
TEXAS INSTRUMENTS EX. 1011 - 1/229

Computer Science Publishing Program

Advisory Board
Christopher Brown, University of Rochester
Eugene Fiume, University of Toronto
Brad Myers, Carnegie Mellon University
Daniel Siewiorek, Carnegie Mellon University

TEXAS INSTRUMENTS EX. 1011 - 2/229

Multiprocessor Methods
for Computer Graphics

Rendering

TEXAS INSTRUMENTS EX. 1011 - 3/229

- I

Multipr~cessor Methods
for Computer Graphics

Rendering

Scott Whitman

Lawrence Livermore National Laboratory
Livermore, California

Jones and Bartlett Publishers
Boston London

TEXAS INSTRUMENTS EX. 1011 - 4/229

Editorial, Sales, and Customer Service Offices

Jones and Bartlett Publishers
20 Park Plaza
Boston, MA 02116

Jones and Bartlett Publishers International
P.O. Box 1498
London W6 7RS
England

Copyright© 1992 by Jones and Bartlett Publishers, Inc.

All rights reseJVed. No part of the material protected by this copyright notice may be
reproduced or utilized in any form, electronic or mechanical, including photocopying,
recording, or by any information storage and retrieval system, without written permission
from the copyright owner.

About the cover: The tree dataset was generated using Eric Haines' SPD database and
rendered at a resolution of 640 by 484 pixels. The tree contains approximately 850,000
polygons and was rendered on %processors of a BBN TC2000 in 8.8 seconds (including
specular highlights and stochastic sampling for anti-aliasing).

Library of Congress Cataloging-in-Publication Data

· Whitman, Scott.
Multiprocessor methods for computer graphics rendering/ Scott Whitman.

p. em.
Includes bibliographical references and index.
ISBN 0-86720-229-7
I. Computer graphics. 2. Microprocessors. I. Title.

T385.W54 1992
006.6'6--{jc20

ISBN 0-86720-229-7

Printed in the United States of America

96 95 94 93 92 10 9 8 7 6 5 4 3 2

92-3810
ClP

TEXAS INSTRUMENTS EX. 1011 - 5/229

To Carol,

who was not there to share the past,
but with whom I shall enjoy the future

TEXAS INSTRUMENTS EX. 1011 - 6/229

Table of Contents

Preface ... ix

1 Introduction ... 1
1.1. Problem Description ... 2
1.2. Overview of Accelerated Rendering Techniques 6
1.3. Research Context .. 11
1.4. Document Overview .. 14

2 Overview of Parallel Methods for Image Generation 17
2.1. Criteria for Evaluation of Parallel Graphics

Display Algorithms .. 17
2.2. Taxonomy of Parallel Graphics Decompositions. 23
2.3. Conclusions .. 48

3 Issues in Parallel Algorithm Development 49
3.1. Architectural Choices .. 50
3.2. Comparison of MIMD Methodologies 60
3.3. The BBN Programming Environment 62
3.4. Summary ... 64

4 Overview of Base Level Implementation. 67
4.1. Design of the Basis Algorithm .. 68
4.2. Testing Procedures .. 77
4.3. Performance Analysis. ... 79
4.4. Summary ... 91

5 Comparison of Task Partitioning Schemes 93
5.1. Data Non-Adaptive Partitioning Scheme 95
5.2. Data Adaptive Partitioning Scheme 119
5.3. Task Adaptive Partitioning Scheme 126
5.4. Conclusions ... 134

6 Characterization of Other Parameters on Performance. 139
6.1. Shared Memory Storage and Referencing. 140
6.2. Machine Parameters .. 157
6.3. Scene Characteristics ... 171
6.4. Conclusions ... 177

7 Conclusion .. 181
7.1. Summary .. 182
7.2. Future Work ... 186

References ... 188

TEXAS INSTRUMENTS EX. 1011 - 7/229

viii Contents

Appendix ... 199
A Information on Test Scenes ; .. 199
B. Data for Various Algorithms .. 199
C. Supplementary Graphs .. 204

Index .. 214

TEXAS INSTRUMENTS EX. 1011 - 8/229

Preface

Parallel computing and computer graphics are currently two of the
hottest topics in computer science. It is only natural that a merging
of these two fields has now occurred in hardware architectures as well
as software algorithms. This text explores a number of methods
which can be used on current generation commercial multiprocessors
to perform computer image synthesis. The emphasis here is on image
space rendering methods since these types of algorithms will likely
get the most use in the day to day work environment.

The subject matter of computer image synthesis is over 20 years
old, dating back to Warnock's and Watkins' rendering algorithms,
along with Gouraud's lighting model. Since then, many refinements
have been developed which use advanced hardware and software
techniques to hasten the rendering computation. The availability and
price/performance ratio of commercial multiprocessors makes them
attractive for development of general purpose computer graphics al
gorithms. When parallel computer architectures became commer
cially available in the mid-1980s, the sequential programs that had
been previously developed for computer graphics rendering were in
need of a re-evaluation for a parallel context. In addition, it was
questioned whether new and completely different rendering programs
would be required for use on these computers. In this book, we exam
ine previous and current solutions to the computer image generation
problem presented by a variety of researchers. Several of these
solutions, along with a number of newly developed algorithms by the
author, are analyzed according to their performance on a scalable
multiprocessor.

The problem of quickly generating three-dimensional synthetic
imagery has remained challenging for computer graphics researchers
due to the large amount of data which is processed and the complexity
of the calculations involved. For instance, in a multiprocessor, one
needs to minimize the communication of data between processors so
that the majority of the execution time is spent on computations. The
large datasets inherent in computer graphics scenery do not lend
themselves to ease of partitioning among processors. Tradeoffs
between synchronization, load balancing, and communication must be
made during algorithm development and refinement in order to
effectively utilize the resources available in the system. These issues
are discussed in detail in this text with regard to the parallel
algorithms which were implemented on the BBN Butterfly family of

TEXAS INSTRUMENTS EX. 1011 - 9/229

x Preface

computers. Although the algorithms were developed for these
machines, they could be modified with minimal effort to work on any
general purpose multiprocessor. Unfortunately, the time to modify
and test the code on a variety of machines would be prohibitive,
especially to the degree used in the latter part of this book. It is
hoped that the insights presented here along with the various issues
raised, and will be informative as both a guide for implementation
and a reference to methods of attacking this problem.

In the first chapter of this book, an overview of computer graphics
rendering is provided, and the issues that are of importance to the
fields of computer graphics and parallel processing are noted. The
second chapter provides a historical reference to previous efforts in
this field. Each of these is categorized into a taxonomy to indicate
what algorithmic methods each work has utilized. Most of this
research involved simulations of parallel environments whereas this
book provides an analysis of actual implementations on general
purpose commercially available multiprocessors. The third chapter
analyzes the various multiprocessor architectures with regard to
graphics rendering algorithms. In chapter 4, the basis parallel
algorithm is presented, along with the procedures used for testing and
performance analysis. Chapter 5 includes descriptions and analyses
of each of the work decomposition methods which were implemented.
The analysis is a scrutiny of a given program's parallel performance
which provides information to the reader on exactly why each
algorithm performed the way it did. There were two main choices for
storing the graphics data in main memory, and these are analyzed in
chapter 6. The first is a shared memory paradigm while the second,
although using shared memory, takes advantage of local memory on
each processor to reduce latency. The results for all of the algorithms
are compared on a variety of imagery to convince the reader that the
results presented are representative of real world expected
performance.

Acknowledgments. This book was originally a doctoral
dissertation written and researched while I was at The Ohio State
University. My dissertation committee of Richard Parent, P.
Sadayappan, and D. Jayasimha helped to guide me through the
difficult phases of my research. I am indebted to my committee for
the countless hours of useful discussions and comments that they
provided me on my dissertation. Others who helped to make my stay
at Ohio State that much more rewarding include Scott Dyer, Doug
Roble, Manas Mandai, as well as my other colleagues in the Computer
and Information Science Department, the Advanced Computing
Center for Arts and . Design, and the Ohio Supercomputer Center.

TEXAS INSTRUMENTS EX. 1011 - 10/229

Preface xi

This research was conducted over a period of several years and
utilized literally thousands of hours of computer time. The author
would like to acknowledge the institutions and staff at BBN Advanced
Computers, Inc., Argonne National Laboratory, and Lawrence
Livermore National Laboratory for allowing their machines to be used
for benchmarking and testing purposes. Individuals deserving special
recognition for their assistance include: Ed Forbes, John Price, Linda
Woods, and Eugene Brooks.

Scott R. Whitman

TEXAS INSTRUMENTS EX. 1011 - 11/229

1

Introduction

High quality computer graphics imagery is used in a wide variety of
fields in society today. Most people are familiar with the
entertainment uses of computer graphics which span the artistic
realm and include two-dimensional imagery using paintbox systems,
three-dimensional surreal scenes for aesthetic prints, and 2D and 3D
animation sequences for use in the video and film industry. There are
many major motion pictures which rely on computer graphics
rendering to achieve cost effective special effects. The quality of this
imagery has risen to such a high level that the public is accustomed to
seeing on a regular basis computer generated commercials of
photorealistic caliber. In addition, applications such as CAD/CAM,
finite element modeling, flight simulation, and molecular modeling
use computer graphics to aid in the visualization of scientific and
industrial data. The demand for higher quality images from these
applications has grown as computer time has become less expensive.
Even though faster computers are now available in reference to the
past, the time to generate a typical image has not really decreased
due to the more elaborate imagery required. Deering [Deer88] noted
that "an increase in graphics performance is more likely to cause
users to display more complex objects, rather than the same objects
faster." A computer graphics display algorithm must be able to

1

TEXAS INSTRUMENTS EX. 1011 - 12/229

2 Introduction

handle this highly complex imagery in an efficient manner. One
solution to this problem involves utilizing parallel computer
architectures to render the graphics image. If an efficient software
algorithm is employed on this type of machine, performance will
increase with the number of processors added to the system.

This book examines techniques which utilize parallel processing
to accelerate the computations necessary for rendering three
dimensional computer graphics scenes. The most promising
algorithms are developed and quantitatively compared under a
variety of circumstances to ascertain which has the highest
performance.

The basic problem in computer image synthesis of 3D scenes is
outlined in the first section of this chapter. Here, the components of a
computer graphics display algorithm are described. The terms
hidden surface removal and rendering are defined in the context of a
computer graphics display program. The second section presents a
brief overview of the research which has been done in the area of
developing parallel computer graphics rendering techniques. This
research can be broadly grouped into two categories: hardware and
software based solutions. The hardware based solutions typically
involve designing custom VLSI chips to transform and display data in
near real-time. Real-time is a term used to describe calculations
which can proceed within the update rate for a single frame on a CRT
monitor, typically 30 frames per second. Software solutions use high
performance advanced computer architectures to achieve fast
computer graphics renderings. The goals of each of these methods are
described in some detail in this section. The third section outlines the
area of research which this book covers. In this section, the context of
this work in both the parallel processing and computer graphics
communities is stated. Finally, the fourth section provides an
overview of the rest ofthe text.

1.1. Problem Description
Computer graphics imagery can serve many purposes, but the basic
computer program used to generate these images is the same, regard
less of the intended application. The input data consists of a set of
objects which are described both geometrically and topologically, us
ing a polygonal format. Various scene parameters are also input to
describe the lights, shading, color, and other information regarding
how the objects should appear in the computer synthesized scene. All
data is input as x, y, z floating point variables. The input datasets
are assumed to contain closed planar polygons. The output of a

TEXAS INSTRUMENTS EX. 1011 - 13/229

Problem Description 3

graphics display algorithm is a rendering of a three-dimensional
scene, taking into account realistic lighting and object attributes.
This output is an image in the form of picture elements (pixels) which
may be displayed immediately on a frame buffer color monitor or
stored on hard disk for later display. A frame buffer is a dynamic
memory collection of pixels containing red, green, and blue
components. Each pixel component is usually 8 bits deep allowing for
a choice of 2563 or approximately 16 million colors.

In general, a computer graphics display algorithm which gener
ates images of three-dimensional data consists of the following
phases:

1. Read-in polygonal data from disk.
2. Transform data from object space to eye space.
3. Clip and perform perspective projection of the data.
4. Remove hidden surfaces so only displayable surfaces are seen.
5. Render surface data using an illumination model.
6. Calculate special visual effects such as anti-aliasing or

texture mapping.
7. Write pixel data to the frame buffer for display or to a file for

storage.

The overall algorithm is shown in detail in figure 1.1. The top
diagram indicates the world space three-dimensional view of a sphere
dataset composed of quadrilateral polygons. The sphere is initially
described in its own 3D coordinate system (object space). The scene
as a whole consists of a collection of objects in 3D space relative to
each other. In addition, an eye point and light sources are present in
the scene (world space or eye space). In order for the graphics
program to display the scene on a two-dimensional screen, each object
must be transformed to screen space and (if necessary) clipped to the
borders of the screen. The middle diagram is the same sphere after
3D to 2D transformations, clipping, and perspective operations have
been applied. The bulk of the work in the program occurs in the
rendering phase. This amounts to taking into account the position of
the eye and each light source in relation to the objects in the scene,
and then accurately displaying the objects according to their surface
geometry. Incorporated here are such operations as hidden surface
removal, illumination modeling, anti-aliasing, and other visual
effects.

TEXAS INSTRUMENTS EX. 1011 - 14/229

4 Introduction

y_
'V '

Figure Ll: Graphics rendering pipeline

TEXAS INSTRUMENTS EX. 1011 - 15/229

Problem Description 5

These operations are elaborated upon in the sub-sections that
follow. This process is shown in the bottom diagram as the final
rendered and shaded image which takes into account the location of
the light source, object, and eye position.

The problem domain of this book focuses primarily on the tiling
portion of a graphics display algorithm (steps 4, 5, and 6). Methods to
speed up both the front end (reading in, transforming of data) as well
as the back end (writing out pixels) of the program are also
investigated. The assumption here is that the nature of the input and
output is unique to each application, while tiling is the same for the
majority of applications. Because the tiling operations constitute the
bulk of the computation in this type of program, it is worthwhile to
concentrate one's efforts on this section of a graphics rendering
algorithm. Steps 4, 5, and 6 are described in more detail next.

1.1.1. Hidden Surface Removal
Hidden surface removal consists of determining which surface
element in the synthetic 3D scene is closest to the observer for each
pixel on a CRT screen. There are a variety of techniques for solving
this problem, and most take advantage of some form of coherence in
the image in order to reduce the amount of computation. In
Sutherland, Sproull, and Schumacker's landmark paper [Suth74],
graphical coherence is defined as "the extent to which the
environment or the picture of it is locally constant." For instance,
scan line coherence refers to the fact that successive lines of pixels do
not differ greatly in the data displayed, so that incremental
calculations can be used to achieve faster processing. Sutherland et
al. point out that "all ofthe [display] algorithms capitalize on various
forms of coherence to reduce to manageable proportions the work of
sorting." The exploitation of image coherence in a parallel setting
poses a challenging problem. The use of coherence reduces the
amount of computation in a sequential machine by using results from
previously computed parameters when generating new values. The
independent parallel generation of these parameter values in the
image implies redundant recomputation and the loss of coherence.
The tradeoff between parallelism and coherence is an important issue
that is studied here.

1.1 .2. Rendering and Special Effects
Rendering is a method for displaying polygonal or bicubic patch
surfaces on a frame buffer monitor so that the overall surface geome-

TEXAS INSTRUMENTS EX. 1011 - 16/229

6 Introduction

try is approximated and lighting in the scene is taken into account.
Rendering techniques include illumination models such as Gouraud
[Gour71] and Phong [Phon75] shading, which are used to simulate
smooth surfaces. Using Lambert's law and approximations to the
normal vector of the surface at each pixel, the data can be displayed
accurately on the screen. Computer graphics special effects add
realism to a computer generated scene. Some of these include:
calculating refractions of transparent objects, modeling of wrinkled
surfaces (bump mapping), applying texture to a surface (texture
mapping), and accounting for shadows in a scene.

Anti-aliasing is another added visual effect which removes the
jagged or staircase edges which appear at surface boundaries due to
discrete sampling of the analog dataset. Both rendering and special
effects are closely tied because the addition of visual features
normally occurs during the rendering process. Current display
methods incorporate advanced rendering and visual effects as an
integral part of the algorithm. The complexity of these computations
in most cases overrides those necessary for hidden surface removal.
Any techniques used to speed up the image generation process must
concentrate heavily on the rendering and visual effects stages.

In the next section, the background on a number of hardware and
software graphics techniques is given.

1.2. Overview of Accelerated Rendering
Techniques

Although significant work has been done in the past regarding the
sequential computer graphics image generation problem, it is
necessary to re-investigate this problem to see what changes or
alternate approaches are necessary for parallel implementation.
Work in this area has centered around both hardware based graphics
workstations and software solutions for parallel machines.

Numerous companies have developed graphics superworkstations
which incorporate special purpose chips along with multiple
processors to achieve a high performance visual computing system.
Initial developments in this area involved the use of special purpose
graphics terminals which manipulated wire-frame images in real
time. Wire-frame imagery only shows the outline of the dataset
surfaces and makes use of phases 1 through 4 given in the beginning
of this section. Using today's technology, more sophisticated
machines can generate smoothed surface representations in near real
time to aid in visualizing data. The term "real-time" generally refers

TEXAS INSTRUMENTS EX. 1011 - 17/229

Overview of Accelerated Rendering Techniques 7

to an update rate of at least 10 frames per second (fps). Standard
video update rate is 30 fps while film is 24 fps.

Commercial machines of this type include the Apollo DNlOOOOVS
[Kirk90], the Silicon Graphics 4D VGX [Haeb90], the Stellar Graphics
Supercomputer GSlOOO [Apga88], and the Ardent Titan [Died88]. All
of these machines support parallelism with typically up to 4
processors, while the Stellar and Ardent architectures employ parallel
processing at both the MIMD (multiple instruction, multiple data
path) and SIMD (single instruction, multiple data path) levels.
MIMD refers to the fact that each processor is executing a set of
instructions asynchronously from other processors. SIMD refers to a
central processor controlling execution or to a vector pipeline
architecture. In addition, fast rendering engine processors are
coupled with the frame buffer in these machines to achieve high speed
generation of images. The Silicon Graphics and Apollo machines
support anti-aliasing and texture mapping. The Apollo DNlOOOOVS
uses quadratic interpolation to help alleviate Mach bands, although
this technique is not quite as good as true Phong shading. Mach
bands (see [Roge85]) can occur when the smooth surface interpolation
in the illumination model is not an accurate representation of the
actual surface. The Silicon Graphics 4D VGX has what is called an
"accumulation buffer." This buffer allows such features as motion
blur, soft shadows, depth of field, and anti-aliasing to be performed on
a polygonal database. Motion blur smooths out the motion of fast
moving objects in a scene. Soft shadows provide a smoothing effect to
the shadow that simulates a penumbra rather than the typical quick
cutoff that is apparent in conventional shadow algorithms. Depth of
field simulates the way a camera lens focuses. Other hardware
approaches including new chip designs from Schlumberger [Deer88]
and IBM [Ghar88] promise high graphics performance for the future.

An example of using a hardware architecture to solve the
radiosity problem is given by Baum and Winget [Baum90]. Radiosity
is a very computationally expensive technique for visualizing 3D
scenes. It is essentially an n2 problem which involves calculating the
diffuse inter-reflection of all surfaces against one another so that the
light reflectance of the entire scene is taken into account. In their
algorithm, Baum and Winget use the hardware capability of the
Silicon Graphics IRIS workstation to perform real-time radiosity.
Their algorithm exploits the hardware by using the Z-buffer
rendering feature of the IRIS to calculate the form factors in parallel.
The Z-buffer is a contiguous memory which holds the Z coordinate
value of the closest surface to the viewer for each pixel on the screen.
Additional work by Garlick et al. [Garl90] using the IRIS workstation

TEXAS INSTRUMENTS EX. 1011 - 18/229

8 Introduction

allows one to manipulate very large databases in real-time. This
algorithm works by using parallel processing to perform clipping
operations necessary to observe the dataset. Although both of these
implementations are useful, they do not deal directly with the
problem of image generation.

Two architectures which are primarily intended for fast image
processing as well as 3D rendering are Pixel Planes and the AT&T
Pixel Machine. These machines are designed to offload the graphics
calculations from a host computer; they are not intended for use as
workstations.

Fuchs et al. [Fuch85] introduced their hardware approach to
solving the visualization problem in 1985. Fuchs' team designed Pixel
Planes, a parallel architecture containing a processor at every pixel,
and a binary tree of adders optimized to solve the equation F(x,y) =Ax
+ By + C at each pixel. This machine also has hardware support for
calculating anti-aliasing, shadows, and texturing.

The AT&T Pixel Machine [Potm89) contains a high performance
network of processors with a fine-grained interleaved frame buffer.
That is, the frame buffer memory is scattered throughout the
processors. This alleviates contention while providing sufficient
throughput. It is typically used as a graphics engine which offioads
complex rendering calculations from a host computer. With a full
configuration of 64 rendering processors, 820 MFLOPS peak
performance is attainable. Since this machine is a general purpose
graphics machine, software algorithms can be used to take advantage
of its characteristics. Although the Pixel Machine can be
programmed to handle a number of different graphics display
methods, its versatility is limited as a general purpose computer
primarily because of the small amount of memory available at each
processor (only 64kbytes).

The solutions described above involve integrating a special
purpose graphics rendering engine into a high performance
workstation or using a hardware assisted graphics accelerator. The
first approach yields a near real-time update of polygonal based
scenes, which is useful to designers and engineers. The second
approach offioads the host for external graphics processing. Even
within this realm, the designs suffer limitations. For instance, if anti
aliasing and other features are used, performance degrades
dramatically. Quantitative measures of the degradation which occurs
when applying anti-aliasing to polygonal models in these machines
are not available. True Phong shading is not present in the hardware
of any of these machines. Most of the hardware methods employ a Z
buffer type of hidden surface removal algorithm but the data must be

TEXAS INSTRUMENTS EX. 1011 - 19/229

Overview of Accelerated Rendering Techniques 9

stored in the memory of the machine prior to loading into the graphics
pipeline. AZ-buffer [Catm74] is analogous to the frame buffer except
that the z coordinate for a polygon at the given pixel is stored in
memory. This is a simple technique used for hidden surface removal.
Extremely large datasets are not able to fit into the physical memory
of the machine and consequently performance suffers as a result of
disk access. As a result of these limitations, a hardware approach is
only adequate for interactive use with a small to medium size dataset
(typically 10,000 polygons or less). To achieve reasonable
performance on large ,datasets, a parallel software approach to solving
the rendering problem is warranted.

The use of a general purpose multiprocessor computer is more
cost effective than the specially designed architectures, since this type
of machine can be used for non-graphics applications as well. The
software method may not have the capability for real-time
calculations, but this is not needed in many applications. In addition,
a graphics workstation is not capable of the high performance general
computing required by applications which demand supercomputer
cycles. By integrating the graphics rendering with the application
and using the same computer for both simultaneously, it is
unnecessary to send the data to a separate machine for graphics
rendering. Taking this a step further, we expect that future
generation multiprocessors may in fact offer the capability to achieve
real-time computer graphics rendering. Following is a description of
how this might be used.

For real-time interaction with a complex illumination model, the
user is generally limited to a small number of polygons on even the
most advanced graphics workstations. With the recent interest in
scientific visualization, scientists would like to be able to see their
scientific data using real-time interaction, while adjusting their
simulation simultaneously. The simulation portion of the code is
usually run on a supercomputer class architecture machine. Example
applications which require this level of computer power include:
molecular dynamics simulations, 3D finite element simulations, and
global climate modeling. Massively parallel architectures hold great
promise for being able to support applications of this type. In
addition, the capability to support real-time interaction of a dense
database containing perhaps a million elements is beyond the scope of
even the most powerful graphics workstations. Consequently, it is
natural to incorporate the graphics rendering operations along with
the simulation program in the same computer so that the coupled
system can output the graphics image in real-time. This desired
interactive environment has come to be known as simulation steering.

TEXAS INSTRUMENTS EX. 1011 - 20/229

I!

i
i

10 Introduction

It is expected that massively parallel architectures will provide the
capability to accomplish steering before the end of the 1990s
[Upso89]. This book gives insight into how graphics rendering
programs will be developed for massively parallel architectures to
incorporate this desired feature in the near future. Already, some
researchers are looking into using SIMD architectures for such a
purpose [Smal89], [Schr91]. Although these machines are likely to
provide decent results, it is generally believed that the long term
prospects for real-time interactive simulation steering can only be
achieved by future generation high performance MIMD computers.

There have been numerous software algorithms presented in the
past that have been designed for many different types of advanced
architectures. An overview of algorithms of this type is provided by
Whitman and Parent [Whit88]. In addition, Crow (Crow88a] provides
insight into commercial ventures and other interesting methods used
for designing parallel software approaches to display computer
graphics images.

Previous work in software algorithms for parallel graphics
rendering has primarily concentrated on software simulations or
simple ad-hoc solutions. Little work has been done in this area to
fully exploit parallel processing at a high level. Some parallel
graphics display solutions have dealt with a graphics rendering
technique known as ray tracing [Whit80]. Ray tracing is a technique
which involves sending rays from the observer through each pixel to
intersect the objects in the scene.

The advantage of ray tracing is that features such as reflections,
refractions, shadowing, motion blur, and depth offield are very easy
to implement. On the other hand, an image generated by ray tracing
takes several orders of magnitude more time to compute than one
which is generated by a conventional image space graphics display
algorithm such as the scan line Z-buffer or Watkins' algorithm
[Roge85]. Badouel [Bado90] and Green [Gree89] both present a fairly
good treatment of ray tracing in parallel on a message passing
multiprocessor. Although more work could be done in this area, the
analysis in this book is restricted to the more efficient image space
rendering algorithms. However, some ray tracing algorithms are
presented in the next chapter to illustrate the work that has been
done in this area. In the next section, a description of the context of
this book in the fields of computer graphics and parallel processing is
given.

TEXAS INSTRUMENTS EX. 1011 - 21/229

Research Context 11

1.3. Research Context
This text presents an analysis of the most efficient methods for the
generation of computer graphics imagery on multiprocessors. Past
approaches to parallelizing graphics display algorithms were not
designed to take full advantage of the machine architecture. In this
book, a variety of techniques are investigated which exploit
parallelism in computer graphics image generation. The intention
here is to evaluate high performance solutions which perform well on
a massively parallel computer. Previously developed serial
algorithms are examined for potential parallel extensions. In
addition, new parallel approaches to generating computer graphic
images are studied to evaluate the methods most suitable for
implementation.

A number of different memory referencing strategies are also
compared and analyzed on a parallel computer. Jamieson (Jami87]
discusses a variety of algorithm and architecture characteristics, and
presents guidelines for determining how to fit an algorithm to an
architecture. To ascertain the appropriate choice of architecture for
implementation purposes, a number of commercial parallel machines
are compared in the context of developing a graphics rendering
program. A particular computer graphics algorithm may not be well
suited to all architectures, however. Therefore, different approaches
are categorized according to a number of characteristics in order to
obtain a suitable mapping of algorithm to architecture. In evaluating
an implementation of a parallel graphics algorithm on a given
architecture, various factors that degrade program performance are
quantified. These factors help the reader to understand the
characteristics specific to the different algorithms.

Most of the previous work in this area by computer graphics
researchers involves one of the following procedures: analysis of
parallel architectures for graphics, simulation of a parallel machine in
software on a von-Neumann architecture, or presentation of an initial
software study on a multiprocessor architecture. This text extends
the work of others by including detailed comparisons of a number of
different algorithmic techniques as implemented on an existing
commercial multiprocessor.

1 .3.1 . Graphics Context
Some issues with regard to this subject matter that various computer
graphics specialists have addressed in the past include: 1) SIMD ap-

TEXAS INSTRUMENTS EX. 1011 - 22/229

12 Introduction

proaches [Dyer87], [Crow88b], [Sma189], [Theo89a], 2) coherence vs.
parallelism [Kapl79] (for spatial subdivision algorithms), 3) methods
of spatial subdivision [Whel85], [Kapl79], [Hu85], and 4) effect of
larger datasets [Whel85]. This is by no means a complete list of the
research that has been done in this area. In fact, Burke and Leier
[Burk90] present a fairly thorough examination of previous work in
this field. The first of these items is not addressed in this text since
we are primarily interested in MIMD algorithms here. In chapter 2
we present in more detail the choice of architecture and defer a
discussion on this matter to that point. The second item, coherence
versus parallelism, is mentioned only briefly in various papers, but
has not been analyzed extensively to see to what degree it is
worthwhile maintaining graphical coherence in a parallel algorithm.
The third item, spatial subdivision methods, has been looked at by the
most researchers, but there are other methods that have not been
considered. Also, most of the previous work is based on simulations
rather than actual implementations. The fourth item, large datasets,
is treated fairly completely by Whelan, although his work involves a
simulation rather than an implementation.

By comparing implementations, one can determine which
parallel task decompositions provide good performance on an actual
machine. In these implementations, various parameters such as the
number of tasks assigned per processor can be varied to see how
performance changes in practice. Memory partitioning and
referencing schemes that have not been addressed in any previous
work are discussed as well. In a data intensive program such as a
graphics display algorithm, the most efficient method for data storage
and access cannot be easily determined. This may relate strongly to
the type of architecture that the algorithms are implemented on, and
should be taken into account as well.

The effect of other parameters such as image complexity and
machine characteristics are analyzed. Very little work has taken
place on developing a scalable parallel display algorithm. While it
may be true that some modifications may be necessary to obtain high
performance on upwards of 1024 processors, the goal here is to
effectively utilize as little as 2 and as many as 100 or more processors,
with no modification in the code.

The work presented in this text can also provide hints to other
programmers developing graphics algorithms for parallel
environments. For instance, little work has been done in the past
regarding radiosity or volume rendering on parallel architectures.
Both of these rendering techniques involve large datasets and random
memory access. The decomposition and memory referencing schemes

TEXAS INSTRUMENTS EX. 1011 - 23/229

Research Context 13

developed here may be suitable for extension to these types of
applications.

1.3.2. Parallel Computing Context
In relation to how this work fits into a parallel computing context, one
should note the following factors. A graphics display program is a
fairly detailed program which typically has 5000 or more lines of code.
The complexity and size of the data structures used in this application
make it fairly difficult to deal with in a straightforward manner. One
must determine if a given data item is to be:

1. Read-accessible to all processors.
2. Read-accessible to a limited number of processors.
3. Write-accessible to all processors.
4. Write-accessible to a limited number of processors.

For example, there are several storage methods and issues
relevant for a read-accessible data item. The item may be copied to
all processors that may reference it, but the overhead of copying as
well as excessive memory use may prohibit the usefulness of this
approach. It might be possible to regenerate the item each time it is
needed on a given processor, but there is a cost associated when this
is done. Another alternative could be to remotely reference an item
stored in shared memory, but this causes latency problems. These
issues are investigated in chapter 5 of this book.

These alternatives bring to light one of the key issues in any
computer program: what is the balance between storage and speed
that can be best utilized in this implementation? The use of multiple
processors re-opens this issue to a whole new set of potential
problems. A graphics application uses data items that fit into all four
categories, theoretically requiring a decision regarding storage and
access for each data item. In reality, it is fairly straightforward for
most data to see what storage method would be best. On the other
hand, the algorithms do impart some characteristics on memory
referencing which may force different design decisions. A balance
must be struck in order to obtain good performance under a variety of
circumstances.

An in-depth analysis is presented in chapter 4 regarding different
issues which relate to parallel programming in the context of this
application. These include overheads encountered in a parallel
program that are not present in a serial version such as: contention,
use of virtual memory in parallel, scheduling, communication, and

TEXAS INSTRUMENTS EX. 1011 - 24/229

14 Introduction

synchronization, to name a few. These are quantified as to their
effect on the overall program performance.

While numerical applications such as LU decomposition and
matrix multiplication may involve large amounts of data movement,
typically somewhat simpler data structures are used than those
required for a graphics display algorithm. The data structures in
numerical applications are usually multi-dimensional arrays. In a
graphics display algorithm, the polygonal data is initially read into
array data structures. After this initial phase, though, the data needs
to be maneuvered into complex hierarchical data structures. These
can consist of objects, polygon information lists, active edge lists, edge
pair data structures, and many other intricate storage mechanisms.
For a sequential environment, there is not general agreement among
the graphics community about which type of data structure is the
most efficient for a particular algorithm. There is certainly room for
discussion as to the most suitable data structures for a parallel
environment. The parallel architecture influences the decision as to
the choice of data structures as well. This decision is especially
crucial in a graphics algorithm where there may be a large amount of
data needed for any given task. The memory resource in a parallel
computer is not infinite, so the data structures must be time and
space efficient as well.

One issue not encountered in numerical parallel algorithms is
that of parallelism versus graphical coherence. While this is typically
a graphics issue, it can be thought of as a parallel computing issue as
well, in that different overheads are incurred depending on the task
granularity chosen. These overheads are basically due to the lack of
coherence induced by separating tasks for execution in parallel. As
such, one must investigate to what degree this overhead affects
performance insofar as determining the number of tasks to generate.

1.4. Document Overview
In chapter 2, a framework is developed for analyzing parallel graphics
display algorithms. A taxonomy of parallel graphics display
algorithms is generated in which the possible parallel approaches are
categorized into image and object space methods. Previous
researchers' work is fit into this taxonomy, and a number of new
approaches are examined which could be used to solve the problem.
By considering a number of issues relating to parallel algorithm
development, it is shown that several types of approaches are worth
further consideration.

TEXAS INSTRUMENTS EX. 1011 - 25/229

Document Overview 15

In chapter 3, a number of multiprocessor architectures are pre
sented in order to determine the one most suitable for implementa
tion. It is easiest to use a previously developed serial display
algorithm as a basis for the parallel implementation due to the nature
of the architecture chosen. An evaluation of the different MIMD
programming models is discussed, including the programming
paradigms available on the BBN Butterfly, on which the algorithms
were implemented.

Chapter 4 discusses the overall basis graphics display algorithm
and how it applies to the chosen architecture. The design decisions
which are common to all the implemented parallel algorithms are
described. In this way, one can see that it is easy to compare parallel
approaches since they are all based on the same code. Finally, the
testing procedures which are used in timing the various algorithms on
the GPlOOO are described.

In chapter 5, a number of different parallel image space
subdivision algorithms are presented, based on the pixel
decomposition scheme. In this chapter, only the tiling section of the
algorithms is compared in order to evaluate the maximum parallelism
attainable. For comparison purposes, the size and number of areas is
varied. In addition, three different task partitioning schemes are
compared. The results are scrutinized, and the overhead percentage
factors are determined through experiments in the performance of
each parallel algorithm.

In chapter 6, several shared memory storage and referencing
schemes are examined. A global storage and referencing scheme is
compared to a software caching scheme. Due to the fact that the
algorithms for task decomposition affect the memory storage and
reference scheme, the overheads involved in implementing each
scheme are examined. The various algorithms which are scrutinized
in chapter 5 are compared again, but this time the setup cost is
included, not just the tiling section cost. Based on this comparison,
the task adaptive algorithm utilizing the locally cached memory
referencing scheme resulted in the best timings. The issues of
parameter variation are investigated in actual implementations of
these algorithms. Both the machine and scene parameters can vary,
and these variations can change the algorithms' performance.

Chapter 7 presents overall conclusions and discusses future
research possibilities.

TEXAS INSTRUMENTS EX. 1011 - 26/229

2

Overview of Parallel
Methods for Image
Generation

In this chapter, a number of methods which can be used for parallel
graphics rendering are discussed and evaluated for their applicability
to multiprocessor architectures.

In the first section, a number of factors are presented to serve as a
basis for a quantitative analysis of potential algorithms for
implementation. The second section presents a historical overview of
previous work in the area of parallel graphics algorithms, and these
algorithms are categorized and presented in a taxonomy. In addition,
new methods are also described and fit into the taxonomy as well.

2.1 . Criteria for Evaluation of Parallel Graphics
Display Algorithms

A number of parallel approaches to graphics rendering have been
developed in the past, and more are certain to be presented in the
future. In order to effectively evaluate these different approaches, it

17

TEXAS INSTRUMENTS EX. 1011 - 27/229

18 Overview of Parallel Methods for Image Generation

is worthwhile analyzing them in terms of a number of important
issues including:

1. Level of granularity oftask sizes.
2. Nature of algorithm decomposition into parallel tasks.
3. Utilization of parallelism in the display algorithm without

significant loss of coherence.
4. Load balancing of tasks.
5. Distribution and access of data through the communication

network.
6. Scalability of the algorithm on larger machines.

The interrelations of each of these issues and how they effect the
overall parallel algorithm are shown in figure 2.1. These issues are
investigated in the context of a number of previous approaches to the
parallel image generation problem. They are described in more detail
next.

2.1.1. Load Balancing
Load balancing refers to the idea that each processor is used as
effectively as its neighbors. This means that in the ideal case, each
processor has exactly the same amount of work and will finish its
work at the same time as the others. Researchers typically address
this issue by developing task partitioning schemes which attempt to
create an even load among the processors in one of two ways: either

Figure 2.1: Relationship of decomposition methods to parallel overheads

TEXAS INSTRUMENTS EX. 1011 - 28/229

Criteria for Evaluation of Parallel Graphics Display Algorithms 19

by static assignment of large tasks or by dynamic assignment of
smaller tasks.

In the static method oftask decomposition, the number of tasks T
is typically equal to the number of processors P, and all of the tasks
are estimated to take approximately the same amount of time. This
requires some additional overhead prior to starting a parallel
environment, but the hope is that an even work distribution will
result. The advantages of this method are: communication overhead
percentage is small due to larger task sizes, task startup overhead is
minimized, and scheduling overhead is reduced.

The second method of attacking load balancing is the dynamic
approach. In this method, Tis determined to be much greater than P,
and task assignment to processors proceeds during runtime. A
processor continues to work on tasks until no more work is available,
at which point it remains idle until all of the processors complete
their work. As a result of small task sizes, the idle time is small and
will have minimal impact on overall performance. Previous research
has shied away from this approach in hardware designs for graphics
rendering because it was deemed that the context switching resulted
in too much overhead. In a software algorithm, this is not a
consideration unless the granularity of these tasks is too fine. If too
fine a task granularity is used, it is possible that the time to obtain a
new task is too high a percentage of the task execution time,
degrading overall program performance. The advantages of the
dynamic approach include: 1) task execution time does not need to be
determined a priori; 2) load balancing is solved in a dynamic manner;
and 3) the time needed to determine what the work will be for each
task is much smaller than in the static method. Note that some
methods employ a static scheduling of(T > P) tasks as well. However,
load balancing is not handled directly in this type of algorithm.

2.1.2. Levels of Granularity
As discussed previously, the parallel decomposition of a computer
graphics algorithm can occur at many different levels of granularity.
It is necessary to determine the potential number of parallel tasks to
identify independent calculations which can be performed in parallel.
The partitioning of a display algorithm may be performed in terms of
either image space or the object space. A single display algorithm can
use any combination of any of these levels to partition the computa
tion. The different levels of granularity are given in table 2.1.

TEXAS INSTRUMENTS EX. 1011 - 29/229

20 Overview of Parallel Methods for Image Generation

If an algorithm is divided into tasks that are too coarse grained,
load balancing will suffer since not enough parallelism is introduced.
On the other hand, if too fine a level of granularity is used, then too
much context switching will occur which adds time to the parallel
program. It seems clear that a medium grain approach is the most
viable since it strikes a balance between providing good load
balancing and minimizing context switching.

2.1.3. Nature of Parallelism
There are two principal types of methods for decomposing algorithms
for a parallel computer--data and functional parallelism. Data
parallelism refers to dividing up the data among the processors and
processing different data segments in parallel. Functional
parallelism usually involves different threads of control and can be
further broken down into operational and procedural levels.
Operational parallelism refers to concurrency at the basic operations
level such as assignment, etc. Procedural parallelism is achieved by
decomposing the algorithm into sections which are assigned to
different processors. Pipe lining is a form of parallelism that combines
features of data level parallelism with functional level parallelism.
Although data parallelism is normally associated with SIMD
architectures, an MIMD approach can also employ data parallelism in

Table 2.1: Granularity levels in parallelism and computer graphics

l>ranulanty Program Constructs l>raphtcs Entities

Very Coarse programs running on calculation of sehlrate images
different machines via network on different mac ·nes at the

same time

Coarse execution of P modules in sub-division of scene into objects
parallel onP processors or groups of objects

execution ofN modules sub-division of image into sections
Medium on P processors in parallel or sub-division of objects into face. where (N >> P)

parallel computation of loop parallel processing of groups of
Fine

iterations in SIMD pipeline pixels or span segments assigning
one group per processor

Very Fine hardware parallelism at assignment of processors to
instruction level calculations at the pixel level

TEXAS INSTRUMENTS EX. 1011 - 30/229

Criteria for Evaluation of Parallel Graphics Display Algorithms 21

which work is partitioned into parallel components according to the
input dataset. Alternative schemes involve using functional
parallelism or some combination of functional and data parallelism.
The type of parallelism evident in each algorithm is identified as each
is discussed since different stages of an algorithm may use different
levels of parallelism.

2. 1.4. Usage of Graphical Coherence
Recall that graphical coherence is the use of incremental operations
rather than recomputation of parameters to hasten the speed of
graphics calculations. A major component of every three-dimensional
computer graphics display algorithm is sorting data elements in some
combination of the x, y, and z directions in three-dimensional space.
The advantage of using coherence in this type of algorithm is that
sorting can usually be reduced to incremental calculations rather
than recomputation of various parameters. Coherence can be
examined within computer graphic images at the pixel level, scan line
level, area level, or frame level. For example, scan line coherence
refers to the fact that edges of polygons intersect a number of adjacent
scan lines. When edge parameter values such as color or surface
normal are calculated for the initial scan line which the edge crosses,
the incremental values can be computed and used to update the
parameters from one scan line to the next. This can also be used in a
sorting context in hidden surface removal algorithms such as
Watkins' algorithm [Roge85] to update which polygon span segments
are in front of each other for a given set of scan lines. Other uses of
coherence rely on knowledge obtained earlier in the computation to
reduce calculations in the generation of the image.

In parallel computing, the approach usually taken for task
decomposition is to partition the computation among different
processors. This would mean that one could not necessarily rely on
values calculated earlier in the computation for later use, as is
usually done when exploiting coherence. If coherence is not exploited,
redundant calculations are performed and the overall computation
time will increase. In order to solve this apparent paradox in a
parallel environment, it is worthwhile to investigate possible methods
of parallelizing computer graphics display algorithms which maintain
coherence. In the taxonomy in section 2.2, the type of coherence
which each algorithm exploits in a serial implementation is noted,
and we determine the method most suitable for a parallel
implementation.

TEXAS INSTRUMENTS EX. 1011 - 31/229

22 Overview of Parallel Methods for Image Generation

2.1.5. Data Access
One of the key issues in a parallel graphics display algorithm
concerns movement of data between memory modules, as well as to
and from the disk. Graphics display algorithms use a huge amount of
memory, and memory management is important to the overall
performance of the algorithm. Remote access of shared data will slow
down an algorithm, so data locality should be taken into account
when possible. Most algorithms developed in the past were based on
simulations rather than implementations on actual multiprocessors,
and little attention was placed on data access. In some cases, the
given algorithm enforces a certain type of access pattern, but in
general, the algorithms can be modified to use any particular type of
memory access.

Since datasets representing complex graphics scenes are
generally large, it is not feasible to copy the entire dataset onto each
node of a multiprocessor. Besides the fact that space may be a
limitation, it would not necessarily be desirable to copy all of the data
since the time taken to do so on a massively parallel machine would
be rather lengthy. Although such a complete replication of data is
potentially feasible for read-only data through a one-time broadcast,
simple replication cannot be used for read-write data. An example of
a read-write data structure in a graphics application is the frame
buffer memory used to store the pixel color information. This type of
data structure must be partitioned among the memory modules. Of
course, one could duplicate this data structure on every processor and
perform a parallel merge operation at the end. This would require
much more memory for implementation than partitioning the data, in
addition to the time required for the merging operation. Shared
memory multiprocessors provide a uniform view of the processors'
data space, with each memory location being accessible from any
processor. In the case of shared memory multiprocessors, the memory
latency for data on a non-local memory module is significantly higher .
than that for a reference to the local memory module. Hence,
judicious distribution of data among the memory modules can have a
significant impact on realized performance.

2.1.6. Scalability
One issue that has not been dealt with in the past is the ability of the
algorithm to provide good speedup on large processor configurations.
Some algorithms in the past have been designed with a set
multiprocessor configuration in mind, and optimization is limited to

TEXAS INSTRUMENTS EX. 1011 - 32/229

TEXAS INSTRUMENTS EX. 1011 - 33/229

Taxonomy ofParallel Graphics Decompositions 23

this particular size. Due to the rapidly decreasing cost of
microprocessors, very large parallel processors will be available in the
future. Already, Ncube has a 4096 processor machine and BBN's
TC2000 is capable of supporting up to 512 processors using a shared
memory paradigm. While these algorithms cannot be tested on such
a large machine at the present time, they can be evaluated for their
potential performance on massively parallel architectures.

2.2. Taxonomy of Parallel Graphics

Decompositions

In this section, a taxonomy is presented of parallel approaches which
can be used to partition a parallel graphics rendering algorithm. The
usefulness of each of these approaches for MIMD machines is
analyzed in an effort to narrow down the choice of algorithms. The
criteria for implementation is based on the issues raised in the
previous section. The taxonomy includes possible new decompositions
that have not yet been developed as well as results obtained by
previous researchers. Figure 2.2 illustrates the overall structure of
the taxonomy.

In the subsections that follow, different parallel approaches to

graphics rendering are reviewed within the structure of the
taxonomy. A number of approaches devised in the past were intended
as special purpose architectural designs. In some cases, these
algorithms could also be used for a multiprocessor and they are
discussed here, noting that the original design was for a hardware
implementation. Although it would be preferable to include all work‘
that has been done in this subject area, only representative examples
of each of the categories in the taxonomy are presented. Other
related work is quoted and references are given to provide as complete
a listing as possible.

A large contingent of ray tracing algorithms has been developed
for parallel implementation. Since this book focuses primarily on fast
graphics rendering algorithms, and ray tracing is typically an order of
magnitude slower than a conventional tiling algorithm, this approach
was analyzed in the tests described here. Some ray tracing designs
are still worthy of note due to their unique methods of task
partitioning or memory usage, so a selection of these are described in
the taxonomy. A paper which provides a good synopsis of parallel
approaches to a variety of graphics algorithms is [Burk90].

In the following subsections, brief descriptions of the various

algorithms which fit into the various categories of the taxonomy are
given.

‘ft

TEXAS INSTRUMENTS EX. 1011 - 33/229

24 Overview of Parallel Methods for Image Generation

Parallel Gra hies Partitioning

A A 7\"' B.3ARegions A 87\ns

1. Objects 2. lists 1. Equal 2. Non- 1. Single 2.A as 1. Spans 2. Fragments
(clusters) of size equal size Pixels

polygons

i. Horizontal ii. Vertical
Strips Strips

1\
iii. Rectangular

Areas

1\
a. Scanlines b. Groups

of Scanlines
a. All same b. Different

size sizes

Figure 2.2: Taxonomy of approaches to parallel graphics partitioning

TEXAS INSTRUMENTS EX. 1011 - 34/229

Taxonomy of Parallel Graphics Decompositions 25

2.2.1. Object Space
Parallel object space decompositions are rare because there has been
very little development of object space graphics rendering algorithms.
The principal advantage of an object space algorithm is that the
hidden surface removal calculation can be computed at arbitrary
accuracy. In general, though, the computations in an object space
algorithm are inefficient and are more difficult to program in
comparison to image space methods. Nevertheless, some researchers
have chosen to go this route for a parallel rendering algorithm; these
are described next.

2.2. 1. 1. Polygons

Partitioning tasks based on polygons can be accomplished in a
number of different ways: clusters of objects or sub-objects and lists of
polygons.

Abram
Abram [Abra86] used Weiler and Atherton's hidden surface re

moval algorithm, but instead of using their concave polygon clipper,
he implemented a fairly simple convex polygon clipper such as the one
described by Sutherland [Suth75]. More clipping operations were
required than in the concave clipping approach, but the code was
simple to implement and did not contain unruly pathological cases
such as are present in the Weiler-Atherton clipper. The rest of the
algorithm is basically the same as the serial Weiler-Atherton ap
proach, with extensions to facilitate a parallel approach designed for a
hardware implementation. As the clipping procedure recursively
builds inside and outside lists of polygons based on a clip polygon, a
tree structure of lists is created. The tree depends strongly on the
input data, but it is built up rather quickly. In Abram's design, the
tree is laid out onto a linear pipeline architecture with nodes of the
tree mapped to processors in a pipeline. This section of the algorithm
only solves the hidden surface removal problem, however. Abram
suggests that the tiling problem can then be solved by attaching tiler
processors which take the input of visible polygon fragments from the
pipeline section and perform the actual illumination and scan
conversion of pixels which are then output to a frame buffer.
Although Abram's algorithm is specifically tailored as a hardware
design, it could easily be mapped to a commercial multiprocessor.

Kankanhalll and Franklin
In a recent paper, Kankanhalli and Franklin [Fran90] present a

completely different approach to object space parallelism that deals

TEXAS INSTRUMENTS EX. 1011 - 35/229

26 Overview of Parallel Methods for Image Generation

not only with lists of polygons, but also with edge lists and areas on
the screen called cells. The algorithm is basically a parallel version of
Franklin's [Fran80] object space hidden surface removal algorithm.
The algorithm involves constructing a grid which is overlaid on the
scene and then determining the covering faces within the grid cells.
There are numerous stages of the algorithm, and each stage is a setup
to the next stage. Synchronization is required after each stage of the
algorithm which can degrade overall performance. This algorithm
was implemented on a Sequent Balance with 15 processors, and the
hidden surface removal performance was analyzed for two small
images. The authors note that the speedup is different for the hidden
surface removal section than it is for the visible region reconstruction
section. Next, a brief summary and analysis of each of the object
space algorithms is presented.

Summary
In the case of Abram's and Kankanhalli's algorithms, the added

complexity of the hidden surface removal sections presents a more
difficult programming task, in addition to the fact that efficiency in
these approaches is not that high. In fact, Kankanhalli calculates a
speedup factor of 10 for just the hidden surface removal in his
algorithm utilizing 15 processors, resulting in an efficiency of only
0.67. Speedup is a measure of parallel algorithm performance in
comparing the time on 1 processor versus the time on P processors (in
this case, P == 15). Efficiency is speedup divided by P. More detail is
presented on these measurements in chapter 4. The speedup for the
visible region reconstruction portion of the algorithm is only 6 on 15
processors, which gives an efficiency of only 0.4. Since the total
performance of the algorithm is bottlenecked by its slowest part, in
addition to the synchronization required between sections, this
algorithm does not provide performance which is adequate enough for
high performance on large processor configurations.

The tiling section is a separate add-on task to both of these
algorithms. Tiling dominates the total display calculation time these
days, especially when Phong shading and anti-aliasing are added to
the rendering phase. Neither of these researchers has developed an
adequate method of solving the tiling problem in parallel because the
focus of their work was restricted to the hidden surface removal
section. Franklin and Kankanhalli's algorithm is based on functional
parallelism in addition to data parallelism. The sections of the
algorithm are divided into segments, each of which is applied in
parallel to the data. Unfortunately, the synchronization required

TEXAS INSTRUMENTS EX. 1011 - 36/229

Taxonomy of Parallel Graphics Decompositions 27

after each segment limits the potential speedup due to the load
imbalance incurred at each synchronization point.

2.2. 1.2. 30 Space Regions

Regions of three-dimensional space can be partitioned and assigned
as tasks. This method has primarily been used in parallelizing ray
tracing, and although none of the methods described here serves as a
basis for further analysis, an illustration of the algorithms serves to
provide an insight into a unique method for partitioning. Ray tracing
may be referred to as an image space algorithm since the hidden
surface removal is based on a ray shot through a pixel on the screen;
however, the actual intersection and illumination calculations are
performed in object space. In this instance, the parallelism is devised
from a division of the object space.

Cleary et at.
Cleary [Clea83] developed a ray tracing algorithm which involves

assigning regions of 3D space to each processor. A processor handles
rays as they traverse into its region, and then sends the results in ray
packets out to the appropriate neighboring processors as they leave
the region. Load balancing is not handled directly; rather, it is
assumed that the rays traverse through the different parts of the
scene in a random manner such that the processors each have
approximately the same amount of work. This assumption is not very
accurate and hence can lead to poor performance, especially for large
processor configurations. A better approach which provides more
direct load balancing for ray tracing is given next.

Badouel et at.
Badouel [Bado90] presents three approaches to parallel ray

tracing, one of which is called the "ray dataflow" approach and is
similar to Cleary's algorithm. The others are described in section
2.2.2 on image space partitioning. Badouel attempts to load balance
3D regions by clustering together equal size smaller regions
depending on their expected time complexity. The regions are
clustered together so that the clusters themselves have approximately
the same time complexity as each other. The initial time complexity
of a region is found by shooting a small group of rays within each
small region and recording the calculation time of these rays. The
clusters are mapped onto processors statically, and rays are passed
through the system as in Cleary's algorithm.

The advantage ofboth of these algorithms is that the database is
distributed statically and does not need to be replicated in each pro-

TEXAS INSTRUMENTS EX. 1011 - 37/229

28 Overview of Parallel Methods for Image Generation

cessor. Although Badouel's algorithm exhibits better load balancing
characteristics than Cleary's approach, this static method of load
balancing is not adequate enough for good overall performance.

Caspary and Scherson
Caspary and Scherson [Casp89] developed a ray tracer which is

also similar to Cleary's approach for use on a hypercube multiproces
sor. A portion of the database is duplicated in each processor, while
the bulk ofthe data is scattered among the processors' memory. By
using two processes per processor, load balancing of the work is
facilitated. One process handles intersections with the hierarchical
database at a high level, while the other one performs intersections
between rays and the actual bounding volumes and objects within the
local processor. This method handles load balancing, in addition to
dealing with memory management effectively.

Challlnger
Challinger [Chal91] developed several approaches to parallel

volume rendering. The first approach is a parallel extension to object
space rendering using the well known projection method. The second
method is described under the image space processor-per-pixel
heading. The parallel implementation of the projection method is an
order dependent approach based on which view of the volume cube is
seen from the observer's point of view. A visibility graph is
constructed which allows one to move voxels into the ready list for
parallel rendering. The cells in the ready list can be processed in
parallel, but the visibility graph must be updated afterward. This
method constitutes a large amount of overhead, but is a unique look
into a rendering technique that is quite new.

2.2. 1.3. Analysis of Object Space Methods

Object space methods are typically inefficient when compared to im
age space algorithms. This is especially true of the ray tracing solu
tions, which is the reason these are not implemented. If the accuracy
of the non-ray tracing object space methods is needed for a particular
reason (such as to allow changing of the illumination after the hidden
surface calculation), then these methods may be worthy ofimplemen
tation. This is not a concern for most everyday applications, however.

2.2.2. Image Space
Parallel image space partitioning methods are much more prevalent
in the literature than the object space methods. They are more

TEXAS INSTRUMENTS EX. 1011 - 38/229

Taxonomy of Parallel Graphics Decompositions 29

suitable for hardware implementation, and there are many
adaptations of this type of algorithm. The image space algorithms
can be divided into two subsets: those based on pixels or groups of
pixels, and those based on polygons or polygon fragments as noted in
the taxonomy. An important point to note here is that most of the
previous work in this area specifies only how the image is divided up,
not how the underlying algorithm is implemented nor how the
memory referencing technique is employed. In addition, the
algorithms mentioned were simulated rather than implemented on a
multiprocessor. The primary reason for this is that very few
researchers have had access to such machines until recently. The
methods presented here at best only indicate their expected
performance since the results have only been theoretically analyzed.
The only actual implementations on commercial multiprocessors
presented in the literature are those by Theoharis and Roble.

2.2.2. 1. Pixels

Parallel display algorithms which are based on pixels are the most
popular type of image space decomposition. The principal reason for
this is that the pixel calculations are completely independent of one
another, so no synchronization is required and the order of task
execution is irrelevant. Algorithms which assign a single pixel as a
task are typically designed for hardware implementation. This task
size is too fine a granularity for implementation on a general purpose
MIMD machine since context switching would severely degrade
performance. Several of the parallel approaches which use this level
of granularity are described next. Another type of pixel decomposi
tion involves tasks which represent areas of adjacent pixels grouped
together in one way or another. These methods are described
immediately following the discussion of processor-per-pixel decompo
sition designs.

Processor-per-Pixel Designs

Fuchs et al.
Fuchs' [Fuch85] Pixel-Planes 4 system is a good example of a

processor-per-pixel hardware architecture. Each pixel contains a
small one-bit ALU in addition to a binary tree of one-bit adders
designed to efficiently compute the equation F(x,y) =Ax +By+ C.
This equation is used to test for polygon containment as well as
calculation of visibility and illumination. Polygons are sent to all
processors, and each pixel processor then determines if the polygon
covers its area. If the polygon covers a given processor's pixel,

TEXAS INSTRUMENTS EX. 1011 - 39/229

30 Overview of Parallel Methods for Image Generation

visibility and shading calculations are performed. The system is
somewhat inefficient since each processor must check every polygon
in the dataset. Fuchs' recent extension to this system called Pixel
Planes-5 alleviates some of the inefficiencies in the first system and is
described in [Fuch89].

Whitman and Dyer
Whitman and Dyer [Dyer87] developed a vectorized version of a

scan line Z-buffer algorithm. This program was designed for an SIMD
vector architecture and featured pipelined pixel processing for the
shading and visibility calculations. Although the algorithm is too
fine-grained for an MIMD architecture, it could serve as a basis for an
algorithm which would be suitable for a multiple processor SIMD
architecture.

Plunkett and Bailey
Plunkett and Bailey [Plun85] developed a vectorized version of a

ray tracing algorithm that processes rays independently. This
algorithm is also designed to run on an SIMD pipeline architecture.
Rays are placed into a queue, and when the queue fills up, all of the
rays are intersected in pipeline fashion. Any new rays generated are
attached to the end of the queue for future processing.

Challlnger
Challinger [Chal91] has designed a parallel volume rendering

approach based on ray tracing. The results seemed to indicate that
assigning a pixel per task used significant overhead, while assigning
a scan line per processor (as in the processor-per-area approach
elaborated upon next), achieved better performance.

Processor-per-Area Designs

Parallel algorithms which work on groups of adjacent pixels represent
the widest variety of partitioning methods that have been researched.
The different categories in which these algorithms fall include:
horizontal strips, vertical strips, and rectangular areas of pixels.
Algorithms which are based on horizontal strips can be divided into
two sub-categories: those based on single scan lines and those based
on contiguous groups of scan lines as tasks. These groups of scan
lines as tasks are referred to as blocks.

Kaplan and Greenberg
Kaplan and Greenberg [Kapl79] simulated two different hidden

surface algorithms and analyzed them according to their usefulness
on a parallel architecture. A Watkins' [Roge85] scan line algorithm is
subdivided into P groups of s scan lines, where each group forms a

TEXAS INSTRUMENTS EX. 1011 - 40/229

Taxonomy of Parallel Graphics Decompositions 31

different task for a processor. Their design relies on a central control
scheduling mechanism, whereby a task is assigned to a processor as it
becomes free. The number of groups or the number of regions can be
much larger than the actual number of processors available, allowing
dynamic load balancing. Shared memory is not a consideration in
their simulation; each processor is assumed to have in its local
memory all of the information it needs to perform calculations for its
portion of the scene.

Another parallel algorithm due to Kaplan and Greenberg is an
adaptation of Warnock's [Roge85] algorithm. A static area mesh to
the image space and each task is assigned to one region of the mesh.
The Warnock algorithm is executed serially within each region. The
mesh is applied at both low (16 x 16) and high resolution (32 x 32) to
discern the differences in speed. As might be predictable, the finer .
grain mesh resulted in a more uniform time/area than the coarser
mesh. Both the Watkins' and Warnock decompositions are illustrated
in figure 2.3.

The authors suggest three considerations which should be taken
into account when deriving a parallel implementation of a hidden
surface algorithm: partitionability, the method of dividing the
computation among independent tasks such that communication is
kept to a minimum; coherence, the reduction of visible surface
calculations by basing them on previously obtained results; and
computational efficiency, the ability ofthe parallel processor system to
schedule tasks. In addition, the authors believe that characteristics
such as image area, image complexity, edge complexity, and how the

Watkins

Horizontal regions
Apply Watkins· algorithm to all

scan lines in each region

Warnock

16 x 16 mesh
Nwnber of regions may be greater

than number of processors

Figure 2.3: Two types of decompositions applied by Kaplan and Greenberg

TEXAS INSTRUMENTS EX. 1011 - 41/229

32 Overnew of Parallel Methods for Image Generation

image relates to the algorithm all affect the resultant performance of
the algorithms. They also suggest that utilizing a good heuristic task
scheduling algorithm is very important in obtaining good load
balancing and high performance in the system.

In the Kaplan-Greenberg simulations, a static decomposition
approach is applied in dividing up tasks which are then assigned
dynamically to processors by the scheduler. Coherence is maintained
in a region in their first method (Watkins approach) within scan lines
and pixels. In their second method (Warnock approach), area
coherence is used within a region of image space. Utilization of the
processors is good, especially when the number of regions subdivided
is small enough to allow a large number of tasks to be dynamically
assigned. Load balancing is also good only when the regions are
small enough due to the dynamic task assignment method which is
used. As long as the number of regions created is not too largel, the
granularity level of these algorithms is suitable for implementation
on a general purpose MIMD machine. The algorithms have good
scalability if the number of regions created is adaptable to different
processor configurations. The authors state that memory access is
local since each processor will contain the data it requires. No clue is
given as to how this might be accomplished, though.

Kaplan and Greenberg's algorithms are one of the first efforts in
the area of parallel algorithm design for graphics. Their simulations
are designed mostly to analyze the difference between two different
parallel approaches, not to extrapolate to real world performance.
Still, their idea of creating more tasks to achieve better load balancing
seems natural. It seems reasonable then to further evaluate their
ideas, especially with regard to memory referencing. In any case, this
rectangular approach is further investigated in tests described in
chapter 5. It is not clear from their paper how many rectangular
regions are optimal, nor what type of memory partitioning algorithm
should be used. Therefore, the descriptions in chapter 5 include an
analysis of methods which can be used to determine these factors.

Chang and Jain
Chang and Jain [Chan81] have simulated a distributed

multiprocessor version of Watkins' scan line algorithm. Their idea is
to distribute the data among the processors in three-space with either
horizontal cross-sections cutting the screen into P horizontal regions
or a division of the scene into P cubic regions. This decomposition is
shown in figure 2.4. The first method is essentially the same type of

lThis was not quantified by the authors.

TEXAS INSTRUMENTS EX. 1011 - 42/229

Taxonomy of Parallel Graphics Decompositions 33

decomposition as Kaplan and Greenberg's technique, while the second
method divides the areas in a more rectangular fashion. Chang and
Jain's algorithm is somewhat different than Kaplan and Greenberg's
approach, though, because the polygons are actually clipped in three
space within a single parallel task. Although this might seem to be a
3D decomposition, it is essentially similar to a 2D partition in which
the perspective and clipping operations are performed in parallel.

In either of Chang and Jain's decomposition methods, each
processor is responsible only for the polygons in its region, allowing
parallel data processing. It is not clear from their paper, but one can
infer that each processor gets a copy of the entire dataset. This is
inefficient since redundant work (in addition to the extra space
required) is necessary for the perspective and clipping calculations.
Coherence is lost between adjacent regions, and each region has to
perform additional three-dimensional clipping, which, as the authors
observed, can override the hidden surface calculations if the regions
become small enough. The paper considers only a limited number of
polygons, and therefore their results cannot be applied to today's
imagery. The authors state that due to the independent processing of
polygons, each processor must initialize the scan conversion process
for its region since there is no coherence between regions. In
addition, if polygons are not uniformly distributed among the
processors, the resultant time is degraded by the slowest processor.
As a possible solution, the authors suggest breaking down the screen
according to dataset density so each processor is able to finish close to
the same time as the others. This was subsequently implemented by
Whelan in his Median-Cut algorithm described later in this chapter.

Object space divided up into
horizontal cross sections

Object space divided up into
cubic regions

Figure 2.4: Chang & Jain's decomposition method

TEXAS INSTRUMENTS EX. 1011 - 43/229

34 Overview of Parallel Methods for Image Generation

Chang and Jain's algorithm is a similar decomposition to Kaplan
and Greenberg's method, except that clipping is part of each parallel
task as well. The only unfortunate aspect of this is that polygons
must be initially stored in all regions (or at least available to all
processors) and in the parallel processing phase; the polygons may be
clipped multiple times. In most cases, a polygon will not be displayed
in a processor's region, but a trivial clip must be done anyway to
check for this situation.

Hu and Foley
Hu and Foley [Hu85] analyzed one dynamic and two static distri

bution methods based on block size variations on a scan line. Their
analysis determines to some degree the effect of coherence on paral
lelism. The static distributions analyzed were denoted the static
contiguous method and the static interleave method. The static
contiguous method exploits vertical coherence within a single task,
while the static interleave does not. Static contiguous refers to a
partitioning scheme in which the screen is broken down into P hori
zontal regions, each containing y-resolution I P scan lines. The static
interleave method involves partitioning the scan lines among the
processors in such a fashion that each processor i would process all
scan lines i, i + P, i + 2*P, i + 3*P, etc., as is illustrated in figure 2.5.

This technique could have been extended to interleave in the hori
zontal direction as well, but Hu and Foley chose just to deal with scan

Screen

~I \~
rf.Q!;!:SSQI 1 Processor 2 P[Q!;essor 3 rf.Q!;!:SSQ[1
Scanline 0 Scanline I Scanline2 Scanline 3
Scanline 4 Scanline 5 Scan line 6 Scanline 7
Scanline 8 Scanline 9 Scanline 10 Scanline II
Scanline 12 Scanline 13 Scan1ine 14 Scanline 15
Scanline 16 Scanline 17 Scan1ine 18 Scanline 19

Figure 2.5: Example of scan line to processor assignment in Hu & Foley's
interleaving algorithm

r

TEXAS INSTRUMENTS EX. 1011 - 44/229

Taxonomy of Parallel Graphics Derompositions 35

lines. The way in which these two static methods attempt to achieve
load balancing is different because each tries to minimize different
factors. The static contiguous method attempts to capitalize on verti
cal scan line coherence, a time saving technique used by most sequen
tial algorithms. The downfall of the contiguous method is that it
relies on a uniform distribution ofthe geometric elements in the scene
across all blocks of scan lines; an unlikely occurrence. Their inter
leaving scheme is based on the fact that the geometric elements are
not likely to be distributed across scan lines uniformly. Each proces
sor will have nearly equal work since they deal with successive scan
lines, but this comes at the expense of vertical scan line coherence.
Finally, the dynamic method assigns processors to single scan lines in
a dynamic scheduling fashion. The dynamic method is similar to
Kaplan and Greenberg's idea, except in this case, each task is a single
scan line rather than a group of scan lines. The dynamic method fol
lows along the lines of the static interleave approach, except that task
to processor assignment is resolved during runtime in the dynamic
method, while it is done prior to tiling in the static method.

All static partitioning schemes have one inherent advantage over
a dynamic scheme: no scheduling of tasks needs to occur at runtime.
In a hardware design which Hu and Foley intended for their
algorithm, this can be an important factor. In a software algorithm
for a general purpose multiprocessor, this factor is minimized since
scheduling must occur for all tasks; therefore, the number of tasks
generated is the only overhead. Still, though, the parallel program
ming method used can have some impact on scheduling overhead. In
other words, generating more tasks takes additional time, but this
time is small enough to be negligible compared to the running time of
a given task (assuming task size is large enough). The main
difference between Hu and Foley's dynamic method and their static
interleave method is in the task assignment to processors. The
dynamic method is implemented (in a simulation on a VAX) at the
scan line level by Hu and Foley and obtained the highest performance
of the three parallel scan line designs based on their results. Their
research involves a simulation of the algorithm on a von Neumann
machine since their intention was to build a hardware architecture.
Their graphs indicate very good expected performance for the
dynamic algorithm when each processor contains the entire dataset.
This is not a realistic situation for large databases, so memory storage
strategies need to be investigated. If a different memory referencing
strategy is implemented, this dynamic technique might provide good
speedup and is therefore worth investigating further.

TEXAS INSTRUMENTS EX. 1011 - 45/229

36 Overview of Parallel Methods for Image Generation

Ghosal and Patnaik
Ghosal and Patnaik present a scan line parallel algorithm that is

somewhat similar to Hu and Foley's approach [Ghos86]. They
describe several approaches, but their best algorith_m is based on
processing the scan lines for the y-extent of a single polygon in
parallel. Overall parallelism is limited due to the small number of
scan lines within the y-extent. In addition, synchronization is
necessary after each polygon is finished. Hu and Foley's algorithm
seems more general purpose than Ghosal's algorithm, since theirs is
not based on the size of the polygon.

Whelan
Whelan [Whel85] compares several different image space task

partitioning strategies: a horizontal strip method, a vertical strip
method, and a rectangular region method. Whelan's rectangular
region method is almost the same as Kaplan and Greenberg's
Warnock approach, except that Whelan does not state what serial
algorithm is used to tile a single region in his mesh. These methods
are simulated to see which exhibits the best overall performance.
Although the horizontal and vertical strip schemes might sometimes
result in faster times, the rectangular region method is resistant to
differences in the imagery and provides the most consistent results.
These decomposition methods are illustrated in chapter 5 in figures
5.7, 5.8, and 5.9.

Crockett and Orloff
An algorithm which also uses the horizontal strip method was re

cently developed by Crockett and Orloff for the Intel iPSC hypercube
[Croc91]. This algorithm involves extensive work to take advantage
of the message passing architecture of the iPSC/860. Triangles are
distributed evenly among the processors, and shading, transforming,
and clipping are all performed by the local processor. Each processor
is responsible for a region of the frame buffer, so it must receive the
triangles from other processors which belong to its area. The proces
sors then take turns passing triangles to the appropriate processor for
rasterization, as well as performing the actual rasterization. A con
ventional Z-buffer is used so that the communication of the triangles
can be overlapped with the rasterizing operations. There is a tradeoff
between spending time rasterizing triangles and thus not sending out
triangles to other processors, and vice versa.

Although the authors present extensive performance analysis for
the algorithm and even give a model for the work, they do not focus on
the load balancing success of their work decomposition strategy. The

TEXAS INSTRUMENTS EX. 1011 - 46/229

Taxonomy of Parallel Graphics Decompositions 37

bulk of their work seems to be the method by which the communica
tion is done asynchronously within the same processor as the rasteri
zation. This is the primary value of the authors' work since that is a
unique problem on this type of machine. In fact, this research could
be extended to generalize the data decomposition scheme for any
graphics display algorithm on a message passing architecture.
Crockett and Orloff also state that the algorithm can be modified for a
shared memory architecture. It is clear though, that the modifica
tions given for the latter case represent such a departure from their
original design that it should not even be considered the same algo
rithm.

Parke
Parke [Park80] uses a technique which is based on the traditional

Z-buffer. He distributes portions of the image space to processors
arranged in a tree structure. Essentially, a hierarchy of regions is
created and divided among the processors, with the complexity
reduced as the tree is traversed. The output of a parent splitter is the
input of the child, and so on, until the content of a region is sent to a
single processor. This is illustrated in figure 2.6. Parke uses a Z
buffer which is partitioned among the processors, with each processor
handling a portion of the Z-buffer to avoid contention for common
memory. This design was intended to be a special purpose machine;
however, a simulation is described in Parke's paper.

Parke also describes Fuchs' approach to the problem, in which a
central broadcast controller distributes the input data and the Z-

Splits imag<? space into . ~lit
2 reg tons , ~-r

Splits image space
into 4 regions

[] []
~split ~split , ' ,. ' iJ (illi] []

Splitters clip polygons to regions
which each cpu processes and
then sends down to next level

Each processor at lowest
level has portion of Z-buffer

contained within it

etc.

Figure 2.6: Parke's splitter tree of processors

TEXAS INSTRUMENTS EX. 1011 - 47/229

38 Overview of Parallel Methods for Image Generation

buffer memory is segmented in an interlace fashion rather than a
contiguous one as in Parke's original design. A hybrid of the two
algorithms is suggested as the best possible alternative since this
would alleviate the under-utilization problem.

Parke's initial algorithm is a static decomposition and relies on a
uniform distribution of objects in the scene, so each processor will be
just as busy as its neighbors. Assuming Parke's hybrid algorithm
could be implemented, load balancing and utilization might be
optimized. Communication can become a bottleneck in his system
due to the passing of polygons from level to level in the tree. The
algorithm is a standard Z-buffer algorithm, which means it suffers
from the aliasing problem that is inherent in that methodology. It
could be extended to be solved with any of the anti-aliasing methods
common today, however. The principal limitations of the algorithm
are the large amount of communication and the lack of adequate load
balancing. This makes Parke's method unsuitable for
implementation on a general purpose multiprocessor machine.

Theoharls
One unusual parallel implementation of a hidden surface

algorithm is by Theoharis [Theo86] for use on a network of Inmos
Transputers. Theoharis' method uses a variation of Parke's splitter
mechanism. This algorithm assigns portions of the computer graphics
display pipeline to different processors, and passes the information
from one processor to the next until a scan conversion processor
handles the actual rendering section. Each transputer handles a
polygon and performs clipping, hidden surface elimination, and scan
conversion in a pipeline format. The transputer has very fast context
switching between processes, which makes it ideal to support fast
changes as polygons come down the pipe. Clipping is performed via
the Sutherland-Hodgman (see [Roge85]) polygon clipping algorithm,
with each clipping plane forming a stage of the pipe. Then, multiple
scan converters run in parallel, accepting polygons and generating
pixel lists of those pixels covered by that polygon. A buffer routine
forms the last stage of the pipe, which runs a standard Z-buffer
hidden surface removal algorithm for the allocated image partition.
Once all pixels have been handled, the frame buffer is displayed.
Parke's splitter mechanism is employed to further limit the number of
polygons handled. The algorithm is illustrated in figure 2.7. The
pipeline does not consist of that many stages, so it needs to be
expanded out in a tree fashion (steps 8 & 9 in the figure). The splitter
mechanism accomplishes this by creating a tree of processes running

TEXAS INSTRUMENTS EX. 1011 - 48/229

Taxonomy of Parallel Graphics Decompositions 39

in parallel which can form their own pipes and keep the available
processors busy.

Theoharis' scheme has the disadvantage that he assumes as
Parke did that the image is uniformly distributed between all of the
split planes. If this is not the case, some processors will have less
work to do than others. He mentions that this problem can be
alleviated by random splitting of non-contiguous areas in order to
achieve load balancing, but this has not been investigated. Theoharis'
algorithm uses a functional parallel decomposition, and it is possible
that the communication between processors might limit the speed of
the program. Processors performing the clipping and transformations
will almost certainly be faster than the processors performing the
scan conversion, leading to a bottleneck in the system. In this case,
the load will not be universally balanced among all of the processors.
In addition, some processors might be assigned sections of the scene
which are far less complex than other sections. Although the
algorithm illustrates a novel approach to the problem of a parallel
hidden surface method, the solution given may not be able to be
applied to a general purpose multiprocessor which does not have the
communication properties of the Transputer. The real limitations in
the algorithm are the assumed uniformity in the image and the large
amount of communication, which are the same problems from which
Parke's algorithm suffers. These algorithms might be suitable for
hardware implementation, but are not appropriate for use on a
conventional multiprocessor.

Whitman
The author of this book previously developed a parallel version of

an area coherence scheme similar to Warnock's method [Warn69]; it

pipeline of processes CI:J.::)
polygoo·E1'Jz)'J'J '}) J / " CB

I- Vi-g Trnn<!onnatioo ~ CI:J.::) /
2 - 7 - Clip against each clipping plane
8 -Perspective Transformation
9 - Scan Conversion
10- Frame & Depth Buffer, send to Video

Figure 2.7: Theoharis' pipeline of processes for image decomposition

TEXAS INSTRUMENTS EX. 1011 - 49/229

40 Overview of Parallel Methods for Image Generation

is illustrated in figure 2.8. This methodology employs a dynamic
decomposition whereby a region is subdivided if it is too complex to
compute. Instead ofbeing recursive as in Warnock's original design,
the algorithm assigns the subdivisions to separate processors, and the
same tests are performed again within these subdivisions. If the
region is too complex again, more subdivisions are created. Processes
are assigned to subdivisions, and as a processor becomes free, it is
assigned to a region. Coherence is maintained via the area method,
which can be taken down to the pixel level if necessary.

There are several problems with this implementation of the
Warnock algorithm in parallel. This algorithm is excellent for hidden
line removal, but if it is used for hidden surface removal, the
algorithm is not well suited for tiling polygons. One method would
involve tiling each region at the point of hidden surface removal, but
this creates a huge number of tasks. In addition, edge lists and other
data structures need to be built for each small region, involving a lot
of overhead. If the approach suggested in Warnock's paper is used,
the tiling would be a separate operation. Synchronization needs to
occur prior to tiling, and then a visible region reconstruction
algorithm similar to that of Kankanhalli needs to be performed. This
extra synchronization degrades performance, in addition to the fact
that another entirely separate technique is required for tiling the
visible regions in parallel.

The granularity of tasks created using the Warnock method is too
fine for a general purpose parallel machine. The high context
switching creates too much overhead in this approach since there are
so many tasks created and the execution time of each task is very

assign processors
to areas as they
become
free

E8

Image Space

EEEE
etc.

adaptively divide image space
to reduce complexity

E8
Figure 2.8: Whitman's parallel variation on the Warnock subdivision
algorithm

TEXAS INSTRUMENTS EX. 1011 - 50/229

Taxonomy of Parallel Graphics Decompositions 41

small. As a result, the performance of the algorithm in parallel is not
very good. Secondly, while the Warnock algorithm is adequate for
hidden line removal, it is fairly slow compared to other image space
algorithms for hidden surface removal. For very large polygons it
might provide reasonable results, but the datasets which are typical
in today's imagery are large, meaning that the average polygon size is
smaller than when Warnock developed his algorithm. These two
factors indicate that this algorithm is not a good choice for implemen
tation.

Painter's Algorithm
The painter's algorithm due to Newell, Newell, and Sancha

[Roge85] might make an interesting candidate for a parallel
algorithm. The problem with converting the painter's algorithm to a
parallel environment is the requirement for a specified order of tiling
the polygons. This might be alleviated if regions could be specified as
tasks and the painter's algorithm could work as a serial approach
within each task. In fact, any hidden surface algorithm could be
implemented as a serial task within any of the area based approaches
because they do not rely on a functional decomposition. This is
because ofthe independent nature of these tasks.

A generalized implementation of the Newell, Newell, and Sancha
algorithm in parallel has not been presented in the literature, and it
is easy to see why. The synchronization necessary to make sure that
pixels are not overwritten in incorrect order will limit the potential
speedup ofthe algorithm.

Adaptive Algorithms

While the methods described to this point all involve decompositions
without regard to the data input set, several approaches have been
developed that attempt to take into account the input scene when
partitioning the work. These schemes are outlined next and take into
account the work in a given area of the screen to estimate a priori
how to divide the work among the processors. Whelan uses the
centroids of polygons as their locations, and attempts to assign an
equal number of polygons to each processor. Roble similarly tries to
assign an equal number of polygons per processor, but he uses a
bounding box and the regions are determined differently.

Whelan
Whelan [Whel85] is one of the first researchers to suggest a

scheme based on non-equal size areas. This method (which is distinct
from his other approaches) is called the Median Cut algorithm and
proceeds as follows. The idea behind the algorithm is the creation of a

TEXAS INSTRUMENTS EX. 1011 - 51/229

42 Overview of Parallel Methods for Image Generation

median line across a given region, in which half of the polygons are in
one sub-region and half in the other sub-region. To achieve this, the
image space is divided recursively, based on the centroids of the data
elements. At each recursion level, the median of the centroids of all
polygons in the region is used as a dividing line, alternately in the
horizontal and vertical directions. This process of subdividing is
repeated until the number of subdivisions equals the number of
processors. Although it is not an optimal partitioning scheme, it can
produce very favorable results on a variety of data input sets. The
unfortunate drawback is that determining the location of the
partitions involves sorting the centroids many times, and this
overhead is hard to overcome in the performance of the rest of the
algorithm.

Whelan's results indicate that his Median Cut algorithm has the
potential for high performance, but it exhibits a significant amount of
start-up overhead. Since this approach was not deemed viable by
Whelan, his rectangular area approach, which is a generalization of
Kaplan and Greenberg's parallel Warnock method, holds the most
promise. This latter method could be adapted to any number of
processors and still have a minimum overhead.

Roble
Roble [Robl88] has developed a scan line Z-buffer algorithm which

is designed to exploit load balancing prior to the tiling stage. It is
similar to Kaplan and Greenberg's area approach and was
implemented on the Intel iPSC hypercube. Roble's idea involves
counting the number of polygons sent to each processor under a given
partition. If there is a strong discrepancy between the processors as
to the number of polygons handled, the cube manager re-partitions
the scene again so a nearly uniform distribution is achieved. This is a
fairly dynamic solution since the tasks are updated during runtime.
It is essentially the same as Badouel's clustering technique described
in section 2.2.1.2, except that no prior work is required since the
number of polygons is used as a heuristic to indicate the amount of
work in a region. The decomposition is based on the input polygons,
and load balancing is partially solved with this method. Memory
contention is not an issue since once tasks are divided, each processor
independently solves the hidden surface problem. This is a good
solution for a multiprocessor with a small (< 50 or so) number of
processors, but as the number of processors is scaled up, the region
size is smaller and there will be more overhead.

Roble divides the screen space into P equal sections and passes
polygons to the processors for each section. If the number of polygons

TEXAS INSTRUMENTS EX. 1011 - 52/229

Taxonomy of Parallel Graphics Decompositions 43

in certain sections creates a situation where some nodes have more
work to do than others, the sections are merged and divided in an
attempt to create an equal computational load for each processor.
This type of approach is just a variation on the rectangular region
decomposition theme, except that the region sizes are different
depending on the amount of work present. Roble had some success
with this approach, and Whelan showed his Median Cut algorithm to
provide the best overall solution among his comparisons. Both
authors state that the overhead can be quite costly and can override
any performance gains. It seems worthwhile that if the overhead can
be limited, then this type of algorithm will provide good performance
in an implementation.

Analysis of Algorithms for Pixel Decomposition

It seems clear that the processor-per-pixel architectures and
algorithms involve a very fine grain solution which is not applicable
to implementation on this type of machine. The primary reason is
that the task size is too small and context switching would dominate
the computation. On the other hand, the processor-per-area designs
are better suited to implementation on a general purpose
multiprocessor. This is because the task size in these designs is large
enough to eliminate context switching problems, yet it can be varied
to handle load balancing in a variety of ways.

Other algorithms seek to distribute data to processors in a static
manner so that no further communication takes place between the
processors. After the graphics space is divided up, the hidden surface
removal and rendering calculations are performed within a single
processor for each section. Chang and Jain use this approach by
statically dividing up three-space and assigning P processors to P
regions. The disadvantage of this approach is that good load
balancing is not achieved since uniformity of the image is not a
realistic scenario. Whelan and Roble attempt to directly solve this by
using a static decomposition which determines to some degree the
amount of work assigned to each processor.

2.2.2.2. Polygons

Z-buffer
One of the more interesting sequential graphics display

algorithms is the Z-buffer due to Catmull [Catm74]. This algorithm
could be modified to process individual polygons as tasks. A parallel
version of the Z-buffer might work as follows. A full screen Z-buffer
memory is stored in globally shared memory and scattered

TEXAS INSTRUMENTS EX. 1011 - 53/229

44 Overview of Parallel Methods for Image Generation

throughout the system. Each processor scan-converts a single
polygon as a task and writes the pixel value into the scattered frame
buffer if the value of the Z-buffer is greater than the z-value of the
polygon at that pixel. To handle anti-aliasing, a very large Z-buffer
and frame buffer could be used and post-filtered down to the desired
output resolution. Although Parke and Theoharis ultimately use a Z
buffer, their decompositions are screen space subdivisions, although
Theoharis' has features of both. This method involves parallelism by
polygon with a shared Z-buffer.

The parallel Z-buffer algorithm suffers from the problem of
contention for a shared resource. This method would require constant
referencing of the Z-buffer array, and collisions in remote memory
access would likely occur, slowing down the algorithm tremendously.
This solution might be adequate for small processor configurations,
but would not be suitable for a large MIMD machine.

Allison
A slightly different version of a Z-buffer algorithm which has been

implemented on the BBN Butterfly TC2000 is due to Allison [Alli91].
His algorithm involves a parallel decomposition in which each object
is sent to a different processor for scan-conversion. The limitation of
this approach is that the algorithm is limited in its parallelism by the
number of objects in the scene. For scientific datasets, this may not
be that bad since most scientific programs use hundreds if not
thousands of objects. Another problem, as noted above, is the
contention for the shared Z-buffer. Synchronization is accomplished
by a lock on each pixel. Objects which cover a large portion of the
screen tend to slow the algorithm down, presumably because of
blocking of pixel access for other objects. This algorithm is an initial
stab at using the TC2000 for parallel processing of graphics
rendering. The only problem is that the success of the algorithm
depends to a large extent on the composition of the scene.

Fiume, Fournier, and Rudolph
Fiume, Fournier, and Rudolph [Fium83] simulated a version of a

spanning scan line algorithm for an ultracomputer, which would be
similar in design to the NYU Ultracomputer. The processors use the
Fetch and Add instruction (called RepAdd in the paper) to assure
atomic access to write operations in shared memory. They also
propose an addition, the RepMin operation, which would write and
replace the element in shared memory if the new one is less than it.
This could be used to perform the hidden surface elimination. The
polygons are broken down into span-areas which are related to
vertices rather than scan lines. Each span-area is a trapezoidal or

TEXAS INSTRUMENTS EX. 1011 - 54/229

Taxonomy of Parallel Graphics Decompositions 45

triangular region, and each processing element (PE) processes the
different areas in parallel. All PEs synchronize at the end of
processing for each scan line. The authors claim that this is not
necessary, and if sufficient memory is available, the technique could
be generalized to k scan lines, k ~ 1. An example distribution of PEs
is illustrated in figure 2.9.

One problem mentioned in the paper is that all PEs could be
waiting for a single PE to finish calculation on a long span. The
authors suggest subdividing a span if it is larger than some M
maximum number of pixels. In order to incorporate anti-aliasing into
the algorithm, a coverage mask (8 x 8) is used for the span-area
covering a pixel. The weight (mask) of a particular span-area is the
fraction of the area of the pixel covered corresponding to the number
of one bits assigned to the span-area. Anti-aliasing is calculated after
a PE has computed the hidden surface calculations for its pixels on
the scan line. The authors' goals were to achieve performance which
was better than a sequential algorithm, as well as a parallel method
for computing anti-aliasing.

The Fiume et al. algorithm suffers from a few limitations. First,
the fact that the processors need to synchronize at the end of a scan
line forces the algorithm to slow down to the speed of the slowest
processor, and this is done at every scan line. It is not clear whether
one could take advantage of multiple scan line parallel processing, as

/ ,
1 - f, - '" -::::=:7 - 1

~ r- ...
=:::1 2 t- ~

L \

3
\

" scan lmes

For marked scan line, a PE handles span-area 2 in first polygon, a PE handles
span-area 1 in second polygon, and a PE handles span-area 2 in overlapping
third polygon. Anti-aliasing and display is synchronized at end of scan line.

Figure 2.9: Trapezoidal span areas each processed by a separate PE per scan
line

TEXAS INSTRUMENTS EX. 1011 - 55/229

46 Overview of Parallel Methods for Image Generation

suggested by the authors in their paper, to solve this problem. The
reason is that it may be difficult to synchronize processing of the same
span-areas from scan line to scan line. The decomposition is a
dynamic approach, but is limited by the synchronization problem.
Scan line as well as pixel coherence is exploited. Since the ultracom
puter architecture seems to have fast context switching, the utiliza
tion of each processor is very good.

Load balancing is a difficult issue, since some processors may be
busy with large spans while others are processing short spans, even
with span subdivision. Scalability can be solved, but only if there are
more spans on the scan line to accommodate the additional
processors. The algorithm was not implemented on an actual
multiprocessor, so one cannot tell whether a large number of
processors would produce a good speedup. It seems that since the
parallelism is assigned to PEs by span areas (S) and if S < P , some
processors will go underutilized. This seems to be one of the major
limitations of the algorithm. Memory referencing is not as important
an issue, especially with the fetch and add instruction. The
constructs are somewhat different than in other multiprocessors, but
are not hard to program.

2.2.3. Summary
Based on the algorithms analyzed here, it seems logical that the
choice of an image space parallel algorithm based on rectangular
areas of pixels holds the most promise for high performance. Note
that the work decomposition strategy only amounts to a small portion
of the total parallel algorithm. The setup overhead prior to rendering,
in addition to the memory referencing strategy, represents an
additional issue that affect the overall performance. 'f4e implementa
tions analyzed in the remainder of this book are given next.

1. A scan line algorithm similar to the one introduced by Hu and
Foley. The dynamic assignment method shown by Hu and
Foley indicates a potential for good performance even with the
loss of vertical coherence. Since this algorithm was simulated
and not implemented, a multiprocessor implementation of this
algorithm is necessary to refute or substantiate their claims.
In addition, the database storage issue was not fully addressed
in their research.

2. A rectangular region algorithm such as the one suggested by
Kaplan and Greenberg as well as the one by Whelan. This

TEXAS INSTRUMENTS EX. 1011 - 56/229

Taxonomy of Parallel Graphics Decompositions 47

method seems to be the most logical choice for parallel
implementation since the granularity of tasks can be varied.
Although Kaplan and Greenberg determined that a finer
granularity yielded better performance, they did not analyze
this to any degree. Neither of these research efforts fully
addressed the memory storage and access issue, and their
results are based on simulations rather than real-world
implementations, so a full analysis is necessary.

3. An algorithm which uses a type of task assignment similar to
the static approach suggested by Whelan's Median Cut
algorithm. Whelan showed that this method resulted in the
best performance of all of his simulated algorithms. The
problem was that the overhead necessary to determine the task
decomposition prior to tiling degraded the overall performance.
A simpler type of static approach which is not as accurate as
the Median Cut algorithm might perform nearly as well, but
without the substantial overhead.

4. A task decomposition scheme which is similar to the
rectangular region algorithm involving task sizes determined
at runtime. This is based on an idea by Rao and Kumar
[Rao89] in which tasks are dynamically split during parallel
execution. This approach to load balancing would seem to be a
good extension to the rectangular region method.

While some algorithms listed here have been developed in the
past, they have not been thoroughly analyzed in terms of task
partitioning and memory referencing schemes. In particular,
previous efforts by other researchers have not addressed a number of
issues relating to computer graphics and parallel processing. These
previous efforts have largely been attempts at obtaining parallel
graphics display solutions without a thorough analysis of the problem.
Some of the issues not addressed in full include:

• Mapping of algorithm to intended architecture
• Size and distribution of tasks
• Memory distribution and communication
• Coherence and parallelism
• Load balancing

The preceding items are fully analyzed in the designs presented
in chapter 5. Since the algorithms are implemented on a particular

TEXAS INSTRUMENTS EX. 1011 - 57/229

