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global data referencing is taking place, although performance tails off 
here as well. Unfortunately, the amount of testing done using the old 
operating system was limited, so additional results could not be 
obtained. It is clear from these results, though, that the operating 
system in a shared memory multiprocessor has significant impact on 
the overall performance. We feel confident that the latest version of 
the GP1000 operating system is better geared to the current machine 
and does indeed provide exceptional performance. 

6.2.2. Comparison of Architectural Differences 
In addition to the impact of the operating system, other factors can 
affect overall algorithmic performance. For instance, one would like 
to compare what would happen if a faster CPU or a faster switch node 
were to be employed in the machine. BBN has continually updated 
the Butterfly family of machines from the Butterfly 1, which used 
MC68000 processors with 1 megabyte of memory per board, to the 
current generation GP1000, which uses the MC68020 with 4 
megabytes of memory per board. We were not able to test the algo­
rithms on the original Butterfly, but we were able to test them on the 
next generation BBN multiprocessor, the TC2000. The TC2000 is a 
similar design to the GP1000 but there are significant differences 
which are illustrated in the tables on the page following the graphs. 
Table 6.1 shows the difference in processor characteristics, while table 
6.2 shows the difference in the memory characteristics for the GP1000 
and TC2000. In general, the primary differences between the two 
machines are the faster CPU in the TC2000, as well as a change in 
the basic switch node component from a 4 x 4 crossbar to an 8 x 8 
crossbar. 

Table 6.1: Comparison ofBBN multiprocessor CPU characteristics 

Machine CPU Clock MIPS MFLOPS 
Speed 

GP1000 M68020 16Mhz 2.5 0.6 

TC2000 M88100 20Mhz 19 20 

The faster CPU in the TC2000 necessitates a faster switch with 
increased path width, and an 8 x 8 crossbar switch component solves 
this problem. One impact of the increased size ofthe crossbar switch 
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GP1000 Operating System Comparison 
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is that fewer wires are needed between the switch columns in the 
interconnection network. The 8 x 8 crossbar is more costly to produce 
than the 4 x 4 but it does allow 8 simultaneous messages to be output, 
whereas a 4 x 4 only supports 4 messages at a time. 

Table 6.2: Comparison of BBN multiprocessor memory characteristics 

Machine Cache Memory Switch Path Basic 
per Board Speed Width Switch 

Node 

GP1000 no 4meg 8Mhz 4 bit 4x4 

TC2000 yes 4 or 16 meg 38Mhz 8 bit 8x8 

From the programmer's point of view, the TC2000 is functionally 
the same as the GP1000. There are several small differences 
regarding communication, however. The GP1000 supports the block 
transfer mechanism in hardware, whereby a path is held open long 
enough for 256 byte length messages. to go from one board to another. 
In the TC2000, this operation is supported through software 
emulation rather than hardware implementation. The TC2000 does 
contain a memory cache which allows data to be allocated as cachable 
or non-cachable. Although using the cache significantly enhances 
performance, judicious management of this memory is required by the 
programmer since no cache coherence scheme is supported. The 
primary goal here is to compare the different algorithms under 
different CPU and switch characteristics, so the algorithms were not 
modified to take advantage ofthe cache. 

The results, including times for the setup phase from the front 
end plus the tiling time, are shown in figures 6.15, 6.16, 6.17, and 
6.18. A thorough analysis of the scan line algorithm was deemed 
unnecessary on the TC2000 due to its performance limitations noticed 
on the GPlOOO.- It is, however, included for comparison purposes in 
the next section of this chapter. 

These graphs indicate similar performance in the algorithms 
when compared to the previous graphs for the GP1000. The only 
problem with this comparison is that the results on the TC2000 were 
limited for most of the tests to a maximum of 48 processors, while 
with the GPlOOO, 96 processors were consistently available.2 

2we have included some data obtained on the TC2000 at 96 processors in 
table 6.3. In general, though, due to the other users on the machine, only 48 
processors were used for most of the tests. 
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TC2000 Tiling + Setup Time Comparisons 
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In order to allow a fair comparison between the two machines, the 
speedup was computed for each of the algorithms at 96 processors. 
The task adaptive algorithm is used for this comparison, and the 
results are shown in table 6.3. 

Table 6.3: GP1000 and TC2000 speedup and time ratio comparison using 96 
processors 

Machine Stegosaurus Laser Tree Mountain 

GPlOOO Speedup 70.3 73.3 68.1 82.1 

TC2000 Speedup 61.3 59.3 56.4 70.6 

Ratio of Execution 
Times at P = 96: 8.6 8.7 8.0 8.8 

GP1 OOOffC2000 

As can be seen from the table, the TC2000 exhibits slightly 
reduced speedup when compared to the GPlOOO on 96 processors for 
most of the images. This could be caused by a number of factors, 
ranging from the amount of work per task to the processor-to-switch 
speed ratio. The last row in the table indicates the ratio of parallel 
execution times of the TC2000 divided by the GPlOOO. From this 
data, it appears that on 96 processors, the TC2000 is approximately 
8.5 times faster than the GPlOOO for this problem. 

6.2.3. Relationship of Machine Parameters to 
Performance · 

In this section, we evaluate the various overheads on both machines 
to see their differences. The comparison involves examining the total 
processor-time space and comparing the results on the two machines. 
Here, the overheads are evaluated with respect to P and comparison 
values are shown to the right of each graph for the overhead 
percentages at 48 processors. Also, the speedup is given at each 
processor configuration. All of the algorithms are compared on the 
GPlOOO and the TC2000 for the Laser image as a representative 
example. Due to the volume of data and the CPU time involved in the 
tests, only one image was used for comparison. Different results 
would be obtained for the different test images, but the main interest 

r 
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here was to evaluate the trend in performance and directly compare 
the percentages on various processor configurations. 

6.2.3.1. Comparison of Overheads 

The next five pages provide a direct comparison of the overhead 
factors for all of the algorithms. The graphs include the total 
processor-time space for each particular processor configuration, with 
the overheads clearly marked as a percentage. Although the results 
were measured up to 96 processors for the GPlOOO, the overhead 
values given on the right side of the graph are for 48 processors so 
they can be compared to the values for the TC2000 below. 

6.2.3.2. Analysis 
These results present a number of interesting phenomena not 

noticed in any previous graphs. In the parallel scan line algorithm, 
the latency and code modification overheads constitute almost the 
same overhead percentage regardless of the processor configuration 
on both machines. This makes sense since the number of tasks is 
constant regardless of the number ofprocessors in this algorithm. In 
the other cases, since the total number of tasks increases with the 
number of processors, the overhead effects increase as· well. In some 
cases, the load balancing may go down at some point but this may be 
due to an increase in another factor as explained next. 

With the exception of the task adaptive algorithm, the load 
balancing is better on the TC2000 than in the GPlOOO. On the other 
hand, the network contention, code modification, and latency/com­
munication are significantly worse. It seems that the increased delay 
due to communication overheads and contention contribute to even 
out the load in the algorithms on the TC2000 (recall that load 
balancing cannot be measured independently from other factors). 
Since these overheads are larger in the TC2000 than in the GP!OOO, 
they contribute to an increase in the average task execution time. 
This changes the load balancing since it is based on dynamic 
scheduling of the tasks, as well as their execution time. 

In the case of the task adaptive algorithm, the load balancing is a 
direct result of dynamic task partitioning, and it is possible that the 
tasks cannot be partitioned near the end of the computation due to 
the imposed threshold. This effect may be more pronounced in the 
TC2000 than in the GPlOOO due to the difference in the synchroniza­
tion and communication mechanisms. 
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Comparison of Overhead Factors, GP1000 vs. TC2000, 
Laser Image, Scan line Algorithm 
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Figure 6.19: GPIOOO, scan line algorithm, UD, overhead comparison 
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Figure 6.20: TC2000, scan line algorithm, UD, overhead comparison 
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Comparison of Overhead Factors, GP1000 vs. TC2000, 
Laser Image, Rectangular Region Algorithm, UD Scheme 
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Figure 6.21: GPlOOO, rectangular region algorithm, UD, overhead comparison 
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Figure 6.22: TC2000, rectangular region algorithm, UD, overhead comparison 
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Comparison of Overhead Factors, GP1000 vs. TC2000, 
Laser Image, Rectangular Region Algorithm, LC Scheme 
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Figure 6.23: GPlOOO, rectangular region algorithm, LC, overhead comparison 
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Figure 6.24: TC2000, rectangular region algorithm, LC, overhead comparison 
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Comparison of Overhead Factors, GP1000 vs. TC2000, 
Laser Image, Top-Down Algorithm 
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Figure 6.25: GPlOOO, top-down algorithm, LC, overhead comparison 
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Figure 6.26: TC2000, top-down algorithm, LC, overhead comparison 
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Comparison of Overhead Factors, GP1 000 vs. TC2000, 
Laser Image, Task Adaptive Algorithm 

0 Sequential 111 Ld lmbal. III Contention 
f0 Comm. Q Code Mod. lSI Synch. 

1600 

1200 

Cumulative 
Time 800 

Synchronization - 0.23% 
Code Mod. - 1.6% 
Commtmication - 0.14% 
Contention - 3.0% 
Load Imbalance - 6.0% 

400 

8 16 24 32 48 64 96 
# Processors 

Figure 6.27: GPlOOO, task adaptive algorithm, LC, overhead comparison 
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Figure 6.28: TC2000, task adaptive algorithm, LC, overhead comparison 
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The probable cause for the general network contention increase in 
the TC2000 over the GPlOOO could be attributed to these factors: 

1. The increase in switch speed in the TC2000 over the GPlOOO 
does not match the corresponding increase in processor speed, 
therefore more collisions in the network switch are likely to 
occur. 

2. The hardware support for block transfers in the GPlOOO is not 
available in the TC2000 (this was used in the LC scheme). 

It seems likely that the cause for the general network contention 
increase could be a combination of both of these reasons, especially for 
the LC scheme which extensively uses the block transfer mechanism. 
Although the TC2000 contains a cache as well as support for use of 
fine grained interleaved shared memory, neither of these characteris­
tics is used in the implementation of the algorithms. The cache does 
not affect performance in the LC schemes, however, since the remote 
data is copied to local memory, where it is then cached as local data. 
In addition, the fine grain interleaving is not needed and would not 
provide better performance anyway since the shared data is already 
scattered among the memory modules. In the next section, the effect 
of enhancing the characteristics of computer graphics scenes is ana­
lyzed to determine the overall performance differential. 

6.3. Scene Characteristics 
One of the reasons different images are used for performance 
comparisons throughout this book is that it is desirable to be able to 
generalize these results to apply to all computer generated scenes. Of 
course this is an impossible task since there are always pathological 
cases one cannot predict. In the experiments four scenes were used 
which have different characteristics in screen area projection, number 
of data elements, and depth complexity. In this section, these same 
four scenes are analyzed, along with several new ones which have 
added scene complexity in one form or another. These break down 
into two categories: image complexity and object complexity . 

In his thesis, Whelan analyzes several scenes which vary in 
complexity in terms of both of the above categories. His conclusions 
merely represent what most researchers intuitively realize, but they 
are worth repeating here: 

1. Scenes are not usually composed of uniformly distributed 
polygons. 
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2. As the number of polygons increases, their size generally 
decreases. Somescenes may have a few large polygons which 
take up a significant portion of the drawn area on the screen. 

3. Most polygons have few edges. 
4. The aspect ratio of polygons is non-uniform, although some 

scenes seem to be oriented towards a particular direction. 
5. The depth complexity of most pixels is fairly small (less than 

six), although some scenes obviously violate this rule. 

It is not necessary to repeat Whelan's analysis for the scenes used 
here since it does not categorize scenes in terms of their difficulty in 
the various rendering stages. His analysis does point out that non­
uniformity in scenes is the norm, so a parallel graphics algorithm 
must take this into account and perform well under various 
circumstances. The algorithms presented in this book are general 
purpose and are designed to handle various input scenes rather than 
a specific type. One cannot categorically draw a relationship between 
a given algorithm and say, the depth complexity of an image. Even if 
this were the case, does that information provide anything useful to 
the user community? In general, the algorithm should perform well 
on all imagery and should have the capability of handling pathological 
cases with some efficiency. This is more useful than algorithm 
analysis based upon depth complexity, polygon area coverage, or some 
other factor. 

In the following sections, the different algorithms' performance is 
compared using an increase in image complexity in the first 
subsection and an increase in object complexity in the second 
subsection. 

6.3.1 . Image Complexity 
Image complexity refers to the addition of features to a scene to make 
a higher quality image. Such additional features can include: 
rendering at higher resolution, advanced anti-aliasing, texture 
mapping, shadow generation, and bump mapping to name a few. 
Texturing, shadowing, or bump mapping, have not been implemented 
here since these features require careful planning in order to be 
implemented efficiently in parallel. This is primarily due to the 
additional memory required for each of these features, plus the desire 
to avoid contention for this memory. Anti-aliasing has already been 
incorporated into this algorithm, and all of the data presented so far 
includes this feature. Therefore, increasing spatial resolution is con-
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centrated on here, and a comparison of the other features is left for 
future work. 

All ofthe previous scenes are re-tested at double resolution (1280 
x 968) to evaluate the performance of the different algorithms under 
these conditions. The first set of graphs involves a comparison 
similar to the others in this chapter, in which the setup phase as well 
as the tiling time is taken into account. The speedup and efficiency 
are given in the second set of graphs. 

As a representative example of the times for the high resolution 
computations, the results for the mountain image are shown in fig­
ures 6.29 and 6.30, but the graphs for all the images are included in 
the appendix in figures A21 through A28. These graphs are zoomed 
in to show more detail at the higher processor counts. The speedup 
for the mountain image on the GPlOOO using the task adaptive 
algorithm is shown in figure 6.31, and the efficiency for this image in 
figure 6.32. Since communication is the same as before but there is 
an increase in work due to the increased resolution, the algorithms 
are more efficient. Table 6.4 shows the speedup and efficiency for 
each ofthe images when calculated at high resolution on the GPlOOO, 
versus normal resolution using the task adaptive (LC) algorithm. 

Table 6.4: Tiling section comparison of speedup and efficiency for normal 
resolution images vs. high resolution images on GPIOOO, 96 Processors 

Images Normal High Normal High 

(#polygons) Resolution Resolution Resolution Resolution 
Speedup Speedup Efficiency Efficiency 

Stegosaurus (9K) 71.4 86.5 0.74 0.90 

Laser (46K) 73.6 80.0 0.77 0.83 

Tree (106K) 70.5 84.6 0.73 0.88 

Mountain (131K) 82.2 87.6 0.86 0.91 

The data from the table indicates that the speedup varies widely 
among the images, but the single common result is that the additional 
work in the high resolution images provides better speedup and 
efficiency than in the normal resolution case. It is likely that the 
reason for the improved speedup is that the ratio of work to 
communication time has increased, thus reducing the network 
contention percentage. 
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High Resolution Tiling + FE Comparison 
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Speedup and Efficiency of High Resolution Image 
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Figure 6.31: Speedup for high-res mountain image, GPlOOO 
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This is logical since the amount of network traffic has not 
changed, but the amount of work has increased due to the increase in 
spatial resolution. In the next section, the algorithms are compared 
on a different set of images which involve much higher numbers of 
polygons to see the expected times on these datasets. 

6.3.2. Object Complexity 
One of the goals of this work was to present solutions for developing a 
highly efficient parallel rendering algorithm which allows extremely 
fast computation of complex imagery. To this end, new datasets are 
evaluated which contain a considerably greater number of polygons. 
Examples of two highly complex datasets are the rings image in color 
plate 5 and the dense tree image shown in color plate 6. The dense 
tree image has more polygons than the previously evaluated tree 
image, particularly in the twigs. Due to the amount of memory 
required for the tree dataset, it is not possible to evaluate speedup 
and efficiency since not enough physical memory was available even 
locally. All of the images are evaluated based on their total time, as 
well as the number of polygons rendered per second. Hardware 
manufacturers typically quote a figure of polygons per second in 
evaluating hardware Z-buffer graphics workstations. A typical 
example of this type of machine is the HP-320/SRX. Some of the 
images which were evaluated previously have been rendered on this 
machine by Eric Haines, who developed the SPD database from which 
the tree, mountain, and rings datasets were extracted. Table 6.5 
shows a comparison of all the images and the effective number of 
polygons per second achieved. These results were obtained using the 
task adaptive algorithm on 96 processors of a BBN TC2000. 

In comparison to the values in the table, Haines ran some of the 
same tests on the HP-320/SRX [Hain87b]. In rendering the dense 
tree, 4835 polygons/second was achieved. Using a denser version of 
the rings image (87 4 K polygons) than employed here, the HP-
320/SRX achieved 4819 polygons/second. For comparison, a current 
example of a state of the art graphics superworkstation is the Silicon 
Graphics Iris 4D VGX [Haeb90]. The manufacturer quotes a figure of 
750,000 Gouraud-shaded triangles per second for this machine. 

This value for the hardware performance is based on Gouraud 
shaded polygons which are not anti-aliased. Our data is for Phong 
shaded polygons with specular highlights and stochastic sampled 
anti-aliasing. Although it is difficult to compare exactly, the addition 
of Phong shading typically might cost 3 times as much as Gouraud 
shading, in addition to the anti-aliasing cost which is about 4 times as 
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Table 6.5: Effective rendering rate and speedup using 96 processors on BBN 

TC2000, task adaptive algorithm 

Images #Polygons Time Polygons/Second Speedup 
(sec.) 

Stegosaurus 9,639 1.14 8,455 61.3 

Laser 46,393 2.02 22,967 59.3 

Tree 106,289 2.94 32,907 56.4 

Mountain 131,072 4.12 29,857 70.6 

Rings 567,841 9.90 52,239 85.6 

Dense Tree 851,288 8.81 80,690 58.9 

much for stochastic sampling as it is for a Z-buffer. Also, the amount 
of physical memory required to support over 500,000 polygons is most 
likely not available within a graphics workstation, and this will 
almost certainly slow down the hardware. Nevertheless, the results 
given here are significantly faster than a slightly older generation 
graphics workstation and might compare favorably with a current 
generation machine. When the fact that the rendering is done in 
software rather than hardware in this algorithm is added, the benefit 
is that much greater since the software version allows much more 
flexibility in its use. This is elaborated upon in the next chapter. 

6.4. Conclusions 
Based on all of the data reported in this chapter, it seems clear that 
the task adaptive algorithm utilizing the LC memory referencing 
scheme provides the best performance for all types of imagery among 
the methods implemented. Besides performance, other advantages of 
the task adaptive approach are: 

1. It is unnecessary to determine an initial optimal granularity 
ratio for this algorithm. The number of areas chosen initially 
corresponds to the number of processors in the system, and 
high performance is achieved regardless of machine configura­
tion. In the other algorithms, this ratio must be derived for 
each image independently for the best performance. 
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2. The load balancing in the task adaptive approach is completely 
dynamic, based on the amount of work left. Because of this, 
worst case scenarios, such as all of the data being located in 
one portion of the screen, can be handled effectively while the 
other algorithms will not perform nearly as well in this type of 
situation. 

3. This approach has minimal time cost in the setup phase of the 
front end since the number of areas is very small initially. 
Hence, this time is much less than in the other algorithms. 

In summary, the first section of this chapter presents an analysis 
of several different memory referencing strategies. Based on this 
theoretical analysis, the Uniformly Distributed and Locally Cached 
schemes are shown to only differ by several tenths of a second. A 
description regarding the implementation of both of these schemes is 
then presented in detail After comparing the results of the 
implementations, it is clear that the LC scheme combined with the 
task adaptive decomposition method results in the best performance 
for all the test imagery. The setup time from the front end for each 
approach is included for the timings, in order to allow a fair 
comparison and substantiate this fact. The theoretical analysis of the 
memory reference strategies indicated that there would only be a 
small difference between the UD and LC schemes. Instead, the 
difference is much larger due to the fact that network contention is 
not accounted for in the theoretical analysis. This contention is an 
important degradation factor since it is significantly smaller in the 
LC scheme than it is in the UD scheme. 

The second section involves a comparison of the different parallel 
algorithms with respect to changes in the underlying machine 
parameters. It is shown that a change in the GPlOOO operating 
system which allows parallel page faults markedly improved 
performance over the previous version of this operating system. 
When using the next generation version of the BBN multiprocessor 
known as the TC2000, the faster CPU and network switch improves 
performance in all cases almost an order of magnitude over the 
GPlOOO. The task adaptive algorithm using the LC scheme proves to 
be the best performer for this new machine as well. A comparison of 
overhead factors between the two machines reveals that network 
contention plays a more significant role in degrading performance in 
the TC2000 than in the GPlOOO when measured at 48 processors, 
however. A possible explanation is that the interconnection network 
speed increase from the GPlOOO to the TC2000 does not match the 
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corresponding increase in the CPU performance. As a result, tasks 
execute faster, but the communication of data is more frequent, 
leading to a greater possibility of a blocked path in the network. The 
TC2000 offers enhancements to memory referencing (such as a 
hardware cache) that are not incorporated into the implemented 
algorithms. It is possible that if these are utilized, the effects of 
network contention could be reduced. 

The third section in this chapter involves an analysis of the effect 
of increasing image and object complexity in the test scenes. Re­
evaluating the performance of the algorithms at a resolution of 1280 x 
968 on the mountain image reveals a speedup of87.6 on 96 processors 
using the task adaptive algorithm on the GPlOOO. In addition, using 
a highly complex scene with over 800,000 data elements, an effective 
polygon rendering rate of over 80,000 anti-aliased Phong shaded 
polygons per second is achieved on 96 processors of a TC2000. This is 
most likely the fastest rendering ever realized to this point using a 
software algorithm on a general purpose MIMD architecture for 
graphics rendering. 
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Conclusion 

This book has primarily concentrated on the development and 
analysis of various approaches to tiling three-dimensional computer 
generated scenes on a multiprocessor. In doing so we have presented 
the following: 

1. A categorization of possible parallel approaches to graphics 
rendering into a taxonomy according to graphical task 
decomposition. 

2. A number of methods which incorporate parallelism in all 
aspects of a graphics rendering program. 

3. A quantitative analysis of various degradation factors 
encountered in a multiprocessor graphics display algorithm 
implementation. 

4. The development of general task partitioning and memory 
referencing strategies which may be used in other graphics 
rendering algorithms, as well as non-graphics applications. 

These will be described in detail in the following sections. 

181 
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7.1. Summary 
In the past, research in the area of parallel graphics rendering has 
concentrated primarily on approaches to tiling a scene. This portion 
of the program involves the hidden surface removal and subsequent 
smooth shading operations necessary to establish a realistic 
rendering. Although this is the most time consuming portion of a 
graphics display program, little work has been spent on the 
development of parallel approaches to the front end and back end of 
such a program. If this is not done, the advantage gained in 
parallelizing the tiling portion will be lost when the other parts are 
executed sequentially. Although the front end and back end portions 
of the programs presented here were not analyzed fully, a pipelined 
approach was developed t speed up significantly these segments of the 
algorithms. In addition, these phases are well integrated with the 
tiling portion of the programs, thus providing a general purpose high 
performance approach to parallel rendering which could be used in 
real-world applications. This means that the parallel programs 
presented here will provide faster speed than other programs 
developed in the past which do not incorporate parallelism into the 
non-tiling phases. 

The results in chapter 6 indicate that the task adaptive algorithm 
maintains the highest performance of the image space algorithms 
which were implemented. By splitting tasks into areas dynamically, 
the maximum amount of coherence is maintained in this approach. 
The setup time in the front end is small since the number of areas 
created initially is reduced in comparison to the other approaches. 
This is due to the fact that the initial number of areas chosen is equal 
to the number of processors currently available in the system. The 
added advantage here is that it is unnecessary to find an optimal 
granularity ratio prior to tiling the scene, as opposed to the other 
algorithmic approaches. Another advantage of this scheme is that 
worst case situations, such as a high concentration of data in a small 
portion of the image, are handled elegantly and will not present a 
problem. This algorithm, when combined with the Locally Cached 
memory referencing scheme, offers the best overall performance on 
the tested datasets. In addition, based on the timings shown in both 
chapter 5 and chapter 6, the algorithm performs well all the way up 
to 96 processors on both Butterfly multiprocessors. An efficiency of 
over 90% was obtained with the mountain image on 96 processors on 
the GPlOOO. In addition, using the rings database which contains 
over 500,000 polygons, an efficiency of 84% was obtained on the 
TC2000 computer. This indicates that parallel processing of 
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computer graphics rendering is a cost effective solution for use with 
very complex datasets. 

Based on the data presented in this book, it seems that the less 
complicated approaches to parallel decomposition obtain the highest 
performance. Many researchers have challenged this notion by 
developing complicated solutions to the parallel rendering problem. 
While this may be necessary in a hardware environment, it usually 
compromises performance in the software environment due to the 
extra overheads of synchronization, etc. The simple techniques 
presented here for dynamic task decomposition, along with judicious 
memory management schemes, combine to solve the problem in a 
straightforward manner. 

One common misconception that might be perceived regarding 
parallel display algorithms is that when graphical coherence is lost, 
performance will suffer greatly. Indeed, coherence has played a 
significant role in enhancing the development of serial display 
algorithms. In a parallel context, however, even when a large number 
(2,304) of areas is created, the overhead is limited to only about 6% of 
the total execution time. Clearly, an approach which uses groups of 
small scan line areas reduces the overhead due to coherence. The loss 
due to lack of coherence is not as great as one might think, so parallel 
processing of areas does not add significant overhead to the serial 
approaches developed in the past. 

In general, other factors play a more important role than 
coherence in the performance of the parallel algorithms. Most of the 
degradation relates to either load balancing or communication. One 
of the important facts brought out here is that an algorithm which 
strictly emphasizes load balancing does not guarantee the best 
performance. This is shown in the times for the data adaptive 
algorithm. This algorithm does exhibit the least amount of overhead 
due to load imbalance; however, the implementation of this approach 
forces additional overhead to be incurred in other parts of the 
algorithm that negate the gains achieved by a balanced load. 

Memory usage also plays an important role in a number of ways. 
The Uniformly Distributed (UD) memory referencing scheme 
introduces latency, while the Locally Cached (LC) memory 
referencing scheme requires communication using block transfers. As 
a result of the large volume of message traffic due to retrieving data 
in the UD scheme, a significant amount of network contention is 
introduced. The LC scheme minimizes this factor, but it still plays an 
important role in the degradation in performance, especially on large 
processor configurations. Network contention is difficult to predict 
since it is related to the number of requests for paths in the 
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interconnection network at a given time. When the interval between 
requests is large, the contention is small, and vice versa. This 
explains why an analytical model that does not relate network 
contention to communication in the system will not accurately predict 
performance. Although researchers have developed a good model 
[Nand90] for computation in this type of environment, it is difficult to 
use in the context of a complex algorithm such as this one. The task 
adaptive algorithm uses larger tasks which require communication 
less frequently than the other approaches, except toward the end of 
the computation. Contention is not reduced in this approach, though, 
since the issue of how to limit the burst of communication at the end 
of the computation due to the large amount of task splitting has not 
been fully addressed. 

The Butterfly interconnect is an example of a high' speed network, 
but contention still plays an important role in the algorithms shown 
here. This should be taken into account in the implementation of any 
program involving a large amount of data movement. The problem of 
network contention can be resolved if the usage of the network is 
reduced or more switch paths are made available in the hardware. 
The latter is not usually a solution available to the programmer, so 
the former approach must be taken. This was used in the LC memory 
referencing strategy which was developed solely for the purpose of 
limiting communication in the system. Further refinements of this 
scheme could be added to reduce the number and size of the 
messages, particularly in the case of the task adaptive algorithm. 

The following generalizations can be made regarding implementa­
tions on parallel machines of algorithms with high data movement, 
such as the ones developed here. The memory referencing strategy 
directly affects performance in the system since it is directly related 
to the communication of data. The frequency and amount of commu­
nication determines the overall degradation due to network con­
tention. Any reduction of this factor is certain to provide high per­
formance, especially in applications where there is a large dataset 
requiring frequent referencing. Another point is that global 
scattering of data among the memory modules in a shared memory 
NUMA machine is necessary to counteract the problem of hot spot 
contention. Using some type of caching scheme to bring in data to the 
local memory module prior to referencing is crucial to high 
performance since it minimizes network traffic and reduces latency. 
Finally, the coarsest granularity for tasks which allows adequate load 
balancing is the best approach to take in order to achieve good 
parallel timings. The graphs of granularity ratio versus overhead 
effects (figures A5, A.6, A. 7, and A8) show that other overhead 
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factors are increased when the granularity becomes too fine. As an 
example, the task adaptive approach uses the smallest number of 
tasks to minimize these effects in comparison to the other 
decompositions. 

From the results presented herein, it can be seen that high 
performance can be achieved in a graphics display algorithm on a 
parallel architecture. Since graphics applications tend to be data 
intensive, the memory must be managed effectively, something which 
has not been done in some parallel graphics algorithms developed in 
the past. Other graphics applications such as volume rendering, 
image processing, and radiosity can take advantage of some of the 
techniques described here for use in a parallel environment. For 
instance, the LC memory referencing scheme could be modified for 
usage in each of these instances since the data to be rendered for a 
particular task is known a priori. In addition, the task adaptive algo­
rithm could also be modified for task partitioning purposes for these 
rendering techniques. In addition, non-graphics applications can also 
utilize the techniques described here. Example applications might 
include geographical information systems, global climate modeling, 
finite element simulation, and applied graph theory. 

During the development of this project, many problems were 
encountered when implementing the parallel algorithms on the 
Butterfly. Several software tools available with this machine made 
program development much easier than it otherwise might have been. 
Gist is a performance analysis package which shows a graph of 
processors versus time in an X-window display. By setting events at 
critical time points in the program, one can evaluate the performance 
of the program by looking at how long a particular phase takes to 
execute on each processor. The graphical output of this tool aids in 
the programmer's understanding of the processor-time graph. A 
parallel profiler is also · available which can generate individual 
processor profiles and this is also a useful tool for evaluating program 
performance. The primary software tool that allows greater 
understanding of the internal nature of the parallel aspect of the 
programs is a parallel debugger called TotalView. Without this tool, 
situations like race conditions, synchronization problems, and shared 
memory problems would have been much more difficult to debug. 
This environment made program debugging, testing, and analysis an 
easy interactive task which hastened the development of the 
evaluated programs. 

Even with the fact that BBN is no longer building the Butterfly, 
scalable shared memory multiprocessors are not dead. Clearly, 
latency and contention issues are the primary target areas for 
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improvement. Tera Computer Company is designing a machine to 
combat both of these issues in a scalable shared memory architecture. 
Message passing machines seem to be growing in popularity, and it 
would be useful to determine how these types of machines could be 
used for fast graphics rendering. While the memory referencing 
strategies of the algorithms presented here might need to be modified 
for this type of machine, the work decomposition methods would not 
require modification. It is possible that a number of different 
decomposition strategies will lead to good results due to the different 
topologies and communication performance in these architectures. In 
addition, message passing architectures have distributed memory like 
the Butterfly so an extension of the LC memory referencing scheme 
might prove to be a viable solution in that environment. 

The analysis and performance results given in this book should 
serve as a guide to the reader regarding the critical issues involved in 
the development of a parallel graphics rendering program. In 
addition, the algorithmic possibilities which are worthwhile taking 
into account during the development and tuning process have been 
presented and can certainly be modified according to the machine 
available to the programmer. 

7.2. Future Work 
There are still a number of unanswered questions which have not 
been addressed in this book, in addition to new questions brought out 
by the results reported here. Next, these are elaborated upon with 
regard to potential future areas of work. 

In relation to machine parameters, it would be interesting to see 
what new issues are encountered on a very large multiprocessor 
containing 512 or an even greater number of processors. It is entirely 
possible that the algorithms will need to be changed to handle this 
type of situation. As the speed of microprocessors has increased over 
the years, the interconnection network speed has not increased as 
quickly. While the TC2000 network is faster than the GPlOOO 
network, it seemed to incur greater network contention. This is most 
likely due to the fact that the performance of the interconnection 
network was not increased at the same rate that the processor speed 
was increased. It would be interesting to analyze this phenomenon in 
detail, not just for graphics algorithms, but for other applications as 
well. This might provide insight for hardware as well as software 
designers when planning a program for parallel implementation. 

Another machine characteristic specifically relevant to the 
TC2000 is the use of the hardware cache as well as interleaved shared 

TEXAS INSTRUMENTS EX. 1011 - 197/229



Future Work 187 

memory. The cache provides fast access to read-only shared data 
which is stored globally. On TC2000 machines which contain 16 
megabytes of memory per processor, it is possible to configure a 
portion of the memory on each processor as fine-grained interleaved. 
The programmer no longer has to make sure that the data is 
scattered across the memory modules since it is implicitly done in this 
case. In addition, the granularity of interleaving is much finer than 
was possible before, so that even a one-dimensional array can be 
scattered among the memory modules. The combination of using the 
cache with storing read-only data in the interleaved shared memory 
might produce better results than the LC scheme developed in this 
book, but the cachable data would need to be managed effectively. 
This would alleviate the programmer from the burden of 
programming the complex code necessary to implement the LC 
scheme. 

Other researchers have investigated techniques by which the 
operating system manages the storage and access of shared memory 
in an NUMA architecture such as the Butterfly [Laro90]. This level 
of management by the operating system allows use of a memory 
referencing method such as the UD scheme which is easy to develop, 
while the operating system manages the location and storage of data 
and attempts to optimize it for high program performance. 

Other future work in developing parallel graphics display 
algorithms might look at different implementations of memory 
referencing schemes, investigate methods to alleviate communication, 
and look at the handling of even larger graphics datasets. Graphics 
features such as shadows, texture maps, bump maps, and motion blur 
also present interesting challenges to a parallel implementation. 
Each ofthese features requires additional memory, and the use of the 
memory in some cases cannot be localized. For instance, texture 
mapping requires referencing a two-dimensional array of pixel values 
to assign a more detailed property to a particular polygon or object. If 
the map is scattered throughout memory, hot spot contention will be 
minimized, but memory latency will occur. A caching technique like 
the LC scheme could be used to bring in the portion of the map that is 
relevant for a particular polygon or object. This method might require 
a very large portion of the texture, and there may not be enough local 
processor memory to facilitate this type of approach. Another 
enhancement which might be worth investigating in the future 
involves fast update of small scenes in real-time. In fact, this is the 
type of work that is currently being investigated for scientific 
visualization at Lawrence Livermore National Lab. We hope to report 
on the success of this project in the future. 
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Appendix 

A. Information on Test Scenes 
The matrix used in Eric Haines' SPD database clipped out too much 
of the fractal mountain when it was generated at the resolution we 
chose (130 K polygons). Therefore, for comparison purposes, we 
provide the matrix we used here: 

['f 0 0 0 ] .297 .742 0 
.649 -.259 0 
.185 3.156 1 (A.l) 

Also, the reader will note that the specified screen resolution which 
was proposed in the SPD database was 512 x 512, while our 
renderings were displayed at 640 x 484. The reason for this was that 
the algorithm used is intended as a scene development display 
algorithm for animation purposes and standard video resolution is 
640 x 484. We expect that a resolution of 512 x 512 would result in 
somewhat. similar timings. 

B. Data for Various Algorithms 
Each of the different implementations described in chapter 4 is 
presented in this section with the exact overhead percentages noted 
for each of the four test images. The algorithms are presented in the 
following order: scan line parallel, rectangular region CUD), 
rectangular region (LC), top-down, and task adaptive. 

Scan line Data Non-Adaptive Algorithm 
Scheduling 
stegosaurus 
laser 
tree 
mount 

0.01% 
0.006% 
0.005% 
0.002% 

199 
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Memory Latency 
#remote refs 

steg 5,765,541 
laser 12,813,378 
tree 15,250,407 
mount 47,629,192 

* 6.47 J.l.Sec 
37.3 sec 
82.9 sec 
98.7 sec 

308.2 sec 

Switch Contention- 48 x 48 mesh 

%ofTp*P 
3.0% 
4.0% 
4.1% 
5.6% 

T(96) T(l) 
steg 1036.99 834.22 
laser 1818.50 1522.42 
tree 2158.57 1973.95 
mount 5199.22 4034.73 

%Tp*P 
16.2% 
14.4% 
7.8% 

21.0% 

Calculated 
23.1% 
17.9% 
8.9% 

20.5% 

Load Imbalance - average over 3 runs 
steg 10.4% 
laser 8.1% 
tree 8.7% 
mountain 6.8% 

Code Modification 

steg 
laser 
tree 
mount 

Time 
106.3 sec 
157.7 sec 
117.9 sec 
543.9 sec 

% ofTp*P 
8.5% 
7.7% 
4.9% 
9.8% 

Rectangular Data Non-Adaptive Algorithm 
(UD Scheme) 
Scheduling 
96 processors, 2304 areas 
stegosaurus 0.013% 
laser 0.009% 
tree 0.007% 
mountain 0.004% 

Memory Latency 
remote refs 

steg 2,677,256 
laser 7,834,453 
tree 12,395,84 7 
mount 23,160,041 

* 6.47 J.l.Sec 
17.32 sec 
50.68 sec 
80.20 sec 

149.85 sec 

% ofTp*P 
1.4% 
2.6% 
3.4% 
3.6% 

l 
I 
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Rectangular Data Non-Adaptive Algorithm CUD Scheme) 201 

Code Modification 

steg 
laser 
tree 
mount 

Time Difference 
120.8 sec 

% Total Proc-Time Space 
8.7% 

164.6 sec 
240.5 sec 
341.6 sec 

Load Imbalance - average over 3 runs 
steg 7.0% 
laser 6.4% 
tree 11.5% 
mount 4.3% 

Switch Contention- 48 x 48 mesh 
7X96) 7X1) 

steg 1087.16 828.81 
laser 1800.05 1494.31 
tree 2182.92 2074.59 
mount 4053.71 3671.33 

8.0% 
9.6% 
7.9% 

%Tp*P 
18.7% 
14.9% 
4.3% 
8.8% 

Calculated 
33.1% 
20.6% 

5.6% 
10.9% 

Rectangular Data Non-Adaptive Algorithm 
(LC Scheme) 
Scheduling 
stegosaurus 
laser 
tree 
mountain 

2,304 areas 
0.017% 
0.01% 
0.007% 
0.004% . 

Communication Overhead 

steg 
laser 
tree 
mount 

# bytes transferred 
953,446 

2,288,116 
3,634,812 
6,788,070 

Time 
0.268 sec 
0.644 sec 
1.022 sec 
1.909 sec 

Load Imbalance - average over 3 runs 
steg 6.8% 
laser 6.6% 
tree 11.1% 
mount 4.5% 

% Tp*P 
0.028% 
0.039% 
0.047% 
0.052% 
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Code Modification 

steg 
laser 
tree 
mount 

Time Difference 
62.3 sec 

103.0 sec 
119.6 sec 
196.4 sec 

%Tp*P 
6.4% 
6.3% 
5.5% 
5.4% 

Switch Contention- 48 x 48 mesh 
T(96) T(1) 

steg 881.26 753.14 
laser 1502.99 1385.45 
tree 1940.51 1877.89 
mount 3485.53 3380.91 

%Tp*P 
13.1% 
7.2% 
2.9% 
2.9% 

Calculated 
16.3% 
8.9% 
3.1% 
3.2% 

Data Adaptive Top-Down Decomposition 
Scheduling, 960 regions 
stegosaurus 0.01% 
laser 0.007% 
tree 0.006% 
mountain 0.003% 

Communication Overhead 
# bytes transferred 

steg 653,060 
laser 1,833,368 
tree 3,110,170 
mount 5,654,696 

Time 
0.18 sec 
0.52 sec 
0.87 sec 
1.59 sec 

Load Imbalance - average over 3 runs 
steg 1.5% 
laser 6.9% 
tree 4.0% 
mount 3.1% 

Code Modification 

steg 
laser 
tree 
mount 

Time Difference 
32.3 sec 
59.1 sec 
59.9 sec 
97.9 sec 

%Tp*P 
2.8% 
3.3% 
2.6% 
2.5% 

%Tp*P 
0.02% 
0.03% 
0.04% 
0.04% 

1 
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Task Adaptive Algorithm 203 

Switch Contention- 48 x 48 mesh 
T(96) T(1) 

steg 1109.4 723.0 
laser 1649.5 1341.4 
tree 2177.9 1818.2 
mount 3736.6 3282.1 

%Tp*P 
34.0% 
17.4% 
15.7% 
11.8% 

Task Adaptive Algorithm 

Number of Tasks 
non-background tasks total tasks 

254 
235 
245 
243 

steg 209 
laser 183 
tree 233 
mount 224 

Scheduling 
stegosaurus 
laser 
tree 
mountain 

0.00023% 
0.00014% 
0.0001% 
0.00006% 

Communication Overhead 
#bytes transferred Time 

steg 3,876,924 1.1 sec 
laser 251,191,547 70.7 sec 
tree 21,747,484 6.1 sec 
mount 19,765,530 5.6 sec 

Load Imbalance- average over 3 runs 
steg 14.3% 
laser 10.3% 
tree 22.5% 
mount 9.2% 

Code Modification 

steg 
laser 
tree 
mount 

Time Difference 
3.9 sec 

25.6 sec 
17.6 sec 
31.5 sec 

%Tp*P 
0.4% 
1.6% 
0.7% 
0.8% 

Calculated 
34.9% 
17.3% 
16.9% 
11.8% 

%Tp*P 
0.11% 
4.20% 
0.25% 
0.15% 
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Switch Contention- 48 x 48 mesh 
1X96) 1X1) %Tp*P 

10.6% 
10.2% 
4.8% 
5.7% 

steg 
laser 
tree 
mount 

798.7 sec 
1489.5 sec 
1900.4 sec 
3433.8 sec 

Synchronization 

steg 
laser 
tree 
mount 

Time 
21.2 sec 
39.4 sec 

4.0 sec 
7.9 sec 

695.6 sec 
1309.7 sec 
1781.0 sec 
3219.7 sec 

%Tp*P 
2.2% 
2.3% 
0.16% 
0.21% 

C. Supplementary Graphs 

Calculated 
11.7% 
9.2% 
5.6% 
5.5% 

Additional graphs are given here for the purpose of providing a better 
evaluation of the various algorithms. These graphs, listed in order of 
appearance, are the following: 

1. Ratio Comparison for Rectangular Region Decomposition, UD 
Scheme 

2. Ratio Comparison for Rectangular Region Decomposition, LC 
Scheme 

3. Duplication Factors vs. Number of Areas 
4. Comparison of Operating Systems for GP1000, Rectangular 

Region, UD Scheme 
5. Comparison of Operating Systems for GP1000, Rectangular 

Region, LC Scheme 
6. Comparison of All Algorithms, Total Time including Tiling and 

Front End, High resolution on the GPlOOO 
7. Comparison of All Algorithms, Total Time including Tiling and 

Front End, High resolution on the TC2000 
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Ratio Comparison for Rectangular Region 
Decomposition, UD Scheme 
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Figure Al: Comparison of ratios for stegosaurus image, UD 
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Figure A2: Comparison of ratios for Laser image, UD 
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Ratio Comparison for Rectangular Region 
Decomposition, UD Scheme 
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Figure A.3: Comparison of ratios for tree image, UD 
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Figure A.4: Comparison of ratios for mountain image, UD 
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Ratio Comparison for Rectangular Region 
Decomposition, LC Scheme 
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Figure A.5: Comparison of ratios for stegosaurus image, LC 
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Figure A.6: Comparison of ratios for Laser image, LC 
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Ratio Comparison for Rectangular Region 
Decomposition, LC Scheme 
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Figure A. 7: Comparison of ratios for tree image, LC 

7500 

6000 

4500 

Cumulative 
Time 3000 

1500 

D Sequential 
f2I Commun. 

1113 Load lmbal. CJ Contention 
G Code Mod. 

2 4 8 12 16 20 24 28 32 36 40 

Granularity Ratio 

Figure A.8: Comparison of ratios for mountain image, LC 
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Duplication Factors vs. Number of Areas 
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Figure A.9: Total polygons versus 
number of areas, stegosaurus image 

48000 
-Total Polys 

44000 

36000 

32000 

28000 

24000 

20000 +-~~T-~--T-~~T-~~ 
0 384 768 1152 1536 1920 2304 2688 3072 

#Regions 

Figure A.IO: Total polygons versus 
number of areas, Laser image 

140000 

130000 

.... . Tolal Polygons 

0 384 768 1152 1536 1920 2304 2688 3072 

#Regions 

Figure A.ll: Total polygons versus 
number of areas, tree image 
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Figure A.12: Total polygons versus 
number of areas, mountain image 
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Comparison of Operating Systems for GP1000 
Rectangular Region, UD Scheme 
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Figure A13: Comparison of old OS 
vs. new OS for stegosaurus image, 
rectangular region UD 
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Figure A.14: Comparison of old OS 
vs. new OS for tree image, 
rectangular region UD 
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Figure A15: Comparison of old OS 
vs. new OS for Laser image, 
rectangular region UD 
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Figure A16: Comparison of old OS 
vs. new OS for mountain image, 
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Comparison of Operating Systems for GP1 000, 
Rectangular Region, LC Scheme 
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Figure A.17: Comparison of old OS 
vs. new OS for stegosaurus image, 
rectangular region LC 
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Figure A.18: Comparison of old OS 
vs. new OS for Laser image, 
rectangular region LC 
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Figure A19: Comparison of old OS 
vs. new OS for tree image, 
rectangular region LC 
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Figure A20: Comparison of old OS 
vs. new OS for mountain image, 

rectangular region LC 
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Comparison of algorithms, total time including tiling + 
fe, high-res, GP1 000 
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Figure A.21: Total time comparison, 
GPlOOO, stegosaurus image, hi-res 
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Figure A.23: Total time comparison, 
GPlOOO, tree image, hi-res 
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Figure A.22: Total time comparison, 
GPlOOO, Laser image, hi-res 
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Figure A.24: Total time comparison, 
GPlOOO, mountain image, hi-res 
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Comparison of algorithms, total time including tiling + 
fe, high-res, TC2000 
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Figure A.25: Total time comparison, 
TC2000, stegosaurus image, hi-res 
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Figure A.27: Total time comparison, 

TC2000, tree image, hi-res 
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Figure A.26: Total time comparison, 
TC2000, Laser image, hi-res 
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Figure A.28: Total time comparison, 
TC2000, mountain image, hi-res 
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A buffer ,52 
Abram, 25 

Index 

Alliant FX/2800, 50 
Allison, 44 
Amdahl's law, 80 
Anti-aliasing, 3, 8, 51 
Ardent, 7 
Area bucket, 73 
Aspect ratio, 105 

Back end, 76 
Badouel, 27 
Bailey,30 
BBN, 23 
BBN Butterfly, 44, 50 
Blinn,68 
Block transfer, 75, 86 
Bounding box, 73 
Box filter, 75 
Bump mapping, 6, 52 

C-Threads, 62 
Cache coherence, 146 
Caspary, 28 
Catmull, 43 
Cedar, 58 
Challinger, 28, 30 
Chang, 32 
Cleary, 27 
Code modification 

overhead, 102 
rectangular region LC 

decomposition, 117 
rectangular region UD 

decomposition, 112 
scan line decomposition, 101 

task adaptive decomposition, 
131 

top-down decomposition, 124 
Coherence 

graphical, 5, 12, 21, 87 
graphical vs. parallelism, 14 
scan line, 5, 21 

Communication, 13, 86 
bandwidth, 58 
overhead 

rectangular region LC 
decomposition, 117 

task adaptive decomposition, 
129 

top-down decomposition, 123 
Contention, 13 

hot spot, 63, 76 
switch, 89 

Convex, 50 
Convolve, 75 
Cook-Torrance, 68 
Cray,50 
Critical section, 84 
Crockett, 36 
Crossbar, 160 
Crossbar switch, 58 
Cube manager, 42, 55 
Culling, 73 

Data adaptive, 119 
Data locality, 22, 56 
Data parallelism, 20 
Decomposition, 29 

area, 30 
scan line, 95 

Depth of field, 7, 10 
Diffuse, 7 

215 

TEXAS INSTRUMENTS EX. 1011 - 224/229



216 Index 

Distributed memory, 50 
Dyer, 30 
Dynamic task splitting, 126 

Edge list, 14, 74 
Edge pair, 74 
Efficiency, 26, 82 
Encore Multimax, 50, 57 

Fiume, 44 
Foley, 34 
Fork-join, 88 
Fournier, 44 
Frame buffer, 3, 76 
Franklin,25 
Functional parallelism, 20 

Gaussian filter, 75 
GenOni, 84 
Getrtc, 79 
Ghosal, 36 
Gist, 185 
Gouraud, 6, 68 
GPlOOO, 61 
Granularity, 19 

ratio, 87, 95, 114 
Greenberg, 30 

Hidden surface removal, 2, 3, 5 
Hot spot contention, 90, 184 
Hu,34 
Hypercube, 51, 55 

Illumination modeling, 3 
Image processing, 185 
Image space, 10, 28 
Inmos Transputer, 38, 50 
Intel iPSC, 36, 42, 50 
Inter-reflection, 7 
Interconnection network, 56 

Jain, 32 

Kankanhalli, 25 

Kaplan, 30 

Lambert's law, 6 
Linda, 62 
Load balancing, 18, 90 

scan line decomposition, 100 
rectangular region LC 

decomposition, 117 
rectangular region UD 

decomposition, 111 
task adaptive decomposition, 

131 
top-down decomposition, 124 

Locally Cached, 113, 146 
implementation, 146 

MACH, 79, 157 
Mach bands, 7 
Median Cut, 41, 119 
Memory latency, 85 

rectangular region UD 
decomposition, 109 

scan line decomposition, 99 
Message passing, 10, 54 
MIMD, 7, 12,50 
Modeling 

global climate, 9 
Motion blur, 7, 10 
Multi-stage, 58 
Mutual Exclusion, 88 

Ncube,23,50 
Network contention, 89 

rectangular region LC 
decomposition, 117 

rectangular region UD 
decomposition, 111 

scan line decomposition, 99 
task adaptive decomposition, 

131 
top-down decomposition, 123 

Newell, 41 
Non-blocking network, 89 
Normal vector, 6 
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NUMA, 58, 146, 184 

Object space, 3, 14, 25 
Octree, 152 
Operational parallelism, 20 
Orloff, 36 
Overhead due to adaptation for 

parallelism, 87 

Parallel 110, 54 
Parke, 37 
Partitioning 

data non-adaptive, 95 
memory, 12 
task, 15 

Patnaik, 36 
PCP, 62 
Phong,6,8,68 
Pipeline, 7, 71 

graphics, 9 
vector, 30 

Pipelining, 20 
Pixel, 3, 5, 8, 10 

as task, 29 
Pixel Machine, 8 
Pixel Planes, 8, 29 
Plunkett, 30 
Polygon 

format, 2 
Polygon clipping, 69 
Procedural parallelism, 20 
Processor-time space, 83 

Race condition, 127 
Radiosity, 7, 12, 185 
Ray coherence, 152 
Ray tracing, 10, 152 
Real-time, 6, 9, 10, 187 
Rectangular region 

decomposition, 103 
Reflection, 10 

mapping, 52 
Refraction, 6, 10 
Rendering, 2, 5 

Resolution, 52 
Roble, 42 
Rudolph, 44 
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Run-length encoding, 76 

Sancha, 41 
Scalability, 22, 134 
Scan line Z-buffer, 10, 30, 42, 68 
Scheduling, 84 

rectangular region LC 
decomposition, 115 

rectangular region UD 
decomposition, 109 

scan line decomposition, 97 
task adaptive decomposition, 

129 
top-down decomposition, 123 

Scherson, 28 
Semaphore, 88 
Sequent, 26 

Balance, 50 
Shadow, 7, 8 

volumes, 52 
Shadowing, 10 
Share routine, 63 
Shared memory, 15,57 

bus-based, 56 
multistage switch, 57 

Shared memory, 13 
Silicon Graphics, 50, 176 
Silicon Graphics IRIS, 7 
SIMD, 7, 10, 11 
Simulation 

finite element, 9 
molecular dynamics, 9 
software, 10, 11 
steering, 9, 10 

Span-area, 45 
Speedup, 26, 80 
Spin waits, 62 
Split-join, 62 
Standard procedural database, 

77 
Static contiguous, 34 
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Static interleave, 34 
Stellar, 7 
Stochastic sampling, 75 
Switch-based, 58 
Synchronization, 14, 63, 88 

task adaptive decomposition, 
129 

Task activator, 64 
Task adaptive, 126 
Task generator, 64, 78, 84 
TC2000, 61 
Texture mapping, 6, 52 
Theoharis, 38 
Three-dimensional, 1, 3 
Tiling,5, 15,26,68, 73 
Timings, 80 
Top-down decomposition, 120 
TotalView, 185 
Tree saturation, 89 
Two-dimensional, 1, 3 

UD Scheme 
implementation, 144 

Uniform memory access, 143 
Uniform System, 62, 78 
Uniformly distributed, 73, 143 

Volume rendering, 12, 28, 185 

Warnock, 31 
Watkins, 10, 21 
Whelan, 36, 41 
Whitman, 30 
Wire-frame, 6 
Worker, 84 
Workstation, 7 
Wormhole routing, 55, 56 

y-bucket, 72, 95 

Z-buffer,7,9,43,52 
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massively parallel computer to render three-dimensional
computer graphics scenes into images. The algorithms that are
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