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Apart from'the encededdala. the srtbhand veriancet
need to be transmitted to side (overlteadl lnfortnatton. In
addition. for System A the predictor coellieients need to
be tsansrttitted while. in System B. the variances of the
DCT eoelrltienta and the mean of the he eoefiidient need
to be transmitted. Nple that lfthe-.vstiance itttorrnatinn Is
available lo the receiver. the bit allocation procedure cm
be repeated there and hence noadditlnnal information for
the parameters of tlte (UTQt I-IC) pairs is neceasuy.

Assuming that we needtwo bytes [16 hits) for each real-
valued parameter. 36 bytes (16 ttuhbaotla-and two cone-
Iatinn coefficients) need to be trartsetttted for System A.
This eorrespcnds to CLW4 b_/p for e B6 3-! 256 image
and £1.00! bfp for a 512 X 512 image. In Systetn B. in

.sdditien to the variances of the stthbantls. the variances
of the DC!‘ ooelflcienta and thl traean of the do eoal7fl-
clent need to be transmitted. Therefore, for an L x L
blocltsize, the side infnrrttetiott is 10.2‘ + 16) bytes. For
tlte chosen blocltalze ore tt dtltls antouttta to 0.008 h/p
and 0.002 13/1: for 256 x 156 and 512 x 512 images.
respectively. Therefore. for all cases of -tlerest the
amount of size intmttotlon is less than 0.Dl - !p—a nep-ligible axnount.

V. Ttuuvstttsstorv Esutott Rrrecrs
in Systems A and B. ttariablevlength ending is used es~

tensiveiy.- It is well-icnown that this to theseqttentlttl na-
ture of decoding such codes. channel errors wold result
In the lost of syttehtonisattoti and. hence. severe degra-
dation in system perfonnaoee. Fttttherrnote. predictive
coding (used in System A and the W-0 scheme) is ltncvrn
to s1.td'er from channel error propagation problems. Fi-
nally. in 2-D DC.'l' oodlnp (used in System 3), channel
er-rota propagate throughout the block. These facts indi-
cate that the stthband coding schemes studied in Section

- iv may sull'er serious dlllleultles lo the presence of trans-
rnissiott {or should) noise. oteettrae. due to the extensive
use of variable-lengdt coding in Systems A and B. one
would expect a greater sensitivity toehanttel noise in Sys-
terns A. and 3 as compared to the w—o acetate.’ In this
section. we will present simulation results for the perfor-
mance of Systems A and B as well as the W--O scheme in
the presence of channel noise.

To prevent the infinite propagation of deoodlng errors.
we havepscketlzed the codeword aeqnertt.-ea before trans-
missiun. In what follows. we describe dte details of the
pecketization scheme.

A. Packeriaorlon Scheme

The main motivation in paeketieation of codewords is
to confine the propagation of channel noise to within a
packet. To do so. we must malte certain that our packets

‘The W-O scheme also uses varlaltle-tnpslt codes for set.-eels; some
srteeases tsee Ill); however. the LFS ls noodd hp fitted-Lurgrlr wees.
line: LES has us: lIl[l‘|¢l| variance l.ll|llI| a.I| suelunrlg. tn; gnungl none
efiectt in the LFS should result In the most dramatic degradations in systempetforlnanet.

" , -to

contain information about a fixed (or lt.l'IDW|‘l '“ ‘M
eeiver) nuttsb-er of Filth 50 “Ill Pllilfll-'l°'P“k°'
station of the I-Ittlftttan decoding error is prevented. I K.the pixels are encoded ll! "||lIb1°"=flB1-1" °°‘~1“' “''.° F"
eta cannot be of listed length 1'l°W\'¢|'- 1" d“"i""3 M"

pacltetlzation scheroe we will '1'!‘ '0 _i°°P 'h° awrflgpacket length that so that fair oolltpartsons can be In
between dllferent systems. It is important to remember
that the severity of error propagation is directly related 10
the paeltet lettgtlt.- _ _

In the pacltetlzatiott scheme adopted in this wotit. the
hen consist oftsvo pasta: 1) a length indlcetar lndtt:at-

l’..‘.f the length at the tnromtton portion (in bin): 11"‘ “l
the infinrrrscrlon portion consisting of a sequence of hlnery
codewords. While the length of the length lrtdiestor is
tired. that of the inforteatloa portion of the P|d‘¢‘ ‘mm
vat1r—hettee resulting in torleble-lengtll p¢¢*“-|'- F‘-'7'
therroore. all codewords tr-sntrnteed ln a packet tattoos '0
the same atthhand.' To be mun! l!'°°'5°- '°‘ “" °°''''“" “

pacltet used for encoding the llh attlsheod.Le1 |lI ll-|PP°‘:_
thattheplxelsinthltsttbhsodsteencodedbv M“-"5:l-IC‘r of order i'|r at s tletllfl W ‘W °f "P s"F1’°"’ ‘ '3

ofllae.lnt‘orntat.lott portion of thfl puck“ *'average length _ ,
- 1, hits. Then. the number of codewords lll tmt r-=|=== E‘given by: '

' 5 I (6)"'-‘ '7 E
where |':'i is out to denote the smallest lrIl¢l=|' trr-M
oanoreqrutwx.rtmuut,treudmdrruIdmI=¢

lmovvtt front the results of the hit allocation procedfllnu.,. can he deterntltted tn the receiver aide. maim-
enoedingtlte ltlt snhlsand. alt-'-ll bet contains the infor-

mation fer rt,_. - rtrtt.._t 1'-‘lflll-‘ ' I E
I M for tn, damn}... Pmccu,‘ following ntes llapplied. ' ' ' ' '

1) ooendtngoreodwurds in a Picket W“ "“' ‘fl
inttatpsetnstsornsrttrsttuntruam«_adIns__err=!r|l°°=

W3. nt:lf'ohttBdewordl its a rm-Its‘! m°°l*'°‘ ""“‘
thettlt nthlsaod terratl.tu'tes when one oftlte follolrllll Ill!“eeortltions is met. '- '9-Ir == '

) _ code rda are
3) ;ll:I.’lawl:Iwl(l!IB III¢l|¢I1"=°““°“P""‘°'

(known from the length lndleatotl- _

c) A bit string which cannot be decoded isteted. In this case. deco-flint ts unwed ‘mm
-ately. and all pixels that cannot be decoded areretraersscrutred ll'l¢!O-

In what follows. I-'3 W1“ 9'33"‘ 3i|'“'-"“'°" '“fm'S;"
the performance of the thlffl °°‘'|5id‘'‘d "' 'titan [V when the channel is noisy.

_ M‘-
'te srsmn a. each of the traealtme cumr.-teats is treated at It NM‘ |_3...... ...t puke! mum oodavorda from only am trim“-H" ‘°"'

cififill pseitela used foretteotlilj the ill: stthhlnd Iunlflifl ’'r.- 9“‘'' ‘“'Fnamely the lastone which conlalll only IIII N--i-i-I W"-
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TABLE VI ‘
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B. Simtdqliarr Results over Noisy Ciro.-their
We stssume that the chsnnel is a rrtemoryiess binary

symmetric channel (BC) with a bit error tats (BER) or
P,. For ottrsitnuiatiotts in this section. we have consid-
ered P. - 10". 10-’. to“. and to". To make certain
that our results are meaningfttl. for each encoding scheme.
hit rate. attd channel BER, we have repeated our simula-

. tions 50 times and comprised the average PSNR (AVE-
PSNR). mutimum Paint (MAX-PSNR). minimum PSNR
(MIN-PSNR1. . and standard deviation of the PSNR
[STD-PSNR). sintttlatlesas are carried out for en-
code-dby syatetnaaatal natal thaw-0 scheme“'attte-
sign bit rates of 0.25. 0.3. and I b/p. The sitntdstion
results are surnrnarirted in Table Vi. A few important ob-
servations about these results are in order.

i) System A is eitlretstely sensitive to channel errors.
Also. the STD-PSNR of System A is fairly large (espe-
cially for low BER's) implying that. even at low-cltanttei
BER‘: there is a possibility at’ severe perfornunce deg-
radation [e.g.. - 14 dB dlltetence between JWE-PSNR
and MIN-PSNR. for System A II 1 Is/p with P. - 10").

2) Syrterrl E is also very sensitive to channel errors.
However. it performs considerably better than System A.
In all cases considered. the MIN-PSNII of System B was
significantly lII]|s1-[Q-3 d3) tltlrl that of System A: 'the
AVE-PSNR of System B was also larger than that ofSys-
tem A. especially for larger values of the channel BER.
Final|y,tll'te STD-PSNR of System B is smaller than that
of System A.

3) The -W—O scheme exhibits the highest degree of to-
bustness in the presence of channel noise. in most cases.
the eifect ol channel noise is negligible for P, < lO"]
Also. contrary scour observation for systems A and is.
the STD-PSNR in this case is very small. In almost all
cases. the ‘H-0 system petrortns better than System B

'“In all orour simulation for noisy shsnnels. the avenge puke! length
it little hita. Thu is not an optimized length but. um rut. theultt providean appmpriste ttedeofl bemoan the channel error streets and the inet-meof aid: inlnrtetlatitsa.

with the etcctsption ofa fewfissee where the channel noise
is very SI'l'll.|l (P, - ID").

' in Fig. 9. an exsmplc of reconstructed images front the
three systems is presented Eorsrt encoding rate of 0.5 is/p
sndii, - iO":ti'teseitstagescot1erpondtorltt:-secasesin
our simulation which result in rttlnitnunt PSNR. Clearly. -
the sttbiecrive perfonnutcs of the three systems closely
lbilovrs the trend suggested by the PSNR results of Table
vi.

The results ofTsltle Vi [also supported by Fig. 9) sug-
gest that systems A and is. despite their superior perfor-
mance for noiseless channels. exhibit an unacceptable
level ofsetuitivity to channel errors and hence should not
be used over tasiay channels (st lesst over the range of
channel BER’: ‘considered here). in the next section. we
will describe 3 combined sourocfchanael coding method-
ology to reduce this severe sensitivity to channel noise.

Vi. Cotaatttso Souacs.-‘Cranmer. Comm:

systerna A and 3 exhibit a high degree of sensitivity to
channel noise because they have been designer to mini-
nilze _lhe source coding distortion Issunting a noiseless
channel. It is a well-ltnowtt fact that. in general. the more
eiiiclent the source coding scheme is. the more sensitive
it "will be to channel noise unless some corrective rues-
sunes are taltett. Specitlcaliy. it is shown In [Isl for zero-
rnernoty qttatrtlaets and in [16] and [IT] for predictive
coding and transform coding or images that. in the pres-
site: of channel noise: increasing the accuracy oi‘: source
encoder could result in an overall performance degrada-
tion. .

One possible method of mitigating the channel error ef-
fects is use of error control coding. in this manner. of all
bits used for encoding the image. some will be used in
source wdliig while the rest will he kept to provide pro-
tection against channel noise. in [I6] and [ii]. an ap-
proach in which specific source encoders and channel en-
coders are combined is cntttidercd: in this approach. the

..rates of the source code and channel code are adjusted so I
Is to minimize the MSE. in [IS]. all approach for chart-
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TANtlI'E AND FAIVAIDIT-It SUIIHHD ‘MAO! UDDING

- ‘ it]
Fig. 9. Reconstructed "LE.NA” at citaeesl IE1 at’ In".
“H5 h/It. 10.19 net: to) Strum B runs his. 11.33 til}: (ct two to.tarp. 21.29 eat.

(II System AII
a

rtel-optimized quentinttion is developed in which source
coding accuracy is traded for reduced sensitivity to ct-ml.nel noise.

' In this paper. we will consider an approach similar to
thttr of [lo] nnd [lT].. in our subhsnd codingeysterns. sn

-_ U11 

important questicn»ls'hovr to distribute the bits among the '
source coding and channel coding opererions for the dir-
ferenr sttbbettdtt so as to minimize the overall distottiflfl
caused by quantization noise and channel noise. The main
dlflicultsr in doing this stems from the fact that vst'ieb|e-
length codes are used in Systems A and B. In this use.
the analysts of channel error efieets end its itnpuct on the
event]! distortion is a fostttideble task {If not Impossible}.

Another importsrtt problem in our sysresns is the! of bit
allomttion among the tliferent strbblttde. Clearly. the bit
aflocation used under the rtoieehn channel assumption
need not be opli1'ml.fo1' noisy cheeneis. To be title to de-
tenrttrte the optimal bit allocation. we need to be able to
determine the distortion-rste perforrnsrtce of the U'FQ'3
followed by s HC and an error correcting code (ECG)-
Agsin. due to the inherent problerrts of psclterized virt-
ttble-lengtlt cadet. the nnslyticsl ootttputetiort oftltete dis-
tortion-rste performance results is not possible.

In what follows. its will describe e srettttetton-ham‘
procedure to determine the best (UTQ. HC. ECC1 triple
fa‘: encoding s otettturyleas source ever a BSC It s given
encoding me. This procedure will lend to the detelt'rI1'-
nstion of the distortion-rste perfernsenee functions that we

- need for optimei bit allocation mun: suhlsttttds.

Al. Selection of HJTQ, HC, ECCJ Tifple and BitAllocation

For the discussion in this sttbsection.'we will sssurne
that the source is ntentoryless with a distribution corre-
lpfll'ldl.n]l0l'.llBOGDWill't asndtltatthechso-
no! is a list‘ with 1 BER given by P,. Let us stsppcte. T0!‘
the time being, tit.s.tthe BCC ietoiseseleoted ft'otnepIe~
scribed fsorily of ECC'e. We will spectly this fsrniltr in
the next subsection and provide Jtsstllicstlon for thiscl-tolcu. '

For the given source and channel, consider a (UTQ.
HC) psir (as selected in Section IV) with an aven|I= W
tttteofr. renewed by so act: tvitlt r,snd Ietd(r,. r.:-o.
P.) denote the MSE incurred in encoding and tret1stttis-
sion of the source. Since the analytical cttrnputstiort of3
is it'ttp0eIt'ble.- we have resorted to stmntsdon" to deter-
tttltttt its value for selected clsotlcu of r,, r,. at. Ind P,.
ttmtoeamtttecmgueaoodtng ma-rt gitranbyr - r./re

Nonr considers aired encoding rate r. Anton: the strait-
sble pairs of {r,. r,). there may be severe! that result in
tlteencodl rster-.Letusdenoteby(r,‘. .r,'Jthepeirt.bst
rttlnirnizes (r,, r,; a, P3: denote this minimum distor-
tion by d.(r: tr. P,}. in miles ttoltll.

5.0‘. or. P.) - min 50.. r.; or. P.)- (73
tIt.nl:1sht--r

The fitnctton d.(r. at. P,) determines the distortion-rare
pcrforrnance of the ¢.|'l£0CllI'l[ scheme used for a source
with pesdmeter is and e BSC with BER P" after the ep-
pttsptiate selection of the (UFO. HC. ECC) triple is ttutde.
Notice that. for a hired encoding rsre r. identifying the

"As before. Ill olneln the MSE we have lt|'I:I'I|ed our tlrnulstion mull:but ill nuts.
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IE2! J-I-}UlNAl. ON SELECTIII AIIA3 IN CO|r|MIiNiCA‘f|iONI. VOL. I0. MCI. 5. JUNE I99!

TAILB VI
PSNP. Prnroumzcc ltssul.-r; rm dB] lul “£_.E.NA"

 
 IBIJI l:clO"I at lD"l K to"rxro-*1 x in-*1 :rlll"1x tll“‘i:: to-'rxto"1x In": ><t0"Ix ID"
  

 

 

Sysle

Mrl'E-PSNR Ell I-(.1-I 2J.2£ 30.64 1.-we IL]? 15.?! 31.39 7.43 |2.lJ 23.91 34.59
9 jun‘ KAI-PSNI I039 I633 11.99 31.00 8.27 l!.l6 !4.H JSJ6 3.61 l6.'l'1 36.57 13.53’ MIN-PSN'|l 9. I1 |I.I2 I6.“ 20.5! _6.9'.l lfl.l9 III? 31.3? 6.65 9.7‘! I7-I I 10.29

51'!)-PSNI 0.40 Lm 3.0! 3.02 0.11 I. I6 3.4! 4.3] 0.34 J.“ . ‘.45 I36

AVE-PSNR I431 ILI2 Zl.-IO JL54 £3.96 ' 10.33 l9.ll 54.71‘ _ fl.fl3 HA5 51.0] 31.49
Sylllnri MAX-PSNR . I140 14.07 51.93 JLI9 1.4.94 14.56 35.94 35.31 _ 15.52 13.51 . _35.'ll JI.53[4 X 4] MIN-PSNII _ I3.-II IIJ2 23.55 24.53 I312 I333 23.51 I-IJI I103 IIJ9 23.2} 21'."STD-UNI 0.54 L50 3.49 L57 CH5 1.61 1.91 ' l.IIl D.!l 1.43 J.l1!. LII

AVE-RH! 11.9’! 1161 2l.54 “.54 210! H12 29.??? 29.95 21.92 19.“ - 33.33 33.94
“Lo MAX-PSNR 24.09 2l.|'l.I 2l.6.1 IE6! 14.3! 3.0? 19.94 2194 13.?! SLDI. 33.94 3-4.0lMIN-HR! 3l.l-6 1‘l.ID IIJO tl.$d 1o.l.I 17.3! 39.51 29.?! 10.16 10.14 52.“ 33.I1

STD-PSNI 0.51 0.22 0.06 |l.D4 0.50 IL} 0.03 0.04 0.71 0.6! 0.3! 0J7 

ii. Simulation Results over Noisy Channels
We Issuzrtc that the channel is a rncrnoryless binary

Sjlmmfltfir.‘ channel (ESE) with a bi! en'or rate (BER) of
P,. For our simulations in this section. we have consid-
ered P, - 10'’. I0". 10".. and 10". To make certain
tlaatour results uenrcaningntl. foreacir encoding sclieme.
bit rate. sud channel BER. we have repeated our simula-
tions 50 times son the average rsrut (AVE-

PSNR). maximum PSNR (MAX-PSNR). tnlnimum PSNR
[MIN-PSNR]. _ and standard deviation of the FSNR
(STD-PSNR). Simulations are carried out for"l.ctrs" en-
coded by Systems A and B and the W—O scheme" at de-
sign bit rates of 0.25. 0.5. and l b/p. The simulation
results are surnrrurlaed in Table Vi’. A few important ob-
servations about rims results see in order.

1) 535!!!“ A ll Ill-Irllncly sensitive to channel errors.
Also. the STD-PSNR of System A is fslriy largo (espe-
eialiy for low BER'a) implying thus, siren at low-channel

_ BER‘: these is a possibility of severe porforrnarscc deg-redation (e.:.. -14 as cliffetceoe between AVE-PSNR
and MIN-PSNII forsystem A II I up with P, - to").

2) system B is also very sensitive to channel erross.
However. it performs considerably better than System A.
in all cases considered. die MIN-PSNR of System B was
significantly larger (4-E II!) than that of System A: the
AVE-PSNR of System B.wa.I also larger than that or Sys-
tem A. especially for lesser values of the channel BER.
Finally.-lire STD-FSNR of System I! is smaller than that
of System A.

3) The W-0 scheme elrhlbits the highest degree or ro-
bustness in the presence of clI|.nI'tcI'noi.Ie. In most cases.
the effect of channel noise is negligible for P, < 10".
Also. contrary to our observation for Systems A and B.
the STD-PSNR in this case is -my small. In almost utl
cuts. the W-0 Intern performs better thsn System B

"in all or our llllnllallou for noisy cilaallels. the oven‘! puclet league
is I026 bits. This is not an optimized length rm. we feel. shoultl provide
on appropriate rredeoll between the channel arm cllerll and the increaseor’ side informaliorl.

witli the exception of l fewgssas where rite channel noise
is my small (9, - to").

lni-'ig. 9,snonrnpleol'reconstruoled Images frornslre
three systems is presented foran encoflrrg rate or0.5 b/p
and P, - I0"; these images correspond to those cases in
our simulation which result in minimum PSNR. Clearly,
the subjective perforrosnoe of rise three Iysl.e.n'I.I closely
follows the lllenri suggested by the PSNR results of Table
Vi.

The results of Table Vi (aim stlpportod by Fig. 9) sug-
gest that systems A and 3, despite their superior perfor-
mance for noiseless channels, exhibit an unacceptable
level of sensitivity to channel errors and hence should not
be used over noisy channels (at least over the range of
channel BER’: eortsidetul here). In the next section. we
will describe a combined souroelclrannel coding method-
ology to reduce this more sensitivity to channel noise.

VI. Common Souncelctlsmnsr. Coomo

Systems A and 3 exhibit a high degree ofsensitivity to
channel noise because they Ilsve been designed to mini-
mize the source coding distortion sssurning a noiseless
channel. It It a well-known fact that. ill general. the more
clllcient the source coding scheme it. the more sensitive
it will be to channel noise unless some corrective mea-
sures are taken. Specifically. it is shown in [15] for zero-
merrrory qtrlntloers and in [I6] and [17] F0!’ plldiclive
coding and transient: oodles of Irnsges that. in the pres-
ence of channel noise. increasing the accuracy ofl In-lime
encoder could result in an overall performance degrada-
tion. .

one possible method ofmitigssing the channel error ef-
fects is use of error control coding. in this manner. of all
bits used for encoding the image. some will be used in
source coding while the test will be kept to provide pro-
tection against channel noise. in H6! and [17]. an ap-
proach in which specific source encoders and channel en-
coders are combined is considered: in this approach. the

. roles oi the source code and channel code are adjusted so
as to minimize the MSE. in [15]. anapprosch for chan-
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‘Ill

peir (r,'. r,'J is equivalent to detennining theaptimsl hat-
a once between the source coding scctlncy and the channel

error protection.
Having detemtined the J(r,. 1-,; or. P,) functions by

simulation. We here computed the functions d,tr: ct. P,]
for values of a II in Section tv. P, - iii", to". and
I0" and a finite number of values of r." ‘An example of
the function a‘,[r: or. P,) is provided in Fig. 10 for or I
0.6 and three dlllerent values of P,. to this figure. ditTer-
ent symbols are used to determine the I'll: of the optimum
channel code used. Also, for cornperison purposes. the
distortion-rate perfornrsttoe of rise (UTQ. I-{C} pairs of
Section IV obtsined tori noiseless channel is also in-
cluded In this figure (dotted curve). 'l'he deviation be-
tween these performsoce curves and the one for the noise-
less chsnnel is merely "the result of the chttnnei noise.
Obviously, the devlstien is wider for more noisy chsn-.
ncis.

Once the channel-optimised distortion-rote perfor-
mances are deterrnlneii. the bit allocation procedure of
Section IV cut be used in a sirniisr runner to obtain the
optimum bit sliocstion men; the sobhends.

Before we present the slmultstion results for this com-
bined sottrceichennei coding scheme. in what follows we
will ducribe the due of ECC's we have used in our sys-terns.

3. Error Correction Coding School:
The EEC used in our system is s specific form of con-

voltttionsl codes known as the rots"-crurtnoribie punctured
canwiuriortai (RCPC) code. TIte_RCPC code was intro-
duced by Hsgenauerl I B] as on extension of the puncntred
oonvolutlonsl codewhich was O‘l'i[illl1I)‘ introduced by
Cain er i. [I9] nniniy for theptu-pose or obtaining sim-
pler Vitcrbi doooding for me K/i'r‘(K sl 1) codes. The
main advantage of the IICPC codes is that its rate (end.
hence. the error correction npobiiitjr) can be easily
changed by relying the number of punctured bits in the
P|Ifl€tllI'lll[ lltllfili-lhflllfolit With the some ltnrdwsre. a
variety of channel oodinj rem can be obllilied. This is a
desirable chsrsctotiatio in our system us we wish to my
the ‘rite of the ECC for each subbcnd so es to obtain the
best balance between the source coding rate and the citnn~
nei coding rate. We slsottid mention the: this idea was flrst
used in subbsnd coding of speech [20] for adopting the
degree of en-or protection to the error sensitivity oi‘ dif-
ferent coder bit streams.

The RCPC code is defined by a generator rap matrix
of a convolutionsl code with the constraint length L,:

«Lu
T

:‘~rI
‘'11-: must coerpuurien or the cur; e. at fonclhn ll .I:;t.n,« eirremtit-urn till above. Because there is only I llllle number of r.'s Ind r,‘s util-

sble. we hut: uutlsllly considered the BI olsil possible points trim. r.: e.,-“.1. r_.r'r,] in the distortion-rsis olsne Ind selected time rim ii: an Ihl
lower boundary nrrtiis utofpolm. .

I34!)
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AvorlgoEll.Rik[bllsfnnnplg] an 
G - '
.90! DIN .DI. .03 .1 .3 1

use r U‘-L0‘)Fig. la. l.ass-distortion performance oi the selected set of IUTQ. HG.
‘ ECC.‘tIrt1I|es:a I 0.6.

which generates the mother code of use I /N,'. arid also
by puncturing riser:-it-es with the purtcruritsg period .P..

an fl‘ -0

(ans). r- 1.2. .tN. — IJP.
(lib)

which determine the patterns of punctured bits. 111: nom-
imtl sure otthe RCPC codes is given by:

s.-P./cr.+op r- L2. .uv.-’nP. (9)

which covers the rsnge between UN, and P,/(P, + i}.
In all of our studies, we have used the RCPC code shown
in tablet in [In] with N, - 4, L, - 5, sndP. - 8." The
generator tap trtetrix 3 end the puncturing matrices IIU)
rarr- 1.2, .8ssesiIownlnFlp. llandl2.re-
spectively. We have-restricted our mention to the BSC
with itsrd-decision decoding; better peribrmsnce could be
obtained on sdditive Cisusalsn noise channels with Infi-
decision decoding.

it should be noted that R. in (9) is not strictly equal to
r, used in (1) as the rate of the convoluriostai code. This
is becsuse L. - i dumn-tyi bits should be Iddcd to the end
or the sotlrce encoder output to return the sine ofthc trel-
Iis to the ell-seto state. Consequently. r, is given by:

re - “pk: "' use ‘ I
it should also be noted that when the combined source!

channel coding scheme is used. the number of Htttfnsan
codewords per packet will be dllfetent from that in (6). In
this case. the number of codewords in the psckct associ-

1
at!) =- N.

1

""11: plrfnrtnsstoe Iirflisas ncrc cede wilt be improved with larger mestill pnetiealieonstrairu lsrI|tiIa.u:r. 8 s I... 5 I0. _
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tied with the iih itubbitnd is given by:

fle.t"' {Pei-lp/(l'a.t ' "til (11)

where r,__. and r,_,- are the source end clrlrtstel curling rntes
selected from encoding the ith sitbhsnd and i'l.- is the stuns
ss in (6).

6'. Simulation illentirs
In this section. we will psesent sirnuistlon results for

|l'|uepel‘f0I'i'tLIltt:cnl'Sy'I1es'i'thlai'IIl Brno-diliedby theconv
itined sottteeichsnnel coding approach. Eton-I now on the
channel-optimized versions of System A and System B
(with blocltsize 4 x 4) will he called System C Istd Sys-
tent D. respectively. We have studied the perfnrrmnee of
Systems C end D at design bit rates of 0.25. 0.5. and
I b/p for chsnnel BER‘: of I0". 10''. end 10". In all
cases. the sun-ie pecitetiution schertte W'l1h l, -I 1004 was
used. All subsequent sirttuistion results at based on the
5.12 x 512 "LENA" image. .

To provide some insight into how the encoding rate is
divided between the source coding. and elurtnei coding
operations. in Titbie VII we hove included the average bit
rate used for chsnnei coding fordifferent overs]! encoding
rllel. Notice that the percentage of bit rate dedicated to

' error control coding is larger for noisier channels. Is one
should expect. Also. in this table we have included the

 
us

PSNR results corresponding to the case that the system is
designed for I. noisy channel but applied to s ttolei‘-[€55
channel. Tlusso remit: provide sit upper bound on the—sys~
tem PSNR over noisy clslniseis. The dilferenee between
these upper bounds end the PSNR's of Table IV use due
to Ilse lower rate used I01’ OWN! Hiding in Table VII.

The perfotrnance of Systems C and D in ternts oi AVE-
PSNR. MIN-PSNR. MAX-PSNR. Ind STD-PSNR ms
summarized in Tsble VIII for dilferent chlstrte! BER’: and
ericodins rates. 1'[1e_fo[|owiItg itrtpottsnt olnervstions canhe made. .

1) Both system: C and D provide drernstic immova-
ments our systems A end B. The improvement of System
C over System A is in the surge 7-27 :13 in AVE-PSNR.
The improvernent of System D over System B varies be-
tween 3 Ind 21 dB in AVE-PSNR. Typicnlly. ilsesc'lIh-
pi-oven-tents Ire terse: at higher encoding me: and for 'noisier chsnnels.

2) lnelicescs forbothsysietttscsstd D.lheliIIAX-
PSNR coincides with the upper bottttd on PSNR listed in
Table VII. Tliis menu that bit errors caused by the noisy

channel ere sometimes perfectly eonected by the RCPC Icodes.
3) In almost all uses. System D perfarrns better than

System C. Ftlnltemsorll. Syrians D eitltibiis I highs de-
gree of robustness agpinss channel noise. Typically.diiferenee between MAX-PSNII and MIN-FSNR ll
sttuiierirt System D then In System C: the nine holds for
STD-l‘SNR., Since in built symitts the some type ol'el'I.sii-
nel code is used. this superiority olsystern D must be due
to the inherent roltustness of!-D DCT against trsn.srni:-
sion noise (similar to our observations in section V].

4) Systems-C and D perform better llsstt the “I-0
scheme in the ptuence ofclteitnel noise (see Table VI)-
Wltet is perlssps most interesting is shut the perforrt-mice
ofSys.tesnsC1ndDoversnoiIychettnelise1tenbetter
ilmsthuoftliew-Oschetneitsthesbsenoe ofclunttel
noise (with only one e:¢cep‘iltiII:'Syslem C. 0.25 it/p.and
P, - 10"). Title lts.s.lteest ourjnltificetlon for not con-
siderlng echsnttel-optimised version ofiha W-0 seltetne.

InPlg|.l3e|sdI4,wepreseuIteconsuuc1ediIItIs¢6
corresponding-to MI'l"l-PSNR end MAX-.PSNIl.obu.ined
l'1'utnSysiemsCsndDfortitedesignn.teofo.5 is/pa:
nwo stream velues ofcltsmel nan. llunely P. - to"
and in". It is importemtomenilon tlul theavenge qusI~
ity of the teconltnteied lrnsges in our simulations is usu-
ally closer to the image enrrelpottditsg to MAX-PSNR
rltliet l-lllil MIN-PSNR. This is especially true in Sys-
tem D. ' '

D. (‘Ismael Mismatch

In designing Systems C sud D. it is assumed met the
channel BER. is known. In many precticei sltustinru, Ihl:
esset value of the BS}! is not known or the BER varies
with time. in such sitststiorts. it is important to know the
amount of pet-fotrnsnoe loss eluted by channel misnunch.
Lg|_ us denote by PSNR (Pu, PM) the AVE-PSNR caused
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TABLE ytt .Dtmtwmu mam Bewuu souncs comm an Gamma; {.‘enIue roe “L.ENA"
0.2! EFF

  an 1 2:10;’ 1 x In" I at Its" 
Total 511 Rule D.2fl 0.25 0.23

3:-mrnc Chuslll Bill-IIOIU UJI {all D20§l'10§)_fl.0$[lBI] 0.22 HIS} D.l| [1453 0t0Cl|7§l fl.«|?tI6I.'I 3.10 I235} U-Ii [I651
flfllllflel-ale-tcuel 29,56 no.9: . 31.03
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£I..'l' DP!‘ L0 BPF   

  
 

0.1-9 0.“ 0.46 D.9l . II.” 3.81

32.49 M.“ 34.3! 38.39 37.1! 17.95 
Tull Ii! ll: DJ! ll.24 . 0.24 0.4-! 0.46 0.45 9.9! O." 0.8!

System D Chllnellh-IHIISI 0.11“!!! 0.06 (2551 0.01 (I55) 0.22 {A51} O.II F1551 0.07 (151) 0.1-[Mil-} {I31 R451 0-H H61}PINE ffldlelul Cue] 30.10 3I,fl’£ 31.65 12.73 J«I.lE| M16 15.60 !'.'.M ‘ 31.59
 

TABLE VITI
BN1 PIIPBIHAHCI ltuuus (IN tun ml "L.ENA“ in ms Huucl or claims. Non: 

 
I.l}BPP
  

     
Ix tn"

 

-tan 1:: ll!" t x ID" ta: to" ix to‘-' I x to" It II)“ | x to-'

Ave-rslnt rue _ 29.50 not 30.74 32.91 use 34.3: 3.1.1.1 sun
5 C mx-mm :9.ee 30.9: ':u.o.1 32.49 33.ee 34.35 33.19 31:4 31.5.5"“°"‘ MIN-PSHI use 30.40 :rt.ts 1t.sn 15.59 33.91 14.31 22.5: 31.1:mm: 3.:s no :3 ss us 1.9: 0.0: 2.32 3.15 a. I I

AVE-Psmt 19.96 30.94 31.49 32.3: 33.90 34.40 33.24 Js.tt' :7 S1
3 mm D MAX-PIN! 30.10 am: Jim 32.13 sun use 35.50 31.0: 37 so

3' um-rear: us: use 32.52 zs.39 _:e.m n.-ts u.to sun 31 t:st-ta-nmt 0.11 0.2: use a.sr.- 0.1: M‘: n.sI Me 0 In

F! . ll. lutnutntehl "I.8l'h|" fiwlylulu Cudniga hit aura;
I: II- in MAI-PSNR. F. - In". ten MAJ:-rttmt. r, - in“. [ct MIN-
Pstdn. .-, - to". (II MIN-Ie'N1t..I, . III".

by at system designed for n chmnel with BER Pm. and
Ipplied to a c-tunnel with BER. P”. The FSNR (P,_.. P.,.)
results for different values of PM and PM for both sys-
tems C and D are presented in Tsble IX. These results are
for an encoding rate of 0.5 b/p. We have observed that
the trend of performance lou is the mate for other bitrates.

1) System D is much more robust with respect to chum
net mismatch than System C.

 ‘\_'..--u.
l

:3
4
.4.

1
i

{E} M

. I-I. Rnnunnsntcned ham Symtu D :1 ttesiyt on me al‘0.5B D. I'll MAX-PSNR. -P. - IO" {It} MAX-PSNR. P, - I0". (:1 MIN-
P8NI.P, - Io".¢s)mN-mar, - 19-1.

2} Practically in all ones. the AVE-PSNR of the mis-
meldled case with P” -: Pm. coincides with lite MAX-
PSNR of the marched cue {‘t.e.. when the system is de-
signed and applied to 1 channel with BER 3.0- This im-
plies that. in such cases. all channel eltnrs are corrected

_ by the RCPC codes used in the system.
3) To design the system. oyereslittlmlllz Ihe Channel

BER is better than uttderestin-utin; it. For example -in
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terms: AND FAIVAIIDIH: sussntro tit4os_:ooIt_R.'l_4
TABLE IX
 

Crmtnlt. Mts‘mm:u Penpottmmca fiuuL11 4'7 0.! Info.

 
 

 

 

 

 

Ava:-smt 30.14 IL?) 9.32 1.46 31.38 15.19 18.75 I190
I W. am-:.rsNn 32.:-1 sans nu: L21 3131 11.31 20.51 t4.94* MIN-PSNR 21.60 tut 1.66 6.91 25.19 12.17 I636 13.12

lTDvPSNl. ‘ 1.-to 1.29 on 0.3: 0.9: L3! l.l'l' 0.4:
ave-rsmt 32.49 mu 29.15 l3.I‘l' 3:.-ts use 31.54 10.3:

I .. tstam-suit 32.49 . use 14.10 tsu 32.13 sun 34.49 use" '° t.tm.t~amt 32.49 t.s.sv 10.91 um 32.10 :v.oo 13.47 11.3:s-to-psmt 0.0 l.D3- 4.15 1.16 0.0 o.rz 1.41 La:

.WE-PSNI 12.49 use 14.30 23.13 32.1: 34. to :4.4s :ts.sI

I W. MAX-FSNR r:.4s tans _J4.J5 34.66 . 32.13 3440 34.30 35.04" Mturstttt 32.49 :ts.ss 33.91 ll.2'l' 32.1: 14.10 ans 23.3:
$'ro-1-sun M 410 I not 3.4: 0.0 0.0 0.17 1.91

0.0 t-sun :1 49 sue . 34 as 35 to s: ‘is 34.10 34 so is 31

system D. [t=sN1tuo". 10": — PSNR :10". lD";| tam:- 1.17 so. while |PSNR 00", I0") - PSNR ¢1o- . . T*"*""~""'5""'"'-"*“°"<W
10”}! - 0.59 an. Mn“ _

Imus She System 0.3 15 L0

E. Side itrfomutiors C mm “M 0 am
_ As in Section IV. we need to evaluate the amount of 35“ 1'5 §’'‘§,..$ p .' M35 «Loss u:u1nstde tnforrnstion necessary to transmit to the reoeiver for

System C snd D. In addition to the amount at side in- st: 2 Sit - s""""c 3:3}: 3:3 3:332formation evaluated in Section W. the following twoitents creed to be transmitted:
I) the length indicator of the pockets. and
2) the sdditional hits for error promotion of side infor-oration.

It is easy to show that the packet length can never be
larger than 2“ bits; hence. 14 bits are llinlifll to encode
the length indicator." .4: for addlliotnl bill for protection

, of side information. we assume that a rate l/3 RCPC
code is powerful enough to tender the side information
error-free when the chsnnel error probability is less then
It)". Under this assumption, the amount or side infor-
mation ofsection IV grows by a factor of three amounting
to 0.013 and 0.023 b/p for System C sod D. respec-
tively. for an image of size 256 X 256: ibrsn lrnsge of
size 5!: x $12. the side information reduces by a Factor
of four. The length indlenter of a pecker should also be
protected because this information is indispensable for
channel decoding. AI.|l.IJ'nit1[ that 14 bits is uletl for the
length inclicstor. sfter error protection 42 bits or six bytes
are needed for the length indicator. This Increases the hit
me by 100 x (6 x S/1024) - 4.?! corresponding to
an increase of 0.C|l2. 0.023. and 0.047 ls/p for design
average bit rates of 0.25. 0.5. and l b/p. respectively.
In Table X. we have summarized the Increases of the
sveragc bit rttte incurred by the side inftinnntion. These

.'‘In all or our simulutnns. the length of the packet been llaa IlIITl2 ' Ilili.

usual) 

numsennsvetohesddeamtsstnntnttntesusutme
lnTabieVl_Itoeaiculster.heIcw.a1overs.lI bitnsea.

V11. Suuunev
In this paper. we have developed new schemes l'orsnb-

bend image coding overnoiseleas andnolsy channels. For
the noiseless channel situation. we hove developed two
encodist; schemes. The difference between the two
schemes is lstheeedlngoftheiowest frequency snbbentl:
oteilmscltentettses DPCM wltiletlteseeoetlusesi-D
DCT ending. Both schoosos use zeto-tttesnoty quantiza-
lion fofothersubbends. An ltnpottanrfeatureofthese
sehemeststhsrtheotttnutoffllqusntiestsareenttopr
coded. The jrsstifleadon for using entropy-coded quanti-
zation resides lnthesntistieal testtltsontheshspe ofthe
distribution of subbetui-I. which sunset I significant gain
for entropy-coded quantization over oonventionsl Lloyd-
Mlx quantization followed by flfaed-length coding. Both
schemes perfonn better then the nonsdaptlvc scheme in
[2] (and. hence, other schemes against which tamperi-
sons were rnsde in [2]). The dilferenee is significant both
subjectively and ob}eetively. The objective petfomrenoes
of the DCl‘- and DPCM-hased schemes are more-or-less
the who although. at low bit men. the DCT~busd
scheme olfets s subjectively noticeable improvement over
the DPCM-hosed scheme.
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Ehenmlltll

ere;-mm it-ouew—orat-&.teamt
dunnel 38!‘: II I deelpn tlteoflll bfp.

H]. ts. AVE-IISNI

For noisy chsnnelt. due to the extensive line I)f1Fl.ri-
nhle-length codes and tho cuncoutiun: emer proplgetion
pmbleflll. 0|-tr schemes exhibit en Isle level of
sensitivity to channel noise. To combat this tliflicttllty. we
have developed I comhineri soumeichsnnet coding
scheme in which the schemes designed for the noiseless
clunnel ate combined with sppnoprmely designed este-
cotnpetihle pttnettued coevolutionll ecties. Simulation re-
sults forevsriety nfencodingretesendchennei bit error
retce indieue that the ehennel-cpthnized schemes perfonn
dramatically better then Iheircotsntetpem designed forthe
noiteleu channel (of come. et the cost ofsorne aided
ccmptexity). They the perform better than the scheme
developed in :11.

Fig. 1.5 ilhrrtmes the perlisrtnnnce of the “I-0 scheme
Is Well u Swami A. B. C. and Del the encoding rate
of0.5 b/p. Cleuiy. Synetne A and 3 exhibit a great sen-
sitivity to Izhutllel mile, despite their very good perfor-
mance for noiseless channels. Syeeerns C and D both per»-
fortrtbettetthenw-0. IIIfect.inInce1cascs. theirwomt
perforrnence (er P, - I0") is still better limit the best
pcrfennertee (ct F, - 0.0) ‘of W-O. System D performs
better than System C no exhibits e better ruiaustneee
egeinse I:lI.nne.l noise. In View of these results. we con-
clude ll'I.I.t the but scheme en-tong those considered here
in System D. The DC!‘ biochire need in system B is 4
x 4. for which the can-nslexiry cfimpletnenution is quite
tnsnegeeble.

Possible avenue: for ftttther research include: i) the
ettuiy of intrebenti entropy-constrained VQ [H] for en-
coding the subbeotls: ii) the development of en extension
of System B in which l.|‘I adaptive 2-D DCT coding. sim-
ilar to that of [22]. is used for encoding the LFS. end iii)
the study or system performance ibr bursty and fading
channels.

, .

Ill! lDi'JINAL ON SELECTED nu: IN Cfll|lUNiC.h1'|il3N5. VOL ‘I9. M3. 1. JUN! iifl

. . Ackuowtebauenrr

The authors '.ttould‘Iilte to thank the enonytnoue review-
ers for their heipfitl comments.

u

REFERENCES

[I] It. E. Csoetsiem. s. A. weeeu-.mdt. L. F'lIu;'II. '-mm: coding
unripe.-Jttnnnbuni-." euusym. ‘run. .t..vet..!s,pp. rue!-lots.Oct. I916.

II] J. W. Woods end S. D. O’N'Iil. "iuhblld I-‘Dill; nI'iII|eI." JEEE
Trim. 1lt'ontu.. .fiIut'h. flgnml Pm:Ir., col. AS8164. nr. 121!-I218. CH. INS. ' - .

[31 ll. lllhenvi end A. Tsheuhli. "Sub-bend cudhgnfmnloehlunte Ind
celorianseet." IEEE mutt. Ore. Sr:-'.. vol. 15. pp. 201-114. Feb.ms

[l] P. H. Ww.etiek.l. Bietnntfl. end B. E. lioeitee. "iuh-heed coding
ol inane Il.l.|II| pefliclire neler quntlnticn." in Free. IG-t£.5’P.
Apr. m7.pp. Im-mt.

[5] P. 11'. Weueeink. D. B. lolltee. J. Ilannnti. and I. W. Wendi.
"sueme ceding eflntspn tsrht; t-eetorqtnntiutlol." i'E£E mm.
arst1nrtrt.. vol. 36. Hit 713-? Inna lflll.

[6] R. I. seinnek. N. Mickey. N. Ingest. sMT. Klan. "Imp coda;
huedcneeiecdvelloudzetiplaftheteeoulruetloeenieeinthedcm
tan: IteHuntl." in Prue. 1663!. Apr. ,1!$I. pp. ‘tee-tel.

[TI C. Kim. J. Bltsthet. H. J. T. Snllfi. utll. M‘. Memutl. "Suhhnse
:N1fl|0f¢OlDfi|1|lII|IIhI3I.Ii|IIlll-evIceelt|tIII1i.l.|iioI." term.

- l'€'J.Bt'. Apr. l9fl.pp.153-I56.
[II J. Il.J'nhIIIII:t. "A flltn Bentlly tluigmi lb:-tun in quettnnhe minor

Ilher beeh." Prue. mm. Mr. Ian. pp. 251-291.
{9} It. J. 1'. suite mo 3. L. zoom. -‘sueme cutie; ottumu with

tI:.!|’Iv Isuuitru steuenrn." ll Prue. IGLEP. Ape. 19I?. pp. Ill}-
I .

[to] N‘. esmntt. no I. w. student-o. “Opt:lIuttII-wmlieei‘ nutm-tnunceioraelsssoretl-Gnseisl nIeeInI')'|esuettreee."IE.I£1"reu
law-nu. mm. «Al. IT-30. .«II.'t-G91. my I914.

[I I} P. H. Weelerllk. 1. lb Ind D. 3. Beetle. "Erelutinre of
inp nob-Inn! eedkp u&mII." in Peter. EUIASTP. Sept. 1911.
pp. lit!-ilfi. _

III] R. C. Rei.Ileus'n!J'. D. Gihwl. "DlItn'.hIIlMI oflhe tIn-dineII-
shul bcfnmleli fallllllu." IE5! ‘Dull. Calutvelth. vol.
COM-ll. pp. I3!-I30. Jule I951.

[I3] Y. Shohnt |nt1A.9eeeen. "llleiut tilt ellocuiol fmtuhlmry us
nfqnntiun." fE£l fmne. Aaataf-. heed. -§'lnlJ.Pron.r.r., vol.
36. 99. I445-I-Isl. legit. I931.

[I41 N. s. lsrenteetll’. Moi]. Dmret CodlII|'°J"l'em6nt.r. ttulewoe
Cllis. NJ: Prentice-Hell. llfl.

[II] N. lien-urlh at! V. Vellhetllrle. "optlrrnl qunsine than for
notes cunule: M npproeee to combine Mom-ehuuiel eotllu."
rm flour. their-. fltewy. vol. 5!. pp. hf-I11. Nor. IBI1.

no] I. W. Mnduinaue D. 0. Dent. “f'.nnthiner£ source-cheeeel coding
M'i.II|II." E55 fllel. Well:-ItI.. vet. $9!-I1. 9|). I6!-I-I559.
Nov. 1979. ,.

{IT} l'.W. I-Iohiilrs. D. 0. Del. IId.A. L. Vlrthal. “ConNeIsdeour:I-
thence-I coin o-flanges using the Iioch eoeine meercnn. " FEES
I"nou— l.'oIourn.. vol. COIII-19. pp. I161-I11‘-G. Sept. [DI].

ill] I. Iluenetsrt. “late-eotupetihh pun.-met! contmotiaoel codee
(RCFC eeduiend their sppiieetlcos." IEEE Thee. Cousin-e.. vet.
15.». 119-400. Apr. tm.

{I91 J. 3. Cain. G. t‘:. Gilli. tr.. ectll. M. Cielu."Ptrne1uretl «evenn-
onut seen at rlh {. - 13,1. Ind. amputee mnei.It-:1 likziilrrnd

 " IEEE ‘mm. hbm. I'hmry.. vol. IT-IS. pp. 91-Ill}.
II. I .

I30] I. V. Cox. J. Ilepneur. N. knltedri. nndc.-B. $uIt‘lhef|. “A sob-
Mntl octier designed tor cotnhineo scum nu ennui coding." in
Moe. IG-t3.'t‘t'. Apt. IDII. pp. 13.1-Ill.

[III P. A. I‘.1totI.T. Lonltebuash. end I. M. Grey. "Enmpy-coestrsined
vettorqtraesintion." !EE£Tte1Ir.Acotur.. Spud‘. Si'enei'.Preces.r..
vol. .11. pp. 1-I—-I1. I'll. IEI9.

I22] W.-H.C1ren-Ind L‘. H. Smith. "Msprive coding ormaenchmsiu ufl
color imlgee." JEEE Thus. Coer.nrtur.. vol. COM-25. ml. I2!!-l291. Nov. I977.

[l.:I| N. Tenntse use N. Farvmin. "suntund image ¢°dlB| |llIlI| entropy-
tcnned qtnntlnlinn nvm noisy dtlnnels." Tech. Rep. L||riIMIS-1'|l-
E9-E6. Univ. Drlnlyllnd. Au]. W89. -

Page 274 of 437



Page 275 of 437

_ 1‘-ANAII AND FAIVAIDIN: -‘IUII-M39 IHAUI CODING

,; Nmn Tunic wu bum III Kym. man. on reh-
' Iulry 1. I955. Ill III:Iiv|d [bl B.£. Ila I'I.E._d£-

me: an nlecuiul nnginoarlng from flu U:dvenlur'
ul'Tn|'!D_lI1 I97? ma IW9. Iupeatluiy.

Elna: Joining Mlmhlahi Bland: Cm-pmuion
In |91'9. he in bun ennui in luau:-sh Ind dz-
vvkwlnunraonl-In_In eommumion Iymml. as-
mhlhv ror f|snin:J.fl:'. H: -u . viaiun; Scholnr
II the Univuilly al Mu-rI|ad..C4:]lua Park. dun-
iI'I| i9“-I9”. II: {I I Sunk» Ruurul! Efl|IIl!¢r
:1 Inc Inlurmnuon nd Comfmnlnrlwl Sfugnli

Gmllp nfthe Miuubmu Elnctréc Ca:-pnmlcn. Hi: cums: mulch inur-
em include in-mu coding Ind fllIIIIIlJl| vuhh uyplbculon to Image com-tuunlcllion unuinnll.

Mr‘ Tunbe :1 I mmbu at me [nuimn or Elocunnlu, Infonmllon gm
Cotnmunlcllion E-lI|ilI£¢I‘I of llplu.

  
 

  

Nfllfl-II?l'.|'iNlI ill hum In TIl1rIn.-II'lvl- °l
July 15. 1955.31: mama ma 5.5.. H-5-. Inn
ma. thrust: in :1-:IrI.c.Il eu|.'mo:f1=l |"9!||lnuolut Pblrmtnle lmlma. Troy. NY- I"
1919. 191-0. Ild I933. Jupocllvaly.

During i'J!0—l!ll Ind |0I2-WE} ha urn a Itc-
afinh Auhtm hung Elenncnl. Cnmpmr. Ind
syunu Buinuriu Dapomunl nl llouulu!
P¢1ywdI_n.le. H: lfihofinn LEM falluuthlp dun-
iq fin l9Il-Iflzoadunk rut. Slam haunt

_ flu, hr in: 11-: um uh Depuunenu of Elec-
tnhlfiaginurllg, Ullnrdu II!“-IUIII1. CWOII Park. What In hm-
muly an Mmlnu norms: and held! I Mm vrllfl IN III"-
muefauuvnmnd Snd:|u.Du|l.|;Ihl990-I99! nnhmlcynar.
lawn u wanna. Pmruuor -: Bantu N-mu: Supulluxu an "relaun-InnIJca1|IInI.Pu'L|. Fm-an. IIII numb hillam inshudu iafnnilllflll Ib-
cry, mum mmnnlicninal. and anal rmlillns -rhh Iwli-=IIhI W
IpuclU£nu|I=9d.lIIIIduIun£uIoa.!hvnlhAno¢ltII Eflilflflflr
Qumizuiun. specuflmp Com: ofdu LEE 'I‘l.M|I.:|\|.'!'lolIul Cou-
JILDIICITISIII has l!I‘f III I990. II 1931'. in ruxlvad Ilu PI'fl|deI.liIl_
‘fnnngllvuziguar Auud Elfin It Nliflll khan Pwld-Iflnm

 

Page 275 of 437



Page 276 of 437

 

Reversible image compression via multiresolution
representation and predictive coding

Ami: Said and William A. Pearlman

Department of Electrical, Computer, and Systems Engineering
Rensselaer Polytechnic Institute, Troy, New York 12180

ABSTRACT

In this paper a new image transformation suited for reversible (lossims) image compression is
presented. It uses a simple pyramid multiresolution scheme which is enhanced via predictive

coding. The new transformation is similar to the snbband decomposition, but it uses only integer
operations. The number of bits required to represent the transformed image is kept small though
careful scaling and truncations. The lossless coding compression rates are smaller than those
obtained with predictive coding of equivalent complexity. It is also shown that the new transform
can be effectively used, with the same coding algorithm, for both lossless and lossy compression.
When used for lossy compression. its rate-distortion function is comparable to other eflicicnt iossy
compression methods. ' -

1. INTRODUCTION

In general, reversible (or lossless] image compression is required whenever some processing (mag-
nification, filtering, subtraction, etc.) should be applied to the image. Most lossy compression
techniques are designed for the human visual system and may destroy some of the information
required during processing. It is also indicated for images obtained at great cost, such as medical
images, when it is unwise to discard any information that later may be found to be necessary.

Some ofthe most effective methods for reversible compression use linear predictive coding," '
which is the method adopted inthe JPEG Still Picture Compression Standard.“ This form of
compression is usually defined for a single resolution. in a way that the image can be recovered
only in its entirety—-s characteristic limits the application of those methods.

There are several advantagesin a multiresolution representation of the image. One of them is
the possibility of progressive-resolution lmnsmission, where the image is recovered at increasingly
finer resolutions. This. in turn. allows a. multi-use gclleme, where users with devica of different

an I ran: Val’ mes . o-JI94-1369-0J9Jl$6.0D
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resolutions can access the some compressed image file and efficiently recover the image only up to
the resolution the device is capable of using (displaying, printing, etc).

Another advantage of the multiresolution representation is related to the coding efficiency.‘
Single-‘resolution predictive coding requires a statistical model of the image, and may be based
on some assumptions, like stationary distributions, which are seldom encountered in real images.
This problem can be alleviated with more complex adaptive models. but at the expense of a much
larger computational effort. On the other hand, the rnultire.-solution representation has a recursive
structure, in such a way that a high order and complex transformation can be done with a. sequence
of low order and simple transformations. ‘

One important aspect of reversible compression is that, in a sense, all bits of the image repre- _
sentation are equally important, because all have to he recovered. Lossy cornpression methods use
only the numerical pixel values to remove correlations and to select the most relevant information.
For that reason, some of the most effective transformations for lossy compression (e.g., DCT,
PR-QMF‘ suhband decomposition, etc.) are reversible only if its coeflicients are perfectly repre-
sented as real numbers. Truncating the values in the transformed image may render the method
inefiicient for reveraibleoompresaion because too many hits" are used to code the fractional part.’
Adapting these transforms to use only integer operations does not solve the problem because they
still increase the number of hits required for an exact representation.

Since the‘ Pixe1's numerical value is important in the image's context, a good transformation
for reversible compression may use arithmetic operations to reduce the correlations, but it must
deal carefully with the truncation process, and must limit the maximum number of bits required
to represent each pixel in the transformed image.

In this paper we propose a new integer transformation for reversible image compression that

addresses these problems. It uses a simple pyramid multiresolution scheme enhanced with pref
dictive coding. We rail it S-i-P transform. It differs from other methods‘ because the prediction
is used during (instead of after} the sequence of recursive transformations, and hence can use
information that is not available after the image is transformed. Numerical results show that the
5+1’ transform allows more compression than single-resolution linear predictive coding methods
of small complexity, while keeping the advantages of the multiresolution representation, and can
be, calculated with a very small computational effort.

It is also shown that the SH’ transform it is well suited for progressive-fidelity transmission,
where, for a single resolution, the image quality is gradually improved up to perfect reconstruction.
This approach uses the same coding algorithm for lnssy and lossiess éornpressiomwithout requiring,
for example, the lossy-plus-residual approach.‘ The results show that its rate-distortion function
is comparable to other efficient lossy compression methods.

2. MULTIRESOLUTION REPRESENTATION

We begin with a pyramid transformation known as the S (Sequential) transform," “ which is similar
to the Haar multiresulution image representation.’ There are different definitions of the S transform

SPFE Vol. 2094 I 565
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Figure I: Multiresolution sequential transformation.

in the literature, but most differ only in some implementation details.

A sequence of random integers c['::] with length N, can be perfectly represented by the two
sequences with length Nf2 defined by:

llfil = l(<=[2=1l+r=[2'=+1l):’2J -
(1}-'

Mn] : c[2r:l — c[2n + 1],

where oornesponds to downward truncation. The sequences I[n] and h[n} form the S transforrn
of c{n].‘ '

The inverse transformation is:

«=12-=} g
c{2n + 1]

ll'=l+ Wllfll +1)f9J -

c[2n] — h[nl.

ll

(2?

The edvantnge of this representation is that, if the correlation coefficient of c[2n] and c[2n + 1]
is larger than lf3, then the average variance of l[n] and Mn] is smaller than the variance of clnlii
Since the sdjeoent pixels in an image are highly correlated, we apply (1) to the sequence of image
pixels to reduce its first-order entropy. In this case, lilo] normally has small variance, while the
variance of fin} is approximately equal to the variance of cln].

The hire-dimensional trannformstion is done by applying the trensforrnation (1) sequentially
to the rows and columns of the image, as shown in Figure 1. The components corresponding to
llri] then are the mean of 2 X 2 pixel blocks of the image. They form another image with half the
resolution, and with statistical properties that are-similar to those of the original image. Hence,
the same transformation can be recursively applied to this lower resolution “mean image" (H in
Figure 1) to form a mnltiresolution hierarchical pyramid.‘

Note that the maximum number of bits required to represent each pixel in the H images does
not change with each transformation. ln addition. the S transform is so simple that it is easy
to find the truncation that allows perfect reconstruction. There is no date expansion in this
transformation. i.e.. it can be done “in place,” and use the same number of pixels of the original
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' image. Except for the truncations in (1) and (2), this transformation is equal to a subband
decomposition. For that reason we borrow some of its terminology. For instance, we call I [11] and
h[nl the lowpass and highpasr components.

Because the .low resolution (If) Images are formed with mean values (a form of lowpass filter-
ing), the degradation of those image’: quality due to aliasing effects will occur only after several
transforma.tiona—an advantage over the unfiltered suhsarnpling used. for example. in the HINT
(Hierarchical INTerpola_tion) coding metliod.".“

The S transform is very simple, can he quickly calculated. and significantly reduces the first—l
order entropy. However, it is too simple to elirnina.te the correlation between the highpass com- ‘
ponents. On the other hand, one advantage of predictive coding is that it does not -have to be
linear for perfect reconstruction, and the prediction value can be truncated at will. Since the IS
transform components are correlated, we can use a predictive coding method to further reduce
the first-order entropy of the transformed image, while keeping the transformation reversible. ‘

3. S+P TRA NSFDRM

In the S-i-P transform {S-transforrn + Prediction) we" use, during each onddimensional tranafor-‘

rnation, some values of I [11] and h[n] to estimate of the value of a given hln]. Calling the estimate
h[n], the difference

fqln] = hlr1]— llz[n]J , (3)

replaocs h[n.], forming a new transformed image with smaller first-order entropy. No estimation is.
subtracted from l[n] because it is later transformed with the same method.

Defining
Al[n] = l[n _ 1] _ l[n], (4.;

the general form of the estimator is:

h[n] = a. Alla] + a, Al[n + 11- a, h[r: +1]. (5)

With this formulation all terms have zero mean. To simplify the notation, we disregard, for now,
the image borders. Note that (5) is linear, while (3) is not.

During the inverse S+P transformation the pixels are visited in the inverse order, so that the
information required to calculate the prediction have already been recovered. So. the inverse trans-
formation algorithm is like the transformation algorithm running “backwards,” and the prediction
is added instead of subtracted. After H11] and Mn] are recovered the inverse S transform (2) is
calculated.

The predictor coefficients that minimize the variance of h¢[n] can be found by solving the
Yule-Walker equations.’ This solution will not necessarily minimize the entropy of hgln], but we
found that it is practically optimal. In fact, we discovered that there can be several solutions that
can practically minimize the entropy. This freedom of choice is important because it allotvrus to
select good rational coerlicienta. and calculate the SH’ transform with fast integer operations and
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Figure 2: Frequency response of the S and S+P transforms.

bit-shifts instead of multiplications or divisions. This way the S+P transform can maintain the
speed advantage of the S transform.

The interpretation of the S+P transforrn is easier in the frequency domain. If we disregard
' the truncations, we can combine (1), (3), (4) and (5), and see that lain] can be regarded as the
output of s FIB. filter. to the input sequence c[n]. The z-transform of the filter’s response is:

F{z) = -;-{4a; — a, z" +{a1— cm 4- 2) 2" 4- (cu —-cu - 2) 24+
(5)

Figure 2 shows the frequency response of a particular S+P estimator compared to the S trans-
form. Since most of an image's energy is concentrated in the low frequency oomponents, it is clear
that a filter with higher attenuation in the low frequencies will reduce the variance of hg[n]. On
the other hand, there is an inevitable amplification of the higher frequencies. This is due to the
structure of (6), and is required to keep the transformation reversible.

(Or: + 243-3) 2“ + (org —- 2:13) z‘°}.

Even though our estimator has only three parameters, a. good deal of modeling can be done
in the response (6). Figure 3 shows the frequency response of the set of predictors in Table 1.
In principle, the choice for the best predictor depends on the image's characteristics. Smooth
and noiseless images are better compressed using the filter with largest attenuation on the low
frequencies. Noisy and very detailed images require smaller amplification of the high frequencies.
However, we next show that the predictor choice is not critical, and that there are good “universal”

predictors, i.e.. those that are effective for a broad class of images [e.g., portraits, landscape,
rnedica.1,etc.). '

We tested the selected predictors with the set of images in Table 2. The first four are well
known, and can be seen" in the references. The images CT 1 to 4 are medical (tomography)
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images. The first-order entropies of the transformed images are shown in Table 3. Those entropies
are calculated as the weighted mean of the entropies in each of the pyramid quadrants. This way

they are more accurate estimates of the entropy-coding bit rates when different adaptive models
are used for each quadrant.

To give a reference for comparisons Table 3 also shows the first-order entropies obtained with
the .lPEG"' third-order predictors #4 and #7. We can see that the dilierence between the S (no
predictor column) and 3+? transforms is significant, but the SH“ entropy in some cases is not
much smaller than .IPEG’a. Nevertheless, the multiresolution advantages should also be taken into
account. in addition, we show in the next section that. using the pyra.m.id structure, the 5+?
transform can be compressed to rates smaller than the fir.-at-order entropy, and it is clearly superior
to JPEG rates.

4. CODING RESULTS

We selected the predictor C for our coding teats because it can be calculated as
1

Mn] = §{2(A1[n3+ nun +1] _ lxln + 111+ All» +11}, (7)
and hence use hit shifts instead of multiplications and divisions. In the image borders we used the
predictors _

fin] -_— i {M2} + Alla] }, (3)

Ema} = i { muwz — 11+ Al[N/2] }. (9)
In our tests the CPU times to calculate the S and SH’ transforms of a 512 x 512 image were

0.4 s and 0.5 s. respectively {SUN-SPARC [0 workstation}. All rates presented in this section are
not entropy estimates, but are calculated from the size of the compressed files. In all tests the
5+1’ transform pyramids have five levels. '

In our first sequence of tests we evaluated the progressive-resolution transrnisaion scheme. The
adaptive arithmetic coding algorithm of Witten et al.‘ was used to entropy-code the different
resolution -images. An adaptive Markov model with five states (contexts) was used, where the
state is defined by the value of the previous pixel in a row (e.g., state 1 if 0 S hhd[n.- 1.] < 4.
where hi); represents a pixel value in the completely transformed image]. The model was reset
before coding each part of the pyramid. The Markov model does not change the speed of the
arithmetic encoder, and can explore the remaining dependencies between transfonn ‘pixels.

Table 4 shows the results of those tests. The some file was used to progressively recover images
an‘. increasingly finer resolutions. The actual bit rate required to code each image was divided
-by the number of pixels in the original image to give the hit/pixel rates in the table. Hence.
those hit/pixel rates represent the contribution of the low resolution images. Note that the full-
resolution rates can be smaller than the first-order entropies of Table 3. The average coding and
decoding times were 4.2 s and 4.8 s, respectively, for 512 x 512 images.

6?U FSPJE Vol. 2094

Page 282 of 437



Page 283 of 437

in the second set of tests we used the zero-tree°' 1° compression algorithm. This coding method
uses the magnitude ordering of the different pyramid levels to achieve larger compression. The
sequence of information coded by this method is similar to bit-plane coding, but, instead of visiting
all pixels in the image to code s.’oit-plane. it uses a tree structure to avoid visiting the pixels with
small magnitude. This way it can detect and more efl-iciently code the low-activity regions in the
transformed image. lt is simple. fast and. because it works with individual bits, can be used for
reversible compression.

Two versions of the zero-tree coding algorithm (called I and II) were used, and both can
compress the image only in full-resolution. Version I does not allow any form of progressive
transmission. while version ll is designed for progressive-fidelity transmission. The difference
between the two versions is that version Iuses the transformed image as previously defined, while

version ll implicitly scales the transformed image so that the transformation is nearly orthogonal-
a requirement to minimize the mean squared-error distortion. _ ‘

Table 5 shows the compression achieved with both versions to code the test images. The best
results, relative to the first-order entropy, were obtained for the set of medical images (CT). The
average coding and decoding times of version I were 12.0 s and 12.8 s. respectively, for 512 X 5l2
images.

In the progressive-fidelity transmission scheme the decoder initially sets the reconstructed
image to zero and update its pixel values using the coded message. All rults were obtained from
the same file: the decoder can decide at which rate to stop, and then it calculate the inverse S+P
transform to obtain a lossy version of the image. If it continues decoding to the end of the file
then the image is recovered exactly. The results obtained with the image “Lena” are shown in
Table 6 (the decoding CPU times do not include the inverse transformation). The average CPU
time of version ll to code and decode a. 512 x 512 image up to perfect reconstruction were 10.5 s
and 11.0 s. respectively. '

Those rate versus PSNR results are excellent, considering the speed of the S+P transform
and decoding algorithm. They are slightly inferior to methods iilce subband coding with adaptive
vector quantization." but superior to some other vector quantization coding methocls.” Figure 4
shows the lossy version of the image “Lens” coded with this method, at rate 0.3 bit}pixel. Like
the images coded via. subband decomposition, there are no blocking artifacts, and. even though
a hit-plane approach was used. the inverse transformation completely elintinata the “banding”
artifacts usually "present in bit-plane coded imagm.
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Figure 4: Lo.-say reproduction of the image “Lena.”
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Embedded Image Coding Using Zcrotrecs of Wavelet
Coefficients

lemme M. Shapiro

.4d.rtmct—Tlte embedded ‘mum tlllllll alporltllllt (Ell?)
Is a simple. yet remarkably elbetive. ltugc compression algo-
rithm. having the property that the bits in use bit strum are
generated in order or irnportance. yielding a fully embedded
code. The embedded code represents a sequence oi‘ binary de-
cisions that distinguish an image train the "still" image. ‘Using
an embedded coding algorithm. an encoder can terminate the
encoding at any point thereby allowing a target rate or target
distortion metric to be met exactly. Also. given I bl! strum.
the decoder can cease deco-dirt: at any point in the bit stream
and still produce exactly the same image that ttrottld have been
encoded at the hit rate corresponding to the truncated bit

«stream. In addition to producing I l‘ltll_\' embedded bit stream.
EZW consistently produces compression results that are corn‘-
petltive with virtually |1l_knou'n compression algorithm! on
standard test Images. Yet tllll performance is achieved \I'lll] A
technique that require: absolutely no training. no pee-stored
tables or codelroolts. and requires no prior lrnnwletllt ill "'8
image source.

The Ezw algorithm is based on tour ltey untcepu: 1} a dis-
crete wavelet trarestnrtn or hierarchical Ittbltantl decorul)°!i'
tlnn. 1) prediction or the absence or slpnlticaat Inlet-tnetion
across scale: by exploiting the sell-altstllu-iI_\' inherent in len-
ages. 3) entropy-coded succeeds-e-approximation quantleetinn.
and ti] nnltterral lossless data compression which is achieved via
adaptive aritlarnetle co-ding.

l. INTRODUCTION AND PROIILESI STATEMENT

15 paper addresses the two-fold problem on ll ob-
taining the best image quality for a given-hit rate. and

2) accomplishing this task in an embedded fashion. ‘t.c..
in such a way that ell encodings of the same image at
lower bit rates are embedded in the beginning of the bit
stream for the target bit rate.

The problem is important in many applications. panic-
ularly for progressive transmission. image btowsifls [15].
multimedia applications. and compatible rranscoding in a
digital hierarchy of multiple bit rates. It is also applicable
to transmission over a noisy channel in the sense that the
ordering of the hits in order of importance leads naturally
to prioritization for the purpose of layered protectionschemes.

Mztlulzrlpt received tkpril 23. 1992: mm June is. _I993- The su_=I1
edlttlrcnardinalirtg the man. nfthil paper and eppnwuts it for P“l’l1“‘“°7'was Prof. Martin Velterli. _

The author is with the David Saroail lieaenrell Center. Pnnceton. N!08543.
IEEE Log Number 9212175.

.4. Embedded Coding

An embedded code represents a sequence of binary de-
cisions that distinguish an image from the "mill." or all
gray. image. Since. the embedded code contains‘a!l lower
rate codes "embedded" at the beginning of the bit stream.
cfl‘cctivei_v. the bits are "ordered in importance." Using
an embedded code. an encoder can terminate the encoding
at any point thereby allowing I target rate or distortion-
tncttic to be me: exactly. Typically. some target param-
eter. such as hit count. is monitored in the encoding pro-
cess. When the target is met. the encoding simply stops.
Similarly. given ii. bit stream. the decoder can cease de-
coding at any point and can produce retzottsttuctiorts cor-
responding to all lower-rate encodings.

Embedded coding is similar in spirit to binary finite-
precision representations of real numbers. All real num-
bers can he represented by a string of binary digits. For
each digit added to the right. more precision is added.
Yet. the "encoding" can cease at any time and provide
the "best" representation of the real number achievable
within the frarnewori: of the binary digit representation.
Similarly. the embedded coder can cease at any time and
provide the "best" representation Ofllfl image achievable
within its framework. _

The embedded coding scheme presented here was mo-
tivated in part by universal coding schctnes that have been
used for losslcss data compression in which the coder at-
tempts to optimally encode a source using no prior knowl-
edge of the source. An excellent review of universal cod-
ing can be found in [3]. In universal coders. the encoder
must learn the source statistics as it progresses. In other
words. the source model is incorporated into the actual bit
stream. For lossy compression. there has been little work
in universal coding. Typical image coders require exten-
sive training'ft)r both quantization (both scalar and vector)
and generation of ttnnadaptive entropy codes. such as
Huffman codes. The embedded coder described in this p“a-
per attempts to be universal by incorporating all teaming
into the bit stream itself. This is accomplished by the ex-
clusive use of adaptive arithmetic coding.

intuitively. for a given rate or distortion. :1 noncrnbrd-
tied code should be more efliciettt than an embedded code.
since it is free front the constraints imposed by embed-
ding. In their theoretical work [9]. Equitz and Cover
proved that a successively rclinabic description can only
be optimal if the source possesses certain Marltoviatt
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properties. Although optimality is never claimed. a
. method of generating an embedded bit stream with no ap-
parent sacrifice in itrtage quality has been developed.

8. Fectrures of the Embedded Coder
The EZW algorithm contains tlte following features

I A discrete wavelet tritrtsforrtr which provides a com-
pact multiresolulion representation of the image.

I Zerotree coding which provides a compact multi-
' resolution‘ representation of significance maps. which

are binary maps indicating the positions of the sig-
nificant cneflicients. Zerotrees allow the successful

prediction of insignificant coellicicttts across scales
to be efiicicntly represented as part of exponentially
growing trees.

I Successive Approximation which provides it cont-
pact mulriprecision representation ‘of the significant
coefficients and facilitates the embedding algotithttt.

- A prior-iti.tation'ptotocol whereby the ordering of im-
' portance is determined. -in order. by the precision.

magnitude. scale, and spatial location or‘ the wavelet
coeliicients. Note in particular. that larger cnefli-
cients are deemed more important than smaller coef-
ficients regardless of their scale.

0 Adaptive multilevel arithmetic coding which pro-
vldea a fast and eliicient method for entropy coding
strings of symbols. and requires no training or pre-
stored tables. The arithmetic coder used in the ex-
periments is a customized version of that in [Si].

0 The algorithm runs sequentially and stops whenever
a target hit rate or a target distortion is met. A target
bit rate can be me: exactly, and an operational rate-

. vs.-distortion function [ltDF) can be computed point-
by-point.

C. Paper Organization
Section II discusses how wavelet theory and multi-

resolution analysis provide an elegant methodology for
representing "trends“ and "anornaliea“ on a statistically
equal footing. This is important in image processing ire-
cause edges. which can be thought ofas anomalies in the
spatial domain. represent extremely important informa-
tion despite that fact that they are represented in only a
tiny fraction of the image samples. Section III introduces
the concept of a zerc-tree and shows how zerotree coding
can efilciently encode a significance map of wavelet coef-
ficients by predicting the absence of significant informa-
tion across scales. Section IV discusses how successive
approximation quantization is used in conjunction with
zet-otree coding. and at-ithrrretlt: coding to achieve eflicient
embedded coding. A discussion Follows on the protocol
by which EZW atterttpts to order the bits in order of im-
portance. A key point there is that the definition of im-
portance for the purpose of ordering information is based
on the magnitudes of the uncertainty intervals as seen_t‘rom
the viewpoint of what the decoder can tigute out. Thus.

lllli TMNEACDONS on storm. rttocessnro. vol. 4!. ts). It. because: in.

there is no additional overhaul to transmit this ordering
infonnation. Section V consists of a simple 8 -x 8 ex-
ample illustrating the various points of the EZW algo-
rithm. Section VI discusses experimental results for var-
ious rates and for VII'lD11I Standard test images. A
surprising result is that using the EZW algorithm. tenni-
llfllillg the encoding if an arbitrary glint in mg gt-[cciding
process does not produce any artifats: that would indicate
where in the picture the termination occurs. The paperconcludes with Section VII.

11. WAVELE? Tr-toottv auto Mutnttssottrrttm
ANALYSIS

A. Trends and Anomalies

One of the oldest problems in statistics and signal pro-
cessing is how to choose the size of an analysis window.
block size, or record length of data so that statistics com-
puted within that window provide good models of the sig-
nal behavior within that window. The choice of an anal-

ysis window involves trading‘ the ability to analyze
"anomalies." or signal behavior that is-more localized in
the time or space domain and tends to be wide band in the
frequency domain. from “trends. " or signal behavior that
is more localized in frequency but persists over a large
number of lags in the time domain. To model data as being
generated by random processes so that computed statistics
become rneaningful, stationary and ergodic assumptions
are usually required which tend to obscure the contribu-
tion of anomalies.

'l'lte main contribution of wavelet theory and mttltires-
olurion analysis is that it provides an elegant framework
in which both anomalies and trends can be analyzed on
an equal footing. Wavelets provide a signal representation
in which some of tire coeflicients represent long data lags
corresponding to a narrow band. low frequency tango. and
some of the coeflleients represent short data lags entre-
sponding to a wide band.-high fiequency range. Using the
concept of scale. data representing a continuous tradeoif
between time (or space in the case of images) and fre-
quency is available.

For an introduction to the theory behind wavelets and
rnultiresolution analysis. the reader is referred to several
excellent tutorials on the subject [6]. [7]. {ii}. [is]. [2D}.
[26]. [27]-

B. Relevance to Image Coding "'5
In image processing, most of the image area typically

represents spatial "trends." or areas of high statistical
spatial correlation. However "anomali." such as edges
or object boundaries. take on a petoeptttal significance that
is far greater than their numerical energy contribution to
an image. Traditional transform coders. such as those us-
ing the DCT. decompose images into a representation in
which each coellicietrt corresponds to a hired size spatial
area and a fitted frequency bandwidth. where the band-
widdt and spatial area are effectively the same for all coef-'
ficients in the representation. Edge information tends to
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disperse so that many non-zero coeffieients 3l'I=_I'|5ql.lil'Cd
to represent edges with good fidelity. However. since the
edges represent relatively insignificant energy with re-
spect to the entire image. traditional ttartsforrri coders.
such as those using the DCT. have been fairly successful
at medium and high bit rates. At extremely low bit rates.
however, traditional tntnsfnrrri coding techniques. such as
.1 9B6 [30]. tend to allocate too many bits to the "trends."
and have few bits left over to represent "anorrtalies.“ A5
a result,‘ blocking artifacts often result.

Wavelet techniques show promise at extremely low bit
rates because trends. anomalies. and information at all
"scales" in between are available. A major difficulty is
that fine detail coeflicients representing possible anoma-
lies constitute the largt number of coerlicients. ‘and
therefore. to make effective use of the rnultiresoluticn
representation. much of the infonttation is contained in
representing the position of those few coefficiems corre-
sponding to significant anomalies.

The techniques of this paper allow coders to elfectiveiy
use the power of multiresolution representations by ell’:-
eietitly representing the positions of the wavelet corni-
cients representing significant anomalies.

C. .4 Discrete Waireler Tiranrfonn
The discrete wavelet transform used in this paper is

identical to a hierarchical subband system. where the sub-
bands are logarithmically spaced in frequency and repre-
sent an octave-band decomposition. To begin the decom-
position. the image is divided into four sttbbattds and
critically subsanipled as shown in Fig. 1. Each coefficient
represents a spatial area corresponding to approximately
a 2 x 2 area of the original image. The low frequencies
represent a bandwidth approximately corresponding to 0
< |ai| < «/2. whereas the high frequencies represent the
band from tr/2 < Iul < tr. The foursubbands Irise from
separable application of vertical and horizontal filters. The
subbands labeled LI-i',, HI... and HH. represent the lincst
scale wavelet coelficients. To obtain the next comer scale
of wavelet coefficients, the subband LL. is fiirther decom-
posed and critically sampled as shown in Fig. 2. The pro-
cess continues until some final scale is reached. Note that
for each coarser scale. the coefllcients represent a larger
spatial area of the image but a nanower band of frequen-
cies. 'At each scale. there are three subbttndst the remain-

ing lowest frequency atihbarid is a representation of the
infortnation at all coarser scales. The issues involved in

the design of the filters for the type of subband decom-
position described above have been discussed by many
authors and are not treated in this paper. Interested read-
ers should consult ii]. [6], I32]. [35]. in addition in ref-
erences found in the bibliographies of the tutorial paperscited above.

It is a matter of terminology to distinguish between a
transform and a subband system as they are two ways of
describing the same set of numerical operations from dif-
fering points of view. Let :r be a column vector whose
elements represent a scanning of the image pixels. let X

l
I _.su'.-

Llt EL.

LE: -

Fig. I. First stage of I discrete wavelet lrtnsforin: The irnaseir divided
into foursubbands using separable fillers. Each coefficient Ieprcseritlupm
Iial area corresponding to apptosirriarety a 2 X 2 area of the original pic-
ture. The low frequencies represent a bandwidth ap1msiinsieiy'_earre—
spending In o < in] < 1 1. whereas the high frequencies iepieaent the
band from .- '2 at he! < .-, The four subbaiidr arise in:-in separable appli-cation of vertical and lvonrnriral flliirm.

 
Fig. 2. A two-scale wareieieeeernpotition: The Iniage is rliviirea into four
sublsands using separable filters. Each cue lllcieni in the sub-bands Lr'.1.Ui';.
HI, and air. represent: a spatial area corresponding to approximately a -I
K -1 aruofihe origlnalpie-rure.1‘hr: low frequencies II this scale rep-rwznt
a bandwidth approximately corresponding too < M < r14. whereas the
high frequencies represent the hurt! from uftl < |uf < If}.

he a column vector whose elements are the array of coef-
ficierits resulting from the wavelet transform or stibbantl
decomposition applied to .'c. From the transform point of
view. If represents a linear transformation of x repre-
sentcd by the matrix W. i.e..

X -= Wx. (1)

Although not actually computed this way. the efiectivc
filters that generate the subband signals from the original
signal form basis fiinctions for the transfomtation. i.e.-,.
the rows of W.-Diifererit coefiicients in the same subbaritl
represent the projection of the entire image onto translates
of a prototype subbaad filter. since from the subband point
of view. they are simply regularly spaced different outputs
of a convolution between the image and it subband filler.
Thus. the basis functions for each éoeflicient in a given
subbsnd are simply translates of one another;

In stibband coding systems [32). the coelllcients from
a given‘subband are usually grouped together for the pur-
poses of designing qiiaritizers and coders.‘ Such a group-
irig suggests that statistics computed from a subband are
in some sense mpresentative of the samples in that sub-
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band. However this statistical grouping once again im-
plicitly de-emphasizes the outliers. which tend to repre-
sent the most significant anomalies or edges. In this paper.
the tentt "wavelet transform" is used because each wave-
let coelficient is individually and deterrninistically com-
pared to the same set of thresholds for the purpose of
measuring significance. Thus. each coellicicnr is treated
as a ‘distinct-. potentially important piece of data regard-
less of its scale. and no statistics for a whole subband are
used in any form. The result is that the small number of
"deterministically" significant line scale coeficients are
not obscured because of their "statistr'cal“ insignlficance.

The filters used to compute the discrete wavelet trans-
form in tire coding experiments described in this paper are
based on the 9-tap symmetric quadrature mirronfilters
(QMF) whose coelficients are given in [I]. This transfor-
mation has also been called a QMF-pyramid. These filters
were chosen because in addition to their good localization

-properties. their syrnrrretry allows for simple edge treat-
ments. and they produce good results empirically. Addi-

' tiorrally. using properly sealed coefhcierrts. the uansfor-
marion matrix for a discrete wavelet transform obtained

using these filters is so close to unitary that it can he
treated as unitary for the purpose of lousy compression.
Since unitary transforms preserve L1 norms. it makes
sense from a numerical standpoint to compare all of the
resulting trtrnsforrrr coeflleients to the same thresholds to
assess significance.

ll]. ZEIIOTREES on WAVELET COEFFICIENTS

In this section. an important aspect of low bit rate im-
agecoding is discussed: the coding of the positions of
those coeificiertts that will be transmitted as nonzero val-
ues. Using scalar quantization followed by entropy cod-
ing. in order to achieve very low bit rates. i.e.. less than
1 hit/pel. the probability of the roost likely symbol afler
qr.tsntization—the zero syrnbol—must be extremely high.
Typically. a large fraction of the bit budget must be spent
on encoding the significance map. or the binary decision

: as to wlrether a sample. in this case a coeflicient of a 2-D
discrete wavelet-transfonn. has a. zero or nonzero quan-
tized value. It follows that a significant improvement in
encoding the significance map translates into a corre-
sponding gain in compression efliciency.

A. Significance Map Encoding
To appreciate the importance of significance map en-

coding. consider a typical transform coding system where
a decorrelrrting transformation is followed by an entropy-
coded scalar quantizer. The following discussion is not
intended to be a rigorous justification for significance map
encoding. but merely to provide the reader with a sense
of the relative coding costs .of the position information
contained in the significance rrrsp relative to srnplirude
and sign information.

A typical low-bit rate image coder has three basic com-
ponents: a _transfortrIarion. a quarrtizer and data compres-
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Fig. 3. A generic lrlrlsforn coder.

sion. as shown in Fig. 3. 'l'be‘origlnal image is passed
through some transformation to produce transfortn coef-
ficients. This tranaforrrratlon isfconsinered to be lossless.
although in practice this may trotbe the case exactly. The
transform coeflicients are their quantized to produce a
stream of symbols. each of which correspcndrrto an index
of-a particular quantization bin. Note that virtually all of
the information loss occurs in the quantization stage. The
data compression stage takes the stream of symbols and
attempts to losslesaly represent the data stream as cili-
cierrtly as possible.

‘1'lrc goal of the transforrnatiorr is to produce coefllcienrs
that are deccrrelated. If we could. are would ideally like
a tranaforntation to remove all dependencies between
samples. Assume for the moment that the transformation
is doing its job so well that the resulting transform coef-
flcienta are not merely uncorrelated. but statistically in-
dependent. Mao. assume that we have removed the mean
and coded it separately so that the ttansforrn coeficierrts
can be modeled as zero-mean. independent. although per-
haps not identically distributed raraloro variables. Fur-
thermore. we might additionally constrain the model so
that the probability density frtnctiorra (HIP) for the coef-
flcienta are symmetric.

The goal is to quantize the transform coelllcienta so that
the entropy of the resulting distribution of bin indexes is
small enough so that the symbols can be entropy-coded at
some target low bit rate, say for example 0.5 bits per pixel '
(bpp.}. Assume that the qaantizers will be symrneu-tc
rrtirltread. perhaps not-runlfortn. quantlzers. although dif-
ferent syntmetric rnidtread quarrtizera ttlaybe used for dif-
ferent groups of transforrn eoclilcicnts. Letting the central
bin be indert 0. note that because of the symmetry. for a
bin widt a nonzero index magnitude. a positive or nega-
tive index is equally lilrely. In other words. for each nort-
zero index encoded, the entropy code is going to require
at least one-bit for the sign. An entropy code can be de-
signed based on modeling ptobabiraiea of bin it-rdices as
the fraction of cocficients in which the absolute valueof
a particular bin index occurs. Using this simple model.
and assuming that the resulting symbols are independent.
the entropy of the symbols H can be expressed as

H - -91032;! - (1--plloszll -9)

+ (1 -pill + First. {2}

where p is the probability that a transform coellicient is
quantized to zero. and H" represses: the conditional en-
tropy of the absolute values of the qttantized coeilicierrts
conditioned on tbor-rr being nonzero. The tire: two terms
in the sum represent -the firsr-order binary entropy of the
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significance map, whereaspthe third term represents the
conditional entropy of the distribution of nonzero values
multiplied by the probability oftltem being nonzero. Thus.
we can express the true cost of encoding the actual sym-
bols as follows:

Total Cost -= Cost of Significance Map

+ Cost of Nonzero Values. (3)

Returning to the model. suppose that the target is H --
0.S. What is the minimum probability of zero achievable?
Consider die case where we only use a 3-level quantizet.
i.e. Hg: - 0. Solving for p provides a lower bound on
the probability of zero given the independence assump-
tion -

,c......(HNz ‘ O. H ‘ - (4)
In this case. under the most ides! conditions. 91.6% of
the coeflicients must be quantized to zero. Funhennore,
33% of the bit budget is used in encoding the significance
rnap. Consider a more typical example where H”; = 4.
the minimum probability of zero is

Pm§,[II';pz - If, H ' 3 0.954. [5]

In this case. the probability of zero must increase. while
the cost of encoding the significance map is still 54% of
the cost.

As the target rate decreases. the probability of zero in-
creases. and the fraction of the encoding cost attributed
to the significance map increases. Of course. the inde-
pendence assumption is unrealistic and in practice. there
are often additional dependencies between ooeflicients that
can be exploited to further reduce the cost of encoding the
significance map. Nevertheless. the conclusion is that no
matter how optimal the transform. quantize: or entropy
coder. under very typical conditions. the cost of deter-
mining the positions of the few significant coefiicients
represents a significant portion of the bit budget at low
rates. and is likely to become an increasing fraction of the
total cost as the rate decreases. As will be seen, by em-
ploying an image model based on an ertrrernely simple
and easy to satisfy hypothesis. we can efliciently encode
significance maps of wavelet eoeficienls.

.3. Compression cfstgnljficnnce Mops using Zercrrt-er: of
Wavelet Coefiiclettrs

To improve the oornprusion of significance maps of
wavelet coellicienrs. a new date structure called a zerotree
is defined. A wavelet coefieieni x is said to be insight}?-
can: with respect to a given threshold Tif Isl -C T. The

' rerotree is based on the hypothesis that if a wavelet coef-
ficient at a coarse scale is insignificant with respect to a
given threshold T. then trll‘ wavelet coeflicients of the same
orientation in the some spatial location at finer scales are
liireiy to he insignificant with respect to 1". Empirical evi-
dence suggests that this hypothesis is often true.

More specifically. in s hierarchical subband system.
with the exception of the highest frequency subbands.

3649

every coetficient at a given scale can be related to a set of
coeilicients at the next finer scale of similar orientation.
The coeflicient at the coarse scale is called the parent. and
all coefficients corresponding to the same spatial location
at the rlcltl. finer scale of similar orientation are called chil-

dren. For a given parent. the set of all coeflicients at all
liner scales of similar orientation corresponding to the
same location are called descendants. Similarly, for a
given child. the set of eoeificients at all coarser scales of
similar oriemstion corresponding to the same location are
called ancestors. For n QMF-pyrnnild sttbband decom-
position. the parent-child dependencies are shown in Fig.
4. A wavelet tree descending front a eneificient in sub-
band HH3 is also seen in Fig. 4. With the exception of
the lowest frequency subband. all parents have four chil-
dren. For the lowest frequency subband. the parent-child
relationship isdefined such that each parent node has threechildren.

A scanning of the coetlicients is perfonned in such a
way dtat no child node is scanned before its parent. For
an N-scale transform. the scan begins at the lowest fre-
quency subhand. denoted as LL”. and scans subbsnds
HLN. LH... and HR... at which point it moves onto scale
N - 1. etc. The scanning pattern fore 3-scale QMF-pyr-
amid can be seen in Fig. 5. Note that each coeficient
within a given sttbband is scanned before any coefficient
in the next sttbband.

Given a threshold level T to determine whether or not

a coefficient is significant. a memoir x is said to be an
element of a remrree for threitbold Tit’ itself and all of its ' I
descendents are insignificant with respect to T. An ele-
ment ofa znroiree for threshold Tie a zcrorree roar if it
is not the descendant of a previously found serotree root
for threshold 1'. i.e.. it is not pred1erably'tnrtgnpicanr
from the discovery of a zerotree root at a coarser scale at
the same threshold. A zerotree root is encoded with a spe-
cial symbol indicating that the ittsignillcsnce of the coef-
licients It finer scales is completely predictable. The sig-
nificsnce snap can be efiiciencly repraented as‘ it string of
symbols from a 3-symbol alphabet which is then entropy-
coded. The three symbols used are 1) zerotree root. 2)
isolated zero. which means that the coeficieot is insignif-
icant but has some significant descendant. and 3) signifi-
cant. When encoding the finest scale coefilcients. since
coefficients have no children. the symbols in the._string
come from s 2-symbol alphabet. whereby the zerotree
symbol is not used.

As will be seen in Section IV, in addition to encoding
the significance map, it is useful to encode the sign of
significant coelficients along with the significance map.
Thus. in practice. four symbols are used: 1) zerotree root.
2) isolated zero. 3) positive significant. and 4) negative
_sig'nlfit:attt. This minor addition will be useful for embed-
ding. The How chart for the decisions made at each coef-
ficient are shown in Fig. 6. -

Note that it is also possible to include two additional
symbols such as "positivelnegative significant. but des-
cendants are zerotrees" etc. In practice. it was found thitt
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Fig. 4. Parent-child dependencies otwblraudlt Note that the arrow points
[rent ll'Il rut:-trend oi the parents In the rubbaad of the children. The lowest
frequency snbbattd is the top left. and the highest frequency subbano is at
the ltonoot right. Also shown is a wavelet tree consisting pull of the dc-
tcettdentt of I si.n|1a eoefiieiettt in nrlrltatld Hill. The coelheietu in HHS
ta 1 aerotree rent it’ it is lnrigsiticatrt and oil‘ oi’ its descendants are insig-
niftcant.

 
Fig. 5. scahning enter at the suhltendl for encoding I llII'Il§_f«I1II3l' map:Note that parents must be scanned Baton children. Also note that all po-
sitlonl in a given sttolaud are scanned before the lean moves to the nestaubband.

at low bit rates, this addition often increases the coat of
coding the significance map. To see why this may occur.
consider that there is a cost Islocisted witl‘l‘pa.rlitiDtting
the set of positive (or negative) significant samples into
those whose descendants are zerotreer and those with sig-
nificant descendants. if the cost of this decision is C bits.
but the cost of encoding a zerotree is less titan C/4 bits.
then it is more efliciont to code four zerotree symbols sep-
arately than to use additional symbols.

Zerotree coding reduces the cost of encoding the sig-
nificance map using self-similarity. Even though the im-
age has been transformed using a deoorretating traosfon-n
the occurrences of insigrriflcant ooeflicients are not inde-
pendent events. More traditional techniques employing
transform coding typically encode the binary map via
some form of run-length encoding [30]. Unlike the zero-
tree symbol. which is a single "tet'tninatr'.ng" symbol and
applies to all tree-depths. run-length encoding requires a
symbol for each rtrmlength which much be encoded. A
teehnioue that is closer in spit-it'to the zerotrees ‘is the _end-
of-block (EOE) symbol used in JPEG [30]. which is also
a "ter1ninai.ing“ syrrtboi indicating that all remaining
DCT coeflicienrs in the bloc]: are quantized to zero. To
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Hg. 6. How chart for encoding I coafitcienr oftlta algnlfltanoc map.

see why zerotrees may provide an advantage over EOE
symbols. consider that a zerotree represents the insignif- '
icance information in a given orientation over an approx-
imately aquarc spatial area at all finer scale: up to and
including the scale of the aeronee root. Because the wave-
let transfotrrt is a hierarchical representation. varying the
scale in which a zetctree root occurs automatically adapts
the spatial area over which ioaignificartce is represented.
The EOB symbol, however, always represents insignif-
ieanee over the same spatial area, although the number of
frequency bands within that spatial area varies. Given a
fixed block size. such as 8 x B. there is exactly one scale
in the wavelet transform in which if a serum; root is
found at that scale. it corresponds to the same spatial area
as a block of the D(.‘i'. If a zerotree root can be identified
at a coarser scale. then the inaignificance pertsirtittg to
that orientation can be predicted over a'larger area. Sim-
ilarly. if the zerotrec tool does not occur at this scale. then
looking for zernlreesst finer scales represents a hierar-
chical divide and conquer approach to scanning for one
or more smaller areas of lnslgnlflcartce over the some spa-
tial regions as the DCT block size. Thus. many more coef-
ficients can he predicted in smooth areas where a root typ-
ically occurs at a coarse scale. Furthermore. the zenatree
approach can isolate interesting non-zero details by im-
mediately ellrninatiog large insignificant regions frorlln _
consideration. _

Note that this technique is quite different from previous
attempts to exploit self-sitnilarity in image coding [19] in
that it is far easier to predict insignitlcance than to predict
significant detail across aca1es.The zerorree approach was
developed in recognition of the dllfioulty in achieving
meaningful bit rate reductions for significant Ooefllcients
via additional prediction. instead. the focus here is on re-
ducing the cost of encoding the significance map so that,
for a given hit budget. more hits are available to encode
expensive significant ooeflicients. in practice. a large
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- fraction of the insignificant coefllhients are effleiently en-
coded as part of a zerotree.

A similar technique has been used by Lewis and
Knowles (LK) [15]. [16]. in that work. a "tree" is said
to be zero if its energy is less than a perceptually based
threshold. Also. the "zero flag" used to encode the tree
is not entropy-coded. The present work represents an im-
provement that allows for embedded coding for two rea-
sons. Applying a deterministic threshold to detemiine sig-
nificance results in a zerotree symbol which guarantees
that no descendant of the root has a magnitude larger than
the threshold. As a result. there is no possibility of a sig-
nificant coeflicient being obscured by a statistical energy
measure. Furtherrnote. the zetotree symbol developed in
this paper is part of an alphabet for entropy coding the
significance map which further improves its compression.
its will be discussed subsequently. it is the first property
that makes this method of encoding st significance rrtap
useful in conjunction with successive-approximation. Re-
cently. a promising technique representing a compromise
between the EZW algorithm and the LK coder has been
presented in D4]. '

C. Interpretation as a Simple Image Model
The basic hypothesis-—if s coelficicnt at a coarse scale

is insignificant with respect to a threshold then all of its
descendants. as defined above. are also insignificant-can
be interpreted as an extremely general image model. One
of the aspects that seems to be eorrrmon to most models
used to describe images is that ofa "decaying spectrum."
For example. this property exists for both stationary au-
ioregressive models, and non-alationary fractal, or
“nearly-1 / " models. as implied by the name which re-
fers to a generalized spectrum [33]. The model for the
zerotree hypothesis is even more general than "decaying
spectrum" in that It allows for some deviations to "de-
caying spectrum" because it is linked to a specific thresh-

' old. Consider an example where the threshold is 50. and
we are considering a coeficient of magnitude 30, and
whose largest descendant has a magnitude of 40. ‘Al-
though a higher frequency doacendastt has a larger mag-
nitude (40) than the nocflieient under consideration (30).
i.e. ._ the "decaying spectr-urn" hypothesis is violated. the
eoeflicient under consideration can still he represented us-
ing a zerottee root since the whole tree is still insignificant
(magnitude less than 50). Thus. assuming the more com»
mon image models have some validity. the zetotree hy-
pothesis should be satisfied easily and extremely often.
For those instances where the hypothesis is violated. it is
safe to say that an infomtotive. i.e.. unexpected. event
has occurred. and we should expect the cost of represent-
ing this event to be comtnensur-ate with its self-informa-
tron.

It should also be pointed out that the improvement in
encoding significance maps provided by aerotrees is spe-
cifically not the result of exploiting any linear dependen-
cies between coeflieients of dilferent scales that were not .

Jldll

removed in the transform stage. in practice. the linear
correlation between the values of patent and child wavelet
coefficicnts has been found to be extremely small. imply-
ing that the wavelet transform is doing an excellentjob of
producing nearly uncorrelated coefficients. However.
there is likely additional dependency between the squares
(or magnitudes) of parents and children. Experiments run
on about 30 images of all differera types. show that the
correlation eoeflieient between the square of a child and
the square of its parent tends to lie between 0.2 and 0.6
with a string concentration around D335. Although this de-

pendency is dilficult to characterize in general for most
images. even without access to specific statistics, it is rea-
sonable to expect the magnitude of a child to be smaller
than the magnitude of its parent. In other words. it can be
reasonably conjectured based on experience with real-
world images, that had we known the details of the sta-
tistical dependencies. and computed an "optimal" esti-
mate. such as the conditional expectation of the child‘:
magnitude given the parent's magnitude. that the "opti-
rnsl" estimator would. with very high probability, predict .
that the child’; magnitude would he the smaller of the

» two. Using only this mild assumption. based on an inert-
act statistical characterization. given a fixed threshold, and
conditioned on the knowledge that a parent is insignificant
with respect to the threshold, llte “optimal" estimate of
the significance of the rest of the thacending wavelet tree
is that it is entirely insignificant with respect to the same
threshold. i.e.. a zemtree. On the other hand. if tli_e parent
is significant. the "optimal" estimate of the significance
of descendants is highly dependett on the details of the
estimator whose Iorowledge would require more detailed
informatiorr about the statistical stature of the image. Thus.
under this mild assumption. using zerottoes to predict the
insignifiesnee of wavelet coeflicieru at line scales given
the insignifieance of a root at a coarse scale is more likely
to be successful in the itbsence of additional information
than attempting to predict signifies:-I detail across sealer.

This argument can be made more concrete. Let: be a
child ofy. where .r and y are zero-mean random variables.
whose probability density functions (PDF) are related as

p,(a) = ap,(ar]. tr > 1. (6)
This states that random variables 1 and y have the same

PDF shape. and that ...__
at = «Fat. or

Assume further that: and y are uncorrelated. i.e..

E[:y] 3 0. (3)

Note that nothing has been said about 1:t'etttlng the sub-
bands as a group. or as stationary random processes. only
that Lltere is a similarity relationship between random
variables of parents and children. It is also reasonable be-
cause for interrnediate subbands a ooelficient that is at child
with respect to one coeificient is a parent with respect to
others: the PDF of that coelficient should be the same in

either.ca.te. Let tr = st’ and I) - y’. Suppose urat it and

Page 293 of 437



Page 294 of 437

3492

_ If it is observed that the magnitude ofthe

U are correlated with conelatloa coeflicient n. We have
the following relationships: ._ ‘.

Elsi - vi {9}

EM - a} (10)

vi - EM — a: an

of. = £[y‘] - a;. (123

Notice in particular that

of, I o‘tr3,. (13)

Using a well known result. the expression for the best
linear unbiased estimator (BLUE) of it given r; to mini-
mize error variance is given by

amt») - Er:-1 — 9 %t-Elvl — on no
I — p tr

_--31‘-d';+p;[. U5]

parent is below
the threshold 1”. Le...» - y’ < 1''‘. then the BLUE can
be upper bounded by

1 — p , r’
a.,_.,E(u|u < T‘) < —?—a, + p 31. (15)

Consider two cases a) T 2 er, and b) T < a,.. In case (a).we have

(17)

which implies that the BLUE ofxl given | yl -1 Tie less
than T’, for any 9, including p -I 0. In case (b). we can
only upper bound the right hand side of (16) by T2 if p
exceeds the lower bound

figLu5(l'J'llo‘ C T!) S E: C T1,

4231":

"7.
.ia——?.:.—a....I-

33

(13)

Of course. a better nonlinear estimate might yield dif-
ferent results. but the above analysis suggests that for
threshold exceeding the standard deviation of the parent,
which by (6) exceeds the standard deviation of all dc-
Iscendants. if it is observed that a parent is insignificant
with respect to the threshold. then. using the above BLUE.
the estimates for the magnitudes of all descendants is that
they are less than the threshold. and a zetotrce is expected
regardless of the correlation between squares of parents

‘ and squares of children. As the threshold decreases. more
correlation is required to justify expecting a zctotree to
occur. Finally. since the lower bound on -0 1 as T “t 0.
as the threshold is reduced. it-becontes increasingly dif-
flcult to expect zemtrees to occur. and more knowledge
of the particular statistics are required to make inferences.
The implication of this analysis is that at very low bit

to r
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rates. where the probability of an insignificant sample‘?
must be high and am. the significance threshold Trnuat “"
also be large, expecting the ocourrwce of zerotrees and '
encoding significance maps using zetotree coding is rea-
sonable without even knowing the statistics. However, t
letting Tdecreaae, there is aorne point below which the
advantage of zerotree coding diminishes. and this point is
dependent on the specific nature of higher order d.Bpel'l- _
derrcies between parents and children. In particular, the
stronger this dependence. the more T can be decreased
while still retaining an advantage using aerotree coding.
Once again. this argument is not intended to “prove" the
optimality of aerotree coding, only to suggest a rationale
for its demonstrable success. ' ‘ -

D. Zerorree-[Ike Srrtserssres lit Other Srtbbmtd
Configurations

The concept of predicting the insignificance of enem-
cients front low frequency to high frequency irtfortnation
corresponding to the same spatial localization is a fairly
general concept and not specific to the wavelet transform

configuration shown in Fig. 4. Zerotrees are equally ape
pllcable to quincttmt wavelets [2], [I3]. [33]. R9]. in
which case each parent would have two children irttltcad
of four, except for the lowest frequency, where parents
have a single child. '

Also, a similar approach can he applied to linearly
spaced sulsband decompositions, such as the DCT, and to
other more general suhband decompositions. such as
wavelet packets [5] and Laplacian pyramids [4]. For ex-
ample, one of many poesilrle patutt-child relationship for
linearly spaced subbands can be seen in Fig. 7. Of course.
with the use of linearly spaced subbanda. zcrotree-like
coding loses its ability to adapt the spatial-extent of the
iltsignjficartcc prediction. Nevertheless. It is possible for
zerotree-llhe coding to outperform EOB-coding since
more cocfllcienta can he predicted from the auhbands
along the diagonal. For the case of wavelet packets. the.
sintation is a bit more complicated, because a wider range
of tiling: of the "space-frequent,-y_'° domain are possible.
In that case, it may not always be possible to define sitti-
ilar parent-child relationships because a high-frequency
coeficient may in fact correspond to a larger spatial area
than a co-located lower frequency coecient. On the other
hand. in a coding scheme such as lllc "heat-basis" ap-
proach of Coifman as at. [5], had the image-depenglent
best basis resulted in such a situation, one wonders ifihe
underlying lI:rpotJ'tesis—t'hat rnagrtitttdea of coellicienta
tend to decay with frequency—-would be reasonable any-
way. These zeroueedlke extensions represent interesting
areas for further research.

N. Successive-Aarstoxmanon

The previous section describes a method of encoding
significance maps of wavelet eoeficiegsts that. at least em-
pirically, seems to consistently produce a code with a
lower bit rate lltan either the errtpirical fitst-order entropy,
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Fig. i‘. Parent-child dependencies for linearly spaced tttbbattds systems.
such as the D|.‘."‘l“. Note that the Inuit polar! flora the sablsand otflbe par-
ents to the suhband ofrha children. The lowest frequency salt-bantjl is the
top left. and the highest frequency suhtsann Is at the bottom right.

or a run-length code of the significance-map. The "original
motivation for employing successive-approximation in
conjunction with zerotree coding was that since zerotree
coding was performing so well encoding the significance
‘map of the wavelet coefficients. it was hoped that more
efiicient coding could be achieved by zetottee coding more
significance maps.

Another motivation for successive-approximation de-
rives directly from the goal of developing an embedded
code analogous to the binary-representation of an approx-
imation to a real number. Consider the wavelet transfer-rn

of an image as a mapping whereby an amplitude artists for
each coordinate in scale-space. The scale-space coordi-
nate system represents a coarse-to-line "logarithmic"
representation of the domain of the function-. Taking the
coarse-to-fine philosophy -one-step further. successive-ap-
prortitnation provides a coarse-to-line. rnultiprecision
"logarithmic" representation of amplitude information.
which can be thought of as the range of use image function
when viewed in the scale-space coordinate system defined
by the wavelet transform. Thus. in a very real sense. the
E2!!! coder generates a representation of the image that
is coarse-to-tine in both the domain and range simulta-
rteottsly.

A. Srtccessive-Approxinsation Entropy-Coded
Quantization

To perform the embedded codifls. suc.eessive~appno:ti- -
motion quantization (SAQ) is applied. As will be seen,
SAQ is rdated to bit-plane encoding of the magnitudes.
The SAQ sequentially applies a sequence of thresholds
13. - - - , T,.,_. to determine significance, where the
thresholds are chosen so that 7} - 2}-‘/2. The initial
threshold To is chosen so that |.‘{,§ < 213 for all transform
coctficienrs 1!. .

During the encoding [and decoding). two separate lists
of wavelet coefliciertts are maintained. At any point in the
process. the dominant list contains the coordinates of
those coetficients that have not yet been found to be sig-
nificant in the same relative order as the initial scan. This
scan is such that the subbands are ordered. and wiutin
each subband. the set of coefiicienta are ordered. Thus.

1453

using the ordering of the subbartds shown in Fig. 5. all
coefficients in a given subband appear on the initial dom-
inant "list prior to coeflicients in the next subband. The
subordinate list contains the magnitudes of those coeffi-
cients that have been found to be significant. For each
threshold. each list is scanned once. '

During a dominant pass. coef-licients with coordinates
on the dominant list. i.e.. those that have not yer been
found to be significant. are compared to the threshold 1}
to determine their significance. and if significant. their
sign. This significance map is then zerotree coded using
the method outlined in Section 111. Each time acoefliciertr
is encoded as significant. (Pmitive or negative).' ion mag-
nitude is appended to the subordinate list. and the co-cfli-
cienr in the wavelet transform array is set to aeto so that
the significant coefficient does not prevent the occurrence
of a zctotree on future dominant passes at smaller thresh-
olds.

A dominant pass is followcdby a subordinate past In
which all coeflicients on thesubordinate list are scanned
and thc specifications of the rttagnintdes available to the
decoder are refined to an additional hit of precision. More
specifically. during a subordinate pass. the width "of the
etfective qutltttizer step size. which defines an uncertainty
interval for the true magnitude of the coeflicient. is cut in
half. For each magnitude on the subordinate list. this re-
finement can be encoded using a binary alphabet with a
“ l" symbol indicating that the true value falls in the up-
per half of the old uncertainty interval and s “0"_symbol
indicating the lower half. The string of symbols from unis
binary alphabet that is generated during a subordinate pass
is than entropy coded. Note that prior to this refinement,
the width of the uncertainty region is exactly equal to the
current threshold. Afier the completion of a subordinate
pass the magnitudes on the subordinate list are sorted in
decreasing magnitude. to the enter: that the decoder has
the information to perform the can: sort.

The process continues to alternate between dominant
passes and subordinate passes where the threshold is
halved before each dominant pass. (In principle one could
divide by other factors than 2. This factor oi'2 was chosen
here because it has nice interpreutions in terms of bit
plane encoding and numerical precision in a fantiiiar base
2, and good coding results were obtained). -

In the decoding operation; each decoded symbol. both
during a dotrtinant and a subordinate pass. refines and re-
duces the width of the uncertainty interval in which the
true value of the ooetficietrl [or cneflieients. in the case of
a zerotree root) may occur. The reconstruction value used
can be anywhere in that uncertainty interval. For mini-
mum mean—sqttare error distortion. one could use the cen-
troid of the uncertainty region using some model for the
PDF of the coelficients. However. a practical approach.
whichis used in the experiments. and is also MINMAX
optimal. is to simply use the center of Llteuncertainty in-
terval as the reconstruction value.

The encoding stops-when some target stopping condi-
tion is met. such as when the bit budget is exhausted. The
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encoding can cease at any time and the resulting bit stream
contains all lower rate encodings-. Note. that if the bit
stream is truncated at an at-bitr-at-ygpoirtt. there they be bin:
at the end oftlrc code that do not decade to a valid symbol
since a codeword has bene truncated. In that case. these
bits do not reduce the width of an uncertainty interval or
any distortion function. in fact. it is very liltely that the
titer L bits or the bit stream will produce exactly the same
image as the first l. + 1 bits which occurs if the additional
bit is irtsuffieient to complete the decoding of another
symbol. Nevertheless. terminating the decoding of an
embedded bit stream at a specific point in the bit stream
produces exactly the same image that would have resulted
had that point been the initial target rate. This ability to
cease encoding or decoding anywhere is extremely useful
in systems that are either rate-constrained or distortion-
constrairted. A side benefit of the technique is that an op-
erational rate vs. distortion plot for the algorithm can be
computed‘ on-line. ‘

B. Relationship to ill: Plane Encoding

Although the embedded coding system described here
is considerably more general and more sophisticated than
simple bit-plane encoding. consideration of the relation-
ship with bit-plane encoding provides insight into the suc-
cess of embedded coding.

Consider the successive-aprproxinlntion quantizer for the
case when all thresholds are powers of two. and all wave-
let coeillciertts are integers. in this case. for each cochl-
cient that eventually gets coded as significant. the Sign
and bit position of the moat-significant binary digit
(MSBD) are measured and encoded during a dominant
pass. For example. consider the 10-bit representation of
the number 4! at 0000101001. Also. consider the binary

‘digits as a sequence of binary decisions in a binary tree.
Proceeding from left to right. if we have not yet encoun-
tered rt "1." we expect the probability distribution for the
next digit to be strongly biased toward "0." The digits to
the lefi and including the MSBD are called the dominant
bits. and are measured during don-tinant pastes. After-the
MSBD has been encountered. we expect a more random
and much less biased distribution between a "D" and a
"1." although we might still expect P(0) > Hi) be-
cause most PDF models for tnrteform ooefllcients decay
with amplitude. Those binary digits to the right of the
MSBD are called the subordirrnre bin and are measured
and encoded during the subordinate pass. A zerotlt-ortier
approximation suggests that we should expect to pay close
to one bit per "binary digit" for subordinate hits. while
dominant bits should be far less expensive.

By usig successive-approximation beginning with the
largest possible threshold. where the probability of zero
is extremely close to orre. and by using zerotree coding.
whose efieiency increases as dte probability of zero in-
creases. we should be able to code dontinant bits with
very few bits. since they are most often part ofa zerotree.

In general. the thresholds need not be powers of two.

lice .rUl.v.mt..rt.-.*t.r ..a.‘i }ii.'.‘-.51. 1'-‘FC‘!'.‘E"-‘Flo-tn vut. -. -M) 1‘. .,.e....,......_.. ..,.

However, by factoring out a constant rnantissa. M. the
starting tht-esltolrl 1'}, can be expressed in terms of athresh-
old that is a power of two

1;. - M2‘. (19;
where the exponent E is an integer. in which case. the
dominant and subordinate bits of appropriately sealed
wavelet co-efiieients are coded during dominant and sub-
ordinate passes. respectively.

C. Advantage of Small Alphabets for Adaptive
Ariritnrerie Coding

Note that rise particular encoder alphabet used by the
aritlurletic coder at any given time contains either 2. 3. or
4 symbols depending whether the encoding is for a sub-
ordinate pass. a dominant pass with no aerotree root sym-
bol, or a dominant pass with the zerotree root symbol.
This is a real advantage for adapting the arithmetic coder.
Since there are never more than four symbols, all of the
possibilities typically occur with a reasonably measurable
frequency. This allows anadaptation a.lgoritl'trn with a
short memory to learn quickly and constantly track chang-
ing symbol probabilities. This adaptivity accounts for
some of the effectiveness of the overall algorithm. Con-
trast this with the case of a large alphabet. as-is the case
in algoritlurtr dist do not use successive approximation.
in that case. it takes many events before an adaptive en-
tropy coder can reliably estirrurte the probabilities of un-
likely symbols (see the discussion of the zero-frequency’
problem in [3]). Fltrtllerrrtsrrte. these esritrratee are fairly
unreliable because images are typically statistically non-
atatiouary and local symbol probabilities change from re-
gion to region.

In the practical coder used in the experiments. the arith-
metic eoder is based on [31]. In aritlunetlc coding. the
encoder is repeme from the model. which in [31]. is has-
ically a histogranr. During the dominant passes. simple
Marlnov conditioning is used whereby one of four histo-
grams is chosen depending on 1) whether the previous
eoerllcient in the scan is iraown to be significant. and 2)
whether the parent is known to be significant. During the
subordinate passes. a single histogram is used. Each his-
togram entry is initialized to a oount of one. After encod-
ing each symbol. the corresponding histogram entry is in-
cremented. When the sun: of all the counts in a histogram
reaches the maximum count. each entry is incremented
and integer divided by two. as described in [31]. It airrrald
be mentioned. that forpraetieal purposes. the coding gain:
provided by using this simple Markov conditioning may
ttotjustify the added complexity and using a single his-
togram strategy for the dominant pass perfume almost as
well (0.12 dll worse for Lena at 0.25 bpp.). The choice
of maximum lristograrn count is probably more critical,
since that controls the looming rate for the adaptation. For
thekeaperimentai results presented. a ntaximum count of
256 was used. which provides an intermediate tradeofi be-_
tween the smallest possible probabiliiy, which is the re-
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ciprocal of the maximum count. and the 1earp_ing rate.
which is faster with a smaller ntaitllnuttt histogram oount.

D. Order of lmportnrsce of the Hits

Although importance is a subjective term. the order of
processing used in EZW implicitly defines a precise or-
dering of importance that is tied to. in order. precision,
magnitude, Sadie. and spatial location as determined bythe initial dominant list.

The primary determination of ordering imponance is
the numerical precision of the cocfficients. This can be
seen in the fact that the uncertainty intervals for the mag-
nitude of all coeflicients sic refined to the some precision
before the uncertainty interval for any coefficient is re-
fined further. _

The second factor in the determination of importance is
magnitude. Importance by magnitude manifests itself dur-
ing a dominant pass because prior to the pass. all coeffi-
cients are insignificant and presumed to be zero. When
may are found to be significant. they are all assumed to
have the same magnitude. which is greater than the mag-.
nitudes of those coefficients that remain insignificant. Im-
portance by magnitude manifests itself during a subordi-
nate pass by" the fact that magnitudes are refined in
descending order of the center of the uncertainty inter-
vals. i.e.. the deeoder'a interpretation of the magnitude.

The third factor. score. rnanifests itself in the a priori
ordering of the subbaotls on the irtillll dorninanl list. Until
the significance of the Inagnitude of a ooeiiicient is dis-
covered during a dominant pass. coefllcients in coarse
scales sro tested for significance before coeiiiciertts in fine
scales. This is consistent with prioritization by the decod-
er‘s version of magnitude since for all coeillcients not yet
found to be significant. the magnitude is presumed to bezero.

The final factor. spatial location. merely _1'_.tnplies that
two coeflicients that cannot yet be distinguished by the
decoder in terms of either precision. magnitude. or scale.
have their relative importance detennined arbitrarily by

, the initial scanning order of the suhband containing the
two coefllciertrs.

in one sense. _this embedding strategy has a strictly non-
increasing operational distortion-rate function for the dis-
tortion metric defined to be the sum of the widths of the
uncertainty intervals of all of the wavelet coefficients.
Since a discrete wavelet transform is an invertible repre-
sentation of an image. a distortion function defined in the
wavelet transform domain is also a distortion function de-
fined on the image. This distortion function is also not
W_'i1i'lt)u'l a rational foundation for low-bit rate coding.
where noticeable artifacts must be tolerated. and percep-
tual metrics based on just-noticeable difierences (lND‘s}
do not always predict which artifacts human viewers will
prefer. Since ntinimizing the widths of uncertainty inter-
vals minimises the largest possible errors. artifacts. which
result from numerical errors large enough to exceed per-
ceptible thresholds. are minimized. Even using this dis-

§ tortion function. the proposed embedding strategy is notti‘

J15!

optimal. because truncation of the hitstreern in-the middle
of a pass causes some uncertainty intervals to be twice as
large as others.

Actually. as it has been described thus far. EZW is un-
liltcly to be optimal for-any distortion function. Notice
that in (19). dividing the thresholds by two simply dec-
rements is‘ leaving it unchanged. While there must exist
an optimal starting M which minimises a given distortion
function. how to find this optimum is still an open ques-

' tion and seems highly image dependent. Without knowl-
edge oftlre optimal M and being fonced to choose it based
on some other consideration. with probability one. either
increasing or decreasing M would have produced an
embedded code which has a lower distortion for the same
rate. Despite the fact that without trial and error optimi-
zation for M. EZW is probably suboptimal. it is never-
theless quite effective in practice.

Note also that using the width of the uncertainty inter-
val as a distance metric is exactly the same. metric used in
finiteqrrecision fixed-point approximations of real num-
bers. Thus. the embedded code can be seen as an "im-

age" generalizatio of finite-precision fitted-point ap-
proximations of real numbers.

E. Relationship to Priority-Position Coding
In a technique based on a very similar philosophy.

l-luang er oi‘. discusses a related approach to embedding.
or ordering the information in importance. called priority-
position coding (PFC) [ID]. They prove very elegantly
that the entropy of a source is equal to the sverageernropy
of a particular ordering of that source plus the avenge
entropy of the position information necessary to recon-
struct the source. Applying a sequence of decreasing
thresholds. they attempt to son by amplitude all of the
DCT coelficients for the entire image basedon a partition
of the range of amplitudes. For each coding pass. they
transmit the significance map which is arithrnetically en-
coded. Additionally. when a significant coefficient is
found they transmit its value to its full precision. Lilte the
EZW algorithm. PPC implicitly delincs importance with
respect to the magnitudes of the trsnsfonn coelficients. In
one sense. PPC is a generalization of the successive-ap-
proititnstion method presented in this paper. because PPC
allows more general partitions of the amplitude range of
the transfosrn coeficienta. On the other hand. since PPC
sends the value of a significant coellicient to full propi-
sion. its protocol assigns a greater importance to the leis:
significant hit of s significant coelllcicnt than to the iden-
tification of new significant coeflicients on nest PFC pass.
In contrast. as s top priority. EZW tries to reduce the
width of the largest. uncertainty inleflal in all coeflicients
before increasing the precision funlter. Additionally". PFC
matter no attempt to predict irtsignilicsnce from low fre-
quency to high frequency. relying solely on the arithmetic
coding to encode the significance map. Also unlike EZW,
the probability estimates needed for the arithmetic coder
were derived via training on an innge database instead of
adapting to the image itself. It would be interesting to
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experiment with uatiationa.whi.cl'I combine advantages of
EZW (wavelet transforms. zetotree coding, importance
defined by a decreasing sequence of uncertainty intervals.
and adaptive arithmetic codlsrgualng small alphabets) with
the more general approach to partitioning the range of am-
plitudes found in PPC. In practice. however. it is unclear
whether the linear grain-partitioning ofthe amplitude range 1
provides any coding gain. and there is certainly a much
higher computational cost associated with more passes.
Additionally. with the-exception of the last few |ow-am-
plitude passes. the coding results reported in [to] did use
power-of-two amplitudes in define the partition suggest-
ing that. in practice. using liner partitioning buys little
coding gain.

V. A Stasrus Exmr-r.a

in this section, a simple example will he used to high-
light the order of operations used in the EZW algorithm.
Only the string of symbols will be shown. The-reader in-
terested in the details of adaptive arithmetic coding is re-
ferred to [31]. Consider the simple 3-scale wavelet trans-
fonn of an 8 X 3 itnsge. The array of values is strewn in
Fig. 8. Since the largest ooeflicient magnitude is 63, we
can choose our initial tltteshold to be anywhere ill (31-5.
63]. Let To = 32. Table I shows the processing on the
that dominant pass. The following comments refer to Ta-
ble 1:

1) The cosrileient has magnitude 63 which is greater
than the threshold 32. and is positive so a positive symbol
is generated. After decoding this symbol. the decoder
knows the coefficient in the interval [32, 64) whose center
is 43.

2) Even though the coeflicient 3! is insignificant with
respect to the threshold 32. it has a significant descendant
two generations down in suhbsnd Uil with magnitude
_4‘l. Thus. the symbol for an isolated zero is generated.

3) The magnitude 23 is less than 32 and all descen-
utlants which include (3. -12. -14. at in subbund rm: and
all coeflicients in suhband HR 1 are insignificant. A zero-
ttee symbol is generated. and no symbol will be generated
for any coeflicient in subbsnds EH2 and HH1 during the
current dorrrinanr pass.

4} The magnitude ID is less than 32 and all descen-
dants (- I2. 7, 6. -I] also ‘have magnitudes less than 32.
Thus a zerotrce symbol is generated. Notice that this tree
has a violation of- the "decaying spectrum" hypothesis
since a eoei'ficient_ [-12) in sttbband Hill has a magnitude
greater than its parent (10). Nevertheless. the entire tree
has magnitude less than the threshold 32 so it is still a
zerotree.

5)" The magnitude 14 is insignificant with respect to 32.
its children are (-I, 47. -3. 2). Since its child with mag-
nitude 4-7 is significant. an isolated zero symbol is gen-erated. A

6) Note that no symbols were generated from suhband
HH2 which would ordinarily precede sulabastd HLI in the
scan. Also note that since strbband HLI has no descen-
dant.-.. the entropy coding can resume using a 3-symbol
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alphabet where the 12 and 211?. symbols are merged into
the Z {hero} symbol.

7) The magnitude 4‘? is significant with respect to 32.
Note that for-the future dominant passes. this position will
be replaced with the value 0. so that for the next dominant
pass at threshold 16. the patent of this coeflicierrr. which
has magnitude 14. can be coded using a zerotnee rout
symbol.

During the fits: dominant pass, which used a threshold
of32. four significant ooeficients were identified. These
coefficients will be refined during the first subordinate
pass. Prior to the first subordinate pass. the uncertainty
interval for the rnagointdes of all of the significant coef-
ficients is the interval [32, 64). The first subordinate past
will refine these magnitudes and identify them as being
either in interval [32, 48). which will be encoded with the

symbol "0." or in the intervs.l_ [48. 64). which will be
encoded with the symbol "1." Thus. the decision bound-
ary is the magnitude 4!. It is no coincidence that these
symbols are exactly the first bit In the right of the MSBD
in the binary representation of the magnitudes. The order '
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of operarionslin the lirst ‘subordinate pass is illustrated in
Table 11. ,

The that entry has Irtagrtitude 63 and is placed in tire
upper interval whose center is 56. The next entry has
magnihtde 34. which places it in the lower interval. The
third entry 49 is in the upper interval. and the foonh entry
47 is in die lower interval. Note that in the ease of 4?,
using the center of the uncertainty interval as the recon-
struction value, when the recon:-tntctlonyalue is changed
from 45 to 40. the reconstruction error actually increases
from 1 to 7. Nevertheless. tlte uncertainty interval for this
coefficient decreases front width 32 to width to. At the
conclusion of the processing of the entries on the subor-
dinate list corresponding to the uncertainty interval [32,
64), these magnitudes are reordered for future subordinate
passes in the order (63 . 4-9'. 34, 4?}. Note that 49 is moved
ahead of 34 because from the decoder’: point of view, the
reconstruction values 56 and 40 are distinslllfihable. How-
ever. the rnagnitude 34 remains ahead of magnitude 4'?
because as far as the decoder can tell. both have magni-
tude 40, and the initial order. which is based llrst on im-

portance by §_cale:_has 34 prior to 47.
The process continues on to the second dominant pass

at the new threshold of lo. During this pass. only those
coetficlenta not yet found to be significant are scanned.
Additionally, these coemciertta previously found to be
significant are treated as zero forthe purpose ofderennin-
ing if a zerotree exists. Thus. the second dominant pass
consists of encoding the coeflicient -31 in subband LH3
as negative significant. the coeflicient 23 in subband H83
as positive significant. the three coefllcients in subl-.-and
H52 that have not been previously found to be significant
(ill. 14. -13) are each encoded as nerotree roots, as are
all four eoeilicients in subhand LH2 and all four cochl-
eients ‘tn subbartd H32. The second dominant pass ter-
minates at this point since all other Doelfleienta are pre-
dictably insignificant. '

The subordinate list now contains. in order, the snag-
nitudes (63, 49. 34, 41', 31. 23) which. prior to this sub-
ordinate pass. represent the three uncertainty intervals {4E.
64). I31. 48) and H6. 31). each having equal width 16.
The processing will refine each magnitude by creating two
new uncertainty intervals for each of the three current on-
certainty intervals. At the end of the second subordinate
pass, the order of the magrtinsdes is (63. 49.'-17, 34. 31,
23). since at this point. the decoder could have identified
34 and 47 as being in different intervals. Using the center
of the uncertainty interval ai the reconstruction value. the
decoder lists the magnitudes as (60. 52, 44, 36, 23, 20).

.... _.
MS?

The processing cotidntiesflalternating between dominant
and subordinate passes and can stop at any risue.

V1. Exreanttarrrht RESULTS

All experiments I-ereperfornted by encoding and de-
coding an actual bit stream to verify the correctness of the
algorithm. After a l2-byte header, the entire bit stream is
at-ithrneticslly encoded using a single at-ithutetic coder
with an adaptive model [31]. The model is initialized at
each new mmhold for each of the rlotttlnant and subor-
dinate passes. From that point, the encoder is fully adap-
tive. Note in particular that then: ‘tr no training of any
kind. and no ensemble statistics of images are used in any
way (unless one calls the aerorree hypothesis an-ensemble
statistic). The 12-byte header contains 1) the number of
wavelet scales. 2) the dimensions of the image. 3)'the
maximum histogram count for the models in "the arith-
metic coder. 4) the image mean and 5) the initial thresh-
old. Nore that after the header, there is no overhead ex-
cept for an extra symbol for end-ef~bit-stream. which is
always maintained at rnirtirnutrt probability. This extra
symbol is not needed for storage on computer medium if
the end of a file can be detected. '

_ The E2?! coder was applied to the standard black and
white 8 bpp. test images. 512 x 512 "Lena" and the 512
x 512 "Barbara." which are shown in Figs. 9(a) and
ll(a). Coding results for "Lena" are sumlnarized in Ta-
ble Eli and Fig. 9. Six scales of the QMF-pyramid were
used. Similar results are shown for "Barbara" in Table

IV and Fig. 10. Additional results for the 256 X 256
"Lena" are given in (221. '_

Quotes of PSNR forthe 512 X 512 "Lena" image are
so abundant throughout the image coding literature that it
it diilicult to definitively compare these results with other
coding results.‘ However. a literature search has only
found two published results where authors genetatean ac-
tttsl bit stream that claims higher ?SNR performance at
rates between 0.25 and 1 hit ,3 pixel [12] and I21}. the lat-
ter of which is a variation of the EZW algorithm. For the
“llarbara" image. which is far more dificult than
“l.ena." the performance using EZW is subst.artdally'bet-
ter. at least nurnericaliy. than the 21.82 dB l'or0.534 bpp.
reported in [23].

The performance of the EZW coder was also compared
to a widely available version of IPEG [l-ll. IPEG does
not allow the user to select a target bit rate but instead.-,_
allows the user to choose a "Quality Factor." In the cat-
perintertts shown in Fig. 11, “Barl:ara" is encoded first
using JPEG to a tile size of 12 B66 bytes. or a hit rate of
0.39 bpp. The PSNR in this case is 26.9 dB. The EZW
encoder was then applied to "Barbara" with a target file

‘Actually there are rrniliiple versions of the Iiaaaee only "Lena"
fleatias lroustd. and the one used in [12] is dancer and slightly more trilli-
eutl than the" "otllciai" one obtained lry this author [rent RP! after [21] war
published. Mm note that this should not be ceatuud will result: Iuing
onLy the green component of an RGB version which are also commonlycited.
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Fig. 9. Pertomunce of E2“? Coder ope-ni.in| on (I) Orieinu
512 x 5I1"Le:-tn" image at I. lulu/pore: 11!} L0 blufpixel. 8: I Compres-
sion. PSNR I 39.35 :13. it:i0.5 Isiiupiul 16:! Compression. PSNR -
36.23. id) 0.23 bitlfxillel. 32;] Cornpteulolt. PS1‘-IR - 31!? 113. {II
0.0625 biufpixei. 128:1 Curnpttaston. PSNR - 215:? dB. (1) 0.0E5&25
biurpixcl. 5|!-.1 Como:-ession. PSNR - 13.5] on.

' size of exactly t2 866 bytes. The tesultjttg PSNR is 29.39
:13. significantly higher than for!PEG. The EZW encoder
was then applied to "Barbara" using a target PSNR to
obtain exactiy the same PSNR of 16.99. The resulting file
size is 8820 bytes. or 0.2? bpp. Visually. the 0.39 opp.
EZW version looks better than the 0.39 bpp. JPEG ver-
sion. While there is some loss of resolution in both. there

are noticeable blocking artifact: in the JPEG version. For
the co_mpa:ison at the some PSNR. one could probably
argue in favor of the IPEG.

Another interesting figure of merit in the number of sig-
nificant coefficients retained. Devore et at. used wavelet
transform coding to ptogressiveiy enéode the same image
{S}. Using 68 172 hits. [8534 bytes. 0.26 bPp«). they re-
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‘ tained 2019 coefiieients and achieved a RMS error of
15.30 [MSE = 234. 24.42 113). whereas using the embed-
ded coding scheme, 9?74 coefllcients are netainal. using
only 8192 bytes. The PSNR for these two examples dif-

___fets by over 8 dB. -Put of the dlflerenoe can besttributed
to fact that the Heat basis was used in [8]. However. closer

' Examination shows that the zerotree coding provides a
‘much better way of encoding the positions of the signifi-
_cs.nt eoefiieients than was user: in [8].
_. An interesting and perhaps surprising property of
embedded coding is that when the encoding or decoding

rlis terminated during the middle of a pass. or in the middle
._0f the scanning of a subband. there are no artifacts pro-

iduced that would indicate where the termination occurs.
‘[1: other words. some eoefiicients in the same suhband are
Jfiptesented with twice the precision of the others. A pos-
£51: explanation of this phenomena is diet at low rates.
-_E|¢te are so few significant coeffioients that any one does
"101 make a perceptible dilferenee. Thus. it the last pass

' -I dominant pass, setting some coeflicient that might be

  
Fig. 9. rcanmm-d.i

TABLE IV
Coomo RBIULTS FOR .11: x 312 BAIIAM Sttoa-Iito l’uHsorML-ro-
Horse EPSNR) nrto1'1-il None: or W.utsLe'r Oosrrttsstrtt THAT true

coon: As Nmrzno

    

significant to zero may be irnperceptihle. Similarly. the
fact that some have more precision than others is also ins-
perceptible. By the time the number of significant coefli-
cients becomes large. the picture quality is usually so good
that adjacent co-efllcients with diflerent precision: are im-

perceptible. ‘ _
Another interesting ptnpesty of the embedded coding is

Lllat because of the implicit giobal bit allocation, even at-,_
extremely high compression ratios, the performance
scales. At it compression ratio of 512: I. the image qual-
ity of "Lena" is poor. but still recognizable. This is not
the case with conventional block coding schemes. where
at such high compression ratios. them would be inaufB-
cient bits to even encode the DC oaellicients of each
block.

The unavoidable artifacts produced at low bit rates us-
ing this rnethud are typicsi of wavelet coding schemes
coded to the some PSNR‘s. However. subjectively. they
are not nearly as objectionable as the blocking effects typ-
ical of block tttmsfonn coding schemes.
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Fig. I0, Perfnrlmacu III‘ EZW Coder openling on n1(|J 1.0
|n'u_.JpLIeE. 8:! Conapreuion. PSNR - 3S.!4dB It-)0.S bin/piml, 16:1 ‘ q_ . PSNR - 310.53 :13. [C3 0.125 biufpilel. 64:l CoInpIu- -'
lion. FSNR -I N-.03 dB. (d}IJ.D625 hill! pixel. IISII Comomldoo. PSNR. 23.1o as.

“L CUNCU-'51°“‘ - a disctete wavelet transforrn. which deeolrelates
A new technique for image coding has been presented most sources fairly well. and allow: Lhe more signif-

that produces a fully embedded bit sueem. Furthermore. icarll bits of precision of most coefficienu to be ef-
the compression perforrnnnee of this algorithm is com fieiently encoded as pm of exponentially growing
peiitive with virtually all known techniques. The remark- 5 zerotrees. _
able perfonnance can be nmibuted lo the use of the fol- I zerotree coding, which by pmdicting insiguificance
|owi.-lg four ream:-es: across scales using an image model that is easy for
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F1}. ll. Cmputmn of EZW and JFEO upeminu on "B.mtII1" [.0 0313- '
int 31'.’ X 512 [I33 EZW 1: 12 866 bytes. 0.19 biufpbtel. 19.19 as, [c]
EZW at I311! hym. 0.21 bin/pixel. 26.99 dB. Id] W50 :1 12 156 harm.
0.39 bhafpiaul. 15.99 13.

most images to satisfy. provides sulistanfi-I wdins coder to incorporate learm'ng'into the bit stream it-
gains over the flm-under entmpy for significance self.
maps, _ _ _

'- I successive-appruxirmtion. which allows the coding Théprecise rate control that is achieged with this at-
of rnultipie significance >1'I1.upI using zemtrees. and gorithrn is a distinct advantage. The user can choose a bit
nliows the encoding or decoding to step at any point. rate and encode the image to em:-nry the desired bit rate.

- I adaptive aridtmetic coding. which allows the entropy Furmermore. since no mining of any_ kind is required.
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