
files However, the safest practice is to delete a EXE file immediately after converting it to 
a COM file in case the COM file is later renamed or moved to a different directory. If a 
EXE file designed for conversion to a COM file is executed by accident, it is likely to crash 

the system 

Patching the .COM program using DEBUG 
As discussed for EXE files, a programmer who distributes software to users will probably 
want to send instructions on how to patch in e11·or corrections I his approach to software 
updates lends itself even better to COM files than it does to EXE files 

For example, because .COM files contain only the code image, they need not be renamed 
in orderto read and write them using DEBUG The user need only be instructed on how to 
load the COM file into DEBUG, how to patch the program, and how to write the patched 
image back to disk Calculating the addresses and patch values is even easier, because no 
header exists in the COM file image to cause complications With the preceding excep­
tions, the deiails for patching COM programs remain the same as previously outlined for 

EXE programs 

146 The MS-DOS Encyclopedia 

'l 
i 

I 
I 

~I 

Article 4: Structure of an Application Program 

.. COM summary 

IO s~mmarize, ~e .COM program and file structures are a simpler but more restricted 
a?proach to wr1t1ng programs than the EXE structure because the programmer has onl a 
smgle memory model from which to choose (the COM . · y . program segment model) Also 
COM program files do not contain the 512-byte (or more) header inherent to EXE files' so 

the COM program structure 1s well suited to small programs for which adding 512 b ' 
of header would probably at least double the file's size ytes 

Summary of Differences 

I he following table summarizes the differences between 

Maximum size 

Entry point 
CS at entry 

IP at entry 

DSatentry 
ES at entry 
SS at entry 
SP at entry 

Stack at entry 

Stack size 

Subroutine calls 
Exit method 

Size of file 

.COM prngram 

65536 bytes minus 256 bytes 
for PSP and 2 bytes for stack 

PSP:OlOOH 
PSP 

OlOOH 

PSP 
PSP 
PSP 
FF F EH or top word in available 

memory, whichever is lower 
Zero word 

65536 bytes minus 256 bytes 
for PSP and size of executable 
code and data 

NEAR 
Intenupt 21H Function 4CH 

preferred; NEAR RE I if 
MS-DOS versions 1 x 

Exact size of pro gr am 

COM and EXE programs 

.. EXE program 

No limit 

Defined by END statement 
Segment containing program's 

entry point 
Offset of entry point within its 

segment 
PSP 
PSP 
Segment with S Il\CK attribute 
End of segment defined with 

STACK attribute 
Initialized or uninitialized 

depending on source ' 
Defined in segment with 

STACK attribute 

NEAR or FAR 
Interrupt 21H Function 4CH 

preferred; indirect jump 
to PSP:OOOOH if MS-DOS 
versions 1 x 

Size of program plus header (at 
least 512 extra bytes) 

Section II Programming in the 1l1S-DOS Environment 147 

Canon Exhibit 1108



Part B: Programming for MS-DOS 

Which format the programmer uses for an application usually depends on the program's 
1 

intended size, but the decision can also be influenced by a program's need to addres~ mu -
ti le memory segments Normally, small utiliry programs (such as CHKDSK and FOR . . 
rlAT) are designed as COM programs; large programs (such as the Microsoft C Com~1ler) 
are designed as EXE programs T'he ultimate decision is, of course, the programmers 

Keith Burgoyne 

148 The MS'DO.S Encyclopedia 

-i 

Article 5: Character Device Input and Output 

Article 5: 
Character Device Input and Output 

All functional computer systems are composed of a central processing unit (CPU), some 
memory, and peripheral devices that the CPU can use to store data or communicate with 
the outside world. In MS-DOS systems, the essential peripheral devices are the keyboard 
(for input), the display (for output), and one or more disk drives (for nonvolatile storage) 
Additional devices such as printers, modems, and pointing devices extend the function­
aliry of the computer or offer alternative methods of using the system 

MS-DOS recognizes two rypes of devices: block devices, which are usually floppy-disk or 
fixed-disk drives; and character devices, such as the keyboard, display, printer, and com­
munications ports 

The distinction between block and character devices is not always readily apparent, but 
in general, block devices transfer information in chunks, or blocks, and character devices 
move data one character (usually 1 byte) at a time MS-DOS identifies each block device by 
a drive letter assigned when the device's controlling software, the device driver, is loaded 
A character device, on the other hand, is identified by a logical name (similar to a filename 
and subject to many of the same restrictions) built into its device driver. See PROGRAM­
MING IN THE MS-DOS ENVIRONMENT: CusroMIZING MS-Dos: Installable Device Drivers 

Background Information 

Versions 1 x of MS-DOS, first released for the IBM PC in 1981, supported peripheral devices 
with a fixed set of device drivers loaded during system initialization from the hidden file 
IO SYS (or IBMBIO.COM with PC-DOS) These versions of MS-DOS offered application 
programs a high degree of input/output device independence by allowing character 
devices to be treated like files, but they did not provide an easy way to augment the built-in 
set of drivers if the user wished to add a third-parry peripheral device to the system 

With the release of MS-DOS version 2 0, the hardware flexibiliry of the system was tremen­
dously enhanced Versions 2 .0 and later support installable device drivers that can reside in 
separate files on the disk and can be linked into the operating system simply by adding a 
DEVICE directive to the CONFIG .SYS file on the startup disk See USER COMMANDS: 
coNFIG SYS: DEVICE A well-defined interface between installable drivers and the MS-DOS 
kernel allows such drivers to be written for most rypes of peripheral devices without the 
need for modification to the operating system itself 

The CONFIG.SYS file can contain a number of different DEVICE commands to load sepa­
rate drivers for pointing devices, magnetic-tape drives, network interfaces, and so on Each 
driver; in turn, is specialized for the hardware characteristics of the device it supports 

Section II PT'ogramming in the MS-DOS Environment 149 
Canon Exhibit 1108



Part B: Programming for MS-DOS 

When the system is turned on or restaxted, the installable device drivers are added to the 
chain or linked list of default device drivers loaded from IO SYS during MS-DOS initializa­
tion. Thus, the need for the system's default set of device drivers to support a wide range of 
optional device types and features at an excessive cost of system memo1y is avoided 

One important distinction between block and character devices is that MS-DOS always 
adds new block-device drivers to the tail of the driver chain but adds new character-device 
drive1s to the head of the chain Thus, because MS-DOS searches the chain sequentially 
and uses the first driver it finds that satisfies its search conditions, any existing character­
device driver can be superseded by simply installing anothe1 driver with an identical logi­

cal device name 

This article covers some of the details of working with MS-DOS chaiacter devices: display­
ing text, keyboatd input, and other basic chaiacter l/O functions; the definition and use of 
standard input and output; redirection of the default characte1 devices; and the use of the 
IOCil function (Inteuupt 21H Function 44H) to communicate directly with a character­
device driver Much of the information presented in this article is applicable only to 
MS-DOS versions 2 .0 and late1 

Accessing Character Devices 

150 

Application programs can use either of two basic techniques to access character devices in 
a portable manner under MS-DOS First, a program can use the handle-type function calls 
that were added to MS-DOS in ve1sion 2 0 Alternatively, a program can use the so-called 
"traditional" character-device fUnctions that were present in ve1sions 1 x and have been 
retained in the operating system for compatibility Because the handle functions are more 
powe1ful and flexible, they are discussed fost 

A handle is a 16-bit numbe1 returned by the ope1ating system wheneve1 a file or device is 
opened or created by passing a name to MS-DOS Inte11upt 21H Function 3CH (Create File 
with Handle), 3DH (Open File with Handle), 5AH (Create Temporat y File), or 5BH ( C1 eate 
New File) After a handle is obtained, it can be used with Intenupt 21H Function 3FH 
(Read File or Device) or Function 40H (Write File or Device) to transfo1 data between the 
computer's memory and the file or device 

Dw"ing an open or create function call, MS-DOS searches the device-drive1 chain sequen­
tially for a character device with the specified name (the extension is ignored) before 
seaiching the disk directory Thus, a file with the same name as any chatacter device in the 
drive1 chain-for example, the file NUl TXT -cannot be created, nor can an existing file 
be accessed if a device in the chain has the same name 

The second method for accessing character devices is through the traditional MS-DOS 
characte1 input and output functions, Interrupt 21H Functions Olli through OCH These 
functions are designed to communicate directly with the keyboard, display, printe1, and 
serial port Each of these devices has its own function or group of functions, so neither 

The MS-DOS Encyclopedia 

l 
I 
! 

I 
I 

I 

Article 5: Character Device Input and Output 

names nor handles need be used However; in MS-DOS versions 2 0 and later; these func­
tion calls are translated within MS-DOS to make use of the same roufines that are used by 
the handle functions, so the traditional keyboard and display functions are affected by I/0 
redirection and piping 

Use of either the traditional or the handle-based method for character device l/O results 
in highly portable programs that can be used on any computer that rnns MS-DOS A third, 
less portable access method is to use the hardware-specific routines resident in the read­
only memory (ROM) of a specific computer (such as the IBM PC ROM BIOS driver func­
tions), and a fourth, definitely nonportable approach is to manipulate the peripheral 
device's adapter directly, bypassing the system software altogether Although these latter 
hardware-dependent methods cannot be recommended, they are admittedly sometimes 
necessary for performance reasons 

The Basic MS-DOS Character Devices 

Every MS-DOS system supports at least the following set of logical chaiacte1 devices 
without the need for any additional installable drive1s: 

Device 

CON 
PRN 
AUX 
ClOCK$ 
NUl 

Meaning 

Keyboard and display 
System list device, usually a parallel port 
Auxiliaiy device, usually a serial port 
System real-time clock 
"Bit-bucket" device 

These devices can be opened by name or they can be add1 essed through the "traditional" 
fUnction calls; strings can be read from or written to the devices according to their capabili­
ties on any MS-DOS system Data written to the NUl device is discarded; reads from the 
NUL device always return an end-of'file condition 

PC-DOS and compatible implementations of MS-DOS typically also support the following 
logical characterc.device names: 

Device 

CO Ml 
COM2 
lPTl 
1PT2 
1PT3 

Meaning 

First serial communications port 
Second serial communications port 
Filst patallel printe1 port 
Second patallel printe1 port 
Third parallel printer po!t 

Section II: Programming in the M5-D05 Environment 151 

Canon Exhibit 1108



Part B: Programming for MS-DOS 

In such systems, PRN is an alias for IPil and AUX is an alias for COM! Ihe MODE com­
mand can be used to redirect an IPI device to another device See USER COMMANDS: 
MODE 

As previously mentioned, any of these default character-device drivers can be superseded 
by a usercinstalled device driver- for example, one that offers enhanced functionality or 
changes the device's apparent characteristics. One frequently used alternative character­
device driver is ANSI SYS, which replaces the standard MS-DOS CON device driver and 
allows ANSI escape sequences to be used to perform tasks such as clearing the screen, 
controlling the cursor position, and selecting character attributes See USER COMMANDS: 
ANSI.SYS 

The standard devices 

152 

Under MS-DOS versions 2 .0 and later, each program owns five previously opened handles 
for character devices (referred to as the standard devices) when it begins executing. These 
handles can be used for input and output operations without further preliminaries Ihe 
five standard devices and their associated handles are 

Standatd Device Name 

Standard input (stdin) 
Standard output (stdout) 
Standard error (stderr) 
Standard auxiliary (stdaux) 
Standard printer (stdprn) 

Handle 

0 
1 
2 
3 
4 

Default Assignment 

CON 
CON 
CON 
AUX 
PRN 

The standard input and standard output handles are especially important because they ar·e 
subject to I/0 redirection Although these handles are associated by default with the CON 
device so that read and write operations are implemented using the keyboard and video 
display, the user can associate the handles with other character devices or with files by 
using redirection parameters in a program's command line: 

Redit·ection 

<file 
>file 
»file 
pl :p2 

Result 

Causes read operations from standard input to obtain data from file 
Causes data written to standard output to be placed in file 
Causes data written to standard output to be appended to file 
Causes data written to standard output by program pl to appear as the 

standard input of program p2 

I his ability to redirect 1/0 adds great flexibility and powerto the system For example, 
programs ordinarily controlled by keyboard entries can be run with "scripts" from files, 
the output of a program can be captured in a file or on a printer for later inspection, and 
general-purpose programs (filters) can be written that process text streams without regard 
to the text's origin or destination See PROGRAMMING IN THE MS-DOS ENVIRONMENT: 
CusroMIZING Ms-nos: Writing MS·-DOS Filters 

Ihe MS-DO.S Encyclopedia 

Article 5: Character Device Input and Output 

Ordinarily, an application program is not aware that its input or output has been redi·­
rected, although a write operation to standard output will fail unexpectedly if standard 
output was redirected to a disk file and the disk is full An application can check for the 
existence of 1/0 redirection with an IOCII (Interrupt 21H Function 44H) call, but it can­
not obtain any information about the destination of the redirected handle except whether 
it is associated with a character device or with a file 

Raw versus cooked mode 

MS-DOS associates each handle for a character device with a mode that determines how 
1/0 requests directed to that handle are treated When a handle is in raw mode, characters 
are passed between the application program and the device driver without any filtering or 
buffering by MS-DOS When a handle is in cooked mode, MS-DOS buffers any data that is 
read from or written to the device and takes special actions when certain characters are 
detected 

During cooked mode input, MS-DOS obtains characters from the device driver one at a 
time, checking each character for a Control-C The characters are assembled into a string 
within an internal MS-DOS buffer I he input operation is terminated when a carriage 
return (ODH) or an end-of'file mark (!AH) is received or when the number of characters 
requested by the application have been accumulated If the source is standard input, lone 
linefeed characters are translated to carriage-return/linefeed pairs The string is then 
copied from the internal MS-DOS buffer to the application program's buffer, and control 
returns to the application program 

During cooked mode output, MS-DOS transfers the characters in the application pro­
gram's output buffer to the device driver one at a time, checking after each character for 
a Control-C pending at the keyboard. If the destination is standard output and standard 
output has not been redirected, tabs are expanded to spaces using eight-column tab stops 
Output is terminated when the requested number of characters have been written or when 
an end-of'file mark (!AH) is encountered in the output string 

In contrast, during raw mode input or output, data is transferred directly between the 
application program's buffer and the device driver Special characters such as carriage 
return and the end-of-file mark are ignored, and the exact number of characters in the ap­
plication program's request are always read or written. MS-DOS does not break the strings 
into single-character calls to the device driver and does not check the keyboard buffer for 
Control-C entries during the I/0 operation Finally, characters read from standard input 
in raw mode are not echoed to standard output 

As might be expected from the preceding description, raw mode input or output is usu­
ally much faster than cooked mode input or ourput, because each character is not being 
individually processed by the MS-DOS kernel Raw mode also allows programs to read 
characters from the keyboard buffer that would otherwise be trapped by MS-DOS (for 
example, Control-C, Control-I', and Control-SJ (If BREAK is on, MS-DOS will still check for 
Control-C entries during other function calls, such as disk operations, and transfer control 

Section II Programming in the MS-DO.S Environment 153 
Canon Exhibit 1108



Part B: Programming for MS-DOS 

to the Control-C exception handler if a Control-C is detected) A program can use the 
MS-DOS IOCTl Get and Set Device Data services (Interrupt 2lli Function 44H Subfunc­
tions OOH and Olli) to set the mode for a character-Oevice handle. See !OCH below 

Ordinarily, raw or cooked mode is strictly an attribute of a specific handle that was 
obtained from a previous open operation and affects only the 1/0 operations requested 
by the program that owns the handle However, when a program uses !OCH to select raw 
or cooked mode for one of the standard device handles, the selection has a global effect 
on the behavior of the system because those handles are never closed. I hus, some of the 
"traditional" keyboard input functions might behave in unexpected ways Consequently, 
programs that change the mode on a standard device handle should save the handle's 
mode at entry and restore it before performing a final exit to MS-DOS, so that the opera­
tion of COMMAND COM and other applications will not be disturbed Such programs 
should also incorporate custom critical error and Control-C exception handlers so that the 
programs cannot be terminated unexpectedly See PROGRAMMING IN THE MS-DOS 
ENVIRONMENT: CusroMIZING MS-DOS: Exception Handlers 

The keyboard 

154 

Among the MS-DOS Intenupt 2lli functions are two methods of checking for and receiv­
ing input from the keyboard: the traditional method, which uses MS-DOS characte1 input 
Functions Olli, 06H, 07H, OSH, OAH, OBH, and OCH (Table 5-1); and the handle method, 
which uses Function 3F H Each of these methods has its own advantages and disadvan­

tages See SYSTEM CAllS 

Table5-1. Traditional MS-DOS Character· Input Functions .. 

Read Multiple 
Function Name Characters 

OlH Char act er Input with Echo No 
06H Direct Console I/0 No 

07H Unfiltered Character Input 
Without Echo No 

OSH Character Input Without Echo No 

OAH Buffered Keyboard Input Yes 

OBH Check Keyboard Status No 

OCH Flush Buffer, Read Keyboard • 

•Varies depending on function (from above) called in the Al register 

Echo 

Yes 
No 

No 
No 
Yes 
No 
• 

Ctd-C 
Check 

Yes 
No 

No 
Yes 
Yes 
Yes 
• 

I he first four traditional keyboard input calls are really very similar I hey all return a char­
acter in the AI register; they differ mainly in whether they echo that character to the dis­
play and whether they are sensitive to intenuption by the user's entry of a Control-C. Both 
Functions 06H and OBH can be used to test keyboard status (that is, whether a key has 
been pressed and is waiting to be read by the program); Function OBH is simpler to use, 
but Function 06H is immune to Control-C entries 

The MS-DOS Encyclopedia 

T 

i 
I 
I 
I 

I 
I 
I 

I 
I 

I 
J 

I 

Article 5: Character Device Input and Output 

Function OAH is used to read a "buffered line" from the user; meaning that an entire line is 
accepted by MS-DOS before control returns to the program Ihe line is terminated when 
the user presses the Enter key or when the maximum number of characters (to 255) speci­
fied by the program have been received. While entry of the line is in progress, the usual 
editing keys (such as the left and right arrow keys and the function keys on IBM PCs and 
compatibles) are active; only the final, edited line is delivered to the requesting program 

Function OCH allows a program to flush the type-ahead buffer before accepting input 
I his capability is important for occasions when a prompt must be displayed unexpectedly 
(such as when a critical error occurs) and the user could not have typed ahead a valid 
response This !Unction should also be used when the user is being prompted for a critical 
decision (such as whether to erase a file), to prevent a character that was previously 4 
pressed by accident from t1iggering an irrecoverable operation Function OCH is unusual 
in that it is called with the number of one of the other keyboard input functions in register 
Al After any pending input has been discarded, Function OCH simply transfers to the 
other specified input !Unction; thus, its other parameters (if any) depend on the !Unction 
that ultimately will be executed 

Ihe primary disadvantage of the traditional function calls is that they handle redirected 
input poorly If standard input has been redirected to a file, no way exists for a program 
calling the traditional input functions to detect that the end of the file has been reached­
the input flinction will simply wait forever, and the system will appear to hang 

A program that wishes to use handle-based I/0 to get input from the keyboard must use 
the MS-DOS Read File or Device service, Interrupt 21H Function 3FH Ordinarily, the pro­
gram can employ the predefined handle for standard input (0), which does not need to be 
opened and which allows the program's input to be redirected by the user to another file 
or device. If the program needs to circumvent redirection and ensure that its input is from 
the keyboard, it can open the CON device with Interrupt 21H Function 3DH and use the 
handle obtained from that open operation instead of the standard input handle. 

A program using the handle !Unctions to read the keyboard can control the echoing of 
characters and sensitivity to Control-C entries by selecting raw or cooked mode with the 
!OCT L Get and Set Device Data services (default = cooked mode) Ib test the keyboard 
status, the program can either issue an IOCII Check Input Status call (Interrupt 21H Func­
tion 44H Subfunction 06H) or use the traditional Check Keyboard Status call (lntenupt 
2lli Function OBH) 

I he primary advantages of the handle method for keyboard input are its symmetry with 
file operations and its graceful handling of redirected input I he handle function also 
allows strings as long as 65535 bytes to be requested; the traditional Buffered Keyboard 
Input function allows a maximum of 255 characters to be read at a time I his considera­
tion is important for programs that are frequently used with redirected input and output 
(such as filters), because reading and writing larger blocks of data from files results in 
more efficient operation The only real disadvantage to the handle method is that it is 
limited to MS-DOS versions 2 0 and later (although this is no longer a significant 
restriction). 

Section IL Programming in the .MS-DOS Environment 155 

Canon Exhibit 1108



Part B: Programming for MS-DOS 

Role of the ROM BIOS 

When a key is pressed on the keyboard of an IBM PC or compatible, it generates a hard­
ware interrupt (09H) that is serviced by a routine in the ROM BIOS The ROM BIOS inter­
rupt handler reads VO ports assigned to the keyboard controller and translates the key's 
scan code into an ASCII character code, The result of this translation depends on the cur­
rent state of the Numlock and CapsLock toggles, as well as on whether the Shift, Control, 
or Alt key is being held down (The ROM BIOS maintains a keyboard flags byte at address 
0000:041IB that gives the current status of each of these modifier keys) 

After translation, both the scan code and the ASCII code are placed in the ROM BIOS's 
32-byte (16-character) keyboard input buffer In the case of "extended" keys such as the 
function keys or arrow keys, the ASCII code is a zero byte and the scan code carries all the 
information, The keyboard buffer is arranged as a circular, or ring, buffer and is managed 
as a first-in/first-out queue Because of the method used to determine when the buffer is 
empty, one position in the buffer is always wasted; the maximum number of characters 
that can be held in the buffer is therefore 15 Keys pressed when the buffer is full are 
discarded and a warning beep is sounded 

The ROM BIOS provides an additional module, invoked by software Interrupt 16H, that 
allows programs to test keyboard status, determine whether characters are waiting in the 
type-ahead buffer, and remove characters from the buffer See Appendix 0: IBM PC BIOS 
Calls Its use by application programs should ordinarily be avoided, however, to prevent 
introducing unnecessary hardware dependence 

On IBM PCs and compatibles, the keyboard input portion of the CON driver in the 
BIOS is a simple sequence of code that calls ROM BIOS Interrupt 16H to do the hardware­
dependent work Thus, calls to MS-DOS for keyboard input by an application program are 
subject to two layers oftranslation: The Interrupt 21H flinction call is converted by the 
MS-DOS kernel to calls to the CON driver, which in tum remaps the request onto a ROM 
BIOS call that obtains the character 

Keyboa1d programming examples 

156 

Example Use the ROM BIOS keyboard driver to read a character from the keyboard The 
character is not echoed to the display 

mov 

int 

ah,OOh 

16h 

subfunction OOH = read character 

transfer to ROM BIOS 
now AH = scan code, Al = character 

Example Use the MS-DOS traditional keyboard input function to read a character from 
the keyboard, The character is not echoed to the display The input can be interrupted 
with a Ctrl-C keystroke 

mov ah,08h 

int 21h 

The M5-D0.5 Encyclopedia 

function 08H = character input 

without echo 
transfer to MS-DOS 

now Al = character 

"~ , 

' ; 

Article 5: Character Device Input and Output 

Example, Use the MS-DOS traditional Buffered Keyboard Input function to read an entire 
line from the keyboard, specifying a maximum line length of 80 characters All editing 
keys are active during entry, and the input is echoed to the display 

kbuf db 

db 

db 

rnov 

mov 

mov 

mov 

int 

80 

0 

80 dup (0) 

dx,seg kbuf 
ds,dx 

dx,offset kbuf 

ah,Oah 

21h 

maximum length of read 

actual length of read 
keyboard input goes here 

set DS:DX = address of 
keyboard input buffer 

function OAR = read buffered line 

transfer to MS-DOS 

terminated by a carriage return, 
and kbuf+1 = length of input, 

not including the carriage return 

Exnmple Use the MS-DOS handle-based Read File or Device function and the standard 
input handle to read an entire line from the keyboard, specifying a maximum line length 
of 80 characters All editing keys are active during entry, and the input is echoed to the dis­
play (The input will not terminate on a carriage return as expected if standard input is in 
raw mode) 

kbuf 

The display 

db 

mov 

mov 

mov 

mov 

mov 

mov 

int 

jc 

80 dup (0) 

dx, seg kbuf 

ds,dx 

dx, offset kbuf 
cx,80 

bx,O 

ah,3fh 

21h 

error 

buffer for keyboard input 

set DS:DX =address of 

keyboard input buffer 

ex = maximum length of input 

standard input handle 0= 0 

function 3FH =read file/device 
transfer to MS-DOS 

jump if function failed 

otherwise AX = actual 

length of keyboard input, 

including carriage-return and 

linefeed, and the data is 
in the buffer 'kbuf' 

The output half of the MS-DOS logical character device CON is the video display, On IBM 
PCs and compatibles, the video display is an "option" of sorts that comes in several forms 
IBM has introduced five video subsystems that support different types of displays: the 
Monochrome Display Adapter (MDA), the Color/Graphics Adapter (CGA), the Enhanced 
Graphics Adapter (EGA), the Video Graphics Array (VGA), and the Multi-Color Graphics 
Array (MCGA) Other, non-IBM-compatible video subsystems in common use include the 
Hercules Graphics Card and its variants that support downloadable fonts 

Section II. Programming in the MS-DOS Environment 157 
Canon Exhibit 1108



Part B: Programming for MS-DOS 

Two portable techniques exist for writing text to the video display with MS-DOS function 
calls The traditional method is supported by Interrupt 21H Functions 02H (Character Out­
put), o6H (Direct Console 1/0), and 09H (Display String) The handle method is supported 
by Function 40H (Write File or Device) and is available only in MS-DOS versions 2 0 and 
later See SYSTEM CAllS: INTERRUPT 21H: Functions 02H, 06H, 09H, 40H All these calls 
treat the display essentially as a "glass teletype" and do not support bit-mapped graphics 

Traditional Functions 02H and 06H are similar Both are called with the character to be 
displayed in the Dl register; they differ in that Function 02H is sensitive to int en uption by 
the user's entry of a Control-C, whereas Function 66H is immune to Control-C but cannot 
be used to output the character OFFH (ASCII rubout) Both calls check specifically for car­
riage return (ODH), linefeed (OAH), and backspace (OSH) characters and take the appro­

priate action if these chaiacters are detected 

Because making individual calls to MS-DOS for each character to be displayed is inefficient 
and slow, the traditional Display String function (09H) is generally used in preference to 
Functions 02H and 06H Function 09H is called with the address of a string that is termi­
nated with a dollar-sign character($); it displays the entire string in one operation, regard­
less of its length I he string can contain embedded control characters such as ca1riage 

return and linefeed 
TO use the handle method for screen display, programs must call the MS-DOS Write File 
or Device service, Interrupt 21H Function 40H Ordinarily, a program should use the pre­
defined handle for standard output (1) to send text to the screen, so that any redirection 
requested by the user on the program's command line will be honored If the program 
needs to circumvent redirection and ensure that its output goes to the screen, it can eithe1 
use the predefined handle for standard error (2) or explicitly open the CON device with 
lnte1rnpt 21H Function 3DH and use the resulting handle for its write operations 

The handle technique for displaying text has several advantages over the traditional 
calls Fir st, the length of the string to be displayed is passed as an explicit parameter, so 
the string need not contain a special terminating character and the$ character can be dis­
played as part of the st1ing Second, the traditional calls are translated to handle calls 
inside MS-DOS, so the handle calls have less internal overhead and are generally faster 
Finally, use of the handle Write File or Device function to display text is symmetric with 
the methods the program must use to access its files In short, the traditional functions 
should be avoided unless the program must be capable of running under MS-DOS ver-

sions 1 x 

Contt'olling the scr·een 
One of the deficiencies of the standard MS-DOS CON device d1ive1 is the lack of screen­
control capabilities Ihe default CON driver has no built-in routines to support cursor 
placement, screen clearing, display mode selection, and so on 

158 

In MS-DOS versions 2 .0 and later, an optional replacement CON driver is supplied in the 
file ANSI SYS. This driver contains most of the screen-control capabilities needed by text­
or iented application programs The driver is installed by adding a DEVICE directive to the 

The MS-DOS Encyclopedia 
-~ 

Article 5: Character Device Input and Output 

CONFIGSYS file and restarting the system When ANSI SYS ·s t' . ·r h . . . · · I ac 1ve, a program can 
~os~ 10.n t e curs~r, tnquue about the current cursor position, select foreground and 

ac g1ound co:o~s, an~ clear the current line or the entire screen by sendin an esca e 
sequence consisting of the ASCII Esc character (lBH) followed b · fug · p specifi . . th Y va11ous nct1on-

c parameters to e standard output device 5ee USER COMMANDS: ANSI SYS 

Pro~iams that use the ANSISYS capabilities for screen control are portable to any MS-DOS 
imp ementallon that contains the ANSI SYS driver Programs that seek improved £ . 
mance by calling the ROM BIOS video d1iver or by assuming direct control of theph~r~~­
war~dare nebcessanly less po1table and usually require modification when new PC models 
or v1 eo su systems are released 

Role of' the ROM BIOS 

I he video subsystems in IBM PCs and compatibles use a hybrid of memor -ma ed and 
port-add1essed 1/0 A range of the machine's memory addresses is typicali res~;'ved for a 
video rdresh buffer th_at holds the character codes and attributes to be displayed on the 
scree_n, _the cursrn pos1l!on, display mode, palettes, and similar global displa charc 
actenst1cs are governed by writing control values to specific I/0 prnts y 

IheROMBIOSoflBMPCsand 'bl · · · · EGA VG . compat1 es contains a pnmiuve drive1 fo1 the MDA CGA 
, A, and MCGA video subsystems This driver supports the following functio~s: ' 

• Read or write characters with attributes at any screen position 
• Que1y 01 set the cursor position 
• Clear 01 scroll an arbitrary portion of the screen 
• Select palette, background, foreground, and border colors 
• Querhy or setdthe display mode ( 40-column text, SO-column text all-points-addressable 

grap 1cs, an so on) ' 
• Read or write a pixel at any screen coordinate 

;h~~';1';ctions are invoked by a program through software Interrupt lOH See Appendix 
· . CfB~OS Calls In PC-DOS-compatible implementations of MS-DOS the display 

portions o t e MS-DOS CON and ANSI SYS drivers use these ROM BIOS r~utines Vide 
~ubsys~em_s that are not IBM compatible either must contain their own ROM BIOS o1 mot 

e_ use with an installable device drive1 that captures Interrupt lOH and . 'd us 
pr1ate support functions prov1 es appro-

T'ext-only application programs should avoid use of the ROM BIOS fu t' d' 
access to the h d h nc ions or 1rect 

ar ware w enever possible, to ensure maximum portabili between 
MS-DOS systems However because the MS-DOS CON d .· · ty d . . ' river contains no support for bit-
~a\;e ·Jraph1cs, graphically oiiented applications usually must resort to direct control 
o t e vi eo adapter and its refresh buffe1 fo1 speed and precision 

Section 11 Programming in the MS'-DOS Environment 159 

Canon Exhibit 1108



Part B: Programming for MS-DOS 

Display pmgramming examples . . e 
t lOH function to write an astensk character to th 

Example. Use the ROM BIOS Intenuodp Bl t also be set to the desired foreground 
display in text mode (In graphics m e, mus 

color) 

mov ah,Oeh 
subfunction OEH = write character 

in teletype mode 

Al = character to display 
al, '*' 

mov select displqy page O 
mov bh,0 . transfer to ~OM BIOS video driver 
int 1 Oh • 

. . l f ion to write an asterisk character to the dis-
Examplec Use the MS-DOS trad1t1~n~. ~~t t d during the output and standard output is 
play Iftheuser'sentryofaContro- ts el~ e t' handlerwhoseaddressisfound 
in cooked mode, MS-DOS calls the Contra - excep ion 

in the vector for Interrupt 23H 

mov 

mov 

ah,02h 

dl, '*' 
int 21h 

function 02H = display character 

DL = character to display 

transfer to MS-DOS 

Example Use the MS-DOS traditiondal fu~ctio~ ~~;::~ :~~~~h~ ~~=rd:~~~:~ ar;:n~~E~\f 
is te1minated by the $ character an can em e 
standard output is in cooked mode 

msg db 

mov 

mov 

mov 

mov 

, I his is a test message'' '$' 

dx, seg msg 

ds,dx 
dx,offset msg 

ah, 09h 

DS:DX = address of text 

to display 

function 09H = display string 

. transfer to MS-DOS 
int 21h ' 

d Write File or Device function and the predefined 
Example Use the MS-DOS handle-base. h d' lay output can be interrupted by the 
h die for standard output to wnte a str mg to t e tsp 
u:r's entry of a Control-C if standard output is in cooked mode 

msg db 
'Ihis is a test message' 

msg_len equ $-msg 

mov dx, seg msg 

mov ds,dx 

mov dx, offset 

mov cx,msg_len 

mov bx, 1 

mov ah, 40h 

int 21h 

160 7'he MS'-DOS Encyclopedia 

msg 

DS:DX = address of text 

to display 

ex = length of text 
BX = handle for standard output 

function 40H = write file/device 

transfer to MS-DOS 

! 
I 
I 

Article 5: Character Device Input and Output 

The serial communications ports 

Through version 3 2, MS-DOS has built-in supprnt for two serial communications ports, 
identified as CO Ml and COM2, by means of three drivers named AUX, COM!, and COM2 
(AUX is ordinarily an alias for COMl) 

I he traditional MS-DOS method of reading from and writing to the serial ports is through 
Intenupt 21H Function 03H for AUX input and Function 04H for AUX output In MS-DOS 
versions 2 0 and later, the handle-based Read File or Device and Write File or Device func­
tions (Interrnpt 21H Functions .3F H and 40H) can be used to read from or wtite to the aux­
iliary device A program can use the predefined handle for the standard auxiliary device 
(3) with Functions 3FH and 40H, or it can explicitly open the COMl or COM2 devices with 
Interrupt 21H Function 3DH and use the handle obtained from that open operation to 
perform read and write operations 

MS-DOS support for the serial communications port is inadequate in several respects for 
high-performance serial 1/0 applications First, MS-DOS provides no portable way to test 
for the existence or the status of a particular serial port in a system; if a program "opens" 
COM2 and writes data to it and the physical COM2 adapter is not present in the system, the 
program may simply hang Similarly, if the serial prnt exists but no character has been 
received and the program attempts to read a character, the program will hang until one is 
available; there is no traditional function call to check if a character is waiting as there is 
for the keyboard 

MS-DOS also provides no portable method to initialize the communications adapter to a 
particular baud rate, word length, and parity An application must resrnt to ROM BIOS 
calls, manipulate the hardware directly, or rely on the user to configure the prnt properly 
with the MODE command before running the application that uses it The default settings 
for the serial prnt on PC-DOS-compatible systems are 2400 baud, no parity, 1 stop bit, and 
8 databits S'ee USER COMMANDS: MODE 

A mrne serious problem with the default MS-DOS auxiliary device driver in IBM PCs and 
compatibles, however, is that it is not interrupt driven Accordingly, when baud rates above 
1200 are selected, characters can be lost during time-consuming operations performed by 
the drivers for other devices, such as clearing the screen or reading or writing a floppy-disk 
sector Because the MS-DOS AUX device driver typically relies on the ROM BIOS serial prnt 
driver (accessed through software Interrupt 14H) and because the ROM BIOS driver is not 
interrupt driven either, bypassing MS-DOS and calling the ROM BIOS functions does not 
usually improve matters 

Because of all the problems just described, telecommunications application programs 
commonly take over complete control of the serial port and supply their own interrupt 
handler and internal buffering for character read and write operations See PROGRAM­
MING IN I HE MS-DOS ENVIRONMENT: PROGRAMMING FOR MS-Dos: Interrupt-Driven 
Communications 

Section II. Programming in the MS-DOS Environment 161 
Canon Exhibit 1108



Part B: Programming for MS-DOS 

Serial por1: pr'Ogr·arnming examples 

Example Use the ROM BIOS serial port driver to write a string to COMl 

msg db 

msg_len equ 

mov 

mov 

mov 

mov 

mov 

11 : mov 

mov 

int 

inc 

'Ihis is a test message' 

$-msg 

bx,seg msg 

ds,bx 

bx, offset 
cx,msg_len 

dx,O 

al, [bx] 

ah,01h 

14h 

bx 

msg 

i DS:BX address of message 

ex = length of message 

DX = 0 for COM1 

get next character into AL 
subfunction 01H = output 

transfer to ROM BIOS 

loop 11 

bump pointer to output string 

and loop until all chars sent 

Example Use the MS-DOS traditional function for auxiliary device output to write a string 

toCOMl 

msg db 

msg_len equ 

L1: 

mov 

mov 

mov 

mov 

mov 

mov 

int 
inc 

'Ihis is a test message' 

$-msg 

bx,seg msg 

ds,bx 
bx,offset msg 
cx,msg_len 

dl, [bx] 

ah,04h 

21h 

bx 

; set DS:BX address of message 

set ex = length of message 

get next character into DL 
function 04H = auxiliary output 

transfer to MS-DOS 

loop L 1 

bump pointer to output string 

and loop until all chars sent 

l U h Ms Dos handle-based Write File OI Device function and the predefined 
Exampe. set e - . . 
handle for the standard auxiliary device to wnte a stnng to COM! 

msg db 

msg_len equ 

mov 

mov 

mov 

mov 

mov 

mov 
int 

jc 

'Ihis is a test message' 

$-msg 

dx,seg msg 

ds,dx 
dx, offset msg 

cx,msg_ len 

bx,3 

ah,40h 

21h 

error 

DS:DX address of message 

ex =' length of message 
BX= handle for standard aux. 

function 40H = write file/device 

transfer to MS-DOS 
jump if write operation failed 

162 The M5'D0.S Encyclopedia 

I 
I 

I 

I 
I 

I 
I 

I 

Article 5: Character Device Input and Output 

The parallel port and printer 

Most MS-DOS implementations contain device drivers for four printer devices: IPTI, IPT 2, 
IPT3, and PRN. PRN is ordinarily an alias for IPTl and refers to the first parallel output 
port in the system Tb provide for list devices that do not have a parallel interface, the IPT 
devices can be individually redirected with the MODE command to one of the serial com­
munications ports See USER COMMANDS: MODE 

As with the keyboard, the display, and the serial port, MS-DOS allows the printer to be 
accessed with either traditional or handle-based function calls The traditional function 
call is Interrupt 21H Function OSH, which accepts a character in DI and sends it to the 
physical device currently assigned to logical device name IP T 1 

A program can perform handle-based output to the printer with Interrupt 21H Function 
40H (Write File or Device) The predefined handle forthe standard printer (4) can be used 
to send strings to logical device IPTl. Alternatively, the program can issue an open oper­
ation for a specific printer device with Interrupt 21H Function 3DH and use the handle 
obtained from that open operation with Function 40H. This latter method also allows 
more than one printer to be used at a time from the same program 

Because the parallel ports are assumed to be output only, no traditional call exists for 
input from the parallel port In addition, no portable method exists to test printer port 
status under MS-DOS; programs that wish to avoid sending a character to the printer 
adapter when it is not ready or not physically present in the system must test the adapter's 
status by making a call to the ROM BIOS printer driver (by means of software Interrupt 
lIB; 'ee Appendix 0: IBM PC BIOS Calls) or by accessing the hardware directly 

Parallel port pr'Ogrnmming examples 

Example. Use the ROM BIOS printer driver to send a string to the first parallel printer port 

msg db 

msg_len equ 

mov 

mov 

mov 
mov 

mov 

11: mov 

mov 

int 

inc 

loop 

'Ibis is a test message' 
$-msg 

bx, seg msg DS:BX 
cts,bx 

bx, offset msg 

address 

cx,msg_len ex = length of 
dx,O DX = 0 for IPI 1 

of message 

message 

al, [bx] get next character into AI 
ah,OOh subfunction OOH = output 
11h transfer to ROM BIOS 

bx bump pointer to output string 

L1 and loop until all chars. sent 

Section fl Programming in the MS'-DOS Envtronment 163 

Canon Exhibit 1108



Part B: Programming for MS-DOS 

Example Use the traditional MS-DOS function call to send a string to the first parallel 

printer port 

msg db 
msg_len equ 

mov 

mov 
mov 

mov 

11: mov 

mov 

int 

'I'his is a test message' 

S-msg 

bx,seg msg 

ds,bx 
bx,offset msg 

cx,msg_len 

dl, [bx] 

ah,05h 

21h 

; DS:BX address of message 

ex = length of message 

get next character into Dl 
function OSH = printer output 

transfer to MS-DOS 

inc bx 
bump pointer to output string 

and loop until all chars sent 
loop 11 

E 
. 'hl . Use the handle-based MS-DOS Write File or Device call and the predefined 

xam,, e. r d ·. 
handle for the standard printer to send a string to the system ist ev1ce 

db 

msg_len equ 

mov 

mov 

mov 

mov 
mov 

mov 

int 

jc 

'Ihis is a test message' 

$-msg 

dx,seg msg 

ds,dx 
dx,offset msg 

cx,msg_len 

bx,4 

ah,40h 

21h 

error 

os:DX address of message 

ex = length of message 
BX = handle for standard printer 

function 40H = write file/device 

t.r·ansfer to MS-DOS 
jump if write opera~ion failed 

IOCTL 

164 

. 2 0 d later MS-DOS has provided applications with the ability to communi-
In vers10ns . an , f . d nder Jn terr upt 
cate directly with device drivers through a set of sub unctions groupe .u 

· 44H (IOCTl) See SYSTEM CAILS: INTERRUPT 21H: Functton 44H The . 
21H Function h h . t VO needs of applt-
IOCTl subfunctions that are particularly applicable tot e c arac er 

cation programs are 

Subfunction 

OOH 
OlH 
02H 

The MS-D05 Encyclopedia 

Name 

Get Device Data 
Set Device Data 
Receive Control Data from Character Device 

(more) 

i 
' 

Article 5: Character Device Input and Output 

Subfunction Name 

Send Control Data to Character Device 
Check Input Status 
Check Output Status 
Check if Handle is Remote (version 3 J or later) 

03H 
06H 
07H 
OAH 
OCH Generic 1/0 Control for Handles: Get/Set Output Iteration Count 

Various bits in the device information word returned by Subfunction OOH can be tested 
by an application to determine whether a specific handle is associated with a character 
device or a file and whether the driver for the device can process control strings passed by 
SubfUnctions 02H and 03H The device information word also allows the program to test 
whether a character device is the CLOCK$, standard input, standard output, or NUI device 
and whether the device is in raw or cooked mode I he program can then use Subfunction 
OlH to select raw mode or cooked mode for subsequent 1/0 per for med with the handle 

Subfunctions 02H and 03H allow control strings to be passed between the device driver 
and an application; they do not usually result in any physical l/O to the device For exam­
ple, a custom device driver might allow an application program to configure the serial port 
by writing a specific set of control parameters to the driver with Subfunction 03H Simi­
larly, the custom driver might respond to Subfunction 02H by passing the application a 
series of bytes that defines the current configuration and status of the serial port 

Subh.mctions 06H and OIB can be used by application programs to test whether a device is 
ready to accept an output character or has a character ready for input These subfunctions 
are particularly applicable to the serial communications ports and parallel printer ports 
because MS-DOS does not supply traditional function calls to test their status 

Subfllnction OAH can be used to determine whether the character device associated 
with a handle is local or remote- that is, attached to the computer the program is running 
on or attached to another computer on a local area network A program should not or­
dinarily attempt to distinguish between local and remote devices during normal input and 
output, but the information can be useful in attempts to recover from error conditions 
I his subfunction is available only if Microsoft Networks is running 

Finally, Subfunction OCH allows a program to query or set the number of times a device 
driver tries to send output to the printer before assuming the device is not available 

IOCTL programming examples 

Example Use !OCH Subfunction OOH to obtain the device information word for the stan­
dard input handle and save it, and then use Subfunction OlH to place standard input into 
raw mode 

info dw ; save device information word here 

(more) 

Section II Programming in the MS-DO,S Environment 165 
Canon Exhibit 1108



Part B: Programming for MS DOS 

mov ax,4400h 

mov bx,0 

int 21h 

mov info,dx 

or dl,20h 

mov dh,O 

mov ax,4401h 

AH = function 44H, IOCII 
Al = subfunction OOH, get device 

information word 
BX = handle for standard input 

transfer to MS-DOS 
save device information word 

(assumes OS= data segment) 

set raw mode bit 
and clear OH as MS-DOS requires 

AI = subfunction 01H, set device 

information. WOrd 
{BX still contains handle) 

int 21 h ; transfer to MS-DOS 

E 
. •n/e Use !OCH Subfunction 06H to test whether a character is ready for input ofn the 

xam,, if h t . · eady and Al = OOH 1 not 
first serial port The function returns Al = OFFH a c arac er 1s r 

mov ax,4406H 

mov bx, 3 

int 21h 

or al,al 

jnz ready 

166 The MS' DOS Encyclopedia 

AH = function 44H, IOCIL 

Al ~ subfunction 06H, get 

input status 
BX = handle for standard aux 

transfer to MS-DOS 
test status of AUX driver 
jump if input character ready 

else no character is waiting 

Jim Kyle 
Chip Rabinowitz 

Article 6: Interrupt-Driven Communications 

Article6 
Interrupt-Driven Communications 

In the earliest days of personal-computer communications, when speeds were no taster 
than 300 bits per second, primitive programs that moved characters to and from the 
remote system were adequate I he PC had time between characters to deter mine what it 
ought to do next and could spend that time keeping track of the status of the remote 
system 

Modern data-transfer rates, however; are four to eight times taster and leave little or no 
time to spare between characters At 1200 bits per second, as many as three characters can 
be lost in the time required to scroll the display up one line. At such speeds, a technique to 
permit characters to be received and simultaneously displayed becomes necessary 

Mainframe systems have long made use of hardware interrupts to coordinate such 
activities. I he processor goes about its normal activity; when a peripheral device needs 
attention, it sends an interrupt request to the processor The processor interrupts its activ­
ity, services the request, and then goes back to what it was doing. Because the response is 
driven by the request, this type of processing is known as interrupt-driven. It gives the 
effect of doing two things at the same time without requiring two separate processors 

Successful telecommunication with PCs at modern data rates demands an inter1upt-d1iven 
routine fOr data reception. I his article discusses in detail the techniques fo1 interrupt­
driven communications and culminates in two sample program packages. 

I he article begins by establishing the purpose of communications programs and then 
discusses the capability of the simple functions provided by MS-DOS to achieve this goal 
To see what must be done to supplement MS-DOS functions, the hardware (both the 
modem and the serial port) is examined I his leads to a discussion of the method MS-DOS 
has provided since version 2 0 for solving the problems of special hardware interfacing: 
the installable device driver 

With the background established, alternate paths to interrupt-driven communications are 
discussed-one following recommended MS-DOS techniques, the other following stan­
dard indusl! y practice - and programs are developed for each 

Throughout this article, the discussion is restricted to the architecture and BIOS of the IBM 
PC family MS-DOS systems not totally compatible with this architecture may require sub­
stantially different approaches at the detailed level, but the same general principles apply 

Purpose of Communications Programs 

I he prima1 y purpose of any communications program is communicating- that is, tt ans­
mitting information entered as keystrokes (or bytes read from a file) in a form suitable for 

Section II Programming in the MS-DO.S Environment 167 

Canon Exhibit 1108



Part B: Programming for MS-DOS 

transmission to a remote computer via phone lines and, conversely, converting informa­
tion received from the remote computer into a display on the video screen (01· data in a 
file) 

Some years ago, the most abstract form of all communications programs was dubbed a 
modem engine, by analogy to Babbage's analytical engine or the inference-engine model 
used in artificial-intelligence development 1 he functions of the modem engine are com­
mon to all kinds of communications programs, from the simplest to the most complex, 
and can be described in a type of pseudo-C as follows: 

Ihe Modem Engine Pseudocode 

DO { IF (input character is available) 
sencL.it_to_remote; 

IF {remote character is available) 
use_it_locally; 

UNIII (tolcL.to_stop); 

The essence of this modem-engine code is that the absence of an input character, or of a 
character from the remote computer, does not hang the loop in a wait state Rather, the 
engine continues to cycle: If it finds work to do, it does it; if not, the engine keeps looking 

Of course, at times it is desirable to halt the continuous action of the modem engine. For 
example, when receiving a long message, it is nice to be able to pause and read the mes­
sage before the lines scroll into oblivion On the other hand, taking too long to study the 
screen means that incoming characters are lost. The answer is a technique called flow con­
trol, in which a special control character is sent to shut down transmission and some other 
character is later sent to start it up again 

Several conventions for flow control exist One of the most widespread is known as 
XON/XOFF, from the old Ieletype-33 keycap legends for the two control codes involved 
In the original use, XOFF halted the paper tape reader andXON started it going again In 
mid-1967, the General Electric Company began using these signals in its time-sharing com­
puter services to control the flow of data, and the practice rapidly spread throughout the 
industry 

The sample program named ENGINE, shown later in this article, is an almost literal imple­
mentation of the modem-engine approach I his sample represents one extreme of sim­
plicity in communications programs The other sample program, CT ERM C, is much more 
complex, but the modem engine is still at its heart 

Using Simple MS-DOS Functions 

Because MS-DOS provides, among its standard service functions, the capability of sending 
output to or reading input from the device named AUX (which defaults to COM!, the first 

168 Ihe MS-DO.S Encyclopedia 

Article 6: Interrupt-Driven Communications 

serial port on most machines) a first a . . 
MS-DOS functions might look someth~~~~~ ~~~'fo:~memmg the ~odem engine using 
Microsoft Macro Assembler (MASM) code: ow mg mcomp ete fragment of 

;Incomplete (and Unworkable} Implementation 

lOOP: MOV 

INI 

MOV 

MOV 

INI 

MOV 

INI 

MOV 

MOV 

AH,08h 
21h 

DI, Al 
AH,04h 
21h 

AH,03h 
21h 

DL,AI 

AH, 02h 
21h 

read keyboard, no echo 

set up to send 
send to AUX device 

read from AUX device 

set up to send 
send to screen 

INI 

JMP lOOP keep doing it 

Ihe problem with this d · h · · 
board and at the AUX p~~t· ~~:~rraupt itt Vl21HolaFtes th~ keep-looking principle both at the key-

. unction OSH does not t . .1 k 
character is available so no data from th AUX b re urn unti a eyboard 
locally Similarly F~ction 03H wa·t c e h port can e read until a key is pressed 

, i s ror a c aracter to becom ·1 bl f. 
?'ore keys can be recognized locally until the remot e avai a e ram AUX, so_ no 
is received, the loop waits forever e system sends a character If nothing 

Ib. overcome the problem at the ke bo d d . 
a key has been pressed before an a~ ai . en , Functron OBH can be used to determine if 
modification of the fragment: empt is made to read one, as shown in the following 

; Improved, (but Still Unworkable) Implementation 

lOOP: MOV AH,OBh test keyboard for char. INI 21h 
OR AI,Al test for zero 
JZ RMI char no avail, skip MOV AH,08h have char, read it in INI 21h 

MOV Dl,AI set up to send 
MOV AH,04h send to AUX 
INI 21h 

device 

RMI: 

MOV AH, 03h read from AUX 
INI 21h 

device 

MOV 01,AI set up to send 
MDV AH,02h send to screen 
INI 21h 
JMP IOOP keep doing it 

I his code permits any input from AUX to be . . 
be pressed but if AUX . 1 b received without waiting for a lo.cal key to 

' ts sow a out provid. · t h 
checking the keyboard again I hus the . ibnlg mpu , ti e program waits indefinitely before 

, pro em is on y partially solved 

Section 11: Programming in the MS-DO.S Environment 169 Canon Exhibit 1108



Part B: Programming for MS-DOS 

MS-DOS, howeve1, simply does not provide any direct meihod of making Ihe required 
tests for AUX or, for that matte1, any of the serial port devices 1 hat is why communications 
programs must be treated differently from most other types of programs under MS-DOS 
and why such programs must be intimately involved with machine details despite all 

accepted piinciples of portable program design 

The Hardware Involved 
Personal-computer communications require at least two distinct pieces of hardware (sepa­
rate devices, even though they are often combined on a single board) These hardware 
items are the serial po1t, which conve1ts data from the computer~s intexnal bus into a bit 
stream for transmission over a single extexnal line, and the modem, which convexts the bit 
stream into a fo1m suitable for telephone-line (or, sometimes, radio) uansmission 

The modem 
1 he modem (a word coined from MOdulatorcDEModulator) is a device that converts a 
stream of bits, represented as sequential changes of voltage level, into audio frequency sig­
nals suitable for transmission ove1 voice-grade telephone circuits (modulation) and con­
verts these signals back into a stream of bits that duplicates the original input (demodu-

lation) 
Specific characteristics of the audio signals involved were established by AT & I when that 
company monopolized the modem industry, and those characteristics then evolved into 
de facto standards when the monopoly vanished They take several forms, depending on 
the data rate in use; these forms are no1mally identified by the original Bell specification 
numbe1, such as 103 (for 600 bps and below) or 212A (for the 1200 bps standard) 

The data rate is measured in bits pe1 second (bps), often miste1med baud or even "baud 
per second " A baud measures the number of signals per second; as with knot (nautical 
miles pe1 hour), the time reference is built in If one signal change marks one bit, as is true 
for the Bell 103 standard, then baud and bps have equal values However, they are not 
equivalent for more complex signals For example, the Bell 212A diphase standard for 1200 
bps uses two tone sueams, each operating at 600 baud, to u ansmit data at 1200 bits pe1 

second 
For accuracy, this aiticle uses bps, rather than baud, except where widespread industry 
misuse of baud has become standardized (as in "baud rate genera tor") 

Originally, the modem itsell was a box connected to the compute1's serial port via a cable 
Characteristics of this cable, its connectors, and its signals were standardized in the 1960s 
by the Electronic Industries Association (EIA), in Standard RS232C like Ihe Bell standards 
for modems, RS232C has survived almost unchanged Its chaiacteristics aie listed in 

fable 6-1 

170 The ,use DOS Encyclopedia 

Article 6: Interrupt-Driven Commun· . tcat1ons 

Table 6-1, RS232C Signals .. 

DB25Pin 232 Name Description 

1 Safety Ground 
2 BA TXD Transmit Data 
3 BB RXD Receive Data 
4 CA RTS Request fo Send 
5 CB CT'S Cleai To Send 
6 cc DSR Data Set Ready 
7 AB GND Signal Ground 
8 CF DCD Data Ca11ier Detected 

20 CD DIR Data Terminal Ready 
22 CE RI Ring Indicat01 

With the increasing populai ity of personal c . PC's moiherboa.rd and combine Ihe d omdputers, mtemal modems that plug into the 
. .. mo em an a serial port became available 

I he Inst such units were manufactured b H . . 
they created a standaid Funct1'onall thy ayeslCorpomt1on, and like Bell and the EIA y, e 1nterna mode · ·d · ' 
of a serial port, a connecting cable d mis 1 ent1cal to the combination 

' an an exte1 nal modem 

The serial port 

Each serial port of a standaid IBM PC 
Universal Asynchronous Receive1 Tra~~~~ects the rest _at the system to a type INS8250 
oped by National Semiconductor Corporat~~ i~ART~mtegrateddrcuit (IC) chip devel­
the port, is c ip, along with associated circuits in 

1 

2 

3 
4 

Converts data supplied via the system data bus . 
the single IXD output line that r . b' mto a sequence of voltage levels on 
C ep1 esent maiy digits 

onverts data received as a sequence of b. into bytes fm the data bus. mary levels on the single RXD input line 

Controls the modem's actions through the DIR and RTS t r 
ProVIdes status information to the races ., . . o~ put tnes 
modem, via the DSR DCD CT'S pd RI . sor, this mformat1on comes from the 

h 
' ' 'an mput Imes and fr m 'th' h 

w ich signals data available data n d d ' o w1 m t e UAR I itself • ee e , or e1ro1 detected ' 

I he word asynchronous in the name of the IC come f . 
computer data is transmitted each b't' 1 . h' s mm the Bel.! specifications When 

hi 
' t s re at1ons ip to its neighb b 

t scan be done in either of two ways Th . ms must e preserved· . 
1 

e most obvious method · t k h . ' 
su1ct y synchronized with a clock signal of known f. . IS o eep t e bit stream 
tify the bits. Such a transmission is kno h r equency and count the cycles to iden­
sometimes bisync fOr binary syn h . wn. as sync ronous, often abbreviated to synch or 
telepiinters maiks the stait of c hrnbnous The second method, f. irst used with mechanical 

' eac it group with a defined t t b. d h 
or more defined stop bits and it def d . . s ar it an t e end with one ' ines a u1at1on for each bit time Detection of a start bit 

· - · nmronment 171 Section 11 Programming in the MS DOSE . 

Canon Exhibit 1108



Part B: Programming for MS-DOS 

h . al is then sampled at each bit time until 
marks the beginning of a received group;. ti:~: as asynchronous (or just asynch) and is 
the stop bit is encountered This method is 
h used by the standard IBM PC 

t e one . me as that used to indicate binary zero, and the 
The stall bit is, by definition, exactly the sa A ·gnal is often called SPACE, and a 

h t indicating binary one zero s1 
stop bit is the same as t a . d in the teleprinter industry 
one si al is called MARK, from terms use . 

gn . ificant bit of the data is sent first, after the start bit A . 
During transmission, the least sign . ificant bit in the data group, before the stop bit 
parity bit, if used, appears as the rr;ost si8:; tabit except by its position Once the first stop 
or bits· it cannot be distinguished rom a a . lied idling) condition until a new start 

' . . · MARK (someumes ca 
bit is sent, the line I ema1ns in . . 
bit indicates the beginning of another group . d the term word speci-

f . e 8-bit byte at a ume, an 
In most PC uses, the serial po1t trans et s on rd i· s the unit of information sent by 

. h UART world however, a wo . h h' 
fies a 16-bit quantlty Int e his art of the control information set mto t e c ip 
the chip in each chunk The word !en~ 7 p. 8 bits. This discussion follows UART conven­
during setup operations and can be 5' ' 'or 
tions and refers to words, rather than to bytes . 

in PC-to-PC communications but sometimes 
One special type of signal, not often used . BREAK The BREAK is an all-

. . .th mainframe systems, ts a . . 
necessary in commun1cat1ng w1 d t'me including the stop-b. it time 

d f morethanonewor i , d ) 
SPACE condition that exten s or I 150 milliseconds regardless of ata rate. 

. h BREAK to last at east EAK · 
(Many systems require t e 1 d ta chai:actet transmission, the BR is 
Because it cannot be generated by any norma . a Th IBM PC's 8250 UART can generate 

b k . t normal operation e b th 
used to interrupt, or i~a in o,. b determined by a program, rather than y e 
the BREAK signal, but its duration must e 

chip 

Th 8250 UART architecture . . . . e . . ·ver transmitter control cucu1ts, · . f ctional areas: rece1 , ' 
The 8250 UART contains four major un l l . l t d some terms used in the follow-

th seareasarecoseyreae' 
and status circuits .. Because ~ ~ d references to subsequent paragraphs 
ing descriptions ate, of necessity, o1wa1 th R . d 

. . . ft re ister and a data register called e ece1ve 
The major parts of the receiver are a shi g 1· 11 r·eceived data into word-parallel 

if . t assembles sequen ia y h 
Data Register 1 he sh t regis er . 't front end at each bit time and, at t e same 
form by shifting the level of the RXD !in~~:~~: register is full, all bits in it are moved av.er 
time shifting p1evious bits oveI When t d 11 . and the bit in the status c1rcu1ts 

' hif · t · s cleare to a zeros, b' 
to the data register, the s t r egis er i . . d ted during receipt of that word, other its 
that indicates data ready is set If an error is etec 
in the status circuits are also set . . 

·tter are a holding register called the Transmit 
Similarly, the major parts of thdransmi h word to be transmitted is transferred from the 
Holding Register and a shift register Eac 

172 The MS-DOS Encyclopedia 

Article 6: Interrupt-Driven Communications 

data bus to the holding register. If the holding register is not empty when this is done, the 
previous contents are lost. Ihe transmitter's shift register converts word-parallel data into 
bit-serial form for transmission by shifting the most significant bit out to the I XD line once 
each bit time, at the same time shifting lower bits over and shifting in an idling bit at the 
low end of the register When the last databit has been shifted out, any data in the holding 
register is moved to the shift register, the holding register is filled with idling bits in case 
no more data is forthcoming, and the bit in the status circuits that indicates the Transmit 
Holding Register is empty is set to indicate that another word can be transferred. Ihe 
parity bit, if any, and stop bits are added to the transmitted stream after the last databit 
of each word is shifted out 

I he control circuits establish three communications features: first, line control values, 
such as word length, whether or not (and how) parity is checked, and the number of stop 
bits; second, modem control values, such as the state of the D TR and RI S output lines; and 
third, the rate at which data is sent and received These control values are established by 
two 8-bit registers and one 16-bit register, which are addressed as four 8-bit registers I hey 
are the line Control Register (LCR), the Modem Control Register (MCR), and the 16-bit 
BRG Divisor latch, addressed as BaudO and Baudl 

1 he BRG Divisor latch sets the data rate by defining the bit time produced by the Pro­
grammable Baud Rate Generator (PBRG), a major part of the control circuits The PBRG 
can provide any data speed from a few bits per second to 38400 bps; in the BIOS of the 
IBM PC, PC/XI: and PC/A'.I: though, only the range 110 through 9600 bps is supported 
How the 1 CR and the MCR establish their control values, how the PBRG is programmed, 
and how interrupts are enabled are discussed later 

The fourth major area in the 8250 UART: the status circuits, records (in a pair of status 
registers) the conditions in the receive and transmit circuits, any errors that are detected, 
and any change in state of the RS232C input lines from the modem When any status regis­
ter's content changes, an interrupt request, if' enabled, is generated to notify the rest of the 
PC system This approach lets the PC attend to other matters without having to continually 
monitor the status of the serial port, yet it assures immediate action when something does 
occur 

fhe 8250 programming interface 

Not all the registers mentioned in the preceding section are accessible to programmers 
The shift registers, for example, can be read from or written to only by the 8250's internal 
circuits I here are 10 registers available to the programmer, and they are accessed by only 
seven distinct addresses (shown in fable 6-2) The Received Data Register and the 
Transmit Holding Register share a single address (a read gets the received data; a write 
goes to the holding register) In addition, both this address and that of the Interrupt Enable 
Register (!ER) are shared with the PBRG Divisor latch A bit in the line Control Register 
called the Divisor latch Access Bit (DIAB) determines which register is addressed at any 
specific time 

Section II Programming in the M.S-DO.S Environment 173 

---------------
Canon Exhibit 1108



Part B: Programming for MS-DOS 

In the IBM PC, the seven addresses used by the 8250 are selected by the low 3 bits of the 
port number (the higher bits select the specific port) Thus, each serial port occupies eight 
positions in the address space However, only the lowest address used - the one in which 
the low 3 bits are all 0-need be remembered in order to access all eight addresses 

Because of this, any serial port in the PC is referred to by an address that, in hexadecimal 
notation, ends with either 0 or 8: I he COMl port normally uses address 03FSH, and COM2 
uses 02FSH This lowest port address is usually called the base port address, and each 
addressable register is then referenced as an offset from this base value, as shown in 

fable 6-2 · 

fable 6-2 .. 8250 Port Offsets from Base Adth'ess .. 

Offset Name 

IfDIAB bit in lCR = 0: 
OOH DAI:A. 

OlH !ER 

If DLAB bit in l CR= 1: 
OOH BaudO 
OlH Baudl 

Not affected by DI AB bit: 
02H IID 
03H lCR 
04H MCR 
05H lSR 
06H MSR 

Description 

Received Data Register if 
read from, Transmit Holding 
Register if written to 

Int en upt Enable Register 

BRG Divisor 1 atch, low byte 
BRG Divisor latch, high byte 

Int en upt Identifier Register 
Line Control Register 
Modem Control Register 
1 ine Status Register 
Modem Status Register 

The contr'ol cfrcuits 
The control circuits of the 8250 include the Programmable Baud Rate Generator (PBRG), 
the line Control Register (LCR), the Modem Control Register (MCR), and the Intenupt En-

able Register (!ER} 
The PBRG establishes the bit time used for both nansmitting and receiving data by divid­
ing an external clock signal. fo select a desired bit rate, the appropriate divisor is loaded 
into the PBRG's 16-bit Divisor latch by setting the Divisor Latch Access Bit (Dl AB) in the 
line Connol Register to 1 (which changes the functions of addresses 0 and 1) and then 
writing the divisor into BaudO and Baudl After the bit rate is selected, Dl AB is changed 
back to 0, to permit normal operation of the DAT:A. registers and the !ER 

17 4 The MS-DOS Encyclopedia 

.l 

Article 6: Interrupt-Driven Communications 

With the 1 8432 MHz external UART clock fre uen . 
divisor values (in decimal notation) for bit rat! be::::~~~ st~dard IBM systems, 
fable 6-.3 These speeds are establish db 1 an 38400 bps are listed in e y a crysta contained in the . 1 ( . 
modem) and are totally unrelated to th d 1· h sena port .or internal e spee o t e processor's clock 

Table 6-3 .. Bit Rate Divisor Table for 8250/IBM. 

BPS Divisor· 

45 5 2532 
50 2304 
75 1536 

110 1047 
1345 857 
150 768 
300 384 
600 192 

1200 96 
1800 64 
2000 58 
2400 48 
4800 24 
9600 12 

19200 6 
38400 3 

I he remaining control circuits are the I ine Control R . 
and the Interrupt Enable Register Bits in the l CR con~:C:~:~r, the.Modem Control Register, 
transmission of the BREAK . 

1 
. . e assignment of offsets O and 1 

srgna , panty generation then b f b. ' 
length sent and received, as shown in Table 6-4 , um er o stop rts, and the word 

Table 6-4. 8250 line Control Register· Bit Values .. 

Bit 

Address Control: 
7 

BREAK Control: 
6 

Name 

DIAB 

SEIBRK 

Binary 

xO:xxxxxx 
xlxxxxxx 

Meaning 

Offset 0 refers to DATA 
offset 1 refers to !ER ' 

Offsets 0 and 1 refer to 
BRG Divisor latch 

Normal UART operation 
Send BREAK signal 

(more) 

Section 11 Programming tn the MS-DOS Environment 175 

Canon Exhibit 1108



Part B: Programming for MS-DOS 

Table 6-4. Continued 

Bit Name Binar'Y Meaning 

Parity Checking: 
5,4,3 GENPAR xxxxOxxx 

xxOOl= 
xxOll= 
xxlOl=· 
xxlll= 

No paiity bit 
Patity bit is ODD 
Parity bit is EVEN 
Patity bit is 1 
Paiity bit is 0 

Stop Bits: 
2 

Word Length: 
1,0 

XSTOP 

WD5 
WD6 
WD7 
WD8 

xx=Oxx 
xx=lxx 

==00 
==01 
==10 
==11 

Only 1 stop bit 
2 stop bits 

(15ifW1=5) 

word length = 5 
Word length = 6 
Word length = 7 
Word length = 8 

r DTR and RTS· two other MCR bits 
Two bits in the MGR (Table 6-5) co~tr~:~r: ~~::signed by the ~ser; a fifth bit CT EST) 
(OUTI and OUT2) at·e left free bydt ef . f The upper 3 bits have no effect on the 
puts the UART into a self-test mo e o opera i~n 
UART The MGR can be both read from and wntten to 

. . d . h IBM PC OUil is used by Hayes internal 
Both of the user-assignable bits at·e dfefhme mt :t OUT2 controls the passage of UART-

wer on reset o t eir cucu1 s; 
modems to cause a po - . he rest of the PC Unless OUT2 is setto 1, interrupt 
generated intenupt request signals to~ . f th PC even though all other contrnls ate 
signals from the .UART ca~not reach t:; ~~~ ob~urely, in the IBM Technical Reference 
properly set. This feature is docudmen . , h f . itis easy to overlook when writing an 
manuals and the asynchronous-a apter ~ ema ic, 
intenupt-driven program for these machmes 

Table 6-5 .. 8250 Modem Control Registet· Bit Values .. 

Name 

TEST 
OUT2 
OUTl 
RTS 
DTR 

Binar·y 

=lxxxx 
xxxxl= 
xx=lxx 
==lx 
=1 

176 The MS' DOS Encyclopedia 

Description 

Tums on UART self-test configuration 
Contrnls 8250 inten upt signals (User2 Output) 
Resets Hayes 1200b internal modem (Userl Output) 
Sets RT S output to RS232C connector 
Sets DT R output to RS232C connector. 

:r,· 
I 
i 

I 
I 
I 

Article 6: Interrupt-Driven Communications 

The 8250 can generate any or all of four classes of interrupts, each individually enabled or 
disabled by setting the appropriate control bit in the Interrupt Enable Register (Table 6-6) 
Thus, setting the !ER to OOH disables all the UART interrupts within the 8250 without 
regard to any other settings, such as OUT2, system interrupt masking, or the Cll/SII com­
mands. The !ER can be both read from and written to. Only the low 4 bits have any effect 
on the UART 

Table 6-6 .. 8250 Intenupt Enable Register Constants .. 

Binar-y 

xxxxlxxx 
xxxxxlxx 
xxxxxxlx 
xxxxxxxl 

Action 

Enable Modem Status Interrupt 
Enable I ine Status Int en upt 
Enable Tiansmit Register Interrupt 
Enable Received Data Ready Interrupt 

The status circuits 

I he status circuits of the 8250 include the I ine Status Register (I.SR), the Modem Status 
Register (MSR), the Interrupt Identifier (IID) Register, and the interrupt-request generation 
system 

The 8250 includes circuitry that detects a received BREAK signal and also detects three 
classes of data-reception errors Separate bits in the ISR (Table 6-7) ate set to indicate that 
a BREAK has been received and to indicate any of the following: a patity error (if lateral 
parity is in use), a framing e1ro1 (incoming bit= 0 at stop-bit time), 01 an over1un error 
(word not yet read from receive buffer by the time the next word must be moved into it) 

The remaining bits of the ISR indicate the status of the Transmit Shift Register, the 
Transmit Holding Register, and the Received Data Register; the most significant bit of the 
I SR is not used and is always 0 The I SR is a read-only register; writing to it has no effect 

Table 6-7 .. 8250 line Status Register· Bit Values .. 

Bit Binar-y Meaning 

7 Oxxxxxxx Always zero 
6 xlxxxxxx Transmit Shift Register empty 
5 xxlxxxxx Transmit Holding Register empty 
4 xxxlxxxx BREAK received 
3 xxxxlxxx Framing error 
2 xxxxxlxx Parity error 
1 xxxxxxlx Overrun error 
0 xxxxxxxl Received data ready 

Section II Programming in the MS-DOS Environment 177 
Canon Exhibit 1108



Part B: Programming for MS-DOS 

The MSR (Table 6-8) monitors the four RS232C lines that report modem s~atus The upper 
4 bits of this register indicate the voltage level of the associated RS232C !me; the lower 4 
bits indicate that the voltage level has changed since the register was last read 

Table 6-8.. 8250 Modem Status Register Bit Values. 

Bit Binary Meaning 

7 lxxxxxxx Data CaJrier Detected (DCD) level 

6 xlxxxx:xx Ring Indicator (RI) level 

5 xxlxxxxx Data Set Ready (DSR) level 

4 xxxlxxxx Clear Tb Send (CTS) level 

3 xxxxlxxx DCDchange 

2 xx:xxxlxx RI change 

1 xxxx:xxlx DSRchange 

0 xxxxxxxl CT'S change 

As mentioned previously, four types of intenupts are generated The fourtypes are iden­
tified by flag values in the !ID Register (Table 6-9) These flags are set as follows: 

• Change of any bit value in the MSR sets the modem status flag . 
• Setting of the BREAK Received bit or any of the three el!or bits in the 1 SR sets the lme 

status flag . . h . · fl 
• Setting of the Transmit Holding Register Empty bit m the 1 SR sets t e ti ansm1t ag 
• Setting of the Received Data Ready bit in the 1 SR sets the 1ece1ve flag 

The !ID register indicates the interrupt type, even though the !ER may be disabling that 
type of interrupt from generating any request The !ID is a read-only reg1ste1; attempts to 

write to it have no effect 

Table 6-9 8250 Intenupt Identification and Causes,. 

IIDcontent 

xxxxxxxlB 
xxxxxOOOB 
xxxxxOlOB 

xxxxxlOOB 
xxxxxllOB 

Meaning 

No inte1r upt active 
Modem Status Interrupt; bit changed in MSR . 
n ansmit Register In ten upt; Transmit Holding Register empty, bit 

set in ISR . . 
Received Data Ready Intenupt; Data Register full, bit set m 1 SR 
1 ine Status In ten upt; BREAK or e1ro1 bit set in 1 SR 

As shown in fable 6-9, an all-zero value (which in most of the other registers is a totally 
disabling condition) means that a Modem Status Interrupt cond1uon has not yet been .ser" 

· ced. A modem need not be connected, however, for a Modem Status Interrupt cond1t1on 
~~ occw; all that is required is for one of the RS232C non-data input lines to change state, 

thus changing the MSR 

178 The MS-DOS Encyclopedia 

T 
I 
i 

Article 6: Interrupt-Driven Communications 

Whenever a flag is set in the !ID, the UART interrupt-request generator will, if enabled 
by the UART programming, generate an interrupt request to the processor Two or more 
interrupts can be active at the same time; if so, more than one flag in the IID register is set 

The !ID flag for each interrupt type (and the ISR or MSR bits associated with it) clears 
when the corresponding register is read (or, in one case, written to) FOr example, reading 
the content of the MSR clears the modem status flag; writing a byte to the DATA register 
clears the transmit flag; reading the DATA register clears the receive flag; reading the 1 SR 
clears the line status flag. The ISR or MSR bit does not clear until it has been read; the !ID 
flag clears with the 1 SR or MSR bit 

Programming the UART 

Each time power is applied, any serial-interface device must be programmed before it is 
used This programming can be done by the computer's bootstrap sequence or as a part of 
the prnt initialization routines performed when a port driver is installed Often, both tech­
niques are used: The bootstrap provides default conditions, and these can be modified 
during initialization to meet the needs of each port d1 ive1 used in a session. 

When the 8250 chip is programmed, the BRG Divisor Latch should be set for the proper 
baud rate, the ICR and MCR should be loaded, the IER should be set, and all internal inter­
rupt requests and the receive buffer should be cleared The sequence in which these are 
done is not especially critical, but any pending interrupt requests should be cleared before 
they are permitted to pass on to the rest of the PC· 

The following sample code performs these staitup actions, setting up the chip in device 
COMl (at port 03F8H) to operate at 1200 bps with a word length of 8 bits, no parity check­
ing, and all UART intenupts enabled (Jn practical code, all values for addresses and 
operating conditions would not be built in; these values aJe included in the example to 
clarify what is being done at each step ) 

MOV DX, 03FBh base port COM1 (03F8} + LCR ( 3) 
MOV Al,080h enable Divisor latch 
OU! DX, Al 
MOV DX,03F8h 'et for BaudO 
MOV AX,96 'et divisor to 1200 bp' 
OU! DX,AI 
INC ox to offset 1 for Baud1 
MOV AL,AH high byte of divisor 
OU! DX,AI 
MOV DX,03FBh back to the ICR offset 
MOV AI,03 DIAB O, Parity ~ N, WI 8 
OUI DX,AL 
MDV DX, 03F 9h offset 1 for IER 
MOV AI, OFh enable all in ts in 8250 
OUI DX, Al 
MOV DX, 03FCh COM1 + MCR { 4) 

MOV AI,OBh OUI2 + RIS + DIR bits 
QUI DX,AI 

(more) 

Section 11 Programming in the MS-DOS Envir'Onment 179 
Canon Exhibit 1108



Part B: Programming for MS-DOS 

CIRGS: 

MOV DX,03FDh clear LSR 

IN Al,DX 

MOV DX,03F8h clear RX reg 

IN AL,DX 

MOV DX, 03FEh clear MSR 

IN Al,DX 

MOV DX,03FAh IID reg 

IN Al,DX 

IN Al,DX repeat to be sure 

IESI Al, 1 int pendingc? 

JZ CIRGS yes, repeat 

Note: This code does not completely set up the IBM serial port Although it fully programs 
the 8250 itself, additional work remains to be done The system mtenupt vectors must be 
changed to provide linkage to the interrupt service routine (JSR) code, and the 8259 
Priority Interrupt Controller (PIC) chip must also be programmed to respond to mtenupt 
requests from the UART channels See PROGRAMMING IN THE MS-DOS ENVIRON­
MENT: CusroMIZING MS-DOS: Hard'W3.re Interrupt Handlers 

Device Drivers 
All versions of MS-DOS since z .0 have permitted the installation of user-provided device 
drivers From the standpoint of operating-system theory, using such drivers 1s the ~roper 
way to handle generic communications interfacing The following paragraphs are intended 
as a refresher and to explain this article's departure from standard dev1ce-dr1ver terminol­
ogy See PROGRAMMING IN THE MS-DOS ENVIRONMENT: CusroMrZrNG MS-DOS: 

Installable Device Drivers 

An installable device driver consists of (1) a driver header that links the driver to . 

h · h ha" · ta1·ned by MS-DOS tells the system the characteust1cs of this spe-ot ers1nt ec 1nma1n , . 
cific driver, provides pointers to the two major routines contained in the driver; and (for a 
character-device driver) identifies the driver by name; (2) any data and storage space the 
driver may require; and (3) the two major code routines 

The code routines are called the Strategy routine and the Interrupt routine. in normal 
device-driver descriptions Neither has any connection with the hardware 1nterru~ts d~alt 
with by the drivers presented in this article Becaus.e of this, the term Request routine is 
used instead of Interrupt routine, so that hardware interrupt co~e can be called an 
interrupt service routine (ISR) with minimal chances for confusion 

MS-DOS communicates with a device driver by reserving space for a. com~and packet 
of as many as 22 bytes and by passing this packet's address to the dnver with. a call to the 
Strategy routine All data transfer between MS-DOS and the driver, in.both duectrons, 

ccurs via this command packet and the Request routine The aper at1ng system places a 
~ommand code and, optionally, a byte count and a buffer address into the packet at the 
specified locations, then calls the Request routine The driver performs the command 
and returns the status (and sometimes a byte count) 1n the packet 

180 The MS-D05 Encyclopedia 

"f"·· 

I Article 6: Interrupt-Driven Communications 

Two Alternative Approaches 

Now that the factors involved in creating interrupt-driven communications programs have 
been discussed, they can be put together into practical program packages Doing so brings 
out not only general principles but also minor details that make the difference between 
success and failure of program design in this hardware-dependent and time-critical ar·ea 

The traditional way: Going it alone 

Because MS-DOS pro-Vides no generic functions suitable fOr communications use, virtually 
all popular communications programs provide and install their own port driver code, and 
then remove it before returning to MS-DOS. This approach entails the creation of a com­
munications handler for each program and requires the "uninstallation" of the handler on 
exit from the program that uses it Despite the extra requirements, most communications 
programs use this method 

The alternative: Creating a communications device driver 

Instead of providing temporary interface code that must be removed from the system 
before returning to the command level, an installable device driver can be built as a 
replacement for COMx so that every program can have all features However, this 
approach is not compatible with existing terminal programs because it has never been a 
part of MS-DOS 

Comparison of the two methods 

I he traditional approach has several advantages, the most obvious being that the driver 
code can be fully tailored to the needs of the program Because only one program will 
ever use the driver, no general cases need be considered 

However, if a user wants to keep communications capability available in a terminate-and­
stay-resident (TSR) module for background use and also wants a different type of commu­
nications program running in the foreground (not, of course, while the background task is 
using the port), the background program and the foreground job must each have its own 
separate driver code And, because such code usually includes buffer areas, the duplicated 
drivers represent wasted resources 

A single communications device driver that is installed when the system powers up and 
that remains active until shutdown avoids wasting resources by allowing both the back­
ground and fOreground tasks to share the driver code Until such drivers are common, 
however, it is unlikely that commercial software will be able to make use of them In addi­
tion, such a driver must either provide totally general capabilities or it must include control 
interfaces so each user program can dynamically alter the driver to suit its needs 

At this time, the use of a single driver is an interesting exercise rather than a practical 
application, although a possible exception is a dedicated system in which all software is 
either custom designed or specially modified In such a system, the generalized driver 
can provide significant improvement in the efficiency of resource allocation 

5ection II. Programming in the MS-DOS Environment 181 
Canon Exhibit 1108



Part B: Programming for MS-DOS 

A Device-Driver Program Package 
Despite the limitations mentioned in the preceding section, the first of the two complete 
packages in this article uses the concept of a separnte device driver The driver handles all 
hardware-dependent interfacing and thus permits extreme simplicity in all other modules 
of the package. This approach is presented first because it is especially well suited for in­
troducing the concepts of communications programs. However, the package is not merely 
a tutorial device: It includes some features that are .. not available in most commercial 

programs 
The package itself consists of three separate programs First is the device driver, which 
becomes a part of MS-DOS via the CONFIG SYS file Second is the modem engine, which 
is the actual terminal program (A functionally similar component forms the heart of every 
communications program, whether it is written in assembly language or a high-level lan­
guage and regardless of the machine or operating system in use) Third is a separately exe­
cuted support program that permits changing such driver characteristics as word length, 

parity, and baud rate 
In most programs that use the traditional approach, the driver and the support program 
are combined with the modem engine in a single unit and the resulting mass of detail 
obscures the essential simplicity of each part Here, the parts are presented as separate 

modules to emphasize that simplicity 

The device driver: COMDVR.ASM 
I he device driver is written to augment the default COM! and COM2 devices with other 
devices named ASYl and ASY2 that use the same physical hardware but are logically sepa­
rate I he driver ( COMDVR ASM) is implemented in MASM and is shown in the listing in 
Figure 6-1 Although the driver is written basically as a skeleton, it is designed to permit 
extensive expansion and can be used as a general-purpose sample of device-driver 

source code 

The code 

182 

1 

2 

3 
4 

5 

6 

7 

8 

9 

1 0 

11 
12 
13 

Iitle 

Subttl 

Dbg 

COMDVR Driver for IBM COM Ports 

Jim Kyle, 1 987 
Based on ideas from many sources 

including Mike Higgins, CIM March 1985; 
public-domain INIBIOS program from BBS's; 
COMBIOS COM fr:om CIS Prograrruners' SIG: and 

ADVANCED MS-DOS by Ray Duncan 

MS-DOS Driver Definitions 

corrunent * Ihis corrunents out the Dbg macro 
Macro ltr1,Ltr2,Itr3 used only to debug driver 

local Xxx 
; save all regs used 

Push 

Figure 6-1 COMDVR ASil1 

The .i11:S-D0.S Encyclopedia 

(more) 

I 
I 
I 
I 
I 
! 

14 
15 
1 6 
1 7 

18 
19 
20 
21 
22 
23 
24 
25 
26 
27 

28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 

45 
46 
47 

48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 

Xxx: 

DevChr 
Dev Elk 
Devioc 
Dev Non 
DevorB 
DevOCR 
DevX32 
DevSpc 
DevClk 
DevNul 
DevSto 
DevSti 

StsErr 
StsBsy 
StsDne 

ErrWp 
ErrUu 
ErrDnr 
ErrUc 
ErrCrc 
ErrBsl 
ErrSl 
Err Um 
ErrSnf 
Err Pop 
Err:Wf 

Push 
Push 
Les 

Mov 

Mov 

Stosw 
Mov 

Stosw 
Mov 

Stosw 
Cmp 

Jb 

Xor 

Mov 

Pop 

Pop 

Pop 

Endm 

• 

Equ 

Equ 

Equ 

Equ 

Equ 

Equ 

Equ 

Equ 

Equ 

Equ 

Equ 

Equ 

Equ 

Equ 

Equ 

Equ 

Equ 

Equ 

Equ 

Equ 
Equ 

Equ 
Equ 

Equ 

Equ 

Equ 

Figure6-1 Continued 

Article 6: Interrupt-Driven Communications 

Di 

Ax 
Di,Cs:Dbgptr 
Ax, Es: [di] 
Al, I tr1 

get pointer to CRI 

move in letters 

Al, Ltr2 

Al,Itr3 

Di, 1600 
Xxx 
Di,Di 

; top 10 lines only 

Word Ptr Cs:Dbgptr,Di 
Ax 
Di 

Es 

Device 
BOO Oh 
OOOOh 
4000h 
2000h 
2000h 
0800h 
0040h 
0010h 
0008h 
0004h 
0002h 
0001h 

asterisk ends corrunented-out region 

Iype Codes 
this is a character device 
this is a block (disk) device 
this device accepts IOCIL requests 
non-IBM disk driver (block only) 
MS-DOS 3 x o t · u until busy supported (char) 
MS-DOS 3 x open/ l I c ose rm sunported 
MS-DOS 3 2 functions suppor~ed 
accepts special interrupt 29H 
this is the CI,QCK device 
this is the NUL device 
this is standard output 
this is standard input 

Error Status BIIS 

BOO Oh 
0200h 
0100h 

general error 
device busy 
request completed 

Error Reason values for lower-order bits 
O write protect error 

2 

3 
4 

5 
6 

7 

8 

9 

1 0 

unknown unit 
drive not ready 
unknown command 
cyclical redundancy check err.or 
bad drive request structure length 
seek error 
unknown media 
sector not found 
printer out of paper 
write fault 

, - , nvironment Section fl· Programming in the Ms· DOSE' , 

(more) 

183 

Canon Exhibit 1108



Part B: Programming for MS-DOS 

184 

Err Rf Equ 

ErrGf Equ 

11 

12 

read fault 
general failure 

65 

66 
67 

68 

69 

Structure of an I/O request packet header 

70 
71 
72 
73 
74 
75 
76 

77 

78 
79 
80 

81 

82 

83 

Pack 

Len 
Prtno 

Code 

Stat 
Do sq 

Devq 

Media 

Xfer 

Xseg 

count 

Struc 

Db 
Db 
Db 
ow 
Dd 

Dd 
Db 
Dw 

Dw 

Dw 

Sector Dw 

Pack Ends 

? 

length of record 

unit code 

command code 

return status 
{unused MS-DOS queue link pointer) 

(unused driver queue link pointer) 

media code on read/write 

xfer address offset 

xfer address segment 

transfer byte count 
starting sector value {block only) 

84 Subttl IBM-PC Hardware Driver Definitions 

85 page 

86 

87 

88 

89 

90 

91 

92 

93 
94 

95 

96 

97 

98 
99 

100 

101 

102 

103 
104 

105 

106 
1 0 7 

108 
109 
110 

111 

112 

113 

114 
115 

PIC__b 

PIC_e 

EOI 

RxBuf 

Baud1 

IntEn 

Int Id 
lctrl 

Mctrl 

I stat 

Mstat 

Equ 

Equ 

Equ 

Equ 

Equ 

Equ 

Equ 

Equ 

Equ 

Equ 

Equ 

Dlab Equ 

SetBrk Equ 

StkPar Equ 
EvnPar Equ 

GenPar Equ 

Xstop Equ 

Wd8 Equ 

Wd7 

Wd6 

xsre 

xhre 

Equ 

Equ 

Equ 

Equ 

Figure 6-1 Continued 

The MS-DOS Encyclopedia 

8259 data 

020h 

021h 

020h 

port for EOI 
port for Int enabling 

EOI control word 

8250 port offsets 

OF8h 
RxBuf+1 

RxBuf+1 

RxBuf+2 

RxBuf+3 
RxBuf+4 

RxBuf+S 

Rx8uf+6 

base address 
baud divisor high byte 
interrupt enable register 
interrupt identification register 

line control register 

modem control register 

line status register 

modem status register 

8250 LCR constants 

1ooooooob 
Q1000000b 

00100000b 
0001oooob 

00001000b 

Q0000100b 

00000011b 

0000001ob 
QOOOOOOlb 

divisor latch access bit 

send break control bit 
stick parity control bit 

even parity bit 
generate parity bit 

extra stop bit 
word length 8 

word length 
word length 

7 

6 

8250 ISR constants 

01000000b 

00100000b 

xmt SR empty 

xmt HR empty 

(more) 

Article 6: Interrupt-Driven Communications 

116 

117 

118 

119 

120 
121 

122 

123 

BrkRcv Equ 

FrmErr Equ 

ParErr Equ 

OveRun Equ 

rd ta Equ 

AnyErr Equ 

124 LpBk Equ 

125 Usr2 Equ 
126 Usr1 Equ 

127 SetRIS Equ 

128 SetDIR Equ 
129 

130 

131 CDlvl Equ 
132 

133 
134 

1 35 
136 
1 3 7 

138 

139 

140 

141 

142 

143 
144 

145 

146 

R!lvl Equ 

o'SRlvl Equ 

CISlvl Equ 

CD chg Equ 

RI chg Equ 

DSRchg Equ 

CISchg Equ 

S_Int Equ 

E_Int Equ 

x_rnt Equ 

R_Int Equ 

Allint Equ 

00010000b 

00001000b 

000001oob 

00000010b 

break received 

framing error 

parity error 

overrun error 
00000001b received data ready 

BrkRcv+FrmErr+ParErr+OveRun 

8250 MCR constants 

00010000b UARl out loops to in (test) 

00001000b 

00000100b 

00000010b 

00000001b 

Gates 8250 interrupts 

aux userl output 

sets RIS output 

sets DIR output 

8250 MSR constants 

10000000b carrier detect level 

01000000b 

001 OOOOOb 

00010000b 

00001000b 

00000100b 

00000010b 
00000001b 

ring indicator level 

DSR level 

CIS level 
Carrier Detect change 

Ring Indicator change 

DSR change 

C'IS change 

8250 IER constants 

00001000b 

00000100b 

00000010b 

00000001b 
0000111 lb 

enable status interrupt 

enable error interrupt 

enable transmit interrupt 

enable receive interrupt 
enable all interrupts 

147 Subttl Definitions for IHIS Driver 
148 page 

149 
150 
151 

1 52 

153 

154 

155 

156 
1 5 7 

158 

159 
160 

1 61 

162 

163 

1 64 
165 

166 

Iinidl Equ 

linxof Equ 

LinDSR Equ 

Liners Equ 

Badlnp Equ 

lostDt Equ 

Offlin Equ 

Figure 6-1 Continued 

Bit definitions for the output status byte 

( this driver only ) 

Offh 

1 

2 

4 

if all bits off, xrnitter is idle 

output is suspended by XOFF 

output is suspended until DSR comes on again 

output is suspended until CIS comes on again 

Bit definitions for the input status byte 

this driver only ) 

1 

2 

4 

input line errors have been detected 
receiver buffer overflowed, data lost 

device is off line now 

Bit definitions for the special characteristics words 

( this driver only ) 

InSpec controls how input from the UARI is treated 

Section IL Programming in the MS-DO,S Environment 

(more) 

185 
Canon Exhibit 1108



Part B: Programming for MS-DOS 

1 6 7 

168 

1 69 
1 70 

1 71 

1 72 

1 73 

1 74 

1 75 
1 16 

1 77 
1 78 

1 7 9 

1 80 

181 

182 

1 83 

184 

1 85 

186 

1 8 7 

188 

189 

190 
191 

192 

1 93 

194 

1 95 

196 

197 

198 

InEpc Equ 

OutOSR Equ 

Outers 

outXon 

outed£ 

Out.Orf 

Unit 

Port 

Vect 

Equ 

Equ 

Equ 

Equ 

St.rue 

Dw 

Dw 

Isradr ow 

OtStat Db 

InStat Db 

InSpec Dw 

Out.Spec Ow 

Baud Dw 

!first Ow 

!avail Ow 

Ibuf Ow 

Ofirst Ow 

oavail ow 

Obuf Ow 

Unit Ends 

0001h 
; errors translate to codes with parity bit on 

OutSpec controls how output to the UARI is treated 

0001h 

0002h 

0004h 

0010h 

0020h 

Wd8 

DSR is used to throttle output data 

CIS is used to throttle output data 

XON/XOFF is used to throttle output data 

carrier detect is off-line signal 

DSR is off-line signal 

each unit has--'i;1. structure defining its state: 

I/0 port address 
interrupt vector offset (NOI interrupt number!} 

offset to interrupt -service routine 

default LCR bit settings during INII, 

output status bits after 

usr2+SetRIS+SetD1R 
MCR bit settings during INII, 

InEpc 

OutXon 

96 

0 

0 

0 

0 

input status bits after 

special mode bits for INPUI 

special mode bits for OUIPUI 
current baud rate divisor value (1200 b} 

offset of first character in input buffer 

offset of next available byte 

pointer to input buffer 
offset of first character in output buffer 

offset of next avail byte in outpu-.:: buffer 

pointer: to output buffer 

Beginning of driver code and data 

199 Driver Segment 
.l\ssume Cs:driver, ds:dr:iver, es:driver 

200 

201 

202 

203 
204 

205 

206 

207 

Org 0 drivers start at 0 

Ow Async2,-1 pointer to next device 
character: device with IOCII 

offset of Strategy routine 
offset of interrupt entry point 

device 1 name 

Ow 
ow 
ow 
Db 

oevChr: + Devioc 

Strtegy 

Request1 

'_l\SY1 

208 Async2: 

209 Ow 
Ow 
ow 
ow 
Db 

-1, -1 

OevChr: + Oevioc 

Strtegy 

Request2 

pointer to next device: MS-DOS fills in 

character device with IOCII 
210 

211 

212 

213 

214 

21 5 ; dbgptr Od 

'ASY2 

ObOOOOOOOh 

offset of Strategy routine 

offset of interrupt entry point 2 

device 2 name 

21 6 

21 1 
Eollowing is the storage area for the request packet pointer 

Figure 6-1 Continued 

186 The MS-DOS Encyclopedia 

(more) 

Article 6: Interrupt-Driven Communications 

PackHd Od 0 

baud rate conversion table 

218 

219 

220 

221 

222 

223 

224 
225 

226 

22 7 

228 

229 

230 

231 

232 

233 

234 

235 
236 

237 

238 
239 

240 

241 

242 

243 

244 

245 

246 

Asy...baudt Ow 

Dw 

Ow 
Dw 

Dw 

Ow 
Ow 
Dw 

Dw 

Ow 
Dw 

Dw 

Dw 

Dw 

Dw 

50,2304 

75, 1536 

11o,1 04 7 

134, 857 

150, 786 

300, 384 

600, 192 

1200, 96 

first value is desired baud rate 

second is divisor register value 

1800, 64 

2000, 58 

2400, 48 

3600, 32 

4800, 24 

7200, 16 

9600, 12 

table of structures 

AS'{1 d~faults to the COM1 port, INI OCH vector XON 
no parity, 8 databits, 1 stop bit and 1200 - , d , 

Asy_tab1: ' oau 

Unit <3f8h,30h,asy1isr,,,,,,,,in1buf,,,out1buf> 

ASY2 defaults to the COM2 oort INI OBH no 't _ · ' vector, XON, 
pari y, 8 databics, 1 stop bit and 1200 baud 

Asy_tab2: - ' 

247 Unit 

248 
249 Bufsiz Equ 

250 Bufmsk 

251 In1buf Db 

252 Out1buf Db 

253 In2buf Db 

254 Out2buf Db 

255 

<2 fSh, 2 ch, asy 2 isr''',,,,, in2buf,,, out2buf> 

256 input buffer: size 

Bufsiz-1 mask for: calcula~ing offsets modulo bufsiz 

Bufsiz DUP (?) 

Bufsiz DUP ( ?) 

Bufsiz OUP ( ?) 

Bufsiz OUP (?} 

256 .., to all the driver functions Following is a table of offset0 

257 
258 Asy_funcs: 

259 
260 

261 

262 

263 
264 

265 

266 

267 
268 

Ow 
Ow 
Dw 

Dw 

Ow 
Ow 
Ow 
Dw 

Dw 

Dw 

Figure 6-1 Continued 

Init 

Mchek 

BldBPB 

Ioctl in 

Read 

Ndread 

Rxstat 

Inflush 

Write 

Write 

0 initialize driver 

1 media 

2 build 

check (block only} 

BPB (block only) 

3 IOCII read 

4 read 

5 nondestructive r:e:'.ld 

6 input status 

7 flush input buffer: 

8 write 

9 write with verify 

(more) 

Section IL Programming in the MS-DOS Envi'ronment 187 

Canon Exhibit 1108



Part B: Programming for MS-DOS 

188 

269 

270 
271 

272 

273 

274 
275 

276 
277 

278 

279 

280 

281 

282 

283 

284 

285 

286 
287 

288 

289 

290 

291 

292 

293 

294 

295 
296 
297 

298 

299 
300 

301 

302 

303 

304 

305 

306 
307 

308 

309 

31 0 
311 

312 

31 3 

31 4 

315 

316 

317 
31 8 

31 9 

Ow 
Ow 
Ow 

Ixstat 

Ixflush 

Ioctlout 

10 output status 
11 flush output buffer 

12 IOCII write 

Following aLe not used in this driver 
Dw zexit 13 open (3 .x only, not used) 

Ow 
Ow 
Ow 
Ow 
Ow 
ow 
ow 
Ow 
Ow 
Ow 
Ow 

zexit 

zexit 

zexit 
Zexit 

Zexit 
Zexit 

Zexit 

Zexit 
Zexit 

Zexit 
Zexit 

14 close (3 x only, not used) 
15 rem med (3.x only, not used) 

16 out until bsy (3 x only, not used) 

1 7 

1 8 
19 generic IOCII request (3 2 only) 

20 

21 

22 
23 get logical drive map (3 2 only) 

24 set logical drive map (3 2 only) 

Subttl Driver Code 

Page 

Ihe Strategy routine itself: 

Strtegy Proc 
dbg 

Mov 

Mov 

Ret 

Strtegy Endp 

Request1: 

Push 
lea 

Jmp 

Request2: 

Push 

lea 

Gen_request: 

dbg 

Pushf 

Cld 

Push 

Push 

Push 
Push 

Push 

Push 

Push 
Push 

Push 

Far 

'S', 'R',' ' 
Word Ptr CS:PackHd,BX 

Word Ptr CS:PackHd+2,ES 

store the offset 

store the segment 

Si 
Si,Asy_tab1 

async1 has been requested 

save Sr 

get the device unit table address 

Short Gen_request 

Si 
Si,Asy_tab2 

'R'' 'R'' 1 I 

Ax 

Bx 
Cx 
Ox 

Di 

Bp 

Os 
Es 

Cs 

async2 has been requested 

save SI 
get unit table two's address 

; save all regs 

; set os cs 

F·1gure 6-1 Continued 

The Ms:.no.s Encyclopedia 

(more) 

Article 6: Interrupt-Driven Communications 

320 

321 

322 

323 

324 

325 
326 

327 
328 

329 

330 

331 

332 

333 

334 

335 

336 
337 

338 

339 
340 

341 

342 

343 

344 

345 

346 

347 

348 
349 

350 

351 

352 

353 

354 

355 

356 
357 

358 

359 

360 

361 

362 

363 
364 

365 

366 

367 

368 

369 
370 

Pop 
I,es 

Lea 

Mov 

Cbw 

Add 
Add 

Jmp 

Ds 

Bx,PackHd 

Di,Asy_funcs 

Al,e~:code[bx] 

Ax, Ax 

Di, ax 

[di] 

Exit from driver request 

ExitP Pree 
Bsyexit: 

Far 

Mchek: 

BldBPB: 

Mov 

Jmp 

Ax,StsBsy 

Short Exit 

Zexit: Xor Ax,Ax 

Bx,PackHd 

Ax,StsDne 

Es:Stat[Bx],Ax 
Es 

Exit: 

ExitP 

Subttl 

Page 

Read: 

les 

Or 
Mov 

Pop 

Pop 

Pop 

Pop 

Os 
Bp 
Di 

Pop Ox 

Pop ex 

Pop Bx 
Pop Ax 

Popf 

Pop Si 

Ret 

Endp 

Driver Service Routines 

Read data from device 

dbg 'R','d',' I 

Cx,Es:Count[bx] 

Di,Es:Xfer[bx] 

Dx,Es:Xseg[bx] 
Bx 
Es 

Es,Dx 

get packet pointer 

point DI to jump table 
command code 

double to word 

go do it 

get packet pointer 

set return status 

restore registers 

get requested nbr 

get target pointer 

save for count fixup 

Mov 

Mov 

Mov 

Push 

Push 

Mov 

lest 
Je 

Add 

InStat[si],Badinp Or lostDt 
No_lerr 

Sp,4 
no error so far 

error, flush SP 

Figure 6-1 Continued 

Section II. Programming in the MS:-DO.S Environment 

(more) 

189 
Canon Exhibit 1108



Part B: Programming for MS-DOS 

190 

3 71 
372 
373 
374 
375 
376 
377 

378 
379 
380 
381 
382 
383 
384 
385 
386 
38 7 
388 
389 
390 
391 
392 
393 
394 
395 
396 

39 7 
398 
399 
400 

401 
402 

403 
404 
405 
406 
40 7 

408 
409 
410 

411 
412 
413 

414 
415 

41 6 

41 7 

418 
41 9 
420 

And 
Mov 

Jmp 

InStat[si],Not ( Badinp Or LostDt) 

No_lerr: 

Got_all: 

Call 
Or 
Jnz 

Stosb 
loop 

Pop 

Pop 

Sub 

Mov 

Jmp 

Ax,ErrRf 
Exit 

Get-in 
Ah,Ah 
Got_all 

No_lerr 

Es 

Bx 
Di, Es :Xfer (bx] 
Es:Count[bx],Di 
Zexit 

; error, report it 

go for one 

none to get now 
store it 
go for more 

calc number stored 
return as count 

Nondestructive read from device 

Ndread: 

Ndget: 

Mov 

Cmp 

Jne 
Jmp 

Push 
Mov 

Mov 
Pop 

Mov 

Jmp 

Di,ifirst [sil 
Di,iavail[si] 
Ndget 
Bsyexit 

Bx 
Bx,ibuf[si] 
Al, [bx+di] 
Bx 
Es:media{bx] ,al 
Zexit 

Input status request 

Rxstat: 

Rxful: 

Mov 
Cmp 
Jne 

Jmp 

Jmp 

Di, ifirst [si] 
Di,iavail[si] 
Rxful 
Bsyexit 

zexit 

Input flush request 

Inflush: 
Mov 

Mov 

Jmp 

Ax,iavail[si] 
Ifirst[si),ax 
Zexit 

output data to device 

Figure 6-1 C'ontinued 

The MS'-DOS Encyclopedia 

; buffer empty 

return char 

buffer empty 

; have data 

(more) 

T 
I 

421 
422 
423 
424 
425 
426 

427 

428 
429 
430 
431 
432 
433 
434 
435 
436 
437 
438 
439 
440 

441 
442 
443 
444 
445 
446 
447 
448 

449 

450 
451 
452 
453 
454 
455 
456 
457 
458 
459 
460 
461 
462 

463 
464 
465 
466 
467 

468 
469 
4 70 

4 71 

Write: 

Wlup: 

Wwait: 

Ixstat: 

Ixroom: 

Ioctl in: 

Doiocin: 

Getport: 

dbg 

Mov 

Mov 
Mov 

Mov 

Mov 

Inc 

Call 
Cmp 

Jne 

Call 
loop 

Jmp 

'W', 'r',' ' 
Cx,es:count[bx] 
Di,es:xfer[bx] 
Ax,es:xseg(bx] 
Es, ax 

Al, es: [di) 
Di 

Put_out 
Ah,O 

Wwait 
Start_output 
Wlup 

Zexit 

Output status request 

Mov 

Dec 

And 
Cmp 

Jne 

Jmp 

Jmp 

Ax,ofirst[si] 
Ax 
Ax,bufmsk 
Ax,oavail[si] 
Ixroom 
Bsyexit 

Zexit 

Article 6: Interrupt-Driven Communications 

get the byte 

put away 

wait for room! 
get it going 

buffer full 

; room exists 

IOCII read request, return line parameters 

Mov 

Mov 
Mov 

Mov 
Cmp 

Je 

Mov 

Jmp 

Mov 

Mov 

Mov 

In 

Stas 
Inc 

loop 

Cx,es:count(bx] 
Di,es:xfer[bx] 
Dx,es:xseg[bx] 
Es, dx 
Cx,10 

Doiocin 
Ax,errbsl 
Exit 

Dx,port [si] 
Dl,Ictrl 
Cx,4 

Al,dx 
Byte Ptr [DI] 
DX 
Get port 

base port 
line status 
r.cR, MCR, ISR, MSR 

Figure 6-1 Continued (more) 

Section IL Programming in the MS-DOS Environment 191 

Canon Exhibit 1108



Part B: Programming for MS-DOS 

4 72 

473 

4 7 4 

475 
4 76 

4 77 

478 

479 

480 

481 

482 

483 

484 

485 

486 

487 

488 

489 
490 

491 

492 

493 

494 

495 
496 

497 

498 

499 
500 
501 

502 
503 

504 

505 

506 

50 7 

508 
509 

51 0 

511 

512 
513 
51 4 

51 5 
51 6 
51 7 

51 8 

51 9 

520 
521 

522 

Baudcin: 

Yesinb: 

Mov 

Stas 
Mov 

Stas 
Mov 

Mov 
Mov 

Mov 

Cmp 

Je 
Add 
loop 

Mov 

Mov 

Stas 

Ax,InSpec[si] 
Word Ptr [DI] 
Ax,OutSpec[si} 
Word Ptr [DI) 
Ax,baud[si] 
Bx, di 

spec in flags 

out flags 

baud rate 

Di,offset Asy-1Jaudt+2 

cx,15 

[di] ,ax 
Yesinb 
Di,4 
Baudcin 

Ax,-2[di] 
Di,bx 
Word Ptr [DI] 

Jmp zexit 

flush output buffer request 

Ixflush: 
Mov 

Mov 

Ax,oavail[si] 
Ofirst[si],ax 

Jmp zexit 

IOCII request: change line parameters for this driver 

Ioctlout: 
Mov 

Mov 

Mov 

Mov 

Cmp 

Je 
Mov 

Jmp 

Doiocout: 
Mov 

Mov 

Mov 

Inc 

Or 
Out 

Cle 
Jnc 

Inc 

Mov 

Or 
Out 

Cx,es:count[bx] 
Di,es:xfer[bx] 
Dx,es:xseg[bx] 
Es,dx 
ex, 1 O 

Doiocout 
A.x,errbsl 
Exit 

Dx,port[si] 
Dl,lctrl 
Al, es: [di] 
Di 
Al,Dlab 
Dx,al 

$+2 

Ox 
Al, es: [di] 
Al, usr2 
ox, al 

base port 
line ctrl 

set baud 

mdrn ctrl 

Int Gate 

Figure 6-1 Continued 

192 The MS-DO.S Encyclopedia 

(more) 

'f'~ 

I 
I 
I 
I 

523 

524 

525 

526 

52 7 

528 

529 

530 

531 

532 

533 
534 

535 

536 

537 

538 

539 

540 

541 

542 

543 

544 
545 

546 

54 7 

548 

549 

550 
551 

552 

553 

554 

555 
556 

557 
558 
559 

560 

561 

562 

563 
564 

565 
566 
567 

568 

569 
570 

5 71 

5 72 

573 

Add 

Mov 

Add 

Mov 

Mov 

Add 

Mov 

Mov 

Mov 

Mov 

Mov 

Baudcout: 

Yesoutb: 

Cmp 

Je 
Add 

loop 

Mov 

In 

And 

Cle 

Jnc 

Out 

Mov 

Jmp 

Mov 

Mov 

Mov 

Out 

Cle 

Jnc 

Inc 

Mov 

Out 

Cle 

Jnc 

Mov 

In 

And 

Cle 

Jnc 

Article 6: Interrupt-Driven Communications 

Di, 3 skip lSR,MSR 
Ax, es: [di] 
Di,2 
InSpec[si],ax 
Ax, es: [di] 
Di,2 
OutSpec[siJ,ax 
Ax, es: [di] ; set baud 
Bx,di 
Di,offset Asy_baudt 
Cx, 15 

[di] ,ax 
Yesoutb 
Di,4 
Baudcout 

Dl,lctrl 
Al,dx 
Al,not Dlab 

$+2 

Dx,al 
A.x,ErrUm 
Exit 

Ax, 2 [di] 
Baud[si],ax 
Dx,port[siJ 
Dx,al 

$+2 

Dx 

Al, ah 
Dx,al 

$+2 

Dl,lctrl 
Al,dx 
Al,not Dlab 

$+2 

line ctrl 
get I,CR data 
strip 

put back 
"unknown media" 

get divisor 
save to report later 
set divisor 

line ctrl 
get lCR data 
strip 

Out Ox, al put back 
Jmp Zexit 

Subttl 
Page 

Ring Buffer Routines 

Put_out Proc 
Push 

Near 
Cx 

puts Al into output ring buffer 

Figure 6-1 Continued (more) 

Section II: Programming in the MS'-DO.S Environment 193 
Canon Exhibit 1108



Part B: Programming for MS-DOS 

194 

574 

575 

576 

577 

578 

579 

580 

581 
582 

583 

584 

585 

586 
587 

588 

589 

590 
591 

592 

593 

594 

595 

596 
597 

598 

599 
600 

601 

602 

603 

604 

605 

606 
607 

608 

609 
61 0 

611 
612 

613 

61 4 

61 5 

61 6 

61 7 

618 

61 9 

620 

621 

622 

623 

624 

Poerr: 

Poret: 

Push 

Pus hf 

Cli 
Mov 

Mov 

Inc 

And 

emp 

Je 

Add 

Mov 

Mov 

dbg 
Mov 

Jmp 

Mov 

Popf 

Pop 

Pop 

Ret 

Put_out Endp 

Get_out Proc 

Push 

Push 

Push£ 

Cli 
Mov 

Cmp 

Jne 

Ngoerr: 

Goret: 

Mov 

Jmp 

dbg 
Mov 

Add 

Mov 

Mov 

Inc 

And 

Mov 

Popf 

Pop 
Pop 

Ret 

Get_out Endp 

Put_in Proc 

Figure 6-1 Continued 

The MS-DOS Encyclopedia 

Di 

Cx,oavail[si] 

Di, ex 
ex 
Cx,bufmsk 

Cx,ofirst [si] 

Poerr 

Di,obuf[si] 
[di) ,al 

Oavail[si],cx 

'p', 'o',' ' 
Ah,0 

Short 

Ah, -1 

Di 

ex 

Poret 

put ptr 

bump 

overflow? 

yes, don't 

no 

put ~n- buffer 

Near 
ex 
Di 

gets next character from output ring buffer 

Di,ofirst[si] 

Di,oavail[si] 
Ngoerr 

Ah, -1 

Short Goret 

'g', 'o', r r 

Cx,di 

Di,obuf[si] 

Al, [di] 

Ah,O 

Cx 

Cx,bufrnsk 

Ofirst[si],cx 

Di 

ex 

get ptr 

put ptr 

; empty 

get char 

bump ptr 

wrap 

Nea:r puts the char f:rom AL into input ring buffer 

(more) 

625 

626 
62 7 

628 

629 

630 

631 

632 

633 

634 

635 
636 

63 7 

638 

639 

640 

641 

642 

643 

644 

645 
646 

647 

648 

649 

650 

651 

652 

653 

654 

655 
656 

65 7 

658 

659 

660 

661 

662 

663 

664 

665 

666 
667 

668 

669 
6 70 

6 71 

672 

673 

674 
675 

Npierr: 

Piret: 

Push 

Push 

Pus hf 
Cli 

Mov 

MOV 

Inc 
And 

Cmp 

Jne 
Mov 

Jmp 

Add 

MOV 

MOV 

dbg 

MOV 

Popf 

Pop 

Pop 

Ret 
Put_in Endp 

Get_in Proc 

Push 

Push 

Push£ 

Cli 

Gierr: 

Giret: 

Mov 

Cmp 

Je 
Mov 

Add 

MOV 

Mov 

dbg 

Inc 
And 

Mov 

Jmp 

Mov 

Popf 

Pop 

Pop 

Ret 

Get_in Endp 

Figure 6-1 Continued 

Article 6: Interrupt-Driven Communications 

ex 
Di 

Di,iavail[si] 

Cx,di 

ex 
Cx,bufmsk 
Cx, ifirst [si] 

Npierr 
Ah,-1 

Short Piret 

Di,ibuf[si] 

[di], al 

Iavail[si],cx 
'p', 1i1,' 

Ah,O 

Di 

ex 

Near 

ex 
Di 

gets one from input ring buffer into AL 

Di,ifirst[si] 

Di, iavail [si] 

Gierr 

Cx,di 

Di,ibuf[si] 

Al, [di] 

Ah,O 
'g' I Ii! I I 

ex 
Cx,bufmsk 
Ifirst[si],cx 

Short 

Ah, -1 

Di 

ex 

Giret 

'Section 11 Programming in the MS-DOS Environment 

(more) 

195 

Canon Exhibit 1108



Part B: Programming for MS-DOS 

196 

676 
6 77 

678 

679 

680 
681 

Subttl Interrupt Dispatcher Routine 
Page 

Asy1isr: 
Sti 
Push 

682 I,ea 
683 Jmp 

684 
685 Asy2isr: 
686 Sti 
68 7 Push 
68 8 1 ea 
689 
690 Int_serve: 
691 Push 
692 Push 
693 Push 
694 Push 
695 Push 
696 Push 
69 7 Push 
698 Pop 
699 Int_exit: 
700 dbg 

701 Mov 
702 Mov 
703 In 
704 Cmp 
705 Je 
706 Jmp 
707 Int_rnodem: 
708 dbg 

709 Mov 
71 0 In 
711 lest 
712 Jnz 

713 I est 
71 4 

71 5 Or 
716 Msdsr: 
71 '7 I est 
718 Jnz 

719 lest 
720 Jz 

721 Or 
722 Dsroff: 
723 lest 
724 Jz 
725 Or 
726 Jmp 

Figure 6-1 Continued 

The MS-DO.S Encyclopedia 

Si 
Si, asy_tab1 
Short Int_serve 

Si 

Si,asy_tab2 

Ax 
Bx 
ex 
DX 
Di 

Ds 
Cs 

Os 

; save all regs 

'I'' 'x''' r 

set DS cs 

base address 
check Int ID 

Dx,Port[si] 
Dl,Intld 
Al,Dx 
Al,OOh 
Int_rnodem 
rnt_rno_no 

;· dispatch filter 

'M'' 'Sr'' 
Dl,Mstat 
Al,dx 
Al,CDlvl 

read MSR content 
carrier present? 

Msdsr yes, test for DSR 
OutSpec[si],OutCdf ; no, is CD off line? 
Msdsr 
InStat[si],Offlin 

Al,DSRlvl ; DSR present? 
Dsron yes, handle it 
OutSpec[si],OutDSR no, is DSR throttle? 
Dsroff 
OtStat[si],IinDSR 

OutSpec[si],OutDrf 
Mscts 
InStat[si],Offiin 
Short Mscts 

yes, throttle down 

is DSR off line? 

yes, set flag 

(more) 

>1 

I 
ii 
I 
l 
I 
J 

I 
J 
;j 
I 
I 
I 
! 
,I 
i 
I 
I 
l 
I 

l 

I 

j 
I 
'I 

I 
J 

I 

72 7 

728 

729 

730 

731 

732 

Dsron: 

Mscts: 

rest 
J, 

Xor 
Call 

733 I est 
734 Jnz 
735 lest 
736 Jz 
73 7 Or 
738 Jmp 
739 Ctson: 
740 I est 
741 Jz 
742 Xor 
743 Jmp 
744 Int_rno_no: 
745 Cmp 
746 Jne 
747 Int_txmit: 
748 dbg 

749 Int-exit1: 
750 Call 
751 Int_exit2: 
752 Jmp 
753 Int_tx___no: 
754 Cmp 
755 Jne 
756 Int_receive: 
757 dbg 
758 Mov 
759 In 
760 lest 
761 Jz 
762 Crop 
763 Jne 
764 Or 
765 
766 Isq: 

Jmp 

767 Cmp 
768 Jne 
769 lest 
7 70 Jz 
7 71 Xor 
7 72 Jmp 
773 Int-rec_no: 
774 Cmp 
775 Jne 
7 76 Int_rxst at: 
777 dbg 

Figure 6-1 Continued 

Article 6: Interrupt-Driven Communications 

OtStat[siJ,linDSR 
Mscts 
OtStat[si],LinDSR 
Start_output 

throttled for DSR? 

yes, clear it out 

Al,CISlvl 
Ct son 

; CIS present? 
; yes, handle it 

OutSpec[si],OutClS 
Int_exit2 
OtStat[si],LinCIS 
Short Int_exit2 

OtStat[si],linCIS 
Int_exit2 
OtStat[si],IinCIS 
Short Int_exit1 

Al,02h 
Int_tx___no 

1 Ir 
1 

1X1 
/ 

1 , 

no, is CIS throttle? 

yes, shut it down 

throttled for CIS? 

; yes, clear it out 

Start_output : try to send another 

Int_exit 

Al,04h 
Int_rec_no 

'R', 'x' 1 ' ' 

Dx,port[si] 
Al,dx ; take char from 8250 
OutSpec[si],OutXon ; is XON/XOFE enabled? 
Stuff_in no 
Al, 'S' And 01FH ; yes, is this XOFF? 
Isq no, check for XON 
OtStat[si],linXof yes, disable output 
Int_exit2 don't store this one 

Al, 'Q' And 01FH ; is this XON? 
Stuff_in no, save it 
OtStat[si],linXof : yes, waiting? 
Int_exit2 no, ignore it 
OtStat[si],linXof; yes, clear the XOFF bit 
Int_exit1 and try to resume xmit 

Al,06h 
Int_done 

'E', 'R',' ' 

Section JI Programming in the MS-DOS Environment 

(more) 

197 
Canon Exhibit 1108



Part B: Programming for MS-DOS 

198 

Mov 

In 

I est 
Jz 
And 
Or 

Stuff_in: 
Call 
Cmp 

Je 
Or 

Int_exit3: 

Nocode: 
Jmp 

Or 
Jmp 

Int_done: 
Cle 

Jnc 
Mov 

Out 
Pop 

Pop 
Pop 

Pop 
Pop 

Pop 

Pop 

Iret 

Start_output 
I est 
Jnz 
Mov 

Mov 

In 
lest 
Jz 
Call 
Or 
Jnz 
Mov 

Out 
dbg 

Dont_start: 
ret 

Star:t_output 

Dl,Istat 
Al,dx 
InSpec[si],InEpc ; return them as codes? 

no, just set error alarm Noc ode 
Al,AnyErr 
Al,080h 

; yes, mask off all but error bits 

Put_in put input char in buffer 

Ah,0 did it fit? 
Int_exit3 yes, all OK 
InStat[si],IostDt ; no, set Dataiost bit 

Int_exit 

InStat[si],Badlnp 
Int_exit3 

$+2 
Al,EOI 
PIC_b,Al 

Ds 

Di 
Ox 
Cx 

Bx 

Ax 

Si 

Proc Near 

all done now 

restor:e regs 

OtStat(si],linldl ; Blocked? 
Dont_start 
Dx,port [si] 
Dl, l stat 
Al, Ox 
Al,xhre 
Dont_start 
Get_out 
Ah,Ah 
Dont_start 
01,RxBuf 
Ox, al 
's', 'o',' 

Endp 

yes, no output 
no, check UARI 

empty? 
no 
yes, anything waiting? 

no 
yes, send it out 

778 

779 

780 

781 

782 
783 

7 8 4 

785 

7 8 6 

7 8 7 

7 88 

789 

790 

7 91 

792 
793 

794 

795 

796 

79 7 

798 

799 

800 

801 

802 

803 

804 

805 

806 
807 

808 

809 
810 

811 

812 

81 3 

814 

815 

81 6 
817 

818 

81 9 

820 

821 

822 

823 

824 

825 

826 
82 7 

828 

Subttl Initialization Request Routine 

Page 

Figure 6-1 Continued 

The MS'-DOS Encyclopedia 

(more) 

829 

830 

831 

832 

833 
834 

835 

836 
837 

838 

839 

840 
841 

842 

843 

844 

845 

846 

847 

848 

849 

850 

851 

852 
853 

854 

855 

856 

857 

858 

859 

860 

861 

8 62 

863 

864 

865 

866 

867 

868 

869 

8 70 

8 71 

8 72 

8 7 3 

8 7 4 

8 75 

8 76 

8 77 

8 78 

879 

Init: I,ea 
Mov 
Mov 

Mov 

Mov 

Mov 

Out 
Cle 

Jnc 
Mov 

Mov 

Out 
Cle 

Jnc 
Inc 
Mov 

Out 
Cle 

Jnc 

Mov 

Mov 

Out 
Mov 

Cle 
Jnc 
Mov 

Mov 

Out 
Cle 

Jnc 
Mov 

Mov 

Out 
Mov 

ClRgs: Mov 
In 
Mov 

In 
Mov 

In 
Mov 

In 
In 
I est 
Jz 

Cli 
Xor 

Figure 6-1 Continued 

Di,$ 
Es:Xfer[bx],Oi 
Es:Xseg[bx],Cs 

Dx,Port[si] 
Dl,Ictrl 
Al,Olab 
Dx,Al 

$+2 

Dl,RxBuf 
Ax,Baud[si] 
Dx,Al 

$+2 

Dx 
Al,Ah 
Dx,Al 

$+2 

Dl,Ict:i::l 
Al,OtStat[si] 
Dx,Al 
OtStat[si],0 

$+2 
01, IntEn 
Al,Alllnt 
Dx,Al 

$+2 

Dl,Mctrl 
Al,InStat[si] 
Dx,Al 
InStat [si], 0 

Dl,Istat 
Al,Dx 
Dl, RxBuf 
Al,Dx 
Dl,Mstat 
Al,Dx 
Dl,Intld 
Al, Ox 
Al, Ox 
Al, 1 

ClRgs 

Ax,Ax 

Article 6: Interrupt-Driven Communications 

release rest 

base port 

enable divisor 

set baud 

set LCR 
from table 

clear status 

IER 
enable ints in 8250 

set MCR 
from table 

clear status 

clear ISR 

clear RX reg 

clear MSR 

IID reg 

int pending? 
yes, repeat 

set int vec 

(more) 

Section ll Programming in the MS'-DOS Environment 199 
Canon Exhibit 1108



Part B: Programming for MS-DOS 

880 Mov 

881 Mov 

882 Mov 

883 Stosw 

884 Mov 

885 
886 In 

887 And 

888 Cle 

889 Jnb 

890 Out 

891 Sti 

892 

893 Mov 

894 Out 

895 

896 dbg 

897 Jmp 

898 

899 Driver Ends 

900 End 

Figure 6-1 Continued 

Es,Ax 
Di,Vect[si] 
Ax, IsrAdr [si] 

Es: [di] ,cs 

Al,PIC_e 
Al,OE7h 

$+2 

PIC-e,Al 

Al,EOI 
PIC_b,Al 

'D' IT I', 
Zexit 

from table 

get 8259 
com1/2 mask 

now send EOI just in case 

driver installed 

The first part of the driver source code (after the necessary MASM housekeeping details 
in lines 1 through 8) is a commented-out macro definition (Imes 10 through 32) T hrn 
macro is used only during debugging and is part of a debugging technrque that requrres 
no sophisticated hardware and no more complex debugging program than the venerable 
DEBUG COM (Debugging techniques are discussed after the presentation of the dnver 

program itself) 

Definitions . . . . . 
The actual driver source program consists of three sets of EQU defrnrtrons (Imes 34 
through 194), followed by the modular code and data areas (lines 197 through_90_0) The 
fast set of definitions (lines 34 through 82) gives symbolic names to the perm1ssrble values 
for MS-DOS device-driver control bits and the device-driver structures 

The second set of definitions (lines 84through145) assigns names to the ports and bit 
values that are associated with the IBM hardware- both the 8259 PIC and the 8250 UART 
The third set of definitions (lines 147 through 194) assigns names to the control values and 

structures associated with this driver 

I he definition method used here is recommended for all drivers To move this driver from 
the IBM architecture to some other hardware, the major change required to the pr~ogram 
would be reassignment of the port addresses and bit values in lines 84 through 14) 

The control values and structures for this specific driver (defined in the third EQU set) 
provide the means by which the separate support program can modify the actions of each 
of the two logical drivers I hey also permit the driver to return status mformatron to both 

200 The MS'D05 Encyclopedia 

-\ 
I 

Article 6: Interrupt-Driven Communications 

the support program and the using program as necessary Only a few features are imple­
mented, but adequate space for expansion is provided The addition of a few more defini­
tions in this area and one or two extra procedures in the code section would do all that is 
necessary to extend the driver's capabilities to such features as automatic expansion of 
tab characters, case conversion, and so faith, should they be desired 

Headers and structur·e tables 
I he driver code itself starts with a linked pair of device-driver header blocks, one for 
ASYJ (lines 201through207) and the other for ASY2 (lines 208 through 213) FOilowing 
the headers, in lines 215 through 236, are a commented-out space reservation used by the 
debugging procedure (line 215), the pointer to the command packet (line 219), and the 
baud-rate conversion table (lines 221 through 236) 

I he conversion table is followed by structure tables containing all data unique to AS Yl 
(lines 239 through 242) and ASY2 (lines 244 through 247) After the structure tables, 
buffer ar·eas are reserved in lines 249 through 254 One input buffer and one output buffer 
are reserved for each port. All buffers are the same size; for simplicity, buffer size is given a 
name (at line 249) so that it can be changed by editing a single line of the program 

The size is arbitrary in this case, but if file transfers are anticipated, the buffer should be 
able to hold at least 2 seconds' worth of data (240 bytes at 1200 bps) to avoid data loss dur­
ing writes to disk Whatever size is chosen should be a power of 2 for simple pointer arith­
metic and, if video display is intended, should not be less than 8 bytes, to prevent losing 
characters when the screen scrolls 

If additional ports are desired, more headers can be added after line 213; conesponding 
structure tables for each driver, plus matching pairs of buffers, would also be necessary 
The final part of this area is the dispatch table (lines 256 through 284), which lists offsets 
of all request routines in the driver; its use is discussed below 

Strategy and Request routines 
With all data taken care of, the program code begins at the Strategy routine Clines 289 
tfuough 296), which is used by both ports This code saves the command packet address 
passed to it by MS-DOS for use by the Request routine and returns to MS-DOS 

I he Request routines (lines 298 through 567) are also shar·ed by both ports, but the two 
drivers are distinguished by the address placed into the SI register I his address points to 
the structure table that is unique to each port and contains such data as the port's base 
address, the associated hardware interrupt vector, the interrupt service routine offset 
within the driver's segment, the base offsets of the input and output buffers for that port, 
two pointers for each of the buffers, and the input and output status conditions (including 
baud rate) for the port The only difference between one port's driver and the other's is 
the data pointed to by SI; all Request routine code is shared by both ports 

Each driver's Request routine has a unique entry point (at line 298 for ASYJ and at line 303 
for ASY2) that saves the original content of the SI register and then loads it with the ad­
dress of the structure table for that driver I he routines then join as a common stream at 
line 307 (Gen_ request) 

Section II Programming in the MS~DO.S Environment 201 

Canon Exhibit 1108



Part B: Programming for MS-DOS 

202 

This common code prese1ves all other registers used (lines 309 through 318), sets DS 
equal to CS (lines 319 and 320), retrieves the command-packet pointer saved by the Strat­
egy routine (line 321), uses the pointer to get the command code (line 323), uses the code 
to calculate an offset into a table of addresses (lines 324 through 326), and pe1forms an in­
dexed jump Oines 322 and 327) by way of the dispatch table (lines 256 through 284) to the 
routine that executes the requested command (at line 336, 360, 389, 404, 414, 421, 441, 453, 
500, or829) 

Although the device-d1iver specifications for MS-DOS version 3 2 list command request 
codes ranging from 0 to 24, not all are used. Earlier versions of MS-DOS pe1mitted only 0 
to 12 (versions 2 x) or 0 to 16 (versions 30 and 31) codes. In this drive1, all 24 codes are 
accounted fo1; those not implemented in this driver return a DONE and NO ERROR status 
to the caller Because the Request routine is called only by MS-DOS itself, there is no check 
for invalid codes Actually, because the header attribute bits are not set to specify that 
codes 13 through 24 are valid, the 24 bytes occupied by thei1 table entries (lines 273 
through 284) could be saved by omitting the entries They are included only to show 
how nonexistent commands can be accommodated 

Immediately following the dispatch indexed jump, at lines .329 through 353 within the 
same PROC declaration, is the common code used by all Request routines to store status 
information in the command packet, restore the registers, and return to the caller. I he 
alternative entry points for BUSY status (line 332), NO ERROR status (line 338), or an enOI 
code (in the AX register at entry to Exit, line 339) not only save several bytes of redundant 
code but also improve readability of the code by providing unique single labels for BUSY, 
NO ERROR, and ERROR return conditions 

All of the Request routines, except for the !nit code at line 829, immediately follow the 
dispatching shell in lines 358 through 568 Each is simplified to perform just one task, such 
as read data in 01 write data out The Read routine (lines 360 through 385) is typical: First, 
the requested byte count and user's buffer address are obtained from the command 
packet Next, the pointer to the command packet is saved with a PUSH instruction, so that 
the ES and BX registers can be used for a pointer to the port's input buffe1 

Before the Get_m routine that actually accesses the input buffer is called, the input status 
byte is checked (line 368) If an error condition is flagged, lines 370 through 373 clear the 
status flag, flush the saved pointers from the stack, and jump to the error--return exit from 
the driver If no error exists, line 375 calls Get_ in to access the input buffer and lines 376 
and 377 determine whether a byte was obtained If a byte is found, it is stored in the user's 
buffer by line 378, and line 379 loops back to get another byte until the requested count 
has been obtained or until no more bytes are available In practice, the count is an upper 
limit and the loop is nmmally broken when data runs out 

No matter how it happens, control eventually reaches the Got_all routine and lines .381 
and 382, where the saved pointers to the command packet are restored from the stack 
lines .383 and 384 adjust the count value in the packet to reflect the actual number of bytes 
obtained Finally, line 385 jumps to the normal, no-error exit from the drive1 

The MS-DOS Encyclopedia 

Article 6: Interrupt-Driven Communications 

Buffering 
Both buffers for each d1iver are of the type known as circula1, or ling, buffers Effectively, 
such a. buffer is endless; it is accessed via pointers, and when a pointer increments past the 
end of the buffer, the pointer returns to the buffer's beginning. Two pointers are used here 
for each buffe1, one to put data into it and one to get data out The get pointe1 always 
points to the next byte to be read; the put pointer points to where the next byte will be 
written, just past the last byte wlitten to the buffer 

If both pointers point to the same byte, the buffer is empty; the next byte to be read has 
not yet been written The full-buffer condition is more difficult to test for: The put pointer 
is incremented and compared with the get pointer; if they ar·e equal, doing a w1ite would 
force a false buffe1cempty condition, so the buffer must be full. 

All buffer manipulation is done via four procedures (lines 569 through 674) Put_ out 
Oines 572 through 596) writes a byte to the d1ive1's output buffe1 or returns a buffe1cful1 
indication by setting AH to OFF H. Get_ out Oines 598 through 622) gets a byte from the 
output buffer 01 returns OFFH in AH to indicate that no byte is available Put_ in (lines 624 
through 648) and Get_ in (lines 650 through 674) do exactly the same as Put_ out and 
Get_ out, but for the input buffer These procedures ar·e used both by the Request routines 
and by the hardware intenupt service routine (]SR) 

Interrupt setvice routines 
The most complex part of this dliver is the JSR (lines 676 through 806), which decides 
which of the four possible se1vices for a port is to be pe1formed and where I ike the 
Request routines, the JSR provides unique entry points fo1 each port (line 679 for ASYJ and 
line 685 for ASY2); these entry points first prese1ve the SI register and then load it with the 
address of the pmt's structure table With SI indicating where the actions are to be perc 
formed, the two entries then merge at line 690 into common code that first prese1ves all 
registers to be used by the JSR Oines 690 through 698) and then tests for each of the four 
possible types of service and pe1forms each requested action 

Much of the complexity of the JSR is in the decoding of modem-status conditions. Because 
the resulting information is not used by this driver (although it could be used to prevent 
attempts to transmit while off line), these JSR options can be removed so that only the 
Transmit and Receive interrupts are serviced To do this, All!nt (at line 145) should be 
changed from the OR of all four bits to include only the transmit and receive bits (03H, 
or OOOOOOllB) 

The transmit and receive portions of the JSR incorporate XON/XOFF flow contrd (for 
l:!ansmitted data only) by default. This control is done at the JSR level, rather than in the 
using program, to minimize the time required to respond to an incoming XOFF signal. 
Presence of the flow-control decisions adds complexity to what would otherwise be 
ex1:1·emely simple actions 

Flow control is enabled or disabled by selling the OutSpec word in the structure table 
with the Driver Status utility (presented later) via the !OCT L function (Interrupt 21H Fun~­
tion 44H) When flow control is enabled, any XOFF character (llH) that is received halts 
all outgoing data until XON 03H) is received No XOFF or XON is retained in the input 

Section II Programming in the JUS-DOS E'nvtronment 203 

Canon Exhibit 1108



Part B: Programming for MS-DOS 

204 

buffeno be sent on to any program, although all patterns other than XOFF and XON are 
passed through by the driver When flow control is disabled, the driver passes all patterns 
in both directions For binary file transfer, flow conttol must be disabled 

The transmit action is simple: The code merely calls the S'tart_output procedure at line 
750 Star t_output is described in detail below 

The receive action is almost as simple as transmit, except fOr the flow-control testing. First, 
the JSR takes the received byte from the UART (lines 758 and 759) to avoid any chance of 
an overrun error The JSR then tests the input specifier (at line 760) to determine whether 
flow control is in effect If it is not, processing jumps directly to line 784 to store the 
received byte in the input buffer with Put_ in (line 785) 

If flow control is active, however, the received byte is compared with the XOFF character 
(lines 762 through 765) If the byte matches, output is disabled and the byte is ignored If 
the byte is not XOFF: it is compared with XON (lines 766 through 768) If it is not XON 
either, control jumps to line 784. If the byte is XON, output is re-enabled if it was disabled 
Regardless, the XON byte itself is ignored 

When control reaches Stuff_ in at line 784, Put_ in is called to store the received byte in 
the input buffer If there is no room for it, a lost-databit is set in the input status flags (line 
788); otherwise, the receive routine is finished 

If the interrupt was a line-status action, the lSR is read Oines 776 through 779) If the input 
specifier so directs, the content is converted to an IBM PC extended graphics character by 
setting bit 7 to 1 and the character is stored in the input buffer as if it were a received byte 
Otherwise, the line Status inter1upt merely sets the generic Badlnp error bit in the input 
status flags, which can be read with the !OCH Read function of the driver 

When all JSR action is complete, lines 794 through 806 restore machine conditions to those 
existing at the time of the inte11upt and retu1n to the interrupted procedure 

The Start_output routine 
S'tart_output (lines 808 through 824) is a routine that, like the four buffer procedures, is 
used by both the Request routines and the JSR Its purpose is to initiate transmission of a 
byte, provided that output is not blocked by flow control, the UART Transmit Holding 
Register is empty, and a byte to be transmitted exists in the output ring buffer This routine 
uses the Get_out buffer routine to access the buffer and determine whether a byte is avail­
able If all conditions are met, the byte is sent to the UART holding register by lines 819 
and820 

The Initialization Request rnutine 
The Initialization Request routine (lines 829 through 897) is critical to successful operation 
of the driver This routine is placed last in the package so that it can be discarded as soon 
as it has served its pu1pose by installing the driver It is essential to clear each register of 
the 8250 by reading its contents before enabling the interrupts and to loop through this 

The MS-DO.S Encyclopedia 

j 
I 

--! 

I 

I 
,j 

_L_ .. 

. 

Article 6: Interrupt-Driven Communications 

action until the 8250 finally shows no requests pending The strange Cle jnc $+ 
2 

sequence that appears repeatedly in this routine is a time delay required by high-s eed 
machmes (6 MHz and up) so that the 8250 has time to settle before another access~ 
attempted; the delay does no harm on slower machines 1 

Using COMDVR 

Ihe first step i~ using this de:ice d1iver is assembling it with the Microsoft Macro Assem­
bler (MASM) Next, use the Microsoft Objectlinker (l!NK) to create a EXE fl c 
the EXE file into a binary image file with the EXE2BIN utility Finally incl ~ eth olnvert 
DEVICE-COMDVR SYS · th CO · , u e e me 
h - . m e NFIG SYS file so that COMDVR will be installed wh 

t e system 1s resta1ted. en 

Note;· The number and colon at the beginning of each line in the ro ram listin · . 
article are for reference only and should not be included in the so!cegfile gs m thrs 

Figure 6-2 shows the sequence of actions required, assuming that EDlIN is used for 
modrfymg (or creatmg) the CONF JG SYS file and that all commands are issued f th 
root duecto1y of the boot drive Iom e 

Creating the drivet': 

C>MASM COMDVR;· <Enter> 

C>IINK COMDVR: <Enter> 

C>EXE2BIN COMDVR,EXE COMDVR SYS <Enter> 

Modifying CONFIG . .SYS (Az =press Ctti-Z): 

C>EDLIN CONFIG SYS <Enter> 
*#I <Enter> 

*DEVICE=COMDVR SYS <Enter> 
*"Z <Enter> 
*E <Enter> 

Figure 6-2 Assembling, linking, and installing COMDVR 

Because the devices installed by COMDVR do not use the standard MS-DOS de · . 
no conflict occurs 'th . . h . vice names, 

. w1 any prog1am t at uses conventional port references Such a pro-
gr~m wrllnot use the driver, and no problems should result if the program is well behaved 
an 1esto1es all interrupt vecto1s before retu1ning to l\llS-DOS 

Device-driver· debugging techniques 

The debugging of device drivers, like debugging for any part of MS-DOS ·t lf · 
difficult than normal pro h ki b 1 se ' is more 

. gram c ec ng ecause the debugging program, DEBUG COM 
01 

DEBUG EXE, itself .uses MS-DOS functions to display output When these functions are 
bemg checked, then u.se by DEBUG destroys the data being examined And because 
-.rvis~~O~ always s_aves its return add1ess in the same location, any call to a function b·om 
r~s1 '.' t e operatmg system usually causes a system lockup that can be cured only by 
s uttmg the system down and powering up again 

Section Il Programming in the MS-DOS Environment 205 Canon Exhibit 1108



Part B: Programming for MS-DOS 

One way to overcome this difficulty is to purchase costly debugging tools An easier 
way is to bypass the problem: Instead of using MS-DOS functions to track program opera­
tion, write data directly to video RAM, as in the macro DBG (lines 10 through 32 of 

COMDVRASM) 

This macro is invoked with a three-character parameter string at each point in the pro­
gram a progress report is de.sired. Each invocation has its own unique three-character 
string so that the sequence of actions can be read from the screen When invoked, DBG 
expands into code that saves all registers and then writes the three-character string to 
video RAM Only the top 10 lines of the screen (800 characters, or 1600 bytes) are used: 
The macro uses a single far pointer to the area and treats the video RAM like a ring buffer 

The pointer, Dbgptr (line 215), is set up for use with the monochrome adapter and points 
to location BOOO:OOOOH; to use a CGA or EGA (in CGA mode), the location should be 

changed to BSOO:OOOOH 

Most of the frequently used Request routines, such as Read and Write, have calls to DBG 
as their first lines (for example, lines 361 and 422) As shown, these calls are commented 
out, but for debugging, the source file should be edited so that all the calls and the macro 

itself are enabled 

With DBG active, the top 10 lines of the display are overwritten with a continual sequence 
of reports, such as RR Tx, put directly into video RAM Because MS-DOS functions are not 

used, no inte1ference with the driver itself can occur 

Although this technique prevents normal use of the system during debugging, it greatly 
simplifies the problem of knowing what is happening in time-critical areas, such as hard­
ware inter1upt service In addition, all invocations of DEG in the critical areas are in con­
ditional code that is executed only when the driver is working as it should 

failure to display the pi message, for instance, indicates that the received-data hardware 
interrupt is not being serviced, and absence of go after an Ix report shows that data is not 

being sent out as it should 

Of course, once debugging is complete, the calls to DBG should be deleted or commented 
out Such calls are usually edited out of the source code before release In this case, they 
remain to demonstrate the technique and, most pa1ticular ly, to show placement of the calls 
to provide maximum information with minimal clutter on the screen 

A simple modem engine 
The second part of this package is the modem engine itself (ENGINE ASM), shown in the 
listing in Figure 6-3 The main loop of this program consists of only a dozen lines of code 
Oines 9 through 20) Of these, five Oines 9 through 13) are devoted to establishing initial 
contact between the program and the serial-port driver and two Oines 19 and 20) are for 

returning to command level at the program's end 

206 

Thus, only five lines of code (lines 14 through 18) actually carry out the bulk of the pro­
gram as far as the main loop is concerned Four of these lines are calls to subroutines that 

The MS-DOS Encyclopedia 

I 
I 

Article 6: Interrupt-Driven Communications 

get and put data from and to the console and the serial port; the fifth is the JMP that closes 
the loop .. 1 his structure underscores the fact that a basic modem engine is si I d 
transfer loop mp Y a ata-

1 IIIIE engine 

2 

3 CODE SEGMENI PUBIIC 'CODE' 

4 ' 
5 ASSUME CS:COOE,DS:COOE,ES:CODE,SS:CODE 

6 

ORG 0100h 

8 

9 SIARI: mov dx,offset devnm open named device (ASY1) 

10 mov ax,3d02h 

11 int 21h 

12 mov handle, ax save the handle 

13 jc quit 

14 alltim: call getmdm main engine loop 

1 5 call putcrt 

1 6 call getkbd 

1 7 call putmdm 

18 Jmp alltim 

19 quit: mov ah,4ch ' come here to quit 

20 int 21h 

21 

22 getmdm proc get input from modem 

23 mov cx,256 

24 mov bx, handle 

25 mov dx,offset mbufr 

26 mov ax, 3F00h 

27 int 21h 

28 jc quit 

29 mov mdlen,ax 

30 ret 

31 getmdm endp 

32 

33 getkbd proc get input from keyboard 

34 mov kblen,O flrst zero the count 

35 mov ah, 11 key pressed? 

36 int 21h 

37 inc al 
38 jnz nogk no 

39 mov ah,7 yes, get it 

40 int 21h 

41 cmp al,3 waa it Ctrl-C? 

42 je quit yes, get out 

43 mov kbufr,al no, save it 

44 inc kblen 

45 cmp al, 1 3 waa it Enter? 

46 jne nogk no 

Figure 6-3 ENGINE ASM (more) 

Section IL Programming in the MS-DOS Envtronment 207 

Canon Exhibit 1108



Part B: Programming for MS-DOS 

kbufr+l,10 ' yes, add IE 
mov byte ptr 

47 
inc kblen 

48 

49 nogk; ret 

50 getkbd endp 

51 put output to modem 

52 putmdm proc 

53 
mov cx,kblen 

54 
jcxz no pm 

55 
mov bx, handle 

dx,offset kbufr 
56 

mov 

mov ax,4000h 
57 

21h int 
58 

quit 
59 jc 

60 nopm; ret 

61 putmdm endp 

62 put output to CRI 

63 putcrt proc 

64 
mov cx,mdlen 

65 
jcxz nope 

66 
mov bx, 1 

dx,offset mbufr 
67 mov 

68 mov ah,40h 

69 int 21h 

70 JC quit 

71 nope: ret 

72 putcrt endp 

73 miscellaneous data and buffers 

devnm db 'ASY1',0 
74 

handle dw 0 
75 

kblen dw 0 
76 

mdlen ow 0 
77 

mbufr db 256 dup (0) 
78 

kbufr db 80 dup (0) 
79 

80 

81 CODE ENDS 

END SIAR I 
82 

Figure 6-3 Continued 

Si.on ar·e handled by the driver code, each 
.1 f · · g and data conver · 11 Because the deta1 so tim1n . . l th whole process is-essent1a ya 

. · t show 1ust how s1mp e e . 
of the fOur subroutines is - o D . Write File or Device routine 
buffered interface to the MS-DOS Read File or evice or 

re (lines 22 through 31) asks MS-DOS to read a max-
For example, the getmdm procedu . d then stores the number actually read ma 
imum of 256 bytes from the senal device an d' tely without waiting for data, so the nor-

d/ I h d . verr et urns imme ia , b 
word named m en e r 1 

. . . . l. If screen scrolling causes the loop to e 
mal number of bytes returned.is either o. orh ld never exceed about a dozen characters 
dela ed the count might be higher, but its ou 

y , . 6 throu h 72) checks the value in mdlen If 
When called, the putcrt procedure (!mes 3 . g ks MS-DOS to write that number of 

d othing. otherwise, it as 
the value is zero, putcrt oes n , h m) to the display, and then it returns 
bytes from mbufr (where getmdm put t e 

ZOS The MS'-DOS Encyclopedia 

Article 6: Interrupt-Driven Communications 

Similarly, getkbd gets keystrokes from the keyboard, stores them in kbufr, and posts a 
count in kb/en; putmdm checks kb/en and, if the count is not zero, sends the required 
number of bytes from kbufr to the serial device 

Note that getkbd does not use the Read File or Device function, because that would wait 
for a keystroke and the loop must never wait for reception. Instead, it uses the MS-DOS 
functions that test keyboard status (OBH) and read a key without echo (07H) In addition, 
special treatment is given to the Enter key (lines 45 through 48): A linefeed is inserted in 
kbufr immediately behind Enter and kb/en is set to 2 

A Ctrl-C keystroke ends program operation; it is detected in getkbd Cline 41) and causes 
immediate transfer to the quit label (line 19) at the end of the main loop. Because ENGINE 
uses only permanently resident routines, there is no need for any uninstallation before 
returning to the MS-DOS command prompt 

ENGINE ASM is written to be used as a COM file Assemble and link it the same as 
COMDVRSYS (Figure 6-2) but use the extension COM instead of SYS; no change to 
CONFIG.SYS is needed 

The driver-status utility: CDVUTL.C 

The driver-status utility program CDVUT 1 C, presented in Figure 6-4, permits either of 
the two drivers (ASYJ andASY2) to be reconfigured after being installed, to suit different 
needs After one of the drivers has been specified (port 1 or port 2), the baud rate, word 
length, parity, and number of stop bits can be changed; each change is made indepen­
dently, with no effect on any of the other characteristics Additionally, flow control can be 
switched between two types of hardware handshaking- the software XON/XOF F control 
or disabled - and error reporting can be switched between character-oriented and 
message-oriented operation 

1 /* cdvutl c - COMDVR Utility 

2 Jim Kyle - 1 98 7 

3 for use with COMDVR SYS Device Driver 

4 •/ 

5 

6 

7 

8 

9 

1 0 

#include 

#include 

#include 

#-include 

<stdio.h> 

<conio h> 
<stdlib h> 

<dos h> 

!• i/o definitions 

/' special console i/o 

!• misc definitions 

!• defines intdos () 

11 !• the following define the driver status bits 

12 
13 #define HWINI Ox0800 

14 #define o_DIR Ox0200 

15 #define o-RIS Ox0100 

16 
17 #define ITLPG Ox0010 

18 #define m..__E>E Ox0008 

Figure 6-4 CDVUT'l G 

I' MCR, 

!• MCR, 

/' MCR, 

!• ICR, 

!• ICR, 

first word, HW In ts 

first word, output 

first word, out: put 

first word, parity 

first word, parity 

•/ 
•/ 

'I 
'/ 

. / 
gated •/ 

DIR >/ 

RIS >/ 

ON •I 
EVEN 'I 

(more) 

'Section IL Progra1nming in the MS-DOS Environment 209 
Canon Exhibit 1108



Part B: Programming for MS-DOS 

19 

20 
21 
22 
23 
24 
25 

26 
27 

28 
29 
30 
31 
32 
33 
34 
35 
36 
37 

38 

39 
40 

41 

42 
43 
44 

45 

46 
47 
48 
49 
50 
51 

52 

53 
54 

55 
56 

57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 

68 
69 

#define m_XS Ox0004 

#define ffi-Wl Ox0003 

/* LCR, first word, 2 stop bits */ 
/* LCR, first word, wordlen mask */ 

*define i_CD Ox8000 
#define i__RI Ox4000 
#def±·ne i__DSR Ox2000 
#define i_CIS Ox1000 

I* MSR, 2nd word, Carrier Detect */ 
I* MSR, 2nd word, Ring Indicator */ 

/* MSR, 2nd word, Data Set Ready */ 
/* MSR, 2nd word, Clear to Send */ 

#define l_SRE Ox0040 
#define 1-HRE Ox0020 
#define l_BRK Ox0010 
*define l_ER1 Ox0008 
#define l__ER2 Ox0004 
#define l__ER3 Ox0002 

#define l~~RF Ox0001 

I* LSR, 2nd word, Xmtr SR Empty 
I* lSR, 2~d word, Xmtr HR Empty 
I* lSR, 2nd word, Break Received 

I* lSR, 2nd word, FrmErr 
I* lSR, 2nd word, ParErr 
I* I SR, 2nd word, oveRun 
I* ISR, 2nd word, Rcvr DR Full 

!• 
-ifdefine CI S 

now define CIS string for ANSI S'lS 

"\033 [2J" 

FILE * dvp; 

union REGS rvs; 
int iobf 5 ] ; 

•I 

main () 
cputs ( '\nCDVUII - COMDVR Utility version 1 O - 1987\n" ) ; 

I* do dispatch loop 
disp (); 

disp () 
{ int c, 

u; 

I* dispatcher; infinite loop 

u = 1; 

while ( 1 ) 
cputs ( "\r\n\tCommand (? for help): " ) ; 
switch ( tolower ( c =• getche ())) /* dispatch 

case '1' : 
I* select port 

£close ( dvp ) ; 
dvp =· fopen ( "ASY1", "rb+" ); 

u = 1 i 

break; 

case '2' : /* select port 2 

£close ( dvp ) ; 
dvp = fopen ( 'AS'l2", "rb+" } ; 

u =· 2; 

break; 

case 'b' 
if ( iobf [ 4 l == 300 

iobf [ 4 ] = 1200; 

/* set baud rate 

•I 
•I 
•I 
•I 
•I 
•I 
•I 

•I 

•/ 

'I 

'I 

•I 

Figure 6-4 Continued 

210 Ihe MS-DOS E'ncyclopedia 

(more) 

·····.·.1. 

' 

~I 

.· .. · ..• ·.·1.··'···· .. ··'·.·.· 

' 

70 
71 

72 

73 
74 

75 
76 
77 

78 
79 
80 
81 
82 

83 

84 
85 
86 
87 

88 
89 
90 
91 

92 
93 
94 
95 
96 
97 
98 
99 

100 
101 

102 
103 
1 04 

1 05 

106 
1 0 7 

108 
109 
11 0 

111 
112 
113 
11 4 

11 5 
11 6 

11 7 

118 

119 
120 

center 
center 
center 
center 
center 
center 

Article 6: Interrupt-Driven Communications 

else 
if ( iobf [ 4 l == 1200 

iobf [ 4 l = 2400; 
else 

if ( iobf [ 4 l == 2400 
iobf [ 4 J = 9600: 

else 
iobf 

iocwr (): 
break; 

4 300; 

case 'e' : 
iobf [ O 
iocwr (); 
break; 

I* set parity even 
: = ( ITL.PG + ITL.PE ) : 

case 'f' I* toggle flow control 
if ( iobf [ 3 l 1 J 

iobf [ 3 J = 2; 

else 
if { iobf [ 3 J == 2 ) 

iobf [ 3 J =' 4: 
else 

if ( iobf { 3 1 == 4 ) 
iobf [ 3 J = 0; 

else 
iobf [ 3 1; 

iocwr (); 

break; 

case 'i 1 
: 

iobf ( o 
iocwr {); 
break; 

I* initialize MCR/lCR 
( HWINI + o_DIR + o_RIS + m__WL ) ; 

case ' ? ' : I* this help 
cputs ( CIS ) ; I* clear the 

center ( "COMMAND IISI \n" ); 

list 
display 

to 8N1 

"1 select port 1 

select port 2 
set BAUD rate 

toggle word LENGIH 
set parity to NONE 
set parity to ODD 

); 

); 

); 

"2 

"8 

"E 

"F 

"I 

set parity to EVEN 
toggle FLOW control 
INIIIAIIZE ints, etc 

I 

N 

0 

R 

s 
Q 

toggle error REPORLS" l: 

toggle SIOP bits ) : 

continue; 

case 'l' : 
iobf [ O l "= 1 ; 
iocwr (); 

break; 

QUII ) ' 

I* toggle word length 

•/ 

•! 

•! 
•/ 

•! 

Figure 6-4 Continued (more) 

, - , nvironment 211 Section IL Programming in the Ms· DOSE. . 

Canon Exhibit 1108



Part B: Programming for MS-DOS 

121 

122 

123 

124 

125 

126 

127 

128 

129 

130 

131 

132 

133 

134 

135 

136 
1 3) 

138 

139 

140 

141 
142 
143 

144 

145 

146 

147 

148 

149 

150 

1 51 

152 

153 

154 

155 

156 

157 

158 

159 

160 

161 

162 

163 

164 

165 

166 
1 6) 

168 

1 69 

170 

1 71 

case 'n' 
iobf [ 0 
iocwr (); 

break; 

/* set parity off 

&=-· ( !TL.PG + m__PE ) ; 

case 'o' 

iobf ( 0 
iobf [ 0 &•=·-· !TL.PE; 

iocwr (); 

break; 

case 'r' 
iobf [ 2 "= 1; 

iocwr (); 

break; 

case 's' 
iobf [ 0 "= ITL..XS; 

iocwr (); 

break; 

case 'q' 
fclose dvp l ; 
exit ( 0 ) ; 

cputs ( ClS ) ; 

/* set parity odd 

/* toggle error reports 

/* toggle stop bits 

/* break the loop, get out 

/* clear the display 

center ( "CURRENI COMDVR SIAIUS" ); 
report u, dvp ) ; /* report current status 

center ( s ) char * s; 

int i ; 

/* centers a string on CRI 

for ( i 80 - strlen ( s ) : i > 0: i _,,, 2 ) 

putch ' ' ) ; 

cputs ( s ); 

cputs ( "\r\n" ); 

iocwr () 

rvs 

rvs 

rvs 

rvs 

x 
x 

x 

x 

ax 

bx 

ex 
dx 

Ox4403; 

fileno ( dvp ); 

1 0 i 

( int ) iobf: 

intdos ( & rvs, & rvs ); 

char * onoff { x ) int x 
return ( x ON" : OFF" l; 

/* IOCTL Write to COMDVR 

Figure 6-4 Continued 

212 The M5-DOS Encyclopedia 

•/ 

•I 

•/ 

'I 

•/ 

•/ 

•! 

•I 

'I 

(more) 

1'72 

1 7 3 
1 74 

1 75 

1 7 6 

1 77 

1 78 

179 

180 

181 

182 

183 

184 

185 

186 

18 7 

188 

189 

1 90 

191 

192 

1 93 

194 

195 

196 

1 9 7 

198 

199 

200 

201 

202 

203 

204 
205 
206 

207 

208 
209 

210 

211 

212 
213 

214 

215 
216 

21 7 

218 
219 

220 
221 

222 

Article 6: Interrupt-Driven Communications 

report ( unit ) int unit 

char temp [ 80 ]; 

rvs 

rvs 

rvs 

rvs 

x 

x 

x 

x 

ax 

bx 

ex 

dx 

Ox4402; 

fileno ( dvp } : 

1 0; 

( int ) iobf; 

intdos ( & rvs, & rvs ); I* use IOCII Read to get data*/ 

sprint£ ( temp, "\nDevice ASY%d\t%d BPS, %d-c-%c\r\n\n", 

cputs 

cputs 

cputs 

cputs 

cputs 

cputs 

cputs 

cputs 

cputs 

cputs 

cputs 

cputs 

cputs 

cputs 

cputs 

cputs 

cputs 

cputs 

cputs 

cputs 

cputs 

cputs 

cputs 

cputs 

cputs 

unit, iobf 4 ] , /* baud rate 

5 + ( iobf 0] & ITL_Wl ), /*word length 

( iobf [ 0 ITL.PG ? 

( iobf [ O & !TL.PE 'E' : 'O' ) : 'N' J , 
iobf [ 0 J & m.......XS ? '2' : '1 ' ) ) ; I* stop bi ts 

temp l; 

"Hardware Interrupts are" ); 

onoff ( iobf [ 0 J & HWINI )); 

", Data Ierminal Rdy" ) : 

onoff ( iobf [ 0 ] & o__DIR ) ) : 

", Rqst Io Send" ) ; 

onoff { iobf [ 0] & o_RIS )J; 

" \r\n" ) : 

"Carrier Detect" ) ; 

onoff ( iobf [ 1 J & i_CD )); 

", Data Set Rdy" ) : 

onoff { iobf [ 1 ] & i_DSR )); 

", Clear to Send" ); 

onoff ( iobf [ 1 J & i_CIS ) ) ; 

", Ring Indicator" ) ; 

onoff { iobf [ 1 J & i_RI )); 
" \r\n" ) ; 

? "Xmtr SR Empty, 

"Xmtr HR Empty, 
" ' '"' I ; 
" : "" ) ; 

l_SRE & iobf [ 

l_HRE & iobf 

1-BRK & iobf 

l---.ER 1 & iobf 

l-.ER2 & iobf 

l_ER3 & iobf 

l_RRF & iobf 

"\b\b \r\n" ) ; 

"Break Received, " : "" ) ; 

"Framing Error, " : "" ) ; 

"Parity Error, " : "" ) : 

"Overrun Error, " : "" ) ; 

? "Rcvr DR Full, '' : "'' ); 

cputs ( "Reception errors '' ) ; 

if { iobf [ 2 ] ="' 1 ) 

cputs 

else 

cputs 

cputs 

"are encoded as graphics in buffer" ); 

"set failure flag" ) ; 

\r\n" } : 

cputs ( "Outgoing Flow Control " ) :· 

if ( iobf [ 3 l & 4 ) 

•/ 
•/ 

•/ 

Figure 6-4 Continued (more) 

Section II Programming in the MS-DOS' Environment 213 
Canon Exhibit 1108



Part B: Programming for MS-DOS 

214 

223 cputs ( "by XON and XOFF" ) ; 

224 else 

225 if I iobf I 3 & 2 ) 

226 cputs ( "by RIS and CIS" ) ' 
227 else 

228 if ( iobf I 3 ) & 1 ) 

229 cputs "by DIR and DSR" ); 

230 else 

231 cputs "disabled" ); 

232 cputs ( \r\n" ) ; 

233 

234 

235 /*end of cdvutl c •/ 

Figure 6-4 Continued 

Although CDVUII appears complicated, most of the complexity is concentrated. in the 
routines that map driver bit settings into on-screen display text Each such mapping 
requires several Jines of source code to generate only a few words of the display report 
fable 6-10 summarizes the functions found in this program 

Table 6-10 .. CDVUfl Pmgram Functions .. 

lines 

42-45 
47-150 

152-158 
160-166 
168-170 
172-233 

Name 

main() 
di>jJ() 
center() 
iocwr() 
onof/0 
report() 

Description 

Conventional entry point 
Main dispatching loop 
Centers text on CRT 
Writes control suing to driver with IOCII Write 
Returns pointer to ON or OFF 
Reads driver status and reports it on display 

The long list of #define operations at the start of the listing (lines 11 through 33) helps . 
make the bitmapping comprehensible by assigning a symbolic name to each s1gnrfrcant bit 
in the four UART registers. 

The main() procedure of CDVUII displays a banner line and then calls the dispatcher 
routine, di)[l(), to start ope1ation CDVUil makes no use of either command-line parame­
ters 01 the environment, so the usual argument declarations are omitted 

Upon entry to di>jJ(), the first action is to establish the default driver as A.SYl by setting 
u ~ 1 and opening ASYl (line 50); the program then enters an apparent mfmrte loop 

Oines 51through149) 

With each repetition, the loop first prompts for a command (line 52) and then gets the 
next keystroke and uses it to control a huge switch() statement Oines 53 through 145) H 
no case matches the key pressed, the switch() statement does nothing; the program sim­
ply displays a report of all current conditions at the selected driver (lines 146through148) 
and then closes the loop back to issue a new prompt and get another keystroke 

The MS-DOS Encyclopedia 

:f 
I 
i 

Article 6: Interrupt-Driven Communications 

However; if the key pressed matches one of the cases in the switch() statement, the corre­
sponding command is executed The digits 1 (line 55) and 2 (line 61) select the driver to 
be affected The ? key (line 105) causes the list of valid command keys to be displayed 
The q key (line 142) causes the program to terminate by calling exit( 0) and is the only 
exit from the infinite loop The other valid keys all change one or more bits in the IOCTI 
control string to modify corresponding attributes of the driver and then send the string to 
the driver by using the MS-DOS IOCII Write !Unction (Interrupt 21H Function 44H Sub­
fonction 03H) via !Unction iocwr() Clines 160through166) 

After the command is executed (except fOr the q command, which terminates operation 
of CDVUT l and returns to MS-DOS command level, and the ? command, which displays 
the command list), the rnport() function (lines 172 through 233) is called (at line 148) to 
display all of the driver's attributes, including those just changed This !Unction issues an 
!OCH Read command (Interrupt 21H Function 44H Subfunction 02H, in lines 174 through 
178) to get new status information into the control string and then uses a sequence of bit 
filtering (lines 179 through 232) to translate the obtained status information into words for 
display 

The special console VO routines provided in Microsoft C libraries have been used exten­
sively in this routine Other compilers may require changes in the names of such library 
routines as getch or dosint as well as in the names of #m'clude files (lines 6 through 9) 

Each of the actual command sequences changes only a few bits in one of the 10 bytes of 
the command string and then writes the string to the driver A foll-featured communica­
tions program might make several changes at one time-for example, switching fl·om 
7-bit, even parity, XON/XOFF flow contrnl to 8-bit, no parity, without flow control to pre­
vent losing any bytes with values of llH or 13H while performing a binary file transfer with 
error-correcting protocol In such a case, the program could make all required changes to 
the control string before issuing a single !OCH Write to put them into effect 

The Traditional Approach 

Because the necessary device driver has never been a part of MS-DOS, most communica­
tions programs are written to provide and install their own port driver code and remove it 
before returning to MS-DOS. The second sample program package in this article illustrates 
this approach Although the major part of the package is written in Microsoft C, three 
assembly-language modules are required to provide the hardware inte1Tupt service rou­
tines, the exception handler, and faster video display They are discussed first 

The hardware JSR module 

The first module is a handlerto service UART interrupts Code for this handler, including 
routines to install it at entry and remove it on exit, .appears in CHl ASM, shown in Figure 
6-5 

Section IL Programming in the 1MS-DO.S Environment 215 

Canon Exhibit 1108



Part B: Programming for MS-DOS 

216 

2 

3 

4 

5 

6 
7 

8 
9 

10 
11 

12 
13 

14 

15 

1 6 

17 

18 

19 

20 
21 

22 

23 

24 

25 

26 
2 7 

28 
29 

30 

31 

32 

33 
34 
35 
36 

37 
38 
39 
40 

41 
42 

43 
44 

45 
46 
47 

48 

49 
50 
51 

I I ILE CH1 ASM 

CH1 ASM -- support file for CIERM C terminal emulator 

set up to work with COM2 

for use with Microsoft C and SMAII model only 

_IEXI segment byte public 'CODE' 

_IEXI ends 
_DAIA 

_DAIA 

CONS! 
CONS! 

segment byte public 'DAIA' 

ends 
segment byte public 'CONSI' 

ends 
_BSS segment byte public 'BSS' 

_BSS ends 

DGROUP GROUP CONSI, __BSS, _DAIA 

assume cs:_IEXI, DS:DGROUP, ES:DGROUP, SS:DGROUP 

_IEXI segment 

public _i_m, _rdmdm, _Send___Byte, _wrt mdm, _set_mdm, _u___m 

bport EQU 

get iv EQU 

put iv EQU 

imrmsk EQU 
oiv_o DW 

oiv_s DW 

bf_pp 

bf_gp 
bf_bg 

bf_fi 

DW 

ow 
OW 
OW 

in___bf DB 

b_last EQU 

bd_dv DW 

DW 

ow 
DW 

DW 

DW 
DW 
OW 

_set_mdm proc 

PUSH 

MDV 

PUSH 

02F8h 

350Bh 

250Bh 

00001000b 

0 

0 

in...bf 
in_bf 

in...bf 

b_last 

512 DUP {?) 

$ 

041 7h 

0300h 

0180h 
OOCOh 

0060h 

0030h 

0018h 

OOOCh 

near 

BP 
BP,SP 

ES 

COM2 base address, use 03F8H for COM1 

COM2 vectors, use OCH for COMl 

COM2 mask, use 00000100b for COM1 

old int vector save space 

put pointer {last used) 

get pointer (next to use) 

start of buffer 

end of buffer 

input buffer 

address just past: buffer end 

baud rate divisors (0,,,110 bps) 

code 1 

code 2 
code 

code 

code 
code 

code 

150 bps 

300 bps 

600 bps 
1200 bps 

2400 bps 

4800 bps 

9600 bps 

replaces BIOS 'init' function 

establish stackframe pointer 

save registers 

Figure 6-5 CH1 A5M 

The MS'-DO.S Encyclopedia 

(more) 

jfrt 
'I 
;/ 
I 

r 

l 
I 
I 
' 

52 
53 
54 
55 
56 
57 
58 

59 
60 

61 

62 
63 
64 

65 

66 
67 

68 

69 
70 

71 

72 
73 
74 
75 
76 
77 

78 
79 
80 

81 

82 
83 

84 

85 

86 

87 
88 

89 
90 
91 

92 

93 
94 
95 

96 
97 
98 
99 

100 
101 

102 

PUSH 

MOV 

MDV 

MDV 

MOV 

MOV 

MOV 

our 
MOV 

MOV 

ROI 
AND 

MOV 

ADD 

MOV 

MOV 

OUI 
MDV 

MOV 

OUI 
MOV 

AND 

MOV 

QUI 
MOV 

MOV 

our 
POP 

POP 

MOV 

POP 

REI 
_set_mdm endp 

_wrtmd.rn proc 
_Send___Byte: 

PUSH 

MOV 

PUSH 

PUSH 

MOV 

MOV 

MOV 

MOV 

MOV 

our 
MOV 

MOV 

CALL 

JNZ 

MOV 

Figure 6-5 Continued 

DS 
AX,CS 

DS,AX 

ES,AX 

AH, [BP+4] 
DX,BPORI+3 

AI,80h 

DX,AI 

DL,AH 

CL, 4 

DI ,CI 

DX, 0000111 Ob 
DI,OFFSEI bd_dv 

DI,DX 
DX,BPORI+1 

AL, [DI+1) 

DX,AL 

DX,BPORI 

AI, [DI] 

DX,AL 

AI,AH 

AI,00011111b 
DX,BPORI+3 

DX,AI 

DX,BPORI+2 

AI I 1 
DX,AL 

DS 

ES 
SP,BP 

BP 

near 

BP 
BP,SP 

ES 

DS 

AX,CS 

DS,AX 
ES,AX 

DX,BPORI+4 

AL, OBh 

DX,AI 
DX,BPORI+6 

BH,30h 

w_tmr 
w_out 

DX,BP0RI+5 

Article 6: Interrupt-Driven Communications 

; point them to CODE segment 

get parameter passed by C 

point to line Control Reg 

set DIAB bit {see text) 

; shift pa.ram to BAUD field 

mask out all other bits 

make pointer to true divisor 

set to high byte first 

put high byte into UARI 

then to low byte 

now use rest of parameter 

to set Line Control Reg 

Interrupt Enable Register 

Receive type only 

;· restore saved registers 

write char to modem 

name used by main program 

set up pointer and save regs 

;· establish DIR, RIS, and 0012 

check for on line, CIS 

timed out 

check for UARI ready 

(more) 

5ection II Programming in the MS'-DO,S Environment 217 

Canon Exhibit 1108



Part B: Programming for MS-DOS 

218 

103 
104 
105 
106 
107 

108 
109 
11 0 

111 

112 

113 
114 

11 5 

116 
11 7 

118 

119 
120 

121 
122 

123 
124 

125 
126 
1 2 7 

128 

129 

130 
1 31 
132 

133 

134 

135 
136 
1 3 7 

138 
139 

140 
1 41 
142 
143 
144 
1 45 
146 

147 

148 
149 
1 50 
1 51 
152 
153 

MOV 

CAII 

JNZ 

MOV 

MOV 

our 
w_out: POP 

POP 

MOV 

POP 

REI 

_wrtmdrn endp 

_rdmdm proc 

PUSH 

MOV 

PUSH 

PUSH 

MOV 

MOV 

MOV 

MOV 

MOV 

CMP 

JZ 

INC 

CMP 

JNZ 

MOV 

noend: MOV 

MOV 

INC 

nochr: POP 

POP 

MOV 

POP 

REI 

_rdmdm endp 

w_tmr proc 

MOV 

w_tm1 : SUB 

w_tm2: IN 

MOV 

AND 

CMP 

JZ 

IOOP 

DEC 

JNZ 

OR 

Figure 6-5 Continued 

The M'S-DO.S Encyclopedia 

BH,20h 

w_tmr 

w_out 

DX,SPORI 

Al, [BP+4] 

DX,Al 

DS 

ES 

SP, BP 

BP 

near 

BP 

BP,SP 

ES 

OS 

AX,CS 

DS,AX 

ES,AX 

AX,-OFFFFh 

BX,bf_gp 

BX,bf_pp 

nochr 

BX 

BX,bf_fi 

noend 

BX,bf_bg 

AL, [BX] 

bf_gp,BX 

AH 

DS 

ES 

SP,BP 

BP 

near 

BI, 1 

CX,CX 

Al,DX 

AH,AI 

Al ,SH 

AI,BH 

w_tm3 

w_tm2 

BI 
w_tm1 

BH,BH 

timed out 

send out to UARI port 

get char passed from C 

; restore saved regs 

reads byte from buffer 

set up ptr, save regs 

set for EOF flag 

use "get" ptr 

compare to "put" 

same, empty 

else char available 

at end of bfr? 

no 
yes, set to beg 

get the char 

update "get" ptr 

zero AH as flag 

restore regs 

wait timer, double loop 

set up inner loop 

check for requested response 

save what came in 

mask with desired bits 

then compare 

got it, return with ZF set 

else keep trying 

until double loop expires 

timed out, return NZ 

(more) 

154 
155 
156 
157 
158 
159 
160 
161 
1 62 
163 
164 

165 
166 

1 6 7 

168 
169 
1 70 

1 71 

1 72 

1 73 
174 

1 7 5 

1 76 

1 77 

178 

179 

180 
181 
182 
183 
184 
185 
186 
1 8 7 

188 
189 
1 90 

191 
1 92 

1 93 

1 94 

195 
196 
1 9 7 

1 98 

199 

200 

201 

202 

203 
204 

Article 6: Interrupt-Driven Communications 

w_tm3: REI 

w_tmr endp 

; hardware interrupt service routine 
rts_m: CLI 

PUSH 

PUSH 

PUSH 

PUSH 

PUSH 

PUSH 

POP 

MOV 

IN 

MOV 

INC 

CMP 

JNZ 

MOV 

nofix: MOV 

_i_m 

iml: 

MOV 

MOV 

QUI 

POP 

POP 

POP 

POP 

POP 

IREI 

proc 

PUSH 

MOV 

PUSH 

PUSH 

MOV 

MOV 

MOV 

MOV 

MOV 

our 

MOV 

IN 

MOV 

IESI 

JNZ 

CMP 

JNZ 

MOV 

IN 

OS 

AX 
BX 

ex 
DX 
cs 
OS 

DX,BPORI 

Al,DX 

BX,bf_pp 

BX 

BX,bf_fi 

no fix 

BX,bf--..bg 

[BX] ,AI 

bf_pp,BX 

AL,20h 

20h,AL 

DX 
ex 
BX 

AX 

OS 

near 

BP 

BP,SP 

ES 

OS 

AX,CS 

DS,AX 

ES,AX 

DX,BPOR1+1 

AL, OFh 

DX,Al 

OX,BPORI+2 

Al,OX 

AH,AL 

AI, 1 

im5 

AH,O 

im2 

DX,BPORI+6 

AL,DX 

; save all regs 

set OS same as CS 

grab the char from UAR! 

use "put" ptr 

step to next slot 

past end yet? 

no 
yes, set to begin 

put char in buffer 

update "put" ptr 

send EOI to 8259 chip 

; restore regs 

install modem service 

save all regs used 

; set OS, ES=CS 

Interrupt Enable Reg 

enable all ints now 

clear junk from UARI 

read IIO reg of UARI 

save what came in 

anything pending? 

no, all clear now 

yes, Modem Status? 

no 

yes, read MSR to clear 

Figure 6-5 Continued (more) 

Section 11 Programming in the MS-DOS Environment 219 

Canon Exhibit 1108



Part B: Programming for MS-DOS 

205 im2: CMP AH, 2 

206 JNZ im3 

20 7 im3: CMP AH, 4 

208 JNZ im4 

209 MOV DX,BPORI 

210 IN Al,DX 

211 im4: CMP AH,6 

212 JNZ im1 

213 MOV DX,BPORI+5 

214 IN Al,DX 

215 JMP im1 

216 

217 im5: MOV DX,BPORI+4 

218 MOV AL,OBh 

21 9 OUT DX,Al 

220 MOV Al, 1 

221 MOV DX,BPORI+1 

222 QUI DX, Al 

223 MOV AX, GE I IV 

224 INI 21h 

225 MOV oiv_o,BX 

226 MOV oiv_s,ES 

227 MOV DX,OfFSEI rts_m 

228 MOV AX, PUIIV 

229 INI 21h 

230 IN Al,21h ; 

231 AND Al, NO! IMRMSK 

232 QUI 21h,Al 

233 MDV Al,20h 

234 OU! 20h,Al 

235 POP DS 

236 POP ES 

237 MOV SP,BP 

238 POP BP 

239 REI 

240 _i_m endp 

241 

242 _UJ« proc near 

243 PUSH BP 

244 MOV BP, SP 

245 IN Al,21h 

246 OR Al, IMRMSK 

247 QUI 21h,Al 

248 PUSH ES 

249 PUSH DS 

250 MOV AX,CS ' 
251 MDV DS,AX 

252 MOV ES,AX 

253 MOV AL,0 ; 

254 MOV DX,BPORI+1 

255 QUI DX,AL 

Figure6-5 Continued 

220 The MS-DOS Encyclopedia 

Iransmit HR empty? 

no (no action needed) 

Received Data Ready? 

no 
yes, read it to clear 

line Status? 

no, check for more 

yes, read ISR to clear 

then ch,eCk for more 

set up working conditions 

DIR, RIS, OUI2 bits 

enable RCV interrupt only 

get old int vector 

save for restoring later 

set in new one 

now enable 8259 PIC 

then send out an EOI 

restore regs 

uninstall modem service 

save registers 

disable COM int in 8259 

set same as cs 

disable UARI ints 

(more) 

Article 6: Interrupt-Driven Communications 

256 MOV DX,oiv_o restore original vector 
257 MOV DS,oiv_s 

258 MOV AX.,PUIIV 
259 INI 21h 
260 POP DS ; restore registers 
261 POP ES 
262 MOV SP,BP 
263 POP BP 

264 REI 

265 _UJ« endp 
266 
267 _IEXI ends 
268 
269 END 

Figure 6-5 Continued 

I he routines in CHl are set up to work only with port COM2; to use them with CO Ml, the 
three symbolic constants BPORI (base address), GE TIV, and PUIIV must be changed to 
match the COMl values Also, as presented, this code is for use with the Microsoft C small 
memory model only; for use with other memory models, the C compiler manuals should 
be consulted for making the necessary changes See also PROGRAMMING IN I HE 
MS-DOS ENVIRONMENT, PROGRAMMING FOR Ms-nos: Strncture of an Application Program 

I he parts of CHl are listed in Table 6-11, as they occur in the listing The leading under­
score that is part of the name for each of the six functions is supplied by the C compiler; 
within the C progiam that calls the function, the underscore is omitted 

Table 6-11. CHl Module Functions .. 

Lines 

1-26 
27-46 
48-84 

86-114 
87 

116-140 

142-155 

157-182 

184-240 
242-265 

Name 

_set_mdm 

._wrtmdm 
_Send_Byte 
_rdmdm 

ULtmr 

rts_m 

_i_m 
_u._m 

Description 

Administrative details 
Data areas 
Initializes UART as specified by parameter passed 

fromC 
Outputs character to UAR I 
Entry point for use if flow control is added to system 
Gets characte1 from buffe1 where JSR put it, or signals 

that no character available 
Wait timer; internal routine used to prevent infinite 

wait in case of problems 
Hardware JSR; installed by _i_m and removed by 

_u_m 
Installs JSR, saving old intenupt vector 
Uninstalls ISR, restoring saved interrupt vector 

Section II Programming in the MS-DOS Environment 221 

Canon Exhibit 1108



Part B: Programming for MS-DOS 

222 

for simplest operation, the JSR used in this example (unlike the device driver) services 
only the received-data int en upt; the other three types of IRQ are disabled at the UART 
Each time a byte is received by the UART, the JSR puts it into the buffer The_rdmdm 
code, when called by the C program, gets a byte from the buffer if one is available If not, 
_rdmdm returns the C EOF code (-1) to indicate that no byte can be obtained 

Tb send a byte, the C program can call either_Send_Byte or_wrtmdm; in the package 
as shown, these are alternative names fOr the same routine In the more complex program 
from which this package was adapted, _ Send_Byte is called when flow control is desired 
and the flow-control routine calls _wrtmdm Tb implement flow control, line 87 should be 
deleted from CHl ASM and a control function named Send_Byte() should be added to the 
main C program Flow-control tests must occur in Send_Byte(); _wrtmdm performs the 
actual port interfacing 

To set the modem baud rate, word length, and parity, _set_mdm is called from the C 
program, with a setup parameter passed as an argument. I he for mat of this parameter is 
shown in Table 6-12 and is identical to the IBM BIOS Intenupt 14H Function OOH 
(Initialization) 

Table 6-12. set_mdm() Par·ameter· Coding,, 

Binar·y Meaning 

OOOxxxxx Set to 110 bps 
OOlxxxxx Set to 150 bps 
OlOxxxxx Set to 300 bps 
Ollxxxxx Set to 600 bps 
lOOxxxxx Set to 1200 bps 
lOlxxxxx Set to 2400 bps 
llOxxxxx Set to 4800 bps 
lllxxxxx Set to 9600 bps 
xxxxOxxx No parity 
xxxOlxxx ODD Parity 
xxxllxxx EVEN Parity 
xxxxxOxx I stop bit 
xxxxxlxx 2 stop bits (15 if WI - 5) 
xxxxxxOO Word length - 5 
xxxxxxOl Word length - 6 
xxxxxxlO Word length - 7 
xxxxxxll Word length - 8 

The CHI code provides a 512-byte ring buffer for incoming data; the buffer size should be 
adequate for reception at speeds up to 2400 bps without loss of data during scrolling 

The M5-DO.S Encyclopedia 

~ 
I 

I 
' 

Article 6: Interrupt-Driven Communications 

The exception-handler module 

for the JSR handler of CHI to be usable, an exception handler is needed to prevent return 
of control to MS-DOS before_ u_ m restores the JSR vector to its original value. If a pro­
gram using this code retwns to MS-DOS without calling_u_m, the system is virtually cerc 
tain to crash when line noise causes a received-data interrupt and the JSR code is no longer 
in memory 

A replacement exception handler (CHlA ASM), including routines for installation, access, 
and removal, is shown in Figure 6-6 1 ike the JSR, this module is designed to work with 
Microsoft C (again, the small memory model only) 

Note:· This module does not provide forfatal disk enors; if one occurs, immediate restart­
ing is necessary See PROGRAMMING IN THE MS-DOS ENVIRONMENT: CusroMIZING 
MS-DOS: Exception Handlers 

1 

2 
IIIIE CH1A.ASM 

3 CHlA.ASM -- support file for CIERM C terminal emulator 
4 

5 

6 

7 

8 

9 ' 
10 

11 

12 

13 
14 

15 

16 

17 

_lEXl 

_IEXl 
_DAIA 

3AIA 

CONS I 

CONS I 
_ESS 

_BSS 

this set of routines replaces Ctrl-C/Ctrl-BREAK 

usage: void set_int(}, rst_int(); 

int broke () ; I* boolean if BREAK *I 
for use with Micr:osoft C and SJ'.'l..All model only, 

segment byte public 'CODE' 

ends 

segment byte public 'DAIA' 

ends 
segment byte public 'CONS!' 

ends 

segment byte public 'SSS' 

ends 

18 DGROUP GROUP CONSI, _ESS, _DAIA 

1 9 

20 

ASSUME CS:_IEXI, DS:DGROUP, ES:DGROUP, SS:DGROUP 

21 _DAIA SEGMENI BYIE PUBIIC 'DAIA' 

22 
23 
24 

01DINI1B DD 0 ; storage for original INI 1BH vector 

25 _DAIA ENDS 
26 
27 _lEXl SEGMENl 

28 

29 

30 

31 

32 

33 

PUBLIC _set_int,_rst_int,_broke 

myint1b: 
mov 

iret 

Figure 6-6 CHJA A SM 

word ptr cs:brkflg,1Bh make it: nonzero 

Section JI:· Programming tn the M5-DO.S Environment 

(more) 

223 

Canon Exhibit 1108



Part B: Programming for MS-DOS 

224 

myint23: 

mov 

iret 

brkflg dw 

....broke proc 

xor 
xchg 

ret 
....broke endp 

word ptr cs:brkflg,23h make it nonzero 

0 

near 

ax, ax 

ax,cs:brkflg 

flag that BREAK occurred 

returns 0 if no break 

prepare to reset flag 

return current flag value 

34 
35 

36 
37 
38 

39 

40 

41 

42 

43 
44 

45 
46 

4 7 

48 
49 

50 
51 

52 

53 

54 

55 

56 
57 

58 

59 
60 

61 

62 
63 

64 

65 

66 
67 
68 

69 
70 
71 

72 

73 
74 
75 

76 
77 

78 
79 

_set_int proc near 

mov 

int 

mov 

mov 

push 

mov 

mov 

lea 
mov 

int 

mov 

mov 

lea 

mov 

int 

pop 

ret 
_set_int endp 

ax,351bh 

21h 

; get interrupt vector for 1BH 

; {don't need to save for 23H} 

word ptr oldint1b,bx 

word ptr oldint1b+2,es 

save offset in first word 

save segment in second word 

ds 
ax, cs 

ds,ax 

dx,myintlb 

ax,251bh 

21h 
ax, cs 

ds,ax 

dx,myint23 

ax,2523h 

21h 

ds 

save our data segment 

set os to CS for now 

DS:DX points to new routine 

set interrupt vector 

set DS to CS for now 

DS:DX points to new routine 

set interrupt vector 

restore data segment 

_rst_int proc near 

push 

lds 

mov 

int 

pop 

ret 
_rst_int endp 

_IEXI ends 

END 

Figure 6-6 Continued 

ds 
dx,oldint1b 

ax,251bh 

21h 

ds 

save our data segment 

DS:DX points to original 

set interrupt vector 

restore data segment 

The three functions in CHIA are _set_ int, which saves the old vector value for Interrupt 
lBH (ROM BIOS Control-Break) and then resets both that vector and the one for Interrupt 
23H (Control-C Handler Address) to internal JSR code; _r:st_int, which restores the 

The MS'-DO.S Encyclopedia 

i 

,.J 
___.1ai........ 

Article 6: Interrupt-Driven Communications 

original value for the Interrupt lBH vector; and _broke, which returns the present value of 
an internal flag (and always clears the flag, just in case it had been set) I he internal flag is 
set to a nonzero value in response to either of the revectored interrupts and is tested from 
the main C program via the _broke function 

The video display module 

The final assembly-language module (CH2ASM) used by the second package is shown 
in Figure 6-7 I his module provides convenient screen clearing and cursor positioning via 
direct calls to the IBM BIOS, but this can be eliminated with minor rewriting of the rou­
tines that call its functions In the original, more complex program (DT115 EXE, available 
from DI.6 in the ClMFORUM of CompuServe) from which CT ERM was derived, this mod­
ule provided windowing capability in addition to improved display speed 

1 

2 
'.I IILE CH2.ASM 

3 CH2 ASM -- support file for CIERM C terminal emulator 

4 for use with Microsoft C and SMAII model only 
5 

6 
7 

8 
9 

10 

11 

12 

13 

14 

15 

1 6 

1 7 

18 

1 9 

20 

21 
22 
23 
24 

25 

26 

27 

28 
29 
30 
31 

32 
33 
34 
3' 

_IEXI 

_!EXI 

__DAIA 

__DAIA 

CONS I 

CONS I 

-13SS 

-13SS 

DGROUP 

_IEXI 

segment byte public 'CODE' 

ends 

segment byte public 'DAIA' 

ends 

segment byte public 'CONSI' 

ends 

segment byte public 'BSS' 

ends 

GROUP CONSI, _BSS, __DAIA 

assume cs:_IEXI, DS:DGROUP, ES:DGROUP, SS:DGROUP 

segment 

public _cls,_color ,_deal, _i_v ,_key ,_wrchr,_wrpos 

at rib DB 

_colr DB 

v....bas DW 

v_ulc OW 
v_lrc OW 

v_col ow 

0 

0 

0 

0 

184Fh 

0 

attribute 

color 

video segment 

upper left corner cursor 

lower right corner cursor 

current col/row 

_key proc 

PUSH 

MOV 

INI 

MOV 

JZ 
MOV 

near 

BP 

AH, 1 

16h 

AX,OFFFFh 

keyOO 

AH,0 

get keystroke 

check status via BIOS 

none ready, return EOF 

have one, read via BIOS 

Figure 6-7 CH2 A 5:M (more) 

Section II Programming in the MS'-DO.S Environment 225 

Canon Exhibit 1108



Part B: Programming for MS-DOS 

226 

36 
37 

38 

39 

40 
41 
42 

43 

44 

45 

46 

47 

48 

49 

50 

51 
52 

53 

54 

55 

56 

57 
58 

59 
60 

61 
62 

63 
64 

65 

66 
67 

68 

69 

70 

71 

72 

73 

74 

75 
76 

77 

78 

79 

80 

81 
82 

83 
84 

85 

86 

INI 

keyOO: POP 
REI 

_key endp 

_wrchr proc 

PUSH 

MOV 
MOV 

CMP 
JNB 

CMP 

JNZ 

DEC 

MOV 

CMP 

JB 

JMP 

notbs: CMP 

JNZ 

MOV 

ADD 

AND 

MOV 

CMP 

JA 
JMP 

notht: CMP 
JNZ 

MOV 

INC 

CMP 

JEE 

CAll 

MOV 

noht1: MDV 

JMP 

notlf: CMP 

JNZ 

CAll 

JMP 

ck_cr: CMP 

JNZ 

MOV 

MOV 

JMP 

Figure 6-7 Continued 

T'he MS'-DOS Encyclopedia 

16h 

BP 

near 
BP 

BP,SP 
Al, [BP+4] get char passed by C 

Al,' ' 
prchr ; printing char, go do it 

AL,8 

notbs 
BYIE PIR v_col process backspace 

AL,byte ptr v_col 

AI,byte ptr v_ulc 
nxt_c step to next column 

norml 

AI, 9 

not ht 
AL,byte ptr v_col 

AL,8 
AL, OF8h 
byte ptr v_col,AL 

AI,byte ptr v_lrc 

nxt_c 

SHOR I 

Al,OAh 

notlf 

norml 

Al,byte ptr v_col+1 

AI 
AL,byte ptr v_lrc+1 

noht1 

scrol 
AI,byte ptr v_lrc+1 

byte ptr v_col+1 ,AL 

SHOR I norml 

process HIAB 

; process linefeed 

AI, Och 
ck_cr 

-els 
SHOR I 

process formfeed 

AL, ODh 
ignoI 

ignor 

AL,byte ptr v_ulc 

byte ptr v_col,Al 

SHORI norml 

ignore all other CII chars 

; process CR 

(more) 

87 

88 

89 

90 

91 

92 

93 

94 

95 

96 
97 

98 

99 

100 

101 

102 

103 
104 
105 
106 

1 0 7 

108 

109 

11 0 

111 

112 
113 
114 

115 

116 

11 7 
118 

119 
120 

121 

122 

123 
124 

125 

126 

127 

128 
129 

130 
131 

132 

1 33 

1 34 

135 

136 
13 7 

prchr: MOV 

PUSH 

XOR 
MOV 

PUSH 
MOV 

PUSH 

CAII 

MOV 
nx-i::_c: INC 

MOV 

CMP 

JIE 

MOV 

PUSH 

CAll 

POP 

MOV 

PUSH 

CALI 

POP 

norml: CAII 

ignor: MOV 

POP 

REI 
_wrchr endp 

_i_v proc 

_i_v 

PUSH 

MOV 

MOV 

MOV 

MOV 

POP 

REI 

endp 

_wrpos proc 

PUSH 
MOV 

MOV 

MOV 

MOV 

MOV 

MOV 

PUSH 

INI 

POP 

MOV 
MOV 

POP 

Figure 6-7 Continued 

Article 6: Interrupt-Driven Communications 

AH,_colr 

AX 

AH,AH 

; process printing char 

Al,byte ptL v_col+1 

AX 
AL,byte ptr v_col 

AX 

wrtvr 

SP,BP 
BYIE PIR v_col 

Al,byte ptr v~col 
Al,byte ptr v_lrc 

norml 

advance to next column 

Al,ODh 

AX 

; went off end, do CR/II 

_wrchr 

AX 

AI,OAh 

AX 

_wrchr 

AX 

set_cur 

SP,BP 

BP 

near 

BP 

BP,SP 

AX,OBOOOh 
v_bas,AX 

SP,BP 

BP 

near 

BP 

BP,SP 

DH, [BP+4] 

DI, [BP+6] 
v_col,DX 

BH,atrib 
AH, 2 

BP 

10h 

BP 
.lli.X, v_col 

SP,BP 

BP 

establish video base segment 

mono, 8800 for CGA 
could be made automatic 

set cursor position 

row from C program 

col from C program 

cursor position 

attribute 

; return cursor position 

Section IL Programming in the MS-DOS Environment 

(more) 

227 

Canon Exhibit 1108



Part B: Programming for MS-DOS 

228 

138 
139 

140 

141 

142 

143 

144 

145 

146 
14) 

148 
149 

150 

151 

152 
153 

154 

155 

156 

1 5) 

158 

159 

1 60 
1 61 

1 62 

1 63 

1 64 

1 65 

1 66 

1 6) 

1 68 

1 69 

1 7 0 

1 71 

1 72 

1 73 

1 7 4 

1 7 5 

1 7 6 

1 77 

1 78 

1 79 
1 80 
181 

182 

183 

184 

185 

186 

1 8 7 

188 

REI 

_wrpos endp 

set_cur proc 

PUSH 

MOV 

MOV 

MOV 

MOV 

PUSH 

INI 

POP 

MOV 

MOV 

POP 

REI 

set_cur endp 

_color proc 

PUSH 

MOV 

MOV 

MOV 

MOV 

SHl 

AND 

OR 
MOV 

XOR 

MOV 

POP 

REI 

_color endp 

scrol 

scrol 

_els 

proc 

PUSH 

MOV 

MDV 

MOV 

MOV 

MOV 

MOV 

PUSH 

INI 

POP 

MOV 

POP 

REI 

endp 

proc 

Figure 6-7 Continued 

The MS-DOS Encyclopedia 

near 

BP 

BP, SP 

DX,v_col 

BH,atrib 

AH,2 

BP 

1 Oh 

BP 

AX,v_col 

SP,BP 

BP 

near 

BP 

BP,SP 

AH, [BP+6] 

Al, [BP+4] 

ex, 4 

AH,CI 

Al, OFh 

Al,AH 

_colr,Al 

AH,AH 

SP,BP 

BP 

near 

BP 

BP, SP 

Al, 1 

cx,v_ulc 

DX,v_lrc 

BH,_colr 

AH,6 

BP 
10h 
BP 

SP, BP 

BP 

nea::: 

; set cursor to v_col 

; use where v_col says 

; _color (fg, bg) 

background from C 

foreground from C 

pack up into 1 byte 

store for handler's use 

scroll CRI up by one line 

; count of lines to scroll 

; use BIOS 

clear CRI 

(more) 

:Wf" 
I 
I 

189 
1 90 
191 
192 
193 

194 

1 95 

196 

197 

198 

199 

200 
201 

202 

203 
204 

205 
206 
207 
208 
209 
210 

211 

212 
213 

214 

215 
21 6 

21 7 

218 

219 
220 

221 

222 
223 

224 

225 
226 

227 

228 
229 

230 

231 

232 

233 

234 

235 
236 
237 

238 

239 

_els 

PUSH 

MOV 

MOV 

MOV 

MOV 

MOV 

MOV 

MOV 

PUSH 

INI 

POP 

CAII 

MOV 

POP 

REI 

endp 

_cteol proc 

PUSH 

MOV 

MOV 

MOV 

PUSH 

MOV 

XOR 

PUSH 

MOV 

deol1; CMP 

JA 

Pl.JSR 

CAII 

POP 

INC 

JMP 

deo.!.2: MOV 

MOV 

POP 

REI 

-deal endp 

wrtv:: proc 

POSH 

MOV 

MOV 

MOV 

MOV 

MOV 

MUI 

XOR 

Figure 6-7 Continued 

Article 6: Interrupt-Driven Communications 

BP 
BP,SP 

Al,O 

cx,v_ulc 

v_col,CX 

DX,v_lrc 

BH,_colr 

AH,6 

BP 

10h 

BP 

set_cur 

SP,BP 

BP 

near 

BP 

BP,SP 

Al,' ' 

AH,_colr 

AX 

flags CIS to BIOS 

set to HOME 

use BIOS scroll up 

cursor to HOME 

; delete to end of line 

set up blanks 

Al,byte ptr v_col+1 

AH,AH set up row value 

AX 

Al,byte ptr v_col 

Al,byte ptr v_lrc 

deol2 at R6 edge 

AX 

wrtvr 

AX 

AI 
deol 1 

AX,v_col 

SP ,BP 

BP 

ne3-r 

BP 

BP, SP 

D~,[BP+4] 

DH, [BP+6J 

BX, [BP+SJ 

Al, 80 

OH 
DH,DH 

current location 

write a blank 

next column 

do it again 

rei::urn cursor position 

write video RAM (col, row, char/atr) 

set up arg ptr 

column 

row 

char/atr 

calc offset 

'Section II. Programmtng in the MS'-DO.S Environment 

(more) 

229 

;i 

111' 
ii :d 
\' 
11 
ii 
11 

I 
I 
' 

Canon Exhibit 1108



Part B: Programming for MS-DOS 

240 
241 

242 
243 
244 
245 
246 
24 7 

248 
249 

250 
251 
252 
253 
254 
255 
256 

wrtvr 

_IEXI 

ADD 

ADD 

PUSH 

MOV 

MDV 

MOV 
MOV 

SIOSW 
POP 

MOV 

POP 

REI 

endp 

ends 

END 

Figure 6- 7 Continued 

AX,DX 

AX,AX 

ES 

DI,AX 

AX,v_bas 

ES,AX 
AX,BX 

ES 

SP,BP 

BP 

adjust by~es to words 

save seg reg 

set up segment 

get the data 

put on screen 
restore regs 

The sample smarter terminal emulator: CTERM.C 

230 

Given the interrupt handler (CHl), exception handler (CHlA), and video handler (CH2), a 
simple terminal emulation program (CTERM C) can be presented The major functions of 
the program are written in Microsoft C; the listing is shown in Figure 6-8 

I* lerminal Emulator (cterm. cl 

' Jim Kyle, 1987 2 

3 

4 

5 

Uses files CH1, CH1A, and CH2 for MASM support 

8 

9 

1 0 

11 

12 
1 3 

1 4 

1 5 

1 6 

1 7 

1 8 

1 9 

20 
21 
22 
23 
24 

'I 

#include <stdio h> 
#-include <conio.h> 
#-include <stdlib.h> 
#include <dos .h.> 

#include <s~ring h> 

#define BRK 'C'-'@' 
#define ESC '['-'@' 

#define XON 'Q'-'@' 

#define XOFF 'S'-'@' 

#define Irue 1 

#define False 0 

#define Is.Junc?:ion_Key (C) { (C} 

static char capbfr [ 4096 ] : 

static int wh, 

ws; 

Figure 6-8 G TERM C 

The MS-D05 Encyclopedia 

ESC 

/* special console i/o 

/* misc definitions 

I* defines intdos() 

I* control characters 

I* capture buffer 

•/ 

•/ 

(more) 

•f1$,f('c" 

···.· .•.•. rr··.· 

I 
i 

Article 6: Interrupt-Driven Communications 

25 
26 

27 
28 
29 
30 
31 

32 
33 
34 
35 

36 
37 
38 
39 
40 

41 

42 

43 
44 

45 
46 
4 7 
48 
49 

50 
51 
52 
53 
54 
55 
56 
57 
58 

59 
60 
61 

62 
63 
64 
65 
66 
67 
68 

69 
70 
71 

72 

73 
74 
75 

static int I, 
waitchr a, 
vflag = False, 
capbp, 
capbc, 

Ch, 

Want_7_.Bit = Irue, 
Esc_seq_State = O; 

int _ex , 
_cy, 
_atr 
_pag 

oldtop 
old.bot 

OxO 7, 

0, 
0, 
Oxl 84£; 

FIIE * in_file = NULL: 
FIIE * cap_file = NULI: 

#include "cterm.h" 

int Wants_Io__tl,bort () 
{ return broke (); 

void 

main ( argc, argv ) int argc 
char* argv []; 
char * cp, 

I* escape sequence state variable 

I* white on black 

I* start with keyboard input 

/* external declarations, etc 

/* checks for interrupt of script 

/* main routine 

* addext (); 
if ( argc > 1 ) 

in_file = fopen 
if ( argc > 2 } 

I* check for script filename 
( addext ( argv [ 1 ] , " SCR" ) , "r" ) : 

/* check for capture filename 
cap_file =, fopen ( addext ( argv ( 2 ] , " CAP" ) , "w" ) ; 

set_int () : /* install CH1 module 
Set_Vid () ; 
els (); 

/* get video setup 
/* clear the screen 

cputs ( "Ierminal Emulator" ) ;· /* tell who's working 
cputs ( "\r\n< ESC for local commands >\r\n\n" ) : 
Want_7-13it = Irue; 
ESC_Seq_State = O; 
Init_Comm {); 
while ( 1 ) 

I* set up drivers, etc 
I* main loop 

{ if { ( Ch = kb_file {}) > 0 ) 
{ if ( Is_Function-Key (Ch)) 

( if ( docmd () < O } 
break;· 

else 
SencLByte ( Ch & Ox7F ) ; 

I* check local 

I* command 

/* else send it 

Figure 6-8 Continued 

•! 

'/ 

•I 

•/ 

•/ 

'/ 

•! 

•! 

•/ 

•/ 
•! 
•/ 

•/ 
•! 
•! 

•/ 

Section IL Programming tn the MS~DOS Environment 

(more) 

231 
Canon Exhibit 1108



Part B: Programming for MS-DOS 

232 

if { ( Ch = ReacL..Modem ()) >= 0 ) I* check remote 

{ if ( want_7-Bit ) 
Ch &= Ox7F; /* trim off high bit 

s~itch ESC_Seq_State /* state machine 

case 0 : /* no Esc sequence 

switch ( Ch 

case ESC 

ESC_Seq_State 

break: 

default : 

1; 

if { Ch == waitchr 
waitchr- = O; 

if ( Ch== 12 ) 

els {) ; 

else 

/* Esc char received 

/* wait if required 

/* clear screen on FF 

•! 

•! 
•! 

•! 

•/ 

•/ 

•! 

76 

77 

78 

79 
80 
81 

82 

83 

84 

85 
86 

87 

88 

89 

90 

91 

92 

93 
94 

95 
96 
97 
98 

99 

if ( Ch != 127 } /* ignore rubouts */ 
{ putchx ( (char) Ch ) ; /* handle all others */ 

100 

101 

1 02 

103 
104 

105 

106 
107 
108 
109 

11 0 

111 
112 

113 

114 

115 

11 6 

11 7 

118 

119 

120 
121 

122 

123 
124 

125 

126 

Figure 6-8 Continued 

put_cap ( (char} Ch ) : 

break; 

case 1 : /* ESC -- process any escape sequences here 

switch ( Ch ) 

case 'A' : 

ESC_Seq_State 

break; 

case 'B' 

ESC_Seq_Star..e 

break; 

case 'C' 

ESC_Seq_State 

break; 

case 'D' 

ESC_Seq_State 

break: 

case 'E' 

els () : 

I* VI 52 up 

/* nothing but stubs here 

/* VI52 down 

0; 

/* VI52 left 

0; 

I* VI 52 right 

0; 

I* VI52 Erase CRI 

/* actually do this one 

The MS'-DOS Encyclopedia 

•I 

'I 
•/ 

•/ 

•I 

'I 

•! 
'I 

(more) 

L 

12 7 

128 

129 

130 

131 

132 
133 

134 

135 

136 

1 3 7 

138 

139 

140 
141 
142 

143 

144 

145 

146 
147 

148 

149 

150 

151 

152 

153 

154 

155 
156 

1 5 7 

158 

1 59 

160 

161 
1 62 

163 
164 

165 

166 
167 

168 

169 

170 

1 71 
1 72 

1 7 3 

1 74 

1 75 

1 76 

177 

Article 6: Interrupt-Driven Communications 

ESC_Seq_State 

break; 

case 'H' 

0; 

locate O, O ); 
ESC_Seq_State = O; 
break; 

case 'j' 

deos () ; 

ESC_Seq_State 
break; 

O; 

/* VI52 home cursor-

/* VI52 Erase to EOS 

case '[' /*ANSI SYS - V1100 sequence 
ESC_Seq_State = 2; 

break; 

default : 

putchx { ESC ); /*pass thru all others 
putchx ( (char) Ch ) : 
ESC_Seq_State O; 

break;· 

case 2 : 

ESC_Seq_State 0; 

if ( broke ()) 

{ cputs ( "\r\n***BREAK*** \r\n" 
break; 

if ( cap_file 
cap_flush (); 

IeriTLCornm (); 
rst_int () ; 

exit ( 0 ) : 

docmd {) 

FIIE * getfil (): 
int wp: 

wp = 1rue: 

if { ! in_file : : vflag ) 

cputs ( "\r\n\tCommand: " ) : 
else 

.wp = False: 

Ch= toupper ( kbcLwait ()); 
if ( wp ) 

putchx ( (char) Ch ) ; 

I* ANSI 3.64 decoder 

I* not implemented 

/* check CH1A handlers 
); 

/* end of main loop 

I* save any capture 

I* restore when done 

/* restore break handlers 

/* be nice to MS-DOS 

I* local command shell 

/* ask for command 

I* get response 

•! 

•/ 

•/ 

•/ 

•! 
•/ 

•/ 

•/ 
•! 

•! 
•/ 
•/ 

'/ 

•/ 

*I 

Figure 6-8 Continued (more) 

Section IL Programming in the MS-DOS Environment 233 Canon Exhibit 1108



Part B: Programming for MS-DOS 

234 

178 switch { Ch /* and act on it 

1 7 9 

180 

181 

182 

183 
184 

185 
186 

187 

188 

1 89 
190 

1 91 

192 
193 

194 

1 95 

196 

1 9 7 

1 98 

1 99 

200 
201 

202 

203 

204 

205 

206 
207 

208 

209 

210 

211 

212 

213 
214 

21 5 

216 

217 

218 

219 
220 

221 

222 

223 

224 
225 

226 

227 

case 'S' : 
if ( wp ) 

cputs ( "low speed\r\n" ) ; 

Set-13aud ( 300 ); 

break; 

case 'D' 

if ( wp l 
cputs ( "elav (1-9 sec): " ) ; 

Ch= kbd_wait (); 

if ( wp ) 
putchx ( {char) Ch ) ; 

Delay ( 1000 * ( Ch - '0' )}; 

if ( wp } 
putchx ( '\n' ) ;· 

break; 

case 'E' : 
if ( wp ) 

cputs ( "ven Parity\r\n" ) ; 

Set_Farity ( 2 ) ; 

break; 

case 'F' : 
if { wp ) 

cputs ( "ast speed\r\n" ) ; 

Set-13aud ( 1200 ) ; 

break; 

case 'H' : 

"\r\n\tVAIID COMMANDS:\r\n" ); 
if ( wp ) 

cputs 

cputs 

cputs 

cputs 

cputs 

cputs 

cputs 

cputs 
cputs 

cputs 

cputs 

cputs 

"\tD delay 0-9 seconds \r\n" ); 

"\tE even parity.\r\n" ) ; 

"\tE {fast) 1200-baud \r\n" I; 

"\tN no parity \r\n" I' 
'\tO odd parity \r\n" ); 

"\tQ quit, retu:tn to DDS \r\n" 

"\tR reset modem .. \r\n" ); 

"\tS (slow) 300-baud .. \r\n" I; 

"\tU use script file \r\n" I' 
"\tV verify file input \r\n" I; 

"\tW wait fo' char " I' 

break; 

case 'N' : 
if { wp 

Figure 6-8 Continued 

The MS-DOS E'ncyclopedia 

); 

F 

I 
I 

-: 

'/ 

(more) 

228 

229 
230 

231 

232 

233 

234 

235 
236 

237 

238 

239 

240 

241 

242 

243 

244 

245 

246 
247 

248 

249 

250 

251 

252 

253 
254 

255 

256 

257 

258 

259 

260 

261 

262 

263 
264 

265 
266 

267 

268 

269 

270 

2 71 

2 72 

273 
2 i 4 

2 7 5 

276 
277 

278 

cputs ( "o Parity\r\n" ) : 
Set_Farity 1 ) ; 

break; 

case 'O' 
if ( wp ) 

cputs ( "dd Parity\r\n" ) ; 
Set_Farity ( 3 ); 

break; 

case 'R' 

if { wp ) 

cputs ( 'ESEI Comm Port\r\n" ) ; 
Init_Comrn (); 

break; 

case 'Q' 

if ( wp ) 

cputs ( - QUII Conunand\r\n" ) ; 
Ch = ( - 1 ) : 

break; 

case 'U' 

if ( in_file && ! vflag 

putchx ( 'U' ) ; 

cputs { "se file: " ) ; 
getfil (): 

cput s ( "File ) ; 

Article 6: Interrupt-Driven Communications 

cputs { in_file ? 

waitchr = O; 
break; 

"Open\r\n" "Bad\r\n" ) ; 

case 'V' 

if { wp ) 

{ cput s 

cputs 

"erify flag toggled ,. } ; 

vflag ? "OFE\r\n" 

vflag = vflag ? False : Irue; 
break; 

case 'W' : 

if ( wp 

cputs "ait for: <" ) ; 

waitchr kbd_wait (); 

if ( waitchr == 1 1 
) 

waitchr '" O; 

if { wp J 

{ if ( waitch:t 

putchx { (char} waitchr ) : 

else 

cputs ( "no wait" ) ; 

"ON\r\n" ) ; 

Jligure 6-8 Continued (more) 

Section II: Programming in the MS:-D05 Environment 235 
Canon Exhibit 1108



Part B: Programming for MS-DOS 

236 

279 

280 
281 

282 

283 
284 

285 

286 
287 

288 

289 

290 

291 
292 

293 

294 
295 

296 

297 

298 

299 

300 

301 

302 

303 

304 
305 

306 

30 7 

308 

309 
31 0 

311 

312 

313 

314 
31 5 

31 6 
317 

318 

31 9 

320 
321 

322 

323 

324 

325 
326 

32 7 

328 

329 

cputs ( ">\r\n" ) ; 

break; 

default : 

if { wp 

{ cputs ("Don't know"); 

putchx ( (char) Ch ) ; 
cputs ( "\r\nUse 'H' command for Help \r\n" ); 

Ch= '?'; 

/* if window open 

"\r\n [any key] \r" ) ; 

if ( wp ) 

{ cputs 

while ReacL.-Keyboard () == EOF } /* wait for response 

return Ch 

kbd ..... wai t () 

{ int c 
while ({ c = kb_file ()) 

return c & 255; 

/* wait for input 

( - 1 ) ) 

kb_file (} /* input from kb or file 

{ int c ; 

if { in_file ) 

c = Wants_Io_Abort () ; 

if ( waitchr && ! c } 

c == ( - 1 ) ; 

else 

/* USING SCRIPI 

/* use first as flag 

/* then for char 

if { c : : ( c - getc ( in__file ) ) "== EDF , , c == 26 ) 

{ £close ( in_file ) ; 

cputs ( "\r\nScript File Closed\r\n" ) ; 

in_file NUIL; 

waitchr 0; 
c = ( - ) ; 

else 

if { c == '\n' 
c = { - 1 ) : 

if ( c == '\\' ) 

c = esc { l ; 
if ( vflag && c != { - 1 )) 

{ put chx ' { ' ) ; 

putchx 

putchx 

{char) c ) ; 

'}' } ' 

/* ignore LFs in file 

/* process Esc sequence 

/* verify file char 

Figure 6-8 Continued 

The MS-DO.S Encyclopedia 

•/ 

•! 

•/ 

•! 
•I 

•I 

•! 

•I 

(more) 

Article 6: Interrupt-Driven Communications 

330 

331 

332 

333 
334 

335 

336 

33'7 

338 

339 
340 

341 

342 

343 

344 

345 

346 

347 
348 

349 

350 

351 

352 
353 

354 

355 

356 

35 7 

358 
359 

360 

361 

362 

363 
364 

365 

366 

367 

368 

369 

3 70 
3 71 

else 

c = Read____Keyboard () : 
return ( c ); 

esc () 

{ int c 

c == getc ( in_file ); 
switch toupper 

case 'E' : 

c = ESC;· 

break; 

case 'N' : 

C = I \n I; 
break: 

case 'R' : 

C = '\r'; 
break; 

case ' I ' : 

c = '\t'; 
break; 

case '"' : 

c JI 

c = getc { in_file) & 31; 
break; 

return ( c ) : 

FIIE * getfil () 

{ char fnm [ 20 j; 

getnam { fnm, 1 s ) : 
if ( ! ( strchr { fnm, ))) 

strcat ( fnm, ' SCR" ) ; 

return ( in_file = fopen ( fnm, 

/* USING CONSOIE 

I* if not using file 

I* script translator 

I* control chars i1' file 

I* get the name 

"r" ) ) ; 

3 72 

373 
void getnam ( b, s } char * b: 

/* take input to buffer 

374 

375 
376 

377 

3 78 
379 

380 

int s ; 

while ( s -- > o 
if ( ( * b = {char) kb<Lwait (}) 

putchx ( * b ++ ); 
else 

break 

putchx { '\n' ) ; 

F'i'gure 6-8 Cbntinued 

Sectton 11 Programming in the MS-DO,S Envtronment 

•/ 
'/ 

'/ 

'/ 

(more) 

237 Canon Exhibit 1108



Part B: Programming for MS-DOS 

238 

' b 0' 

char * addext b, 

e ) char * b, 

* e; 
static char bfr [ 20 ]; 

if ( strchr ( b, ' , ' ) ) 

return { b ); 

strcpy 

strcat 

return 

bfr, b ) ; 

bfr, e ) ; 

bfr ) ; 

void put_cap ( c l char c ; 

{ if { cap_file && c != 13 

fputc ( c, cap_file ); 

void cap_flush () 

if ( cap_file ) 

£close ( cap_file }; 

cap_file = NULI; 

/* add default EXIension 

/* strip out CRs 

/* use MS-DOS buffering 

/* end Capture mode 

381 
382 

383 
384 

385 

38 6 
387 

388 
389 
390 

391 
392 

393 
394 
395 

396 
397 

398 
399 
400 

401 
402 

403 
404 

405 
406 

40 7 

408 

409 
410 

411 

412 
41 3 

414 
41 5 

41 6 

41 7 

41 8 

419 
420 

421 

422 
423 
424 

425 

426 

427 

428 

429 
430 

431 

cputs ( "\r:\nCapture file closed\r\n" ) ; 

!• IIMER SUPPORI SIUFF {IBMPC/MSDOS) •! 

static long timr; 

static union REGS rgv ; 

long getmr () 

{ long now 

rgv.x.ax = Ox2c00; 

int.dos ( & rgv, & rgv ); 

now rgv.h ch; 

now*= 601; 

now+= rgv h cl: 

now *= 601; 
now+= rgv.h db; 

now *"' 1001; 

now += rgv h dl; 

return ( 101 *now); 

void Delay ( n ) int n ; 

long wakeup i 

wakeup = getmr () + ( long n; 

while ( getmr () < wakeup ) 

Figure 6-8 Continued 

Ihe M5-D05 Encyclopedia 

I* timeout register 

/* msec since midnite 

I* hours 

/* to minutes 

I* plus min 

/*' to seconds 

I* plus sec 

/* to 1/100 

/*plus 1/100 

/* msec value 

/* sleep for n msec 

I* wakeup time 

/* now sleep 

•! 

•I 
•! 

•I 

•I 

•! 

•! 
•! 
•! 
•! 
•! 
'I 
•/ 
•! 

•/ 

•I 

•! 

(more) 

432 

433 

434 

435 

436 
437 

438 
439 

440 

441 
442 

443 
444 
445 

446 
44 7 
448 
449 

450 

451 
452 
453 
454 
455 
456 
457 
458 
459 
460 

461 
462 

463 

464 

465 
466 

467 

468 
469 

470 

4 71 
472 

473 

474 

475 
476 

4 77 

478 

479 

480 
481 
482 

Article 6: Interrupt-Driven Communications 

void Start_Iimer ( n ) int n 

{ timr = getmr (} + ( long n * 
I* set timeout for n sec 

1 0001; 

Iimer__Expired () /* if timeout return 1 else return 0 

{ r;eturn ( getmr () > timr ) ; 

Set_Vid () 

{ _i_v (); 

return O; 

void locate row, col ) int row , 
col; 

_cy = row % 25; 

_ex= col % 80: 

_w:rpos { row, col ) ; 

void deal (} 

_deal (); 

void deos {) 

deal () ; 

if ( _cy < 24 ) 

{ rgv x ax 

rgv x bx 

rgv x ex 

Ox0600: 

( _atr << 8 ) : 

{ _cy + 1 << 8; 

rgv x.dx Ox184F; 

int86 ( Ox10, & rgv, & rgv ) : 

locate { _ey, _ex); 

void els {) 

{ _els (} : 

void cursor ( yn ) int yn 

{ rgv x ex = yn ? Ox0607 Ox2607; 

rgv.x.ax = Ox0100; 

int86 ( Ox10, & rgv, & r.gv } : 

void revvid ( yn ) int yn ; 

{ if ( yn J 
_atr =_color ( 8, 7 ); 

I* initialize video 

/* use ML from CH2 ASM 

I* use MI from CH2 ASM 

I* if- not last, clear 

I* use ML 

/* ON/OFF 

I* black on white 

•! 

•! 

•/ 

•! 

•/ 

•/ 

•! 

•! 

Figure 6-8 Continued (more) 

Section 11 Programming in the MS-DOS Environment 239 

Canon Exhibit 1108



Part B: Programming for MS~DOS 

240 

483 

484 

485 

486 
487 

488 

489 
490 

491 

492 

493 

494 

495 

496 
497 

498 

499 

500 

501 

502 

503 

504 

505 

506 
507 

508 

509 

51 0 
511 

512 

513 

514 

515 

516 

else 
_atr _color ( 15, 0 ); 

putchx ( c ) char c 
{ if ( C == l \n I ) 

putch ( '\r' ); 

putch ( c l ; 
return c ; 

Reaci.__Keyboard {) 

int c ; 
if ( kbhit ()) 

return getch ()); 

return { EOF ) ; 

/ * MODEM SUPPORI 

static char mparm, 

wrk [ 80 J : 

void Init_Comm () 

static int ft 0: 

if ( ft ++ == 0 ) 
i_lll () ; 

Set_parity ( 1 ); 

Set_Baud ( 1200 ) : 

#define B1200 Ox80 

#define B300 Ox40 

Set_Baud ( n ) int n ; 

if ( n == 300 ) 

/* white on black 

/ * put char to CRI 

/* get keyboard character 
returns -1 if none present 

/* no char at all 

•! 

/* initialize comm port stuff 

/* firstime flag 

I* 8, N, 1 

I* 1200 baud 

/* baudrate codes 

/* n is baud rate 51 7 

51 3 

519 

520 
521 

522 

523 
524 

525 

526 
52 7 

528 
529 

mparm = ( mpa1:m & Oxl F ) + B300: 

else 
if ( n == 1200 J 

mparm = ( mparm & OxlF ) + B1200; 

530 

else 
return O; 

sprint£ ( wrk, "Baud rate 

cputs ( wrk ) : 
set__mdm ( mparm ) : 

return n : 

531 #define PAREVN Ox18 

532 #define PARODD Ox10 
533 #define PAROFF OxOO 

Figure 6-8 Continued 

The MS-D05 Encyclopedia 

/* invalid speed 

%d\r\n", n ) ; 

/* MCR bits for commands 

•! 

*/ 

•! 

•I 
•I 

•I 

'I 

'I 

•I 

(more) 

Article 6: Interrupt-Driven Communications 

534 

535 

536 
53 7 

538 

539 

540 

541 
542 

543 

544 

545 

546 

547 

548 

549 

550 

551 

552 

553 

554 

555 

556 
55 7 

558 

559 

560 

561 

562 
563 

564 

565 

566 
567 

#define SIOP2 Ox40 

#define WORDS Ox03 

#define WORD? Ox02 

#define WORD6 Ox01 

Set_Farity ( n } int n 

{ static int mmode; 

if ( n == 

mmode = ( WORDS PAROFF ) ; 

else 
if ( n == 2 

mm ode = ( WORD 7 : p AREVN ) ; 

else 

if { n == 3 

mrnode = { WORD/ PARODD ) : 
else 

return O; 

mparm •= mparm & OxEO ) + mrnode: 

sprintf { wrk, "Parity is %s\r\n", 

cputs ( wrk ) : 
set__mdm { mparm ) ; 

return n ; 

WriteJlodem ( c ) char c 
wrtmdm ( c } : 

return ( 1 ); 

ReacL.11odem () 

return ( :r.:dmdm ()) ;· 

I* n is parity code 

/* off 

I* on and even 

I* on and odd 

/* invalid code 

n == "OFF" : 

n == 2 "EVEN" : "ODD" ) ) ) ; 

I* return 1 if ok, else 0 

/* never any error 

/* from int bfr 

568 

569 
570 

void lerm._Comm () /* uninstall comm port drivers 

U---1ll () ; 

571 

572 /* end of cterm c */ 

Figure 6-8 Continued 

•/ 

•/ 

•! 

•/ 

•! 

•/ 

•! 

•/ 

CTERM features file-capture capabilities, a simple yet effective script language, and a 
number of stub (that is, incompletely implemented) actions, such as emulation of the VT52 
and VTlOO series terminals, indicating various directions in which it can be developed 

The names of a script file and a capture file can be passed to CI ERM in the command line 
If no filename extensions are included, the default for the script file is SCR and that for the 
capture file is CAP If extensions are given, they override the default values I he capture 
feature can be invoked only if a filename is supplied in the command line, but a script file 
can be called at any time via the Esc command sequence, and one script file can call for 
another with the same feature 

5ection II Programming in the MS-DO,S Environment 241 

Canon Exhibit 1108



Part B: Programming for MS-DOS 

I he functions included in CI ERM C are listed and summarized in fable 6-13 

242 

Table 6-13 .. CfERM .. C Functions. 

lines 

1-5 
7-11 
12-20 
22-43 
45 
47-49 
52-165 

167-297 

299-304 
306-3.34 

336-362 
364-370 
372-382 

384-.393 

395-398 
400-406 

408-411 
413-425 
427-432 
434-436 
438-440 
442-445 
447-452 
454-456 
458-468 
470-472 
474-478 
480-485 
487-492 

Name 

Wants_ To_ Abort() 
main() 

docmd() 

kbd_wait() 
kb_file() 

esc() 
getfil() 
getnam() 

addext() 

put_cap() 
cap_/Zush() 

getmr() 
Delay() 
Start_ Timer() 
Tlmer_Expired() 
Set_Vid() 
locate() 
deal() 
deos() 
els() 
cursor() 
revvid() 
putchx() 

The MS--DOS Encyclopedia 

Description 

Program documentation 
Include files 
Definitions 
Global data areas 
External prototype declaration 
Checks for Ctrl-Break or Ctrl-C being pressed 
Main program loop; includes modem engine and 

sequential state machine to decode remote 
commands 

Gets, interprets, and performs local (console or 
script) command. 

Waits for input from console or sc1ipt file 
Gets keystroke from console or script; returns EOF 

if no chruacter available 
Ir anslates script escape sequence 
Gets naine of script file and opens the file 
Gets string from console or script into designated 

buffer 
Checks buffer for extension; adds one if none 

given. 
Writes character to capture file if capture in effect 
Closes capture file and terminates capture mode if 

capture in effect 
1 imer data locations 
Returns time since midnight, in milliseconds 
Sleeps n milliseconds 
Sets timer for n seconds 
Checks timer versus clock 
Initializes video data 
Positions cursor on display 
Deletes to end of line 
Deletes to end of screen 
Clears screen 
Turns cursor on or off 
Ibggles inverse/normal video display attributes 
Writes char to display using putch() (Microsoft C 

library) 

(more) 

Table 6-13. Continued 

lines 

494-500 
502-504 
506-512 
514-515 
517-529 
531-537 
539-557 
559-562 
564-566 
568-570 

Name 

Read_Keyboard() 

!nit_ Comm() 

Set_ Baud() 

Set_ Parity() 
Wnte_Modem() 
Read_Modem() 
Term_ Comm() 

Article 6: Interrupt-Driven Communications 

Description 

Gets keystroke from keyboard 
Modem data areas 
Installs JSR and so forth and initializes modem 
Baud-rate definitions 
Changes bps rate of UAR I 
Parity, WI definitions 
Establishes UAR I parity mode 
Sends character to UART 
Gets character from JSR's buffer 
Uninstalls JSR and so forth and res tor es original 

vectors 

For communication with the console, CT ERM uses the special Microsoft C library £Unc­
tions defined by CONIO H, augmented with the !Unctions in the CH2 ASM handler Much 
of the code may require editing if used with other compilers CT ERM also uses the func­
tion prototype file CT ERM H, listed in Figure 6-9, to optimize function calling within the 
program 

I* CIERM H - function prototypes for CIERM.C */ 
int Wants_Io-Abort(void); 

void main{int ,char**); 
int docmd (void) : 

int kbd__wait(void); 
int kb_file(void); 

int esc (void) ; 

EIIE *getfil(void): 

void getnam (char *, int ) ;· 

char *addext (char *,char *) : 

void put_cap(char } ; 
void cap_flush(void); 

long getmr(void}; 

void Delay(int }; 
void Start_Iimer (int ) ; 

int Iimer__Expired(void); 
int Set_Vid(void); 

void locate(int ,int ); 
void deol(void); 
void deos(void); 

void els (void); 

void cursor (int ) ; 

void revvid(int ) : 

int putchx(char ); 

Figure 6-9 CTERM H 

Section 11 Programming in the MS-DO.S Envir·onment 

(more) 

243 

Canon Exhibit 1108



Part B: Programming for MS-DOS 

244 

int Read___Keyboard(void); 

void Init_Conun(void): 

int Set_Baud(int ) : 

int Set_Parity(int ); 

int Write.....Modem(char ) ; 

int Read.J1odem{void); 

void Ierm_Comm(void); 

/* CH1 ASM functions - modem interfacing */ 

void i-111(void); 

void set-111dm (int) ;· 

void wrtmdm(int); 

void Send....Byte(int}; 

int rdmdm(void); 

void u-111 (void); 

/* CH1A ASM functions - exception handlers */ 

void set_int (void); 

void rst_int (void); 

int broke (void); 

/* CH2 .ASM functions - video interfacing */ 
void _i_v(void); 

int _wrpos(int, int}: 

void _deol(void}: 

void _cls(void); 

int _color(int, int); 

Figure 6-9 Continued 

Program execution begins at the entry to main(), line 52 CT ERM first checks (lines 56 
through 59) whether any filenames were passed in the command line; if they were, 
CT ERM opens the corresponding files Next, the program installs the exception handler 
Cline 60), initializes the video handler (line 61), clears the display (line 62), and announces 
its presence (lines 63 and 64) The serial driver is installed and initialized to 1200 bps and 
no parity Oines 65 througb 67), and the program enters its main modem-engine loop 
Oines 68through159) 

This loop is functionally the same as that used in ENGINE, but it has been extended to 
detect an Esc from the keyboard as signalling the start of a local command sequence Oines 
70 through 73) and to include a state-machine technique (lines 80 through 153) to recog­
nize incoming escape sequences, such as the VT52 or VTlOO codes To specify a local com­
mand from the keyboard, press the Escape (Esc) key, then the first letter of the local 
command desired After the local command has been selected, press any key (such as 
Enter or the spacebar) to continue To get a listing of all the commands available, press 
Esc-H 

The kb_file() routine of CTERM (called in the main loop at line 69) can get its input from 
either a script file or the keyboard. If a script file is open (lines 308 through 330), it is used 
until EOF is reached or until the operator presses Ctrl-C to stop script-file input Otherwise, 

The MS-DOS Encyclopedia 

Article 6: Interrupt-Driven Communications 

input is taken from the keyboard (lines 331 and 332) If a script file is in use, its input is 
echoed to the display (lines 325 through 329) if the V command has been given 

To permit the Esc character itself to be placed in script files, the backslash (\) character 
serves as a secondary escape signal When a backslash is detected Clines 323 and 324) in 
the input stream, the next character input is translated according to the following rules: 

Character· 

E ore 
N 01 n 
Rorr 
T 01 t 
/\ 

Interpretation 

Translates to Esc 
Translates to 1 inefeed 
Translates to Enter (CR) 
Translates to I'ab 
Causes the next character input to be converted into a control characte1 

Any other character, including another \ , is not translated at all 

When the Esc character is detected from either the console or a script file, the docmd() 
function Clines 167 through 297) is called to prompt for and decode the next input charac­
ter as a command and to pe1form appropriate actions. Valid command characters, and the 
actions they invoke) are as follows: 

Command 
Character· 

D 

E 
F 
H 
N 
0 

Q 
R 
s 
u 
v 
w 

Action 

Delay 0-9 seconds, then proceed Must be followed by a decimal 
digit that indicates how long to delay 

Set EVEN parity 
Set (fast) 1200 baud 
Display list of valid commands 
Set no parity 
Set ODD parity 
Quit; return to MS-DOS command prompt 
Reset modem 
Set (slow) 300 baud 
Use script file (CT ERM prompts for filename) 
Verify file input Echoes each script-file byte 
Wait fo1 character; the next input cha1acter is the one that must be 

matched 

Any other character input after an Esc and the resulting Command prompt gene1ates the 
message Don't know X (where X stands for the actual input character) followed by the 
prompt Use 'H' command/or Help 

Section II Programming in the MS-D05 Environment 245 
Canon Exhibit 1108



Part B: Programming fOr MS-DOS 

246 

If input is taken from a script and the V flag is off, docmd() performs its task quietly, with 
no output to the screen If input is received from the console, however, the command let­
ter, followed by a descriptive phrase, is echoed to the screen Input, detection, and execu­
tion of the local commands are accomplished much as in CDVUT I, by way of a large 
switch() statement (lines 178 through 290) 

Although the listed commands are only a subset of the features available in CDVUTI for 
the device-driver program, they are more than adequate for creating useful scripts The 
predecessor of CTERM (DT115 EXE), which included the CompuServe B-Protocol file­
transfer capability but had no additional commands, has been in use since early 1986 to 
handle automatic uploading and downloading of files from the CompuServe Information 
Service by means of script files In conjunction with an auto-dialing modem, DT115 EXE 
handles the entire transaction, from login through logout, without human intervention 

All the bits and pieces of CT ERM are put together by assembling the three handlers 
with MASM, compiling CT ERM with Microsoft C, and linking all four object modules into 
an executable file Figure 6-10 shows the complete sequence and also the three ways of 
using the finished program 

Compiling: 

C>MASM CHl; <Enter> 
C>MASM CH1A; <Enter> 
C>MASM CH2; <Enter> 
C>MSC CIERM; <Enter> 

linking: 

C>llNK CIERM+CH1+CH1A+CH2; 

Use: 
(no files) 

C>CIERM <Enter> 

or 
(script only) 

C>CIERM script:.file <Enter·> 

or 

<Enter> 

C:>CIERM scziptfile capturefile <Enter> 

Figure 6-10 Putting CT ERM together and using it 

The MS-DOS Encyclopedia 

Jim Kyle 
Chip Rabinowitz 

~· 

I 
Article 7: File and Record Management 

Article7 
File and Record Management 

The core of most application programs is the reading, processing, and writing of data 
stored on magnetic disks This data is organized into files, which are identified by name; 
the files, in turn, can be organized by grouping them into directories. Operating systems 
provide application programs with services that allow them to manipulate these files and 
directories without regard to the hardware characteristics of the disk device Thus, applica­
tions can concern themselves solely with the form and content of the data, leaving the 
details of the data's location on the disk and of its retrieval to the operating system 

The disk storage services provided by an operating system can be categorized into file 
functions and record functions. The file functions operate on entire files as named 
entities, whereas the record functions provide access to the data contained within files 
On some systems, an additional class of directory functions allows applications to deal 
with collections of files as well) This article discusses the MS-DOS function calls that 
allow an application program to create, open, close, rename, and delete disk files; read 
data from and write data to disk files; and inspect or change the info1 mation (such as 
attributes and date and time stamps) associated with disk filenames in disk directories 
See also PROGRAMMING IN THE MS-DOS ENVIRONMENT: SrnucruRE OF MS-Dos: 
MS-DOS Storage Devices; PROGRAMMING FOR MS-Dos: Disk Directories and Volume labels 

Historical Perspective 

Current versions of MS-DOS provide two over lapping sets of file and record management 
services to support application programs: the handle functions and the file control block 
(FCB) functions Both sets are available through Intenupt 21H (Table 7-1) See SYSTEM 
CAI IS: INIERRUP'I 21.H The reasons for this surprising duplication are strictly histo1ical 

The earliest versions of MS-DOS used FCBs for all file and record access because CP/M, 
which was the dominant operating system on 8-bit microcomputers, used FCBs. Microsoft 
chose to maintain compatibility with CP/M to aid programmers in converting the many 
existing CP/M application programs to the 16-bit MS-DOS environment; consequently, 
MS-DOS versions 1 x included a set ofFCB functions that were a functional superset of 
those present in CP/M As personal computers evolved, howeve1, the FCB access method 
did not lend itself well to the demands of larger, faster disk drives 

Accordingly, MS-DOS version 2 0 introduced the handle functions to provide a file and 
record access method simila1 to that found in UNIX/XENIX. These functions are easier to 
use and more flexible than their FCB counterparts and fully support a hierarchical (tree­
like) directory structure The handle functions also allow character devices, such as the 

Section IL Programming in the MS'-DO.S Environment 247 

Canon Exhibit 1108



Part B: Programming for MS-DOS 

248 

console m printer, to be treated for some purposes as though they were files MS-DOS ver­
sion 3 .0 introduced additional handle functions, enhanced some of the existing handle 
functions for use in network environments, and provided improved error reporting for 
all functions 

The handle functions, which offer far more capability and performance than the FCB 
functions, should be used for all new applications I herefore, they are discussed first in 

this article 

Table 7-1 .. Interrupt 21H Function Calls for File and Record Management. 

Operation 

Create file 
Create new file 
Create temporary file 
Open file 
Close file 
Delete file 
Rename file 
Perform sequential read 
Perform sequential write 
Perform random record read 
Perform random record write 
Perform random block read 
Perform random block write 
Set disk transfer area address 
Get disk transfer area address 
Parse filename 
Position read/write pointer 
Set random record number 
Get file size 
Get/Set file attributes 
Get/Set date and time stamp 
Duplicate file handle 
Redirect file handle 

The MS-DOS Encyclopedia 

Handle 
Function 

3CH 
5BH 
5AH 
3DH 
3EH 
41H 
56H 
3FH 
40H 
3FH 
40H 

42H 

42H 
43H 
57H 
45H 
46H 

FCB 
Function 

16H 

OFH 
lOH 
13H 
17H 
14H 
15H 
21H 
22H 
27H 
28H 
lAH 
2FH 
29H 

24H 
23H 

1"" 
Article 7: File and Record Management 

Using the Handle Functions 

The initial link between an application program and the data stored on disk is the name of 
a disk file in the form 

dr ive:path\ filename ext 

where drive designates the disk on which the file resides, path specifies the directory 
on that disk in which the file is located, and filename ext identifies the file itself If drive 
and/or path is omitted, MS-DOS assumes the default disk drive and current directory 
Examples of acceptable pathnames include 

C:\PAYROll \TAXES DAI 
IETTERS\MEMO.IXI 
BUDGET DAT 

Pathnames can be hard-coded into a program as part of its data More commonly, how­
ever, they are entered by the user at the keyboard, either as a command-line parameter or 
in response to a prompt from the program If the pathname is provided as a command­
line parameter, the application program must extract it from the other information in the 
command line I herefore, to allow a pro gr am to distinguish between pathnames and 
other parameters when the two are combined in a command line, the other parameters, 
such as switches, usually begin with a slash (/) or dash (-) character 

All handle functions that use a pathname require the name to be in the form of an ASCIIZ 
string-that is, the name must be terminated by a null (zero) byte If the pathname is 
hard-coded into a program, the null byte must be part of the ASCIIZ string If the path­
name is obtained from keyboard input or from a command-line parameter, the null byte 
must be appended by the program See Opening an Existing File below 

Tb use a disk file, a program opens or creates the file by calling the appropriate MS-DOS 
function with the ASCIIZ pathname. MS-DOS checks the pathname for invalid characters 
and, if the open 01 create operation is successful, returns a 16-bit handle, or identification 
code, for the file The program uses this handle for subsequent operations on the file, such 
as record reads and writ es 

The total number of handles for simultaneously open files is limited in two ways First, the 
per-process limit is 20 file handles I he process's first five handles are always assigned to 
the standard devices, which default to the CON, AUX, and PRN character devices: 

Handle Setvice 

0 Standard input 
1 Standard output 
2 Standard error 
3 Standard auxiliary 
4 Standard list 

Default 

Keyboard (CON) 
Video display (CON) 
Video display (CON) 
First communications port (AUX) 
First parallel printer port (PRN) 

')ection II Programming in the MS'-DOS Environment 249 

Canon Exhibit 1108



Part B: Programming for MS-DOS 

Ordinarily, then, a process has only 15 handles left from its initial allotment of 20; howeve1, 
when necessary, the 5 standard device handles can be redirected to other files and devices 
QI closed and reused 

In addition to the pe1~process limit of 20 file handles, there is a system-wide limit 
MS-DOS maintains an internal table that keeps track of all the files and devices opened 
with file handles fo1 all cmrently active processes. The table contains such infQimation as 
the cmrent file pointer for read and write operations and the time and date of the last write 
to the file The size of this table, which is set when MS-DOS is initially loaded into memo1y, 
determines the system-wide limit on how many files and devices can be open simulta­
neously The default limit is 8 files and devices; thus, this system-wide limit usually 
ove1rides the per-process limit 

Tb increase the size of MS-DOS's internal handle table, the statement FILE:S~nnn can be 
included in the CONFIG SYS file. (CONFIG SYS settings take effect the nexttime the sys­
tem is turned on QI restarted) The maximum value for FllES is 99 in MS-DOS versions 2 x 
and 255 in versions 3 x See USER COMMANDS: coNFIG SYS: FUES 

Error handling and the handle functions 

250 

When a handle-based file function succeeds, MS-DOS returns to the calling program with 
the car1y flag clear If a handle function fails, MS-DOS sets the cany flag and returns an 
error code in the AX register. The program should check the carry flag after each opera' 
ti on and take whatever action is appropriate when an e1ror is encountered. Table 7-2 lists 
the most frequently encountered error codes for file and record 1/0 (exclusive of network 

operations) 

Table 7-2 .. Frequently Encounter·ed Error· Diagnostics for· File and Record 
Management. 

Code 

02 
03 
04 
05 
06 
11 
12 
13 
15 
17 
18 

Et't'Ot' 

File not found 
Path not found 
Ibo many open files (no handles left) 
Access denied 
Invalid handle 
Invalid format 
Invalid access code 
Invalid data 
Invalid disk drive letter 
Not same device 
No more files 

The e!l'or codes used by MS-DOS in versions 3 0 and later are a superset of the MS-DOS 
version 2 .0 e!l'or codes See APPENDIX B: CRITICAL ERROR CoDEs; APPENDIX C: Ex TENDED 
ERROR ConEs Most MS-DOS version 3 e1ror diagnostics relate to network operations, 
which provide the program with a greater chance for error than does a single-user system 

The MS-DOS Encyclopedia 

Article 7: File and Record Management 

Prog1ams that are to run in a netwo1k environment need to anticipate network problems 
For example, the se1ver can go down while the prog1 am is using shared files 

Under MS-DOS versions 3x, a program can also use Interrupt 21H Function 59H (Get 
Extended E1ror Information) to obtain more details about the cause of an e1ror after a 
failed handle function The infQimation returned by Function 59H includes the type of 
device that caused the erro1 and a recOmmended recovery action 

Warning;· Many file and record 1/0 operations discussed in this article can result in or be 
affected by a hardware (critical) e1ror. Such errors can be intercepted by the program if it 
contains a custom critical error exception handler (Jntenupt 24H) See PROGRAMMING 
IN THE MS-DOS ENVIRONMENT: CusroMIZING MS-DOS: Exception Handlers 

Creating a file 

MS-DOS provides three Interrupt 21H handle functions for creating files: 

Function 

3CH 
5AH 
5BH 

Name 

Create File with Handle (versions 2 0 and later) 
Create Temporary File (versions 3 0 and late1) 
Create New File (versions 3 0 and later) 

Each function is called with the segment and offset of an ASCIIZ pathname in the DS:DX 
registers and the attribute to be assigned to the new file in the ex register The possible 
attribute values are 

Code Attribute 

OOH Normal file 
OlH Read-only file 
02H Hiddenfile 
04H System file 

Files with more than one attribute can be created by combining the values listed above 
for example, to create a file that has both the read-only and system attributes, the value 
05H is placed in the ex registe1 

If the file is successfully created, MS-DOS returns a file handle in AX that must be used for 
subsequent access to the new file and sets the file read/Wlite pointer to the beginning of 
the file; if the file is not created, MS-DOS sets the cany flag (CF) and returns an error code 
in AX 

Function 3CH is the only file-creation function available under MS-DOS versions 2 x It 
must be used with caution, however, because if a file with the specified name already 
exists, Function 3CH will open it and truncate it to zero length, e1 adicating the previous 
contents of the file 1 his complication can be avoided by testing for the previous existence 
of the file with an open operation before issuing the create call 

Section II Programming in the MS-DO.S Environment 251 

Canon Exhibit 1108



Part B: Programming for MS-DOS 

252 

Under MS-DOS versions 3 .0 and later, Function 5BH is the preferred function in most cases 
because it will fail if a file with the same name already exists In networking environments, 
this function can be used to implement semaphores, allowing the synchronization of pro­
grams running in different network nodes 

Function 5AH is used to create a temporatywork file that is guaranteed to have a unique 
name I his capability is important in networking environments, where several copies of 
the same program, running in different nodes, may be accessing the same logical disk 
volume on a server I he function is passed the address of a buffer that can contain a drive 
and/or path specifying the location for the created file MS-DOS generates a name for the 
created file that is a sequence of alphanumeric characters derived from the current time 
and returns the entire ASCIIZ pathname to the program in the same buffer, along with the 
file's handle in AX The program must save the filename so that it can delete the file later, if 
necessary; the file created with Function 5AH is not destroyed when the program exits 

Example. Create a file named MEMO TXT in the \IETTERS directory on drive C using 
Function 3CH. Any existing file with the same name is truncated to zero length and 
opened 

fname db 

£handle dw 

mov 

mov 

mov 

xor 

mov 

int 

jc 
mov 

'C:\IEIIERS\MEMO IXI',0 

dx, seg fname DS:DX . address of 

ds,dx pathname for file 

dx,offset fname 

ex, ex ex . normal attribute 

ah,3ch Function 3CH . create 

21h transfer to MS-DOS 

error jump if create failed 

fhandle,ax else save file handle 

Example Create a temporary file using Function 5AH and place it in the\ TEMP directory 
on drive C MS-DOS appends the filename it generates to the original path in the buffer 
named {name The resulting file specification can be used later to delete the file 

fname db 

db 

fhandle dw 

'C:\IEMP\' 

13 dup (0) 

The MS-DOS Encyclopedia 

generated ASCIIZ filename 

is appended by MS-DOS 

(more) 

Article 7: File and Record Management 

mov dx, seg fname DS:DX . address of 
mov ds,dx path for temporary file 
mov dx,offset fname 
xor ex, ex ex . normal attribute 
mov ah,5ah Function SAH . create 

temporary file 
int 21h transfer to MS-DOS 
jc error jump if create failed 
mov fhandle,ax else save file handle 

Opening an existing file 

Function 3DH (Open File with Handle) opens an existing normal, system, or hidden file 
in the current or specified directory When calling Function 3DH, the program supplies a 
pointer to the ASCIIZ pathname in the DS:DX registers and a 1-byte access code in the Al 
register I his access code includes the read/write permissions, the file-sharing mode, and 
an inheritance flag The bits of the access code are assigned as follows: 

Bit(s) Description 

0-2 Read/write permissions (versions 2 0 and later) 
3 Reserved 
4-6 File-sharing mode (versions 3 0 and later) 
7 Inheritance flag (versions 3 0 and later) 

The read/write per missions field of the access code specifies how the file will be used and 
can take the following values: 

Bits 0-2 Description 

000 Read per mission desired 
001 Write permission desired 
010 Read and write permission desired 

For the open to succeed, the permissions field must be compatible with the file's attribute 
byte in the disk directory For example, if the program attempts to open an existing file 
that has the read-only attribute when the permissions field of the access code byte is set to 
write or read/write, the open function will fail and an error code will be returned in AX 

The sharing-mode field of the access code byte is important in a networking environment 
It determines whether other programs will also be allowed to open the file and, if so, 
what operations they will be allowed to perform Following are the possible values of the 
file-sharing mode field: 

Section II Programming in the MS-DOS Environment 253 
Canon Exhibit 1108



Part B: Programming for MS-DOS 

254 

Bits 4-6 Description 

000 

001 
010 

011 

100 

Compatibility mode Other progrnms can open the file and perform read or 
write operations as long as no process specifies any sharing mode other than 
compatibility mode 

Deny all Other progrnms cannot open the file 
Deny wtite Other programs cannot open the file in compatibility mode or 

with write permission 
Deny read Other programs cannot open the file in compatibility mode or with 

read permission 
Deny none Other programs can open the file and perform both read and 

write operations but cannot open the file in compatibility mode 

When file-sharing support is active (that is, SHARE .EXE has previously been loaded), 
the result of any open operation depends on both the contents of the permissions and file­
sharing fields of the access code byte and the permissions and file-sharing requested by 
other processes that have already successfully opened the file 

The inheritance bit of the access code byte controls whether a child process will inherit 
that file handle If the inheritance bit is cleared, the child can use the inherited handle to 
access the file without performing its own open operation Subsequent operations per­
formed by the child process on inherited file handles also affect the file pointer associated 
with the parent's file handle If the inheritance bit is set, the child process does not inherit 
the handle 

If the file is opened successfully, MS-DOS returns its handle in AX and sets the file read/ 
write pointer to the beginning of the file; if the file is not opened, MS-DOS sets the carry 
flag and returns an error code in AX 

Example. Copy the first parameter from the program's command tail in the program 
segment prefix (PSP) into the array [name and append a null character to form anASCIIZ 
filename Attempt to open the file with compatibility sharing mode and read/write access 
If the file does not already exist, create it and assign it a normal attribute 

cmdtail equ 
fname db 
fhandle dw 

BOh 
64 dup (?) 

The MS'-DOS Encyclopedia 

PSP offset of command tail 

assume that OS already 
contains segment of PSP 

(more) 

~ 

r 
! 
' 

Article 7: File and Record Management 

mov si,cmdtail 
prepare to copy filename 
DS:SI = command tail 

mov di,seg £name ES:DI =buffer to receive 
mov es,di filename from command tail 
mov di,offset £name 
cld safety first! 

lodsb check length of command tail 
or al, al 
jz error jump, command tail empty 

label1: scan off leading spaces 

label2: 

label3: 

label4: 

lodsb get next character 
cmp al,20h is it a space? 
jz label 1 yes, skip it 

cmp al, Odh 
jz label3 
cmp al,20h 
jz label3 
stosb 
lodsb 
jmp label2 

xor al, al 
stosb 

look for terminator 
quit if return found 

quit if space found 
else copy this character 
get next character 

store final NUll to 
create ASCIIZ string 

now open the file 
mov dx,seg £name DS:DX =address of 
mov 

mov 

mov 

int 
jnc 

cmp 

Jn' 

xor 

mov 

int 
jc 

mov 

ds,dx pathname for file 
dx, offset fname 
ax, 3d02h Function 3DH = open r/w 
21h transfer to MS-DOS 
label4 jump if file found 

ax, 2 error 2 = file not found 
error 

cx,cx 
ah,3ch 
21h 

error 

fhandle,ax 

jump if other error 
else make the file 
CX = normal attribute 
Function 3CH = create 
transfer to MS-DOS 
jump if create failed 

save handle for file 

Closing a file 

Function 3EH (Close File) closes a file created or opened with a file handle function. The 
program must place the handle of the file to be closed in BX. If a write operation was perc 
formed on the file, MS--DOS updates the date, time, and size in the file's directory ent1y 

'Section II Programming in the M'S-DOS Environment 255 

Canon Exhibit 1108



Part B: Programming for MS-DOS 

Closing the file also flushes the internal MS-DOS buffers associated with the file to disk 
and causes the disk's file allocation table (FAT) to be updated if necessary 

Good programming practice dictates that a program close files as soon as it finishes 
using them This practice is particularly important when the file size has been changed, to 
ensure that data will not be lost if the system crashes or is turned off unexpectedly by the 
user A method of updating the FAT without closing the file is outlined below under 
Duplicating and Redirecting Handles 

Reading and writing with handles 

256 

Function 3FH (Read File or Device) enables a program to read data from a file or device 
that has been opened with a handle Before calling Function 3FH, the program must set 
the DS:DX registers to point to the beginning of a data buffer large enough to hold the 
requested transfer, put the file handle in BX, and put the number of bytes to be read in ex 
The length requested can be a maximum of 65535 bytes The program requesting the 
read operation is responsible for providing the data buffer 

If the read operation succeeds, the data is read, beginning at the current position of the 
file read/write pointer, to the specified location in memory MS-DOS then increments its 
internal read/write pointer for the file by the length of the data transferred and returns 
the length to the calling program in AX with the carry flag cleared The only indication 
that the end of the file has been reached is that the length retwned is less than the length 
requested In contrast, when Function 3F H is used to read from a character device that is 
not in raw mode, the read will terminate at the requested length or at the receipt of a car­
riage return character, whichever comes first. See PROGRAMMING IN THE MS-DOS 
ENVIRONMENT: PROGRAMMING FOR MS-DOS: Char act er Device Input and Output If the 
read operation fails, MS-DOS returns with the carry flag set and an error code in AX 

Function 40H (Write File or Device) writes from a buffer to a file (or device) using a handle 
previously obtained from an open or create operation Before calling Function 40H) the 
program must set DS:DX to point to the beginning of the buffer containing the source data, 
put the file handle in BX, and put the number of bytes to write in ex The number of bytes 
to write can be a maximum of 65535 

If the write operation is successful, MS-DOS puts the number of bytes written in AX and 
increments the read/write pointer by this value; if the write operation fails, MS-DOS sets 
the carry flag and returns an error code in AX 

Records smaller than one sector (512 bytes) are not written directly to disk Instead, 
MS-DOS stores the record in an internal buffer and writes it to disk when the internal 
buffer is full, when the file is closed, or when a call to Interrupt 21H Function ODH (Disk 
Reset) is issued 

Note:· If the destination of the write operation is a disk file and the disk is full, the only 
indication to the calling program is that the length returned in AX is not the same as the 
length requested in ex Diskfull is not returned as an error with the carry flag set 

A special use of the Write function is to truncate or extend a file. If Function 40H is called 
with a record length of zero in ex, the file size will be adjusted to the current location of 
the file read/write pointer 

The MS'-D05 Encyclopedia 

1 
! 
I 

Article 7: File and Record Management 

Example. Open the file MYF 11 E DAT: create the file MYF 11 E BAK, copy the contents of 
the DAT file into the BAK file using 512-byte reads and writes, and then close both files 

file1 db 'MYFIIE DAI' I 0 
file2 db 'MYFIIE BAK', 0 

handle1 dw 

handle2 dw 

buff db 512 dup (?} 

mov dx,seg file1 
mov ds,dx 

mov dx,offset file1 
mov ax,3d00h 

int 21h 

jc error 

mov handle1,ax 

mov dx,offset file2 
mov cx,0 

mov ah, 3ch 

int 21h 

jc error 
mov handle2,ax 

loop: 

mov dx, offset buff 
mov cx,512 
mov bx,handle1 
mov ah, 3fh 

int 21h 

JC error 

or ax, ax 

j' done 

mov dx,offset buff 
mov ex, ax 

mov bx,handle2 

mov ah,40h 

int 21h 

jc error 
cmp a:x,cx 

jne error 

jmp loop 

handle for MYF ILE DAI 
handle for MYF IIE BAK 

buffer for file I/O 

open MYFIIE.DAI 

DS: DX -= address of filename 

Function 3DH = open (read-only) 

transfer to MS-DOS 
jump if open failed 

save handle for file 

create MYFILE.BAK. 

DS:DX =address of filename 

ex = normal attribute 

Function 3CH = create 

transfer to MS-DOS 
jump if create failed 

save handle for file 

read MYFIIE DAI 

DS:DX = buffer address 
CX = length to read 

BX = handle for MYFIIE DAI 

Function 3FH = read 

transfer to MS-DOS 

jump if read failed 

were any bytes read? 

no, end of file reached 

write MYFilE BAK 

DS:DX = buffer address 

ex = length to write 
BX = handle for MYFILE BAK 

Function 40H = write 

transfer to MS-DOS 

jump if write failed 

was write complete? 

jump if disk full 
continue to end of file 

5ection fl Programming in the MS'-DOS Environment 

(more) 

257 
Canon Exhibit 1108



Part B: Programming for MS-DOS 

done: now close files 

mov bx,handlel handle for MYFIIE DAI 

mov ah,3eh Eunction 3EH = close file 

int 21h transfer to MS-DOS 

jc error jump if close failed 

mov bx,handle2 handle for MYEIIE.BAK 

mov ah, 3eh Function 3EH = close file 

int 21h tr: ans fer to MS-DOS 

jc error jump if close failed 

Positioning the read/write pointer 

258 

Function 42H (Move File Pointer) sets the position of the read/write pointer associated 
with a given handle I he function is called with a signed 32-bit offset in the CX and DX 
registers (the most significant half in CX), the file handle in BX, and the positioning mode 
in AL 

Mode 

00 
01 
02 

Significance 

Supplied offset is relative to beginning of file 
Supplied offset is relative to current position of read/Wiite pointer 
Supplied offset is relative to end of file 

If Function 42H succeeds, MS-DOS returns the resulting absolute offset (in bytes) of the 
file pointer relative to the beginning of the file in the DX and AX registers, with the most 
significant half in DX; if the function fails, MS-DOS sets the carry flag and returns an error 
code in AX ' 

Thus, a program can obtain the size of a file by calling Function 42H with an offset of zero 
and a positioning mode of 2. I he function returns a value in DX:AX that rep1esents the 
offset of the end-of' file position relative to the beginning of the file 

Example Assume that the file MYF Il E DAI was previously opened and its handle is 
saved in the variable ./handle Position the file pointer 32768 bytes from the beginning of 
the file and then read 512 bytes of data starting at that file position 

fhandle dw 

buff db 512 dup (?} 

The MS-D05 Encyclopedia 

handle from previous open 

buffer for data from file 

(more) 

Article 7: File and Record Management 

position the file pointer 
mov ex, 0 ex = high part of file offset 
mov dx,32768 DX = low part of file offset 
mov bx,fhandle BX = handle for file 
mov al,0 AI = positioning mode 

mov ah, 42h Function 42H = position 
int 21h transfer to MS-DOS 

jc error jump if function call failed 

now read 512 bytes from file 

mov dx,offset buff DS:DX = address of buffer 
mov ex, 512 ex = length of 512 bytes 

mov bx,fhandle BX = handle for file 
mov ah,3fh Eunction 3FH = read 

int 21h transfer to MS-DOS 

JC error jump if read failed 
cmp ax, 512 was 512 bytes read? 
jne error jump if partial rec or EOF 

Example Assume that the file MYF!lEDAT was previously opened and its handle is saved 
in the variable .fhandle Find the size of the file in bytes by positioning the file pointer to 
zero bytes relative to the end of the file The returned offset, which is relative to the begin­
ning of the file, is the file's size 

£handle dw 

mov cx,O 

mov dx, 0 

mov bx,fhandle 

mov al,2 

mov ah,42h 

int 21h 

jc error 

Other handle operations 

; handle from previous open 

position the file pointer 
to the end of file 

ex high part of offset 

DX = low part of offset 
BX = handle for: file 

AI = positioning mode 

Function 42H = posit~on 

tr:·ansfer to MS-DOS 

jump if function call failed 

if call succeeded, DX:AX 

now contains the file size 

MS-DOS provides other handle--oriented functions to rename (or move) a file, delete a file, 
read 01 change a file's att1ibutes, 1ead or change a file's date and time stamp, and duplicate 
or redirect a file handle The first three of these are "file-handle-like" because they use an 
ASCIIZ string to specify the file; however, they do not return a file handle 

5ection 11 Programming in the MS-DO,S Environment 259 

Canon Exhibit 1108



~ramming for MS-DOS 

ngafile 

unction 56H (Rename File) renames an existing file and/or moves the file from one loca­
on in the hierarchical file structure to another The file to be renamed cannot be a hidden 
r system file or a subdirectory and must not be currently open by any process; attempting 
) rename an open file can corrupt the disk. MS-DOS renames a file by simply changing its 
irecto1y entry; it moves a file by removing its current directory entry and creating a new 
ntry in the target directory that refers to the same file. The location of the file's actual 
ata on the disk is not changed 

ioth the cunent and the new filenames must be ASCIIZ strings and can include a drive 
nd path specification; wildcard characters ( • and ?) are not permitted in the filenames 
he program calls Function 56H with the address of the cunent pathname in the DS:DX 
egisters and the address of the new pathname in ES:DI If the path elements of the two 
trings are not the same and both paths are valid, the file "moves" from the source direc­
)IY to the target directory. If the paths match but the filenames differ, MS-DOS simply 
1odifies the directory entry to reflect the new filename. 

f the function succeeds, MS-DOS returns to the calling program with the cany flag clear 
he function fails if the new filename is already in the target directory; in that case, 
1S-DOS sets the cany flag and returns an error code in AX 

example. Change the name of the file MYF 11 E DAT to MYF 11 E OlD In the same opera­
ion, move the file from the \WORK directory to the \BACKUP directory 

ile1 db 

ile2 db 

mov 

moy 

mov 

mov 

mov 

mov 

int 

JC 

gafile 

'\WORK\MYF IlE DAI', 0 

'\BACKUP\MYf IlE 010', 0 

dx,seg file1 

ds,dx 

es,dx 

dx,offset file1 

di, offset file2 

ah,56h 

21b 

error 

; DS:DX = old filename 

ES:DI = new filename 

Function 56H = rename 

transfer to MS-DOS 

jump if rename failed 

'unction 41H (Delete File) effectively deletes a file from a disk Before calling the function, 
'program must set the DS:DX registers to point to the ASCIIZ pathname of the file to be 
ieleted Ihe supplied pathname cannot specify a subdirectory or a read-only file, and the 
ile must not be cutrently open by any process 

r'he MS-DOS Encyclopedia 

··~.·.· •• •.·.·• .. •· ~71 ' 

I Article 7: File and Record Management 

If the function is successful, MS-DOS deletes the file by simply marking the first byte of its 
directory entry with a special character (OESH), making the entry subsequently unrecog­
nizable. MS-DOS then updates the disk's FAT so that the clusters that previously belonged 
to the file are "free" and returns to the program with the carry flag clear If the delete 
function fails, MS-DOS sets the carry flag and returns an error code in AX 

The actual contents of the clusters assigned to the file are not changed by a delete opera­
tion, so for security reasons sensitive information should be overwritten with spaces or 
some other constant character before the file is deleted with Function 41H 

Example Delete the file MYFl1E n~:r: located in the \WORK directory on drive C. 

£name db 

mov 

mov 

mov 

mov 

int 

jc 

'C:\WORK\MYFILE.DAI',0 

dx, seg £name 

ds,dx 
dx,offset £name 

ah,41h 

21h 

error 

DS:DX address of filename 

Function 41H = delete 

transfer to MS-DOS 

jump if delete failed 

Getting/setting file attributes 

Function 43H (Get/Set File Attributes) obtains or modifies the attributes of an existing file 
Before calling Function 43H, the program must set the DS:DX registers to point to the 
ASCIIZ pathname for the file fo read the attributes, the program must set Al to zero; to set 
the attributes, it must set Al to 1 and place an attribute code in ex See Creating a File 
above 

If the function is successful, MS-DOS reads or sets the attribute byte in the file's directory 
entty and returns with the carry flag clear and the file's attribute in ex. If the function 
fails, MS-DOS sets the cany flag and returns an error code in AX 

Function 43H cannot be used to set the volume-label bit (bit .3l or the subdirectory bit (bit 
4) of a file It also should not be used on a file that is currently open by any process 

Example. Change the attributes of the file MYF 11 E DAI in the \BACKUP directory on 
drive C to read-only I his pr events the file from being accidentally deleted from the disk 

fname db 

mov 

mov 

mov 

mov 

mov 

'C:\BACKUP\MYFIIE DAI',0 

dx,seg £name 

ds,dx 

dx,offset fname 

ex, 1 

al, 1 

DS:DX =address of filename 

ex = attribute (read-only) 

Al = mode (0 = get, 1 = set) 

'Section I!: Programming in the MS-DOS Environment 

(more) 

261 
Canon Exhibit 1108



gramming for MS-DOS 

mov 

int 
jc 

ah,43h 
21h 

error 

:/setting file date and time 

Function 43H = get/set attr 
transfer to MS-DOS 
jump if set attrib failed 

Function 57H (Get/Set Date/Time of File) reads or sets the directory time and date stamp 
of an open file Tb set the time and date to a pa.rticula1 value, the program must call Func­
tion 57H with the desired time in CX, the desired date in DX, the handle for the file (ob­
tained from a previous open or create operation) in BX, and the value 1 in Al Tb read the 
time and date, the function is called with Al containing 0 and the file handle in BX; the 
time is returned in the CX register and the date is returned in the DX register As with 
other handle-oriented file functions, if the fUnction succeeds, the carry flag is returned 
cleared; if the function fails, MS-DOS returns the cany flag set and an enrn code in AX 

The formats used for the file time and date are the same as those used in disk directory 
entiies and FCBs. See Strncture of the File Control Block below 

I he main uses of Function 57H aI e to force the time and date entry fo1 a file to be updated 
when the file has not been changed and to circumvent MS-DOS's modification of a file 
date and time when the file has been changed In the latter case, a program can use this 
function with Al =Oto obtain the file's p1evious date and time stamp, modify the file, and 
then restore the oiiginal file date and time by re-calling the function with Al = 1 before 

closing the file 

ating and t'edir'ecting handles 

Ordinarily, the disk FAT and direct01y are not updated until a file is closed, even when 
the file has been modified T bus, until the file is closed, any new data added to the file can 
be lost ifthe system crashes or is turned off unexpectedly. The obvious defense against 
such loss is simply to close and reopen the file every time the file is changed However, 
this is a relatively slow procedure and in a network environment can cause the program 
to lose control of the file to another process 

Use of a second file handle, created by using Function 45H (Duplicate File Handle) to 
duplicate the original handle of the file to be updated, can protect data added to a disk file 
before the file is closed Tb use Function 45H, the program must put the handle to be 
duplicated in BX If the operation is successful, MS-DOS clears the cany flag and 1eturns 
the new handle in AX; if the operation fails, MS-DOS sets the cany flag and returns an 

error code in AX 

If the function succeeds, the duplicate handle can simply be closed in the usual manne1 
with Function 3EH This forces the desired update of the disk direct01y and FAT The orig­
inal handle remains open and the program can continue to use it for file read and write 

operations 

Note:· While the second handle is open, moving the read/write pointe1 associated with 
eithe1 handle moves the pointer associated with the othe1 

The MS-DOS Encyclopedia 

Article 7: File and Record Management 

Example· Assume that the file MYF II E DAT was previously opened and the handle for 
that file has been saved in the variable jhandle. Duplicate the handle and then close the 
duplicate to ensure that any data recently Wiitten to the file is saved on the disk and that 
the directory ent1y for the file is updated accordingly 

fhandle dw 

mov 

mov 

int 
jc 

mov 

mov 

int 
jc 
mov 

bx,fhandle 
ah,4Sh 
21h 

error 

bx, ax 
ah,3eh 
21h 

error 
bx,fhandle 

; handle from previous open 

duplicate the handle 
BX = handle for file 
Function 45H = dup handle 
transfer to MS-DOS 
jump if function call failed 

now close the new handle 
BX = duplicated handle 
Function 3EH = close 
transfer to MS-DOS 
jump if close failed 
replace closed handle with active handle 

Function 45H is sometimes also used in conjunction with Function 46H (Force Duplicate 
File Handle) Function 46H forces a handle to be a duplicate for anothe1 open handle-in 
other words, to refer to the same file or device at the same file read/write pointer location 
The handle is then said to be redirected 

The most common use of Function 46H is to change the meaning of the standard input 
and standard output handles before loading a child process with the EXEC function In this 
manner, the input f01 the child program can be 1 edirected to come from a file or its output 
can be redirected into a file, without any special knowledge on the part of the child pro­
gram. In such cases, Function 45H is used to also create duplicates of the standard input 
and standard output handles before they are redirected, so that thei1 original meanings can 
be 1estored afte1 the child exits See PROGRAMMING IN THE MS-DOS ENVIRONMENT: 
CusroMIZING MS-DOS: Writing MS-DOS Filters 

Using the FCB Functions 

A file control block is a data structure, located in the application program's memory space, 
that contains relevant information about an open disk file: the disk drive, the filename and 
extension, a pointer to a position within the file, and so on. Each open file must have its 
own FCB The information in an FCB is maintained cooperatively by both MS-DOS and the 
application prog1am 

Section 11 Programming in the MS-DO.S Environment 263 

Canon Exhibit 1108



Part B: Programming for MS-DOS 

MS-DOS moves data to and from a disk file associated with an FCB by means of a data 
buffer called the disk transfer area (DIA) The current address of the DIA is under the 
control of the application program, although each program has a 128-byte default DIA at 
offset 80H in its program segment prefix (PSP) See PROGRAMMING IN IHE MS-DOS 
ENVIRONMENT: l'RoGRAMMrNG FOR MS-DOS: Structure of an Application Program 

Under early versions of MS-DOS, the only limit on the number of files that can be open 
simultaneously with FCBs is the amount of memory available to the application to hold the 
FCBs and their associated disk buffers However, under MS-DOS versions 3 0 and later, 
when file-sharing support (SHARE EXE) is loaded;MS-DOS places some restrictions on 
the use of FCBs to simplify the job of maintaining network connections for files If the 
application attempts to open too many FCBs, MS-DOS simply closes the least recently used 
FCBs to keep the total number within a limit 

The CONFIG .SYS file directive FCBS allows the user to control the allowed maximum 
number of FCBs and to specify a certain number of FCBs to be protected against automatic 
closure by the system I he default values are a maximum of four files open simultaneously 
using FCBs and zero FCBs protected from automatic closure by the system See USER 
COMMANDS: CONFrG SYS: FCBS 

Because the FCB operations predate MS-DOS version 2 0 and because FCBs have afixed 
structure with no room to contain a path, the FCB file and record services do not support 
the hierarchical directory structure Many FCB operations can be performed only on files 
in the current directory of a disk for this reason, the use of FCB file and record operations 
should be avoided in new programs 

Structure of the file control block 

264 

Each FCB is a 37-byte array allocated from its own memory space by the application pro­
gram that will use it I he FCB contains all the information needed to identify a disk file 
and access the data within it: drive identifier, filename, extension, file size, record size, 
various file pointers, and date and time stamps The FCB structure is shown in fable 7-3 

Table 7-3 .. Structure of a Nonnal File Control Block. 

Offset Size 
Maintained by (bytes) (bytes) Description 

Program OOH 1 Drive identifier 
Program OlH 8 Filename 
Program 09H 3 File extension 
MS-DOS OCH 2 Current block number 
Program OEH 2 Record size (bytes) 
MS-DOS lOH 4 File size (bytes) 
MS-DOS 14H 2 Date stamp 
MS-DOS 16H 2 Time stamp 
MS-DOS 18H 8 Reserved 
MS-DOS 20H 1 Current record number 
Program 21H 4 Random record number 

The MS'-DO.S Encyclopedia 

~r 
·-:-:! 

i 
I 
' 
I 

I 

I 
I 

Article 7: File and Record Management 

Drive identifier: Initialized by the application to designate the drive on which the file to 
be opened or created resides 0 =default drive, 1 =drive A, 2 =drive B, and so on. If the 
application supplies a zero in this byte (to use the default drive), MS-DOS alters the byte 
during the open or create operation to reflect the actual drive used; that is, after an open 
or create operation, this drive will always contain a value of 1 or greater 

Ftlename Standard eight-character filename; initialized by the application; must be left 
justified and padded with blanks if the name has fewer than eight characters A device 
name (for example, PRN) can be used; note that there is no colon after a device name 

FUe exten<ion I hree-character file extension; initialized by the application; must be left 
justified and padded with blanks if. the extension has fewer than three characters 

Current block number Initialized to zero by MS-DOS when the file is opened. The block 
number and the record number together make up the record pointer during sequential file 
access 

Record <ize. The size ofa record (in bytes) as used by the program MS-DOS sets this field 
to 128 when the file is opened or created; the program can modify the field afterward to 
any desired record size If the record size is largerthan 128 bytes, the default DIA in the 
PSP cannot be used because it will collide with the program's own code or data 

File <ize The size of the file in bytes MS-DOS initializes this field from the file's directory 
entry when the file is opened Ihe first 2 bytes of this 4-byte field are the least significant 
bytes of the file size 

Date <tamp The date of the last write operation on the file MS-DOS initializes this field 
from the file's directory entry when the file is opened. I his field uses the same format 
used by file handle Function 57H (Get/Set/Date/ Iime of File): 

Date Format 

Bit: 15 14 13 12 11 IO 9 8 7 6 5 4 3 2 0 

Content Y Y Y Y Y Y Y M M M M D D D D D 

Bits Contents 

0-4 Day of month 0-31) 
5-8 Month (1-12) 
9-15 Year (relative to 1980) 

ltme <tamp I he time of the last write operation on the file. MS-DOS initializes this field 
from the file's directory entry when the file is opened I his field uses the same format 
used by file handle Function 57H (Get/Set/Date/Time of File): 

Section 11 Programming in the MS-DOS Environment 265 
Canon Exhibit 1108



Part B: Programming for MS-DOS 

266 

Time Format 

Bit: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

Content: H H H H H M M M M M M S S S S S 

Bits Contents 

0-4 
5-10 

11-15 

Number of 2-second increments (0-29) 
Minutes (0-59) 
Hours (0-23) 

Current record number: Together with the block number, constitutes the record pointer 
used dming sequential read and write operations. MS-DOS does not initialize this field 
when a file is opened. The record number is limited to the range 0 through 127; thus, there 
are 128 records per block. The beginning of a file is record 0 of block 0 

Random record pointer: A 4-byte field that identifies the record to be transferred by the 
random record functions 21H, 22H, 27H, and 28H. If the record size is 64 bytes or larger, 
only the first 3 bytes of this field are used MS-DOS updates this field after random block 
reads and writes (Functions 27H and 28H) but not after random record reads and writes 
(Functions 21H and 22H) 

An extended FCB, which is 7 bytes longer than a normal FCB, can be used to access files 
with special attributes such as hidden, system, and read-only The extra 7 bytes of an ex­
tended FCB are simply prefixed to the normal FCB format (Table 7-4) 1 he first byte of 
an extended FCB always contains OFFH, which could never be a legal drive code and 
therefore serves as a signal to MS-DOS that the extended format is being used The next 5 
bytes are reserved and must be zero, and the last byte of the prefix specifies the attributes 
of the file being manipulated The remainder of an extended FCB has exactly the same 
layout as a normal FCB. In general, an extended FCB can be used with any MS-DOS func­
tion call that accepts a normal FCB 

Table 7-4. Sttuctm·e of an Extended File Contr'Ol Block. 

Offiiet Size 
Maintained by (bytes) (bytes) Description 

Program OOH 1 Extended FCB flag - OFFH 

MS-DOS OlH 5 Reserved 

Program 06H 1 File attribute byte 

Program 07H 1 Drive identifier 

Program 08H 8 Filename 

(more) 

The MS-DOS Encyclopedia 

Article 7: File and Record Management 

Table 7-4 .. Continued 

Offset Size 
Maintained by (bytes) (bytes) Description 

Program lOH 3 File extension 
MS-DOS 13H 2 Cmrent block number 
Program lSH 2 Record size (bytes) 
MS-DOS 17H 4 File size (bytes) 
MS-DOS lBH 2 Date stamp 
MS-DOS lDH 2 Time stamp 
MS-DOS lFH 8 Reserved 
MS-DOS 27H 1 Current record number 
Program 28H 4 Random record number 

Extended FCB flag When OFFH is present in the first byte of an FCB, it is a signal to 
MS-DOS that an extended FCB ( 44 bytes) is being used instead of a normal FCB (37 bytes) 

rUe attribute byte. Must be initialized by the application when an extended FCB is used to 
open or create a file The bits of this field have the following significance: 

Bit Meaning 

0 Read-only 
1 Hidden 
2 System 
3 Volume label 
4 Directory 
5 Archive 
6 Reserved 
7 Reserved 

FCB functions and the PSP 

The PSP contains several items that are of interest when using the FCB file and record 
operations: two FCBs called the default FCBs, the default DTJ\., and the command tail for 
the program. The following table shows the size and location of these elements: 

PSPOffset 
(bytes) Size (bytes) Description 

SCH 16 Default FCB #l 
6CH 20 Default FCB #2 
80H 1 Length of command tail 
81H 127 Command-tail text 
80H 128 Default disk transfer area (DTJ\.) 

Section II Programming i'n the MS'-DOS Environment 267 

Canon Exhibit 1108



Part B: Programming for MS-DOS 

When MS-DOS loads a program into memory for execution, it copies the command tail 
into the PSP at offset 81H, places the length of the command tail in the byte at offset SOH, 
and parses the first two parameters in the command tail into the default FCBs at PSP 
offsets 5CH and 6CH (The command tail consists of the command line used to invoke the 
program minus the program name itself and any redirection or piping characters and their 
associated filenames or device names) MS-DOS then sets the initial DTA address for the 
program to PSP:OOSOH 

For several reasons, the default FCBs and the D TA are often moved to another location 
within the program's memory area. First, the default DIA allows processing of only very 
small records In addition, the default FCBs overlap substantially, and the first byte of the 
default DTA and the last byte of the first FCB conflict Finally, unless either the command 
tail or the DTA is moved beforehand, the first FCB-related file or record operation will 
destroy the command tail 

Function !AH (Set DIA Address) is used to alter the DIA address It is called with the 
segment and offset of the new bufferto be used as the D TA in DS:DX The DIA address 
remains the same until another call to Function !AH, regardless of other file and record 
management calls; it does not need to be reset before each read or write 

Note:· A program can use Function 2F H (Get DIA Address) to obtain the current DTA 
address before changing it, so that the original address can be restored later 

Parsing the filename 

268 

Before a file can be opened or created with the FCB function calls, its drive, filename, and 
extension must be placed within the proper fields of the FCB The filename can be coded 
into the program itself, or the program can obtain it from the command tail in the PSP or 
by prompting the user and reading it in with one of the several function calls for character 
device input 

MS-DOS automatically parses the first two parameters in the program's command tail into 
the default FCBs at PSP:005CH and PSP:006CH It does not, however, attempt to differenti­
ate between switches and filenames, so the pre-parsed FCBs are not necessarily useful to 
the application program If the filenames were preceded by any switches, the program 
itself has to extract the filenames directly from the command tail. I he program is then 
responsible for determining which parameters are switches and which are filenames, as 
well as where each parameter begins and ends 

After a filename has been located, Function 29H (Parse Filename) can be used to test it 
for invalid characters and separators and to insert its various components into the proper 
fields in an FCB The filename must be a string in the standard form drive.filename ext 
Wildcard characters are permitted in the filename and/or extension; asterisk ( *) wildcards 
are expanded to question mark (?) wildcaJds 

Tb call Function 29H, the DS:SI registers must point to the candidate filename, ES:DI 
must point to the 37-byte buffer that will become the FCB for the file, and AI must hold 
the parsing control code See SYS I EM CAIIS: INTERRUPT 21tt: Function 29H 

The MS-DO.S Encyclopedia 

I 
I 
f 

I 

I 
' 

I 
j 

Article 7: File and Record Management 

If a drive code is not included in the filename, MS-DOS inserts the drive number of the 
current drive into the FCB Parsing stops at the first terminator character encountered in 
the filename Terminators include the following: 

; , = + / n [] : < > : space tab 

If a colon character(:) is not in the proper position to delimit the disk drive identifier or if 
a period(..) is not in the proper position to delimit the extension, the character will also be 
treated as a terminator For exaJnple, the filename C:MEMO.IXT will be parsed correctly; 
however, ABC:DEFDAY will be parsed as ABC 

If an invalid drive is specified in the filename, Function 29H returns OFFH in Al; if the 
filename contains any wildcard characters, it returns 1 Otherwise, Al contains zero upon 
return, indicating a valid, unambiguous filename 

Note that this function simply parses the filename into the FCB It does not initialize any 
other fields of the FCB (although it does zero the current block and record size fields), and 
it does not test whether the specified file actually exists 

Error handling and FCB functions 

The FCB-related file and record functions do not return much in the way of error infor­
mation when a function fails I ypically, an FCB function retwns a zero in Al if the func­
tion succeeded and OFFH ifthe function failed Under MS-DOS versions 2 x, the program 
is left to its own devices to determine the cause of the error Under MS-DOS versions 3 .x, 
however, a failed FCB function call can be followed by a call to InteHupt 21H Function 
59H (Get Extended Error Information) Function 59H will return the saJne descriptive 
codes for the error, including the error locus and a suggested recovery strategy, as would 
be returned for the counterpa1t handle-oriented file or record function 

Creating a file 
Function 16H (Create File with FCBJ creates a new file and opens it for subsequent read/ 
write operations I he function is called with DS:DX pointing to a valid, unopened FCB 
MS-DOS searches the cuHent directory for the specifed filename If the filename is found, 
MS-DOS sets the file length to zero and opens the file, effectively truncating it to a zero­
length file; if the filename is not found, MS-DOS creates a new file and opens it Other 
fields of the FCB are filled in by MS-DOS as described below under Opening a File 

If the create operation succeeds, MS-DOS returns zero in Al; if the operation fuils, it 
returns OFFH in Al This function will not ordinarily fail unless the file is being created in 
the root directory and the directory is full 

Warning; To avoid loss of existing data, the FCB open function should be used to test for 
file existence before creating a file 

5ection IL Programming in the MS-DOS Environment 269 
Canon Exhibit 1108



Part B: Programming for MS-DOS 

Opening a file 

270 

Function OFH opens an existing file. DS:DX must point to a valid, unopened FCB contain­
ing the name of the file to be opened If the specified file is found in the current directory, 
MS-DOS opens the file, fills in the FCB as shown in the list below, and returns with Al set 
to OOH; if the file is not found, MS-DOS returns with Al set to OFFH, indicating an error 

When the file is opened, MS-DOS 

• Sets the drive identifier (offset OOH) to the actual drive (01- A, 02 - B, and so on) 
• Sets the current block number (offset OCH) to ·zero 
• Sets the file size (offset lOH) to the value found in the directory entry for the file 
• Sets the record size (offset OEH) to 128 
• Sets the date and time stamp (offsets 14H and 16H) to the values found in the direc­

tory entry for the file 

I he pro gr am may need to adjust the FCB - change the record size and the random record 
pointe1; for example- before proceeding with record ope I ations 

Example. Display a prompt and accept a filename from the user Parse the filename into 
an FCB, checking for an illegal drive identifier or the presence of wildcards If a valid, 
unambiguous filename has been entered, attempt to open the file Create the file if it does 
not already exist 

kbuf db 

prompt db 

myfcb db 

mov 

mov 

mov 

mov 

mov 

int 

mov 

mov 

int 

mov 

mov 

mov 

int 

or 
jnz 

64, 0, 64 dup (0) 

Odh,Oah, 'Enter filename: S' 

37 dup (0) 

display the prompt 

dx,seg prompt DS:DX ~ prompt address 

ds,dx 

es,dx 

dx,offset prompt 

ah,09h !'unction 09H ~ print string 

21h transfer to MS-DOS 

now input filename 

dx, offset kbuf DS:DX ~ buffer address 

ah,Oah Function OAH ~ enter: string 

21h transfer to MS-DOS 

par:se filename into FCB 

si,offset kbuf+2 ; DS:SI =address of filename 

di,offset myfcb ES:DI = address of fcb 

ax,2900h Function 29H =parse name 

21h transfer to MS-DOS 

al,al 

er:ror 

jump if bad drive or 

wildcard characters in name 

The MS-DOS Encyclopedia 

(more) 

Article 7: File and Record Management 

proceed: 

mov 

mov 

int 

mov 

mov 

int 
0, 
jnz 

Closing a file 

dx,offset myfcb 

ah,Ofh 

21h 

al, al 

proceed 

try to open file 

DS:DX = FCB address 

Function OFH = open file 

transfer to MS-DOS 

check status 

jump if open successful 

else create file 

dx,offset myfcb DS:DX = FCB address 

ah, 16h Function 16H = create 

21 h transfer to MS-DOS 

al,al did create succeed? 

error jump if create failed 

file has been opened or 

created, and FCB is valid 

for read/write operationS, 

Function lOH (Close File with FCB) closes a file previously opened with an FCB As usual, 
the function is called with DS:DX pointing to the FCB of the file to be closed MS-DOS 
updates the directory, if necessary, to reflect any changes in the file's size and the date and 
time last w1itten 

If the operation succeeds, MS-DOS returns OOH in Al; if the operation fails, MS-DOS 
retumsOFFH 

Reading and writing files with FCBs 

MS-DOS offers a choice of three FCB access methods for data within files: sequential, 
random record, and rand om block 

Sequential operations step through the file one record at a time MS-DOS increments the 
cu1rent record and cu1rent block nlllllbers after each file access so that they point to the 
beginning of the next record. I his method is particularly useful for copying or listing files 

Random record access allows the program to read or write a record from any location in 
the file, without sequentially reading all records up to that point in the file I he program 
must set the random record number field of the FCB appropriately before the read or write 
is requested This method is useful in database applications, in which a program must 
manipulate fixed-length records 

Random block operations combine the featu1es of sequential and 1andom record access 
methods I he program can set the record number to point to any record within a file, and 
MS-DOS updates the record number after a read or write operation Thus, sequential 
operations can easily be initiated at any file location Random block operations with a 
record length of 1 byte simulate file-handle access methods 

All tlu·ee methods require that the FCB for the file be open, that DS:DX point to the FCB, 
that the DTA be large enough for the specified record size, and that the DTA address be 
previously set with Function lAH if the default DT'.A in the program's PSP is not being 
used 

Section 11 Programming in the MS-DOS Environment 271 

Canon Exhibit 1108



Part B: Programming for MS-DOS 

MS-DOS reports the success or failure of any FCB-related read operation (sequential, 
I andom record, or I andom block) with one of four return codes in register Al: 

Code 

OOH 
OlH 
02H 
03H 

Meaning 

Successful read 
End of file reached; no data read into D Il\ 
Segment wrap (DTl\ too close to end of segment); no data read into DTA 
End of file reached; partial record read into D Il\ 

MS-DOS reports the success or failure of an FCB-related write operation as one of three 
return codes in register Al : 

Code 

OOH 
OlH 
02H 

Meaning 

Successful write 
Disk full; partial or no write 
Segment wrap (DTl\ too close to end of segment); wtite failed 

for FCB write operations, records smaller than one sector (512 bytes) are not written 
directly to disk Instead, MS-DOS stores the record in an internal buffer and writes the data 
to disk only when the internal buffer is full, when the file is closed, or when a call to Inter­
rupt 21H Function ODH (Disk Reset) is issued 

Sequential access: r·eading 

Function 14H (Sequential Read) reads records sequentially from the file to the current 
DTA address, which must point to an area at least as large as the record size specified in 
the file's FCB After each read operation, MS-DOS updates the FCB block and record num­
bers (offsets OCH and 20H) to point to the next record 

Sequential access: writing 

Function 15H (Sequential Write) writes records sequentially from memory into the file 
The length written is specified by the record size field (offset OEH) in the FCB; the memory 
address of the record to be written is determined by the current DTA address. After each 
sequential wtite operation, MS-DOS updates the FCB block and record numbers (offsets 
OCH and 20H) to point to the next record 

Random record access: r·eading 

272 

Function 21H (Random Read) reads a specific record from a file Before requesting the 
read operation, the program specifies the record to be transferred by setting the record 
size and random record number fields of the FCB (offsets OEH and 21H) The current DTA 
address must also have been previously set with Function lAH to point to a buffer of 
adequate size if the default D Tl\ is not large enough 

The MS-DOS Encyclopedia 

Article 7: File and Record Management 

After the read, MS-DOS sets the current block and current record number fields (offsets 
OCH and 20H) to point to the same record Thus, the program is set up to change to 
sequential reads or writes. However, if the program wants to continue with random record 
access, it must continue to update the random record field of the FCB before each random 
record read or write operation 

Random r·ecord access: writing 

Function 22H (Random Write) writes a specific record from memory to a file. Before 
issuing the function call, the program must ensure that the record size and random record 
pointer fields at FCB offsets OEH and 21H are set appropriately and that the current DTA 
address points to the buffer containing the data to be written 

After the write, MS-DOS sets the current block and current record number fields (offsets 
OCH and 20H) to point to the same record. Thus, the program is setup to change to 
sequential reads or writes If the program wants to continue with random record access, it 
must continue to update the random record field of the FCB before each random record 
read or write operation 

Random block access: reading 

Function 27H (Random Block Read) reads a block of consecutive records Before issuing 
the read request, the program must specify the file location of the fir st record by setting 
the record size and random record number fields of the FCB (offsets OEH and 21H) and 
must put the number of records to be read in CX The DTA address must have already been 
set with Function lAH to point to a buffer large enough to contain the group of records to 
be read if the default DTA was not large enough The program can then issue the Function 
2IB call with DS:DX pointing to the FCB for the file 

Afte1 the random block read operation, MS-DOS resets the FCB random record pointe1 
(offset 21H) and the current block and current record numbe1 fields (offsets OCH and 20H) 
to point to the beginning of the next record not read and returns the number of records 
actually read in ex 

If the record size is set to 1 byte, Function 27H reads the number of bytes specified in ex, 
beginning with the byte position specified in the random record pointer I his simulates 
(to some extent) the handle type of read operation (Function 3FH) 

Random block access: writing 

Function 28H (Random Block Write) writes a block of consecutive records from memory 
to disk The program specifies the file location of the first record to be wtitten by setting 
the record size and random record pointer fields in the FCB (offsets OEH and 21H) If the 
default DIA is not being used, the program must also ensure that the current DIA address 
is set appropriately by a previous call to Function lAH When Function 28H is called, 
DS:DX must point to the FCB for the file and ex must contain the numbe1 of records to 
be written 

After the random block wtite operation, MS-DOS 1esets the FCB random record pointer 
(offset 21H) and the current block and current record number fields (offsets OCH and 20H) 
to point to the beginning of the next block of data and returns the number of records 
actually written in ex 

Section II Programming in the MS-DOS Environment 273 
Canon Exhibit 1108



Part B: Programming for MS-DOS 

274 

If the record size is set to 1 byte, Function 28H writes the number of bytes specified in CX, 
beginning with the byte position specified in the random record pointer I his simulates 
(to some extent) the handle type of write operation (Function 40H) 

Calling Function 28H with a record count of zero in registe1 CX causes the file length to be 
extended ortruncated to the current value in the FCB random record pointer field (offset 
21H) multiplied by the contents of the record size field (offset OEH) 

Example Open the lile MYFilE DAT and create the file MYFilE BAK on the current disk 
drive, copy the contents of the DAT file into the BAK file using 512-byte reads and writes, 
and then close both files 

fcb1 db 0 drive = default 

db '~YFIIE 8 character filename 

db 'DAI' 3 character extension 

db 25 dup (0) remainder of fcb1 

fcb2 db 0 drive = default 

db 'MYFIIE 8 character filename 

db 'BAK' 3 character extension 

db 25 dup (0) remainder of fcb2 

buff db 512 dup (?) buffer for file I/O 

open MYFIIE DAI 

mov dx, seg fcb1 DS:DX = address of FCB 

mov ds,dx 

mov dx, offset fcb1 
mov ah, Ofh Function OFH = open 

int 21h transfer to MS-DOS 

or al,al did open succeed? 

jnz error jump if open failed 

create MYFilE.BAK 

mov dx,offset fcb2 DS:DX = address of FCB 

mov ah,16h Function 16H = create 

int 21h transfer to MS-DOS 

or al, al did create succeed? 

jnz error ]Ump if create failed 

set record length to 512 

mov word ptr fcb1+0eh,512 

mov word ptr fcb2+0eh,512 

set DIA to our buffer 

mov dx,offset buff DS:DX = buffer: address 
mov ah, 1ah Function lAH = ser DIA 

int 21h transfer to MS-DOS 

loop: read MYFIIE DAI 

mov dx,offset fcbl DS:DX = FCB address 

mov ah, 14h Function 14H = seq read 

int 21h transfer to MS-DOS 

or al,al was r:ead successful? 

jnz done no, quit 

write MYFIIE BAK 

(more) 

The MS-DO.S Encyclopedia 

Article 7: File and Record Management 

mov dx,offset fcb2 DS:DX = F'CB address 

mov ah,15h Function 15H = 'eq write 

int 21h transfer to MS-DOS 

or al, al was write successful? 

jnz error jump if write failed 

jmp loop continue to end of file 

done: now close files 

mov dx,offset fcb1 DS:DX = FCB for MYFILE.DAI 

mov ah, 10h Function lOH = close file 

int 21h transfer to MS-DOS 

or al, al did close succeed? 

jnz error jump if close failed 

mov dx,offset fcb2 DS:DX = FCB fo' MYFIIE .BAK 

mov ah, 10h Function 10H = close file 

int 21h transfer to Ms~oos 

or al, al did close succeed? 

jnz error jump if close failed 

Other FCB file operations 

As it does with lile handles, MS-DOS provides FCB-oriented !unctions to rename or delete 
a file Unlike the other FCB functions and their handle counterparts, these two functions 
accept wildcard characters An additional FCB fUnction allows the size or existence of a 
file to be determined without actually opening the file 

Renaming a file 

Function 17H (Rename File) renames a file (or files) in the current directory The file to be 
renamed cannot have the hidden or system attribute Before calling Function 17H, the pro­
gram must create a special FCB that contains the drive code at offset OOH, the old filename 
at offset OlH, and the new filename at offset llH Both the current and the new filenames 
can contain the? wildcard character 

When the function call is made, DS:DX must point to the special FCB structure MS-DOS 
searches the current directory for the old lllename If it finds the old filename, MS-DOS 
then searches for the new filename and, if it finds no matching filename, changes the 
directory entry for the old filename to reflect the new filename. If the old lilename field of 
the special FCB contains any wildcard characters, MS-DOS renames every matching file 
Duplicate filenames are not permitted; the process will fail at the first duplicate name 

If the operation is successful, MS-DOS returns zero in AI; if the operation fails, it returns 
OFFH The error condition may indicate either that no files were 1enamed 01 that at least 
one file was renamed but the ope1 ation was then terminated because of a duplicate 
filename 

Example Rename all the files with the extension ASM in the current directory of the 
default disk drive to have the extension COD 

Section fl Programming in the MS-DO.S Environment 275 
Canon Exhibit 1108



Part B: Programming for MS-DOS Article 7: File and Record Management 

renfcb db 0 default drive 

db '????????' wildcard filename 

db 'ASM' old extension 

db 5 dup (0) reserved area 

db '????????' wildcard filename 

db 'COD' new extension 

db 15 dup (0) remainder of FCB 

mov dx, seg renfcb DS:DX " address of 

mov ds,dx "special" FCB 

mov dx,offset renfcb 

mov ah, 1 7h Function 17H " rename 

int 21h transfer to MS-DOS 

or al,al did fqnction succeed? 

jnz error jump if rename failed 

Deleting a file 

276 

Function 13H (Delete File) deletes a file from the current directory. The file should not be 
currently open by any process If the file to be deleted has special attributes, such as read­
only, the program must use an extended FCB to remove the file. Directories cannot be 
deleted with this function, even with an extended FCB 

Function 13H is called with DS:DX pointing to an unopened, valid FCB containing the 
name of the file to be deleted I he filename can contain the ? wildcard character; if it does, 
MS-DOS deletes all files matching the specified name If at least one file matches the FCB 
and is deleted, MS-DOS returns OOH in Al; if no matching filename is found, it returns 
OFFH 

Note:· I his function, if it succeeds, does not return any information about which and 
how many files were deleted. When multiple files must be deleted, closer control can be 
exercised by using the Find File functions (Functions llH and 12H) to inspect candidate 
filenames 5ee PROGRAMMING IN THE MS-DOS ENVIRONMENT: PROGRAMMING FOR 
MS-Dos: Disk Directodes and Volume 1 abels I he files can then be deleted individually 

Example Delete all the files in the cun ent directory of the current disk drive that have 
the extension BAK and whose filenames have A as the first characte1 

delfcb db 0 default drive 

db 'A???????' wildcard filename 

db 'BAK' extension 

db 25 dup (0) remainder of FCB 

(more) 

1he MS-DOS Encyclopedia 
I 

j 

mov 

mov 

mov 

mov 

int 

or 
jnz 

dx,seg delfcb 
ds,dx 

dx,offset delfcb 

ah,13h 

21h 

al, al 

error 

DS:DX FCB address 

Function 13H =delete 

transfer to MS-DOS 

did function succeed? 

jump if delete failed 

Finding file size and testing for existence 

Function 23H (Get File Size) is used p1imarily to find the size of a disk file without opening 
it, but it may also be used instead of Function llH (Find First File) to simply test for the 
existence of a file Before calling Function 23H, the prog1am must parse the filename into 
an unopened FCB, initialize the record size field of the FCB (offset OEH), and set the 
DS:DX registers to point to the FCB 

When Function 23H returns, Al contains OOH if the file was found in the current di1ectory 
of the specified drive and OFF H if the file was not found 

If the file was found, the random record field at FCB offset 21H contains the number of 
records (rounded upward) in the target file, in te1ms of the value in the record size field 
(offset OEH) of the FCB. If the record size is at least 64 bytes, only the first 3 bytes of the 
random 1ecord field are used; if the record size is less than 64 bytes, all 4 bytes are used Ii:J 
obtain the size of the file in bytes, the progiam must set the record size field to 1 before the 
call This method is not any faster than simply opening the file, but it does avoid the over­
head of closing the file afterward (which is necessa1y in a networking environment) 

Summary 

MS-DOS supports two distinct but overlapping sets of file and record management 
se1vices I he handle-oriented functions operate in terms of null-terminated (ASCIIZ) 
filenames and 16-bit file identifiers, called handles, that are returned by MS-DOS after a file 
is opened or created The filenames can include a full path specifying the file's location in 
the hierarchical directory structure The information associated with a file handle, such as 
the current read/write pointer fo1 the file, the date and time of the last wiite to the file, and 
the file's read/write permissions, sharing mode, and attributes, is maintained in a table 
internal to MS-DOS 

Section II. Programming in the MS:-D05 Environment 277 
Canon Exhibit 1108



Part B: Programming for MS-DOS 

278 

In contrast, the FCB-oriented functions use a 37-byte structure called a file control block, 
located in the application program's memory space, to specify the name and location of 
the file. After a file is opened or created, the FCB is used by both MS-DOS and the applica­
tion to hold other information about the file, such as the current read/write file pointer, 
while that file is in use. Because FCBs predate the hierarchical directory structure that was 
introduced in MS-DOS version 2 0 and do not have room to hold the path for a file, the FCB 
functions cannot be used to access files that are not in the current directory of the speci­
fied drive 

In addition to their lack of support for pathnames, the FCB functions have much poorer 
erTor reporting capabilities than handle functions and are nearly useless in networking 
environments because they do not support flle sharing and locking Consequently, it is 
strongly recommended that the handle-related file and record fooctions be used ex­
clusively in all new applications 

The MS-D05 Encyclopedia 

Robert Byers 
Code by Ray Duncan 

Article 8: Disk Directories and Volume Labels 

Articles 
Disk Directories and Volume Labels 

MS-DOS, being a disk operating system, provides facilities for cataloging disk files. I he 
data structure used by MS-DOS for this purpose is the directory, a linear list of names in 
which each name is associated with a physical location on the disk Directories are ac­
cessed and updated implicitly whenever files are manipulated, but both directories and 
their contents can also be manipulated explicitly using sever al of the MS-DOS Interrupt 
21H service functions 

MS-DOS versions 1 x support only one directory on each disk Versions 2 0 and later, 
however, support multiple directories linked in a two-way, hierarchical tree structure 
(Figure 8-1), and the complete specification of the name of a file or directory thus must 
describe the location in the directory hierarchy in which the name appears This specifica­
tion, or path, is created by concatenating a disk drive specifier (for example, A: or C:), the 

C:\ (root directory) 

subdirectory 
subdirectory 
file 
file 

I 

ALPHA 
BETA 
FIT.El COM 
FILE2COM 

I 

C:\ALPHA 

subdirectory 
subdirectory 
subdirectory 
subdirectory 
file 

I 

GAMMA 
DELTA 
FIJ.E3 COM 

I 
C:\ALPHA\GAMMA 

subdirectory 
subdirectory 
file FILES .COM 

C:\ALPttl\DELIA 

subdirectory 
subdirectory 

I 
C:\BEIA 

subdirectory 
subdirectory 
subdirectory EPSILON 
file FILE4 COM 

I 
C:\BEIA\EPSILON 

subdirectory 
subdirectory 
file FILE! COM 

Figure 8-1 Typical hierarchical directory structure (MS-D0.5 versions 2 0 and later) 

5ection IL Programming in the Ms:..vo,s Environment 279 
Canon Exhibit 1108



Part B: Programming for MS-DOS 

names of the directories in hierarchical order starting with the root directory, and finally 
the name of the file or directory For example, in Figure 8-1, the complete pathname for 
FI1E5 COM is C:\AlPHA \GAMMA \FI1E5 COM. The two instances of Fil El COM, in the 
root directory and in the directory EPSILON, are distinguished by their pathnames: 
C: \Fil El COM in the first instance and C:\BETA \EPS!lON\FllEl COM in the second 

Note:· If no drive is specified, the current drive is assumed Also, if the first name in the 
specification is not preceded by a backslash, the specification is assumed to be relative to 
the current directory For example, if the current directory is C: \BETA \EPS!lON, the 
specification \Fil El COM indicates the file FilEl.COM in the root directory and the 
specification F II El COM indicates the file F 11 El. COM in the directory C: \BE IA\ EPSILON 
See Figure 8-1 

Although the casual user of MS-DOS need not be concerned with how this hierarchical 
directory structure is implemented, MS-DOS programmers should be familiar with the 
internal structure of directories and with the Int en upt 21H functions available for manip­
ulating directory contents and maintaining the links between directories I his article 
provides that information 

Logical Structure of MS-DOS Directories 

An MS-DOS directory consists of a list of 32-byte directory entries, each of which con­
tains a name and descriptive information In MS-DOS versions 1 x, each name must be a 
filename; in versions 2.0 and later, volume labels and directory names can also appear 
in directory entries 

Directory searches 

Directory entries are not sorted, nor are they maintained as a linked list Thus, when 
MS-DOS searches a directory for a name, the search must proceed linearly from the first 
name in the directory. In MS-DOS versions 1 x, a directory search continues until the spec­
ified name is found or until every entry in the directory has been examined. In versions 2 0 
and later, the search continues until the specified name is found or until a null directory 
entry (that is, one whose first byte is zero) is encountered This null entiy indicates the 
logical end of the directory 

Adding and deleting directory entries 

280 

MS-DOS deletes a directory entry by marking it with OESH in the first byte rather than by 
erasing it or excising it from the directory New names are added to the directory by reus­
ing the first deleted entry in the list If no deleted entries are available, MS-DOS appends 
the new entry to the list 

The MS-DOS Encyclopedia 

Article 8: Disk Directories and Volume Labels 

The current directory 

When more than one directory exists on a disk, MS-DOS keeps track of a default search 
directory known as the current directory. The current directory is the directory used for all 
implicit directory searches, such as those occasioned by a request to open a file, if no alter­
native path is specified At startup, MS-DOS makes the root directory the current directory, 
but any other directory can be designated later, either interactively by using the CHDIR 
command or from within an application by using Interrupt 21H Function 3BH (Change 
Current Directory). 

Directory Format 

The root directory is created by the MS-DOS FORMAT program See USER COMMANDS: 
FORMAT The FORMAT program places the root directory immediately after the disk's file 
allocation tables (FATs) FORMAT also determines the size of the root directory. The size 
depends on the capacity of the storage medium: FORMAT places larger root directories on 
high-capacity fixed disks and smaller root directories on floppy disks In contrast, the size 
of subdirectories is limited only by the storage capacity of the disk because disk space for 
subdirectories is allocated dynamically, as it is for any MS-DOS file The size and physical 
location of the root directory can be derived from data in the BIOS parameter block (BPB) 
in the disk boot sector. See PROGRAMMING IN I HE MS-DOS ENVIRONMENT: Srnuc­
ruRE OF Ms-Dos: MS-DOS Storage Devices 

Because space for the root directory is allocated only when the disk is formatted, the 
root directory cannot be deleted or moved. Subdirectories, whose disk space is allocated 
dynamically, can be added or deleted as needed 

Directory entry fo~at 

Each 32-byte directory entry consists of seven fields, including a name, an attribute byte, 
date and time stamps, and information that describes the file's size and physical location 
on the disk (Figure 8-2) I he fields are formatted as described in the following paragraphs 

Name Attribute (Reserved) I irne Date Starting cluster File size 

Figure 8-2 For mat of a directory entr:y 

The name field (bytes 0-0AH) contains an 11-byte name unless the first byte of the field 
indicates that the directory entry is deleted or null. The name can be an 11-byte filename 
(8-byte name followed by a 3-byte extension), an 11-byte subdirectory name (8-byte name 

Section JI: Programming in the MS-DOS Environment 281 
Canon Exhibit 1108



Part B: Programming for MS-DOS 

282 

followed by a 3-byte extension), or an 11-byte volume label Names less than 8 bytes and 
extensions less than .3 bytes are padded to the right with blanks so tbat the extension al­
ways appears in bytes 08-0AH of the name field The first byte of the name field can con­
tain certain reserved values that affect the way MS-DOS processes the directory entry: 

Value 

0 
5 

OESH 

Meaning 

Null directory entry (logical end of directory in MS-DOS versions 2 .0 and later) 
First character of name to be displayedas the character represented by OESH 

(MS-DOS version 3 .2 ) 
Deleted directory entry 

When MS-DOS creates a subdirectory, it always includes two aliases as the first two entries 
in the newly created directory The name. (an ASCII period) is an alias for the name of 
the current directory; the name .... (two ASCII periods) is an alias for the directory's parent 
directory- that is, the directory in which the entry containing the name of the current 
directory is found. 

The attribute field (byte OBH) is an 8-bit field that describes the way MS-DOS processes 
the directory entry (Figure 8-3) Each bit in the attribute field designates a particular attri­
bute of that directory entry; more than one of the bits can be set at a time 

Bit 6 5 

(Reserved) (Reserved) Archive 

4 

Sub­
directory 

3 

Volume 
label 

Figure 8-3 Format of the attribute field in a directory entry 

2 

System file Hidden file 

0 

Read-only 
file 

The read-only bit (bit 0) is set to 1 to mark a file read-only Interrupt 21H Function 3DH 
(Open File with Handle) will fail if it is used in an attempt to open this file for writing The 
hidden bit (bit 1) is set to 1 to indicate that the entry is to be skipped in normal directory 
searches- that is, in directory searches that do not specifically request that hidden entries 
be included in the search The system bit (bit 2) is set to 1 to indicate that the entry refers to 
a file used by the operating system Like the hidden bit, the system bit excludes a directory 
entry from normal directory searches The volume label bit (bit 3) is set to 1 to indicate that 
the directory entry represents a volume label The subdirectory bit (bit 4) is set to 1 when 
the directory entry contains the name and location of another directory. This bit is always 
set for the directory entries that correspond to the current directory(..) and the parent 
directory(...) The archive bit (bit 5) is set to 1 by MS-DOS functions that close a file that 
has been written to Simply opening and closing a file is not sufficient to update the 
archive bit in the file's directory entry 

The time and date fields (bytes 16-lIB and 18-19H) are initialized by MS-DOS when 
the directory entry is created These fields are updated whenever a file is written to The 
formats of these fields are shown in Figures 8-4 and 8-.S 

The MS~DO.S Encyclopedia 

Article 8: Disk Directories and Volume Labels 

Bit 15 IO 4 

Hours (0-23) Minutes (0-59) 

Figure 8-4 For mat of the time field in a directory entry 

Bit 15 8 4 

Year (relative to 1980) Month (1-12) 

Figure 8-5 For mat of the date field in a directory entry 

2-second 
increments (0-29) 

Day (I-JI) 

0 

0 

The slatting cluster field (bytes lA-lBH) indicates the disk location of the first cluster 
assigned to the file This cluster number can be used as an entry point to the file allocation 
table (FAT) for the disk (Cluster numbers can be converted to logical sector numbers with 
the aid of the information in the disk's BPB) 

For the. entry (the alias for the directory that contains the entry), the starting cluster field 
contains the starting cluster number of the directory itself. For the .. entry (the alias for the 
parent directory), the value in the starting cluster field refers to the patent directory unless 
the parent directory is the root directory, in which case the starting cluster nllltlber is zero 

The file size field (bytes lC-lFH) is a 32-bit integer that indicates the file size in bytes 

Volume Labels 

The generic term volume refers to a unit of auxiliary storage such as a floppy disk, a fixed 
disk, or a reel of magnetic tape In computer environments where many different volumes 
might be used, the operating system can uniquely identify each volume by initializing it 
with a volume label 

Volume labels are implemented in MS-DOS versions 2 .0 and later as a specific type of 
directory entry specified by setting bit 3 in the attribute field to 1 In a volume label direc­
tory entry, the name field contains an 11-byte string specifying a name for the disk volume 
A volume label can appear only in the root directory of a disk, and only one volume label 
can be present on any given disk 

In MS-DOS versions 2 0 and later, the FORMAT command can be used with the /V switch 
to initialize a disk with a volume label In versions 3.0 and later, the IABEl command can 
be used to create, update, or delete a volume label Several commands can display a disk's 
volume label, including VOl, DIR, 1 ABEl, TREE, and CHKDSK See USER COMMANDS. 

Section 11 Programming in the MS~DO.S Environment 283 

Canon Exhibit 1108



Part B: Programming for MS-DOS 

In MS-DOS versions 2 x, volume labels are simply a convenience for the user; no MS-DOS 
routine uses a volume label for any other purpose. In MS-DOS versions 3 x, however, the 
SHARE command examines a disk's volume label when it attempts to verify wherher a 
disk volume has been inadvertently replaced in the midst of a file read or write operation. 
Removable disk volumes should therefore be assigned unique volume names if they are 
to contain shared files 

Functional Support for MS-DOS Directories 

284 

Several Inte11upt 21H service routines can be useful to programmers who need to manipu­
late directories and their contents (Table 8-1) The routines can be broadly grouped into 
two categories: those that use a modified file control block (FCB) to pass filenames to and 
from the Interrupt 21H service routines (Functions llH, 12H, 1m, and 23H) and those rhat 
use hierarchical path specifications (Functions 39H, 3AH, 3BH, 43H, 4m, 4EH, 4FH, 56H, 
and 5m) See PROGRAMMING IN THE MS-DOS ENVIRONMENT: PROGRAMMING FOR 
Ms-nos: File and Record Management; SYSTEM CAllS: INIERRUPI 21tt 

The functions rhat use an FCB require that rhe calling program reserve enough memory 
for an extended FCB before the Intenupt 21H function is called. The calling program ini­
tializes the filename and extension fields of the FCB and passes the address of the FCB to 
the MS-DOS service routine in DS:DX I he functions that use pathnames expect all path­
names to be in ASCIIZ for mat - that is, the last charncter of rhe name must be followed 
by a zero byte 

Names in pathnames passed to Interrupt 21H functions can be separated by either a back­
slash(\) ora forward slash(/) (The forward slash is the separator character used in path­
names in UNIX/XENIX systems) for example, the pathnames C:/MSP/SOURCE/ROSE PAS 
and C: \MSP\SOURCE\ROSE PAS are equivalent when passed to an Interrupt 21H function 
I he forward slash can rhus be used in a pathname in a pro gr am rhat must run on both MS­
DOS and UNIX/XENIX However, the MS-DOS comand processor (COMMAND COM) 
recognizes only the backslash as a pathname sepa1 ator character, so forward slashes can­
not be used as separators in the command line 

Table 8-1. MS-DOS Functions for Accessing Dir'ectoiies .. 

Function 

Find First File 

Find Next File 

Call With 

AH= llH 
DS:DX = pointer to 

unopened FCB 
INT 21H 

AH= 12H 
DS:DX = pointer to 

unopened FCB 
IN! 21H 

The MS-DOS Encyclopedia 

Retw·ns 

Al= 0 (directory entry 
found) or OFFH (not found) 

DTA updated (if directory 
entry found) 

Al= 0 (directory entry 
found) or OFFH (not found) 

DTA updated (if directory 
entry found) 

Comment 

If default not satisfac­
tory DTA must be 
set before using 
this function 

Use the same FCB 
for Function llH and 
Function 12H 

(more) 

l 
i 

Table 8-1 .. Continued 

Function 

Rename File 

Get File Size 

Create Directory 

Remove Directory 

Change Current 
Directory 

Get/Set File 
Attributes 

GetCUITent 
Directory 

Find First File 

Find Next File 

Call With 

AH=lIB 
DS:DX = pointer to 

modified PCB 
INT 21H 

AH=23H 
DS:DX = pointer to 

unopened FCB 
INT 21H 

AH= 39H 
DS:DX = pointer to 

ASCIIZ pathname 
INT21H 

AH= 3AH 
DS:DX = pointer to 

ASCIIZ pathname 
INT21H 

AH= 3BH 
DS:DX = pointer to 

ASCIIZ pathname 
INI21H 

AH=43H 
Al = 0 (get attributes) 

1 (set attributes) 
ex= attributes (if Al = 1) 
DS:DX =pointer to 

ASCIIZ pathname 
!NI 21H 

AH=4IB 
DS:SI = pointer to 

64-byte buffer 
DI = drive number 
!NI 21H 

AH=4EH 
DS:DX = pointer to 

ASCIIZ pathname 
ex = file attributes to 

match 
INI 21H 

AH=4FH 
INT 21H 

Article 8: Disk Directories and Volume Labels 

Retutns 

Al = 0 (file renamed) or 

OFFH (no directory entry 
or duplicate filename) 

Al = 0 (directory entry 
found) or OFFH (not found) 

FCB updated with number 
of records in file 

Carry flag set (if error) 
AX= error code (if error) 

Carry flag set (if error) 
AX = error code (if error) 

Carry flag set (if error) 
AX = error code (if error) 

Carry flag set (if error) 
AX= error code (if' error) 

ex =.attribute field from 
directory entry (if called 
with AI= 0) 

Carry flag set (if erTor) 
AX = error code (if' error) 
Buffer updated with 

pathname of current 
directory 

Carry flag set (if error) 
AX = error code (if error) 
DTAupdated 

Carry flag set (if error) 
AX= error code (if error) 
DTA updated 

Comment 

Cannot be used to 
modify the volume 
label or subdirectory 
bits 

If default not satisfac­
tory, DTA must be 
set before using 
this function 

(more) 

Section II. Programming in the MS-DOS Environment 285 
Canon Exhibit 1108



Part B: Programming for MS-DOS 

fable 8-1 .. Continued 

Function 

Rename File 

Get/Set Date/ I ime 
of File 

Call With 

AH= 56H 
DS:DX =pointer to 

ASCIIZ pathname 
ES:DI = pointer to 

new ASCHZ pathname 
IN'I 21H 

AH= 57H 
Al = 0 (get date/time) 

1 (set date/time) 
BX=handle 
ex= time (if Al = 1) 
DX = date (if Al = 1) 
INT 21H 

Retwns 

Carry flag set (if error) 
AX= error code (if error) 

Carry flag set (if error) 
AX= error code (if error) 
ex = time (if Al = O) 

DX= date (if AI = O) 

Comment 

Seru:·ching a directory 
I wo pairs of In ten upt 21H functions are available for directrny searches Functions llH 
and 12H use FCBs to transfer filenames to MS-DOS; these functions ar·e available in all ver­
sions of MS-DOS, but they cannot be used with pathnames Functions 4EH and 4FH sup­
prnt pathnames, but these functions are unavailable in MS-DOS versions 1 x All four 
functions require the address of the disk transfer area (Dill.) to be initialized appropriately 
before the function is invoked When Function 12H or 4FH is used, the current DTll. must 
be the same as the DIA for the preceding call to Function llH 01 4EH 

The Interrupt 21H directrny search functions are designed to be used in pairs The Find 
First File functions return the first matching directo1y entry in the current directory (Func­
tion llH) or in the specified directrny (Function 4EH) I he Find Next File functions 
(Functions 12H and 4FH) can be called repeatedly after a successful call to the coHe­
sponding Find First File function. Each call to one of the Find Next File functions returns 
the next directrny entry that matches the name originally specified to the Find Fiist File 
function. A directory search can thus be summarized as follows: 

call "find fir:st file" function 

while { matching directory entry returned 

call "find next file" function 

Wildcat'd chru·acters 

286 

This search strategy is used because name specifications can include the wildcard charac­
ters ? , which matches any single characte1, and* (see below) When one or more wildcard 
characters appear in the name specified to one of the Find First File functions, only the 
nonwildcard characte1s in the name pa1ticipate in the directory search. Thus, for example, 
the specification FOO? matches the filenames FOOl, FOOZ, and so on; the specification 
FOO???????? matches F004.COM, FOOBAR EXE, and FOONEWBAK, as well as FOOl and 
F002; the specification???????? TXI matches all files whose extension is IXI; the speci­
fication ???????? ??? matches all files in the directory 

The MS-DOS Encyclopedia 

Article 8: Disk Directories and Volume Labels 

Function 4EH also recognizes the wildcard character *,which matches any remaining 
characters in a filename or extension MS-DOS expands the * wildcard character inter'­
nally to question marks Thus, for example, the specification FOO• is the same as 
FOO?????; the specification FOO * * is the same as FOO????? ???; and, of course, the spec­
ification* * is the same as????????.??? 

Examining a directory entry 

All four Interrupt 21H directory search functions return the name, attribute, file size, time, 
and date fields for each direct01y entry found during a direct01y search. I he current DTA 
is used to return this data, although the format is different for the two pairs of functions: 
Functions llH and 12H return a copy of the 32-byte directory entry-including the cluster 
number- in the Dill.; Functions 4EH and 4F H return a 43-byte data structure that does 
notinclude the starting cluster number See SYS I EM CAilS: INTERRUPT 21H: Function 
4EH 

I he attribute field of a direct01y entry can be examined using Function 43H (Get/Set File 
Attributes) Also, Function 57H (Get/Set Date/Time of File) can be used to examine a file's 
time or date. However; unlike the other functions discussed here, Function SIB is in­
tended only for files that are being actively used within an application-that is, Function 
5IB can be called to examine the file's time 01 date stamp only after the file has been 
opened or created using an InteHupt 21H function that returns a handle (Function 3CH, 
3DH, 5AH, OI 5BH) 

Modifying a directory entry 

Four Intenupt 21H flinctions can modify the contents of a direct01y entry Function 17H 
(Rename File) can be used to change the name field in any directory entry, including hid­
den 01 system files, subdirectories, and the volume label Related Function 56H (Rename 
File) also changes the name field of a filename but cannot rename a volume label or a hid­
den or system file However; it can be used to move a directory entry from one directory to 
another CI his capability is restricted to filenames only; subdirectory entries cannot be 
moved with Function 56H ) 

Functions 43H (Get/Set File Attributes) and 5IB (Get/Set Date/ Time of File) can be used 
to modify specific fields in a directory entry Function 43H can mark a directory entry as a 
hidden or system file, although it cannot modify the volume label or subdirectory bits 
Function 57H, as noted above, can be used only with a previously opened file; it proVides 
a way to read 01 update a file's time and date stamps without writing to the file itself 

Creating and deleting directories 

Function 39H (Create Directory) exists only to create directories-that is, directory 
entries with the subdirectrny bit set to 1 (Interrupt 21H functions that create files, such as 
Function .3CH, cannot assign the subdirectory attribute to a directory entry) The converse 
fonction, 3AH (Remove Directrny), deletes a subdirectrny entry from a directrny (The 
subdirectory must be completely empty) Again, Interrupt 21H flinctions that delete files 
ft om directories, such as Function 41H, cannot be used to delete subdirectories 

Section II Programming in the MS-D05 Environment 287 
Canon Exhibit 1108



Part B: Programming for MS-DOS 

Specifying the current directory 

A call to Int en upt 21H Function 47H (Get Current Directory) returns the pathname of the 
current directory in use by MS-DOS to a user-supplied buffer The converse operation, in 
which a new current directory can be specified to MS-DOS, is performed by Function 3BH 
(Change Current Directory) 

Programming examples: Searching for files 

288 

I he subroutines in Figure 8-6 below illustrat,e Functions 4EH and 4FH, which use path 
specifications passed as ASCIIZ strings to search for files Figure 8-7 applies these assem­
bly-language subroutines in a simple C program that lists the attributes associated with 
each entry in the current directory Note how the directory search is performed in the 
WHILE loop in Figure 8-7 by using a global wildcard file specification(•>) and by repeat­
edly executing HndNextFtle() until no further matching filenames are found ( See Pro­
gramming Example: Updating a Volume label for examples of the FCB-related search 
functions, llH and 21H ) 

I III E 'DIRS ASM' 

Subroutines for DIRDUMP C 

ARG1 

ARG2 

EQU 

EQU 

[bp + 4] 

[Dp + 6] 

: stack frame addressing for C argurnents 

_IEXI SEGMENT byte public 'CODE' 

ASSUV.i.E cs:_IEXI 

void SetDIA ( DIA ) : 

char *DIA; 

PUBIIC 

_SetDIP. PROC 

push 

mov 

mov 

mov 

int 

-Set DIA 
near 

bp 
bp,sp 

dx,ARGl 

ah,1Ah 

21h 

DS:DX -> DIA 

AH = INI 21H function 

pass DIA to MS-DOS 

Figure 8-6 Subroutines illustrating Intert upt 21H Functions- 4EH and 4FH 

The MS-D05 Encyclopedia 

number 

(more) 

Article 8: Disk Directories and Volume Labels 

pop bp 
ret 

_setDIA ENDP 

·-----------------------------­------------------------------------------------

I* returns error code */ int GetCurrentDir( *path); 

char *path; I* pointer to buffer to contain path */ 

;------------------------------------------------------------------------------

PUBIIC _GetCurrentDir 

_GetCurrentDir PROC near 

push bp 
mov bp, sp 

push si 

mov si,ARG1 DS:SI -> buffer 
xor dl,dl DI ~ 0 (default drive number) 
mov ah,47h AH ~ INI 21H function number 
int 21h call MS-DOS: AX ~ error code 
jc I 01 jump if error 

xor ax, ax no error, return AX 

I 01: pop Sl 

pop bp 
ret 

_GetCurrentDir ENDP 

int FindFirstFile( path, attribute ) :· /* returns error code */ 
char *pai:h,· 

int attribute; 

0 

;------------------------------------------------------------------------------

PUBIIC _FindFirstFile 

_F indF irstF ile PROC near 

push bp 
mov bp, sp 

mov dx,ARG1 

mov cx,ARG2 

mov ah,4Eh 

in~ 21h 

jc L02 

FigureS-6. Continued 

DS:DX ->path 

ex = attribute 

AH = INI 21H function number 

call MS-DOS; AX= error code 

jump if error 

(more) 

)ection II Programming in the MS-DO.S Environment 289 
Canon Exhibit 1108



Part B: Programming for MS-DOS 

102: 

xor 

pop 

ret 

_F indF irstF ile ENDP 

int FindNextFile(); 

3.X, ax no error, return AX 0 

bp 

/* returns error code *I 

;------------------------------------------------------------------------------

290 

_i indNextF ile 

103: 

_I indNext File 

_IEXI 

_DAIA 

Current Dir 
DIA 

_DAIA 

PUBIIC 
PROC 

push 
mov 

mov 
int 
jc 

xor 

pop 
ret 

ENDP 

ENDS 

SEGMENI 

DB 

DB 

ENDS 

END 

Figure 8-·6 Continued 

The MS'-DOS Encyclopedia 

J indNextF ile 
near 

bp 
bp, sp 

ah,4Fh 
21h 

103 

ax, ax 

bp 

word public 'DAIA' 

64 dup {?) 

64 dup (?) 

AH = INI 21H function number 
call MS-DOS; AX = error code 
jump if error 

if no error, set AX 0 

T 

I 
Article 8: Disk Directories and Volume Labels 

/* DIRDUMP C */ 

#define AllAttributes Ox3F I* bits set for all attributes */ 

main{) 

static char CurrentDir[64]: 
int 
int 

struct 

char 
char 
int 
int 
long 
char 

ErrorCode; 
F ileCount = O; 

reserved [ 21 ] ; 
attrib; 
time; 
date; 
size; 
name[13]; 
DIA; 

I* display current directory name */ 

ErrorCode = GetCurrentDir( CurrentDir }; 
if ( ErrorCode ) 
{ 

printf ( "\nError %d: GetCurrentDir", Error: Code ) : 
exit ( 1 } ; 

printf ( "\nCurrent directory is \ \%s", CurrentDir ) ; 

I* display files and attributes */ 

SetDIA( &DIA ) : /* pass DIA to MS-DOS */ 

Err:orCode = FindFirstFile( "* *", AllAttributes ); 

while ( ! Error: Code 

printf{ "\n%12s DIA name ) ; 
ShowAttributes( DIA.attr:ib ); 
++FileCount; 

Er:rorCode '" F indNextF ile { ) ; 

I* display file count and exit */ 

printf( "\nCurr:ent directory contains %d files\n", FileCount ) ; 
return( 0 ); 

Figure 8-7 The complete DIRDUMP G program 

Section 11 Programming in the MS-D0.5 Environment 

(more) 

291 

Canon Exhibit 1108



Part B: Programming for MS-DOS 

ShowAttributes{ a) 

int a: 

int i; 

int mask= 1; 

static char *AttribName [] 

I 

"read-only 

"hidden 

"system 
"volume 

"subdirectory 

"archive " 

for( i=O; i<6: i++ 

if{ a & mask 
printf( AttribName[i] ); 

mask = mask << 1; 

Figure 8-7 C,'ontinued 

/* test each attribute bit */ 

/*display a message if bit is set *1 

Programming example: Updating a volume label 

292 

fo create, modify, or delete a volume-label directory entry, the Interrupt 21H functions 
that work with FCBs should be used. Figure 8-8 contains four subroutines that show how to 
search for, rename, create, or delete a volume label in MS-DOS versions 2 0 and later 

IIIIE 'VOIS ASM' 

C-callable routines for manipulating MS-DOS volume labels 

Note: Ihese ::::outines modify the current DIA address 

ARG1 

DGROUP 

_IEXI 

EQU [bp + 4] ;· stack frame addressing 

GROUP _DAIA 

SEGMENI byte public 'CODE' 

ASSUME cs:_IEXI,ds:DGROUP 

Figure 8-8 Subroutines for manipulating volume labels 

The MS-DOS Encyclopedia 

(more) 

] 

I 
Article 8: Disk Directories and Volume Labels 

:-----------------------------------------------------------------------------

: char *GetVollabel(); /* returns pointer to volume label name */ 

;-----------------------------------------------------------------------------

_GetVollabel 

I 01 ; 

102: 

PUBLIC _GetVollabel 

PROC near 

push 

mov 

push 

push 

call 

mov 

mov 

int 

bp 

bp,sp 

si 

di 

SetDIA ; pass DIA address to MS-DOS 

dx,offset DGROUP:ExtendedFCB 

ah, 11h 

21h 

AH = INI 21H function number 

: Search for First Entry 

test al, al 

jnz 

mov 

mov 

call 

mov 

jmp 

xor 

pop 

pop 

pop 

ret 

I 01 

; label found so make a copy 

si,offset DGROUP:DIA + 8 

di,offset DGROUP:VolLabel 

Copy Name 

ax,offset DGROUP:Vollabel ; return the copy's address 

short I02 

ax, ax 

di 
oi 

bp 

; no label, return 0 (null pointer) 

_GetVollabel ENDP 

int RenameVollabel( label ); 

char *label: 
/* returns error code */ 
/* pointer to new volume label name */ 

PUBl IC _RenameVoilabel 

_RenameVollabel PROC near 

push bp 

mov bp, sp 

push 'i 
push di 

Figure8-8 C,'ontinued 

Section II Programming in the MS-DOS Environment 

(more) 

293 
Canon Exhibit 1108



Part B: Programming for MS-DOS 

294 

mov si,offset DGROUP:Vollabel DS:SI -> old volume name 

mov di,offset DGROUP:Name1 

call 

mov 

mov 

call 

mov 

mov 

int 

xor 

pop 
pop 

pop 
ret 

CopyName ; copy old name to FCB 

si,ARG1 

di,offset DGROUP:Name2 

CopyName ; copy new name into ~CB 

dx,offset OGROUP:ExtendedFCB ; DS:DX -> FCB 

ah,17h 

21h 

ah, ah 

bp 

AH = INI 21H function number 

rename 

AX = OOH (success) or OFFH (failure) 

; restore registers and return 

-~enameVollabel ENDP 

;-----------------------------------------------------------------------------

I* returns error code */ int NewVollabel( label); 

char *label; I* pointer to new volume label name */ 

.-NewVollabel 

.-NewVollabel 

PUBIIC .-NewVolLabel 

PROC near 

push bp 

mov bp,sp 

push si 

push di 

mov si,ARG1 

rnov 
call 

mov 

di,offset DGROUP:Name1 

CopyName ; copy new name to FCB 

dx,offset DGROUP:ExtendedFCB 

mov ah, 16h AH = INI 21H function number 
mt 

xor 

pop 

pop 
pop 
ret 

ENDP 

21h 

ah, ah 

di 

si 

bp 

create directory entry 

AX= OOH (success) or OFFH {failure) 

restore registers and return 

Figure 8-8 Continued 

The MS'-DO.S Encyclopedia 

(more) 

Article 8: Disk Directories and Volume Labels 

;-----------------------------------------------------------------------------

int DeleteVolLabel () ; /* returns error code */ 

;-----------------------------------------------------------------------------

PUBLIC _OeleteVollabel 

-DeleteVollabel PROC 

push 

rnov 
push 

near 

bp 

bp, sp 

si 

push di 

rnov 
rnov 
call 

mov 

mov 

int 

xor 

pop 

si,offset DGROUP:Vollabel 

di,offset DGROUP:Namel 

CopyName ; copy current volume name to FCB 

dx,offset DGROUP:ExtendedFCB 

ah, 13h 

21h 

ah, ah 

di 

AH = INI 21H function number 

delete directory entry 

AX = OOH (success) or OFFH (failure) 

restore registers and return 

pop si 

pop 
ret 

_DeleteVollabel ENDP 

bp 

miscellaneous subroutines 

SetDIA 

SetDIA 

PROC 

push 

push 

mov 

mov 
int 

pop 

pop 
ret 

ENDP 

Figure 8-8 Continued 

near 

ax 
dx 

dx,offset 

ah, 1Ah 

21h 

dx 

ax 

preserve registers used 

DGROUP:DIA 

AH 

; DS:DX -> DIA 

INI 21H function number 

set DIA 

restore registers and return 

Section 11 Programming in the MS~D05 Environment 

(more) 

295 

Canon Exhibit 1108



Part B: Programming for MS-DOS 

CopyName PROC 

push 

pop 
rnov 

I 11: lodsb 

test 
;, 
stosb 
loop 

112: rnov 
rep 

ret 

Copy Name ENDP 

_IEXI ENDS 

_DAIA SEGMENI 

Vollabel DB 

ExtendedFCB DB 
DB 
DB 
DB 

Name1 DB 
DB 

Name2 DB 
DB 

DIA DB 

ENDS 

END 

Figure 8-8 Continued 

296 The MS-DOS Encyclopedia 

near 

ds 
es 

ex, 11 

al, al 

L12 

I 11 

al, 

stosb 

word public 

11 dup(0),0 

OFFh 

5 dup{OJ 
1000b 

0 
11 dup (I? I) 

5 dup(O) 
11 dup(O) 

9 dup(OJ 

64 dup (0) 

Caller: SI -> ASCIIZ source 

DI -> destination 

ES = DGROUP 

length of name field 

copy new name into FCB 

until null character is reached 

: pad new name with blanks 

'DAIA' 

must be OFFH for extended FCB 
(reserved) 

attribute byte (bit 3 = 1) 

default drive ID 

global wildcard name 
(unused} 

second name {for renaming entry) 
(unused) 

Richard Wilton 

Article 9: Memory Management 

Article9 
Memory Management 

Personal computers that are MS-DOS compatible can be outfitted with as many as three 
kinds of random-access memory (RAM); conventional memory, expanded memory, and 
extended memory 

All MS-DOS machines have at least some conventional memory, but the presence of ex- t 
panded or extended memory depends on the installed hardware options and the model of 
microprocessor on which the computer is based. Each storage class has its own capabil-
ities, characteristics, and limitations Each also has its own management techniques, which 
are the subject of this chapter 

Conventional Memory 

Conventional memory is the term for the up to 1 MB of memory that is directly addressable 
by an Intel 8086/8088 microprocessor or by an 80286 or 80386 microprocessor running in 
real mode (8086-emulation mode) Physical addresses for references to conventional 
memory are generated by a 16-bit segment register, which acts as a base register and holds 
a paragraph address, combined with a 16-bit offset contained in an index register or in the 
instruction being executed 

On IBM PCs and compatibles, MS-DOS and the programs that run under its control occupy 
the bottom 640 KB or less of the conventional memory space I he memory space above 
the 640 KB mark is partitioned among ROM (read-only memory) chips on the system 
board that contain various primitive device handlers and test programs and among RAM 
and ROM chips on expansion boards that are used for input and output buffers and for ad­
ditional device-dependent routines 

I he bottom 640 KB of memory administered by MS-DOS is divided into three zones 
(Figure 9-1): 

• I he interrupt vector table 
• The operating system area 
• I he transient program area 

The intenupt vector table occupies the lowest 1024 bytes of memory (locations 00000-
003FFH); its address and length are hard-wired into the processor and cannot be changed 
Each doubleword position in the table is called an interrupt vector and contains the seg­
ment and offset of an interrupt handler routine for the associated hardware or software in­
ten upt number. Interrupt handler routines are usually built into the operating system, 

Section IL Programming in the MS'-DOS Environment 297 

Canon Exhibit 1108



.......................... ________________ _ 
1' 

Praise for 
The MS-DOS® Encyclopedia: 

''A superb, nearly inexhaustible ref­
erence work.. .. . Anyone serious 
about programming for MS-DOS 
will not want to be without [THE 
MS-DOS ENCYCLOPEDIA]." 

"For those with any technical in­
volvement in the PC industry, this is 
the one and the only volume worth 
reading'" PC WEEK 

"If you like the idea of a one-stop 
DOS reference book, then this book 
is for you .. " PC Magazine 

Online Today 

"The ultimate authority " 
Reference & Research Book News 

"A splendid volume " 
"There's no doubting that this is a 
superb reference work on MS-DOS." 

U.S.A. 
U.K. 
Austral. 

Dr Dobb's Journal of Software Tools EXE magazine 

Here, from Microsoft Press, is the ultimate resource for writing, maintaining, 
and upgrading well-behaved, efficient, reliable, and robust MS-DOS prngrams. 
Covering all MS-DOS releases through version 3.2, with a special section on 
version 3 .3, this encyclopedia is the standard reference for the working com­
munity of MS-DOS programmers and for anyone making strategic decisions 
about MS-DOS implementation Included are version-specific technical data 
and descriptions for: 

• More than 100 system calls-each accompanied by C-callable 
assembly-language routines and programmer's notes 

• More than 90 user commands-the most comprehensive version­
specific analysis ever assembled 

• Key MS-DOS programming utilities and debuggers 

THE MS-DOS ENCYCLOPEDIA has hundreds of hands-on examples and 
thousands of lines of great sample code plus in-depth articles on debugging, 
writing filters, installable device drivers, TSRs, Windows, memory manage­
ment, the foture of MS-DOS, and much more .. There are also more than a dozen 
appendixes, an index to commands and system calls, and a subject index 1 HE 
MS-DOS ENCYCLOPEDIA was researched and written by a team of MS-DOS 
experts - many involved in the creation and development of MS-DOS - so you 
know it's accurate and authoritative 

$69 .. 95 
£48 95 

$104.95 
(recommended) 

Canon Exhibit 1108


