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Abstract

This survey focuses on recognition performed by matching models of the three-dimensional shape of the face. either alone or in com-
bination with matching corresponding two-dimensional intensity images. Research trends to date are summarized, and challenges con-
fronting the development of more accurate three-dimensional face recognition are identified. These challenges include the need lor better
sensors, improved recognition algorithms, and more rigorous experimental methodology.

© 2003 Elsevier Inc. All rights reserved.
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I. Introduction

Evaluations such as the Face Recognition Vendor Test

(FRVT) 2002 [46] make it clear that the current state ol

the art in face recognition is not yet suflicient for the more
demanding applications. However, biometric technologies
that currently offer greater accuracy. such as fingerprint
and iris, require much greater explicit cooperation from
the user. For example, fingerprint requires that the subject
cooperate in making physical contact with the sensor sur-
face. This raises issues ol how to keep the surface clean
and germ-[ree in a high-throughput application. Iris imag-
ing currently requires that the subject cooperate to careful-
ly position their eve relative to the sensor. This can also
cause problems in a high-throughput application. Thus
there is significant potential application-driven demand
for improved performance in face recognition. One goal
of the Face Recognition Grand Challenge program [45]
sponsored by various government agencies is to foster an
order-of-magnitude increase in face recognition perfor-
mance over that documented in FRVT 2002.

" Corresponding author. Fax: +1 574 631 9260.
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The vast majority of face recognition research and
commercial face recognition systems use typical intensity
images of the face. We refer to these as 2D images.”
In contrast. a “3D image” ol the face is one that repre-
sents three-dimensional shape. A recent extensive survey
of lace recognition research is given in [60], but does
not include research eflorts based on matching 3D shape.
Our survey given here focuses specifically on 3D face rec-
ognition. This is an update and expansion ol carlier ver-
sions [8.9]. to include the initial round of research
results coming out of the Face Recognition Grand Chal-
lenge [16.23.33.41.44,50], as well as other recent results
(42.28.29.20.32.31]. Scheenstra et al. [51] give an alternate
survey of some of the earlier work in 3D face recognition.

We are particularly interested in 3D face recognition be-
cause it is commonly thought that the use of 3D sensing
has the potential for greater recognition accuracy than
2D. For example. one paper states—"Because we are
working in 3D. we overcome limitations due to viewpoint
and lighting variations™ [34]. Another paper describing :
different approach to 3D face recognition states—"Range
images have the advantage of capturing shape variation
irrespective of illumination variabilities™ [22]. Similarly, a
third paper states—"Depth and curvature features have
several advantages over more traditional intensity-based
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features. Specifically. curvature descriptors: (1) have the
potential for higher accuracy in describing surface-based
events, (2) are better suited to describe properties ol the
face in a areas such as the cheeks. forehead. and chin,
and (3) are viewpoint invariant™ [21],

2. Background concepts and terminology

The general term “face recognition™ can refer to different
application scenarios. One scenario is called “recognition™
or “identification.” and another is called “authentication™
or “verification.” In either scenario, face images of known
persons are initially enrolled into the system. This set of per-
sons is sometimes referred to as the “gallery.” Later images
of these or other persons are used as ““probes™ to match
against images in the gallery. In a recognition scenario, the
matching is one-to-many, in the sense that a probe is
matched against all of the gallery to find the best match
above some threshold. In an authentication scenario, the
matching is one-to-one, in the sense that the probe is
matched against the gallery entry for a claimed identity,
and the claimed identity is taken to be authenticated if the
quality of match exceeds some threshold. The recognition
scenario is more technically challenging than the authentica-
tion scenario. One reason is that in a recognition scenario a
larger gallery tends to present more chances for incorrect rec-
ognition. Another reason is that the whole gallery must be
searched in some manner on each recognition attempt.
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K.W. Bowyer et al. | Computer Vision and Image Understanding 101 (2006 ) 1-15

While research results may be presented in the context of
either recognition or authentication, the core 3D represen-
tation and matching issues are essentially the same. In fact.
the raw matching scores underlying the cumulative mateh
characteristic (CMC) curve for a recognition experiment
can readily be tabulated in a different manner to produce
the receiver operating characieristic (ROC) curve for an
authentication experiment. The CMC curve summarizes
the percent of a set of probes that is considered to be cor-
rectly matched as a function of the match rank that is
counted as a correct match. The rank-one recognition rate
is the most commonly stated single number from the CMC
curve. The ROC curve summarizes the percent of a set of
probes that is falsely rejected as a tradeofl against the per-
cent that is falsely accepted. The equal-error rate (EER),
the point where the false reject rate equals the false accept
rate, is the most commonly stated single number [rom the
ROC curve.

The 3D shape of the face is often sensed in combination
with a 2D intensity image. In this case, the 2D image can be
thought of as a “texture map™ overlaid on the 3D shape.
An example of a 2D intensity image and the corresponding
3D shape are shown in Fig. I, with the 3D shape rendered
in the form of a range image, a shaded 3D model and a
mesh of points. A * ‘range image.” also sometimes called a
“depth 1image,” 1s an image in which the pixel value reflects
the distance from the sensor to the imaged surface. In
Fig. 1, the lighter values are closer to the sensor and the

Fig. 1. Example of 2D intensity and 3D shape data. The 2D intensity image and the 3D range image are representations that would be used with
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darker values are farther away. A range image, a shaded
model, and a wire-frame mesh are common alternatives
for displaying 3D face data.

As commonly used, the term multi-modal biomeirics re-
fers to the use of multiple imaging modalities, such as 3D
and 2D images of the face. The term “multi-modal’ is per-
haps imprecise here, because the two types of data may be
acquired by the same imaging system. In this survey, we
consider algorithms for multi-modal 3D and 2D face rec-
ognition as well as algorithms that use only 3D shape.
We do not consider here the family of approaches in which
a generic, “morphable™ 3D face model is used as an inter-
mediate step in matching two 2D images for face recogni-
tion. This approach was popularized by Blanz and Vetter
[5]. its potential was investigated in the FRVT 2002 report
[46], and variations of this type of approach are already
used in various commercial face recognition systems. How-
ever, this type of approach does not involve the sensing or
matching of 3D shape descriptions. Rather, a 2D image is
mapped onto a deformable 3D model, and the 3D model
with texture is used to produce a set of synthetic 2D images
for the matching process.

3. Recognition based solely on 3D shape

Table | gives a comparison of selected elements ol algo-
rithms that use only 3D shape to recognize faces. The

Table 1
Recognition algorithms using 3D shape alone

works are listed chronologically by year of publication,
and alphabetically by first author within a given year.
The earliest work in this area was done over a decade
ago [12,21,26,39]. There was relatively little work in this
area through the 1990s, but activity has increased greatly
in recent years.

Most papers report performance as the rank-one rec-
ognition rate, although some report equal-error rate or
verification rate at a specified false accept rate. Histori-
cally, the experimental component of work in this area
was rather modest. The number of persons represented
in experimental data sets did not reach 100 until 2003,
And only a few works have dealt with data sets that
explicitly incorporate pose and/or expression variation
[38,30,44,16,11]. It is therefore perhaps not surprising
that most of the early works reported rank-one recogni-
tion rates ol 100%. However, the Face Recognition
Grand Challenge program [45] has already resulted in
several research groups publishing results on a common
data set representing over 4000 images of over 400 per-
sons, with substantial variation in facial expression.
Examples of the different facial expressions present in
the FRGC version two dataset are shown in Fig. 2. As
experimental data sets have become larger and more
challenging, algorithms have become more sophisticated
even il the reported recognition rates are not as high
as in some earlier works.

Author, year, reference  Persons in dataset  Images in dataset

Image size

3D face data Core matching Reported

algorithm performance
Cartoux, 1989 [12] 5 18 Not available Profile, surface Minimum distance  100%
Lee, 1990 [26] 6 6 256 % 150 EGI Correlation None
Gordon, 1992 [21] 26 train 8 test 26 train 24 test Not available Feature vector Closest vector 100%%
Nagamine. 1992 [39] 16 160 256 % 240 Multiple profiles Closest vector 1004
Achermann, 1997 [3] 24 240 75 %150 Range image PCA, HMM 1007
Tanaka. 1998 [52] 37 37 256 % 256 EGI Correlation 100%%
Achermann, 2000 [2] 24 240 75% 150 Point set Hausdorl distance  100%
Chua, 2000 [17] 6 24 Not available Point set Point signature 100%,
Hesher, 2003 [22] 37 222 242 x 347 Range image PCA 97%
Lee, 2003 [27] 35 70 320 % 320 Feature vector Closest vector 94% at rank 5
Medioni, 2003 [34] 100 700 Not available Point set 1CP 98%
Moreno, 2003 [38] 60 420 22K pomts  Feature vector Closest vector 78%
Pan, 2003 [42] 30 360 3K points Point set, range image Hausdorfl and PCA  3-5% EER,

5-7% EER
Lee. 2004 [28] 42 84 240 = 320 Range, curvature Weighted Hausdorfl  98%,
Lu, 2004 [30] 18 113 240 =% 320 point set ICP 964
Russ, 2004 [49] 200 FRGC vl 468 480 x 640 Range image Hausdorfl distance  98% verification
Xu, 2004 [57] 120 (30) 720 Not available  Point set -+ feature vector  Minimum distance  96% on 30,
72% on 120

Bronstein, 2005 [11] 30 220 Not available  Point set “canonical forms™ 1007
Chang, 2005 [16] 466 FRGC v2 4007 480 = 640 Point set multi-1CP 92%
Gokberk, 2005 [20] 106 579 Not available  Multiple Multiple 99%
Lee. 2005 [29] 100 200 Various Feature vector SVM 96%
Lu. 2005 [31] 100 196 probes 240 % 320 Surface mesh ICP. TPS 89%
I"m ’lIUS [4[] 276 FRGC vl 943 480 = 640 Range image PCA 95%, 3% EER
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