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the nlgoriﬁ:m is fairly general and performs remarkably

well with most types of images. i
ACKNOWLEDGMENT

The author would like to thank Joel Zdepski who sug-
gested incorporating the sign of the significant values into
the significance map to aid embedding, Rajesh Hingorani
who wrote much of the original C code for the QMF-pyr-
amids, Allen Gersho who provided the original ‘'Bar-
bara'’ image, and Gregory Womell whose fruitful discus-
sions convinced me to develop a more mathematical
analysis of zerotrees in terms of bounding an optimal es-
timator. I would also like to thank the editor and the anon-
ymous reviewers whose comments led to a greatly im-
proved manuscript.

Rzrusﬂcas

[1] E. H. Adelson, E. Simoncelli, and R. Hingorani, *‘Orthogonal pyr-
amid transforms for image eod.in; '* Proc. SPIE, vol. 845, Cam-
bridge, MA, Oct, 1987, pp. 30-58,

[2] R. Ansari, H. Gaggioni, and D, J. LeGall, “HDTYV coding ulill' L]
nonrectangular subband decomposition.”’ in Proe. SPIE Conf. Visual
Comwl .fmgr?mum. Cambridge, MA, Nov. 1988, pp. 821~

3 T C Bell, . G. Cleary, and I, H. Witten, Text Compression, En-
glewood Cliffs, NJ: Prentice-Hall, 1990.
[4] P.J. Burt and E. H. Adeison, *“The Laplacian pyramid as a
image code,’’ IEEE Trans. Commun.. vol, 31, pp. $32-540, 1983,
(5] R.R. Coifman and M. V. Wickerhauser, "Emnpyu algorithms
for best basis selection,'’ 1EEE Trans. Informat, Theory, vol. 38, pp.
713-718, Mar. 1992
(6] I. Daubechies, **Ort

el

| bases of Iy P d wave-

analysis,”” IEEE Trans. Informar. Theorv,
Sept. 1990.

(8] R..A. DeVore, B. Jawenh, and B. J. Lucier, “Image compression
through wavelet transform coding,'' /EEE Trans. Informar. Theory,
vol. 38, pp. 719-746, Mar. 1992.

[9] W. Equitz and T. Caver, **Successive refinement of [aformation,"
IEEE Trans. Informar. Theory, vol. 37, pp. 269-275, Mar, 1991,

[10] Y. Huang, H. M. Driezen, and N. P. Galsisanos, "Prioritized DCT
for Compression and Progressive Transmission of Lmages,'
Trans. Image Processing, vol. 1, pp, 477-487, Oct. 1992.

[11] N.S. Iayant and P. Noll. Digisal Coding of Waveforms. Englewood
Cliffs, NJ: Prentice-Hall, 1984,

(12) Y. H. Kim and J. W. Modestino, **Adaptive cntropy coded subband
coding of images,”* JEEE Trans. Image Processing, vol. 1, pp. 31~
48, Jan, 1992.

{13) 1, Kovadevi¢ and M. Vetterli, ‘‘Nonscparable multidimensional per-
fect reconstruction flter banks and wavelet bases for ®." JEEE Trans.
Informar. Theory, vol. 38, pp. 333555, Mar, 1992.

[14] T. Lane. Independens JPEG Group's free JPEG software, 1991,

[15] A. 5. Lewis and G. Knowles, *'A 64 kB /s video Codec using the
2-D wavelel transform, '’ in Proc. Data Compression Conf., Snow-

: bird, Utah, IEEE Computer Society Press. 1991.
[16] —. "lmns compression using the 2-D wavelet trassform.” [EEE
Trans, Image Processing, vol, 1, pp. 244-250, Apr. 1992,

[ s. Mallat, "'A theory ror Itiresolution signal ds ition; The
wavelet representation.’* /EEE Trans. Pn'ln'r-r Anal. Mach. Inrell.,
vol. |1, pp. 674-691. July 1989,

© (18] =, ““Multifr y channel d itions of images and wave-
let models,”” JEEE Trans, Acoust. Spudl and Signal Processing.,

vol. 37, pp. 2091-2110, Dec. 1990.

vol. 36, pp. 961-1003,

[19] A Pentisad and B ngmm;c:mm;
image compression,’’ in Te. 880
Uh:f IEEE Computer Society Press, 1991. .

[20] O. Rioul and M. Vetteli, “*Wavelets and signal process
Signal Processing Mag., vol. 8, pp, 14=38, Oct. 1991. :

{21] A. Said and W. A. Peariman, "*Image Compression using the Spad
Orientation Tree,"" In Proc, IEEE Ins, Symp. Circuits and Syst,,
cago, [L, May 1993, pp. 279-282.

[22] 1. M. Shapiro, **An Embedded Wavelet Hierarchical Image
Proc. IEEE Int. Conf. Acoust,, Speech, Signal Processing, Suﬁ-.. e
cisco, CA, Mar, 1992.

(23] —, **Adaptive multidimensional peﬂeet reconstruction Blter hh._;
using McClellan transformations,”” Proc. [EEE Int. Symp. Clreuiyg -

Syst., Sam Diego, CA, May 1992, -+

[24] —, ""An embedded hierarchical image coder using zerotresi of °
wavelet coeflicients,'’ in Proc. Data Compression Conf., Snowbind,
Utah, lE.ESCuupumsmmes 1993, i

[2%) —, lication of the embedded wavelet hierarch mage codes
w0 very fow bit mie image coding,"* Proc.. IEEE Ins, Coqr Acoust,,
Speech, Signal Processing, Mianeapolis, MN, Apr. 1993, =

[26] Special issue of JEEE Trans. informar. Theory, Mar. 1992, .

[27] G. Simg *“Wavelets and dilation equations: A brief introduction,"

SIAM Rev., vol. 4, pp. 614-627, Dec. 1989,

(28] 1. Vaisey and A. Gersha, *'Image compression with varisble Slock
size segmentation,” [EEE Thm. Signal Processing., vol. 40, pp,
2040-2060, Aug. 1992.

[29] M. Vetterdi, J. KovaZevié, and D. J. LeGall, **Perfoct reconsiruction
filter banks for HOTV representation and coding,"" Image Commun.,
vol, 2, pp. 349-364, Oct. 1990,

[30] G. K. Wllllcl **The JPEG Still Picture Compression Standard,"
Commun. ACM, vol. 34, pp. 3044, Apr, 1991,

[31] L H. Witten, R. Neal, and J. G, Cleary, **Arithmetic coding for data
com| ion,"* Comm. ACM, vol. 30, pp. 520-540; June (987,

[32] 1. W. Woods, Ed., Subband Image Coding. Boston, MA: Kluwer,
1991. :

[33] G. W, Womell, "*A Karhunen-Loéve expansion for 1 /f processes via
w;r;im."!MﬂmMm Thaeory, vol, 36, pp. 859861, July

(34] Z. Xiong, N. Galatsanos, and M. On:hmi **Marginal analysis prior-
for image based on a hical wavelet de-
composition,’’ in Proc. mm Conf. Acoust., Speech, Signal Pro-
cessing, Minseapolis, MN, Apr. 1993,
[35) W. Zettler, J, Huffman, and D. C. P. Linden, **Applications of com-
pactly supported wavelets to image compression,'” SP/E Image Fro-
cessing Algorithms, Santa Clars, CA 1990,

Jerome M. Shapiro (5'85-M'90) was bom April
29, 1962 in New York City, He received the B.S.,
M.S., and Ph.D. degrees in clectrical engineering
from the Massachusetts [nstitute of Technology,
‘Cambridge, MA, in 1985, 1985, and 1990, re-

From 1982 (o 1984, he was at GenRad, Con-
cord, MA, as pan of the VI-A Cooperative Pro-
gram, where he did his Master’s thesis on phase-
locked loop frequency synthesis, From={985 o

1987, he was a Research Assistant in the Video
Image Processing Group of the MIT Research Laboratory of Electronics.
From 1988 to 1990, while pursuing his doctoral studies, he was a Research
Assistant in the Sensor Processor Technology Group of MIT Lincoln Lab-
oratory, Lexington, MA. In 1990, he joined the Digital HDTV Research
Group of the David Ssmoff Research Center, a Subsidiary of SRI lnter-
national, Pri NJ. His h i are in the areas of video and
image data compression, digital signal ‘processing. adaptive filtering and
systolic armay algorithms.

Page 304 of 437




Compressing Still and Moving Images with Wavelets *
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" Abstract

The wavelet transform has become a cutting-edge technology in image compression
research. This article explains what wavelets are and provides a practical, nuts-and-
bolts tutorial on wavelet-based compression that will help readers to understand and
experiment with this important new technology.

Keywords: image coding, signal compression, wavelet transform, image transforms

1 Introduction

The advent of multimedia computing has lead to an increased demand for digital images.
The storage and manipulation of these images in their raw form is very expensive; for
example, a standard 35mm photograph digitized at 12 um per pixel requires about 18
MBytes of storage and one second of NTSC-quality color video requires almost 23 MBytes of

- Spatiak Redundgmepsdn almost all natural images, the values of neighboring pixels are
strongly correlated.

- SpecivokRadundmsegnie images composed of more than one spectral band, the spectral
values for the same pixel location are often correlated.

- EervpueoPTNSNEmNNg Adjacent frames in a video.sequence often show very little
change. :

The removal of spatial and spectral redundancies is often accomplished by transform coding,
which uses some reversible linear transform to the decorrelate the image data (Rabbani
and Jones 1991). Temporal redundancy is exploited by techniques that only encode the
differences between adjacent frames in the image sequence, such as motion prediction and
compensation (Jain and Jain 1981; Lin and Zaccarin 1993).

In the last few years, the wavelet transform has become a cutting edge technology in
image compression research. Although the literature on wavelets is vast, most of the papers

*The work in this paper was supported by Summus, Ltd. =
'To appear in Multimedia Systems, Vol. 2, No. 3
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dealing with wavelet-based image compression are written by specialists for the specialist.
The purpose of this article is to provide a practical, nuts-and-bolts tutorial on wavelet-
based compression that will (hopefully) help you to understand and experiment with this
important new technology. :

This papér is organized into three main sections. Section 2 discusses the theory behind
wavelets and why they are useful for image compression. Section 3 describes how the wavelet
transform is implemented and used in still image compression systems, and -presents some
results comparing several different wavelet coding schemes with the JPEG (Wallace 1991)
still image compression standard. In Section 4 we describe some initial results with a novel

software-only video decompression scheme for the PC environment. We conclude the paper

with some remarks about current and.future trends in wavelet-based compression.

1.1 A Note on Performance Measures

Throughout this paper, numbers are given for two measures of compression performance
— compression ratio and peak signal-to-noise ratio (PSNR). The results of both of these
performance measures can be used to mislead the unwary reader, so it is important to
explain exactly how these figures were computed. We define compression ratio as

the number of bits in the original image
the number of bits in the compressed image’

In this paper we confine our measurements to 8 bits per pixel (bpp) greyscale images, so
the peak signal-to-noise ratio in decibels (dB) is computed as

255
RMSE

where RMSE is the root mean-squared error defined as

PSNR = 20log;q

[ A

RMSE = ,| ==Y " [f(i,5) - f(i,7)]
NM =1 5=1 t

and NV and M are the width and height, respectively, of the images inlpixell, [ is the original

image, and f is the reconstructed image. Note that the original and the reconstructed images

must be the same size.

2 Wavelets

The purpose of this section is to provide an intuitive understanding of what wavelets are and
why they are useful for signal compression. For a more rigorous introduction to wavelets,
see (Daubechies 1992), (Chui 1992), or (Jawerth and Sweldens 1992).

One of the most commonly used approaches for analyzing a signal f(z) is to represent
it as a weighted sum of simple building blocks, called basis functions:

f(@) = Le¥i(e)

where the ¥;(z) are basis functions and the ¢; are coefficients, or weights. Since the basis
functions ¥; are fixed, it is the coefficients which contain the information about the signal.
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The simplest such representation uses translates of the impulse function as its only bases,
yvielding a representation that reveals information only about the time domain behavior of
the signal. Choosing the sinusoids as the basis functions yields a Fourier representation
that reveals information only about the signal’s frequency domain behavior.

For the purposes of signal compression, neither of the above representations is ideal.
What we would like:te. bewei#: 8 representation which' containg' information- about-botle
the time and frequency. bebawior.of: the.signal, More specifically, we want to know the
frequency content of the signal at a particular instant in time. However, regolution in time
(Az) and resolution in frequency (Aw) cannot both be made arbitrarily small at the same
time because their product is lower bounded by the Heisenberg inequality

1 ool

AzdAw > 3

This inequality means that we must trade off time resclution for frequency resolution, or

vice versa. Thus, it is possible to get very good resolution in time if you are willing to settle

for low resolution in frequency, and you can get very good resolution in frequeucy if you are
willing to settle for low resolution in time.

The situation is really not all that bad from a compression standpoint. By ‘their very
nature, low frequency events are spread out (or non-local) in time and high frequency events
are concentrated (or localized) in time. Thus, one way that we can live within the confines
of the Heisenberg inequality and yet still get useful time-frequency information about a
signal is if we design our basis functions to act like cascaded octave bandpass filters, which
repeatedly split the signal’s bandwidth in half.

To gain insight into designing a set of basis functions that will satisfy both our desire
for information and the Heisenberg inequality; let us compare the impulse function and the
sinusoids. The impulse function cannot provide information about the frequency behavior
of a signal because its support — the interval over which it is non-zero — is infinitesimally
small. At the opposite extreme are the sinusoids, which cannot provide information aboyt
the time behavmr of a slgnal because they ha.ve mﬁmte support Mm

aumm The different nuppnrt mdthu allow us to tra.de off time and
frequency resolution in different ways; for example, a wide basis function can examine a
large region of the signal and resolve low frequency details accurately, while a short basis
function can examine a small region of the signal to resolve time details accurately,

To simplify things, let us constrain all of the basis functions in {¥;} to be scaled and
translated versions of the same prototype function ¥, known as the mother wavelet. The
scaling is-accomplished by multiplying z by some scale factor; if we choose the scale factor
to be a power of 2, yielding ¥(2“z) where v is some integer, we get the cascaded octave
bandpass filter structure we desire. Because ¥ has finite support, it will need to be trans-
lated along the time axis in order to cover an entire signal. This translation is accomplished
by considering all the integral shifts of ¥,

U(z-k), keZ.

Note that this really means that we are translating ¥ in steps of size 27k.! Putting this
all together gives us a wavelet decomposition of the signal,
f2)= 3 X culur(z)
v finite k finite
*This is heCluu W(2%z = k) = ¥(2"(z - 27"k)).
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where
Uip(2) = 277 (22 - k)

(the multiplication by 2¢/2 jg needed to make the bases orthonormal). So far-we Hive said
nothing abewe-theeoefficients¢,z. They are computed by the wavelet transform; which i#
just the inner: profiuct f tie'signat-f(2) with the basis. fanctions U, g(z). 2

The comparisons between wavelets and octave bandpass filters was not made just for
pedagogical reasons. Wavelets can, in fact, be thought of and implemented as octave band-
pass filters, and we shall treat them as such for the remainder of this paper.

3 Still Image Compression

A wide variety of wavelet-based image compression schemes have been reported in the lit-
erature, ranging from simple entropy coding to more complex techniques such as vector
quantization (Antonini et al, 1992; Hopper and Preston 1992), adaptive transforms (De-
sarte et al. 1992; Wickerhouser 1992), tree encodings (Shapiro 1993; Lewis and Knowles
1992), and edge-based coding (Froment and Mallat 1992). All of these schemes can be de-
scribed in terms of the general framework depicted in Fig. 1. ian,)

by applyliEi" trivelet=transtorn™ o decorreldte VR TRAPEMItE, "quantizing the resulting
transformr coefficientsy and-eoding the-quantfred* valies. Tmage Tecolistruction 18 Secom-
plished- by~ iftvertitiy tN€ corfpfedslotr operdttBis. We now describe each of the boxes in
Fig. 1 in more detail.

Decompressor

Figure 1: Block diagram of wavelet-based image coders.
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3.1 Implementing the Wavelet Transform

The forward and inverse wavelet transforms can each be efficiently implemented in O(n)
time by a pair of appropriately designed Quadrature Mirror Filters (QMFs) (Croisier et al.
1976). Thetefore, wavelet-based image compression can be viewed as a form of subband
coding (Woods and O’Neil 1986). Each QMF pair consists of a lowpass filter (H) and a
highpass filter (G) which split a signal’s bandwidth in half. The impulse responses of H
and G are mirror images, and are related by

gn = ("1)1._""1—"- () .

The impulse responses of the forward and inverse transform QMFs — denoted (,G) and
(H, @) respectively — are related by

4 2
@

To illustrate how the wavelet transform is implemented, we shall use Daubechie’s W
wavelet (Daubechies 1088). We chose this wavelet because it is well known and has some
nice properties. One such property is that it has two vanishing moments, which means the
transform coefficients will be zero (close to zero) for any signal that can be described by
(approximated by) a polynomial of degree 2 or less. The mother wavelet basis for W is
shown in Fig. 2. The filter coefficients for A of W; are

Ia =
hy, =

P~ -1

ho =  0.332670552050
h = 0.806891509311

hy = 0459877502118

hs = —0.135011020010

hy = -0.085441273882
hs = 0.035226291882

from which the coefficients for G, /, and G can be derived using Equations 1, 2, and 3.
The impulse responses of H and G are shown in Fig. 3.
A one-dimensional signal s can be filtered by convolving the filter coefficients cx with
the signal values:
M
3 = Z Ck8i—k
p k=0
where M is the number of coefficients, or taps, in the filter. The one-dimensional forward
wavelet transform of a signal s is performed by convolving s with both A and G and
downsampling by 2. As dictated by Equation 1, the relationship of the A and G filter
coefficients with the beginning of signal s is :
hs he by By By ho
: S0 8 97 83 84 85 %8
Gs 94 G3 G2 &1 Do
Note that the & filter extends before the signal in time; if s is finite, the A filter will extend

beyond the end of the signal. A similar situation is encountered with the inverse wavelet
transform filters H and G. In an implementation, one must make some choice about what

5
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Figure 2: The mother wavelet basis function for Wj.

Frequency Responss of the WE'H and G Filtars

0.4 08 0.8 1
Nommalized Fraquency

Figure 3: Frequency response of the Ws QMFs.
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values to pad the extensions with, A chaice which works well in practice is to wrap the
signal about its endpoints, i.e.,

¢ Sn—1 snIt’D 81 853 *** 8p—2 Spw1 In |SQ0 51 -,y

thereby creating a periodic extension of s.

Fig. 4 illustrates a single 2-D forward wavelet transform of an image, which is accom-
plished by two separate 1-D transforms. The image f(z,y) is first filtered along the z
dimension, resulting in a lowpass image fi(z,y) and a highpass image fg(z,y). Since the
bandwidth of f, and fy along the z dimension is now half that of f, we can safely down-
sample each of the filtered images in the z dimension by 2 without loss of information. The
downsampling is accomplished by dropping every other filtered value. Both fi, and fg are
then filtered along the y dimension, resulting in four subimages: frr, fim, fur, and frm.
Once again, we can downsample the subimages by 2, this time along the y dimension. As
illustrated in Fig. 4, the 2-D filtering decomposes an image into an average signal {fr.r)
and three detail signals which are directionally sensitive: fry emphasizes the horizontal
image features, fyp, the vertical features, and fig the diagonal features. The directional
sensitivity of the detail signals is an artifact of the frequency ranges they contain.

Ju(x,y)

Ju(xy)

iy

Figure 4: Block diagram of the 2-D forward wavelet transform.

It is customary in wavelet compression to recursively transform the average signal.? The
number of transformations performed depends on several factors, including the amount of
compression desired, the size of the original image, and the length of the QMF filters. In
general, the higher the desired compression ratio, the more times the transform is performed.

After the forward wavelet transform is completed, we are left with a matrix of coefficients
that comprise the average signal and the detail signals of each scale. No compression of the
original image has been accomplished yet; in fact, each application of the forward wavelet

? A more sophisticated decomposition strategy is to use the wavelet packets of Coifman and Meyer (Wick-
erhouser 1992; Coifman ‘and Wickerhouser 1992),
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transform causes the magnitude of the coefficients to grow, so there has actually been an
increase in the amount of storage required for the image! Compression is achieved by
quantizing and encoding the wavelet coefficients.

The 2-D inverse wavelet transform is illustrated in Fig. 5. The average and detail signals
are first upsampled by 2 along the y dimension. Upsampling is accomplished by inserting
a zero between each pair of values in the y dimension. The upsampling is necessary to
recover the proper bandwidth required to add the signals back together. After upsampling,
the signals are filtered along the y dimension and added together appropriately. The process
is then repeated in the 2 dimension, yielding the final reconstructed image. .

~,

Figure 5: Block diagram of the 2-D invérse wavelet transform.

3.2 Quantization

The forward wavelet transform decorrelates the pixel values of the original image and con-
centrates the image information into a relatively small number of coefficients. Fig. 6 (Left)
is a histogram of the pixel values for the 8-bits per pixel (bpp) 512 x 512 Lena image, and
Fig. 6 (Right) is a histogram of the wavelet coefficients of the same image after the forward
wavelet transform is applied. The “information packing" effect of the wavelet transform is
readily apparent from the scarcity of coefficients with large magnitudes.

The sharply peaked coefficient distribution of the wavelet transformed image has a lower
zero-th order entropy (4.24 bpp) than the original image (7.46 bpp), thereby increasing the
. amount of lossless compression possible,

‘We can also take advantage of the energy invariance property of the wavelet transform
to achieve high-quality lossy compression, The energy invariance property says that total
amount of energy in an image does not change when the wavelet transform is applied. This
property can also be viewed in a slightly different way: any changes made to the values
of the wavelet coefficients will result in proportional changes in the pixel values of the
reconstructed image. In other words, we can eliminate (set to zero) those coefficients with
small magnitudes without creating significant distortion in the reconstructed image. In
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Figure 6: LEFT) Normalized histogram of the pixel values in the original Lena image.
RIGHT) Normalized histogram of the wavelet transform coefficients of the same image.

practice, it is pcl)saible to eliminate all but a few percent of the wavelet coefficients and still
get a reconstructed image of reasonable quality. The elimination of small valued coefficients
can be accomplished by applying a thresholding function

{0 ifje <t
T(:,z)_{ z otherwise

to the coefficient matrix. The amount of compression obtained can now be controlled by
varying the threshold parameter .

Higher compression ratios can be obtained by quantizing the non-zero wavelet coeffi-
cients before they are encoded. A quantizer is a many-to-one function @(z) that maps many
input values into a (usually much) smaller set of output values. Quantizers are staircase
functions characterized by a set of numbers {d;;i = 0,..., N} called decision points and
a set of numbers {r;,i = 0,...,N — 1} called reconstruction levels. An input value z is
mapped to a reconstruction level r; if z lies in the interval (d;,ds1].

To achieve the best results, a separate quantizer should be designed for each scale,
taking into account both the properties of the Human Visual System (Marr 1982) and the
statistical properties of the scale’s coefficients. The characteristics of the Human Visual
System guide the allocation of bits among the different scales, and the coefficient statistics
guide the quantizer design for each scale. Descriptions of various bit allocation strategies
can be found in (Matic and Mosley 1993) and (Clarke 1985).

The distribution of coefficient values in the various detail signals can be modeled rea-
sonably well by the Generalized Gaussian Distribution (GGD). The probability density
function of the coefficient distribution at each scale v, then, can be given by (Abramowitz
and Stegun 1965):

2(e) = [S552) exp (~[o(ens o) e]™)
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(Sca.le v | Codeword Size | Decision Points and Reconstruction Levels

(in bits)

8 2 d; | 5, 10, 23, 48, 256

. T | 7, 15, 32, 65

7 3 d; | 5, 10, 18, 28, 40, 57, 81, 117, 512
i | 1, 14, 22, 33, 47, 67, 95, 139

6 E] d; | 10, 16, 26, 41, 63, 95, 144, 223, 1024
i | 12, 20, 32, 50, 76, 114, 174, 271

5 5 d; | 20, 33, 51, 73, 99, 128, 161, 201, 245
- | 201, 339, 386, 436, 500, 591, 738, 2048
e | 25,41, 61, 85, 113, 143, 179, 223, 267

314, 362, 410, 461, 539, 644, 834

Table 1: Lloyd-Max quantizers generated using magnitude data from the Wy transformed
Lena image.

where

_ [T/
q(al G')— a [I‘(l/a)]

and -
I(a) = j; ete-tdy,

o, is the standard deviation of the coefficient distribution at scale v and o, is a shape
parameter describing the exponential rate of decay of the distribution at scale ». For
example, when «, = 1 the GGD becomes the Laplacian pdf, while a, = 2 leads to the

Gaussian pdf. The a, appropriate for a particular class of images can be computed using -

the x? test or by simple observation. For the W; wavelet and the Lena image, several of
- the appropriate values of a, and g, are:

ag = 0.58 og = 548
Qr = 0.49 oy = 9.39
ag = 043 og = 1433
as = 039 os = 2017

The design of scalar quantizers will also depend on the type of encoder to be used. If
the encoder uses fixed-length codewords, the Lloyd-Max algorithm (Max 1960) can be used
to design a quantizer that minimizes the mean-squared quantization error. If a variable-
length entropy coder is used, uniform quantization is optimal (in the mean-squared error
sense) when the coefficient distribution is Laplacian; for other distributions, the algorithm
in (Wood 1969) can be used to design an optimal quantizer. Vector quantization (Gersho
and Grey 1992) has also been used in wavelet compression systems, for example (Antonini
et al. 1992) and (Bradley and Brislawn 1993). ‘

Table 1 lists the decision points and reconstruction levels for a set of Lloyd-Max quan-
tizers generated using magnitude data from the Ws transformed Lena image. One extra
bit per codeword is needed to represent the sign of the quantized coefficient. The codeword
sizes were chosen by experimentation.
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3.3 Coding the Coefficients

The encoder/decoder pair, or codec, has the task of losslessly compressing and decompress-
ing the sparse matrix of quantized coefficients. Codec design has received a tremendous
amount of attention, and a wide variety of schemes exist (Lelewer and Hirshberg 1987).
The design of a codec is usually a compromise between (often conflicting) requirements for
memory use, execution speed, available bandwidth, and reconstructed image quality.

For applications requiring fast execution, simple run-length coding (Pratt 1978) of the
zero-valued coefficients has proven very effective. (The distribution of non-zero coefficients
is such that rarely is it profitable to run-length encode them.) The zero run-lengths can
be encoded using either fixed-length codewords or variable-length entropy coding; entropy
coding is more expensive to implement, but can improve the peak signal to noise ratio
(PSNR) of reconstructed images by as much as 3 dB, depending upon the energy-packing
ability of the wavelet in use.

For applications requiring the best possible image quality at a particular compression

ratio, a technique such as Shapiro’s Zero Tree encoding (Shapiro 1993) is a better choice.”

The execution speed tradeoff between these two codecs is quite dramatic: our run-length
entropy coder takes less than one second to compress a 512 x 512 8 bpp image on a 66-MHz
80486 computer, and Zero Tree-like coders can take up to 45 seconds to compress the same
image on the same machine. However, the quality of the Zero Tree image is much better
— 36.28 dB PSNR (Shapiro 1993) vs. 33.2 dB PSNR at a compression ratio of 16:1.

3.4 Compression Results

The peak signal to noise ratios of several different wavelet compression techniques appliedr

to the 512 x 512 8-bpp Lena image are compared in Fig. 7. The graphs show that both the
encoding technique and the particular wavelet used can make a significant difference in the
performance of a compression system: the Zerotree coder performs the best; biorthogonal
wavelets (Antonini et al. 1992; Cohen 1992; Averbuch et al. 1993) perform better than Ws;
and variable length coders perform better than fixed length coders.

The performance of a baseline JPEG (Wallace 1991) image compressor® is also indicated
in Fig. 7. At compression ratios less than 25:1 or so, JPEG performs better numerically than
the simple wavelet coders. At compression ratios above 30:1, JPEG performance rapidly
deteriorates, while wavelet coders degrade gracefully well beyond ratios of 100:1. Figure 8
compares the visual quality of several image coders.

4 Video Compression

The wavelet transform can also be used in the compression of image sequences, or video.
Video compression techniques are able to achieve high quality image reconstruction at low
bit rates by exploiting the temporal redundancies present in an image sequence (Le Gall
1991; Liu 1991). Wavelet-based implementations of at least two standard video compression
techniques, hierarchical motion compensation (Uz et al. 1991) and 3-D subband coding
(Karlson and Vetterli 1989), have been reported (Zhang and Zafar 1992; Lewis and Knowles
1990). However, the computational expense of the wavelet transform has so far prevented
its use in realtime, software-only video codecs for PC-class computers. In this section, we

3The JPEG coder that is included in Version 2.21 of John Bradley’s xview program was used to generate
the JPEG performance data shown in Fig, 7.
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Comparison of Wavelet Compression Methods
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Figure 7: A comparison of the image reconstruction quality of several different wavelet
coders and JPEG. The tests were performed on the 512 x 512, 8-bpp Lena image. “VLC"
means Variable Length Coder, and “FLC” means Fixed Length Coder.

describe a new technique for rapidly evalustin,é the inverse wavelet transform and illustrate

its use in the context of a software-only video decoder based on frame differencing.

4.1 The Basic Idea :

The playback speed of a wavelet-based video coder depends in large part upon how long it
takes to perform the inverse wavelet transform. A 66-Mhz 80486 computer takes about 0.25
seconds to compute a complete inverse wavelet transform for a 256 x 256, 8-bpp greyscale
image. Unless one finds a way to avoid performing a complete inverse transform each time an
image frame is reconstructed, wavelets are not viable for software-only video of reasonably
sized images.

Fortunately, it is not necessary to perform the complete inverse transform for each
frame in a slowly varying image sequence. The value of an arbitrary pixel p in an image
is determined by a welghted sum of all the basis vectors in the wavelet decomposition that
include p in their region of support. If the weights (i.e., the wavelet coefficients) of these
basis vectors do not change between frames in an image sequence, then the value of pixel
p will not change either. Therefore, it is not necessary to compute the inverse wavelet
transform for those regions of the image that have not changed between frames. This idea
was first put forth in (Andersson et al. to appear).

The basic idea for rapidly decompressing image sequences, then, is to only compute the
inverse wavelet transform for those pixels influenced by coefficients that have change by a
meaningful amount between adjacent frames in the sequence.

12
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Figure 8: Reconstructed images for the Ws+VLC, Biorthogonal+VLC, and JPEG image
coders. :

Page 317 of 437



4.2 A Simple Frame Differencing Video Coder

The simple video coder described herein is shown in Figs. 9 and 10. Let us consider a
sequence of images {f;}i=0,1,., Where each f; denotes the ith frame in the sequence. The
difference between two adjacent frames is given by

S Afi= fisr = fe

Af; is called a difference image, and it contains only the change in image content between
frame f; and f;;; — it does not contain any redundant first-order temporal informatien.
There is spatial redundancy in Af;, however, and this redundancy can be reduced by
application of some wavelet transform W.* Thresholding can now be performed on the
transformed difference image W(A f;) to eliminate image changes that are considered too
small to be meaningful. After thresholding, we now have an approximate transformed
difference image W(A f;) that is extremely sparse. W(Af;) is then analyzed to determine
which portions of the inverse wavelet transform will need to be performed to reconstruct an
approximation A f; of the ith difference image. This information is then encoded and sent
to the video decoder.

Figure 9: Block diagram of the video encoder.

Using the information sent by the encoder, the decoder can reconstruct K-f. Because of
its sparse nature, A f; can be reconstructed very quickly by computing the inverse wavelet
transform for only those pixels influenced by the coefficients sent by the encoder. We assume
that the decoder has available some approximation f; of frame i, so the next frame in the
sequence can be constructed as ) o

fin=Ffi+ AL

We have implemented a prototype video compression system based on the ideas de-
scribed above and achieved promising initial results, The results of an experiment in which
we compressed 30 frames of the standard Miss America video sequence (the images were
first rescaled to 256 x 256 pixels) are presented in Table 2. The experiment was performed
on a 66 MHz 80486 computer running the OS/2 operating system, and the entire video

*We note that because the wavelet transform is linear, it does not matter from a theoretical standpoint
if we form W(Afi) by W(fis1) — W(f;) or by W(figr = fi).

14
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Inverse Wavelet Ay 4

Figure 10: Block diagram of the video decoder.

Threshold | Compressed | Compression | Transform | Decompression | Speed | PSNR
Size (Bytes) Ratio (sec) (sec) (fps) | (dB)

0 172,2278 11:1 0.074 0.157 6.4 40.73

10 150,977 13:1 0.073 0.150 .| 6.6 | 38.03

20 107,351 18:1 0.061 0.121 8.3 °| 35.06

30 | 91,365 22:1 0.056 0.115 8.6 | 32.22

Table 2: Results of Compression experiments on 30 frames of the Miss America video
sequence. The original, uncompressed sequence requires 1,966,080 bytes of storage. All
times and PSNRs are mean values for the entire sequence.

coder and decoder are written in the C programming langnage. The wavelet we use is an
integerized version of Daubechies’ W;.

Performing the complete 2-dimensional inverse wavelet transform takes 0.25 seconds per
frame. Our experiments indicate that at compression ratios of around 20:1, the partial 2-
dimensional inverse transform technique is more than four times faster than the full inverse
transform, and is capable of transforming over 16 image frames per second. This measure-
ment is only of the time required to perform the inverse wavelet transform — it does not
include the time it takes to decode the image data or display the reconstructed image.

Our codec currently uses a combination of fixed and variable length codes for represent-
ing the video data. Our primary concern so far has been increasing the speed of the inverse
wavelet transform, and we have not paid much attention to coding issnes. The development
of codes which can be quickly decoded is of major importance, because the time required
for decoding the compressed image data is presently the performance bottleneck of our
experimental decompression system.

5 Concluding Remarks

Basic and applied research in the field of wavelets has made tremendous progress in the last
five years. Image compression schemes based on wavelets are rapidly gaining maturity, and
have already begun to appear in commercial software/hardware systems. The reconstruction
quality of wavelet compressed images has already moved well beyond capabilities of JPEG,
which is the current international standard for image compression.

Video is the next big challenge for wavelet-based data compression. Qur laboratory

15

Page 319 of 437



‘experiments using three dimensional wavelet transforms to compress a 64 x 64 x 64 color
video sequence indicate that visually lossless video compression is possible at compression
rates near 1000:1, but the memory and processor requirements are presently too great to
make such a scheéme practical, The technique presented in Section 4 of this paper is a small
step towards a practical video compression scheme, but much research remains to be done.

1t is also interesting to note that wavelet research on image compression has had a strong
impact on several areas of numerical analysis, especially in the solution of partial differential
equations (Alpert 1992; Alpert et al. 1993; Beylkin et al. 1991). The compression of an

image, which is just a matrix of intensity values, is not really different from compressing

the kernel matrix of a functional operator. The compressed operator is a sparse matrix,
and sparse matrix operations can often be performed orders of magnitude faster than their
non-sparse counterparts. Undoubtedly, this will lead to new results in numerical analysis
that will impact image compression, leading to better algorithms in areas such as computer
Vislon.
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| On the Modeling of DCT and
Subband Image Data for Compression

Keith A. Eiméy and Thomas R. Fischer. Senior Member, IEEE

Abstracr—Image subband and discrete cosine transform coeff.
cients are modeled for efficient quantization and noiseless coding.
Quantizers und codes are selected based on Laplacian, fixed
generalized (jaussion. and adaptive generalized Gaussian models.
The quuntizers and codes based on the adaptive generalized
Gaussion models are slways superior in mean-squared error
distortion performunce but, generally, by no more than 0,08
hepivel, compared with the much simpler Laplacian model-based
yuuntizers and nolseless codes. This provides strong mativation
for the selection of pyramid codes for transform and subband
imuge eoding,

I. INTRODUCTION

FFECTIVE quantization and noiseless coding are depen-

dent on good source models. In discrete cosine iruns-
form (DCT) image coding. Reininger and Gibson [1] use
the Kolmogorov-Smimov goodness-of-fit tests in order 1o
conclude that the non-de transform coefticients can be betier
modeled os Laplacian than as Gaussian. Rayleigh. or gamma
disiributed. Tanabe and Farvardin [2| model image subbund
und DCT coeflicients using the gencralized Gaussian density

_ [vnle.a) e e
plr) = [m exp(=[nte m)|]]) 1)
where
_ 1T/
nea) = = [l‘{l/r}]] (&d]

and conclude that pursmeter value i = 0.7 is most representa-
tive of image subbund data, whereas » = 0.8 is the best choice
for non-de DCT coeflicients, given an 8 x 8 DCT applicd
to the lowest lmequency subband. (A generalized Guussiun
parameter value of 1.0 for v yields the Laplacian density.
whereas u-value of 2.0 yiclds the Gaussian density.)
‘The husic goul of this poper ix 10 further quuntify the
resulis of 11 und |2] by studying the consequences of the
* modeling assumptions on the resuling coding performance. In
Section 11, wee define a sysiem in which each respeciive DCT
voellicient or subb is Jeled by o ic distribution
and then encoded with the oplimum enwropy constrained
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uniform threshold quantizer (UTQ) |3] for thiat séurce mixle,
{Due 1o the entropy constraint. the guantizer may be conwid
ered 10 have u number of outpul Jevels sufficient 1o preverr
clipping.) The UTQ cntropy versus distortion fmean squa
error) performance is essentially the same ax for the optimw
entropy constrained scalar quantizer for the source mode
under consideration, and it never differs from the souree run
distortion function by more than 0,255 bfsample |3]. Optimum
rute allocation is applied sich that the overall mean syuurey
error is minimized. We compare the peak signul-lo-nois
ratio (PSNR) versus rate (entropy) performance of adapii.
generalized Guussiun model-based guamization with that i
simpler Laplacian and fixed generalized Gaussian model
based yuantization. Assuming that the respective quantizv
DCT coeflicients or subbands can be noisclessly encode
with zero redundancy (that is, at their first-order entropy
we make the empirical observation that the more comples
udaptive generulized Guussion modeling offers virtually
improvement in PSNR performance. :

In Section 1ll. we extend the coding system to include
o model-based noiseless encoding in order 1o compare the
upplicability of the three modeling approaches 10 such an
upplication. That is. for each DCT coefficient or subband. we

let the geometric distribution model define an ideal noiscless

code und then determine the redundancy of the code stith
respect o the distribution of the yuantized datu. us measured
by the discrimination [4].

Results for the model-based quuntization and noiscless
coding system are given in Scciion 1V, The gencral conelusion
is that for a wide class of images. the simpler Laplacian
madel-based coding is quite robust, The gencralized Gaussian
model-based coding is always superior but by no more than
0.0 bipixel. Very lintle is lost. in u rate versus distortion senw.
by basing the quantization und noiseless codes on the simple
Laplacian model. These observations verily the suilubiliny of
pyramid codes [S]={10] for DCT or subband imuge coding,

~
11. CODER STRUCTURE. MODELS, AND QUANTIZERS

This paper considers 1wo intraframe image coder structures.
A discrete cosine transform (DCT) coder [ 11] uses 8 % K pivcl
blocks and UTQ's designed for each coetfivient, A subhund
coder [2]. [12]. [13] uses a seven-bund octave decomposilion
obtained using Mallu's wuvelet-based exuct reconstruction
filter bank [14] (2 recomputed 31-tap version of Mallut™

«lilter with coefficients lisied in Appendix A). The lowest

frequency subband (one sixicenth the. size of the original
image) is DCT encoded using ¥ x 8 blocks, with LTQ
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* again designed for euch Coefficient. The remaining subbands
are uniform threshold yuantized. Because the subbund voder
uses the DCT to encode the Jowest frequency band, this coder
will hereafter be referred 1o as o hybrid coder, The use of
the DCT for encoding of the lowest frequency subbund is
motivaied by the fact thar most of the energy in natural images
is contained in the lower frequency bands. The finer freguency
resolution of the DCT is thus panicularly well suited for
coding the lowest frequency subband. in with the
higher frequency bands, where there is less variation in encrgy
conlent with respeci 1o frequency. Both coders use optimum
rate allocation for the mean square error distortion measure,
bused on the coefficient models, ay we will discuss later.
Three different geometric models are studied for each.coder.
These are Laplacian, fixed gi lized Gaussian. und udaptive
generalized Gaussian models,

A. Laplacian Modeling

In order to define the Laplacian distribution approximating a
given empirical distribution. the estl of the mean absolute
value of the data is computed. The corresponding distribution
is then given as

)= %l‘_al" (k1]
where

A= 4

1
EXT
assuming .\ is 2ero mean, This model is simple and mathemat-
ically tracwble. The more complicated generalized Gaussian
distribution will. however. ulwayx provide at least us good u
fit to the empirical distribution 1o the exient that mean absolute
value und variance can be uccurately estimated.

B. Generalized Gaussian Maodeling

The fomily of gencralized Gaussian distributions is given
by (1) and.{2). A gencrulized Guussiun model can be chosen
by matching the estimated mean absoluie value and variance
of the data set to those of a gt | ibuti
This is accomplished [14] by solving

Cw= F"(@) 15)

where

T{2/n)

Fla)= 6)
fee) :;r(l;u}r{:!/n}

and o is the estimated variance of the input signal. The
vilues of 1~ and o completely specify the generalized Gaussian
distribution having the sume first two moments as the empirical
distribution. In practice, a look-up table is used 10 invent
Flr) 1o solve for 1+ with reusonable precision. The software
implementation studied accelsed a 10 00-point 1able to cover
¥ values from 0.1 to 2.05.

i

C. Mudeling of DUR)

In uniform threshold quantization_ with o seco outpur level
(u-midiread guantization) and an arbitarily Jurge number of
autput levels. the step size complewely specifies all threshold
levels of the quantizer and purameterizes the raie distortion
performance. The output entropy can he computed hased on
the probability of euch output letter (ohwined by iimegration
of the source density). Similarly. the expected distortion is

lculable after first puting the centroid of each decivion
region. The centroid is given by |15]

-y

) i i
M= Tgm———— (7
/ parldr
where r; and r;4; are the lower and upper thresholds,
respectively. of an arbitrary decision region. The expecied
distortion is then (for an L-level quaniizer) | 11|

L-1 L
D=3 f' (= e plr) b (8)

iml) ¥
An analytical for the ¢ ids and for the exy |
distortion exists for the Laplacian distribution. as closed-form
antiderivatives can-be found using standurd (echnigues [15].
Numerical integration is required for solution of the general-

ized Gaussian case. The quanti ute can
be modeled by [11]
Div.R)= -;{u.-}?)a’z""', 9

where ¥(1-. It} depends on v, which is the frec parameter of
the unit-variance generalized Gaussiun probubility density (sce
(1) and (2)).

D. Rate Allacation

In order to compare the impact of the choice of model on the
performance of the coding system, saftware implementions
were performed for the three modeling methods. For each re-
spective model. the optimum encoding rates for the respective
UTQ are computed as follows.

Noration: The rate to a DCT cocfficicnt will
be referred 1o as R;. Similarly, a DCT cocflivien! variance
will be shown as #?. The dc cocfficient is ussigned index
zero. The order of assignment of the ining coeflivients
is unimponant to the following development. In order 1o
index DCT coefficients and subbunds simuliancously, DCT
coefficients will be assigned single indices und subhands
double indices. that is. the Ath subband of the jih level of 2
subband decomposition will have varince o7 . and allocated
rate 7 4. The first level of decompasition (4 =1) comesponds
to the three largest subbands that are one fourth the size of
the original image. The second level is composed of the three
subbands that are 1/16th of the original image size. Within
u level of decomposition. the first subbund (k=11 capluees
vertical edges. the second captures horizontal edges. and the
third diagonal cdges snd comen, The number of lewels of
decomposition is given by J. und N ix the length of a sidv
of u DCT block. *
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{5 Aduprive Generalized Gaussian Muodel

Thin is the most complicated of the three approaches.
It is “udaptive” in that it models the image signals to be
cncoded based on their estimated statistics, First, a generalized
Ciuussian parameter 1 is computed for each subband und euch
non-de DCT cocfticient based on estimaied meun absolute
value and viriance as described in (5) and (6). The dc
coellicient is-modeled as Gaussian (v =2.0), as recommended
hy Reininger and Gibson (1]. Since de coefficients represent
only 1/64th of the 'DCT coefficients 10 be. encoded. any
mismatch that exists in the modeling of the dc coefficient does
ot have a significant impaét on performance.

We confirmed that distortion is @ decreasing function of
output entropy for uniform threshold scalar quantization of
gencralized Gaussian-sources by numerically computing rate-
distoriion curves for output entropies ranging from 0.01 to 5.0
b/pixel in increments-of 0.01 bipixel: This was done for values
of i from 0.3 to 1.3 in steps of 0.025 and for v =2.0. which is
a total of 42 different values of v. The functions (v, ) were
then availuble by manipulating (). A representative set of
these functions is plotied in Fig. 1. The functions are modeled
as conswnt for rates above 5.0 bfpixel. Since the distortion-
rute functions are convex, the Kuhn-Tucker conditions [16]
are sulisfied. Thus. the rate allocation can be derived using
Lagrangian technigues {11]. With the a priori assumption that

iy =2.0. the rate allocation equations are found to be

n=n+ %Iog,
(20108, 21y(vi. Ri) = x(wi. Ri)/OR)a32!
= .

[410)]

1
M =R+ EIUB:
) (20005, 2)7(#j00 Rj) = O1(vy e, Ria)[OR; i)ard 2%

A
(n
where
Néal
A= 1] ([-zung,. 2y(y;. A)

=l

5 cigid
_l.i“u.'.ﬂ:)]ﬂ;ﬁu)l’h 3

dR; !

48 g
. H ([‘.!(Ing,. RAL IO (PP (‘J_"v{-rgl;_ﬂ,ﬂl
y=1 b=l ik

V2

ca ‘-‘"") ; (12
In the event of u negative rate assignment. the most negutive
rale is sel (o zero, and the rate allocation is recalculated for
the remaining signals,

Given the computed rate allocstion, step sizes ure selecied
such that the output of each UTC | have entropy eyuivalent
10 its allocated rate. This is acco. - «tished by forming a look-
up table that gives the step size necessary 10 achieve a given

* output entropy for euch source model. The quantizer output

levels can then be computed as the centroids of the decision’

Genarapssd Gausiian ¢ )
-~ [

sz Caeflicient

@ 08 | 15 2 M ) M 4
Ensropy (bawpinel)
Fig. I. Q G for various Giamssian disiribu-
fTiuns,

tegions. For the software implementation. step sizes have been
calculated 10 achieve entropies from 0.01 w0 5.0 bipixel in
steps of 0.01 b/pixel for each of the 42 values of i mentioned
previously. For allocations greater than 5.0 bfpixel. the step
size can be approximated using the relation [17]

H=0{X)=logy A (K}

where H is the entropy of the output of the yuantizer. und A
is the step size. Since the entropy of the generalized Gaussian
source is 3]

" vl ) 1
WX = =logy [ s | + = +
a0 oy [2['([,’9!] vl 2 ti4
the value of A\ to achicve a given H is found to be
gt a2
e 10 VO it P

=TT

The UTQ step size is then available by mﬁllipl,ring A by the
source standard deviation.

F. Fived Generalized Gaussiun Mode!

The fixed generalized Guussian approach 2] assumes
constant distnibution shape for each subband and non-de DCT
coefficient. Following Tanabe and Farvardin [2]. we select i+ =
0.7 for the subbands and 1 = 0.8 for the non-dec & = ¥ DCT
coefficients of the lowest frequency subband for the hybrid
coder case. In the 8 x & whole-image DCT case. we wad] ulso
use 1+ = (.8 since the DCT size is the same. The de coeflicient
is again modeled as Gaussian. This modeling approuch thus
uses only the 1bles for 1 values of 0.7. 0.8, and 2.0 thin
were used for the adaptive generalized Guussian case in vrder
to select the step size yielding outpul entropy equal 1 the
allocated rate for the given generalized Guussian source.

The optimum rate allocation equations are availuble ax «

«. special case of (10-12) us

Mo=R+ é[uge

[20og, 2020, Ry) = Sa(20 Ro)foRu)ri2®!

1 e
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Ro=R+ § logy A. Quantificarion of Re o T-'n {iser
[2llog, 2708 Ri) = 108, R)/ORJo < The diserimination is useful o uantifying the edundancy

A
Rin=R+ -']og:,
[2[!0&. 2(0.7. Rj) — &4(0.7. R_,;.]/dRJ vod 24
A

(1%
where

A= [2{!0[{‘ 29v(2.0. Ry) = %ﬁ] #&2”

Niay

-1

PR S R
w?!") T1 I (2ttok, 2)v(0.7. Rj)

j=1 k=]

_ thior R )] e 22,)’-,411)‘

([znos. 2)9(0.8. 7)) = "——“"%—R-—’]

(19)

OR;,

C. Laplacian Mode!

Under the Laplacian assumption. all subband and non-dc
DCT coefficient distributions are modeled as Laplacian. The
de coefficient is modeled as Gaussian for purposes of selecting
the step size from the table. It is. however, grouped in with
the rest of the coefficients (modeled as Laplacian) for the
computation of rates, To further simplify the equations, it is
assumed that 4(R) in (9) is constant for all rates. The rate
allocation becomes a highly simplified version of (10)+12)
.-r7‘2i

A

3 o2
rr“.‘.'!J

Ri=R+ ;tug, (20)

Rix=R++= km (21)

where
X

O e 1) (R

i=0 jml ksl
Oniy the tables for v = 1.0 and v = 2.0 are used by this
hed. Fof rate all greater than 5.0 b/pixel,
the step saze is again computed using (13). For a unit variance
Laplacian source, the equation reduces to

A =22 !

(22)

23

[1I. MODELING FOR ENTROPY CODING

One approach to entropy coding is to base a code on a
model of an empirical distribution. This approach reduces the
side information that must be transmitted in that only the
parameters defining the model need be sent, Assuming an ideal
entropy code is designed for the model distribution, excess bits
will be used for data iransmission due to imperfections in the
model. The redundancy due to the use of the model can be
quantified using the discrimination (4].

incurred in using u geomelric distribution to mude! 3 sourve
distribution for entropy coding. The discrimination. in wnis of
bits per sample, is defined as |4]

(24

Uaei) = 3 ailor 2
4

a3

.where g represents the discrete distribution of the da, and
“( is the veetor of bin probabilitics obtained by partitioning

the geomeric distribution using the same siep size as wins
used for the uniform threshold quantization of the source. The -
discrimination is nonnegative [4| and provides o measure of
the difference in bils between the entropy of the source aid
the average codeword length of the ideal noiscless code hased
on the model. The best a model of the soutce distribution can
do is to introduce no additional redundancy to the entropy
encoding.

B. Formation of Models

The model 10 be used for the noise] ding is

with that applicd for purposes of in the preceding
section. For instance. the Laplacian coder uses a Laplacian
model for both quantization and emropy coding. The empirical
distributions are formed in cach case by simply counting
the number of occurrences of cach output quantization level
for the given source, A Laplacian or generalized Guussion
distribution defined by the values of v or A that were used in
the modeling for quantization is then applied to model cach
source distribution. The geometric disiributions are conlinuous
and must be partitioned in order 1w form the uppropriate
probability vector, A vector of “bin™ probabilities. which are
suitable for comparison with the measured discrete distribution
of the source, is thus abtained. Bin probabilitics ure calculutcd
unalytlcally for the Laplacian model and by using numerical

gration for the g lized Gaussian models. The discrim-
ination is then gw_en by (24).

C. Side Information

All transform and subband variances and the DCT de
coefficient mean are assumed known. uniformly quantized
with 16-bit accuracy, and transmitted as side information. An
additional 6 b are required for each non-de DCT coefficient
in order to specify which of the allowable vulues of 1 hus
been used 10 form the generolized Gaussian model. In the
hybrid coding case, the non-dc coefficients are placed inte
four groups based on mean absolute value, and a single value
of v is assigned to each group. Two bits are required for cuch
non-de DCT coefficient 1o specify to which of the four groups
each coefficient was assigned. The worst case occurs for DCT
coding of 256 x 256 images. where the overhead is (L0216
b/pixel. Since the side information is small. It is included only
in the figures. displaying PSNR performunce (see Figs. 2. 3.
9. and 10).
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IV, ‘RESULTS

System performance was computed by running the algo-
rithms on four different test images. The images were wken
from the USC Image Daia Base [18]. The girl (Image No.
5.1.1) and tree (5.1.6) are 256 x 256. and girl (Lenna) (5.2.4)
and hahoon (5,2.3) are 512 % 512 images. The images were
received in the 24-b red. green. blue color format. The standard
lincar wransformation followed by 8-b linear quantization was
applicd to yield the luminance (black and white) images that
were used in this study.

Al Quannirization

The Laplacian, fixed generalized Guussian. and adaptive
generalized Guussian techniques all -provide nearly identical
peak SNR performance a1 a given average ouiput eniropy
over u wide runge of design rates. A close look at Figs, 2
und 3 reveals thut the largest performance gap between any

two of the modeling lechnigues is on the order of 0.015 "

b/pixel for both DCT and hybrid coders, (The three technigues
are ubbrevialed on the graphs us AGG. FGG. und LAP for
udaptive generulized Guussian, fixed generalized Gaussion,

Denign Raie diiumuels

Deapn R (bvia/punel)

Fig. 5. Astual eniropy versus design rate for hybrid voding,

and Laplacian, respectively.) One interesting case is the DCT
coding of the girf image. Here, the fixed generalized Gaussian
approach is observed to outperform the aduplive generalized
Guussian approach. This unusual cuse occurs becouse the
adaptive npproach requires an additional 0.0057 bipixel of side
information and because of the uncertuinty in the estimates ol
the mean absolute values and variances of the DCT coefficients
forthe 256 x 256 image. which define the adaptive generalized
Gaussian models.

Although the more complex udaptive generulized Guussian
model does not result in a significant gain in PSNR. it oes
provide a sysiem that more accurately predicts the output
entropy obtained by using panicular step sizes Lo guontize the
input signals. This results in an overall outpul entropy closer
1o the design rate. 3s observed in Figs. 4 and 5. See ulso Tubles
1 and 11 for actual entropies ap a design rate of | bfpixel.

All three methods had slighly more difficulty hiting the
design rate for the hybrid coding case thun for the whole-image
DCT coder. This is aguin likely to be due to the uncertainty in
parameter estimates that is brought on by the smaller number
of data poinis on which 10 base estimates. Differences between
the design rate and average output entropy are altributable
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TABLE |
Actuat ExTrRopy For DCT Coning at A Desios RATE oF | bipixel

Model | tree | girl | lenna

Laplacian | 9181 | 8201

' Fixed Gegeralised Causving | 9426 | B4T6
Adaptive Geoeralised Qaussian | 9795 | 0527 | .

gEsf

TABLE 1l
ACTUAL ENTROPY FoR HYBRID CODING AT A DEsIGx RATE OF | bipixel
Model wrl

Laplacian T655

Fixed Gensralised Gausming Rk
Adaptive Ceneralized Gayssian | . 5261

lenns
an
aan
8307

— el

=,

e ——

+
y
+
|
;

Envopy (bispiael)
Fig. 6. Discrimination for DCT coding.

[Entropy (trapinel)

to mismatch between the respective models and empirical
distributions. The adaptive generalized Gaussian approach
clearly provides the best maich to the design rate of the
three modeling approaches. In ’npplimiom where tolerance
for variation from the design rate is low, the more complex
adaptive g lized Gaussi deling technique may prove
useful.

B. Emropy Coding

The choice of model has a more significant impact on the
performance of the noiseless encoding than on the per

Fig. 7. Discrimination for hybrid coding.
TABLE 11
" DiscriMinaTIoN FOR DCT Cooiva 47 A DESIGS RATE 0F | hitixel
Model | tree | girl | lewna | baboon
Lapiacian | 0209 | 0571 | 0898 | 0074
Pixed Genaralised Qausslan | 0167 | 0302 | 0339 | 0052
Aduptive Ganeralised Gaussian | 0138 | 0113 | oos2 | o028
TABLE IV ;
Discarmivanion For Hysaip Copisa av 4 Desiox RATE oF | hipixel
Model || tree | girl | lenns | baboon
Laplacian | 0813 | 0813 | 0659 | 0119
Fized Ceneralised Guussian | 0440 | 0591 | 0413 | 0087
Adapiive Generalised Guussian [| 0337 | 0370 | 0187 | .0088
TABLE V

DRSCRIMINATION FOR SUBRANDS ONLY FroM
Hysip CoBING AT A DESIGN RATE OF | bipinel
Madal | trec | girl | lenna

Laplacian | 0337 | 0864 | 0500

Fized Generalized Gaussina | 0181 | 0315 | 0278
Adaptive Generalised Gaussian | 0081 | .0047 | 0085

the parameters that is responsible for the behavior of the
discriminations for the baboon image. The adaplive gener-
alized Gaussian model incurs a greater discrimination than the

of the quantization. However. as seen in Tables 111 through
V.:the advantage of the adaptive generalized Gaussian model
at o design rae of | b/pixel reaches a maximum of only
0.0513 b/pixel. Examination of Figs. 6 and 7 shows that the
performance gap beiween Laplacian and adapiive generalized
Gaussian models never exceeds 0.08 Wpixel. The maximum
gap occurs for hybrid coding of the eir/ image at a rate of
about 2 b/pixel. 7

Fig. B displays discrimination obscrved in DCT coding of
the Jlowest frequency subband for the hybrid coder. This case
must be treated separaiely from the whole-image DCT as it
oceurs at a higher average entropy and because (here are only
1/16th as many samples available on which to base parameter

fixed generalized Gaussian model b of the unccriginty
in the parameter estimates that define the aduptive generulized
Gaussian model. '

It is also seen that the discriminations arc not swricily
increasing with increasing output entropy, although they are
nearly so. This appears to be u consequence of the fuct thut the
sample histograms are not stricily decreasing with increasing
signal amplitude but are nearly so.

C. Overall System Performance )

The overall quantization und cntropy coding sysiem peak
SNR can’now be examincd with the diuriminmiw _\il!u-.‘\
included, Through studying the effects of dificrent cistribution
hods on overall performance. the relative ANt

Anll

estimates. It is this added in the of
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of the modeling sch can be . In all cases. ideal
entropy coding of the dc DCT coefficient is assumed.

Comparing the different modeling techniques in Figs. 9 and
10. it is observed that generalized Gaussian modeling saves
only on the order of 0.01 to 0.08 b/pixel over Laplacian
modeling, Fixed generalized Gaussian modeling saves at most
.03 b/pixel over Laplacian modeling. Nearly all of the savings
in rute occurs in the noiseless encoding.

V. CONCLUSIONS

Modeling of source distributions is an effective way of
simplifying quantizer and entropy code design for DCT and
hybrid subband image coding. Adaptive generalized Gaussian
modeling has a slight udvantage over Laplacian modeling,
ranging from about 0.01 to 0.08 b/pixel. Fixed generalized
Gaussiun outperforms Laplacian modeling by an even smaller
maorgin (at most 0.03 b/pixel). Since Laplacian modeling has
such a small cost relative 1o more complex upproaches that
apply the g Gaussian disiri molivation is
found for selecting pyramid codes for transform and subband
image coding applications.

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 4. NO). 2. FEBRLARY I'm?
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TABLE VI
FIR Low Pass FILTER COEFFICIENTS |RECALCLLATED Fros | 14])

i) Bim)y
05417358476

+1 0.3068293983

22 —0.035498 1 8K6

E3] ~0.0778081603

+4 0.0226844115

+5 0.0297465782

26| —0.0121456978

7| -0.0127156595

B 0.0061412322

9 0.0057990417

£10(  —0.0030788380

F 1) =0.0027455277 .
*12 0.0015460305 =
+13 0.0013306310

=4 =0.0005167136
18] =0.0004363417

=

APPENDIX A
FINITE IMPULSE RESPONSE FILTER COEFFICIENTS

Table VI contains the finite impulse response flter coeffi-
cients,

APPENDIX B
IMAGE SOURCES

The images were taken from the USC Image DataBuse
{18). The girf {Image No. 5.1.1) and rree (5.1.6) are 256
® 236, and girl (Lenna) (5.2.4) and babunn 15.2.3) are 512
x 512 images. The images were received in the 24-b red,
green, blue color formal, The standard linear transformation
followed by the 8-b linear quantization was upplied to yicld
the luminance (black and white) images used as input (0 the
algorithms studied.
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Image deing Usiilg Wavelet Trémsforms and
Entropy-Constrained Trellis-Coded Quantization

Parthasarathy Sriram, Member, IEEE, and Michael W, Marcellin, Senior Member

Abstract—The discrete wavelet transform bas recently emerged
a8 & powerful technique for decomposing images inte various
multi-resolution approximmtions. Multi-resclution decomposition
schemes have proven to be very effective for high-quality, low
investigate the nse
trellis-coded quantization (ECTCQ) for
encoding the wavelet coefficients of both monechrome and color
images. ECTCQ is known as am effective scheme for quantiz.
Ing memoryless sources with low ts modernte complexity. The
ECTCQ approach to data compression has'led te seme of the
most effective source codes found to date for memoryless sources.
Performance comparisons are made using the ciassical quadra-
ture mirror filter bank of Johnston and nine-tap spline filters that
were built from blorthogonal wavelet bases. We concinde that
the encoded Images obtained: from the system employing nine-tap
spline filters are marginaily superior althesgh at the expense of
Wmmmmwm&
ratios are obtal h amd color
dmﬂi:&l!“im“hqtm-ﬁhﬂltﬂh
from the liternture reveal that the prepesed wavelet coder is quite
competitive.

L INTRODUCTION

ULTI-FREQUENCY decomposition schemes are not

new in the field of source coding. Subband coding
was first introduced by Crochiere, Webber, and Flanagan [1]
in 1976 for speech signals. The basic idea of any subband
coding scheme is to decompose the input signal into a number
of frequency bands (or subbands) using s bank of bandpass
filters. Bach subband is then decimated and encoded appropri-
ately. At the receiver, the encoded subbands are interpolated
and then passed through reconstruction filters to obtain the
ummwdstpal This approach, in general, demands the
design of sophisticated band, filters to minimize the effects
.nfn.h.uulg
anmﬂlmtqmmwmﬂ]md
allow alias free reconstruction of the signal in'the absence
of quantization errors, Vetterli [3] extended the application
Manuscript roceived August 1, 1993; rovised June 7. 1994, This work
was supported ia pant by the National Sciesce Foundasion under Grass Nos.
NCR-8821764 and NCR-9258374, and by the Advasced Telocommunications
mmmmumumamm—uum

a1 the SPIE oa Vissal Co and

Pamnl.ﬂrhmoﬂ.m lm..u-mh-mdcm
Acousucs, Speech. and Signal Processing, MM.AF 1993, The
associate coordinaing the review of this paper and approving it for
‘publicstion was Prof. Nasser M, Nasrabadi.
PSﬂMIIMDMCMWMMMW

Engincering. The University of Arizona, Tucson, AZ 85721 USA.
[EEE Log Number 9411136,

1057-7149M5504.00 © 1995

of QMF's to multi-dimensional signals, Both separable and
nonseparable extensions were considered, but no coding results
were presented. Subsequently, Woods and O’Neil [4] presentéd
Lbeﬂ:ﬂmpcedumin.mhhndmdiug,m:np‘mmge
was split into 16 equal-sized subbands using circular convolu-
tion with 32-tap QMF's designed by Johnston (5], They used
DPCM to encode the image subbands.

Gharavi and Tabatabai (6] proposed another subband coding
scheme in which the input image is split into seven unequal-
sized subbands. The lowest frequency subband was encoded
using DPCM while other subbands were encoded using mem-
oryless quantizers. Their work was extended for color image
coding as well, Since then, a variety of subband coders have
emerged, capable of high-quality encoding with bit rates a
low as 0.5 bits/pixel (e.g., [T}={10]).

There are several advantages to multi-frequency decom-
position schemes. Since quantization error variance can be
separately controlied in each band by careful allocation of
encoding rate, the overall reconstruction emror spectrum can
be controlled in such a mannes that the reconstructed image is
perceptually pleasing. Multi-resolution approximation schemes
are also well suited for progressive image transmission [11].

A number of multi-resolution approximation schemes have
emerged independently in different fields of engineering and
science [12]. Recently, wavelet theory has been recognized
as a unifying framework for thess multi-resolution techniques
[13}-{15]. Wavelets were originally introduced as a family of
functions that were derived from translations and dilations of
one basic function, referred to as the “mother” wavelet [16].

The basic idea of the discrete wavelet transform (DWT) is
that of successive approximation, together with that of “added
detail™ At each stage, the input signal is decomposed into
a coarse approximation signal (which can be considered a
lowpass version of the input) and an “added detail” signal
(which can be considered a highpass version). In this regard,
the DWT decomposes the input signal into a set of frequency
subbands [13].

Wavelet coders for images havé been implemented both
with scalar quantization [13) and vector quantization {17]. In
this work, we investigate the use of trellis-coded quantization
(TCQ) with the DWT for encoding both monochrome and
color images, TCQ was recently introduced as an effective
scheme for quantizing memoryless sources with low to mod-
erats complexity [18). The motivation for TCQ comes from
Ungerboeck's formulation of tellis-coded modulation (TCM)
[19]. As in TCM, an expanded codebook is partitioned into
subsets, and these subsets are used to label the branches of
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an appropriate trellis. Foragimdnnqum.n\"itﬂhi
algorithm [20] is then used to find the minimum mesm squared
error (MSE) path through the treilis.

In order to apply wavelet decompositions to imeges, we
use a separable 2-D DWT in which emphasis is given to
the horizontal and vertical -directions. For the mosochrome
case. we evaluate the performance-of our wavelet coder for
seven-band and [6-band -decompositions, [n each case, the
lowest frequency sub-image (LFS) is eacoded using a 2-D
discrete cosine- transform' (DCT) encoder (with a block size
of 4 x 4) while the other. sub-images are cncoded using
TCQ for memoryless data. An integer programming sigorithm
[21] is employed to allocate the available bn-meqttuully
among the subbands. A small of side i
consisting of the sample mean of the “DC™ coefficicst mnd the
sample standard deviation-of all sub-images to be escoded, is
transmirted. The procedural flow for color images is similar,
except for the conversion of the RGB planes imo NTSC
transmission primaries (Y, L, and Q).

Qur preliminary results with TCQ of image subbands were
weported in (22] and proved to be quite compedtive with
other di from the li In #at work,

33-tap filters based on Malln'l wavelet [13] mwhyed
for the subband decomposition. The wavelet imsge coder
reported in [ 17] used short-length Alters based on bissthogonal
wavelets [23]. In this work, we use the nine-tap spline filters
suggested in (23] and [17] for the wavelet decomposition. We
also compare, from both a MSE calculation and s sebjective
judgment, the performance of nine-tap spline filters and the
waditional QMF's of Johnston (5].

[I. DISCRETE WAVELET TRANSPORM

A DWT utilizes two functions: the mother wavelet ¢ and
a scaling function ¢. The scaling function 4 can ke chosen
in such a manner that the translations of (dilated vessions of)
 form u basis for a vector space, say V... Leming m vary
results in 2 sequence of successive approximation spaces, ie,
~CVaeViceVoe Vo eV, (1)

Vo is said to have a resolution of 2-™, ‘hmd?
a vector space W, that is the complement of Vi it Viy_).
The approximation-of an' arbitrary-input functien f a1 a
resolution 2°™ (say A (F)) is given by the projestion of [
- onto the vector space V.. The information lost when going
from an approximation of f with resolution 2=™ to the coarser
approximation Ap, 4| (f) with resolution 2=(™+1) 5 seferred 10
a3 the emor, or “detail” signal D,y (F), and can be oblained
by the projection of f oo W .. The detail signal Dy (f)
is typically a-highpass version of f while A, 41 (I) isa lowpass

version.

whmgumlmumhmﬁm
{or mlysu) lowpass and highpass filters, respectively. Given
ion of f at a lution of 2°™ (i.e. An(f)),
Am-l(fl and Dom41(f) can be-computed by filtering A,.(£)
wlthhandgmdﬂunkupillgevuryodmunﬂnufuu
output. This algorithm is illustrated by the block diagram

mmmmwmmm.m4.mﬂm 1999

Asni()

Dunilf)

Block diagram of & wavelet decomponition.

Fig. 1.
Awsi() n -
Dasi(f)

g il

Fig. Bloekdhpmahwmm

shown in Fig. 1, Amluur.im ot lower resolutions are
bained lication of this algorithm,

Leublﬂddbﬂhemvdﬂlndlh:aﬂlinlhﬂrﬂnnnm-
sary for reconstruction. Given Am.i(f) and Dy (£), Am(f)
can be perfectly reconstructed by interpolating Ama.1(f) and
Dy (£) by a factor of two and filtering the resulting signals
with h and g, respectively. The block diagram shown in
Fig. 2 illustrates this algorithm. Figs. 1 and 2 reveal that
discrete wavelet transforms are essentially subband decompo-
sition systems. Hence, the terms “subband decomposition” and
“wavelet decomposition” are used interchangeably throughout
this paper.

It is advaniageous io have wavelet bases that are orthonor-
mal. In that case, the sub-images are orthogonal. In addition,
for image processing applications, one would prefer analysis
and synthesis filters to have linesr phase, Unfortunately, there
exist no noatrivial, finite-length, orthogonal linear-phase filters
with the perfect reconstruction property [17]. In practice, this
difficulty is overcome by either dropping the necessity for
E}fm reconstruction or by using biorthogonal bases [23), -

Bmmnlihmm«vmummyhmm
independently, by Cohen, Danbechies, and Fesuvesn (23]
and by Veuerli and Herley [24]. In (23], it was shown
that it is possible to construct bases that yield finite-length,
linear-phase filters with the perfect reconstruction property by
relaxing the requirement. Decomposition and
reconstruction filters for the resulting “biorthogonal” bases are
related by

H)A(W) = cos(w/2)* E (’ - ;* ’)

- sin (w/2)? + sin (UIZ}”R(W)] (]

and 3
9(n) = (=1)"A(=n + 1), §(n) = {~1)"h(=n +1)

where H and H are the Fourier transforms of h and A,
Rfw)+is an odd polynomial in cos(w), 20 = & +k, and
the functions + and + are (k—1) and (k 1) continuously
differentiable, respectively. H(w) and H(w) can be chosen
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greater than one bit/sample for this scheme. Lower rates were
achieved using vector codebooks.”

In an attempt to achi ding rates berween 0.0 and
1.0 bite/sample with scalar codebooks, a different approach

®

Fig. 3. A four-state treilis with subset labeling (a); codebook and partition
for two-bit per sample TCQ (b).

in several different ways [23). We have chosen to use the
spline variant family of filters suggested in [17] and [23) with
k = k = 4. For this selection, h and A are nine-tap and
scven-tap filters, respectively. For coavenience, these filters
are referred to as nine-tap spline fllters for the reminder of

this paper.
O TRELLIS-CODED QUANTIZATION

A. Fixed-Rate TCQ

The motivation for TCQ- comes from Ungerboeck's for-
mulation of wellis-coded modulation (TCM) [19]. In the
simplest case, for encoding a memoryless source using TCQ
at a rate of R bit/sample, a scalar codebook having 27+!
elements is partiioned into four subsets (esch containing
2R-1 codewords). These subsets are then used to label the
branches of a suitably chosen tellis, An example of a four-
stite trellis with corresponding codebook- and. partition (for
R =2 bits/sample) is shown in Fig. 3. The justification for
these particular choices is provided in [18].

For a given sequence of data, the Viterbi algorithm [20] is
used to find the sequence of codewords (as allowed by the
trellis structure) that minimizes the MSE between the data
mﬁnsdmodmdewwdlqm One obvious method to
encode the resulting seq dewords into a bit
mmi:mﬂmmmmfum:m
through the trellis (equivalently, a sequence of subsets) while
using the remaining R—1 bits/sample to specify & codeword
from the subset chosen at each point in time. A more détailed
description of TCQ and an ‘explanation for why it achieves
excellent performance as an algorithm for data compression
can be found in [18].

B. Entropy-Constrained TCQ

Entropy-constrained TCQ (ECTCQ) was introduced in (25).
In that work, near optimal performance (in a rate-distortion
theory sense) for encoding memoryless sources was achieved

.at encoding rates greater than about |.§ bitw/sample. As

explained in the previous subsection, one bit was used to
specify a path through the trellis with the remaining available
rate being allocated to specifying an element from each subset.
The entropy of the codeword elements in each subset were
then computed as an cstimate to this remaining portion of
the rate, Obviously, encoding rates for scalar.codebooks are

was followed in [26] that enabled ECTCQ to achieve near -
optimal performance for di I at all
nonnegative enmdin;mmsuwwh makes use
of the fact that in any given state, the next codeword must
bechomﬁnmdﬂ:u&, DQUD'QQS[HD;UDJ,
For example, when in the top state (of the trellis in Fig. 3),
the next codeword must be chosen from Sy. S and S are
called supersets. Rather thap using one biv'sample to specify’
8 path through the trellis with the remaining rate allocated to
selecting elements from the chosen subsets, all the available
raie can be used to specify an element from a superset. Since
the subsets are disjoint, specifying an clement from a superset
uniquely detcrmines which subset the codeword comes from,
and therefore, the next trellis state. One variable-length code
is provided for each of the two supersets, and an estimats of
the rate required to encode: data under this scheme is given by
the conditional eatropy of the codebook given the superset:

1
H(X|9)=-Y 3 P(IS)P(S:) logs P(3IS). @)

im0 2E5,

IV. IMAGE CODING APPLICATION

A block disgrmm illustrating the procedural flow for a
monochrome TCQ wavelet coder is shown in Fig. 4. The
input image is decomposed into a series of sub-images using
2 2-D DWT. Since images are spatially limited, the filtering
and decimation result in an expsnsion of data, To circumvent
this problem, we have used a generalization of the symmetric
extension technique described in [8] and [27] that allows
the amount of data to be reduced to ity original size while

-Introducing no distortion.

A similar system using Johnston's QMF's [5] was studied in
[10). In that work, both DPCM and DCT were used to encods
the lowest frequency sub-image (LFS). The DCT based system
was found to be superior, We have followed their approach
and use & 2-D DCT with a block size of 4 x 4 for encoding
the LFS. All “like”™ DCT coefficients of the LFS are collected
into sequences to be encoded using ECTCQ, Each of the high-
frequency sub-images (HFS) is alsa trested as & sequence 1o be
encoded (with 0o further processing) using ECTCQ, In each
case, four-state BCTOQ systems are used.

A small amount of side information, consisting of the
sample mean of the “DC” transform coefficient and the sample
standard deviation of all sub-images and DCT coefficients,
is transmitted. All DCT coefficients and sub-images are nor-
malized by subtracting their mesn (all data except the DC
transform coefficient are assumed to be zero-mean) and then
dividing by their respective standard deviations. The “normal-
ized” transform coefficients and sub-images are then encoded
using ECTCQ at rates determined by the optimum rate-
allocation scheme described in a subsequent section. At the
receiving -end, the resulting bit sequence and normalization
parameters (side information) are used to reconstruct the
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Fig. 4. Block disgram of a monochrome TCQ wavelet coder,
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Fig. 5. Uniform codebook and partition for an ECTCQ sysem.

quantized coefficients. The inverse DCT is performed to obtain
the reconstructed LFS before the final wavelet reconstruction
stage. :

A. Codebook Design

In (25] and [26], it was shown that for encoding memaryless
sources with smooth densities (using ECTCQ), near-optimal
performance (in a rate~distortion theory sense) can be obtained
by employing the codebook design algorithm and encoding
* rule from (28], This algorithm artempts to minimize the MSE

‘of an encoding (bt subject to an entropy coustraint) by
minimizing the cost function

J = Elp(z, )] + AE[I(2)] “®

where z is the daa, £ is the encoded vemsion of z, p(z, £)
is the cost (usually MSE) of rhy$ Aisa
Lagrange multiplier, and /(£) is the number of bits used by
the variable-length codé to represent 2.

In [26], it was found that for rates greater than 2.5
bits/sample, the optimized codebooks do not provide a
significant improvement in MSE over uniform codebooks
(as shown in Fig. 5). Thus, in our simulations with images,
optimized codebooks were used for encoding mates less than
or equal to thres bits/sample while uniform codebooks were
used for all other encoding rates.

A collectidn of 30 images (different from the “Lenna” im-
age) wers used as training data for the optimization algorithm.
Three sets of codebooks—one for the DC coefficient, one for
the other DCT coefficients and . the third for all sub-images
-other than the LFS~—were used, For cach set, codebooks were
designed for integer multiples of 0.1 bitw/sample. The number
of bits required to represent a particular codeword Z was
computed as

I(2]8:) = g5[-10 log; P(#]S:)] (5)

where P(£]S5;) (the probability of using # given that the
superset S; is used) is estimated from the training data,

Let P(2[S;) be the relative frequency of 2 (given sup
S;)fuunmdin;lendu:.ilmihrly.lal?(s.}belﬂrehﬂw
frequency of S; for encoding test data. It is then easy 10 show
that

[=3" 3" PEIS)P(S)I#S)

is an upper bound to the encoding rate (for the test data)
required by two Huffman codes (designed from the training
data for S and S, respectively) each operating on blocks of
codewords with leagth ten.

As pointed out before, the TCQ decoder always knows
whether the next codeword should come from Sy or S;. Thus,
the Sy codewords can be collected into a soquence, Huffman
coded, and transmitted, followed by the same procedure for
the Sy codewords. At the decoder, the two sequedces can be
Huffman decoded. The TCQ decoder can then sequentially
mmednbthhgmmmm&ud&
sequences as appropriate.

B. Rate Allocation

The basic intention of any rate allocation scheme is to
appropriately allocate the bits to be used for encoding among
the data sequences to be encoded so as to optimize the
performance according to some objective cost function, In
this work, we use a bit allocation algorithm in which the
distortion-rate performances of different quantizers are used
[21]. This algorithm produces an optimal or very nesrly
optimal allocstion, while allowing the set of admissible big,
allocation values 10 be constrained to a finite set of nonnegative
numbers.

Specifically, the overall MXEincumdhy our coding scheme
hgu'eaby

K
E=Y aukilr)

il

where E;(r;) is used to denote tha distortion-rate performance
for encoding the ith data sequence at r; bits/sample, K is the

(O]
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number of data sequences', and oy is a weighting coefficient
to account for the variability in the size of the sequences. Also,
since the biorthogonal synthesis filters A and ¢ do not have
the same energy, the quantization noise in various subbands
will not be equally weighted in the image reconstruction.
The scaling factor w;-is inroduced to offset this disparity,
A detailed treatment of the procedure to find these weighting
coefficients for a given set of filters can be found in [29).

In practice, the rate allocation vector B = (ry, ra, +++, rk)
is chosen so as to minimize E subject to the constraint that

K
3 airi < Rbits/pixel. m

iml

In (21, it is shown that the solution B*
to the unconstralned problem

mJn {Z ajw; By(r;) + AE am}

W=l =l

=(r{irg k)

()]

minimizes E' subject to Z‘_l ory £ :_, air{. Thus, to
find a solution to the coaswrained problem of (6) and (),
it suffices to find -A such that the solution to (8) yiclds
LK, air} < R. A deniled meatment of aa algorithm to find
the proper A can be found in [21].

For a given A, the solution to the unconstrained problem is
obtained by minimizing each term of the sum in (8) separately.
If Vi = {pk, *++, qu} is the set of allowable rates for the kth
quantizer, then r} solves

min {aywsEa(re) + Aawra}). ©
re€EVe

C. Side Information

The side information consists of the sample mean of the
DC transform coefficient and the sample standard devistion of
all data sequences to be encoded. A 16-bit uniform quantizer
was used to quantize each of these resulting in
16( K +1) bits/image of side information. In addition, the initial
trellis state for each data sequence needs to be transmitted
to the receiver [30), For a four-state trellis, this requires 2K
bits/image. Hence, the overall sids information amounts to
(18K +16) bits/image that corresponds to 0.002 bits/pixel for
a [6-band d ition of & h 512 x 512 image.

V. RESULTS AND CONCLUSIONS

A. Monochrome image Coding
Coding simulations were performed for the luminance com-
ponent of the 512x 512 “Lenna” image. The performance of
our image coder is reported by tebulating the peak signal-to-
_ noise ratio (PSNR), which is defined as

(10)

For
16-band dmmwtbu mwdvnly

TABLE |
's Firens ros.

Pl o ol PP
FARRLAR- N S

For color images, the MSE is computed as an average over
all three image planes (RGB).

Subband coders that have been proposed in the literature
have used both seven-band (pyramidal) and 16-band (tree-
structured) decompasitions. Westerink, Biemond, and Bockee
in [31] compared different decomposition schemes in a fixed-
rats coding system using QMEF's aad reported that the best
objective performance is obtained when the image is split
into 16 equally sized subbands. It is not mentioned in [31],
Mwwltmmnnyimpmmindnmjcmnquﬂhy
of the encoded images.

Weinmﬂmadﬂnqummdw“vdmmulng

4 seven-band (7B) and a 16-band (16B) decomposition. To
obtain the same PSNR value, the 7B system required an
encoding mte approximately 15% higher than that of the
I6B system. Interestingly, even at equal PSNR, the images
obtained from the 168 system are sharper and have less high
frequency background noise than those from the 7B system.
One possible explanation for this occurrence is the fact that
PSNR is not very sensitive to noise in the HFS because of
their low energy comtent. On the other hand, these sub-images
contain significant odge information and if not quantized
efficiently, introduce ringing and high-frequency fuzziness.
High frequency sub-images are encoded more efficiently by
the 16B system than by the 7B system. Thus, for a given
PSNR, the 16-band decomposition results in an improvement
in both the encoding rate and the quality of the reconstructed
imagery. All simulations from this point forward, assume the
use of a 16-band decomposition.
* Recently, Westerink, Biemond, and Bockee [32] analyzed
the use of QMF's of different lengths on aliasing distorrions
in a subband image coding application using Johnston's filters
and scalar Comparisons were made at encoding
rates of 0.8 and 0.6 bits/pixal. They concluded that from both
an MSE calculation snd a subjective judgment aliasing errors
can be neglectad for filter lengths of 12 taps or more. They also
reported that for encoding rates of at least 0.8 bitw/pixel, the
effect of alissing distortions in image subbands is negligible.
The encoder in [32] nses Lloyd-Max quantizers to encode the
subbands and does not exploit ary correlation in the LFS,

Our subband coding system is significantly different than the
system in [32]. As a result, their conclusions may ot be valid
for our system,. We simulated our system using Johnston's 8,
16, 24, and 32-tap filters. The resuits for encoding the 512
X 5i2 “Lenns” image for “desired™ rates of 0.5 and 0.25
bits/pixel are shown in Table L The obtained rates are different
from the desired rates specified in the rate allocation procedure
because of the entropy-constrained design of the TCQ systems.

It is obvious from Table I that the PSNR performance of the
32- and 24-tap systems mre superior to the 16- and eight-tap
systems. Recall from our discussion in the previous section

m"unu Tmace
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TABLE I
WAVELET COOING RESULTS FOR. ENCODING THE MONOCHROME “Liséia ™ IMacE

[ 1]

that a QMF benk using Johnsion's filters is not a perfectly
reconstructing filter bank even in the absence of quantization
distortions, This distortion (QMF distortion) incresses as the
filler length becomes smaller. QMF distortion is typicaily
not perceptible in the reconstructed image. Hence, the fact
that the PSNR of the reconstructed image from the 32-tap
qmmumwhmmmwﬂwqm
reconstructed imagery.

sub,eeﬁummhgummodlumw
obtained from the eight-tap system were the best. At approx-
imately 0.5 bits/pixel; the encoded images from all systems
were of extremely high-quality, However, the synems based
on the longer filter kernals create “ringing” near edges. At
0.27 bits/pixel, these Cibbs phenomena type errom affected
the quality of the encoded images coasiderably when the long
filters were employed. In smooth regions of the image, all four
encoded images seem to bave spproximately the same amount
of perceptible distortion,

We also implemented our subband coder using the nine-tap
spline Alters, Simulation results for encoding the 512x 512
“Lenna” image are shown in Table II for “desired” rates of
1.0, 0.5, and 0.25 bits/plxel, Comparing results im Tables [
and 11, it is obvious that the performance of the spline filters
is comparable to the performance of the 24-tap system while it
is uniformly better than the performance of 16- and eight-tap
systems. i

A subjective evaluation of the encoded images revealed
"that the encoded images obtained from the system employing
nine-tap spline filters are marginally better than those obtained
from the eight-tap systenr’, This improvement in the sabjective
quality could be anribated 1o the regularity and differentiability
of scaling functions associsted with the spline filters [17]).
More details regarding the importance of regularity and differ-
entiability of scaling functions in an image coding spplication
can be found in [17]. Due to their superior performance, all
results from this point forward assume use of the spline filters
for the wavelet decomposition.

In comparison with other results from the literature, we find
that our wavelet coder is . The simulation
results from Table I (plus two additional points described
below) are shown in Fig. 6-along with other resuits from
the literature, At an encoding rate of 0.48 bitupixel, our
PSNR value of 36,61 dB is higher than those of the entropy-
constained scalar quantization based subband coder of Tanabe
and Farvardin [10] (35.32 dB at 0.45 bit/pixel), the ECTCQ
based threc-component model image coder in [34] (36.53 dB at

’Nummn&_hmuhmdﬁmﬂ
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Fig. 6. Comparisons for encoding the 512 x 512 “Lonns” Image.

0.495 bits/pixel), the ECTCQ based transform coder proposed
in [30) (3597 dB at 0.52 bits/pixel), the adaptive entropy
coded subband coder of Kim and Modestino (35] (35.98 dB
at 0.48 bits/pixel), and the embedded wavelet image coder of
Shapiro [36) (35.97 dB at 0.50 bits/pixel). In [37] and [38],
PSNR’s of 36.70 dB and 37.3 dB were reported at 0.55 and
059 bits/pixel, respectively. When our system is simulated
at these rates, PSNR values of 37.33 dB and 37.63 dB are
obtained, for improvements of 0.63 and 0.33 dB, respectively.

*The subjective quality of the encoded images is excellent.
The encoded image at an average rate of 0.93 bits/pixel
Is almost indistinguishable from the original image and the

. encoded image at 0.48 bite/pixel is extremely good with very

lithe high-frequency background noise or smoothing. The
original image Is shown in Pig. 7 while the image encoded at
0.48 bits/pixel is shown in Fig. 8. There are no visible artifacts
even when viewed oo a high-resolution monitor. The encoded
image at 0.27 bitw/pixe! is quits natral looking but has some
perceprual distortion,

B. Perceptual Weighting

One of the most important objectives of an image coding
system is to encode images in such s manner that coding
distortions are not perceptible. To compress an image such
that a human observer cannot perceive coding distortions T
not an easy task. One must understand the psychophysics of
the human visual system (HVS) 1o achieve this. It is known
that the sensitivity of the human eye in perceiving distortion
is different for different spatial frequencies [39]. We can make
use of this information in our subband coder by perceptually
weighting each subband according 10 the sensitivity of the
human eye to the energy in that subband We follow the
ideas of Perking and Lookabaugh [40] for calculating these

data, generating one ﬂhmummumm
nmummuwmh_—mu-n-h;mwmms

filters (by using suggemsd in (33))
uhunplmu mmumu 14 adds,

gl cocfficients and modify the previously discussed
mmmﬂmmmmmmmcmm
is, instsad of appropriately allocating the available rate among
the data sequences to be encoded so as to minimize MSE given
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Fig 7. Mosochrome “Laana” bmage (312 x 512).

. Fig. 8. Encoded image st 0.48 bisa/pixel (PINR = 3661 dB).
by (6), the weighted MSE (WMSE), defined as

K
WMSE = 3~ auwpiEi(ri) an
iml

is minimized subject to the constraint of (7) where p; is a
perceptual weighting coefficlent for the.ith band.

On the monitor used fo view images, a 512 x 512 image
is of size 128 mm x 128 mm. We set the viewing distance 1o
be four times the size of the image (i.c., d = 512 mm). We
investigated the choice of weighting coefficients associated

n

with the DCT bands by computing them in three different
ways. They are: #
1) All DCT bands were given the same weighting coeffi-
cient, the one comesponding to the center frequency. of
2) Weighting coefficiems for the DCT bands were found
using the fact that a 4 x 4 block is of size | mmx
| mm. For a viewing distance of d, the observer’s eye
subtends an angle o given by

w (§)=

Hence, a = 2 tan~! (1/1024) = 0.1119°. The func-
tion cos [xk(2m + 1)/2N] will complete k cycles in
N samples (and hence in a°). As z result, the fre-
quency ia cycles/degree is given by ¢, = kfa =
8.9366k, Similarly, the value of ¢ corresponding to
mz—DDCTMﬂmX.;.[t,I)mhy:::
\/(8-9366K)* + (8.93661)7 = 8.9366v/E? + [.

3) Frequencies obtained from method (2) were scaled in
such a manner that the value of ¢ corresponding t0 the
highest-frequency DCT band is the same 28 the one
comesponding to the highest-frequency DFT coefficient
( X(127, 127)) in the LFS, Weighting coefficients cor-
responding to the scaled ¢'s were calculated as before.

The DC band was always given a weight of one because
it determines the average intensity of the block. Subjective
tests revealed that the encoded images obtained from using
weighting coeficieats from methad (3) the best. We
obtained PSNR values of 36.37 and 33.47 dB at encoding rates
of 0.53 and 0.28 bits/pixel, , from such a system.
Comparing these results with those in Table IL, it is evident that
percepual weighting results in a small drop in PSNR values
for approximately the same encoding rate. At approximately
0.5 bita/pixel, it was very difficult to identify any improvement
in perceptual quality due to weighting. This is not very
surprising as the eacoded images are of extremely high quality.
However, at an encoding rate of approximately 0.25 bits/pixel,
the encoded image from the perceptually weighted system
looks beter, This improvement in subjective quality increases
as the encoding rate is decreased further,

A primary effect of percoptual weighting is to emphasize
low frequencies with respect to high frequencies. An image
like “Lenna” has linde high-frequency content. As a result,
the effect of perceptual weighting might be exaggerated. We

encodad the “baboon” intage and an aerial image of an urban =,

area, both of which have significant high-frequency content.
As before, the effect of weighting was very difficult to perceive
at 0.5 birs/plxel. However at approximately 0.25. bite/pixel,
encoded images from the perceptually weighted sysiem were
‘significantly beter,

C. Color Image Coding

It is well known that the three color planes (red, green,
and bluia) are highly comrelated. To exploit this redundancy,
it is a commoa practice to transform these planes to the
NTSCuumlhiuuprhl_ninqmiﬂaqu.l.mQ.Thu
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subbands. The LFS for each component is encoded using a
2-D DCT encoder with a block size of 4 x 4.

It is well known that the human eye is less sensitive
to degradation in the chrominance components than to the
degradation in the luminsnce component. As a result, color
Image coders concentrate on encodiag the luminance compo-
nent more efficiently thas the chrominance components. The
subband coder proposed in [6] discards all HFS associsted with
the I and Q components while all subbands of the Y component
are encoded. At the decoder, the chrominance components are
. restored to their original size by interpolstion.

We mvﬂpﬂhdﬂﬂﬂmﬁhﬁ-ﬁww
associated with the chrominance comp
MhmMSEmbymemmh
the following manner:

1) All high-frequency sub-images of I and Q components

were encoded (48B);

2) All high-frequency sub-images of [ and Q components

were discarded (18B).

mm&hmmuwwymd
(both objectively and subjectively) at low eacoding rates (=
0.25 bits/pixel). This Is as expected since even for the 488
system, the HFS receive zero encoding rates from the rate
allocation algorithm becanse of their very low variance. At
high rates (=s1.0 bit/pixel), discarding the HFS associsted
with the chrominance components causes a significant drop
in PSNR and effects the subjective quality of the encoded
images in an interesting way, Without side-by-side comparison
with the origingl, the encoded image from the 18B system
looks extremely good. Howsver, careful comparison with the
original reveals that colom have a lighter, or “washed our”
appearance, The 48B system does pot suffer from this effect.
‘Hence, in the simulations discussed below, the high-frequency
subbands associated with the chrominance components were
not discarded,

Simulation results are presented in Table I for encoding
the color version of the 512 x 512 “Lesna” image at three
different encoding rates, For comparison, the performance of
the ECTCQ-based transfarm coder proposed in [30] is also
shown. It is evident from this table that the PSNR performance
of our wavelet coder is superior 1o the system in [30) at all
encoding rates. mmmmmmmxu
not completely fair b the der in [30] subsamples the
chmmmucommhylh:hﬁmmmdkm
beforeqn:m.uuun
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The subjective quality of the encoded images at all three
rates is extremely good. In particular, the encoded image
at 1,13 bits/pixel is indistinguishable from the original. The
encoded image at 0.47 bits/pixel is extremely sharp and devoid
of any annoying artifacts. Fuzziness and high-frequency back-
ground noise are rotally absent even at an average encoding
rate of 0.24 bits/pixel.
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AN OVERVIEW OF WAVELET BASED
MULTIRESOLUTION ANALYSES"®

BJORN JAWERTH'® AND WIM SWELDENS!'!

Abstract. In this paper we present an overview of wavelet based multiresolution analyses.
First, we briefly discuss the continuous wavelet transform [n lte simplest form. Then, we give the
definition of & mllluuulnlmn lnl!rh and lhw how wavelets fit into it. We take a closer look at
orth al, bi ] and i 1 The fast wavelet transform, wavelets on an
interval, mullidimuolenl wavelats and wavelet packets are di d. Several ples of wavelet
fudile- are mmdur.nd and compared. Piully. zhc essentials of two major applications are outlined:
data comf and compression of linear operators.

Key words. wavelet, multiresolution analysis, compression
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1. Introduction. Wavelets have generated a tremendous interest in both the-
oretical and applied areas, especially over the past few years. The number of re-
searchers, already large, continues to grow, so progress is being made at a rapid pace.
In fact, advancements In the area are occurring at such a rate that the very meaning
of “wavelet analysis” keeps changing to incorporate new ideas,

In a rapidly developing field, overview papers are particularly useful, and several
good ones concerning wavelets are already available, such as [60, 83, 115, 122, 123,
125). Of these, [122] contains a brief introduction to multiresolution analysis, [60]
describes wavelets from an approximation theory point of view, [83] discusses contin-
uous and discrete wavelets, [125) focuses on the construction of wavelets, [115] looks
at wavelets from a signal processing point of view and [123] compares wavelets with
Fourier techniques.
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2 BJORN JAWERTH AND WIM SWELDENS

Our paper differs from these in that it contains some more recent developments
and that it focuses on the “multiresolution analysis” aspect of wavelets. The emphasis
on multiresolition analysis allows us to look at a number of different constructions
of wavelets such as orthogonal, semiorthogonal, and biorthogonal wavelets. By ex-
amining these constructions in a ymified setting, we are ideally positioned to make
comparisons between them. The recent developments contain wavelets on an interval,
multidimensional wavelets, and wavelet packets.

We have selected an expository style and a level of rigor that we hope will present
the ideas without obscuring them in too much detail. Instead of giving exact, detailed
statements in a “theorem-structured” way, we have opted for a more informal style.
References are given throughout, poiting to more details when needed.

For example, this paper occasionally contains statements of the form “A is (es-
sentially) equivalent with B”. The interpretation that we have in mind is that, for
“all practical purposes”, A is equivalent to B. Strictly speaking, the equivalence may
only hold under some extra technical conditions. Good examples are when a formula
is guaranteed to be true only “almost everywhere” or in a “weak sense”.

The style we have chosen is motivated by the intended audience: people with
a more theoretical interest as well as those working in various applied areas. For a
reader in the first category this paper might provide some of the theory, and point to
some of the right references for further study. A reader in the second category could
use the paper to make comparisons, and find connections to related material,

The paper is organized as follows. After a brief sketch of the history of wavelets
we introduce the “continuous wavelet transform.” The discussion of the continuous
wavelet transform is mainly included for historical purposes and for comparison with
the multiresolution analysis wavelets. Next, we give the definitions of “multiresolu-
tion analysis” and “scaling function” (Section 5), derive some basic properties and
illustrate these with some examples. In this section we also give the basic definition
of “wavelet.” Wavelets are then studied in more detail in the next sections, Section 6
discusses orthogonal wavelets, while Section 7 treats biorthogonal wavelets, a gener-
alization of the orthogonal ones, and semiorthogonal wavelets, a compromise between
the previous two. In the following section we study the tion betw let:
and polynomials, and show how this relates to the apprnucimaeion'pmpereiea of wave-
let expansions. In Section § we show how a “fast wavelet transform” can be derived
from the multiresolution analysis properties, In the appendix, the reader can find a
pseudocode implementation of this algorithm. At this point, i.e. after the study of the
basic properties of multiresolution analysis, we are ready to single out some desirable
properties of wavelets. This is done in Section 10. We also give several examples of
wavelet families, such as Daubechies’ and spline wavelets, and compare their prop-
erties. .The next three sections focus on more recent developments such as wavelets
on an interval, let packets and multidi ional wavelets. These sections can
be read independently. Finally, in the last section (Section 14) we consider the basic
ideas associated with two important applications: data compression and analysis of
linear operators.

It goes without saying (almost) that this short overview is still highly incomplete.
It is unfortunate that we were unable to cover many other important and interesting
developments in the area, some of which are more significant than the ones we have
included. For example, we hardly mention the significant volume of work done in the
direction of approximation theory, and the efforts in the field of fractal functions and
the more applied areas are left out almost entirely. We apologize to the people whose
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AN OVERVIEW OF WAVELET BASED MULTIRESOLUTION ANALYSES 3

results we were unable to discuss due to the constraints imposed by the overview
format.

Finally, let us point out that, although wavelets are a relatively recent phe-
nomenon, there are a number of useful sources of information about them. First
of all, there are three new journals with an emphasis on wavelets: Applied Compu-
tational Harmonic Analysis, Journal of Fourier Analysis, and Advances in Compu-
tational Mathematics. S dly, several j ls have had special issues on wave-
lets, such as Constructive Approximation, [EEE Transactions on Signal Process-
ing, IEEE Transactions on Information Theory, International Journal of Optical
Computing, Journal of Mathematical Imaging and Vision, and Optical Engineer-
ing. Also, an electronic informatior service exists on the Internet, the Wavelet
Digest, with the address wavelet@math.scarolina.edu. Last but not least, several
books on the subject exist, monographs as well as edited volumes. The list includes
[13, 20, 21, 43, 49, T4, 92, 96, 106, 108, 116, 119].

2. Notation. Most of the notation will be presented as we go along. The space
of square integrable functions, L*(R), is defined as the space of Lebesgue measurable
functions for which

+o0
M= [ e <o
-c0
The inner product of two functions f, g € L*(R) is given by

(ho)= [ :of(z)y_mdz,

and the Fourier transform of a function f € L?(R) is defined as

o 400
= [ tayeeds
The Poisson summation formula is used in the following two forms,
Yotz - 1) = Y F2kn) e,
1 3
and

S iha( =) e = Y Flw+ kox) o+ kam).
1 k

If no bounds are indicated under a summation sign, € Z is understood.

A countable set {f,} of a Hilbert space is a Riesz basis if every element f of the
space can be written uniquely as f = 3 ¢, fn, and positive constants A and B exist
such that

ANFIP € 3 leal? < B I

3. A short history of wavelets. The history of wavelets could be the topic of
a separate paper. Let us give a short, subjective account.

Wavelet theory involves representing general functions in terms of simpler, fixed
building blocks at different scales and positions. This has been found to be a useful
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4 BJORN JAWERTH AND WIM SWELDENS

approach in several different areas. For example, we have subband filtering techniques,
quadrature mirror filters, pyramid schemes, etc., in signal and image processing, while
in mathematical physics similar ideas are studied as part of the theory of Coherent
'States, Wavelet theory represents a useful synthesis of these different approaches.

In abstract mathematics, it has been known for quite some time that techniques
based on Fourier series and Fourier transforms are not quite adequate for many prob-
lems and so-called Littl d-Paley techniques often are effective substitutes. These
techniques were initially developed in the 30’s to understand, among other things,
summability properties of Fourier series and boundary behavior of analytic functions.
In the 50’s and 60's, these developed into powerful tools for studying other things,
such as solutions of partial differential equations and integral equations. It was real-
ized that they fit inta Calderdn-Zygmund theory, an area of harmonic analysia that
is still very heavily researched.

One of the standard approaches, not enly in Calderén-Zygmund theory, but in
analysis in general, is to break up a complicated phenomenon into many simple pieces
and study each of the pieces separately. In the 70's, sums of simple functions, called
atomic decompositions [35], were widely used, especially in Hardy space theory. One
method used to establish that a general function f has such a decomposition, is to
start with the “Calderén formula”; for a function f, one has that

t@= [ [ it -nan .

The # denotes convolution. Here y4(z) = ¢~'9(z/t), and ¥i(z) is defined similarly,
for appropriate fixed functions ¥ and y. As we shall see below, this representa-
tion is an example of a continuous wavelet transform. In mathematical physics the
Aslaksen-Klauder construction of the (az + b)-coherent states can be seen as another
independent derivation of the Calderén formula (7, 91).

In the early 80, Stromberg discovered the first orthogonal wavelets [126), This
was done in the context of trying to further understand Hardy spaces, as well as other
spaces used to measure the size and smoothness of functions. A ‘discrete version of
the Calderén formula had also been used for similar purposes in [86] and long before
this there were results by Haar [81], Franklin [70], Ciesielski [26], Peetre [112], and
others.

Independent from these developments in harmonic analysis, Alex Grossmann,
Jean Morlet, and their coworkers studied the wavelet transform in its continuous
form [78, 79, 80). The theory of “frames” [51] provided a suitable general framework
for these investigationa.

In the early to mid 80%, several groups, perhaps most notably the one associated
with Yves Meyer and his collaborators, independently realized, with some excitement,
that tools from Calderén-Zygmund theory, in particular the Littlewood-Paley repre-
sentations, had discrete analogs and could give a unified view of many of the results
in harmonic analysis. Also, one started to understand that these techniques could
be effective substitutes for Fourier series in numerical applications. (The first named
author of this paper came to this understanding through the joint work with Mike
Frazier (71, 72, 73].) As the emphasis shifted more towards the representations them-
selves, and the building blocke involved, the name of the theory also shifted. Alex
Grossmann and Jean Morlet suggested the word “wavelet” for the building blocks,
and what earlier had been referred to as Littlewood-Paley theory, now started to be
called wavelet theory.

[
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AN OVERVIEW OF WAVELET BASED MULTIRESOLUTION ANALYSES 5

Pierre-Gilles Lemarié and Yves Meyer [97), independent of Strémberg, constructed
new orthogonal wavelet expansions. With the notion of multiresolution analysis, in-
troduced by Stéphane Mallat and Yves Meyer, a systematic framework for under-
standing these orthogonal expansions was developed [103, 104, 105). It also provided
the connection with quadrature mirror filtering. Soon, Ingrid Daubechies [47] gave a
construction of wavelets, non-zero only on a finite interval and with arbitrarily high,
but fixed, regularity. This takes us up to a fairly recent time in the history of wavelet
theory. Several people have made substantial contributions to the field over the past
few years. Some of their work and the appropriate references will be discussed in the
body of the paper.

4. The continuous wavelet transform. Since we are going to be brief, let
us start by pointing out that more detailed treatments of the continuous wavelet
transform can be found in [20, 77, 78, 83]. As mentioned above, a wavelet expansion
uses translations and dilations of one fixed function, the wavelet ¢ € L*(R). In the
case of the continuous wavelet transform, the translation and dilation parameters vary
continuously. In other words, the transform makes use of the functions

%t(*)=ﬁ;—[¢ (3—-;-&) with a,bE€R, a#0.

These functions are scaled so that their L?(R) norms are independent of a. The
continuous wavelet transform of & function f € L*(R) is now defined by

(l} W{ﬂ,b} = (!;*ni&)-
Using Parseval’s identity, we can also write this as
@ 2W(a.b) = (Fidbas),
where

i vz (aw).

$n:§ (“’) =

We assume now that the wavelet 1 and its Fourier transform ¥ are functions with
finite centers 2 and & and finite radii A and 4A,. These quantities are defined by

]
2= ﬁF f alE@)id,

Al= _}_fm{z - 2)? [(z)[} dz
IR S !
and similarly for @ and A,. The variable = usually represents either time or space;
we shall settle for the first and refer to z as time. From (1) and (2), we see that
the continuous wavelet transform at (a,b) picks up information about f, mostly from
the time interval b + 62 — aAx, b + % + a4, | and from the frequency interval [(@ —
Ay)/a, (@ + Ay)fa]. These two intervals determine a time-frequency window. Its
width, height and position aré governed by a and b. Iis area is constant and given by
4A:4,. The Heisenberg uncertainty principle says that this area has to be greater
than 2. These time-frequency windows are also called Heisenberg bozes.
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6 BJORN JAWERTH AND WIM SWELDENS

Suppose that the wavelet ¥ satisfies the admisaibility condition

oo I N2
om [ 4y o

—o0

Then, the continuous wavelet transform W(a,b) is invertible on its range, and an_

inverse transform is given by the relation
1 oo ptoo dadb
@ =g [ [ wanvae L2

From the admissibility condition, we aee that $(0) has to be 0, and, in particular, ¥
has to oscillate. This, together with the decay property, has given ¥ the name wavelet
or “small wave” (French: ondelette). This shows that the frequency localization of
the wavelets is much better than pointed out above. In most cases @ is zero and the
frequency localization is really in a band [~wy fa, =uy fa)U [w, fa,ws /a), because (0)
vanishes. This can help to understand why a reconstruction formula of type (3) is
possible, :

The transform is often represented graphically and plotted as two two-dimensional’

images with color or grey-scale value corresponding to the modulus and phase of
W(a,b). This representation has been used extensively in areas auch as geophysics.

In applications, it is of interest to find inverse transforms that do not make use
of W over the whole range of a and b. Transforms exist that only use positive values
of a or even only discrete values for a. Furthermore, using the theory of frames it is
possible to study the case where only discrete values for a and b are used, see [83]
for an excellent overview. The most common choice is to use a dyadic grid, ie. to
let a =27/ and bfa = I with j,l € Z [48, 73]. In general, the fewer values of g and
b one wants to use, the more restrictive the condition on the wavelet becomes. The
continuous wavelet transform allows us to use a very general wavelet. At the other
extreme, we shall see that much more restrictive conditions hold for 2 wavelet used in
multiresolution analysis. This allows us, on the other hand, to prove powerful results
such as the construction of orthogonal bases.

The transform that only uses the dyadic values of a and b was originally called
the discrete wovelstutrgnafgemg At this moment, however, this term is ambiguous,
since it is also used to denote the transform from the sequence of scaling function
coefficients of a function to its wavelet coefficients (see Section 9).

The case when a, and b belong to more irregular sets have also been covered.
Such irregular sampling results can be found in (14, 39, 68, 67].

The continuous wavelet transform is also used in singularity detection and char-
acterization (71, 100]. A typical result in this direction is that if a function f'is Holder
(Lipschitz) continuous of order 0 < a < 1, so that |f(z + A) — f(z)| = O(h®), then
the continuous wavelet transform has an asymptotic behavior like

W(a,b) = O(a"*'7?) for a—0.

The converse is true as well, The advantage of this characterization compared to the

Fourier transform is that it does not only provide information about the kind of sin-

gularity, but also about its location in time. There is a corresponding characterization
of Holder (Lipschitz) continuous functions of higher order o 2 1; the wavelet must
then have a number of vanishing moments greater than a, i.e.

00
f Y(z)zPdz=0 for 0K p<a and peZ.
-0
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AN OVERVIEW OF WAVELET BASED MULTIRESOLUTION ANALYSES 7

‘We note that the number of vanishing wavelet moments limits the order of smoothness
that can be characterized.

Ezample. A classical example of a wavelet is the Mezican hat function,

$(z) = (1 - 227"
Being the second derivative of a Gaussian, it has two vanishing moments.
5. Multiresolution analysis.

5.1, The scaling function and the subspaces V;. There are at least two
ways to introduce wavelets: one is through the continuous wavelet transform as in
the previous section, and another is through multiresolution analysis. Here we start
by defining multiresolution analysis, and then point out some of the connections with
the continuous wavelet transform.

A multiresolution analysis of L*(R) is defined as a sequence of closed subspaces
V; of I3(R), j € Z, with the following properties 47, 103]:

l- Vj c Vﬁ.h

2. v(z) € Vj @ v(22) € Vi,

3 vu(z)eVo @ v(z+1) €V,
+eo

+oo
4 |J Visdensein L*(R) and [) ¥;={0},
jm— =—o0

5. A scaling function ¢ € V;, with a non-vanishing integral, exists such that
the collection {p(z = 1) | I € Z} is a Riesz basis of V;.
The references [122, 123] contain an introduction to the concept of multiresolution
analysis.

Let us make a couple of simple observations concerning this definition, Since

9 € Vy C Vi, a sequence (h;) € £2(Z) exists such that the scaling function satisfies

0] p(2) =23 hyp(2z ~ k).
&k

This functional equation goes by several different names: the refinement equaiion,
the dilation equation or the two-scale difference equation. We shall use the first.

It is immediate that the collection of functions {i;; | I € Z}, with p;(z) =
V27 (292 — 1), is & Riesz basis of V;.

By integrating both sides of (4), and dividing by the (non-vanishing) integral of
, we see that

(5) E!n =9
: T

If the scaling function belongs to L, it is, under very general conditions, uniquely
defined by its refinement equation and the normalization [52),

+eo
f p(z)dz =1.

oo

In many cases, no explicit expression for ¢ is available. However, there are fast

algorithms that use the refinement equation to evaluate the scaling function ¢ at

dyadic points (z = 277k, j,k € Z) [15, 18, 47, 52, 53, 122]. In many applications, we
never need the scaling function itself; instead we may often work directly with the hy.
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8 BJORN JAWERTH AND WIM SWELDENS

The spaces V; will be used to approximate general functions, This will be done
by defining appropriate projections onto these spaces. Since the union of all the V;
is dense in L}(R), we are guaranteed that any given function can be approximated
arbitrarily close by such projections.

To be able to use the collection {p(z—1) | | € Z} to approximate even the simplest
functions (such as constants), it is natural to assume that the scaling function and its
integer translates form a partition of unity, or, in other words,

(6) YzeR : 219(::-—?6}:1.
k
Note that by Poisson’s summation formula, the partition of unity is (essentially)
equivalent with
n @(2mk) =6, for ke Z.
By (4), the Fourier transform of the scaling function must satisfy
0 B Blu) = H(u/2)w/2)
where H is a 2x-perlodic function defined by
9) Hw) = E hyee,
k

Since @(0) = 1, we can apply (8) recursively. This yields, at least formally, the product
formula

plw) = ﬁ H(2w).
j=1

The convergence of this product is examined in (27, 47]. The representation of & is
nice to have in many situations. For example, it can be used to construct ¢(z) from
the hy. Using (7) and (8), we see that we obtain a partition of unity if

E{ﬂ‘) =0 or 2{—1]*&5 =0,

Also note that (5) can be written as
H(0)=1.

Ezamples of scaling functions.
(i) A well-known family of scaling functions is the set of cardinal B-splines.
The cardinal B-spline of order 1 is the box function N (z) = Xp,1)(z). For m > 1 the
cardinal B-spline N,, is defined recursively as a convelution:

Np = Np-y = Ny,
These functions satisfy

Npn(z) = 2™ f: (‘:)Nm[h -K),

k=0

.ﬂ,,,(w) = (1 = "_iu)m.

and

iw

L
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(i) Another classical example is the Shannon sampling function,

o) =) i 5u) = 2o 0)
We may take
H(_w] = Xj-np2a(w) for we[-mmn],

and, consequently,

i —1)k
hn=l/25ﬁ and h‘k+]=(2k+}1]w for k€.

Now, for later reference, let us introduce the following 27-periodic function:
)= Y [8(w + ko).
]
The fact that ¢ and its translates form a Riesz basis, corresponds to the fact that
there are positive constants 4 and B such that
0<Ag Flw)< B<oo.

Using (8) and rearranging the even and odd terms, we have
F(2w) = ) (2w + k27)?
= ZE 18w+ km)f! [p(w + r)l?
= Z::[H(w +k27)]? |B(w + k2x)? + | H(w + 7 + k27)[? @ (w + 7 + k2m)]?

(10) =|Hw)P F(w)+|Hw+7) Fw+ ).
This shows that F ia actually x-periodic,

5.2, The wavelet function and the detail spaces W;. We will use W; to
denote a space complementing Vj in Vj4,, i.e. a space that satisfies

"':1'-!-1 =‘G$Wj|

where the symbol @ stands for direct sum. In other words, each element of Vi4; can
be written, in a unique way, as the sum of an element of W; and an element of V;. We
note that the spaces W; themaelves are not necessarily unique; there may be several
ways to complement Vj in Vj4,.

The space W; contains the “detail” information needed to go from an approxi-
mation at resolution j to an approximation at resolution j 4+ 1. Consequently,

P w; =L} (R).
i

A function 1) is a wavelet if the collection of functions {¢(z—1) | | € Z} is a Riesz
basis of Wy. The collection of wavelet functions {t;z | I,5 € Z} is then a Riesz basis
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10 BJORN JAWERTH AND WIM SWELDENS

of L*(R). The definition of 4 is similar to the one of ;; in the previous section.
Note that a union of Riesz bases does not necessarily give a Riesz basis for the total
spen. Even though we did not impose any orthogonality, spaces W; and W; are
“almost” diagonal for |j — j'| large, and this allows the collection of all ¥;; to form &
Riesz basis for L?. Since the wavelet v is an element of V3, a sequence (gi) € £2(Z)
exists such that

(11) ¥(2) =2 gup(22 - ).
k

The Fourier transform of the wavelet is given by

(12) #(w) = Gw/2) Pw/2),
where G is a 2r-periodic function given by

(13) G(w) = z gre™he,
k

Each space Vj and W; has a complement in L*(R) denoted by V§ and W7, respectively.
We have: -

= 3
= @W: md W =DW.
i=j i#i
We deéfine P; as the projection operator onto V; and parallel to V#, and Q; as the
projection operator onto W; and parallel to WF. A function f can now be written as

)= Y Qif(z) = Y wuviu(2).
i il
Recalling the discussion in Section 4, we see that this last equation is in fact an inverse
“discrete” wavelet transform, At this moment the exact conditions on the wavelet are
still unclear, They will made more precise in the next sections. There it will also
become clear how to find the coeficients ;1. We first turn to the case where the y;;
form an orthonormal basis for L (R).

6, Orthogonal wavelets. The class of orthogonal wavelets is particularly inter-
esting. We start by introducing the concept of an erthogonal multiresolution analysis.
This is a multiresolution analysis where the wavelet spaces W; are defined as the or-
thogonal complement of V; in Vi, Consequently, the spaces W; with j € Z are all
mutually orthogonal, the projections P; and Q; are orthogonal, and the expansion

N(2)=Y @ /(=)
F]
is an orthogonal expansion, A sufficient condition for a multiresolution analysis ta be
orthogonal is
Wy L W,
or

(¢|p{'—l))=o leZ,
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since the other conditions simply follow from scaling. Using Poisson’s summation
formula, we see that this condition is (essentially) equivalent to

(14) ' VweR : 3 Plw+k2n) plw + kex) = 0.
k.

An orthogonal scaling function is a function g such that the set {p(z=1) |/ € Z}
is an orthonormal basis, or

(15) (pol-0) =8 lez.

With such a ¢, the collection of functions {¢(z 1) | ! € Z} is an orthonormal basis of
Vy and the collection of functions {, | | € Z} is an orthonormal basis of V. Using
Poisson’s formula, (15) is (essentially) equivalent to

(16) VweR : Y |p(w+k2r)? = Flw) = 1.
k 0

From (10) we now see that,
(17) ) YweR : |[Hw)P +|Hw+n)P =1,
or

S o hihea=8/2 for l€Z.

k

The last two equations are equivalent, but they only provide a necessary condition
for the orthogonality of the scaling function and its translates. This relationship is
investigated in detail in [28, 94].

Now, an orthogonal wavelet is a function 3 such that thelcollectian of functions
{#(z = 1) |l € Z} is an orthonormal basis of Wp. This is the case if

(e =1)) =&
Again these conditions are (essentially) equivalent to

YweR: ‘2|'€lb-(w+ui.'2':r]|z =1,
*

and, using a similar argument as above, a necessary condition is given by
YoeR: [GW)+|Cw+n)f =1

Since the spaces W; are mutually orthogonal, the collection of functions {y;, | j,1 €
Z} is an orthonormal basis of L3(R).
The projection operators P; and Q; can now be written as

Pif(@) =Y (fiesa) eiala) and Qif(z) = (fy¥ii)vyula).
I I

They yield the best L? approximations of the function f in V; and W;, respectively.
For a function f € L*(R) we have the orthogonal expansion

1@) = vubiala) with viz= (f.¥5).
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Again, this can be viewed as a discrete version of the continuous wavelet transform.
Examples of orthogonal wavelets will be given in Section 10.
Using (16) we can write the condition (14) as

(18) VYoeR : Gu)HW) +Cw+m)Hw+7) =0
From this last equation it follows that the function G(w) needs to be of the form
G(w) = A(w) H(w + ),
where A is a 2r-perlodic function such that
Alw+7) = —A(w).

The orthogonality of the wavelet immediately follows from the orthogonality of the
scaling function if -

@) =1.

As we will see later on, it is important for the scaling function and wavelet to
have compact support. The compact support of the wavelet and scaling function is
equivalent with the fact that H and G are trigonometric polynomials (i.e. the sums
in (9) and (13) are finite). In the above case, we see that if the scaling function is
compactly supported, so is the wavelet, provided that 4 is a trigonometric polynomial.
The only trigonometric polynomials that satisfy the conditions for A are monomials
of the form,

Ce B¢ with |C]=1 and keZ.

Up to the constant C' and an integer translation, the different A all give rise to the
same wavelet. Any other choice for A will lead to a wavelet without compact support.
If the cneﬁgi«mh hy are real, so are the gy if C = %1, The standard choice is
A(w) = —e~*“, This means that we derive an orthogonal wavelet from an orthogonal
scaling function by choosing

(19 o= (~1)*hie

This still leaves us with the problem of constructing a compactly supported scaling
function, We will comment on this in Section 8.

In [95] an orthogonalization procedure to find orthonormal wavelets is proposed.
It states that if a function ¢ and its integer translates form a Riesz basis of V5, then
an orthonormal basis of V; is given by ¢.rn and its integer translates with

(20) Porin(w) = L,

VF(W)

The fact that we started from a Riesz basis guarantees that F(w) is strictly positive.
We see that ¢ indeed satisfies the orthogonality condition (16). Note that if » is
compactly supported, @, will, in general, not be compactly supported.
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7. Biorthogonal wavelets. The orthogonality property puts a strong limita-
tion on the construction of wavelets. For example, it is known that the Haar wavelet is
the only real-valued wavelet that is compactly supported, symmetric and orthogonal
[47]. The generalization to biorthogonal wavelets hias been considered to gain more
flexibility. Here, a dual scaling function @ and a dual wavelet  exist that ganerate a
dual multiresolution analysis with subspaces V and W,, such that

(21) V; LW; and V; LW,
and, consequently, .
Wy LWy for j#5.

The dual multiresolution analysis is'not necessarily the same as the one generated by
the original basis functions. An equivalent condition to (21) is

(@¥(-=D) = (B =) =0.
Moreover, the dual functions also have to satisfy

(Brp(-=0) =6 and ($,9(--1)) =6

By using a scaling argument, we have the seemingly more general properties that

(22) (@inpip) =bip LjeR
and
(23) (Bir¥pw) =8j-pbir  LI'Gj €T

Here the definitions of $;,; and \Ev},; are similar to the ones for y;; and ;. Note that
the role of the basis (i.e. the ¢ and ) and the dual basis can be interchanged. Using
the same Fourier techniques as in the previous section, the biorthogonality conditions
are (essentially) equivalent with

Y Pw+ ke Flut k) = 1
iﬁ(w+k2r)m =1
(24) WeR | }i@“(wm)ﬁw_ﬁﬁﬁ = 0
$$(u+k2w)m = 0

Since they define a multiresolution analysis, the dual functions must satisfy
(25) Flz)=2) R @2z ~k) and ¥(z) =2 Gi@(2z - k).
* k

If we define the functions / and & in the same fashion as we did for H and G, then
necessary conditions are again given by

f(w)_ﬂ-(—n.-_j + I?(w+1r]&’iw+x = 1
(%) VeeR: { QWTW + Gw+nT i“'”i e
G(m].ﬂ'{u] + G(u+r)m = 0
Hw)Glw) + H(w+1'r) Glw+nm) = 0,

Page 354 of 437



14 BJORN JAWERTH AND WIM SWELDENS
or 4 .
| Bw) Hw+n) Hw) Gw) ]_[t1 o
Vag M [6{:.:) Glw+7) [H(u+1r) Glw+7) ”[n 1]'

Hence, if we iet-

[ Hw) Hlw+7)
uw=[ G Gein

and similarly for 7, then

M(w) () = 1.
By interchanging the matrices on the la&-hand.nide. we get
. | BWEW)  + GW6w) =1
i, AER {mﬁw+«)_+ T@Glw+n) = 0

Note that the orthogonal case corresponds to M being a unitary matrix. Cramer's
rule now states that

(28] E(w) = le+ x
Alw)

and

[QQ] G(U] = m ]

where

A(w) = det M(w).

The fact that the wavelets form a basis for the complementary spaces ensures that A
does not vanish.
The projection operators take the form

Pif(2) =3 (£, @) pis(z) and Qif(z) =3 (£i¥it) ¥silz),
i ]
and

f= Y (hdia) b

ad
Note that this can be viewed as a “discrete” wavelet transform and that the éonditions
on 9 are less restrictive than in the orthogonal case. From the equations (22), (23),
and (25) we see that

Faca= (B2~ Dyp(2s - K)) and Guwa = ($(z ~ 1), p(22 b))
In particular, by writing (2z — k) € V4 in the bases of Vj and Wy, we obtain that

(30) PRz k) =Y hinp(e =D+ Ge-autlz-1).
: i
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Even if the scaling function and the wavelet are not orthogonal, the multiresolu-
tion analysis may still be orthogonal. Let us study this in a little more detail

A biorthogonal scaling function and wavelet are semiorthogonal if they generate

an orthogonal multiresolution analysis [1, 2, 20]. The name pre-wavelet is also used
for such a wavelet. Since the W; subspaces are mutually orthogonal we have that

W; LW and W; LW for j#j.

Consequently, W; = W), which implies that V; = ¥;. Thus, the primary and dual
functions generate the same (orthogonal) multimnlutlnn analysis. A dual acaimg
function can now be found by letting .

= . @w) 2
Plw) = o)

We see that the first equation of (24) is satisfied, and, since F is a bounded, 2x-
periodic function that does not vanish, the translates of ¢ and & generate the same
space. This corresponds to:

H(w) F(v)

.ﬁ[w) = -T(_E:.-—)_—

In order to have an orthogonal multiresolution analysis, (18) must also be satisfied.
As before, this means that we need to pick G so that

6w) = AW) Blw ),
where 4 is a 2n-periodic function with
Alw+7n) = =A(w).

If 4 is a trigonometric polynomial, then the scaling fun¢tion is compactly supported.
By looking at the last equation of (26) it is clear that a simple choice is

A(w) = —¢"“ Fw+7),
so that '
Alw) = e™ F(2w),
and, consequently,

H(w+ )
F(2w)
If  is a compactly supported function, this construction guarantees that ¥ is com-

pactly supported too, since H and F, and hence also G, are trigonometric polynomials,
However, the dual functions are, in general, not compactly supported.

Ev'{u) = -~
8. Wavelets and polynomials. The moments of the scaling function and wave-
let are defined by:

-0,

+ oo - +oe
Mp=f z? p(z)dz and N',,=f P P(z)dz with peN,
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16 BJORN JAWERTH AND WIM SWELDENS

and similarly for the dual functions. The scaling functions are normalized with Mg =
Mpy=1.

Recall that we want the scaling function to satisfy a “partition of unity” property
and, furthermore, that this corresponds to H(x) = 0. From (29) we see that this
implies that G{0) = 0 and, hence, that N = 0. So the dual wavelet needs to have a
vanishing integral. This is reminiscent of the case of the continuous wavelet transform
where we needed the wavelet to have a vanishing integral.

As we pointed out before, the fact that the wavelet has a vanishing integral allows
us to give a precise characterization of the functions with a certain smoothness (when
the order of smoothness a is less than 1), in terms of the decay of the continuous
wavelet transform. The analogous fact is true here: the wavelet coefficients are given
by inner products with the dual wavelets and the fact that these have a vanishing inte-
gral allows us to characterize exactly which functions will be of a certain smoothness
by looking at the decay of the coefficients.

As in the case of the continuous wavelet transform, to obtain similar character-
izations of classes of functions of smoothness & > 1, the dual wavelet needs to have
more vanishing moments. This is in fact closely related to the property that the scal-
ing function and its translates can be used to represent polynomials. We make this
statement more precise.

Let N denote the number of vanishing moments of the dual wavelet,

N,=0 for 0<p< N and XFN#U.‘

This is the same as saying that ¥ (w) has a root of multiplicity N at w = 0. Since

a(ﬂ) # 0, it is also equivalent to the fact that G(w) has a root of multiplicity N at
w = 0. Thus, the sequence {gi} also has N vanishing discrete moments,

Y GkP=0, for 0Kp<N.
E
From (29), we see that this is equivalent to H(w) having a root of multiplicity N at
w = 7, which, by using (8), implies that
(31) PP (2km) =5, M, for 0<p< N.
By Poisson’s summation formula, it follows that

(32) S@=1pPp(z~1)=M, for 0gp<N.
]

By rearranging the last expression, we see that any polynomial with degree smaller
than NV can be written as a linear combination of the functions p(z = 1) with [ € Z,
At this point we digress a little and make two small remarks.
1. The fact that H{w) has a root of multiplicity N at w = = means that we can
factor H(w) as

—iwy &
W= () K@),
with K(0) = 1 and K(r) # 0. This factorization together with the (bi)orthogonality
conditions and the fact that K is a trigonometric polynomial is used as a starting
point for the construction of compactly supported wavelets 31, 47].
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*"’ K3 3
—{ ¢ @e~G—{ ¢ ]

Fia. 1. The subband filtering scheme.

2. When writing a polynomial as a linear combination of the p(z - 1), the
coefficients in the linear combination themselves are polynomials of the same degree
in 1. More precisely, if A is a polynomial of degree p € N — 1, then a polynomial B,
of the same degree, exists such that

(33) A) = ‘;Bmw(z—f}
The fact that B is indeed a polynomial can easily be seen from
B()= j A~ f Ale+1)§(z)dz.
Furthermore, |
Alz)= 28@ = (),

since the polynomials on the left and right-hand sides match at each integer.

With the extra vanishing moment conditions on the dual wavelet, we can charac-
terize smoothness up to order @ < N. Another consequence is that the convergence
rate of the wavelet approximation for smooth functions now immediately follows: if
f€C¥, then

(34) IP;#(z) = #(2)l| = O(hY) with k=271,

The conditions (31) are referred to as the Strang-Fix conditions, and these were
established long before the development of wavelet theory [69, 122, 124].

An asymptotic error expansion in powers of h, which can be used in numeri-
cal extrapolation, is derived in {127, 128]. For results on the pointwise convergence
properties of wavelet series, see [90].

The exponent N in the factorization of H also plays a role in the regularity of
w. The Holder regularity is N — 1 at most, but in many cases it is lower due to the
influence of K. The regularity of solutions of refinement equations is studied in detail
in [42, 41, 52, 53, 66, 114, 135, 136).

Note that we never required the dual scaling function to satisfy a partition of
unity property, nor the wavelet to have a vanishing moment. In fact, it is possible to
have a wavelet with a non-vanishing integral. In that case the regularity of the dual
functions is very low. It may even be that they are distributions instead of functions,
but this is not necessarily a problem in applications.
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e ¥ Tn~2,1
Mg ——=Anoy——+Ana2p oo — My — Ay

F1a. 2. The decomposition scheme.

N \\

Agg ——r Ay —— Ay - ——sdpoppm— Any

Fia. 3. The reconstruction scheme.

9. The fast wavelet transform. Since V; is equal to Vj—, ® Wy, a function
vj € V; can be written uniquely as the sum of a function vj—; € V;_; and a function
wj-1 € “"-i_ll

j(2) = Y Ajn 05(2) = vj1 (2) + 01 (2)
3
=Y N0 + 3 V-1 ¥i-14(2)-
1 ]

In other words, we have two representations of the function v;, one as an element in
V; and associated with the sequence {A;,4}, and another as a sum of elements in V;_;
and W;_; and associated with the sequences {1 .} and {y;-14}. The following
relations show how to pass between these representations. By (25),

Ajerg = (v, fi10) = ‘/é(”hzit—zraj.h)
*
(3‘5} . = E/E Eag_ﬂt\jvj,
3

and, similarly,

(36) T = V2 Y Ga-athine
P

The opposite direction, from the A;_1; and the 7j-1;1 to the A;, is equally easy.
Using (30) we have

(37) Ak =V2Y headisa+ V2 Y ge-wvi-ag
1 I
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