Disasembly of ExecutaibleCodeRevisited

BenjaminSchwarz SaumyaDebray Gregory Andrews
Departmenbf ComputerScience
University of Arizona
Tucson AZ 85721
{bschwar z, debray, greg}@s.arizona.edu

Abstract

Machinecodedisassemblyoutinesform a fundamemal componat of software systemshat staticallyanalyze
or modify executalte programs.The taskof disassemblys complicatedby indirectjumpsandthe presencef non
executabledata—jumptables,alignmentbytes,etc.—inthe instructionstream.Existing disassemly algorithmsare
not always ableto copesuccestilly with executablefiles containingsuchfeaturesandfail silently—i.e.,produce
incorrectdisassembliewithout ary indicationthattheresultsthey areproducingareincorrect. This canbe a serious
problem,sinceit cancompronisethecorrectnessf abinaryrewriting tool. In this papemwe examinetwo commonly
useddisassemblyalgorithmsandillustrate their shortcomimgs. We proposea hybrid apprachthat performsbetter
thanthesealgorithmsin the sensehatit is ableto detectsituationswherethedisassemly maybeincorrectandlimit
the extent of suchdisassemblerrors. Experimentatesultsindicatethatthe algorithmis quite effective: theamoun
of codeflaggedasincurringdisassemly errorsis usuallyquite small.

1 Introduction

Therehasbeenasignificantamount of attentionfocusedon binaryrewriting andlink-time codeoptimizationin recent
yearg5, 6,15, 17, 19]. A fundamentafequirenentof ary softwaresystenthataimsto staticallyanalyzeor modfy an
execuableprogramis accuratalisassemblpf its machne codeinstructins. Thetaskof recoveringthesenstructians
is often conplicatedby the presencef non-execuable data—junp tables,alignment bytes,etc.—inthe instruction
stream.This posesa chicken-and-gg problem: we canna identify theinstructiors without knowing whatis data,and
vice versa. The factthatlink-time binary modificationtools have to be preparedto dealwith handcodeal assembly
routires,e.g.,dueto staticallylinkedlibraries,complicaestheproblemfurtherbecaus& mears thatwe canrot always
assumehatthe codefollows familiar sourcelevel corventiors (e.g, thata fundion hasa singleentry poirt) or uses
recogqnizablecompler idioms.

The presene of varialle-lengthinstructicms—commaly foundin CISC architectues suchasthe widely used
Intel x86—resultsin an additional degree of compleity, andrenders simple heuristicsfor extracting instructionse-
quercesineffedive. In this papemwe exanine technigqescurrently usedfor disassemblydiscusgheir dravbacks,and
introduceanimprovedmethal for theextractian of instructiors from a statically-linked binary thatcontans relocatian
information. Our algorithm is capableof identifying jump tablesembedeédwithin the text segmer, offsettablesfor
positionindependen code(PIC) sequencg anddatainsertedor alignmen puiposese.g..to alignloopheades. Most
importantly, it is ableto avoid somedisassemblerras thatcanoccurwhenusingexisting disassemblyechnigqies.

We haveimplementedourappoachin PLTO, apost-linktime optimize for thelntel x86 archite¢ure. Expermen-
tal resultsindicatethat our algorithmis ableto copewith statically linked executablescontainirg highly optimized
handcodedassemblycodewith a high degree of predsion, identifying potertial disassemblyroblems ratherthan
failing silently andlimiting the extert of suchproblemsto a smallportionof theinputexecuables.

2 Preliminaries

2.1 Relocation | nformation

Linkers are capalte of producingrelocationtablesat eachstageduring the linking process. By default, the final
execuitablesdo not containrelocationinformation becauset is not neededby the loaderto re-ma the progam.
However, mary binary rewriting frameworks that carry out translationor optimizationutilize suchinformation. The
tablesare usedto identify the bit-seqencesn the exeautablethat correspondo addesseof the program. A single

*Thiswork wassupportel in partby the National Scien@ Foundaion undergrantsCCR-00B394,E1A-0080123,andCCR-0113@3.

DOCKET

A R M Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

entryin thetableusuallycortains: (i) a sectionoffset, (ii) abit thatspecifiesvhethertherelocationis PC-relatve or
absoluteand(iii) thewidth (typically the sizeof anaddres®nthearchitectue) of thereloation.

Systemghatanalyeandtransfam machire coce programsusethisinformationin muchthesamewaythatlinkers
do. After thecodehasbeemmoved arownd, refeilencego addresselave changedandthey needto beupdadedto reflect
their new positionin the execuable. Without knowledgeaboutthe locationsof addess,a binary modification system
hasto be fairly conserative in the kinds of codetransfomationsit is ableto effect. The remairder of this pager
assumeshatrelocationtablesare availablein the executable. We do not feel this is unrecessarilyonerais: a user
whois sufficiently conernedabou perfamanceto usea link-time optimizer seemdik ely to bewilling to invoke the
compler with the additioral flags neededo retainrelocatian information. Otherbinary rewriting systemsnotally
OM [19] andAtom [18], have the samerequilement,andmostlinkers arecapalte of producingthesetables.

2.2 Position-Independent Code

Many complers canbe instructedto emit codethat doesnot rely on beingbourd to ary particularpositionin the
progam’saddresspace Thesecodesequenesareoftenreferedto aspositionindepenentcode(PIC). In particular
PIC sequenesdo not containary relocatabe addesseembedédin theinstructins. This propety enableghe code
to work regardlessof its memay locationat rurtime. Furthemore, PIC doesnot needto be patcled by the loader
enablirg it to bemappedasreadonly data—whichis usefulfor shareccodesuchasdynamicallylinkedlibraries[14].

When a compileris emitting positionindepeentcock it typically creategump tablesthat are also position
independent. Thesetablesare usuallyembeded in the text segmentof the execuable andconsistof a sequene of
offsetsratherthanvirtual addressesA jump that usesthe offset tablefirst loadsa nearly address! thenusesthis
to index into the tableandretrieve an offset. The offsetis addedto the addessthatwas previously loadedandthen
usedin anindirectjumpto reachthedesireddestinatio. Theprodemsposediy position-irdepenientjumptablesare
three-bld: (i) the offsettables which arereally no differert thandata,appeaiin the instructian stream;(ii) the code
sequenesthatperform the indired jumps areoftencomplicatedandmay not adhereo a singlepatternthatis easily
recogquizable;and (iii) it is entirely possiblethat an offsettable does not containrelocationentries. Takentogeher,
thesepropertiesmake the task of disassemblind®IC sequenesinvolving jump tablesmore difficult than standad
code.

3 Two Methodsfor Instruction Disassembly

3.1 Linear Sweep

A straightfoward appoachto disassemblys to decale everything appearig in sectionsof the executablethat are
typically reseredfor machire code.This methal is usedby programssuchasthe GNU utility objdump[9] aswell as
by link-time optimizes suchasalto [15], OM [19], andSpike [6]. Its mainadvantayeis simplicity. However, it has
the disadwantagehatary datathatis embedledin theinstruction streamis misinterpréed ascodeanddisassembled.
Only uncer specialcircunstancegsuchaswhenaninvalid opcoce is decoed) canthesesituationsbe discovered.

The problemis illustratedby the codefragmentshownn in Figure 1, taken from the machinecodefor the func-
tion st rrchr in the standad C library (libc) under RedHatLinux on a Pentiumlll processor Startingat address
0x809ef 47, threeNULL bytesof data(0x00, shavn highlighted) wereinsertedto pushthe loop headerat address
0x809ef 4a forward presumaly for alignmern purposes. The NULL bytesandsubseqentinstructionsare misin-
terpreteddy the utility objdump, asit usesthe schemedescribe above to decoe instructions.By inspectionwe can
figure out thatthe jump at addessOx809ef aa targetsthe midde of whatobjdumpbelives to be aninstruction. In
addition theinstructinsit decoedarerathersuspiciousn theircurrert context (theadd ataddres®x809ef 49 ref-
erencegnabsolutanemorylocationthatdoesnot evenappearin the scopeof execuable!). Theinstructionsequene
is clearlyinvalid, but thelinearsweepalgorithm is unable to discerndatafrom code.

Theprodemin this caseariseshecaus®nthelntel x86 architet¢ure,aNULL bytecanbeavalid opcod; it would
not have arisenif the progammerhadusednop instructicnsto forcealignmen. However, thelargerpoirt illustrated
by this exanple remairs valid: Dataembedledin the text segmert canbe misidentifiedascodeby the linear sweep
algorithm, andthis cancausedisassemblgrrasin someor all of theremainetr of theinstructionstream.

10ntheIntel x86 this is doneusinga‘cal | 0 instrudion followedby a‘pop %ax’ instrudion, which hasthe effect of storing the latter
instrudion’s addressinto register Yeax.

DOCKET

A R M Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Location Memory Contents DisassembljResults

0x809ef 45: eb 3c j mp 0x809ef 83

0x809ef 47: 00 00 add %l , (%eax)
0x809ef 49: 00 add %al ,

0x809ef 4a: 83 ee 04 83 ee Oxee8304ee(%ebx)
0x809ef 4f: 04 83 add $0x83, %al
0x809efaa: 73 9e j ae 0x809ef 4a

Figurel: An Exanple of DisassemblyProdemsusingLinear Sweep

3.2 Recursive Traversal

The problem with the linear sweepalgorithm, illustratedby the examplein Figure 1, is thatit doesnot take into
accoun the control flow behaior of the progam: in particular the j np instruction immedately befae the three
NULL bytesinsertedfor alignmern. As aresult,it is unableto discernthatthesealignment bytesare not reachake
during execution, andmistalenly intergretsthemas exeaitablecode. An obvious fix would be to take into account
the contrd flow behaior of the programbeingdisassembledh orderto detemine whatto disassemblelntuitively,
wheneerwe encounterabrarch instrudion duting disassemblywe determire the possiblecontrd flow successorsf
thatinstruction, i.e.,addesseshereexecutioncouldcortinue,andproceedwith disassemblatthoseaddessege.g,
for aconditianal brarchinstructionwe would considetthe branchtarget andthefall-throughaddess).

Variations on this basicapprachto disassemblywhich we term recussive traveisal, are usedby a number of
binary translationand optimizationsystemq3, 20]. A virtue of the algorithm is its simplicity and effectivenessn
avoiding disassemblyf data. The basicalgoiithm for recusive traversalis:

proc Di sassenbl e(Addr, instrlList)

{
if (Addr has al ready been visited)
return;
do {
instr = Decodel nstr(Addr);
Addr.visited = true
add instr to instrlList;
if (instr is a branch or function call) {
T = set of possible control flow successors of instr;
for each (target € T) {
Di sassenbl e(target, instrList);
}
}
else Addr += instr.length; /* addr of next instruction */
} while Addr is a valid instruction address;
}

Eachexecutablecontairs an entry point, which is usuallyspecifiedin the programheacr. Theroutine Di sassem
bl e() isinitially invokedwith this entrypoint. Undertheassumptiorthatwe areableto idertify all possiblecontiol
flow successorsf eachbranchandfundion call operatio in the program, this ensureghat ary instructionthatis
reachale from theprogamentryis correctly disassembled

Thismethal is ableto hande thecodefragmentshovn in Figurel. Upondecodng thejumpinstructionataddress
0x809ef 45, disassemblygontiniesat address0x809ef 83, the (only) contrd flow successofor this instruction
Evertually theinstructionat addres®x809ef aa is reachedy a pathfrom this point, andthis in turn causeglisas-
semblyto proceedfrom theinstructionat0x809ef 4a. ThethreeNULL bytesarenever disassembledincethey are
notreachéle by ary exeaution paththroughthe progam.

DOCKET

A R M Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Location Memory Contents DisassemblyResults

0x80b1d8b: 8d 84 c095 1d Ob 08 [|ea 0x80b1d95 (%eax, ¥eax, 8), ¥eax

0x80b1d92: ff e0 jmp *%eax
0x80b1d94: 8d | ea)
0x80b1d95: 74 26 00 0x0(%esi , 1) i

esi, 1), %esi
0x80b1d98: 8b 06 nov (%esi), %eax
0x80bld9a: 13 02 adc (%edx), Y%eax
0x80b1d9c: 89 07 nmov %ax, (%edi)

Figure2: An Exampleof DisassemblyProblemausingRecursve Traversal

The key assumptiorin this algorithm is thatwe canidentify all possiblecontrolflow successorsf eachcontol
transferoperdion in the progam. This may not always be straightfoward in the caseof indirectjumps. For jump
tablesappearingin thetext segment, this posesa correctressissue:ary imprecisia in deternining the size of such
ajump tablewill resulteitherin afailureto disassemblsomereactablecode(if thetablesizeis overestimated)or
erroreousdisassemblyf data(if its sizeis undeestimated) The prodemis compgicatedby thefactthatthe structue
of the codegeneatedfor switch statementsandiffer widely from oneinstanceof a switch to anotter, even for a
specificcompilerandtarge architectue.

Existing proposalsfor identifying the targetsof indirectjumpsusuallyresortto nortrivial programanalysessuch
asprogramslicing [4] or constanfpropagtion [8]. We needa controlflow gragh for the function in orderto carry
out suchanalysesUnfortunately the constrution of a cortrol flow graph for a function befae all of its instructions
have beendisassembledoesnot seemstraightfaward.? Insteadwe resortto a simplertechniqie basedn relocatin
information. Whendisassemblinghe codefor a function f, let Rt bethe setof relocatdle text sgmentaddesses
a suchthata lies betweerthe startaddressfor f andthe startaddresf the function following f, andlet J; bethe
setof addessesa suchthata € Ry andlocationa itself contairs a reloatabletext sggmentaddress.Intuitively, we
exped anindirectjump to anaddress be implenmentedby loading a (which mustbe a text segmen addressunder
theassumptiorthatall codeis in thetext segmen) into aregisterr andthenjumping indirectly throwghr, andin this
casethe addessa hasto berelocatablethe setR¢ corsistsof all suchaddesseghatlie within the function f, and
hencemightbepossiblegames for anindirectjumpin f. Thesetd; specifiegthoseelementof Ry thatarejumptable
entries,i.e., which do not containcodeand hencecannotbe the target of a jump. The setof possibletargets of an
indirectjumpwithin f is thentakento bethesetof addresseR¢ — Js.

This appoachseemsplausible,in thatit usesa consevative overestimateof the setof possibletamges of each
indirectjump, which mears thatevery addresshatcouldin factbeatarget of thejumpis consideedandall reachale
codeis disassembled.The problem is that we may also consideraddesseshat are not in fact targets. This can
produce incarect disassemblyesults,asillustratedby an examge from a C library routine under RedHatLinux
called__npn_add_n, shovnin Figure 2.

In the Intel x86 instruction set, an | ea (“load effective address”) instruction of the form ‘Il ea
baseAdr(rg, r1, m), ro’ hastheeffect

rp + baseAdr + contentsOf(rg) + mx contentsOf(ry).

Thel ea instructionat addessO0x80b1d8b in Figure 2 therefoe compues an addessinto register%eax whose
valuedepenlsonthe conters of “eax befae thisinstruction.An inspectionof the handeodedassemblyroutine for
this functionrevealsthataloop begins ataddressat 0x80b1d98, andthe addesscompuedby this| ea instructian

2Accurak identfication of the possibletamgets of an indirect jump througha jump table canbe difficult evenif we assumehata contrd flow
graphis available, sincewe canrot in gener& court on the jump in a progran being accompaied by a boundscheck that would enalle us to
identfy the extent of the jump table Suchcheclks may be excisedfrom hand-cafted assemblycodeby a cardul programmemho is aware of
specificinvariants thathold in the progran; anaggessve optimizing compier maybeableto elidethe checkbasedn programanalsesto identify
therangeof valuesfor avariable [10] or usingoptimizationsanalogusto the elimination of arrayboundschecls[11, 16]. We mayalsoencainter
indirect jumpsthatdon’t involve ajump table andhencedon't have aboundsched.

DOCKET

A R M Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

is somavherein the middle of this loop; exactly whereis deternined by the conterts of %eax.3 It turnsout that
this registeralwaystakeson a valuethatresultsin a valid instructionaddresseingcompued. However, duiing a
static examiration of the instruction streamduring disasemblywe canna guarartee that contentsOf (¥%eax) # 0,

sincesuchguarareesin geneal requile nortrivial analysesuchas constanfropaationor progamslicing, which

in turn requre the contrd flow graphfor the function, which is not availableduring disassemblySincethe addres
0x80b1d95 appearsasarelocdabletext ssgment addressvithin thefunction andthislocationdoesnotitself cortain

arelocatale text sgmentaddess,it is consideed asa possibletarget of the indired jump at locationOx80b1d92

during recusive traversaldisassemblyithis correspondgo the possibility thatregister%eax could have the value 0

whenthisinstructionis executed).As aresult,we continte disassemblingheinput startingat locationOx80b1d95.

The problem is that this address is in the middle of an instruction i.e., recursve traversal producesan incorrect
disassemblyn this case.

4 AnImproved Algorithm

Thelinearsweepmandrecusive traversaldisassembllgorithms discussedh theprevioussectiorhave conplementay
strengtls andweakressesTheformerdoesnotrely ontheprecisddentificationof targetsof indirectjumpsfor correct
disassemblybut it hastroube coping with dataembedeédin theinstrudion streamthelatteris ableto decoe arourd
dataembededin the text segment, but it may have prablemswith indired jumpsif their targetscanna be precisely
identified. This sectiondiscussefiow thesetwo algoiithms canbecomhbnedto explait the strengtls of each.

4.1 ExtendingthelLinear Sweep Algorithm

The simplelinear sweepalgoithm discussedn Section3.1 hasthe disadartagethatany dataappeang in the text
seggmert causeslisassemblgrrois. In particularthismeanghatthisalgorithm cannotdealwith jumptablesembeded
in thetext sggment. In this sectionwe discusshow thelinear sweepalgorithm canbe exterdedto handlejumptables
embedledin theinstructian stream.

As mentionél in Section2.1,we assuméhatrelocationinformationis availablein thefile beingdisassembledie
cantake adwantaye of suchinformationto identify jump tablesembedledin the text sggmert (notethatjump tables
in the datasegmernt do not posea prodem: our primary goalhereis to identify the extert of jump tablesin the text
segmert sothatwe canavoid misinterpretiig themascode).Eachaddessa; appeaing in ajump tableembedeédin
thetext sggmenthasthefollowing properties:

(i) thememay locationscontairing a; aremarkedrelocdable;and
(i) theaddesss; itself points into the text sggmert.

Thesepropeaties, while necessaryor jump tableentries,may not be sufficient: depewling on the architectue, relo-
catableaddresseqossiblypointing into the text segment, may alsoappearasimmedate operamlsin aninstruction
However, theinstructionsetsof typical moden architectuesimposean (archite¢ure-specificupperbowund K max on
thenunberof suchimmedate operandsthatcanappeamdjacehto eachotherin aninstructian (e.g.,for the Intel x86
architectue, Kmax = 2). Thus,if thetext segmert contairs n adjacehrelocatake addresseseachof which pointinto
the text segmert (n > Kpax), at mostthe first Kmax of thesemay be part of aninstruction; the remainng n — Kmax
addressesnustbedata.We canusethisinformationto modify thelinearsweepalgorithmsothat,during disassembly
it goesarownd ary suchdatablocks identifiedin the text segment. Of course this doesnot resol\e the statusof the
first Kmax €ntriesin the sequencsd, e., deternine whetherthey arepartof the jump tableor immedide operals of an
instruction We will returnto this pointshortly.

A crucial property of this appro&h is thatit allows usto idertify theendof ajump tablethatappearsn the text
sgmern. Thetext sggmenttherebre becoms dividedinto “chunks” of codeseparatedby jump tables. Eachchurk
startseitherat the entry point of a function or at the endof the previous jump table. We usethe simplelinear sweep
algorithm of Section3.1to disassembleachsuchchurk, thenexamire thelastinstructionin the disassembledhunk
Suppaethatthe lastinstructioncontairs m addressef0 < m < Kmax) asimmedide operails appeang at theend
of theinstruction Thenwe know that of the n contiguousrelocatableaddessesappearig at the endof thatchunk
m addessesare part of instructionsandthe remainirg n — m addressesonstitutejump table entries. The resulting
algorithm is asfollows:

3Theinstrudion ‘| ea 0x0(%esi , 1), %esi ' ataddres®x80b1d94 senesasa4-byteno-opwhosepurposes to align thefirst instrudion
in theloop on an8-bytebounday.

DOCKET

A R M Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Nsights

Real-Time Litigation Alerts

g Keep your litigation team up-to-date with real-time
alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm’s cloud-native
O docket research platform finds what other services can't.
‘ Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips

° Learn what happened the last time a particular judge,

/ . o
Py ,0‘ opposing counsel or company faced cases similar to yours.

o ®
Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

-xplore Litigation

Docket Alarm provides insights to develop a more
informed litigation strategy and the peace of mind of

knowing you're on top of things.

API

Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND

LEGAL VENDORS

Sync your system to PACER to
automate legal marketing.

WHAT WILL YOU BUILD? @ sales@docketalarm.com 1-866-77-FASTCASE

