
Data Non-Adaptive Partitioning Scheme 103

processors. The key to solving this problem is to reduce the number of
remote memory requests. As we mentioned previously, it is likely
that remote references became blocked in the switch since the tasks
assigned to processors involved adjacent scan lines. If the scan lines
were assigned in some haphazard order, this effect might be
alleviated since the data to be referenced would not be the same. On
the other hand, with a large number of processors such as 96, it
probably could not be reduced significantly. The dataset size could
also impact the network contention since larger datasets require more
references. The combination of these two factors seems to indicate
that this overhead cannot be reduced in the general case unless a
radical change in the memory referencing scheme is applied. If
coherence can be maximized without sacrificing load balancing and
can still maintain adequate parallelism, some of these factors can be
reduced significantly. The algorithm described in the next section is a
logical extension of this one and attempts to achieve these goals.

5.1.2. Rectangular Region Decomposition
(UD Scheme)

The rectangular region decomposition algorithm is a generalization of
the scan line decomposition algorithm. Instead of using single scan
lines as wide as the screen for each task, a small group of contiguous
scan lines is designated as a single task.l This idea was first sug
gested by Kaplan and Greenberg [Kapl79], where they implemented
both the Watkins and the Warnock algorithm [Roge85] as two alter
native rectangular approaches. In their Warnock implementation,
equal size areas are initially assigned to all processors. The Warnock
cull was then used within each single task.

5.1.2.1. Coherence Effect on Rectangular Regions

Presumably, the reason the Warnock algorithm was chosen for a
rectangular area partition is due to the area coherence exploited in
this algorithm. In the case here, however, a scan line Z-buffer is the
basis algorithm for each single area task since this algorithm is
inherently faster than Warnock's. Kaplan and Greenberg chose full
scan line width tasks (of multiple contiguous scan lines) for their
Watkins approach. The probable reason for this was to capitalize on

lAs a reference note, from now on, when we refer to "scan lines" in the
context of an algorithm such as this, we mean a scan line within the width of
the area.

TEXAS INSTRUMENTS EX. 1011 - 115/229

104 Comparison of Task Partitioning Schemes

the vertical span coherence exploited by that algorithm. Hu and
Foley showed that this type of contiguous approach did not provide
sufficient load balancing in comparison to the dynamic single scan
line method presented in the previous subsection. Since a scan line Z
buffer is used here and not a Watkins spanning scan line algorithm as
a sequential task basis, there are no spans to update in the vertical
dimension. Therefore, the aspect ratio (their width versus height) of
the rectangular areas chosen as single tasks is open to further
analysis. The type of coherence lost when a region is started anew is
in the vertical direction. For the first scan line of a region, all of the
polygons which started above the area but are still relevant to it need
to be initialized. Figure 5.5 illustrates those polygons.

This initialization is not necessary if vertical coherence is
maintained. On the other hand, some initialization is required for
polygons which have their top vertex in the region to the immediate
left or right of the current region as well. This initialization is also
unnecessary ifhorizontal coherence is maintained.

Another loss due to coherence in the horizontal direction is the
update of edge interpolation parameters for those edges which
intersect the region adjacent to the current one on its left. A multiply
and an add operation are required for each interpolation parameter
update, whereas an add operation is all that is needed if horizontal
coherence is maintained. Note that all of these factors would change
if clipping is implemented at the region level, but this is not done in
the implementations described here. The losses due to coherence are
further illustrated in figure 5.6.

For the purposes of this discussion, it is assumed that for a par
ticular polygon and a square region, the loss in time due to horizontal

Figure 5.5: Polygons relevant to an area but starting above it

TEXAS INSTRUMENTS EX. 1011 - 116/229

Data Non-Adaptive Partitioning Scheme 105

coherence and vertical coherence is nearly the same. In the vertical
case, the initialization overhead is fairly costly and occurs for all
polygons above the area but relevant to it. The horizontal initializa
tion cost is only valid for polygons whose top vertex enters the left or
right adjacent regions (not counting screen boundaries since clipping
occurs there). The other horizontal coherence loss at the scan line
level is small in comparison since it only involves the left adjacent re
gion and is of complexity O(e * h * T mult)where e is the number of
edges in the left region and the current region, h is the height of each
of these edges in the left region portion, and T mult is the time for a
multiply instruction. In any case, because of the wide variation in
polygon size and number in currently used imagery, it appears that
any inaccuracy encountered by invalidity of these assumptions would
be minor.

5. 1 .2.2. Aspect Ratio Choice

From figure 5.6 it can be seen that coherence is lost only along the
perimeter of the region, particularly along the left and top sides. If
the regions are tall and narrow, horizontal coherence is completely
lost, but little vertical coherence is lost, as is shown in figure 5. 7. The
opposite is true for wide regions, as shown in figure 5.8. For nearly
square regions, some degree of coherence is lost in both directions as
shown in figure 5.9. The total perimeter of a rectangular region is a
function of its aspect ratio and is shown in equation 5.4, where b is
the length of the base and his the height.

perimeter = 2 • (b + h) (5.4)

Thus, if the aspect ratio of a given region is 1:3, the perimeter is 2
• (1 + 3) • x, or on the order of Sx. If the aspect ratio is 1:1, the

1 - Vert. Loss (initialization)
2 - Horiz. Loss (initialization)
3 - Horiz. Loss (scanline update)

Figure 5.6: Loss due to coherence in vertical and horizontal directions

TEXAS INSTRUMENTS EX. 1011 - 117/229

106 Comparison of Task Partitioning Schemes

perimeter is 2 • (1 + 1) • x or 4x. It therefore seems logical that the
situation which results in the least perimeter for regions will also
have the least loss due to coherence. A few simple tests were done on
a test image of nearly uniform polygon distribution across the scene to
verify these assertions. The results are given in table 5.1.

Table 5.1: Aspect ratio (width:height) time comparison in seconds

Ratio 3:1 2:1 1:1 1:2 1:3

Time 25.8 22.7 21.8 21.9 33.6

Based on the analysis and the experimental data, it seems like a
1:1 aspect ratio is the most suitable choice for high performance for a
rectangular region decomposition. This verifies Whelan' s
experimental tests in which he compared vertical, horizontal, and
rectangular decompositions. This method is illustrated in figure 5.9
and also in color plate 2. The same shared memory referencing
method is used here as in the previou~ algorithm, namely the
uniformly distributed (UD) scheme.

5. 1.2.3. Granularity Ratio Comparison

This algorithm requires a methodology to determine the granularity
ratio R to be used for a given image or given number of processors
(recall that R = #tasks/P). It seems clear that a ratio of R = 1 would
not produce adequate load balancing for images which contain data
that is not uniformly distributed across the scene. Some questions
need to be answered in order to determine what this ratio should be,
and if it should change depending on the image or number of
processors. Other researchers in the past (notably Fuchs and
Johnson [Fuch79]) have used static assignment of tasks onto
processors in an attempt to develop an evenly load balanced system.
While static assignment may be preferable in some instances, it is not
necessary since the Uniform System on the Butterfly uses a small
amount of overhead in implementing a dynamic scheduler. In the
algorithm used here, a large number of tasks which are easily
determined are executed in a dynamic fashion.

The dynamic method reduces load imbalance, and since the tasks
are small at the end of the computation, very little work is left to
perform. The number of tasks created strongly influences the degree
of success ofthe load balancing.

r
i

--.~~~~~~~=-~-=~--.....

TEXAS INSTRUMENTS EX. 1011 - 118/229

Data Non-Adaptive Partitioning Scheme 107

Figure 5.7: Vertical subdivision

Figure 5.8: Horizontal subdivision

Figure 5.9: Rectangular mesh subdivision

TEXAS INSTRUMENTS EX. 1011 - 119/229

108 Comparison of Task Partitioning Schemes

On the other hand, if too many tasks are assigned, load imbalance
is reduced, but the overhead of assigning more tasks will introduce
additional loss of coherence, communication, aild network contention.
Therefore, to choose the appropriate granularity ratio for a particular
combination of (image, #processors), a series of experiments was
designed to evaluate the performance of a particular granularity ratio
R. These are shown in figures A.1, A2, A3, and A.4 in the appendix.
The data for the mountain image is given in figure 5.10 as a
representative example. From the graphs, it seems clear that ratios
anywhere in the range from 16 to 1 up to 28 to 1 are suitable for most
of the imagery. A compromise ratio of 24 to 1 was decided as the
single choice to be used in the main timing experiments.

One important note here is that the value of R determined above
was evaluated on 96 processors since this was the maximum number
of processors used. Due to increases in communication and network
contention as the number of processors increases, this value of R may
be higher than desirable if more processors are to be used. Either
educated guesses or empirical testing similar to above would be
required for a given processor configuration, especially if a different
machine architecture were to be used. It is not reasonable to attempt
to determine this ratio mathematically a priori since the overhead
factors are too hard to predict for a given image. The times for all

0 Sequential
@ Commun.

111 Load Imbal. Q Contention
(!] CodeMod.

8000~-+--~~~--~~--~~~--~~

7000

6000

Cumulative
5000

Time 4000

3000

2000

1000

0 +--+~~4--+--~~-+--~~-+~
2 4 8 12 16 20 24 28 32 36 40

Granularity Ratio

Figure 5.10: Granularity ratio comparison for mountain image, UD scheme

TEXAS INSTRUMENTS EX. 1011 - 120/229

Data Non-Adaptive Partitioning Scheme 109

images using R = 24 and a 1:1 image aspect ratio for the regions are
shown in figure 5.11. The speedup graph can be seen in figure 5.12.
Although an aspect ratio of 1:1 for the regions was desired for all
values of P, this could not be achieved for each combination of Rand
P. Therefore, an aspect ratio as close to 1:1 was used when needed
(all regions have the same aspect ratio for a given value of P).

We will now analyze this algorithm with regard to the issues
identified previously to determine the various overhead percentages.

5.1.2.4. Scheduling (0.004%- 0.013%)

In this decomposition method, it is necessary to schedule all regions
as separate tasks, but the number of regions varies as the number of
processors is increased. To determine the maximum number of
regions to be scheduled, we used the granularity ratio (R) of 24 to 1 on
96 processors, which results in a total of2,304 tasks to schedule. The
time to run a task consisting solely of the background color for one of
these areas has been measured as Tback = 2.3 msec. The reason this
is larger than in the scan line decomposition case is that a separate
block transfer is necessary for each scan line in the area and each
block transfer requires a setup cost. Since 2.3 msec is exactly the
overhead time to schedule 96 tasks on 96 processors (Tsched),

scheduling will not become a bottleneck in this algorithm. The
overhead due to scheduling then involves plugging the values for this
algorithm into equation 4.5, as shown below. This time represents a
percentage overhead for the different images, ranging from 0.004% for
the mountain image to 0.013% for the stegosaurus image.

<95 • 96) • 24 ~sec + (2,304 - 96) • 24 ~sec
Scheduling % = 2 • 100 %

Tp • 96 (5.5)

5.1.2.5. Memory Latency (1.4%- 3.6%)

In this algorithm, memory latency is measured the same way as the
previous method, namely by counting the number of remote
references and using equation 4.6 to determine the overall
percentage. Fewer references to the shared data are needed than in
the previous approach due to the coherence maintained within a
region. Consequently, the overall latency is reduced.

TEXAS INSTRUMENTS EX. 1011 - 121/229

110 Comparison of Task Partitioning Schemes

Rectangular Region Algorithm (UD Scheme)
Performance

1.000e+04

1000

Time 100
(seconds)

10

-B-Laser

10 100

Processors

Figure 5.11: Rectangular region performance (UD scheme)

84

72

60

Speedup 48

36

24

12

-a- Laser

-+Ideal

0 12 24 36 48 60 72 84 96

Processors

Figure 5.12: Speedup of rectangular region decomposition (UD scheme)

l
TEXAS INSTRUMENTS EX. 1011 - 122/229

Data Non-Adaptive Partitioning Scheme 111

The percentage time of latency for this algorithm for the different test
images ranges from L4% for the stegosaurus image to 3.6% for the
mountain image. The latency increases corresponding to an increase
in dataset size, which is the same phenomenon observed previously.

Most remote references occur for the first scan line of a region
since it is necessary to retrieve the data from remote memory and
store it in local data structures. Once this is accomplished, the
majority of references are local, with the exception being a small
amount of remote referencing required in the anti-aliasing portion of
the code (this would be the same for each of these algorithms). The
remote referencing in the anti-aliasing section stems from the need to
obtain the plane equation for each polygon for stochastic sampling
purposes. Since the previous algorithm incorporates no vertical scan
line coherence, all the data for each scan line must be referenced
remotely. The rectangular region partitioning scheme capitalizes on
coherence within the region so that remote referencing is reduced.

5. 1.2.6. Network Contention (5.6% - 33. 1%)

The network contention is calculated in the same manner for this
algorithm as it was for the last one. Using this technique, the
percentage effect of network contention for the various test images
varies from 5.6% for the tree image to 33.1% for the stegosaurus
image.

The contention in this algorithm as compared to the parallel scan
line approach is worse for the stegosaurus and Laser images, but
improved for the tree and mountain images. It is difficult to speculate
as to the reason for this without further image analysis. Regardless,
one can see that even with a reduced number of references (as
compared to the parallel scan line approach), contention is still a
major degradation factor. Most of the increase in network contention
occurs as the number of processors is increased from 64 to 96
processors, indicating that the switch network becomes overloaded
with requests somewhere in this range.

5.1.2.7. Load Imbalance (4.3%- 11.5%)

The granularity ratio in this algorithm provides a better load bal
anced system than the last algorithm, although network contention
increases the execution time and this varies the overall finishing
times. The load imbalance percentages measured at 96 processors for
the different images varies from 4.3% for the mountain image to
1L5% for the tree image. When compared to the previous algorithm,
the load imbalance overhead is less for this algorithm, with the

TEXAS INSTRUMENTS EX. 1011 - 123/229

112 Comparison of Task Partitioning Schemes

exception of the tree test image. The granularity ratio comparison in
figure A3 for this image indicates that load balancing is not particu
larly good at any value of Rand in fact gets worse after R = 24.

In general, though, this algorithm yields better load balancing
than the scan line approach since the granularity ratio provides
enough tasks to minimize the load imbalance over a wide range of
processor configurations.

5.1.2.8. Code Modification (7.9%- 9.6%)

This algorithm has a different amount of coherence overhead than the
scan line algorithm since rectangular regions are generated as tasks.
Due to the rectangular nature of the regions, coherence is taken
advantage of in both the vertical and horizontal directions within a
single task. On the other hand, the lack of vertical scan line
coherence at the beginning of an area results in extra work required
to start the first scan line of a region. In addition, the lack of
horizontal coherence at the boundary to the left causes an overhead of
interpolating parameters for polygons which extend beyond this
boundary.

The code modification overhead is measured the same as before
using equation 4.8. Based on the measured values, the overhead
percentages vary from 7.9% for the mountain image to 9.6% for the
tree image. Considering the fact that there are many more tasks used
in this scheme versus the parallel scan line approach (2,304 vs. 484),
this overhead factor does not seem out ofline in comparison.

5.1.2.9. Explanation of Results

The rectangular region decomposition scheme achieves reduced
overheads primarily in memory latency and to some degree in
network contention and load balancing, in comparison to the parallel
scan line algorithm. The reduction in latency is due to the fact that
most remote referencing occurs for the first scan line of an area, and
this effect is reduced in the rectangular region algorithm. This
suggests that the rectangular region decomposition algorithm will
perform better than the scan line algorithm in the general case due to
its performance advantages in the tests given. The scan line
algorithm exhibits poor scalability as P is increased since load
balancing will suffer as the number of scan lines approach the
number of processors. The rectangular region algorithm uses a fixed
granularity ratio which allows better load balancing as the number of
processors is increased; thus its scalability is superior to the parallel
scan line approach.

TEXAS INSTRUMENTS EX. 1011 - 124/229

Data Non-Adaptive Partitioning Scheme 113

It is important to note that this algorithm still has its share of
problems. Network contention still represents a significant overhead.
The code modification overhead is not reduced in this algorithm in
comparison to the scan line approach. A comparison of the major
degradation factors is given in figure 5.13.

Since the number of remote references is reduced in this
algorithm but contention was not significantly reduced, another tactic
is necessary to solve this problem. Consequently, it is necessary to
implement a different memory referencing scheme that is designed to
reduce the network contention noted in parallel implementations.
This memory referencing strategy is referred to as the locally cached
(LC) scheme and is described in the next section.

5.1.3. Rectangular Region Decomposition
(LC Scheme)

The algorithm described here is implemented exactly the same as the
last one, with the only exception being the remote memory
referencing strategy. A brief description ofthis strategy, denoted the
Locally Cached or LC scheme, follows. Instead of referencing globally

80

60

Percentage

IIIli Contention
G CodeMod.

lEI Ld. Irnbal.
0 Usable Time

40 __l,:bc:L..d::z:Jbc6ci=d~
'::::;::::::::::::::: j.-,.----,r-,.-"""T""""l..-r,.j

20

0

Image

~Latency

Figure 5.13: Degrada tion factors for rectangular r egion decomposition, (UD
Scheme, P = 96)

TEXAS INSTRUMENTS EX. 1011 - 125/229

114 Comparison of Task Partitioning Schemes

shared data remotely, the data is cached into the local memory
module prior to referencing, thus allowing it to be accessible quickly.
Although others have used an elaborate software caching mechanism
for computer graphics rendering ([Gree89] and [Bado90]), we rely on
the fact that the exact data needed for a given task can be copied
directly to each processor prior to the computation of a given region.
If a data element is relevant to more than one processor, it is copied to
all processors which would reference it, incurring a space penalty.
The extra memory required due to duplication is shown in the
appendix in figures A9, A.10, All, and A12. These figures show the
duplication of data by copying data elements as a function of the total
number of regions. Although the extra memory required is wasteful,
a tradeoff of space versus time is necessary to achieve faster memory
referencing than the previous Uniformly Distributed (UD) approach.
The cost of non-local memory access is eliminated by block
transferring data from its global storage location to the local memory
of the processor(s) that need it. Details of the LC scheme are given in
chapter 6.

5. 1.3. 1. Granularity Ratio

The granularity ratio R was re-evaluated for this algorithm to see
what a good ratio would be, since a different memory referencing
scheme is used. This ratio was tested at values of 2, 4, 8, 12, 16, 20,
24, 28, 32, 36, and 40 using the maximum configuration of 96
processors. Figure 5.14 shows the comparison for the Laser image as
an example. In the appendix, figures A.5, A6, A.7, and A.8 show the
data for all the images. The downward slope of the curves is
primarily due to a reduction in load imbalance as a higher granularity
ratio is used. Then the curves continue upwards after a point since
. the other culprits introduce more overhead cost for the higher ratios.
The minimum point on the curve is the optimal granularity ratio {R)
to use for a particular scene. Each scene exhibits different
characteristics which affect · the choice of this optimal R so a
compromise must be made so that a single value of R may be used in
the general case.

In this case, the choice of a good ratio spans a broader range than
in the UD scheme. The reason for this is the reduction in
communication and contention costs versus the previous method. It
seems like a good choice for R can be anywhere in the range from 12
to 1 up to 32 to 1. Since R = 24 was chosen for the previous algorithm
and the performance for that ratio with this scheme is nearly optimal
in most cases, this value will again be used. This ratio should provide

r
f

TEXAS INSTRUMENTS EX. 1011 - 126/229

Data Non-Adaptive Partitioning Scheme 115

good results for most imagery, given this machine configuration.
Graphs for the time and speedup of this algorithm with the LC
memory referencing scheme are given in figures 5.15 and 5.16.

The overhead factors for the rectangular region decomposition are
now discussed, using the LC memory referencing scheme evaluated at
96 processors.

5.1.3.2. Scheduling (0.004%- 0.017%)

The time to run a background task (Tback) in this scheme is the same
time as the previous one, since the only difference between the two is
the memory referencing, which does not affect the background task.
This algorithm is faster than the previous one, so the overhead
percentage is slightly higher. Equation 5.5 is again used for
evaluating the overhead due to scheduling for this algorithm. Based
on this equation, the overhead due to scheduling varied from 0.004%
overhead for the mountain image to 0.017% overhead for the
stegosaurus image.

Cwnulative
Time

0 Sequential
~ Commun.

1111 Load Imbal. [ill Contention
0 CodeMod.

2 4 8 12 16 20 24 28 32 36 40

Granularity Ratio

Figure 5.14: Comparison of ratios for Laser image

TEXAS INSTRUMENTS EX. 1011 - 127/229

116 Comparison of Task Partitioning Schemes

Rectangular Region Algorithm (LC Scheme)
Performance

1.000e+04

1000

Time 100
(seconds)

10

-e- Stegosaurus -s ·Laser

10 100

Processors

Figure 5.15: Tiling time for rectangular region partitioning (LC)

96
- & Stegosaurus · EJ - Laser - <) Tree

84 -+-Ideal

72

60

Speedup 48

36

24

12

0
0 12 24 36 48 60 72 84 96

Processors

Figure 5.16: Speedup for rectangular region partitioning (LC Scheme)

r
t

I
I

I
I
I
f

I

TEXAS INSTRUMENTS EX. 1011 - 128/229

r
Data Non-Adaptive Partitioning Scheme 117

5.1.3.3. Communication Overhead (0.03%- 0.05%)

Instead of latency due to remote referencing as in the UD case,
communication occurs in blocks in this algorithm, resulting in a
different overhead factor. This communication overhead is not
present in the UD referencing method. Recall that this overhead is ·
measured by a count of the total number of bytes transferred in the
system during the computation. Using equation 4. 7 given in the
previous chapter, the communication overhead range is 0.03% for the
stegosaurus image up to 0.05% for the mountain image. One can see
that these values represent a significant drop in the amount of time
necessary to transfer data in the system. Since the data is copied into
local memory, all future references occur locally. This means that the
total amount of data transferred is also reduced in comparison to the
UD referencing scheme.

5.1.3.4. Network Contention (3.1%- 16.3%)

Although there is some overhead necessary to set up the blocks of
data to be transferred in this algorithm, the deficit is more than made
up for by a reduction in network contention when compared to the UD
scheme. The calculated network contention overhead varies from
3.1% for the tree image to 16.3% for the stegosaurus image. The
contention in this scheme is significantly less than in the previous
one. This indicates that the locally cached memory referencing
scheme does in fact reduce the messages in the system, which results
in reduced chances for a blocked switch node.

5.1.3.5. Load Imbalance (4.5%- 11.1%)

The load imbalance in this algorithm is measured the same as before,
using equation 4.11. The overhead percentages for load imbalance
vary from 4.5% for the mountain image to 11.1% for the tree image.
These values are nearly the same as those from the previous algo
rithm, which is to be expected since they both use the same partition
ing method.

5. 1.3.6. Code Modification (5.4% - 6.4%)

The code modification overhead using the LC scheme is less than in
the UD scheme in all cases except the tree image. The measured
overhead ranges from 5.4% for the mountain image to 6.4% for the
stegosaurus image. The probable reason for the difference is that
communication is not completely factored out of the measurement
method. Recall that the measurement technique used for this

TEXAS INSTRUMENTS EX. 1011 - 129/229

118 Comparison of Task Partitioning Schemes

overhead involves timing the program running on a single processor,
using MIN memory modules. The UD scheme involves remote
referencing to these memory modules, while the LC scheme does not.
Although the communication cost is factored out of the measured time
by counting the number of remote references or bytes transferred
respectively, it is impossible to factor out the system overheads. Since
the LC scheme will not likely include these to the degree that the UD
scheme does due to the method of memory allocation and deallocation,
the resultant code modification is a generally lower figure here.

5. 1.3. 7. Explanation of Results

Latency is no longer a factor using this memory referencing scheme,
and although communication overhead is introduced, it is minimal.
The change in memory referencing scheme also affects the overall
code modification, as reported above.

The load imbalance is nearly the same as the previous algorithm,
with the slight difference due to the effect of reduced contention in
this algorithm. The chart in figure 5.17 indicates the overheads for
the various images.

Ill Contention
EJ CodeMod

[ill Ld. Imbal.
0 Usable Time

[a Comm.

100-.--------.-------.--------.-------.

80

60
Percentage

40

20

0
Laser Tree Mountain

Image

Figure 5.17: Degradation factors for rectangular region decomposition (LC
Scheme, P = 96)

r
r

TEXAS INSTRUMENTS EX. 1011 - 130/229

Data Adaptive Partitioning Scheme 119

As one can see from the chart, network contention is still a
problem, although it is significantly reduced in comparison to the UD
scheme, especially for the more complex imagery. Load imbalance is
also a problem, although the algorithm should scale up fairly well,
especially when one takes into account the reduced contention using
this memory reference strategy.

In the next section, we introduce another partitioning scheme
which achieves even better load balancing.

5.2. Data Adaptive Partitioning Scheme
In a data adaptive algorithm, load balancing is achieved by construct
ing tasks which are estimated to take nearly the same amount of
time. By using image space partitioning in a parallel graphics
rendering program, tasks can be determined based on the location of
data within the image. If the task work can be accurately predicted
by using a heuristic, then the granularity ratio R can be reduced,
resulting in less communication and scheduling. In fact, if the
adaptation can produce exactly the same size tasks in terms of work,
R can be reduced to 1. It is not generally possible to pick a very
accurate heuristic since factors such as depth complexity, polygon
area, and anti-aliasing all affect the time it takes to render a pixel.
Pre-processing of the data cannot take all of these factors into
account; otherwise it would require too much time. Following is a
brief description of several algorithms which fall under the data
adaptive category.

Whelan [Whel85] uses a data adaptive approach in his Median
Cut algorithm, although his application was for a hardware
architecture. His primary motivation was to reduce the scheduling
overhead associated with the type of dynamic task assignment used
in the algorithms discussed thus far. This is not necessary in a
software multiprocessor approach since the Uniform System provides
scheduling with a very small overhead. Whelan's approach involves
task partitioning so that each task contains the same number of
polygons. He uses the centroids of the polygons to determine their
screen space location; however, extensive sorting is necessary to
determine the locations to place the screen space partitions. His
algorithm provides excellent load balancing, but the overhead cost of
creating the areas outweighs the benefit of adaptive partitioning.

Roble's [Robl88] approach is another data adaptive method which
also uses polygon location as a heuristic for determining tasks. His
approach involves a large amount of communication prior to the tiling
phase, and thus exhibits too much overhead as well.

TEXAS INSTRUMENTS EX. 1011 - 131/229

120 Comparison of Task Partitioning Schemes

Although there are many different decomposition methods that
fall under the data adaptive method, one algorithm was chosen as a
representative example for implementation. The goal here was to
eliminate the excess overhead associated with this type of approach.
This algorithm is described next.

5.2.1 . Top-down Decomposition
A partitioning scheme similar to Whelan's Median Cut algorithm is
used which takes comparatively less time to determine the task
partitions. This scheme is based solely on the number of data
elements in a region, regardless of the location oftheir centroids. The
heuristic in this algorithm is based on the assumption that the
number of polygons in a region is linearly related to the time it takes
to tile that region. Using this simple heuristic, good load balancing
can be achieved with a small overhead. The LC memory referencing
scheme is used in the implementation of this algorithm based on the
results shown in the previous section. The implementation is
described below.

A 2D mesh is created as in the rectangular region decomposition,
but this time the mesh is 4 times as dense (i.e. #regions= R•P•4).
Polygons are placed into the mesh during the front end portion of the
program as before, based on their screen space bounding boxes. Prior
to tiling, adjacent meshes are combined hierarchically and a sum of
the combined regions is stored in a tree data structure. This process
is repeated until a point is reached where the entire screen is in a
single region. Then, a data structure is created which consists of a
hierarchical binary tree of counts referring to the number of data
elements in each area.

Mter the tree is created, it is traversed in top-down fashion and
the area with the most polygons at a given point is then split into its
two components. This process is repeated by considering all areas
created thus far, splitting the one with the next most polygons. The
splitting process is stopped when the desired number of tasks has
been reached. A count of the number of polygons in each small area is
used, so it is not necessary to sequentially go through the entire list of
potential polygons to determine which polygons are relevant to each
area at this time. The limiting factor in the splitting is the leaf level,
which is why a fairly dense mesh is created at the beginning. An
example of this type of decomposition is illustrated graphically in
figure 5.18 and also in color plate 3.

TEXAS INSTRUMENTS EX. 1011 - 132/229

Data Adaptive Partitioning Scheme 121

After the tree has been traversed, each of the regions is available
for rendering in parallel. Some computational overhead exists for this
scheme prior to the tiling phase, but fewer tasks are created than in
the previous rectangular region approach. Figure 5.19 shows the
performance for the various images using the data adaptive approach,
with a value of R = 10. This value of R was determined empirically
similar to the methods used previously. It is less than the value
needed for the rectangular region scheme for good load balancing. A
perfect match would result in a ratio of R = 1 but that situation is
almost impossible to achieve using a heuristic which has minimal
overhead cost. The relative speedup for the top-down scheme is
shown in figure 5.20.

The time to build the tree data structure is not included in these
timings since it is not part of the tiling section of the program. This
time is fairly small anyway, but it is included in the overall algorithm
comparison presented in chapter 6. We now analyze the top-down
decomposition method with regard to the possible overhead factors.

5.2.1.1. Scheduling (0.003%- 0.01%)

This partitioning scheme uses regions that are not the same size, so
each background task does not take the same time. The areas consist
of groups of scan lines as before, but the number of scan lines and
their size differ.

The average time to render the different background areas was
measured for the different images. The results were fairly consistent,
with an average background task time of 4.48 msec.

r-

f--

r ,, ,

- IT

Figure 5.18: Top-down partitioning scheme

TEXAS INSTRUMENTS EX. 1011 - 133/229

122 Comparison of Task Partitioning Schemes

Top-down Algorithm (LC Scheme) Performance

1000

Time 100
(seconds)

10

-e- ·Stegosaurus fr Laser

-- - ~ . Tree -A- Mountain

--,~~~~>--n-_
-- [3 ... ~ -----e... '~ ~ - - - ---

-- El-' ~- - - --~
--e __ .: 13 ~ : ~ • ~-:~-A

-s... - EJ... • • ~>--
--- ''[]. <) - t!.-tr-

'9--__,.._ i:J ~ - ~- 0 A
""-e u-G·-8-
--~~

10 100

P.rocessors

Figure 5.19: Top-down decomposition performance

96
--e-Stegosaurus --o- Laser -<>-Tree

84 --+-Ideal

72

60

Speedup 48

36

24

12

0
0 12 24 36 48 60 72 84 96

Processors

Figure 5.20: Speedup of top-down decomposition method

TEXAS INSTRUMENTS EX. 1011 - 134/229

Data Adaptive Partitioning Scheme 123

This is more than Tsched (2.3 msec), which is the time it takes to
schedule 96 tasks, so no bottleneck will occur due to scheduling. As
before, the scheduling overhead is determined by plugging the values
for this algorithm into equation 4.5, as shown in equation 5.6. Using
this equation for 96 processors, the scheduling overhead for the test
images ranges from 0.003% for the mountain image to 0.01% for the
stegosaurus image.

_(9_5_._9_6_) • 24 JlSec + (960 - 96) • 24 J.lSeC
Scheduling % = 2 • 100 %

Tp • 96 (5.6)

5.2.1.2. Communication Overhead (0.02%- 0.04%)

The communication overhead is measured the same way as in the
previous algorithm, by determining the number of bytes transferred
in the system and using equation 4.7 to calculate the overhead. The
values vary from 0.02% for the stegosaurus image to 0.04% for the
mountain image. The communication overhead percentage in this
algorithm is slightly less than in the rectangular region (LC) method
since there are fewer areas.

5.2.1.3. Network Contention (11.8%- 34.9%)

Unfortunately, network contention is a significant factor in this
algorithm, even more so than in the previous one. The network
contention overhead ranges from 11.8% for the mountain image to
34.9% for the stegosaurus image. The reason for this increase in
network contention is given here.

As was explained at the beginning of this section, a 2D dense
mesh is created, from which small regions are clustered together to
form tasks. The LC scheme requires communication from each of
these small regions which form the larger clusters in order to obtain
the data necessary for rendering a particular task area. Figure 5.21
illustrates this situation.

In order to render the cluster composed of sub-regions 1, 2, 3, and
4, it is necessary to retrieve the polygons from these sub-regions.
This requires a block transfer from each of the sub-regions, whereas
the rectangular region algorithm requires only one block transfer for
the entire region. There may be even more than four sub-regions
which are part of a larger cluster. Although the total amount of data
is not large (evident by the communication factor given previously),
the number of messages is higher than in the rectangular region

TEXAS INSTRUMENTS EX. 1011 - 135/229

124 Comparison of Task Partitioning Schemes

algorithm due to this copying from sub-regions. In addition, the
frequency of these communications is greater since they proceed one
right after another. The block transfer mechanism in the GPlOOO
which is utilized in the LC scheme holds a message path open for as
long as it is needed to transfer the data. Therefore, more collisions
are likely to occur in this algorithm due to the increased number of
messages required, resulting in high network contention ..

5.2.1.4. Load Imbalance (1.5%- 6.9%)

The goal of better load balancing was achieved in this algorithm,
using a smaller granularity ratio than the rectangular region
approach. The percentage overhead for load imbalance varies from
1.5% for the stegosaurus and mountain images to 6.9% for the Laser
image. This algorithm achieves better load balancing than the
previous algorithm, with minimal expense required to build the
hierarchical tree data structure. It therefore overcomes the
limitation noticed in Whelan's and Roble's algorithms, which also
used a data adaptive scheme. More details on the overhead time
required for the tree construction are given in chapter 6.

5.2.1.5. Code Modification (2.5% - 3.3%)

The overhead due to code modification is much smaller than in the
rectangular region approach. This overhead ranges from 2.5% for the
mountain image to 3.3% for the Laser image. The reason for the
reduction is that there are fewer total tasks and each task area is
larger, reducing the overall coherence loss.

Retrieve data from each
sub-region

Region

Figure 5.21: Block transfer of data from sub-regions for top-down decomposi
tion

TEXAS INSTRUMENTS EX. 1011 - 136/229

Data Adaptive Partitioning Scheme 125

Looking back at figure 5.21, it can be seen that it is likely that a
number of polygons cross over several sub-regions but are singularly
contained within the main region to be rendered. Unfortunately,
short of a direct comparison of all polygons there is no way to detect if
a given sub-region is sending the same polygon as another sub-region,
due to the usage of the LC memory referencing scheme. If a polygon
is sent from two or more different sub-regions as a result of its
overlapping these regions, that polygon is rendered more than once.
This is a direct function of the duplication factor for the given mesh
size. The overhead of this occurrence is difficult to determine since
not all polygons which are duplicated are rendered more than once,
only those that are duplicated across sub-regions and are part of the
same higher region. This duplication of rendering is included in the
code modification overhead given previously.

5.2.1.6. Explanation of Results

The goal of the data adaptive top-down scheme is to maintain good
load balancing. The implementation here achieves this goal, but due
to the method of data transfer required by the LC scheme, additional
contention is introduced. There is also the additional cost of con
structing the tree data structure, but this cost is offset by the reduc
tion in the number of regions resulting in reduced code modification
overhead. The times for the tree building are not included here since
this chapter deals with a comparison of the algorithms' tiling section,
but they are given in the next chapter. The chart in figure 5.22 shows
the overhead comparison for the various images.

It can be seen that all of the overhead factors have been reduced
compared to the previous approaches, with the exception of network
contention. This algorithm requires a dense mesh to be created for
determination of the regions. As P is increased, the mesh will need to
be even denser, and this may result in even higher network
contention overhead and duplication of polygons. As a result, this
algorithm may not exhibit good scalability for very dense meshes.

It might be possible to create the mesh in some other manner
which does not result in as much overhead, but other methods were
not explored here. For example, if one were to try to determine the
clusters from the top down, a pseudo-parallel method could be used
whereby tasks are spawned off according to the level of the tree
traversed. A large amount of synchronization would be necessary to
implement this technique, and the result might involve more
overhead than in the current implementation. One of the problems
with the algorithms discussed thus far is that they rely on a good
choice for the granularity ratio.

TEXAS INSTRUMENTS EX. 1011 - 137/229

126 Comparison of Task Partitioning Schemes

Unfortunately, empirical testing must be employed to determine
what the best value is for a given situation. In fact, it is possible that
the value might need to be changed when the number of processors is
increased significantly beyond 96. The next section covers an
algorithm that does not rely on a pre-determined granularity ratio,
but instead achieves load balancing by dynamically partitioning
existing tasks into smaller ones when a processor needs work.

5.3. Task Adaptive Partitioning Scheme
The task adaptive methodology relies on an algorithm's capability to
dynamically partition tasks as the program is running. If tasks
cannot be adaptively partitioned, then that algorithm is not well
suited for dynamic task splitting. Fortunately, the serial scan line Z
buffer algorithm upon which these parallel algorithms are based
consists of independent regions, and there is no required order of
execution between these regions. The task adaptive algorithm
consists of the following steps:

1. When a processor needs work (call this processor P 8), it
searches among the other processors for the one which contains

Iii Contention OJ Ld. hnbal. Ba Cornm.
~ CodeMod. 0 Usable Time

100

80

60

Percentage

40

20

0
Tree Mountain

Image

Figure 5.22: Degradation factors for top-down decomposition (P = 96)

TEXAS INSTRUMENTS EX. 1011 - 138/229

Task Adaptive Partitioning Scheme 127

the most amount of work left to do (call this processor P max).
2. The P 8 processor then sets a lock preventing any other

processor from splitting Pmax·
3. P 8 partitions Pmax's work into two segments; the first segment

goes to Pmax and the second segment goes toPs.
4. P8 then copies the data necessary for it to work on the second

segment.
5. P8 unsets the lock and starts doing its work.

This task adaptive scheme could be tacked onto any of the
previous algorithms, so that additional load balancing would be
ensured toward the end of the computation. For the implementation
here, the rectangular region decomposition scheme was chosen as a
basis parallel algorithm since it is fairly simple to work with in
developing the heuristic for step 1. A description of this parallel
algorithm is given next.

Instead of attempting to choose an optimal granularity ratio, the
number of areas is initially set equal to the number of processors (R =
1). When a processor has finished computing its area, it executes
steps 1 through 5 above. In order to do this, it was necessary to come
up with a method for determining the amount of work a given
processor has left to do. Since all of the areas are the same size, the
number of scan lines left to render in a particular area is used as an
indication of how much work there is left on a given processor. This
proceeds as follows.

During the tiling portion of the computation, each processor
updates a shared variable corresponding to the number of scan lines
it has left to compute. P8 quickly runs through these variables
checking for the processor that has the maximum number of scan
lines left. Once it finds the processor with the most scan lines left
(Pmax), P 8 proceeds to split Pmax as is shown in figure 5.23. Color
plate 4 shows an illustration of this process after completion. Pmax is
not interrupted during this time.

The splitting mechanism prevents a race condition from occuring
if several processors attempt to split the same region simultaneously
or, alternatively, Pmax attempts to work on a portion of its region
which is to be split. The first instance is solved by using a test and
lock methodology in which a splitting processor checks to see if Pmax
is currently being split and if so, this splitting processor finds another
processor to split. The second case is solved by updating a shared
variable which P max checks to determine the last scan line for it to
calculate. Neither case requires Pmax to be interrupted from its work,
thus avoiding any synchronization delay.

TEXAS INSTRUMENTS EX. 1011 - 139/229

128 Comparison of Task Partitioning Schemes

A threshold must be chosen which limits partitioning of tasks
when the cost of the actual partition exceeds the cost of running the
task serially. Through empirical testing, it was determined that
partitioning a task with only two scan lines left does in fact yield good
performance, so this was the threshold limit set. A task which
contains no polygons is not allowed to be split since the only work
involved is sending the scan lines to the virtual frame buffer.

Since P 8 splits Pmax into two tasks, it makes sense for Pmax to
continue working on the upper task while P8 takes the lower one.
This allows coherence to be maintained in Pma:c's region without any
additional overhead. The performance for the task adaptive scheme
is given in figure 5.24. The speedup for this scheme is shown in figure
5.25. Although a bit of extra coding is required to handle the splitting
operation and data retrieval processes, the algorithm is fairly
straightforward to implement.

During the splitting process, it is necessary for the P8 processor to
obtain data from the P max processor. Instead of determining exactly
which data is relevant to the region that P 8 will work on and
retrieving only this data, it is simpler for P8 to retrieve all of the data
from Pmax and discard the portion that is not relevant to this new
region. This requires a bit of extra communication, but the overhead
is minimal compared to any method where either P8 or P max would try
to determine the exact relevant data. This is due to the fact that
extra synchronization would be required in determining the exact
dataset, whereas the "copy and discard" method requires no
synchronization at all.

We now analyze the task adaptive scheme with regard to the
various overhead factors. One of the problems in determining these

Current

scan lin~
pmax

is on

pmax,
prior to splitting

Split this

sections

Figure 5.23: Dynamic splitting of regions for task adaptive scheme

TEXAS INSTRUMENTS EX. 1011 - 140/229

Task Adaptive Partitioning Scheme 129

factors is the measurement of the total number of tasks. A new task
occurs when a processor tries to split another region. The task time
includes the time to split a processor's work plus the rendering time.
Since the number of tasks varies somewhat depending on the run, it
was determined based on an average of five runs. This number varied
by less than 1%, so the average is a fairly good indication of what
might be considered the actual number of tasks.

5.3.1. Scheduling (0.00006°/o- 0.00023°/o)
The number of areas in this scheme is not known ahead of time since
the tasks adapt to the work available. Once all of the regions are
started, parallel scheduling ceases since the task adaptation is then
run on each processor locally. Therefore, the total scheduling time is
just Tcrit * 96 or 2.3 msec. This represents an overhead ranging from
0.00006% for the mountain image to 0.00023% for the stegosaurus
image.

5.3.2. Synchronization (0.16°/o- 2.3°/o)
It is necessary to determine the amount of time wasted by

spinning in a lock, in addition to the extra work needed to determine
which processor to split. These two factors constitute the
synchronization overhead which was given in equation 4.9. The value
for this overhead varies from 0.16% for the tree image to 2.3% for the
Laser image. While the time wasted in synchronizing may not be
particularly small in some cases, it is necessary in order to facilitate
the dynamic partitioning scheme of the task adaptive algorithm.

5.3.3. Communication Overhead (0.11 °/o- 4.2°/o)
The communication overhead in this algorithm is measured the

same as the previous algorithms. The overhead varies from 0.11% for
the stegosaurus image to 4.2% for the Laser image. The number of
bytes communicated in this algorithm is much higher here than in the
other approaches, which accounts for the higher overhead percentage.
The reason for this is given next.

At the time a task is split, the splitting processor (P8) retrieves all
of the data relevant to the splittee <Pmax>· The data which is unnec
essary for the portion of the task which P8 is to work on is then
discarded. At the end of the computation, a large amount of splitting
occurs due to dynamic load balancing.

TEXAS INSTRUMENTS EX. 1011 - 141/229

130 Comparison of Task Partitioning Schemes

Task Adaptive Algorithm {LC Scheme) Performance

1.000e+<l4

1000

Time 100
(seconds)

10

-G- Stegosaurus - E-Laser

10

Processors

Figure 5.24: Tiling time for task adaptive scheme

96

84

72

60

Speedup 48

36

24

12

· -&-Stegosaurus £]- Laser

-A-Mountain -+-Ideal

100

0 12 24 36 48 60 72 84 96

Processors

Figure 5.25: Speedup of task adaptive scheme

TEXAS INSTRUMENTS EX. 1011 - 142/229

Task Adaptive Partitioning Scheme 131

The areas to be split at this point in the computation are small,
but the amount of data to be transferred is large since it is derived
from the initial decomposition area. This creates communication of
unnecessary data, which is then discarded. Reducing this
communication requires extra synchronization, but preliminary
studies indicated that performance degraded even worse than if it
was not done. In the case of the Laser image, most of the initial areas
assigned as work involve background color. These processors finish
quickly and then start splitting other processors' work. Since the few
processors which are split contain the bulk of the data, a lot of
communication occurs. A solution which relieves the extra data
transfer in this situation would reduce the communication and
contention overheads if it were possible to implement it without
significantly increasing the synchronization costs.

5.3.4. Network Contention (5.5°/o- 11.7o/o)
The overhead percentage for network contention ranges from 5.5% for
the mountain image to 11.7% for the stegosaurus image. Even with
the extra communication, the contention measured in this algorithm
is only slightly higher than in the rectangular region (LC) scheme.

5.3.5. Load Imbalance (9.2°/o - 22.5°/o)
This algorithm tries to minimize load imbalance by using heuristics to
dynamically split tasks during parallel execution. The limit of the
task size which can be split is set to two scan lines. The load
imbalance overhead percentages vary from 9.2% for the mountain
image to 22.5% for the tree image. If the only tasks that are left are
single scan line tasks, processors which are idle will not be able to
find a task to work on. Since the granularity of tasks which cannot be
split (a single scan line within an area) is fairly large, the idle time for
a processor with no work left can be high, resulting in additional load
imbalance. Of course single scan line tasks could be split into two
parts as well, but this feature has not been implemented at this point.
Further research is needed to see if these tasks can be split, or if some
other solution is possible to reduce the excess idle time.

5.3.6. Code Modification (0.4°/o- 1.5°/o)
The code modification overhead is measured the same as in the other
algorithms. The overhead percentages are fairly small and range in
value from 0.4% for the stegosaurus image to 1.5% for the Laser

TEXAS INSTRUMENTS EX. 1011 - 143/229

132 Comparison of Task Partitioning Schemes

image. These figures are expected since the number of tasks is the
smallest of all the algorithms. Consequently, most of the tasks
consist of large areas where coherence is maintained. In addition,
even when a task is split, the split processor is not interrupted and
coherence is not lost for its task.

5.3.7. Explanation of Results
The task adaptive method is an attempt to directly load balance the
system by dynamically extracting work when a given processor would
otherwise be idle. The solution allows a granularity ratio of R = 1 for
the initial decomposition. A graph showing the primary overhead
contributors is given in figure 5.26.

Unfortunately, the load balancing of this scheme was not as good
as was anticipated. Since load balancing is due to the total idle time
at the end of the computation, this suggests that processors have quit
looking for work too early. The threshold for splitting work imposed
here is that a single scan line task cannot be split. Perhaps a scheme
could be worked out to allow horizontal splitting, but this would be

1!B Contention [] Ld. Imbal. ~ Comm.
EJ CodeMod. 12 Synch. D Usable Time

100

80

60

Percentage

40

20

0
Stegosaurus Laser Tree Mountain

Image

Figure 5.26: Degradation factors for task adaptive algorithm (P = 96)

TEXAS INSTRUMENTS EX. 1011 - 144/229

Task Adaptive Partitioning Scheme 133

difficult to implement and the synchronization involved may outweigh
the benefit of splitting.

Synchronization is an additional overhead in this algorithm, but
it was not a significant factor in performance degradation. The
communication cost in this algorithm is somewhat larger than the
other LC schemes, due to the dynamic partitioning of this dataset.
The code modification here is the smallest of all the algorithms since
the number of areas generated is initially equal to P. In addition,
coherence is maintained in the upper portion of a split area reducing
the parallel execution overhead. Network contention seems to be only
slightly worse than in the rectangular region (LC) scheme. Toward
the end of the computation when dynamic load balancing is taking
place, there is a flurry of communication, and this causes network
contention to increase at this point. The burst of communication is
due to the dynamic splitting of small tasks at the end of the
computation. Reducing this last amount of communication is rather
difficult in the LC scheme: the reason is described next.

In the task adaptive algorithm, the splitting processor copies all of
the data necessary for the entire original size area and then deletes
the excess data locally. Ideally, it would be desirable to only copy the
data which is needed for the scan lines for which this processor is
responsible. The time required to do this would be prohibitive since
there are only two ways: 1) the splitting processor remotely
determines which polygons are relevant or 2) the processor being split
must be synchronized to stop what it is doing and then determine
which :,.olygons are relevant for the splitting processor. The first
method would require more communication than in the current
implementation. The second method requires extra synchronization,
plus P max would have to construct a new data structure, and this
takes time away from its primary work. Thus, when using the LC
scheme, it only makes sense to copy all ofthe data for the area. In the
next chapter, the performance of the task adaptive scheme is
analyzed using both the UD and LC memory referencing schemes for
the entire program, to see if any difference is noted.

In an attempt to explore other load balancing strategies, different
heuristics were tried in order to estimate the maximally loaded
processor. For instance, instead of just using the number of scan lines
left as the heuristic, the total number of polygons per scan line for all
the scan lines left was used. The idea was to evaluate the work in
terms of polygons since the lower half of a region to be split could
possibly contain no polygons. This method required the splitting
processor to retrieve from shared memory an additional value which
corresponded to the heuristic. It was also necessary to update this

TEXAS INSTRUMENTS EX. 1011 - 145/229

134 Comparison of Task Partitioning Schemes

heuristic from scan line to scan line, whereas the previous heuristic
required just a simple subtraction operation. As a result, the benefit
of this new heuristic was outweighed by its cost, and it proved to have
worse performance than the simple one.

Finally, as was mentioned previously, it may be worthwhile to try
breaking scan lines into half scan lines to allow a splitting processor
to split single scan lines. This would require extra synchronization,
but it is possible that the load imbalance would be reduced if the
overhead to do this is small. This was not implemented in the test
program, and could be done as part of future research.

This algorithm does exhibit good scalability since the algorithm
adapts to the scene and divides the tasks accordingly. Its principal
advantage is that the number of tasks does not need to be chosen
initially, making the granularity ratio analysis unnecessary. In
addition, in the next chapter it is shown that the overhead in the
front end for this scheme is less than in the other algorithms due to
the reduction in the total tasks required in the initial decomposition.

5.4. Conclusions
In this chapter, the maximum potential performance for each of the
implemented algorithms is evaluated. This is done by analyzing the
tiling portion of the programs. A summary of the results obtained
with regard to the influence of the various overhead factors is
presented next.

The scheduling overhead is minimal for all of the algorithms
discussed here. Since the execution time for the simplest task
(background color) is greater than the critical time needed for
scheduling, this overhead is not a factor in performance degradation
in any of the algorithms.

Synchronization is an important consideration in the task
adaptive algorithm due to the dynamic task partitioning. The
overhead of synchronization does not degrade the performance
significantly, as it turns out, so it is not considered to be a major
degradation factor.

The issues oflatency, communication, and network contention are
all intertwined since they are related to passing data through the
interconnection network. Memory latency is relevant to the scan line
algorithm and the rectangular region algorithm since those
algorithms are implemented using the UD memory referencing
scheme. The latency is somewhat smaller for the latter method, due
to the reduction in the number of remote memory requests as a result
of better exploitation of coherence. Communication comes into play

!
l
t

TEXAS INSTRUMENTS EX. 1011 - 146/229

Conclusions 135

for the LC schemes and results in more efficient use of the
interconnection network, with the benefit being a reduction in
contention. Graphs which show the total amount of performance
degradation for each image are included here so that all of the
algorithms may be compared side by side. These are shown in figures
5.27 through 5.30 at the end of the chapter. The graphs are shown in
such a way that the total of each column is the total processor-time
space. This is the same as the parallel execution time Tp multiplied
by the number of processors P (in this case, P = 96). Therefore, the
column with the least height is the best performing algorithm for that
particular image. Based on the data shown in these graphs, one can
see that the rectangular region (LC) algorithm results in the lowest
overheads, and consequently the best performance in the tiling
section.

Hot spot contention is not a factor in any of these algorithms.
This is because the large data structures are distributed across the
memory modules. Copying of small data structures to local memory is
also employed if these structures are referenced frequently. Although
there may be frequent references to common data structures, this
method of scattered storage ensures that performance is not degraded
since no hot spots exist in any of the programs.

Load balancing is a primary goal of any parallel implementation.
The only algorithm in which the load imbalance is significantly
reduced is the data adaptive algorithm. The task adaptive algorithm
exhibits the worst load balancing of all the algorithms. The probable
reason for this is the lack of splitting at the scan line level (that is,
below the threshold). Surprisingly, the scan line algorithm does not
exhibit much worse load balancing than the others. This changes as
the number of processors is increased since the number of tasks
available for each processor is reduced.

The primary overhead due to code modification is the loss of
coherence. The parallel scan line algorithm exhibits total loss of
vertical scan line coherence. The number of regions created in the
two rectangular region schemes introduces some loss of coherence in
both the horizontal and vertical directions. Since the top-down and
task adaptive algorithms require fewer regions than any of the other
approaches, the code modification overhead for these methods is
small.

Scalability is one of the most important characteristics of a
parallel algorithm. In evaluating these implementations, it seems
evident that the parallel scan line algorithm does not exhibit
particularly good scalability. In table 5.2, each of the implemented
algorithms is compared for each image, using 96 processors. The

TEXAS INSTRUMENTS EX. 1011 - 147/229

136 Comparison of Task Partitioning Schemes

times listed are an average of 3 runs, although the difference between
each run was less than 1%.

From the table we can see that the data non-adaptive rectangular
region (LC) scheme provides the best results in most cases. The
comparison is only for the tiling section of the program and does not
include the overheads inherent in each of the LC algorithms. Also,
the overhead of building the tree data structure necessary for the the
top-down data adaptive algorithm is not included. It is important to
not make any judgments as to the usefulness of any of these
algorithms at this point since there are numerous other factors that
must be examined to determine how well they will perform in the
general case. The analysis here is purely with respect to the
performance of the tiling section of the algorithms since this section of
the program is where the most parallelism can be exploited.

Table 5.2: Comparative times in seconds of tiling for all algorithms on 96
processors

UDScheme LCScheme

Rect. Region Rect. Top-Down Task
Images Scan line

(UD) Region (LC) Adaptive Adaptive

Stegosaurus 12.66 13.38 10.16 12.93 9.94

Laser 21.29 19.94 17.06 18.72 18.33

Tree 24.88 25.70 22.72 23.66 26.41

Mountain 59.85 44.33 38.35 40.31 39.98

The setup operations prior to the tiling section vary depending on
the algorithm used for task decomposition. If these costs are high for
a particular method, the overall performance is affected. These costs
are included in the analysis in the next chapter to give a better
overall view of the performance ofthe implementations. The different
shared memory referencing strategies are investigated and analyzed
in the next chapter as well.

TEXAS INSTRUMENTS EX. 1011 - 148/229

Conclusions 137

Overhead Comparison, All Algorithms

Cumulative
Time

0 Sequential
[SI Comm.

1111 Contention
~ CodeMod.

Algorithm

[] Ld. Imbal
• Synch.

Figure 5.27: Comparison of overheads for algorithms, stegosaurus image

D Sequential
C'3 .Comm.

1111 Contention
[) CodeMod.

[] Ld. Imbal.
• Synch.

1soo~~~~~~~"":""~-:--:--:-.fTIIEf2ITI~~~§
1500

1200
Cumulative

Time 900

600

300

Sequential Time

Scanlioe

Algorithm

Figure 5.28: Comparison of overheads for algorithms, Laser image

TEXAS INSTRUMENTS EX. 1011 - 149/229

138 Comparison of Task Partitioning Schemes

Overhead Comparison, All Algorithms

2000

1500

Cumulative
Time 1000

500

0 Sequential
l"SS Corum.

Scanline

1111 Contention
~ CodeMod.

Sequential Time

Algorithm

Figure 5.29: Comparison of overheads for algorithms, tree image

D Sequential
fJ Corum.

1111 Contention
U CodeMod.

Sequential Time

Algorithm

liT] Ld. Imbal.
• Synch.

Figure 5.30: Comparison of overheads for algorithms, mountain image

TEXAS INSTRUMENTS EX. 1011 - 150/229

6

Characterization of
Other Parameters on
Performance

In this chapter, a number of parameters are investigated which differ
from those discussed thus far. The purpose here is to produce a
comprehensive study of the shared memory referencing strategies and
further evaluate the performance of the various algorithms under a
variety of conditions. Several different shared memory storage and
referencing methods are analyzed in the first section. The
implementations of the Uniformly Distributed and Locally Cached
schemes are described in detail in this section. A framework is
presented which allows a straightforward comparison of these
schemes using the task partitioning implementations discussed in the
previous chapter. In the second section, the effect of machine
parameters such as the operating system and architectural
characteristics are evaluated in regard to algorithm performance. In
the third section, a number of additional characteristics such as
image and object complexity are varied to see how overall algorithmic
performance is affected. The comparisons in this chapter are

139

TEXAS INSTRUMENTS EX. 1011 - 151/229

140 Characterization of Other Pammeters on Performance

intended to provide a broader base for determining the relative merits
of each ofthe parallel approaches which have been implemented.

6.1. Shared Memory Storage and Referencing
The idea of partitioning image space segments for use in a parallel
graphics rendering algorithm can be extended to memory referencing
as well. The scene data used in the graphics rendering algorithms is
read in from disk and then processed in the front end. The polygons
are then transformed from three-dimensional space to image space
and become read-only data thereafter. As such, the read-only data
can be partitioned in numerous ways for referencing during the tiling
portion of the program. Three alternative data storage and access
schemes for use in a parallel graphics display algorithm are presented
in the subsections which follow. A brief description of these schemes
is given next.

If enough memory is available, all of the data could be copied to
each processor's local memory; then no remote memory access is
necessary after the copying phase is completed. This storage and
access scheme is analyzed in the first subsection below. The second
scheme involves scattering the data among the memory modules in
the system and referencing it remotely. In the third technique, the
data is scattered initially as in the second scheme, but then a
reorganization is required to allow the data to be copied to the local
processor's memory as it is needed. This last method allows local
referencing after the copy is completed and is described in the third
subsection. The second and third methods are the same as the UD
and LC memory referencing strategies discussed previously. Here,
their theoretical performance is analyzed, and a full description of the
implementation details is presented.

A dataset which would contain 100,000 points and 100,000
polygons is used for theoretical analysis. The front end process
removes a number ofbackfacing polygons, conservatively eliminating
V3 of the original data (this assumes a given polygon is not both front
and backfacing). Below, the amount of memory required for this
dataset is given after transformations and backface rejection have
been applied. The assumption in this case is that a mesh of size 48 x
48 has been placed over the image. This corresponds to the number of
regions generated with a granularity ratio of R = 24 on 96 processors
using the rectangular region task partitioning scheme.

When applying a mesh over the image, a polygon (or polygon
pointer) needs to be duplicated for each region that a given polygon
crosses over. This duplication is based on both the size of the

TEXAS INSTRUMENTS EX. 1011 - 152/229

Shared Memory Storage and Referencing 141

polygons and the granularity of the mesh. The mountain image
contains approximately 83,000 polygons after backfaces are removed.
As an example of the duplication, figure A 12 in the appendix shows
that for this image, 130,000 polygons are created after duplication
using a 48 x 48 mesh which is an increase of 57%. Using the 100,000
polygon test situation and this same percentage increase as an
example, we can expect to lose 33,333 polygons to backface rejection
and then gain 57% more polygons from duplication, resulting in a
final total of 105,000 polygons. We assume that this results in
105,000 points as well, although this latter value is typically smaller.

The analyses given next take into account the additional time
required to access data beyond a normal local memory access. This
includes any setup time specific to each scheme in addition to any
latency incurred.

6.1 .1 . Copy Data to all Processors
This method involves copying all the data to all of the processors in
the system. No remote referencing is required after the data is
copied, so no communication overhead is incurred during the tiling
portion of the program. To ascertain the cost of copying the data to
all processors, let us estimate the time to copy 105,000 points and
105,000 polygons to 96 processors. This copying can be accomplished
in parallel by creating a binary tree of processes in which the data is
copied throughout the network from processors that contain data to
neighboring ones that do not. This copying process is repeated until
all processors contain data. The number of times this is repeated is
the height of the tree, namely ceil(log2(96)) or 7. Each data point
contains 3 floating point values consuming 12 bytes, and it is
assumed that each polygon is a quadrilateral. Using the storage data
format described previously in section 4.1.1, a single polygon takes up
10 bytes.

The memory required for all the data is then 105,000 * (12 + 10)
or 2.31 million bytes. Equation 6.1 shows the communication cost
with block transfers of 256 bytes, each using the binary tree copying
technique.

Tcomm =#levels *#transfers * (Tsetup + 256 *Tbt) (6.1)

T setup is 8 J.l.Sec and Tbt is 0.25 J.l.Seclbyte for block transfers on the
Butterfly GP1000. The number oflevels is 7, and the number ofblock
transfers is (2.31 million)/256 or 9,023. Plugging these numbers into
the equation results in an overhead time of 4.548 seconds. This time

TEXAS INSTRUMENTS EX. 1011 - 153/229

142 Characterization of Other Parameters on Performance

does not include the time to copy nonnals or the polygon information
data structure which contains the bounding box of the polygon, a
pointer to its location in the polygon list, and other infonnation. If
these are required, the time would be more than double, although it is
possible to create both data structures locally on each processor
instead. The memory required for all of these data structures, in
addition to the data structures needed for scan conversion, exceeds
the 4 megabyte limit per processor available in the BBN GPlOOO.

The preceding analysis assumes that no network contention
occurs during the copying process. This will not be the case after a
few levels of the copying tree have been completed since there are not
that many unique switch paths in the Butterfly and some may
become blocked. This might be avoided by copying less data
simultaneously, but that adds levels to the tree. There is also the
issue of copying the normals and other necessary data structures or
regenerating these locally. Regenerating the normals adds time to
the computation, but not to the copying process. Alternatively, the
potential for increased network contention exists if the normals are
copied. A more detailed analysis is needed to adequately evaluate
this issue, but it is not necessary for the purposes here since
conclusions can be drawn without such an analysis.

This copying scheme uses a huge amount of memory so that
subsequent references to all data can be local. The amount of data
that any processor really needs to perform its tasks is significantly
less than the entire input dataset, since each task will likely refer to
only a small subset during the tiling operation. Therefore, this
scheme makes inefficient use of the network and storage resources.
The potential for network contention increases as larger processor
configurations are used. The reason is that the number of processors
increases linearly, while the number of switch paths increases
logarithmically. In addition, more memory is required than is
available per processor, so this scheme is not generally usable except
for smaller datasets. Even for machines which might have enough
memory per processor, it is still evident that this method is
inadequate for general use. The next scheme makes better use of the
memory in the system.

6.1.2. Global Referencing
The basic idea in global referencing of shared data is to distribute the
data and references throughout the system. This avoids hot spot
contention since the data is not in a single location, although latency
and network contention are introduced during the tiling section. This

TEXAS INSTRUMENTS EX. 1011 - 154/229

Shared Memory Storage and Referencing 143

technique allows the aggregate memory available in the system to be
used so that it can be considered as one globally shared memory. The
data is stored so there is only one copy in the system, which conserves
system memory in addition to the time savings resulting from not
copying unnecessary data.

This method is essentially the same as the shared memory
storage in bus-based architectures such as the Encore Multimax or
Sequent Balance. These computers, known as Uniform Memory
Access (UMA) architectures, use such a scheme in all programs since
a global view is provided of memory in these architectures. They
incorporate a number of different processor boards connected to a bus,
on the other side of which is a number of memory boards, as was
illustrated in chapter 3, figure 3.2. The term UMA refers to the fact
that every processor is the same distance from global memory,
resulting in an equally distributed communications overhead. This
technique can be emulated in software on the Butterfly, where it will
be referred to as the Uniformly Distributed (UD) approach to shared
memory referencing. A brief description of this scheme was given in
section 4.1.1.2, which presented the design of the front end to all the
algorithms. The data is scattered throughout the memory modules as
it is read-in and then referenced remotely in the tiling portion of the
program. Mter this scattering of data, each processor contains
approximately NIP polygons; that is, the dataset is evenly divided
among the memory modules. Since the data is scattered throughout
the system uniformly, an average of l!P of the references to shared
memory will actually be to data stored locally. Although this
percentage is an average, it is likely that the deviation from this
average must be large. The worst case situation, where all of the data
referenced by a given processor is stored remotely, is actually a more
realistic scenario. The reason for this expectation is due to the screen
space locality of data. Most of the references for a given task will
likely be to a particular processor or group of processors rather than
scattered throughout the entire system. An estimate of the remote
referencing time overhead in the tiling section using this shared
memory referencing strategy is presented here with the assumption
that all references to global memory are remote references.

The integration of scattering the data with reading in objects in
the front end allows the front end work to be accomplished on each
processor without any remote referencing. The time for the front end
work does not need to be accounted for in the following analysis since
there is no difference among the memory strategies in the way this is
performed. The remote referencing time overhead is given in
equation 6.2.

TEXAS INSTRUMENTS EX. 1011 - 155/229

144 Characterization of Other Pammeters on Performance

Ttateney = #refs * (T rref - Ttre{) (6.2)

TrrefiS the remote referencing time which is 7 ~ec. Tire[iS the
local referencing time, which is 0.53 Jlsec. The latency factor is the
time difference between these two values. The number of remote
references in the tiling section is based on a number of factors. Due to
the construction of local edge lists, each point must be referenced 3
times and each polygon once. Since each point contains 3 floats, the
number of point references is 3 * 3 * 105,000, or 945,000 point
references. The number of polygon references is 105,000 polygons * 5
shorts per polygon, or 525,000. In addition, about 5 references are
needed per polygon to obtain the polygon pointer from remote
memory, as well as other polygon information adding up to 525,000
more references. There is also one reference for each normal, which
results in 3 floats per normal * 105,000, or 315,000 references for
normals. The total number of references per processor on 96
processors in parallel is then 1/96 * (945,000 + 525,000 + 525,000 +
315,000) or approximately 24,063 references per processor. The
communication time is then: 24,063 * 6.4 7 Jlsec or 0.1557 second.

This analysis is very simplified since network contention is not
taken into consideration. The edge list data is stored locally after it is
remotely referenced, so it does not need to be referenced remotely
again. A number of remote references to the points list are required
in the anti-aliasing portion of the program which are not accounted
for in the values derived above. That section of the code could be
optimized to allow only one remote reference per point by using
temporary storage, but we have not implemented such an
optimization. As shown here, the small overhead for this scheme
makes it attractive for implementation. Next, the details of
implementation are described in regard to this scheme.

Implementation of the UD Scheme

During the front end, as the polygons are read in, it is necessary to
determine in which area(s) of the 2D screen mesh a given polygon
may belong. A short pseudo-code segment shows how this is done:

On each processor :
For all polygons on this processor O(N/P)

For all areas in mesh this polygon
crosses over O(c)

Lock mesh (i, j)
Load polygon pointer into end of
area(i] (j] linked list
Unlock mesh(i,j)

TEXAS INSTRUMENTS EX. 1011 - 156/229

Shared Memory Storage and Referencing 145

The time complexity is based on the number of polygons on a
given processor after backface rejection (NIP) multiplied by a
constant (c). This constant is the number of areas a polygon can cross
over, and is related to the size of the polygons and the size of the
mesh. The duplication graphs in the appendix in figures A9 through
A12 indicate the total number of polygons after duplication, based on
mesh size. The duplication factor is the number of polygons after
duplication divided by the original number of polygons. This factor,
which would be the average number of iterations for the inner loop
above, goes from approximately 4 for the stegosaurus image to 1.5 for
the mountain image, with a mesh size of 48 x 48 (2048 areas). The
locks are needed so that only one processor at a time adds a link to
the shared link list (area[i](j]). A separate lock exists for each area in
the mesh. Figure 6.1 illustrates the storage ofpolygon pointers in the
area mesh.

During the tiling operation, a separate area is assigned to each
processor as a single task. The processor then traverses the polygon
linked list and constructs local edge lists for use in the tiling
operation. The pointers in these links are scattered throughout global
memory so a global reference is required for each link, but this is only
needed during the initial traversal of the list. These global references
are included in the preceding analysis. This implementation of the

Shared Area Mesh

Linked list
of polygon
pointers

Figure 6.1: Area mesh storage of polygons pointers

TEXAS INSTRUMENTS EX. 1011 - 157/229

146 Characterization of Other Parameters on Performance

Uniformly Distributed (UD) scheme was used in the scari line and
rectangular region algorithms described in chapter 5, sections 5.1.1
and 5.1.2.

6.1.3. Software Caching
The last type of referencing scheme is designed to optimize memory
access on a Non-Uniform Memory Access or NUMA architecture. The
term NUMA refers to the fact that some references to shared data
require less time than others since a processor can access shared data
stored in its local memory module without retrieving it remotely
across the interconnection network. The UMA architectures
described previously use a local cache which contains the most
recently referenced data, thus allowing (potentially) faster access to
the shared data. The UMA architectures use sophisticated cache
coherence schemes so that the copy of the data in the cache is the
same as what is stored in global memory. NUMA architectures such
as the BBN Butterfly typically do not exploit cache coherence (even if
they have a cache); the programmer is responsible for maintaining
cache coherence. Since cache coherence is not normally available in
an NUMA machine, it is not recommended to copy writable shared
data to local processor private memory. Read-only shared data can be
copied to private memory, and the data is then accessible locally, as
was the case in the first scheme described previously. In the scheme
described here, however, only the data needed for a particular screen
area is copied rather than the entire dataset.

Implementation Details for LC Scheme

The method for local referencing we have implemented for NUMA
machines is called the Locally Cached (LC) memory referencing
scheme. The basic idea is to copy the appropriate data into the local
memory of the processor which will use it for tiling a given region.
This scheme allows local referencing of data without any latency or
possible network contention, except during the copying operation.
The data is read in during the front end, as was done in the previous
UD scheme. After the front end, each processor contains on its local
memory module an average of NIP polygons as before. For this
analysis, it is assumed that the 48 x 48 rectangular region
partitioning is used as before. The data is arranged into contiguous
blocks (arrays) prior to copying in the tiling section. An explanation
of why this is done is given after the pseudo-code is presented below.
The implementation proceeds as follows:

TEXAS INSTRUMENTS EX. 1011 - 158/229

Shared Memory Storage and Referencing 14 7

In Parallel: Comnlexity
[1st pass]
For all polygons on this processor O(N/P)

For all areas in mesh this polygon
crosses over 0(~

Accumulate memory needed for
each of the following 4 arrays:
(points,normals,polygon connectivity,polygon inf o)

[2nd pass]
For all polygons on this processor O(N/P)

For all areas in mesh this polygon
crosses over O(c)

Allocate memory for each of 4 arrays
for area[i] [j] if not done yet
Add polygon and point data to
the 4 arrays listed above

Free up original scattered data.

This code is executed prior to the tiling section of the program and
was not included in the measurements in chapter 5. The first pass is
necessary to determine how much memory to allocate for a particular
region, and the second pass actually allocates the memory on the local
processor and copies the data into it. A barrier synchronization is
necessary between the passes so that the data is updated properly for
all regions. All of the work in these phases is done using local
memory, so no remote referencing occurs here. The inner loops in the
first and second passes are of the same time complexity as the inner
loop described in the previous section. Figure 6.2 illustrates the
storage of the arrays in each local processor's memory.

Local Area Mesh

Local lists of points,
normals, polygons, and

polygon info for
area[i]{j}

Figure 6.2: Locally cached memory storage mechanism

TEXAS INSTRUMENTS EX. 1011 - 159/229

148 Characterization of Other Parameters on Performance

The LC method is more than just a "block copy then local
reference" scheme. It consists of a complicated set of instructions
which involve constructing data structures for later block transfer.
The principal advantage of this scheme in a non-blocking network
such as in the Butterfly is as follows. The setup cost is incurred only
once for a block of data, and thereafter the message proceeds at the
full bandwidth of the interconnection network. This is faster than
individually copying each remote value to local memory since the
setup time for that method would be incurred for each single
reference. The disadvantage to this block copy method is that the
data must be arranged into a contiguous array. If a blocking
interconnection network were to be used, the data could then be
transferred byte by byte instead. The LC scheme consists of a method
of organizing data primarily for later local referencing while using
minimal memory usage. The data structures and setup routines
necessary to achieve this set it apart from a pure software caching
scheme.

The pseudo-code presented for this scheme sets up the blocks for
copying, but the copying phase is actually executed during the tiling
portion of the program. If a completely uniform distribution of the
data occurs, then each processor would contain exactly 1/ P of the
data for a particular area. In general, this is not the case, as was
stated before based on the locality of screen space data. For this
analysis, it is assumed that the data is distributed in such a way to
encounter a worst case scenario (i.e., all the data needed for each
region is stored remotely). For a particular task, it is necessary to use
P separate block transfer groups to retrieve the data. This is shown
in figure 6.3 on the next page.

To simplify matters, each processor is assumed to execute exactly
R tasks so that the total number of block transfer groups is (4 * R *
P). Four refers to the fact that it is necessary to retrieve the points,
normals, polygon connectivity, and polygon info arrays separately.
Each block transfer retrieves on average li(R * P) ofthe total amount
of data.

Based on the analysis at the beginning of this section, the total
amount of data after backface rejection and duplication is 105,000
polygons, so the amount of data per area of the 48 x 48 mesh is
approximately 46 polygons. Recall that for a block transfer, T setup is 8
Jl.Sec and Tbt is 0.25 JJ.sec/byte. If the data is evenly scattered as was
stated above, each polygon (in the worst case) is on a separate
processor, requiring 46 separate groups of 4 block transfers each.

TEXAS INSTRUMENTS EX. 1011 - 160/229

Area[i][j]

Shared Memory Stomge and Referencing 149

Processors

Copy polygons from other
processors to the one which has

this area as a task

Figure 6.3: Block transfer of data

TEXAS INSTRUMENTS EX. 1011 - 161/229

150 Characterization of Other Parameters on Performance

The data is scattered among the 46 processors which contain
polygons for a given area, so the total time to retrieve data for one
region is 46 * 38.5 J.lsec or 1.77 msec. Since each processor works on
an average of 24 regions, the total time for a processor to retrieve all
the data it needs to work on its regions during the tiling section is 24
* 1. 77 msec or 0.0425 second. Again, it is assumed that no network
contention exists for this analysis. This time is executed in parallel so
0.0425 second is the parallel communication time. The time for block
transfer for a single polygon is then:

lllW
1. 10 bytes/polygon
2. 20 bytes for polygon info
3. 12 bytes/point • 4 points/polygon
4. 12 bytes/normal • 4 norrnals,/polye-on
Total

~
7.5 J.lsec

15.0 J.1Sec
8.0 J.lsec
8.0 usee

38.5 J.lSec

This time is significantly better than any of the times listed above
for the previous methods of memory storage. The second pass is nec
essary to set up the arrays for block transferring, but this has not
been taken into account in the preceding analysis. Since this time is
extra, it needs to be accounted for as well. In the next paragraph, the
second pass algorithm is described, and its time complexity is ana
lyzed.

In the second pass, new arrays are constructed which correspond
to the data that is relevant to each area of the 2D mesh in the local
processor. In constructing these new arrays, it is desirable to not
create any unnecessary new data points. In order to do this, a
backwards reference list is used to determine which points have been
stored in this area thus far. In order to keep the amount of memory
within limits for this backwards reference list, a fairly sophisticated
data structure is used. This data structure is an array which
corresponds to the points list, but contains links which indicate when
any point that has been previously stored in this area is part of a new
polygon. The backwards reference list data structure is shown in
figure 6.4.

The diagram shows that the backwards reference list corresponds
to each point in the original object. The small array to the right is
used to indicate the areas each point is referenced in (the polygons
which contain it can be in more than one area) and the value of the
point's index for the new points list in each of these areas. The new
points list allows us to sequentially go through the polygon list in the
front end. This data structure uses less memory than a separate

TEXAS INSTRUMENTS EX. 1011 - 162/229

Shared Memory Storage and Referencing 151

backwards list array for each area since that type of list would be
relatively sparse. The list requires some time to manage, and this
time is considered as part of the analysis.

The backwards reference list is also required for the first pass,
but in that case the reason is to determine how much memory to
allocate for the contiguous arrays. The top loop given in the pseudo
code is of time complexity O(N/P) which in the case given here
corresponds to approximately 1094 polygons. The inner loop would be
approximately of time complexity (constant = 2) for a theoretical
100,000 polygon dataset based on the analysis of the mountain image,
but we will use the value (constant = 4) for a possible worst case
scenario. The management of the backwards reference list requires
us to run through each point in the polygon, so there really is a third
inner loop that would be of time complexity (constant = 4), assuming
quadrilateral polygons. The only difference between the first pass
and the second pass is the time required to allocate memory for the
areas not already allocated and to store the data in the new arrays
while updating the count for these lists. The GP1000 contains 2.5
MIPS MC68020 processors, and based on the amount of work in the
inner loop of the second pass, we estimate the time to complete this
operation to be 20 Jl.Sec per iteration. This results in a time for the
second pass of 1094 * 4 * 4 * 20 Jl.Sec or 0.35 second. This analysis is
simplified, but the purpose is to show the additional overhead
incurred by the LC scheme. The first pass time is not measured since

points
list

backwards

Figure 6.4: Backwards reference list data structure

TEXAS INSTRUMENTS EX. 1011 - 163/229

152 Characterization of Other Parameters on Performance

it takes approximately the same amount of time as its counterpart
loop in the UD scheme. The total time for this scheme is then 0.35
seconds for the second pass plus the time of 0.0425 second for
communication, resulting in a sum total of 0.3925 second.

There have been several other graphics algorithms which
incorporate the idea of local caching in a distributed memory
environment. Green and Paddon [Gree89] as well as Badouel, et al.
[Bado90] have both implemented a software caching mechanism in a
distributed memory environment. Both algorithms use ray tracing for
hidden surface elimination and rely on the concept of ray coherence
for minimizing remote references. Ray coherence is defined to be the
property in which rays in adjacent pixels are likely to intersect the
same objects. Once these objects are brought into the local memory of
a processor by the cache mechanism, the rays sent out by this
processor will intersect these same objects in local memory. Based on
this fact, Badouel was able to achieve a 95% or better hit ratio into
the caches. An area screen space distribution of the pixels to
processors is used for task decomposition, similar to the approaches
given here.

These algorithms were designed to allow one to distribute a large
graphical database on a message passing multiprocessor such as the
Intel iPSC, which provides no support for shared memory referencing.
The caching employed in Green's algorithm involves statically
partitioning local memory for caching purposes, while Badouel's
method uses a more dynamic approach without any preprocessing.
Badouel's algorithm allows virtual memory to be distributed by
taking advantage of the aggregate memory in the system, whereas
Green's approach requires the host to maintain virtual memory. In
Badouel's algorithm, the object database is statically divided up into
pages and scattered throughout the system in a way similar to the
scattering of data used in the LC scheme described previously. If a
page is not resident in the local processor's memory or cache, the page
is retrieved from the processor memory module where it is resident
and put into the local processor's cache using a least recently used
(LRU) cache replacement policy. Badouel has shown significant
speedup on the Intel iPSC with this caching scheme built into a
multiprocessor ray tracing algorithm. Several faults exist with this
scheme if it is to be applied to a conventional scan line algorithm such
as those outlined in the previous chapter.

The first issue is the amount of memory available in each
processor. A ray tracing algorithm might use a hierarchical tree
structure such as an octree to speed up calculating ray-object
intersections, and this tree must be stored in all processor memories.

TEXAS INSTRUMENTS EX. 1011 - 164/229

Shared Memory Storage and Referencing 153

No other additional memory is required during the execution of the
program. In a scan line algorithm, edge lists, anti-aliasing data
structures, and interpolation parameter arrays must be built which
all take up a significant amount of local memory. More local memory
is necessary in a scan line algorithm than is needed for ray tracing, so
less would be available for the cache. The reduction in cache size
would result in a lower hit ratio, giving lower performance. In a ray
tracing algorithm, it is impossible to know a priori which polygons
might be needed in local memory since a ray can be spawned to any
direction in three-dimensional space. It therefore makes sense to
bring in the data as needed using a LRU replacement policy. In the
algorithms presented in the previous chapter, the exact polygons that
are needed for rendering are known ahead of time, so only those
should be brought into the local memory module. Furthermore, since
those polygons are only used for a single task, the original (remotely
stored) polygons can be deleted. This provides additional free space,
allowing more room for local data structures.

The second issue is the amount of communication and potential
contention problems in the caching mechanism. The amount of
memory brought in using the LC scheme is exactly what is needed, so
no unnecessary message traffic is required. Badouel's caching scheme
copies pages one at a time, and it possible that only one item of an
entire page is required. The results of speedup in his ray tracing
algorithm are based on images which take minutes to render on 64
processors and would typically take hours to render on a single
processor. This is due to the fact that ray tracing is a slower, less
efficient rendering algorithm than the image space methods described
in this document. The ratio of computation time to message traffic
time is so high in ray tracing that any possible bottlenecks in message
passing are masked due to the high computation time. The higher
efficiency of the scan line algorithm reduces computation time, so
these bottlenecks are more likely to degrade overall performance than
in a less efficient algorithm. This is shown by the reduction in
network contention determined for the larger datasets using the LC
algorithms in the previous chapter. Badouel's approach requires
more communication than the LC scheme given here since pages are
brought into memory as needed. Therefore, his approach is likely to
result in greater contention when compared to the LC scheme. While
a multiprocessor can sufficiently speed up a costly algorithm such as
ray tracing, the benefits of using that type of method are generally
not needed in most applications. The real need by most scientists and
other users is to be able to display extremely complex datasets in a
reasonable amount of time. Therefore, if reflections are needed, one

TEXAS INSTRUMENTS EX. 1011 - 165/229

154 Characterization of Other Pam meters on Performance

should use a ray tracer. If high quality scenes need to be generated
quickly without reflections, an image space algorithm such as those
illustrated here is more appropriate.

In the next section, the results of the UD and LC schemes are
compared, including the overheads required in the front end and the
second pass, to see how these affect the overall performance of each of
the algorithms.

6.1.4. Results
The total time for remote referencing of the LC scheme is 0.3925
versus the time of 0.1557 second in the UD scheme based on the
theoretical analysis used here. On the surface it would seem that the
UD scheme is the better alternative even with its remote reference
strategy. However, one important factor missing from this analysis is
network contention. From the data given in chapter 5, contention
contributed significantly more to degradation of performance in the
UD scheme than in the LC scheme for the rectangular region
partitioning scheme. The primary reason is that the LC scheme uses
the network in bursts of communication which take a very short
amount of time, minimizing the chance of a blocked path. The UD
scheme relies on a large number of small messages which can
eventually saturate the network.

To illustrate the differences between the two memory referencing
strategies, we compare them using the data for the tiling section from
chapter 5. The data from running the task adaptive algorithm using
the UD scheme has also been included. The UD task adaptive
algorithm is not nearly as efficient as the rectangular region UD
implementation since each time an area is started, the entire polygon
list from the split area must be traversed. These polygons are
traversed from shared memory, while in the LC implementation of
the task adaptive scheme, local memory is used. Latency causes the
algorithm's efficiency to go down as the number of processors is
increased.

The graphs for these algorithms for the tiling section time are
shown in figures 6.5, 6.6, 6. 7, and 6.8. This is the same data that was
presented in chapter 5 with the addition of the task adaptive version
of the UD scheme, but here all the data is put on the same graph to
allow direct comparisons. The comparisons in this case only involve
the rectangular region and the task adaptive algorithms since these
are the only algorithms which were implemented using both
strategies. The data is shown above 48 processors so that the reader
may get a clearer idea as to the performance difference, which is

TEXAS INSTRUMENTS EX. 1011 - 166/229

Shared Memory Storage and Referencing 155

mainly evident at high processor configurations. Based on this data,
one can see that the LC scheme is consistently better than the UD
scheme. While these graphs show that the LC scheme is clearly
superior to the UD scheme in the tiling section, it is only fair to look
at the total picture. By this we mean that all of the algorithms should
be compared by evaluating the parallel execution time plus the setup
time from the front end, as shown in the formulas on the page
following the graphs. The total front end time will not be included
here since disk access is used in that section of the program. Disk
access time is affected by other parameters which cannot be
controlled unless the machine is put into single user mode. In
general, all of the algorithms employ the same disk read-in scheme
anyway, so this is not an issue.

The primary differences in the algorithms occur in the following
phases:

1. The time to load polygons into the area bucket data structure
(or y-bucket list in the case of the parallel scan line algorithm)
according to their screen space location.

2. The additional time necessary in the second pass for those
algorithms which use the LC scheme.

3. The time to build the hierarchical tree for the data adaptive
top-down scheme.

4. The tiling section time.

The table below shows how the comparison times are determined
for each algorithm, including the memory referencing scheme and
granularity ratio. Using these formulas, a fair comparison of all the
algorithms is now possible since the different overheads prior to tiling
are included. The primary variation in the setup time is due to the
difference in cost for the total number of regions to be started (R•P) in
the implemented algorithms.

Algorithm (memory scheme) Phases
Data Non-Adaptive
Scan line Algorithm (UD): Phase 1 + Phase 4
Rectangular Region (UD): Phase 1 + Phase 4
Rectangular Region (LC): Phase 1 + Phase 2 + Phase 4

Data Adaptive
Top-Down (LC): Phase 1 +Phase 2 +Phase 3 +Phase 4

Task Adaptive
Task-Adaptive (UD): Phase 1 +Phase 4
Task-Adaptive (LC): Phase 1 +Phase 2 + Phase 4

Granularity Ratio

(R varies with P)
(R = 24)
(R = 24)

(R = 10)

(R = 1)
(R = 1)

TEXAS INSTRUMENTS EX. 1011 - 167/229

156 Characterization of Other Parameters on Performance

UD vs. LC Tiling Section Timing Comparisons

24

4 -8- Rect. - UO -• Red. - LC

-<>-Task A.- UO -+-Task A. - U
0

48 56 64 72 80 88 96

Processors

Figure 6.5: UD vs. LC stegosaurus
image, tiling section only

35

30 '---

25 .• ·-~.'.:-.:-:·;~~-----<>-------
Time 20 ·· -~ ·-&: · .. ·...:·...:·..;·

15

10

5 --8- Reel. - U 0

-~TaskA.-UO · • Tasi<A. - l

48 56 64 72 80 88 96

Processors

Figure 6.6: UD vs. LC Laser image,
tiling section only

40

30

Time
20

10
-e-Rect. -UO

··4 -TaskA.-UO · • ·TaskA.-l

48 56 64 72 80 88 96

Processors

Figure 6.7: UD vs. LC tree image,
tiling section only

70

60

50

40
Time

30

20

"" ~

··• -------~----
..::·~.... . --... _

-- ·4·~

10 -e- Reel. - uo
-~TaskA. - UO - • TaskA. - L

48 56 64 72 80 88 96

Processors

Figure 6.8: UD vs. LC mountain
image, tiling section only

TEXAS INSTRUMENTS EX. 1011 - 168/229

Machine Parameters 157

The graphs which result from these summations for each
algorithm are shown in figures 6.9, 6.10, 6.11, and 6.12. The graphs
are shown above 64 processors.

Based on the data shown in these graphs, it can be seen that the
task adaptive algorithm utilizing the locally cached (LC) memory
referencing scheme is clearly superior for all of the images. This
algorithm requires fewer regions at the beginning of the program
than any of the other algorithms. The overhead time for loading
polygons into the area bucket list, as well as the second pass time, is
fairly small as a result. The rectangular region algorithm, which is
slightly faster for some images in the tiling section only, requires
significantly more setup prior to tiling, degrading overall
performance. One might have thought that the second pass section of
the LC scheme would require too much setup time to benefit the total
algorithmic performance, but this turned out not to be the case.
While the second pass does add some time to the LC schemes, the
benefits of local referencing in the tiling section far outweigh the cost
of the setup operations since they can be done in parallel. This also
indicates that network contention is a major factor in the resultant
performance of each approach since the disparity in performance is
greater than what was indicated in the theoretical analysis from the
previous subsection. It seems clear that these results are consistent
and valid for the tests done so far, but it is desirable to be able to
generalize these statements by evaluating the various algorithms
under a variety of other conditions. Some of these conditions are
investigated in the next section.

6.2. Machine Parameters
Although the performance of the different algorithms has been
analyzed previously, these circumstances represent only one possible
machine configuration. There are various hardware and system
software changes which may affect overall algorithmic performance,
most of which are beyond the programmer's control. These types of
parameters are investigated in this section. For instance, the
operating system can have a significant impact on performance. In
the implementation of the Mach operating system on the GP1000,
single jobs are scheduled onto processors based on the current least
loaded processor; however, the Uniform System takes over this task
within a parallel program. The operating system does intervene to
some degree in this machine by handling virtual memory, UO, and
general MACH system operations. Changes in the operating system

TEXAS INSTRUMENTS EX. 1011 - 169/229

158 Characterization of Other Parameters on Performance

All Algorithms Compared including Setup Time

~ +-----------~------------+

16

12

Time

8

4

0

64

Scanflne - 6 Rect - UD • · Rect -LC

-Top-OOwn --+-Task A.- UD- + ·Task A. · l

80 96

Processors

Figure 6.9: All algorithms compared,
stegosaurus image, total time

28

Time
24

~

...:, :
.... . ' :._ ... :

........... ... "'0... _

.... , •· ----
·~ :-:-.---; ..: -

Scanine - 6 Red. • UD

16
- -Tq>-down

64 80

Processors
96

Figure 6.10: All algorithms com
pared, Laser image, total time

40 +-----------~------------+

28

24
Scanline -0- Reel • UD -e- Aecl. -LC

- -Tq>-<lown -~ ·TaskA.-UD · + TaskA - L
20 +--.~--~-r-.--r-,--.~--+

64 80

Processors

Figure 6.11: All algorithms com
pared, tree image, total time

63

56

Time

49

42

Scanlioe • e Reel • UD

96

35 +--_,_TT"-'"fwn:!!...-r-+-_,_.T""ask'i'-"A"-,. -..,u,.D.,.-+"'-· T._,a,sk,_,A_,_. _,. L'l'

64 80

Processors

Figure 6.12: All algorithms com
pared, mwntain image, total time

96

TEXAS INSTRUMENTS EX. 1011 - 170/229

Machine Parameters 159

can change program performance; this is described in the first
subsection below.

In the second subsection, we investigate the differences in two
versions of the Butterfly multiprocessor: the GP1000 and the TC2000.
Since the TC2000 is a logical extension of the GP1000 with different
physical characteristics, it is interesting to compare the performance
ofthese two machines.

6.2.1 . Operating System
Since 1987, BBN has made a number of improvements to the GP1000,
but none were so dramatic as the improvement made to the GP1000
version of the Mach operating system in the summer of 1990. The
author previously reported preliminary results on this project in
[Whit90] early in the summer of 1990, and the limits of the graphs
were set to only 32 processors since inconclusive data was obtained
above that. The primary reason was the previous version of Mach
implemented on the GP1000.l

The older version of the GP1000 operating system had the
following major problem: when any references occurred to a memory
page which was not resident, only one page fault at a time was
allowed to be serviced in the entire system. As an example, if
processor i had a local page fault and processor j had a local page
fault simultaneously, these page faults proceeded only serially even
though they had nothing to do with each other. In a graphics
algorithm such as the one described here, the amount of memory
required is tremendous, and this serial page faulting had an
extremely negative impact on performance. BBN rectified this
problem and released a new version of the operating system in the
summer of 1990; then performance changed dramatically. As an
example of the difference in performance, we compare the rectangular
region algorithm using the UD scheme in figures A13, A.14, A15,
and A16. A comparison of the LC scheme version is shown in figures
A17, A.18, A.19, and A20. These figures are given in the appendix,
but a copy of a representative graph for the mountain data using each
of these schemes is shown in figures 6.13 and 6.14 on the next page.
All of these graphs are comparisons of the tiling sections only.

As one can see from the graphs, the performance in the old
operating system starts to tail off after about 48 processors in the UD
scheme. The LC scheme is somewhat better since local rather than

1 Note, the TC2000 has had the new version of the operating system since
its delivery in the beginning of 1990.

TEXAS INSTRUMENTS EX. 1011 - 171/229

