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Eigenfaces for Recognition

Matthew Turk and Alex Pentland

Vision and Modeling Group
The Media laboratory
Massachusetts Institute of Technology

Abstract

I We have developed a near—real—timc computer system that
can locate and track a subjects head, and then recognize the

person by comparing characteristics of the face to those of
known individuals. The computational approach taken in this

system is motivated by both physiology and information theory,
as well as by the practical requirements of near-real-time per-
formance and accuracy. Our approach treats the face recog
nition problem as an intrinsically two-dimensional (2-D)
recognition problem rather than requiring recovery of three-
dimensional geometry. taking advantage of the fact that faces
are normally upright and thus may be described by a small set
of 2-D characteristic views. The system functions by projecting

INTRODUCTION

The face is our primary focus of attention in social in-
tercourse, playing a major role in conveying identity and

emotion. Although the ability to infer intelligence or
character from facial appearance is suspect, the human

ability to recognize faces is remarkable. We can recog-
nize thousands of faces learned throughout our lifetime

and identify familiar faces at a glance even after years of
separation. This skill is quite robust, despite large
changes in the visual stimulus due to viewing conditions,

expression, aging, and distractions such as glasses or
changes in hairstyle or facial hair. As a consequence the

visual processing of human faces has fascinated philos-
ophers and scientists for centuries, including figures such
as Aristotle and Darwin.

Computational models of face recognition, in partic-

ular, are interesting because they can contribute not only
to theoretical insights but also to practical applications.

Computers that recognize faces could be applied to a
Wide variety of problems, including criminal identifica-
tion, security systems, image and film processing, and

human—computer interaction. For example, the ability to
model a particular face and distinguish it from a large
number of stored face models would make it possible

to vastly improve criminal identification. Even the ability

I0 merely detect faces, as opposed to recognizing them,

© 1991 Mctssadauserts lnsntwe of Technology

face images onto a feature space that spans the significant
variations among known face images. The significant features
are known as “eigenfaces," because they are the eigenvectors
(principal components) of the set of faces; they do not neces-
sarily correspond to features such as eyes, ears, and noses. The
projection operation characterizes an individual face by a
weighted sum of the eigenface features, and so to recognize a
particular face it is necessary only to compare these weights to
those of known individuals. Some particular advantages of our
approach are that it provides for the ability to learn and later
recognize new faces in an unsupervised manner, and that it is
easy to implement using a neural network architecture. I

can be important. Detecting faces in photographs, for
instance, is an important problem in automating color

film development, since the effect of many enhancement
and noise reduction techniques depends on the picture
content (eg, faces should not be tinted green, while
perhaps grass should).

Unfortunately, developing a computational model of
face recognition is quite difficult, because faces are com-

plex, multidimensional, and meaningful visual stimuli.
They are a natural class of objects, and stand in starl-c
Contrast to sine wave gratings, the “blocks world," and

other artificial stimuli used in human and computer vi-
sion research (Davies, Ellis, 8: Shepherd, 1981), Thus

unlike most early visual functions, for which we may
construct detailed models of retinal or striate activity,

face recognition is a very high level task for which com-
putational approaches can currently only suggest broad
constraints on the corresponding neural activity.

We therefore focused our research toward developing

a son of early, preattcntive pattern recognition capability

that does not depend on having threeclimensional in-
formation or detailed geometry. Our goal, which we

believe we have reached, was to develop a computational
model of face recognition that is fast, reasonably simple,
and accurate in constrained environments such as an

office or a household. In addition the approach is bio-

logically implementable and is in concert with prelimi-

joumal of Cognitive Neuroscience Voiume 3, Number I
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nary findings in the physiology and psychology of face
recognition.

The scheme is based on an information theory ap-
proach that decomposes face images into a small set of
characteristic feature images called “eigenfaces,” which

may be thought of as the principal components of the

initial training set of face images. Recognition is per-
formed by projecting a new image into the subspace

spanned by the eigenfaces (“face space") and then clas-

sifying the face by comparing its position in face space
with the positions of known individuals.

Automatically learning and later recognizing new faces
is practical Within this framework. Recognition under

widely varying conditions is achieved by training on a
limited number of characteristic views (e.g., a "straight
on" view, a 45° view, and a profile view). The approach

has advantages over other face recognition schemes in
its speed and simplicity, learning capacity, and insensitiv-
ity to small or gradual changes in the face image.

Background and Related Work

Much of the work in computer recognition of faces has

focused on detecting individual features such as the eyes,
nose, mouth, and head outline, and defining a face model

by the position, size, and relationships among these fea-

tures. Such approaches have proven difficult to extend

to multiple views, and have often been quite fragile,
requiring a good initial guess to guide them. Research

in human strategies of face recognition, moreover, has
shown that individual features and their immediate re-

lationships comprise an insufficient representation to ac-
count for the performance of adult human face

identification (Carey & Diamond, 1977). Nonetheless,

this approach to face recognition remains the most pop-
ular one in the computer vision literature.

Bledsoe (1966a,b) was the first to attempt semiauto-

mated face recognition with a hybrid human—computer
system that classified faces on the basis of fiducial marks

entered on photographs by hand. Parameters for the
classification were normalized distances and ratios

among points such as eye corners, mouth corners, nose
tip, and chin point. Later work at Bell Labs (Goldstein,

Harmon, 8: Lesk, 1971; Harmon, 1971) developed a vec-

tor of up to 21 features, and recognized faces using
standard pattern classification techniques. The chosen

features were largely subjective evaluations (e.g., shade
of hair, length of ears, lip thickness) made by human

subjects, each of which would be quite difficult to
automate.

An early paper by Fischler and Elschlager (1973) at-

tempted to measure similar features automatically. They
described a linear embedding algorithm that used local
feature template matching and a global measure of fit to

find and measure facial features. This template matching
approach has been continued and improved by the re-
cent work of Yuille, Cohen, and Hallinan (1989) (see

72 Journal of Cognitive Neuroscience

Yuille, this volume). Their strategy is based on “deform '
able templates,“ which are parameterized models of the

face and its features in which the parameter values are
determined by interactions with the image.

Connectionist approaches to face identification seek to ':

capture the configurational, or gestalt-like nature of the

task. Kohonen (1989) and Kohonen and Lahtio (1981)

describe an associative network with a simple learning
algorithm that can recognize (classify) face images and
recall a face image from an incomplete or noisy version
input to the network. Fleming and Cottrell (1990) extend

these ideas using nonlinear units, training the system by I
backpropagation. Stonham‘s WISARD system (1986) is a

general-purpose pattern recognition device based on
neural net principles. It has been applied with some '

success to binary face images, recognizing both identity
and expression. Most connectionist systems dealing with
faces (see also Midorikawa, 1988; O"I‘oole, Millward, 8:
Anderson, 1988) treat the input image as a general 2-D

pattern. and can make no explicit use of the configura .
tional properties of a face. Moreover, some of these

systems require an inordinate number of training ex- '

amples to achieve a reasonable level of performance.
Only very simple systems have been explored to date,
and it is unclear how they will scale to larger problems.

Others have approached automated face recognition

by characterizing a face by a set of geometric parameters '

and performing pattern recognition based on the param-
eters (e.g., Kaya 8: Kobayashi, 1972; Cannon, Jones,

Campbell, & Morgan, 1986; Craw, Ellis, 8: Lishman, 1987;
Wong, Law, & Tsaug, 1989). Kanade"s (1975) face identi-

fication system was the first (and still one of the few)

systems in which all steps of the recognition process
were automated, using a top-down control strategy di-

rected by a generic model of expected feature charac-

teristics. His system calculated a set of facial parameters
from a single face image and used a pattern classification .

technique to match the face from a known set, a purely .

statistical approach depending primarily on local histo- .
gram analysis and absolute gray-scale values.

Recent work by Burt (1988a,b) uses a “smart sensing" '

approach based on multiresolution template-matching.

This coarse-to-fine strategy uses a special—purpose com-
puter built to calculate multiresolution pyramid images

quickly, and has been demonstrated identifying people
in near—rea1-time. This system works well under limited

circumstances, but should suffer from the typical prob-

lems of correlation—based matching, including sensitivity
to image size and noise. The face models are built by _

hand from face images.

THE EIGENFACE APPROACH

Much of the previous work on automated face l‘CC0gI1l‘ _.
tion has ignored the issue of just what aspects of the face

stimulus are important for identification. This suggested
to us that an information theory approach of coding and

Volume 3, Number 1
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decoding face images may give insight into the infor-

mation content of face images, emphasizing the signifi-
cant local and global “features.“ Such features may or

may not be directly related to our intuitive notion of face
features such as the eyes, nose, lips, and hair. This may
have important implications for the use of identification
tools such as Identikit and Photofit (Bruce, 1988).

In the language of information theory, we want to

extract the relevant information in a face image, encode

it as efficiently as possible, and compare one face encod-

mg’ with a database ofmodels encoded similarly. A simple
approach to extracting the information contained in an
image of a face is to somehow capture the variation in a
collection of face images, independent of any judgment
of features, and use this information to encode and -'com-

pare individual face images.
In mathematical terms, we wish to find the principal

components of the distribution of faces, or the eigenvec-
tors of the covariance matrix of the set of face images,

treating an image as a point (or vector) in a very high
dimensional space. The eigenvectors are ordered, each
one accounting for a different amount of the variation

among the face images.

These eigenvectors can be thought of as a set of fea-
tures that together characterize the variation between
face images. Each image location contributes more or
less to each eigenvector, so that we can display the ei-

genvector as a sort of ghostly face which we call an
ezgenface. Some of the faces we studied are illustrated
in Figure 1, and the corresponding eigenfaces are shown
in Figure 2. Each eigenface deviates from uniform gray

where some facial feature differs among the set of train-

ing faces; they are a sort of map of the variations between
faces.

Each individual face can be represented exactly in
terms of a linear combination of the eigenfaces. Each

face can also be approximated using only the “best”
eigenfaces—those that have the largest eigenvalues, and
which therefore account for the most variance within

me set of face images. The best M eigenfaces span an
M-dimensional subspace—“face space"——of all possible
images.

The idea of using eigenfaces was motivated by a tech-

nique developed by Sirovich and Kirby (1987) and Kirby
and Sirovich (1990) for efficiently representing pictures

of faces using principal component analysis. Starting with
an ensemble of original face images, they calculated a

best coordinate system for image compression, where
each coordinate is actually an image that they termed an

91'genpicm.re. They argued that, at least in principle, any

Collection of face images can be approximately recon-
structed by storing a small collection of weights for each

._ face and a small set of standard pictures (the eigenpic—
lures). The weights describing each face are found by

Projecting the face image onto each eigenpicture.
It occurred to us that if a multitude of face images can

be reconstructed by weighted sums of a small collection

of characteristic features or eigenpictures, perhaps an
efficient way to learn and recognize faces would be to
build up the characteristic features by experience over
time and recognize particular faces by comparing the

feature weights needed to (approximately) reconstruct

them with the weights associated with known individuals.
Each individual, therefore, would be characterized by
the small set of feature or eigenpicture weights needed

to describe and reconstruct themman extremely com-

pact representation when compared with the images
themselves.

This approach to face recognition involves the follow-

ing initialization operations:

1. Acquire an initial set of face images (the training
set).

2. Calculate the eigenfaces from the training set, keep-

ing only the M images that correspond to the highest

eigenvalues. These M images define the face sprzce. As
new faces are experienced, the eigenfaces can be up-
dated or recalculated.

5. Calculate the corresponding distribution in Meli-
mensional weight space for each known individual, by
projecting their face images onto the “face space."

These operations can also be performed from time
to time whenever there is free excess computational
capacity.

Having initialized the system, the following steps are
then used to recognize new face images:

1. Calculate a set of weights based on the input image
and the M eigenfaces by projecting the input image onto

each of the eigenfaces.
2. Determine if the image is a face at all (whether

known or unknown) by checking to see if the image is
sufficiently close to “face space."

3. If it is a face, classify the weight pattern as either a
known person or as unknown.

4. (Optional) Update the eigenfaces and/or weight
patterns. _

5. (Optional) If the same unknown face is seen several
times. calculate its characteristic weight pattern and in-

corporate into the known faces.

Calculating Eigenfaces

Let a face image I(x,y) be a two-dimensionaliv byN array
of 03-bit) intensity values. An image may also be consid-

ered as a vector of dimension N2, so that a typical image
of size 256 by 256 becomes a vector of dimension 65,556,

or, equivalently, a point in 65,556-dimensional space. An
ensemble of images, then, maps to a collection of points

in this huge space.
Images of faces, being similar in overall configuration,

will not be randomly distributed in this huge image space
and thus can be described by a relatively low dimen-
sional subspace. The main idea of the principal compo-

lurk and Pentland 73
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nent analysis (or Karhunen—Loeve expansion) is to find
the vectors that best account for the distribution of face

images within the entire image space. These vectors de-
fine the subspace of face images, which we call "face

space." Each vector is of length N2, describes an N by N
image, and is a linear combination of the original face

images. Because these vectors are the eigenvectors of
the covariance matrix corresponding to the original face
images, and because they are face-like in appearance, we

refer to them as “eigenfaces.” Some examples of eigen-
faces are shown in Figure 2.

Let the training set of face images be T1, F2, F5, . . . ,

FM. The average face of the set is defined by ‘I’ =
if L: Fn- Each face differs from the average by the
vector 11>, = F, — ‘I’. An example training set is shown
in Figure 1a, with the average face ‘I’ shown in Figure

1b. This set of very large vectors is then subject to prin-
cipal component analysis, which seeks a set of M ortho-
normal vectors, u,«., which best describes the distribution
of the data. The lath vector, us, is chosen such that

At = 1 § (u:.'tI> )2 (1)
Mn=1 H

is a maximum, subject to

74 Journal of C‘ogm'::'ve Neuroscience

Figure 1. (a)Face images
used as the training set.

1, if!=ie
lltrus = 3»; ={

The vectors 11.: and scalars M are the eigenvectors and
eigenvalues, respectively, of the covariance matrix

1” T
c=—2«1>,,ct-,. (5)_Mn=1

: MT

where the matrix A = [£11, (I); .

tors and eigenvalues is an intractable task for typical

image sizes. We need a computationally feasible method
to find these eigenvectors.

If the number of data points in the image space is 1655

than the dimension of the space (M < N2), there will be

only M - 1, rather than N2, meaningful eigenvectots. '
(The remaining eigenvectors will have associated ei3e“'

values of zero.) Fortunately we can solve for the N2‘
dimensional eigenvectors in this case by first solving fill’

the eigenvectors of an M by M matrix—e.g., solving 3'

16 X 16 matrix rather than a 16,384 X 16,384 matrix-e

Votume 3, Number 1'

0, otherwise (2) '

. . (I)}|f]- The matrix C, I
however, is N2 by N‘, and determining the N2 eigenvec- .
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',:
Figure 1. (la) The average face ‘P.

* _ Figure 2. Seven of the eigenfaces calculated from the input images
. of Figure 1.

H‘ and then taking appropriate linear combinations of the
face images <I>.. Consider the eigenvectors v,- ofATA such
that

ATAV; = ].l.-{V1

Premultiplying both sides by A, we have

/lJ’11.‘AVr =

EFOIII which we see that Av; are the eigenvectors of C =
AAT.

u..Avt

Following this analysis, we Construct theM byM matrix

L = ATA, where 1...,,.., = tI)3,",(IJ,,, and find the M eigenvec-

tors, vi, of 11. These vectors determine linear combina-

tions of the M training set face images to form the

eigenfaces m.
M

111: 2V.1»q’_§, 1:1,...,9: .M (6)

With this analysis the calculations are greatly reduced,
from the order of the number of pixels in the images

(N2) to the order of the number of images in the training
set (M). In practice, the training set of face images will

be relatively small (M 4 N2), and the calculations become
quite manageable. The associated eigenvalues allow us

to rank the eigenvectors according to their usefulness in
characterizing the variation among the images. Figure 2

shows the top seven eigenfaces derived from the input
images of Figure 1.

Using Eigenfaces to Classify a Face Image

The eigenface images calculated from the eigenvectors
of L span a basis set with which to describe face images.
Sirovich and Kirby (1987) evaluated a limited version of
this framework on an ensemble of M = 115 images of

Caucasian males, digitized in a controlled manner, and

found that about 40 eigenfaces were sufficient for a very

good description of the set of face images. With M’ =
40 eigenfaces, RMS pixel-by-pixel errors in representing

cropped versions of face images were about 2%.
Since the eigenfaces seem adequate for describing face

images under very controlled conditions, we decided to
investigate their usefulness as a tool for face identifica-

tion. In practice, a smaller M’ is sufficient for identifica-
tion, since accurate reconstruction of the image is not a

requirement. In this framework, identification becomes

a pattern recognition task. The eigertfaces span an M‘-
dimensional subspace of the original JV?’ image space.
The M’ significant eigenvectors of the 1 matrix are chosen
as those with the largest associated eigenvalues. In many
of our test cases, based on M = 16 face images, M’ = 7

eigenfaces were used.

A new face image (F) is transformed into its eigenface

components (projected into "face space”) by a simple
operation,

(Ilia = u}i{F — ‘F3 (7)

for £2 = 1, . . . ,M'. This describes a set of point—by-point

image multiplications and summations, operations per-

formed at approximately frame rate on current image
processing hardware. Figure 3 shows an image and its
projection into the seven-dimensional face space.

The weights form a vector QT = [(91, (.02 . . . am] that
describes the contribution of each eigenface in repre-

senting the input face image, treating the eigenfaces as a
basis set for face images, The vector may then be used

Time and Pemland 75
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in a standard pattern recognition algorithm to find which

of a number of predefined face classes, if any, best de-

scribes the face. The simplest method for determining
which face class provides the best description of an input
face image is to find the face class it that minimizes the
Eucliclian distance

as = ||(0 - 9-t)||2 (8)

where (Is is a vector describing the kth face class. The
face classes 0; are calculated by averaging the results of

the eigenface representation over a small number of face
images (as few as one) of each individual. A face is
classified as belonging.to class .(a when the minimum at
is below some chosen threshold 6.. Otherwise the face

is classified as "unknown," and optionally used to create
a new face class.

Because creating the vector of weights is equivalent to

projecting the original face image onto the low-climen-

sional face space, many images (most of them looking
nothing like a face) will project onto a given pattern
vector. This is not a problem for the system, however,
since the distance e between the image and the face

space is simply the squared distance between the mean-

adjusted input image ([1 = I‘ — ‘I’ and <11; = L, myuy,
its projection onto face space: -

e’ = Iltb — MI’ (9)

Thus there are four possibilities for an input image and
its pattern vector: (1) near face space and near a face
class, (2) near face space but not near a known face class,

(3) distant from face space and near a face class, and (4)

distant from face space and not near a known face class.
In the first case, an individual is recognized and iden-

tified. In the second case, an unknown individual is pres-
ent. The last two cases indicate that the image is not a

face image. Case three typically shows up as a false pos-
itive in most recognition systems; in our framework,
however, the false recognition may be detected because
of the significant distance between the image and the

subspace of expected face images. Figure 4 shows some
images and their projections into face space and gives a
measure of distance from the face space for each.

Summary of Eigenface Recognition
Procedure

To summarize, the eigenfaces approach to face recogni-
tion invoives the following steps:

1. Collect a set of characteristic face images of the
known individuals. This set should include a number of

images for each person, with some variation in expres-
sion and in the lighting. (Say four images of ten people,
so M = 40.)

2. Calculate the (40 X 40) matrix L, find its eigenvec-

tors and eigenvalues, and choose the M’ eigenvectors

76 Journal of Cognitive Neuroscience

with the highest associated eigenvalues. (Let M‘ = 1()_-
this example.)

5. Combine the normalized training set of images 3
cording to Eq. (6) to produce the (M’ = 10) eigenfac
Us ,.

4. For each known individual, calculate the class

tor 01: by averaging the eigenface pattern vectors 0 [fro
Eq. (8)] calculated from the original (four) images of

individual. Choose a threshold 3, that defines the . "

mum allowable distance from any face Class, and
threshold 8. that defines the maximum allowable di'
tance from face space [according to Eq. (9)].

S. For each new face image to be identified, calculan
its pattern vector (1, the distances 6: to each known (:1 «Q2;

and the distance 6 to face space. if the minimum distan
at < 6., and the distance e < 6., classify the input

as the individual associated with class vector Qt. If
minimum distance as > as but distance 6 < 9;, then

image may be classifed as “unknown,” and optional:
used to begin a new face class.

6. If the new image is classified as a known individ .

this image may be added to the original set of fami1'

face images, and the eigenfaces may be recalcula eel

(steps 1-4). This gives the opportunity to modify the fa
space as the system encounters more instances of kno ii’;

In our current system calculation of the eigenfaces

done offline as part of the training. The recognitio

currently takes about 400 msec running rather -ié
ciently in Lisp on a Sun4, using face images of size 128

128. With some special-purpose hardware, the cur ‘ ii":
version could run at close to frame rate (53 msec). ‘f

Designing a practical system for face recognitio
within this framework requires assessing the tradeo
between generality, required accuracy, and speed. If

face recognition task is restricted to a small set of peop.

(such as the members of a family or a small compan
a small set of eigenfaces is adequate to span the faces ti
interest. If the system is to learn new faces or repres it

many people, a larger basis set of eigenfaces will I.:I'

required. The results of Sirovich and Kirby (1987) - 53”

Kirhyand Sirovich (1990) for coding of face images gi
some evidence that even if it were necessary to reptes .. E

a large segment of the population, the number of eigelf
faces needed would still be relatively small.

Locating and Detecting Faces

The analysis in the preceding sections assumes we hi‘
a centered face image, the same size as the trainl

images and the eigenfaces. We need some way, then,
locate a face in a scene to do the recognition. We h

developed two schemes to locate andlor track faces.
ing motion detection and manipulation of the image5 “_
“face space". '

Volume 3. Number
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Figure 3. An original face image and its projectionlonto the face space defined by the eigenfaces of Figure 2.

Motion Detecting and Head Tracking

'7} People are constantly moving. Even while sitting, we
_ fidget and adjust our body position, nod our heads, look

around, and such. In the case of a single person moving

"If-'_.. in a static environment, a simple motion detection and
_ 5;‘ tracking algorithm, depicted in Figure 5, will locate and

track the position of the head. Simple spatiotemporal
filtering (e.g., frame differencing) accentuates image lo
cations that change with time, so a moving person “lights

up" in the filtered image. If the image “lights up" at all,
motion is detected and the presence of a person is
postulated.

After thresholding die filtered image to produce a

binary motion image, we analyze the “motion blobs" over
time to decide if the motion is caused by a person

"moving and to determine head position. A few simple
rules are applied, such as “the head is the small upper
blob above a larger blob (the body),” and “head motion

ff. must be reasonably slow and contiguous" (heads are not
expected to jump around the image erratically). Figure

6 shows an image with the head located, along with the
Path of the head in the preceding sequence of frames.

The motion image also allows for an estimate of scale.
The size of the blob that is assumed to be the moving
hfiad determines the size of the subimage to send to the

recognition stage. This subimage is rescaled to Fit the
dimensions of the eigenfaces.

Using "Face Space” to locate the Face

We can also use knowledge of the face space to locate
faces in single images, either as an alternative to locating

faces from motion (eg, if there is too little motion or
many moving objects) or as a method of achieving more
precision than is possible by use of motion tracking

alone. This method allows us to recognize the presence

of faces apart from the task of identifying them.
As seen in Figure 4, images of faces do not change

radically when projected into the face space, while the

projection of nonface images appears quite different.

This basic idea is used to detect the presence of faces in
a scene: at every location in the image, calculate the
distance 6 between the local subimage and face space.

This distance from face space is used as a measure of
“faceness," so the result of calculating the distance from

face space at every point in the image is a “face map”
e(x,y). Figure 7 shows an image and its face map—1ow
values (the dark area) indicate the presence of a face.

Unfortunately, direct application of Eq. (9) is rather

expensive. We have therefore developed a simpler, more
efficient method of calculating the face map e(x,y), which
is described as follows. '

To calculate the face map at every pixel of an image

I(x,y). we need to project the subimage centered at that
pixel onto face space, then subtract the projection from

the original. To project a subimage F onto face space,
we must first subtract the mean image, resulting in (I1 =
I‘ — ‘I’. With (D; being the projection of (D onto face
space, the distance measure at a given image location is
then

62 = IIG’ - ‘Fitz
= - (Df)T(q’ — (pf)

= <I>T<I> — <l>T<[>r + ¢IJ?(<I> - <I>r)
= 13711 — thy’ tr
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Figure 4. Three images and
their projections onto the face
space defined by the eigen-
faces of Figure 2. The relative
measures of distance from face

space are (a) 29.8, (b) 58.5,
(c) 5217.4. images (a) and (b)
are in the original training set.

since II’; J. (111 — *I);). Because (I); is a linear combination

of the eigenfaces ('13: = 25;, oJ_»u.«) and the eigenfaces
are orthonormal vectors,

I.

<1)? [= E)‘ m? (11)

L

e2(x,y) = <I>T(x,y)<I>(x,y) - 2 wf(x,y)r'=l (12)

where e(x,y) and m,(x, y) are scalar functions of image
location, and <II(.agy) is a vector function of image loca-
tion.

The second term of Eq. (12) is calculated in practice
by a correlation with the t’. eigenfaces:

78 journal of Cogntitle Neuroscience

Ef=1w?(x,y) = E?-i‘l”(oc, y)u.

= l=1lr(_3C,J’) ‘ 'l'lT“_{
= i=1 [r!(-x:}’)'-It ‘ wrur]

= ‘:‘:=1 [1(-7‘-5}’) ® 1-1:‘ ' ‘I’?-Ur]

where ® is the correlation operator. The first term
Eq. (12) becomes

‘I>’"(x,y)‘I>(x,y) = [l"(x,y) - ‘I']’"[l“(x, y) - ‘Pi
= l"""(x.J»)l‘(:w) ~ 2~I»’1"<x,y) + 'I"‘1’-3
= I‘T(x.y)I‘(x,y) - 2F(x,y) ® ‘1’ +

«W1: (14):
so that

e2<x,y) = r"'(x.y)r<x,y) — 2r<x,y)® 11' + ‘W’ + '-

§‘.1iI‘(x,y)(>:<)u.-- ‘I'®u.-] £1? :
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\

Spatiotemporal
filtering

figure 5. The head tracking and locating system.

Figure 6. The head has been located—the image in the box is sent
[0 the face recognition process. Also shown is the path of the head
tracked over several previous frames.

Since the average face 1]’ and the eigenfaces u.- are fixed,
the terms 111751’ and ‘I7 ® in may be computed ahead
of time.

- Thus the computation of the face map involves only

I + 1 correlations over the input image and the com-

_ x Duration of the first term I‘T(x, y)I‘(x, y). This is com-

Pllted by squaring the input image !(x, y) and, at each

image location, summing the squared values of the local

-1-» Subimage. As discussed in the Section on Neural Net-

works, these computations can be implemented by a

simple neural network.

Learning to Recognize New Faces

The concept of face space allows the ability to learn and

subsequently recognize new faces in an unsupervised
manner. When an image is sufficiently close to face space
but is not classified as one of the familiar faces, it is

initially labeled as “unknown." The computer stores the

pattern vector and the corresponding unknown image.
If a collection of “unknown" pattern vectors cluster in

the pattern space, the presence of a new but unidentified
face is postulated.

The images corresponding to the pattern vectors in
the cluster are then checked for similarity by requiring

that the distance from each image to the mean of the

images is less than a predefined threshold. If the images

pass the similarity test, the average of the feature vectors
is added to the database of known faces. Occasionally,

the eigenfaces may be recalculated using these stored
images as part of the new training set.

other Issues

A number of other issues must be addressed to obtain a

robust working system. In this section we will briefly
mention these issues and indicate methods of solution.

Elimirtaring the Baclagrotmd

In the preceding analysis we have ignored the effect of
the background. In practice, the background can signif
icantly effect the recognition performance, since the ei-
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Figure 7. (to Original image. (b) The corresponding face map, where low values (dark areas] indicate the presence of a face.

genface analysis as described above does not distinguish

the face from the rest of the image. In the experiments
described in the section on Experiments with Eigenfaces,

the background was a significant part of the image used
to classify the faces. .

To deal with this problem without having to solve
other difficuit vision problems (such as robust segmen-

tation of the head), we have multiplied the input face
image by a two-dimensional gaussian window centered

on the face, thus diminishing the background and accen-

tuating the middle of the face. Experiments in human
strategies of face recognition (Hay 8: Young, 1982) cite

the importance of the internal facial features for recog-
nition of familiar faces. Deemphasizing me outside of
the face is also a practical consideration since changing
hairstyles may otherwise negatively affect the recogni-
tion.

Scale (Head Size) and Orientation Invariance

The experiments in the section on Database of Face
Images show that recognition performance decreases

quickly as the head size, or scale, is misjudged. The head
size in the input image must be close to that of the
eigenfaces for the system to work well. The motion anal-
ysis gives an estimate of head size, from which the face

image is rescaled to the eigenface size.

Another approach to the scale problem, which may be
separate from or in addition to the motion estimate, is

to use muitiscale eigcnfaces, in which an input face image

is compared with eigenfaces at a number of scales. In

this case the image will appear to be near the face space
of only the closest scale eigenfaces. Equivalenrly, we can

80 journal of Cognitive ivemoscfence

scale the input image to multiple sizes and use the scale '

that results in the smallest distance measure to face space. _
Although the eigenfaces approach is not extremely -.

sensitive to head orientation (i.e., sideways tilt of the -

head), a non-upright view will cause some performance _
degradation. An accurate estimate of the head tilt will __

certainly benefit the recognition. Again, two simple meth-
ods have been considered and tested. The first is to _'

calculate the orientation of the motion blob of the head. "i
This is less reliable as the shape tends toward a circle,
however. Using the fact that faces are reasonably sym- .

metric patterns, at least for frontal views, we have used j.

simple symmetry operators to estimate head orientation. _
Once the orientation is estimated, the image can be _-
rotated to align the head with the eigenfaces.

Distrtibntion in Face Space

The nearest-neighbor classification previously described '
assumesa Gaussian distribution in face space of an in- _

dividual‘s feature vectors .0. Since there is no a priori '
reason to assume any particular distribution, we want to _-

characterize it rather than assume it is gaussian. Nonlin- 5

eat networks such as _described in Fleming and Cottrell
(1990) seem to be a promising way to learn the face =
space distributions by example.

Mulztpte Views

We are currently extending the system to deal with other -.
than full frontal views by defining a limited number Of-.
face classes for each known person corresponding E0 .
daaractenstic views. For example, an individual may be

represented by face classes corresponding to a frontal 3

Volume 3, Number 1 ;
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face view, side views, at i 45°, and right and left profile
views. Under most viewing conditions these seem to be

sufficient to recognize a face anywhere from frontal to

profile view, because the real view can be approximated
by interpolation among the fixed views.

EXPERIMENTS WITH EIGENFACES

To assess the viability of this approach to face recogni-

tion, we have performed experiments with stored faoe

images and built a system to locate and recognize faces
in a dynamic environment. We first created a large da-
tabase of face images collected under a wide range of

imaging conditions. Using this database we have con-

ducted several experiments to assess the performance
under known variations of lighting, scale, and orienta-

tion. The results of these experiments and early experi-
ence with the near-real—time system are reported in this
S€CIi0I‘1.

Database of Face Images

The images from Figure 121 were taken from a database

of over 2500 face images digitized under controlled con-
ditions Sixteen subjects were digitized at all combina-
tions of three head orientations, three head sizes or

scales, and three lighting conditions. A six level Gaussian

pyramid was constructed for each image, resulting in
image resolution from 512 X 512 pixels down to 16 X

16 pixels. Figure 8 shows the images from one pyramid
level for one individual.

In the first experiment the effects of varying lighting,

size. and head orientation were investigated using the

complete database of 2500 images of the 16 individuals

shown in Figure la. Various groups of 16 images were
selected and used as the training set. Within each training
set there was one image of each person, all taken under

the same conditions of lighting, image size, and head
orientation. All images in die database were then classi-

fied as being one of these sixteen individuals (i.e., the

-._' threshold 6; was effectively infinite, so that no faces were
rejected as unknown). Seven eigenfaces were used in

the classification process.
Statistics were collected measuring the mean accuracy

,2 as a fiinction of the difference between the training con-
,' ditions and the test conditions. The independent varia-

bles were difference in illumination, imaged head size,
5: head orientation, and combinations of illumination, size,

' .3 and orientation.

Figure 9 shows results of these experiments for the

Case of infinite 9;. The graphs of the figure show the
number of correct classifications for varying conditions
of lighting, size, and head orientation, averaged over the
number of experiments. For this case where every face
"image is classified as known, the system achieved ap-
roximately 96% correct classification averaged over

lighting variation, 85% correct averaged over orientation
variation, and 64% correct averaged over size variation.

As can be seen from these graphs, changing lighting
conditions causes relatively few errors, while perfor-

mance drops dramatically with size change. This is not
surprising, since under lighting changes alone the neigh-

borhood pixel correlation remains high, but under size
changes the correlation from one image to another is
largely lost. It is clear that there is a need for a multiscale

approach, so that faces at a particular size are compared

with one another. One method of accomplishing this is
to make sure that each "face class” includes images of
the individual at several different sizes, as was discussed
in the section on Other Issues.

In a second experiment the same procedures were
followed, but the acceptance threshold 3. was also var-
ied. At low values of 9., only images that project very
closely to the known face -classes will be recognized, so

that there will be few errors but many of the images will
be rejected as unknown. At high values of 8, most images

will be classified, but there will be more errors. Adjusting
B, [O achieve 100% accurate recognition boosted the
unknown rates to 19% while varying lighting, 39% for
orientation, and 60% for size. Setting the unknown rate

arbitrarily to 2096 resulted in correct recognition rates
of 100%, 94%, and 74% respectively.

These experiments show an increase of performance
accuracy as the threshold decreases. This can be tuned

to achieve effectively perfect recognition as the threshold
tends to zero, but at the cost of many images being
rejected as unknown. The tradeoff between rejection rate
and recognition accuracy will be different for each of the

various face recognition applications. However, what

would be most desirable is to have a way of setting the
threshold high, so that few known face images are re-

jected as unknown, while at the same time detecting the
incorrect classifications. That is, we would like‘ to in-

crease the efficiency (the d-prime) of the recognition
process.

One way of accomplishing this is to also examine the

(normalized) Euclidian distance between an image and

face space as a whole. Because the projection onto the

eigenface vectors is a many~to-one mapping, there is a
potentially unlimited number of images that can project
onto the eigenfaces in the same manner, i.e., produce
the same weights. Many of these will look nothing like a

face, as shown in Figure 4c. This approach was described
in the section on Using “Face Space” to Locate the Face
as a method of identifying likely face subimages.

Real-Time Recognition

We have used the techniques described above to build

a system that iocates and recognizes faces in near-real-

time in a reasonably unstructured environment. Figure
10 shows a diagram of the system. A fixed camera, mon-
itoring part of a room, is connected to a Datacube image
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Figure 8. Variation of face images for one individual: three head sizes, three lighting conditions, and three head orientations.

processing system, which resides on the bus of a Sun 3/
160. The Datacube digitizes the video image and per-

forms spatiotemporal filtering, thresholding, and sub-
sampling at frame rate (30 frarnes/sec). (The images are

subsarnpled to speed up the motion analysis.)
The motion detection and analysis programs run on

the Sun 3/160, first detecting a moving object and then
tracking the motion and applying simple rules to deter-
mine if it is tracking a head. When a head is found, the

subimage, centered on the head, is sent to another com-
puter (a Sun Sparcstation) that is running the face rec-

ognition program (although it could be running on the

same computer as the motion program). Using the dis-
tance-from-face-space measure, the image is either re-

82 Journal of Cognitive Neuroscience

jectecl-as not a face, recognized as one of a group of 3
familiar faces, or determined to be an tinknovm face.

Recognition occurs in this system at rates of up to two .3
or three times per second. Until motion is detected, or

as long as the image is not perceived to be a face, there

is no output. When a face is recognized, the image of
the identified individual is displayed on the Sun monitor.

RELATIONSHIP TO BIOLOGY AND
NEURAL NETWORKS

Biological Motivations

High-level recognition tasks are typically modeled as re-

quiring many stages of processing, e.g., the Marr (1982)

Volume 3, Number 1
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Figure 9. Results of experiments measuring recognition perfor-
mance using eigenfaces. Each graph shows avcrtgecl performance as

‘ the lighting conditions, head size, and head orientation vary—the y-
axis depicts number of correct classifications (out of 16). The peak
(16/16 correct) in each graph results from recognizing the particular
training set perfectly. The other two graph points reveal the decline
in performance as the following parameters are varied: (:1) lighting,
(I3) head size (scale), (c) orientation, (cl) orientation and lighting.
(13) orientation and size (#1). (f) orientation and size (#2), (3) size
and lighting, (11) size and lighting (#2).

paradigm of progressing from images to surfaces to
three-dimensional models to matched models. However,

the early development and the extreme rapidity of face
recognition makes it appear likely that there must also

be a recognition mechanism based on some fast, low-

level, two-dimensional image processing.
On strictly phenomenological grounds, such a face

recognition mechanism is plausible because faces are
typically seen in a limited range of views, and are a very
important stimulus for humans from birth. The existence

_ of such a mechanism is also supported by the results of
a number of physiological experiments in monkey cortex

_":‘. Claiming to isolate neurons that respond selectively to
"if faces (e.g., see Perrett, Rolls, 8: Can, 1982; Perrett, Mist-

lin, 8: Chitty, 1987; Bruce, Desimone, 8: Gross, 1981;
Desimone, Albright, Gross, 8: Bruce, 1984; Rolls, Baylis,
Hasselmo, 8: Nalwa, 1989). In these experiments, some

cells were sensitive to identity, some to “faceness," and
some only to particular views (such as frontal or profile)_.

Although we do not claim that biological systems have
“eigenface cells" or process faces in the same way as the
eigenface approach, there are a number of qualitative
similarities between our approach and current under-
standing of human face recognition. For instance, rela-

tively small changes cause the recognition to degrade
gracefully, so that partially occluded faces can be recog-
nized, as has been demonstrated in single-cell recording

experiments. Gradual changes due to aging are easily
handled by the occasional recalculation of the eigenfaces,
so that the system is quite tolerant to even large changes

as long as they occur over a long period of time. If,
however, a large change occurs quickly—e.g., addition
of a disguise or change of facial hair—then the eigenfaces

approach will be fooled, as are people in conditions of
casual observation.

Neural Networlm

Although we have presented the eigenfaces approach to

face recognition as an information-processing model, it
may be implemented using simple parallel computing
elements, as in a connectionist system or artificial neural

network. Figure 11 shows a three-layer, fully connected
linear network that implements a significant part of the
system. The input layer receives the input (centered and
normalized) face image, with one element per image
pixel, or N elements. The weights from the input layer

to the hidden layer correspond to the eigertfaces, so that

the value of each hidden unit is the dot product of the

input image and the corresponding eigenface: on = GIJT
u.-. The hidden units, then, form the pattern vector (17 =
[(01, (02. . .(JJ;_].

The output layer produces the face space projection
of the input itnage when the output weights also corre-
spond to the eigenfaces (mirroring the input weights).
Adding two nonlinear components we construct Figure
12, which produces the pattern class 0, face space pro-

jection ¢I>;, distance measure a‘ (between the image and
its face space projection), and a classification vector. The

classification vector is comprised of a unit for each
known face defining the pattern space distances e;. The

unit with the smallest value, if below the specified thresh-
old E|., reveals the identity of the input face image.

Parts of the network of Figure 12 are similar to the
associative networks of Kohonen (1989) and Kohonen

and Lehtio (1981). These networks implement a learned
stimulus—respor1SE: mapping, in which the learning phase
modifies the connection weights. An autoassociative net-

work implements the projection onto face space. Simi-

larly, reconstruction using eigenfaces can be used to
recall a partially occluded face, as shown in Figure 13.
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Figure '10. System diagram of
the Face recognition system.

Figure 11. Three-layer linear
network for eigenface calcula-
tion. The symmetric weights 11.-
are the eigenfaces, and the
hidden units reveal the projec-
tion of the input image 1]? onto
the eigenfaces. The output 113:
is the face space projection of
the input image.

Input layer

CONCLUSION

Early attempts at making computers recognize faces were
limited by the use of impoverished face models and

feature descriptions (e,g., locating features from an edge

image and matching simple distances and ratios), assum-
ing that a face is no more than the sum of its parts, the
individual features. Recent attempts using parameteriaed
feature models and multiscale matching look more

promising, but still face severe problems before they are

generally applicable. Current connectionist approaches
tend to hide much of the pertinent information in the
weights dtat makes it difficult to modify and evaluate

parts of the approach.

The eigenface approach to face recognition was mo-
tivated by information theory, leading to the idea of
basing face recognition on a small set of image features

that best approximates the set of known face images,
Without requiring that they correspond to our intuitive
notions of facial parts and features. Although it is not an
elegant solution to the general recognition problem, the
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eigenface approach does provide a practical solution that _
is well fitted to the problem of face recognition. It is fast. _
relatively simple, and has been shown to work well in a
constrained environment. It can also be implemented ..

using modules of connectionist or neural networks.
It is important to note that many applications of face

recognition do not require perfect identification, al-
though most require a low false-positive rate. In search-
ing a large database of faces, for example, it may bfi
preferable to find a small set of likely matches to present -
to the user. For applications such as security systems 01'

human—computer interaction, the system will normally
be able to "view" the subject for a few seconds or min-
utes, and thus will have a number of chances to recognizfl

the person. Our experiments show that the eigenface
technique can be made to perform at very high accur8CYv '

although with a substantial "unknown" rejection rate, and
thus is potentially well suited to these applications.

We are currently investigating in more detail the issues

of robustness to changes in lighting, head size, and head
orientation, automatically learning new faces, iI1COl'P0'
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Input image

Mean image

‘I’
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Distance measure

Figure 12. Collection of networks to implement computation of the pattern vector, projection into face space. distance from face space
measure, and identification.

"*“" “Sure 15. (a) Partially occluded face image and (13) its reconstruction using the eigcnfaces.
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rating a limited number of characteristic views for each
individual, and the tradeoffs between the number of

people the system needs to recognize and the number
of eigenfaces necessary for unambiguous classification.

In addition to recognizing faces, we are also beginning
efforts to use eigenface analysis to determine the gender
of the subject and to interpret facial expressions, two
important face processing problems that complement the
task of face recognition.

REFERENCES

Bledsoe, W. W. (19663). The model method in facial recogni-
tion. Panoramic Research Inc., Palo Alto, CA, Rep. PRl:l5.
August.

Bledsoe, W. W. (1966b). Man-machine facial recognition. Pan-
oramic Research Inc., Palo Alto, CA, Rep. PRI:22, August.

Bruce, V. (1988). Recognisingfaces. Hillsdale, NJ: Erlbaum.
Bruce, C. j., Desimone, R., St Gross, C. G. (1981). jozmmi of

Neurophysiology; 46. 369-384.
Burt, P. (1988a). Algorithms and architectures for smart sen-

sing. Proceedings of the Image Understanding Woriasbop,
April.

Burt, P. (1988b). Srnart sensing within a Pyramid Vision Ma-
chine. Proceedings ofIEEE, 76(8), 139-155.

Cannon, 5. R.,Jones. G. W, Campbell, R, & Morgan, N. W.
(1986). A computer vision system for identification of indi-
viduals. Proceedings ofIECO.N, 1.

Carey, 8., 8: Diamond, R. (1977). From piecemeal to configu-
rational representation of faces. Science, 195, 312-315.

Craw, Ellis, & Lishman (1987). Automatic extraction of face
features. Pattern Recognition Letters, 5, 183-187.

Davies, Ellis, 8: Shepherd (Eds), (1981). Perceiving and re-
memberingfaces. London: Academic Press.

Desimone, R, Albright, T. D., Gross, C. G., & Bruce, C. J.
(1984). Stimulus-selective properties of inferior temporal
neurons in the macaque. Neuroscience, 4, 2051-2068.

Fischler. M. A., 8: Elschlager, R. A (1973). The representation
and matching of pictorial structures. IEEE Transactions on

' Computers, c-22(1).
Fleming, M., & Cottrell, G. (1990). Categorization of faces us-

ing unsupervised feature extraction. Proceedings ofUCNN-
90, 2.

Goldstein, Harmon, 8: Lesk (1971). Identification of human
faces. Proceedings IEEE, 59, 748.

Harmon, L. D. (1971). Some aspects of recognition of human
faces. In 0. J. Grusser & R. Klinke (Eds), Pattern recogni-

86 journal of Cognitive Neuroscience

tion in biological and technical systems. Berlin: Springer-
Verlag.

Hay, D. C., & Young, A ‘W. (1982). The human face. In A. W.
Ellis (Ed). Normality andpiawotogy in cognitivefunctions.
London: Academic Press.

Kanade, T. (1975). Picture processing system by computer
complex and recognition of human faces. Dept. of'lnforma-
tion Science, Kyoto University.

Kaya, Y., & Kobayashi, K. (1972). A basic study on human face
recognition. In S. Watanabe (Ed), Frontiers ofpattern rec-
ognition. New-York: Academic Press.

Kirby, M., & Sirovich, L. (1990). Application of the Kathunen—
loeve procedure for the characterization of human faces.
IEEE Tiurtsactions on Pattern Analysis and Machine Intethl
gence, 12(1).

Kohonen. T. (1989). Segf-organization and n.ssoci’atiee mem-
ory. Berlin: Springer-Vet-lag.

Kohonen, T., 8: Lehtio, P. (1981). Storage and processing of
information in distributed associative memory systems. in
G. E. Hinton 8:]. A. Anderson (Eds), Pamtlei models of
associative memory. Hillsdale, NJ: Erlbaum, pp. 105445.

Marr, D. (1982). Wsion. San Francisco: W. H. Freeman.
Midorikawa, H. (1988). The face pattern identification by

back-propagation learning procedure. Abstracts oftbe First
Annual INNS Meeting, Boston, p. 515.

O’Toole, Millward, & Anderson (1988). A physical system ap-
proach to recognition memory for spatialiy transformed
faces. Neural Networks, 1, 179-199.

Perrett, D. l., Mistlin, A. J., 8: Chitty, A. J. (1987). Visual neu-
rones responsive to faces. TINS. 10(9). 558-564.

Perrett, Rolls, & Cash (1982). Visual neurones responsive to
faces in the monkey temporal cortex. Expefimenial Brain
Research, 47, 529-342.

Rolls, E. '1‘., Baylis, G. C., Hasselmo. M. E., 8; Na1wa,V. (1989).
The effect of learning on the face selective responses of
neurons in the cortex in the superior temporal sulcus of
the monkey. Experimental Brain Resewtb, 76, 153-164.

Sirovich, L., 3: Kirby, M. (1987). Low-dimensional procedure
for the characterization of human faces. journal of the op-
tical Society ofamenm A, 4(3), 519-524.

Stonharn, T. J. (1986). Practical face recognition and verifica-
tion with WISARD. In H. Ellis, M. Jeeves, F. Newcombe, 8:
A Young (Eds), Amects offace processing. Dordrecht: Mar-
tinus Nijhoff.

Wong, K., Law, H., 8: Tsang, P. (1989). A system for recognis-
ing human faces. Proceedtngs of1C.'ASSP, May, 1658-1642.

Yuil1e,A L., Cohen. D. 5., & Hallinan, P. W. (1989). Feature
extraction from faces using deformable templates. Proceed-
ings of CVPR, San Diego, CA. June.

Volume 3, Number 1


