
Page 360 of 437

AN OVERVIEW OF WWI!-LET BASED MULTIEBSOLUTION ANALYSES 19

When applied recursively, the-M formulae defint the feel uioeelet Irumfonn; the re.
lations (35) and define the forward transform, while (37) defines the inverse
transform”

Now, from thefact that H[0) = G(w) -_- land G{0} = H(:r] = 0, we see thstB'(u)
acts like a low pass lllter for the interval [0.1rf2] and G(tu} similarly behaves like a band
pass filter for the interval [1rf2.1rl. Equation (8) (respectively (12)) then implies that
the major part of the energy of the functions in V9 (respectively We) is cbnocntrated
in the intervals {l],s'] (respectively [1r,21r]). The basic behavior of the dual functions
is the same. In an approicimate sense. this rn_eans that the wavelet expansion splits
the frequency space into dyadic blocks [2-'1r,21+‘-.r] with j E Z [103, 104].

In si,g:na.l procuring this idea is known as subband filtering, or, more specifically,
as quadrature mirror filtering. Quadrature mirror filters were studied before wavelet
theory.‘ The decomposition step consists of applying a low-pass (H) and a band-
pass filter followed by downsampling (1 2] (Le. retaining only the even index
samples}, see Figure 1. The reconstruction consists of upsalnpiing (1 2) (i.e. putting
a -zero between every two samples) followed by filtering and addition. One.-can show
that the conditions (2?) correspond to the exact reconstruction cl‘ a aubbancl filtering
scheme. More details about this can be found in I115, 132, 133, 134].

An interesting problem now is-. given a function I, determine, with a certain
accuracy and in a computationally favorable way. the coeficionts Am; of a function in
the space V“. which are needed to start the fast wavelet transform. A trivial solution
could be

Ami = fW9"l‘

Other sampling procedures. such as [quasi-Jinterpoletion and quadrature formulae
were proposed in ll, 2. 35.120. 123. 133}.

An implementation of a fast wavelet transform in pseudo code is given in the
appendix.

10. Example! of wavelets. Now that we have discussed the essentials of wave-
let Inultireeolutioa analysis, we tabs a look at some important properties of wavelets.

Orthegnnelity. Orlhogonality is convenient to have in many situations. e.5. it
directly links the L’ norm of a function to the norm of its wavelet coefflcients by

llfil = En...it

In th biortliogonal case these two quantities are only equivalent. Another advantage
of orthogonal wavelets it that the fast wavelet transform is a unitary transionuation
(Le. its atiioiot is its inverse). Consequently, its condition number is equal to 1, which
is the optimal case. (Recall that the condition number of a linear transformation A
is defined as This is of importance in numerical calculations. It means
that an error present in the initial data will not grow under the transformation, and
that stable numerical computations are possible.

If the multiresolution analysis is orthogonal (remember that this includes semiar-
thogond wavelets). the projection operators onto the diflsrent subspaces yield optimal
approximations in the L‘ sense.
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Compact support. It the scaling function and wavelet are compactly supported,
the filters H and G’ are finite impulse responselfllters, so that the summations in
the fast wavelet transform are finite. This ol:-in-iously is of use in implementations. If
they are not compactly supported, a. fast decay is desirable so that the filters can be
approximated reasonably by finite impulse response. lllters.

Rational coefiirimu. For computer implementations it is of use if the filter co-
efficients hi and 9; are rationals or. even better, dyadic rationals. Multiplication
by a power of two on a computer corresponds to shifiing bits, which is a very fast
operation. 'l

Symmetr-yr. lftha scaling functionand wavelet are symmetric, then the filters have
generalized linear phase. The absence of this property can lead to phase distortion.
This is important in signal processing applications. ‘

Smootfmeu. The smoothness of wavelets plays an important role in compression
applications. Compression is usually achieved by setting small coeilicients 1,-._; to
zero. and thus leaving out a ¢omponent~13_niI_f.;[a:) from the original function. If
the original function represents an image and the wavelet is not smooth, the error
can easily ‘be detected visually. Note that the smoothness of the primary functions
is more important to this aspect than that of the dual. Also, a higher degree of
smoothness corresponds to better frequency localisation of the filters. Finally, smooth
basis functions are desired in numerical analysis applications where derivatives are
involved.

Nam-ller of nanisnirig moments of the dual nmnelet. We saw earlier that this is
important in singularity detection and characterization of smoothness spaces. Also,
it determines the convergence rate of wavelet approxirnationa of smooth functions.
Finally, the number of vanishing moments of the dual wavelet is connected to the
smoothness of the Iravelet (and ’vice versa).

Analytic sspmsions. As previously noted. an analytic expression for a scaling
function or wavelet does not always exists but in some cases it is available and nice
to have. In harmonic analyail, analytic expansions of the Fourier transform are
particularly useful.

Inierpalntion. If the scaling function satisfies

:,o{ls) = 6;. for It E 2,

then it is trivial to llnd the function of if, that interpolates data sampled on a grid
with spacing 2"’, since the cneffidenta are equal to the samples.

As could he expected, it is not possible to construct wavelets that have all these
properties and there is a trade-olf between them. We new take a look at several
compromises.

Examples of orthogonal wavelets. .

(E) Two simple examples of orthogonal scaling functions are the box function
x[n‘1;(:) and the Shannon sampling function sinc{:-re). The orthogonality conditions
are easy to verify. either in the time or trequency space. The corresponding wavelet
for the box function is the Haar wavelet

lbfionrlzl = x[a.1;a:i3l " xn;_:.ni=r=].
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and the Shannon wavelet is

sin(2ire) - sin(1r=)
iifsam-uni“) = '3

These two, however, are at very useful in practice. since the first has very low
regiilerity and the second has very slow decay. -

(i.i] A more interesting example is the Meyer wavelet and scaling function [106 .
These functions belong to C“ and have faster than polynomial decay. Their Fourier
transform is compactly supported. The scaling function and wavelet are symmetric
around 0 and U2, respectively, and the wavelet has an infinite number of vanishingmoments.

The Battle-Lemon‘! tonoslets are constructed by orthogoltalizing B—epline
functions using (30) and have exponential decay [12, 95]. The wavelet with N van-
ishing moments is s. piecewise polynomial of degree N — 1 that belongs to CR4.

[iv] Probably the most frequently used orthogonal wavelets are the original Dau-
hechies wavelets [-IT. 49}. They are afarnily of orthogonal wavelets indexed lJy.N E N.
where N is the number of vanishing wavelet momenta. They are supported on an in-
terval of length EN - 1. A disadvantage is that, except for the Haar wavelet {which
has N ; 1}. they cannot be symmetric or antisymmetric. Their regularity increases
linearly with N and is approximately equal to |l.2{i75N for large N. In {1311 a. dif-
ferent family‘ with regularity asymptotically equal to 0.31‘? was prmnted. In [50]
three variations of the original family. all with orthogonal and compactly supported
functions, are contracted:

1. The previous construction does not lead to a unique solution if N and the
support length are fixed. One family is constructed by choosing, for each N. the
solution with closest to linear phase (or closest to symmetry]. In fact, the original
family corresponds to choosing the extremal phase.

2. Another funily has more regularity, at the price of a. slightly larger support
length (2N + 1].

3. In a third family. the scaling function also has vanishing moments (M, = 0
for 0 < 12 < N). This in of use in numerical analysis applications where inner products
of arbitrary functions with scaling functions have to be calculated very test [17]. Their
construction III asked by Ronald Coifman and Ingrid Dauhechies therefore named
them eoiflels. They are supported on an interval with length 3N —~ 1.

Eeomples of tisrthogonsl tsasslets.
(i) Biorthogonal wavelets were constructedilay Albert Cohen, Ingrid Daubechies

and .le|.n-Christophe Feauveeu in [31]. Here Alp) is chosen equal to e"“', and thus

ch») = —:-W H'(w + tr} and E'(o) in 4"" HT+ r).

In one of the families oonltructed in [31], the scaling functions are the cardinal B-
splines and the wavelets too are spline functions. All functions including the duel
ones have -compact support and linear phase. Moreover. all filter coefllcients are
dyadic rationals. A disadvantage is that for small filter lengths, the dual functions
have very low regularity.

(ii) Serniorthogonal spline wavelets were constructed by Charles Chui and Jinn-
thong Wang in [23, 34. 25]. The scaling functions are cardinal B-splines of order
m and the wavelet functions are splines with support [l),2m - ll. All primary and
dual function: still. have generalized linear phase and all coefiicients used in the fast
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TABLE I

A with em-nporiron of wavelet families.

 In in um-ion
I 1

 
e Danbeehiu‘ orthogonal II-avelzels
b: blolthognlal spline wsvaletl
I:-. saudorthogoaal npiine wavelets
d.‘ Meyer vuvelst
n anliogoasl spline wavelets

wavelet transform are rationals. A powerful feature here is that analytic expressions
for the wavelet, scaling function, and dual functions are available. A disadvantage
is that the dual functions do not have oompaot support, but have exponential decay’
instead. The same wavelets, but in a difisrent setting. were also’ derived by Akrmn
Aldrouhi, Murray Eden and Michael [inset in [129, 131]. They also showed that for
N going to infinity, the spline wavelets converge to Gabor functions [I30].

(iii) Other Iemiorthogonsl wavelets can be found in [39, I09, 110. 113]. A cher-
ncterization of all semiorthogonel wavelets is given in ii, 2].

The properties of some of the orthogonal. biorthogoul sud semiorthogonnl wave-
let families are summarised in ‘Ruble 1.

Example: of interpolating scaling fun-=t:'ana.
(i) The Shannen sampling function

sin(1I':t}8": =
‘P an-ion T: s

is an interpolating scaling function. It is hand limited, but it has very slow deny.
(ii) An interpolating scaling function, whose translates also generate Va. can be

found by letting

._ _ i5(=-J]

v.....rp-:(=-ll - T2Wlrm.I

provided that the denominator does not vanish [1, 2, 129, 138]. Even if p is comps.-:I|y_
supported, m,,...,,; is in general not compactly supported. The cardinal. spline inter-
polanta of even order are constructed this way [118].

An interpolating scaling function can also be constructed from 5 pair of
biorthogonel u-nling functions ea

+00

so«..:..p.e(z)= I v(y+a=)$7'G')'d:I-
The interpolation property irnmediatueljf follows from the binrtlzognnality condition.
In the case of an orthogonal scsling function this is just its autocomletion func-
tion. The interpolating function and its translates do not generate the some spare ‘
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as to and its translates. This construction, stertirig iron: the Deubechies orthogonal
or biorthogonsl wavelets, yields a family of interpolating functions which had been
studied earlier by Gilles Dcslauriers and Serge Duhuc in {56, 5?}. These functions are
smooth and compactly supported. More information can also be found in [61, 111']. A
natural choice for the wavelet here is 16(2) = ¢(2:c — 1) and this is a typical example of
a. wavelet with a non-vanishing integral. The dual scaling function is a Dirac impulse
and the dual wavelet is a linear combination of Dirac impulses (and has several van-
ishing moments). we still have a fast wavelet transform with finite impulse response
filters. -

[iv] Also wavelets can be interpolating. In [2] wavelets that are both symmetrical
and interpolating were constructed. '

11. Wavelets on an interval. So far we have been discussing wavelet theory
on the real line (and its higher dimensional analogs). For many applications, the
functions involved are only defined on a compact set. suds as an interval or a. square.
and to apply wavelets then requires some modifications.

11.1. Simple solutions. To be specific, let us discuss the case of the unit inter-
val [0,1]. Given a function f on [D,1], the most obvious approach is to set fire] = ll
outside [{l,1], and then use wavelet theory on the line. However, for a general func-
tion I this “padding with Us” introduces discontinuities at the endpoints O and 1,-
conslder for example the simple functio Hz} = 1. c E [0,1]. Now. as we have said
earlier, wavelets are etlective for detecting singularities, so artificial ones are lilnely to
introduce significant errors.

Another approach, which is often better, is to consider the function to be periodic
with period 1, Hz +1) = )'(:t). Expressed in another way, we assume that the
function is defined on the tons: and identify the torus with [0, I}. Wavelet theory
on the torus parallels that on the line. In fact, note that if f has period 1, then
the wavelet coefllcisnts on a given scale satisfy (f,1t_;’,,) = ( f,¢j..+:; }, J: E 2,
j 2 0. This simple observation readily allows us to rewrite was-elet expansions on
the line as analogous ones on the turns. with wavelets defined on [11, 1]. A periodic
multirlsolution analysis on the interval [0,1] can be constructed by periodizing the
basis functions as follows,

(33) p;,,(:) = x{.,_1,(=) Er,p,'.;(:I: 5- m) for o e 1 < 2*‘ and j 3 o.

If the support of1p_;';{:), is a subset of [0, 1], then q:'-_;{::) = to-“(:). Otherwise
p,-';(:) is chopped into pieces of length 1, whid are a ilted onto [0,1] and added

up, yielding tp;I,(:s). Similar definitions hold for 15;,“ J and $11,. The algorithm
in the appends: describe the periodic fast wavelet transform. This “wrap around”
procedure is s-atistsctory in many situations {and certainly takes care of functions liine
,f(:r) = 1. :s E I0.1}). However, unless the behavior of the function f at 0 matches
that at I, the periodic version of f has singularities there. A simple function like
f(r:] = x, :r E [U.1f, gives a good illustration of this.

A third method. which works if the basis functions are symmetric. is to use
reflection across the edges. This preserves continuity, but introduces discontinuities
in the tint derivative. This solution is sometimes satisfactory in image processing
applications.

11.2. Meyerls boundary wavelets. What really is needed. are wavelets in-
trinsically defined on [0, 1]. We shetch a construction of orthogonal wavelets on [0, 1],
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recently presented by Yves Meyer [I07]. We start from an orthogonal Dnubechiea
scaling function with 211! non--tern coeflicients:

' IN‘-1

{$9} :,a(n} =2 )3 it. :p[2z — la).— :0

It is easy to see thet cios{: : 9(3) 75 D} = [i},2N - 1], and, an a. consequence,

(40) B,-_. = cloe{z : pfltz) y D} 2 {2'5k,2'j(k + RN —

This implies that for Iufllclently small scales 2'5, j 3 jg, a function 'P;'.l: can only
intersect at molt one of the endpoints 0 or 1. Lei. us rmtnte this in e. difiereni. way.
Define the set of indict:

5:‘ = {k = 3:1 0 (0.1) 55 3}-

We define three sublets of this set containing the indicea of the basis functions at the _
left boundary, in the interior, and at the right boundsry:

39) = {is :0 e 3;_,,}

5}" = {in : 3;‘, c [n,1)}

3}” = {t : 1 c n;,_}_

Here E“ denotes the interior of the set E. For sniliciently large j the sets 3:” snd
5}” are disjoint and

33 = sf,“ u 3}” U Sf’.
It in easy to write down what these me are more explicitly:

s§‘?={x: —2N+2g:=g -1}

sj"={e:o:;::;2i—2N+1}

3}" ={k.~2"—2N+2qr: $2141}.

Note. in particular. that the nets S”) and S?’ contain the indices of MN’ -2 functions,
independently of 3'. We acne let 140") denote the restriction oifunctionl in

I/fin“! = {I : {(3) = 5(1), 2 E [D,1|, for some function 9 E if}}.

Clearly, since the P} form an increasing sequence of spaces,

'|/jlanll C V_l°.l-l
1+1 |'

and vJl°-‘L j 2; 5.. form a mummoiunon anslym of L=([n,11)_ 1: is also obvious
that the functions in {:p(z — I)|m‘,] : l E S,-} span ‘irglml. Bare 9(2) ][._1| denotesthe restriction of 3(1) to [0,1]. Not quite as obvious is the fact that the functions in

this collection are linen:-ly independent, and hence forrn a. basis for ‘lgmll. In order
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to obtain an orthonormal basis, we may arguelns follows. As long as the function
{pig lives entirely inside [0, ll, restricting it to [0,1] has no effect. In particular, the

functions r,o,~_t, it E 3?] are still pairwise ortho5arI.I1- A key observation now is that
for it E 3?}, l' E 5'?) U5"),

1 i-tn

(41) (V5.1-r;.i>[o.11= A V’.t‘.ii3.ll"i.l(-’-id? = w;.i(=)v5.:(=id= = 0.—oe

and similarly when It E 3?’. I E 3:“ USE”. We see that the three collections
{viz '*ili[a.1] = I e s§"1. i‘Pi’ — new = I e SP}. and {sets - rm...” = I e Si-"} are
mutually orthogonal. So, since the functions in {p(: — l)[[m} : I E S_?;'} already form
an orthonormal set, there only remains to separately orthogooslise the functions in

{on — him, = : e 5”} and in {M2 - l)|[.,_1] ; c s s§'i}. no a. easily accomplished
with a Gram-Schmhlt procedure.

Now, if we let W,i""i denote the restriction oi functions in W,- to [0, ll; then we_
have that V

(42) ' vi°-" — vi”-*1 + W!“-‘T.

So, the basis demerits in lK}i°'1i together with the restriction of the wavelets 'p,-_;, to
[0,1] span Viki}. However. there are 21" + 2N - 2 wavelets that intemoct [DJ], and.
since dim lf,i_,‘[_'11] — dirnV{°'1i I 2-’ we have too many functions. The restrictions of
the wavelets in that live entirely inside [0,1] are still mutually orthogonal and, by
an observation similar to [41], they are also orthogonal to iv’,-[°'“. There are EN - 2
wavelets whose support intersects an endpoint. However. we only need N - 1 basis
functions at each endpoint. One can now use (30) to write out the dependencies,
and construct N — l bests functions at each endpoint. After that we just apply a

Gram-Schmidt procedure again, and we have an orthonormal basis for WJlu'1].
This elegant construction of Yves Meyer has a couple of disadvantages. Among

the functions 59,-... that intersect El}, 1] there are seine that are almost zero there. Hence,
the set {{O_1Ig}§E_g’ is almost linearly dependent, and. an a consequence, the condition
number of the matrix. corresponding to the change of basis from irp,-,;}t.-,3, to the

orthonormal one, becomes quite large. lhlrthertnore, we have din: ‘iv’,-[""‘i 7£ dim lvt7__§°"',
which means that there is an inherent imbalance between the spaces lfj[°"’l and l-IVE“,
which is not present in the case of the whole real line.

11:8. Dyadic boItndI.l'y Wavelets. As we noted earlier all polynomials of
degree ( N - 1 can be written as linear combinations of the 50,-‘; for l E Hence,

the restriction of such polynomials to [l], l] are in i”i°'1i. Since this fact is directly
linked to many of the approximation properties of wavelets, any construction of a
muitiresolution analysis on [0,1] should preserve this. The construction in [5, 3?. 33]
uses this as a starting point and is slightly rlifierent from the one by Yves Meyer.
Let us briefly describe this construction as well. Again we start with an orthogonal
Daubechies scaling function go with 2N non-zero coellicients, and assume that we have

picked the scale flue enough so that the endpoints are independent as before. By (33)
and, since the {pm} is an orthonormal basis for lg. each rnonornial a:'’',- a 5 N — 1.
has the rsproeentationz“ = E. (z"'.uu,-,1: H-?;,g{x). The restriction to [(1.11 can then
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- o '."—:N :‘—1

-’F'l[e.1]'-'( 2 + Z + 2 )(=°'.w.a)v.-'.r(=)l[o.u-;_.=_-.-11+: i=1 t=:.«_:N+1

ll

=-’§'..z.=3"’l"“m E (="si°:.rli9:'.t(=ll[a.:]J:--.nr+:

md, similarly,

31-1

=31; = 2""'“"" X (="»*-at J w:'.n(=)|{u.n.h=:1—:lII'+r

then _
I‘ -2?!

9ml3j=)"l{n.1] = 3;; + 2’l"+l‘m Z: l1"-‘Pitt l t°:‘.k(¢ll[n,:| + ‘fin-run;

We let the space: E-, j 2; jg. that form I. niultiresnlution analysis of L’[[O, 1]), be the

linear span of the functions {z;'_L}.‘y..;, {z;':R}‘,,‘y_]_. and {4p3,g][o,1]}:’=_1“lY:

9;‘ = =}’.':.ln<N-1 U {W.I}l'=i'" U {==§fn}ncN—1

Finding an orthonormal bail for V5 is easy; in fact, the collections {zfiL),¢y_1.

{r,p,_],}:::‘1’”. and {:rj[n}.gg-l are mutually orthogonal. and of the functions in
these are linearly independent. We thus only have to ortllogonslize the flinctione 5
and 3 to get our orthonormal heels. Note that. by construction. dint’; = 25 end
all polfnomialnofdeg-me5N—1arsin l7',~..Itienlsoes.ey hoses that

V} C 93+!-

To get to the corresponding wavelets we let W5 be the orthogonal Dfllnplement of
'9} ln 'pj+1. The wavelet! ii,-lg with I. Q It ( 2’ —2N are tall in 9}.” and live entirely
inside [0,1]. The remaining EN functions required for an orthonormal heels of W,-,
can be found. for example by using (30) again.

This last construction carries over to more general situations. Flat example. we can
also use biorthogonal wavelets and much more general closed sets then [0, 1] [5, 33. 8'7].

There are ollo other c0l|.Bl!.l'1.'lt:tlDIIS oi‘ wavelets on [0,1]. In (set, for historical
perspective it is interesting to notice that Fn.nh.lin‘s original construction'[TI‘J] was
given for [0,1]. Another interesting one, in the case of semiorthogonal spline wavelets,
has been given by Charles Chui and Ewsld Qua]: [I9]; we refer to the original paperl'or details.

12. Wavelet paclnetn. A simple, but most poweriul extension of wavelets and

multlresolution anelyeln are wevelet packets [3T. 38]. In this section it will be useful
to evrltch to the following notation:

m.{w} = H‘{r.-J} G"‘(u} for s = 0.1.
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Flo. -I. Weuciet yacht: sdheme.

The fundamental observation is the following fact, cailed the splitting trick I22, 30.
1B3]:
Suppose rile! the eel nffimeliam {f(m — it] I it E Z} is a filter: basis fsritr closes‘
linear span S. Then the fimetians

ff:-71§f°{:r;‘2—k) and },,‘=-1‘/-§f'(::f2-—l:) for tez,
also earuiiiufe a Ride; irasis for S. where

I'M = mew/2) Ra/2).

We see that the cleeeicel multireeniution analysis is obtained by splitting V; with
this trick into V}..; and 39].; and then doing the name for lr}_1 recursively. The
wavelet packets are the ‘basis functions that we obtain if we also use the spiitting trick
on the W} spaces. So starting from s speee V}, we obtain, after applying the splitting
trick L times, the basis functions

$c"1.....|;,:j.i(:) = 2(j-L”2""f......e; {2j_La _ ,5)!
with

;£‘.,....n.(""'} = fimeii 4”} $£2_L“)'

So. after L splittings, we have 25' basis fi1netioris.a.nd their translates over integer
multiples at‘ 2"" as a basis ef ‘V,-. The connection between the wavelet packets and
the wavetet and selling fiinctions is

5° = ii’¢i'.'_‘__,n "Id 13’ "= 1i’1",s,...,n-

However, we do not necessarily have to split each subepece at every stege. In
Figure 4 we give a echemeticnl representation of a space and its subspaces after using
the splitting on 3 levels. The top rectangle represents the space V; and each other
rectangle corresponds to I certain subspace of V. generated by wavelet packets. The
slanted lines between the rectangles indicate the splitting, the left referring to the
filter mg and the right to 111;. The dashed rectangles then correspond to the wavelet.
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multiresolution anslysis V; =: H. 3 Wfl 93 W1 39 W,. The bold rectangles correspond to
a possible wavelet peclnet splitting and it boots with functions

"index - Ia). ¢-§..(2z a ma. v:_...tz — re). ¢r..._.t= — 1:) I k e 2}-

For the dual functions, as similar procedure has to be followed.
In the Fourier domain, the splitting trick corresponds to dividing the frequency

interval essentially represented by the original space into two psrte. So the wavelet
packets allow more flexibility in adapting the basis to the frequency contents of s.
signal.

It is easy to develop a last wavelet packet transform. It just involves applying
the same low and band pass filters also to the coetflcient of functions of W; again
in an iterative manner. This means that, starting from M samples, we construct a
full binary tree with [M log, M) entries. The power of this construction lies in the
fact that we have much more freedom in deciding which basis functions we will use
to represent the given function. We can choose to use the set of M coeficients of th
tree to represent the function that is optimal with respect to a certain criterion. This
procedure _is called best bnsis selection. and one can design fast algorithms that make
use of the tree structure. The particular criterion is determined by the application.
and which buis fuuctiorrs that will end up in the basis depends on the data.

For epplications in image processing, entropy-bsssrl criteria were proposed in
[ill]. The best basis selection in that case has a numerical complexity of 0(M).
Applications in slgnsl procmsing can be found in [36, 139].

This wavelet padhrts construction can also be combined with wsvelete on an
interval and wavelets in higher dimensions (551.

13. Multldlsnsmionsl wavelets. Up till now we have focused on functions of
one variable and the one—dimensional situation. However, there are also wavelets in
higher dimensions. A simple way to obtain these is to use tensor products. To fix
ideas, let us oonsider the one of the plane. Let

'1*(mr)- 9(3) wit) -= 9 3 viz. v).

and define

Pi = {I : l'(=.vl = E a...»..¢(=— h.v- km e t'(z'}}.the.

Of course, if {pfs - I} I I (E Z} is an orthonormal set, then [i(:s - #1,}: -- kfl} form
an orthonormal basis for V9. By dyadic scaling we obtain a. multiresolution analysis
of L‘(R'). The complement We of V9 in V; is similarly generated by the translatesof the three functions .

(43) -1"" = saw. em = V5 o 59. and ~1r‘”= too.

There is another, perhaps even more strsightfomard, wavelet decomposition in
higher dimensions. By carrying out a one-dimensional wavalel. decomposition for each
variable sepustely, we obtain

(44) l'i=ut'i = E zilstm 3101.5} 'i'u'.: ®tiJj.s(3.¥l-M ,-'.r
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Note that the functions tint 8 at,“ involve "two scales, 2“ and 2"5, and each at
these functions are (eslantially) supported on a rectangle. The decomposition (44) is
therefore called the rectangular wavelet decomposition of f while the functions in [43]
are the basis Functions of the square wavelet decomposition. For both decompositions,
the corresponding last wavelet transform consists of applying the one-dimensional fast
wavelet transform to the rows and columns at a matrix.

These simple constructions are insunicient in many cases. What we need some-
times are wavelets intrinsically constructed for higher dimensions. One of the inter-
esting problems here is how to split a space into complementary subspaces. In the
unitrariate case we split into two spaces, each with essentially the same “size.” If we
use the square tensor product basis in H. dimensions, we split into 2‘ subspaces, 2“ - 1
of which are spatlned by wavelets. There are several constructions of nonsvepsrahle
wavelets that use this hind of splitting. One of the problems here is, given the scal-
ing Eunction, is there an easy wear, at. (1.9), to find the wavelets? This was studied
in {B4, 113. 121]. Another idea is to still try to split into just two subspaces. This
involves the use of difiennt lattices In the bivariate case, Ingrid Datlbechies
and Albert Cohan constructed smooth, compactly supported, hiorthogonal wavelets,-
using ideaslrom the unlvariate construction [29].

By now, there is a lot of material about multivariate wavelets. However, we shall
leave this topic for now and just mention some other possibilities such as hexagonal
lattices. and Clittord valued wavelets [6, 9. 34].

14. Application.

14.1. Data compression. One of the most common applications of wavelet
theory is data compression. There are two basic kinds of compression schemes: lossleas
and lossy. In the case of losslsss compression one is interested in reconstructing the
data exactly. without any loss of information. We consider here lousy compression.
This means we are ready to accept an error, as long as the quality after compression is
acceptable. With losay compression schemes we potentially can achieve much higher
compression ratios than with lnsslsm compression.

To be specific, let us assume that we are given a digitized image. The compression
ratio is defined u the number of bite the initial image takes to store on the computer
divided by the number of hits required to store the compressed image. The interest
in compression in general has grown as the amount of information we pass around
has increased. This is easy to understand when we consider the tact that to store a
moderately large image, any a 512 X 512 pixels, 2-! hit color image, taken about 0.75
MB1rtes. This is only for still images: in the case of video, the situation hecornes even
worse. Then, we need this kind of storage for each frame, and we have something
like 3fl_fi'arnes per second. There are several reasons other than just the storage
requirement for the interest in compression techniques. However, instead of going
into this, let: us now look at the connection with wavelet theory. .

First, let us define, somewhat mathematically, wliat we mean by an image. Let
us for simplicity discuss an L X L graysosle image with 256 greyscales [i.s. 8 bit]. This
can be considered to he a piecewise constant function I defined on a square

J(=.tr)'~'-raiEN. f0rI‘$4=<*'+13="1 J'Sv<J'+1ar-cl 0<i.:'<L.

where E] < pg; Q 255. Now, one of the standard procedures for lousy compression is
through transl'o_rm coding, see Figure 5. The most common transform used in this
context is the “Discrete Cosine Transform", which uses a Fourier transform of the
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original song‘: coding M lnvurln reoonstroeled
imase transform ooeficients transform “M89

Fm. 5.'Is1te,-ye tnen-efoI'm ooling.

image I. However. we are more interested in the case when the transform is the fast
iravelet transform.

There are in tact several ways to use the wavelet transfiorm for compression pur-
poses [l01_ 102]. One way is to consider compression to be an apprmeimatinn problem
[58, 59]. More epecifitmlly. let us fix an orthogonal wavelet 1b. Given an integer M 3 1.
we try to find the "-best” approximation of I by using a representation

[45] f,;[:} a: E b,1.1,t,»;.(s] with M non-zero coeflicients 5,}.H

The basic reason why this potentially might be useful is that each wavelet picks up
information about the image f essentially at a given location and at a given sale.
Where the image has more interesting features. we can spend more coefllcients. and
where the image is nice and smooth we calruse fewer and still get good quality of
approximation. In other words, the wavelet transform allows us to focus on the not
relevant parts of 1'. Now. to give this mathematical meaning we need to agree on an
error measure. Ideally, for image compression we should use a norm that corresponds
as closely as possible to the human eye [58]. However, let us make it simple and
discuss the came of L3.

So we are interested in finding an optimal apprcoimation minlmiring the error
||f - fyllp. Because of the orthogonafity of the wavelets this equals

in

(46) (}:1<:.¢-,1.) -Earl’) .fl

A moment's thought, reveals that the best way to pick M’ non-zero coeficients bjh
making the error as snlall as possible, is by simply picking the M ooeflicients with

largest absolute value, and setting him = U.tlr;t) for these numbers. This then
yields the optimal approximation ff,’ .

Another fundamental question is which images can he spproscimeted well by using
the procedure just sketched. Let us tabs this to mean that the error satisfies

(47) ' ll! - J'j'l-"||:.= = 0[M“'.).

for some fl > O. The larger ,6. the faster the error decays as M irtereuee and the fewer
coelficients are generally needed to obtain an approlclmation within a. given error. The
exponent 13 can be found easily. in fact it can be shown that

U!

(48) LZ):1[M"|if- !i}"|Ir.-J’;-tr) ~ (fit (I. aim.) t")“’*'.. . )3‘

with lfp = 1;'2 + ,5. The maximal 13 for which {H} is valid can be animated by
finding the smallest p for which the right-hand side of (48) is finite. The expression

Page 371 of 437



Page 372 of 437

AN OVERVIEW OF WAVELET BASED MIJLTIRHBOLUTION ANALYSES 31

on the right is one of many equivalent. norms onthe Beaov space 333-’ (Beaov spacee
are smoothness spaces generalizing the Lipechitn continuous functions). The 19 in
the left-hand tide of (-18) is aetualiy not exactly the name as in (47). However. for

‘ practical pilrpoees. the dilference is of no consequence.

14.2. Operator analysis. As mentioned earlier, interest in wavelets histori-
cally grew from the fact that they are eifective tools for studying problems in partial
diliarentiai equations and operator theory. More specifically, they are useful for un-
derstanding properties of so-called Calderdn-Zygmnnd opemtars.

Let us firet make a general observation about the representation of a linear oper-
ator T and wavelets. Suppose that I has the representation

f(-'0) =2 (Mun 3' tliI=(¢J-ii

Then.

T112) = Z“, (f.¢;I=>1"\f-,-2(2).fl

and, using the wavelet representation of the function TW'53{:], this equall

2 (fans) ElT¢';‘h-15'-'r)\t.*:(=)= E (Tim--'lMl if. 159)) 15a{=}«jh it it jk

In other words. the action of the operator T on the function I is directly trans-
lated into the action of the infinite matrix Ar = { (Tylt,-|,,1,b.;) }q_,~. on the sequence
{ ( f,u'a,,, } }_;.. This representation of T as the matrix Ag» is often referred to as the
“standard representation” of T [13]. There is also a “nonstandard representation”.
For virtually all linear operators there is a function (or. more generally, adistrlbution)If such that

\

may = f Ir(=.m(wy.
The nonstandard oepraaentation of T is now simply the (two-dimensional} wavelet
coeflicienta of the kernel K. using the square decomposition { (K,‘?£"']_,, )} (again,
we have more than one wavelet function in two dimensions), while the standard rep-
resentation corresponds to the rectangular decomposition.

Let‘ us then briefly discuss the connection with Calderon-Zygmund operators.
Consider a typical example. Let H be the Hilbert n-anaforrn,

Hm) =é :9 :_'5£_?-E .1...
The basic idea now is that the wavelets vi}; are approximate eigenfunction: for thin.
as well as for many other related {Calderon-Zygmund] operators. We note that if
115,1 were intact dgenfunctiona, then we would have Hfijtfz) = ;\,-Ha’-‘{3}, for some
number A5; and the standard ‘representation would be a diagonal “matrix”:

-45 == {(H1lm.t’ml l = {in (*J*-'I.\€L«:: )} = {4lm5-':.n}-
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This is unfortunately not the case. However, it turns out that Air is in fast on almost
diagonal operator, in the nppropriate, technical sense, with the uni‘ diagonal elements
quickly beponiing email. To get some idea. why this is the we, note that for large Isl,
we have, at least heuristicaily,

Hwmwfifwmn
A priori, the-decay of the right-hand side would thus be O(1/_:), which of course is
far from the rapid decay of o wavelet sir,-s (remember that some wavelets are even zero
outside s finite set). Recall, however, that (tr,-;. has st least one vanishing moment so
the decay is in fact much faster than just 0{lfs), and the shape of Hot}. (2) resembles
that of 1:5; (3). By expending the kernel as a. Taylor series,

I 1 s I’

=-.-;0+;+n"l»
we see that the more vanishing moments it has, the faster the decay of H¢I,~_.,.

So, for a large class of operators, the matrix representation,‘ either the standard
or the nonstandard, has a rather precise structure with many small slemsts. In this
representation, we then serpent to be able to compress the operator by simply omitting
smell elements. in loot, note that this is essentially the suns situation. as in the case
of image compression. the “image” now being the kernel XI[z,_y}. Hence, if we could
do basic operations, such as inversion and multiplication, with compressed matrices,
rather than with the discretined versions of T, then we may significantly speed up
the numerical treatment. This program of using the Wavelet representations for the
sfflcisnt numerical treatment of operators was initisted in [17]. We also refer to [4, 3]
for related materiel end many more details.

In a difierent direction. because of the close similarities between the scaling func~
tion and finite elements, it seems natural to try wavelets where traditionally finite
element methods are used, e.g. for solving boundary value problems {S4}. There are
interesting results showing that this might be fruitful; for example, it has been shown
[17, 46. 11.1, 140] that for many problems the condition number of the N 2-: N stifiness
matrix remains bounded as the dimension N goes to infinity. This is in contrast with
the situation for regular finite elements where the condition number in general tends
to infinity.

One ol the that problems we hove to address when discussing boundary problems
on domains, is how to talre care of the boundary values and the fast that the problem
is defined on a finite set rather than on the entire Euclidean plane. This is similar to
the problem we discussed with wavelets on an interval, and, indeed, the techniques
discnued them-cln he often Lmed to handle these two problems [5, 8].

Wavelets have she been used in the solution of evolution equations [11, T6, 93, 98].
A typical test problem here is Burgers’ equation:

E + ,, E _ ,, flGt 3.: — an’ '

The time discretiestinn is obtained here using standard schemes such as Crank-
Nicholaon or Adams-Moulton. Wavelets are used in the specs diacretization. Adep-
tivity son he used both in time and spare [11].

One of the nice features of wavelets and finite elements is that they allow us
to treat a. large clue of operators or partial difierenti.-sl equations in L unified Way,1.
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allowing for example general PDE solvers to be cleeigned. In specific instances. though.
it is possible to find particular wavelets, adapted to the operator or problem at hand
[10, 44, 4-5, 88}. In £16]. Gregory Beylkin develops fast weveiet-band algorithms for
the eolution of diflerentiel equations.
Note: Appliutinne in statistics such as the smoothing at deta were investigated by
David Dom:-ho and Iain Johnetone in [62, 63. 64, 65].
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, Appendix: The periodic that wavelet tramform algorithm. We will give
here u paeudu coda implementation of the periodic fast wavelet transform. We assume
that Ien.hp coefllcienta Pt; are non-zero, atalting with the one with index I; = m:'n_hp.
Similar uaulnplinnl hnld for the 9., 5;, and 5}; with length: lemgp, len.Jm'. and Iemgd.
and sjarting indicea mimgp, minJu£ and rm'n.gd respectively. These coeficientn nu
stored in 4 vectors such that

hf-7]“ = 17'-I.‘-I-i-mill-.hp: = a9l+V'r|in..p'pI

= bi*'i+mI‘.n_ha'v and 9'd]k] = 55'):-i-rnI‘ra.gdv
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where 115 = 2. We start with 2" coefficients p\,'._; of 5 function of V" and can thus
IP91}? 11. steps of the algorithm. Thea: coeificients are initially stored in 1 vector 1:.
Th: computed wavelet coefitiants are stored in a vector Ill such that

W=-[$0.0 ‘Tom ‘rm 11.1 "ms 72.: 'Tn—l.fl Tn-1,a--I—1]-

The algorithms are writtan in such a way to reduce operations in the inner loops.
They are however not highly optimized not to affect readability too much. The index
notation a(b}c stands 50: as, a-|- b, ..., c and the operltot floar(a) rounds a to the
nearest integer towards minus infinity.

for jt-11-1f-1)!)

w[O(1)25*1 - 1] a— D

for :.—o{1)2i—1

i-— (EH +1-m‘nJui) mod 25“
for E 0- G (1) l¢nJui

|a[l] o- u:[J] +hd[!:]t1:[s']

: ._ (.'+1)mud2r'**
end [or

I'+— (2 0 I +m1'n..gd.) mod 25*‘
In I--1+ 2"-

for k --0(1) Iemgd

tr.-{ls} 4- w[Isi + gd{k] a 1.-[it

i <— (i + 1} mod 25'”
end for

and for

1: - w[fl{I}2?' — L1and for
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.}c'»: 5 -—l(1}1'|.
u[o(1)2:‘ -1] ._ 0
for is ....o(1)2I -1

:'1— (iIonr((k — rrLin.hp}f2}) mod 25"

F5 o— (I: -— mimhp] mod 2

for h— .lb(2)IenJ|p

tulle] -— u[k] + app] - w[i]

5 ._ (.'—'1)mad2='-Iand for

E-— (floo1'{Uc - min_gp)f2}) mod 25“

lb c— (I: -— m1'n.gp)mod 2

mr : .. In (2) le11..gp '
u[k] -— u[k] + §rp[I] I w[i + 2""]

3' -— {i—1)mod25'‘
and for

and for

w[D[l)25--1}= 11
and for
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ABSTRACT

In this paper we present the basic idea behind the lifting schetne, a new construction of biorthogonel wavelets
which dam not use the Fourier transform. L1 contrast with earlier papers we introduce iiflzing purely from a
wavelet transform point of view and only consider the wavelet basis filnctione in a later stage. We show how
lifting lend: to a faster, fuily implme ilnplunentation of the wnveiet transform. Moreover, it can he need in
the construction of second generation wavelets, vmvelete that are not necessarily translate: and diletee of one
function. A typical example of the letter are wavelets on the sphere.

Keywords: wavelet, biorthogonel, in-place calculation, lifting

1 Introduction

A: the present day it has become virtually impossible to give the definition of a "wavelet". The research field
is growing so feet and novel contributions are made at such a rate that even if one manages to give a definition
today, it might be obsolete tomorrow. One, very vague, way of thlnlting about weveleta could be:

‘Wavelet are building blocks that can quickly decor:-ehlte date.”

This sentence at least incorporate three of the main features of wavelets. First of all, they are building blades
for general data sets or function. Mathematically we say that they form a basis or, more genus} a frame. Thb
means that each element of a. general claee can be written in a. stable way as a linear combination of the wavelets.

"If we denote the wavelet: by ab; and the goefficienta by qr.-, we can write a general function f as

f = $'TI"4’I'-

Secondly, wavelet: have the.,power to decorreiate. This means that the representation of the data in terms of
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the wavelet coefiicients -r.‘ is somehow more “compact” then the original representation. In ini'ormstion‘-theoretic
jargon, we say that the entropy in the wavelet representation is smaller than in the original re'|:I1'B9EIll&liD1'r- In

approximation-theoretic jargon, we want to get an accurate approidrnation of I by only using a small fraction of
the wavelet coefficients. '

The way to get this decorrelation power is to construct wavelets which already in some way resemble the data
we wont to represent. More specifically, we would like the wavelets to have the same correlation structure as the

data. For example, most signals we encounter in daily life have both correlation in space and frequency. S_a_rnples

which are spatioslly close am much more correlated than ones that are far apart, and Frequencies oiten occur in
bands. 'I.b analyze and represent such signals we‘ need wavelets that are local in space and fi'equsncy. Typically

this is achieved by building wavelets which have compact support {localization in space), which are smooth {decay
towards high frequencies). and which have vanishing moments (decay towards low frequencies}.

Finally, we want to quiddy find the wavelet rspreutation of the data. More precisely. we want to switch
between the original representation of the data and its wavelet representation in s time proportional to the sire
of the data. The fssixctecorrelation power of wavelets is the icy to applications such as data compression, fast

data. transmission, noise cancellation, signal recovering, and fast numerical algorithms. i

The purpose of this paper is to introduce the lifting scheme, In new tool in the construction of biorthogonal
wavelets. The main difiarsnce with classic constructionssuch as“ is that it does not employ the Fourier transform.
‘Until recently, the llmrior transform has been instrumental in wavelet cnnatmctions. The underlying reason is
that wavelets are traditionally defined as translates and dilatss of one function, and translation and dilation
become algebraic operations after F‘ou.rie:- transform. The wavelet construction then relies on certain polynomial

factorinstions. We refer to wavelets which are translate and dilates of one l‘u.nction as Jim: gareratlon wavelets.

. In the use of flrst generation wavelets, the scheme will never come up with wavelets‘ which somehow could
not be found by the techniques developed by Cohen, Daubechies, and Feanv-mu in.‘ Nevertheless, lifting
to (re)construct these wavelets has the following advantages.-

1. It nllows a. faster implementation of the wavelet transfonn. Traditionally, the fast wavelet transform is
calculated with a two-band suhband transfonn scheme. In each step the signal is split into a high pass and
low pass band and then subsampled. Recursion occurs on the low pass band. The lifting scheme rnalres
optimal use of similarities between the high and low pass filters to speed up the calculation. In some cases

the number of opu-ations can he reduced by a factor of two.

2. The lifting schema allow: a fully in~place calculation of the wavelet transform. other words, no atucillary
memory is needed and the original signal (image) can be replaced with its wavelet transform.

3. In the classical case, it is not inzrnedistely clear that the inverse wavelet transform actually is the inverse of
the forward transform. Only with the Fourier transform one can convince oneself of the perfect reconstruc-
tion property. With the lifting idioms, the inverse wavelet transform can irnmedlately be found by undoing

the operations of the forward transform. In practise, this comes down to simply reversing the order of the
operations and changing each + into a - and vice versa.

4. The lifting scheme is a very natural my to introduce wavelets in a classroom. Indeed, since it does not
' rely on the Fourier tronafonn. the properties of the wavelets and the wavelet transfonn do not appear as
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somehow “magical” to students who do not have a strong background in Fourier analysis.

Since lifting does not rely on the Fourier transform, it can be used to construction wavelets in settings where

translation and dilation, and thus the Fourier transform, cannot be used. We refer to such wavelet as second

generation wavelets. ‘Typical examples are '

l. Wavelets on bounded domainn The construction of wavelets on domains in a Euclidean space is needed
in applications such as image segmentation and the numerical solution of partial difierential equations. A
special case is the construdion of wavelets on an interval, which is needed to transform finite length signals

without introducing artifacts at the boundaries.

2. Wavelets on curves and s'I.Il'far.u'. To analyze data that live on cunres or au.rfa.cee or to solve equations on
curves or surfaces. one needs wavelets intrinsically defined on these manifolds, independent of pararneti-ita-
tion. '

3. Weighted wavelets‘. Dlegonalisation of diflerential operators and weighted approximation require a basis
adapted to measures. Wavelets biorthogonal with respect to a weighted inner product are needed.

4. Wavelets and irregular sampling: Many real life problems require basis functions and transforms adapted .
to irregularly sampled data. ' ‘

It is obvious that wavelets adapted to these setting cannot be formed by translation and dilation. The Fburier
transform can thus no longer be used as a construction tool. The lilting scheme provides an alternative. -

There are two ways to introduce lifting. The flrst one is concerned with the basis functions, i.s. the scaling

functions. dual scaling functions. wavelets. and dual wavelets, and how lifting afiecta them. This approach was

taken in the original papers.'-“' In this paper. however, we follow a difierent approadr, namely we firs? discuss
' how lifting afiecls the wavelet transform. We have found this to be a much more natural way to introduce lifting.

In a later section. we will briefly mention what happens to the basis flinctioria. Of course. theoretically both ,

approaches are equivaleist. In fact one can be seen as Idjoint to the other. I

2 The basic idea behind lifting

A canonical can In’ lilting consists of three stages. which we refer to as: split. predict, and update. We here
describe the basic idea behind each and later Ivor}: out a concrete example. Assume we start with an abstract
data set, which we refer to as An. We know this data set has some correlation structure and we would like to
exploit it to obtain a more compact representation.

in the first stage we gE]lt_ the data into two smaller subsets L1 and 1-3. (We use negative indica here because
the convention is that the smaller the data set, the smaller the index.) We refer to 1-1 as the wavelet subset. We
do not impose any no restriction on how the data should be split. nor on the relative size of each of the subsets.
The only thing we need is some procedure to join 3-1 and -y-1~l:-ack into the original data set u\g. The easiest
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- possibility for the split is a simply brutal cut of the data set into two disjoint parts. This choice we refer to as
the Lazy wavelet. Think for example of cutting an image into two parts with a pair of seimors.

_ As we said before, via would like to get a more sompact representation of Au. Consider the case were 1..
dam not contain any information (eg. that part of the image is entirely black). Then we would immediately have

a more compact representation since we can -simply replace Ag withlhe smaller eel. 14. Indeed the eatl-fl: part
needed to reassennble Ag does not contain any inforrnation.

Ohviously this situation hardly ever occurs in practise. Therefore, in a second stage, we try to use the J«___;

subset to predict the 1-1 subset based on the coneistion present in the original data. If we can find a prediction
operator ‘P, independent of the data, so that

7-1 = P(A-1):

then again we can replace the original data set with A-“ since now we can predict thepart rn.iss1'.n.5 to reassemble
An. The construction of-a. prediction operator is typically based on some model of the data which reflects its

correlation stnicture.'0bviusIy the prediction operator P cannot be dependent on the data, otherwise we would
hide information in P. - '

Again, in practise it might not be possibly to exactly predict 7-: based on L1. However, ‘P(.l_;) is likely
to be close to 1.1. Thus we might want to replace 7.; with the difference between itself and its predicted value
'P{J\-;). Ifthe prediction is reasonable, this diiference will oontairi much less information then the original 7-1

set. We denote this abstract dilfu-ence operator with a - sign and thus get '

1-1 == 7-: —‘P(«\—1)-

, The \-ravelet subset now encodes how much the dots. devistu from the mode! on which ‘P was buiit.

We now have some more in how to split the data set. Indeed, in order to get the maximal data .
reduction Erorn prediction. we need the subsets L, and -1:... to be maximally correlated. Cutting on ilnage into
a. left and right part might not he the but idea since pixels on the far lefi and the far right are hardly correlated.

Predicting the right half of the image based on the left is thus a though job. A better idea is to interlace the two
sets. We will come had: to this later.

At this moment we can replace the original data with the smaller set A-‘ and the wavelet set 1.1. With a

good prediction, the two subsets -[A_1,'y._1} yield a more compact representation then the org:'u1a.l set Jug. We can
now iterate this scheme. We split a\_; into two subsets A--_» and 7-; and then replace -y_3 with the diflersnce

between 1-; and PO -3}. After in steps we have replaced the original data with the wavelet representation
{2\....,,-y....., - -- .7_;}. Given. that the wavelet sets encode the differenoe with some predicted value based on a

V correlation model, this is likely to give a more compact representation.

This scheme sounds promising, hot in some cases we are not completely satisfied. The reason is that we often
want some global properties of the original data. set to be maintained in the smaller Versions 3:.1. For example,
in the case of an image. we would like the smaller images L; to have the same overall brightness, Le. the same
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Figure 1: The scheme: split. predict, and update

average pixel Value. If the splitting stage is si.r.nply subsarnpling and we iterate the scheme till A-.. is only 1

pixel, that pixel will be an arbitrary pl.xel'fmm the original image. We would rather have the least value to be
the average of all the pixel values in the ori,5im.l image. In fact, we are facing a worst case example of a problem
known as aliasing.

We can solve part of this problem by introducing 9. third stage. The idea is to find at better 1.; so'tlmt a
certain scalar quantity like e.g. the mean, is preserved, or

Q0--1) = 9903-

We could do so by finding a new operator to extract 2\-; directly from Ag, but we decide not to for two re'_s.ann.s.
First, this would create a scheme which is very hard to invert. Secondly, we would like to reuse the work already

done maximally. Therefore we propose to use the already computed wavelet set-1r_1 to update )i_1 so that the

latter preserves 00. In other words, we construct an operatorfl and update 1-; as

-\-—I 1= 3-1 +ul’l'-;)-

The three stages of lifting are depicted in a bled: diagram in Figure 1. Again we can now iterate the scheme.
This leads to the following wavelet transform algorithm (with a C-like syntax}:

{-\;.''y,‘} := 5p1ltlv\j+l]
For 3 I -1 doimto -n: -7-; —= P0,‘)

t‘.-' +'= “(Ti)-

We can now illustrate one of the nice properties of lilting: once we have the forward l.rlI.I1.sfo1'1'n. we can immediately
derive the inverse. The only thing to do is to reverse the operations and toggle + and -—. This leads to the following
algorithm for the inter-so wavelet tronsforrn:

Jl_,' —= u("f")

For j I -.l:| to *1: Ti += P(o\_,*)
z\J‘+1 := .Toin(A,,qr,v) .
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3 A simple example

In this section we consider a simple example to illustrate the ideas of the previous section. Suppose we sample
a signal fit‘) with sampling dietanoe A3-=1. We denote the original samples by An = {An = ](k) |l: E Z].

We flrst need to define the split stage. as mentioned in the previous section this implies splitting the data into
two parts which are maximally correlated. As the correlation in most signals is local, i.e. neighboring samples

are much more correlated than ones that are far apart, we simply subeample the data into even and odd ‘indexed

samples. This is an example of a Lazy wavelet trarisfonn. We obtain two eequenoee .\-1 and 1-1 with coeflicients

A-” := ale.» and 7-1,: := Jla,at+1 for lrez. (ll

Next we need to find a. operator to predict 7.1 based on Ji_1. Again Mourning maximal correlation amongst

neighboring samples. weslmply suggest to predict an odd sample Ag,-,»;,+, as the average of its two (even) neighbors:

5-”. and ;\_1JH... The diiferenoe with this prediction then becomes '

T—t.-t u== 1-1.1: - 1/2U:-1.x +?«-1.Ji+1) -' (2)

The model used to build ‘P is a function piecewise linear over intervals of length 2. If the original signal complies
with the model. all wavelet ooaficients in 7.. are zero. In other words, the wavelet cosflicients measure to which
extend the original signal fails to be linear. Their expected value is small. In terms of frequency oontent. the
wavelet coeliieients capture high frequencies present in the original signal.

However, the frequency localization of the signals L; and 7.1 is far from ideal. It would be nice if the L;
signal somehow captures the low frequencies, and the 1.1 the high frequencies. Right now the z\—1 is simply

_suheamp1ed and its frequency content thus stretches out over the whole band of the original signal. Again. we
. have the worst case example of aliasing. In the update stage. we can reduce the amount of aliasing by at-least

I assuring that the DC component ends up entirely in the 1.; part. In other words, we would like the average of
the signal to be maintained in A-“ or

2;.” 1/2 Z:A.._;,.I i

This is precisely the scalar quantity Q{) of the previous section which we would lilne to preserve. We therefore
update the .L1_; with the help of the wavelet coeficients -7-”. Again we use the neighboring wavelet coefficients
and thus propose an updetell of the form:

"-1.: == «\—1.s+n‘1('r—1.t—r+'r-i.iJ-

Tl: find A we calculate the average: V ‘

Z:-l—:.s = Zln.rI=+2-'12:‘?-1.1 -‘- (1-3AJz«'\u.:r.+2Az:«\o,2:+r.it s t

Fl-om this we see that the correct choice to maintain the average is A = 1/4. One step in the wavelet transform
is shown in the scheme in Figure 2. By iterating this scheme we get a complete wavelet trex1aform._ The inverse

tranaiorm can be derived immediately as shown in the previous section. Note that at no point we used the Fhurier
transform. ' v
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Figure 2: The lifting scheme: Split, calculate the wavelet coalficients 'f;-;,.... as the failure to be linear, and use
them to update the $1-”.

The wavelet tremfurm presented here in fact in the (N = 2,5’ = 2) biorthagonel wavelet transform of
Cohen-Deubechie:-Feeuveastg This simple example already ahows how the lifting adieme can speed up the

irnplementetion of the wavelet transform. Claeaicly the {A_l_;,} coeflcienta are found as the wnvolutlon of the

{2\o_,|.]' coefllcients with the filterh = {—1[8,l/4,3/4,1{4.-U8}. This etep would talee 6 operations per coeficient
whlle lifting only need! 3.

This is only one simple lnatnnee of A whole family of biorthogonel wavelets am be constructed by
varying the three stages of lifting:

L Split: Other choice: but the Lazy wavelet are possible as an hfitial split. A typical alternative ip'tI1e Hear
wavelet transform.

2. Predict: In wavelet terminology the prediction atop establishes the number of vminhing me-mer_|ts (N) of
the duel wavelet. In other words, if the original s1'.gna.l is a. polynomial of degree less than N. all wavelet
coaficientn will be zero. In our example N = 2, but higher order schemes are easily obtained. by irwolving
more neighbors.

3. Update: Again in wavelet terminology, the update step establishes the nurnher of vanishing moments (J"\l']

of the primal wavelet. In other words the transform preeerw.-.a theflrst K’ momenta of the 1, sequences. The
example above had N‘ n 2 (one extra because of symmetry). Again higher order one: can be conatnmred
by irwolving more neighbors. In some cases. namely when the split stage already creates a. wavelet with a
vanishing moment (well an the Hear) the update stage can be omitted.
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Figure 3: Mnllst and (below) organization of Wavelet coeficients for n = 3."

4 In-place calculation

In this section we introduce another feature of lilting: in-place calculation. This means we can replace the
origins! data set with its wavelet trlmsfonn without having to allocate extra memory. A: is well known, the FFT

has n similar feature provided one starts with bibreversing the origiml samples. The basic idea in-place
calculation of the wavelet trsnlforrn using lifting is quite sirnilar.

Assume the original signal has length 2" and the original samples are stored in s vector so that sunple Au;

sits in memory location Ir [0 5 is < 2"‘). In the traditional organisation of the wavelet eoelilcients, as proposed
by Mallet in,” s wavelet ooeficient 1,-_;. is stored in location 2"” + la‘, see Figltro 3 for an example with n = 3.
To obtain in-plscs cslculstion with lifting, we propose a dificrent ordering of the wavelet coeflloients. The idea.

is to store the coefflcient 15,; in location 2'1" + 2'5 le. see Figure 3. Eostmtially all the coeficients depicted in
one c.ol1.unn of Figure 2 are stored in the same location. The Lazy wavelet transform is then immediate. Since all

other operations can hezdons with += or 72 operations, we hsvs a fully in-place calculation. Figure 4 shows
the in-piece organization of the wavelet ooeficieots of the classic Lena image.

It is also possible to llrst resrrsnge the original samples to end up with the Mallet organisation of the
coefllcients After an in-plsoc calculation. The sample ll“ then hss to be stored in location m[lr) which can be
found as follows. Consider the mbéthinory representation of is: kaklkg - - -ls... Next isolate the trailing zeros (if

any] as xms, . ..s,1oo...o. Now the binary expansion of m(k) is Ufl---flIhuk;h;«-- kin In other words, it can
be seen a partial bit reversal.

5 The basis functions

So far. we only explained how lifting slfects the wavelet transform. In this section we briefly describe what

happens to the basis functions. The basic idea to find a basis function given the transform is very simple. If you
wontto construct the basis function associated with s coefileient All; of 1,3,, simply put thsl: coeflicient to one,

all other coelficients to zero, and perform an inverse wavelet transform starting from level j. This is known ss the

- cascade algorithnt.‘ We refer to the basis functions sssocioted with the A“ (respectively 1“) ss scaling functions

(respectively wavelets] and denote then: with (,9,-_. (respectively It“). If you are interested in the discrete basis.
do an inverse transform till level 0, while if you are interested in the continuous basis, do so inverse tumsform
add inflnitum. '
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_ djlates of one particular function. The same is true for the wavelet. By doing one step of the inverse transform .

 
Figure 4: In-place organlzatioh of Leno wavelet coetflcients.

This way it is easy to see that the Lazy wavelet simple corresponds to as Dirac sequence or a Dirac function.
In case oi’ the simple example mentioned earlier, the scaling ftutctions are given by

§0f'g(Z) = Amt! -IE),

where A is the clamicel “Hat” function: M2) = mu{D,1-jzl}. Essentially all scaling functions are traxulalzea and
we see that

'l":.r={==l = tl*(2’=-’=J-

where 311(3) is by

¢I(:t) an M2: — 1) — 1/4A(.'s) — 1/4 M: + 1). (3)
In case we would not have an update stage. the wavelet would simply be qb(.t) = M2: — 1}.

This gives us another insight into how lining constructs wavelets. A new wavelet qb(:] is found as an old
wavelet M2: — 1) [the one without updating) combined with scaling functions on the same level. M2] and
l\(:.'-i-1). This opposed to the classical case were a wavelet is constructed as a linear oombination of Hat functions
on the next finer level. namely h(2::- Jr) with it E Z. The coeflicieuts in (3) are chosen so that the wavelet has two
vanishing momenta. This is another way to get to the 1/4 coeflicients encountered earlier. The predictionstoge
‘actually corresponds to a similar operation on the dual wavelet, which is sometimes referred to as dual lifting.
We thus start from an almost trivial case, the Lazy wavelet, and gradually build a new wavelet with improved
properties, by sdd.i.ng in new basis functions. This is the inspiration behind the name “lifting edtetne."
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Let us now write the original signal as

fl”) = Z:I‘o.t tau -l

After wavelet transforin, the same signal can be written as

N3) = 23-»; ‘P-n,l"i' -2: Z:‘lj.bl0;'.r-a ;'=—rI i

-This is precisely a representation with “building blocks that clecorrelats” which we were after in the introduction.
Because of the correlation stnicture, many of the wavelet coeflicienta will be small. We can thus obtain an

accurate approximation with only a small number of coefflcients by simply omitting the wavelet coeflicients below
a. certain llfleehold.

3 Second generation wavelets '

The original motivation for the lifting was to construct wavelets in settings were no Fourier transform is

available. The theory ofiifiing for ssmnd gmeration wavelets is given in.” Here we just introduce the basic idea.

The key point in each setting is to define the initial split operation. The easiest choice again is the Lazy
wavelet transform. The prediction and updating stage are then quite similar to the ones described above. The

main dilferenoe lies in the fact that the filter oaellicients used in the prediction and update operator might vary

depending on location. Indeed, it‘ one wants to amount for local irregularities, one cannot use the same filters
everywhere. This is precisely why the I-\n:I.rler trarraforzn can no longer be used. As a result the wavelets are not
translates and dilstes of one function. However. they still enjoy all the nice properties of first generation wavelets.

_ such as fast transform and decor-relation power. They still are oolnparztly supported, smooth, and have vaniahiisg
Il1Cll1"-lE1'liil.

Let us flrst consider the case of wavelets on an i.n.tenI'al. We essentially went. to transform s. signal ofarbittazy
finite length without the use of ad hoc solutions such as zero pudding, perlodizatlon, or reflection around the

edges. The Lazy wavelet transform can still be suhsempling even and odd samples. in our simple example on

the real line, the predicted value for an odd sample was based on its neighboring even samples left and right. in

case of a finite length signal. the same idea can be used as long as the sample is eufliciently far away from the
boundary. At the left boundary, if not enough even samples on the left are available to predict an odd sample,
one simply replaces the samples on the lfi by extra samples on the right. In other words, we look for
more correlated data where it is available. For example, suppose we use cubic interpolation to predict an odd

sample based upon 4 neighboring oven samples. Away from the boundary we use 2 samples on the left and 2

.on the right. Close to the left boundary we might have to use 1 on the left and 3 on the right. or even none on
the left and 4 on the right. This automatically leads to filters adapted for boundary constructions. it assures
that all wavelets, including the ones at the boundary have the same number of vanishing moments. The wavelet

coeflieients for the Lens. image in Figure 4 were calculated this way. Examples of boundary Wavelets can be foundin}! _ .
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In the case of irmgular aampla the same philosophy can be used. The fact that the sample locations are not on
a regular grid poses no problems for the local polynomial prediction or update. The filters now change everywhere
to account for the ditferent locations of the samples. Here one has several choices for the Lazy wavelet. One

idea is to still use even and odd aubsampling. This way the imbalances in the sampling distances are maintained

throughout the hierarchy. The alternative is -to subsample in such a manner that the ratio of the largest versus
smallest sampling distance approaches one. Which one is better depends on the situation at hand. l.-‘hr practical
examples we again refer to.“

' Another typical example of second generation wavelets are wavelets defined on curves, surfaces, or general
manifolds. More particularly, the lifting scheme was used to construct wavelets on a sphere in.’ These spher-
ical wavelets are used for the efllcient representation of data. that naturally lives on a sphere. Examples are

topographic data (earth elevation), bidirectional reflection functions, astrophysical data, and environment maps.
These wavelets were used for spherical image processing in.‘

7 Future developments

In this paper we gave a short introduction to lifting, a new method to construct Wavelets. For more "details
and applications we need to refer to the original papers. Here we just would like to mention a. few developments

which are currently under investigation.

a Wavelets on general surfaces: The construction of the spherical wavelets does not ftmdernentully rely on the
special properties of the (phone. It only uses the fact that one can recursively cut the sphere into spherical

triangles. Therefore the conatnrctiun can be generalized to more general surfaces or manifolds. '

a Wavelet packets: The lining scheme can also be used in the construction of wavelet packets. It is not hard
to come up with a Lazy wavelet packet, Le. a transform which also recursively splits the 1-5 aetl. On these
splittings again the predlctionand update operators can he used.

c M-band wavelets: Again it is not vary dlfflcnlt to Invent a. Lazy M-hand wavelet. Now we need to find
several prediction and update operators.

o Wavelet frames: The lifting adreme can be used to construct overcornplete representations or Eruneo. The
key again lies in the correct ddlnition of the Lazy wavelet. The two sets 1.; and 1.; coming from the split

can have some amount of overlapping information or redundancy. Prediction and updating then would lead
to wavelet frame; I
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ABSTRACT

Compression with Reversible Embedded Wavelets (CREW) is a unified losslesa
and lossy continuouatone still image compression system. It is wavelet-based using ‘a
“reversible" approximation of one of the best wavelet filters. Reversible wavelets are

linear filters with non-linear rounding which implement exact-reconstruction systems
with minimal. precision integer arithmetic. Wavelet coeflicients are encoded in a

bit-significance embedded order, allowing lossy compression by simply truncating
the compressed data. For coding of coeflicients, CREW uses a method similar to

Shapiro's zerotree, and a completely novel method called Horizon. Horizon coding is
a context based coding that takes advantage of the spatial and spectral information
available in the wavelet domain. CREW provides state of the art lossless compression
of. medical images (greater than 8 bits deep), and Ioesy and lossless compression of
8-bit deep images with a. single system. CREW has reasonable software and hardware
implementations.

1 Introduction

Since CREW uses a “reversible” approximation of one of the best known wavelet
lilters, its performance is equal to or better than other existing methods in both lossy ‘
and lossless modes. It encodes the wavelet coefficients in 3. bit-significance embedded
order similar to Shapiro [Sha.93], and a completely novel method ca11ed,Har-iron.
Horizon coding is a context-based coding that takes advantage of the spatial and
spectral information available in the wavelet domain. While Zerotree is rightfully
considered to be one of the best encoding methods of the wavelet coefficients, it is
not efficient when it reaches the lesser significant bits of the coefficients. This usually
is tolerable in a lossysystem, but for lossless compression the encoding of the less
significant bits are of prime importance. Horizon coding, which is particularly useful
for the lesser significant bits is general and powerful enough to be used alone.

The original motivation for this system is the compression of medical images,
although the some feature set could be very useful for other applications such as
pre-press images. satellite images, document proceming, world wide web, and other
communication systems. At this time, for various reasons, medical image compression
is considered to belong to the lossless realm. However, there are definitely future
possibilities for the use of lossy compression. Perhaps the image is kept in a lossless
compressed form prior to the diagnosis and archived for permanent records using
lossy compression. For such a scheme. it is very desirable to have a single system
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Figure 2.1: Bloc]: Diagram of a Wavelet Analysis/Synthesis System

that can perform both loasy and lossless compression. Moreover, with an embedded
compression system, i.e., compressed data is in a visually important order, lossy
compression can be performed by a simple truncation of the compressed bit stream.

In section 2 the basics of wavelet decomposition are explained, and reversible.
wavelets are defined. In section 3, two reversible wavelet transforms are described in

detail. The first one, the S-transform is used to make the definitions easy’ to com-
prehend, while the second, the RTS-transform, is the suggested transform. Section
4 describes the embedded entropy coding, including a. brief description of Shapiro's
Zerotree. and Horizon context model. In section 5, the implementation of CREW
in software and hardware is discussed. Section 6 contains some experimental results,
comparing the performance of CREW with other system. '

2 Wavelet Decomposition of Digital Signals

A wavelet transform‘ is defined by a pair of FIR analysis filters hu(n]. h.1[n), and
synthesis filters _gg(n), g1(n). The filters no and go are the low-pass and h; and 511 are
the high-pass. For an input signal, s(n}. the filters he and hr are applied and the
results are decimated by 2 (critically-subsarnpled) to generate the transform signals"
r(-n.) and d{n),_so-called the reference and the detail signals (analysis part of Figure
2.1). In the synthesis part the transformed signals are upsampled by 2 (a. zero is
inserted after every term) and then passed through the synthesis filters. Coefficients
of the reference signal r{n} are processed through the low-pass synthesis go and the
coefiicients of the detail signal d(n) through the high-p synthesis filter 9-; (synthesis
part of Figure 2.1). In this paper we are only interested in quadrature min-or filters“,
Le... the synthesis filters are defined in terms of the analysis filters as follows:

{ (-1}"hr(=‘~)—(‘”1l"ho(fll-

The coder/decoder blocks contain all the processing in the transformed domain, c.g.,
quantization. coding etc. The filters can be recursively applied to the reference and
detail signal. 01' special interest are the pyramidal systems, in which the filters are

gale)
S’: (TU

 

‘For buir. wavelet innainrmotion we adopt the tun-ninolngy md notation: of [VBLD4].
‘For details and extensive references on GM!‘ system: :1’. [5A90}.
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Figure 2.2: Block Diagram of a two-level Pyramidal Transform

recursively applied only to the reference signal. Figure 2.2 shows the block diagram
of a two—level (the filters applied twice) pyramidal system.

Definition 1: Exact Reconstruction Systems: The system in Figure 2.1 is called
exact reconstruction if the signals, she} and :“':(n} are identical up to a multiplicative
constant and a delay term [LGT88].

Definition 2: Eflicient Reversible Systems: A reversible system is an implemen-
tation of an eiéact-reconstruction system, in integer arithmetic, so that a signal with '
integer coefficients can be losslessly recovered. An efficient reversible system is a
reversible system with transform matrix’ of determinant R1 4:1.

The construction of reversible transforms is by no means diflicult. Given enough.
precision, any exact reconstruction transform can be made reversible. The challenge
is to construct “e_filic:'ent" reversible transforms. intuitively, efficient means-that a.
reasonable and practical entropy coder can eflicient-ly encode the oocflicients. While
efficiency criteria might be specific to a particular encoder, in general, systems with
determinant = :l:1 are efficient. Like any transform which is used for coding, good
energy compaction is also a primary factor. The goal is to design a single system
which performs well in both loesy and loseless modes. The concepts will be made
more clear in the next section with two examples.

3 Two Examples of Reversible Transforms

3.1 Exact Reconstruction

Example 1: Hadamard ‘lransform: In normalized form it has the following filter
coefficients:

at = 55:14)
hi 550-:"']~)i

which is clearly an exact-reconstruction transform.

(3.1)

Example '2: TS-transform (Two-Six-transform}: For the origin and qualities
of the TS-transform cf. Remark 1 below. TS-transform is defined by the following

filter coefficients: M 1 (1 UW l

{ in. 3:1;-2-(—1,—l,8,—S,1,l).
This is also an exact-reconstruction transform.

(3.2)II

“For the definition of the transform matrix :1’. [SAW].
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3.2 Basic Reversible Versions

The reversible transforms, in general, ere-non-linear. Hence they will be defined as
expressions. However, the linear system approximation which is useful for evaluation
will also be given. Recall that for the input signal a:(n), r(n.] end d(n) are the reference
and the detail signal respectively. The reversible S-transform will be used as a simple
example before explaining the reversible TS-transforrn.

Example 3: S-transform: An efiieient reversible version of the Hadamard trans-
form, Example 3. known as the S-trsnsfonn [SAAJ91, SP93] is defined as follows: . ,

{ -rm) Fl‘-”%*“’J11(0) 41(0) - x(1].

Notice that this is an approximation to the linear transform (with determinant -= -1.}
The floor function in the definition of r(0] is the source of nomlinesrity.

(3.3)

= :G!‘I-zgl{em} :3 x(o§—.«:(1). “'43 “
A constructive proof for the reversibility of the S-transform is the inverse transform:

{:83 : :E3::ltii in
The idea behind the reversibility of the S-transform is the observation of two facts.

One. knowledge of the sum and the difference of two integers are sufficient to recover
the numbers. Two, the sum and the difierence have the some parity, i.e., they share
‘the same least significant bit. Hence the integer d.iv'ision by 2 (or a shift right by
1) in Eq. 3.3, eliminates a redundant least significant bit. The S-transform, where
redundant information can be detected and easily eliminated. is an example of eflicient
reversible transform.

Example 4: RIS-Transform (Reversible TS-transform): An efficient reversible
version of the TS-transform, which we call RTS-transform is defined as follows:

rcoi l5‘”¥“’l
rm = Leas‘-“ll
re: = Leflteifli
5 (3.6)

= L_laifig-P-rill]+4(l‘1:_:(3»+L:E1;-I-nib!JJ

Notice that this is an approximation to the followiiig linear version (with determinant =
-1) of the TS-transform:
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= :—(~9L;'-E1
= 3532+?!”

T”) (3.7)
I -—:: I-1! I :2! I-1! H is! E 2] 1

- 0 1+5 2‘ 3-l-4+5

The proof that the HTS-transform is reversible is quite simple. We show how to
recover 3(2) and 3(3) from r(0),r{1),r(2] and d[D), the recovery of other samples are -

similar. Notice the expresdon for d(_0) in Eq. 3.6, can be written as,

-—r[0} + 4(2(2) - 2(3)} + r[2)J'em) = 1 4
From this it follows that:

3(3) - 3(3) = di0) - ll-7(0) + Vlflll/4L

Hence 2(2) 93(3) is completely known. This, combined with r(1) = ]_(r(2)+:c(3))/2]
in Eq. 3.6, and the use of inverse S-transform Eq. 3.5, leads to the recovery of x(2)'
and 3(3).

Remarl: 1: Le Gall and Tabatabai in [LGT88} use a. design procedure based on the
factorization of a product filter into two linear phase low-pass components. These
correspond to the low-pass analysis and synthesis filters. By using the quadrature"
mirror properties the high-pass filters are derived. In their most important example,
which is by now classical. the following product filter is factored:

P(Z) = 1/16(l + z-‘)*‘(—1 + 3z*1+ 32-’ — z-3).

Two factorizations are given in [LGT88],

{ P(Z) {1f4(1 + 2'-U3] x [1 /4{—1 + az-1+ 33-2 — 2-5)]P(Z) (1/2(1+ z-|)=] x [1/s(1+ z-1)(-1+ 32"’ + 32-“ — z~3)].

A third factorization,

1=(z) = [1/2(1+ z‘1)]x [1/s(1 + z-1)’{—1 + 32-1 + 32-9 - z")],

(3-3)

which was not mentioned in that paper. is, in fact, the rational version of the TS-
transform [Eq. 3.7.) Speck in [Spe93] considers and analyses this third factorization.
in [VBL94] the normalized version Eq. 3.2. is evaluated together with several thou-
sand other wavelet transforms. and is rated as one of the overall best.

Remark 2: In both the S~transform and the RTS-transform, the reference signei

r(n} has the same range of values as the input signal e(n), q.g., if the range of :r(n)
is from 0 to 255 the same is true about r(n). This property is especially important
in a pyramidal system where the reference signal is successively decomposed.
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Remark 3: Both normalized Hadamsrd transform and the normalized TS-transform

have especially simple implementations in two dimensions. the domain of digital
images. Recall that in the separable two dimensional wavelet transform the image
is decomposed into four blocks, the so-called LL, LH. HL, and HH ISha93i. Each L
corresponds to an application of the low-pass filter ha, and each H corresponds to an
application of the high-pass filter hl. if we denote ha. and h; to be the low-pass and
the high-pass filters of the normalized TS—tra.nsfonn, Eq. 3.2, and similarly I15, and
h{ for the rational version, Eq. 3.7, then

{ hi 3%hi ~/ihi.

Therefore the LL, and HH components of the rational TS-transform, Eq. 3.7 are 1/2
and 2 times the corresponding components of the normalized TS-transform. Moreover
the components LH. HL are identical. This leads to an efficient implementation of the
TS-transform. through the rational TS-tra.nform. More to the point for this article
is the fact that if the rational TS-transform, Eq. 3.7, is replaced by the the reversible
TS-transform (RTS-transform), Eq. 3.6, a very good approximation of the normalized

IIH

TS-transform‘ is realized, which in addition is reversible. Notice that the scale factors
of 1/2 and 2 are especially easy to implement.

4 Embedded Entropy Coding

In most transforrn-based compression systems the coefiicients are entropy coded.
Of special importance for us are the so-called "embedded" coders. Briefly, an embed- -
ded coding is a system in which the coded bit stream is ordered by visual significance
or, more accurately, ordered with respect to some error metric cf. also [Sha93]. The
embedded order used in this paper is bit—sig'nificance in the transform domain, the
same as used in [She.93].

The Zerotree {Shs93] is an eificient embedded coding method of the wavelet co-
efliciente. which takes advantage of the inherent similarity of different bands in the
transform domain.

Horizon embedded coding, introduced below, is a spatial-spectra! context model
which uses the same embedding order. i.e., bit-significance, as the Zerotree. Non-
embedded context models have been proposed to encode signed integers which take
advasitage of spatial correlations of coefiicients [Lan91]. In Horizon Coding the high
correlation of neighboring pixels. in addition to the similarities of different bands.
are utilized by context dependent entropy coding. The Horizon context dependent
coding is especially attractive for encoding the low order bits. which must be encoded
in a losslesa system. Moreover the coding can start with the Zerotree, or some other
spectral context model. and change to Horizon after any number of bit-planes.

4 .1 Zerotree

The most important pdrt of the Zerotree embedded coding of the wavelet coef-
ficients is a prediction method which, accozdingjo Shapiro, is based on “the basic
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hypothesis - ifs. coefficient at- a coarse scale is insignificant with respect to a threshold
then all of its descendants are also insignificant." The descendants ere defined with

respect to a. tree structure defined on the wavelet coefficients, which takes advan-
tage of the similarity of the bands at different resolutions [Sha93]. The other part
of the Zerotree embedded coding is s. bit-significance embedding method to encode
signed integers. In the so-called dominant pass the integers in sign-magnitude form,
are encoded one bit at a time from the MSB to LSB, by the prediction method of
Zerotree. until the first “on" bit is detected. The sign is encoded at this time, which
is the logical embedding order of the sign bit. The remaining of the bits are encoded
without the Zerotree prediction, in the so—called subordinate pose. ' -

4.2 Horizon: A Spatial-Spectral Context Model

Horizon context model addresses the bit-significance embedded encoding of the
wavelet coeflicients by a binary entropy coder. There are three basic contexts designed
for embedded encoding of signed integers. Hence these can be described independently
of any wavelet system. Recall that in the bit-significance embedded coding of signed
integers, the-sign bit is encoded with the first "on” bit (starting from the M313).
Therefore, prior to the occurrence of the sign bit, the set of events consists of 0,1,-
1. After the sign bit is encoded the set of events is 0.1. The first context is used
to encode the event of zero bit vs. non-zero bit when the sign bit has not yet been
encoded. The second context is used to encode the sign bit if the previous event was
non-zero. Context three is used to encode the zero bit vs. the one bit if the sign bit is
already encoded. In the terminology of Shapiro the first two contexts are used during’
the dominant pass and the third context during the subordinate pass. Notice also
that the second context is used at most once for every integer.

The basic contexts of the Horizon model can be extended for the coding of the
wavelet coeflicicnts. Briefly. the fact that the wavelet transform is localized both in
space and frequency rnalees it possible to use regional contexts in the same band as

' well as between bands contexts. The regional contexts in the same band are similar
to the JBIG or the lossless JPEG systems. The between baud spectral contexts can
use modeling such as the tree structure used in Zerotree, or use the so-called similar
coeflicients from the other bands. provided that the system stays causal.

5 Computation in Software and Hardware

CREW is suitable for implementation in both software and hardware. It can be
performed in two passes where the first pass generates all the transform coefficient
and the second pass embeds and encodes them, or it can be performed in a unique
one pass mode with memory management.

The filters chosen in CREW are easy to implement for both encoding and decoding.
The implementation ‘of the forward transform is immediate from Eq. 3.6. Figure
5.1 shows a hardware implementation of the inverse transform (the more interesting
case). As in the forward case. four additions/subtractions are required. A total of four
multiplications/divisions are hardwired shifts in hardware and three shift instructions
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Figure 5.1: An Implementation of the inverse RTS-'Il-ansform

in software. After 2 X r(1) is computed (bits l6...1), its least significant bit (LSB)
is taken from the computed value of x(2)—x[3). This operation has zero gate cost in
hardware and is two logic operations in software. -

For lossless decompression, the clip operation in Figure 5.1 simplyshifts its input
right by one {divides by two) and may drop (or otherwise ignore) the three most
significant bits. In the loss‘; case, where quantization can cause the reconstructed
value to be-out of range, the three most significant bits must be checked and out of
range results must be changed to the minimum or maximum allowable value.

For images where a full frame can fit in memory allowing two pass implementation, ‘
memory/data flow management is not a difficult issue. Even for 1024 X 1024 16 bit
medical images (2 Mbytes in size), requiring a full frame buffer is probably reasonable.
However larger images [for example A4, 400 DP! 4-color images are about 50 Mbytes),
performing the wavelet transform with a limited amount of line buffer memory is.
desirable. A one pass method reduces the memory required by about a factor of 100

' compared to using a full frame buffer for this example.

Because only the high pass filter is overlapped, the largest filter support region
is defined by a. cascade of low pass filters followed by a high pass filter. For a four‘

level decomposition. the largest supportregion is (‘Z3 x 6) X (23 x 6) = 48 x 48
pixels. as shown in Figure 5.2. Note that for computational efficiency. redundant
calculations due to overlap are done only once. Thus, only 16 X 16 new pixels ‘are
used in calculations for each region.

At the moment CREW uses the binary adaptive arithmetic coder known as Q-
coder.

6 Experimental Results

Two sets of images are used for experimentation, a class of 512 x 512 USC gray
scale 3-bit deep images, and a class of medical images of different modalities. Medical
images “or”, “dsa", "xray" are 1024 x 1024, and are 10 bits deep. Images "ct" and
"mri” are 512 x 512 and are 12 bit deep. Tables 1 and 2 are the lossless results,
for the medical and the USO images respectively. The results related to the USO
images (Table 2) are compared with JPEG loeslese (with QM-coder], and bit-plane
JBIG of the gray-coded image [AT94]. The results on medical imaging (Table 1) are
compared with DPCM which uses three neighbonpixels for prediction and Hoffman
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Figure 5.2: Image and Coefflcients in line Bufier: 4-ievel pyramid

codes the prediction errors. ‘Table 3 is the results of lossy compression of the USC -
images. The MSE results are compared with JPEG loesy with arithmetic coding at
the same compression ratio. JPEG lossy with arithmetic coding was chosen because

of its superior rate/distortion over baseline JPEG. In each case JPEG is used roughly
at low, and high compression ratio. The truncation of CRE‘W’s compressed bit stream-
was used to decompress at exactly the same ratio. As can be observed state of the
art lossy and lossless performance is achieved for all cases.

7 Conclusion

CREW is essentially an exact reconstruction transform scheme with good energy
compaction. Moreover. it is specially designed so that the transform coefficients have
small redundancy and are easy to entropy code. Since CREW has good compression‘
efficiency at any level of quantization it is well suited for embedded coding. Embedded
coding of the coefiicients makes the quantization level a function of the length of the
coded stream. Hence, quantization is performed with truncation: Without truncation
the image is recovered Iossleeely.

Horizon context dependent entropy coding, together with the Shapiro’s Zerotree
is used to achieve such a system. Inaddition to the lossless and lossy state-of-the
art compression performance with a single system, eflicient software and hardware
implementations are also possible. Other features of CREW are Inulti—resolution and
progressive capabilities.
TABLE 1 ‘

Compression ratio of losaless compression of Medical images.

WW  
compression

  
 

  

method

EFEWIEIEEEE
DPCM IEEEEI
IEEE

Page 401 of 437



Page 402 of 437

TABLE 2 \'
Compression ratio of lossless compression of USC images.

compression womanl I woman2 average
method '

CREW -I ILIEEII
JPEG llfllflill
lllill

TABLE 3 -

Mean Square Error (MSE) of lossy compression of USC images.

WWW
i'i'.29 54.72 14.69

ratio lIiE‘I']| 90'-10 87-30
highI30-65 99-70
ratio [magi 49.86 35.10 137.00 27.74 43.34 11.32
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Part III DETAILED BETION

Claim Rejections - 35 USC 5 103

1. The following is a quotation of 35 U.S.C. S 103 which forms
the basis for all obviousness rejections set forth in this Office-
action:

A patent may not be obtained though the invention is not
identically disclosed or described as set forth in section
102 of this title, if the differences between the subject

matter sought to be patented and the prior art are such that
the subject matter as a whole would have been obvious at the
time the invention was made to a person having ordinary
skill in the art to which said subject matter pertains. _
Patentability shall not be negatived by the manner in which
the invention was made.

Subject matter developed by another person, which qualifies
as prior art only under subsection if} or {g} of section 102
of this title, shall not preclude patentability under this
section where the subject matter and the claimed invention
were, at the time the invention was made, owned by the same
person or subject to an obligation of assignment to the same
person.

2. Claims 1-3, 5-14, 16-29 are rejected under 35 U.S.C. S 103
as being unpatentable over Seshadri et al.

As to claims 1, T, 12, 22, 28, Seshadri et al. Teaches an
error resilient method of encoding data (column 2 lines 28-56);
generating a plurality of code words representative of respective
portions of data (column 2 lines 28-56], wherein each code word
comprises a first portion and an associated second portion
(column 2 lines 28-56], wherein said code word generating step
comprises: generating the first portion of each code word. the
first portion including information representative of a
predetermined characteristic of the associated second portion
(column 2 lines 28-56, figure 1, abstract): and generating the
second portion of each code word, the second portion including
information representative of the respective portion of the data
(column 2 lines 28-56, figure 1, abstract); and providing error
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protection to at least one of the first portions of the plurality
of the code words while maintaining any error protection provided
to the respective second portion associated with the at least one
first portion at a lower level than the error protection provided
to the respective first portion (column 2 lines 28-56}.

As to claims 2-3, 8-9, 13-14, 23-24, 29, Seshadri et ali-
Does not specifically teach entropy coding; second portions
having predetermined number of characters, and first portions.
which includes information representative of the predetermined
number of characters.

As to claims 5-6, 10-11, 16-17, 25-25, 28, Seshadri et ale
Does not specifically teach storing the at least one first
portion, and storing the respective second portion: transmitting
first portion, and transmitting respective second portion via a
second data link.

As to claims 12, 18-19, 20-21, 22, 2?, Seshedri et al. Does
not specifically teach compressing data; transforming data based
on the a predetermined transformation function; quantizing and
encoding data; wavelet transform: biorthogonal wavelet transform;
transformed coefficients, and coefficients below a threshold;'
establishing a clipping threshold such that the ratio is at least
as great as a predetermined clipping ratio.

However, entropy coding; having predetermined number of
characters: storing portions: transmitting portions: compressing
data; transforming data based on the a predetermined
transformation function; quantizing and encoding data; wavelet
transform; biorthogonal wavelet transform: transformed
coefficients, and coefficients below a threshold; establishing an
adaptive threshold: are all well—known and routinely used in the
art. {Official Notice}

It would have been obvious to a person of ordinary skill in
the art at the time the invention was made to incorporate these
features into the image processing and data encoding. Because
entropy coding is used to compress the data: having predetermined
number of characters is used in run—length encoding; storing
portions is used to gather the data; transmitting portions is
used to send the data to the receiver end: compressingf

- transforming datal quantizingl encoding data/ wavelet transform/
transformed coefficients are used to encode! compressl reduce the
size of data: an adaptive threshold is used to make the system
more flexible and adjustable.
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3. Claims 4, 15, 30 are objected to as being dependent upon a
rejected base claim, but would be allowable if rewritten in
independent form including all of the limitations of the base’
claim and any intervening claims.

4. The prior art made of record and not relied upon is
considered pertinent to applicant's disclosure. -

Nelson et al., Nadan, and Baggen et al. Teach parity? code
word, data enable sequences, and interleaved phases.

5. Any inquiry concerning this communication or earlier
communications from the examiner should be directed to Dr. Bijan
Tadayon whose telephone number is (703) 308-7595. The fax number
is (703) 308-9051 or (703} 308-9052.

‘B5,:
Dr. Eijan Tedayon
July 16, 199?

L120 BDUDREN
SUPERWEDRY mam EJLMJIINER
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‘K 3:-uocl-:et No. §;|_§_Q__-i3_ I I
IN THE UNITED STATES PATENT AND TRADEMARK OFFICE .

In re: Meany and Martens /\
Serial No.: 08/533,595 Group Art Unit: 2616
Filed: April 17, 1996 ' Examiner: B. Tadayon '
For: ERROR RESILIENT METHOD

AND APPARATUS FOR
ENTROPY CODING

January 23 , 1998

Assistant-Commissioner for Patents
Washington, DC 2 0231

-. .f_'.|..'.':
AMENDMENT

Sir:

In response to the Official Action dated July

24, 1997, please amend the a.bove—ide-ntified application
as follows:

 =

Page 1, line B, etween "methods" and

"apparatus", please inset!--and--.
Page 29, line 35.,/_,p'1ease delete "SA". and

insert ——5B—— therefore. .

Page 30, line 6. please/cielete "SA", and insert
--5B-- therefore.

 =

Please amend independent Claim 1. 7, 12,. 22 and
23 as follows:

‘-~..__ 1. {Amended} An error resilient method of

encoding data -“comprising the steps of:

generating a plurality of code words

representative of respective portions of the data,

\ wherein each code word comprises a first portion and an
associated second portion, and wherein said code word

generating step comprises the steps of:

ALW

Page 409 of 437



Page 410 of 437

In re: Meany and Martens
Serial No. 08/633,396
Filed: April i7, 1996
Page 2

generating the first portion of each

code word, [the first portion] ghgrein gaig first pgzgjog
 including

information fiithin the first portion that is

\\ representative of a predetermined characteristic of the
associated second portion; and

generating the second portion of each

code word, [the second portion] flhezein_§aid_§ecQnQ

ngrgign ggngxgging egg; ggmpxiaga the aggp gf including

information githin the second portion the; is

representative of the respective portion of the data; and

providing error protection to at least one of
the first portions of the plurality of code words while

maintaining any error protection provided to the

respective second portion associated with the at least

one first portion at a lower level than the error

rotection provided to the respective first portion. -

 
7. (Amended) A data encoding apparatus

comprising:

code word generating means for generating a

p\J plurality of code words representative of respective
portions of the data, wherein each code word comprises a

first portion and an associated second portion, and

wherein said code word generating means comprises:

first generating means for generating
the first portion of each code word, [the first portion}

 
I‘

including information within the first pgrtign thgt is
representative of a predetermined characteristic of the

associated second Pertion; and

second generating means for

generating the second portion of each code word, [the

second portion] ggid segong gggggatigg mgang ggmpriging

mesn§_fiQx including information yitgig ghg figggnd pggtign

/A
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In_re: Meany and Martens «
Serial No. D8f633,896 '
Filed: April 17, 1996
Page 3 '

.

§hat_i§ representative of the respective portion of the
data; and

error protection means for providing error

protection to at least one of the first portions of the
plurality of code words while maintaining any error

protection provided to the respective second portion

associated with the at least one first portion at a lower

level than the error protection provided to the
res ective first ortion.  

C};

12. (Amended) An error resilient method of

compressing data comprising the steps of:

transforming the data based upon a

predetermined transformation function;

quantizing the transformed data such that the

quantized data has fewer unique coefficients than the

transformed data; and

encoding the quantized data, said encoding step
comprising the steps of:

generating a plurality of code words,

representative of respective portions of the data, which

have respective first and second portions, wherein [the

first Portion includes]sfl 

99m2Iia2s_ths_stena_Qf_inclsdins informatifln Hihhin_Lhe

jigat pggtign that is representative of a predetermined

characteristic of the associated second portion. and

[wherein the second portion includes] including

information within the second portion that is

representative of a respective portion of the data; and

providing error protection to at

least one of the first portions of the plurality of code

words while maintaining any error protection provided to I
the respective second portion associated with the at

least one first portion at a lower level than the error

protection provided to the respective first portion. 

’ |.-/K
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22. (Amended) An error resilient data

compression apparatus comprising:

a data transformer for transforming the data

based upon a predetermined transformation function;

a data quantizer for quantizing the transformed
data such that the quantized data has fewer unique

coefficients than the transformed data; and

a data encoder for encoding the quantized data,

said data encoder comprising: I I
code word generating means for

generating a plurality of code words, representative of_

respective portions of the data, which have-respective

first and second portions, wherein said code ggrd

generating means cgmprjggg means for ipglpding [the first

portion includes} information nithig the fiirag pgrtion

;h§;_ig_representative of a predetermined characteristic

of the associated second portion, and mggng fgr inglgging

[wherein the second portion includes] information within

the_geggnfi_pg;LiQn_LhaL_i§ representative of a respective
portion of the data: and

error protection means for providing

error protection to at least one of the first portions of
the plurality of code words while maintaining any error

protection provided to the respective second portion

associated with the at least one first portion at a lower

level than the error protection provided to the
res active first ortion. 

 

28. (Amended) A computer readablefmemory for
storing error resilient encoded data, the computer

readable memory comprising: ‘

a storage medium for storing the error

resilient encoded data, said storage medium being

partitioned into a first_error protected data block and a

second data block, wherein any-error protection provided

~.~/-—x ___._
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by said second data block is at a lower level than the

error protection provided by said first data block; and

I a plurality of code words, representative of
respective porticns_of the original data, which have

respective first and second portions, wherein the first

portion Q;_g5gh_g9ge_gg;g includes information I

representative of a predetermined characteristic of the

associated second portion, and wherein the gggggiatgd _
second portion 9: each goge wgrd includes information

representative of a respective portion of the original
data,

wherein at least one of the first'portions of
the plurality of code words is stored in the first data

block of said storage medium such that the at least one

first portion is error protected, and wherein the

respective second portion associated with the at least

one first portion is stored in the second data block of

said storage medium such that any error protection I

provided to the respective second portion associated with

the at least one first portion is at a lower level than

the error protection provided to the respective first

portion.:? 

REMARK§

Applicants would like to thank the Examiner for

the thorough review of the present application and for
the indication that claims at 15 and 30 define patentable

subject matter and would be allowable if rewritten in

independent form. Each independent claim, namely, Claims

1, 7. 12, 22 and 28, has been amended to more clearly

‘define the invention, as explained more fully below. The
specification has also been amended to correct several

obvious infcrmalities that were noted during our review

of the specification in the course of preparing the

present Amendment. As discussed in detail below, the

4/..,
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amended set of claims includes recitations which further

patentably distinguish the claimed invention over the
cited reference.

Egg Igvegtign

The claimed invention provides an error

resilient method and apparatus for entropy coding data’

which includes code word generating means for generating
a plurality of code words representative of respective

items in the data set. Each code word has two portions

which we shall hereafter refer to as “fields”, namely, a

first or prefix field which is susceptible to bit_ errors.
and an associated second or suffix field which is

resilient to bit errors. According to the claimed

invention, the code words are generated such that a bit

error in the prefix field of a code word could result in

a potential loss of code word synchronization,.while a

bit error in the suffix field of a code word shall only

affect that particular code word. More specifically, the

code words are generated such that a bit error in the
suffix field of a code word will not result in a loss of

code word synchronization. but the resulting misdecoded-

value shall, instead, fall within a predetermined range

about the correct value. Thus, according to the claimed

invention, the error resilient method and apparatus for

entropy coding data shall be suitable for use with

unequal error protection such that the prefix fields are

encoded with a higher level of error protection and the
suffix fields are encoded with a lower level of error

protection, if any at all.

As claimed, the code word generating means

includes prefix generating means and suffix generating

means for generating the p efix and suffix fields of each
code word, respectively n particular, the prefix field

includes information r pre entative of a predetermined
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characteristic of the associated suffix field. As

defined by dependent Claims 3, 9, 14, 24 and 29, each
prefix field preferably includes information

representative of the predetermined number of characters,

such as bits, which form the associated suffix_Eield of
the code word. The prefix field may also include

information representative of other characteristics of

the associated suffix field, such as the contiguous or

consecutive range of coefficient values which the '

associated suffix field may represent. In addition, each

suffix field includes information representative of

respective portions of the original data. Consequently,

even_though the suffix fields are not error protected or
are only provided with a relatively low level of error

protection, the method and apparatus of the claimed

invention can correctly determine the length of the
suffix field of a code word even if there should be of

one or more bit errors within the said suffix field,

provided that the associated prefix field is decoded

correctly, i.e., without the occurrence of a bit error.
Accordingly, in order to provide a high probability that

the prefix field is decoded correctly, the method and

apparatus of the claimed invention encodes the prefix

field with .a. -higher relative level of error protection.

According to one advantageous embodiment set
forth in Claims 12-27 in which the data has been

"quantized, the quantized coefficients can be

characterized using a "histograrn"' which is a discrete
distribution consisting of a number of individual “bins”,

each of which represent the frequency or probability of
occurrence of a quantized coefficient value. In other

words, each bin is associated with a particular

quantization interval which has as its frequency a count
of the number of occurrences of coefficients whose values

fall within the associated quantization interval.
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According to this embodiment of the error'

resilient method and apparatus for encoding data of the
claimed invention, the prefix field of each code word

includes information representative of the number of bits
K which form the associated suffix field of the code

‘word. Furthermore. the prefix field can also include

information representative of the specific histogram bin

within which quantized coefficient value resides. The.
suffix field will, in turn, identify one particular

quantized coefficient value within the respective

histogram bin. In aggregate, the prefix and suffix field

of each code word shall together include information
representative of a specific coefficient valve residing

within a specific bin of the quantized coefficient

histogram.

In other words, the prefix field of this

exemplary embodiment includes the information

representative of a set of quantized coefficient values'
while the suffix field includes the information

representative of a specific coefficient value among the

set designated by the prefix field. Thus, 1: the prefiit.

field of a code word is decoded correctly, i.e., without

the occurrence of a bit error, the length of the

associated suffix field and the range of coefficient

values which may be represented by the associated suffix

field will be known. As a result, the effects of one or
more bit error on the suffix field will be isolated to a

specific code word, thereby limiting such errors to a
misdecoded coefficient value which is constrained to that

range of values determined by the prefix field, i.e., the

range of valves within the respective histogram bin.

Accordingly, the error resilient method and apparatus for

encoding data according to the claimed_inventicn
effectively reduces. if not prevents, catastrophic errors
in an efficient manner.
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Ihe_Amend:d_§laim§_AIe_Ea£eaLflbl§
claims 1-3, 5-14 and 16-29 were rejected under

35 U.S.C. 5103 as being unpatentable over U.S. Patent No.

5,239,501 to Seshadri et al. Each of the independent
claims, namely, Claims 1, 7, 12, 22 and 28, have been

amended to further patentably distinguish the claimed

invention over the cited reference, as explained in
detail below. .

The Seshadri ‘S01 patent describes a technique

for transmitting information in digital form over fading
channels. In order to provide error protection for the

transmitted information, the technique described by the

Seshadri ’501 patent accepts a stream of data that has
been subdivided into different classes that merit

different levels of error protection. For example, the

class of data meriting the highest level of error

protection may be the most important data.and/or the data 3
most susceptible to error, while the class of data '

meriting the lowest level of error protection may be the

least important data and/or the data least susceptible to

errors. Once the different classes have been separately

scrambled, each class is redundancy coded using a

different, respective channel code. Thus, the technique

described by the Seshadri '501 patent provides unequal

error protection to the different classes of data.

Following encoding of the data, the encoded data is

modulated prior to being transmitted over free space
communication channels to remote digital cellular mobile
radio cell sites.

Like the Seshadri ‘S01 patent, the data

encoding method and apparatus of the claimed invention

utilizes unequal error protection to provide different

levels of error protection. with respect to the claimed

invention, for example, the_first portions of the code

words have a higher level of error protection than the
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