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Box 6: _
Muliiresoluiion analysis

The. concept ofmuittresoiution approzctmauon of
_i‘un::tl-ms was introduced by Meyer and Msiist

lMi=.l.89a. mtsac. ii'iE\__'90i end provides a power-
ful framework to uriidleratend wavelet decomposi-
tions. The basic idea is..§_i.he.t of successive
approudmation. together with_:_ti1st o£'addecl detail‘
as one goes from one apprwittnstitin to the 11631.

. finer one. We here give thejntuitioin behind theill‘

 _ A aiadderéofepaoejssuch that:
in 5 .

V1 cllfilfo t: V11 C c ...
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ie .c the suc-
apfilzogdmauon or -« ;i. - numlhfwavelets

scale. '

generate wavelet bases. The converse is also true. That
is. orthonormal sets of scaling functions and wavelets
can be used to generate perfect reconstruction iilier
banks iDAUB8. MAi.89a. MA.l.8Bc|.

Extension oi’ the wavelet concept to multiple dimen-
sions. which is useful. e.g. for image coding. is sl'iownIn Box 7.

fururtniorts is orthogonal.
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APPLICATIONS OF WAVELETS IN

SIGNAL PROCESSING

From the derivation of the wavelet transform as an
alternative to the S'I‘F'l‘. it is clear that one oi’ the main
applications will be in non-stauonsry signal analysis.
While conceptually. the CWT‘ is a classical I:onai.a.nt—Q
analysis. its simple definition {based on a single rune,-
tion rather than multiple flltersi allows powerful
analytical derivations and has already lead both to new
insights and new theoretical results [WAV89|.

Applications ofwavelet decompositions in numerical
analysis. e.g. for solving ps.t1.ia.| differential equations.
seem very promising because of the 'zoornln,g" pmperiy
which allows a very good representation of discon-
tinuities. unlike the Fourier tranafurrn IEEYBBS.

Perhaps the biggest potential of wavelets has been
claimed for signal compression. Since discrete vvavelet
i.ransi'orms are essentially subband coding systems.
and since subband coders have been successful in
speech and Image compression. it is clear that wavelets
will find immediate application In compression
problems. The only difference with traditional subbarld
coders is the fact that filters are designed to be regular
[that is. lhey have many zeroes at z - 0 or z = xi. Note
that although classical subhand filters are nqt regular
[see Box 5 anti Fig. 12]. they have been designed to have
good stopbanda and thus are close to being "regular".
at least for the first Few octaves ofsuhband decomposivLion.
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Hg. 15. Orrhonomaai wavelet genemtedfierna length-18 regularjl|ler.iDAU88J.T71e Ilrnejuneiton is shown an an Lefiami tho
speclntrnlsonlherlght

It is therefore deer that dranie improvements of
compression will not be achieved an easily simply be-
eause wavelets are used. However. wavelets bring new _
ideas and insights. In this respect. the use of wavelet
deeotnposliions in eannectlan with other techniques
(like vector quantization [ANI9D| or multiacale edges
[MA.L89dl] are promising compression techniques
which make use of the elegant theory ofwavclete.

New develeprnenm. based on wavelet concepts. have

already appeared. For example. statistical signal
processing using wavelets is a promising field. Multi-
scaie models of stochastic processes [M589]. [CH091|.
and analysts and synthesis of U1‘ noise [GAC91l.
[WOR9D| are examples where wavelet analysis hasbeen
successful. ‘wavelet packets’ [WICB9]. which cer-
feapnmi to arbitrary adaptive ute—stn.u:l:umd' filter
banks. are another promising example.

 
Fig. I6‘. Blarihoganal urauzfeig gnerlerutedfrurri i8-lap reg-uiapfliters JVSMODL (flJ Analysts uuzixiei. ['11) Synthesis Luquelei. The
rimefllncilnn is shown on time left and the spectrum is on the right.
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In order to apply wavelet decompositions to multi-
din1ens_1qns.l signals [e.g.. Images]. multidimensional
erctenstons of wayelets are required. An obvious way
to do ti-nuts touse ‘separable wavelets‘ obtained from
preductsxui one-cllmenslonsl wavelets and scaling
fi.1ncI:lonsIM.r\1-399.. M.ALB9vc, MEYSDE. Let us consider
the ‘»'\lN'J~d_.1Infilsinna.l. da.s-e_I'o1"lta simplicity. Take a

- .scallng_fI_._rnci:ion ggbd ['15) and awavelet hub! [16]. one

_ can two-d1m'ens1nn.sl firncuons :

l1c{-1}?!-slit)

orthogmlal to each otherwith respect to
. (this fOIIOV@_- from the orthogonaflty of

- - oomponentJ.The flmctlongglaeyl

filter] u‘-huethe runeuuns hL°cx.yi are
e set lrtltzw-. 2*;-a. l=1.2,3 andJ.k.l
orthonm.-rnal basis for square intcgmble

II‘ This solution corresponds to aInna] filter bank with au.baa.m-

such

9.

Hg. 18. ltsruflnn qfn rmn_-aeparuflcfillarbunk based on
nan-separable szrbsampung. This mnsmxction lead: to non-
scpnnahlz |.r.u:|.I.velel.s.

---Box Z: Mulllltilmenslonul filler banks and wavelets
pllngby 21:: each dimension. that is. overall subsum-
pllng by 4 (see Fig. 11"].

More interesting [that is. non-trivial] mult[d|me'n-
sional wavelet schemes are obtained when non-

separable subsampling is used [KOV92]. For
example. a non-separable subsampltng by 2 of a
double Indexed signal Jt(l'I.1.- ml is obtained by retelli-
Lng only samples satisfying:

l$l=ll-‘mlli‘él-
The resulting points are located on a so-called

qulncunx sublsttlce of 22' NM». one can construct a
perfect reconstruction filter barn]: Involving such sub-
sampllng because Ii. resembles its one-dixnerralonal
counterpart [KCN92]. The suhsnmpllng rate is 2
[equal to the detennlnamoftlaemsmx in IE7. lll. and
the filter bank has 2 channels. Iteratlnngf the filter

(57.1)

bank on the lovwpass branch (see Fig. 18) leads to a"
discrete wavelet transform. and if the inter is regular
[which now depends on the matrbt representing the
lattice IKOV92]]. one can construct-_norr'-separable
wavelet bases for square integrable functxnns overjla
with aresolution change by 2 [and not-‘lane in the
separable cssel. An exarnple scaJJng'l_fu.ne'tlon 1: ple-
zureclInn_g_ 19. .-

I f§ _mwhmmnsmmmmaummmwmdMbuuw%mmmmcmmw4M
_ .1!npw1!ibr:qf'Ure_frequ¢u'typlanelslnd.ic\ateclo41therghtrnandHnstand_farlourpassaI1dhu;h-

Fig‘. 19. 1109-cttmensmnal non-separable o'rtJwrmrma.I smi-_Lngjlmctian lKOV92l forttragonaluy is with respvet to integer
s.i"I.y‘l5,l. The resolution change [5 tag 2 NE
sioru. The matrix rrsedfar the subsamptmg is the onegtuen
Ln {B11}.

If! each dII’l'lEl'l-
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" -_CONCLUSION

We have seen that the Short-}[‘irnc F'ourier‘[‘runsl'orm
and the Waveiet'l‘1-ansforrn represent alternative ways

‘ to divide the time-frequency [or Li1n¢:—scalel plane. Two
major advantages of Lhe Wavelet Transform are that itcan zoom in to time discontinuities and that orthonor-
rnal bases. localized in lime and frequency. can be
constructed. In the discrete case. the Wavelet Trans-
form is equivalent to a iogarilhrriic filter bank. with the
added constraint of regularity on the lowpass filter.

The theory of wavelets can be seen as a common
framework [or techniques that had been developed
independently in various fields. This conceptual
unification furthers the understanding of the
mechanisms Involved. quantifies trade-offs. and points
Lo new potential applications. A number of questions
remain open. however. and will require further invcs—
tigations (e.g.. what is Lhc "optimal" wavelet for a par-
ticular applicationfl

While some see wavelets as a very promising brand
‘new theory ICIPBGI. others express some doubt that it
represents a major breakthrough. One reason for skep-
ticism is that the concepts have been around for some
time. under different names. For example. wavelet
transforms can be seen as constant-Q analysis
[\i'0U73l. Wide-band cross-ambiguity functions [SP'E6?.
AUS90l. F‘razier«Jeweri.i1 transforms IFHA861. perfect
reconstruction octave-band filter banks [MlN35.
SMISBI. or a variation of Laplscian pyramid decomposi-
tion lBURa3]. IBURSSII

We thlrrk that the interest and merit ofwavelet theory
is to unify all this into a oomrnon framework. thereby
allowing new ideas and developments.
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Blorthogonal Wavelets

Albert Cohen

Abstract. In this clnpter. we study the construction of blorthogonsl
bases of wavelets which generalize the orthonormal bases and have inter-
esting properties in signal processing. We describe the class of aubbeod
coding schemes mocisted with these wavelets and we give neoesssr§' sod
suflicient conditions for frame bounds which ensure the stability of the
decomposition-reconstruction algorithm. We finally present the example of
compactly supported spline wavelets which can be generated by this tip-
proach. The results presented in this chapter are mainly joint work with
I. Daubechies and J. C. Resnvesu.

§1. Introduction

In recent years, orthonormal wavelet bases have revealed to be it powe.ri"u.l
tool in applied mathematics and digital signal prooemiog. The possibility of
dots cornprmion offered by a multiscaie decomposition leads to some very‘
good results in speech [8] or image [1] coding or test numerical analysis of
operators [2].

One of the main reasons for this success is the existence of a Fast Wavelet

‘Iinnsforrn algorithm {FWTJ which only requir a number of operations pro-
portional to the size of the initial discrete data. This algorithm relates the
orthonormal wavelet bases with more classic tools of digital signal processing
such as subband coding schemes and discrete filters.

We can describe in four steps the oonnections between these different
domains:

a) Wavelets bases are usually defined from the data. of s multiresointion
analysis; r'.e., a ladder of approximation subspaces of L"(iR)

‘l0l""'V1CV|:CV-—1"‘-vL:[R) (1)

which satisfy the following properties

rm (5 mg ¢=> f(2s) e v,_, e. ;(2;.v‘=) e Va. ' .. (2)

Wnnlors-A Tutorial In ‘Theory and Application: 123
c. Ir. cm: (-4.). pp. ms-its.
Copyright H91 luv And-ml: Pull. Inc.
All ruin: of reproduction In my Iorm nursed.
ISBN G-I2-1?-Chm-I
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There exists a scaling function 95(3) in Va such that

{¢'l.}i-e‘«z = {3'm¢(3'5¢ * 5=)lke2z ' (3)-

is an orthonormal basis for The function in has to satisfy a two-scale dif-
ference equation which expresses the embedded structure of the V,--spaces

o>(m)=-:22 was-n1. toBEE

The wavelet 1,’: is then defined by

w<=).= 2 E (—1)"m-..¢{2= - n) = 2 Z 9..¢('-’= — on _ (51HER M53

and its integer translates {¢r(:t — k)};.Eg form an orthonormal basis for the
orthogonal complement We of V0 in l/.1. The functions

{tlilrez = {2"mtl'(2"I " kileez.

thus, characterize the additional details between two levels of approximation

(V5 and V}_;). By a telescoping argument using the. ladder structure (1), the
whole set {«p{},,,.ez is an orthonormal basis of L=(n). More details on mul-
tiresolution analysis can be found in [14] and [15].

b) In the Fourier domain, Equations (4) and (5) can be rewritten as

J42») = ootwntwi no man) = 2 one-"~ ' (6) ’nEE .

13(?w) = m:(w)ni»(wi = e"""moEw + vrléiwi (7)

where motor) is a 2n periodic function that satisfies the following two properties
{due to the Innltireaolution analysis axioms)

Tmo(wl|” + lmniw + nil’ =1: - (8)
mo(0) =1 and mu(7r) = D. (9)

Here, mo and m; are the transfer functions of a pair of -low-pass and high-pass
filters known in signal processing as Conjugate Quadrature Filters (CQF. see
[16]). These discrete filters are the key of the FWT algorithm: To analyze a.
discrete ignal 3..., one identifies it with the coordinates of a function in Va;

i.e., fo = Z a,.o(z — rt); The coordinates of the signal in V1 (resp. W1) areHEZ -

then obtained by applying the discrete filter ma(w) [resp. m1(w)) followed
by a decimation of one sample out of two to keep the same total amount of
information. It is than possible to iterate this decomposition process on the

lcoarser approximation in the following way; V1 —» V; 5') W2, Va —- Va EJ§W3, .. ..
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The reconstruction stage consists of refining the decimated sequence of
spprordmation (reap. detail) coefficients by using mo{w) (reap. m;(w)) as in-
terpolating filters and adding these two components multiplied by two to get

the finer-approximation. This sequence of operations — filtering, downsa.m-
pling, interpolation, reconstruction —— is known in signal processing as a. (two-
channel) subband coding scheme, as illustrated in Figure 1.

rloonuructod.

0 Ilsn-1 
Figure CQF stlbband coding scheme.

1 2 : removes one sample out of two

‘[2 :insertar.ero betweeneachturosarnples.

c) Apparently the functions at and it do not play any role in this algorithm
involving only the CQF pair. However, in many application, it is interesting
to have these filters associated with a smooth wavelet and scaling function.
Indeed,-iterating (6) at each scale leads to

i-(~1= firno(2'*w)- (10)kai

This formula corresponds to an infinite number of iterations of the refinement
process used in the reconstruction algorithm starting from a. single low scale
approximation coefiiclent. In the time domain. the limit of this process is the
scaling function 96 and if one starts the reconstruction on a detail coeflicient.
the limit is-the wavelet III.

The smoothness of Q5 and it will thus appear in the aspect of the low scale
components which play an important role in data compression since many high
scale details are thrown away.

cl) In practice, the starting point to a multiscaie analysis is a 2n periodic
function mo(w) which satisfies Equations (8) and (9).

The scaling function is then defined by the infinite product (10). It has
been shown in [7] and [12] that for a generic choice of i'no[nJ), the scaling
function is in L’(iR) and satisfies

(¢'(=)l¢(3 " kl} = 5n.I=- (11)

The wavelet is then derived from Equation {T}. A particularly interesting class
of CQF is theaet of trigonometric polynomials rno(w) satisfying Equations (8)
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and (9) since they correspond to finite impulse response (FIR) filters. They lead
to compactly supported wavelets which have been constructed by 1. Dauhechiea
in [10] with the possibility of arbitrarily high regularity for o and ti» by choosing
moiwi in a smart way. I

Unfortunately the CQF present some serious disadvantages for signal pro-
easing:

(1) They cannot be both F111 and linear phase (in, with real and sym-
metrical ooefliclents} except the Hear filter which has no great interest

since the associated wavelet 11! == tbw‘ ‘M - x,,,_,, in not continuous.
(2) Since they are the solution of the quadratic Equation'{8), their coef- _

iicients are usually algebraic numbers with no simple expressions

(3) Their dign uses the Féjer-Riesz lernmn (for FIR. filters]: |moI‘ is
constructed at first and mg is derived using this lemma. However,
this technique does not generalize to the multidimensional case.

(4) In the case of FIR filters, the subspaces V, have no simple and direct

definition other than Span {¢3',},.Ez. For example, they cannot be
composed of spline functions except for the I-leer case.

For all these reasons. there filters are often rejected by the engineers for
some specific applications. However, "these disadvantages are not related to the
structure of the subbsnd coding scheme itself and they can be removed by using
a more general class of ‘filters. More precisely, we shall allow the decomposition
and the reconstruction filters to be different. The rault is a pair of dual filters
{M9, I?!-9} Wl1lCl1 have '50

“mall-Jlfitiii-'l+"*o(*-’ +"'l'7lu(W+"l = 1- (13)

These filters have been introduced in signal procasing by M. Vettali (see {I71}.
13 it possible to mimic, in this more general setting, the construction of

orthonormal wavelets from discrete filter that we describe previously? The en-
swer is yes, but the orthonety has been lost and the result is a pair of
biorthogonal wavelet bases {tlr},.tbi};',te2z which allow the following decompo-
sition of any function f in L’(R)

f= Z)._(rizlf.>wli= 2 <rw:;>«R;. us:
meta _j.:=en

In the next section of this chapter, we shall introduce the class of dual filters
and their relation to biorthogonal wavelets.

In the third section, we shall discuss the additional conditions that must
be filled by the filters to obtain biorthogonal wavelets bases. An important
problem that does not occur in the orthonormal case is the frame bounds
which relate the L’ norm of a. function add the 2’ norm of its coordinates in the

__=__ .: r.‘l .... .=__ :1 -n rm... 1-.........r. M. lnflanfl r-I-Ilrinl for the at-.e.hllltv
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of the decomposition-roconstrnction algorithm. Two dlfierent strategies will be
presented to izhedr. that these new wavelets form stable (or unconditional, or
Riesz] bass. ' .

Finally, we shall show in the last section that it is possible to build a
{uonorthonoi-moi) wavelet basis generated by n compactly supported spline
function. Our approach is difierent from the technique developed by C. K. Chul
in [3]. _ _-

I §2. Dual filters and dual wavelets

2.1. Dual filters

Let us‘ consider, in the most general sense, the subbend codln5_sci£_me
described in Figure 2. The decomposition is performed by the pair {Fr'io. 17:1}.-
wliereas {mo,‘m;} are used for the reconstruction. A discrete signal 3,. can be
represented by its discrete Fouxier transform; i'.e.,

s(u:) = 2 s..e“”“‘. (14)nEZ

The decomposition stage transforms 5.. into an approximation sequence o,, and
3 detail sequence d..- defined by

now) = §i7"5raow sioi+m~*_oi~+«iatu+«)). us)
and I

d(2w) =.; 7om») +7w +oTo(o +1'r}). (16]_
And thus, the reconstructed signal 1-,, can be written

' r(w) = a<w)s<~i+n(w)s(w+«> on
with

alt-I) = mn{W)mo(*~'l + mi(wJfiu(w). (13)
and

Mm) = mg(w)fTto(w + 11'} + m;(i..:)fi'1«_(w+ '!r}. (19)

E Q 1»? 09 E

oélglnufij | o @ 1'!C0.flll!lnf:!f.'|OIl
(D "P ‘D E -- '

Figure 2. A. general 2 channels subband coding scheme.
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Perfect reconstruction is achieved for any signal if and only if ct(uJ] = 1 and

,3(.-.0) = O for _e|.l w in I--1r,1r]. This leads to the following system in which mo '
and ml can he considered as-solutions and rig and iii; as parameters namely:

{mu(w)7”_=m +m1(w)5"=T(5l = 1mo(w}mo(u: + 1ri+ m;(w}1'r'i1(w + xi = 0.

If we want to avoid the infinite impulse response solutions, we need-to impose
that the determinant is e monomiel ae“““, o: 99 D, in e‘ 25. Up to e-shift and
scalar multiplication on the filters, we choose, for sake of convenience, a = -1
and is = 1. This leads to

molw)rTIo{_w} + ma[w + 1r)fi'1o{w + 7r) = 1. (21)

"ml

d .

an m1{r.u) = e"'”ffin(w + 1:], 1'fi1(w} = e'“”mu{uJ + rrl. (22)
Equations (21) end (22) are thus the most general for finite impulse response
suhb-and coders, with exact reconstruction (in the two channels case). We call
mo and fig duel filters.

Clearly the special case fl‘!-5 = 13-19 corresponds to the CQF. However, the
disadvantages of the CQF can be avoided:

(1) If mg is fixed, filo can be found as the solution of a Be-tout problem,
which is equivalent to a linear system on the coeflicients. The Féjer-
Ries-s lemma is no more needed.

(2) The ooeflicients can he very simple numerically and, in particular,
they can have finite binary expansions, which are very useful for the
implementation. They can also be reel end syrnmetrical.

We now went -to mimic the construction of wavelets in this more general setting.
For this, we shall assume that the dual trigonometric polynomials mg and 1719
satisfy

1110(0) -—- 1"Fio(O) = 1 and mo(1r) = 1'fi.;(1r) = 0. {23)

2.2. Dual wavelets and scaling functions

Let us define, firs-t in the sense of tempered distribution, the dual scaling
functions and wavelets by

&M=fimwM. lwit-=1

$M=fimWM. cmk=1

ea W-1(%)«*?(%‘iJ= , cw
~%<~l=m.(%)s<§> cm
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Since_ we went to use these functions to analyze L3(R} it is necessary that in
and qi are both siquere integrable. Note that in the CQF-orthonormal case, this
is always satisfied as a consequence of Equation (8) [see [7]). For duel filters

this is false in general. _ ~
In this section we shall assume that gt and 4: (and thus it and 1J2) are in

L3{R). Some precise conditions on mo and {fig for this square integrability to
hold will be stated in the next section. '

Starting from this flrst assumption; we are going to prove the following
result:

Theorem 1. For any function f in-L'(lR), welhave in the I.’ sense,
J J

r=,y__gg° Z Z(f|¢i)13'i=J15;1D° Z £<:n7:;>w£. 128)j-—J' 1:62 j--J her:

We remark that this does not mean that {1fi.\i:{}j,uen are biorthogonsl
bases, or even frames, since the summations are made in a precise way. However,
this is s first step toward the construction of hiorthogonnl files: basis.

The proof of Theorem 1 is ‘based on several lemmas that we shall comment
here and prove in the appendix. We first introduce formally two approximation

, ' operators,

em = Z{fIr5i>¢ri. (29)her.

and ' _
Em = 2<:1¢1><ii. can) .hem

and two detail operators,

Am = Z <mP.;>¢-:;. onREE

and _ ~
Mn = Zj<n¢r.'.>:v3;. (32)her:

Lemma. 2. The operstorsPj,l3,-, A,-, and [35 are bounded on L2(lR). Moreover, _ !
their norm is independent ofj. ‘ ‘

This resnlt gives a. rigorous meaning to the definition of these operators ,
on L’(lR}. We then hnvethe following. ' ' I

Lemma. 3. For all j ‘in 22,

P,_,=P,+n_.,- and F,»_1=P,-+A,. (33)
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These two identities are as-entinily equivalent to the perfect reconstruc-
tion pmpertyof the aubhand coding scheme. By a telescoping argument we
immediately obtain", for J > D, '

J

P—.i'-1 = P; + 2 AilJ‘--J’

and

no -1 J -

P.:-1=P:+ E at. (as):‘-—J'

The next stage consists of letting J tend to +eo and using:

Lemma 4. Ear all f in La(l?.),

,3?“ I1Pm1It= = gym |1f%c:)|1u = 0. (as)
and

,§=_nwIiP;<r) _fllL9 =J_1_iI_nc_,|lJ§(f}-flit: =0. (37)

The first limit is just a eonsequee of 4;, q'se_L’(|n). The second limit is
clue to some specific identities satisfied by up and 4: because of the hypotheses
on the duel filters mo and firig.

Combining Equations (34). (36), (36), and (37), we clearly obtain the
result of Theorem 1; i.e., for any f in L’(lR), we have

J‘ .

x— E £<rI:?;>w£5...: gen
lim '= 0.= lim

J-I-I-OD J—I-i-I3:
L2 j-=—J' sea      1- ii Z<rIwi>i5il

_ (38)
We now examine the gap existing between this system of dual wavelets

and a pair at’ biorthogonal Risa bases which will be obtained in Section 3.

2.3. From dual wavelets to biorthogonal Riesz bases

Recall that 8. Rise: basis of a Hilbert space H is a family of vectors {e.x}.xs.-i
such that

(1) The finite linear combinations of e,‘ are dense in H.
(2) There exist two strictly positive constants C1 and C‘: such that, for

any finite family of ceeficienta {o:.x}:.eA, (A; C A], ‘
2 K

C1 2 lull’ 5 2 Gas;
ASA;    H REA;

- 5 C, 2 }::.;.P.. (39)

:1‘

-‘-"£4
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An equivalent definition for e Rjesz ‘basis {see {I91} is given by the follow-
ing; ‘

(1) The vectors {(2).} ;..;,\ are linearly independent, and
(2) {C_.\ };¢.o_ is a frarne; I.e.. there exist two strictly positive constants D;

and D; such that for any I in H

Dillfllir S E Kilt’-all“ S DaI!flll'=r-REA

We shall rather use this second definition for and For these dual
wavelets, the following holds.

Theorem 5. {up-,’.,1E-L},_;Ez; are .3 pair of biorthogonel Rjese base: if and only1: .

{lg bre.llj,j",it,l:’ in 2;,

(v!rl|t?’3) = a.o~-e.~»- (41)

(2) ‘There exist two strictly positive constants C and 5 such that, for all
I In 1?’(R) '

E E(fI¢i;>1* .<. Cltfll‘_f,bEZB

and . -
2 |(fhiri>|‘ s ClIf|l’- t43)_ween

Proof:

:1) If Equation (41) is satisfiai, then any f in the closed linear span of the VI:

with (j, 1;) as (39, kg) satisfies m{,{g) = o and thus oi; cannot be In this
closed linear span. Thus. the air; are linearly independent and the proof is

slntllar for
_b) By Equation (23},'we have

J _

vi: = ,3?” Z Ztvfiitlwiwi.1'-—JkEE
(44)

and, thus, 1V,;[1 - {wfi|tlv'f;)) lies in the closure of the for
(j,k) 9-E [ju,Icg). By linear independence, this implies

<=:»’,;:uF’.;:> =1- _ <45)

Isolating any (:p’,,;|i7{)=p-,*; in (44) we-also obtain for any 5.1:) at (me).
by linear independence __ ‘

<¢»i.:ewiJ = 0. ' E46)

 

(40) . .

<42) _ l
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and thug (41).
c) Combining Equations (28), (-12). and (43). we obtain for any f in L°(1H.}.

J‘

I1fli’= ,1,1r;=,,_, Z Z<n~H)wr:;1r>j--J :22:
1/2 1.12

s ( 2 |<riw:;>t=_) (E wI~T»:;>I=),-;.:=e:e “ea
in

. s.o~'°|mI ( )3 |<fl13{)|“) .:'.ke2_

This leads to __l ‘

0"llfIl‘s X |(fNri)|’. £47)jdcefl

and similarly _ __
C"*i|.Fl|°s g wr«2ri>I°. (48).f.J:ER

The lower frame bounds are thus directly deduced from the upper_bound3.
According to the second definition and to the identity (41), {\ir,1. 1,b£}5_:.ez

. are a pair of hiorthogonal Rise bases. Any f in L"(1R) can be written

% .r= )3 <rI~z7i>«:vi# 2 <r:«e;>£t='i (493j,k€'1.'Z j.i¢EE

where tiiae expansions are unique and converge unconditionally.

Before examining the type of dual filters leading to such bases, we shall
prove two technical results that we shall use in the next section to check the
hypothesis of Lemma 5. The first one dealewith Equation (41).

Lemma 3. Let gen and :5" be defined forn > D by

¢:rs(‘*’) = fl m0(2_kw)X1»I'--.='Ix)[‘“')- (50)k-I

and

im = H fi1a[T"‘w)x._...,,..,(w). (51)k=Il.

Then train and 6., converge in L=(R} to e nine‘ .5»,

Mi ~ IJ}It5(I — 5)) = 5“. ' (5?)
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and __ I
<~.oiIwL> = 6,-.,—»6».:.-. (531

Proof: By recursion’ we can estab1J8h- .

{M2 -:=)|<3-(2 - 0)) = 5:».e- (54)

Indeed.

(Mr —p)|$»(= -— E}) = 2%: /2"‘! %(_2_h”) ) e"“'P3”du"2"" I-.=1

_ 2" I‘ "—l- J: '-=-'-'§1.— 42'-u—,.)..dw_ E; 4 £[flmu(2 w)mo( w) e I
2" 1! lI—1 _=%____

= 2% /.5 (.I.I="'°Wm°W)
Emo(w)r'fioZw) + motw + wlfiiotw + *r)]e‘”"“"”“‘dw

= (95.4 (2 - p)l¢3n—:(=c — fl)

= . .. = E11}, ‘I em—p>wd,_, ., 5”_
Consequently the L’ convergence 01' ab, and 6,. implies

W3 -PJ|5{= * 3)) = 5:»! (55)

which can also be written "as

£t5$><w+2re=r) = 1- ' ' (mi#62

We now have

. Z: a«:.='a'm..» + mm) = §:(fi1fi13=c3)(5,:'-+ km)3662 kefi
W

(3)+ma:<;+«)Jk;<aa><§+2rw>n
= 1‘

and

E t$'J?){u + ma = Z(¥mfi:aE33} (‘g5 + kw) _
I463 L-EZ _‘

=[m<%>+ma<;n+«>1,;w> (W)
=0.
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Consequently, __
(‘KT ‘ -‘VJIIN3 " 9}) = _5::,r (57)

and ‘ _ I '
(¢(= - k)l¢>(= - 3)) = 0- (53) '

E we now define E’! = SpaI_1_{¢v{};.gu, W, = 313B11{1x'fL}:ee1z. and
:4 = span{Ja1}.E,;. W, = Spa.n{v,b{]>;.m, it follows from Equation (56)_that
for any 3'. 17, is orthogonal to W, Since, for all 3" < 3', we have W,» C t-’,-, it
follows that W, and W5: are orthonormal when j’ < 3' and, by a symmetrical
argument, when} <_1". Consequently, we obtain by Equation (55).

(1!!f;l{’7:;) = 5n:*5u.v- (59)

and the lemma is proved. I

The last lemma of this section deals with the upper frame bounds (42)
and (43).

Immxna 7. Suppose that the function Q5 satisfies

sup 2 me + 2:ur);=-' < +oo, (so)
"'5" new

for some a > 0, and .

‘§IEI1;(_1+|=u|)"Ir$(=-all < +oo- (6!)

Then there wrists a constant C such that, for all f in L’{lR),

Z Itflfill’ s cm’. (62)j.|:€fl

Theseme was ranjofand 5.

Proof: Since 13{w) = m;(*):$(3§) has at. least. a. ‘first order zero at the origin.
using Equations (58) and 357), we may conclude

Z '|:3{22'=.'»)r 5 c.. (63)35625

and ‘
E mt.» + 2:c«)|“° g C3 {:54}1:63 “

uniformly in w.. "

J11- 
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2 Using the Plancherel and the Poisson ionnulas. we can derive for all I in
5 (R).

Zj1<:|«»zn' = I}; 22’EEK HER

= # Z 2", }(2"lu)fi:$e"“""d1.akfifl

 j i(ww“t2rwJe""*"aa»R

2

en:2-} 2!

- 5:: ,, Z }(2'i(u + 2€x))1lJ(w + amSIE-

.—_f SI

5 L
23 0‘‘‘‘w

2

(E1}(2"(u + my); mm + 2z«)|! |E(w + 2:x)1"i) _dwIE8 '

m L“:E

2! 9 ten2' (E |}(2"‘{u.- + 2:«))|'|E(u + 22m“) (2 |{5(u + 2£1r)|3"’) duntea

IA 0%f i.?(2"w)|'|?5(w)|‘dwH

< lea fa I3*z~>I’n‘r»t2’wn'd~.'2-Jr

Summing over all the scales 3' E E a.nCi_using Equation (59), we obtain

' Z |<f|¢i)|’ s Cg? L|f(w)|"'du:i.hE2l

= Cncaiifiifi.

and this concludes the proof. I

We are now ready to characterize the dual filters which lead to biorthog-
onal wavelet bases. such that the functions tin and :5 satisfy the hypothwes of
Lemmas 6 and T.

§3. Biorthogonnl wavelet bases and stable aubbmd coding schemes

In this section we shall present ‘two strgtegies to design the dual filter:
so that the associated dual wavelets 1;; and ti: generate a pair of biorthogonsl
Riesz bases. In other words, we shall establish some conditions for the stability

of the FWT algorithm since this is equivalent to the frame bounds inequalities
that we require on our multiscale bases. J ‘

The fi_ret strategy uses estimates on the decay at infinity of the functions
6(a) and 4-)(w) that can also be found in [6]. It furnishes 3 suFl'1cier1_t condition
for biorthogoneiity and stability.
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The second strategy is based on the study of two operators associated with
the dual filters. We show here that it leads to suflieient conditions and it was

proved in [4] that this criterion is also necessary. It is thus a sharper strategy
but it is only tractable for filters of reasonable size.

3.1. A Fourier criterion

Sinoewehave assumed that mg and fiig vs.n.ishetw=n-, itispossibie to
express these filters in a factorized form

mm) = (1+;w)Np{wJ. I (65)
and __

em»: = (1 2”“ )Nr»(w). (sea
The following results give a sufiicient criterion based on the properties of the
trigonometric polynomials p and :3.

Theorem 8. Suppose that the function p(w} satisfies

  
- i

fig [Lug pm-*w; ] <2”-i. (57)
Then H

(1) <§..(w) = H mn(2"'w)x.-..._...1(w) wnvergesto <3(w)in L’(R).&nd _km}.

(2) The conditions in (60) end (61) of Lemma 7 sre satisfied.
Ifflw] satisfies s s1'1ru‘la.r hypothesis, then the dual filters 1119 sud Fain generate
blortbogonsi Rims: bases of wavelets. '

Proof: The hgfpothesls (GT) implies that for some j > 0,

< 21*”-‘H. {e > 0). (as)  fl 1J(2‘*"t-J)k-1
IBEX
we!»

We now write

N

i(‘i%'53)k-1   l2[ p(2"‘=-4)l¢=l

121 p(2:*w)II: 1

xi-I-w.:~.](‘-9)

sin “’) N
2" sin(2-Flu) X:-an-,:n¢g(‘-i’)-_, —    
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Since 1sin(2"“1w)| > C2""“|u.-| when w is in_[—2"n',2"-Jr], we have

T I6-.(w)l s C(1+'|w|)‘” fipiz-M x._,..,....(w). (69)-kt}.  
We treat the second product in the following way: The contribution of the . _

factors p(2-*o) for J: 2 '—°|{§£l-'-ill can be globally rnsjorsted by a. constant
since the infinite product converges to a smooth function. We divide the other
factors in packets of size 3‘ that we can mnjorate using Equation (68). This
leads to

|9i..(w)| 5 00+ lws)-" (2='i""*--‘)"""'*L"ll
5 c(1+ lwI)"l“.

Since this bound is Independent of n and nfI..(w) converges pointwise to $(w),
we can apply Lehesgue's dominated convergence theorem to conclude that :12“
converges in L'[R} to 4:. At the limit, we also have

iii:-all s0(1+lwi)""”“ on)

which immediately implies the conditions (60) and (61) of Lemma 7 by choosing

0 < cr < min 0-, If fifw) natlsfi a similar condition, than the results of
Len1n1a.s6and7ca.nheepplledtoI,iJa.nd1-iJ'andbyTheore1n 5.thefnmilles
mi. i:'r,';},_..=_,,=, are hiorthogonal Piles: bases for Hm). I

This criterion was used in [5] to construct many biorthogonal wavelet
bases but it is not sharp. in particular, Equation (70) is not strictly necessary
to have it and 11: in L’(lR). These functions can be very la.cuna.ry'. I'.e.. their
Fourier transform can have a bad decay but only at some points which occur
less and low frequently at infinity so that they are still square integrable. We
now present a sharper criterion ‘based on a different approach.

3.2. A matrix base criterion

Let us font introduce the basic tool which will be used inthis approach.

Definition 9. Let mo(w) be a trigonometric polynomial such that 1110(0) = 1
and mg{1Ir) = D. The transition operator Tn associated with this filter acts on
231 periodic functions in the following way

=‘«r<~>=l~¥o(‘%)l°r(‘i)+l»=o(%+«)l°r(%+«)- to
This operator appears in the works of W. Lawton [12] and JP. Quote

and A. Rnugi [9] for the study of the orthonormal case. It can also be useful
to estimate the Soholev regularity of the scaling function associated to 7310
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(see [11], i18], and [5}). Here, we will need two lemmas which give some basic
properties of Ta.

‘Lemma 10. Let mafia) = )3 c;,e"“" and T5 the aaaodated transition operator.hue

and define the 2N + 1-dimensional space
N

Ewrz { E: chainkn-N

and its éubépaoe
N

F” = { E: c¢e"'“"k=—N  b=—N

N

Z c. = 0}. (73)
Then By and F5: are stable under the action of To.

Proof: fiom the definition of To, it is clear that if |m;;}‘ and f are two elements
of E”, than T9} is also In EN. '

A trigonometric polynomial f is in I-‘N if and only if I E E” and f({}} = 0.
Consequently, if f is In Fgq, we have

Taf(0) = |ma(0)1’f{0) + }mo[rr)I’f(rr) = 0. (74)

which proxies that F” h stable under Tn. I

Remarks. If we consider the Fourier expansion

Imo(w)F = f H:.e"’“. .05)hu—N

than the matrbc of Yb restricted to By is given by

H” 0 0
HN—2 HN-1 HN I

, . 0

Mo = (2-Hi-2j)iJ-—N...N fl 2 H_N H_N_H _ HN - {'75}
I O 0 H-” Hy_3

t) HI.»

'5 (—1)*H_,, = 0, it followsban”

2 H21: = 2 Han‘: =I: 1:

Since |mo(0)i’ 2- kg" H; = 1 and ]mo{1r)]'°' =
that

(7?)KOIP-‘
r

{c—hr. -- - .c:vJ E C'"'”}. (73) 1'
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andthu.st|1erowvectorp=(1,1....,1] satisfies

- Mo = it (73) -

This is another way to show that Fm is stable since F’; = {Ci.t)J' but it also
shows that 1 is an eigenvalue of To end if this eigenvalue is not degenerated
then it is not in the spectrum of To restricted to FM.

The second lemma. makes a. connection between the iteration of the oper-

stor I}; and the sequence on which must converge to at in L’(EI.).

Lemma 11. For any 21:’ periodic function flu), it follows that

f_ TE'f(w_Jn'w = .5“. ro-"um fl |mo(2"‘w)I’dw = f f{2‘“w)Ii3..<w)i’c&v.
in-1 - (79)

Proof: We prove it by induction. Equation (79) is trivial for 11 = 0 and if it is
satisfied for some n 2, D, then

'I:;'+*:(w)dw= :T6‘(Tu.f](w)dw
= 1" 'ro:(2'"wJ |ma(2"‘w}i’dw

"7"" ‘ in;

= [f{2‘_"“w)Imo(2""‘w}|' + n2-""w + =r>rmot2'""w + «no
fl lmo(2"‘w)|’dwi=1

=] f(2‘“'‘w)fi|mot2‘‘w)l’m- I- ' e-1 -

We are now ready to state a. criterion based on transition operators.

Theorem 12. Let A be the largest eigenvalue o1'Tu rwtrictod to FN. Iftz\| < 1,
then .

(1) re, oonver-gm to :1: in L3(R), and

(2) the conditions (60) and (612 of Lemma ‘Fete satisfied.
If the same holds for the operator To associated to fig, then the duel filters
mo and via generate bio:-tbogonal Riesz base: of wavelets.

Proof: Let us ‘define the trigonometric polynouuei c: by

c(w) = 1 — ooeu. (B0)
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It in clear that c(w) is in FN. Appljricg Lemma. 11 and using the hyiaothesia
|A| < 1, we obtain

i
1

5
E

j |<3a(w)l’c(2‘“w)dw = _'.To"c<wJdw
S \/2—1'>'HT5‘C“1.=

Sc(1~;I»\i) =c.2-..._
with 5 = E:3[log2 — lcg(1 + |.\|)] > 0 because |).| < 1. This leads to a
Littlewood-Paley type of estirnata. Indeed, since c(:..:) is positive and c(w] 2 1
whenisiwlgrnwehave

f '1<6n{w)'.'dw 5 02-“. ' (81:I"“‘ar5|u|52"Ir

'I:his estimgte is_ also valid we replace_ ¢,. by ¢ because we have

|¢(wJ| =. l¢..(w)¢(2-““w)| 5 [¢.(w)iJI3§§(|¢{w]|} when lwl s'2"vr. Conse-
quently

j; irt3(w)|’dw s 02-“. (82)"'-‘r$|uu|<2"ar

which meatls that 42 is not only in L’(lR) but also in the Besov space B;'°'°(R).

Let us now prove the L’ convergence of 4:, to 96. Since ma[0) _—. 93(0) = 1,
there exists an (1 in (0; 1r] such that

{col 5 I1 =.- H-(w)I 2 C‘ > D. (83)

We now divide qb.. in two parts: ¢,. = ¢}_ + «E, with

=' 93rI(w)X{-1w-_n=‘\.|(""')I

and . ‘

= ¢n{W) [X|..an..,2-.g(“’} - X_|—1n..:n.| ‘

C£e_a‘:-1y_$§,(w) converges polntwise to am and by (33), we hav_e

1c53.(w)|s (es)
By Lebesgue’-s theorem, qt}, conveigas to 45 in L’. We also have

[ l55?.(w)i’dw= :a..<»:m2"a$|w|$2"':r

1 " —n
5 337 f la»-.‘(w)I”c(? w)dw
s or".

,-u
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and thus 45: tends to zero in L‘ and consequently to is also the L= limit of ¢,,.
To prove Equations (60) and (61), we shall use the estimate (82). We first

. remark thot einoe mo(1r) = rno(—7r) = 0. the scaling function satisfies

${21ttr)'= o if It 2 25/10}. (37)

Using a fimtorder Taylor development, we mu write

2‘, kite: + 2k1r)i_""' s Akefl - -

= f lg,-i(|«£1')*'*1|w»

= f |(1—5;~)%Itti=1°1|:<Sn-tau

s]|2—a: ;;“§

so(/\e\”w»)"”(W-=«~>"“»
The first factor proportional to the L’ norm oi x¢[z) which is finite since

¢ is square integrable and compactly supported. ‘
'I‘o evaluate the second factor we compute the integral of |¢{w)l"" on u

dyadic ‘ring 2“"1I 5 £1.01 5 2"1r. By the Hoider inequality and (32) we obtain

dwd ' -or
jgilofla I 

i¢3(w}i‘"*dt-I  

1-9

j Iticwtt’-°a2» s [f I$<w1I°cs~] (2%)?3““=rSl~|:53"* '--*~sI~|s2-« -

S C2--n((1—§-}+1'I§_

The second factor will thus be finite and (57) will be satisfied if we choose or

such that ¢(1 — —- if; > O; i.e., o < We apply the same method to show
(58). If M is in [2""11r,2"1r] for n 2 1. we can write

“(L
5 02'“ 5 011+ iwlri.

and thus (61) is satisfied if we choose or E
This concludes the proof of the theorem. I

-I-.
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Roma-la.

(1) In the proof we use ertlrnate-3 of loll“ or its integral on dyadic rings
‘ 2"‘11r 5 lot] 5 2"_ir, for n 2 1. The case [ml 5 rr does not cause any

problem since flu) is a smooth function.
(2) ‘The criterion that we have established is in fact sharp; I.e., it is nec-

essary and suificient to have biorthogonsl Riesz bases. The complete _
proof of this fact, which is very technical. can be found in [4].

Using our theoretical results, we shall now build an important family of
blorthogonal wavelets where the functions it snd 1,0 are piecewise polynomial.

§-4. Blorthogorial wavelets and splines

The connections between wevelettheory and spline theory come out nat- I
urally from the general framework of multiresolution analysis. Indeed, for a
given N 2 1, we can define a multiresolution enslysis {V3-},~5g by

‘: N-I-l.

V,-={!eL“(R)fiC”“[RJ|(g£-) :=Eam..}. (as)Inez

where 521:. is the delta function localized at the point 251:. In other words, V,
is the space of square integrable functions which are piecewise polynomial of _

degree N on the dyadic intervals [2-“lc,25(k+ 1)] with 0”" continuity at the
nod points 251%. -

A natural generator for these spaces is the Nth degree B-spline function
defined by

It is then well known that the Integer translates of st generate lrh. For example,
in the case of the linear splines (N = 1}. it is the hat function; i'.e., gi>“{z).=
m.sx(0,1-|m - 1|}.

However, it is clear that the translates of qt ere not orthonormal. Still
{¢I"(.e- - k)}).§fl forms a. Rlesz bases for V9; i.e., there exists C‘: _>, C1 > 0,
such that for any sequence as in £’(Z), 2

0. 2 Ian“ 2 2 CH:¢'N[~7I'-' — is) 5 5': 2 last (90)
man. can L2 sea

which can also be expressed by

u < 0. s El&»”(w + mil’ 5 02. (91)sea

This allows an orthonorrnslizetion process that preserves the structure at a.
family generated by the translates of a single function. The new scaling function
is defined by

. ~ —x/2 .

¢7J§'{wl=<3"(w} Z |c3”(w+9k7r)|”) - " (92)E22

 

M2) = {*J"'“x...,,- (as) ' -
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Its translates are orthonormal by construction but it is not compactly sup-
ported (it has exponential decay). The same holds for the associated wavelet.
In this construction, due to Battle and Lemsrié [13], the CQF filters do not
have a finite impulse response, and this fact constitutes a major disadvantage
for implementation.

Using the raults of the two previous sections, we shall now construct
bicrthogonal bases of compactly supported wavelets where the functions g5“
and 1.0“ are spline functions oi order N.

We simply choose for o" the B-spline function defined by (89) since we
do not require anymore the orthonormality of its integer translates. The low
pas filter emaciated with this scaling function is giv by

_.g._. N-l-1

m5'cw>=(“‘; ) . us)
To End 9, dual filter. it is useful to define the following polynomial

L-1 .
L _ .

P;,cy}= z( ?’”)y=, (94)j-IO 3

which is solution of the Bezout equation

(1 - 9]‘-Pbllil + y"‘P1.(1 -- H) = 1- (95)

By a change of variable, we obtain

[mc>1“m<=m=(;>)+{m(%>1“PL(mac);=1. «as»

P [vi-»=L (si~==<%>>1

+[*“;] [<—n*»=~"-ra <=«%<2'))1=1t
This formula gives 3 solution for all. the values of N smaller. than 2L— 1. Indeed,
ifN+1 52L,wecantal<essadual filter

sa.’,"v’-(u) ='l1*2"’”]u_N_1P,, (sin? s'““". (93)
In other words, for a. fixed N, r7:3’"" is a duallfilter for 1113' if 21. 2 N + 1. -

How cs.n'we choose the parameter L in an optimal way? Atfirst, it. seems
natural to choose the smallest value of L such that 2L 2 N +1. Unfortunately,

pm 97}
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144 A. Cohen

this choice does not lead, except in the Haar case (N = 0}, to a dual scaling

function nfylg which is square integrable. More precisely the filter 17:3’'1' does
not satisfy in this case the conditions of Theorems 8 and 12.

A very simple example to illustrate this problem is the case of the linear

splines N = 1. If we choose L =1, than the dual filter is given by

ea-‘(ma = e"”- ' (es) -

By formula (25), we see that

EB‘-*(w>=e-*~. (100)

which 1 not square integrable. Observe that gt” is a delta function centered
on 1 and that in the distribution sense we still have

(¢'l= - k)|5"‘(-to - 3}) = «5e.:. (101)

but the subbsnd coding scheme has no chances to be numerically stable {in

the 1’ sense). For this reason, we need to choose a larger L, such that fi;§"{u)
satisfies the conditions of Theorem 8 or 12. In 18], we prove that ¢v”v" can be
made arbitrarily regular if we choose a large enough L for s fixed N. This
means that the Fourier transform of l£N'L has an arbitrarily high rate of decay
at infinity and that :53’-L will satisfy the conditions of Theorem 3. Note that
the regularity of the functions 5 and 1-1; is not very important in applications
since we only use them in the decomposition stage by inner product with the
function to be analysed. As explained in the introduction, smoothness is mostly
important in the reconstruction process and we shall rather take gt” :md_ 11:"'1‘
as synthesis functions since they are piecewise polynomials. For a iven value

of N, the best choice" for L is thus the smallest value such that fig '1‘ satisfies
the conditions of Theorem 12 (which are sharp].

For N = 1, this value-is L = 2; i.e.,

:n3"(o) = (1 +28“): e-3*-'(1+ zen’. (102)
For N : 2, this value is also L = 2; i.e.,

:7-.3-=(..;) = (1 +3"):-=*~(1+ 25in’. (ms)
 

For N = 3, this 'ys.lue is L = 4; i.e.,

-3‘, 1+c“" '‘_,W ,2 w. .4 to .5 nomo (w)=( 2 ) e (1+tis1n (-§J+10sm («Q-)+2[3s1n
' (104)

‘amnion’!it‘-"'-ifififi-O85$‘;-59-7
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We illustrate in Figures 3 and 4 the first two cases (linear and quadratic). Note
that, for even N, the wavelets are shifted odd functions, whereas for odd N.
they are shifted even functions. We show in these figures’ the results {or the
rolnlmal value of L (In the first column) and lot the next value [in the second

column). _ __ '
Observe the chaotic aspect of the functions is and 1;; in the quadratic case.

Out as check that these functions, althoug_h square integrable, do not satisfy
the decay condition (1+]uJ)‘V"‘(.]¢a| + |1,b|) < +00. This means that only
Theorem 12 can be applied here. This a.lso___exp-laius the fractal aspect of these
graphs: Tobe square integrable, 45 and 1!: must have a lacunary structure,
typical of these Ersctel figures.

Finally, let us'n1entlon a slightly dlfierent construction of compactly sup-
ported spline wavelet which is due to C. K. Chili and J. Z. Wang In this
construction, the spaces W, are kept orthogonal and the wavelet are nonorthog-
one! only Inside a given scale. The advantages of this frarneworl: is that the
wavelet decomposition is still orthogonal and q} and 1}: are still symmetric or
antisymmetric. Furthermore, the discussion on [tame bounds is much simpler
and that the duel wavelet is also a spline function. However the dual wavelet
and filter are no longer compactly supported.
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Figure 3. Graphs of the func'tion.s :35. 62,93, and 13 in the spline case. _
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vb2

Figure 4. Graphs of the functions ¢I.1J'.I.J=, and 1]; in the quadxatic case.
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A-ppendlx: Prdot of some lemmas

Proof '0! Lemma 2 _ - _
We shall prove this result for 173, the argument being the same for P5, 13,-,

and I-35. '
First, from the definition (29) of P5, we have

e<mm(=) =Pu(f(3’v))(2_’«7)- nos)"

It is thus eufficient to prove thet P9 is a continuity operator on L2(]R.). We will
then htwe MP0“ 5 “Pd” for 3'11 3'. Since both Q5 and é are in L’ and compactly
supported. we can define the two trigonometric polynomials

ttwl = Z) |$(w + 2k=r)|’ =- E (¢(=)1¢(2 -» n))e"‘.“'. (ms)EEK IIEZ
and

EM = E I53(w+2r=«1I“ = Z(a5(z}1«5(2—n_))e""“’- (107) .kéfl HEB ‘

For any sequence {en} in 29(2) we have

    

  

2 2

_ =i —dm..- ‘ 2A ée..¢(= an as 2” “gene l¢=(w)Idw
3'

=3‘. Ee,.e'""" z|aa[u+2;m)|*aw
" -W nezz kefl

s mum) Z |e»|’-HER

For all f in 1.901), we can estimate the E’ norm of the sequence (jj5(: — n))

  

  

in the following way.

2 1(f1=E( - )J’- 1 “< )7} ‘Mmenet .2 II) —E§§jfw¢ue
_~____j 2

=2i /' ): f(w+2lc1r)q5(w+2lc:r) dw
Tr '* kgz,

-5 51; f" (:3 mu+2v=vr)I“) (Z) I$<~+2Ic«r)F) we"" i.'EE 1:62!

5 max (f(w))1|f|i’-

It follows from these two estimates that fer—all f in L"’(]R)

H-"ofllla S maX(5(w))m8J<(!(wJ}l|f||§,a. " (103)
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and thus upon 5 [n1ax{t] maxmr/=L I

PrncIf of Lemma 3
We ah.e.ll use the Fourier coeflicients hn . g,., 71,. , 33,, of the filters mg. m}, Fig,

and fin. For any fin L’(lR], we have 7

Pam + mu’) = 2 (mt: — k>>¢(:-— - k) + 2 (Mt: — k)>w{x - is}ten: 1:62

= 2 En—2hhI'n-27¢ + Z §n~:k.9m-11:)n.rn€R E622 l:ER

'4U'l5(2¢ " hD¢(9='-' - ml

2 2{3..—3rJlm_z.e + ("1)fl+mfi-1-1;-a+2b-h1—n+2k])n.I'I'|En EH

4<n6(2z — n)>¢<2z -— m)

= E 4c.....<r1aF>(2= — n}>¢(2= — m).ma-IE3

When In — n = 2p, we have

Cm.n = 2 E.Ichk+|‘u-rl = Z Flihrk-I-3p ‘—' %5D,p (109)
_ tea; tea

because of the duality relation (21). When m - n = 2;p+ 1. then

5mm = 2 in-flehm-Bk - E F9-1-!-n+2.&h1—n+2kB622: lieu

= 0

because the two sums contain exactly the same ten-n.s. We thus have

5m.n = §6...... £110)

and _ '
Paif) + flail’) = 2 Z {f1¢(99-' - k)}¢'{?9= * -'9) = P.1[f)- (11131:622

135-’ Equation (105) we can rescaie this identity to obtain for all j

P; ~+-A} = pj__1; (112)

the same holds for E-, 55, and 135.1. I "

Page 197 of 437



Page 198 of 437

150 A. Cohen E

Proof of Lemma 4

We will use the following well known approximation result: If f is in L’ (R).
for all s :‘r 0, there exists a function_g which is a finite linear combination ofII

intervals characteristic functions (g = 3: a;.x_.i) such that ||fug1| 5 5. Using-:

Lemma 2. this also gives

||P;'(f)|1 = JlP:'(f - 9 + 9)|l S I19:-(9) I! + Ca, (113)
and

|iP.+(f) - Ill 5 HPs(9) -9ll+(0+ 116- (114)

It is thus sufiicient to prove the iimits (36) and (37) in the case where f = x,__,,.
We first prove Equation (36). Using the same argument as in the proof oi

Lemma 2, we obtain

llftiflll’ :1 C 2 i(fhlilI°3662:’.

ffviféiaz=0 2

502 f°2‘*1ar2-='s—:e1I‘d:=

ieefl

ken ‘

  

when 3‘ 50$ to +oo. It is clear that this expression tends to zero if in is in
mm). ' .

To prove (37), we shall directly evaluate P,-(f) = P_.- [x1_‘_l]. We first remark
that. because of the hypothesis (23), we have

¢'a(2:c..) = [5(2:m) = a.,_,.. (115)

This leads to the following summation formulas which are valid for almost all I2:

Z¢(=—k)=E¢3(z—k)=1, (H6)sen 1:523

and

¢i1)= c5{-1)=1- [1173f I
We know that ¢ and :5 are compactly supported; 129.. both vanish out of an
interval {-5,3]. For 3' < CI and M large enough, we can derive a pointwise
estimate of _‘ _ .

P,-mix) = Z) <r1¢1>¢i(==). .. (113)kéz
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(1) If: is out of {a—2-“'3, b+25"“s], then either qbflz] = O or {f|q3{) = 0
and thus P,(n{x) = o. _

(2) [fat is inside [n+-2-'“"s,b-25“a], then elther .;o{(::) = 0. or (M1) =

{Eda = 21!“ and thus

-Pmo) = 2 2”'¢i(=) = Z ¢(2'='=-re) = 1. (119)ken #623

In these two cases, I-y(f)(z) is exectly f(z). We still have toevalunte _
IR.‘ 1-.P,{f} --f|’ where R; is the -residual domain R5 = [a - 2J+‘s,a + S-P“s] U
[b — 25+‘a,'b -F 23'”s]. Now note that when 2 is in R5. we have

flml = Xn_;“(3)'.f(3) = 13(1) (3: C Rm). - G30)
and

Pslfllir) = P:{J':'l[=¢)- (121)

Consequently

I |Ps(f)(=) - f(==)l’fl'-'11 = |1%(f:J(-'=J - f:'(=)l’d131 E:

s LIP,-tr,->—r,-Par:
ammo

and ||f,r||’ tend: to zero when 3‘ goes to —o-o. This concludes the proof of the I
lemma. I __
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within a neiphhuflttrttti nnautttl the reference function 0,. The re-
dwtxl unit-r «turning rnutiix fur the teterence function 6, it. given
it-

It', .- 3,". III:

The tttutfitrtg \'t:i.‘Ittr for the eaptttainlt eoeilicicnl 1|. ii ElVEl'| by
F, I FM", l I]:

where F, is tin (‘I1-it.-rutnrti-tut steleett the rI:lI',Ill<x‘izleKl with a, hunt
lllt: mt1Iri.\ Ii}. The update equation for the coelficiettt 0. becomes

of" - e: — nmvr, ttti
nhcn: \'J, in‘ the gradient lot the elementary fuhettcnt included in
R..

The uptlaitt-tt:tt1t ir:l|4icoa be expressed at

art, .. -5! ,;,._,.,l'§t.-,mr;,u.i-tlever il5l
where n'.i.li is thtjtit element of the warping vector 17-,. The new
lLIrK'llDfl created by lllil warping vector is given by

.t°.t.t'. _i'| - E it-.uit:,tx..rt. i|5.'lI

This l'ttI'i-clioli P. itt onltttttprrttal to all elert1eIitII')' functions in-
ciutled in R, and is referred to as the "luclilgr btnnhonorrnal pm-
jeetion function." The remainder of thia section outlines a rrieihutl
far enlettluting the optimal truncated pmjeetion function for: given
support width.

Let Q,-denote I pseudo-Hosalut rtumitt whoa elements are given
by

e,it'..ll I (0.. -Pi)... iii‘:
lfthc projection anti elementary function: are nonnaiiaetl such that
'l.-“- ii I I. then the nonnellml pseudo-lleuian matrix 0,; can beWHIIEH ll!

(1, - r + V (1!)
where lit the identity matrix and Vi: a rlllltll containing all the
nil’-dlugonul elements til‘ fl,.lfa|l the element: of Van: anull. then

9;‘-i—v-2:-Q, not
Using il9i. :tn esl_irrt|l'.e of the locally lpiorrltnnorrnll ptojeciitsn
funetitsn is ret.'ur:iveii.' ticflngd by

.1‘

P£"t.r. .vt - 2P.*t.c._t-i — Z ¢,ii._.iiP,'it. II.!‘'| £20)

Tilt! I'k'A‘IIi'\it'c ttlitnttte of P, will cunverge ii’ the Gabor ettplnsitm
in llfliill-It: iii 0'' citisliti. The lEfl|l|irl| set of projection li.lrl€ll(.Il'|L
can he uaetl in l descent iniplerrteutetlun if G, in (7) ll replaced by
P . In ‘Itch un i!1l|)ll:I'l|I.‘l'lliII|«DI'I. the iower bound. of the npttrnal eon-
wry-rm-c I':tt'Ittr ta er-tt'nia|i.-tl by

o'er’: - .

i‘ t EH,‘-.,ll.,i!I.7
ill)

W. Catimntrte

7'” P“-“"'|l*' wrlit-tt ha» intrrdtseeti two methods that imprrwc
ciirtturttentte: ll'It: Ilr.>.t tnetitttd uses ti.-ui-ping vectors: [he ,;¢._-and
Ihclhtid Ili~l.'h ItIt.‘.tli_\' liitlrlhnnttrnuii prqteetiun functions. The LlVEr~
lap uhuruutcriitirs ttllhe tnortihuri._ttl‘ .R,tlt:terrninc the wtir-ping egg.

1F.EE TIANSACIKJNS UN IM»\Ci£ FRUCESSING. 'I‘0L. l. NU 1. APRIL l‘|'lI

- lnr w, and the wintltwt of the pmjecitttn function .P,. In generttl. u
difietr.-nt warping vector nr ptojeetitin function is mttuiretl fnr euelt
expansion ooetlieient e.. Time rriethtids are well suited to it met-
sively perailel irnplentetnttltoll which itttuigns it separate pl'I‘lri.’Ch!«l.lf
int.-rntity gimp In ettcll €iC|'l'Ii!nIII'_\' lunetinn G,. _ '

For the single pmcessorttnetnory case. they: rrtethodtt are most
efiieient tor lattice: thu exhibit overlap invariance: the overlap
qll._,ii depnds on the distance between t:Iernt:nt.'tr)' ll.II'lE1ll‘Il!is G.
and 6... not on their ttliaoitttt: lattice positions. Consider the (WI!
Itttices presented in {II: the Carlettittn Eritticc and the tug-peter inl-
tice. The overlap characteristics of the Canesittn ittltiee are com-
pletely intiatiaht to shifts in position or frequent)". Bustittent Ill-Ell
lhii in\tari.anet: to calculate a bionlturiunnal window |3l- Hi. u'rIiL'It
pmvldes a direct solution Inn ilenttitinsi to the Gabor expansion.
[ltlte Canesiln lattice is implemented as an iterative Gubtir expan-
thin. the inereut: in complexity over Daugmnn‘s neural network I:
srtilll boettuat: nll weeping reclnrs Ir, will be identical. The it'll-
protrernent in convergence increases with the size til‘ the neighbtir-_
hood I, appmaehing l1asti.I.ttn:t' tlittet solution IS the reighbon
hood size become ertiltt-arily large.

The log-polar lattice is not invariant to shift: in fmquency. Cun-
seeiiently. there is tin .:ot.ti\'uIent to Batman‘: biorthonnnml win-
Llnw. In Ill iterative irnplerrtutttitiiun. it it posaihlc In itnprmte the
convergence by exploiting the position lnvuritutt ottotlati chame-
teristit: that ettiels between elementary Funeitene urtth u mi-ttrt-tart
frequency.‘ ll the i'Ici]l1l!DI'l'l0DCl R. contains. only elementary func-
tions with the same frequent)‘. all warping veetou It’, will lie iden-
tical. Al I tesult. I limited ibttt ttoticettblci increase in convergence
is obtained with little additional complexity. The rate oi conver-
gence can be lunher increased if the number of itniuite warping
vectors ianti the complexity ttlthe irnpiernttntotioni is allowed Ill
increase.
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The uttthori were with the Deparllnenl tiI' Eieeirittttl Eniinuttttnii. im-
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fleienu turn coded hierarchically and Indfvlduflly rgalnllllacl in ne-
etu-oanea rvltlr the local utlnuml nnhto nalaitlvldp arrha hnrrtrie |‘Ill.III '
t_vsrarIr IHVS]. TI-I Ilaolilhrrr cart he crapped guilt: unto \’Lil. For tha-
hllsa America and Lena mnrrlclrone lrnapas. the taelraligua g-are lrlga
to rrreptairle qullllr rocorrilnetlaa at taupecaainrr ratios of 0.3-0.1
and lI.§-I-ll.-flu lrlts par pixel i-bppl. napactlvclg.

l. lrrmonuctrorr

Traditional image eon-tpmssion leelrlriquea have been desipncd
to exploit the statistical redundancy present within tcul world im-
ages. The dilt-'l'¢W eoainc trnrrrlbtrn iDC"h. DPCM. and the en-
tropy coding bl’ arabborrd irnagea Ill: rill nurlrpllea of lhia sualrslieal
appmach. Removing redundnncy can only give tr limited amount
of compressaion: to achieve high ration. sorrteoftlrc noniedundont
irtfontratton must be retrieved. The statistical coders product an-
nttying visual degradation when operating in this trrttde because they
introduce error:-in visually importrnt pans oi"the image structure
(such as feature edgesi. fly using methods of image decomposition
that einscly mimic the human visual ayrtttrrr IHVSJ. compression
can take into account the importance oteaclt individual coelficienl
and code accordingly.

The HVS is on iIIfo_rnI.nriort processing syueni. receiving apa-
tially rampted images from the cones and rods in the eye and de-
ducing the nature or the objects it observes by producing this im-
age data. At a low Ietiai. tlbjieeu can be thought of It structures
made up of surfaces or the satire colororrearute bounded by edges.
The color and texture of art obiccr is gtutiy ailectcti by its orien-
tation and illumination so the edges are usually the shear irnponant
means of recognition. so a good image cntnprenion algorithm
should try to minintite edge distortion.

Ptyehophyeiciata and visual psychoiogistr have performed many
experiments on the HVS to deterrnine lrotrt It processes image data.
They discovered that the eye liiren the image into a number of
barrels. each aoprositrarely one rretave wide In fraqugney. Flmllcr.
in the spatial domain. the image should be considered to be com-
posed oi inlcnnation at a number or dllerena reales lhi. lriarr fos-
rnularcd a constrain: of spotlts! .locrri.i:.ntt'orr that the plr3'.ticiai phr-
tmute.-to that give rise to irltertair)‘ chnnga-s in the image are aperitif!)-
t‘0ctri'r':zo‘.

In this paperwe introduce a new approach to imagccompression
based on decomposing the image using the orthogonal wavelet
transrenn. and then apply a cornpnmion algorithm hascdnn Mm-'r
coostrrrirrt of spatial locailty. Firstly. we will Introduce the wavelet
trnnslon-n. discuss its implementation by quadrature min-or filtering
(OM17). and describe the ideal behind our eotngrruaion method. in
Section [II we present an algorithm irnplernenting ourtnctiaod which
is suitable for real time we either on a D5? chip. or on dedicated
hardware. In Section IV we give some results on the test images oi

_Miis Avrtcnta and Lena torn rlrlge of ootrtpleaaiorr ratitre.

ll. WAUELET Trtarrsroarr mo lrranp Corttretsssloru
One-dimensional wavelet theory clarinet a function it. the wave-

iet. and its associated sealing iirncllortfi. such that the family? of2 Hair]. are ottrrortormal.
The wavelet transform can be impieit-rented by qunrlrrtture min-or
iiltert [ll]. [III 0' - (at.-ti). and H‘ -- ilrlrrli. ll rt 2. where ltinr
- rfztotxjzt. era - rm. and gtraj .. (-])".lrt'l - or re )tSrt-notes l.‘ inner product}. H cotresponds to a Invv-pus filter. and G
is on octave wine high-pus fillet. The teoonsrrtrctioo filters have
impulse rerpaole Mini - fail -‘Ill. andgmrr - gt] - oi. Fora
more delliied lniilflii Di‘ the relationship between wavelet! ond
QMF aeelli-iallal ITI.

245

For images we use the hierarchical wavelet dccompmtition sug-
gested by Mallet [7]. The 6 and H filters are applied to the image
in both the horizontal and vertical directions. and the filter outputs
subsompled-by 1 {mar oi mo. generating three oricntntion telec-
ti-rc high-part tuiilgantls. Ga. Ga‘. H6. and l. low-pats subltartd
HR. Tire pmctens is then repeated on the Hi‘! l>and_re generate the
next level oi‘ the deotratpoaition. etc. I-‘our octaves of decomposi-
tion leads in rhineen sttlrbands (Fig. ll. Fig. 3 shuts the image ot
Lena decomposed intltin tang. This hierarchical n]rplt1:relt to in'l1I¢
decomposition fulfills the role of scales in Marv‘: decomposition.
QMF arrbltand ending algorirlrms lorirturgcs have been ellllntelf by
Vcrtetli I8]. and Itrarrl: i.rr comptreartlon lay Woods urrtl O'Neil E91 -
using o flat dccornpoariiort and by Ghnr-.rt'i and Tnbatttbui |l_D| in I
pyramidal dceompoaltion akin to the vraveicr rrnnsrnrrn.

in gcnerel the wavelet lralralorrn requires much less hnrdvtnte to
implement than Fourier methods. aueh or the discrete cosine ‘inns-
fonrt DCT I31. However. for the -I coellieienr Dirulactthics |l]
wavelet. it il capecially Iitllple to calculate and lnircrrrhr: rrunsi:on11
in hardware as no rnultipliers are needed to calculate the uuantited
Coeflitieilfl lillfll I ll/32.ltl|l - [N32, iti1i_- 5/32. M1] -=
-3/'32) [-ll. Thin rtllwrr us to ittctrt-porltc the advantages oi'n mul-
tiresolutlun approach to decompose and reconstruct the image.
without high hardware corn.

The wavelet decornposirion Is an nltemative rqrtucnraliocr or
image data tun the nurnberor bits used to store it has not changed.
To compress the image data. we must decide urlrich coetllcients to
send and ltcrrv trlang bits to ure to code rhenr. Out compression
algorithm conaiata oftaking the low-puss rahband in trill. and then
deciding which cocflicientt within the remaining suhbands to keep.
The problem is to decide which or the nonzero rraveict tnnrftrnrt
eoetllcienis eonespontl to noise and which visually irnportsnt de-
laila of the image. in particular. Ire want to preserve the nrlge-like
inlhrtnatlou within the image. Simply rrircsholding each of the coef-
licienta. would leave aatta noise and visually unimpormrt infer»
fnulidrlt in the eoruprened irnage. We apply an algorithm btted on
Man‘: constraint of spatial iocallty when deciding which eoeifi- '
cicors Io keep. so that if an intponstrr detail occurs at some place
in the image we evpeet that the coeltielents curmponding to that
location will ertcced a threshold in more Ihan one octave: the ori-
entation of the delnii viii be dctertnirted by which of the GH. HG.
or G0‘ subbandr we use. In this way we utilize both the l'rI:r|l.tc:'te}-
and spatial locality ofrhe trrartclet rransfon-rt to dcliocl and code the
image data ehieieritly. By examining the l.|'n||e at tow resolutions.
and hence. a Imv ntrrnherofrarnpics. an initial guess rt the location
or the edges can be rude. Those gaeaaes can be confirmed or re-
jccled by examining lite llighei rrtaariulitarr detail signal in the some
spatial location. We shall one the satire technique to not oniy save
on processing time lrrl liner to compress the picture rltrtzrtrgir lI'j¢¢I-
‘mg Ihe redundant areas: by conttollitig Itlliclt an.-as arr; lejeeletl we
can aim for high cootprnuiorr and high quality in the final output.
The tlsresltald values are determined adaptively from it tirnple I-IVS
model. Finally. the mailer llre support or the wavelet. the least
nonzero wavelet coetieients will cot-respond to no edge. so the more
elfieiern will ‘be our eornpresrion seiterrte. For this tcurur we chose
the Daubecttrcr-t wavelet. The second tinge of IM compression
process it an qu.anI'tt.e the nttruining nrrnzorp cocflici-tilts: Vi: I-152 2
linear rrrid-step qtsa.trr.t:et with step-sine derived iionttr HVS model.
and then Hul!'rrtasr code the rewiring values.‘

- . III. ,'l'srrz Ccmnnasrnrr Aurnrttnm

in this teetiort we describe the algorithm il|i1¥l!||1l=|'|""'l? |'|= id==~diteriaed in the previous section. and combine this Will‘ “ °l'“""|'
zation model based on the HVS.
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Pig. 1. Wuclcc Ilucumnouiiziun at Len: image Ihigfl-pus cngnlclenln I In.

Each l‘Ih.'fIL¢'Is‘l'Il in II»: high-[um bundn nl‘ Ihc wavclct Irunsfum
Iurn um: - I - - - JI huu I'uu¢ |::I1.‘lIia."'I|lsh:III'1'l'.‘apurlLI1ngInin
~rI:IuI pmitlun in III-.' =h.‘c:m: hulls! uhovc II in r'n:quenc-_r. This mgv
gavel: using '.I I'uurnmm:i1 true to ccpmcnl I11: snmutun: of H1: dc-

 coafipmiunn. 1111:. mini: slru-Clurc was used wcccssfully in u prev
vim: video cnmpmsniun algorithm |E|. Thu In-:2 is cunxlruclcd h)
firslconsidnfing each rnclficicnl nI'ul| nricnminns l.I av 60'. UH.
HG I uflhc Inwcsl 0cm’: in Ihc high-puss band». The vuluc >3 undud
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and if its absolute value is gtt.-ater than at fixed threshold value. the
proeest is repeated for the four uttrrnspoattling eoelfleients in the
octave above. It riot. the ttee is rejected artd zero ettenfieients are
implied by the ending system for the tree shove. This technique
requires no control signals or addresses to be added by the under
and is L-lflciently implemented using staelt-based hardware.

Out thresholtltna algorithm was for ftnt-.tt optimal; tltmglt it fol-
lowed edges tttto rejected flu areas my elfieietttly. mistakes lup-
pened IN often Ind blurred parts OHM image around ed|e.t.

A better rnusurr: nrthe liltelihaots alur edge at a point within a
subltartd would be ttt calculate the energy in | small area eman-
psssin; the point. By using a small 2lt-_t 2 block as the nodes of
the tree structure. rather than single enollieicttt values. threshttlding
errors ur: greatly reduced. In addition. special hluelt codes are ‘tn-
trnrluced to inerete the coding efficiency above that of the original
method. Fig, 3 shows the new small 't>iuI.'k-based tree structure and
its ending with the aid oi‘ the following recursive iunetian.
Sartdftee. Firstly. the lolltvfllii itttage ms‘ is coded in lulilii bits
per pixel llsppti. then the tentaining mlthartdt are coded recursively
by applying the following subrotttine SttndTrec to all the blocks
within the lttwesl frequency subltattds. Iln the lollowing. let l"‘tx.
_rl be the cocfliciertt value. of tho doottutprtsiticn I at octave r. ort-
entatson s. and rtasitinit r. _r within that sttbhattd.)

5ertdTree (F. r. .t. 1. _t"|
if(THRESHOLD<ThtesitnltJFattetiual.i'''‘(.r 4‘ I0. l}._r +
i0- ilml

SertdTolttxntBittcitNotl:'.rlIpt3vJ:
SendCoeflit:ientlH"'i.r + [0, IL: + ill. in}:
Sernfimefl. r — l. .t. 1:. 23']:
seurrrreelf. r - I. .1. ll: + IL ‘.',t-I‘.
Settd-Ttwtf. r — l. s.1tt. lit 1- ll}:
SestdTIee(!. r - l. .t. II: + Il.1t'_t- -1- ll]:

1 else SendTok-‘.I'iiBlor:kE1|P'3'}:

The tires:-tatrtrmtion was chosen in be the sum or square: of the
block‘: coefficients ttotmallznd to tho HVS-pereqnusi tlttesltoltidiscussed litter.

Tree structuring unit block vodlaa lmra ettploited.irtterbond_ and
intrutannd correlation to facilitate dan ootoptetsian itttt so fa: we
have not considered. how to code the ooeliieient data itself
tsendcoetileta mat. with 8 opp we have 236 ttitfetent levels in tap-
reuent our transfonrtod eoeifieitnls. but this rtsay not he the opti-
mum ralue. We can use our Ittttwlodfl of lite HV8.-to detenrtine
the sllllllleil number of levels requirti ll aaeltpotttt within the
trnnstm-med image. The errerl caused by Iain: few: levels can be
cnniidcred as u noiu_soutoe'.' ritual ptyehopttysies states that 1
number of factors enact the noise aetuiivity or tlte eye: the tacit-
nround lt.ttnittane:e._th:' prnsimity tofu: edge. the ireqtaeney l-tend.‘ and texture rnattltinz.

Bat-kgrrturtrl lnrttrimrrtce is ttluoti In rtolae aetllillvily by We-
ber‘; law. The eye is_ In: senrsltlvrt to noise for lsrlgltter ltaehgroustd
lurninances. The law-pail ectefleiertts can be used to provide val-
ucs oi’ backgrour.d_lurninanee. - .

Edge pruxintIt_t' _or spatial making relates noise sensitivity to
' distance from and height of the edge." Arthe itoefileients we send

art: supposed to he part olan edge. the spatial Ineality ol the octave
provides distance ittiortrtation. while the energy til’ the lower fre-
quency coerlleients indicates edge height. Sensitivity decreases for
irtcrcating edge lteinht ttrtd at deer_ea.-tiaa distances from the edge.' Barn.’ ::rr.rt'tr'nr'r_r' it of the fll:lI\‘¢ eorrontly being ended. This is
l fixed value for such octave. orionution. and ltttnt'ataru:e-t:lII’Dlni-

.. .....__.__._.___..___,_'_____ __ ___

 
@%

l""’ll.r.:ys-it l""I1J-'.‘ - ._ _

Fk.l.Bhxlln:unnmm.

  
 

nlnee channel. We have l'tt11ntt|tnetl an eritpirieui tt'ttIt!t.‘| iii? lltitt
batted nrt I-WS ettperirtmtta.

Tfllnr? trta.tJ:.iIIg decreases the sensitivity to noise ilthetu ts hittlt
activity in the locality of the eoclflciestl. The energy nf lnwer fre-
quency oaeftciertts can indicate the texture ttetwtty level.

A matherttatieal model oflhe HVS can he trontttrttcteti tn illltttr
tha estirnatiurt of noise sensitivity for any part of the mnsrttmturt
ltnsae. Suiahantl ending algorithms that exploit HVS ptupcnit.-s
usually qtttntiee the whole tubhartd no the basis of spt.-t.-tral n:—
spattse stone. ssftanelt and Jttitrtstott [l31eetnI:ineti band sensitiv-
ity. bu-ltgrnund lurrrlurtec. and texture rnmrlting inltmnattittrt In
provide I. perceptual threshold for each wbbttttd cncliicfent. They
then used the minimtttn threshold value to quantize the entire band.
in our algorithm we use s similar calculation to cstimtttc the per-
ceptual threshold oleselt 1 by2ltIoeIt.It1d tltett qua ntiztc each pixel
in the block will this tllteshald using a lir ntitl-step quttnlizer.
We also use this perceptual Ilttetltoitl llaure to normalize the cruel’-
fielent value bcfoteedgrs detection. it should he noted that tlll|_\'
previottsltt coded values are needed in the quantizer. hence. no ud-
ditlonsl side infotrtutlon it required. .

The quntttim step-slse tor the eoei!.cit:t-its in Fig. 3. q.ttr,n. Ia.
calculated as follows:

astep tr. 3. .r. 1‘)
- 9. 8 frequency tr. s] t iutttinartce tr. .l'. vi

0 lattmm tr. .1. _r)°‘“‘
where 9. is a ttottttslieatiott ottttstsnt and
‘Mum! tr. :1

LCD. ifr -0

_ [J1 its - ca] . cm. iI'r - II. mtrmn. 0.ltS. in - :-
o.to. ifr - .1

luminance lr. rt. rl “I I

. 3 + fi E E :1-“lit + 1 +.r,t:“'.;' + I + HI‘ ’It-O}-I‘

texture (r, x. 1!]1 - r flfl.fll..It|G i I

= 2 I6" )3 E Ett"'-'n'_+ treat + ,-.:'tt‘t-t r a-H;-N

+ I6"'trat(l"""'"l{|.-'—‘| +x!1"’. I1-Ii * I 1' ’"
where vs} is [he virssuee at the I't.1|.Ira:nI:|Iit:h:nI l'|Il|~.'3:- ml the aun-
mtttlon is zero when its lttwer Iitttit utcce-J: I1‘ ‘-'f'l‘N-'|' 5'""‘-
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Fl]. .1. Chain] mull: fnr Lena. 11.: uriglnal Ina;: is in I): uppzrlcfl.
Thu uppcl rigltt in {add in GM birp (WI 3416). III: hm left at (L5)
in [sun .t-t.t1.h. and the mm right II n.41 bn usmt 13, III.

Ollreqlllliunl repruent I crime npptnairnntiun Io IIV: IIVS hols:
sensitivity: more Iccurlle rllotltth. cnuld be mud: to increase
cnrnprtssion or picture qtllllly.

Mt».-r the number ufquztrniutiun lcvcl: lus bean ulnbliahcd and
the coetficicnt ?'lII bcen qluhtizcd. Further mmpmlion can be

‘achieved by using the statistical pnrpcrlics al‘ uunmizut t:uclfi—
cicnts. A wall-known mtlstical pmpeny or fllhbflnll cmflicinnts is
Ihcir Laplntinn ptnhabiliiy clislrihutinn (unclinn with n vnodl: \‘l.I|Il.E

’of zero. Even nfierquantlzatlun this plnpcny il Ippmximatcly true.
A strrlpltt VIHBUIC length nr Huflrnnn wdc can be cnmxllllctcd an
the‘ basis of this assumed properly. Furlhcr campttuinn can be
mhiet-ed from the use of the variable length etude I! it etploitzc the
entropy wilhin the cuclfinnltl values. Table I INIWI some example
cud: suing: for a range arqutmtiutinn Iuveli-

' The firs: twu bill indicate the magnitude ulthc cocfilcicnt (00-
U. 01 — l. 10 - 2. and II - ren1uinin3I.._'l'rlethin1 hlt indicateslhl‘: sign ll] — pusaliv: and 1 — neunlivcl. Trailinpmmt temunarcd
hy '.t nil: indicate Iln: magnitude; nl Ihv: rcmttiningl t“.||ut:s ahmu:‘W0.

Our cdmpmsion algorithm uses ra-ur "onlmgonnl" lrcltnéquca

to exploit Icditndutcy wialtin lmnge data. Atklitimul Icchniquu-
could be used. well I! DPCM. nntba law-puns hunt! nrlhc tznln-pp
u! n It-lo:k'| noucm symbols. but we t:|u1cI'kt|J' do mat mmtdttr
them to be cusl elfcctivc.

IV. RIt.tt1L13.'
Wt: have up-plicsl ntlr mcthud tn twu standard ntunuchnutw |L'\l

images. Mills Alru.-t'i:'u anti LI:1'In: the t.‘nd¢d rutII::\IlI:t1 In an‘
snown in Figs. 4 and 5. ll:s]Ic|.'l.lL'¢|§. The Mist: r\l1lI:liL“J
the tint mm: olatct-.1 h‘q|.|l:Y|(:l: and it .‘:.'u1h_\ INN r-Ix»-!.~ -€'||‘
Tunfllll in ttizc. The Lcnu itntlgc in 51'.‘ hy 5|) pitrli iii -‘II-fl-H Tilt’
SNP. value: an calculated (lvI.'HM u-huh: nf 111: irllflfll-’ IIn«‘|m|I==t=
the anal.

our rmtlts chin: bcttrr mmpmsiun ntm Int 4 giwtl l‘I-'““'~'
quality than the uamtlunl subbnnd uldiny IIl\.'||IuII.t-. i"Il\.lIll“":Jl|-\-
aur Ilgqgithm is :_igniIlu:mtl_v simpler m a'mrtIt:tm:t:t in hunt» m- I.-

l.‘ in 

_ achieve ml-lime peflnmwncc. This in itnputmtt lug ilk‘ c--lult: III
ridcu scquunmt [}|. W: Iiml tint mt: umtn I1'||l'l||lllI'h'\l *‘.‘ '”"
nvzlhuds an: In: vittutally ut1hu_\-it-lg than I'm !J('T .-'Illl‘“-"‘|‘~‘ ""
ages due III the ltn.-I; or hlu-clzing \‘lI't1¢l_\. AI I'«'I'.\ '5'?" "‘“"|""“""“"
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flillh t-t.u_u:tl duttlitdutiuan ill ltttrndtaced. mainly as hluu.-nines: in [let
«‘lI'I."ulh and slight li.t2zinei.tt antund :tharp'di1tt:untinuiIit::.. In pntttt.'_-
ular. ll‘It: hackpntand rtI'1he Mill America and Lena images. and
Lena‘: I’-act: and sltnulder become lslmchy. -Also their hair and
Lu;-n;.t‘:. leather ltnit: their sharpness. Finally. ettr method it equally
applicable to the sttflflplvltsiun OI eolrtr illflfl in ‘(UV fnntlat.

In uttneluiitm. MI!’ I‘Bl\lilIi'ilIdie_a:|: till! the emnbinnlinn of I-{VS
ctttttputihic filter: with finite suppon. and a qttantixcr which inim-
tlut-c.s ntiIs_tc‘tn the VilLl|Illp_lfl_5l impbrunt and noise insensitive
g'IflI1h_I|r the imagc_gI\rett'.a Iiplificalll it'tIom_vt:nIt:nI in cantpte.t-
.<tttru'ttnu;tu_quuiity mrer.b|oe|t-based Ir-tosfottn mcthtulu. Finally.

,tl:: -l-tap Dauhoehie: li]It_r and the under are use are rttuclt sirnplcr
ttt implerltenl ttulatdtuaru than DCT. VQ I1? ulhur gubbttnd coding
ntetittsdtt I4 I. We are cam‘.-nlly lttcolprlrution this method in it t.-idm
ctxlec. and itnplenteallnp II in VLS[li!]l.
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I. INTIIODUCTIIJPK

The transmission and storage nf digital intugcts réituima an en.
tnotts expenditure of tttsoureett. necustitating the use at t,.'_lIl'I‘I|'Ir.
sinn techniques. Tiles: Icchniqutst inrlutlt: rV.‘iatit'r_:i_\‘ Inn‘ ctmtplt
ily predictive techniques such lllt adatptivt: dil|'c¢t:ntiu!_ tiialxe «.1-
ntodulltlott IADl'Cl\vlIIntl its variations. as well as n.-Iutitt.-Iy hug!
complexity technique: such as trunsionn tmdirtg and t-ectnr qlli
tiwian |1|. |1|. Must CI:tfl1pFE5.!iIJl'l !2tClII.'ll1u)' were lIl"lfli|1'-ill!"-t
velrtpetl l't1r speeeh and their application It! images i: at ttnn.-a |1||i
Irrnatle. This it especially Inn: of the low _l.‘tim|'l|.t:Jtil:)' predtctl
techniqtau. A good csamploatfthia is the highly pnpuittr ADPC
scherrte. Originally tlesinnetl for tpeceh [3]. it i‘lLlti been used Ihl
other itoutrcs with varying degrees of success. A mujnr [Imhlr
with its ate in image ending is the rapid degradation in Intuit
whenever an edge is encountered. Edges are perceptually very ii
ponettt. and tltetelure. their degradation can be perecptuully H.‘
ortnuyifln. Illhe in'Ia:.l:a untl-er €1.'lll:til.l.l.‘I'fltll'lll t-untuin rnetlit::t| tlfhl
cntifie data. the problem becomes even more lrnptanant. a: tug
provide poailictn Infonmtbn which £I‘lJl_\' laecmcittl In the victim-
Thin poor ujpe reeemtntctioti quality has been a major Iitcttir
preventing AIMICM ftom becoming as popular For image t:tIt.IIl
as it is for month coding. While good edge reeonttlmttion cap
bilily is an important requirement for irnage ending .t.:ltt.-nu::'. ill
other requitement till! i! pining in in-tpttrtancc with the prulllut. _
lion of packet switched networks ii the ability to encode that: imag
al tlifierlttll lites. In a packet switched netumrlt. the ainilable that
net capacity is nu u fitted quantity. but rather fllll.'lUtlll:'l- us. a turn
lion ol’ the load all the network. The emttpretasiun tnhcnn: mu;
thcreftne. be cttpeblc of taking advantage of increased cupuci:
when it heeontest. available while prt1vlditt-,- gmt.-cral U€fl|'BUlllil
when the tits doeteaaea to match deeseuatetl twailahle uuput-it_t-.

in thin paper we describe ll DPCM-based ending sthenti: u iIiL'
hnlt the d=uirt:d_ptt'tpt:tt'It:I iistell ubttvc. It is a Itwt uttrnpltrxit
sehertte with excellent etlge ptestervttttott in the ieutmslmutcd in
age. It talent lull advantage of the available channel |.'npl.Il"Il) pn
vidinp loulcu compression when sufiit.-it-nt tapas: it. nuitut-I.
and very fltfleflll defllldation when a. reduction in rate is require.

  

ll. Ntmtflutu Aim Pnuaatttt Fttnttutarrtax

The DPCM xystetnt comtlaittt or turn main bloeiut. lhc l.|l.IuIllI'(.t
and the predictor lane Fig. I). The pretlietttr uses the t.-mreialiu
between ttarq-.tlr.a urine wtttreI'tIrt-n slit: to prt:t£it:t'thu next santt-at
vl|u‘> This predicted value in rentmred from the tn-‘.trt:!urt'i1 all l.l1
transmitter and reintmdtteed at the rttccircr. The pretlictipn tun
is quantized to one of a finite numb-erof values |ld3'llt:h'i;_\:illliit}d an
trantrnittod In the tcceiver and is denoted by r,tl-‘I. The dillln.-nu
between the pmtlitticltt ermr and the quantized prctlictian errur :
called the qttanttwlon errnr or the ql.Il.I|'||i'J-lllilll'I nutne. Irthu ¢lI:tr
net is error free. the tecmttttrucltnn errttr at the l'l2E¢l'i't?r in sitnpl
the quantization error. To set: this. nnlc (Fig. I 3 that the pI'cdit."I:iI-
érrur rtultl it given by .

._cl-El-sill}-—_rtlJ.'I - '2 i.
Il}5‘.hTllw9l5DI.flfl-§- In»: IEEE ‘
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1: Iuirnooucrlou

We shall consider the problem of storing, transmitting, and manipulating digital electronic images. Be-
cause of the tile sizes involved, transrnitting irnages will always consume largo tunounta of bandwidth, and
storing images will always require hefty resources. Because of the large number N of pixels in a high reso-

lution image. manipulation of digital images is infeasible without low-complexity algorithms, i.e., O{N) or
O(N log(N)). Our goal will be to describe some new methods which are firmly grounded in harmon'1c.a.nal-
ysis and the mathematical theory of function spaces. which promise to combine efiective image compression
with low-complexity image procuring. We shall mice a broad perspective, but we shall also compare specific
new algorithm: to the state of the art.

Roughly speaking, moot image compression algorithm: split into three parts: invertible transformation,

lossy quantization or rank-reduction, and entropy coding (or redundancy removal}. There are a few algo-
lrithms which diller fundamentally from this scheme, e.g., the collage coding algorithm [Bu-nsley,Sloan], or
pure vector quantization of the pixels. The former uses a deep observation that pictur of natural objects
exhibit sell’-similarity at ditferent scales; we prefer to avoid relying on this phenomenon, since our images
may not be “natural.” The latter uses It complex algorithm to build a super efllcient empirical vocabulary
to describe an ensemble of images; we prefer to avoid training our algorithm with any sample of images. to
avoid the problem of producing a auficiently large and suitable ensemble.

There has emerged on international standard for picture compression. promulgated by the Joint Photo-

graphic Experts Group {JPEGL which is remarkably effective in reducing the size of digitized image files.
JPEG is 2-dimensional discrete cosine transform [DCT) coding of 8 X 8 blocks of pixels, followed by a. possibly
proprietary quantization scheme on the DCT amplitudes, followed by either Hulfman, Lernpel—Zi1r—Welch
or arithmetic coding of the quantized coefllcients. It has some drawbacks: for example, several incompatible
implementations are allowed under the standard. Also, JPEG degrades ungracefully a high ultrahigh com-
pression ratios, and it makes certain assumptions about the picture that are violated by zooming in or out.

or other transformations. it works so well on typical photographs and many other limsges, however. that it
i has become the algoritllmto beat in most applications. JPEG fails most noticeably on high resolution (i.e.,

oversampled) data. and on images which must be closely exarnined by humans or machines.
Alternatives to JPEG have recently appeared, and we shall discuss 3 of these: the fast discrete wavelet

' -transform, the local trigonometric or lapped orthogonal transform. and the beat-basis algorithm. These differ
in the tranaforrn coding atop, i.e.. instead of DCT they firs: apply’ the wavelet transform, lapped orthogonal"

I-'Qr_a.nsfo1'It'I. or wavelet packet transform, possibly followed by a hest—bs.ei.s search. The resulting stream of
a.mplitudea- is then quantized and coded to remove redundancy.

Research supported in part by ONR. Grant NI]-illllll-83-K0020 and by FBI contract Altlflflil .
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Eidsting image processing algorithms work on the original pixels or else on the (2-dimensional} F0!-|l"lel
transform of the pixels. If the image has been compressed, it must be uncompressed prior to such processing.
Alternatively. we can try to devise algorithms which transform the compressed parameters. If compression
is accomplished by retaining out a low-rank approximation to the signal, then we can use more cornplex
algorithms for subiaequent processing. To put this idea into practice. we need to retain useful analytic
properties such as the large derivatives used in edge detection. These will not be preserved by purely
information-theoretic ceding-such as pure vector quantization. but we can choose transform coding methods
whose mathematical properties combine eflicient compression with good analytic behavior.

2: Tnnmssoltu Comma IMAGE COMPRESSION

A digitally sampled image can only represent a band-limited function. since there is no way of resolving
spatial frequencies higher than hslfthe pixel pitch. Band limited functions are smooth; in fact they are entire
analytic, which means that at each point they can he dillerentiated arbitrarily often and the resulting Taylor
series converges arbitrarily for owner. Since digitally snntpind images faithfully reproduce the originals as for

as our eyes can tell, we mey confidently assume that our images are in fact smooth and well approiiimated
by band-limited functions. Another way of saying this is that adjacent pixels are highly correlated. or that
there is a much lower ranlr description of the image which captures virtually all of the independent features.
In transform coding, we seek a basis of these features, in which the the coordinates are less highly correlated
or even uncorrelated. These ooordinates are then approxinntted to some precision. and that approximate
representation is further passed through a loaaless redundancy remover. ‘

The figure below depicts It gneric image compression traoafnrrn coder. It embodies a. three-step algo-
rithm:

3 mg Hlmwe
can. Tramfolnt quu-run "dummy sung.

Figure 2-1.

Ideallzed transform coder.

The fire: bloc]: (“'Ihmforrn") applies an inwrtible coordinate transformation to the image. We think of
this transformation as implemented in real arithmetic, with enough precision to keep the truncation error
below the quantization error introduced by the original sampling. The output of this block will he treated
as s stream oi‘ real numbers, though in practice we are always limited to a fixed precision.

The second ("Quantize“j block replaces the real number coordinates with ioweriprecision approximations
which can be coded in a {arnnll} finite number of digits. If the transform step is effective, then the new
coordinates are mostly very small and can be set to eero, while only a few coordinates are large enough to
survive. The output of thil hloclr is A stream of small integers, most of which are the some [namely D). If
our goal is to reduce the rank of the representation, we can now stop and take only the surviving nmplitudes
and tag them with some identifiers. If our goal is to reduce the number of bits We must transmit or store.
then we should proceed to the next step.

The third block ("Rernwe redundancy") replaces the stream of smell integers with some more eflicient

‘alphabet of variable-length oherocters. in this alphabet the frequently mzeorringletters (like “flj') are repre-
sented more compactly than rare letters.
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3-. Duoonaswriou av rnarisroemxrlonr

We will consider six pixel transformations which have proven useful in docorrelating smooth pictures.

3.1: K.arhunen—Lqe\rs.
Let us now fix. suimage size—aa,y height H and width W, with N = H K W pi!tels—~sncl treat the

individual pixels as random variables. Our probability space will consist of some collection of pictures

8 = {S;,S;....,S_u}. where M is a big number. The intensity of the nth pixel S(n], 1 g n. 5 N, is
a random variable that takes a nonnegative real value for each individual picture 5' E 5. Nearby pixels
in a smooth image are correlated, which means that the value of one pixel conveys information about-the
likelihood of its neighbors’ values. This implies that having transmitted the one pixel value at full expense. ‘

we should be able to exploit this correlation to lreduoe the coat of transmitting the neighboring pixel values‘.
This is done by transforming the picture into a new set of coordinates which are uncorrelated over the
collection -5, and then transmitting the uncorrelated values.

' More precisely, the collection of smooth pictures 5 has oil‘-diagonal terms in the aulocovasiance matrix
A = (A(;,;)}_‘.‘_',,, of the pixels in .5‘:

M

(3-1-1) Aim‘) = $7 )2 M) >< Smo).rI'I=l

where .§.,, = .5‘... - -5‘; E", -9.... A can be dlagonslizsd because it is symmetric (see [Apostol], theorem 5.4.
page 120, for a proof of this very general fact). We can write T for the orthogonal matrix, that diagonalizes

A; then TAT‘ is diagonal, and T is called the Karhunen—Loéve transform, or alternatively the principal
orthogonal dcoanaposition. The rows of T are the vectors of the Ka.rhu!:en—Loeve basis for the collection 5.
or equivalently for the matrix A. The number of positive eigenvalues on the diagonal of TAT‘ is the actual

number of uncorrelated parameters, or degrees of freedom, in the collection of pictures. Each eigenvalue is
the variance of its degree cl’ freedom. T3‘... is 5'... written in these uncorrelated parameters, which _i.s what
we should transmit. I

Unfortunately, the above method is not practical because of the amount of computation required. For

typical pictures, N is in the range 10‘-10'. To diagonalizs A and find '1' requires 0(N") operations in the
general case. Furthermore. to apply 2'' to each picture requires O(N‘} operations in general. Hence several
simplifications are usually made. '

3.2: DCT.

For smooth signals. the antocovariance matrix is assumed to be of the form

(32-2) A(-'.:') =- r"'""'

where r in the adjacent pixel correlation coeliicient and is assumed to he just slightly less than 1. The

_ expression Er‘ —j[ should be interpreted as II’, —j,| + |:', — jgf, where r'.. and i. are respectively the row and
column indices of pixel i. and sirnilsrly" for j. Experience shows that this is quite close to the truth for small

sectionsof large collections of finely sampled smooth pictures. It is possible to compute the Kathunen—Loéve
‘ basis exactly in the limit N —o oo: in that case A is the matrix of a two-dimensional convolution with an even
function, so it is diagonalized by the twodirnensional discretis cosine transform -[DCT]. In one dimension,
this transform is an inner product with functions such as the one in the figure below:
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.4 -0.1 D

Figure 3.2-2.

Example DCT basis function.

This limit transform can he used instead of the exact Km-hunen«-Loeve basis; it has the added advantage of
being mpiclly computable via the fest DCT derived from the fast Fourier trnnsforrn. The Joint Photographic
Experts Group (JPEU) algorithm uses this transform and one other simplification. N is limited to 64 by
taking 3 x 8 sub-blocks of the picture. JPEG sppliei two-dimensional DCT to the sub-blocks. then treats

the 64 vectors of amplitudes individually in a. manner we will discuss in the next section.
3.3: LCT or LOT. -

Rather than use disjoint 8 X 3 blockl as in JPEG. it is poanihle to use "lapped" or "localised" (but still
orthogonal) discrete cosine functions which are supported on overlapping patches of the picture. These local
cosine transforms (I.-CT, no in [Caif|non,Meyor]) or lapped orthogonal transforms (LOT, so in [Molvnr]) are
modifications of DCT which attempt to solve the blockiness problem by using smoothly overlapping blocks.
This can be done in such a way that the overlapping blocks are still orthogonal, i.e., there is no adlied
redundancy from using amplitudes in more than one block to represent a. single pixel. For the smooth blocks
to be orthogonal we must use DCT-IV. which is the discrete cosine transform using half-integer grid points
and half-integer frequencies. The formulas for the smooth overlapping basis functions in two dimensions are
derived from the following formulas in one dimension. '

For definiteness we will use a particular symmetric bump function

sin{(l+sinrr::), if ~§ < =< §.
0. otherwise.(13.3) ‘ em = {

This function is symmetric about the value .1: = It is smooth on (—%, with 'Va.I'|i61liB3 derivatives at
the boundary points, so that it has a. continuous derivative on R. Notice that We can modify ii to obtain
more continuous derivatives by iterating the innermost sin Fill. Let 51(1) = 11(3) and define

(3.3-4} b,,.H(z] = b, sin rrz}

Then tn will have (use L’H5pitsl's rule!) at least 2"" vanishing derivatives at —-i- and
Now consider the interval of integers I =-. [{l,1.2,. .. , N — 1} where N = 2" is a. positive integer power

- of 2. This can be regarded as the “current block" of N em-iples in an array; there are previous samples
I‘ = {...,—2,-1} and future samples 1”’ = {N,N+ l....} as well. The lapped orthogonal functions are
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mainly supported on I, but they take values on {—-Nf2,.,. ,-1} C J" and {N,... ,N,/2 -1} C I" as well;
those are the overlapping parts. For integer: k E {0.1..._ . , N -1}. We can define the function

(.13-5) _ .- e.(;')=-£7 coe(:r{lr+-;-)N.

Apart from la, these are evidently the basis functions for the smcalled DCT-IV transfofln. The figure
below shows one such function. with N chosen large enough so that the smoothness is evident:

 
-0.4 -0.1 O 0.1 0.4 0.6 0.8 1 1.2 [.4

Figure 3.3-3.

Example LCT basis function.

The orthogonality of such functions may‘ be checked by verifying the following equations:1'

"F4 - _r

(us) 2 v.um.-u)={;‘

The chosen window function or "bell? allows cosine: on adjacent intervals to overlap while remaining
orthogonal. For example, the function 1lu,(j + N} is centered ever the rangej E {-N.-N +1,...,-1.} end
overlaps the function tbyfj] at values j E {--N/2,-N/2 + I... . . ,N/2 — 1}. Yet these ttvo functions are
orthogonal, which may be checked by verifying the equation below:

f -1

{ 3.3-?) E tlJ.t(j + NW-'J:=iJ') = 0. for all integer: k, Jr‘..-‘=4 -

Of course, rather then calculate inner products with the sequences wt, we can preproceea data so that
standard fast DCT-IV algorithms may be used. This may be visualized as “folding” the overlapping parts
of the bells back into the interval. This folding can be transposed onto the date, and the result will be
disjoint intervals of samples which can be "unfolded" to produce smooth overlapping segments. This is
best illustrated by an example. Suppose we wish to fold a trnooth function across 0, onto the intervals
{—N,(2,... ,—l] nnd'{U,1,...,N/2--1], using the hell :5 defined above. Then folding replaces the function

Page 212 of 437



Page 213 of 437

ti MI..liDEN_VICTOR WICKERHAUSEFL

f = f(;') with the left and right ports f3. and fg+I

f{j), ' arj < —N/2.

1c=s'5imn — 1(iti)r:—:' — 1). 11; e {—N/2.....—1}.

,B+('_., 3 { 11<i*.e*1:u1+1ti€-v=*)r(—: -1). 11:’ e {e1.1.. . . .1w1 — 1}.fit}: if i 2 N/1

The symmetry of b allows usrto use t(—-2] instead of introducing the bell attached to the left interval. This
action divides I into two independent functions (the even and odd ports of 3') which merge smoothly around
the grid point 0. The process is an orthogonal trnnaformntion. We can fold the smooth function around the
grid point N in s. similnr manner:

. IO). if} < N/9;
Ii-(J) = - -

«$1 — 111(5) — ML?-i ~ 1mm -3" — 1). 1:1" 6 W2.- - - .N ~ 1}.

mu): { r:{-"$1 ~ 1)f[j) +a(li',,:i —1)f(2N—j - 1). ifj e {N.N-i- t,...,3N/2 —-1}.'M). iii‘ 2 win. .

The new function fa defined below is a smooth, independent segment of the original smooth function J‘,
restricted to the interval of values «[0. 1,... ..N — 1}:

l . _ fol-ll‘): "fJ'E{011u---1N/2-1}.
”"3’1°) M” ' i f:—{:'). 1r.«' e {N/2.N/1-+1.....N— 1}.
We can now apply the N-point DCT-IV transform directly to fa.

We can likewise define f,,, for the values 1' E {mN,mN + 1,. . ., (m + 1).N -- 1} by the same folding
process. which segments a smooth function f into smooth independent blocks. Folding tointervale of different

'i'...(:'_) = {
( 3.3-3}

( 3.3-9)

‘lengths is easily defined as well. We can also generalize to two dimensions by separ-ably folding in x and
then in y. _

Unfolding reconstructs f from In- and fn+ by the following formulas:

1(=iai1r..-u>+1tit*)ro+(—:— 11. 11: e {-11/2.....-1}.

1ttt*)r..+(:> — 1t;"§i1:1—i—: -11. an a 01.1.... .1122 -1}.

Composing these relations yields :5; = [i(J‘-‘-fill)’ +b(:4'—;,!f3)=] fun‘). This equation is verified by the
bell B defined in E‘.q.{3.3-3}, for which the sum of the square is 1.

3.4: Adapted block engines.
We can alsothuild a library of block LCT bases (or block DOT bases} and search it for the minimum

of some coat function. The dlooeu “best LCT buts” will be u. petchworlr of different-sized binds, adapted

to different—siud embedded textures in the picture. Again it will be necessary to'encode the basis choice
together with the amplitudes. A description of two versions of this algorithm and some experiments may be
found in [Ehng,Sere]. '

3.5: Subband coding.

A (one-dimensional] signs] may be divided into frequency subbanda by repeated application of convolution
by a. pair of digita.l'filters. one high—pa.'ss and one low-pass, with mutual orthogonality properties.

Let {'hg}:';1, [gg}:"=;I be two finite sequences. and define two operators H and G as follows:

(3.3-11) f(j} = {

I M—1 _ H-1

(-3.542) (H131. = Z 11.1.1.-+2.. (Gr). = E 9.-rm». v,-.—.ej=il
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H and G are defined on acguara-aummable signal sequences of any length. They are also be defined {or
periodic sequences of (even) period P, where we simply interpret the index of f as 1’ + 2!: (mod P). In that
case, the filtered sequences will be periodic with Pltrioii PI2.

The adjoints H’ and G‘ of H and G’ are defined by

('3-5'43] "(flvll = 2 -lie-ejfj» iG'flt- = Z 3!:-1jfj~fish-2j<M' _ 05$-2j<M

H and G are called (perfect recmutructionj quadrature mirror filters (or QMFs) if theylsatlsfy a pair of
orthogonality conditions:

(3.5-14} HG‘ = G5" = 0; are + G"G= 1.

Here I is the identity operator. These conditions translate to restrictions on the sequences {ht}. {yr}. Let
mg,m1 be the bounded periodic flmctiona defined by

- H-1 ‘ M'—l ‘
(15-15) mn{{} = E‘ .-..e'’". ....(.g) .—_ E‘ 9.9"‘.i=0 i=0 _

Then If, G are quadrature mirror filters if and only if the matrix below is unitary for all f:

M» (22% ::t::%)
This fact is proved in [Daube-dries]. QMl:"s can be obtained by constructinga aeqtleuce'{h;.} with the dmired
law-pass filter response. and then putting 571. = (-l.)"l'm_1_r. That 1-eierence also contains an algorithm for
constructing a family of such {he}, one for each even filter length M.

The frequency response of one particular pair of QMFs (“C30”) is depicted below. We have plotted the
absolute values of my and F1]. respectively, over one period [—ir.1r]:

 
Figure 3.5-4.

Absolute values Offllo and rm.

Notice that me attenuates frequencies away from I}, while 1'73} attenuates those away from Ill.

Below is the traditional block diagram describing the action of a pair of quadrature min-or filters. Onthe left is convolution and downsampling (by 2}; on the right is upsampling (by 2) and adloint convolution. i
followed by summing of the components. The broken lines in the middle represent either transmission or l
storage. - v '
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Figure 3.6-5.

Block diagrém of nubbnnd filtering.

The underlying f'unI:tione of sol-.-bend filtering are produced by iterating H’ and G‘ until we have enough
points. For example, 10 iterations of H‘ applied to the sequence en = .0,0,1.0.D. produces at 1024-
point zipproximation to the-smooth function whose translates span the lowest-frequency subbend. Likewise,

a single G‘ after 9 iterations of 3‘ applied to eg produces a 1024-point approximation to the next lowest-
frequency function. These are distinguished examples; the first is called the “scaling” or “father” function.
while the second Lt called the “wavelet” or “mother” function. They are depicted beiow for a particular
QMF (“C 30." with 30 tape]:

My fl/My
C‘305aIM'Ig'orIhIiIIr1u:IoIfarr Oaflwuwbtornlofiaerhu-z:uwr

Figure 3.5-6.

Lowest frequency subband basis functions.

Higher-frequency aubbutdl are Ipenned by functions with more oscillations, which are produced by using

6'‘ earlier in the iteration. The sequence of filters used to generate a function can be converted to an integer
in binary notation as follows. Put P0‘ = H‘ and Ff = G‘ in the formula E0: the function (respectively,
9|-It -Po = H and F1 = G]. Then for any pair of integers It and L with 0 5 n < 2‘ we can write

rt = 1102“ +1112‘ + - -- + m,_12"". where rt; E {D,1] for all 1‘ = D. 1,... ,L -1. To that combination (n, L)
we can associate a vector Pg“ n F,;1o a F,'.'L_1eu.

- For example, the following functions are 102-I-point sequerifies H'G‘(H')‘e., and G"G'(H')a_e.;, respec-
tively given by (n.L) =(2.10) and (n, L) = (3.10):
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 Hlghorhoousrlcycan noniolpuotsss

Figure 3.5-1’.

I-Ilghordi-aquenoy suhband basis functions.

It is wail known (and shown in [INRMD that the number of oscillations of the vector produced in this
mmner increases with 11', where n is the Gray-code permutation of 11.’. The renumbering n. -4 :1’ relates
Paley order to sequency order for Walsh functions, and has an analogous eifect in the smooth case. This
fact can he used to analyze the spectrum of acoustic signais by measuring the amplilzudes of wavelet packet
coeflicients. Acoustic signal compression by wavelet. packet and best-basis methods was discussed in

Now we can define 4 2-dinlensional convolution-decirnatiou operators in terms of H and 5‘, namely the
tensor product: of the pair of quadrature mirror fitters:

( 3.5-17)

( 3.5-13)

f 3.5-19)

( 3.5~20)

FugH®Ha Fu"(=-3!) = §__:’*i’h'"{"+2=;J‘+9:I)U

F1 d='rH 8 G. .F‘11.r(2,y} = 2h.'9,*u(:'+ 2z.j + 23:)-‘J

F: E‘ Goff, F21-"(=aSF} = E9.‘fi51=(I'+2x.j+ on:4

Fa ‘£1 G83 G. a"sIr(=. y) = 25:9,-v{I' + 2.1=.j + 99)6.:

These convolution-decimation; have the {allowing adjoints:

[ 3.5-21)

{ J-.5~22)

{ 3.5-23)

( 3.5-2!)

F{;”(z!§'} = 2h£—II'hV-Ijuhllj)‘J

‘P-'l|.""'('1=Iy)'_' £hI—3l'gV—3ffl[lI|j)1.:

F1.‘-(31?) = Z9:--Zihy-'£jV("u.'”I-1'

Fa'v(-‘=.yJ = ):9=—2a9u—2:v(1'.i)-.1

The orthogonality relations for this-collection are as foltows:

'( 3.5-25)

( 3.5-26)

F:-.F,.;. = ‘Savor: “

f=Fn'F'o$FfF1€9F2'F:$-‘3'F:-
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By a. “picture” will mean a finite sequence indexed by two coordinates S = 5(z,y). It is convenient
to regard pictures as periodic in botyh =.-' and y. though this is not absolutely necessary. For simplicity
of implementation, we shall also assume that the 3-period (the "width" N, = 2"‘-) and the grperiod (the
“height” N, = 2"!) are both positive integer powers of 2, so that we can always decirnete by two and get an
integer period. The space of such pictures may be decomposed into a partially ordered set W of subspaces
W[n,m) allied snbbands (see below}, where m 2 U, and D S n < 4"". These are the images of orthogonal

projections composed of products of convolution-clecirnations. Denote the space of N, x N, pictures by
W{fl, D] {it is N, X N,.dimensionel}, and define recursively -

( 3.5.27) W(-in + 5. m + 1}: 5;-5'.-ii/(n, m) c mo. 0), for :'= o,1,2,:t

The orthogonality condition on the QB/[Ts implies that the projections from W(0,0) onto W(n,m) are
orthogonal, i.e., they oonserve energy. The subspace W(o,m) is (N,2“"‘) x (N,2'"'}-dimensional. These
rsubepaces may be partially ordered by a relation which we define recursively as follows. We say W is a

' precursor of W‘ (write W -( W’) if they are equal or if W’ = F'.F‘W for a convolution-decimation F in the

set {P9, .F‘1,E;,F,}. We also say that W -< W’ if there is u finite sequence ‘D3,. .. ,V, of subspaces in Wench
that W 4 1''; < -< V, —< W‘. This is well defined, since each application of PF incresses-the index in.

Subspace: of assingle precursor W E W will be called its descendants. while the first generation of
descendents will naturally be called children. By the orthogonality condition.

(3.5—28) W ==!'],‘FgW9FfF1W$FfPiW$F,'F:i$C

The right hand side cotains all the children of W.
The subspaces W(n,m) are called subbsnds, and the transform coding method that first transforms a

signal into subbsnd coordinates is celled subbsnd coding. If S e w(u.o) is a picture. then its orthog-
onal projection onto W(n,m} can be computed in the standard coordinates of W{n,m} by the formula
Fm ...F[,.,;W(0,0), where the particular filters Fm .. . P9,.) are determined uniquely by n. Therefore we
can express in standard coordinates the orthogonal projections of W[D, 0) onto the complete tree of subépac
‘W by recursively convolving and decimneing with the lilters.

The quadrature mirror filters H and 0 farm a partition of unity in the Fourier tritulforrn (or wavenumber)
space. The same is true for the separable filters Fr. They can he described so nominally dividing the support

set of the Fourier transform 5' of the picture into dyadic squares. If the filters were perfectly sharp. then
this would be literally true, and the children of W would correspond to the 4 dyadic snbsquares one scale
arnnller. We illustrate this in the figure below.

 
Figure 3 .5-B.

Four‘ subband descendants of a picture.

The next figure shows 2 generations of deacendents. the complete decomposition of R‘ xR‘. The subbonds
are labelled by the "9" index in W(n,m]. Within the dyadic squares are the n-indicts of the cinrresponding
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subspaces at that level. If we had stsrted with a. picture of N x N pixels, then we could repeat this
decomposition process log,[N) times.

E
50"‘ I3 law! I ' IIWI2

 
Figure 3.5-9.

Two levels of subbsnd decomposition.

All subbtmds together form n quedtree, in which each subspace forms It node and directed edges go from
precursors to descentients. The orthogonality relation among the subspaces implies that every connected
subtree which contains the root W[D, 0) corresponds to an orthonormal auhhsnd decomposition of the original
picture: the sltiabsndecorrepond to the leaves of the subtree. Eovilig stated this general nonsense result, let
us consider specific examples.

The subbends W{fl,m) so we define them are in one-to—one correspondence with rectangular regions (in.
fact squares) in wsvenumber space, and the qundtree stacks these regions one on top of the other. We
can ideslize various orthogonal subbond bases as disjoint covers of wsvennrnher space. A few of these are
schematically represented below;

one
Bull ol Itflalndl MI.IiiirIloi'I.I‘lhI'I _D! Adapted Ithbend or

I! one level wavelet lands vrlvilai puiwlbuio

Figure 3.5-10.

Various decompositions into subbsnds.

The leftmost decomposition is as subbnnd decomposition in which we have tall the subbnnds at a fixed
level—in this case, level 2. The subbonds are labeled (0.2), (1.2). (2.2). (3.2), . (15.2) m in figure 3.5-9
above. The middle decomposition produces 2-dimensiontl “isotropic” wavelets, i.e., which have the same
scale in bath the 2: and y directions. The subbnnds in this decomposition are labelled by (0.4). (1,4), (2,4),

(3-‘iii (ML (13): (3:3)! (1:2): (2-2)! i-312): (1:1): (211)! and (3I‘1)- _
The rightmost decomposition is an adapted subbnnd luuiis such as might be discovered by minimizing
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obvious that a function it with the requisite properties exists. The surprising and fortunate recent discovery

of many such functions flfiaubcchieel. [Ma.llst}, [Meyerl and others} also provided a. fast O[N} algorithm to
compute the associated wavelet transforms.

The wavelet basis down to level L consists of the elements spanning the subhands W(1,1), VI/(2,1).
W[1l,1), W(1,il}, W"-[2, 2), lrl/(3, 2), ... ,Wf1,L—i), W(2,L—l). W'[3,L-1), W(1,L). W(2,L), W[3,L) and
the largesbscale average W(il, L). The pixel values may be transformed into this basis ‘die the 2-dimensional
version of the "pyralnid scheme“ described in lliaiallat]. Graphically, this is the following:

. ,_- _ . _

"“"“°"‘ ‘W’-°l :03’ "€9.11 *FL> W(0.!l -F'J—> - - » —@--) ww.I.-1:33-> w(o,u
‘I F: ‘ Fr Fr

W(1.1J WM! won: W(1.L)
Dalallr F’ F? F’ F9‘ w(2.11 w(2.:l wtaai - - - w(2,¢.J

F3 F3 F3 1':
Wm} won: wt-M} W[‘.I.I.l

Figure 3.5.2-12.

Two dimensional pyramid scheme.

The pyramid scheme is also called a. niultireeolution analysis, and has been extensively studied. It provides
an algorithm of conipleidty O{N) for the transformation of an N-pixel picture.

3.5.3: Custom subbonda. There may be features which are most eficisntiy dacribed by expansion into
certain suhbsnda. For example, if the image contains textures of a particular size and Erequeoqr, than we-will
find large values in the corrupunding eubband. This is true for example in fingerprint image compression,
where both the large-scale texture of the ridges and the fine-scale texture o! the pores contribute large values.
The first are not so important for identification since ridg can be easily deformed. while the letter must he
presented very accurately since pore shapes and distributions often provide strong Clues for identification.
In that case, we can choose to include both the ridge and pore subbands in our transform, de-emphasize the
values of the first and amplify the values in the second.

3.6: Adapted subband coding.
Wavelets do-correlate pictures which are close to self-similar. Other subband hues decorrelate pictures

composed of overlapping tattures on different scales. Some combination is needed for pictures which are
close to self-similar but contain embedded patches of textures of various sizes. but it is not clear that any
fixed choice of subbands will contain suitable templates. But it is possible to use a. library of bases of wavelet

packets {this name is from {CMQW]), which areelhciently encoded superpositions of wavelets. These adapted
subband bases come with a natural quad-tree organization and some remarkable orthogonality properties.
it is possible to introduce a cost function and pick a “best” wavelet packet basis for one or many pictures.
This bssis and the resulting decorrelated pixel valuess can then be compactly coded. but also the analysis
performed during the choice of representation provides some information about the picture and could be
useful for feature recognition.

3.6.1; Adopted subtondr or wavelet pockets. As mentioned in an earlier paper ICMQW], we can build
a. large library of adapted suhbanci bag by retaining all amplitudes in the quadtree. The amplitudes
produced at eadi stage are correlations of the signal with compactly-supported oscillatory functions called
wavelet packets. Hon: the tree W of subspaces we may rhdose a basis subset, defined as a cpllection of
mutually orthogonal subspaces W E W. or lists of pairs [n, rs), which together span the root. Basis subsetsI
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are in one-to-one correspondence with dyadic decompositions of the unit square. Classical subband coding
taltea amplitudes from a fixed set oi‘ subbands. usually from a. single level of the quadtree. Wavelet transform
coding also extracts amplitudes from a fixed collection of blocks, the octave subbsnda.

Even for a small tree, the library of wavelet packet bases is very large-.

Proposition. The ii-timber of wavelet packet haais subsets for N-pixel pictures is greater than 2'". The
number of operations nooded to compute all the transformed pixel values in all those basis subsets, however,
is no more than Nlog,(N). '

Proof. A decomposition to- level rt is only possible for a picture of size at least N = 4''‘ pixels, and in such a
tree there can therefore be at most N log¢(N)) transfonned pixel values. Let A, be the number of bases in
the library corresponding to a. tree of 1+1: levels, namely levels 0,. .. ,n. Then An = l, and we can calculate
A,,.,.1 = 1 + A}, namely the root and combinations of the 4 children, which are independent suhtreea-with
An bases each. Simplifying this by discarding the I gives the estimate A,,.,.1 > 2" =: 2” for n > 1. El

3.6.2: The best-basis algorithm. To each subspace W E W we may assign an information cost Hw. The

quantity Hw(S) measures the expense of including W in the decomposition used to reprment the picture 5'.
Define the beat basis for representing 5' (with respect to Hw) to be the basis aubsetflo which minimizes

(35.2.29) 2 Hw(S] '
over sll basis subsets B C W. .

Some examples of information cost functions are listed in [CW]. The simplest is the number of elements
above a predetermined threshold 5, namely Hw(S) = #{:I: E Sw : |.-cl 2 5}, where Spy is the sequence of
the pixel values of S as transformed into the standard basis of W. This sequence is F;__ ...I"‘.-,5‘, where
W = F,-'_F,:_ F,-'1 Fr,“/(0,0). The following algorithm finds the basis subset with ‘the fewest amplitudesabove the threshold.

Set a. predetermined deepest level L. Label as “kept” each subspace at level L. i.e., the subspaces indexed
by (n,L) for 0 5 n < 4‘. Next, set the level index in to L - 1. Cnllllfl-F9 the information cost of the
subspace W(n. In) with the sum of the information costs of its children W{-ln,m + 1). W{4n + 1,171 + 1),
W(4n + 2,m +1), and W(-tn + 3,m +1). If the parent is ls than or equal to the sum of the children,
then mark the parent as “kept.” This means that by choosing the parent rather than the children, we will
have fewer amplitudes above the threshold in the representation of 5'. On the other hand. ii the sum of the
children is less than the parent, leave the parent unmarked but attribute to her the sum of the children's
information costs. By paaalng this along, prior generations will always have their information costs compared
to the least costly collection of descendants.

After all the subspaces at level 111 = 5-1 have been compared to their children, decrement the level index
and continue the comparison. At each level, we are comparing the information cost of a node to the sum
of the lowest information costs obtainable by any decompositions of its 4 children. We can proceed in this
way until we have compared the root W(D, 0) to its 4 children. We claim that the topmost “lrept" nodes in
depth-firat order constitute a beat baaia. I.e., the collection of “inept.” nodes W with no “kept” precursors is
a basin subset which minimizes inlormation cost. But this is easily proved by induction on the level index
(see [CW] for the details). ‘

If we think of the amplitudes below i as negligible, we now have a basisin which the fewest amplitudes
are non-negligible. This cost accounting requres deciding in advance what negligible means, which in some
applications may not be lemible. The decision may be postponed by using a different measure of the
concentration of energy into the amplitudes. For example, there is an additive analog of Shannon entropy.
namely,

Hw(S) .—.. — E :c"'ldg.-r'., _:E.‘i'w
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with Sw as above. This is related to the classical measure of the concentration of a probability distribution
function which W2 discussed in an earlier section.

3.1’: Function! underlying tlm transforms.

Each of the transform methods correlates a picture with some underlying functions or “templates” and
then stores the correlations. For JPEG. the templates are products of sampled cosine functions restricted to
square blacks:

  
Figure 3.7-13.

Density plots of fixed-block and adapted-block DCT functlona.

For LCT. the underlying functions are “smeared out," without the sharp edges of the DCT functions:

  
Figure 3.7-14.

Density plat: of fixed-block and adapted-block LOT functions.

Two-dimensional wavelets and wavelet packets superpnsein a different manner; wavelet packets of different
scales can overlap in any manner. so long as their frequencies are distinct:
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Figure 3.1’-15.

Density plot: of one wavelet and 8. superposition of three wevelots.

Wavelet packets. on the other hand, are superpositions of wavelets which are arranged so that they are
efflcient to describe. In particular, they correlate better with textures:

Figure 3.1‘-18.

_Den.IIty plot: of one wavelet packet and a superposition of three.

4: QUANTIZJKTIDN OF TIIANSFORMEF3 AMPLITUDE3

s The transformed pixel values are real numbers which must he approximated in a (small) finite alphabet.
or quantized, before they can be transmitted. Ali of the distortion from I lossy transform coding scheme is

introduced at this step. The range of transformed veJuea is divided up into numbered subinterr.r_aJ.e or bins.
Any pixel value falling into a. bin is approximated by the bin‘s index. as in the figure below:
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Values 
Figure 4-11’.

Quantlaation Into 16 equal-sine bins.

In practice, the bin around 0 is often taken to be twice as wide as the other bins, and quantization is
performed by scaling and truncation to the integer nearest to 0. The resulting integers are then biased into

the range [(],1,. . . ,b — 1}, where b is the number of bins. _
Quantization is undone by replacing the bin index with the value at the center of the bin. When the

transformed pixel values will always have the same sign, or when 0 plays no special role. then quantization
is done by dividing the full range between the maximum and minimum values into 5 bins. When the
transformed pixel Values can be both positive and negative and I] is an important value, then it is vital that
the bin around 0 be centered exactly at 0. Otherwise. the one-sided bias introduced by many values close
to but not exactly equal to 0 will appear as artitacts in the reconstructed image.

The quantization error is the dilferenos between the actual sequence of vslu and the sequence of bin
center values, measured in some norm like mean-square-error or maximu absolute error. It is possible
to vary the width of the bins, so that the more popular values (where the PDF is larger} are quantized
more finely, into narrower bins. The distortion-minimizing choice oi‘ bin widths given a fixed number of bins
can be found using the Lloyd-Max algorithm (see [Js.yant,Noil]), This has the effect of reparunetrizing the
rate—di.stortion curve for the signal, but not improving the compression rate for a given degree of distortion.
We can easily allow vnrieble numbem oi’ equal-sized bins, to adjust the compression rate.

4.1: Uniform qnanti.-ration. In this method we use a single set of bins for all the transformed pixel values.
This method is used when we have no u prion‘ knowledge of the importance or relative visibility of a basis
element.

4.2: Visibility quantization. In this method we use a model of the relative importance of a. transformed
pixel value to choose a weighting coeficient. The value is multiplied by this weight prior to quantization. It
is known that the human eye is less sensitive to errors at certain spatial frequencies. When it is possible to
determine the sputial frequency of the part of an image which will be reconstructed from an amplitude, this
fact may be used to reduce the perceived distortion at a given level of compression.

4.3: Blt allocation. When tra.nst'o1-med pixel values can be grouped. for example by subband. then we
can allocate bite to the groups in a nonuniform manner to minimize the quantization error. The optimal
allocation for u fixed number of subbands assigns hits in proportion to the variance within a subband (see
[Jayant,NolI|). Another way to put this is. if q.- is the number of quantization bins to be assigned to subband
W.-. then we should have qr/a(W.-) =constant for all i. where the constant depends upon the tot_al variance
of all the transformed pixel values as well as on the total number of him we can afford to transmit or store.
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Great competitiu: advantage may be gained from intelligent bitallocation schemes. perhaps in combina-
tion with visibility weighted quantization based on acurate models of the kind of images to be transmitted.
Such schemes are valuable property, and jealously guarded secrets in the industry.

5: REMOVING REDUNDANGY DH. ENTRDPY CODING

Digitally coded data can often be reversibly transformed into a more efilcient form, requiring fewer hits
to store than its original representation. We shall refer to such an invertible transform as “lossleas coding“
because all the information in the original bits can be recovered. This is the only acceptable Way to compress
certain kinds of data sets such as compiled computer programs and data archives. Such methods have great
practical oignificnrlce and have been extensively studied.

It is n classical fact (see. {or example. [Shannon.WeaverI] that there is a limiting rate of (loselssl com-

pression achievable by‘ such an alphabet substitiition. Suppose we have an arbitrarily long message M =
(M(1},M{2),M(.3),. . .) composed in an alphabet with finitely many letters: MG} 6 n. = {Ct1,lIg,... ,a,,}
for all j .-. 1,2,. . .. Coding these letters in the obvious manner requires log-_.{n) bits per letter. and so the
first L letters of the message will require Llogzln] hits to transmit. Let B[a,L) denote the number of bits
required to transmit the first L letters M(1)...M[L) using alphabet a; then we see that

(5-31) ' lim Bl“)L_fl L "' 10820‘)

Shannon's theorem asserts that there is a nonnegetive number 5’, the entropy of the prohnbility distribution
oi the-original alphabet, and: that any new alphabet {b.'):'=1 of variable-length characters satisfies:

. not
< 5-32} ‘filth.%
and that for every t > 0 there in fact exists a particular alphabet b‘ which satisfies

(ma) lirn BUM’5-00 L SH+e.

Suppose that the origins! signal is written using the letters a1,a;,. .. , an, etch occurring with probability

#{.i=1SJ'SLuM(J'}=°«l
L

Then the entropy of the message is H = --)::-‘=: p;1og,[;i.-). and it is not too hard to show {an in [Ash],
Theorem 1.4.2, p.15’) that

( 5-34) ' Pl-Ia) = P: = £15339

( 5-35) 0 S H S 105201)-

The left equality (best compression} holds if and only if the original message consists of a single letter of the
- alphabet repeated forever. The right equality (no compression} holds if and only if the origial letters a.- are

equally probable.
Several algorithms exist to construct the good alphabets, of which the earliest is probably’ atatic Huffman

coding [Huffman]. In practice the probabilities p.~ are determined empirically es the message is being sent, so
there are refinements such as dynamic I'Iufi'man coding [Store-r. p.40], arithmetic or Q-coding [Storer, p.-17],
data dictionary methods. and so on.

We can refine the application of Shannon's theorem by taking different lengths in for the initial alphabet.
For escample, it is natural to consider 8-bit characters (:1 =‘ 256) for binary data emitted by a typical
computer. Nevertheless, it may be that for a certain class of signals (such as Knnji text, which’ uses more
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