~ Complete and
 Unabridged

T
MM

L pued

The

= MS-DOS
Encyclopedia

A

apLTGTISE

1o-¥8T-VH

won gyoodesRd

Foreword, Bill Gates
General Editor, Ray Duncan

Canon Exhibit 1108

H
H

The

1S-DOS

Encyclopedia

Canon Exhibit 1108

(2 0

b T S
R I PR i

e TR PR i r v S A T PR

P e e T

R S gt LR

T T AR i G o

R R e

T Y T T T

L S e e

i

1988

Microsoft Press
Redmond, Washington

Ray Duncan, General Editor
oreword by Bill Gates

Canon Exhibit 1108

Pubiished by

Microsoft Press

A Division of Micresoft Corporation

16011 NE 36th Way, Box 97017, Redmond, Washington 98073-9717
Copyright © 1988 by Microsoft Press

All rights reserved No part of the contents of this book

may be reproduced or transmitted in any form or by any means
without the written permission of the publisher

Library of Congress Cataloging in Publication Data
The MS-DOS encyclopedia : versions 1 0 through 3.2/
editor, Ray Duncan
p cm
Includes indexes
1 MS-DOS (Computer operating system) 1. Duncan, Ray, 1952-
II Microsoft Press
QAT76.76 063M74 1988 87-21452
Q05 4'46--dc19 CiP
ISBN 1-55615-174-8

Printed and bound in the United States of America
123436789RMRM 321098

Distributed to the book trade in the
United States by Harper & Row

Distributed to the bock trade in
Canada by General Publishing Company, ltd

Distributed to the book trade outside the
United States and Canada by Penguin Books Lid

Penguin Books 1td., Harmondsworth, Middlesex England
Penguin Books Australia 14d . Ringwood, Victoria, Australia
Penguin Books N Z Lid , 182-190 Wairau Road, Auckland 10, New Zealand

British Cataleging in Publication Data avaiiable

IBM® IBM AT®, P5/2®, and TopView® are registered trademarks of International Business Machines Corporation
GW-BASIC®, Microsoft® MS@ MS-DOS®, SOFTCARD® and XENIX® are registered trademarics of
Microsoft Corporation

Microsoft Press gratefully acknowledges permission to reproduce material listed below
Page 4: Courtesy The Computer Museum
Pages 5, 11, 42: Intel 4004, 8008, 8080, 8086, and 80286 microprocessor photographs Courtesy Intel Corporation
Page 6: Reprinted from Popular Flectronics, January 1973 Copyright © 1975 Ziff Communications Company
Page 13: Reprinted with permission of Rod Brock
Page 16: Reprinted with permission of The Seattle Times Copyright © 1983
Pages 19, 34, 42: IBM PC advertisements and photographs of the PC, PC/XT, and PC/AT reproduced with
permission of International Business Machines Corporation Copyright ® 1681, 1982, 1984 All rights reserved
Page 21: ‘Big IBM's Little Computer’ Copyright @ 1981 by The New York fimes Company Reprinted by
permission

‘IBM Announces New Microcomputer Sysier ” Reprinted with permission of InfoWorld Copyright © 1981

IBM really gets personal” Reprinted with permission of Personal Computing Copyright © 1981

‘Personal Computer from IBM- Reprinted from DATAMATION Magazine October 1981 Copyright © by Cahners
Publishing Company

IBM’s New Line Likely to Shake up the Markes for Personal Computers Reprinted by permission of The Wal{
Street Journal Copyright © Dow Jones & Company, Inc. 1981 All Rights Reserved
Page 36: Irresistible DOS 30 and “The Ascent of DOS Reprinied from PC Tech jour nal,
December 1984 and October 1986 Copyright © 1984 1986 Ziff Communications Company

{ MS-DOS 2 00: A Hands-On Tutorial” Reprinted by permission of PC World from Volume 1, Issue 3 March 1983,
published at 501 Second Street, Suite 600, San Francisco, CA 94107

Special thanks to Bob O'Rear, Aaron Reynolds, and Kenichi Tkeda

b d vt o momem

S

Encyclopedia Staff

Editor-in-Chief: Susan lammers

Editorial Director: Patricia Pratt

Senior Editor: Dorothy 1. Shattuck

Senior Technical Editor: David L Rygmyr
Special Projects Editor: Sally A. Brunsman
Editorial Coordinator: Sarah Hersack

Associate Editors and Technical Editors:
Pamela Beason, Ann Becherer, Bob Combs,
Michael Halvorson, Jeff Hinsch, Dean Holmes,
Chuis Kinata, Gary Masters; Claudette Moore,
Steve Ross, Roger Shanafelt, Eric Stroo,

Lee Thomas, JoAnne Woodcock

Copy Chief: Brianna Morgan Proofreaders:
Kathleen Atkins, Julie Carter, Elizabeth
Eisenhood, Matthew Eliot, Patrick Forgette,
Alex Hancock, Richard Isomazki, Shawn Peck,
Alice Copp Smith

Editorial Assistants: Wallis Bélz, Charles Brod,
Stephen Brown, Pat Frickson, Debbie Kem, Susanne
McRhotos, Vihn Nguyen, Cheryl VanGeystel

Index: Shane-Armstrong Information Services

Production: Larry Anderson, Jane Bennett, Rick
Bourgoin, Darcie § Furlan, Nick Gregoric, Peggy
Herman, Lisa Iversen, Rebecca Johnson, Ruth Pettis,
Russell Steele, Jean Irenary, joy Ulskey

Marketing and Sales Director: James Brown
Director of Production: Christopher D Banks

Publishet: Min S Yee

Canon Exhibit 1108

o

Contributors

Ray Duncan, General Editor Duncan received a B A in Chemistry from the University of Califor
nia, Riverside, and an M D. from the University of California, Los Angeles, and subsequently received
speciatized training in Pediatrics and Neonatlogy at the Cedars-Sinai Medical Center in Los Angeles He
has written many articles for personal computing magazines, including BYTE PC Magazine, Dr. Dobb’s
Journal and Softalk/PC, and is the author of the Microsoft Press book Advanced M$-DOS He is the
founder of Laboratory Microsystems Incorporated. a software house specializing in FORTH interpreters

and compilers

Steve Bostwick Bostwick holds a B.S in Physics from the University of California, Los Angeles, and
has over 20 years’ experience in scientific znd commercial data processing. He is president of Query
Computing Systems, Inc., a software firm specializing in the creation of systems for applications that
interface micrecomputers with specialized hardware. He is also an instructor for the UCL A Extension
Department of Engineering and Science and heiped design their popuiar Microprocessor Hardware and
Software Engineering Certificate Program

Keith Burgoyne Born and raised in Orange County, California, Burgoyne began programming in
1974 on IBM 370 mainframes. In 1979, he began developing microcomputer products for Apples,
TRS-80s, Ataris, Commodores, and IBM PCs He is presently Senicr Systems Engineer at Local Data of
Torrance, California, which is 2 major producer of IBM 3174/3274 and System 3X protocol conversion
products. His previous writing credits include numercus user manuails and rutorials

Robert A Byers Byers is the author of the bestselling Everyman’s Database Primer. He is presently
involved with the Emerald Bay database project with RSPI and Migent, Inc

Yhom Hogan During 11 years working with personal computers, Hogan has been a software devel-
aper, 4 programmer, 4 technical writer, a marketing manager, and a lecturer He has written six books
numerous magazine articles, and four manuals. Hogan is the author of the forthcoming Microsoft Press
book PC Programmer’s Sourcebook

FimKyle Kyle has 23 years’ experience in computing Since 1967 he has been a systems program-
mer with strong telecommunications orientation His interest in microcomputers dates from 1975 He is
currently MES Administrator for BII Systems, Inc , the OEM Division of BancTec Inc manufacturers of
MICR equipmert for the banking industry. He has written 34 books and numerous magazine articles
{mostly on ham radio and hobby electronics) and has been primary Forum Administrator for Computer
Language Magazine s CL MFORUM on CompuServe since early 1985

Gordon Letwin Letwin is Chief Architect Systems Software Microsoft Corporation He is the author
of Inside OS2, published by Microsoft Press

Charles Petzold Petzold holds an M S in Mathematics from Stevens Institute of Technology Before
{faunching his writing career, he worked 10 years in the insurance industry, programming and teaching
programming on IBM mainframes and PCs. He is the author of the Microsoft Press book Programming
Windows 2 0, a contributing editor o PC Magazine and a frequent contributor to the Microsoft Systems
Journal

Chip Rabinowitz Rabinowitz has been a programmer for 11 years He is presently chief program-

. mer for Productivity Solutions, a microcomputer consulting firm based in Pennsyivania and has been

Forum Administrator for the CompuServe MICROSOFT SIG since 1986

Contributors vit

Canon Exhibit 1108

Jim Tombn Tomlin holds a BS andanM.J5 in Mathematics. He has programmed at Boeing
Microsoft, and Opcon and has taught at Seattle Pacific University He now heads his own company in
Seattle, which specializes in PC systems programming and industrial machine vision applications

Contents

L

Richard Wilton Wilton has programmed extensively in P1/1, FORIRAN, FORTH, C, and severa}
assembly languages He is the author of Programmer’s Guide to PC & PS/2 Video Systems, published

by Microsoft Press
Foreword by Bill Gates xiii
Van Wolverton A professional writet since 1963, Wolverton has had bylines as a newspaper reporter,
editorial writer, political columnist, and technical writer. He is the author of Running MS-DOS and : Preface by Ray Duncan : Xv
Supercharging M5-DOS, both published by Microsof: Press |
- ' % Introduction xvii
William Wong Wong holds engineering and computer science degrees from Georgia Tech and . _
Rutgers University He is director of PC Labs and president of Logic Fusion Inc. His interests include Section I: The Development of MS-DOS 1
operating systems, computer languages, and artificial intelligence He has wriften numerous magazine:
v Section I: Programming in the MS-DOS Environment 47

articles and a book on MS-DOS
Part A: Structure of MS-DOS

Asticle:: An Introduction to MS-DOS 51
Article 2: The Components of MS-DOS 61
Article 3: MS-DOS Storage Devices 85

JoAnne Woodcock Woodcock, a former senior editor at Microsoft Press, has been a writer for
Encyclopaedia Britannica and a freelance and project editor on marine biological studies at the
University of Southern California. She is co-editor (with Michael Halvorson) of XENIX at Work and
co-author (with Peter Rinearson) of Microsoft Word Style Sheets both published by Microsoft Press

Special Techmnical Advisor

PartB: Programming for MS-DOS

Mark Zbikowski Article 4 Structure of an Application Program 107
Technical Advisors Article 5: Character Device Input and Qutput 149
Article &: Interrupt-Driven munications 16
Paul Allen Michael Geary David Melin john Pollock Article 7- Fil g R d Nfom 247 ’
Steve Ballmer Bob Griffin Charles Mergentime Aaron Reynolds fC </ 1. € an X eCOI: anagement
Reuben Borman Doug Hogarth Randy Nevin Darryl Rubin Article 8 Disk Directories and Volume Labels 279
Hob Bowman James W, Johnson Dan Newel! Ralph Ryan Article 9. Memory Management 297
John Butler Kaamel Kermaani Tani Newell Karl Schulmeisters Article 1: The MS-DOS EXEC Function 321
Chuck Carroll Adrian King David Norris Rajen Shah
Mark Chamberlain Reed Koch Mike O'Leary Barry Shaw .
David Chell James Landowski Bob O Rear Anthony Short PartC: Customizing MS-DOS
Mike Colee Chris Larson Mike Olsson Ben Slivka Atticle 11: Terminate-and-Stay-Resident Utilities 347
Mike Courtney Thomas Iennon Larry Osterman Jon Smirl Article 12: E . Handler 3
Mike Dryfoos Dan Lipkie Ridge Ostling Betty Stillmaker TC e 12: Exception Handlers 385
Rachel Duncan Marc McDonald Sunil Pai Johin Sioddard Article 13: Hardware Interrupt Handlers 409
Kurt Eckhardt Bruce McKinney Tim Paterson Dennis Tiliman Article 14: 'Writing MS-DOS Filters 420
Eric Evans Pascal Martin Gary Perez Greg Whitten Atticle 15: Installable Device Drivers 447
Rick Farmer Estelle Mathers Chris Peters Natalie Yount
Bill Gates Bob Matth Chatles Petzold Steve Zeck . .
e ob Matthews ™ PartD: Directions of MS-DOS

Article 16: Whiting Applications for Upward Compatibility 489
Article 17: Windows 499

Part £: Programming Tools

Article 18: Debugging in the MS-DOS Environment 3541
Article 19: Object Modules 643
Article 20: The Microsoft Object Linker 701

Contents X
Canon Exhibit 1108

Vil The MS-DOS Encyciopedia

Section III: User Commands 723 Indexes 1531
Introduction 725 ; Subject 1533

-

User commands are listed in alphabetic order This section includes ANSLSYS,

! Commands and System Calls 1565
BATCH, CONFIG SYS, DRIVER SYS, EDLIN, RAMDRIVE 5YS, and VDISK 5YS :

Section IV: Programming Utilities 961
Introduction 963
CREF 967
EXEZBIN 971

EXEMOD 974
EXEPACK 977

1IB 980
1INK 987
MAKE 999

MAPSYM 1004

MASM 1007

Microsoft Debuggers:

DEBUG 1020

SYMDEB 1054

CodeView 1157

Section V: System Calls 1175

Introduction 1177

System calls are listed in numeric order

The M5-DOS Encyclopedia

Appendixes 1431 |
Appendix A: MS-DOS Version 3.3 1433]
Appendix B: Critical Error Codes 1459 3
Appendix C: Extended Error Codes 1461
Appendix D: ASCII and IBM Extended ASCII Character Sets 1465 ;
Appendix E: EBCDIC Character Set 1469 1
AppendixF: ANSI SYS Key and Extended Key Codes 1471 :
Appendix G: File Control Block (FCB) Structure 1473
Appendix H: Program Segment Prefix (PSP) Structure 1477
Appendix1: 8086/8088/80286/80380 Instruction Sets 1479
Appendix]: Common MS-DOS Filename Extensions 1485
Appendix K: Segmented (New) EXE File Header Format 1487 :
Appendix1: Intel Hexadecimal Object File Format 1499
Appendix M: 8086/8088 Software Compatibility Issues 1507
Appendix N: An Object Module Dump Utility 1509
Appendix O: IBM PC BIOS Calls 1513

S

Conternts

Canon Exhibit 1108

X7

Foreword

Microsoft’s MS-DOS is the most popular piece of software in the world It runs on more
than 10 million personal computers wotldwide and is the foundation for at least 20,000
applications —the largest set of applications in any computer environment As an industry
standard for the family of 8086-based microcomputers, MS-DOS has had a central role in
the personal computer revolution and is the most significant and enduring factor in fur-
thering Microsoft’s original vision—a computer for every desktop and in every home The
challenge of maintaining a single operating system over the entire range of 8086-based
microcomputers and applications is incredible, but Microsoft has been committed to meet-
ing this challenge since the release of MS-DOS in 1981. The true measure of our success

in this effort is MS-DOS's continued prominence in the microcomputer industry

Since M5-DOS’s creation, more powerful and much-improved computers have entered the
marketplace, yet each new version of MS-DOS reestablishes its position as the foundation
for new applications as well as for old To explain this extraordinary prominence, we must
look to the origins of the personal computer industry. The three most significant factors in
the creation of MS-DOS were the compatibility revolution, the development of Microsoft
BASIC and its widespread acceptance by the personal computer industry, and IBM’s deci-
sion to build a computer that incorporated 16-bit technology.

The compatibility revolution began with the Intel 8080 microprocessor This technolog-
ical breakthrough brought unprecedented opportunities in the emerging microcomputer
industry, promising continued improvements in power, speed, and cost of desktop com-
puting. In the minicomputer market, every hardware manufacturer had its own special
instruction set and operating system, so software developed for a specific machine was in-
compatible with the machines of other hardware vendors. This specialization also meant
tremendous duplication of effort— each hardware vendor had to write language compilers,
databases, and other development tools to fit its particular machine Microcomputers
based on the 8080 microprocessor promised to change all this because different manu-
facturers would buy the same chip with the same instruction set

From 1975 to 1981 (the 8-bit era of microcomputing), Microsoft convinced virtually

every personal computer manufacturer— Radio Shack, Commodore, Apple, and dozens
of others —to build Microsoft BASIC into its machines For the first time, one common lan-
guage cut across all hardware vendot lines. The success of our BASIC demonstrated the
advantages of compatibility: To their great benefit, users were finally able to move appli-
cations from one vendor’s machine to another

Most machines produced during this early period did not have 2 buiit-in disk drive
Gradually, however, floppy disks, and later fixed disks, became less expensive and more
common, and a number of disk-based programs, including WordStar and dBASE, entered
the market A standard disk operating system that could accommodate these develop-
ments became extremely important, leading 1 ifeboat, Microsoft, and Digital Research alt to
support CB/M-80, Digital Research’s 8080 DOS

Foreword xiif

Canon Exhibit 1108

xiv

The 8-bit era proved the importance of having a muitiple-manufacturer standard that
permitted the free interchange of programs It was important that software designed for
the new 16-bit machines have this same advantage No personal computer manufactuser in
1980 could have predicted with any accuracy how quickly a third-party software industry
would grow and get behind a strong standard —a standard that would be the software
industry’s lifeblood The intticacies of how MS-DOS became the most common 16-bit
operating system, in part through the work we did for IBM, is not the key point here The
key point is that it was inevitable for a popular operating system to emerge for the 16-bit
machine, just as Microsofi’s BASIC had prevailed on the 8-bit systems

It was overwhelmingly evident that the personal computer had reached broad acceptance
in the market when T#me in 1982 named the personal computer “Man of the Year” MS-
DOS was integrai to this acceptance and popularity, and we have continued to adapt
MS-DOS to support more powerful computers without sactificing the compatibility that is
essential to keeping it an industry standard. The presence of the 80386 microprocessot
guarantees that continued investments in Intel-architecture software will be worthwhile

Our goal with The MS-DOS Encyclopedia is to provide the most thorough and accessible
resource available anywhere for MS-DOS programmers The length of this book is many
times greater than the source listing of the first version of MS-DOS—evidence of the
growing complexity and sophistication of the operating system The encyclopedia will be
especially usefui to software developers faced with preserving continuity yet enhancing
the portability of their applications.

Our thriving industry is committed to exploiting the advantages offered by the protected
mode introduced with the 80286 microprocessor and the virtual mode introduced with the
80386 microprocessor MS-DOS will continue to play an integral part in this effort Faster
and more powerful machines running Microsoft OS/2 mean an exciting future of multi-
tasking systems, networking, improved levels of data protection, better hardware memory
management for multipie applications, stunning graphics systems that can display an inno-
vative graphical user interface, and communication subsystems MS-DOS version 3, which
runs in real mode on 80286-based and 80386-based machines, is a vital link in the Family
AP of 08/2. Users will continue to benefit from cur commitment to improved operating-
system petformance and usability as the future unfolds

Biil Gates

The MS-DOS Encyclopedia

Preface

In the space of six years, MS-DOS has become the most widely used computer operating
system in the world, running on more than 10 million machines. It has grown, matured,
and stabilized into a flexible, easily extendable system that can support networking,
graphical user interfaces, nearly any peripheral device, and even CD ROMs containing
massive amounts of on-line information MS-DOS will be with us for many years to come
as the platform for applications that run on low-cost, 8086/8088-based machines

Not surprisingly, the success of MS-DOS has drawn many writers and publishers into its
orbit The number of books on MS-DOS and its commands, languages, and applications
dwarf’s the list of titles for any other operating system Why, then, yet another book on
MS-DOS? And what can we say about the operating system that has not been said aiready?

First, we have written and edited The MS-DOS Encyclopedia with one audience in mind:
the community of working programmers We have therefore been free to bypass elemen-
rary subjects such as the number of bits in a byte and the interpretation of hexadecimat
numbers Instead, we have emphasized detailed technical explanations, working code ex-
amples that can be adapied and incorporated into new applications, and a systems view of
even the most common MS-DOS commands and utilities

Second, because we were not subject to size restrictions, we have explored topics in depth
that other MS-DOS books mention only briefly, such as exception and error handling,
interrupe-driven communications, debugging strategies, memory management, and install-
able device drivers We have commissioned definitive articles on the relecatable object
modules generated by Microsoft language translators, the operation of the Microsoft Ob-
ject Linker, and terminate-and-stay-resident utilities We have even interviewed the key
developers of MS-DOS and drawn on their files and bulletin boards to offer an entertain-
ing, illustrated account of the origins of Microsoft’s standard-setting operating system.

Finally, by combining the viewpoints and experience of non-Microscft programmers and
writers, the expertise and rescurces of Microsoft software developers, and the publishing
know-how of Microsoft Press, we have assembled a unique and comprehensive reference
to MS-DOS services, commands, directives, and urtilities In many instances, the manu-
scripts have been reviewed by the authors of the Microsoft tools described.

We have made every effost during the creation of this book to ensure that its contents are
timely and trustworthy In a work of this size, however, it is inevitable that errors and omis-
sions will cccur If you discover any such errors, please bring them to our attention so that
they can be repaited in futire printings and thus aid your fellow programmers To this
end, Microsoft Press has established a bulletin board on MCI Mail for posting corrections
and comments. Please refer to page xvi for more information

Ray Duncan

Preface xu

Canon Exhibit 1108

Updates to ZIihe MS DOS Encyclopedta

’Penodmally, the staff of T he MS-DOS Encyclopedm W
w 'clanfxcauons or conecnons to the mfoxmation presen

e U S funds You may- pay by Check Or Mone 2!

- Ametican Express, VISA, or Master Card; please: mclude you : 1m
- pitation date “All: domest1c orders are sthped 2nd day au*upon r" '
'Mlc::osoft : :

cA residents 5% pius local op[zon tax, CT 7 5% PI 6%
: .'-optlontax WA Sta{e78% e T

xvi The MS-DOS Encyclopedia

Introduction

The MS5-DOS Encyclopedia is the most comprehensive reference work available on
Microsoft’s industry-standard operating system Written for experienced microcomputer
users and programmers, it contains detailed, version-specific information on all the
MS-DOS commands, utilities, and systern calls, plus articles by recognized experts in
specialized areas of MS-DOS programming. This wealth of material is organized into
major topic areas, each with a format suited to its content Special typographic conven-
tions are also used to clarify the material

Organization of the Book

The M3-DOS Encyclopedia is organized into five major sections, plus appendixes Each
section has a unique internal organization; explanatory introductions are included where
appropriaie

Section 1, The Development of MS-DOS, presents the history of Microsoft's standard-
setting operating system from its immediate predecessors through version 3 2 Numerous
photographs, anecdotes, and quotations are included

Section 1I, Programming in the MS-DOS Environment, is divided into five parts: Structure
of MS-DQOS, Programming for MS-DOS, Customizing MS-DOS, Directions of MS-DOS, and
Programming Tools Each part contains several articles by acknowledged experts on these
topics The articles include numerous figures, tables, and programming examples that pro-
vide detail about the subject

Section I, User Commands, presents all the MS-DOS internal and external commands in
alphabetic order, including ANSI SYS, BATCH, CONFIG SYS, DRIVER 8YS, EDLIN,
RAMDRIVE 8YS, and VDISK 5YS. Each command is presented in a structure that atlows
the experienced user to quickly review syntax and restrictions on variables; the less-
experienced user can refer to the detailed discussion of the command and its uses.

Section IV, Programming Utilities, uses the same format as the User Commands section to
present the Microsoft programming aids, including the DEBUG, SYMDEB, and CodeView
debuggers Although some of these utilities are supplied only with Microsoft language
products and are not included on the MS-DOS system or supplemental disks, their use is
intrinsic to programming for MS-DXOS, and they are therefore included to create a com-
prehensive reference

Introduction X2l

Canon Exhibit 1108

Section V, System Calls, documents Interrupts 20H through 27H and Interrupt 2FH The
Interrupt 21H functions are listed in individual entries. This section, like the User Com-

mands and Programming Utilities sections, presents a quick review of usage for the ex-
perienced user and also provides extensive notes for the less-experienced programmer:

The 15 appendixes provide quick-reference materials, including a summary of MS§-DOS
version 3 3, the segmented (new) .EXE file header format, an object file dump utility, and
the Intel hexadecimal object file format. Much of this material is organized into tables or
bulleted lists for ease of use

The book includes two indexes — one organized by subject and one organized by com-
mand name or system-call number. The subject index provides comprehensive references
to the indexed topic; the command index references only the major entry for the com-
mand or systern call. '

Program Listings

The MS-DOS Encyclopedia contains numerous program listings in assembly language, C,
and QuickBASIC, all designed to run on the IBM PC family and compatibles Most of these
programs are complete utilities; some are routines that can be incorporated into function-
ing programs Vertical ellipses are often used to indicate where additional code would be
supplied by the user to create a more functional program. All program listings are heavily
commented and are essentially self-documenting.

The programs were tested using the Microsoft Macro Assembler (MASM) version 4 0, the
Microsoft C Compiler version 4 0, or the Microsoft QuickBASIC Compiler version 2 0.

T he functional programs and larger routines are also available on disk Instructions for
crdering are on the page preceding this introduction and on the mail-in card bound into
this volume

Typography and Terminology

Because The MS-DOS Encyclopedia was designed for an advanced audience, the reader
generally will be familiar with the notation and typographic conventions used in this
volume However, for ease of use, a few special conventions should be noted

Typographic conventions

Capital letters are used for MS-DOS internal and external commands in text and syntax
lines Capital letters are also used for filenames in text.

The M5-DOS Encyclopedia

Ttalic font indicates user-supplied variable names, procedure names in text, parameters
whose values are to be supplied by the user, reserved words in the C programming lan-
guage, messages and return values in text, and, occasionatly, emphasis

A typographic distinction is made between lowercase | and the numeral T in both textand -
program listings

Cross-references appear in the form SECTION NAME: Part Name, COMMAND NAME, OR IN-
TERRUFT NUMBER: Article Name or Function Numbet

Color indicates uset input and program examples.

Terminology

Although not an official IBM name, the term PC-DOS in this book means the IBM imple-
mentation of MS-DOS If PC-DOS is referenced and the information differs from that for
the refated MS-DOS version, the PC-DOS version number is included. To avoid confusion,
the term DOS is never used without a modifier

The names of special function keys are spelled as they are shown on the IBM PC keyboard.
In particular, the execute kev is called Enter, not Return When <Enter>is included ina
user-entry line, the user is to press the Enter key at the end of the line.

The common key combinations, such as Ctrl-C and Cui-Z, appear in this form when the
actual key 1o be pressed is being discussed but are written as Control-C, Control-Z, and so
forth when the resulting code is the true reference Thus, an article might reference the
Control-C handler but state that it is activated when the user presses Ctrl-C

Unless specifically indicated, hexadecimal numbers are used throughout. These numbers
are always followed by the designation H (% in the code portions of program listings)
Ranges of hexadecimal values are indicated with a dash — for example, 07-0AH

The notation (more) appears in italic at the bottom of program listings and tables that are
continued on the next page The complete caption or table title appears on the first page
of a continued element and is designated Continued on subsequent pages

Introduction XEX

Canon Exhibit 1108

1975

The Development of MS-DOS

To many people who use personal computers, MS-DOS is the key that unlocks the power
of the machine. It is their most visible connection to the hardware hidden inside the
cabinet, and it is through MS-DOS that they can run applications and manage disks and
disk files

In the sense that it opens the door to doing work with a personal computer, MS-DOS is
indeed a key, and the lock it fits is the Intel 8086 family of microprocessors. MS-DOS and
the chips it works with are, in fact, closely connected — so closely that the story of
MS-DOS is really part of a larger history that encompasses not only an operating system
but also a microprocessor and, in retrospect, part of the explosive growth of personal
computing itself.

Chronologically, the history of MS-DOS can be divided into three parts. First came the
formation of Microsoft and the events preceding Microsoft’s decision to develop an
operating system. Then came the creation of the first version of MS-DOS. Finally, there is
the continuing evolution of MS-DOS since its release in 1981.

Much of the story is based on technical developments, but dates and facts alone do not
provide an adequate look at the past. Many people have been involved in creating MS-DOS
and directing the lines along which it continues to grow To the extent that personal opin-
ions and memories are appropriate; they are included here to provide a fuller picture of
the origin and development of MS-DOS,

Before MS-DOS

The role of International Business Machines Corporation in Microsoft’s decision to create
MS-DOS has been well publicized. But events, like inventions, always build on prior ac-
complishments, and in this respect the roots of MS-DOS reach farther back, to four hard-
ware and software developments of the 1970s: Microsoft’s disk-based and stand-alone
versions of BASIC, Digital Research’s CP/M-80 operating system, the emergence of the
8086 chip, and a disk operating system for the 8086 developed by Tim Paterson at a hard-
ware company called Seattle Computer Products.

Microsoft and BASIC

On the surface, BASIC and MS-DOS might seem to have little in common, but in terms of
file management, MS-DOS is a direct descendant of a Microsoft version of BASIC called
Stand-alone Disk BASIC.

Before Microsoft even became a company, its founders, Paul Allen and Bill Gates, de-
veloped a version of BASIC for a revolutionary small computer named the Altair, which
was introduced in January 1975 by Micro Instrumentation Telemetry Systems (MITS) of

Section I The Development of MS-DOS 3

Canon Exhibit 1108

1975

4

The Altair. Christened one evening shortly before its appearance on the cover of Popular Electronics
magazine, the computer was named for the night’s destination of the starship Enterprise The photograph
clearly shows the input swilches on the front panel of the cabinet.

Albuquerque, New Mexico. Though it has Jong been eclipsed by other, more powerful
makes and models, the Altair was the first “personal” computer to appear in an environ-
ment dominated by minicomputers and mainframes. It was, simply, a metal box with a
panel of switches and lights for input and output, a power supply, a motherboard with 18
slots, and two boards. One board was the central processing unit, with the 8-bit Intel 8080
microprocessor at its heart; the other board provided 256 bytes of random-access memory.
This miniature computer had no keyboard, no monitor, and no device for permanent
storage, but it did possess one great advantage: a price tag of §397.

Now, given the hindsight of a little more than a decade of microcomputing history, it is
easy to see that the Altair’s combination of small size and affordability was the thin edge
of a wedge that, in just a few years, would move everyday computing power away from
impersonal monoliths in climate-controlled rooms and onto the desks of millions of
people. In 1975, however, the computing environment was still primarily a matter of data
processing for specialists rather than personal computing for everyone. Thus when 4 KB

The MS-DOS Encyclopedia

1975

Intel’s 4004, 8008, and 8080 chips. At the top left is the 4-bit 4004, which was named for the approximate
number of old-fashioned transistors it replaced . At the bottom left is the 8-bit 8008, which addressed 16 KB of
memory; this was the chip used in the Traf-O-Data tape-reader built by Paul Gilbert. At the right is the 8080,
a faster 8-bit chip that could address 64 KB of memory. The brain of the MITS Altair, the 8080 was, in many
respects, the chip on which the personal computing industry was built The 4004 and 8008 chips were
developed early in the 1970s; the 8080 appeared in 1974

memory expansion boards became available for the Altair, the software needed most by its
users was not a word processor or a spreadsheet, but a programming language — and the
language first developed for it was a version of BASIC written by Bill Gates and Paul Allen

Gates and Allen had become friends in their teens, while attending Lakeside School in
Seattle. They shared an intense interest in computers, and by the time Gates was in the
tenth grade, they and another friend named Paul Gilbert had formed a company called
Traf-O-Dara to produce a machine that automated the reading of 16-channel, 4-digit,
binary-coded decimal (BCD) tapes generated by traffic-monitoring recorders. This ma-
chine, built by Gilbert, was based on the Intel 8008 microprocessor, the predecessor
of the 8080 in the Altair. '

Section I The Development of MS-DOS 5
Canon Exhibit 1108

1976

1975
The January 1975 cover of Popular
HOW TO “READ” FM TUNER SPECIFICATIONS Electronics magazine, featuring the
° machine that caught the imaginations
r El l‘ nl of thousands of like-minded electron-
ics enthusiasts — among them, Paul
WORLD'S LARGEST-SELLING ELECTRONICS MAGAZINE JANUARY 1975/ 75¢ Allen and Bill Gates
PROJECT BREAKTHROUGH !
9 s [. £
Worid’s First Minicomputer Kit
to Rival Commercial Models...
"ALTAIR 8800” save over $1000
ALSO IN THIS ISSUE:
® An Under-$90 Scientific Calculator Project
® CCD’s—TV Camera Tube Successor?
i ® Thyristor-Controlled Photoflashers
TEST REPORTS!
Technics 200 Speaker System
Pioneer RT-1011 Open-Reei Recorder
Tram Diamond-40 CB AM Transceiver
Edmund Scientific "Kirlian” Photo Kit
Hewiett-Packard 5381 Frequency Counter
Although it was too limited to serve as the central processor for a general-purpose compu-
ter, the 8008 was undeniably the ancestor of the 8080 as far as its architecture and instruc-
tion set were concerned. Thus Traf-O-Data’s work with the 8008 gave Gates and Allen a
head start when they later developed their version of BASIC for the Altair.
Paul Allen learned of the Altair from the cover story in the January 1975 issue of Popular
Llectronics magazine. Allen, then an employee of Honeywell in Boston, convinced Gates,
a student at Harvard University, to develop a BASIC for the new computer. The two wrote
their version of BASIC for the 8080 in six weeks, and Allen flew to New Mexico to demon-
strate the language for MITS. The developers gave themselves the company name of
Microsoft and licensed their BASIC to MITS as Microsoft’s first product.
Though not a direct forerunner of MS-DOS, Altair BASIC, like the machine for which it was
developed, was a landmark product in the history of personal computing. On another
level, Altair BASIC was also the first link in a chain that led, somewhat circuitously, to Tim
Paterson and the disk operating system he developed for Seattle Computer Products for
the 8086 chip.
The MS-DOS Encyciopedia

5’}’0:%;(,3; (4/&7 w+ '(m— z4§)<

@ X (1 by tr

C——rwr/:A‘B/] pointer 4o neaxt ling CZ—L\{}“)

baney e (2 byty)
chacactoe s hink (see note ”)
Zeco (1 byte)

<Repedt abse - eachy >
~ Zeco ('LL\(Jes
L\/hrcml;_l Symee vamablzg A &t,ft} o valldx({

2 byter glve He name

q bytes que He alve,

<Repeat for each va. 1able >
(:AQV'MB] Ar,\.ﬁ} V«ar‘;eyélz}

2 byt hame
2Zoyte lewgtl.

valuwes —

Q@Peo}ﬂ Fur 22l aer
[SW‘EW’O’J lowest Tocat s A2 5‘{&&

)] Free sSpace (5T cam be 1n bere)
‘:ﬁT’r\:TDP] tost recant stec¥ ?\-d’r*?/

ER ALY
EF)’L?’W?F,) bobiem of ;}ac}: / ff‘a,,,g_d“ {ocect von f strmgs

. <N’J, S e R
KG(Z*;#&P’] Corrert stonq usage
sTrRONG5 J
C/\AEMSY?,) \f\I‘TLQ$+ Anasla [b Fd—‘f(;é‘—\ .

Vs SSAame allouws Lo sm(&.
Hable Masa ?,@V\«U.«d’ Om l?_ colle o‘be
(s €or gfr)nq} Wwhicly m,—elr\\-l‘ ™ 4k gﬁjl()

CCMPUTER NOTES/JULY, 1975

Loading Software

Software from MITS will be pro-
vided in a checksummed format.
There will be a bootstrap loader
that you key in manually {less than
25 bytes), This will read a check-
sum loader (the 'bin’ loader) which
will be about 120 bytes.

For audic cassette loading the
bootstrap and checksum loaders will
be longer. AllL of this will be ex=
plained in detail in a cover package
that will go out with all software.

For loading non-checksummed

paper tapes here is a short program:

STKLOC: OW GETNEW
(2 bytes-#1 low byte of
GETNEW address
#2 high byte of
GETNEW address)

START: [XT 4,0
SETNEW: LXI SP, STXLOC
IN <flag-input channel>
RAL ;get input ready bit
RNZ ;ready?
IN <«data-input channel>
CHGLOC: CPI <043 = [NX B>
RNZ
INR A
STA CHGLOC
RET
(22 bytes)

Punch a paper tape with leader,

a ‘043 start byta, the byte to be
stored at loc 0, the byte to be
stored at 1, - - - etc. Start at
START, making sure the memory the
loader is in is unprotected. ake
sure you don't wipe out the loader
by loading on top of it.

To run this again change CHGLOC

back to CPI - 376,
IU

On the left, Bill Gates’s original handwritten notes describing memory configuration for Altair BASIC. On

the right, a short bootstrap program written by Gates for Altair users; published in the July 1975 edition of the

MITS user newsletter, Computer Notes

From paper tape to disk

Gates and Allen’s early BASIC for the Altair was loaded from paper tape after the bootstrap
to load the tape was entered into memory by flipping switches on the front panel of the
computer. In late 1975, however, MITS decided to release a floppy-disk system for the
Altair—the first retail floppy-disk system on the market. As a result, in February 1976

Allen, by then Director of Software for MITS, asked Gates to write a disk-based version of

Altair BASIC. The Altair had no operating system and hence no method of managing files,
so the disk BASIC would have to include some file-management routines. It would, in

effect, have to function as a rudimentary operating system.

Section I The Development of MS-DOS

Canon Exhibit 1108

>

1977-1978

1978

Microsoft, 1978, Albuquerque,

New Mexico Top row, left to right
Steve Wood, Bob Wallace, Jim Lane
Middle row, left to right: Bob O'Rear,
Bob Greenberg, Marc McDonald,
Gordon Letwin Bottom row, left to
right. Bill Gates, Andrea Lewis,
Marla Wood, Paul Allen.

Gates, still at Harvard University, agreed to write this version of BASIC for MITS. He went
to Albuquerque and, as has often been recounted, checked into the Hilton Hotel with a
stack of yellow legal pads. Five days later he emerged, yellow pads filled with the code for
the new version of BASIC. Arriving at MITS with the code and a request to be left alone,
Gates began typing and debugging and, after another five days, had Disk BASIC running
on the Altair.

This disk-based BASIC marked Microsoft’s entry into the business of languages for per-
sonal computers— not only for the MITS Altair, but also for such companies as Data
Terminals Corporation and General Electric. Along the way, Microsoft BASIC took on
added features, such as enhanced mathematics capabilities, and, more to the point in
terms of MS-DOS, evolved into Stand-alone Disk BASIC, produced for NCR in 1977

Designed and coded by Marc McDonald, Stand-alone Disk BASIC included a file-
management scheme called the FAT, or file allocation table that used a linked list for man-
aging disk files. The FAT, born during one of a series of discussions between McDonald
and Bill Gates, enabled disk-allocation information to be kept in one location, with
“chained” references pointing to the actual storage locations on disk Fast and flexible,
this file-management strategy was later used in a stand-alone version of BASIC for the. 8086
chip and eventually, through an operating system named M-DQOS, became the basis for the
file-handling routines in MS-DOS.

M-DOS

During 1977 and 1978, Microsoft adapted both BASIC and Microsoft FORTRAN for an
increasingly popular 8-bit operating system called CP/M. At the end of 1978, Gates and
Allen moved Microsoft from Albuquerque to Bellevue, Washington. The company con-
tinued to concentrate on programming languages, producing versions of BASIC for the
6502 and the TI9900.

The MS-DOS Encyclopedia

A Microsoft advertisement from the
January 1979 issue of Byte magazine
mentioning some products and the
machines they ran on. In the lower
right corner is an announcement of
the company’s move to Bellevue,
Washington

“"Only. one company. sefs-ihe. pace with
' soffware for microprocessors

LCIeSompiier syte
sware by Mictosolt

Jan 4, 4979,

: \% pigase note our

new . address:

MICROSOFT

40800 NE Eighth, Suite 819
- - ‘Belisvue, Washington 98004
. 206-455-8080

During this same period, Marc McDonald also worked on developing an 8-bit operating
system called M-DOS (usually pronounced “Midas” or “My DOS”). Although it never
became a real part of the Microsoft product line, M-DOS was a true multitasking operating
system modeled after the DEC TOPS-10 operating system. M-DOS provided good perfor-
mance and, with a more flexible FAT than that built into BASIC, had a better file-handling
structure than the up-and-coming CP/M operating system At about 30 KB, however,
M-DOS was unfortunately too big for an 8-bit environment and so ended up being rele-
gated to the back room. As Allen describes it, “Trying to do a large, full-blown operating
system on the 8080 was a lot of work, and it took a lot of memory. The 8080 addresses only
64 K, so with the success of CP/M, we finally concluded that it was best not to press on
with that”

In the volatile microcomputer era of 1976 through 1978, both users and developers of per-
sonal computers quickly came to recognize the limitations of running applications on top
of Microsoft’s Stand-alone Disk BASIC or any other language. MITS, for example, scheduled

Section I The Development of MS-DOS 9
Canon Exhibit 1108

1978

1978

10

a July 1976 release date for an independent operating system for its machine that used the
code from the Altair’s Disk BASIC. In the same year, Digital Research, headed by Gary
Kildall, released its Control Program/Monitor, or CF/M.

CP/M was a typical microcomputer software product of the 1970s in that it was written by
one person, not a group, in response to a specific need that had not yet been filled. One of
the most interesting aspects of CP/M’s history is that the software was developed several
years before its release date —actually, several years before the hardware on which it
would be a standard became commercially available.

In 1973, Kildall, a professor of computer science at the Naval Postgraduate School in
Monterey, California, was working with an 8080-based small computer given him by Intel
Corporation in return for some programming he had done for the company. Kildall’s
machine, equipped with a monitor and paper-tape reader, was certainly advanced for the
time, but Kildall became convinced that magnetic-disk storage would make the machine
even more efficient than it was.

Trading some programming for a disk drive from Shugart, Kildall first attempted to build

a drive controller on his own. Lacking the necessary engineering ability, he contacted a
friend, John Torode, who agreed to handle the hardware aspects of interfacing the compu-
ter and the disk drive while Kildall worked on the software portion —the refinement of an
operating system he had written earlier that year. The result was CP/M.

The version of CP/M developed by Kildall in 1973 underwent several refinements. Kildall
enhanced the CP/M debugger and assembler, added a BASIC interpreter, and did some
work on an editor, eventually developing the product that, from about 1977 until the ap-
pearance of the IBM Personal Computer, set the standard for 8-bit microcomputer operat-
ing systems.

Digital Research’s CP/M included a command interpreter called CCP (Console Command
Processor), which acted as the interface between the user and the operating system itself,
and an operations handler called BDOS (Basic Disk Operating System), which was
responsible for file storage, directory maintenance, and other such housekeeping chores.
For actual input and output — disk 1/0O, screen display, print requests, and so on— CP/M
included a BIOS (Basic Input/Output System) tailored to the requirements of the hardware
on which the operating system ran.

For file storage, CE/M used a system of eight-sector allocation units. For any given file, the
allocation units were listed in a directory entry that included the filename and a table giv-
ing the disk locations of 16 allocation units. If a long file required more than 16 allocation
units, CF/M created additional directory entries as required. Small files could be accessed
rapidly under this system, but large files with more than a single directory entry could re-
quire numerous relatively time-consuming disk reads to find needed information.

At the time, however, CP/M was highly regarded and gained the support of a broad base of
hardware and software developers alike. Quite powerful for its size (about 4KB), it was, in
all respects, the undisputed standard in the 8-bit world, and remained so until, and even
after, the appearanece of the 8086.

The MS-DOS Encyclopedia

The 16-bit Intel 8086 chip, introduced in 1978
Much faster and far more powerful than its 8-bit
Dpredecessor the 8080, the 8086 had the ability to
addpress one megabyte of memory

The 8086

When Intel released the 8-bit 8080 chip in 1974, the Altair was still a year in the future
The 8080 was designed not to make computing a part of everyday life but to make house-
hold appliances and industrial machines more intelligent. By 1978, when Intel introduced
the 16-bit 8086, the microcomputer was a reality and the new chip represented a major
step ahead in performance and memory capacity. The 8086’s full 16-bit buses made it fast-
er than the 8080, and its ability to address one megabyte of random-access memory was a
giant step beyond the 8080’s 64 KB limit. Although the 8086 was not compatible with the
8080, it was architecturally similar to its predecessor and 8080 source code could be me-
chanically translated to run on it. This translation capability, in fact, was a major influence
on the design of Tim Paterson’s operating system for the 8086 and, through Paterson’s
work, on the first released version of MS-DOS.

When the 8086 arrived on the scene, Microsoft, like other developers, was confronted with
two choices: continue working in the familiar 8-bit world or turn to the broader horizons
offered by the new 16-bit technology. For a time, Microsoft did both. Acting on Paul Allen’s
suggestion, the company developed the SoftCard for the popular Apple 11, which was
based on the 8-bit 6502 microprocessor. The SoftCard included a Z80 microprocessor and
a copy of CP/M-80 licensed from Digital Research. With the SoftCard, Apple 11 users could
run any program or language designed to run on a CF/M machine.

It was 16-bit technology, however, that held the most interest for Gates and Allen, who
believed that this would soon become the standard for microcomputers. Their optimism
was not universal— more than one voice in the trade press warned that industry invest-
ment in 8-bit equipment and software was too great to successfully introduce a new stan-
dard. Microsoft, however, disregarded these forecasts and entered the 16-bit arena as it
had with the Altair: by developing a stand-alone version of BASIC for the 8086.

Section I: The Development of MS-DOS 11

Canon Exhibit 1108

1979-1980

1980

At the same time and, coincidentally, a few miles south in Tukwila, Washington, a major
contribution to MS-DOS was taking place. Tim Paterson, working at Seattle Computer
Products, a company that built memory boards, was developing an 8086 CPU card for use
in an S$-100 bus machine.

86-DOS

12

Paterson was introduced to the 8086 chip at a seminar held by Intel in June 1978. He had
attended the seminar at the suggestion of his employer, Rod Brock of Seattie Computer
Products. The new chip sparked his interest because, as he recalls, “all its instructions
worked on both 8 and 16 bits, and you didn’t have to do everything through the accumu-
lator, It was also real fast— it could do a 16-bit ADD in three clocks.”

After the seminar, Paterson — again with Brock’s support — began work with the 8086.
He finished the design of his first 8086 CPU board in January 1979 and by late spring had
developed a working CPU, as well as an assembler and an 8086 monitor. In June, Paterson
took his system to Microsoft to try it with Stand-alone BASIC, and soon after, Microsoft
BASIC was running on Seattle Computer’s new board.

During this period, Paterson also received a call from Digital Research asking whether
they could borrow the new board for developing CP/M-86. Though Seattle Computer did
not have a board to loan, Paterson asked when CP/M-86 would be ready. Digital’s represen-
tative said December 1979, which meant, according to Paterson’s diary, “we’ll have to live
with Stand-alone BASIC for a few months after we start shipping the CPU, but then we’ll be
able to switch to a real operating system.”

Early in June, Microsoft and Tim Paterson attended the National Computer Conference

in New York. Microsoft had been invited to share Lifeboat Associates’ ten-by-ten foot
booth, and Paterson had been invited by Paul Allen to show BASIC running on an S-100
8086 system. At that meeting, Paterson was introduced to Microsoft's M-DOS, which he
found interesting because it used a system for keeping track of disk files — the FAT devel-
oped for Stand-alone BASIC — that was different from anything he had encountered.

After this meeting, Paterson continued working on the 8086 board, and by the end of the
year, Seattle Computer Products began shipping the CPU with a BASIC option.

When CP/M-86 had still not become available by April 1980, Seattle Computer Products
decided to develop a 16-bit operating system of its own. Originally, three operating sys-
tems were planned: a single-user system, a multiuser version, and a small interim product
soon informally christened QDOS (for Quick and Dirty Operating System) by Paterson.

Both Paterson (working on QDOS) and Rod Brock knew that a standard operating system
for the 8086 was mandatory if users were to be assured of a wide range of application soft-
ware and languages. CP/M had become the standard for 8-bit machines, so the ability to
mechanically translate existing CB/M applications to run on a 16-bit system became one of
Paterson’s major goals for the new operating system. To achieve this compatibility, the sys-
tem he developed mimicked CP/M-80’s functions and command structure, including its
use of file control blocks (FCBs) and its approach to executable files,

The MS-DOS Encyclopedia

GO 16-BIT NOW — WE HAVE MADE IT EASY

8086

8 Mhz. 2-card CPU Set

WITH 86-DOS® $5g5

ASSEMBLED, YESTED, GUARANTEED

With our 2-.card 8086 CRU set you can upgrade your 280 8-
bit S-100 system 10 run three fimes as fast by swapping the
CPUs. If you use our 16-bit memory, it will run five times as
fast. Up to 64K of your static 8-bit memory may be used in the
8086's 1-megabyte addressingrange A switch allows either 4
or 8 Mhz. aperation Mermory access requirements at 4 Mhz
exceed 500 nsec

The EPROM monitor allows you to dispiay, alter and
search memory do inputs and outputs, and boat your disk.
Debugging aids include register display and change. single
stepping, and execute with breakpoints.

The set includes a serial port with programmable baud rate,
four independent programmable 16-bit limers {two may be
combined tor a time-of-day clock}, a parallel inand parallel out
port, and an interrupt controlier with 15 inputs, External power
may be appiied to the timers to maintain the clock dunng
system power-off time. Total power:2amps ai + 8V lessthan
100 ma. at +16V and at -16V

86-DOS™, our $195 8086 single user disk operatng
system, 15 provided withoul additional charge. 1t allows
functions such as console | O of characters and strings. and
rangdom or sequencial reading and writing 10 named disk fites.
While it has a different format from CP'M, it performs similar

calls plus some {CP'Misa trademark of
Dignal Corp s allows relative-
ly easy contfiguration of 1'0 to different hardware. Directly
supported are the Tarbelt and Ci disk

code written for CP M. transiate this to 8086 source code,
assemble the source code, and then run the program on the
B086 processer under B6-DOS. This allows the conversion af
any Z80 program, lor which source code is avartable . o run on
the much higher performance 8086

BASIC-86 by Microsoft is available tor the 8086 at $350
Several firms are working on application programs Call for
current software status

All soltware hcensed for use on a single computer oniy
No: required. Shipping from stock to

The 86-DOS™ package inciudes an 8086 resident as-
sembier, a Z80 10 8086 source code translator a utility to read
files written in CP M and converi them to the 86-DOS format &

one week. Bank cards, personal checks CODs okay There s
a 10-day return privilege All boards are guaranteed one year
— both parts and labor. Shipped prepaid by ar n US and

An advertisement for
the Seattle Computer
Products 8086 CPU,
with 86-DOS; published
in the December 1980
issue of Byte

Iine editor ang disk maintenance utilites Of significance 1o Canada. Foreign purchases must be prepaid 1n US tunds
ZB0 userss 1S the ability of the transtator to accept Z80 source Also add $10 per board for overseas air shipment

8/16 16-BIT MEMORY

This board was designed lor the 1980s it is configured as
16K by 8 bits when accessed by an 8-bit processor and
configured BK by 16 bits when used with a 16-bit processor
The 1S and s done by the
card sampling the " sixteen request” signal sent out by all S
100 IEEE 16-bit CPU boards. The.card has ail the high noise
immunity features of our well known PLUS RAM cards as well
as ing" 1S areplace-
ment for bank seiect. It makes use of a total of 24 address ines
10 give a directly addressable range of over 16 megabytes.
(For older systems, a switch will cause the card to ignore the
top 8 -address lines) This card ensures that your memory

board purchase will not soon be cbsolete It is guaranteed to
run without wart states with our 8086 CPU set using an 8 Mz %E

clock Shippediromstock Prices 1-4 $280;5-9 $260 10

oe " ® eattie Computer Products, Inc.
1114 Industry Drive. Seattle, WA 98188

{206} 5751830

At the same time, however, Paterson was dissatisfied with certain elements of CP/M, one
of them being its file-allocation system, which he considered inefficient in the use of disk
space and too slow in operation. So for fast, efficient file handling, he used a file allocation
table, as Microsoft had done with Stand-alone Disk BASIC and M-DOS. He also wrote a
translator to translate 8080 code to 8086 code, and he then wrote an assembler in Z80
assembly language and used the translator to translate it

Four months after beginning work, Paterson had a functioning 6 KB operating system,
officially renamed 86-DOS, and in September 1980 he contacted Microsoft again, this time
to ask the company to write a version of BASIC to run on his system.

Section I. The Development of MS-DOS 13
Canon Exhibit 1108

1980

1980

IBM

While Paterson was developing 86-DOS, the third major element leading to the creation of

MS-DOS was gaining force at the opposite end of the country. IBM, until then seemingly
oblivious to most of the developments in the microcomputer world, had turned its atten-
tion to the possibility of developing a low-end workstation for a market it knew well: busi-
ness and business people.

On August 21, 1980, a study group of IBM representatives from Boca Raton, Florida, visited
Microsoft. This group, headed by a man named Jack Sams, told Microsoft of IBM’s interest
in developing a computer based on a microprocessor. IBM was, however, unsure of micro-
computing technology and the microcomputing market. Traditionally, IBM relied on long
development cycles — typically four or five years—and was aware that such lengthy
design periods did not fit the rapidly evolving microcomputer environment

One of IBM’s solutions — the one outlined by Sams’s group — was to base the new
machine on products from other manufacturers. All the necessary hardware was available,
but the same could not be said of the software. Hence the visit to Microsoft with the ques-

tion: Given the specifications for an 8-bit computer, could Microsoft write a ROM BASIC for

it by the following April?

Microsoft responded positively, but added questions of its own: Why introduce an 8-bit
computer? Why not release a 16-bit machine based on Intel’s 8086 chip instead? At the end
of this meeting — the first of many — Sams and his group returned to Boca Raton with a
proposal for the development of a low-end, 16-bit business workstation. The venture was
named Project Chess.

One month later, Sams returned to Microsoft asking whether Gates and Allen could, still
by April 1981, provide not only BASIC but also FORTRAN, Pascal, and COBOL for the new
computer. This time the answer was no because, though Microsoft’s BASIC had been
designed to run as a stand-alone product, it was unique in that respect — the other lan-
guages would need an operating system. Gates suggested CP/M-86, which was then still
under development at Digital Research, and in fact made the initial contact for IBM. Digital
Research and IBM did not come to any agreement, however.

Microsoft, meanwhile, still wanted to write all the languages for IBM — approximately 400
KB of code. But to do this within the allotted six-month schedule, the company needed
some assurances about the operating system IBM was going to use. Further, it needed
specific information on the internals of the operating system, because the ROM BASIC
would interact intimately with the BIOS.

The turning point

14

That state of indecision, then, was Microsoft’s situation on Sunday, September 28, 1980,
when Bill Gates, Paul Allen, and Kay Nishi, a Microsoft vice president and president of
ASCII Corporation in Japan, sat in Gates’s eighth-floor corner office in the Old National
Bank Building in Bellevue, Washington. Gates recalls, “Kay and I were just sitting there at
night and Paul was on the couch Kay said, ‘Got to do it, got to do it * It was only 20 more K

The MS-DOS Encyclopedia

of code at most— actually, it turned out to be 12 more K on top of the 400. It wasn’t that big
a deal, and once Kay said it, it was obvious. We’d always wanted to do a low-end operating
system, we had specs for low-end operating systems, and we knew we were going to do

one up on 16-bit.”

At that point, Gates and Allen began looking again at Microsoft’s proposal to IBM. Their
estimated 400 KB of code included four languages, an assembler, and a linker To add an
operating system would require only another 20 KB or so, and they already knew of a
working model for the 8086: Tim Paterson’s 86-DOS. The more Gates, Allen, and Nishi
talked that night about developing an operating system for IBM’s new computer, the more
possible — even preferable — the idea became.

Allen’s first step was to contact Rod Brock at Seattle Computer Products to tell him that
Microsoft wanted to develop and market SCP’s operating system and that the company had
an OEM customer for it. Seattle Computer Products, which was not in the business of
marketing software, agreed and licensed 86-DOS to Microsoft. Eventually, SCP sold the
operating system to Microsoft for $50,000, favorable language licenses, and a license back
from Microsoft to use 86-DOS on its own machines

In October 1980, with 86-DOS in hand, Microsoft submitted another proposal to IBM. This
time the plan included both an operating system and the languages for the new computer.
Time was short and the boundaries between the languages and the operating system were
unclear, so Microsoft explained that it needed to control the development of the operating
system in order to guarantee delivery by spring of 1981. In November, IBM signed the

contract.

Creating MS-DOS

At Thanksgiving, a prototype of the IBM machine arrived at Microsoft and Bill Gates, Paul
Allen, and, primarily, Bob O'Rear began a schedule of long, sometimes hectic days and
total immersion in the project. As O'Rear recalls, “If I was awake, I was thinking about

the project.”

The first task handled by the team was bringing up 86-DOS on the new machine. This was
a challenge because the work had to be done in a constantly changing hardware environ-
ment while changes were also being made to the specifications of the budding operating
system itself.

As part of the process, 86-DOS had to be compiled and integrated with the BIOS, which
Microsoft was helping IBM to write, and this task was complicated by the media. Paterson’s
86-DOS — not counting utilities such as EDLIN, CHKDSK, and INIT (later named
FORMAT) —arrived at Microsoft as one large assembly-language program on an 8-inch
floppy disk. The IBM machine, however, used 5%4-inch disks, so Microsoft needed to de-
termine the format of the new disk and then find a way to get the operating system from

the old format to the new.

Section I The Development of MS-DOS 15

Canon Exhibit 1108

1980-1981

1980-1981

16

Paul Allen and
Bill Gates (1982).

This work, handled by O’Rear, fell into a series of steps, First, he moved a section of code
from the 8-inch disk and compiled it. Then, he converted the code to Intel hexadecimal
format. Next, he uploaded it to a DEC-2020 and from there downloaded it to a large Intel
fixed-disk development system with an In-Circuit Emulator The DEC-2020 used for this
task was also used in developing the BIOS, so there was additional work in downloading
the BIOS to the Intel machine, converting it to hexadecimal format, moving it to an IBM
development system, and then crossloading it to the IBM prototype.

Defining and implementing the MS-DOS disk format— different from Paterson’s 8-inch
format — was an added challenge. Paterson’s ultimate goal for 86-DOS was logical device
independence, but during this first stage of development, the operating system simply had
to be converted to handle logical records that were independent of the physical record size.

Paterson, still with Seattle Computer Products, continued to work on 86-DOS and by the
end of 1980 had improved its logical device independence by adding functions that
streamlined reading and writing multiple sectors and records, as well as records of variable
size. In addition to making such refinements of his own, Paterson also worked on dozens
of changes requested by Microsoft, from modifications to the operating system’s startup
messages to changes in EDLIN, the line editor he had written for his own use Throughout
this process, IBM’s security restrictions meant that Paterson was never told the name of the
OEM and never shown the prototype machines until he left Seattle Computer Products and
joined Microsoft in May 1981.

And of course, throughout the process the developers encountered the myriad loose ends,
momentary puzzles, bugs, and unforeseen details without which no project is complete.
There were, for example, the serial card interrupts that occurred when they should not
and, frustratingly, a hardware constraint that the BIOS could not accommodate at first and
that resulted in sporadic crashes during early MS-DOS operations.

The MS-DOS Encyclopedia

Bob O’Rear’s sketch of
oo odreatios + addnfos the steps involved in
WM"%* s B €205 Homast Foms moving 86-DOS to the
1BM prototype.
ST
fred who
RS ‘,;5}/.,9 dn»wfﬂ/u,‘«'u! %ILM Lo be ot
cogeltiy ST [tk e
™~ ~ -W -
yiipeah i ~ -~
Towm Levmn e
3ﬁA-& oA
)A" % L/\/Dw
) s oo Fed
()]
1 e
T Coweie Re>3 >
ook
e
CKE?L A
Section I The Development of MS-DOS 17

Canon Exhibit 1108

1981

1980-1981

The 1981 debut of the
IBM Personal
e . < Faes ‘My own IBM computer. Computer
Otffso Wn‘* b Lo tapy v g 1| 2o Bille Imagine that?

4» \.mmu mer“te bo o W'tod—fmruwm

é[%;”l{"’“‘- BIOS to 6010 af owps
3‘-\9}?550 0 §6D0S wrnd ko i00: 0 ;}42\‘

BooT - to Lead the BIX ¢ dos
BT R Y Wg

Presenting the IBM of
Personal Computers.

i Pl *‘* “Dad, can I
" maﬁ @m-r “'”;:é ar ad, can I use
: Wriksist th IBM m
o o c computer
['
Dms A @ 7@ tonight?”
O 1~ ¥ DoS Chungs ¢ Fices e
bt O Ies not an unusual colortul graphics, your son or dawghter will discover
. , . g’ﬂ phenomenon. It what makes a compuiter tick—and what it can do. They
; — ‘-f} [Mo ‘dote ts ‘&.,,1,,,_ Joetion w 50 = stariswheayour can take the same word POGESSINg PrORFam you use
‘f/ ke \ 77 somasksto 1o creae business reports to write and edit book reports
1 sy -~ borrow (and learn haw (0 ¢ype i the process) Your kids might
& frmat soia 1ggkaage V=g gt et b
H 4 qy - ,, davghter Ultismately, an 1BM Personsi Computer can be one
wu.ms © of the best investments you make in yout family’s future

10 use your metal racquet. Sometimes you let them: Often And one of the ieast expensive. Starting at less than

So:3 My a
%/ Yhake auar 74
d R 2N VI, Y) T 1§ 13 i 1o QL 16 ‘L 33t o 1 you don't. But when they start asking to use your IBM $1600' there’s 2 system that, with the addition of one
a Personal Computer, iCs bedier to say yes. simple device. hooks up (© your home TV and uses your
Because learning about computers is a subject your audio cassette recorder

Y'Yy yymmmmddddd »
kids can study and enjoy at hiome, To introduce your family 1o the 1BM Personal

4/ 19 :
{ £ . I¢'s aiso a fact that the 1BM Personat Computer can Computer, visit any ComputerLand® store or Sears
M Qub....ug ™ofls to BbDOS to Ammssar eddece M + be as useful in your home as it s in your ofice To help Business Systems Center. Or see it all at one of our (BM
INETAR aceo b o Q plan the family budget for instance. Or to compute Product Centers. { The 18M National Accounts Division
Take 3bDos "‘r“t f dafe 4 man To Commn A anything from interest paid to calories consiimed. You will serve business customers who want to purchase in
: can even tap directly into the Dow jones data bank with quantity.)
And remember. When your kids ask 1o use your

(BM Personal Compurer, let them. But just make
sure you can get it back. Al
stifl wearing that tie =

‘ Aol 2 kil Lomman® To Aeebdh o Autocxec. AT w :
(> W Fms? St do & dubmif on ths $le, T4 Awr,oearec B i g e e o
can help you, it can aiso help your children
P.MM"‘ b lLv—Q ,d.%u&l mﬂjlﬁswphmgmz:‘,,mg

"T,/’P - zf-,_ &F_‘ oe&o(o &o The IBM Personal Computer
‘{/ =7 % gz\ b8 “,,NL‘ n,unonk'&é %C_S#-u..%g

O

, w [PERVE o

28T s PP o i i
5. medily Fo i

Mﬁi RMAT Ty alleafe diticfed hnd Lincds

BAD TR .
2 W¥ w2280 on sPace whea a4 neclan

W (Cuckion3a) bombs,

5/;« 7. Chet ot @s-23 Supoet Lo fle DTS
#a &ﬁ"w ot SUBIIT Lomanad
A M ot Eprzal oaid I {.‘.& Lansen taos auailatle

In spite of such difficulties, however, the new operating system ran on the prototype for

dogirdo on ¥ Ay
O~ _c\"ﬁ/% F 79 bl Eu dots selionk the first time in February 1981. In the six months that followed, the system was continually
oS refined and expanded, and by the time of its debut in August 1981, MS-DOS, like the IBM

T ieiin e CHEDSE . awalalde doredpy 0ises. Personal Computer on which it appeared, had become a functional product for home
and office use.

Part of Bob O'Rear’s “laundry” list of operating-system changes and corrections for early April 1981 Around
this time, interim beta copies were shipped to IBM for testing.

Section I The Development of MS-DOS 19

18 The MS-DOS Encyclopedia
Canon Exhibit 1108

1981

1981

Version 1

. . . . susiess Big LB.M.’s Little Computer ~ Retail Sales
The first release of MS-DOS, version 1.0, was not the operating system Microsoft envi-)1gest Its Deck T InUS Up
sioned as a final model for 16-bit computer systems. According to Bill Gates, “Basically, proc s b:[sodeelsB;i:gp; 1. 3%in July
what we wanted to do was one that was more like MS-DOS 2, with the hierarchical file A New Image ;| But Analysts
Bl couooon o Are Dubious of

system and everything ... the key thing [in developing version 1.0] was my saying, ‘Look,
we can come out with a subset first and just go upward from that ™

This first version — Gates’s subset of MS-DOS — was actually a good compromise be-
tween the present and the future in two important respects: It enabled Microsoft to meet
the development schedule for IBM and it maintained program-translation compatibility
with CP/M

Available only for the IBM Personal Computer, MS-DOS 1.0 consisted of 4000 lines of
assembly-language source code and ran in 8 KB of memory In addition to utilities such

as DEBUG, EDLIN, and FORMAT, it was organized into three major files. One file,
IBMBIO.COM, interfaced with the ROM BIOS for the IBM PC and contained the disk and
character input/output system. A second file, IBMDOS COM, contained the DOS kernel, in-
cluding the application-program interface and the disk-file and memory managers. The
third file, COMMAND.COM, was the external command processor — the part of MS-DOS
most visible to the user.

To take advantage of the existing base of languages and such popular applications as
WordStar and dBASE II, MS-DOS was designed to allow software developers to mechan-
ically translate source code for the 8080 to run on the 8086. And because of this link,
MS-DOS looked and acted like CP/M-80, at that time still the standard among operating
systems for microcomputers Like its 8-bit relative, MS-DOS used eight-character filenames
and three-character extensions, and it had the same conventions for identifying disk drives
in command prompts. For the most part, MS-DOS also used the same command language,
offered the same file services, and had the same general structure as CB/M. The resem-
blance was even more striking at the programming level, with an almost one-to-one cor-
respondence between CP/M and MS-DOS in the system calls available to application
programs. ’

years.
eral versioas of 2

IBM’s New Line Likely to Shake Up ==
The Market for Personal Computers

By GRoROE ANDERS

catehup. The TRM Mmachines operate on ap far greater cquivalent to more thar 1600
tas Reperter of T WaLL STieTJoumnas Intel Corp’ 8088 e poges.

NEW YORK - tntermational Rusiness Ma-
chines Corp. has made its boid entry nto ta vals’ machines. IBM
ihe personalcomputer market, and experts
Gelieve the computer giant couid capture the VisiCale, 3 financti
tead In the youthul industry within two

A mors vemrtil “oBin” than Thiae nsad don't use all thal capaeity. out what they
for distribution Such popular programs as programs and more data than competme
a}

keted by Persoas! Software Inc.
Other programs, of software, for the . Bul the added memory comes at a price.

Yesterday e company Introduced sev. TBM equipment Inclide the RasyWriter -

small computer destgned word-

for use n homes, schiocis and offices. Prices

BM acknow)
m, three sccounting puter witl cost $6.000 or more Its basic
packages from Peachiree Software Inc. and 51,565 machine comes with 16.000 characters

jrenrecoara
oy sysTews
froxrROmt

. 3 faster The uew [BM computers

as0 has obtained use will enable them to work with lorger

model mar- machines and to dispizy images o their

General Upturn

another 4,800

another $540

1t's Official; One surprise

By Thoms Hogan, IW Staff

IBM Announces New Microcomputer System

Pauipped. modet
‘Apple 11, the

NEWYORK.NY.
e abie 1> oeer an T4 Persona) Compuncs. ¢ B

Rauom, Forida, 2s repoeted earker in

For thesie 1F you who have been seading lers will be selling the Personal Gorputet.
Infeoria, there sare few s in D 1AM B also cttag b speva hviskon ofthe

st | BM really gets peréonol

The price begni 1 31905, slighty higher
inctos he ke

PERSONAL COMPUTERS

PERSONAL
COMPUTER
FROM IBM

The mainframer’s long-
awaited entry into the personal
computing market aims for
corporate as well as home
users.
With uncharacteristic but resounding fan:
fare. 1BM ended the summer’s most popular
guessing game for the industry by introduc-
ing its Personal Computer. Highly compa-
rable to offerings from arch-contenders Ap-
ple and Radio Shack, the machine repre-
sents several new tacks for the leading com-
puter manufacturer as it attempts to hitch its
wagon to one of the fastest growing seg
ments of the industry

The computer which is designed to
appeal 1o home users as well as corporate
professionais, ranges in price from 51,565
for a bare-bones configuration to $6.300 for

Sears and Computerland computer retail
stores as well as directly 10 large corporate
and educational users, IBM says, pointing
out that it has sét up a special national mar-
keting team 1o handle such volume orders
Donald Estridge, the articulate di
recior of 1M's entry systems business who

braved strobes and movie lights at the ma- 8

chine's Waidorf-Astoria introduction, de-

ciines 10 say how many personnel have been B
dedicated to the national marketing effort, [

but says it will be selling in volumes of 20

machines or more . Several weeks after the g

unveiling, he said response so far had beer

**very. very good "' with orders being taken §
but no defiveries 1o be made before this ‘A

month

In addition to the game of Adven-
ture, which Estridge said has been thor
oughly exercised by his Boca Raton, Fla.,
staff, 18M has decked out the machine with
an array of packaged applications programs
that are expected to make it attractive to the
corporate user.

Among these are the popular Visi-
Cale spreadsheet package from Personal
Software, accounting packages from Man-
agement Science America’s Peachtree Soft-
ware operation. and Information Unlimi
ed’s EasyWriter word processing system
Although iBM wouldn't say, more indepen
dently developed packages are certain to be

I] E i v I eat ures the fuil-bl del. It wilt offered for the computer as well s packages
tly unveiled its first offering in the modulator) for a display. { The machine is fully FCC
‘Personil computer market—the IBM Fersonal certified for home operation as a class B
music and inchudes game software to say nothing IBM is cognizant of the fact that this minimalty

configured machine probably wont last 2 srious
computerist long before he wants to expand. The
company offers upgraded versions of the machine.
and will sell them in different configurations. For
example, the firm lists a more typical configuration:
for home or a5 64k of ma + one disk
continued on page I7

of the standard features available.
The machine is impressive. It's starting price is 3
mere $1565. For that price the buyer gets the 83

MS-DOS was not, however, a CP/M twin, nor had Microsoft designed it to be inextricably

bonded to the IBM PC. Hoping to create a product that would be successful over the long e o, e il basd
term, Microsoft had taken steps to make MS-DOS flexible enough to accommodate ﬁwmmmmmmg:"iwiﬁ
changes and new directions in the hardware technology — disks, memory boards, even e
microprocessors —on which it depended The first steps toward this independence from

i
Computer. The unit, perhaps surprisingly, piays ’ computing device)
!

12 Personal Compating/October 1981

A sampling of the headlines and newspaper articles that abounded when IBM announced its Personal
Computer.

Section I The Development of MS-DOS 21
Canon Exhibit 1108

20 The MS-DOS Encyclopedia

1981

1981
! | Apage from Microsoft’s third-quarter
[QUARTERLY report for 1981
f
|
1515 Qistrit using & execute much faster.
smsnesinner | IBM Breaks the | Zrzi i | COBOL
pa(yh;n:ﬂ; m‘ e 16-Bit Barrier easy (o:onsl:)clag‘rapnlﬁ Passes_ GSA
timo aystomused i pre: i mnwineutmachoe | Validation
seogea i eokiib ot > | ofine Personal Computer. 1t
100} ort In acc- | 15 Products. The United States
This change in the g
BASCOM royaity pokcy refiects o the I8
Microsolts wish (o increase the Personal Comguter, we (e software inthe world. has de-
number of appiication packages 16-bitlan- al
onthe market: This policy software i
mi"%mx'xzﬁg"" lools, Appiication packages are standards YO‘Y compiiers. Tesu‘ng
plementation of the runtime . especialy
module make BASCOM amuch spectors,
e exiote and poweru took .. ! s | _ Mictosoft submitted s
for e applcaon programmer e ot erasofts | cOBOL comple (undes the
now for CP/M systems, pact, pramhaniscll bl
BASCO the past Totne | PoceonatComputer e b 080L
op thus | serious: B exsingCP/M2xoperatng | [1OR0lihe 197 ANS I stanciard
OM broken; . the .
have, i 16-bit . o y
g MS-DOS. MSD0S alsopro. | wesuomiMicuson COBOL
A16-bi processor gives tothe XENIX multuser, muti- | Productmanager, offered the
Other
MS-DOS
For /. device:
example, we've taken advan- incepencent /0. and built-in
igg sl::\;ur »:ggnﬁk. alinkerfor | wntas. What s now the stan-
196K of memary, the Microsolt | nadoubt become an lndus;'rly
8086 BASIC interpreter can standard.
exacute a 64K program, aimast Now that the i6-bit software
n.:uman
Soiving problems xna:‘m:we computers. ifsan industry mave
_m?;; argernumber of reg- tima and. given the momentum
. of IBM
cessors alsomeans thatcom- | swing.
specific hardware configurations appeared in MS-DOS version 1.0 in the form of device-
independent input and output, variable record lengths, relocatable program files, and a
replaceable command processor.
MS-DOS made input and output device-independent by treating peripheral devices as if
they were files. To do this, it assigned a reserved filename to each of the three devices it
recognized: CON for the console (keyboard and display), PRN for the printer, and AUX for
the auxiliary serial ports. Whenever one of these reserved names appeared in the file con-
trol block of a file named in a command, all operations were directed to the device, rather
than to a disk file. (A file control block, or FCB, is a 37-byte housekeeping record located
in an application’s portion of the memory space It includes, among other things, the file-
name, the extension, and information about the size and starting location of the file
on disk.)
Such device independence benefited both application developers and computer users.
On the development side, it meant that applications could use one set of read and write
calls, rather than a number of different calls for different devices, and it meant that an ap-
plication did not have to be modified if new devices were added to the system. From the
22 The MS-DOS Encyclopedia

user’s point of view, device independence meant greater flexibility. For example, even if a
program had been designed for disk I/O only, the user could still use a file for input or
direct output to the printer.

Variable record lengths provided another step toward logical independence. In CP/M, logi-
cal and physical record lengths were identical: 128 bytes. Files could be accessed only in
units of 128 bytes and file sizes were always maintained in multiples of 128 bytes. With
MS-DOS, however, physical sector sizes were of no concern to the user. The operating sys-
tem maintained file lengths to the exact size in bytes and could be relied on to support logi-

cal records of any size desired

Another new feature in MS-DOS was the relocatable program file. Unlike CP/M, MS-DOS
had the ability to load two different types of program files, identified by the exterisions
COM and .EXE. Program files ending with COM mimicked the binary files in CP/M. They
were more compact than .EXE files and loaded somewhat faster, but the combined pro-
gram code, stack, and data could be no larger than 64 KB. A .EXE program, on the other
hand, could be much larger because the file could contain multiple segments, each of
which could be up to 64KB. Once the segments were in memory, MS-DOS then used part
of the file header, the relocation table, to automatically set the correct addresses for each
segment reference.

In addition to supporting .EXE files, MS-DOS made the external command processor,
COMMAND COM, more adaptable by making it a separate relocatable file just like any
other program. It could therefore be replaced by a custom command processor, as long
as the new file was also named COMMAND.COM.

Performance

Everyone familiar with the IBM PC knows that MS-DOS eventually became the dominant
operating system on 8086-based microcomputers. There were several reasons for this, not
least of which was acceptance of MS-DOS as the operating system for IBM's phenomenally
successful line of personal computers. But even though MS-DOS was the only operating
system available when the first IBM PCs were shipped, positioning alone would not neces-
sarily have guaranteed its ability to outstrip CP/M-86, which appeared six months later.
MS-DOS also offered significant advantages to the user in a number of areas, including the
allocation and management of storage space on disk. .

Like CP/M, MS-DOS shared out disk space in allocation units. Unlike CP/M, however,
MS-DOS mapped the use of these allocation units in a central file allocation table —the
FAT — that was always in memory. Both operating systems used a directory entry for
recording information about each file, but whereas a CP/M directory entry included an al-
location map -——a list of sixteen 1 KB allocation units where successive parts of the file
were stored —an MS-DOS directory entry pointed only to the first allocation unit in the
FAT and each entry in the table then pointed to the next unit associated with the file. Thus,
CP/M might require several directory entries (and more than one disk access) to load a file

Section I The Development of MS-DOS 23

Canon Exhibit 1108

1981

larger than 16 KB, but MS-DOS retained a complete in-memory list of all file components
and all available disk space without having to access the disk at all. As a result, MS-DOS’s
ability to find and load even very long files was extremely rapid compared with CP/M’s,

Two other important features —the ability to read and write multiple records with one
operating-system call and the transient use of memory by the MS-DOS command
processor ==provided further efficiency for both users and developers.

The independence of the logical record from the physical sector laid the foundation for the
ability to read and write multiple sectors. When reading multiple records in CP/M, an appli-
cation had to issue a read function call for each sector, one at a time. With MS-DOS, the ap-
plication could issue one read function call, giving the operating system the beginning
record and the number of records to read, and MS-DOS would then load all of the corre-
sponding sectors automatically.

Another innovative feature of MS-DOS version 1.0 was the division of the command pro-
cessor, COMMAND.COM, into a resident portion and a transient portion. (There is also a
third part, an initialization portion, which carries out the commands in an AUTOEXEC
batch file at startup. This part of COMMAND.COM is discarded from memory when its
work is finished.) The reason for creating resident and transient portions of the command
processor had to do with maximizing the efficiency of MS-DOS for the user: On the one
hand, the programmers wanted COMMAND.COM to include commontly requested func-
tions, such as DIR and COPY, for speed and ease of use; on the other hand, adding these
commands meant increasing the size of the command processor, with a resulting decrease
in the memory available to application programs. The solution to this trade-off of speed
versus utility was to include the extra functions in a transient portion of COMMAND.COM
that could be overwritten by any application requiring more memory. To maintain the in-
tegrity of the functions for the user, the resident part of COMMAND.COM was given the
job of checking the transient portion for damage when an application terminated. If neces-
sary, this resident portion would then load a new copy of its transient partner into memory

Ease of Use

In addition to its moves toward hardware independence and efficiency, MS-DOS included
several services and utilities designed to make life easier for users and application devel-
opers. Among these services were improved error handling, automatic logging of disks,
date and time stamping of files, and batch processing

MS-DOS and the IBM PC were targeted at a nontechnical group of users, and from the
beginning IBM had stressed the importance of data integrity. Because data is most likely
to be lost when a user responds incorrectly to an error message, an effort was made to in-
clude concise yet unambiguous messages in MS-DOS. To further reduce the risks of misin-
terpretation, Microsoft used these messages consistently across all MS-DOS functions and
utilities and encouraged developers to use the same messages, where appropriate, in their
applications

24 The MS-DOS Encyclopedia

1981

O Package Contents
1 diskette, with the following files:
COMMAND . COM
MSDOS , COM
EDLIN,COM
DEBUG. COM
FILCOH.COM
Contents
1 M5-DOS Disk Operating System Manual O
Introduction
Features and Benefits of MS-DOS
Using This Manual
Syntax Notation
¥S-DOS Structure and Characteristics
System Requirements Chapter 1 General MS-DOS Commands
1.1 Control Function Characters
1.2 Special Editing Commands
The MS-DOS Operating System requires 8X bytes of memory 13 Disk mrrors
: Chapter 2 COMMAND COM
2.1 Prompt
2.2 Filenames
2.3 commands
2.3.1 Internal Commands
2.3.2 External Commands
O Chapter 3 EDLIR
3.1 Invoking EDIIN
3.2 Cormands
321 Command Parameters
3.2.2 Interline Commands
33 Brror Messages
Chapter 4 DEBUG
4.1 Invoking DEBUG
4.2 Commands
4.2.1 Command Parameters
4.2.2 Command Descriptions
4.3 Error Messages
O Chapter 5 FILCOM
5.1 Inveking FILCOM
5.2 Commands
5.2.1 Filenames
5.2.2 switches
5.3 Examples
O Chapter & Instructions for Single Disk Drive Users

Two pages from Microsoft’s MS-DOS version 1.0 manual. On the lefi, the system’s requirements — 8 KB of
memory, on the right, the 118-page manual’s complete table of contents

In a further attempt to safeguard data, MS-DOS also trapped hard errors— such as critical
hardware errors — that had previously been left to the hardware-dependent logic. Now
the hardware logic could simply report the nature of the error and the operating system
would handle the problem in a consistent and systematic way. MS-DOS could also trap the
Control-C break sequence so that an application could either protect against accidental
termination by the user or provide a graceful exit when appropriate.

To reduce errors and simplify use of the system, MS-DOS also automatically updated mem-
ory information about the disk when it was changed. In CP/M, users had to log new disks
as they changed them —a cumbersome procedure on single-disk systems or when data
was stored on multiple disks. In MS-DOS, new disks were automatically logged as long as
no file was currently open.

Another new feature — one visible with the DIR command — was date and time stamping
of disk files. Even in its earliest forms, MS-DOS tracked the system date and displayed it at
every startup, and now, when it turned out that only the first 16 bytes of a directory entry

Section I The Development of MS-DOS 25
Canon Exhibit 1108

1981-1982

1981-1982

were needed for file-header information, the MS-DOS programmers decided to use some
of the remaining 16 bytes to record the date and time of creation or update (and the size of

the file) as well.

Batch processing was originally added to MS-DOS to help IBM. IBM wanted to run

scripts — sequences of commands or other operations — one after the other to test various
functions of the system. To do this, the testers needed an automated method of calling
routines sequentially. The result was the batch processor, which later also provided users
with the convenience of saving and running MS-DOS commands as batch files.

Finally, MS-DOS increased the options available to.a program when it terminated. For ex-
ample, in less sophisticated operating systems, applications and other programs remained
in memory only as long as they were active; when terminated, they were removed from
memory. MS-DOS, however, added a terminate-and-stay-resident function that enabled a
program to be locked into memory and, in effect, become part of the operating-system
environment until the computer system itself was shut down or restarted.

The Marketplace

26

‘When IBM announced the Personal Computer, it said that the new machine would run
three operating systems: MS-DOS, CP/M-86, and Sof Tech Microsystem’s p-System. Of the
three, only MS-DOS was available when the IBM PC shipped. Nevertheless, when MS-DOS
was released, nine out of ten programs on the InfoWorld bestseller list for 1981 ran under
CP/M-80, and CP/M-86, which became available about six months later, was the operating
system of choice to most writers and reviewers in the trade press.

Understandably, MS-DOS was compared with CP/M-80 and, later, CP/M-86. The main con-
cern was compatibility: To what extent was Microsoft’s new operating system compatible
with the existing standard? No one could have foreseen that MS-DOS would not only catch
up with but supersede CP/M. Even Bill Gates now recalls that “our most optimistic view of
the number of machines using MS-DOS wouldn’t have matched what really ended up
happening.”

To begin with, the success of the IBM PC itself surprised many industry watchers. Within a
year, IBM was selling 30,000 PCs per month, thanks in large part to a business community
that was already comfortable with IBM's name and reputation and, at least in retrospect,
was ready for the leap to personal computing. MS-DOS, of course, benefited enormously
from the success of the IBM PC — in large part because IBM supplied all its languages and
applications in MS-DOS format.

But, at first, writers in the trade press still believed in CP/M and questioned the viability of
a new operating system in a world dominated by CP/M-80. Many assumed, incorrectly, that
a CP/M-86 machine could run CP/M-80 applications. Even before CP/M-86 was available,
Future Computing referred to the IBM PC as the “CP/M Record Player” — presumably in
anticipation of a vast inventory of CP/M applications for the new computer—and led its
readers to assume that the PC was actually a CP/M machine.

The MS-DOS Encyclopedia

Microsoft, meanwhile, held to the belief that the success of IBM’s machine or any other
16-bit microcomputer depended ultimately on the emergence of an industry standard fora
16-bit operating system. Software developers could not afford to develop software for even
two or three different operating systems, and users could (or would) not pay the prices the
developers would have to charge if they did. Furthermore, users would almost certainly
rebel against the inconvenience of sharing data stored under different operating-system
formats. There had to be one operating system, and Microsoft wanted MS-DOS to be

the one.

The company had already taken the first step toward a standard by choosing hardware
independent designs wherever possible. Machine independence meant portability, and
portability meant that Microsoft could sell one version of MS-DOS to different hardware
manufacturers who, in turn, could adapt it to their own equipment. Portability alone,
however, was no guarantee of industry-wide acceptance. To make MS-DOS the standard,
Microsoft needed to convince software developers to write programs for MS-DOS. And in
1981, these developers were a little confused about IBM’s new operating system.

An operating system by any other name...

A tangle of names gave rise to one point of confusion about MS-DOS. Tim Paterson’s
“Quick and Dirty Operating System” for the 8086 was originally shipped by Seattle
Computer Products as 86-DOS. After Microsoft purchased 86-DOS, the name remained
for a while, but by the time the PC was ready for release, the new system was known as
MS-DOS. Then, after the IBM PC reached the market, IBM began to refer to the operating
system as the IBM Personal Computer DOS, which the trade press soon shortened to
PC-DOS. IBM’s version contained some utilities, such as DISKCOPY and DISKCOMP, that
were not included in MS-DOS, the generic version available for license by other manufac-
turers. By calling attention to these differences, publications added to the confusion about
the distinction between the Microsoft and IBM releases of MS-DOS.

Further complications arose when Lifeboat Associates agreed to help promote MS-DOS but
decided to call the operating system Software Bus 86. MS-DOS thus became one of a line
of trademarked Software Bus products, another of which was a product called SB-80,
Lifeboat’s version of CP/M-80.

Finally, some of the first hardware companies to license MS-DOS also wanted to use their
own names for the operating system. Out of this situation came such additional names as

COMPAQ-DOS and Zenith’s Z-DOS.
Given this confusing host of names for a product it believed could become the industry

standard, Microsoft finally took the lead and, as developer, insisted that the operating sys-
tem was to be called MS-DOS. Eventually, everyone but IBM complied.

Developers and MS-DOS

Early in its career, MS-DOS represented just a small fraction of Microsoft’s business —
much larger revenues were generated by BASIC and other languages. In addition, in the
first two years after the introduction of the IBM PC, the growth of CP/M-86 and other

Section I. The Development of MS-DOS 27

Canon Exhibit 1108

1981-1982

1981-1982

28

environments nearly paralleled that of MS-DOS. So Microsoft found itself in the unenviable
position of giving its support to MS-DOS while also selling languages to run on CP/M-86,
thereby contributing to the growth of software for MS-DOS’s biggest competitor.

Given the uncertain outcome of this two-horse race, some other software developers
chose to wait and see which way the hardware manufacturers would jump. For their part,
the hardware manufacturers were confronting the issue of compatibility between operat-
ing systems. Specifically, they needed to be convinced that MS-DOS was not a maverick —
that it could perform as well as CP/M-86 as a base for applications that had been ported
from the CP/M-80 environment for use on 16-bit computers.

Microsoft approached the problem by emphasizing four related points in its discussions
with hardware manufacturers:

® Tirst, one of Microsoft’s goals in developing the first version of MS-DOS had always
been translation compatibility from CP/M-80 to MS-DOS software.

® Second, translation was possible only for software written in 8080 or Z80 assembly
language; thus, neither MS-DOS nor CP/M-86 could run programs written for other
8-bit processors, such as the 6800 or the 6502

® Third, many applications were written in a high-level language, rather than in assem-
bly language.

® Fourth, most of those high-level languages were Microsoft products and ran on
MS-DOS.

Thus, even though some people had originally believed that only CP/M-86 would auto-
matically make the installed base of CP/M-80 software available to the IBM PC and other
16-bit computers, Microsoft convinced the hardware manufacturers that MS-DOS was, in
actuality, as flexible as CP/M-86 in its compatibility with existing — and appropriate —
CP/M-80 software.

MS-DOS was put at a disadvantage in one area, however, when Digital Research convinced
several manufacturers to include both 8080 and 8086 chips in their machines. With 8-bit
and 16-bit software used on the same machine, the user could rely on the same disk format
for both types of software. Because MS-DOS used a different disk format, CP/M had the
edge in these dual-processor machines — although, in fact, it did not seem to have much
effect on the survival of CP/M-86 after the first year or so

Although making MS-DOS the operating system of obvious preference was not as easy as
simply convincing hardware manufacturers to offer it, Microsoft’s list of MS-DOS custom-
ers grew steadily from the time the operating system was introduced. Many manufacturers
continued to offer CP/M-86 along with MS-DOS, but by the end of 1983 the technical supe-
riority of MS-DOS (bolstered by the introduction of such products as Lotus 1-2-3) carried
the market. For example, when DEC, a longtime holdout, decided to make MS-DOS the pri-

mary operating system for its Rainbow computer, the company mentioned the richer set of

commands and “dramatically” better disk performance of MS-DOS as reasons for its
choice over CP/M-86.

The MS-DOS Encyclopedia

Additional MS-DOS Features and Benetlts

+ Written Enlirely in 8085 Assembiy Language
“This provides significant spaed improvements over

bit counterpans

* Fast Etficlent Flie Structurs
The format eliminates the need for 'sxtents,” minimizes
access 1o the directory wrack, and provides for duplicate
directory information nd verify after write

* No Need to Log in Disks
As long as no file is curtently open, there is no need to
log in a new disk by typing Control-C. This greatly
improves usability for single disk system users and for
peaple who like 10 store their data on separale disketies.

* No Phyaical Flie/Disk Size Limitalion
Uniike users of aparating systems that ere timited 10 8
megabytes, MS-DOS users would not have 10 break a 24
megabyte hard disk into three saparate drives

MS-DOS
Standard Operating System tfor 8086 Micros

MS-DOS is & disk oparating system fram Microsoft for
8086/8088 microprocessors. international Business Machines
Corp. chose MS-DOS (calied IBM Personat Computer DOS} to
be its aperating system of choice for its Personal Computar
Microsoft's agreements with 18M and several other major
computer manutacturers indicate that end-user systems.

What Makes MS-DOS important?

running MS-DOS will be widely availabie in the near fulure.
aking MS-DOS the standard low-end operating system for
8085 micros. Wy 1s MS-DOS becoring popular? MS-DOS 15
a0 important sGvance n Mmicrocomputer operating systems

All of Microsoft’s languages [BASIC Interpreter, BASIC
Compiler, FORTRAN, COBOL. Pascal) are available
immediately under MS-DOS. Users of MS-DOS are assured
that their operating sysiem wili be the first that Microsott wilt
support when any new products or major releases are
announcad. In addition, the 8-bit versions of Microsott's
languages are upward compatible with the 16-bit versions.
Thus, application programs written in 8-bit Microsoft
isnguages can be run under MS-DOS with little or no

Z Microsoft wants \ both the
tranaporting of 8-bit to 16-bit software and the development of
new 16-bit software

Here are ihe major teatures that make MS-DOS the operating
system people want 1o use on 8086 machines:

« Eany Conversion from 8080 to 8085
MS-DOS allows 8 much transportability of 8-bit machine
tanguage software as is possible. MS-DOS emulates
system calls 1o CP/M-80. By simpiy running assembly
language 3ource code through the Intel conversion
program, almost all 8080 programs wili work without
modification. In most cases. a conversion to MS-DOS is
easier than conversion to ather aperating systems.

* Devico independant /O
MS-DOS simplifies 1/ to diterent devices on the UNIX
concept. A single set of 1/0 calls treats all devices alike
from the user's perspective. Thiere is no need 10 rewrite
prograsms whan & new device is added to the system,
Simply OPEN the cevice and READ or WRITE. Atso,
device indepencent /O assures that different control
characters (specifically TAB) are handiad the same by
tne ditferent davices.

The Future of MS-DOS

« Advancad Error Recovery Procedures
MS-DOS doesn't simply tace away when errors occur. Il
& disk aror occurs at any time during any program, MS-
DOS will rewry the operation three times. If the operation
cannot be completed successiutly, MS-DOS will return
an error message, then wail for the user to enter a2
response. The user can attempt recovery sathar than
rebool the operaling system

= Complete Progran: Relocatability
MS-DOS is a truly relacatable operating system. Not only
can the Micrasoft relocatable finking loader provide for
separate segments but also the COMMAND progrem in
MS-DOS relocates the modutes during loading rather
than loading them 10 preset adaresses. Thus, MS-DOS
Qoes not have the 64K program space limitation of otner
aperating systems.

o Powerlui, Flaxible File Characteristics

operating systems that are Jargely translsted from their 8-

« No Overhead for Non-128.Byle Physical Sectors

©Ona does not have to worry about difisrent physical
sector sizes when writing a BIO!

* Time/Date Stamps
This alteviatas, tor instance, the need to recompile a file i
the time on the reiocatable tile is more recent than on the
source file

* Litebost Associates
The world's largest independant distributor of
microcomputer sofiware has chosen 16 support MS-DOS
as its iow-gnd 16-bit operating systern. Recognizing the
important migralion path from ne 8-bit jevel to XENIX
S Lifeboat will bs ofiering a wide range of sattware for
the MS-DOS environment

* 100% 1BM Compalible
18M is offering software running under MS-DOS. IBM has
announced Microsaft BASIG and Microsoft Pascal, along
with accounting, financial planning and word processing
software running under MS-DOS

MICROSOFT

Microsoft Inc.
10800 NE Eighth, Suite 819
Bellevue, WA 98004
206-455-8080 Telex 328045

MS-DOS has no practical limit on file or disk size. MS-
DOS uses 4-byte XENIX OS compatible ogical pointers
for file and disk capacity up 104 gigabytes.

Within a single diskette. the user of MS-DOS can have
files of different logical record lengths. MS-DOS is
designed to biock and deblock its own physical seclors;
%28 is not a sacred number in MS-DOS

MS-DOS remesnbers the exact end of file marker. Thus.
Showld one open a file with a logicat record length other
Ihan the physical record length, MS-DOS remembers
exactty where tha file ends to the byte, rather than
rounded to 128 bytes. This alleviates the need tor forcing
Controi-Z's or the tike at the end of a file

Microsoft plans to enhance MS-DOS. The additionat
addressing space of the 8086 processor makes multi-tasking &
particularly atiractive enhancement. An upward migration path
10 the XENIX oparating system through XENIX compatibie
system calls, "pipes " and “forking" 15 another planned
enhancemenl.

Plans for MS-DOS also include disk bullenng. graphics and
cursor positioning. kanji SuppOR Multi-user and hard disk
support and networking

A Microsoft original equipment manufacturer (OEM) marketing brochure describing the strengths of MS-DOS

Section I The Development of MS-DOS 29

Canon Exhibit 1108

1982-1983

1982-1983

Version 2

After the release of PC-specific version 1.0 of MS-DOS, Microsoft worked on an update
that contained some bug fixes. Version 1.1 was provided to IBM to run on the upgraded PC
released in 1982 and enabled MS-DOS to work with double-sided, 320 KB floppy disks.
This version, referred to as 1.25 by all but IBM, was the first version of MS-DOS shipped by
other OEMs, including COMPAQ and Zenith.

Even before these intermediate releases were available, however, Microsoft began plan-
ning for future versions of MS-DOS. In developing the first version, the programmers had
had two primary goals: running translated CP/M-80 software and keeping MS-DOS small
They had neither the time nor the room to include more sophisticated features, such as
those typical of Microsoft’s UNIX-based multiuser, multitasking operating system, XENIX.
But when IBM informed Microsoft that the next major edition of the PC would be the
Personal Computer XT with a 10-megabyte fixed disk, a larger, more powerful version of
MS-DOS — one closer to the operating system Microsoft had envisioned from the start—
became feasible

There were three particular areas that interested Microsoft: a new, hierarchical file system,
installable device drivers, and some type of multitasking. Each of these features contrib-
uted to version 2.0, and together they represented a major change in MS-DOS while still
maintaining compatibility with version 1.0.

The File System

30

Primary responsibility for version 2.0 fell to Paul Allen, Mark Zbikowski, and Aaron
Reynolds, who wrote (and rewrote) most of the version 2.0 code. The major design issue
confronting the developers, as well as the most visible example of its difference from ver-
sions 1.0, 1.1, and 1.25, was the introduction of a hierarchical file system to handle the file-
management needs of the XT’s fixed disk.

Version 1.0 had a single directory for all the files on a floppy disk. That system worked well
enough on a disk of limited capacity, but on a 10-megabyte fixed disk a single directory
could easily become unmanageably large and cumbersome

CP/M had approached the problem of high-capacity storage media by using a partitioning
scheme that divided the fixed disk into 10 user areas equivalent to 10 separate floppy-disk
drives. On the other hand, UNIX, which had traditionally dealt with larger systems, used
a branching, hierarchical file structure in which the user could create directories and
subdirectories to organize files and make them readily accessible. This was the file-
management system implemented in XENIX, and it was the MS-DOS team’s choice for
handling files on the XT’s fixed disk.

The MS-DOS Encyclopedia

The MS-DOS version 1.0 manual next to the version 2.0 manual.

Partitioning, IBM’s initial choice, had the advantages of familiarity, size, and ease of imple-
mentation. Many small-system users— particularly software developers—were already
familiar with partitioning, if not overly fond of it, from their experience with CF/M. Devel-
opment time was also 4 major concern, and the code needed to develop a partitioning
scheme would be minimal compared with the code required to manage a hierarchical file
system. Such a scheme would also take less time to implement

However, partitioning had two inherent disadvantages. First, its functionality would
decrease as storage capacity increased, and even in 1982, Microsoft was anticipating sub-
stantial growth in the storage capacity of disk-based media. Second, partitioning de-
pended on the physical device. If the size of the disk changed, either the number or the
size of the partitions must also be changed in the code for both the operating system and
the application programs. For Microsoft, with its commitment to hardware independence,
partitioning would have represented a step in the wrong direction.

A hierarchical file structure, on the.other hand, could be independent of the physical
device. A disk could be partitioned logically, rather than physically. And because these
partitions (directories) were controlled by the user, they were open-ended and enabled
the individual to determine the best way of organizing a disk.

Ultimately, it was a hierarchical file system that found its way into MS-DOS 2.0 and even-
tually convinced everyone that it was, indeed, the better and more flexible solution to the
problem of supporting a fixed disk. The file system was logically consistent with the
XENIX file structure, yvet physically consistent with the file access incorporated in versions
1.x, and was based on a root, or main, directory under which the user could create a sys-
tem of subdirectories and sub-subdirectories to hold files. Each file in the system was iden-
tified by the directory path leading to it, and the number of subdirectories was limited only
by the length of the pathname, which could not exceed 64 characters

In this file structure, all the subdirectories and the filename in a path were separated
from one another by backslash characters, which represented the only anomaly in the
XENIX/MS-DOS system of hierarchical files. XENIX used a forward slash as a separator,
but versions 1.x of MS-DOS, borrowing from the tradition of DEC operating systems,
already used the forward slash for switches in the command line, so Microsoft, at IBM’s
request, decided to use the backslash as the separator instead. Although the backslash

Section I The Development of MS-DOS 31

Canon Exhibit 1108

1982-1983

1982-1983

character created no practical problems, except on keyboards that lacked a backslash, this
decision did introduce inconsistency between MS-DOS and existing UNIX-like operating
systems. And although Microsoft solved the keyboard problem by enabling the user to
change the switch character from a slash to a hyphen, the solution itself created compati-
bility problems for people who wished to exchange batch files.

Another major change in the file-management system was related to the new directory
structure: In order to fully exploit a hierarchical file system, Microsoft had to add a new
way of calling file services

Versions 1.x of MS-DOS used CP/M-like structures called file control blocks, or FCBs, to
maintain compatibility with older CP/M-80 programs. The FCBs contained all pertinent
information about the size and location of a file but did not allow the user to specify a file
in a different directory. Therefore, version 2.0 of MS-DOS needed the added ability to ac-
cess files by means of handles, or descriptors, that could operate across directory lines,

In this added step toward logical device independence, MS-DOS returned a handle when-
ever an MS-DOS program opened a file, All further interaction with the file involved only
this handle. MS-DOS made all necessary adjustments to an internal structure — different
from an FCB— so that the program never had to deal directly with information about the
file’s location in memory. Furthermore, even if future versions of MS-DOS were to change
the structure of the internal control units, program code would not need to be rewritten —
the file handle would be the only referent needed, and this would not change.

Putting the internal control units under the supervision of MS-DOS and substituting
handles for FCBs also made it possible for MS-DOS to redirect a program’s input and out-
put. A system function was provided that enabled MS-DOS to divert the reads or writes
directed to one handle to the file or device assigned to another handle. This capability was
used by COMMAND.COM to aliow output from a file to be redirected to a device, such as a
printer, or to be piped to another program. It also allowed system cleanup on program
terminations

Installable Device Drivers

At the time Microsoft began developing version 2.0 of MS-DOS, the company also realized
that many third-party peripheral devices were not working well with one another. Each
manufacturer had its own way of hooking its hardware into MS-DOS and if two third-party
devices were plugged into a computer at the same time, they would often conflict or fail

One of the hallmarks of IBM’s approach to the PC was open architecture, meaning that
users could simply slide new cards into the computer whenever new input/output de-
vices, such as fixed disks or printers, were added to the system Unfortunately, version
1.0 of MS-DOS did not have a corresponding open architecture built into it — the BIOS

32 The MS-DOS Encyclopedia

contained all the code that permitted the operating system to run the hardware. If inde-
pendent hardware manufacturers wanted to develop equipment for use with a computer
manufacturer’s operating system, they would have to either completely rewrite the device
drivers or write a complicated utility to read the existing drivers, alter them, add the code
to support the new device, and produce a working set of drivers. If the user installed more
than one device, these patches would often conflict with one another. Furthermore, they
would have to be revised each time the computer manufacturer updated its version

of MS-DOS.

By the time work began on version 2.0, the MS-DOS team knew that the ability to install
any device driver at run time was vital. They implemented installable device drivers by
making the drivers more modular. Like the FAT, 10.SYS (IBMBIO.COM in PC-DOS)
became, in effect, a linked list— this time, of device drivers — that could be expanded
through commands in the CONFIG.SYS file on the system boot disk. Manufacturers could
now write a device driver that the user could install at run time by including it in the
CONFIG.SYS file. MS-DOS could then add the device driver to the linked list.

By extension, this ability to install device drivers also added the ability to supersede a pre-
viously installed driver — for example, the ANSIL.SYS console driver that supports the ANSI
standard escape codes for cursor positioning and screen control.

Print Spooling

AtIBM’s request, version 2.0 of MS-DOS also possessed the undocumented ability to per-
form rudimentary background processing —an interim solution to a growing awareness of
the potentials of multitasking

Background print spooling was sufficient to meet the needs of most people in most situa-
tions, so the print spooler, PRINT.COM, was designed to run whenever MS-DOS had
nothing else to do. When the parent application became active, PRINT.COM would be in-
terrupted until the next lull. This type of background processing, though both limited and
extremely complex, was exploited by a number of applications, such as SideKick

Loose Ends and a New MS-DOS

Hierarchical files, installable device drivers, and print spooling were the major design
decisions in version 2.0. But there were dozens of smaller changes, too

For example, with the fixed disk it was necessary to modify the code for automatic logging
of disks. This modification meant that MS-DOS had to access the disk more often, and file
access became much slower as a result. In trying to find a solution to this problem, Chris
Peters reasoned that, if MS-DOS had just checked the disk, there was some minimum time

Section I The Development of MS-DOS 33
Canon Exhibit 1108

1982-1983

Two members of the
IBM line of personal
computers for which
versions 1 and 2 of
MS-DOS were devel-
oped On the left, the
original IBM PC (ver-
sion 1.0 of MS-DOS);
on the right, the IBM
PC/XT (version 2 0)

e

a user would need to physically change disks. If that minimum time had not elapsed, the
current disk information in RAM — whether for a fixed disk or a floppy — was probably

still good.

Peters found that the fastest anyone could physically change disks, even if the disks were
damaged in the process, was about two seconds. Reasoning from this observation, he had
MS-DOS check to see how much time had gone by since the last disk access. If less than
two seconds had elapsed, he had MS-DOS assume that a new disk had not been inserted
and that the disk information in RAM was still valid. With this little trick, the speed of file
handling in MS-DOS version 2 0 increased considerably.

Version 2 0 was released in March 1983, the product of a surprisingly small team of six de-
velopers, including Peters, Mani Ulloa, and Nancy Panners in addition to Allen, Zbikowski,
and Reynolds. Despite its complex new features, version 2.0 was only 24 KB of code
Though it maintained its compatibility with versions 1x, it was in reality a vastly different
operating system. Within six months of its release, version 2.0 gained widespread public
acceptance. In addition, popular application programs such as Lotus 1-2-3 took advantage
of the features of this new version of MS-DOS and thus helped secure its future as the
industry standard for 8086 processors.

Versions 2.1 and 2.25

34

The world into which version 2.0 of MS-DOS emerged was considerably different from the
one in which version 1.0 made its debut. When IBM released its original PC, the business
market for microcomputers was as yet undefined — if not in scope, at least in terms of who
and what would dominate the field. A year and a half later, when the PC/XT came on the
scene, the market was much better known. It had, in fact, been heavily influenced by IBM
itself There were still many MS-DOS machines, such as the Tandy 2000 and the Hewlett
Packard HP150, that were hardware incompatible with the IBM, but manufacturers of new
computers knew that IBM was a force to consider and many chose to compete with the
IBM PC by emulating it. Software developers, too, had gained an understanding of busi-
ness computing and were confident they could position their software accurately in the
enormous MS-DOS market.

The MS-DOS Encyclopedia

1983

In such an environment, concerns about the existing base of CB/M software faded as
developers focused their attention on the fast-growing business market and MS-DOS
quickly secured its position as an industry standard. Now, with the obstacles to MS-DOS
diminished, Microsoft found itself with a new concern: maintaining the standard it had
created. Henceforth, MS-DOS had to be many things to many people. IBM had require-
ments; other OEMs had requirements. And sometimes these requirements conflicted.

Hardware Developers

When version 2.0 was released, IBM was already planning to introduce its PCjr. The PCjr
would have the ability to run programs from ROM cartridges and, in addition to using half-
height 5%-inch drives, would employ a slightly different disk-controller architecture. Be-
cause of these differences from the standard PC line, IBM’s immediate concern was for a
version 2.1 of MS-DOS modified for the new machine.

For the longer term, IBM was also planning a faster, more powerful PC with a 20-megabyte
fixed disk. This prospect meant Microsoft needed to look again at its file-management sys-
tem, because the larger storage capacity of the 20-megabyte disk stretched the size limita-
tions for the file allocation table as it worked in version 2.0.

However, IBM’s primary interest for the next major release of MS-DOS was networking.
Microsoft would have preferred to pursue multitasking as the next stage in the develop-
ment of MS-DOS, but IBM was already developing its IBM PC Network Adapter, a plug-in
card with an 80188 chip to handle communications. So as soon as version 2.0 was released,
the MS-DOS team, again headed by Zbikowski and Reynolds, began work on a networking
version (3.0) of the operating system.

Meanwhile...

The international market for MS-DOS was not significant in the first few years after the
release of the IBM PC and version 1.0 of MS-DOS IBM did not, at first, ship its Personal
Computer to Europe, so Microsoft was on its own there in promoting MS-DOS. In 1982, the
company gained a significant advantage over CP/M-86 in Europe by concluding an agree-
ment with Victor, a software company that was very successful in Europe and had already
ticensed CP/M-86. Working closely with Victor, Microsoft provided special development
supportt for its graphics adaptors and eventually convinced the company to offer its pro-
ducts only on MS-DOS. In Japan, the most popular computers were Z80 machines, and
given the country’s huge installed base of 8-bit machines, 16-bit computers were not taking
hold. Mitsubishi, however, offered a 16-bit computer. Although CP/M-86 was Mitsubishi’s
original choice for an operating system, Microsoft helped get Multiplan and FORTRAN
running on the CP/M-86 system, and eventually won the manufacturer’s support for
MS-DOS.

Section I. The Development of MS-DOS 35
Canon Exhibit 1108

1983

1983
DOS 30 A sample of the reviews that appeared
with each new version of MS-DOS
Trresistibl
DOS 3.0
International z 3
3.0 result in a significantly
operating system.
The Ascent ==
L i 205 3 Yo does e .
(o5 b e
of DOS ==
s e,
ith 2 fixect disk.
‘Because s size has been in-
mmemetiers
lisketies as oppased 10 the single-
@ Hands On: Operaing Systems b b o e o e
MS-DOS 2.00: A Seaad)
LU s o s
e and fle locking.
Hands-On Tutorial =~ &~
Tom Sheidon
Although the ammouncement of the IBM Personal Com-
puser XT grabbed the headlines after ity wneiling, the
Lo L et e b
{DOS 2.06), introduced on the same day; marks a
sigmificant extension of the eapabilities auailable 1o all
PC wsers for managing the flow of data between the
PC's processor devices. This articie taket
e ol
Even before the latess st of changzs, MS-DOS was.
one of the best buys for the PC, For $40 version 1.10 of
this package combtnes an editor, 2 file-keeping syscem,
o S ey e et e
Most of their time is apent in the appiications environ-
mem of 2 prepackaged program. The typica) word
%;’:mm%mAT and COPYWSGM
users touch on bach ssing and 6o eiaborate direc
vory and copy commands using wild cands or
e wid compute i ot et b, s
sooured the manual looking for new and imeresting com- 7B
e e o o v o e
the new features you ger for only $60. it would bcxva-
gain at rwice the price.
‘The Forest of Files
DOS 2.00 wilizes 3 trec-structured filng syseem. In this
T T s
directoeies; they are actually subdirectocics of the root
directory and can contain files and subdirectorics
selves.
In the software arena, by the time development was underway on the 2.x releases of
MS-DOS, Microsoft's other customers were becoming more vocal about their own needs
Several wanted a networking capability, adding weight to IBM’s request, but a more urgent
need for many —a need not shared by IBM at the time — was support for international
products - Specifically, these manufacturers needed a version of MS-DOS that could be sold
in other countries — a version of MS-DOS that could display messages in other languages
and adapt to country-specific conventions, such as date and time formats
Microsoft, too, wanted to internationalize MS-DOS, so the MS-DOS team, while modifying
the operating system to support the PCjr, also added functions and a COUNTRY command
that allowed users to set the date and time formats and other country-dependent variables
in the CONFIG.SYS file.
36 The MS-DOS Encyclopedia

A Kanji screen with

the MS-DOS copyright

NEC PC-9800 Series Personal Computer
message

I4U0Y7E MS-DOS W -3 3y 3. 10
Copyright 1981, 1985 Microsoft Corp. / NEC Corporation

BB T
BB, ALY F54 70D Neepic sys TY

COMMAND /¥ =¥ 3v 3.10

A>DIR AW
FSA7 p OF 4 27 DFY =2 —45 50k KAVAL_RYU
F4v7 b U A:¥BIN

, .. ASSIGN COM ATIRIB ~EXE BACKUP EXE
CHKDSK EXE COPY2 COM COPYA. COM DISKCOPY COM MOUSE
FC EXE FIND EXE FORMAT EXI KEY CoM LABEL EXE
MORE COM SPEED = COM SWITCH COM SYS EXE SORT oM
20 HO7 7 A VDIBHDET
3604480 /¥4 FHMERIFRETY

4 7 ey 7 PERR&HE

R [»11] #EFMS—-DOS

At about the same time, another international requirement appeared. The Japanese market
for MS-DOS was growing, and the question of supporting 7000 Kanji characters (ideo-
grams) arose. The difficulty with Kanji is that it requires dual-byte characters For English
and most European character sets, one byte corresponds to one character. Japanese char-
acters, however, sometimes use one byte, sometimes two. This variability creates prob-
Jems in parsing, and as a result MS-DOS had to be modified to parse a string from the
beginning, rather than back up one character at a time.

This support for individual country formats and Kanji appeared in version 2.01 of MS-DOS.
IBM did not want this version, so support for the PCjt, developed by Zbikowski, Reynolds,

Ulloa, and Eric Evans, appeared separately in version 2.1, which went only to IBM and did

not include the modifications for international MS-DOS.

Different customers, different versions

As early as version 1.25, Microsoft faced the problem of trying to satisty those OEM cus-
tomers that wanted to have the same version of MS-DOS as IBM. Some, such as COMPAQ,
were in the business of selling 100-percent compatibility with IBM. For them, any differ-
ence between their version of the operating system and IBM’s introduced the possibility of
incompatibility. Satisfying these requests was difficult, however, and it was not until ver-
sion 3.1 that Microsoft was able to supply a system that other OEMs agreed was identical

with IBM’s

Before then, to satisfy the OEM customers, Microsoft combined versions 2.1and 2.01 to
create version 2.11. Although IBM did not accept this because of the internationalization
code, version 2.11 became the standard version for all non-IBM customers running any
form of MS-DOS in the 2 x series Version 2.11 was sold worldwide and translated into
about 10 different languages Two other intermediate versions provided support for
Hangeul (the Korean character set) and Chinese Kanji

Section I The Developm@argdSxBiBR 1108 37

1983

Software Concerns

38

After the release of version 2.0, Microsoft also gained an appreciation of the importance —
and difficulty — of supporting the people who were developing software for MS-DOS.

Software developers worried about downward compatibility. They also worried about
upward compatibility. But despite these concerns, they sometimes used programming
practices that could guarantee neither. When this happened and the resulting programs
were successful, it was up to Microsoft to ensure compatibility.

For example, because the information about the internals of the BIOS and the ROM inter-
face had been published, software developers could, and often did, work directly with the
hardware in order to get more speed. This meant sidestepping the operating system for
some operations. However, by choosing to work at the lower levels, these developers lost
the protection provided by the operating system against hardware changes. Thus, when
low-level changes were made in the hardware, their programs either did not work or did

not run cooperatively with other applications.

Another software problem was the continuing need for compatibility with CP/M. For
example, in CP/M, programmers would call a fixed address in low memory in order to re-
quest a function; in MS-DOS, they would request operating-system services by executing a
software interrupt. To support older software, the first version of MS-DOS allowed a pro-
gram to request functions by either method. One of the CP/M-based programs supported
in this fashion was the very popular WordStar. Since Microsoft could not make changes in
MS-DOS that would make it impossible to run such a widely used program, each new ver-
sion of MS-DOS had to continue supporting CF/M-style calls

A more pervasive CP/M-related issue was the use of FCB-style calls for file and record
management. The versicn 1.x releases of MS-DOS had used FCB-style calls exclusively, as
had CP/M. Version 2 0 introduced the more efficient and flexible handle calls, but Microsoft
could not simply abolish the old FCB-style calls, because so many popular programs used
them. In fact, some of Microsoft’s own languages used them So, MS-DOS had to support
both types of calls in the version 2 x series. To encourage the use of the new handle calls,
however, Microsoft made it easy for MS-DOS users to upgrade to version 2.0. In addition,
the company convinced IBM to require version 2 0 for the PC/XT and also encouraged
software developers to require 2 0 for their applications.

At first, both software developers and OEM customers were reluctant to require 2.0
because they were concerned about problems with the installed user base of 1.0
systems — requiring version 2.0 meant supporting both sets of calls. Applications also
needed to be able to detect which version of the operating system the user was running.
For versions 1.x, the programs would have to use FCB calls; for versions 2.x, they would
use the file handles to exploit the flexibility of MS-DOS more fully.

Alltold, it was an awkward period of transition, but by the time Microsoft began work on
version 3.0 and the support for IBM’s upcoming 20-megabyte fixed disk, it had become
apparent that the change had been in everyone’s best interest

The MS-DOS Encyclopedia

1983-1984

Version 3

The types of issues that began to emerge as Microsoft worked toward version 3.0, MS-DOS
If)orfnetworks, exaggerated the problems of compatibility that had been encountered
efore.

First, networking, with or without a multitasking capability, requires a level of cooperation
and compatibility among programs that had never been an issue in earlier versions of
MS-DOS. As described by Mark Zbikowski, one of the principals involved in the project
“there was a very long period of time between 2.1 and 3.0 — almost a year and a half Dlilr'-
ing that time, we believed we understood all the problems involved in making DOS a net-
working product. [But] as time progressed, we realized that we didn’t fully understand it
either from a compatibility standpoint or from an operating-system standpoint. We knevs’l
very well how it [DOS] ran in a single-tasking environment, but we started éoing to this
new environment and found places where it came up short.”

In fact, the great variability in programs and programming approaches that MS-DOS
supported eventually proved to be one of the biggest obstacles to the development of a
sophisticated networking system and, in the longer term, to the addition of true
multitasking.

Further, by the time Microsoft began work on version 3 ‘O‘, the programming style of the
MS-DOS team had changed considerably. The team was still small, with a core group of
just five peopie: Zbikowski, Reynolds, Peters, Evans, and Mark Bebic. But the concerns for
maintainability that had dominated programming in larger systems had percolated down
to the MS-DOS environment. Now, the desire to use tricks to optimize for speed had to be
tempered by the need for clarity and maintainability, and the small package of tightly
written code that was the early MS-DOS had to be sacrificed for the same reasons

Version 3.0

All told, the work on version 3.0 of MS-DOS proved to be long and difficult. For a year and
a half, Microsoft grappled with problems of software incompatibility, remote file manage-
ment, and logical device independence at the network level Even so, when IBM was ready
to announce its new Personal Computer AT, the network software for MS-DOS was not
ql?te ready, so in August 1984, Microsoft released version 3.0 to IBM without network
sotftware.

Version 3.0 supported the AT’s larger fixed disk, its new CMOS clock, and its high-capacity
1.2-megabyte floppy disks. It also provided the same international support included earlier
in versions 2.01 and 2.11. These features were made available to Microsoft’s other OEM
customers as version 3.05.

Section I The Development of MS-DOS 39
Canon Exhibit 1108

—_—

1983-1984

1983-1984
Roan
.) Rasiuon £ Make ¥ :
£ misc _ DISK.RESET —"jonoRE" FAIL — { vewewtn @
T '
Fivfo [.sut e, A P . .
A : ' (oG 1 B DIR
g Pyt e P ‘ (LSS Jowene
Rom m TS —Dos -CLOSE CLoSE
DR
<
s
‘ UNPACK T
(S
FLUSHBUF {CHECKFLUSH o
K
CTFLVSH BUF. = FEAT
Rowa
=)]
- DISEWR\TE Bk
DA
= DLRITE.
10N fai) imtbend cock
bATA :
/.pgv e&lﬁl.s Cacr)
a3 &Aﬁzh
Lo
0 e
HARL! <
FLC
— [%mmi sek of At
> F:;j_

40

Aaron Reynolds's diagram of version 3 0's network support, sketched ot to enable him to add the fail option
to Interrupt 24 and find all places where existing paris of MS-DOS were affected. Fven after networking had
become a reality, Reynolds kept this diagram pinned to his office wall stmply because ‘it was so much work
to put together.”

The MS-DOS Encyclopedia

PATH

bivfFo
NG s
-l Ret
SGET.bRIVE . FREESP4CE Getset
Section I. The Development of MS-DOS 41

Canon Exhibit 1108

1983-19684

1984

42

The Intel 80286 micro-
processor, the chip at
the heart of the IBM
PCAT, which is shown
beside it Version 3.0 of
MS$-DOS, developed for
this machine, offered
support for networks
and the PCAT's 1 2-
megabyte floppy disk
drive and buiit-in
CMOS clock

LA gg

e

i

)

o]

But version 3 0 was not a simple extension of version 2.0 In laying the foundation for net-
working, the MS-DOS team had completely redesigned and rewritten the DOS kernel

Different as it was from version 1.0, version 2 0 had been built on top of the same structure
For example, whereas file requests in MS-DOS 10 used FCBs, requests in version 2 0 used
file handles However, the version 2 0 handte calls would simply parse the pathname and
then use the underlying ICB calls in the same way as version 10 The redirected input and
output in version 2 0 further complicated the file-system requests When a program used
one of the CP/M-compatible calls for character input or output, MS-DOS 2 0 fitst opened a
handle and then turned it back into an FCB call at a lower level Version 3 0 eliminated this
redundancy by eliminating the old FCB input/output code of versions 1and 2, replacing it
with a standard set of I/O calls that could be called directly by both FCB calls and handle
calis The look-alike calls for CP/M-compatible character /O were included as part of the
set of handle calls As a result of this restructuring, these calls were distinctly faster in

version 3 0 than in version 2.0

More important than the elimination of inefficiencies, however, was the fact that this new
structure made it easier to handle network requests under the ISO Cpen System Intercon-
nect model Microsoft was using for networking. The 1SO model describes a number of
protocol layers, ranging from the application-to-application intetface at the top level down
to the physical link — plugging into the network —at the lowest level. In the middle is the
wansport layer, which manages the actual transfer of data The layers above the transport
layer belong 1o the realm of the operating system; the layers below the transport layer are
traditionally the domain of the network software or hardware

On the IBM PC network, the uanspott laver and the server functions were handled by
IBM’s Network Adapter card and the task of MS-DOS was to suppott this hardware. For its
other OEM customers, however, Microsoft needed to supply both the transport and the
server functions as software. Although version 3 0 did not provide this general-purpose
networking software, it did provide the basic support for IBM's networking hardware

The suppott for IBM consisted of redirector and sharer software MS-DOS used an ap-
proach to networking in which remote requests were routed by a redirector that was able

The MS-DOS Encyclopedia

to interact with the transport layer of the network The transport layer was composed of
the device drivers that could reliably transfer data from one part of the network to another.

Just before a call was sent to the newly designed low-level file /0 code, the operating sys-

tem determined whether the call was local or remote A local call would be allowed to fall
through to the local file /0 code; a remote call would be passed to the redirector which,
working with the operating system, would make the resources on a remote machine
appear as if they were local :

Version 3.1

Both the redirector and the sharer interfaces for IBM's Network Adapter card were in place
in version 3 0 when it was delivered to IBM, but the redirector itself wasn’t ready Version
31, completed by Zbikowski and Reynolds and released three months later, completed this
network sapport and made it available in the form of Microsoft Networks for use on non-
IBM network cards

Microsoft Networks was built on the concept of “services” and “consumers.” Services
were provided by a file server, which was pait of the Networks application and ranona
computer dedicated to the task. Consumers were programs on various network machines.
Requests for information were passed at a high level to the file server; it was then the
responsibility of the file server to determine where to find the information on the disk

T he requesting programs — the consumers —did not need any knowledge of the remote
machine, not even what type of file system it had

This ability to pass a high-level request to a remote server without having to know the
details of the server’s file structure allowed another level of generalization of the system.
In MS-DOS 3 1, different types of file systems could be accessed on the same network It
was possible, for exampie, to access a XENIX machine across the network from an
MS-DOS machine and to read data from XENIX files

Microsoft Networks was designed to be hardware independent. Yet the variability of the
classes of programs that would be using its structures was a major probiem in developing
a networking system that would be transparent to the user. In evaluating this variabiliry,
Microsoft identified three types of programs:

® First were the MS-DOS-compatible programs These used only the documented
software-interrupt method of requesting services from the operating system and
would run on any MS-DOS machine without problems

® Second were the MS-DOS-based programs. These would run on IBM-compatible
computers but not necessarily on all MS-DOS machines

® Third were the programs that used undocumented features of MS-DOS or that
addressed the hardware directly. These programs tended to have the best perfor-
mance but were aiso the most difficult to support

Of these, Microsoft officially encouraged the writing of MS-DOS-compatibie programs for
use on the network.

Section I The Development of MS-DOS 43

Canon Exhibit 1108

1986

Network concerns

The file-access module was changed in version 3 0 to simplify file management on the
network, but this did not solve all the problems For instance, M5-DOS still needed to han-
dle FCB requests from programs that used them, but many programs would open an FCB
and never close it One of the functions of the server was to keep track of all open files
on the network, and it ran into difficulties when an FCB was opened 50 or 100 times and
never closed To solve this problem, Microsoft introduced an FCB cache in version 3 1 that
allowed only four FCBs to be open at any one time . If a fifth FCB was opened, the least re-
cently used one was closed automatically and released In addition, an FCBS command
was z2dded in the CONFIG.SYS file to allow the user or network manager to change the
maximum number of FCBs that could be open at any one time and to protect some of the
FCBs from automatic closure

In general, the logical device independence that had been a goal of MS-DOS acquired new
meaning—and generated new problems —with networking One problem concerned
printers on the network Commonly, networks are used to allow several people to share a
printer The network could easily accommodate a program that would open the printer,
write to it, and close it again Some programs, however, would try 1o use the direct IBM
BIOS interface to access the printer. To handle this situation, Microsoft’s designers had to
develop a way for MS-DOS to intercept these BIOS requests and filter out the ones the
server could not handle Once this was accomplished, version 3 1 was able to handle most
types of printer output on the network in a transparent manner

Version 3.2

In January 1986, Microsoft released another revision of MS-DOS, version 3 2, which
supported 3'2-inch floppy disks. Version 3.2 also moved the formatting function for a
device out of the FORMAT utility routine and into the device diiver, eliminating the need
for a special hardware-dependent program in addition to the device driver. It included a
sample installable-block-device driver and, finally, benefited the users and manufacrurers
of IBM-compatible computess by including major rewrites of the MS-DOS utilities to
increase compatibility with those of IBM

44 The M5-DOS Encyclopedia

1987

The Future

Since its appearance in 1981, MS-DOS has taken and held an enviable position in the
microcomputer environment Not only has it “taught” millions of personal computers
“how 1o think,” it has taught equal millions of people how to use computers. Many highly
sophisticated computer users can trace their first encounter with these machines to the
original IBM PC and version 1.0 of MS-DOS. The MS-DOS command intetface is the one
with which they are comfortable and it is the MS-DOS file structure that, in one way or
another, they wander through with familiarity

Microsoft has stated its commitment o ensur ing that, for the foreseeable future, MS-DOS
will continue to evolve and grow, changing as it has done in the past to satisfy the needs of
its millions of users In the long term, MS-DOS, the product of a surprisingly small group of
gifted people, will undoubtedly remain the industry standard for as long as 8086-based
(and to some exient, 80286-based) microcomputers exist in the business world The story
of MS-DOS will, of course, remain even longer For this operating systein has earned its
place in microcomputing history

JoAnne Woodcock

Section I The Development of MS-DOS 45
Canon Exhibit 1108

Part A
Structure of MS-DOS

Canon Exhibit 1108

Article 1. An Introduction to MS-DOS

Article 1
An Introduction to MS-DOS

An operating system is a set of interrelated supervisory programs that manage and control
computer processing. In genetal, an operating system provides

Storage management
Processing management
Security

Human interface

Existing operating systems for microcomputers fall into three major categories: ROM
monitors, traditional operating systems, and opetating environments The general charac-
teristics of the three categories are listed in Table 1-1

Table 1-1. Characteristics of the Three Major Types of Operating Systems.

Traditional

ROM Operating Operating -

Monitor System Environment
Complexity Low Medium High
Builton Hardware BIOS Operating system
Delivered on ROM Disk Disk
Programs on - ROM Disk : Disk
Peripheral support Physical logical Logical
Disk access Sector File system File system
Example PC ROM BIOS MS-DOS Microsoft Windows

A ROM monitor is the simplest type of operating system 1t is designed for a particular
hardware configuration and provides a program with basic — and often direct— access o
peripherals attached to the computer. Programs coupled with a ROM monitor are often
used for dedicated applications such as controlling a microwave oven or controlling the

engine of a car.

A traditional microcomputer operating system is built on top of a ROM monitor, or BEOS
(basic input/ocutput system), and provides additional features such as a file system and log-
ical access o peripherals (Logical access to periphetals allows applications to run in a
hardware-independent manner) A traditional operating system also stores programs in
files on peripheral storage devices and, on request, loads them into memory for execution
MS-DOS is a traditional operating system

An operating envircnment is built on top of a traditional operating system The operating
environment provides additional services, such as common menu and forms support, that

Section I Programming ir the MS-DOS Environment 51
Canon Exhibit 1108

Part A: Structure of MS-DOS

simplify program operation and make the user interface more consistent Microsoft
Windows is an operating environment.

MS-DOS System Components

The Microsoft Disk Operating System, MS-DOS, is a traditional microcomputer operating
system that consists of five major components:

The operating-system loader
The MS-DOS BIOS

The MS-DOS kernel

The user interface (shell)
Support programs

Each of these is introduced briefly in the following pages See PROGRAMMING IN THE
MS-DOS ENVIRONMENT: S1rUCTURE OF Ms-DOs: The Components of MS-DOS

The operating-system loader _
The operating-system loader brings the operating system from the startup disk into RAM

The complete loading process, called bootstrapping, is often complex, and multiple
loaders may be invoived (The texm bootstrapping came about because each level pulls up
the next part of the system, like pulling up on a pair of bootstraps) For example, in most
standard MS-DOS-based microcomputer implementations, the ROM loader, which is the
first program the microcomputer executes when it is turned on or restarted, reads the disk
bootstrap loader from the first (boot) sector of the startup disk and executes it The disk
bootstrap loader, in turn, reads the main portions of M3-DOS —MSDOS SYS and 1O §YS
(IBMDQOS.COM and IBMBIO COM with PC-DOS)— from conventional disk files into mem-
ory The special module SYSINIT within MSDOS SYS then initializes MS-DOS’s tables and
buffers and discards itself See PROGRAMMING IN THE MS-DOS ENVIRONMENT: S1RUC-
TURE OF M$-DOs: MS-DOS Storage Devices.

(The term loader is also used to refer to the portion of the operating system that brings
application programs into memory for execution This loader is different from the ROM

ivader and the operating-system loader)

The MS-DOS BIOS

The MS-DOS BIOS, loaded from the file IO SYS during system initialization, is the laver of
the operating system that sits between the operating-system kernel and the hardware. An
application performs input and output by making requests to the operating-system kernel,
which, in turn, calls the M3-DOS BIOS routines that access the hardware directly See
SYSTEM CALLS. This division of function allows application programs to be written in a
hardware-independent manner.

The MS-DOS BIOS consists of some initialization code and a collection of device drivers
(A device driver is a specialized program that provides support for a specific device such as

52 The M$-DOS Encyclopedia

Article 1: An Introduction to MS-DOS

a display or serial port.) The device drivers are responsible for hardware access and for the
interrupt support that allows the associated devices to signal the microprocessor that they
need service

The device drivers contained in the file IO SYS, which are always loaded during system
initialization, are sometimes referred to as the resident drivers. With MS-DOS versions 2.0
and later, additional device drivers, called installable drivers, can optionally be loaded dur-
ing system initialization as a result of DEVICE directives in the system’s configuration file
See PROGRAMMING IN THE MS-DOS ENVIRONMENT: CustoMIZING Ms-Dos: Installabie
Device Drivers; USER COMMANDS: CONFIG 5YS:DEVICE

The MS-DOS kernel

The services provided to application programs by the MS-DOS kernel include

® Process control

® Memory management
® Peripheral support

® A file system

The MS-DOS kernel is loaded from the fite MSDOS SYS during system initjalization

Process control

Process, or task, control includes program loading, task execution, task termination, task
scheduling, and intertask communication

Although MS-DOS is not a multitasking operating system, it can have multiple programs
residing in memory at the same time One program can invoke anothet, which then
becomes the active (foreground) task When the invoked task terminates, the invoking
program again becomes the foreground task Because these tasks never execute simulta-
neously, this stack-like operation is still considered to be a single-tasking operating
system

MS-DOS does have a few “hooks” that allow certain programs to do some multitasking
on their own For example, terminate-and-stay-resident (T'SR) programs such as PRINT
use these hooks to perform limited concurrent processing by taking controf of system
resources while MS-DOS is “idle,” and the Microsoft Windows operating environment
adds support for nonpreemptive task switching

The traditional intertask communication methods include semaphores, queues, shared
memory, and pipes Of these, MS-DOS formally supports only pipes (A pipe is a logical,
unidirectional, sequential stream of data that is written by one program and read by
another) The data in a pipe resides in memory or in a disk file, depending on the imple-
mentation; MS-DOS uses disk files for intermediate storage of data in pipes because it

is a single-tasking operating system

Memory management

Because the amount of memory a program needs varies from program to program, the
tiaditional operating system ordinarily provides memory-management functions Memory

Section Il Programming in the M5-DOS Environment 53
Canon Exhibit 1108

Part A: Structure of M3-DOS

requirements can also vary during program execution, and memory management is
especially necessary when two or mote programs are present in memory at the same time

MS-DOS memory management is based on a pool of variable-size memory blocks The
two basic memory-management actions are to allocate a block from the pool and to return
an allocated block to the pool MS-DOS allocates program space from the pool when the
program is loaded; programs themselves can allocate additional memory from the pool
Many programs perform their own memory management by using a local memory pool, or
heap — an additional memory block allocated from the operating system that the applica-
tion program itself divides into blocks for use by its various routines See PROGRAMMING
IN THE MS-DOS ENVIRONMENT: PROGRAMMING FOR MS-DOS: Memory Management.

Peripheral support

The operating system provides peripheral support to programs through a set of operating-
system calls that are transtated by the operating system into calls to the appropriate device
driver

Peripheral support can be a direct logical-to-physical-device translation or the operating
system can intetject additional features or translaiions Keyboards, displays, and printers
usually require only logical-to-physical-device translations; that is, the data is transferred
between the application program and the physical device with minimal alterations, if any,
by the operating system The data provided by clock devices, on the other hand, must be
transformed to operating-system-dependent time and date formats Disk devices—and
block devices in general — have the greatest number of features added by the operating
system See The File System below

As stated earlier, an application need not be concerned with the details of peripheral
devices or with any special features the devices might have. Because the operating system
takes care of all the logical-to-physical-device translations, the application program need
only make requests of the operating system

The file system

54

T he file system is one of the largest portions of an opetating system A file system is built
on the storage medium of a block device (usually a floppy disk or a fixed disk) by mapping
a directory structure and files onto the physical unit of storage A file system on a disk
contains, at a2 minimum, allocation information, a directory, and space for files See
PROGRAMMING IN THE MS-DOS ENVIRONMENT: STRUCT URE OF M$-DOs: MS-DOS

Storage Devices

The tile allocation information can take various forms, depending on the operating sys-
tem, but all forms basically track the space used by files and the space available for new
data The directory contains a list of the files stored on the device, their sizes, and informa-
tion about where the data for each file is located.

Several different approaches to file allocation and directory entries exist MS-DOS uses a
particular allocation method called a file allocation table {FAT) and a hierarchical directory

The MS-DOS Encyciopedia

Article 1: An Intreduction to MS-DOS

structure See PROGRAMMING IN THE MS-DOS ENVIRONMENT: STRUCTURE OF MS-DOS!
MS-DOS Storage Devices; PROGRAMMING FOR Ms-DOs: Disk Directories and Volume [abels

The file granularity available through the operating system also varies depending on the
implementation. Some systems, such as MS-DOS, have files that are accessible to the byte
level; others are restricted to a fixed record size.

File systems are sometimes extended to map character devices as if they wete files These
device “files” can be opened, closed, read from, and written to like normal disk files, but
all ransactions occur directly with the specified character device Device files provide a
useful consistency to the environment for application programs; MS-DOS suppotts such
files by assigning a reserved logical name (such as CON or PRN) 1o each character device.

The user interface

The user interface for an operating system, also called a shell or command processor, is
generally a conventional program that allows the user to interact with the operating sys-
tem itself. The default MS-DOS user interface is a replaceable shell program called
COMMAND COM.

One of the fundamental tasks of a shell is to load a program into memory on request and
pass control of the system to the program so that the program can execute When the pro-
gram terminates, control returns to the shell, which prompis the user for another com-
mand. In addition, the shell usuaily includes functions for file and directory maintenance
and display In theory, most of these functions couid be provided as programs, but making -
them resident in the shell allows them to be accessed more quickly. The tradeoff is mem-
ory space versus speed and flexibility. Early microcomputer-based operating systems pro-
vided a minimal number of resident shell commands because of limited memory space;
modern operating systems such as MS-DOS include a wide variety of these functions as
internal commands

Support programs

The MS-DOS softwate includes support programs that provide access to operating-system
facilities not supplied as resident shell commands built into COMMAND COM Because
these programs are stored as executabie files on disk, they are essentially the same as ap-
plication programs and M3-DOS leads and executes them as it would any other program.

The suppeort programs provided with MS-DOS, often referred to as external commands,
include disk utilities such as FORMAT and CHKDSK and more general support programs
such as EDIIN (a line-oriented text editor) and PRINT (a 18R utility that allows files 1o be
printed while another program is running) See USER COMMANDS

MS-DOS releases

MS-DOS and PC-DOS have been released in a number of forms, starting in 1981. See 1| HE
DEVELOPMENT OF MS-DOS. The major MS-DOS and PC-DOS implementations are sum-
marized in the following table.

Section Il Programming in the MS-DOS Environment 35

Canon Exhibit 1108

Part A: Structure of MS-DOS

Article 1: An Introduction to MS-DOS

56

Version Date Special Characteristics

PC-DOS10 1981 First operating system for the IBM PC
Record-oriented files

PC-DOS1.1 1982 Double-sided-disk support

MS-DOS 125 1982 First OEM release of MS-DOS

MS-DOS/PC-DOS 20 1983 Operating system for the IBM PC/XT
UNIX/XENTX-like file system
Installable device drivers
Byte-otiented files
Support for fixed disks

PCDOS21 Operating system for the IBM PCjr

MS-DOS2 11 Internationalization support

_ 2 0x bug fixes '
MS-DOS/PC-DOS 3.0 1984 Operating system for the IBM PC/AT

Support for 1.2 MB floppy disks
Support for large fixed disks
Suppaort for file and record locking
Application control of print spooler

MS-DOS/PC-DOS 3.1 1984 Support for MS Networks
MS-DOS/PC-DOS 3.2 1986 . 35-inch floppy-disk support
Disk track formatting support added to
device drivers '
MS-DOS/PC-DOS 33 1987 Support for the IBM PS/2

Enhanced internationalization support
Improved file-system performance
Partitioning support for disks with capacity
above 32 MB

PC-DOS version 1 0 was the first commercial version of MS-DOS It was developed for the
original IBM PC, which was typically shipped with 64 KB of memory or less. MS-DOS and
PC-DOS versions 1 x were similar in many ways to CP/M, the popular operating system for
8-bit microcomputers based on the Intel 8080 (the predecessor of the 8086). These ver-
sions of MS-DOS used a single-level file system with no subdirectory support and did not
support installable device drivers or networks Programs accessed files using file control
blocks (FCBs) similar to those found in CP/M programs. File operations were record
oriented, again like CP/M, although record sizes could be varied in MS-DOS

Although they retained compatibility with versions 1x, M5-DOS and PC-DOS versions 2 x
represented a major change. In addition to providing suppot for fixed disks, the new ver-
sions switched to a hierarchical file system like that found in UNTX/XENIX and to file-
handle access instead of FCBs (A file handle is a 16-bit number used to reference an intet-
nal table that MS-DOS uses 10 keep track of currently open files; an application program
has no access to this internal table } The UNIX/XENIX-style file functions allow files to be
treated as a byte stream instead of as a collection of records Applications can read or write
1to 65535 bytes in a single operation, starting at any byte offset within the file Filenames

The M5-DOS Encyclopedia

used for opening a file are passed as text strings instead of being parsed into an FCB
Installable device diivers were another major enhancement

MS-DOS and PC-DOS versions 3 x added a number of valuable features, inchiding support
for the added capabilities of the IBM PC/AT, for larger-capacity disks, and for file-focking
and record-locking functions. Network support was added by providing hooks for a redi-
rector (an additional operating-system module that has the ability to redirect local system
service requests to a remote system by means of a local area network).

With all these changes, MS-DOS remains a traditional single-tasking operating system It
provides a large number of system services in a transparent fashion so that, as long as they
use only the MS-DOS-supplied services and refrain from using hardware-specific opera-
tions, applications developed for one MS-DOS machine can usually run on another

Basic MS-DOS Requirements

Foremost among the requirements for MS-DOS is an Intel 8086-compatible microproces-
sor See Specific Hardware Requirements below

The next requirement is the ROM bootstrap loader and enough RAM to contain the
MS-DOS BIOS, kernel, and shell and an application program The RAM must start at ad-
dress 0000:0000H and, to be managed by MS-DOS, must be contiguous. The upper limit
for RAM is the limit placed upon the system by the 8086 family — 1 MB

The final requirement for MS-DQOS is a set of devices supported by device dsivers, includ-
ing at least one block device, one characier device, and a clock device The block device is
usually the boot disk device (the disk device from which MS-DOS is loaded); the charactes
device is usually a keyboard Adisplay combination for interaction with the uset; the clock
device, required for time-of-day and date support, is a2 hardware counter driven in a sub-
multiple of one second

Specific hardware requirements

MS-DOS uses several hardware components and has specific requirements for each. These
componerts include

® Ap 8086-family microprocessor

® Memory

¢ Peripheral devices

® A ROM BIOS (PC-DOS only)
The microprocessor

MS-DOS runs on any machine that uses a microprocessor that executes the 8086/8088
instruction set, inchuding the Intel 8086, 80C86, 8088, 80186, 80188, 80286, and 80386 and
the NEC V20, V30, and V40

Section I Programming in the MS-DOS Environment 57
Canon Exhibit 1108

Part A: Structure of MS-DOS

Article 1: An Introduction to MS-DOS

The 80186 and 80188 are versions of the 8086 and 8088, integrated in a single chip with
direct memory access, timet, and interrupt support functions. PC-DOS cannot usually run
on the 80186 or 80188 because these chips have internal interrupt and interface register
addresses that conflict with addresses used by the PC ROM BIOS See PROGRAMMING
IN THE MS-DOS ENVIRONMENT: CusTtoMiZING Ms-Dos: Hardware Interrupt Handlers
MS-DOS, however, does not have address requirements that conflict with those interrupt
and inteiface areas

The 80286 has an extended instruction set and two operating modes: real and protected.
Real mode is compatible with the 8086/8088 and runs MS-DOS Protected mode, used by
operating systems like UNIX/XENIX and MS OS/2, is partially compatible with real mode
in terms of instructions but provides access to 16 MB of memory versus only 1 MB in real
mode (the limit of the 8086/8088)

The 80386 adds further instructions and a third mode called virtual 86 mode. The 80386
instructions operate in either a 16-bit or a 32-bit environment. MS-DOS can run on the
80386 in real or virtual 86 mode, although the latter requires additional support in the form
of a virtual machine monitor such as Windows /386

Memory requirements

At a minimum, MS-DOS versions 1 x require 64 KB of contiguous RAM from the base of
memory to do useful work; versions 2 x and 3 x need at least 128 KB The maximum is

1 MB, although most MS-DOS machines have a 640 KB limit for IBM PC compatibility
MS-DOS can use additional noncontiguous RAM for a RAMdisk if the proper device driver
is included (Cther uses for noncontiguous RAM include buffers for video displays, fixed
disks, and network adapters)

PC-DOS has the same minimum memory requirements but has an upper limit of 640 KB
on the initial contiguous RAM, which is generally referred to as conventional memory
This limit was imposed by the architecture of the original IBM PC, with the remaining
area above 640 KB reserved for video display buffers, fixed disk adapters, and the ROM
BIOS Some of the reserved areas include

Base Address Size (bytes) Description

AQG0:0000H 10000H (64 KB) EGA video buffer

B000:0000H 1000H (4 KB) Monochrome video buffer
B800:0000H 4000H (16 XB) Color/graphics video buffer
C800:0000H 4000H (16 KB) Fixed-disk ROM

FOO0:0000H 10000H (64 KB) PC ROM BIOS and ROM BASIC

The bottom 1024 bytes of system RAM (locations 00000-003FFH) are used by the micro-
processor for an interrupt vector table — thatis, a list of addresses for interrupt handler
routines. MS-DOS uses some of the entries in this table, such as the vectors for interrupts
20H through 2FH, to store addresses of its own tables and routines and to provide linkage
to its services for application programs The IBM PC ROM BIOS and IBM PC BASIC use
many additional vectors for the same purposes.

58 The MS-DOS Encyclopedia

Peripheral devices

MS-DOS can support a wide variety of devices, including floppy disks, fixed disks, CD
ROMs, RAMdisks, and digital tape drives The required peripheral support for MS-DOS is
provided by the MS-DQS BIOS or by installable device drivers

Five logical devices are provided in a basic MS-DOS system:

Device Name Description

CON Console input and cutput
PRN Printer output

AUX Auxiliary input and output
CLOCKS Date and time support.
Varies (A—E)} One block device

These five logical devices can be implemented with a BIOS supporting a minimum of
three physical devices: a keyboard and display, a timer or clock/calendar chip that can
provide a hardware interrupt at regular intervals, and a block storage device Insucha
minimum case, the printer and auxiliary device are simply atiases for the console device
However, most MS-DOS systems support several additional logical and physical devices
See PROGRAMMING IN THE MS-DOS ENVIRONMENT: PROGRAMMING FOR MS-DOS!
Character Device Input and Output

The MS-DOS kernet provides one additional device: the NUL device. NUI is a “bit
bucket” —that is, anything written to NUI is simply discarded Reading from NUT always
returns an end-of-file marker One common use for the NUL device is as the redirected
output device of 2 command or application that is being run in a batch file; this redirection
prevents screen clutter and distuption of the batch file’s menus and displays

The ROM BIOS

MS-DOS requires no ROM support (except that most bootstrap loaders reside in ROM)
and does not care whether device-driver support resides in ROM or is part of the MS-DOS
1O SYS file loaded at initialization PC-DOS, on the other hand, uses a very specific ROM
BIOS The PC ROM BIOS does not provide device drivers; rather, it provides support rou-
tines used by the device drivers found in IBMBIO COM (the PC-DOS version of IO §YS).
The support provided by a PC ROM BIOS includes

® Power-on self test (POST)

Bootstrap loade:

Keybcard

Displays (monochrome and color/graphics adapters)
Serial ports 1and 2

Parallel printer potts 1, 2, and 3

Clock

Print screen

Section IT. Programming in the M$-DOS Environment 59

Canon Exhibit 1108

Bart A: Structure of MS-DOS Articie 2: The Components of MS-DOS

The PC ROM BIOS loader routine searches the ROM space above the PC-DOS 640 KB limit Al'tiCle 2
for additional ROMs The IBM fixed-disk adapter and enhanced graphics adapter (EGA)
coniain such ROMs. (T he fixed-disk ROM also includes an additional loader routine that : The C Omponents Of MS'DO S

allows the system to start from the fixed disk)

L3

MS-DOS is a modular operating system consisting of multiple components with special-

Summary 5 ized functions. When MS-1DOS is copied into memory during the loading process, many of
.) . . : . i its components are moved, adjusted, or discarded However, when it is running, MS-DOS

,MS—D.OS 5a wxd'e y accepted EI'ththnal operatmg system Its consistent and well-defined is a refatively static entity and its components are predictable and easy to study Therefore,
interface makes it one of the easier operating systems to adapt and program : this article deals first with MS-DOS in its running state and later with its loading behavior.

MS-DOS is also a growing operating system — each version has added more features yet
made the system easier to use for both end-users and programmers. In addition, each ves-
sion has included more support for different devices, from 5 25-inch floppy disks to high- A -

density 3 S-inch floppy disks As the hardware continues to evolve and user needs become ? The Ma] or Elements
more sophisticated, MS-DOS too will continue to evolve

MS-DOS consists of three major modules:

William Wong Module MS-DOS Filename PC-DOS Filename
. M$-DOS BIOS IO SYS IBMBIO COM
MS-DOS kernel MSDOS SYS IBMDOS COM

MS-DOS shell COMMAND COM COMMAND.COM

During system initialization, these modules are loaded into memory, in the order given,
just above the interrupt vector table located at the beginning of memory All three modules
remain in memory until the computer is reset or turned off (The loader and system initial-
ization modules are omitted from this list because they are discarded as soon as MS-DOS
is running. See Loading MS-DOS below)

The MS-DOS BIOS is supplied by the original equipment manufacturer (OEM) that i
distributes MS-DOS, usually for a particular computer See PROGRAMMING IN THE
MS-DOS ENVIRONMENT: STRUCTURE OF Ms-DOs: An Introduction to MS-DOS The kernel
is supplied by Microsoft and is the same across all OEMs for a particular version of
MS-DOS —that is, no modifications are made by the OEM The shell is a replaceable
moduie that can be supplied by the OEM or replaced by the user; the default shell,
COMMAND COM, is supplied by Microsoft

The MS-DOS BIOS

The file IO SYS contains the MS-DOS BIOS and the MS-DOS initialization module,
SYSINIT. The MS-DQOS BIOS is customized for a particular machine by an OEM. SYSINIT
is supplied by Microsoft and is put into IO .SYS by the OEM when the file is created See
Loading MS-DOS below

Section II Programming in the MS-DOS Environment 61

Canon Exhibit 1108

60 The MS-DOS Encyclopedia

Part A: Structure of MS-DOS

The MS-DOS BIOS consists of a list of resident device drivers and an additional initializa-
tion module created by the OEM. The device drivers appear first in 10 SYS because they
remain resident after IO SYS is initialized; the MS-DOS BIOS inirialization routine and
SYSINIT are usually discarded after initialization

The minimum set of resident device drivers is CON, PRN, AUX, CLOCKS$, and the driver

for one block device The resident character-device drivers appear in the driver list before
the resident biock-device dtivers; installable character-device diivers are placed ahead of
the resident device drivers in the list; installable block-device drivers are placed after the
resident device drivers in the list. This sequence ailows installable character-device drivers
to supersede resident drivers. The NUL device driver, which must be the first driver in the
chain, is contained in the MS-DOS kernel.

Device driver code can be split between 10 SYS and ROM For example, most MS-DOS sys-
tems and all PC-DOS-compatible systems have a ROM BIOS that contains primitive device
support routines. I hese routines are generally used by resident and installable device
drivers to augment routines contained in RAM (Placing the entire driver in RAM makes
the driver dependent on a particular hardware configuration; placing part of the driver in
ROM allows the MS-DOS BIOS to be paired with a particular ROM interface that remains
constant for many different hardware configurations) '

The 10 SYS file is an absolute program image and does not contain relocation information
The routines in 10 SYS assume that the CS register contains the segment at which the file is
{foaded. Thus, KO SYS has the same 64 KB restriction as a COM file See PROGRAMMING
IN THE MS-DOS ENVIRONMENT: ProGRaMMING FOR MS-DOS: Sttucture of an Application
Program larger IO SYS files are possible, but all device driver headers must lie in the first
64 KB and the code must rely on its own segment arithmetic to access routines outside

the first 64 KB.

The MS-DOS kernel

62

The MS-DOS kernel is the heart of MS-DOS and provides the functions found in a tradi-
tional operating system It is contained in a single proprietary file, MSDOS SYS, supplied
by Microsoft Corporation. The kernel provides its support functions (referred 1o as system.
functions) to application programs in a hardware-independent manner and, in turn, is iso-
lated from hardware characteristics by relying on the driver routines in the MS-DOS BIOS
to perform physical input and output operations.

The MS-DOS kernel provides the followirig services through the use of device drivers:

® File and directory management
® Character device input and output
® Time and date support

1t also provides the following non-device-related functions:

® Memory management
® Task and environment management
#® Country-specific configuration

The M5-DOS Encyclopedia

Article Z: The Components of MS-DOS

Programs access sysiem functions using software interrupt (INT) instructions MS-DOS
reserves Interrupts 20H through 3FH for this puipose The MS-DOS interrupts are

Interrupt Name

20H Terminate Program

21H MS-DOS Function Calls

22H Terminate Routine Address
23H Control-C Handler Address
24H Critical Error Handler Address
25H Absolute Disk Read

26H Absolute Disk Write

274 Terminate and Stay Resident
28H-2EH Reserved

2FH. Muttiplex

30H-3FH Reserved

Interrupt 21H is the main source of MS-DOS services. The Interrupt 21H functions are
implemented by placing a function number in the AH register, placing any necessary
parameters in other registers, and issuing an INT 21H instruction (MS-DOS also supports
a call instruction interface for CP/M compatibility. The function and parameter registers
differ from the interrupt interface The CP/M intetface was provided in M5-DOS version 1 0
solely 1o assist in movement of CB/M-based applications to MS-DOS. New applications
should use Interrupt 21H functions exclusively)

MS-DOS version 2 0 introduced a mechanism to modify the operation of the MS-DOS BIOS
and kernel: the CONFIG SYS file. CONFIG SYS is a text file containing command options
that modify the size or configuration of internal MS-DOS tables and cause additional de-
vice drivers to be loaded The file is read when MS-DOS is first loaded into memory. See
USER COMMANDS: CONFIG 5YS.

The MS-DOS shell

The shell, or command interpreter, is the first program started by MS-DOS after the
MS-DOS BIOS and kernel have been loaded and initialized It provides the interface
between the kernel and the user The default MS-DOS shell, COMMAND COM, isa
command-oriented interface; other shells may be menu-driven o1 screen-oriented.

COMMAND COM is a replaceable shell. A number of commercial products can be used
as COMMAND COM replacements, or a programmer can develop a customized shell. The
new shell program is installed by renaming the program to COMMAND COM or by using
the SHEIL command in CONFIG SYS. The latter method is preferred because it allows
initialization parameters to be passed to the shell program.

Section IL Programming in the MS-DOS Environment 63

Canon Exhibit 1108

Part A: Structure of MS-DOS

COMMAND COM can execute a set of internal (built-in) commands, load and execute
programs, or interpret batch files Most of the internal commands support file and direc-
tory operations and manipulate the program environment segment maintained by
COMMAND COM. The programs executed by COMMAND COM are .COM or EXE files
loaded from a block device. The batch { BAT) files supported by COMMAND.COM pro-
vide a limited programming language and are therefore useful for performing small,
frequently used series of MS-DOS commands In particular, when it is first loaded by
MS-DOS, COMMAND COM scarches for the baich file AUTOEXEC BAT and interprets it, if
found, before taking any other action COMMAND COM also provides default terminate,
Control-C and critical error handlers whose addresses are stored in the vectors for Inter-
rupts 22H, 23H, and 24H See PROGRAMMING IN THE MS-DOS ENVIRONMENT:
Cusromrzing Ms-pos: Exception Handlers.

COMMAND.COM’s split personality

COMMAND.COM is a conventional COM application with a slight twist Ordinarily, a
COM program is loaded into a single memory segment. COMMAND .COM starts this way
but then copies the nonresident portion of itself into high memory and keeps the resident
portion in iow memory The memory above the resident portion is released to MS-DOS.

The effect of this split is not apparent until after an executed program has terminated

and the resident portion of COMMAND.COM regains control of the systemn The resident
portion then computes a checksum on the area in high memory where the nonresident
portion should be, to determine whether it has been overwritten If the checksum maiches
a stored value, the nonresident portion is assumed to be intact; otherwise, a copy of the
nonresident portion is reloaded from disk and COMMAND COM continues its normal
operation '

This “split personality” exists because MS-DOS was originally designed for systems with a
limited amount of RAM The nonresident portion of COMMAND COM, which contains the
built-in commands and batch-file-processing routines that are not essential to regaining
control and reloading itself, is much larger than the resident portion, which is responsible
for these tasks Thus, permitting the norresident portion to be overwritten frees additional
RAM and allows larger application programs to be run

Command execution

COMMAND COM interprets commands by first checking to see if the specified command
matches the name of an internal command If so, it executes the command; otherwise, it
searches fora COM, EXE, or BAT file (in that order) with the specified name. If a COM
or EXE program is found, COMMAND COM uses the MS-DOS EXEC function (Interrupt
21H Function 4BH) to load and execute it COMMAND COM itself interprets BAT files

If no file is found, the message Bad command oz file name is displayed.

Although a command is usually simply a filename without the extension, MS3-DOS versions
3 0 and later allow a command name to be preceded by a full pathname If a path is not
explicitly specified, the COMMAND COM search mechanism uses the contents of the

The M5-DOS Encyclopedia

Article 2; The Components of MS-DOS

PATH environment variable, which can contain a list of paths to be searched for com-
mands. The search starts with the current directory and proceeds through the directories
specified by PATH until a fife is found or the list is exhausted For example, the PATH
specification

PAIH C:\BIN;D:\BIN:E:\

causes COMMAND .COM to search the cuirent directory, then C:\BIN, then D:\BIN, and
finally the root directory of drive E COMMAND COM searches each directory for a match-
ing COM, EXE, or BAT file, in that order, before moving to the next directory

MS-DOS environments

Version 2.0 introduced the concept of environments to MS-DOS An environment is a
paragraph-aligned memory segment containing a concatenated set of zero-terminated
(ASCIIZ) variable-length strings of the form

variable=value

that provide such information as the current search path used by COMMAND.COM to find
executable files, the location of COMMAND COM itself, and the format of the user prompt
The end of the set of strings is matked by a null string ~—that is, 2 single zero byte, A
specific environment is associated with each program in memory through a pointer con-
tained at offset 2CH in the 256-byte program segment prefix (PSP) The maximum size of
an environment is 32 KB; the default size is 160 bytes '

If a program uses the EXEC function to load and execute anothet program, the contents of
the new program’s environment are provided to MS-DOS by the initiating program —one
of the parameters passed to the MS-DOS EXEC function is a pointer o the new program’s
environment The default environment provided to the new program is a copy of the
initiating program’s environment

A program that uses the EXEC function to load and execute another program will not
itself have access to the new program’s environment, because MS-DOS provides a pointer
to this environment only to the new program Any changes made to the new program’s en-
vironment during program execution are invisibie to the initiating program because a
child program’s environment is always discarded when the child program terminates

The system’s master environment is normally associated with the shell COMMAND .COM
COMMAND COM creates this set of environment strings within itself from the contents
of the CONFIG SYS and AUTOEXEC BAT files, using the SET, PATH, and PROMPT com-
mands. See USER COMMANDS: AUTOEXEC BAT; CONFIG 5Y3. In MS-DOS version 3 2, the
initial size of COMMAND COM’s environment can be controlled by loading

COMMAND COM with the /E parameter, using the SHELL directive in CONFIG SYS

For exarople, placing the line

SHELL=COMMAND COM /E:2048 /P

Section Il Programming in the MS-DOS Enui ronment 65
Canon Exhibit 1108

T

Part A: Structure of MS-DOS

Article 2: The Components of MS-DOS

in CONFIG SYS sets the initial size of COMMAND COM's environment to 2 KB (The /P
opticn prevents COMMAND COM from terminating, thus causing it to remain in memory
until the system is turned off or restarted)

The SET command is used to display o1 change the COMMAND COM environment con-
tents SET with no parameters displays the list of ali the environment strings in the envi-
ronment A typical listing might show the following settings: '

COMSPEC=A: \COMMAND . COM
PAIH=C:\;A:\;B:\
PROMPI=$p $d S§t$_Sn&g
IMP=C:\[EMP

The following is a dump of the environment segment containing the previous environment
example:
0 1 2 3 4 5 6 7 8 9 A B C D E F
0000 43 4F 4D 53 50 45 43 30-41 3A 5C 43 4F 4D 4D 41 COMSPEC=A:\COMMA
0010 4E 44 2E 43 4F 40 00 50~41 54 48 3D 43 3A 5C 3B ND COM.PAIH=C:\;
0020 41 3A 5C 3B 42 3A 5C 00-50 52 4F 4D 50 54 3D 24 A:\;B:\ .PROMPI=$
003G 70 2G 20 24 64 20 20 24-74 24 SE 24 6E 24 67 00 p $d 5t$_$nSg
0040 54 4D 50 3D 43 3A 5C 54-45 4D 50 00 00 00 00 00 TMP=C:\IEMP.
A SET command that specifies a variable but does not specify 2 value for it deletes the vari-
able from the environment.

A program can ignore the contents of its environment; however, use of the environment
can add a great deal to the {lexibility and configurability of batch files and application
DIOZIAmS.

Batch files

66

Batch files are text files with a BAT extension that contain MS-DOS user and batch com-
mands Fach line in the file is limited to 128 bytes See USER COMMANDS: ratcr Batch
files can be created using most text editors, including EDLIN, and short batch files can
even be created using the COPY command:

C>COPY CON SAMPLE BAI <Enter>

The CON device is the system conscle; text entered trom the keyboard is echoed on the
screen as it is typed The copy operation is terminated by pressing Ctil-Z (or the F6 key on
TBM-compatible machines), followed by the Enter key.

Batch files are interpreted by COMMAND COM one line at a time In addition to the stan-
dard MS-DOS commands, COMMAND COM’s batch-file interpreter supports a number of
special batch commands:

Command Meaning

ECHC* Display a message
FOR* FExecute 2 command for a list of files

(more)
The M$-DOS Encyclopedia

Command Meaning

GOTO* Transfer control to another point.
IF* Conditionally execute a command
PAUSE Wait for any key to be pressed
REM Insert comment line.

SHIFT* Access more than 10 parameters

* MS-DOS versions 2.0 and later

Execution of a batch file can be terminated before completion by pressing Cul-C or
Ctrl-Break, causing COMMAND COM to display the prompt

lerminate batch jeb? (Y/N}

1/0 redirection

1/0 redirection was introduced with M5-DOS version 2.0. The redirection facility is imple-
mented within COMMAND COM using the Interrupt 21H system functions Duplicate File
Handle (45H) and Force Duplicate File Handle (46H) COMMAND COM uses these func-
tions to provide both redirection at the command level and a UNIX/XENTX-like pipe
facility

Redirection is transparent to application programs, but to take advantage of redirection, an
application program must make use of the standard input and output file handles The in-
put and output of application programs that directly access the screen or keyboard or use
ROM BIOS functions cannot be redirected

Redirection is specified in the command line by prefixing file or device names with the
special characters >, >>, and < Standard output (default = CON} is redirected using > and
>> followed by the name of 4 file or character device The former character creates a new
file (or overwrites an existing file with the same name); the latter appends text to an exist-
ing file (or creates the file if it does not exist) Standard input (default = CON) is redirected
with the < character followed by the name of a file or character device See aiso PRO-
GRAMMING IN THE MS-DOS ENVIRONMENT: CustoMIZING MS-DOS: Writing MS-DOS
Filters

T he redirection facility can also be used to pass information from one program to an-
other through a “pipe ” A pipe in MS-DOS is a special file created by COMMAND COM.
COMMAND COM redirects the output of one program into this file and then redirects this
file as the input to the next program The pipe symbol, a vertical bar (1), separates the pro-
gram names Multiple program names can be piped together in the same command line:

C>DIR * * | SORI | MORE <Enter>
This command is equivalent to

C>DIR.#*.* > PIPEQ <Enter>
C>SCRI < PIPEQ > PIPE1 <Enter>
C>MORE < PIPE1 <Enter>

Section II: Programming in the MS5-DOS Environment 67

Canon Exhibit 1108

Pari A: Structure of MS-DOS

The concept of pipes came from UNIX/XENIX, but UNIX/XENIX is a multitasking oper-
ating system that actually runs the programs simultaneously UNIX/XENIX uses memory
buffers to connect the programs, whereas MS-DOS loads one program at a time and passes
information through a disk file

Loading MS-DOS

Getting MS-DOS up to the standard A> prompt isa complex process with a number of
variations. I'his section discusses the complete process normally associated with MS-DOS
versions 2 0 and later (MS-DOS versions 1 x use the same general steps but lack support for
various system tables and installable device drivers)

MS-DOS is loaded as 2 result of either a “cold boot” or a “warm boot ¥ On IBM-compatible
machines, a cold boot is petformed when the computer is first turned on or when a hard-
ware reset occurs A cold boot usually performs a power-on self test (POST) and deter-
mines the amount of memory available, as well as which peripheral adapters are installed.
The POST is ordinarily reserved for a cold boot because it takes a noticeable amount of
time For example, an IBM-compatible ROM BIOS tests all conventional and extended
RAM (RAM above 1 MB on an 80286-based or 80386-based machine), a procedure that
can take tens of seconds. A warm boot, initiated by simultaneously pressing the Cttl, Alt,
and Del keys, bypasses these hardware checks and begins by checking for a bootable disk

A bootable disk normally contains a small loader program that loads MS-DOS from the
same disk See PROGRAMMING IN THE MS-DOS ENVIRONMENTI: STRUCTURE OF M3-DOS:
MS-DQOS Storage Devices The body of MS-DOS is contained in two files: 10 SYS and
MSDOS 5Y5 (IBMBIO COM and IBMDOS COM with PC-DOS). 10 SYS contains the
Microsoft system initialization module, SYSINIT, which configures MS-DOS using either
default values or the specifications in the CONFIG SYS$ file, if one exists, and then starts up
the shell program (usually COMMAND CGM, the default) COMMAND COM checks for an
AUTOEXEC BAT file and interprets the file if found (Other shells might not support such
batch files } kinatly, COMMAND COM prompts the user for a command. {The standard
MS-DOS prompt is A> if the systern was booted from a floppy disk and C> if the system
was booted from a fixed disk) Fach of these steps is discussed in detail below

The ROM BIOS, POST, and bootstrapping

All 8086/8088-compatible microprocessors begin execution with the CS:IP set to
FFFF:0000H, which typically contains a jump instruction to a destination in the ROM BIOS
that contains the initialization code for the machine {This has nothing to do with MS-DOS;
it is a fearure of the Intel microprocessors) On IBM-compatible machines, the ROM BIOS
occupies the address space from FOO0:0000H to this jump instruction Figure 2-1 shows the
location of the ROM BIOS within the 1 MB address space Supplementary ROM suppost
can be placed before (at lower addresses than) the ROM BIOS.

All interrupts are disabled when the microprocessor starts execution and it is up to the
initialization routine to set up the interrupt vectors at the base of memory

68 The MS-DOS Encyciopedia

Article 2: The Components of MS-DOS

-«— FIFFF:000FH(I MB)

ROM BIOS -«— FFFF:0000H
«€— F000:0000H
Other ROM and RAM
-«— Topof RAM
{A000:0000H for IBM PC)
Free RAM
L <« 0000:0000H

Figure 2-1 Memory layout at startup

The initialization routine in the ROM BIOS — the POST procedure —typically deter-
mines what devices are installed and operatjonal and checks conventional memory (the
firs_t 1 MB) and, for 80286-based or 80386-based machines, extended memory (above 1
MB) The devices ate tested, where possible, and any problems are reported using a series
of beeps and display messages on the screen

When the machine is found to be operational, the ROM BIOS sets it up for normal opera-
tion. First, it initializes the interrupt vector table at the beginning of memory and any inter-
rupt controllets that reference the table The interrupt vector table area is located from
0000:0000H to 0000:03FFH On IBM-compatible machines, some of the subsequent mem-
ory (starting at address 0000:0400H) is used for table storage by various ROM BIOS rou-
tines (Figure 2-2). The beginning load address for the M5-DOS system files is usually in
the range 0000:0600H to 0000:0800H

Next, the ROM BIOS sets up any necessary hardware interfaces, such as direct memory
access (DMA) controllers, setial ports, and the like Some hardware setup may be done
before the interrupt vecior table area is set up. For example, the IBM PC DMA contioller
also provides refresh for the dynamic RAM chips and RAM cannot be used until the
refresh DMA is 1unning; therefore, the DMA must be set up first

Some ROM BIOS implementations also check 1o see if additional ROM BIOSs ase installed
by scanning the memory from A000:0000H to FO00:0000H for a particular sequence of sig-
nature bytes If additional ROM BIOSs are found, their initialization routines are called to
initialize the associated devices. Examples of additional ROMs for the IBM PC family are
the PC/XT’s fixed-disk ROM BIOS and the EGA ROM BIOS. '

The ROM BIOS now starts the bootstrap procedure by executing the ROM loader routine
On the IBM PC, this routine checks the first floppy-disk drive to see if there is 2 bootable

Section II. Programming in the MS-DOS Environ
£ purraet 1168

Article 2: The Components of MS-DOS

Part A: Structure of MS-DOS

-«— FFFF:000FH(1 MB)

«— FFTF:C00FH(1 MB)
ROM BICS «— FFFF:0000H ROM BIOS «— FFFE:0000H
«— F0O00:0000H - <€ FO00:0000H
Other ROM and RAM Other ROM and RAM
«— Topof RAM : -«— Top of RAM
(A000:0000H for IBM PC) _ (A000:0000H for IBM PC)
] Possible free RAM
Free RAM : |
e : Boot sector <€— Arbitrary location
-€— (000:0600H .
ROM BIOS tabi ;
0% | 0000:0400H - Free RAM
Interrupt vectors
_ < 9000:000081 ROM BIOS mbles | < C000:0600H
! - 0000:0400H
Figure 2-2 The interrupt vector table and the ROM BIOS table = Interrupt vectors

S : . . . N \ -€— (000:0000H
disk in it Ifthere is not, the routine then invokes the ROM associated with another boot-
able device to see if that device contains a bootable disk This procedure is repeated until
2 bootable disk is found or until all bootable devices have been checked without success,

Figure 2-3 A loaded boot sector.

in which case ROM BASIC is enabled
Bootable devices can be detected by a number of proprietary means. The IBM PC ROM B Boot sector < First sector on the disk
BIOS reads the first sector on the disk into RAM (Figure 2-3) and checks for an 8086-tamily Reserved
short or long jump at the beginning of the sector and for AASSH in the last word of the sec- {optional}
tor, This signature indicates that the sector contains the operating-system ioader. Data EATHL
disks— those disks not set up with the MS-DOS system files —usually cause the ROM ; _
loader routine to display a message indicating that the disk is not a bootable system disk AT
The customary recovery procedure is to display a message asking the user to insert 4
another disk (with the operating system files on it) and press a key to try the load opera- Roor di

. . . ; . . L i oot directory
tion again The ROM loader routine is then typically reexecuted from the beginning so
that it can repeat its normal search procedure [0 SYS
When it finds a bootable device, the ROM loader routine loads the operating-system loader *
and transfers control to it The operating-system loader then uses the ROM BIOS services MSDOS SYS
through the interrupt table to load the next part of the operating system into low memory.
Before it can proceed, the operating-system loader must know something about the con- | File data arca
figuration of the system boot disk (Figure 2-4) MS-DOS-compatible disks contain a data ——
structure that contains this information. This structure, known as the BIOS parameter 1 l’_\/
block (BPB), is located in the same sector as the operating-system loader. From the con- '

tents of the BPB, the operating-system loader calculates the location of the root directory
Figure 2-4 Boot-disk configuration

Section II. Programming in the M5-DOS Environment 71

70 The MS-DOS Encyciopedia
Canon Exhibit 1108

Part A: Structure of MS-DOS

72

for the boot disk so that it can verify that the first two entries in the root directory are

10 $YS and MSDOS SYS. For versions of MS-DOS through 3 2, these files must also be the
first two files in the file data area, and they must be contiguous. (T he operating-system
loader usually does not check the file allocation table [FAT] to see if IO SYS and

MSDOS SYS ate actually stored in contiguous sectors) See PROGRAMMING IN THE
MS-DOS ENVIRONMENT: STRUCTURE OF Ms-Dos: MS-DOS Storage Devices

Next, the operating-system loader reads the sectors containing 10 SYS and M3DOS SYS
into contiguous areas of memory just above the ROM BIOS tables (Figure 2-3) {Analterna-
tive method is to take advantage of the operating-system loader’s final jump to the entry
point in 10 SYS and include routines in 10 SYS that allow it to load MSDOS SYS)

Finally, assuming the file was loaded without any errors, the operating-systemlloader
transfers control to I0.SYS, passing the identity of the boot device The operating-system
loader is no longer needed and its RAM is made available for other purposes

«— FFFF:000FH(I MB}

ROM BIOS
<«— FOO0:0000H
Other ROM and RAM
«— Top of RAM
{AQDD:0000H for IBM PC)
Possibie free RAM
Boot sector «€— Arbitrary location
Free RAM
MSDQOS 3YS
<— SYSINIT
108YS «— MS-DOS BIOS {resident device drivers)
ROM BIOS mbles | ¢ O000:0600H '
== ««— (000:0400H
Interrupt vectors
-— (000:0C00H

Figure 2-5 IC SYS and MSDOS S¥5 loaded

The MS-DOS Encyclopedia

Article Z: The Components of MS-DOS

MS-DOS system initialization (SYSINIT)

MS-DOS system initialization begins after the operating-system loader has loaded 10 SYS
and MSDOS SYS and transferred control to the beginning of 10 SYS To this point, there
has been no standard loading procedure imposed by MS-DOS, although the IBM PC load-
ing procedure outlined here has become the de facio standard for most MS-DOS machines.
When control is transferred to IO SYS, however, M5-DOS imposes its standards

The IO SYS file is divided into three modules:

@ The resident device drivers
® The basic MS-DOS BIOS initialization module
® The MS-DOS system initialization module, SYSINIT

The two initialization modules are usually discarded as soon as MS-DOS is completely
initialized and the shell program is running; the resident device drivers remain in memory
while MS-DOS is running and are therefore placed in the first past of the 10.8YS file,
before the initialization modules

The MS-DOS BIOS initialization module ordinarily displays a sign-on message and the
copyright notice for the OEM that created 10.5YS. On IBM-compatible machines, it then
examines entries in the interrupt table to determine what devices were found by the ROM
BIOS at POST time and adjusts the list of resident device drivers accordingly This adjust-
ment usually entails removing those drivers that have no corresponding installed hard-
ware. The initialization routine may also modify internal tables within the device drivers
The device driver initialization routines will be called later by SYSINIT, so the MS-DOS
BIOS initialization routine is now essentially finished and control is tzansferred to the
SYSINIT module.

SYSINIT locates the top of RAM and copies itself there. It then transfers control to the copy
and the copy proceeds with system initialization The first step is to move MSDOS SYS,
which contains the MS-DOS kernel, to a position immediately following the end of the
resident portion of 10 SYS, which contains the resident device drivers This move over-
writes the original copy of SYSINIT and usually all of the MS-DOS BIOS initialization rou-
tine, which are no longer needed The resuiting memory lavout is shown in Figure 2-6

SYSINIT then calls the initialization routine in the newly relocated MS-DOS kernel This
routine performs the internal setup for the kemnel, including putting the approptiate values
into the vectors for Interrupts 20H through 3FH

The MS-DOS kernel initialization routine then calls the initialization function of each
resident device driver to set up vectors for any external hardware interrupts used by the
device Each block-device driver returns a pointer to 2 BPB for each diive thar it supports;
these BPBs are inspected by SYSINIT to find the largest sector size used by any of the
drivers. See PROGRAMMING IN THE MS-DOS ENVIRONMENT: STRUCTURE OF MS-DOS:
MS3-DOS Storage Devices. The kernel initialization routine then allocates a sectot buffer the
size of the largest sector found and places the NUI device driver at the head of the device
driver list

Section IT. Pragramming in the MS-DOS Environment 73
Canon Exhibit 1108

Part A: Structure of MS-DOS

74

«— FFFF:000FH(1 MB)

ROM BIOS
«— F000:0000H
Other ROM and RAM
«— Topof RAM
{A000:0000H for IBM PC)
SYSINIT
Free RAM

MS-DOS kemel

MSDOS.8YS)
MS-DOS BIOS . . .
-
{10 SYS) ReSJdent device drivers
«— 0000:0600H
ROM BIOS tables 0
«— (0000:0400H
Imterrupt vectors

«— 0000:0000H

Figure 2-G SYSINIT and MSDOS $YS relocated

The kernel initialization routine’s final operation before returning to SYSINIT is to display
the MS-DOS copyright message. The loading of the system portion of MS-DOS is now com-
plete and SYSINIT can use any MS-DOS function in conjunction with the resident set of
device drivers

SYSINIT next attempts to open the CONFIG SYS file in the root directory of the boot
drive If the file does not exist, SYSINIT uses the default system parametess; if the file is
opened, SYSINIT seads the entire file into high memory and converts all charactess to
uppercase. The file contents are then processed to determine such settings as the number
of disk buffers, the number of entries in the file tables, and the number of entries in the
drive translation table (depending on the specific commands in the file), and these struc-
tures are allocated following the MS-DOS kernel (Figure 2-7)

Then SYSINIT processes the CONFIG SYS text sequentially to determine what installable
device drivers are to be implemented and loads the installable device driver files into
memory after the system disk buffers and the file and drive tables. Installable device driver
files can be located in any directory on any drive whose driver has already been loaded
Fach installable device driver initialization function is called after the device driver file is
Joaded into memory. The initialization procedure is the same as for resident device drivers,
except that SYSINIT uses an address returned by the device driver itself to determine
where the next device driver is to be placed See PROGRAMMING IN THE MS-DOS ENVI-
RONMENT: CustoMizinG Ms-bos: Installable Device Drivess

The MS-DOS Encyc!opedfa

Article 2: The Components of MS-DOS

-«— FFFF:000FH{1 MB)
ROM BIOS
“«— F000:0000H
Other ROM and RAM
«— Top of RAM _
A0(0:0000H for IB
SYSINTI ¢ or IBM PC)
Pree RAM
Installable
device drivers
File control blocks
Disk buffers
MS-DOS tables
MS-DOS kernet
(MSDOS §Y3)
MS-DOS BIOS ‘
IO S5YS) «€— Resident device drivers
ROM BIOS mbles | ¢ 0000:0600H
~— (0000:0400H
Interrupt vectors

~— (0C0:0000H

Figure 2-7. Tables allocated and installable device drivers loaded

Like resident device drivers, installable device drivers can be discarded by SYSINIT if the
dev.ice driver initialization routine determines that a device is inoperative or nonexistent
A d{sca:'ded device driver is not included in the list of device drivers Installable char acte:l‘-
device drivers supersede resident character-device drivers with the same name; instailable
block-device drivers cannot supersede resident block-drivers and are assigned ’dﬂv letter.
following those of the resident block-device drivers. = s

Section IL. Programming in the MS-DOS Enironment 75

Canon Exhibit 1108

Part A: Structure of MS-DOS

SYSINIT now closes all open files and then opens the three character devices CON, PRN,
and AUX The console (CON) is used as standard input, standard output, and standard
error; the standard printer port is PRN (which defaults to IPT1); the standard auxiliary port
is AUX (which defaults to COM1). Installable device drivers with these names will replace
any resident versions

Starting the shell

SYSINIT’s iast function is to load and execute the shell program by using the MS-DOS
EXEC function. See PROGRAMMING IN THE MS-DOS ENVIRONMENT: PROGRAMMING
FOR Ms-DOS: The MS-DOS EXEC Function The SHELL statement in CONFIG SYS specifies
both the name of the shell program and its initial parameters; the default MS-DOS shell is
COMMAND COM. The shell program is loaded at the start of free memory after the
installable device drivers or after the last internal MS-DOS file control block if there are
no installable device drivers (Figure 2-8)

COMMAND.COM

76

COMMAND COM consists of three parts:

® A resident portion
#® Aninitialization module
® A gransient portion

The resident portion contains support for termination of progsams started by
COMMAND COM and presents critical-error messages. It is also responsible for re-
loading the transient portion when necessary

The initialization module is called once by the resident portion First, it moves the tran-
sient portion 1o high memory (Compare Figures 2-8 and 2-9) Then it processes the
parameters specified in the SHEI1 command in the CONFIG SYS file, if any See USER
COMMANDS: commanD Next, it processes the AUTOEXEC BAT file, if one exists, and
finally, it transfers control back to the resident portion, which frees the space used by the
initialization module and transient portion. The 1elocated transient portion then displays
the MS-DOS user prompt and is ready to accept commands

The wansient portion gets a2 command from either the console or a batch file and executes
it Commands are divided into three categories:

® Internal commands
® Batchfiles
€ External commands

Internal commands are routines contained within COMMAND COM and include opera-
tions like COPY or ERASE Execution of an internal command does not overwrite the tran-
sient portion. Internal commands consist of a keyword, sometimes followed by a list of
command-specific parameters.

The MS-DOS Encyclopedia

Article 2: The Components of M$-DOS

ROM BIOS

-€— FFFF:000FH(t MB)

Other ROM and RAM

~«— FO00:0000H

SYSINIT

««— Top of RAM
(A000:0000H for IBM PC)

Free RAM

COMMAND COM
{trangient)

COMMAND COM
(initialization)

COMMAND .COM
(resident)

Instailable
device drivers

File control blocks

Bisk buffers

MS-DOS tables

MS-DOS kernel
(MSDOS SYS)

MS-DOS BIOS
{0 5YS)

ROM BIOS tables

“— Resident device drivers

= (000:0600H
— O000:0400H

Interrept vectors

~— (000:0000H

Figure 2-8 COMMAND COM loaded

Section II: Programming in the MS-DOS Environment 77

Canon Exhibit 1108

Part A: Structure of MS-DOS

78

«— FFFF000FH(1 MB)

ROM BIOS
«— F000:0000H

Other ROM and RAM

«— Topof RAM
COMMAND COM (A000:0000H for IBM PC)
(transient)

Free RAM

COMMAND COM
(resident)

Installable
device drivers

File control blocks

Disk buffers

MS-DOS tables

MS.-DOS kernel
(MSDOS SYS)

MS-DOS BIOS

- ident device drivers
(10 8YS) Residen!

«— 0000:0600H

ROMBIOS wbles | (oo oo

Interrupt vectors

-<— (000:0000H

Figure 2-9 COMMAND COM after relocation

Barch files are texa files that contain internal commands, external commands, batch-file
directives, and nonexecutable comments. See USER COMMANDS: BaTCH

External commands, which are actually executable programs, are stored in sep:fuate '

files with COM and EXE extensions and are included on the MS-DOS distribution disks
See PROGRAMMING IN THE MS-DOS ENVIRONMENT: PROGRAMMING FOR MS-DOS! ?truc-
ture of an Application Program. These programs are invoked with the name qf the file
without the extension. (MS-DOS versions 3 x allow the complete pathname of the external

command to be specitied)

The MS-DOS Encyclopedia

Article 2: The Components of M5-DOS

External commands are loaded by COMMAND COM by means of the MS-DOS EXEC func-
tion. The EXEC function Joads a program into the free memory area, also called the tran-
sient program area (TPA), and then passes it contral. Control returns to COMMAND COM
when the new program terminates Memory used by the program is released unless it is a
terminate-and-stay-resident (I SR) program, in which case some of the memory is retained
for the resident portion of the program. See PROGRAMMING IN THE MS-DOS ENVIRON-
MENT: CustoMizING Ms-pos: Terminate-and-Stay-Resident Utilities

After a program terminates, the resident portion of COMMAND.COM checks to see if the
transient portion is still valid, because if the program was large, it may have overwritten
the transient portion’s memory space. The validity check is done by computing a check-
sum on the transient portion and comparing it with a stored value If the checksums do
not match, the resident portion loads a new copy of the transient portion from the
COMMAND COM file,

Just as COMMAND COM uses the EXEC function to load and execute a program, pro-
grams can load and execute other programs until the system runs out of memory Figure
2-10 shows a typical memory configuration for multiple applications loaded at the same
time The active task — the fast one executed — ordinarily has complete control over the
system, with the exception of the hardware interrupt handlers, which gain control
whenever a hardware interrupt needs to be serviced.

MS-DOS is not a muititasking operating system, so although several programs can be resi-
dent in memory, only one progiam can be active at a time. The stack-like nature of the
system is apparent in Figure 2-10 The top program is the active one; the next program
down will continue to run when the top program exits, and so on until control returns to
COMMAND COM RAM-resident programs that remain in memory after they have termi-
nated are the exception In this case, a program lowet in memory than ancther program
can become the active program, although the one-active-process limit is still in effect

A custom shell program

The SHELL directive in the CONFIG SYS file can be used to replace the systemn’s default
shell, COMMAND COM, with a custom shell Neaily any program can be used as a system
shell as long as it supplies default handlers for the Control-C and critical error exceptions
For example, the program in Figure 2-11 can be used to make any application program
appeat to be a shell program — if the appiication program terminates, SHEIL COM
restarts it, giving the appearance that the application program is the shell program

SHEII COM sets up the segment registers for operation as a COM file and reduces the
program segment size to less than 1 KB It then initializes the segment values in the param-
eter table for the EXFC function, because . COM files cannor set up segment values within a
program The Control-C and critical error interrupt handler vectors are set to the address of
the main program loop, which tries to load the new shell program. SHELL COM prints a
message if the EXEC operation fails The loop continues forever and SHEIL COM wiil
never return to the now-discarded SYSINTT that started it

Section II: Programming in the MS-DOS Environment 79

Canon Exhibit 1108

Article 2: The Components of MS-DOS

Part A: Structure of MS-DOS

«— FFFF:000FH(1 MB) SHEIL AsM A simple program to run an application as an

ROM BIOS : ; MS-DOS shell program. Ihe przgram gar;efand
) ; startup parameters must be adjusted before
-€— F000:0000H ; SHEIT is assembled
Other ROM and RAM . . .
; Written by William Wong
-«— Top of RAM ;
COMMAND .COM (AQD0:0000H for IBM PC) : : To create SHELL.COM:
{transient) : E
' C>MASM SHEITL :
: ; C>LINK SHEII:
Free RAM ; C>EXEZBIN SEEL1 .EXS SHELL.COM
: stderr equ 2 ; standard error
Program #3 . cr equ 0dh ; ASCIT carriage return
(active) ©1f equ Oah ; ASCIT linefeed
cseg segment para public 'CODE'
Program #2 .
~- Set up D8, ES, and S88:5P to zrun as COM -~
Program #1 assume C5:cseg
: start proc far
i mov ax,cs ¢ oset up segment registers
COMCOM - add ax, 10k ; AX = segment after PSP
(resident) : mov ds,;ax
; mov ss,ax i set up stack pointer
In.sta]la?)e mov sp,offset stk
device drivers : o mov ax,offset shell
push cs ; push original CS8
File control blocks ; push ds ; push segment of shell
push ax ; push coffset of shell
ret ; jump to shell
i start endp
Disk buffers i
-- Maih program runping as COM --
MS-DOS ables ; C3, DS, S8 = cseg
; Original CS value on top of stack
Msé]'@)?)sslgﬁ;l ' assume ©s:cSeqg,ds:cseq, SS5:CSEG
™ ! } " seg_size equ ({({offset last) - (offset start}) + 10fh} /16
. sheli proc near
MS(;ISC;i{]:;OS < Reasident device drivers pop o5 ; ES = segment to shrink
-«— (000:0600H : mov bx,seg_size i BY = neu‘r.segment size
ROM BIOS tables 4008 : mov ah, 4ah ¢ AH = modify memory block
<— 0000: i int 21h ¢ free excess memory
InterTupt vectors mov emd_seq, ds ; setup segments in
«<— (0000:0000H moyv febl_seg, ds : parametexr block for EXEC
; mov fcbhb2_seg,ds
Figure 2-10 Muitiple programs loaded mov dx,cffset main_loop
- mov ax,2523h : AX¥ = set Control-C handler
Figure 2-11 A simple program 1o + un an application as an MS-DOS shell {more}
80 The MS-DOS Encyclopedia Section Il Programming in the MS-DOS Environment 81

Canon Exhibit 1108

Article 2: The Components of MS-DOS

Part A: Structure of MS-DOS

int 21h ; set handler to DS:DX par_blk dw 0 ; use current environment
mov dx,offset main_loop cw offset cmd _line ; command-line address
mov ax,2524h : AX = set critical error handler cmd_seg dw 0 ; f111 in at initialization
int 21h : set handler to DS:DX dw offset fcbi ; default FCB #1
; Note: DS 1s egual to C3 fecblseqg dw Q 7 £ill in at initializatien
main loep: dw offset fch2 i default FCB #2
push ds : save segment reglsters fchl _seg dw o] ; £il1 in at initialization
push as cmd _line db 0,cr ; actual command line
mov cs:stk_seq,ss ; save stack polnter febhl db 0
mov cs:atk_off, sp db 11 dup (" ")
mov dx,0ffzet pgm_name db 25 dup { 0)
mov bx,offset par.blk feb2 db 0
nov ax, ¢b00h ; AX = EXEC/run program db 11 dup (' ")
iat 21h ; carry = EXEC failed db 25 dup { 0
mov 55,08:5tk _seqg ; restore stack polinter dw 200 dup { 0) i program stack area
mov sp,cs:stk_off) stk dw 0
pop es ; restore segment registers last agqu $; last address used
pop ds cseg ends
jnc main_loop ; loop if program run end start
mov dx,offset load_msg
oV cx, load_msg_length Figure 2-11 Continued
call print : display error message :)
mov ah, 08h ; BH = read without echo ! SHEILL .COM is very short and not too smart It needs to be changed and rebuilt if the name
int 21n ¢ wait for any character of the application program changes A simple extension to SHELI — call it XSHEIT —
Jmp main_loop ¢ execute forever j . . K
shell endp would be to place the name of the application program and any parameters in the com-
; : mand line. XSHELL would then have o parse the program name and the contents of the
: —= print string -- : two FCBs needed for the EXEC function The CONFIG SYS line for starting this shell
would be
DS:DX = address of string ;
; CX = size SHELL=XSHELL \SHELTADEMO.EXE PARAM1 PARAMZ PARAM3
print proc near . SHELI COM does not set up a new environment but simply uses the one passed to it
fiteaid zh, 40h : AH = write to file
mov bx, stderr ; BX = file handle
int 21h . print string ; rps
et : Witliam Wong

print endp
; -- Message strings --

load_msg db cr,1f

db ‘*Cannot load program.',cr,lf

db 'Press any key to try again ',cr,1f
load msg_length equ $-load msg
;

-— Program data area —-

stk_seqg dw 0 ; stack segment pointer
stk_off dw 0 ; save area during EXEC
pym_name db "\NEWSHEIT COM',0 : any program will do

Fignure 2-11 Continued (more)

82 The MS-DOS Encyclapedia Section IT. Programming in the M5-DOS Environment 83

Canon Exhibit 1108

Article 3: MS-DQS Storage Devices

Article 3
MS-DOS Storage Devices

Application programs access data on MS-DOS storage devices through the MS-DOS file-
system support that is pait of the MS-DOS kernel The MS-DOS kernel accesses these
storage devices, also called block devices, through two types of device drivers: resident
block-device drivers contained i IO.SYS and installable block-device drivers loaded
from individual files when MS-DOS is loaded. See PROGRAMMING IN THE MS-DOS
ENVIRONMENT: StrucTURE OF Ms-DOs: T he Components of MS-DOS; CUsTOMIZING
Ms-Dos: Installable Device Drivers

MS-DOS can handle almost any medium, recording method, or other variation for a storage
device as fong as there is a device driver for it MS-DOS needs to know only the sector size
and the maximum number of sectors for the device; the appropriate translation between
logical sector number and physical location is made by the device driver Information
about the number of heads, tracks, and so on is required only for those partitioning pro-
grams that allocate logical devices along these boundaries See 1ayout of a Partition below

The floppy-disk drive is perhaps the best-known block device, followed by its faster
cousin, the fixed-disk drive Other MS-DOS media include RAMdisks, nonvolatile
RAMdisks, removable hard disks, tape drives, and CD ROM drives With the proper device
driver, MS-DOS can place a file system on any of these devices (except read-only media
such as CD ROM)

This article discusses the structure of the file system on floppy and fixed disks, starting
with the physical layout of a disk and then moving on to the logical layout of the file sys-
tem. The scheme examined is for the IBM PC fixed disk

Structure of an MS-DOS Disk

The structure of an M$-DOS disk can be viewed in a number of ways:

® Physical device layout
® logical device layout
® logical block layout

°

MS-DOS file system

The physical layout of a disk is expressed in terms of sectors, tracks, and heads. The logical
device layout, also expressed in terms of sectors, tracks, and heads, indicates how z logical
device maps onto a physical device A partitioned physical device contains multiple logical
devices; a physical device that cannot be partitioned contains only one Fach logical device

Section II Programming in the MS-DOS Environment 85
Canon Exhibit 1108

Part A: Structure of MS-DOS

has a logical block layout used by MS-DOS to implement z file system. These various
views of an MS-DOS disk are discussed below See al/so PROGRAMMING IN TIHE MS-DOS
ENVIRONMENT: ProcraMMmG FOrR MS-DOs: File and Record Management; Disk Directo-
ties and Volume Labels

Layout of a physical block device

The two major block-device implementations are solid-state RAMdisks and rotating mag-
netic media such as floppy o1 fixed disks Both implementations provide a fixed amount of
storage in a fixed number of randomly accessible same-size sectors.

RAMdisks

A RAMdisk is a block device that has sectors mapped sequentially into RAM. Thus, the
RAMdisk is viewed as a large set of sequentially numbered sectors whose addresses are
computed by simply multiplying the sector number by the sector size and adding the base
address of the RAMdisk sector buffer Access is fast and efficient and the access time to any
sector is fixed, making the RaMdisk the fastest block device available However, there are
significant drawbacks to RAMdisks. First, they are volatile; their contents are irretrievably
lost when the computer’s power is turned off (although a special implementation of the
RAMdisk known as a nonvolatile RAMdisk includes a battery backup system that ensures
that its contents are not lost when the computer’s power is tuined off) Second, they are
usually not portable

Physical disks

86

Floppy-disk and fixed-disk systems, on the other hand, store information on revolving
platters coated with a special magnetic material The disk is rotated in the drive at high
speeds — approximately 300 revolutions per minute (rpm) for floppy disks and 3600 rpm
for fixed disks. (The term “fixed” refers to the fact that the medium is built permanently
into the drive, not to the motion of the medium) Fixed disks are also referred to as *hard”
disks, because the disk itself is usually made from a rigid material such as metal or glass;
floppy disks are usually made from a flexible material such as plastic.

A transducer element called the read/write head is used 1o read and write tiny magnetic
regions on the rotating magnetic medium. ¥ he regions act like small bar magnets with
north and south poles The magnetic regions of the medium can be logically otiented
toward one o1 the other of these poles — orientation toward one pole is interpreted as a
specific binary state (1 or 0) and orientation toward the other pole is interpreted as the
opposite binary state. A change in the direction of orientation (and hence a change in the
binary value) between two adjacent regions is called a flux reversal, and the density of a
particular disk implementation can be measured by the number of regions per inch reli-
ably capable of flux reversal Higher densities of these regions vield higher-capacity disks
The flax density of 2 particular system depends on the drive mechanics, the characteris-
tics of the read/write head, and the magnetic properties of the medium

The read/write head can encode digital information on a disk using a number of recording
techniques, including frequency modulation (FM), modified frequency modulation (MFM),

The M5-DOS Encyclopedia

Article 3: M3-DOS Storage Devices

run fength limited (RIL) encoding, and advanced run length limited (ARIT) encoding
Each technique offers double the data encoding density of the previous one The associ-
ated control logic is more complex for the denser techniques. '

Tracks

A read/wiite head reads data from or writes data to a thin section of the disk called a
track, which is laid out in a circular fashion around the disk (Figure 3-1) Standard 5 25-
inch Hoppy disks contain either 40 (0-39) or 80 (0-79) tracks per side 1ike-numbered
tracks on either side of a double-sided disk are distinguished by the number of the read/
write head used to access the track For example, track 1 on the top of the disk is identified
as head 0, track 1; track 1 on the bottom of the disk is identified as head 1, track 1

Tracks can be either spirals, 2s on a phonograph record, or concentric rings Comgputer
media usually use one of two types of concentric rings The first type keeps the same num-
ber of sectors on each track (see Sectors below) and is rotated at a constant angular veloc-
ity (CAV). The second type maintains the same recording density across the entire surface
of the disk, so a track near the center of a disk contains fewer sectors than a track near the
perimeter This latter type of disk is rotated at different speeds to keep the medium under
the magnetic head moving at a constant linear velocity (CLV).

Sector

Fgure 3-1 The physical layout of a CAV 9-sector, 5 25-inch floppy disk

Most M3-DOS computers use CAV disks, although a CLV disk can store more sectors using
the same type of medium. This difference in storage capacity occurs because the limiting
factor is the flux density of the medium and a CAV disk must maintain the same number

of magnetic flux regions per sector on the interior of the disk as at the perimeter. Thus,

the sectors on or near the perimeter do not use the fult capability of the medium and the
heads, because the space reserved for each magnetic [lux region on the perimeter is large:
than that available near the center of the disk. In spite of their greater storage capacity,
however, CLV disks (such as CD ROMs) usually have slower access times than CAV disks
because of the constant need to fine-tune the motor speed as the head moves from track to
track Thus, CAV disks are preferred for MS-DOS systems,

Section II: Programming in the MS-DOS Environment 87

Canon Exhibit 1108

Part A: Structure of MS-DOS

88

Heads
Simple disk systems use a single disk, or platter, and use one or two sides of the platter;

more complex systems, such as fixed disks, use multiple platters Disk systems that use
both sides of a disk have one read/write head per side; the heads are positioned over the
track to be read from or written to by means of a positioning mechanism such as a solenoid
or servomotor The heads are ordinarily moved in unison, using a single head-movement
mechanism; thus, heads on opposite sides of a platter in a double-sided disk system
typically access the same logical track on their associated sides of the platter (Performance
can be increased by increasing the number of heads to as many as one head per track,
eliminating the positioning mechanism However, because they are quite expensive, such
multiple-head systems are generally found only on high-pesformance minicomputers and

mainframes)

The set of like-numbered tracks on the two sides of a platter (or on all sides of all platters
in a multiplatter system) is called a cylinder Disks are usually partitioned along cylinders
Tracks and cylinders may appear to have the same meaning; however, the term track is
used to define a concentric 1ing containing a specific number of sectors on a single side of
a single platter, whereas the term cytinder refers to the number of like-numbered tracks on

a device (Figure 3-2)

™

Side 0, track 7

Side 1,
track 7

1
ﬁcyﬁnder

Side 2. wack 7

Side 3 track 7

Figure 3-2 Tracks and cylinders on a fixed-disk system

Sectors
Each track is divided into equal-size portions called sectors, The size of a sector is a power

of 2 and is usually greater than 128 bytes —typically, 512 bytes.

Floppy disks are either hard-sectored ot soft-sectored, depending on the disk drive and
the medium Hard-sectored disks are implemented using a series of small holes near the

The MS-DOS Encyclopedia

Article 3: MS-DOS Storage Devices

center of the disk that indicate the beginning of each sector; these holes are read by a
photosensor/LED pair built into the disk drive. Soft-sectored disks are implemented by
magnetically marking the beginning of each sector when the disk is formatted. A soft-
sectored disk has a single hole near the center of the disk (see Figure 3-1) that marks the
location of sector 0 for reference when the disk is formatted or when error detection is per-
formed; this hole is also read by a photosensot/LED pair. Fixed disks use a special imple-
mentation of soft sectors (see below) A hard-sectored floppy disk cannot be used ina
disk drive built for use with soft-seciored floppy disks (and vice versa)

In addition to a fixed number of data bytes, both sector types include a certain amount of
overhead information, such as error correction and secior identification, in each secior.
The structure of each sector is implemented during the formatting process.

Standard fixed disks and 5.25-inch floppy disks generally have from 8 to 17 physical sec-
tots per track Sectors are numbered beginning at 1. Each sector is uniquely identified by a
complete specification of the read/write head, cylinder number, and sector number To
access a particular sector, the disk drive controller hardware moves all heads to the speci-
fied cylinder and then activates the appropriate head for the read or write operation.

The read/write heads are mechanically positioned using one of two hardware implemen-
tations The first method, used with floppy disks, employs an “open-loop” servomecha-
nism in which the software computes where the heads should be and the hardware moves
them there (A servomechanism is a device that can move a solenoid or hold it in 4 fixed
position) An open-loop system employs no feedback mechanism to determine whether
the heads were positioned cotrectly — the hardware simply moves the heads to the
requested position and returns an error if the information read there is not what was
expected. The positioning mechanism in floppy-disk drives is made with close tolerances
because if the positioning of the heads on two drives differs, disks written on one might
not be usable on the other

Most fixed disk systems use the second method — a “closed-loop” servomechanism that
reserves one side of one platter for positioning information This information, which indi-
cates where the tracks and sectors are located, is written on the disk at the factory when
the drive is assembled Positioning the read/write heads in a closed-loop system is actually
a two-step process: First, the head assembly is moved to the approximate location of the
read or write operatiof; then the disk controller reads the closed-loop servo information,
compares it to the desired location, and fine-tunes the head position accordingly This
fine-tuning approach yvields faster access times and also allows for higher-capacity disks
because the positioning can be more accurate and the distances between tracks can
therefore be smaller Because the “servo platter” usually has positioning information on
one side and data on the other, many systems have an odd number of read/write heads
for data

Interleaving _

CAV MS-DOS disks are described in terms of bytes per sector, sectors per track, number of
cylinders, and number of read/write heads Overall access time is based on how fast the
disk rotates (rotational latency) and how fast the heads can move from track to track
(track-to-track latency)

Section II: Programming in the MS-DOS Environment 80
Canon Exhibit 1108

Part A; Structure of MS-DOS

iyl

On most fixed disks, the sectors on the disk are logicaily or physically numbered so that
logically sequential sectors are not physically adjacent (Figure 3-3) The underlying princi-
ple is that, because the controller cannot finish processing one sector before the next
sequential sector arrives under the read/write head, the logically numbered sectors must
be staggered around the track This staggering of sectors is called skewing o1, more com-
monly, interleaving A 2-to-1 (2:1) interfeave places sequentially accessed sectors so that
there is one additional sector between them; a 3:1 interleave places two additional sectors
between them A slower disk controller needs a larger interleave factor A 3:1 interleave
means that three revoiutions are required to read all sectors on a track in numeric order

Rotation direction
—

Figure 3-3 A 31 interleave

One approach to improving fixed-disk performance is to decrease the interleave ratio g
This generally requires a specialized utility program and also requires that the disk be 5
reformatted to adjust to the new layout Obviously, a 1:1 interleave is the most efficient,

provided the disk controller can process at that speed The normal interleave for an IBM

PC/AT and its standard fixed disk and disk controller is 3:1, but disk controllers are avail-

able for the PC/AT that are capable of handling a 1.1 interleave Floppy disks on MS-DOS-

based computers all have a 1:1 interleave ratio

Layout of a partition

90

For several reasons, large physical block devices such as fixed disks are often logically pa-

titioned into smaller logical block devices (Figure 3-4). For instance, such partitions allow

a device to be shared among different operating systems. Partitions can also be used to ;
keep the size of each logical device within the PC-DOS 32 MB restriction (important for :
large fixed disks) MS-DOS permits a maximum of four partitions

A partitioned block device has a partition table located in one sector at the beginning of
the disk This table indicates where the logical block devices are physically located. (Even
a partitioned device with only one pastition usually has such a table)

The M5-DOS Encyclopedia

Article 3: M8-DOS Storage Devices

Partition 1
Partition 2

Partition 3
|— Partition 4

Figure 3-4 A partitioned disk

Under the MS-DOS partitioning standard, the first physical sector on the fixed disk con-
tains the patrtition table and a bootstrap program capable of checking the partition table
for 2 bootable partition, Joading the bootable partition’s boot sector, and transferring con-
trol to it. The partition table, located at the end of the first physical sector of the disk, can
contain a2 maximum of four entries:

Offset From

Start of Sector Size (bytes) Description
01BEH 16 Partition #4
01CEH 16 Partition #3
01DEH 16 Partition #2
0I1EEH 16 Partition #1
O1FEH 2 Signature: AASSH

The partitions asre allocated in reverse order. Each 16-byte entry contains the following
information:

Offset From
Start of Entry Size (bytes) Description
00H 1 Boot indicator
01H 1 Beginning head
(more}
Section I Programming in the MS-DOS Environment 91

Canon Exhibit 1108

Part A: Structure of MS-DOS

92

Offset From

Start of Entry Size (bytes) Description

02H 1 Beginning sector

03H 1 Beginning cylinder

04H 1 System indicator

05H 1 Ending head

06H 1 Ending sector

07H 1 Ending cylinder

08H 4 Starting sector (relative to beginning
of disk)

OCH 4 Number of sectors in partition

The boot indicator is zero for a nonbootable partition and 80H for a bootable (active) parti-
tion. A fixed disk can have only one bootable partition (When setting a bootable partition,
partition programs such as FDISK reset the boot indicators for all other pattitions to zero)
See JSER COMMANDS: FDISK

The system indicators are

Code Meaning

GOH Unknown
01H MS-DOS, 12-bit FAT
04H MS-DOS, 16-bit FAT

Each partition’s boot sector is located at the start of the partition, which is specified in |
terms of beginning head, beginning sector, and beginning cylinder numbers. [his infor-
mation, stored in the partition table in this order, is loaded into the DX and CX registers by

the PC ROM BIOS loader routine when the machine is turned on ot restarted. The starting

sector of the partition relative to the beginning of the disk is also indicated The ending

head, sector, and cylinder numbers, also included in the partition table, specify the last ac-

cessible sector for the pattition The total number of sectors in a partition is the difference

between the starting and ending head and cylinder numbers times the number of sectors

per cylindet

MS-DOS versions 2 0 through 3.2 allow only one MS-DOS pattition per partitioned device
Various device drivers have been implemented that use a different partition table that
allows more than one MS-DOS partition to be installed, but the secondary MS-DOS paxti-
tions are usually accessible only by means of an installable device driver that knows about
this change (Even with additional MS-DOS partitions, a fixed disk can have only one boot-

able partition)

The M5-DOS Encyclopedia

Article 3; MS-DQS Storage Devices

Layout of a file system

Block devices are accessed on a sector basis The MS-DOS keinel, through the device
driver, sees a block device as a logical fixed-size array of sectors and assumes that the array
contains a vatid MS-DOS file system The device driver, in turn, translates the logical sector
requests from MS-DOS into physical locations on the block device

The initial MS-DQOS file system is written to the storage medium by the MS-DOS FORMAT
program. See USER COMMANDS: rormar . The general layout for the file system is shown
in Figure 3-3.

OEM identification BIOS parameter block. Loader routine
Reserved area

File altocation table (FAT) #1

Possible additional copies of FAT

Root disk directory

/_\//
//v

Files area

Figure 3-5 The M5-DOS file system

T he boot sector is always at the beginning of a partition It contains the OEM identifica-
tion, a loader routine, and a BIOS parameier block (BPB) with information about the
device, and it is followed by an optional area of reserved sectors See The Boot Sector
below The reserved area has no specific use, but an OEM might require a more complex
loader routine and place it in this area The file allocation tables (FATs) indicate how the
file data area is allocated; the root directory contains a fixed number of directory entiies;
and the file data area contains data files, subdirectory files, and free data sectors.

Section IT- Programming in the MS-DOS Environment 93
Canon Exhibit 1108

Part A: Structure of MS-DOS

All the areas just described —the boot sector, the FAT, the root directory, and the file data
area——are of fixed size; that is, they do not change after FORMAT sets up the medium

The size of each of these areas depends on various factors. For instance, the size of the FAT
is proportional to the file dataarea T he root directory size ordinarily depends on the type
of device; a single-sided floppy disk can hold 64 entries, a double-sided floppy disk can
hold 112, and a fixed disk can hold 256 (RAMdisk drivers such as RAMDRIVE SYS and
some implementations of FORMAT allow the number of directory entries to be specified)

The file data area is allocated in terms of clusters. A clusterisa fixed number of con-
tiguous sectors Sector size and cluster size must be4 power of 2. The sector size is usually
512 bytes and the cluster size is usually 1, 2, or 4 KB, but larger sector and cluster sizes are
possible Commonly used MS-DOS cluster sizes are

Disk Type Sectors/Cluster Bytes/Cluster*
Single-sided floppy disk 1 512
Double-sided floppy disk 2 1024
PC/AT fixed disk 4 2048
PC/XT fixed disk 8 4096
Other fixed disks 16 8192
Other fixed disks 32 16384

* Assumes 512 bytes per sector

In general, larger cluster sizes are used to support larget fixed disks Although smaller clus-
ter sizes make allocation more space-efficient, larger clusters are usually more efficient fot
random and sequential access, especiaily if the clusters for a single file are not sequentiaily

allocated

The file allocation table contains one entry per cluster in the file data area. Doubling the
sectors per cluster will also halve the number of FAT entries for a given partition See The

File Allocation Table below

The boot sector

94

T he boot sector (Figure 3-6) contains a BIOS parameter block, a loader routine, and some
other fields useful to device drivers. The BPB describes a number of physical parameters
of the device, as well as the location and size of the other areas on the device. The device
driver returns the BPB information to MS-DOS when requested, so that M5-DOS can detesr-

mine how the disk is configured

Figuse 3-7 is a hexadecimal dump of an actual boot sector The first 3 bytes of the boot sec-
tor shown in Figure 3-7 would be ESH 2CH 00H if a long jump were used instead of a short
one (as in early versions of MS-DOS). The iast 2 bytes in the sector, 55H and AAH, atea
fixed signature used by the loader routine o ver ify that the sector is a valid boot sector

The MS-DOS Encyclopedia

Article 3; MS-DXOS Storage Devices

00H

ES XX XX XX
- or EB 90

OEM name and version (8 bytes)

OBH 3

Byt h
ODH ytes per sector (2 bytes)

Sectors per allocati i

OEH per allocation unit {1 byte)
\oH Reserved sectors, starting at 0 (2 bytes)

Number of FATs (1 byte)

1IH
Number of root-directory entries {2 bytes} BPB

13H

o Total sectors in logical volume (2 bytes)
L6 Media descriptor byte

\8H Number of sectors per FAT (2 bytes)
1AH Sectors per rack (2 bytes)

\CH Number of heads (2 bytes)

\EH Number of hidden sectors (2 bytes)

Loader routine

Figure 3-6. Ma ‘ g ;
(Bi‘ . 3 ip of the boot sector of an MS-DOS disk Bytes OBH through 17H are the BIOS parameter block

The BPB information contained in bytes 0BH through 17H indicates that there are

512 bytes per sector
2 sectors per cluster
1 reserved sector (for the boot secton)
2 FATs
112 root directory entries
1440 sectors on the disk
FOH media descriptor
3 sectors per FAT

Section II. Programming in the MS-DOS Environment 95

Canon Exhibit 1108

Part A: Structure of MS-DOS

01 2 3 45 6 7 B 9 A
0000 EB 2D 90 20 20 20 20 20-20 20 20
0010 S0p-09 00 02
0020 5 02-09 2A EF
0030 00 7C-33 CO BE

. _.%. %X .Pv. zZ
BE . X< 38.F &0

p180 OA 44 69 73 6B 20 42 G6F-6F 74 20 46 61 695 6C 75 .Disk Boot Failum
0180 72 65 OD OA OD QA 4E 6F-6E 2D 53 79 73 74 &3 &D re. .. .Non-System
01A0 20 64 69 73 6B 20 6F 712-20 64 6% 73 6B 20 65 72 disk or disk er
01B0 72 G6E 72 OD OR 52 65 70-6C 61 63 65 20 61 ©6E 64 ror . .Replace and
01€0 20 70 72 €5 73 73 20 §1-6E 79 20 6B &5 78 20 77 press any key w
01D0 68 65 B6E 20 72 65 61 €4-79% 0D 0A 00 00 00 00 0o hen ready. . .

giE0 0C 00 00 0O 00 00 QO 00-00 GO 00 00 00 00 00 OO e

01F0 0C 00 00 60 00 00 00 0C-00 00 00 00 0O 00 35 AR e e K

Figure 3-7 Hexadecimal dump of an M5-DOS boot sector. The BPB is highlighted

Additional information immediately after the BPB indicates that there are 9 sectors per
track, 2 read/write heads, and 0 hidden sectors.

The media descriptor, which appears in the BPB and in the first byte of each FAT, isused to
indicate the type of medium currently in a drive. IBM-compatible media have the follow-

ing descriptors:

Descriptor Media Type MS-DOS Versions

Article 3: MS-DOS Storage Devices

The file allocation table

T'he file allocation table provides a map to the storage locations of files on a disk by indi-
cating which clusters are allocated to each file and in what order. To enable M$-DOS to
locate a file, the file’s directory entry contains its beginning FAT entry number This FAT
entry, in turn, contains the entry number of the next cluster if the file is larger than one
cluster or a last-cluster number if there is only one cluster associated with the file A file
whose size implies that it occupies 10 clusters will have 10 BAT entries and 9 FAT links
(The set of links for a particular file is called a chain)

Additional copies of the FAT are used to provide backup in case of damage to the first,

or primary, FAT; the typical floppy disk or fixed disk contains two FATs, The FATs are
arranged sequentially after the boot sector, with some possible intervening reserved area.
MS-DOS ordinarily uses the primary FAT but updates all FATs when a change occurs

It also compares all FATs when a disk is first accessed, to make sure they match

MS-DOS supports two types of FAT: One uses 12-bit links; the other, introduced with
version 3.0 to accommodate large fixed disks with more than 4087 clusters, uses 16-bit
links.

The first two entries of a FAT are always reserved and are filled with a copy of the media
descriptor byte and two (for a 12-bit FAT) or three (fot a 16-bit FAT) OFFH bytes, as shown
in the following dumps of the first 16 bytes of the FAT:

12-bit FAT:
F$ FF FF 03 40 00 FF 65-00 07 FO FE GO 00 00 00
16-bit FAT:
F8 FF FF FF 03 00 04 00-EF FF 06 00 07 00 FF FF

The remaining FAT entries have a one-to-one relationship with the clusters in the file data
area Each cluster’s use status is indicated by its corresponding FAT value. (FORMAT in-
itially marks the FAT entry for each cluster as free) The use status is one of the foliowing:

0F8H Fixed disk 2,3 i
OFOH 3 5-inch, 2-sided, 18 sector 32 .
0F9H 3 5-inch, 2-sided, 9 sector 32
OF9H 5 25-inch, 2-sided, 15 sector 3x
OFCH 5 25-inch, 1-sided, 9 sector 2%, 3x
OFDH 5 25-inch, 2-sided, 9 sector 2x%,3%
OFEH 5 25-inch, 1-sided, 8 sector 1x2x, 3%
OFFH 5 25-inch, 2-sided, 8 sector 1x(except1®, 2,3
OFEH &-inch, 1-sided, single-density
(0rpH &inch, 2-sided, single-density
OFEH 8-inch, I-sided, double-density
OFDH 8-inch, 2-sided, double-density
96 The MS-DOS Encyclopedia

12-bit 16-bit Meaning

000H 0000H Free ciuster

001H 0001H Unused code

FFO—FF6H FEFO-FFFOH Reserved

FF7H FFF7H Bad cluster; cannot be used
FF8-FFFH FEF8—FFFFH Last chuster of file

All other values

All other values

Link to next cluster in file

Section Ii. Programming in rheMS~DOS‘]8wir%n€§(%it 1 10§)7

ano

Part A: Structure of MS-DOS

98

If a FAT entry is nonzero, the corresponding cluster has been aliocated . A free cluster is
found by scanning the FAT from the beginning to find the first zero value Bad clusters are
ordinarily identified during formatting Figure 3-8 shows a typical FAT chain

FATenry: 0 i 2 3 4 5 6 7

Lvi vl ¥

FFFH | 003H | 005H | FF7H | 006H | FFFH | 000H | 000H | COCH J ‘
continues

FFDH
(4093)

—

4093) | B (3) (4087 {6) (4093 (O)] (1))

Unused; available cluster

Unusable

L— Unused; not available

—— Disk is double-sided, double-density

Figure 3-8 Space allocation in the FAT for a typical M5-DOS disk

Free FAT entries contain a link value of zero; a link value of 11is neverused Thus, the fisst
allocatable link number, associated with the first available cluster in the file data area, is 2,
which is the number assigned to the first physical cluster in the file data area Figure 3-9
shows the relationship of files, FAT entries, and chisters in the file data area.

There is no logical difference between the operation of the 12-bit and 16-bit FAT entries;
the difference is simply in the storage and access methods Because the 8086 is specifically
designed w manipulate 8- or 16-bit values efticiently, the access procedure for the 12-bit
FAT is more complex than that for the 16-bit FAT (see Figures 3-10 and 3-11)

Special considerations

The FAT is a highly efficient bookkeeping system, but various tradeoffs and problems can
occur One tradeoctt is having a partially filled cluster at the end of a file This situation
leads to an efficiency problem when a targe cluster size is used, because an entire cluster is
allocated, regardtess of the number of bytes it contains For example, ten 100-byte fileson a
disk with 16 KB clusters use 160 KB of disk space; the same files on a disk with 1 KB clus-
ters use only 10 KB—a difference of 150 KB, or 15 times less stotage used by the smaller
cluster size On the other hand, the 12-bit FAT routine in Figure 3-10 shows the difficuity
(and therefore slowness) of moving through a large file that has a long linked list of many
small clusiers. Therefore, the nature of the data must be considered: Large database appii-
cations work best with a larger cluster size; a smaller cluster size allows many small text
files to fit on a disk (The programmer writing the device driver for a disk device ordinarity

sets the cluaster size)

The MS-DOS Encyclopedia

_4

Article 3: M8-DOS Storage Devy._
-5

12-bit FAT:

Reserved a03y FFFH 0078 000H

et B

F9 FEF EF 50 00 oo
_ 004R 006H FFFH
16 bit FAT:
Reserved

0003H 00040 FFFEH 0006H 0007H IFFEH 00Q0H

1 T 1]

E8 FE EF EF 03 00 04 00 FF EF 06 00 07 00 EF EF 00 00

FAT entry: 0 1 2 3 4 5 6 7 8
12-bit FAT: R I L | 0038 004R | FFFE | 0068 | 007K | FEFA | 000n
bt FAL eserve continues .
1! : 00031 OOO4H EEFEH 0006H|CO07HFFFFH| 0000
Directory eniry
FILE1 TXT
{points o FAT entry 2)
FILE2 TXT
(points to FAT entry 3) |[.
File data area Corresponding FAT entry
FILE] T1XT 2
FILE1 XTI 3
L FILELl TXI 4
{ FILEZ. TX1 5
{ FILE2 1XT 6
L FILE2 IX1 7
L Unused (avaitable)) 8
{ 1
Figure 3-9 Correspondence between the FAT and the file data area
Section IT. Programming in the MS-DOS Environment 9o

Canon Exhibit 1108

part A: Structure of MS-DOS

r

; Parameters:
ax
ds:bx

; Returns:
ax

———— Obtain the next link number from a 12-bit EAI

current entry number
address of FAI {(must be contiguous)

next link number

;. Uses: ax, bx, cx

nexti2 proc
add
shr

pushf
add
mov
popi
jc
and
ret
shift: mov
shr
ret
next12 endp

near ;
bx, ax ; ds:bx = partial index
ax, 1 ; ax = offset/2

; carry — no shift needed

; save carry
bx, ax ; ds:bkx = next cluster number index
ax, [bx] ; ax = next cluster number

; carry = no shift needed
shift ; skip if using top 12 bits
axz,0fffh ; ax = lower 12 bits
cx,4 ; cx = shift count
ax,cl ; ax = top 12 bits in lower 12 bits

Figure 3-10 Assembly-langtiage routine 10 aceess a 12-bit FAT.

I

; Parameters:
; ax
ds:bx

; Returns:
ax

———— QObtain the next link number from a 16-bit FAI

; Uses: ax, bx,

nextl16 proc
add
add
mov
ret

next16 endp

current entry number
address of FAI (must be contiguous)

next link number

(54

near

ax,ax : ax = word offset

bx, ax ; ds:bx = next link number index
ax, [bx} ; ax = next link number

Figure 3-11 Assembly-language routine to access @ 16-bit FAT.

100 The MS-DOS Encyclopedia

Article 3: MS-DOS Storage Deviree

Problems with cortupted directories or FATs, induced by such events as power failures
and programs running wild, can lead to greater problems if not corrected The MS-DOS
CHEKDSK program can detect and fix some of these problems See USER COMMANDS:
cHKDsK For example, one common problem is dangling allocation lists caused by the
absence of a directory entry pointing to the start of the list T his situation often results
when the directory entry was not updated because a file was not closed before the com-
puter was turned off or restarted The effect is relatively benign: 1he data is inaccessible,
but this limitation does not affect other file allocation operations CHKDSK can fix this
problem by making a new directory entry and linking it to the list.

Another difficulty occurs when the file size in a directory entrv does not match the file
length as computed by traversing the linked list in the FAT This problem can resultin
improper operation of a program and in error responses from MS-DOS

A more complex (and rarer) problem occurs when the directory entry is propetly set up
but ali or some portion of the linked list is also referenced by another directory entry The
problerm is grave, because writing or appending to one file changes the contents of the
other file This error usually causes severe data and/or directory cotruption or causes the
system to crash

A similar difficulty occurs when a linked list terminates with a free cluster instead of a
last-cluster numbier If the free cluster is allocated before the error is cotrected, the
problem eventually reverts to the preceding problem. An associated difficulty occurs if a
link value of 1 or a link value that exceeds the size of the FAT is encountered

In addition to CHKDSK, a number of commercially available utility programs can be used
to assist in FAT maintenance. For instance, disk reorganizers can be used to essentially
rearrange the FAT and adjust the directory so that all files on a disk are laid out sequentially
in the file data area and, of course, in the FAT

The root directory

Directory entries, which are 32 bytes long, are found in both the root directory and the
subdirectories. Each entry includes a filename and extension, the file’s size, the starting
FAT entry, the time and date the file was created or last revised, and the file’s aitributes
This structure resembles the format of the CB/M-style file control blocks (FCBs) used by
the MS-DOS version 1 x file functions. See PROGRAMMING IN THE MS-DOS
ENVIRONMENT: PROGRAMMING FOR MS-DCS: Disk Directories and Volume Labels

The MS-DGS file-naming convention is aiso derived from CPF/M: an eight-character file-
name followed by a three-character file type, each left aligned and padded with spaces if
necessary. Within the limitations of the character set, the name and type are completely
atbitrary. The time and date stamnps are in the same format used by other MS-DOS func-
tions and reflect the time the file was last written 1o

Figure 3-12 shows a dump of a2 512-byte directory sector containing 16 directory entries
(Each entry occupies two lines in this example) The byte at offset 0ABH, containing a
10H, signifies that the entry starting at 0AOH is for a subdirectory The byte at offset 160H,
containing OESH, means that the file has been deleted The byte at offset 8BH, containing

Section IT. Programming in the MS-DQS Environment 101
Canon Exhibit 1108

Part A: Structure of MS-DOS

‘ Article 3: MS-DOS Storage Devices

the value 08I1, indicates that the directory entry beginning at offset 80H is volume label. The root director i i
’] ‘ v can optionally have a special :
Finally the zero byte at offset 1EOH marks the end of the directory, indicating that the sub- B tified by an attribute rypfe) of OSHST that is ufed o ggrii?;iﬁ;gs?uij;; (jiurnetlzl?d, e
sequent entries in the directory have never been used and therefore need not be searched ; can contain only one volume label T he root directory can also chntain entII ?:s t};;f;tj g; ©
< ; . .) i

(versions 2 0 and later) ‘ subdirectories; such entries are identified by an attribute type of 10H and a file size of zero

Programs that manipulate subdirectories must do so by tracing through their chains of

5 1 2 3 4 5 &8 7 8§ 9 A B € D E F
clusters in the FAT

00GG 49 4F 20 20 20 20 20 20-53 59 53 27 00 00 00 00 IO SYs'
001G G0 ©0 0C OC 00 ©0 5% $3-89 OB 02 00 D1 12 00 00¥S... Q. ‘) _
5026 47 53 44 4F 53 20 20 20-53 59 53 27 00 00 00 00 MSDOS SYS’ - IWO. other special types of directory entries are found only within subdireciories These
0030 00 00 00 00 00 00 47 49-52 CA 07 00 €3 43 06 0CAIR IC.. '- er.ltnes have the filenames . and .. and correspond to the current directory and the parent
0040 41 4E 53 49 20 20 20 20-53 59 53 20 00 00700 00 ANSI - SYS .. ; dl_r'ectory of the cutrent directory. These special entries, sometimes called directory
0G50 00 00 00 00 00 00 41 4%-52 OA 18 00 76 07 00 0CAIR.. ¥V .. ; aliases, can be used 0 move quickly through the directory structure
2060 58 54 41 4C 4B 20 20 20-45 58 45 20 00 00 00 00 XIALK EXE ... ¥ re.
ggﬂ; 22 3? 2[21 Zg (;2 22 Z; ;Do—zi 22 230 gz (1340 (;13 g; gf[)} - P30 S o ll'he rn_al)ﬂmum.‘pathname length supported by MS-DOS, excluding a drive specifier but
0020 o5 on 05 05 o0 0 ac ZO_ZA 2 o6 00 00 08 00 L o s m};:ludmg any filename and extension and subdirectory name separators, is 64 characters
- e ' : The size of t i e i . .
Son0 4G 4k 54 55 53 20 20 20-20 20 20 10 00 00 00 00 TOTUS - . - he d:re.ctorys['mctme1tself1s limited only by the number of reot directory
Q0BG 00 00 00 00 00 00 EO 0A-E1 06 A6 G1 00 00 00 00 Cas.a . : entties and the available disk space
00cO 4C 54 53 4C 4F 41 44 20-43 4F 4D 20 00 00 00 00 TISLOAD COM .. The file area
gopo 00 00 00 00 00 00 EO GA-E1 06 A7 07 A0 27 00 00 otalt
Q0E0 4D £3 46 2D 53 46 20 20-58 54 43 20 00 00 00 00 MCI-SE XTK ... ; . . N
o e 58 o0 00 00 £6 19-32 0p Bi 01 79 04 00 00 : oty i glhe file area contains subdirectories, file data, and unallocated clusters. The area is
R g ivided into fixed-si ‘ : ; :
0100 58 54 41 4C 4B 20 20 20-48 4C SO 20 00 0O 00 00 XIALK. HIP . ; i o | ixed-size clusters and the use for a particuiar cluster is specified by the corre-
0110 00 00 00 GO 00 00 ¢S5 €D-73 07 A3 02 AF 88 00 00 . .. Ems.* / sponding FAT entry
0120 54 58 20 20 20 20 20 26-43 4F 4D 20 00 00 00 60 IX coM
6130 00 00 00 GO 00 00 05 61-65 oC 39 01 E8 20 00 0O . ae 9.h
0140 43 4F 4D 4D 41 4E 44 20-43 4F 4D 20 00 00 00 00 COMMAND COM .. .
G150 00 GG 00 00 GO 0C 41 £8-52 0A 27 00 55 3F 00 00 . ..AIR T U? . ; Other MS-DOS Storage Devices
0150 E5 32 33 20 20 20 20 20-45 58 45 20 00 00 00 00 eZ3 EXE . :
0176 00 00 0C GO 0C 00 $C E2Z-85 OB 42 01 80 5F 01 00 2 B . ,
a1 50 20 20 20 20 20-44 52 56 20 00 00 00 00 GD . _As mentioned earlier, MS-DOS supports other types of storage devices, such as magnetic-
0150 00 00 00 O 00 00 E0 OA-E1 06 9A 01 5B 08 00 00 ... 'a .l . : tape drives and CD ROM drives Tape drives are most often used for archiving and for
01A0 4B 42 20 20 20 20 20 20-44 52 36 20 00 00 90 00 KB DRV .. . sequential transaction processing and therefore are not discussed here
g1B0 00 00 00 0O 00 00 EO OA-E1 06 9D 01 80 07 00 00 o Tan ! 7
g1co 50 52 20 20 20 20 20 20-44 52 56 20 09 00 00 00 ER DRV C_D ROMs are compact faser discs that hold a massive amount of informatjon-—a single
0100 0G 00 00 00 00 00 EO OA-E1 06 $E 01 43 01 00 00 ota T side ofaCPROM can hold almost 500 MB of data However, there are some drawbacks to -
271 Eg g2 i : ; 2 EZ 1;2 L; z iz F?EZ EZ i 2 E E EZ ‘;2 i 2 i (; : e current CI ROM technology For instance, data cannot be written to them — the informa-
F F F6-F6 I H . - . . ti H . . . K . A
! on is placed on the compact disk at the factory when the disk is made and is available on

O a read«only-basis In addition, the access time for a CD ROM is much slower than for most
: magnetic-disk systems Even with these l[imitations, however, the ability to hold so much

The sector shown in Figure 3-12 is actually an example of the first directory sector in the 5, information makes CD ROM a good method for storing large amounts of static information

root directory of a bootable disk Notice that IO SYS and MSDOS SYS are the first two files

in the directory and that the file attribute byte (offset 0BH ina directory entry} has a
binary value of 00100111, indicating that both files have hidden (bit 1= 1), system (bit 0 = 1), % William Wong
and read-only (bit 2 = 1) attributes The archive bit (bit 5) is also set, marking the files for i
possible backup
102 The MS-DOS Encyclopedia Section [T Programming in the M5-DOS5 Environment 103

Canon Exhibit 1108

PartB
Programming for MS-DOS

Canon Exhibit 1108

Article 4: Structure of an Application Program

Article 4
Structure of an Application Program

Planning an MS-DOS application program requires serious analysis of the progx am’s size.
This analysis can help the programmer determine which of the two program styles sup-
ported by MS-DOS best suits the application. The EXE program structure provides a large
program with benefits resulting from the extra 512 bytes (or more) of header that preface
all EXE files On the other hand, at the cost of losing the extra benefits, the COM program
structure does not burden a small program with the overhead of these extra header bytes

Because .COM programs start their livesas EXE programs (before being converted by
EXEZ2BIN} and because several aspects of application programming under MS-DOS
remain similar regardless of the program structuse used, a solid understanding of EXE
structures is beneficial even to the programmer who plans on writing only .COM pro-
grams Therefore, we'll begin our discussion with the structure and behavior of EXE
programs and then look at differences between COM programs and EXE programs,
including restrictions on the structure and content of COM programs

.EXE Program

The EXE program has several advantages over the COM program for application design
Considerations that could lead to the choice of the EXE format include

® Extremely large programs

® Multipie segments

® Overlays

® Segment and far address constants
® Longcalls

.

Possibility of upgrading programs to MS$ O3$/2 protected mode

The principal advantages of the EXE format are provided by the file header Most
important, the header contains information that permits a program to make direct seg-
ment address references —a requitement if the program is to grow beyond 64 KB

The file header also tells MS-DOS how much memory the program requires This informa-
tion keeps memot y not required by the program from being allocated to the program—
an important consideration if the program is to be upgraded in the future to run efficiently
under MS O8/2 protected mode

Before discussing the EXE program structure in detail, we'll look at how EXE programs
behave :

Section 11 Programming in the M5-DOS Environment 107

Canon Exhibit 1108

Part B: Programming for MS-DOS

Giving control to the .EXE program

Figure 4-1 gives an example of how a EXE program might appear in memory when
MS-DOS first gives the program control. The diagram shows Microsoft’s preferred pro-
gram segment arrangement.

- <€ SP
(Any segments with class
STACK
458
All segments Any segments with class
declared _< B3S.
as part of group Any DGROUP segments
DGROUP not shown elsewhere
Any segments with class
_ BEGDATA
Any segments with class names 41r
Start segment . ,
and start f’f > | ending with CODE |4 cs
program image Program segment prefix (PSP) S
(load module) !
—————————————————— 4 DSES

Figtire 4-1 The EXE program: memory map diagram with register pointers

Before transferring control to the EXE program, MS-DOS initializes various areas of
memory and several of the microprocessor’s registers The following discussion explains
what to expect from MS-DOS before it gives the EXE program control

The program segment prefix

The program segment prefix (PSP) is not a direct result of any program code Rather, this
special 256-byte (16-paragraph) page of memory is built by MS-DOS in front of all EXE
and .COM programs when they are loaded into memory. Although the PSP does contain
several fields of use to newer programs, it exists primarily as a remnant of CB/'M —
Microscft adopted the PSP for ease in porting the vast number of programs available under
CF/M to the MS-DOS environment Figure 4-2 shows the fields that make up the PSP

PSP.00COH (Terminate fold Warm Boot] Vector} The PSP begins with an 8086-family
INT 20H instruction, which the program can use to transfer control back 1o MS-DOS. The
PSP includes this instruction at offset 00H because this address was the WBOOT (Warm
Boot/Terminate) vector under CB/M and CE/M programs usually terminated by jumping
to this vector. This method of termination should not be used in newer programs See
Terminating the EXE Program below

PSP-0002H (Address of Last Segment Allocated to Program) MS-DOS introduced the word
at offset 02H into the PSP It contains the segment address of the paragraph following the
block of memory allocated 10 the program This address should be used only to determine
the size or the end of the memory block allocated to the program; it must not be con-
sidered a pointer to free memoty that the program can appropriate Inmost cases this ad-
dress will nor point to free memory, because any free memory will already have been

The MS-DOS Encyclopedia

Article 4: Structure of an Application Program

*OH xIH x2H «3H x4H x5H x6H x7H x8H xO9H xAH xBH xCH xDH xEH xFH

OxH INT20H | Endallec [Resv.| Farcall 1o MS.DOS fin handler Prev terminate address | Prev €1l C
OCDH| 20K | seg lo] seg 1s SAH | ofs lo] ofs i | seg I scg hi ofs Iojofe i lseg Io Jseg hi ofs Iof ofs hi |
IxH address | Prev critical error address Reserved .
[seglo stghi | ofslo | ofshi |seg|u ‘seg bi [l ’ I ’ ' ’ f
2 . Reserved Environ seg (Reserved .
R T T O e
3xH .Reserved. . Te— . MS-DOS20
Ll LT e latercnly
dxH . Reserved
[] N I O I O | 1]
5xH |DNT 21H and RETF Reserved Primary FCB. .
oo | | | | | | | | |alrlils]
ex .. Primary file control block (FCB) ‘ Secondary FCB .
[elnlafm]elr]x [« looktfoortfoonjoon; ¢ [F i |1 |
7xH - Secondary file control block (FCB) Reserved

e [nlafm]efelx | oomloosloonfoon] | | |
g Command tail and defantt disk transfer area (DTA) (continues through OFFH)..

. O I Y D N I

Figure 4-2 The program segment prefix (PSP)

allq:ated to the program unless the program was linked using the /CPARMAXALLOC
svlvxtch. Even when /CPARMAXALLOC is used, MS-DOS may fit the program into azl block
of memory only as big as the program requires Well-behaved programs should acquire
additional memory only through the MS-DOS function calls provided for that purpose.

PSP-O005H (MS-DOS Function Call fold BDOS] Vector) Offset 05H is also a hand-me-

~down from CP/M This location contains an 8086-family far (intersegment) call instruction

to_MS—DOS’s function request handler (Under CE/M, this address was the Basic Disk O er-

ating System [BDOS] vector, which served a similar purpose) This vector should not bé)

used to call MS-DOS in newer programs The System Calls section of this book explains

the newer, approved method for caliing MS-DOS MS-DOS provides this vector only to sup-

glc;rt Clewstyle programs and therefore honors only the CP/M-style functions (00— 24H) ©
ougl it

ESP.OO0AH-0015H (Parent's 22H, 23H, and 241 Inter rupt Vector Save) MS-DOS uses
offsets 0AH through 15H to save the contents of three program-specific interrupt vectors
MS-DOS must save these vectors because it Permits any program to execute anothet pro-
gram (called a child process) through an MS-DOS function call that returns control to the
original program when the called program terminates Because the original program
resumes executing when the child program terminates, MS-DOS must restore these three

Section 1L Programming in the M5-DOS Enui
4 e B nivit 1165

Part B: Programining for MS-DOS

110

interrupt vectors for the original program in case the called program changed them. The
three vectors involved include the program termination handler vector (Interrupt 22H),
the Control-C/Control-Break handler vector (Interrupt 23H), and the critical error handler
vector (Interrupt 24H). MS-DOS saves the or iginal preexecution contents of these vectors
in the child progsam’s PSP as doubleword fields beginning at offsets 0AH for the program
termination handler vector, 0FH for the Control-C/! Control-Break handler vector, and 12H

for the critical error handler vector.

PSP 002CH (Segment Address of Environment) Under MS-DOS versions 2 0 and fater, the
word at offset 2CH contains one of the most useful pieces of information a program ¢an
find in the PSP — the segmerit address of the first paragraph of the MS-DOS environment
This pointer enables the program to search through the environment for any configuzation
or directory search path strings placed there by users with the SET command

PSP.00SOH (New MS-DOS Call Vector) Many programmers distegard the contents of offset
50H. The location consists simply of an INT 21H instruction followedby a RETF. A EXE
program can call this location using a far call as a means of accessing the MS-DOS function
handler Of course, the program can also simply do an INT 21H directly, which is smaller
and faster than calling 50H Unlike calls to offset 05H, calls to offset SOH can request the

full range of MS-DOS functions.

PSP.00SCH (Defait File Control Block 1) and PSP: 006CH (Default File Control Block 2)
MS-DOS parses the first two parameters the user enters in the command line following the
program’s name If the first parameter qualifies as a valid (limited) MS-DOS filename

(the name can be preceded by a drive letter but not a directory path), MS-DOS initializes
offsets SCH through 6BH with the first 16 bytes of an unopened file control block (FCB) for
the specified file. If the second parameter also qualifies as a valid MS-DOS filename,
MS-DOS initializes offsets 6CH through 7BH with the first 16 bytes of an unopened FCB for
the second specified file If the user specifies a directory path as part of either filename,
MS-DOS initializes only the diive code in the associated FCB Many progtamimnets no
longer use this feature, because file access using FCBs does not support directory paths

and other newer MS-DOS features

Because FCBs expand to 37 bytes when the file is opened, opening the first FCB at offset
5CH causes it to grow from 16 bytes to 37 bytes and to overwrite the second FCB Similatly,
opening the second FCB at offset 6CH causes it to expand and to overwrite the first part of
the command tail and default disk transfer area (DTA) (The command tail and default
DTA are described below) To use the contents of both default FCBs, the program should
copy the FCBs to a pair of 37-byie fields tocated in the program’s data area The program
can use the first FCB without moving it only after relocating the second FCB (if necessary)
and only by performing sequential reads or writes when using the first FCB. To perform
random reads and writes using the firs¢ FCB, the programmer must either move the first
FCB or change the defauit DTA address Otherwise, the first FCB’s tandom record field will
overlap the start of the default DTA. See PROGRAMMING IN THE MS-DOS ENVIRON-
MEN T: PROGRAMMING FOR Ms-DOs: File and Record Management

The MS-DOS Encyclopedia

Article 4: Structure of an Application Program

PSP, OOSQH (Command Tail and Default DTA) The default DTA resides in the entire sec-
ond hal.!f (128 bytes) of the PSP MS-DOS uses this area of memory as the default record
buffer if the program uses the FCB-style file access functions. Again, MS-DOS inherited
this location from CP/M. (MS-DOS provides a function the program ’can cail to change the
a'ddr'ess MS-DXOS will use as the current DTA See SYSTEM CAILLS: InterrupT 216: I-%unc—
tion 1A'H') Because the default DTA serves no purpose until the program pexfor:ms- some
file activllty that requires it, MS-DOS places the command tail in this area for the program
to examine. The command tail consists of any text the user types following the program
name when executing the program. Normally, an ASCIT space (20F) is the first character
in tl'le‘: command tail, but any character MS-DOS recognizes as a separator can occupy this
position MS—DOS stores the command-tail text starting at offset 81H and always places an
.f(:fSt(IIf I carriage r'etu‘rn (ODH) at the end of the text. As an additional aid, it places the length
o e;:;r;giﬁi izgi;l; c;frflzeltiizH. This length inciudes all chazacters except the final ODH.

C>DCIT WIIH CLASS <Enter>

will result in the program DOIT being executed with PSP:0080H containing

OB 20 57 49 54 48 20 43 4C 41 53 53 €D
lenspW I I B sp¢C L A 8§ S5 cr

The stack

Because EXE—Style programs did not exist under CP/M, MS-DOS expects EXE programs
to 0p61"ate in strictly MS-DOS fashion For example, MS-DOS expects the EXE progiam o
supply its own stack (Figure 4-1 shows the program’s stack as the top box in the diagram)

Microsoft’s high-level-language compilers create a stack themselves, but when writing in
assemlbly language the programmer must specifically declare one o; more segments v%ith
tlr?e STACK combine type If the programmer declares multiple stack segments, possibly in
c#fferent source modules, the linker combines them into one large segment S'ee; Contr 5{
ling the EXE Program’s Structure below. ¢ | e

Many programmers declare their stack segments as preinitialized with some recognizable
repeating string such as *STACK This makes it possible to examine the program’s stack in
memory (using a debugger such as DEBUG) to determine how much stack space the pro-
gram actually used On the other hand, if the stack is left as uninitialized memory anc?
linked at the end of the EXE program, it will not require space within the EXE file (The
reason for this will become more apparent when we examine the stz ucturé of a EXE file)

Ngte:' When multiple stack segments have been declared in different ASM files, the
chrpsoft Object I inker (TINK) correctly allocates the total amount of stack s ac’e speci-
fied in all the source modules, but the initialization data from all modules is o?rerla ’ ed
module by module at the high end of the combined segment. P

An important difference between COM and EXE programs is that MS-DOS preinitializes
a COM program’s stack with a termination address before transferring control to the pro-
gram, M5-DOS does not do this for EXE programs, so a EXE program cannot simpl ;
execute an 8086-family RET instruction as a means of terminating o

Section II: Programming in the MS-DOS Environent 111

Canon Exhibit 1108

Pdrt B: Programming for MS-DOS

Note: In the assembly-language files generated for a Microsoft C program or for programs
in most other high-level-languages, the compiler’s placement of a RET inst uction at the
end of the main function/subroutine/procedure might seem confusing Afterall, MS-DOS
does not place any return address on the stack The compiler places the RET at the end of
main because main does not receive control directly from MS-DOS. A library initializa-
tion routine receives control from MS-DOS; this routine then calls main. When main per-
forms the RET, it retutns controf to a library termination routine, which then terminates

back to MS-DOS in an approved manner.

Prealiocated memory

112

While loading a EXE program, MS-DOS performs several steps to detesmine the initial
amount of memory to be allocated to the program. First, MS-DOS reads the two values the
linker places near the start of the EXE header: The first value, MINATLOC, indicates the
minimum amount of extra memory the program requires to start executing; the second
value, MAXALLOC, indicates the maximum amount of extra memory the program would
like allocated before it starts executing Next, MS-DOS Jocates the largest free block of
memory available. If the size of the program’s image within the EXE file combined with
the value specified for MINALLOC exceeds the memory block it found, MS-DOS returns
an error (o the process trying to load the program If that process is COMMAND COM,
COMMAND COM then displays a Program 100 big fo fif in memoyy e1ror Message and
terminates the user’s execution request. If the block exceeds the program’s MINALLOC
requirement, MS-DOS then compares the memory block against the program’s image
combined with the MAXATLOC request. If the free block exceeds the maximum memory
requested by the program, MS-DOS allocates only the maximurn request; otherwise, it
allocates the entire block MS-DOS then builds a PSP at the start of this block and loads
the program’s image from the EXE file into memory following the PSP

This process ensutes that the extra memory allocated to the program will immediately
follow the program’s image The same will not necessarily be true for any memory
MS-DOS allocates to the program as a result of MS-DOS function calls the program per-
forms during its execution Only function calls requesting MS-DOS 1o increase the initial
allocation can guarantee additional contiguous memory. (Of course, the granting of such
increase requests depends on the availability of free memory following the initial

allocation.)

Programmers writing EXE programs sometimes find the lack of keywords or compilet/
assembler switches that deal with MINALLOC (and possibly MAXALTOC) confusing. The
programmer never explicitly specifies a MINALLOC value because LINK sets MINATLOC
to the total size of all uninitialized data and/or stack segments linked at the very end of the
program The MINALILOC field aliows the compiler to indicate the size of the initialized
data fields in the load module without actually including the fields themselves, resulting in
a smaller EXE program file For LINK to minimize the size of the EXE file, the program
must be coded and linked in such a way as to place all uninitialized data fields at the end
of the program Microsoft high-level-danguage compilets handle this automatically;

assembly-language programmers must give 1INK a little help

The MS-DOS Encyclopedia

Article 4: Structure of an Application Program

Notg;' Beginni{lg and even advanced assembly-language programmers can easily fall into
2;1 @ gument vc{ﬂ:h the assembler over field addressing when attempting to place data fields
: 1;?}1 1\;2;\1 (}Ode c;r(a;}lgce) source file This argument can be avoided if programmets use the

an UP irecti in,
S assembler directives. See Controlling the EXE Program’s Struc-

No r('eliable method exists for the linker to determine the correct MAXALLOQC value
required by the EXE program. Therefore, LINK uses a “safe” value of FFfPH which
causes MS-DOS to allocate all of the largest block of free memory ~-which is 1iJsuall all
fre§ memory —to the program. Unless a program specifically releases the memor 3ff'or
which it has no use, it denies multitasking supervisor programs, such as IBM's To 3'ifie
any memory in which to execute additional programs ~hence ’the rulethata we?l— W’
behaved program releases unneeded memory dusing its initialization. Unfortunately, this
memory conservation approach provides no help if a multitasking supervisor sup g;"ts th
ability to load several programs into memory without executing them. Therefore pro— ¢
Ig)ralrgns that have correctly established MAXALLOC values actually are well—beha\;e%
TOSTAITLS

To this e_nd, newer versions of Microsoft LINK include the /CPARMAXALLQC switch

to permit specification of the maximum amount of memory required by the program. Th
/CPARMAXAILOC switch can also be used to set MAXALLOC to 2 value thalt)is inov»;n toe
be less than MINAILOC. For example, specifying 2a MAXALLOC value of 1 {/CP:1) forces
M.S-DOS.to allocate only MINAILLOC extra paragraphs to the program In additién
M1cro§oft supplies a program called EXEMOD with most of its languages This pro, rami
permits modification of the MAXAILOC field in the headers of existing EXE pr: .

See Modifying the EXE File Header below & prosTEe

The registers

Pigur§ 4-1 gives a general indication of how MS-DOS sets the 8086-family registers
before transferring control to a EXE program MS-DOS determines most of the original

register values from information the li : A i .
EXE file ation the linker places in the EXE file header at the start of the

MS-DOS sets the 58 register to the segment (paragraph) address of the start of any seg-
ments decléfred with the STACK combine type and sets the SP register to the offset flim S5
of the byte immediately after the combined stack segments (If no stack segment is
declare;l, MS—pOS sets 53:SP 1o C5:0000) Because in the 8086-family architecture a stack
grows from high to low memory addresses, this effectively sets S5:SP to point to the base of
the stack Therefore, if the programmer declares stack segments when writing an assem-
bl?r-langgage program, the program will not need to initialize the 58 and SP registers
Microsoft’s high-level-language compilers handle the creation of stack segments autdm ti
cally In both cases, the linker determines the initial SS and SP values and places th n
the header at the start of the .EXE program file : o

Un!'ike its handling of the S8 and SP registers, MS-DOS does nof initialize the DS and ES
registers to any data areas of the EXE program Instead, it points DS and ES 1o the start of

Section I Programming in the MS-DOS Environment 113
Canon Exhibit 1108

Part B: Programming for MS-DOS

114

the PSP It does this for two primary reasons: First, MS-DOS uses the DS and ES registers 1o
tell the program the address of the PSP; second, most programs start by examining the
command tail within the PSP Because the program starts without DS pointing to the data
segments, the prograrm must initialize DS and (optionally) ES to point to the data segments
before it stasts trying to access any fields in those segments Unlike COM programs, EXE
programs can do this easily because they can make direct references to scgments, as

follows:
MOV AX,SEG DAIA SEGMENI_OR_GROUP_NAME
MOV DS, AX)
MOV ES, AX

High-level-language programs need not initialize and mainiain D$ and ES; the compiler
and library support routines do this

In addition to pointing DS and ES to the PSF, MS-DOS also sets AH and Al to reflect the
validity of the drive identifiers it placed in the two FCBs contained in the PSP MS-DOS sets
Al to OFFH if the first FCB at PSP:005CH was initialized with a nonexistent drive identifier,
otherwise, it sets Al to zero Similatly, MS-DOS sets AH to reflect the drive identifier

placed in the second FCB at PSP:006CH

When MS-DOS analyzes the first two command-line parameters following the program
name in order to build the first and second FCBs, it treats any character followed by a
colon as a drive prefix If the drive prefix consists of a lowercase letter (ASCII & through
2, MS-DOS starts by converting the character to uppercase (ASCH A through Z) Then it
subtracts 40H from the character, regardless of its original value. This convests the diive
prefix letters A through Z fo the drive codes 01H through 1AH, as required by the two
FCBs. Finally, MS-DOS places the drive code in the appropriate FCB

This process does not actually preclude invalid drive specifications from being placed in
the FCBs For instance, MS-DOS will accept the drive prefix !: and place a drive code of
OF1H in the FCB (! = 21H; 21H- 40H = 0E1H) However, MS-DOS will then check the drive
code to see if it represents an existing drive attached to the computer and will pass a value
of OFFH to the program in the appropriaie register (Al or AH) if it does not

As a side effect of this process, MS-DOS accepts @: asa valid drive prefix because the
subtraction of 40H converts the @ chasacter (40H) to 00H. MS-DOS accepts the O0H value
a5 valid because a 00H drive code represents the current default drive MS-DOS will leave
the FCB's drive code set to 00H rather than translating it to the code for the default drive
because the MS-DOS function calls that use FCBs accept the 00H code

Finaily, MS-DOS initializes the CS and IP registers, i ansferring control to the program’s
entry point Programs developed using high-level-language compilers usuatly receive con-
trol at a library initialization routine A progt ammer writing an assembly-language pro-
gram using the Microsoft Macro Assembler (MASM) can declare any label within the

The MS-DOS Encyclopedia

Article 4: Structure of an Application Program

gt’ogr am as the entry point by placing the label after the END statement as the last line of the
rOgranm:

END ENIRY_POINI_LABEL

Vg/ith multi}I)fle source files, only one of the files should have a label following the END
statement. If more than one source file has such a label, IINK i i
Cors b e , uses the first one it encoun-

The other processor registers (BX, CX, DX, BP, SI, and DI) contain unknown values when
the program receives control from MS-DOS Once again, high-level-language program-
mers can ignore this fact—the compiler and library support routines deal with the situa-
tion However, assembly-language programmers should keep this fact in mind. it may give

gh sometime 1n [he a IL] Ct at n times aIEd
S e(l insi { 80 let urec Wilen a pI'O Iam nCrons CEr
g errai

In many cases, debuggers such as DEBUG and SYMDEB initialize uninitialized registers to
some predictable but undocumented state. For instance, some debuggers may predictabl
set BP to zero before starting program execution However, a program must not 1ely on Y
such debugger actions, because MS-DOS makes no such promises Situations like this

could account for a program that fails when exe i
: cuted directly under MS-D»
fine when executed using a debugger ! o8 purorks

Terminating the .EXE program

After' MS-DOS has given the .EXE program control and it has completed whatever task
it set out to perform, the program needs to give control back to MS-DOS Because of
MS-DQS’S evolution, five methods of program tetmination have accumﬁlated— not
%nciudmg the several ways MS-DOS allows programs to terminate but remain resident
in memory

Before using any of the termination methods supported by MS-DOS, the program should
always close any files it had open, especially those to which data ha:; been written or
whose lengths were changed Under versions 2 0 and later, MS-DOS closes any files
opened using handles However, good programming practice dictates that the program
2)0:] 1elyhon t(lilcz-operating system to close the program’s files. In addition, programs written
dosfz ; ﬂz;l;ef ﬂe1sleasn 1;11::; ?ﬁfis versions 3 0 and later should release any file locks before

The Terminate Process with Return Code function

Of the five ways a program can terminate, only the Interrupt 21H Terminate Process with
Return Code function (4CH) is recommended for programs running under MS-DOS ver
sion 2 0 or later. This method is one of the easiest approaches to terminating any pro-)
gram, regardless of its structure or segment register settings The Terminate Process with
Return Code function call simply consists of the following:

MOV
;zg AH, 4CH jload the MS-DOS function code
IN;f Al ,RETURN_CODE iload the terminaticn code

21H icall M3-DOS to terminate progran

Section II: Programming in the MS-DOS Enpironment 115
Canon Exhibit 1108

Part B: Programming for MS-DOS

116

The example loads the AH register with the Terminate Process with Return Cogerg;tjon
code Then it loads the AL register with a return code Normally, the retl;lm CQ e‘amp
sents the reason the program terminated of the result of any operation the progt
performed

A program that executes another program as a child process can ;ie'gover atxklld ;I;iz; it::
child program’s return code if the child process used this termmauop mg o.t.executes ,as
the child process can recover the RETURN_CODEl retur.ned by any p; og:ain 1l recures.

a child process. When a program is terminated us;gg'th{s method anl c?nl r;) r s
MS-DOS, a batch (BAT) file can he used to test the terminated program’s return

using the IF ERRORLEVEL statement

Only two general conventions have been adopted for the value of RE T‘URl\.I_COfo:

First, a RETURN_CODE value of 00H indicates a normal no-error terr{nnanon o the
rog,ram- second, increasing RETURN_CODE vaiues indicate increasing severity of con-

;c)iitions u’ndex which the program terminated For instance, a cor.np‘nler could use th§: ‘

RETURN_CODE 00H if it found no errors in the source file, 01H if it found only warning

errors, of 02H if it found severe 11018

If 3 program has no need to return any special RETURN_CODE values, tgenftgg I—if)llcwvmg

instructions will suffice to terminate the program with a RET URN_CODE o :

MOV AX, 4CO0H
INI 278

Apart from being the approved termination method, I’er.‘rnir_late Procefis gvith Ret;lﬁno(t:;g?
is easiet to use with EXE programs than any other termination metho . eca.uselam other
methods require that the CS register point to the stari of the PSP when t g progr am e
nates. This restriction causes problems for EXE programs because they have co g
ments with segment addresses different from that of the PSP

The only problem with Terminate Process with Return Code is that it is not avai}abl?btinder
MS-DOS versions earlier than 2.0, so it cannot be used if a program must be comp}z:tl e
with early M$-DOS versions However, Figure 4-3 shows hov?r a program can use t 2 o
approved termination method when available but stil! remain pre-2 ¢ compatible See The
Warm Boot/ Terminate Vector below

IEXI SEGMENI PARA PURBRLIC 'CODE!
ASSUME CS:IEXI,DS:NOIHING,ES:NOEHING,SS:NOIHING
IERM_VECIOR oD ?
ENIRY_PROC PROC FAR
:save pointer to termination vector in PSP

MOV WORD PLIR C5: IFRM_VECIOR+0,0000h ;save offset of Warm Boot vector
. £
MOV WORD PIR ¢S:IERM_VECIOR+2Z, DS :save segment address oI PSP

' °si (more}
Figure 4-3. Terminating prope? ly under any M$-DOS version

The MS-DOS Encyclopedia

Article 4: Structure of an Application Program

y*3k% % Place main task here x**#%

idetermine which MS-DOS version is active, take jump if 2.0 or later

MOV AH, 30h ;load Get MS-DOS Version Number function code

INT 21h ;jcall MS-DOS to get version number
OR AL,aI jsee if pre-2 .0 MS-DOS
JNZ IERM 0200 tdump 1f 2 0 or later

Jterminate under pre-2.0 MS-DOS

JMP | CS:IERM_VECIOR ;jump to Warm Boot vector in PSP

‘terminate under MS-DOS 2.0 or later

IERM.0200;
MOV AX, 4C00h iload MS-DOS termination function code
sand return code
INI 21h rcall MS-DOS to terminate
ENIRY_PROC ENDP
IEX] ENDS
END ENIRY_FPRQC ;define entry point

Figure 4-3 Continued

The Terminate Program interrupt

Before MS-DOS version 2 0, terminating with an approved method meant executing

an INT 20H instruction, the Terminate Program interrupt The INT 20H instruction was
replaced as the approved termination method for two primary reasons: First, it did not
provide a means whereby programs could return a termination code; second, CS had
to point to the PSP before the INT 20H instruction was executed

The restriction placed on the value of CS at termination did not pose a problem for COM
programs because they execute with CS pointing to the beginning of the PSP A EXE pro-
gram, on the other hand, executes with CS pointing to various code segments of the pro-
gram, and the value of CS cannot be changed arbitrarily when the program is ready to
terminate Because of this, few EXE programs attempt simply to execute a Terminate Pro-
gram interrupt from directly within their own code segments Instead, they usually use
the termination method discussed next

The Warm Boot/Terminate vector

The earlier discussion of the structure of the PSP briefly covered one older method a EXE
program can use to terminate: Offset 00H within the PSP contains an INT 20H instruction
to which the program can jump in order to terminate MS-DOS adopted this technicque o
support the many CB/M programs ported to MS-DOS. Under CP/M, this PSP location was
referred to as the Warm Boot vector because the CF/M operating system was atways
reloaded from disk (rebooted) whenever a program terminated

Section Il Programming in the MS-DOS Environment . 117
Canon Exhibit 1108

Part B: Programming for MS-DOS

Because offset 00H in the PSP contains an INT 20H instruction, jumging i) thgt l'ocation |
terminates a program in the same manner s a1 INT 20H included directly within the pro-
gram, but with one important difference: By jumping o PSP.’:0.0.00H, the progran-l.s.ets the
CS register to point to the beginning of the P3P, thereby sat1sfy1pg the% only restriction
imposed on executing the Terminate Program interrupt Thfe dlscu_smon of MS-DOS Func-
tion 4CH gave an example of how a EXE progtam can termm."alte via I?SP:OOOOH The ex-
ampie first asks MS-DOS for its version aumber and then terminates via PSP:0000H only
under versions of MS-DOS earlier than 2 0 Programs can also use PSP:0000H ur{dfaz
MS-DOS versions 2.0 and later; the example uses Function 4CH simply because it is
preferred under the later MS-DOS versions

The RET instruction

118

The other popular method used by C&/M programs (o terminate involved simpiy execut-
ing a RET instruction This worked because CP/M pushed the address gf the Wa;m qut
vector onto the stack before giving the program control MS-DOS provides this support
only for COM-style programs; it does not push a termination address onto the stack
before giving EXE programs control

The programmer who wants 1o us¢ the RET instruction io return to MS-DOS can use the
variation of the Figure 4-3 listing shown in Figure 4-4

IEXT SEGMENI PARA PUBIIC 'CODE'
ASSUME CS:IEXI,DS:NOIHING,ES:NOIHING,SS:NOIHING

ENIRY_PROC PROC EAR ;make proc FAR so REI will be FAR

i £ i i or in PSP
;Push pointer to termination vect

PUSH D3 ;push PSP's segment address

XOR AX, RX sax = 0 = offset of Warm Boot vector in PSP
’

PUSH AX ;push Warm Boot vector offset

;e#x%% Place main task here ¥¥ix#

;Determine which M$-DOS version is active, take jump if 2.0 or later

MOV AH, 30h i load Get MS5-DOS Version Number function code
INI 21h ;call MS-DOS to get version number

OR AT ,AL ;see if pre-2 0 MS-DOS

JNZ TERM._0200 ;jump if 2.0 or later

;lerminate under pre-2 0 M3S-DOS ithis is a FAR prog, 3o RET wil% be FAR)
REI ;pop PSP:00H into CS:IP to terminate

Figure 4-4 Using RET lo return control 1o M5-DO5 (more)

The MS-DOS Encyclopedia

Article 4: Structure of an Application Program

;lerminate under MS-DOS 2 .0 or later

IERM _02(0:
MoV A¥X, 4C00h AH = MS-DOS Ierminate Process with Return Code
iTunction code, AL = return code of 00H
N1 21h ;call MS-DOS te terminate
ENIRY_PROC ENDP
IEXI ENDS
END ENIRY_PROC ydeclare the program’s entry point

Figtire 4-4 Continued

The Terminate Process function

The final method for terminating a EXE program is Interrupt 21H Function 00H (Termi-
nate Process) This method maintains the same restriction as all other older termination
methods: CS must point to the PSP Because of this restriction, EXE programs typically
avoid this method in favor of terminating via PSP:0000H, as discussed above for programs
executing under versions of MS-DOS earlier than 2.0

Terminating and staying resident

A EXE program can use any of several additional termination methods to return con-

trol to MS-DOS but still remain resident within memory to service a special event See
PROGRAMMING IN THE MS-DOS ENVIRONMEN T: CustomizING Ms-Dos; Terminate-and-
Stay-Resident Utilities

Structure of the .EXET files

So tar we've examined how the EXE program looks in memory, how MS-DOS gives the
program control of the computer, and how the program should return control to MS-DOS
Next we'll investigate what the program looks like as a disk file, before MS-DOS loads it
into memory Figure 4-5 shows the general structure of a EXE file

The file header

Unlike COM program files, EXE progtam files contain information that permits the

EXE program and MS-DGS 1o use the full capabilities of the 8086 famity of microproces-
so1s. The linker places all this extra information in a header at the start of the EXE file
Although the EXE file structure could easily accommodate a header as small as 32 bytes,
the linker never creates a header smailet than 512 bytes (This minimum header size corre-
sponds to the standard record size preferred by MS-DOS) The EXE file header contains
the following information, which MS-DQS reads into a temporary work area in memory
for use while loading the EXE program:

00—01H (EXE Signature} MS-DOS does not rely on the extension { EXE or COM) to
determine whether a file contains a COM or a EXE program Instead, MS-DOS recognizes
the file asa EXE program if the first 2 bytes in the header contain the signature 4DH SAH

Section II. Programming in the MS-DOS Environment 119

Canon Exhibit 1108

Part B: Programming for M§-DOS

120

OxH p-

ixH p

. UseReloc

ThiOfsat 18H
>

x0H x1H x2H x3H x4H x5H x6H x7H x8H x0H xAH xBH xCH xDH xEH xFH

Signature Last Page Si
4DH | 5AH flo bytli byt

File Pages (Reloc kems
lo byt|hi byt{lo bytfhi byt

Header Paras | MENALLOC tMA)LALLOC PreReloc S5
lo byt|ni byt{lo bytfhi bytlo ‘yt|hi bytlo byt fhi byt

Initial SP | Neg Chksum

Inisial [P |Pre Reloc CS
ofs lojofs hilseg To|seg b

Reloc Tbl Ofsf Overlay Num

1o byt]hi bytilo bythi byt

ofs kofofs hillo bytJhi byy

N

Reserved

Seg Relocation Ptr #1

Seg Relocation Pur #2

Seg Relocation P #3 lpSeg Relocation Pir #4

(offset is from ofs Jojofs hijseg lojseg hijofs lojofs hilseg lojseg hilofs 1o1ofs hijseg lojseg hijofs lojofs hijseg lojseg hil
ot W
- Use Reloc
Seg Relocation Prr #0-3 | Seg Reiocation P #n-2 [Seg Relocation Ptr#n-1 | Seg Rc]ocfanm_x P #in | € tems
ofs lo|ofs hi|seg lojseg hilofs lojofs hi|seg lojseg hilofs Iopfs hijseg lojseg hilofs lojofs hilseg lojseg hi ot O6H

Use Header
Paras at 03H //'—\//

(load module »

A
always Starls on Program image _ _ _ _ _ i-------- y Gt
paragraph boundary) (load ,%odulé) Use Last Page Size at 02H Final 512-byte page as
End of file p indicated by F%e Pages at 04H |

Figure 4-5 Structure of @ EXE file

(ASCII characters M and Z) I either or both of the signature bytes contain other values,
MS-DOS assumes the file contains a COM program, regardless of the extension. The
reverse is not necessarily true - that is, MS-DOS does not accept ‘the tile as a EXE pro-
gram simply because the file begins with a EXE signature The file must also pass several
other tests

02—03H (Last Page Size} The word at this location indicates the actual rn.lmber of bytes

in the final 512-byte page of the file This word comk?ines with the following word to deter-
mine the actual size of the file |

04—05H (File Pages) This word contains a count of the total number of 512-byte pages
required to hold the file If the file contains 1024 bytes, this word contains th'e value 0002H;
if the file contains 1025 bytes, this word contains the value 0003H The pr evious word (Last
Page Size, 02—03H) is used to determine the number of valid bytes in th'e final 512-byte
page Thus, if the file contains 1024 bytes, the Last Page Size wqrd conEams 000CH because
no bytes overflow into a final partly used page; if the file coniains 1025 byt.es, the Last Page
Size word contains 0001H because the final page contains only a single valid byte (the
1025th byte).

06—07H (Relocation Items) This word gives the number of entries that exist in the reloca-
tion pointer table. See Relocation Pointer Table below

The MS-DOS Encyclopedia

Article 4: Structure of an Application Program

08~09H (Header Paragraphs) This word gives the size of the EXE file header in 16-byte
paragraphs. Tt indicates the offset of the program’s compiled/assembled and linked image
{the load module) within the EXE file. Subtracting this word from the two file-size words
starting at 02H and 04H reveals the size of the program’s image. The header always spans
an even multiple of 16-byte paragraphs. For example, if the file consists of a 512-byte
header and a 513-byte program image, then the file's total size is 1025 bytes. As discussed
before, the I ast Page Size word (02—03H) will contain 0001H and the File Pages word
(04—05H) will contain 0003H Because the header is 512 bytes, the Header Paragraphs
word (08—09H) will contain 32 (0020F) (That is, 32 paragraphs times 16 bytes per para-
graph totals 512 bytes.) By subtracting the 512 bytes of the header from the 1025-byte total
file size, the size of the program’s itnage can be determined —in this case, 513 bytes

0A—OBH (MINALLOC) This word indicates the minimum number of 16-byte paragraphs
the program requires to begin execution in addition to the memory required to hold

the program’s image. MINALLOC normally represents the total size of any uninitialized
data and/or stack segmenits linked at the end of the program 1INK excludes the

space reserved by these fields from the end of the EXE file 1o avoid wasting disk space

If not enough memory remains to satisfy MINAILOC when loading the program, MS-

DOS returns an error to the process trying to load the program If the process is

COMMAND COM, COMMAND COM then displays a Pragram too big to fit in memory
error message. The EXEMOD utility can aiter this field if desired. See Modifying the EXE
File Header below ' :

O0C—0DH (MAXALLOC) This word indicates the maximum number of 16-byte paragraphs
the program would like allocated to it before it begins execution MAXALLOC indicates
additional memory desired beyond that required to hold the program’s image. MS-DOS
uses this value to allocate MAXALLOC extra paragraphs, if available. If MAXAILOC para-
graphs are not available, the program receives the largest memory block available —at
least MINALLOC additional paragiaphs The programmer could use the MAXALLOC tield
to request that MS-DOS allocate space for use as a print buffer or as a program-maintained
heap, for example

Unless otherwise specified with the /CPARMAXAILLOC switch at link time, the linker sets
MAXAILOC to FFFFH. This causes MS-DOS to allocate all of the largest block of memory
it has available to the program To make the program compatible with multitasking super-
visor programs, the programmer should use /CPARMAXALLOC to set the true maximum
number of extra paragraphs the program desires The EXEMOD utility can also be used
to alter this field.

Note: If both MINALLOC and MAXAILLQC have been set to 0000H, MS-DOS loads the
program as high in memory as possibie. LINK sets these fields to 0000H if the /HIGH
switch was used; the EXEMOD utility can also be used to modify these fields

OE—OFH (Initial 55 Value) This word contains the paragraph address of the stack segment
relative to the start of the load module At load time, MS-DOS relocates this value by adding
the program’s start segment address to it, and the resulting value is placed in the S5 regis-
ter before giving the program control. (The start segment corresponds to the first segment
boundary in memory following the PSF)

Section II. Programming in the MS-DOS Environment 121
Canon Exhibit 1108

Part B: Programming for MS-DOS

122

10—11H (Initial SP Value) This word contains the absolute value that MS-DOS loads

into the SP register before giving the program control Because MS-DOS always loads pro-
grams starting on a segment address boundary, and because the linker knows the size of
the stack segment, the linker is able to determine the correct SP offset at link time; there-
fore, MS-DOS does not need to adjust this value at load time The EXEMOD utility can be

used to alter this field

12—13H (Complemented Checksum,) This word contains the one’s complement of the

summation of all words in the EXE file. Current versions of MS-DOS basically ignore this

word when they load a EXE program; however, future versions might not. When LINK

generates a EXE file, it adds together all the contents of the EXE file (including the EXE

header) by treating the entire file as a long sequence of 16-bit words. During this addition,

LINK gives the Complemented Checksum word (12—13H) a temporary value of 0000H. If

the file consists of an odd number of bytes, then the final byte is treated asa word with a

high byte of 00H. Once LINK has totaled all words in the EXE file, it performs a one’s

complement operation on the total and records the answer in the EXE file header at ;
offsets 12—13H. The validity of a EXE file can then be checked by performing the same :
word-totaling process as LINK petformed The total should be FFFFH, because the total

will include LINK’s calculated complemented checksum, which is designed to give the file

the FFFFH total.

An example 7-byte EXE file illustrates how EXE file checksums are calculated. (This

is a totally fictitious file, because EXE headers are never smaller than 512 bytes) If this fic-
titious file contained the bytes 8CH C8H 8EH D8H BAH 10H B4H, then the file’s total :
would be calculated using C88CH+DS8SEH + 10BAH+00B4H=1B288H (Overflow past 16 :
bits is ignored, so the value is interpreted as B288H) If this were a valid EXE file, then
the B288H total would have been FFFFH instead

14—15H (Tnitial IP Value) This word contains the absohute value that MS-DOS loads into
the IP registet in order to transfer control to the program Because MS-DOS always loads :
programs starting on a segment address boundary, the linket can calculate the correct IP ;
offset from the initial CS register value at link time; therefore, MS-DOS does not need

to adjust this value at load time

16—17H (Pre-Relocated Initial CS Value) This word contains the initial value, relative to
the start of the load module, that MS-DOS places in the CS register o give the EXE pro- {
gram control MS-DOS adjusts this value in the same manner as the initial SS value before
loading it into the CS register

18—19H (Relocation Table Offset) This word gives the offset from the start of the file to
the relocation pointer table. This word must be used to locate the relocation pointer tabie, !
because variable-length information pertaining to program overfays can occur before the i
table, thus causing the position of the table to vary

1A—1BH (Overlay Number) This word is normally set to 000CH, indicating that the EXE
file consists of the resident, or primary, part of the program This number changes only in
files containing programs that use overlays, which are sections of a program that remain

The MS§-DOS Encyclopedia

Article 4: Structure of an Application Program

on disk untii the program actually requires them These program sections ate loaded into
memory by special Qvei‘lay managing routines included in the run-time libraries supplied
with some Microsoft high-level-language compilers.

_Ihe preceding section of the header (00-1BH) is known as the formatted area. Optional
information used by high-level-language overlay managers can follow this formatted area
Unless the program in the EXE file incorporates such information, the relocation pointer
rable immediately follows the formatted header area

R?lo.catz'on Pointer Table The relocation pointer table consists of a list of pointers to words
within the EXE program image that MS-DOS must adjust before giving the program con-
trol. These words consist of references made by the program to the segments that make up
the program MS-DOS must adjust these segment address references when it loads the pro-
gram, because it can load the program into memory starting at any segment address
boundary. '

Each pointer in the table consists of a doubleword. The first word contains an offset from
the segment address given in the second word, which in turn indicates a segment address
relative 1o the start of the load module Together, these two words point to a third word
within the load module that must have the start segment address added to it (The start seg-
ment corresponds to the segment address at which MS-DOS siarted loading the program’s

EXE File
End of file
Rel Seg Ref=003CH
Abs Seg Ref=25D1H
Load module
‘__‘__\-’ Memory
Relocation pointer 003CH <'|
0002H:0005H +2595H —Rel Seg Ref=003CH
| L 25DIH Abs Seg Ref=25D1H:
Relocation pointer table 0002H:0005H 1 oad modul
+2595H L Start Seg oat motule
‘ 2597H:0005H 25950 ™
Formatted header area Program segment prefix
Start of file

Figure 4-6 The EXE file relocation procedure

Section IT Programming in the MS-DOS Environment 123

Canon Exhibit 1108

Part B: Programming for M5-DOS

image, immediately following the PSP) Figure 4-6 shows the entire procedure MS-DOS
performs for each relocation table entry

The load module

The load module starts where the EXE header ends and consists of the fully linked image
of the program The load module appears within the EXE file exactly as it would appeat in
memory if MS-DQS were to load it at segment address 0000H The only changes MS-DOS
makes to the load module involve relocating any direct segment references

Although the EXE file contains distinct segment imiages within the load module, it pro-
vides no information for separating those individual segments from one another Existing
versions of MS-DOS ignore how the program is segmented; they simply copy the load
module into memoty, relocate any direct segroent references, and give the program
control.

Loading the .EXE program

124

So far we've covered all the characteristics of the EXE program as it resides in memory
and on disk, We've also touched on all the steps MS-DOS petforms while loading the EXE
program from disk and executing it The following list recaps the EXE progiam loading
process in the order in which MS-DOS performs it:

1 MS-DOS reads the formatted area of the header (the first 1BH bytes) from the EXE
file into a work area

2 MS-DOS determines the size of the largest avaitable block of memory

3 MS-DOS determines the size of the load module using the Last Page Size (offset
02HD), File Pages (offset 0411), and Header Paragraphs (offset 08H) fields from the
header An example of this process is in the discussion of the Header Paragraphs
field.

4 MS-DOS adds the MINALLOC field (offset OAH) in the header to the calculated load-
module size and the size of the PSP (100H bytes). If this total exceeds the size of the
largest available block, MS-DOS terminates the load process and teturns an error to
the calling process If the calling process was COMMAND COM, COMMAND COM
then displays a Program too big to fit in memory €110r message

5 MS-DOS adds the MAXALLOC field (offset OCH) in the header to the caiculated
Joad-module size and the size of the PSP If the memory block found earlier exceeds
this calculated total, MS-DOS allocates the calculated memory size 10 the program
from the memory block; if the calculated total exceeds the block’s size, MS-DOS
allocates the entire block

6 If the MINALLOC and MAXALLOC fields both contain 0000H, MS-DOS uses the
calculated Ioad-module size to determine a start segment. MS-DOS calculates the

start segment so that the load module will load into the high end of the allocated
block. If either MINALLOC or MAXAILOC contains nonzero values (the normal
case), MS-DOS establishes the start segment as the segment following the PSP

7 MS-DOS loads the load module into memory starting at the start segment.

The M5-DOS Encyclopedia

Article 4: Structure of an Application Program

8. MS-DOS reads the relocation pointers into a work area and relocates the load mod-
ule’s direct segment references, as shown in Figure 4-6
9 MS-DOS builds a PSP in the first 100H bytes of the allocated memory block. While
building the two FCBs within the PSP, MS-DOS determines the initial values for the
AL and AH registers
10 MS-DOS sets the SS and SP registers to the values in the header after the start seg-
ment is added to the S5 value.
11, MS-DOS sets the DS and ES registers to point to the beginning of the PSP
12 MS-DOS transfers control to the EXE program by setting CS and IP to the values in
the header after adding the start segment to the CS value

Controlling the .EXE program’s structure

We've now covered almost every aspect of a completed EXE program. Next, we’ll discuss
how to control the structure of the final EXE program from the source level We'll start by
covering the statements provided by MASM that permit the programmer to define the
structure of the program when programming in assembly language Then we'll cover the
five standard memory models provided by Microsoft’s C and FORTRAN compilers (both
version 4 .0), which provide predefined structuring over which the programmer has
limited control

The MASM SEGMENT directive

MASM’s SEGMENT directive and its associated ENDS directive mark the beginning and
end of a program segment Program segments contain collections of code or data that have
offset addresses refative to the same common segment address

In addition to the required segment name, the SEGMENT directive has three optional
parameters:

segname SEGMENT l[align] [combine] 'class']

With MASM, the contents of a segment can be defined at orie point in the source file and
the definition can be resumed as many times as necessary throughout the remainder of
the file. When MASM encounters a SEGMENT directive with a segname it has previously
encountered, it simply resumes the segment definition where it left off This occurs regard-
less of the combine type specified in the SEGMENT directive —the combine type influ-
ences only the actions of the linker See The combine Type Parameter below.

The align type parameter

The .optionai align parameter lets the programmer send the linker an instruction on how
tg align a segment withinmemory. In reality, the linker can align the segment only in rela-
tion to the start of the program’s load moduie, but the result remains the same because
MS-DQOS always loads the module aligned on a paragraph (16-byie) boundary (The PAGE
align type creates a special exception, as discussed below)

The following alignment types are permitted:

BYTE .This align type instructs the linker to start the segment on the byte immediately
following the previous segment BY TE alignment prevents any wasted memory between
the previous segment and the BY T E-aligned segment

Section II. Programming in the MS-DOS Environment 125

Canon Exhibit 1108

Part B: Programming for M$-DOS

126

A minor disadvantage to BY TE alignment is that the 8086-family segment registers might
not be able to directly address the start of the segment in all cases Because they can
address only on paragraph boundaries, the segment registers may have to point as many
as 15 bytes behind the start of the segment This means that the segment size should not
be more than 15 bytes short of 64 KB The linker adjusts offset and segment address refer-
ences to compensate for differences between the physical segment start and the paragraph

addressing boundary

Another possible concern is execution speed on true 16-bit 8086-family microprocessors.
When using non-8088 microprocessors, a program can actually run faster if the instruc-
vions and word data fields within segments are aligned on word boundaries This permits
the 16-bit processors to fetch full words ina single memory read, rather than having to per-
form two single-byte reads The EVEN directive tells MASM o align instructions and data
fields on word boundaries; however, MASM can establish this alignment only in relation to
the start of the segment, so the entire segment must start aligned on a word or larger
boundaty to guarantee alignment of the items within the segment

WORD This align type instructs the linker to start the segment on the next word bound-
ary Word boundaries occur every 2 bytes and consist of all even addresses (addresses in
which the least significant bit contains a zero). WORD alignment permits alignment of data
fields and instructions within the segment on word boundaries, as discussed for the BYTE
alignment type. However, the linker may have to waste 1 byte of memory between the pre-
vious segment and the word-aligned segment in order to position the new segment on 2

word boundary

Another minor disadvantage to WORD atignment is that the £8086-family segment registers
might not be able to directly address the start of the segment in all cases Because they can
address only on paragraph boundaries, the segment registers may have to point as many as
14 bytes behind the start of the segment. T his means that the segment size should not be
more than 14 bytes short of 64 KB. The linker adjusts offset and segment address refer-
ences to compensate for differences between the physical segment start and the paragraph
addressing boundary.

PARA This align type instructs the linker to start the segment on the next paragraph
boundary The segments default to PARA if no alignment type is specified Paragraph
boundaries occur every 16 bytes and consist of all addresses with hexadecimal values end-
ing in zero (0000H, 0010H, 0020H, and so forth) Paragraph alignment ensures that the
segment begins on a segment register addressing boundary, thus making it possible to ad-
dress a full 64 KB segment Also, because paragraph addresses are even addresses, PARA
alignment has the same advantages as WORD alignment The only real disadvaniage to
PARA alignment is that the linker may have to waste as many as 15 bytes of memory
between the previous segment and the paragraph-aligned segment.

PAGE This align type instructs the linker to start the segment on the next page boundary
Page boundaries occur every 256 bytes and consist of all addresses in which the low
address byte equals zero (0000H, O100H, 0200H, and so forth). PAGE alignment ensures

The MS-DOS Encyclopedia

Article 4: Structure of an Application Program

only that the linker positions the segment on a page boundary relative to the start of the
load module. Unfortunately, this does not also ensure alignment of the segment on an
absolute page within memory, because MS-DOS only guarantees alignment of the entire
load module on a paragraph boundary

‘When a programmer declares pieces of a segment with the same name in different source
modulles, the align type specified for each segment piece influences the alignment of that
specific piece of the segment. For example, assume the following two segment declara-
tions appear in different source modules:

_DATA SEGMENI PARA PUBLIC 'DAIA’
DB 1237
_DAIA ENDS

_DAIA SEGMENI PARA PUBIIC 'DATA'
DB ‘45367
—DATIA ENDS

The linker starts by aligning the first segment piece located in the first object module on a
paragraph boundary, as requested. When the linker encounters the second segment piece
in the second object module, it aligns that piece on the first paragraph boundary following
the first segment piece. This results in a 13-byte gap between the first segment piece and
the second. The segment pieces must exist in separate source modules for this to occur If
the segment pieces exist in the same source module, MASM assumes that the second seg-

"‘ment declaration is simply a resumption of the first and creates an object module with

segment declarations equivalent to the following:

—DAIA SEGMENI PARA PUBLIC 'DAIA’
DB 123!
DB ‘45467

DATA ENDS

The combine type parameter

The optional combine parameter allows the programmer to send directions to the linker
on how to combine segments with the same segname occurring in different object mod-
gies. I no combine type is specified, the linker treats such segments as if each had a dif-
ferent segname The combine type has no effect on the relationship of segments with
different segnames MASM and LINK both support the following combine types:

PUBLIC This combine type instructs the linker to concatenate muitiple segments having
the same segname into a single contiguous segment. The linker adjusts any address refer-
ences to fabels within the concatenated segments to reflect the new position of those
labels relative to the start of the combined segment. This combine type is useful for ac-
cessing code or data in different source modules using a common segment register value.

STACK This combine type operates similarly to the PUBLIC combine type, except for
two additional effects: The STACK type tells the linker that this segment comprises part of
the program'’s stack and initialization data contained within STACK segments is handled
differently than in PUBLIC segments. Declaring segments with the STACK combine type
permits the linker to determine the initial 88 and SP register values it places in the EXE

Section Il Programming in the MS-DOS Environment 127

Canon Exhibit 1108

Part B: Programming for M$-DOS

128

file header. Normally, a programmer would declare only one STACK segment in one of the
source modules. If pieces of the stack are declared in different source moduies, the linker
will concatenate them in the same fashion as PUBLIC segments. However, initialization
data declared within any STACK segment is placed at the high end of the combined STACK
segments on 2 module-by-module basis. Thus, each successive module’s initialization data
overlays the previous module’s data. At least one segment must be declared with the
STACK combine type; otherwise, the linker will issue a warning message because it can-
not determine the program’s initial SS arxi SP values (The warning can be ignored if the
program itself initializes SS and SP.) :

COMMON This combine type instructs the linker to overlap multiple segments having

the same segname. The length of the resulting segment reflects the length of the longest
segment declared If any code or data is declared in the overlapping segments, the data
contained in the final segments linked replaces any data in previously loaded segments
This combine type is useful when a data area is to be shared by code in different source

modules

MEMORY Microsoft's LINK treats this combine type the same as it treats the PUBLIC
type MASM, however, supports the MEMORY type for compatibility with other linkers
that use Intel’s definition of a MEMORY combine type.

AT address This combine type instructs LINK to pretend that the segment wili reside at
the absolute segment address LINK then adjusts all'address references to the segment in
accordance with the masquerade LINK will nof create an image of the segment in the
foad module, and i will ignore any data defined within the segment . This behavior is con-
sistent with the fact that MS-DOS does not support the loading of program segments into
absolute memory segments. All programs must be able to execute from any segment ad-
dress at which MS-DOS can find available memory The SEGMENT AT address combine
type is useful for creating templates of various areas in memory outside the program For
instance, SEGMENT AT 0000H could be used to create a template of the 8086-family inter-
rupt vectors. Because data contained within SEGMENT AT address segments is suppressed
by 1INK and not by MASM (which places the data in the object module), it is possible to
use OB files generated by MASM with another linker that supports ROM ot other absolute
code generation shouid the programmer require this specialized capability

The class type parameter
The class parameter provides the means to organize different segments into classifications

For instance, hete are three sousrce modules, each with its own separate code and data
segments:

;Module "A%
2_DAIA SEGMENI PARA PUBIIC 'DAIA'
iModule "A" data fields
A _DATA ENDS
A_CODE SEGMENI PARA PUBLIC 'CODE®
:Module "A" code
A.CODE ENDS
END

(more)

The M$-DOS Encyclopedia

Article 4: Structure of an Application Program

iMedule “B™
B_DATA SEGMENI PARA PUBLIC 'DAIA’
;Module "B" data fields
B_DATA ENDS
B_CODE SEGMENI PARA PUBLIC 'CODE’
;Module "B" code
B..CODE ENDS
END

;Medule M™CM
C_DATIA SEGMENI PARA PUBLIC 'DAIA'
;Module "C" data fields
C_.DAIA ENDS
C_CODE SEGMENI PARA PURIIC 'CODE"
iModule "C" code
C..CODE ENDS
END

If the 'CODE' and 'DATA’ class types are removed from the SEGMENT directives shown
above, the linker organizes the segments as it encounters them If the prbgrammer speci-
fies the modules to the linker in alphabetic order, the linker produces the following
segment ordering:

A_DATA
A _CODE
B_DATA
B..CODE
C_DATIA
C_CODE

Howevery, if the programmer specifies the class types shown in the sample source mod-
ules, the linker organizes the segments by classification as follows:

'DAIA' class: A _DAIA
B.DAIR
C_DAIA

'CODE' class: A_CCDE
B_CODE
C_CODE

Notice that the linker still organizes the classifications in the order in which it encounters
the segments belonging to the various classifications To completely control the order in
which the linker organizes the segments, the programmer must use one of three basic
approaches. The preferred method involves using the /DOSSEG switch with the linker
This produces the segment ordering shown in Figure 4-1 The second method involves
creating a special source module that contains empty SEGMENT-ENDS blocks for ali the
segments declared in the various other source modules The programmer creates the list
in the order the segments are to be arranged in memory and then specifies the (OB] file for
this module as the first file for the linker to process This procedure establishes the order
of all the segments before {INK begins processing the other program modules, so the

Section I Programming in the MS-DOS Environment 129
Canon Exhibit 1108

Part B: Programming for M5-DOS

130

programmer can declare segments in these other modules in any convenient order. For
instance, the following source module rearranges the result of the previous example so
that the linker places the ‘CODE' class before the 'DATA' class:

A _CODE SEGMENI PARA PUBLIC 'CODE "

A_CODE ENDS
B_CODE SEGMENI PARA PUBLIC 'CODE'

B _CODE FENDS3
C_CODE SEGMENT PARA PUBLIC 'CODE’

C_CODE ENDS

A _DAIA SEGMENI PARA PUBLIC DAIA'
A _DAIA ENDS
B_DAIA SEGMENI PARA PUBLTC 'DATA’
B DAIA ENDS
C_DAIA SEGMENI PARA PUBLIC 'DAIA’
C_DAIA ENDS

END

Rather than creating a new module, the third method places the same segment ordeting
list shown above at the start of the first module containing actual code or data that the
programmer will be specifying for the linker. This duplicates the approach used by
Microsoft's newer compilers, such as C version 40

T he ordering of segments within the load module has no direct effect on the linker’s
adjustment of address references to locations within the various segments Only the
GROUP directive and the SEGMENT directive’s combine parameter affect address
adjustments performed by the linker See The MASM GROUP Directive below

Note: Cestain oider versions of the IBM Macto Assembler wrote segments to the object
file in alphabetic order regardless of their order in the sousce file These older versions can
limit efforts to control segment ordering Upgrading to a new version of the assembler is
the best solution to this problem

Ordering segments to shrink the .[EXE file

Correct segment ordering can significantly decrease the size of a EXE program as it
resides on disk This size-reduction ordering is achieved by placing all uninitialized data
fields in their own segments and then controlling the linker's ordering of the program’s
segments so that the uninitialized data field segments all reside at the end of the program.
When the program modules are assembled, MASM places information in the object mod-
ules to tell the linker about initialized and uninitialized areas of all segments The linker
then uses this information to prevent the writing of uninitialized data areas that occur at
the end of the program image as part of the resulting EXE file To account for the memory
space required by these tields, the linker also sets the MINALLOC field in the EXE file
header to represent the data area not written to the file MS-DOS then uses the MINALLOC
field to reallocate this missing space when loading the program.

The MS-DOS Encyclopedia

Article 4: Structure of an Application Program

The MASM GROUP directivé

Ihhe MASM GROU? directive can also have a strong impact ona EXE program However,
the GROUP d1reqt1ve has no effect on the arrangement of program segmenis within men;-
oty Rather, GROUP associates program segments for addressing purposes.

The GROUP directive has the following syntax:
grpname GROUP segname, segname, segname, .

I-his directive causes the linker to adjust all address references to labels within any speci-
fied segname 1o be relative to the start of the declared group The start of the group is de-

termined at link time The group starts with whichew ‘ i
: er of the se t i
the linker places lowest in memory Bmenta n the GROUP i

That the GROUP directive neither causes nor requires contiguous arrangement of the
gf’(')l"iped segments creates some interesting, although not necessarily desirable, possi-
bilities For instance, it permits the programmer 1o locate segments not belongi,n to the
declared group berween segments that do belong to the group The only rest ictim im
posed on the declared group is that the last byte of the last segment in the group must]

occur within 64 KB of the start of the group. Figure 4-7 ill . ;
arrangement: group. Figure 4-7 illustrates this type of segment

A
SEGMENI_C
(listed with GROUP directive)
LABEL C »
—- LABEL B p
@,KB Offset to . SE.G MENT_B
maximum LABFL B {not listed with GROUP directive)
Offset to +
LABEL C
+— LABEL_A p
Offset to . 'S.EGI\@\H*A
LABEL A {listed with GROUP directive)
¥

Figure 4-7 Nomcontiguous segmenis in the same GROUP,

Warning: One of the most confusing aspects of the GROUP directive 1elates to MASM’s
OFFSE‘T operator. The GROUP directive affects only the offset addresses generated b
such direct addressing instructions as Y

MOV AX, FIELD_LABEL
but it has no effect on immediate address values generated by such instructions as

MOV AX,CFFSEI FIELD_LABEL

Section i1 Programming in the MS-DOS Environment 131
Canon Exhibit 1108

Part B: Programming for MS-DOS

Using the OFFSET operator On labels contained within grouped segments requires the

following approach:

MOV AX,OFFSET GROUP_NAME ;FIEID_LABEL

The programmer must explicitly request the offset from the group base, because MASM
defines the result of the OFFSET operator to be the offset of the label from the start of its

segment, not its group

Structuring a small program with SEGMENT and GROUP

Now that we have analyzed the functions performed by the SEGMENT and GROUP direc-
tives, we’ll put both directives to work structuringa skeleton program. The program,
shown in Figures 4-8, 4-9, and 4-10, consists of three source modules (MODULE_A,
MODULE__B, and MODULE_C), each using the following four program segments:

Segment Definition

_YEXT The code or program text segment

_DATA The standard data segment containing preinitialized data fields the pro-
gram might change .

CONST The constant data segment containing constant data fields the program
will not change '

_BSS The “block storage segment/space” segment containing uninitialized data
fiekds*

* Programmers familiar with the IBM 1620/1630 or CDC 6000 and Cyber assemblers may recognize BSSas
‘block started at symbol, which reflects an equally appropriate, although somewhat more elaborate, defini-
tion of (e abbreviation Other common translations of BSS, suchas ‘blank static storage, misrepresent the
segment name, because blanking of BSS segments does not occur — the memory contains undetermined

values when the program begins execution

s gource Module MODULE_A

;Fredeclare all segments to force the linker's segment ordering XS A RS

_IEXI SEGMENI BYIE PUBLIC 'CODE’
_IEXI ENDS

_DAILA SEGMENI WORD PUBILIC 'DATAT
_DalA ENDS

CONSI SEGMENT WORD PUBLIC 'CONSI'
CONSI ENDS

_BS5 SECMENI WORD PUBLIC 'BSS’
_BS5S ENDS

Figure 4-8 Structuring a EXEprogram MODULE_A (more)

The MS-DOS Encyclopedia

Article 4: Structure of an Application Program

SIACK SEGMENT PARA SIACK 'SIACK!
STACK ENDS

DGROUF GROUP —DAIA,CONSI,_ BS3S,SIACK

;Constan“'_ decla:atigns FokkkkkF kA d kk kA ks ki ckh ok ke ok kR R bR R R b Rk k ok ko kR kR Rl kR ok kokok kxR
CCONSI SEGMENI WORD PUBLIC 'CONST'
CONSI_FIELD A DB 'Constant AT ;declare a MODULELA constant

CONSI ENDS

;Preinitialized data ficids #*# ssfffs s b F R F R R R RF R EFRFER AR E R R AR RRRRRTHAFH 2% %
_DAIA SEGMENI WORD PUBIIC 'DAIA'
DATA FIEID T

EID_A DB "Data A' ideclare a MODULE_A preinitialized field

_DATA ENDS

cUninitialized data fields # %% %4k ek s s 3 #h s kbR R AR AR R R MBI I SRR RFFRF XA R R REI TN HF 5 £ %

-BS5S SEGMENT WORD PUBLIC 'BSS’
B

SS_FIEID-A DB 5 DOFP {2} ;declare a MODULIELA uninitialized field
_BSS ENDS

JProgram LeXT ®hef# fds ks kb R F AR EF RFh R bk kb R bRk kb R R R R Rk R R Rk b kb Rk R R RS A 5 F

—TEXT SEGMENI BYIE PUBLIC 'CODE'

ASSUME CS5:_IEXI,DS:DGROUP,ES:NOIHING, 5S:NOIHING

;zigq PROC_B:NEAR tlabel 1s in _IEXI segment (NEAR)
N PROC_C:NEAR rlabel is in _IEXI segment (NEAR)
PROC_A PROC NEAR

CALL PROC_B ;jecall into MODULE_B

CAIlL PROC_C ;call into MCODULE_C

MOV AX,4C00H ;termi

erminate (MS-DOS 2 0 7
e " H or later only}

PROC..A ENDP
—IEXI ENDS

Figure £-8 Continued ¢
more)

Section IT. Programming in the MS-DOS Enpironment 133
Canon Exhibit 1108

Part B: Programming for M3-DOS

134

;Stack ***********************************#*********************#*************

SIACK SEGMENI PARA SIACK 'SIACK'

Dy 128 DUP{2) ;declare some space to use as stack

SIACK _BASE LABEL WORD

"

SIACK ENDS

END PROC_A ideclare PROC.A as entry point

Figure 4-8 Continued

;Source Module MODULE_B
; Constant declarations *t******%****i******************t**********************

CONSI SEGMENT WORD PUBLIC 'CONSI'

CONSI_FIELD_B DB 'constant B' ;declare a MODULE_B constant

CONST ENDS

.] 31 1 4 i * ¥k ¥ REKRKEFE R FRRFRRF R Rk Frh R R R kR kR R T bk xR
sPreinitialized data fields #®###* Lt * * %

_DATIA SEGMENI WORD PUBLIC 'DAIA’
;declare a MODUIE_B preinitialized field

DAIA FIEID_B DB 'Data B’

_DATA ENDS3

-Uninitialized data fields %**************************%##***************#*****

_B8S SEGMENT WORD PUBLIC 'BSS'
BS$S_FIELD_B BB 5 DUP(2) ;declare a MODUIE_B uninitialized field
_B8S ENDS

;Program text ***********%*****%**

DGROUP GROUP _DAIA,CONSI, BSS
_IEXT SEGMENI BYIE PUBLIC 'CODE'

. AS5UME CS:_IEXI,DS:DGROUP,ES:NOTHING, 5S:NOIHING

Figyre 4-9 Structuring a EXE program: MODULE_B {more}

The M5-DOS Encyclopedia

Article 4: Structure of an Application Program

PUBIIC PROC_B rreference in MODULE_A

PROC_B PROC NEAR
RET

PROC_B ENDP

_LIEXI ENDS

END

Figure 4-9. Continued

;jSource Module MODULE_C

:Constant declarations #&s ek kkekdhkhid ok bokadkokk dokkoh sk bk kb kR Rk Rk R # Rk ks ok kok ok g
CONSL SEGMENI WORD PUBLIC 'CONSIC

CONSI_®FIEID C DB 'Constant C' ideclare a MODULE.C constant

CONSI ENDS

iPreinitialized data Fields skddeskmsohsmss fk % o8k 5 kb d bk % 508 ok B E ok o 8k o 5 o o o0k ok ok K
_DATA SEGMENI WORD PUBIIC 'DAIA'
;declare a MODUIE_C preinitialized field

DATA_FIELD_C DB ‘Data C'

_DATA ENDS

;Uninitialized data fields ##s#*kts sd bRk bnb bRk kR b bR R Rk R XA X R hK A3k b bRk R ¥ A b h b o x

~BSS SEGMENI WORD PUBLIC 'BSS'
BSS_FIELD_C DB S DUP({?) ;declare a MODUIE_C uninitialized field

_BSS ENDS

;Program Ctext ®F+kedF Rt bk b dhx sk bdddhdkd kbbbt bkhkb kb bR bR R R R AR A kR TR FRB R R T R

DGROUP GROUP _DAIA,CONSI,_BSS
_IEXI SEGMENI BYIE PUBLIC 'CODE'

ASSUME CS:_IEXT,DS:DGROUP,ES:NOIHING, 35:NOIHING

Figure 4-10 Structuring a EXE program: MODUIE__.C (more)

Section II. Programming in the MS-DOS Environment 135
Canon Exhibit 1108

Articie 4: Structure of an Application Program

Part B: Programming for M8§-DOS

1
1
i

PUBLIC PROC_C :referenced in MODULE_A ‘ . Address Publics by Value
PROC_C PROC HNEAR o 0000:0008 PROC_B
; 0006:000C PROC_C
REI N FProgram entry point at 0000:0000
PROC_C ENDP [Figure 4-11. Continued
—LEXL ENDS . T he above memory map report represents the memory diagram shown in Figure 4-12. |
EMND | |
; Absolute i
Figure 4-10 Continued A address Size in bytes
. . o i 00150H p -
T his example creates a small memoty model program image, so the linked program can 4
have only a single code segment and a single data segment —the simplest standard form = s‘I: ;?a(i(STACK (A) 256
of 2 EXE program See Using Microsoft’s Contemporary Memory Models below : S S 1
. ; ARA a
In addition to declaring the four segments already discussed, MODULE_ A declares a S O004FH | - - - - ~ £ BgSI; o z
STACK segment in which to define a block of memory for use as the program’s stack and A 0004AH B| - — — — =|— = = - = SWORD alisn mop T
aiso defines the linking order of the {ive segments Defining the linking order leaves the : 00049H »| - - - ~ = - BSS - BSS (B) 5 15
. g i : ini ent con- H044H pi - — - — — - -
programmer free 1o declare the segments in any Ofder when defl-nmg the segmm1 H b Class WORD sfign 377 s
tents— a necessity because the assembiler has difficulty assembling programs that use 00043H B\ -DGROUP —{~ = = = = BSS (A) 5
forward references : COO3EH D Group = CONST (C) 10 4
: ' disk with the ASM files, the following con- O0O34EL B = = - - = ~ CONST — 0 30
With Microsoft’s MASM and LINK on the same disk with the . , 4 0002AH B | - — — - = _ Ciass _ | CONST(B) ¢
mands can be made into a batch file: 00020H p| — — — — = C];):;: ((2)) 1;’ X
MASM SIRUCHE; 0001AH pj - =~ — - — - DAIA - 6 18
ci DATA (B)
MASM SIRUCE; 00014H B| - - - - - = PR e A 7 3 ¢
MASM SIRUCC: GO00EH p; - - - = = -
LINK SIRUCA+SIRUCB+STRUCC/M; 0000DH p WORD align gap 1 X v
: , T , : i . TEXT (C) 1
These commands will assemble and link all the ASM files listed, producing the memory 0000CH »|- - - - CODE ~ - - TEXT (B) I 13
map report file STRUCA MAP shown in Figure 4-11 DGROUP O0OOBH b - — - - Clss - - - TEXT (A) 1 iv
addressing B 00000H
Start Stop Length Name Class base
00000H 000DCCH (0000DH _IEXT CODE B
Q000EH 0C001FE 000128 _DAIA DAIA Figure 4-12 Structure of the sample EXE program
000208 O003DHE OCO1ER CONSI CONST
0CO3EH O00O4EH 00011H _BSS BSS Using Microsoft’s contemporary memory models
00050E CO14FH 00100H SIACK SIACK)
_ 5 Now that we've analyzed the various aspects of designing assembly-language EXE pro-
origin Group grams, we can look at how Microsoft's high-levei-language compilers create EXE pro-
g guage comp o
0000:0 DGROUF : grams from high-level-language source files. Even assembly-language programmers will
Address Publics by Name find this discussion of interest and should seriously consider using the five standard
memory models outlined here
:000B PROC_B : o L . : . ; . .
gggg . g 000 oROCC This discussion is based on the Microsoft C Compiler version 4.0, which, along with the
(more) Microsoft FORTRAN Compiler version 4 0, incorporates the most contempotary code
Figure 4-11 Structuring @ EXE program memory map report generator currently available These newer compilers generate code based on three to five

Section II Programming in the MS-DOS Environment 137

1 ") d'
136 TheMs-DOS Encyclopedia Canon Exhibit 1108

Part B: Programming for MS-DOS

138

of the following standard programrner—selectable program structures, referred to as mem-
ory models The discussion of each of these memory models will centex on the model’s
use with the Microsoft C Compiler and will close with comments regarding any differences

for the Microsoft FORTRAN Compiler

Smaill (C compiler switch /AS) This model, the default, includes only a single code seg-
ment and a single data segment. Ail code must fit within 64 KB, and all data must fit within
an additional 64 KB Most C program designs fai] into this category Data can exceed the
64 KB limit only if the far and huge attributes are used, forcing the compiler to use far
addressing, and the linker to place far and huge data items into separate segments The
data-size-threshold switch described for the compact model is ignored by the Microsoft C
Compiler when used with a smatl model. The C compiler uses the default segment name
__TEXT for all code and the defauit segment name __DATA for ail non-far/ huge data
Microsoft FORTRAN programs can generate a semblance of this model only by using the
/NM (name module) and /AM (medium model) compiler switches in combination with the

near attribute on all subprogram declarations.

Medium (C and FORTRAN compiler switch /AM) This model includes only a single data
segmenit but breaks the code into multiple code segments All data must fit within 64 KB,
but the 64 KB restriction on code size applies only ona module-by-module basis. Data can
exceed the 64 KB limit only if the far and huge attributes are used, forcing the compiler to
use far addressing, and the linker to place far and huge data items into separate segments
The data-size-threshold switch described for the compact model is ignored by the
Microsoft C Compiler when used with 2 medium model. The compiler uses the default seg-
ment name _ DATA for all non-far/ huge data and the template module _TEXT to create
names for all code segments The modie element of module _TEXT indicates where the
compiler is to substitute the name of the source module For example, if the source module
HELPFUNC C is compiled using the medium model, the compiler creates the code seg-
ment HELPFUNC_TEXT The Microsoft FORT RAN Compiler version 4 0 directly suppotts

the medium model.

Compact (C compiler switch /AC) This model includes only a single code segment but
breaks the data into multiple data segments All code rust fit within 64 KB, but the data is
allowed to consume all the remaining available memory The Microsoft C Compiler's op-
rional data-size-threshold switch (/Gt) controls the placement of the larger data items into
additional data segments, leaving the smaller items in the default segment for faster access.
Individual data items within the program cannot exceed 64 KB under the compact model
without being explicitly declared huge The compiler uses the default segment name
_TEXT for all code segments and the template module# DATA 1o create names for all data
segments The module element indicates where the compiler is to substitute the source
module’s name; the # element represents a digit that the compiler changes for each addi-
tional data segment required to hold the module’s data. The compiler starts with the digit 5
and counts up. For example, if the name of the source module is HELPF UNC C, the com-
piler names the first data segment HELPFUNCS_DATA FORTRAN programs can generate
a semblance of this model only by using the /NM (name module) and /AL (large modeD)
compiler switches in combination with the near attribute on all subprogram declarations

The MS-DOS Encyclopedia

Articie 4: Structure of an Application Program

! :;ii E(1 fsa?}cfeEORTE;dN compgef switch /AL) This model creates multiple code and data
. compiler treats data in the same manner as it does for th
» - ; e compact model
1z;nc! ;Ieats code in the same manner as it does for the medium model. The Micliosoft §
ORTRAN Compiler version 4 0 directly supports the large model

Huie'l(fC and FORTRAN compiler switch /AH) Allocation of segments under the huge
mode ollows the same rules as for the large model. The difference is that individual d
items can exceed 64 KB Under the huge model, the compiler generates the necessaa.r a
code tf) index arrays or adjust pointers across segment boundaries; effectively tr ansfojrr‘mi
thekmlcroprocessor’s segment-addressed memory into linear-addressed memory This *
21(1;5 Srs E:e hug(ca1 rr.lodei espeC'la; ly useful for porting a program originally written for a pro-
ces addrzts;ie ICllmtzlar ad.dres.smg T he speed penalties the program pays in exchange for
e StmCtgu Ir :See)c:ér; ézg}lx;&sgois cortl)sigieration If the program actually contains

lta st , it probably contains only a few In iti
t(;l a';rlmd using the huge .model by explicitly declaring those fe&f data itenikslitscgfl;gtl]ssirllj .
F ¢ huge keyword within the scurce module. This prevents penalizing all the non-hy Y
items with extra addressing math. The Microsoft FORTRAN Compiler version 4 i l'lge
supports the huge model. g’ crsion 40 directly

Flg‘ll‘? 4-13 shows an exampile of the segment arrangement created by a large/huge model
ptogx?m T hi example assumes two source modules: MSCA Cand MSCB C. Each source
module specifies enough data to cause the compiler ' l

: piler to create two extra data segments for
that module The diagram does not show ali the various segments that occur asga result g;

linking with the run-time library or : : ili i i
Codevion debosan y or as a result of compiling with the intention of using the

Groups Classes Segments
STACK STACK 4 SMCLIH: Program stack
SGROUP BSS c_common | SM: All vninitialized global items. CLH: Empty
_BSS « SMCLH: All uninitialized non-farfhuge items
CDO‘:IST CONST 4 SMCLH: Constants (floating point constraints segment addresses etc)
TA _DATA |4 SMCLH: All items that don't end up anywhere else
FAR_BSS FAR_BSS [+ SM: Nonexistent, CEH: All uninitialized giobai items

MSCB6_DATA « From MSCB only: SM: Far/huge items CLH: Items larger than threshold

FAR DATA MSCBS_DATA| 4 From MSCB only: SM: Far/huge items CLH: ltems larger than threshold
MSCAG_DATA| 4 From MSCA only: SM: Farfhuge items CLH: Iterns larger than threshold
MSCAS_DATA| 4 From MSCA only: SM: Farhuge items, CLH: Items larger than threshold
CODE . TEXT « SC: All code, ML H: Ran-time library code only

SCB _TEXT {4 SC: Nonexistent MLH: MSCB C Code
MSCA_TEXT | 4 SC: Nonexistent MLH: MSCA C Code

§ = Small model L = Large model
M = Medium model H= Huge model
C = Compact model

Figure 4-13. General structure of a Microsgft G program

Section II. Programming in the MS-DOS Environment 139

Canon Exhibit 1108

Part B: Programming for MS-DOS

Note that if the program declares an extremely large number of smali data items, it can
exceed the 64 KB size limit on the default data segment (_DATA) regardless of the memory
model specified This occurs because the data items all fall below the data-size-threshold
limit (compiler /Gt switch), causing the compiler to place them in the _DATA segment.
Loweting the data size threshold or explicitly using the far attribute within the source
modules eliminates this problem.

Modifying the .EXE file header

With most of its language compilers, Microsoft supplies a utility program calied EXEMOD
See PROGRAMMING UTILITIES: xemon This utility allows the programmer 1o display
and modify certain fields contained within the EXE file header Following are the header
fields EXEMOD can modify (based on EXEMOD version 4 0):

MAXAILOC This field can be modified by using EXEMOD's /MAX switch Because
EXEMOD opetates on EXE files that have already been linked, the /MAX switch can be
used to modify the MAXALLOC field in existing EXE programs that contain the default
MAXALLOC value of FFFFH, provided the programs do not tely on MS-DOS's allocating
all free memory to them. EXEMOD's /MAX switch functions in an identical mannet to

LINK's /CPARMAXALLOC switch

MINALIOC This field can be modified by using EXEMOD’s /MIN switch Unlike the case
with the MAXAILOC field, most programs do not have an arbitrary value for MINALLOC
MINALLOGC normally represents uninitialized memory and stack space the linker has com-
pressed out of the EXE file, so a programmet should never reduce the MINALLOC value
within 2 EXE program written by someone else. If a program requires some minimum
amount of extra dynamic memory in addition to any static fields, MINALLOC can be in-
creased to ensure that the program will have this extra memory before receiving control Tf
this is done, the progtam will not have to verify that MS-DOS allocated enough memory to
meet program needs Of course, the same result can be achieved without EXEMOD by
declaring this minimum extra memory as an uninitialized field at the end of the program

Initial SP Value This field can be modified by using the /STACK switch io increase or
decrease the size of a program’s stack. However, modifying the initial SP value for pro-
grams developed using Microsoft language compiler versions earlier than the following
may cause the programs to fail: C version 3 0, Pascal version 3.3, and FORTRAN version

3 3 Other language compilers may have the same restriction The /STACK switch can also
be used with programs developed using MASM, provided the stack space is linked at the
end of the program, but it would probably be wise to change the size of the STACK seg-
ment declaration within the program instead The linker also provides a /STACK switch

that performs the same purpose

Note: With the /H switch set, EXEMOD displays the current values of the fields within
the EXE header This switch should not be used with the other switches EXEMOD also

displays field values if no switches are used

140 The MS-DOS Encyclopedia

g

Article 4: Structure of an Application Program

W?fning:' EXEMOD also functions correctly when used with packed EXE files created
using EXEPACI‘{ or the /EXEPACK linker switch However, it is important to use the
EXEMOD version shipped with the linker or EXEPACK utility. Possible future changes in

the packing method may result in incompatibiliti
. patibilities between EXEMOD i
linker/EXEPACK versions andnonassaciated

Patching the .EXE program using DEBUG

Every experienced programmer knows that programs always seem to have at ieast one
unspotied error If 2 program has been distributed to other users, the programmer will
Probably .need to provide those users with corrections when such bugs come to light One
inexpensive updating approach used by many large companies consists of mailing out

smg;]e-page instructions explaining how the user can patch the program to correct the
problem

Pr_ograrp patching usually involves loading the program file into the DEBUG utility sup-
plied Wxth MS-DQS, storing new bytes into the program image', and then saving the rlcj)-
gram file back to disk. Unfortunately, DEBUG cannot load a EXE program into merrlljox

and then save it back to disk in EXE format. The programmer must trick DEBUG into Y

patching EXE program files, using the procedure outlined below See PROGRAMMING
UTILITIES: pEBUG . ' :

Note: Useis should be reminded to make backup copi ‘their pr
: p copies of their program befor -
ing the patching procedure prog clore atempt

1 Rename the EXE file using a filename extension that does not have special meaning

for DEBUG (Avoid EXE, COM, and HEX) For instance, MYPROG BIN serves well as

T a t'empora;y new name for MYPROG EXE because DEBUG does not recognize a file
with a BIN extension as anything special DEBUG will load the entire image of
MYPROG BIN, including the EXE header and relocation table, into memory starting
at offset 100H within a COM-style program segment (as discussed previously)

2. Locate the area within the load module section of the EXE file image that requires
patching The previous discussion of the EXE file image, together with compiler/
assembler listings and linker memory map reports, provides the information neces-
sary to locate the erior within the EXE file image DEBUG loads the file image start-
ing at offset 100H within a COM-style program segment, so the programmer must
compensate for this offset when calculating addresses within the file image Also, the
compiler listings and linker memory map reports provide addresses relative to th<,3
§tart of the program image within the EXE file, not relative to the start of the file
1;5;1}5 fi[lhf}:lr'efcc)lr'e, thz programmer must first check the information contained in the
‘ ile header to determing ‘ ograny’s i
XL head e where the load module (the program’s image) starts

3 Fjse DEBUG’s E (Enter Data) or A {Assemble Machine Insttuctions) command to
insett the corrections. (Normally, patch instructions to users would simply give an
address at which the user should apply the patch The user need not know how 1o
determine the address)

4 Afterthe patch has been applied, simply issue the DEBUG W (Write File or Sectors)
command o wrie the corrected image back to disk under the same filename, pro-
vided the patch has not increased the size of the program If program size ha;

Section IT. Programming in the MS-DOS Environment 141
Canon Exhibit 1108

Part B: Programming for M3-DOS

increased, first change the appropriate size fields in the EXE header at the start of the
file and use the DEBUG R (Display or Modify Registers) command to modify the BX
and CX registers so that they contain the file image’s new size Then use the W com-
mand to write the image back to disk under the same name

5 Use the DEBUG Q (Quit) command to return to MS-DOS command level, and then
rename the file to the original FXE filename extension

JEXE summary
To summarize, the EXE program and file structures provide considerable flexibility in the
design of programs, providing the programmer with the necessary freedom to produce

large-scale applications Programs written using Microsoft’s high-level-language compilers

have access to five standardized program structure models (small, medium, compact,
large, and huge). T hese standardized models are excellent examples of ways to structure

assembly-language programs

The .COM Program

The majority of differences between COM and EXE programs exist because COM
program files are not prefaced by header information. Therefore, COM programs do not
benefit from the features the EXE header provides. '

The absence of a header leaves MS-DOS with no way of knowing how much memory the
COM program requires in addition to the size of the program’s image. T herefore, MS-DOS
must always allocate the largest free block of memory to the COM program, regardless of
the prograny’s true memory requirements As was discussed for EXE programs, this allo-
cation of the largest block of free memory usually results in MS-DOS's allocating all
remaining free memory — an action that can cause problems for multitasking supervisor
programs. :

The EXE program header also includes the direct segment address relocation pointer
table Because they lack this table, COM programs cannot make address references to the
labels specified in SEGMENT directives, with the exception of SEGMENT AT address
directives If a COM program did make these references, MS-DOS would have no way of
adjusting the addresses to cotrespond to the actual segment address into which MS-DOS
loacled the program See Creating the COM Program below.

The COM program structure exists primatily to support the vast number of CP/M pro-

grams ported to MS-DOS Currently, COM programs are most often used to avoid adding
the 512 bytes or more of EXF header information onto small, simple programs that often

do not exceed 512 bytes by themselves

The COM program structure has another advantage: Jts memory organization places the
PSP within the same address segment as the rest of the program Thus, it is easier to access
fields within the PSP in COM programs

142 The MS-DOS Encyciopedia

Article 4: Structure of an Application Program

Giving control to the .COM program

After allocating the largest block of free memory to the COM program, MS-DOS builds
a PSP in the lowest 100H bytes of the block. No difference exists betwe’en the PSP MS-DOS
builds for COM programs and the PSP it builds for EXE programs Also with EXE pro-
grams, MS-DOS determines the initial values for the AL and AH registers at this time and

" then loads the entire COM-{ile image into memory immediately following the PSP,
Because COM files have no file-size header fields, MS-DOS relies on the size recorded in
the disk directory to determine the size of the program image It loads the program exactl
as it appears in the file, without checking the file’s contents. '

MS-DOS then sets the DS, ES, and 85 segment registers to point to the start of the PSP If
able to allocate at least 64 KB to the program, MS-DOS sets the SP register to offset FFFFH
+1 (D000H) 1o establish an initial stack; if less than 64 KB are available for allocation to the 7
program, MS-DOS sets the SP to 1 byte past the highest offset owned by the program. In
either case, MS-DXOS then pushes a single word of 0000H onto the program’s stack forl‘

use in terminating the program

Finally, MS-DOS transfers control to the program by setting the CS register to the PSP’s
segmentl address and the IP register to 0100H. This means that the program’s entry point
must exist at the very start of the program’s image, as shown in later examples.

Figure 4-14 shows the overall structure of a .COM program as it receives control from
MS-DOS.

.COM program memory image

SP=FFFEH* —JTW |
Remaining free memory

within first 64 KB allocated
0 .COM program
{provided a full 64 KB was available)

COM program image from file
COM program image 4| 4 [P=0100H

Program segment prefix

4 CS,DS,ES.SS

*The SP and 64 KB values are dependent upon
MS-DOS having 64 KB or more of memory
available to aflocate to the COM program

at load time.

Figure 4-14 The COM program memory map diagram with register poinlers

Section II. Programming in the MS-DOS Environment ~ 143

Canon Exhibit 1108

Part B: Programming for M5-DOS

Terminating the .COM program

A COM program can use all the termination methods describec.l for EXE programs b}lt
should still use the MS-DOS Interrupt 21H Terminate Process Wﬂfh Return §ode f.unct1on
(4CH) as the preferred method If the COM program must remain comlpan.bie with ver-
sions of MS-DOS earlier than 2 0, it can easily use any of the older termination methods,
including those described as difficult to use from EXE programs, because COM programs
execute with the C$ register pointing to the PSP as required by these methods.

Creating the .COM program

144

A COM program is created in the same manner as 2 EXE program and then converted
using the MS-DOS EXE2BIN utility See PROGRAMMING UTILITIES: EXEZBIN

Certain restrictions do apply to COM programs, however First, COM programs cannot
exceed 64 KB minus 100H bytes for the PSP minus 2 bytes for the zero word initially
pushed on the stack

a single addressing group — should exist within
es show ways to sttucture a COM program to sat- ;
d to have data fields precede program code in the ;

Next, only a single segment-— or at feast
the program. The following two exampl
isfy both this restriction and MASM’s nee

source file.

COMPROG1 ASM (Figure 4-15) declares only a single segment (COMSEG), so no special
considerations apply when using the MASM OFFSE 1 operator See The MA§M GROUP
Directive above COMPROG2 ASM (Figure 4-16) declares separate code (CSlEG) and data
(DSEG) segments, which the GROUP directive ties into a common addr:essmg block.
Thus, the programmer can declare data fields at the start of the source.fﬂfe gnd hav.e thek
linker place the data fields segment (DSEG) after the code segment (CSEG) when. it links
the program, as discussed for the EXE program structure This second example sxrnui?tes
the program structuring provided under CP'M by Microsoft’s old MaCIo-SO (MB0) macro
assembler and Link-80 (180) linker The design also expands easily to accommodate

COMMON or other additional segments

COMSEC SEGMENI BYIE PUBLIC "CODE' |
ASSUME CS:COMSEG,DS:COMSEG,ES:COMSEG,SS:COMSEG

ORG 0100H I

BEGIN:
P SIARI
;Place your data fields here.

;skip over data fields

SIARI:

;Place your program text here

’ MOV A¥,4CO0H sterminate (M3-DOS 2.0 or later only)
Nl 218

COMSEG ENDS
END BEGIN

Figure 4-15. COM program with data gt start

The MS$-DOS Encyclopedia

Article 4: Structure of an Application Program

CSEG SEGMENI BYIE PUBLIC "CODE' restablish segment order
CSEG ENDS
DSEG SEGMENI BYIE PUBIIC 'DAIA'

DSEG ENDS

COMGRP GROUP CSEG, DSEG
DSEG SEGMENI

;jPlace your data fields here.
DSEG ENDS

CSEG SEGMENT

;establish joint address base

ASSUME CS:COMGRP,DS:COMGRP,ES: COMGRP, 55 : COMGRP
CRG 01008

BEGIN:
;Place your program text here Remember to use
sOFFSEI COMGRP:IABEL whenever you use OFFSET.

MOV AX,4C00H rterminate (MS-DOS 2.0 or later only)
INI 218

CSEG ENDS
END BEGIN

Figure 4-16 . COM program with data at end

These examples demonstrate other significant requirements for producing a functioning
COM program For instance, the ORG 0I00H statement in both examples tells MASM o
start assembling the code at offset 100H within the encompassing segment This corre-
sponds to MS-DOS’s transferring control to the program at IP = 0100H In addition, the
entry-point label (BEGIN) immediately follows the ORG statement and appeats again as 2
parameter to the END statement. Together, these factors satisfy the requirement that COM
programs declare their entry point at offset 100H. If any facior is missing, the MS-DOS
EXE2BIN utility will not properly convert the EXE file produced by the linker into a COM
file Specifically, if a COM program declares an entry point (as a parameter to the END
“statement) that is at neither offset 0100H nor offset 0000H, EXE2BIN rejects the EXE file
when the programmer attempts to convert it If the program fails to declare an entry point
ot declares an entry point at offset 0000H, EXE2BIN assumes that the EXE fiie is to be
converted to a binary image rather thanto a COM image When EXE2BIN convertsa EXE
file to 2 non- COM binary file, it does not strip the extra 100H bytes the linker places in
front of the code as a result of the ORG 0100F instruction Thus, the program actually
begins at offset 200H when MS-DOS loads it into memory, but all the program’s address
references will have been assembled and linked based on the 100H offset Asa result, the
program -—and probably the rest of the system as well——is likely to crash

A COM program alse must not contain direct segment address references to any segments
that make up the program Thus, the .COM program cannot reference any segment iabels
or reference any labels as long (FAR) pointers. (T his rule does not prevent the program
from referencing segment labels declared using the SEGMENT AT address directive)
Following are vazious examples of direct segment address references that are not per-
mitted as pait of COM programs:

Section Il Programming in the M5-DOS Environment 145
Canon Exhibit 1108

Part B: Programming for MS-DOS

PROC.A PROC FAR
PRCC_A ENDP
CALL PROC_A . intersegment call
JMP PROC_A ;intersegment jump
or

EXIRN PROC_A:FAR
CALL PROC_A ;intersegment call

JMP PROC_A sintersegment Jjump
or
MOV AX,8EG SEG-A : segment address
DD LABEL_A :segment :affset pointer

Finally, COM programs must not declare any segments with the STACK combine type 1
a program declares a segment with the STACK combine type, the linker will insert initial
S and SP values into the EXE file header, causing EXE2BIN to reject the EXE file A COM
program does not have explicitly declared stacks, although it can reserve space in a non-
STACK combine type segment to which it can initialize the SP register gffer itreceives
control. The absence of a stack segment will cause the linker to issue a harmless war ning

message.

‘When the progtam is assembled and linked into a EXE file, it must be converted into a
binary file witha COM extension by using the EXE2BIN utility as shown in the following
example for the file YOURPROG EXE:

C>ZXEZBTN YOURPROG YOURPROG.COM <Enter>

XE file with the same filename as the COM

as long as both remain in the same directory,

because MS-DOS's order of execution is COM files first, then EXE files, and finally BAT
files However, the safest practice is to delete a EXE file immediately after converting it to
4 COM file in case the COM file is later repnamed or moved to a different directory 1fa
EXE file designed for conversion {0 a COM file is executed by accident, it is likely 10 crash

the system
Patching the .COM program using DEBUG
software to users will probably

As discussed for EXE files, a programmer who distributes
want to send instructions on how to patch in error corrections. This approach to sofiware
updates lends itself even better 10 COM files than it does to EXE files.

ain only the code image, they need not be renamed
in order to read and write them using DEBUG 1 he user need only be instructed on how to
load the COM file into DEBUG, how to patch the program, and how to wiite the patched
image back to disk Calculating the addresses and patch values is even easier, because no
header exists in the COM file image to cause complications With the preceding excep-
tions, the details for patching COM programs remain the same as previously outlined for

EXE programs.

1t is not necessary to delete orrename 2 E
file before trying to execute the COM file

For example, because COM files cont

146 . The MS-DOS Encyclopedia

Article 4: Structure of an Application Program

.COM summary

To sumimarize, the .COM program and file structures are a simpler but more restricted
appr'oach to writing programs than the EXE structure because the programmer has onl
squfe memory model from which to choose (the COM program segment model) Als ik
COM program files do not contain the 512-byte {or more) header inherent to EXE fileo’
the COM program structure is well suited to small programs for which adding 512 b o
of header would probably at least double the file’s size g

Summary of Differences

The following table summarizes the differences between .COM and EXE programs

JCOM program JEXE program
Maximum size 65536 bytes minus 256 bytes No limit
. ‘ for PSP and 2 bytes for stack
Cgtg éanci:nt ggﬁ:OIOOH Defined by END statement
¥ Segment containing progran’s
entry point
Pat :
ateatry (100H Offset of entry point within its
DS at entsy PSP P;Ie’gmem
ES atentry PSP PSP
SS atentry PSP
7 Segment with STACK attribute
SP atentry EFFEH or top word in available End of segment defined with
Sk memory, whichever is lower STACK attribute
ack at entry Zero word Initialized or uninitialized,
. depending on source
Stack size 65536 bytes minus 256 bytes Defined in segment with
for PSP and size of executable STACK attribute
code and data
Subroutine calls NEAR NEAR ot FAR
Exit method Inten'upt 21H Function 4CH Interrupt 21H Function 4CH
preferred; NE-AR RET if preferred; indirect jump
MS-DOS versions 1 x to PSP:0000H if MS-DOS
Sire of file » versions 1x
Exact size of program Size of program plus header (at

least 512 extra bytes)

Section If. Programming in the MS-DOS Environment 147

Canon Exhibit 1108

Part B: Programming for MS-DOS

. intended size, but the decision can also

148

an application usuaily depends on the program’s
be influenced by a program’s need to address mul-
small utility programs (such as CHKDSK gnd FOR-.
large programs (such as the Microsoft C Com?ﬂer)
e decision is, of course, the programmer's

Which format the prografnmer Uses fot

tiple memory segments. Normally,
MAT) are designed as COM programs; &
are designed as EXE programs The uvitimat

Keith Burgoyne

The MS-DOS Encyclopedia

q
1
!

Article 5: Character Device Input and Cutput

Article 5:
Character Device Input and Output

All functional computer systems are composed of a central processing unit (CPEJ), some
memory, and peripheral devices that the CPU can use to store data or communicate with
the outside world. In M5-DOS systems, the essential peripheral devices are the keyboard
(for input), the display (for output), and one or more disk drives (for nonvolatile storage)
Additional devices such as printers, modems, and pointing devices extend the function-

ality of the computer or offer alternative methods of using the system

MS-DOS recognizes two types of devices: block devices, which are usually floppy-disk or
fixed-disk drives; and character devices, such as the keyboard, dispiay, printer, and com-
munications ports

The distinction between block and character devices is not always readily apparent, but
in general, biock devices transfer information in chunls, or blocks, and character devices
move data one character (usually 1 byte) at a time MS-DOS identifies each block device by
a drive letter assigned when the device’s controlling software, the device diiver, is loaded
A character device, on the other hand, is identified by a logical name (similar to a filename
and subject to many of the same restrictions) built into its device driver. See PROGRAM-
MING IN THE MS-DOS ENVIRONMENT: CustoMiziNg ms-Dos: Installable Device Drivers

Background Information

Versions 1 x of MS-DOS, first released for the IBM PC in 1981, supported peripheral devices
with a fixed set of device drivers loaded during system initialization from the hidden file
IO.SYS (or IBMBIO.COM with PC-DOS) These versions of MS-DOS offered application
programs a high degree of input/output device independence by allowing character
devices to be treaied like files, but they did not provide an easy way to augment the built-in
set of drivers if the user wished to add a third-party peripheral device to the system

With the release of MS-DOS version 2 0, the hardware flexibility of the system was tremen-
dously enhanced Versions 2.0 and later support installable device drivers that can reside in
separate files on the disk and can be linked into the operating system simply by adding a
DEVICE directive to the CONFIG SYS file on the startup disk See USER COMMANDS:
CONFIG svs: DEVICE A well-defined interface between installable drivers and the MS-DOS
kerne] allows such drivers to be written for most types of petipheral devices without the
need for modification to the operating system itself

The CONFIG SYS file can contain a number of different DEVICE commands to load sepa-
rate drivers for pointing devices, magnetictape drives, network interfaces, and so on Each
driver, in turn, is specialized for the hardware characteristics of the device it supports

Section Il Programming in the MS-DOS Environment 149
Canon Exhibit 1108

Part B: Programming for M3-DOS

When the system is turned on or restarted, the instatlable device drivers are added to the
chain, or linked list, of default device drivers loaded from IO SYS during M3-DOS initializa-
tion. Thus, the need for the system’s default set of device drivers to support a wide range of
optional device types and features at an excessive cost of system memory is avoided.

One important distinction between block and character devices is that MS-DOS always
2dds new block-device drivers to the tail of the driver chain but adds new character-device
drivers to the head of the chain Thus, because MS-DOS searches the chain sequentially
and uses the first driver it finds that satisfies its search conditions, any existing character-
device driver can be superseded by simply installing another driver with an identical logi-
cal device name.

This article covers some of the details of working with MS-DOS character devices: display-
ing text, keyboard input, and other basic character /O functions; the definition and use of
standard input and output; redisection of the default character devices; and the use of the
IOCTI finction (Interrupt 21H Function 44H) to communicate directly with a character-
device driver Much of the information presented in this article is applicable only to
MS-DOS versions 2.0 and later

Accessing Character Devices

150

Application programs can use either of two basic techniques to access character devices in
a portable manner under MS-DOS First, a program can use the handle-type function calls
that were added to MS-DOS in version 2 0 Alternatively, a program can use the so-called
“traditional” character-device functions that were present in versions 1 X and have been
retained in the operating system for compatibility Because the handle functions are more
powerful and flexible, they are discussed first

A handle is a 16-bit number returned by the operating system whenever a file or device is
opened or created by passing a name to MS-DOS Interzupt 21H Function 3CH (Create File

~ with Handle), 3DH (Open File with Handle), SAH (Create femporary File), or SBH (Create

New File). After a handle is obtained, it can be used with Interrupt 21H Function 3FH
(Read File or Device) or Function 40H (Write File or Device) to transfer data between the

computer's memory and the file or device

During an open ot create function call, MS-DOS searches the device-driver chain sequen-
tially for a character device with the specified name (the extension is ignored) befote
searching the disk directory Thus, a file with the same name as any character device in the
driver chain -— for example, the file NUL TXT — cannot be created, nor can an existing file
be accessed if a device in the chain has the same name

The second method for accessing character devices is through the traditional MS-DOS
character input and output functions, Interrupt 21H Functions 01H through 0CH These
functions are designed to communicate directly with the keyboard, display, printer, and
serial port Each of these devices has its own function or group of functions, so neither

The M5-DOS Encyclopedia

Article 5: Character Device Input and Cutput

names nor handles need be used However, in MS-DOS versions 2 (0 and later, these func-
tion calls are translated within MS-DOS to make use of the same roufines that are used by
the handle functions, so the traditional keyboard and display functions are affected by /0
redirection and piping

Use of either the traditional or the handle-based method for character device I/O results
in highly portable programs that can be used on any computer that runs MS-DOS A third,
less portable access method is to use the hardware-specific routines resident in the read-
only memory (ROM) of a specific computer (such as the IBM PC ROM BIOS driver func-
tions), and a fourth, definitely nonpoitable approach is to manipulate the peripheral
device’s adapter directly, bypassing the system software altogether Although these latter
hardware-dependent methods cannot be recommended, they are admittedly sometimes
necessary for performance reasons.

The Basic MS-DOS Character Devices

Every MS-DOS system supports at feast the following set of logical character devices
without the need for any additional installable drivers:

Device Meaning

CON Keyboard and display

PRN System list device, usually a parallel port
AUX Auxiliary device, usually a serial port
CIOCK$ System real-time clock

NUL “Bit-bucket” device

These devices can be opened by name or they can be addressed through the “traditional”
function calls; strings can be read from or written to the devices according to their capabili-
ties on any MS-DOS system Data written to the NUL device is discarded; reads from the
NUL device always return an end-of-file condition

PC-DOS and compatible implementations of MS-DOS typically also support the following
logical character-device names:

Device Meaning

COM1 First serial communications port
COM2 Second serial communications port
IPT1 First parallel printer port

1P12 Second parallel printer port

1P13 Third parallel printer port

Section Il Programming in the MS-DOS Environment 151

Canon Exhibit 1108

Part B: Programming for MS-DOS

Article 5: Character Device input and Qutput

In such systems, PRN is an alias for IPT1 and AUX is an alias for COM1 The MODE com-
mand can be used to redirect an LPT device to another device See USER COMMANDS:
MODE.

As previously mentioned, any of these default character-device drivers can be superseded
by a user-installed device driver — for example, one that offers enhanced functionality or
changes the device’s apparent characteristics. One frequently used alternative character-
device driver is ANSI 8YS§, which replaces the standard MS-DOS CON device driver and
allows ANSI escape sequences to be used to perform tasks such as clearing the screen,
conirolling the cursor position, and selecting character attributes See USER COMMANDS:
ANSI 5YS

The standard devices

152

Under MS-DOS versions 2.0 and later, each program owns five previously opened handles
for character devices (referred to as the standard devices) when it begins executing. These
handles can be used for input and output operations without further preliminaries The
five standard devices and their associated handles are

Standard Device Name Handle Default Assignment
Standard input (stdir) 0 CON

Standard output (stdowt) 1 CON

Standard etror (stderr) 2 CON

Standard auxiliary (stdaux) 3 AUX

Standard printer (stdprn) 4 PRN

The standard input and standard output handles are especially important because they are
subject to I/O redirection . Aithough these handles are associated by default with the CON
device so that read and write operations are implemented using the keyboard and video
display, the user can associate the handles with other character devices or with files by
using redirection parameters in a program’s command line:

Redirection Result

< file Causes read operations from standard input to obtain data from file

> file Causes data written to standard output to be placed in file

>> file Causes data written to standard output to be appended to file

plip2 Causes data written to standard output by program pI to appear as the

standard input of program p2

T his ability to redirect I/O adds great flexibility and power to the system. For example,
programs ordinarily controlled by keyboard entries can be run with “scripts” from files,
the ocutput of a program can be captured in a file or on a printer for later inspection, and
general-purpose programs (filters) can be written that process text streams without regard
to the text’s origin or destination See PROGRAMMING IN THE MS-DOS ENVIRONMENT:
CUSTOMIZING MS-DOs: Writing MS-DOS Filters

The MS-DOS Encyclopedia

Ordinarily, an application program is not aware that its input or output has been redi-
rected, although a write operation to standard output will fail unexpectedly if standard
output was redirected o a disk file and the disk is full An application can check for the
existence of I/O redirection with an }O0CTI (Interrupt 21H Function 44H) call, but it can-
not obtain any information about the destination of the redirected handle except whether
it is associated with a character device or with a file

Raw versus cooked mode

MS-DOS associates each handle for a character device with 2 mode that determines how
I/O requests directed to that handle are treated When a handle is in raw mode, characters
are passed between the application program and the device driver without any filtering or
buffering by MS-DOS When a handle is in cooked mode, MS-DOS buffers any data that is
read from or written to the device and takes special actions when certain characters are
detected

During cooked mode input, MS-DOS obtains characters from the device driver one ata
time, checking each character for 2 Control-C The characters are assembled into a string
within an internal MS-DOS buffer The input operation is terminated when a carriage
return (0DH) or an end-of-file mark (1AH) is received or when the number of characters
requested by the application have been accumulated If the source is standard input, lone
linefeed characters are translated to carriage-return/linefeed pairs The string is then
copied from the internal MS-DOS buffer to the application program’s buffer, and control
returns to the application program

During cooked mode output, MS-DOS transfers the characters in the application pro-
gram’s output buffer to the device driver one at a time, checking after each character for

a Control-C pending at the keyboard. If the destination is standard output and standard
output has not been redirected, tabs are expanded to spaces using eight-column tab stops
Output is terminated when the requested number of characters have been written or when
an end-of-file mark (FAH) is encountered in the output string

In contrast, during raw mode input or output, data is transferred directly between the
application program’s buffer and the device driver. Special characters such as carriage
return and the end-of-file mark are ignored, and the exact number of characiers in the ap-
plication program’s request are always read or wiitten. MS-DOS does not break the strings
into single-character calls to the device driver and does not check the keyboard buffer for
Control-C entties during the I/O operation Finally, characters read from standard input
in raw mode are not echoed 1o standard output

As might be expected from the preceding description, raw mode input or output is usu-
ally much faster than cooked mode input or output, because each character is not being
individually processed by the MS-DOS kernel Raw mode also allows programs to read
characters from the keyboard buffer that would otherwise be trapped by MS-DOS (for
example, Control-C, Control-P, and Control-S) {(If BREAK is on, MS-DOS will still check for
Control-C entries during other function calls, such as disk operations, and transfer control

Section Il Programming in the MS-DOS Environmen: 153
Canon Exhibit 1108

Part B: Programming for MS-DOS

to the Control-C exception handler if a Control-C is detected) A program can use the
MS-DOS IOCTI Get and Set Device Data services (Interrupt 21H Function 44H Subfunc-
tions 00H and 011D to set the mode for a character-device handle. See IOCTI below

Ordinatily, raw or cooked mode is strictly an attribute of a specific handle that was
obtained from a previous open operation and affects only the I/O operations requested
by the program that owns the handle. However, when a program uses IOCT1 to select raw
or cooked mode for one of the standard device handles, the selection has a global effect
on the behaviot of the sysiem because those handles are never closed. Thus, some of the
“traditional” keyboard input functions might behave in unexpected ways Consequently,
programs that change the mode on a standard device handle should save the handle’s
mode at entry and restore it before performing a final exit 1o MS-DOS, so that the opera-
tion of COMMAND.COM and other applications will not be disturbed. Such programs
should also incorporate custom critical error and Control-C exception handlers so that the
programs cannot be terminated unexpectedly See PROGRAMMING IN THE MS-DOS

ENVIRONMENT: CustoMIzING Ms-Dos: Exception Handlers

The keyboard

154

Among the MS-DOS Interrupt 21H functions are two methods of checking for and re.ceiv—
ing input from the keyboard: the traditional method, which uses MS-DOS character input
Functions 01H, 06H, 07H, 08H, 0AH, 0BH, and 0CH (Tabile 5-1); and the handle method,
which uses Function 3EH Each of these methods has its own advantages and disadvan-

tages See SYSTEM CALLS.

Table 5-1. Traditional MS-DOS Character Input Functions.

Read Multiple Ctrl-C

Function Name Characters Echo Check
01H Character Input with Echo No Yes Yes
06H Direct Console I/O No No No
07H Unfiltered Character Input

Without Echo ‘ No No No
(8H Character Input Without Echo No No Yes
OAH Buffered Keyboard Input Yes Yes Yes
0BH Check Keyboard Status No No Yes
0CH Flush Buffer, Read Keyboard * * ' *

*vVaries depending on function (from above) called in the Al register

The first four traditional keyboard input calls ate really very similar They all return a char-
acter in the Al register; they differ mainly in whether they echo that character to the dis-
play and whether they are sensitive to interruption by the user’s entry of a Control-C. Both
Functions 06H and 0BH can be used to test keyboard status (that is, whether a key has
been pressed and is waiting to be read by the programy); Function OBH is simpler 1o use,
but Function 06H is immune to Control-C entries

The MS-DOS Encyclopedia

|
i

Article 5: Character Device Input and Output

Function 0AH is used to read a “buffered line” from the user, meaning that an entire line is
accepted by MS-DOS before control returns to the program. The line is terminated when
the user presses the Enter key or when the maximum numnber of characters (1o 255) speci-
fied by the program have been received While entry of the line is in progress, the usual
editing keys (such as the left and right arrow keys and the function keys on IBM PCs and
compatibles) are active; only the final, edited line is delivered to the requesting program

Function OCH allows a program to flush the type-ahead buffer before accepting input.
This capability is important for occasions when a prompt must be displayed unexpectedly
{such as when a critical error occurs) and the user could not have typed ahead a valid
response This function should also be used when the user is being prompted for a critical
decision (such as whether to erase a file), to prevent a character that was previously
pressed by accident from triggering an irrecoverable operation Function OCH is unusual
in that it is called with the number of one of the other keyboard input functions in register
Al After any pending input has been discarded, Function OCH simply tzansfers to the
other specified input function; thus, its other parameters (if any) depend on the function
that ultimately will be executed.

The primary disadvantage of the traditional function cails is that they handle redirected
input pootly If standard input has been redirected to a file, no way exists for a program
calling the traditional input functions to detect that the end of the file has been reached —
the input function will simply wait forever, and the system will appear to hang

A program that wishes to use handle-based 1/O to get input from the keyboard must use
the MS-DOS Read File or Device service, Interrupt 21H Function 3FH Ordinarily, the pro-
gram can employ the predefined handle for standard input (0), which does not need to be
opened and which allows the program’s input to be redirected by the user to another file
or device, If the program needs to circumvent redirection and ensure that its input is from
the keyboard, it can open the CON device with Interrupt 21H Function 3DH and use the
handle obtained from that open operation instead of the standard input handle.

A program using the handle functions to read the keyboard can control the echoing of
characters and sensitivity to Control-C entries by selecting raw or cooked mode with the
TOCTL Get and Set Device Data services (default = cooked mode) To test the keyboard
status, the program can either issue an IOCTI Check Input Status call (Interrupt 21H Func-
tion 44H Subfunction 06H) or use the traditional Check Keyboard Status call (Interrupt
21H Funciion 0BH).

The primary advantages of the handle method for keyboard input are its symmetry with
file operations and its graceful handling of redirected input The handle function also
allows strings as long as 65535 bytes to be requested; the traditional Buffered Keyboard
Input function allows a2 maximum of 255 characters to be read ata time This considera-
tion is important for programs that are frequently used with redirected input and output
(such as filters), because reading and writing larger blocks of data from files results in
more efficient operation The only real disadvantage o the handle method is that it is
limited to MS-DOS versions 2 0 and later (although this is no longer a significant
restriction).

Section II. Programming in the MS-DOS Environment 155

Canon Exhibit 1108

Part B: Programming for MS-DOS

Role of the ROM BIOS

When a key is pressed on the keyboard of an IBM PC or compatible, it generates a hard-
ware interrupt (09H) that is serviced by 4 routine in the ROM BIOS The ROM BIOS inter-
rupt handler reads /O ports assigned to the keyboard controller and translates the key’s
scan code into an ASCIE character code. The result of this translation depends on the cur-
rent state of the NumLock and CapsLock toggles, as well as on whether the Shift, Control,
or Alt key is being held down (The ROM BIOS maintains a keyboard flags byte at address
0000:0417H that gives the current status of each of these modifier keys)

After translation, both the scan code and the ASCH code are placed in the ROM BIOS's
32-byte (16-character) keyboard input buffer In the case of “extended” keys such as the
function keys or arrow keys, the ASCII code is a zero byte and the scan code carries all the
information. The keyboard buffer is arranged as a circular, or ting, buffer and is managed
as a first-in/first-out queue. Because of the method used to determine when the buffer is
empty, one position in the buffer is always wasted; the maximum number of characters
that can be held in the buffer is therefore 15 Keys pressed when the buffer is full are
discarded and a warning beep is sounded

The ROM BIOS provides an additional module, invoked by software Interrupt 16H, that
allows programs 1o test keyboard status, determine whether characters are waiting in the
type-ahead buffer, and remove characters from the buffer See Appendix O: IBM PC BIOS
Calls Its use by application programs should ordinarily be avoided, howevet, to prevent
introducing unnecessary hardware dependence

On IBM PCs and compatibles, the keyboard input portion of the CON driver in the

BIOS is a simple sequence of code that calls ROM BIOS Interrupt 16H to do the hardware-
dependent work Thus, calls 1o MS-DOS for keyboard input by an application program ate
subject to two layers of translation: The Interrupt 21H function call is converted by the
MS-DOS kernel to calls 1o the CON driver, which in turn remaps the request onto a ROM
BIOS call that obtains the character.

Keyboard programming examples

Example Use the ROM BIOS keyboard driver to read a character from the keyboard The
character is not echoed to the display
mov ah, 00h ; subfunction 00H = read character

int 16h ; transfer to ROM BIOS
+ now AH = scan code, Al = character

Example. Use the MS-DOS traditional keyboard input function to read a character from
the keyboard. The character is not echoed to the disptay The input can be interrupted
with a Ctri-C keystroke

; functicon 08H = character input

H without echo

int 2th ¢ transfer to MS-DOS
; now Al = character

mov ah, (08h

156 The MS-DOS Encyclopedia

Article 5: Character Device Input and Output

Example. Use the MS-DOS traditional Buffered Keyboard Input function to read an entire
line from the keyboard, specifying a maximum line length of 80 characters All editing
keys are active during entry, and the input is echoed to the display

kbuf db 80 ; maximum length of read
db 4] ; actual length of read
db 80 dup (0) ; keyboard input goes here
mov dx, seg kbuf ;7 set DS5:DX = address of
mov ds, dx ; keyboard input buffer
mov dx, offset kbuf
mov ah, Qah + function OAH = read buffered line

transfer to MS-DOS

int 21h H
;7 terminated by a carriage return,
i
;

and kbuf+! = length of input,
not including the carriage return

Example. Use the MS-DOS handle-based Read File or Device function and the standard
input handle to read an entire line from the keyboard, specifying a maximum line length
of 80 characters All editing keys are active duting entry, and the input is echoed to the dis-
play (The input will not terminate on a carriage retuin as expected if standard input is in

raw mode)
kbuf db 80 dup (0) ; buifer for keybecard input
mov dx, seg kbuf + set DS:DX = address of
MOV ds, dx ; keyboard input buffer
mov ~ dx,offset kbuf
mov cx, 80 ;7 CX = maximum length of input
mov bx,d i standard input handle = 0
mov ah, 3fh ; function 3FH = read file/device
int 21h ; transfer to MS-DOS
je error ¢ jump if function failed
i otherwise AX = actual
¢ length of keyboard input,
; including carriage-return and
;i linefeed, and the data is
: in the buffer "kbuf'
The display

The cutput half of the MS-DOS logical character device CON is the video display. On IBM
PCs and compatibles, the video display is an “option” of sorts that comes in several forms
IBM has introduced five video subsystems that support different types of displays: the
Monochrome Display Adapter (MDA, the Color/Graphics Adapter (CGA), the Enhanced
Graphics Adapter (EGA), the Video Graphics Array (VGA), and the Multi-Color Graphics
Array (MCGA) Other, non-IBM-compatible video subsystems in common use include the
Hercules Graphics Card and its variants that support downloadable fonts

Section Il Programming in the MS-DOS Environment 157
Canon Exhibit 1108

Part B: Programming for MS-DOS

Two portable techniques exist for writing text to the video display with MS-DOS function
calls The traditional method is supported by Interrupt 21H Functions 02H (Character Out-
put), 06H (Direct Console 1/0), and 09H (Display Siring) The handle method is supported
by Function 40H (Write File or Device) and is available only in MS-DOS versions 2 0 and
later See SYSTEM CAILLS: INTERRUPT 21H: Functions 02H, 06H, 09H, 40H All these calls
treat the display essentially as a “glass teletype” and do not support bit-mapped graphics

Traditional Functions 02H and 06H are similar Both are called with the character to be
displayed in the DL register; they differ in that Function 02H is sensitive to interruption by
the user’s entry of 2 Control-C, whereas Function 06H is immune to Control-C but cannot
be used to output the character 0FFH (ASCII rubout). Both calls check specifically for car-
riage return (ODHD, linefeed (OAH), and backspace (08H) characters and take the appro-
priate action if these chazacters are detected
Because making individual calls to MS-DOS for each character to be displayed is inefficient
ction (G9H) is generally used in preference (o

and slow, the traditional Display String fun
Functions 02H and 06H Function 09H is called with the address of a string that is termi-

nated with a dollat-sign chatacter ($); it displays the entire string in one opet atjon, regard-
less of its length T he string can contain embedded control characters such as carriage

return and linefeed.

To use the handle method for screen display, programs rmust call the MS-DOS Write File
o1 Device service, Interrupt 21H Function 40H. Ordinarily, a program should use the pre-
defined handle for standard output (1) t© send text to the screen, so that any redirection
requested by the user on the program’s command line will be honored. If the program
needs to circumvent redirection and ensuie that its output goes to the screen, it can either
use the predefined handle for standard error (2) or explicitly open the CON device with
Tnterrupt 21H Function 3DH and use the resulting handle for its write operations

The handle technique for displaying text has several advantages over the traditional

calls First, the length of the stiing to be displayed is passed as an explicit parameter, SO
the string need not contain a special terminating character and the $ character can be dis-
played as part of the string Second, the traditional calls are translated to handle calls
inside MS-DOS, so the handle cails have less internal overhead and are generally faster
Finaily, use of the handle Write File or Device function to display text is symmetric with
the methods the program must Use 10 access its files In short, the traditional functions
should be avoided unless the program must be capable of running under MS-DOS ver-

sions 1 x

Controlling the screen

158

One of the deficiencies of the standard MS-DOS CON device driver is the lack of screen-
control capabilities The default CON driver has no built-in routines to support cursox
placement, screen clearing, display mode selection, and so on

0 and later, an optionai replacement CON driver is supplied in the
een-control capabilities needed by text-
lled by adding a DEVICE directive to the

In MS-DOS versions 2
file ANSI SYS. This driver contains most of the sct
oriented application programs The driver is insta

The MS-DOS Encyclopedia

Article 5: Character Device Input and Outpui

CON P 1G SYS file and restarting the system. When ANSLSYS is active, a program
position the cursor, inquire about the current cursor position, select f’orep ro%md C?:ln
background colors, and clear the current line or the entire sc:;een by sen?iin an aen
sequence consisting of the ASCII Esc character {1BH) followed by various ffnctioiicape
specific parameters to the standard output device See USER COMMANDS: anst svs_

?rograms that use the ANSI.SYS capabilities for screen control are portable to any MS-D
1mplementatic-un that contains the ANSISYS driver. Programs that seck inrlprovedY erf— 'OS
mance by calling the ROM BIOS video driver or by assuming direct control of theia gt_
ware are necessarily less portable and usually require modification wh P e

or video subsystems are released. e P models

Role of the ROM BIOS

;(1;1:3[\;cciicelzo subsg;toen;s in IBM PCs and compatibles use a hybrid of memory-mapped and
i-addresse: . A range of the machine’s memory addr i i

: ids © v addresses is typically reserved for
v1c%eo refresh buffer th.a.t holds the character codes and attributes {o be dispslrayed on l:h(e)I :
screen; lthe cursor position, display mode, palettes, and similar global display char-
acteristics are governed by writing control values to specific /O ports

égi R\(f)éi BIOS of IBM P-Cs and compatibles contains 2 primitive driver for the MDA, CGA
, , and MCGA video subsystems This diiver supports the following functior,is: ,

® Read or write characters with attributes at any screen position
e Query or set the cursor position |
¢ Clear or scroll an arbitrary portion of the screen
: Select palette, background, foreground, and border colots
(gg{iglgi Cc;r’ Z(;t dtl;z (c)i;;play mode (40-column text, 80-column text, all-points-addressable
® Read orwrite a pixel at any screen coordinate

(_letnlegifuncnons are invoked by a program through software Interrupt 10H See Appendix
HIE PC BIOS Calls. In PC-DOS-compatible implementations of M3-DOS, the displa
portions of the MS-DOS CON and ANSI SYS drivers use these ROM BIOS x'o,utines \I;idy
subsystem.s that are not IBM compatible either must contain their own ROM BIOS o -
be' used with an installable device driver that captures Interrupt 10H and provid : m‘USI
priate support functions provES IR

Text-only application programs should avoid use of the ROM BIOS functions or dir
access to the hardware whenever possible, to ensure maximum portability betweerr?a
MS-DOS systen}s However, because the MS-DOS CON driver contains no support for bit
mlappec'l graphics, graphically oriented applications vsually must resort to difect ‘ 11 _
of the video adapter and its refresh buffer for speed and precision cone

Section [I, Programming in the MS-DOS Environment 159

Canon Exhibit 1108

Part B: Programming for MS-DOS

e N e i isk character to the
mple Use the ROM BIOS Interrupt 10H function to write an astetis! S
gixsiia}; 1n text mode (In graphics mode, BL must also be set to the desired Ioregro

color.)
mov ah, 0eh H subfuﬁction OEH = write character
; in teletype mode
mov al, '*! : Al = character te display
bh, 0 ; select display page] . .
TOZ 10é ; transfer to ROM EIOS video driver
in

te an asterisk character to the dis- ‘
the output and standard outputis
handler whose address is found

aditional function to wri
Example: Use the MS-DOS traditiona : i
play Ig[he user’s entry of a Control-C s detected dm'mg
in cooked mode, MS-DOS calls the Control-C exception

in the vector for Interrupt 23H
= display character

: i GzH =
ah, 02h ; functien
o ' DL = character to display

nov dl, '#' ;
, transfer to M5-DOS

int 2%h ;

. .) tout
Example Usethe MS-DOS traditional function to write a string to the d1sp1§y Ici:;en(tt)lz lpg 3
i telminéted by the § character and can be interrupted when the user enters &
15

standard output is in cooked mode

‘This is a test message','§'

msg db
mov dx, seg msg . DS:DX = address of text
L3
mov ds,dx ; to display
dx,offset msg ‘)

oy ah’OBb : funetion 098 = display string

av .
Tnt 21h . transfer to MS-DOS

T)5 141K l e—])aSe(l W]le I e Or viC ! 1011 aIld f l 1 l’ede!uled
D L .

ite a string to the display Output can
dard output is in cooked mode.

Example: Use the M5
handle for standard output to w1
user's entry of 2 Control-C if stan

'Ihis iS5 & test message’

msg db
mag—len edqu S~msqg
mov dx, seg msd . DS:DX = address of text
.
mov ds, dx ; to display
dx,offset msg
mov .
cx,msg—len ; CX = length of text
e b '1 . BX = handle for standard output
o ai’40h . function 40H = write file/fdevice
mov
int 21; : transfer to MS-DOS

160 The MS-DOS Encyclopedia

S
Nl
H

Article 5: Character Device Input and Qutput

The serial communications ports

Through version 3.2, MS-DOS has built-in support for two serial communications ports,
identified as COM1 and COM2, by means of three drivers named AUX, COMI, and COM2
(AUX is ordinarily an alias for COM1)

The traditional MS-DOS method of reading from and writing to the serial ports is through
Interrupt 21H Function 03H for AUX input and Function 04H for AUX output In MS-DOS
versions 2.0 and later, the handle-based Read File or Device and Write File or Device func-
tions (Interrupt 21H Functions 3FH and 40H) can be used to read from or write to the aux-
iliary device A program can use the predefined handle for the standard auxiliary device
(3) with Functions 3FH and 40H, or it can explicitly open the COMI or COM2 devices with
Interrupt 21H Function 3DH and use the handle obtained from that open operation to
perform read and write operations

MS-DOS support for the serial communications port is inadequate in several respects for
high-performance serial I/O applications First, MS-DOS provides no portable way to test
for the existence or the status of a particular serial port in a system; if a program “opens”
COM?2Z and writes data to it and the physical COM2 adapter is not present in the system, the
program may simply hang Similarly, if the sertal port exists but no character has been
received and the program attempts to read a character, the program will hang until one is
available; there is no traditional function call to check if a character is waiting as there is
for the keyboard

MS-DOS also provides no portable method o initialize the communications adapter to a
particular baud rate, word length, and parity An application must resort to ROM BIOS
calls, manipulate the hardware directly, or rely on the user to configure the port properly
with the MODE command before running the application that uses it The default settings
for the serial port on PC-DOS-compatible systems are 2400 baud, ne parity, 1 stop bit, and
8 databits, See USER COMMANDS: MODE

A more serious problem with the default MS-DOS auxiliary device driver in IBM PCs and
compatibles, however, is that it is not interrupt drivenn Accordingly, when baud rates above
1200 are selected, characters can be lost during time-consuming operations petformed by
the drivers for other devices, such as clearing the screen or reading or writing a floppy-disk
sector Because the MS-DOS AUX device driver typically relies on the ROM BIOS serial port
driver (accessed through software Interrupt 14H) and because the ROM BIOS driver is not
interrupt driven either, bypassing M3-DOS and calling the ROM BIOS functions does not
usually improve matters '

Because of all the problems just described, telecommunications application programs
commonly take over complete control of the serial port and supply their own interrupt
handler and internal buffering for character read and write operations See PROGRAM-
MING IN THE MS-DOS ENVIRONMENT: PROGRAMMING FOR MS-DOS: Interrupt-Driven
Communications.

Section I: Programming tn the M5-DOS Environment 161
Canon Exhibit 1108

Part B: Programming for MS-DOS

Serial port programming examples

Example: Use the ROM BIOS serjal port driver to write a string to COM1

msg db

msg_len equ 5-msg
mov bx,seg msg
mov ds, bx
mev bx,offset msg
mov cx,msg_len
mov dx, 0

I1: utelis al, [bx]
mov ah,01h
int 14h
inc bx
loop 11

Example. Use the MS-DOS traditional function for auxiliary device out

to COM1
msg db *This is a test
msg_len equ $-msg
nov bx,seqg msg
mov ds,bx
mov bx,cffset msg
mov cx,msg_len
Tic: mov dl, [bx]
mov ah,04h
int 2th
ine bx
loop L

Example: Use the MS-DOS handle-b

i CX

'This is a test message’

Dg:BX = address of message

length of message

DX 0 for COMI

get next character into AL
subfunction 01§ = cutput
transfer to ROM BIOS

bump pointer te output string
and loop until all chars sant

It

message’

i

7

set DS:BX = address of message

set CX = length of message

get next character inte DL
function 04H = auxiliary output
transfer to MS-DOS

bump pointer to output string
and loop until all chars sent

handle for the standard auxiliary device to write a string to COM1.

msg db

msg.-len egu §$-msg
MoV dx, seqg msg
mov ds, dx
mov dx,offset msg
nov cx, msg_len
mov bx,3
mev ah,40h
int 21h
je error

162 The MS5-DOS Encyclopedia

i

11his is a test message’

Ds:DX = address of message

Cc¥ = length of message

BX = handle for standard aux.
function 40H = write file/device
transfer to MS-DCS3

jump 1f write operation failed

put to write a string

ased Write File or Device function and the predefined

Article 5: Character Device Input and Curput

The parallel port and printer

Most MS-DOS implementations contain device drivers for four printer devices: IPT1, IPT2,
IPT3, and PRN. PRN is ordinarily an alias for LPT1 and refers to the first paratlel output
port in the system. To provide for list devices that do not have a parallel interface, the TP

devices can be individually redirected with the MODE command to one of the serial com-
muntications ports. See UISER COMMANDS: MoDE.

As with the keyboard, the display, and the serial port, MS-DOS allows the printer to be

accessed with either traditional or handle-based function cails The traditional function

msg db
msg-len equ

mov

mov

mov

mov

mov

I1: mov
MoV

int

inc

loop

Parallel port programming examples

call is Interrupt 21H Function 05H, which accepts a chasacter in DI and sends it to the
physical device currently assigned to logical device name IPT1 '

A program can perform handle-based output to the printer with Interrupt 21H Function
40H (Write File or Device). The predefined handle for the standard printer (4) can be used
to send strings to logical device IPT1. Alternatively; the program can jssue an open oper-
ation for a specific printer device with Interrupt 21H Function 3DH and use the handle
obtained from that open operation with Function 40H. This latter method also allows
more than one printer to be used at a time from the same program

Because the parallel poits are assumed to be output only, no traditional call exists for
input from the parallel pott. In addition, no portable method exists to test printer port
status under MS-DOS; programs that wish to avoid sending a chaiacter to the printer
adapter when it is not ready or not physically present in the system must test the adapter’s
status by making a call to the ROM BIOS printer driver (by means of software Interrupt
17H; see Appendix ©O: IBM PC BIOS Calls) or by accessing the hardwate directly

Example. Use the ROM BIOS printer driver to send a string to the first parailel printer port

'Ihis is a test message’

S-msg

bx,seqg msg
ds, bx
bx,0ffset msg
cx,msg_len
dx,0

al, [bx]

atr, 00k

17h

bx

L1

: DS5:BX = address of message

[03:4

length of message

; DX = 0 for IPI1

get next character into AL
subfunction 00H = output

; transfer to RCM BIOS
; bump pointer to output string

and loop until all chars. sent

Section IL Programming in the MS-DOS Environment 163
Canon Exhibit 1108

Part B: Programming for MS-DOS

Example Use the traditjonal MS-DOS function call to send a string 10 the first parallel

printer poit.

'This is a test message'

msg db

msg_len edu $-msg
ﬁov bx,seg mMsg ; DS:BX = address of message
mov ds, bx
mov px,offset msg -
mov cx,msg_.len ; €X = length of messege

Ii: mov dl, [bx] ; get next charactef into DL
mov ah, 05h . function O5H = printer output
int 21h : transfer to MS-DOS
inc bx : bump polnter to output string
loop 11 ; and loop until all chars sent

Example. Use the handle-based MS-DOS Wiite File or Device call ar?d the predefined
hlamdle for the standard printer 1 send a string fo the system list device

msy db 11his is a test message’

msg_len edqu $~msg

. ps:Dx = address of message

mov dx, seg msg

mov ds,dx

nov dx,cffset msg

mov cx,msg-.len . ¢¥ = length of message -

nov . bx, 4 ; BX = handle for standard printer

mov ah’40h ; function 40H = write file/device
!

int 21h ; transfer to MS-DOS

jc error ; jump if write operation failed

IOCTL

164

In versions 2.0 and later, MS-DOS has provided applicatiox?s with the abihtycrl to Ico{ngx:lm:k
cate directly with device drivers through a set of subfunctions grouped. un ;:Hnrehe p
21H Function 44H (IOCTL) See SYSI EM CAILS: INtERRUPT 21H: Function L .
IOCT L subfunctions that are particular ly applicabie o the character I/O needs of app:

cation programs are

Subfunction Name
00H Get Device Data
01H Set Device Data ‘
02H Receive Control Data from Character Device
(more)
The MS-DOS Encyclopedia

Article 5: Character Device Input and Output

Subfunction Name

03H Send Control Data to Character Device

06H Check Input Status

07H Check Output Status

0AH Check if Handle is Remote (version 3.1 or later)

OCH Generic 1/O Control for Handles: Get/Set Output Iteration Count

Various bits in the device information word returned by Subfunction 00H can be tested

by an application to determine whether a specific handle is associated with a character
device or a file and whether the driver for the device can process control strings passed by
Subfunctions 02H and 03H. The device information word also allows the program to test
whether a character device is the CLOCKS, standard input, standard output, or NUI device
and whether the device is in raw or cooked mode The program can then use Subfunction
01H to select raw mode or cooked mode for subsequent I/0 performed with the handie

Subfunctions 02H and 03H allow conirol strings to be passed between the device driver
and an application; they do not usually result in any physical I/O to the device For exam-
ple, a custom device driver might allow an application program to configure the serial port
by writing a specific set of control parameters to the driver with Subfunction 03H. Simi-
larly, the custom driver might respond to Subfunction 02H by passing the application a
series of bytes that defines the current configuration and status of the serial port

Subfunctions 06H and 07H can be used by application programs to test whether a device is
ready to accept an output character or has a character ready for input These subfunctions
are particularly applicable to the serial communications potts and parallel printer ports
because MS-DOS does not supply traditional function calls to test their status

Subfunction 0AH can be used to determine whether the character device associated

with a handle is local or remote — that is, attached 10 the computer the program is running
on or attached to another computer on a local area network A program should not o1-
dinazily attempt to distinguish between local and remote devices during normal input and
output, but the information can be useful in attempts to recover from error conditions.
This subfunction is available oniy if Microsoft Networks is running

Finally, Subfunction OCH ailows a program to query or set the number of times a device
driver tries 10 send output to the printer before assuming the device is not available

TIOCTL programming examples

Example Use IOCTI Subfunction 00H to obtain the device information word for the stan-
dard input handle and save it, and then use Subfunction 01H to place standard input into
raw mode

info dw ? ; save device information word here

(more)

Section I Programming in the MS-DOS Environment 165
Canon Exhibit 1108

Part B: Programming for M8-DOS

166

4400h . AH = function 444, IOCIL .
e s . ar = subfunctlion n0H, get device
; information word
mov bx, 0 ; BX = handle for standard input
int 21n ; transfer to MS-DOS .
i . save device information word
e S ; (assumes DS = data segment)
: w mode bit
i ii’iOh ; zi; Ziear DE as MS-DOS regquires
izz ax14401h ; AL =rsubfunc?;on 01H, set device
. ; informatien word
; (BX stilli contains handle)
int 2th ; transfer to M3-D03

H to test whether a charactet is ready for input on the

. bfunction 06 :
Example. Use IOCT L Sublunc 1 = OFFH if a character is ready and AL = GOH if not

first serial port The function returns A

AH = function 44H, I10CIL

o e 41008 ; al = subfunction 06H, get
; input status
mov b, 3 . BX = handle for standard aux
int 21h . transfer to M5-DOS .
or al,al : test status of AUX driver
inz ready ; jump if input character ready

; else no character is waiting

Jim Kyle
Chip Rabinowiiz

The MS-DCS Encyclopedia

Article 6: Interrupt-Driven Communications

Article 6
Interrupt-Driven Communications

In the eariiest days of personal-computer communications, when speeds were no'faster
than 300 bits per second, primitive programs that moved characters to and from the
remote system were adequate ‘The PC had time between characters to determine what it
ought to do next and could spend that time keeping track of the status of the remote
sysiem

Modern data-transfer rates, however, are four to eight times faster and leave little or no
time to spare between characters At 1200 bits per second, as many as three characters can
be lost in the rime required 1o scroll the display up one line. At such speeds, a technique to
permit characters to be received and simultaneously displayed becomes necessary

Mainframe systems have long made use of hardware interrupts to coordinate such
activities. The processor goes about its normal activity; when a peripheral device needs
attention, it sends an interrupt request to the processor The processor interrupts its activ-
ity, services the request, and then goes back to what it was doing Because the response is
driven by the request, this type of processing is known as interrupt-driven. It gives the
effect of doing two things at the same time without requiring two separate processors

Successtul telecommunication with PCs at modern data rates demands an interr upt-diiven
routine for data reception. This article discusses in detail the techniques for interrupt-
driven communications and culminates in two sample program packages.

The article begins by establishing the purpose of communications programs and then
discusses the capability of the simple functions provided by MS-DOS to achieve this goal
To see what must be done to supplement M3-DOS functions, the hardware (both the
modem and the serial port) is examined This leads to a discussion of the method MS-DOS
has provided since version 2 0 for solving the problems of special hardware interfacing:
the installable device driver

With the background established, alternate paths to interrupt-driven communications are
discussed — one following recommended MS-DOS techniques, the other following stan-
dard industty practice—— and programs are deveioped for each

Throughour this article, the discussion is restricted to the architecture and BIOS of the IBM
PC family MS-DOS systems not totally compatible with this architecture may require sub-
stantially different approaches at the detailed level, but the same general principles apply

Purpose of Communications Programs

The primary purpose of any communications program is communicating — that is, ttans-
mitting information entered as keystrokes (or bytes read from a file) in a form suitable for

Section IT: Programming in the M5-DOS Environment 167

Canon Exhibit 1108

Article 6: Interrupt-Driven Communications

Part B: Programming for MS-DOS

;:;’;1)1 Opgr;u?lntr'nost mac}f:jnes), a first attempt at implementing the modem engine using
: ctions might look something like the followine i :
Microsoft Macro Assembler (MASM) codi: oG Incomplere fragment of

transmission to a remote computer via phone lines and, conversely, converting informa-
tion received from the remote computer into a display on the video screen (or data in a

file).
Some years ago, the most abstract form of all communications programs was dubbed a Tncomplete (and Unmmopi

. B . . - 4 nworkabl :
modem engine, by analogy to Babbage’s analytical engine ot the inference-engine model asiel Implementation
used in artificial-intelligence development The functions of the modem engine are com- Loce: mov AH, 08h ; read keyboard

. : 4 ar h
mon to all kinds of communications programs, from the simplest to the most complex, : INT 21h 1 Do scho
and can be described in a type of pseudo-C as follows: Moy LI, a1 ; set up to send

: MOV 2H, 04h ; send to AUX device
The Modem Engine Pseudocode i InI 21h
MOV AH,03h | ; read from AUX gevice
DO { IF (input character is avallable; INI 21h
send_jit_to_remote; MoV DL,AI i set up Lo send
IF {remote character is available) MoV AH, 02h ¢ send to screen
use_it_locally; INI 2th]
) UNIIL (told to_stop);: ‘ JMP 100P ! keep deing it
The essence of this modem-engine code is that the absence of an input character, orofa - | The problem with this code is that it violates the keep-looking principle both
. ! ‘ - e bo -
character from the remote computet, does not hang the loop in a wait state Rather, the : board and at the AUX port: Interrupt 21H Function 08H does not Ietuf) n ot a}i th;e) key
: c . . ‘ : nuntil a keyboard
haractet is available, so no data from the AUX port can be read until a key is pr‘e;;ed

engine continues to cycle: If it finds work to do, it does it; if not, the engine keeps looking
10?1131; Similarly, Punctiqn 03H waits for a character to become available from AT7X, so no
more Keys can be recognized locally until the Temote system sends a character If nt;thing

Of course, at times it is desirable to halt the continuous action of the modem engine. For
is received, the loop waits forever.

example, when receiving a long message, it is nice to be able to pause and read the mes-
sage before the lines scroll into oblivion On the other hand, taking too long 1o study the

screen means that incoming characters are Jost. The answer is a technique called flow con- To.overcome the problem at the keyboard end, Function 0BH can b . ‘
trol, in which a special control character is sent to shut down transmission and some other | a key has been pressed before an attempt {s ma,lde to read o " he use-d to determine if
character is later sent to start it up again modification of the fragment: 1S, as shown in the following

Several conventions for flow control exist One of the most widespread is known as } fimproved, (but Still Unworkable) Implementation
4
i
!

XON/XOFE, from the old Teletype-33 keycap legends for the two control codes involved Lo
.. N . . H M
In the original use, XOFF halted the paper tape reader and XON started it going again In : I§¥ ;‘?h CBh i test keyboard for chap
mid-1967, the General Flectric Company began using these signals in its time-shasing com- oR A AL)
puter services to control the flow of data, and the practice rapidly spread throughout the i Jz RMT ! ziszhj"r zef’i’
. i r I avail, skip
industry : I;OV All, 08h ¢ have char, read it in
| NI Zin
The sample program named ENGINE, shown later in this article, is an almost literal imple- E MoV DI, a1 ; set up to 4
mentation of the modem-engine approach 1his sample represents one extreme of sim- MOV 2H, 04n : cene
; i ¢/ send to AUX devige
plicity in communications programs. The other sample program, CTERM.C, is mach more . R NI 21h
complex, but the modem engine is still at its heart ; ’
! MoV AH, 03h i read from AUX devi
; INT 21n svice
ng R ¢ set up to send
- - -] - AH, 02h :
Using Simple MS-DOS Functions i 2 Pend Fo screen
JME LOOP i keep doing it

; :;z(s);i:dpgrr? Eft; EUI;}{T inp}ut from AUX to be received withour waiting for a local key to
, bu s slow about providing input, the progr its i ini
- . » the program waits indi '
checking the keyboard again Thus, the problem is only partigally solvez ndelnitly before

Because MS-DOS provides, among its standard service functions, the capability of sending
output to or reading input from the device named AUX (which defaults to COML, the first

168 The MS-DOS Encyclopedia
Section IT. Progmmming in the MS-DOS EniZanandhibit 1@3

Part B: Programming for MS-DOS

MS-DOS, however, simply does not provide any direct method of making the required
tests for AUX or, for that matter, any of the serial port devices Thatis why communications
programs must be treated differently from most other types of programs under MS-DOS
and why such programs must be intimately involved with machine details despite all

accepted principles of portable program design

The Hardware Involved

The modem

170

Personal-computer communications require at least two distinct pieces of hardware (sepa-
cate devices, even though they are often combined on a single board) These hardware
items are the serial port, which converts data from the computer’s internal bus into a bit
stream for transmission over a single externat line, and the modem, which converts the bit
strearn into a form sujtable for telephoné—line (or, sometimes, radio) transmission

rom MOdulator-DEModulator) is a device that converis 4

1 changes of voltage level, into audio frequency sig-
grade telephone circuits (modulation) and con-
that duplicates the original input (demodu-

The modem (a word coined £
stream of bits, represented as sequentia
nals suitable for transmission over voice-
verts these signals back into a stream of bits
iation)

Specitic characteristics of the audio signals involved were established by AT&T when that
and those characteristics then evolved into

company monopolized the modem industry,
d They take several forms, depending on

de facto standards when the monopoly vanishe
the data rate in use; these forms are normally identified by the original Bell specification
number, such as 103 (for 600 bps and below) or 212A (for the 1200 bps standard).

The data rate is measured in bits pet second (bps), often mistermed baud or even “baud
nd; as with knot {nautical

per second.” A baud measures the number of signals per 5eCo
miles per hour), the timé reference is built in 1f one signal change matks one bit, as is {tue

for the Bell 103 standard, then baud and bps have equal values However, they are not
equivalent for more complex signals. For example, the Bell 212A diphase standard for 1200

bps uses two fone streams, each operating at 600 baud, to transmit data at 1200 bits per

second

TFor accuracy, this article uses bps, rather than b
misuse of baud has become standardized {(as in
ox connected to the computer’s setial port via a cable
and its signals were standardized in the 1960s
in Standard R$232C. Like the Bell standards
d. Its characteristics are listed in

aud, except where widespread industry
“baud rate generator”)

Originally, the modem itself wasab
Characteristics of this cable, its connectors,
by the Flectronic Industries Association (EIA),
for modems, RS232C has survived almost unchange

Tabie 6-1

The Ms-DOS Encyclopedia

Article 6: Interrupi-Driven Communications

Table 6-1. R$232C Signals,

DB25 Pin 232 Name Description

; A ngety Ground

X i ;g Transmit Data

p o X Receive Data

: o RI S Request To Send

p o CTS Clear To Send

: P DSR Data Set Ready

; At GND Signal Ground
. o IDéCD Data Carrier Detected
2 & IR Data Terminal Ready

Ri Ring Indicator

With the increasing po i '
pularity of personal computers, inter
NG | ! puters, internal modems that plug i
s motherboard and combine the modem and a serial port became availaiilg uginiothe

The fir i ‘ 2
they éiifaizgf; l;?;::d\:i; efmanufaczir-ed by Hayes Corporation, and like Bell and the EIA

; d. Functionally, the internal modem is identi o
of a serial port, a connecting cable, and an external modems identical to the combination

The serial port

1 Converts data supplied via the system i
2 glsni:lgtf;aﬁgmpu:ine e IS-; e :;tg llljll;; ;n(;ag z;'t :,equence of voltage levels on
e thec;;z biss I_a sequence of hinary levels on the single RXD input line
ggg: Ccl)é: ;l;:t ch;?m’s ac'tjons through the DTR and RTS output lines
e ;S; 1D ;3;{ njl)aggn é(} 'tshe processor, tl:n's information comes from the
e .a;aﬂabl,e da; and RT input lines, and from within the UART itself
, data needed, or error detected.)

H

The word ‘ i

e o gzizzlcsh;zzcsﬁsl ti: (;he nf;lngf-: ,of the .IC comes from the Bell specifications. When

s o don 1 e of tro s e mont cbvious meiiod 110 ke the it e

this ne . . wvious method is to keep the bit str

e th}; sg::schsrlir;:zes ;grf; a c‘loci_c signal of known frequency and count thre) cycleisttsoniililx?—

ctimes e o bina:ssmn 1; @om as synchronous, often abbreviated to synch o1

N A Efosfymc }:obr_lous‘ The §econd method, tirst used with mechanical

teleprinters, matks the. cach] it group W%Eh a defined start bit and the end with one
p bits, and it defines a duration for each bit time Detection of a start bit

Section IT Programming in the MS-DOS Environment 171

Canon Exhibit 1108

Part B: Programming forf MS-DOS

roup; the signal is then sampled at each bit time uniil

matks e DB e hod is known as asynchronous (or just asynch) and is

the stop bitis encountered This met
the one used by the standard IBM PC e
The start bit is, by definition, exactly the same as that usec.:l jie] 1ln.d1c;1tt:n ;3 1;(; SPA(,:E, die
- E};:)it is the ;ame as that indicating binary one A zero §1gng : 1&;1 oSII
one ignal is catled MARE, from terms used in the teleprinter iNAUSIY.
one sl s l |
i ' the start bit. A
missi ignifi t of the data is sent first, after ‘
i 1ssion, the least significant bit of the d sanbl A
Dur'mg Fﬁgsmlsglz pears as the most significant bit in the data group, tgf(():r:t'il < o Fstop
PaﬂFY b'lt, 1 usgt lsepdistinguished from a databit except t_;y '1ts posn:mln.‘ rim S
(‘;I e een tc igrel line remains in MARK (sometimes called idling) condition
it is sent, sor
bit indicates the beginning of another group.

p (- ita i aﬂd t}]et T wo d Sp i—
3..! ot trans ers one 8 blt by[e at a f1ume, : e .1 [
) N

the control information set into the chip
This discussion follows UART conven-

st PC uses, the serl
;;fsn; 16-bit quantity. In the UART world, flxowewtre ;
the chip in each chunk The word leng'gh is pg;];ts
during setup operations and canbe 5,0, 7,01 :
tions and refers to words, rather than to bytes

i s d in PC-to-PC communications but some.tlmes
b SPecw}i o ?rﬁtfrllgi?ji’nzoﬁif?tfltle;;iﬁrame systems, is 4 B-REAK‘ The BREAIE: Srr; 211—
orACr condi fon hat extends for more than one word time, including the stop—f irtime
SPACE Condmor‘l iy « the BREAK to last at least 150 mitliseconds I'egal:dless o B;EAK ig
e SY'StemS qu}:‘)meenerated by any nosrmal data chatacter transmission, the EARY
i oy ? y k into, normal opetation The IBM PC's 8250 UART can g
used to interrupt, or break 1ato, B oy the

mi -Qgram,
the BREAK signal, but its duration must be determined by a progra

chip.
The 8250 UART architecture

four major functional areas: Feceiver, transmitte, ‘(:jqntr';l c;:‘lcl\;gj,
' ' e terms used in the follow-
ircui areas are closely related, som
tatus circuits. Because these e
fmdcfi;e:scx:1ptior1:-3 are. of necessity, forward references fo subsequent paragiap)
o ’ ister Receive
i ister egister called the Rec
] ecel & a shift register and a data regi
- parts of the receiverare a s : data alled e e
Fg’:argzgggex 1T he shift register assembles sequentially redceltved gegiat t?me vor ithe -
ine into its front end at €ac , .
: frine the level of the RXD lin ‘ Dt en ftime and, &t He
fc'nm biézli ;;grevious bits over When the shift register 15 full, a}:lll b};tlf 111111 :he o e
un:ﬁ’esdata rigiste: the shift register is cleared o all z€r0s, an@ t .et e e bite
‘;’1 { indicates data ready is set 1f an error is detected during 1eceip .
P2
in the status circuits ar¢ also set

The 8250 UART contains

er called the Transmit

: itter are a holding regist
e d is iransferred from the

smilar i tsof the t _
S, e on it Fach word to be transmite

Holding Register and 2 shift register

172 The MS-DOS Encyclopedia

Article 6: Interrupt-Driven Communications

data bus to the holding register. If the holding register is not empty when this is done, the
previous contents are lost. The transmitter’s shift register converts word-parallel data into
bit-serial form for transmission by shifting the most significant bit out to the TXD line once
each bit time, at the same time shifting lower bits over and shifting in an idling bit at the
low end of the register. When the last databit has been shifted out, any data in the holding
register is moved to the shift register, the holding register is filled with idling bits in case
no more data is forthcoming, and the bit in the status circuits that indicates the Transmit
Holding Register is empty is set to indicate that another word can be transferred. The
parity bit, if any, and stop bits are added to the transmitted stream after the last databit

of each word is shifted out

The control circuits establish three communicarions features: first, line control values,
such as word length, whether or not (and how) patrity is checked, and the number of stop
bits; second, modem control values, such as the state of the DTR and RIS output lines; and
third, the rate at which data is sent and received These control values are established by
two 8-bit registers and one 16-bit register, which are addressed as four 8-bit registers They
are the Line Control Register (LCR), the Modem Conttol Register (MCR), and the 16-bit
BRG Divisor Latch, addressed as Baud0 and Baudi

The BRG Divisor Latch sets the data rate by defining the bit time produced by the Pro-
grammable Baud Rate Generator (PBRG), a major part of the control circuits The PBRG
can provide any data speed from a few bits pet second to 38400 bps; in the BIOS of the
IBM PC, PC/XT, and PC/AT, though, only the range 110 through 9600 bps is supported
How the 1 CR and the MCR establish their control values, how the PBRG is programmed,
and how interrupts are enabled are discussed later.

The fourth major area in the 8250 UART, the status circuits, records (in a pair of status
registers) the conditions in the receive and transmit circuits, any errots that are detected,
and any change in state of the R$232C input lines from the modem. When any status regis-
ter's content changes, an interrupt request, if enabled, is generated to notify the rest of the
PC systern This approach lets the PC attend to other matters without having to continually
monitor the status of the serial port, yet it assures immediate action when something does
occut. '

Fhe 8250 programming interface

Not ali the registers mentioned in the preceding section are accessible to programmers
The shift registers, for example, can be read from or written to only by the 8250's internal
circuits There are 10 registers available to the programmer, and they are accessed by only
seven distinct addresses (shown in Table 6-2). The Received Data Register and the
Iransmit Holding Register share a single address (a read gets the received data; a write
goes to the holding register) In addition, both this address and that of the Interrupt Enable
Register (IER) are shared with the PBRG Divisor Laich A bit in the Line Control Register

called the Divisor Latch Access Bit (DE AB) determines which register is addressed at any
specific time

Section IT Programming in the MS-DOS Environment 173

Canon Exhibit 1108

Article 6: Interrupt-Driven Communications

Part B: Programming for MS-DOS

used by the 8250 are selected by the low 3 bits of the o
i With the 1 8432 MHz external UART clock frequency used in standard 1BM systems

In the IBM PC, the seven addresses
he specific por). Thus, each serial port occupies eight divi
o ivisor values (in decimal notation) for bit r:
rates between 45.5 and 38400 b 1 .
ps arte listed in

port numbet (the higher bits select t

positions in the address space However, only the lowest address used — the one in which Table 63, Th -
the low 3 bits are all 0—need be cemembered in order to access all eight addresses o demj ol ‘:z fpteids are ?Sta(l;)hshed by a crystal contained in the serial port (or internal
¢ totally unrelated to the speed of -) ‘
Because of this, any serial portin the PC is referred to by an address that, in hexadecimal peed of the processor’s clock
notation, ends with either 0 o 8: The COMI1 port normally uses address 03F8H, and COM2 Table 6-3. Bit Rate Divisor Table for 8250/1BM
uses 02F8H This lowest pori address is usually called the base port address, and each 3
addressable register is then referenced as an offset from this base value, as shown in ' BPS Divisor
Table 6-2. .
. 455 2532
Iable 6-2. 8250 Port Offsets from Base Address. 32 ?ggé
. 110 1047
Offset Nam Des ti
ffse e cription 1345 poud
IDLABbitin LCR = 0: 150 768
00H DATA Received Data Register if : 300 384
read from, Transmit Holding 600 192
Register if written to 1200 96
01H {ER Interrupt Enable Register 1800 64
: . 2000 58
I DLAB bit in ICR = & ' 2400 48
Q0H Baud0 : BRG Divisor Latch, low byte : 4800 24
01H Baud1 BRG Divisor Latch, high byte : 9600 12

19200 G
Not affected by DLAB bit: 38400 3
02" 1D Intertupt Identifier Register .
03H ICR Line Control Register The remaining control circuits are the Line C .

E ontrol R : ‘ .
04H MCR Modem Control Register ; and the Interrupt Enable Register Bits in the ICR Zonfijf :}1 t;;iiMOdem CI? ool Register
0SH ISR Tine Status Register transmission of the BREAK signal, patity generation, the numbe g"fme“‘ of offsets Oand 1,
06H MSR ~ Modem Status Register ; length sent and received, as shown in Table 6-4 ’ t of stop bits, and the word

The control circuits Table 6-4. 8250 Line Control Register Bit Values
T he control circuits of the 8250 include the Programmable Paud Rate Generator (PBRG), it Bit '
the Line Control Register (LCR), the Modem Control Register (MCR), and the Interrupt En- : Name Binary Meaning
able Register (IER). : 1 Address Control:
The PBRG estabiishes the bit time used for both transmiiting and receiving data by divid- ' 7 DLAB Orooxxxx Offset 0 refers to DATA;
ing an external clock signal. To selecta desired bit tate, the appropriate divisoz is _ioaded o offset 1 refers to IER
into the PBRG’s 16-bit Divisor Lateh by setting the Divisor Latch Access Bit (DLAB) in the 'y 1XKXKKKX Offsets 0 and 1 refer to
Line Control Register to 1 (which changes the functions of addresses 0 and 1) and then i BRG Divisor Latch
writing the divisor into Baud0 and Baudl After the bit rate is selected, DLAB is changed BREAK Control
hack to 0, to permit normal operation of the DATA registers and the ITER 6 ontrot:

: SETBRK XOxxxxxx Normal TUART operation

xxsooxxs Send BREAK signal

{more)

174 The MS-DOS Encyclopedic
Section II. Programming in the MS-DOS Environment 175
Canon Exhibit 1108

Part B: Programming for MS-DOS

176

Table 6-4. Continued

Bit Name Binary Meaning
perity Checiing GENPAR oo 0xxx No parity bit
23 xx001XxX Parity bit is ODD
xx011xxx Parity bit is EVEN
xx101xxx - Parity bitis 1
woxl 11xxx Parity bit is 0
Sop B ‘ Oxx Ontly 1 stop bit
X8T0OP XEXXK
: KEEXXIXX 2 stop bits
: (15ifWL=5)
Yo et wWD5 xcexxx00 Word length = 5
H WD6 xxxxxx] Word length = 6
wD7 xxoxxxx 10 word length =7
wWD8 xooxxll Word length = 8

{ . as DTR and RTS; two other MCR bits
Two bits in the MCR (Table 6-5) control output lines O e CTEST)

tfr igned by the u
d OUT2) are left free by the UART to be assigne ' |
;ZEEEI;JARI into a self-test mode of operation The upper 3 bits have no effect on the

UART The MCR can be both read from and written 1o

Both of the user-assignable bits are defined in the IBMPC OUTlis used by Hayefs {;:;Eai
modermns to cause a power-on reset of their circuits; OUT2 controls the passage O

i interrupt
generated interrupt request signals to the rest of the PC Unless OUT2 is set to 1, interrup!

ART cannot reach the rest of the PC, even though all other controls are

i from the U / : '
21%;];:1;2:: This feature is documented, but obscurely, in the IBM Technical Reference

s . iting an
marnuals and the asynchronous-adapter schematic; it is easy tO ovel look when writing
interrupt-driven program for these machines

Table 6-5. 8250 Modem Control Register Bit Values.

Name Binary Description
: _test configuration
o 10sx Turns on UART self-tes :
gg_f’é XXRRIXEX Controls 8250 interrupt signals (User2 Qutput)
OUT1 povvedb ol Resets Hayes 1200b internal modem (Uset? QOutput)
RTS XXX 1X Sets RTS output to R8232C connector
DTR xooooxxd Sets DTR output to R$232C connector.
The MS-DOS Encyclopedia

Article 6: Interrupe-Driven Communications

The 8250 can generate any or all of four classes of interrupts, each individually enabled or
disabled by setting the appropriate control bit in the Interrupt Enable Register (Table 6-6)
Thus, setting the IER to 00H disables all the UART interrupts within the 8250 without

regard to any other settings, such as OUT2, system interrupt masking, or the CL1I/8T1 com-

mands. The TER can be both read from and written to. Only the low 4 bits have any effect
on the UART

Table 6-6. 8250 Interrupt Enable Register Constants.

Binary Action

XxXX1XXX Enable Modem Status Interrupt.

oxxxx Ixx Enable Line Status Interrupt

XxxXxx1x Enable Transmit Register Interrupt

xxxxxxxl Enable Received Data Ready Interrupt
The status circuits

The status circuits of the 8250 include the Line Status Register (LSR), the Modem Status

Register (MSR), the Interrupt Identifier (ITD) Register, and the interrupt-request generation
system

The 8250 includes circuitry that detects a received BREAK signal and also detects three
classes of data-reception errors Separate bits in the LSR (Table 6-7) are set to indicate that
2 BREAK has been received and to indicate any of the following: a parity error (if lateral
parity is in use), a framing error (incoming bit = 0 at stop-bit time), or an overrun error
fword not yet read from receive buffer by the time the next word must be moved into it)

The remaining bits of the LSR indicate the status of the Iransmit Shift Register, the
Transmit Holding Register, and the Received Data Register; the most significant bit of the
ISR is not used and is always 0 The LSR is a read-only register; wiiting to it has no effect

Table 6-7. 8250 Line Status Register Bit Values.

Bit Binary Meaning

7 (noexxxxx Always zero

6 x1xooomx Transmit Shift Register empty

5 bio d b v:o:0:04 Transmit Holding Register empty
4 XXXIXHER BREAK received

3 XX 1xxx Framing error

2 XXEXKIXX Parity error

1 XXXXXX1x Overrun etror

0 boovesedl Received data ready

Section II. Programming in the MS-DOS Environment 177
Canon Exhibit 1108

Part B: Programming for MS-DOS

178

The MSR (Table 6-8) monitors the four RS232C lines that report modem sFatus The upp:r
4 bits of this register indicate the voltage level of the associated RS232C line; the lower

bits indicate that the voltage level has changed since the register was last read

Table 6-8. 8250 Modem Status Register Bit Values.

Bit Binary Meaning

7 100X Data Carrier Detected (DCD) level
6 X IXXXEEX Ring Indicator (RD) level

5 xx 1 xxoHx Data Set Ready (DSR) level

4 Xxx 1 XXX Clear To Send (CTS) level

3 X IXXX DCD change

2 XXXXX1%X RI change

1 s Ix DSR change

0 xooxxx1 CTS change

As mentioned previously, four types of intetrupts are gener ated The four.types are iden-
tified by flag values in the 11D Register (Table 6-9). These flags are set as follows:

i i tatus flag
® Change of any bit value in the MSR sets the modem s g -
® Settingg of the BREAK Received bit or any of the three error bits in the ISR sets the line

status flag N | '
® Setting of the Transmit Holding Register Empty bit in the 1SR sets the transmit flag.

® Setting of the Received Data Ready bitin the ISR sets the receive flag.

The 11D register indicates the intertupt type, €ven though the TER may bf._‘ disabling that
type of interrupt from generating any réquest The IID) is a read-only register; attempts to
write to it have no effect

Table 6-9. 8250 Interrupt Identification and Causes.

Article 6: Interrupt-Driven Communications

P content Meaning

xxxxxox1B No interrupt active ' ‘

xxxxx000B Modem Status Interrupt; bit changed in MSB . -

xoxx(10B Transmit Register Intersupt; Transmit Holding Register empty, bit
setin 1SR - | ‘ ‘

xxxxx100B Received Data Ready Interrupt; Data Register full, bit set in ISR

xxxxx110B Line Status Interrupt; BREAK or error bit set in L3R

As shown in Table 6-9, an all-zero value (which in most of the ogher registersisa btotally |
disabling condition) means that a Modem Status Interrupt condition has not‘y'et c:-:ercli .:z.et;l
viced. A modem need not be connected, however, for a Moderln Statu-s Inters %pt. con t1 :;)
to occur; all that is required is for one of the R$232C non-data input lines 1o change state,

thus changing the MSR.

The MS-DOS Encyclopedia

Whenever a flag is set in the IID, the UART interrupt-request generator will, if enabled
by the UART programming, generate an interrupt request to the processor Two or more
interrupts can be active at the same time; if so, more than one flag in the 11D register is set

The IID flag for each interrupt type (and the 1SR or MSR bits associated with if) clears
when the corresponding register is read (or, in one case, written to) For example, reading
the content of the MSR clears the modem status flag; wiiting a byte to the DATA register
clears the transmit flag; reading the DATA register clears the receive flag; reading the ISR
clears the line status flag. The LSR or MSR bit does not ciear until it has been read; the IID
flag clears with the ISR or MSR bit.

Programming the UART

Each time power is applied, any setial-interface device must be programmed before it is
used This programming can be done by the computer’s bootstrap sequence or as a part of
the port initialization routines performed when a port driver is installed Often, both tech-
niques are used: The bootstrap provides default conditions, and these can be modified
during initialization to meet the needs of each port driver used in a session.

When the 8250 chip is programmed, the BRG Divisor Latch should be set for the proper
baud rate, the L CR and MCR should be loaded, the IER should be set, and all internal intet-
rupt 1tequests and the receive buffer should be cleared The sequence in which these are
done is not especially critical, but any pending interrupt requests should be cleared before
they are permitted to pass on to the rest of the PC

The following sample code performs these startup actions, setting up the chip in device
COML (at port 03F8H) to operate at 1200 bps with a word length of 8 bits, no parity check-
ing, and all UART interrupts enabled (In practical code, all values for addresses and
opetating conditions would not be built in; these values ate included in the example to
clarify what is being done at each step)

MOV DX, 03FBh : base port COM! (03F8) + LCR (3)
MOV AlL,080h i enable Divisor Tatch

oUl DX, Al

MOV DX, 03F8h ¢ set for Baudl

MOV ax, 96 ¢ set divisor to 1200 bps

our DX,AL

INC DX ; to offset 1 for Baudl

MOV AL, AH i high byte of divisor

GUI BX,AlL

MOV DX, 03FBh ; back to the ICR offset

MOV AT, 03 i DIAB = 0, Parity = M, WL = 8
U1 DX, AL

MOV DX, 03F9%h ; offset 1 for IER

MOV AI,QFh ;i enable all ints in 825¢

QUL DX,AL

MOV DX, 03ECh ; COM1 + MCR {4)

MOV AL, OBh ; QUI2 + RIS + DIR bits

oul DX, AT

(more)

Section IL. Programming in the MS-DOS Environment 179
Canon Exhibit 1108

. Arii : -Dir icati
Part B: Programing for MS-DOS icle 6: Interrupt-Driven Communications

s rear 5 Two Alternative Approaches

N AL, DX ! -

MOV DX, 037 8h : clear RX reg l Now that the factors involved in creating interrupt-driven communications programs have

N AL, DX been discussed, they can be put together into practical program packages Doing so brings

MOV DX, 03FER i clear MSR ! out not only general principles but also minor details that make the difference between

igv ‘[B;;c: E};EAD ; IID reg : success and failure of program design in this hardware-dependent and time-critical area

i AL, DX j The traditional way: Going it alone

N AL,DX ; repeat to be sure

TESI AL, 1 " ; int pending? Because MS-DOS provides no generic functions suitable for communications use, virtually

RY: CLRGS 7 yes, repeat all popular communications programs provide and instail their own port driver code, and
Note: This code does not completely set up the IBM serial port. Although it fully programs then remove it before returning to MS-DOS. This approach entails the creation of a com-
the 8250 itself, additional work remains to be done T he system interrupt vectors must be a mlllnications handler for each program and requites the “gninstallation” of the handler on
changed to provide linkage to the interrupt service routine (ISR) code, and the 8?59 | : exit from the ptogram that uses it Despite the extra requirements, most communications
Priority Intetrupt Congroller (PIC) chip must also be progr ammed to respond to interrupt programs use this method

requests from the UART channels. See PROGRAMMING IN THE MS-DOS ENVIRON-

The alternative: Creating a communications device driver
MENT: CusTOMIZING Ms-DOs: Hardware Interrupt Handlers g

Instead of providing temporary interface code that must be removed from the system
before returning to the command level, an installable device driver can be builtas a
replacement for COMx so that every program can have all features However, this

approach is not compatible with existing terminal programs because it has never been a
pazt of M5-DOS

Device Drivers

1sion i mi installation of user-provided device .
All versions of MS-DOS since 2.0 have permitted the insta 1 \ |
drivers From the standpoint of operating-system theory, using such drivers is the proper Comparison of the two methods
way to handle generic communications interfacing The following paragrs aphs are mtg:nded
as a refresher and to explain this article’s departure from standard device-driver terminol-
ogy See PROGRAMMING IN THE MS-DOS ENVIRONMENT: CUSTOMIZING MS-DOS:
Installable Device Drivers

The traditional approach has several advantages, the most obvious being that the driver
code can be fully tailored to the needs of the program Because only one program will
ever use the driver, no general cases need be considered

However, if a user wants to keep communications capability available in a terminate-and-
stay-resident (T'SR) module for background use and also wants a different type of commu-
nications program running in the foreground (not, of course, while the background rask is
using the port), the background program and the foreground job must each have its own
separate driver code And, because such code usually includes buffer areas, the duplicated
drivers represent wasted resources

An installable device driver consists of (1) a driver header that links the dfiv.er o
others in the chain maintained by MS-DOS, tells the system the chgractensl-;ms of this spe-
cific driver, provides pointers to the two major routines contained in the driver, and (for a
character-device driver) identifies the driver by name; (2) any data and storage space the
driver may require; and (3) the two major code routines

The code routines are called the Strategy routine and the Interrupt routine' in normal
device-driver descriptions Neither has any connection with the hardware interrupts d.ealt
with by the drivers presented in this article Because of this, the term Request routine 18
used instead of Interrupt routine, so that hardware interrupt co@e can be called an
interrupt service routine (ISR) with minimal chances for confusion

A single communications device driver that is instalied when the system powers up and
that remains active until shutdown avoids wasting resources by allowing both the back-
ground and foreground tasks to share the driver code Until such drivers are common,
however, it is unlikely that comimercial software will be able to make use of them In addi-
tion, such a driver must either provide iotally general capabilities or it must include control

MS-DOS communicates with a device driver by reserving space for a command pz}t;keth interfaces so each user program can dynamically alter the driver to suit its needs

o : ; : ‘ iver with a call to the . - . o . . .
of as many as 22 bﬁzs and by };a_ss;ntg this Fﬁgkgg ;::éiii:gfgi??:;;:ﬁ?;e ctions At this time, the use of a single driver is an interesting exercise rather than a practical
Strategy routine. All data transter between o) \

application, although a possible exception is a dedicated system in which all software is
either custom designed or specially modified. In such a system, the generalized driver
can provide significant improvement in the efficiency of resource allocation

occurs via this command packet and the Request routine The operating system places a
commiand code and, optionally, a byte count and a buffer address into the packet at the
specified locations, then calls the Request routine T he driver petforms the command
and returns the status (and sometimes a byte count) in the packet

180 The MS-DOS Encyclopedia Section IT. Programming in the MS-DOS Environment 181

Canon Exhibit 1108

Part B: Programming for MS-DOS

The device driver: COMDVR.ASM

182 The MS-DOS Encyclopedia

A Device-Driver Program Package

ns mentioned in the preceding section, the first of the two complete

te uses the concept of a separate device driver The driver handles all
s extreme simplicity in all other modules
ecause it is especially well suited for in-
However, the package is not merely
commercial

Despite the limitatio
packages in this artic
hardware-dependent interfacing and thus permit
of the package This approach is presented first b
troducing the concepts of communications programs.
a tutorial device: It includes some features that are not available in most
programs :

onsists of three separate programs First is the device driver, which

S via the CONFIG SYS file Second is the modem engine, which

is the actual terrninal program. (A funcrionally similar component forms the heart of every
communications program, whether it is written in assembly language or a high-level lan-
guage and regardless of the machine o1 operating system inuse) Third is a separately exe-
cuted support program that permits changing such driver characteristics as word length,

patity, and baud rate
that use the traditional approach, the driver and the support program
dem engine ina single unit and the resulting mass of desail
Here, the parts are presented as separate

The package itself ¢
hecomes a part of MS-DO

In most programs
are combined with the mo
obscures the essential simplicity of each part
modules to emphasize that simplicity

tten to augment the default COM1 and COM2 devices with other
hat use the same physical hardware but are logically sepa-
lemented in MASM and is shown in the listing in
Iy as a skeleton, it is designed to permit

~purpose sample of device-driver

The device driver is wii
devices named ASY1and ASY21
(ate The driver (COMDVR ASM) isimp
Figure 6-1 Although the driver is written basical
egtensive expansion and can be used as a genetal

source code

The code

1 @ Iitle CcoOMDVR Driver for IBM COM Ports
2% Jim Kyle, 1987

3% Based on ideas from many sources

4 1y including Mike Higgins, CIM March 19853

5z ; public-domain INIBIOS program from BBS's7

6 & ; coMBIOS COM from CIS Programmers’ SIG: and
Ty ADVANCED MS-DOS by Ray puncan

8 : subttl MS-DOS Driver Definitions

9

10 : Comment * this comments out the Dbg macro

11 : Dbg Macro Ltel,Lltr2,1trd used only to debug driver.
12 iocal AxX

13 Push Es . save all regs used

Figure 6-1 COMDVE ASM

Article 6: Interrupt-Driven Communications

(more)

14
15

16 :

17
18

19

20
21
22
23
24

25

26
27
28
23
30
31
32

33 :

34
35
36
37
38
39
40
41
42
43
44
45
16
47
48
49
50
51
52

53 & ;

: ErrWp

i ErrUu

i ErrDnr

54
55
56
57
58
59
60
61
62
63
64

POXR¥:

v

HE

: DevChr
: DevBlk
¢ DavIoc
: DevNon
: DevOIB
: DevOCR
: DevX32
i Devspc
: DevClk
1 DevNul
: DevSto
: Dev3ti

B

H

: StsErr
: StsBsy
: StsDne

i

i ErrOe
: ErrCre
: ErrBsl
. Errsl
: ErrUm
H Errshf
: BErrPop
: ErrWf

Push
Push
Les
Mov
Mov
Stosw
Mov
Stosw
Mov
Stosw
Cmp
ib
Xor
Mowv
Pop
Pop
Pop
Endm

Equ
Equ
Equ
Equ
Equ
Equ
Equ
Equ
Edqu
Equ
Equ
Equ

Equ
Fqu
Equ

Equ
Equ
Equ
Equ
Equ
Equ
Equ
Equ
Equ
Equ

Figure 6-1 Continted

Di

AX

Pi,Cs:Dbgptr ; get pointer to CRI
Ax,Es: [di}

Al,Ltrt ; move in letters

Al,Ltrd

Al,Itr3

Di, 1600 ¢ top 10 lines only
Xxx

Di,Di

Word Ptr Cs:Dbgptr,Di

Ax

Di

Es

; asterisk ends commanted-out region

Device Iype Codes

8000h ; this is a character device

¢00Ch : this is a block (disk) dewvice
4000h ; this device accepts IOCIL regquests
2000h i non-TBM disk driwver ({block cnly}
2000h ; MS-DOS 3.x out until busy supported (char}
0800h ¢ MS5-DOS 3 x open/close/rm supported
3040h ; MS-DOS 3.2 functions suppor;ed
0010n ¢ accepts special interrupt 29H
0008h + this is the CLOCK device

0004h i this is the NUL device

Q002h ; this is standard cutput

000th ; this is standard input

Erzor Status BIIS

3000h ; general error
0200h i device busy
3100h ¢ request completed

Error Reason values for lower-order bits
! write protect error

; unknown.unit

i drive not ready

; unknown command

; cyclical redundancy check error
; bad drive request structure length
seck error

unknown media

secter not found

; printer out of paper

0 ; write fault

= DD e A W N O

(more)

Section IT: Programming in the MS-DOS Environment 183
Canon Exhibit 1108

Part B: Programming for MS-DOS

Article &: Interrupt-Driven Communications

65

67
68
69
70
71
72
13
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
9C
21
92
93
34
95
96
97
98
%9
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115

: ErrRE
66

ErrGft
H
i

;

¢ Pack
: Len

Prtno
Code
stat
Dosg

1 Devg
! Media
¢ Xfer

Xseq
Count
Sector
Pack

Subttl
page
PIC.b
PIC e
EQI

i

: RxBuf

Baudl

IntEn
IntId
letrl

r Metrl

Lstat
Mstat

;
Dlab

SetBrk
StkPar

¢ EvnPar

GenPar
Xstop
wds
wd?

: Wde

;
;
xSre
xhre

Equ 11 ; read fault
Equ 12 ; general failure

Structurs of an 1/0 reguest packet header

Struc

Db H ; length of record

Do H ; unit code

Db 2 ; command code

Dw 2 ; return status

Dd ? ; {unused MS-DOS™ queue link pointer)
Dd ? : (unused driver queue 1link pointer)
Db ? ; media code on read/write

Dw ? ; xfer address offset

Dw ? ; xfer address segment

Dw ? ; transfer byte count

Dw ? ; starting sector value (block only)
Ends

IBM-PC Hardware Driver Definitions

8259 data
Bqu 0200 ; port for EOIL
Equ 021h ; port for Int enabling
Equ 020h ; EOI control word
3250 port offsets
Equ 0F 8 base address
Equ RxBuf+1 ; baud divisor high byte
Equ RxBuf+1 ; interrupt enable register .
Equ RxBuf+2 interrupt identification register
Equ RxBuf+3 ; line control register
Equ RxBuf+4 modem control register
Egqu RxBuf+S ; line status register
Equ rxBuf+6 ; modem status register
8250 LCR constants
Equ 10000000k ; divisor latch access.bit
Equ 01000000k ; send break control b;t.
Equ 00100000b ; stick parity control bit
Equ 000100000 ; even parity bit
Egu 00001000b ; generate parity bit
Equ Q0000100 ¢+ extra stop bit
Eéu 00000011b ; word length = 8
Equ 00000010b : word length = 7
Eéu 00000001b ; word length = 6
8250 1SR constants
Eagu 01000000b ; xmt SR empty
Equ p0100000b ; xmt HR emply

Figure 6-1 Continued

184

The MS-DOS Encyclopedia

Definitions for IHIS Driver

116 BrkRcv Equ
117 : FrmErr Equ
118 : ParErr Equ
119 OveRun Egu
120 rdta Equ
121 : AnyErr Equ
122 @ ;
123 @ ;
124 LpBk Egu
125 Usr2 Foqu
126 Usrt Egu
127 : SetRIS Equ
128 SetDIR Equ
129 ;
130 i
131 @ Ccplvl Equ
132 RIlvl Egu
133 : DSRIvl Equ
134 CIslvl Egu
135 CDchg Equ
136 Richg Equ
137 : DSRchyg Equ
138 CISchg Equ
139 : ;
140 ;
" 141 5_Int Equ
g 142 : E_Int Equ
e 143 @ X Int Equ
o 144 : R Int Egu
145 : Allint Equ
146
147 Subttl
148 : page
148 ;
150 ;
151 H
152 LinIdl Equ
153 linXef Egqu
154 LinDSR Equ
155 : LinCIS Equ
156 .
157
i58 ;
159 : BadInp Equ
160 : LostDt Equ
16t Offrin Egu
162 1 »
163
164 :
165 B
166 ;
{more) Figure 6-1 Continued

000100000 &

000010000
00000100
00000010b
00000007k

break

received

framing error

parity

error

overrun errox

¢ received data ready
BrkRcv+FrmErr+ParErr+0veRun

8250 MCR constants

000100000
000010000
00000100b
0000010k
00000001

UART out loops to in

{test)

Gates B250 interrupts
aux user] output

sets RIS output

sets DIR output

8250 M3IR constants

100000000
010000000
001000000
00010000b
00001000b
00000100k
00000010k
00000001b

I
H

B

carrier detect level

ring indicatcr level
DSR level
CIS level
Carrier Detect change

Ring Indicatcr change

DSR change

CI8 change

8250 IER constants

00001000k
006001000
00000010b
000000010
00001111b

’
;
H

s

enable
enable
enable
enable
enable

status interrupt
error interrupt
tranamit interrupt
receive interrupt
all interrupts

Bit definitions for the output status byte
{ this driver only)

Offh i if all bits off, xzmitter is idle

1 ¢ output is suspended by XOFF

2 ; output is suspended until DSR ceomes on again
4 ; output is suspended until CIS comes on again

Bit definitions for

the input status byte

{ this driver only }

1 i input line errors have been detected
2 : receiver buffer overflowed, data lost
4 ; device is off line now

Bit definitions for the special characteristics words
{ this driver only)
InSpec controls how input from the UARI is treated

Section IL Programming in the M5-DOS Environment

{(more)

185
Canon Exhibit 1108

Part B: Programming for M8-DOS

srrors translate to codes with parity bit on

167 : InEpc Equ 0001h ;

168 7

169 : cutsSpec controls how output to the UARI is treated
170

171 : OutDSR Equ 0001h ; DSR is used to throttle output data

172 : outCIs Equ 0002h ; cI5 is used to throttle output data

173 : OutXon Egqu 0004h ; XON/XCFF 1s used o throttle output data
174 1 QutCdf Equ 0010h . carrier detect is off-line signal

175 : OutDri Edqu 0020h . DSR is off-line signal

116 @ 7 .

177 : Unit 3truc ; each unit has"é structure defining its state:
178 : Port Dw ? ; I/0 port address

178 : Vect Dw ? ; interrupt vector offset (NCI interrupt numbear!}
180 : Isradr Dw ? ; offset to interrupt -service routine

181 : Otstat Db W8 : default LCR bit settings during INTI,

182 : output status bits after

183 : InStat ©Db Usr2+SetRIS+SetDIR ; MCR bit settings during INII,
184 ; input status bits after

185 : InSpec Dw InEpc ; special mode pits for INPUI

18¢ : OutSpec Dw outxon ; special mode bits for OUIFUI

187 : Baud Dw 96 ; current baud rate divisor value {1200 b}
188 : Ifirst Dw 0 . offset of first character in input buffer
189 : Ifavail Bw 0 » offset of next available byte

s

190 : Ibuf Dw ? ;

197 : Ofirst Dw 0 ;
192 : OQavail Dw o] ;
193 : Obuf Dw 2 :
194 : Unit Ends

195

196 @ 7

197 @ ¢

198 1 i

199 ; Driwver Segment

200 zssume Cs:driver
201 = org 0

202 ¢

203 Cw AsyncZ, -1

204 3 Dw DevChr +

pointer te input pbuffer
offset of first character in output buffer
cffset of next avail byte in output buffer
pointer to output buffer

Beginning of driver code and data

ds:driver, es:driver
; drivers start at O

i

’

pointer to next device
pevioc ; character device with IOCIL
offset of Strategy routine

205 Dw Strtegy :

206 Dw Regquest] : pffset of interrupt entry point 1
207 @ Db FASY ' : device 1 name

208 : Asynczi

200 Dw -1,-1 ; pointer to next device: MS-D0OS fills in
210 Dw DevChr + Devioc ; character device with ICOCIL

241 Dw strtegy . offset of Strategy routine

212 = Dw Request2 . offset of interrupt entry point 2
213 : Db 'ASY2 ! ; device 2 name

214

215 3 ;dbgptr bd 00000000

216 ¢ F

217 = ¢ EFollowing is the storage area for the request packet pointer

Figure 6-1 Continued

186 The MS-DOS Encyclopedia

Article 6: Interrupt-Driven Communications

218
219 :; PackHd Dd 0
220 @ ;
22; HE] baud rate conversion table
: Asy_baudt Dw 5 i
ol o ;2,2304 ; first wvalue is desired baud rate
223 1538 ; second is diviscr register wvalue
: Dw 110,1047 '
225 Dw 134, 857
226 : Dw 153, 786
227 ¢ Dw 300, 384
228 Dw 600, 192
229 D 1200, 98
230 : Dw 1800, 64
231 = Dw 2000, 58
232 ¢ Dw 2400, 48
233 Dw 3600, 32
234 Dw 4800, 24
235 ¢ Dw 7200, 16
236 : Dw 9600, 12
237
238 : : table of structures
gzi o ASY1 defaults to the COM1 port, INI 0CH vectcor, XON
[no parity, 8 databits, 1 sto i bau '
o evten, p bit, and 120C paud
242 Unit < i i
e 3f8h, 3Ch, asyiisr,,,,s,s.inlbuf,, ,cutibui>
5 . -
22: S ASYZ2 defaults te the COM2 port, INI OBH vector, XON
FI no parity, 8 databics, ! ste i ’ ’
o reytane, p bit, and 1200 baud
247 Unit <2f8h, 2 s i
" ,2ch,asy2isr,,,,,,,,1in2buf,, ,out2buf>
2:3 H Euisiz Equ 256 input buffer size
: ufmsk = i
: s Bufsiz-1 : mask for calcularing offsets modulc bufsi
51 : Inlbuf Bb Bufsliz DUP (?2) o
252 + Outibuf Db gufsiz DUP {2)
253 : In2buf Db Bufsiz DUP {?)
254 : Out2buf Db Bufsiz DUP (2}
255 @
256 : Following i
is £ T
2 g a table of offsets to all the driver functions
258 ; Asy_funcs:
223 f Ew Init + (0 initialize driver
% : Dw Mchek ;1 media check (block only}
2 : W B1dBPB ;2 build BPE (block only)
: Dw Ioctlin ;3 IOCIL read
263 Dw Read ;4 read
2 H i o
264 Dw Ndread 5 nondestructive read
222 B Dw Rxstat 6 input status
: Dw Inflush 7 flush input buffer
267 : Dw Write ; B write
268 : rite
Dw Write ;9 write with verify

Figure 6-1 Continued.
(more)

Section II. Programming in the MS-DOS Environment 187

Canon Exhibit 1108

Part B: Programming for MS-DOS

188

269 : Dw lastat ; 10 output status

270 Ow Ixflush ; 11 flush output buffer

21 Dw Ioctlout ; 12 I0CILI write

272 ¢ ; Following are not used in this driver.

273 @ Dw Zexit ;13 open (3.x only, not used)

274 ¢ Dw Zexit ; 14 claose {3.x only, not used}

275 =z Dw Zexit ; 15 rem med (3.x only, not used)

276 Dw Zexit ; 16 out until bsy (3 % only, not used)
2771 Dw Zexit P17

278 Bw zZexit ;18

279 Dw Zexit ; 19 gemeric IOCIL request (3 2 only)
280 Dw Zexit ;20

285 : Dw Zexit ;21

282 : Dw Zexit v 22

283 : Dw Zexit ; 23 get logical drive map {3.2 only}
284 Dw Zexit ; 24 set logical drive map (3.2 only)
285

286 : gubttl Driver Code

287 : page

288 : ;

288 & Ihe Strategy routine itself:

2580 .

291 : gstrtegy Proc Far

282 . dbg ‘g1, 'R,

283 Mov Word Ptr CS:PackHd,BX ; store the offset

294 Mov Word Ptr CS:PackHd+2,BS ; store the segment

295 Ret

296 : Strtegy Endp’
297 1 .

288 : Requesti:

2992 : Push
300 - lea
301 Jmp
302

303 : Request2:
304 : Push
305 : Lea
306 :

307 : Gen.request:
308 : dbg
309 : Pushf
310 cid
311 Push
312 Push
313 : Push
314 Push
315 : Push
316 : Push
37 Push
318 Push
319 Push

Figure 6-1 Continued

The MS-DOS Encyclopedia

r

asyncl has been requested
51 ¢ save ST
Si,Asy_tabl ! get the device unit table address

Short Gen_request

async? has been requested

5i ; save S5I
Si,Asy_tab2 ; get unit table two’s address
IR']'R‘,' 1

; save all regs

Cs : set DS = C5

(nore)

|
i
i
i
|

Articte 6: Interrupt-Driven Communications

320 ¢ Pop Ds :
321 lLes Bx, PackHd
322 Lag Di,Asy funcs

323 Mov Al,es:code [bx]
3249 Chw ‘

325 Add AX,Ax

326 Add Di,ax

327 Jmp [di]

328

329 : Exit from driver request

331 : Exitp Proc Far
332 : Bsyexit:

333 : Mov Ax, 5tsBsy

334 ; Jmp Short Exit

335 ;

336 : Mchek:

337 : B1dEPB:

338 : zexit: Xor Ax,Ax

339 : Exit: Les Bx, PackHd ;
340 or Ax, 3tsDne

341 Mow Eg:8tat [Bx],Ax ;
342 Pop Es i
343 : Fop D3

344 ; Pop Bp

345 Pop Di

346 1 Pop Dx

347 Fop Cx

348 Pop Bx

349 Pop Ax

350 bopf

351 Pop Si

352 : Ret

353 ¢ ExitP Endp

354 :

355 ¢ subttl Driver Service Routines
356 Page

357

358 : Read data from device

359

360 : Read:

361 dbg 'R, 4T, T

382 . Mov Cx,Es:Count {bx] ;
363 : Mov Di,Es:Xfer[bx] ;
364 : Mov Dx,Es:Xseq [bx]
365 Push Bx ;
366 Push Es

367 @ Mov Es,Dx

368 lest InStat([si],BadInp
369 : Je No_lerr H
370 Add Sp, 4 ;

Figure 6-1 Continued

get packet pointer
point DI to jump table
command code

double to word

go do it

get packet pointer

set return status
restore registers

get reguested nbr

‘get target pointer

save for count fixup

Or losiDt
no error so far
error, flush 8P

(more)

Section II. Programming in the M5-DOS Environment

1
Canon Exhibit 110889

Article &: Interrupt-Driven Communications

Part B: Programming for MS-DOS

371 and Tnstat[si],Not (Badinp Or LostDt) 421 ; Write:
372 ¢ Maov Ax,ErrRf ; error, report it I 422 1 : dbey WY, v,
373 : Jmp Exit ' 423 Mov Cx,es:count [bx]
374 : No_lerr: 424 : Mov Di,es:xfer [bx]
375 & call Get_in ; go for one 425 : Mov Ax, es:xseq [bx]
376 Or ah, ah 426 : Mov Es,ax
377 : Jnz Got_all ; none to get now 427 : Wlup:
3718 : Stosh ; store it 428 : Mov Al,es: {di] ; get the byte
379 1 LOOp No_lerr ; go for more 429 Inc Di
380 : Got_all: 430 : Wwait:
181 . Pop Es 431 tall Put._out ; put away
382 . Pop Bx 432 1 Cmp Ah, 0
383 Sub pi,Es:Xferibxz] ¢ calc number stored 433 Jne Hwait . wait for room!
384 Mowv Es:Count{bx],Di ; return as count 434 Call Start_output : get it going
385 Jmp Zexit 435 Loop Hlup
386 436 :
387 & Nondestructive read from device 437 Jmp Zexit
388 : 438
389 : Ndread: 439 @ Output status request
3%0 : Mov Di,ifirst(sil] 440
391 - Cmp Di,diavaillsil 441 : Ixstat:
392 ine Ndget 442 3 Mov Ax,ofirst(si]
393 : Jmp Bsyexit ; buffer empty 443 Daec Ax
394 : Ndget: 444 ; And Ax,bufmsk
395 : Push Bx 445 cmp Ax,o0avail[si]
396 : Mov BEx, ibuflsil 446 Jne Ixroom
397 Mov Al, [bx+di] 447 : Top Bsyexit ; buffer full
398 : Pop Bx 448. : Ixroom: :
3%9 : Mow Es:media{bxi,al ; return char 449 Jp Zexit ; room exists
400 ¢ Jmp Zexit 450
501 451 : ; IOCILI read request, return line parameters
402 Input status request 452
403 = 453 : JToetlin:
404 : Rxstat: 454 : Mov Cix,es:count {bx]
405 : Mov Di,ifirst[si] 455 Mov Di,es:xfer[bx]
406 : Crp Di,iavail[si] 456 : Mov Dx,es:xseg[bx]
407 Jne Rzful 457 Mov Es,dx
408 1 Jmp Bsyexit ; buffer empty 458 : Cmp Cx, 10
409 : Rxful: 459 : Je Doiocin
410 Jmp Zexit ; have data 460 Mov Ax,errbsl
411 ¢ & 461 : Jmp Exit
412 Input flush request . 462 : Doigecin:
412 - : o 4563 : Mov Dx,port[si] i base port
414 : Inflush: : 464 : Mov Dl,Ictrl ; line status
415 ; Mov ax,iavaillsi] 465 : : Mov Cx, 4 ¢ ICR, MCR, ISR, MSR
416 Mov Ifirstisil,ax 466 @ Getport:
417 1 Jmp Zexit 467 1 In Al,dx
118 468 Stos Byte Ptr [DI]
419 @ Cutput data to device 463 Inc Dz
420 470 : loop Getport

471
Figure G-1 Continued (more)

: Figure 6-1 Continued (more)

190 The MS-DOS Encyclopedia Section I1 Programming ir the MS-DOS Environment 191
Canon Exhibit 1108

Part B: Programming for M3-DOS

Article &: Interrupt-Driven Communications

472 : Mowv
473 Stos
474 Mowv
475 ¢ Staos
476 Mov
477 1 Mov
418 1 Mov
479 Mov
480 : Baudein:
481 cmp
482 : Je
483 : Add
484 : Loop
485 : Yesinb:
486 Mov
487 Mov
488 1 Stos
489 Jmp
490
491 & ;
492
493 : [xflush:
494 Mov
495 1 Mow
496 Jmp
497
498 @ ;
499
500 : Ioctlout:
501 = Mov
502 : Mov
503 : Mov
504 : Mov
505 Cmp
506 : Je
567 3 Mov
508 : TJinp
509
510 : Doiocout:
571 ¢ Mov
512 Mov
513 : Mov
514 : inc
515 : or
516 out
317 Clc
518 Jnc
519 : Inc
520 : Mov
521 or
52z : out

Figure 6-1 Continued

192 The MS-DOS Encyclopedia

Ax, InSpeclisi]) ; spec in flags
Word Ptr [DT]

nx,0OutSpecisil ; out flags
Word Ptr [DI}

Ax,baud[si] ; baud rate
Bx,di

Di,offset Asy_baudt+2

Cx, 15

[di},ax
Yesinb
Di,4
Baudcin

Ax,-2[dil
pi,bx

Word Ptr [DI]
Zexit

Flush output buffer request

Ax,oavail{si]
Ofirst[sil,ax
Zexit

I0CTI request: change line parameters for this driver

Cx,es:count {bx]
Di,es:xfer [bx]
Dx,es:xzegbx]
Es,dx

cx, 10

Doiccout
Ax,errbsl

Exit

Dx,port[sil ; base port
pl,lctrl ; line ctrl
Al,es: [di]

Di

2l1,Dlab ;
Dx,al

set baud

$+2
Dx
Al,es:{di]
Al,Usr2 ; Int Gate

mdm ctrl

Dx,al

523
524
1 525
= 526 :
; 527 :
528 :
529 :
530
531
532
533 3
534 :
535
536
537 :
538 &
5338
540 :
5471 :
542 :
543 :
544
545
546
547
548
549 :
550 :
551
552 :
553 @
554
555
556 =
557 :
558
559
560 -
561
562
563
564 ;
565 :
566
567
568
569 :
370
571
572 «
573 :

(more)

Add
Mov
Add
Mov
Mov
Add
Maov
Mov
Mov
Mov
Mov
Baudcout:

Cmp
Je
add
Loop

Mov
in

And
Clc
Jnc
Qut
Mov
Jmp

Yesoutb:
Mowv
Mo
Mov
Cut
Clc
Inc
Inc
Mov
Out
Clc
Jng
Mov
In
and
Clec
Jne
Out
Jmp

Di,3 ; skip ISR,MSR
Ax,es: {di]

Di,2

InSpec(sil,ax

Ax,es:{di]

Di, 2

DutSpecisil,ax

Ax,es: [di] ; set baud
Bx,di

Di,cffset Asy_baudt

Cx,15

[di],ax
Yescuth
Di, 4

Baudcout

Di,Ictrl ; line ctrl
Al,dx ; get LCR data
Al,not Dlab strip

5+2

Dx,al ; put back
Ax,Errilm ; "unknown media”
Exit

Ax,2[di) ; get divisor
Baudisil, ax sava to report later
Dx,portisil] ; set divisor

Dx,al

5+2
Dx
Al,ah
Dx,al

542

Di,lectrl ; line ctrl
Al,d=z : get ICR data
Al,not Dlab ¢ strip

$+2
Dx,al ¢ put back
Zexit

Subttl Ring Buffer Routines

Page

Put_out Proc
Bush

Figure 6-1 Continued

Near ; puts AL into output ring buffer
Cx

(more)

Section IT. Programming in the MS-DOS Environment 193
Canon Exhibit 1108

Part B: Programming for MS-DOS

Article 6: Interrupt-Driven Communications

574 : Push
575 : Pushf
576 : Cli
577 1 Mov
578 Mov
579 : Inc
580 : and
581 Cmp
582 . Je
583 : Add
584 : Mov
585 : Mov
586 : ; dbg
387 : Mov
588 : Jmp
589 : Poerr:

590 : Mowv
591 : Poret:

542 : Popf
593 Pop
594 : Pop
595 Ret
596 : Put_out Endp
397

588 : Get_out Proc
599 Push
600 Push
801 : Pushf
602 : cli
603 : Mov
604 : Crip
605 : Ine
606 : Mov
607 : Jmp
808 : Ngoerr:

809 : ; dbg
810 : Mov
611 Add
612 : Mov
613 Mov
614 Inc
615 And
616 : Mov
€17 : Goret:

618 Popt
619 Pop
62Q Pop
621 : Ret
622 : Get_out Endp
623

624 : Put_in Proc

Figure 6-1. Continued

194 The MS-DOS Encyclopedia

Cx,cavail([si]
Di,cx

Cx

Cx,bufmsk
Cx,ofirst[si]
Poerr
Di,obuf{si]
[dil,al
Oavailisi],cx
‘p',‘o','
Ah,Q
Short Poret

T

Ah, -1

Di

;

;

put ptr
bump

overflow?
yes, don’t

no

put in buffer

Near ; gets next character from output ring huffer

Pi,ofirst(si]
Di,ocavailfsi]
Ngoerr

Ah, ~1

Short Goret
|g|,|0|’| r
Cx,di
Di,obuf[si]
al, [di]

ah, 0

Cx

Cx, bufmsk
Ofirst{si],cx

Di
Cx

Near i puts the char from AL into input ring buffer

get ptr
put ptr

empty

get char

bump ptr
wrap

(more)

625 Push
626 Push
627 Pushf
628 Cli
629 Mowv
630 : Mov
631 : Inc
632 And
633 Cmp
634 : Jne
633 : Mov
636 : Jmp
637 : Npierr:

638 : Add
639 Mov
640 Mov
641 1 ; dbyg
642 Mov
643 ; Piret:

6d4 Popf
645 : Pop
646 : Pop
647 Ret

648 : Put_in Endp
649
650 : Get_in Proc

651 : Push
652 Push
653 Pushf
654 Cli
655 : Mov
£836 : Cmp
$57 = Je
858 Mov
639 add
660 = Mawv
661 : Mov
662 1 dhg
663 : Inc
664 And
665 : Mov
666 3 Tmp
667 : Gierr:

568 : Mov
669 : Giret:

670 Popf
671 = Pop
672 Pop
673 : Ret

674 : Get_in Endp
675

Figure 6-1 Continued

Cx
Di

Di,iavail[si]
Cx,di

Cx

Cx,bufmsk
Cx,ifirst([si]
Npierr

2Ah, -1

Short Piret

Di,ibuf([si]
[di],al
Iavaill[si],cx
'pllli|l‘ v
Ah, 0

Di
Cx

Near ; gets one from input ring buffer inte AL

Cx
Di

Di,ifirst([si]
Di,iavail[si}
Gierr

Cx,di
Di,ibuf{si]
Al, {di]

Ah, 0
lgl,!il'r L}
Cx
Cx,bufmsk
Ifirst[sil,cx
Short Giret

Ah, -1

Cx

(more)

Section II. Programming in the MS-DOS Environiment 195

Canon Exhibit 1108

Part B: Programming for MS-DOS

Article 6: Interrupt-Driven Communications

676 : Subttl Interrupt Dispatcher Routine 727 : Dsron:
677 : Page 728 : Test otStat(si],linDSR ; throttled for DSR?
578 : 729 : Jz Mscts
679 : Asylisr: 130 Xor OtStat[si),LinDSR ; yes, clear it out
680 : 5ti 731 ; Call Start_output
681 Push g8i 732 : Mscts:
682 Lea $i,asy_tabl 733 lest Al,CISlv]l ; CIS present?
683 Jmp short Int. serve 134 : Jnz Ctson ; yes, handle it
694 : 735 lest Out8pec(si],Cutlis ; no, is CIS throttlie?
685 : Asy2isr: 736 : Jz Int_exit2
636 - Sti 737 or OtStat [si],LinCIS ¢ yes, shut it down
687 : Push Si 738 Jmp Short Int_exit?2
688 : lea 5i,asy_tab2z 739 : Ctson:
689 740 o Iest OtsStat[si],IinCIS throttled for CIS?
690 : Int_serve: 741 Jz Int_exit2
691 : Push Ax ; save all regs 742 Xor otStat[sil,IinCIs i yes, clear it ount
6§92 Push B 143 Jmp Short Int_exit]
693 Push Cx 744 : Int.mo_mo:
694 Push Dx 745 ¢ Cmp Al,02h
695 : Push Di 746 : Jne Int_tx no
696 Push s 747 : Int_txmit:
697 : Push cs ; set DS = C5 748 ¢ dbg I, xR,
698 : Fop Ds 749 : Int_exit?: .
699 : Int._exit: 750 = Call Start._output try to send another
700 : ; dbg T, T 751 : Int_exit2:
701 : Mov Dx,Portisi] : base address 752 : Jmp Int_exit
702 Mov DL, IntId ; check Int ID 753 : Int_tx no:
703« In Al,Dx 754 Cep A1,04h
704 cmp Al,00nh ; dispatch filter 755 Jne Int_rec_no
705 Je Int_modem 756 : Int_receive:
106 : Jmp Int_mo_no 157 ; dixg R, 'xT, Y
707 : Int_modem: 758 Mov Dx,portlsi)
708 : ; dbg M, g, 759 : In Al,dx ;7 take char frcm 8250
709 : Mov D1,Mstat 760 Test OutSpec[si],CutXon ; is XON/XOFE enabled?
10 = In Al,dx ; read MSR content sl Jz Stuff_in ; no
FR Test al,CDh1lv1 ; carrier present? 162 Cmp Al,'S’ And O1FH : yes, is this XOFF?
M2 : Inz Msdst yes, test for DSR 763 : Jne Isg ¢ no, check for XON
713 = Iest OutSpecsi],Outldsf ; no, 1s CD off line? 764 Oor Ot3tat[si),linXof veas, disable output
714 : Jz Msdsr 165 Jnp Int_exit2 ; don't store this one
715 : or InStat[si],0fflin 766 : Isq:
716 : Msdsr: 167 Cimp Al,'Q" And 01FH ; is this XON?
717 : lest Al,DSR1vl ; DSR present? 168 : Jne Stuff in P ono, save it
718 Jnz Dsron yes, handle it 169 : Iest OtStat[si],linXof yes, walting?
719 : Test OutSpecisi],OutDSR ne, is DSR throttle? LA Jz Int_exit2 no, ignore it
120 : Jz Deroff EI - Xor DtStat{sil,linXef ; ves, clear the XOFF bit
721 : or otStat{sil,LinD5R i yes, throttle down 772 Jmp Int_exitl ; and try to resume xmit
722 : Dsroff; 713 : Int.rec_no:
723 : Test OutSpecfsi],outDrf ; is DSR off line? 774 G Al,06h
724 : Jz Mscts 775 Jne Int_done
725 or InStat[si],0f£flin yes, set flag 776 : Int_rxstat:
726 Jmp Shert Mscts it dbg ‘E', R,
Figure 6-1 Continued (more; Figure 6-1 Continued (more)

Section I1. Programming in the M5-DOS Environment 197

196 The M5-DOS Encyclopedia
Canon Exhibit 1108

Part B: Programming for MS-DOS

Dl,Istat

Al,dx
InSpec{si], InEpc
Nocode

; return them as codes?

; no, just set error zlarm
; yes, mask off all but error bits

Al,AnyErr

Al,080h

Put._in ; put input char in buffer
ah, 0 ; did it fit?

Int_exit3 i yes, all OK
InStat[si],Iostbt ; no, set Datalost bit
Int_exit

InStatfsil,BadInp

Int_exit3

$+2
ALl,EDZX
PIC_ b,Al
Ds

Di

Proc Near

; all dene now

; restore regs

otstat{si],IinIdl ; Blocked?

Dont_start
Dx,port (si}
D1, lstat
Al,Dx

Al, xhre
Dont_start
Get_out
Ah, Ah
Dont_start
Di,RxBuf
Dx,al

|sl’lo|’r i

wndp

: yes, no output
; no, check UARI

; empty?
; no
1 yes, anything waiting?

; no
yes, send it out

826 : Subttl Initialization Request Routine

778 Mov
779 in
780 : Tast
781 = Jz
782 : and
783 Or
784 : Stuff_in:
785 : Calili
786 : Ccmp
787 : Je
788 : Or
789 : Int_exit3:
790 Jmp
791 : Nocode:

782 or
793 : Jmp
794 : Int_done:
785 Clec
746 : Jne
797 : Mo
798 : Qut
799 : Pop
800 : Pop
301 : Pop
802 : Pop
303 : Pop
204 : Pop
805 Pop-
806 : Iret
807

808 : Start_output
809 : Iest
810 : Inz
811 Mov
812 : Mov
813 In
814 : lest
815 : Jz
815 : Call
817 : Cr
818 : Jnz
819 : Mo
820 : out
821 : ; dbg
822 : Dont_start:
823 : ret
824 : Start_output
825 :

827 : Page

828

Figure 6-1 Continued

198 The MS-DOS Encyclopedia

{more)

Article 6: Interrupt-Driver Communications

829
830
831
832
833
834
835
838
837
§38
839
840
341
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
867
862
463
864
8BS
866
B67
868
369
870
871
872
873
874
875
876
877
878
879

Init:

ClRgs:

Lea
Mov
Mov

Mov
Mov
Mov
Qut
Clc
Jnec
Mov
Mov
Qut
Clc
Jne
Inc

Mov
Out

Cle

Inc

julelig
Mowv
Out
Mov
Clc
Jnc
Mov
Mov
Qut
Cle
Jnc
Mow
Mov
Cut

Mov

Mov
In
Mov
In
Mov
In
Mov
In
In
Iest
Jz

Cli
Lor

Figure 6-1. Continued.

Di,$

release rest

Es:Xfer(bx],Di
Es:Xseg[bx],Cs

Dx,Port[si]
Dl,Ictrl
al,blab

Dx, Al

$+2

o1, RxBuf
Ax,Baudfsi]
Dxz,Al

5+2
D
Al,Ah
Dx,Al

$+2

Dl,Ictrl

Al,OtS5tat[si]

Dx, Al
OtStat[sil},0

$+2

Bl, IntEn
Al,AllInt
Dx, Al

$+2

Dl,Mctrl

Al, InStat [si]
Dx,Al

Instat (si],0

Dl,Istat
Al,Dx
D1, RxBuf
Al,Dx
D1, Mstat
Al, Dx
bl, IntId
Al,Dx
Al,Dx
Al
ClRgs

AxX,Ax

base port

enable divisor

~

sat baud

~

set LCR
; from table

=

clear status

.

: TER
enable ints in B250

; set MCR
; from table

i clear status

; clear ISR

i clear RX reg

clear MSR

7 IID req

int pending?
yes, repeat

7 set ilnt vec

{(more)

Section Il Programming in the MS-DOS Environment 199
Canon Exhibit 1108

Part B: Programming for MS-DOS

200

880 Mov Es,Ax

881 Mov pi,Vect[si)

882 Mov Ax,IsrAdr [si] ; from table

883 : Stosw

884 = Mov Esg: fdi],cs

885 :

886 : in Al,PIC_e ; get 8259

887 and Al,0E7h : coml/Z mask

888 Clc

889 : Jnb 542

8490 : Out PIC—_e, Al

891 : sti

892 : ' »
893 : Mov Al1,E0L . now send EOI just in case
894 : out PIC.b,Al

895 : .

896 : ; dbg rtpr, I, ; driver installed
897 : Jmp zZexit

898 :

899 : Driver Ends

900 End

Figure 6-1 Continued

The first part of the driver source code (after the necessaxyrl\./IASM housekeeping c;lejtaﬂs
in lines 1 through 8) is a commented-out mMacto definition (hr‘;es 10 thrc.mgh 32). T is |
macro is used only during debugging and is part ofa deb\.jggmg technique that reqm:IGSl
no sophisticated hardware and no more complex debugging program tlllan the Venéfab e
DEBUG COM (Debugging techniques are discussed after the presentation of the driver

program itself)

Definitions | o .

The actual driver source program consists of three sets of EQU definitions (lines 34
through 194), followed by the modular code and data areas (lines 197 through.90'0) The
first set of definitions (lines 34 through 82) gives symbolic names 1o the permissible values
for MS-DOS device-driver control bits and the device-driver structures

“definiti Uit . i he poris and bit
The second set of definitions (lines 84 through 145) assigns names to t
values that are associated with the IBM hardware —both the 8259 PIC and the 8250 UART.

The third set of definitions (lines 147 through 194) assigns names (o the control values and
structures associated with this driver
The definition method used here is recommended for all drivers To move this driver from

the IBM architecture 1o some other hardware, the major cha_nge' required to the pr_ogram
would be reassignment of the port addresses and bit values in lines 84 through 145

The control values and structures for this specific driver (defined in the third EQU set)

provide the means by which the separate support program can mOdjfj.}' the actlpns of ;:acﬁl
of the two logical drivers They also permit the driver fo return status information to bot

The M5-DOS Encyclopedia

Article 6: Interrupt-Driven Communications

the support program and the using program as necessary Only a few features are imple-
mented, but adequate space for expansion is provided The addition of a few more defini-
tions in this area and one or two extra procedures in the code section would do all that is
necessary to extend the driver's capabilities to such features as automatic expansion of
tab characters, case conversion, and so forth, should they be desired

Headers and structure tables

The driver code itself starts with a linked pair of device-driver header blocks, one for
ASYT (lines 201 through 207) and the other for ASY2 (lines 208 through 213) Following
the headers, in lines 215 through 236, are a commented-out space reservation used by the
debugging procedure (line 215), the pointer to the command packet (line 219), and the
baud-rate conversion table (lines 221 through 236)

The conversion table is followed by structure tables containing all data unique to ASY7
(lines 239 through 242) and ASY2 (lines 244 through 247). After the structuse tables,
buffer areas are reserved in lines 249 through 254 One input buffer and one output buffer
are reserved for each port. All buffers are the same size; for simplicity, buffer size is given a
name (at line 249) so that it can be changed by editing a single line of the program.

The size is atbitrary in this case, but if file transfers are anticipated, the buffer should be
able to hold at least 2 seconds’ worth of data (240 bytes at 1200 bps) to avoid data loss dus-
ing writes to disk Whatever size is chosen should be a power of 2 for simple pointer arith-
metic and, if video display is intended, should not be iess than 8 bytes, to prevent losing
characters when the screen scrolls.

If additional potts are desired, more headers can be added after line 213; corresponding
structure tables for each driver, plus matching pairs of buffers, would also be necessary
The final part of this area is the dispatch table (lines 256 through 284), which lists offsets
of all request routines in the driver; its use is discussed below

Strategy and Request routines

With all data taken care of, the program code begins at the Strategy routine (lines 289
through 296), which is used by both ports This code saves the command packet address
passed to it by MS-DOS for use by the Request routine and returns to MS-DOS

T he Request routines (lines 298 through 567) are also shared by both ports, but the two
drivers are distinguished by the address placed into the Sf register This address points to
the structure table that is unique to each port and contains such data as the port’s base
address, the associated hardware interrupt vector, the interrupt service routine offset
within the driver’s segment, the base offsets of the input and output buffers for that port,
two pointers for each of the buffers, and the input and output status conditions (including
baud rate} for the port The only difference between one port’s driver and the other's is
the data pointed to by SI; all Request routine code is shared by both ports

Each diiver’s Request routine has a unique entry point (at line 298 for ASY7 and at Iine 303
for ASY2) that saves the original content of the SI register and then loads it with the ad-
dress of the structure table for that driver The routines then join as 2 common stream at
line 307 (Gen_ request).

Section II. Programming in the M5-DOS Enviromment 201
Canon Exhibit 1108

Part B: Programming for MS-DOS

202

T his common code preserves all other registers used (lines 309 through 318), sets DS
equal to CS (lines 319 and 320), retrieves the command-packet pointer saved by the Strat-
egy routine (line 321), uses the pointer to get the command code (line 323), uses the code
1o calculate an offset into a table of addresses (lines 324 through 326), and performs an in-
dexed jump (lines 322 and 327) by way of the dispatch table (lines 256 through 284) to the
routine that executes the requested command (at line 336, 360, 389, 404, 414, 421, 441, 453,

300, or 829)

Although the device-driver specifications for MS-DOS version 3 2 list command request
codes ranging from 0 to 24, not ail are used. Earlier versions of MS-DOS permitted only 0
to 12 (versions 2.x) or 0 to 16 (versions 3.0 and 3 1) codes. In this driver, all 24 codes are
accounted for; those not implemented in this driver return a DONE and NO ERROR status
to the caller Because the Request routine is called only by MS-DOS itself, there is no check
for invalid codes. Actually, because the header attribute bits are nof set to specify that
codes 13 through 24 are valid, the 24 bytes occupied by their table entries (lines 273
through 284) could be saved by omitting the entries They are included only to show

how nonexistent commands can be accommodated.

Immediately following the dispatch indexed jump, at lines 329 through 353 within the
same PROC declaration, is the common code used by all Request routines to store status
information in the command packet, restore the registers, and return to the caller. The
alternative entry points for BUSY status (line 332), NO ERROR status (line 338), or an e1ror
code (in the AX register at entry to Exit, line 339) not only save several bytes of redundant
code but also improve readability of the code by providing unique single labels for BUSY,
NO ERROR, and ERROR return conditions.

All of the Request routines, except for the fnit code at line 829, immediately follow the
dispatching shell in lines 358 through 568. Each is simplified to perform just one task, such
4s read data in or write data out The Read routine {lines 360 through 385) is typical: First,
the requested byte count and user’s buffer address are obtained from the command
packet Next, the pointer to the command packet is saved with a PUSH instruction, so that
the ES and BX registers can be used for a pointer to the port’s input buffer

Before the Get_in routine that actually accesses the input buffer is called, the input status
byte is checked (line 368). if an error condition is flagged, lines 370 through 373 clear the
status flag, flush the saved pointers from the stack, and jump to the error-return exit from
the driver If no error exists, line 375 calls Get_in to access the input buffer and lines 376
and 377 determine whether a byte was cbtained If a byte is found, it is stored in the user's
buffer by line 378, and line 379 loops back to get another byte until the requested count
has been obtained or until no more bytes are available In practice, the count is an uppert
limit and the loop is normally broken when data runs out

No matter how it happens, control eventually reaches the Goi_all routine and lines 381
and 382, where the saved pointers to the command packet are restored from the stack.
Lines 383 and 384 adjust the count value in the packet to reflect the actual number of bytes
obtained Finally, line 385 jumps to the normal, no-error exit from the driver.

The M5-DOS Encyclopedia

Article &: Interrupe-Driven Communications

Buffering

Both butfers for each driver are of the type known as circulas, or ting, buffers. Effectively,
such a buffer is endless; it is accessed via pointers, and when a pointer increments past the
end of the buffer, the pointer returns to the buffer’s beginning. Two pointers are used here
for each buffer; one to put data into it and one to get data out. The ge# pointer aiways
points to the next byte to be read; the put pointer points to where the next byte will be
written, just past the fast byte written to the buffer.

If both pointers point to the same byte, the buffer is empty; the next byte to be read has
not yet been written The full-buffer condition is more difficult to test for: The puz pointer
is incremented and compared with the get pointer; if they are equal, doing a write would
force a false buffer-empty condition, so the buffer must be full.

All buffer manipulation is done via four procedures (lines 569 through 674) Put_out
(lines 572 through 590) writes a byte to the driver’s output buffer or returns a buffer-full
indication by setting AH to OFFH. Get_out (lines 598 through 622) gets a byte from the
output buffer or retutns OFFH in AH to indicate that no byte is available Put_in (lines 624
through 648) and Get_in (lines 650 through 674} do exactly the same as Put_out and
Get_out, but for the input buffer These procedures are used both by the Request routines
and by the hardware interrupt service routine (ISR).

Iaterrupt service routines

The most complex part of this driver is the ISR (lines 676 through 806), which decides
which of the four possible services for a port is to be performed and where like the
Request routines, the ISR provides unigque entry points for each port (line 679 for ASY? and
line 685 for ASY2); these entty points first preserve the SI register and then load it with the
address of the port’s structure table With SI indicating where the actions are to be per-
formed, the two entries then merge at line 690 into common code that first preserves all
registers to be used by the ISR (lines 690 through 698) and then tests for each of the four
possible types of service and performs each requested action

Much of the complexity of the ISR is in the decoding of modem-status conditions. Because
the resulting information is not used by this driver (although it could be used to prevent
attempts to transmit while off line), these ISR options can be removed so that only the
Transmit and Receive interrupts are serviced To do this, Alllnz (at line 145) should be
changed from the OR of all four bits to include only the transmit and receive bits (03H,

or 00000011B)

The transmit and receive portions of the ISR incorporate XON/XOFF flow control {for
transmitted data only) by default. This control is done at the ISR level, rather than in the
using program, to minimize the time required to respond to an incoming XCOFF signal,
Presence of the flow-control decisions adds compiexity to what would otherwise be
extremely simple actions.

Flow control is enabled or disabled by setting the OutSpec word in the structure table
with the Driver Status utility (presented later) via the IOCT L function (Interrupt 21H Fune-
tion 44H) When flow control is enabled, any XOTTF character (11H) that is received halts
all outgoing data until XON (13H) is received. No XOFF or XON is retained in the input

Section IT. Programming in the MS-DOS Environment 203

Canon Exhibit 1108

Part B: Programming for MS-DOS
Auticle &: interrupt-Driven Communications

buffer to be sent on to any program, aithough: ali patterns other than XOFF and XON are , . .
passed through by the driver When flow control is disabled, the diiver passes all patterns ; :;tlsg untiil the 8250 finally ShOWSAHO tequests pending The strange Cle jnc §+2
in both directions For binary file transfer, flow control must be disabled ' mfchj?; t(G?Q?ZP;;?;S:?E&E?W ;ﬂ this routine is a time delay required by high-speed
The transmit action is simple: The code merely calls the Start_output procedure at line attemnpted; the delay dogs ;Z h;.:ﬂtl SHSEJZ%,};?S n?;z}iifezeme before another access is
750 Start_output is described in detail below . i Using COMDVR
The receive action is almost as simple as transmit, except for the flow-control testing. First, The first steo in ne) ' o
the ISR takes the received byte from the UART (lines 758 and 739) to avoid any chance of . blet (M ASl\:)p 11\Jn using this dex.rxce driver is assembling it with the Miciosoft Macro Assem-
an overrun error T he ISR then tests the input specifier (at line 760) to determine whether N the EXE file | ext, gl 5¢ the. MICIOS.O& le ect Linker (LINK) to create a EXE file Convert
flow control is in effect. If it is not, processing jumps directly to line 784 to store the ! DEVICE :Ci)lﬁg;g ;ﬁ;y image file with the EXEZBIN wility. Finally, include the line
received byte in the input buffer with Put_in (line 785) | : the systemm is ree e in the CONFIG SYS file so that COMDVR will be installed when
If flow control is active, however, the received byte is compared with the XOFF character Note: The b o
(lines 762 through 765) . If the byte matches, cutput is disabled and the byte is ignored If ; arti l A fnggl er and colon at the beginning of each line in the program listings in this
the byte is not XOFF, it is compared with XON (lines 766 through 768) If it is not XON) icle are for reference only and should not be included in the source file
either, control jumps o line 784. If the byle is XON, output is re-enabled if it was disabled i : Figure 6-2 shows the sequence of actions required, assuming that EDLIN is used fo,

? s

modifying (or creating) the CONFIG SYS file and that all commands are issued from the

Regardless, the XON byte itself is ignored
root directory of the boot drive

When control reaches Stuff_in at line 784, Pur_in is called to store the received byte in
the input buffer If there is no room for it, a lost-databit is set in the input status flags (line

788); otherwise, the receive routine is finished |
8 C>MASM COMDVR; <Enter>
C>IINK COMDVR: <Enter>

Creating the driver;

If the interrupt was a line-status action, the LSR is read (lines 776 through 779) If the input
specifier so directs, the content is converted to an IBM PC extended graphics character by 5 CPEXEZBIN COMDVE.EXE COMDVR SYS <Enters
setting]?it 7 to 1and the character is stored in the input buffer as if it were a r-‘e.ceived' byte Modifying CONFIG.SYS (MZ = press Ctrl-Z);
Otherwise, the Line Status interrupt merely sets the generic BadlInp error bit in the input g : :
status flags, which can be read with the IOCTL Read function of the driver] S;?DLEE SON”G §Y5 <Znter>
. nter>
When all ISR action is complete, lines 794 through 806 restore machine conditions to those 'j_'-: *DEVICE=COMDVR .SYS <Enters
existing at the time of the interrupt and return to the interrupted procedure :EZ <;izt o >
er.
The Start_output routine : Figure 6.2 A o
Start_ouiprt (lines 808 through 824) is a routine that, like the four buffer procedures, is : giire Ons Assemnbling, linking, and installing COMDVR
used by both the Request routines and the ISR Its purpose is to initiate transmission of 2 - Because the devices i
byte, provided that output is not blocked by flow control, the UART Transmit Holding f o conf Eicti cvices }?ftalled by COMDVR do not use the standard MS-DOS device names
Register is empty, and a byte to be transmitted exists in the owput ring buffer This routine v will fcm > With any program that uses conventional port references Such a pro-
uses the Ger_out buffer routine to access the buffer and determine whether a byte is avail- f nd resio lno 311118:6 [h? dziver, and no problems should result if the program is well behaved
able If all conditions are met, the byte is sent to the UART holding register by lines 819 : res all interrupt vectors before returning to MS-DOS
and 820 Device-driver debugging techniques
The In..itia.lization Request {‘outifie . . _ Tll;e' debugging of device drivers, like debugging for any part of MS-DOS itself, is mor
The Initialization Request routine (lines 829 through 897) is critical to successful operation : ditfficult than normal progiram checking because the debuy gging program DEB’U G CO(I)E
. L L . - . .) . TAm,
of the driver This routine is placed last in the package so that it can be discarded as soon : DEBUG EXE, itself uses MS-DOS functions to display cutput When%hese funciions arlt\f ”

Il\)/leéing checked, their use by DEBUG destroys the data being examined And because
-DOS always saves its return address it the same location, any call to a function from

inside the operating system usualt
. Y causes a system lockup that can b '
shutting the system down and powering up again v e curedontyby

as it has served its purpose by installing the driver It is essential to clear each register of
the 8250 by reading its contents before enabling the interrupts and to loop through this

204 The MS-DOS Encyclopedia
Section IL Programm;‘ng in the MS-DOS EnBaoemE&xhibit 23]

Part B; Programming for M5-DGS

One way to overcome this difficulty is 0 purchase costly debugging tools An easier
way is to bypass the problem: Instead of using MS-DOS functions to track program opera-
tion, wiite data directly 10 video RAM, as in the macro DBG (lines 10 through 32 of

COMDVR ASM)

d with a three-character parametes string at each point in the pro-

This macro is invoke
cation has its own unique three-character

gram a progress report is desired. Each invo
string so that the sequence of actions can be read from the screen When invoked, DBG

expands into code that saves all registers and then writes the three-character string fo
video RAM Only the top 10 lines of the screen (800 charactess, o1 1600 bytes) are used:
The macro uses a single far pointer to the area and treats the video RAM like a ting buffer.

The pointer, Dbgptr (line 215), is set up for use with the monochrome adapter and points
1o location BOOO:0000H; to use a CGA or EGA (in CGA mode), the location should be

changed to B800:0000H
Most of the frequently used Request routines, such as Read and Write, have calls to DBG
as their first lines (for example, lines 361 and 422). As shown, these calls are commented
out, but for debugging, the source file should be edited so that all the calls and the macto
itself are enabled. '

display are overwritten with a continual sequence

With DBG active, the top 10 lines of the
-DOS functions are not

of repotts, such as RR T, put directly into video RAM. Because M3
used, no interference with the driver itself can occur

nts normal use of the system during debugging, it greatly
simplifies the problem of knowing what is happening in time-critical areas, such as hard-
ware interrupt service In addition, all invocations of DBG in the critical areas ate in con-
ditional code that is executed only when the driver is working as it should.

e, indicates that the received-data hardware
of go after an Ix report shows that data is not

Although this technique preve:

Failure to display the pi message, for instanc
interrupt is not being serviced, and absence
being sent out as it should

DBG should be deleted or commented
de before release In this case, they

to show placement of the calls

Of course, once debugging is complete, the calls to
out Such calls are usually edited out of the source co
remain to demonstrate the technique and, most particularly,
to provide maximum information with minimal clutter on the screen

A simple modem engine
The second part of this package is the modem engine itself (ENGINE ASM), shown inthe
listing in Figure 6-3. The main loop of this program consists of only a dozen lines of code
(lines 9 through 20). Of these, five (ines 9 through 13) are devoted to establishing initiat
contact between the program and the serial-port driver and two (lines 19 and 20) are for
returning to command level at the program’s end

tually carry out the bulk of the pro-

Thus, only five lines of code (lines 14 through 18) ac
ese lines are calls to subroutines that

gram as far as the main loop is concerned Four of th

200 The MS-DOS Encyclopedia

Article 6: Interrupt-Driven Communications

ﬁf; T;l;ipp;; <ilata from and té) the console and the serial port; the fifth is the TMP that closes
§ . This structure underscor . N
transfer loop underscores the fact that a basic modem engine is simply a data-

1 ITILE engine
2
3 ; CODE SEGMENI PUBLIC 'CODE'
4
2 : ASSUME CS5:CODE,DS:CODE,ES:CODE, S5:CODE
1o ORG 0100h
8 :
9 + SIARI: nmov dx,offset devnm : open named device (ASY1)
10 : mov ax,3d02h
11 int 21h
12 Tov handle, ax + save the handle
13 : je quit
14 ; alltim: call getmdm ; main engine loop
15« call putcrt
i6 : call getkhkd
17 call putmdm
18 : jmg alltim
19 : quit: mov ah, 4ch ¢ come here to guit
20 int 21h
21
22 : getmdm proc - ; get input from modem
23 mov cx, 256
24 mov bx, handle
25 mov dx,offset mbufr
26 mov ax, 3JFQ0h
27 int 21h
28 ja quit
29 : mov mdlen, ax
30 : ret
31 : getmdm endp
32
33 : t
o getkbd proc : get input frem keyboard
o : mov kblen, 0 : first zero the count
H mov atr, 11 ¢ key pressed?
36 1 int 21h
37 = inc al
38 jnz nogk ; no
39 : mov ah,7 ; yes, get it
40 int 21h
41 ?mp al, 3 ; was it Ctrl-C?
42 je quit ¢ yes, get out
43 : mov kbufr,al i no, save it
44 ; ine kblen
45 cmp al,13 . was it Enter?
46 : jne nogk ¢ no
Figure 6-3. ENGINE ASM. V
(more)

Section II: Programming in the M5-DOS Environment 207
Canon Exhibit 1108

T S ——

Part B: Programunting for MS-DOS

208

E
mov byte ptr xpufr+l,10 i veS, add LE
47
48 inc kblen
49 : nogk: ret
50 1 getkbd endp
9 < ; put output to modem
> . putmdm Pro
:3 : moev cx, kblen
54 ¢ © jexz nopn
55 : mov b, handle
56 : mov dx,offset kbufr
57 : mov ax,4000h
58 : int 21h
59 = Jjc quit
6Q : nhopm: ret
g1 : putmdm endp
P oc ; put output to CR1
: putcrt Proc
Zi : mov cx,mdlen
£5 joxz nopc
66 mov bz,
&7 . mov dx,offset mpufr
a8 : mov ah,40h
69 int 210
70 pie quit
71 : nopc: ret
72 : putcrt andp
o TASY1, 0 ; miscellaneous data and buffers
74 ; devnm db .
75 : handle dw o]
76 : kblen dw 0
i 0
77 : mdlen aw
78 : mbufr db 256 dup (0)
79 : kbufr db 80 dup (0}
80
81 : CODE ENDS
a2z : END SIARI

Figuire 6-3 Continued

i;ecause tl]e de a. in d dﬂta conve: ‘§10M A1 haIldlE:d b the dIlVef C e,
()f the fOUX Subroutlnes S o ShO W]ust h()W SlIIlple [I 12 W klOIC pI QCESS 15 _‘ CSSCIlﬂauy ad
ere inter ace to the = e 1i¢ O1 evice Of Tite e o1 EVICS I()uElIle

‘ e (lines 22 through 31 asks MS-DOS to read 4 max-
‘.EOI examp}& ;h(: gi?ﬁ:ﬁh?s?ecxfﬁ\geev(ice and then stores the num.b.er actually reaci ;r; i -
e Y; The diiver refuns immediately, without wailing for data, s¢ b
e nfib e;zs returned js eitherO or 1. 1f screen scroiling causes the loop;1 o aciels
Iclllzi1 ﬂU;n ?;; f:)ouzt might be higher, but it should never exceed abouta dozen chaz
elayed,

' lue in mdlen If
' i hrough 72) checks the val
the putcri procedure (lines 63t 110U : en 1
“ghenlcinizdz’eroegutcrt goes nothing; otherwise, it as.ks MS-DOS w0 wi tn;e; Eﬁ?; ;1
L;;’: flrlom mbu}r (where getmdnt put them) to the display, and then it

The M$-DOS Encyclopedia

Article 6: Interrupt-Driven Communications

Similarly, getkbd gets keystrokes from the keyboard, stores them in kbufr, and posts a
count in kbler; putmdm checks kblen and, if the count is not zero, sends the required
mumber of bytes from kbufr to the serial device

Note that getkbd does not use the Read File or Device function, because that would wait
for a keystroke and the loop must never wait for reception. Instead, it uses the MS-DOS
functions that test keyboard status (0BH) and read a key without echo (07H) In addition,

special treatment is given to the Enter key (lines 45 through 48): A linefeed is inserted in
kbufr immediately behind Enter and kblen is set to 2

A Crl-C keystroke ends program operation; it is detected in gethbd (line 41) and causes
immmediate transfer to the guit label (line 19) at the end of the main loop. Because ENGINE

uses only permanently resident routines, there is no need for any uninstallation before
returning to the MS-DOS command prompt.

ENGINE ASM is written to be used as a COM file Assemble and link it the same as

COMDVR SYS (Figure 6-2) but use the extension COM instead of SYS; no change to
CONFIG SYS is needed

The driver-status utility: CDVUTL.C

The driver-status utility program CDVUTL C, presented in Figure 6-4, permits either of
the two drivers (ASY! and ASY2) 10 be reconfigured after being installed, to suit different
needs After one of the drivers has been specified (port 1 or pott 2), the baud rate, word
iength, parity, and number of stop bits can be changed; each change is made indepen-
dently, with no effect on any of the other characteristics Additionally, flow control can be
switched between two types of hardware handshaking — the software XON/XOFF control

or disabled —and error reporting can be switched between character-oriented and
message-oriented operation

1 ¢ /% cdvutl ¢ - CCMDVR Utility

2 # Jim Kyle - 1287

3 . % for use with COMDVR.5YS Device Driver

4 =/

5

6 : #include <stdic.h> /% ifo definitions */

7 . #include <conio . h> /* special console ifo ¥/

g8 : #¥include <stdlib . h> /% misc definitions */

9 . #include <dos.h> /* defines intdos () ®/
10 @
AR the folleowing define the driver status bits L
12 3
13 : #define HWINI 0x0800 /* MCR, first word, HW Ints gated */
14 . #define o_DIR 0x0200 /% MCR, first word, output DIR #/
15 : #define o_RIS 0x0100 /* MCR, first word, output RIS */
16 :
17 : #define m PG 0x0010 /% ICR, first word, parity ON */
18 : #define m.PE (x=0008 /* ICR, first word, parity EVEN v/

Figyre 6-4 CDVUTI C

(more)

Section IT. Programming in the MS-DOS Environment 209
Canon Exhibit 1108

Part B: Programming for MS-DOS
Article &: Interrupt-Driven Communications

19 : #define m X5 0x0004 /% LCR, fixst word, 2 stop bits */ 1 20 .
20 1 #define m WL 0x0003 /* LCR, Eirst word, wordlen mask */ - 2 .se ,
z1 : 1 lf.(fobf [4] == 1200)
22 . #define 1_CD 0xB000 /* MSR, 2nd word, carrier Detect */ 23 L iebf [4 1 = 2400;
23 : #define 1_RI 0x4000 /% MSR, 2nd word, Ring Indicator */ - 21 e ?e o
54 : #define i_DSR 0x2000 /% MSR, 2nd word, Data Set Ready ¥/ 75]‘f‘(iobf [4] == 2400 }
25 : #define i_CI5 0x1000 /% MSR, 2nd word, Clear to Send */ . 76 R icbf [4 1 = 4600:
: else
26 : 77 i
27 : #define 1.SRE 0x(040 /% LSR, 2nd word, Xmtr SR Empty LY . . iobf [4 1 = 300;
25 : kdefine 1_HRE 0x0020 /% 18R, 2nd word, Xmtx HR Empty */ : 70 ; gocwr O
29 . #define 1.BRK 0x0010 /% ISR, 2nd word, Break Received */ 20 ’ reak;
10 : %#define 1-ERI 0x0008 /% ISR, 2nd word, FrmErY ®/ a1 . o
: se 'e' :
31 : #define 1_ER2 0x0004 /% ISR, 2nd word, ParEry */ 82 . 'ebfe - . /* set parity even %/
32 : #define 1_ER3 0x0002 /% 1SR, 2nd word, OveRun */ : 83 . J"° [0] = { m_PG + m_PE):
43 ; #define L_RREF 0x0007 /% 1SR, ?nd word, Revr DR Full */] 61 . ;‘{CW; 0
34 : g5 reak;
35 @ /% - now define CI8 string for ANSI SYS */ : PO s e
: : se .
16 : pdefine CES "\033[27" ; : : : /% toggle f1
37 : ‘ 87 : $F (dcbf [3] == 1) d ow control +/
: X a8 ; .
48 : FILE * dvp; 8o iobf [3] = 2
‘ . : else
39 : union REGS Ivs:] ag r)
40 : int iobf [5 15 : ; 91 -‘ilobf[31==2;
& ‘ tobf [3] = 4;
41 3 - 92 ;
: ’ else
42 : main () E 93 £ ,
43 : { cputs [*\nCDVUI1 - COMDVE Utility versiem 1 0 - 1987An" Yi] 51 L ‘(iobf { 3] == 4
44 : disp 07 /# do dispatch loop ®/ . 95 . ilobf [3] = 0;
K : else
45 : } ag .
iokf [3] = 1;
46 H 97 . .
: : : ind - icewzr {};
47 ¢ disp () /% dispatcher; infinite loop */ B sg -
: . : break;
48 1 { int <, 39
49 u; ; 100 case 'i' : ;
50 1 z o= 1z b . # initialize MCR/ .
101 b _ ICR to 8N1 : =/
=1 : while (1) _ EE T2 }z £107] = (BWINT + o_DTR + o.RIS + m WL }:
iocs . ;
52 1 { cputs (w\ rin\tCommand (? for help): ")¢ 103 - . CN‘; ()
53 switch (tolower (¢ = gstche 0 /* dispatch */ 104 reaxs
54 { 105 ¢ . 1o
55 : case '1" /% select port 1 */ 106 case t? : /% this help list Wy
* C .
56 felose (dvp)i 07 Ce{;E 5 { CI5); /% clear the display Ny
: e 0 "
57 : dvp = fopen ! ABgY1Y, "rbt")i 108 .+ conter ("1 - r l(COMMAND TISI “n" };
58 3 u = 1; P 4 109 : conter { "2 = z:lizz lp:;)mt: ; I = toggle word LENGIH ');
59 preak; . s N = set pari W
: ' 110 : center { "B = set BAUD rate o = . rJ.',ty o NONE)i
69 111 : center ("E = set pari . set parity te ODD ")5
61 case "2' ¢ /% select port 2 */ S 112 . conter ("F = = _larJ,ty to EVEN R = toggle error REPORIS"™)
62 fclose (dvp)7 - 113 : center ("I = A FLOW control S = toggle SIOP bits "):
63 ¢ gup = fopen (TASY2", "roHT 1) 11 - (INITIALIZE ints, ete Q = QUII .
. : continue: 3
64 - u o= 2 115
65 b;eak; 116 - case ‘1t
66 : 117 : : : /* toggle word length /
&7 : case 'bT o /% set baud rate # / 18 . J_'Obf {01 »=1;
. i : iocwr ():
68 1 if (iobf [4 1 == 300) 119 - break
69 topf [4] = 1200; 190 !

Figure 6-4 Continued

Figure 6-4 Continued
(maore)

210 The MS-DOS Encyclopedia)
Section [I. Programming in the MS-DOS Environment 211

Canon Exhibit 1108

Article é: Interrupt-Driven Communications

Part B: Programming for MS-DOS

172 ¢ report ¢ unit) int unit

121 case 'n' /% set parity off =/
122 icbf [0] &= (m_PG + m.PE }; 173 : { char temp [80 1;
123 : iocwr {): 174+ rvs x . ax = 024402;
124 break; G rvs x . bx = fileno (dvp }:
125 176 rvs % cx = 10;
126 case ‘o') /* set parity odd %/ 177 TS ¥ . dx = (int) iobf:;
127 iobf [© = m_PG; 178 3 intdos (& rvs, & rvs); /% use IOCII Read to get d ®
128 1 iobf [0] &= m_PE; 179+ sprintf (temp, "\nDevice ASY%d\tid BFS, %d—c—%c\r\n\nEI e
120 iocwr () 180 anit, icbf [£ 1, /+ baud rate ! Wy
130 : break; ::; 5+ (dobf [01 & mWL), /% word length a/
131 ' { iobf [0 1 & mMPG ?

132 1 case 'r' : /% toggle error reports */ 183 {iobf [0] & mPE 2 "E' : '0") : 'N'}

133 iobf [21 *= 1; 184 {iobf [0] &mXs 2 2" &+ *1!):-)* sto ,b't

131 : socwr (F 185 : cputs { temp); i P bits */
135 : break; 186

136 187 cputs ("Hardware Interrupts are");

137 : case 's' : /¢ toggle stop bits &/ 188 1 cputs (onoff (dobf [0] & HWINT });

138 iobf [0] "= m.X5; 183 : cputs (", Data lerminal Ray"):

139 socwr () 190 i cputs (onoff { iobf [0] & o_DIR));

140 : break: 181 ¢ cputs (", Rgst Io Send”); '

121 192 cputs { onoff (icbf [0 1 & o RIS }};

142 : case 'q' : 193 1 gputs (".Ar\n" };

143 ¢ fciose (dvp)7 194

144 : exit (0)7 /* break the loop, get out */ LEERE cputs ("Carrier Detect" }:

145 } 196 : cputs (onoff (iobf [1] & 1_CD });

146 : cputs { CLS }; /% clear the display &/ 187 ¢ ecputs { ", Data Set Rdy"):

147 center ("CURRENI COMDVE SIAIUS")7 198 © cputs (onoff (iobf [1] & i_DSR });

148 : report { u, dvp }i /* report current status */ 199 cputs { ", Clear to Send”) '

149] 200 1 cputs (onoff (iobf [11 & i CIS));

150 2) 201 1 cputs (", Ring Indicator™ }:

151 202 : cputs { onoff { iobf [1] & i_RI });

152 : center (s } char % s; /% centers a string on CRI ¥/ 203 : cputs (™. \r\a"); !

153 ¢ L int & ; 204

154 : for { i = 80 - strlem (s)i i > D: io-= 2) 205 : cputs { 2.8RE & icbf { 1] ? "Xmtr SR Empty, " : "V);

155 . cputeh (7'); 206 cputs (L_HRE & iobf [1] ? "Xmtr HR Empty’ W oam)’,

156 cputs (8); 207 = cputs (1.BRK & iobf [1] ? "Break Receivecfi ".- wa ;

157 + cputs ("Ar\a"); 208+ cputs { 1ER1 & io0df [1] ? "Framing ErrOr,"‘)-,

158 : } 209 = cputs (1_ERZ & iobf [1] ? "Parity Error, " : "),-’

159 - 210 cputs (1_ER2 & icbf [1] ? "Overrun Error, " : "" }:

160 : iocwr () /% TQCIL Write to COMDVR #/ 211+ cputs { 1_RRF & icbf [1] ? "Revr DR Full IR),'

161 : { rvs x . ax = 0x4403; 212 = cputs ("\b\b Arin®) ' - '

162 rvs X bx = fileno (dvp); 213

163 : rvs x . cx = 10; 214 cputs ("Reception errors " j;

164 : rvs . x . dx = (Int) iobf: 215 ¢ Af {debf [2] == 1}

165 3 intdos (& rvs, & VS); 218 = cputs ("are encoded as graphics in buffer" };

166 :) 2175 else -

167 - 218 cputs { "set failure flag" };

168 : char * cnoff (x) int x 219 2 cputs (" Ar\n")i

169 : { return (x ? " ON" : T OFE" ¢ 220

170 @ } i 221 cputs ("Outgoing Flow Contrel ")

11 s 222 . if (dobf [3] & 4)

Figure 6-4 Continued ' e
more)

Figure 64 Continued (more)

Section II. Programming in the M5-DOS Environment 213

212 The MS-DOS Encyclopedia
Canon Exhibit 1108

Part B: Programming for M3-DOS

214

223 : cputs { "by XON and XOFE");
224 = else

225 : if (iobf [3] & 2)

226 : cputs ("by RIS and CIS" }:
227 1 else

228 : if {(iobf [3] & 1)

229 cputs { "by DIR and DSR" };
230 else

231 : cputs { "disabled" }:

232 = cpats { " Arwn")i

233 : }

234 :

235 : /#*end of cdvutl ¢ */

Figure 6-4 Continued

Although CDVUT1 appears complicated, most of the complexity is concentrated in the
routines that map driver bit settings into on-screen display text Each such mapping

requires several lines of source code to generate only a few words of the display report.
Table 6-10 summarizes the functions found in this program

Table 6-10. CDVUTIL Program Functions.

Lines " Name Description
4245 mainf) Conventional entry point
47-150 disp() Main dispatching loop.
152-158 center() Centerstexton CRT
160166 iocwr() Writes control string to driver with [OCTT Write
168-170 onofff) Retumns pointer to ON or OFF
172-233 report() Reads driver status and reports it on display

The long list of #define operations at the start of the listing (lines 11 through 33) hglps .
make the bitmapping comprehensible by assigning a symbolic name to each significant bit
in the four UART registers,

The main() procedure of CDVUTL displays a banner line and then calls the dispatcher
routine, disp(), to start operation. CDVUT1 makes no use of either command-line parame-
ters o1 the environment, so the usual argument declarations are omitted

Upon entty to disp(), the first action is to establish the default dsiver as ASY7 by setting
= 1 and opening ASYZ (line 50); the program then enters an apparent infinite loop
(lines 51 through 149)

With each repetition, the loop first prompts for a command (line 52) and then gets the
next keystroke and uses it to control 2 huge switch() statement (lines 53 through 145).-11‘
no case matches the key pressed, the switch() statement does nothing; the program sim-
ply displays a report of all current conditions at the selected driver (lines 146 through 148)
and then closes the loop back to issue a new prompt and get another keystroke

The MS-DOS Encyclopedia

Article 6: Interrupt-Driven Communications

However, if the key pressed matches one of the cases in the swntch() statement, the corre-
sponding command is executed The digits 7 (line 53) and 2 (line 61) select the driver to
be affected The ? key (line 105) causes the list of valid command keys to be displayed
The g key (line 142} causes the program to terminate by cailing exi#(0) and is the only
exit from the infinite loop. The other valid keys all change one or more bits in the IOCTI
control string to modify corresponding attributes of the driver and then send the string to
the driver by using the MS-DOS IOCT1 Wiite function (Interrupt 21H Function 44H Sub-
function 03H) via function iocewr() (lines 160 through 166)

Afterthe command is executed (except for the ¢ command, which terminates operation
of CDVUTL and returns to MS-DOS command level, and the 7 command, which displays
the command list), the report() function (lines 172 through 233) is called (at line 148) o
display all of the driver’s attributes, including those just changed This function issues an
IOCTI Read command (Interrupt 21H Function 44H Subfunction 02H, in lines 174 through
178) to get new status information into the control string and then uses a sequence of bit
filtering (lines 179 through 232) to translate the obtained status information into words for
display

The special console 1/0 routines provided in Microsoft C libraries have been used exten-
sively in this routine Other compilers may require changes in the names of such library
routines as getch or dosint as well as in the names of #inciude files (Jines 6 through 9).

Each of the actual command sequences changes only a few bits in one of the 10 bytes of
the command string and then writes the string to the driver A full-featured communica-
tions program might make several changes at one time — for example, switching from

- 7-bit, even parity, XON/XOFF flow control to 8-bit, no parity, without fiow control to pre-

vent losing any bytes with values of 11H or 13H while performing a binary file transfer with
error-cotrecting protocol Insuch a case, the program could make all required changes to
the control stiing before issuing a single IOCTL Write to put them into effect

The Traditional Approach

Because the necessary device driver has never been a part of MS-DOS, most communica-
tions programs are written to provide and install their own port driver code and remove it
before returning to MS-DOS. The second sample program package in this article illustrates
this approach Although the major part of the package is written in Microsoft C, three
assembly-language modules are required to provide the hardware interrupt service rou-
tines, the exception handler, and faster video display They are discussed first

The hardware ISR module

T he first module is a handler 1o service UART interrupts Code for this handler, including
routines to install it at entry and remove it on exit, appears in CH1 ASM, shown in Figure
6-5

Section II. Programming in the MS-DOS Environment 215

Canon Exhibit 1108

Part B: Programming for M5-DOS

216

LI o T B - PU R N B

[s]

10
11

12
13
14
15
16
17
18
19
20
21

22
23
24
25
26
27
28
29
30
31

32
33
34
35
36
37
38
39
40
41

42
43
44
45
46
47
48
49
50
51

r

_IEXI
_IEXI
_DAIA
_DATIA
CONSI
CONSI
_BSE

_BSs

DGROUP

_IEXI

bport
getiv
putiv
imrmsk
olv_o
oiv_s

b pp
b g
bE_byg
bf_£i
in hf
b_last

bd _dv

ITILE

CH1 ASM

CH1i .ASM -- support file for CIERM C terminal emulator

set up to work with COMZ
for use with Micresoft C and SMALL model only.

segment
ends
segment
ends
segment
ends
segment
ends

GROUP
assume

segment

public

EQU
EQU
EQU
EQU
DW
Dw

DW
oW
oW
bw

DB

EQU

DW
DW
DW
DA
DW
DW
oW
g

_set_mdm proc

PUSH
MOV
PUSH

Figure 6-5 CHI ASM

The MS-DOS Encyclopedia

byte public
byte public
byte public

byte public

CONSI, _BSS,

'CODE"

'DAIA'

'CONST!

'BsS!

—DAIA

cg:_1EXI, DS8:DGRCUP, ES:DGRCUP, 35:DGROUP

i m, rdmdm, Send Byte, wrtmdm,_ set_mdm,_u m

02F8h
350Bh
250Bh
06001000k
0

0

in.bf
in.bf
in_bf
b_last

512 DIP (2}

0417n
0300h
0180h
00C0h
0060h
0430h
00igh
000ChH

near
8P
3p, 5P
ES

COM2 base address, use (3F8H for COMI
¢ COMZ wvectors, use 0CH for COM?T

COMZ mask, use 00000100b for COMI

; old int vector save space

; put pointer (last used)

; get polnter (next to use)
i start of buffer

i end of buifer

¢ input buffer

i address just past buffer end

baud rate divisors ({=110 bps)

codes 1 = 150 bps
; code 2 = 300 bps
i code 3 = 600 bps
i code 4 = 1200 bps

code I = 2400 bps
; caode © = 4800 bps
; code 1 = 9600 bps

i replaces BICS 'init’® function

; establish stackframe pointer
; save regilsters

(more}

Article é: Interrupt-Driven Communications

52
53
54
55
56
57
58
59
60
61
62
63
64
63
66
67
68
69
70
7
72
73
74
75
16
77
78
79
80
81
82
a3
84
85
86
87
88
89
50
g1
92
93
94
95
96
97
%8
9%
100
101
102

! _Send_Byte:

PUSH
MOV
MOV
MoV
MOV
MOV
MOV
oul
MOV
MOV
ROL
AND
MOV
ADD
MOV
MOV
OUT
MOV
MOV
OuT
MOV
AND
MOV
jaleks
MOV
MOV
oUl
POP
POP
MOV
POP
REI
—set_mdm endp

—wrtmdm proc

PUSH
MOV
PUSH
PUSH
MOV
MOV
MOV
MOV
MOV
QUi
MOV
MOV
CALL
JNZ
MOV

Figure 6-5 Continued

D3
AX,CS

DS, A%
ES,AX

AH, [BP+4]
DX, BPORI+3
AL, 80h

DX, AL

DL, AH

CL, 4

DI,CL

DX, 00001110b

DI,QFEFSELI bd dv

DI, DX
DX, BPORI+1
AL, [DI+1}
DX, AL

DX, BPORI
al, [DI]
DX, AL

AL, AH

AL, 00011111b
DX, BPORI+3
DX, AL

D3, BPORI+2
AL, 1

DX, AL

ns

ES

SP, BP

BP

neax

BP

BP, 8P

ES

D8

AX,CS

DS, AX

ES, AX

DX, BPORI+4
AL, 0Bh

DX, AL

DX, BPORI+6
BH, 30h
w_.tmr
w_out

DX, BPORI+5

H

point them to CODE segment

get parameter passed by C
point to iine Control Reg
set DIAB bit {see text)

sihiift param to BAUD field

mask ocut all other bits

make pointer to true divisor
set to high byte first

put high byte into UARI

then to low byte

now use rest of parameter
to set Line Control Reg

Interrupt Enable Register
Receive type only

restore saved registers

write char to modem
name used by malin program

set up pointer and save regs

establish DIR, RIS, and OUI2
check for on line, CIS

timed out
check for UARI ready

{more)

Section II. Programming in the MS-DOS Environmeni 217

Canon Exhibit 1108

Article 6: Interrupt-Driven Communications

Part B: Programming for MS-DOS

154 : w_tm3: REI

103 MOV BH, 20h

104 CALL W_tmr 155 : w_tmr endp

165 JNZ w_out ; timed out 156

106 MOV DX, BPORT ; send out to UARI port 157 : ; hardware interrupt service routine

107 @ MOV AL, [BP+4) ; get char passed from C 158 : rts_.m: CLI

108 : oUL DY, AT 158 @ PUSH DS i save all regs

109 : w_out: POP DS : restore saved regs 160 : PUSH AX

1o POP ES 161 : PUSH BX

111 MOV SP, BP 162 : PUSH CX

112 POP BP . : 163 = PUSH DX

113 RET : 164 pPuUsSH [03:1 ¢ set DS same as CS

114 : _wrtmdm endp ' 165 POP DS

115 . 166 : MOV DX, BPORT ; grab the char from UARI

116 : _rdmdm proc near ; reads byte from buffer 167 IN AL,DX

117 PUSH BP 168 : MOV BX,bf_pp ; use "put" ptr

118 : MoV BE, SP : set up ptr, save regs : 169 : INC BX ; step to next slot

119 : PUSH ES ‘ 170 : CMP BX,bf_fi : past and yet?

120 : PUSH DS | 171 JNZ nefix ; no

121 : MOV AX,CS | 172 : MOV BX, bf_bg . yes, set to begin

122 MOV DS, AX - 173 @ nofix: MOV [BX],AL ¢ put char in buffer

123 = MOV ES, AX 174 MOV bf_pp, BX : update "put" ptr

124 MOV AX,0FFFFh ; set for EOF flag 175 MOV AL, 20h ; send EOI to 8259 chip

125 : MOV 8%, bf_gp ; use "get" ptr 176 ouI 20h, AL

126 ¢ CMP BX,bf pp ; compare to "put” 177 POP DX ; restore regs

127 JZ nochr ¢ same, empty 178 : POP CX

128 INC BX ; else char avallable 179 : POP BX

129 : CMP BX,bf_£1i : at end of bfr? 180 : POP AX

130 : JNZ noend ; no 181 PCE DS

131 : MOV BX,bf_bg ; yes, set to beg 182 IRET

132 : noend: MOV AL, [BX] ; get the char 183 :

133 MOV bf_gp,BX ; update "get" ptr 184 1 _im proc near ; install modem service

134 : INC AH ; zero AR as flag 185 : PUSH BP

135 : nochr: POP DS i restore regs 186 : MOV BP, SP ; save all regs used

136 @ POP ES 187 PUSH ES

137 ¢ MOV SE, BP ‘ 188 PUSH DS

138 : gop BP i 189 MoV AX,CS ; set DS,ES=C3

139 REI : 190 MOV DS, AX

140 : _rdmdm endp 19% @ MOV ES,AX

141 : 192 MOV 0¥, BPORI+1 ; Interrupt Enable Reg

142 1 w_tmr proc near . 193 : MOV AL, OFh ; enable all ints now

143 MOV BIL,1 ; wait timer, double loop 194 : oUr DX, Al

144 @ w_tmi: SUB C¥,CX ; set up inner loop 185

145 : w_tm2: IN Al,DX ; check for requested response 196 @ iml: MOV DX, BPORI+2 + clear junk from UARI

146 MOV AH, AT ; save what came in 197 CIN AL, DX : read ITD reg of UARI

147 AND AL, BH ; mask with desired bits 198 : MoV AH,AL ; save what came in

148 : CMP AL, BH i then compare) 199 IESI AL, 1 ; anything pending?

149 : J7 w_tm3 ¢ got it, return with ZF set 200 - JNZ im5 ; no, all clear now

15Q : I100P W_tm2 ¢ else keep trving 201 CMP AH,D + ves, Modem Status?

151 : DEC BI : until double loop expires 202 JNZ im2 i ono

152 : TN w_tm1 203 : MOV DX, BPORI+6 ; ves, read MSR to clear

153 : OR BH, BH ; timed out, return NZ 204 : N AL, DX

Figure 6-5. Continued (more) Figure 6-5 Continued (more)
218 The MS-DOS Encyclopedia Section II. Programming in: the MS-DOS Environment 219

Canon Exhibit 1108

Part B: Programming for MS-DOS

205 @ im2: CMP
206 : JNZ
207 @ im3: CMP
208 JHZ
209 MOV
250 N
211 @ imd: CMP
212 JNZ
213 - MOV
214 = IN
215 : JMP
216

217 1 imb: MOV
218 : MOV
219 : oloks
220 MOV
221 MOV
222 ou1
223 MOV
224 : INT
225 1 MOV
226 @ MOV
227 = MOV
228 : MOV
229 INI
230 In
231 =« AND
232 oul
233 Juilo ity
234 : oul
235 : PQP
236 POP
237 MOV
238 POP
239 REI
240 ; _i_m endp
241

242 i _um Proc
243 : PUSH
244 ¢ MOV
245 IN
2446 OR
247 oUT
248 FUSH
249 :) PUSH
250 MOV
251 MOV
252 = MOV
253 : MOV
254 : MOV
255 QU1

Figure 6-5 Continued

220 The MS-DOS Encyclopedia’

AH, 2

im3

AH, 4

imd

DX, BPCRI
AL,DX
AH, 6

im?

DX, BPORI+3
Al ,DX
im1

DX, BPORI+4
AL, OBh

DX, AL

Al
D¥,BPORI+1
DX, AL
AX,GEIIV
21h
oiv_o,BX
oiv_s,ES

D¥,QFF3SEI rts_m ;

AX,PUIIV
21h

Al,21h

AI,NOT IMRMSK
21h, AL

AI,20h

20k, AL

DS

ES

SP, BP

BE

near

BP

BB, SP

a1, 21h
AL, IMRMSK
21h,AL

ES

DS

AX,CS

DS, AX
ES5,AX
AL, D

DX, BPORT+1
DX, AL

Iransmit HR empty?
ne (no acticn needed)

; Received Data Ready?

no

; yes, read it to clear
; Line Status?
; no, check for more

; yes, read ISR to clear

: then chec¢k for more

set up working conditions

: DIR, RIS, OUIZ bits

: enable RCV interrupt only

get old int vector
save for restoring later

set in new one

now enable 8258 PIC

then send out an EOI

restore regs

uninstall modem service

save reglsters

: disable COM int in 8259

set same as CS3

; disable UARI ints

(more)

Article é: Interrupt-Driven Communications

256

257

258 :

259 :

260

261

262

263

264

265 : _u_m
266

267 : _IE¥I
268 :

2569

MOV BX, 0iv_o
MOV DS,0iv_s
MOV AX,PUITV
INI 21h
FOP DS
POP ES
MOV 3P,BP
-. POP BP
REI
endp
ends
END

Figure 6-5 Continued

; restore original vector

restore registers

The routines in CHi are set up to work only with port COMZ; to use them with COMI, the
three symbolic constants BPORT (base address), GETIV, and PUTIV must be changed to
match the COM1 values Also, as presented, this code is for use with the Microsoft C small
memory model only; for use with other memory models, the C compiler manuals should
be consulted for making the necessary changes See also PROGRAMMING IN THE
MS-DOS ENVIRONMENT: PROGRAMMING FOR Ms-DOs: Structure of an Application Program

The parts of CH1 are listed in Table 6-11, as they occur in the listing The leading under-
score that is part of the name for each of the six functions is supplied by the C compiler;
within the C program that calls the function, the underscore is omitted

Table 6-11. CHI Module Functions.

Lines Name Description
1-26 Administrative details
27-46 Data areas
48-84 _set_mdm Initializes UART as specified by parameter passed
fromC
86-114 —wrimdm Outputs character to UART
87 _Send.. Byte Entry point for use if flow control is added to system
116~140 _rdmdm Gets character from buffer where ISR put it, or signals
that no character avajlable '
142155 w_tmr Wait timer; internal routine used to prevent infinite
wait in case of problems
157-182 ris_m Hardware ISR; installed by _i_m and removed by
_u_m
184-240 _i_m Installs ISR, saving old interrupt vector
242-265 —U_m Uninstalls ISR, restoring saved interrupt vector

Section I Programming in the MS-DOS Environment 221
Canon Exhibit 1108

Part B: Programming for MS-DOS

222

For simplest operation, the ISR used in this example (unlike the device driver) services
only the received-data interrupt; the other three types of IRQ are disabled at the UART.
Each time a byte is received by the UART, the ISR puts it into the buffer The _rdmdm
code, when called by the C program, gets a byte from the buffer if one is available If not,
_rdmdm returns the C EOF code (-1) to indicate that no byte can be obtained

To send a byte, the C program can call either _ Send__Byte or _writmdm,; in the package

as shown, these are alternative names for the same routine In the more complex program
from which this package was adapted, _ Serd__Byte is called when flow control is desired
and the flow-control routine calls _wremdm To implement flow control, line 87 should be
deleted from CH1 ASM and a control function named Serd_Byte() should be added to the
main C program Flow-control tests must occur in Send_Byte(); _wrtmdm performs the
actual port interfacing.

To set the modem baud rate, word length, and parity, _set..mdm is called from the C
program, with a setup parameter passed as an argument. The format of this parameter is
shown in Table 6-12 and is identical to the [BM BIOS Interrupt 14H Function 00H

(Initialization)

Table 6-12. set_mdm() Parameter Coding.

i
H
t

Binary Meaning
(00X Setto 110 bps
001xcox Set to 150 bps
010xxxxx Set to 300 bps
01 ixxxx Set to 600 bps
1000 Set to 1200 bps
1013000 Set to 2400 bps
110n0xxxx Set to 4800 bps
111xxxxx Set to 9600 bps
oo Oxxx No parity
ox01xxx ODD Patity
xax1lxxx EVEN Parity
xxxxx0Xx 1 stop bit

bisioin v dhey 2 stop bits (1.5 WL =3)
xxxxxx00 Word length = 5
xexxxx01 Word length = 6
XXXXXX 10 Word length = 7
xxxxxxl1l Word length = 8

The CH1 code provides a 512-byte ring buffer for incoming data; the buffer size should be
adequate for reception at speeds up to 2400 bps without loss of data during scrolling

The MS-DOS Encyclopedia

Article 6: Interrupt-Driven Communications

The exception-handler module

For the ISR handler of CH1 to be usable, an exception handler is needed to prevent retuin
of control to MS-DOS before _u_m restores the ISR vector to its original value . If a pro-
gram using this code returns to MS-DOS without calling 2, the system is virtually cer-
tain to crash when line noise causes a received-data interrupt and the ISR code is no longer
in memory

A replacement exception handler (CHIA ASM), including routines for installation, access,
and removal, is shown in Figure 6-6. Like the ISR, this moduie is designed to work with
Microsoft C (again, the small memory model only)

Note: This module does not provide for fatal disk errors; if one occurs, immediate restart-
ing is necessary. See PROGRAMMING IN THE MS-DOS ENVIRONMENT: CuSTOMIZING
Ms-Dos: Exception Handless.

III1E CHTA ASM

; 1o
: 2
: 3 : ; CHIA.ASM —— support file for CIERM C terminal emulator
i 41 this set of routines replaces Ctrl-C/Ctri-BREAK
! 5 ; usage: void set_int{), rst_int();
i 6 ; int broke{); /* boolean if BREARK =/
E T for use with Microsoft C and SMAIL model only.
: 8 :
f 9 : _IEXI segment byte public 'CODE’
i 1¢ : _IEXI ends
i 11 : _DAIA segment byte public 'DAIA®
‘ t2 : _DAIA ends
1 13 ¢ CcoNsI segment byte public 'CONSIT
14 ¢ CONSI ends
I 15 + _BSS segment byte public 'BSS'
16 : _BSS ands
! 17
18 : DGCROUP GRODP CONSI, _BSS3, _DAIA
19 ASSUME (CS5:_IEXI, DS:DGROUP, ES:DGROUP, S55:BGRCUP
20
21 1 _DAIA SEGMENI BYIE PUBLIC 'DAIA’
22
23 : OIDINITB DD Q ; storage for original INI TBH vector
24 :
25 : _DAIA ENDS
26 :
27+ _IEXI SEGMENI
28
29 PUBLIC _set_int,_rst_int,_broke
30
31 : myintib:
3z mov word ptr cs:brkflg, 18h : make 1t nonzero
33 : irex
Figure 6-6 CHIA ASM (more)

Section II: Programming in the MS-DOS Environment 223

Canon Exhibit 1108

Part B: Programming for MS-DOS Article 6: Interrupt-Driven Communications

EL original value for the Interrupt 1BH vector; and _ broke, which returns the present value of
jz P omyint23: an internal flag (and always clears the flag, just in case it had been set). The internal flag is
: d pt tbrkflg, 23h H ke it nzZero . . s . .
. oo reme pE eReeas ke st one set to a nonzero value in response to either of the revectored interrupts and is tested from
38 _ _ the main C program via the _ broke function.
39 : prkflig dw jl ; flag that BREAK occurred * =
o . The video display module
:; ¢ —broke proc near i returns 0 if no break The final assembly-language module (CH2 ASM) used by the second package is shown
: ; re to reset fl . r - . - . i - .
43 = iZ;g ZX Zz brkflg i;:iin curr :nt £l agaga lue in Figure 6-7 T'his module provides convenient screen clearing and cursor positioning via
- X : v . - L] N - . . -
14 : ret ' _ direct calls to the IBM BIOS, but this can be eliminated with minor rewriting of the rou-
45 : broke endp tines that ¢call its functions In the original, more compiex program (DT115 EXE, available
46 ¢ ; from DL6 in the CLMFORUM of CompuServe) from which CTERM was derived, this mod-
47 : _set_int proc near : ule provided windowing capability in addition to improved display speed
48 mov ax, 351bh ; get interrupt vector for 1BH :]
49 int 21h ; {den't need to save for 23H) 1 = T1IILE CH? ASM
50 : mov word ptr oldintib,bx ; save offset in first word 2
51 mov word ptr oldintlb+2,es & save segment in second word 3 :; CH2 ASM -- support fils for CIERM.C terminal emulator
> ! 4 H for use with Microscoft C and SMALL model only
53 push ds ; save ocur data segment ; 5
54 : mov ax,cs ; set DS to CS for now I 6 : _1EXI segment byte public 'CODE'
55 : mov ds, ax : 7 IBXI ends
56 : lea dx,myint1b ; D8:DX points to new routine i 8 : _DAIA segment byte public 'DAIA®
57 : mov ax, 251bh : set interrupt vector | 9 : pAIA ends
58 : int 21h 10 : CONSI segment byte public 'CONSI®
59 : mov ax,cs ; set DS to C5 for now ! 11 : coNSI ends
60 : mov ds,ax 12 : _BsS segment byte public 'BSS’
61 : lea dx, myint23 ; DS:DX points to new routine 13 : _mss ends
62 nov ax,2523h ; set interrupt vector . 14 :
63 : int 21n 15 : pGROUP GROUP CONSL, _BSS, _DATA
64 : pop ds ; restore data segment 16 assume ©8:_IEXI, DS:DGROUP, ES:DGROUP, SS:DGROUP
65 : ret] 17
66 : _set..int endp ! 18 @ _TEXI segment
87 : - ; 19
68 : _rst int proc near i 20 public ._.cls,_ color,__deol, _i v, __key, .wrchr,._wrpos
69 push ds : save our data segment ! 21
70 lds dx,oldint1b ; DS:DX points to original : 22 atrib DB 0 . attribute
o mov ax, 251bh ; set interrupt vector 23 : _colr DB g ; color
12 int 21h 24 i vy_bas DW o ; video segment
73 s pop ds ; restore data segment 25 : v ulc DW o ; upper left corner cursor
4 ret 26 : y_lre DW 184Fh : lower right corner Cursox
75 1 _rst_int endp : 27 1 y_col DW 0 ; current col/row
76 : i 28
7 1 _IEXI ends 29 ¢ __key proc near ; get keystroke
18 ; 30 : PUSH BE
79 END | 31 MOV AH, T : check status via BIOS
1 32 i
Figure 6-G Continued 3 ;g; ;JG{hOFEth
‘ . . . ‘ . 34 Jz key00 ; none ready, return EOF
The three functions in CHIA are _sef__int, which saves the old vector value for Interrupt 35 : MOV Al 0 : have ones, read via BIOS
1BH (ROM BIOS Control-Break) and then resets both that vector and the one for Interzupt .)
Figure 6-7 CH2 ASM (more)

23H (Control-C Handler Address) to internal ISR code; _rst_int, which restores the

Section II Programming in the M5-DOS Environment 225

224 The MS-DOS Encyclopedia
Canon Exhibit 1108

Article &: Interrupt-Driven Communications

Part B: Prograraming for MS-DOS

36 : INI 16h 87 : prchr: MOV AH, colr : process printing char
37 : key00: POP BP 88 PUSH AX
38 REI &9 XOR AH, AH
39 : _key endp 90 = MOV AL,byte ptr v_col+]
40 : 91 PUSH AX
41 : __wrchr proc near . 92 : MoV AL,byte ptr v_col
42 PUSH BP 23 PUSH AX
43 : MOV BP, SP 24 CAIL wrtvr
44 MOV AL, [BP+4)] : get char passed by C 95 : MOV SP,BP
45 - oM AL, 96 : nxt_c: INC BYIE PIR v_col ; advance to next column
46 : JNB prchr ; printing char, go do it 37 ¢ MOV AL, byte ptr v.col
47 : cMP AL, 8 g8 cMp AL,byte ptr v_lrc
48 : JNZ notbs s JIE norml
49 : DEC BYIE PIR v_col ; process backspace 100 MOV AL,0Dh - : went off end, do CR/LE
50 = MOV AL,byte ptr v_col 101 PUSH AX
51 cMP AL, byte ptr v_ule . 102 CALL _.wrchr
S2 JB nxt_c ; step to next column : 103 : POP AX
53 : JMp norml 104 : MOV Al,QAh
54 : 105 : PUSH AX
55 : notbs:; CMP AL, 9 ; 106 : CALI __wrchr
56 : Jmz notht ‘ 107 POP AX
37 s MOV AL,byte ptr v_col ; process HIAB i 108 : normi: CAII set_cur
58 : ADD AL, 8 ’ 109 : ignor: MOV sp, BP
59 : AND AL, 0F8h 110 POP BP
60 MOV byte ptr v.col,AL 111 REI
61 : CMP AL,byte ptr v_lrc : 112 ¢ _wrchr endp
62 3B nxt_c : 113
63 : P SHORI norml 114 : _.i_v proc near ; establish video base segment
64 115 : PUSH BP
65 : notht: CMP AL, 0Ah 116 : MOV BE, 5P
66 - JINZ notlf 117 @ MOV AX,OB0OOOA ; mono, BB0O0 for CGA
67 : MOV Al,byte ptr v_col+! : process linefeed 118 MOV v_bas,AX ; could be made automatic
68 INC AL 119 = MOV 5P, BF
69 : ©ocMP AL,byte ptr v_lrcti 120 : POP BP
0 JBE noht? 121 REI
Mo CALl scrol 122 ¢+ _i v endp
12 MOV Al ,byte ptr v_lrc+t] 123
73 : nohtl: MOV byte ptr v_col+tl,AL ; 124 : __wrpos proc near i set cursor position
74 : JMP SHORI norml] 125 ¢ PUSH BP
75 : 126 MOV BP, SP
76 : notlf; CMP Al,OCh i 127 MOV DH, [BE+4] : row from C program
77 JNZ ck_cr i 128 : MOV D1, [BP+6] ; col from C program
78 CALL _.cls : process formfeed : 129 MOV v_col,DX : cursor position
79 JMp SHORI ignor 130 MOV BH, atzrib . attribute
80 : 131 : MOV AH, 2
81 : ck_cr: CMP AL, ODh i 132 : PUSH BP
82 : Jnz ignox ; ignore all other CIL chars f 133 : INT 10h
83 : MoV AL,pyte ptr v_ulc : process CR : 134 POP Bp
84 : MOV byte ptr v_col,AL 135 MoV AX,v_col ; return cursor positioen
85 JMP SHORI norml 136 : MOV SP,BP
86 : 137 ¢ POP BP
(more) Figure 6-7 Continued’ (more)

Figure G-7 Continued

226 The MS-DOS Encyclopedia Section Il Programming in the MS-DOS Environment 227
Canon Exhibit 1108

Part B: Programming for M3-DOS Article §: Intetrupt-Driven Communications

|

138 RET 189 PUSH BP

139 ¢ __wrpos endp 190 MOV BP, 5P

140 :] 189 : MoV AL, O ; flags CIS5 to BIOS

141 1 set_cur proc near ; set cursor to v_col) 192 MOV Cx,v_ulc

142 : PUSH BP 193 MoV v_col, CX i set to HOME iW
143 : MOV BP, SP 194 : MOV DX,v_lrc [
144 MOV D¥,v.col ; use where v_col says 195 : MoV BH, _colr

145 : MOV BH,atrip ' 196 : MOV BH, 6

146 : MoV AH,2 197 : PUSH BP

147 PUSH BP 198 : NI 10h ; use BIOS scroll up

148 : INI 10k . 199 : POP BE

149 : POP BP 200 - CATT set_cur i curscr to HOME

150 : MOV A, v_col 201 : MOV 5P, BP

151 MOV SP, BP : 202 : POP BP

152 ooP BE : 203 : REI :
153 REI 204 : —cls endp -
154 : set_cur endp 205 :

155 : : 206 : —deol proc near ; delete to end of line

156 : __color proc near i —colorifyg, byl _ ' 207 PUSH BP

157 : PUSH BP 208 : MOV 8P, 5P

158 : MOV BP, 5P : 209 - MOV AL, !

159 : MOV AH, [BP+6] ¢ background from C 210 : MOy AK,_colr i set up blanks

160 MOV AL, [RP+4] ¢ foreground from C 211 PUSH AX

161 = MOV C¥, 4 . : 212 MOV Al ,byte ptr v_col+i

162 ; SHL BH,CI | 213 : XOR AN, AH : set up row value
163 AND AL, OFh ! 214 - PUSH AX

164 OR AL,AH ; pack up into 1 byte i 215 - MOV AL,byte ptr v.col

165 : MOV _colr, Al ¢ store for handler's use ! 215 - i
166 : XOR AH, RH 217 : decll: CMP Al,byte ptr v_lrc ;
167 @ MOV &P, BP 218 - Th deoli? : at RE edge

168 : BOP BP) 214 - PUSH AX ; current location

169 REI 290 CAII WItvr » write & blank

170+ __color endp ' 291 - POP AX

171 232 . INC Az ; next column

172 : scrol proC near » scroll CRI up by one line . 253 & JME dacll i do it again

173 : PUSH BF 294 1

17¢ MOV BF, SF . 225 1 deol2: MOV ¥, v_col : return cursocr position

175 MOV AL, 1 ; count of lines to scroll : 295 . MOV SP,BP

176 MOV CX,v_ulc ‘ 297 - POE BP

177 MOV DX, v_lrc ; 228 s RET

178 MOV BH, _colr : 2209 . ..—deol endp

175 : MOV AH, 6 230 :

180 : PUSH BP 231 ; wrtvr proc near ; write video RAM {(ceol, row, char/atr)

181 : INI 10h ; use BIOS 232 : PUSH BP

182 : POP BE 233 MOV BE, 8P i set up arg ptr

183 MOV SF, BP 234 MOV DI, {BP+41 v column

184 : POP BP ’ 245 - MOV DH, [BP+6] Torow

185 REI 336 : MOV BX, [BP+8) ; char/fetr

186 1 scrol endp 237 = MOV al, 80 i calc offset

187 238 : MUz DR

188 1 __cls proc neazr i clear CRI 239 - KOR DH, DH
Figure 6-7 Continued (more) Figure 6-7 Continued (more)

1
228 The M5-DOS Encyclopedia : . ' Section [Programming in the MS-DOS Environment 229

b Canon Exhibit 1108

Article 6: Interrupt-Driven Communications

Part B: Programming for M5-DOS

240 : aDp AX,DX 25
241 ADD AY, AX ; adjust bytes to words 26 : static int I,
242 : PUSH ES ; save seg reg 27 waitchr = 0,
243 : MOV DI, AX 28 vilag = False,
244 MOV AX,v_bas ; set up segment 29 ¢ capbp,
245 MOV ES, AX 30 capbc,
246 MOV A¥X,BX ; get the data 31 Ch,
247 3TOSW ; put on screen 32 Want_.7_Bit = Irue,
248 POP ES ; restore regs 33 ¢ ESC_Seqg State = 0; /* escaps ssquence state variable #/
249 : MOV SP, BP ' 34
250 POP BP 35 : int _ex ,
251 : REI ’ 36 —CY,
252 : wrtvr endp . , 37 —atr = 0x07, /* white on black */
253 38 : —-pag = 0,
254 : _TEXI ands 39 oldtop = 0,
255 : ; 40 oldbot = Ox184%;
256 : END 471
42 : FIIE * in file = NULL; /* start with keybeard input */
Fgure 6-7 Continued ; 43 : FIIE # cap_file = NULL:
44 :
The sample smarter terminal emulator: CTERM.C 45 ; #include "cterm.h" /* external declarations, etc. */
46
: int Wants_To_Abort () /* checks for interrupt of script */

Given the interrupt handler (CH1), exception handler (CHIA), and video handler (CH2), a 47
simple terminal emulation program (CTERM C) can be presented The major functions of ‘ 48 : { return broke {);

, \ . P s , . \ 49 : 1}
the program are written in Microsoft C; the listing is shown in Figure 6-8. | o . void

i :
1 /# lerminal Emulator {cterm.c) : 51
2 * Jim Kyle, 1987 : 52 : main { arge, argv) int arge ; /% main routine ®/
3 * ’ $3 : «char * argv []; :
4 Uses files CH1, CHIA, and CH2 for MASM support . ; 54 : ¢ char * cp,
5 y : 55 * addext ();
6 56 if (arge > 1) /% check for script filename #/
7 #include <stdic h> ; 57 : in_file = fopen (addext (-argv [1], "™ SCR"™)}, "r" }:
8 : #include <conic . h> /* special console i/o #/ 1 58 1 (arge > 2 /* check for capture filename */
9 : #include <stdlib.h> /* misc definitions %/ 9 s cap-file = fopen (addext (argv [2 1, " CAPY), "a" J;
10 : #include <dos h> /* defines intdos () "y : 60 =setdnt O /* install CH1 module */
11 inclnde <string h> 61 = Set_vid () /% get wideo setup */
12 #define BRK 'C'-"@' /% control characters i/ | 62 = cls (b /% clear the screen */
13 : #define TSC ['-'@’ ; 653 : cputs { "Ierminal Emulator")} /* tell who's working &/
14 4define XON Q'-'@’ : 64 cputs { "\r\n< ESC for local commands >\r\n\n" }:
15 : gdefine XOFF 'S'—'@’ ! 65 : Want-J_Bit = Irue;
16 ! 66 : ESC_Seg_State = 0;
17 bdefine True 1 i 67 Init_Comm {); /% set up drivers, etc &/
18 sdefine falss 0 ! B8 : while (1} /* main loop */
19 i 69 : { if {(Ch = kb_file (}) > 0) /* check local */
20 #define Is_Function.Key(C) { (C} == E3C) . 70 { if { Ts_Function_Key (Ch })
21 71 { if { docmd {) < 0) /* command wf
22 static char capbfr [4096]; /% capture buffer ®/ ! 2 break;
23 : static int wh, i3 }
24 W37 74 else

: 75 Send_Byte { Ch & O0x7F); /#* else send it */

Figure 6-8 CTERM C : {(more))
Figure 6-8 Continued (more)

Section IL Programming in the MS-DOS Environment 231

230 The MS-DOS Encyclopedia
Canon Exhibit 1108

Article &: Interrupt-Driven Communications

Part B: Programming for M3-DOS

76 & } 127 3 ESC_Seg _State = 0;

77 if ({ Ch = Read.Modem ()) »= 0)} /% check remote +/ 128 : break;

- (if (Want_7_Bit) 129

79 . Ch &= Ox7F; /% trim off high bit */ 130 : case 'H' : /* VIS2 home cursor */
80 : switch { ESC_Seqg State) /* state machine */ : 131 locate (0, 0 };

81 : i) 132 : ESC_Seq_State = 07

82 case 0 : /* no Esc sequence */ 133 break;

83 switch (Ch } 134 :

84 : £ . 135 case 'j' : /* VI52 Erase to EO0S */
85 caze ESC /* Esc char received */ ; 136 deos 0):

86 : ESC_Seg_State = 1; 137 ESC_Seg_State = 05

87 : break; 138 = break;

RS - ‘ 139 :

89 - default 140 : case '[' : /* BNSI .SYS - VI100 sequence *f
90 : if { Ch == waitchr) /* wait if required “/ 141 : ESC_Seq State = 2;

91 : waitchr = 0; ' 142 ¢ break;

97 if (Ch == 12) /* clear screen on FF &/ 143

g3 cls ()¢ 144 : default

aq : else 145 rutehx { ESC)5 /* pass thru all others ® [
95 if {(Ch != 127) /#* lgnore rubouts *f : 146 putchx { (char) Ch };

98 - { putchx ((char) Ch); /* handle all others */ 147 ESC_Seqg_State = 0;

97 put_cap ((char) Ch): 148 }

98 } 149 break;

99 } 150 :

100 break; 151 : case 2 : /% RNSI 3.64 decoder */
101 3 152 ESC_Seq_State = {; /% not implemented */
102 1 case 1 : /% ESC ~-— process any ascape sequences here */ : 153 : }

103 : switch (Ch } 154 :]

104 £ 155 : if (broke ()} /% check CHT2 handlers */
105 - case 'A' : /% VISZ up %/ 156 : { eputs { "\r\n##*BREAK###\r\n");

106 : : /* nothing but stubs here x/ 157 = break:

107 : ESC.Seq.State = 0: 158 }

108 break; 159 :) /* end of main loop %/
109 : 160 : if (cap_file) ’ /+ save any capture #/
110 - case 'B' /* VI52 down *f 1671 : cap_flush ();

111 ; 162 : Term.Comm (); /¥ restore when done %/
112 ESC_Seq_State = (O 163 rst_int (): /#* restore break handlers */
113 break; 164 exit (0 }; /* be nice to MS-DOS %/
114 165 : 1}

115 case 'C' /* VIGE2 left #/ 166 :

116 : ; 167 : deemd () /* local command shell £/
M7 . ESC_Seq _8tate = 0; 168 : { FILE * getfil (};

118 break; 169 int wp:

119 : 170 wp = True;

120 - case 'D' ; /% V152 right +/ 171 @ if (! in_file !! vflag)

121 - ; 172 - cputs ("\r\n\tCommand; "): /* ask for command ®f
RV ESC_Seq.State = 0; 173 else

123 : break: 174 : wp = False;

124 : 175 = Ch = toupper (kbd_wait (})): /* get response */
125 case 'E' : /% Vi52 Erase CRI */ 176 if { wp)

126 - cls () /* actually do this one */ . 177 putchx ((char} Ch });
Figure 6-8 Continued {more) Figure 6-8 Continued. {more)

232 The MS-DOS Bncyciopedia Section IT, Programming in IMMS-DOSE%);E%%%%“ 1 120?_3;)

Part B: Programming for MS-DOS

178 = switeh (Ch) /* and act on it
179 {

180 : case '3’

181 : if (wp)

182 : cputs { "low speedirin” }:

183 Set_Baud { 300 };

184 : break;

185

186 : case 'D’

187 : if { wp)

188 cputs ("elay (1-9 sec}: Ty

189 : oh = kbdwalt O

190 1 if (wp)

191 putchx ({char) Ch };

192 pelay (1000 * (Ch - '0°% });

193 if { wp)

194 putchx ('\n' };

195 break;

1986

187 = cagse 'E'

198 if (wp)

199 cputs { "ven Parity\r\n")i

200 get_Parity { 2)7

201 1 break;

202

203 case ‘F'

204 : if { wp)

205 : cputs { "ast speedizin")i

206 : set_Raud { 1200 };

207 break;

208

209 case 'H'

210 if { wo)

211 = { cputs ["\r\n\tVYALID COMMBNDS : \r\n")7
212 cputs ("\tD = delay 0-% seconds.\r\n™ };
213 cputs ("A\tE = even parity. \r\n");

214 cputs { "\tE = (fast) 1200-baud \r\n")’
215 cputs { "\tN = no parity.‘\rin" }i

216 cputs { f\O = odd parity.Axin");

217 : cputs { "\t@ = quit, return to DOS.\r\n"™ };
218 cputs { "\tR = reset modem. \c\n'")i

219 cputs ("\t§ = (slow) 300-baud . \rA\n")
220 = cputs ("\tU = use script file \z\n")
221 cputs ("\tV = verify file input.\ri\n");
222 cputs ('"\tW = wait for char ." }:

223 }

224 : break;

225

226 case 'N'

227 if { wp)

Figure 6-8 Continved

234 The MS-DOS Encyclopedia

+/

{more)

Article 6: Interrupt-Driven Communications

228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
230
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
2a7
268
269
270
21
272
273
Z74
275
276
277
218

Figure 6-8

cputs ("o Parity\rin"):
Set_Parity (1);

break;
case 'O’
if (wp)

cputs | “dd Parityirin");
Set_Parity (3);
break;

case 'R' .
if (wp)
cputs { *ESEI Comm Portizin"™ };
Init_Comm {);
break;

case 'Q"
if (wp)
cputs { " = QUII Commandirin");
Ch=1{-11):
break;

case 'U*
if { in_file && ! vilag)
putchx ('0" };
cputs { "se file: " };

getfil ()@
cputs ({ "File ");
cputs { in_file 2 "Openiri\n™ : "Bad\r\n" }:
waitchr = 0;
break;
case 'V'
1f (wp)
{ cputs ("erify flag toggled " };
cputs { vElag ? "OFE\z\n™ : "ON\r‘n");
}
vflag = vflag ? False : Irue:
break;
case W’
if { wp)
cputs ("ait for: <"):
waitchr = kbd wait (};
if (waitchr == " ')

waitchr = 0O;
if (wp)
{ 1f (waitchr)
putchx { {(char} waitchr):
else
cputs { "no walt"™ };

Continued. ' (more}

Section II. Programming in the MS-DOS Environment 235
Canon Exhibit 1108

Part B: Programmming for MS-DOS

cputs (">\r\n");

279
280 }
231 break;

282 :

283 default

284 if { wp }

285 : { cputs ("Don't know " };

286 : putchx { (char) Ch);

287 cputs { "\rinUse 'H' command for Help ‘r\n" }:

288 : H

289 : Ch = '2';

290 }

291 if (wp) /* if window open. ..
292 { cputs ("\r\n[any keyl\r™ };

293 : while (Read Keyboard () == EOF) /* wait for response
294 ;

295 }

296 return Ch ;

297 }

298

299 : kbdwait () /* wait for input
300 { int ¢ ;

301 while ({ ¢ = kb_file (}) == (- 1))

302 ;

303 return ¢ & 255;

304 @}

305

306 : kb_file ()} /¥ input from kb or file
307 { int ¢ ;

308 if { in_file) /* USING SCRIPI

3049 { ¢ = Wants_Io_Abort {); /% use first as flag
310 if { waitchr && ! ¢)

311 c={-11; /* then for char
312 else

313 if { ¢ |/} (¢ =~getc (in_.file }) == EOF || ¢ == 26 }
314 { fcleose (in_file):

315 cputs { "\r\nScript File Closedixr\n™ }:

316 in.file = NULL:

317 waitechr = Q;

318 : c=4{(-1);

319)

320 else

321 if { ¢ == '\n'} /* ignore LEs in file
322 e ={ -1

323 If (== TA\AT) /* process Esc seguence
1324 c = esc {);

325 if { vflag && c != { — 1)} /% werify file char
326 { putchx (*{" }:

327 putchx { {char} c }:

328 : putchx { '}' 3

329 : }

Figure 6-8 Continued

236 The MS-DOS Encyclopedia

*/

*/

*/

*/
¥/

*/

w/

*/

(more)

Article 6: Interrupt-Driven Communications

330 }
3 else
/* USING CONSCL
332 ;= X ’ .
= Read Keyboard () : /% if not using file '/
333 return { o }; S !
334 }
; 335
I 336 :
| ‘ esc () /% script transl i
| 2 e U t nslator #/
: 338 c = : i i
| getc (in_file j; * ‘ :
. 339 switch (toupper (¢ I 1 conerel chars e N
: 340 {
5 KLY case 'E!
: 342 c = ESCy
i 343 break;
344
! 345 case 'N!'
[346 c = '\n';
347 break:
348 ;
348 case 'R!
350 c o= "\rt:
351 break;
352
353 case "L'
354 = "N\,
355 break;
356 ¢
357 case 'N7
358 ¢ = gete (in file) g 31:
359 break;
360 }
361 return (¢ };
362 }
363
364 : FILE * getfil 8]
365 : { char fam [20 };
366
getnam { fnm, 15),
' ‘ ; /% get th
367 if (! { strchr ¢ fom, ' r I ’ s N
368 strcat { fom, 7 $CR")
369 : return (in _file =
- = fopen ot i
i } per { fom, “r" }3y;
3n
372 : void getnam (b) *
’ h ; i
372 o get s char * b; /* take input to buffer 5/
374:{while(s——>0)
375 P if 1+ p = {char) kbd_wait 13 = hr')
376 putchx (* b ++);
377 else
378 break
379 - }
380 putchx ('\n' 3.
figure 6-8 Continued
{more)
Sectton IL Programming in the MS-DOS Entirgraresthioit 2308

Part B: Programming for M5-DOS Article 6: Interrupt-Driven Communications

381 o+ b = 0: 432 ¢

382 : 433

383 L 434 : void Start_Iimer (n) int n ; /* set timeout for n sec y
384 : ghar * addext { b, /% add default EXIension ®/ i 435 : { timr = getmr () + { long)} n * 1000I; '

385 e } char % b, P _ 436 1

386 : * a; ! 437

387 : [static char bfr [20 1; 438 : Iimer Expired () /% 1f timeocut return 1 else zeturn 0 v
388 : if (strchr (b, '.')} 439 : { return { getmr () > timr };

389 veturn { b }; 440

390 strepy (bfr, b)i 19

391 streat (bfr, e)i 4492 : gSet_vid ()

392 return (bfr); 43 ¢ ¢ v O /* initialize video #/
393 :) 444 : return 0;

394 445 : }

395 : wvoid put.cap (©) char ¢ ; 446

3986 : { if (cap-file && c != 13 /% strip out CRs ¥/ - 447 : void locate (row, col) int row ,

397 fputc { ¢, cap _file }: /% use MS$-DOS buffering %/) 429 - col:

398 @} : 449 ¢ [_cy = row % 25;

399 : 450 _cx = col % 80

400 : void cap_flush () /% end Capture mode =/ ' 451 = _wrpos { row, col); /* use ML from CH2 ASM y
401 : { if { cap_file) 452 : |}

402 : { fclose | cap_file)i 453

403 : cap_file = NULL; - 454 : yoid deol ()

404 : cputs ("\r\nCapture file closed\rin” }7 E 435 ¢+ { _deol 0 /% use ML from CH2 ASM */
405 1 } : 456 @

406 :) 457

407 . 458 : void deos ()

408 ; /* TIMER SUPPORI SIUFF (IBMPC/MSDOS) ®/ 439 : { deol ():

409 : static long timr: /# timeout register %/ e 460 : if (—cy < 24) /% if not last, clear hy
410 ' 461 : { rgv x ax = 0x0600;

411 : static union REGS rgv i 462 : rgv x bx = (_atr << 8);

112 463 : rgv % cx = { _cy + 1) << 8;

413 : long getmr () e 484 : rgv . x.dx = 0Ox184F:

414 : { long now ; /% msec since midnite */ o 465 int86 (0x10, & rgv, & rgv }:

415 @ rgv.x .ax = 0x2c00; 466 : }

416 intdos (& rgv, & rgv)i 467 locate { _oy, _cx);

417 :© now = rgv.h.chi /% hours £/ b 468 : }

418 : now *= 60L; /% to minutes #f 469

414 : now += rgv.h.cl: /% plus min =/ 470 : void ¢ls {)

420 : now *= 60L; /% to seconds ®/ 471 ¢ { _els () /* use ML L
421 now += rgv.h.dh; /* plus sec */ 472 :

422 now *= 100L; /% to 17100 ¥/ 473

423 : now += rgv h.dl; /% plus 1/100 =/ 474 : void cursor { ym)} int yn

424 : return (101 * now }; /* msec value o/ 475 ¢ { zqv m.cx = yn ? 0x0607 : 0x2607; /% ON/OFE "y
425 : 476 : rgv.x.az = 0x0100;

426 477 int86 {(0x10, & rgv, & rgv };

427 : void Delay (n) int a ¢ /% sleep for n msec */ 478 :

428 : { long wakeup ; 479

429 : wakeup = getmr () + (long)} n: /% wakeup time */ 480 : void revvid { yn) int yn ;

430 : while (getmr () < wakeup) 481 1 { if { yn)

431 : : /¥ now slesep ®/ 482 -atr = _coler (8, 7 }; /% black on white y
Figure 6-8. Continued (more) Figure 6-8 Continued (more)

238 The MS$-DOS Encyclopedia Section IT. Programming in the MS-DOS Environment 239

Canon Exhibit 1108

Part B: Programming for MS-DO3

240

483 : else

484 : _atr = _color (15, 0); /* white on black
485)

486

487 : putchx { ¢) char c ; /% put char to CRI
488 : { if (¢ == 'A\n'

489 : putch ("\r' }:

430 : putch (¢)i

491 : return ¢-;

492 @}

493

494 ! Read _Keyboard () /* get keyboard character
495 returns -1 if none present
496 : { int ¢ :

497 : if (kxbhit ()) /% no char at all
498 : return { getch ()):

499 return { EOF);

500 &}

507

502 @ /% MODEM SUPPORI */

503 : static char mparm,

504 wrk [80 1:

505 :

506 : void Init_Comm 1) /% initialize comm port stuff
507 : { static int ft = O; /% firstime flag
508 : if (ft ++ == 0)

509 : im ()

510 ¢ Set_Parity (1): /% 8,N,1

511 Set_Baud { 1200): /* 1200 baud

512 =}

513 :

514 : #define B1200 0x80 /#* baudrate codes
515 : $define B300 0x40

516

517 : Set_Baud (n } int n ; /* n is baud rate

518 ¢ { if { n == 300)

519 mparm = { mparm & Ox1F) + B300:

520 : else

521 if (n == 1200}

522 : mparm = (mparm & Ox1F) + B1200:

523 else

524 return 0; /* invalid speed
525 sprintf (wrk, "Baud rate = 3d\r\n", n };

526 + cputs (wrk }:

527 : set_mdm | mparm ;i

528 : return o

529 : 3

530 :

531 : #define PAREVN 0x18 /* MCR bits for commands

532 : #define PARODD 0x10
533 : ¢define PARCFE 0x00

Fipure 6-8 Continued

The MS-DOS Encyclopedia

5/

*/

*/

*/

x/
s/

./
%/

x/

#/

*/

(more)

Article 6; Interrupt-Driven Communications

534 : #define SIOPZ 0x40
535 : jdefine WORDSB 0x03
536 : g¢define WORD7V 0x02
537 : ¥define WORDS 0Ox01

538

539 : get Parity (n } int n ; /* n is parity code */
540 : | static int mmode;

541 if ((n ==)

542 mmoda = (WORDS8 | PAROFF); /* off */
343 ¢ else

544 if {n==2)

345 mmode = (WORD? , PAREVN }; /* on and even */
546 : else

547 : if (n==3

548 : mmode = (WORD7 | PARODD }: '~ /% on and odd =/
549 : else

550 = return 0; /#% invalid code *f
551 mparm = { mparm & 0xEQ) + mmode:

352 - sprintf { wrk, "Parity is %s\r\n", (n == 1 ? YOFE"

553 (n == 2 2 “"EVEN" : "ODD"™))):
554 : cputs { wrk):

555 : set_mdm { mparm):

556 return n ;

557 ;)

558

559 : Write_Modem { ¢ } char ¢ : /% return 7 if ok, else 0 o/
560 : | wrimdm (¢ }:

561 return (1) /* never any error */
562 &

563

564 ; Read.Modem {)

565 : { return { rdmdm ()} /* from int bfr */
566 @ |

567

368 : wvoid Term Comm () /* uninstall comm port drivers */
369 : {um ();

570 &)

571

512 : /¥ end of cterm.c */

Figure 6-8 Continued

CTERM features file-capture capabilities, a simple yet effective script language, and a
number of stub (that is, incompletely implemented) actions, such as emulation of the VI'52
and VT100 series terminals, indicating various directions in which it can be developed

The names of a script file and a capture file can be passed to CTERM in the command line.
If no filename extensions are included, the default for the script file is SCR and that for the
capture file is CAP. If extensions are given, they override the default values The capture
feature can be invoked only if a filename is supplied in the command line, but a script file
can be called at any time via the Esc command sequence, and one script file can call for
another with the same feature.

Section I Programming in the MS-DOS Environment 241
Canon Exhibit 1108

Part B: Programming for MS-DOS

242

The functions included in CTERM C are listed and summarized in Table 6-13

Table 6-13. CTERM.C Functions.

Lines Name Description

1-5 Program documentation

7-11 Include files

12-20 Definitions.

22-43 Global datd areas.

45 External prototype declaration

47-49 Wants_To_Abort() Checks for Ctrl-Break or Cerl-C being pressed

52-165 main() Main program loop; includes modem engine and
sequential state machine to decode remote
commands.

167--297 docmd() Gets, interprets, and performs local (console or
script) command.

209304 kbd_waii() Waits for input from console or script file

306-334 kb_file() Gets keystroke from console or script; returns EOF
if no character available

336-362 esc(d Translates script escape sequence

364-370 getfil() Gets name of script file and opens the file

372-382 getnam() Gets string from console or script into designated

. buffer

384-393 addexi(} Checks buffer for extension; adds one if none
given,

395-3098 put_cap() Writes character to capture file if capture in effect.

400-406 cap_ flush{) Closes capture file and terminates capture mode if
capture in effect

408~411 Timer data locations.

413-425 getmr() Returns time since midnight, in miiliseconds.

427432 Delay() Sleeps » milliseconds.

434436 Start_Timer() Sets timer for # seconds

438~440 Timer_Expired() Checks timer versus clock

442445 Set_Vid() Initializes video data

447--452 locate() Positions cursor on display

454456 deol() Deletes to end of line

458408 deos(Deletes to end of screen

470-472 cls) Clears screen

474478 cursor(J Turns cursor on or off

480-485 revid() Toggles inverse/normal video display attiibutes.

487--492 pretchx() Writes char to display using putch() (Microsoft C
fibrary)

(more)
The MS-DOS Encyclopedia

Article é: Interrupt-Driven Communications

Table 6-13. continued

Lines Name Description

494500 Read_Keyboard() Gets keystroke from keyboard.

502-504 Modem data areas

506-512 Init_Comm() Installs ISR and so forth and initializes modem
514~515 Baud-rate definitions

517-529 Set_ Baud() Changes bps rate of UART

531-537 Parity, WI definitions

539-557 Set_ Parity() Establishes UART parity mode.

559~562 Write_Modem() Sends character to UART.

564—566 Read_ Modem() Gets character from ISR’s buffer

568-570 Term_Comm() Uninstalls ISR and so forth and restores original

vectors.

For communication with the console, CTERM uses the special Microsoft C library func-
tions defined by CONIO H, augmented with the functions in the CH2 ASM handler Much
of the code may require editing if used with other compilers CTERM also uses the func-
tion prototype file CTERM H, listed in Figure 6-9, to optimize function calling within the

program.

/% CIERM.H - function prototypes for CIERM.C #/
int Wants_To_Abort {void); '
void main{int ,char % =*);
int deemad({vecid):

int kbd wait (void);

int kb_file{void):

int esctvoid);

EILE *getfil{veid):

void getnam{char #,int };
char *addext {(char *,char *):
void put_cap(char):

voild cap_£flushivoid);
leng getmr (void}):

void Delay(int };

void Start_Iimer{int }:
int Iimer Expired(void);
ing Set.Vidivoid);

vold locate{int ,int);
void deol (void);

void deos{void};

void cls(void);

void curser{int);

void revvid{int }:

int putchx(char };

Figure 6-9 CTERMH.

(more)

Section IT. Programming in the MS-DOS Environment 243
Canon Exhibit 1108

Part B: Programsning for MS-DOS

244

int Read Keyboard(void) :
void Init_Comm{void):
int Set_Baud{int):

int Set_Parity{int };
int Write_ Modem(char);
int Read Modem{void):
void Ierm Comm{void):

/* CH1.ASM functions - modem interfacing */
void i.m({void);

void set_mdm(int):

vold wrtmdm{int);

wvoid Send Byte({int):

int rdmdm(void);

void u_m{void);

/% CH1A ASM functions - exception handlers */
void set_int (void);

volid rst_int (void);

int broke (void);

/% CHZ2.ASM functions - video interfacing */
void _i_wi{void);

int _wrpos{int, int}:

volid —deol (void);

void —cls({veoid);

int —color{int, int};

Figure 6-9 Continued

Program execution begins at the entry to main(), line 52. CTERM first checks (lines 56
through 59) whether any filenames were passed in the command line; if they were,
CT1ERM opens the corresponding files Next, the program installs the exception handler
(line 60), initializes the video handler (line 61), clears the disptay (line 62), and announces
its presence (lines 63 and 64) The serial driver is installed and initialized to 1200 bps and
no parity (lines 65 through 67), and the program enters its main modem-engine loop
(lines 68 through 159)

This loop is functionally the same as that used in ENGINE, but it has been extended to
detect an Esc from the keyboard s signalling the start of a local command sequence (lines
70 through 73 and to include a state-machine technique (lines 80 through 153) to recog-
nize incoming escape sequences, such as the VI52 or VI100 codes To specify a local com-
mand from the keyboard, press the Escape (Esc) key, then the first letter of the local
command desired After the local command has been selected, press any key {(such as
Enter or the spacebar) to continue To get a listing of all the commands available, press

Esc-H

The kb_file() routine of CTERM (called in the main loop at line 69) can get its input from
either a script file or the keyboard . If a script file is open (lines 308 through 330), it is used
until EOF is reached or until the operator presses Ctrl-C to stop script-file input Otherwise,

The MS-DOS Encyclopedia

Article 6: Interrupt-Driven Communications

input is taken from the keyboard (lines 331 and 332). If a script file is in use, its input is
echoed to the display (lines 325 through 329) if the V command has been given

‘To permit the Esc character itself to be placed in script files, the backslash (\) character
serves as a secondary escape signal When a backslash is detected (lines 323 and 324) in
the input stream, the next character input is translared according to the following rules:

Character Interpretation

Eore Transldtes to Esc

Norn Translates to Linefeed

Rorr Translates to Enter (CR),

Tort Translates to Tab.

A Causes the #next character input to be converted into a control character.

Any other character, including another \, is not translated at all

When the Esc character is detected from either the console or a script file, the docmdd()
function (lines 167 through 297) is called to prompt for and decode the next input charac-
ter as a command and to perform appropriate actions. Valid command characters, and the
actions they invoke, are as follows:

Command
Character Action

D Delay 0—9 seconds, then proceed Must be followed by a decimal
digit that indicates how long te delay

Set EVEN parity.

Set {fast) 1200 baud

Display list of valid commands

Set no parity

Set ODD parity.

Quig; return to MS-DOS command prompt.

Reset modem

Set (slow) 300 baud

Use script file (CTERM prompis for filename)

Verify file input Echoes each script-file byte

Wait for character; the next input character is the one that must be
matched

g<COmO0ZIT Mm

Any other character input after an Esc and the resulting Cornmand prompt generates the
message Don't krnow X (where X stands for the actual input character) followed by the
prompt Use ‘H' command for Help

Section IT. Programming in the MS-DOS Environment 245
Canon Exhibit 1108

Part B: Programming for M3-DOS

If input is taken from a script and the V flag is off, docmd() performs its task quietly, with
no output to the screen. If input is received from the console, howeves, the command let-
ter, followed by a desctiptive phrase, is echoed to the screen Input, detection, and execu-
tion of the local commands are accomplished much as in CDVUTI, by way of a large
switch(} statement (lines 178 through 290) '

Although the listed commands are only 4 subset of the features available in CDVUTE for
the device-driver program, they are more than adequate for creating useful scripts The
predecessor of CTERM (DT115 EXE), which included the CompuServe B-Protocol file-
transfer capability but had no additional commands, has been in use since early 1986 to
handle automatic uploading and downloading of files from the CompuServe Information
Service by means of script files In conjunction with an auto-dialing modem, DT115 EXE
handles the entire transaction, from login through logout, without human intervention.

All the bits and pieces of CTERM are put together by assembling the three handlers

with MASM, compiling CTERM with Microsoft C, and linking all four object moedules into
an executable file Figure 6-10 shows the complete sequence and also the three ways of
using the finished program

Compiling:

C>MASM CH1; <Entezx>
C>MASM CHT1A; <Enter>
C>MASM CH2: <Enter>
C>MSC CIERM; <Enter>

linking:
C>IINK CIZRM+CHT+CHIA+CHZ; <Enter>

Use:
(no files)

C>CTERM <Enter:>

or
(script only)

C>CIERM scriptfile <Enter>
or
C>CIERM scriptfile capturefile <Enter>

Figure 6-10 Putting CTERM together and using it

Jim Kyle
Chip Rabinowitz

2406 The MS-DOS Encyclopedia

g
i
|

Article 7: File and Record Management

Article 7
File and Record Management

The core of most application programs is the reading, processing, and writing of data
stored on magnetic disks. This data is organized into files, which are identified by name;
the files, in turn, can be organized by grouping them into directories. Operating systems
provide application programs with services that allow them to manipulate these files and
directories without regard to the hardware characteristics of the disk device Thus, applica-
tions can concern themselves solely with the form and content of the data, leaving the
details of the data’s location on the disk and of its retrieval to the operating system.

T he disk storage services provided by an operating system can be categorized into file
functions and record functions. The file functions operate on entire files as named
entities, whereas the record functions provide access to the data contained within files
(In some systems, an additional class of directory functions allows applications to deal
with collections of files as well) This article discusses the MS-DOS function calls that
allow an application program to create, open, close, rename, and delete disk files; read
data from and write data to disk files; and inspect o1 change the information (such as
attributes and date and time stamps) associated with disk filenames in disk directories
See also PROGRAMMING IN THE MS-DOS ENVIRONMENT: STRUCTURE OF MS-DOS:
MS-DOS Storage Devices; PRoGRaMMING FOR Ms-Dos: Disk Directories and Volume Labels

Historical Perspective

Current vessions of MS-DOS provide two overlapping sets of tile and record management
services to support application programs: the handle functions and the file control block
(FCB) functions Both sets are available through Interrupt 21H (Table 7-1). See SYSTEM
CATLS: In1errUPT 218 The reasons for this surprising duplication are strictly historical.

The earliest versions of MS-DOS used FCBs for all file and record access because CP/M,
which was the dominant operating system on 8-bit microcomputers, used FCBs. Microsoft
chose to maintain compatibility with CP/M to aid programumers in converting the many
existing CP/M application programs to the 16-bit MS-DOS environment; consequently,
MS-DOS versions 1 x included a set of FCB functions that were a functional superset of
those present in CP/M. As personal computers evolved, however, the FCB access method
did not lend itself well to the demands of larger, faster disk drives

Accordingly, MS-DOS version 2 0 introduced the handle functions to provide a file and
record access method similar to that found in UNTX/XENTX. These functions are easier to
use and more flexible than their FCB counterparts and fully support 4 hierarchical (tree-
like) directory structure The handle functions also allow character devices, such as the

Section IL Programming in the MS-DOS Environment 247

Canon Exhibit 1108

Part B: Programming for MS-DOS

console or printer, to be treated for some purposes as though they were files. MS-DOS ver-
sion 3 .0 introduced additional handle functions, enhanced some of the existing handle
functions for use in network environments, and provided improved error reporting for

all functions

The handle functions, which offer far more capability and performance than the FCB
functions, should be used for all new applications Therefore, they are discussed fitst in
this article

Table 7-1. Interrupt 21H Function Calls for File and Record Management.

Handle FCB
Operation Function Function
Create file 3CH 16H
Create new file 5BH
Create temporary file 5AH
Openfile. 3DH 0FH
Close file 3EH T10H
Delete file 41H 13H
Rename file 56H 17H
Perform sequential read 3FH 14H
Perform sequential wiite 40H 15H
Perform random record read. 3FH 21H
Perform random record write. 40H 22H
Perform random block read. 27H
Perform random block write. 28H
Set disk transfer area address. ' 1AH
Get disk transfer area address 2FH
Parse filename 29H
Position read/write pointer 42H
Set random record number 24H
Get file size. 42H 23H .
Get/Set file attributes 43H i
Get/Set date and time stamp S7TH :
Duplicate file handle 45H
Redirect file handle. 46H

248 The M5-DOS Encyclopedia t

Article 7; File and Record Management

Using the Handle Functions

The initial link between an application program and the data stored on disk is the name of
a disk file in the form

drive:path)\ filename ext

where drive designates the disk on which the file resides, path specifies the directory
on that disk in which the file is located, and filename ext identifies the file itself If drive
and/or path is omitied, MS-DOS assumes the default disk drive and current directory
Examples of acceptable pathnames include

C:\PAYROLL\TAXES.DAT
LETTERS\MEMO TXT
BUDGET DAT

Pathnames can be hard-coded into a program as part of its data More commonly, how-
ever, they are entered by the user at the kevboard, either as a command-line patameter or
in response to a prompt from the program If the pathname is provided as a command-
line parametet, the application program must extract it from the other information in the
command line. Therefore, 10 allow a program to distinguish between pathnames and
other parameters when the two are combined ini a command line, the other parameters,
such as switches, usually begin with a slash (/) of dash (-) character

All handle functions that use a pathname require the name to be in the form of an ASCIIZ
string — that is, the name must be terminated by a nul (zero) byte ¥ the pathname is
hard-coded into a program, the null byte must be part of the ASCIIZ string If the path-
name is obtained from keyboard input or from a command-line parameter, the null byte
must be appended by the program. See Opening an Existing File below

To use a disk file, a program opens or creates the file by calling the appropriate MS-DOS
function with the ASCITZ pathname MS-DOS checks the pathname for invalid characters
and, if the open o1 create operation is successful, returns a 16-bit handle, or identification
code, for the file The program uses this handle for subsequent operations on the file, such
as record reads and writes

The total number of handles for simultaneously open fiies is limited in two ways. First, the
per-process limit is 20 file handles The process’s first five handles ate always assigned to
the standard devices, which default to the CON, AUX, and PRN characiter devices:

Handle Service Default

0 Standard input Keyboard (CON)

1 Standard output Video display (CON)

2 Standard error Video display (CON)

3 Standard auxiliary First communications port (AUX)
4 Standard list First parallel printer port (PRIND

Section Il Programming in the M$-DOS Environment 249
Canon Exhibit 1108

Part B: Programming for MS-DOS

Ordinarily, then, a process has only 15 handles left from its initial allotment of 20; howeves,
when necessary, the 5 standard device handles can be redirected to other files and devices

or closed and reused.

Tn addition to the per-process limit of 20 file handles, there is a system-wide limit.

MS-DOS maintains an internal table that keeps track of all the files and devices opened
with file handles for all currently active processes. The table contains such information as
the current file pointer for read and write operations and the time and date of the last write
to the file ‘The size of this table, which is set when MS-DOS is initially loaded into memory,
determines the system-wide limit on how many files and devices can be open simulta-
neously The default limit is 8 files and devices; thus, this system-wide limit usually
averrides the per-process limit

To increase the size of MS-DOS's internal handle table, the statement FILES=nnn can be
included in the CONFIG SYS file. (CONEIG SYS settings take effect the next time the sys-
ter is turned on o restarted) The maximum value for FILES is 99 in MS-DOS versions 2 X
and 255 in versions 3 x See USER COMMANDS: CONFIG SYS: FILES

Error handling and the handle functions

250

When a handle-based file function succeeds, MS-DOS returns to the calling program with
the carry flag clear If a handle function fails, MS-DOS sets the carry flag and returns an
error code in the AX register. The program should check the carry flag after each opera-
tion and take whatever action is appropriate when an error is encountered. Table 7-2 lists
the most frequently encountered error codes for file and record /O (exclusive of network

operations).

Table 7-2. Frequently Encountered Error Diagnostics for File and Record
Management.

Code Error

02 File not found

03 Path not found

04 Too many open files (no handles left)
05 Access denied

06 Invalid handle

11 Invalid format

12 Invalid access code

13 Invalid data

15 Invalid disk drive letter
17 Not same device

18 No more files

The error codes used by MS-DOS in versions 3 0 and later are a superset of the MS-DOS
version 2 0 error codes See APPENDIX B: Criticar Error Cones; APPENDIX C: EXTENDED
Error Copes Most MS-DOS version 3 error diagnostics refate to network operations,
which provide the program with a greater chance for error than does a single-user system.

The MS5-DOS Encyciopedia

Article 7: File and Record Management

Programs that are to run in a network environment need to anticipate network problems.
For example, the server can go down while the program is using shared files

Under MS-DOS versions 3 x, a program can also use Interrupt 21H Function S9H (Get
Extended Error Information) to obtain more details about the cause of an error aftera
failed handle function The information returned by Function 59H includes the type of
device that caused the error and a recommended recovery action.

Warning: Many file and record [/O operations discussed in this article can result in or be
affected by a hardware (critical) error. Such errors can be intercepted by the program if it
contains a custom critical error exception handler (Interrupt 24H) See PROGRAMMING
IN THE MS-DOS ENVIRONMENT: CustomMizing ms-Dos: Exception Handlers.

Creating a file

MS-DOS provides three Intersupt 21H handle functions for creating files:

Function Name

3CH Create File with Handle (versions 2.0 and later)
SAH Create Temporary File (versions 3 0 and later)
SBH Create New File (versions 3 0 and later)

Each function is called with the segment and offset of an ASCIIZ pathname in the DS:DX
registers and the attribute to be assigned to the new file in the CX register The possible
attribute values are

Code Attribute

00H - Notmal file
01H Read-only file
0ZH Hidden file
04H System file

Files with more than one attiibute can be created by combining the values listed above
For exampie, to create a file that has both the read-only and system attributes, the value
05H is placed in the CX register.

It the file is successtully created, MS-DOS returns a file handle in AX that must be used for
subsequent access to the new file and sets the tile read/write pointer to the beginning of
the file; if the file is not created, MS-DOS sets the carry flag (CF) and returns an error code
inAX

Function 3CH is the only file-creation function available under MS-DOS versions 2 x It
mmust be used with caution, however, because if a file with the specified name already
exists, Function 3CH will open it and truncate it to zero length, eradicating the previous
contents of the file This complication can be avoided by testing for the previous existence
of the file with an open operation before issuing the create call

Section IT. Programming in the MS-DOS Environment 251

Canon Exhibit 1108

Part B: Programming for MS-DOS

252

!
|
-

Under MS-DOS versions 3.0 and later, Function 5BH is the preferred function in most cases
because it will fail if a file with the same name already exists In networking environments,
this function can be used to implement semaphores, allowing the synchronization of pro-
grams running in different network nodes

Function SAH is used to create a temporary work file that is guaranteed to have a unique
name This capability is important in networking environments, where several copies of
the same program, running in different nodes, may be accessing the same logical disk
volume on a server The function is passed the address of a buffer that can contain a drive
and/or path specifying the location for the created file MS-DOS generates a name for the
created file that is a sequence of alphanumeric characters derived from the current time
and returns the entire ASCIIZ pathname to the program in the same buffer, along with the
file's handle in AX The progsam must save the filename so that it can delete the file later, if
necessary; the file created with Function SAH is not destroyed when the program exits

Example: Create a file named MEMO TXT in the \LET TERS directory on drive C using
Function 3CH. Any existing file with the same name is truncated to zero length and

opened

fname db TC:\IEIIERS\MEMO IXI', O

fhandle dw 2
mov dx,seg fname ; DS:PX = address of
mov ds, dx ; pathname for file
mov dx,offset fname
xor CX,CX ; CX = normal attribute
mov ah, 3ch ; Function 3CH = create
int 21h ; transfer to MS-DOS
Jjc errcr ; dJump if create failied
mov fhandle, ax : else save file handle

Example Create a temporary file using Function 5AH and place it in the \TEMP directory
on drive C. MS-DOS appends the filename it generates to the original path in the buffer
named frame The resulting file specification can be used later to delete the file

fname db TOINIEMENY ; generated ASCIIZ filename
db 13 dup (0} ; 1s appended by MS-DOS
fhandle dw ?
(more)
The M5-DOS Encyclopedia

Article 7: File and Record Management

mov dx, seg fname ©+ DS:DX = address of

mov ds, dx ¢ path for temporary file
mov dx,offset fname

XOT CX,CX ; CX = normal attribute

mov ah, 5ah ; Function 5AH = create
; temporary file

int 21h ¢ transfer to MS-DOS
je error i jump if create failed
mov Thandle, ax : glse save file handle

Opening an existing file

Function 3DH (Open File with Handle) opens an existing noimal, system, or hidden file
in the current ar specified directory When calling Function 3DH, the program supplies a
pointer to the ASCIIZ pathname in the DS:DX registers and a 1-byte access code in the AL
register. This access code includes the read/write permissions, the file-sharing mode, and
an inheritance flag The bits of the access code are assigned as foliows:

Bit(s) Description

0-2 Read/write permissions (versions 2.0 and later)
3 Reserved

4-6 File-sharing mode (versions 3 0 and later)

7 Inheritance flag (versions 3 0 and later)

The read/write permissions field of the access code specifies how the file will be used and
can take the following values: '

Bits 02 Description

000 Read permission desired
001 Write permission desired
010 Read and write permission desired

For the open to succeed, the permissions field must be compatible with the file’s atribute
byte in the disk directory For example, if the program attermnpts to open an existing file
that has the read-only attribute when the permissions field of the access code byte is set to
write or read/write, the open function will fail and an error code will be returned in AX

The sharing-mode field of the access code byte is important in a networking environment
It determines whether other programs will also be allowed to open the file and, if so,
what operations they will be allowed to perform Following are the possible values of the
file-sharing mode field:

Section II: Programming in the MS-DOS Environment 253
Canon Exhibit 1108

Part B: Programming for MS-DOS Article 7: File and Record Management

; prepare to copy filename

Bits 4~6 Description j mov si,cmdrail : DS:ST — command tail
000 Compatibility mode Other programs can open the file and perform read or o :2 : Zig e if lZi am eb:i:l cz;zize;::)
write operations as long as no process specifies any sharing mode other than : mov di,vEfset fname
compatibility mode ; cld i safety first!
001 Deny all Other programs cannot open the file _
010 Deny write. Other programs cannot open the file in compatibility mode or : ' iidSb AL, al ? check length of command tail
with write pem}ission jz error ; jump, command tail empty
011 Deny read. Other programs cannot open the file in compatibility mode or with '
read permission. ; labell: : scan off leading spaces
100 Deny none Other programs can open the file and perform both read and g ir';:Sb oo ‘f :ti‘t‘e:t;::jctef
write operations but cannot open the file in compatibility mode | sz ey yos, Skippit f
i
When file-sharing support is active (that is, SHARE EXE has previously been loaded), label2:
the result of any open operation depends on both the contents of the permissions and file- cmp al,0dh ; look for terminator
sharing fields of the access code byte and the permissions and file-sharing requested by J; ibz é 2 ¢ quit if return found
other processes that have already successfully opened the file ;Zp Tabels , quit if space found
The inheritance bit of the access code byte controls whether a child process will inherit stosb i else copy this character
that file handle If the inheritance bit is cleared, the child can use the inherited handle to Lodsb hels i 9ot next character
access the file without performing its own open operation. Subsequent operations per- e e
formed by the child process on inherited file handles also affect the file pointer associated label3:
with the parent’s file handle . If the inheritance bit is set, the child process does not inherit xor al,al ; store final NULL to
the handle stesb . } create ASCIIZ string

now open the file

if the file is opened successfully, MS-DOS returns its handle in AX and sets the file read/ _ ;

write pointer to the beginning of the file; if the file is not opened, MS-DOS sets the carry mov ixf Zeq fname ;DS :ix = a‘;‘ife; 51°f
i ' , : pat i

flag and returns an error code in AX mev Bro® pathname tob e

mov dx,offset fname
Example: Copy the first parameter from the program’s command tail in the program mov ax, 3d0zh P Function 3DH = open r/w

3 . int 2th ; transfer to MS-DOS

segment prefix (PSP) into the array frame and append a null character to form an ASCIIZ o bels . jimp Ct file touns
filename Atternpt to open the file with compatibility sharing mode and read/write access)
If the file does not already exist, create it and assign it a normal attribute cmp ax, 2 ; errer 2 = file not -found

inz error ; jump i1f other error
cmdtall equ 80h ¢ PSP offset of command tail ; else make the file
fname db €4 dup (7) i xor o, ox ; CX = normal attribute
fhandle dw ? i mov ah, 3ch ; Function 3CH = create

int 21h ; transfer to M3-DOS

e error i Jump 1f create failed

labeld:
¢ assume that DS already mov fhandle, ax ; save handle for Ffile
contains segment of P3P
(more)
Closing a file

Function 3EH (Close File) closes a file created or opened with a file handle function. The
program must place the handle of the file to be closed in BX. If a write operation was per-
formed on the file, MS-DOS updates the date, time, and size in the file’s directory entry

254 The M5-DOS Encyclopedia Section 11, Programming in the MS-DOS Environment 255

Canon Exhibit 1108

Part B: Programming for MS-DOS

Closing the file also flushes the internal MS-DOS buffers associated with the file to disk
and causes the disk’s file allocation table (FAT) to be updated if necessary

Good programming practice dictates that & program close files as soon as it finishes
using them This practice is particularly important when the file size has been changed, to
ensure that data will not be lost if the system crashes or is turned off unexpectedly by the
user A method of updating the FAT without closing the file is outlined below under
Duplicating and Redirecting Handles

Reading and writing with handles

256

Function 3FH (Read File or Device)} enables a program to read data from a file or device
that has been opened with a handle Before calling Function 3FH, the program must set
the DS:DX registers to point 1o the beginning of a data buffer large enough to hold the
requested transfer, put the file handle in BX, and put the number of bytes to be read in CX
The length requested can be a maximum of 65535 bytes. The program requesting the
read operation is responsible for providing the data buffer

If the read operation succeeds, the data is read, beginning at the current position of the
file read/write pointer, to the specified location in memory MS-DOS then increments its
intetnal read/write pointer for the file by the length of the data transferred and returns
the length to the calling program in AX with the carry flag cleared. The only indication
that the end of the file has been reached is that the length returned is less than the length
requested In contrast, when Function 3FH is used to read from a character device that is
7ot in raw mode, the read will terminate at the requested length or at the receipt of a cai-
riage return character, whichever comes first. See PROGRAMMING IN THE MS-DOS
ENVIRONMENT: PROGRAMMING FOR M5-DOS: Character Device Input and Output If the
read operation fails, MS-DOS returns with the carrv flag set and an error code in AX

Function 40H (Write File o1 Device) writes from a buffer to a file (o1 device) using a handle
previously obtained from an open or create operation. Before calling Function 40H, the
program must set DS:DX to point to the beginning of the buffer containing the source data,
put the file handle in BX, and put the number of bytes to write in CX The number of bytes
to write can be 2 maximum of 65535

If the write operation is successful, MS-DOS puts the number of bytes written in AX and
increments the read/write pointer by this value; if the write operation fails, MS-DOS sets
the carry flag and returns an error code in AX

Records smaller than one sector (512 bytes) are not written directly to disk. Instead,
MS-DOS stores the record in an internal buffer and writes it to disk when the internal
huffer is full, when the file is closed, or when a call to Interrupt 21H Function O0DH (Disk

Reset) is issued
Note: If the destination of the write operation is a disk file and the disk is full, the only

indication 1o the calling program is that the length returned in AX is not the same as the
length requested in CX Disk full is not returned as an error with the carry flag set.

A special use of the Write function is to truncate or extend a file, If Function 40H is called
with a record length of zero in CX, the file size will be adjusted to the current location of
the file read/write pointer ‘

The M5-DOS Encyclopedia

|
|
1
|

Article 7: File and Record Management

Example: Open the file MYFILE DAT, create the file MYFILE BAK, copy the contents of
the DAT file into the BAK file using 512-byte reads and writes, and then close both files

filet db 'MYEIIE DAI®, 0
fileZ db *MYFIIE BaK',0
handlel dw ? ; handle for MYFILE.DAI
handle2 dw ? i handle for MYFILE BAK
buff dh 512 dup (7} i buffer for file I/0
; open MYFILE.DAI. .
mov - dx, seg filel ; D5:DX = address of filename
mgv ds, dx
mov dx,offset filel
mov ax, 3d00h i Function 3DH = open (read-only)
int 21h ¢ transfer to MS-DOS
je error t jump if open failed
mowv handletl, ax ; save handle for file
; create MYFILE .BAK. .
mov dx,offset f£ile2 ; DS:DX = address of filename
mov cx, 0 ; CX = normal attribute
mov ah, 3ch i Function 3CH = create
int 21h ¢ transfer to MS-DOS
jc error ;o jump 1f create failed
mov haﬁdle2,ax ; save handle for file
loop: ; read MYFILE DAI
mov dx,offset buff DS:DX = buffer address
mov cx, 512 : CX = length to read
mov bx,handiel ; BX = handle for MYFIIE DAI
mov ah,3fh ; Function 3FH = read
int 2in ; transfer to MS-DOS
Jc error ; jump if read failed
or ax, ax ; were any bytes read?
jz done ¢+ no, end of file reached
> write MYFIIE BAK
mov dx,offset buff ; DS:DX = buffer address
mov o, ax ; CX = length to write
mov bx, handle2 i BX = handle for MYFILE BAK
mov ah, 40h ; Function 40H = write
int 21h ¢ transfer to MS-DOS
je error ¢ jump 1f write failed
cmp ax,ex ; was write complete?
ine error ; Jump if disk full
jmp loop 7 continue to end of file

{more)

Section Il Programming in the MS-DOS Environment 257
Canon Exhibit 1108

Part B: Programming for M3-DOS

Article 7: File and Record Management

done: : now close files. ..
mov bx,handlel ; handle for MYFILE .DAI
mov ah, 3eh ; Function 3EH = close file
int 21h ; transfer to MS-DOS
jc error ; dump if close failed
mov b, handle2 ¢ handle for MYFILE. BAK

jalead) ah, 3eh ¢ Function 3Ef = clese file
int 21h ; transfer to MS-DOS

Jje errar jump if close failed

Positioning the read/write pointer

258

Function 42H (Move File Pointer) sets the position of the read/write pointer associated
with a given handle The function is called with a signed 32-bit offset in the CX and DX
registers (the most significant half in CX), the file handle in BX, and the positioning mode
in Al: '

Mode Significance

00 ‘Supplied offset is relative to beginning of file.
01 Supplied offset is relative to current position of read/write pointer
02 Supplied offset is relative to end of file

It Function 42H succeeds, MS-DOS returns the resulting absolute offset (in bytes) of the
tile pointer relative to the beginning of the file in the DX and AX registers, with the most
significant half in DX, if the function fails, M5-DOS sets the carry flag and returns an error
code in AX A

Thus, a program can obtain the size of a file by calling Function 42H with an offset of zero
and a positioning mode of 2. The function returns a vaiue in DX:AX that represents the
offset of the end-of-file positicn relative to the beginning of the file

Example. Assume that the file MYFILE DAT was previously opened and its handle is
saved in the variable fhandle Position the file pointer 32768 bytes from the beginning of
the file and then read 512 bytes of data starting at that file position.

fhandle dw ? ¢ handle from previous open
buff db 512 dup (2} ; butffer for data from file

(more)

The MS5-DOS Encyclopedia

mov cx,0

mov dx, 32768
mov bx, fhandle
mov al,o0

mnov ah,42h

int 21th

jc error

mov dx, offset buff
mov cr, 512

mnov bx, fhandle
mov ah,3fh

int 21h

jec error

cmp ax,512

jne errgr

position the file pointer...
CYX = high part of file offset
DX = low part of file offset
BX = handle for file

Al = positioning mode
Function 42H = position
transfer to MS5-DOS

jump if functicon call failed

now read 512 byres from file
DS:DX = address of buffer

CX length of 512 bytes

BX = handle for file

» Function 3FH = read

transfer to MS-DOS

jump if read failed

was 512 bytes read?

jump 1f partial rec. or EOF

Example Assume that the file MYFILE DAT was previously opened and its handle is saved
in the variable fhandle Find the size of the file in bytes by positioning the file pointer to
zero bytes relative to the end of the file The returned offset, which is relative to the begin-

ning of the file, is the file’s size

fhandle dw ?

mov cx, 0

mov dx, 0

mov bz, fhandle
mov al,2

mov ah, 42h

int 21h

jc _Brror

Other handle operations

;

handle from preavious open

position the file pointer

to the end of file. ..

CX = high part of offset

DX = low part of offset

BX = handle for file

Al = positioning mode
Function 42H = positien
transfer to MS-DOS

Jump if function call failed

if call succeeded, DX:AX

- now contains the file size

MS-DOS provides other handle-oriented functions to rename (or move) a file, delete a file,
read or change a file’s attributes, 1ead or change a file’s date and time stamp, and duplicate
or redirect a file handle The first three of these are “file-handle-like” because they use an
ASCIIZ string to specily the file; howeves, they do not return a file handle

Section II. Programming in the M5-DOS Environment 259

Canon Exhibit 1108

Article 7: File and Record Management

yramming for M3-DOS E
\
\

If the function is successful, MS-DOS deletes the file by simply marking the first byte of its

ng a file
. oo o e directory entry with a special character (OESH), making the entry subsequently unrecog-
unc‘tion 5 6P_I (Rena.lme l_zﬂe) renames an existing file ?_md/ or moves the file from one l_oca- nizable. MS-DOS then updates the disk’s FAT so that the clusters that previously belonged
on in the hierarchical file structure to another. The file to be renamed cannot be a hidden oy ,) .
. . . A) ; to the file are “free” and returns to the program with the carry flag clear If the delete
r system file or a subdirectory and must not be currently open by any process; attempting : function fails, MS-DOS sets the carry flag and returns an error code in AX

> rename an open file can corrupt the disk. M$-DOS renames a file by simply changing its
irectory entry; it moves a file by removing its current directory entry and creating a new
ntry in the target directory that refers to the same file. The location of the file's actual

ata on the disk is not changed

The actual contents of the clusters assigned 1o the file are not changed by a delete opera-
tion, so for security reasons sensitive information should be overwritten with spaces or
some other constant character before the file is deleted with Function 41H

joth the current and the new filenames must be AS&IIZ strings and can include a drive Example. Delete the file MYFILE DAT, located in.the \WORK directory on drive C,

nd path specification; wildcard characters (+ and ?) are not permitted in the filenames ;

he program calls Function 56H with the address of the current pathname in the DS:DX frame - db 'C:WORKAMYFILE DRI, O
egisters and the address of the new pathname in ES:DI If the path elements of the two
trings are noi the same and both paths are valid, the file “moves” from the source direc-

any to the target directory. If the paths match but the filenames differ, MS-DOS simply mov dx,seg fname ; DS:DX = address of filename
1wdifies the directory entry to reflect the new filename. mav ds,dx
: mov dz,offset fname
f the function succeeds, MS-DOS returns to the calling program with the carry flag clear. ; mov ah, 41h : Function 41H = delete
he function fails if the new filename is already in the target directory; in that case, ot 21h ¢ transfer to MS-DOS
‘ je error ; jump if delete failed

15-DOS sets the carry flag and returns an error code in AX.

Ixample. Change the name of the file MYFILE DAT to MYFILE.OLD In the same opera-

ion, move the file from the \WORK directory to the \BACKUP directory.
Getting/setting file attributes

ilel db ' \WORK\MYF I1E .DAL', 0
ile2 b "\BACKUP\MYFILE OLD', 0 Function 43H (Get/Set File Attributes) obtains ot modifies the ateributes of an existing file
Before calling Function 43H, the program must set the DS:DX registers to point to the
ASCIIZ pathname for the file. To read the attributes, the program must set Al to zero; to set
mov dx, seg filel . DS:DX = old filename the attributes, it must set Al to 1 and place an attiibute code in CX. See Creating a File
mov ds, dx above
mov es,dx
v dx,offset filel If the function is successful, MS-DOS reads or sets the attribute byte in the file’s directory
mov di,offset file? ; ES:DI = new filsnams entry and returns with the carty fiag clear and the file’s attribute in CX. If the function
mey ah, 56h i Function 56H = rename : fails, MS-DOS sets the catry flag and returns an error code in AX
int 21h ¢ transfer to MS-DOS .
ic error ; jump if rename failed Function 43H cannot be used to set the volume-label bit (bit 3) or the subdirectory bit (bit
4) of afile It also should not be used on a file that is currently open by any process
Example. Change the attributes of the file MYFILE DAT in the \BACKUP directory on
gafile drive C to read-only This prevents the file from being accidentally deleted from the disk
unction 41t (Delete File) effectively deletes a fiie from a disk Before calling the function, fname - db 'C7NBACKUPAMYELLE DALY, O
| program must set the DS:DX registers to point to the ASCITZ pathname of the file to be
jeleted The supplied pathname cannot specify a subdirectory or a read-only file, and the
ile must not be currently open by any process mov dx, seg fname : DS:DX = address of filename
mov dsz, dx
mov dx,cffset fname
mov cx, 1 ; CX = attribute (read-only)
mov al,1 ; AL = mode (0 = get, 1 = set)

(more)

Section IT: Programming in the M5-DOS Environment 261

The MS-DOS Encyclopedia
Canon Exhibit 1108

gramming for MS-DOS

mov ah,43h ; Function 43H = get/set attr

int 21h ; transfer to M3-DO3

jc error ; jump if set attrib faiied
i/setting file date and time

Function 57H (Get/Set Date/Time of File) reads or sets the directory time and date stamp
of an open file To set the time and date to a particular vaiue, the program must call Func-
tion 57H with the desired time in CX, the desired date in DX, the handle for the file (ob-
tained from a previous open or create operation) in BX, and the value 1in AL Toread the
time and date, the function is called with AL containing 0 and the file handle in BX; the
time is returned in the CX register and the date is returned in the DX register. As with
other handle-oriented file functions, if the function succeeds, the carry flag is requrned
cleared: if the function fails, MS-DOS returns the carty flag set and an error code in AX

The formats used for the file time and date ate the same as those used in disk directory
entries and FCBs. See Structure of the File Control Block below

The main uses of Function 57H ate to force the time and date entry for a file 1o be updated
when the file has #ot been changed and to circumvent MS-DOS’s modification of file
date and time when the file sas been changed In the latter case, a program can use this
function with AL = 0 to obtain the file’s previous date and time stamp, modify the file, and
then restore the original file date and time by re-calling the function with Al =1 before

closing the file.
ating and redirecting handles

Ordinarily, the disk FAT and directory are not updated until 2 file is closed, even when

the file has been modified Thus, until the file is closed, any new data added to the file can
be lost if the system crashes or is turned off unexpectedly. The obvious defense against
such loss is simply to close and reopen the file every time the file is changed. However,
this is a relatively slow procedure and in a network envitonment can cause the program
to lose control of the file to another process.

Use of a second file handle, created by using Function 45H (Duplicate File Handle) to
duplicate the original handle of the file to be updated, can protect data added to a digk file
before the file is closed To use Function 45H, the program must put the handle o be
duplicated in BX If the operation is successtul, MS-DOS clears the carry flag and returns
the new handle in AX; if the operation fails, MS-DOS sets the carry flag and returns an
error code in AX

If the function succeeds, the duplicate handle can simply be closed in the usual manner
with Function 3EH. This forces the desited update of the disk directory and FAT The orig-
inal handle remains open and the program can continue to use it for file read and write

operations

Note: While the second handle is open, moving the read/write pointer associated with
either handle moves the pointer associated with the other

The MS-DOS Encyclopedia

Article 7: File and Record Management

Example: Assume that the file MYFILE.DAT was previously opened and the handle for
that file has been saved in the variable fhandle Duplicate the handle and then close the
duplicate to ensure that any data recently written to the file is saved on the disk and that
the directory entry for the file is updated accordingly

fhandle dw ? i handle from previous open

duplicate the handle .

mov bx, fhandle ¢ BX = handle for file

mov ah, 45h ; Function 45H = dup handle
int 21h ; transfer to MS-DOS

je error ;oqump Lf function call failed

¢ now close the new handle . .

mov bx,ax : BX = duplicated handle

mov ah, 3eh ¢ Function 3EH = close

int 21h ; transfer to MS-DOS

je error ; Jump if close failed

mov bx, fhandle ; replaceclosedhandle with active handle

Function 45H is sometimes also used in conjunction with Function 46H (Force Duplicate
File Handle). Function 46H forces a handle to be a duplicate for another open handle —in
other words, to refer to the same file or device at the same file read/write pointer location
The handle is then said to be redirected

The most common use of Function 46H is to change the meaning of the standard input
and standard output handles before loading a child process with the EXEC function In this
manner, the input for the child program can be redirected to come from a file or its output
can be redirected into a file, without any special knowledge on the part of the child pro-
gram. In such cases, Function 45H is used to also create duplicates of the standard input
and standard output handles before they are redirected, so that their original meanings can
be restored after the child exits. See PROGRAMMING IN THE MS-DOS ENVIRONMENT:
Cusromizing mMs-pos: Writing MS-DOS Filters.

Using the FCB Functions

A file control block is a data structure, located in the application program’s memory space
that contains relevant information about an open disk file: the disk drive, the filename anci
extension, a pointer to a position within the file, and so on. Each open file must have its
own FCB The information in an FCB is maintained cooperatively by both MS-DOS and the
application program '

Section Il Programming in the M5-DOS Environment 263

Canon Exhibit 1108

Part B: Programming for M5-DOS

Article 7: File and Record Management

MS-DOS moves data to 4nd from a disk file associated with an FCB by means of a data
buffer called the disk transfer area (DTA) The current address of the DTA is under the
control of the application program, although each program has a 128-byte defauit DTA at
offset 80H in its program segment prefix (PSP) See PROGRAMMING IN THE MS-DOS
ENVIRONMEN T: PROGRAMMING FOR MS-DOS: Structure of an Application Program

Under early versions of MS-DOS, the only limit on the number of files that can be open
simultaneously with FCBs is the amount of memory available to the application to hold the
FCBs and their associated disk buffers However, under MS-DOS versions 3 0 and later,
when file-shating support (SHARE EXE) is loaded; MS-DOS places some restrictions on
the use of FCBs to simplify the job of maintaining network connections for files If the
application attempts to open oo miany FCBs, MS-DOS simply closes the least recently used
FCBs to keep the total number within a limit

The CONFIG SYS file directive FCBS allows the user to control the allowed maximum
number of FCBs and to specify a certain number of FCBs to be protected against automatic
closure by the system The default values are a maximum of four files open simultaneously
using FCBs and zero FCBs protected from automatic closure by the system See USER
COMMANDS: CONFIG SYS: FCBS

Because the FCB operations predate MS-DOS version 2 0 and because FCBs have a fixed
structure with no room to contain a path, the FCB file and record services do not support
the hierarchical directory structure. Many FCB operations can be performed only on files
in the current directory of a disk For this reason, the use of FCB file and record operations
should be avoided in new programs.

Structure of the file control block

Each FCB is a 37-byte array allocated from its own memory space by the application pro-
gram that will use it. The FCB contains all the information needed to identify a disk file
and access the data within it: drive identifier, filename, extension, file size, record size,
various file pointers, and date and time stamps The FCB structure is shown in Table 7-3

Table 7-3. Structure of a Normal File Control Block.

Offset Size
Maintained by (bytes) {(bytes) Description
Program 00H 1 Drive identifier
Program 01H 8 Filename
Program 09H 3 File extension
MS-DOS OCH 2 Current block number
Program 0EH 2 Record size (bytes)
MS-DOS 10H 4 File size (bytes)
MS-DOS 14H 2 Date stamp
MS-DOS 16H 2 Time stamp
MS-DOS 18H 8 Reserved
MS-DOS 20H 1 Current record number
Program 21H 4 Random record number

264 The MS-DOS Encyclopedia

Drive identifier: Initialized by the application to designate the drive on which the file to
be opened or created resides 0 = default drive, 1 = drive A, 2 = drive B, and so on. If the
application supplies a zero in this byte (to use the default drive), MS-DOS alters the byte
during the open or create operation to reflect the actual drive used, that is, after an open
or create operation, this drive will always contain a value of 1 or greater

Filename Standard eight-character filename; initialized by the application; must be left
justified and padded with blanks if the name has fewer than eight characters A device
name (for example, PRN) can be used; note that there is no colon after a device name

File extension. Three-character file extension; initialized by the application; must be left
justified and padded with blanks if the extension has fewer than three characters

Current block number, Initialized to zero by MS-DOS when the file is opéned‘ The block
number and the record number together make up the record pointer during sequential file
access

Record size. The size of a record (in bytes) as used by the program. MS-DOS sets this field
o 128 when the file is opened or created; the program can modify the field afterward o
any desired record size If the record size is larger than 128 bytes, the default DTA in the
PSP cannot be used because it will collide with the program’s own code ordata

File size- The size of the file in bytes MS-DOS initializes this field from the file’s directory
entry when the file is opened The first 2 bytes of this 4-byte field are the least significant
bytes of the file size

Date stamp- The date of the last write operation on the file MS-DOS initializes this field
from the file’s directory entry when the file is opened. This field uses the same format
used by file handle Function 57H (Get/Set/Date/ Time of File):

Date Format

Bit: 15 14 13 12 11 16 9 87T 6 5 4 3 2 1 0

Content:rYYYYYYYMMMMDDDDD

Bits Contents

0-4 Day of month (1-31)
5-8 Month (1-12)

9-15 Year (relative to 1980)

Time stamp 1he time of the last wiite operation on the file. MS-DOS initializes this field
from the file's directory entry when the file is opened This fieid uses the same format
used by file handle Function 57H (Get/Set/Date/ Time of Fiie):

Section IT Programming in the MS-DOS Environment 265
Canon Exhibit 1108

Part B: Programring for M5-DOS

266

Time Format

Bit: 5 14 13 12 11 1 9 8|7 6 5 4 3 2 1 0

Content: |H|H|H|BIH|M{M[M([M[Mi{M| 5|5 |S]|3]|3

Bits Contents

0—4 Number of 2-second increments (0—29)
5-10 Minutes (0-59)
11-15 Hours (0-23)

Current record number. Together with the block number, constitutes the record pointet
used during sequential read and write operations. MS-DOS does not initialize this field
when a file is opened. The record number is limited to the range 0 through 127; thus, there
are 128 records per block. The beginning of a file is record 0 of block 0

Random record pointer: A 4-byte field that identifies the record to be transferred by the
random record functions 21H, 22H, 27H, and 28H. If the record size is 64 bytes or larger,
only the first 3 bytes of this field are used MS-DOS updates this field after random block
reads and writes (Functions 27H and 28H) but not after random record reads and writes

(Functions 21H and 22H)

An extended FCB, which is 7 bytes longer than a normal FCB, can be used to access files
with special attributes such as hidden, system, and read-only The exita 7 bytes of an ex-
tended FCB are simply prefixed to the normal FCB format (Table 7-4) The first byte of

an extended FCB always contains OFFH, which could never be a legal drive code and
therefore serves as a signal to MS-DOS that the extended format is being used. The next 5
bytes are reserved and must be zero, and the last byte of the prefix specifies the attributes
of the file being manipulated The remainder of an extended FCB has exactly the same
layout as a normal FCB. In general, an extended FCB can be used with any MS-DOS func-

tion call that accepts a normal FCB

Table 7-4. Structure of an Extended File Control Block.

Offset Size
Maintained by (bytes) (bytes) Description
Program 00H 1 Extended FCB flag = 0FFH
MS-DOS 01H 5 Reserved
Program 06H 1 File attribute byte
Program 07H 1 Drive identifier
Program 08H 8 Filename

(more)

The MS-DOS Encyclopedia

Article 7: File and Record Management

Table 7-4, Continued

Offset Size
Maintained by (bytes) (bytes) Description
Program 10H 3 File extension
MS-DOS 13H 2 Carrent block number
Program 15H 2 Record size (bytes)
MS-DOS 17H 4 File size (bytes)
MS-DOS 1BH 2 Date stamp
MS-DOS 1DH 2 Time stamp
MS-DOS 1IFH 8 Reserved
MS-DOS 274 1 Current record number
Program 28H 4 Random record number

Extended FCB flag- When 0FFH is present in the first byte of an FCB, it is a signal to
MS-DOS that an extended FCB (44 bytes) is being used instead of 2 normal FCB (37 bytes).

File attribute byte. Must be initialized by the application when an extended FCB is used to
open or create a file The bits of this field have the following significance:

Bit Meaning
0 Read-only
1 Hidden
2 System
3 Volume label
4 Directory
57 Archive
6 Reserved
7 Reserved
FCB functions and the PSP

The PSP contains several items that are of interest when using the FCB file and record
operations: two FCBs called the default FCBs, the default IDTA, and the command tail for
the program. The following table shows the size and location of these elements:

PSP Offset

(bytes) Size (bytes) Description

5CH 16 Defauit FCB #1

6CH 20 Default FCB #2

80H 1 : Length of command tail

81H 127 Command-tail text

80H 128 Default disk transfer area (DTA)

Section II. Programming in the MS-DOS Environment 267
Canon Exhibit 1108

Part B: Programming for MS-DOS

Article 7: File and Record Management

When MS-DOS loads a program into memory for execution, it copies the command tail
into the PSP at offset 81H, places the length of the command tail in the byte at offset 80H,
and parses the first two parameters in the command tail into the default FCBs at PSP
offsets SCH and 6CH (The command tail consists of the command line used to invoke the
program minus the program name itself and any redirection or piping characters and their
associated filenames or device names) MS-DOS then sets the initial DTA address for the
program to PSP:0080H

For several reasons, the default FCBs and the DTA are often moved to another location
within the program’s memory area. First, the default DTA allows processing of only very
small records. In addition, the default FCBs ovetlap substantially, and the first byte of the
default DTA and the last byte of the first FCB conflict Finally, unless either the command
tail or the DTA is moved beforehand, the first FCB-related file or record operation will
destroy the command tail '

Function 1AH (Set DTA Address) is used to alter the DTA address It is called with the
segment and offset of the new buffer to be used as the DTA in DS:DX. The DTA address
remains the same until ancther call to Function 1AH, regardiess of other file and record
management calls; it does not need to be reset before each read or write.

Note: A program can use Function 2FH (Get DTA Address) to obtain the current DTA
address before changing it, so that the original address can be restored later

Parsing the filename

268

Before a file can be opened or created with the FCB function calls, its drive, filename, and
extension must be placed within the proper fields of the FCB The filename can be coded
into the program itself, or the program can obtain it from the command tail in the PSP or
by prompting the user 4nd reading it in with one of the several function calls for character
device input.

MS-DOS automatically parses the first two parameters in the program’s command tail into
the default FCBs at PSP:005CH and PSP:006CH It does not, however, attempt to differenti-
ate berween switches and filenames, so the pre-parsed FCBs are not necessarily useful to
the application program If the filenames were preceded by any switches, the program
itsell has to extract the filenames directly from the command tail. The program is then
responsible for determining which parameters are switches and which are filenames, as
well as where each parameter begins and ends

After a filename has been located, Function 29H (Parse Filename) can be used to test it
for invalid characters and separators and to insert its various components into the proper
fields in an FCB. The filename must be a string in the standard form drive.filename ext
Wildcard charactets are permitted in the filename and/or extension: asterisk (+) wildcards
are expanded to question mark (?) wildcards

To call Function 29H, the DS:SI registers must point to the candidate filename, ES:DI
must point to the 37-byte buffer that will become the FCB for the file, and AL must hold
the parsing control code. See SYSTEM CALLS: IntzrrUPT 218: Function 29H

The M5-DOS Encyclopedia

If a drive code is not incjuded in the filename, MS-DOS inserts the drive number of the
current drive into the FCB Parsing stops at the first terminator character encountered in
the filename Terminators include the following:

o=+ /"[1}<>|spacetab

If a colon character (¢) is not in the proper position to delimit the disk drive identifier or if
a petiod () is not in the proper position to delimit the extension, the character will also be
treated as a terminaior For example, the filename C:MEMO TXT will be parsed correctly;
however, ABC:DEF DAY will be parsed as ABC.

If an invalid drive is specified in the filename, Function 29H returns OFFH in Al if the
filename contains any wildcard characters, it returns 1 Otherwise, AL contains zero upon
return, indicating a valid, unambiguous filename

‘Note that this function simply parses the filename into the FCB It does not initialize any
other fields of the FCB (although it does zero the current block and record size fields), and
it does not test whether the specified file actually exists

Error handli_ng and FCB functions

T he FCBetated file and record functions do not return much in the way of error infor-
mation when a function fails. Typically, an FCB function returns a zero in AL if the func-
tion succeeded and OFFH if the function failed Under MS-DOS versions 2 x, the program
is left to its own devices to determine the cause of the error Under MS-DOS versions 3 x,
however, a failed ECB function call can be followed by a call to Interrupt 21H Function
59H (Get Extended Error Information) Function 39H will return the same descriptive
codes for the error, including the etror locus and a suggested recovery strategy, as would
be returned for the counterpart handle-otiented file or record function

Creating a file
Function 16H (Create File with FCB) creates a new file and opens it for subsequent read/
write operations The function is called with DS:DX pointing to a valid, unopened FCB
MS-DOS searches the current directory for the specifed filename If the filename is found,
MS-DOS sets the file length to zero and opens the file, effectively truncating it1o a zero-
length file; if the filename is not found, MS-DOS creates a new file and opens it Other
fields of the FCB are filled in by MS-DOS as described below under Opening a File

if the create operétion succeeds, MS-DOS returns zero in Al ; if the operation fails, it
returns OFFH in AL This function will not ordinariiy fail unless the file is being created in
the root directory and the directory is full

Warning: To avoid loss of existing data, the FCB open function should be used to test for
file existence before creating a file

Section IL Programming in the M5-DOS Environmeni 269
Canon Exhibit 1108

Part B: Programming for MS-DOS

Opening a file

270

Function 0FH opens an existing file DS:DX must point to a valid; unopened FCB contain-
ing the name of the file to be opened. If the specified file is found in the current directory,
MS-DOS opens the file, fills in the FCB as shown in the list below, and returns with Al set
o 00H; if the file is not found, MS-DOS returns with AL set 10 OFFH, indicating an error.

When the file is opened, MS-DOS

® Sets the drive identifier (offset 00H) to the actual drive {01 = A, 02 = B, and so on)
Sets the current block number (offset 0CH) to Zero.

Sets the file size (offset 10H) to the value found in the directory entry for the file
Sets the record size (offset OEH) to 128

Sets the date and time stamp (offsets 14H and 16H) to the values found in the direc-
tory entry for the file,

The program may need 10 adjust the FCB-—change the record size and the random record
pointer, for example — before proceeding with record operations

Example. Display a prompt and accept a filename from the user Parse the filename into
an FCB, checking for an illegal drive identifier or the presence of wildcards If a valid,
unambiguous filename has been entered, attempt to open the file Create the file if it does
not already exist.

kbuf db 64,0,84 dup {0)
prompt db Odh, Oah, '"Enter filename: $§'
myfeb db 37 dup (0}
; display the prompt
nov dx, seg prompt ¢ D3:DX = prompt address
mnov ds, dx
mov eg,dx
mov dx, offset prompt
mowv ah, 0%h + Function 0%H = print string
int 21h ; transfer to M§-DOS
; now input filename.
mov dx,offset kbuf ; DS:DX = buffer address
mov ah, 0ah ; Function 0AH = enter string
int 21h ; transfer to MS-DOS
; parse filenmame into ECB. .
oV si,offset kbuf+2 ; DS:8I = acddress of filename
mov di,cffset myfch ; ES:DI = address of fcb
nov ax,2900h ; Function 28H = parse name
int 21h ; transfer to MS-DOS
or al,al ; jump if bad drive or
ing arror ; wildecard characters in name
{more)
The M5-DOS Encyclopedia

Article 7: File and Record Management

i try to cpen file.

mov dx,offset myfchb ; DS:DX = FCB address

mov ah,0fh ; Funection OFH = open file
int 21h ; transfer to MS-DCS

or al,al ; check status

Jjz proceed ; Jump 1f open successful

; else create file. ..

mov dx,cffset myicb ; DS:DX = FCB address

mov ah, 16h ; Function 16H = create

int 27h ; transfer to MS-DOS

or al,al ; did create succeed?

jnz error jump if create failed

proceed:

; file has been opened or
; created, and FCB is valid
; for read/write cperations.

Closing a file

Function 10H (Close File with FCB) closes a file previously opened with an FCB As usual,

the function is called with DS:DX pointing to the FCB of the file to be closed MS-DOS

updates the directory, if necessary, 1o reflect any changes in the file’s size and the date and
time last written '

If the operation succeeds, MS-DOS returns 00H in Al; if the operation fails, MS-DOS
returns OFFH. :

Reading and writing files with FCBs

MS-DOS offers a choice of three FCB access methods for data within files: sequential,
random record, and random block.

Sequential operations step through the file one record at a time MS-DOS increments the
current record and current block numbers after each file access so that they point to the
beginning of the next record. This method is particularly useful for copying or listing files.

Random record access allows the program to read or write a record from any location in
the file, without sequentiaily reading all records up to that point in the file The program
must set the rtandom record number field of the FCB appropriately before the read or wiite
is requested This method is useful in database applications, in which a program must
manipulate fixed-length records

Random block operations combine the features of sequential and random record access
methods The program can set the record number to point to any record within a file, and
MS-DOS updates the record number after a read or write operation Thus, sequential
operations can easily be initiated at any file location Random block operations with a
record length of 1 byte simulate file-handle access methods

All three methods require that the FCB for the file be open, that DS:DX point to the FCB,
that the DTA be large enough for the specified record size, and that the DTA address be
previously set with Function 1AH if the default DTA in the program’s PSP is not being
used

Section II: Programming in the M5-DOS Environment 271

Canon Exhibit 1108

Part B: Programming for MS-DOS

MS-DOS reports the success or failure of any FCB-related read operation (sequential,
1andom record, or random block) with one of four return codes in register AL:

Code Meaning

00H Successful read

01H End of file reached; no data read into DTA

02H Segment wrap (DTA too close to end of segment); no data read into DTA.
03H End of file reached; partial record read into DTA

MS-DOS reports the success or failure of an FCB-related write operation as one of three
return codes in register AL

Code Mecaning

O0H Successful write
01" Disk full; partial or no write
02H Segment wrap (DTA too close to end of segment); write failed

For FCB write operations, records smaller than one sector (512 bytes) are not written
directly to disk. Instead, MS-DOS stoses the record in an internal buffer and writes the data
to disk only when the internal buffer is full, when the file is closed, or when a call to Inter-
rupt 21H Function 0DH (Disk Reset) is issued

Sequential access: reading

Function 14H (Sequential Read) reads records sequentially from the file to the curtent
DTA address, which must point to an area at least as large as the record size specified in
the file's FCB Afier each read operation, M$-DOS updates the FCB block and record num-
bers (offsets 0CH and 20H) 1o point 1o the next record.

Sequential access: writing

Function 15H (Sequential Write} writes records sequentially from memoty into the file

The length written is specified by the record size field (offset OEH) in the FCB; the memory
address of the record to be written is determined by the current DTA address. After each
sequential write operation, MS-DOS updates the FCB block and record numbers (offsets
OCH and 20H) to peint to the next record

Random record access: reading

272

Function 21H (Random Read) reads a specific record from a file Before iequesting the
read operation, the program specifies the record to be transferred by setting the record
size and random record number fields of the FCB (offsets 0EH and 21H)} The current DTA
address must also have been previously set with Function 1AH to point to a buffer of
adequate size if the default DTA is not large enough

The M5-DOS Encyclopedia

Article 7: File and Record Management

After the read, MS-DQOS sets the current block and current record number fields (offsets
OCH and 20H) to point to the same record Thus, the program is set up to change to
sequential reads or writes, However, if the program wants to contirme with random record
access, it must continue to update the random record field of the FCB before each random
record read or write operation.

Random record access: writing

Function 22H (Random Write) writes a specific record from memory to a file. Before
issuing the function call, the program must ensure that the record size and random record
pointer fields at FCB offsets OEH and 21H are set appropriately and that the current DTA
address points to the buffer containing the data to be written

After the write, MS5-DOS sets the current block and current record number fields (ofisets
OCH and 20H) to point to the same record. T hus, the program is set up to change to
sequential reads or writes If the program wants to continue with random record access, it
must continue to update the rtandom record field of the FCB before each random record
read or write operation.

Random block access: reading

Function 27H (Random Block Read) reads a block of consecutive records Before issuing
the read request, the program must specify the file location of the first record by setting
the record size and random record numbser fields of the FCB (offsets OEH and 21H) and
must put the number of records to be read in CX The DTA address must have already been
set with Function 1AH to point to a buffer large enough to contain the group of records to
be read if the default DTA was not large enough The program can then issue the Function
27H call with DS:DX peinting to the FCB for the file

After the random block read operation, MS-DOS resets the FCB random record pointer
(offset 21H) and the current block and current record number fields (offsets 0CH and 20H)
to point to the beginning of the next record not read and returns the number of records
actually read in CX.

If the record size is set to 1 byte, Function 27H reads the number of bytes specified in CX,
beginning with the byte position specified in the random record pointer This simulates
(to some extent) the handle type of read operation (Function 3FH)

Random block access: writing

Function 28H (Random Block Write) writes a block of consecutive records from memory
to disk. The program specifies the file location of the first record to be written by setting
the record size and random record pointer fields in the FCB (offsets 0EH and 21H) If the
default DTA is not being used, the program must also ensure that the current DTA address
is set appropriately by a previous call to Function 1AH When Function 28H is called,
DS:DX must point to the FCB for the file and CX must contain the number of records to

be written

After the random block write operation, MS-DOS resets the FCB 1andom record pointer
(offset 21H) and the current block and current record number fields (offsets 0CH and 20H)
to point to the beginning of the next block of data and returns the number of records
actually written in CX

Section I Programming in the MS-DOS Environment 273
Canon Exhibit 1108

Part B: Programming for MS-DOS

If the record size is set to 1 byte, Function 28H writes the number of bytes specified in CX|
beginning with the byte position specified in the random record pointer. This simulates
(to some extent) the handle type of write operation (Function 40H)

Calling Function 28H with a record count of zero in register CX causes the file length to be
extended or truncated to the current value in the FCB random record pointer field (offset
21H) multiplied by the contents of the record size field (offset OEH)

Example: Open the file MYFILE DAT and create the file MYFILE BAK on the current disk
drive, copy the contents of the DAT file into the BAK file using 312-byte reads and writes,
and then close both files

fabi db ¢] ¢ drive = default
db TMYFIIE ; B character filename
db 'DAT" ; 3 character extension
db 25 dup (Q) ; remainder of fcbl
feb2 db 0 ; drive = default
db 'MYFIIE ' ; 8 character filename
db 'BaK' ; 3 character extension
db 25 dup {0} ; remainder of fcbZ
buff dhb 512 dup (?) ; butfer for £ile 1/0
open MYFILE DAI
mov, dx, seg fcbi ; DS:DX = address of FCB
mov ds,dx
mov dx,offset fcbil
mov ah,G£fh ; Function QFH = copen
intg 27h ; transfer to MS-DOS
or al,al ; did open succeed?
inz erroxr Jjump if cpen failed
create MYFILE.BAK
mov dx,offset fcb2Z : DS:DX = address of FCB
mov ah, 16h - Function 16H = create
int 21h transfer to MS-DOS
or al,al did create succesd?
jnz errgr Jump if create failed
; set record length to 312
mov word ptr fcbl+0eh,512
mov word ptr fcb2+0eh,512
; set DIA to our buffer..
mov dx,of fset buff ; DS:DX = buffer address
mov ah, 1ah ; Function 1AH = set DIA
int 27h transfer to MS-DOS
loop: ¢ read MYFIIE.DAI
mowv dx,offset fchi ; DS:DX = FCB address
mov ah,14h Function 14H = seg. read
int 21h ": transfer to MS-DOS
or al,al was zead successful?
jnz done ; no, quit

} write MYFILE BAK.

(more)

The MS-DOS Encyclopedia

i

Article 7: File and Record Management

mov dx,offset fcb2
mov ah, 15h
int 21h
or al,al
jnz error
jmp lcop
done:

mov dx, offset fcbi
mov ah, T0h
int 21h
or al,al
inz error
mov dx,o0ffset fch2
mnov ah, 10h
int 2th
ar al,al
jnz error

Other FCB file operations

; DS:DX = FCB address

Function 15H = seq. write
transfer to MS-DOS

¢ was write successful?

jump if write failed

; continue to end of file

now close files.

; DS:D¥ = FCB for MYFILE.DAI
; Function 10H = close file
; transfer to M5-DOS

; did close succeed?

Jump if close failed

: DS:DX = ECB for MYFILE BAK
; Function 10H = close file
; transfer to MS-DQOS

did close succeed?
jump if close failed

As it does with file handles, MS-DOS provides FCB-oriented functions to rename or delete
a file Unlike the other FCB functions and their handle counterparts, these two functions
accept wildcard characters An additional FCB function allows the size or existence of a
file to be determined without actually opening the file

Renaminga file

Function 17H (Rename File) renames a file (or files) in the current directory The file to be
renamed cannot have the hidden or system attiibute Before catling Function 17H, the pro-
gram must create a special FCB that contains the diive code at offset 00H, the old filename
at offset 01H, and the new filename at offset 11H Both the current and the new filenames

can contain the ? wildcard character.

When the function call is made, DS:DX must point to the special FCB sttucture MS-DOS
searches the current directory for the old filename If it finds the old filename, MS-DOS
then searches for the new filename and, if it finds no matching filename, changes the
directory entry for the old filename to reflect the new filename. [f the old filename field of
the special FCB contains any wildcard characters, MS-DOS renames every matching file
Duplicate filenames are not permitted; the process will fail at the first duplicate name.

If the operation is successful, MS-DOS returns zero in Al; if the operation fails, it returns
OFFH The error condition may indicate either that no files were renamed or that at least
one file was renamed but the operation was then terminated because of a duplicate

filename

Example Rename all the files with the extension ASM in the current directory of the
default disk drive to have the extension COD

Section Il Programming in the MS-DOS Environment 275

Canon Exhibit 1108

Part B: Programming for MS-DOS

renfck db 0 ¢ default drive
db varERrRN! ; wildcard filename
db "ASM!' ; old extension
db 5 dup {0) ; reserved area
di rTRRIRRRY i wildecard filename
db rCop! ¢ new extension
db 15 dup (0) ¢ remainder of FCB
mov dx, seg renfcb + DS:DX = address of
mov ds, dx i "special” FCB
mov dx,of fset renfcb
mov ah, 17h ¢ Function 17H = rename
int 2th ; transfer to MS-DOS
or al,al ; did function succeed?
jnz error ; jump if rename falled
Deleting a file

276

Function 13H (Delete File) deletes a file from the current directory. The file should not be
currently open by any process If the file to be deleted has special attributes, such as read-
only, the program must use an extended FCB to remove the file. Directories cannot be
deleted with this function, even with an extended FCB

Function 13H is called with DS:DX pointing to an unopened, valid FCB containing the
name of the file to be deleted The filename can contain the ? wildcard character; if it does,
MS-DOS deletes all files matching the specified name [f at least one file matches the FCB
and is deleted, MS-DOS retutns 00H in AL; if no matching filename is found, it returns

OFFH

Note: This function, if it succeeds, does not return any information about which and
how many files were deleted. When multiple files must be deleted, closer control can be
exercised by using the Find File functions (Functions 11H and 12H) o inspect candidate
filenames See PROGRAMMING IN THE MS-DOS ENVIRONMENT: PROGRAMMING FOR
ms-0os: Disk Directories and Volume Labels The files can then be deleted individually

Example Delete all the files in the current directory of the current disk drive that have
the extension BAK and whose filenames have A as the first character

delfck db o » default drive
db "AR222222" ; wildcard filename
db 'BAK" ; extension
db 25 dup (0) ; remainder of FCB

(more)

The MS-DOS Encyclopedia

|
i
i
i
I

Article 7: File and Record Management

mov dx,seg delfcb i DS:DX = FCB address
mov ds,dx
mov dx,offset delfcb

mov ah,13h ; Function 13H = delete
int 21h ; transfer to MS-DOS

; did function succeed?
;7 jump if delete failed

or al,al
jnz error

Finding file size and testing for existence

Function 23H (Get File Size) is used primarily to find the size of a disk file without opening
it, but it may also be used instead of Function 11H (Find First File) to simply test for the
existence of a file Before calling Function 23H, the program must parse the filename into
an unopened FCB, initialize the record size field of the FCB (offset 0EH), and set the
DS:DX registers to point to the FCB.

When Function 23H returns, AL cortaing O0H if the file was found in the current directory
of the specified drive and OFFH if the file was not found.

If the file was found, the random record field at FCB offset 21H contains the number of
records (rounded upward) in the target file, in terms of the value in the record size field
(offset GEH) of the FCB. If the record size is at least 64 bytes, only the first 3 bytes of the
random record field are used; if the record size is less than 64 byies, all 4 bytes are used To
obtain the size of the file in bytes, the program must set the record size field to 1 before the
call This method is not any faster than simply opening the file, but it does avoid the over-
head of closing the file afterward (which is necessary in a networking environment).

Summary

MS-DXOS supports two-distinct but overlapping sets of file and record management
services The handle-oriented functions operate in terms of null-terminated (ASCIIZ)
filenames and 16-bit file identifiers, called handles, that are returned by MS-DOS after a file
is opened or created The filenames can include a full path specifying the file's location in
the hierarchical directory structure The information associated with a file handle, such as
the current read/write pointer for the file, the date and time of the last write to the file, and
the file’s read/write permissions, sharing mode, and attributes, is maintained in a table
internal 1o MS-DOS

Section I1. Programming in the MS-DOS Environment 277
Canon Exhibit 1108

Part B: Programming for MS-DOS

278

In contrast, the FCB-oriented functions use a 37-byte structure called a file control block,
located in the application program’s memory space, to specify the name and location of
the file. Aftera file is opened or created, the FCB is used by both MS-DOS and the applica-
tion to hold other informatjon about the file, such as the curzent read/write file pointer,
while that file is in use, Because FCBs predate the hierarchical directory structure that was
introduced in MS-DOS version 2 0 and do not have room to hold the path for a file, the FCB
functions cannot be used to access files that are not in the current directory of the speci-
fied drive

In addition to their lack of support for pathnames, the FCB functions have much poorer
error reporting capabilities than handle functions and are nearly useless in networking
envitonmernts because they do not support file shating and locking Consequently, it is
strongly recommended that the handle-related file and record functions be used ex-
clusively in all new applications

Robert Byers
Code by Ray Duncan

The M5-DOS Encyclopedia

Article 8 Disk Directories and Volume Labels

Article 8
Disk Directories and Volume Labels

MS-DOS, being a disk operating system, provides facilities for cataloging disk files. The
data structure used by MS-DOS for this purpose is the directory, a linear list of names in
which each name is associated with a physical location on the disk Directories are ac-
cessed and updated implicitly whenever files are manipulated, but both directories and
their contents can also be manipulated explicitly using several of the MS-DOS Interrupt
21H service functions

MS-DOS versions 1 x support only one directory on each disk Versions 2 0 and later,
however, support multiple directories linked in a two-way, hierarchical tree structure
(Figure 8-1), and the complete specification of the name of a file or directory thus must
describe the location in the directory hierarchy in which the name appears This specifica-
tion, or path, is created by concatenating a disk drive specifier (for example, A: or C2), the

CA (root directery)

subdirectory ~ ALPHA
subdirectory BETA
file FILE1 COM
file FILE2 COM
|
CMALPHA CMBETA

subdirectory
subdizectory . »
subdirectory ~ EPSILON

subdirectory .
subdirectory . .
subdireciory GAMMA

subdirectory DELTA file FILF4 COM
file FILE3.COM
I .

CNALPHANGAMMA CMALPHADELTIA CABETANEPSILON
subdirectory subdirectory . subd?rectory .
subditectory « o subdirectory < . subdirectory - -
file FILE5COM file FILE1.COM

Figure 8-1. Typical hierarchical directory structure (MS$-DOS versions 2 0 and later}

Section I Programming in the MS-DOS Environment 279
Canon Exhibit 1108

Part B: Programrming for MS-DOS

names of the directories in hierarchical order starting with the root directory, and finally
the name of the file or directory For example, in Figure 8-1, the complete pathname for
FILES COM is CA\ALPHA\GAMMANFILES COM. The two instances of FILE1 COM, in the
root directory and in the directory EPSILON, are distinguished by their pathnames:
C:AFILEL COM in the first instance and C:A\BETA\EPSILON\FILE1 COM in the second

Note: If no drive is specified, the current drive is assumed Also, if the first name in the
specification is not preceded by a backslash, the specification is assumed to be relative to
the current directory For example, if the current directory s C:ABETA\EPSILON, the
specification \FILEL.COM indicates the file FILE1.COM in the oot directory and the
specification FILEL.COM indicates the file FILE1 COM in the directory C:\BETA\EPSILON
See Figure 8-1

Although the casual user of MS-DOS need not be concerned with how this hierarchical
directory structure is implemented, MS-DOS programmers should be familiar with the
internal structure of directoties and with the Interrupt 2H functions available for manip-
ulating directory contents and maintaining the links between directories This article
provides that information

Logical Structure of MS-DOS Directories

An MS-DOS directory consists of a list of 32-byte directory entries, each of which con-
tains a name and descriptive information In MS-DOS versions 1%, each name must be a
filename; in versions 2.0 and later, volume labels and directory names can also appear
in directory entries

Directory searches

Directory entries are not sorted, nor are they maintained as a linked list. Thus, when
MS-DOS searches a directory for a name, the search must proceed linearly from the first
name in the directory. In MS-DOS versions 1 x, a directory search continues until the spec-
ified name is found or until every entry in the directory has been examined. In versions 2 0
and later, the search continues until the specified name is found or until a null directory
entry (that is, one whose first byte is zero) is encountered This null entry indicates the
fogical end of the directory

Adding and deleting directory entries

280

MS-DOS deletes a directory entry by marking it with OE5H in the first byte rather than by
erasing it or excising it from the directory. New names are added to the directory by reus-
ing the first deleted entry in the list If no deleted entries are available, MS-DOS appends
the new entry o the list

The MS-DOS Encyclopedia

!
I
;
|
i
!

Article 8: Disk Directories and Volume Labels

The current directory

When more than one directory exists on a disk, MS-DOS keeps track of a default search
directory known as the current directory. The current directory is the directory used for alf
implicit directory searches, such as those occasioned by a request to open a file, if no alter-
native path is specified. At startup, MS-DOS makes the root directory the current directory,
but any other directory can be designated lates, either interactively by using the CHDIR
command or from within an application by using Interrupt 21H Function 3BH (Change
Current Directory),

Directory Format

The root directory is created by the MS-DOS FORMAT program See TJSER COMMANDS:;
rORMAT . The FORMAT program places the root directory immediately after the disk’s file
allocation tables (FATs) FORMAT also determines the size of the root directory. The size
depends on the capacity of the storage medium: FORMAT places larger root directories on
high-capacity fixed disks and smaller root directories on floppy disks In contrast, the size
of subdirectories is limited only by the storage capacity of the disk because disk space for
subdirectories is allocated dynamically, as it is for any MS-DXOS file The size and physical
location of the root directory can be derived from data int the BIOS parameter block (BPB)
in the disk boot sector. See PROGRAMMING IN THE MS-DOS ENVIRONMENT: S1rUC-
TURE OF Ms-DOs: M5-DOS Storage Devices

Because space for the root directory is allocated only when the disk is formatted, the
root directory cannot be deleted or moved. Subdirectories, whose disk space is allocated
dynamically, can be added or deleted as needed.

Directory entry format

Each 32-byte directory entry consists of seven fields, including a name, an attribute byte,
date and time stamps, and information that describes the file’s size and physical location
on the disk (Figure 8-2) The fields are formatted as described in the following paragraphs

Byte © OBH 0CH I6H 18H 1AH 1CH 1FH

Name Aumibute {Reserved) Time | Date } Starting cluster File size

Figure 8-2 Fotmat of a directory entry

The name field (bytes 0—0AH) contains an 11-byte name unless the first byte of the field
indicates that the directory entry is deleted or null. The name can be an 11-byte filename
(&byte name followed by a 3-byte extension), an 11-byte subdirectory name (8-byte name

Section IT. Programming in the M5-DOS Exvironmen: 281
Canon Exhibit 1108

Part B: Programming for MS-DOS

282

followed by a 3-byte extension), or an 11-byte volume label Names less than 8 bytes and
extensions Jess than 3 bytes are padded to the right with blanks so that the extension al-
ways appears in bytes 08-0AH of the name field The first byte of the name tield can con-
tain certain reserved values that affect the way MS-DOS processes the directory entry:

Value Meaning
0 Null directory entry (logical end of directory in MS-DOS versions 2.0 and later)
5 First character of name to be displayed.as the chatacter represented by OESH

(MS-DOS version 3.2 }
OESH Deleted directory entry

When MS-DOS creates a subdirectory, it always includes two aliases as the first two entries
in the newly creared directory The name . (an ASCII period) is an alias for the name of
the current directory; the name .. (two ASCII periods) is an alias for the directory’s parent
directory — that is, the directory in which the entry containing the name of the current
directory is found.

The attribute field (byte OBH) is an 8-bit field that describes the way MS-DOS processes

the directory entry (Figure 8-3) Each bit in the attribute field designates a particular attri-
bute of that directory entry; more than one of the bits can be set at a time.

Bit 7 6 5 4 3 2 1 0
' . Sub- Volume : Read-onl
. fi Y
(Reserved) | (Reserved) Archive directory label System file | Hidden file file

Figure 8-3. Pormat of the attribute field in a divectory entry

The read-oniy bit (bit) is set to 1to mark a file read-only Interrupt 21H Function 3DH
{Open File with Handle) will fail if it is used in an attempt to open this file for writing The
hidden bit (bit 1) is set to 1 to indicate that the entry is to be skipped in notmal directory
searches —that is, in directory searches that do not specifically request that hidden entries
be included in the search The system bit {bit 2} is set to 1 to indicate that the entry refers to
a file used by the operating system Like the hidden bit, the system bit excludes a directory
eniry from normal directory searches The volume label bit (bit 3) is set to 1 to indicate that
the directory entry represents a voiume label The subdirectory bit (bit 4} is set to 1 when
the directary entry contains the name and location of another directory. This bit is always
set for the directory entries that correspond to the cutrent directory () and the parent
directory (..). The archive bit (bit 5) is set to 1 by MS-DOS functions that close a file that
has been written to Simply openihg and closing a file is not sufficient to update the
archive bit in the file’s directory entry

The time and date fields (bytes 16~17H and 18~19H) are initialized by MS-DXOS when
the directory entry is created These fields are updated whenever a file is written to. The
formats of these fields are shown in Figures 8-4 and 85

The M5-DOS Encyciopedia

Article 8: Disk Directories and Volume Labels

Bit 15 10 4 0

2-second
increments (0-29)

Hours {0-23) Minutes (0-59)

Figure 8-4 Format of the time field in a directory entry

Bit 15 8

Year (relative to 1980) Month (1-12) Day (1-31)

Figure 8-5 Format of the date field in a directory entry

The starting clustes field (bytes 1A—1BH) indicates the disk location of the first cluster
assigned to the file This cluster number can be used as an entry point to the file allocation
table (FAT) for the disk (Cluster numbers can be converted to logical sector numbers with
the aid of the informaticn in the disk’s BPB)

For the . entry (the alias for the directory that contains the entry), the starting cluster field

contains the starting cluster number of the directory itself. For the .. entry (the alias for the
parent directory), the value in the starting cluster field refers to the parent directory unless
the parent directory is the root directory, in which case the starting cluster number is zero

The file size field (bytes 1C-1FH) is a 32-bit integer that indicates the file size in bytes

Volume Labels

The generic term volume refers to a unit of auxiliary storage such as a floppy disk, a fixed
disk, or a reel of magnetic tape In computer environments where many different volumes
might be used, the operating system can uniquely identity each volume by initializing it
with a volume label

Volume labels are implemented in MS-DOS versions 2.0 and later as a specific type of

" directory entry specified by setting bit 3 in the attribute field 1o 1 In a volume label direc-

tory entry, the name field contains an 11-byte string specifying a name for the disk volume
A volume label can appear only in the oot directory of a disk, and only one volume label

can be present on any given disk.
In MS-DOS versions 2 0 and later, the FORMAT command can be used with the /V switch
1o initialize a disk with a volume label In versions 3.0 and later, the [ABEL command can

be used to create, update, or delete a volume label Several commands can display a disk’s
volume label, including VOL, DIR, L ABEL, TREE, and CHKDSK See USER COMMANDS.

Section II: Programming in the MS-DOS Environment 283

Canon Exhibit 1108

Part B: Programming for MS-DOS

In MS-DOS versions 2 x, volume labels are simply a convenience for the user; no MS-DOS
routine uses a volume label for any other purpose. In MS-DOS versions 3 x, however, the
SHARE command examines a disk’s volume label when it attempts to verify whether a
disk volume has been inadvertently replaced in the midst of a file read or write operation,
Removable disk volumes should therefore be assigned unique volume names if they are

to contain shared files

Functional Support for MS-DOS Directories

Several Interrupt 21H service routines can be useful to programmers who need to manipu-
late directories and their contents (Table 8-1) The routines can be broadly grouped into
two categories: those that use a modified file control block (FCB) to pass filenames to and
from the Interrupt 21H service routines (Functions 11H, 12H, 17H, and 23H) and those that
use hierarchical path specifications (Functions 39H, 3AH, 3BH, 43H, 47H, 4FH, 4FH, 56H,
and 57H) See PROGRAMMING IN THE MS-DOS ENVIRONMENT: PROGRAMMING FOR

ms-pos: File and Record Management; SYSTEM CAILS: INTerrUPT 21H

The functions that use an FCB require that the calling program reserve enough memory
for an extended FCB before the Interiupt 21 function is called. The calling program ini-
tizlizes the filename and extension fields of the FCB and passes the addiess of the FCB to
the M5-DOS service routine in DS:DX The functions that use pathnames expect all path-
names to be in ASCIIZ format—that is, the last character of the name must be followed

by a zero byte

Names in pathnames passed to Interrupt 21H functions can be separated by either a back-
stash (\) or a forward slash (/). (The forward slash is the separator character used in path-
names in UNIX/XENIX systems) For example, the pathnames C:/MSF/SOURCE/ROSE PAS
and C:\MSP\SOURCE\ROSE PAS are equivalent when passed to an Interrupt 21H function
The forward slash can thus be used in a pathname in a program that must run on both MS-
DOS and UNIX/XENTX However, the MS-DOS comand processor (COMMAND COM)
recognizes only the backslash as a pathname separator character, so forward slashes can-

not be used as separators in the command line

Table 8-1. MS-DOS Functions for Accessing Directories.

Comment

Function Call With Returns
Find First File AH=11H AL = 0 (directory entry
DS:DX = pointer o found) or OFFH (not found)
unopened FCB DTA updated (if directory
INT 21H entry found)
Find Next File AH=12H AL = 0 {directory entry
D5:DX = pointer to found) or OFFH (:ot found)
unopened FCB DTA updated (if directory
INT 21H entry found)

284 The MS-DOS Encyclopedia

If default not satisfac-
tory DTA must be
set before using
this function

Use the same FCB

for Function 11H and
Function 12H

(more)

H
=
41
!

Article 8: Disk Directories and Volume Labels

Table 8-1. Continued

Function Call With Returns Comment
Rename File AH=17H1 Al =0 (file renamed) or
D3:DX = pointer to OFFH (no directory entry
modified FCB or duplicate filename)
INT 21H
Get File Size AH = 23H Al = 0 (directory eniry
D8:DX = pointer to found) or OFFH (not found)
unopened FCB FCB updated with number
INT 21H of records in file
Create Directory AH = 39H Carry flag set (if error
DS:DX = pointer to AX = error code {if error)
ASCIIZ pathname
INT 21H
Remove Directory AH = 3AH Carry flag set (if error)
DS:DX = pointer 10 AX = error code (if error)
ASCIIZ pathname
INT 21H
Change Current AH = 3BH Carry flag set (if error)
Directory DS:DX = pointer 10 AX = error code (if error)
ASCIIZ pathname
INT 21H
Get/Set File AH =43H Carry flag set (if error) Cannot be used to
Attributes . AL = 0 {get attributes} AX = error code (if error) modify the volume
1 (set atiributes) CX = attribute field from label or subdirectory
CX = aaributes Gf AL = 1) directory entry (if called bits
DS:DX = pointer to with AT =)
ASCIIZ pathname
INT 21H
Get Current AH = 47H Carry flag set (if error)
Directory DS:S1 = pointer o AX = error code (if errar)
- G4-byte buffer Buffer updated with
DI = drive number pathname of cuirent
INT 21H directory
Find First File AH = 4FH Carry flag set Gf error} 1f default not satisfac-
DS:DX = pointer to AX = error code (if error) tory, DTA must be
ASCIIZ pathname DTA updated set before using
CX = file atiributes to this function
match
INT 21H
Find Next File AH=4FH Carry flag set (if error)
INT 21H AX = error code (if error}
DTA updated

(more}

Section I1 Programming in the MS-DOS Environment 285

Canon Exhibit 1108

Part B: Programming for MS-DOS

Table 8-1. continuved

Function Call With Returns Comment
Rename File AH=356H Carry flag set (if error)
DS:DX = pointer to AX = error code (if erron)

ASCHZ pathname
ES:DI = pointer 10

new ASCIIZ pathname
INT 21H
Get/Set Date/ Time AH=357H Carry flag set (if error)
of File Al = 0 (get date/time) AX = error code (if error)
1 (set date/time) CX=time ifAL=0)
BX=handle DX = date (if AT =0}

CX = time {if AL = 1)
DX =date GfAL=1)
INT 21H

Searching a directory

Two pairs of Interrupt 21H functions are available for directory searches Functions 11H
and 12F use FCBs to transfer filenames to MS-DOS; these functions are available in all ver-
sions of MS-DOS, but they cannot be used with pathnames Functions 4EH and 4FH sup-
pott pathnames, but these functions are unavailable in M3-DOS versions 1 x All four
functions require the address of the disk transfer area (DTA) to be initialized appropriately
before the function is invoked When Function 12H or 4FH is used, the current DTA must
be the same as the DTA for the preceding cail to Function 11H or 4EH

The Interzupt 21H dizectory search functions are designed to be used in pairs The Fi.nd
First File functions return the first matching directory entry in the current ditectosy (Func-
tion 11H) or in the specified directory (Function 4EH) The Find Next File functions
(Functions 12H and 4FH) can be called repeatedly after a successtui call to the corre-
sponding Find First File function. Each call to one of the Find Next File functions returns
the next directory entry that matches the name originally specified to the Find First Fiie
function. A directory search can thus be summarized as follows:

call "find first file™ function

while (matching directory entry returned)
call “"find next file™ functiocn

Wildcard characters

286

This search strategy is used because name specifications can include the wildcard charac-
ters ?, which matches any single character, and » (see below) When one or more wildcard
characters appear in the name specified to one of the Find First File functions, only the
nonwildcard characters in the name participate in the directory search. Thus, for example,
the specification FOO? matches the filenames FOO1, FOO2, and so on; the specification
FOO?77? 722 matches FOO4 COM, FOOBAR EXE, and FOONEW BAK, as well as FOO1 and

The MS-DOS Encyclopedia

Article 8: Disk Directeries and Volume Labels

Function 4EH also recognizes the wildcard character », which matches any remaining
characters in a filename or extension. M5-DOS expands the » wildcard character inter-
nally to question marks Thus, for example, the specification FOO + is the same as

Examining a directory entry

All four Interrupt 21H directory search functions return the name, attribute, file size, time,
and date fields for each directory entry found during a directory search. The current DTA
is used to return this data, although the format is different for the two pairs of functions:
Functions 11H and 12H return a copy of the 32-byte directory entry — including the cluster
number— in the DTA; Functions 4EH and 4FH return a2 43-byte data styucture that does
not include the starting cluster number See SYSTEM CALLS: In1ERRUPT 21H: Function
4EH

The attribute field of a directory entry can be examined using Functicn 43H (Get/Set File
Attributes) Also, Function 57H (Get/Set Date/Time of File) can be used to examine a file’s
time or date. However, unlike the other functions discussed here, Function 57H is in-
tended only for files that are being actively used within an application —that is, Function
57H can be called to examine the file’s time or date stamp only after the file has been
opened or created using an Interrupt 21H function that returns a handle (Function 3CH,
3DH, 5AH, or 5BH)

Modifying a directory entry

Four Interrupt 21H functions can modify the contents of a directory entry Function 17H
(Rename File) can be used to change the name field in any directory entry, including hid-
den or system files, subdirectories, and the volume label Related Function 56H (Rename
File) also changes the name field of a filename but cannot rename a volume labet or a hid-
den or system file However, it can be used to move a directory entry from one directory to
another (This capability is restricted to filenames only, subdirectory entries cannot be
moved with Function $6H)

Functions 43H (Get/Set File Atiributes) and 57H (Get/Set Date/ Iime of File) can be used
to medify specitic fields in a directory entry Function 43H can mark a directory entry as a
hidden or system file, although it cannot modify the volume label or subdirectory bits
Function 57H, as noted above, can be used onty with a previously opened file; it provides
a way to read orupdate a file’s time and date stamps without writing to the file itself

Creating and deleting directories

Function 39H (Create Directory) exists only to create directories—that is, directory
entries with the subdirectory bit set to 1 (Interrupe 21H functions that create files, such as
Function 3CH, cannot assign the subdirectory attribute to a directory entry.) The converse
function, 3AH (Remove Directory), deletes a subdirectory entry from a directory (The
subdirectory must be completely empty) Again, Interrupt 21H functions that delete files
from directories, such as Function 41H, cannot be used o delete subdirectories

Section II. Programming in the MS-DOS Environment 287
Canon Exhibit 1108

Articie 8: Disk Directories and Volume Labels

Part B: Programming for M5-DOS

Specifying the current directory Pop »p
A call o Interrupt 21H Function 47H (Get Current Directory) returns the pathname of the '
current directory in use by M5-DOS to a uses-supplied buffer The converse operation, in —SetDIa ENLF
which a new curtent directory can be specified to MS-DOS, is performed by Function 3BH L
(Change Current Directory). L
Programming examples: Searching for files / it GetCarzentDir(»path J; /» returns error code *#/
i 7 char *path; /* pointer to buffer to contain path =/

The subroutinés in Figure 8-6 below illustrate Functions 4FH and 4FH, which use path A
specifications passed as ASCIIZ strings to search for files Figure 8-7 applies these assem- L T T T e e T T T T e

bly-language subroutines in a simple C program that lists the attributes associated with PUBLIC _GetCurrentDir

each entry in the current directory Note how the ditectory search is performed in the —GetCurrentDir PROC near

WHILE loop in Figure 8-7 by using a global wildcard file specification (+ +} and by repeat- } .

edly executing FindNextFile() until no further matching filenames are found (See Pro- . push l;p ‘
! mov PRt

gramming Fxample: Updating a Volume Label for examples of the FCB-related search - push ot

functions, 11H and 21H)
S DiRS ASH" mev s1,ARG1 : BS:8I -> buffer
< xor dl,dl + DI = ¢ {(default drive number)
mov ah, 47h ; AH = INI 21H function number
H . int 21h ; call MS-DDS: AX = error code
; Subroutines for DIRDUMP C , .
jo 101 ; Jump 1f error
;
xor ax, ax ; no error, return AX = 0
. 5 R . ; - s
ARE; EQU ;?p + 2] ¢ stack frame addressirg for C arguments | 101 pop ai
ARG EQU {[ep + 61 pop bp
ret
el ie ! '
_IEXI SEGMENI byte public 'CODE _GetCurrentDir ENDP
ASSUME cs:_IEXI
o —————— e e e e e
i] int FindFirstFile{ path, attribute): /* returns error code */
; void SetDIA{ DIA): . .
/ . . : char #path;
i char i : int attribute;
__ O
. ;’zBiIC —SE’CVDIA PUBIIC _FindFirstFile
—SetDia O fear FindFirstFile PROC near
sh b
Pu bp push bo
mov Pr 5P : mov bp, sp
d. G1 ; DS:DX -> DIA
mov X, ARG i DS:DX i _ mov dx, ARG ¢ DS:DX ~-> path
mov an, 1AL ; AH = INI 21H function number i
k . mov cx, ARGZ2 ; CX = attribute
int 21h ; pass DIA to MS-DOS
MoV ah, 4Eh ; AH = INI 21H function number
Figure 8-6 Subroutines illustrating Interrupt 21H Functions 4EH and 4FH (more) e 21n i call M3-DOS; AX = error code
jec Loz : Jump if error
Figure 8-6. Continued (more)
288 The MS-DOS Encyclopedia &8 Section IL. Programming in the MS-DOS Environment 289
. : Canon Exhibit 1108

Article 8 Disk Directories and Volume Labels

Part B: Programming for MS-DOS

! /% DIRDUMP .C */

ROr ax, ax i no error, return A¥X = 0
102: pop bp #define AllAttributes 0x3E /* bits set for all attributes #/
ret
main ()

_FindFirstFile ENDP {
static «char CurrentDir[64];

e e e e e e e e e int ErrorCoda;
; int FileCount = 0;
int FindMWextfile (): /* returns error code #/
; : gtruct
T e e e e e e e e e e e e ; {
| char reserved{2i]
PUBIIC _FindNextFile char attrib;
_FindMextFile PROC near : int times:
int date;
push bp leng size;
mov bp, sp char name{13];
} DIA;
mov ah, 4Eh ; AH = INI 21H function number
int 21h ; call MS-DOS; AX = error code /% display current dirsctory name */
je Lg3 ;v Jump if error
FrrorCode = GetCurrentDir(CurrentDir);
xor ax, ax ; if no error, set AX = 0 if{ ErrorCode }
{
printf{ "\nError %d: Get{urrentDir™, ErrorCode):
103: pop bp exit{ 1 };
ret }

B indNextfile ENDE printf{ "\nCurrent directory is “\\%s", CurrentDir }:

_IEXT ENDS ;
) : /* display files and attributes */
_DAIA SEGMENI word public 'DAIA’ | SetDIA(&DIA): /* pass DIA to MS-DOS */
currentbir DB 64 dup (7) i ErrorCode = FindFirstFile("+ *", AllAttributes };
DIA DB 64 dup{?) l
; while(!ErrorCode)
_DAILA ENDS | {
printf({ "\n%l2s -- ", DIA name):
END ShowAttributes{ DIA.attrib);

Figure 8-6. Continued

;
{
é ++FileCount;
|
i ErrorCode = FindNextFile();
|

/% display file count and exit #/

printf("\nCurrent directory contains %d files\n", FileCount);

return({ 0);

Figure 8-7. The complete DIRDUMP.C program (more)

|
|
[

Section I Programming in the M5-DOS Environment 201
Canon Exhibit 1108

290 The MS-DOS Encyclopedia

Part B: Programming for MS-DOS

ShowAttributes(a)

int at
{
int i;
int mask = 1;

static char #AttribMame{] =
{
"read-only ",
"hidden ",

"

"system ",

"vclume ™,

“subdirectory ',

"archive "

or(i=0; i<6: i++) /# test each attribute bit */

s Fh

if(a & mask)
printf{ AttribName{i}!); /* display a message if bit 1s set #/
mask = mask << 1:

}

Figure 8-7 Continued

Programming example: Updating a volume label

To create, modify, or delete a volume-label directory entry, the Interrupt 21H functions
that work with FCBs should be used. Figute 8-8 contains four subroutines that show how to

search for, rename, create, or delete a volume label in MS-DOS versions 2 O and later.

[IILE 'VOLS ASM'

C-callable routines for manipulating MS-DOS volume labels
; Note: Ihese routines modify the current DIA address

ARG1 EQU [bp + 4] ; stack frame addressing
DGROUP GROUP _DAIA
_IEXI SEGMENI byte public 'CCDE'

ASSUME c¢s:_IEXI,ds:DGROUP

Figure 8-8 Subroutines for manipulating volume labels

292 The MS-DOS Encyclopedia

(more)

Article 8: Disk Directories and Volume Labeis

PUBLIC _GetVollabel

_GetVollabel PROC near
push bp
mov bp, sp
push si
push di
call SetDIA ¢ pass DIA address to MS-DOS
mov dx,offset DGROUP:ExtendedECE
HOV ah, 11h AH = INT 21H function number
int 21h : Search for First Entry
test al,zl
inz o1
; label found so make a copy
mov si,offset DGROUP:DIA + 8
mov di,offset DGROUP:Voliabel
call CopyName
mov ax, offset DGROUP:Vollabel ; return the copy’ s address
jmp short 102
101: XOr aw, ax ; no label, return 0 (null pointer)
1902: pop di
pop si
rop bp
ret
~GetVollabel ENDP

/% returns error code #/
/* pointer to new volume label name #*/

; int RenameVollabel(label);
char *label:

PUBLIC _RenameVollakbel

_RenameVollabel PROC near
push bp
mov bp, sp
push S1
push di
Figure 8-8 Continued (more)

Section II. Programming in the M5-DOS Environment 293
Canon Exhibit 1108

Part B: Programming for MS-DOS Article 8: Disk Directories and Volume Labels

mov si,offset DGROUP:Vollabel ; DS:SI -> old volume name } !

mov di,offset DGROUP:Namel 4 4

call Copytame ; copy old name to FCB E ¢ int PeletevVollabel(); /* returns errcor code */

mov si,ARG1 i T e

mov di,offset DGROUP:Name2 &

call Copylame ; copy new name into FCB : PUBLIC _DelesteVollabel

_DeleteVollabel PROC near

mov dx, offset DGROUP:ExtendedrCB r DS:DX -> ECB :

mov ah,17h ; AH = INI 21H function number ; push bp

int 21h ; rename mov bp, sp

®OI ah, ah i AX = Q0H (success) or OFFH (failure) push si

push di

pop di i restore registers and return i

pop 51 : mov 51, ot fset DGROUP:Vollabel

pop bp [mov di,cffset DGROUP:Namel

ret i call CopyName ; copy current volume name to FCB
_RenameVollabel ENDP oV dx, offset DGROUP:ExtendedFCB

: mov ah,13h : AH = TNT 21H function number
o e E int 21h : delete directory entry
; i xor ah,ah ; BAX = 00B (success) or QOFEH (failure}
; lnt NewVollabel{ label }; /% returns error code */ E
; char #label; /* pointer to new volume label name #/ ! Pop di i restore registers and return
: [pop si
b e et e e e e e et e et e ! pop bp
‘ ret

PUBLIZ _NewVolLabel
_DeleteVeollabel ENDP

_NewVollabel PROC near
push bp A P T T T T T s
mov bp, sp f ;
push ER ; miscellaneocus subroutines
push di
mov si, ARG ;
mov di,offset DGROUP :Name]l ; SetDIA PRCC near
call CopyName ; Copy new name kto FCB i
! push ax ! preserve registers used
mov dx, of fset DGROUP:ExtendedFCB push dx
nov ah, 16n ; AH = INI 214 function number
int 21n ; create directory entry | julelis dx,cffset DGROUP:DIA : DS:DX -> DIA
*xor ah, ah : AX = 0D0H (success) or OFFH {failure} i mov ah, 1Ah ; AH = INI 21H function number
. | int 21h ; set DIA
j=ls]s] di ; restore registers and return
pop si ‘ DOpP dx ; restore registers and return
pop bp f pop ax
ret i ret
~NewVollabel ENDP j SetDIA EMDP
Figure 8-8 Continued (more) Figure 8-8 Continued (more)

204 The MS-DOS Encyclopedia Section Il Programming in the MS-DOS Environment 205
Canon Exhibit 1108

Article 9: Memory Management

FPart B: Programming for MS-DOS

CopyName PROC near ; Caller: BSI -> ASCIIZ source < 9
; DI -> destination ArthIC
push ds
pop es . 25 - perous Memory Management
mov cx, 11 ; length of name field

Iit: lodsh ; copy new name into FCB .
test al,al . N .

. . . .) _— Personal computers that are MS-DOS compatible can be outfitted with as many as three
jz L1z ;i .. until null character i1s reached X . .)

stosb : kinds of random-access memory (RAM): conventional memnory, expanded memory, and
logp I extended memory.

112: mov al, ' ! : pad new name with blanks All MS-DOS machines have at least some conventional memory, but the presence of ex-
rep stosb panded or extended memory depends on the installed hardware options and the model of
ret microprocessor on which the computer is based. Each storage class has its own capabil-

Copytrams — . ities, characteristics, and lmitations. Each also has its own management techniques, which

‘ | are the subject of this chapter

_IEXI ENDS

_DAIA SEGMENT word public 'DAIA’) Conventional Memor Y

Voll 5 . N . - . .

ollabel bE T odup (0,0 | Conventional memory is the term fot the up to 1 MB of memory that is directly addressable

ExtendodE Ca o8 o0FFh . must be OFFE for extended FCB '; by an Intel 8086/8088 microprocessor or by an 80286 or 80386 mMiCroprocessor 1unning in
DB S dup!0) : (zeserved) : o real mode (8086-emulation mode). Physical addresses for references to conventional
DB 1000b i attribute byte (bit 3 = 1) o i “memory are generated by a 16-bit segment register, which acts as a base register and holds
DB 0 i default drive ID S a paragraph address, combined with a 16-bit offset contained in an index register or in the

Namel DB 11 dup('?") ; global wildcard name ; instruction being executed
DB 5 dup(0) ; {unused) ‘

Hame?2 DB 11 dup (0) ; second name {for renaming entry) _ On IBM PCs and compatibles, MS-DOS and the programs that run under its control occupy
LE 3 dup(0) i lunused) the bottom 640 KB or less of the conventional memory space The memory space above

DIA BB 54 dup (0) - the 640 KB mark is partitioned among ROM (read-only memory) chips on the system

board that contain various primitive device handlers and test programs and among RAM
~DAIA ENDS _ and ROM chips on expansion boards that are used for input and outpui buffers and for ad-
ditional device-dependent routines
END H
The bottom 640 KB of memory administered by MS-DOS is divided into three zones
Figure 8-8 Continued i (Fi gure 9-1):

#® The interrupt vector table
& The operating system area

Richard Wilton
® The transient program area

The interrupt vector table occupies the lowest 1024 bytes of memory (locations 00000—
003FFH); its address and length are hard-wired into the processor and cannot be changed
Each doubleword position in the table is called an interrupt vector and contains the seg-
ment and offset of an interrupt handler routine for the associated hardware or software in-
terrupt number. Interrupt handler routines are usually built into the operating system,

Section IL. Programming in the MS-DOS Environment 297

296 The M5-DOS Encyclopedia
Canon Exhibit 1108

“A superb, nearly inexhaustibie ref-
erence work Anyone serious
about programming for MS-DOS
will not want to be without [THE
MS-DOS ENCYCLOPEDIA]L”
Online Today

“The ultimate authority
Refer'en_ce & Research Book News

“A splendid volume.”

Praise for
The MS-DOS’ Encyclopedia:

“Por those with any technical in-
volvement in the PC industry, this is
the one and the only volume worth
reading ” PC WEEK

“If you like the idea of a one-stop
DOS reference book, then this book
1s for you.” PC Magazine

“There’s no doubting that this is a-
superb reference work on MS-DOS.”

Dr. Dobb’s Journal of Software Tools EXE magazine

Here, from Microsoft Press, is the ultimate resource for writing, maintaining,
and upgrading well-behaved, efficient, reliable, and robust MS-DOS progiams.
Covering all MS-DOS releases through version 3.2, with a special section on
version 3.3, this encyclopedia is the standard reference for the working com-
munity of MS-DOS programmers and for anyone making stiategic decisions
about MS-DOS implementation Included are version-specific technical data
and descriptions for: '

#® More than 100 system calls—each accompanied by C-callable
assembly-language routines and programmer’s notes
B More than 90 user commands-—the most compiehensive version-
specific analysis ever assembled
@ Key MS-DOS programming utilities and debuggers
THE MS-DOS ENCYCLOPEDIA has hundreds of hands-on examples and
thousands of lines of great sample code plus in-depth articles on debugging,
wiiting filters, installable device drivers, TSRs, Windows, memory manage-
ment, the future of MS-DOS, and much moie. There are also more than a dozen
appendixes, an index to commands and system calls, and a subject index. THE
MS-DOS ENCYCLOPEDIA was researched and written by a team of MS-DOS
experts— many involved in the creation and development of MS-DOS —so you
know it’s accurate and authoritative.

U.S. A, $69.95
U.K. £48 95
Austral. $104 95

(recommended)

