
BLUE COAT SYSTEMS - Exhibit 1034 Page 1BLUE COAT SYSTEMS - Exhibit 1034 Page 1

PwGHshed bv NlicrosfJft P~~'~
/•, Division of fvt:!;::::ros<it Corporiltion
Dn~ M!t;.ri:)S;Gl't \'Vay .
RedmOrid·,.vvash!ngl:on· 980.52-6399

f.1art of lh!! nv1ten~ of thls byok rnay be or
Df by a:~y moans v:!thout th~ V.'titte-n penni%iOtt of th~ ;:;c.bii>h,er,

o:s::r_iSuted t·o.t.he bnok trade in. Can~da by M('::fTnflia:i of Canada, a dlv1sk:m of Can aria
P'ubl~shing Corporation,

r-.'taclrit.oo'h·_ls::.~::n.so&gwre9: ~adeit1-tnk 0t A.ppl->:: Cl::JrDr~tC"fx He·, ISM i~ 11 mgistetOO twdernark ()f
,l_r1t~fnath~~xak B~:;_~ness \A<:t:hlne$' c{\E'f:R~nltiorL 1-2~3 end l-otvs i'Hitl rmgi~;J;;r$:J tfad€~!'k§. of Lotu:;;
Dey~i5Jfn!~~Ci::ltp:ftmtl.on-. Mkro~oft! Mkrnsoft J'r~~-' ~rfinint Vh;u~l 6i'Mc, Vi:tim~ C++,

. \VimlQ\\:s;)h1d}¥i[l(}:o:W? NT __ Me registered tm00rMJJks and At;tiveX 4fl(J Visi.ial h--+ ;tre tr<1dr:!ma:b
ofJ<~iCtk?~oft-,>;?~tln:ti~ -~dsc.ape h a H~Ji:fn:.o<k of'Nct-;c::tp~ C.f«n:nun~c~t!nns Cotpnr<!tkm.

· N~'fNiirt'._AA<'BJ f,;p:;ri?U ;m:: rq;t~t~n:!d !ri!dern<irk$·of Nc-1!\)l\,. ktC, Pt'W1i.'ttlullder- 1:> a tr;acl£:r:hlfk oi
P<;:r,\~tf':r~Qft,C)'rp(}~<lt!oll •. fWl1 .. unci S.un Micwsy!i;~ms aro reg;ist&t!;';d t·;;dermlrk> .a0d Java \sa
tfa:;:hrm.>!k t{S~JQ:Mj.C:m:ystetl'H, !r.c.

:iil

BLUE COAT SYSTEMS - Exhibit 1034 Page 2

wart to use Actlvc:X and OLE technologl·es !n the sofbivare

deveiop, but it encompasses a broader audience a.s wen .. As you
can quickly determine by tHpping through the pages, this ts not a

programming book-it contains almosl no code, Although : do

as.sume that the reader Ls a software professional of sorne kjnc.'L i

_;• __ 1:.'-"~---V' r-..~ t:' c>o.'-'-~ r~1"\1'1..'1 "-'"·" :"""""'~''""'·~~~t ·~nA !_.,_,,..~,_HtMo- u•h::>f'
ttttllt$, i'"\'LUVCA 1 "-JL!xt ct;l;) '1.,-.-V'"'~ CHC: 3113r.'Vt~c;.to•~~ <~'''-' '"''VY''"'b u'FH

they are and how they work matters to a. broader group than ih:o~A:
who program for Microsoft V\lit~dows. Some famlilanty W!th using

\Vindows. is taken for granted! this. seemed safe fiJ me:
as it's h~nJ "i:f) f!nrlnnyo;;e in this fle!d who hasn't used VJindows

A Timestamp
The ActiveX and OLE technolog!es are a mcr .. "ing target This book

describes the fundamental COM-based technologies as of mid-

1996, jn particular, Chapter 10 on Dlstributt:~d COf.i\ ;rd Chapter

before tho~e m __ :t-u~ny shippe-ci. sonh::
details described in these chapters might not exactiy match what

is fl0ally deHvcred,

Where to find More Detail
For sume people, the of coveragt: c;ffered in t?1is book win
be enough. {For 1t wd! s.u•·t;-'y t>e h.!(J much,J uevelopttrs

who need a more intimate understanding of the topic wifl
want to get a copy of the OLE ~·bible" for progr<!mmers, Kra!g

BroCkschmidt's inside OLE, 2d eeL (P.A~cros-nft Pre"s, 19YS), A11-

" '' ' ' ' • ' , ' -"""' ,,., ' ~~.' .-. '"" ' - ' ' - - -' _J- , • .,_ ,_ L runy aaaresseo m msme uu:::, ~~ tjLt: Lotnrw!i ms:ut:: \Jw, oy

Adam Denning {Mkro5oft PreSS1 1995)o {Watch for a new edition
of this book, too, one ;hat descr!b"'s the recent changes in what

are now known as ActiveX controls.) For the truly hard~t::OrE~

BLUE COAT SYSTEMS - Exhibit 1034 Page 3

to rnake my re:_1.dable, co::e-ct, 2.r:d c!e2.r. ThanYs :;dsc to
David Clark, tv-Hcros(>ft Press acqulsitions editol~ for accepHng my

:ather mforrnal p:oposo! for this book

Hna!!Yt my v~.hfe, Karen, has been and
supportive through thb and many other projects, somethlng! too
often forget to mention. \;\/hhout her, it wou!d be hard to do any
rli thP thino:-::. l dn -· v·~ v-···o~. ~·~-

ju.fy 1996

BLUE COAT SYSTEMS - Exhibit 1034 Page 4

C h -a p t e r 0 n e

• • I •

I ntrOOliCing
anci & ... ,_,

ACtiVe A OLE

Writing good software is hard, Writing software that's !arge and
complex, as most code is today, is even harder. As computers

continue to infiltrate our lives, as we depend on them for every_

thing frorn running our.cars to writing letters to making toasc the
effectiveness and reliability of software become more and more

important. Good code is becoming the bedrock of our civilization.

In some ways, the history of software is the history of efforts to

\.'Vrite better code. App! ications and system softvvare both. have
sufiered from endless delays, mind-boggling complexity, and

more bugs than anyone cares to admit. But creating software is

tough-there's no way around ii. Doing it weii requires the ability

to take a big-picture view coupled with a willingness (an eager

ness, even) to deal vvith a rnyriad of sn1all details. The intellectual
effort required is substantial, and the tools are never perfect.

l~.v1icrosoft's ActiveX and OLE are a step toward the creation of

better software. "Better" here means software that's more reliable,

certainly, and more effective as vve!!. But it also means softvvare

that can do things that were impossible before, software that

enables so!utiOflS to ne\.v problems. Although ActiveX and OLE

are buiit on a quite sirnpie idea, this 1dea turns out to have pro

found implications for improving hovv vve create softvvare.

Writing good
software is just
plain hard

ActiveX and OLE
are about writing

better software

1

BLUE COAT SYSTEMS - Exhibit 1034 Page 5

2

OLE 1 provided a
way to create

compound
documents

figure 1-1

OLE 2 introduced
the Component

Object Modei

Fron1 OLE to ActiveX
The fiist incaination of OLE, Obj€ct Linking and Embedding 11

was a mechanism for creating and working with compound

documents. To its user, a compound document appears to be a
singie set of information, but in fact it contains elements created

by tvvo or more different appl !cations. \A/ith OLE 1, for example, a

user couid combine a spreadsheet created using Microsoft Excei

with a text document created using Microsoft Word, as shown in

Figure 1-1. The idea was to give users a "document-centric" view

of computing, to let them think more about their information and

less about the appli~ations they were using to work with that

information. As the name suggested, compound documents could

be created either by linklng tvvo separate documents together or

by completely embedding one document in another.

A. user~o;; 1det.1/ of a compound document.

Fourth q\.Wler salu more than exceeded our projections, and early reports indicate thatse~onally adjusted
sales this quarter :are nu:u-:Ung well ahead ofthe sa.me period last yeat. The embedded spreadsheet dearly
shows 1h.e ttendi

Like most version 1 sofp.vare releases, OLE 1 \vasn't perfect. The

architects of the next release set out to improve on the original

design. They soon realized that the compound-document problem

was actuaiiy a special case of a more general problem: how

Chapter One

BLUE COAT SYSTEMS - Exhibit 1034 Page 6

should various software components provide services to one

another? To address this larger problem, OLE's architects created
a set of technologies that were applicable to much more than
compound documents. Foremost among these technologies vvas
the Component Object Modei (COM), which provided the foun
dation for OLE 2_ This new version of OLE supported compound

docurnents even better than the first release1 b.ut clearly a lot more

was going on here than simply combining documents created by
different applications. OLE 2 offered the potential for a nevv way

of thinking about how software of all kinds should interact.

This potentia! \vas largely the result of COt·A. COt\.-\ establishes a

common paradigm for interaction among all sorts of software-
libraries, applications, system soft\·vare, and more. Accordlng!y,

virtually any kind of software technology can be implemented
using the approach COM defines, and doing so offers some very

tangible benefits.

Because of those benefits, COM soon became a part of technolo
gies that had nothing to do with cornpound docurnents. ,-.vJdcro

soft, however, still wanted to have a common name to refer to all
C0t'v1-based technologies as a group. The company decided to
reduce the name Obiect Linking and Embedding to just OLE-this

three~!etter combination \Vas no !anger treated as an acronym-and

to drop the version number.

Under this ne\A! regime, the term OLE was applied to anything

buiit using the paradigm COM provides (aithough COM was aiso
used in products that didn't have OLE in their name). OLE no

longer meant only compound documents but was now a iabel

assigned to any COM-based technology. In some ways, grouping
under a single nan-.e all softWare written using COtv~. rnakes no

more sense than, say, grouping together all software written in

C++. Both C0t'v1 and a programming language such as C++ are
general tools that can be used to create all kinds of software. Still,

both for historical reasons and to mark the advent of this ne'v ... w1 and

far-reaching technology, the term OLE was used to identify many
(but not quite a I!) COl\~-based technologies.

Introducing ActiveX and OLE

CO~v1 is a foun-

dation for inter
action among all
kinds of software

The name Object
Linking and
Embedding

became simply
OLE

The OLE !abe!
was applied to
any technology
that used COM

3

BLUE COAT SYSTEMS - Exhibit 1034 Page 7

-~

4

Today, most
CO!'v1-based

technoiogies

are assigned
the label

Traditionaiiy,
different kinds of

software provided
services in

different ways

In early 1996, Microsoft dropped another term into the fray:

AciiveX. in its first appearances, this new term was associated

with technologies related to the Internet and applications that

grew out of the Internet, such as the VJorld V\/ide \Veb. Because

most of Microsoft's efforts in this area were based on COM,

,a,ctiveX >vvas directly connected to OLE. Soon, though, this nevv'
term began to usurp more and more of OLE's traditional territory,

and today things have come fu!! circle. No\A/ the term OLE once

again refers only to the technology used to create compound

documents through Object Linking and Embedding. The diverse

set of technologies built using COM, once all grouped under the

OLE label, are now grouped under the Active X banner. In several

cases, technologies that had OLE in their narne have been

rechristened as ActiveX technologies. New COM--based tech nolo-

gies that once might have been given the OLE label are novv

frequently tagged with ActiveX instead.

!s this the end of the naming saga for COI'-A-based technologies?

Given the history so far, the answer is probably no. What Micro

soft's marketing mavens will think up next is anybody's guess. But

despite these adventures in nomenclature, what's realiy important

hasn't changed. What's really important is COM.

Understandim! LUM

Aii OLE technologies and aii the ActiveX technologies described

in this book are built on the foundation provided by COM. So just

what is C0tv1?To answer this question, think first about another·:
how should one chunk of software access the services provided

by another chunk of software? Today, as shown i·n rigure 1-2 1 the

answer depends on what those chunks of software are. An appli-

cation might, for example, link to a library and then access the

library's services by calling the functions in the library. Or one

application might use the services provided by another, \Vhich

runs in an entirely separate process. In this case, the two iocal

processes typically communicate by using an interprocess com

munication mechanism, which usuaiiy requires defining a proto
col between the two applications (a set of messages allowing one

Chapter One

BLUE COAT SYSTEMS - Exhibit 1034 Page 8

application to specify its requests and the other to respond appro-

priately). A third example is an application that might use services

provided by an operating syste-m. Here the application commonly

makes system caiis, each of which is handled by the operating

system. Or; fina!!y, an application might need the services of

software that is running on a compieteiy different machine, acces

sible via a network. Many different approaches can be used to

access ihese services, such as exchanging messages wiih ihe

remote application or issuing remote procedure calls.

VVithout COM, different mec,hanisms are used to iiC'CC.'IiiS the services
provided by iibraries, iocai processes, the operating system, and remote
processes.

Network

The fundamental need in aii these relationships is the same: one
chunk of software must access services provided by another.

But the rnechanisrn for getting at those services differs in each

case-local function calls, messages passed via interprocess

communication, system calls (which in fact look pietty much

like function calls to the programmer), or some kind of network

cornmunication. \AJhy is this? \A/ou!dn't it be sirr:p!er to define one

common way to access all kinds of software services, regardless

of ho\A/ they are provided?

This is exactly what COM does. it defines a standard approach by

vvhich one chunk of softvvare supplies its services to another, an

approach that works in aii the cases just described. By applying

Introducing ActiveX and OLE

Figure 1 .. 2

Accessing services
in different ways
is needlessly
complex

COM defines a
common way to
access Software
seivices

5

BLUE COAT SYSTEMS - Exhibit 1034 Page 9

6

COM objects
provide· services

v1a methods that
are grouped

into interfaces

The methods in

each interface
usua!!y focus

on supplying a
particuiar service

this common service architecture across libraiies, applications,

system software, and networks, COM is transforming the way
soft-vvare is constructed.

How COM Works
\Nith COM, any chunk of soft\"Jare implements its services as one

or more COM objects} Every COM object supports one or more
interfaces, each of which includes a number of methods. A
method is typically a function or a procedure that performs a

specific action and can be called by the software using the COM
object (the client of that object). The methods that make up each

interface are usually related to one another in some way. Clients
can access the services provided by a CO~v't object only by invok-

ing the methods in the object's interfaces--they can't directly
access any of the object's data.

For example, imagine a speii checker implemented as a COM
object. This object might support an interface that includes meth

ods such as LookUp\tVord, AddToDiciionary, and RemoveFrom
Dictionary. If the object's developer later wanted to add support

for a thesaurus to this saine COtv1 object, the object would need

to support another interface (perhaps with a single method such
as ReturnSynonym}. The methods in each interface collectively
provide related services, either spell checking or access to a

thesaurus.

Or imagine a COM object representing your bank account. it might
support an interface that you access directly, one with methods

such as Deposit, Withdrawal, and CheckBaiance. This same object
might support a second interface containing methods such as
ChangeAccountNurnber and CloseAccount, which can be in

voked only by bank employees. Again, each interface contains
methods that are related to one another.

Don't confuse COM objects with the ob.iects in programming languages such
as C++, Although they're similar in some ways; they're not the same~ Later; this
chapter describes how COM objects relate to other kinds of objects.

Chapter One

BLUE COAT SYSTEMS - Exhibit 1034 Page 10

Figure 1-3 illustrates a C0r'"v1 object. l"-v1ost C0l"v1 objects support

more than one interface, and the object in Figure 1-3 is no excep-

ticn: it supports three interfaces, each represented by a sma!!
circie attached to the object. The object itself is always imple

mented inside a server, shovvn as the rectangle around the object.

Tnis server can be either a dynamic-iink iibrary (OLL), which is

loaded as needed when an application is running, or a separate
process of iis own.

A COM object's services are accessed via its interface.•.

Server

Figuie 1-4 shows a close~up of a single interface suppoited by this
COM object. This interface allows access to a spell checking

ser .. tice and contains the three methods previously listed. If another

of the object's interfaces allowed access to the thesaurus service

described earlier, a c!ose-up of it \vou!d contain on!y the Return-

Synonym method. (In fact, this diagram is a bit simplified-ali

interfaces actua!!y include a few more standard methods, which
aren't shown here.)

Each interface provides one or more methods.

Introducing ActiveX and OLE

A C(Jtv1 object is
implemented
inside a server
and usua!!y
supports rnultiple

interfaces

Figure 1·3

Figure 1-4

7

.. ~
··.'!;

,· .. ;· ·,

·)
.)

BLUE COAT SYSTEMS - Exhibit 1034 Page 11

8

Adient uses an

interface pointer
to invoke an

interface's

methods

figure i-5

Each COM object
is an instance of

a class

To invoke the methods in a C0l'v1 object's interface, a client must

acquire a pointer to that interface. A COM object typically pro-
vides its services through several interfaces, and the client must
have a separate pointer to each interface whose methods it plans
to invoke. For example, a client of our sample C0!\-1 object \o\Jou!d

need one interface pointer to invoke the methods in the object's

spe!! checker interface and another pointer to invoke the method
in the object's thesaurus interface. Figure 1-5 shows a client with

pointers to two interfaces on a single COM object.

. ,. (' ' _,..... - ' . . ··- . . " -
I\ <:uenl wun polnlers tu LWQ or a LVJYI ODJel.TS 1nu~rr~n:es.

Pointer to spell
checker interface

Pointer to thesaurus
interface

Every COM object is an instance of a specific class. One class, for
example, might contain objects that provide spell checking and

thesaurus services, while another might contain objects represent-
ing bank accounts. Typically, you must knovv an object's class to
begin running an actual instance of that object, which you can do
using the COM library. This library is present on every system that

supports COM, and it has access to a directory of aii avaiiabie
classes of COM objects on that system. A client can, for example,
call a funclion in the CCJtvi library specifying the class of COtvi

object it wants and the first supported interface to which it wants
a pointer. (The C0t'v1library provides its services as ordinary

function calls, not through methods in COM interfaces.) The COM
library then causes a server that implements an object of that class

to start running. The iibrary aiso passes back to the initiating client

a pointer t~ the requested interface on the nevvly instantiated
COM object. The ciient can then ask the object directiy for point
ers to any other interfaces the object supports.

Once a ciient has a pointer to the desired interface on a running
object it can start using the object's services simply by invoking

Chapter One _ _I

BLUE COAT SYSTEMS - Exhibit 1034 Page 12

the methods in the interface. To a programmer, invoking a rnethod
looks like invoking a local procedure or function. In fact, how-
ever, the code that gets executed might be running in a library or

in a separate process or as part of the operating system or even on
another system entirely. VVith COf\A, clients don't need to be

aware of these distinctions-everything is accessed in the same
\>Vay. As shovvn in Figure 1-6, one common mode! is used to

access services provided by aii kinds of software.

With COM,. an application acce.~~Jse.liJ an object~" services (no matter
lvhere that object resides) by invoking a method in an interface ..

CO!vl and Object Orientation
Objects are a central idea in COM. But how COM defines and
uses objects son1etiiT1es differs frotTI the way objects are used in
other popular object technologies. To understand how COM
relates to other object-oriented technologies, it's useful to describe
what's commonly meant by the term object-oriented and then see
hovJ" CO!'v1 fits in.

Defining an object The term object has been blurred by mar-
keteers trying to !atch on to the latest fad, but in the minds of

most, object-oriented technologies have a few key characteristics.

Chief among these is a common notion of what constitutes an

object. There is widespread agreement that an object consists of
two elements: a defined set of data (also called state or attributes)

Introducing ActiveX and OLE

Figure 1-6

An object is a

combination of

data and methods

9

BLUE COAT SYSTEMS - Exhibit 1034 Page 13

I

I

I

I
10

Figure 1-7

Uniike COM, most
popular object

technologies
al\o·w only a

singie interface
per object

in COM, a ciass
identifies a par

ticular imple-

mentation of a
set of interfaces

and a group of methods. These methods, commonly implemented
riS procedures or functions, rill ow'" client of the object to ask the

object to perform various tasks. Figure 1-7 shows a simple picture

of an object

An object has both n;eiJ;ods and data.

So far, so good-objects in COM are exactly like this. But in most

object technologies~ each object supports a.sing!e interface vvith a
singie set of methods. in contrast, COM objects can-and neariy
always do-support more than one interface . .An object in C++,
for exarnple1 has only a single inierface that includes all the

object's methods. A COM object, with its multiple interfaces,
might well be in1plemented using several C++ objects, one for
each COM interface the object supports (although C++ isn't the
only language that can be used to build CO~v1 objects). 2

Another familiar idea in object technology is the notion of class.

A!! objects representing bank accounts, for example, might be of

the same ciass. Any particuiar bank account object, such as the
one representing your account; is an instance of this class.

COM objects, too, have classes, as already described. in COM, a
class identifies a specific implementation of a set of interfaces.
Several different irnplernentations of the sarne set of interfaces can
exist, each of which is a different class. From the client's point of

view, what n1atters are the interfaces. How those inteifaces are

implemented, which is what the class really indicates, isn't the

2 It's worth noting that, like COM objects, objects in the Java programming
language can have muitipie interiaces. in fact, as described in chapter 11,
java is a good fit for deveioping COM objects in scvcrai other ways, too.

Chapter One

,I
I

J

BLUE COAT SYSTEMS - Exhibit 1034 Page 14

c! ~nt's concern, This abi! ity to work identical !y with different kinds

of objects, each supporting the same interfaces but implementing

them differently, is called polymorphism. It's described a bit more

in the next section.

Encapsulation, polymorphism, and inheritance If a tech no logy

models things as groups of methods and data and then Oiganizes
those groups into classes, is that sufficient to qualify it as object-

oriented? /\!though there's plenty of debate, the ans\.ver frof1! most

quarters is no. In general, being object-oriented requires support

for three more characteristics: encapsulation, polymorphism, and

inheritance.

Encapsulation means that an object's data is not directly avai!ab!e

to the object's clients. instead, that data is encapsulated, hidden

away from direct access. The only way to access the object's data

is by using that object's nlethods-. These n1ethods collectively

present a well-defined interface to the outside world, and it's only

through this interface that a user of the object can read or modify

its data. Encapsulation protects the object's data from inappropriate

access and !ets the object itself control ho\v the data is accessed.
By preventing inadvertent, incorrect changes from being made

directly to an object's data, encapsulation can he!p enormously in

the creation of better software.

C++ provides direct support for encapsulation (although it also

offers ways around it). if a programmer inappropriateiy attempts

to directly modify an object's data, the compiler can flag the

attempt as an eiiOi. Although C0tv1 isn't a piogiainining language,
the same idea holds. A client can access a COM object's data only
through the methods in that object's interfaces./\ co,~v1 object's
data is encapsulated.

The second defining characteristic of object-oriented technologies

is poiymorphism. Simpiy put, poiymorphism means that a client

can treat different objects as if they \A/ere the same, and yet each

object wiii behave appropriateiy. For exampie, think of an object

representing your checking account. This object probably has a

Introducing ActiveX and OLE

Encapsulation

prevents a client
from directiy
accessing an
object's dat.J_

COM objects
support
encapsulation

Polymorphism
lets a client treat
different objects
as if they were
the same

11

BLUE COAT SYSTEMS - Exhibit 1034 Page 15

12

Different objects
can irnpiE'mt:>nt

the same method
in different ways

COM objects
provide

po!ymorphism

Withdrawal method, which you implicitly call each time you

write a check. You rnight also have an object representing your

savings account, an object that also has a Withdrawal method.

To a client, these two methods look just the same; and when

either method is invoked, the same thing happens: the object's

balance shrinks.

In fact, however, the implementation of these two methods might

be quite different. The implementation in the savings account

object might simply check the requested debit amount against the

account balance. !f the debit amount is smaller than the balance,
the request succeeds; if not, it fails. The Withdrawal method in the

checking account object, on the other hand, might be a hit more

cornplex. Checking accounts cornrnonly offer an autornatic loan

up to a certain amount if a check would otherwise bounce. In

implementing the \Vithdra"vval method, the checking account
object could check the requested debit amount against both the

current account balance and the maximum loan currently avail-

able. In this case, the request succeeds and the check clears if the

requested debit amount is less than the sum of the current balance

and the available loan amount.

To a client, these two Withdrawal methods look alike; the differ

ences in their implementation, important as they are, are hidden.

This ability to treat different things as if they were the same, with

each nevertheless behaving appropriately, is the essence of poly

morphism. This example also demonstrates the great benefit of

polymorphism: clients can remain blissfully unavvarc of differ=

cnccs that don't concern them, which simplifies the development

of client soft\·vare.

COM objects fully support this idea. It's entirely possible for two

objects of different classes to present the same interfaces or perhaps

oniy a single common inethod definition to their ciients, even

though each ohject implements the relevant methods differently.

The final defining characteristic of traditional object-oriented

technologies is inheritance. The idea is simple: given an ohject,

Chapter One

BLUE COAT SYSTEMS - Exhibit 1034 Page 16

you can create a ~e'vV object that automatically includes some or

all of the features of the existing object. just as a man might, with

no effort on his part, inherit male-pattern baldness from his

parents, an object cim automatically inherit characteristics of

another object.

There are various kinds of inheritance. One distinction that's

worth making here is between implementation inheritance and

interface inheritance. vVith implementation inheritance, an object

inherits code from its parent. When a client of the child object

calls one of the chi I d's inherited methods, the code of the paient's

method is actually executed. With interface inheritance, however,

the child inherits on!y the definitions of the parent's methods.

When a client of the child object calls one of these methods, the

chi!d itself must provide the code for handling the requests.

implementation inheritance is a mechanism for code reuse, one

that's widely used in languages such as C++ and Smallta!k.' Inter

face inheritance, in contrast, is really about reusing a specifica
tion-the definition of the methods that an object supports. An

irnportant reason for using interface inheritance is that it rnakes it

easier to provide polymorphism. Defining a new interface by

inheriting from an existing interface guarantees that an object

supporting the new interface can be treated like an object that

supports the o!d one.

Programming languages such as C++ support both implementa
tion inheritance and interface inheritance. COM objects, how

ever, support only interface inheritance. COM's creators beiieved

that, given COM's very general applicability, supporting imple

mentation inheritance was an inappropriate (and even potentially

dangerous) way for one COM object to reuse another. For example,

because irraplementation inheiitance often exposes the inheriting

object to details of its parent's implementation, it can break the

encapsulation of the parent. Supporting only interface inheritance,

as COM does, allows reuse of a key part of another object-its

interface--\vhi!e avoiding this problem.

Introducing ActiveX and OLE

lnheiitance allovvs

a new object to
build on an

existing object

I mpiementation

inheritance and

interface inheri
tance are diffeient

Interface inheri

tance reuses a

specification
rather than

actual code

COM objects
support only

interface
inheriia.nce

13

BLUE COAT SYSTEMS - Exhibit 1034 Page 17

14

COM objects.

can reuse

code through
containment or

aggregation

COM is object-
oriented, but
il differs frorr~
other popular

object-oriented
techno!ogies

Hardware has
progressed faster

than software

But without implementation inheritance, ho\AJ can one COM object

reuse another's code? in COM, this is done with mechanisms
called containment and aggregation. With containment, one
object simply calls another object as needed to help carry out its

functions. With aggregation, an object presents one or more of

anothei object's interfaces as its own; vvhat a client sees as a
single object providing a group of interfaces is in fact two or more
objects aggregated together. /\s you might imagine, aggregation

takes a bit more work to implement than containment does, but
both provide an effective \·vay to build on existing COt\A objects.

Is COM reaiiy object-oriented! COM has a great deai in common
with other object-oriented technologies. !ts basic notion of an
object as a coiiection of data and methods resembles that idea in
languages such as C++, although COM allows a single object to
have nlultiple intelfaces. co, .. v1 also provides encapsulation, poly

morphism, and interface inheritance, but it reuses code through
containment and aggregation rathei than thiough implementation

inheritance. Objects are fundamental to COM, but the way those
objects are defined and exactly ho\·V they behave differ some\Alhat
from other widely used object-oriented technologies.

So is COM rea!!y object-oriented? The ans\·ver depends on \Nhat

this question means. if it's asking "Are COM objects exactiy iik:e

objects in languages such as C++?", the answer is obviously no,
This shouldn't be too surprising, since COt'v1 solves a problem that
is quite different from the one addressed by an object-oriented
progiamming language. But if the real question is instead "Does

COM provide the key features and benefits of objects?", the

ansvv'cr is just as obviously yes, and it's this second question that
really matters. The goal isn't to get lost in debates about whose
definitions to use. The goa! is to \A/rite better softv·;are.

COM and Componeni Software
In the past 35 years, hardware designers have gone from building
room-size compuiers io creating iighiweighi iaptops based on
tiny, powerful microprocessors. In the same 35 years, software

Chapter One

BLUE COAT SYSTEMS - Exhibit 1034 Page 18

developers. have gone from writing large systems in assembler and

COBOL to writing even larger systems inC and C++. While this is

(arguably) progress, the software world isn't advancing at the

sarne raie as the hardware world. Just what do hardware d~sign~rs
have that software developers don't?

The answe.i is components. lfhardwaie engineers had to stait

from sand every time they built a new device, if their first step

Vv'as al\.vays to extract the silicon tq make a ·chip, they vvouldn't

progress very quickly, either. But, of course, this isn't what they

do. Instead, a hardv·1are designer typica!!y builds a system out of

prepackaged components, each of which performs a particular

function, and each of which provides a defined set of services

through well-specified interfaces. Hardware designers can greatly

simplify their task by reusing the work of others.

Reuse is also a path to creating better software. Software developers

today often start with something that's not too far from sand and

then proceed to retrace the steps of a hundred programmers before

them. The result is often very good, but it could be even better.

Creating ne\V applications from existing, tested components is

iikeiy to produce more reiiabie code. And, just as important, it

can be much faster and significantly cheaper.

This idea of defining reusable parts, each presenting its services

through well-specified interfaces, is exactly the approach that

COM takes. C01'vi objects provide an effecdve mechanism for

software reuse by allowing the creation of discrete, reusable

components. These components can act much like the vaiious

chips that hardware designers use, with each one supporting a

specific function. Perhaps because of this analogy, this approach

has become known as component software.

This is hardly a nev; idea. Developers have recognized the poten=
tial power of software reuse since the days before compilers.

Some of the strictures on reuse are cultural-incentives in many

organizations encourage reinvention rather than reuse, for

example. But technology also constrains the potentia! for reuse.

Introducing ActiveX and OLE

l-lardvvare design

is aided by heavy
reuse of existing
cornponents

Component

software applies
this ide;; to the

creation of nc\.V

software

Existing ap-
proaches to

software reuse

haven't been
sufficient

15

BLUE COAT SYSTEMS - Exhibit 1034 Page 19

16

Software reuse

through libraries
can help

Soft\.V<HC reuse
with objects can

also help

But no large
market in re~

usable objects
exists today

Existing reuse mechanisms, in1portant as they are, don't go far

enough. To understand why this is so, it's heipfui to examine the

two reuse schemes that are most commonly seen today: libraries

and objects.

As a mechanism for reuse, libraries have a lot to offer. This is

especially true of dynarnic-link libraries, which can be loaded on

demand and are typically shared rather than statically linked into

only one application. Libraries are familiar and easy to use. Since
they can be distributed in binary form, there's no risk of revealing

proprietarr source code to prying eyes. And, \vith a !itt!e care, a
program written in one language can call the routines from a

library \Airitten in a different language. Libraries aren't without

problems, however. One significant headache is the difficulty of

adding functionality: how can you install a new version of a library

without breaking applications that use the old ver~ion? And how

can you easily and safely have more than one implementation of

the same library on your system, 'vVhich might be required in some

circumstances? Libraries just aren't enough.

By encapsulating data and methods, objects can also provide a
dean way to package reusable chunks of functionality. Much like

traditional libraries, objects that so!ve specific p-roblems can be

created once and reused many times. But objects have even more

to offer than libraries do, Through inheritance, one object can

reuse anOiher object's interface definition or its code or both. And

polymorphism simplifies reuse by hiding irrelevant differences

from an object's d ients.

Despite these advantages, object technology hasn't achieved its

full potential for enabling softvvare reuse. To see vv~y, consider

this: why can't an organization that wants to write a new applica-

tion start the process by visiting the softv.tare store/ checking a
catalog, or searching the Worid Wide Web for the objects it wiii

need? Why is there no !arge market in business-focused1 reusable

objects? Hardware developers benefit from this kind of market, so

why can't creators of software have one, too? Why is there no

object bazaar, rich with choices?

Chapter One

BLUE COAT SYSTEMS - Exhibit 1034 Page 20

The answers are rooted in the object technologies we use today,

Objeci-oriented languages such as C++ were designed to aiiow

reuse within workgroups or, at most, a single organization.

VVhile you can certainly find sorne reusable C++ objects for sale,
the kind of worldwide object bazaar envisioned here isn't feasible

·with existing technology. Standing in the vvay are three major

problems.

The first and perhaps most important problem is that standards for

linking binary objects together don't really exist. Although you

can compile a C++ object and then use that compiled binary

object from a library, this is guaranteed to work oniy when the

same compiler is used for both the library and the application
using the library. C++ doesn't have cross-compiler standards for

the format of binary objects, so building and distributing binary

object libraries is problematic, at best. As a result, currently
available C++ object libraries almost always include source code.

,A, related point: reusing code through implementation inheritance

tends to bind parent and child objects together tightly. The creator

of the child object should usua!!y have access to the parent's
source code, if oniy to know exactly what happens when an

inherited method is called,

is it reasonable to expect that the creators of the software avail

able in our hypothetical object bazaar will be willing to distribute

their source code, thus revealing their proprietary secrets? The
answer appears to be no, since no such bazaar exists. Although

source-code-based reuse is entirely reasonable 'vVithin a develop~
ment group or even inside a single company, for a worldwide

object bazaar binary distribution is essential.

The second problem is that, despite its dominance in object

oriented development, C++ is not the on!y language in the \·Vor!d.

An object written in C++ can't be easily reused in, say, a Smaiitaik

program" And what about tools such as Powersoft's PowerBuilder

or Microsoft's Visual Basic? While one can argue about whether

these environments are really object-oriented, one cannot argue

with their popularity. An object bazaar should offer objecis that

Introducing ActiveX and OLE

Traditional obj<"ct

technologies
present three
obstacles to
c.rP.Mi ng <=~

component

software market

Problem l:
Distributing

objects with
their source
code

Problem 2:
Reusing objects
across different
languages

17

BLUE COAT SYSTEMS - Exhibit 1034 Page 21

18

Problem 3:
Rei inking or

recompiling an
entire application
\vhcn one object

changes

COlvl solves all
three problems

COJ'A aims to
create a large

market 1n

reusable
components

can be used and reused across various languages and development

enviionments, but currently ifs difficult to ieuse· an object vvritten

in one language in an application written in another language.

The third problem is this: if you create an application out of
objects written in a language such as C++ and then decide to·

change one of the objects, you rnust at best re!ink, and perhaps

even recompile, the application. if several applications on one

system use this changed object, you must relink or recompile all

of them. ideaiiy, you'd have a way to drop in a new version of a

single object and have all applications that use this object auto

rnatically use the new version. And, of course, this should happen

without rei inking or recompiling any of those applications.

All of these pioblems aie solved by C0l'v1. C0t'v1 objects can be

packaged into libraries or executable files and then distributed in

a binary format (vvithout the source code). Since COJ'./1 defines a

standard way to access these binary objects, COM objects can be

vvritten in one language and used in another. And since CO.M
objects are instantiated as needed, when a new version is in

stalled on a system, <'lll clients will automatic:ally get the new

version the next time they use the object. C01YI offers the reuse

benefits of both I ibraries and objects, along with other benefits that

neither llbrailes nor objects alone can provide, chief among them

a common approach to accessing all kinds of software services.

C0lv1 brings the benefits of ·widespread reuse, prevalent for so
iong in hardware design, to the creation of software. In fact, sites

fu!! of COf\A-based components a! ready exist on the \AJor!d \A/ide

Web, where you can browse or even download components, and

magazines are chock-ful! of component advertisements. The.object

bazaar is becoming a reality, allowing software developers to

create applic<'ltions that are at least partially built from reus<'lble

parts. COtv\'s general service architecture is useful for rnany tasks,

but supporting the creation of component software was perhaps

the single mo~t important goal in the minds of its creators.

Chapter One

BLUE COAT SYSTEMS - Exhibit 1034 Page 22

The Benefits of COM
Anything that simplifies the complex endeavor of creating large
pieces of software is good. The conventions defined by COM do

this in several vvays.

COM offers a useful way to structure the services provided by a

piece of softvvar~. Developers can design their implementation by
first organizing it into COM objects and then defining the inter

faces for each object. This is one of the traditional benefits of an

object-based approach to design and development. And, as just

described, COM goes further by allowing developers to create

software components that can be safely distributed and reused in

a variety of ways.

A second benefit of C0t~v1 has already been rnentioned: consis

tency. By providing a single approach for accessing all kinds of

softvvare services, CQ,•\1 simplifies the problems developers- face.

Whether the software in question is in a library, in another process,

or part of the system softv-;are, you can ahvays access it in the
same way. A side effect of this consistency is that COM tends to

blur the distinction between applications and system software. !f

you can access everything as a COM object, you'ii perceive iittie

si>mificant differf'nCf' betwf'f'n these two kinds of softwam. which - -o --- . - - - - --- - - - - -- --- - - - - - - - - -, ------

have traditionally been quite distinct. Instead, you can develop

applications that build on the software services available in your

environment, vvhatever they happen to be and vvhoev~r happens

to provide them.

In addition, CO~v-1 is blind to the programming language being

used. Because COM defines a binary interface that objects must

support, you can v;rite CO,..\A objects vvith any language that can
support this interface. You can then use any language capabie of

making ca!!s through this binary interface to invoke the methods

in the interfaces of those objects. An object and its ci ient neither

know nor care what language the other is written in. While it's fair

to say that sorne languages are better suited for use with COl'vt

than others, COM itself strives to be language independent.

Introducing ActiveX and OLE

COM offers the
benefits of object
orientation

COtv' provides
consistency

COM is language
independent

19

BLUE COAT SYSTEMS - Exhibit 1034 Page 23

,.,_

\-:

.•-·

20

COM's approach

to versioning
is simple and

efficient

CO~.A is used
wideiy through

out Microsoft's
product I i ne

Another benefit of COM stems from its approach to one of the

most persistent problems in developing and deploying software:
versioning--that is, replacing an existing version of software with

a new version that offers new features, while not breaking any

existing clients. COM objects provide a simple answer, based on
an object's ability to support more than one interface. As ex

plained earlier, a COM object's client must acquire a pointer to
each specific interface it needs to use. To add features in a ne\v
version of a COM object, then, you can simply offer the new

features through a nevv interface on the object. Existing interfaces

aren't changed (in fact, COM prohibits changes to existing inter

faces), so clients using those interfaces are unaffected. And these
existing clients never ask for pointers to the new interfaces. Only
new clients know enough to ask for the interfaces that offer the new

features, and so only new clients are affected by the new version.

COM also solves the other side of the versioning problem: what if
a client expects an object to provide certain functionality, but the
object hasn't yet been updated to offer it? The client requests a
pointer to the interface through \Vhich this ser,;ice \AJou!d be avail-

able but gets nothing in return. Because COM supplies a dean W<!Y

to !earn that an object isn't all the client hoped it wou!d be, devel
opers can write clients to handle this situation gracefully instead
of crashing. This simple, clean approach to versioning, which

allows independent updates to both clients and the objects they

use, is among COM's biggest contributions.

t·v1icrosoft itself is adopting C0l'v1 in most of its products. The
company is using COM to define extensions to Microsoft Win-
dov,/s and fl.Aicrosoft \Vindovvs NT, applying it in various vvays in

many Microsoft applications, and using it to define standard
interfac~s for many kinds of services. CQ,/\i\15 approach can be

applied profitabiy to the development of all kinds of software.

COM's Availability
C01v\, which was developed by Microsoft, was originally made

available on Windows and Windows NT. Microsoft now also
provides support for C0l'v1 on the l'v1acintosh. Although tv1icrosoft

Chapter One

BLUE COAT SYSTEMS - Exhibit 1034 Page 24

does not support COf-....1 on other operating systems~ this void has

been fiiied by third parties. Several companies, large and small,

provide implementations of COJI.A and various COJI.A-based tech

nologies on a wide range of operating systems. Software devel

oped using COM objects wi!! be avai!ab!e on a!! kinds of systems,

ranging from workstations that run Windows and Windows NT to

IBM mainframes that run MVS. And, as you'll see later, Distributed

co,~vi (DCOtvi) allows COtvi objects on all kinds of systerns to
interact. COM's increasingly central role in software developed for

'v'\findovvs and \'Vindows 1\JT, coupled with the ubiquity of these

systems, suggests that this new approach to creating software will

\Vork its \Vay into a!! parts of the enterprise.

Defining Standard interfaces with COM
COM provides the basic mechanism·s needed for one chunk of

software to provide services to another through weii-defined

interfaces implemented by COM objects. But who defines those

interfaces? Unless a CQ,\l, object and its client agree on what
interfaces exist, what methods those interfaces contain, and what

the methods actually do, it's not possible for them to accomplish
anything useful.

In some cases, developers must define application-specific inter-
faces. For example, an investment bank creating its own custom

soft\AJare for carrying out trades might decide to design and bui!d

that software using COM. The software's developers can define

appropriate custom interfaces as they see fit and then implement

support for those interfaces in their own COtvl objects. There's no

need to contact or seek approval from Microsoft.

But suppose that all investrnent banks have sirnilar requirernents
for objects and their interfaces. Why not bring them together to

define industry-standard interfaces for these objects? This would

allow the creation of a market for standard components produced

by competing companies. OLE Industry Solutions, a ~v1icrosoft-
sponsored program to define these sorts of interfaces, has pre-

cise!y this goal. Through this program, groups from f_inancia!

Introducing ActiveX and OLE

COt'A \Vi !I be
available on
many operating
systems

Application
developers can
define i nteriaces
as they see fit

The OI.E Industry
Soiutions program
is designed to
create industry
standard interfaces

21

BLUE COAT SYSTEMS - Exhibit 1034 Page 25

22

Microsoft itself
deli nes standard

interfaces in
rnany cases

Every ActiveX and
OLE technology

defines a set of
interfaces using

COM

companies, healthcare organizations, providers of point-of-sale

equipment, and others have defined standard interfaces for com-

ponents useful in each area.

There are other kinds of services where new standard interfaces

might become even more \AJe! I knO\AJn. For examp!e1 suppose that

the owners of an operating system decided to make the services

of its file system available via COM. They would need to define

one or more COM objects, each with a specific class and support

ing a defined set of interfaces. Then they would have to make

those interface definitions available to the potential users of the

COM objects·-that is, to developers of applications that use the

nevv file system.

The original problem addressed by OLE, creating compound docu-
ments, is another example of the need for standard interfaces./'\

compound document (as you saw in Figure 1-1 on page 2) contains

elements from tvvo (or possibly more) applications that share a

single window on the user's screen, aiiowing the user to work with
information from hoth applications. Clearly, hoth applications

rnusi cooperaie to make ihis possible, proviuing servic<:'S io each

other that allow them to present a seamless interface to the user.

They can do this by each suppoiting ceitain C0l'v1 objects, each of

which in turn supports specific interfaces. And since the goal is to

allovv a!! kinds of applications to cooperate in a standard v.;ay/

someone must define and publicize the required COM objects
and interfaces.

Defining (and sometimes implementing) standard interfaces to

perform well-defined functions is what ActiveX and OLE are a!!

about. in Structured Storage, for example, a COM-based technol

ogy provided with Windows and Windows NT, COM objects and

interfaces define elernents of a file systern. The technology for

creating compound documents, one of the most commonly sup
ported CO~v1-based technologies/ is implemented by CQ,'tv1 objects
with standard interfaces that allow applications to share screen

rea! estate and create compound documents.

Chapter One

BLUE COAT SYSTEMS - Exhibit 1034 Page 26

ActiveX and OLE technologies are nothing more than softvvare

that provides services to clients through COM interfaces sup-

ported by COl\.-1 objects. Various parts of /\ctiveX and OLE define

standard interfaces for various purposes. Some of those mterfaces

are supported by system software, as in the file system example;

others, like those for creating compound documents, must be

supported by individual applications. In either case, the funda

mental mechanism used to provide services to clients of the

software is the same: COM.

--- •1• a ~• •" 1-•-- I I •
uescniJim!: Actlvex ana ULt 1ecnno1oe:•es

'-" '-"

OLE, which once again refers only to technologies for creating

compound documents, and the broad set of technologies assigned

the ActiveX label are all built using COlv1. i'v1any of these tech

nologies have their roots in compound documents, but others

address entirely different problems. This section provides a brief

introduction to the most important COM-based technologies.

Automation
Spreadsheet applications, word processors, and other personal

productivity software give people all sorts of useful capabilities.

'vVhy not let other software access those capabilities, too? For this

to be possible, applications must expose their services to pro

grams as well as to people. In other words, they must be program

mable. Providing this programmability is the goal of Automation
(originally knovvn as OLE A.utornation).

An application can become programmable by exposing its ser--

vices through ordinary COl•v1 interfaces. This is se!dcrn done,

however. Instead, applications expose their services through

dispinterfaces. A dispinterface is much !ike the interfaces de

scribed so far-it has methods, dients access those methods using

an interfa.ce pointer, and so on-but it also differs in significant

ways. in particular, dispinterface methods are much easier to

invoke from clients written in simple languages such as Visual

Introducing ActiveX and OLE

Automation

provides
programmability

Automation clients
typic.:1lly rtrcess rln

object's methods
via a dispinterface

23

BLUE COAT SYSTEMS - Exhibit 1034 Page 27

24

Excel a I lows
access. to its

services through
dispinteriaces

Many other
applications
also support

COM objects can
make their data

persistent

Basic. This is a crucial point because Visual Basic and tools like it
are the first choice for most people who want to write programs
that access an application's interna! services.

lo get a sense of how useful this idea can be, think of Microsoft

ExceL This spreadsheet program offers a \vide range of functions
that are typicaiiy accessed directly by the person using Excei. it's
also possible, of course, to create complete applications using

Excel by writing them in Excel's built-in macro language.

Today, however, Microsoft Excel supports Automation-that is,
r _I . I •, • , I • _ •I I I ,I I I• • , .(' -
excel maKe~ 1r~ rnrerna1 ~erv1ce~ avalldOie mruugn Ulspmrenace~

supported by various COM objects, which provide methods such
as Average, CheckSpell'ing, and many more.. Applications built on
Excel no longer are restricted to using Excel's built-in macro
language but instead can be \Vritten in virtual !y anything. Excel

itself is no longer only a tool for end users-it's now a toolbox for

application builders, too.

This same feature, programmatic access to internai services
through Automation, is supported by a host of other applications.

This ability to easily access the powerful features offered by an
existing application is what makes Automation among the most
widely used C0l'v1-based technologies. For a n1ore detailed dis
cussion of Automation, see Chapter 4.

Persistence
Objects have data and methods, and many objects need a way to
store their data \vhen they're no(running. In the jargon of the

cognoscenti, an object needs a way to make its data persistent,
which typica!!y means storing that data on disk~ COM objects
have many choices for how to accomplish this. One of the most
commonly used is known as Structured Storage.

To understand Structured Storage, think first about how applica
tions save their data in ordinary files. Traditional file systems allow
applications to share a single disk drive without getting in one

Chapter One

BLUE COAT SYSTEMS - Exhibit 1034 Page 28

another's \vay. Each has its o\vn files and maybe even its O\Vn

directories to work with, independent of what other applications

might be doing. Applications don't need to cooperate in storing

their data, since each one can be assigned its own storage area.

With COM, however, the situation gets more complicated. Be

cause COM aiiows aii kinds of software to work together using a

single model, independently developed COM objects might

becorne part of what the user sees as a single application but

might still need to store their data on disk separately. While each

COl"vi object could use its ovvn file, to the application 1s users the

objects are invisible-this is a single application-and having to

keep track of mu!tip!e files is unlikely to rnake users very happy.

What's needed is a way for multiple COM objects to share a

single fi!e. This is exactly \·vhat Structured Storage provides. By
essentiaiiy building a fiie system inside each fiie, Structured

Storage allows the components comprising a single application to

each have its own discrete chunk of storage space, its own "files."

To the user, only a single file exists. To the application, however,

each component has a private area for storing data1 all of which

are actually contained within a single disk file.

To make this vvork, Structured Storage defines tvvo kinds of CO,~v\

objects, each supporting appropriate interfaces. Called storages
and streams (i!!ustrated in Figure 1-8 on the fo!!ov.:ing page)1 these

objects are anaiogous to the directories and files, respectiveiy, of

common fi!e systems. w·ith Structured Storage, a single file can

contain data stored by many COM objects, each storing its data

in its own storage or stream. just as a conventional file system

allows different applications to share a single disk drive, Siruc

tured Storage provides a way fcir different applications to share a

single file ..

There's more to persistence than Structured Storage, however. A

COl·v1 object can save its persistent data in other ~ways, such as in

an ordinary file or even on the World Wide Web. Also, an object

Introducing ActiveX and OLE

Structured Storage
allows COM
nbj~cts to share

a single disk file

Structured Storage
organi7es a file
into storages and

streams

.. - ·:'

25

BLUE COAT SYSTEMS - Exhibit 1034 Page 29

26

Figure 1-8

A c! ient can create

and initialize a
COM object

A moniker knovvs
hovv to create and

in itiai i ze another

object

must supply a way for its clients to tell it when to load and save its

persistent data. To allovv this, an object can support one (or per
haps more) of several standard interfaces defined for this purpose.

Chapter .5 presents a more complete description of persistence in

COM objects.

With Structured Storage, a single file contains several storages
and streams.

Monikers
Imagine an instance of a COtv1 object that represents your bank

account. "lo access your account, a ciient needs to start this object

and then have the object !oad its data (your account balance and

other information). COM offers a way to do this-that is, it pro

vides mechanisms th<Jt allow a client to instanti<Jte <Jnd initialize<~

COJVl object.

To perform this task the client needs to know quite a bit. It must

know, for exarnple, how to locate the correct data for your ac

count and how to tell the appropriate COM object to load this

data. VJhile it's sometimes ieasonable to expect the client to knovv

all this, it would be nice if there were some way to hide this

detail, to !et the client slmp!y say1 ''Create this object instance"
(your bank account) and have everything happen automatically.

This is exactly vvhat monikers do. A rnoniker is itself a CO/\"

object, but it has a very weii-defined purpose: each moniker

knows how to create and initialize one other object instance. !f!

Chapter One

BLUE COAT SYSTEMS - Exhibit 1034 Page 30

had a moniker for your bank account object, for instance, ! could

ask that moniker to create, initialize, and connect me to your

account. All the details of what's required to do this are hidden

frorn rne (the client). If I wanted to work with two bank accounts,

using monikers to access them, I'd need two separate monikers,

one for each account object. In general, monikers aren't required

in the COM environment; they just make things easier for the

dient. :\t\onikers are described in Ch?pter 6.

Uniform Data Transfer and Connectable Objects
Exchanging data is a fundamental softvvare operation. Applica

tions copy data back and forth, for example, when their user

· moves data via the clipboard. Various kinds of system software,

such as device drivers, provide information frorn their devices to

software using those devices. Given the plethora of r·easons for

different chunks of software to exchange data, ifs not surprising

that an overabundance of schemes have been invented to do it.

In the CO~v"\ vvor!d, Uniform Data Transfer ls the standard vvay to

exchange information. As with aii ActiveX and OLE technologies,

the applications involved must support particu!.ar COJ\1\ interfaces.

The methods in these interfaces define standard ways to describe

the data being moved, to specify where that data resides, and to

actuaiiy move it. They even define a simple mechanism that lets

one application inform another when an interesting piece of data

becornes available. Although it's hardly the rnost exctting thing
that COM has to offer, Uniform Data Transfer plays an important

part in much of the vvork that CO~v1~based applications perform.

While it's useful in some situations, the simple scheme defined by

Uniform Data Transfer for notifying a client 'vvhen interesting data

has appeared isn't entirely sufficient, however. A COM-based

technology knovvn as Connectable Objects has been created to

address this deficiency. By providing a more generai mechanism

through which an object can ta!k back to its client, Connectable

Objects makes it easy for clients to receive notifications of inter

esting events. Both Uniform Data Transfer and Connectable Ob

jects are discus,sed in Chapter 7.

Introducing ActiveX and OLE

Unifoim Data
Transfer iets aii
kinds of software
excha_nge data in

a common 'vVay

c•

27

BLUE COAT SYSTEMS - Exhibit 1034 Page 31

28

OLE technology
allows the

ere a tion of

compound
documents

Compound Documents
Applications get more complicated every day. Word processors
add graphical capabilities, spreadsheets add charting functions,

and it can seem as if we'ii eventuaiiy wind up using one big
application for everything. But that isn't really the aim; rather, the

goal is integration among different applications. A word processor

doesn't need to add graphing functions, for instance, if you can

use an existing graphing application froni vvithin the \.Yord proces

sor. The intent is to have applications work together smoothly. A

user should be able to see vv-hat appears to be a single document
but have different applications cooperate to work on various

pieces of that document.

The OLE technology (formerly known as OLE Documents) ad

dresses this problem. By supporting appropriate COM objects,
each with its own set of interfaces, separate applications can

cooperate to present one compound document to the user, as

shovvr; in Figure 1-9. These interfaces are cornpletely generic
neither application knows what the other one is. A user might, for

example, vvork vvith a \Vord document that contains ~n Excel

spreadsheet, as shown in the figure. When the user modifies the

text, VVord is in contra!. Doub!e~c!icking on the spreadsheet part

of the document silently starts Excei, aiiowing the user to manipu

late the spreadsheet's data using Excel. The word processor doesn't
need to buiid in the functions of a spreadsheet; with OLE, an exist

ing spreadsheet application can simply be plugged in as needed.

The standard interfaces defined by OLE enable this kind of inter

action among all sorts of applications from any vendor, not just

.spreadsheets and w·ord processors produced by ,~v1icrosoft. You

can include sound in graphs, create presentations with integrated

video clips, and more. i'\'\any applications today, from a vvide

range of vendors, support OLE as a way to interact with other

app! ications.

Chapter One

BLUE COAT SYSTEMS - Exhibit 1034 Page 32

Documents can contain elements managed by separate applications.

Document

A Word interface pointer
for an Excei object

An Excel interface poi ntei
for a \Vord object

When you create a compound document with OLE, one applica

tion always acts as the container. As the narne irnplies, a container
defines the outermost document, the one that contains everything

else. In Figure 'l-9, 'vVord is the containeL Other appllcations,

called servers, can place their documents within the container's

document. In Figure ·l-9, for example, Excel is acting as a server.

Using OLE, a server's document can be linked to or embedded in

the container's document. !f the server's document is ! inked, it's

stored in a separate fiie, and oniy a iink to that fiie is stored in the

container's document (The link is actua!!y a moniker.) !fa server's

document is embedded, that document is stored in the same fiie

as the container's document. (The two applications share a single

file using Structured Storage.)

Creating compound documents was the problem that led to the

creation of C0tv1. Although COI''v1 is used much n1ore widely toda»

the fingerprints of compound documents are visible on many

Introducing ActiveX and OLE

Figure 1-9

Applications act
as containers and
servers

Documents can
be linked to or

embedded in
other documents

29

BLUE COAT SYSTEMS - Exhibit 1034 Page 33

'·-· ,,

~-

30

ActiveX Controls
defines standard

interfaces for
reusable

cornponents

ActiveX controls
were originally

called OLE
controls or OCXs

C0l'·v1-based technologies. This challenging prQblem motivated the

design of a large number of core technologies in this area. Chap-

tcr 8 describes the interfaces that OLE containers and servers must

support and explains how those interfaces work to give a user the

illusion of a sing!e document.

ActiveX Controis
If you want to include a spreadsheet in a text document, why

should you be forced to use all of Excel? If you need only basic

spreadsheet functions, maybe you can get by with a simpler,

faster, and probably cheaper spreadsheet component. Or suppose
that you're using Visual Basic to build an application that needs to

include some spreadsheet functionality. !t'd be great to- just plug in
the basic functions you need without dragging aiong (or paying
for) a complete spreadsheet application. !n fact, you might !ike to

buiid your entire application iargeiy from existing components

that you plug together.

This desire is what ied to the idea of component software, an area

where COM has much to contribute. You can build reusable

cornponents solely with COl'vl itself, but it's also useful to define

some standard interfaces and conventions for this purpose. Using

these} you can build components that perform common tasks,

such as providing a user interface and sending events to a client,

in a common vvay. The Active)(Controls specification defines

these standards.

An ActiveX control is a stand-alone softvvare component that does

specific things in a standard way. Developers can piug one or
more ActiveX controls into an application cre<Jted in, say, Visual

Basic to take advantage of existing software functionality. TI1e

result is software built largely from prefabricated parts---that is,

- component software.

ActiveX controls were originally known as OLE controls or OCXs.

l'v1i~rosoft changed the name to reflect seveial nevvly defined

features that make these controls much more usable with the

Chapter One

BLUE COAT SYSTEMS - Exhibit 1034 Page 34

Internet and the World Wide Web. For example, an ActiveX con

trol can store its data on a page some·where on the 'vVeb, or it can

be downloaded from a web server and then executed on a client

machine. l\nd the container in \Vh.ich the centro! executes need

not be a programming environment-it can instead be a web

brO\A/Ser.

Hundreds of controls are available from dozens of companies,

including spreadsheet controls, controls for mainframe data
access, and many more. You can even select ActiveX controls by

browsing sites on the World Wide Web and then download them

for irnn1ediate use. By far the largest nurnber of cornponents today
are built as ActiveX controls.

ActiveX controls are not separate applications. Instead, as shown
in Figure 1-10, they're servers that plug into a control container.

As ah .. vays, the interactions bet'vveen a centro! and its container

are specified through various interfaces supported by COM ob

jects. ActiveX controls actua!!y make use of many other OLE and

ActiveX technologies. Controls typically support the interfaces

d~fined for embedding, for exampl~, and they also commonly

allow access to their rnethods via the dispiniedaces defined ror
Automation. ActiveX controls are described in Chapter 9.

1he functions packaJ;ed in an AciiveX <:onlroi can be used by any
controi container, such as Visuai Basic or a web browser.

--Visual Basic form

Visual Basic
(control container) ActiveX control

User inteiface element
managed by the
ActiveX control

Introducing ActiveX and OLE

ActiveX controls

reiy on many
other COM-based
technologi~'

Figure 1-10

._,,,

31

BLUE COAT SYSTEMS - Exhibit 1034 Page 35

32

Distributed COM
a! !ows c! ients to

objects on other

machines

Figure i~i1

DCOM uses RPC
and supports

secuiity seivices

Although designed from the start to support distribution, the

original implementation of CO~A ran on cn!y a sing!e system.

CGM objects couid be implemented in DLLs or in separate pro

cesses running on the same machine as their client, but they

couldn't reside on other machines in the network. Distributed
COM (OCOM) changes this. With OCOM, COM objects can

provide their services across rr1achine boundaries, as shown in
Figure 1-11 .

iiiustrating Distributed COM.

Machine X MachineY

To achieve this, DCOM relies on remote procedure call (RPC).

VVith RPC, a client can make vvhat appears to be a local call to

a component, aithough that caii actuaiiy executes in an object

across the netvvork. DCOf\.A also includes support for security

services (controiiing which clients can use which COM objects)

and a way to specify the machine on which an object should be

created. The services supplied by DCOI'vi can be used to build

secure, distributed, COM-based applications, and they are de

scribed in rnore detail in Chapter 10.

COM-Based Service Interfaces
It's often useful to have a common interface to access different

implementations of a service. For example, the Open Database

Connectivity (ODBC) interface built into VVindc\"lS and VVindovvs

NT defines a group of C function calls that can be used to access

any relational database management system. VVith the arrival of

Chapter One

BLUE COAT SYSTEMS - Exhibit 1034 Page 36

COM, these kinds of interfaces can be specifie.d in a common,
object-oriented way. Microsoft has defined several such inter

faces, including those for databases, transactions, and directory

services based on COiv\.

Databases A database management system (DBMS) provides a

way to organize, store, and retrieve information. DBt'"v1Ss are

widely used tools that underlie many applications. Local access to

a DB~v1S is usually through a library linked into a client process or

perhaps through some kind of interprocess communication. Really;

though, a DBt .. AS is simply a collection of services provided by
one chunk of software to another. Why not modei and deiiver

those services as COM objects?

A typical DBMS includes a query processor, various data storage
mechanisms, and more. If standard objects and interfaces were

defined and widely supported, a client could access various
DBMSs in the same way or even use only the best parts from

different ones. For instance, an application might benefit from

using a data storage scheme from one DBMS and the query pro-

ccssor from another. i\nd there's no reason \Vhy those same inter-

faces couldn't be applied more generaiiy and used to access data

that's not in a DBMS. VVhy not have a common approach to

accessing reiationai data and, say; data stored in spreadshef'ts?

COM-based database technology (origina!!y ca!!ed OLE Data
base, or OLE DB) addresses these issues. By defining standard

COM objects and interfaces for data access, this technology

establishes a cornrnon rneans for clients to access data stored in
various fashions. In many ways a generalization of ODBC OLE

Database goes beyond this earlier standard interface by vie·vVing

everything as COM objects. A source of data can be modeled as

a DataSource object, for example, and then have a Command

object defined for it. This Command object might specify an SQL

query or another kind of command that manipulates the data.

Every Command object provides an interface containing an Execute

method, which (not surprisingly) executes the command. The result

I n t r o d u c i n g A c t i v e X a n d 0 L E.

DBMS services
,...,_.,~, I-n -...-•..-•r...-rr>~J
~c.lll Ut:; Q~\..,.'1,-::::');:JC::U

using COM objects

A COM-based
database tech-
noiogy provides
a way to access
data stored in
various 'vVti'(S

. '
'',

:1.

•. <'

33

BLUE COAT SYSTEMS - Exhibit 1034 Page 37

34

A transaction's
operation~ either

a II succeed or
all fai I

transactions
technology

mode!s a
transaction
service as

COM objects

is yet another object, called a Rowset, that contains the result of

the command's execution. This object, in turn, supports an inter

face vvlth niethods that allow exaniination of the data contained

in that object.

All of these objects are defined using CO~"',.Aa, and all present their

services through methods in COM interfaces. The result is an

abstracted vle\V of data access, one that can be ·implemented in

numerous ways and for a range of data access mechanisms.

Transactions !n accessing data, especially distributed data, the

notion of a transaction can be usefui. Suppose that you'd i ike to

modify two databases, but either both changes must happen or

neither should--partial success is not acceptable. For example,

to transfer $1 00 from your savings account to your checking

account, two actions must occur: $1 00 must be subtracted from

your savings account, and that same amount must be added to

your checking account. If only the first request succeeds, you

won't be happy. If only the second succeeds, the bank won't be

happy (although you rnight be). To arrive at a consistent resuft,

either both operations must succeed or both must faii.

To carry out this kind of indivisib!e.atomic operation, you must

define a transaction thai includes both modifications. This service

can be built into the data access mechanism itself, but a separate

transaction service that can be used with different data access

mechanisms is often a better idea. Once again, the goal is for one

piece of soft·ware, the transaction service, to provide services to
another. Why not describe this interaction using COM?

Just as COl\1-based database technology models data access
mechanisms using COM objects, COM-based transactions model

a transaction service as COtv1 objects. The objects defined include

resource managers (for example, a DBMS), transaction coordina

tors; and the transactions themselves_ .And since transactions are

common in data access, the interfaces defined for transactions are

designed to work well with those defined for databases.

Chapter One

BLUE COAT SYSTEMS - Exhibit 1034 Page 38

Directoty services lv~•uch like a telephone directory, a directory

service in a distributed environment allows its user to look up

lriformation.3 \'Vith a telephone directory, you can find someone's

phone number if you know that person's name. With a directory

service, the client supplies a name, and the directory service

returns information about the named item. For instance, a client

might supply the name of a particular machine and get back the

information it needs to contact that machine, such as a network

address. Or a client might provide the name of a user and receive

that user's e-mail address.

A oirec:tory service is extn~mely useful in a oistributed environ

rnent. Because no single directory rr1eets everyone's needs, nurner

ous directory services exist, and many different technologies are

used. The most vvell knovvn seivices include the \Vindows 1'-...!T

directory service, the internationally standardized but not widely

used X.SOO, and the t'~ove!! Directory Service (r--.~05) used prima--

riiy with Noveii NetWare, but there are many more.

CO.t\4-based directory services (originally kno\A/n as OLE Directory

Services or OLE OS) do for directory services what OLE Database

does for database systems: they provide a common interface that

can be used to access ai i kinds of directory services. just as COM

based databases make it easier to create clients that must handle

all kinds of data, COlv1-based directory services make it easier to

create clients that must work with all directory services.

To define this standard interface, the technology must provide a

general way to model the information stored in diverse directo-

ries. Fortunately, directory services typically organize their infor=

mation in some type of hierarchy." for example, aii the information

a company maintains in its directory might appear belovv a single

3 Don't confuse a directory service with a directory in a file system. The use of
the word directory is broadly similar, but the two are not tl1e same thing.

introducing ActiveX and OLE

A directory service
maps a name to
information about

the named obj~ct

COI'A can be used
to dcfi nc a com~
rnon interface to
diverse directory
services

BLUE COAT SYSTEMS - Exhibit 1034 Page 39

:~-.-

.,,

36

Directory entries
are modeled as
container objects
or leaf objects

Most or
Microsoft's

I ntcrnet-rc!atcd
technologies

use COM

node that represents the company itself. The next !eve! in the tree
might contain entries for divisions of the company, and so on.

Alternatively, an organization's directory hierarchy might re{lect
physicai rather than organizationai boundaries. One branch might

contain entries for a!! the company's machines, for instance, while

another might include entries for ail the printers.

The COM-based solution is to model each directory entry as a

COt~v1 object. t~v1irroring the kinds of objects in a hierarchy, every
directory entry is either a container object or a leaf object. Re

gardless of the particular directory service being used, a client
sees all the directory's entries as container objects or leaf objects.

Container objects, as their name suggests, can contain leaf objects
or other container objects. For example, a container object might

represent a directory entry that is the parent node for a!! entries
about printers. Beiow this container object might appear many

different printer entries, e<~.ch describing a specific printer. Fach

kind of object provides appropriate interfaces that let clients
· access the data and methods that object provides. The goal is to
.··make life simpler for developers vvho create clients that use mul
tiple directory services.

C0~.1 and Internet Technologies
The Internet and the styie of data access provided by the Worid
Wide Web have crashed !ike a tida! wave on the shores of com
puting. Aithough Microsoft wasn't the first to recognize the impact
this wave would have, the company wasted no time in responding

once Lhai recognition hit. I...Jot surprisingly, rnost of the new tech~
nologies Microsoft has created in this area are built using COM.

As desciibed earlierJ the ·Active X brand name originated in C0l'v1's
collision with the Internet, although it has now spread to include

many other COl\ .. 1-based technologies.

COM's component-oriented approach is applied to Microsoft's

Internet and \veb technologies in several \·vays. For example,
Microsoft's web browser, Internet Explorer, relies heavily on an

Chapter One

BLUE COAT SYSTEMS - Exhibit 1034 Page 40

extension of OLE compound documents calied ActiveX Docu

ments. \A/ith this enhancement, a user can brovvse through many
types of information in addition to the conventional Hypertext

Markup Language (HTML) pages_ The ActiveX Controls technology

has been enhanced to allow a control's code and data to be

intelligently downloaded as needed from a web server and exe

cuted inside a web brows.er. ActiveX Scripting provides a generic

way for clients to execute scripts written in any scripting language,

vvhile the ActiveX Hyped inks technology, based on monikeis,
allows the creation of Web-style hyperlinks not only between

HT~AL pages but bet'\veen a!! kinds of documents. A!! of these
technologies are described in Chapter 11.

The Future of COM
From its humble beginnings as a \vay to create compound dccu~

ments, COM has evolved into a fundamental underpinning for

application and system so~Nare. COI\A has been so \A/ide!y app! ied

because the architecture it defines for providing software services

offers an attractive solution to so many problems. Given this

generality and its obvious benefits, the applications of COtvl

described here are in all likelihood only the beginning. While the

bioad label applied to COl'·v1~based technologies has changed
over time--from OLE to ActiveX-this matters little from a purely
technical perspective. VVhatever the name, the benefits of COf'..A

and applications of COM continue to spread throughout this part
of the soft\A/are \AJor!d.

introducing ActiveX and OLE

The use of C0l'v1
wi ii continue to
grow

37

BLUE COAT SYSTEMS - Exhibit 1034 Page 41

users from casually copying licensed components. While the

mechanisms described here probably \VOn't StOp a determined

pirate, they can prevent a significant amount of casual copying.

Extensions to i\ctiveX Controls
There's aiways room for improvement. A set of improvements to

the ActiveX Controls specification, collectively referred to as

Controls 96, defines a number of compatible extensions to the

basics described so far. Those extensions include the following:

• Capabilities that allow a control's user interface to be of

any arbitrary shape, not only a rectangle

• A new, faster initiaiization scheme that aiiows a control

and its container to acquire all the initial interface point

ers they need front each other through a single exchange

• Enhancements that allow a control to draw its user inter

face more efficiently and with less on-screen fi icker

Another category of extensions' to Active X controls grows out of

the changes wrought by the Internet. As rnentioned earlier~ the

once-onerous requirements for controls have been greatly relaxed,

making it easiei to create controls that can be swiftly downloaded
across a slow Internet connection. To be truly useful in the Internet

environment, hovvever, controls also need a 'vVay to become active

quickly while still downloading their persistent data in the back-

ground across a s!ovv connection. And since this data might arrive

in pieces, the controi aiso must be abie to notify its container that

a!! the data has arrived .. As Chapter 11 details, these features and

more have been defined to allow the creation of internet-aware

controls. As support for these new features begins to appear in

controls and control containers, the potential applications of

ActiveX controls will become even broader.

ActiveX Controls

The Controls 96
specification ex
tends the current

definition of an
ActiveX control

New features

have also bc(:n

added (0 make
ActiveX controls
better sui ted for
the Internet

235

BLUE COAT SYSTEMS - Exhibit 1034 Page 42

Chapter Eleven

- -• --- ..
l',ctivcx_, the •
Internet; and the
\AJorid \AJide \AJeb

From its modest beginnings as a U.S. government-sponsored

research network, the internet has developed into a genuine
phenomenon. By providing a global network linking millions of
computers, the Internet makes possible things that once vveren't

even conceivable. And as ever-increasing numbers of homes and
offices set up high~speed connections to this netv·v'ork, \Ve can

expect stili more advances that are today inconceivable. -rhe avail

ability of cheap bandwidth--and the ubiquitous global netvvork it
makes possible-might prove to be a technical innovation as

transforming as the invention of the microprocessor.

Like most new hardware-oriented innovations, the internet expand

ed so rapidly because of a "killer" application, attractive enough

to tT•otivate people to use it. That killer app vvas the VVorld \Vide
Web. The Web today is a major source of information and com

merce for millions of people around the vvorld. VVeb technology
has found a receptive home in the business world, too, as corpo-

rate intranets based on Internet technologies have proliferated

rapidly. Using these technologies, private organizations can build
their O\•Vn internal \'vebs, a!!ovving them to share information inside

The growth of
the Internet was
driven lareely by

, the \.Vorld \Vide
VVeb

265

BLUE COAT SYSTEMS - Exhibit 1034 Page 43

266

COM is used
throughout

Microsoft's
Internet and
Web-related
technologies

Embedded OLE
documents, usefu!

as they a rei have
some limitations

an organization just as the Internet-based Web does externaiiy.

With its easy-to-use, easy-to-understand user interface, web

technology has broad appeaL

COM is ftmd<Jrnenta 1\y <Jbottt dPfining the ho~tncl<~riPs hPtwPPn

pieces of sofiware. The internet has a major irnpaci on those

boundaries in several ways. The Web's browsing metaphor also

affects how applications interact both with data and with their
users, two more traditional concerns for technologies built using

COl .. v'L To address these changes, several nevv CO~A.i.-based tech-
nologies have been created, and others have been adapted for

this nevl environment. This chapter explOres these nevv and

adapted technoiog1es. 1

ActiveX Documents
The conventions definecl by OLE allow a user to edit an embedded

document in place, much as if it were opened in a separate appli

cation. With an embedded Microsoft Excel spreadsheet like the

one shown in earlier chapters, for instance, the user can activate

the embedded object and have access to Excel's commands. Use-
fu! as this is, hovv'ever, an ordinary embedded document doesn't
suffice in every situation. 1ypicaily, for example, an in-piace active

document is relegated to \~vhatever area on the screen its container

is wiiiing to aiiot, an area that's usuaiiy fairiy smaii. in some cases,

the user might W<~nt to have the embedded document completely

take over the editing area of the user interface. Similarly, when a
user prints an ordinary compound document, only the cached

presentation appears for any err-,bedded elements-the embedding
server's own print functions can't be used. Having a way to access
these functions and a fevv' other extra features vvou!d let the user

see the full functionality of the embedded application rather than

just the (admittedly quite !arge) subset provided by OLE embedding

and in"piace activation.

,An important note: this discussion is based on a pre-release version of the
ActiveX Softvvare Development Kit (SDK). !t's possible that some parts wi!!
change before these technologies are finalized. Be aware that what's described
here might not exac:tly match what is finally delivered.

Chapter Eieven

BLUE COAT SYSTEMS - Exhibit 1034 Page 44

The Office Binder, a tooi inciuded with Microsoft Office 95, pro

vides a good example of hov•.t this can be useful. The idea behind
the Binder program is that a user might want to work in a unified

way with information created by several Office applications. For

instance, imagine a current sales report conia111111g text createJ

with Microsoft Word, quarterly financial data in a Microsoft Excel

spreadsheet, and a sales presentation created with ,\1icrosoft Power
Point. To collect these disparate kinds of information in a coherent

'vvhole, a user might embed the Excel spreadsheet and the Povvcr-

Point presentation in the Word document. Another solution would

be to embed a!! three in yet another document-in this case, in
a binder.

Figure 11-1 sho\AtS an example of the three kinds of data just de

scribed embedded in a binder document. As shown in the figure,

the binder presents a two-part user interface. On the left appears

an leon for each en-Jbedded docurnent. On the right is the active

document, the Excel spreadsheet. Each of the three documents in

this binder is embedded, and the Excel spreadsheet is currently

in-place active.

A binder document with three embedded ActiveX documents.

ActiveX, the Internet, and the World Wide Web

ihe Oiflce l:l1nder
lets a user work in
a unified vvay \AJith
data fiom different
appi ications

Figure 11-1

267

BLUE COAT SYSTEMS - Exhibit 1034 Page 45

I ..

I
I

I'
I •
I

I

I

I
I.
1-'

I

I

I
!'

L 268

The ActiveX

Documents

technology

builds on or
rlin;,ry OI.F

documents

Supporting
AciiveX

Documents

requires a few
additiona!
interfaces

This binder document and the applications that have embedded

data within it interact using conventions defined by the ActiveX

Documents technology-' The binder is an .ActiveX Documents

container, whiie Excei, Vv'ord, and PowerPoint are aii AciiveX

Documents servers. Each application acts like an ordinary OLE

·ern bedded docurnent server1 although each one also has a little
more functionality. For instance, any ActiveX Documents server

is able to take over the entire editing area provided by the con-

tainer. The container, which in this case is the binder document,

essential !y gets out of the \vay and !ets the Active X Documents
server completely control what the user sees. In figure 11-1, for

examp!e, the user can have Exce! take over the entire editing area
by removing the window on the left containing the icons. t\n t\c

tiveX Documents server presents a user interface that's more com

plete than the interface of an ordinary embedded document. To

the user, in fact, it looks as if Excel is running independently-the

limitations imposed on an in-place active embedded document
are gone. Excel really is functioning as an embedded document

here1 as described in Chapter 8, but it can a!so offer extra features
made possible by the ActiveX Documents technology. (And if

you 1re starting to v;onder vvhat a!! this has to do \AJith the Internet

and the Web, be patient-it turns out to be very important.)

Describing Active X Documents
All of the things required io present this richer user interface for

an embeddecl document-the ahility to take over the container's

entire editing vvindow1 access to the server's print functions, and
so on-are simply extensions to the current embedding and in-

p!ace activation features of OLE. i\ccordingly, containers and

servers must first implement embedding and in-place activation

2 When Microsoft intrOduced the ActiveX designation, some technoiogies
formerly .:.::.signed tht! OLE labd wert: ft!narned. OLE Cunirols, fur eXample,
became ActiveX Controls~ It's tempting to also assume that OLE Documents
became ActiveX Documents, but this is not correct. The former OLE Docu~
ments technology is nO\V referred to simply as OLE. i'\ctiveX Documents
describes a technology that bui!ds upon this older techno!ogy~!t's not just a
new narne.

Chapter Eleven
--- J

BLUE COAT SYSTEMS - Exhibit 1034 Page 46

and then add a few rnore interfaces whose rnethods support the

new features. The ActiveX Documents specification defines these

extra interfaces.

Containers and servers To qualify as an ActiveX Documents con-

tainer/ an application must support all the interfaces OLE requires

for embedding and in-place activation. As shown in Figure 11-2,

ActiveX Documents containers must also support the IOieDocu-

mentSite interface. This interface is implemented on a document

site obje_ct, the .ActiveX Documents analog of the client site object

in an OLE container. An ActiveX Documents container provides

one instance of a document site object for each embedded ActiveX

document. A container can also support the IOieCornrnandTarget

and IContinueCallback interfaces, both of which are discussed

later in this section (11Commands," page 271). 3

An ActiveX Documents container must implement at least one extra
interface in addition to those required by OLE.

IOielnPiaceFrame
IOieCommandTarget -- Optional interface
IOielnPiaceUIWindow
IOieContainer
IOieCiientSite
I Advise Sink
IOieDocumentSite ---Required interface

IOielnPiaceSite
IContinueCallback ---Optional interface

As shovvn in Figure 11-3 on the follovving page, acting as an A.c-
tiveX Documents server requires support for all the server-side em-

bedding and in-p!ace activation interfaces described in Chapter 8

3 Fieure 11-2 includes one other interface. called IOieContainer. which allows a
se~ver to enumerate the objects manaeed by its container. Although this
interface is not strictly req~ired for an -OLE Container/ IOieContair1cr turns out
to be quite useful and so is commonly supported in the situations discussed in
this chapter.

ActiveX, the internet, and the Vv'urld 'vVide 'vVeb

ActiveX Docu-

ments containers

must suppoit IOie
DocumentSite

Figure 11-2

ActiveX Docu-
ments servers

must support

IOieDocument

and IOieDocu-
mentView

269

BLUE COAT SYSTEMS - Exhibit 1034 Page 47

270

Figure 11-3

A vievv acts like
a fiiter for an
application's

data

Each view has its
own sub-object

and more. A server might optionally support I Print and IOieCom

rnandTarget (discussed later), and it must support iOleDocurnent

and IOieDocumentView. Understanding what these two manda
tory interfaces do requires first understanding what the word vievv·
means in this context.

An ActiveX Documents server must implement at least twa extra
interfaces.

Required interface

Reqvired interface

Optlona! interface

Optional interface

IOieObject
I Data Object

IPersistStoral!e
----- IOieDocument

IOielnPiaceObject
IOielnPiaL't'AcliveObject

--- IOieOQcumentView

--------~ IPrint
--- iC!ieConunandTargei

An application such as \Vord or PovverPoint knovvs hovv to manipu

late a certain kind of data. Word, for instance, works primarily with

text, vvhereas PovverPoint \vorks \Vith slides and their contents. !n

each case, the appiication can present different views of its data.
!n Word, a user can see a document in Normal vie\A!, Page Layout

view, or Outline view. PowerPoint aiiows the user to work with a

presentation in Slide view, Outline view, Notes Pages view, and so
on. Each view acts like a filter through which the user sees the

application's data, each showing the same information in a dif
ferent way.

In an ActiveX Documents server, each view is represented by a
vievv sub-object. This sub~object must implement the IOieOocu-

mentView interface and might also implement I Print and/or IOie-

CommandTarget. The server must also implement !O!eDocument,

which can be used to create view sub-objects. The container in
turn implements one vie\A/ object supporting !O!e!nP!aceSite (and

perhaps iContinueCaiiback) for each view sub-object in the server.

Chapter Eleven

BLUE COAT SYSTEMS - Exhibit 1034 Page 48

Pr;nting VVhen a user prints a ,docurnent directly from 'vVord, what

is actually printed depends on the view Word is currently display"

ing. If the user is looking at the document in Outline view, for ex

ample, the document's outline is printed. When a user prints a

document-from \AJord acting as an ,\ctiveX Documents server, the

same thing should occur. To allow this, a view sub"object can sup-

port I Print. Using this interface, an ActiveX Documents container

can ask a particular view sub-object in the server to print its view

of the data. No !anger does printing an embedded document mean
that oniy the document's cached presentation is printed; with

ActiveX Documents, the server itself can control exactly what

is printed.

Printing can be a lengthy process, and users might get bored or

change their minds about the wisdom of their print request. Once

an ActiveX Documents container has asked a server to print a doc-

ument, that server should periodically cal! the FContinuePrinting
method in its container's IContinueCallback interface. This method's

parameters include the number of the page currently being printed
and the number of pages printed so far. A container might use these

to keep its user apprised of the server's progress in printing. If the

user tells the container to cancel the print _job, the container can

pass this information on to the server by setting an appropriate re"

tuin code on FContlnuePrinting. \Vhen the call ieturns to the ser

ver, it checks this code and, if necessary, cancels the print job.

Commands Both a container and a server can support the IOie-

CommandTarget interface. It's easiest to think of this interface as

a stripped-do\vn version of I Dispatch. Reca!! that a dispinterface
assigns DiSPiDs to a group of methods and then iets a ciient invoke

any method in that dispinterface using the single vtab!e method

iDispatch::invoke. The dispinterface itself is assigned a GUiD, al

lowing the same DISPIDs to be used in different dispinterfaces

without feat of arnbiguiiy. VVith iOieCornrnandTarget, various

command groups can be defined, each of which is assigned a

GUID. Each command in a command group is assigned an inte

ger value, analogous to the DISPIDs in a dispinterface. ·ro execute

ActiveX, tht:: internet, Qnd tht:: VVorld 'vViclt:: VVt::b

A view sub~object
can impiement
IPrint to support
printing

A container can

support !Continue
Callback to keep
informed about

printing progress

Both container
and server can

implement IClle
CommandTarget to
receive commands

271

BLUE COAT SYSTEMS - Exhibit 1034 Page 49

I

I ,
I

I I,,,
I,,

I

!

I
I , '

I

I
I,

272

iOieCommand
Target is like a

I ightwPight ver~
sion of [Dispatch

ActiveX
Uocuments
interactions

are much
like OL[

interactions

any command, a client of IOieCommandTarget can invoke the

Exec method of !O!eCommandTarget, providing the GU!D that

identifies a command group along with an integer identifying a

comma_nd in that group. It's also possible to pass a command

with parameters using variants, the same mechanism used by

!Dispatch.

Why invent a new interface when I Dispatch would certainly have
sufficednhe answer is that the creators of ActiveX Documents felt

that !Dispatch was too heavyweight for the simple requirements

here. The primary reason for using commands at all in this context

is to allow a container to ask.a server to perform such tasks as dis

playing its properties and to ensure that toolbar commands work

as expected. Accordingly/ an /\ctiveX Documents container and

server typically exchange straightforward commands such as Open,
Save, and Copy. Using !Dispatch for such simple operations \Alas

seen as neediessiy complex.

How the Active X Documents Technology Works
Because the interfaces required for using ActiveX Docurnents are

simply extensions of those already used for OLE embedding and

in-place activation, the interactions betvveen an ActiveX Docu

ments container and server are very similar to those between an

OLE container and server. As in OLE, an ActiveX Documents con~

tainer (such as a binder document) loads an appropriate server

(such as Excel or VVord). The container ther initializes the server

using one of the iPersist• interfaces. A binder stores aii its embed

ded documents' datil in a single compound file, each in its own

storage. This isn't the only choice, however. An ActivcX Docu~

ments container can also initialize a server from a file or from

some other persistent storage, assuming that the server supports
the appropriate I Persist* interface.

As part of the ordinary initialization process for an embedded
document, a container invokes a server's IOieObject::SetCiient-

Sit~ method. !n OLE, the container passes a pointer to its !O!e~
CiientSite interface as a parameter on this method. In ActiveX

Chapter Eleven

I

I

I

__ i

BLUE COAT SYSTEMS - Exhibit 1034 Page 50

Documents, however, the container passes a pointer to its IOieDoc

umentSite interface instead. From this, the server can determine

\rvhether its container vie\rvs it as an ordinary OLE en1bedded ob-

ject or as an ActiveX Documents object. When the user requests

that an ActlveX document be activated by, say, doub!e"·c!icking on

it, an ActiveX Documents container invokes the server's IOieOb

ject::DoVerb method as always. An .Active.X Documents server re

sponds to this differently than an ordinary OLE embedding server

does, however. When it receives a call to this method, the ActiveX

Docurnents server invokes the only rr1ethod in its container's IOie

DocumentSite interface, the whimsically named ActivateMe, to

request that its container make it active. The container can respond

by using Querylnterface to ask the server for a pointer to its IOie-

Document interface. The container then invokes !O!eOocument::-

CreateView, which creates a new view sub-object in the server and

returns a pointer to that obje:ct's !O!eDocumentVievv interface.

Using this interface's methods, the container can activate the view,

work with it, and close it when it's no longer needed.

ActiveX Docun1ents and the \Veb
What does all this have to do with the Internet or the Web? Well,

initially, nothing at all. ActiveX Documents objects \rvere originally

known as Document Objects, or just OocObjects, and they were

first \Vide!y disseminated in the Office Binder program. The Binder

is a useful tool, but it was created with a desktop-centric focus.

VVhat OocObjects provided, though, turned out to be useful in a

much broader context. By supporting oniy a few extra interfaces

in addition to those already required by OLE, one application

could host another while still allowing a user to access the corn

plete range of the hosted application's features. Those few extra in

terfaces brought vvith them the ability to work vvith everything the

embedded application had to offer. The user could see a common

frame yet vvork naturally vvithin that frame \.Vith a!! types of data.

A binder document is one example of a common frame through

vv·hich a user can access different applications. Another example,

one that's much more interesting today, is a web browser. It too

ActiveX, the Internet, and the "vVorld VVlde "vVeb

ActiveX Docu-

ments oGjects
were ur1gmally

called Document

Objects (Doc
Objects)

A web browser
can provide an
l\ctiveX Docu-
ments container

273

BLUE COAT SYSTEMS - Exhibit 1034 Page 51

lnternet Explorer

3.0 rei ies on
Active X

Documents

IE 3.0's Web
Browser object, an

.A.ctiveX Documents
container, provides

generic browsing
functions

274

can provide a common frame for accessing and working with all

kinds of data and all kinds of applications. It vv-as this realiza-
tion-the tie to the Web-that prompted the name change from

Document Objects to ActiveX Documents. As described next, the
result was a complete revamping of Microsoft's web browser and

ultimately of the Windows user interface itself.

Microsoft's Internet Explorer and COM
Although COM has since been applied to many other problems, it

\·vas originally created as part of a mechanism for creating com-
pound documents. in some ways, the -uitimate compound docu

ment is the Wor!d Wide Web. !t shouldn't be surprising, then, that
COM has been applied to the problem of web access, too.

Building a Browser from Components
Think for a moment about vvhat happens vvhen a vveb brovvser

downloads a typical HTML page from a web server. When the in-

formation is received, the brovvser interprets the HT~l\L and dis-
plays the page to the user. In older browsers such as Microsoft's

Internet Explorer 2.0, the code for displaying HTML pages \•Vas

buiit into the browser itseif. As browsers came to be used to dis

play more than just HTMI, however, they needed a general way

to load code on dernand to handle any kind of inforrnation. If the

user downloads a file in Adobe Acrobat format, for instance, the

browser must be able to load the correct code to interpret that file

and display the information. ActiveX Documents defines this sort

of relationship--one application acting as a frame for another. It
makes sense, then, to build a web browser using this technology,

\"lhich is exactly \AJhat's done in Internet Explorer (!E) 3.0.

IE 3.0 separates generic browser functionaiity-navigating to a

link; going forward and back, and so on-from the intelligence

required to ioad, display, and manipulate particular kinds of in

formation. The user sees one cohesive application, but the browser

is actually built fron-1 several pieces, as shown in Figure 11-4.

(Some of the relationships among the components are slightly

Chapter Eleven

BLUE COAT SYSTEMS - Exhibit 1034 Page 52

simplified in the figure.) The smallest piece is the Internet Explorer

frarne, irnplernented in IEXPLORE.EXE. This sirnple piece of code
does little more than provide a host process for the Internet Ex
ploiei 'v.t.teb Browser object (once knovvn as the shelf document
viewer),.implemented in SHDOCVW.DLL. This object provides
generic brov.tser functionality, and it ~ommunicates \Vith the frame

through various COM interfaces (the details of which aren't in

cluded here). The \A/eb Bro\·vser object has no kno\·v!edge at a!! of

HTML documents or any other sort of dispiayabie information.
What it does know how to do, however, is to act as anActiveX

Documenis container. By loading ihe appropriaie AciiveX Docu
ments server, the Web Browser object can let the user see and

work with many different types of information.4

Microsoft's Internet Explorer 3.0 is built from separate components
glued together w;;ing COM.

ActiveX Documents
container interfaces

ActiveX Documents
server interfaces

4 The Web Browser obiect also qualifies as an ActiveX control. which means
that it can be plugged into any'control container.

ActiveX, the Internet, and the World Wide Web

Figure 11-4

275

BLUE COAT SYSTEMS - Exhibit 1034 Page 53

276

IE 3.0's HTML
viev·ler, an

ActiveX Doc-

uments server,

knows how to
display HTML

figure 11-5

The Web Browser
object can host

any ActiveX
Documents server

Its deconstructionist look notwithstanding, IE 3.0 is still a web

bro\vser, and a key part of its function is displaying HT~v1L pages.

When asked to display an HTML page, the Web Browser object

loads the HT/•,1L vievver, shovvn in Figure 1 ·1-4. This vie>vver, imp!e-

mented in MSHTML.DLL, is an ActiveX Documents server that

contains al! the code required to di.sp!ay and vvork vvith HTt\AL

documents. Figure 11-5 shows an HTML page displayed using iE

3.0's frame, Web Browser object, and HTML viewer. A!! these
components work together to present the user with the familiar,

seamless look of a web browser.

An ordinary HTML page dispiayed using internet Expiorer 3.0.

Because the Web Browser object is an ActiveX Documents con-

tainer, it can a!so !oad and display anything that knovvs ho\v to

act as an ActiveX Documents server. Why not ioad an Excei fiie, for

instance, into a web browser? Excel is capable of acting as an Ac

tiveX Documents server, as shown earlier in the Binder example.

Accordingly, IE 3.0's Web Browser object can load Excel and a

spreadsheet the sarne way it loads the HTlviL viewer and an HTtviL
document Figure 11-6, an Excel spreadsheet displayed using IE

3.0, illustrates how this looks to a user. Because the ActiveX Docu-

ments technology exposes the full functionality of an embedded

Chapter Eleven

BLUE COAT SYSTEMS - Exhibit 1034 Page 54

application, hosting Excel within !E 3.0's Web Browser object in

no way limits what the user can do. This spreadsheet can be dir

ectly edited just as if the user were working with a stand-alone

instance of Excel.

An Excel spreadsheet displayed using Internet Explorer 3.0.

To the Web Browser object, both the HTML viewer and Excel look

identical: they're ActiveX Documents servers. This ecumenical

approach to browsing means that a web server can store informa-

tion in various formats {not only HT~v1L pages} and then let the

browser load the appropriate code to work with that information.

For example, if an Exce! spreadsheet is stored on a vveb server on

the internet, an ActiveX Documents-enabled browser can iet its

user click on a reference to that page and then auton1atica!!y load
Excel (assuming that Excel or a simpler ActiveX Documents

enabled Excel viewer is available on the browser's machine) and

display the spreadsheet as an ActiveX docurnent within the

browser. A user can now use one approach-browsing-to access

HT,Ilv1L pages on the VVeb, application-specific files on a local

hard drive, and nearly anything else.

ActiveX, the Internet, and the World Wide Web

Figure 11-6

The Web Browser

object treats the
HTtv'\L viewei,

Excei, and any
other ActiveX

Documents ser-
ver identically

277

BLUE COAT SYSTEMS - Exhibit 1034 Page 55

278

The VVindows

shei i prov1des a
user interface

internet Expiorer
4.0 extends

Windows 95

Making the Windows Shell a Browser
\'\!hen you start ,"'vJ.icrosoft 'v'\lindows, the user interface you see is

provided by an application called the shell, which provides you

vvith a vvay to access other applications and files on your machine.

In Windows 95 and Windows NT 4, the standard shell presents a

desktop metaphor, a!lo\·ving you to \·vork \·vith the contents of your

machine through foiders and fiies in those foiders. A web browser

presents a different metaphor. Here you navigate through data and

applications by following hyperiinks between documents, moving

forward and back as needed. Given the popularity of browsing, in

tegrating this new r'(Jetaphor into the user interface is very desirable.

Given the structure of Internet Explorer, it's also very simple to

accomplish. In IE 3.0, a generic browser (the VVeb Browser object)

is loaded into a simple frame. Because that browser is an ActiveX
Documents container, it a!!ovvs users to access all sorts of informa-

lion using the browsing metaphor. To iet users access their systems

as a \Vho!e using the brovvsing metaphor, then, a!! that's required
is to modify the Windows sheii so that it functions more iike iE 3.0

and can then serve as a frame for the Web Browser object. !n prac

tice, this means adding support for a few more COM interfaces to

the shell, not an especially onerous task. The shell itself can then

host the VVeb Browser object in a natural way, and users can access

information using this tool's generic navigation facilities. Files and

applications on the local disk, a local netvvork, or the Internet can

ai i be browsed directly from the sheii-there's no need for a spec-

ia! \AJeb bro\AJser application. And through the generic interfaces of

ActiveX Documents, other appiications can be ioaded into that

frame to work with other kinds of data, not just HTML pages.

This is exactiy what happens in internet Expiorer 4.0. By suppiy

ing a new Windows shell, one that is capable of acting as a frame

for the Vv'eb Browser object, the browsing metaphor can be ap

plied throughout the user's environment. This is more than just a

benefit for useis-it's also a great example of the power of compo

nents. Code originally built for one application, a web browser,

can be reused in a very general vvay.

Chapter Eleven

BLUE COAT SYSTEMS - Exhibit 1034 Page 56

Truly integrating browsing throughout the Windows user interface

requires more than this, hovvever. Brovvsing depends on the ability
to create links among documents and to follow those links from
one document to another. ~A .. traditional brovJser a!!o\.vs hyper!inks

from orie HI ML document to another, but applying browsing
more generally implies the ability to create more genera! links as

weii. A user might want to create a iink from a PowerPoint presen
tation to a Word document, for example, or from a Word docu

rnent to an Excel spreadsheet. Ordinary HTML hyperlinks aren't

enough. To address this problem, the ActiveX family includes a
technology called ActiveX Hyperlinks, which allows the creation
of hyperlinks between all sorts of documents, not just HTML

documents. The ActiveX Hyper! inks technology is already sup-
ported by IE.3.0's Web Browser object. (For details, see "ActiveX

Hyperlinks/' page 305.)

Making a Browser Programmabie
Once the Windows shell itself lets you browse the Web, the need

for a separate web browser application becomes less apparent.
But while web browsers as such might one day fade into the mists

of history, that day hasn't yet aiiived. And even if browsers per se
vanish, components such as the Web Browser object and the
HT,I'\.1L vievv'er vvi!l survive. Like spreadsheets, \Vord processors,

and other applications, these components provide functions that
are useful to other programs as \A/ell as to people. A!! that's re~

qui red is for these components to expose a set of COM objects
with appropriate interfaces that clients can use to access the
components' services. in internet Explorer 3.0, ail of these inter

faces are defined as dual interfaces, allowing easy access by
clients written in tvjdcrosoftVisual Basic and sirTiilar languages as

well as by C++ clients.

Internet Explorei 3.0 has tvvo components that provide program
mability: the Web Browser object, providing generic browsing

capabilities; and the HTtv1L viev ... 'er, "vvith its HT~ ... 1L-specific func-
tionality. The Web Browser object is typically driven from the

outside by, say, a Visual Basic program that uses this object to

ActiveX, the Internet, and the World Wide Web

The Active.X

Hypcr!inks tRch-
nology allows
the creation of

hyperlinks among

tndny kinds or

ducurn~nls

A WP.b browsP.r
can expose its
functions lo ap
plications as well

as to people

The 'vVeb Brovvser
object is typicai iy
driven from a tool

such as Visual

Basic

279

._,,

:.:•.

';_·
""

BLUE COAT SYSTEMS - Exhibit 1034 Page 57

~·"

'
'

280

The Web

Browser
object has

methods and
properties

The Web
Brovvser

object aiso
has events

locate a particular document. To make this possible, the Web

Brovvser object exposes methods that correspond to a user's
actions, such as the following:

• The f\.Javigate method is used to move to a nev: location

specified by a hyperiink.

e The GoBack method is used to move to the previous

location in the history list.

• The GoForward rnethod is used to rnove to the next

location in the history list.

• The Refresh method refreshes the current view by reload

ing the document.

Like most objects accessed through dual or dispatch interfaces,

the Web Browser object also has properties. This object's proper

ties include the follovving:

• The Type property returns the type of the currently loaded

Active X Documents server, such as HTlv-tL or Excel.

• The Busy property indicates whether an activity such as a

document load is in piogiess.

• The Document property returns a pointer to the !Dispatch

interface of the ActiveX Docurr1ents server for the currently

loaded document. If an HTML document is loaded, for

example, this propeity returns a pointer to the I Dispatch
interface of the HTML viewer. If an Excel spreadsheet is

loaded, it returns a pointer to Excel's !Dispatch interface.

Using this pointer, a client of the Web Browser object can

access the methods made avai!ab!e by the currently loaded
ActiveX Documents server, whatever it happens to be.

The Web Browser object can also send events, such as OnOO\AJn
LoadCompiete, an event indicating that the current page has been

completely received. As with all events, the creator of a program

driving the VVeb Browser object can write a subroutine that is

called when this event is received.

Chapter Eleven

BLUE COAT SYSTEMS - Exhibit 1034 Page 58

Unlike the Web Browser object, the HTML viewer is typically dri-

ven from "inside." The vievver might for example, load an HTl'·v1L
document containing an embedded script. This script then exe-

cutes, making requests of objects V·Jithin the HTI'-AL vie\ver as need=

ed. The viewer supports several objects, arranged in a hierarchy.'

A script can directly access the topmost object in this hierarchy,

the Window object, and then acquire access to objects below it

through the Window object's properties.

The 'vVindow object represents the browser window that the user

sees. Its methods include these three:

• The Alert rnethod displays a sirnple rnessage box.

• The Prompt method displays a message and prompts the
user for a repiy.

• The Navigate method causes a jump to a nev1 location

identified by a URL.

The Window object a!so has several properties, some of which

return references to objects iower in the hierarchy. These proper

ties include the following:

• The History property returns a reference to a History

object containing a list of visited locations.

• The Frames property returns an array of the window's
current frames.

• The Document property returns a reference to the current

Document object.

Finaiiy, the Window object is abie to send two events: onLoad,

sent when a page is loaded; and on Unload, sent (not surprisingly)

when a page is unloaded.

5 The HTML viewer's object model is patterned after the model exposed by
Netscape Navigator. This makes it straightforNard to create scripts that work
with both Navigator and Internet Explorer.

ActiveX, the Internet, and the World Wide Web

The HTML viewer
is typica!!y driven
by a sciipt in a
ioaded HTML iiie

281

BLUE COAT SYSTEMS - Exhibit 1034 Page 59

<;_,
~'

HTtviL ducurnents

can contain scripts
written in languages

such as javaScrtpt
and VBScript

282

A script is
executed by

a scripting
engine under

the control
of a host

After the Window object, the Document object is probably the

most important for creators of scripts. This objeci, located using
the Window's Document property, represents the currently loaded

HTtv1L docurnent. its rnethods include VVrite, which writ.es text

such as HTML code, and Open and Close, for opening and clos

ing new documents. Among the Document object's many proper

ties are bgColor, which sets a page's background color; linkColor,

-vvhich sets the color for !inks on the page; and v! inkColor, \Vhich

sets the color for links that the user has visited.

The \AJindo\.v object, the Document object, and a! I the other ob-

jects implemented by the HTML viewer can be accessed by scripts

embedded in HTML documents that the viewer !oads. !f there were

only one possible choice for a script language, it mighi make sense
to build support for it into the HTML viewer itself. Several options

for scripting languages are available, however, which suggests that
a more general solution would be useful. That general solution,

called ActiveX Sciiptlng1 is vvhat the HT.'"v1L viewei us~s to execute
scripts, and it's described next.

AdiveX Scripiing
VVhen the HTl'v1L vievvei loads a document that document might

contain one or more embedded scripts. Those scripts can make

use of the programmable objects exposed by the vievJer, along

with any objects that are loaded dynamically. Today the two lead

ing languages for writing scripts embedded in HTML are Netscape's
javaScript and Microsoft's Visuai Basic Script (formaiiy known as

Visual Basic Scripting Edition but commonly called VBScript). java

Script is syniactically similar to the java programming language,
whereas VBScript is a subset of Visual Basic. It's not hard to imag

ine that ·other languages might be used for scripting as well.

The HTML viewer itself has no reason to either know or care what

language an executing script is vviitten in. The script executes in a

separate component called a scripting engine, while the viewer

acts as a generic host for this engine. The vievver can instantiate a

scripting engine, hand it a script, and tell it to begin executing the

Chapter Eleven

BLUE COAT SYSTEMS - Exhibit 1034 Page 60

script. As the script executes, it can invoke methods in the

vie'vver's objects and receive events from those obJects. The inter=

faces supported by the HTML viewer and a scripting engine that

make a!! this possible are defined by the Active)(Scripting specifi
cation. (ActiveX Scripting was originaiiy known as OLE Scripting.)

Furthermore, because the HTML viewer can also act as an ActiveX

control container, loading an HTML page can result in loading one

or more Active X controls as well as a script. Scripts executed by a

scripting engine can interact not only with the built-in objects in

the HTML viewer but also with any loaded controls. (In fact, an

executing sciipt can't distinguish betvveen the tvvo.) The ielation-
ships among the HTML viewer (acting as an ActiveX Scripting host

and an ActiveX centro! container), a scripting engine, and a pair

of ActiveX controis are shown in Figure 11-7. And finaiiy, although

this discussion uses only the HTML viewer as an example of an

ActiveX Scripting host, this technology is in no way specific to this

application. Any application can become an ActiveX Scripting

host and then load and be driven by any scripting engine.

The HTML viewer is both a host for Active X scripting engines and a
container for ActiveX controls.

A.ctiveX control

ActiveX, the Internet, and the World Wide Web

A host can providP.

built-in objects and
might aiso ioad
ActiveX controls

Figure 11-7

283

BLUE COAT SYSTEMS - Exhibit 1034 Page 61

i:

~' .. 284

A script can
access Its

host's objects

Scripting hosts
must implement
!ActiveScri ptSite

a nO the host's
objects must

implement
!Dispatch

Describing Active X Scripting
/'\ scripting engine is a CQf./t object, generally implemented as an

in-process server, that is capable of executing a set of scripts-for

instance, al! those \·vritten in a particular language. Internet Exp!or-

er 3.0, for exampie, inciudes scripting engines for both VBScript

and JavaScript An ActiveX Scripting host typically implements

objects whose methods, properties, and events can be invoked,

accessed, and received by an executing script. For the HTML

viewer~ these objects include the VVindow object and the Docu

ment object described in the previous section. The host can load

objects such as ActiveX contiols dynamically as vvell.

Figure 11-8 illustrates the objects and interfaces that can be imple-

mented by an ActiveX Scripting host. As the figure shovvs, a host

implements a scripting site object that supports the IActiveScript

Site interface. Using the methods in this interface, a scripting

engine can acquire pointers to the interfaces of top-ievei objects

the host makes available, inform the host of errors that occur,

notify the host that the script has completed, and more. If the

object supporting IActiveScriptSite provides its own user interface,

it can also support IActiveScriptSite'vVindow, allowing a scripting

engine access to that object's window. Each object in the host,

such as the \A./indovv and .Document objects in the HT~v1L vievver

or a loaded ActiveX control, implements its own I Dispatch inter-

face, allovving a scripting engine to invoke its methods and access
its properties. Each object shouid aiso implement iProvideCiass

lnfo (or perhaps !ProvideC!ass!nfo2), allowing its c! ient to access

its type information. And finally, host objects thai generate evenis

also implement !Connection Point and IConnectionPointContainer.

Figure 11-9 iII ustrates the interfaces that a scripting engine can sup

port. Every scripting engine must support the IActiveScript inter

face. A host uses the methods in IActiveScript to pass the scripting

engine a pointer to the host's !ActiveScriptSite interface, to tell the

script to begin executing, and to perform other tasks. If the script-

ing engine can load scripts from persistent storage, it also supports

one or more of the !Persist* interfaces, such as !PersistStorage,

iPersistStreaminit, or iPersistPropertyBag. Scripting engines that

Chapter Eleven

BLUE COAT SYSTEMS - Exhibit 1034 Page 62

Tile interfaces that an ActiveX Scripting host and its objects can
implement.

IActiveScriptSite

tActiveScriptSiteWindow

I Dispatch

IConnectionPoint
iConnectionPointContainer
IProvideCiasslnfo

!Dispatch
iConnectionPoint
IConnectionPointContainer

I ProvideCiassl nfo

all~w script text to be added dynamically can support IActive
ScriptParse, which lets a host such as the HTML viewer pass in a

script received as part of an HTl'v1L fi!c. If an error occurs during

execution of a script, the engine passes its host a pointer to the

IActiveScriptError interface, \Aihich is implemented by a distinct

object in the engine. By caiiing methods in this interface, the host

can !earn more about the error. Final !y, scripting engines that can

accept events sent by a host or thai ai low a host io access the

script's methods and properties must also implement !Dispatch.

The interfaces that an Active X s(·ripiing engine can implement.

IActiveScript

I Persist* /IActiveScriptParse

I Dispatch

iActiveScriptError

ActiveX, the Internet, and the World Wide Web

Figure 11-8

Scripting engines
rnust i rnpiernent
IActiveScript and
more

Figure 11-9

285

BLUE COAT SYSTEMS - Exhibit 1034 Page 63

'· !._ ••

286

The value

of the HTt'v1L
L;\NGUAGE

parameter
dPterrn i nes

which scripting
engine is loaded

The scripting hosl
passes the text

to the scripting

engine

An ActiveX Scripting Scenario
To understand how all this works} irr1agine that internet Explorer

3.0's HTML viewer, an ActiveX Scripting host, loads the following
very simple HTlv1L document:

(HTML>
<TITLE>ActiveX Scripting Example</TITLE>
<BODY>
<Hl>Illustrating Scripting</Hl>
<SCRIPT LANGUAGE=VBScript>

document.bgColor = "White"
document.write "<HR>''
document.write

"Hello from the VBScript scripting engine''
document.write ''<HR>''

<!SCRIPT>
</BODY>
<iHTML>

When the HTML viewer loads this document, .it happily reads and
interprets the first few iines using the HTML tags in the angie brack

ets. For example, the IE 3.0 viewer renders the line <H1>lllustrat

ing Scrlpting</H1 >as a level-one heading (based on the H1 tag)

as shown in Figure 11-1 0. When the viewer encounters the next

line, hovvevei, beginning vvith the SCl~IPTtag, it knovvs that it vvill

need to load a scripting engine. Examining the LANGUAGE pa-

rameter, it determines that a VB Script engine is required. (!f this

were a JavaScript exampie, the vaiue of the LANGUAGE parame

ter would be javaScript.) The HTML viewer !ooks up VBScript in

the registry-it's a ProgiD, which is described in Chapter 4-and

finds the associated CLSID. The viewer then calls CoCreatelnstance

with this CLSiD to create an instance of the VBScript scripting en

gine and get an initial pointer to it.

Once the engine is running, the host can acquire a pointer to the

engine's IActiveScript interface. The host loads the HTML file's

script into the scripting engine using methods in IActiveScilptParse
and then invokes the scripting engine's IActiveScript::SetScriptSite

method, providing a pointer to its O\".tn !ActiveScriptSite interface.

The basics are now in pi ace for the host and the scripting engine

to perform their complementary tasks.

Chapter Eleven

BLUE COAT SYSTEMS - Exhibit 1034 Page 64

The resuit of ioading the exampie HTML fiie.

Illustrating Scripting

Hello from the VBScript scripting engine

The script that the engine is executing will need to use one or more

of the objects supported by th~ host. OurVBScript example, for

instance, sets the bgCoior property and invokes the Write method

of the HTML viewer's Document object (Figure 11-10 shows the

resuiis.) To set properties and invoke methods of an object in its

host, the scripting engine needs a pointer to that object's I Dispatch

interface. To allow the engine to get this pointer, the host can call

IActiveScript::AddNamedltem for one or more of its objects, pass-

ing in the object1
S name as a chaiacter string. The HT~v1L vie·wer, for

instance, makes this call for the Window object, the top-level ob-

ject in its hierarchy. This cal! isn't necessary for the !o\ver-!eve!

objects in the hierarchy, however. instead, the scripting engine

can acquire pointers to these objects through properties on the

Window object, as explained earlier.

Once the host has informed the scripting engine about all the

necessary objects, the host invokes iActiveScript::SetScriptState to

tell the engine to begin executing its script. When the scripting

engine needs a pointer to an object that it learned about through

IActiveScript::AddNamedltem, it calls IActiveScriptSite::Getltem-

Info vvith the name of that object. In our example, the scripting

ActiveX, the Internet, and the World Wide Web

Figure 11-10

A host can pass
the names of its
objects to a script~
ing engine

/\scripting engine
cdn use an object
name to ask a host
for a pointer to that
object

287

BLUE COAT SYSTEMS - Exhibit 1034 Page 65

288

Scriptmg engines

receive events
using the same
mechanisms as

controi containers

ActiveX Scripting
allows a host to
be transparently

scripted from any

language

engine calls this method only once, requesting information about

the itVindow object. This caii returns a pointer to the !Unknown

interface of the named object. The scripting engine calls

Querylnteticic.e on the returned I Unknown pointer~ asking for

!Dispatch. When it acquires the Window object's I Dispatch

pointer, the scripting engine next uses it to access this object's

Document property and acquires a reference to the subordinate

Document object. Using th~s reference, the scripting engine can

set the Document object's bgCoior property and invoke its Write

method, as specified in the script.

A scripting engine caiis its host to invoke methods and access

properties. But a host rnight need to cal! a scripting engine, too,

to inform it of events that have occurred. if an object in the host

displays a button, for instance, the object might need to inform

the scripting engine that the user has clicked on the button and

that some event-handling code in the script should run. This is

not a nevv problem-the piocess is just like an ActiVeX control
sending events to its container. Happily, the solution adopted by
ActiveX Scripting is identical to that defined for ActiveX Controls.

(In fact, the object sending the events to the script might actuaiiy

be an ActiveX control.) Hosts such as the HTML viewer can pro

vide type libraries for their objects, just as ActiveX controis do. A

scripting engine gets a pointer to an object's type library and then

reads the type library to learn how to build sinks for that object's

events. This process is very similar to what control containers do
(described in Chapter 9). And, as vvith controls, connection points

are used to pass the necessary pointers from the engine to the ob-

jects to al!ov.t the events to be sent and received.

By standardizing the interactions between an executing script and

the objects it uses, ,A~ctiveX Scripting a!!o\vs any host to \·vork v;ith
any scripting engine. if the simpie script shown eariier were written

in JavaScript rather than VBScript, for example, nothing wou!d
change from the host's point of view, except that it wouid instanti

ate a different class of scripting engine. It's even possible to mix

VB Script, JavaScrip,t, and (potentially) other scripting languages in
the same HTML file and have each script executed by its own

Chapter Eleven

BLUE COAT SYSTEMS - Exhibit 1034 Page 66

scripting engine. And, as mentioned eariier, ActiveX Scripting is

useful for more than scripts loaded into a browser- scripting

capabilities can be added to any application by implementing

the interfaces required of an ActiveX Scripting host.

ActiveX Lontrois and the internet
Visual Basic was the first widely used container for ActiveX con

trols, and its requirements were a driving factor in their original

design. However, Internet Explorer 3.0's HTtv1l viewer is a control

container, too. An HTML page might contain data, for instance,

that iequiies loading a specialized ActiveX contiol into the client's
browser to view it. The code for this control might already be pre-

sent on the client machine, or it might be dovvn!oadcd from a vveb

server when it's needed. Aiternativeiy, IE 3.0 might download a

platform-independent applet vvritten in the Java language. {An

applet is a program, typically a fairly small one, that runs inside a
container of som~> kind, such as a web browser.) In either case, the

result is the sante: code is loaded as needed (perhaps from a web
server) and executed on the browser's machine.

\Vhile the most visible effect of the Internet's collision with con-

trois is probably their current name--ActiveX controls rather than

OLE controls-the emergence of vveb brovvrsers as control con-

tainers also caused some of the original, desktop-centric design

decisions concerning controls to be revisited. A.s Chapter 9 ex-

piained, for example, the requirements a COM object must meet

to qualify as an ActiveX control have been greatly reduced, a

change made largely to accommodate the process of loading con

trols over slow Internet links. Loading potentially large amounts of

data over those slow links has also led to extensions to the original
controls technology. This section examines how ActiveX controls

interact vvith brovvsers and· discusses hovv a control can better fit
into this new environment. Although Internet Explorer 3.0 serves

as the example throughout, a!! the HT!V\L shovvn here conforms to

standards set by the Worid Wide Web Consortium ~it contains

nothing specific to Microsoft's bro\AfSer.

ActiveX, the internet, and the Worid Wide Web

internet Explorer

3.0 can load con
trols locally or
from \.veb servers

Th£ arrival of the

internet ied to

changes in the

ActiveX Controls
technology

289

BLUE COAT SYSTEMS - Exhibit 1034 Page 67

290

An HTML
document can
cause .l\ctiveX
controls io be
loaded using

the OB}ECTtag

A control does
not need to do

anything special
to be loadab le

into IE 3.0

loading Contiols into a \·Veb Biowvser
Using the OBJECTtag in HTML, IE 3.0's HTML viewer can load
and use any Active X contra!. i~ .. nd just as scripts can be vvritten
that use the objects buiit into the HTML viewer, so too can scripts

make use of dynamically !oaded controls. For example, suppose

that the HTML viewer ioads the foiiowing page:

<HTML>
<TITLE>HTML Control Example<ITITLE>
<BODY>
<Hl>Ciick An Arrow</Hl>
<P>
<OBJECT

CLASS!D;"clsid:B16553C0-06DB-101B-85B2-0000C009BE81"
ID=SpinButton
HE!GHT;:;;;209
WIDTH=l00
HSPACE=85

)

</OBJECT>
<SCRIPT LANGUAGE~VBScript>

Sub SpinButton_SpinUp()
MsgBox ''(Up arrow clicked}''

End Sub
Sub SpinButton_SpinDown()

MsgBox "(Down arrow clicked)"
End Sub
</SCRIPT>
<!BODY>
<!HTML>

After the heading Ciick An Arrow, this document uses HTMl's
OBJECT tag to load an A.ctiveX control-in this case, it's the spf-n

button controi you saw in Chapter 9 ("An Appiication Oeveioper's
View," page 21 0). When this document is loaded, the HTML viewer

reads the CLASSiD attribute and then calls CoCreateinstance with
that CLSID. The ID attribute gives the control a name that can be

referred to in the script, while the remaining attributes deterrnine

the control's size and position on the page. There's nothing special
about the control-this is the same code that vvas loaded into Visual

Basic in Chapter 9's example. As in that example, the code is load-
ed !cca!!y, not from a \veb server. !f no CO."'-.A object is available
iocaiiy with this CLSID, this example won't work.

Chapter Eleven

BLUE COAT SYSTEMS - Exhibit 1034 Page 68

Foiiowing the OBJECTtag is a simpie VBScript program that again

emulates the example in Chapter9. Recall that the spin button

control generates events when a user ci icks on either of its arrows,

events that can be caught when the control is loaded into Visual

Basic. A VBScripi prograrn can also cdich ihuse eveni:s when ihe

spin button control is loaded into the HTML viewer. (The previous

section on ActiveX Scripting explained how the VBScript scripting

engine is able to receive those events.) As the example shows, sim-

p!e subroutines similar to those sho\vn in Chapter 9 can be \Vrit-

ten in VBScript and executed when the user clicks on an arrow

and the contro! generates an event. Figure 11-11 shov\;s V·/hat a

user sees after clicking on the up arrow.

T..he result of loading the example HTML file and then clicking on the

loading a Control's Persistent Data
An ActiveX control usuaiiy has persistent data that it must ioad

when it begins executing. Controls loaded from HTML files have

several options for where this persistent data is kept and how it is

loaded. This section describes these choices.

A - .. : •• - V
/"'\ L I I V C 1\. 1 t h e lnteinet, a n d t h e \Vo i l d \Vide \V e b

An HTML page can
contain scripts that
use loaded controls

Figure 11-11

291

BLUE COAT SYSTEMS - Exhibit 1034 Page 69

292

A control's
persistent data
can be stored
directly in the

HTML fi!e

A control's
persistent data

can be stored in
a separate fi ie

loading sma!! amounts of data How a control loads its persistent

data depends on what kind of persistent data it has. Suppose, for
instance, that a control has several properties whose values need
to be set when the control is loaded. As shown here, those values

can be stored in the HTML file itself using the OBJECTtag's
PAl?.AA .. 1 element:

<OBJECT
CLASSID=''clsid:99B42120-6EC7-11CF-A6C7-00AA00A47DD2"
ID.,labell

>

WIDTH=l50
HEIGHT=500

<PARAM NAME=''Angle" VALUE="270">
<PARAM NAME="Alignment" VALUE="2">
<PARAM NAME=''Style" VALUE="0'')
<!OBJECT>

When iE 3.0's HTML viewer encounters this OBjECT tag, it ioads
. the code for the specified control (which we'll again assume is

already present locally) and requests a pointer to that control's
IPersistPropertyBag interface. The viewer then reads the PARAM

elernents and hands their values to the control one at a tirne, as
described in Chapter 5. (See "The IPersistPropertyBag Interface,"
page ·125.)

This approach works well with controls that can reasonably store
their properties as text in an HT~v1L fi!e. But other controls might

store their persistent data in a binary form and expect to load this
data through !PersistStream. To allovv this, the OBJECT tag can use
ihe DATA attribute to specify a fiie that contains the data:

<OBJECT
CLASSID=''clsid:99B42120-6EC7-11CF-A6C7-00AA90A47DD2''
IIJ=;;chartl
WIDTH=200
HEIGHT=500
DATA=•http://www.acme.com/charts/profits.ods"
>

< /QB.J ECT>

Chapter E I "--'0'~n _____ _
--~~----------

BLUE COAT SYSTEMS - Exhibit 1034 Page 70

VVhen internet Explorer's HTtviL viewer encounters the DATA attri

bute, it fetches the indicated file and hands it to the control as a

stream through IPersistStream::Load. Although it's not shown here,

it is also possible to place a limited amount of data for a control

directly in the HT~v1L fi!c,s D,A..TA attribute.

Loading large amounts c,>f data Both examples shown so far work

\ve!! \Vith controls that have a re!ative!y sma!! amount of persistent

data. But imagine a control whose persistent data inciudes large

graphic or video files or other binary large objects (BLOBs). !n this

case, the control's BLOB data is certainly too big to be stored in the

HTML file. It might also be impractical to store this data in the file

named with the DATA attribute. Because the file vyould be loaded

using IPersistStream, the file is handed to the control as a complete

unit and all data in the file must be present on the local machine

before the control can see any of it. Preventing the control from

becoming even partia!!y active unti! a!! the data has arrfved is a
iess than optimal solution when that data is being ioaded over a

s!ovv ! nternet ! ink-users get frustrated v;hen they're forced to

spend much time looking at an hourglass icon.

A better approach would be to initialize the control with all its

"smaii" persistent data and then ioad any BLOBs asynchronously.

Web browsers do this today with ordinary HTML pages, first load

ing the page's text and then fetching any embedded images. The
benefit is that the user sees an active (although incomplete) page

almost immediately and graduat'ly gets the larger data elements
which complete the page. Controls with BLOB data can work the

same \.vay-first loading any smaller data and becoming at !east

partiaiiy active to the user before graduaiiy ioading BLOB data.

This t\·Vo-part initialization scheme relies on data path properties.
A data path property is like any other property a control might

support except that its value can be a U RL. Data path properties

are stored 1n the file i'dentified by the DATA attribute of the OBjECT

tag and are passed to the control through IPersistStream. When

the control receives its properties, it exarnines then1 individually

AciiveX 1 the internet 1 and the VVurld 'vVidt: 'vVt:b

Controls with

large amounts
of persistent data
need io ioad it
asynchronously

Controls can

define data path
properties

BLUE COAT SYSTEMS - Exhibit 1034 Page 71

294

A control's con

tainer typically
participates in

referencing data
paih properiies

Figure 11-12

A container
might need to

give some
controls' down

loads higher
priority than

otherS·

and uses their va!ues to initialize itse!f. When the c~ntrol recog

nizes a data path property, however, it can extract the property's

U RL and use it to locate and load the data it refers to.

The URL contained in the data path property can be absolute, con

taining everything needed to locate the machine on which the data

resides. For exarnple, the data path property shown in Figure 11-12
contains an absolute URL. More likely, however, a data path prop-

erty's value is a relative URL, vvhich must be combined vvith a base

URL (such as that of the page in which the control is embedded)

to comp!ete!y specify the data's location. Because on!y the control's
container knows this base UKL, the container is typically involved

in the process of locating the data identified by a data path prop

erty. To aiiow this involvement, the container implements the I Bind

Host interface.

Three properties for a controi, one of which is a data path property.

ll:l_eig'!!:_ 200___________________ _j
I Widttl:__l_OO__ -------~-----_I
roata path: http://.vww.acme.coniiimaJ:•.iPli !

Properties

\J\Ihen a control needs to load information identified by a data

path property, it can invoke its container's iBindHost::Create

Moniker method, passing in the URL contained in the data path

property. The host creates a moniker (such as a URL moniker) that
identifies the absolute location of the data and returns a pointer

to that monikei back to the contiol. The contiol is then fiee to
call the moniker's IMoniker::BindToStorage method to retrieve the

information refer-red to by the data path property. ""~ormally1 hovv-

ever, a well-behaved control won't do this. Instead, it allows its

container to participate in the binding process. The container, for

instance,,might have loaded several controls, each containing data

path properties referencing remote BLOBs and a!l loading those

BLOBs at the same time. The container might need to prioritize

the order in which BLOBs are loaded, based on information only

it knows.

Chapter Eleven

BLUE COAT SYSTEMS - Exhibit 1034 Page 72

Accordingiy, rather than caiiing iMoniker::BindToStorage directiy,

a control typically calls its container's IBindHost:MonikerBind

ToStorage method, as shown in Figure 11-13, passing a pointer to

the moniker received from the container. The container then calls
this moniker's SindToStorage method. If the moniker in question is

a URL moniker, as it usually is, the information referenced by the

data path property (the control's BLOB) is no\.V do'vvn!oaded asyn-

chronously into a stream provided by and accessible to the con

troL The URL moniker keeps the control informed of the arrival of

new chunks of data by periodicaiiy invoking OnDataAvaiiable in

the control's implementation of !BindStatusCa!!back. (The control

passes a pointer to this interface as a parameter on MonikerBind

ToStorage, and the container passes it to the moniker through the

bind context object, as described in Chapter 6; see "How Asyn
chronous Monikers Work," page 148.)

,\r1oniker binding for a data path property~

The benefit of a!! this complexity is that a centro! vvith BLOB data

can become at least partially active quickly and then load larger

fi!es in the background a bit at a time. This makes for happier users,

who aren't required to wait for aii the controi's data to arrive before

beginning to use that controL And should a control find itself load

ed into a container that doesn't support iBindHost, it can attempt

to fend for itself by converting its data path properties into monikers

using tvtkParseDisplayi\Jan1eEx and directly calling BindToStorage

on those monikers.

/\ctivcX, the Internet, and the Vt/or!d \Vide Vt/eb

An asynchronous
moniker informs
a control when
a nc.\v chunk of
the control's data
arrives

Loading !arge
amounts of

persistent data
asynchronously
!ets the centro!
becorne partially

active more
quickly

::/
.··.·.-,

295

BLUE COAT SYSTEMS - Exhibit 1034 Page 73

296

_A control c:11n

inform its con-

tainer when aii
data has been

ln;,rlpd

Controls
supporting

these features
'vvurk better

in th~ i11t~rneL

environment

A control's
code c~n bP
dovv'n!oaded

when needed
frorn a web

server

,A. control \"lith data· path properties must take one rnore action,

however. When downloading data using a URL moniker, the con

trol eventually receives an indication from the moniker that a!!

the data has been loaded. The control must then inform its con

tainer that initialization has been completed and that it is fully

ready for use. To do this, the control can send the OnReadyState
Change event to its container. The control can also set the value

of a property called. ReadyState, \rvhich the container can use to

query the control's state. Through this event and/or property, the

control can indicate different states: it has loaded all properties

except asynchronously ioaded BLOBs, it has ioaded .aii properties

including BLOBs, and so on.

ActiveX controls such as the spin button control that were created

before the advent of these new Internet-related technologies don't

take advantage of these new features. Although older <.:On trois can

be loaded and used by control container web browsers, they don't

piovlde all the benefits of a control vvritten ·with the Internet in

mind. Controls that are Internet-aware are made more efficient

\Vith support for data path properties and asynchronous dovvn~

loading along with the OnReadyStateChange event and/or the

ReadyState property. These features are by no means required,

but they make a control much better suited for use inside a web

browser.

Downloading Controls
In the examples shown so far, a control's data might have been

stored on a remote machine, but the code for the control vvas

assumed to be resident on the browser's machine. This need not

be the case, hov,;ever. VVhy not !cad a control's code from a \rVeb

server when it's needed? To teii the browser where the code is, the

OBJECT tag can include a CODEBASE attribute. Here's a sinlp!e

example:

<OBJECT
CLASSID=''clsid:816553A0-06DB~101B-85B4-0000C009BE05''

CODEBASE~''http://www.acme.com/welcome/mapshow.ocx··

DATA="http://www.acme.com/maps/campus.geo"

ChfJpter Eleven

BLUE COAT SYSTEMS - Exhibit 1034 Page 74

>

ID~MapDi splay
HEIGHT~450

WIDTH~450

</OBJECT>

When Internet Explorer 3.0 encounters this tag in an HTML file, it

dOvvnloads the file named by the CODEBASE attribute (assuming

that no code for this CLSID is currently present on the machine)

and then instantiates the centro!. !n this example, the referenced

object is an ActiveX control, but Internet Explorer 3.0 also supports

the downloading of Java applets. An attribute called CODETYPE

on the OBjECTtag can be used to indicate the MiME (Multipurpose

Internet Mail Extensions) type of this object, such as application/
java-vm, which lets the browser decide whether it's worthwhile to

download it.6 And as the example shows, it's also legal to use the

CODEBASE and DATA attributes at the same time, causing the

browser to download both a control's code and its persistent data.

Ho\v do\vnloading works In some cases, all that's required to
download code is to copy a single executable file from a web

server to the bro\vser's machine. !n other cases, it might be neces-

sary to copy more than orie executable file along with one or

more supporting files. To dea! with this. variability, the Internet

Component Download service used by internet Expiorer defines

three packaging schemes for downloaded code:

e A portable execuiable (PE}, containing a single executable

file with an extension such as OCX, DLL, or EXE.

• A cabinet fiie, identified by the fiie extension CAB. A cab
inet file can contain one or more executahles, all com

pressed into a single package and downloaded as a unit. it
also includes an INF file that directs the installation

piocess of the cabinet's files.

6 J'\11tv1E types are used throughout the \Veb environment to indicate data types.
Other commonly seen l•vUME types are text1htm!, imagclgif, image/jpeg, and
videolrnpeg. At the time this book is being vvritten, no permanent f\A!ME type
has yet been defined for ActiveX controls.

ActiveX, the Internet, and the World Wide Web

HTML's CODEBASE
attribute indicates

where the code
resides

·1 hree main

options are
C!VCJii<Jble for

packaging
downloaded
code

297

BLUE COAT SYSTEMS - Exhibit 1034 Page 75

298

A call to CoGet-
CiassObject

FromURL does
everything

requ,ired to
download and

install a new
component

e A stand-alone ~~~F fite, containing only references to other
files that should be downloaded. An INF file can contain

URL.s referring to files on a single rnachlne or on several

machines, It can also specify options for which files to
do\,vn!oad depending on the type of client platform making

the request. For example, a request to download an iNF
file made from a Windows 95 system and the same request
made from a Macintosh system might result in copying

different binaries.

The filenarne specified in the CODEBASE attribute can optionally

be followed by a version number. If it is, the file is downloaded

only if this version number i.s more recent than any version of this

file currently resident on the system.

\AJhcn a bro\vser such as Internet Explorer attempts to dovvnload

the code for an ActiveX control, its real goal is to create one or
more COf' .. A objects using that code. Ultimately, then, the brovvser
must acquire a pointer to.the iCiassFactory interface of the control's
class factory and Ci>!! Create!nstance. The Internet Component

Download service makes this very easy. 'vVhen internet Explorer
encounters a CODEBASEattribute inside an OBjECT tag and de
cides to download the associated code, it needs to call only the
single function CoGetCiassObjectFromURL. Like CoGetCiassOb-

ject (discussed in ''Ustng a class factory," page 61 }, this function

returns a pointer to a class factory. As its name suggests, the caller I

passes in a URL specifying vvhere to find the code. This URL can I

name a portable executable, a cabinet fiie, or an iNF file, and the
browser takes this value directly from the CO DEBASE attribute in

the OBjECTiag. ihe caller can also pass in the CLSiD from the
tag's CLSID attribute or the MIME type of the object indicated by

the CODETYPE attribute. (The lv1ll'v1E type is rnapped to a CLSlD
using the system registry.) Making this single call causes the con-
trol's code to be copied to the· brovvser's system (if it's not already

present), verified as safe using Win Verify Trust (discussed in the
next section), and registered \• .. 'ith the system registry. Once every--

thing has been installed locally, CoGetCiassObjectFromURL calls
CoGetC!assObject to return a pointer to the c!ass factory of the
new object.

Chapter Eleven

BLUE COAT SYSTEMS - Exhibit 1034 Page 76

Of course, the actual process is a bit more complex. The imple-

mentation of CoGetC!assObjectFromURL relies on a URL moniker

to accomplish the downloading, which means that a client mak-

ing this ca!! must implement IBindStatusCa!!back to receive

progress notifications. The cai ier of CoGetCiassObjectFromURL

must also implement the !Code!nstall interface. This simple inter

face lets the client learn about any problems that crop up during

the download and handle any necessary user interface issues.

Also, once a cornponent is down~oaded, no auton-.atic rnecha

nism deletes it-it remains on that system's disk indefinitely. For
' c. '

the most part, hovvever, clients such as Internet Explorer are
shielded from the messy details of downloading objects.

Ensuring the security ~f do\vn!oadcd components Being ab!e to
download components as needed is a useful capability. By default,

a dovvn!oaded Java app!et is \A/rapped in a secure cocoon during

execution. Because each appiet has its own safe "sandbox" to piay

in, providing security in this way is sometimes called sandboxing.
Unlike java applets, however, ActiveX controls are binaries execut

ing directly on the machine's hardware. Although ActiveX controls

have capabilities that sandbo~cd Java applets do not, they also
offer more opportunities for mischief. A malicious developer could

easily create controls that, say, reformat the hard drive of any

machine that installs them. If users can't have faith that a given

control v;on't damage their system, they can't take the risk of

downloading and running that control.

Creating that faith is the goal of the Windows Trust Verification
Services. Through the single function call Win Verify Trust, a user

of this service can access one or more trust providers. In general,

a trust provider can answer question\S about whether a cornponent

can be trusted according to certain criteria. The initial release of

this service includes only one choice~ the VVindovvs Softvvare Pub-

lishing Trust Provider. This trust provider is able to answer the

question that most concerns the potentia! user of a do\vn!oaded

ActiveX control: was this control produced by someone I trust?

ActiveX, the Internet, and the World Wide Web

Some mechanism
mu~t ex1st to guar

antee the security

of downloaded

code

A trust provider

can provide that
guarantee

BLUE COAT SYSTEMS - Exhibit 1034 Page 77

300

The goa! is to
ensu(e that the
code is from a

trusted supplier
and ha-s not been

modified

A downloaded
component can

be d!gita!!y signed

A component

carries a cer
tificate to allow

vPrific.::ltion of its

digital signature

At nrst glance, this n1ight appear to be the \AJrong question. \A/hat

users really want to know is whether this control will damage

their system, not vvho created it. Unfortunately, there's no general

way to determine this. The best users can do is assure themselves

that the software was created by a trusted source and that it hasn't
I l•f'• I • '• .• -rl • • • _ •I • .I t' •.I oeen moamea s1nce 1\S creauon. 1 n1s 1s s1rn11ar m me ra1m users

express when buying packaged software. If the box carries the

narne of Lotus or l'v1icrosoft or another reputable vendor, and if the
shrink wrap on the package isn't broken, users can feel confident

that the softvvare inside \rvon't intentionally darnage their system.

Providing this same kind of confidence is the goal of the Windows

Softvvare Publishing Trust Provider.

When Internet Explorer 3.0 downloads a component, that compo

nent might carry \"lith it a digital signature. A digital signature is a

byte string that can be used to verify that the associated informa

tion was actually provided by a specific entity. More than that, a

diglial signature also verifies that the inforrnation (in this case, the·

-downloaded code) hasn't been modified since the signature was

affixed. In essence, the signature.plays the role of both the com-

pany name on a software package and the package's shrink wrap.

To allovv others to verify its digital signature, a component carries

with it another byte string cal led a certificate. When Internet Ex

plorer calls VVinVerifyTrust, it passes in references to both the nev·Jiy

downioaded controi's digitai signature and its certificate. The trust

provider examines both and returns an indication of success or

failure. 7 if the check fails or if the component is from an untrusted

source, IE 3.0 informs the user and offers a choice of whether to

proceed. Note that because a digital signature verifies that the.
associated information hasn't been modified from its original form,

it's impossible to silently insert viruses into the code. By having

the developer add a signature to a component and having the

7 The detaiis of how digitai signatures work are beyond the scope of this book.
For those who are famiiiar with the technoiogy, the Windows Software Pub
lishing Trust Provider uses PKCS Jt7 and X.509 version 3 certificates. for those
who aren't, well, you can trust me on this.

Chapter E!even

BLUE COAT SYSTEMS - Exhibit 1034 Page 78

browser check that signature after downloading, a system is ere-

atcd vv'hereby a user can have a high degree of faith in the com-

ponent's trustworthiness.

ActiveX and java
\A/hile the length of time required to move from abstract concept

to widespread deployment in software hasn't changed radically

(\vriting code sti!! .takes tin1e)1 the interval betvveen development

of a new concept and widespread assimilation of that concept cer

tainly has. No technology better demonstrates this change than

java. Created by Sun Microsystems, java is a programming lan

guage, one not too different from C++. But java is more, too, offer

ing exciting possibilities for the Internet and for COtvt.

As with most programming languages, it's possible to compile a

program vvritten in Java and produce a binary executable. This

isn't commonly done today, however. Instead, java source code is

usually translated into a machine-independent bytccodc rather

than a machine-specific binary. This bytecode is then interpreted

by the Java Virtual /V1achine (Vf\A), softvvare running on a rea! ma

chine. Using this scheme, the same java code can be executed on

any machine th;,t supports the java VM

One popular use of java is to create appiets, reiativeiy smaii java

programs that run inside a container such as a web browser. Since

Java applets can be distributed as bytecode rather than as rnachine
specific binaries, the same applet can be downloaded and exe-

cuted on different systems. All that's necessary is for the target

machine to have java VM software available. It's also possible to

create stand~alone applications in java. Unlike applets, applica~

tions don't assume the existence of a container.

Java and COM
Microsoft has wholeheartedly endorsed the java language. Micro

soft's Java development tool, Visual j++, allows the creation of both

applets and applications. At first glance, it rnight not be obvious

ActiveX, the Internet, and the World Wide Web

Java programs are
executed by the
java Vtvl

1\ Java appiet can

be executed on
any machine with
Java Vt'v1 software

java fits very wei i
with COM

~·

30i

BLUE COAT SYSTEMS - Exhibit 1034 Page 79

302

Microsoft's java
VM makes java

objects look like
C0!\11, objects

why Microsofi would choose io suppori ihis new language so
strongly. After all, java was created by Sun, a direct competitor.
Furthern1ore, the n1achine-independent nature of Java's bytecode

has led many to suggest that this new development tool could
'vveaken the d_ominance ofV\Iindovvs/lntel systems. Despite this,

however, java offers a benefit that's very attractive: it meshes
exceptionally \.Ve!! vJith COf\A. Although COI'A is officially !an-

guage neutral, ifs fair to say that COM and its supporting tech
nologies were designed v.;ith C++ andVisua! Basic in mind.

Remarkably, even though it was created in a completely separate
environm<'nt by a competing company, java actually fits with
COlvi as well as or even better than these two languages. A key
part of this fit is that java objects, like COM objects but unlike
objects in C++, can support multiple interfaces. This, together

with a few other features, makes java an excellent language with
'vvhich to implement and use CO~k./\ objects. \lVhi!e this sort of

technical serendipity is more the exception than the ruie, java and
COM really are a natura! pair.

Microsoft's implementation of the java Virtual Machine integrates
Java objects and COM objects~ Part of this integration isthat from
the point of view of a COM client, the java VM makes a java object
appear to be just another COM object. With Java applets, for
example, t"v1icrosoft's java Vtv1 automatically constructs a dispinter

face containing all the applet's public methods. With other Java
objects, vtab!e interfaces are created. These methods are then
accessible to clients of this object through a VM-provided imple-
mentation of I Dispatch, as shov;n in Figure 11-14. To complete

the illusion, the VM provides an implementation of !Unknown for
each Java object, a!!o\-ving clients to acquire pointers to other

interfaces the object supports. The VM aiso implements a class
factory, allowing a client to treat Java objects like any other COM
objects. The java prograrnrner creates objects as usual-nothing
special is required. All the services necessary to make those
objects look like CO~v1 objects aie supplied tianspaiently by
Microsoft's java VM.

Chapter Eleven

BLUE COAT SYSTEMS - Exhibit 1034 Page 80

Microsoft's Java VM iets a Java appiet iook iike a COM object.

I Unknown

Microsoft's java VM also provides the reverse translation: from the

point of vievv of a Java object, an external CQ,I\1 object !ooks ex=

actiy like a Java object. Again, this integration is achieved without

making any changes to the Java language itself. Instead, the Java
VM transparently performs the necessary translations to map be

tween the two kinds of objects.

java is an excellent tool for creating COtv\ clients, as the java en

vironment offers services that make life significantly easier for

C0t'v1 programmers. For example, a programmer vvorking vvith

COM objects in C++ must always be aware of reference counting.

For a C++ client, this means calling Release 'vvhcnever an interface

pointer will no longer be used. java programmers need not concern

themselves vvith reference counting, hovvever. Instead, the Java Vf\A

notices when an object is no longer referenced and automatically

deletes it, a service known as garbage collection When Microsoft's
java VM notices that the "garbage" object being collected is a COM

object, it simply calls Release on the object. Unlike C++ COM

clients, the creator of a COi\1 client in Java never needs to vvony
about keeping track of which objects are no longer needed and

then releasing them.

For acquiring references to new interfaces on an object, Microsoft's

java VJ\.1 even hides ca!!s to Query!nterface beneath the java !an-
guage's buiit-in operators. A java programmer writes the same code

to access a nevv interface regardless of \·vhether that interface is on

a java object or a COM object. (in fact, the java programmer can't

te!l them apart) For a COM object, however, the Java VM inter

cedes, siientiy caiiing Querylnterface on the object and returning

ActiveX, the Internet, and the World Wide Web

Figure 11-14

Microsoft's java
VM a!so makes
COtv\ objects !ock
i ike java objects

The java VM
hide' oils to

Query Interface

303

BLUE COAT SYSTEMS - Exhibit 1034 Page 81

304

Type information
is used to m.3p

betvveen Java

and COM

internet Explorer
3.0 treats Java

applets like
co~.~ objects

Java applets
can novJ be

used wherever

ActiveX con
trols are used

the new interface pointer. Unlike C++ developers, COt .. v1 pro

grammers working in Java never need to make explicit Queryln

tedace calls.

In order to provide all the translations required to map between

Java and COl"¥1, ~v1icrosoft's implementation relies on the informa-

lion stored in a COM object's type library. And to further integrate

Java into the CO,..A vvodd, fv1icroso-ft offers java c!ass libraries expos-

ing key COM functions such as CoCreateinstance, aiong with

access to monikers, Structured Storage; and more. Although nei

ther java nor COM was designed with the other in mind, the two fit

together very well.

java Applets and lntei·net Explorer 3.0
Using java to create COM objects and to write clients that access

CO~vA, obje~ts .is an appealing idea. By hiding some of the rough

edges, Java ma.kes using COM that much easier. But a key purpose

of Java, creating do\vn!oadab!e app!ets that run in \".leb brO'Nsers,

has no intrinsic connection to COM. How does internet Expiorer

3,0 support this?

Sin.ce Microsoft's implementation of the java Virtual Machine makes

a java object look like a COM object, supporting Java applets is

no different than supporting COlvl objects. The java Vtvl is irnple

mented as an ActiveX control included with Internet Explorer 3.0.

To execute a Java applet, the applet is simply loaded togethei vvith
this control. To a control container such as Internet Explorer's HTML

vie\ver, the app!et !ooks !.ike any other /\ctiveX centro!. /-\nd lv1icro=
soft's ActiveX controi impiementation of the Java VM can execute

any standard Java app!et, not on!y those created using Microsoft
Visual j++.

Implementing the Java VM as an Active X control has broader

implications, too. Since appiets iook like ActiveX controls, and

since controls can be driven by scripts, Java applets can also be

scripted. Using the ActiveX Scripting interfaces, VBScripi, java

Script, or another scripting language can be used to access the

Chapter Eleven

BLUE COAT SYSTEMS - Exhibit 1034 Page 82

methods exposed by an applet. java applets can also work with

other app!ets and i\ctiveX controls in the same page. Fina!!y, be-

cause the java VM ActiveX control makes any java applet look iike

a control, an app!et can be !oaded into any ActiveX contra! con

tainer and behave just as if it were a control. Although java appiets

have historically relied on web browsers as containers, they can

now be used with other control containers as well.

As with ActiveX controls, the OB}ECTtag can appear in an HTML

page to indicate that a Java applet should be downloaded. Inter

net Explorer 3.0 also supportsthe APPLETtag,an older mecha

nism foi embedding Java applets in HTtv1L pages. \Vhen lnteinet
Explorer 3.0 encounters an APPLETtag, it internally converts it to

an OBJECT tag \Vith the CLS!D of the Java V.t-..A's ActiveX centro!. In~
ternet Explorer then loads the java VM ActiveX control and passes

it the APP!.ETtag's parameters_ The control then does everything

required to download and run the appiet.

Once downloaded, a java applet can potentially call other COM

objects or native code on the systern. Ordinarily, an applet is sand
boxed, as described earlier, and so isn't allowed to make these

calls. As with ActiveX controls, however, Internet Explorei 3.0

allows a java applet to be digitally signed and to have this signature

checked 'vvhen it's do\vn!oaded. i\ssuming that the signature ident=

ifies a trusted source, the applet is permitted to call other COM

objects and !oca! code just as a trusteq ActiveX contra! \A/Ou!d. For

exampie, because any COM object iooks iike a java object to an

applet, it's possible for a digitally signed applet to access the auto

mation services that many applications provide. A java applet might

access Excel's built-in services, for example, as a Visual Basic pro

gram n1ight do.

~A.ctiveX Hyperlinks
Part of the reason for the tremendous growth of the World Wide

VVeb is surely the appeal of its fundarnental rnetaphor: browsing.

The central notion underlying browsing is the idea of hyperlinks.

ActiveX, the internet, and the VVorld VVide VVeb

HTML pages can
include Java ap
plets using either
the OBjECT or
APPLETtag

java applets can
be digitally signed

Browsing
depends on
hyperlinks

305

BLUE COAT SYSTEMS - Exhibit 1034 Page 83

I
!

I
!

I.

I

I

1

I.

I

I

306

The ActiveX

Hypedinks lech
nology Jliows
hyperlinks to

be created
among various

kinds of
documents

ActiveX hyperlink
objects contain a

f;iendly name,

a moniker, and a
location string

To a user, a hyperlink appears on the screen as colored or under

lined text, or as a graphic elen1ent ernbedded in the page, or
perhaps in some other way. Clicking on a hyperlink changes what

the usei sees. In some cases, clicking on a hyperlink in an HTl'v1L

document might simply result in displaying another part of that

same document. In other situations, clicking on a hyper! ink results

in loading an entirely new document.

lv1ost users !ike the bro\·vsing paradigm-it's easy to !earn and po\·V-

erfui to use-and Microsoft intends to integrate it throughout the

\Nindo\AJS and VVindovvs NT user interface. Key to this is finding a

way to provide hyperiinks between ail kinds of elements, not just
HTML documents. Why can't we create a hyperlink between, say,

a VVord docurnent and an Excel spreadsheet? Rather than ernbed
ding or linking the two documents using the conventions of OLE,

vvhy not tie them together vvith a hyped ink as if they vvere HT~v1L

documents?This is the goal of ActiveX Hyper/inks. By enabling

the creation of hyper! inks that reference a!! kinds of elements,

including but not limited to HTML documents, and by wrapping

this generality in standard COM interfaces, .ActiveX Hyper!inks

applies the browsing metaphor to a broad range of documents

and applications.

Describing ActiveX Hyperlinks
An ActiveX hyper\ ink is a COM object that supports the IHiink

interface. It also supports 1PersistStream, allo'vving its persistent

state to be saved to and loaded from a stream, and IDataObject,

a!lovving its contents to be copied using drag and drop or the c!ip~

board. Every Active X hyperiink object contains (at ieast) three key

pieces of information:

• A friendly name that can be displayed to the user when

the hyper! ink is visible. (Showing the friendly name is not
required, however, because how a hyperiink is displayed

is ultimately determined by the container that displays it,

not by the hyperlink itself.)

Chapter Eleven

BLUE COAT SYSTEMS - Exhibit 1034 Page 84

• A monikedor the hyperlink's target-that is, for the appli

cation and data to which the hyper! ink points.

• A string indicating a specific location within the target.

For example, an ,8,ctiveX hyper! ink to a V-/ord fi!c on a local ma-

chine might contain a friendly name such as Current Status Report,

a file moniker that references the \tVord file, and a string indicating

a location such as a Word bookmark within that fiie, as shown in

Figure 11-15. An ActiveX hyperlink to an HTML document stored

on the internet might contain a friendly name such as Acme

Product Support Info, a URL moniker that references the link's

HTJ"v1L document, and a string identifying a location within that

document A developer might use this second hyperlink to add an

option to an application's help menu that directly connects the

user to product support information on the World Wide Web.

Two example .4ctiveX hyper/ink object~ and their contents.

All ActiveX hyperlinks look the same to their clients, who see them

primarily through the methods in IH!ink. Those methods include

the following:

• The GetFriendlyName method can be used by a c!ient to

learn the friendly name of the ActiveX hyperlink.

• The Geti\.1onikeiR.eference method returns the moniker

and the location string from the ActiveX hyperlink.

ActiveX, the internet, and the 'vVorid Wide Web

.A.n .A.c:tiveX
hypeillnk rni.ght
reference a
location in a file
or on a \•veb page

Figure 11-.15

·:;

_•:'."

307

BLUE COAT SYSTEMS - Exhibit 1034 Page 85

0;.

·.
'

308

Standaid tibi<Hy
functions are used

to create ActiveX
hyper! inks

ActiveX
containers
and targets
implement

IHiinkSite and
!H!inkTarget,
respectively

Figure 11-16

= The Navigate rnethod causes the ActiveX hyper\ ink to navi

gate to its target the document to which it points.

To create an ActiveX hyped ink object, a container need only call

one of several standard library functions and pass in the appropri-

ate data. H!inkCreateFromi'-Aoniker, for example, lets a container
create a hyperlink object by providing the three required compo-

nents of an /\ctiveX hyperlink: a moniker~ a location string, and a
friendly name. HiinkCreateFromString iets a container create an

ActiveX hyperlink object by providing a location string, a friendty
name, and a character string identifying the hyperiink's target.

However it is created, an ActiveX hyper! ink object communicates
•ol '• • • ol I ol • • I • I , • • (II o I' I wnn 1rs coma mer mrougn me comamer·s 1mp1ememauon or 1M linK-

Site, as shown in Figure 11-16, and communicates with its target

thiough the methods in IHiinkTaiget. Note that a hyperlii!k can
refer either to a location in the currently displayed document or to

a location in another document. Supporting this first case requires
the hyperiink's container to itseif impiement IHiinkTarget.

Acti\.,eX hyper/inks, their targets, and a container.

Chapter E!even

BLUE COAT SYSTEMS - Exhibit 1034 Page 86

Although they aren't shown in the figure, two other components

p!ay a part in ,A.ctiveX hyper! inking: the bro~A.1se context object and
hyperiink frames. The browse context object supports the iHiink

BrowseContext interface, and it is responsible for rnaintaining the

navigation stack. This data structure supports an integral part of

the browsing metaphor,: the ability to move forward and back in

the list of visited docurnents. A traditional web browser rnaintains

this list itself, but it applies only to hyperlinks between HTML doc-

uments. Because no single "brovvsern application might be able to

encompass all the documents a user visits through ActiveX hyper-

!inking, an externa! object n1ust n1aintain a list of visited docu-

ments. 'I he navigation stack maintained by the browse context

object generalizes the traditional \AJeb bro\vser history list to in

dude all documents browsed using ActiveX hyperlinks, including

HTML documents, Word documents, Excel spreadsheets, or any

thing else.

Finally, navigating to a hyper! ink should ultimately result in display

ing· something new to the use~. To provide sorne consistency, it's

common (though not mandatory) to wrap a single frame around a

succession of displayed documents accessed v,;ith l\ctiVcX hyper-

links. Internet Explorer 3.0, for example, can be used to browse

across many different kinds of data, and it gives the user a ·com-
mon frame for aii of them. it can be useful to keep this frame in

formed about what's happening/ allowing it to do whatever is

needed to maintain a smooth iook for the user. For example, aii

applications hosted within a hyperlink-aware frame can rely on

the frame to locate the browse context object for them. To do this,

a frame supports IHiinkFrame, whose methods are called by various

compo.nents in the hyperHnking process at appropriate times. Inter-

net Explorer 3.0's simple frame, IEXPLORE.EXE, implements this

interface, as \Vi!! Internet Explorer 4.0.

How ActiveX Hyperiink Objects Work
When a user c!icks on a hyper! ink, the container that receives the
click creates an ActiveX hyperlink object containing the correct

information and passes it a pointer to its IHiinkSite interface.

ActiveX, the Internet, and the World Wide Web

rhe browse
context object
m;.tintains a

navigation stack

A hyperlink
aware frame
provides a
consistent
environment
for displaying
a succession
of documents

309

BLUE COAT SYSTEMS - Exhibit 1034 Page 87

310

An ActiveX hyper
link object can

refer to a location
in the current

document or in
another document

!fa hyper! ink
object refers to a

different docu
ment, it relies on

its moniker to
create that object

The location string
identifies a specific

location within a
document

(Vv'ith the creation functions rnentioned earlier, such as HlinkCre

ateFromString, all this can be done with a single function call.)

Once the hyped ink object is running, the container calls its IH\ink

::Navigate method. To find out whether this hyperlink refers to

another location in the document the container ts currently dis-

playing or to a location in another document, the implementation

of IH!ink::Navigate turns around and asks the container for a mon!~
ker to the container itself using iHiinkSite::GetMoniker. The ActiveX

hyper! ink object then compares this moniker with the moniker it

already contains, the one naming the hyper\ ink's target. if the two

monikers are the same, the hyperlink knows that it refers to another

location in the current docu.iT1ent. If not, it rnust refer to a location

in a different document.

If the ActiveX hyped ink object determines that it refers to a location

within the current document, the container for that document must

support !H!inkTarget. (!t's the target for this hyper! ink, after all.) The
hyperiink gets a pointer to this interface by caiiing the container's

JH!inkSite::QueryService method. !f this hyper! ink does not refer
to a location in the container's current document, the hyperiink

object calls IMoniker::BindToObject on the moniker it contains.

For a hyper link containing a file rnoniker with .a filenar-ne such as
REPORT.DOC, for instance, calling BindToObject will typically

start ~vA.icrosoft \Vord (because of the DOC extension) and hand it

this file through IPersistFile. If the hyperlink contains a URL moni-

ker such as http://v.'\V\v.acme.com/report.htm, it \vi!! fetch the

HTML page identified by this URL and hand it to a web browser

such as Internet Explorer. Whatever kind of moniker is involved,

the initial interface the hyperiink requests on BindToObject is
IHiinkTarget.

One way or another, the ActiveX hyperi ink object now has a

pointer to the IHiinkTarget interface of the target. The hyperlink

object next invokes IHiinkTarget:Navigate, passing in the location

Chapter Eleven

BLUE COAT SYSTEMS - Exhibit 1034 Page 88

siring that this hyperiink stores. The source finds the correct infor

mation and causes it to be displayed" If this hyperlink is to another

location in the current docurnent, the current window displays the

new information. If necessary, however, a new window is created

and correctly positioned to present a smooth transition to the user,

much as is done with OLE in-place activation. And although this

brief description omits the detai !s, the frame {if there is one) is kept
informed about what's going on, and the browse context object is

updated vvith the result of this navigation throughout the process

of foiiowing the hyperiink.

The Simple Hyperlinking API
integrating the browsing metaphor throughout their environrnent

is likely to make users happy. Given what's just been described,

however, it might leave software developers somewhat less pleased.
Developers ~ant a simple, powerful way to implement browsing,

and although vvhat Vv'e
1ve seen so far ls povverfu!, it's not especially

simple. The implementor of a web browser or an application such

as those in lv\icrosoft Office might need a detailed understanding

of the ActiveX hyperiinking architecture, but most programmers

need only a straightforward way to add hyper! inks to their app!i-
, • ~ • I I I • I • • .-.r I I , I , I , I • caHon. t\ s1mp1e nyper11nK1ng t\t'l nas oeen crea(ea m maKe m1s

possible.

The prirnary purpose of this sirnple APi is to rnake it easy to navi
gate to the target of a hyperlink. The API's small group offunctions
listed on the follovving page are focused around this goal.

8 This is similar to OLE !inking using a compo$ite moniker built from a file mon
iker and an item moniker. In that case, the file moniker identifies both the ap
olication and the document while the item moniker passes the application a
string that identifies a location within the document. By identifying a location
wilhin a document using a simple character string rather than ari item moniker,
the ActiveX Hyperlinks technology avoids the overhead of creating a moniker
for the common case of hyper! inking to another location in the same document.

ActiveX, the Interne!, and the World Wide Web

The simple hyper
iinkmg API makes

all this easy to use

31 j

BLUE COAT SYSTEMS - Exhibit 1034 Page 89

312

• The HlinkSimplcNavigatcloString function causes a jump

to another location, presenting the user with a new set of

information. The caller passes in a string, such as a file-

name or a URL, along vvith a location string and a fe>vv

more parameters. The implementation ot this call creates

a rnoniker from the string (using f'AkParseDisp!ay!'JameEx,
described in "A Generalized Approach to Naming," page

·1 51) and creates an ActlveX hyperlink object containing

that moniker and the location. it then navigates to the ob

ject this hyperlink identifies. A simpler version of this call,

HlinkNavigaieSiring, performs the sarne task but provides
defaults for most of the parameters.

• The HiinkSimpieNavigatcToMonikcr function, iike Hiink

SimpleNavigateToString, causes a jump to another loca

tion. its parameters are the same, too, except that the caller

passes in a moniker instead of a string. A simpler version,

ca-lled Hlink~~avigatetvtonikei, provides defaults for most

parameters.

e The HlinkCoBack function causes a jurnp to the previous

location in the navigation stack maintained by the browse

context object. This call vvorks only if it is made by an

application hosted in a hyperlink-aware frame, such as

Internet Explorer. (This !imitation exists because the im~

piementation of this caii reiies on the frame to iocate the

brovvse context object-vvithout it, there's no v;ay to find
the navigation stack and hence no way to go back.)

• The H!inkGoFor\vard function causes a jump to the next

iocation in the navigation stack. Like HiinkGoBack, it

\NOrks on!y vvhen made by an application hosted in a

hyperiink-aware container.

Using these calls~ any application can fo!!ow hyper! inks to any

other appiication that supports the basic interfaces required to be

a hyperlink target. An ActiveX control, for example, migh-t present

the user with a button tt1at represents a link to a predefined Vv'ord

Chapter Eleven

BLUE COAT SYSTEMS - Exhibit 1034 Page 90

document. When the user ciicks on this button, the control can
call HlinkNavigateString with the name of the file, and a hyper
link jurnp to that docunrent will inrn-1ediately occur. Rather than

understanding and implementing calls to the underlying objects
and interfaces, a developer can achieve the most commonly used

features of ActiveX hyperlinking with a minimum of effort.

Final Thoughis
\Ve work in a great business. Vv'here else could new technology
as transforming as that of the Internet and the World Wide Web

so quickly become an important part of our lives? The do'vvnside
of this enormous rate of change, of course, is that we're constantly
forced to !earn hov•/ to !ive \AJ!th and use these nevv technologies.

Sometimes this is easy. For the average software professional, learn

ing to use a web browser takes less than five minutes. Sometimes,
though, it's not so easy. Understanding the ActiveX technologies
that underlie Microsoft's approach to the Web, for example, re
quires a firm grasp of COtv11 persistence, monikers, OLE, ActiveX
controls, and more. It also requires understanding basic web tech-

no!ogies such as URLs· and HT~v1L The revv'ard for all_this effort

should be substantial, however. Whatever can be said about the

tremendous amount of Internet hype--·-and it has frequently ex-

ceeded the bounds of rationality-one thing is sure: the internet
and the Web wi!! be part of our lives for quite some time_

So, too, wiii ActiveX and OLE. COM and the technologies it has
spawned have worked their way into the very fabric of Windows

and VVindows ~~T, two systerns whose popularity is not declining.

Understanding the ramifications of COM is essential to understand
ing software in the tv.j.iciosoft world. And, one vvay Oi another,

understanding the Microsoft world is important for nearly every-
one in this exciting business \ve're in.

ActiveX, the Internet, and the 'vVorld V.Jide VVeb

Nevv technologies
force us to change

COM and the
changes it has
brought are
here to stay

313

BLUE COAT SYSTEMS - Exhibit 1034 Page 91

