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When applied recursively, these formulae define the fast wavelet transform; the re-
lations (35) and (36) define the forward transform, while (37) defines the inverse
transform.,

Now, from the fact that H(0) = G(#) = 1 and G(0) = H(x) = 0, we see that H{w)
acts like a low pass filter for the interval [0, 7/2] and G(w) similarly behaves like a band
pass filter for the interval [x/2,7]. Equation (8) (respectively (12)) then implies that
the major part of the energy of the functions in Vy (respectively Wy) is concentrated
in the intervals [0, x] (respectively [r,2n]). The basic behavior of the dual functions
is the same. In an approximate sense, this means that the wavelet expansion splits
the frequency space into dyadic blocks [27x, 27+ x| with j € Z [103, 104].

In signal processing this idea is known as subband filtering, or, more specifically,
as quadrature mirror filtering. Quadrature mirror filters were studied before wavelet
theory. The decomposition step consists of applying a low-pass (H) and & band-
pass (é] filter followed by dow pling (| 2) (ie. retaining only the even index
samples), see Figure 1. The reconstruction consists of upsampling (1 2) (i.e. putting
a zero between every two samples) followed by filtering and addition. One.can show
that the conditions (27) correspond to the exact reconstruction of a subband filtering
scheme. More details about this can be found in [115, 132, 133, 134].

An interesting problem now is: given a function f, determine, with a certain
accuracy and in a computationally favorable way, the coefficients A, of a function in
the space V,,, which are needed to start the fast wavelet transform, A trivial solution
could be

Ang = f(1/27).

Other sampling procedures, such as (quasi-)interpolation and quadrature formulae
were proposed in (1, 2, 85, 120, 128, 138].

An implementation of a fast wavelet transform in pseudo code is given in the
appendix.

10. Examples of wavelets. Now that we have discussed the essentials of wave-
let multiresolution analysis, we take a look at some important properties of wavelets.

Orthogonality. Orthogonality is convenient to have in many situations, e.g. it
directly links the L? norm of a function to the norm of its wavelet coefficients by

= /37

i

In the biorthogonal case these two quantities are only equivalent. Another advantage
of orthogonal wavelets is that the fast wavelet transform is a unitary transformation
(i.e. its adjoint is its inverse). Consequently, its condition number is equal to 1, which
is the optimal case. (Recall that the condition number of a linear transformation A
is defined as ||A[|.]4~(]). This is of importance in numerical calculations. It means
that an error present in the initial data will not grow under the transformation, and
that stable numerical computations are possible,

If the multiresolution analysis is orthogonal (remember that this includes semior-
thogonal wavelets), the projection operators onto the different subspaces yield optimal
approximations in the L? sense,
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Compact support. If the scaling function and wavelet are compactly supported,
the filters H and G are finite impulse response filters, so that the summations in
the fast wavelet transform are finite, This obviously is of use in implementations. If
they are not compactly supported, a fast decay is desirable so that the filters can be
approximated reasonably by finite impulse response filters.

Rational coefficients. For computer implementations it is of use if the filter co-
efficients k) and g, are rationals or, even better, dyadic rationals. Multiplication
by a power of two on a computer corresponds to shifting bits, which is a very fast
operation. '

I
Symmetry. If the scaling function and wavelet are symmetric, then the filters have
generalized linear phase. The absence of this property can lead to phase distortion.
This is important in signal processing applications. '

Smoothness. The smoothness of wavelets plays an important role in compression
applications. Compression is usually achieved by setting small coefficients ¥i1 to
zero, and thus leaving out a component ;1 4;(2z) from the original function. If
the original function represents an image and the wavelet is not smooth, the error
can easily be detected visually. Note that the smoothness of the primary functions
is more important to this aspect than that of the dual. Also, a higher degree of
smoothness corresponds to better frequency localization of the filters. Finally, smooth
basis functions are desired in numerical analysis applications where derivatives are
involved.

Number of vanishing moments of the dual wavelet. We saw earlier that this is
important in singularity detection and ch ization of smoothness spaces. Also,
it determines the convergence rate of wavelet approximations of smooth functions.
Finally, the number of vanishing moments of the dual wavelet is connected to the
smoothness of the wavelet (and vice versa).

Anclytic expressions. As previously noted, an analytic expression for a scaling
function or wavelet does not always exists but in some cases it is available and nice
to have, In harmonic analysis, analytic expressions of the Fourier transform are
particularly useful.

Interpolation. If the scaling function satisfies
w(k) =6z for keZ,

then it is trivial to find the function of V; that interpolates data sampled on a grid
with spacing 274, since the coefficients are equal to the samples.

As could be expected, it is not possible to construct wavelets that have all these
properties and there is a trade-off between them. We now take a look at several
compromises,

Ezamples of orthogonal wavelets. .
(i) Two simple examples of orthogonal scaling functions are the box function
X[o,1)(z) and the Shannon sampling function sine(rz). The orthogonality conditions
are easy to verify, either in the time or frequency space. The corresponding wavelet
for the box function is the Haar wavelet

VYaaar(2) = Xj0,1/2)(2) = xu;;.u(ﬂ-
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and the Shannon wavelet is

- sin(27z) — sin(xz)

Pshannon(T) o

These two, however, are not very useful in practice, since the first has very low
regularity and the second has very slow decay. :

(ii) A more interesting example is the Meyer wavelet and scaling function [106].
These functions belong to C* and have faster than polynomial decay. Their Fourier
transform is compactly supported. The scaling function and wavelet are symmetric
around 0 and 1/2, respectively, and the wavelet has an infinite number of vanishing
moments,

(iii) The Battle-Lemarié wavelets are constructed by orthogonalizing B-spline
functions using (20) and have exponential decay (12, 95]. The wavelet with N van-
ishing moments is a piecewise polynomial of degree N — 1 that belongs to V3.

(iv) Probably the most frequently used orthogonal wavelets are the original Dau-
bechies wavelets (47, 49). They are a family of orthogonal wavelets indexed by. NV € N,
where N is the number of vanishing wavelet moments. They are supported on an in-
terval of length 2V — 1. A disadvantage is that, except for the Haar wavelet (which
has N = 1), they cannot be symmetric or antisymmetric. Their regularity increases
linearly with N and is approximately equal to 0.2075N for large N. In [137] a dif-
ferent family with regularity asymptotically equal to 0.3N was presented. In (50]
three variations of the original family, all with orthogonal and compactly supported
functions, are constructed:

1, The previous construction does not lead to a unique solution if N and the
support length are fixed, One family is constructed by choosing, for each N, the
solution with closest to linear phase (or closest to symmetry). In fact, the original
family corresponds to choosing the extremal phase.

2. Another family has more regularity, at the price of a slightly larger support
length (2N + 1).

3. In a third family, the scaling function also has vanishing moments (M, =0
for 0 < p < N). Thie is of use in numerical analysis applications where inner products
of arbitrary functions with scaling functions have to be calculated very fast [17]. Their
construction was asked by Ronald Coifman and Ingrid Daubechies thérefore named
them coifiets, They are supported on an interval with length 3N ~ 1.

Ezamples of biorthogonal wavelets.
(i) Biorthogonal wavelets were conatructed'by Albert Cohen, Ingrid Daubechies
and Jean-Christophe Feauveau in [31]. Here A(w) is chosen equal to e=*, and thus

Cw)=-e"“Hw+r) and G(w)=~c""“Hw+r).
In one of the families constructed in [31], the scaling functions are the cardinal B-

plines and the wavelets too are spline functions. All functions including the dual
ones have compact support and linear phase. Moreover, all flter coefficients are
dyadic rationals. A disadvantage is that for small filter lengths, the dual functions
have very low regularity.

(ii) Semiorthogonal spline waveleta were constructed by Charles Chui and Jian-
zhong Wang in (23, 24, 25). The scaling functions are cardinal B-splines of order
m and the wavelet functions are splines with support (0,2m - 1]. All primary and
dual functions still have generalized linear phase and all coefficients used in the fast
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‘TaBLE 1
A guick comparison of wavelet families.
wavelet pact support | analytic ex i symmetry | orthogonality t
family | primary | dual rimar dual semi | full | support
a x x o [ o x x °
b x x x o x o o o
€ x o x X x x o °
d o ° o ° x x X
e o o x x x x x o
st Daobechies orth I lai
b:  blorthogonal spline wavelets
c:  semiorthogonal spline wavelets
d: Meyer wavelet
a:  orthogonal spline wavelets

wavelet transform are rationals. A powerful feature here is that analytic expressions
for the wavelet, scaling function, and dual functions are available. A disadvantage

is that the dual functions do not have compact support, but have exponential decay”

instead. The same wavelets, but in a different setting, were also derived by Akram
Aldroubi, Murray Eden and Michael Unser in {129, 131). They also showed that for
N going to infinity, the apline wavelets converge to Gabor functions [130].

(iii) Other semiorthogonal wavelets can be found in [89, 109, 110, 113]. A char-
acterization of all semiorthogonal wavelets is given in [1, 2].

The properties of some of the orthogonal, bierthogonal and semiorthogonal wave-
let families are summarized in Table 1.

Ezamples of interpolating scaling functions.
(i) The Shannon sampling function
sin(7rz)

'Shannon =
Pshann e

is an interpolating scaling function. It is band limited, but it has very slow decay.
(ii) An interpolating scaling function, whose translates also generate Vp, can be
found by letting
= #lw)
v;'nm-pn:(ld] o L
T ole™
[

provided that the denominator does not vanish [1, 2, 129, 138]. Even if ¢ is compactly.

supported, Pinterpat is in general not compactly supported. The cardinal spline inter-
polants of even order are constructed this way [118].

(iii) An interpolating scaling function can also be constructed from a pair of
biorthogonal scaling functions as

‘Pinfnrpﬁt(z) = f+°° e(y + ) Wdy‘

The interpolation property immediately follows from the biorthogonality condition.
In the case of an orthogonal scaling function this is just its autocorrelation func-

tion. The interpolating function and its translates do not generate the same space
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as p and its translates. This construction, starting from the Daubechies orthogonal
or biorthogonal wavelets, yields a family of interpolating functions which had been
studied eaclier by Gilles Deslauriers and Serge Dubuc in [56, 57), These functions are
smooth and compactly supported. More information can also be found in [61, 17. A
natural choice for the wavelet here is ¥(z) = (2z — 1) and this is a typical example of
a wavelet with a non-vanishing integral. The dual scaling function is a Dirac impulse
and the dual wavelet is a linear combination of Dirac impulses (and has several van-
ishing moments). We still have a fast wavelet transform with finite impulse response
filters. .

(iv) Also wavelets can be interpolating, In [2] wavelets that are both symmetrical
and interpolating were constructed.

11. Wavelets on an interval. So far we have been discussing wavelet theory
on the real line (and ite higher dimensional analogs). For many applications, the
functions involved are only defined on a compact set, such as an interval or a square,
and to apply wavelets then requires some modifications.

11,1, Simple solutions. To be specific, let us discuss the case of the unit inter-
val [0,1]. Given a function f on [0,1], the most obvious approach is to set f(z) =0
outside [0, 1], and then use wavelet theory on the line. However, for a general func-
tion f this “padding with 0s” introduces discontinuities at the endpoints 0 and 1;
consider for example the simple function f(z) = 1, z € [0,1]. Now, as we have said
earlier, wavelets are effective for detecting singularities, so artificial ones are likely to
introduce significant errors.

Another approach, which is often better, is to consider the function to be periodic
with period 1, f(z + 1) = f(z). Expressed in another way, we assume that the
function is deflned on the torus and identify the torus with [0,1). Wavelet theory
on the torus parallels that on the line. In fact, note that if f has period 1, then
the wavelet coefficients on a given scale satisfy (f,¥jx) = (fi¥jhsai), k € Z,
7 2 0. This simple observation readily allows us to rewrite wavelet expansions on
the line as analogous ones on the torus, with wavelets defined on [0,1]. A periodic
multiresolution analysis on the interval [0,1] can be constructed by periodizing the
basis functions as follows,

(38) 95i(2) = xpa)(z) Y wislz +m) for 0<I<2 and j20.

If the support of ;)(z), is a subset of [0,1], then ¢} (z) = p;;(z). Otherwise
@;1(z) ia chopped into pieces of length 1, which are shifted onto [0,1] and added
up, yielding vp}l‘(z). Similar definitions hold for ¥ ﬁ‘; 1 and "{‘;’?‘,. The algorithm
in the appendix describes the periodic fast wavelet transform. This “wrap around”
procedure is satisfactory in many situations (and certainly takes care of functions like
f(z) =1, z € [0,1]). However, unless the behavior of the function f at 0 matches
that at 1, the periodic version of f has singularities there. A simple function like
f(z) ==, z € [0,1], gives a good illustration of this.

A third method, which works if the basis functions are symmetric, is to use
reflection across the edges. This preserves continuity, but introduces discontinuities
in the first derivative. This solution is sometimes satisfactory in image processing
applications. .

11.2, Meyer’s boundary wavelets. What really is needed, are wavelets in-
trinsically defined on [0, 1]. We sketch a conatruction of orthogonal wavelets on [0, 1],
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recently presented by Yves Meyer (107). We start from an orthogonal Daubechies
scaling function with 2V non-zero coefficients:

’ IN-1
(39) p(z)=2 Y hip(2z — k).
. =0
It is easy to see that clos{z : p(z) # 0} = [0,2N ~ 1], and, as & consequence,
(40) Bjy = clos{z: pju(z) # 0} = 277k, 277(k + 2N - 1)].

This implies that for sufficiently small scales 277, j > jy, a function p;; can only
intersect at most one of the endpoints 0 or 1. Let us restate this in a different way.
Define the set of indices

S;=1{k:B;un(0,1) #0}.

We define three subsets of this set containing the indices of the basis functions at the

left boundary, in the interior, and at the right boundary:
5 = {k:0€ B}
59 = {k: B3, C (0,1)}
89 = {k:1€B,).
Here E° denotes the interior of the set E. For sufficiently large j the sets Sg” and
5 are disjoint and
= gll) 2) (3)
8;=8PusPusd.
It is easy to write down what these sets are more explicitly:
SP = {k:-2N+2< kg -1}
SP ={k:0gkgP —2N+1}
8P mfk:2i-2N42gkg2 ~1).
Note, in particular, that the sets 5 and S?l contain the indices of 2V — 2 functions,
independently of j. We now let V;o'q denote the restriction of functions in Vj:
Vf-"“l ={f: f(z) = g(z), z € [0, 1], for some function g € V;}.
Clearly, since the V; form an increasing sequence of spaces,
o, 0,
ij 1] c Vj|+:|1]v

and VY, j > jo, form a multiresolution analysis of L([0,1]). It is also obvious
that the functions in {@(z = )|,y : ! € S;} span V_fm’u. Here g(z) [jp,1) denotes
the restriction of g(z) to [0, 1]. Not quite as obvious is the fact that the functions in
this collection are linearly independent, and hence form a basis for ‘l"}n'li. In order
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to obtain an orthonormal basis, we may argue as follows. As long as the function
;¢ lives entirely inside [0, 1], restricting it to [0,1] has no effect. In particular, the
functions p;x, k € 3?] are still pairwise orthogonal. A key observation now is that

for ke SV, 1€ s u s,
1 +o0
@) Pinian = [ pia()esi(a)ds= [ pia(e) piula)dz =0,
0 -0

and similarly when & € Sg”. le ngi u Sg”. We see that the three collections
{o(z = Dloay 1 € 57}, {p(e = o : 1 € 5}, and {p(z ~ o, : 1 € 5"} are
mutually orthogonal. So, since the functions in {p(z —1)|jgq): [ € S}z)} already form
an orthonormal set, there only remains to separately orthogonalize the functions in
{e(z=Dlpy:1 € 59} and in {p(z-1) Ny il € .S'( )} This is easily accomplished

with a Gn.m-Schmet procedure.

Now, if we let W,[" " denote the restriction of functions in W, to [0,1]; then we.
have that
(42) ' Vi = yloal 4 ol

So, the basis elements in V™' (0] together with the restriction of the wavelets v;, to
{0,1] span V{o 1), However, there are 2/ + 2N — 2 wavelets that intersect [0, 1), and,
since diml{, — dim V! = 29 we have too many functions, The restrictions of
the wavelets in W; that ']we entirely inside [0, 1] are still mutually orthogonal and, by
an observation similar to (41), they are also orthogonal to VJ-["'u. There are 2N — 2
wavelets whose support intersects an endpoint. However, we only need N — 1 basia
functions at each endpoint, One can now use (30) to write out the dependencies,
and construct N — 1 basis functions at each endpoint, After that we just apply a
Gram-Schmidt procedure again, and we have an orthonormal basis for W, o],

This elegant construction of Yves Meyer has a couple of disadvantages. Among
the functions ;4 that intersect [0, 1] there are some that are almost zero there. Hence,
the set {¢;4}xes, is almost linearly dependent, and, as a e, the condition
number of the matrix, corresponding to the change of basis from {@jx}ees, to the
orthonormal one, becomes quite large. Furthermore, we have dim V["'” # dim WP 1

which means that there is an inherent imbalance between the spaces V[""'I and Wfa ll
which is not present in the case of the whole real line.

11.3. Dyadic boundary wavelets. As we noted eaclier (33) all polynomials of
degree € IV — 1 can be written as linear combinations of the @;, for | € Z. Hence,
the restriction of such polynomials to [0, 1] are in V'" "), Since this fact is directly
linked to many of the appraximation properties of wn.veletn, any construction of a
multiresolution analysis on [0, 1] should preserve this. The construction in [5, 32, 33|
uses this as a starting point and is slightly different from the one by Yves Meyer.
Let us briefly describe this construction as well. Again we start with an orthogonal
Daubechies scaling function ¢ with 2/ non-zero coefficients, and assume that we have
picked the scale fine enough so that the endpoints are independent as before. By (33)
and, since the {i;,x} is an orthonormal basis for V;, each monomial 2%, & N - 1,
has the representation 2 = ¥, (2%,p0;% ) pj(z). The restriction to [0,1] can then
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be written

. ] 2N 2i-1
z"hn.u=( Y+ + X )(zﬂ:iﬁ.t>'ﬂi.ktz)](ﬂ.1]'

k=—1N+42 k=1 k=2{-2N+1

If we let

[]
28y = 20 Y (2% 0 ) pia(@)y
k==21N+2

and, similarly,
-1
Zfp = 2R N (20,0 ) pia(@) oy
k=24-2N41

then

bt 0l
2@y = 23, + P T (2054 pia@ oy + 25
k=1

We let the spaces ¥, j > o, that form a multiresolution analysis of L?([0, 1], be the
linear span of the functions {3, }agn-1, {23 rlagn-1, 8nd {@j il el

V= (i tagh—1 U {pinhic™ U {zfatacn-1
Finding an orthonormal basis for V; is easy; in fact, the collections {2, }agn-1,
{W.In]::‘:-xm- and {27 z}agn-1 are mutually orthogonal, and all of the functions in
these are linearly independent. We thus only have to orthogonalize the functions =5,
and 2% to get our orthonormal basis, Note that, by construction, dim V; = 2/ and
all polynomials of degree < N = 1 are in ;. It is also easy to see that

¥ € Vi

To get to the corresponding wavelets we let W; be the orthogonal complement of
V; in Vj41. The wavelets v with 1 < k € 2/ — 2N are all in Vj4; and live entirely
inside [0,1). The remaining 2N functions required for an orthonormal basis of W},
can be found, for example by using (30) again.

This last construction catries over to more general situations. For example, we can
also use biorthogonal wavelets and much more general closed sets thaa [0, 1] 5, 33, 87].

There are also other constructions of wavelets on [0,1]. In fact, for historical
perspective it is interesting to notice that Franklin’s original construction’[70] was
given for [0, 1]. Another interesting one, in the case of semiorthogonal spline wavelets,
has been given by Charles Chui and Ewald Quak [19]; we refer to the original paper
for details,

12. Wavelet packets, A simple, but most powerful extension of wavelets and
multiresolution analysis are wavelet packets (37, 38]. In this section it will be useful
to switch to the following notation:

me(w) = H*(w)G**(w) for e=0,1.
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Fia. 4. Wavelet packets scheme.

The fundamental observation is the following fact, called the splitting trick [22, 30,
106):

Suppose that the set of functions {f(z — k) | k € Z} is o Riesz basis for -its closed
linear span §. Then the functions

ek . Loty
R= 75;*"(:/2 k) and jf} ﬁf (z/2~k) for keZ,
also consiitule o Riesz basis for S, where

F*(w) = ma(w/2) flw/2).

We see that the classical multiresolution analysis is obtained by splitting V; with
this trick into Vj-; and W;_, and then doing the same for V;_, recursively. The
wavelet packets are the basis functions that we obtain if we also use the splitting trick
on the W; spaces. So starting from a space V}, we obtain, after applying the splitting
trick L times, the basis functions

ﬂ.",‘..‘...,;j.i(-"-‘) o 2“-&”3""{‘.....;; {2"—1'” = k)!

with

L
gf‘.."__"_(h'} = Hm,,(z""u) 5{2_ h‘).

i=1

So, after L splittings, we have 95 basis functions and their translates over integer
multiples of 2X-7 as a basis of V. The connection between the wavelet packets and
the wavelet and scaling functions is

p= ‘bf___,n and ¢ = \bf',o,...,n-

However, we do not necessarily have to split each subspace at every stage. In
Figure 4 we give a schematical representation of a space and its subspaces after using
the splitting on 3 levels. The top rectangle represents the space V3 and each other
rectangle corresponds to a certain subapace of Vy generated by wavelet packets. The
slanted lines between the rectangles indicate the splitting, the left referring to the
filter mg and the right to m;. The dashed rectangles then correspond to the L

-
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multiresolution analysis V3 = V; & Wo & Wy ® W3. The bold rectangles correspond to
a possible wavelet packet splitting and a basis with functions

{vildz - k), via(2z = k), w3 o0(z — k) ¥ioa(z —k) | K€ Z}.

For the dual functions, a similar procedure has to be followed.

In the Fourier domain, the splitting trick corresponds to dividing the frequency
intervel essentially represented by the original space into two parts. So the wavelet
packets allow more flexibility in adapting the basis to the frequency contents of a
signal.

It is easy to develop a fast wavelet packet transform. It just involves a.pplymg
the same low and band pass filters also to the coefficient of functions of W; again
in an iterative manner. This means that, starting from M samples, we construct a
full binary tree with (M log; M) entries, The power of this construction lies in the
fact that we have much more freedom in deciding which basis functions we will use
to represent the given function. We can choose to use the set of M coefficients of the
tree to represent the function that is optimal with respect to a certain criterion, Thia
procedure is called best basia selection, and one can design fast algorithms that make
use of the tree structure. The particular criterion is determined by the application,
and which basis functions that will end up in the basis depends on the data.

For applications in image processing, entropy-based eritéria were proposed in
[40]. The best basis selection in that case has a numerical complexity of O(M).
Applications in signal processing can be found in 36, 139].

This wavelet packets construction can also be combined with wavelets on an
interval and wavelets in higher dimensions (55},

13, Multidimensional wavelets. Up till now we have focused on functions of
one variable and the one-dimensional situation, However, there are also wavelets in
higher dimensions. A simple way to obtain these is to use tensor products. To fix
ideas, let us conaider the case of the plane, Let

B(z,y) = p(z) p(y) = p @ p(z,¥),

and define

Vo= {1:1(@0)= 3 ey Bz = b1,y = ka), A €8(Z)}.
ky ks

Of course, if {¢(z =) | 1 € Z} is an orthonormal set, then {&(z — ki,y — k2)} form
an orthonormal basis for V. By dyadic sca!mg we obtain a multiresolution analysis
of L*(R3). The complement Wy of V; in V; is similarly generated by the translates
of the three functions

(43) W =pey, ¥W=yop and ¥ =yay.

There is another, perhaps even more straightforward, wavelet decomposition in
higher dimensions. By carrying out a one-dimensional wavelet decomposition for each
variable separately, we obtain

(44) flz,y) = Z Z{!,WJ @ Wik ) Pia @ Yik(z,v)-
o gk
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Note that the functions ¥ ® ¢, involve two scales, 2-% and 277, and each of
these functions are (enautml.ly) lupportud on a rectangle. The decompozition (44) is
therefore called the rectang I position of f while the functions in (43)
are the basis functions of the square wavelet decomposition. For both decompositions,
the corresponding fast wavelet transform consists of applying the one-dimensional fast
wavelet transform to the rows and columns of a matrix.

These simple constructions are insufficient in many cases. What we need some-
times are wavelets intrinsically constructed for higher dimensions. One of the inter-
esting problems here is how to split a space into complementary subspaces. In the
univariate case we split into two spaces, each with essentially the same “size.” If we
use the square tensor product basis in d dimensions, we split into 2¢ subspaces, 29~ 1
of which are spanned by wavelets. There are several constructions of nonseparable
wavelets that use this kind of splitting. One of the problems here is, given the scal-
ing function, is there an easy way, cf. (19), to find the wavelets? This was studied
in [64, 113, 121). Another idea is to still try to split into just two subspaces. This
involves the use of different lattices [99]. In the bivariate case, Ingrid Daubechies

and Albert Cohen constructed smooth, compactly supported, biorthogonal wavelets,:

using ideas from the univariate construction [29].

By now, there is a lot of material about multivariate wavelets. However, we ghall
leave this topic for now and just mention some other possibilities such as hexagonal
lattices, and Clifford valued wavelets [6, 9, 34].

14. Applications.

14,1, Data compression. One of the most common applications of wavelet
theory is data compression, There are two basic kinds of compression schemes: lossless
and lossy. In the case of lossless compression one is interested in reconstructing the
data exactly, without any loss of information, We consider here lossy compression.
This means we are ready to accept an error, as long as the quality after compression is
acceptable. With lossy compression schemes we potentially can achieve much higher
compression ratios than with lossless compression.

To be specific, let us assume that we are given a digitized image. The compression
ratio is defined as the number of bits the initial image takes to store on the computer
divided by the number of bits required to store the compressed image. The interest
in compression in general has grown as the amount of information we pass around
has increased. This is easy to understand when we consider the fact that to store a
moderately large image, say a 512 x 512 pixels, 24 bit color image, takes about 0.75
MBytes. This is only for still images; in the case of video, the situation becomes even
worse. Then, we need this kind of storage for each frame, and we have something
like 30 frames per second. There are several reasons other than just the storage
requirement for the interest in compression techniques. However, instead of going
into this, let us now look at the connection with wavelet theory.

First, let us define, somewhat mathematically, what we mean by an image, Let
us for simplicity discuss an L x L grayscale image with 256 grayscales (i.e. 8 bit). This
can be considered to be a piecewise constant function f defined on a square

flz,y)=pi; €N, for iz<i+] and j<y<j+1 and 0<i,j<L,

where 0 € p;; € 255. Now, one of the standard procedures for lossy compression is
through transform coding, see Figure 5. The most common transform used in this
context is the “Discrete Cosine Transform”, which uses a Fourier transform of the
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original forward coding M inverse reconstructed
image transform coefficients transform image

Fia, 5. Image transform coding.

image f. However, we are more interested in the case when the transform is the fast
wavelet transform.

There are in fact several ways to use the wavelet transform for compression pur-
poses [101, 102]. One way is to consider compression to be an approximation problem
(58, 59]. More specifically, let us fix an orthogonal wavelet 1. Given an integer M > 1,
we try to find the “best” approximation of f by using a representation

(45) fu(z) =Y b ¥su(z) with M non-zero coefficients bj.
ki

The basic reason why this potentially might be useful is that each wavelet picks up
information about the image f essentially at a given location and at a given scale.
Where the image has more interesting features, we can spend more coefficients, and
where the image is nice and smooth we can use fewer and still get good quality of
approximation. In other words, the wavelet transform allows us to focus on the most
relevant parts of f. Now, to give this mathematical meaning we need to agree on an
error measure, [deally, for image compression we should use a norm that corresponds
as closely as possible to the human eye [58]. However, let us make it simple and
discuss the case of L2.

So we are interested in finding an optimal approximation minimizing the error
[|f = fal|L2. Because of the orthogonality of the wavelets this equals

1/2
(46) (21 (£i%3) —bf.l’) .
jk

A moment’s thought, reveals that the best way to pick M non-zero coefficients b,
making the error as small as possible, is by simply picking the M coefficients with
largest absolute value, and setting b‘.;,\ = (/,¥jx) for these numbers. This then
yields the optimal approximation fyf .

Another fundamental question is which images can be approximated well by using
the procedure just sketched. Let us take this to mean that the error satisfies

(47) - I = 13"l = O(M™P),

for some f > 0. The larger 3, the faster the error decays as M increases and the fewer
coefficients are generally needed to obtain an approximation within a given error. The
exponent fI can be found easily, in fact it can be shown that

i»
(48) (Z [M"Hf"ffc"ﬂv)’%) s (%F (£on) )P

M1

with 1/p = 1/2+ f. The maximal § for which (47) is valid can be estimated by
finding the smallest p for which the right-hand side of (48) is finite. The expression
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on the right is one of many equivalent norms on the Besov space .9;3-’ (Besov spaces
are smoothness spaces generalizing the Lipschitz continuous functions). The f in
the left-hand side of (48) is actually not exactly the same as in (47). However, for
' practical purposes, the difference is of no consequence.

14.2. Operator analysis, As mentioned earlier, interest in wavelets histori-
cally grew from the fact that they are effective tools for studying problems in partial
differential equations and operator theory. More specifically, they are useful for un-
derstanding properties of so-called Calderdn-Zygmund operators.

Let us first make a general observation about the representation of a linear oper-
ator T' and wavelets. Suppaose that f has the representation

1) =Y (1) vile).
jk

Then,

Tf(z) =3 (fi¥ie) T¥sn(z),
ik

and, using the wavelet representation of the function Ty;4(z), this equals

Yo (£¥a) 3 (Toinda)bulz) =Y (E (Thjuva) (£, ab,.)) ba(z).
ik il

i\ gk

In other words, the action of the operator T on the function f is directly trans-
lated into the action of the infinite matrix Ap = { (T4;x,¥u) }ujx on the sequence
{ {f,%jx ) }jx- This representation of T as the matrix Ay is often referred to as the
“standard representation” of T' (17]. There is also a “nonstandard representation”.
For virtually all linear operators there is a function (or, more generally, a distribution)
K such that

Tf(z) = [ Kes) ).

The nonstandard sepresentation of T' is now simply the (two-dimensional) wavelet
coefficients of the kernel K, using the square decomposition { (K,‘}g"]',, )1} (again,
we have more than one wavelet function in two dimensions), while the standard rep-
resentation corresponds to the rectangular decomposition.

Let us then briefly discuss the connection with Calderén-Zygmund operators.
Consider a typical example, Let H be the Hilbert transform,

Hf(z) = éf’ ;fL_%da.

The basic idea now is that the wavelets y;, are approximate eigenfunctions for this,
a5 well as for many other related (Calderén-Zygmund) operators, We note that if
¥jx were exact eigenfunctions, then we would have Hju(z) = Ajutje(z), for some
number Ajy and the standard representation would be a diagonal “matrix”:

Ag = { (Hva, ¥ ) } = {(Za (i ¥ie ) } = Qadage )
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This is unfortunately not the case. However, it turns out that Ay is in fact an almost
diagonal operator, in the appropriate, technical sense, with the off diagonal elements
quickly becoming small. To get some idea why this is the case, note that for large |z],
we have, at least heuristically,

B¥() ~ = [

A priori, the decay of the right-hand side would thus be O(1/z), which of course is
far from the rapid decay of a wavelet ;) (remember that some wavelets are even zero
outside a finite set). Recall, however, that ¢ has at least one vanishing moment so
the decay is in fact much faster than just O(1/z), and the shape of Hj4(z) resembles
that of ¥;x(z). By expanding the kernel as a Taylor series,

2
L =l(1+1+'—, )
z-3 z z z
we see that the more vanishing moments 9 has, the faster the decay of Hv; .

So, for a large class of operators, the matrix representation, either the standard
or the nonstandard, has a rather precise structure with many small elements, In this
representation, we then expect to be able to compress the operator by simply omitting
small elements. In fact, note that this is essentially the same situation, as in the case
of image compression, the “image” now being the kernel K(z,y). Hence, if we could
do basic operations, such as inversion and multiplication, with compressed matrices,
rather than with the discretized versions of T, then we may significantly speed up
the numerical treatment. This program of using the wavelet representations for the
efficient numerical treatment of operators was initiated in [17]. We also refer to [4, 3]
for related material and many more details,

In a different direction, because of the close similarities between the scaling func-
tion and finite elements, it seems natural to try wavelets where traditionally finite
element methods are used, e.g. for solving boundary value problems [84]. There are
interesting results showing that this might be fruitful; for example, it has been shown
(17, 46, 111, 140] that for many problems the condition number of the N' x N stiffness
matrix remains bounded as the dimension IV goes to infinity. This is in contrast with
the situation for regular finite el ts where the condition ber in general tends
to infinity.

One of the first problems we have to address when discussing boundary problems
on domains, is how to take care of the boundary values and the fact that the problem
is defined on a finite set rather than on the entire Euclidean plane. This is similar to
the problem we discussed with wavelets on an interval, and, indeed, the techniques
discussed there can be often used to handle these two problems [5, 8].

Waveleta have also been used in the solution of evolution equations [11, 76, 93, 98).
A typical test problem here i Burgers’ equation:

ou Ju _ Bu

Fr +u e v E
The time discretization is obtained here using standard schemes such as Crank-
Nicholson or Adams-Moulton. Wavelets are used in the space discretization. Adap-
tivity can be used both in time and space [11].

One of the nice features of wavelets and finite elements is that they allow us
to treat a large class of operators or partial differential equations in a unified way,

N

Page 373 of 437



AN OVERVIEW OF WAVELET BASED MULTIRESOLUTION ANALYSES 33

allowing for example general PDE solvers to be designed. In specific instances, though,
it is possible to find particular wavelets, adapted to the operator or problem at hand
[10, 44, 45, 88]. In [16], Gregory Beylkin develops fast wavelet-based algorithms for
the solution of differential equations,

Note: Applications in statistics such as the smoothing of data were investigated by
David Donoho and lain Johnstone in (62, 63, 64, 65].
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Appendix: The periodic fast wavelet transform algorithm. We will give
here a pseudo code implementation of the periodic fast wavelet transform. We assume
that len hp coefficients hy are non-zero, starting with the one with index k = min_hp.
Similar assumptions hold for the gy, Ay, and Gk with lengths len_gp, len_hd and len.gd,
and starting indices min_gp, min.hd and min.gd respectively, These coefficients are
stored in 4 vectors such that

hplk) = @ hictmin-npy grlk] = @ getminagp

hd[k] = b hpiminnd, and gd[k] = b Gkt min_gds
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where ab = 2. We start with 2" coefficients A,'..g of a function of V,, and can thus
apply n steps of the algorithm. These coefficients are initially stored in a vector v.
The computed wavelet coefficients are stared in a vector w such that

w=[30.n Too 7o M1 M0 e N8 e Tn=l0 eon Tn-m--'-l]-

The algorithms are written in such a way to reduce operations in the inner loops.
They are however not highly optimized not to affect readability too much. The index
notation o (b) ¢ stands for @, a + b, ..., ¢ and the operator foor(a) rounds a to the
nearest integer towards minus infinity.

for je=n=1(=1)0
wl0(1) 2+ —1] 0
for 1—0(1)2 -1
i — (2% ! + min_hd) mod 27!
for k 0 (1)lenhd
wll] « wll]+ hd[k) » v[i]
i «— (i+1)mod2™
end for
i+ (2% + min_gd) mod 2/+!
Is v 1427
for k+— 0(L)lengd
wlls] ~ w(la] + gd[k] * v[i]
i ~ (i+1)mod2*!
end for
end for

v e=w(0(1)2 = 1]
end for

Page 379 of 437



.

. ‘AN OVERVIEW OF WAVELET BASED MULTIRESOLUTION ANALYSES

for je1(L)n
2[0(1)29 - 1] 0
for ke0(1)2 =1
i (foor((k — min_hp)/2)) mod 2/-1
Ib +— (k = min_hp) mod 2
for [« Ib(2)len.hp
o) = ofk]+ hpll) = wfi
i ~ (i=1)mod2!
end for
i — (floor((k — min.gp)/2)) mod 2/
1b «~ (k = min_gp) mod 2
for | —1b(2)lengp '
ulk] ~  vlk]+ gpll] * wli + 21
i ~ (i—1)mod2’~!
end for
end for

w0(1)2 =1)=1v
end for
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ABSTRACT

In this paper we present the basic idea behind the lifting scheme, a new construction of biorthogonal wavelets
which does not use the Fourier transform. In contrast with earlier papers we introduce lifting purely from a
wavelet transform point of view and only consider the wavelet basis functions in a later stage. We show how
lifting leads to a faster, fully in-place impl tation of the let transform. Moreover, it can be used in
the construction of second generation wavelets, wavelets that are not necessarily translates and dilates of one
function. A typical example of the latter are wavelets on the sphere.

Keywords: wavelet, biorthogonal; in-place calculation, lifting

1 Introduction

At the present day it has become virtually impassible to give the definition of a “wavelet”, The research field
is growing so fast and novel contributions are made at such a rate that even if one manages to give a definition
today, it might be obsolete tomorrow. One, very vague, way of thinking about wavelets could be:

"Wavelet are bullding blocks that can quickly decorrelate data.”

This sentence at least incorporates three of the main features of wavelets. First of all, they are building blocks
for general data sets or functions. Mathematically we say that they form a basis or, more general a frame. This
means that each element of a general class can be written in a stable way as a linear combination of the wavelets.
If we denote the wavelets by 9; and the coefficients by +;, we can write a general function f as

/= Z'Tllwl"

Secondly, wavelets have the power to decorrelate. This that the repr tion of the data in terms of
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the wavelelr: coefficients v; is somehow more “compact” then the original representation. In information-theoretic
jargon, we say that the entropy in the wavelet representation is smaller then in the original representation. In
approximation-theoretic jargon, we want to get an accurate approximation of f by only using a small fraction of
the wavelet coefficients. )

The way to get this decorrelation power is to construct wavelets which already in some way resemble the data
we want to represent. More specifically, we would like the wavelets to have the same correlation structure as the
data. For example, most signals we encounter in daily life have both correlation in space and frequency. Samples
which are spatically close are much more correlated then ones that are far apart, and frequencies often occur in
bands. To analyze and represent such signals we need wavelets that are local in space and frequency. Typically
this is achieved by building wavelets which have compact support (localization in space), which are smooth (decay
towards high frequencies), and which have vanishing moments (decay towards low frequencies).

Finally, we want to quickly find the wavelet representation of the data. More precisely, we want to switch
between the original representation of the data and its wavelet representation in a time proportional to the size
of the data. The fast decorrelation power of wavelets is the key to applications such as data compression, fast
data transmission, noise cancellation, signal recovering, and fast numerical algorithms.

The purpose of this paper is to introduce the lifting scheme, a new tool in the construction of biorthogonal
wavelets, The main difference with classic constructionssuch as!™ is that it does not employ the Fourier transform.
“Until recently, the Fourier transform has been instrumental in wavelet constructions. The underlying reason is
that wavelets are traditionally defined as translates and dilates of one funetion, and translation and dilation
become algebraic operations after Fourier transform. The wavelet construction then relies on certain polynomial
factorizations. We refer to wavelets which are translates and dilates of one function as first generation wavelets.
- In the case of first generation wavelets, the lifting scheme will never come up with wavelets which somehow could
not be found by the techniques developed by Cohen, Daubechies, and Feauveau in.? Nevertheless, using lifting
to (re)construct these wavelets has the following advantages:

1. It allows & faster implementation of the wavelet transform. Traditionally, the fast wavelet transform is
calculated with a two-band subband transform scheme. In each step the signal is split into a high pass and
low pass band and then subsampled. Recursion occurs on the low pass band. The lifting scheme makes
optimal use of similarities between the high and low pass filters to speed up the caleulation. In some cases
the number of operations can be reduced by a factor of two.

2. The lifting scheme allows a fully in-place calculation of the wavelet transform. In other words, no auxiliary
memory is needed and the original signal (image) can be replaced with its wavelet transform.

3. In the classical case, it is not immediately clear that the inverse wavelet transform actually is the inverse of
the forward transform. Only with the Fourier transform one can convince oneself of the perfect reconstruc-
tion property. With the lifting scheme, the inverse wavelet transform can immediately be found by undoing
the operations of the forward transform. In practise, this comes down to simply reversing the order of the
operations and changing each + into a — and vice versa.

4. The lifting scheme is a very natural way to introduce wavelets in a classroom. Indeed, since it does not

" rely on the Fourier transform, the properties of the wavelets and the wavelet transform do not appear as
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somehow “magical” to students who do not have a strong background in Fourier analysis.

Since lifting does not rely on the Fourier transform, it can be used to construction wavelets in settings where
translation and dilation, and thus the Fourier transform, cannot be used. We refer to such wavelet as second
generation wavelets. Typical examples are:

1. Wavelets on boundéed domains: The construction of wavelets on domains in & Euclidean space is needed
in applications such as image segmentation and the numerical solution of partial differential equations. A
special case is the construction of wavelets on an interval, which is needed to transform finite lmgth signals
without introducing artifacts at the boundaries.

2. Wavelets on curves and surfaces: To analyze data that live on curves or surfaces or to solve equations on

curves or surfaces, one needs wavelets intrinsically defined on these manifolds, independent of parametrma.—
tion,

3. Weighted lets: Diagonalization of differential operators and weighted ap;;roximal:ion require a basis
adapted to weighted measures, Wavelets biorthogonal with respect to a weighted inner product are needed.

4, Wavelets and irregular sampling: Many real life problems require basis functions and transforms adapted )
to irregularly sampled data. '

It is obvious that wavelets adapted to these setting cannot be formed by translation and dilation. The Fourier
transform can thus no longer be used as a construction tool. The lifting scheme provides an alternative.

There are two ways to introduce lifting. The first one is concerned with the basis functions, i.e. the scaling
functions, dual scaling functions, wavelets, and dual wavelets, and how lifting affects them. This approach was
taken in the original papers.®!? In this paper, however, we follow a different approach, namely we first discuss
how lifting affects the wavelet transform. We have found this to be a much more natural way to introduce lifting.
In a later section, we will briefly mention what happens to the basis functions. Of course, theoretically both .
approaches are equivalent. In fact one can be seen as adjoint to the other. -

2 The basic idea behind lifting

A canonical case of lifting consists of three stages, which we refer to as: split, predict, and update. We here
describe the basic idea behind each and later work out a concrete example. Assume we start with an abstract
data set, which we refer to as Ay. We know this data set has some correlation structure and we would like to
exploit it to obtain a more compact representation.

In the first stage we split the data into two smaller subsets A_) and 7-,. (We use negative indices here because
the convention is that the smaller the data set, the smaller the index.) We refer to y_; as the wavelet subset. We
do not impose any no restriction on how the data should be split, nor on the relative size of each of the subsets.
‘The only thing we need is some procedure to join A_; and ~-r back into the original data set Ag. The easiest
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- possibility for the split is a simply brutal cut of the data set into two disjoint parts. This choice we refer to as
the Lazy let, Think for ple of cutting an image into two parts with a pair of scissors.

. As we said before, we would like to get a more compact representation of Ag. Consider the case were v,
does not contain any information (e.g. that part of the image is entirely black). Then we would immediately have
a more compact representation since we can ‘simply replace Ag with the smaller set A_;. [ndeed the extra part
needed to reassemble Ay does not contain any information.

Obviously this situation hardly ever occurs in practise. Therefore, in a second stage, we try to use the Ay
subset to predict the v~ subset based on the correlation present in the original data. If we can find a prediction
operator P, independent of the data, so that

V-1 = P(A—l)s

then again we can replace the original data set with Ay, since now we can predict the part missing to reassemble
Ag. The construction of & prediction operator is typically based on some model of the data which reflects its
correlation structure. Obviusly the prediction operator P cannot be dependent on the data, otherwise we would
hide information in P. ‘ "

Again, in practise it might not be possibly to exactly predict -, based on A_;. However, P(A_,) is likely
to be close to 4-;. Thus we might want to replace y-; with the difference between itself and its predicted value
P(A-1). If the prediction is reasonable, this difference will contain much less information then the original y_;
set. We denote this abstract difference operator with a — sign and thus get )

Y-1 1= 1= PA-1).
. The wavelet subset now encodes how much the data deviates from the model on which P was built.

We now have some more insight in how to split the original data set. Indeed, in order to get the maximal data
reduction from prediction, we need the subsets A., and ~-, to be maximally correlated. Cutting an image into
a left and right part might not be the best idea since pixels on the far left and the far right are hardly correlated.
Predicting the right half of the image based on the left is thus a though job. A better idea is to interlace the two
sets. We will come back to this later.

At this moment we can replace the original data with the smaller set A_; and the wavelet set y_;. With a
good prediction, the two subsets {A_;, 71} yield a more compact representation then the orginal set Agp. We can
now iterate this scheme. We split A_, into two subsets A_; and v_p and then replace y_; with the difference
between v and P(A.z). After n steps we have replaced the original data with the wavelet representation
{A=ni¥=ny'*+,7-1}. Given that the wavelet sets encode the difference with some predicted value based on a

- correlation model, this is likely to give a more compact representation.

This scheme sounds promising, but in some cases we are not completely satisfied. The reason is that we often
want some global properties of the original data set to be maintained in the smaller versions A_;. For example,
in the case of an image, we would like the smaller images A_; to have the same overall brightness, i.e. the same
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Figure 1: The lifting scheme: split, predict, and update.

average pixel value. If the splitting stage is simply subsampling and we iterate the scheme till A_, is only 1
pixel, that pixel will be an arbitrary pixel from the original image. We would rather have the last value to be
the average of all the pixel values in the original image, In fact, we are facing a worst case example of a problem
known as aliasing.

We can solve part of this problem by introducing a third stage. The idea is to find a better A_; so‘that a
certain sealar quantity (), like e.g. the mean, is preserved, or

QA1) = Qo).

We could do so by finding a new operator to extract A~ directly from Ao, but we decide not to for two reasons.
First, this would create a scheme which is very hard to invert. Secondly, we would like to reuse the work already
done maximally. Therefore we propose to use the already computed wavelet set.y_; to update A_, so that the
latter preserves Q(). In other words, we construct an operator i{ and update A_; as

Ao = Aoy +U(y-).

The three stages of lifting are depicted in a block diagram in Figure 1, Again we can now iterate the scheme.
This leads to the following wavelet transform algorithm (with a C-like syntax):

Pyl = split(di)
For j = -1 downto -n: v == P(A;)
A 4= Uy
We can now illustrate one of the nice properties of lifting: once we have the forward transform, we can immediately
derive the inverse, The only thing to do is to reverse the operations and toggle + and —. This leads to the following
algorithm for the inverse wavelet transform:

Aj —= Uly)
For j = =n to -1: v 4= P(\)
Ajpr = Join(dj, 7).
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3 A simple example

In this section we consider a simple example to illustrate the ideas of the previous section. Suppose we sample
a signal f(t) with sampling distance At = 1. We denote the original samples by Ay = {Ao,e = f(k) | k € Z}.

We first need to define the split stage. As mentioned in the previous section this implies splitting the data into
two parts which are maximally correlated. As the correlation in most signals is local, i.e. neighboring samples
are much more correlated then ones that are far apart, we simply subsample the data into even and odd indexed
samples. This is an example of a Lazy wavelet transform. We obtain two sequences A, and 7., with coefficients

Acpp = Aok and Yy = dogesr for k€Z, (1)

Next we need to find a operator to predict y-; based on A_;. Again assuming maximal correlation amongst
neighboring samples, we simply suggest to predict an odd sample Ag 24+ as the average of its two (even) neighbors:
Ay and A_y 41y, The difference with this prediction then becomes ¥

Ttk ri= Y= 12 (Acip+ Aoian) - (2

The model used to build P is a function piecewise linear over intervals of length 2. If the original signal complies
with the model, all wavelet coefficients in +_, are zero. In other words, the wavelet coefficients measure to which
extend the original signal fails to be linear. Their expected value is small. In terms of frequency content, the
wavelet coefficients capture high frequencies present in the original signal.

However, the frequency localization of the signals A and 7., is far from ideal. It would be nice if the A,
signal somehow captures the low frequencies, and the 4_; the high frequencies. Right now the A_, signal is simply
~subsampled and its frequency content thus stretches out over the whole band of the original signal, Again, we
- have the worst case example of aliasing. In the update stage, we can reduce the amount of aliasing by at least
' assuring that the DC component ends up entirely in the A_; part. In other words, we would like the average of

the signal to be maintained in A_;, or

FoAoia = 1/23 Ao
k k

This is precisely the scalar quantity Q() of the previous section which we would like to preserve. We therefore
update the A_; ; with the help of the wavelet coefficients v-; 4. Again we use the neighboring wavelet coefficients
and thus propose an update I of the form:

.\_1'5 = f\-l,i + A(T—l,t—l e 'r-l.l) :
To find A we calculate the average: !

DAk = Y Mgk +24Y s = (1-24) Y Ao +24 Y Jogear.
] k k

From this we see that the correct choice to maintain the average is A = 1/4. One step in the wavelet transform
is shown in the scheme in Figure 2. By iterating this scheme we get a complete wavelet transform. The inverse
transform can be derived immediately as shown in the previous section. Note that at no point we used the Fourier
transform. ' -
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Figu:é 2: The lifting scheme: Split, calculate the wavelet coefficients ;-1 m as the failure to be linear, and use
them to update the Aj; ;.

The wavelet transform presented here in fact is the (V = 2, = 2) biorthogonal wavelet transform of
Cohen-Daubechies-Feauveau.? This simple example already shows how the lifting scheme can speed up the
implementation of the wavelet transform. Classicly the {A_;} coefiicients are found as the convolution of the
{Ao.4} coefficients with the filter h = {=1/8,1/4,3/4,1/4, ~1/8}. This step would take § operations per coefficient
while lifting only needs 3.

This is only one simple instance of lifting. A whole family of biorthogonal wavelets can be constructed by
varying the three stages of lifting:

1. Split: Other choices but the Lazy wavelet are possible as an initial spjit. A typical alternative is the Haar
wavelet transform.

2. Predict: In wavelet terminology the prediction step establishes the number of vanishing moments (V) of
the dual wavelet. In other words, if the original signal is a polynomial of degree less than N, all wavelet
coefficients will be zero. In our example N = 2, but higher order schemes are easily obtained by involving

more neighbors,

3. Update: Again in wavelet terminology, the update step establishes the number of vanishing moments (f\?]
of the primal wavelet. In other words the transform preserves the first N moments of the Aj sequences. The
example above had N = 2 (one extra because of symmetry). Again higher order ones can be constructed
by involving more neighbors. In some cases, namely when the split stage already creates a wavelet with a
vanishing moment (such as the Haar) the update stage can be omitted.
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Figure 3: Mallat (above) and Lifting (below) organization of wavelet coefficients for n = 3.

4 In-place calculation

In this section we introduce another feature of lifting: in-place calculation. This means we can ui}lu:e the
original data set with its wavelet transform without having to allocate extra memory. As is well known, the FFT
has a similar feature provided one starts with bit-reversing the original samples. The basic idea behind in-place
calculation of the wavelet transform using lifting is quite similar.

Assume the original signal has length 2" and the original samples are stored in a vector so that sample Ag &
sits in memory location k (0 < k < 2"). In the traditional organization of the wavelet coefficients, as proposed
by Mallat in,*® a wavelet coefficient +;, is stored in location 2"/ 4 k, see Figure 3 for an example with n = 3,
To obtain in-place calculation with lifting, we propose a different ordering of the wavelet coefficients, The idea
is to store the coefficient ;4 in location 277! 4 277k, see Figure 3. Essentially all the coefficients depicted in
one column of Figure 2 are stored in the same location. The Lazy wavelet transform is then immediate. Since all
other operations can be'aone with += or —= operations, we have a fully in-place calculation. Figure 4 shows
the in-place organization of the let coefficients of the classic Lena image.

It is also possible to first rearrange the original samples to end up with the Mallat organization of the
coefficients after an in-place calculation. The sample g, then has to be stored in location m(k) which can be
found as follows. Consider the n-bit binary representation of k: kok;X; -+ -k,. Next isolate the trailing zeros (if
any) as kokykz - k;100...0. Now the binary expansion of m(k) is 00 -+ Olkgkyky -+~ k;. In other words, it can
be seen a partial bit reversal.

5 The basis functions

So far, we only explained how lifting affects the wavelet transform. In this section we briefly describe what
happens to the basis functions. The basic idea to find a basis function given the transform is very simple. If you
want to construct the basis function associated with a coefficient A;x of 7, i, simply put that coefficient to one,
all other coefficients to zero, and perform an inverse wavelet transform starting from level j. This is known as the

- cascade algorithm.! We refer to the basis functions associated with the A; . (respectively 7; ) as scaling functions
(respectively wavelets) and denote them with @5k (respectively ;4 ). If you are interested in the discrete basis,
do an inverse transform till level 0, while if you are interested in the continuous basis, do an inverse transform
add infinitum. ;
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Figure 4: In-place organization of Lena wavelet coefficients.

This way it is easy to see that the Lazy wavelet simple corresponds to a Dirac sequence or a Dirac funetion,
In case of the simple example mentioned earlier, the scaling functions are given by

eik(z) = A2z - k),

where A is the classical “Hat” function: A(z) = max{0, 1-|2|}. Essentially all scaling functions are translates and
| dilates of one particular function, The same is true for the wavelet. By doing one step of the inverse transform
we see that
Yia(z) = ¢(2z —k),
where ¥(z) is given by
¥(2) = A2z — 1) - 1/4A(z) - 1/4A(z +1). (3
In case we would not have an update stage, the wavelet would simply be ¥(z) = A(2z — 1).

wavelet A(2z — 1) (the one without updating) combined with scaling functions on the same level, A(z) and
A(z+1). This opposed to the classical case were a wavelet is constructed as a linear combination of Hat functions
on the next finer level, namely A(2z - k) with k € Z. The coefficients in (3) are chosen so that the wavelet has two
vanishing moments. This is another way to get to the 1/4 coefficients encountered earlier, The prediction stage
actually corresponds to a similar operation on the dual wavelet, which is sometimes referred to as dual lifting,
We thus start from an almest trivial case, the Lazy wavelet, and gradually build a new wavelet with improved
properties, by adding in new basis functions, This is the inspiration behind the name “lifting scheme.”
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Let us now write the original signal as
1) = ) Mook
k

After wavélet transform, the same signal can be written as

-1
!(3) = EA—n.t Penk T E Z?’j.b‘p_f.i-
] ke

j==n
This is precisely a representation with “building blocks that decorrelate” which we were after in the introdtction.
Because of the correlation structure, many of the wavelet coefficients will be small. We can thus obtain an
accurate approximation with only a small number of coefficients by simply omitting the wavelet coefficients below
a certain threshold.

6 Second generation wavelets

The original motivation for the lifting was to construct wavelets in settings were no Fourier transform is
available. The theory of lifting for second generation wavelets is given in.!® Here we just introduce the basic idea.

The key point in each setting is to define the initial split operation. The easiest choice again is the Lazy
wavelet transform. The prediction and updating stage are then quite similar to the ones described above. The
main difference lies in the fact that the filter coefficients used in the prediction and update operator might vary
depending on location. Indeed, if one wants to account for local irregularities, one cannot use the same filters
everywhere, This is precisely why the Fourier transform can no longer be used. As a result the wavelets are not
translates and dilates of one function. However, they still enjoy all the nice properties of first generation wavelets,
such as fast transform and decorrelation power. They still are compactly supported, smooth, and have vanishing
moments.

Let us first consider the case of wavelets on an interval. We essentially want to transform a signal of arbitrary
finite length without the use of ad hoc solutions such as zero padding, periodization, or reflection around the
edges. The Lazy wavelet transform can still be subsampling even and odd samples. In our simple example on
the real line, the predicted value for an odd sample was based on its neighboring even samples left and right, In
case of a finite length signal, the same idea can be used as long as the sample is sufficiently far away from the
boundary. At the left boundary, if not enough even samples on the left are available to predict an odd sample,
one simply replaces the missing samples on the left by extra samples on the right. In other words, we look for
more correlated data where it is available. For example, suppose we use cubic interpolation to predict an odd
sample based upon 4 neighboring even samples. Away from the boundary we use 2 samples on the left and 2

.on the right. Close to the left boundary we might have to use 1 on the left and 3 on the right, or even none on
the left and 4 on the right. This automatically leads to filters adapted for boundary constructions. It assures
that all wavelets, including the ones at the boundary have the same number of vanishing moments. The wavelet

coefficients for the Lena image in Figure 4 were calculated this way. Examples of boundary wavelets can be found
in it i -
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In the case of irregular samples the same thiIosﬂphy can be used. The fact that the sample locations are not on
a regular grid poses no problems for the local polynomial prediction or update. The filters now change everywhere
to account for the different locations of the samples. Here one has several choices for the Lazy wavelet. One
idea is to still use even and odd subsampling. This way the imbalances in the sampling distances are maintained
throughout the hierarchy. The alternative is to subsample in such a manner that the ratio of the largest versus
smallest sampling distance approaches one. Which one is better depends on the situation at hand. For practical
examples we again refer to,!

* Another typical exampie of second generation wavelets are wavelets defined on curves, surfaces, or general
manifolds. More particularly, the lifting scheme was used to construct wavelets on a sphere in.” These spher-
ical wavelets are used for the efficient representation of data that naturally lives on a sphere. Examples are
topographic data (earth elevation), bidirectional reflection functions, astrophysical data, and environment maps.
These wavelets were used for spherical image processing in.?

7 Future developments

In this paper we gave a short introduction to lifting, a new method to construct wavelets. For more details
and applications we need to refer to the original papers. Here we just would like to mention a few developments
which are currently under investigation.

o Wavelets on general surfaces: The construction of the spherical wavelets does not fundamentally rely on the
special properties of the sphere, It only uses the fact that one can recursively cut the sphere into spherical
triangles. Therefore the construction can be generalized to more general surfaces or manifolds.

o Wavelet packets: The lifting scheme can also be used in the construction of wavelet packets. It is not hard
to come up with a Lazy wavelet packet, i.e. a transform which also recursively splits the «y_; sets. On these
splittings again the prediction and update operators can be used.

¢ M-band wavelets: Again it is not very difficult to invent a Lagy M-band wavelet. Now we need to find
several prediction and update operators.

o Wavelet frames: The lifting scheme can be used to construct overcomplete representations or frames. The
key again lies in the correct definition of the Lazy wavelet. The two sets y_; and A1 coming from the split
can have some amount of overlapping information or redundancy. Prediction and updating then would lead
to wavelet frames. .
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ABSTRACT

Compression with Reversible Embedded Wavelets (CREW) is a unified lossless
and lossy continuous-tone still image compression system. It is wavelet-based usinga
“reversible” approximation of one of the best wavelet filters. Reversible wavelets are
linear filters with non-linear rounding which implement exact-reconstruction systems
with minimal. precision integer arithmetic. Wavelet coefficients are encoded in a
bit-significance embedded order, allowing lossy compression by simply truncating
the compressed data. For coding of coefficients, CREW uses a method similar to
Shapiro's zerdtree, and a completely novel method called Horizon. Horizon coding is
a context based coding that takes advantage of the spatial and spectral information
available in the wavelet domain. CREW provides state of the art lossless compression
of medical images (greater than 8 bits deep), and lossy and lossless compression of
8-bit deep images with a single system. CREW has reasonable software and hardware
implementations.

1 Introduction

Since CREW uses a “reversible” approximation of one of the best known wavelet

filters, its performance is equal to or better than other existing methods in both lossy

and lossless modes. It encodes the wavelet coefficients in a bit-significance embedded
order similar to Shapiro [Sha93], and a completely novel method called, Horizon.
Horizon coding is a context-based coding that takes advantage of the spatial and
spectral information available in the wavelet domain. While Zerotree is rightfully
considered to be one of the best encoding methods of the wavelet coefficients, it is
not efficient when it reaches the lesser significant bits of the coefficients. This usually
is tolerable in a lossy system, but for lossless compression the encoding of the less
significant bits are of prime importance. Horizon coding, which is particularly useful
for the lesser significant bits is general and powerful enough to be used alone.

The original motivation for this system is the compression of medical images,
although the same feature set could be very useful for other applications such as
pre-press images, satellite images, document processing, world wide web, and other
communication systems. At this time, for various reasons, medical image compression
is considered to belong to the lossless realm. However, there are definitely future
possibilities for the use of lossy compression. Perhaps the image is kept in a lossless
compressed form prior to the diagnosis and archived for permanent records using
lossy compression. For such a scheme, it is very. desirable to have a single system
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Figure 2.1: Block Diagram of a Wavelet Analysis/Synthesis System

that can perform both lossy and lossless compression. Moreover, with an embedded
compression system, ie., compressed data is in a visually important order, lossy
compression can be performed by a simple truncation of the compressed bit stream.

In section 2 the basics of wavelet decomposition are explained, and reversible.

wavelets are defined. In section 3, two reversible wavelet transforms are described in
detail. The first one, the S-transform is used to make the definitions easy to com-
prehend, while the second, the RTS-transform, is the suggested transform. Section
4 describes the embedded entropy coding, including a brief description of Shapiro’s
Zerotree, and Horizon context model. In section 5, the implementation of CREW
in software and hardware is discussed. Section 6 contains some experimental results,
comparing the performance of CREW with other system. '

2 Wavelet Decomposition of Digital Signals

A wavelet transform’ is defined by & pair of FIR analysis filters ho(n), hi(n), and
synthesis filters go(n), g1(n). The filters hg and gy are the low-pass and 4; and g, are
the high-pass. For an input signal, 2(n), the filters hy and hy are applied and the

- results are decimated by 2 (critically. subsampled) to generate the transform signals’

7(n) and d(n), so-called the reference and the detal signals (analysis part of Figure
2.1). In the synthesis part the transformed signals are upsampled by 2 (a zero is
inserted after every term) and then passed through the synthesis filters. Coefficients
of the reference signal r(n) are processed through the low-pass synthesis gy and the
coefficients of the detail signal d(n) through the high-pass synthesis filter g, (synthesis
part of Figure 2.1). In this paper we are only interested in quadrature mirror filters?,
ie.; the synthesis filters are defined in terms of the analysis filters as follows:

{ go(n) (=1)"hy(n)
gi(n) —(=1)"ho(n).

The coder/decoder blocks contain all the processing in the transformed domain, eg,
quantization, coding etc.  The filters can be recursively applied to the reference and
detail signal. Of special interest are the pyramidal systems, in which the filters are

!Fer basic wavelet transformation we adopt the terminology and notations of [VBLS4).
2For details and ive refe on QMF sy cf. [SA90}
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Figure 2.2: Block Diagram of a two-level Pyramidal Transform

recursively applied only to the reference signal. Figure 2.2 shows the block diagrm

of a two-level (the filters applied twice) pyramidal system.

Definition 1; Exact Reconstruction Systems: The system in Figure 2.1 is called
exact reconstruction if the signals, z(n) and Z(n) are identical up to a multiplicative
constant and a delay term [LGT88].

Definition 2: Efficient Reversible Systems: A reversible system is an implemen-

tation of an exact-reconstruction system, in integer arithmetic, so that a signal with

integer coefficients can be losslessly recovered. An efficient reversible system is a
reversible system with transform matrix® of determinant & 1.

The construction of reversible transforms is by no means difficult. Given enough
precision, any exact reconstruction transform can be made reversible. The challenge
is to construct “efficient” reversible transforms. Intuitively, efficient means that a
reasonable and practical entropy coder can efficiently encode the coefficients. While
efficiency criteria might be specific to a particular encoder, in general, systems with
determinant = +1 are efficient. Like any transform which is used for coding, good
energy compaction is also a primary factor. The goal is to design a single system
which performs well in both lossy and lossless modes. The concepts will be made
more clear in the next section with two examples.

3 Two Examples of Reversible Transforms

3.1 Exact Reconstruction
Example 1: Hadamard Transform: In normalized form it has the following filter
coefficients: ho 5_(1 1
2 H
{ Moo= S1,-1), 3.1)

which is clearly an exact-reconstruction transform.

I

Example 2: TS-transform (Two-Six-transform): For the origin and qualities
of the TS-transform cf. Remark 1 below. TS-transform is defined by the following

filter coefficients:
hoe = 5(1,1)
hy. 5—:—,-2-{—1,—1,8,—8,1,1).

This is also an exact-reconstruction transform.

(3.2)

3For the definition of the transform matrix cf. [SAS0).
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3.2 Basic Reversible Versions

The reversible transforms, in general, are non-linear. Hence they will be defined as
expressions. However, the linear system approximation which is useful for evaluation
will also be given. Recall that for the input signal z(n), r(n) and d(n) are the reference
and the detail signal respectively. The reversible S-transform will be used as a simple
example before explaining the reversible TS-transform.

Example 3: S-transform: An efficient reversible version of the Hadamard trans-
form, Example 3, known as the S-transform [SAAJ91, SP93] is defined as follows: - . .

{ r(0) = (2=
d(0) z(0) — z(1).

Notice that this is an approximation to the linear transform (with determinant = —1.)
The floor function in the definition of r(0) is the source of non-linearity.

(3:3)

e

(0 - z(0)4=(1
{dEo)) = 2[B)—a{l): (4 .

A constructive proof for the reversibility of the S-transform is the inverse transform:
d'gD!+1
r(0)+| J (3.5)

z(0) ;
{ 2{1) = r(0)- [4d). |

The idea behind the reversibility of the S-transform is the observation of two facts.
One, knowledge of the sum and the difference of two integers are sufficient to recover
the numbers. Two, the sum and the difference have the same parity, i.e., they share
‘the same least significant bit. Hence the integer division by 2 (or a shift right by
1) in Eq. 3.3, eliminates a redundant least significant bit. The S-transform, where
redundant information can be detected and easily eliminated, is an example of efficient
reversible transform.

I

Example 4: RTS-Transform (Reversible TS-transform): An efficient reversible
version of the TS-transform, which we call RTS-transform is defined as follows:

r0) = (=t
r(1) = [

@) = [
: (3.6)

d(0) = L"l"ﬂFmJH(z(n:-x(snﬂqthl ?

|
Notice that this is an approximation to the following linear version (with determinant =
—1) of the TS-transform:
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r(0) = #o)
1"[1) = 2(2)+2(3)

r(2) = ot

: @37
;E(O) = —z(m"*(1)+3(z(2;—:(3))j.5(4)ﬁ@1

The proof that the RTS-transform is reversible is quite simple. We show how to

recover (2) and z(3) from r(0),7(1),7(2) and d(0), the recovery of other samples are -

similar. Notice the expression for d(0) in Eq. 3.6, can be written as,

=7(0) + 4(2(2) — 2(3)) + r(2)J
1 :

d(0) = |
From this it follows that:
2(2) — 2(3) = d(0) — |(-r(0) +r(2))/4].

Hence z(2) —z(3) is completely known. This, combined with r(1) = (z(2)+2(3))/2]
in Eq. 3.6, and the use of inverse S-transform Eq. 3.5, leads to the recovery of z(2)
and z(3).

Remark 1: Le Gall and Tabatabai in [LGT88] use a design procedure based on the
factorization of a product filter into two linear phase low-pass components. These

correspond to the low-pass analysis and synthesis filters. By using the quadrature

mirror properties the high-pass filters are derived. In their most important example,
which is by now classical, the following product filter is factored:

P(2Z) =1/16(1+ Z)}(~1+32"1 + 322 - 2°%),
Two factorizations are given in [LGTS8],

{ P(2) [1/4(1 4+ 271 x [1/4(~1 4321 + 3272 - Z79)| )
P(2) [1/2(1+ 271 x [1/8(1+ Z71) (-1 +3Z7' +327% — Z-9)]. '

A third factorization,
P(2)=[1/21+ Z7Y)] x [1/8(1+ 271} (-1 +3Z' + 3272 - 279)),

which was not mentioned in that paper, is, in fact, the rational version of the TS-
transform (Eq. 3.7.) Speck in [Spe93] considers and analyses this third factorization.
In [VBLO4| the normalized version Eq. 3.2, is evaluated together with several thou-
sand other wavelet transforms, and is rated as one of the overall best.

Remark 2: In both the S-transform and the RTS-transform, the reference signal
r(n) has the same range of values as the input signal z(n), q.g., if the range of z(n)
i from 0 to 255 the same is true about r(n). This property is especially important
in a pyramidal system where the reference signal is successively decomposed.
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Remark 3: Both normalized Hadamard transform and the normalized TS-transform
have especially simple implementations in two dimensions, the domain of digital
images. Recall that in the separable two dimensional wavelet transform the image
is decomposed into four blocks, the so-called LL, LH, HL, and HH [Sha93). Each L
corresponds to an application of the low-pass filter hy, and each H corresponds to an
application of the high-pass filter h;. If we denote ho, and Ay to be the low-pass and
the high-pass filters of the normalized TS-transform, Eq. 3.2, and similarly hj, and
h} for the rational version, Eq. 3.7, then
hy

{ G
b VZh.

Therefore the LL, and HH components of the rational TS-transform, Eq. 3.7 are 1/2
and 2 times the corresponding components of the normalized TS-transform. Moreover
the components LH, HL are identical. This leads to an efficient implementation of the
TS-transform. through the rational TS-transform. More to the point for this article
is the fact that if the rational TS-transform, Eq. 3.7, is replaced by the the reversible
TS-transform (RTS-transform), Eq. 3.6, a very good approximation of the normalized

ihn

TS-transform is realized, which in addition is reversible. Notice that the scale factors

of 1/2 and 2 are especially easy to implement.

4 Embedded Entropy Coding

In most transform-based compression systems the coefficients are entropy coded..
Of special importance for us are the so-called “embedded” coders. Briefly, an embed- -

ded coding is a system in which the coded bit stream is ordered by visual significance
or, more accurately, ordered with respect to some error metric cf. also [Sha93]. The
embedded order used in this paper is bit-significance in the transform domain, the
same as used in [Sha93).

The Zerotree (Sha93] is an efficient embedded coding method of the wavelet co-
efficients, which takes advantage of the inherent similarity of different bands in the
transform domain.

Horizon embedded coding, introduced below, is a spatial-spectral context model
which uses the same embedding order, i.e., bit-significance, as the Zerotree. Non-
embedded context models have been proposed to encode signed integers which take
advantage of spatial correlations of coefficients [Lan91]. In Horizon coding the high
correlation of neighboring pixels, in addition to the similarities of different bands,
are utilized by context dependent entropy coding. The Horizon context dependent
coding is especially attractive for encoding the low order bits, which must be encoded
in a lossless system. Moreover the coding can start with the Zerotree, or some other
spectral context model, and change to Horizon after any number of bit-planes.

4.1 Zerotree

The most important pelrt. of the Zerotree embedded coding of the wavelet coef-
ficients is a prediction method which, according to Shapiro, is based on “the basic
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hypothesis - if a coefficient at a coarse scale is insignificant with respect to a threshold
then all of its descendants are also insignificant.” The descendants are defined with
respect to a tree structure defined on the wavelet coefficients, which takes advan-
tage of the similarity of the bands at different resolutions [Sha93]. The other part
of the Zerotree embedded coding is a bit-significance embedding method to encode
signed integers. In the so-called dominant pass the integers in sign-magnitude form,
are encoded one bit at a time from the MSB to LSB, by the prediction method of
Zerotree, until the first “on” bit is detected. The sign is encoded at this time, which

is the logical embedding order of the sign bit. The remaining of the bits are encnded

without the Zerotree prediction, in the so-called subordinate pass.

4.2 Horizon: A Spatial-Spectral Context Model

Horizon context model addresses the bit-significance embedded encoding of the
wavelet coefficients by a binary entropy coder. There are three basic contexts designed
for embedded encoding of signed integers. Hence these can be described independently
of any wavelet system. Recall that in the bit-significance embedded coding of signed
integers, the-sign bit is encoded with the first “on” bit (starting from the MSB).
Therefore, prior to the occurrence of the sign bit, the set of events consists of 0,1,
1. After the sign bit is encoded the set of events is 0,1. The first context is used
to encode the event of zero bit vs. non-zero bit when the sign bit has not yet been
encoded. The second context is used to encode the sign bit if the previous event was
non-zero. Context three is used to encode the zero bit vs. the one bit if the sign bit is

already encoded. In the terminology of Shapiro the first two contexts are used during

the dominant pess and the third context during the subordinate pass, Notice also
that the second context is used at most once for every integer.

The basic contexts of the Horizon model can be extended for the coding of the
wavelet coefficients. Briefly, the fact that the wavelet transform is localized both in
space and frequency makes it possible to use regional contexts in the same band as
well as between bands contexts. The regional contexts in the same band are similar
to the JBIG or the lossless JPEG systems. The between band spectral contexts can
use modeling such as the tree structure used in Zerotree, or use the so-called similar
coefficients from the other bands, provided that the system stays causal.

5 Computation in Software and Hardware

CREW is suitable for implementation in both software and hardware. It can be
performed in two passes where the first pass generates all the transform coefficients
and the second pass embeds and encodes them, or it can be performed in a unique
one pass mode with memory management.

The filters chosen in CREW are easy to implement for both encoding and decoding.
The implementation of the forward transform is immediate from Eq. 3.6. Figure
5.1 shows a hardware implementation of the inverse transform (the more interesting
case). Asin the forward case, four additions/subtractions are required. A total of four
multiplications/divisions are hardwired shifts in hardware and three shift instructions
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Figure 5.1: An Implementation of the Inverse RTS-Transform

in software. After 2 x r(1) is computed (bits 16...1), its least significant bit (LSB)
is taken from the computed value of x(2)-x(3). This operation has zero gate cost in
hardware and is two logic operations in software. :

For lossless decompression, the clip operation in Figure 5.1 simply shifts its input

right by one (divides by two) and may drop (or otherwise ignore) the three most -

significant bits. In the lossy case, where quantization can cause the reconstructed
value to be-out of range, the three most significant bits must be checked and out of
range results must be changed to the minimum or maximum allowable value.

For images where a full frame can fit in memory allowing two pass implementation,

memory/data flow management is not a difficult issue. Even for 1024 x 1024 16 bit
medical images (2 Mbytes in size), requiring a full frame buffer is probably reasonable.
However larger images (for example A4, 400 DPI 4-color images are about 50 Mbytes),

performing the wavelet transform with a limited amount of line buffer memory is -

desirable. A one pass method reduces the memory required by about a factor of 100
" compared to using & full frame buffer for this example.

Because only the high pass filter is overlapped, the largest filter support region
is defined by a cascade of low pass filters followed by a high pass filter. For a four'
level decomposition, the largest support region is (2* x 6) x (2° x 6) = 48 x 48
pixels, as shown in Figure 5.2. Note that for computational efficiency, redundant
calculations due to overlap are done only once. Thus, only 16 x 16 new pixels are
used in calculations for each region.

At the moment CREW uses the binary adaptive arithmetic coder known as Q-
coder.

6 Experimental Results

Two sets of images are used for experimentation, a class of 512 x 512 USC gray
scale 8-bit deep images, and & class of medical images of different modalities. Medical
images “cr”, “dsa”, “xray” are 1024 x 1024, and are 10 bits deep. Images “ct” and
“mri” are 512 x 512 and are 12 bits deep. Tables 1 and 2 are the lossless results,
for the medical and the USC images respectively. The results related to the USC
images (Table 2) are compared with JPEG lossless (with QM-coder), and bit-plane
JBIG of the gray coded image [AT94]. The results on medical imaging (Table 1) are
compared with DPCM which uses three neighbor_pixels for prediction and Huffman
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codes the prediction errors. Table 3 is the results of lossy compression of the USC .

images. The MSE results are compared with JPEG lossy with arithmetic coding at
the same compression ratio. JPEG lossy with arithmetic coding was chosen because
of its superior rate/distortion over baseline JPEG. In each case JPEG is used roughly

at low, and high compression ratio. The truncation of CREW'’s compressed bit stream:

was used to decompress at exactly the same ratio. As can be observed state of the
art lossy and lossless performance is achieved for all cases.

7 Conclusion

CREW is essentially an exact reconstruction transform scheme with good energy
compaction. Moreover, it is specially designed so that the transform coefficients have

small redundancy and are easy to entropy code. Since CREW has good compression”

efficiency at any level of quantization it is well suited for embedded coding. Embedded
coding of the coefficients makes the quantization level a function of the length of the
coded stream. Hence, quantization is performed with truncation. Without truncation
the image is recovered losslessly.

Horizon context dependent entropy coding, together with the Shapiro's Zerotree
is used to achieve such a system. In addition to the lossless and lossy state-of-the-
art compression performance with a single system, efficient software and hardware
implementations are also possible. Other features of CREW are multi-resolution and
progressive capabilities,

TABLE 1 N
Compression ratio of lossless compression of Medical images.

compression || cr | ct | dsa | mri | xray
method

: 2.43 | 5.26 | 2.89 | 3.23 | 2.58
DPCM 2.34 (1 3.95 | 2.64 | 2.86 | 2.41
JBIG 2.25 1 4.92 | 2.72| 2.68 | 2.46
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TABLE 2
Compression ratio of lossless compression of USC images.

compression || couple |.crowd | ]ax | lena’'| man | womanl | woman2 || average
method ;

CREW . 163 | 188 [1.34|184 (169 | 1.66 2.37 1.73

JPEG 1.564 | 187 | 131|172 | 164 1.58 2,28 1.66

JBIG 153 | 1.75 | 131169159 1.58 2.10 1.62

TABLE 3 -

Mean Square Error (MSE) of lossy compression of USC images.

compression || couple | crowd | lax | lena | man | womanl [ woman2

method
low | CREW || 23.69 | 17.29 | 54.72 | 14.69 | 22.20 | 22.41 6.59
ratio [ JPEG || 29.62 | 20:10 | 87.80 | 17.08 [ 29.98 | 33.08 6.55
high | CREW || 42.17 | 30.65 | 99.70 | 21.15 | 40.08 | 38.30 | 9.73°
ratio | JPEG || 49.86 | 36.10 | 137.00 | 27.74 | 48.84 | 52.29 11.32
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Part III DETAILED ACTION

Claim Rejections - 35 USC § 103

1. The following is a quotation of 35 U.S5.C. § 103 which forms
the basis for all obviousness rejections set forth in this Office-
action: :

A patent may not be obtained though the invention is not
identically disclosed or described as set forth in section
102 of this title, if the differences between the subject .
matter sought to be patented and the prior art. are such that
the subject matter as a whole would have been obvious at the
time the invention was made to a person having ordinary
skill in the art to which said subject matter pertains.
Patentability shall not be negatived by the manner in which
the invention was made.

Subject matter developed by another person, which qualifies
as prior art only under subsection (f) or (g) of section 102
of this title, shall not preclude patentability under this
section where the subject matter and the claimed invention
were, at the time the invention was made, owned by.the same
person or subject to an obligation of assignment to the same
person, :

2 Claims 1-3, 5-14, 16-29 are rejected under 35 U.S.C. § 103
as being unpatentable over Seshadri et al.

As to claims 1, 7, 12, 22, 28, Seshadri et al. Teaches an
error resilient method of encoding data (column 2 lines 28-56);
generating a plurality of code words representative of respective
portions of data (column 2 lines 28-56), wherein each code word
comprises a first portion and an associated second portion
(column 2 lines 28-56), wherein said code word generating step
comprises: generating the first portion of each code word, the
first portion including information representative of a
predetermined characteristic of the associated second portion
(column 2 lines 28-56, figure 1, abstract); and generating the
second portion of each ¢ode word, the second portion including
information representative of the respective portion of the data
(column 2 lines 28-56, figure 1, abstract); and providing error
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protection to at least one of the first portions of the plurality
of the code words while maintaining any error protection provided
to the respective second portion associated with the at least one
first portion at a lower level than the error protection provided
to the respective first portion (column 2 lines 28-56).

As to claims 2-3, 8-9, 13-14, 23-24, 29, Seshadri et al.-
Does not specifically teach entropy coding; second portions
having predetermined number of characters, and first portions.
which includes information representative of the predetermined
number of characters.

As to claims 5-6, 10-11, 16-17, 25-26, 28, Seshadri et al..
Does not specifically teach storing the at least one first
portion, and storing the respective second portion; trangmitting
first portion, and transmitting respective second portion via a
second data link.

As to claims 12, 18-19, 20-21, 22, 27, Seshadri et al., Does
not specifically teach compressing data; transforming data based
on the a predetermined transformation function; quantizing and
encoding data; wavelet transform; biorthogonal wavelet transform;
transformed cocefficients, and coefficients below a threshold;"
establishing a clipping threshold such that the ratio is at least
as great as a predetermined clipping ratio.

However, entropy coding; having predetermined number of
characters; storing portions; transmitting portions; compressing
data; transforming data based on the a predetermined
transformation function; quantizing and encoding data; wavelet
transform; biorthogonal wavelet transform; transformed
coefficients, and coefficilents below a threshold; establishing an
adaptive threshold; are all well-known and routinely used in the
art. (Official Notice)

It would have been obvious to a'person of ordinary skill in
the art at the time the invention was made to incorporate these
features into the image processing and data encoding. Because
entropy coding is used to compress the data; having predetermined
number of characters is used in run-length encoding; storing
portions is used to gather the data; transmitting portions is
used to send the data to the receiver end; compressing/

- transforming data/ quantizing/ encoding data/ wavelet transform/
transformed coefficients are used to encode/ compress/ reduce the
size of data; an adaptive threshold is used to make the system
more flexible and adjustable.
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3 Claims 4, 15, 30 are objected to as being dependent upon a
rejected base claim, but would be allowable if rewritten in
independent form including all of the limitations of the base
claim and any intervening claims.

4. The prior art made of record and not relied upon is
considered pertinent to applicant's disclosure. -

Nelson et al., Nadan, and Baggen et al. Teach parity/ code
word, data enable sequences, and interleaved phases.

5 Any inquiry concerning this communication or earlier
communications from the examiner should be directed to Dr. Bijan
Tadayon whose telephone number is (703) 308-7595. The fax number
is (703) 308-5051 or (703) 308-9052.

‘&Y.

Dr. Bijan Tadayon
July 16, 1997

LEQ BOUDREAY
SUPERVISORY PATENT EXAMINER
GROUP 2600
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AND APPARATUS FOR
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In re: Meany and Martens /\§

January 23, 1998

Assistant Commissioner for Patents o
Washington, DC 20231 # e

_,
P T

AMENDMENT

Sir:

In response to the Official Action dated July
24, 1997, please amend the above-identified application
as follows:

IN THE SPECIFICATION:

Page 1, line 8, between "methods" and
"apparatus", please insefép--and--.

Page 29, line 3§L,piease delete "5A", and
insert --5B-- therefore.

Page 30, line 6, pleagﬂ’aelete "S5A", and ingert
--5B-- therefore.

T MS:
Please amend independent Claim 1, 7, 12, 22 and
28 as follows:

g

1. (Amended) An error resilient method of
encoding data-comprising the steps of:

generating a plurality of code words
representative of respective portions of the data,
wherein each code word comprises a first portion and an
associated secord portion, and wherein said code word

generating step comprises the steps of:

ua
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generating the first portion of each
code word, [the first portion]) wherein said first portion
generating step comprises the step of including
information ﬁighin the first portion that is
representative of a predetermined characteristic of the
associated second portion; and

generating the second portion of each
code word, [the second portion] wherein said second '
portion generating step comprises the step of including
information within the second portion that is
representative of the respective portion of the data; and

providing error protection to at least one of

the first portions of the plurality of code words while
maintaining any error protection provided to the

respective second portion associated with the at least
one first portion at a lower level than the error
protection provided to the respective first portion.

7. (Amended) A data enccding apparatus
comprising:

code word generating means for generating a
plurality of code words representative of respective
portions of the data, wherein each code word comprises a
first portion and an associated second portion, and
wherein said code word generating means compriges:

first generating means for generating
the first portion of each code word, [the first portion]

mprisi r
including information within the first portion that is

representative of a predetermined characteristic of the
associated second portion; and

gecond generating means for
generating the second portion of each code word, [the

second portion] said second generating means comprising
means for including information within the segond portion

P
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.

that is representative of the respective portion of the
data; and ?
error protection means for providing error
protection to at least one of the first portions of the
plurality of code words while maintaining any error
protection provided to the respective second portion
associated with the at least one first portion at a lower
level than the error protection provided to the ) 1
respective first portion. :

s

12. (Amended) An error resilient method of
compressing data comprising the steps of:

transforming the data based upon a
predetermined transformation function;

quantizing the transformed data such that the
quantized data has fewer unique coefficients than the
transformed data; and

enccding the quantized data, said encoding step

comprising the gteps of:

generating a plurality of code words,
representative of respective portions of the data, which
have respective first and second portions, wherein [the

first portion includes] gaid code word generatipng step
compriges the steps of including information within the
first portion that is representative of a predetermined
characteristic of the associated second porticn, and
[wherein the second portion includes] including
information within t on io t
representative of a respective portion of the data; and
providing error protection to at
least one of the first portions of the plurality of code
words while maintaining any error protection provided to .
the respective second portion associated with the at
least one first portion at a lower level than the error
protection provided to the respective first portion.

|

.-7/
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22. (Amended) An error regilient data
compression apparatus comprising:

a data transformer for transforming the data
based upon a predetermined transformation functien;

a data quantizer for quantizing the transformed
data such that the gquantized data has fewer unique I
coefficients than the transformed data; and

a data encoder for encoding the quantized data,
said data encoder comprising:

code word generating means for

generating a plurality of code words, representative of
respective portions of the data, which have -respective
first and second portions, wherein gaid code word

generating means comprises means for including [the first
portion includes] information within the first portion

that is representative of a predetermined characteristic
of the associated second portion, and meang for including
[wherein the second portion includes] information wjithin
the second portion that is representative of a respective
portion of the data; and

exror protection means for providing
error protection to at least one of the first portions of
the plurality of code words while maintaining any error I
protection provided to the respective second portion
associated with the at least cne first portion at a lower
level than the error protection provided to the
respective first portion.

28. (Amended) A computer readable memory for
storing error resilient encoded data, the computer
readable memory comprising: .

a storage medium for storing the error
resilient encoded data, said storage medium being
partitioned into a first error protected data block and a
second data block, wherein any-error protection provided

I~
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by said second data block is at a lower level than the
error protection provided by said first data block; and
' a plurality of code words, representative of
respective portions of the original data, which have
regpective first and second portiong, wherein the first
portion gof each code word includes information '
representative of a predetermined characteristic of the
associated second portion, and wherein the assocjated
gecond portion of each code word includes information
representative of a respective portion of the original
data,
wherein at least one of the first ‘portions of
the plurality of code words is stored in the first data
block of said storage medium such that the at least one
first portion is error protected, and wherein the
respective second portion associated with the at least
one first portion is stored in the second data block of
said storage medium such that any error protection
provided to the respective second portion associated with
the at least one first portion is at a lower level than
the error protection provided to the respective first
portion.

R REMARKS
Applicants would like to thank the Examiner for

the thorough review of the present application and for
the indication that Claims 4, 15 and 30 define patentable
subject matter and would be allowable if rewritten in
independent form. Each independent claim, namely, Claims
1, 7, 12, 22 and 28, has been amended to more clearly
‘define the invention, as explained more fully below. The
specification has also been amended to correct several i I
obvious informalities that were noted during our review
of the specification in the course of preparing the
present Amendment. As discussed in detail below, t?e

P

Page 413 of 437



In re: Meahy and Martens

Serial No. 08/633,896

Filed: April 17, 1996

Page 6
amended set of claims includes recitations which further
patentably distinguish the claimed invention over the

cited reference.

The Invention

The claimed invention provides an error
regilient method and apparatus for entropy coding data
which includes code word generating means for generating
a plurality of code words representative of respective
items in the data set. Each code word has two portions
which we shall hereafter refer to as “fields”, namely, a
first or prefix field which is susceptible to bit errors,
and an associated second or suffix field which is
resilient to bit errors. According to the claimed
invention, the code words are generated such that a bit
error in the prefix field of a code word could result in
a potential loss of code word synchronization,.while a
bit error in the suffix field of a code word shall only
affect that particular code word. More specifically, the
code words are generated such that a bit error in the
suffix field of a code word will not result in a loss of
code word synchronization, but the resulting misdecoded -
value shall, instead, fall within a predetermined range
about the correct value. Thus, according to the claimed
invention, the error resilient method and apparatus for
entropy coding data shall be suitable for use with

unequal error protection such that the prefix fields are
encoded with a higher level of error protection and the
suffix fields are encoded with a lower level of error
protection, if any at all.

As claimed, the code word generating means
includes prefix generating means and suffix generating
means for generating the prefix and suffix fields of each
code word, respectively, n particular, the prefix field
includes information rgprepentative of a predetermiped
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characteristic of the associated suffix field. &as I
defined by dependent Claims 3, 9, 14, 24 and 29, each
prefix field preferably includes information
representative of the predetermined number of characters,
such as bits, which form the associated suffix field of
the code word. The prefix field may also include
information representative of other characteristics of
the associated suffix field, such as the contiguous or
consecutive range of coefficient values which the
associated suffix field may represent. In addition, each
suffix field includes information representative of
respective portions of the original data. Conaequently;
even though the suffix fields are not error protected or
are only provided with a relatively low level of error
protection, the method and apparatus of the claimed
invention can correctly determine the length of the
suffix field of a code word even if.there should be of
one or more bit errors within the said suffix field,
provided that the associated prefix field is decoded
correctly, i.e., without the occurrence of a bit error.
Accordingly, in order to provide a high probability that
the prefix field is decoded correctly, the method and
apparatus of the claimed invention encodes the prefix
field with a higher relative level of error protection.
According to one advantageocus embodiment set
forth in Claims 12-27 in which the data has been
quantized, the quantized coefficients can be

characterized using a “histogram” which is a discrete
distribution consisting of a number of individual “bins”,
each of which represent the frequency or probability of
occurrence of a quantized coefficient value, In other
words, each bin is associated with a particular
guantization interval which has as its frequency a count
of the number of occurrences of coefficients whose values
fall within the associated quantization interval.
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According to this. embodiment of the error’

resilignt method and apparatus for encoding data of the
claimed invention, the prefix field of each code word
includes information representative of the number of bits
K which form the associated suffix field of the code
‘word., Furthermore, the prefix field can also include
information representative of the specific histogram bin
within which quantized coefficient value resides. The
suffix field will, in turn, identify one particular
quantized coefficient value within the respective
histogram bin. In aggregate, the prefix and suffix field
of each code word shall together include information
representative of a specific coefficient valve residing
within a specific bin of the quantized coefficient

histogram.

In other words, the prefix field of this
exemplary embodiment includes the information
representative of a set of quantized coefficient values
while the suffix field includes the information
representative of a specific coefficient value among the
set designated by the prefix field. Thus, if the prefix
field of a code word is decoded correctly, i.e., without
the occurrence of a bit error, the length of the
asspociated suffix field and the range of coefficient
values which may be represented by the associated suffix
field will be known. As a result, the effects of one or
more bit errors on the suffix field will be isolated to a
specific code word, thereby limiting such errors to a
misdecoded coefficient value which is constrained to that
range of values determined by the prefix field, i.e., the
range of valves within the respective histogram bin.
Accordingly, the error resilient method and apparatus for
encoding data according to the claimed invention
effectively reduces, if not prevents, catastrophic errors
in an efficient manner. =
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Claims 1-3, 5-14 and 16-29 were rejected under
35 U.S.C. §103 as being unpatentable over U.S. Patent No.
5,289,501 to Seshadri et al. Each of the independent
claims, namely, Claims 1, 7, 12, 22 and 28, have been
amended to further patentably distinguish the claimed
invention over the cited reference, as explained in
detail below. ;

The Seshadri ’'501 patent describes a technique
for transmitting information in digital form over fading
channels. In order to provide error protection for the
transmitted information, the technique described by the
Seshadri ’'501 patent accepts a stream of data that has
been subdivided into different classes that merit
different levels of error protection. For example, the
class of data meriting the highest level of error
protection may be the most important data and/or the data
most susceptible to error, while the class of data
meriting the lowest level of error protection may be the
least important data and/or the data least susceptible to
errora. Once the different classes have been separately
scrambled, each class is redundancy coded using a
different, respective channel code. Thus, the technique
described by the Seshadri ‘501 patent provides unequal
error protection to the different classes of data.
Following encoding of the data, the encoded data is
modulated prior to being transmitted over free space
communication channels to remote digital cellular mobile
radio cell sgites.

Like the Seshadri ‘501 patent, the data
encoding method and apparatus of the claimed invention
utilizes unequal error protection to provide different
levels of error protection. With respect to the claimed
invention, for example, the first portions of the code
words have a higher level of error protection than the
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