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On Optimum Quantization 

ROGER C. WOOD, MEMBER, IEEE 

Abstract- The problem of minimizing mean-square quantization 
error is considered and simple closed fonn approximations based 
on the work of Mu and Roe are derived for the quantization error 
and entropy of signals quantized by the optimum fu:ed-N quantizer. 
These approximations are then used to show that, when N is mod­
erately large, it is better to use equi-interval quantizing than the 
optimum fi:.ted-N quantizer if the signal is to be subset uently buf­
fered and transmitted at a fixed bit rate. Finally, the problem of 
optimum quantizing in the presence of buffering is examined, and 
the numerical results presented for Gaussian signals indicate that 
equilevel quantizing yields nearly optimum results. 

T HE REDUCTION of quantization error by tailor­
ing the structure of the quantizer to the signal to 
be processed has received <;onsiderable theoretical 

attention in the past. We shall consider this concept for 
the special case of stochastic signals whose samples are 
independently and identically distributed. This problem 
of quantizing for minimum distol'tion for a. signal of known 
probability density p(x) was first considered in detail by 
Max [1} in 1961. By assuming the number of levels N to 
be fixed, Max derived equations for the optimum intervals 
(y._, y.) and levels x •. When the criterion is minimum 
mean-square error, the appropriate equations are 

and 

J.:~. xp(x) dx 

J.:~. p(x) dx 

(1) 

(2) 

Hence, the representative levels are the conditional means 
on the given intervals, and the interval boundaries are 
halfway between the levels. The analytica.l solution of 
these equations is impossible for all but trivial cases, but 
a numerical solution is straightforward. Moreover, Roe 
[21 has derived excellent approximate formulas based on 
Max's results. 

The above equations will, in general, require an iteration 
technique for their solution. One such technique is given by 
Max, and many others are also feasible. 

The purpose of this paper is to derive a simple estimate 
of the error saving to be obtained by Max's quantizer, 
which shall be labeled the optimum fixed-N quantizer; to 
examine the effect on. signal entropy of such quantizing, 
and finally to examine the problem of optimum quantiza-
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tion in the presence of bufi'ering (i.e., for fixed transmission 
rate and, therefore, fixed entropy). 

A CoNVENIENT APPRoXIMATION 

Since all forms of the optimizing equations depend on 
the conditional mean J.l('T/,, 112), we shall generate an ap­
proximation for that function. To do so, we note that if 
p(x) is sufficiently well behaved' on the interval (~ -
A/2, ~ + A/2) we can generate Taylor's series expansions 
about ~ for both the numerator and denominator, and 
therefore, formally, we can write 

( 
A A) ~W + ~~ [~"W + 2p'(t)] 

J.l ~ - - ' ~ + - ,...._ 2 (3) 
2 2 p(~) + ~p"<t) 

24 

A2 
-p'W 

= ~ + 12 2 (4) 
A 

p(~) + -p"W 24 

~ ~ + A• p'W (5) 
- 12 p(~) 

for A small enough. 
Thus we have derived, for small intervals, an approxi­

mate expression for the conditional mean in terms of the 
midpoint and length of the given interval. 

THE SEcoND-ORDER MoMENTs oF THE QuANTIZED 

D ISTRIBUTION 

We can give a considerable amount of information about 
the behavior of the first two moments of the quantized 
variable. In particular we have the following theorem. 

Theorem 1 

When the optimum fixed-N quantizer is employed, 
the first moment of the quantized variable is given by "'' 
and the second moment can be approximated by 

V(x*) ~ (l - ~ ~~ p(~.) 

1 Since in all cases we truncate the Taylor's series after several 
terms, it will suffice for our purposes that the first few (at most, five) 
derivatives exist and are continuous. Moreover, for the approxi­
mation which will be developed to be close, the number of N levels 
must be large enough (i.e., the interval lengths 6 small enough) 
so that 

p(x) > > t1p'(x) > > t12p"(x) > > · · · . 

Thus the critical interval size, for application of the approximations, 
is seen to depend closely upon the nature of the probability density 
p(x). 

f 
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where ilk is the length and h the midpoint of the kth 
quantizer interval. 

Proof: For the first moment, E(x*) = E[E(x I YH < 
x < yk)] = J.1. so that the quantized variable has the same 
mean as the original continuous variable. Considering 
the second moment of x*, we note first that we can write 

1
00 r'•+1/2t.. 

E(x
2

) = -oo x
2

p(x) dx = f: J«-uzt.. X
2
p(x) dx. (6) 

Expanding x2p(x) about x = ~ yields, after integrating 
over the intervals (h - t D.k, h + t ilk), 

E(x
2

) = f: ( Llk~!p(h) + 4~L [~~p"(~k) 
+ 4~kp'(~k) + 2p(~k)] + 0(.1%)). (7) 

Therefore, letting J.l.k = E[x I Yk-1 < x < yk] and pk = 
P[yk-1 < x < yk], we can write 

E[(x*) 2
] = L J.I.!Pk 

k 

k<;.kp <;.k 24 24 
. [.1 t cc) + Ll~hp''c~k) + 2.1~p'(h) -JJ 

"-' f: ( Ll,~fp(~k) + ~ [4~kp'(~k) + ~!p"(~k)l) 
'"'"' E(x2

) - l2 L D.!p(~k), (8) 
k 

for ilk small enough. Hence, the variance of the quantized 
variable is less than that of the continuous variable and 
is given by 

V(x*) = (/ - T\ L il!p(~k) + 0(.1~) 
which completes the proof. 

(9) 

The significance of this result is that the variance of the 
quantized variable is less than that of the original signal. 
Hence, the signal and noise are dependent and no pseudo­
independence of the sort considered by Widrow [3] is 
possible. Thus, the common additive noise model is not 
appropriate for the case of optimum fixed-N quantizing. 

CLOSED FORM APPROXIMATIONS FOR THE MEAN-SQUARE 

ERROR AND THE ENTROPY oF THE QuANTIZED SIGNAr, 

Although the correction term for the second moment 
derived above did not possess a convenient closed form, 
it enabled us to demonstrate the lack of independence 
between signal and noise. We now develop a general 
technique for deriving a closed form approximation to 
the error, and therefore also the correction term for 
signals with well-behaved probability density functions. 

249 

In addition, we derive an approximation to the entropy 
of the quantized sample. 

For a mean-square error criterion, Roe has shown that 
the interval points for the optimum fixed-N quantizer 
can be approximated by ··· 

[' [p(x)r 13 dx '"'"'2Clk + Cz (10) 

where C1 and C2 are constants, provided only that, in 
the sense described previously, N is large and p(x) suffi­
ciently differentiable. Clearly, if (yo, YN) spans the domain 
of definition of p(x), the quantity 

[N [p(x)r;a dx - [" [p(:r)Jl/3 dx 

depends only on p(x) and C1 = 0(1/N). 

Theorem 2 

For any signal with probability distribution p(x) well 
enough behaved for Roe's approximations (10) to be 
applicable, the mean-square quantization error of the 
optimum fixed-N quantizer can be approximated, for 
large N (.1 small), by 

(11) 

where cl is given by evaluating (10) and is of the order 
N-1. 

Proof: For any p(x) well enough behaved 

f• [p(x)f 13 dx '"'"'2C1k + C2 • 

1f we now define z(x) to be 

z = r [p(t)r13 dt, 
•o 

dx 1 [p(x)rua 
dz dz 

dx 

and 

Hence, we can write 

~ 2 ,.._, i2(2C1)
2 j"N [[p(x)r 113Yp(x) dx 

Yo 

= l2(2C1)
2[2C1N + C2 - 2C1 ·0 - C2] 

= l2(2C1) 3N 

which concludes the proof. 

For the caRe of a Gaussian signal, this procedure yields 

2 2.73N 
~ = (N + o.s5W (12) 

since cl 1.6/(N + 0.853) (see [2]). 

f 
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TABLE I 
CoMPARISON OF ExACT AND APPROXIMATE VALUES l<'OR MEAN-SQUARE ERROR AND ENTROPY FOR Two QuANTIZATION METHODS 

Optimum Fixed N Equilevel 

Mean-Square Error Entropy l.Vlean-Square Error Entropy 

N Exact Approximate Exact Approximate Exact Approximate Exact Approximate 

5 0.0799 0.0797 2.20 2.24 
10 0.0229 0.0232 3.13 3.12 
15 0.0107 0.0109 3.68 3.67 
20 0.00620 0.00628 4.07 4.07 
25 0.00404 0.00408 4.38 4.38 
30 0.00283 0.00287 4.64 4.64 
35 0.00210 0.00212 4.86 4.86 

We now derive asymptotic expressions for the entropy 
of the quantized signal that depend only upon the prop­
erties of the probability density p(x), for both the optimum 
fixed Nand the equilevel quantizer. 

Theorem 3 

For signals of finite range R and such that the entropy 
H(x) of the continuous signal is finite, the entropy of the 
quantized signal, when the optimum fixed-N quantizer 
is employed, can be approximated by 

(12 
2

) 1I(x*.) "'"' jH(x) - ! log NE (13) 

for large N. 
If equilevel quantizing is performed, the entropy of 

the quantized signal approaches 

H(x~) = H(x) - ! log (
1!E

2
) - ! log R (14) 

Proof: We note that 

Pk log Pk = p(h) Ak[log p(~k) + log Ak] 

so that 

H(x*.) = - L Pk log P• 

since 

and 

k 

for small Ak 

1 JYN 
rv H(x) - log 2C1 + 3 p(~) log p(~) d~ 

"' 
= jH(x) - log 2C1 

"'"' 2H( ) 1 l (12l) = 3 x -3 og N' 

2 "'"' (2C1)
3 

N 
E = 12 1 

(12/)
113 

2C ~ --
1- N 

0.176 0.213 1.50 1.37 
0.0507 0.0533 2.40 2.37 
0.0240 0.0237 2.97 2.95 
0.0132 0.0133 3.37 3.36 
0.00847 0.00852 3.69 3.69 
0.00590 0.00592 3.95 3.95 
0.00434 0.00435 4.17 4.17 

Thus, we have derived an expression for the entropy of 
the quantized signal, which depends only on the properties 
of the probability density p(x). We can, in a similar 
fashion, derive an expression for H (x*) when equi~interval 
quantizing is employed. To do this, we note that 

H(x~) = - L Pk log Pk 
k 

"'"' - L p(h) A[log p(h) + log A] 
k 

rv H(x) - log A 

""H(x) - i log 
1!E

2 
- i log R 

since A = R/N and i = /2 A2 for N large enough. 
The rapid convergence of these approximations, for the 

case of Gaussian signals, is readily apparent from the data 
of Table I, which contains exact and approximate compu­
tations of entropy and mean-square error for equilevel 
and optimum fixed-N quantization. In performing the 
equilevel computations, R was taken to be 8 in the design 
of the quantizer and the approximations. The exact results, 
however, are based on the true (infinite) range. 

THE APPLICATION OF BUFFERING AND ENCODING TO THE 

QuANTIZED SIGNAL 

In the previous paragraphs, we derived expressions for 
the mean-square error and the entropy of the quantized 
signal for both the optimum fixed-N quantizer and for 
simple equi-interval quantizing. Those estimates are now 
employed to evaluate the effect of encoding the quantized 
signals and buffering so that the average bit rate is fixed. 
We assume, for purposes of comparison, that the mean­
square error is fixed, and examine the difference in entropy 
between signals quantized by the above two devices. For 
this case, again under the assumption that the probability 
density p(x) is well behaved, we are able to prove a quite 
startling and significant theorem about the relative asymp­
totic behavior of the two types of quantizers. 

Theorem 4 
Within the limits of our approximation, and therefore 

asymptotically for large N (given p(x) well behaved and 
H(x) finite) the output of the optimum fixed-N quantizer 
has entropy greater than or equal to that of the output 
of an equilevel quantizer yielding the same mean-square 
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error, provided the range can be assumed to be finite. 
Therefore, assuming N is large, it is always better2 to 
quantize with an equilevel quantizer than with an opti­
mum fixed-N quantizer, if the output signal is to be en­
coded and transmitted at a fixed average bit rate. 

Proof: We note that from (13) and (14), we can write 

H(x~) - H(x~) r-.J! log R- !H(x) +!log (No/N,) (15) 

where the subscripts o and e represent optimum fixed N 
and equilevel quantizer;;, respectively. Since the errorfl 
are assumed to be equal 

(2(\)" R2 

-12- Nn = i21V!' (16) 

Now applying (10) for yl, and Yo we can write 

2C1 = {N [p(x)]' 13 dx/No . (17) 

Thus, by combining (16) and (17), "·e can solve for the 
ratio Na/N, and (15) becomes 

H(x*a) - H(x~) 

r-.J iH(x) + ! log [fN [p(x)] 113 dx] 

1 [21"N (l"N )] = 2" 3" "' p(x) log p(x) dx + log "" [p(x)]'
13 

![E(log [p(x)r13
) + log E([p(x)r213

)] 

~ !E[log [p(x)] 213 + log [p(x)r 213
] = 0, (18) 

since log x is a concave function. :Moreover, equality is 
achieved if and only if [p(x)] 213 is a constant, that is, for 
the uniform distribution. For this case, however, there 
is no difference between the two devices, for the optimum 
fixed-N quantizer is, in fact, equi-interval. Thus we con­
clude that for fixed mean-square error, the entropy of a 
signal quantized by the optimum quantizer is not less 
than that which obtains if the same signal is quantized 
by an equi-interval device, at least to the order of our ap­
proximation. Since a signal can, by means of encoding, be 
transmitted at an average bit rate approaching the signal 
entropy, this implies that an optimum fixed-N quantizer 
should never by employed if encoding is also to be per­
formed, and the theorem is proved. 

To illustrate more fully the significance of these remarks, 
we will consider the case of unit-variance Gaussian signals 
in detail. For this case, 

H(x) = ! log 21re 

and 

H(x~) = -0.3115 + log (N + 0.853). (19) 

If the range is taken to be 8 (i.e., ±4tT), \ve have for the 
equi-interval case 

H(x~) "'"' -0.953 + log N. (20) 

2 From the viewpoint of minimum error. The practical questions 
of implementation are discussed later. 

The mean-square error for each case is 

for the optimum fixed-N quantizer and 

t! "'"' 5.33/N
2 

251 

(21) 

(22) 

for the equi-interval quantizer. If the entropies of the two 
methods are equated, i.e., if a transmission rate is fixed, 

-0.3115 +log (No + 0.853) "'"'0.9.13 + log N, 

so that as N "' N, become large 

0.64 +log No"'"' log N, 

and N, "'"' 1.559 No· 
Thus, expressing the mean-square errors for each case in 

terms of N 01 vve have 

(23) 

and 

(24) 

Hence, for No moderately large, the error using equi­
interval quantizing is less than that using the optimum 
fixed-N quantizer, if the signals are to be subsequently 
encoded and transmitted at a fixed bit rate. The reason 
for this apparent anomaly is that, for a given N, the 
entropy of the equi-interval quantized signal is consider­
ably less than that of the optimum fixed-N quantized 
signal; and by employing more levels, this smaller entropy 
can be converted into lower mean-square error. Thus it 
is apparent that the optimum fixed-N quantizer loses more 
in terms of increased entropy than it gains in reduction 
of mean-square error, if encoding is to be practiced. It 
should be pointed out that it is necessary to use a buffer 
to achieve an advantage from any encoding scheme which 
involves words of variable length. There is therefore an 
apparent tradeoff between fixing N and using the more 
complex optimum quantizer but no buffer, and using a 
ordinary quantizer with a buffer. 

It should be noted that as N becomes very large, so also 
does the quantized entropy. Thus, the indicated difference 
may be trivial compared to H(x*). However, for the case of 
Gaussian signals, (treated as an example in the following 
sections), there does exist a wide range of values over which 
the difference is appreciable. 

THE OPTIMIZING EQUATIONS FOR THE CASE OF ENCODED 

SIGNALS 

It was shown in the previous section that if the quan­
tized signal is to be encoded, buffered, and transmitted 
at a fixed average bit rate, the use of the optimum fixed-N 
quantizer yields suboptimum results; results which are 
worse, in fact, than for a simple equilevel quantizer. We 
derive, in this section, conditions upon the optimum 

f 
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quantizer subject to the constraint of fixed average bit 
rate rather than fixed N. For simplicity, we assume that 
the encoding will be performed efficiently enough so that 
the entropy of the quantized signal is an adequate measure 
of the the average output bit rate. We again take the mean­
square error as our optimization criterion, although other 
criteria might be more desirable for certain applications.• 
Under these assumptions, our optimization problem is to 
find the values of Yk> xk, and N that minimize the mean­
square quantization error 

(25) 

subject to 

c, 
(26) 

where 

1"' Pk = p(x) dx, 
llk-J. 

i.e., so that the entropy of x* is constant. 
It is easily shown that the xk must be given by 

xk = fl.(Yk-1, Yk), 

so that the problem is expressible solely in terms of the 
yk and N. 

As was the case for the optimum fixed-N quantizer, an 
analytic solution to these equations can be found only for 
trivial cases. Therefore, for the particular case of Gaussian 
signals, the optimizing equations were converted to 
steepest-descent equations, which were implemented and 
solved on the System Development Corporation Q-32 
computer under the control of the TSS time-sharing sys­
tem. The correctness of the computer program was checked 
by suppressing the entropy constraint, which gave results 
that agreed with Max's. Next, the entropy term was 
made dominant and the constraint set to that for maxi­
mum entropy. The results again agreed with the theo­
retical (i.e., equal pk). 

The convergence of the steepest-descent equations is 
very slow, demonstrating that, as is also true for the 
fixed-N optimum, the mean-square quantization error 
is very insensitive to moderately small deviations from 
the optimum interval structure. 

The numerical results for Gaussian signals are rather 
surprising, in that the optimum fixed-entropy quantizer 
yields an error rate almost negligibly different from that 
of simple equilevel quantizing, except for very small N. 
These results are displayed in Fig. 1, from which we can 
see that the optimum fixed-entropy quantizer displays a 
marked improvement over the optimum fixed-N quan­
tizer, but not over equilevel quantizing. In fact, the 
equilevel quan~izer suffers in the comparison given because 
the range was assumed to be 8. For very small N, this 
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Fig. 1. Comparison of entropy versus mean-square error for equi­
level, optimum fixed-N and optimum fixed entropy quantization. 

obviously gives a poor choice of levels, and a better meas­
ure for comparison would be the optimum equilevel 
quantizer [1]. 

Thus, equilevel quantizing, currently employed because 
of its ease of implementation, is superior to optimum 
fixed-N quantizing if the output signal is to be buffered, 
for all but very small values of N. Moreover, because of 
the insensitivity of the mean-square quantization error 
to moderate changes in interval structure, equilevel quan­
tizing gives nearly optimum results for the special case of 
Gaussian signals.4 
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4 It has been brought to my attention by Dr. G. M. Roe, in pri­
vate communication, that it is possible to obtain an analytical deri­
vation of these computer based conclusions, and to extend them 
to well-behaved density functions other than the Gaussian. Speci­
fically, for the fixed-entropy quantil'!er discussed ab~ve, the optimum 
level spacing approaches the equal-mterval case, w1th 

!i_ (y ) ""' -v>: {1 + ~ [(p') 2 

- i! p"] + o('A2
)} 

dk k 24 p 5 p 

with X (a Lagrange multiplier) given by 

Hl rN p(x) log p(x) dx 

"' 

3 Prof. Leo Breiman, of the University of California, Los Angeles, and 
has suggested as an alternative formulation that the mutual infor­
mation I(x, x*) be maximized subject to H(x*) = C. 
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