Box 6: .
Multiresolution analysis

The concept of multiresolution approximation of
_functions was introduced by Meyer and Mallat
[MAL88a, MAL88c, MEY90] and provides a power-
ful framework to understand wavelet decomposi-
tions. The basic idea isjthat of successive
approximation, togeiher with that of “added detail”
as one goes from one approximation to the next,

. finer one. We hem give the intuition behind the
construction,

a ladder ofapaces such that:

X & Vi, Call“Wi the
Vu. m is written

app{oximation or

d sum 6f wavelets
r and ﬁﬁcr seale. &

generate wavelet bases, The converse is also true. That
is, orthonormal sets of scaling functions and wavelets
can be used to generate perfect reconstruction filter
banks [DAU8SS, MALB9a, MAL89¢).

Extension of the wavelet concept to multiple dimen-
stons, which is useful, e.g. for image coding, is shown
in Box 7,

o1
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008 "4
015

o1

0.8

Fig. 14. Two scales of the Dy wavelet and shifts. This set of
Junctions is orthogonal.

APPLICATIONS OF WAVELETS IN
SIGNAL PROCESSING

From the derivation of the wavelet transform as an
alternative to the STFT, it is clear that one of the main
applications will be in non-stationary signal analysis.
While conceptually, the CWT Is a classical constant-Q
analysis, its simple definition (based on a single func-
tion rather than multiple filters) allows powerful
analytical derivations and has already lead both to new
Insights and new theoretical results [WAVS9],

Applications of wavelet decompositions in numerical
analysis, e.g. for solving partial differential equations,
seem very promising because of the “zooming™ property
which allows a very good representation of discon-
tinuities, unlike the Fourler transform [BEY89].

Perhaps the biggest potential of wavelets has been
claimed for signal compression. Since discrete wavelet
transforms are essentially subband coding systems,
and since subband coders have been successful in
speech and Image compression, it is clear that wavelets
will find fmmediate application in compression
problems. The only difference with traditional subband
coders is the [act that filters are designed to be regular
[that Is, they have many zeroes at 2= 0 or z = n). Note
that although classical subband filters are ngt regular
[see Box 5 and Fig. 12), they have been designed to have
good stopbands and thus are close to being “regular®,
at least for the first few octaves of subband decomposi-
tion.
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Fig. 15. Orthonormal wavelet generated from a length-18 regular filter [DAUSS]. The time function is shown on the left and the

spectrum (5 on the right.

1t is therefore clear that drastic improvements of
compression will not be achleved so easily simply be-

cause wavelets are used, However, wavelets bring new

Ideas and insights. In this respect, the use of wavelet
decompositions in connection with other techniques
(like vector quantization [ANIS0] or multiscale edges
[MALB89d]) are promising compression techniques
which make use of the elegant theory of wavelets.

New developments, based on wavelet concepts, have

already appeared., For example, statistical signal
pre ing using lets is a promising field. Multi-
scale models of stochastic processes [BAS89], [CHO91],
and analysis and synthesis of 1/f nolse [GACS1],
[WORS0| are examples where wavelet analysis has been
successful. *"Wavelet packets" [WIC89]. which cor-
respond to arbitrary adaptive tree-structured- filter
banks, are another promising example.
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Fig. 16, Biorihogonal wavelets generated from 18-tap regular filters IVE.“I"EJObL (a) Analysis wavelet. (b) Synthesis wavelet. The
time function is shown on the left and the spectrum is on the right.
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' In order to apply wavelet decompositions to multi-
dimensional signals (e.g., Images), multidimensional
extensions of wavelets are required. An obvious way
to do this.is to use "separable wavelets” obtained from
products. of one-dimensional wavelets and scaling
functions [MAL8Sa, MALBSc, MEYSO0]. Let us consider
the two-dimensional case for fts simplicity. Take a

- scaling function g (15) and a wavelet he(x) (16). One

.can cq;&"gguct for two-dimensional functions :

he(x)- hly)

orthogonal te each other with respect to

s (this follows. from the orthogonality of
sional component), The function gdx,y)

filter) while the funétions hi(x.y) are
e set (R 20-k, 2%, 1=1,2,3 and jk!
n orthonermal basis for square integrable
R* This solution corresponds to a
ensional filter bank with subsam-

o

Fig. 18. lteration of a non-separable filter bank based on
non-separable subsampling. This construction leads to non-
separable wavelets,

‘Box 7Z: Multidimensional filter banks and wavelets

pling by 2 in each dimension, that is, overall subsam-
pling by 4 (see Fig. 17).

More interesting (that Is, non-trivial) multidimen-
sional wavelet schemes are obtained when non-
separable subsampling is used [KOV92). For
example, a non-separable subsampling by 2 of a
double indexed signal x{n1, n2) is obtained by retain-
Ing only samples satisfying:

[2}[ i‘_ll][i] uLuze 2
The resulting points are located on a so-called
quincunx sublattice of Z** Now, one can construct a
pen’ect reconsu'ucuun filter bank involving such sub-
itr bles its one-dimensional
cnu.nterpart [KOV92]. The subsampling rate is 2
(equal to the determinant of the matrix in (B7.1)), and
the filter bank has 2 channels. Iteration of the filter
bank on the lowpass branch (see Fig. 18) leads to a~
discrete wavelet transform, and if the filter is regular
(which now depends on the matrix representing the
lattice [KOV92]), one can construct non-separable
wavelet bases for square integrable functions over, R?
with a resolution change by 2 (and not 4-as in thé
separable case). An example scaung ﬁmcﬂon is pic-
tured In Fig. 19.

(B7.1)

basis with resol change by 4 (2

uqo-d.ﬂwunsma.lﬂasr a separable
mqrmﬁmpwummmmwmmmmmsrw;wmmwmh

Fg. 19, Tw | non-separable orthonormal scal-

ing function [KOV92| (orthogonality s with respect to integer
shijts). The resolution change (s by 2 N2 in each dimen-
slon). The matrix used for the subsampling (s the one given
in (B7.1).
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-CONCLUSION

We have seen thal the Short}[‘imc Fourier Transform
and the Wavelet Transform represent alternalive ways
to divide the time-frequency (or Uime-scale) plane, Two
major advantages of the Wavelet Transform are thal it
can zoom In to time discontinuities and that orthonor-
mal bases, localized In lime and frequency. can be
constructed. In the discrele case, Lhe Wavelel Trans-
form is equivalent to a logarithmiic fliter bank, with the
added constratnt of regularity on the lowpass [ilter,

The theory of wavelets can be seen as a cornmon
framework for. techniques that had been developed
independently in various fields. This conceptual
unification furthers the understanding of the
mechanisms involved, quantifies trade-offs, and points
to new potential applications, A number of questions
remain open, however, and will require further Inves-
tigations (e.g., what Is the “optimal" wavelet for a par-
ticular application?).

While some see wavelets as a very promising brand

‘new theory [CIP0], others express some doubt that it

represents a major breakthrough. One reason for skep-
ticism 1s that the concepts have been around for some
time, under different .names. For example, wavelet
transforms can be seen as constant-Q analysis
[YOU78], wide-band cross-ambiguity functions [SPE67,
AUS90), Frazier-Jawerth transforms [FRAS86|, perfect
reconstruction octave-band fllter banks [MINSS,
SMI86), or a varfation of Laplacian pyramid decomposi-
tion [BURA3], [BURSI

We think that the interest and merit of wavelet theory
Is to unify all this into a common framework, thereby
allowing new ideas and developments.
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Biorthogonal Wavelets

Albert Cohen

Abstract. In this chapter, we study the construction of biorthogonal
bases of wavelets which generalize the orthonormal besea and have inter-
esting properties in signal processing. We describe the class of subband
coding schemes associated with these wavelets and we give necessary and
sufficient conditions for frame bounds which ensure the stability of the
decomposition-reconstruction algorithm. We finally present the example of
compactly supported spline wavelets which can be generated by this ap-
proach. The results presented in this chapter are mainly joint work with
I. Daubechies and J. C, Feauveau,

§1. Introduction

In recent years, orthonormal wavelet bases have revealed to be a powerful
tool in applied mathematics and digital signal processing. The possibility of
data compression offered by a multiscale decomposition leads to some very
good results in speech [8] or image [1] coding or fast numerical analysis of
operators [2].

One of the main reasons for this success is the existence of a Fast Wavelet
Transform algorithm (FWT) which only requires a number of operations pro-
portional to the size of the initial discrete data. This algorithm relates the
orthonormal wavelet bases with more classic tools of digital signal processing
such as subband coding schemes and discrete filters.

We can describe in four steps the connections between these different
domains;

a) Wavelets bases are usually defined from the data of a multiresolution
analysis; i.e., a ladder of approximation subspaces of L?(IR)

{0} —--VicVoc V- — L*(R) (1)
which satisfy the following prép-ertiee
f(z) € V; & f(22) € Vi1 & £(2z) € Vo . @

Wavelate~A Tutorial in Theory and Applications 123
C. K. Chul (ed.), pp. 123-152,
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There exists a scaling function ¢(z) in V; such that

{$thez = (2772427 ~ k)lhem - (3)-

is an orthonormal basis for V;. The function ¢ has to satisfy a two-scale dif-
ference equation which expresses the embedded structure of the Vj-spaces

$(z) =2 hag(2z - n). )

nEZ
The wavelet 9 is then defined by

Y@) =23 (~hiad(2z-n)=2) gad(2z-n)  (5)

neZ neZ

and its integer translates {t/(z — k)}xez form an orthonormal basis for the
orthogonal complement Wy of V; in V_;. The functions

{Yilkez = (277292772 - k) ez,

thus, characterize the additlonal details between two levels of approximation
(V; and V). By a telescoping argument using the ladder structure (1), the
whole set {% };kez is an orthonormal basis of L2(R). More details on mul-
tiresolution analysis can be found in [14] and [15].

b) In the Fourier domain, Equations (4) and (5) can be rewritten as

$(2w) = mo(W)d(w) with mo(w) = 3 hae™ ()
neZ
B(2w) = my(w)d(w) = e “mo(w + m)d(w) (7)

where mo(w) is & 2 periodic function that satisfies the following two properties
(due to the multiresolution analysis axioms)

[mo(w)f? + Imo(w + m)|* = 1; (8)
me(0)=1 and meo(m)=0. (9)

Here, mg and m; are the transfer functions of a pair of low-pass and high-pass
filters known in signal processing as Conjugate Quadrature Filters (CQF, see
[16]). These discrete filters are the key of the FWT algorithm: To analyze a
discrete signal s,, one identifies it with the coordinates of a function in Vg;
ie, fo= Z 8n¢(z — n). The coordinates of the s:gna] in Vi (resp. W) are

then obtamed by applying the discrete filter mq(w) (resp. Ty (w)) followed
by a decimation of one sample out of two to keep the same total amount of
information. It is then possible to iterate this decomposition process on the

L
_coarser approximation in the following way: Vi — Va@ W, Vo — Vg éWa. 1
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The reconstruction stage consists of refining the decimated sequence of
approximation (resp. detail) coefficients by using mo(w) (resp. mi(w)) &s in-
terpolating filters and adding these two components multiplied by two to get

the finer. approximation. This sequence of operations — filtering, downsam- .

pling, interpolation, reconstruction — is known in signal processing as a (two-
channel) subband coding scheme, as illustrated in Figure 1.

° @ rnm:l!::lcud

Figure 1. CQF subband coding scheme.

1 2 : removes one sample out of two
12 : insert a zero between each two samples.

c) Apparently the functions ¢ and % do not play any role in this algorithm
involving only the CQF pair. However, in many application, it is interesting
to have these filters associated with a smooth wavelet and scaling function.
Indeed, iterating (6) at each scale leads to

+00
(w) = [T mo(2™*w). (10)

k=1

This formula corresponds to an infinite number of iterations of the refinement
process used in the reconstruction algorithm starting from a single low scale
approximation coefficient. In the time domain, the limit of this process is the
scaling function ¢ and if one starts the reconstruction on a detail coefficient,
the limit is-the wavelet 1,

The smoothness of ¢ and 1 will thus appear in the aspect of the low scale
components which play an important role in data compression since many high
scale details are thrown away.

d) In practice, the starting point to a multiscale analysis is a 2 periodic
function mg(w) which satisfies Equations (8) and (9).

The scaling function is then defined by the infinite product (10). It has
been shown in [7] and [12] that for a generic choice of mo(w), the scaling
function is in L*(R) and satisfies

{@()é(z = k) = Go,x. (1)

The wavelet is then derived from Equation (7). A particularly interesting class
of CQF is the.set of trigonometric polynomials mq(w) satisfying Equations (8)
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and (9) since they correspond to finite impulse response (FIR) filters. They lead

to compactly supported wavelets which have been constructed by 1. Daubechies
in [10] with the possibility of arbitrarily high regularity for ¢ and ¥ by choosing
mo(w) in 2 smart way, B

Unfortunately the CQF present some serious disadvantages for signal pro-
cessing:

(1) They cannot be both FIR and linear phase (i.e., with real and sym-
metrical coefficients) except the Haar filter which has no great interest

since the associated wavelet ¥ =y 3~ X is not continuous.

(2) Since they are the solution of the quadratic Equation (8), their coef- .

ficients are usually algebraic numbers with no simple expressions.
(3) Their design uses the Féjer-Riesz lemma (for FIR filters): |mo|? is
constructed at first and mo is derived using this lemma. However,
this technique does not generalize to the multidimensional case.
(4) In the case of FIR filters, the subspaces V; have no simple and direct
definition other than Span {¢]}sez. For example, they cannot be
composed of spline functions except for the Haar case.

For all these reasons, these filters are often rejected by the engineers for
some specific applications. However, these disadvantages are not related to the
structure of the subband coding scheme itself and they can be removed by using
a more general class of filters. More precisely, we shall allow the decomposition
and the reconstruction filters to be different. The result is a pair of dual filters
{mu, ﬁlo} which have to satisfy

' mo(w)fiig(w) + mo(w + m)fig(w + ) = 1. (12)

These filters have been introduced in signal processing by M. Vetterli (see [17]).

Is it possible to mimic, in this more general setting, the construction of
orthonormal wavelets from discrete filter that we describe previously? The an-
swer is yes,.but the orthonormality has been lost and the result is a pair of
biorthogonal wavelet bases {tbi.qbi},,kez which allow the following decompo-
sition of any function f in L3(R)

f= S =Y (i (13)

ikeZ JkEZ

In the next section of this chapter, we shall introduce the class of dual filters
and their relation to biorthogonal wavelets.

In the third section, we shall discuss the additional conditions that must
be filled by the filters to obtain biorthogonal wavelets bases. An important
problem that does not occur in the orthonormal case is the frame bounds

wh:ch relste the L? norm of a function and the £2 norm of its coordinates in the
Teiemstam (19) Mhinnn haunds ara indaad rrieial for the stahility

Bior

of th
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of the decomposition-reconstruction algorithm. Two different strategies will be
presented to check that these new wavelets form stable (or unconditional, or
Riesz) bases. ' :

Finelly, we shall show in the last section that it is possible to build a
(nonorthonormal) wavelet basis generated by a compactly supported spline
function. Our approach is different from the technique developed by C. K. Chui
in [3). "y

© §2. Dual filters and dual wavelets

2.1. Dual filters

Let us consider, in the most general sense, the subband coding scheme
described in Figure 2. The decomposition is performed by the pair {7, M1 };
whereas {mg, m,} are used for the reconstruction. A discrete signal s,, can be
represented by its discrete Fourier transform; i.e.,

sw)= Y snei™. (14)
ne@d

The decomposition stage transforms s,, into an approximation sequence a,, and
a detall sequence d,, defined by

a(@w) = 5 ([Fals(w) + ool F s +1), (15)

and

d(2w) = 3 Faloa(w) + Tl + s + ). (16)

And thus, the reconstructed signal r,, can be written

T(w) = o(w)s(w) + B(w)s(w + ) (17

with
a(w) = mo(w)mo(w) + my (w)mi (w), (18)

and
Blw) = mo(w)mg(w + m) + my(w)my(w + 7). (19)

o @ reco.n‘;lnr:ctod

~

Figure 2. A general 2 channels subbané coding scheme.
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Perfect reconstruction is achieved for any signal if and only if a(w) = 1 and

B(w) = 0 for all w in [, x]. This leads to the following system in which mg

and m; can be considered as solutions and o and i, as parameters namely:
{mu(w)ﬁ;'n(w) +my(w)in (W) =1

mo(w)g(w + ) + my (W) (w + 7) = 0,

(20)

If we want to avold the infinite impulse response solutions, we need to impose
that the determinant is & monomial ae'™, a # 0, k € Z. Up to a shift and
scalar multiplication on the filters, we choose, for sake of convenience, @ = -1
and k= 1. This leads to

mofw)ﬁio{_w} + mo(w + m)fg(w + ) = 1, (21)
and ' A :
mWw) =e“mow+r), W) =e “mo(w+m). (22)

Equations (21) and (22) are thus the most general for finite impulse response
subband coders with exact reconstruction (in the two channels case). We call
mg and Mg dual filters.

Clearly the special case mg = ffig corresponds to the CQF. However, the
disadvantages of the CQF can be avoided:

(1) If mo is fixed, Mg can be found as the solution of a Bezout problem,
which is equivalent to a linear system on the coefficients. The Féjer-
Riesz lemma is no more needed.

(2) The coefficients can be very simple numerically and, in particular,
they can have finite binary expansions, which are very useful for the
implementation. They can also be real and symmetrical.

We now want to mimic the construction of wavelets in this more general setting.
For this, we shall assume that the dual trigopnometric polynomials mg and fiig

. satisfy
mo(0) =Mg(0) =1 and me(w) = fa(x) =0. (23)

2.2, Dual wavelets and scaling functions

Let us define, first in the sense of tempered distribution, the dual scaling
functions and wavelets by

#0) = T mot2=4), (24)
k=1

3) = I mot2*a), (25)
k=1

) =m (5)4(3) L

Fo-m(2)3E) o
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Since we want to use these functions to analyze L*(R) it is necessary that ¢
and ¢ are both square integrable. Note that in the CQF-orthonormal case, this
is always satisfied as a consequence of Equation (8) (see [7]). For dual filters
this is false in general. . -

In this section we shall assume that ¢ and ¢ (and thus ¥ and ) are in
L*(R). Some precise conditions on mp and g for this square integrability to
hold will be stated in the next section.

Starting from this first assumption, we are going to prove the following
result:

Theorem 1. For any function f in L*(RR), we have in the L? sense,

J J
7= tm 3 S UWhE=m 3 LU )

j=—J keZ jm=-JkeR

We remark that this does not mean that {1}, %};xez are biorthogonal
bases, or even frames, since the summations are made in a precise way. However,
this is a first step toward the construction of biorthogonal Riesz bases.

The proof of Theorem 1 is based on several lemmas that we shall comment
here and prove in the appendix. We first introduce formally two approximation
operators,

Pi(H) = Y (Al (29)
keZl
and ‘
Fi(f) =3 (e éh (30) .
keZZ
and two detail operators,
8;() = Y_(Flelvi (31)
ke
and .
Ai(f) =Y (fvd)¥l. (32)

keZ

Lemma 2. The operators P;, P;, A;, and A are bounded on L*(IR). Moreover,
their norm is independent of j. -

This result gives a rigorous meaning to the definition of these operators
on L?(R). We then havethe following.

Lemma 3. For all jin Z,

Pj-1=Pj+ﬁ:; .and ﬁj..],ﬁﬁj"'ﬂj. (33)
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These two identities are essentially equivalent to the perfect reconstruc-
tion property of the subband coding scheme. By a telescoping argument we
immediately obtain, for J >0, °

J
Pya=Pr+ ) 4 (34)
j=—d
and
-~ - J -
Pu=P+}Y A (35)
gl

The next stage consists of letting J tend to +co and using:
Lemma 4. For all f In L*(R),

Jm 1P (Nl = Tim 1B()llee =0, (36)
and
m IP(f) = fllza = lim UIP(f) = fllas =0. (37)

The first limit is just a consequence of ¢, ¢ € L?(IR). The second limit is

due to some specific identities satisfied by ¢ and § because of the hypotheses
on the dual filters mo and g,

Combining Equations (34), (35), (36), and (37), we clearly obtain the
result of Theorem 1; i.e., for any f in L*(R), we have

f- E zw’)wi f- ZEW’M

jm=J ke j=—J k€Z

=0.

La

=]1m

Lz

lim
J=4oo

(38)
We now examine the gap existing between this system of dual wavelets
and a pair of biorthogonal Riesz bases which will be obtained in Section 3.

2.3, From dual wavelets to biorthogonal Riesz bases

Recall that a Riesz basis of a Hilbert space H is a family of vectors {ex}rea
such that
(1) The finite linear combinations of ey are dense in &,

(2) There exist two strictly positive constants Cy and C; such that, for
any finite family of coefficients {ax}rea, (Ay C A),

2

Cy E cul’

A€A,

2 eax

AEA;

H AEAy

<G Y Jm’." (39)

B
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An equivalent definition for a Riesz basis (see [19]) is given by the follow-
ing.:
{1) The vectors {ex}aea are linearly independent, and
(2) {ex}rea is a frame; i.e., there exist two strictly positive constants D,
and D; such that for any finH

DulIflik £ 3 I(fleal® < Dallf - (40) .

AEA

We shall rather use this second definition for ] and 9. For these dual

wavelets, the following holds.

if
(1) for all 4", k, ¥ inZ,
(WAIGL) = 83 Bm,0 (41)
(2) There exist two strictly positive constants C and ¢ such that, for all
f in L(R)
Y WP s cisr (42)
i kET :
and ‘ _
Y, KD < CiAP. (43)
kEZZ 5
Proof:

a) If Equation (41) is satisfied, then any f in the closed linear span of thé 7]
with (4,k) # (jo, ko) satisfies (f|t/) = 0 and thus % cannot be in this
closed linear span. Thus, the ’l’i are linearly independent and the proof is
similar for 7.

b) By Equation (28), we have

vl = lim Zj Zj('#inlwi)ﬁ. (44)
J=—JkEE

and, thus, ¥°(1 - (w |1,Ev’,,°)) lies in the closure of the 9] for
(4, k) # (Jo, ko ) By hnear independence, this implies

(Wﬁ,lﬂb’k‘,) =1 . (48)
Isolating any (‘1"{,|ﬁ)'¢’i in (44) we-also obtain for any (4, k) # (Jo,ko).
by linear independence .

(Wiivl) =0, ' (46)

Theorem 5. {Yi,¥1};kez are a pair of bmrthogonal Riesz bases if and only
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and thus (41).
c) Carnbimng Equations (28), (42), and (43), we obtain for any f in L*(R),

£ = JJim 2 PRI AR

J--J kEZ

1/2 1/2
< ( b |<f|wf;>t=_) ( 3 ww”r:;}i*)

j ke IkEZ

1/2
<3| £l ( 3 |<ft=Ir:;>|’) :
SKER
This leads to s :
CHIfIR s Y WAFDP, (47)
ikeZZ

and similarly .
GNP s X KAWDIE (48)

JkEZ

The lower frame bounds are thus directly deduced from the upper bounds.
According to the second definition and to the identity (41), {41, w{} jkEZ
: are a pair of biorthogonal Riesz bases. Any f in L*(RR) can be written

Cf= Y W= Y (il (49)
k€L I keEZ ;

where these éxpansions are unique and converge unconditionally. ®

Before examining the type of dual filters leading to such bases, we shall
prove two technical results that we shall use in the next section to check the
hypothesis of Lemma 5. The first one deals with Equation (41).

Lemma 8. Let ¢, and ,, be defined forn >0 by

$aw) = [T mo(2™ )X\ 1m0 n0 @) (50)
k=l
and
b H ig(275w)X_am 0 3ma (W)- (51)

Then if ¢, and ¢, converge in L*(R) to ¢ and ¢,

CY

(#(z - p)Id(z — ) = &p,t, ' (52)
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and
(WAIBL) = 3. 8hp (58)
Proof: By recursion we can establish. ;
(8n(z —p)|dn(z — £)) = 5. (54)
Indeed,

bule—plinie -y = = [ (H mo(_r*u)‘_iﬁo@-*w)e-'u-ﬂv.m
k=1

n x fn=1 -
- %1: f (Hmn@"w)ﬁzo(z‘u)) 2" (t=phw gy
k .

o) @) + mo(w + gl + MJe "¢
($n-1(z = P)lBn-1(z - £))
=z E!;I:_[_: efll-Plugy, = 59'3.

Consequently the L* convergence of ¢, and ¢, implies

($(z = p)|§(z = &) = bp¢ (55)
which can also be written as o
T 6w+ 2km) = 1. ' (56)
keZZ
We now have
Y @D+ 2%km) = 3 (g6 (- + k'n')
keZZ kEZ
[m;rn; (2) +’m‘m1 ( ‘+'fl')] Z(¢¢) ( + 2k7T)
=1,
and
3 @) +2km) = Y (miadd) (5 + k)
keZ kEZ
= [?mmo( )+m‘mu( +n)] Z(W ( +2k1r)
=0.
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Consequently, _
(W(z = k)|P(z — ) = b (57)
and

(¥(z — k)|$(z - £) =0. (58)
If we now define V} = Span ﬁ}ken, W’ = Spﬂn{ﬂ}kEE| and

V= Spa-n{ﬁ.}nez. = Span{{] }xez, it follows from Equation (56) that
for any j, V, is orthogona} to Wy. Since, for all J < j, we have W,: c V,, it

follows that W; and W,f are orthonormal when j' < j and, by a symmetrical
argument, when j < j'. Consequently, we obtain by Equation (55),

(WL = 81p0Bens (59)
and the lemma is proved. W

The last lemma of this section deals with the upper frame bounds (42)
and (43).

Lemma 7. Suppose that the function ¢ satisfies

sup Y 1¢(w + 2km)P*~ < +oo, (60)
keﬂ
for someo >0,and .
sup(1+ |wl)?1dw)] < +oo. (61)

Then there exists a constant C such that, for all f in L*(RR),

3 K2 < cufi. (62)
SkEZ ;
Thé same holds for ¥ and .

Proof: Since $(w) = my (%) (%) has at least a first order zero at the origin,
using Equations (58) and zET), we may conclude

S i) < 0y, (63)
JER
and R
> 1w + 2km)[*0 < Cy (64)
kEZ =
uniformly in w.. N

Lo
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; Using the Plancherel and the Poisson formulas, we can derive for all f in
L*(R),

Y UMP = [ f Horbware ™

kEZ kEZ

= E ! ] f et

ke

Z @ (W + 26m)) (@ + 2r), m)

L4

a
3 22_1:' (E 1727 (w + 26x))| hb(w+ 2em)| ¥ [ (w + 2¢m)|*~ i)

LeZ
< E (Z 1127 w + 2m) [ lw + 2m)|” ) (E b+ m}I"") e
tez e

<al’ f 1@ w) PR )" du
<ac ] P Bw)|" du.

Summing over all the scales j € 7ZZ and using Equation (59), we obtain

Y e < S

IREZ

= [ 1)

=O1G| fI1%,
and this concludes the proof. W

We are now ready to characterize the dual filters which lead to biorthog-

onal wavelet bases, such that the functions ¢ and ¢ satisfy the hypotheses of
Lemmas 6 and 7.

§3. Biorthogonal wavelet bases and stable subband coding schemes

In this section we shall present two strategies to design the dual filters
so that the associated dual wavelets 9 and 1) generate a pair of biorthogonal
Riesz bases. In other words, we shall establish some conditions for the stability
of the FWT algorithm since this is equivalent to the frame bounds tnequahtias
that we require on our multiscale bases.

The first strategy uses estimates on the decay at infinity of the functions
$(w) and n:)(w} that can also be found in (6]. It furnishes a sufficient condition
for biorthogonality and stability.
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The second strategy is based on the study of two operators associated with
the dual filters. We show here that it leads to sufficient conditions and it was
proved in [4] that this criterion is also necessary, It is thus a sharper strategy
but it is only tractable for filters of reasonable size.

3.1. A Fourier criterion

Since we have assumed that mg and Mg vanish at w = m, it is possible to
express these filters in a factorized form

mo(w) = (1 +;_”)Nptw), | (esl)

and

Lo N
% 14e¥ . :
o) = (25 #w) (66
The following results give a sufficient criterion based on the properties of the
trigonometric polynomials p and p.
Theorem 8. Suppose that the function p(w) satisfies

J
inf |max
>0 |weR |14

j £
[ #2*w)

] <V, (67)

Then
(1) ¢n(w) = H M0(27%W)X|_sn .20 (W) cORVErges to $(w) in L*(RR), and

(2) The candl:lona in (60) and (61) of Lemma 7 are satisfied.
If f(w) satisfies a similar hypothesis, then the dual filters mo and g generate
biorthogonal Riesz bases of wavelets.

Proof: The hypothesis (67) implies that for some j > 0,

< 2PW=1=9  (¢>0). (68)

[1r@w)
k=1

max
wEZ

z( =)/

sin (%)
2n sin(2-"~1w)

We now write

6n(w)] =

f[ p2-*)
H p27w)

k=1

X|-anxana) (w)

X{-ans,ane (W)-_, '
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Since |sin(2~"~'w)| > C27"~}|w| when w is in (27, 2"7], we have

18a@)] € €O+l [T p24w)
k=1

We treat the second product in the following way: The contribution of the .

factors p(2~*w) for k > M&:—}"m can be globally majorated by a constant
since the infinite product converges to & smooth function. We divide the other
factors in packets of size j that we can majorate using Equation (68). This
leads to

log(14 ju!
(Bn)] < C(1+ul) (250-4-0) o7
<O+l
Since this bound is independent of n and $,(w) converges pointwise to ¢(w),
we can apply Lebesgue’s dominated convergence theorem to conclude that ¢y,
converges in L*(R) to ¢. At the limit, we also have
|6w)| S C(1 + |w]) =23 (70)

which immediately implies the conditions (60) and (61) of Lemma 7 by choosing
0< ¢ < min ()}, E“h) If p(w) satisfies a similar condition, then the results of

Lemmas 6 and 7 can be applied to ¢ and ¥ and by Theorem 5, the families

(%1, ¥1}jkem are biorthogonal Riesz bases for LA(R). W

This criterion was used in [6] to construct many biorthogonal wavelet
bases but it is not sharp. In particular, Equation (70) is not strictly necessary
to have ¢ and ¢ in L?(R). These functions can be very lacunary; i.e., their
Fourier transform can have a bad decay but only at some points which oceur
less and less frequently at infinity so that they are still square integrable. We
now present a sharper criterion based on a different approach.

3.2. A matrix base criterion

Let us first introduce the basic tool which will be used in this approach.

Definition 9. Let mg(w) be a trigonometric polynomial such that mg(0) =1
and mq(m) = 0. The transition operator To associated with this filter acts on
2x periodic functions in the following way

w1 = [ () 1(3) ¢ ) 1 (5 +).

This operator appears in the works of W. Lawton {12] and J.P. Conze
and A. Raugi (9] for the study of the orthonormal case. It can also be useful
to estimate the Sobolev regularity of the scaling function associated to mg

Xi-2nxamn| (w). (69)
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{see [11}, [18], and [5]). Here, we will need two lemmas which give some basic
properties of Tg.

. N ]

Lemma 10. Let mo(w) = }_ cxe™ and Ty the associated transition operator,
=

and define the 2V + 1-dimensional space

N
EN= { E c;e"“"

k==~N

and its subspace

N
Fy= { Z Cre'

k=-N

N
Y a= o} : (73)
kN .

Then Ey and Fy are stable under the action of Tp.

Proof; From the definition of Tp, it is clear that if jmg|® and f are two elements
of Ey, then Tof is also in Ey. :

A trigonometric polynomial f is in Fyy if and only if f € Ex and f(0) = 0.
Consequently, if f is in Fy, we have

Tof(0) = |mo(0)1*£(0) + Imo(m)|*f(r) =0, (m4)
which pro\?m that Fy Is stable under 7,. W

Remarks. If we consider the Fourier expansion

Imo(w)? = Y Hie™, (78)
k=-N

then the matrix of Ty restricted to Ep is given by

CHy 0 .. .. 0]
Hy_a Hy-1 Hy :
. : : : 0
Mo = (2Hi-2j )i jm-N..v =2 To B & Hy |- (8
0 0 Huwn Hy_o
L 0 0 H;N 4

N . N
Since [mo(0))* = 3 Hi=1and |mo(r)|* = ¥ (~1)FHk =0, it follows
k=N k=N
that .
Y Hu=) Hup= 3 < ()
* %

{G—N:-'HCN)EC:N-‘-I}: [72) N
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and thus the row vector p = (1,1,...,1) satisfies

 pTy=p. (78) .

This is another way to show that Fy is stable since Fyy = (Cp)* but it also
shows that 1 is an eigenvalue of Tp and if this eigenvalue is not degenerated
then it is not in the spectrum of Tp restricted to Fy.

The second lemma makes a connection between the iteration of the oper-
ator Tp and the sequence ¢, which must converge to ¢ in L*(R).

Lemma 11, For any 2m periodic function f(w), it follows that

" 2" x n
[ mraar= [ =) T] imo(e-*)fds = [ fzo)lin(o) P
= =ana kw1 :
(19)

Proof: We prove it by induction. Equation (79) is trivial for n =0 and if it is
satisfied for some n > 0, then

[ B s [ @
"n n
= [ ot [T imala~o) e

k=]

= [ [ amoa it + 17+ Dlma(a 4 )]

T Imo(z-*u)l?do

k=1
rtiy n4l
- j @) [] Imo(2~*w)?dw. ™
=inthe k=1

We are now ready to state a criterion based on transition operators.

Theorem 12, Let )\ be the largest eigenvalue of Ty restricted to Fy. If|\ < 1,
then .

(1) ¢én converges to ¢ in L*(R), and

(2) the conditions (60) and (61) of Lemma 7 are satisfied.

If the same holds for the operator Ty associated to g, then the dual filters
mg and fiig generate biorthogonal Riesz bases of wavelets.

Proof: Let us define the trigonometric polynomial ¢ by

e(w) =1-cosw. (80)
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It is clear that c(w) is in Fy. Applying Lemma 11 and using the hypothesis
Al < 1, we obtain

[ Batorezmiiao = [ Ty

< V2r||Tgef s

<o ()" _ca
with ¢ = pi5[log2 —~ log(1 + [A])] > 0 because || < 1. This leads to a
Littlewood-Paley type of estimate. Indeed, since ¢(w) is positive and e(w) > 1
when % < |w| < m, we have

f |6n(w)Pdw < C27™, ' (81)
m=lrg|w|S2™r

This estimate is also valid if we replace ¢, by ¢ because we have
[6(w)| = |falw)(2™™w)| < [%(MHI&%!;(I&(W]I) when |w| < -2"r. Couse-

quently
f 16(w)Pdw < C27", (82)
2

nir<lw| <20

which means that ¢ Is not only in L?(IR) but also in the Besov space Bj"”(lR).
Let us now prove the L? convergence of ¢, to ¢. Since mqo(0) = ¢(0) = 1,

there exists an o in (0; 7] such that

[w] € @=|p(w)| 2 C >0. (83)
We now divide ¢n in two parts: ¢, = ¢}, + ¢2 with
&:(“-’) = &“(w)x[—jnu,ﬁ’\al(w)1 (84J
and N .
¢|2'l(u) = ¢“!(w] [X|-n'\.,2~-;(w} - Xl—l"n,:"a] (Ll))} » (85}
Clearly 3} (w) converges pointwise to $(w) and by (83), we have
)l < G, (86
By Lebesgue's theorem, ¢ conv&ges to ¢ in L2, We also have
[1#4()Pas= )P
nac|w|<2nr

1 1 -n
< i f |Pa(w)?e(2"w) dw
L0 R

-~

Page 188 of 437



1)

13)

14)

35)

3)

Biorthogonal Wavelets 141

and thus ¢2 tends o zero in L? and consequently ¢ is also the L? limit of ¢p.
To prove Equations (60) and (61), we shall use the estimate (82). We first

 remark that since mo(w) = mo(~) = 0, the scaling function satisfies

$2kr) =0 i keZ/{0). (87)

Using a first order Taylor development, we can write

Yt + 20 < [ |Z160-)

k€ :

dw

= [ | gy as
= [|6-5) g
< [n-ol|%

2 v 1/2
- dw) (f1érp-ea) ™.

The first factor proportional to the L? norm of z¢(z) which is finite since
¢ is square integrable and compactly supported. )

To evaluate the second factor we compute the integral of |$(w)|?~ on &
dyadic ring 2" < w| < 2"n. By the Hélder inequality and (B2) we obtain

61 % dw

B 1g-taw

1-%
fz |G (w)*~®dw < [ j; |$(u]|=du] (m}i_

" inglo|S2nn n=lnglw|S2mn
< 0'2"'“(1_"“'“{'.

The second factor will thus be finite and (57) will be satisfied if we choose &
such that ¢(1—-¢) —§ > 0; i.e, 0 < $3%. We apply the same method to show

(58). If |w] i8 in [2"~1m, 2%7] for n > 1, we can write

B < f £

112
e HedhiZ el

di 2 1/2 1/2
c e 2 2 .
C (/a w dw) (-/‘?""RS]uiSEJ‘f Wl dw)

sC27™ <O+ W),

duw

and thus (61) is satisfied if we choose o <+4.
This concludes the proof of the theorem. W .
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Remarks.

(1) In the proof we use estimates of |§|? or its integral on dyadic rings

© 21 < |w| € 27, for n > 1. The case |w| < m does not causs any
problem since ¢(w) is a smooth function.

(2) The criterion that we have established is in fact sharp; i.e., it is nec-

essary and sufficient to have biorthogonal Riesz bases. The complete .

proof of this fact, which is very technical, can be found in [4].

Using our theoretical results, we shall now build an important family of
biorthogonal wavelets where the functions ¢ and 1 are piecewise polynomial.

§4. Biorthogonal wavelets and splines

The connections between wavelet theory and spline theory come out nat- '

urally from the general framework of multiresolution analysis. Indeed, for a
given N > 1, we can define a multiresolution analysis {V;};ez by

d N+l
Ig:{feL’(R)nC”“[Rﬂ(&-) f=zﬂk6'ﬂk}| (88)

keZ
where 6245 is the delta function localized at the point 27k. In other words, V;

is the space of square integrable functions which are piecewise polynomial of .

degree N on the dyadic intervals [27k, 27(k + 1)] with C¥~! continuity at the
nod points 2/k. -

A natural generator for these spaces is the Nth degree B-spline function
defined by

It is then well known that the integer translates of ¢ generate V. For example,
in the case of the linear splines (N = 1), ¢ is the hat function; ie., ¢*(z) =
max(0,1 — |z — 1|}.

However, it s clear that the translates of ¢ are not orthonormal. Still
{¢"(z — k)}rezz forms a Riesz bases for Vp; i.e., there exists ¢y = C; > 0,
such that for any sequence ay in ¢2(ZZ),

2
Yl < |3 adz-k)| $C2 Y lanl (90)
kEZ kEZ L2 kEZ
which can also be expressed by
0<C < Y 18N+ 2m) < Oy (1)
kEZ

This allows an orthonormalization process that preserves the structure of a

family generated by the translates of a single function. The new scaling function
is defined by

. s -1/2 .
¢ (W) =¢"(w) Z|&”(w+2kw)|’) . (92)
EZ

¢ (2) = ()" X0 (89)
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Its translates are orthonormal by construction but it is not compactly sup-
ported (it has exponential decay). The same holds for the associated wavelet.
In this construction, due to Battle and Lemarié [13], the CQF filters do not

have a finite impulse response, and this fact constitutes a major disadvantage
for implementation.

Using the results of the two previous sections, we shall now construct
biorthogonal bases of compactly supported wavelets where the functions ¢V
and ¥V are spline functions of order N.

We simply choose for ¢" the B-spline function defined by (89) since we
do not require anymore the orthonormality of its integer translates. The low
pass filter associated with this scaling function is given by

mi)= (1) )

To find & dual filter, it is useful to define the following polynomial

Fige3 (") (04)

J0 Y
which is the solution of the Bezout equation
(1-9)“Pu(y) +¥ Pl -y) = 1. (95)
By a change of variable, we obtain
s (" 0 5) + b QP (o (3) 9

and by a shift

457 en o ) 1
+[5] reen (o ()] -2

This formula gives a solution for all the values of N smaller than 2L—1. Indeed,
if N+1 < 2L, we can take as a dual filter

1+ew
2

ﬁ‘g’,f.(w) =. [ ]2L—N—1

P, (siu2 (%)) et (98)

In other words, for a fixed N, 72" is a dual filter for mY if 20> N +1. -
How can ‘we choose the parameter L in an optimal way? At first, it seems
natural to choose the smallest value of L such that 2L > N + 1. Unfortunately,
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this choice does not lead, except in the Haar case (N =0), to a dual scaling
function @y, which is square integrable. More precisely the filter iy ML does
not satisfy in this case the conditions of Theorems 8 and 12,

A very simple example to illustrate this problem is the case of the linear
splines N' = 1. If we choose L = 1, then the dual filter is given by

g (w) = e~ ' (99) -

By formula (26), we see that

ghi(w) = e, (100)

which is not square integrable. Observe that ¢** is a delta function centered
on 1 and that in the distribution sense we still have

(61(z - K1 (2 - ) = iy (101)

but the subband coding scheme has no chances to be numerically stable (in
the £? sense). For this reason, we need to choose & larger L, such that g NL ()
satisfies the conditions of Theorem 8 or 12. In [6], we prove that ¢V:X can be
made erbitrarily regular if we choose a large enough L for a fixed N. This
means that the Fourier transform of qb” 'L has an arbitrarily high rate of decay
at infinity and that 7y NL win satlsfy the conditions of Theorem 8. Note that
the regularity of the functions ¢ and ¥ is not very important in applications
since we only use them in the decomposition stage by inner product with the
function to be analyzed, As explained in the introduction, smoothness is mostly
important in the reconstruction process and we shall rather take " and yN:&
as synthesis functions since they are piecewise polynomials. For a Pgwen value
of N, the best choice for L is thus the smallest value such that #j '~ satisfies
the conditions of Theorem 12 (which are sharp).
For N =1, this valueis L = 2; i.e,

Myt (w) = (I—‘Zﬁ): e (1+2sin? (3)). (102)
For N = 2, this value is also L = 2; ie.,
33 () = (1 +2g“") ~2iw (1 + 2sin? (2)) (103)

For N = 3, this '\valﬁe is L =4; ie.,

g (w) = (l +26iw) i (1 + 4sin? (-2') + 10sin? (5) + 205111 ({;()lgé)

g8 3R

‘mpE=OQT
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We illustrate in Figures 3 and 4 the first two cases (linear and quadratic). Note
that, for even N, the wavelets are shifted odd functions, whereas for odd N,
they are shifted even functions. We show in these figures the results for the
minimal value of L (in the first column) and for the next value (in the second
column). ~ g
Observe the cheotic aspect of the functions ¢ and ¥ in the quadratic case.
One - an check that these functions, although square integrable, do not satisfy

the decay condition (1 + |w|)~*/2~¢(|¢| + [#]) < +o0o. This means that only
Theorem 12 can be applied here. This also explains the fractal aspect of these
graphs: To be square integrable, ¢ and ¢ must have a lacunary structure,
typical of these fractal figures.

Finally, let us mention a slightly different construction of compactly sup-
ported spline wavelet which is due to C. K. Chui and J. Z. Wang (9]. In this
construction, the apaces W, are kept orthogonal and the wavelet are nonorthog-
onal only inside a given scale. The advantages of this framework is that the
wavelet decomposition is still orthogonal and ¢ and 9 are still symmetric or
antisymmetric. Furthermore, the discussion on frame bounds is much simpler
and that the dual wavelet is also a spline function. However the dual wavelet
and filter are no longer compactly supported.
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Figure 8. Graphs of the functions ¢, ¥, §, and  in the spline case. -
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Figure 4. Graphs of the functions ¢, ¥, $, and ¥ in the quadratic case.
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Appendlx: Proof of some lemmas

Proof of Lemma 2

We shall prove this result for P;, the argument bemg the same for Pj, A,
and A,

Fl.mt from the definition (29) of P;, we have

Pi(f))(@) = Po(f(2%y))(2z). (105)

It is thus sufficient to prove that P, is a continuity operator on L*(R). We will
then have || P[] = || 7| for all ;. Since both ¢ and ¢ are in L? and compactly
supported, we can define the two trigonometric polynomials

tw)= Y 13w+ 2km)? = Y ($(2)d(z - n))e™, (106)

keZ neZZ

and
Hw)= Y 18w+ 2%n)2 = 3 (8(2)|d(z - n)yeine. (107) .

keZZ né€Z

For any sequence {e,,} in £(ZZ) we have

f

—{nw

|é(w)[*dw

Y end(z - ﬂ)

neZl

2

3 6w + 2km) *dw
keZZ

zen

T lnez

< mex () 3 feal®.

neZZ

For all f in L?(R), we can estimate the £2 norm of the sequence (f|¢(z — n))
in the following way.

T 1z - = 4 3 j Fw)dw)e
neZ n€Z
1 . RN 2
= j: ] kezz Flw + 2km)é(w + 2k7)| duw

< E;Lt(zlfwzkvr ) (Z |¢(u+2kw)|’)

kEZ kEZ
< max (#w)) || £]I*.

It follows from these two estimates that for-all f in L3(RR)

~

IPoflI7s < max (F(w)) max (t)IfI32, (108)
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and thus || Py|| < [max (£) max ()])/2. W

Proof of Lemma 8

Aj I We shall use the Fourier coefficients hn, gn, by §n of the filters mo, m1, Mo,
and 7y, For any f in L?(R), we have

- Po(f)+8olf) = Y (f18(z = kNolz ~ k) + Y (fld(z - K))w(z - k)

kEZ kEZ

v.tu]l; = Z (Z Fon—khm -2k + Z Enwikym—“)

nme€Z \kgZZ keZZ

4(f1d(2z ~ h))¢(2z — m)

.06
) - E Z [hn—2khm—zk + (- 1)“*’”?11 m+2bh1—n+2k])

nmeZ
07) 4(f|é(2z — n))¢(2z ~ m)
= T demnlfipz - n))o(2z - m). i

mn€Z
When m —n = 2p, we have
Cmn = z hihiksmen=Y  h Phesap = -50,;: (109)
. kem kET

because of the duality relation (21). When m —n = 2p+ 1, then

Cnm = Z in-!khm-zk - E Rl—m+2kh1—n+2k

kEZ k€Z
‘n)) =0

because the two sums contain exactly the same terms. We thus have

1
emn = 50nm (110)

and )
Po(f) + Ao(f) =2 S (F16(2z — k)o(2z ~ k) = Py(f).  (111)
kEZ
By Equation (105) we can rescale this identity to obtain for all §
Pj+4; = Pj.y; (112)

the same halds for P, A;, and P;_;. W -
108) °
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Proof of Lemma 4
We will use the following well known approximation result: If £ is in L2(R),
for all € > 0, there exists a function g which is a finite linear combination of

intervals characteristic functions (g = '2!_: agx ,_) such that || f —g]| < e Using
k=1
Lemma 2, this also gives

IPH (A = IP;(f — g+ 9)ll < [IPs(9)ll + Ce, (113)

and
[125(f) = fll < |Ps(g) = gll + (C + 1)e. (114)

It is thus sufficient to prove the limits (36) and (37) in the case where f = x| ,-
We first prove Equation (36). Using the same argument as in the proof of
Lemma 2, we obtain

IBOIR < C Y 1A18L)2

keZl
b
| B

= Z
ey [ gerte - R

kEZR
kezve

2

279b-k _ 5
=cy [ e

ke o=k

when j goes to +oo. It is clear that this expression tends to zero if ¢ is in
L*(R). ' :

To prove (37), we shall directly evaluate Pj(f) = Pj(x,,,,)- We first remark
that, because of the hypothesis (23), we have

$(2km) = $(2km) = fox. (115)
This leads to the following summation formulas which are valid for almost all '
z:
S tz-b=Y dz-k=1, (116)
ke keZZ
and

/ e = [#@=1 (117)

We know that ¢ and ¢ are compactly supported; i.e., both vanish out of an
interval [—s,s]. For j < 0 and |j| large enough, we can derive a pointwise

estirmnate of L
Pi(f)z) = 3 (f18])él(=). R

kEZR

(118)
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(1) If  is out of [a~27%1g, b+2/+1g), then either ¢ (z) = O or {f|¢7) =0
and thus P;(f)(z) =0.
(2) If z Is inside [a+27+15, b — 27+15), then either ¢}(z) =0, or (m{) =

[ @ldz =24/ and thus

P(f)z) = 21 4i(z) =) o2~z -k) =1 (119)
kEZ . keZ
In these two cases, Pj(f)(z) is exactly f(z). We still have to evaluate
Jn, 1Pi(f) = — f|? where R; is the residual domain R; = [a — 27*1s,a+ 27%13|U

[b—24+15,b + 291 4]. Now note that when z is in R;, we have

f(z)= xnm(z}.f(ﬂf) filw) (RjCRjp), - (120)

and
Pi(f)(z) = P;(f;)(z). (121)

Consequently
[ 1B - 1@)ds = [ 1B (5} @) - feee
R; Ry

< [IBi(s) - st
< ClsI

and ||f;]|? tends to zero when j goes to —oo. This concludes the proof of the
lemma, W i

References

1. Antonini, M., M. Barlaud, P. Mathieu, and I. Daubechies, Image coding
using wavelet transform, JEEE Trans. ASSF, to appear.

2. Beylkin, G., R. Coifman, and V. Rokhlin, Fast wavelet transform, and
numerical algorithms I, Comm. Pure and Appl. Math, 44 (1901}, 141-
183.

3. Chui, C. K. and J. Z. Wang, A general frame work of compactly supported
splines and wavelets, CAT Report #219, Texas A&M University, College
Station, TX, 1990.

4. Cohen, A. and I. Daubechies, A stability criterion for biorthogonal wavelet
bases and their related subband coding schemes, AT&T Bell Laboratories,
1991, preprint.

5. Cohen. A. and I. Daubechies, Nonseparable bidimensional wavelet bases,
AT&T Bell Laboratories, 1991, preprint.

6. Cohen, A., I. Daubechies, and J. C. Feauveau, Biorthogonal bases of com-
pactly supported wavelets, Comm. Pure and Appl. Math., 1991, to appear.

Page 199 of 437



e

10.

1%

12.
13.

14,

15.

16.

17.

18

19.

A. Cohen

. Cohen, A., Onﬁelettes, analyses multirésolutions et filtres miroir en quadra-

ture, Annales de I'IHP, analyse non linéaire 7 (5) (1990).

. Coifman, R., Y. Meyer, S. Quacke, and M. V. Wickerhauser, Signal pro-

cessing and compression with wave packets, Proceedings of the Conference
on Wavelets, Marseilles, Spring 1989,

. Conze, J. P. and A. Raugi, Fonctions harmoniques pour un opérateur de
transition et applications, Dept. de Math., Université de Rennes, France,

1990, preprint.

Daubechies, I., Orthonormal bases of compactly supported wavelets, Comm.

Pure and Appl. Math.-41 (1988), 909-996.

Eirola, T., Sobolev characterization of solutions of dilation equatmns,
Helsinki Umversity of Technology, submitted to SIAM J. Math. Anal,
1991,

Lawton, W., Necessary and sufficient conditions for constructing orthonor-
mal wavelets bases, J. Math, Phys. 32 (1) (1991), 57-61.

Lemarié, P. G., Ondelettes & localisation exponertialle, J. Math. Pure et
Appl. 67 (1988), 227-236.

Mallat, 8., A theory for multiresolution signal decomposition: the wavelet
representation, IEEE Pattern Anal. and Machine Intell. 11 (7) (1989),
674-693.

Meyer, Y., Ondelettes et Opérateurs, in two volumes, Hermann, Paris,
1990.

Smith, M. J. T. and T. P. Barnwell, Exact reconstruction techniques for
tree structured subband coders, IEEE ASSP 34 (1986), 434-441.
Vetterili, M., Filter banks allowing perfect reconstruction, Signal Process-
ing 10 (1986), 219-244.

Villemoes, L., Energy moments in time and frequency for two scale differ-
ence equstion solutions and wavelets, Math. Institute, Technical Univ. of
Denmark, DK2800 Lyngby, Denmark, 1991, preprint.

Young, R. M., An Introduction to Nonharmonic Fourier Series, Academic
Press, New York, 1980.

Albert Cohen

CEREMADE

Université Paris IX Dauphine

Place du Maréchal de Lattre de Tassigny
75016 Paris, France

Page 200 of 437



)

within a neighborhood around the reference function G,. The re-

duged onder wurping matrix for the reference function G, is given
by

W, =R ", (2

The waming vector for tha cxpansion coefficient a, is given by
W= 3

where F, is an dperator that selects the row, associated with g, from

IEEE TRANSACTIONS ON IMAGE PROCESSING. VOL. 1. NO. 1. APRIL w9

tor w, and the window af the projection function. P,. In gencral. a

dlﬁcmm warping ve:lor or projection function is required for each

a,. These hods arc well suited 10 g mus-

sively parallel implementation which ussigns a separaic processor
y group lo cuch ¢l v function G, .

For the single processorimemory case. these methods are most
efficient for lattices that exhibit overlap invariance: the overlap
qlti, j) depends on the distancc between clementary functions G.
and G,. not on their absoluie lawice positions. Consider the wo

the matrix 1. The update cquation for the coefficient o, b lattices | d in [2]: the Cantesian lattice and the log:polar lat-
i / o tice, The overlap characteristics of the Cartesian lattice are com-

a;tl = a) = B9, ; (14} pletely invariant to shifis in position or frequency. Bastiaans used

whene ©J, is the gradicnt for the clementary i in thisinvariancc ta a biprth A window [3]. [31, which

R,
The update term in (14) con be expressed as

o -H elx. _\-pl;?"1.-,(j)c;,u._r1ldr4r 1%

where w,( /) is the jih element of the warping vecior . The now
function ¢reated by the warping vector is given by

Pir.y) = Zw (/)G x 1. {16
I

This function P, is orthonormal to all elementary functions in-
cluded in R,. and is referred to as the **locally biorthonarmal pro-
jection function."* The remainder of this ucnon outlines a method
for calculating the optimal proj ion fora given
support width.

Ler O, denote a pscudo-Hessian matrix whose elemenis are given
by

alicj) = (G Py un

If the projection and ¢l functions are lized such that
gpll. i) = 1. then the nunnlllw:l pseudo-Hessian matrix §, can be

writicn us

Go=1+V (18)

where / is the identity mairix and ¥ is a matrix containing all the
off-diagonal elements of 'Q,. I all the elements of ¥ are small. then

O mi-v=2-~0, (19)
Using (19), an estimate of the locally biorthonormal proj

provides a dircet solution (no ilerations) to the Gabor cxpansion.
If the Canesian lanice is implemented as an iterative Gubor expan-
sion, the i in ity over D s neural network is
small bocuw: all u-n!plng veetors w, will be identical. The im-
wuh the size of the neighbor-
hond R. zwmal:hing B * direct solution as the neighb
hood size become arbitrarily large.

The log-polar lattice is not invariant to shifis in frequency. Con-
sequently. there us o cquivalent to Bastiaan's biorthonormal win-

dow. In an i p i |t is possible to imp the
convergence by cxploiting the p i overiap charag-
teristic that exists between ¢l y functions with u

freq .1 the neighborhood R, contains only elementury func-

tions with the same frequency, all warping vectors w, will be iden-
tical, As a result, a limited (but noticeable) increase in convergence
is obtained with little lexity. The rate of conver-
gence can be further increased if the number of unique warping
vectors (and the lexity of the impl ion) is allowed 10
increase.
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function is recursively defined by

N
P Ne ) = 2Pl ) = TGP 0. 200
e

The recursive estimate of £, will converge if the Gaborcxplnum
is uniyue (i1 @' exists). The Iting set of proj

cun be used in u descent m]plcm:ullliun if G, in (7) is replaced by
P In such an implementation, the lower bound of the optimal con-
vergenee Tactor is estimated by

i 1
Alaliy = ° 2
Kl PR 2
: _

1V. CommenTs

The previous seetion has i wo that imp
convergenee: the fisst method uses wrplng veclors: the second
methad wses locally hi mal 1 The over-

lap charucteristics of the menibons nI‘R determine the warping vee-
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- functions {Y4x)}, g2, where /(x) =

g -
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ficients were coded hierarchicslly und individually yuuntized in ac-
cordance with the local estimated noise vensitiviy of the human visual
system (HVS). The algorithm can be mapped ensily onta VLS1. For the
Miss America and Lena monochrome quu. the technigue gave high
o quality recops jon ratios of 0,3-0.2
and 0.64-0:43 bits per pixel fbpp), mpmlmr

I. INTRODUCTION

Traditional image i hni have been designed
to exploit the statistical redundancy presemt within real world im-
ages. The discrete cosine transform (DCT), DPCM. and the en-
tropy coding of subband images arc all eumplea of this statistical

pproach. Removing red can only give a limited amount
of compresssion: 1o achieve hinh ratios, some of the nonredundant
information must be removed. The statistical coders produce an-
noying visual degradation when operating in this mode because they
inroduce errors‘in visually i imponam pans of the image slruelure
(such as feature edges). By using methods of image d

that closely mimic the human visual system (HVS), compression
can take into account the imponance of each individual coefficient
and code accordingly.

The HVS is an information processing system, receiving spa-
tially sampled images from the cones and rods in the eve and de-
ducing the nature of the objects it observes by processing this im-
age data. At a low level. abjects can be thought of as structures
made up of surfaces of the same color or texture bounded by edges.
The color and texture of an object is greatly affected by its oriens
tation and illumination so the edges are usually the most imporiant
means of recognition, so a good image compression algorithm
should try to minimize edge distortion.

Psychophysicists and visual psy

gists have p many

.experiments on the HVS to determine how it processes image data.

They discovered that the eye filters the image into a number of
bands. cach approximately one octave wide in frequency. Further,
in the spatial domsin, the image should be considered 1o be com-
posed of information at a number of different scales [6]. Mar for-
mulated a constraint of spaiial localization that the physical phe-
nomena that give rise io intensity changes in the iinage are spatially
localized.

45

N7

For images we use the hi al waveler decomposition sug-
gested by Mallat |7]. The G and H filters are applicd 10 the image
in both the horizantal and ventical directions. and the filier outputs
subsampled by a factor of 1wo, generating three orientation selec-
tive high-pass subbands. GG, GH, HG, and a low-pass subband
HH. The process is then repeated on the HH band to generate the
nexi level of the decomposition, etc. Four octaves of decomposi-
tion leads 1o thineen subbands (Fig. 1). Fig. 2 shows the image of
Lena decomposcd in this way. This hicrarchical spproach to image
decomposition fulfills the role of scales in Marr's decompoasition.
QMF subband coding algorihms for imoges have been exploréd by
Vetterli |8). und for use in compression by Woods und O'Neil [9] -
using a flax decomposition and by Gharavi apd Tabatubui {10] in a
pyramidal decomposition akin 10 the waveler transform.

In general the wavelet trensform requines much less hardware to
implement than Fourier methods, such as the discrete cosine frans-
form DCT [5]. However, for the 4 coctlicient Duubechies 1]
wavelet, it is cspecially simple 10 calculate and inven the transform
in hardware as no multipliers are needed 1o calculate the quantized
coefficiems (h(0) = 11/32, k(1) = (9/32. (D) = 5/32.h(3) =
-3[32) [4] This allows us to incorporate the advanlugcs of a mul-

1o d P and ihe image.

without high hardware costs,

The wavelet decomposition is an al ion of
image data but the number of bits used to siore it hal not changed,
To compress the image data, we must decide which cocfficients to
send and how many bits 1o use to code them. Our compression
algorithm consists of taking the low-pass subband in full. and then
deciding which coefficients within the remaining subbands 1o keep,
The problem is to decide which of the nonzero wavelet transform
coefficients correspond to noise and which visually imporant de-
wails of the image, in particular, we want 10 preserve the edge:like
Information within the image. Simply thresholding each of the coef-
ficients, would leave exira noise and visually unimponant infor-
mation in the compressed image. We apply an algorithm baséd on
Marr's constraint of spatial locality when deciding which coeffis «
cients to keep. So that if an imponant deil oceurs at some place
in the image we expect that the cocfficients corresponding 10 that
location will exceed a threshold in more than one octave: the ori-

In this paper we i a new appi 10 image comp

based on decomposing the image using the orthogonal wavelet
transform. and then apply a compression algorithm based on Marr's
constraint of spatial locality. Firstly, we will Introduce the wavelet

form. discuss its impl by quadi mirror filtering
(QMF), and describe the ideas behind our compression method. In
Section 111 we present an algorithm implementing our method which
is suiable for real time use either on a DSP chip. or on dedicated
hardware, In Section [V we give some results on the test images of

Miss America and Lena for a range of compression ratios.

1l. WAVELET TRANSFORM AND IMAGE COMPRESSION

One-dimensional wavelet theory defines a function . the wave-
let, and its associated scaling function @, such that the family of

of the detail will be determined by which of the GH, HG.
or GG subbands we use. In this way we utilize both the frequency
and spatial locality of the waveler transform to detect and code the
image data efficiently. By examining the image at low resolutions,
and hence, & low number of samples, an initial guess at the locution
of the edges can be made. These guesses can be confirmed or re-
jected by g the higher derail signal at the same
spatial location. We shall use the same technique to not only save
on processing lime but also to compress the picture through reject-
ing the redundant areas: by controlling which arcas are rejected we
can aim for high compression and high quality in the final output.
The th values are d adaptively from a simple HVS
model. Finally, the smaller the support of the wavelet. the less

wavelet coefficients will 1o an edge, so the more
efficient will be our compression scheme. For this reason we chose

ﬂz’xl. are
The wavelet transform can be implemented by quadrature mirror
filiers [11], [12] G = (g(m), and H = (h(n)). n € Z, where h(n)
= 1 /2((x/2), d(x = n)), and g(n) = (=1)"h(l = n) ({ ) de-
notes L' inner product). H corresponds to & low-pass filter. and G
is an octave wide high-pass filier. The reconstruction filters have
impulse response h*(n) = h(1 ='n), and g*(n) = g(1 = n). Fora
more detailed analysis of the relationship between wavelets and
QMF see Mallat [7].

the Di hies-4 wavelet, The second siage of the compression
process is to quantize the remaining nonzero cocfficicnts: we use a
linear mid-step quantizer with siep-size derived from a HV'S model,
and then Huffman code the resulting values.”

L II. Tue COMPRESSION ALGORITHM

In this section we desceibe the algorithm imp fing the ideas
discidsed in the p section, and this with u quanti-
zation modél based on the HVS.
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"

Euch coctlicient in the high-pass bundy of the wavelet transfarm fposition. This data was uscd successfully in a pre-
foroctaves (o= |- 30 ha four coellicients corresponding W its  vious video compression algorithm [2]. The tree is construeied iy
spatial position in the octave band above it in frequency. This sug-  first considering cach coctficient of all orientations (s = GG. GH.
gesls using 3 four brunch tree 1o represent the siicture of the de-  HG) o the lowest oetabe in the high-puss bunds. The vulue is cded
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and if its absolute value is greater than a fixed threshold value, the
process is repeated for the four corresponding cocfficients in the
oclave above, If not, the tree ix rejected and zera cocfficients are
implied by the coding system for the tree above. This (cchnique
requires no control signals or addresses to be added by the coder
and is efficiently implemented using stack-based hardware.

Our thresholding algorithm was far from optimal: though it fol-
lowed cdges and rejecied flat oreas very cfficienily,

2. APRIL 1992

pencd 100 often and blurred pans of the image around edges.

A better measurc of the likelihood of an cdge at a point within a
subband would be to calculate the energy in a small area encom-
passing.the paint, By using a small 2 by 2 block s IM nodes of
the tree structure. rather than single coefficient values.

Betave ¢
Ioum ey
eyt i % e oy o 1 J
Oetave r+1

kes hap- 1=, 2y} L T B e R

P andpe ) [ e L | P ey | ]

[l PR N Fiate PR IR VR L e Pt ) R TR I RSO
R ptagag tyad) [l itze Lty e | e | a0 -

errors are greatly reduced. In addition, special block codes are |r|-
troduced to increase the coding efficiency abave that of the original
method. Fig. 3 shows the new small block-based tree structure and
its coding with the aid of the follewing recursive function,
SendTree. Firstly. the low-pass image HH is coded in full(8 bits
per pixel (bpp)). then the remaining subbands are coded recursively
by applving the following subroutine SendTree 1o ull the blocks
within the lowest frequency subbands. (In the following. let /" (x,
¥} be the coefficient value, of the decomposition / at octave r. ori-
entation 5, and position x, v within that subband.)

SendTree (1, r. 5. 5. ¥)
If (THRESHOLD < ThreshaldFunction(/~*(x + {0. 1}, ¥ +
{0: 1hn {
SendToken(BlockNotEmpiy);
SendCoefficients(/™ (xr + [0, 1), ¥ + {0, 1)
SendTree(l, r — 1, 1, 2x. 2¥);
SendTree(l, r = 1, 5. 2(x + 1). 2y}
SendTree(/. r = |, s.2x. v + 1)
SendTree(/. r = 1, 5,20 + 1), 2y + D)
| else SendToken(BlockEmpty);

The Threshold Function was chosen Lo be the sum of squares of the
block’s coefficients lized 10 the HVS- perceptual threshold
discussed later,

Tree structuring and block coding have exploited. interband and
intraband correlation to facilitatg data compression but so far we
have not considered how to code the coefficient data itself
[SendCoefficients). With 8 bpp wo have 256 different levels 1o rep-
resent our transformed coefficients. but this may not be the opti-
mum valuc. We can use our knowledge of the HYS: 1o determine
the smallest number of levels required at each. point within the
transformed image. The errors caused by using fewer levels can be
considered s u noise source; visunl psychophysics states (hat a
number of factors effect the noise ncn:lwny of the eye: the back-
ground luminance, the proximity (o an nd]e. the frequency band,

* und texture masking.

Background luminance is related 0 noise sensitivity by We-
ber's law, The eye is less sensitive to noise for brighter background
luminances. The low-pass cuemcn:m.s can be used to provide val-
ues of background luminance.

Edge proximiiy or spatial mnlsmg rnlaleu noise sensitivity to

" distance from and height of the edge. As the coefficients we send
are supposed 1o be part of an edge., the spatial locality of the octave
provides distance information, while the encrgy of the lower fre-
quency coelficicnts indicates edge height, Sensitivity decreases for
increasing edge height und at decreasing distances from the edge.

" Band sensitivity is of the octave currently being coded. This is
1 fixed vatue for euch octave. ion, and lumi hromi

Fig. 3. Block tree struciure.

nance channel. We have formulated an empiricul model for this
bascd on HVS experiments.

Texture masking decreascs the sensitivity 1o noise if there is high
activity in the locality of the cocflicient. The energy of lower fre.
quency coefficients can indicaie the texture activity level.

A mathematical model of the HVS can be constructed 1o allow
the estimation of noise densitivity for any pam of the iransformed
image. Subband coding algorithms that exploit HVS propenics
usually quantize the whole subband on the basis ol spectral re-
sponsc alone. Safranck and Johnston [13] combined band sensitiv-
ity, background luminance, and texwre masking mfnn‘nal:sm [
provide a percepiual threshold for each subband cocffi They
then used the minimum threshold value to quantize the entire bund.
In our algorithm we use a similar calculation to estimate the per-
ceptual threshold of each 2 by 2 block, and then guantize cach pixel
in the block with this threshold using a linear mid-step quuntizer.
We also use this p | threshold figure 10 lize the couls
ficiemt value before edge detection. It should be noted that vnly
previously coded values are needed in the quaniizer, hence, na ad-
ditional side information is required.

The quantizer step-size for the coefficients in Fig. 3. qm-,n. .
calculated as follows:

gstep (r. 5.5, ¥)
= g, * frequency (r, 5) * luminance (r, &, ¥)

 texwre {r, x, y)°%™

where gy is 2 normalization constant and

frequency (r, £)
1.00, ifr=20
V2. ifs=GG Lo =i
1. otherwise 0.06. ifr=2
000, ifr=3

luminanee (r, £. .rl

-3+—EE:""*«+1H;~‘ gt exi2tn
-2

256 =0,
texwre (r, £, y)
i-r GG.GH.HG | (] E
= ¥ 16 E PN Ve e
1= e
+ 16 vae (P90, 2) 4 x/2 0 1L 2 ey Sy

where var is the variance of the four coeflicient block. and the suny
mation is zero when its ower limit exceeds its upper Tt
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Fig. 4. Coding resulis for frame #1 of the Miss America les sequence,
The original image is in the upper left. The upper right is coded a1 0.30
bpp (SNR 37,080, the lwer lett at (.25 bpp (SNR 36560, and the fower
right at 0.20 bpp (SNR 36,111 E
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Fig. 5. Coding results for Lena. The original image is in the upper lef,
The upper right ix coded wt 0.64 bpp (SNR M.76). the lower left a1 (1.53
bpp (SNR 34.03), and the lower right ot 0.4) bpp (SNR 13.18).

Our eq P a crude apy to the HVS noise
sensitivity: more accurate models c¢ould be made to incrense
compression or picture quality.

After the number of quantization levels has been established and
the coefficient has been ized. further P can be
"achieved by using (he statistical properties of coeffi-
cients. A well-known statistical propenty of subband cocfficients is
their Lap probability di with o mode value
of zero. Even after quantization this propeny is approximately true,
A simple variable length or Hulfman code can be constructed an
the basis of this d propeny. Further pression can be
achieved from the use of the variable length code as it exploits the
entropy within the coefficient values. Tuble | shows some cxample
code strings for a range of quuntization lovels, .

" The first twi bits indicate the of the (00~
0,01 -1,10-2.and Il = ing).. The third bit indic

Rt

to exploit redundancy within image data, Additional technigues
could be used. such as DPCM. on the low-puss band wr the entropy
of a block's nonzern symbols. but we currently do nol comider
them o be cost effective.

IV, RESCLTS

We have applicd our method to two standard monochrome tesi
images. Miss America and Lena: the coded reconsimuctions are
shown in Figs. 4 and 5, nespectively. The Miss Anerica ¢
the first frame of a test sequence und is 352 by 28K pisels (CTE
Format) in size. The Lenu image is 512 by 512 pivels in ~ice. The
SNR values are caleulaied aver the whole of the image tinclnding
the cdges).

Our results achieve better compression ruios [or u given pieture
quality thun the | b codling hods. Additonally .
our ithm is si Iy simpler w implement in hanlware o

the sign (0 — positive and | — negative). Trailing zeros terminated
by o one indicate the magnitudes of the remaining values above
wo.

Our eompression algorithm uses four ""orthogonal™ technigues

. achigve real-time performunce. This is important for the codig ot

video scquences [3]. We lind that the ermors patadiee) by oo
methods arc leas visually apnoying thun for DCT compressed i
ages due w the Juck of blocking effects. AL ven Ty comnpressiiy
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_ ratios visual degradation is immduced, mninly; ax blowchiness in flat
arcun and slight luzziness amund sharp: discontinuitics. In p;m'u:.-
ular. the background of the Miss America and Lena images. and
Lena's face und shoulder become blotchy. - Also their hair and
Lenu's feather lose their shurpness, Finally. our method is equally
applicable 10 the compression of color images in YUV format.

In conclusion, our resulls indicate thag the combination of HYS
compatible filiers with finite suppont, and & quantizer which intro-
duves noixe’in the visually least imporant ond noise insensitive
pans. ol the image gives a significant improvement in compres-
sion/image quality over block-based transform methods.. Finally.

/the 4-tap Daubechics flier and the coder we use are much simpler
1o implement in. hardware thun DCT. VQ or other subbund coding
methods [4]. We are currently incorporuting this method in a video
codec, and implementing it in VLSII[3)).
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Exact reconsiruction tech-

while providing graccful degnidutic
when the rate decreases to mutch decreused availuble vupavity,

In this paper we describe 4 DPCM-based coding schemie whic
has the desired properties fisied sbove. It is a low. complexi
scheme wilh excellent edge preservation in the reconstrucied in
age. It takes full odvantage of the available chunnel vapucity pn
viding lossless compression when sufficient vapac avuilabl

and very graceful degradation when o reduction in rite is requins

I NOTATION AND PRoBLEM FORMULATION

The DPCM system consists of two main blocks, the quuntiz
and the predictor {sce Fig. 1). The predictor uses the corrclwgic
between samples of the waveform s(k) 10 predict the next sampl
value, This predicted value is removed from the wavefor at th
trunsmitier and reintroduced at the receiver. The pmjucwn e
is quantized 10 one of a finite number of values which is toded an
transmited to the recciver and is denoted by ¢ (k). The diflereny
berween the prediction error and the qunmizcd prediction error @
culled the quantization error or the guuntization noise. If the char
nel is error free. the reconstruction error ut the recciver in simpl
the guantization crror. To sec this. note (Fig. 1) that the predictiv
érror e(k) is given by

St =sth-pln o
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1: INTRODUGTION

We shall consider the problem of storing, transmitting, and manipulating digital electronic images. Be-
canse of the file sizes involved, transmitting images will always consume large amounts of bandwidth, and
storing images will always require hefty resources. Because of the large number N of pixels in a high reso-
lution image, manipulation of digital images is infeasible without low-complexity algorithms, i.e., O(N) or
O(N log(V)). Our goal will be to describe some new methods which are firmly grounded in harmonic.anal-
ysis and the mathematical theory of function spaces, which promise to combine effective image compression
with low-complexity image processing. We shall take a broad perspective, but we shall also compare specific
new algorithms to the state of the art.

Roughly speaking, most image compression algorithms split into three parts: invertible transformation,
lossy quantization or rank-reduction, and entropy coding (or redundancy removal). There are a few algo-

_rithms which differ fundamentally from this scheme, e.g., the collage coding algorithm [Barnsley,Sloan], or

pure vector quantization of the pixels. The former uses a deep observation that pictures of natural objects
exhibit self-similarity at different scales; we prefer to avoid relying on this phenomenon, since our images
may not be “natural.” The latter uses a complex algorithm to build a super efficient empirical vocabulary
to describe an ensemble of images; we prefer to avoid training our algorithm with any sample of images, to
avoid the problem of producing a sufficiently large and suitable ensemble.

There has emerged an international standard for picture compression, promulgated by the Joint Photo-
graphic Experts Group (JPEG), which is remarkably effective in reducing the size of digitized image files.
JPEG is 2-dimensional discrete cosine transform (DCT) coding of 8 x 8 blocks of pixels, followed by & possibly
proprietary quantization scheme on the DCT amplitudes, followed by either Huffman, Lempel-Ziv-Welch
or arithmetic coding of the quantized coefficients. It has some drawbacks; for example, several incompatible
implementations are allowed under the standard. Also, JPEG degrades ungracefully a high ultrahigh com-
pression ratios, and it makes certain assumptions about the picture that are violated by zooming in or out,
or other transformations. It works so well on typical photographs and many other 'ima.gea, however, that it

* has become the algorithm to beat in most applications. JPEG fails most noticeably on high resolution (i.e.,

oversampled) data, and on images which must be closely examined by humans or machines.

Alternatives to JPEG have recently appeared, and we shall discuss 3 of these: the fast discrete wavelet
transform, the local trigonometric or lapped orthogonal transform, and the best-basis algorithm, These differ
in the transform coding step, i.e., instead of DCT they first apply the wavelet transform, lapped orthogonal’

"sransform, or wavelet packet transform, possibly followed by a best-basis search. The resulting stream of

a.m[-)l-.itlldea' is then quantized and coded to remove redundancy.
Research supported in part by ONR Grant N00014-88-K0020 and by FBI contract A107183 .
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Existing image processing algorithms work on the eriginél pixels or else on the (2-dimensional) Fourier
transform of the pixels, If the image has been compressed, it must be uncompressed prior to such processing,
Alternatively, we can try to devise algorithms which transform the compressed parameters. If compression
is accomplished by retaining only a low-rank approximation to the signal, then we can use more complex
algoritiims for subsequent processing. To put this idea into practice, we need to retain nseful analytic
properties such as the large derivatives used in edge detection. These will not be preserved by purely
information-theoretic coding such as pure vector quantization, but we can choose transform coding methods
whose mathematical properties combine efficient compression with good analytic behavior.

2: TransForM CobING IMAGE COMPRESSION

A digitally sampled image can only represent a band-limited function, since there is no way of resolving
spatial frequencies higher than half the pixel pitch. Band limited functions are smooth; in fact they are entire
analytic, which means that at each point they can be differentiated arbitrarily often and the resulting Taylor
series converges arbitrarily far away. Since digitally sampled images faithfully reproduce the originals as far
as our eyes can tell, we may confidently assume that our images are in fact smooth and well approximated
by band-limited functions. Another way of saying this is that adjacent pixels are highly correlated, or that
there is a much lower rank description of the image which captures virtually all of the independent features.
In transform coding, we seek a basis of these features, in which the the ceordinates are less highly correlated
or even uncorrelated, These coordinates are then approximated to some precision, and that approximate
representation is further passed through a loasless redundancy remover. v

The figure below depicts a generic image compression transform coder. [t embodies a three-step algo-

rithm:
d " Remove
: i "l S H redundancy Storage

Figure 2-1.
Idealized transform coder.

The first block (“Transform”) applies an invertible coordinate transformation to the image. We think of
this transformation as implemented in real arithmetic, with enough precision to keep the truncation error
below the quantization error introduced by the original sampling. The output of this block will be treated
as a stream of real numbers, though in practice we are always limited to a fixed precision.

The second (“Quantize”) block replaces the real number coordinates with lower-precision approximations
which can be coded in a (small) finite number of digits. If the transform step is effective, then the new
coordinates are mostly very small and can be set to zero, while only a few coordinates are large enough to
survive. The output of this block is a stream of small integers, most of which are the same (namely 0). If
our goal is to reduce the rank of the representation, we can now stop and take only the surviving amplitudes
and tag them with some identifiers, If our goal is to reduce the number of bits we must transmit or store,
then we should proceed to the next step.

The third block (“Remove redundaney”) replaces the stream of small integers with some more efficient

- alphabet of variable-length characters. In this alphabet the frequently occurring letters (like “0") are repre-
sented more compactly iha.n rare letters.
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3: DECORRELATION BY TRANSFORMATION

We will consider six pixel transformations which have proven useful in decorrelating smooth pictures.

3.1: Karhunen-Lqéve.

Let us now fix an image size—say height H and width W, with N = H x W pixels—and treat the
individual pixels as random variables. Qur probability space will consist of some collection of pictures
S = {81,8,...,5u}, where M is a big number. The intensity of the nth pixel S(n), 1 < n < N, is
a random variable that takes a nonnegative real value for each individual picture S € S. Nearby pixels
in a smooth image are correlated, which means that the value of one pixel conveys information about the
likelihood of its neighbors’ values. This implies that having transmitted the one pixel value at full expense,
we should be able to exploit this correlation to reduce the cost of transmitting the neighboring pixel values.
This is done by transforming the picture into a new set of coordinates which are uncorrelated over the
collection S, and then transmitting the uncorrelated values.

" More precisely, the collection of smooth pictures § has off-diagonal terms in the autocovariance matrix
A= (A, )1, of the pixels in S: ‘

M
(a1) AGi) = 37 3 Sni) X 8nli),
m=]

where Sm = Sm = & ¥, Sm. A can be diagonalized because it is symmetric (see [Apostol], theorem 5.4,
page 120, for a proof of this very general fact). We can write T' for the orthogonal matrix that diagonalizes
A; then TAT* is diagonal, and T is called the Karhunen-Loéve transform, or alternatively the prindpal
orthogonal decomposition. The rows of T' are the vectors of the Karhunen-Lotve basis for the collection S,
or equivalently for the matrix A, The number of positive eigenvalues on the diagonal of TAT™ is the actual
number of uncorrelated parameters, or degrees of freedom, in the collection of pictures. Each eigenvalue is
the variance of its degree of freedom. T'S\, is Sy Written in these uncorrelated parameters, which is \\'*hat
we should transmit. '

Unfortunately, the above method is not practical because of the amount of computation required. For
typical pictures, N is in the range 108-10°. To diagonalize A and find T requires O(N?) operations in the
general case. Furthermore, to apply T to each picture requires O(N?) operations in general. Hence several
simplifications are usually made, '

3.2: DCT.
For smooth signals, the autocovariance matrix is assumed to be of the form

(3.2-2) A, j) = -7l

where r is the adjacent pixel correlation coefficient and is assumed to be just slightly less than 1. The
expression |i — j| should be interpreted as |, — j.| + |ic — je|, where i, and i, are respectively the row and
column indices of pixel i, and similarly for j. Experience shows that this is quite close to the truth for small
sections.of large collections of finely sampled smooth pictures. It is possible to compute the Karhunen-Loéve
_basis exactly in the limit N — co: in that case A is the matrix of a two-dimensional convolution with an even
function, so it is diagonalized by the two-dimensional discret® cosine transform (DCT). In one dimension,
this transform is an inner product with functions such as the one in the figure below: :
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1

"8 D4 01 07 04 06 08 1 12 14 16

Figure 3.2-2.
Example DCT basis function,

This limit transform can be used instead of the exact Karhunen~Lo&ve basis; it has the added advantage of
being rapidly computable via the fast DCT derived from the fast Fourier transform. The Joint Photographic
Experts Group (JPEG) algorithm uses this transform and one other simplification. N is limited to 64 by
taking 8 x 8 sub-blocks of the picture, JPEG applies two-dimensional DCT to the sub-blocks, then treats
the 64 vectors of amplitudes individually in a manner we will discuss in the next section.

3.3: LCT or LOT. ‘
Rather than use disjoint 8 x 8 blocks as in JPEG, it is possible to use “lapped” or “localized” (but still
orthogonal) discrete cosine functions which are supported on overlapping patches of the picture. These local
cosine transforms (LCT, as in [Coifman,Meyer]) or lapped orthogonal transforms (LOT, as in [Malvar|) are
modifications of DCT which attempt to solve the blockiness problem by using smoothly overlapping blocks.
This can be done in such a way that the overlapping blocks are still orthogonal, i.e., there is no added
redundancy from using amplitudes in more than one block to represent a single pixel. For the smooth blocks
to be orthogonal we must use DCT-IV, which is the discrete cosine transform using half-integer grid points
and half-integer frequencies. The formulas for the smooth overlapping basis functions in two dimensions are
derived from the following formulas in one dimension. '
For definiteness we will use a particular symmetric bump function

sin I(l +sinmz), if -3 <z<$,
0, otherwise,

(3.33) | Bz) = {

This function is symmetric about the value z = . It is smooth on (=1, 2) with vanishing derivatives at
the boundary points, so that it has a continuous derivative on R. Notice that we can modify b to obtain
more continuous derivatives by iterating the innermost sin wz. Let by (z) = b(z) and define

(3.3-4) bas1(z) = by (§ sinwz)
Then by, will have (use L’Hapital's ruié!) at least 2"~! vanishing derivatives at —3 and 4.
Now consider the interval of integers I = {0,1,2,...,N = 1} where N = 2" is a pasitive integer power

- of 2. This can be regarded as the “current block™ of I samples in an array; there are previous samples
I' = {...,=2,-1} and future samples " = {N,N + 1,...} as well. The lapped orthogonal functions are
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. HIGH-RESOLUTION STILL PICTURE COMPRESSION 2 5

mainly supported on I, but they take values on {~N/2,..., ~1}c I' and {N,...,N/2 =1} C I" as well;
those are the overlapping parts. For integers k € {0,1,..., N — 1}, we can define the function

s womgiye () (orh 3]

Apart from b, these are evidently the basis functions for the so-called DCT-IV transform, Th;: figure
below shows one such function, with /V chosen large enough so that the smoothness is evident:

= ke s M " S R

04 02 0 02 04 06 08, 1 12 14

Figure 3.3-3.
Example LCT basis function.

The orthogonality of such functions may be checked by verifying the following equations:
!

W (1, k=R,
(336) 5_-:# hlivwli) = { 0, ifk# K.

The chosen window function or “bell” allows cosines on adjacent intervals to overlap while remaining
orthogonal. For example, the function ¥(j + IV) is centered over the range j € {-N,~N +1,...,~1} and
overlaps the function ¥y(j) at values j € {~=N/2,—N/2 +1,...,N/2 —1}. Yet these two functions are
orthogonal, which may be checked by verifying the equation below:

-1
(33.7) 3 Wi+ N (j)=0,  forall integers k, k"
j=—4 ¥

Of course, rather than calculate inner products with the sequences 14, we can preprocess data so that
standard fast DCT-IV algorithms may be used. This may be visualized as “folding” the overlapping parts
of the bells back into the interval. This folding can be transposed onto the data, and the result will be
disjoint intervals of samples which can be “unfolded” to produce smooth overlapping segments. This is
best illustrated by an example. Suppose we wish to fold a smooth function across 0, onto the intervals
{-N/2,...,~1} and'{0,1,...,N/2 — 1}, using the bell b defined above. Then folding replaces the function
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f = f(4) with the left and right parts fo_ and fo,:
0 ' if j <« —=N/2,
e : i+1 5 it
| b)) - BRI (=5 -1), i€ {=N/2 1),
Vsl { b(ERG) + ) p(=5 - ), G (01, N2 -1,
G if j > N/2.
The symmetry of b allows us to use b(—z) instead of introducing the bell attached to the left interval. This
action divides f into two independent functions (the even and odd parts of f) which merge smoothly around

the grid point 0. The process is an orthogonal transformation, We can fold the smooth function around the
grid point [V in a similar manner: :

f (_)__{f(j). if j < N/2;
T - 0s6) - s(E - 01N - - 1), 5 e N/ N = 1),
hali)= { (A - 1£G) +6(HE - ) f@N -5 - 1), ifje (N, N+1,...,3N/2-1},”
1), it j > 3N/2. .
The new function fo defined below is a smooth, independent segment of the original smooth function f,
restricted to the interval of values {0,1,...,N - 1}:

le—(j)r ifj € {091|""N/2 - l}v
fl-{j)! i.fj € {N/?,Nf?-f-l,...,N— l}'
We can naw apply the N-point DCT-IV transform directly to fo.

We can likewise define fr,(j) for the values j € {mN,mN +1,...,(m + 1)N = 1} by the same folding
process, which segments a smooth function f into smooth independent blocks, Folding to intervals of different
‘lengths is easily defined as well. We can also generalize to two dimensions by separably folding in = and
then in y. .

Unfolding reconstructs f from fo.. and fo4 by the following formulas:

W) o) + A s (=5 = 1, i3 € =N/2., =11,
b(ER) fos () = 0T fo- (=7 = 1), i € {0,1,...,N/2~ 1},

Composing these relations yields f(j) = [5(1*76&)’ +b(:L—N!!3)Z] f(j). This equation is verified by the
bell # defined in Eq.(3.3-3), for which the sum of the squares is 1.

3.4: Adapted block cosines.

We can also build a library of block LCT bases (or block DCT bases) and search it for the minimum
of some cost function. The chosen “best LCT basis” will be a patchwork of different-sized blocks, adapted
to different-sized embedded textures in the picture. Again it will be necessary to’‘encode the basis choice
together with the amplitudes. A description of two versions of this algorithm and some experiments may be
found in [Fang,Seré].

3.5: Subband coding.

A (one-dimensional) signal may be divided into frequency subbands by repeated application of convolution
by a pair of digital filters, one high-pass and one low-pass, with mutual orthogonality properties.

Let {he 121, {9x} M5! be two finite sequences, and define two operators H and G as follows:

fo-(i) = {
(3.3-8)

(3.39)

(33-10) G- {

(3311) i) = {

; M-1 . M=
(3.5-12) (Hf)e= Y hifisaes  (Gha= Y gifisan .
=0 j=0

Page 213 of 437



HIGH-RESOLUTION STILL PICTURE COMPRESS[ON 7

N
H and G are defined on square-summable signal sequences of any length. They are also be defined for
periodic sequences of (even) period P, where we simply interpret the index of f as j + 2k (mod P). In that
case, the filtered sequences will be periodic with period P/2.
The adjoints H* and G* of H and G are defined by

(3.5-13) TEM= Y el (G= Y skl

0<k-2j<M | 0<k=2j<M

H and G are called (perfect reconstruction) quadrature mirror filters (or QMF's) if they satisfy a pair of
orthogonality conditions:

( 3.5-14) HG'=GH"=0; H'H+G'G=I

Here I is the identity operator. These conditions translate to restrictions on the sequences {h¢}, {gx}. Let
mg,m be the bounded periodic functions defined by

¥ M-1 ‘ M-1 )
(3.5-15) mol) = 3 e, my(f)= 3 que™,
k=0 k=0 o

Then H,G are quadrature mirror filters if and only if the matrix below is unitary for all ¢:

(o (w6 miEt)

This fact is proved in [Daubechies]. QMF's can be obtained by constructing a sequence'{h;} with the desired
low-pass filter response, and then putting gx = (—1)*hpr—1-4. That reference also contains an algorithm for
constructing a family of such {hs}, one for each even filter length M.

The frequency response of one particular pair of QMFs (“C30") is depicted below. We have plotted the
absolute values of mg and m, respectively, over one period [—m,x]:

Figure 3.5-4.

Absolute values of my and m,.

Notice that my attenuates frequencies away from 0, while m, attenuates those away from 0.

Below is the traditional block diagram describing the action of a pair of quadrature mirror filters. On
the left is convolution and dl_:wnsa.mp!ing (by 2); on the right is upsampling (by 2) and adjoint convolution,
followed by summing of the components. The broken lines in the middle represent either transmission or
storage. . * '
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h 20 >2h | b

F’
ga@—f, 24 g*j

Figure 3.5-5.

Block diagram of subband filtering.

The underlying functions of subband filtering are produced by iterating H* and G* until we have enough
points. For example, 10 iterations of H* applied to the sequence ep = {...,0,0,1,0,0,... } produces a 1024
point approximation to the-smooth function whose translates span the lowest-frequency subband. Likewise,
a single G* after 9 iterations of H* applied to ey produces a 1024-point approximation to the next lowest-
frequency function, These are distinguished examples; the first is called the “scaling” or “father” function,
while the second is called the “wavelet” or “mother” function. They are depicted below for & particu!ai-
QMF (“C 30,” with 30 taps):

C30 Sealing or father function 30 Wavelet or mother function

Figure 3.5-6.
Lowest frequency subband basis functions.

Higher-frequency subbands are spanned by functions with more oscillations, which are produced by using
G* earlier in the iteration. The sequence of filters used to generate a function can be converted to an integer
in binary notation as follows. Put Fy = H" and Fy = G~ in the formula for the function (respectively,
put Ffy = H and F; = @). Then for any pair of integers n and L with 0 < n < 2% we can write
n=ng2® +m2 o gy 257 where n; € {0,1) forall i = 0,1,...,L — 1. To that combination (n, L)
we can assaciate a vector Fy o it o---0 F7 _ ep.

- For example, the following functions are 1024-point sequerices H~G*(H")eq and G*G*(H")%ey, respec-
tively given by (n, L) = (2,10) and (n, L) = (3,10):
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Higher frequeancy C30 wavelet peckets

Figure 3.5-T.
Higher-frequency subband basis functions,

It is well known (and shown in [INRIA]) that the number of oscillations of the vector produced in this
manner increases with n’, where n is the Gray-code permutation of n’. The renumbering n ~ n' relates
Paley order to sequency order for Walsh functions, and has an analogous effect in the smooth case. This
fact can be used to analyze the spectrum of acoustic signals by measuring the amplitudes of wavelet packet
coefficients. Acousfic signal compression by wavelet packet and best-basis methods was discussed in [W1].

Now we can define 4 2-dimensional convolution-decimation operators in terms of A and G, namely the
tensor products of the pair of quadrature mirror filters:

(3.5-17) RYH®H, Foulzy)= Eh,-hjv{i—{- 2z,7 +2y)
5]

(3.5-18) R¥Req, Fulzy)= 2 higju(i + 22,5 + 2y)

(3.5-19) RY¥GeH, Fa(y)= igah,-u(f +22,5 +2y)
b

(3.5-20) RY¥ceG Fuzy) = 2 %igyv(i + 22,5 +2%)
6

These convolution-decimations have the following adjoints:

(3.5-21) Fiu(z,y) = gh._;;h,_g,uﬁ.i)
( 3.5-22) Fro(z,y) = g;h.-:igy-afv(i.i)
(3.5-23) Fiv(z,y) = iaz-thy-m(".j)
(3.5-24) Fyu(z,y) = ék—!a?v—ﬂjv(‘.d)

The orthogonality relations for this-collection are as follows:

'( 3.5-25) FoFy = b6amI;

( 3.5-26) B I=FReFRoFFRaFF.
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By & “picture” we will mean a finite sequence indexed by two coordinates § = S(z,y). It is convenient
to regard pictures as periodic in botyh = and y, though this is not absolutely necessary. For simplicity
of implementation, we shall also assume that the z-period (the “width” N = 2™ ) and the y-period (the
“height" N, = 2™7) are both positive integer powers of 2, so that we can always decimate by two and get an
integer period. The space of such pictures may be decomposed into a partially ordered set W of subspaces
W(n,m) called subbands (see below), where m > 0, and 0 < n < 4™. These are the images of orthogonal
projections composed of products of convolution-decimations. Denote the space of N, x Ny pictures by
W(0,0) (it is Nz x N, dimensional), and define recursively

( 3.5:27) W(dn+i,m+1) = F*FEW(n,m) € W(0,0),  fori=0,1,2,3.

The orthogonality condition on the QMFs implies that the projections from W(0,0) onto W(n,m) are
orthogonal, i.e., they conserve energy. The subspace W{n,m) is (N;2=™) x (N,2™™)-dimensional, These
subspaces may be partially ordered B}' a relation which we define recursively as follows. We say W is a
“ precursor of W' (write W < W') if they are equal or if W' = F*FW for a convolution-decimation F in the
set {Fy, Fy, Fy, Fy}. We also say that W < W' if there is a finite sequence V..., V; of subspaces in W such
that W < Vi < ..+ < V, < W', This is well defined, since each application of F'*F increases-the index m.

Subspaces of a'single precursor W € W will be called its descendents, while the first generation of
descendents will naturally be called children. By the orthogonality condition,

( 3.5-28) W = F;RaW @ FLRW & F;FW @ Fy Ry W.

The right hand side contains all the children of W.

The subspaces W(n,m) are called subbands, and the transform coding method that first transforms a
signal into subband coordinates is called subband ceding. If § € W(0,0) is a picture, then its orthog-
onal projection onto W(n,m) can be computed in the standard coordinates of W(n,m} by the formula
Fy... FymyW(0,0), where the particular filters F(y)... F{,) are determined uniquely by n. Therefore we
can express in standard coordinates the orthogonal projections of W(0,0) onto the complete tree of subipaces
‘W by recursively convolving and decimating with the filters.

The quadrature mirror filters H and G form a partition of unity in the Fourier transform (or wavenumber)
space. The same is true for the separable filters F;. They can be described as nominally dividing the support
set of the Fourier transform § of the picture into dyadic squares. If the filters were perfectly sharp, then
this would be literally true, and the children of W would correspond to the 4 dyadic subsquares one scale
smaller. We illustrate this in the figure below.

FoW | FyW|

FoW | FgwW

Figure 3.5-8.

Four subband descendents of a picture.

The next figure shows 2 generations of descendents, the complete decomposition of R* x R, The subbands
are labelled by the “n" index in W{n, m). Within the dyadic squares are the n-indices of the corresponding
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subspaces at that level. If we had started with a picture of N x N pixels, then we could repeat this
decomposition process logy(V) times.

1
0 ’ o 415
2 2/3|8|7
2 s 8191213
10{11| 14|15
lavel 0 favel 1 ! leval 2

Figure 3.5-9.
Two levels of subband decomposition.

All subbands together form a quadtree, in which each subspace forms a node and directed edges go from
precursors to descendents, The orthogonality relation among the subspaces implies that every connected
subtree which contains the root W (0, 0) corresponds to an orthonormal subband decomposition of the original
picture; the subbands correpond to the leaves of the subtree. Having stated this general nonsense result, let
us consider specific examples,

The subbands W (n,m) as we define them are in one-to-one correspondence with rectangular regions (in
fact squares) in wavenumber space, and the quadtree stacks these regions one on top of the other, We
can idealize various orthogonal subband bases as disjoint covers of wavenumber space. A few of these are
schematically represented below:

wnill +H
- - .....I_
Basis of subbands Multiresolution or Adapted subband or
at one level wavelet basis wavelel packet basis

Figure 3.5-10.

Varlous decompaositions into subbands.

The leftmost decomposition is a subband decomposition in which we have all the subbands at a fixed
level—in this case, level 2, The subbands are labeled (0,2), (1,2), (2,2), (3.2), ... , (15,2) as in figure 3.5-9
above. The middle decomposition produces 2-dimensional “isotropic” wavelets, i.e., which have the same
scale in both the = and y directions. The subbands in this decomposition are labelled by (0,4), (1,4), (2,4),
(3,4), (1,3), (2,3), (3,3), (1,2), (2,2), (3,2), (1,1}, (2,1), and (31). .

The rightmost decomposition is an adapted subband hasis such as might be discovered by minimizing
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obvious that a function t with the requisite properties exists. The surprising and fortunate recent discovery
of many such functions ([Daubechies}, [Mallat}, (Meyer] and others) also provided a fast O(V) algorithm to
compute the associated wavelet transforms.

The wavelet basis down to level L consists of the elements spanning the subbands W(1,1), W(2,1),
W(3,1), W(1,2), W(2,2), W(3,2),... W(1,L-1), W(2,L-1), W(3,L-1), W(1,L), W(2,L), W(3,L) and
the largest-scale average W (0, L). The pixel values may be transformed into this basis via the 2-dimensional
version of the “pyramid scheme” described in [Mallat]. Graphically, this is the following;

T Fo Fo, - F F i
Averges W(0,0) — > W(D,1) — > W(0,2) —=P + .« —L3 w,L1) o, wioL)

Fy Fy . Fy Fy
w(1,1) wi1.2) wi(1.3) wi1.L)

—— F2 F2 & e
7 wiz2,1) Wwi2,2) wi(2.3) Ll wizy

Fa F3 F3
W(3,1) w(3.2) w(a.3) w(a.L)

Figure 3.5.2-12,
Two dimensional pyramid scheme.

The pyramid scheme is also called a multiresolution analysis, and has been extensively studied. It provides
an algorithm of complexity O(V) for the transformation of an N-pixel picture.

9.5.3: Custom subbands. There may be features which are most efficiently described by expansion into
certain subbands. For example, if the image contains textures of a particular size and frequency, then we will
find large values in the corresponding subband. This is true for example in fingerprint image compression,
where both the large-scale texture of the ridges and the fine-scale texture of the pores contribute large values.
The first are not so important for identification since ridges can be easily deformed, while the latter must be
preserved very accurately since pore shapes and distributions often provide strong clues for identification.
In that case, we can choose to include both the ridge and pore subbands in our transform, de-emphasize the
values of the first and amplify the values in the second.

3.6: Adapted subband coding.

Wavelets decorrelate pictures which are close to self-similar. Other subband bases decorrelate pictures
composed of overlapping textures on different scales. Some combination is needed for pictures which are
close to self-similar but contain embedded patches of textures of various sizes, but it is not clear that any
fixed choice of subbands will contain suitable templates, But it is possible to use a library of bases of wavelet
packets (this name is from (CMQW]), which are efficiently encoded superpositions of wavelets. These adapted
subband bases come with a natural quad-tree organization and some remarkable erthogonality properties.
1t is possible to introduce a cost function and pick a “best” wavelet packet basis for one or many pictures.
This basis and the resulting decorrelated pixel valuess can then be compactly coded, but also the analysis
performed during the choice of representation provides some information about the picture and could be
useful for feature recognition.

8.6.1: Adapted subbands or wavelet packets. As mentioned in an earlier paper [CMQW], we can build
a large library of adapted subband bases by retaining all amplitudes in the quadtree. The amplitudes
produced at each stage are correlations of the signal with compactly-supported oscillatory functions called
wavelet packets. From the tree W of subspaces we may choose a basis subset, defined as a collection of
mutually orthogonal subspaces W € W, or lists of pairs (n,m), which together span the root. Basis subsets

7
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are in one-to-one correspondence with dyadic decompositions of the unit square, Classical subband coding
takes amplitudes from a fixed set of subbands, usually from a single level of the quadtree. Wavelet transform
coding also extracts amplitudes from a fixed collection of blocks, the octave subbands.

Even for a small tree, the library of wavelet packet bases is very large:
Proposition. The number of wavelet packet basis subsets for N-pixel pictures is greater than 2™, The
number of operations needed to compute all the transfi d pixel values in all these basis subsets, however,
is no more than N log,(N).

Proof. A decomposition to level n is only possible for a picture of size at least NV = 4" pixels, and in such a
tree there can therefore be at most Vlog,(IV)) transformed pixel values. Let A, be the number of bases in
the library corresponding to a tree of 1+ n levels, namely levels 0,...,n. Then Ap = 1, and we can celculate
Anty = 1+ A%, namely the root and combinations of the 4 children, which are independent subtrees-with
Ap bases each. Simplifying this by discarding the 1 gives the estimate A,4; > 2Y" =2V forn> 1. O

3.6.2: The best-basis algorithm. To each subspace W € W we may assign an information cost Hy. The
quantity Hy(S) measures the expense of including W in the decomposition used to repregent the picture .
Define the best basis for representing S (with respect to Hw) to be the basis subset By which minimizes
(3.6.2-29) _ Y Hw(S) ’

wes
over all basis subsets B ¢ W. ‘

Some examples of information cost functions are listed in [CW]. The simplest is the number of elements
above a predetermined threshold ¢, namely Hw(S) = #{z € Sw : |z| > ¢}, where Sw is the sequence of
the pixel values of § as transformed into the standard basis of W. This sequence is F;_...F}, S, where
W = F; Fr ... F;F,W(0,0). The following algorithm finds the basis subset with the fewest amplitudes
above the threshold.

Set a predetermined deepest level L. Label as “kept” each subspace at level L, i.e., the subspaces indexed
by (n,L) for 0 € n < 4%, Next, set the level index m to L - 1. Compare the information cost of the
subspace W(n, m) with the sum of the information costs of its children W(dn,m + 1), W(dn + 1,m + 1),
W(4n + 2,m + 1), and W(4n +3,m + 1), If the parent is less than or equal to the sum of the children,
then mark the parent as “kept.” This means that by choosing the parent rather than the children, we will
have fewer amplitudes above the threshold in the representation of §. On the other hand, if the sum of the
children is less than the parent, leave the parent unmarked but attribute to her the sum of the children’s
information costs. By passing this along, prior generations will always have their information costs compared
to the least costly collection of descendents.

After all the subspaces at level m = L —1 have been compared to their children, decrement the level index
and continue the comparison. At each level, we are comparing the information cost of a node to the sum
of the lowest information costs obtainable by any decompositions of its 4 children, We can proceed in this
way until we have compared the root W(0,0) to its 4 children. We claim that the topmost “kept” nodes in
depth-first order constitute a beat basis. Le., the collection of “kept” nodes W with no “kept” precursors is
a basis subset which minimizes information cost. But this is easily proved by induction on the level index
(see [CW] for the details). :

If we think of the amplitudes below ¢ as negligible, we now have a basis'in which the fewest amplitudes
are non-negligible. This cost accounting requres deciding in advance what negligible means, which in some
applications may not be feasible, The decision may be postponed by using a different measure of the
concentration of energy into the amplitudes. For example, there is an additive analog of Shannon entropy,
namely,

( 3.6.2-30) Hy(58)= - E z? l;:;g.ra.. .

TESw
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with Sy as above. This is related to the classical measure of the concentration of a probability distribution
function which we discussed in an earlier section.

3.7: Functions underlying the transforms.

Each of the transform methods correlates a picture with some underlying functions or “templates” and
then stares the correlations. For JPEG, the templates are products of sampled cosine functions restricted to
square blocks:

Figure 3.7-13.
Density plots of fixed-block and adapted-block DCT functions.

For LCT, the underlying functions are “smeared out,” without the sharp edges of the DCT functions:

Figure 3.7-14.
Density plots of fixed-block and adapted-block LCT functions.

Two-dimensional wavelets and wavelet packets superposein a different manner; wavelet packets of different
scales can overlap in any manner, so long as their frequencies are distinct:
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Figure 3.7-15.

Density plots of one wavelet and a superposition of three wavelets.

Wavelet packets, on the other hand, are superpositions of wavelets which are arranged so that they are
efficient to describe. In particular, they correlate better with textures:

Figure 3.7-16.

‘Density plots of one wavelet packet and a superposition of three.

4: QUANTIZATION OF TRANSFORMED AMPLITUDES

¢ The transformed pixel values are real numbers which must be approximated in a (small) finite alphabet,
or quantized, before they can be transmitted. All of the distortion from a lossy transform coding scheme is
introduced at this step. The range of transformed values is divided up into numbered subintervals or bins.
Any pixel value falling into a bin is approximated by the bin’s index, as in the figure below:
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Values

Figure 4-17.
Quantization into 16 equal-size bins.

In practice, the bin around 0 is often taken to be twice as wide as the other b{ns, and quantization is
performed by scaling and truncation to the integer nearest to ). The resulting integers are then biased into
the range [0,1,...,b — 1], where b is the number of bins. ‘

Quantization is undone by replacing the bin index with the value at the center of the bin, When the
transformed pixel values will always have the same sign, or when 0 plays no special role, then quantization
is done by dividing the full range between the maximum and minimum values into b bins. When the
transformed pixel values can be both positive and negative and 0 is an important value, then it is vital that
the bin around 0 be centered exactly at 0. Otherwise, the one-sided bias introduced by many values close
to but not exactly equal to 0 will appear as artifacts in the reconstructed image.

The quantization error is the difference between the actual sequence of values and the sequence of bin
center values, measured in some norm like mean-square-error or maximum absolute error. It is possible
to vary the width of the bins, so that the more popular values (where the PDF is larger) are quantized
more finely, into narrower bins. The distortion-minimizing choice of bin widths given a fixed number of bins
can be found using the Lloyd-Max algorithm (see [Jayant,Noll]). This has the effect of reparametrizing the
rate-distortion curve for the signal, but not improving the compression rate for a given degree of distortion.
We can easily allow variable numbers of equal-sized bins, to adjust the compression rate.

4.1: Uniform quantization. In this method we use a single set of bins for all the transformed pixel values.
This method is used when we have no a priori knowledge of the importance or relative visibility of a basis
element.

4.2: Visibility quantization. In this method we use a mode] of the relative importance of a transformed
pixel value to choose a weighting coefficient. The value is multiplied by this weight prior to quantization. It
is known that the human eye is less sensitive to errors at certain spatial frequencies. When it is possible to
determine the spatial frequency of the part of an image which will be reconstructed from an amplitude, this
fact may be used to reduce the perceived distortion at a given level of compression,

4.3: Bit allocation. When transformed pixel values can be grouped, for example by subband, then we
can allocate bits to the groups in & nonuniform manner to minimize the quantization error. The optimal
allocation for a fixed number of subbands assigns bits in proportion to the variance within a subband (see
[Jayant,Noll]). Another way to put this is, if g; is the number of quantization bins to be assigned to subband
W;, then we should have g;/o{W;) =constant for all i, where the constant depends upon the total variance
of all the transformed pixel values as well as on the total number of bits we can afford to transmit or store.
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Great competitive advantage may be gained from intelligent bit-allocation schemes, perhaps in combina-
tion with visibility weighted quantization based on acurate models of the kind of images to be transmitted.
Such schemes are valuable property, and jealously guarded secrets in the industry.

5: REMOVING REDUNDANCY OR ENTROPY CODING

Digitally coded data can often be reversibly transformed into a more efficient form, requiring fewer bits
to store than its original representation. We shall refer to such an invertible transform as “lossless coding”
because all the information in the original bits can be recovered. This is the only acceptable way to compress
certain kinds of data sets such as compiled computer programs and data archives. Such methods have great
practical significance and have been extensively studied.

It is a classical fact (see, for example, [Shannon,Weaver]) that there is a limiting rate of (lossless) com-
pression achievable by such an alphabet substitution. Suppose we have an arbitrarily long message M =
(M(1),M(2),M(3),...) composed in an alphabet with finitely many letters: M(j) € a = {a1,a9,...,a,}
for all j = 1,2,.... Coding these letters in the obvious manner requires log,(n) bits per letter, and so the
first L letters of the message will require Llog,(n) bits to transmit. Let B(a, L) denote the number of bits
required to transmit the first L letters M(1)... M (L) using alphabet a; then we see that

(531) ' Jim 28D - jog,(n)

Shannon's theorem asserts that there is a nonnegative number H, the entropy of the probability distribution
of the original alphabet, such that any new alphabet {b;}}-; of variable-length characters satisfies:

( 5-32) H< lim @,

L—co
and that for every ¢ > 0 there in fact exists a particular alphabet b which satisfies

(5-33) lim @53-&5

L—co
Suppose that the original signal is written using the letters ay, as,...,a,, each occurring with probability

#{i:1<j < LMG) =0}
L

(5-34) ' P(ai) =pi = lim

Then the entropy of the message is H = ~ 37, pilogy(ps), and it is not too hard to show (as in [Ash],
Theorem 1.4.2, p.17) that

(5-35) 02 H < logg(n).

The left equality (best compression) holds if and only if the original message consists of a single letter of the
- alphabet repeated forever. The right equality (no compression) holds if and only if the original letters a; are
equally probable.

Several algorithms exist to construct the good alphabets, of which the earliest is probably static Huffman
coding [Huffman). In practice the probabilities p; are determined empirically as the message is being sent, so
there are refinements such as dynamic Huffman coding [Storer, p.40], arithmetic or Q-coding [Storer, p.47],
data dictionary methods, and so on.

We can refine the application of Shannon’s theorem by taking different lengths n for the initial alphabet.
For example, it is natural to consider 8-bit characters (n = 256) for binary data emitted by a typical
computer. Nevertheless, it may be that for a certain class of signals (such as Kanji text, which uses more

Page 225 of 437



