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ABSTRACT: Several methods are presented for adaptive, 
i11vertiblt data comJ•rtssiorr in the style of Lempel's and 
Ziv's first textual substitution proposal. For the first two 
methods, the article describes modifications of McCreight's 
suffix tree data strudure that support cyclic maintena11ce of 
a window on the most recent source characters. A 
percolating update i,; used to keep node positions within the 
window, 11nd the upol11ting process is shown to have constant 
11mortized cost. Otha methods explore the tradeoffs between 
compression time, eJpansion time, data structure size, and 
amount of compress1on achieved. The article includes a 
graph-theoretic anal1sis of the compression penalty incurred 
by our codeword sel• ction policy in comparison with a11 
optimal policy, and 11 iucludes empirical studies of the 
performance of various adaptive compressors from the 
literature. 

1. INTRODUCTION 
Compression is the coding of data to minimize its repre
sentation. In this a1 tide, we are concerned with fast. 
one-pass, adaptive, invertible (or lossless) methods of 
digital compression which have reasonable memory 
requirements. Suet methods can be used, for example, 
to reduce the storaHe requirements for files, to increase 
the communicatior rate over a channel, or to reduce 
redundancy prior t•> encryption for greater security. 

By "adaptive" WE mean that a compression method 
should be widely a:>plicable to different kinds of source 
data. Ideally, it sho J!d adapt rapidly to the source to 
achieve significant compression on small files, and it 
should adapt to an} subsequent internal changes in the 
nature of the sourco:. In addition, it should achieve very 
high compression a;ymptotically on large regions with 
stationary statistics 

All the compression methods developed in this article 
are subslilution11l. T.,rpically. a substitutional compressor 
functions by replac: ng large blocks of text with shorter 
references to earlie: occurrences of identical text (3, 5, 
29, 34. 36. 39. 41-4: ]. (This is often called Ziv-Lempel 
compression, in rec>gnilion of their pioneering ideas. 
Ziv and Lempel. in £act, proposed two methods. The 
unqualified use of tbe phrase "Ziv-Lempel compres
sion" usually refers to their second proposal (43). In this 
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article, we will be primarily concerned with. their first 
proposal [42).) A popular alternative to a substitutional 
compressor is a statistical compressor. A symbol wise 
statistical compressor functions by accurately predict
ing the probability of individual symbols, and then en
coding these symbols with space close to -log2 of the 
predicted probabilities. The encoding is accomplished 
with either Huffman compression (17] which has re
cently been made one-pass and adaptive (11, 22, 37), 
or with arithmetic coding, as described in [1. 14, 20, 25, 
26, 31-33]. The major challenge of a statistical com
pressor is to predict the symbol prob&bilities. Simple 
strategies, such as keeping zero-order (single symbol) or 
first-order (symbol pair) statistics of the input, do not 
compress English text very well. Several authors have 
had success gathering higher-order statistics. but this 
necessarily involves higher memory costs and addi
tional mechanisms for de11ling with situatiuns when~ 
higher-order statistics are not available (6. 7, 26). 

It is hard to give a rigorous foundation to the substi
tutional vs. statistical distinction described above. Sev
eral authors have observed that statistical methods can 
be used lo simulate textual substitution, suggesting that 
the statistical category includes the substitutional cate
gory [4, 24). However. this takes no account of the sim
plicity of mechanism; the virtue of textual substitution 
is that it recognizes and removes coherence on a large 
scale, oftentimes ignoring the smaller scale statistics. As 
a result, most textual substitution compressors pro-
cess their compressed representation in larger blocks 
than their statistical counterparts. thereby gaining a sig
nificant speed advantage. II was previously believed 
that the speed gained by textual substitution would 
necessarily cost something in compression achieved. 
We were surprised to discover that with careful atten
tion to coding, textual substitution compressors can 
match the compression performance of the best statisti
cal methods. 

Consider the following scheme, which we wiU im
pro\'e later in the article. Compressed files contain two 
types of codewords: 

literal x pass the next ;r characters directly into the 
uncompressed output 

copy x, - y go back y characters in the output and copy 
x characters forward to the current position. 
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So, for example, the following piece of literature: 

IT WAS THE BEST OF TIMES, 
IT WAS THE WORST OF TIMES 

would compress to 

(literal 26)IT WAS THE BEST OF TIMES, 
(copy 11-26)(literal 3)WOR(copy 11 -27) 

The compression achieved depends on the space re
quired for the copy and literal codewords. Our simplest 
scheme, hereafter denoted At, uses 8 bits for a literal 
codeword and 16 for a copy codeword. If the first 4 bits 
are 0, then the codeword is a literal; the next 4 bits 
encode a length x in the range (1 .. 16] and the follow
ing x characters are literal (one byte per character). 
Otherwise, the codeword is a copy; the first 4 bits 
encode a length x in the range [2 .. 16] and the next 
12 bits are a displacement y in the range [1 .. 4096]. At 
each step, the policy by which the compressor chooses 
between a literal and a copy is as follows: If the com
pressor is idle (just finished a copy, or terminated a 
literal because of the 16-character limit), then the long
est copy of length 2 or more is issued; otherwise, if the 
longest copy is less than 2 long, a literal is started. Once 
started, a literal is extended across subsequent charac
ters until a copy of length 3 or more can be issued or 
until the length limit is reached. 

At would break the first literal in the above example 
into two literals and compress the source from 51 bytes 
down to 36. At is close to Ziv and Lempel's first textual 
substitution proposal [42]. One difference is that At 
uses a separate literal codeword, while Ziv and Lempel 
combine each copy codeword with a single literal char
acter. We have found it useful to have longer literals 
during the startup transient; after the startup, it is bet
ter to have no literals consuming space in the copy 
codewords. 

Our empirical studies showed that, for source code 
and English text, the field size choices for At are good; 
reducing the size of the literal length field by 1 bit 
increases compression slightly but gives up the byte
alignment property of the At codewords. In short, if 
one desires a simple method based upon the copy and 
literal idea, At is a good choice. 

At was designed for 8-bit per character text or pro
gram sources, but, as we will see shortly, it achieves 
good compression on other kinds of source data, such as 
compiled code and images, where the word model does 
not match the source data particularly well, or where 
no model of the source is easily perceived. At is, in 
fact, an excellent approach to general purpose data 
compression. In the remainder of this article, we will 
study At and several more powerful variations. 

2. OVERVIEW OF THE DATA STRUCTURE 
The fixed window suffix tree of this article is a modifi
cation of McCreight's suffix tree [28] (see also [21, 34, 
38]), which is itself a modification of Morrison's PATRI

CIA tree [30], and Morrison's tree is ultimately based on 
a Trie data structure [22, page 481 ). We will review 
each of these data structures briefly. 
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A Trie is a tree structure where the branching occurs 
according to "digits" of the keys, rather than according 
to comparisons of the keys. In English, for example, the 
most natural "digits" are individual letters, with the lth 
level of the tree branching according to the lth letter of 
the words in the tree. 

In Figure 1, many internal nodes are superfluous, 
having only one descendant. If we are building an 
index for a file, we can save space by eliminating the 
superfluous nodes and putting pointers to the file into 
the nodes rather than including characters in the data 
structure. In Figure 2, the characters in parentheses are 
not actually represented in the data structure, but they 
can be recovered from the (position, level) pairs in the 
nodes. Figure 2 also shows a suffix pointer (as a dark 
right arrow) that will be explained later. 

Figure 2 represents some, but not all, of the innova
tions in Morrison's PATRICIA trees. He builds the trees 
with binary "digits" rather than full characters, and this 
allows him to save more space by folding the leaves 
into the internal nodes. Our "digits" are bytes, so the 
branching factor can be as large as 256. Since there are 
rarely 256 descendants of a node, we do not reserve 
that much space in each node, but instead hash the 
arcs. There is also a question about when the strings in 
parentheses are checked in the searching process. In 
what follows, we usually check characters immediately 
when we cross an arc. Morrison's scheme can avoid file 
access by skipping the characters on the arcs, and doing 
only one file access and comparison at the end of the 
search. However, our files will be in main memory, so 
this consideration is unimportant. We will use the sim
plified tree depicted in Figure 2. 

For At, we wish to find the longest (up to 16 charac
ter) match to the current string beginning anywhere in 
the preceding 4096 positions. If all preceding 4096 
strings were stored in a PATRICIA tree with depth 
d = 16, then finding this match would be straightfor
ward. Unfortunately, the cost of inserting these strings 
can be prohibitive, for if we have just descended d 
levels in the tree to insert the string starting at position 
i then we will descend at least d - 1 levels inserting the 
string at i + 1. In the worst case this can lead to O(nd) 
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FIGURE 1. A Trie 
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insertion time for a file of size n. Since later encodings 
will use much laqer values ford than 16, it is impor
tant to eliminate tl from the running time. 

To insert the strings in O(n) time, McCreight added 
additional suffix l'ointers to the tree. Each internal 
node, representing the string aX on the path from the 
root to the intern< I node, has a pointer to the node 
representing X, th 3 string obtained by stripping a single 
letter from the be1~nning of aX. If a string starting at i 
has just been inse:·ted at level d we do not need to 
return to the root to insert the string at i + 1; instead, 
a nearby suffix po .nter will lead us to the relevant 
branch of the tree. 

Figure 3 shows how suffix links are created and used. 
On the previous it3ration, we have matched the string 
aXY, where a is a single character, X and Yare strings, 
and b is the first u 1matched character after Y. Figure 3 
shows a complicat 3d case where a new internal node, 
a, has been added to the tree, and the suffix link of a 
must be computed. We insert the next string XYb by 
going up the tree t'J node (3, representing the string aX, 
and crossing its su:'fix link to ')1, representing X. Once 
we have crossed tl.e suffix link, we descend again in 
the tree, first by "nscanning" the string Y, and then by 
"scanning" from o mtil the new string is inserted. The 
first part is called ' rescanning" because it covers a por
tion of the string that was covered by the previous 
insert, and so it do,~s not require checking the internal 
strings on the arcs. (In fact, avoiding these checks is 
essential to the linoar time functioning of the algo
rithm.) The rescan either ends at an existing node o, or 
o is created to insert the new string XYb; either way we 
have the destination for the suffix link of a. We have 
restored the invariant that every internal node, except 
possibly the one ju:;t created, has a suffix link. 

For the At compressor, with a 4096-byte fixed win
dow, we need a way to delete and reclaim the storage 
for portions of the ~ uffix tree representing strings fur
ther back than 4091i in the file. Several things must be 
added to the suffix tree data structure. The leaves of 
the tree are placed in a circular buffer, so that the 
oldest leaf can be identified and reclaimed, and the 
internal nodes are !:iven "son count" fields. When an 

1 2 9 10 
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FIGURE 2. A IJATRICIA Tree with a Suffix Pointer 

Communications of the 1lCM 

K 

A 
aX ; ' X 

I \ 

; ' 
y 

' \ y 
' 

... " .... , ...... ,." ................. .,., ........... ," .. A' 

FIGURE 3. Building a Suffix Tree 

' \ 

rescan 

scan 

' 

'o 

internal "son count" falls to one, the node is deleted 
and two consecutive arcs are combined. In Section 3, it 
is shown that this approach will never leave a "dan
gling" suffix link pointing to deleted nodes. Unfortu
nately, this is not the only problem in maintaining a 
valiid suffix tree. The modifications that avoided a re
turn to the root for each new insertion create havoc for 
deletions. Since we have not always returned to the 
root, we may have consistently entered a branch of the 
tree sideways. The pointers (to strings in the 4096-byte 
window) in the higher levels of such a branch can be
come out-of-date. However, traversing the branch and 
updating the pointers would destroy any advantage 
gained by using the suffix links. 

We can keep valid pointers and avoid extensive up
dating by partially updating according to a percolating 
update. Each internal node has a single "update" bit. If 
the update bit is true when we are updating a node, 
then we set the bit false and propagate the update re
cursively to the node's parent. Otherwise, we set the bit 
true and stop the propagation. In the worst case, a long 
string of true updates can cause the update to propagate 
to the root. However, when amortized over all new 
leaves, the cost of updating is constant, and the effect of 
updating is to keep all internal pointers on positions 
within the last 4096 positions of the file. These facts 
will be shown in Section 3. 

We can now summarize the operation of the inner 
loop, using Figure 3 again. If we have just created node 
a, then we use a's parent's suffix link to find 'Y· From 'Y 
we move down in the tree, first rescanning, and then 
scanning. At the end of the scan, we percolate an up
date from the leaf, moving toward the root, setting the 
position fields equal to the current position, and setting 
the update bits false, until we find a node with an 
update bit that is already false, whereupon we set that 
node's update bit true and stop the percolation. Finally, 
we go to the circular buffer of leaves and replace the 
oldest leaf with the new leaf. If the oldest leaf's parent 
has only one remaining son, then it must also be de-
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leted; in this case, the remaining son is attached to its 
grandparent, and the deleted node's position is perco
lated upward as before, only at each step the position 
being percolated and the position already in the node 
must be compared and the more recent of these sent 
upward in the tree. 

3. THEORETICAL CONSIDERATIONS 
The correctness and linearity of suffix tree construction 
follows from McCreight's original paper [28]. Here we 
will concern ourselves with the correctness and the 
linearity of suffix tree destruction-questions raised in 
Section 2. 

THEOREM 1. Deleting leaves in FIFO order and deleting 
internal nodes with single sons will never leave dangling 
suffix pointers. 

PROOF. Assume the contrary. We have a node a 
with a suffix pointer to a node o that has just been 
deleted. The existence of a means that there are at 
least two strings that agree for l positions and then 
differ at I + 1. Assuming that these two strings start at 
positions i and j, where both i and j are within the 
window of recently scanned strings and are not equal 
to the current position, then there are are two even 
younger strings at i + 1 and j + 1 that differ first at I. 
This contradicts the assumption that o has one son. {If 
either i or j are equal to the current position, then a is 
a new node, and can temporarily be without a suffix 
pointer.) 

There are two issues related to the percolating update: 
its cost and its effectiveness. 

THEOREM 2. Each percolated update has constant amor
tized cost. 

PROOF. We assume that the data structure contains 
a "credit" on each internal node where the "update" 
flag is true. A new leaf can be added with two "credits." 
One is spent immediately to update the parent, and the 
other is combined with any credits remaining at the 
parent to either: 1) obtain one credit to leave at the 
parent and terminate the algorithm or 2) obtain two 
credits to apply the algorithm recursively at the parent. 
This gives an amortized cost of two updates for each 
new leaf. 

For the next theorem, define the "span" of a suffix tree 
to be equal to the size of its fixed window. So far we 
have used examples with "span" equal to 4096, but the 
value is flexible. 

THEOREM 3. Using the percolating update, every inter
nal node will be updated at least once during every period of 
length "span." 

PROOF. It is useful to prove the slightly stronger re
sult that every internal node (that remains for an entire 
period) will be updated twice during a period, and thus 
propagate at least one update to its parent. To show a 
contradiction, we find the earliest period and the node 

April1989 Volume 32 Number 4 

Research Contributions 

{3 farthest from the root that does not propagate an 
update to its parent. If {3 has at least two children that 
have remained for the entire period, then {3 must have 
received updates from these nodes: they are farther 
from the root. If {3 has only one remaining child, then 
it must have a new child, and so it will still get 
two updates. (Every newly created arc causes a son 
to update a parent, percolating if necessary.) Similarly, 
two new children also cause two updates. By every 
accounting, {3 will receive two updates during the 
period, and thus propagate an update-contradicting 
our assumption of {J's failure to update its parent. 

There is some flexibility on how updating is handled. 
We could propagate the current position upward before 
rescanning, and then write the current position into 
those nodes passed during the rescan and scan; in this 
case, the proof of Theorem 3 is conservative. Alterna
tively, a similar, symmetric proof can be used to show 
that updating can be omitted when new arcs are added 
so long as we propagate an update after every arc is 
deleted. The choice is primarily a matter of implemen
tation convenience, although the method used above is 
slightly faster. 

The last major theoretical consideration is the effec
tiveness of the At policy in choosing between literal 
and copy codewords. We have chosen the following 
one-pass policy for At: When the encoder is idle, issue 
a copy if it is possible to copy two or more characters; 
otherwise, start a literal. If the encoder has previously 
started a literal, then terminate the literal and issue a 
copy only if the copy is of length three or greater. 

Notice that this policy can sometimes go astray. For 
example, suppose that the compressor is idle at position 
i and has the following copy lengths available at subse
quent positions: 

i + 1 
1 3 

i+2 i+3 i+4 i+5 
16 15 14 13 

(1) 

Under the policy, the compressor encodes position i 
with a literal codeword, then takes the copy of length 3, 
and finally takes a copy of length 14 at position i + 4. It 
uses 6 bytes in the encoding: 

(literal1)X(copy 3 - y)(copy 14 - y) 

If the compressor had foresight it could avoid the 
copy of length 3, compressing the same material into 
5 bytes: 

(literal 2)XX(copy 16 - y) 

The optimal solution can be computed by dynamic 
programming [36]. One forward pass records the length 
of the longest possible copy at each position (as in equa
tion 1) and the displacement for the copy (not shown in 
equation 1). A second backward pass computes the 
optimal way to finish compressing the file from each 
position by recording the best codeword to use and the 
length to the end-of-file. Finally, another forward pass 
reads off the solution and outputs the compressed file. 
However, one would probably never want to use dy-
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namic programming since the one-pass heuristic is a lot 
faster, and we estimated for several typical files that 
the heuristically compressed output was only about 
1 percent larger than the optimum. Furthermore, we 
will show in the Iemainder of this section that the size 
of the compressed file is never worse than % the size of 
the optimal soluti:m for the specific At encoding. 
This will require ·ieveloping some analytic tools, so the 
non-mathematica. reader should feel free to skip to 
Section 4. 

The following def.nitions are useful: 

Definition. F(i I is the longest feasible copy at position i 
in the file. 

Sample F(i)'s were· given above in equation 1. They are 
dependent on the encoding used. For now, we are as
suming that they are limited in magnitude to 16, and 
must correspond tJ copy sources within the last 4096 
characters. 

Definition. B(i 1 is the size of the best way to compress 
the remainder of th1~ file, starting at position i. 

B(i)'s would be computed in the reverse pass of the 
optimal algorithm outlined above. 

The following T 1eorems are given without proof: 

THEOREM. F(i -t 1) ~ F(i) - 1. 

THIWREM. Ther.~ exists an optimal solution where copies 
are longest possible (i.e., only copies corresponding to F(i)'s 
are used). 

THEOREM. B(i) lS monotone decreasing. 

THEOREM. Any :wlution can be modified, without affect
ing length, so that (literal Xt) followed immediately by 
(literal x2 ) implies lhat x1 is maximum (in this case 16). 

We could continue to reason in this vein, but there is 
an abstract way of looking at the problem that is both 
clearer and more general. Suppose we have a non
deterministic finitE' automaton where each transition is 
given a cost. A simple example is shown in Figure 4. 
The machine accepts (a+ b)*, with costs as shown in 
parentheses. 

The total cost of accepting a string is the sum of the 

Start 

I b (3) 

IX 

FIGURE 4. A Nondeterministic Automaton with Transition Costs 
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transition costs for each character. (While it is not 
important to our problem, the optimal solution can be 
computed by forming a transition matrix for each let
te:r, using the costs shown in parentheses, and then 
multiplying the matrices for a given string, treating the 
coefficients as elements of the closed semiring with op
erations of addition and minimization.) We can obtain a 
solution that approximates the minimum by deleting 
transitions in the original machine until it becomes a 
deterministic machine. This corresponds to choosing a 
policy in our original data compression problem. A pol
icy for the machine in Figure 4 is shown in Figure 5. 

We now wish to compare, in the worst case, the dif
ference between optimally accepting a string with the 
non-deterministic machine, and deterministically ac
cepting the same string with the "policy" machine. This 
is done by taking a cross product of the two machines, 
as shown in Figure 6. 

In Figure 6 there are now two weights on each transi
tion; the first is the cost in the non-deterministic graph, 
and the second is the cost in the policy graph. Asymp
totically, the relationship of the optimal solution to the 
poiicy solution is dominated by the smallest ratio on a 
cycle in this graph. In the case of Figure 6, there is a 
cycle from 1, 1' to 1, 2' and back that has cost in the 
non-deterministic graph of 2 + 1 = 3, and cost in the 
policy graph of 3 + 3 = 6, giving a ratio of%. That is, 

Start 

)''' 

FIGURE 5. A Deterministic "Policy" Automaton for Figure 4 

the policy solution can be twice as bad as the optimum 
on the string ababababab . ... 

In general, we can find the cycle with the smallest 
ratio mechanically, using well known techniques (8, 
27]. The idea is to conjecture a ratio r and then reduce 
the pairs of weights (x, y) on the arcs to single weights 
x - ry. Under this reduction, a cycle with zero weight 
has ratio exactly r. If a cycle has negative weight, then r 
is too large. The ratio on the negative cycle is used as a 
new conjecture, and the process is iterated. !Negative 
cycles are detected by running a shortest path algo
rithm and checking for convergence.) Once we have 
found the minimum ratio cycle, we can create a worst 
case string in the original automata problem by finding 
a path from the start state to the cycle and then repeat
ing the cycle indefinitely. The ratio of the costs of ac-

Apri/1989 Volume 32 Number 4 f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


Real-Time Litigation Alerts
  Keep your litigation team up-to-date with real-time  

alerts and advanced team management tools built for  
the enterprise, all while greatly reducing PACER spend.

  Our comprehensive service means we can handle Federal, 
State, and Administrative courts across the country.

Advanced Docket Research
  With over 230 million records, Docket Alarm’s cloud-native 

docket research platform finds what other services can’t. 
Coverage includes Federal, State, plus PTAB, TTAB, ITC  
and NLRB decisions, all in one place.

  Identify arguments that have been successful in the past 
with full text, pinpoint searching. Link to case law cited  
within any court document via Fastcase.

Analytics At Your Fingertips
  Learn what happened the last time a particular judge,  

opposing counsel or company faced cases similar to yours.

  Advanced out-of-the-box PTAB and TTAB analytics are  
always at your fingertips.

Docket Alarm provides insights to develop a more  

informed litigation strategy and the peace of mind of 

knowing you’re on top of things.

Explore Litigation 
Insights

®

WHAT WILL YOU BUILD?  |  sales@docketalarm.com  |  1-866-77-FASTCASE

API
Docket Alarm offers a powerful API 
(application programming inter-
face) to developers that want to 
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your 
attorneys and clients with live data 
direct from the court.

Automate many repetitive legal  
tasks like conflict checks, document 
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks 
for companies and debtors.

E-DISCOVERY AND  
LEGAL VENDORS
Sync your system to PACER to  
automate legal marketing.


