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A Chlp Set for Lossless Image Compressnon
Imran Ali Shah, Olu Akiwumi-Assani, and Brian Johnson

Absiraci —This chip set parforms the S-transform (1], (1] image
decomposition and the Lampel-Ziy (L~Z) [S), (6], (9) type of entropy
coding. The compression retie achieved by ihe system exceeds 21:1 for
10-b 2008 X computed radiographa (3] st an sverage rate of
7.5 Mpieels /s (4], The paper presents the transform and coding algs-
rithma, the main srchitsctural features of the chipe, and outlines same

specifications.

performance

I. InTrRODUCTION

S APPLICATIONS of digital images proliferate, the

cost of storing and transmitting the image data be-
mlmmonpmblm Loasless image compression tech-
nigues p ide a lution free of comp
mise. The compressed image is stored or transmitted in

" typically less than half the space or less than half the time of

the original Lossless compression can be achieved by a
mmfoﬁn process followed by entropy coding, We have

igned two application-specific integrated circuits (ASIC's)
to perform the § transform (1L [2}: a hierarchical transfor-
mation, and a data compressor/decompressor for
Lempel-Ziv entropy coding (S, [6). The chips may be used
independently or together for image compression. One of
the applications of such a chip set is in the medical PACS
cnvironment [7]. The algorithms and chip architectures will
be described. Some of the important performance parame-
ters will also be discussed.

1. S-TransrorM PROCESSOR

The principal objectivé of the form process s to

hil | distribution of a given source signal such
that most of its energy is concentrated in a subset of the
coefficients in the transform dnmnm. lr the signal source
exhibits a hilh degree of 1
samples, then it follows that for a given transform the signal
energy is concentrated in a namow spectral range, In prac-
tice, the transforms normally applied to image coding trade
off packing (decarrelation) efficiency with implementation
complexity. The § transform is computationally simple, and
provides a reasonable reduction of redundancy in the image.
The decorrelation induced by the § transform was theoreti-
?ly mly:':ed by Lux [1}. l:[!l. this was experimentally done
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before and after applying the transform to a set of 15
computed radiograph (CR) images. N refers to the number
of digitization levels, and p; the probability of occurrence. It
way observed that the average entropy of the images was:
reduced from 8.8 to 4.6 b, The § transform is not perfect or
equal to the Karhunen-Loeve transform, but it offers a good
trade-off between performance and simplicity of implemen-
tation. The transform also provides a means for hierarchial
image represcntation, and has been used for some image
enhancements [8].

A. S-Transform Algorithm

The 5 transform is the Hadamard transform for 2 X 2-pixel
image blocks. To apply the S transform, an image must have
a size of 2n X 2m pixels or be appropriately padded.

If a, b, c, and d are the pixels in the 2X2 block as shown:

@ b
“ o

then the forward transform coefficients are given by (1):
Le=at+b+c+d
Ay=a=-b+c~d
Ap=a+b=c~-d
Ap=a—-b=-c+d (1)

where L is the sum coefficient and the A coefficicnts repre-
sent horizontal, vertical, and diagonal spatial frequency com-
ponents.of the image.

The § transform provides a means to Mnnn:hmib' de-
compose & large image. To achieve this, the 2X2 blocks of
the image are transformed according to (1), resulting in four
subimages, one for each coefficient. Each of the subimages
has half the spatial resolution of its original. This transfor-
mation shifts most of the energy of the 2X2 pixel block into
the L coefficient; thus the distribution for the A images is
narrow and requires fewer biis for coding, permitting better
compression, To achieve hicrarchical decomposition of an
image, the lower spatial resolution L image at each step is
further transformed while the threc A images are entropy-
coded for storage or ission. This d ition step
can be successively applied until a basis image of much lower
resclution is achieved. This results in a representation con-
sisting of a basis image, followed by layers of coded A images
of increasing spatial resolution (see Fig. 1). To reconsiruct
higher resolution images, the T image of a given layer is
recombined with its corresponding A's according to the
inverse transform equations.

In our implementation of the § transform, the forward

North American Philips Corporation, Briarcliff Manor, NY 10510,
|EEE Log Number 5041909,

00189200791 70300-0237501,00 ©1991 |[EEE

transform is computed by a slightly modified set of equa-
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L=[a+b+c+d]/4
Ay=[(a+ec)-(b+d)]/2
Ap=[(a+b)—(c+d)]/2
Sp=a-b-c+d. (2)

Given the transform coefficients, the original pixels can be
obtained by the inverse transform realized by

a=((2:a1+ F[s2]) +92]/2
b=[(2s1+ F[s2]) - s2] /2
c=[(2-d1+ F[d2]) + d2]/2
d=[(2-d1+ F[42]) - d2]/2
where the intermediate variables 51, d1, 52, and d2 are
s1=[(2-L+ Fla,)) + 4] /2
di=[(2-C+F[a,])-4y]/2
02w [(2-84+ FlAp)) +4,] /2
d2=[(2:4, + F[Ap]) - 4p] /2 (4)

and the function F+] returns the least significant bit of its
argument. This form of the forward transform equation was
chosen to ensure that the dynamic range of the pixcls in any
L image remains the same regardless of the number of
hierarchical decompositions (or reconstructions) an image is
subject to. There is no loss of significant bits because the
least-significant-bit information is carried in the other coeffi-
cients. By means of the F{-] function in the inverse trans-
form, all variables are resoived to their full resolution prior
to any computation. Given that the pixels in the original
image are digitized to b bits (positive integers), the L coeffi-
eienlmﬂmmlnbbiu(podmllwnr),theé and Ay
coefficients will each be b+1 bits (signed integers), and the
Ap coefficient b +2 bits (signed integer),
B. S-Transform Chip Architecture

Fig. 2 shows the architecture of the 5. fi ipeli
processor (SPIPE) chip. The device has three ports for
pixels, ‘coefficients, and the microprocessorinterface, Data
transfer through the pixe! and coefficient ports is conitrolled
by a self-regulating synchronous protocol (PCB), The proces-
sor consists of one array of four arithmetic units that imple-
ment addition, subtraction, multiplication, and division by 2.
Two feedback data buses (FB1 and' FB2) make this architec-
ture optimum for the computation of both the forward as
well as the inverse transform. The short feedback bus, FBI1,
enables 100% utilization of the processor, In inverse mode,
the block Mll.l & Limiter ensures correctly reconstructed

(3)
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pixel intensity values, The block Tribuf provides isolation
between internal and external buses. The PCB blocks imple.
ment the data transfer pmmoo! between the pipeline regis.
ters.

The pixel port consists of two 13-b pixel buses for the
raster Iillca [a,b] and [c,d] with accompanying pipeling
control signals. Thus, this port behaves as if connected to
two merging pipeline sources (forward transform) or to two
branching pipeline outputs (inverse transform). Logically, the
coefficient port behaves in a similar fashion. However, be.
cause the destinations of the T and the A, coefficients are
not always the same (A's go to the coder), we really have
three pipeline sources (sinks) and associated controls. The
[E,Ay] bus is 14 b wide to accommodate the larger values of
the 4, coefficient. Similarly, the [A4,Ap) bus is 15 b wide.
1'|me muttipluin: od' the pipeline mpm/m:pm buses und
the i m
enable the device la maintain a nudy rate of upenliun a

in either forward or inverse
puts and outputs of the device
en:u:emnthewrrmm:hmnkmund!hedlulmmu
to the two logical p branches is
microprocessor port provldu a 4-b bidirectional data.bus
and control signals.

In forward mode, the pixel port is the input to the device
while the coefficient port is the output, and the lower half of -
the data path is inactive, The effective internal pipeline
latency is four clock cycles. Only the short fecdback path is
active and is used every other cycle to implement a two-stage
butterfly computation. It takes two clock cycles to acquire all
four pixels in the matrix, and also two cycles to output the
four coefficicnts. Thus the total input-to-output latency is six
cycles. [n inverse mode, all clements of the data path are
operative, introducing an additional cycle to the pipeline
latency. In this case, the input to the device is the coefficient
port, while the output is the pixel port. Again two clock
cycles are required to fully load all four coefficients, which
are then transferred over the longer feedback-path, FB2, to
the input-stage Switch & Register. The output from the
processor is passed through the lower half of the data path.
Again two cycles are required to output the reconstructed
pixels.,

Two 4b programmable registers define the operating
modes and parameters, Register 1 defines the principal
modes of operation of the device: forward transform, inverse
transform, forward bypass, and inverse bypass. The bypass
modes are provided to enable direct transfer of pixels through
the chip.

One of two scan chains can be selected to support diag-
nostics. The control signals clock, reset, and test ensble the
device to be placed into the principal, diagnostic, or reset
state, Upon power-up or a reset condition, the device is
automatically placed into the forward transform mode of
operation,

By using one processor, fecdback data buscs, and time
multiplexing of the line [/0, we have been able to
achieve an efficient VLSI implementation, yet one that natu-
rally fits the raster format of scanned images. The chip is
based on a standard cell design, in a 1.5-um CMOS double-
metal process, It will be available packaged as a 84-pin
PLCC component operating at 5 V requiring no more than
600 mW at 10 MHz. At this clock frequency, the chip can
“sustain a processing rate of 20 million pixels per second.
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11I. Data Compressor DECOMPRESSOR

The data compressor/decompressor (DCD) uses a version
of the Lempel-Ziv (L~Z) compression algorithm (5}, [9]. The
L-Z algorithm replaces input strings with code words, creat-
ing a compressed output. A code table, containing the data
string that cach code represents, is constructed based on the
data enc d during pression. During decompres-
sion, the same code table is recreated from the sequence of
code words. [n the table, sirings are represented by the code
for a shorter string plus an sdditional data word, During
encoding, a string of a single element will always be found,
The next longer string represented by that string plus the

A. Solving the L - Z Search. Requirerent

When in encoding, a new data word Is received, a prefix is
appended to it, and the code table is searched for a code
word representing this combination. In the DCD, we limited
the code word size to 16 b, and hence have to scarch through
64K locations. Hashing [10}-{13] was employed to perform
the high-speed search and retrieval,

B. Hashing

Hashing is a technique designed to speed the retrieval of
data associated with a key K [10]. The range of X is usually
ly large; hence K cannot be directly used as an index

next data word will be hed for, This p
recursively until the longer string is not found in the table. In
this case, the longer string is entered into the table and the
code for the shorter string is transmitted.

While encoding, a transmission is made after every failure
and is accompanied by the creation of a new code-table
entry. This knowledge is used by the decoder. Each time the
decoder receives a code, it makes a corresponding entry to
its table by appending the first ch of the currently
received code to the previous code and assigning a new code
word 1o it in the code table. At the same time, it outputs the
string corresponding to the current code, always operating
just a step behind the encoder.

Ziv and Lempel (5] have derived upper bounds for the
compression ratio attainable with full a priorf knowledge of
the data by fixed code-table schemes, They have then pro-
ceeded to show that the efficiency of their code with no

or address to find the data. One computes a function f(K),
the hash function, which is the location of K and the
associated data in the table. The hash function provides a
mapping from the large range of X to & smaller range, Such
a mapping is not unique; more than one entry can be
mapped onto the same location. This is called a collision.
The difference between hashing scheies lies in the way they
resolve collisions.

The schemes trade off memory for performance, The two
main categorics of collision resolution are “chaining” and
“open addressing.” In chaining, a link is used at each table
entry to point to a chained list of additional entries in an
overflow memory that had been mapped carlier to the same
location. In open addressing, the additional eniries are placed
within the same table by some predefined method. In chain-
ing, the mapping is preserved, while in open addressing, the
ing is lost.

a priori knowledge of the data app those bound
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Fig. 3. Average number of memory probes versus memory required (in
megabits).

In the “open addressing” class of hashing schemes, uni-
form hashing has been shown to be optimal [12], while
coalesced hashing is shown optimal [11] in the “chaining”
class of hashing schemes. We analyzed the performance of
ninc different collision resolution schemes: linear (LIN, (10D,
uniform (u,u2, [10], [12], coalesced (Co, Co2, [10], [11], and
separaie chaining (Scl,Se2,Sc3,5¢4, (10] [11), [13]). We
did not consider the commonly used performance
measure—number of memory probes versus load-factor
(fraction of the table filled)—as an important measure, since
the same load factor in different schemes represents differ-
enr amounts of memory required and, hence, is not a good
measure of relative performance. The performance measure
we uscd was the average number of memory probes for
resolving a success and a failure a3 a function of total

memory employed. The outcome of the analysis is shown in
Fig. 3. From the performance and implementation point of
view, separate chaining 1 (Scl) was most nrnctwe In chlln-
ing, the address of the memory
:hemdewurdlmdludwiththkqmdwedonutnudm

:ston it, thus saving memory,

C. Memory Saving: Abbreviated Keys and Pipelining

Since the mapping was preserved by chalning, the address
of the key gives information about the key and only a smaller
nmofnmd:lobnmnd.Formmph if the hash

jon is a division, then the ient can be used as the
address, and the remainder stored as the abbreviated key.

D. Hash Function

The performance of any hashing scheme depends on the
hash function. A good hash function spreads all the input
Ir.eys_ uniformly across the memory range. Additional con-
straints were placed due to the desired use of abbreviated
keys and simple hardware. A hash function based on binary
matrix multiplication was developed, which satisfies all the
above constraints. The hash function and abbreviated key
generator cach consist of an array of excLusive-or gates
which combine bits of the input key to form the hash
function and abbreviated key ]

' |IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 26, NO. 3, MARCH 1991
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Fig. 4. Average number of entries ]l.t each address (chosen hash ma-
trix),
t .
It is as matrices

i the
(H,A) of one's ud zER0's, and the | input key, hash func-
tion, and abbreviated key as vectors (k,h,&) of ons's and

zero's. With this the for the hash
function and abk d key may be exp i as
h= HE (5)
3= AR (6)

where binary multiplication is performed by anping of bits,

and binary addition is by excLusive oring of bits.

If the hash function generator matrix 4 is randomly created,

the resulting hash function has good properties. The diffi-

cully is in creating an associated abbreviated key generator.
We combine (5) and (6) into one equation and obtain

k| |H|E

2l Ll["
As long as the combined matrix
4

mn

is invertible, the combination of hash function 4 and abbre-
viated key a uniquely represents the original key. &k as
required, ﬂnmkmyhcmpumdfmm h and a as shown

below:
T HEA |" ®

This allows us to create a combined pseudorandom matrix,
restricted to invertible matrices, which will result in a gener-
stor having good statistical properties for the hash function
and valid abbreviated keys,

Onee the combined matrix s determined, it may be sepa-
rated into the individual matrices H and A to gencrate the
hash function and abbreviated key, respectively.

Extensive software simulations using representative data
were performed to select the binary matrix. Fig. 4 shows the
average number of entries at each memory location for the
chosen matrix. It shows the uniform spreading of the input
keys across the memory range. Simulations confirm our
theoretical results of less than 1.2 probes per key. As a
contrast, Fig. 5 shows a different matrix used as the hash

* function. [t is easy to see that memory utilization is not as

uniform, resulting in many “clusters” of over- and under-
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" ADDRESS
Fig. 5. Average number of entries at each address,
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Fig. 6. Reduced memory architecture,

utilized locations. This hash function requires more than
four probes in resolving each key.

Since all the aigebra involved in the above binary opera-
tions is modulo two, the hardware is simple, consisting only
of excLusIVE-OR gates.

Additional memory savings are obtained when the main
memory contains only a link field, This field points 10 the
ovérflow memory containing the key, the implicit code word,
and further link ficlds. Refer to Fig. 6. X is hashed to the
link table (main memory) by the hash function. If there is no
link at that location, then we have a failure and a link is

d to the next available empty location in the. overflow
memory where K is inserted. Onithe other hand, if there is a
link at that-location, we follow it and look for X in the
chained list.of the overflow memory.

%1

I

l‘ MICROPROCESSOR / MEMORY INTERFACE l
1 I

TAG-HSH/LIFO PORT

Fig. 7. Simplified DCD block diagram.

MP-PORT KEY_CW/DATA_PREFIX PORT

DATA_IN CO0E_OUT
—_—

DATA
T

Fig. 8. Codec block of the DCD,

Simulations [3] have shown that the L-Z algorithm com-

presses an image by a factor of 2 1o 3, with average siing .

lengths of between 3 and 4, Therefore, while searching for a
prefix~data ‘combination, success will occur three times ‘as
often as failure. With this knowledge, we can anticipate a
prefix before the search is resoived and we can be correct
about 75% of the time, If we anticipated incorrectly, we

disregard the incorrect link and use the next anticipated

prefix. This backtracking method allows efficient pipelining
of the main (link) and overflow (key and code word) memory
accesses (o improve speed.

F. Chip Architecture and Features
neDCanpmhuofmls-bﬂFOs.leodn

A disadvantage of the reduced main memory sch is
that a minimum of two memory accesses is required to find
each K. This problem can be overcome by pipelining the two

Bccessecs.

E. Algorithm Impl: with Hashis

When the idea of pipelining main and overflow memory
accesses Is extended to the L-Z algorithm, a potential prob-
lem arises. The main memory cannot be accessed without the
prefix and the prefix will not be available without accessing
and resolving the search in the overflow memory. However,
inherent properties of the algorithm do allow us to pipeline
it.

(incl , LIFO ( y for decoding),
code-word generation block, aad a il.i;b-level controller), 2
repacker, and a microprocessor interface section (Fig. 7).
The bidirectional FIFO's are to lmooth the bursty data rates
inh in the p and decompression processes,
During coding, the decoder i is |dl=, and durins decoding, the
encoder is idle, The bi: variable
width codes to a fixed output width during compression or
vice versa in decoding. The microprocessor interface pro-
vides control and diagnostics of the DCD.

The codec is shown in Fig. 8. The code-word generation
block (cw block) is common to both encoding and decoding.
The codec has a hierarchical control structure, Each of the
blocks has various low-level state machines to make local
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decisions. The high-level state machine, hilevel sm, monitors
the blocks and controls all communications with the outside
world under interrupt control. Breaking the control into a
hierarchy enabled simplifying the state machines and provtd

g
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accomplish the transfer of pixels and coefficients. We have

designed such a system around the VME bus as a two-board

set, i.e., SPIPE/LIB board and DCD /quantizer board.
Thoqmti:eris ptional and is provided for applicati

All FIFO's are nceded in

ing a uniform view of the processing (encoding or di B
to the outside world. This approach, however, made synchro-
nization of various events more complicated, which was
resolved after extensive simulations of the hardware.

Use of the DCD chip requires two external memories to
store tables. One memory is 128Kx16 b of RAM plus
128KX1 b of resettable memory. The second memory is
64K x31 b of RAM. The DCD has reset and clock inputs, a
bidirectional data port, a bidirectional code port, a micropro-
cessor interface, and a direct memory access pont for diag-
nostics, The data port consists of a 15-b bidirectional port
and three pipeline control signals. The pipeline control sig-
nals are handshake signals to facilitate synchronous transfers
to and from the DCD.

During coding, the DCD will accept data at a word trans-
fer rate of approximately 7.5 MHz During decoding, the rate
is higher, about 8 MHz, The actual number of data bits used
by the DCD is programmable. The code port consists of a
16-b bidirectional port and thrce pipeline control signals.
The transfer rate at the code port is limited by the transfer
rate at the data port and the actual compression ratio
achieved. The maximum number of code bits used by the
DCD is programmable.

The chip has sixteen 8-b control registers visible to the
programmer. All the transfers are under synchronous micro-
processor protoml contral. The registers control the direc-
tion (comp ), the ber of data and cods
bits, and the ﬂm allmted code word (allows for keeping a
range of reserved code words). They also provide for insert-
ing and removing code words in the code stream. The
external code-book memories can be accessed by the DMA
of a start address via the control registers (useful for diag-
nostics). The output code words can be packed into any
number of bits (1-16) by the repacker, which is programmed

lossy «

cither mode of the CDS. Two of the FIFO's operate as a
multiplexer or demuitiplexer of their inputs; the third oper-
ates in straight input/output mode. The LIB is large enough
to hold the first L image of the largest image size the system
is designed for, e.g., for a 2K x 2K-pixel image, the LIB holds
1 million pixels. The LIB substantially reduces the traffic on
the image system bus for hicrarchical compresdion or decom-
pression of large images with many decomposition levels.

In compression, pixels from the original image stream into
the CDS and are demultiplexed by the pixel FIFO into two
raster streams, i.e., the [a,b] -+ and [¢,d] -+ lines of the
image, subject to pipeline synchronization principles. Then
the SPIPE transforms the image. The L coefficients are sent
to the LIB whens they a.l\mlemally organized as two raster

thus the LIB b as two FIFO's. Meanwhile,
the A's are buffered up in the coefficient FIFO. The coeffi-
cient FIFO multiplexes the A's that pass through the guan-
tizer and the DCD. The output of the DCD is buffered up in
the code FIFO and is then transmitted over the image
system bus to its final destination, This sequence continues
until the entire original image has been processed, i.e., level
1 of the hierarchy has been completed. In this phase, the
image system bus is busiest, having to support simultaneously
pixel and code transfers. If the T subimage is to be further
decomposed, ie., for level 2, the LIB provides the two raster
streams [a,b]--- and [c,d]---, thus the pixel FIFO is
inactive, The compression follows the same sequence as
before, but now the LIB is both a source and a sink for T
subimages and the only traffic on the image system bus is
that of code transfers, Further hierarchical decompoasition
steps may be achieved until the smallest image is in the LIB,
At this point, we have the option of directly acquiring the
smallest image from the LIB through the pixel FIFO or
ing it to the DCD for compression.

using control registers. The DCD can be prog) d to flag
an interrupt under various conditions (for example, on re-
ceiving @ reserved code word or encountering an error). The
chip can also be operated in a single-step mode for diagnos-
tics. The DCD can be programmed for automatic reset when
the code book is full, or can continue without making any
new table entrics. The DCD is a standard cell design, imple-
mented in Signetics’ 1.5-um CMOS technology.

The DCD is compatible with existing compression soft-
ware, compress and [rcomp, found on UNIX and VMS
systems. The speed and compatibility of the DCD makes it
useful for compression in disk/tape storage and satellite/
microwave /LAN communication systems.

IV, Tre ComPRESSION SYSTEM

Fig. 9 shows a diagram of an image compression /decom-
pression system (CDS) employing the chip set described
above. The configuration shown assumes that the CDS is
part of a larger image processing system with a common
image system bus for control and image transfer. However,
simpler ones are possible. The figure shows only the princi-
pal d.am pll’hs of the CDS Apart from the SPIPE and DCD
chips for the code lables), the

CDS contains three FIFQ's, & local image buffer (LIB), an
optional ¢ i

,.and & . Two data interfaces

In decompression, we first load up the smallest image
either directly into the LIB through the pixcl FIFO or after
passing it through the DCD for decompression. To recon-
struct the next higher resolution image, the coded A's stream
into the DCD and are decompressed, demultiplexed by the
coefficient FIFO, combined with the smallest image from the
LIB, and inverse-transformed by the SPIPE. [n this phase,
the LIB is both a source and a sink of L images, and the only
traffic on the image system bus is that of coded A's. Once all
the A's for this layer are processed, the higher resolution
image is resident in the LIB. At this point, the image may be
directly accessed through the pixel FIFO or decoding of a
higher resolution image may be initiated. The reconstruction
process proceeds as before until the full-resolution image is
achieved. At the final level, the pixels are directly passed
through the pixel FIFO to the system bus so that in this
phase the image system bus traffic is made up of both coded
A's and reconstructed pixels.

The above system has been designed around the industry-
standard VME bus, For this implementotion, the LIB ac-
commodates | million pixels, the pixel FIFO consists of two
IK-word buffers, the coefficient FIFO consists of one 2K
and 4K word buffers, and the code FIFO of a 1K-word
buffer. Several DMA channels are provided to speed up
transfers to the image system bus. Although only one DCD
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Fig. 9. An image compression decompression system based on the SPIFE aad DCD chip set.
device is shown in Fig. 9, it is possible to have up to three if REFERENCES
the application requires the A's 10 be separately compressed, (1] P. Lux, “A novel et . e i

as opposed 1o treating them as a triplet.

V. ResuLts

In (3] extensive simulations were performed for data com-
pression using the § transform and Lempel-Ziv coding. The
main results are summarized here, The § transform gener-
ally reduced the entropy only about as effectively as first-
order DPCM. For the 15 computed radiograph images used,
the zeroth-order entropy was reduced on an average from
8.8 10 4.6 b. This is not surprising, as the filters in the §
transform arc extremely simple, not providing a very good
separation between the frequency bands (the T and the A's),

. It, however, has the advantage of simple implementation and

hierarchical image : .
The above 15 images, each with an original word size of 10
b/pixel, were coded by the L-Z algorithm after being S-
i d. An ag! wpression ratio of 2.09 (from 10
b/pixel down 10 4,78 b/pixel) was dchicved. Thus, for these
images, the compression performance was very close to the
reduction of the zeroth-order entropy by the § transform
from an average of 8.8 b/pixel to 4.6 b/pixel.

V1. Cancrusion

The described two chips form the basis of a high-speed
lossless image pression /d pression system. The §
transform, besides decorrelating the image, provides a conve-
nient method of hierarchical image decomposition. The data
compressor/decompressor IC is a fast and efficient imple-
mentation of the L-Z algorithm.

Such a system red storage requi in high-speed
image archival and database applications and reduces the
transmission time of digital images over communication
channels.
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dvances over the past decade

in manv aspects of digital
technology—especially devices for
image acquisition, data storage, and
bitmapped printing and display—
have brought about many applica-
tions of digital imaging. However.
these applications tend to be spe-
cialized due to their relatively high
cost. With the passible exception of
facsimile. digital images are not
commonplace in general-purpose
computing systems the way text and
geometric graphics are. The major-
ity of modern business and con-
sumer usage of photographs :ind
other types of images takes plice
through more traditional an. .g
means,

The kev obstacle for many appli-
cations is the vast amount of data
required to represent a digital
image directly, A digitized version
of a single, color picture at TV res-
olution contains on the order of
one million byies; 35mm resolution
requires ten times that amount. Use
of digital images often is not viable
due to high storage or transmission
costs, even when image capture and
display devices are quite affordable.

Modern image compression
technology offers a possible solu-
tion. State-of-the-art techniques can
compress typical images from 1/10
w /50 their uncompressed size
without visibly affecting image
quality. But compression technol-
ogy alone is not sufficient. For digi-
al image applications involving
storage or transmission to become
widespread in today's marketplace,
a standard image compression
method is needed 1o enable inter-
operability of-equipment from dif-
ferent manufacturers. The CCITT
recommendation for today's ubiq-
uitous Group 3 fax machines [16] is
a dramatic example of how a stan-
dard compression method can en-
able an important image applica-
tion. The Group 3 method,
however, deals with bilevel images

- only and does not address photo-

graphic image compression.

For the past few years, a stand-
ardization effort known by the ac-
ronym JPEG. for Joint Photo-

yraphic Experts Group. has been
working toward -establishing the
first international digital image
compression standard for contin-
uous-tone {multilevel) still images,
both gravscale und color. The
“joint” in JPEG refers to a collabo-
ration between CCITT and 180,
JPEG convenes officially as the 15O
commitee designated JTCI/SC2/
WG10, but operates in close infor-
mal collaboration with CCITT
SGVIIL

Photovideotex, deskiop publish-
ing, graphic arts, color facsimile,
newspaper wirephoto transmission,
medical imaging, and many other
continuous-tone image applications
require a compression standard in
order to develop significantly be-
vond their present state, JPEG has

undertaken the ambitious task of

developing a general-purpose com-
pression standard 0 meet the
needs of almost all continuous-tone
still-image applications,

. If this goal proves autainable, not

only will individual applications

flourish, but exchange of images
across application boundaries will
be [facilitated. This lauer feature
will become increasingly important
as more image applications are
implemented on general-purpose
computing systems. which are
themselves becoming increasingly
interoperable and internetworked,
For applications which require spe-
cialized VLSI to meet their com-
pression and decompression speed
requirements, a common method
will provide economies of scale not
possible within a single application.

This article gives an overview of
JPEG's proposed image-compres-
sion standard. Readers without
prior knowledge of JPEG or com-
pression based on the Discrete Co-
sine Transform (DCT) are encour-
aged to study first the detailed
description of the Baseline sequen-
tial codec, which is the basis for all
of the DCT-based decoders. While
this article provides inany details,
many more are necessarily omitted.
The reader should refer 1o the 1SO
draft standard (2] before auempt-
ing implementation.

Interestingly, some of the earliest
industry atention 1o the JPEG pro-
posal has been focused on the Base-
line sequential codec as a motion
(intraframe) image compres'siun
method. (See the associated side-
bar, “NEXTstep: Putting JPEG to
Multiple Uses.”) The fact that it has
not been in JPEG’s charter as an
SO working group to address this
application mav indicate that dis-
tinction between still- and motion-
image coding can sometimes be ar-
tificial.

Background: Requirements
and Selection Process

JPEG's goal has been to develop a
method for continuous-tone image
compression which meets the fol- -
lowing requirements;

a) be at or near the state of the art
with regard to compression rate
and accompanying image fidelity,
over a wide range of image quality
ratings, and especially in the range
where visual fidelity 1o the original
is characterized as “verv good” 10
“excellent™: also. the encoder
should be parameterizable. so that
the application (or user) can set the
desired compression/quality trade-
off:

b) be applicable to practicallv any
kind of continuous-tone digital
source image (i.e.. for most practi-
cal purposes not be restricted 1o
images of certain dimensions. color
spaces, pixel aspect ratios, etc.), and
not be limited 10 classes of imagery
with restrictions on scene content,
such as complexity, range of colors,
or statistical properties:

) have tractable computational
complexity, to make feasible soft-
ware implementatiens with viable
performance on u range of CPUs,
as well as hardware implementa-
tions with viable cost for applica-
tions requiring high performance;

Page 131 of 437



=

) have the tollowing modes of
nperation:

= Nequential encoding: each image
romponent is encoded in a single
lett-to-right. top-to-hottom scan:
Progressive encoding: the image
is encoded in multiple scans for
applications in which transmis-
sion time is long, and the viewer
prefers to watch the image build
up in multiple coarse-to-clear
- passes;
Lossless encoding: the image is
encoded to guarantee exact re-
covery of everv source image
sample value (even though the
result is low compression com-
pared to the lossy modes):
Hierarchical encoding: the image
is encoded at multiple resolu-
tions, so that lower-resolution
versions may be accessed without
first having to decompress the
image at its full resolution.
In June 1987, JPEG conducted a
selection process based on a blind
assessment of subjective picture
quality, and narrowed 12 proposed
methods to three. Three informal
working groups formed to refine
them, and in January 1988. a sec-
ond, more rigorous selection pro-
cess [18] revealed the "ADCT" pro-
posal [10), based on the 8 x 8 DCT,
had produced the best picture qual-
ny.

At the time of its selection. the
DCT-based method was only par-
tially defired for some of the
modes of operation. From 1988
through 1990, |PEG undertook the
sizable task of defining, document-
ing, simulating, testing, validating,
and simply agreeing on the pleth-
ora of details necessary for genuine
interoperability and universalit.
Further history of the [PEG effort
is contained in [3, 6. 8. 17].

Architecture of the Proposed
Standard

The proposed standard contains
the four “modes of operation”
identified previously. For each
mode, one or more distinct codecs
are specified. Codecs within a mode
differ according o the precision of

suurce image samples thev can han-
dle or the entropv coding method
thev use. Although the word codece
wencoderrdecoder)  is  used  fre-
yuently in this article. there is no
requirement that implementations
must include both an encoder and a
decoder. Manv applications  will
have systems or devices which re-
guire only one or the other.

The four modes of operation
and their various codecs have re-
sulted from JPEG's goal of being
generic and from the diversity of
image formats across ‘applications.
The muliple pieces can give the
impression of undesirable com-
plexity. but they should actually be
regarded as a comprehensive “taol-
kit" which can span a wide range of
continuous-tone  image  applica-
tions. [t is unlikely that many im-
plementations will utilize every
tool—indeed. most of the early
implementations now on the mar-
ket (even before final 1SO ap-
proval) have implemented only the
Baseline sequential codec.

The Baseline sequential codec is
inherently a rich and sophisticated
compression method which will be
sufficient for many applications.
Geuing just this minimum JPEG
capability implemented properly
and interoperably will provide the
industry with an important initial
capability for exchange of images
across vendors and applications.

Processing Steps for
DCT-Based Coding

Figures 1 and 2 show the key pro-
cessing steps which are the heart of
the DCT-based modes of opera-
tion. These figures illustrate the
special case of single-component
{gravscalel image compression. The
reader can grasp the essentials of
DCT-hased compression by think-
ing of it as essentially compression
of a stream of 8 % 8 blocks of gray-
scale image samples. Color image
compression can then be approxi-
mately regarded as compression of
multiple grayscale images. which
are either compressed entirely one
at a time, or are compressed by al-
ternately interleaving 8 X 8 sample

-~

blocks from each in wrn,

For  DCT  sequential-mode
vodecs, which include the Baseline
sequential codec, the simplified dia-
arams indicate how single-compo-
nent compression works in a fairlv
complete wav. Each 8 x 8 block is
input, -makes its way through each
pracessing step. and yields output
in compressed form inwo the data
stream. For DCT progressive-mode
codecs. an image buffer exists prior
1o the entropy coding step, so that
an image can be stored and then
parcelled out in multiple scans with
successively improving quality, For
the hierarchical mode of operation,
the steps shown are used as build-
ing blocks within a larger frame-
work, »

8 x B FDCT and IDCT
At the input to the encoder, source
image samples are grouped into
8 x 8 blocks. shifted from unsigned
integers with range [0, 2° - 1] 10
signed integers with range [-2F-1,
2F=! ~ 1), and input 1o the For-
ward DCT (FDCT). At the output
from the decoder, the Inverse DCT
(IDCT) outputs B X 8 sample
blocks o furm the reconstructed
_image. The following equations are
the idealized mathematical defini-
tions of the 8 ¥ 8 FDCT and 8 x 8
IDCT:

Flu.v) = }cn.)ctu)[ E.‘:. §. fix. )+

(29 + i.ltm]
16

(2x + Nuw
s P COs

16

[4)]

fxoy) = 41 S ECI’n)C{vlFl‘u. )=
il )
(x + Nwr 2 + Ilu'n']
13 18
where:  C(u), Clv) = 1/V2 for u,
v= ) C(u), Clv) = | otherwise,
Rt

The DCT is related to the Discrete
Fourier Transform (DFT). Some
simple intuition  for DCT-based
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compression can be obtained by
viewing the FDCT as a harmonic
analyzer and the IDCT as 2 har-
monic  svnthesizer. Each 8x 8
block of source image samples is

effectively a 64-point discrete signal.

which is a function of the two spa-
tial dimensions x and y. The FDCT
takes such a signal as its input and
decomposes it into 64 orthogonal
basis signals. Each contains one of
the 64 unique two-dimensional
(2D) “spatial frequencies” which

comprise the input signal's "spec- -

trum." The output of the FDCT is
-the set of 64 basis-signal amplitudes
or "DCT coefficients” whose values
are uniquely determined by the
particular 64-point input signal.
The DCT coefficient values can
thus be regarded as the relative
amounts of the 2D spatial frequen-
cies contained in the 64-point input
signal. The coefficient with zero
frequency ‘in both dimensions is
called the “DC coefficient” and the
remaining 63 coefficients are called
the “AC coefficients.” Because sam-
ple values typically vary slowly from
point to point across an image, the

4 AP P e A A A A

FDCT processing step lavs the
foundation for achieving data com-
pression by concentrating most of
the signal in the lower spatial fre-
quencies. For a typical 8 X 8 sample
block from a typical source image,
most of the spatial frequencies have
zero or near-zero amplitude and
need not be encoded,

At the decoder the IDCT re-
verses this processing step. It takes
the 64 DCT cogfficients (which at
that point have been quantized)
and reconstructs a 64-point output
image signal by summing the basis
signals, Mathematically, the DCT is
a one-to-one mapping of 64-point
vectors between the image and the
frequency domains. 1f the FDCT
and IDCT could be computed with
perfect accuracy and if the DCT
cocfficients were not quantized as
in the following description, the
original 64-point signal could be
exactly recovered. In principle, the
DCT introduces no loss 1w the
source image samples; it merely
transforms them to a domain in
which they can be more efficiently
encoded.

DIGITAL MULTIMEDIA SYSTEMS

Some properties ' of practical
FDCT and IDCT implementations
raise the issue of what precisely
should be required by the JPEG
standard. A fundamental property
is that the FDCT and IDCT equa-
tions contain transcendental func-
tions, Consequently, no physical
impl jon can © them
with perfect accuracy, Because of
the DCT's application importance
and its relationship 1o the DFT,
many different algorithms by which
the FDCT and IDCT may be ap-
proximately computed have been
devised [15). Indeed, research in
fast DCT algorithms is ongoing,

DCT-Based Encoder
Processing itlpql

DCT-Based Decoder
Processing Steps

6%8 blocks

DCT-Based Encoder

Compressad

Image Data

Tabia
Specification

Reconstructed
image Data
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and nu single algorithm is optimal
lor all implementations. \What is
nptimal in software tor a general-
purpose CPL-is.unlikely to be opti-
mal in firmware for a programma-
ble DSP and is certain to be subopti-
mal for dedicated V'LSI.

Even in light ot the finite preci-
sion of the DCT inputs and out-
puts. independently designed im-
plementations of the very same
FDCT or IDCT algorithm which
differ even minutelv in the preci-
sinn by which they represent cosine
Lerms or intermediate results. or in
the way they sum and round frac-
uonal values, will evenwatly pro-
duce slightly different outputs
from identical inputs,

To preserve freedom for innova-
tion and customization within im-
plementations, |PEG has chosen 10
specify neither a unique FDCT al-
gurithm nor a unique [DCT algo-
rithm in its proposed standard.
This makes compliance somewhat
more difficult to confirm. because
two compliant encoders {or decod-
ers) generally will not produce
identical outputs given identical
inputs. The JPEG: standard will
address this issue by specifving an
accuracy test as part of its compli-
ance tests for all DCT-based encod-
ers and decoders: this is 10 ensure
against crudely inaccurate cosine
basis functions which would de-
grade image quality.

For each DCT-based mode of
operation, the JPEG proposal spec-
ifies separate codecs for images
with 8-bit und 12-bit (per compo-
uent) source image samples. The
12-bit codecs, needed 10 accommo-
date certain types ol medical and
other images, require greater com-
putational resources to achieve the
required FDCT or IDCT accuracy,
Images with other saumple preci-
sions can usually be accommodarted
by either an 3-bit or 12-bit codec,
but this must be done outside the
JPEG standard. L is the responsi-
hilitv of applications to cecide how
to fit or pad a 6-bit sample into the
8-bit encoder's input interface, how
1o unpack it at the decoder's out-
put, and how w0 encode anv neces-

4
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sary related informauon.

Quantization

Ater output from the FDCT., each
ol the 64 DCT coetficients is uni-
lormly quantized in conjunction
with  tid-element Quantization
Tuble. which must be specitied by
the application (or user) as an input
to the encoder. Each element can
he any integer value from 1 to 253,
which specifies the step size of the
yuantizer for is corresponding
DCT coefficient. The purpose of
quantization is 1o achieve further
compression by representing DCT
coetficients with no greater preci-
sion than is necessary to achieve the
desired image quality. Stated an-
other wav, the goal of this process-
ing step is 1o discard information
which is not visually significant.
Quantization is a many-to-one
mapping, and therefore is funda-
mentally lossy. It is the principal
source of lossiness in DCT-based
encoders.

Quantization is defined as divi-
sion of each DCT coefficient by its
corresponding quaniizer step size,
followed by rounding to the nearest
integer:

Fe{w, v1 = Integer Round (Zi:. ::,,)
3

This output value is normalized by
the guantizer step size. Dequantiza-
tion is the inverse function. which
in this case means simply that the
normalization is removed by multi-
plving by the step size. which re.
turns the result 1o a representation
appropriate for input to the [DCT:

Flv) = Flte, vy = Qu.
4}

When the aim is 10 compress the
image as much as possible without
visible artifacts, each step size ide-
ally should be chosen as the percep-
tual threshold or “just noticeable
clifference™ for the visual contribu-
tion ol its corresponding cosine
basis [unction, These thresholds
are also functions ol the source

"

image characteristics. display char-
acteristics and viewing distance. For
applications in which these var-
ables can be reasonably well de-
tined, psvchovisual experiments
can be pertormed to determine the
best thresholds. The experimem
described in [11] has led to a set ol
(Quantization Tables for CCIR-601
(4] images and displays. These have
heen used experimentally by JPEG
members and will- appear in the
1SO standard as a matter of infor-
mation. but not as a requirement.

DC Coding and 2ig-2ag Sequence
After quantization. the DC coetfi-
cient is treated separatelv from the
i3 AC coetficients. The DC coeffi-
cient 18 a measure. ol the average
value ot the ti4 image samples. Be-
cause there is usually strong correl-
ation between the DC cuefficients
of udjacent § x ¥ blocks, the-quan-
tized DC coefficient is encoded as
the difference from the DC term of
the previous block in the encoding
order (defined in the following), as
shown in Figure 3. This special
treatment is worthwhile, as DC co-
efficients {requently contain a sig-
-nificant fraction of the total image
energy.

Finallv, all of the quantized coef-
licients are ordered into the “dig-
zag” sequence. also shown in Fig-
ure 3. This ordering helps to facili-
tate entropy toding by placing
low-frequency cuefficients (which
are more likelv to be nonzero) be-
fore high-frequency coetficients.

Entropy Coding
The final DCT-hased encoder pro-
cessing step is entropy coding, This
step achieves additional compres-
sion” losslesslv I encoding  the
quantized DCT coetficients more
compactly hased on their statistical
characteristics. The JPEG proposal
specifies wwo  entropy  coding
methods— Huffman coding [7) and
arithmetic coding [14]. The Base-
line sequential codec uses Huftman
coding, but codecs with both meth-
uds are specilied for all modes of
operation.

It is useful w Consider entropy

Clm 1 w1 mess SR A TS AL
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coding as a 2-step process, The first
step converts the zig-2ag sequence
of quantized coefficients into an
intermediate sequence of symbols.
The second step converts the sym-
bols to a data stream in which the
symbols no longer have externally
identifiable boundaries. The form
and definition of the intermediate
symbols is dependent on both the
DCT-based mode of operation and
the entropy coding method,

Huffman coding requires that
one or more sets of Huffman code
tables be specified by the applica-
tion. The same tables used to com-
press an image are needed to de-
compress it. Huffman tables may be
predefined and used within an
application as defaults, or com-
puted specifically for a given image
in an initial statistics-gathering pass
prior 1o compression. Such choices
.are the business of the applications
which use | PEG; the JPEG proposal
specifies no required Huffman ta-
bles. Huffman coding for the Base-
line sequential encoder is described
in detail later in this article,

By contrast, the particular arith-
metic coding method specified in
the JPEG proposal [2] requires no
tables 1o be externally input, be-

_ cause it is able 1o adapt 1o the image
statistics as it encodes the image. (IT
desired. statistical conditioning ta-
bles can be used as inputs for
slightly better efficiency. but this is
not required.) Arithmetic coding
has produced 5-10% better com-

¥

have tested. However, some feel it
is more complex than Hulfman
coding tor certain implementa-
tions, fur example, the highest-
speed hardware implementations.
(Throughout JPEG'’s history, "com-
plexity" has proved to be most elu-
sive as a practical metric for com-
paring compression methods.)

If the only difference between
two JPEG codecs is the entropy

. coding method, transcoding be-

tween the two is possible by simply
entropy decoding with one method
and entropy recoding with the
other.

Compression and Picture Quality
For color images with moderately
complex scenes. all DCT-based
modes of operation typically pro-
duce the following levels of piaure
quality for the indicated ranges of
compression. These levels are only
a guideline—quality and compres-
sion can vary significantly accord-
ing to source image characteristics
and scene content. (The units “bits/
pixel” here mean the total number
of bits in the compressed image—
including the chrominance compo-
nents—divided by the number of
samples in the luminance compo-
nent.)

¢ (.25-0.5 bits/pixel: moderate to
good quality, sufficient for some
applications;

® (.5-0.75 biws/pixel: good 1o very
good quality, sulficient for many

pression than Huffman for many applications;
" of the images which [PEG members  ® 0.75-1.5 bits/pixel:  excellent
ACo ACqr
i b, e g
K s
sen| block,, block |eas
ADCi= DG — DCyy 2
ACw ACn
Differental OC encoding Zig-zag sequence

DIGITAL MULTIMEDIA SYSTEMS

quality. sufficient for most appli-
cations; 3

® 1.5-2.0 bits/pixel: usually indis-
tinguishable from the original.

sufficient for the meost demand-,

ing applications.

Later in this article. Figure 11
shows an example of the piciure

' quality obtained for a CCIR-601

image at various stages and bit rates

Sidew

of a progressive encoding. Because

FDCT and Quantization are com-
mon to progressive and sequential
DCT-based modes, the quality and
compression shown in Figure 11 is

also indicative of the trade-offs that .

can be expected for sequential cod-
ing.

Processing Steps for
Predictive Lossless Coding

After its selection of a DCT-based -

method in 1988, JPEG discovered
that a DCT-based lossless mode was
difficult 10 define as a practical
standard against which encoders

and decoders could be indepen-r

dently implemented, without plac- ~

ing severe constraints on both
encoder and decoder implemen-
tations. ‘
JPEG. to meet its requirement
for a lossless mode of operation,
has chosen a simple predictive
method which is wholly indepen-
dent’ of the DCT processing de-
scribed previously, Although not

_ the result of rigorous competitive

evaluation as was the DCT-based
method, - the ~predictive method
produces results which. in light of
its simplicity, are surprisingly close
10 the state of the art for lossless
continuous-tone compression.
Figure 4 shows the main process-
ing steps lor a single-component
image. A predicior combines the

Preparation of Quantized
Coefficients for Entropy Coding

Page 135 of 437



"

P .

MWWW

Lossless Encoder '

Entropy | :]

Predictors for-
Lossless Coding
SELECTION-
VALUE PREDICTION

0 ne prediction

1 A

2 B

3 c

4 A+B-C

1] A+ (B- Q2

6 B+ (A - C/2)

7 A+ B2

values of up to three neighboring
samples (A. B. and C) to form a
prediction of the sample indicated
by X in Figure 5. This prediction is
then subtracted from the acwal
value of sample X. and the differ-
ence is encoded losslessly by either
of the entropy coding methods—
Huffman or arithmetic. Anv one of
the cight predictors listed in
Table | (under “selection-value”)
can be used. '

Selections 1, 2 and 3 are one-
dimensional predictors and selec-
tions 4. 5, 6, and 7 are two-dimen-
sional predictors. Selection-value U
can only be used for differential
coding in the hierarchical mode of
vperation. The entropy coding is
nearly identical to that used for the
DC coefficient as described later
(for Huffman coding).

For the lossless mode of opera-
tion. two different codecs are speci-
fied—one for each entropy coding
method. The encodérs can use any
source image precision from 2o 16
bitsisample. and can'use any of the

Lossiess Mode Encoder Processing
Steps

3-Sample Prediction Nelghborhood

predictors except selection-value 0.
The decoders must handle any of
the sample precisions and any of
the predictors.

Lossless codecs tvpically produce
around 2:1 compression for color
images with moderately complex
scenes.

Multiple-Component iImages
The previous sections discussed the
kev processing steps of the DCT-
based and predictive lossless codecs
for the case of single-component
source images. These steps accom-
plish the image data compression.
But a good deal of the JPEG pro-
posal is also concerned with the
handling and control of color (or
ather) images with multiple compo-
nents. JPEG's aim for a generic
compression standard requires its
proposal to accommodate a variety
of source image formats.

Source Image Formats

The source image model used in

the JPEG proposal is an abstraction
-

rom a varierv of image vpes and

‘applications. and consists onlv ot

what is necessarv o compress aned
reconstruct digital image data. The
reader should recognize that the
JPEG compressed data format does
not encode enough information to
serve as a complete image repre-
sentation. For example, |PEG does
not specify or encode any informa-
tion on pixel aspect ratio, color
space. or image acquisition charac-
Leristics. )

Figure 6 illustrates the JPEG
source image model. A source
image contains from | to 255 image
components, sometimes  called
color or spectral bands or channels.
Each component consists of a rec-
tangular arrav of samples. A sam-
ple is defined to be an unsigned in-
teger with precision P bits, with anv
value in the range [0. 28= 1]. All
samples of all companents within
the same source image must have
the same precision P. P can be 8 or
12 for DCT-based codecs. and 2 to
16 for predictive codecs,

The ith component has sample
dimensions x, by v;. To accommo-
date formats in which some image
components are sampled at differ-
ent rates than others. components
can have different dimensions. The
dimensions must have a mutual in-
tegral relationship defined by H,
and V.. the relative hlnrizomal and
vertical sampling factors, which
must be specified for each compo-
nent. Overall image dimensions N
and Y ure defined as the maximum
%, and v; for all components in the
image, and can be any number up
10 2'%, H and V are allowed onlv the
integer values | through 4. The
encoded parameters are X. Y. and
the Hs and Vs for each compo-
nent. The decoder reconstructs the
dimensions x, and ¥, for each com-
ponent, according to the followin

relationship shown in Equation 3:

- H-].
‘,-[.\X Hom and

3 |(r
ol

max

s o Rkl
where | | is the ceiling tunction.
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Encoding Order and Interieaving
A practical image compression
standard must address how systems
will need 1o handle the data during
the process of decomipression,
Many applications need to pipeline
the process of displaying or print-
ing multiple-component images in
parallel with the process of decom-
" "« pression, For many systems, this is
only feasible if the components are
interleaved together within the
compressed data stream,

To make the same interleaving
machinery applicable to both DCT-
based and predictive codecs, the
JPEG proposal has defined the con-
cept of “data unit.” A data unitis a
sample in predictive codecs and an
8 x 8 block of samples in DCT-
based codecs.

The order in which compressed .

data units are placed in the com-
pressed data stream is a generaliza-
tion of raster-scan order. Generally,
data units are ordered from lefi-to-
right and top-to-bottom according
to the orientation shown in
Figure 6. (It is the responsibility of
applications to define which edges
of 2 source image are top, bottom,
left, and right.) If an image compo-
nent is noninterleaved (i.e., com-
pressed without being interleaved
with other components), com-
pressed data units are ordered in a
pure raster scan as shown in Fig-
ure 7.

When two or more components

memﬁnvmmvm

are interleaved. each component C,
is partitioned into rectangular re-
gions of H, by V, data units, as
shown in the generalized example
of Figure 8. Regions are ordered
within a component from lefi-10-
right and top-to0-bottom, and within
a region, data units are ordered
from lefi-to-right and  top-to-
bottom. The JPEG proposal defines
the term Minimum Coded Unit
(MCU) to be the smallest group of
interleaved dauwa units, For the ex-
ample shown, MCU, consists of

data units taken first from the wop- °

lefemost region of C,, followed by
data units from the same region of
Cy, and likewise for Cy and Cy.
MCUg continues the pattern as
shown. '

Thus, interlcaved data is an or-
dered sequence of MCUs, and the
number of data units contained in
an MCU is determined by the num-
ber of components interleaved and
their relative sampling factors. The
maximum number of components
which can be interleaved is 4 and
the maximum number of data units
in an MCU is 10, The lauer restric-
tion is expressed as shown in Equa-
tion 6, where the summation is over
the interleaved components:

S OHxV,s10
i

(6)

Because of this restriction, not

samples
+CN

N

tne
4

c
G\l

_—

(2) Source Image with
multipie components

.
|

Yi right
.
e X}
bottom
(b) Charscteristics ofan -
Image componani
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every combination of + components
which can be represented in non-
interleaved order within a JPEG.
compressed image is allowed 10 be

interleaved. Also, note that the. .

JPEG proposal allows some compo-
nents to be interleaved and some to
be noninterleaved within the same
compressed image.

Multiple Tables

In addition to the interleaving con-
wrol discussed  previously, JPEG
codecs must control application of
the proper table data to the proper
components, The same quantiza-
tion table and the same entropy
coding table (or set of rables) must
be used to encode all samples
within a component.

JPEG decoders can store up to 4
different quantization tables and
up to 4 different (sets of) entropy
coding tables simultaneously. (The
Baseline sequential decoder is the
exception: it can only store up to 2
sets of entropy coding tables.) This

is necessary for switching between’ )

different tables during decom-
pression of a scan containing multi-
ple (interleaved) components. in
order 10 apply the proper table 10
the proper tomponent. (Tables
cannot be loaded during decom-
pression of a scan,) Figure 9 illus-
trates the table-switching control
that must be managed in conjunc-

| Ficunss. |
JPEG Source Image Model

top

left right

bottom

Noninterleaved Data Ordering
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Generalized Interieaved Data
Ordering Example

| mcumes ]
component-interieave and
Table-Switching Control

tion with muliiple-component in-
terleaving for the encoder side.
{This simplified view does not dis-
tinguish between quantization and
entropy coding tables.)

Baseline and Other DCT
Sequential Codecs

The DCT sequential mode of oper-
ation consists of the FDCT and
Quantization steps tfrom the section
entitled “Processing Steps for DCT-
Based Coding” and the multiple-
component cantrol from the previ-
vus section on multiple component
images. In addition to the Baseline
sequential codec, other DCT se-
uential codecs are defined w ac-
commodate the two different sam-
ple precisions (8 and 12 bits) and
the two different types of entropy
coding methods (Huffman and
arithmetic).

Baseline sequential coding is for
images with 8-bit samples and uses
Huffman coding only. It also dif-
lers from the other séquential DCT

A |—o
e o R
-t
Compressed
C p—o Image Data

»

Spec. 1

Table
Spec. 2

codecs in that its decoder can store
onlv wwo sets of Huffman ables
(une AC table and one DC table per
set). This restriction means that, for
images with three or four inter-
leaved components, at least one set
of Huffman tables must be shared
by two components, This restriction
poses no limitation at all for non-
interleaved components; a new set
of 1ables can be |oaded into the de-
coder before decompression of a
noninterleaved component begins.

For manv applications which do
need to interleave three color com-
ponents, this restriction is hardly a
limitation at all. Color spaces (YUV,

CIELUV, CIELAB, and others)
which represent the chromatic
(“color™) information in two com-
ponents and the achromatic
{7gravscale™ information in a third
+ are more efficient for compression
than spaces like RGB. One Huff-
man table set can be used for the
achromatic component and one for
the chrominance components.
DCT coefficient statistics are simie
lar for the chrominance compo-
nents of most images, and one set
of Huffman tables can encode both
almost as optimally as two,
The committee .also felt that
carly availability of single-chip im-
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plementations at commodity prices
would encourage early acceptance
of the |PEG proposal in a variety of
applications, In 1988 when' Base-
line sequential was defined, the
commiuee’s VLS experts feh that
current technology made the feasis
bility of crowding four sews of
loadable Huffman tables—in addi-
. +lion to four sets of Quanuization
(Mbles—onto a single commodity-
priced codec chip a risky proposi-
tion,

AR A A

coefficients in the zig-zag sequence
preceding the nonzero AC coeffi-
cient being represented. SIZE is the
number of bits used 1o encode
AMPLITUDE—that is, to encode
symbol-2, by the signed-integer
encoding used with JPEG's particu-
lar method of Huffman coding.
RUNLENGTH represents zero-
runs of length 0 to 13, Actual zero-
runs in the zig-zag sequence can be
greater than 13, so the symbol-1
value (15, 0) is'interpreted as the

1 h
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(8 % 8 block) input signal contains
N-bit integers, then the nonfrac-
tional part of the output numbers
(DCT coefficients) can grow by at

most 3 bits. This is aiso the largest

possible size of a guantized DCT
coefficient when ils quantizer step
size has integer value 1,

The FDCT, Qu DC
differencing, and zig-zag ordering
processing steps for the Bascline
sequential codec proceed just as
described in the section “Processing
Steps for DCT-Based Coding."
Prior to entropy coding, there usu-
ally are few nonzero and many
zero-valued AC coefficienus. The
task of entropy coding is to encode
these few coefficients efficiently.
The descripion of Baseline se-
quential entropy coding is given in
two steps: conversion of the quan-
tized DCT coefficients into an in-
termediate sequence of symbols
and assignment of variable-length
codes to the symbols,

Intermediate Entropy Coding
Representations

In the intermediate symbol se-
quence, each nonzero AC coeffis
cient is represented in combination
with the “runlength” (consecutive
number) of zero-valued AC coeffi-
cients which precede it in the zig-
zag sequence. Each such runlength/
nonzero-coefficient combination is
(usually) represented by a pair of
symbols: y '

symbol-1
IRUNLENGTH, SIZE)

symbol-2
(AMPLITUDE)

Symbol-1 represents two pieces of
information, RUNLENGTH and
SIZE. Symbol-2 represents the sin-
gle piece of information designated
AMPLITUDE, which is simply the

amplitude of the nonzero AC coef--

ficient. RUNLENGTH is the num-
ber of consecutive zero-valued AC

extension symbol with r gth =
16. There can be up to three con-
secutive (15, 0) extensions before
the " terminating symbol-1  whose
RUNLENGTH value completes the
actual runlength. The terminating
symbol-1 is always followed by a
single symbol-2, except for the case
in which the last run of zcros in-
cludes the last (63d) AC coefficient.
In this frequent case, the special
symbol-1 value (0,0) means EOB
(end of block), and can be viewed as
an “escape” symbol which termi-
nates the 8 x B sample block.

Thus, for each 8 X 8 block of
samples, the zig-zag sequence of 63
quantized AC coefficients is repre-
sented as a sequence of symbol-1,
symbol-2  symbol-pairs, though
each “pair” can have repetitions of
symbol-1 in the case of a long run-
length or only one symbol-1 in the
case of an EOB.

The possible range of quantized
AC coefficients determines the
range of values which both the
AMPLITUDE and the SIZE infor-
mation must represent. A numeri.
cal analysis of the 8 x8 FDCT
equation shows that, if the 64-point

ger source samples in the range (27,
27 - 1), so quantized AC coefficient
amplitudes are covered by integers
in the range [—-2'. 21V - []. The
signed-integer  -encoding  uses
symbol-2 AMPLITUDE codes of 1
to 10 bits in length (so SIZE also
represents values from | to 10).and
RUNLENGTH represents values
from 0 to 15 as discussed previ-
ously. For AC coefficients, the
structure of the symbol.l and
symbol-2 intermediate representa-
tions is illustrated in Tables 2 and 3,
respectively.
The inter P on
for an 8 X B sample block's differ-
ential DC coefficient is structured
similarly. Symbol-1, however, rep-
resents only SIZE information;
symbol-2 represents AMPLITUDE
information as before:

. symbol-2

symbol-1 )
(AMPLITUDE)

(SIZE)

Because the DC coefficiemt is dif-
ferentially encoded, it is covered by
twice as many integer values, [—2'',
211 — |} as the AC coefficients. so

¢

SIZE
1 T 9 10

RUNLENGTH

BrxxB|o

15

RUN-SIZE
VALUES

sequential has B-bit inte- .

Page 139 of 437



one additional level must be added
1 the bowom of Table 3 for DC
coefficients, Symbol-1 for DC coef-
ficients® thus represents a value
from Lo 11~ §

variable-Length Entropy Coding
Once the quantized coefficient data
for an 8 % B block is represented in
the intermediate symbol sequence
described above, variable-length
codes are assigned. For each 8 X 8
block, the DC coefficient's symbol- |
and symbol-2 representation is
coded and output first,

For both DC and AC coefficients,
each symbol-1 is encoded with a
variablelength code (VLC) from
the Huffman table set assigned to
the 8 x 8 block’s image component.
Each symbol-2 is encoded with a

described previously. (Quantized
DCT coetficienss can he 4 bis
larger, so the S1ZE and AMPLI-
TUDE intormation extend accord-
ingly. DCT sequential with arith-
metic coding is described in detail
in [2].

DCT Progressive Mode

The DCT progressive mode ol op-
eration consists of the same FDCT
and Quantization steps from the
section “Processing Steps for DCT-
Based Coding” thai are used by
DCT sequential mode. The key dif-

“variable-length " (VLD
code whose length in bits is given in
Table 3. VLCs and VLIs both are
codes with variable lengths, but
VLIs are not Huffman codes. An
important distinction is that the
length of a VLC (Huffman code) is
not known uniil it is decoded, but
the length of a VLI is stored in its
preceding VLC,

Huffman codes (VLCs) must be
specified externally as an input 10
JPEG encoders. {Note that the form
in which Huffman tables are repre-
sented in the dat stream is an indi-
rect specification with which the
decoder must construct the tables
themselves prior to decompress-
ion,) The JPEG proposal includes
an example set of Huffman tables
in its informational annex, but be-
cause they are application-specific.
it specifies none for required use.
The VLI codes, in contrast, are
"hardwired" into the proposal. This
is appropriate, because the VLI
codes are far more numerous, can
he computed rather than stored,
and have not been shown 1o be ap-
preciably more efficient when im-
plemented as Huffman codes.

Other DCT Sequential Codecs

The structure of the 12-bit DCT
sequential codec with Huffman
coding is a straightforward -exten-
sion of the entropy coding method

~-63.-32,52.83
—127.-64,64.127

O W0 00 ~d TN LN Bn U RS =

i
-
w
)

1
A
me
2
o
b

==

-1023.-512,512.1023

lerence is that each image compo-
nent is encoded in muitiple scans
rather than in a single scan. The
first scan(s) encode a rough but rec-
vgnizable version of the image
which can be transmitted quickly in
comparison to the total transmis-
sion time. and are refined by suc-
ceeding scans until reaching the
level of picture quality that was es-
tablished by the quantization tables.

To achieve this requires the addi-
tion of an image-sized buffer mem-
ory at the output of the quantizer,
hefore the input 10 the entropy en-
coder. The buffer memory must be
of sufficient size 1o store the image
as quantized DCT coefficients, each
of which (i stored straightfor-
wardly) is 3 bits larger than the
source image samples. After each
block of DCT coefficients is quan-
tized. it is stored in the coetlicient

e A A e R A e e

bufter memory. The buffered coet-
licients are then partially encoded
in each of multiple scans.

There are two complementary
methods by which a block of quan-
tized DCT coetficients may be par-
tially encoded. First. unlv a speci-
fied “band"” of coefficients from the
zig-zag sequence need be encoded
within a given scan. This procedure
is called “speetral selection.” be-
cause each band typically contains
coetficients which occupy a lower
or higher part of the spaual-
[requency spectrum for that 8 X 8
block. Secondly. the coetficients
within the current band need not
be encoded 1o their full (quantized)
accuracy in u given scan, Upon a
coefficient's first encoding. the N
most signiticant bits can be encoded
first, where N is specifiable. In sub-
sequent scans. the less significant
bits can then be encoded. This pro-
cedure is called successive approxi-
mation. Both procedures can be
used separately, or mixed in flexi-
ble combinations. v

Some intuition for spectral selec-
tion and successive approximation
can be obtained from Figure 10.
The quantized DCT coefficient in-
tormation can be viewed, as a rec-
tangle for which the axes are the
DCT coetticients and their ampli-
tudes. Spectral selection slices the
information in vne dimension and
successive approximation -in  the
other. )

For comparative purposes, Fig-
ure 11 shows an example of buth
progressive encoding methods.

Hierarchical Mode Of
Operation

“I'he”hicrarchical mode provides a
“pyramidal” cneoding of an image
at multiple resolutions, each differ-
ing in resolution from its adjacent
encoding by a factor of two in ei-

ther the horizontal or vertical di-

mension or both. The encoding
procedure can be summarized as
tollows:

a) Filter and down-sample the orig-
inal image by the_desired number
ol multiples of 2 in each dimension.

Pt e al a L aAesis e MeA L A8 U AP
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b) Encode this reduced-size image
using one of the sequental DCT.
progressive DCT. or lossless encod-
ers described previously.”

¢) Decode this reduced-size image
and then interpolate and up-
sample it by 2 horizontally and/or
vertically, using the identical inter-

lation filter which the receiver
must use.

d) Use this up-sampled image as a
prediction of the original at this
resolution, and encode the differ-
ence image using one of the se-
Iquential DCT, progressive DCT, or

lossless encoders described previ-

ously.

¢) Repeat steps ¢) and d) until the
full resolution of the image has
been encoded,

The encoding in steps b).and d)
may be done using only DCT-based
processes, only lossless processes, or
DCT-based processes with a final
lossless process for each compo-
nent.

Hierarchical encoding is useful
in appllc:!ions in which a very high
resolution image must be accessed
by a lower-resolution device, which
does not have the buffer capacity to
reconstruct the image at its full res-
olution and then scale it down for
the lawer-resolution display. An
example is an image scanned and
compressed at high resolution for a
very high-quality printer, where the
image must also be displayed on a
low-resolution PC video screen.

Other Aspects of the JPEC
Proposal ,

Some key aspects of the proposed
standard can only be mentioned
briefly. Foremost among these are
points concerning the coded repre-
sentation for compressed image

data specified in addition to0 the -

encoding and decoding proce-
dures.

Most importantly, an interchange
format synitax is specified which en-
sures that a JPEG-compressed |
image can be exchanged . success-
fully between different application
environments. The format is struc-

tured in a consistent wav for all
modes of operation. The inter-
change format always includes all
quantization and entropy-coding

DIGITAL MULTIMEDIA SYSTEMS

nthscan

(¢) Progressive encoding:
speciral selection

(d) Progressive encoding:
succensive
approximation

Eﬂ'ﬂ_

Selection and Successive kppmxlmﬂon Methods of Progres-

!N‘. !ﬂtﬂﬂlnu

-~

Page 141 of 437



Page 142 of 437



Lables which were used to compress
the image.

Applications {and application-
specific standards) are-the “users”
of the |PEG standard, The JPEG

standard imposes no requirement

that. within an application’s envi
ronment, all or even any tables
must be encoded with the com-
‘pesssed image data during storage

or transmission. This leaves appli-
cations the freedom to specify de- °

fault or referenced tables if they are
considered appropriate. [t also
leaves them the responsibility to
ensure that JPEG-compliant decod-

ers used within their environment -
get loadd with the proper tables at’

the pre er tmes, and that the
proper t.bles are included in the
interchange format when a com-
pressed image is “exported"” outside
the application.

Some of the important applica-
tions that are already in the process
of adopting JPEG compression or
have stated their interest in doing
50 are Adobe's PostScript.language
for printing systems (1], the Raster
Content portion of the ISO Office
Document Architecture and Inter-
change Format (12], the future
CCITT color facsimile swandard,
and the European ETSI videotex
standard [9].

Standardization Schedule :

JPEG's 1SO standard will be di-
vided into two parts. Part 1:[2] will
specify the four modes of opera-
tion, the different codecs specified
for those modes, and the inwer-
change format. It will also contain a
substantial informational section on

A A A A AAA A A AR AAAA
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'[3] will specify the compliance tests
-which will determine whether an

implementation of an encoder or
decoder specified in Part | con-

forms to the standard.

There are wo key balloting

-phases in the ISO standardization

process: a Committee Draft (CD) is
balloted to determine promotion to
Drafi International Standard (DIS),
and a:DIS is balloted to determine
promotion to International Stan-
dard (IS). Each ballot requires four
to six months. JPEG's Part | began
CD ballot. in February 1991, and

. Pamt 2 is expected 1o begin CD hal-
“lot by June 1991.

Though there is no guarauee
that the first ballot of each pnase
will result in promotion to the next,
JPEG's CD Part | contains no ech-
nical ‘changes (other than some
minor corrections) from JPEG's lat-
est Technical Specification [13),
Successive revisions of the Techni-
cal Specification were widely dis-
tributed and subjected to informal
review in many forums throughout
1990, and yet the technical content

- has been stable for nearly a year.

Conclusions
The emerging JPEG continuous-
tone image compression standard is

not a panacea that will solve the

myriad issues which must be ad-
dressed before digital images will
be fully integrated within all the
applications that will ultimately
benefit from them. For example, if
two applications cannot exchange
uncompressed images because they
usc incompatible color spaces, as-

MWIM Builld-up, showing Spectral Selection vs. Successive Mﬂm
an Grlﬂlnﬂ image (CCIR-601 Format: wv 720 x 576 Y samples)

D) spectral Selection

bi. DC coefficlents only: 0.19 bits/plxel

Db2. Addition of 1 AC coefficlent: 0.

52 bits/pixel

b3, Addition of 2d. Accurmaam.m bits/plxel
b4, Addition of 3d.-9th AC cosfficlents: DJBWDMI

©) Successive Appro

ximation
8 7M$HIMDCMMM!WM|

:z.mmonofsmlloﬂc

coefficlents:
6th M5B of AC coefficients: 0.

0.3 bits/pixel
49 bits/pixel

l:.n Apumnn of 'ml MSB of AC coefficients: 0.8 bits/pixel
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pect ratios. dimensions. etc., then a
commen compression method will
not help.

However, a great many applica-
tions are "stuck” because of storage
or transmission costs, because of
argument over which (nonstand-

Izatal
Binnaacte
andd Ve
snandirds

ard) compression method to use, or

because VLSI codecs are too ex-
pensive due to low volumes. For
these - applications, the thorough
technical evaluation, testing, selec-
tion, validation, and «locumentation
work which JPEG committee mem-
bers have performed is expected to
soon vield an approved interna-
tional standard that will withstand
the tests of quality and time. As di-
verse imaging applications become
increasingly implemented on open,
networked computing systems, the
ultimate measure of the commit-
tee's success will be when JPEG-
compressed digital images come 10
be regarded and even taken for
granted as “just another data type.”
as text and graphics are today.

For more information
Regarding the proposed standard
itself, instructions on how to obtain
the ISO Committee Draft Part 1.
the JPEG Technical Specification,
which preceded it, and other key
documents as they become available
can be obtained by writing the au-
thor at the following address:
Digital Equipment Corporation
146 Main Street, MLO3-2/G1
Maynard, MA 01754.2571

Floppy disks containing uncom-
pressed. compressed, and recon-
structed data tor the purpose of
informally validating whether an
encoder or decoder implementa-
tion conforms to the proposed stan-
dard are available. Thanks to the
following J PEG cominittee member
and his .company. who have agreed
(o provide these for a nominal fee
on behalf of the commitee Ontil
arrangements can be made for [SO

~
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NeXTstep:

Putting JPEG to Multiple Uses

Greg Cockroft and Leo Hourvitz

NeXTstep, the standard oper-

ating environment on NexT

. _computers, s designed to

support a wide spectrum of
application development.
NeXT has Included support for
the Baseline System portion

- of the JPEG draft in the 2.0
release of NeXTstep.

‘Software Still-Frame
Image Compression
The standard image format
within NeXTstep Is TIFF (Tag
Image Flle Format). NeXTstep
supports the use of TIFF files
through the NXimage class.
This Is a class of an object-
orlented C language called
Objective C, upon which the
NeXTstep Application Toolkit Is
based. in the 2.0 release of
NeXTstep, we have added JPEG
support to all of our TIFF
reading and writing facliities.
JPEG-compressed TIFF files are
read transparently to the ap-
- plication; thus, all appiications
that use the NXimage class
(such as Mediaview) can now
read JPEG-compressed TIFF
files. This Implementation is.
done In software and runs on
the main processor of all NexXT
computers; no additional
. hardware support Is needed,
The decompression and Imag-
ing of a 24-bit 640 x 480 image
takes less than ten seconds on
a NeXT computer with a Moto-
rola 68040 main processor; fur-
ther optimization and the
usual advances In processors
will continue to shrink the
required time. The avaliabllity
of this software Implementa-
tion on all NeXT computers
means that users can safaly
exchange JPEG-compressed
files with each other.
NexTstep uses Display Post-
Script to display the decom-
pressed Images on the
screen—allowing all NeXT
computers to display 24-bit
. color images whether they

have 2-bit grayscale, 12-bit
color, or 24-bit color displays.
To be compatible with TIFF file
readers on other machines,
NeXTstep foliows the TIFF ex-
tensions proposed by C-Cube
Microsystems. Thus, TIFF files
can be transferred to other
JPEG-equipped systems which
also follow these extensions.

NeXTdimension: Full-
Motlon Video Compression
On the recently Introduced
NeXTdimenslon graphics
board, NeXT has inciuded
hardware JPEG processing
which allows standard-resofu-
tion video to be compressed
or decompressed at real-time
rates. (NeXTstep 2.1 Is cur-
rently shipping: this includes
all video NeXTdimenslon capa-
bllitles with the exception of
JPEG hardware support, JPEG
hardware support will not be

- avallable until the NeXTstep

2.2 release In the fourth quar-
ter of 1991.)

In.combination with the
video Input and DMA channels
provided on the NexTdimen-
sion board, 640 x 480 video
frames can be captured from
any standard video source,
compressed, and transferred
t0 hard disks at a rate of 30
frames/second. (NeXTdimen-
slon can also display the video
frames In a subwindow of its
megapixei display at the same
time.) Playback from disk
works In a similar manner: A
previously recorded video se-
quence can be read from disk,
decompressed and displayed
in a subwindow of the
megapixel display as well as
directed to a standard video
output Jack. The data rate for
video compressed with JPEG
varies. It is dependent on the

. Source material and the quan-

tization tables. "Nice looking"
video Is within the range of
the SCSI disk write speed of

NeXT computers—
approximately 600 kilobytes
per second—with standard

disks. (“Nice looking" means It '

Is apparent the video Is com-
pressed, but the artifacts are

not objectionable.) "High qual- -

Ity" video will require 1 mega-
byte per second, requiring
fast SCSI disks or caching of
short video sequences In large
memory buffers. Another al-
ternative s to lower the frame
rate, allowing higher quality
frames while keeping the data
rate within the range of stan-
dard SCSI disks.

This digital video capabllity
will allow for the implementa-
tion of applications that con-
tain video sequences as one
of thelr many data items.
Video need not be fetched
from a speclal-purpose exter-
nal device; it can be part of a
disk-based document like any
other data type. Direct access
to any video sequence will be
perfect for interactive video
applications. :

Future Work

These capabllitles lliustrate
how computers wiil be able to
handie video Information
using JPEG and other image
compression algorithms. FOr
Instance, NeXT Is currently
experimenting with using
JPEG compression on low-
resolution frames to get a
very low data-rate video sys-
tem sultable for use in video
mall and other applications
where full-resolution videc Is
not required. JPEG and the
related MPEG draft standards
described In a later article (see
"MPEG: A Video Compression
Standard for Multimedia Appll-
cations," In this Issue) are
open and flexible enough that
they wliil continue to Inspire
clever systems builders to find
more ways to put them to
work. (continued on page [16)
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avelets and Signal
Processing

OLIVIER RIOUL and MARTIN VETTERLI

velet theory provides a
‘)‘; unified framework for a
number of techniques

which had been developed inde-
pendently for various signal
processing applications. For ex-
ample, multiresolution signal
processing, used in computer
vision; subband coding; developed
for speech and image compression;
and wavelet series expansions,
developed in applied mathematics,
have been recently. recognized as
different views of a single theory.

In fact, wavelet theory covers
quite a large area. [t treats both the
continuous and the discrete-time cases. It provides very
general techniques that can be applied to many tasks
in signal processing, and therefore has numerous
potential applications.

[n particular, the Wavelet Transform (WT) is of inter-
est for the analysis of non-stationary signals, because It
provides an alternative to the classical Short-Time
Fourier Transform (STFT) or Gabor transform |[GAB46,
ALL77, PORBO0]. The basic difference is as follows. In
contrast to the STFT. which uses a single analysis
window, the WT uses short windows at high frequencies
and long windows at low frequencies. This s in the spirit
of so-called “constant-Q" or constant relative
bandwidth frequency analysis, The WT is also related
to time-frequency analysis based on the Wigner-Ville
distribution [FLAB9, FLASO, RIOS0a).

For some applications it is desirable to see the WT as
a signal decomposition onto a set of basis functions. In
fact, basis functions called wavelets always underlie the
wavelet analysis. They are obtained from a single
prototype wavelet by dilations and contractions (seal.
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Ings) as well as shifts. The prototype wavelet can be
thought of as a bandpass filter, and the constant-Q
property of the other bandpass llters (wavelets) follows
because they are scaled versions of the prototype.

Therefore, in a WT, the notion of scale {s introduced
as an alternative to frequency, leading to a so-called
time-scale representation. This means that a signal is
mapped into a time-scale plane (the equivalent of the
time-frequency plane used in the STFT).

There are several types of wavelet transforms, and,
depending on the application, one may be preferred to
the others. For a continuous input signal, the time and
scale parameters can be continuous [GRO89|, leading
to the Continuous Wavelet Transform (CWT). They may
as well be discrete [DAUSS, MAL89b, MEY89, DAU90a],
leading to a Wavelet Serles expansion. Finally, the
wavelet transform can be defined for discrete-time sig-
nals [DAUSS, RIO90b, VET90b], leading to a Discrete
Wavelet Transform (DWT). In the latter case it uses
multirate signal processing techniques [CRO83] and Is
related to subband coding schemes used in speech and
image compression. Notice the analogy with the (Con-
tinuous) Fourier Transform, Fourler Serles, and the
Discrete Fourler Transform.

Wavelet theory has been developed as a unifying
framework only recently, although similar {deas and
constructions took place as early as the beginning of
the century [HAA10, FRA28, LIT37, CAL64]. The idea of
looking at a signal at various scales and analyzing it
with various resolutions has In fact emerged Inde-

‘pendently in many different fields of mathematics,
physics and engineering. In the mid-eighties, re-
searchers of the “French school,” lead by a geophysicist,
a theoretical physicist and a mathematiclan (namely,
Morlet, Grossmann, and Meyer), built strong mathe-
matical foundations around the subject and named
their work "Ondelettes” (Wavelets). They also interacted
considerably with other flelds,

The attention of the signal processing community
was soon caught when Daubechies and Mallat, In ad-
dition to their contribution to the theory of wavelets,
established connections to discrete signal' processing
results [DAUBS|, [MAL89a]. Since then, a number of
theoretical, as well as practical contributions have been
made on various aspects of WT's, and the subject Is
growing rapidly [WAVS9], [IT92],

The present paper is meant both as a review and as
a tutorial. [t covers the main definitions and properties
of wavelet transforms, shows connections among the
various ficlds where results have been developed, and
focuses on signal processing applications. Its purpose
Is to present a simple, synthetlc view of wavelet theory,
with an easy-to-read, non-rigorous flavor, An extensive
bibliography is provided for the reader who wants to go
Into more detall on a particular subject,
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NON-STATIONARY SIGNAL
ANALYSIS

The alm of signal analysis is to extract relevant
information from a signal by transforming It. Some
methods make a priori assumptions on the signal to be

" analyzed:; this may yleld sharp results if these assump-

tions are valid, but is obviously not of general ap-
plicability. In this paper we focus on methods that are
applicable to any general signal. In addition, we con-
sider invertible transformations. The analysis thus un-
ambiguously represents the signal, and more involved
operations such as parameter estimation, coding and
pattern recognition can be performed on the “transform
side,” where relevant properties may be more evident.

Such transforms have been applied to stationary
signals, that is, signals whose properties do not evolve
in time (the notion of stationarity 1s formalized precisely
in the statistical signal processing literature). For such
signals xt, the natural "stationary transform” Is the
well-known Fourler transform [FOUSSI:

x(fy=[" xty ¥ S ta o

The analysis coefficlents X[ define the notlon of
global frequency fin a signal. As shown in (1), they are
computed as inner products of the signal with sinewave
basis functions of infinite duration. As a result, Fourier
analysis works well If x{} is composed of a few stationary
components (e.g., sinewaves). However, any abrupt
change in time in a non-stationary signal x0 is spread
out over the whole frequency axis in X{f). Therefore, an
analysis adapted to nonstationary signals requires more
than the Fourier Transform. .

The usual approach is to Introduce time dependency
in the Fourier analysis while preserving linearity, The
idea s to introduce a “local frequency” parameter (local
in time) so that the "local” Fourier Transform looks at
the signal through a window over which the signal is
approximately stationary. Another, equivalent way is to
modify the sinewave basis functions used in the Fourier
Transform to basls functions which are more con-
centrated in time {but less concentrated in frequency).

SCALE VERSUS FREQUENCY

The Short-Time Fourier Transform:
Analysis with Fixed Resolution.

The “instantaneous frequency” [FLABY| has often
been considered as a way lo Introduce frequency de-
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Fig. 1. Time-frequency plane comresponding to the Short-Time
Fourler Transform. It can be seen either as a succession of -
Fourter Transforms of a windowed segment of the signal (ver
tical stripes) or as a modulated analysts filler bank (horizontal
stripes).

pendence on time, If the signal is not narrow-band,
however, the instantaneous frequency averages dif-
ferent spectral components in time. To become accurate
In time, we therefore need a two-dimensional time-fre-
quency representation S{tfj of the signal t) composed
of spectral characteristics depending on time, the local
frequency f being defined through an appropriate
definition of S{t, . Such a representation is similar to
the notation used in a musical score, which also shows
“frequencies” played In time.

The Fourier Transform (1) was first adapted by Gabor
IGAB46] to define S{t,/) as follows. Consider a signal x{f).

and assume it is statlonary when seen through a win-
dow glf) of limited extent, centered at time location T,
The Fourier Transform (1) of the windowed signals
xt)g'(t=1) ylelds the Short-Time Fourier Transform
(STFT)

STFIG, f) = [ x(t) g'(e - 1) ¥/ it @)

which maps the signal into a two-dimensional function
in a time-frequency plane (1). Gabor originally only
defined a synthesis formula, but the analysis given in
(2) follows easily. v

The parameter [ in (2) is similar to the Fourler
frequency and many properties of the Fourier transform
carry over to the STFT. However, the analysis here
depends critically on the cholice of the window gft).

Figure 1 shows vertical stripes in the time-frequency
plane, illustrating this “windowing of the signal” view of
the STFT. Given a version of the signal windowed
around time t one computes all “frequencies” of the
STFT.

An alternative view is based on a fllter bank inter-
pretation of the same process. At a given frequency f]
(2) amounts to filtering the signal “at all times” with a
bandpass filter having as impulse response the window
function modulated to that frequency. This is shown as
the horizontal stripes in Fig. 1. Thus, the STFT may be
seen as a modulated filter bank [ALL77], [POR80].

From this dual interpretation, a possible drawback
related to the time and frequency resolution can be
shown. Consider the ability of the STFT to discriminate
between two pure sinusoids, Given a window function
gl and its Fourler transform G{ff, define the
“bandwidth” Af of the filter as

a)

timg

4

o

Irequency

b)

Fig. 2. Basis functions and time-frequency resolution of the Short-Time Fourier Transform [STFT) and the Wavelet Transform
WT).- The tiles represent the essential concentration n the time-frequency plane of a given basis function. (a) Coverage of the
ltme-frequency plane for the STFT. (b) for the WT. (c) Corresponding basis functions for the STFT, (d) for the WT (“wavelets").
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where the denominator Is the enérgy of g(). Two
sinusolds will be discriminated only If they are more
than Af apart [This ls an rms measure, and others are
possible). Thus, the resolution in frequency of the STFT
analysis is given by Af. Similarly, the spread in time is
given by At as

aft=

Mthzlg(t)l“dt

gty dt

where the denominator is again the energy of g{t). Two
pulses in time can be discriminated only if they are mare
than At apart.

Now, resolution in time and frequency cannol be
arbitrarily small, because their product ls lower
bounded.

(4)-

Time - Bandwidth product = At Af2 4—13 (5)

This Is referred to as the uncertainty principle, or
Helsenberg inequality. It means that one can only trade
time resolution for frequency resolution, or vice versa
Gaussian windows are therefore often used since they
meet the bound with equality [GAB46].

More important is that once a window has been
chosen for the STFT, then the time-frequency resolution
given by (3), (4) is fixed over the entire time-frequency
plane (since the same window is used at all frequencies).
This {8 shown in Fig. 2a, while Fig. 2¢c shows the
associated basis functions of the STFT. For example, If
the signal is composed of small bursts associated with
long quasi-stationary components, then each type of

. where ¢ Is a constant, The analysis filter bank (s then

component can be analyzed with good time resolution
or {requency resolution, but not both,

The Continuous Wavelet Transform:
A Multiresolution Analysis.

To overcome the resolution limitation of the STFT,
one can Imagine letting the resolution Atand Afvary In
the time-frequency plane in order to obtain a multi-
resolution analysis. Intuitively, when the analysis is
viewed as a fllter bank, the time resolution must in-
crease with the central frequency of the analysis filters.
We therefore impose that Afls proportional to f, or

af_
f_c 6.

composed of band-pass filters with constant relative
bandwidth (so-called “constant-Q analysis). Another
way to say this is that instead of the frequency respon-
seg of the analysis filter being regularly spaced over the
frequency axis (as for the STFT case), they are regularly
spread in a logarithmic scale (see Fig. 3). This kind of
filter bank is used, for example, for modeling the fre-
quency response of the cochlea situated in the inner ear
and Is therefore adapted to auditory perception, e.g. of
muste: filters satisfying (6) are naturally distributed into
octaves.

When [6) Is satisfled, we see that Afand therefore also
At changes with the center frequency of the analysis
filter. Of course, they still satisfy the Helsenberg ine-
quality (5), but now, the time resolution becomes ar-
bitrarily good at high frequencies, while the frequency
resolutlon becomes arbitrarily good at low frequencies.
For example, two very close short bursts can always be
eventually separated in the analysis by going up to

.

a) Constant Bandwidth (STFT Case) i
i
; ( |
T L] T T T T T T d
L2 3 4 5k 6 7 B Ok
|
|
i
! '
’ Conslant Relative Bandwidth (WT Cass) :
i
Jl
L} L T L} F ! :
o 2 a, 8o \ i

Fig. 3. Division of the frequency domain (a) for the STFT {uniform coverage) and (b) for the WT (logarithmic coverage). -

0CT08ER 1991

1EEE SP MAGAINE i

Page 149 of 437



Box 1:

The Notion cf Scale and Resolution
First, recall that when a function fi§ Is scaled:
Ao = flat, wherea >0,

" then It fs contracted ifa> 1 and expanded ifa< 1
- Now, the CWT can be written either as

CWTx{z,a) = _—f; | xp h'('f)dx (B1.1)
j or, by a change of variable, as
CWTx(r,a) =@ | xgat) (- Hyae (B1.2)

The interpretation of (B1.1) is that as the scale
increases, the filter impulse response '%" be-

comes spread out in time, and takes only long-time
! behavior into account. Equivalently, (B1.2) indi-
i cates that as the scale grows, an increasingly con-
. tracted version of the signal s seen through a
. constant length filter, That is, the scale factor a has
! the interpretation of the scale in maps, Very large
. scales mean global views, while very small scales
: mean detailed views,
* A related but different notion is that of resolu-

tion, The resolution of a signal is linked to its
. frequency content. For example, lowpass flltering a
: signal keeps its scale, but reduces its resclution.
i Scale change of continuous time signals does not
© alter their resolution, since the scale change can be
! reversed, However, In discrete-time signals, in-
i creasing the scale in the analysis involves subsam-
j pling, which automatically reduces the resolution.
. Decreasing the scale (which involves upsampling)
! canbe undone, and does not change the resolution,
: The interplay of scale and resolution changes In
i discrete-time signals is illustrated in Fig. 9 and fully

explained in [RIOS0b], [VET90b),

higher analysis frequencies in order to increase time
resolution (see Fig. 2b). This kind of analysis of course
works best if the signal Is composed of high frequency
components of short duration plus low frequency com-
ponents of long duration, which is often the case with
signals encountered In practice,

A generalization of the concept of changing resolu-
tion at different frequencies is obtained with so-called
“wavelet packets” [WICB9|, where arbitrary time-(re-
quency resolutioris (within the uncertainty bound (5))
are chosen depending on the signal.

The Continuous Wavelet Transform (CWT) exactly
follows the above ideas while adding a simplification: all
Impulse responses of the filter bank are defined as
scaled (l.e. stretched or compressed) versions of the
-same prototype h(f), L.e.,

1 t
Mll=m-’l{a)

where a is a scale factor (the constant 1 ;-JEW I3 used for
energy normalization). This results in the definition of
the CWT:

CWTMz. @) = = | 200 h[-';—‘}n "

Since the same prototype h(f), called the basic
wavelet, is used for all of the filter Impulse responses,
no specific scale is privileged, i.e. the wavelet analysis
is self-similar at all scales. Moreover, this simplification
Is useful when deriving mathematical properties of the
CWT.

To make the connection with the modulated window
used in the STFT clearer, the basic wavelet h{f) in (7)
could be chosen as a modulated window |GOUS4,
GRO84, GROS89] , .

hif) = () & It

Then the frequency responses of the analysis 8lters
indeed satisfy (6) with the identification

b

S

But more generally, h({) can be any band-pass fune-
tion and the scheme still works. In particular one can
dispense with complex-valued transforms and deal only
with real-valued ones.

It s important to note that here, the local frequency
J=a o has little to do with that described for the STFT:
indeed, it is associated with the scaling scheme (see Box
1). As a result, this local frequency, whose definition
depends on the basic wavelet, s no longer linked to
frequency modulation (as was the case for the STFT) but
is now related to time-scalings. This is the reason why
the terminology “scale” is often preferred to “frequency”
for the CWT, the word "frequency” being reserved for the
STFT. Note that we define scale in wavelet analysis like
the scale in geographical maps: since the filter bank
impulse responses in (7) are dilated as scale increases,
large scale corresponds to contracted signals, while
small scale corresponds to dilated signals,

WAVELET ANALYSIS AND SYNTHESIS

Another way to Introduce the CWT Is to define
wavelets as basis functions, In fact, basls functions
already appear in the preceding definition (7) when one
sees |t as an inner product of the form

CWTi(. @) = | x(t) hiaux(® dt

which measures the “similarity” between the signal and
the basis functions
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Box 2:
STFTs and CWTs as
Cross-Ambiguity Functions

The inner product is often used as a similarity
measurement, and because both STFT's and CWT's
are inner products, they appear in several detec-
tion/estimation problems. Consider, for example,
the problem of estimating the location and velocity
of some target in radar or sonar applications, The
estimation procedure consists in first emitting a
known signal h{d, In the presence of a target, this
signal will return to the source (recelved signal xt))
with a certain delay 1. due to the target's location,
and a certain distortion (Doppler effect), due to the
target's velocity.

For narrow-band signals, the Doppler effect
amounts to a single frequency shift o and the
characteristics of the target will be determined by
maximizing the cross-correlation function (called
“narrow-band cross-ambiguity function”) [WOO53]

[ 0 nt ~v) ¥ gt = STFT

particular basis function. Thus. we expect that any
general signal can be represented as a -decomposition
Into wavelets, L.e. that the original waveform is syn-
thesized by adding el itary building blocks, of con-
stant shape but different size and amplitude. Another
way to say this is that we want the continuously labelled
wavelets ha,1(f) to behave just llke an orthogonal basis
[MEY90). The analysis is done by computing inner
products, and the synthesis consists of summing up all
the orthogonal projections of the signal onto the
wavelets,

x0= ¢ [ | WTtr.c) hasty “45°

ax>0

(8)

where ¢ is a constant that depends only on h{t). The

measure in this Integration is formally equivalent to dt,

df(GOUB4|. We have assumed here that both signal and
wavelets arc either real-valued or complex analytic so
that only positive dilations a > 0 have to be taken Into
account. Otherwise (8] is more complicated [GROB4].
Of course. the ha,x(f) are certainly not orthogonal
since they are very redundant (they are defined for
continuously varying a and 1). But surprisingly, the
reconstruction formula (8) is indeed satisfled whenever
h{d) 1s of finite energy and band pass (which implies that
it oscillates in time like a short wave, hence the name

For wide-band signals, however, the Doppl
frequency shift varies in the signal's spectrum,
causing a stretching or a compression in the signal.
The estimator thus becomes the “wide-band cross-
ambiguity function” [SPE67], [AUSS0]

'\'Tia'l‘ |« r{‘f) dt = CWTx(r.a)

As a result, in both cases, the “maximum
likelihiood™ estimator takes the form of a STFT or a
CWT, Le. of an inner product between the received
signal and either STFT or wavelet basis functions.
The basis function which best fits the signal is used
to estimate the parameters,

Note that, although the wide-band cross-am-
biguity function is a CWT, for physical reasons, the
dilation parameter a stays on the order of mag-
nitude of 1, whereas it may cover several octaves
when used in signal analysis [FLASS).

1 .[t-%
rku - va' ’{ a ]
called wavelets, The wavelets are scaled and translated
versions of the basic wavelet prototype hif) (see Fig. 2d).

Of course, basis functions can be considered for the
STFT as well. For both the STFT and the CWT, the
sinewaves basis functions of the Fourier Transform are
replaced by more localized reference signals labelled by
time and frequency (or scale) parameters. In fact both
transforms may be interpreted as speclal cases of the
cross-ambiguity function used In radar or sonar
processing (see Box 2),

The wavelet analysis results In a set of wavelet
coefliclents which indicate how close the signal is to a

OCTOBER 1991

let”). More pr ly, if h{t) is assumed sufficlently
regular, then the reconstruction condition (s
[ dt=o.

Note that the reconstruction takes place only in the
sense of the signal's energy. For example, a signal may
be reconstructed only with zero mean since
J-hm dt=0. In fact the type of convergence of (8) may
be strengthened and is related to the numerical robust-
ness of the reconstruction [DAUS0a|.

Similar reconstruction can be considered for the
STFT, and the similarity is remarkable [DAU9S0a]. How-

ever, In the STFT case, the reconstruction condition {s_

less restrictive: only finite energy of the window is
required.

SCALOGRAMS

The spectrogram, defined as the square modulus of
the STFT, is a very common tool in signal analysis
because it provides a distribution of the energy of the
signal In the time-frequency plane. A similar distribu-
tion can be defined in the wavelet case. Since the CWT
behaves like an orthonormal basls decomposition, it
can be shown that it Is isametric |[GROB84|, i.e., it
preserves energy. We have

dt, da
o

where E, -J- lxdb 12 dt 1s the energy of the signal xf).

This leads us to define the wavelet spectrogram, or

[[1ewne. @) P22 - g,

_scalogram, as the squared modulus of the CWT. It Is a

distribution of the energy of the signal in the time-scale
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Fig. 4. Regions of injluence of a Dirac pulse at t=ip (a) for the CWT and (b] for the STFT: as well as of three sinusoids (of frequen-

ctes fo. 2fo. 4fal for (c) the CWT and (¢l the STFT.

d"da. and thus ex-

plane, assoclated with measure

pressed in power per frequency unit, like the
spectrogram. However, In contrast to the spectrogram,
the energy of the signal is here distributed with different
resolutions according to Fig. 2b.

Figure 4 [llustrates differences between a scalogram
and a spectrogram. Figure 4a shows that the Influence
of the signal's behavior around t = o in the analysis is
limited to a cone in the time-scale plane; it Is therefore
very “localized” around to for small scales. In the STFT
case, the corresponding region of influence is as large
as the extent of the analysis window over all frequen-
cies, as shown in Fig, 4b. Moreover, since the time-scale
analysis is logarithmic in frequency, the area of in-
fluence of some pure frequency /b in the signal increases
with Jo in a scalogram (Fig. 4¢), whereas it remains
constant in a spectrogram (Fig. 4d).

Both the spectrogram and the scalogram produce a
more or less easily interpretable visual two-dimensional
representation of signals |GRO89), where each pattern
In the time-frequency or time-scale plane contributes to
the global energy of the signal. However, such an energy
representation has some disadvantages, too. For ex-
ample, the spectrogram, as well as the scalogram,
cannot be inverted in general. Phase information is
necessary to reconstruct the signal. Also, since both the
spectrogram and the scalogram are bilinear functions
of the analyzed signal, cross-terms appear as inter-
ferences between patterns in the time-frequency or
time-scale plane [KADS1] and this may be undesirable.

In the wavelet case, it has been also shown [GRO89|

that the phase representation more accurately reveals
isolated, local bursts in a signal than the scalogram
does (see Box 3).

To illustrate the above points, Fig. 5 shows some
examples of spectrograms and scaiogram's for synthetic
signals and a speech signal (see Box 3).

More involved energy representations can be
developed for both time-frequency and time-scale
[BERSS, FLA90, RIO90a), and a link between the
spectrogram, the scalogram and the Wigner-Ville dis-
tribution can be established (see Box 4).

WAVELET FRAMES AND - &
ORTHONORMAL BASES

Discretization of Time-Scale Parameters

We have seen that the continuously labelled basis
functions [wavelets) ha.t(f) behave in the wavelet
analysis and synthesis just like an orthonormal basis.
The following natural question arises: if we appropriate-
ly discretize the time-scale parameters a. 1. can we
obtain a true orthonormal basis? The answer, as we
shall see, is that it depends on the choice of the basic
wavelet h(t),
~ There Is a natural way to discretize the time-scale
parameters a, t [DAU90al: since” two scales’ ap < ay
roughly correspond lo two [requencies fo > Ji. the
wavelet eoeflicients at scale a) can be subsampled at
(o/fi"™ the rate of the coefficients at scale ao. according
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BOX 3:
Spectrograms and Scalograms

We present in Fig. 5 spectrograms and scalograms
for some synthetic signals and a real signal. The
signals are of length 384 samples, and the STFT uses
a Gaussian-like window of length L = 128 samples.
The scalogram Is obtained with a Marlet wavelet (a
complex sinusoid windowed with a Gaussian en-
velope) of length from 23 to 363 samples,

The horizontal axis is time In both spectrograms
and scalograms. The signal is shown on the top. The
vertical axis is frequency in the spectrogram (high
frequencles on top) and scale in the scalogram (small
scale at the top). Compare these figures with Fig, 4,
which Indicates the axis system used, and gives the
rough behavior for Diracs and sinewaves.

First, Fig. 5.1 shows the analysis of two Diracs a.nd
two sinusoids with the STFT and the CWT. Note how
the Diracs are well time-localized at high frequencies

In the scalogram. Figure 5.2 shows the analysis of
three starting sinusoids with different starting times
(a low frequency starts first, followed by a medium
and a high frequency sinewave), Figure 5,3 shows the
transforms of a chirp signal. Again, the transitions
are well resolved at high frequencies in the scalogram.
Finally, Fig, 5.4 shows the analysis of a segment of
speech signal, where the onset of voicing is seen in
both representations.

Note that displaying scalograms is sometimes
tricky. because parameters like display look-up tables
(which map the scalogram value to a grey scale value.
on the screen) play an important but not always well
understood role in the visual impression. Such
problems are common In spectrogram displays as
well,

AR WAALS

\Illﬁb

e
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Fig. 5.1

i

and scalogram for the STFT and CWT analysis of tux Dirac pulses

and two sinusolds. (o) Magnitude of the STFT. (b) Phase of the STFT, (c] Amplitude of the

WT. (d) Phase of the WT.
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Flg. 5.2. Spectrogram and secalogram for the STFT and CWT analysis of three sinuscids
with staggered starting times. The low frequency one comes first, followed by the medium
and high frequency ones. (a) Magnitude of the STFT. (b} Phase of the STFT. (c) Amplitude of
the WT. (d) Phase of the WT.

TR

Mt

-@
Fig. 5.8. Spectrogram and scalogram for the STFT and CWT analysis of a chirp signal. (a)
Magnitude of the STFT. (b) Phase of he STFT. {c) Amplitude of the WT. (d) Phase of the WT.
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Fig. 5.4 Spmwmscdngmfwmﬂﬂandcu’?m@scsqfasegmmqf
speech. including onset of voicing. (a) Magnitude of the STFT. (b} Phase of the STFT. (¢]
Amplitude of the WT. {d) Phase of the WT.

to Nyquist's rule. We therefore choose to discretize the
time-scale parameters on the sampling grid drawn in
Fig. 7. That Is, we have a=ag' and b=k ad T, where
and k are Integers. The corresponding wavelets are

hyk () = @’ hiadl t - kT) @
resulting in wavelet coefficients
o= [ b Ko dt (10)

_An analogy is the following: assume that the wavelet
analysls is like a microscope. First one chooses the
magnification, that is, ap”. Then one moves to the
chosen location, Now, if one looks at very small details,
then the chosen magniflcation is large and corresponds
to j negative and large. Then, a T corresponds to small
steps, which are used to catch small details, This
justifies the choice b= k ag/ Tin (9).

The reconstruction problem is to find ao, T. and h(t)
such that

Aqn=cy Yok k() {
ik

where ¢ Is a constant Lthat does not depend on the signal
[compare with [B)). Evidently, if a0 is close enough Lo 1
(and if T is small enough). then the wavelel [unctions

0CT08ER 1991
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are overcomplete. Equation (11) ts then still very close
to (8) and signal reconstruction takes place within
non-restrictive conditions on h(t). On the other hand, if
the sampling i8 sparse, e.g. the computation is done
octave by octave (ag = 2), a true orthonormal basis will
be obtained only for very spectal choices of hit)
[DAUS0a, MEYS0].

Wavelet Frames

The theory of wavelet frames [DUFS52, DAU90a]
provides a general framework which covers the two
extreme situations just mentioned. [t therefore permits
one to balance (i) redundancy. 1.e. sampling density in
Fig. 7. and (il) restrictions on hit) for the reconstruction
scheme (11) lo work. The trade-off is the following;: if the
redundancy is large (high “oversampling’). then only
mild restrictions are put on the basis functions (9). But
If the redundancy Is small (i.e.. close Lo “critical” sam-
pling). then the basis functions are very constralned

The itea behind (rames (DUF52] Is based on the as-
sumption thal the linear operator x{t) A ¢).k, where ¢/ .k Is
defined by (10), Is bounded, with bounded Inverse. The
family of wavelet funclions is Lhen called a frame and Is
such thal the energy of the wavelel coefliclents cj.k (sum
of their square modull) relative Lo thatl of the signal lles
belween Lwa positive "frames bounds™ A and B,

AESY | ox 1S BEy r
Ik
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Box 4:

Merging Spectrogram; Scalogram, and Wigner Distnbutlon info
a Common Class of Energy Representations

There has been considerable work in extending the
spectrogram Into more general time-frequency energy
distributions TF(1, /1. Theseall have the basic property
of distributing the energy of the signal all over the
time-frequency plane, l.e.,

[ [TF{ws) dedf=[ 1x01%at

Among them, an alternative to the spectrogram for
nonstationary signal analysis {s the Wigher-Ville dis-
tribution [CLABO, BOUSS, FLASS]

Wt = I X+ E") xX(- Et) ey

More generally, the whole class of time-frequency
energy distributions has been fully described by
Cohen [COHE6], [COHB9]: they can all be seen as
smoothed (or, more precisely, correlated) versions of
the Wigner-Ville distribution. The spectrogram s ft-
self recovered when the "smoothing™ function is the
Wigner-Ville distribution of the analysis window!

A similar situation appears for time-scale energy
distributions, For example, the scalogram can be

written as [FLAS0], [RIO90a]
C1ewt(r. a)? = [ [ witwy W av at v

i.e.,as some 2D "affine” correlation between the signal
and the “basic” wavelet's Wigner-Ville distribution.

. This remarkable formula tells us that there exist

strong links between Wavelet Transforms and Wig-
ner-Ville distributions. And, as a matter of fact, it can
be generalized to define the most general class of
time-scale energy distributions [BER8S, FLASO,
RIO90a], just as in the time-frequency case.

Figure 6 shows that it is even possible to go-con-
tinuously from the spectrogram of a given signal to its
scalogram [FLA9S0, RIO90a]. More precisely, starting
from the Wigner-Ville distribution, by progressively
controlling Gaussian smoothing functions, one goes
through a set of energy representations which either
tends to the spectrogram if regular two-dimensional
smoothing is used, or to the scalogram if “affine”
smoothing is used, This property may allow us to
decide whether or not we should choose time-scale
analysis tools, rather than ﬂme-freque.ncy ones fora
given problem.

PRt

Fig. 6, From spectrograms (o aca.logm.ms via Wigner-Ville. By controlling the parameter u (which s a measure of the lime:fre-

quency extent of the hing )it s p
analyses. Here seven analyses of the same sl'gnul 1P

(ble to make a full transition between time-scale and time-frequency
d of three Gi

packets) are sHown, Note that the best

eint time-frequency resolutlon is attained for the Wigner-Ville distribution, while both spectrogram and scalogram {which
can be thought of as smoothed versions of Wigner-Ville) provide redyced cross-term effects compared to Wigner-Ville (after
[FLAS0, RIOS0a)).
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whiere Ey is-the energy of the signal x{(f).
These [rame bounds can be computed from ag, Tand
h(t) using Daubechles’ formulae [DAU90a). Interestingly
- enough, they govern the accuracy.of signal reconstrue-
tion by (11). More precisely, we have

X0 = T oo

with relative SNR greater than (B/A+1)/(B/A-1) (see Fig.
8). The closer A and B, the more accurate the
reconstruction. It may even happen that A=B (“tight
frame™), in which case the wavelets behave exactly like
an orthonormal basls, although they may not even be
linearly independent [DAUS0a]! The reconstruction for-
mula can also be made exact In the general case {f one
uses different synthesis functions Hpu(f) (which con-
stitute the dual frame of the hudts [DAU90a)).

Introduction to orthogonal wavelet bases

If a-tight frame Is such that all wavelets by k(t) (9) are
necessary to reconstruct a general signal, then the
wavelets form an orthonormal basis of the space of
signals with finite energy (HEI90]. Recall that orthonor-
mality means

[ s e 0 dt={é i em

An arbitrary signal can then be represented exactly
as a welghted sum of basis functions,

0= ok by ()

L1k

That is, not only the basis functions hyf) are ob-
tained from a single pratotype function h(f) by means of

CRCRC B O B R ]

T S S Y R T TS

. . " . . .
L] . .
. .

loga

Fig. 7. Dyadic sampling grid in the time-scale plane. Each
node corresponds to a wavelet basts function hy 8 with scale
24 and shift 2%k s

scalings and shifts, but also they form an orthonormal
basis. What Is most Interesting is that there do exist
well-behaved functions hi{fj that can be used as
prototype wavelets, as we shall see below. This s in
sharp contrast with the STFT, where, according to the
Ballan-Low theorem [DAUS0a], it is impossible to have
orthonormal bases with functions well localized in time
and frequency (that Is, for which the time-bandwidth
product At Af is a finite number).

Recently, the wavelet orthonormal scheme has been
extended to synthesis functions hji(t) # hudf), leading to
so-called blorthogonal wavelet bases [COH90a],
[VET90a|, [VETS0b].

THE DISCRETE TIME CASE

In this section, we first take a purely discrete-time
point of view. Then, through the construction of iterated
filter banks, we shall come back to the continuous-time

SNR (ab)

05

1.0 1.5

bo

20 25 30

Fig. 8. Reconstruction Signal/Notse Ratio (SNR) error after frame d

ag = 2I;‘N fN-

1P Jor different sampling d

number of volces per octavel, b = ad k bo (after [DAU90a). The basic wavelet is the Morlet wavelet [modulated Gaussian) used
in [GRO83. The reconstruction Is done “as {f” wavelets were orthogonal (see text), and its accuracy grows as N increases and
bo decreases, Le. as the denslty of the sampling grid of Fig. 7 increases. Therefore, redundancy refines the “orthogonal-like”

reconstruction.
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Three Dimensional Di%pluys
of Complex Wavelet Transforms

As seen in Box 3, the wavelet transform using a
complex wavelet like the Morlet wavelet (a complex
sinusold windowed by a Gaussian) leads to a com-
plex valued function on the plane.

Phase information is also useful and thus, there
is interest in a common display of magnitude and
phase, This is possible by using height as mag-
nitude and color as phase, leading to so-called
“phasemagrams”.

Two examples are shown here: a synthetic chirp
in the upper figure (similar to the one In Fig. 5.3);
and a trlangle function below. In both cases, the
discontinuous points are clearly identified at small
scales (top of the figure). The chirp has two such
points (beginning and end), while the triangle has
three. At large scales, these signals look just like a
single discontinuity, which is what an observer
would indeed see from very far away. For the chirp,
the phase cycles with increasing speed, as ex-

- pected. '

Signal analyses with a Morlet wavelet, The display
shows magnitude as height and phase as color
(phasemagraml. The horizontal axis is time. Above) a
synthetic chirp slgnal, with frequency Increasing with
time. Below) a triangle function,

case and show how to construct erthonermal bases of
wavelets for continuous-time signals |[DAUBS].

In the discrete time case, two methods were
developed independently in the late seventlies and early
eighties which lead naturally to discrete wavelet trans-
forms, namely subband coding [CRI76], |CROT6I.
|EST77] and pyramidal coding or multiresolution signal
analysis [BUR83]. The methods were proposed for
coding, and thus, the notion of critical sampling (of
requiring a minimum number of samples) was of impor-
tance. Pyramid coding actually uses some oversam-
pling, but because it has an easier intultive explanation,
we describe it first, . L

While the discrete-time case has been thoroughly
studied in the filter bank literature In terms of frequency
bands (see e.g. [VAIB7]), we insist here on notions which
are closer to the wavelet point of view, namely those of
scale and resolution. Scale is related to the size of the
signal, while resolution is linked to the amount of detail
present in the signal (see Box 1 and Fig. 9. 4

Note that the scale parameter in discrete wavelet
analysis is to be understood as follows: For large scales,
dilated wavelets take “global views™ of a subsampled
signal, while for small scales, contracted wavelets
analyze small “detalls” in the signal.

The Multiresolution Pyramid

Given an original sequence x(m), ne Z , we derive a
lower resolution signal by lowpass filtering with a half-
band low-pass fliter having impulse response g(n). Fol-
lowing Nyquist's rule, we can subsample by two (drop
every other sample), thus doubling the scale in the
analysis. This results in a signal y(n) given by

wn) =Y, gk M2n - ko
e

The resolution change is obtained by the lowpass
filter (loss of high frequency detail). The scale change is
due to the subsampling by twe, since a shift by two in
the original signal x{n) results in a shift by one in y(n),

Now, based on this lowpass and subsampled version
of x{n), we try to find an approximation, a(n), to the
original, This is done by first upsampling y(n) by two
[that {s, inserting a zero between every sample) since we
need a signal at the original scale for comparison,

y@2n=yn), y2n+l)=0

Then, y'(n) is interpolated with a filter with impulse
response g'(n) to obtain the approximation afn),

aln)= Y, gtk) y(n- k)
k=

Note that if g(n) and g'(n) were perfect halfband filters
[having a frequency passband equal to 1 over the nor-
malized frequency range -x/2, ©/2 and equal to 0
elsewhere). then the Fourier transform of a(n] would be
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@ xin) vy
-Haliband |-
] b:wpass
resolution: halved
scale: doubled
(b)  x(n) AT yin)
P
resolution; halved
scale: doubled
(e) xin) y(n)
halfoand
— (2D Youpass
resolution: unchanged
scale: hatved

Fig. 9. Resolution and scale changes in discrete time (by fac-
tors of 2). Note that the scale of signals is deflned as in
geographical maps. (a) Halfband lowpass filtering reduces the
resolution by 2 (scale is unchanged). (b) Halfband lowpass fil-
tering followed by subsampling by 2 doubles the scale fand
halves the resolution as in (a)). (c) Upsampling by 2 followed
by halfband towpa.ssﬂcer{nghnluesmmfmotmonts
unchanged).

equal ta the Fourler transform of x{n) over the frequency
range (-n/2, n/2) while being equal to zero elsewhere.
That is: aln) would be a perfect halfband lowpass ap-
proximation to x{n).

Of course, in general, a{n) 18 not going to be equal to
x{n) (in the previous example, x(n) would have to be a
halfband signal). Therefore, we compute the difference
between afn) {our approximation based on y(n)) and xn),

d(n) = x(n) - a(n)

It is obvious that x{n) can be reconstructed by adding
din) and a(n), and the whole process is shown in Fig.
10. However, there has to be some redundancy, since a
signal with sampling rate f; is mapped into two signals
din) and y(n) with sampling rates fs and f5/2. respec-
tively.

In the case of a perfect halfband lowpass fllter. It is

e e : ¥
clear that d(n) conlains exactly the frequencies above
R/2 of xn), and thus, d(n) can be subsampled by two as
well without loss of Information, This hints at the fact
that eritically sampled schemes must exist.

The separation of the original signal n) into a coarse
approximation aln) plus some additional detail con-
tained in d{n) is conceplually important, Because of the
resolulion change involved (lowpass filtering followed by
subsampling by two produces a signal with half the
resolutlon and al lwice the scale of the original), the
above method and related ones are part of what is called
Multiresolution Signal Analysis [ROS84] in computer
vision.

The scheme can be iterated on y(n), creating a hierar-
chy of lower resolution signals at lower scales. Because
of that hierarchy and the fact that signals become
shorter and shorter (or images become smaller and
smaller). such schemes are called sig'nal or Image
pyramids [BURS3].

Subband Coding Schemes

We have seen that the above system creates a redun-
dant set of samples. More precisely, one stiage of a
pyramid decomposition leads to both a half rate low
resolution signal and a full rate difference signal, result-
ing in an increase In the number of samples by 50%.
This oversampling can be avoided If the filters g(n) and
¢/(n) meet certain conditions [VET90b].

We now look at a different scheme instead, where no
such redundancy appears. It is the so-called subband
coding scheme first popularized in speech compression
[CRI78, CRO76, EST77]. The lowpass, subsampled ap-
proximation is obtained exactly as explained above, but,
instead of a difference signal, we compute the “added
detall” as a highpass filtered version of x{n) (using a filter
with impulse response h{n), followed by subsampling
by two. Intuitively, it is clear that the "added detall® to
the lowpass approximation has to be a highpass signal,
and it is obvious that If g{n) 1s an ideal halfband lowpass
fllter, then an ideal halfband highpass filter h{n) will lead
to a perfect representation of the original signal into two
subsampled versions:

This s exactly one step of a wavelet dewmpaaltion
using sin(xj/x filters, since the original signal is mapped
into a lowpass approximation (at twice the s+ ") and

@
[

() —

- 4
b

¥(n)
@ e

a(n)

y'(n)

a(n)

(H—=x(n}

din)

Fig. 10. Pyramid scheme. Derivation of a lowpass, subsampled approximation y(n). from which an approxtmation afn} to x(n) Is

dertved by up

pling and tnterp

Then, the difference belwween the approxmation afn) and the original xin) is compuled

" asdn). Perfect reconstruction is simply oblained by adeding afn) beck. -
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Fig. 11. Subband Coding {a) Two p

cles, are computed. The reconstructed signal is obtnlmd by rz—hterpo!attng the ap

, one corresponding to low and the other to high frequen-

1s and

them. The filters

on the left form an analysis filter bank, whﬂemuwﬁghtlsasynﬂmslsﬁlterbank (b} Block diagram (Filter Bank tree) of the

Discrete Transform imp
Fig. 3b.

an added detail signal (also at twice the scale). In
particular, using these ideal filters, the discrete version
is identical to the continuous wavelet transform.

What is more interesting is that it {s not necessary
to use ideal (that s, impractical) filters, and yet x{n) can

be recovered from its two filtered and subsampled

versions which we now call yo(n) and yi(n). To do so,
both are upsampled and filtered by g'(n) and h'(n)
respectively, and finally added together, as shown in
Fig. 1la. Now, unlike the pyramid Jcase. the
reconstructed signal (which we now call &) ts not
identical to x{n), unless the filters meet some specific
constraints. Filters that meet these constraints are satd
to have perfect reconstruction property, and there are a
number of papers investigating the design of perfect
reconstruction filter banks [MIN85, SMIS6, VAIBS,
VETE6].

The easicst case to analyze appears when the
analysie and synthesis filters in Fig. 11a are identical
(within time-reversal) and when perfect reconstruction
is achieved [that 1s, X{n) = x{n), within a possible shift).

- Then It can be shown that the subband analysis/syn-
thesis corresponds to a decomposition onto an or-
thonormal basis, followed by a reconstruction which
amounts to summing up the orthogonal projections. We
will assume FIR filters in the following. Then, it turns

out that the highpass and lowpass filters are related by

h(L=1~n)=(-1)"g(n) (12
where L is the filter length (which has to be even), Note
that the modulation by (-1)" transforms indeed the

lowpass filter Into a highpass one,
Now. the filter bank in Fig. 1la, which computes

with discrete-time filters and subsampling by two. The frequency resolution is given in

convolutions followed by subsampling by two, evaluates
inner products of the sequence x{n) and the sequences
lg{-n+2K), h(-n+2]) (the time reversal comes from the
convolution, which reverses one of the sequences). Thus

yo(k) = ¥, xn) g{-n + 2k)
n
yi(k) = 3, x{(r) h(-n + 2k)

Because the filter impulse responses form an or-
thonormal set, it Is very simple to reconstruct x{n) as

xn) = Z[ yolk) gi-n + 2k) + yy(k) h(-n + 2;:)1
Jowia

(13)

that is, as a weighted sum of the orthogonal impulse
responses, where the weights are the inner products of
the signal with the impulse responses. This is of course
the standard expansion of a signal into an orthonormal
basis, where the resynthesis is the sum of the or-
thogonal projections (see Introduction to orthogonal
wavelet bases above),

From (12). (13) it Is also clear that the synthesis filters
are identical to the analysis filters within time reversal.

Such orthogonal perfect reconstruction filter banks
have been studied in the digital signal processing litera-
ture, and the orthonormal decomposition we just indi-
cated is usually referred to as a “paraunitary” or
“lossless” fllter bank [VAI89]. An intereSting property of
such fliter banks s that they can be written in laltice
form [VAI88), and that the structure and properties can
be extended to more than two channels [VAIB7, VAIBO,
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" VET89]. More general perfect reconstruction (bior-
thogonal) filter banks have also been studled (see e.g.
[VET86. VET90b, COH90al). It has been also notlced
(MALBSb, SHES0, RIO90b|. that fllter banks arise
naturally when implementing the CWT,

Note' that we have assumed linear processing
throughout. If non-linear processing Is Involved (like

quantization), the oversampled nature of the pyramid .

scheme described In the preceding section may actually
lead to greater robustness.

The Discrete Wavelet Transform

We have shown how to decompose a sequence x{n)
Into two subsequences at half rate, or half resolution,
and this by means of “orthogonal” filters (orthogonal
with respect to even shifts). Obviously, this process can
be iterated on either or both subsequences. In par-
ticular, to achieve finer frequency resolution at lower
frequencies (as obtained in the continuous wavelet
transform), we iterate the scheme on the lower band
only. If g(n) is a good halfband lowpass filter, h(n) is a
good halfband highpass filter by (12). Then, one itera-
tion of the scheme on the first lowband creates a new
lowband that corresponds to the lower quarter of the
frequency spectrum. Each further iteration halves the
width of the lowband (increases its frequency resolution
by two), but due to the subsampling by two, its time
resolutlon is halved as well. At each iteration, the
current high band portion corresponds to the difference
between the previous lowband portion and the current
one, that is, a passband. Schematically, this is
equivalent to Fig. 11b, and the frequency resolution is
as in Fig. 3b,

An important feature of this discrete algorithm is its
relatively low complexity. Actually, the following some-
what surprising result holds: independent of the depth
of the tree in Fig. 11b, the complexity Is linear in the
number of input samples, with a constant factor that

" depends on the length of the filter. The proof is
straightforward. Assume the computation of the first
filter bank requires'Co operations per input sample (Ca
is typically of the order of L). Then, the second stage
requires also Co operations per sample of its Input, but,
because of the subsampling by two, this amounts to
Co/2 operations per sample of the input signal. There-
fore, the total complexity s bounded by

_ G Co
Cm-co+T+T+...<2Q:}

which demonstrates the efficiency of the discrete
wavelet transform algorithm and shows that it is Inde-
pendent of the number of octaves that one computes,
This bounded complexity had been noticed In the mul-
tirate filtering context [RAM88|. Further devel its

wavelet transform. In the discrete time case, the role pf
the wavelet is played by the highpass flter h(n) and the
cascade of subsampled lowpass filters followed by a
highpass fllter (which amounts to a bandpass Rlter).
These filters, which correspond roughly to octave band
filters, unlike in the continuous wavelet transform, are
not exact scaled versions of each other. In particular,
since we are in discrete time, scaling s not as easily
defined, since it involves interpolation as well as time
expansion.

Nonetheless, under certain conditions, the discrete
system converges (after a certain number of iterations)
to a system where subsequent filters are scaled versions
of each other. Actually, this convergence is the basis for
the construction of continuous time compactly sup-
ported wavelet bases [DAUBS]. ;

Now, we would like to find the equivalent fliter that
corresponds to the lower branch in Fig. 11b, that is the
iterated lowpass filter, It will be convenlent to use

z-transforms of filters, e.g. G(z) = E g(n) 2™ in the fol-

n

lowing. It can be easily checked that subsampling by
twao followed by flltering with G{z) is equivalent to fllter-
ing with G{z%) followed by the subsampling (2 Inserts
2eros between samples of thie impulse response, which
are removed by the subsequent subsampling). That Is,
the first two steps of lowpass filtering can be replaced
by a filter with z-transform G(z).G(2?), followed by sub-
sampling by 4. More generally, calling G'2) the
equivalent filter to { stages of lowpass filtering and
subsampling by two (that 1s, a total subsampling by 2,
we obtain

kL
6@ =] &) (14)
=0

Call its Impulse response gi(n).

As 1 infinitely increases, this filter becomes infinitely
long, Instead, consider a function [ !(XJ which s
piecewise constant on intervals of length I/ 2' and has
value 22 g{n) in the Interval [n/2", (n+1)/2. That ts,
S 18 a statrcase function with the value given by the
samples of g{n) and Intervals which decrease as 27, It
can be verified that the function is supported on the
interval [0, L-1], where L is the length of the filter g{n).
Now, for i going to infinity, f{x) can converge to a
continuous function g4x). or a function with finitely
many discontinuities, even a fractal function, or not
converge at all (see Box 5).

A necessary condition for the iterated functions to
converge to a contlnuous limit Is that the filter G(2)
should have a sufficlent number of zeros at z = -1, or
halfl ling frequency. so as to attenuate repeat

can be found in [RIO9 la]. Note that a possible drawback
Is that the delay associated with such an iterated filter
-bank grows exponentially with the number of stages.
Iterated Filters and Regularity

There {s a major difference between the discrete
scheme we have Just seen and the continuous time

OCTOBER 1991

spectra [DAUBS, DAUSOb, RIO91b). Using this condi-
tlon, one can construct filters which are bolh orthogonal
and converge to continuous functions with compact
support. Such filters are called regular, and examples
can be found In [DAUSS, COH90a, DAUS0b, RIO90b,
VETS0b]. Note that the above condition can be inter-
preted as a flatness conditlon on the spectrum of G{z)
at hall sampling frequency. In fact, it can be shown
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‘Box 5:

Regular Scaling Filters

It 15 well known that the striicture ofcomputation.s
in a Discrete Wavelet Transform and in an octave-
band filter bank are identical. Therefore, besides the
different views and interpretations that have been
given to them, the main difference lies in the flter
design. Wavelet filters are chosen 80 as to be regular.
Recall that this means (with the same notation as
used in the main text sections on iterated filters), that
the p function associated with the
discrete wavelet sequence h{n) of z-transform
Gl2)HZY) converges (e.g. pointwise), as J indefinitely
increases, to a regular limit function he{x). Equivalent-
ly, the piecewlse constant function associated with

the discrete “scaling” sequence gdn) of z-transform-

Gllz) converges to a regular limit function’ ge). By
“regular” we mean that'the continuous-time wavelet
hdx (or the scaling function gd{d) is at least con-
tinuous, or better, once or twice continuously dif-
ferentiable. The regularity order i3 the number of
times he{x (or gc(.rl) s’ conl:lnuoualy differentiable:
Figures 12a mdnzb showtwo examples one where
'npnﬂnuoualy differentiable
(frvel_'gm\ﬂth fractal hcha.vlor
te he! ¥ number of classical filters,
designed for ter banks, which, unlike
wavelet filters, 'teguw Figures 12c throtgh
12f show two well-known' examples: a Johnston filter

[JOH80), and a Smith and Barnwell filter [SMI86). The.

latter allows perfect reconstruetion, while the former
does: not. Figure 12d shows that the Smith and
Barpwell discrete sequences hin) do not tend to

“regular lmit functions, but rather diverge. This is not

autpﬁlalng since: the necessary condition that the
low-pass flter has a zero at half the sampling frequen-

¢y 15-violated (although this filter has 40 dB attenua-
tion”In- the stop band [SMIBB]). This eventually

results, when Jjincreases, in amall, but rapid oscilla-

tlun.q in hfn). As for the Johnston filter;(Figs. 12e and
12f),'it can be ahown that&:e wavelet.limit function
is continuous but not diffcrentiable; . .

For wnvclet‘ﬂl_ﬁ'ers. the'more regular the limit func-
tion, the faster thie convergence to this limit [RIO91b]
— and in practice the con is very fast. This
justifies the study of the limit hdxj, which is almost
attained after a few octaves:of a logarithmic decom-
position, Since an error in a wavelet coefficient (due
e.g. to quantization) results; after reconstruction, in
an overall error proportional to a discrete wavelet
hyin), regularity seems a nice property, ¢.g., to avoid
visible distortion on a reconstructed image [ANIS0],

From equations (12), (16) and (16), the knowledge
of g(n) suffices to determine the limit hx. Several
methods have been developed to estimate the’
regularity order of he{x) from the coefficients g(n). Most
are based on Fourler transform techniques [DAUSS,
COH90b|. Recently, time-domain techniques have
been developed which provide optimal estimates
[DAUSO0c. RIO91b].

L

-

Fig. 12, (o} lterated lowpass filter gfin with gin} = {1.5.3,1). conver
ges to a regular, 5 Mmm!bjfmh.u-mﬁwulﬂlg’fﬂ
= (-1,3.3,-1) converges to a fractal flinction (see text), ()
Barrmel[&upbwpmaﬂmrﬁum medamnu Dtuurguruoe-
curs, due to rapid
responding continuous- mumh:{qku‘mn H.Jahnsmn
atapbupastﬂmxmmmm&dm mlhﬂﬁmlsm
different! fi L= wavelet.
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Fig, 13. Scaling functions samfgtng t
regular filter by Daubechies,

le difference equati

[AKA90], ([SHEQO0| that the well-known Daubechies or-
thonormal fllters ([DAUBS| are deduced from “maximally
Nat™ low-pass fllters [HER71]. Note that there are many
other cholces that behave very differently in terms of
phase, selectivity in frequency, and other criteria (see
e.g. [DAU90D]). An important issue related to regular
filter design is the derivation of simple estimates for the
regularity order (see Box 5).

It. Is still not clear whether regular filters are most
adapted to coding schemes [ANI90). The minimal
regularity order necessary for good coding performance
of digcrete wavelet transform schemes, If needed at all,
is also not known and remains a topic for future inves-

tigation,

Scaling Functions and Wavelets
Obtained from Iterated Filters

Recall that gdd 1s the final function to which fx)
converges. Because it Is the product of lowpass filters,
the final function is itself lowpass and is called a "scaling
Junction” because It Is used to go from a fine scale to a
coarser scale, Because of the product (14) from which
the scaling function is derived, g4« satisfles the follow-
ing two scale difference equation [DAUSOc]:

9dx = 3. a(n) ge2x-n)

]

(15)

Figure 13 shows two such examples. The second one
is based on the 4-tap Daubechies fliter which is regular
and orthogonal to Its even Lranslates [DAUBS|.

OCTOBER 1991

(a} the hat function. (b) the Dy wavelet obtained from a 4-tap

So far, we have only discussed the iterated lowpass
and its associated scaling function. However, from Fig,
11b, it is clear that a bandpass filter is obtained in the
same way, except for a final highpass filter. Therefore,
in a fashion similar to (15), the wavelet hd is obtained
as

helx) = 3, hir) gd2x-n) (18)
ad .
that is, It also satisfies a two scale equation.

Now, If the filters h{n) and g(n) form an orthonormal
set with respect to even shifts, then the functions gcx-1)
and hdx-k) form an orthonormal set (see Box 6}, Be-
cause they also satisfy two scale difference equations,
it can be shown [DAUS88| that the set h;(ﬂ"xhld. tke 2,
forms an orthonormal basis for the set of square In-
tegrable functions.

Figure 14 shows two scales and shifts of the 4-tap
Daubechiles wavelet [DAU8S|. While 1t might not be
obvious from the figure, these functions are orthogonal
to each other, and together with' all scaled and trans-
lated versions, they form an orthonormal basis.

Figure 15 shows an orthogonal wavelet based on a
length-18 regular filter, It is obviously a much smoother
function (actually, it possesses 3 continuous deriva-
tives).

Finally, Fig. 16 shows a blorthogonal set of linear
phase wavelets, where the analysis wavelets are or-
thogonal to the synthesis wavelets. These were obtained
from a blorthogonal linear phase fliter bank with length-
18 regular filters [VETS90a, VET90b].

We have shown how regular fliters can be used to
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