
Page 1 of 16

490

RESEARCH CONTRJBt/TIONS

Algorithms and
Data Structures

Da11iel Sltator
Editor

Data Compression with Finite
Windows

EDWARD R. FIALA and DANIEL H. GREENE

ABSTRACT: Several methods are presented for adaptive,
i11vertiblt data comJ•rtssiorr in the style of Lempel's and
Ziv's first textual substitution proposal. For the first two
methods, the article describes modifications of McCreight's
suffix tree data strudure that support cyclic maintena11ce of
a window on the most recent source characters. A
percolating update i,; used to keep node positions within the
window, 11nd the upol11ting process is shown to have constant
11mortized cost. Otha methods explore the tradeoffs between
compression time, eJpansion time, data structure size, and
amount of compress1on achieved. The article includes a
graph-theoretic anal1sis of the compression penalty incurred
by our codeword sel• ction policy in comparison with a11
optimal policy, and 11 iucludes empirical studies of the
performance of various adaptive compressors from the
literature.

1. INTRODUCTION
Compression is the coding of data to minimize its repre
sentation. In this a1 tide, we are concerned with fast.
one-pass, adaptive, invertible (or lossless) methods of
digital compression which have reasonable memory
requirements. Suet methods can be used, for example,
to reduce the storaHe requirements for files, to increase
the communicatior rate over a channel, or to reduce
redundancy prior t•> encryption for greater security.

By "adaptive" WE mean that a compression method
should be widely a:>plicable to different kinds of source
data. Ideally, it sho J!d adapt rapidly to the source to
achieve significant compression on small files, and it
should adapt to an} subsequent internal changes in the
nature of the sourco:. In addition, it should achieve very
high compression a;ymptotically on large regions with
stationary statistics

All the compression methods developed in this article
are subslilution11l. T.,rpically. a substitutional compressor
functions by replac: ng large blocks of text with shorter
references to earlie: occurrences of identical text (3, 5,
29, 34. 36. 39. 41-4:]. (This is often called Ziv-Lempel
compression, in rec>gnilion of their pioneering ideas.
Ziv and Lempel. in £act, proposed two methods. The
unqualified use of tbe phrase "Ziv-Lempel compres
sion" usually refers to their second proposal (43). In this

C 1989 ACM 0001-0782/ 811 '0300.()490 $1.50

Communications of tht ~CM

article, we will be primarily concerned with. their first
proposal [42).) A popular alternative to a substitutional
compressor is a statistical compressor. A symbol wise
statistical compressor functions by accurately predict
ing the probability of individual symbols, and then en
coding these symbols with space close to -log2 of the
predicted probabilities. The encoding is accomplished
with either Huffman compression (17] which has re
cently been made one-pass and adaptive (11, 22, 37),
or with arithmetic coding, as described in [1. 14, 20, 25,
26, 31-33]. The major challenge of a statistical com
pressor is to predict the symbol prob&bilities. Simple
strategies, such as keeping zero-order (single symbol) or
first-order (symbol pair) statistics of the input, do not
compress English text very well. Several authors have
had success gathering higher-order statistics. but this
necessarily involves higher memory costs and addi
tional mechanisms for de11ling with situatiuns when~
higher-order statistics are not available (6. 7, 26).

It is hard to give a rigorous foundation to the substi
tutional vs. statistical distinction described above. Sev
eral authors have observed that statistical methods can
be used lo simulate textual substitution, suggesting that
the statistical category includes the substitutional cate
gory [4, 24). However. this takes no account of the sim
plicity of mechanism; the virtue of textual substitution
is that it recognizes and removes coherence on a large
scale, oftentimes ignoring the smaller scale statistics. As
a result, most textual substitution compressors pro-
cess their compressed representation in larger blocks
than their statistical counterparts. thereby gaining a sig
nificant speed advantage. II was previously believed
that the speed gained by textual substitution would
necessarily cost something in compression achieved.
We were surprised to discover that with careful atten
tion to coding, textual substitution compressors can
match the compression performance of the best statisti
cal methods.

Consider the following scheme, which we wiU im
pro\'e later in the article. Compressed files contain two
types of codewords:

literal x pass the next ;r characters directly into the
uncompressed output

copy x, - y go back y characters in the output and copy
x characters forward to the current position.

April 1989 Volumt n Numbtr 4

f

Find authenticated court documents without watermarks at docketalarm.com.

Cf
Text Box
MICROSOFT CORP. ET AL.EXHIBIT 1008

https://www.docketalarm.com/

Page 2 of 16

So, for example, the following piece of literature:

IT WAS THE BEST OF TIMES,
IT WAS THE WORST OF TIMES

would compress to

(literal 26)IT WAS THE BEST OF TIMES,
(copy 11-26)(literal 3)WOR(copy 11 -27)

The compression achieved depends on the space re
quired for the copy and literal codewords. Our simplest
scheme, hereafter denoted At, uses 8 bits for a literal
codeword and 16 for a copy codeword. If the first 4 bits
are 0, then the codeword is a literal; the next 4 bits
encode a length x in the range (1 .. 16] and the follow
ing x characters are literal (one byte per character).
Otherwise, the codeword is a copy; the first 4 bits
encode a length x in the range [2 .. 16] and the next
12 bits are a displacement y in the range [1 .. 4096]. At
each step, the policy by which the compressor chooses
between a literal and a copy is as follows: If the com
pressor is idle (just finished a copy, or terminated a
literal because of the 16-character limit), then the long
est copy of length 2 or more is issued; otherwise, if the
longest copy is less than 2 long, a literal is started. Once
started, a literal is extended across subsequent charac
ters until a copy of length 3 or more can be issued or
until the length limit is reached.

At would break the first literal in the above example
into two literals and compress the source from 51 bytes
down to 36. At is close to Ziv and Lempel's first textual
substitution proposal [42]. One difference is that At
uses a separate literal codeword, while Ziv and Lempel
combine each copy codeword with a single literal char
acter. We have found it useful to have longer literals
during the startup transient; after the startup, it is bet
ter to have no literals consuming space in the copy
codewords.

Our empirical studies showed that, for source code
and English text, the field size choices for At are good;
reducing the size of the literal length field by 1 bit
increases compression slightly but gives up the byte
alignment property of the At codewords. In short, if
one desires a simple method based upon the copy and
literal idea, At is a good choice.

At was designed for 8-bit per character text or pro
gram sources, but, as we will see shortly, it achieves
good compression on other kinds of source data, such as
compiled code and images, where the word model does
not match the source data particularly well, or where
no model of the source is easily perceived. At is, in
fact, an excellent approach to general purpose data
compression. In the remainder of this article, we will
study At and several more powerful variations.

2. OVERVIEW OF THE DATA STRUCTURE
The fixed window suffix tree of this article is a modifi
cation of McCreight's suffix tree [28] (see also [21, 34,
38]), which is itself a modification of Morrison's PATRI

CIA tree [30], and Morrison's tree is ultimately based on
a Trie data structure [22, page 481). We will review
each of these data structures briefly.

Apri/1989 Volume 32 Number 4

Research Contributions

A Trie is a tree structure where the branching occurs
according to "digits" of the keys, rather than according
to comparisons of the keys. In English, for example, the
most natural "digits" are individual letters, with the lth
level of the tree branching according to the lth letter of
the words in the tree.

In Figure 1, many internal nodes are superfluous,
having only one descendant. If we are building an
index for a file, we can save space by eliminating the
superfluous nodes and putting pointers to the file into
the nodes rather than including characters in the data
structure. In Figure 2, the characters in parentheses are
not actually represented in the data structure, but they
can be recovered from the (position, level) pairs in the
nodes. Figure 2 also shows a suffix pointer (as a dark
right arrow) that will be explained later.

Figure 2 represents some, but not all, of the innova
tions in Morrison's PATRICIA trees. He builds the trees
with binary "digits" rather than full characters, and this
allows him to save more space by folding the leaves
into the internal nodes. Our "digits" are bytes, so the
branching factor can be as large as 256. Since there are
rarely 256 descendants of a node, we do not reserve
that much space in each node, but instead hash the
arcs. There is also a question about when the strings in
parentheses are checked in the searching process. In
what follows, we usually check characters immediately
when we cross an arc. Morrison's scheme can avoid file
access by skipping the characters on the arcs, and doing
only one file access and comparison at the end of the
search. However, our files will be in main memory, so
this consideration is unimportant. We will use the sim
plified tree depicted in Figure 2.

For At, we wish to find the longest (up to 16 charac
ter) match to the current string beginning anywhere in
the preceding 4096 positions. If all preceding 4096
strings were stored in a PATRICIA tree with depth
d = 16, then finding this match would be straightfor
ward. Unfortunately, the cost of inserting these strings
can be prohibitive, for if we have just descended d
levels in the tree to insert the string starting at position
i then we will descend at least d - 1 levels inserting the
string at i + 1. In the worst case this can lead to O(nd)

A S

S T

T R

R A

A
STRAY STRIDE

ASTRAY ASTRIDE

FIGURE 1. A Trie

Communications of the ACM 491 f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Page 3 of 16

Research Contributions

492

insertion time for a file of size n. Since later encodings
will use much laqer values ford than 16, it is impor
tant to eliminate tl from the running time.

To insert the strings in O(n) time, McCreight added
additional suffix l'ointers to the tree. Each internal
node, representing the string aX on the path from the
root to the intern< I node, has a pointer to the node
representing X, th 3 string obtained by stripping a single
letter from the be1~nning of aX. If a string starting at i
has just been inse:·ted at level d we do not need to
return to the root to insert the string at i + 1; instead,
a nearby suffix po .nter will lead us to the relevant
branch of the tree.

Figure 3 shows how suffix links are created and used.
On the previous it3ration, we have matched the string
aXY, where a is a single character, X and Yare strings,
and b is the first u 1matched character after Y. Figure 3
shows a complicat 3d case where a new internal node,
a, has been added to the tree, and the suffix link of a
must be computed. We insert the next string XYb by
going up the tree t'J node (3, representing the string aX,
and crossing its su:'fix link to ')1, representing X. Once
we have crossed tl.e suffix link, we descend again in
the tree, first by "nscanning" the string Y, and then by
"scanning" from o mtil the new string is inserted. The
first part is called ' rescanning" because it covers a por
tion of the string that was covered by the previous
insert, and so it do,~s not require checking the internal
strings on the arcs. (In fact, avoiding these checks is
essential to the linoar time functioning of the algo
rithm.) The rescan either ends at an existing node o, or
o is created to insert the new string XYb; either way we
have the destination for the suffix link of a. We have
restored the invariant that every internal node, except
possibly the one ju:;t created, has a suffix link.

For the At compressor, with a 4096-byte fixed win
dow, we need a way to delete and reclaim the storage
for portions of the ~ uffix tree representing strings fur
ther back than 4091i in the file. Several things must be
added to the suffix tree data structure. The leaves of
the tree are placed in a circular buffer, so that the
oldest leaf can be identified and reclaimed, and the
internal nodes are !:iven "son count" fields. When an

1 2 9 10

File: ASTRIDE ASTRAY

FIGURE 2. A IJATRICIA Tree with a Suffix Pointer

Communications of the 1lCM

K

A
aX ; ' X

I \

; '
y

' \ y
'

... " , ,.",., ," .. A'

FIGURE 3. Building a Suffix Tree

' \

rescan

scan

'

'o

internal "son count" falls to one, the node is deleted
and two consecutive arcs are combined. In Section 3, it
is shown that this approach will never leave a "dan
gling" suffix link pointing to deleted nodes. Unfortu
nately, this is not the only problem in maintaining a
valiid suffix tree. The modifications that avoided a re
turn to the root for each new insertion create havoc for
deletions. Since we have not always returned to the
root, we may have consistently entered a branch of the
tree sideways. The pointers (to strings in the 4096-byte
window) in the higher levels of such a branch can be
come out-of-date. However, traversing the branch and
updating the pointers would destroy any advantage
gained by using the suffix links.

We can keep valid pointers and avoid extensive up
dating by partially updating according to a percolating
update. Each internal node has a single "update" bit. If
the update bit is true when we are updating a node,
then we set the bit false and propagate the update re
cursively to the node's parent. Otherwise, we set the bit
true and stop the propagation. In the worst case, a long
string of true updates can cause the update to propagate
to the root. However, when amortized over all new
leaves, the cost of updating is constant, and the effect of
updating is to keep all internal pointers on positions
within the last 4096 positions of the file. These facts
will be shown in Section 3.

We can now summarize the operation of the inner
loop, using Figure 3 again. If we have just created node
a, then we use a's parent's suffix link to find 'Y· From 'Y
we move down in the tree, first rescanning, and then
scanning. At the end of the scan, we percolate an up
date from the leaf, moving toward the root, setting the
position fields equal to the current position, and setting
the update bits false, until we find a node with an
update bit that is already false, whereupon we set that
node's update bit true and stop the percolation. Finally,
we go to the circular buffer of leaves and replace the
oldest leaf with the new leaf. If the oldest leaf's parent
has only one remaining son, then it must also be de-

April 1989 Volume 32 Number 4 f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Page 4 of 16

leted; in this case, the remaining son is attached to its
grandparent, and the deleted node's position is perco
lated upward as before, only at each step the position
being percolated and the position already in the node
must be compared and the more recent of these sent
upward in the tree.

3. THEORETICAL CONSIDERATIONS
The correctness and linearity of suffix tree construction
follows from McCreight's original paper [28]. Here we
will concern ourselves with the correctness and the
linearity of suffix tree destruction-questions raised in
Section 2.

THEOREM 1. Deleting leaves in FIFO order and deleting
internal nodes with single sons will never leave dangling
suffix pointers.

PROOF. Assume the contrary. We have a node a
with a suffix pointer to a node o that has just been
deleted. The existence of a means that there are at
least two strings that agree for l positions and then
differ at I + 1. Assuming that these two strings start at
positions i and j, where both i and j are within the
window of recently scanned strings and are not equal
to the current position, then there are are two even
younger strings at i + 1 and j + 1 that differ first at I.
This contradicts the assumption that o has one son. {If
either i or j are equal to the current position, then a is
a new node, and can temporarily be without a suffix
pointer.)

There are two issues related to the percolating update:
its cost and its effectiveness.

THEOREM 2. Each percolated update has constant amor
tized cost.

PROOF. We assume that the data structure contains
a "credit" on each internal node where the "update"
flag is true. A new leaf can be added with two "credits."
One is spent immediately to update the parent, and the
other is combined with any credits remaining at the
parent to either: 1) obtain one credit to leave at the
parent and terminate the algorithm or 2) obtain two
credits to apply the algorithm recursively at the parent.
This gives an amortized cost of two updates for each
new leaf.

For the next theorem, define the "span" of a suffix tree
to be equal to the size of its fixed window. So far we
have used examples with "span" equal to 4096, but the
value is flexible.

THEOREM 3. Using the percolating update, every inter
nal node will be updated at least once during every period of
length "span."

PROOF. It is useful to prove the slightly stronger re
sult that every internal node (that remains for an entire
period) will be updated twice during a period, and thus
propagate at least one update to its parent. To show a
contradiction, we find the earliest period and the node

April1989 Volume 32 Number 4

Research Contributions

{3 farthest from the root that does not propagate an
update to its parent. If {3 has at least two children that
have remained for the entire period, then {3 must have
received updates from these nodes: they are farther
from the root. If {3 has only one remaining child, then
it must have a new child, and so it will still get
two updates. (Every newly created arc causes a son
to update a parent, percolating if necessary.) Similarly,
two new children also cause two updates. By every
accounting, {3 will receive two updates during the
period, and thus propagate an update-contradicting
our assumption of {J's failure to update its parent.

There is some flexibility on how updating is handled.
We could propagate the current position upward before
rescanning, and then write the current position into
those nodes passed during the rescan and scan; in this
case, the proof of Theorem 3 is conservative. Alterna
tively, a similar, symmetric proof can be used to show
that updating can be omitted when new arcs are added
so long as we propagate an update after every arc is
deleted. The choice is primarily a matter of implemen
tation convenience, although the method used above is
slightly faster.

The last major theoretical consideration is the effec
tiveness of the At policy in choosing between literal
and copy codewords. We have chosen the following
one-pass policy for At: When the encoder is idle, issue
a copy if it is possible to copy two or more characters;
otherwise, start a literal. If the encoder has previously
started a literal, then terminate the literal and issue a
copy only if the copy is of length three or greater.

Notice that this policy can sometimes go astray. For
example, suppose that the compressor is idle at position
i and has the following copy lengths available at subse
quent positions:

i + 1
1 3

i+2 i+3 i+4 i+5
16 15 14 13

(1)

Under the policy, the compressor encodes position i
with a literal codeword, then takes the copy of length 3,
and finally takes a copy of length 14 at position i + 4. It
uses 6 bytes in the encoding:

(literal1)X(copy 3 - y)(copy 14 - y)

If the compressor had foresight it could avoid the
copy of length 3, compressing the same material into
5 bytes:

(literal 2)XX(copy 16 - y)

The optimal solution can be computed by dynamic
programming [36]. One forward pass records the length
of the longest possible copy at each position (as in equa
tion 1) and the displacement for the copy (not shown in
equation 1). A second backward pass computes the
optimal way to finish compressing the file from each
position by recording the best codeword to use and the
length to the end-of-file. Finally, another forward pass
reads off the solution and outputs the compressed file.
However, one would probably never want to use dy-

Communications of the ACM 493 f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Page 5 of 16

Research Contributions

494

namic programming since the one-pass heuristic is a lot
faster, and we estimated for several typical files that
the heuristically compressed output was only about
1 percent larger than the optimum. Furthermore, we
will show in the Iemainder of this section that the size
of the compressed file is never worse than % the size of
the optimal soluti:m for the specific At encoding.
This will require ·ieveloping some analytic tools, so the
non-mathematica. reader should feel free to skip to
Section 4.

The following def.nitions are useful:

Definition. F(i I is the longest feasible copy at position i
in the file.

Sample F(i)'s were· given above in equation 1. They are
dependent on the encoding used. For now, we are as
suming that they are limited in magnitude to 16, and
must correspond tJ copy sources within the last 4096
characters.

Definition. B(i 1 is the size of the best way to compress
the remainder of th1~ file, starting at position i.

B(i)'s would be computed in the reverse pass of the
optimal algorithm outlined above.

The following T 1eorems are given without proof:

THEOREM. F(i -t 1) ~ F(i) - 1.

THIWREM. Ther.~ exists an optimal solution where copies
are longest possible (i.e., only copies corresponding to F(i)'s
are used).

THEOREM. B(i) lS monotone decreasing.

THEOREM. Any :wlution can be modified, without affect
ing length, so that (literal Xt) followed immediately by
(literal x2) implies lhat x1 is maximum (in this case 16).

We could continue to reason in this vein, but there is
an abstract way of looking at the problem that is both
clearer and more general. Suppose we have a non
deterministic finitE' automaton where each transition is
given a cost. A simple example is shown in Figure 4.
The machine accepts (a+ b)*, with costs as shown in
parentheses.

The total cost of accepting a string is the sum of the

Start

I b (3)

IX

FIGURE 4. A Nondeterministic Automaton with Transition Costs

Communications of the ACM

transition costs for each character. (While it is not
important to our problem, the optimal solution can be
computed by forming a transition matrix for each let
te:r, using the costs shown in parentheses, and then
multiplying the matrices for a given string, treating the
coefficients as elements of the closed semiring with op
erations of addition and minimization.) We can obtain a
solution that approximates the minimum by deleting
transitions in the original machine until it becomes a
deterministic machine. This corresponds to choosing a
policy in our original data compression problem. A pol
icy for the machine in Figure 4 is shown in Figure 5.

We now wish to compare, in the worst case, the dif
ference between optimally accepting a string with the
non-deterministic machine, and deterministically ac
cepting the same string with the "policy" machine. This
is done by taking a cross product of the two machines,
as shown in Figure 6.

In Figure 6 there are now two weights on each transi
tion; the first is the cost in the non-deterministic graph,
and the second is the cost in the policy graph. Asymp
totically, the relationship of the optimal solution to the
poiicy solution is dominated by the smallest ratio on a
cycle in this graph. In the case of Figure 6, there is a
cycle from 1, 1' to 1, 2' and back that has cost in the
non-deterministic graph of 2 + 1 = 3, and cost in the
policy graph of 3 + 3 = 6, giving a ratio of%. That is,

Start

)'''

FIGURE 5. A Deterministic "Policy" Automaton for Figure 4

the policy solution can be twice as bad as the optimum
on the string ababababab

In general, we can find the cycle with the smallest
ratio mechanically, using well known techniques (8,
27]. The idea is to conjecture a ratio r and then reduce
the pairs of weights (x, y) on the arcs to single weights
x - ry. Under this reduction, a cycle with zero weight
has ratio exactly r. If a cycle has negative weight, then r
is too large. The ratio on the negative cycle is used as a
new conjecture, and the process is iterated. !Negative
cycles are detected by running a shortest path algo
rithm and checking for convergence.) Once we have
found the minimum ratio cycle, we can create a worst
case string in the original automata problem by finding
a path from the start state to the cycle and then repeat
ing the cycle indefinitely. The ratio of the costs of ac-

Apri/1989 Volume 32 Number 4 f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

