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the detector by focusing attention on promising regions of

the image. The notion behind focus of attention approaches
is that it is often possible to rapidly determine where in an
image an object might occur [16, 7. 1]. More complex pro-
cessing is reserved only for these promising regions. The
key measure of such an approach is the “false negative” rate
of the attentional process. It must be the case that all, or
almost all. object instances are selected by the attentional
filter.

We will describe a process for training an extremely sim-
ple and efficient classifier which can be used as a “super-
vised" focus of attention operator. The term supervised
refers to the fact that the attentional operator is trained to
detect examples of a particular class. In the domain of face
detection it is possible to achieve fewer than l% false neg-
atives and 40% false positives using a classifier constructed
from two Harr-like features. The effect of this filter is to

reduce by over one half the -number of locations where the
final detector must be evaluated.

Those sub-windows which are not rejected by the initial

classifier are processed by a sequence of classifiers, each
slightly more complex than the last. If any classifier rejects
the sub-window. no -_further processing is performed. The

structure of the cascaded detection process is essentially
that of a degenerate decision tree, and as such is related to

the work of Geman and colleagues [1, 3].
An extremely fast face detector will have broad prac-

tical applications. These include user interfaces. image
databases. and teleconferencing. In applications where

rapid frame-rates are not necessary. our system will allow
for significant additional post-processing and analysis. In
addition our system can be implemented on a wide range of

small low power devices. including hand-helds and embed-
ded processors. In our lab we have implemented this face
detector on the Compaq iPaq handheld and have achieved

detection at two frames per second (this device has a low
power 200 MIPS Strong Arm processor which lacks float~
ing point hardware).

The remainder of the paper describes our contributions
and a number of experimental results. including a detailed
description of our experimental methodology. Discussion
of closely related work takes place at the end of each sec-
tion.

2. Features

Our object detection procedure classifies images based on
the value of simple features. There are many motivations
for using features rather than the pixels directly. The most
common reason is that features can act to encode ad-hoc

domain knowledge that is difficult to learn using a finite
quantity of training data. For this system there is also a
second critical motivation for features: the feature based

system operates much faster than a pixel-based system.

The simple features used are reminiscent of Bear basis

functions which have been used by Papageorgiou et al. [9].

1-512

 
Figure 1: Example rectangle features shown relative to the

enclosing detection window. The sum of the pixels which
lie within the white rectangles are subtracted from the sum

of pixels in the grey rectangles. 'I\vo-rectangle features are
shown in (A) and (B). Figure (C) shows a three-rectangle
feature, and (D) a four-rectangle feature.

More specifically, we use three kinds of features. The value
of 3 two-rectanglefeature is the difference between the sum
of the pixels within two rectangular regions. The regions

have the same size and shape and are horizontally or ver-
tically adjacent (see Figure 1}. A rhree~t'ectartgIe feature
computes the sum within two outside rectangles subtracted
from the sum in a center rectangle. Finally afour-rectangle

feature computes the difference between diagonal pairs of
rectangles.

Given that the base resolution of t.he detector is 24x24,

the exhaustive set of rectangle features is quite large, over
180.000 . Note that unlike the Haar basis. the set of rectan-

gle features is overcomplete’.

2.1. Integral Image

Rectangle features can be computed very rapidly using an

intermediate representation for the image which we call the
integral image.” The integral image at location I, y contains
the sum of the pixels above and to the left of .15, y, inclusive:

2 it-*0’. ti’).
='sa=.tr’ S1:

ii(==.y} =

where ii'(m, y) is the integral image and £(z, y) is the origi-
nal image. Using the following pair of recurrences:

stony) s(z.y - 1) +%‘(r.y) (1)

time) = ='=7(=¢= - 1. S!) + stay) (2)

(where s(:c, y) is the cumulative row sum. s(:c, -1) = 0,
and t'i(-1, y) = 0) the integral image can be computed in
one pass over the original image.

’A complete basis has no linear dependence between basis elements
and has the same number of elements as the image space. in this case 576.
The full set of 180.000 thousand features is many times over-complete.

‘There is a close relation to "summed area tables" as used in graphics
[2}. We choose a difierent nitrite here in order to emphasize its use for the
analysis of images. rather than for texture mapping.
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Figure 2: The sum of the pixels within rectangle D can be
computed with four array references. The value of the inte-

gral image at location 1 is the sum of the pixels in rectangle
A. The value at location 2 is A + B. at location 3 is A + C.
and at location 4 is A + B + C + D. The sum within D can

be computed as 4 +1 —- (2 + 3).

Using the integral image any rectangular sum can be

computed in four array references (see Figure 2). Clearly
the difference between two rectangular sums can be com-

puted in eight references. Since the two-rectangle features
defined above involve adjacent rectangular sums they can
be computed in six array references. eight in the case of
the three-rectangle features. and nine for four-rectangle fea-
lures.

2.2. Feature Discussion

Rectangle features are somewhat primitive when compared
with alternatives such as steerable filters [4, 6]. Steerable fil-

ters, and their relatives, are excellent for the detailed analy-
sis of boundaries. image compression, and texture analysis.
In contrast rectangle features. while sensitive to the pres-

ence of edges, bars. and other simple image structure, are
quite coarse. Unlike steerable filters the only orientations
available are vertical. horizontal, and diagonal. The set of
rectangle features do however provide a rich image repre-

sentation which supports effective learning. In conjunction

with the integral image . the efficiency of the rectangle fea-
ture set provides ample compensation for their limited flex-
ibility.

3. Learning Classification Functions

Given a feature set and a training set of positive and neg-
ative images. any number of machine learning approaches
could he used to learn a classification function. In our sys-
tem 21 variant of AdaBoost is used both to select a small set

of features and train the classifier {S}. In its original form.
the AdaBoost learning algorithm is used to boost the clas-

sification performance of a simple (sometimes called weak)
learning algorithm. There are a number of fonrial guaran-
tees provided by the Adal?-oost learning procedure. Freund

and Schapire proved that the training error of the strong

I-S13

classifier approaches zero exponentially in the numberof
rounds. More importantly a number of results were later

proved about generalization performance [12]. The key
insight is that generalization performance is related to the
margin of the examples. and that AdaBoost achieves large
margins rapidly. '

Recall that there are over 180.000 rectangle features as-
sociated with each image sub-window. a number far larger
than the number of pixels. Even though each feature can
be computed very efficiently. computing the complete set is
prohibitively expensive. Our hypothesis. which is borne out
by experiment, is that a very small number of these features
can be combined to form an effective classifier. The main

challenge is to find these features.

In support of this goal. the weak learning algorithm is
designed to select the single rectangle feature which best

separates the positive and negative examples (this is similar
to the approach of [l5] in the domain of image database
retrieval). For -each feature, the weak learner determines

the optimal threshold classification function. such that the
minimum number of examples are rnisclassified. A weak

classifier by (3) thus consists of afearure f,-, a threshold 3,-
and a polarity P3‘ indicating the direction of the inequality
sign:

an -{a ::.r;a:2
Here 3 is a 24x24 pixel sub-window of an image. See Fig-
ure 3 for a summary of the boosting process.

In practice no single feature can perform the classifica-
tion task with low error. Features which are selected in early
rounds of the boosting process had error rates between 0.1
and 0.3. Features selected in later rounds, as the task be-

comes more difficult, yield error rates between 0.4 and 0.5.

3.1. Learning Discussion

Many general feature selection procedures have been pro-

posed (see chapter 8 of [17] for a review). Our final appli-
cation demanded a very aggressive approach which would
discard the vast majority of features. For a similar recogni-
tion problem Papageorgiou et al. proposed a scheme for fea-
ture selection based on feature variance [9]. They demon»

strated good results selecting 37 features out of a total 1734
features.

Roth et al. propose a feature selection process based
on the Winnow exponential perceptron learning rule [10].
The Winnow learning process converges to a solution where
many of these weights are zero. Nevertheless a very large

number of features are retained (perhaps a few hundred or
thousand).

3.2. Learning Results

While details on the training and performance of the final
system are presented in Section 5, several simple results

merit discussion. Initial experiments demonstrated that a
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0 Given example images (:n,yt).. .. ,(:c..,y..) where
y.- = 0, 1 for negative and positive examples respec-
tively.

 

o Initialize weights w1,.- = g, § for 1;: = 0,1 respec-
tively, where m and I are the number of negatives and
positives respectively. '

a Fort=1,...,'1":

l. Normalize the weights.

1.L1f_.1' {'-

so that w; is a probability distribution.

2. For each feature, 3'. train a classifier hj which
is restricted to using a single feature. The
error is evaluated with respect to wt. e,- =

2,. w.- Ihns.-J - ya.
3. Choose the classifier, hr, with the lowest error 6;.

4. Update the weights:
]_ .

'HJ't+1,n‘ ‘—‘ we.o9t S‘

where at = 0 if example mg is classified cor-
rectly, ti.‘ = 1 otherwise, and ,3: = -3-l—lz '

o The final strong classifier is:

= { 1 215:} aihi ix) 2 é‘E'ih=1 Q‘0 otherwise

where (2; = log 31;

Figure 3: The AdaBoost algorithm for classifier learn-
ing. Each round of boosting selects one feature from the
180,000 potential features.

frontal face classifier constructed from 200 features yields
a detection rate of 95% with a false positive rate of 1 in
14084. These results are compelling, but not sufficient for

many real-world tasks. In terms of computation, this clas-
sifier is probably faster than any other published system,
requiring 0.7 seconds to scan an 384 by 288 pixel image.
Unfortunately. the most straightforward technique for im-
proving detection performance, adding features to the clas-
sifier. directly increases computation time.

For the task of face detection, the initial rectangle fea-

tures selected by AdaBoost are meaningful and easily inter-
preted. The first feature selected seems to focus on the prop-

erty that the region ofthe eyes is often darker than the region
of the nose and checks (see Figure 4). This feature is rel-
atively large in comparison with the detection sub-window.
and should be somewhat insensitive to size and location of

the face. The second feature selected relies on the property

that the eyes are darker than the bridge of the nose.

 
Figure 4: The first and second features selected by Ad-

aBoost. The two features are shown in the top row and then
overlayed on a typical training face in the bottom row. The

first feature measures the difference in intensity between the
region of the eyes and a region across the upper cheeks. The
feature capitalizes on the observation that the eye region is
often darker than the checks. The second feature compares
the intensities in the eye regions to the intensity across the
bridge of the nose.

4. The Attentional Cascade

This section describes an algorithm for constructing a cas-
cade of classifiers which achieves increased detection per-
formance while radically reducing computation time. The
key insight is that smaller. and therefore more efficient,

boosted classifiers can be constructed which reject many of
the negative sub-windows while detecting almost all posi-
tive instances (i .e. the threshold of a boosted classifier can

be adjusted so that the false negative rate is close to zero}.
Simpler classifiers are used to reject the majority of sub-

windows before more complex classifiers are called upon
to achieve low false positive rates.

The overall form of the detection process is that of a de-
generate dccision tree, what we call a “cascade” (see Fig-
ure 5). A positive result from the first classifier triggers the
evaluation of a second classifier which has also been ad-

justed to achieve very high detection rates. A positive result

from the second classifier triggers a third classifier. and so

on. A negative outcome at any point leads to the immediate
rejection of the sub-window.

Stages in the cascade are constructed by training clas-
sifiers using AdaBoost and then adjusting the threshold to

minimize false negatives. Note that the default AdaBoost
threshold is designed to yield a low error rate on the train-

ing data. In general a lower threshold yields higher detec-
tion rates and higher false positive rates.

For example an excellent first stage classifier can be con-

sttucted from a two-feature strong classifier by reducing the
threshold to minimize false negatives. Measured against a
validation training set. the threshold can be adjusted to de-

tect 100% of the faces with a false positive rate of 40%. See

I-514
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Figure 5: Schematic depiction of a the detection cascade.
A series of classifiers are applied to every sub-window. The
initial classifier eliminates a large number of negative exam-
ples with very little processing. Subsequent layers eliminate

additional negatives but require additional computation. Af-
ter several stages of processing the number of sub-windows

have been reduced radically. Further processing can take
any form such as additional stages of the cascade (as in our
detection system) or an alternative detection system.

Figure 4 for a description of the two features used in this
classifier.

Computation of the two feature classifier amounts to

about 60 microprocessor instructions. It seems hard to
imagine that any simpler filter could achieve higher rejec-
tion rates. By comparison, scanning a simple image tem-

plate. or a single layer perceptron, would require at least 20
times as many operations per sub-window.

The structure of the cascade reflects the fact that

within any single image an overwhelming majority of sub-
windows are negative. As such. the cascade attempts to re-

ject as many negatives as possible at the earliest stage pos-
sible. While a positive instance will trigger the evaluation
of every classifier in the cascade, this is an exceedingly rare
B\"Bl'll.

Much like a decision tree, subsequent classifiers are
trained using those examples which pass through all the
previous stages. A5 a result. the second classifier faces a
more difficult task than the first. The examples which make
it through the first stage are “harder” than typical exam-
ples. The more difficult examples faced by deeper classi-

fiers push the entire receiver operating characteristic (ROC)

curve downward. At a given detection rate. deeper classi-
fiers have correspondingly higher false positive rates.

4.1. Training a Cascade of Classifiers

The cascade training process involves two types of trade-
offs. In most cases classifiers with more features will

achieve higher detection rates and lower false positive rates.

At the same time classifiers with more features require more
time to compute. In principle one could define an optimiza-
tion framework in which: i) the number of classifier stages.

ii) the number of features in each stage. and iii) the thresh-
old of each stage. are traded off in order to minimize the

expected number of evaluated features. Unfortunately find-
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ing this optimum is a tremendously difficult problem.
In practice a very simple framework is used to produce

an effective classifier which is highly efficient. Each stage
in the cascade reduces the false positive rate and decreases
the detection rate. A target is selected for the minimum
reduction in false positives and the maximum decrease in
detection. Each stage is trained by adding features until the
target detection and false positives rates are met ( these rates

are determined by testing the detector on a validation set}.
Stages are added until the overall target for false positive
and detection rate is met.

4.2. Detector Cascade Discussion

The complete face detection cascade has 38 stages with over
6000 features. Nevertheless t.he cascade structure results in

fast average detection times. On a difficult dataset. con-

taining 507 faces and 75 million sub-windows. faces are
detected using an average of 10 feature evaluations per sub-

window. In comparison. this system is about 15 times faster

than an implementation of the detection system constructed
by Rowley et al.3 [I 1]

A notion similar to the cascade appears in the face de-
tection system described by Rowley et al. in which two de-

tection networks are used [I 1]. Rowley et al. used a faster
yet less accurate network to prescreen the image in order to
find candidate regions for a slower more accurate network.

Though it is difficult to determine exactly, it appears that
Rowley et al.’s two network face system is the fastest exist-

ing face detector.‘
The structure of the cascaded detection process is es-

sentially that of a degenerate decision tree. and as such is
related to the work of Amit and Geman [1]. Unlike tech-

niques which use a fixed detector, Amit and Geman propose

an alternative point of view where unusual co-occurrences
of simple image features are used to trigger the evaluation
of a more complex detection process. In this way the full

detection process need not be evaluated at many of the po-
tential image locations and scales. While this basic insight
is very valuable, in their implementation it is necessary to

first evaluate some feature detector at every location. These
features are then grouped to find unusual co-occurrences. In
practice. since the form of our detector and the features that
it uses are extremely efficient, the amortized cost of evalu-
ating our detector at every scale and location is much faster

than finding and grouping edges throughout the image.
In recent work Fleuret and Geman have presented a face

detection technique which relies on a “chain“ of tests in or-
der to signify the presence of a face at a particular scale and

3Hen.ry Rowley very graciously supplied us with irnplementutions of
his detection system for direct comparison. Reported results are against
his fastest system. It is difficult to determine from the published literature,
but the Rowley-Ba.|uja—Kanade detector is widely considered the fastest
detection system and has been heavily tested on real-world problems.

‘Other published detectors have either neglected to discuss perfor-
mance in detail. or have never published detection and false positive rates
on a large and ditlicult training set.
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