
160 Characterization of Other Parameters on Performance

global data referencing is taking place, although performance tails off
here as well. Unfortunately, the amount of testing done using the old
operating system was limited, so additional results could not be
obtained. It is clear from these results, though, that the operating
system in a shared memory multiprocessor has significant impact on
the overall performance. We feel confident that the latest version of
the GP1000 operating system is better geared to the current machine
and does indeed provide exceptional performance.

6.2.2. Comparison of Architectural Differences
In addition to the impact of the operating system, other factors can
affect overall algorithmic performance. For instance, one would like
to compare what would happen if a faster CPU or a faster switch node
were to be employed in the machine. BBN has continually updated
the Butterfly family of machines from the Butterfly 1, which used
MC68000 processors with 1 megabyte of memory per board, to the
current generation GP1000, which uses the MC68020 with 4
megabytes of memory per board. We were not able to test the algo­
rithms on the original Butterfly, but we were able to test them on the
next generation BBN multiprocessor, the TC2000. The TC2000 is a
similar design to the GP1000 but there are significant differences
which are illustrated in the tables on the page following the graphs.
Table 6.1 shows the difference in processor characteristics, while table
6.2 shows the difference in the memory characteristics for the GP1000
and TC2000. In general, the primary differences between the two
machines are the faster CPU in the TC2000, as well as a change in
the basic switch node component from a 4 x 4 crossbar to an 8 x 8
crossbar.

Table 6.1: Comparison ofBBN multiprocessor CPU characteristics

Machine CPU Clock MIPS MFLOPS
Speed

GP1000 M68020 16Mhz 2.5 0.6

TC2000 M88100 20Mhz 19 20

The faster CPU in the TC2000 necessitates a faster switch with
increased path width, and an 8 x 8 crossbar switch component solves
this problem. One impact of the increased size ofthe crossbar switch

TEXAS INSTRUMENTS EX. 1011 - 172/229

Machine Parameters 161

GP1000 Operating System Comparison

280

240

200

Time
(seconds)160

120

80

40

12 24 36 48 60 72 84 96
Processors

Figure 6.13: Comparison of old OS vs. new OS for mountain image,

rectangular region UD

320+---~--~--~--~--~~--~--+

240

200

Time
(seconds) 160

120

80

40

12 24

-&·Old OS

- e ·NewOS

36 48 60 72 84 96
Processors

Figure 6.14: Comparison of old OS vs. new OS for mountain image,
rectangular region LC

TEXAS INSTRUMENTS EX. 1011 - 173/229

162 Characterization of Other Parameters on Performance

is that fewer wires are needed between the switch columns in the
interconnection network. The 8 x 8 crossbar is more costly to produce
than the 4 x 4 but it does allow 8 simultaneous messages to be output,
whereas a 4 x 4 only supports 4 messages at a time.

Table 6.2: Comparison of BBN multiprocessor memory characteristics

Machine Cache Memory Switch Path Basic
per Board Speed Width Switch

Node

GP1000 no 4meg 8Mhz 4 bit 4x4

TC2000 yes 4 or 16 meg 38Mhz 8 bit 8x8

From the programmer's point of view, the TC2000 is functionally
the same as the GP1000. There are several small differences
regarding communication, however. The GP1000 supports the block
transfer mechanism in hardware, whereby a path is held open long
enough for 256 byte length messages. to go from one board to another.
In the TC2000, this operation is supported through software
emulation rather than hardware implementation. The TC2000 does
contain a memory cache which allows data to be allocated as cachable
or non-cachable. Although using the cache significantly enhances
performance, judicious management of this memory is required by the
programmer since no cache coherence scheme is supported. The
primary goal here is to compare the different algorithms under
different CPU and switch characteristics, so the algorithms were not
modified to take advantage ofthe cache.

The results, including times for the setup phase from the front
end plus the tiling time, are shown in figures 6.15, 6.16, 6.17, and
6.18. A thorough analysis of the scan line algorithm was deemed
unnecessary on the TC2000 due to its performance limitations noticed
on the GPlOOO.- It is, however, included for comparison purposes in
the next section of this chapter.

These graphs indicate similar performance in the algorithms
when compared to the previous graphs for the GP1000. The only
problem with this comparison is that the results on the TC2000 were
limited for most of the tests to a maximum of 48 processors, while
with the GPlOOO, 96 processors were consistently available.2

2we have included some data obtained on the TC2000 at 96 processors in
table 6.3. In general, though, due to the other users on the machine, only 48
processors were used for most of the tests.

TEXAS INSTRUMENTS EX. 1011 - 174/229

Machine Parameters 163

TC2000 Tiling + Setup Time Comparisons

- -e -Rect.-UO ---Rect. - LC · ·:>t·Tqrdown

-o -TaskA.- UD--+-TaskA. -LC

16 24 32 40 48
Processors

Figure 6.15: TC2000 algorithm com­
parison, stegosaurus image

2
e Rect - UO --e-Rect.-LC -~- Tq>-OOwn

o- Task A.- UO -•-Task A.- LC

16 24 32 40 48
Processors

Figure 6.16: TC2000 algorithm com­
parison, Laser image

10

8
Time

6

4

2 -<r Reel. - UD - e ·Reel. • LC - ~ -T q>-OOwn

~ ·Task A. -UD -•-TaskA. - LC

16 24 32 40

Processors

Figure 6.17: TC2000 algorithm
comparison, tree image

24 ~-·. ' ·. '
~ '· '

20 .. ~.:·-.',
.... ~ .. '· ' --:. ·. 'G

16
Time

"\~ ',
~::-:

48

-~~~~---
... -::;~:~~;;;.;;; .

8 • e ·Reel. - UD Rect - LC --:>t·T c:4)-00wn

12

4
<> ·Task A. - UD --+-Task A. - LC

16 24 32 40

Processors

Figure 6.18: TC2000 algorithm
comparison, mountain image

48

TEXAS INSTRUMENTS EX. 1011 - 175/229

164 Characterization of Other Parameters on Performance

In order to allow a fair comparison between the two machines, the
speedup was computed for each of the algorithms at 96 processors.
The task adaptive algorithm is used for this comparison, and the
results are shown in table 6.3.

Table 6.3: GP1000 and TC2000 speedup and time ratio comparison using 96
processors

Machine Stegosaurus Laser Tree Mountain

GPlOOO Speedup 70.3 73.3 68.1 82.1

TC2000 Speedup 61.3 59.3 56.4 70.6

Ratio of Execution
Times at P = 96: 8.6 8.7 8.0 8.8

GP1 OOOffC2000

As can be seen from the table, the TC2000 exhibits slightly
reduced speedup when compared to the GPlOOO on 96 processors for
most of the images. This could be caused by a number of factors,
ranging from the amount of work per task to the processor-to-switch
speed ratio. The last row in the table indicates the ratio of parallel
execution times of the TC2000 divided by the GPlOOO. From this
data, it appears that on 96 processors, the TC2000 is approximately
8.5 times faster than the GPlOOO for this problem.

6.2.3. Relationship of Machine Parameters to
Performance ·

In this section, we evaluate the various overheads on both machines
to see their differences. The comparison involves examining the total
processor-time space and comparing the results on the two machines.
Here, the overheads are evaluated with respect to P and comparison
values are shown to the right of each graph for the overhead
percentages at 48 processors. Also, the speedup is given at each
processor configuration. All of the algorithms are compared on the
GPlOOO and the TC2000 for the Laser image as a representative
example. Due to the volume of data and the CPU time involved in the
tests, only one image was used for comparison. Different results
would be obtained for the different test images, but the main interest

r

TEXAS INSTRUMENTS EX. 1011 - 176/229

Machine Parameters 165

here was to evaluate the trend in performance and directly compare
the percentages on various processor configurations.

6.2.3.1. Comparison of Overheads

The next five pages provide a direct comparison of the overhead
factors for all of the algorithms. The graphs include the total
processor-time space for each particular processor configuration, with
the overheads clearly marked as a percentage. Although the results
were measured up to 96 processors for the GPlOOO, the overhead
values given on the right side of the graph are for 48 processors so
they can be compared to the values for the TC2000 below.

6.2.3.2. Analysis
These results present a number of interesting phenomena not

noticed in any previous graphs. In the parallel scan line algorithm,
the latency and code modification overheads constitute almost the
same overhead percentage regardless of the processor configuration
on both machines. This makes sense since the number of tasks is
constant regardless of the number ofprocessors in this algorithm. In
the other cases, since the total number of tasks increases with the
number of processors, the overhead effects increase as· well. In some
cases, the load balancing may go down at some point but this may be
due to an increase in another factor as explained next.

With the exception of the task adaptive algorithm, the load
balancing is better on the TC2000 than in the GPlOOO. On the other
hand, the network contention, code modification, and latency/com­
munication are significantly worse. It seems that the increased delay
due to communication overheads and contention contribute to even
out the load in the algorithms on the TC2000 (recall that load
balancing cannot be measured independently from other factors).
Since these overheads are larger in the TC2000 than in the GP!OOO,
they contribute to an increase in the average task execution time.
This changes the load balancing since it is based on dynamic
scheduling of the tasks, as well as their execution time.

In the case of the task adaptive algorithm, the load balancing is a
direct result of dynamic task partitioning, and it is possible that the
tasks cannot be partitioned near the end of the computation due to
the imposed threshold. This effect may be more pronounced in the
TC2000 than in the GPlOOO due to the difference in the synchroniza­
tion and communication mechanisms.

TEXAS INSTRUMENTS EX. 1011 - 177/229

166 Characterization of Other Parameters on Performance

Comparison of Overhead Factors, GP1000 vs. TC2000,
Laser Image, Scan line Algorithm

1750

0 Sequential IIIII Ld Imbal. 0 Contention
e;:! Code Mod. Q Latency

1400 ~?:z~~~~i~llill Cwnulative i
Time 1050

700

350

8 16 24 32 48 64 96
Processors

Latency - 4.6%

Code Mod. -7.5%
Contention-10.0%
Load Imbalance -6.3%

Speedup

Figure 6.19: GPIOOO, scan line algorithm, UD, overhead comparison

80

40

D Sequential 1111 Ld Imbal. 0 Contention
1:3 Code Mod. 8 Latency

8 16 24 32 48

Processors

Latency - 9.0%
Code Mod. - 13.0%

Contention- 20.5%

Speedup

Figure 6.20: TC2000, scan line algorithm, UD, overhead comparison

TEXAS INSTRUMENTS EX. 1011 - 178/229

Machine Parameters 167

Comparison of Overhead Factors, GP1000 vs. TC2000,
Laser Image, Rectangular Region Algorithm, UD Scheme

0 Sequential II Ld lmbal. [) Contention
~ Latency C) Code Mod.

2100--.-----------------.,

700

350
Speedup

8 16 24 32 48 64 96
Processors

Figure 6.21: GPlOOO, rectangular region algorithm, UD, overhead comparison

0 Sequential 1111 l..d Imbal. 0 Contention
ea Latency [J CodeMod.

200
Code Mod. · 12.1%

160 Latency- 5.7%
Contention - 11.9%

120
Cumulative

Load Imbalance - 6.6%

Time
80

40
Speedup

0
8 16 24 32 48

Processors

Figure 6.22: TC2000, rectangular region algorithm, UD, overhead comparison

TEXAS INSTRUMENTS EX. 1011 - 179/229

168 Characterization of Other Parameters on Performance

Comparison of Overhead Factors, GP1000 vs. TC2000,
Laser Image, Rectangular Region Algorithm, LC Scheme

1600

1200

Cumulative
Time 800

400

0 Sequential ill Ld lmbal. [J Contention
f:a Comm. ~ Code Mod.

8 16 24 32 48 64 96
Processors

Code Mod.- 4.4%
Communication -0.04%
Contention - 1.2%
Load Imbalance- 7.9%

Figure 6.23: GPlOOO, rectangular region algorithm, LC, overhead comparison

0 Sequential Ill Ld lmbal. [] Contention
Zl Comrn. [J CodeMod. Code Mod. - 2.2%

150
Communication -0.28%
Contention -5.7% 120
Load Imbalance -6.5%

90
Cumulative

Time 60

30
~speedup

0
8 32 48

Processors

Figure 6.24: TC2000, rectangular region algorithm, LC, overhead comparison

TEXAS INSTRUMENTS EX. 1011 - 180/229

Machine Parameters 169

Comparison of Overhead Factors, GP1000 vs. TC2000,
Laser Image, Top-Down Algorithm

1600

1200

Cumulative
Time 800

400

0 Sequential II Ld lmbal. 0 Contention
0 Comm. e:J Code Mod.

Code Mod. - 3.5%

CommWlication -0.03%
itm1BmL Contentioo- 4.8%

Speedup

8 16 32 48 64 96

Processors

Figure 6.25: GPlOOO, top-down algorithm, LC, overhead comparison

0 Sequential 11!11 Ld lmbal. [] Contention
ea Conun. G CodeMod.

Code Mod.- 2.3%
!50

Communication - .35%

120 Cootention- 14.5%
Load Imbalance -3.0%

90
Cumulative

Time
60

30

Speedup
0

8 16 32 48

Processors

Figure 6.26: TC2000, top-down algorithm, LC, overhead comparison

TEXAS INSTRUMENTS EX. 1011 - 181/229

170 Characterization of Other Parameters on Performance

Comparison of Overhead Factors, GP1 000 vs. TC2000,
Laser Image, Task Adaptive Algorithm

0 Sequential 111 Ld lmbal. III Contention
f0 Comm. Q Code Mod. lSI Synch.

1600

1200

Cumulative
Time 800

Synchronization - 0.23%
Code Mod. - 1.6%
Commtmication - 0.14%
Contention - 3.0%
Load Imbalance - 6.0%

400

8 16 24 32 48 64 96
Processors

Figure 6.27: GPlOOO, task adaptive algorithm, LC, overhead comparison

0 Sequential Ill Ld Irnbal. III Contention
e:3 Synch. e! Comm. lSI Code Mod. Synchronization - 1.8%

160 :r--------Eis~~CodeMod.-1.3%
140 Commtmication - 1.0%
120 Contention - 11.3%
100 Load Imbalance- 8.5%

Cumulative
80

Time
60

40

20

0+---+---t---t--+----l
8 16 24 32 48

Processors

Speedup

Figure 6.28: TC2000, task adaptive algorithm, LC, overhead comparison

TEXAS INSTRUMENTS EX. 1011 - 182/229

Scene Characteristics 171

The probable cause for the general network contention increase in
the TC2000 over the GPlOOO could be attributed to these factors:

1. The increase in switch speed in the TC2000 over the GPlOOO
does not match the corresponding increase in processor speed,
therefore more collisions in the network switch are likely to
occur.

2. The hardware support for block transfers in the GPlOOO is not
available in the TC2000 (this was used in the LC scheme).

It seems likely that the cause for the general network contention
increase could be a combination of both of these reasons, especially for
the LC scheme which extensively uses the block transfer mechanism.
Although the TC2000 contains a cache as well as support for use of
fine grained interleaved shared memory, neither of these characteris­
tics is used in the implementation of the algorithms. The cache does
not affect performance in the LC schemes, however, since the remote
data is copied to local memory, where it is then cached as local data.
In addition, the fine grain interleaving is not needed and would not
provide better performance anyway since the shared data is already
scattered among the memory modules. In the next section, the effect
of enhancing the characteristics of computer graphics scenes is ana­
lyzed to determine the overall performance differential.

6.3. Scene Characteristics
One of the reasons different images are used for performance
comparisons throughout this book is that it is desirable to be able to
generalize these results to apply to all computer generated scenes. Of
course this is an impossible task since there are always pathological
cases one cannot predict. In the experiments four scenes were used
which have different characteristics in screen area projection, number
of data elements, and depth complexity. In this section, these same
four scenes are analyzed, along with several new ones which have
added scene complexity in one form or another. These break down
into two categories: image complexity and object complexity .

In his thesis, Whelan analyzes several scenes which vary in
complexity in terms of both of the above categories. His conclusions
merely represent what most researchers intuitively realize, but they
are worth repeating here:

1. Scenes are not usually composed of uniformly distributed
polygons.

TEXAS INSTRUMENTS EX. 1011 - 183/229

172 Characterization of Other Parameters on Performance

2. As the number of polygons increases, their size generally
decreases. Somescenes may have a few large polygons which
take up a significant portion of the drawn area on the screen.

3. Most polygons have few edges.
4. The aspect ratio of polygons is non-uniform, although some

scenes seem to be oriented towards a particular direction.
5. The depth complexity of most pixels is fairly small (less than

six), although some scenes obviously violate this rule.

It is not necessary to repeat Whelan's analysis for the scenes used
here since it does not categorize scenes in terms of their difficulty in
the various rendering stages. His analysis does point out that non­
uniformity in scenes is the norm, so a parallel graphics algorithm
must take this into account and perform well under various
circumstances. The algorithms presented in this book are general
purpose and are designed to handle various input scenes rather than
a specific type. One cannot categorically draw a relationship between
a given algorithm and say, the depth complexity of an image. Even if
this were the case, does that information provide anything useful to
the user community? In general, the algorithm should perform well
on all imagery and should have the capability of handling pathological
cases with some efficiency. This is more useful than algorithm
analysis based upon depth complexity, polygon area coverage, or some
other factor.

In the following sections, the different algorithms' performance is
compared using an increase in image complexity in the first
subsection and an increase in object complexity in the second
subsection.

6.3.1 . Image Complexity
Image complexity refers to the addition of features to a scene to make
a higher quality image. Such additional features can include:
rendering at higher resolution, advanced anti-aliasing, texture
mapping, shadow generation, and bump mapping to name a few.
Texturing, shadowing, or bump mapping, have not been implemented
here since these features require careful planning in order to be
implemented efficiently in parallel. This is primarily due to the
additional memory required for each of these features, plus the desire
to avoid contention for this memory. Anti-aliasing has already been
incorporated into this algorithm, and all of the data presented so far
includes this feature. Therefore, increasing spatial resolution is con-

TEXAS INSTRUMENTS EX. 1011 - 184/229

I
J

Scene Characteristics 173

centrated on here, and a comparison of the other features is left for
future work.

All ofthe previous scenes are re-tested at double resolution (1280
x 968) to evaluate the performance of the different algorithms under
these conditions. The first set of graphs involves a comparison
similar to the others in this chapter, in which the setup phase as well
as the tiling time is taken into account. The speedup and efficiency
are given in the second set of graphs.

As a representative example of the times for the high resolution
computations, the results for the mountain image are shown in fig­
ures 6.29 and 6.30, but the graphs for all the images are included in
the appendix in figures A21 through A28. These graphs are zoomed
in to show more detail at the higher processor counts. The speedup
for the mountain image on the GPlOOO using the task adaptive
algorithm is shown in figure 6.31, and the efficiency for this image in
figure 6.32. Since communication is the same as before but there is
an increase in work due to the increased resolution, the algorithms
are more efficient. Table 6.4 shows the speedup and efficiency for
each ofthe images when calculated at high resolution on the GPlOOO,
versus normal resolution using the task adaptive (LC) algorithm.

Table 6.4: Tiling section comparison of speedup and efficiency for normal
resolution images vs. high resolution images on GPIOOO, 96 Processors

Images Normal High Normal High

(#polygons) Resolution Resolution Resolution Resolution
Speedup Speedup Efficiency Efficiency

Stegosaurus (9K) 71.4 86.5 0.74 0.90

Laser (46K) 73.6 80.0 0.77 0.83

Tree (106K) 70.5 84.6 0.73 0.88

Mountain (131K) 82.2 87.6 0.86 0.91

The data from the table indicates that the speedup varies widely
among the images, but the single common result is that the additional
work in the high resolution images provides better speedup and
efficiency than in the normal resolution case. It is likely that the
reason for the improved speedup is that the ratio of work to
communication time has increased, thus reducing the network
contention percentage.

TEXAS INSTRUMENTS EX. 1011 - 185/229

17 4 Characterization of Other Parameters on Performance

High Resolution Tiling + FE Comparison

123

111

Time

99

87

--0-Rect - UD - e Reel. - LC

- ~ Task A. · UD --+-Task A.- LC
75 4-~--------~~--------~~~

64 80 96

Processors

Figure 6.29: Rectangular vs. task adaptive on GPlOOO, mountain image, high­

res

\ ·.
\ ·.

50 \ ' ' . ' ·.
~~. '~· ..

...:. \•
40 ,._ '

-~ I Time ~- -a
,~~.<!).·~

30 ·· .:-,

20 '<~:t~::-:;;;,,>'
· -o-Rect-UO -e-Rect~Lc:.::.:::;~

10 -<>· Task A.- UO · +Task A.- LC

16 24 32 40 48

Processors

Figure 6.30: Rectangular vs. task adaptive on TC2000, mountain image, high­
res

TEXAS INSTRUMENTS EX. 1011 - 186/229

Scene Characteristics 17 5

Speedup and Efficiency of High Resolution Image

84

72

60
Speedup

48

36

24

· •-Speedup

Ideal Speedup

0 12 24 36 48 60 72 84 96

Processors

Figure 6.31: Speedup for high-res mountain image, GPlOOO

0.8 -

-
0.6 -

Efficiency -
0.4 -

-
0.2

---- .
- ---.-- -- ---·

-e -Efficiency
0 1-o-ro-.-..-.-~-r~.-~~-+

0 12 24 36 48 60 72 84 96

Processors

Figure 6.32: Efficiency for high-res mountain image, GPIOOO

TEXAS INSTRUMENTS EX. 1011 - 187/229

176 Characterization of Other Parameters on Performance

This is logical since the amount of network traffic has not
changed, but the amount of work has increased due to the increase in
spatial resolution. In the next section, the algorithms are compared
on a different set of images which involve much higher numbers of
polygons to see the expected times on these datasets.

6.3.2. Object Complexity
One of the goals of this work was to present solutions for developing a
highly efficient parallel rendering algorithm which allows extremely
fast computation of complex imagery. To this end, new datasets are
evaluated which contain a considerably greater number of polygons.
Examples of two highly complex datasets are the rings image in color
plate 5 and the dense tree image shown in color plate 6. The dense
tree image has more polygons than the previously evaluated tree
image, particularly in the twigs. Due to the amount of memory
required for the tree dataset, it is not possible to evaluate speedup
and efficiency since not enough physical memory was available even
locally. All of the images are evaluated based on their total time, as
well as the number of polygons rendered per second. Hardware
manufacturers typically quote a figure of polygons per second in
evaluating hardware Z-buffer graphics workstations. A typical
example of this type of machine is the HP-320/SRX. Some of the
images which were evaluated previously have been rendered on this
machine by Eric Haines, who developed the SPD database from which
the tree, mountain, and rings datasets were extracted. Table 6.5
shows a comparison of all the images and the effective number of
polygons per second achieved. These results were obtained using the
task adaptive algorithm on 96 processors of a BBN TC2000.

In comparison to the values in the table, Haines ran some of the
same tests on the HP-320/SRX [Hain87b]. In rendering the dense
tree, 4835 polygons/second was achieved. Using a denser version of
the rings image (87 4 K polygons) than employed here, the HP-
320/SRX achieved 4819 polygons/second. For comparison, a current
example of a state of the art graphics superworkstation is the Silicon
Graphics Iris 4D VGX [Haeb90]. The manufacturer quotes a figure of
750,000 Gouraud-shaded triangles per second for this machine.

This value for the hardware performance is based on Gouraud
shaded polygons which are not anti-aliased. Our data is for Phong
shaded polygons with specular highlights and stochastic sampled
anti-aliasing. Although it is difficult to compare exactly, the addition
of Phong shading typically might cost 3 times as much as Gouraud
shading, in addition to the anti-aliasing cost which is about 4 times as

TEXAS INSTRUMENTS EX. 1011 - 188/229

Conclusions 177

Table 6.5: Effective rendering rate and speedup using 96 processors on BBN

TC2000, task adaptive algorithm

Images #Polygons Time Polygons/Second Speedup
(sec.)

Stegosaurus 9,639 1.14 8,455 61.3

Laser 46,393 2.02 22,967 59.3

Tree 106,289 2.94 32,907 56.4

Mountain 131,072 4.12 29,857 70.6

Rings 567,841 9.90 52,239 85.6

Dense Tree 851,288 8.81 80,690 58.9

much for stochastic sampling as it is for a Z-buffer. Also, the amount
of physical memory required to support over 500,000 polygons is most
likely not available within a graphics workstation, and this will
almost certainly slow down the hardware. Nevertheless, the results
given here are significantly faster than a slightly older generation
graphics workstation and might compare favorably with a current
generation machine. When the fact that the rendering is done in
software rather than hardware in this algorithm is added, the benefit
is that much greater since the software version allows much more
flexibility in its use. This is elaborated upon in the next chapter.

6.4. Conclusions
Based on all of the data reported in this chapter, it seems clear that
the task adaptive algorithm utilizing the LC memory referencing
scheme provides the best performance for all types of imagery among
the methods implemented. Besides performance, other advantages of
the task adaptive approach are:

1. It is unnecessary to determine an initial optimal granularity
ratio for this algorithm. The number of areas chosen initially
corresponds to the number of processors in the system, and
high performance is achieved regardless of machine configura­
tion. In the other algorithms, this ratio must be derived for
each image independently for the best performance.

TEXAS INSTRUMENTS EX. 1011 - 189/229

178 Characterization of Other Parameters on Performance

2. The load balancing in the task adaptive approach is completely
dynamic, based on the amount of work left. Because of this,
worst case scenarios, such as all of the data being located in
one portion of the screen, can be handled effectively while the
other algorithms will not perform nearly as well in this type of
situation.

3. This approach has minimal time cost in the setup phase of the
front end since the number of areas is very small initially.
Hence, this time is much less than in the other algorithms.

In summary, the first section of this chapter presents an analysis
of several different memory referencing strategies. Based on this
theoretical analysis, the Uniformly Distributed and Locally Cached
schemes are shown to only differ by several tenths of a second. A
description regarding the implementation of both of these schemes is
then presented in detail After comparing the results of the
implementations, it is clear that the LC scheme combined with the
task adaptive decomposition method results in the best performance
for all the test imagery. The setup time from the front end for each
approach is included for the timings, in order to allow a fair
comparison and substantiate this fact. The theoretical analysis of the
memory reference strategies indicated that there would only be a
small difference between the UD and LC schemes. Instead, the
difference is much larger due to the fact that network contention is
not accounted for in the theoretical analysis. This contention is an
important degradation factor since it is significantly smaller in the
LC scheme than it is in the UD scheme.

The second section involves a comparison of the different parallel
algorithms with respect to changes in the underlying machine
parameters. It is shown that a change in the GPlOOO operating
system which allows parallel page faults markedly improved
performance over the previous version of this operating system.
When using the next generation version of the BBN multiprocessor
known as the TC2000, the faster CPU and network switch improves
performance in all cases almost an order of magnitude over the
GPlOOO. The task adaptive algorithm using the LC scheme proves to
be the best performer for this new machine as well. A comparison of
overhead factors between the two machines reveals that network
contention plays a more significant role in degrading performance in
the TC2000 than in the GPlOOO when measured at 48 processors,
however. A possible explanation is that the interconnection network
speed increase from the GPlOOO to the TC2000 does not match the

TEXAS INSTRUMENTS EX. 1011 - 190/229

Conclusions 179

corresponding increase in the CPU performance. As a result, tasks
execute faster, but the communication of data is more frequent,
leading to a greater possibility of a blocked path in the network. The
TC2000 offers enhancements to memory referencing (such as a
hardware cache) that are not incorporated into the implemented
algorithms. It is possible that if these are utilized, the effects of
network contention could be reduced.

The third section in this chapter involves an analysis of the effect
of increasing image and object complexity in the test scenes. Re­
evaluating the performance of the algorithms at a resolution of 1280 x
968 on the mountain image reveals a speedup of87.6 on 96 processors
using the task adaptive algorithm on the GPlOOO. In addition, using
a highly complex scene with over 800,000 data elements, an effective
polygon rendering rate of over 80,000 anti-aliased Phong shaded
polygons per second is achieved on 96 processors of a TC2000. This is
most likely the fastest rendering ever realized to this point using a
software algorithm on a general purpose MIMD architecture for
graphics rendering.

TEXAS INSTRUMENTS EX. 1011 - 191/229

7

Conclusion

This book has primarily concentrated on the development and
analysis of various approaches to tiling three-dimensional computer
generated scenes on a multiprocessor. In doing so we have presented
the following:

1. A categorization of possible parallel approaches to graphics
rendering into a taxonomy according to graphical task
decomposition.

2. A number of methods which incorporate parallelism in all
aspects of a graphics rendering program.

3. A quantitative analysis of various degradation factors
encountered in a multiprocessor graphics display algorithm
implementation.

4. The development of general task partitioning and memory
referencing strategies which may be used in other graphics
rendering algorithms, as well as non-graphics applications.

These will be described in detail in the following sections.

181

TEXAS INSTRUMENTS EX. 1011 - 192/229

182 Conclusion

7.1. Summary
In the past, research in the area of parallel graphics rendering has
concentrated primarily on approaches to tiling a scene. This portion
of the program involves the hidden surface removal and subsequent
smooth shading operations necessary to establish a realistic
rendering. Although this is the most time consuming portion of a
graphics display program, little work has been spent on the
development of parallel approaches to the front end and back end of
such a program. If this is not done, the advantage gained in
parallelizing the tiling portion will be lost when the other parts are
executed sequentially. Although the front end and back end portions
of the programs presented here were not analyzed fully, a pipelined
approach was developed t speed up significantly these segments of the
algorithms. In addition, these phases are well integrated with the
tiling portion of the programs, thus providing a general purpose high
performance approach to parallel rendering which could be used in
real-world applications. This means that the parallel programs
presented here will provide faster speed than other programs
developed in the past which do not incorporate parallelism into the
non-tiling phases.

The results in chapter 6 indicate that the task adaptive algorithm
maintains the highest performance of the image space algorithms
which were implemented. By splitting tasks into areas dynamically,
the maximum amount of coherence is maintained in this approach.
The setup time in the front end is small since the number of areas
created initially is reduced in comparison to the other approaches.
This is due to the fact that the initial number of areas chosen is equal
to the number of processors currently available in the system. The
added advantage here is that it is unnecessary to find an optimal
granularity ratio prior to tiling the scene, as opposed to the other
algorithmic approaches. Another advantage of this scheme is that
worst case situations, such as a high concentration of data in a small
portion of the image, are handled elegantly and will not present a
problem. This algorithm, when combined with the Locally Cached
memory referencing scheme, offers the best overall performance on
the tested datasets. In addition, based on the timings shown in both
chapter 5 and chapter 6, the algorithm performs well all the way up
to 96 processors on both Butterfly multiprocessors. An efficiency of
over 90% was obtained with the mountain image on 96 processors on
the GPlOOO. In addition, using the rings database which contains
over 500,000 polygons, an efficiency of 84% was obtained on the
TC2000 computer. This indicates that parallel processing of

TEXAS INSTRUMENTS EX. 1011 - 193/229

Summary 183

computer graphics rendering is a cost effective solution for use with
very complex datasets.

Based on the data presented in this book, it seems that the less
complicated approaches to parallel decomposition obtain the highest
performance. Many researchers have challenged this notion by
developing complicated solutions to the parallel rendering problem.
While this may be necessary in a hardware environment, it usually
compromises performance in the software environment due to the
extra overheads of synchronization, etc. The simple techniques
presented here for dynamic task decomposition, along with judicious
memory management schemes, combine to solve the problem in a
straightforward manner.

One common misconception that might be perceived regarding
parallel display algorithms is that when graphical coherence is lost,
performance will suffer greatly. Indeed, coherence has played a
significant role in enhancing the development of serial display
algorithms. In a parallel context, however, even when a large number
(2,304) of areas is created, the overhead is limited to only about 6% of
the total execution time. Clearly, an approach which uses groups of
small scan line areas reduces the overhead due to coherence. The loss
due to lack of coherence is not as great as one might think, so parallel
processing of areas does not add significant overhead to the serial
approaches developed in the past.

In general, other factors play a more important role than
coherence in the performance of the parallel algorithms. Most of the
degradation relates to either load balancing or communication. One
of the important facts brought out here is that an algorithm which
strictly emphasizes load balancing does not guarantee the best
performance. This is shown in the times for the data adaptive
algorithm. This algorithm does exhibit the least amount of overhead
due to load imbalance; however, the implementation of this approach
forces additional overhead to be incurred in other parts of the
algorithm that negate the gains achieved by a balanced load.

Memory usage also plays an important role in a number of ways.
The Uniformly Distributed (UD) memory referencing scheme
introduces latency, while the Locally Cached (LC) memory
referencing scheme requires communication using block transfers. As
a result of the large volume of message traffic due to retrieving data
in the UD scheme, a significant amount of network contention is
introduced. The LC scheme minimizes this factor, but it still plays an
important role in the degradation in performance, especially on large
processor configurations. Network contention is difficult to predict
since it is related to the number of requests for paths in the

TEXAS INSTRUMENTS EX. 1011 - 194/229

184 Conclusion

interconnection network at a given time. When the interval between
requests is large, the contention is small, and vice versa. This
explains why an analytical model that does not relate network
contention to communication in the system will not accurately predict
performance. Although researchers have developed a good model
[Nand90] for computation in this type of environment, it is difficult to
use in the context of a complex algorithm such as this one. The task
adaptive algorithm uses larger tasks which require communication
less frequently than the other approaches, except toward the end of
the computation. Contention is not reduced in this approach, though,
since the issue of how to limit the burst of communication at the end
of the computation due to the large amount of task splitting has not
been fully addressed.

The Butterfly interconnect is an example of a high' speed network,
but contention still plays an important role in the algorithms shown
here. This should be taken into account in the implementation of any
program involving a large amount of data movement. The problem of
network contention can be resolved if the usage of the network is
reduced or more switch paths are made available in the hardware.
The latter is not usually a solution available to the programmer, so
the former approach must be taken. This was used in the LC memory
referencing strategy which was developed solely for the purpose of
limiting communication in the system. Further refinements of this
scheme could be added to reduce the number and size of the
messages, particularly in the case of the task adaptive algorithm.

The following generalizations can be made regarding implementa­
tions on parallel machines of algorithms with high data movement,
such as the ones developed here. The memory referencing strategy
directly affects performance in the system since it is directly related
to the communication of data. The frequency and amount of commu­
nication determines the overall degradation due to network con­
tention. Any reduction of this factor is certain to provide high per­
formance, especially in applications where there is a large dataset
requiring frequent referencing. Another point is that global
scattering of data among the memory modules in a shared memory
NUMA machine is necessary to counteract the problem of hot spot
contention. Using some type of caching scheme to bring in data to the
local memory module prior to referencing is crucial to high
performance since it minimizes network traffic and reduces latency.
Finally, the coarsest granularity for tasks which allows adequate load
balancing is the best approach to take in order to achieve good
parallel timings. The graphs of granularity ratio versus overhead
effects (figures A5, A.6, A. 7, and A8) show that other overhead

TEXAS INSTRUMENTS EX. 1011 - 195/229

Summary 185

factors are increased when the granularity becomes too fine. As an
example, the task adaptive approach uses the smallest number of
tasks to minimize these effects in comparison to the other
decompositions.

From the results presented herein, it can be seen that high
performance can be achieved in a graphics display algorithm on a
parallel architecture. Since graphics applications tend to be data
intensive, the memory must be managed effectively, something which
has not been done in some parallel graphics algorithms developed in
the past. Other graphics applications such as volume rendering,
image processing, and radiosity can take advantage of some of the
techniques described here for use in a parallel environment. For
instance, the LC memory referencing scheme could be modified for
usage in each of these instances since the data to be rendered for a
particular task is known a priori. In addition, the task adaptive algo­
rithm could also be modified for task partitioning purposes for these
rendering techniques. In addition, non-graphics applications can also
utilize the techniques described here. Example applications might
include geographical information systems, global climate modeling,
finite element simulation, and applied graph theory.

During the development of this project, many problems were
encountered when implementing the parallel algorithms on the
Butterfly. Several software tools available with this machine made
program development much easier than it otherwise might have been.
Gist is a performance analysis package which shows a graph of
processors versus time in an X-window display. By setting events at
critical time points in the program, one can evaluate the performance
of the program by looking at how long a particular phase takes to
execute on each processor. The graphical output of this tool aids in
the programmer's understanding of the processor-time graph. A
parallel profiler is also · available which can generate individual
processor profiles and this is also a useful tool for evaluating program
performance. The primary software tool that allows greater
understanding of the internal nature of the parallel aspect of the
programs is a parallel debugger called TotalView. Without this tool,
situations like race conditions, synchronization problems, and shared
memory problems would have been much more difficult to debug.
This environment made program debugging, testing, and analysis an
easy interactive task which hastened the development of the
evaluated programs.

Even with the fact that BBN is no longer building the Butterfly,
scalable shared memory multiprocessors are not dead. Clearly,
latency and contention issues are the primary target areas for

TEXAS INSTRUMENTS EX. 1011 - 196/229

186 Conclusion

improvement. Tera Computer Company is designing a machine to
combat both of these issues in a scalable shared memory architecture.
Message passing machines seem to be growing in popularity, and it
would be useful to determine how these types of machines could be
used for fast graphics rendering. While the memory referencing
strategies of the algorithms presented here might need to be modified
for this type of machine, the work decomposition methods would not
require modification. It is possible that a number of different
decomposition strategies will lead to good results due to the different
topologies and communication performance in these architectures. In
addition, message passing architectures have distributed memory like
the Butterfly so an extension of the LC memory referencing scheme
might prove to be a viable solution in that environment.

The analysis and performance results given in this book should
serve as a guide to the reader regarding the critical issues involved in
the development of a parallel graphics rendering program. In
addition, the algorithmic possibilities which are worthwhile taking
into account during the development and tuning process have been
presented and can certainly be modified according to the machine
available to the programmer.

7.2. Future Work
There are still a number of unanswered questions which have not
been addressed in this book, in addition to new questions brought out
by the results reported here. Next, these are elaborated upon with
regard to potential future areas of work.

In relation to machine parameters, it would be interesting to see
what new issues are encountered on a very large multiprocessor
containing 512 or an even greater number of processors. It is entirely
possible that the algorithms will need to be changed to handle this
type of situation. As the speed of microprocessors has increased over
the years, the interconnection network speed has not increased as
quickly. While the TC2000 network is faster than the GPlOOO
network, it seemed to incur greater network contention. This is most
likely due to the fact that the performance of the interconnection
network was not increased at the same rate that the processor speed
was increased. It would be interesting to analyze this phenomenon in
detail, not just for graphics algorithms, but for other applications as
well. This might provide insight for hardware as well as software
designers when planning a program for parallel implementation.

Another machine characteristic specifically relevant to the
TC2000 is the use of the hardware cache as well as interleaved shared

TEXAS INSTRUMENTS EX. 1011 - 197/229

Future Work 187

memory. The cache provides fast access to read-only shared data
which is stored globally. On TC2000 machines which contain 16
megabytes of memory per processor, it is possible to configure a
portion of the memory on each processor as fine-grained interleaved.
The programmer no longer has to make sure that the data is
scattered across the memory modules since it is implicitly done in this
case. In addition, the granularity of interleaving is much finer than
was possible before, so that even a one-dimensional array can be
scattered among the memory modules. The combination of using the
cache with storing read-only data in the interleaved shared memory
might produce better results than the LC scheme developed in this
book, but the cachable data would need to be managed effectively.
This would alleviate the programmer from the burden of
programming the complex code necessary to implement the LC
scheme.

Other researchers have investigated techniques by which the
operating system manages the storage and access of shared memory
in an NUMA architecture such as the Butterfly [Laro90]. This level
of management by the operating system allows use of a memory
referencing method such as the UD scheme which is easy to develop,
while the operating system manages the location and storage of data
and attempts to optimize it for high program performance.

Other future work in developing parallel graphics display
algorithms might look at different implementations of memory
referencing schemes, investigate methods to alleviate communication,
and look at the handling of even larger graphics datasets. Graphics
features such as shadows, texture maps, bump maps, and motion blur
also present interesting challenges to a parallel implementation.
Each ofthese features requires additional memory, and the use of the
memory in some cases cannot be localized. For instance, texture
mapping requires referencing a two-dimensional array of pixel values
to assign a more detailed property to a particular polygon or object. If
the map is scattered throughout memory, hot spot contention will be
minimized, but memory latency will occur. A caching technique like
the LC scheme could be used to bring in the portion of the map that is
relevant for a particular polygon or object. This method might require
a very large portion of the texture, and there may not be enough local
processor memory to facilitate this type of approach. Another
enhancement which might be worth investigating in the future
involves fast update of small scenes in real-time. In fact, this is the
type of work that is currently being investigated for scientific
visualization at Lawrence Livermore National Lab. We hope to report
on the success of this project in the future.

TEXAS INSTRUMENTS EX. 1011 - 198/229

[ABRA86]

[AHUJ86]

[ALLI91]

[AMDA67]

[APGA88]

[ARVI86]

[BAD090]

[BAUM90]

188

References

Abram, G. Parallel Image Generation with Anti­
Aliasing and Texturing, Ph.D. dissertation, University
of North Carolina at Chapel Hill, 1986.

Ahuja, S.; Carriero, N.; and Gelernter, D. "Linda and
Friends." IEEE Computer 19, 8 (August 1986) pp. 26-
34.

Allison, M. Private communication, July, 1991.

Amdahl, G. "Validity of the Single-Processor Approach
to Achieving Large-Scale Computer Capabilities."
AFIPS Conference Proceedings 30{1967) pp. 483-485.

Apgar, B.; Bersack, B.; and Mammen, A. "A Display
System for the Stellar Graphics Supercomputer Model
GS1000." Computer Graphics, Proceedings of Siggraph
22, 4 (August 1988) pp. 255-262.

Arvind and Ianucci, R.A. "Two Fundamental Issues in
Multiprocessing.- "Tech. Rept. 226-4, MIT Laboratory
of Computer Science, Cambridge, Massachusetts,
March, 1986.

Badouel, D.; Bouatouch, K; and Priol, T. "Ray Tracing
on Distributed Memory Parallel Computers:
Strategies for Distributing Computations and Data."
Course Notes for Course 28, Siggraph (1990) pp. 185-
198.

Baum, D.R. and Winget, J.M. "Real Time Radiosity
Through Parallel Processing and Hardware
Acceleration," Computer Graphics 24, 2, (March 1990)
pp. 67-75.

TEXAS INSTRUMENTS EX. 1011 - 199/229

(BBN84]

(BBN89A]

(BBN89B]

(BERM87]

[BLIN77]

(BURK90]

(CARP84J

(CASP89]

[CATM74]

(CHAL91]

[CHAN81]

References 189

BBN Laboratories, Inc. Development of a Butterfly
Multiprocessor Test Bed, The Butterfly Switch, July,
1984, Report No. 5874.

BBN Advanced Computers, Inc. Programming in C
with the Uniform System, 1989.

BBN Advanced Computers, Inc. Butterfly GP1000
Switch Tutorial, March, 1989.

Berman, F. and Snyder, L. "On Mapping Parallel
Algorithms into Parallel Architectures." Journal of
Parallel and Distributed Computing 4(1987).

Blinn, J.F. "Models of Light Reflection for Computer
Synthesized Pictures." Computer Graphics,
Proceedings ofSiggraph 11(1977) pp. 192-198.

Burke, A. and Leier, W. "Parallelism and Graphics:
An Introduction and Annotated Bibliography." Course
Notes for Siggraph Course 28, ACM Siggraph
Conference (1990) pp. 111-140.

Carpenter, L.C. "The A-Buffer, an Anti-Aliased
Hidden Surface Method." Computer Graphics,
Proceedings of Siggraph 18, 3 (1984) pp. 103-108.

Caspary, E. and Scherson, I.D. "A self-balanced
parallel ray-tracing algorithm," in Parallel Processing
for Computer Vision and Display, P.M. Dew, T.R.
Heywood, and R.A. Earnshaw, editors, Addison­
Wesley, 1989, pp. 408-419.

Catmull, E. A Subdivision Algorithm for Computer
Display of Curved Surfaces, Ph.D. dissertation, NTIS
A004 968, University of Utah, December 1974.

Challinger, J. "Parallel Volume Rendering on a
Shared Memory Multiprocessor." UCSC-CRL-91-23,
University ofCalifornia, Santa Cruz, 1991.

Chang, P. and Jain, R "A Multi-Processor System for
Hidden Surface Removal." Computer Graphics 15, 4
(December 1981) pp.405-436.

TEXAS INSTRUMENTS EX. 1011 - 200/229

190 References

[CHEN88]

[CLEA83]

[COOK82]

[COOK86]

[COOP87]

[CROC91]

[CROW77]

[CROW88A]

[CROW88B]

[DEER88]

Chen, M.C. "Mapping Parallel Algorithms onto
General-Purpose Parallel Machines." Proceecf.ings of
the 21st Annual Hawaii International Conference on
System Sciences 1(1988).

Cleary, J.G;, Wyvill, B.M.; Birtwistle, G.M;, and Vatti,
R. "Multiprocessor Ray Tracing." Tech. Rept.
83/128/17, University of Calgary, 1983.

Cook, R.L. and Torrance, KE. "A Reflectance Model
for Computer Graphics." ACM Transactions on
Graphics 1(1982) pp. 7-24.

Cook, R.L. "Stochastic Sampling in Computer
Graphics." ACM Transactions on Graphics (January
1986).

Cooper, E. C. and Draves, R.P. "C Threads." Internal
Research note of the Mach Project, Carnegie Mellon
University, April, 1987.

Crockett, T.W. and Orloff, T. "A Parallel Rendering
Algorithm for MIMD Architectures," ICASE Tech.
Rept. No. 91-3, NASA Langley Research Center,
June, 1991.

Crow, F.C. "Shadow Algorithms for Computer Graph­
ics." Computer Graphics, Proceedings of Siggraph 11,
3 (July 1977) pp. 242-248.

Crow, F.C. "Parallelism in Rendering Algorithms."
Proceedings of Graphics Interface (June 1988).

Crow, F.C; Demos, G.; Hardy, J.; McLaughlin, J.; and
Sims, K "3D Image Synthesis on the Connection
Machine." Proceedings of the International Conference
on Parallel Processing for Computer Vision and
Display (January 1988), Leeds, UK

Deering, M.; Winner, S.; Schediwy, B.; Duffy, C.; and
Hunt, N. "The Triangle Processor and Normal Vector
Shader: A VLSI System for High Performance
Graphics." Computer Graphics, Proceedings of
Siggraph 22,4 (August 1988).

TEXAS INSTRUMENTS EX. 1011 - 201/229

[DIED88]

[DYER87]

[FIUM83]

[FRAN80]

[FRAN90]

[FUCH79]

[FUCH85]

[FUCH89]

References 191

Diede, T.; Hagenmaier, C.F.; Miranker, G.S.;
Rubinstein, J.; and Worley, W.S. Jr. "The Titan
Graphics Supercomputer Architecture." IEEE
Computer (September 1988).

Dyer, S. and Whitman, S. "A Vectorized Scan line Z­
Buffer Rendering Algorithm." IEEE Computer
Graphics & Applications 7, 7 (July 1987) pp. 34-45.

Fiume, E.; Fournier, A.; and Rudolph, L. "A Parallel
Scan Conversion Algorithm with Anti-Aliasing for a
General Purpose IDtracomputer." Computer Graphics,
Proceedings of Siggraph 17, 3 (July 1983) pp. 141-
149.

Franklin, W.R. "A Linear Time Exact Hidden Surface
Algorithm." Computer Graphics, · Proceedings of
Siggraph 14,3 (1980) pp. 117-123.

Franklin, W.R. and Kankanhalli, M.S. "Parallel
Object-Space Hidden Surface Removal." Computer
Graphics, Proceedings of Siggraph 24, 4 (August
1990) pp. 87-94.

Fuchs, H. and Johnson, B.W. "An Expandable Mul­
tiprocessor Architecture for Video Graphics."
Proceedings of the 6th Annual ACM-IEEE Symposium
on Computer Architecture (1979) pp. 58-67.

Fuchs, H.; Goldfeather, J.; Hultquist, J.P; Spach S.;
Austin, J.D.; Brooks, F.P. Jr.; Eyles, J .G.; and
Poulton, J. "Fast Spheres, Shadows, Textures, Trans­
parencies, and Image Enhancements in Pixel-Planes."
Computer Graphics, Proceedings of Siggraph 19, 3
(July 1985) pp. 111-120.

Fuchs, H.; Poulton, J.; Eyles, J.; Greer, T. ;
Goldfeather, J.; Ellsworth, D.; Molnar, S.; Turk, G.;
Tebbs, B.; and Israel, L. "Pixel-Planes 5: A Het­
erogeneous Multiprocessor Graphics System Using
Processor-Enhanced Memories." Computer Graphics,
Proceedings of Siggraph 23, 3 (July 1989) pp. 79-88.

TEXAS INSTRUMENTS EX. 1011 - 202/229

192 References

[GARL90]

[GHAR88]

[GHOS86]

[GORD91]

[G0Tr83]

[G0UR71]

[GREE89]

[HAEB90]

[HAIN87A]

Garlick, B.J.; Winget, J.M.; and Baum, D.R. "In­
teractive Viewing of Large Geometric Databases
Using Multiprocessor Graphics Workstations,"
Parallel Algorithms and Architectures for 3D Image
Generation, Siggraph Course 28, August, 1990.

Gharachorloo, N.; Gupta, S.; Hokenek, E.;
Balasubramanian, P.; Bogholtz, B.; Mathieu, C.; and
Zoulas, C. "Subnanosecond Pixel Rendering with
Million Transistor Chips." Computer Graphics,
Proceedings ofSiggraph 22,4 (August 1988).

Ghosal, D. and Patnaik, L.M. "Parallel Polygon Scan
Conversion Algorithms: Performance Evaluation of a
Shared Bus Architecture." Computers & Graphics 10,
1 (1986) pp. 7-25.

Gorda, B.; Warren, K.; and Brooks, E.D. III "Pro­
gramming in PCP," Tech. Rept. UCRL-MA-107029,
Lawrence Livermore National Laboratory, April,
1991.

Gottlieb, A.; Grishman, R.; Kruskal, C.P.; McAuliffe,
K.P.; Rudolph, L.; and Snir, M. "The NYU
Ultracomputer - Designing an MIMD Shared Memory
Parallel Computer." IEEE Transactions on Computers
C-32, 2 (February 1983) pp. 175-189.

Gouraud, H. "Continuous Shading of Curved
Surfaces." IEEE Transactions on Computers C-20
(June 1971) pp. 623-629.

Green, S. and Paddon, D. "Exploiting Coherence for
Multiprocessor Ray Tracing." IEEE Computer Graph­
ics and Applications 9, 6 (November 1989) pp. 12-26.

Haeberli, P. and Akeley, K. "The Accumulation Buffer:
Hardware Support for High-Quality Rendering."
Computer Graphics, Proceedings of Siggraph 24, 4
(August 1990) pp. 309-318.

Haines, E. "A Proposal for Standard Graphics
Environments." IEEE Computer Graphics &
Applications 7, 11 (November 198 7) pp. 3-5.

TEXAS INSTRUMENTS EX. 1011 - 203/229

[HAIN87B]

[HU85]

(JAMI87]

[KAPL79]

[KIRK90]

[KUCK86]

[KUMA86]

[LAR090]

[MYER75]

[NAND90]

[NITZ91]

References 193

Haines, E. Standard Procedural Database Doc­
umentation, Unpublished, 1987.

Hu, M.-C. and Foley, J.D. "Parallel Processing
Approaches to Hidden-Surface Removal in Image
Space." Computers & Graphics 9, 3 (1985) pp. 83-317.

Jamieson, L.H. Characteristics of Parallel Algorithms,
MIT Press (1987) pp. 65-100.

Kaplan, M. and Greenberg, D.P. "Parallel Processing
Techniques for Hidden Surface Removal." Computer
Graphics, Proceedings of Siggraph 13, 2 (July 1979)
pp. 300-307.

Kirk, D. and Voorhies, D. "The Rendering Architecture
of the DN10000VS." Computer Graphics, Proceedings
of Siggraph 24,4 (August 1990) pp. 299-307.

Kuck, D.J.; Davidson, E.S.; Lawrie, D.H.; and Sameh,
AH. "Parallel Supercomputing Today and the Cedar
Approach." Science 231(February 1986) pp. 967-974.

Kumar, M. and Pfister, G.F. "The Onset of Hot Spot
Contention." Proceedings of the 1986 International
Conference on Parallel Processing (1986) pp. 28-34.

LaRowe, R.P. Jr. and Ellis, C.S. "Experimental Com­
parison of Memory Management Policies for NUMA
Multiprocessors." Tech. Rept. CS-1990-10, Duke
University, Durham, NC, April, 1990.

Myers, A J. "An Efficient Visible Surface Program"
Tech. Rept. The Ohio State University Computer
Graphics Research Group, July, 1975.

Nanda, AK; Shing, H.; Tzen, T.-H.; and Ni, L.M. "A
Replicate Workload Framework to Study Performance
Degradation in Shared-Memory Multiprocessors."
Proceedings of the International Conference on
Parallel Processing (1990) pp. 1-161 to I-168.

Nitzburg, B. and Lo, V. "Distributed Shared Memory:
A Survey of Issues and Algorithms," Computer 24, 8
(August 1991), pp. 52-60.

TEXAS INSTRUMENTS EX. 1011 - 204/229

194 References

[NUGE88]

[PARE88]

[PARK80]

[PHON75]

[PLUN85]

[POTM89]

[RA089]

[ROBL88]

[ROGE85]

[SADA87J

Nugent, S.F. "The iPSC/2 Direct-Connect
Communications Technology." Proceedings of the
Third Hypercube Conference, ACM (1988).

Parent, R.E. and Klasky, R.S. "Using Object Clusters
for Efficient Calculation of Computer Generated
Images." Tech. Rept. OSU-CISRC-TR39, The Ohio
State University, Columbus, Ohio, December, 1988.

Parke, F.l. "Simulation and Expected Performance
Analysis of Multiple Processor Z-Buffer Systems."
Computer Graphics, Proceedings of Siggraph 14, 3
(July 1980) pp. 48-56.

Phong, B.T. "Illumination for Computer Generated
Pictures." Communications of the ACM 18, 6 (June
1975) pp. 311-317.

Plunkett, D.J. and Bailey, M.J. "The Vectorization of a
Ray-Tracing Algorithm for Improved Execution
Speed." IEEE Computer Graphics & Applications 5, 8
(August 1985) pp. 52-60.

Potmesil, M. and Hoffert, E.M. "The Pixel Machine: A
Parallel Image Computer." Computer Graphics,
Proceedings of Siggraph 23, 3 (July 1989) pp. 69-78.

Rao, V.N. and Kumar, V. "Parallel Depth First
Search." International Journal of Parallel
Programming 16,6 (1989).

Roble, D.R. "A Load Balanced Parallel Scan line Z­
Buffer Algorithm for the iPSC Hypercube." In
Proceedings of Pixim '88, Paris, France, October 1988.

Rogers, D. Procedural Elements for Computer
Graphics, McGraw-Hill (1985).

Sadayappan, P. and Ercal, F. "Nearest Neighbor
Mapping of Finite Element Graphs onto Processor
Meshes." IEEE Transactions on Computers 36, 12
(December 1987).

TEXAS INSTRUMENTS EX. 1011 - 205/229

l
l

[SADA88]

[SAMI89]

[SCHR91]

[SLA'I'90]

[SMAL89]

[SUTH74]

[SUTH75]

[THE086]

[THE089a]

References 195

Sadayappan, P. and Visvanathan, V. "Circuit Sim­
ulation on Shared-Memory Multiprocessors." IEEE
Transactions on Computers 37, 12 (December 1988).

Samiotakis, I. A Thread Library for a Non Uniform
Memory Access Multiprocessor, Master's thesis, The
Ohio State University, Columbus, Ohio, 1989.

Schroder, P.and Salem, J.B. "Fast Rotation of Volume
Data on Data Parallel Architectures," Tech. Rept.
TMC-195, Thinking Machines Corporation. (Also
available in Course Notes for Advance Volume
Visualization Course, Siggraph (1991) as well as
Visualization '91 Proceedings, San Diego, CA, Oct.
1991.)

Slater, A.E. Parallel Processing in Computer
Graphics, Master's thesis, University of
Massachusetts, 1990.

Smallbone, J. "Programming high performance
graphics on the DAP," in Parallel Processing for
Computer Vision and Display, P.M. Dew, T.R.
Heywood, and R.A. Earnshaw, editors, Addison­
Wesley, 1989, pp. 321-328.

Sutherland, I.E.; Sproull, R. F;, and Schumacker, R.A.
"A Characterization of Ten Hidden-Surface Removal
Algorithms." Computing Surveys 6, 1 (March 1974).

Sutherland, I. System of Polygon Sorting By
Dissection, U.S. Patent 3,889,107, 1975.

Theoharis, T.A. "Exploiting Parallelism in the
Graphics Pipeline." Tech. Rept. PRG-54, Oxford
University Computing Laboratory, June, 1986.

Theoharis, T. and Page, I. "Parallel incremental
polygon rendering on a SIMD processor array," in
Parallel Processing for Computer Vision and Display,
P.M. Dew, T.R. Heywood, and R.A. Earnshaw, editors,
Addison-Wesley, 1989, pp. 329-337.

j_ ___ _

TEXAS INSTRUMENTS EX. 1011 - 206/229

196 References

[THE089b]

[UPS089]

[WARN69]

[WATK70]

[WEn..77]

[WHEL85]

[WHIT80]

.[WHIT88]

[WHIT89]

[WHIT90]

Theoharis, T. Algorithms for Parallel Polygon
Rendering, Springer-Verlag (1989).

Upson, C. and Fangmeier, S. ''The role of visualization
and parallelism in a heterogeneous supercomputing
environment," in Parallel Processing for Computer
Vision and Display, P.M. Dew, T.R. Heywood, and
R.A. Earnshaw, editors, Addison-Wesley, 1989, pp.
286-297.

Warnock, J.E. "A Hidden-Surface Algorithm for
Computer Generated Half-tone Pictures." Tech. Rept.
TR 4-15, University of Utah, NTIS AD-753 671, June,
1969.

Watkins, G.S. A Real-Time Visible Surface Algorithm.
Tech. Rept. UTEC-CSc-70-101, Univeristy of Utah,
NTIS AD-762 004, June, 1970.

Weiler, K and Atherton, P. "Hidden Surface Removal
Using Polygon Area Sorting." Computer Graphics,
Proceedings of Siggraph 11, 2 (1977) pp. 214-222.

Whelan, D.S. Animac: A Multiprocessor Architecture
for Real-Time Computer Animation, Ph.D.
dissertation, California Institute of Technology, 1985.

Whitted, T. "An Improved Illumination Model for
Shaded Display." Communications of the ACM
23(1980) pp. 343-349.

Whitman, S. and Parent, R. "A Survey of Parallel
Hidden Surface Removal Algorithms." Proceedings of
Pixim '88 (October 1988), Paris, France.

Whitman, S. and Guenter, B. "The Design of Image
Space Graphics Display Algorithms for MIMD
Architectures." Course Notes for Siggraph Course 16,
ACM Siggraph Conference (1989) pp. 129-155.

Whitman, S. "Computer Graphics Rendering on a Par­
allel Processor." Course Notes for Course 28, Siggraph
(1990) pp. 167-183.

TEXAS INSTRUMENTS EX. 1011 - 207/229

[WHIT91]

[WILL78]

References 197

Whitman, S. and Sadayappan, P. "Computer Graphics
Rendering on a Shared Memory Multiprocessor,"
Proceedings of the International Conference on
Parallel Processing, (August 1991) CRC Press, pp.
191-194.

Williams, L. "Casting Curved Shadows on Curved
Surfaces." Computer Graphics, Proceedings of
Siggraph 12, 3 (July 1978) pp. 270-274.

TEXAS INSTRUMENTS EX. 1011 - 208/229

Appendix

A. Information on Test Scenes
The matrix used in Eric Haines' SPD database clipped out too much
of the fractal mountain when it was generated at the resolution we
chose (130 K polygons). Therefore, for comparison purposes, we
provide the matrix we used here:

['f 0 0 0] .297 .742 0
.649 -.259 0
.185 3.156 1 (A.l)

Also, the reader will note that the specified screen resolution which
was proposed in the SPD database was 512 x 512, while our
renderings were displayed at 640 x 484. The reason for this was that
the algorithm used is intended as a scene development display
algorithm for animation purposes and standard video resolution is
640 x 484. We expect that a resolution of 512 x 512 would result in
somewhat. similar timings.

B. Data for Various Algorithms
Each of the different implementations described in chapter 4 is
presented in this section with the exact overhead percentages noted
for each of the four test images. The algorithms are presented in the
following order: scan line parallel, rectangular region CUD),
rectangular region (LC), top-down, and task adaptive.

Scan line Data Non-Adaptive Algorithm
Scheduling
stegosaurus
laser
tree
mount

0.01%
0.006%
0.005%
0.002%

199

TEXAS INSTRUMENTS EX. 1011 - 209/229

200 Appendix

Memory Latency
#remote refs

steg 5,765,541
laser 12,813,378
tree 15,250,407
mount 47,629,192

* 6.47 J.l.Sec
37.3 sec
82.9 sec
98.7 sec

308.2 sec

Switch Contention- 48 x 48 mesh

%ofTp*P
3.0%
4.0%
4.1%
5.6%

T(96) T(l)
steg 1036.99 834.22
laser 1818.50 1522.42
tree 2158.57 1973.95
mount 5199.22 4034.73

%Tp*P
16.2%
14.4%
7.8%

21.0%

Calculated
23.1%
17.9%
8.9%

20.5%

Load Imbalance - average over 3 runs
steg 10.4%
laser 8.1%
tree 8.7%
mountain 6.8%

Code Modification

steg
laser
tree
mount

Time
106.3 sec
157.7 sec
117.9 sec
543.9 sec

% ofTp*P
8.5%
7.7%
4.9%
9.8%

Rectangular Data Non-Adaptive Algorithm
(UD Scheme)
Scheduling
96 processors, 2304 areas
stegosaurus 0.013%
laser 0.009%
tree 0.007%
mountain 0.004%

Memory Latency
remote refs

steg 2,677,256
laser 7,834,453
tree 12,395,84 7
mount 23,160,041

* 6.47 J.l.Sec
17.32 sec
50.68 sec
80.20 sec

149.85 sec

% ofTp*P
1.4%
2.6%
3.4%
3.6%

l
I

TEXAS INSTRUMENTS EX. 1011 - 210/229

Rectangular Data Non-Adaptive Algorithm CUD Scheme) 201

Code Modification

steg
laser
tree
mount

Time Difference
120.8 sec

% Total Proc-Time Space
8.7%

164.6 sec
240.5 sec
341.6 sec

Load Imbalance - average over 3 runs
steg 7.0%
laser 6.4%
tree 11.5%
mount 4.3%

Switch Contention- 48 x 48 mesh
7X96) 7X1)

steg 1087.16 828.81
laser 1800.05 1494.31
tree 2182.92 2074.59
mount 4053.71 3671.33

8.0%
9.6%
7.9%

%Tp*P
18.7%
14.9%
4.3%
8.8%

Calculated
33.1%
20.6%

5.6%
10.9%

Rectangular Data Non-Adaptive Algorithm
(LC Scheme)
Scheduling
stegosaurus
laser
tree
mountain

2,304 areas
0.017%
0.01%
0.007%
0.004% .

Communication Overhead

steg
laser
tree
mount

bytes transferred
953,446

2,288,116
3,634,812
6,788,070

Time
0.268 sec
0.644 sec
1.022 sec
1.909 sec

Load Imbalance - average over 3 runs
steg 6.8%
laser 6.6%
tree 11.1%
mount 4.5%

% Tp*P
0.028%
0.039%
0.047%
0.052%

TEXAS INSTRUMENTS EX. 1011 - 211/229

202 Appendix

Code Modification

steg
laser
tree
mount

Time Difference
62.3 sec

103.0 sec
119.6 sec
196.4 sec

%Tp*P
6.4%
6.3%
5.5%
5.4%

Switch Contention- 48 x 48 mesh
T(96) T(1)

steg 881.26 753.14
laser 1502.99 1385.45
tree 1940.51 1877.89
mount 3485.53 3380.91

%Tp*P
13.1%
7.2%
2.9%
2.9%

Calculated
16.3%
8.9%
3.1%
3.2%

Data Adaptive Top-Down Decomposition
Scheduling, 960 regions
stegosaurus 0.01%
laser 0.007%
tree 0.006%
mountain 0.003%

Communication Overhead
bytes transferred

steg 653,060
laser 1,833,368
tree 3,110,170
mount 5,654,696

Time
0.18 sec
0.52 sec
0.87 sec
1.59 sec

Load Imbalance - average over 3 runs
steg 1.5%
laser 6.9%
tree 4.0%
mount 3.1%

Code Modification

steg
laser
tree
mount

Time Difference
32.3 sec
59.1 sec
59.9 sec
97.9 sec

%Tp*P
2.8%
3.3%
2.6%
2.5%

%Tp*P
0.02%
0.03%
0.04%
0.04%

1

TEXAS INSTRUMENTS EX. 1011 - 212/229

Task Adaptive Algorithm 203

Switch Contention- 48 x 48 mesh
T(96) T(1)

steg 1109.4 723.0
laser 1649.5 1341.4
tree 2177.9 1818.2
mount 3736.6 3282.1

%Tp*P
34.0%
17.4%
15.7%
11.8%

Task Adaptive Algorithm

Number of Tasks
non-background tasks total tasks

254
235
245
243

steg 209
laser 183
tree 233
mount 224

Scheduling
stegosaurus
laser
tree
mountain

0.00023%
0.00014%
0.0001%
0.00006%

Communication Overhead
#bytes transferred Time

steg 3,876,924 1.1 sec
laser 251,191,547 70.7 sec
tree 21,747,484 6.1 sec
mount 19,765,530 5.6 sec

Load Imbalance- average over 3 runs
steg 14.3%
laser 10.3%
tree 22.5%
mount 9.2%

Code Modification

steg
laser
tree
mount

Time Difference
3.9 sec

25.6 sec
17.6 sec
31.5 sec

%Tp*P
0.4%
1.6%
0.7%
0.8%

Calculated
34.9%
17.3%
16.9%
11.8%

%Tp*P
0.11%
4.20%
0.25%
0.15%

TEXAS INSTRUMENTS EX. 1011 - 213/229

204 Appendix

Switch Contention- 48 x 48 mesh
1X96) 1X1) %Tp*P

10.6%
10.2%
4.8%
5.7%

steg
laser
tree
mount

798.7 sec
1489.5 sec
1900.4 sec
3433.8 sec

Synchronization

steg
laser
tree
mount

Time
21.2 sec
39.4 sec

4.0 sec
7.9 sec

695.6 sec
1309.7 sec
1781.0 sec
3219.7 sec

%Tp*P
2.2%
2.3%
0.16%
0.21%

C. Supplementary Graphs

Calculated
11.7%
9.2%
5.6%
5.5%

Additional graphs are given here for the purpose of providing a better
evaluation of the various algorithms. These graphs, listed in order of
appearance, are the following:

1. Ratio Comparison for Rectangular Region Decomposition, UD
Scheme

2. Ratio Comparison for Rectangular Region Decomposition, LC
Scheme

3. Duplication Factors vs. Number of Areas
4. Comparison of Operating Systems for GP1000, Rectangular

Region, UD Scheme
5. Comparison of Operating Systems for GP1000, Rectangular

Region, LC Scheme
6. Comparison of All Algorithms, Total Time including Tiling and

Front End, High resolution on the GPlOOO
7. Comparison of All Algorithms, Total Time including Tiling and

Front End, High resolution on the TC2000

TEXAS INSTRUMENTS EX. 1011 - 214/229

Supplementary Graphs 205

Ratio Comparison for Rectangular Region
Decomposition, UD Scheme

0 Sequential
~ Commun.

1111 Load lmbal. EJ Contention
Q CodeMod.

3000

2500

2000

Cwnulative
Time 1500

1000

500

2 4 8 12 16 20 24 28 32 36 40

Granularity Ratio

Figure Al: Comparison of ratios for stegosaurus image, UD

4000

3000
Cwnulative

Time 2000

1000

o Sequential 11 Load lmbal. o Contention
E2 Commun. rsr Code Mod.

2 4 8 12 16 20 24 28 32 36 40

Granularity Ratio

Figure A2: Comparison of ratios for Laser image, UD

TEXAS INSTRUMENTS EX. 1011 - 215/229

206 Appendix

Ratio Comparison for Rectangular Region
Decomposition, UD Scheme

o Sequential 11 Load lmbal. o Contention
e:::1 Commun. El Code Mod.

6500~~~~~~~~--~~~~~

5200

3900
Cumulative

Time 2600

1300

2 4 8 12 16 20 24 28 32 36 40

Granularity Ratio

Figure A.3: Comparison of ratios for tree image, UD

o Sequential 111 Load lmbal. o Contention
t2a Commun. EJ Code Mod.

8000~~~--~~~~~L_~~~-+

7000

6000

. 5000
Cumulauve

Time 4000
3000

2000

1000

0+-~-+~~+-~-+~--~4-~-+
2 4 8 12 16 20 24 28 32 36 40

Granularity Ratio

Figure A.4: Comparison of ratios for mountain image, UD

l

I
I

I

r

I

I

I
I

I
I
I
I

TEXAS INSTRUMENTS EX. 1011 - 216/229

Supplementary Graphs 207

Ratio Comparison for Rectangular Region
Decomposition, LC Scheme

2600

2400

2000

1600
Cumulative

Time 1200

600

400

0 Sequential
Zl Commun.

1111 Load lmbal. [] Contention
0 Code Mod.

2 4 6 12 16 20 24 26 32 36 40

Granularity Ratio

Figure A.5: Comparison of ratios for stegosaurus image, LC

4000

3000

Cumulative
Time 2000

1000

0 Sequential
ea Commun.

II Load lmbal. D Contention
IS Code Mod.

2 4 6 12 16 20 24 26 32 36 40

Granularity Ratio

Figure A.6: Comparison of ratios for Laser image, LC

TEXAS INSTRUMENTS EX. 1011 - 217/229

208 Appendix

Ratio Comparison for Rectangular Region
Decomposition, LC Scheme

6000

5000

4000
Cumulative

Time 3000

2000

1000

0 Sequential

Zl Commun.

1111 Load lmbal. [] Contention

Cl Code Mod.

2 4 8 12 16 20 24 28 32 36 40

Granularity Ratio

Figure A. 7: Comparison of ratios for tree image, LC

7500

6000

4500

Cumulative
Time 3000

1500

D Sequential
f2I Commun.

1113 Load lmbal. CJ Contention
G Code Mod.

2 4 8 12 16 20 24 28 32 36 40

Granularity Ratio

Figure A.8: Comparison of ratios for mountain image, LC

TEXAS INSTRUMENTS EX. 1011 - 218/229

1

I
Supplementary Graphs 209

Duplication Factors vs. Number of Areas

16000

12000

6000

4000

0 384 768 1152 1536 1920 23042688 3072

#Regions

Figure A.9: Total polygons versus
number of areas, stegosaurus image

48000
-Total Polys

44000

36000

32000

28000

24000

20000 +-~~T-~--T-~~T-~~
0 384 768 1152 1536 1920 2304 2688 3072

#Regions

Figure A.IO: Total polygons versus
number of areas, Laser image

140000

130000

.... . Tolal Polygons

0 384 768 1152 1536 1920 2304 2688 3072

#Regions

Figure A.ll: Total polygons versus
number of areas, tree image

..-Tolat Polygons

0 384768 1152 15361920 2304 2688 3072

#Regions

Figure A.12: Total polygons versus
number of areas, mountain image

TEXAS INSTRUMENTS EX. 1011 - 219/229

210 Appendix

Comparison of Operating Systems for GP1000
Rectangular Region, UD Scheme

350 ..

3001
I

2so I
Time I

200 i
150 \'

1\

--o-Oid OS

· e NewOS

b,'e .P
........ ', e---e'

100

~.~-·--·--·---·--50

20 ag sa n
Processors

Figure A13: Comparison of old OS
vs. new OS for stegosaurus image,
rectangular region UD

160 ~.
~,

120 ,,

Time '' ~
eo e..~'e--

-~-Old OS

-•NewOS

._ '- --o----0 ,. ' ,. -- ·---

9E

12 24 36 48 60 72 84 96

It Processors

Figure A.14: Comparison of old OS
vs. new OS for tree image,
rectangular region UD

-a-Old OS
-..New OS

200i

160
T1me

~
I

' <t 120

80

6

\

~ _.D

·'41~- __ .-a­-::;- __ .
------ -

24 42 60 78

Processors

Figure A15: Comparison of old OS
vs. new OS for Laser image,
rectangular region UD

240

200
Time

160

120

eo

40

12 24 36 48 60 72 84 96

It Processors

Figure A16: Comparison of old OS
vs. new OS for mountain image,

rectangular region UD

9E

TEXAS INSTRUMENTS EX. 1011 - 220/229

I
I
~

Supplementary Gmphs 211

Comparison of Operating Systems for GP1 000,
Rectangular Region, LC Scheme

2SO I
I

200 I
Time e

ISO I
\
I

100

so
•,

'
.. 'i-=1"---o--tl

o+--.~~~-~-~·--~-~·~-~-r•~----F'
20 a~ sa n

Processocs

Figure A.17: Comparison of old OS
vs. new OS for stegosaurus image,
rectangular region LC

200

80

\
\
\
. ,

'

·-G·OidOS
-·NewOS

lt... -0 _ _.,_--o--
~0 --=-:-"' -· -- . -- It

24 42 60 78

Processocs

Figure A.18: Comparison of old OS
vs. new OS for Laser image,
rectangular region LC

96

140
\

120 \

" 100
Time

80
' ' 'e,

.. -New OS

40

'
.......... :::---o --.-- ... _--

20

12 24 36 ~ 60 72 84 9€

Processors

Figure A19: Comparison of old OS
vs. new OS for tree image,
rectangular region LC

280

2~ 1\
200 \

Time \
160

120

80

'
' •-,

--e-OidOS
- e New OS

.......... ,.. ::j::- --A---

-- ·-- -
12 24 36 48 60 72 84 96

Processors

Figure A20: Comparison of old OS
vs. new OS for mountain image,

rectangular region LC

TEXAS INSTRUMENTS EX. 1011 - 221/229

212 Appendix

Comparison of algorithms, total time including tiling +
fe, high-res, GP1 000

36

32
Time

28

24

64

-e-Rect·LO

· G TaskA·UD

80

__. Rect · LC

- + ·Task A · LC

Processors
96

Figure A.21: Total time comparison,
GPlOOO, stegosaurus image, hi-res

56

Time
48

-e-Rect - LO

~ -TaskA - UO

- e Rect. · LC

· -• - TaskA · LC

82

74

Time

66

58

64

-e-Reci. - UD

~-TaskA-UO

60

· e ·Rect · LC

-+ -TaskA. · LC

Processors

Figure A.23: Total time comparison,
GPlOOO, tree image, hi-res

135

123

111

Time

99

87

-e-Rect·UD - · Rect - LC

75
· ~ TaskA.· UO -+ -Task A.- LC

96

64 80 96 64 80 96

Processors

Figure A.22: Total time comparison,
GPlOOO, Laser image, hi-res

Processors

Figure A.24: Total time comparison,
GPlOOO, mountain image, hi-res

TEXAS INSTRUMENTS EX. 1011 - 222/229

Supplementary Graphs 213

Comparison of algorithms, total time including tiling +
fe, high-res, TC2000

12

10
Time

8

6

4

16

- G- Rect . uo
·O· ·TaskA. • UO

24 32 40

Processors
48

Figure A.25: Total time comparison,
TC2000, stegosaurus image, hi-res

21

17

Time

13

9

0 TaskA.-UO . -. -Task A.· LC

34

28

Time
22

16

-G .Reel. · UO

10 ·0. Task A. ·UO · +Task A. · LC

16 24 32 40

Processors

Figure A.27: Total time comparison,

TC2000, tree image, hi-res

so

40

Tune

30

20

48

16 24 32 40 48 16 24 32 40 48

Processors

Figure A.26: Total time comparison,
TC2000, Laser image, hi-res

Processors

Figure A.28: Total time comparison,
TC2000, mountain image, hi-res

TEXAS INSTRUMENTS EX. 1011 - 223/229

A buffer ,52
Abram, 25

Index

Alliant FX/2800, 50
Allison, 44
Amdahl's law, 80
Anti-aliasing, 3, 8, 51
Ardent, 7
Area bucket, 73
Aspect ratio, 105

Back end, 76
Badouel, 27
Bailey,30
BBN, 23
BBN Butterfly, 44, 50
Blinn,68
Block transfer, 75, 86
Bounding box, 73
Box filter, 75
Bump mapping, 6, 52

C-Threads, 62
Cache coherence, 146
Caspary, 28
Catmull, 43
Cedar, 58
Challinger, 28, 30
Chang, 32
Cleary, 27
Code modification

overhead, 102
rectangular region LC

decomposition, 117
rectangular region UD

decomposition, 112
scan line decomposition, 101

task adaptive decomposition,
131

top-down decomposition, 124
Coherence

graphical, 5, 12, 21, 87
graphical vs. parallelism, 14
scan line, 5, 21

Communication, 13, 86
bandwidth, 58
overhead

rectangular region LC
decomposition, 117

task adaptive decomposition,
129

top-down decomposition, 123
Contention, 13

hot spot, 63, 76
switch, 89

Convex, 50
Convolve, 75
Cook-Torrance, 68
Cray,50
Critical section, 84
Crockett, 36
Crossbar, 160
Crossbar switch, 58
Cube manager, 42, 55
Culling, 73

Data adaptive, 119
Data locality, 22, 56
Data parallelism, 20
Decomposition, 29

area, 30
scan line, 95

Depth of field, 7, 10
Diffuse, 7

215

TEXAS INSTRUMENTS EX. 1011 - 224/229

216 Index

Distributed memory, 50
Dyer, 30
Dynamic task splitting, 126

Edge list, 14, 74
Edge pair, 74
Efficiency, 26, 82
Encore Multimax, 50, 57

Fiume, 44
Foley, 34
Fork-join, 88
Fournier, 44
Frame buffer, 3, 76
Franklin,25
Functional parallelism, 20

Gaussian filter, 75
GenOni, 84
Getrtc, 79
Ghosal, 36
Gist, 185
Gouraud, 6, 68
GPlOOO, 61
Granularity, 19

ratio, 87, 95, 114
Greenberg, 30

Hidden surface removal, 2, 3, 5
Hot spot contention, 90, 184
Hu,34
Hypercube, 51, 55

Illumination modeling, 3
Image processing, 185
Image space, 10, 28
Inmos Transputer, 38, 50
Intel iPSC, 36, 42, 50
Inter-reflection, 7
Interconnection network, 56

Jain, 32

Kankanhalli, 25

Kaplan, 30

Lambert's law, 6
Linda, 62
Load balancing, 18, 90

scan line decomposition, 100
rectangular region LC

decomposition, 117
rectangular region UD

decomposition, 111
task adaptive decomposition,

131
top-down decomposition, 124

Locally Cached, 113, 146
implementation, 146

MACH, 79, 157
Mach bands, 7
Median Cut, 41, 119
Memory latency, 85

rectangular region UD
decomposition, 109

scan line decomposition, 99
Message passing, 10, 54
MIMD, 7, 12,50
Modeling

global climate, 9
Motion blur, 7, 10
Multi-stage, 58
Mutual Exclusion, 88

Ncube,23,50
Network contention, 89

rectangular region LC
decomposition, 117

rectangular region UD
decomposition, 111

scan line decomposition, 99
task adaptive decomposition,

131
top-down decomposition, 123

Newell, 41
Non-blocking network, 89
Normal vector, 6

l
j
i

j
I
l

TEXAS INSTRUMENTS EX. 1011 - 225/229

I
j

NUMA, 58, 146, 184

Object space, 3, 14, 25
Octree, 152
Operational parallelism, 20
Orloff, 36
Overhead due to adaptation for

parallelism, 87

Parallel 110, 54
Parke, 37
Partitioning

data non-adaptive, 95
memory, 12
task, 15

Patnaik, 36
PCP, 62
Phong,6,8,68
Pipeline, 7, 71

graphics, 9
vector, 30

Pipelining, 20
Pixel, 3, 5, 8, 10

as task, 29
Pixel Machine, 8
Pixel Planes, 8, 29
Plunkett, 30
Polygon

format, 2
Polygon clipping, 69
Procedural parallelism, 20
Processor-time space, 83

Race condition, 127
Radiosity, 7, 12, 185
Ray coherence, 152
Ray tracing, 10, 152
Real-time, 6, 9, 10, 187
Rectangular region

decomposition, 103
Reflection, 10

mapping, 52
Refraction, 6, 10
Rendering, 2, 5

Resolution, 52
Roble, 42
Rudolph, 44

Index 217

Run-length encoding, 76

Sancha, 41
Scalability, 22, 134
Scan line Z-buffer, 10, 30, 42, 68
Scheduling, 84

rectangular region LC
decomposition, 115

rectangular region UD
decomposition, 109

scan line decomposition, 97
task adaptive decomposition,

129
top-down decomposition, 123

Scherson, 28
Semaphore, 88
Sequent, 26

Balance, 50
Shadow, 7, 8

volumes, 52
Shadowing, 10
Share routine, 63
Shared memory, 15,57

bus-based, 56
multistage switch, 57

Shared memory, 13
Silicon Graphics, 50, 176
Silicon Graphics IRIS, 7
SIMD, 7, 10, 11
Simulation

finite element, 9
molecular dynamics, 9
software, 10, 11
steering, 9, 10

Span-area, 45
Speedup, 26, 80
Spin waits, 62
Split-join, 62
Standard procedural database,

77
Static contiguous, 34

TEXAS INSTRUMENTS EX. 1011 - 226/229

218 Index

Static interleave, 34
Stellar, 7
Stochastic sampling, 75
Switch-based, 58
Synchronization, 14, 63, 88

task adaptive decomposition,
129

Task activator, 64
Task adaptive, 126
Task generator, 64, 78, 84
TC2000, 61
Texture mapping, 6, 52
Theoharis, 38
Three-dimensional, 1, 3
Tiling,5, 15,26,68, 73
Timings, 80
Top-down decomposition, 120
TotalView, 185
Tree saturation, 89
Two-dimensional, 1, 3

UD Scheme
implementation, 144

Uniform memory access, 143
Uniform System, 62, 78
Uniformly distributed, 73, 143

Volume rendering, 12, 28, 185

Warnock, 31
Watkins, 10, 21
Whelan, 36, 41
Whitman, 30
Wire-frame, 6
Worker, 84
Workstation, 7
Wormhole routing, 55, 56

y-bucket, 72, 95

Z-buffer,7,9,43,52

TEXAS INSTRUMENTS EX. 1011 - 227/229

I
~

-- Jones and Bartlett Books in Computer Science and Related Areas --

Bamsley, M., The Fractal Transform
ISBN 0-86720-218-1

Bernstein, AJ., and Lewis, P.M., Concurrency in Programming and Database Systems
ISBN 0-86720-205-X

Birmingham, W.P., Gupta, A.P., and Siewiorek, D., Automating the Design of
Computer Systems: The MICON Project
ISBN 0-86720-241..()

Chandy, K.M., and Taylor, S., An Introduction to Parallel Programming
ISBN 0-86720-2084

Epstein, D.B.A., et al., Word Processing in Groups
ISBN 0-86720-241-6

Flynn, A., and Jones, J., Mobile Robots: Inspiration to Implementation
ISBN 0-86720-223-8

Geometry Center, University of Minnesota, Not Knot (VHS video)
ISBN 0-86720-240-8

Iterated Systems, Inc., Floppy Book: A P.OEM PC Book
ISBN 0-86720-222-X

Iterated Systems, Inc., SNAPSHOTS: True-Color Photo Images Using the
Fractal Formatter
ISBN 0-86720-299-8

Lee, E. S., Algorithms and Data Structures in Computer Engineering
ISBN 0-86720-219-X

Meyers, B.A. (ed.), Languages for Developing User Interfaces
ISBN 0-86720-450-8

Parke, F.l., and Waters, K., Computer Facia/Animation
ISBN 0-86720-243-2

Ruskai, M.B., et al., Wavelets and Their Applications
ISBN 0-86720-2254

Whitman, S., Multiprocessor Methods for Computer Graphics Rendering
ISBN 0-86720-229-7

TEXAS INSTRUMENTS EX. 1011 - 228/229

TEXAS INSTRUMENTS EX. 1011 - 229/229

MULTIPHDEESSUH MHHUDS Hill EUMPUTEH EllHPH|[S HEHDEHIHE

SCOTT WHITMAN

wawaawaé
This book is a thorough investigation into the problem of using a
massively parallel computer to render three-dimensional
computer graphics scenes into images. The algorithms that are
analyzed in this monograph represent several alternative
approaches to image space decomposition as well as remote

memory access. Pointers are given so that researchers
intending to develop their own parallel rendering algorithms will
be able to obtain high performance and good speedup from a
variety of multiprocessor architectures.

ISBN D-55730-BE‘!-7

‘T.‘.:"
9 780867 202298 >

JONES AND BARTLETT PUBLISHERS

TEXAS INSTRUMENTS EX. ’|O’|’| - 229/229

