
Disassemblyof ExecutableCodeRevisited�
BenjaminSchwarz SaumyaDebray GregoryAndrews

Departmentof ComputerScience
University of Arizona

Tucson,AZ 85721fbschwarz, debray, gregg@cs.arizona.edu
Abstract

Machinecodedisassemblyroutinesform a fundamental component of softwaresystemsthat staticallyanalyze
or modify executable programs.Thetaskof disassemblyis complicatedby indirect jumpsandthepresenceof non-
executabledata—jumptables,alignmentbytes,etc.—inthe instructionstream.Existingdisassembly algorithmsare
not alwaysable to copesuccessfully with executablefiles containingsuchfeaturesandfail silently—i.e.,produce
incorrectdisassemblieswithout any indicationthattheresultsthey areproducingareincorrect.This canbea serious
problem,sinceit cancompromisethecorrectnessof abinaryrewriting tool. In thispaperweexaminetwo commonly-
useddisassemblyalgorithmsandillustratetheir shortcomings. We proposea hybrid approachthat performsbetter
thanthesealgorithmsin thesensethatit is ableto detectsituationswherethedisassembly maybeincorrectandlimit
theextentof suchdisassemblyerrors.Experimentalresultsindicatethatthealgorithmis quiteeffective: theamount
of codeflaggedasincurringdisassembly errorsis usuallyquitesmall.

1 Introduction

Therehasbeenasignificantamount of attentionfocusedonbinaryrewriting andlink-timecodeoptimizationin recent
years[5, 6,15, 17, 19]. A fundamentalrequirementof any softwaresystemthataimsto staticallyanalyzeor modify an
executableprogramis accuratedisassemblyof its machinecodeinstructions.Thetaskof recoveringtheseinstructions
is oftencomplicatedby thepresenceof non-executabledata—jump tables,alignment bytes,etc.—inthe instruction
stream.Thisposesachicken-and-egg problem:wecannot identify theinstructions without knowing whatis data,and
vice versa.The fact that link-time binarymodificationtools have to be preparedto dealwith hand-coded assembly
routines,e.g.,duetostaticallylinkedlibraries,complicatestheproblemfurtherbecauseit meansthatwecannot always
assumethat thecodefollows familiar source-level conventions (e.g., thata function hasa singleentrypoint) or uses
recognizablecompiler idioms.

The presence of variable-lengthinstructions—commonly found in CISC architecturessuchas the widely used
Intel x86—resultsin an additional degreeof complexity, andrenderssimpleheuristicsfor extracting instructionse-
quencesineffective. In thispaperweexaminetechniquescurrently usedfor disassembly, discusstheirdrawbacks,and
introduceanimprovedmethod for theextraction of instructions from astatically-linkedbinary thatcontainsrelocation
information.Our algorithm is capableof identifying jump tablesembeddedwithin thetext segment, offsettablesfor
positionindependent code(PIC)sequences,anddatainsertedfor alignment purposes,e.g.,to alignloopheaders. Most
importantly, it is ableto avoid somedisassemblyerrors thatcanoccurwhenusingexistingdisassemblytechniques.

Wehaveimplementedourapproachin PLTO,apost-link-timeoptimizer for theIntel x86architecture.Experimen-
tal resultsindicatethat our algorithmis ableto copewith statically linked executablescontaining highly optimized
hand-codedassemblycodewith a high degree of precision, identifying potential disassemblyproblems ratherthan
failing silentlyandlimiting theextent of suchproblemsto a smallportionof theinputexecutables.

2 Preliminaries

2.1 Relocation Information

Linkersare capable of producingrelocationtablesat eachstageduring the linking process. By default, the final
executablesdo not containrelocationinformation becauseit is not neededby the loaderto re-map the program.
However, many binary rewriting frameworks thatcarryout translationor optimizationutilize suchinformation. The
tablesareusedto identify thebit-sequencesin theexecutablethatcorrespondto addressesof theprogram. A single�Thiswork wassupported in partby theNationalScience Foundation undergrantsCCR-0073394,EIA-0080123,andCCR-0113633.

1

BLUE COAT SYSTEMS -  Exhibit 1048 Page 1f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


entryin thetableusuallycontains: (i) a sectionoffset,(ii) a bit thatspecifieswhethertherelocationis PC-relative or
absolute,and(iii ) thewidth (typically thesizeof anaddresson thearchitecture)of therelocation.

Systemsthatanalyzeandtransform machinecodeprogramsusethisinformationin muchthesamewaythatlinkers
do.After thecodehasbeenmoved around,referencestoaddresseshavechanged, andthey needto beupdatedto reflect
their new positionin theexecutable.Without knowledgeaboutthelocationsof address,a binary modification system
hasto be fairly conservative in the kinds of codetransformationsit is able to effect. The remainder of this paper
assumesthat relocationtablesareavailablein the executable. We do not feel this is unnecessarilyonerous: a user
who is sufficiently concernedabout performanceto usea link-time optimizer seemslikely to bewilling to invoke the
compiler with the additional flagsneededto retainrelocation information. Otherbinary rewriting systems,notably
OM [19] andAtom [18], have thesamerequirement,andmostlinkers arecapable of producingthesetables.

2.2 Position-Independent Code

Many compilers canbe instructedto emit codethat doesnot rely on beingbound to any particularpositionin the
program’saddressspace.Thesecodesequencesareoftenreferredto asposition-independentcode(PIC).In particular,
PIC sequencesdo notcontainany relocatable addressesembeddedin theinstructions.This property enablesthecode
to work regardlessof its memory locationat runtime. Furthermore,PIC doesnot needto be patched by the loader,
enabling it to bemappedasread-only data—whichis usefulfor sharedcodesuchasdynamicallylinkedlibraries[14].

Whena compiler is emitting position-independent code it typically createsjump tablesthat are also position-
independent.Thesetablesareusuallyembedded in the text segmentof theexecutableandconsistof a sequence of
offsetsratherthanvirtual addresses.A jump that usesthe offset tablefirst loadsa nearby address,1 thenusesthis
to index into the tableandretrieve anoffset. Theoffset is addedto theaddressthatwaspreviously loadedandthen
usedin anindirectjumpto reachthedesireddestination. Theproblemsposedby position-independentjumptablesare
three-fold: (i) theoffsettables,which arereally no different thandata,appearin theinstruction stream;(ii) thecode
sequencesthatperform theindirect jumps areoftencomplicatedandmaynot adhereto a singlepatternthat is easily
recognizable;and(iii ) it is entirelypossiblethatanoffset tabledoes not containrelocationentries.Taken together,
thesepropertiesmake the taskof disassemblingPIC sequencesinvolving jump tablesmoredifficult thanstandard
code.

3 Two Methods for Instruction Disassembly

3.1 Linear Sweep

A straightforward approachto disassemblyis to decode everything appearing in sectionsof the executablethat are
typically reservedfor machinecode.Thismethod is usedby programssuchastheGNU utility objdump[9] aswell as
by link-time optimizers suchasalto [15], OM [19], andSpike [6]. Its mainadvantage is simplicity. However, it has
thedisadvantagethatany datathat is embeddedin theinstruction streamis misinterpretedascodeanddisassembled.
Only under specialcircumstances(suchaswhenaninvalid opcode is decoded)canthesesituationsbediscovered.

The problemis illustratedby the codefragmentshown in Figure1, taken from the machinecodefor the func-
tion strrchr in the standard C library (libc) under RedHatLinux on a PentiumIII processor. Startingat address
0x809ef47, threeNULL bytesof data(0x00, shown highlighted)wereinsertedto pushtheloop headerat address
0x809ef4a forward, presumably for alignment purposes.TheNULL bytesandsubsequent instructionsaremisin-
terpretedby theutility objdump, asit usestheschemedescribed above to decode instructions.By inspection, we can
figureout that the jump at address0x809efaa targetsthemiddle of whatobjdumpbelives to beaninstruction. In
addition, theinstructionsit decodedarerathersuspiciousin theircurrent context (theadd ataddress0x809ef49 ref-
erencesanabsolutememorylocationthatdoesnotevenappearin thescopeof executable!).Theinstructionsequence
is clearlyinvalid, but thelinearsweepalgorithm is unable to discerndatafrom code.

Theproblemin thiscasearisesbecauseontheIntel x86architecture,aNULL bytecanbeavalid opcode; it would
nothave arisenif theprogrammerhadusednop instructionsto forcealignment. However, thelargerpoint illustrated
by this example remains valid: Dataembeddedin the text segment canbemisidentifiedascodeby the linearsweep
algorithm, andthis cancausedisassemblyerrors in someor all of theremainderof theinstructionstream.

1On the Intel x86 this is doneusinga ‘call 0’ instruction followedby a ‘pop %eax’ instruction, which hasthe effect of storing the latter
instruction’s addressinto register %eax.

2

BLUE COAT SYSTEMS -  Exhibit 1048 Page 2f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


Location MemoryContents DisassemblyResults

...
0x809ef45: eb 3c
0x809ef47: 00 00
0x809ef49: 00
0x809ef4a: 83 ee 04 83 ee
0x809ef4f: 04 83

...

0x809efaa: 73 9e
...

jmp 0x809ef83
add %al, (%eax)
add %al,

0xee8304ee(%ebx)
add $0x83, %al

jae 0x809ef4a

���
Figure1: An Example of DisassemblyProblemsusingLinearSweep

3.2 Recursive Traversal

The problem with the linear sweepalgorithm, illustratedby the examplein Figure1, is that it doesnot take into
account the control flow behavior of the program: in particular, the jmp instruction immediately before the three
NULL bytesinsertedfor alignment. As a result,it is unableto discernthat thesealignment bytesarenot reachable
during execution,andmistakenly interpretsthemasexecutablecode. An obviousfix would be to take into account
thecontrol flow behavior of theprogrambeingdisassembledin orderto determinewhat to disassemble.Intuitively,
wheneverweencounterabranch instruction during disassembly, wedetermine thepossiblecontrol flow successorsof
thatinstruction, i.e.,addresseswhereexecutioncouldcontinue,andproceedwith disassemblyat thoseaddresses(e.g.,
for aconditional branch instructionwe wouldconsiderthebranchtarget andthefall-throughaddress).

Variations on this basicapproach to disassembly, which we term recursive traversal, areusedby a number of
binary translationandoptimizationsystems[3, 20]. A virtue of the algorithm is its simplicity andeffectivenessin
avoidingdisassemblyof data.Thebasicalgorithm for recursive traversalis:

proc Disassemble(Addr, instrList)f
if (Addr has already been visited)

return;
do f

instr = DecodeInstr(Addr);
Addr.visited = true;
add instr to instrList;
if (instr is a branch or function call) f

T = set of possible control flow successors of instr;
for each (target 2 T) f
Disassemble(target, instrList);gg

else Addr += instr.length; /* addr of next instruction */g while Addr is a valid instruction address;g
Eachexecutablecontains anentrypoint,which is usuallyspecifiedin theprogramheader. TheroutineDisassem-
ble() is initially invokedwith thisentrypoint. Undertheassumptionthatweareableto identify all possiblecontrol
flow successorsof eachbranchandfunction call operation in the program,this ensuresthat any instructionthat is
reachable from theprogramentryis correctly disassembled.

Thismethod is ableto handle thecodefragmentshown in Figure1. Upondecoding thejumpinstructionataddress
0x809ef45, disassemblycontinuesat address0x809ef83, the (only) control flow successorfor this instruction.
Eventually theinstructionat address0x809efaa is reachedby a pathfrom this point,andthis in turn causesdisas-
semblyto proceedfrom theinstructionat0x809ef4a. ThethreeNULL bytesarenever disassembled,sincethey are
not reachable by any executionpaththroughtheprogram.

3

BLUE COAT SYSTEMS -  Exhibit 1048 Page 3f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


Location MemoryContents DisassemblyResults

...
0x80b1d8b: 8d 84 c0 95 1d 0b 08
0x80b1d92: ff e0
0x80b1d94: 8d
0x80b1d95: 74 26 00
0x80b1d98: 8b 06
0x80b1d9a: 13 02
0x80b1d9c: 89 07

...

lea 0x80b1d95 (%eax,%eax,8),%eax
jmp *%eax
lea

0x0(%esi,1),%esi
mov (%esi),%eax
adc (%edx),%eax
mov %eax,(%edi)

���
Figure2: An Exampleof DisassemblyProblemsusingRecursiveTraversal

Thekey assumptionin this algorithm is thatwe canidentify all possiblecontrolflow successorsof eachcontrol
transferoperation in the program. This may not alwaysbestraightforward in the caseof indirect jumps. For jump
tablesappearing in the text segment, this posesa correctnessissue:any imprecision in determining thesizeof such
a jump tablewill resulteitherin a failure to disassemblesomereachablecode(if the tablesizeis overestimated)or
erroneousdisassemblyof data(if its sizeis underestimated).Theproblemis complicatedby thefactthatthestructure
of the codegeneratedfor switch statementscandiffer widely from oneinstanceof a switch to another, even for a
specificcompilerandtarget architecture.

Existingproposalsfor identifying thetargetsof indirect jumpsusuallyresortto nontrivial programanalysessuch
asprogramslicing [4] or constantpropagation [8]. We needa control flow graph for the function in orderto carry
out suchanalyses.Unfortunately, theconstruction of a control flow graph for a function before all of its instructions
havebeendisassembleddoesnotseemstraightforward.2 Instead,weresortto asimplertechniquebasedonrelocation
information. Whendisassemblingthe codefor a function f , let R f be thesetof relocatable text segmentaddresses
a suchthata lies betweenthestartaddressfor f andthestartaddressof the function following f , andlet J f be the
setof addressesa suchthata2 Rf andlocationa itself contains a relocatabletext segmentaddress.Intuitively, we
expect an indirect jump to anaddressa be implementedby loading a (which mustbea text segment address,under
theassumptionthatall codeis in thetext segment) into a registerr andthenjumping indirectly through r, andin this
casetheaddressa hasto be relocatable; thesetRf consistsof all suchaddressesthat lie within the function f , and
hencemightbepossibletargets for anindirectjumpin f . ThesetJ f specifiesthoseelementsof Rf thatarejumptable
entries,i.e., which do not containcodeandhencecannotbe the target of a jump. The setof possibletargetsof an
indirectjumpwithin f is thentakento bethesetof addressesRf �Jf .

This approachseemsplausible,in that it usesa conservative over-estimateof the setof possibletargets of each
indirectjump,whichmeans thateveryaddressthatcouldin factbeatargetof thejumpis consideredandall reachable
codeis disassembled.The problem is that we may alsoconsideraddressesthat arenot in fact targets. This can
produce incorrect disassemblyresults,as illustratedby an example from a C library routineunder RedHatLinux
called mpn add n, shown in Figure 2.

In the Intel x86 instruction set, an lea (“load effective address”) instruction of the form ‘lea
baseAddr(r0,r1,m),r2’ hastheeffect

r2 baseAddr+ ontentsOf(r0)+m�ontentsOf(r1):
Thelea instructionat address0x80b1d8b in Figure 2 therefore computesan addressinto register%eax whose
valuedependson thecontents of %eax before this instruction.An inspectionof thehand-codedassemblyroutine for
this functionrevealsthata loop begins at addressat0x80b1d98, andtheaddresscomputedby thislea instruction

2Accurate identification of thepossibletargets of an indirect jump througha jump table canbe difficult even if we assumethat a control flow
graphis available, sincewe cannot in general count on the jump in a program being accompanied by a boundscheck that would enable us to
identify the extent of the jump table. Suchchecks may be excisedfrom hand-craftedassemblycodeby a careful programmerwho is awareof
specificinvariants thathold in theprogram; anaggressiveoptimizingcompiler maybeableto elidethecheckbasedonprogramanalysesto identify
therangeof valuesfor a variable [10] or usingoptimizationsanalogousto theelimination of arrayboundschecks [11, 16]. We mayalsoencounter
indirect jumpsthatdon’t involve a jump table andhencedon’t have a boundscheck.

4

BLUE COAT SYSTEMS -  Exhibit 1048 Page 4f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


is somewhere in the middle of this loop; exactly whereis determined by the contents of %eax. 3 It turnsout that
this registeralwaystakeson a valuethat resultsin a valid instructionaddressbeingcomputed. However, during a
static examination of the instruction streamduring disasembly, we cannot guarantee that ontentsOf(%eax) 6= 0,
sincesuchguaranteesin general require nontrivial analysessuchasconstantpropagationor programslicing, which
in turn require thecontrol flow graphfor the function, which is not availableduring disassembly. Sincetheaddress
0x80b1d95 appearsasarelocatabletext segment addresswithin thefunction, andthislocationdoesnotitself contain
a relocatable text segmentaddress,it is consideredasa possibletarget of the indirect jump at location0x80b1d92
during recursive traversaldisassembly(this correspondsto thepossibility that register%eax couldhave thevalue 0
whenthis instructionis executed).As a result,we continue disassemblingtheinputstartingat location0x80b1d95.
The problem is that this address is in the middle of an instruction, i.e., recursive traversalproducesan incorrect
disassemblyin this case.

4 An Improved Algorithm

Thelinearsweepandrecursivetraversaldisassemblyalgorithmsdiscussedin theprevioussectionhavecomplementary
strengthsandweaknesses.Theformerdoesnotrely onthepreciseidentificationof targetsof indirectjumpsfor correct
disassembly, but it hastrouble coping with dataembeddedin theinstruction stream;thelatteris ableto decodearound
dataembeddedin the text segment, but it mayhave problemswith indirect jumpsif their targetscannot beprecisely
identified.This sectiondiscusseshow thesetwo algorithmscanbecombinedto exploit thestrengths of each.

4.1 Extending the Linear Sweep Algorithm

Thesimplelinearsweepalgorithm discussedin Section3.1 hasthedisadvantagethatany dataappearing in the text
segment causesdisassemblyerrors. In particular, thismeansthatthisalgorithmcannotdealwith jumptablesembedded
in thetext segment. In this sectionwe discusshow thelinearsweepalgorithm canbeextendedto handlejumptables
embeddedin theinstruction stream.

As mentioned in Section2.1,weassumethatrelocationinformationis availablein thefile beingdisassembled.We
cantake advantageof suchinformationto identify jump tablesembeddedin the text segment (notethat jump tables
in thedatasegment do not posea problem: our primary goalhereis to identify theextent of jump tablesin the text
segment sothatwe canavoid misinterpreting themascode).Eachaddressai appearing in a jump tableembeddedin
thetext segmenthasthefollowing properties:(i) thememory locationscontaining ai aremarkedrelocatable;and(ii) theaddressai itself points into thetext segment.

Theseproperties,while necessaryfor jump tableentries,maynot besufficient: depending on thearchitecture, relo-
catableaddresses,possiblypointing into thetext segment, mayalsoappearasimmediateoperands in aninstruction.
However, the instructionsetsof typical modern architecturesimposean(architecture-specific)upperbound K max on
thenumberof suchimmediateoperandsthatcanappearadjacent to eachotherin aninstruction (e.g.,for theIntel x86
architecture,Kmax = 2). Thus,if thetext segment contains n adjacent relocatable addresseseachof which point into
the text segment (n> Kmax ), at mostthe first Kmax of thesemay be part of an instruction; the remaining n�Kmax

addressesmustbedata.Wecanusethis informationto modify thelinearsweepalgorithmsothat,during disassembly,
it goesaround any suchdatablocks identifiedin the text segment. Of course,this doesnot resolve thestatusof the
first Kmax entriesin thesequence,i.e.,determine whetherthey arepartof thejump tableor immediate operandsof an
instruction. We will returnto this pointshortly.

A crucialproperty of this approach is that it allows us to identify theendof a jump tablethatappearsin the text
segment. Thetext segmentthereforebecomes divided into “chunks” of codeseparatedby jump tables.Eachchunk
startseitherat theentrypoint of a function or at theendof theprevious jump table. We usethesimplelinearsweep
algorithm of Section3.1to disassembleeachsuchchunk, thenexamine thelastinstructionin thedisassembledchunk.
Supposethat the last instructioncontains m addresses(0� m� Kmax ) asimmediate operands appearing at theend
of the instruction. Thenwe know thatof then contiguousrelocatableaddressesappearing at theendof thatchunk,
m addressesarepart of instructionsandthe remaining n�m addressesconstitutejump tableentries. The resulting
algorithm is asfollows:

3Theinstruction ‘lea 0x0(%esi,1),%esi’ at address0x80b1d94 servesasa 4-byteno-opwhosepurposeis to align thefirst instruction
in theloop on an8-byteboundary.

5

BLUE COAT SYSTEMS -  Exhibit 1048 Page 5f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


Real-Time Litigation Alerts
  Keep your litigation team up-to-date with real-time  

alerts and advanced team management tools built for  
the enterprise, all while greatly reducing PACER spend.

  Our comprehensive service means we can handle Federal, 
State, and Administrative courts across the country.

Advanced Docket Research
  With over 230 million records, Docket Alarm’s cloud-native 

docket research platform finds what other services can’t. 
Coverage includes Federal, State, plus PTAB, TTAB, ITC  
and NLRB decisions, all in one place.

  Identify arguments that have been successful in the past 
with full text, pinpoint searching. Link to case law cited  
within any court document via Fastcase.

Analytics At Your Fingertips
  Learn what happened the last time a particular judge,  

opposing counsel or company faced cases similar to yours.

  Advanced out-of-the-box PTAB and TTAB analytics are  
always at your fingertips.

Docket Alarm provides insights to develop a more  

informed litigation strategy and the peace of mind of 

knowing you’re on top of things.

Explore Litigation 
Insights

®

WHAT WILL YOU BUILD?  |  sales@docketalarm.com  |  1-866-77-FASTCASE

API
Docket Alarm offers a powerful API 
(application programming inter-
face) to developers that want to 
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your 
attorneys and clients with live data 
direct from the court.

Automate many repetitive legal  
tasks like conflict checks, document 
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks 
for companies and debtors.

E-DISCOVERY AND  
LEGAL VENDORS
Sync your system to PACER to  
automate legal marketing.


