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processors. The key to solving this problem is to reduce the number of 
remote memory requests. As we mentioned previously, it is likely 
that remote references became blocked in the switch since the tasks 
assigned to processors involved adjacent scan lines. If the scan lines 
were assigned in some haphazard order, this effect might be 
alleviated since the data to be referenced would not be the same. On 
the other hand, with a large number of processors such as 96, it 
probably could not be reduced significantly. The dataset size could 
also impact the network contention since larger datasets require more 
references. The combination of these two factors seems to indicate 
that this overhead cannot be reduced in the general case unless a 
radical change in the memory referencing scheme is applied. If 
coherence can be maximized without sacrificing load balancing and 
can still maintain adequate parallelism, some of these factors can be 
reduced significantly. The algorithm described in the next section is a 
logical extension of this one and attempts to achieve these goals. 

5.1.2. Rectangular Region Decomposition 
(UD Scheme) 

The rectangular region decomposition algorithm is a generalization of 
the scan line decomposition algorithm. Instead of using single scan 
lines as wide as the screen for each task, a small group of contiguous 
scan lines is designated as a single task.l This idea was first sug
gested by Kaplan and Greenberg [Kapl79], where they implemented 
both the Watkins and the Warnock algorithm [Roge85] as two alter
native rectangular approaches. In their Warnock implementation, 
equal size areas are initially assigned to all processors. The Warnock 
cull was then used within each single task. 

5.1.2.1. Coherence Effect on Rectangular Regions 

Presumably, the reason the Warnock algorithm was chosen for a 
rectangular area partition is due to the area coherence exploited in 
this algorithm. In the case here, however, a scan line Z-buffer is the 
basis algorithm for each single area task since this algorithm is 
inherently faster than Warnock's. Kaplan and Greenberg chose full 
scan line width tasks (of multiple contiguous scan lines) for their 
Watkins approach. The probable reason for this was to capitalize on 

lAs a reference note, from now on, when we refer to "scan lines" in the 
context of an algorithm such as this, we mean a scan line within the width of 
the area. 
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the vertical span coherence exploited by that algorithm. Hu and 
Foley showed that this type of contiguous approach did not provide 
sufficient load balancing in comparison to the dynamic single scan 
line method presented in the previous subsection. Since a scan line Z
buffer is used here and not a Watkins spanning scan line algorithm as 
a sequential task basis, there are no spans to update in the vertical 
dimension. Therefore, the aspect ratio (their width versus height) of 
the rectangular areas chosen as single tasks is open to further 
analysis. The type of coherence lost when a region is started anew is 
in the vertical direction. For the first scan line of a region, all of the 
polygons which started above the area but are still relevant to it need 
to be initialized. Figure 5.5 illustrates those polygons. 

This initialization is not necessary if vertical coherence is 
maintained. On the other hand, some initialization is required for 
polygons which have their top vertex in the region to the immediate 
left or right of the current region as well. This initialization is also 
unnecessary ifhorizontal coherence is maintained. 

Another loss due to coherence in the horizontal direction is the 
update of edge interpolation parameters for those edges which 
intersect the region adjacent to the current one on its left. A multiply 
and an add operation are required for each interpolation parameter 
update, whereas an add operation is all that is needed if horizontal 
coherence is maintained. Note that all of these factors would change 
if clipping is implemented at the region level, but this is not done in 
the implementations described here. The losses due to coherence are 
further illustrated in figure 5.6. 

For the purposes of this discussion, it is assumed that for a par
ticular polygon and a square region, the loss in time due to horizontal 

Figure 5.5: Polygons relevant to an area but starting above it 
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coherence and vertical coherence is nearly the same. In the vertical 
case, the initialization overhead is fairly costly and occurs for all 
polygons above the area but relevant to it. The horizontal initializa
tion cost is only valid for polygons whose top vertex enters the left or 
right adjacent regions (not counting screen boundaries since clipping 
occurs there). The other horizontal coherence loss at the scan line 
level is small in comparison since it only involves the left adjacent re
gion and is of complexity O(e * h * T mult)where e is the number of 
edges in the left region and the current region, h is the height of each 
of these edges in the left region portion, and T mult is the time for a 
multiply instruction. In any case, because of the wide variation in 
polygon size and number in currently used imagery, it appears that 
any inaccuracy encountered by invalidity of these assumptions would 
be minor. 

5. 1 .2.2. Aspect Ratio Choice 

From figure 5.6 it can be seen that coherence is lost only along the 
perimeter of the region, particularly along the left and top sides. If 
the regions are tall and narrow, horizontal coherence is completely 
lost, but little vertical coherence is lost, as is shown in figure 5. 7. The 
opposite is true for wide regions, as shown in figure 5.8. For nearly 
square regions, some degree of coherence is lost in both directions as 
shown in figure 5.9. The total perimeter of a rectangular region is a 
function of its aspect ratio and is shown in equation 5.4, where b is 
the length of the base and his the height. 

perimeter = 2 • (b + h) (5.4) 

Thus, if the aspect ratio of a given region is 1:3, the perimeter is 2 
• (1 + 3) • x, or on the order of Sx. If the aspect ratio is 1:1, the 

1 - Vert. Loss (initialization) 
2 - Horiz. Loss (initialization) 
3 - Horiz. Loss (scanline update) 

Figure 5.6: Loss due to coherence in vertical and horizontal directions 
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perimeter is 2 • (1 + 1) • x or 4x. It therefore seems logical that the 
situation which results in the least perimeter for regions will also 
have the least loss due to coherence. A few simple tests were done on 
a test image of nearly uniform polygon distribution across the scene to 
verify these assertions. The results are given in table 5.1. 

Table 5.1: Aspect ratio (width:height) time comparison in seconds 

Ratio 3:1 2:1 1:1 1:2 1:3 

Time 25.8 22.7 21.8 21.9 33.6 

Based on the analysis and the experimental data, it seems like a 
1:1 aspect ratio is the most suitable choice for high performance for a 
rectangular region decomposition. This verifies Whelan' s 
experimental tests in which he compared vertical, horizontal, and 
rectangular decompositions. This method is illustrated in figure 5.9 
and also in color plate 2. The same shared memory referencing 
method is used here as in the previou~ algorithm, namely the 
uniformly distributed (UD) scheme. 

5. 1.2.3. Granularity Ratio Comparison 

This algorithm requires a methodology to determine the granularity 
ratio R to be used for a given image or given number of processors 
(recall that R = #tasks/P). It seems clear that a ratio of R = 1 would 
not produce adequate load balancing for images which contain data 
that is not uniformly distributed across the scene. Some questions 
need to be answered in order to determine what this ratio should be, 
and if it should change depending on the image or number of 
processors. Other researchers in the past (notably Fuchs and 
Johnson [Fuch79]) have used static assignment of tasks onto 
processors in an attempt to develop an evenly load balanced system. 
While static assignment may be preferable in some instances, it is not 
necessary since the Uniform System on the Butterfly uses a small 
amount of overhead in implementing a dynamic scheduler. In the 
algorithm used here, a large number of tasks which are easily 
determined are executed in a dynamic fashion. 

The dynamic method reduces load imbalance, and since the tasks 
are small at the end of the computation, very little work is left to 
perform. The number of tasks created strongly influences the degree 
of success ofthe load balancing. 

r 
i 

--.~~~~~~~=-~-=~----------------------------------------------..... 

TEXAS INSTRUMENTS EX. 1011 - 118/229



Data Non-Adaptive Partitioning Scheme 107 

Figure 5.7: Vertical subdivision 

Figure 5.8: Horizontal subdivision 

Figure 5.9: Rectangular mesh subdivision 
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On the other hand, if too many tasks are assigned, load imbalance 
is reduced, but the overhead of assigning more tasks will introduce 
additional loss of coherence, communication, aild network contention. 
Therefore, to choose the appropriate granularity ratio for a particular 
combination of (image, #processors), a series of experiments was 
designed to evaluate the performance of a particular granularity ratio 
R. These are shown in figures A.1, A2, A3, and A.4 in the appendix. 
The data for the mountain image is given in figure 5.10 as a 
representative example. From the graphs, it seems clear that ratios 
anywhere in the range from 16 to 1 up to 28 to 1 are suitable for most 
of the imagery. A compromise ratio of 24 to 1 was decided as the 
single choice to be used in the main timing experiments. 

One important note here is that the value of R determined above 
was evaluated on 96 processors since this was the maximum number 
of processors used. Due to increases in communication and network 
contention as the number of processors increases, this value of R may 
be higher than desirable if more processors are to be used. Either 
educated guesses or empirical testing similar to above would be 
required for a given processor configuration, especially if a different 
machine architecture were to be used. It is not reasonable to attempt 
to determine this ratio mathematically a priori since the overhead 
factors are too hard to predict for a given image. The times for all 
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Figure 5.10: Granularity ratio comparison for mountain image, UD scheme 
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images using R = 24 and a 1:1 image aspect ratio for the regions are 
shown in figure 5.11. The speedup graph can be seen in figure 5.12. 
Although an aspect ratio of 1:1 for the regions was desired for all 
values of P, this could not be achieved for each combination of Rand 
P. Therefore, an aspect ratio as close to 1:1 was used when needed 
(all regions have the same aspect ratio for a given value of P). 

We will now analyze this algorithm with regard to the issues 
identified previously to determine the various overhead percentages. 

5.1.2.4. Scheduling (0.004%- 0.013%) 

In this decomposition method, it is necessary to schedule all regions 
as separate tasks, but the number of regions varies as the number of 
processors is increased. To determine the maximum number of 
regions to be scheduled, we used the granularity ratio (R) of 24 to 1 on 
96 processors, which results in a total of2,304 tasks to schedule. The 
time to run a task consisting solely of the background color for one of 
these areas has been measured as Tback = 2.3 msec. The reason this 
is larger than in the scan line decomposition case is that a separate 
block transfer is necessary for each scan line in the area and each 
block transfer requires a setup cost. Since 2.3 msec is exactly the 
overhead time to schedule 96 tasks on 96 processors (Tsched), 

scheduling will not become a bottleneck in this algorithm. The 
overhead due to scheduling then involves plugging the values for this 
algorithm into equation 4.5, as shown below. This time represents a 
percentage overhead for the different images, ranging from 0.004% for 
the mountain image to 0.013% for the stegosaurus image. 

<95 • 96) • 24 ~sec + (2,304 - 96) • 24 ~sec 
Scheduling % = 2 • 100 % 

Tp • 96 (5.5) 

5.1.2.5. Memory Latency (1.4%- 3.6%) 

In this algorithm, memory latency is measured the same way as the 
previous method, namely by counting the number of remote 
references and using equation 4.6 to determine the overall 
percentage. Fewer references to the shared data are needed than in 
the previous approach due to the coherence maintained within a 
region. Consequently, the overall latency is reduced. 
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Rectangular Region Algorithm (UD Scheme) 
Performance 

1.000e+04 

1000 

Time 100 
(seconds) 

10 

-B-Laser 

10 100 

# Processors 

Figure 5.11: Rectangular region performance (UD scheme) 
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Figure 5.12: Speedup of rectangular region decomposition (UD scheme) 
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The percentage time of latency for this algorithm for the different test 
images ranges from L4% for the stegosaurus image to 3.6% for the 
mountain image. The latency increases corresponding to an increase 
in dataset size, which is the same phenomenon observed previously. 

Most remote references occur for the first scan line of a region 
since it is necessary to retrieve the data from remote memory and 
store it in local data structures. Once this is accomplished, the 
majority of references are local, with the exception being a small 
amount of remote referencing required in the anti-aliasing portion of 
the code (this would be the same for each of these algorithms). The 
remote referencing in the anti-aliasing section stems from the need to 
obtain the plane equation for each polygon for stochastic sampling 
purposes. Since the previous algorithm incorporates no vertical scan 
line coherence, all the data for each scan line must be referenced 
remotely. The rectangular region partitioning scheme capitalizes on 
coherence within the region so that remote referencing is reduced. 

5. 1.2.6. Network Contention (5.6% - 33. 1%) 

The network contention is calculated in the same manner for this 
algorithm as it was for the last one. Using this technique, the 
percentage effect of network contention for the various test images 
varies from 5.6% for the tree image to 33.1% for the stegosaurus 
image. 

The contention in this algorithm as compared to the parallel scan 
line approach is worse for the stegosaurus and Laser images, but 
improved for the tree and mountain images. It is difficult to speculate 
as to the reason for this without further image analysis. Regardless, 
one can see that even with a reduced number of references (as 
compared to the parallel scan line approach), contention is still a 
major degradation factor. Most of the increase in network contention 
occurs as the number of processors is increased from 64 to 96 
processors, indicating that the switch network becomes overloaded 
with requests somewhere in this range. 

5.1.2.7. Load Imbalance (4.3%- 11.5%) 

The granularity ratio in this algorithm provides a better load bal
anced system than the last algorithm, although network contention 
increases the execution time and this varies the overall finishing 
times. The load imbalance percentages measured at 96 processors for 
the different images varies from 4.3% for the mountain image to 
1L5% for the tree image. When compared to the previous algorithm, 
the load imbalance overhead is less for this algorithm, with the 
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exception of the tree test image. The granularity ratio comparison in 
figure A3 for this image indicates that load balancing is not particu
larly good at any value of Rand in fact gets worse after R = 24. 

In general, though, this algorithm yields better load balancing 
than the scan line approach since the granularity ratio provides 
enough tasks to minimize the load imbalance over a wide range of 
processor configurations. 

5.1.2.8. Code Modification (7.9%- 9.6%) 

This algorithm has a different amount of coherence overhead than the 
scan line algorithm since rectangular regions are generated as tasks. 
Due to the rectangular nature of the regions, coherence is taken 
advantage of in both the vertical and horizontal directions within a 
single task. On the other hand, the lack of vertical scan line 
coherence at the beginning of an area results in extra work required 
to start the first scan line of a region. In addition, the lack of 
horizontal coherence at the boundary to the left causes an overhead of 
interpolating parameters for polygons which extend beyond this 
boundary. 

The code modification overhead is measured the same as before 
using equation 4.8. Based on the measured values, the overhead 
percentages vary from 7.9% for the mountain image to 9.6% for the 
tree image. Considering the fact that there are many more tasks used 
in this scheme versus the parallel scan line approach (2,304 vs. 484), 
this overhead factor does not seem out ofline in comparison. 

5.1.2.9. Explanation of Results 

The rectangular region decomposition scheme achieves reduced 
overheads primarily in memory latency and to some degree in 
network contention and load balancing, in comparison to the parallel 
scan line algorithm. The reduction in latency is due to the fact that 
most remote referencing occurs for the first scan line of an area, and 
this effect is reduced in the rectangular region algorithm. This 
suggests that the rectangular region decomposition algorithm will 
perform better than the scan line algorithm in the general case due to 
its performance advantages in the tests given. The scan line 
algorithm exhibits poor scalability as P is increased since load 
balancing will suffer as the number of scan lines approach the 
number of processors. The rectangular region algorithm uses a fixed 
granularity ratio which allows better load balancing as the number of 
processors is increased; thus its scalability is superior to the parallel 
scan line approach. 
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It is important to note that this algorithm still has its share of 
problems. Network contention still represents a significant overhead. 
The code modification overhead is not reduced in this algorithm in 
comparison to the scan line approach. A comparison of the major 
degradation factors is given in figure 5.13. 

Since the number of remote references is reduced in this 
algorithm but contention was not significantly reduced, another tactic 
is necessary to solve this problem. Consequently, it is necessary to 
implement a different memory referencing scheme that is designed to 
reduce the network contention noted in parallel implementations. 
This memory referencing strategy is referred to as the locally cached 
(LC) scheme and is described in the next section. 

5.1.3. Rectangular Region Decomposition 
(LC Scheme) 

The algorithm described here is implemented exactly the same as the 
last one, with the only exception being the remote memory 
referencing strategy. A brief description ofthis strategy, denoted the 
Locally Cached or LC scheme, follows. Instead of referencing globally 
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Figure 5.13: Degrada tion factors for rectangular r egion decomposition, (UD 
Scheme, P = 96) 
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shared data remotely, the data is cached into the local memory 
module prior to referencing, thus allowing it to be accessible quickly. 
Although others have used an elaborate software caching mechanism 
for computer graphics rendering ([Gree89] and [Bado90]), we rely on 
the fact that the exact data needed for a given task can be copied 
directly to each processor prior to the computation of a given region. 
If a data element is relevant to more than one processor, it is copied to 
all processors which would reference it, incurring a space penalty. 
The extra memory required due to duplication is shown in the 
appendix in figures A9, A.10, All, and A12. These figures show the 
duplication of data by copying data elements as a function of the total 
number of regions. Although the extra memory required is wasteful, 
a tradeoff of space versus time is necessary to achieve faster memory 
referencing than the previous Uniformly Distributed (UD) approach. 
The cost of non-local memory access is eliminated by block 
transferring data from its global storage location to the local memory 
of the processor(s) that need it. Details of the LC scheme are given in 
chapter 6. 

5. 1.3. 1. Granularity Ratio 

The granularity ratio R was re-evaluated for this algorithm to see 
what a good ratio would be, since a different memory referencing 
scheme is used. This ratio was tested at values of 2, 4, 8, 12, 16, 20, 
24, 28, 32, 36, and 40 using the maximum configuration of 96 
processors. Figure 5.14 shows the comparison for the Laser image as 
an example. In the appendix, figures A.5, A6, A.7, and A.8 show the 
data for all the images. The downward slope of the curves is 
primarily due to a reduction in load imbalance as a higher granularity 
ratio is used. Then the curves continue upwards after a point since 
. the other culprits introduce more overhead cost for the higher ratios. 
The minimum point on the curve is the optimal granularity ratio {R) 
to use for a particular scene. Each scene exhibits different 
characteristics which affect · the choice of this optimal R so a 
compromise must be made so that a single value of R may be used in 
the general case. 

In this case, the choice of a good ratio spans a broader range than 
in the UD scheme. The reason for this is the reduction in 
communication and contention costs versus the previous method. It 
seems like a good choice for R can be anywhere in the range from 12 
to 1 up to 32 to 1. Since R = 24 was chosen for the previous algorithm 
and the performance for that ratio with this scheme is nearly optimal 
in most cases, this value will again be used. This ratio should provide 
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good results for most imagery, given this machine configuration. 
Graphs for the time and speedup of this algorithm with the LC 
memory referencing scheme are given in figures 5.15 and 5.16. 

The overhead factors for the rectangular region decomposition are 
now discussed, using the LC memory referencing scheme evaluated at 
96 processors. 

5.1.3.2. Scheduling (0.004%- 0.017%) 

The time to run a background task (Tback) in this scheme is the same 
time as the previous one, since the only difference between the two is 
the memory referencing, which does not affect the background task. 
This algorithm is faster than the previous one, so the overhead 
percentage is slightly higher. Equation 5.5 is again used for 
evaluating the overhead due to scheduling for this algorithm. Based 
on this equation, the overhead due to scheduling varied from 0.004% 
overhead for the mountain image to 0.017% overhead for the 
stegosaurus image. 
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Figure 5.14: Comparison of ratios for Laser image 
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Figure 5.15: Tiling time for rectangular region partitioning (LC) 
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Figure 5.16: Speedup for rectangular region partitioning (LC Scheme) 
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5.1.3.3. Communication Overhead (0.03%- 0.05%) 

Instead of latency due to remote referencing as in the UD case, 
communication occurs in blocks in this algorithm, resulting in a 
different overhead factor. This communication overhead is not 
present in the UD referencing method. Recall that this overhead is · 
measured by a count of the total number of bytes transferred in the 
system during the computation. Using equation 4. 7 given in the 
previous chapter, the communication overhead range is 0.03% for the 
stegosaurus image up to 0.05% for the mountain image. One can see 
that these values represent a significant drop in the amount of time 
necessary to transfer data in the system. Since the data is copied into 
local memory, all future references occur locally. This means that the 
total amount of data transferred is also reduced in comparison to the 
UD referencing scheme. 

5.1.3.4. Network Contention (3.1%- 16.3%) 

Although there is some overhead necessary to set up the blocks of 
data to be transferred in this algorithm, the deficit is more than made 
up for by a reduction in network contention when compared to the UD 
scheme. The calculated network contention overhead varies from 
3.1% for the tree image to 16.3% for the stegosaurus image. The 
contention in this scheme is significantly less than in the previous 
one. This indicates that the locally cached memory referencing 
scheme does in fact reduce the messages in the system, which results 
in reduced chances for a blocked switch node. 

5.1.3.5. Load Imbalance (4.5%- 11.1%) 

The load imbalance in this algorithm is measured the same as before, 
using equation 4.11. The overhead percentages for load imbalance 
vary from 4.5% for the mountain image to 11.1% for the tree image. 
These values are nearly the same as those from the previous algo
rithm, which is to be expected since they both use the same partition
ing method. 

5. 1.3.6. Code Modification (5.4% - 6.4%) 

The code modification overhead using the LC scheme is less than in 
the UD scheme in all cases except the tree image. The measured 
overhead ranges from 5.4% for the mountain image to 6.4% for the 
stegosaurus image. The probable reason for the difference is that 
communication is not completely factored out of the measurement 
method. Recall that the measurement technique used for this 
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overhead involves timing the program running on a single processor, 
using MIN memory modules. The UD scheme involves remote 
referencing to these memory modules, while the LC scheme does not. 
Although the communication cost is factored out of the measured time 
by counting the number of remote references or bytes transferred 
respectively, it is impossible to factor out the system overheads. Since 
the LC scheme will not likely include these to the degree that the UD 
scheme does due to the method of memory allocation and deallocation, 
the resultant code modification is a generally lower figure here. 

5. 1.3. 7. Explanation of Results 

Latency is no longer a factor using this memory referencing scheme, 
and although communication overhead is introduced, it is minimal. 
The change in memory referencing scheme also affects the overall 
code modification, as reported above. 

The load imbalance is nearly the same as the previous algorithm, 
with the slight difference due to the effect of reduced contention in 
this algorithm. The chart in figure 5.17 indicates the overheads for 
the various images. 

Ill Contention 
EJ CodeMod 

[ill Ld. Imbal. 
0 Usable Time 

[a Comm. 

100-.--------.-------.--------.-------. 

80 

60 
Percentage 

40 

20 

0 
Laser Tree Mountain 

Image 

Figure 5.17: Degradation factors for rectangular region decomposition (LC 
Scheme, P = 96) 

r 
r 

TEXAS INSTRUMENTS EX. 1011 - 130/229



Data Adaptive Partitioning Scheme 119 

As one can see from the chart, network contention is still a 
problem, although it is significantly reduced in comparison to the UD 
scheme, especially for the more complex imagery. Load imbalance is 
also a problem, although the algorithm should scale up fairly well, 
especially when one takes into account the reduced contention using 
this memory reference strategy. 

In the next section, we introduce another partitioning scheme 
which achieves even better load balancing. 

5.2. Data Adaptive Partitioning Scheme 
In a data adaptive algorithm, load balancing is achieved by construct
ing tasks which are estimated to take nearly the same amount of 
time. By using image space partitioning in a parallel graphics 
rendering program, tasks can be determined based on the location of 
data within the image. If the task work can be accurately predicted 
by using a heuristic, then the granularity ratio R can be reduced, 
resulting in less communication and scheduling. In fact, if the 
adaptation can produce exactly the same size tasks in terms of work, 
R can be reduced to 1. It is not generally possible to pick a very 
accurate heuristic since factors such as depth complexity, polygon 
area, and anti-aliasing all affect the time it takes to render a pixel. 
Pre-processing of the data cannot take all of these factors into 
account; otherwise it would require too much time. Following is a 
brief description of several algorithms which fall under the data 
adaptive category. 

Whelan [Whel85] uses a data adaptive approach in his Median 
Cut algorithm, although his application was for a hardware 
architecture. His primary motivation was to reduce the scheduling 
overhead associated with the type of dynamic task assignment used 
in the algorithms discussed thus far. This is not necessary in a 
software multiprocessor approach since the Uniform System provides 
scheduling with a very small overhead. Whelan's approach involves 
task partitioning so that each task contains the same number of 
polygons. He uses the centroids of the polygons to determine their 
screen space location; however, extensive sorting is necessary to 
determine the locations to place the screen space partitions. His 
algorithm provides excellent load balancing, but the overhead cost of 
creating the areas outweighs the benefit of adaptive partitioning. 

Roble's [Robl88] approach is another data adaptive method which 
also uses polygon location as a heuristic for determining tasks. His 
approach involves a large amount of communication prior to the tiling 
phase, and thus exhibits too much overhead as well. 
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Although there are many different decomposition methods that 
fall under the data adaptive method, one algorithm was chosen as a 
representative example for implementation. The goal here was to 
eliminate the excess overhead associated with this type of approach. 
This algorithm is described next. 

5.2.1 . Top-down Decomposition 
A partitioning scheme similar to Whelan's Median Cut algorithm is 
used which takes comparatively less time to determine the task 
partitions. This scheme is based solely on the number of data 
elements in a region, regardless of the location oftheir centroids. The 
heuristic in this algorithm is based on the assumption that the 
number of polygons in a region is linearly related to the time it takes 
to tile that region. Using this simple heuristic, good load balancing 
can be achieved with a small overhead. The LC memory referencing 
scheme is used in the implementation of this algorithm based on the 
results shown in the previous section. The implementation is 
described below. 

A 2D mesh is created as in the rectangular region decomposition, 
but this time the mesh is 4 times as dense (i.e. #regions= R•P•4). 
Polygons are placed into the mesh during the front end portion of the 
program as before, based on their screen space bounding boxes. Prior 
to tiling, adjacent meshes are combined hierarchically and a sum of 
the combined regions is stored in a tree data structure. This process 
is repeated until a point is reached where the entire screen is in a 
single region. Then, a data structure is created which consists of a 
hierarchical binary tree of counts referring to the number of data 
elements in each area. 

Mter the tree is created, it is traversed in top-down fashion and 
the area with the most polygons at a given point is then split into its 
two components. This process is repeated by considering all areas 
created thus far, splitting the one with the next most polygons. The 
splitting process is stopped when the desired number of tasks has 
been reached. A count of the number of polygons in each small area is 
used, so it is not necessary to sequentially go through the entire list of 
potential polygons to determine which polygons are relevant to each 
area at this time. The limiting factor in the splitting is the leaf level, 
which is why a fairly dense mesh is created at the beginning. An 
example of this type of decomposition is illustrated graphically in 
figure 5.18 and also in color plate 3. 
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After the tree has been traversed, each of the regions is available 
for rendering in parallel. Some computational overhead exists for this 
scheme prior to the tiling phase, but fewer tasks are created than in 
the previous rectangular region approach. Figure 5.19 shows the 
performance for the various images using the data adaptive approach, 
with a value of R = 10. This value of R was determined empirically 
similar to the methods used previously. It is less than the value 
needed for the rectangular region scheme for good load balancing. A 
perfect match would result in a ratio of R = 1 but that situation is 
almost impossible to achieve using a heuristic which has minimal 
overhead cost. The relative speedup for the top-down scheme is 
shown in figure 5.20. 

The time to build the tree data structure is not included in these 
timings since it is not part of the tiling section of the program. This 
time is fairly small anyway, but it is included in the overall algorithm 
comparison presented in chapter 6. We now analyze the top-down 
decomposition method with regard to the possible overhead factors. 

5.2.1.1. Scheduling (0.003%- 0.01%) 

This partitioning scheme uses regions that are not the same size, so 
each background task does not take the same time. The areas consist 
of groups of scan lines as before, but the number of scan lines and 
their size differ. 

The average time to render the different background areas was 
measured for the different images. The results were fairly consistent, 
with an average background task time of 4.48 msec. 
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Figure 5.18: Top-down partitioning scheme 
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Figure 5.19: Top-down decomposition performance 
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Figure 5.20: Speedup of top-down decomposition method 
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This is more than Tsched (2.3 msec), which is the time it takes to 
schedule 96 tasks, so no bottleneck will occur due to scheduling. As 
before, the scheduling overhead is determined by plugging the values 
for this algorithm into equation 4.5, as shown in equation 5.6. Using 
this equation for 96 processors, the scheduling overhead for the test 
images ranges from 0.003% for the mountain image to 0.01% for the 
stegosaurus image. 

_(9_5_._9_6_) • 24 JlSec + (960 - 96) • 24 J.lSeC 
Scheduling % = 2 • 100 % 

Tp • 96 (5.6) 

5.2.1.2. Communication Overhead (0.02%- 0.04%) 

The communication overhead is measured the same way as in the 
previous algorithm, by determining the number of bytes transferred 
in the system and using equation 4.7 to calculate the overhead. The 
values vary from 0.02% for the stegosaurus image to 0.04% for the 
mountain image. The communication overhead percentage in this 
algorithm is slightly less than in the rectangular region (LC) method 
since there are fewer areas. 

5.2.1.3. Network Contention (11.8%- 34.9%) 

Unfortunately, network contention is a significant factor in this 
algorithm, even more so than in the previous one. The network 
contention overhead ranges from 11.8% for the mountain image to 
34.9% for the stegosaurus image. The reason for this increase in 
network contention is given here. 

As was explained at the beginning of this section, a 2D dense 
mesh is created, from which small regions are clustered together to 
form tasks. The LC scheme requires communication from each of 
these small regions which form the larger clusters in order to obtain 
the data necessary for rendering a particular task area. Figure 5.21 
illustrates this situation. 

In order to render the cluster composed of sub-regions 1, 2, 3, and 
4, it is necessary to retrieve the polygons from these sub-regions. 
This requires a block transfer from each of the sub-regions, whereas 
the rectangular region algorithm requires only one block transfer for 
the entire region. There may be even more than four sub-regions 
which are part of a larger cluster. Although the total amount of data 
is not large (evident by the communication factor given previously), 
the number of messages is higher than in the rectangular region 
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algorithm due to this copying from sub-regions. In addition, the 
frequency of these communications is greater since they proceed one 
right after another. The block transfer mechanism in the GPlOOO 
which is utilized in the LC scheme holds a message path open for as 
long as it is needed to transfer the data. Therefore, more collisions 
are likely to occur in this algorithm due to the increased number of 
messages required, resulting in high network contention .. 

5.2.1.4. Load Imbalance (1.5%- 6.9%) 

The goal of better load balancing was achieved in this algorithm, 
using a smaller granularity ratio than the rectangular region 
approach. The percentage overhead for load imbalance varies from 
1.5% for the stegosaurus and mountain images to 6.9% for the Laser 
image. This algorithm achieves better load balancing than the 
previous algorithm, with minimal expense required to build the 
hierarchical tree data structure. It therefore overcomes the 
limitation noticed in Whelan's and Roble's algorithms, which also 
used a data adaptive scheme. More details on the overhead time 
required for the tree construction are given in chapter 6. 

5.2.1.5. Code Modification (2.5% - 3.3%) 

The overhead due to code modification is much smaller than in the 
rectangular region approach. This overhead ranges from 2.5% for the 
mountain image to 3.3% for the Laser image. The reason for the 
reduction is that there are fewer total tasks and each task area is 
larger, reducing the overall coherence loss. 

Retrieve data from each 
sub-region 

Region 

Figure 5.21: Block transfer of data from sub-regions for top-down decomposi
tion 
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Looking back at figure 5.21, it can be seen that it is likely that a 
number of polygons cross over several sub-regions but are singularly 
contained within the main region to be rendered. Unfortunately, 
short of a direct comparison of all polygons there is no way to detect if 
a given sub-region is sending the same polygon as another sub-region, 
due to the usage of the LC memory referencing scheme. If a polygon 
is sent from two or more different sub-regions as a result of its 
overlapping these regions, that polygon is rendered more than once. 
This is a direct function of the duplication factor for the given mesh 
size. The overhead of this occurrence is difficult to determine since 
not all polygons which are duplicated are rendered more than once, 
only those that are duplicated across sub-regions and are part of the 
same higher region. This duplication of rendering is included in the 
code modification overhead given previously. 

5.2.1.6. Explanation of Results 

The goal of the data adaptive top-down scheme is to maintain good 
load balancing. The implementation here achieves this goal, but due 
to the method of data transfer required by the LC scheme, additional 
contention is introduced. There is also the additional cost of con
structing the tree data structure, but this cost is offset by the reduc
tion in the number of regions resulting in reduced code modification 
overhead. The times for the tree building are not included here since 
this chapter deals with a comparison of the algorithms' tiling section, 
but they are given in the next chapter. The chart in figure 5.22 shows 
the overhead comparison for the various images. 

It can be seen that all of the overhead factors have been reduced 
compared to the previous approaches, with the exception of network 
contention. This algorithm requires a dense mesh to be created for 
determination of the regions. As P is increased, the mesh will need to 
be even denser, and this may result in even higher network 
contention overhead and duplication of polygons. As a result, this 
algorithm may not exhibit good scalability for very dense meshes. 

It might be possible to create the mesh in some other manner 
which does not result in as much overhead, but other methods were 
not explored here. For example, if one were to try to determine the 
clusters from the top down, a pseudo-parallel method could be used 
whereby tasks are spawned off according to the level of the tree 
traversed. A large amount of synchronization would be necessary to 
implement this technique, and the result might involve more 
overhead than in the current implementation. One of the problems 
with the algorithms discussed thus far is that they rely on a good 
choice for the granularity ratio. 
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Unfortunately, empirical testing must be employed to determine 
what the best value is for a given situation. In fact, it is possible that 
the value might need to be changed when the number of processors is 
increased significantly beyond 96. The next section covers an 
algorithm that does not rely on a pre-determined granularity ratio, 
but instead achieves load balancing by dynamically partitioning 
existing tasks into smaller ones when a processor needs work. 

5.3. Task Adaptive Partitioning Scheme 
The task adaptive methodology relies on an algorithm's capability to 
dynamically partition tasks as the program is running. If tasks 
cannot be adaptively partitioned, then that algorithm is not well 
suited for dynamic task splitting. Fortunately, the serial scan line Z
buffer algorithm upon which these parallel algorithms are based 
consists of independent regions, and there is no required order of 
execution between these regions. The task adaptive algorithm 
consists of the following steps: 

1. When a processor needs work (call this processor P 8 ), it 
searches among the other processors for the one which contains 
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Figure 5.22: Degradation factors for top-down decomposition (P = 96) 
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the most amount of work left to do (call this processor P max). 
2. The P 8 processor then sets a lock preventing any other 

processor from splitting Pmax· 
3. P 8 partitions Pmax's work into two segments; the first segment 

goes to Pmax and the second segment goes toPs. 
4. P8 then copies the data necessary for it to work on the second 

segment. 
5. P8 unsets the lock and starts doing its work. 

This task adaptive scheme could be tacked onto any of the 
previous algorithms, so that additional load balancing would be 
ensured toward the end of the computation. For the implementation 
here, the rectangular region decomposition scheme was chosen as a 
basis parallel algorithm since it is fairly simple to work with in 
developing the heuristic for step 1. A description of this parallel 
algorithm is given next. 

Instead of attempting to choose an optimal granularity ratio, the 
number of areas is initially set equal to the number of processors (R = 
1). When a processor has finished computing its area, it executes 
steps 1 through 5 above. In order to do this, it was necessary to come 
up with a method for determining the amount of work a given 
processor has left to do. Since all of the areas are the same size, the 
number of scan lines left to render in a particular area is used as an 
indication of how much work there is left on a given processor. This 
proceeds as follows. 

During the tiling portion of the computation, each processor 
updates a shared variable corresponding to the number of scan lines 
it has left to compute. P8 quickly runs through these variables 
checking for the processor that has the maximum number of scan 
lines left. Once it finds the processor with the most scan lines left 
(Pmax), P 8 proceeds to split Pmax as is shown in figure 5.23. Color 
plate 4 shows an illustration of this process after completion. Pmax is 
not interrupted during this time. 

The splitting mechanism prevents a race condition from occuring 
if several processors attempt to split the same region simultaneously 
or, alternatively, Pmax attempts to work on a portion of its region 
which is to be split. The first instance is solved by using a test and 
lock methodology in which a splitting processor checks to see if Pmax 
is currently being split and if so, this splitting processor finds another 
processor to split. The second case is solved by updating a shared 
variable which P max checks to determine the last scan line for it to 
calculate. Neither case requires Pmax to be interrupted from its work, 
thus avoiding any synchronization delay. 
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A threshold must be chosen which limits partitioning of tasks 
when the cost of the actual partition exceeds the cost of running the 
task serially. Through empirical testing, it was determined that 
partitioning a task with only two scan lines left does in fact yield good 
performance, so this was the threshold limit set. A task which 
contains no polygons is not allowed to be split since the only work 
involved is sending the scan lines to the virtual frame buffer. 

Since P 8 splits Pmax into two tasks, it makes sense for Pmax to 
continue working on the upper task while P8 takes the lower one. 
This allows coherence to be maintained in Pma:c's region without any 
additional overhead. The performance for the task adaptive scheme 
is given in figure 5.24. The speedup for this scheme is shown in figure 
5.25. Although a bit of extra coding is required to handle the splitting 
operation and data retrieval processes, the algorithm is fairly 
straightforward to implement. 

During the splitting process, it is necessary for the P8 processor to 
obtain data from the P max processor. Instead of determining exactly 
which data is relevant to the region that P 8 will work on and 
retrieving only this data, it is simpler for P8 to retrieve all of the data 
from Pmax and discard the portion that is not relevant to this new 
region. This requires a bit of extra communication, but the overhead 
is minimal compared to any method where either P8 or P max would try 
to determine the exact relevant data. This is due to the fact that 
extra synchronization would be required in determining the exact 
dataset, whereas the "copy and discard" method requires no 
synchronization at all. 

We now analyze the task adaptive scheme with regard to the 
various overhead factors. One of the problems in determining these 
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Figure 5.23: Dynamic splitting of regions for task adaptive scheme 
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factors is the measurement of the total number of tasks. A new task 
occurs when a processor tries to split another region. The task time 
includes the time to split a processor's work plus the rendering time. 
Since the number of tasks varies somewhat depending on the run, it 
was determined based on an average of five runs. This number varied 
by less than 1%, so the average is a fairly good indication of what 
might be considered the actual number of tasks. 

5.3.1. Scheduling (0.00006°/o- 0.00023°/o) 
The number of areas in this scheme is not known ahead of time since 
the tasks adapt to the work available. Once all of the regions are 
started, parallel scheduling ceases since the task adaptation is then 
run on each processor locally. Therefore, the total scheduling time is 
just Tcrit * 96 or 2.3 msec. This represents an overhead ranging from 
0.00006% for the mountain image to 0.00023% for the stegosaurus 
image. 

5.3.2. Synchronization (0.16°/o- 2.3°/o) 
It is necessary to determine the amount of time wasted by 

spinning in a lock, in addition to the extra work needed to determine 
which processor to split. These two factors constitute the 
synchronization overhead which was given in equation 4.9. The value 
for this overhead varies from 0.16% for the tree image to 2.3% for the 
Laser image. While the time wasted in synchronizing may not be 
particularly small in some cases, it is necessary in order to facilitate 
the dynamic partitioning scheme of the task adaptive algorithm. 

5.3.3. Communication Overhead (0.11 °/o- 4.2°/o) 
The communication overhead in this algorithm is measured the 

same as the previous algorithms. The overhead varies from 0.11% for 
the stegosaurus image to 4.2% for the Laser image. The number of 
bytes communicated in this algorithm is much higher here than in the 
other approaches, which accounts for the higher overhead percentage. 
The reason for this is given next. 

At the time a task is split, the splitting processor (P8 ) retrieves all 
of the data relevant to the splittee <Pmax>· The data which is unnec
essary for the portion of the task which P8 is to work on is then 
discarded. At the end of the computation, a large amount of splitting 
occurs due to dynamic load balancing. 
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Figure 5.24: Tiling time for task adaptive scheme 
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Figure 5.25: Speedup of task adaptive scheme 
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The areas to be split at this point in the computation are small, 
but the amount of data to be transferred is large since it is derived 
from the initial decomposition area. This creates communication of 
unnecessary data, which is then discarded. Reducing this 
communication requires extra synchronization, but preliminary 
studies indicated that performance degraded even worse than if it 
was not done. In the case of the Laser image, most of the initial areas 
assigned as work involve background color. These processors finish 
quickly and then start splitting other processors' work. Since the few 
processors which are split contain the bulk of the data, a lot of 
communication occurs. A solution which relieves the extra data 
transfer in this situation would reduce the communication and 
contention overheads if it were possible to implement it without 
significantly increasing the synchronization costs. 

5.3.4. Network Contention (5.5°/o- 11.7o/o) 
The overhead percentage for network contention ranges from 5.5% for 
the mountain image to 11.7% for the stegosaurus image. Even with 
the extra communication, the contention measured in this algorithm 
is only slightly higher than in the rectangular region (LC) scheme. 

5.3.5. Load Imbalance (9.2°/o - 22.5°/o) 
This algorithm tries to minimize load imbalance by using heuristics to 
dynamically split tasks during parallel execution. The limit of the 
task size which can be split is set to two scan lines. The load 
imbalance overhead percentages vary from 9.2% for the mountain 
image to 22.5% for the tree image. If the only tasks that are left are 
single scan line tasks, processors which are idle will not be able to 
find a task to work on. Since the granularity of tasks which cannot be 
split (a single scan line within an area) is fairly large, the idle time for 
a processor with no work left can be high, resulting in additional load 
imbalance. Of course single scan line tasks could be split into two 
parts as well, but this feature has not been implemented at this point. 
Further research is needed to see if these tasks can be split, or if some 
other solution is possible to reduce the excess idle time. 

5.3.6. Code Modification (0.4°/o- 1.5°/o) 
The code modification overhead is measured the same as in the other 
algorithms. The overhead percentages are fairly small and range in 
value from 0.4% for the stegosaurus image to 1.5% for the Laser 
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image. These figures are expected since the number of tasks is the 
smallest of all the algorithms. Consequently, most of the tasks 
consist of large areas where coherence is maintained. In addition, 
even when a task is split, the split processor is not interrupted and 
coherence is not lost for its task. 

5.3.7. Explanation of Results 
The task adaptive method is an attempt to directly load balance the 
system by dynamically extracting work when a given processor would 
otherwise be idle. The solution allows a granularity ratio of R = 1 for 
the initial decomposition. A graph showing the primary overhead 
contributors is given in figure 5.26. 

Unfortunately, the load balancing of this scheme was not as good 
as was anticipated. Since load balancing is due to the total idle time 
at the end of the computation, this suggests that processors have quit 
looking for work too early. The threshold for splitting work imposed 
here is that a single scan line task cannot be split. Perhaps a scheme 
could be worked out to allow horizontal splitting, but this would be 
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Figure 5.26: Degradation factors for task adaptive algorithm (P = 96) 
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difficult to implement and the synchronization involved may outweigh 
the benefit of splitting. 

Synchronization is an additional overhead in this algorithm, but 
it was not a significant factor in performance degradation. The 
communication cost in this algorithm is somewhat larger than the 
other LC schemes, due to the dynamic partitioning of this dataset. 
The code modification here is the smallest of all the algorithms since 
the number of areas generated is initially equal to P. In addition, 
coherence is maintained in the upper portion of a split area reducing 
the parallel execution overhead. Network contention seems to be only 
slightly worse than in the rectangular region (LC) scheme. Toward 
the end of the computation when dynamic load balancing is taking 
place, there is a flurry of communication, and this causes network 
contention to increase at this point. The burst of communication is 
due to the dynamic splitting of small tasks at the end of the 
computation. Reducing this last amount of communication is rather 
difficult in the LC scheme: the reason is described next. 

In the task adaptive algorithm, the splitting processor copies all of 
the data necessary for the entire original size area and then deletes 
the excess data locally. Ideally, it would be desirable to only copy the 
data which is needed for the scan lines for which this processor is 
responsible. The time required to do this would be prohibitive since 
there are only two ways: 1) the splitting processor remotely 
determines which polygons are relevant or 2) the processor being split 
must be synchronized to stop what it is doing and then determine 
which :,.olygons are relevant for the splitting processor. The first 
method would require more communication than in the current 
implementation. The second method requires extra synchronization, 
plus P max would have to construct a new data structure, and this 
takes time away from its primary work. Thus, when using the LC 
scheme, it only makes sense to copy all ofthe data for the area. In the 
next chapter, the performance of the task adaptive scheme is 
analyzed using both the UD and LC memory referencing schemes for 
the entire program, to see if any difference is noted. 

In an attempt to explore other load balancing strategies, different 
heuristics were tried in order to estimate the maximally loaded 
processor. For instance, instead of just using the number of scan lines 
left as the heuristic, the total number of polygons per scan line for all 
the scan lines left was used. The idea was to evaluate the work in 
terms of polygons since the lower half of a region to be split could 
possibly contain no polygons. This method required the splitting 
processor to retrieve from shared memory an additional value which 
corresponded to the heuristic. It was also necessary to update this 
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heuristic from scan line to scan line, whereas the previous heuristic 
required just a simple subtraction operation. As a result, the benefit 
of this new heuristic was outweighed by its cost, and it proved to have 
worse performance than the simple one. 

Finally, as was mentioned previously, it may be worthwhile to try 
breaking scan lines into half scan lines to allow a splitting processor 
to split single scan lines. This would require extra synchronization, 
but it is possible that the load imbalance would be reduced if the 
overhead to do this is small. This was not implemented in the test 
program, and could be done as part of future research. 

This algorithm does exhibit good scalability since the algorithm 
adapts to the scene and divides the tasks accordingly. Its principal 
advantage is that the number of tasks does not need to be chosen 
initially, making the granularity ratio analysis unnecessary. In 
addition, in the next chapter it is shown that the overhead in the 
front end for this scheme is less than in the other algorithms due to 
the reduction in the total tasks required in the initial decomposition. 

5.4. Conclusions 
In this chapter, the maximum potential performance for each of the 
implemented algorithms is evaluated. This is done by analyzing the 
tiling portion of the programs. A summary of the results obtained 
with regard to the influence of the various overhead factors is 
presented next. 

The scheduling overhead is minimal for all of the algorithms 
discussed here. Since the execution time for the simplest task 
(background color) is greater than the critical time needed for 
scheduling, this overhead is not a factor in performance degradation 
in any of the algorithms. 

Synchronization is an important consideration in the task 
adaptive algorithm due to the dynamic task partitioning. The 
overhead of synchronization does not degrade the performance 
significantly, as it turns out, so it is not considered to be a major 
degradation factor. 

The issues oflatency, communication, and network contention are 
all intertwined since they are related to passing data through the 
interconnection network. Memory latency is relevant to the scan line 
algorithm and the rectangular region algorithm since those 
algorithms are implemented using the UD memory referencing 
scheme. The latency is somewhat smaller for the latter method, due 
to the reduction in the number of remote memory requests as a result 
of better exploitation of coherence. Communication comes into play 
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for the LC schemes and results in more efficient use of the 
interconnection network, with the benefit being a reduction in 
contention. Graphs which show the total amount of performance 
degradation for each image are included here so that all of the 
algorithms may be compared side by side. These are shown in figures 
5.27 through 5.30 at the end of the chapter. The graphs are shown in 
such a way that the total of each column is the total processor-time 
space. This is the same as the parallel execution time Tp multiplied 
by the number of processors P (in this case, P = 96). Therefore, the 
column with the least height is the best performing algorithm for that 
particular image. Based on the data shown in these graphs, one can 
see that the rectangular region (LC) algorithm results in the lowest 
overheads, and consequently the best performance in the tiling 
section. 

Hot spot contention is not a factor in any of these algorithms. 
This is because the large data structures are distributed across the 
memory modules. Copying of small data structures to local memory is 
also employed if these structures are referenced frequently. Although 
there may be frequent references to common data structures, this 
method of scattered storage ensures that performance is not degraded 
since no hot spots exist in any of the programs. 

Load balancing is a primary goal of any parallel implementation. 
The only algorithm in which the load imbalance is significantly 
reduced is the data adaptive algorithm. The task adaptive algorithm 
exhibits the worst load balancing of all the algorithms. The probable 
reason for this is the lack of splitting at the scan line level (that is, 
below the threshold). Surprisingly, the scan line algorithm does not 
exhibit much worse load balancing than the others. This changes as 
the number of processors is increased since the number of tasks 
available for each processor is reduced. 

The primary overhead due to code modification is the loss of 
coherence. The parallel scan line algorithm exhibits total loss of 
vertical scan line coherence. The number of regions created in the 
two rectangular region schemes introduces some loss of coherence in 
both the horizontal and vertical directions. Since the top-down and 
task adaptive algorithms require fewer regions than any of the other 
approaches, the code modification overhead for these methods is 
small. 

Scalability is one of the most important characteristics of a 
parallel algorithm. In evaluating these implementations, it seems 
evident that the parallel scan line algorithm does not exhibit 
particularly good scalability. In table 5.2, each of the implemented 
algorithms is compared for each image, using 96 processors. The 
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times listed are an average of 3 runs, although the difference between 
each run was less than 1%. 

From the table we can see that the data non-adaptive rectangular 
region (LC) scheme provides the best results in most cases. The 
comparison is only for the tiling section of the program and does not 
include the overheads inherent in each of the LC algorithms. Also, 
the overhead of building the tree data structure necessary for the the 
top-down data adaptive algorithm is not included. It is important to 
not make any judgments as to the usefulness of any of these 
algorithms at this point since there are numerous other factors that 
must be examined to determine how well they will perform in the 
general case. The analysis here is purely with respect to the 
performance of the tiling section of the algorithms since this section of 
the program is where the most parallelism can be exploited. 

Table 5.2: Comparative times in seconds of tiling for all algorithms on 96 
processors 

UDScheme LCScheme 

Rect. Region Rect. Top-Down Task 
Images Scan line 

(UD) Region (LC) Adaptive Adaptive 

Stegosaurus 12.66 13.38 10.16 12.93 9.94 

Laser 21.29 19.94 17.06 18.72 18.33 

Tree 24.88 25.70 22.72 23.66 26.41 

Mountain 59.85 44.33 38.35 40.31 39.98 

The setup operations prior to the tiling section vary depending on 
the algorithm used for task decomposition. If these costs are high for 
a particular method, the overall performance is affected. These costs 
are included in the analysis in the next chapter to give a better 
overall view of the performance ofthe implementations. The different 
shared memory referencing strategies are investigated and analyzed 
in the next chapter as well. 
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Overhead Comparison, All Algorithms 
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Figure 5.27: Comparison of overheads for algorithms, stegosaurus image 
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Figure 5.28: Comparison of overheads for algorithms, Laser image 
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Overhead Comparison, All Algorithms 
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Figure 5.29: Comparison of overheads for algorithms, tree image 
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6 

Characterization of 
Other Parameters on 
Performance 

In this chapter, a number of parameters are investigated which differ 
from those discussed thus far. The purpose here is to produce a 
comprehensive study of the shared memory referencing strategies and 
further evaluate the performance of the various algorithms under a 
variety of conditions. Several different shared memory storage and 
referencing methods are analyzed in the first section. The 
implementations of the Uniformly Distributed and Locally Cached 
schemes are described in detail in this section. A framework is 
presented which allows a straightforward comparison of these 
schemes using the task partitioning implementations discussed in the 
previous chapter. In the second section, the effect of machine 
parameters such as the operating system and architectural 
characteristics are evaluated in regard to algorithm performance. In 
the third section, a number of additional characteristics such as 
image and object complexity are varied to see how overall algorithmic 
performance is affected. The comparisons in this chapter are 
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intended to provide a broader base for determining the relative merits 
of each ofthe parallel approaches which have been implemented. 

6.1. Shared Memory Storage and Referencing 
The idea of partitioning image space segments for use in a parallel 
graphics rendering algorithm can be extended to memory referencing 
as well. The scene data used in the graphics rendering algorithms is 
read in from disk and then processed in the front end. The polygons 
are then transformed from three-dimensional space to image space 
and become read-only data thereafter. As such, the read-only data 
can be partitioned in numerous ways for referencing during the tiling 
portion of the program. Three alternative data storage and access 
schemes for use in a parallel graphics display algorithm are presented 
in the subsections which follow. A brief description of these schemes 
is given next. 

If enough memory is available, all of the data could be copied to 
each processor's local memory; then no remote memory access is 
necessary after the copying phase is completed. This storage and 
access scheme is analyzed in the first subsection below. The second 
scheme involves scattering the data among the memory modules in 
the system and referencing it remotely. In the third technique, the 
data is scattered initially as in the second scheme, but then a 
reorganization is required to allow the data to be copied to the local 
processor's memory as it is needed. This last method allows local 
referencing after the copy is completed and is described in the third 
subsection. The second and third methods are the same as the UD 
and LC memory referencing strategies discussed previously. Here, 
their theoretical performance is analyzed, and a full description of the 
implementation details is presented. 

A dataset which would contain 100,000 points and 100,000 
polygons is used for theoretical analysis. The front end process 
removes a number ofbackfacing polygons, conservatively eliminating 
V3 of the original data (this assumes a given polygon is not both front 
and backfacing). Below, the amount of memory required for this 
dataset is given after transformations and backface rejection have 
been applied. The assumption in this case is that a mesh of size 48 x 
48 has been placed over the image. This corresponds to the number of 
regions generated with a granularity ratio of R = 24 on 96 processors 
using the rectangular region task partitioning scheme. 

When applying a mesh over the image, a polygon (or polygon 
pointer) needs to be duplicated for each region that a given polygon 
crosses over. This duplication is based on both the size of the 
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polygons and the granularity of the mesh. The mountain image 
contains approximately 83,000 polygons after backfaces are removed. 
As an example of the duplication, figure A 12 in the appendix shows 
that for this image, 130,000 polygons are created after duplication 
using a 48 x 48 mesh which is an increase of 57%. Using the 100,000 
polygon test situation and this same percentage increase as an 
example, we can expect to lose 33,333 polygons to backface rejection 
and then gain 57% more polygons from duplication, resulting in a 
final total of 105,000 polygons. We assume that this results in 
105,000 points as well, although this latter value is typically smaller. 

The analyses given next take into account the additional time 
required to access data beyond a normal local memory access. This 
includes any setup time specific to each scheme in addition to any 
latency incurred. 

6.1 .1 . Copy Data to all Processors 
This method involves copying all the data to all of the processors in 
the system. No remote referencing is required after the data is 
copied, so no communication overhead is incurred during the tiling 
portion of the program. To ascertain the cost of copying the data to 
all processors, let us estimate the time to copy 105,000 points and 
105,000 polygons to 96 processors. This copying can be accomplished 
in parallel by creating a binary tree of processes in which the data is 
copied throughout the network from processors that contain data to 
neighboring ones that do not. This copying process is repeated until 
all processors contain data. The number of times this is repeated is 
the height of the tree, namely ceil(log2(96)) or 7. Each data point 
contains 3 floating point values consuming 12 bytes, and it is 
assumed that each polygon is a quadrilateral. Using the storage data 
format described previously in section 4.1.1, a single polygon takes up 
10 bytes. 

The memory required for all the data is then 105,000 * (12 + 10) 
or 2.31 million bytes. Equation 6.1 shows the communication cost 
with block transfers of 256 bytes, each using the binary tree copying 
technique. 

Tcomm =#levels *#transfers * (Tsetup + 256 *Tbt) (6.1) 

T setup is 8 J.l.Sec and Tbt is 0.25 J.l.Seclbyte for block transfers on the 
Butterfly GP1000. The number oflevels is 7, and the number ofblock 
transfers is (2.31 million)/256 or 9,023. Plugging these numbers into 
the equation results in an overhead time of 4.548 seconds. This time 
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does not include the time to copy nonnals or the polygon information 
data structure which contains the bounding box of the polygon, a 
pointer to its location in the polygon list, and other infonnation. If 
these are required, the time would be more than double, although it is 
possible to create both data structures locally on each processor 
instead. The memory required for all of these data structures, in 
addition to the data structures needed for scan conversion, exceeds 
the 4 megabyte limit per processor available in the BBN GPlOOO. 

The preceding analysis assumes that no network contention 
occurs during the copying process. This will not be the case after a 
few levels of the copying tree have been completed since there are not 
that many unique switch paths in the Butterfly and some may 
become blocked. This might be avoided by copying less data 
simultaneously, but that adds levels to the tree. There is also the 
issue of copying the normals and other necessary data structures or 
regenerating these locally. Regenerating the normals adds time to 
the computation, but not to the copying process. Alternatively, the 
potential for increased network contention exists if the normals are 
copied. A more detailed analysis is needed to adequately evaluate 
this issue, but it is not necessary for the purposes here since 
conclusions can be drawn without such an analysis. 

This copying scheme uses a huge amount of memory so that 
subsequent references to all data can be local. The amount of data 
that any processor really needs to perform its tasks is significantly 
less than the entire input dataset, since each task will likely refer to 
only a small subset during the tiling operation. Therefore, this 
scheme makes inefficient use of the network and storage resources. 
The potential for network contention increases as larger processor 
configurations are used. The reason is that the number of processors 
increases linearly, while the number of switch paths increases 
logarithmically. In addition, more memory is required than is 
available per processor, so this scheme is not generally usable except 
for smaller datasets. Even for machines which might have enough 
memory per processor, it is still evident that this method is 
inadequate for general use. The next scheme makes better use of the 
memory in the system. 

6.1.2. Global Referencing 
The basic idea in global referencing of shared data is to distribute the 
data and references throughout the system. This avoids hot spot 
contention since the data is not in a single location, although latency 
and network contention are introduced during the tiling section. This 
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technique allows the aggregate memory available in the system to be 
used so that it can be considered as one globally shared memory. The 
data is stored so there is only one copy in the system, which conserves 
system memory in addition to the time savings resulting from not 
copying unnecessary data. 

This method is essentially the same as the shared memory 
storage in bus-based architectures such as the Encore Multimax or 
Sequent Balance. These computers, known as Uniform Memory 
Access (UMA) architectures, use such a scheme in all programs since 
a global view is provided of memory in these architectures. They 
incorporate a number of different processor boards connected to a bus, 
on the other side of which is a number of memory boards, as was 
illustrated in chapter 3, figure 3.2. The term UMA refers to the fact 
that every processor is the same distance from global memory, 
resulting in an equally distributed communications overhead. This 
technique can be emulated in software on the Butterfly, where it will 
be referred to as the Uniformly Distributed (UD) approach to shared 
memory referencing. A brief description of this scheme was given in 
section 4.1.1.2, which presented the design of the front end to all the 
algorithms. The data is scattered throughout the memory modules as 
it is read-in and then referenced remotely in the tiling portion of the 
program. Mter this scattering of data, each processor contains 
approximately NIP polygons; that is, the dataset is evenly divided 
among the memory modules. Since the data is scattered throughout 
the system uniformly, an average of l!P of the references to shared 
memory will actually be to data stored locally. Although this 
percentage is an average, it is likely that the deviation from this 
average must be large. The worst case situation, where all of the data 
referenced by a given processor is stored remotely, is actually a more 
realistic scenario. The reason for this expectation is due to the screen 
space locality of data. Most of the references for a given task will 
likely be to a particular processor or group of processors rather than 
scattered throughout the entire system. An estimate of the remote 
referencing time overhead in the tiling section using this shared 
memory referencing strategy is presented here with the assumption 
that all references to global memory are remote references. 

The integration of scattering the data with reading in objects in 
the front end allows the front end work to be accomplished on each 
processor without any remote referencing. The time for the front end 
work does not need to be accounted for in the following analysis since 
there is no difference among the memory strategies in the way this is 
performed. The remote referencing time overhead is given in 
equation 6.2. 
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Ttateney = #refs * (T rref - Ttre{) (6.2) 

TrrefiS the remote referencing time which is 7 ~ec. Tire[ iS the 
local referencing time, which is 0.53 Jlsec. The latency factor is the 
time difference between these two values. The number of remote 
references in the tiling section is based on a number of factors. Due to 
the construction of local edge lists, each point must be referenced 3 
times and each polygon once. Since each point contains 3 floats, the 
number of point references is 3 * 3 * 105,000, or 945,000 point 
references. The number of polygon references is 105,000 polygons * 5 
shorts per polygon, or 525,000. In addition, about 5 references are 
needed per polygon to obtain the polygon pointer from remote 
memory, as well as other polygon information adding up to 525,000 
more references. There is also one reference for each normal, which 
results in 3 floats per normal * 105,000, or 315,000 references for 
normals. The total number of references per processor on 96 
processors in parallel is then 1/96 * (945,000 + 525,000 + 525,000 + 
315,000) or approximately 24,063 references per processor. The 
communication time is then: 24,063 * 6.4 7 Jlsec or 0.1557 second. 

This analysis is very simplified since network contention is not 
taken into consideration. The edge list data is stored locally after it is 
remotely referenced, so it does not need to be referenced remotely 
again. A number of remote references to the points list are required 
in the anti-aliasing portion of the program which are not accounted 
for in the values derived above. That section of the code could be 
optimized to allow only one remote reference per point by using 
temporary storage, but we have not implemented such an 
optimization. As shown here, the small overhead for this scheme 
makes it attractive for implementation. Next, the details of 
implementation are described in regard to this scheme. 

Implementation of the UD Scheme 

During the front end, as the polygons are read in, it is necessary to 
determine in which area(s) of the 2D screen mesh a given polygon 
may belong. A short pseudo-code segment shows how this is done: 

On each processor : 
For all polygons on this processor O(N/P) 

For all areas in mesh this polygon 
crosses over O(c) 

Lock mesh (i, j) 
Load polygon pointer into end of 
area(i] (j] linked list 
Unlock mesh(i,j) 
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The time complexity is based on the number of polygons on a 
given processor after backface rejection (NIP) multiplied by a 
constant (c). This constant is the number of areas a polygon can cross 
over, and is related to the size of the polygons and the size of the 
mesh. The duplication graphs in the appendix in figures A9 through 
A12 indicate the total number of polygons after duplication, based on 
mesh size. The duplication factor is the number of polygons after 
duplication divided by the original number of polygons. This factor, 
which would be the average number of iterations for the inner loop 
above, goes from approximately 4 for the stegosaurus image to 1.5 for 
the mountain image, with a mesh size of 48 x 48 (2048 areas). The 
locks are needed so that only one processor at a time adds a link to 
the shared link list (area[i](j]). A separate lock exists for each area in 
the mesh. Figure 6.1 illustrates the storage ofpolygon pointers in the 
area mesh. 

During the tiling operation, a separate area is assigned to each 
processor as a single task. The processor then traverses the polygon 
linked list and constructs local edge lists for use in the tiling 
operation. The pointers in these links are scattered throughout global 
memory so a global reference is required for each link, but this is only 
needed during the initial traversal of the list. These global references 
are included in the preceding analysis. This implementation of the 

Shared Area Mesh 

Linked list 
of polygon 
pointers 

Figure 6.1: Area mesh storage of polygons pointers 
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Uniformly Distributed (UD) scheme was used in the scari line and 
rectangular region algorithms described in chapter 5, sections 5.1.1 
and 5.1.2. 

6.1.3. Software Caching 
The last type of referencing scheme is designed to optimize memory 
access on a Non-Uniform Memory Access or NUMA architecture. The 
term NUMA refers to the fact that some references to shared data 
require less time than others since a processor can access shared data 
stored in its local memory module without retrieving it remotely 
across the interconnection network. The UMA architectures 
described previously use a local cache which contains the most 
recently referenced data, thus allowing (potentially) faster access to 
the shared data. The UMA architectures use sophisticated cache 
coherence schemes so that the copy of the data in the cache is the 
same as what is stored in global memory. NUMA architectures such 
as the BBN Butterfly typically do not exploit cache coherence (even if 
they have a cache); the programmer is responsible for maintaining 
cache coherence. Since cache coherence is not normally available in 
an NUMA machine, it is not recommended to copy writable shared 
data to local processor private memory. Read-only shared data can be 
copied to private memory, and the data is then accessible locally, as 
was the case in the first scheme described previously. In the scheme 
described here, however, only the data needed for a particular screen 
area is copied rather than the entire dataset. 

Implementation Details for LC Scheme 

The method for local referencing we have implemented for NUMA 
machines is called the Locally Cached (LC) memory referencing 
scheme. The basic idea is to copy the appropriate data into the local 
memory of the processor which will use it for tiling a given region. 
This scheme allows local referencing of data without any latency or 
possible network contention, except during the copying operation. 
The data is read in during the front end, as was done in the previous 
UD scheme. After the front end, each processor contains on its local 
memory module an average of NIP polygons as before. For this 
analysis, it is assumed that the 48 x 48 rectangular region 
partitioning is used as before. The data is arranged into contiguous 
blocks (arrays) prior to copying in the tiling section. An explanation 
of why this is done is given after the pseudo-code is presented below. 
The implementation proceeds as follows: 
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In Parallel: Comnlexity 
[1st pass] 
For all polygons on this processor O(N/P) 

For all areas in mesh this polygon 
crosses over 0(~ 

Accumulate memory needed for 
each of the following 4 arrays: 
(points,normals,polygon connectivity,polygon inf o) 

[2nd pass] 
For all polygons on this processor O(N/P) 

For all areas in mesh this polygon 
crosses over O(c) 

Allocate memory for each of 4 arrays 
for area[i] [j] if not done yet 
Add polygon and point data to 
the 4 arrays listed above 

Free up original scattered data. 

This code is executed prior to the tiling section of the program and 
was not included in the measurements in chapter 5. The first pass is 
necessary to determine how much memory to allocate for a particular 
region, and the second pass actually allocates the memory on the local 
processor and copies the data into it. A barrier synchronization is 
necessary between the passes so that the data is updated properly for 
all regions. All of the work in these phases is done using local 
memory, so no remote referencing occurs here. The inner loops in the 
first and second passes are of the same time complexity as the inner 
loop described in the previous section. Figure 6.2 illustrates the 
storage of the arrays in each local processor's memory. 

Local Area Mesh 

Local lists of points, 
normals, polygons, and 

polygon info for 
area[i]{j} 

Figure 6.2: Locally cached memory storage mechanism 
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The LC method is more than just a "block copy then local 
reference" scheme. It consists of a complicated set of instructions 
which involve constructing data structures for later block transfer. 
The principal advantage of this scheme in a non-blocking network 
such as in the Butterfly is as follows. The setup cost is incurred only 
once for a block of data, and thereafter the message proceeds at the 
full bandwidth of the interconnection network. This is faster than 
individually copying each remote value to local memory since the 
setup time for that method would be incurred for each single 
reference. The disadvantage to this block copy method is that the 
data must be arranged into a contiguous array. If a blocking 
interconnection network were to be used, the data could then be 
transferred byte by byte instead. The LC scheme consists of a method 
of organizing data primarily for later local referencing while using 
minimal memory usage. The data structures and setup routines 
necessary to achieve this set it apart from a pure software caching 
scheme. 

The pseudo-code presented for this scheme sets up the blocks for 
copying, but the copying phase is actually executed during the tiling 
portion of the program. If a completely uniform distribution of the 
data occurs, then each processor would contain exactly 1/ P of the 
data for a particular area. In general, this is not the case, as was 
stated before based on the locality of screen space data. For this 
analysis, it is assumed that the data is distributed in such a way to 
encounter a worst case scenario (i.e., all the data needed for each 
region is stored remotely). For a particular task, it is necessary to use 
P separate block transfer groups to retrieve the data. This is shown 
in figure 6.3 on the next page. 

To simplify matters, each processor is assumed to execute exactly 
R tasks so that the total number of block transfer groups is (4 * R * 
P). Four refers to the fact that it is necessary to retrieve the points, 
normals, polygon connectivity, and polygon info arrays separately. 
Each block transfer retrieves on average li(R * P) ofthe total amount 
of data. 

Based on the analysis at the beginning of this section, the total 
amount of data after backface rejection and duplication is 105,000 
polygons, so the amount of data per area of the 48 x 48 mesh is 
approximately 46 polygons. Recall that for a block transfer, T setup is 8 
Jl.Sec and Tbt is 0.25 JJ.sec/byte. If the data is evenly scattered as was 
stated above, each polygon (in the worst case) is on a separate 
processor, requiring 46 separate groups of 4 block transfers each. 
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Processors 

Copy polygons from other 
processors to the one which has 

this area as a task 

Figure 6.3: Block transfer of data 
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The data is scattered among the 46 processors which contain 
polygons for a given area, so the total time to retrieve data for one 
region is 46 * 38.5 J.lsec or 1.77 msec. Since each processor works on 
an average of 24 regions, the total time for a processor to retrieve all 
the data it needs to work on its regions during the tiling section is 24 
* 1. 77 msec or 0.0425 second. Again, it is assumed that no network 
contention exists for this analysis. This time is executed in parallel so 
0.0425 second is the parallel communication time. The time for block 
transfer for a single polygon is then: 

lllW 
1. 10 bytes/polygon 
2. 20 bytes for polygon info 
3. 12 bytes/point • 4 points/polygon 
4. 12 bytes/normal • 4 norrnals,/polye-on 
Total 

~ 
7.5 J.lsec 

15.0 J.1Sec 
8.0 J.lsec 
8.0 usee 

38.5 J.lSec 

This time is significantly better than any of the times listed above 
for the previous methods of memory storage. The second pass is nec
essary to set up the arrays for block transferring, but this has not 
been taken into account in the preceding analysis. Since this time is 
extra, it needs to be accounted for as well. In the next paragraph, the 
second pass algorithm is described, and its time complexity is ana
lyzed. 

In the second pass, new arrays are constructed which correspond 
to the data that is relevant to each area of the 2D mesh in the local 
processor. In constructing these new arrays, it is desirable to not 
create any unnecessary new data points. In order to do this, a 
backwards reference list is used to determine which points have been 
stored in this area thus far. In order to keep the amount of memory 
within limits for this backwards reference list, a fairly sophisticated 
data structure is used. This data structure is an array which 
corresponds to the points list, but contains links which indicate when 
any point that has been previously stored in this area is part of a new 
polygon. The backwards reference list data structure is shown in 
figure 6.4. 

The diagram shows that the backwards reference list corresponds 
to each point in the original object. The small array to the right is 
used to indicate the areas each point is referenced in (the polygons 
which contain it can be in more than one area) and the value of the 
point's index for the new points list in each of these areas. The new 
points list allows us to sequentially go through the polygon list in the 
front end. This data structure uses less memory than a separate 
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backwards list array for each area since that type of list would be 
relatively sparse. The list requires some time to manage, and this 
time is considered as part of the analysis. 

The backwards reference list is also required for the first pass, 
but in that case the reason is to determine how much memory to 
allocate for the contiguous arrays. The top loop given in the pseudo
code is of time complexity O(N/P) which in the case given here 
corresponds to approximately 1094 polygons. The inner loop would be 
approximately of time complexity (constant = 2) for a theoretical 
100,000 polygon dataset based on the analysis of the mountain image, 
but we will use the value (constant = 4) for a possible worst case 
scenario. The management of the backwards reference list requires 
us to run through each point in the polygon, so there really is a third 
inner loop that would be of time complexity (constant = 4), assuming 
quadrilateral polygons. The only difference between the first pass 
and the second pass is the time required to allocate memory for the 
areas not already allocated and to store the data in the new arrays 
while updating the count for these lists. The GP1000 contains 2.5 
MIPS MC68020 processors, and based on the amount of work in the 
inner loop of the second pass, we estimate the time to complete this 
operation to be 20 Jl.Sec per iteration. This results in a time for the 
second pass of 1094 * 4 * 4 * 20 Jl.Sec or 0.35 second. This analysis is 
simplified, but the purpose is to show the additional overhead 
incurred by the LC scheme. The first pass time is not measured since 

points 
list 

backwards 

Figure 6.4: Backwards reference list data structure 
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it takes approximately the same amount of time as its counterpart 
loop in the UD scheme. The total time for this scheme is then 0.35 
seconds for the second pass plus the time of 0.0425 second for 
communication, resulting in a sum total of 0.3925 second. 

There have been several other graphics algorithms which 
incorporate the idea of local caching in a distributed memory 
environment. Green and Paddon [Gree89] as well as Badouel, et al. 
[Bado90] have both implemented a software caching mechanism in a 
distributed memory environment. Both algorithms use ray tracing for 
hidden surface elimination and rely on the concept of ray coherence 
for minimizing remote references. Ray coherence is defined to be the 
property in which rays in adjacent pixels are likely to intersect the 
same objects. Once these objects are brought into the local memory of 
a processor by the cache mechanism, the rays sent out by this 
processor will intersect these same objects in local memory. Based on 
this fact, Badouel was able to achieve a 95% or better hit ratio into 
the caches. An area screen space distribution of the pixels to 
processors is used for task decomposition, similar to the approaches 
given here. 

These algorithms were designed to allow one to distribute a large 
graphical database on a message passing multiprocessor such as the 
Intel iPSC, which provides no support for shared memory referencing. 
The caching employed in Green's algorithm involves statically 
partitioning local memory for caching purposes, while Badouel's 
method uses a more dynamic approach without any preprocessing. 
Badouel's algorithm allows virtual memory to be distributed by 
taking advantage of the aggregate memory in the system, whereas 
Green's approach requires the host to maintain virtual memory. In 
Badouel's algorithm, the object database is statically divided up into 
pages and scattered throughout the system in a way similar to the 
scattering of data used in the LC scheme described previously. If a 
page is not resident in the local processor's memory or cache, the page 
is retrieved from the processor memory module where it is resident 
and put into the local processor's cache using a least recently used 
(LRU) cache replacement policy. Badouel has shown significant 
speedup on the Intel iPSC with this caching scheme built into a 
multiprocessor ray tracing algorithm. Several faults exist with this 
scheme if it is to be applied to a conventional scan line algorithm such 
as those outlined in the previous chapter. 

The first issue is the amount of memory available in each 
processor. A ray tracing algorithm might use a hierarchical tree 
structure such as an octree to speed up calculating ray-object 
intersections, and this tree must be stored in all processor memories. 
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No other additional memory is required during the execution of the 
program. In a scan line algorithm, edge lists, anti-aliasing data 
structures, and interpolation parameter arrays must be built which 
all take up a significant amount of local memory. More local memory 
is necessary in a scan line algorithm than is needed for ray tracing, so 
less would be available for the cache. The reduction in cache size 
would result in a lower hit ratio, giving lower performance. In a ray 
tracing algorithm, it is impossible to know a priori which polygons 
might be needed in local memory since a ray can be spawned to any 
direction in three-dimensional space. It therefore makes sense to 
bring in the data as needed using a LRU replacement policy. In the 
algorithms presented in the previous chapter, the exact polygons that 
are needed for rendering are known ahead of time, so only those 
should be brought into the local memory module. Furthermore, since 
those polygons are only used for a single task, the original (remotely 
stored) polygons can be deleted. This provides additional free space, 
allowing more room for local data structures. 

The second issue is the amount of communication and potential 
contention problems in the caching mechanism. The amount of 
memory brought in using the LC scheme is exactly what is needed, so 
no unnecessary message traffic is required. Badouel's caching scheme 
copies pages one at a time, and it possible that only one item of an 
entire page is required. The results of speedup in his ray tracing 
algorithm are based on images which take minutes to render on 64 
processors and would typically take hours to render on a single 
processor. This is due to the fact that ray tracing is a slower, less 
efficient rendering algorithm than the image space methods described 
in this document. The ratio of computation time to message traffic 
time is so high in ray tracing that any possible bottlenecks in message 
passing are masked due to the high computation time. The higher 
efficiency of the scan line algorithm reduces computation time, so 
these bottlenecks are more likely to degrade overall performance than 
in a less efficient algorithm. This is shown by the reduction in 
network contention determined for the larger datasets using the LC 
algorithms in the previous chapter. Badouel's approach requires 
more communication than the LC scheme given here since pages are 
brought into memory as needed. Therefore, his approach is likely to 
result in greater contention when compared to the LC scheme. While 
a multiprocessor can sufficiently speed up a costly algorithm such as 
ray tracing, the benefits of using that type of method are generally 
not needed in most applications. The real need by most scientists and 
other users is to be able to display extremely complex datasets in a 
reasonable amount of time. Therefore, if reflections are needed, one 
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should use a ray tracer. If high quality scenes need to be generated 
quickly without reflections, an image space algorithm such as those 
illustrated here is more appropriate. 

In the next section, the results of the UD and LC schemes are 
compared, including the overheads required in the front end and the 
second pass, to see how these affect the overall performance of each of 
the algorithms. 

6.1.4. Results 
The total time for remote referencing of the LC scheme is 0.3925 
versus the time of 0.1557 second in the UD scheme based on the 
theoretical analysis used here. On the surface it would seem that the 
UD scheme is the better alternative even with its remote reference 
strategy. However, one important factor missing from this analysis is 
network contention. From the data given in chapter 5, contention 
contributed significantly more to degradation of performance in the 
UD scheme than in the LC scheme for the rectangular region 
partitioning scheme. The primary reason is that the LC scheme uses 
the network in bursts of communication which take a very short 
amount of time, minimizing the chance of a blocked path. The UD 
scheme relies on a large number of small messages which can 
eventually saturate the network. 

To illustrate the differences between the two memory referencing 
strategies, we compare them using the data for the tiling section from 
chapter 5. The data from running the task adaptive algorithm using 
the UD scheme has also been included. The UD task adaptive 
algorithm is not nearly as efficient as the rectangular region UD 
implementation since each time an area is started, the entire polygon 
list from the split area must be traversed. These polygons are 
traversed from shared memory, while in the LC implementation of 
the task adaptive scheme, local memory is used. Latency causes the 
algorithm's efficiency to go down as the number of processors is 
increased. 

The graphs for these algorithms for the tiling section time are 
shown in figures 6.5, 6.6, 6. 7, and 6.8. This is the same data that was 
presented in chapter 5 with the addition of the task adaptive version 
of the UD scheme, but here all the data is put on the same graph to 
allow direct comparisons. The comparisons in this case only involve 
the rectangular region and the task adaptive algorithms since these 
are the only algorithms which were implemented using both 
strategies. The data is shown above 48 processors so that the reader 
may get a clearer idea as to the performance difference, which is 
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mainly evident at high processor configurations. Based on this data, 
one can see that the LC scheme is consistently better than the UD 
scheme. While these graphs show that the LC scheme is clearly 
superior to the UD scheme in the tiling section, it is only fair to look 
at the total picture. By this we mean that all of the algorithms should 
be compared by evaluating the parallel execution time plus the setup 
time from the front end, as shown in the formulas on the page 
following the graphs. The total front end time will not be included 
here since disk access is used in that section of the program. Disk 
access time is affected by other parameters which cannot be 
controlled unless the machine is put into single user mode. In 
general, all of the algorithms employ the same disk read-in scheme 
anyway, so this is not an issue. 

The primary differences in the algorithms occur in the following 
phases: 

1. The time to load polygons into the area bucket data structure 
(or y-bucket list in the case of the parallel scan line algorithm) 
according to their screen space location. 

2. The additional time necessary in the second pass for those 
algorithms which use the LC scheme. 

3. The time to build the hierarchical tree for the data adaptive 
top-down scheme. 

4. The tiling section time. 

The table below shows how the comparison times are determined 
for each algorithm, including the memory referencing scheme and 
granularity ratio. Using these formulas, a fair comparison of all the 
algorithms is now possible since the different overheads prior to tiling 
are included. The primary variation in the setup time is due to the 
difference in cost for the total number of regions to be started (R•P) in 
the implemented algorithms. 

Algorithm (memory scheme) Phases 
Data Non-Adaptive 
Scan line Algorithm (UD): Phase 1 + Phase 4 
Rectangular Region (UD): Phase 1 + Phase 4 
Rectangular Region (LC): Phase 1 + Phase 2 + Phase 4 

Data Adaptive 
Top-Down (LC): Phase 1 +Phase 2 +Phase 3 +Phase 4 

Task Adaptive 
Task-Adaptive (UD): Phase 1 +Phase 4 
Task-Adaptive (LC): Phase 1 +Phase 2 + Phase 4 

Granularity Ratio 

(R varies with P) 
(R = 24) 
(R = 24) 

(R = 10) 

(R = 1) 
(R = 1) 
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UD vs. LC Tiling Section Timing Comparisons 
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image, tiling section only 
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Figure 6.7: UD vs. LC tree image, 
tiling section only 
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Figure 6.8: UD vs. LC mountain 
image, tiling section only 

TEXAS INSTRUMENTS EX. 1011 - 168/229



Machine Parameters 157 

The graphs which result from these summations for each 
algorithm are shown in figures 6.9, 6.10, 6.11, and 6.12. The graphs 
are shown above 64 processors. 

Based on the data shown in these graphs, it can be seen that the 
task adaptive algorithm utilizing the locally cached (LC) memory 
referencing scheme is clearly superior for all of the images. This 
algorithm requires fewer regions at the beginning of the program 
than any of the other algorithms. The overhead time for loading 
polygons into the area bucket list, as well as the second pass time, is 
fairly small as a result. The rectangular region algorithm, which is 
slightly faster for some images in the tiling section only, requires 
significantly more setup prior to tiling, degrading overall 
performance. One might have thought that the second pass section of 
the LC scheme would require too much setup time to benefit the total 
algorithmic performance, but this turned out not to be the case. 
While the second pass does add some time to the LC schemes, the 
benefits of local referencing in the tiling section far outweigh the cost 
of the setup operations since they can be done in parallel. This also 
indicates that network contention is a major factor in the resultant 
performance of each approach since the disparity in performance is 
greater than what was indicated in the theoretical analysis from the 
previous subsection. It seems clear that these results are consistent 
and valid for the tests done so far, but it is desirable to be able to 
generalize these statements by evaluating the various algorithms 
under a variety of other conditions. Some of these conditions are 
investigated in the next section. 

6.2. Machine Parameters 
Although the performance of the different algorithms has been 
analyzed previously, these circumstances represent only one possible 
machine configuration. There are various hardware and system 
software changes which may affect overall algorithmic performance, 
most of which are beyond the programmer's control. These types of 
parameters are investigated in this section. For instance, the 
operating system can have a significant impact on performance. In 
the implementation of the Mach operating system on the GP1000, 
single jobs are scheduled onto processors based on the current least 
loaded processor; however, the Uniform System takes over this task 
within a parallel program. The operating system does intervene to 
some degree in this machine by handling virtual memory, UO, and 
general MACH system operations. Changes in the operating system 
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All Algorithms Compared including Setup Time 
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can change program performance; this is described in the first 
subsection below. 

In the second subsection, we investigate the differences in two 
versions of the Butterfly multiprocessor: the GP1000 and the TC2000. 
Since the TC2000 is a logical extension of the GP1000 with different 
physical characteristics, it is interesting to compare the performance 
ofthese two machines. 

6.2.1 . Operating System 
Since 1987, BBN has made a number of improvements to the GP1000, 
but none were so dramatic as the improvement made to the GP1000 
version of the Mach operating system in the summer of 1990. The 
author previously reported preliminary results on this project in 
[Whit90] early in the summer of 1990, and the limits of the graphs 
were set to only 32 processors since inconclusive data was obtained 
above that. The primary reason was the previous version of Mach 
implemented on the GP1000.l 

The older version of the GP1000 operating system had the 
following major problem: when any references occurred to a memory 
page which was not resident, only one page fault at a time was 
allowed to be serviced in the entire system. As an example, if 
processor i had a local page fault and processor j had a local page 
fault simultaneously, these page faults proceeded only serially even 
though they had nothing to do with each other. In a graphics 
algorithm such as the one described here, the amount of memory 
required is tremendous, and this serial page faulting had an 
extremely negative impact on performance. BBN rectified this 
problem and released a new version of the operating system in the 
summer of 1990; then performance changed dramatically. As an 
example of the difference in performance, we compare the rectangular 
region algorithm using the UD scheme in figures A13, A.14, A15, 
and A16. A comparison of the LC scheme version is shown in figures 
A17, A.18, A.19, and A20. These figures are given in the appendix, 
but a copy of a representative graph for the mountain data using each 
of these schemes is shown in figures 6.13 and 6.14 on the next page. 
All of these graphs are comparisons of the tiling sections only. 

As one can see from the graphs, the performance in the old 
operating system starts to tail off after about 48 processors in the UD 
scheme. The LC scheme is somewhat better since local rather than 

1 Note, the TC2000 has had the new version of the operating system since 
its delivery in the beginning of 1990. 
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