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Apart from the ded .data, the subband variances
need 1o be transmitted as side (overhead) information. In
addition, for System A the predictor coefficients need to
be tmnsmitted while, in System B, the variances of the
DCT coeffitients and the mean of the 8c coeffidient need
to be transmitted. Note that if the variance information is
available in the receiver, the bit allocation procedure can
be repeated there and hence no additional information for
the parameters of the (UTQ, HC) pairs is necessary.
Assuming that we need two bytes (16 bits) for each real-
valued parameter, 36 bytes (16 subbands-and two cormre-
lation coefficients) need to be transmitted for System A,
This corresponds to 0.004 b/p for a 256 x 256 image
and 0.001 b/p for a 512 X 512 image. In System B, in
- addition to the variances of the subbands, the variances
of the DCT coefficients and the mean of the dc coeffi-
cient need to be transmitted, Therefore, for an L x L
blocksize, the side information is 2(L + 16) bytes. For
the chosen blocksize of 4 X 4 this amounts to 0.008 b/p
and 0.002 b/p for 256 x 256 and 512 x 512 images,
respectively. Thercfore, for all cases o aterest the
amount of size intmation is less than 0.01 - /p—a neg-
ligible amount.

V. TransmissioNn Ermor ErpECTS

In Systems A and B, variable-length coding is used ex-
tensively. It is well-known that due to'the sequential na-
ture of decoding such codes, channel errors could result
in the loss of synchronization and, hence, severe degra-
dation in system performance. Furthermore, predictive
coding (used in System A and the W-O scheme) is known
to suffer from channel error propagation problems. Fi-
nally, in 2-D DCT coding (used in System B), channel
errors propagate throughout the block. These facts indi-
cate that the subband coding schemes studied in Section

- 1V may suffer serious difficulties in the presence of trans-
mission (or storage) noise. Of course, due to the extensive
use of variable-length coding in Systems A and B, one
would expect a greater sensitivity to channel noise in Sys-
tems A and B as compared to the W-O scheme.” In this

ion, we will p imulation results for the perfor-
mance of Systems A and B as well as the W-0 scheme in
the presence of channel noise.

To prevent the infinite propagation of decoding emors,
we have'packetized the codeword sequences before trans-
mission, In what follows, we describe the details of the
packetization scheme,

A. Packetizarion Scheme

The main motivation in packetization of codewords is
to confine the propagation of channel noise to within a
packet. To do so, we must make certain that our packets

The W-0 scheme also uses variable-length codes for sncoding some
subbands (see [2]); however. the LFS is encoded by fixed-length codes.
Since LFS has the highest variance among all subbands, the channe! noise
effects in the LFE should result in the most dramatic degradations in sysiem
performance.

T A

contain information about a fixed (or known in the re
ceiver) number of pixels so that packet-to-packet propa~
gation of the Huffman décoding crror is prevented. Smie
the pixels are encoded by variable-length codes, the pack
ets cannot be of fixed length. However, in devising our
packetization scheme we will try to keep the averase
packet length fixed so that fair comparisons can be made
between different systems. It is impontant to remember
that the severity of error propagation is directly related to
cket length.
mﬂl’np:he packetiuw_l tion scheme adopted in this mlu’c._ the
packets consist of two pans: |) a lengih indicator indicat-
ing the length of the information portion (in bits); and i)
the information portion consisting of a sequence of binary
codewords, While the length of the length indicator is
fixed, that of the information portion of the packet could
vary—hence resulting in variable-length packets. Fur-
thermore, all codewords transmitted in a packet belong to
the same subband,® To be more precise, let us considera
packet used for encoding the ith subband. Let us mppouf
that the pixels in this subband are encoded by means o
HC's of order n, at a design bit rate of ;. Suppose the
average length of the information portion of the packet is

* 1, bits. Then, the number of codéwards in this packet is

given by:

__] ©®
UL

where [x] is used to denote the smallest integer greater
thmorequ:!w:.nmml,hﬂudmdr,mdmm
known from thé results of the bit allocation procedure.
M,,; can be determined in the receiver side. Therefore, in
encoding the ith subband, esch packe contains the iafor-
mation for n, ; = mn,,; pixels.” -
- As for the decoding process, .',M following rules are
‘P‘l’;hg;md!ns_ of codewords in a packet starts and ends
in that packet so that the Huﬂ‘::.uum“ Mnggrrnrdaes not
beyond the packet 5
m;l;.gxodhy: of codewords iin a packet associated with
the ith subband terminiites when one of the following three
conditions is met. - -~ o A0
n,,; codewards are decoded.
;; T;I‘;meo:i(:lg process reaches the end of a packet
(known from the length indicator).
¢) A bit string which cannot be decoded is encoun-
tered. In this case, decoding is stopped immedi-
ately, and all pixels that cannot be decoded are
reconstructed as zero.
In what follows, we will present simulation resfml for
the performance of the three schemes considered in Sec-
tion IV when the channel is noisy.

L

i bband.
*In System B, each of the transform coefBcicnts |s trested a3 a 1ul 2
Henu.ru:h packet containg codewords from only one transform coclll

cient, . :
I "All packeis used for encoding the ith subband contain A, pixely excepl

possibly the last one which contain only the remaining pizels.
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TABLEWV1 4
PSNR PERFORMANCE RESULTS (IN dB) FOR “LENA""

‘ Design Bit Rue 0.25 BPP 0.5 BPP ; 1.0 BPP
Syste el BER | x 1073 1 % 1072 | % 1071 % 1074 1 3 1072 1 x 1072 1 x 107 1 x 107 1 % 107 1 x 107> 1 x 107 1 x 10}
AVE-PSNR 986 1424 2321 3064 746 1317 1N g 743 120 DN uH
Syuom A MAX-PSNR 1069 1623 , 3199 3200  £27 IS06 3466 3S[6  B64 672 3657 3835
¥ MIN-PSNR 9.17 1182 1648 2058 697 1029 1827 2137 665 977 1781 2029
STD-PSNR 0.40. 100 308 302 032 L6 341 431 034 L4 445 496
AVE-PSNR 1433 2102 2840 3156 1390 2032 2981 4.7 14030 2065 3101 3749
System B MAX-PSNR 1540 2407 3183 3209 1494 245 3504 3532 1532 R B B4
(4x4) MIN-PSNR 1342 18.52 2355 2433 1302 1733 2358 2808 1303 1859 233 2788
STD-PSNR 054 15 249 157 045 162 297 144 051 145 308 188
AVE-PSNR NN MNe WS W 2208 WS 2977 29 292 2980 333 NHM
w-o MAX-PSNR 2409 28.03 28.65 28.65 2438 9.7 2994 2994 271 308 394 3400
MIN-PSNR 2.86 2710 2836 28.5¢ 2088 27.29 29.57 2978 206 2804 32011 N1
STD-PSNR 051 02 006 004 D060 032 008 004 072 065 038 047

B. Simulation Results over Noisy Channels

We assume that the channel is a memoryless binary
symmetric channel (BSC) with a bit error rate (BER) of
P,. For our simulations in this section, we have consid-
ered P, = 1077, 107, 107, and 10~*. To make cenain
that our results are meaningful, for each encoding scheme,
bit rate, and channel BER, we have repeated our simula-

- tions 50 times and computed the average PSNR (AVE-
PSNR), maximum PSNR (MAX-PSNR), minimum PSNR
(MIN=-PSNR), and standard devistion of the PSNR
(STD-PSNR). Simulations are carried out for **Lena’ en-
coded by Systems A and B and the W-0O scheme'® at de-
sign bit rates of 0.25, 0.5, and 1 b/p. The simulation
results are summarized in Table VI. A few important ob-
servations about these results are in order.

1) System A is exwemely sensitive to channel erors.
Also, the STD-PSNR of System A is fairly large (espe-
cially for low BER's) implying that, even at low-channel
BER's there is a possibility of severe performance deg-
radation (e.g., =14 dB difference between AVE-PSNR
and MIN-PSNR for System A at 1 b/p with P, = 1079,

2) System B is also very sensitive to channel errors.
However, it performs considerably better than System A.
In all cases considered, the MIN-PSNR of System B was
significantly larger (4-8 dB) than that of System A; the
AVE-PSNR of System B was also larger than that of Sys-
tem A, especially for larger values of the channel BER.
Finally,.the STD-PSNR of System B is smaller than that
of System A,

3) The W-O scheme exhibits the highest degree of ro-
bustness in the presence of channel noise. In most cases.
the effect of channel noise is negligible for P, < 107",
Also, contrary to our observation for Systems A and B,
the STD-PSNR in this case is very small. In almost all
cases, the W-O system performs better than System B

"In all of our simulations for noisy channels, the averge packet length
is 1024 biws. Thix ix nol an opmized length bui, we feel, should provide
an appropriate (radeofl between the channel crror cffects and the increase
of side information.

with the exception of & few%uu where the channel noise
is very small (P, = 107%),

In Fig. 9, an example of reconstructed images from the
three systems is presented for an encoding rate of 0.5b/p
and P, = 10™%; these images correspond to those cases in
our simulation which result in minimum PSNR. Clearly,
the subjective performance of the three systems closely
follows the trend suggested by the PSNR results of Table
VI

The results of Table VI (also supported by Fig. 9) sug-
gest that Systems A and B, despite their superior perfor-
mance for nolseless channels, exhibit an -unacceptable
level of sensitivity to channel errors and hence should not
be used over noisy channels (at least over the range of
channel BER's considered here). In the next section, we
will describe a combined source/channel coding method-
ology to reduce this severe sensitivity to channel noise.

VI. ComBINED SOURCE/CHANNEL CODING

Systems A and B exhibit a high degree of sensitivity to
channel noise because they have been designed to mini-
mize the source coding distortion assuming a noiscless
channel. It is a well-known fact that, in general, the more
efficient the source coding scheme is, the more sensitive
it will be to channel noise unless some corrective mea-
sures are taken. Specifically, it is shown in [15] for zero-
memory quantizers and in [16] and [17] for predictive
coding and transform coding of images that, in the pres-
ence of channel noise, increasing the accuracy of a source
encoder could result in an overall performance degrada-
tion. -
One possible method of mitigating the channel error cf-

fects is use of error control coding. In this manner, of all
bits used for encoding the image, some will be used in
source coding while the rest will be kept to provide pro-
tection against channel noise. In [16] and [17], an ap-
proach in which specific source encoders and channel en-
coders are combined is idered; in this approach, the
.rates of the source code and channel code arc adjusted so
as 1o minimize the MSE. In [15], an approach for chan-
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. O]
Fig. 9. Reconstructed *'LENA"" at channel BER of 107 (s) System A
(0.45 b /p. 10.29 dB): (b) System B (0.45 b/p, 17.33 dBY; () W-0 (0.51
b/p. 27.29 dB).

[}

nel-optimized quantization is developed in which source
coding accuracy is traded for reduced sensitivity to chan-
nel noise.

* In this paper, we will consider an approach similar 10
that of [16] and [17]. In our subband coding ‘systems, an

M

important question-is how to distribute the bits among the

source coding and channel coding operations for the dif-
ferent subbands $0 as to minimize the overall distortion
caused by quantization noise and channel noise. The main
difficulty in doing this stems from the fact that variable-
length codes are used in Systems A and B. In this case,
the analysis of channel error effects and its impact on the
overall distortion is a formidable task (if not impossible).

Another important problem in our systems is that of bit
allocation among the different subbands. Clearly, the bit
allocation used under the noiseless channel assumption
need not be optimal. for noisy chaanels, To be able to de-
termine the optimal bit allocation, we need to be able io
determine the distortion-rate performance of the UTQ's
followed by a HC and an error correcting code (ECC).
Again, due to the inherent problems of packetized vari-
able-length codes, the analytical computation of these dis-
tortion-rate performance results is not possible.

In what follows, we will describe a simulation-based
procedure to determine the best (UTQ, HC, ECC) triple
for encoding a memoryless source over a BSC at a given
encoding rate. This procedure will lead to the determi-
nation of the distortion-rate functions that we

- need for optimal bit allocation among subbands.

A. Selection of (UTQ, HC, ECC) Triple and Bit
Allocation

For the discussion in this subsection, we will assume
that the source is memoryless with a distribution corre-
sponding to the GGD with parameter o and that the chan-
nel is a BSC with a BER given by P,. Let us suppose, for
the time being, that the ECC is to be selected from a pre-
scribed family of ECC’s. We will specify this family in
the next subsection and provide justification for this
choige, :

For the given source and channel, consider a (UTQ,
HC) pair (as selected in Section I'V) with an average bit
rate of 7, followed by an ECC with , and let d(r;, 7ei°oy
P,) denote the MSE incurred in encoding and transmis-
sion of the source. Since the analytical computation of d
is impossible, we have resorted to simulation'' to deter-
mine its value for selected choices of r,, r., @, and P,
Notice that the overall encoding rateis given by r = #,/Fes

Now consider a fixed encoding rate 7. Among the avail-
able pairs of (r,, r.), there may be several that result in
the encoding rate r. Let us denote by (77, r?) the pair that
minimizes d(r,, r.; a, P,); denote this minimum distor-
tion by d.(r; o, P,). In other words,

d(rne,P)y= min d(r,r;eP). (@
(nreindremr

The function d.(r; a, P,) determines the distortion-rate
performance of the encoding scheme used for a source
with parameter « and a BSC with BER P,, after the ap-
propriate selection of the (UTQ, HC, ECC) triple is made.
Notice that, for a fixed encoding rate -, identifying the

' A3 before, (0 obtain the MSE we have averaged our simulation results
over 50 runs,
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TABLE VI

PSNR PerroRMANCE RESULTS (1N dB) FOR “"LENA"

f

s Design Bit Rate 0.25 BPP 0.5BPP - ; 1.0 8PP

Syste IBER 1> 107% 1 % 107 1 % 10=* 1 % 10°* 1 % 10731 x 107" 1 % 10~* 1 x 10~* | x 10~7 1 x 10~* 1 x 10™* | x 107*
AVE-PSNR 9.86 1424 2321 3064 746 1307 2373 3189 7.43 1283 19N M
System A MAX-PSNR 10.69 1623 3199 1200 827 1586 66 1506 864 1672 36ST  38SS
o MIN-PSNR 9.07  1LB2 1648 2058 697 1029 IBT 237 665 97T 1781 209
STD-PSNR 040. 100 308 302 03 L1634l 431 034 148 445 496
AVE-PSNR 1431 21,12 2840 3054 1350 2032 2981 M7 403 2065 301 349
System B MAX-PSNR 1540 2407 3193 3219 1494 2456 35.04 3532 1532 2R 3576 w8
(4x4) MIN-PSNR . 1342 1852 2355 M8 132 1733 2358 1808 (3.3 1889 "2323  27.88
STD-PSNR 0.54 1.50 249 157 0.45 1.62 297 L 0.51 1.45 los. 1.88
AVE-PSNR 2293 1762 2854 2864 2008 2852 9. 2993 2192 2981 0 3333 1M
w-o MAX-PSNR 2409 2803 28,65 28.65 2438 2007 2994 9.4 2371 3108 3394 3401
MIN-PSNR 286 2710 28.36 2834 2088 27.29 29.57 2978 2016 W14 211 1.2
STD-PSNR 0.51 0.2 0.06 0.04 0.60 0.32 0.08 0.04 0.n 0.65 038 0.17

B. Simulation Results over Noisy Channels

We assume that the channel is a memoryless binary
symmetric channel (BSC) with a bit error rate (BER) of
P,. For our simulations in this section, we have consid-
ered P, = 107, 107%, 10™*, and 10>, To make ceriain
that our results are meaningful, for each encoding scheme,
bit rate, and channel BER, we have repeated our simula-
tions 50 times and computed the average PSNR (AVE-
'PSNR), maximum PSNR (MAX-PSNR), minimum PSNR
(MIN-PSNR),  and standard deviation of the PSNR
(STD-PSNR). Simulations are carried out for *‘Lena’’ en-
coded by Systems A and B and the W-0 scheme'® at de-
sign bit rates of 0.25, 0.5, and I b/p. The simulation
results are summarized in Table VI. A few important ob-
servations about thess results are in order.

1) System A is extremely sensitive to channel ermors.
Also, the STD-PSNR of System A is fairly large (espe-
cially for low BER's) implying that, even at low-channel
BER’s there is a possibility of severe performance deg-
' radation (e.g., =14 dB difference between AVE-PSNR
and MIN-PSNR for System A at 1 b/p with P, = 107%).

2) System B is also very sensitive to channel errors.

with the exception of a few%uu where the channel noise
is very small (P, = 107%).

In Fig. 9, an example of reconstructed images from the
three systems is presented for an encoding rate of 0.5 b/p
and P, = 107%; these images correspond to those cases in
our simulation which resuit in minimum PSNR. Cleary, -
the subjective performance of the three systems closely
follows the trend suggested by the PSNR results of Table
VI

The results of Table VI (also supported by Fig. 9) sug-
gest that Systems A and B, despite their superior perfor-
mance for noiseless channels, exhibit an unacceptable
level of sensitivity to channel errors and hence should not
be used over noisy channels (at least over the range of
channel BER's considered here). In the next section, we
will describe a combined source/channel coding method-
ology to reduce this severe sensitivity to channel noise.

VI. CoMBINED SOURCE/CHANNEL CODING

Systems A and B exhibit a high degree of sensitivity to
channel noise because they have been designed to mini-
mize the source coding distortion assuming a noiscless
1. It is & well-known fact that, in general, the more

"

However, it performs iderably better than Sy A,
In all cases considered, the MIN-PSNR of System B was
significantly larger (4-8 dB) than that of Sysiem A; the
AVE-PSNR of System B was also larger than that of Sys-
tem A, especially for larger values of the channel BER.
Finally.. the STD-PSNR of System B is smaller than that
of System A.

3) The W-O scheme exhibits the highest degree of ro-
bustness in the presence of channel 'noise, In most cases,
the effect of channel noise is negligible for 2, < 1077
Also, contrary to our observation for Systems A and B,
the STD-PSNR in this case is very small. [n almost ail
cases, the W-O system performs berter than System B

"®In all of our simulations for nalsy channeis, the average packet leagih
is 1024 bits, This is not an optimized length but, we feel. should provide
an appmpriate tradeoff between the channel error ¢fiects and the increase
of side information.

efficient the source coding scheme is, the more sensitive
it will be to channel noise unless some corrective mea-
sures are taken. Specifically, It is shown in [15] for zero-
memory quantizers and in [16] and [17] for predictive
coding and transform coding of images that, in the pres-
ence of channel noise, increasing the accuracy of a source
encoder could result in an overall performance degrada-
tion, .

One possible method of mitigating the channel error ef-
fects is use of error control coding. In this manner, of all
bits used for encoding the image, some will be used in
source coding while the rest will be kept to provide pro-
tection against channel noise. In [16] and [17], an ap-
proach in which specific source encoders and channel en-
coders are combined is considered; in this approach, the

. rates of the source code and channel code are adjusted so

as to minimize the MSE. In [15], an-approach for chan-
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pair (r), r!) is equivalent to determining the optimal bal-
4+ ance between the source coding accuracy and the channel
error pratection.

Having detcrmined the d(r,, r; @, P,) functions by
simulation, we have computed the functions d.(r; «, P,)
for values of & as in Section IV, P, = 1072, 1072, and
10™* and a finite number of values of r.'* An example of
the function d(r; a, P,) is provided in Fig. 10 for a =
0.6 and three different values of P,. In this figure, differ-
ent symbols are used to determine the rate of the optimum
channel code used. Also, for comparison purposes, the
distortion-rate performance of the (UTQ, HC) pairs of
Section IV obtained for & noiseless channel is also in-
cluded in this figure (dotted curve). The deviation be-
tween these performance curves and the one for the noise-
less channel is merely the result of the channel noise.

Obviously, the deviation is wider for more noisy chan-

nels.

Once the channel-optimized distontion-rate perfor-
mances are determined, the bit allocation procedure of
Section IV can be used in a similar manner to obtain the
optimum bit allocation among the subbands.

Beforc we present the simulation results for this com-
bined source/channel coding scheme, in what follows we
will describe the class of ECC's we have used in our sys-
tems.

B. Error Correction Coding Scheme

The ECC used in our system is a specific form of con-
volutional codes known as the raré-comparible punctured
convolurional (RCPC) code. The RCPC code was intro-
duced by Hagenauer [18] as an extension of the punctured
convolutional code which was originally introduced by
Cain er al. [19] mainly for the purpose of obtaining sim-
pler Viterbi decoding for rate X/N(X # 1) codes. The
main advantage of the RCPC codes is that its rate (and,
hence, the error correction capability) can be easily
changed by varying the number of punctured bits in the
puncturing matrix; therefore, with the same hardware, a
variety of channel coding mates can be obtained. This is a
desirable characteristic in our system as we wish to vary
the rate of the ECC for each subband so as to obtain the
best balance between the source coding rate and the chan-
nel coding rate. We should mention that this idea was first
used in subband coding of speech [20] for adapting the
degree of error protection to the error sensitivity of dif-
ferent coder bit streams,

The RCPC code is defined by a generator tap matrix
of a convolutional code with the constraint length L.:

—L. -

t
3=~r (gﬂ‘)

""The actual computation of the ,(r: a. P,) fanction is Ih;lnly different
from 1he above. Becouse there is only a nnlu number of r,"s and r, s avail-
able. we have actually considered the set of all pessible points [J{r (A3 3

P, e./r) in the distortion-rate plane and selected those that lie on the
lower boundary of this set of paincs,

(8a)
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Fig. 10. l.lu-dumuon performance of the ulnud set of (UTQ, HC,
ECC) triples; o = 0.6.
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which generates the mother code of rate 1 /N, and also
by puncturing matrices with the puncturing period P,

-
(au(o). O=1,2, 000 0N = DP.

(8b)

which determine the patterns of punctured bits. The nom-
inal rate of the RCPC codes is given by:

PSP+ 0, €=1,2,-: ,(N.= P (@

which covers the range between 1/N, and P./(P, + 1).
In all of our studies, we have used the RCPC code shown
inTable Iin (18] with N, = 4, L= §, and P, = 8.” The
generator tap matrix g and the puncturing matrices a(f)
for f = 1,2, <+, 8 are shown in Figs. 11 and 12, re-
spectively, We have- restricted our attention to the BSC
with hard-decision decoding; better performance could be
obtained on additive Gaussian noise channels with soft-
decision decoding.

[t should be noted that R, in (9) is not strictly equal to
r. used in (7) as the rate of the convolutional code. This
is because L, — | dummy bits should be added to the end
of the source encoder output to retum the state of the trel-
lis 1o the all-zero state. Conssquenﬁy. r. is given by:

= [L,R. = (L. = /L, (10)

It should also be noted that when the combined source/
channel coding scheme is used, the number of Huffman
codewords per packet will be different from that in (6). In
this case, the number of codewords in the packet associ-

1
a(f) = N,
i

'"The performance of the RCPC code will be improved with larger (1nd
still practical) constraint lengths, say, 8 = L, s 10 )
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ated with the ith subband s given by:
Py [reily/(ria * M) (n

where r, ; and r, ; are the source and channel coding rates
selected from encoding the ith subband and a, is the same
as in (6).

C. Simulation Results

In this section, we will present simulation results for
the performance of Systems A and B modified by the com-
bined source/channel coding approach, From now on the
channel-optimized versions of System A and System B
(with blocksize 4 x 4) will ba called System C and Sys-
tem D, respectively. We have studied the performance of
Systems C and D at design bit rates of 0.25, 0.5, and
1 b/p for channel BER's of 1072, 1072, and 107*, In all
cases, the same packetization scheme whh I, = 1024 was
used. All subsequent simulation results are bued on the
512 x 512 'LENA" image. .

To provide some insight into how the encoding rate is
divided berween the source coding and channel coding
operations, in Table VII we have included the average bit
rate used for channel coding for different overall encoding

_ rates. Notice that the percentage of bit rate dedicated 1o
error control coding is larger for noisier channels, as one
should expect. Also, in this table we have included the

PSNR results corresponding to the case that the system is
designed for a noisy channel but applied to a noiseless
channel. These resuits provide an upper bound on the sys-
tem PSNR over noisy channels. The difference between
these upper bounds and the PSNR's of Table IV arc due
to the lower rate used for source coding in Table VII.

The performance of Systems C and D in terms of AVE-
PSNR, MIN-PSNR, MAX-PSNR, and STD-PSNR are
summarized in Table VIII for different channel BER's and
encoding rates. The following important observations can
be made.

1) Both Systems C and D pn'mde dramatic improve-
ments over Systems A and B. The improvement of System
C over System A is in the range 7-27 dB in AVE-PSNR.
The improvement of System D over System B varies be-
tween 3 and 21 dB in AVE-PSNR. Typically, thesc itn-

provements arc larger at higher encoding rates and for -

noisier channels,

2) In all cases for both Systems C and D, the MAX-
PSNR coincides with the upper bound on PSNR listed in
Table VII, This means that bit errors caused by the noisy

channel are sometimes perfectly corrected by the RCPC .

codes,

3) In almost all cases, System D performs better than
System C. Furthermore, System D exhibits a higher de-
gree of robustmess against channel noise. Typically, the
difference between MAX-PSNR and MIN-PSNR is

ller in Sy D than in Sy C; the same holds for
STD-PSNR, Since in both systems the same type of chan-
nel code is used, this superiority of System D must be due
to the inherent robustness of 2-D DCT against transmis-
sion noise (similar to our observations in Section V).

4) Systems -C and D perform better than the W-O
scheme in the presence of channel noise (see Table VI).
What is perhaps most interesting is that the performance
of Systems C and D over & noisy channel is even better
than that of the W-O scheme in the absence of channel
noise (with only dne exception: System C, 0.25 b/p.and
P, = 1077, This has.been our justification for not con-
sidering a channel-optimized version of the W-0 scheme.

In Figs. 13 and 14, we present reconstructed images
comresponding -to MIN-PSNR and MAX-PSNR obtained
fmmSy::emsCandeonheduignmeofOSb/pu
two different values of channel BER, namely P, = 1077
and 1072, It is important to mention that the average qual-
ity of the reconstrucied images in our simulations is usu-
ally closer to the image corresponding to MAX-PSNR
rather than MIN-PSNR. This is cnpu::t]]y true in Sra-
tem D.

D. Channel Mismarch

In designing Systems C and D, it is assumed that the
channel BER is known. In many practical situations, the
exact value of the BER is not known or the BER varies
with time. In such situations, it is important to know the
amount of performance loss caused by channel mismatch.
Let us denote by PSNR (P, 4, P, o) the AVE-PSNR caused
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TABLE VI -
DISTRIBUTION OF BiTs BETWEEN SOURCE CoDING AND CHANNEL CODING POR “LENA™
Design Bit Rate 0.25 BPP 0.5 BPP 1.0 BPP
Sywe BER  1x1077 | x10” 1x10 (x107 1x10” [x107 [x0 |xl0” 1x 10~
Total Bit Rute 0.26 0.25 0.23 0.49 0.46 0.46 .91 0.88 0.87
System C Chaanel Bit Rate (%) 0,11 (42%) 0.05 (20%)_0.05 (18%) 0,22 (45%) 0.11(24%) 0,08 (17%) 0.42 (46%) 0.20 (23%) 0.14 (16%)
PSNR (Noiselesy Case)  29.66 o9 . 3.0 32.49 33.86 34.35 35.39 37.14 37.56
Total Bit Rats 0.29 024 . 024 0.48 0.46 0.45 091 089 0.88
System D Channel Bit Rate (%)  0.11 (43%) 0.06 (26%) 0.04 (15%) 0.22 (43%) 0.11 (25%) 0.07 (I5%) 0.41 (43%) 0.22 (24%) 0.14 (16%)
PSNR (Noiscless Case)  30.10 Loz 11.65 12.13 .10 34.56 35.60 s e
TABLE VIl
PSNR PERFORMANCE RESULTS (1N dB) FOR “*LENA"" I¥ THE PRESENCE OF CHANNEL NoISE
Desiga Bit Rate 0.25 BPP 0.5 BPP 1.0 BPP
System nel BER  |'% 107 1x10 1x10™ 1x107 Ix107* |xi0* p! X107 X 10 txw
AVE-PSNR .16 29.60 30.91 30.74 3291 34.30 4.4 38.73 37.50
SysomC  MAX-PSNR 9.8 .92 3.0 32,49 33.86 3435 3539 3704 37.56
ye MIN-PENR 18.98 20,40 2718 21.60 26.59 3397 24.87 22,61 3112
STD-PSNR 328 2.40 0.56 2.96 1.9 0.08 .52 ENE] 0.11
AVE-PSNR 29.96 10.94 31.49 nm» 1.9 .46 15.24 3671 n.s
SysiemD  MAX-PSNR 30.10 .02 11.64 3.7 34.10 34.36 35.60 37.08 37.59
¥ MIN-PSNR .8 29.46 30.92 26.39 29.00 33.78 32.10 32.88 .12
STD-PSNR 0.27 0.25 0.30 0.92 07 017 0.58 0.66 0.10 !
|

Fig. 13. Reconstructed "LENA™ from System C at design bit rate of 0.5
b/p. (a) MAX-PSNR, P, = 107, (b) MAX-PSNR, P, = 107". (c) MIN-
PSNR, 2, = 10°1, (d) MIN-PSNR, B, = 10~

by a system designed for a channel with BER P, , and
applied to a channel with BER P, ,. The PSNR (P, 4, P...)
results for different values of P, , and P, , for both Sys-
tems C and D are presented in Table IX. These results are
for an encoding rate of 0.5 b/p. We have observed that
the trend of performance loss is the same for other bit
rates.

1) System D is much more robust with respect to chan-
nel mismatch than System C,

N —

St ey

¥ —

H

:
i
j
!
i

() @

F?. 14. Reconstructed “LENA"* from Sysiem D at design bit rate of 0.5
b/p. (2) MAX-PSNR, F, = 1077 (b) MAX-PSNR, P, = 107, (c) MIN-
PSNR. P, = 107, (d) MIN-PSNR, P, = 107",

2) Practically in all cases, the AVE-PSNR of the mis-
matched case with P, , < P, , coincides with the MAX-
PSNR of the matched case (i.e., when the system is de-
signed and applied to a channel with BER P, ;). This im-
plies that, in such cases, all channe| errors are corrected
by the RCPC codes used in the system.

" 3) To design the system, overestimating the channel
BER is better than underestimating it. For example -in
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' TABLE IX . T
Z CHANNEL Mismarcu PearormaNCE RESULTS AT 0.5 b /p.
- System Sysiem C System D
P, o P L obxitt ikt px ot 00 1 %107 %107 1% 0.0
AVE-PSNR 30.74 18.71 9.32 7.46 32.38 25.19 18.78 13.90
1 x 107 MAX-PSNR 32.49 12.65 11.42 8.27 nn 28.37 20.82 14.94
. MIN-PSNR 21.60 16.31 7.66 697 26.39 1747 16,76 1.2
STD-PSNR * 1.96 1.29 0.87 0.32 0.92 133 L17 0.45
AVE-PSNR 32.49 3291 .16 13.17 nn 33.90 32.54 022
Lxjg-!  MAXPSNR 32.49 . 3386 34.10 15.86 32.73 34.10 3449 24.56
MIN-PSNR 32.49 26.99 2091 10.29 nm’ 9.00 n.47 17.33
STD-PSNR 0.0 193 4.76 1.16 0.0 0.1 242 1.62
AVE-PSNR 32.49 3386 34.30 3.1 n.n 34.10 346 29.81
Ix 10  MAX-PSNR 12.49 33,86 3435 34.66 nn .10 34,56 35.04
MIN-PSNR 32.49 33.86 33.97 18.27 n.mn 34.10 3378 23.58
STD-PSNR 0.0 0.0 008 141 0.0 0.0 0.17 .9
0.0 PSNR 32.49 33.86 34,35 38.16 2.1 34.10 34.56 38,32
System D, [PSNR (1072, 10%) —~ PSNR (10, 10°7)] TABLE X
= 1.17 dB, while |PSNR (107%, 10°%) - PSNR (107, . The Auiount or Sioe Inpoabaion (b/p)
107%)| = 6.59 dB. Design Rate ;
Image Sias System 0.25 0.5 1.0
E. Side Information i o ppen e
& em . G A A
_As in Section IV, we need to evaluate the amount of ~ 256'% 236 SysemD - 0.035 0.046 0.070
side information necessary to transmit to the receiver for = = — e e
i ide in- P ystem X X X
Systems C and D. In addition to the amount of side in- 512 x 512 " Sywem D o.018 00 0053

formation evaluated in Section IV, the following two
items need to be transmitted:

1) the length indicator of the packets, and

2) the additional bits for error protection of side infor-
mation.

It is easy to show that the packet length can never be
larger than 2" bits; hence, 14 bits are enough 10 encode
the length indicator.' As for additional bits for protection

. of side information, we assume that a mate 1/3 RCPC
code is powerful enough to render the side information
error-free when the channel emror probability is less than
107%. Under this assumption, the amount of side infor-
mation of Section IV grows by a factor of three amounting
to0 0.013 and 0,023 b/p for Systems C and D, respec-
tively, for an image of size 256 X 256; for an image of
size 512 x 512, the side information reduces by a factor
of four. The length indicator of a packet should also be
protected because this information .is indispensable for
channel decoding. Assuming that 14 bits is used for the
length indicator, after error protection 42 bits or six bytes
are needed for the length indicator. This increases the bit
rate by 100 x (6 x 8/1024) = 4,7% comesponding to
an increase of 0.012, 0.023, and 0.047 b/p for design
average bit rates of 0.25, 0.5, and 1| b/p, respectively.
In Table X, we have summarized the increases of the
average bit rate incurred by the side information. These

"l all of our simlations. the lengi of e packes has been less than
2" bits,

numbers have to be added to the total bit rates tabulated

hTtthl_lwulcuhwﬂulmduvmll bit rates.

VII. SuMMmarY mnCuNc:.uawm

In this paper, we have developed new schemes for sub-
band image coding over noiseless and noisy channels. For
the noiseless channel situation, we have developed two
encoding schemes. The difference between the two
schemes is in the coding of the lowest frequency subband:
the first scheme uses DPCM while the second uses 2-D
DCT coding. Both schemes use zero-memory quantiza-
tion for other subbands. An important featurc of these
schemes is that the output of all quantizers are entropy-
coded, The justification for using entropy-coded quanti-
zation resides in the statistical results on the shape of the
distribution of subbands, which suggest 1 significant gain
for entropy-coded quantization over conventional Lloyd-
Max quantization followed by fixed-length coding. Both
schemes perform better than the nonadaptive scheme in
[2] (and, hence, other sch gainst which pari-
sons were made in [2]). The difference is significant both
subjectively and objectively. The objective performances
of the DCT- and DPCM-based schemes are more-or-less
the same although, at low bit rates, the DCT-based

offers a subjectively noticeable improvement over

the DPCM-based scheme,
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channe| BER's at a design rats of 0.9 b/p.

o
o

For noisy channels, due to the extensive use of vari-
able-length codes and the concomitant error propagation
problems, our schemes exhibit an unacceptable level of
sensitivity to channel noise, To combat this difficulty, we
have developed a combined source/channel coding
scheme in which the schemes designed for the noiseless
channel are combined with appropriately designed rate-
compatible punctured convolutional codes. Simulation re-
sults for a variety of encoding rates and channel bit error
rates indicate that the channel-optimized schemes perform
dramatically better than their counterparts designed for the
noiseless channel (of course, at the cost of some added
complexity). They also perform better than the scheme
developed in [2].

Fig. 15 illustrates the performance of the W-0O scheme
as well as Systems A, B, C, and D at the encoding rate
of 0.5b/p. Clearly, Systems A and B exhibit a great sen-
sitivity to channel noise, despite their very good perfor-
mance for noiseless channels. Systems C and D both per-
form better than W-0, In fact, in most cases, their worst
performance (at P, = 1077 is still better than the best
performance (at P, = 0.0) of W-0. System D performs
better than System C and exhibits a berter robustness
against channel noise, In view of these results, we con-
clude that the best scheme among those considered here
is System D. The DCT blocksize used in System D is 4
x 4, for which the complexity of implementation is quite
manageable.

Possible avenues for further research include: i) the
study of intraband entropy-constrained VQ [21] for en-
coding the subbands; ii) the development of an extension
of System B in which an adaprive 2-D DCT coding, sim-
ilar to that of [22], is used for encoding the LFS, and iii)
the study of system performance for bursty and fading
channels,
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Reversible image compression via multiresolution
representation and predictive coding

Amir Said and William A. Pearlman

Department of Electrical, Computer, and Systems Engineering
Rensselaer Polytechnic Institute, Troy, New York 12180

ABSTRACT

In this paper a new image transformation suited for reversible (lossless) image compression is
presented. It uses a simple pyramid multiresolution scheme which is enhanced via predictive
coding. The new transformation is similar to the subband decomposition, but it uses only integer
operations. The number of bits required to represent the transformed image is kept small though
careful scaling and truncations. The lossless coding compression rates are smaller than those
obtained with predictive coding of equivalent complexity. It is also shown that the new transform
can be effectively used, with the same coding algorithm, for both lossless and lossy compression.
When used for lossy compression, its rate-distortion function is comparable to other efficient lossy
compression methods. d :

1. INTRODUCTION

In general, reversible (or lossless) image compression is required whenever some processing (mag-
nification, filtering, subtraction, etc.) should be applied to the image. Most lossy compression
techniques are designed for the human visual system and may destroy some of the information
required during processing. It is also indicated for images obtained at great cost, such as medical
images, when it is unwise to discard any information that later may be fcund to be necessary.

Some of the most effective methods for reversible compression use linear predictive coding;»?
which is the method adopted in the JPEG Still Picture Compression Standard® This form of
compression is usually defined for a single resolution, in a way that the image can be recovered
only in its entirety—a characteristic limits the application of those methods.

There are several advantages in a multiresolution representation of the image. One of them is
the possibility of progressive-resolution transmission, where the image is recovered at increasingly
finer resolutions. This, in turn, allows a multi-use scheme, where users with devices of different

£&d | COIF Val 7004 ; 0-8194-1369-0/93/56.00
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resolutions can access the same compressed image file and efficiently recover the image only up to
the resolution the device is capable of using (displaying, printing, etc).

Another advantage of the multiresolution representation is related to the coding efficiency?
Single-resolution predictive coding requires a statistical model of the image, and may be based
on some assumptions, like stationary distributions, which are seldom encountered in real images.
This problem can be alleviated with more complex adaptive models, but-at the expense of a much
larger computational effort. On the other hand, the multiresolution representation has a recursive
structure, in such a way that a high order and complex transformation can be done with a sequence
of low order and simple transformations, ‘

One important aspect of reversible compression is that, in a sense, all bits of the image repre-
sentation are equally important, because all have to be recovered. Lossy compression methods use
only the numerical pixel values to remove correlations and to select the mast relevant information.
For that reason, some of the most effective transformations for lossy compression (e.g., DCT,
PR-QMF subband decomposition, etc.) are reversible only if its coefficients are perfectly repre-
sented as real numbers. Truncating the values in the transformed image may render the method
inefficient for reversible compression because too many bits are used to code the fractional part?
Adapting these transforms to use only integer operations does not solve the problem because they
still increase the number of bits required for an exact representation,

Since the pixel's numerical value is important in the image's context, a good transformation
for reversible compression may use arithmetic operations to reduce the correlations, but it must
deal carefully with the truncation process, and must limit the maximum number of bits required
to represent each pixel in the transformed image.

In this paper we propose a new integer transformation for reversible image compression that
addresses these problems. It uses a simple pyramid multiresolution scheme enhanced with pre-
dictive coding, We call it S+P transform. It differs from other methods® because the prediction
is used during (instead of after) the sequence of recursive transformations, and hence can use
information that is not available after the image is transformed. Numerical results show that the
5+P transform allows more compression than single-resolution linear predictive coding methods
of small complexity, while keeping the advantages of the multiresolution representation, and can
be calculated with a very small computational effort.

[t is also shown that the S+P transform it is well suited for progressive-fidelity transmission,
where, for a single resolution, the image quality is gradually improved up to perfect reconstruction.
This approach uses the same coding algorithm for lossy and lossless éompression, without requiring,
for example, the lossy-plus-residual approach! The results show that its rate-distortion function
is comparable to other efficient lossy compression methods.

2. MULTIRESOLUTION REPRESENTATION

We begin with a pyramid transformation known as the S (Sequential) transform ' ® which is similar
to the Haar multiresolution image representation” There are different definitions of the § transform

SPIE Vol. 2094 / 665
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Figure 1: Multiresolution sequential transformation.

in the literature, but most differ only in some implementation details,

A sequence of random integers c[n] with length N, can be perfectly represented by the two
sequences with length N/2 defined by:

ln] = L(cf2n] +c2n +1])/2],
hin] = ¢f2n] = c[2n + 1],

(1.

where | - | corresponds to downward truncation. The sequences {[n] and k[n] form the § transform
of ¢[n]. '

The inverse transformation is:
c[2n]
c[2n + 1]

] + [ (h[n] +1)/2],
c[2n] = A[n].

i

()

The advantage of this representation is that, if the correlation coefficient of c[2n) and c[2n +1]
is larger than 1/3, then the average variance of I[n] and h[n] is smaller than the variance of ¢[n]’
Since the adjacent pixels in an image are highly correlated, we apply (1) to the sequence of image
pixels to reduce its first-order entropy. In this case, k[n] normally has small variance, while the
variance of /[n} is approximately equal to the variance of ¢[n].

The two-dimensional transformation is done by applying the transformation (1) sequentially
to the rows and columns of the image, as shown in Figure 1. The components corresponding to
I[n] then are the mean of 2 x 2 pixel blocks of the image. They form another image with half the
resolution, and with statistical properties that are similar to those of the original image. Hence,
the same transformation can be recursively applied to this lower resolution “mean image” (Il in
Figure 1) to form a multiresolution hierarchical pyramid#

Note that the maximum number of bits required to represent each pixel in the Il images does
not change with each transformation. In addition, the S transform is so simple that it is easy
to find the truncation that allows perfect reconstruction. There is no data expansion in this
transformation, i.e., it can be done “in place,” and use the same number of pixels of the original

666/ SPIE Vol. 2094
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“image.. Except for the truncations in (1) and (2), this transformation is equal to a subband
decomposition. For that reason we borrow some of its terminology. For instance, we call {[n] and
h[n] the lowpass and highpass components.

Because the low resolution (II) images are formed with mean values (a form of lowpass filter-
ing), the degradation of those image’s quality due to aliasing effects will occur only after several
transformations—an advantage over the unfiltered subsampling used, for example, in the HINT
(Hierarchical INTerpolation) coding method X!

The S transform is very simple, can be quickly calculated, and significantly reduces the first-
order entropy. However, it is too simple to eliminate the correlation between the highpass com-
ponents. On the other hand, one advantage of predictive coding is that it does not have to be
linear for perfect reconstruction, and the prediction value can be truncated at will. Since the S
transform components are correlated, we can use a predictive coding method to further reduce
the first-order entropy of the transformed image, while keeping the transformation reversible. *

3. S4P TRANSFORM

In the S4-P transform (S-transform + Prediction) we use, during each one-dimensional transfor-
mation, some values of I[n] and h[n] to estimate of the value of a given hfn]. Calling the estimate
h[n], the difference

haln] = hin] - | Aln] |, (3)
replaces k[n], forming a new transformed image with smaller first-order entropy. No estimation is
subtracted from [[n] because it is later transformed with the same method.

Definin ’
) Alfn] = lfn — 1] = I[n], ' (4)

the general form of the estimator is:
hin] = oy Alln] + ag Alln + 1] = aghfn + 1). (5)

With this formulation all terms have zero mean. To simplify the notation, we disregard, for now,
the image borders. Note that (5) is linear, while (3) is not.

During the inverse S+P transformation the pixels are visited in the inverse order, so that the
information required to calculate the prediction have already been recovered. So, the inverse trans-
formation algorithm is like the transformation algorithm running “backwards,” and the prediction
is added instead of subtracted. After I[n] and h[n] are recovered the inverse S transform (2) is
calculated.

The predictor coefficients that minimize the variance of ha[n] can be found by solving the
Yule-Walker equations? This solution will not necessarily minimize the entropy of hy[n], but we
found that it is practically optimal. In fact, we discovered that there can be several solutions that

can practically minimize the entropy. This freedom of choice is important because it allows us to
select good rational coefficients, and calculate the S+P transform with fast integer operations and
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Figure 2: Frequency response of the S and S+P transforms.

bit-shifts instead of multiplications or divisions. This way the S+P transform can maintain the
speed advantage of the § transform.

The interpretation of the S+P transform is easier in the frequency domain. If we disregard
- the truncations, we can combine (1), (3), (4) and (5), and see that k4[n] can be regarded as the
output of a FIR filter, to the input sequence c[n). The z-transform of the filter’s response is:

Fz) = -;- (- (= +2) 277 4 (a1~ —2) 274+
(a3 + 205) 27 + (a2 — 2a9) 2~} (6)

Figure 2 shows the frequency response of a particular S+P estimator compared to the S trans-
form. Since most of an image's energy is concentrated in the low frequency components, it is clear
that a filter with higher attenuation in the low frequencies will reduce the variance of A4[n). On
the other hand, there is an inevitable amplification of the higher frequencies. This is due to the |
structure of (6), and is required to keep the transformation reversible.

Even though our estimator has only three parameters, a good deal of modeling can be done
in the response (6). Figure 3 shows the frequency response of the set of predictors in Table 1.
In principle, the choice for the best predictor depends on the image’s characteristics. Smooth |
and noiseless images are better compressed using the filter with largest attenuation on the low
frequencies. Noisy and very detailed images require smaller amplification of the high frequencies.
However, we next show that the predictor choice is not critical, and that there are good “universal”
predictors, i.e., those that are effective for a broad class of images (e.g., portraits, landscape,
medical, etc.). '

We tested the selected predictors with the set of images in Table 2. The first four are well
known, and can be seen in the references. The images CT 1 to 4 are medical (tomography)
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predictor

parameter
“ Alsfclo]eE
o 1/4| 4/16 | 2/8 | 3/16 | 3/16
o 1/4 | 5/16 | 3/8 | 8/16 | 9/16
a 0 |2/16 |2/8 | 6/16 | 8/16

Table 1;: Parameters of the set of selected predictors.

»PmATmM

Figure 3: Frequency response of the selected set of predictors.

Name origin | dimension | bits/pixel

Girl, Couple USC | 256 x 256 8

Lena, Mandrill | USC | 512 x 512 8

CT1ltod CT | 512 x512 12
Table 2: Set of test images.
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images. The first-order entropies of the transformed images are shown in Table 3. Those entropies
are calculated as the weighted mean of the entropies in each of the pyramid quadrants. This way
they are more accurate estimates of the entropy-ceding bit rates when different adaptive models 'I
are used for each quadrant. |

To give a reference for comparisons Table 3 also shows the first-order entropies obtained with
the JPEG? third-order predictors #4 and #7. We can see that the difference between the S (no
predictor column) and S+P transforms is significant, but the S+P entropy in some cases is not
much smaller than JPEG's. Nevertheless, the multiresolution advantages should also be taken into
account. In addition, we show in the next section that, using the pyramid structure, the S+P
transform can be compressed to rates smaller than the first-order entropy, and it is clearly superior
to JPEG rates.

4. CODING RESULTS

We selected the predictor C for our coding tests because it can be calculated as

bl = 5 {2 (Alln) + Alln +1) = hln + 1)) + Alln +1] ), ()
and hence use bit shifts instead of multiplications and divisions. In the image borders we used the !
predictors . _ j
M = 7 {AN2+aIm), ® -
MV = 3 LAIN/2-1)+ AIN/2) ). ® |

In our tests the CPU times to calculate the S and S+P transforms of a 512 x 512 image were
0.4 s and 0.5 s, respectively (SUN-SPARC 10 worlcstation] All rates presented in this section are
not entropy estimates, but are calculated from the size of the compressed files. In all tests the |
S+P transform pyramids have five levels.

In our first sequence of tests we evaluated the progressive-resolution transmission scheme. The
adaptive arithmetic coding algorithm of Witten et al® was used to entropy-code the different
resolution images. An adaptive Markov model with five states (contexts) was used, where the
state is defined by the value of the previous pixel in a row (e.g., state 1 if 0 < hhyfn —~ 1] < 4, |
where hhy represents a pixel value in the completely transformed image). The model was reset |
before coding each part of the pyramid. The Markov model does not change the speed of the ‘
arithmetic encoder, and can explore the remaining dependencies between transform pixels,

4

Table 4 shows the results of those tests. The same file was used to progressively recover images
at increasingly finer resolutions. The actual bit rate required to code each image was divided
by the number of pixels in the original image to give the bit/pixel rates in the table. Hence,
those bit/pixel rates represent the contribution of the low resolution images. Note that the full-
resolution rates can be smaller than the first-order entropies of Table 3. The average coding and
decoding times were 4.2 8 and 4.8 s, respectively, for 512 x 512 images.
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In the second set of tests we used the zero-tree® '° compression algorithm, This coding method
uses the magnitude ordering of the different pyramid levels to achieve larger compression. The
sequence of information coded by this method is similar to bit-plane coding, but, instead of visiting
all pixels in the image to code a bit-plane, it uses a tree structure to avoid visiting the pixels with
small magnitude. This way it can detect and more efficiently code the low-activity regions in the
transformed image. It is simple, fast and, because it works with individual bits, can be used for
reversible compression.

Two versions of the zero-tree coding algorithm (called I and II) were used, and both can
compress the image only in full-resolution. Version I does not allow any form of progressive
tranamission, while version II is designed for- progressive-fidelity transmission. The difference
between the two versions is that version [ uses the transformed image as previously defined, while
version IT implicitly scales the transformed image so that the transformation is nearly orthogona.l—
a requirement to minimize the mean squared-error distortion. .

. Table § shows the compression achieved with both versions to code the test images. The best

ults, relative to the first-order entropy, were obtained for the set of medical images (CT). The
average coding and decoding times of version I were 12.0 s and 12.8 s, respectively, for 512 x 512
images.

In the progressive-fidelity transmission scheme the decoder initially sets the reconstructed
image to zero and update its pixel values using the coded message. All results were obtained from
the same file: the decoder can decide at which rate to stop, and then it calculates the inverse S+P
transform to obtain a lossy version of the image. If it continues decoding to the end of the file
then the image is recovered exactly, The results obtained with the image “Lena” are shown in
Table 6 (the decoding CPU times do not include the inverse transformation). The average CPU
time of version II to code and decode a 512 x 512 image up to perfect reconstruction were 10. 5 s
and 11.0 s, respectively.

Those rate versus PSNR results are excellent, considering the speed of the S+P transform
and decoding algorithm. They are slightly inferior to methods like subband coding with adaptive
vector quantization!? but superior to some other vector quantization coding methods!® Figure 4
shows the lossy version of the image “Lena” coded with this method, at rate 0.3 bit/pixel. Like
the images coded via subband decomposition, there are no blocking artifacts, and, even though
a bit-plane approach was used, the inverse transformation completely eliminates the “banding”
artifacts usually present in bit-plane coded images.
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image . S5+P predictor JPEG
" || none | A B 5 D E 4 7
Girl 5.00 | 4.56 4.51 4.48 | 4.50 | 4.55 || 4.92 | 4.75

Couple || 4.45 | 4.23 | 4.17 | 4.13 | 4.15 | 4.20 || 4.23 | 4.37

Lena 4.77 | 4.41 | 4.35 | 4.32 | 4.33 | 4.38 | 4.81 | 4.61

Mandrill || 6.12 | 5.96 | 5.90 | 5.88 | 5.92 | 5.98 || 6.39 | 6.04

CT1 4.29 [3.74 | 3.63 | 3.54 | 3.45 | 3.4 || 8.77 | 4.11

CT 2 6.60 | 6.00 | 5.89 | 5.82 | 5.75 | 5.73 || 5.94 | 6.40

CT3 5.62 | 5.10 | 5.01 [ 4.94 | 4.89 | 4.88 || 5.32 | 5.47

CT ¢ 5.88 | 5.25 | 5.12 | 5.02 | 4.96 | 4.95 || 5.33 | 5.70

Table 3: First-order entropy of different predictors (bit/pixel).

image resolution
128 x 128 | 256 x 256 | 512 x 512

Girl 1.18 4.58 —
Couple 1.12 4.08 —
Lena 0.31 1.11 4,29
Mandrill 0.36 1.48 5.87
CT1 0.35 1.12 3.32
CT2 0.51 1.72 5.68
CT3 0.39 1.41 4.78
CT 4 0.43 1.47 4.86

Table 4: Progressive-resolution transmission rates (bit/pixel).
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S sl i
Version Image
Girl | Couple | Lena | Mandrill |CT 1 |CT2|{CT3|CT 4
I 441 | 3.92 |4.20 5.69 294 | 527 | 4.40 | 4.46
I 445| 4.08 | 425 [ 35.77 3.08 | 5.53 | 4.65 | 4.70

Table 5: Zero-tree method compression rates (bit/pixel).

rate (bit/pixel)

02103 (0405 |06])07]|08
MSE 58.6 | 36.5 | 30.7 [ 224 | 20.3 | 16.6 | 12.8
PSNR (dB) 30.5 | 32,5 133.3 | 34.6 | 35.1 | 35.9 | 37.1
decoding time (s) | 0,52 | 0.79 | 1.12 | 1.45 | 1.78 | 2.00 | 2.38

B el

original “Lena”

674/ SPIE Val. 2094

Table 6: Progressive-fidelity transmission (image “Lena” 512 x 512).

Figure 4: Lossy reproduction of the image “Lena.”

0.3 bit/pixel, PSNR = 32.5 dB
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Embedded hﬁage Coding Using Zerotrees of Wavelet
Coefficients

Jerome M, Shapiro

Abstrac(—The embedded zerotree wavelet algorithm (EZW)
is a simple, yet remarkably effective, image compression aigo-
rithm, having the property that the bits in the bit stream are
generated [n order of importance, yielding a fully embedded
cade, The embedded code represents a seqyence of binary de-
cisions that distinguish an image from the **pull” image. Using
an embedded coding algerithm. an encoder can terminate the
encoding at any point thereby allowing a targe! rate or target
distortion metric to be met exactly, Also, given a bit stream,
the decoder ¢an cease decoding at any point in the bit stream
and still produce exactly the same image that would have been
encoded at the bit rate corresponding to the truncated bil
stream. In addition to producing a fully embedded bit stream,
EZW consistently produces compression results that are com-
petitive with virtually all known compression algorithms on
standard test images. Yet this performance is achieved with a
technique that requires absolutely no training, no pre-stored
tables or codebooks. and requires no prior knowledge of the
image source.

The EZW- algorithm is based on four key concepts: 1) a dis-
crete wavelet transform or hierarchical subband decomposi-
tion, 2) prediction of the absence of significant information
across scales by exploiting the self-similarity laherent n im-
ages, 3) entropy-coded successive-approximation quantization,
and 4) universal lossless data compression which is achieved via
adaptive arithmetic coding.

1. INTRODUCTION AND PROBLEM STATEMENT

THIS paper addresses the two-fold problem of 1) ob-
taining the best image quality for a given bit rate. and
2) accomplishing this task in an embedded fashion, i.e.,
in such a way that all encodings of the same image at
lower bit rates are embedded in the beginning of the bit
stream for the target bit rate.

The problem is important in many applications. partic-
ularly for progressive transmission. image browsing [25],
multimedia applications, and compatible transcoding in a
digital hierarchy of multiple bit rates. It is also applicable
to transmission over a noisy channel in the sense that the
ordering of the bits in order of importance leads natrally
to prioritization for the purpose of layered protection
schemes.

Manuscript received April 28, 1992: revised June 13, 1993. The guest
editor coordinating the review of this paper and approving it for publication
was Prof. Marun Veterli. -

The suthor is with the David Samoff Research Center, Princeton, NJ
08543,

1EEE Log Number 9212175.

A. Embedded Coding

An embedded code represents a sequence of binary de-
cisions that distinguish an image from the **null,”" or all
gray, image. Since. the embedded code contains all lower
rate codes “‘embedded”" at the beginning of the bit strkam,
effectively. the bits are **ordered in importance.’* Using
an embedded code. an encoder can terminate the encoding

at any point thereby allowing 2 target rate or distortion-

metric (0 be met exactly. Typically. some target param-
eter, such as bit count. is monitored in the encoding pro-
cess. When the target is met. the encoding simply stops.
Similarly. given a bit stream. the decoder can cease de-
coding at any point and can produce reconstructions cor-
responding to all lower-rate encodings.

Embedded coding is similar in spirit to binary finite-
precision representations of real numbers. All real num-
bers can be represented by a string of binary digits. For
each digit added to the right. more precision is added.
Yet, the “"encoding’* can cease at any time and provide
the “'best”" representation of the real number achievable
within the framework of the binary digit representation.
Similarly. the embedded coder can cease at any time and
provide the *‘best’" representation of an image achievable
within its framework. :

The embedded coding scheme presented here was mo-
tivated in part by universal coding schemes that have been
used for lossless data compression in which the coder at-
tempts to optimally encode a source using no prior knowl-
edge of the source. An excellent review of universal cod-
ing can be found in [3]. In universal coders. the encoder
must learn the source statistics as it progresses. In other
words, the source model is incorporated into the actual bit
stream. For lossy compression, there has been little work
in universal coding. Typical image coders require exten-
sive training for both quantization (both scalar and vector)
and generation of nonadaptive entropy codes, such as
Huffman codes. The embedded coder described in this pa-
per atempts to be universal by incorporating all leaming
into the bit stream itself. This is accomplished by the ex-
clusive use of adaptive arithmetic coding.

Intuitively, for a given rate or distortion, a nonembed-
ded code should be more efficient than an embedded code,
since it is free from the constraints imposed by embed-
ding. In their theoretical work [9], Equitz and Cover
proved that a successively refinable description can only
be optimal if the source possesses certain Markovian
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properties. Although optimality is never claimed, a
_method of generating an embedded bit stream with no ap-
parent sacrifice in image quality has been developed.

B. Features of the Embedded Coder
The EZW algorithm contains the following features

o A discrete wavelet transform which provides a com-
pact multiresolution representation of the image.
Zerotree coding which provides a compact multi-
resolution representation of significance maps, which
are binary maps indicating the positions of the sig-
nificant coefficients. Zerotrees allow the successful
prediction of insignificant coefficients across scales
to be efficiently represented as part of exponentially
growing trees.
Successive Approximation which provides a com-
pact multiprecision representation of the significant
coefficients and facilitates the embedding algorithm,
* A prioritization protocol whereby the ordering of im-
' porance is determined, in order. by the precision,
magnitude, scale, and spatial location of the wavelet
coefficients. Note in particular, that larger coeffi-
cients are deemed more important than smaller coef-
ficients regardless of their scale.
Adaptive multilevel arithmetic coding which pro-
vides a fast and efficient method for entropy coding
strings of symbols, and requires no training or pre-
stored tables. The arithmetic coder used in the ex-
periments is a customized version of that in [31).
The algorithm runs sequentially and stops whenever
a target bit rate or a target distortion is met. A target
bit rate can be met exacrly, and an operational rate-
. vs.-distortion function (RDF) can be computed point-

by-point.

-

C. Paper Organization

Section II discusses how wavelet theory and multi-
resolution analysis provide an elegant methodology for
representing “‘trends’’ and ‘‘anomalies’ on a statistically
equal footing. This is important in image processing be-
cause edges, which can be thought of as anomalies in the
spatial domain. represent extremely important informa-
tion despite that fact that they are represented in only a
tiny fraction of the image samples. Section [I1 introduces
the concept of a zerotree and shows how zerotree coding
can efficiently encode a significance map of wavelet coef-
ficients by predicting the absence of significant informa-
tion across scales. Section IV discusses how successive
approximation quantization is used in conjunction with
zerotree coding, and arithmetic coding to achieve efficient
embedded coding. A discussion follows on the protocol
by which EZW attempts to order the bits in order of im-
portance, A key point there is that the definition of im-
portance for the purpose of ordering information is based
on the magnitudes of the uncertainty intervals as seen.from
the viewpoint of what the decoder can figure out. Thus.

IEEE TRANSACTIONS ON SIONAL PROCESSING, VOL. 41, NO. 12, DECEM‘BEI 1993
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there is no additional overhead to transmit this ordering
information. Section V consists of a simple 8 % 8 ex-
ample illustrating the various points of the EZW algo-
rithm, Section VI discusses experimental results for var-
ioys rates and for various standard test images. A
surprising result is that using the EZW algorithm, termi-
nating the encoding at an arbitrary point in the encoding
process does nof produce any artifacts that would indicate
where in the picrure the termination occurs. The paper
concludes with Section VII.

II. WAVELET THEORY AND MULTIRESOLUTION
ANALYSIS

A. Trends and Anomalies

One of the oldest problems in statistics and signal pro-
cessing is how to choose the size of an analysis window,
block size, or record length of data so that statistics com-
puted within that window provide good models of the sig-
nal behavior within that window. The choice of an anal-
ysis window involves trading the ability to analyze
**anomalies, ' or signal behavior that is-more localized in
the time or space domain and tends to be wide band in the
frequency domain, from ‘‘trends,’’ or signal behavior that
is more localized in frequency but persists over a large
number of lags in the time domain, To model data as being
generated by random processes so that computed statistics
become meaningful, stationary and ergodic assumptions
are usually required which tend to obscure the contribu-
tion of anomalies.

The main contribution of wavelet theory and multires-
olution analysis is that it provides an elegant framework
in which both anomalies and trends can be analyzed on
an equal footing. Wavelets provide a signal representation
in which some of the coefficients represent long data lags
corresponding to a narrow band. low frequency range, and
some of the coefficients represent short data lags corre-
sponding to a wide band, high frequency range. Using the
concept of scaie, data representing a continuous tradeoff
between time (or space in the case of images) and fre-
quency is available.

For an introduction to the theory behind wavelets and
multiresolution analysis, the reader is referred to several
excellent tutorials on the subject [6], (71, [17], 18], [20],
[26], [271.

B. Relevance o Image Coding %,

In image processing, most of the image area typically
represents spatial ‘“‘trends,’’ or areas of high statistical
spatial correlation. However **anomalies,'” such as edges
or object boundaries, take on a perceptual significance that
is far greater than their numerical energy contribution to
an image. Traditional transform coders, such as those us-
ing the DCT, decompose images into a representation in
which each coefficient corresponds to a fixed size spatial
area and a fixed frequency bandwidth, where the band-
width and spatial area are effectively the same for all coef-
ficients in the representation. Edge information tends to
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disperse so that many non-zero coefficients are required
to represent edges with good fidelity. However, since the
edges represent relatively insignificant energy with re-
spect to the entire image. traditional transform coders,
such as those using the DCT. have been fairly successful
at medium and high bit rates. At extremely low bit rates,
however, traditional transform coding techniques, such as
JPEG (30], tend to allocate too many bits to the *‘trends.”"
and have few bits left over to represent **anomalies."" As
a result; blocking antifacts often result.

Wavelet techniques show promise at extremely low bit
rates because trends, anomalies, and information at all
*'scales’’ in between are available. A major difficulty is
that fine detail coefficients representing possible anoma-
lies constitute the largest number of coefficients, "and
therefore, to make effective use of the multiresolution
representation, much of the information is contained in
rep ing the p of those few coefficients corre-
sponding to significant anomalies.

The techniques of this paper allow coders to effectively
use the power of multiresolution representations by effi-
ciently representing the positions of the wavelet coeffi-
cients representing significant anomalies.

C. A Discrete Waveler Transform

The discrete wavelet transiorm used in this paper is
identical to a hierarchical subband system. where the sub-
bands are logarithmically spaced in frequency and repre-
sent an octave-band decomposition. To begin the decom-
position, the image is divided into four subbands and
critically subsampled as shown in Fig. 1. Each coefficient
represents a spatial area corresponding to approximately
a 2 X 2 area of the original image. The low frequencies
represent a bandwidth approximately corresponding to 0
< |w| < 7/2, whereas the high frequencies represent the
band from 7 /2 < |w| < =. The four subbands arise from
separable application of vertical and horizontal filters. The
subbands labeled LH,, HL,, and HH), represent the finest
scale wavelet coefficients. To obtain the next coarser scale
of wavelet coefficients, the subband LL, is further decom-
posed and critically sampled as shown in Fig. 2. The pro-
cess continues until some final scale is reached, Note that
for each coarser scale, the coefficients represent a larger
spatial area of the image but a narrower band of frequen-
cies. At each scale, there are three subbands; the remain-
ing lowest frequency subband is a representation of the
information at all coarser scales. The issues involved in
the design of the filters for the type of subband decom-
position described above have been discussed by many
authors and are not treated in this paper. Interested read-
ers should consult (1], [6], [32], [35], in addition to ref-
erences found in the bibliographies of the wtorial papers
cited above.

It is a matter of terminology to distinguish between a
transform and a subband system as they are two ways of
describing the same set of numerical operations from dif-
fering points of view. Let r be a column vector whose
elements represent a scanning of the image pixels, let X

LL; "L

L5, HH

Fig. |. First siage of a discrete wavelet transform: The image is divided

"

into four using se filters. Each & 5pa-
tial area ding 10 approximately a 2 X 2 area of the original pic-
tre. The low | 1 |ppmnm|.ely corme-

sponding 10 0 < |w] < = 1, wh the high freq the
band from r ‘2 < |w| < 7. The four subbands arise from s:pmble appli-
cation of verical and Iwnrnruul filers. .

LL; | Ml

HLy

Lin | HIly

LA, AR

Fig. 2. A

le wavelet jon: The image is divided into four
bands using sep filiers. Each coefficient in the LL,, LH,,
HL, and HH. rep a spatial area ding to i ynd
x4 :muflh: original pumr: The low f::quenn:: at this scale rrpmunt
ab ing1o0 < |w| < v/4, whereas the
high !‘xtqntm:l:l represent the band from /4 < |o] < x/2.

be a column vector whose elements are the array of coef-
ficients resulting from the wavelet transform or subband
decomposition applied to x. From the transform point of
view, X represents a linear transformation of x repre-
sented by the matrix W, ie.,

X = Wr. 4)]

Although not actually computed this way, the effective
filters that generate the subband signals from the original
signal form basis functions for the transformation, i.em
the rows of W.-Different coefficients in the same subband
represent the projection of the entire image onto translates
of a prototype subband filter, since from the subband point
of view, they are simply regularly spaced different outputs
of a convolution between the image and a subband filter,
Thus, the basis functions for each coefficient in a given
subband are simply translates of one another.

In subband coding systems [32], the coefficients from
a given subband are usually grouped together for the pur-
poses of designing quantizers and coders. Such a group-
ing suggests that statistics computed from a subband are
in some sense representative of the samples in that sub-
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band. However this statistical grouping once again im-
plicitly de-emphasizes the outliers, which terd to repre-
sent the most significant anomalies or edges. In this paper,
the term **wavelet transform'’ is used because each wave-
let coefficient is individually and deterministically com-
pared to the same set of thresholds for the purpose of
measuring significance. Thus, each coefficient is treated
as a distinct, potentially important piece of data regard-
less of its scale, and no statistics for a whole subband are
used in any form., The result is that the small number of
‘*deterministically”’ significant fine scale coefficients are
not obscured because of their *'statistical' insignificance.
The filters used to compute the discrete wavelet trans-
form in the coding experiments described in this paper are
based on the 9-tap symmetric quadrature mirror. filters
(QMF) whose coefficients are given in [1]. This transfor-
mation has also been called a QMF-pyramid. These filters
were chosen because in addition to their good localization
‘properties, their symmetry allows for simple edge treat-
ments, and they produce good results empirically. Addi-
* tionally, using properly scaled coefficients, the transfor-
mation matrix for a discrete wavelet transform obtained
using these filters is so close to unitary that it can be
treated as unitary for the purpose of lossy compression.
Since unitary transforms preserve L, norms, it makes
sense from a numerical séandpoint to compare all of the
resulting transform coefficients to the same thresholds to
assess significance.

1. ZEROTREES OF WAVELET COEFFICIENTS

In this section, an important aspect of low bit rate im-
age coding is discussed: the coding of the positions of
those coefficients that will be transmited as nonzero val-
ues, Using scalar quantization followed by entropy cod-
ing, in order to achieve very low bit rates, i.e.. less than
1 bit/pel, the probability of the most likely symbol after
guantization—the zero symbol—must be extremely high.
Typically, a large fraction of the bit budget must be spent
on encoding the significance map, or the binary decision
- as to whether a sample, in this case a coefficient of a 2-D
discrete wavelet transform, has & zero or nonzero quan-
tized value. It follows that a significant improvement in
encoding the significance map translates into a corre-
sponding gain in compression efficiency.

A. Significance Map Encoding

To appreciate the importance of significance map en-
coding, consider a typical transform coding system where
a decorrelating transformation is followed by an entropy-
coded scalar quantizer. The following discussion is not
intended 10 be & rigorous justification for significance map
encoding, but merely to provide the reader with a sense
of the relative coding costs of the position information
contained in the significance map relative to amplitude
and sign information.

A typical low-bit rate image coder has three basic com-
ponents: a transformation, a quantizer and data compres-
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Fig. 3. A generi¢ transform coder,

sion, as shown in Fig. 3. The original image is passed
through some transformation to produce transform coef-
ficients. This transformation is considered to be lossless,
although in practice this may not be the case exactly. The
transform coefficients are then quantized to produce a
stream of symbols, each of which corresponds-to an index
of.a particular quantization bin, Note that virtually all of
the information loss occurs in the quantization stage. The
data compression stage takes the stream of symbols and
attempts to losslessly represent the data stream as effi-
ciently as possible.

The goal of the transformation is to produce coefficients
that are decorrelated. If we could, we would ideally like
a transformation to remove all dependencies between
samples. Assume for the moment that the transformation
is doing its job so well that the resulting transform coef-
ficients are not merely uncorrelated, but statistically in-
dependent. Also, assume that we have removed the mean
and coded it separately so that the transform coefficients
can be modeled as zero-mean, independent, although per-
haps not identically distributed random variables. Fur-
thermore, we might additionally constrain the model so
that the probability density functions (PDF) for the coef-
ficients are symmetric.

The goal is to quantize the transform coefficients so that
the entropy of the resulting distribution of bin indexes is
small enough so that the symbols can be entropy-coded at
some target low bit rate, say for example 0.5 bits per pixel
(bpp.). Assume that the quantizers will be symmetric
midtread, perhaps nonuniform, quantizers, although dif-
ferent symmetric midtread quantizers may be used for dif-
ferent groups of transform coefficients, Letting the central
bin be index 0, note that because of the symmetry, for a
bin with a nonzero index magnitude, a positive or nega-
tive index is equally likely. In other words, for each non-
zero index encoded, the entropy code is going to require
at least one-bit for the sign. An entropy code can be de-
signed based on modeling probabilities of bin indices as
the fraction of coefficients in which the absolute valuegf
a panicular bin index occurs. Using this simple model,
and assuming that the resulting symbols are independent,
the entropy of the symbols H can be expressed as

H=—plogap — (1= p)logz (1 ~ p)
+ (1 =p)[1 + Hyg, 2)

where p is the probability that a transform coefficient is
quantjzed to zero, and Hyz represents the conditional en-
tropy of the absolute values of the quantized coefficients
conditioned on them being nonzero. The first two terms
in the sum represent the first-order binary entropy of the
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significance map, whereas. the third term represents the
conditional entropy of the distribution of nonzero values
multiplied by the probability of them being nonzero. Thus,
we can express the true cost of encoding the actual sym-
bols as follows:

Total Cost = Cost of Significance Map
+ Cost of Nonzero Values. (3)

Returning to the model, suppose that the target is H =
0.5. What is the minimum probability of zero achievable?
Consider the case where we only use a 3-level quantizer,
i.e. Hyz = 0. Solving for p provides a lower bound on
the probability of zero given the independence assump-
tion .

Pain(fyz = 0, H = 0.5) = 0.916. (4)

In this case, under the most ideal conditions, 91.6% of
the coefficients must be quantized to zero. Furthermore,
83% of the bit budget is used in encoding the significance
map. Consider a more typical example where Hyz = 4,
the minimum probability of zero is

Pruin(Hyz = 4, H = 0.5) = 0.954. (5)

In this case, the probability of zero must increase, while
the cost of encoding the significance map is still 54% of
the cost.

As the target rate decreases, the probability of zero in-
creases, and the fraction of the encoding cost attributed
to the significance map increases. Of course, the inde-
pendence assumption is unrealistic and in practice, there
are often additional dependencies between coefficients that
can be exploited to further reduce the cost of encoding the
significance map, Nevertheless, the conclusion is that no
marter how optimal the transform, quantizer or entropy
coder, under very typical conditions, the cost of deter-
mining the positions of the few significant coefficients
represents a significant portion of the bit budget at low
rates, and is likely to become an increasing fraction of the
total cost as the rate decreases. As will be seen, by em-
ploying an image mode]l based on an extremely simple
and easy to satisfy hypothesis, we can efficiently encode
significance maps of wavelet coefficients.

B. Compression of Significance Maps using Zerotrees of

Wavelet Coefficients

To improve the compression of significance maps of
wavelet coefficients, a new data structure called a zerotree
is defined. A wavelet coefficient x is said to be insignifi-
cant with respect to a given threshold Tif |x| < T. The

" zerotree is based on the hypothesis that if a wavelet coef-

ficient at a coarse scale is insignificant with respect to a
given threshold T, then all wavelet coefficients of the same
orientation in the same spatial location at finer scales are
likely to be insignificant with respect to T. Empirical evi-
dence suggests that this hypothesis is often true.

More specifically, in a hierarchical subband system,
with the exception of the highest frequency subbands,

a9

every coefficient at a given scale can be related (o a set of
coefficients at the next finer scale of similar orientation.
The coefficient at the coarse scale is called the parenr, and
all coefficients corresponding to the same spatial location
at the nexi finer scale of similar orientation are called chil-
dren. For a given parent, the set of all coefficients at all
finer scales of similar orientation corresponding to the
same location are called descendanrs. Similarly, for a
given child, the set of coefficients at all coarser scales of
similar orientation corresponding to the same location are
called ancesrors. For a QMF-pyramid subband decom-
position, the parent-child dependencies are shown in Fig.
4. A wavelet tree descending from a coefficient in sub-
band HH?3 is also seen in Fig. 4. With the exception of
the lowest frequency subband, all parents have four chil-
dren, For the lowest frequency subband, the parent-child
relationship is defined such that each parent node has three
children, '

A scanning of the coefficients is performed in such a
way that no child node is scanned before its parent. For
an N-scale transform, the scan begins at the lowest fre-
quency subband, denoted as LLy, and scans subbands
HLy, LHy, and HHy, at which point it moves on to scale
N — 1, ete. The scanning pattern for 2 3-scale QMF-pyr--
amid can be seen in Fig. 5. Note that each coefficient
within a given subband is scanned before any coefficient
in the next subband.

Given a threshold level T 1o determine whether or not
a coefficient is significant, a coefficient x is said to be an

element of a zerotree for threshold T'if itself and all of its *

descendents are insignificant with respect to T. An ele-
mem of a zerotree for threshold T is a zerotree root if it
is not the descendant of a previously found zerotree root
for threshold T, i.e., it is not predictably insignificant
from the discovery of a zerotree root at a coarser scale at
the same threshold. A zerotree root is encoded with a spe-
cial symbol indicating that the insignificance of the coef-
ficients at finer scales is completely predictable, The sig-
nificance map can be efficiently represented as a string of
symbols from a 3-symbol alphabet which is then entropy-
coded. The three symbols used are 1) zerotree root, 2)
isolated zero, which means that the coefficient is insignif-
icant but has some significant descendant, and 3) signifi-
cant, When encoding the finest scale coefficients, since
coefficients have no children, the symbols in the. string
come from a 2-symbol alphabet, whereby the zerotree
symbol is not used.

As will be seen in Section IV, in addition to encoding
the significance map, it is useful to encode the sign of
significant coefficients along with the significance map.
Thus, in practice, four symbols are used: 1) zerotree root,
2) isolated zero, 3) positive significant, and 4) negative
significant. This minor addition will be useful for embed-
ding. The flow chart for the decisions made at each coef-
ficient are shown in Fig. 6. -

Note that it is also possible to include two additional
symbols such as *‘positive/negative significant, but des-
cendants are zerotrees'" ete. In practice, it was found that
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Note that parents must be scanned before children. Also note that all po-
sitions in a given subband are scanned before the scan moves 1o the next
subband.

at low bit rates, this addition often increases the cost of
coding the significance map. To see why this may occur,
consider that there is a cost associated with partitioning
the set of positive (or negative) significant samples into
those whose descendents are zerotrees and those with sig-
nificant descendants. If the cost of this decision is C bits,
but the cost of encoding a zerotree is less than C/4 bits,
then it is more efficient to code four zerotree symbols sep-
arately than to use additional symbols.

Zerotree coding reduces the cost of encoding the sig-
nificance map using self-similarity, Even though the im-
age has been transformed using a decorrelating transform
the occurrences of insignificant coefficients are not inde-
pendent events. More traditional techniques employing
transform coding typically encode the binary map via
some form of run-length encoding [30]. Unlike the zero-
tree symbol, which is a single *‘terminating’” symbol and
applies to all tree-depths. run-length encoding requires a
symbol for each run-length which much be encoded. A
technique that is closer in spirit to the zerotrees is the end-
of-block (EOB) symbol used in JPEG [30], which is also
a ‘“‘terminating’’ symbol indicating that all remaining
DCT coefficients in the block are quantized to zero. To
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sec why zerotrees may provide an advantage over EOB

symbols, consider that a zerotree represents the insignif-

icance information in a given orientation over an approx-
imately square spatial area at all finer scales up to and
including the scale of the zerotree root. Because the wave-
let transform is a hierarchical representation, varying the
scale in which a zerotree root occurs automatically adapts
the spatial area over which insignificance is represented.
The EOB symbol, however, always represents insignif-
icance over the same spatial area, although the number of
frequency bands within that spatial area varies. Given a
fixed block size, such as 8 X 8, there is exactly one scale
in the wavelet transform in which if a zerotree root is
found at that scale, it corresponds to the same spatial area
as a block of the DCT. If a zerotree root can be identified
at a coarser scale, then the insignificance pertaining to
that orientation can be predicted over a’larger area, Sim-
ilarly, if the zerotree root does not occur at this scale, then
looking for zerotrees at finer scales represents a hierar-
chical divide and conquer approach to searching for one
or more smaller areas of insignificance over the same spa-
tial regions as the DCT block size. Thus, many more coef-
ficients can be predicted in smooth areas where a root typ-
ically occurs at a coarse scale. Furthermore, the zerotree
approach can isolate interesting non-zero details by im-

mediately eliminating large insignificant regions frori

consideration. -

Note that this technique is quite different from previous
attempts to exploit self-similarity in image coding [19] in
that it is far easier to predict insignificance than to predict
significant detail across scales. The zerotree approach was
developed in recognition of the difficulty in achieving
meaningful bit rate reductions for significant coefficients
via additional prediction. Instead, the focus here is on re-
ducing the cost of encoding the significance map so that,
for a given bit budget, more bits are available to encode
expensive significant coefficients. In practice, a large
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fraction of the insignificant coefficients are efficiently en-
coded as part of a zerotree.

A similar technique has been used by Lewis and
Knowles (LK) [15], [16). In that work, a *‘tree'" is said
to be zero if its energy is less than a perceptually based
threshold. Also, the “*zero flag" used to encode the tree
is not entropy-coded. The present work represents an im-
provement that allows for embedded coding for two rea-
sons. Applying a deterministic threshold to determine sig-
nificance results in a zerotree symbol which guarantees
that no descendant of the root has a magnitude larger than
the threshold. As a result, there is no possibility of a sig-
nificant coefficient being obscured by a statistical energy
measure, Furthermore, the zerotree symbol developed in
this paper is part of an alphabet for entropy coding the
significance map which further improves its compression.
As will be discussed subsequently, it is the first propernty
that makes this method of encoding a significance map
useful in conjunction with successive-approximation. Re-
cently, a promising technique representing a compromise
between the EZW algorithm and the LK coder has been
presented in [34]. :

C. Interpretation as a Simple Image Mode!

The basic hypothesis—if a coefficient at a coarse scale
is insignificant with respect to a threshold then all of its
descendants, as defined above, are also insignificant—can
be interpreted as an extremely general image model. One
of the aspects that seems to be common to most models
used to describe images is that of a **decaying spectrum. '’
For example, this property exists for both stationary au-
toregressive models, and non-stationary fractal, or
‘‘nearly-1/f"" models, as implied by the name which re-
fers to a generalized spectrum [33). The model for the
zerotree hypothesis is even more gencral than **decaying
spectrum’’ in that it allows for some deviations to “‘de-

_caying spectrum’" because it is linked to a specific threshe

old. Consider an example where the threshold is 50, and
we are considering a coefficient of magnitude 30, and
whose largest descendant has a magnitude of 40. Al-
though a higher frequency descendant has a larger mag-
nitude (40) than the coefficient under consideration (30),
i.e., the *‘decaying spectrum'’ hypothesis is violated, the
coefficient under consideration can still be represented us-
ing a zerotree root since the whole tree is still insignificant
(magnitude less than 50), Thus, assuming the more com-
mon image models have some validity, the zerotree hy-
pothesis should be satisfied easily and extremely often,
For those instances where the hypothesis is violated, it is
safe to say that an informative, i.e., unexpected, event
has occurred, and we should expect the cost of represent-
ing this event to be commensurate with its self-informa-
tion.

It should also be pointed out that the improvement in
encoding significance maps provided by zerotrees is spe-
cifically nor the result of exploiting any linear dependen-

cies between coefficients of different scales that were not .

0]

removed in the transform stage. In practice, the linear
correlation between the values of parent and child wavelet
coefficients has been found to be extremely small, imply-
ing that the wavelet transform is doing an excellent job of
producing nearly uncorrelated coefficients. However,
there is likely additional dependency between the squares
(or magnitudes) of parents and children. Experiments run
on about 30 images of all differenr types, show that the
correlation coefficient between the square of a child and
the square of its parent tends to be between 0.2 and 0.6
with a string concentration around 0.35. Although this de-
pendency is difficult to characterize in general for most
images, even without access to specific statistics, it is rea-
sonable to expecr the magnitude of a child to be smaller
than the magnitude of its parent. In other words, it can be
reasonably conjectured based on experience with real-
world images, that had we known the details of the sta-
tistical dependencies. and computed an *‘optimal’’ esti-
mate, such as the conditional expectation of the child’s
magnitude given the parent's magnitude, that the *‘opti-
mal"’ estimator would, with very high probability, predict .
that the child's magnitude would be the smaller of the

* two. Using only this mild assumpton, based on an inex-

act statistical characterization, given a fixed threshold, and
conditioned on the knowledge that a parent is insignificant
with respect to the threshold, the “optimal’" estimate of
the significance of the rest of the descending wavelet tree
is that it is entirely insignificant with respect to the same
threshold. i.e., a zerotree. On the other hand, if the parent
is significant, the ‘‘optimal'’ estimate of the significance
of descendants is highly dependent on the details of the
estimator whose knowledge would require more detailed
information about the statistical namre of the image. Thus,
under this mild assumption, using zerotrees to predict the
insignificance of wavelet coefficients at fine scales given
the insignificance of a root at & coarse scale is more likely
10 be successful in the absence of additional information
than attempting to predict significamt detail across scales.

This argument can be made more concrete. Let x be a
child of y, where x and y are zero-mean random variables,
whose probability density functions (PDF) are related as

p:(x) = ap,(ax), a> L (6)
This states that random variables x and y have the same
PDF shape, and that -
o? = ale?, a

Assume further that x and y are uncorrelated, i.e,,
Elgy) = 0. (8)

Note that nothing has been said about treating the sub-
bands as a group, or as stationary mndom processes, only
that there is a similarity relationship between random
variables of parents and children, It is also reasonable be-
cause for intermediate subbands a coefficient that is a child
with respect to one coefficient is a parent with respect to
others; the PDF of that coefficient should be the same in
either case. Let # = x? and v = y*. Suppose that 4 and
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v are correlated with correlation coefficient p. We have
the following relationships: .

v

El] = o} ©
E(v] = o} (10)
o} = Ex*] - o} an
vy = E[y'] - o}. (12)
Notice in particular that
oy = a'al. (13)

Using a well known result, the expression for the best
linear unbiased estimator (BLUE) of 4 given v to mini-
mlze error variance is given by

dgue(v) = E[u] = G = (Elﬂ] -

1~
.= —-g-—a a,’,+pa—,. (15
" If it is observed that the mngmmde of the parent is below
the threshold T, i.e., » = y* < T?, then the BLUE can
be upper bounded by
n_1l=0, T

Agpe(v|lv < T9) < —r oy +e T (16)
Consider two cases a) T 2 o, and b) T < g,. In case (a),
we have

an

which 1mph=s that the BLUE of x? given | y| < Tis less
than T for any p, including p = 0. In case (b), we can
only upper bound the right hand side of (16) by Tifp
exceeds the lower bound

r
ﬂgwg(ﬂ'b’ < Tz) = ;!' < TI,

(18)

y

Of course, a better nonlinear estimate might yield dif-
ferent results, but the above analysis suggests that for
threshold exceeding the standard deviation of the parent,
which by (6) exceeds the standard deviation of all de-
scendants, if it is observed that a parent is insignificant
with respect to the threshold, then, using the above BLUE,
the estimates for the magnitudes of all descendants is that
they are less than the threshold, and a zerotree is expected
regardless of the correlation between squares of parents

* and squares of children. As the threshold decreases, more
correlation is required to justify expecring a zerotree to
occur, Finally, since the lower bound pg = 12s 7 — 0,
as the threshold is reduced, it becomes increasingly dif-
ficult to expect zerotrees to occur, and more knowledge
of the particular statistics are required to make inferences.
The implication of this analysis is that at very low bit

(14)

-
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rates, where the probability of an insignificant sample
must be high and thus, the significance threshold T must
also be large, expecting the occarrence of zerotrees and
encoding significance maps using zerotree coding is rea-
sonable without even knowing the statistics. However, *
letting T decrease, there is some point below which the
advantage of zerotree coding diminishes, and this point is
dependent on the specific nature of higher order depen-
dencies between parents and children. In particular, the
stronger this dependence, the more T can be decreased
while still retaining an advantage using zerotree coding,
Once again, this argument is not intended to “‘prove’” the
optimality of zerotree coding, only to suggas: a rationale
for its demonstrable success.

D. Zerotree-Like Structures in Other Subband
Configurarions

The concept of predicting the insignificance of coeffi-
cients from low frequency to high frequency information
corresponding to the same spatial localization is a fairly
general concept and not specific to the wavelet transform
configuration shown in Fig. 4. Zerotrees are equally ap-
plicable to quincunx wavelets [2], [13], [23], [29]. in
which case each parent would have two children insicad
of four, except for the lowest frequency, where parents
have a single child. :

Also, a similar approach can be applied to linearly
spaced subband decompositions, such as the DCT, and to
other more general subband decompositions, such as
wavelet packets [5] and Laplacian pyramids [4]. For ex-
ample, one of many possible parent-child relationship for
linearly spaced subbands can be seen in Fig. 7. Of course,
with the use of linearly spaced subbands, zerotree-like
coding loses its ability to adapt the spatial.extent of the
insignificance prediction. Nevenheless, it is possible for
zerotree-like coding to outperform EOB-coding since
more coefficients can be predicted from the subbands
along the diagonal. For the case of wavelet packets, the .
situation is a bit more complicated, because a wider range
of tilings of the **space-frequency’* domain are possible.
In that case, it may not always be possible to define sim-
ilar parent-child relationships b a high-frequency
coefficient may in fact correspond to a larger spatial area
than a co-located lower frequency coefficient. On the other
hand, in a coding scheme such as the “‘best-basis’* ap-
proach of Coifman et al. [5], had the image-dependent
best basis resulted in such a situation, one wonders if the
underlying hypothesis—that magnitudes of coefficients
tend to decay with frequency—would be reasonable any-
way, These zerotree-like extensions represent interesting
areas for further research.

IV. SuCCESSIVE-APPROXIMATION
The previous section describes a method of encoding
sighificance maps of wavelet coefficients that, at least em-
pirically, seems to consistently produce a code with a
lower bit rate than either the empirical first-order entropy,
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Fig. 7. Parent-child dependencies for linearly spaced subbands systems,
such as the DCT, Note that the arrow points from the subband of the par-
enis 10 the subband of the children. The lowest frequency subband is the
top left, and the highest frequency subband is at the bottom right.

or a run-length code of the significance-map. The original
motivation for employing successive-approximation in
conjunction with zerotree coding was that since zerotree
coding was performing so well encoding the significance
map of the wavelet coefficients, it was hoped that more
efficient coding could be achieved by zerotree coding more
significance maps.

Another motivation for suecessive-approximation de-
rives directly from the goal of developing an embedded
code analogous to the binary-representation of an approx-
imation to a real number. Consider the wavelet transform
of an image as a mapping whereby an amplitude exists for
each coordinate in scale-space. The scale-space coordi-
nate system represents a coarse-to-fine ‘‘logarithmic’
representation of the domain of the function. Taking the
coarse-to-fine philosophy one-step further, successive-ap-
proximation provides a coarse-to-fine, multiprecision
*‘logarithmic’" representation of amplitude information,
which can be thought of as the range of the image function
when viewed in the scale-space coordinate system defined
by the wavelet transform. Thus, in a very real sense, the
EZW coder generates a representation of the image that
is coarse-to-fine in both the domein and range simulta-
neously.

A. Successive-Approximation Entropy-Coded
Quantization

To perform the embedded coding, successive-approxi- .

mation quantization (SAQ) is applied. As will be scen,
SAQ is related to bit-plane encoding of the magnitudes.
The SAQ sequentially applies a sequence of thresholds
To. ***, Ty-, w0 determine significance, where the
thresholds are chosen so that 7; = 7j_,/2. The initial
threshold T is chosen so that |X;| < 2T, for all transform
coefficients x;. ‘

During the encoding (and decoding), two separate lists
of wavelet coefficients are maintained. At any point in the
process, the dominant list contains the coordinares of
those coefficients that have not yet been found to be sig-
nificant in the same relative order as the initial scan. This
scan is such that the subbands are ordered, and within
each subband, the set of coefficients are ordered. Thus,

3433

using the ordering of the subbands shown in Fig. 5, all
coefficients in a given subband appear on the initial dom-
inant list prior to coefficients in the next subband. The
subordinate list contains the magnitudes of those coeffi-
cients that have been found to be significant, For each
threshold. each list is scanned once. ’

During a dominant pass, coefficients with coordinates
on the dominant list, i.e.. those that have not yer been
found to be significant, are compared to the threshold T;
to determine their significance, and if significant, their
sign. This significance map is then zerotree coded using
the method outlined in Section III. Each time a coefficient
is encoded as significant, (positive or negative), its mag-
nitude is appended to the subordinate list, and the coeffi-
cient in the wavelet transform array is set to zero so that
the significant coefficient does not prevent the occurrence
of a zerotree on future dominant passes at smaller thresh-
olds.

A dominant pass is followed by a subordinate pass in
which all coefficients on the subordinate list are scanned
and the specifications of the magnirudes available to the
decoder are refined to an additional bit of precision. More
specifically, during a subordinate pass, the width of the
effective quantizer step size, which defines an uncenainty
interval for the true magnitude of the coefficient, is cut in
half. For each magnitude on the subordinate list, this re-
finement can be encoded using a binary alphabet with a
““1"" symbol indicating that the true value falls in the up-
per half of the old uncertainty interval and a **0’’ symbol
indicating the lower half. The string of symbols from this
binary alphabet that is generated during a subordinate pass
is then entropy coded. Note that prior to this refinement,
the width of the uncenainty region is exactly equal to the
current threshold. After the completion of 2 subordinate
pass the magnitudes on the subordinate list are sorted in
decreasing magnirude, to the extent that the decoder has
the information to perform the same sort.

The process continues to alternate between dominant
passes and subordinate passes where the threshold is
halved before each dominant pass. (In principle one could
divide by other factors than 2. This factor of 2 was chosen
here because it has nice interpretations in terms of bit
plane encoding and numerical precision in a familiar base
2, and good coding results were obwined). -

In the decoding operation; each decoded symbol, both
during a dominant and a subordinate pass, refines and re-
duces the width of the uncenainty interval in which the
true value of the coefficient (or coefficients, in the case of
a zerotree root) may occur, The reconstruction value used
can be anywhere in that uncenainty imerval. For mini-
mum mean-square error distortion, ene could use the cen-
troid of the uncenainty region using some model for the
PDF of the coefficients. However, a practical approach,
which. is used in the experiments, and is also MINMAX
optimal, is to simply use the center of the-uncertainty in-
terval as the reconstruction value,

The encoding stops when some target stopping condi-
tion is met, such as when the bit budget is exhausted. The
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encoding can cease at any time and the resulting bit stream
contains all lower rate encodings. Note, that if the bit
stream is truncated at an arbitrary.point, there may be bits
at the end of the code that do not decode to a valid symbol
since a codeword has bene truncated. In that case, these
bits do not reduce the width of an uncertainty interval or
any distortion function, In fact, it is very likely that the
first L bits of the bit stream will produce exactly the same
image as the first L + 1 bits which occurs if the additional
bit is insufficient to complete the decoding of another
symbol. Nevertheless, terminating the decoding of an
embedded bit stream at a specific point in the bit stream
produces exactly the same image that would have resulied
had that point been the initial target rate. This ability to
cease encoding or decoding anywhere is extremely useful
in systems that are either rate-constrained or distortion-
constrained. A side benefit of the technique is that an op-
erational rate vs. distortion plot for the algorithm can be
computed on-line. ;

B. Relationship to Bit Plane Encoding

Although the embedded coding system described here
is considerably more general and more sophisticated than
simple bit-plane encoding, consideration of the relation-
ship with bit-plane encoding provides insight into the suc-
cess of embedded coding.

Consider the successive-approximation quantizer for the
case when all thresholds are powers of two, and all wave-
let coefficients are integers. In this case, for each coeffi-
cient that eventally gets coded as significant. the sign
and bit position of the most-significant binary digit
(MSBD) are measured and encoded during a dominant
pass. For example, consider the 10-bit representation of
the number 41 as 0000101001. Also. consider the binary

digits as a sequence of binary decisions in a binary tree.

Proceeding from left to right, if we have not et encoun-
tereda **1,"" we expect the probability distribution for the
next digit to be strongly biased toward **0."" The digits to
the left and including the MSBD are called the dominanr
bits, and are measured during dominant passes. After the
MSBD has been encountered, we expect a more random
and much less biased distribution between 2 *0"" and a
**1,”" although we might still expect P(0) > P(l1) be-
cause most PDF models for transform coefficients decay
with amplitude. Those binary digits to the right of the
MSBD are called the subordinate bits and are measured
and encoded during the subordinate pass. A zeroth-order
approximartion suggests that we should expect to pay close
to one bit per “‘binary digit'' for subordinate bits, while
dominant bits should be far less expensive.

By using successive-approximation beginning with the
largest possible threshold, where the probability of zero
is extremely close to on¢, and by using zerotree coding,
whose efficiency increases as the probability of zero in-
creases. we should be able to code dominant bits with
very few bits, since they are most often part of a zerotree.

In general, the thresholds need not be powers of two.

IEEE L AANIAL LYY W GIOTAL PROCENNING. VUL 41 U b b uimuen vea

However, by factoring out a constant mantissa, M, the
starting threshold Tj can bé expressed in terms of a thresh-
old that is a power of two

To = M25, (19)

where the exponent E is an integer, in which case, the
dominant and subordinate bits of appropriately scaled
wavelet coefficients are coded during dominant and sub-
ordinate passes, respectively.

C. Advantage of Small Alphabets for Adaptive
Arithmetic Coding

Note that the particular encoder alphabet used by the
arithmetic coder at any given time contins either 2, 3, or
4 symbols depending whether the encoding is for a sub-
ordinate pass, a dominant pass with no zerotree root sym-
bol, or a dominant pass with the zerotree root symbol,
This is a real ddvantage for adapting the arithmetic coder,
Since there are never more than four symbols, all of the
possibilities typically occur with a reasonably measurable
frequency. This allows an_adaptation algorithm with a
short memory to leamn quickly and constantly track chang-
ing symbol probabilities. This adaptivity accounts for
some of the effectiveness of the overall algorithm. Con-
trast this with the case of a large alphabet, as.is the case
in algorithms that do not use successive approximation.
In that case, it takes many events before an adaptive en-
tropy coder can reliably estimate the probabilities of un-

likely symbols (see the discussion of the zero-frequency '

problem in [3]). Furthermore, these estimates. are fairly
unreliable because images are typically statistically non-
stationary and local symbol probabilities change from re-
gion to region.

In the practical coder used in the experiments, the arith-
metic coder is based on [31]. In arithmetic coding, the
encoder is separate from the model, which in {31], is bas-
ically a histogram. During the dominant passes, simple
Markov conditioning is used whereby one of four histo-
grams is chosen depending on 1) whether the previous
coefficient in the scan is known to be significant, and 2)
whether the parent is known to be significant. During the
subordinate passes, a single histogram is used. Each his-
togram entry is initialized to a count of one. After encod-
ing each symbol, the corresponding histogram entry is in-
cremented. When the sum of all the counts in a histogram
reaches the maximum count, each entry is incremented
and integer divided by two, as described in [31]. It sNeuld
be mentioned, that for practical purposes, the coding gains
provided by using this simple Markov conditioning may
not justify the added complexity and using a single his-
togram strategy for the dominant pass performs almost as
well (0.12 dB worse for Lena at 0.25 bpp.). The choice
of maximum histogram count is probably more critical,
since that controls the learning rate for the adaptation. For
the experimental results presented, @ maximum count of

256 was used, which provides an intermediate tradeoff be-

tween the smallest possible probability, which is the re-
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ciprocal of the maximum mui. and the learning rate,
which is faster with a smaller maximum histogram count,

D. Order of Importance of the Bits

Although importance is a subjective term, the order of
processing used in EZW implicitly defines a precise or-
dering of importance that is tied to, in order, precision,
magnirude, scale, and spatial location as determined by
the initial dominant list.

The primary determination of ordering importance is
the numerical precision of the coefficients, This can be
seen in the fact that the uncenainty intervals for the mag-
nitude of all coefficients are refined to the same precision
before the uncenainty interval for any coefficient is re-
fined further, 2

The second factor in the determination of importance is
magnitude. Importance by magnitude manifests itself dur-
ing 2 dominant pass because prior to the pass, all coeffi-
cients are insignificant and presumed to be zero. When
they are found to be significant, they are all assumed to

have the same magnitude, which is greater than the mag-.

nitudes of those coefficients that remain insignificant. Im-
ponance by magnitude manifests itself during a subordi-
nate pass by the fact that magnitudes are refined in
descending order of the center of the uncerainty inter-
vals, i.e., the decoder’s interpretation of the magnitude.

The third factor, scale, manifests itself in the a priori
ordering of the subbands on the initial dominant list. Until
the significance of the magnitude of a coefficient is dis-
covered during a dominant pass, coefficients in coarse
scales are tested for significance before coefficients in fine
scales. This is consistent with prioritization by the decod-
er's version of magnitude since for all coefficients not yet
found to be significant, the magnitude is presumed to be
zero.

The final factor, spatial location, merely implies that
wo coefficients that cannot yet be distinguished by the
decoder in terms of either precision, magnitude, or scale,
have their relative importance determined arbitrarily by

. the initial scanning order of the subband containing the

two coefficients.

In one sense, this embedding strategy has a strictly non-
increasing operational distortion-rate function for the dis-
tortion metric defined to be the sum of the widths of the
uncertainty intervals of all of the wavelet coefficients.
Since a discrete wavelet transform is an invertible repre-
sentation of an image, a distortion function defined in the
wavelet transform domain is also a distortion function de-
fined on the image. This distortion function is also not
without a rational foundation for low-bit rate coding,
where noticeable antifacts must be tolerated, and percep-
tual metrics based on just-noticeable differences (JND's)
do not always predict which artifacts human viewers will
prefer. Since minimizing the widths of uncertainty inter-
vals minimizes the largest possible errors, antifacts, which
result from numerical errors large enough to exceed per-
ceptible thresholds, are minimized. Even using this dis-
tortion function, the proposed embedding strategy is not

45

optimal, because truncation of the bit stream in the middle
of a pass causes some uncertainty intervals to be twice as
large as others.

Actually, as it has been described thus far, EZW is un-
likely to be optimal for any distorion function. Notice
that in (19), dividing the thresholds by two simply dec-
rements E leaving M unchanged. While there must exist
an optimal starting M which minimizes a given distortion
function, how to find this optimum is still an open ques-

" tion and seems highly image dependent. Without knowl-

edge of the optimal M and being forced to choose it based
on some other consideration, with probability one, either
increasing or decreasing M would have produced an
embedded code which has a lower distortion for the same
rate. Despite the fact that without trial and error optimi-
zation for M, EZW is probably suboptimal, it is never-
theless quite effective in practice.

Note also that using the width of the uncenainty inter-
val as a distance metric is exactly the same metric used in
finite-precision fixed-point approximations of real num-
bers. Thus. the embedded code can be seen as an *‘im-
age'' generalization of finite-precision fixed-point ap-
proximations of real numbers.

E. Relationship to Priority-Position Coding

In a technique based on a very similar philosophy,
Huang er al. discusses a related approach to embedding,
or ordering the information in importance, called priority-
position coding (PPC) [10]. They prove very elegantly
that the entropy of a source is equal to the average entropy
of a particular ordering of that source plus the average
entropy of the position information necessary to recon-
struct the source. Applying a sequence of decreasing
thresholds, they anempt to sort by amplimude all of the
DCT coefficients for the entire image based on a partition
of the range of amplitudes. For each coding pass, they
transmit the significance map which is arithmerically en-
coded. Additionally, when a sigmificant coefficient is
found they transmit its value to its full precision. Like the
EZW algorithm, PPC implicitly defines importance with
respect to the magnitudes of the transform coefficients. In
one sense, PPC is a generalization of the successive-ap-
proximation method presented in this paper, because PPC
allows more general partitions of the amplitude range of
the transform coefficients. On the other hand, since PPC
sends the value of a significant coefficient to full pregi-
sion, its protocol assigns a greater importance to the least
significant bit of a significant coefficient than to the iden-
tification of new significant coefficients on next PPC pass.
In contrast, as a top priority, EZW tries to reduce the
width of the largest uncertainty interval in all coefficients
before increasing the precision further. Additionally, PPC
makes no atempt to predict insignificance from low fre-
gquency to high frequency, relying solely on the arithmetic
coding to encode the significance map. Also unlike EZW,
the probability estimates needed for the arithmetic coder
were derived via training on an image database instead of
adapting to the image itself. It would be interesting 0
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experiment with variations.which combine advantages of
EZW (wavelet transforms, zerotree coding, importance
defined by a decreasing sequence of uncertainty intervals,
and adaptive arithmetic coding using small aiphabets) with
the more general approach to partitioning the range of am-
plitudes found in PPC. In practice, however, it is unclear

whether the finest grain partitioning of the amplitude range |

provides any coding gain, and there is centainly a much
higher computational cost associated with more passes,
Additionally, with the-exception of the last few low-am-
plitude passes, the coding results reported in [10] did use
power-of-two amplitudes to define the partition suggest-
ing that, in practice, using finer partitioning buys little
coding gain.

V. A SiMPLE EXAMPLE

In this section, a simple example will be used to high-
light the order of operations used in the EZW algorithm.
Only the string of symbols will be shown. The reader in-
terested in the details of adaptive arithmetic coding is re-
ferred to [31]. Consider the simple 3-scale wavelet trans-
form of an 8 X § image. The array of values is shown in
Fig. 8. Since the largest coefficient magnitude is 63, we
can choose our initial threshold to be anywhere in (31.5,
63]. Let Ty = 32, Table I shows the processing on the
first dominant pass. The following comments refer to Ta-
ble I:

1) The coefficient has magnitude 63 which is greater
than the threshold 32, and is positive so a positive symbol
is generated. After decoding this symbol, the decoder
knows the coefficient in the interval [32, 64) whose center
is 48.

2) Even though the coefficient 31 is insignificant with
respect to the threshold 32, it has a significant descendant
two generations down in subband LH1 with magnitude

47. Thus, the symbol for an isolated zero is generated.

3) The magnitude 23 is less than 32 and all descen-
dants which include (3, =12, -14, 8) in subband HH2 and
all coefficients in subband HH | are insignificant. A zero-
tree symbol is gencrated, and no symbol will be generated
for any coefficient in subbands HH?2 and HH | during the
current dominant pass.

4) The magnitude 10 is less than 32 and all descen-
dants (-12, 7, 6, -1) also have magnitudes less than 32.
Thus a zerotree symbol is generated. Notice that this tree
has a violation of the ‘‘decaying spectrum’ hypothesis
since a coefficient (-12) in subband HL1 has a magnitude
greater than its parent (10). Nevertheless, the entire tree
has magnitude less than the threshold 32 so it is still a
zerotree,

5) The magnitude 14 is insignificant with respect 1o 32.
Its children are (-1, 47. -3, 2). Since its child with mag-
nitude 47 is significant. an isolated zero symbol is gen-
erated. .

6) Note that no symbols were generated from subband
HH?2 which would ordinarily precede subband HLI in the
scan. Also note that since subband HL! has no descen-
dants, the entropy coding cah resume using a 3-symbol
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Pig. 8. Example of 3-scale wavelet transform of an 8 X 8 image.
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alphabet where the IZ and ZTR symbols are merged into
the Z (zero) symbol.

7) The magnitude 47 is significant with respect to 32.
Note that for the future dominant passes, this position will
be replaced with the value 0, so that for the next dominant
pass at threshold 16, the parent of this coefficient, which
has magnitude 14, can be coded using a zerotree root
symbol.

During the first dominant pass, which used a threshold
of 32, four significant coeficients were identified. These
coefficients will be refinéd during the first subordinate
pass. Prior to the first subordinate pass, the uncertainty
interval for the magnitudes of all of the significant coef-
ficients is the interval [32, 64). The first subordinate pass
will refine these magnitudes and identify them as being
either in interval [32, 48), which will be encoded with the
symbol **0," or in the interval [48, 64), which will be
encoded with the symbol **1."* Thus, the decision bound-
ary is the magnitude 48. It is no coincidence that these
symbols are exactly the first bit to the right of the MSBD
in the binary representation of the magnitudes. The order
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TABLE I
PROCESSING OF THE FIRST SUBORDINATE PAsS. MAGNITUDES ARE
PARTITIONED INTO THE UNCERTAINTY INTERVALS [32.48) AND
[48,64), wrTH SYMBOLS 0" AND '*]'* RESPECTIVELY

]
& T
— i

49
[1]

40

of operations in the first subordinate pass is illustrated in
Table II. a

The first entry has magnitude 63 and is placed in the
upper interval whose center is 56. The next entry has
magnitude 34, which places it in the lower interval. The
third entry 49 is in the upper interval, and the fourth entry
47 is in the lower interval. Note that in the case of 47,
using the center of the uncerainty interval as the recon-
struction value, when the reconstruction.value is changed
from 48 to 40, the reconstruction error actually increases
from 1 to 7. Nevertheless, the uncenainty interval for this
coefficient decreases from width 32 to width 16. At the
conclusion of the processing of the entries on the subor-
dinate list corresponding to the uncertainty interval [32,
64), these magnitudes are reordered for furure subordinate
passes in the order (63, 49, 34, 47), Note that 49 is moved
ahead of 34 because from the decoder’s point of view, the
reconstruction values 56 and 40 are distinguishable. How-
ever, the magnitude 34 remains ahead of magnitude 47
because as far as the decoder can tell, both have magni-
tude 40, and the initial order, which is based first on im-
portance by scale, has 34 prior to 47,

The process continues on to the second dominant pass
at the new threshold of 16. During this pass, only those
coefficients not yet found to be significant are scanned.
Additionally, those coefficients previously found to be
significant are treated as zero for the purpose of determin-
ing if a zerotree exists. Thus, the second dominant pass
consists of encoding the coefficient -31 in subband LH3
as negative significant, the coefficient 23 in subband HH3
as positive significant, the three coefficients in subband
HL2 that have not been previously found to be significant
(10, 14, -13) are each encoded as zerotree roots, as are
all four coefficients in subband LH2 and all four coeffi-
cients in subband HH2. The second dominant pass ter-
minates at this point since all other coefficients are pre-
dictably insignificant. '

The subordinate list now contains, in order, the mag-
nitudes (63, 49, 34, 47, 31, 23) which, prior to this sub-
ordinate pass, represent the three uncernainty intervals [48,
64), [32, 48) and [16, 31), each having equal width 16.
The processing will refine each magnitude by creating two
new uncenainty intervals for each of the three current un-
certainty intervals. At the end of the second subordinate
pass, the order of the magnitudes is (63, 49, 47, 34, 31,
23), since at this point, the decoder could have identified
34 and 47 as being in different intervals. Using the center
of the uncenainty interval as the reconstruction value, the
decoder lists the magnitudes as (60, 52, 44, 36, 28, 20).

S -

us7

The processing coﬁtimiéﬁllemting between dominant
and subordinate passes and can stop at any time.

VI. EXPERIMENTAL RESULTS

All experiments were performed by encoding and de-
coding an actual bit stream to verify the correctness of the
algorithm. After a 12-byte header, the entire bit stream is
arithmetically encoded using a single arithmetic coder
with an adaptive model [31). The model is initialized at
each new threshold for each of the dominant and subor-
dinate passes. From that point, the encoder is fully adap-
tive. Note in panticular that there is no training of any
kind, and no ensemble statistics of images are used in any
way (unless one calls the zerotree hypothesis an-ensemble
statistic). The 12-byte header contains 1) the number of
wavelet scales, 2) the dimensions of the image, 3) the
maximum histogram count for the models in-the arith-
metic coder, 4) the image mean and 5) the initial thresh-
old. Note that after the header, there is no overhead ex-
cept for an exira symbol for end-of-bit-stream, which is
always maintained at minimum probability. This extra
symbol is not needed for storage on computer medium if
the end of a file can be detected.

_ The EZW coder was applied to the standard black and
white 8 bpp. test images, 512 x 512 “‘Lena’ and the 512
x 512 “*Barbara,’” which are shown in Figs. 9(a) and
11(a). Coding results for **Lena’ are summarized in Ta-
ble I and Fig. 9. Six scales of the QMF-pyramid were
used. Similar results are shown for ‘‘Barbara’ in Table
IV and Fig. 10. Additional results for the 256 X 256
‘“‘Lena’’ are given in [22]. N

Quotes of PSNR for the 512 x 512 *'Lena’’ image are
50 abundant throughout the image coding literature that it
is difficult to definitively compare these results with other
coding results,' However, a literature search has only
found two published results where authors generate an ac-
tual bit stream that claims highet PSNR performance at
rates between 0.25 and 1 bit /pixel [12] and [21], the lat-
ter of which is a variation of the EZW algorithm. For the
‘“‘Barbara’’ image, which is far more difficult than
“‘Lena," the performance using EZW is substantially bet-
ter, at least numerically, than the 27,82 dB for 0.534 bpp.
reported in [28].

The performance of the EZW coder was also compared
to a widely available version of JPEG [14]. JPEG does
not allow the user to select a target bit rate but instead-,
allows the user to choose a *‘Quality Factor.” In the ex-
periments shown in Fig. 11, ‘‘Barbara’" is encoded first
using JPEG to a file size of 12 866 bytes, or a bit rate of
0.39 bpp. The PSNR in this case is 26.99 dB. The EZW
encoder was then applied to *‘Barbara’” with a target file

'Actually there are multiple versions of the fuminance only '*Lena™
floating around, and the one used in [22] is darker and slightly more diffi-
cult than the "official ** one obtained by this author from RPI after [22] was
published. Also note that this should not be confused with results using
only the green component of an RGB version which are also commonly
cited,
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Fig. 9. Performance of EZW Coder operating on "Lena.'* (a) Original
$12 x §12 **Lena’” image ar 8 bits /pixel (b) 1.0 birs/pixel, 8: 1 Compres-
sion, PSNR = 39,55 dB. (c) 0.5 bits/ pixel 16: | Compression, PSNR =
36.28. (d) 0.25 bis/pixel. 32: 1 Compression. PSNR = 33,17 dB, (e)
0.0625 bits /pixel. 128: | Compression. PSNR = 27.54 dB, (f) 0.015625

bits s pixel. 512: | Compression, PSNR = 23.63 dB.

size of exactly 12 866 bytes. The resulting PSNR is 29.39
dB, significantly higher than for JPEG. The EZW encoder
was then applied to “*Barbara’ using a target PSNR to
obtain exactly the same PSNR of 26.99. The resulting file
size is 8820 bytes. or 0.27 bpp. Visually, the 0.39 bpp.
EZW version looks berter than the 0.39 bpp. JPEG ver-
sion. While there is some loss of resolution in both, there

are noticeable blocking artifacts in the JPEG version. For
the comparison at the same PSNR. one could probably
argue in favor of the JPEG,

Another interesting figure of merit is the number of sig-
nificant coefficients retained. DeVore er al. used wavelet
transform coding to progressively endode the same image
[8]. Using 68 272 bits, (8534 byies, 0.26 bpp.), they re-
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Fig. 9. (Continued.)

TABLE IM
CobiNo RESULTS FOR 512 X 512 LENA SHOWING PEAK-SIONAL-TO-NOISE
(PSNR) AND THE NUMBER OF WAVELET COEPPICIENTS THAT WERE

TABLE IV
Coping RESULTS FOR 512 X 512 BARBARA SHOWING PEAK-SIGNAL-TO-
Noise (PSNR) AND THE NUMBER OF WAVELET COEFFICIENTS THAT WERE

Copeb As NONZERO CopEp As NoNZERO
#E R [Com mrw ﬂ%uﬂ R___| Compression
"EE" .0 % REIE %E: X ) B
0.5 T W [ #a o388 16384 [ 161 W5 X
g | 028 | 0 I X i) Be_| 038 3|13 101
(4008 [N (21 BLET | 80.8 B8 4096 0.125 [7H]) B W0
3048 | 0.0625 TH:1 4.8 | 4154 | 7048 | 0.0028 1281|3188 1310
[ T05e | bodie | q || B8 | 158 1 | 0038 3 A e 1289
513 | 0.015628 | Bi%L Wy | N8 | 68 §12 | 0.018625 | SIZ1 | 5468 |
756 | 00078125 | 10341 | w0 | L8 i) N I 5 T OV X -

tained 2019 coefficients and achieved a RMS emor of
15.30 (MSE = 234, 24.42 dB), whereas using the embed-
ded coding scheme, 9774 coefficients are retained, using
only 8192 bytes. The PSNR for these two cxamples dif-
_fers by over 8 dB. Part of the difference can be attributed
“to fact that the Haar basis was used in [8]. However, closer
examination shows that the zerotree coding provides a
‘much better way of encoding the positions of the signifi-
_cant coefficients than was used in [8].
- An interesting and perhaps surprising property of
embedded coding is that when the cncodu!z or decoding
? n terminated during the middle of a pass, or in the middle
Of the scanning of a subband, there are no antifacts pro-
< duced that would indicate where the termination occurs.
0 other words, some coefficients in the same subband are
*Npmsented with twice the precision of the others. A pos-
,:l'lile explanation of this phenomena is that at low rates,
aere are-so few significant coefficients that any one does
'- 20t make a perceptible difference. Thus, if the last pass
'8 dominant pass, seiting some coefficient that might be

significant to zero may be imperceptible. Similarly, the
fact that some have more precision than others is also im-
perceptible. By the time the number of significant coeffi-
cients becomes large, the picture quality is usually so good
that adjacent coefficients with different precisions are im-
perceptible.

Another interesting property of the embedded coding is
that because of the 1mphc1l global bit allocation, even at=
extremely high compress:on ratios, the performance
scales. At a compression ratio of 512: 1, the image qual-
ity of *'Lena’" is poor, but still recognizable. This is not
the case with conventional block coding schemes, where
at such high compression ratios, there would be insuffi-
cient bits to even encode the DC ceefficients of each
block.

The unavoidable artifacts produced at low bit rates us-
ing this method are rypical of wavelet coding schemes
coded to the same PSNR's. However, subjectively, they
are not nearly as objectionable as the blocking effects typ-
ical of block transform coding schemes.
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{c)

Fig. 10. Performance of EZW Coder operating oa *'Barbara'* at (a) 1.0

bits /pixel. 8: | Compression, PSNR = 35,14 dB (b) 0.5 bits /pixel, 16: | ‘ -
Compression, PSNR = 30.53 dB, (¢) 0.125 bits /pixel, 64:1 Compres- =
sion. PSNR = 24.03 dB. (d) 0.0625 bits/pixel, 128: | Compression, PSNR

= 23.10 dB.

VII. ConcLusioN

A new technique for image coding has been presented
that produces a fully embedded bit stream. Furthermore,
the compression performance of this algorithm is com-
petitive with virtually all known techniques. The remark-
able performance can be attributed to the use of the fol-
lowing four features:

*

d)

* a discrete wavelet transform, which decorrelates
most sources fairly well. and allows the more signif-
icant bits of precision of most coefficients to be ef-
ficiemly encoded as part of exponentially growing

-~ Zerotrees, 3

* zerotree coding, which by predicting ‘insignificance
across scales using an image model that is easy for
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Fig. 11. Comparison of EZW and JPEG operating on **Barbara’* (a) Orig-
inal 5§12 x 512 (b) EZW at 12 866 bytes, 0,39 bits/pixel, 29.39 dB, (¢)
EZW a1 8820 bytes, 0.27 bits/pixel, 26.99 dB, (d) JPEG at 12 866 bytes,

0.39 bits /pixel, 26.99 dB,
most images to satisfy, provides substantial coding coder to incorporate learning into the bit stream it-
gains over the first-order entropy for significance self.

maps, : al
successive-approximation, which allows the coding  The precise rate control that is achieved with this al-
of multiple significance :maps using zerotrees, and gorithm is a distinct advantage. The user can choose a bit
allows the encoding or decoding to stop at any point, rate and encode the image to exacily the desired bit rate.
- ® adaptive arithmetic coding, which allows the entropy Furthermore, since no training of any kind is required,
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