rad

Aicr

|

{
¢
a ey
3K
U
ul ﬁ.\
T .
. ~

L
C

BLUE COAT SYSTEMS - Exhibit 1034 Page 1

‘Nn part of tha contents of this ook may be 'mmdm e or
bw ared s withoot gh wvitoen e s:zesum of e feR Sttty

FNAAOSRE T

£54be 53 \.gm’ﬁm i

k]
&ﬁ
LT*

. Mmrasm’t M:cmsﬁﬂ ?:‘ess‘ Foseatoing, l’xsuai Ba&ic, w&m; %/M»

\ mé%ewa WY g6 registaced twﬁmmaf and ActiveX and Yisaad o beg wainmans
ot N&is(:‘i(?!’f ta.4 Tredes o Molsrane, SRR sieabinng CogEdation.

of Mol
seadermaricsof Mowelt, ln. PowsrBuilifer 15 a tra rark of
Gain 4 Sue Micvosveins are regisiened srademarks and Java &9

it

i datn usend 3 in soreans and sampie putpuh are R0 unlss,

A 5

[
gt ;g-mitnnmzri

P nenahh

BLUE COAT SYSTEMS - Exhibit 1034 Page 2

QEV@}QP, i 111 H EMLOMERS S S UEM:&U&‘I Peis: LI 5 W "%b Y
can guickly determine by Hlippingthrougly the pages, this s nota
programming baok—It sontaing dlmest no code. Although [do
assuma that the reader s 3 soffware professional of some kind, |

; s Lronylatian of Tt o Wingdowss hased program-

LNAA., and TOM gre sartand, ¢ 3 ‘:“’b tnysﬁq»g‘;:

they arz and how thay work maiisrs @ Foaler g aroup nan o
whe program for Microsoft Wm(_ﬁw» Some familiandy with using
Windows is aken for granted, bowever; this seemed safe 1o me,

ae it hard fo fied anvoss in this feld who hash't used Windows

The ActiveX ahd OLE technologies are a moving target. Thistbook
dascribes the fundamentsl ~_{Z‘n’v&ic:zs@ci technﬂisgaeﬁ as of mid-
isited COM and Chapler
saity shipped, Accordingly, some
15 aight nod eXacsy malkch what
i ‘!"’2&“‘7’ d @wmd

Where to Find More Deta

FOF sme pmapse the ¢ pm of e

be enough. For ers, 1t will sursly be o fnum j Developers

whe need a more intimate m'jﬁr«mudmg of e topic will

want 10 get a cepy of the OLE “bible” for programmers, Vz-zeig
ff'rm"\fn 4”}3 f-; 2 §

Aaam Denning dicrosoft Press 5. b for & new edaitaon
of this book, too, ong that {i' oribe e i:har“g% in what
are row Known 85 ActiveX controls.) For th uly hard-core

BLUE COAT SYSTEMS - Exhibit 1034 Page 3

al for this book,

ve sy wile Karen, has been sternally p ;
supportive throegh this and many other projects, something oo
often forget to mention. Without her, it would behard 1o do any

of the things 1o
f-

BLUE COAT SYSTEMS - Exhibit 1034 Page 4

i Aantar {Ynao

\HIIHPL\/I N DN

& -] 9

 Tasd JdaYallTallale)

(IR LRRMV AV |F LW | !5

B a® ®w & B en s
TR/ Y 2P § BE B
SO WEL 7% CAE AR V..

Writing good software is hard. Writing software that's large and
complex, as most code is today, is even harder. As computers
continue to infiltrate our lives, as we depend on them for every-

thing from running our cars to writing letters to making toast, the
effectiveness and reliability of software become more and more
imnartant Coand cade e hoacaming tHho hadeacl Af Are civilizatioan
LAR B¢ LA LA IL, WU Ald UG g IJ\-J\,A\JIIIIIIE, I RO UIAAC ™ U AU Ve aiui g,
In some ways, the history of software is the history of efforts to Writing good
write better code. Applications and system software both have software is just
o o o " Vo ey .. . nlairn hard
suffered from endiess delays, mind-boggling complexity, and PR e
u a But

more b lgs than anyone cares to admit. But creating software is
P Y
ir

g it wel
to take a big-picture view couoled with a wi IIlnﬁness (an eager-

- [H R
ness, CVEII} o U(:'dl' WII.II IIIYIIdU T STl

a
effort required is substantial, and the tools

PR /¥ S WS RUE VN P B R PUS R IR Y P S 4 A mel N menl N
lV![LlUbUILb ACUVEA aind wiLL are a SLep wowara ne creauon on ACLVEA alill ww/LL
better software. “Better” here means software that’s more reliable, are about writing
cartainly and more effective ac well BOr i alea manmne cofives re better software
Loiuailnt U IOV CHTULIVE A vwoll UL T AloU ISl iy JuiLvyval o

are built on a quite simpie idea, this idea turns out
found implications for improving how we create software.

BLUE COAT SYSTEMS - Exhibit 1034 Page 5

Cons T ox. A a% L

rrom UL 1o ACUVEA

The first incarnation AV E Ahinat P imbi;g o d TosleadAdin s 1

s unac it Lulllﬂllull Ul /L, UUJC\.‘L LTI |5 arnia Linnprcuuat |S Iy
was a mechanism for creating and working with compound
Anenmea nig Tn |l- ticar a romnnund daciameant anneare t0 ha a
AALS N R R L ‘.‘\Jillr.l\.lhlllu AL AR L ut,_;r;_aul LR A
single set of information, but in fact it contains elements created
h\/ two ar more different ;\pn|!gal|gnq \A/ﬂh LE 1, for Examp!el a

user couid combine a spreadsheet created using Microsoft Excel

with a text document created using Micrasoft Word, as shown in
Figure 1-1. The idea was to give users a “document-ceniric” view
of computing, to |et them think more about their information and
hey were using to work with that

5
e name suggested, compound documents could

heo ~roatad aithar bau linlkiog fuun carmarata daciimante fagathar o
T Licalcu Ciuici b Illll\llls Lyvu JCHQ' ALl U Uninciig LU&‘:[IICI wui
by completely embedding one document in another.

nearl viaur af 2 coamnnnnd docipemant
A users view of a compound document.

Fowrth guarter sales more than exceeded our projectinns, and early raports indicate that sessanally ndmste&
sales thie guarter are puaning well shead ofthe same penod last year. “The embedded spreadsheet claaxly
shows the uenﬂl

1095 02

moar L,

34980

Children’s Apparel |~ 73099

Chgre T a7as
oG2S 27856

Childrens Shoes 4559
(Housewares 1 18360
Fil 12087 ;

e
£T0LT

architect

design. They soon r

ts of the next release set out to improve on the original
n i t

ment problem

was actually a special case of a more general problem: how

Chapter One

BLUE COAT SYSTEMS - Exhibit 1034 Page 6

es to one

[a)

should various software companents provide servi

ancthar? T addrace thic |arnnr- rerhlarn O Fs architacrts craatad
AT IWIRLR IR N & TR F CALARA I Vs LITT TRA 6 HI‘ AR Ty W L o CREIO d) eOR L
a set of technologies that were applicabie to much mare than

comnoun H rln(‘llmnnfc Fnrpmn:;t :lmnncf theqp f,,_,h!’!,,IO iec wag

M
I
the Component Object Model (COM), which provided the foun-
dation for OLE 2. This new version of OLE supported comp

R P

documentis even betier llldi

was going on here than simp

ALl
i

ren Ldpplll,dllullb OL.L

of thinking about how software of all ki

he first release, but uedrly a 1ot more
mbining docu ents created by

tt sl poy Louee v wms P,
one C Lll U d 1Y Wdy

Thic matantial wme lavaalu tha vaciile AF Y T WA ackaldichos A COWA fe oo Foine
iy rJUI.ClILIaI Yva> 1o ELI LEIL TS OUTL T LA iy ARV LOLAITIDINICT)Y & wAVL I3 a IUUII
common paradigm for interaction among all sorts of software— dation tor inter-
libraries, applications, system cnfd..fare, and mare, Accordingly, action among all

virtually any kind of software technology can be implemented

kinds of software

using rhp npr ach COM defines, and dai ing so offers some very

Because of those benefits, COM soon became a part of technolo- The name Object
gies that had nothing to do with compound docurients. Micro- L:n.\ing and

soft, however, still wanted to

TYAA _hacndd a0
LAAVIELIAHEU W0

reduce the name
th an_|attar fr\mhin

P AT IS LA g

to drop the version number.

nder this new regime, the

built using the paradlgm COM prowdes

fonger meant only compound documents but was now a
assigned to any COM-based technology. In some ways, grouping

introducing

have a common name to refer to all Embedding

oun. The company decided to became simply
UU'J- |||C \—Ull Pd y LU U W

Object Linking and Embedding to just OLE—this oL
s no longer freated as an acronym—and
term OLE was applied to anything he OLE label
(ithoug'h COM was also was applied to
F no any technology

that used COM

!

P e

are writen U)IIIB '.,\JIVI I akes 11
g together all software written in
srraios lomciaos cich ag Ol aea :
atrminl 5 |qll5ua5c al.l\.‘l as b ol
| kinds of software. Still,
ta mark tha advent oof thic new and
A WS IO TN LN CARAV RIS AT I YV Al
erm OLE was used to identify many
TG
) gies
ActiveX and OLE 3

BLUE COAT SYSTEMS - Exhibit 1034 Page 7

Today, most In early 1996, Microsoft dropped another term into the fray:

TAWNA B c A et NS Nt fr e I B . S S |
COM-pased ActiveX. In its first appearances, this new term was associated
technologies with technologies related to the Internet and applications that
T are ElSSIgI’lG:d P oLt Jmtmvim ot cszombe oo bl VALl I WAL I WAS L Darnrion
m the |3be| E’, rew Qut Or tne ntern L, 2ULI cdd LT VV i VVIut' VYVEL. DOLAULC
x Amtion most of Microsoft’s efforts in this area were based on COM,
Artivun¥ wne Aivactly croanmartad tn U E Coann theooo thic mawa
A TIAR AVFANE L S7P: BRY RN R WL | AWLW I RN WEAWLY B AW R W Y S !JUUlI, lllUUalI’ LIELD 1IN YY
term began to usurp more and more of OLE traditional territory,
and today things have come full circle. Now the tarm OLF once

again refers oniy to th

e technology used to create compound
documents through Oh

ect Linking and Fmbedding. The diverse
set of technologies buiit using COM, once ali grouped under the
OLE Iabel are now Eroup ed under the ActiveX banner. In several
L
[

_‘
4]
9]
=y
=
o
=
0
=
o
(=
18]
W
>
-8
<
>(
-
®
]
oy
=
=2
o]

_,,
=
o
2
=
)
3
=
e
—
&
g0
aa
®
-3
=
F
>
A
=3
<
o
Pl
‘:l
v
2
o
©
o

.‘
.
=
-]
jo]
C 3
W
<
D =
'3
I
=A
=
=
. 5
=
[
4
=
oy
x5}
3
.'.T
o
=
g
og
D
%13
i
@
—

<
3
E>]
o ¢
=
=
=
—

despite these adventures in nomenclature, what's reall
hasn’t changed. What's really important is COM.

Understanding COM
Traditionaiiy, All OLE tec
& different kinds of in this book are bu;lt on the foundation nrowded bv COM. ‘-30 just
software provided o

2
=
i
=
a
O
Q|
.n.;
g
ol =
%
z
(T
-
-
="
o
=]
oy
T
U
=
<
=i
=
=1
7<
:|
i
-
o
or
<
c
—
&
. &
=
3
o

services in h

different ways
s rmwn? Tin Aoy o cbhiiaan T Ficiiwn T 70 el
Lwalcy juudy, <> SFUvviy Hi i IE',UIC I-£, LN

what those chunks of software are. An appli-

in an entirely separate process. In tf
es

ypically communicate by

Cals Ly

sing an interprocess com-

u
munication mechanism, which usuaiiy requires defining a proto-

col between the two applications (a set of messages allowing one

4 Chapter One

BLUE COAT SYSTEMS - Exhibit 1034 Page 8

Arilicationn foy cracify it rasioacts and tha athor e cacnand armeses
GlJlJ awnsin v DPCLII)’ o IC\.’UCDLJ Al LT Vic) ww IC:PUI u d.'J'JIU_
priately). A third example is an application that might use services
mnrowicdad hy an Aanarafing cyvotomm ars tha amnlicafinn commanly
provided by an operating system. Here the application commonly
makes system calis, each of which is handied by the operating
system. O, finally, an application might need the services of

"

software that is running on a compietely different machine, acces- _
sible via a network. Many different approaches can be used to

access these services, such as exchanging messages with the
remote application or issuing remote procedure calls.

VVltﬂUu(l_UIYI, mnen.nt mechanisms are u.seu io access me services rlgurc -2
provided by iibraries, iocai processes, the operating system, and remote
processes.

The fundamental need in ail these relationships is the same: one Accessing services

chunk of software must access services provided by another. in different ways

But the n O T S Y is needlessly .

but tne IIELIIdlllb 1107 gelllllg dl Nnose 5Crvices UIIICIb I eacdrn ! i
complex i

case—local function calls, messages passed via interprocess &

YT T I PLT sy cuctarm calle adich fm fact lonls eemtte, e~ -

COmimil IIILdLIUII’ Dy:‘LC IECaalld LVWHHTLTE T 1Al YUK PICLLY nuwvit

like function calis to the programmer), ar some kind of network

This is exactly what COM does. It defines a standard approach by ~ COM defines a

which ane chunk of software supplgpc its services to another, an commaon way to

| access software

approach that works in aii the cases just described. By applying o

Introducing ActiveX and OLE 5

BLUE COAT SYSTEMS - Exhibit 1034 Page 9

Y U DA | AP nrpmon lHlhonwing amelinakiamas

LIH:! CUTTIHTIUTT DI VIL\:‘ arcnnedciuire aciross IilJI dl ltfh, d[J[JIILO.\IUIIh,
system software, and networks, COM is transforming the way
cnftararn ie ~erctretos]

DIILYYQAI T 5D LU IO U AT,

How COM Works
ects With COM, any chunk of software implements its services as one

provide services or more COM objects. Every COM object supports one or more
via methods that

are grouped
into interfaces

interfaces, each of which includes a number of methods. A

method is typically a function or a procedure that performs a
specific action and can be called by the software using the COM

| PR TL,. Y Py
T l‘:lllUUb Ldag

ne
d b o O abioct
oL < \-‘V'V‘ LA JCALL
te

rfaces—they can’t directly

"

For exampie, imagine a speii checker impiemented as a COM
obiect. This cbject might support an interface that includes

Ll 2L ak. o

meth-

1 Tas a4

ods such as LOOKUpVVOI’G Add oD'cuonary, and RemoveFrom-

Dictionary. If the object’s developer later wanted to add support

O P o | A e T B o Py A P,
r a tnesaurus o Llll’.'! 2alTIE VIV UIJJ eCt, Ine vpject woli

(9}
to support another interface (perhaps with a single method such
Thies mothaAde H

i e i oAane
g 1w ey IUUD i caw

Y
provide related services, either spell checking or access to a

The methods in Or imagine a COM object representing your bank account. it might
each interface support an interface that you access directly, one with met h ods
ﬁl“'sﬂ"’an”n"’_f‘“:‘i'“'b such as Deposit, Withdrawal, anci hecxualance This same object
n supplying a .

particui:rps::rv?ce mlght support a second interface containing methods such as

O ccount, which can be in-
voked anly by bank employees. Again, each interface contains

1 Daon't confuse COM ohjects with the ohiects in programming languages such
as C++. Although they're similar in some ways, they're not the same. Later, this

el AL

chapter describes how COM objects relate to other kinds of objects.

Chapter One

BLUE COAT SYSTEMS - Exhibit 1034 Page 10

Eigsira 1_2 illiicteatac o INA Aot Anct WA Alincte crimmned [ara ¥ PN NP
1 IE I 170 UL AL S A A JiY) UU]C_L. Y IUOL N AV UIJJC\.,LIJ 2 }J}JUIL ALY th_(‘(I3
more than one interface, and the object in Figure 1-3 is no excep- implemented
tinn- it cumnarte throo intarfarac aare ranracantar bw a crmall inSide a server
ticn: it supports three inferfaces, each representes by a sman

and ||<u:|||\/

he object. The object itseif is always imple-

t
mented inside a server chown as the rectangle around the ohject

oy e
IJU[J}JUILb llrLl IfAJIl:

Tl SRS S e interfaces
This server can be either a dynamic-iink fibrary (Di.L), which is
loaded as needed when an application is running, or a separate
process of iis own.
A COM object’s services are accessed via its intetrfaces. Figure 1-3

Figure 1-4 s hows a close-u
COM object. This interface allow

Synonym method. (I n fact, this diagram is a bit simp
W anda t

interfaces ac

Figure 1-4

Introducing ActiveX and OLE 7

BLUE COAT SYSTEMS - Exhibit 1034 Page 11

At o denbmpfn i o~ oo liand ot
A CHENTD USTCSH drl LD IMILCace, d CHSTIL st
intertace pointer Juire a poi hat interface, A COM object typically pro-
to invoke an ; i i sces and the client must
TACD, Allld LIS DI IL T iDL
interface’s by e
o whose methods it plans
THELITOUY
mple COM object would
methods in the object’s
h iter ta invoke the method
in the object’s thesaurus interface. Figure 1-5 shows a client with
pointers to two interfaces on a single COM object.
Figure i-3 A diieni wiih poiniers {0 iwg of a COM objeci’s inierfaces.

Pointer to thesaurus
interface

Each COM object

is an instance of

(o I‘I"_i'c R Ve
P Y L« ot g A

ch you can do

librarv, This librarv is present on every system that
1 Itbrary. 1his library is preser every system that

RS LR W \/

supports COM, and it has access to a directory of aii a
classes of COM abjects on that system. A client can, for example,

B 1A XAl Me

vailable

[+

A oa 1Tl

call a funciion in the COM library specifying the class of COM
object it wants and the f
A

o nemimtbar (Tha ML Iihenes s e rirdac i comidome oo redicin ey

a lJUI L. (1T LAyl irgral)/ IJIUVI‘JC:‘ 1Ly ITIVILCY d> wiruliln d.l)’
function calls, not through methods in COM interfaces.) The COM
lilhrary thon canense A corvune that imnlaniante an ahiact Af thoat ~lace
e an AW W o Il V) LI rIII'JI\,IIILIIL:) €O AR/ VUL A Ldl v iads
to start running. The library also passes back to the initiating client
a pointer to the requested interface on the newly instantiated
COM object. The ciient can then ask the object directiy for point-
ers to any other interfaces the object supports

Once a ciient has a pointer to the desired interface on a running
object, it can start using the object's services simply by invoking

jeL LS

Chapter One

BLUE COAT SYSTEMS - Exhibit 1034 Page 12

these distinctions—everything is accessed in the same

hown in Figure 1-6, one common model i

L0 Lo

-
2

3%

<

g

wn
W
(D

73

4]

j» 1

=

v}

access services provided by all kinds of software.

With COM, an application accesses an ohject’s services (no matter Fioure 1-6

whara that nl’unrf rn:ln'nc) flu :nvn'nng 2 mcn‘hnn' in an intorfars,

Falal WV IS By . N L e _at

COM ana Object Orientaiton

QObjects are a central idea in COM. But how COM defines and

uses objects sometimes differs fror he way objects are used in

other popular object technologies. To understand how COM

wnlatae b bbbl o el ae PR [Ry PR afe] Aﬂ.--.-.l.-.

1Cialrca w2 vl ULIJC\.I. UIICIII.CU LW Y] IUIUSICD, ILB UDCIUI lU LW Lowi LGN R AW L w}

what’s commonly meant by the term object-oriented and then see

how COM fits in.

Defining an object The term object has been blurred by mar- An object is a
prfnpr«: trving fo !:atr‘"\ on to tlhe !al ad, ut 1' the mlnrls 0!’ Combination of

o data and methods
most, object—orlented technologl s have a few ke ey characteristics.
what con

nstitutes an

Chief among these is a common notion of wha

object. There is widespread agreement that an object consists of
two elements: a defined set of data (also called state or attributes)

=
3
-
D
3
v
=
R
o}
-
m
]

BLUE COAT SYSTEMS - Exhibit 1034 Page 13

-
=]

Figure -7

Unlike COM, most
popular object
technologies
allow ullly a

single interface
per object

In COM, a class
identifies a par-
ticular imple-

" -

set of interfaces

and a group of methods. These methods, commonly impiemented
as pracedures or functions, allow a client of the abject to ask the

object to perform various tasks. Figure 1-7 shows a simpie picture
of an object.

An abject has boih methods and daia,

So far, so good—obijects i
object technelogi

singie set of methods. in contrast, COM objects can—and neariy
always do—support more than one interface. An object in
for example, has only a single interface that includes all

object’s methods. A COM object, with its multiple interfaces,

might well be implemented using several C++ abjects, one for
each COM interface the object supports (although C++ isn't the
ey lamanaaga that can e iead ta b ld COAA nl»-uru—'h-\ 2

A R)] Iean IEUO G LITAL VAl WG WU LU U LA YL \JUJCL[D,’.

Another familiar idea in object technology is the notion of class.

All nhiecte ranracantine hank acconntce
All opjects representing bany accounts

the same class. Any particuiar bank account object, such as the
ane rpnmqpnhno VﬂllT 2(‘(‘0“]’11‘ s a ance

COM obijects, too, have classes, as already described. In COM, a
class identifies a qnerlflr implementation of a set of interfaces.

,,,,,, [y

Severa| diflerent implementations of the same set of interfaces can
exist, each of which is a dlfferent class From the client’s point of

| R fiatter
VItTW, winat matt

implemented, w

:..........L‘_
UW LIIUbC (LRI)]

Ces
55 really indicates, isn’t the

m

an

3“1’
a v
S5 oW
@
g
5
) .o
-
—
=
gl
=X
o

2 It's worth noting that, like COM objects, objects in the Java programming
language can have muitipie interfaces. In fact, as described in chapter 11,
Java is a good fit for developing COM objects in severai other ways, too.

0N
o
O
=
o)

BLUE COAT SYSTEMS - Exhibit 1034 Page 14

client’s concern. This ability to work identically with different kinds
of objects each supporting the same interfaces but implementing
them differently, is called polymaorphism. It's described a bit more

in the next section

Encapsulation, polymorphism, and inheritance If a technology
R [P P PPN QU I NP Dy ey A R [N . JE

LTIUC Y LIIIIIED [) BIUU'JD LH HITSLHOUDY atiu ‘JA‘JL [N LG A YLl \)IsdlllLt‘:

those groups into classes, is that ufﬁcnent to qualify it as object-
s h

£
c
a¥)
=
@
=3
v
n
3
o
5
© og
5
@
=
&
o
"_D
3
guco
~ O
=
A
L
@]
=
O m
=
D
o
—_— =X
o)
£
[=
3
]
Lzl
=
Ee]
o
—-

the object’s clients. Instead, that data is encapsmated hidden
away from direct access. The only way to access the ob;ects data

-
]
—

,.T ______ Ry | s

s methods. These methods collecti vcly

nterface to the outsrde world, and it's only

By preventing i

directly to an o
of

the creation o

ina

biec
i)

bette r software.

C++ provides direct support for encapsulation (although it also

offers ways around it). if a programmer inappropriately attempts
to directly modify an object’s data, the compiler can flag the

i

vtk s RN e A Ll

attempt as an error. Although COM isn't a programimiing language,
the same idea holds. A client can access a COM object’s data only
thraniah the mothade in that abinete intorfaroe A (O ahioct's
\.Illuuall LIS DRI LI 11 i UUJ\JL/L o I R S O R R 2 4] UUJ_;_I. 3
data is encapsulated.

The second defining characteristic of object-oriented technologies
is polymorphism. Simply put, polymorphism means that a client
can treat different ob}euts as if thmf were the same, and yet each

b
representing your checking account. This nh ect pro

Introducing ActiveX and OLE

BLUE COAT SYSTEMS - Exhibit 1034 Page

frorn directly
accessing an
object's data

SULIIOT t
encapsulation

lets a client treat
different objects
as if they were

11

15

Withdrawal method, which you imnolicitly call each time you

wriic a check. You might aiso have an object representing your

savings account, an object that also has a Withdrawal method.
PSS Y Ty .~.,—. I JpERp PR [Py P PR PR [P Sy

U d LHECTL, WIS Iwu st Nnoas 100K Juh e Sd ”';', dllu WIIKCTI

either method is invoked, the same thing happens: the object’s

halanes chrinks
MACAIAL IS S nning
Different objects In fact, however, the implementation of these two methods might
can implement be quite different. The implementation in the savings account
Y P o . .
HE satie thoa object might snmply check the requested debit amount against the
in different ways e halance

account hq!nnrp If thp dph!t amaount |=: qm;t“(:-r th;ln fh
the request succeeds; if not, it fails. The Withdrawal method in the
checking account object, on the other hand, might be a bit more
complex. Checking accounts commonly offer an automatic foan
up to a certain amount if a check would otherwise bounce. In

PO 1 O 1 W 2L R e I g N S ey
IlllpICIIIC ILI IS Lc VVILIIUIG ﬂl TN, L LHIssemi IE(\.LUU 18
object could check the requested debit amount against bath the
current account balance and the maximum loan currently avail-

o3
—
=y
[
o]
juy
9’}
@]
-
)
o
[+V)
=
W
=
—_
=
®

able. In this case, the request succeeds an

recauestad dehit amount is less than the sun

LR wl Col

3
[}
=
—
-l
)
0o
=
-~
4]
3
=
-
5
-
S
]
o]

and the availabie ioan amount.

To a client, these two Withdrawal methods look alike; the differ-

ences in their implementation, important as t'ney are, are hidden,
This abilitv to treat different things as if th y were the same, with
L..

da
morph|sm.Th|s example also
nalvmnmbicm: ¢
POIYMOorgnisinit <

encces that don't concern them, which simplifics the development
e

of client software.

COM objects COM objects fully support this idea. It's entirely possibie for two
provide

wbjects of different classes to present the same interfaces or nprh g
1crm 1
ni

ekt L prte o | TaLLs 1S

nly a single common method definition to their clients, even
though each object implements the relevant methods differently.

The final defining characteristic of traditional object-orienied
technologies is inheritance. The idea is simple: given an ohject,

Chapter One

BLUE COAT SYSTEMS - Exhibit 1034 Page 16

UMl ma o sranta o omen inrtr that arckrematicqally inclicdac coma A
)‘UU WA LITALT a JITYY UKJJC\.\. gl GULUIIIGLILGIIY LARASI RV LW Lk B LW TR B L wag V) |
all of the features of the existing object. Just as a man might, with
no effort on his part, inherit male-pattern baldness from his

There are various kinds of inheritance. One distinction that’s
warth making here is hetween implementation inheritance and
interface inheritanice. With implernentation inheritance, an object
inherits code from its parent. When a client of the child object

P DY o IR T Y U VSNTRY R PO R N Y AT S oY B)
Al UNIS O L CTH Y 1IN e ||CL|IUU1‘I, e COUe O e parcins
method is actually executed. With interface inheritance, however,
tha child inharite anly tha dafinitinne of tha narant’e mathaee

LIS g g Ullly LI RACTRI A U s r}ﬂlcllLJ [RRLWIARLVLY P}
When a client of the child object calls one of these methods, the
child itself must provide the code for handling the requests

implementation inheritance is a mechanism for code reuse, one
that’s wirlpl\/ used in l;mmmae such as C++ and Smalltalk. Inter-
face inheritance, in contrast, is reaily about reusing a specifica-
tion—the definition of the methods that an object supports. An

important reason for using interface inheritance is that it makes it
easier to provide polymorphism. Defining a new interface by
inhariting fram am aviceting inftarface guiaranfoos that an alisast

[RR AR llll\s PILH L il TATOLN l‘ TG rauc Euﬂllal LGS WAL all U oL
supporting the new interface can be treated like an object that
supports the old one

Programming languages such as C++ support both implementa-
tion inheritance and interface inheritance. COM nhm(‘fq how-

ever, support only interface inheritance. COM’s creators believed
that, given COM'’s very general applicability, supporting imple-

mentation inheritance was an inappropriate {and even potentiaity
dangerous) way for one COM object to reuse another. For example,

| R (P R SRy [N o [P T Ty S
LeCaAlide ||IIPIEII|C TLALTOTT 1IN iledl ILU Cll CAPchb e e 18
object to details of its parent’s implementation, it can break the
mrvramcoilati;me Af fhe marant Comanetimag amly infarfacra inhoaritamon
= “-—CllJD avivug AW N e 'JCUCI L JUI»JPUI (4] 5 UIIIY RIS Qi by Il.Clll_‘\,,
as COM does, allows reuse of a key part of another object—its
1y eFFJCe_AAl I!Cl ')\I()}r‘lll’\{_‘ I-l-\ic nrnhfnm

interfa while avoiding this problem

Introducing ActiveX and OLE

BLUE COAT SYSTEMS - Exhibit 1034 Page

]

1

a new object to
buxld on an

existing object
(=] J

Impiementation
inheritance and

interface inheri-

tance dre UIIIEIt:FIt

Interface inheri-
tance reuses a

COM objects
suoport only

inheritance

13

17

COM ohjects. But without implementation inheritance, how can one COM object

[y

can reuse reuse another’s code? in COM, this is done with mechanisms
code through

containment or
aggregation

and aggregation. With containment, one

another ODJEC[as needed to nEIp carry out its
regatlon an OblE’Ct presents one or more of

called containm

— A'D

object simply ca
functions. With a

CJQ

Is COM really object-oriented? COM has a great deal in common

with other object-oriented technologies. lts basic notion of an

object as a collection of data and methods resembles that idea in
languages such as C++, although COM allows a single object to
[Py . R

have muitipie interfaces. COM also provid des enc: psulation, pUi‘y‘-
morphism, and interface inheritance, but 5 t

S
=
[10]
-3
=3
o
3
a
o
O
g
4]
A
~
[73]
o
=
o
el
=
ja 1
[+¥]
3
D
3
~
=2
—
o
O e
g
-
=3
-
=5
D
-3
+5]
K-
r—~
5
D
w
@

COM is object- S0 is COM really object-oriented? The answer depends on what
oriented, but i e i YA e 0 i
remed, this question means. If it’s asking “Are COM objects exactly like
it differs IFU”I 4
objects in languages such as C++?2”, the answer is obviously no.
other popular This sl . . o L
object-oriented ihis shouldn’t be too surprising, since COM solves a probiem that
technologies is quite different from the one addressed by an object-oriented
B OO . PIPOF U UOU & I & S P TP RNy PGP, DU JUY Waen B o P
progiaitin IS a4 Isuds': DPUL AT LHE IEAl QUESLIUTT IS TS ai) L/UCTS
COM provide the key features and benefits of objects?”, the
answer is just as obviously yes, and it's this sccond question that
really matters. The goal isn’t to get lost in debates about whose
definitions to use. The goal is to wrife better software.

Farla YWY

COM and Component Software
Hardware has In the past 35 years, hardware designers have gone from hmldlng
room-size computers to creating lightweight laptops based on
tiny, powerful microprocessors. In the same 35 years, software

14 Chapter One

BLUE COAT SYSTEMS - Exhibit 1034 Page 18

ris-\/r-\lnne-‘rq have gane from writing lare ge qy termns in assgmb!er and

(arguably) progress, the software world isn’t advancing at the

sarre rate as the hardware world, just what do hardware designers
have that software developers don’t?

Thay cimcsarcie Do oo e e oy o sl oy e T bl e cn e [T PP A S S
PG ATISYWCT 1D LUITIRPIUTND 1. A N1ATUYVARS CHBINICCIY HAau LW DLAll HiglhUwdl € UCsigtl
from sand every time they built a new device, if their first step is aided by heavy :
wng aluraus t oxtract tha silican o make o chin the e sld e reuse of existing
Y¥vQao al Vvay:l L LECAN L LH i RSl l}J IHIans a ""IIIP/ Lll'-_/y AAAVIVILPIN NS - N

i components
progress very q
do. Instead, a h

4
~

prepacicaged components each or Wthh pertor particular

54
function, and each of which provides a defined sat of services

v

through weli-specified interfaces. Hardware designers can greatly
simplify their task by reusing the work of others.

Reuse is also a path to creating better software. Sofiware developers
today often start with something that’s not too far from sand and
tham mravrand to paten s bl ctame AF A larmdead caeaaearciomaare beferes
Ly PIU\,CCU w1 O LN JLCVD VH oA Ay }JI AR PRRIYN Ll B W lued L
them. The result is often very good, but it could be even better.
T roating now annlicatinne fenm avictinag toctad camnanantc ic
LahUnig LUV QL auivinng anliinin SALILN T, Wl LUl o
likely to produce more reliable code. And, just as important, it
can be much faster and significantly cheaper

his idea of defining reusable parts, each presenting its services Component
th rough well-specified interfaces, is exactly Thp approach that software applies
o PRy this idea to the
COM takes. COM objects provide an effective mechanism for I .
software reuse by allowing the creation of discrete, reusable ;’O:;v;m R
components. These components can act much like the various
chips that hardware designers use, with each one supporting a
crnrifio frintinn Davkhane lhaoraiicn nf thic amalaoy thic annenan-h
D'JC_”I\., Ui L. |C|||€I}JD RACLAUDT U LY ﬂllal\}SY, LEl> C\Ppl\ AN B
has become known as component software
T 1S 1S qudhl a2 now idaa NovelAanare ava rarnonizad tha Nnnfon. Fyicting an-
i ol Ir CL BN YY UL e Ubvbl\lr}MIJ TIGAV . I\.-\.-UBI 1L LT rlUl(,ll l—”"'-’&“'ﬁ “P
tial power of software reuse since the days before compiiers. proaches to
Some of the strictures on reuse are cultural—incentives in many software reuse

.. haven’t been
arganizations encourage reinvention rather than reuse, for P
example. But technology also canstrains the potential for reuse. X '
Introducing ActiveX and OLE 15

BLUE COAT SYSTEMS - Exhibit 1034 Page 19

Software reuse As a mechanism for reuse, libraries have a lot to offer. This is

e S N O Uy Gl R i P
s ShpcLidily Liue Ol Uyndil l_ II|K HUI’dlit‘,b, WHIC

C n be loaded
can help demand and are typically shared rather than sta

a
ticatly linked i
S

progra ritten in
||hr1r\f written in a
probiems, however. One signifi
adding functionality: how can

=
:..\
——

WILIIOUt Ull:'dKng dppllLdLlUlIS in U u

can you easily and safely have more than one implementation of
s - H
1 1

th e H 2T s e oy ek

Ne saimne ||U|a|y On yuur ay:-u:lu, Wi

o
-
3
-
3
1%
—h
N
3
o]
(D
w
v
<.
o
s
—-
]
1721
=
n
w
!
-
43}
3
=
4]
3
o]
c
Ao}
=

also help

es. But onjectq have even more

created once and reused many tim
raries do, Thro ugn inheritance, one nh| eci can

to offer than lib
reuse another object’s interface definition or its code or both. And
Dolvmomhls mpl fies reuse by hiding irrelevant differences

But no large Despite these advantages, object technology hasn't achieved its

markeat in re- f..

coralnl sede i
sable objects this: why can’t a
exists today n

UD]EL[Ddzadl", rich with choices?

16 Chapter One

BLUE COAT SYSTEMS - Exhibit 1034 Page 20

reuse within wor kszrouos or, at most,

LY. Y] - — £__l_____. [P S [P andi T Ty N, Py PR
VVIIIIE YUU Cdil C Iy T 5U0T1IC TeUbdIE UTT UU]CL.lb 1 bdlE, .

o i creating a
the kind of or|dW|d object bazaar envisioned here isn’t feasible componant
with existing technology. Standing in the way are three major saftware market
problems
Tha firet and marhame mnck imnnrfant nrabhlam ic that ckandarde far Denahlom 1 -
PR RN Qaldng I-J\-l'lur’a LR R AV 1 llllPUl\.ulIL Hluul\«lll A LRACLL L LA AT 1] LR LA AN N
linking binary objects together don't really exist. Although you Distributing
can comnile a C++ o nhmr‘f an d then uge th...t Is) nilad binarv ObJECtS with

¢

the format of binary objects, so buildi

P T R .T T=Wl- Ppryegry By [P 3 | S

LJUjLLL Horaries is plLJUICIIldlIL, Cll. |81

available C++ object libraries almast

A ralatar] nain-
A Tiaiel POy

tends to bind paren

of the child ob |ect should usually

LS Lw] A

source code, if only to know exactly what happens when an
is |

inherited method i

is it reasonable 1o expect that the creators of the software avail-
able in our hypothetical object bazaar will be willing to distribute

their source code, thus revealing their
answer appears to be no, since no su

LATAAS) S1 R R it L) ol

An object written in C++ can't be ea

si
program. And what about tools such as Powersoft’s PowerBuilder

or Microsoft's Visual Basic? While one can argue about whether

these environments are really object-

with their popumrlty An OD]eC[bazaar should offer ODjECtS tnat

Introducing Activ

roma i Drary, this is guaranteed to wo
s used for both the library an

US‘;iI"IE7 the llorary C+"‘ doesn’t have cross- compller standards for

,
20
pu]
o
y
S
z
[&]
g
> D
@]
o
W
5
o)1
T
T
=
o
=
s e]
=
=,

_I
=
@

3 .
@
)
Q
=
jo

°
=
Q
=X
i
3
o
—_
=
o
-
joly
T
)
©
=
(4]
&
Q.
o
E
=]
o
=
0
0
=1
3 Q
R=)
[y
o)
T

tad develonment C++ is not the on

ech nolagies we us da Traditional object
: de SIgnea to aiiow technologies
a single organization. present three

e obstacles to
i |

.) their source

coda
(L9108 L)

ing and distributing binary
Y P e 1vs

t. As a result, current!

always include source code.

~,

ir proprietar 'y' secretse Tne
ch bazaar exists. Although

Problem 2'

)
4
1
b
Y
2]
jo Bt

ily reused in, say, a Smalltaik acro
ianguages

oriented, one cannot argue

eX and QOLE 17

BLUE COAT SYSTEMS - Exhibit 1034 Page 21

: can be used and reused across various languages and development
arnsiranmiante bt cneransl @ JTY L PR reyse an alhiamt vaoritban
CHIVITUIITIGIH LS, UL Ly Ill.ly lth Ulllll U1 L0 relse an UUJ"—T\JL viien
in ane language in an application written in another language.
Derdalama 2 Thr thivrd neshloms e thics o vmi renmta am annlisoatiaem Ao AF
LIRSS LT | [RELERNRE L RY) rJIUUI\ L wing. 11)/uu LA UL W) ﬂl-lrll‘\.ﬂ\.l\.lll AALLL W
relinking or objects written in a language such as C++ and then decide to’
recompiling an change one of the o Jmcts you must at best relink, and perhaps
entire application .

even recormpile, the application. if several applications on one

system use this changed nhm(‘f you must relink or rpr"nmmlp all
changes o

of them. ideally, you'd have a way to drop in a new version of a
single abject and have all applications that use this object auto-
...... | P Py | D

”Idll(_dlly use I.He new version. t"\I'IU, UI course, nis bl]ULIIU ndappen
without relinking or recompiling any of those applications.

O <alves g All of th oo n b lomee cen o ad b OIMA COIM ahicrtc oan he
ATVE SUTVES dll A U LHESC IJI QIEMS arg 5G VCU Uy MUV LAY UUJC’_L) “ [
three problems packaged into libraries or executable files and then distributed in
a bir\larw fermat fwithaot tho cniren ~nadaY Sineca) Aafinac o
f f (without the source code). Since COM defines a
standard way to access these binary objects, COM objects can be
written in one language and used in another. And since COM

objects are instantiated as needed, when a new version is in-
stalled on a system, all clients will automatically get the new

Fal ey

version the next time they use the object. COM offers the reuse
beneflts of both Ilbrarles and objects, along with other benefits that
— U [P g N G e

can proviae, CNier amon

e
a common approach to accessing all kinds of software services.

COM aims to YA bringe tha bhanafite of widoenraad rarica meavnlaet fae o

e VR AR NS S AV UIIIIED LHCT RCTLICTIHIW W) VIUC.’JPICC\U Iodac, PlCVdIC I o\

****** 4 laroce - i i j . i - 9 .
Create d 1arge long in hardware design, to the creation of software. In fact, sites
market in full of COM-based components already exist on the World Wide
reusable . _V v R F © e .)’ . - .
components Web, where you can browse or even downioad components, and
magazines are ¢ choclk-full of com nonent advertisements. The nhn:rt

bazaar is becoming a reaiity, aliowing sof‘tware deveiopers to
create applications that are at least partially built from reusable

paits. COM’s general service architecture is useful for many task
but supporting the creation of ¢ ent software was perha ps
tlan oimla Mt\.:l- nnnnnnn Y B I-I-r\ [P o N N

LS IR T IIIIIJUILd” & I aie i Le] 1 1CAdWUIT S,

-
=+

Chapter One

BLUE COAT SYSTEMS - Exhibit 1034 Page 22

Ariything that simplifies the complex endeavor of creating large
pieces of software is good. The conventions defined by COM do
thic im cavears| varme
Wil 111 > vegadl VVCI)’5<
COM offers a useful way to structure the services provided by a COM offers the
niace of caffware. Navalanare can dacian thair imnlamaontatiaon by benefits of object
r—ll\..l.-\,« SR IVFILYY O L V\/IVH\—HJ e \!\aﬂl&ll (SEA Y llllrJlk.lIlbllL(-lLl‘Jl| ¥
dth oo i orientation

OD]eCt Dased approach to deSan and development And as
described, COM goes further hv nllnwmo (‘Jpvplnnprq to crea h;-

software components that can be sarely distributed and reused in
a variety of ways.

o Y & PRy N I (R e e A e T WA rauvidae
AHECONU DETIETIL U1 LWAVY Tids I duy peen mnmerLone Ol515- AoAAIVE IOV IS
tency. By providing a single approach for accessing all kinds of consistency
cofharara comdrae A cimnlifiae tha mrallans vimleiare fara
Qullvval © o VILCD, LAV DllllrJllllCJ L Pl |UPC| S lacc

J
is consistency is that COM tends to
1 hatween applications and system software

4—."\11

you can access everything as a COM object, you’li perceive littie
significant difference between these two kinds of software, which
L. . R

ve traditionally been quite distinct. instead
pI ications that build on the software service

St |l|d':'rJl:||ut'llL

-D
D0

{n [ne‘ |ntel’TaC€'S 0 [Ose ODJEC[S An ODJG‘C[anﬂ its CIIG‘“[neltner
know nor care what language the other is written in. While it's fair

O 5dy ll]dl s0me |dllgudgt‘b dare UC[U:I buueu IUI use WIL|.'I COM
than others, COM itself strives to be language independent.

Introducing ActiveX and OLE 19

BLUE COAT SYSTEMS - Exhibit 1034 Page 23

COM's aonmach

is simpie an
efficient

widely through-
out Microsoft’s
product line

20

Another benefit of COM stems from its approach to one of the
most persistent problems in developing and deploying software:
versioning—that is, replacing an existing version of software with

o

a new version that offers new features, whil

existing clients. COM objects provide a

not Ureang d”)f
answer, based on

e,
3
'E T

P A L S H S T o e T e | N =N T Por LU AN Y -0y

arl UU]CML:’ ClUJlll.y U UPPUIL PEIUINS Wl OIS NI WO, M ©AS
plained earlier, a COM object’s client must acquire a pointer to
onrh crnacific intarfaca it noade ta 1ica To aded faatiirac in a new
A1+ LW) DPC\;III\.— TRV 1O (L DI LY O TV Auld TLALUilsSD 11 & I VY
version of a COM object, then, you can simply offer the new
features through a new interface on the object Existm.g interfaces
aren’t changed (in fact, COM prohibits changes to existing inter-
faces), so clients using those interfaces are unaffected. And these

existing clients never ask for pointers to the new interraces Only

new clients know enough to ask for the interfaces that offer the new

PRPRIDPRPP [sar el gmtn o SO0 e Ll RS VPO
ALUTCS, ATlU >0 Oy T1EW LHCTIWL dTE dlfoeicd Ry I eV vETrsIiull.

[«4)
g
(¢4
o
c
1=
aq
€D
~—~
1%2]
=
=3
=
.5
0]
5
-
o}
c
-
>
o
o)
I3,
t
c
15,1
[}
O
2
15}
=
K]
=
@
1#3]
o
o}
[0}
<5
S
g
£
<

to learn that an objec s.n.’t all the client hoped it would be devel-
[]
ui

2-
-3
&
=
D
5]
0.

opers can write ciients to handte this situation gracet

of crashing. This simple, cl an

ates to both clients and the objects they
C

allows |rlut:pE"1 P €
use, is among COM'’s biggest contributions.

COM’s Availability

’
COM, which was developed by Microsoft, was originally made
avaliable on Windows and Windows NT. Microsoft now alsn

Chapter One

BLUE COAT SYSTEMS - Exhibit 1034 Page 24

does not support COM on other operating systems, this void has COM will be
been filled by third parties. Several companies, large and small, available on
provide implementations of COM and various COM-based tech- ma?y operating
nologies on a wide range of aperating systems. Software devei- sysiems

nnprl using COM Qb}lects will be available on all kinds of systems,

Syl

ranging from workstations that run Windows and Windows NT to
IBM mainframes that run MVS, And, as you‘ll see later, Distributed

A A\

LU!V| UJLJ-_H 1 IIUWb LUIV| ()U]e(,lh on dII KIH(JS UI by‘;[EITIS io

interact, COM's increasingly central role in software developed for

LHS e

1A vage o WAL m Arva e RIT mme i Y PO A PRP Y NN
Vv IiNaows a

YVITIUUWDY N, \-UUPICU wiln e UUILIUII.Y wi l.ll‘::b\'_‘

systems, suggests that this new approach to creating software will
winel ite wav inta all narte Af tha antarnrica
YYUIIRN WY VVCIY v anl ‘JGILD oLy CIII.CIVI 1.,

Defining Standard interfaces with COM
el

COM nrn\nr]pc. the bhasic mechanisms ne

des bas ed for ane chunk of

software to provide services to another through weli-defined
interfaces implemented by COM objects. But wha defines those

interfaces? Uniess a COM object and its client agree on what
interfaces exist, what methods th e interfaces contain, and what
the methods actually do, it's not possible for them to accomplish
anything useful
hr\l soumie cases Aavalanare mioict Aafina annlicatinn_enacificr intar A‘I’\l’\lir":ﬂ‘! TN
'’ UCVLIU'J\-ID HIWDL UG i GPPII\.(ALIUII JI.JC\.III\- [L AR |] i b
- - i R 1
faces. For example, an investment bank creating its own custom HEVEIOpETS Can
software far carrving aut trades micht decide to dezign and build define interfaces
software for carrying out trades might decide to design and build as they see fit
that software using COM. The software’s developers can define
appropriate custom interfaces as they see fit and then implement
suppart for those interfaces in their own COM objects. There’s no
need to contact or seek approval from Microsoft.

Y S I PR IRpn R | S Tha OV E leacliicre
DUL 5UpPpOUsSE Lidl Al HIVESUTIENL DdNKS ve siriiar I'Uqul[ell’lt‘[llb THS AL TRy
for objects and their interfaces. Why not b ring them together to Solutions program
b frdcoton, crarndond Pl ol £ el ac e) Tl i is designed to
uchine i lUUDlIY‘T‘)ld“UdlU HILETidULEa 11U UIEHE)L)Jl‘:LLb" i1y VWO eate |n(‘l“q{'r
allow the creation of a market for standard components produced ,‘;}.;,4 o

N 2laniuidlu niiiawnedy
I rarmmaating cammmaniae EME ladcteu Salifinne h/‘:(‘l"l“(‘n‘f_
U)’ \«U“lpbkllls \-UIlllJUlIILJ- AL Mo AMUTULIT D, €@ TV L oI
sponsored program to define these sorts of interfaces, has pre-
cicaly thic unal Thranoh thic nrooram. araine fream financial
cisely this goal. Through this program, groups from linancial
Introducing ActiveX and OLE 21

BLUE COAT SYSTEMS - Exhibit 1034 Page 25

Y Y s e malthrare Avonniratinmne memvidare ~f it nf cala
\.\JIIIIJG NG, 1Al nealc UISGI”LGLIUIID, '«JIUVIU‘ZID W 'J\JIIII. iToane
equipment, and others have defined standard interfaces for com-
nnnante neaful in aarh area

ponents useful in each area.

There are other kinds of services where new standard interfaces

I’Y'IIO'hf hpr‘nmn 2ven maoare \AIPII lznn\A/n I:nr ava mnl SLHnnOse fh f

LI 9 Let GL0 L 4 Ve CAG £ SuppPUst Aas

the owners of an operating system decided to make the services
of its file system available via COM. They would need to define

PPy

one or more COM objects, each with a specific class and support-
ing a defined set of interfaces. Then they would have to make

those inteiface definitions available to the poient tial users of ithe
COM objects—that is, to developers of applications that use the
ovar Fila cvefoma
VY 11T DyZ)LCIlI
Micrasott itself The original problem addressed by OLE, creating compound docu-
defines standard ments, is another example of the need for standard interfaces. A

lnfr-ﬁr{.\r s in

al.los

compound document (as Yyou saw | in ngre
mainy Cases \ .

elements from two (or pnﬁmhh/ more

singie window on the user’s screen, allowing the user to work with
information from both applications. Clearly, both applications

must cooperate to make this possible, providing services to each
other that allow them to present a seamless interface to the user.

Th o, Can A wle L. P TS
|||Gy Lall uu llllh Uy eacn ::uppLJI u

someone must define and publicize the required COM objects

and interfaces.

Every ActiveX and Defining (and sometimes implementing) standard interfaces to

OLE technology perform well-defined functions is what ActiveX and OLE are all
defines a set of

I I S e T e L

nents or a II|€:' by €. Ine lGL[IIIUIUBY IUI'

e
compound documents, one of the most commonly sup-

i e b A b YA i
1ISimciiea uy LUVl UUJCLI.

(‘.l
)
w
fa]
(II
r‘:i

cations to share screen

o
=
=2

22 Chapter One

BLUE COAT SYSTEMS - Exhibit 1034 Page 26

standard interfaces for various purposes. Some of those interfaces

rftware, as in the file system example;

others, like those for creating compound documents, must be
supported by individual applications. In either case, the funda-

Lt

mental mechanism used to provide services to clients of the
software is the same: COM.

ﬁESCI‘IDIHE ActiveX and OLE lechnoloales

-

OLE, which once again refers only to technologies for creating
compound documents, and the broad set of technologies assigned

[R (PR a YA .
|)UIII. Ub“lg COM. d. IY UI Ll €5
IT

se
roots in compound documents, b t others
A Thi

~r [-T2 ¥l
‘JI\JUICIIIZI THHY 0N

introduction to the most impartant COM-based technologies.

Spreadsheet applications, word processors, and other personai Automation
il e

apahlllilpq‘. provides
programmability

nrndurflVlf\/ software give nPnan all sorts of usefu

18l

Why not let other software access those capabilities, too? For this
to be possible, applications must expose their services to pro-

grams as well as to people. in other words, they must be program-

mabte. Providing this programmability is the goal of Automation

foveiagirmally bmewire ac M Avibmmmafiom

wi Islllﬂllr RNOIVJYVIL Ao WAL s atuafraaivne)

An application can become programmable by exposing its ser- Automation clients
virae theairoh ardinarmy 7OYWA intarfacrae Thic ic caldam Aana tVnifF]“V access an
ViILL S lllluuall AN nan)’ A ATV DTG I T THHED 1D I T AT IR, P) i

. Al actle mmathoads
however. Instead, applications expose their services through IS S TR
via a gdispintertace

dispinterfaces. A dispinterface is much like the interfaces de-
scribed so far—it has m thods, ciients access those methods using
an interface pointer, and so on—but it also differs in significant

ways. In particular, dispmterrace methods are much easier to
invoke from clients written in simple languages such as Visual

Intraducing ActiveX and OQLE 23

&

BLUE COAT SYSTEMS - Exhibit 1034 Page 27

Bacic Thic ic o criicial naint hacanea Viarial Bacic and tanle ik it
Pa2iv. 111D 10 4 Liuuial PUIIYL MOUAUDT Vioddl DAdldlc Al WO IR 1L
are the first choice for most people who want to write programs
that access an application’s internal services

To get a sense of how useful this idea can be, think of Microsoft

Excel. This cnn:-;ad_mr:n ot program offars a wide range o of functions

'that are typlcally ac CCSSOG dlrecthy Dy tne pcrson usmg I:xcel it's
also poassible, of course, to create rnmnlptp applications using

2L PSS r L, L

Excei Dy wrmng them in Excei’s DLIIII*II’] mdcro |anguage.

Excel allows Today, however, Microsaft Excel supports Automation—that is,
r 1
I

_ Excel makes its internal services available through dispinterfaces
services through

R pported by various COM abjects, which provide methods such
dispintertaces “p i

as Average, L,llcckspe“u"lg, nd many more. ppliCz’iti ns built on

Excel no longer are restricted to mg Ex cel’s built-in macro

Many ather This same feature, programmatic access to internal services

applications through Automation, is supported by a host of other applications.
also support N T TR o PRI o P
- This ability to easily access the poweriul features offered by an
existing application is what makes Automation among the most

PR [ripigpey My | | R P iy J [pS g |
WIU(,I’)/ UbLU \..\J!Vl UdbLU Lt.hIHIUIUSIU:I ror d more dcidiieu Wish-

cussion of Automation, see Chapter 4.

COM objects can (Objects have data and methods, and many objects need a way to
make their data store their data when fhp\’,frp nnf r rnnlng Inthei jargon of the
nersistent

cognoscenti, an object needs a way to make its data persistent,
which rvnlraH\/ means c:fnrmn that data on disk. COM nhlprrq

have many choices for how to accomplish this. One of the most
commonly used is known as Structured Storage.

To understand Structured Storage, think first about how applica-
tlons save thElr data in ordinary files. Traditional file systems allow

drer 1 cingle dic selting in one
are a single disk drive without getting in one

24 Chapter One

BLUE COAT SYSTEMS - Exhibit 1034 Page 28

With COM, however, the situation gets more camp hrated_ Ba-

, the situation gets more com
cause COM aiiows aii kinds of software to work toge[her using a
single madel, independently developed COM abjects might

UGLUIIIU pdlL UI Wlld III:'. usSer sees as
might still need to store their dat
£
1

IISIU dppllLdUU” UUl
isk separately. While each

o.:»»
oW,

YA WA o i il g tlan users the
LAV UUJC_J. \.nU‘-N\J UDC 1L UV [INN] C, s uig applll,auullb wunclt L
objects are invisible—this is a single application—and having to
!1anr’\ "I'"lpl{" ﬁf r’ﬁlllf‘ll’\lﬂ Fllac iC |In“ l'JI\f "f\ rmn £ 11COare viarys I'I')"\"\\J
\LL‘H LSRR VIL RV | |||\d||\.lrll\l TS U2 AR WL/ AN WOl Wl ||u|s.l]
What’s needed is a way for multiple COM objects to share a Structured Storage
|n file, This is exactly what St tructurad Storage pravides, By allows COM
in ile, is exactly what Structured Storage provides. By
. T] . ohjects to share
essentlally DUI d ng a iie System inside each file, dtructured ol il B
A MITEIT WAlol 11T
Storage allows the components comprising a «;molp .tmnl tion to & .

TS Ot [a 20
I I “®g

eat.n have its own discrete C"UI'IK or btordge space, its own rlies.

To the user, only a single file exists. To the application, however,

| BT S PR
IO Wnicn

r

P P -~
€dacn LUIIIPUIlCIIl nds a lJllVllll:.'

d
re actually contained within a single disk file.

PP M =1
rcd 1 IbUIIIIEU d <l

into storages and
streams

Q
=)
9]
a
»
o]
5
9]
=
—_
c
=
e
Qo
=
o OO
£
e
e
=
Q
he
=
&
=
(02}
5
=
9]
=
=
<]
0
o]
»n
23]
5 =
o
el
Q
P
2

objects are analogous to the directories and files, respectively, of
a

es a
common file systems, With Structured Stor. a ggnolp file can

contain data stored by many COM objects, each storing its data
in its own storage or stream. Just as a conventional file system
allows different applications to share a single disk drive, Struc-
tured Storage provides a way for different applications to share a

cimeala £
SHRKIC IIIC‘

There’s more to persistence than Structured Storage, however. A

CEYAA Ao arcictant dafa jm Aathanwoue ciiebh A in
Liasivi Gigjec i tent aata in otnet ways, Sucn as in

+
L
an ordinary fi

save its p
or

even on the World Wide Web. Also, an object

Caii
I

a
e

Introducing ActiveX and OLE 25

BLUE COAT SYSTEMS - Exhibit 1034 Page 29

aer-
fo |

istence in

rs

must supply a way for its clients to tell it when to load and save its
haps more) of several standard interfaces defined for this purpose.

With Structured Storage, a single file contains several storages

—

Figure 7-

that is, it pro-

lient to instantiate and initialize a

il
Nnt
]

a
ow ac

the client needs to know quite a bit. It must

bj da
COM oiters a way to do this

n
LR
-

i

M opject.

Iy

n
i
[

otner information)
vides mechanisms that al
To perform this task,

Monikers
B

Farasy
L

c
|
COM abject

Ll

One

object, but it has a very well-defined purpose: each moniker
Chapter

BLUE COAT SYSTEMS - Exhibit 1034 Page 30

[this, it would be nice if there were some way to hide this
(your bank account) and have everything happen automaticaily.

count and how to tell the appropriate COM object to load this
knows how

object

initialize another

A moniker knows

26

had a maniker for your bank account object, for instance, | could

8 LERR1N \,u, e he] Lo, P LRl

ask that moniker to create, initia i| and connect me o your
account. All the details of what omred to do this are hidden
from me (the client). if { wanted to work with two bank accounts,
using monikers to access them, I'd need two separate monikers,
v e e T, ~hiort L conaeal mmaeilbiore aean/t moer sivas]
WIS 1wl cavtl LLllullL \JlJlULL‘ n 5 1SVl TR Al | |thiL||lUU
in the COM environment; they just make things easier for the
rliant Mnanileare nra Aacoribad in Chantar G

AN T TR IY AN O W) S MA T TR R _;IIE-lVL_l K

Uniform Data Transfer and Connectable Objects
Fyrhnngmc data is a fundamental software operation. Annllr*;am

ul._.\. a0

tions copy data back and forth, for example, when their user
" moves data via the clipboard. Various kinds of system software,

such as device drivers, pruwae information from their devices
software using those devices. Given the Dletho ra of reasons for

Aiffnrnet ~hrimlee nf cmfiinma b Al not surprisin
CHIITTICHIL CITULIRD LH .‘)UILVVQIC (R UALIIdIIsC uuta, IL) L8 DU[PIIDIIIS

that an overabundance of schemes have been invented to do it.

P u
meth ds in these interfaces d
a hr—\mcr moved, to specify wherp tha

fa
I
—

actually move it. They even define a simple mechan ism that lets
eap pllcatlon inform an()ther when an nteresting piece of data
R Y [I—— most PR PR S S
I|dlU|y HOSL EACILTNG Ung
pla

Data Transf

<

o
- El
o T
(S
=
cz
=. C
5“°§
=

=
<3
=
=
fnd
@
4]
&
=3
=
wn
Q
3
o]
@
=
o
=,
Q
=
o
—
=
4]
s
=
[4:]
wn
9]
=
@
3
4]
o
1]
=
o
4]
o,
=
<,

y ov:clmg a more generai mechanism
c ec

talk back 1o its client, Cann

-

Objects makes it easy for clients to receive notifications of inter-
esting events. Bath Uiniform Data Transfer and Connectable Ob-

jects are discussed in Chapter 7

lntroducing ActiveX and OLE

Transfer lets all
kinds of software
exchange data in

27

BLUE COAT SYSTEMS - Exhibit 1034 Page 31

Applications get more complicated every day. Word processors
|

add aranhics ahiliti
add graphical ca tlitie

’ 1eets ad

ieg sprea adsheets add Chj_rhno functions,
e’il e

application for everything. But that isn’t really the aim; rather, the

and it can seem as if we’ll eventually wind up using one big
D
L}

gucu |b In[Egl'clUUrl amaon 8 Ulff&!rell[dppllLdUUnh /"\ WUTU processor
: doesn’t need to add graphing functions, for instance, if you can

()

T ki G RS F i S-S 1 I SR R T

.4" use alt C)llbl.llls 6[:1'."“”5 d[JlJlll_.dl.lUI ror WIUJIIII LI wworrdd PIU'«CD"

sor. The intent is to have applications work together smoothly. A
ricar cha .IA hea ahla 0 con what annoare ta he a cinale daciiment
LI DIV W TLXESS LU DL vvlial UPH\JC]ID W’ s o JlIIEIL/ AFLVL PIEN RS
but have different applications cooperate to work on various
pieces of that document

OLE technology The OLE technology (formerly known as OLE Documents) ad-
ailows the dresses this nrnh!nm R\/ cunnnrhng ar)nrnnrmte COM nhlvr

croatinn of 1
croation Oy

h each with its own set of mtenaces separate appncatlons can

-
COIPEATE cooperate to present one compound document to the user, as

documents

shown in Figure 1-9. These interfaces :
neither appllcatlon knows what the other one is. A user might, for

tovt \War

text, Wor
of the document

S
late the :nrnarlchenf’c rlnt, usir

[&
@
5
(o)
Q
3
-
-
S 3
J
S
S'z =
®
a
a
25‘
J

need to buiid in the functions ot a spreadsheet; with OLE, an exist-
ing spreadsheet ap plication can simply be nlnmgpd in as needed.

The standard interfaces defined by OLE enable this kind of inter-
action among all sorts of applications from any vendor, not just

'bpl":,'dubllt'cl.b d.HU WUILI PlULt‘bSU(b PIUUULUU U)f IV\ILIU:)UIL IUU

can include sound in graphs, create presentations with integrated

el ications tevelany femmn o wwida
PP Laliuiaiae LUUC[)’, munl a4 vviue,

endors, support OLE as a way to interact with other

T el e AA Aariy
IPD‘ CIIIU niuic. iva

28 Chapter Qne

BLUE COAT SYSTEMS - Exhibit 1034 Page 32

Documents can contain elements managed by separate applications. Figure 1-9

Document

e A Word interface pointer

\\jor an Excel objeV

ica- An

77777 Applications act
tion alwuys acts as the co ri:rmer As 'L'ne name implies, a container as containers and
defines the outermost document, the one that contains everything servers

P PR ey O WAl o b b e PN . n-y. s
Clbf’ | 1 | |5UIC I—J vvQaiQa is me Ll)lltdllltfl. \JL[ICI Cl}J}JIIL.dL Ulls,
called servers, can place their documents within the container’s
Anriimant 1n FEiarira 1_Q far ovarmnls BEveal ic Acting nc o carvasr
VAV I, 1y i |5ul\, 1 J’ 1350 _/l\ulll'_ll‘.,’ LAVOCI 13 u_,unE] I CL I VOt
Using OLE, a server's document can be linked to or embedded in Documents can
the container’s document, If the server’s document is linked, it's he linked to or

' . P ' ' e . ont . ' arabaelAdadd

stored in a separate file, and only a link to that file is stored in the emocaaed in
container’s document. (The link is actually a moniker) If a server’s other documents
document is embedded, that document is stored in the same file:
as the container’s document. (The two applications share a single

f ol I R
e usir

-
w
—
-
c
o]
~
c
=
(T

Creating compound documents was the problem that led to the
ekt £ SN A A DI Y e Y 1 [[N PR P
Creadon Ol _UJVI IUUBII LA Ib Ubl:‘u IIIUL[I maore Wluﬁly [X Ud.y,

the fingerprints of compound documents are visible on many

tntroducing ActiveX and QLE 29

BLUE COAT SYSTEMS - Exhibit 1034 Page 33

WA Lncnd snrhnnlagice Thic challanaing el o smarivarad tha
LW AYI-R I ADTU l(:bllilUlUElﬂU D wiiainies IEI I5 l.lluult:lil UL VAU Lie
, design of a large number of core technologies in this-area. Chap-
AN e - - -
7 tar 8 dAce o n iRk arne that CV E rantal and coruare mrict
(5 San 0 B O LG L) L] BN, THIR L 7 8§ W LRITQAL /L L urpiLanln LW D% T VOTID 1HToL

ActiveX Controis
¢ i you want to include a spreadsheet in a text document, why

R B T ! [P T

ree d {0 use dII UI EXL&.‘I‘ i yUU m.eu Ullly Udsl(_

ions, maybe you can get by with a simpler,

Iy cheaper spreadsheet component. Or suppase

that you're using Visual Basic to build an application that needs to
| o

incliida commn crrnadehant frinatinnality 144 aroat Fo drict e in
ML TUUC Dunic DFILGUJIILLL TG LIVIIanity, 1L BICCU- LwF jLuiot HIUS 1
the basic functions you need without dragging along (or paying
far) a complete snreadsheet anplication. In fact, you might like to
or} a complete spread t applica act, you might to

buiid your entire appiication fargely from existing components

P TQ e
Ao Antralc . - . . P . . L
ActiveX Controls This desire is what led to the idea of component software, an area
celmes standard where COM has much to contribute. You can build reusable
interfaces for components solely with e 1 T e
LTI PU[IE na S0IChy wiln \,\JlVl ILbUII, UUL ltb a 50 USCIUI 1o gefine
reusable)
components some standard interfaces and conventions for this purpose. Using
' thaca unt: can hiild camnanante that noarfarms comman facke
Ureas, YUU A ARERNAVE] LW \..\JII]}JUIICI.IKD LEta PC[IUIII! TV LD RS,
such as providing a user interface and sending events to a client,
in a common way. The ActiveX Controls specification defines
these standards
An ActiveX control is a stand-alone software component that does
specific things in a standard way. Developers can piug one or
more ActiveX controls into an application created in, say, Visual
Basic to take advantage of existing software Ju[lLLIUﬁaiI[y The
result is software built largely from prefabricated parts—that is,
- component software.
ActiveX controls ActiveX controls were originally known as OLE controls or OCXs.
i were originally Micracaft chansed the name to reflect covearal newly defined
- IVIHILTUDWIL LIIOIIECU UIC Tldailic LU 1IaSiicuwLy s valdl (L= Vly uciiticu
od r i]

\.«(lllchl wiLL

features that make these controls much more usable with the
COI’IU’OIS or UL.KS

30 Chapter QOne

BLUE COAT SYSTEMS - Exhibit 1034 Page 34

not be a programming environment—it can instead be a web

browser.

Hundreds of controls are avaiiable from dozens of companies,

mrlndmo cnrpadthpf controls, controls for mainframe data

IUI 1(t'UIst'. use. Dy Idl lll d gest rlUr‘]GE'I" O1 CO
are b |It as ActiveX controls.

2
O
E)
=
w
g
[
o

~

A rtivnW ~nntrnle ana mnf comarafa amelicafinme [nctaad 20 clhmuasm Artivm¥ ~emtealc

ANVOUIVEA CUILTWLD ale T1uL DC'»J(.']I \c !JIJII\..QUU 15, HdCau, dd >1uUvvi F‘LUVU/\ COMaTons

in Figure 1-10, they're servers that plug into a control container. rely on many

AS a!uta\rs tha intarartinonce hatwaan a contral and ite confainar Other COM-baSEd

As always, the interactions between a control and its containet)
e . _ . technologies

are specified through various interfaces supported by COM ob-

jects. ActiveX controls actually make use of many other QLE and

7:::

ActiveX technoiogies. Controis typically support the interfaces .
defined for embedding, for example, and they also commanly

[
|

allow access (o their methods via the dispinierface

es defined
Automation. ActiveX controls are described in Chapter

9.

The funciions packaged in an ActiveX conirol can be used by any Figure 1-10
controf container, such as Visual Basic or a web browser.

Visual Basic -
(control container) ActiveX control

'ﬁﬁ Wr A

Visual Basic form

Introducing ActiveX and OLE 3

BLUE COAT SYSTEMS - Exhibit 1034 Page 35

Mecturbhoiidnd £MA4
(PR IARITIVIE W UL WAL W) J]
Distributed COM Although designed from the start to support distribution, the
allows clients to original implementation of COM ran on only a single system
cermec {TEYRA A L P .
AR A COM objects could be impiemented in DLLs or in separate pro-
objects on other . .
. cesses running on the same machine as their client, but they
machings ,, . .
couidn’t reside on other machines in the network. Distributed
COM (DCOM) changes this, With DCOM, COM objects can
provide their services across machine boundaries, as shown in
Figure 1-11.
Figure i-77 fijustrating Distributed COM,

o

I Machine X
DCOM uses RPC To achieve this, DCOM relies on remote procedure call (RPC).
and sunnorts W/ ith DDF A clinnt cam maka what annonare 6 bhe o lacal call tn
e rr b LA RIS REN AN] [N AR LYN LY CANL 1IN yviiac CA,JHCCIIJ LU UG A uLal vain iy
security services a component, aithough that cail actually executes in an object
across the netwark, DCOM also includes support for security

services {controiiing which ciients can use which COM objects)
and a way to specify the machine on which an o

created, The services supplied by DCOM can be used to build

] secure, distributed, COM-based applications, and they are de-
PSSR Y I - S RURIPUI PURPUGE B SO ol ISP IR B ¥
SLIIRDOU DT TTHONE GCLedl] 1T _.lldPU\‘.'l [R

; COM-Based Service Interfaces
e Aftnn reafiil +a lhavn o ~amiman intarfacn tm arcnce diffavant
Ty 2 210001 Uosn. il o aniave a \uUIII‘IIfUJI BT ICANM G LW QAL DD Mg
implementations of a service. For example, the Open Database
Connectivity (ODBC) interface built into Windows and Windows
NT defines a group of C function calis that can be used to access
any relational database management system. With the arrival of

w
[
]
=2
02
]
.
O
3
1]

BLUE COAT SYSTEMS - Exhibit 1034 Page 36

COM, these kinds of interfac

AR, LN AITAUAS 0 (7T I

object-oriented way. Microsoft has
faces, including those for databases, transactions, and directory

~ (P
h
!
>t
3

- T

-]
h
o]
[¥)
3]
=
]
jol)
5
ny
(@]
o]
3
3
[}
=

services based on COM,

Databases A database management systern (DBMS) pravides a DBMS services
PP U, B PRI el i el ot TAMIAAC . — a P P o |

Wdy wi UISd[IILC/ SLQi C d.[lU fewicve inmormanon. Lovios aie Lall M dnlioat

widely used tools that underlie many applications. Local access to using LM objects
MDRAAC iicrialls thera ey lilears limlomnd imbm a2 ~liamt cvemrmace e

Cl LLALPIVIL la \J-)U(Ally LIII\JUEII ﬂ L QI)’ THIKRGU LT a Liachae 'JIlIL.C:) i

perhaps through some kind of interpracess communication. Really,

thorioh o DRAMS ic cimnly a callartinn nf camsicoc arovidad by

though, 2 DBMS is simply a collection of services provided b

one chunk of software to another, Why not modei and deliver

those services as COM objects?

A typical DBMS includes a query processor, various data storage
mechanisms, and more. If standard objects and interfaces were

uellneu dnu Wl(.]t}ly suppuru—:u, d Cllb”[LUIJ!() access various
DBMSs in the same way or even use only the best parts from

- 0 o
tg @
§.h
-
-
=
T
Z
-

- O
-
-p
<51
<

s ey

e n
base, or OLE DB) addresses these issues. By defining standard
COM objects and interfaces for data access, this tech

. [I N, U gy
]

o}
ogy provides
Ve a way o access

establishes a common means for clienis t0 access data stored in .
) data stored in

various fashions. In many ways a generalization of ODBC, OLE various ways
talvnon gman o mAl tain omanliar cbamAdaed femtacfaca bay o lonaimes

LJGll.d.Ud. = BU 2 UC)’U! u l.lll:r Caniien swaAalivalry jriciias o \Jy YITVYIL 5

everything as COM objects. A source of data can be modeled as

a MafaCarirma ~hi + e evarmnla ndd Hhan hava a3 Camimaand

a DataSource object, for example, and then have a Command

Introducing ActiveX and OLE 33

BLUE COAT SYSTEMS - Exhibit 1034 Page 37

A transaction’s
operations eiiher
all succeed or

all fail

COM-based
transactions

technology
maodels a

service as
COM objects

[T | ,.A.Ln_.l,. £l ot~
Tde e Wll_|| Memoas tndt a

wn
1]
=
<
[n)
93
W
—
oo
=
=]
c

o]
> o
3
ol
—
=
O
o
W
>
O
o
Z
—
D
-
—_
%]
o]
0
I‘.h
__l
=
D
=
[y}
o
ot
=
I
o5}
=

notion of a transaction can be useful. buppose that you'd
modify two databases, but either both changes must hapy

HEI[I']E‘I' SIIOUIG—"par[IaI sUccess IS not acceptaole I“Ol' example,
to transfer $100 from your savings account ta your checkmgr

rriee & 1OUY o
P IUAJ TTIUD

To carry out this kind of indivisible atomic o
'R

\—(3

I £ 1

define a transaction that inciudes both modifications.

can be built into the data access mechanlsm itself, b

for ex ampie a DBMS), transaction coordina-
[31

e S (
tors, and the transactions themselves. And since transactions are

common in data access, the interfaces defined for transactions are
designed to work well with those defined for databases.

BLUE COAT SYSTEMS - Exhibit 1034 Page 38

Directory services Much like a telephone direciory, a directory A directary service
service in a distributed environment allows its user to look up maps a name to
ERV. VTR . R+ SN Y information abhout

s
e o e
iGN, vwilli & © IICL(UIY, YGii Cari rina SGIMIeone’s B

_‘
m
—
c
=
:
5
=,
=
=
3
o
=
=}
)
o8]
o
O

information |t needs to contact that machine, such as a network

addreszs. Or a client mloh’r nm\ndp the name of a user and receive

that user’s e-mail address.

A directory service is extremely useful in a distributed environ-

ment, Because no bll’lg UIIELLUTY meets (:‘Vb‘ry()il(:'b rleeu::, numer-
ous directory services exist, and many different technologies are

s oo L.n imost warall b ae i cmesiomms e lircda tho VA e e NIT
U2CUL THI THIUDL YW ROV DT VIOED T ITUUT LTS VVITILUUOYWD (NI
directory service, the internationally standardized but not widely
used X.500, and the Novell Directory Service (NDS) used prima- =
rily with Novell NetWare, but there are many more
COM-based directory services (originally known as OLE Directory COM can be used
Services or OLE DS) do for directory services what OLE Database to define a corn-
does for database systems: they provide a common interface that mon interface to
I . Py diverse directory

can be used o access ali kinds of Cll!'ectory services, Just as COM-
based databases make it easier to create clients that must handle
all kinds of ude, COM-based director iy services make it easier to

create clients that must work with all directory services.

oryicos
services

mation in some type of hierarchy. For example, all the information
8] n

ins in its directory mlcht annear hp|n\f\f a E!ng!e

e LA WL L AP o

3 Don‘t confuse a directory service with a directory in a file system. The use of
the word directory is broadly similar, but the two are not the same thing. o4

e
w1

introducing ActiveX and OLE

BLUE COAT SYSTEMS - Exhibit 1034 Page 39

23]
=2
Q
=i
=
[
=
§
xr
o
=
E-
Q.
T
@
=
=
=
fD
ﬂ
[

entries The COM—baQed snlutio is to model each directory entry as a
e killd Ol UU]ﬂle |l| d IllﬂldlL”y, EVCI'Y

contain b/ect or a leaf object. Re-
or leaf ObJEECtS

or other contain
t

ero , a a
resent a di..rec‘or\f antry *hnf is the pare 1t node for all

7

different printer entries, each describing a specific printer. Fach

Sp
KIHU ()l UU]GL[pTUVIUES dpproprldte lﬂ[(:‘ﬂd(..eﬁ [ﬂd[IE[LII(:ETI[b

" access the data and methods that object Drovndeq The goal is to

albea lifm nivrmlae fae Aaeal

I
dKE 11T Simpicr 10f GeveiGpeis wna C

ple directory services.

5;'

1

1

Most of The Internet and the styie of data access provided by the Worid
Microsoft's Wide Web have crashed like a t

ares puting. Aithough Microsoft wasn't the first to recognize the impact
this wave would have, the company wasted no time in responding

idal wave on the shores of com-

onee ll'ld.[rEL()grll[l(Jl’l I'lll l\l()l surprlsingly, st Of [% ew
nologles Mlcrosoft has created in this area are bUIlt using COM
Faindg name Ullsllldltﬂu lll LAJIVED

collision with the Internet, aithough it has now spread to include

COM’s component-oriented approach is applied to Microsoft’s

Fnr avamnla

5
Intarnet and webh tarhnnlnoioc <
moemel and we Ways. rof exampie,

1
[P AR AL LR AR L) i B

Microsoft’s web browser, Internet xplorer, relies heavily on an

36 Chapter QOne

BLUE COAT SYSTEMS - Exhibit 1034 Page 40

extension of OLE compound documents called ActiveX Docu-
n

ments, With this enhancement a user ca

LR LWt] i, a

hrowse through many

I Q HTQLRT Thally

types of information in addition to the conventional Hypertext
Marknn Language (HTML) pages. The ActiveX Controls technology

Dt ~of
has been enhanced to aliow a controi’s code and data io be
intelligently downloaded as needed from a web server and exe-

cuted inside a web browser. ActiveX Scripting provides a generic

way for clients to execute scripts written in any scripting language,
wadhila thon A mtbinsnV Llvimmel il bamlioad o, biaoand som e il mon
YVWIHIG LT 7ALLIVEA 1 lerClllIll‘\:’ lCL,IIII'UlUBy a U Iy lll\l::l:!l
allows the creation of Web-style hyperlinks n tonly between
HTAMI naaac huit hotwann all kinde af dacimante All Af thaca
HTML pages but between all kinds of documents. All of these

g PR TR ol P o W N

e ruwure o1 Lo

Frr\m ite hiimhla hnn.nnlnqc AC - waravs by croatbas resennod ihel f'f’n‘"I11 Thvs sizmemn = IAA
PRATTT 0 Tiuainiuie ity a as a vywa W Liae LUATipuUinia waseu TS USE OF LAAav

ments, COM has evolved into a fundamental underpinning for will continue to

application and system software, COM has been so widely applied grow

because the architecture it defines for providing software services
offers an attractive solution to so many problems. Given this
generality and its obvious benefits, the applications of COM
described here are in aII Iike!ihood onlv the beginning. While the
b

Lo oncxn

o
3
Q.
o

k]

=
o
f1]
=
c
3
i
=}
=3
na
o
<
In)
je]
3
=
=
=
—t
=]

g=]
1
]
0
[}
—
=
=
=]
=

Js
=
(=}
c
-
:r
tﬁ

-
&
3

f [he squ/\m re \A/nrlH

[9%]
~!

. - . A o) T
Iﬂ[rOdUCIng ACTIVEeEA ang wWLEC

BLUE COAT SYSTEMS - Exhibit 1034 Page 41

users from casually copying licensed components. While the
mechanisms described here orobably won’t stop 3 determined
TRCALIEI IS SACT IOV TR TICL O PI LIRSS LA ATINERY -T’LKIP L RAC LT TR ur

-

P OOV

Conirols 96, defines a number of compatible exiensions to the
basics described so far. Those extensions include the following:

a S WY VSN BN | P P Y) inie _
hd CdedUllIllUb LMat dHOW d COnrol b user ierndc

any arbitrary shape, not only a rectangle

PR R4
L e Ol

m

A new, faster initialization scheme that aliows a control

and its container to acquire all the initial interface point-
ers they need from each other through a single exchange
® Enhancements that allow a contro! to draw its user inter-

face more efficiently and with less on-screen flicker

Another category of extensions ta ActiveX controls grows out of New features

AL

[.ll e (Jldﬂg(:ﬂb WFUUS Dy t el ﬂ[ﬂ”"ﬂ[AS ”It!l]ll()ﬂ(:!(l t'dfll(:!f [he Hay
once-onersus requ rements for controls have been greatly relaxed,

ovarifile s st mm A A
Wiy uuvviiyaacu

e
useful in the Internet

fd

in pieces, the controi aiso must be able to not
all the data has arrived. As Chanter 11 details

1 - & cAllS,

more have been defined o allow the creation of internei-aware
controls. As support for these new features begins to appear in
contiols and control contaiiners, the poteitial applications o

ActiveX controls will become even broader.

ActiveX Controls

BLUE COAT SYSTEMS - Exhibit 1034 Page 42

oom for improvement. A set of improvements to The Controls 96

S
the ActiveX Controls specification, collectively referred ta as specification ex-
tends the cu

P [T -3 (S
UETIREILICH E O all

ActiveX control

Ay

added 1o
ActiveX controls
better suited for

he Inte
ne Inte

235

Chapter Eleven

A loe WV EBle o~

2T IIvVvEEARA _ "

7 VAN Ml W R B Wl
fvvinuwmnt el faan
INEriicy, diiu ue
"YW B Ewags» R war B
\YAY/ aY Jd TaBRYAYdTa s PR YAY/a) g
L A AV N LY BB A ALY | "R B AWV,
From its modest beginnings as a U.S. government-sponsored

e

t has developed into a genuine

I'(:,hl:}dl'(,ﬂ IIt}LWUl’K, lll(:,‘ interne
phenomenon. By providing a global network linking millions of
Ila.l_ UL ol C'I.I L

f homes and

w
4]
<
o}
I
3
-:
0]
o
@,
e
i)
=}
£
3
LT
m
Q

oday inconceivable. The avail-

p h:anrlwﬂfh_—;\n_d he u hlqugtgug alabal network it

makes pOSS e—mi ght prove o be ate 'hnlcal' innovation as
frqannrmmg as the invention of the microprocessor.

Like most new hardware-oriented innovations, the internet expand- The growth of

ed so rapidly because of a ”killer” application, attractive enough the Internet was

P S, Tt L3 driven largely by

W TIoUvdic PUUPHZ: to use]l. That “lUl dPP wds Ultf VVU[IU VVIUt: W ‘
. . . the World Wide

Weh. The Web today is a major source of information and com- Wl

v bee i lime AF ams] PR L T e L 7] P e Py) eb

PICTOLG U LTINS Wi PCUPl

P T Ve a
T odrnJuliug LG vwul i, vvos LE_.IIII\JI\)B)(

ations can build

rapidly. Using these technologies, private or
e farmation inside

ani
their own internal webs, allowing them to share i

;.JUQ
5N

bai
<
1

BLUE COAT SYSTEMS - Exhibit 1034 Page 43

o

Microsoft’s
internet and
Web- re!ated

Ernbedded OLE

an organization just as the internet-based Web does externaliy.

With its pnqv_tn use, pnc.\/-tn lmdprqmnd ser mrprfﬂrp wph

technoiogy has broad appeai.

COM is fundamenta”y ahout defining the baundaries hetween

pieces of software. The internet has a major impact on those
boundaries in several ways. The Web’s browsing metaoh also

PRI Ty [UPR TR Sy
dIIEle now dPPIILdUUIIb |[|l TadCL O

& 1
users, two more traditional concerns for technologies built using

WA T addeno:s
LAV O dGairess

$
=
jo
o
—
@
E?
cu
b
Er
—_ ;r-
o)
:E

The conventions defined by OLF allow a user to edit an embedded

document in pld(,l:', much as if it were Upeneu in a separat

te
cation. With an embedded Microsoft Excel spreadsheet like the
wlt e ol e R Y e -

one shown in earlie unaplcl:, 1Oi ul:mllu:, the user can activate
the embedded object and have access to Excel’s commands. Use-
fuil ne thic ic owevar, an nrdinary amhbaddad daciimant draeen’s
ful as this is, however, an ordinary embedded document doesn®t
suffice in every situation. Typically, for example, an in-place active
document is relegated to whatever area on the screen its container
iy fairiy smaii. in some cases,

is wiiling to aflot, an area that's usuaily fai
the user might want to have the embedded document completely
take over the editing area of the user interface. Simi

user prmts an ordlnarv compound document, on

b
3
a
=1
=3
o
(o]
]
&)
a
=,
Z
<]
=
g
=

n A
=
>
2
=<
o
2
<
m
e
T
a

Chapter Eleven

BLUE COAT SYSTEMS - Exhibit 1034 Page 44

'

Binder, a tooi inciuded with Microsoft Office 95, pro-
d example of how this can be useful. The idea behind

he Binder program is that a user might want to work in a unified
way with information created by several Office applications. For

=

ins'larlce, IITlagme a current SHIES repur[[;Unldl[ll[lg lext L‘n:au:u
with Microsoft Word, quarterly financial data in a Microsoft Excel
PP e AN AT

P Lo 1.
Lircaleu W[l.ll IVllLlUDUlL rUWCl'

Spr cuu:llcc and a sales P
Point. To collect these disparate kinds of information in a coherent
e] Achan

, e

~
Cauonicic

-

scribed embedded in a binder document, As shown in the
a

the binder preqents a two-part user interface. On the left

dan iCOi‘I f()r’ Eal: 1 erTlDEOOEU UULU[”EIIL Ull l.llE Ili'j'lll S the aCtin‘

document, the Excel spreadsheet. Each of the three documents in
thic lhimedaw io ol
i

@ -

1095 Q3. 1995 Q417996 QT (proj
34980 43509
24558 30598

W&ild;ens Shaes
@ Housewares

ActiveX, the Internet, and the World Wide Web

The Office Binder
lets a user work in
flnd \Ala\l \A/lfh

applications

BLUE COAT SYSTEMS - Exhibit 1034 Page 45

The ActiveX This binder document and the a

| Documents data within
| = technology Nt
builds on or- L

dmarv OIF container, while tXCEI VVOI‘O and PowerPoint are ali ActiveX

documents Documents servers. Each application acts like an ordinary OLE

nteract using conventions defined by the ActiveX

iti
DNocuments tvghnﬁlnw2 The binder is an ActiveX [

- D
Q
. 3
D
-]
—
N

| embedded docurmn nt server, althou 1gn e each one also has a little
| - maore functvonahtv. For instance, any ActiveX Documents server

a
by removing the window on the left containing the icans. An Ac-
ti user interface that’s more com-
ple'[e than the interface (‘)f an oromary embedded document. To
the user, in fact, it looks as if Excel is running independently—the
%nmmuun: imposea on an i n-i:u'uace active embedded document

are gone. Exce1 really i
{

L: ' and the Web, be patient—it turns out to be very important.)

l Describ'ne ActiveX Documents

of the things required (o present this richer user interface for
an em bedded docu ment—the ahility to take over the container’s

| ‘r"‘f Documents
. requires a few
!:_. additional

BLUE COAT SYSTEMS - Exhibit 1034 Page 46

.

d a few more interfaces whose methods support ihe
new features. The ActiveX Documents specification defines these

mrbre fbarfe s

CALIA 1t aves

Containers and servers To qualify as an ActiveX Documents con- ActiveX Docu-
tairnoar an annlicatine moct ciimnart all tha intarfaras O E ramiiiroc ments containers
waiinoes, an UlJlJII_a(_ILIUlI gL Su ML G NI BT Iaus,y LA L |_.l_1u||_,.:!

for embedding and in-place activation. As shown in Figure 11-2,

DocumentSite

mentSite interface. This interface is implemented on a document
e the client

site OI’NF‘(‘f the ActiveX Dacuments ana |ncr of
d

Rt

in an OLE container. An ActiveX Documents container provides

one instance of a document site object for each embedded ActiveX

PN I
agcument. A

An ActiveX Documents container must implement at least one extra » Figure 11-2
interface in addition to those reguired by OLE. :

¥51—C 10lelnPlaceFrame

4§ I0leCommandTarget —— Optional interface
O [OlelnPlaceUIWindow

5 10leContainer
H—CO [O0leClientSite
i—(| AdviseSink
t4——O 10leDocumentSite
—CO 1OlelnPlaceSite
#4——(IContinueCallback ———— Optional interface

Required interface

Ac chewurm in Cigiira 11_2 Am thn fallauing maca acting ac am A~ A ~tivnY P
A JHIVYVIL DL] IBUIC (I | oo B O I [N Y | v lullUVV|||5 Vﬂ "C’ Cl_-lIIIB <A All AL f\\—LIVC/\ LJU'Vu
tiveX Documents server requires support for all the serverside em- ments servers
heddino and in_nlace activatinn intarfacoac deccribed in Chantar 82 must support
bedding and In-place activation interfaces described 1in Chapter &

10leNocument

A MDA

[=ARAWER AN S Lw) oW YD |
3 Figure 11-2 includes one other interface, called I0leCantainer, which allows a mentview

server to enumerate the objects managed by its container, Although this
interface is not strictly required for an OLE container, IOleContainer turns out
to be guite useful and so is commonly supported in the situations discussed in
this chapter.

[
an
u

AcitiveX, the internet, and the Worid Wide Web

BLUE COAT SYSTEMS - Exhibit 1034 Page 47

A view acts like
a filter for an
application’s

data

Each view has its
own sub-object

and more. A server might optionally support IPrint and |OleCom-
mandTarget (discussed later), and it must support 10leDocument
and IO!eDocumentVnew Understanding what these two manda-

e In PR R SRy Lloot 1imedmoto o ATy vaslamt tlm caimw] s ifmnan
LU|Y | Idac C ‘.JU lt:\.!ullﬂ‘:l HISL Ul iawdrniudg IE YWilcadl UiC WUl Vickvy
means in this context.
PO TR LA VN o RGN SU PPN ENPTY S I PRI SESNT S SUISIUNT SN SR S
Al ALUIIVOCA LJOLUNNIICIIID DUTVOT ITHID L HIEnCinont Jf 1Cdaal Lvwo oA
mierraces.

tOleObject

IDataObject

IPersistStorage O

Required interface ———————— OleDocument
1OlelnPlaceOhject O

10leInPlaceActiveObject

Requin—jd interface ————— IOleDgcumentView

E
I8
<
2
=
=
2
E
=
B
5
as
[o]
LN

)
)
=
Q
=
112
£
&
o
mn
w
2
@)
-t
a
0
-t
P
)
g
-,
o
=5
o
5
=
5
C
<b
-
w
pu
]
<h
b
N
=
<

each case, the application can present different views of its data.
In Word, a user cdn see a document in Normal view, Page Layout
view, or Outline view. PowerPoint allows the user to work with

presentation in Slide view, Outline view, Notes Pages view, and so

on. Each view acts like a filter through which the user sees the
application’s data, each showing the same information in a dif-

ioar cibn hiset Thiz o
VIEW SUG-OGJCCL 1niis 5

mentView interface and might also implement |Print and/or 10le-
h

Command
\fvllllliul A

perhaps IContinueCallback) for each view sub-onlect in the server,

Chapter Eleven

BLUE COAT SYSTEMS - Exhibit 1034 Page 48

Printing When a user prints a document directly from Word, what A view sub-object
is actually printed depends on the view Word is currently display- can implement

[Print to support

nrinting
|3 o]

Y Bl iy A &P :
e Qocument in \JULIIIIL VlUW, IUI CX=

5 [y
ample, the document’s outline is prmted When a user prints a

imo oan am AtV Me
HWiE d3 Al JaLuavon L

r\
E:
I
-
[%})
o
o

that only the document’s cached presentauon is printed; with
ActiveX Documents, the server itseif can control exactly what

Ib plll U

Printing can be a lengthy process, and users mlah et bored or A container can

change their minds about the wisdo g, supnort IContinue-
Ci ldIIEQ_ LIIEI.I ||||||u:: d.UUUL l.l".. 120U0 e T
] Laan

eyl EEE LN "
an ActiveX Documents container has asked a server to print a doc- O a R B REEE
N ntormed anout
el
wa

e :..g_ printing progress
method in its container’s ILont|nueCaI| ack interface. This method’s

narameters include the number of the page c lrrﬂnfl\r heing nrinted

[SELE S S u ap~ L D SRRl

~

Emd the numbe T pages pr!nted so far. A container mlght use these
to keep its user apprised of the server’s progress in printing, If the
user telis the container to cancel the print job, the container can
pass this information on to the server by setting an appropriate re-
P SR T S - S ST /hen the call 1

wirn Coae on I_,UIILIIIUCI II[ILIIIB VVII'L'Il g L

ver, it checks this code and, if necessary, cancels the print job.

rnmmnn-ln Dth o manfainar amd 2 carar mon cmmaet tha 1O AL R ath rantainar

MU IVD DUUL d LUTNIAiniSr daliu a o vol Lal DLIIJPUIL AR Loy LW L) LWL At vt

CommandTarget interface. It's easiest to think of this interface as and server can

a ctrinnad_dmnwn varcinn nf INicnate arall that 2 dicnintarfara Implemﬁnt IC)h:L
stripped-down version of IDispatch. Recall that a dispinterface .

_____ . L L . . .] CommandTarget to
assigns DISPIDs to a group of methods and then lets a client invoke receive commands
any method in that dispinterface using the single vtable methad -
iDispatch::invoke. The dispinterface itseif is assigned a GUID, al-

lowing the same DISPIDs to be used in different dispinterfaces
el PR PR (R M (W LTY W N R N e o S

witnout 1e€dr ol d”lUIgUI[y. VVILN oAecomimdna Iaf'g(:.'[, vdriaus

command groups can be defined, each of which is assigned a

Y Fole s i e o o A i e i i 2 mecigimad fite
UL, EdUTT CULTITNIALIU l[l d LU[IIIIIdII.U b UUP Ib d)blb"llﬁu dai Il w-
ger value, analogous to the DISPIDs in a dispinterface. To execute

ActiveX, the internei, and the Worid Wide Web

BLUE COAT SYSTEMS - Exhibit 1034 Page 49

any command, a client of IOleCommandTarget can invoke the !
Cyvemem mothad AF 1N alC ammanATarast nrevviding tha £ 10D thoat ‘
LA TR RIIAd U TR innaanind \‘LI' '.II k}vlulll& AU SO/ 1LY LAt

commar that group. !
va

with parameter sing variants, the same mechanism used by }
IDispatch. |

; . X :] |
identifies a command group along with an integer identifying a |
n < | n l

oy e e " . o ‘3 e |
1Otei_.ommand- Wny Iinvent a new interftace wnen IUlspatCh would Certa"ﬂy nave t
Target is like a sufficed? The answer is that the creators af ActiveX Documents felt !

that (Dispatch was too heavyweight for the simple requirements ‘
I~
here. The primary reason for using commands at all in this context |

¢

T W PP TI =t PO L PR W s
K.a SCTVET 10 PROTTANTTE SUCTT L3RS db U5

3
|
ta ensure that toolbar commands work %
i I

‘<C>
5o
oQ
=
v
=]
=
> O O
- O
o
=3
0
Q_C)

ive gy Work
e [o JPN Y I SR JERE Y o LS L T P I, ‘
ACLIVEA DECAUSE e Imertdces IE(.,IUIIE] 107 USIH gf\LUVE/\ LJOCUITIENS JdJre .
Documents simply extensions of those already used for OLE embedding and \
nteractions el aedivmtio #ha edoractiome hotvanm am A cdiva¥ Mo |
1] Pla C dulivaLivll, uit intciraciun i wcivvcell dli ALuveAsa LJocu- L

are much i .
N ments container and server are very similar to those between an |
K& WJLL ° |
interactions QOLE container and server. As in OLE, an ActiveX Documents con- |
tainer (such as a binder document) loads an appropriate server |
{(such as Excel or \No.rd) The container then initializes the server |
2 r T ' i |
using one of the iPersist* interfaces. A binder stores ali its embed- L
ded document d.:ta ina qlngle Cnmn()und fxlp F‘HF"\ in its own !

i |

: ' \
* 272 Chapter Eleven

BLUE COAT SYSTEMS - Exhibit 1034 Page 50

Documer lt IL‘IOWEVE'I“, e Containe passes a pointer o ik iOleDoc-
umentSite interface instead. From this, the server can determine
whathar e rrambaimar vimwge F e am o eAdiearen U E o anaboaAdAda
HICUICTH WD WLUINILan it vicyvva 1L ago all Ululllcll)f AJLL CTHTCUUCU uur™
ect ar as an ActiveX Documents object. When the user requests
i d

as alwa\,fs. An ActiveX Docume.nh: sarvar re-

- 7
)
<
=
=

«. =
=

SpOﬂUS to tnlS dmerently than an Ordlnary OLE embedcllng server
does, however. When it receives a call to this method, the ActiveX

LJ()(,UIT](;‘”U} server HIVUKe]e Uﬂly "l':![”()(] in 1ts Lontalnerb IUle-
DocumentSite interface, the whimsically named ActivateMe, to

nnnnnnnnnnnnnnnnnnnnnnnnn

iner make it active. The container can ICbPUIIU

by using Queryinterface to ask the server for a pointer to its 1Ole-

on invnliac MaM Ao ment::
Nen INVoOKES ASw, gcumentis-

CreateView, whic

returns a pnlnfpr

I-f’:'
5m
Ly
2
o
wn

1IQleDocumentView interface

Wilis & LE= LW w

Using this interface’s methods, the container can activate the view,
work with it, and close it when it's n lnnger needed.

i

ith the Internet or the Web? Well,
gouments P B T Y |
uuinenn UIJJC\.,LD Vv 1

CObjects, and they were

u MEis @t o4, 18 ’

though)
much broader context. By upporting anly a few extra interfaces
in addition to those aiready required by OLE, one applicatian

(,OUIG nOS[anutner Wnlle 5[||| dllUWllIg d user to access [ne COIt-
plete range of the hosted aophcatlon s features. Those few extra in-

S e INPENI Iy LL. P =1 s3] H Iy] PPy a e, ,;L.. ey bl
clilduey UIUUEIIL Wil nem uie dUl”l.y 0 WOk VV”_“ UV":[)‘UI 15 ll e
embedded application had to offer. The user could see a comman
frama vat winrle mafiieally wwithin that frama with all tunae af daea
Taimic YOU WOTK Nidillidiy Witiiin Widt iaiiie wWitn din (y pes UF Gdid.
A binder document is one example of a common frame through
whirh a 1car can arrace diffarant annlicatinne Anathar ayamnle
WITICTT d USCT Can aCCess GIICrent appiicalions. ARQINGr exampic,

one that's much more interesting today, is a web browser. It too

BLUE COAT SYSTEMS - Exhibit 1034 Page 51

ActiveX Docu-

were originally
called Document
Objects (Doc-

O

A web browser

can provide an
ActiveX Docu-

ALUVEA /00

ments container

IICL L)\})IUICI
3.0 relies an
ActiveX
Daocuments

IE 3.0’ Web

Browser object, an

AL

274

tiveX Documents

HA .

cantainet, proviues

generic browsing
functions

and workm with all

[q]
ar
>
fo
=
=}
<
o
¢}
8
]
o
3
3
o
. -
=
<)
3
A
g
=
3
0
8]
9]
223
z
]
asd

.‘
4]
43
oy
=
Z
O
o
187
O
]
3

=
[§*]
-
4]
=
[g]
<

[7c I <V

3
!

) =
@]
-
(]
=
o
w
]
-
w
2
@
o
=)
-
Q
z
w
4]
=
o %)
=
a

user interface itself.

Although COM has since been applied to many other proklems, it
of

machanicm faor craatine com-
mechanism 10r greating com

pound jocuments. in some ways, the uitimate compound docu-
me t 5 the World Wide Web. It shouldn’t be surprising, then, that
COM has been applied to the problem of web access, too.

Building a Browser from Components

fmal

built into t browser itself. As browsers came to be used to dis-
play more than just HTMI, however, they needed a general way
to i0ad code on demand to handie any kind of information. if the
user downloads a file in Adobe Acrobat format, for instance, the

PR R O U B ol bl e . H™ .,.A._Ai.l.
orowser must ne anie (o IUdU l.lIC Corect (..UUC to intei [Jf (R]
t

IE 3.0 separates generic browser functionality—navigating to a

link, anrno forward and back, and so on—from the mhnlhor-\nr'p

required to load, dispiay, and manipulate particular kinds of in-
formation. The user sees one cohesive application, but the browser
is actually built from several pieces, as shown in Figure 11-4
(Some of the relationships among the components are slightly

Chapter Eleven

BLUE COAT SYSTEMS - Exhibit 1034 Page 52

simplified in the figure.) The smallest piece is the Internet Explorer
LR VRO SRl I S B ol P b T I p W ol 5l Vo8 ke o UL IUORUS SRR [V IO L [
[fd!”(:’, HTIRICIMCNed N IEAFLURE.EAT, THIS SHTIPIC piece OF code
does little more than provide a host process for the Internet Ex-
e VA Do iione ndain et fomie bemmnace ne tha chaff ,1 nnnnnnn
PIUICI YVOL? L IOVYICT UU}C.'L.L VLHILT REIVIVYIL AD LN 2I1CH LUI{'C'”.
viewer), implemented in SHDOCVW.DLL. This object provides
annoric hroweasr functionality an 1t commiumicatac with tha frama
5\.¢IIW~II\- MUYV .IOLT T I\-I.IVIIHII[)" AAEIVA L LATE R T TR RALD FV LML LIS i e
through various COM interfaces (the details of which aren't in-
ch.,ded here). The Web Brc-wser object has no knowledge at all of

e information.
s know how to do, however, is to act as an ActiveX

Il
4
[
- A~
=}
O
c
3
el
=
—~
wy
@]
=
[=*]
=
~ X
o]
=
2
[4:]
-
%]
o
=1
o
=
o.
[%2)
2
1Y)
~
it}

Documents confainer. By |oaa|ng the appraopriate ActiveX Docu-
ments server, the Web Browser cbject can let the user see and

PPN P ey ATEL it tvige o B S
WUIK Wllll Ild.lly aiineren YPC ||I|Ul”|dl|Ull.
Microsoft’s Internet Explorer 3.0 is huilt from separate components Figure 11-4

glued together using COM.

ActiveX Documents ™,
confainer interfaces

4 The Web Browser object also qualifies as an ActiveX control, which means
that it can be plugged into any control container.

ActiveX, the Internet, and the World Wide Web 275

BLUE COAT SYSTEMS - Exhibit 1034 Page 53

IE 3.0's HTML Its deconstructionist look notwithstanding, IE 3.0 is still a web
viewer, an R B P Y L N SUNH [y DRV S I b of W' | [,

UlUWht‘l dllu d K'.‘..'y I..)dllUl IS TUnCuuIn is> Ulbldldyl |5 T11iviL }J 5':'3

ActiveX Doc- When asked to display an HTML page, the Web Browser object

uments server, e . .
loads the HTML viewer, shown in Figure 11-4. This viewer, imple-

knows how to) .

display HTML mented in MSHTML.DLL, is an ActiveX Documents server that
contains all the code required to display and work with HTML
documents. Figure 11-5 shows an HTML page dispiayed using IE
3.0%s frame, Web B.ro..,_.r object, and HTML viewer. All these

components work together to present the user with the famiiiar,
seamless look of a web browser.

Figure 11-5 An ordinary HTML page displayed using internet Explorer 3.0.

Viewsar & now avaikat OLEVEW L3
B ool ihat kets you browse, confpue,
et and even activate any CORM class.
on your systemn. Check il out!

The Web Browser Because the Web Browser object is an ActiveX Documents con-
object can host tainer, it can also load and display am't..'ng that knows how to

anvy ActiveX

instance, into a web browser? FY(“P' i

"
5
12
1
(=N
1]
Q
Y
8]
=,

tiveX Documents server, as shown eariier in the Binder example.
Accordingly, IE 3.0’s Web Browser object can load Excel and a

LT
]

spreadsheet the same way it loads the HTML viewer and an HTML
document. Figure 11-6, an Excel spreadsheet displayed using IE

2 0 T | PRIV PSS B Y
U, HIUSUAWED TTOVY LIS 100KS wr a

S
ments technology exposes the full functionality of an embedded

—

o the oy A iV Mo
UDTI. DELAUDT ll e I'\l.lth'.'/\ LAOCU-

276 Chapter Eleven

BLUE COAT SYSTEMS - Exhibit 1034 Page 54

application, hosting Excel within IE 3.0% Web Browser abject in

no way limits what the user can do. This spreadsheet can be dir-
ectly edited just as if the user were working with a stand-alone

i nstance OT EXC(‘:I -

An Excel spreadsheet displayed using Internet Explorer 3.0. Figure 11-6

i
1995 Q3. 1995 Q411096 Q7 {projected).

i | 34980“ 43502 45032!

£4000 JUDI0D JI0L

pcih.ol 107D 249N9:
st &R P

9785, 9401 8834
45501 7873 8042,

Excel, and any
other ActiveX

he appropriate code to work with that information.
anE |

For Dv'\mpln if

o8
~

browser load Documents ser-

i

the internet, an ActiveX Documents—enabled browser can iet its
user click an a reference to that page and then automa tra!ly laad
Excel (assuming that Excel or a simpler ActiveX Documents—
enabled Excel viewer is available on the browser’s machine) and

o P PP VPR Py sl

Ulbpldy U 1€ 5 [J readsheet as an ActiveXx aocument W!LIII 1101
er

£
browser. A user can now use one approach—browsing—to access

pages on L. b P
I IIIV\L pds U LI 5 VVCU, dppllbdtlu

hard drive, and nearly anything else

ActiveX, the Internet, and the World Wide Web 277

BLUE COAT SYSTEMS - Exhibit 1034 Page 55

Making the Windows Shell a Browser

Tl VATl AL

ne vwindows When YOu start Microsoft vvmduw::, the user interface yOui s€e is
shell provides a provided by an application called the shell, which provides you
user interface with 2 way o accacs othar annlications and files an vaur machine
Y¥iLli a VV(IIY L LA TOD ULl GPPIILGLIUIID aniu niCo vl ASIVIDE R [-LW BRI N\
In Windows 95 and Windows NT 4, the standard shell presents a
daclktnn f:}nl’\nr allowing var ta work with the contante of vour
gesxkiop metapnor, aliowing you 1o work witn the contents oF yout

machine th rough foiders and files in those foiders. A wet
a

presents different mets

applications by foiiowing hyperiinks between documents, moving
forward and back as needed Given the popularity of browsing, in-

CRS N o in I Ny
lg inis new meta P nic UIE user Ill[t'lld(..':.' Ib VGTY Ul‘.!b fanie

is to modify the Windo
as

and can then serve framp for the We,h Browser oh ct, In

IICE, UIIS means a CI'I g SUppOfT TOI' a TeW maore CUM |nterraces io
the shell, not an es ecnallv onerous task. The shell itself can then

g
C
b
174} -
[4:}
=
=]
E
1]
8]
=k
5
)
E.

tural way, and users can

€0 a
information using this tool’s generic navigation facilities. Files and

anrlicratinne am tha la-al Aicle oA atveel, o tha lntarmat ~an
Cl'_"_‘ QLU D Ul Ui mvye.al Ul:l\’ uea HILyvun '\’ U LIS IR Iy wail
all be browsed directly from the shell—there’s no need for a spec-
ial weh hrowser annlication, And throush the seneric interfaces of
eh hi application. And through the generic interfaces
ActiveX Documents, other appiications can be ioaded into that
frame to work with other kinds of data, not just HTML pages
internet Explorer This is exactiy what happens in internet Expiorer 4.0. By suppiy-
4.0 extends ing a new Windows shell, one that is capable of acting as a frame

. L
Windows 95 \ay
for the Web Browser onjec,[, the Drowsmg melapnor can be ap-

plied throughout the user’s environment. This is more than just a

| DR o i ST Py sl loos o oo at .“m.._..al_ At PR, P S
LCTICTL TOUT LDCTS—ILS adldU d glieal CXAAITIPIC Ul C IJU er Ol UlllPU-
nents. Code originally built for one application, a web browser,
an o revicad in o vneg anmaeal sasae
LAl L TOUDTU 1T a Vo , SC icral vva

278 Chapter Eleven

BLUE COAT SYSTEMS - Exhibit 1034 Page 56

Truly integrating browsing throughout the Windows user interface The ActiveX

e eon are aee thic vemargitig damande om tha Akl Hunmarlinks tech.
TELHUITED TS Litaly Wi, NOWEeEver, orowsi ls UC'JC WS UL Lie dull".y PAY PR THIIRGD LA
to create links among documents and to follow those links from nology atiows
one document to anather. A trad:t:ona! browser allows hyperlinks the creation of

hyperlinks among

g TN [{l"\f ['4 f\r

) many kinds of

more generally mnnlm: the '\h_!!fu tn create more general links ag . .
b = el bl o] kel PRI (l(J(_.UrnE”lb
weii. A user might want to create a iinik from a PowerPoint presen-
tation to a Word document, for example, or from a Word docu- :
ment to an Excei spreadsheet. Ordinary HTML hyperiinis aren’t
enough. To address this problem, the ActiveX family includes a
E‘nnmusy calied ActiveX nypl’:}'fi‘ TKS, which allows the creation
of hyperlinks between all sorts of documents, not just HTML
Aacumente The ActivaY Hunarlinks tachimolaoy 1s aleaady sm
VUL ITH LY. 11 Ay uven i ly'JCIIIIII\:) wcunt IUIUEY > ﬂll‘:auy 3u|.1-
ported by IE 3.0’s Web Browser object. (For details, see "ActiveX
Hunarlinlke ¥ naoa 105)
Hyperlinks,” page 305.)
Making a Browser Programmabie
Once the Windows shell itself lets yau browse the Web, the need A web browser
Iy . [N can oxnace 1c
for a separate web browser application becomes less apparent. can expose i
mnctions o ap-
But hlle web browsers as such might one day fade into the mists functions o aps
af hic . ot plications as well
‘ M —— ¥ 2 aanf M omrmran e Pl el ol ol o Y T et

; b p=s = [P N H Sl RPN
LT y, Llld.l. Udy Ildbll L)’ dIIIVCU. I'\I i EVEN i1 DrOwWSEers PCI e

as to people

HTAAL \J;L\\Alﬂr will erirmvive 1ika erivaandchontc \A/nrrl NECOCCAre
UYL VIEWET Wi SUNVIVE, LIRKC SpredGsneils, WOTrG proCessors,

o
3
a
Q
=
=
o

— X
<2}

i=}
=
2
]
=
)
35
g
-
I
@
w0
o
o)
c
'c
2
=3
—
w
°
o
c
s
o
o
-
c
=]
a
o
&
3
w
-
-
13
=3

a0 at's
people. Al e
quired is for these components to expose a set of C“)M ol JECtS
with appropriate interfaces that clients can use to access the o

components’ services. In internet prlorerj 0, all of these inter-
faces are defined as dual interfaces, allowing easy access by
LT ~l 4 o b I ____________

clients written in JVIILFOSO ft Visual Basic and similar 1ANBUAges ds
well as by C++ clients.

| JENPYSURN S ey [P DY o Frasn i bo P R P+ HPH P PP e Thao WAiale Doayerane »
1 II.EI IICL L/\'JIUICI I U Tidd LVWO LUIII'JUI IEIIL) widc ‘JIUVIUU PI Blall'l" THE vV RDITUVVDL] ~;
mability: the Web Browser object, providing generic browsing object is typically i
nnbilitiae amAd tha HTAAL viawear with ite HTAAE _cnecifie firime. driven from a tool :
LCI'JQUIIILICD, SV LI 1 e VIC‘VCI, VY ILIL 14D 1T v DP\/\.PII_ e . =
. : : . P ; ; such as Visual
tionality. The Web Browser object is typically driven from the b &
) Ladii
Ol weida by cav a Viarm! Racic nroaram that vcec thic nhiact 0
utside by, say, a Visual Basic program that uses this object to
ActiveX, the Internet, and the World Wide Web 279

BLUE COAT SYSTEMS - Exhibit 1034 Page 57

)
[¢]
o]
=)
@
n
-
n
=
0
c
&
b
o
Q
(9]
c
3
o
3
I
o
3
]
N
@
[
-~
n
go
Q
w
i)
=2
o
-
=
@
3
o

|
- specified by a hyperiink.

- Thoa £ allanl vt d (0 si0ad ta inmin 44 bha eaciaaie

- HITO SEULMALR HHITULIUWU 1D WoTU WU T HUYVE W urc PICVIUUD
location in the history list.

P o R O AlL I R U (PSSP I ISPy

| 1E LOrorward rmieuiudd 15 uscd W) niuve w e nexi

location in the history list.

® The Refresh method refreshes the current view by reioad-
' ing the document.

The Web Like most objecis accessed through dual or dispaich interfaces,
Browser the Web Browser object also has properties. This abject’s proper-
abject has tine el then £ e
’ UCS ITICIuuC e iJaiouwl IB
methods and
properties ® The Type property returns the type of the currently loaded
A~tiva¥Y Maciimnants carvar cnick A TRAl Ay Fruemal
SACLIVE A LfULULLITIiL s VCI, SUIGIT dd 11 HIVIL Ul LALVLC.
® The Busy property indicates whether an activity such as a
document load is in progress
® The Document property returns a pointer to the IDispatch
m[ena(_e Of t'ne ACEIVe)\ LJocuments server TOT tne currently
loaded document. If an HTML document is loaded, for
examiple, this property returns a pointer to the IDispatch
interface of the HTML viewer. If an Excel spreadsheet is
lmarler] i+ ratiirne 2 maintar te Cyealic INicnateh fmborta e
y',:‘ quu\;u, L TwLydniily 'JUIII\.\..I L AL T II.JIJ'JOI.I.LII ol icavy,
i Using this pointer, a client of the Web Browser object can
access the methods made available by the currently loaded
: ActiveX Documents server, whatever it happens to be.
The Web The Weh Browser object can also send events, such as OnDown-
; Browser LoadComplete, an event indicating that the current page has bee
(;Dlea also completely received. As with all events, the creator of a program
- as events " o, .
iv Uering e VVEU Di’UWbt‘r UUJﬂ(_,[can er[t‘ d suDroutme [na[Ib
called when this event is received.
280 Chapter Eleven

BLUE COAT SYSTEMS - Exhibit 1034 Page 58

Unlike the Web Browser object, the HTML viewer is typically dri- The HTML viewer
£, T,

e fiey imeid wrae mright for avaramle laodd ae LITAAL is tynically driven
AR R R V. N] | LR b TRV] llII5IIL, i CI\GIIIHIC’ wFawd alt b vk Ir /
document containing an embedded script. This script then exe- Uy a scriptin a
cutes, making requests of objects withm the HTML viewer as need- oaded HIML e

cts, arranged in a hierarchy.?

obje
pmost nhlm"t in this hmmrrh\/

A script can r|| rec I\/ access the t
tne Window ODJeCt and in acqu re access o OD]EC(S DelOW it
through the Window nhle 's properties.

4

|ne VV]ﬂ(]OW ODJe(,[represents tne orowser wmaow tna[tne user
sees. Its methods include these three:

e The

[
=
- T

D

The Window object also has several

e
0
2
a2
13}
2
(T
w0

[l -l

return references to objects iower in the hierarchy. These proper-
ties include the followmg.

he History property returns a reference to a History
object containing a list of visited locations.

-
|

.
e The Frames property returns an array of the window’s
current frames.

e The Document property returns a reference to the current
Document obje

Finaily, the Window object is abie to send two events: onLoad,
sent when a page is loaded; and onlUnload, sent (not surprisingly)

when a page is unloaded.

E Thao TAAl wisteraris abhiosat caodal io mabiarooad afftar tho maadal oveesead] by
) i S A UTYRL VETRYYC O UUJ';\-\ U Hﬂ\k5|ll L@l (RN AL | AHUI’CU Uy
latcrana Naviaatar Thic maliac it ciraiahtfaorurard to craafa corinte that wear
Netscape Navigator. This makes it straightforward to create scripts that work
with both Navigator and Internet Explorer
ActiveX, the Internet, and the World Wide Web 281

BLUE COAT SYSTEMS - Exhibit 1034 Page 59

ML documents
can contain scripts
written in |anguages

Uy
b=
2

engine under

After the Window nhmr‘t, the Daocument ob

ect is probably the
most important for creators of scripts. This object, iocated using
the Window’s Document property, represents the currently loaded
[} I yva

HTML docurment. its methods include Write, which writes text
such as HTML code, and Open and Close, for opening and clos-

[5;4
[t
o
C
<
e
c
a
=
@]

&
ﬂ
u:‘

ii"!g new documents. Amon ct's many proper-
ties are bgColor, which sets a page’s background color; linkColor,
which sets t..e co.‘"r r !inks n the page; and vlinkColor, which

jects implemented b
ambedded in HTM

only one possible choice for a scri
to bmld support for it into the HT

-
=
1]

T3 I
<
=
=
w
2
o]
=
(¢}
=
S
o
e}
j<¥]
0
0
g}
[
®
@
D.
‘<
.‘_‘
=
—
)

anguage, it mlghr make sense
viewer itself. Several options
AL PR

VE'I WIICH hugstfblb Lllat
at general solution,

=)

w

c

T

o'E

0%

.

[

. QY

ks

U')

o

a

s3]

<

o

& .
cr -
= 'C:
Szz

~ —- -
= <,

[l

-3

T

5‘

a more general solution would be useful.

Aallad A~tihvalV Cowl
Cdiied ACUVeEA O

. P R Vo S, " R

ActiveX Scripting

YA e tho LYTAAD wiioiaroe lvade o A iiinant alhhar A iove et senierlas
VVIICL LHT T HIVIL vVievwel 1Udulo a Uuculnieniy, thidt dueunnisiit lIllslll
contain one or more embedded scripts. Those scripts can make
use of the programmable objects exposed by the viewer, alon

with any objects that are loaded dynamically. Today

th
ino |nngunopq for wrihng scripts embaedded in HTML ar

AR N

e
javaScript and Microsoft’s Visual Basic Script (formaiiy known as
Sc av.

Visual Basic Scripting Edition but commonly called VBScript).)

DLTIPL] SandCIlCdlly blﬂllli:lr o Ine jan programmmg idnguage

whereas VBScript is a subset of Visual Basic. lts not hard to imag-

inrrm o vk meried e wrtbbam 1 Tl gt s b P o
n:lllsuasc alr CATULILI 5 e LY } I'Jl. > VWiHILLCII |l e DL.II'J[CATLULCS 111 a
separate compenent called a scripting engine, while the viewer
Arte ac o aanarnc hact r thic anoina Tha vieswer com (ncetantiat
vl as 6\.—!'\;' 1w TRUOL LR P ‘VI.EII.‘\'\ PG WL VY LY it Thrawajal

Chapter Eleven

BLUE COAT SYSTEMS - Exhibit 1034 Page 60

e

vioewore ahiacte and rora
WV L A LV

J\.A.LJ i

cation. (ActiveX Scripting was originaiiy known as OLE Scripting.)

Furthermore. . because the HTMI viewer can also act as an ActiveX A hast ca

s g

s 1 . TrHI fnoto o
control contalner loaamg an HTML page can result in loadmg one Duii-in ‘J'-’Jc‘-t" art

or more ActiveX controls as well as a script. Scripts executed by a might also load
. ActiveX controls

]

PO o . JUR PO Y Y PN P P W

|gi"le can interact not or 1|y with the built-in onjecis in
t,a

Iso with any loaded controls. (In fact, an
M

of ActiveX control

s
this discussion uses ¢

inaily, aithough

] fi
I\/ the HTML viewer as an exa nlp of an

ActiveX “_)Cflpt g nOSt thls tecnnomgy is in no Way SpeCITIC o tnlS
application. Any application can become an ActiveX Scripting
1

L ‘ A

£ L
host and then load and be driven by any scripting engine.

The H TML viewer is both a host for ActiveX scripting engines and a Figure 11-7
confainer for ActiveX confrols,

ng____m_%ﬁ_j ActiveX scripting
engine interfaces

ActiveX, the Internet, and the World Wide Web 283

BLUE COAT SYSTEMS - Exhibit 1034 Page 61

Describing ActiveX Scripting
A scrint can A corimting onagine ic a {OWA ashioct oonorally imnlamantad a¢ an
j‘ LA SR 4% LI "“““”'5 CIIEIIIU 13 Q& WAL oL, sulu.,lclll IIIl'.)IL.IIl\..III_\..\,I @ il
access its in-process server, that is capable of executing a set of scripts—for
o t
host’s ObjECtS instance all those written in a particular lanouaoe, Internet Exnlor-
instance, all those wrilten In a particular language. net Explo
er 3.0, for exampie, inciudes scripting engines for both VBScript
and lavaSc rlnf An ActiveX Q(*rmtlno host t tvp ica l|\/ |mn|9m¢3nf¢.

objects whose methods, properties, and events can be invoked,
accessed, and received by an executing script. For the HTML

‘v‘ieWE‘r‘, these ClUJt:LLb incliude ihe Window UUJUL t and the Docu-

: ment object, d scnbed in the prewous sectlon The host can load
|
1.

Scripting hosts Figure 11-§ illustrates the objects and interfaces that can be imple-
must implement mented bv an ActiveX Scrinting host. As the ficure shows, a host
LA ot ’nQr nnrqlrg NIy Uy CAED ML VO ‘JL.IIIJLIIIB LA 5] Sy ap o LU by ||5u C 3HUVY O, O HIVIOL
T implements a scripting site object that supports the |ActiveScript-

dNd e Nosts . .
s Site interface. Using the methods in this interface, a scripting
objects must o ' ©
implement engine can acquire pointers to the interfaces of top-level objects
IDisnatch the hast makes available, inform the host of errors that occur,

Dispatch s ava
notify the host that the script has completed, and more. If the
object supporting IActiveScriptSite provides its own user interface,

it can also S'u'pp(‘li‘l |r\Luvt:JCi‘ip‘L'3ut:vvu|duw, d”uwulg d SCi’ip‘iiﬁg

engine access to that object’s window. Each object in the host,

7 .

stch as the Window and Document objects in the HTML viewer

or a loaded ActiveX control, impiements its own IDispatch inter-

4 F:rﬂ ﬁllh\ﬁllnﬂ a2 corinting nn(iinn N munlca I"(l me ﬁ{'l(QI‘II"I aArerace
face, allowing a scripting engine to invoke its methods and access
its properties. Each object should also impiement IProvideClass-
Info (or perhaps IProv videClassinfo?). allow wing its client to access

P

its type information. And finally, host objects that generate events
also implement IConnectionPoint and IConnectionPointContainer.

44

Figure 11-9i |||u5trateb the interfaces that a M.rlpung englne cdan sup-

W port. Every scripting engine must support the |ActiveScript mter—

£ A ket oo I B
raCe, A NOSL USEs tne i

teH the

iPersistStreaminit, or IPersistPropertyBag. Scripting engines that

;‘f,‘ 264 Chapter Eleven

BLUE COAT SYSTEMS - Exhibit 1034 Page 62

The interfaces that an ActiveX Scripting host and its objects can Figure 11-8
implement.

1Ar'h\rn‘ir'rmi‘i|tanrlnw

Cnnnectlonrommontalner
ProvideClassinfo

iConnectionPoint
IConnechoanntContamer

yIIdIIlILdIIy Can SLippOl“t IActive- oC
uch as the HTML viewer pass in a must implement
el I‘ fo N o P oF bl R YorPad WE o) f'llll"lnfl’ IACtiVeSCript and
e I AL LW WLl g uaai IIIB
marge
on of a script, t ngine passes its host a pointer to the
which is implemented by a distinct
calling methods in this interface, the host
can learn more about the errot. Finally, scripting engines that can
accept events sent by a host or that ailow a host to access the
script’s methods and properties must also implement IDispatch.
The inierfaces that an ActiveX scripiing engine can impiement. Figure 17-9 :
[ActiveScript
ActiveX, the Internet, and the World Wide Web 285

BLUE COAT SYSTEMS - Exhibit 1034 Page 63

The value

af tho LITA AL
U I rragvin

LANGUAGE
parameter
determines
hc script:ng

i .
ine sc lI[JlIHB IIU':I

passes the text
to the scripting

angine
b o}

286

An ActiveX Scripting Scenario
IU un(]erbtd”(l HUW dll lﬂib WUI'Kb, ll'l'ldglﬂti [(Id l'l[ﬂl'l‘lt?[l:)(pl
3.0’s HTML viewer, an ActiveX Scripting host, loads the foHowmg

<HTML>

document .write "<HR>"

document .write

"Hellg from the VBScript scripting engine”
ocument .wrifte "<HR>"

U(
[

e
SRV]

.

Ty
(e

AN

ha il v = I o tl
=Ny
= o

L S

nd
interprets the first few lines using the HTML tags in the angle brack-
ets. For example, the IE 3.0 viewer renders the line <H1>ilustrat-

When the HTML viewer loads this dacument, it hannilv reads ;

!.a)l

SO PRV JUNPS DV Y I SNSRI [P IR [N | SV | IS SRR IR B I SPRIGY

g ACNHPUNE</FTT > dd d 1eVET-UNe nedainyg (Ddhed on e 7714 Wdi

as shown in Figure 11-10. When the viewer encounters the next

limea hrwovne hoaginming with tha CRIDT tan 34 Lemavae #hat 6 il

I IC’ rovveved, LICEII" [N} 5 VYV ILLE LTI DN) L{JS, LU RUILIVY D Lniatl (e vvinkl
e ining the LANGUAGE pa-

the registry—it's a r’roglu, which is oescrmed in Chapter 4—and
finds the associated CLSID. The viewer then calls CoCreatelnstance

A Vs Lo o ef

the VBScript scripting en-

HIY R oIy e - M IK

with this CLSID to create an instance o
gine and get an initial pointer to it.

I... AL- 1
It Cllblllt: Ib lUlIlIllfb, [N~

—

[u
ActiveScript mterface The host loads the HTML file’s

Chapter Eleven

BLUE COAT SYSTEMS - Exhibit 1034 Page 64

The resuit of loading the example HTML file.

Hello from the VBScript scripting engine

ipt t he
af the obiecte sunnorted [n\/ the host. QurVBScrint examnle, for
Qt the Objects support the hast. Ur viBacript example, 101
instance, sets the DgC iar property and invokes the Write method
of the HTML viewer's Document object. (Figure 11-10 shows the

resuits.) To set properties and invoke methods of an object in its
host the scripting engine needs a pointer to that object’s |Drsoatch

5
O
=,
<
¢]
]
O
=,
U
>
[=X
a.
Z
1]
3
[9e]
Q.
=
[}
3
g
o
3
[}
o]
=
3
Q
=
4]
o]
=
=
wi
D'
[‘D
0
—
&
=
o
wy
b

[V= e
iViL, vul:vvcn, TOT

call for the Window object, the top-level ob-

Once the host has informed the scripting engine about all the
necessary objects, the host invokes [ActiveScript::SetScriptState to
tell the engine to begin executing its script. When the scripting

engine need pO'r r to an object that it learned about through
[ActiveScript::AddNamedltem, it calls |ActiveScriptSite::Getltem-
Irfmy varith l«,. iy ~f that Aot e e svamanla tha coeiebiner
1 VVILI] LIJC tiern U uiad UUJCL-I.. 1 Ul Al II.JIC, [§8 L = DL,II'JI.I l6

ActiveX, the Internet, and the World Wide Web

Figure 11-10

name to ask a host

for a pointer to that

nhiect
Gijeci

BLUE COAT SYSTEMS - Exhibit 1034 Page 65

Scripting engines
receive events
uv.inrJ the same

IHC\.IJdI \!Dlllb “as

control containers

ActiveX Scripting
allows a host to
be transparently

I3

scripted from any
language

288

engine calls this methad o nlv once, requpsﬁnﬂ information about
the Window object. This call returns a pointer to the iUnknown
interface of the named object. The scripting engine calls

1l o Lo

Query'rnte‘r‘uace on the returned 1Unknown punut:r, askir g 107
IDlspatch When it acquires the Window object’s ID:Spatch

nnnnnnnnnnnnnnnnnnnnnnnnn

A scripting engine calis its host to invoke methods and access
properties. But a host might need 1o call a scripting engine, too,

to inform it of events that have occurred. if an ODJGC[in the host

J

| IO N —— i U e on R
T Thds C LIU:LI on tne putton ana

displays a button for instance, the object might need to inform

et 2 novey neoba oo tha memcace io et liba an Activa¥Y ~oanteral
L a licvy PI [0=t N o Vil Ly PIU\..L_,:':! 1> J SUNIAT All FAUIVEA LU LA
sending events to its container. Happily, the solution adopted by
ActiveX Scripting is identical to that defined for ActiveX Controls.
i the events to the script might actuaiiy

viewer can pro—

reads the type library to learn how to build sinks for that object’s

events, This process is very similar to what control containers do

pcerilmed i o bar O A ac amgith crmtrale e b o pae)
\LEBLTIOEU i LNAPLET). ARG, d5 Wiln COMiforns, connection puilll.'r
are used ta pass the necessary pointers from the engine to the ob-
iocte to allow the avante ta he cant and recejve
JELG U anUW NS SVENS W 0O 5SNT0 anl 1eCaived

By standardizing the interactions between an executing script and

the obiocts it ac Ac ;\M:AY ‘:r"rlnhnn allowse any host to work with

objects it uses, Active) g allow w host to

any scripting engine. If the simple script shown earlier were written
in lavaScrin ptr ather rh;m VBScript, for example, _nmhma would

change from the host’s point of view, except that it would-instanti-
ate a different class of scripting engine. It's even possible to mix
VBScript, JavaScript, and (potentially) other scripting languages in
the same HTML file and have each script executed by its own

Chapter Eleven

BLUE COAT SYSTEMS - Exhibit 1034 Page 66

scripting engine. And, as mentioned eariier, ActiveX Scripting is
useful for more than scripts loaded into a browser— scripting

capabiiities can be added to any application by impiementing
the interfaces reguired of an ActiveX Scripting host.

ActiveX Controls and the Internet

Visual Basic was the Tirst widely used container for ActiveX con- internet Expiorer

trols, and its requirements were a driving factor in their original 3.0 can load con-
. Gy trols locally or
(=) L viewer |5 d control !

container, too. An HTML page might contain data, for instance,

—
m
X

=
o
@
[
C
2
I
2

ue:ﬂgn However, infern

server when it’s needed. Aiternatively, IE :

nl:ﬂ'nrm |nrh:- endeont :annlpf written in the 1oy

A e I
f depen itten in the Jav

\
[+3]
iy

applet is a program, typically a fairly smail one, that runs inside a
container of some kind, such as a web browser.) In either case, the

H:'bLHL |b U'l('.' sdime: L(Jut:' Ib l(.)du&:‘(] as ﬂEe(]tU \pt-:mdpb wom a WEU
server) and executed on the browser’s machine.

5
current name—ActiveX controls rather than internet led to
changes in the

o ActiveX Controls

piained, for example, the requirements a COM object must meet
to mr:ahfv as an ActiveX control have been greatly reduced,

P
=

change made largely to accommodate the process of ioading con-
trols over slow Internet links. Loading potentially large amounts of

Udld Qver LI]U’::C S‘OW HI'IKb I'Id.'.‘: dIbU IEU 0 eXteilSi ns u U ll'l(ﬂ UTISlHdI
S

controls technology. This sectlon examines how ActiveX controls

S
=
Q
-
=
c_n
E
a$
>
<.
o)
-
=
[
=
=
g
=
-
o
oy
Q
-

ActiveX, the internet, and the Worid Wide Web Zo

BLUE COAT SYSTEMS - Exhibit 1034 Page 67

3
i

"

An HTML

document can
ArtiveY

cause ActiveX
controls i be
loaded using
the OBJECT tag

A control does
not need to do

anvthine snecial

R - Tl it
lU L)(; IOJO&DI(:'
inta IE 3.0

)
=]
=

Loading Canteals isvin 2 Wah Buawens

LOGTINg LONos inte a vWeu orowser

Using the OBJECT tag in HTML, IE 3.0's HTML viewer can load
amd 1ica amy ArHua¥Y cantrnl And et ae crvinke ~nm he writtan

AT LD LEDT a“y YOI VA UL . £ RIS ,u;l €T3 O I'r.’lJ SEATD R WVIRLLLOD
that use the objects built into the HTML viewer, so t00 can scripts
make 1ge of dyvnamically |nadpd controls. For examnle. sunnose
make use]..w...., ., oade ontrols. ror example, suppose

I

>

</OBJECT> _
<SCRIPT LANGUAGE=VBScript>
Sub SpinButton_Spinlp()

MsgBox "(Up arrow clicked)"
End Sub
Sub SpinButton_SpinDown(}
MsgBox "(Down arrow clicked)™
End Sub
</SCRIPT>
</BODY>
C/HTML>

After the heading Click An Arrow, this document uses HTMLU's
OR'FPT""!U to load an ActiveX control—in this case, it's the ¢

BIEC to lpad ActiveX
button controi you saw in Chapter 9 (“An Application Developer’s
View,” page 210). When this dacument is loaded, the HTML viewer

ALCLo

reads the CLASSID attribute and then calls CoCreateinstance with
that CLSID Th ID attribute gives the control a name that can be

T T T
LT TEiT1d i l 1

butes determi

e

abvm ik tha memben] thic io Haa carmae moadla theat vainn lomm s et Ll o
ALATUL VNI CAH LA 1D U IT 2N UAJLIT LT1Aal Wdd uduitcud HIW vViouad
Basic in Chapter 9%s example. As in that example, the code is load-
ef'l lOf“‘!Il\l ~i ’FI‘I’\I’Y\ a1 \ll(\k caorviar l{ nmn r‘r\hl‘ f'\L'\lDf‘f iE ’,\\l‘"\:"‘i“\‘(\

~d 1 AR 7 TR IRV A VY WLRS D% Vil Bl DTV Soo™mi Yl \JUJ\.-\-I., o aAvalniassiu
iocally with this CLSID, this example won‘t work

BLUE COAT SYSTEMS - Exhibit 1034 Page 68

Foilowing the OBJECT tag is a simple VBScript program that again An HTML page can

emulates the Pxnmnh:- in ("h::nh:r 9. Rec !! that the spin button contain scripts that
use loaded cantrols

s on either of its arrows, = Comoe SRR
53

coniroi generates events when a user ciicks
trol is loaded into Visual

events that can be caught when the control i
Ddbll., l“\ VDDLIIP[PIUB[dlII Cdn dlbU L'd[(.'" -[I']US(:' eVel’]iS Wl’ltfi’l il‘le

spin button control is Ioaded into the HTML viewer. (The previous
Crivnt mm el o i

P Y N Y] M
1HWUVY LT Vv UJL.II'JL 2010 IlJIJIIs

<
those events.) As the example shows, sim-

sistent data that it must load
Is loaded from HTML files have
several options for where this persistent data is kept and how it is
loaded. This section describes these choice

An ActiveX controi usually has per
trols

when it hpomc‘. executing. Contr

(%]
-]
-

BLUE COAT SYSTEMS - Exhibit 1034 Page 69

A contral’s Loading small amounts of data tiow a control loads its persistent
persistent daia data depends on what kind of persistent data it has. Suppose, for
can be stored instance, that a control has several properties whose values need
directly in the - . R T,
LTAMI fileo to UE b(ﬁ[wn(: € CO [llfUl |E: IUdUt:U f\b bllUWll I'It,‘.lt:, Ll]Ubt: leut:b
B can be stored in the HTML file itself using the OBJECT tag’s
DADAAA alac-amt
I AANUYE CICHICTHL
<0BJECT
CLASSID="¢c151d:99B42128-6EC7-11CF-A6C7-00AABRBA4A7DD2"
ID=1ahell
WINTH=1ER
miwine -
HEIGHT=580
>

<PARAM NAME="Angle” VALUE="Z270">
<PARAM NAME="Alignment"™ VALUE="2">
<PARAM NAME="Style™ VALUE="8">
</OBIECTS

When IE 3.0 HTML viewer encounters this OBJECT tag, it ioads
.the code for the specified control (which we’ll again assume is
already present locally) and requests a pointer to that controi’s
IPersistPropertyBag interface. The viewer then reads the PARAM

[, PR Ty D | PP PR e

elements and hands their values to the control one at a time, as
described in Chapter 5. (See “The lPersqstPronert Bag Interface,”
ey 1 IE Y
Page 129
A control’s This approach works well with controls that can reasonably store
nprqlﬂtent dﬁt;\ thaoir nronarting ac tawd in an TAAL fila RBit athar cantrale miaht
-~ Ly ias r’lurl\—l AR €A L AL TR LT 1R DIV I, FRI. LU LI A Fiuusni g Illlalll
can be stored in i : b — i load tf

HELGHT =589
DATA="http://www.acme.com/charts/profits.ods”

292 Chapter Eleven -

BLUE COAT SYSTEMS - Exhibit 1034 Page 70

vl EiTe A AT A

vvnen m[ernel l:xp|orers H 1ML viewer encouniers me DATA attri-

bute, it fetches the indicated file and hands it to the control as a

e~ Y SR T | WU ST PO A AL NPT U R
Streaim u IIUUSII IrtlblbLJLlCdlll LUdl.l l’\ILI IUUbII ll.b MO0 SNOWT Neie,

it is also possible to place a limited amount of data for a control
HTAML filale MATA -.H-.-:b‘.tn_

CT TS D /vy Qi i uis
Loading large amounts of data Both examples shown so far work Controls with
\Alel! \uitlﬁ Controlg tk;\t I’\Enie a l‘elz\t;\lﬂl\l (’l’l"l;l“ amoun tr\‘: novrcictont |al’Qe amounts
i WIEDN i vicit 1Ay TEIA VO SITAN diTHOUTIL UT PRETS1TST0N =]

of r\arc ctont data
T sent Gala

I whase persistent data includes large !
er need to load it

aranh y files or other hinary large objects (BLOBS}. in this
° e roer T asynchronously
case, the ontrol’s BLOB data is Certalnly j(ele] Dlg o stared In the
HTML fIIP It misht alqn b 1mnrart|ra| to store thl d ita in the file

a
named with the DA
using |PersistStream, the file is handed to the control as a complete
unit and all data in th

L
u L 1
before the control can see any of it. Preventing the control from

W
e

[0}

=

Q.

3..

=.

3

0]

=3

=}

=

I -
55|

a

=

[

>

T

o

c

=
S

o

7]

)

B

[=}

=}

antral with all its
OBs yncnr0n0u51y
ages, ﬁrst Ioad-

%
o
o
=
=
=
@
[}
=
1
Q.
=]
—
=0
w
-
=]
o
QJ
E
TT
o
=
=

EAMIO WA

This two-part initialization scheme relies on data path properties. Controls can

A data path property is like any other property a control might define data path
support except _hal_ its value can be a URL, Data narh properties properties

are stored in the file identified by the DATA attribute of the OBJECT

tag and are passed o the contral through [PersistStream. When

the control receives its propertics, it examines them individually

Y]

AciiveX, the internet, and the World Wide Web

BLUE COAT SYSTEMS - Exhibit 1034 Page 71

A control’s con-
tainer typically
participates in

path properties

give some
controls’ down-
lnads hmhm

294

and uses their values to initialize itself. When the control recog-
nizes a data p ath pr operty, nowever it can extract the)r()perty"s
URL and use it to locate and load the data it refers to.

The URL contained in the data paih property can be absoiute, con-
taining everything needed to locate the machine on which the data

RSP R PRUr SRRy SSRGS PUR ol SRR P I N |

lt:’blUCb I'UT CXdﬁTpll‘: lllC Ude frain plU'.JClly 3IIUWII ll] FISUIC ti-1z£

contains an abso!ute URL. More likely, however, a d a path prop-
P T S
{%]

st nliia in n
Eiy's Vaiili€ is a

URL (such as that of the page in which the control is embedded)

tn romanlatalyv cnacifu Aata’e lacatinn Raraiice nnlu tha ~antral’e
s u\)llrr,ll\ak\«-l’ QIAJ\-«\—Ally (S ANACLLCL J S ALY B AN CLVAIY, WS AN LASNVELIWST T
container knows this base URL, the container is typically invoived
in the process of locating the data identified by a data path prop-

erty. To aliow this invoivement, the container impiements the iBind-
Host interface.

Three properties for a conirei, one of which is a data path property.

Height: 200

width: 100 - i
Data path: http://vwww.acme.com/image.jpg

Froperties

When a contro

path property, it can invoke its container’s iBindHost::Create-
Moniker mpth r'l passing in y the LURL contained in the da_n nath

Te)l

property. The host creates a moniker (such as a URL moniker) that
identifies the absolute location of the data and returns a pointer

instance, might have loaded severai controls, each contammg data

path prgpprf es refprpnmnc remote BLOBs and all |n;|r|!no those

BLOBs at the same time. The container might need to prioritize
the order in which BLOBs are loaded, based on information only

it knows.

Chapter Eleven

BLUE COAT SYSTEMS - Exhibit 1034 Page 72

Accordingly, rather than caliing iMoniker::BindToStorage directiy,
a Cnntml tvnirallv ('allq its container’s IBindHost::MonikerBind—

,,,,, Pl

-13, passing a pointer io
the moniker recelved from the container. The container then calls

this monikers BindT -umarage i"ﬁ€u|ud If the moniker in qUEStiOﬁ is
a URL moniker, as it usually is, the information referenced by the
Aaka nat rvnarty (tha cantead’c REOIRY ic novo Aosamlooadad acon
nACALQ r-’u\-l‘ |'JI-’\(|'~ AL LTIV o LS LYY norsauICT Y asyiln

g OnDataAvailabie
Ca!!back {(The contr

in
tral
n OanerUlnd"

iker through the

bind context UUJULL, as described in Ct apter o How F‘\S‘y’i‘l—
chronous Monikers Work,” page 148.)

passes a pomter o this m‘terface as a parameter
ToStorage, and the container passes it to the mo

S Q

w
g
T

An asynchronous
moniker inforrms
a contral when

1 Contral calis IS 3

1BindHost::MonikerBindToStorage,
passing a peinter to the moniker

who aren’t re
hpmnmna tou

ed into a container that doesn’t support iBindHost, it can attempt
to fend for itself by converting its data path properties into monikers
Ubll’lg JVlKr’dlbt‘L}lbpldy
on those monikers.

BLUE COAT SYSTEMS - Exhibit 1034 Page 73

persistent data
asynchronously

7

active more
quickly

296

A control can
jnfesrim ibe rene
TR T LD L=
tainer when aii

data has been

" loaded

Controls
supporting

these foeatures
hottar

1AL r
work better
in the internet
environment

A control’s
code can be
when needed
from a web
server

me (]E!'[El nas Dee ioadeu. e)n[l’()l must men lnrorm I[con-
tainer that mmallzat ion has been completed and that it is le

]
Y
)
§
1
!
)
v

/&
. The control can also set the valu

s

except asynchronousiy‘i oaded BLOBs, it has ioaded ail p opertles
m(*ludma BLOBs, and s

ActiveX controls such as the spin button control that were created
before the advent of these new Internet-related technologies don't
take advantage of these new [eatures. Although older controls can
be Ioaded and used by control container web browsers they dont

[S RN SV < TSNP S)
1 Ne Oenerics O a Contr

BLUE COAT SYSTEMS - Exhibit 1034 Page 74

ID=MapDisplay
HEIGHT=450
WIDTH=450

When Internet Explorer 3.0 encounters this tag in an HTML file, it
L .
(&)

vyt COYVICDACE

i £l imonsmn Al -~
i y tne COUOLEBASE a

5 Wie e fame

object is an ActiveX control, but Interne Explorer 3.

1nn|nfc An attribute calle

1
v c

O w
- O

J

rm

_!

<

.

™

flavaa
tag can be used to indicate the MIME (Multipurpose
nsions) type of this object, such as annhrafmn/

=

on the Ub']t(.
Internet Mail

xten
iets the browser decide whether it's worthwhiie to

]dVd vim, wnl(,n
download it.* And as the example shows, it's also legal to use the
CYMERACE ~en sl PRy e oat bl s H e g

MATA Lo
LAJL/CDAAL and LATA atd IUUtUB at ne saime LIIIIC, Ldublllg LI!C

browser to download both a control’s code and its persistent data.

Hawy dosumlasadimg wanle 1n caoma ~ancne all that/c ramnievad fa
1 1UYY uULryvilIuUaunin ¥WUIRI 111 DULnic LClBCD, <l uial o IC_’UIICU (A W)
download code is to copy a single executable file from a web
carver to the brqn\rsnr’s lrpacl—\ine In other cases, it micght he necas.-
erver to the browser’s machin h , it might be neces

sary to copy more than On ex ecutable file El|0rlg with one or
mare supparting files. To deal with fhl'-‘.. variabilitv Y, the Inge_r,net

Component Download service used by internet Explorer defines
three packaging schemes for downloaded cade:

- rry
-

f\ p()rldl)l(;‘ exec U[d[)l(:‘ (L), (,ontamlng d !‘:I"BIE eXBLU(dbie
file with an extension such as OCX, DLL, or EXE.

A cabinet file, identified by the file extension CAB. A cab-

inet file can contain one or mare executables, all com-
pressed into a singie package and downioaded as a unit. it
also includes an INF file that directs the installation

....... IS PR W Y S o
PIU\.Cbﬁ UI e CAiZITISL D JTHES.,
r4 AAIRAE g e mmn comm o v ik ml o AL s T e e PR, PR [N T
u IViUVIL \.Y Tl UBCL LIIIUUEIIUUL LNE Yvelr oy |U||I||Cll|. |. LAl Udlel lleC
Ohar camminanly cnnn MMIME tumae nen pnvifhiomd jomaps/oif femaaanlinan aod
Other commonly seen MIME types are text/htmi, image/gif, imagesjpeg, and
video/mnes. Ar the time this hook ic baing written no nermanent MIMFE tune
videa/mpeg. At the time this book is being written, anent MIME type
has vet been defined for ActiveX controls.

ActiveX, the Internet, and the Warld Wide Weh

HTMLs CODEBASE
attribute indicates
where the code

Three main
options are
available for

packaging
downloadec

cade

297

BLUE COAT SYSTEMS - Exhibit 1034 Page 75

the request. For example, a
ile made fram a Windows 95 system the ame request

made from a Macintosh system might resuit in copying |
different binaries. |

[y ol o W Vel of L [P R

a
@
L
<
Cl
E
C
{'E
E
<)
r
a
. o
-
=
=
cr
C
fE
e
&
Q
=
g
&
~<

anly i thic vorciom niraber ¢ more rorent than amy vercion of this |
Ullly LD VETIOUTT CTURNTRACT 3 TS TEUCHIE Wcain ﬂll)v’ AA=IR-JLS) RV 1) LllI:Z'L
file currently resident on the system |
I
A ol b Tt Al o hecoienr rn.—J-\ ne Infornaf Cunlaroar attamnte ta oo loaed ‘
A Cail 1o Laolaet WYL a UITuvvaoT) Uil al it nnivi LI\Hll.’IL‘I ul.l,‘-alllr-ll-! b wurvviioraa .
CiassObject- the code for an ActiveX control, its real goal is to create one or |
FromURL does more COM objects using that cade. Ultimately, t..e.n., the browser |
everything . . . —~ . . . l
D must acquire a pointer to.the ICiassFactory interface of the controi’s |
requiresa W |
, v ; class fac tory and call Createinstance. The Internet Co mponent
downioad and i |
install a new Download service makes this very easy. When Internet Explorer |
component encounters a CODEBASE attribute inside an OBJECT tag and de- |
‘ O PP T R T R o neads to call onl

CIQEs 10 aownioda e dthleLCU L.UUC, I. NECUS W Call Uniy e ‘
single function CaGetClassObjectFromURL. Like CoGetClassQb- |
ot {clicmiicenel (e L lcimea o ~lace facrtaruy” naaga 1Y) thic fllnffunn ‘

J_‘l‘l AL U0 W UJIIIE cd Lidaldd iavuuny, PGEL U [, LI Ul o v
returns a pointer to a class factory. As its name suggests, the caller |
passes in a URL specifying where to find the code. This URL can W‘
name a portable executabie, a cabinet file, or an INF fiie, and the |
hrowser takes this value dmﬂ(*ﬂv from the CODEBASE attribute in %
the OBJECT tag. The calter can also pass in the CLSID from the |
tag’s CLSID attribute or the MIME type of the object indicated by |
e o FTOAVMTTVYVDNE g lh AATR A o e o P e o a2 L L CIE |
[NELSELNPLE) W) ny iy [l =) dlllIUUlU \lll IVINVIE lypb‘ 15 lIldet:U W a LLolL? ‘
using the system registry.) Making this single call causes the con-
trasllo Frada +0a bha coanind o tha b P T e ¥ SR TR R TN e ‘
LELAT O LU LU AT LUP A=LU IR LW R V] Lo)) VVDCI 3 DYDLCIII LulILy g GIIUGUY ‘
present), verified as safe usmg WinVerify Trust (dlscussed in the |

298 Chapter Eleven

BLUE COAT SYSTEMS - Exhibit 1034 Page 76

kY

{"‘ni-r"lm-er"\l-. ctFromURL ¢
i 1

T 1alans J (MAN RO SRR A

L=

n
Il must lmnlnmanf IRindStatn 1isCallb

progress notifications. The caiier of CoGetCiassObjectFromURL

must also |mn|5-m¢=\nr the [Cadelnstall interface. This qlmnlr—\ inter-

face iets the ciient iearn about any proo lems that Crop up aurlng

the download and handle any necessary user interface issues.
Also, once a comporient is downioaded, no automatic mecha-
nism deletes it—it remains on that system’s disk indefinitely. For
thm ot ot i me ~liamds aireh aa Dabemot Dol oimme ape
LIS 111 Pclll’ Iy 'VC, LTI Ll Al 1 nIce o PIUI 1 oalc
shielded from the messy details of downloading objects
Encisving tha coruvityv nf dawwnloaadad N Baina nhla ¢4 anmo mocrhanicm
IO IIIE LRAFL. S yinny “.'I RIVFUYLIIUFCARIT A ‘,lllllPUll\.lll.Cl ULJ.II& AT WS AU T T d i
download components as needed is a useful capability. By default, must exist to guar-
a downloaded Java applet is wrapped in a secure cocoon during antee the security
o . oo . of downloaded
execution. Because each appiet has its own safe “sandbox” to play "
code
in, providing security in this way is sometimes called sandboxing.
Uni ke Java dppl(:‘[b nowever, ActiveX LUrlIrOib dre b nda fIES execut-
ing dire Iv on the machmes hardware. Although ActiveX controls

Y I P
UL, l.lltfy aiss

aacily cran Antrale that cayv rafor at tha e drive r\F 1 YalVs
g LA LUsinuwing uiay, Dﬂr’ AL AWZIRICAL LIL el LA tve wiaoana
machine that installs them. If users can’t have faith that a given
control won’t damage their system, they can't take the risk of

ws Trust Verification A trust provider

Creating that faith is the goal of the Wind.

s

Services. Through the single function call WinVerifyTrust, a user ca
of this service can access one or more trust providers. In general, guarantee

a trust pl’UVIUUI' Cdn dnswer qUE‘StIOiIS UUUL WIIGUIGI d COT 1p nent

can be trusted according to certain criteria. The initial-release of
.,
I

Ln AAS Confbn s smuen
tne Winaows Soitware

H Y cAdnr ~
s 5&rvICE INCIUGES O

L
U=

able to answer the

Active

>
0
Q
=
~—
-
=
-3
o3}
w
—
=y
@0
0
o
3
=3
12
el
=
2
o
o
o
@
a
[=3
~Z
w
Q
3
@
Q
=
M
=
=
@
~
>

ActiveX, the Internet, and the World Wide Web 299

BLUE COAT SYSTEMS - Exhibit 1034 Page 77

code is from a
trusted supplier

and has nat heen

M

4

will damage
s no oeneral

h s no general

way to determine this. The best users can do is assure themselves

that the software was created by a trusted source and that it hasn’t

ORISR | g |

ured
been madified since its creation. This is similar to the faith users
express when buying packaged software. If the box carries the

oy e oo e s T #Y

e e AAT e L o oy ol ~
railneg t)l Lk)l. » Ul lVlILlUbL)lt OF IUtllt:l EPLIL:IUIU VﬂlluUl, danda i I.II':.‘

shrink wrap on the package isn’t broken, users can feel confident

A downloaded When Internet Explorer 3.0 downloads a component, that compo-

component can nent mmhr carry with it a rhmm! signature. A dlogfn! signature is a

7S} rl:crnfﬂ“w CICH’ID."

R B byte string that can be used to verify that the associated informa-
tion was actually provided by a specific entity. More than that, a
digital signature also verilies that t
-downloaded code) hasn’t been modified since the s

tificate to a

ow nlorer calls WinVerifyTrust it
verification o ;

ts

=

downioaded controi’s digital signature and its certificate. T

t
'provider examines both and returns an indication of success or

Yo

failure.” if the check fails or if the component is from an untrusted
source, |E 3.0 informs the user and offers a ch0|ce of whether to

-t
m
<
=4
Fr
W
o
EI
—_— "

)
W
w
@]
Q
]
-
1)
o
=
o
-
3
]
:
:r
(Il
3\
—*
o
o
)
=
3
Q
g8 w
:.,

,.,
=
1)
[N
®
<
0
o

gl
T
Q3
o
(o W
fy
v,

[»;e]
o }
=4
=
@
-
(o
L
o]
o]
3

s
=)
>
[1+]
=
=
a
=
O
== 0
233
<
=

aeY
o~
=
@

The details of how digital signatures work are beyond the scope of this book.
For those who are famiiiar with the tec‘nnoingy, the Windows Sor’tware, Pub-
L Pl L boay

nbnmg Trust r'ruvmer uses PKCS #7 ana)\ 505 version 3 ceriificaies. For those
i

who arein’ i wcll, YOu Can trust me on tn

~

300 Chapter Eleven

BLUE COAT SYSTEMS - Exhibit 1034 Page 78

e
o
=]
]
=]
=
-
=
=
c
@
z
o
5
—+
=
2
1]
15
[l

nd widespread assimilation of that concept cer-
hi

an
technology better demonstrates ¢

i Ph:nngn than

java. Created by Sun Microsystems, java is a programming ian-
guage, one not too different from C++. But Java is more, too, offer-

[ty

RN Y RIS n

lng excitin 8 PO 0SSi Dlll(ieh l(_)r the internet and for COM.

As with most programming languages, it’s possible to compile a Java programs are
i v [U g [pI RS S B D & averitad by tha
PIU5Id TEVWHILLETT I Jdvel dllid PIUUUL « i ldl)’ CEXCCULADIC. 1S AL LA Wy R
isn’t commonly done today, however. Instead, Java source cade is Java Viv

tictially framelatad infey A Ao lﬂﬂﬁlﬂr‘nhr\ﬂ’lnnl’ Frtmnmedn rathor

\JJ\JUIIY LIC D1l U ALY AL TG IlIUCrJGlIUCIIL U/YLL,-L.UUL/ tawivt

than a machine-specific binary. This bytecode is then interpreted

by the Java Virtual Machine (VM), software running on a real ma-

chine. Using this scheme, the same java code can be executed on

any machine that su ts the lava VM

One popular use of java is to create applets, relatively smail java A Java applet can
programs that run inside a container such as a web browser. Since be executed on

lava applets can be di o L any machine with
Jdvad dpplelh can pe UlBLllUUUﬂU as UYLELUUE rd[n(-:l L”d“ as macnine-

specific binaries, the same applet can be downloaded and exe-

[5= \lLA e bain ey
_Id.vcl i SOTWwdare

Microsoft has whoieheartediy endorsed the java ianguage. Micro- java fits very weil
soft’s Java development tool, Visual |++, allows the creation of both with COM

applets and applications. At first glance, it might not be obvious

ActiveX, the Internet, and the World Wide Weh] 301

BLUE COAT SYSTEMS - Exhibit 1034 Page 79

Microsoft's java
VM makes Java

abjects look like
TOIMM ohiarte

A UL

why Microsoft would choose to support this new language so
strongly. After all, Java was created by Sun, a direct competitor.

Furthermore, the “‘l‘aCF‘ii'“‘le-i‘ldepe“ldE“‘lt nature of Java’s 'DytE'C de
has led many to suggest that this new development tool could
waoaalkan tha darminancs of Windawe/Inta!l euc Macnits thic
VY TARCTIT LWL U-lJlIIIIIClII\, W VY INIWBOVY O] DrDL\.IIID. LJLJIJI!.\., L,

guage neutral, it’s fair to say that COM and its supporting tech-

a
nologies were designed with C++ and \./i.sua! Basic in mind.
Remarkably, even though it was created in a compietely separate
environment by a competing company, Java actually fits wrth

COJ i as well as or even beiter than these two languages. A key

part of this fit is that Java objects, like COM objects but unlike

Al s fam 1 ean SUDDOT fmdbnefn crne Thic tmgoth o
UUJCLLD 1 '\., Ty Ll DUP}JUI\. iIlUIlIPIC |IH.':|| LS. |'Illb, \.UECU [i=3]
with a few other features, makes Java an excellent language with
which to implement and use COM ob,-ecls. While this sort of
technical serendipity is more the exception than the rule, Java and
COM rea ||\’r are a natural pair_

Microsoft's impiementation of the Java Virtual Machine integrates
Java objects and COM objects. Part of this integration is that from

Para Ty arn oA

the point of view of a COM client, the java VM makes a Java object
appear to be just another COM object. With Java applets, for

i

U

exampuc, Microsoft’s Java VM autc r“ahcaHy constructs a Ulbpl
face containing all the applet’s public methods. With other la\/a
Ahtncts adahla fntnrfacng Aen r-.-nnf-nrl' Thnca matbhods awn lr-r\v\.
UUJCL[D, VAT 1WAl cd clC LT alcur. 111CoC 1Ll |UUD dlc LIICI
accessible to clients of this object through a VM-

-provided imple-
4

meantation of INicnatech ac chown in Fioore 1121 r'e' fnmn|nh:\
mentation of 1Dispaten, as shown in Figure 11-14_To complete
the illusion, the VM pravides an implementation of [Unknown for
each lava ahiect, a!'nwma clients to acqu!rp nointers to other

interfaces the object supporis. The VM also impiements a class
facmrv allowmg a client to treat Java obnpcrq like any nThPr COM

L_ﬂ
.Q e
C O
=
9]
a
>
o=
o
]
w
1]
=
<
o]
4]
553
>3
/)
]
[y
w
&
i8]
=
<
—
[}
3
¥
=~
e
—
>
o
th
7]

e £TOINA
iK€ Lisivi O
d

k
's Java VM.

uulcCtS

o
-
mn

apter even

BLUE COAT SYSTEMS - Exhibit 1034 Page 80

Microsoft's Java VM lets a Java applet look like a COM object. Figure 11-14

1Unknown

thispatch

Micrasoft’s Java VM also provides the reverse translation: from the Microsoft’s Java
peint of view of a Java chject, an external COM obiject looks ex- VM also makes
. (COIWA mhin, !GO!

i
COM obje

actly iike a Java object. Again, this integration is achieved without

making any Qhanges to the Java | nguage itself. Instead, the Java
.

VM transparently performs the necessary transiations to map be-
tween the two kinds of objects.

,,,,, FalatV!

java is an excellent tool for creating COM clients, as the java en-
vironment oifers services that make life significantly easier for

programmers need ngt concern
, h

awever, Instead, the la
hawever, tead, the la

i

pointer will no |

themselves with referen

L} o) vVl

notices whe n an object is no onger referenced and automatically
deletes it a service known as g h.:mp collection. When Microsoft’s

L = KIHYWTL oo o)

L rs 4 [a

Java VM notices that the “garbage” object being collected is a COM
object, it simply calls Release on the object. Unlike C++ COM
r

[| .

never neeas to WOITY

needed and

7
PN N e LY. I S HS
A LU U LAV cuient in Jda

ack of which objects are no

'n
=]
=
~Y]
[m]

o]
=
=

[#:3]
-
. @&
a
-
o]
=
[w]
]
I
—_
o]
=
3%
s
5
T
=
=
<3
(]
o]
m

an-object, Microsoft’s The Java VM

e va !an, }']Ide‘y C.‘fl_”.‘; ta
N R 'S

programmer writes the same code HEY

ass of whether that interface is on

a java object or

a act, the Java programmer can’t
tell them apart.) R
al

t, however, t hej ava VM inter-

ceaes snen[ly C

W
h

[#)

ActiveX, the Internet, and the World Wide Web 0

BLUE COAT SYSTEMS - Exhibit 1034 Page 81

Type information In order to provide all the trans|ations required to map between

is used to map lava and COM Micros
) JC-lVa Al I ‘u\Jl\’I IR ARAPIRWALY]|

Java tion stored in a COM object’s type library. And to further integrate
intn the COIM \Mnr! i s} i

TIRAR LTI RoSAYR VY

av.

Cu

|
ing key COM functions s CoCreateinstance, along with

S SuU a
access to monikers, Structured

.................... =t e

ther java nor COM was designe
together very well.

Si_nr;lgp and more. Although nei-
d w

ith the other in mind, the two fit

internet Explorer Since Microsoft’s implementation of the java Virtual Machine makes
3.0 treats Java a Java object look like a COM chject, supporting Java applets is
applets like na different than supporting COM objects. The Java VM is imp
COM ohiects pp 5L | J nple

han
A mented as an ActiveX control included with Internet Explorer 3.0.

T Avan: A lavn smemlor tha Aeeat o cimamlos Taa Ao Al oo comtlbenm vasitbs
v CI\CLULC ad java GPPIUL, e d'JI.JICl ia oIl I‘J y Jaucu lUEC HTT vwilll
this control. To a control container such as Internet Explorer’s HTML
viewar tha armnilat lanlke lilkka amu nthar ActivaX comteal And Mireros
VI VYV, L% 42 r.ll"u\. UV TG A WAL /ML VALY LT FRLILA O FY IR LS
soft’s ActiveX control impiementation of the Java VM can execute
any standard lava applet, not only those created using Microsoft
Visuai j++.
Java applets lmnlpmpntin the Java VM as an ActiveX control has broader
an now b
can now e implications, too. Since applets look like ActiveX controls, and
I wherever
used whereve since controls can be driven by scripts, Java applets can alsc be
ActiveX con- e L X Scr oY
SCTipLea. bl A l 1 lI'LbV Va-
trols are used pea. U IIBU]C/ L[I CA plllgll’lt‘ 1 Les, L‘FDLFIPL Jcl d

Script, or another scripting language can be used to access the

BLUE COAT SYSTEMS - Exhibit 1034 Page 82

nn v
[alel np ny AcCtiv
tainer and Dehav] ust as if it were a conftrol.

have historically relied on web browsers as containers, they can
now be used with other canirol containers as well.
As with ActiveX controls, the OBJECT tag can appear in an HTML HTML pages can
B ST TP TN TUURNRY (PR TRURU TN B TR PR [N Y S TP include lava an-
PAEE LU INAILALE LHdL d Jdvd dppPIeL STOUiu De Qowilivduca. imer- 4 r
o Qg mithoe
net Explorer 3.0 also supports the APPLET tag, an older mecha- P s T
)] il _ = the OBJECT or
nism for embedding Java applets in HTML pages. When Internet APPLET tag
Explorer 3.0 encounters an APPLET tag, it internally converts it to i
an OBJECT tag with the CLSID of the Java VM's ActiveX control. In-
ternet Expiorer then ioads the Java VM ActiveX controi and passes
it the APPLET tag’s parameters. The control then does pv_rukhing i
required to download and run the appiet \’
ce downloaded, a Java applet can patentially call other COM Java applets can

e T PR TR) e . be digitally signed
objects or native code on the system. Ordinarily, an applet is sand- el 2e

boxed, as described earlier, and so isn’t allowed to make these

alle Ao fele A bl e W eemende i mp Dentmmenond Do lwne 1 M
CAlld, MDD VWILH ALLUVOA LUTIUUID, IIUWCVCI, nicinice L PIUICl D
allows a Java applet to be digitally signed and to have this signature
rhaclad n ite drsuvnlaaded Acciiming that tha cionabiira idant.
LI LW VYT SRR IRELWL L RRRAULELE L W e \JJUI!IIIIE LRl Lian Jlal TR W I

ifies a trusted source, the applet is permitted

obiects and local code §

1
LAjELLs anid ' g LR Y} N

example, because any COM object looks like a Java object to an
applet, it's possible for a digitally signed applet to access the auto-

mation services that many applications provide. A Java applet might
access Excel s built-in services, for example, as a Visual Basic pro-

Acrfive Hvnarlinlkc
I AN LEW /N Il]l.’\.'l SEE EESW
Part of the reason far the remendous growth of the World Wide Browsing
Weh ¢ criraly e annas ntal meta depends on
Web is surely the appeal of its fundamental metaphor: browsing.
hyperlinks
The central notion under!y g browsmg is the idea of hyperlinks.
AciiveX, the internei, and the Worid Wide Web 365

BLUE COAT SYSTEMS - Exhibit 1034 Page 83

306

The ActiveX
Hyperiinks tech-
nology allows
hyperlinks to

be created

)

mong various
kinds of
documents

a moniker, and a
location string

Ta & user, a hyperlink a ppears on the screen as colored ar under-
n the page, or
nk changes what

erful to use—and Microsoft intends to integrate it throughout the
Windows and Windows NT user interface. Key to this is finding a
way to provide hyperlinks between all kinds of elements, not just
HTML documents, Why can’t we create a hyDerllnk between, say,

(Y'Y

d VVOTO document and arn EXLCI bpr 5 eet? 4:“.|'\tflr than ﬂlrl[)ﬂu-
ding or linking the two documents us Q the conventions of OLE,

N SN S Sl S Yy L
VVIIy UL ue urennt LUHCL L&

documents? This is the g

f

at e

HTML documents, and by wrapping
O

M inte rfaces ActiveX H\’Ip erlinl

applies the browsing metaphor to a broad range of documents
and applications.

[g WP | ALY W VA I M .0 ..
LICHUT I IB ALCLIVYEA TI ypcl THITHRY
An ActiveX hyperlink is a COM object that supports the 1Hlink

pieces Qf information:

® A friendiy name that can be dispiayed to the user when
the hyperlink is visible. (Showing the friendly name is not
required, however, because how a hyperlink is displayed
is ultimately determined by the container that displays it,

PRI SN L_.__A. Py KoY
not Ly Lnc PB IIllKlbUl.}

Chapter Eleven

BLUE COAT SYSTEMS - Exhibit 1034 Page 84

® A moniker‘for the hyperiink"s target—that is for the appli-

Ar ovamemla o rtiva rarlinl: A 4 \Ained fila An laral raa Ar ActiveX

LRV \—l\ulllr/l‘-" CARE F VLU Y sy 'w’\ﬂllllll\ LW Q4 VYT N W7 A Iwreal L “ U AL
chine might contain a friendly name such as Current Status Report, hyperlink might
a file moniker that referenceos the Word fi |g and a ctring indicating reference a

location in a file

;
or on a wab page

a iocation such as a Word bookmark within that fiie

Figure 11-15. An ActiveX hyperlink to an HTML document stored T :
on the Internet might contain a friendly name such as Acme
Product Support Info, a URL moniker that references the link’s

-
1g 10

CATARAL Al
T VAL CTOCUT

e
document de velop

mb e o ak
I, ard 4 5Lyl
erm

“Cucrent Status Report”
4 C:\REPORTS\STATUS.DOC
Q4Status

IPersistStream O—

IDataObject O—

Hlink Op—

IPersistStream Q—

#

T
&
i

PN I
alaujeci,—

[- 1Y) +L.u-nnq thna mathade in I-HITnL Thacn mathade ineloda |
Flllllallly RERTRIALS T LEIC DR TS 11 T IR IO, LTI s igue ;
the following .
® The GetFriendlyName method can be used by a client to
iearn the friendiy name of the ActiveX hyperiink :
B Tha obhdnmilanuDatnoamean ranthind ot iene tha maaemileooar B
hd HIC JULUYMRJHIRCT RUITTCHLT TTISU AU 1TCLUNND WU TTIJTHRG]D
and the location string from the ActiveX hyperlink
LS
ActiveX, the internei, and the World Wide Web 307

BLUE COAT SYSTEMS - Exhibit 1034 Page 85

_______ Y I I
Jldlludlu lli-JldlY

functions are used

to create ActiveX
hyperlinks

and targets
implement
IHlinkSite and

IHlinkTarget
| get,

308

NRE A
friendiy name. HiinkCreateFromStrin

ActiveX h\/nprlml(nh)i ct hv nrn\/ldm

QGQ
®
L7,
o

= a
o
=
—

[]
=
6]

name, and a character s trlng |aent|ry|ng

-

WI[n I[S Con[alner tnrougn [ne C(Jn'[cllnel’S Jmplementatlon or i
Site, as shown in Frgure 11- 16 and communicates WIth its target

BLUE COAT SYSTEMS - Exhibit 1034 Page 86

Although they aren’t shown in the figure, twa other components The browse
play a part in ActiveX h\,fper!inkx. : the browse context object and context object
\ \ maintains a
hyperiink frames. The browse context object supports the IHiink- o
Navigation stack
BrowseContext interface ©

.qnd it is rpcnnnclhlp for maintaining th

navigation stack. This data structure supports an integrai part of
the browsing metaphor: the ability to move forward and back in

Lll(‘: II:l UI vr-m-‘u UUL.U ments. I‘\ [l‘dUIUUi]dI WQ.U L"UWth illdlflldI'_IS

this list itself, but it applies only ta hyperlinks between HTML doc-

vovmente Dacasina mvrn sivverlo #laecanae Y N T] Y 1 Pumay Ry N
LUTICHIW,. UCoauasc vy J bll:: wn UVVDU[CI'J'JIILEIL i A NR N Y | vl ak)l‘: lk]
encompass all the documents a user visits through ActiveX hyper-
linkina an awvtarnal Ahiact maocet maintain o licr nlf wvicitad drcir
lllll\IlIE)’ WAL oA Ll \JUI\J\-—LI"‘JJ\. FEIEAT IR € HITL LF YV IJE UG W v vl
ments, The navigation stack maintained by the browse context
object generalizes the traditional web browser hi ist to

OWSOor !ctnr\l list to in-
.

clude ail documents browsed using ActiveX hyperlinks, inciuding
HTML documents, Word documents, Fxcel spreadsheets, or any-

UI”IS t!

Finally, navigating to a hyperlink should ultimately result in display- A hyperlink-
[F Y I SR PUNY . I R Y) aware frame
HIE DUMICLNN Y TICW W LT UD(:.'I.. 1O PIUVIIE SUITIC CUTISISCTCY, 1L

comman (though not mandatory) to wrap a single frame around a provides a
succossion of disslaved documents accessed with ActiveX hvoor consistent

e LW L LISLWPR, v J R UVR I i W) LIIJHICLYLL‘ VAL ML) QLU LID0 W VVILLT v avLsy Ily'.}\.ﬂl environment
links. Internet Explorer 3.0, for example, can be used to browse for displaying
across many different kinds of data, and it gives the user a-com-

mon frame for ali of them. it can be useful to keep this frame in- of documents
formed ahout what’s h_ppening, allowing it to do whatever is

needed to maintain a smooth look for the user. For example, all

applications hosted |thm a hyperlink-aware frame can rely on

o W N iy PRy S PR I RGP SRV Sy Fy A

i THE O 10O ALE NI DTOWDLE COTNILCEXAL UUJ S O LTSRN, IU U‘J Llll),

a frame supports |IHlinkFrame, whose methods are called by various

esevimoimombo i fha bnaslim b o e e b Aol ados Foen b

\n\Jlll'J\JJ ICHIL e il 'JCllllll\llls TULG OO al Cl]JIJIUHI lato L

When a user clicks on

How ActiveX Hyperiink Objects
12

ciick creates an Active) 'nyperl nk bJe t containing the correct
t inte

information and passes i or to its IHlinkSite interface.

ActiveX, the Internet, and the Warld Wide Web

BLUE COAT SYSTEMS - Exhibit 1034 Page 87

An ActiveX hyper-
fink object can
refer to a location
in the current

Py H
L

A e P
QoCuImecn Or in

another document

different docu-
ment, it relies on

its moniker to

gle nr ol
Ll UUJCL

-

identifies a specific
lacation within a
dacument

AL el [

{With the creation functions mentioned earlier, such as HiinkCre-
ateFromString, all this can be done with a single function call.}

Omee the marimle o g ms i ontainer calls its 1Hlink
WAL L IIYPCII\ K Uy LN} Illlllz‘j', l_llc T ST LAl 1D 10 TR

Qr a mnm
Lo !

L3 Biisde

Othe container ltsel‘r sin H||nkblte :GetMoniker. Th he ActiveX
nk oh ect then compare s this moniker with the moniker it

T
hyperlink co
r

already contains, the one naming the hyperlink’s target. if the two
monikers are the same, the hyperlink knows that it refers to another

location in the current document. if not, it must refer to a lacation
in a different document

M otlrm A rtienV el il bt Ao Mok 1 enfnee $ o b
oy MACLIven II)IPCI ik)LIJCLL T LCUHTHNNES Uicy ILICIC Y U a jueattiuni
within the current document, the container for that document mu
sunnort THLinkTaroat (e theo taraat far thi varlinle aftar all Y Tha
=3 rlr}ul\ ERER IR IR 1Y lu|6\/\.- AL O LI \.Hla\'l LA RN n 'J\'l |ll||\’ LE R aw) ull-’ LI R

hyperlink gets a pointer to this interface by calling the container’s
IHlinkSite:: ﬁl |r-\r\[/§pr\/irp method. If this h\/nf-\rlmk does not refer

to a location in the container’s current document, the nyperiink
cbject calls IMoniker::BindToObject on the moniker it contains.

ror 4 nyperink containing 4 fllle maniker wiin a inenarmne SUCI'I as
REPORT.DOC, for instance, calling BindToObject will typically
start Microsoft Word (because of the DOC extensmr) and hand it
th is file through IPersistFile. If the hyperlink contains a URL moni-
ker such as httpi//www.acme.com/report.htm, it wi!! fetch the
HTML page identified by this URL and hand it to a web browser
such as Internet Exp!gre Whatever kind of moniker is involved,
the initial interface the hyperiink requests on BindToObject is

IHlinkTarget.

One way or another, the ActiveX hyperiink object now has a
pointer to the 1HlinkTarget mterface of the target. The hyperlink

o e — :.-.4.. —c - e
object next invokes {HlinkTarget::N

P R [P S
p bl”s l I”t: oCduun

,...l
OCl

L oo -
Lnapiteir cieven

BLUE COAT SYSTEMS - Exhibit 1034 Page 88

string that this hyperiink stores. The source finds the correct infor-
mation and causes it to be displayed.® If this hyperlink is to another

I()Ldll(Jll in l”ﬁ current UOLU”I(‘.‘”[, Ul(.‘.‘ current WIHUUW U]bpldyb e
new information. If necessary, however, a new window is created
and correctly positioned to present a smooth transition to the user,

much as is done with OLE in-place activation. And although this

hrinf dacorintine amite tho dotaile tha feama (G thaea ic Ann) ic ry
UG UCawt |I~J|.|UII AALTIILD WIS AL T, LG R (1 LIS 12 WISy 1o I\C'JL
informed about what's going on, and the browse context abject is

0
hout the process

undated with tha racult of thic navication thrauchon
updated with Ihe resudt of thic navigation throughout the
of following the hyperiink

The Simple Hyperlinking API
integrating the browsing metaphor th rougnout their environment The simple hyper-

is likely to make users happy. Given what’s just been described, linking APl makes
all this easy to use

1...... sl |

lluvv::vcl, it Mignt ieave so

wdaie dcvcu"if I 5

Developers Want a simple, powerful way to im_plement browsing,
e\

AV

n su
nding
nding

;:.m

||anrcf

o

, but most programmers

the ActiveX hyperiinking re
d d hy er Imkq to their appli-
b

need anly a straightforw

cation. A simple hyperlinkin
possible.

[o¢]
>
=
-
1)
w

een creaied io make this

-—a- 'C
§
o
=

~Z
=
o
=
<
C
(72
[y
c
—
G
.Lf.
'E_
]
P
3
u
=
C

y to navi-
5 functions

iker (_md_ an item moniker, I t_hat cdt.e, ‘the file moniker identifies both the ap~
plication and the document, while the item moniker passes the application a
string that identifies a location within the document. By identifying a location
within a document using a simple character string rather than an item moniker,
the ActiveX Hyperlinks technology avoids the overhead of creating a moniker
for the common case of hyperlinking to another location in the same document.

it
-
-t

ActiveX, the Internet, and the World Wide Web

BLUE COAT SYSTEMS - Exhibit 1034 Page 89

L]
._i
o
o]
T
=
~

5 2
"_‘
]
Z
B
=
]
&
-
2
[=)
[72]
(=
-
=
o -]
=
c
>
0
=3
o}
=
(@]
<5
c
v
D
v
£
z
3
o

=

|
NameaFx

NSUITCC R,

ng” page

_J!nmo

J‘:II | a Mk DlS

. vidrar

described in “A Generalized Approach 1o

151) and creates an ActiveX hyperlink object

Z
Q 3
,-pcu

iker and the iocation. it then navigates to the ob-
ject this hyperlink identifies. A simpler version of this call,

anl* B on L

I"IIIﬂKIVaVlBaIeDII'I"g, pﬂ”U[’mb me saime [dbl’(UU[prVIUGb
defaults for most of the parametets.

® The HiinkSimpleNavigateToMoniker function, like Hlink-
S impleNavigateToString, causes a jump to another loca-
tion. its param(:‘[(:'rs are me same, I()(], except [na[U‘IE’ CallEr
passes in a moniker instead of a string. A simpler version,

PO R] 1 P RN ¥ [(AU PPN N P O N R

Calea IIIllll\l‘lﬂVlsalClVlUllll\Cl, P[UVIUCD LTI AUILD 10 FITIUDL
parameters,

N o PR I | B T [N, PR . |.|

* ine HNKGUODACK tunction causes a JU” Pt O the PTEVIUUS
lacation in the na V|£’.at|on stack maintained by the browse

o L
1
L

hyperiin'k—aware container,

Using these calls, any z pp!icatign an follow h\/nprlmkq 0 any
other application that su
a hyperlink target. An Ac

l'

Io o i S L. R i
e user witn a puiton that repleaemb a lll]K toa preaciu

pports the basic interfaces required to be
iveX control, for example, might present

r—i-

\AI

C_

ord

312 Chapter Eleven

BLUE COAT SYSTEMS - Exhibit 1034 Page 90

'Yy

document. When the user ciicks on this buiton, the controi can
call HlinkNavigateString with the name of the file, and a hyper—

JPY PO [ifie O T -
|IIIK JU[”P i0 nat gocument win 1

< —oal
I Ill:lchlLCly QCCur. I'\dLIICI [§]

R [SR - AA.,AIA.’\A.- mam amliacsa bl oot ,—A.—."MA.’.I.. P |

alfiu niwiiavceca, a UCVCIUHCI LAl AVIHCYC UG 11iuoL L.UIIIIIIUIII)(uscu

features of ActiveX hyperlinking with a minimum of effort

[4 B | |

rmal rnougnis

1AL el Tee o ek bai it e VA o ey) e ek Ko to el aaiac
YVvE WUIK N d YICdL I IllChb VVI 12 CIOT LUUIU [1evw LCLIII]UIUBY INEW IELTINUIUEICS
as transforming as that of the Internet and the World Wide Web farce us o change
e el iy ncame am imvncrtant ok af e Lone? Tha Assvoeeida

Pl qul\.l\l LU atlt IllllJUlL(«llIL lJC«lIL LI UL vy I UOUYYHIDIUG

of this enormous rate of change, of course, is that we're constantly

farced to learn how to live with and use these new technologies

5 fi i, iearn-

| ss than flve minutes. Sometimes,

] Av3

erstanding the ActiveX technologies
roach to the Web, for example, re-

though, it's
that underll

& 2
<
a
—
3
‘h
-U :
©

M) N E A W
LIV, IJUI:H)U.:'[ILI:, lIIUIlI'l\CID, LJLL, ACLIVEA

requires understanding basic web tech-

aine ctich ac le amed HITAAL Tha rnup—\r'rl for Al 4hi
llUl‘JE’lCD such as URLs and HTML. The reward for all x

tremendoug amount o F Internet hype—and it has frequently ex-

ceeded the bounds of rationality—one thing is sure: the internet

and the Web will be part of our lives for auite some time.

So, too, wiil ActiveX and OLE. COM and the technoiogies it has COM and the

spawned have worked their way into the very fabric of Windows changes it has
Qe brought are

PN L AT a %

dDd ¥VINaows NI, TWO bybU:‘ TS Wi

ase
Understanding the ramifications of COM is essential to understand-

..... are B N e Ty e R B . s L P L O R PR Y P
IIIB bUIl. Vaire i e iviiCrosorn wora., ANU, VTS wWady Ul dIIULIIUII

understanding the Microsoft world is important for nearly every-

pUpUIdllL){ is not OECIIIIIHS g
nere o st

A a Y O —
ACLiveAa, tna IIILEEIIEC, a

BLUE COAT SYSTEMS - Exhibit 1034 Page 91

