
The following paper was originally published in the
Proceedings of the USENIX Symposium on Internet Technologies and Systems

Monterey, California, December 1997

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org/

Going Beyond the Sandbox: An Overview of the New Security
Architecture in the Java Development Kit 1.2

Li Gong, Marianne Mueller, Hemma Prafullchandra, and Roland Schemers
JavaSoft, Sun Microsystems, Inc.

BLUE COAT SYSTEMS - Exhibit 1055 Page 1f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Going Beyond the Sandbox: An Overview of the New Security

Architecture in the JavaTM Development Kit 1.2

Li Gong, Marianne Mueller, Hemma Prafullchandra, and Roland Schemers

JavaSoft, Sun Microsystems, Inc.

fgong,mrm,hemma,schemersg@eng.sun.com

Abstract

This paper describes the new security architec-

ture that has been implemented as part of JDK1.2,

the forthcoming JavaTM Development Kit. In going

beyond the sandbox security model in the original

release of Java, JDK1.2 provides �ne-grained ac-

cess control via an easily con�gurable security pol-

icy. Moreover, JDK1.2 introduces the concept of

protection domain and a few related security prim-

itives that help to make the underlying protection

mechanism more robust.

1 Introduction

Since the inception of Java [8, 11], there has been
strong and growing interest around the security of
Java as well as new security issues raised by the
deployment of Java. From a technology provider's
point of view, Java security includes two aspects [6]:

� Provide Java (primarily through JDK) as a se-
cure, ready-built platform on which to run Java
enabled applications in a secure fashion.

� Provide security tools and services imple-
mented in Java that enable a wider range of
security-sensitive applications, for example, in
the enterprise world.

This paper focuses on issues related to the �rst
aspect, where the customers for such technologies
include vendors that bundle or embed Java in their
products (such as browsers and operating systems).
It is worth emphasizing that this work by itself

does not claim to break signi�cant new ground in
terms of the theory of computer security. Instead,
it o�ers a real world example where well-known se-
curity principles [5, 12, 13, 16] are put into engi-
neering practice to construct a practical and widely
deployed secure system.

1.1 The Original Security Model

The original security model provided by Java is
known as the sandbox model, which exists in order
to provide a very restricted environment in which
to run untrusted code (called applet) obtained from
the open network. The essence of the sandbox
model, as illustrated by Figure 1, is that local code is
trusted to have full access to vital system resources
(such as the �le system) while downloaded remote
code is not trusted and can access only the limited
resources provided inside the sandbox.

Figure 1: JDK1.0.x Security Model

This sandbox model is deployed through the Java
Development Toolkit in versions 1.0.x, and is gen-
erally adopted by applications built with JDK, in-
cluding Java-enabled web browsers.
Overall security is enforced through a number of

mechanisms. First of all, the language is designed
to be type-safe, and easy to use. The hope is that
the burden on the programmer is such that it is less
likely to make subtle mistakes, compared with using
other programming languages such as C or C++.
Language features such as automatic memory man-

BLUE COAT SYSTEMS - Exhibit 1055 Page 2f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

agement, garbage collection, and range checking on
strings and arrays are examples of how the language
helps the programmer to write safer code.
Second, compilers and a bytecode veri�er ensure

that only legitimate Java code is executed. The
bytecode veri�er, together with the Java virtual ma-
chine, guarantees language type safety at run time.
Moreover, a class loader de�nes a local name

space, which is used to ensure that an untrusted
applet cannot interfere with the running of other
Java programs.
Finally, access to crucial system resources is me-

diated by the Java virtual machine and is checked in
advance by a SecurityManager class that restricts
to the minimum the actions of untrusted code.
JDK1.1.x introduced the concept of signed ap-

plet. In this extended model, as shown in Figure 2,
a correctly digitally signed applet is treated as if it is
trusted local code if the signature key is recognized
as trusted by the end system that receives the ap-
plet. Signed applets, together with their signatures,
are delivered in the JAR (Java Archive) format.

Figure 2: JDK1.1 Security Model

The rest of this paper focuses on the new sys-
tem security features. Discussion of various lan-
guage safety issues can be found elsewhere (e.g.,
[3, 4, 19, 21]).

1.2 Evolving the Sandbox Model

The new security architecture in JDK1.2, as illus-
trated in Figure 3, is introduced primarily for the
following purposes.

� Fine-grained access control.

This capability has existed in Java from the be-
ginning, but to use it, the application writer has

Figure 3: JDK1.2 Security Model

to do substantial programming (e.g., by sub-
classing and customizing the SecurityManager
and ClassLoader classes).

HotJava is such an example application. How-
ever, such programming is extremely security
sensitive and requires sophisticated skills and
in-depth knowledge of computer security. The
new architecture makes this exercise simpler
and safer.

� Easily con�gurable security policy.

Once again, this feature exists in Java but is
not easy to use. This design goal implies that
the security and its implementation or enforce-
ment mechanism should be clearly separated.
Moreover, because writing security code is not
straightforward, it is desirable to allow appli-
cation builders and users to con�gure security
policies without having to program.

� Easily extensible access control structure.

Up to JDK1.1, to create a new access permis-
sion, one has to add a new check() method
to the SecurityManager class. The new ar-
chitecture allows typed permissions and au-
tomatic handling. No new method in the
SecurityManager class needs to be created in
most cases. (Actually, we have not encountered
a situation where a new method must be cre-
ated.)

� Extension of security checks to all Java pro-
grams, including applets as well as applications.

There should not be a built-in concept that all
local code is trusted. Instead, local code should
be subjected to the same security controls as
applets, although one should have the choice

BLUE COAT SYSTEMS - Exhibit 1055 Page 3f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

to declare that the policy on local code (or re-
mote code) be the most liberal (thus local code
e�ectively runs as totally trusted). The same
principle applies to signed applets and applica-
tions.

Finally, we also take this opportunity to make
internal structural adjustment in order to reduce
the risks of creating subtle security holes in pro-
grams. This e�ort involves revising the design
and implementation of the SecurityManager and
ClassLoader classes as well as the underlying ac-
cess control checking mechanism.

1.3 Related Work

The fundamental ideas adopted in the new secu-
rity architecture have roots in the last 40 years of
computer security research, such as the overall idea
of access control list [10]. We followed some of the
Unix conventions in specifying access permissions
to the �le system and other system resources, but
signi�cantly, our design has been inspired by the
concept of protection domains and the work deal-
ing with mutually suspicious programs in Multics
[17, 15], and right ampli�cation in Hydra [9, 20].
One novel feature, which is not present in oper-

ating systems such as Unix or MS-DOS, is that we
implement the least-privilege principle by automat-

ically intersecting the sets of permissions granted to
protection domains that are involved in a call se-
quence. This way, a programming error in system
or application software is less likely to be exploitable
as a security hole.
Note that although the Java Virtual Machine

(JVM) typically runs over another hosting operat-
ing system such as Solaris, it may also run directly
over hardware as in the case of the network com-
puter JavaStation running JavaOS [14]. To main-
tain platform independence, our architecture does
not depend on security features provided by an un-
derlying operating system.
Furthermore, our architecture does not override

the protection mechanisms in the underlying oper-
ating system. For example, by con�guring a �ne-
grained access control policy, a user may grant spe-
ci�c permissions to certain software, but this is ef-
fective only if the underlying operating system itself
has granted the user those permissions.
Another signi�cant character of JDK is that its

protection mechanisms are language-based, within a
single address space. This feature is a major distinc-
tion from more traditional operating systems, but
is very much related to recent works on software-
based protection and safe kernel extensions (e.g.,

[2, 1, 18]), where various research teams have lately
aimed for some of the same goals with di�erent pro-
gramming techniques.

2 New Protection Mechanisms

This section covers the concept and implementa-
tion of some important new primitives introduced in
JDK1.2, namely, security policy, access permission,
protection domain, access control checking, privi-
leged operation, and Java class loading and resolu-
tion.

2.1 Security Policy

There is a system security policy, set by the user
or by a system administrator, that is represented
by a policy object, which is instantiated from the
class java.security.Policy. There could be mul-
tiple instances of the policy object, although only
one is \in e�ect" at any time. This policy object
maintains a runtime representation of the policy, is
typically instantiated at the Java virtual machine
start-up time, and can be changed later via a secure
mechanism.

In abstract terms, the security policy is a mapping
from a set of properties that characterize running
code to a set of access permissions that is granted
to the concerned code.1

Currently, a piece of code is fully characterized
by its origin (its location as speci�ed by a URL)
and the set of public keys that correspond to the
set of private keys that have been used to sign
the code using one or more digital signature algo-
rithms. Such characteristics are captured in the
class java.security.CodeSource, which can be
viewed as a natural extension of the concept of a
code base within HTML. (It is important not to con-
fuse CodeSource with the CodeBase tag in HTML.)
Wild cards are used to denote \any location" or
\unsigned".

Informally speaking, for a code source to match
an entry given in the policy, both the URL informa-
tion and the signature informationmust match. For
URL matching, if the code source's URL is a pre�x
of an entry's URL, we consider this a match. For
signature matching, if one public key corresponding
to a signature in the code source matches the key of
a signer in the policy entry, we consider it a match.

1In the future, the security policy can be extended to in-

clude and consider information such user authentication and

delegation.

BLUE COAT SYSTEMS - Exhibit 1055 Page 4f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

When a code source matches multiple policy en-
tries, for example, when the code is signed with mul-
tiple signatures, permissions granted are additive in
that the code is given all permissions contained in
all the matching entries. For example, if code signed
with key A gets permission X and code signed by
key B gets permission Y, then code signed by both
A and B gets permissions X and Y.

Veri�cation of signed code uses a new package of
certi�cate java.security.cert that fully supports
the processing of X.509v3 certi�cates.

The policy within the Java runtime is set via a
programming API. We also specify an external pol-
icy representation in the form of an ASCII policy
con�guration �le. Such a �le essentially contains a
list of entries, each being a pair, consisting of a code
source and its permissions. In such a �le, a public
key is signi�ed by an alias { the string name of the
signer { where we provide a separate mechanism to
create aliases and import their matching public keys
and certi�cates.

2.2 Permission

We have introduced a new hierarchy of typed
and parameterized access permissions that is rooted
by an abstract class java.security.Permission.
Other permissions are subclassed either from the
Permission class or one of its subclasses, and gen-
erally should belong to their own packages.

For example, the permission representing �le
system access is located in the Java I/O pack-
age, as java.io.FilePermission. Other permis-
sion classes that are introduced in JDK1.2 include:
java.net.SocketPermission for access to network
resources, java.lang.RuntimePermission for ac-
cess to runtime system resources such as properties,
and java.awt.AWTPermision for access to window-
ing resources. In other words, access methods and
parameters to most of the controlled resources, in-
cluding access to Java properties and packages, are
represented by the new permission classes.

A crucial abstract method in the Permission

class that needs to be implemented for each new
class of permission is the implies method. Basi-
cally, a.implies(b) == true means that, if one is
granted permission a, then one is naturally granted
permission b. This is the basis for all access control
decisions.

For convenience, we also created abstract classes
java.security.PermissionCollection and
java.security.Permissions that are subclasses
of the Permission class. PermissionCollection

is a collection (i.e., a set that allows dupli-

cates) of Permission objects for a category
(such as FilePermission), for ease of grouping.
Permissions is a heterogeneous collection of col-
lections of Permission objects.

Not every permission class must support a corre-
sponding collection class. When they do, it is crucial
to implement the correct semantics for the implies
method in the corresponding permission collection
classes. For example, FilePermission can get added
to the FilePermissionCollection object in any
order, so the latter must know how to correctly com-
pare a permission with a permission collection.

Typically, each permission consists of a target and
an action thus, informally, a permission implies an-
other if and only if both the target and the action of
the former respectively implies those of the latter.

Take FilePermission for example. There are
two kinds of targets: a directory and a �le. There
are four ways to express a �le target: path,
path/file, path/*, and path/-. path/* denotes
all �les and directories in the directory path, and
path/- denotes all �les and directories under the
subtree of the �le system starting at path. The ac-
tions include read, write, execute, and delete.

Therefore, \read �le /tmp/abc" is a permission,
and can be created using the following Java code:

p = new FilePermission("/tmp/abc", "read");

Permission (/tmp/*, read) implies permission
(/tmp/abc, read), but not vice versa. Permission
(/home/gong/-, read,write) implies permission
(/home/gong/public html/index.html, read).

In the case of SocketPermission, a net target
consists of an IP address and a range of port num-
bers. Actions include connect, listen, accept,
and others. One SocketPermission implies another
if and only if the former covers the same IP address
and the port numbers for the same set of actions.

Applications are free to add new categories of per-
missions. Note that a piece of Java code can cre-
ate any number of permission objects, but such ac-
tions do not grant the code the corresponding access
rights. What matters is that permission objects the
Java runtime system associates with the Java code
through the concept of protection domains.

2.3 Protection Domain

A new class java.security.ProtectionDomain
is package-private, and is transparent to most Java
developers. It serves as a useful level of indirec-
tion in that permissions are granted to protection
domains, to which classes and objects belong, and

BLUE COAT SYSTEMS - Exhibit 1055 Page 5f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

