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1. INTRODUCTION -We shall consider the problem of storing, transmit
ting, and manipulating digital electronic images. Be
cause of the file sizes involved, transmitting images 
will always consume large amounts of bandwidth, and 
storing images will always require hefty resources. 
Because of the large number N of pixels in a high-reso
lution image, manipulation of digital images is infea
sible without low-complexity algorithms, i.e., O(N) 
or O(N log(N)). Our goal is to describe some new 
methods which are firmly grounded in harmonic anal
ysis and the mathematical theory of function spaces, 
which promise to combine effective image compres
sion with low-complexity image processing. We s hall 
take a broad perspective, but we shall a lso compare 
specific new algorithms to the state of the art. 

Roughly speaking, most image compression algo
rithms split into three parts: invertible transforma
t ion, lossy quantization or rank reduction, and en
tropy coding (or redundancy removal). There are a 
few algorithms which differ fundamentally from this 
scheme, e.g., the collage coding algorithm [ 4 J, o r pure 
vector quantization of the pixels. The former uses a 
deep observation that pictures of natural objects ex
hibit self-similarity at different scales; we prefer to 
avoid relying on this phenomenon, since our images 
may not be "natural." The latte r uses a complex algo
rithm to build a superefficient empirical vocabulary 
to describe an ensemble of images; we prefer to avoid 
training our algorithm with any sample of images, to 
avoid the problem of producing a sufficiently large 
and suitable ensemble. 

There has emerged an international standard for 
picture compression, promulgated by the Joint Photo· 
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graphic Experts Group (JPEG ), which is remarkably 
effective in reducing the s ize of digitized image files. 
JPEG is two-djmensional discrete cosine transform 
(OCT) coding of 8 X 8 blocks of pixels, followed by a 
possibly proprietary quantization scheme on the OCT 
amplitudes, followed by either Huffman, Lempel
Ziv Welch, or a rithmetic coding oft he quantized coef
ficients. It has some drawbacks; for example, several 
incompatible implementations are allowed under t he 
standard. Also, JPEG degrades ungracefully at high 
and ultrahigh compression rat ios, a nd it makes cer
tain assumptions about the picture thai are violated 
by zooming in or out, or other transformations. It 
works so well on typical photographs and many other 
images, however, that it has become the algorithm to 
beat in most applications. J PEG fai ls most noticeably 
on high-resolution (i.e., oversampled ) data, and on 
images which must be closely examined by humans or 
machines. 

Alternatives to JPEG have recently appeared, and 
we shall discuss three of these: the fast discrete wave
let transform, t he local trigonometric or lapped or
thogonal transform, and the best-basis algor ithm. 
These differ in the transform coding step; i.e., instead 
of OCT they first apply the wavelet transform, lapped 
orthogonal t ransform, or wavelet packet transform, 
possibly followed by a best-basis search. The resulting 
stream of amplitudes is then quantized and coded to 
remove rPrlunrlllncy. 

Existing image processing algorithms work on the 
original pixels or else on the ( 2-dimensional ) Fourier 
transform of the pixels. If the image has been com
pressed, it must be uncompressed prior to such pro
cessing. Alternatively, we can try to devise algorithms 
which transform the compressed parameters. If com
pression is accomplished by retaining only a low-rank 
approximation to the signal, then we can use more 
complex algorithms for subsequent processing. To 
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put this idea into practice, we need to retain useful 
analytic properties such as the large derivatives used 
in edge detection. These will not be preserved by 
purely information-theoretic coding such as pure vec
tor quantization, but we can choose transform coding 
methods whose mathematical properties combine ef
ficient compression with good analytic behavior. 

2. TRANSFORM CODING IMAGE COMPRESSION -A digitally sampled image can represent only a 
band-limited function, since there is no way of resolv
ing spatial frequencies higher than half the pixel 
pitch. Band-limited functions are smooth; in fact they 
are entire analytic, which means that at each point 
they can be differentiated arbitrarily often and the 
resulting Taylor series converges arbitrarily far away. 
Since digitally sampled images faithfully reproduce 
the originals as far as our eyes can tell, we may confi
dently assume that our images are in fact smooth and 
well approximated by band-limited functions. An
other way of saying this is that adjacent pixels are 
highly correlated, or that there is a much lower rank 
description of the image which captures virtually all 
of the independent features. In transform coding, we 
seek a basis of these features, in which the coordi
nates are less highly correlated or even uncorrelated. 
These coordinates are then approximated to some 
precision, and that approximate representation is fur
ther passed through a lossless redundancy remover. 

Figure 1 depicts a generic image compression trans
form coder. It embodies a three-step algorithm. The 
first block (Transform) applies an invertible coordi
nate transformation to the image. We think of this 
transformation as implemented in real arithmetic, 
with enough precision to keep the truncation error 
below the quantization error introduced by the origi
nal sampling. The output of this block will be treated 
as a stream of real numbers, though in practice we are 
always limited to a fixed precision. 

The second block (Quantize) replaces the real num
ber coordinates with lower-precision approximations 
which can be coded in a (small) finite number of dig
its. If the transform step is effective, then the new 
coordinates are mostly very small and can be set to 
zero, while only a few coordinates are large enough to 
survive. The output of this block is a stream of small 

Scanned 
image 

integers, most of which are the same (namely 0). If 
our goal is to reduce the rank ofthe representation, we 
can now stop and take only the surviving amplitudes 
and tag them with some identifiers. If our goal is to 
reduce the number of bits that we must transmit or 
store, then we should proceed to the next step. 

The third block (Remove redundancy) replaces the 
stream of small integers with some more efficient al
phabet of variable-length characters. In this alphabet 
the frequently occurring letters (like "0") are repre
sented more compactly than rare letters. 

3. DECORRELATION BY TRANSFORMATION -
We will consider six pixel transformations which 
have proven useful in decorrelating smooth pictures. 

3.1. Karhunen-Loeve 
Let us now fix an image size-say height H and 

width W, with N = H X W pixels-and treat the indi
vidual pixels as random variables. Our probability 
space will consists of some collection of pictures J' = 

{ S1 , S2 , ••• , SM}, where M is a large number. The 
intensity of the nth pixel S ( n), 1 .:; n .:; N, is a ran
dom variable that takes a nonnegative real value for 
each individual picture S E J'. Nearby pixels in a 
smooth image are correlated, which means that the 
value of one pixel conveys information about the like
lihood of its neighbors' values. This implies that hav
ing transmitted the one pixel value at full expense, we 
should be able to exploit this correlation to reduce the 
cost of transmitting the neighboring pixel values. 
This is done by transforming the picture into a new 
set of coordinates which are uncorrelated over the 
collection J' and then transmitting the uncorrelated 
values. 

More precisely, the collection of smooth pictures J' 
has off-diagonal terms in the autocovariance matrix 
A = (A ( i,j)) ~~1 of the pixels in J', 

1 M - -

A(i,j) = M ~1 Sm(i) X Sm(j), (1) 

where Sm = Sm- ( 1 I M) :Lm Sm. A can be diagonalized 
because it is symmetric (see [ 2, Theorem 5.4, page 
120] for a proof of this very general fact). We can 
write T for the orthogonal matrix that diagonalizes A; 
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::===::1 
Storage I 

'------

FIG. 1. Idealized transform coder. 
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then TAT* is diagonal, and Tis called the Karhunen
Loeve transform, or alternatively the principal orthogo
nal decomposition. The rows ofT are the vectors of the 
Karhunen-Loeve basis for the collectionS, or equiva
lently for the matrix A. The number of positive eigen
values on the diagonal of TAT* is the actual number 
of uncorrelated parameters, or degrees of freedom, in 
the collection of pictures. Each eigenvalue is the vari
ance of its degree of freedom. TSm is Sm written in 
these uncorrelated parameters, which is what we 
should transmit. 

Unfortunately, the above method is not practical 
because of the amount of computation required. For 
typical pictures, N is in the range 10 4-10 6

• To diago
nalize A and find T requires 0 ( N 3

) operations in the 
general case. Furthermore, to apply T to each picture 
requires 0 ( N 2 ) operations in general. Hence several 
simplifications are usually made. 

3.2. DCT 
For smooth signals, the autocovariance matrix is 

assumed to be of the form 

A(i,j) = riHI, (2) 

where r is the adjacent pixel correlation coefficient 
and is assumed to be just slightly less than I. The 
expression I i - j I should be interpreted as I i, - j, I + 
I ic - jc I, where i, and ic are respectively the row and 
column indices of pixel i, and similarly for j. Experi
ence shows that this is quite close to the truth for 
small sections of large collections of finely sampled 
smooth pictures. It is possible to compute the Kar
hunen-Loeve basis exactly in the limit N-oo: in that 
case A is the matrix of a two-dimensional convolution 
with an even function, so it is diagonalized by the 
two-dimensional DCT. In one dimension, this trans
form is an inner product with functions such as the 
one in the Fig. 2. This limit transform can be used 
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FIG. 2. Example DCT basis function. 

instead of the exact Karhunen-Loeve basis; it has the 
added advantage of being rapidly computable via the 
fast DCT derived from the fast Fourier transform. 
The JPEG algorithm uses this transform and one 
other simplification. N is limited to 64 by taking 8 X 8 
subblocks of the picture. JPEG applies two-dimen
sional DCT to the subblocks, and then treats the 64 
vectors of amplitudes individually in a manner which 
we will discuss in the next section. 

3.3. LCT or LOT 
Rather than use disjoint 8 X 8 blocks as in JPEG, it 

is possible to use "lapped" or "localized" (but still 
orthogonal) discrete cosine functions which are sup
ported on overlapping patches of the picture. These 
local cosine transforms ( LCT, as in [ 7]) or lapped or
thogonal transforms (LOT, as in [ 23]) are modifica
tions of DCT which attempt to solve the blockiness 
problem by using smoothly overlapping blocks. This 
can be done in such a way that the overlapping blocks 
are still orthogonal; i.e., there is no added redundancy 
from using amplitudes in more than one block to rep
resent a single pixel. For the smooth blocks to be or
thogonal we must use DCT-IV, which is the discrete 
cosine transform using half-integer grid points and 
half-integer frequencies. The formulas for the smooth 
overlapping basis functions in two dimensions are de
rived from the following formulas in one dimension. 

For definiteness we will use a particular symmetric 
bump function 

{ 

sin : (1 + sin 1TX ) , 

b(x) = 
0, 

1 3 
if--< X<-, 

2 2 (3) 

otherwise. 

This function is symmetric about the value x = i· It 
is smooth on ( -t, ~)with vanishing derivatives at the 
boundary points, so that it has a continuous deriva
tive on R. Note that we can modify b to obtain addi
tional continuous derivatives by iterating the inner
most sin 1rx. Let b1 ( x) = b ( x) and define 

(4) 

Then bn will have (use L'Hopital's rule!) at least 2n-J 
vanishing derivatives at -i and ~-

Now consider the interval of integers I = { 0, 1, 2, 
... , N- 1} , where N = 2 n is a positive integer power 
of 2. This can be regarded as the "current block" of N 
samples in an array; there are previous samples /' = 

{ · · ·, -2, -1} and future samples I"= {N, N + 1, 
· · · } as well. The lapped orthogonal functions are 
mainly supported on I, but they take values on { - N I 
2, ... , -1} C I' and { N, ... , N I 2 - 1} C I" as well; 
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those are the overlapping parts. For integers k E { 0, 1, 
... , N 1} , we can define the function 

Apart from b, these are evidently the basis func
tions for the so-called DCT-IV transform. Figure 3 
shows one such function, with N chosen large enough 
so that the smoothness is evident. The orthogonality 
of such functions may be checked by verifying the 
equations 

2:: l{;k(j),p,., (j) = , 
3N/2-l { 1 if k = k', 

j=-N/2 0, if k =/= k'. 
(6) 

The chosen window function or "bell" allows co
sines on adjacent intervals to overlap while remaining 
orthogonal. For example, the function ifik( j + N) is 
centered over the rangej E { -N, ~N + 1, ... , -1} 
and overlaps the function ifik· ( j) at values j E {- N I 2, 
- N I 2 + 1, ... , N I 2 - 1} . Yet these two functions 
are orthogonal, which may be checked by verifying 
the equation 

N/2-1 

2:: if;,.(j + N)ifik' (j) = 0, for all integers k, k'. 
j=-N/2 

(7) 

Of course, rather than calculate inner products 
with the sequences tPk, we can preprocess data so that 
standard fast DCT-IV algorithms may be used. This 
may be visualized as "folding" the overlapping parts 
of the bells back into the interval. This folding can be 
transposed onto the data, and the result will be dis
joint intervals of samples which can be "unfolded" to 
produce smooth overlapping segments. This is best 
illustrated by an example. Suppose we wish to fold a 
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FIG. 3. Example LCT basis function. 

smooth function across 0, onto the intervals {-N /2, 
... , -1} and {0, 1, ... , Nl2 1}, using the bell b 
defined above. Then folding replaces the function f = 
f (j} with the left and right parts fo- and fo+: 

fo_(j) 

f(j), ifj<-NI2, 

b( - ); i) f ( j) b( j ~ i ) f ( 1 ) ' 
if j E { - N I 2, ... , -1}, 

fo+ (j) 

b( j ~ i) f ( j) + b(- j;; i) f (- j - 1), 

if j E { 0, 1, ... , N 12 - 1}, 

f(j), ifj;;;:.NI2. (8) 

The symmetry of b allows us to use b (-x) instead of 
introducing the bell attached to the left interval. This 
action divides f into two independent functions (the 
even and odd parts of f ) which merge smoothly 
around the grid point 0. The process is an orthogonal 
transformation. We can fold the smooth function 
around the grid point N in a similar manner: 

ft- (j) 

f ( j) , if j < N /2, 

b(-jN t-1)f(j) be~i 1) 

Xf(2N j 1), ifjE {NI2, ... ,N 1}, 

fl+ (j) 

( 
. + 1 ) 

b 
1 

N 2 - 1 f( j) 

+b(-j;;j-1)t(2N-j 1), 

ifj E {N, N + 1, ... , 3NI2- 1}, 

t ( j) , if j ;;;:. 3N I 2 ( 9 ) 

The new function fo defined below is a smooth, inde
pendent segment of the original smooth function{, 
restricted to the interval of values { 0, 1, ... , N 1}: 

if j E { 0, 1, ... , N /2 - 1}, 

ifjE {N/2, N/2 + 1, ... ,N -1}. 

(10) 
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We can now apply theN-point DCT-IV transform 
directly to /0 • 

We can likewise define f m (j) for the values j E 
{mN, mN + 1, ... , (m + 1)N- 1} by the same 
folding process, which segments a smooth function f 
into smooth independent blocks. Folding to intervals 
of different lengths is easily defined as well. We can 
also generalize to two dimensions by separably fold
ing in x and then in y. 

Unfolding reconstructs f from fo- and fo+ by the 
formulas 

f(j) 

b( - j;; i) fo- ( J) + b( j ~ i) fo+ ( - J - 1) , 

ifj E { -N/2, ... , -1}, 

b( j ~ t) fo+ ( J) - b( - j N- i) fo- ( - J - 1) , 

ifjE{0,1, ... ,N/2-l}. (11) 

Composing these relations yields f (j) = [ b (j + V 
N) 2 + b( -t/N} 2

] f(j). This equation is verified 
by the bell b defined above, for which the sum of the 
squares is 1. 

3.4. Adapted Block Cosines 
We can also build a library of block LCT bases (or 

block DCT bases) and search it for the minimum of 
some cost function. The chosen "best LCT basis" will 
be a patchwork of different-sized blocks, adapted to 
different-sized embedded textures in the picture. It 
will then be necessary to encode the basis choice to
gether with the amplitudes. A description of two ver
sions of this algorithm and some experiments may be 
found in [13]. 

3.5. Subband Coding 
A (one-dimensional) signal may be divided into 

frequency subbands by repeated application of convo
lution by a pair of digital filters, one high-pass and 
one low-pass, with mutual orthogonality properties. 

Let { hk} :!i/, { gk} :!(/ be two finite sequences, and 
define two operators H and G as 

M-l 

(Hf)l< = L hJij+2k• 
j=O 

M-1 

( G I),= L gJj+2k· 
j=O 

(12) 

H and G are defined on square-summable signal se
quences of any length. They are also defined for peri
odic sequences of (even) period P, where we simply 
interpret the index of f as j + 2k (mod P). In that 
case, the filtered sequences will be periodic with pe
riod P/2. 

The adjoints H* and G* of Hand G are defined by 

(H* I h L hk-2jf;, 
O"".k-2j<M 

(G*/h = L gk-2jt· (13) 
0"".k-2j<M 

Hand G are called (perfect reconstruction) quadra
ture mirror filters (or QMFs) if they satisfy a pair of 
orthogonality conditions: 

HG* GH* 0; H* H + G*G I. (14) 

Here I is the identity operator. These conditions 
translate to restrictions on the sequences { hk } , { gk } . 
Let m0 , m 1 be the bounded periodic functions defined 
by 

M-1 

m0 (~) :Z: hkeik~, mr(~) 
k=O 

M-1 

L gkeik~. (15) 
k=O 

Then H, G are quadrature mirror filters if and only if 
the matrix below is unitary for all ~: 

(
m0 (0 m0 (~ + rr).). 
m1 ( 0 mr( ~ + rr) 

(16) 

This fact is proved in [11]. QMFs can be obtained by 
constructing a sequence { hk} with the desired low
pass filter response, and then putting gk 
( - 1 ) k h M _ 1_k. That reference also contains an algo
rithm for constructing a family of such { hk}, one for 
each even filter length M. 

The frequency response of one particular pair of 
QMFs ( "C30") is depicted in Fig. 4. We have plotted 
the absolute values of m0 and m 1 , respectively, over 
one period [ rr, rr]. Note that m0 attenuates frequen
cies far from 0, while m1 attenuates those near 0. 

The traditional block diagram describing the action 
of a pair of quadrature mirror filters is shown in Fig. 5. 
On the left is convolution and downsampling (by 2); 
on the right is upsampling (by 2) and adjoint convo
lution, followed by summing of the components. The 
broken lines in the middle represent either transmis
sion or storage. 

The underlying functions of subband filtering are 
produced by iterating H* and G* until we have 
enough points. For example, 10 iterations of H* ap
plied to the sequence e0 = { · · ·, 0, 0, 1, 0, 0, · · ·} 
produce a 1024-point approximation to the smooth 
function whose translates span the lowest-frequency 
sub band. Likewise, a single G * after 9 iterations of H* 
applied to e0 produces a 1024-point approximation to 
the next lowest-frequency function. These are distin
guished examples; the first is called the "scaling" or 
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