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machine rather than simulated, it is also possible to determine 
quantitatively how well each implementation has succeeded. 

2.3. Conclusions 
In the first section of this chapter, a number of criteria are given to 
evaluate the different parallel decompositions which are presented in 
the second section. These criteria for evaluation include granularity, 
type of parallelism, use of coherence, load balancing characteristics, 
methods of data access, and scalability. 

In the second section, a number of past as well as yet untested 
possible parallel approaches are presented and categorized into a 
taxonomy. The image space pixel decompositions based on areas of 
pixels seem to hold the most promise for high performance on an 
MIMD architecture. In chapter 5, the implementations of approaches 
are described in an effort to conclusively show that one technique is 
optimal. Since most of the past work has involved simulations and 
not multiprocessor implementations, these implementations allow us 
to compare different task decompositions and memory referencing 
strategies on an equal basis for the first time. 
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Issues in Parallel 
Algorithm 
Development 

In this chapter, different advanced parallel computer architectures 
are compared according to their suitability for implementation of a 
graphics display algorithm. 

In the first section, the architectures are presented and analyzed 
with regard to the development of a parallel graphics rendering 
algorithm. Although SIMD architectures (single instruction, multiple 
data path) have been used for graphics applications in the past, this 
mode of operation generally requires task execution in lock step 
fashion. Work done at the pixel level can be accomplished in this 
manner, but higher level tasks are not well suited to this type of 
parallel approach. 

The type of architectures investigated here is restricted to MIMD 
machines (multiple instruction, multiple data path) since different 
tasks can proceed simultaneously under separate control flow. These 
machines can be configured with small to large processor counts, 
allowing flexibility in performance versus cost. An inexpensive 
MIMD architecture can be obtained for as little as $10,000, while 
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extremely high performance machines can cost several million 
dollars. The algorithms presented here are designed to be useful on a 
small system containing only 2 processors, as well as a large system 
of 100 or more processors. 

The second section involves a comparison of the two main 
architectural choices in MIMD hardware. These two methods, 
message passing and shared memory, are analyzed with regard to a 
parallel graphics implementation. Finally, we describe the 
programming environment which is specific to the BBN Butterfly 
multiprocessor since this machine was chosen for the implementation 
comparisons here. 

3.1. Architectural Choices 
There are currently a number of commercial message passing 
architectures (Intel iPSC, NCube, Inmos transputer based machines) 
and shared memory multiprocessors (Sequent Balance, Encore 
Multi max, Alliant F'X/2800, and BBN Butterfly1) on the market. 
Coarse grained MIMD architectures such as those offered by Cray, 
Convex, Silicon Graphics, and others allow only limited parallelism. 
The issues in developing programs for the latter machines are not as 
pronounced as for the previously mentioned machines due to their 
small processor counts (typically 2 to 8 processors). 

In this section, we describe a few specific commercial machines to 
illustrate the differences among the classes of architectures. These 
differences allow us to evaluate how well the various types of 
computer image generation algorithms can be expected to run on a 
variety of parallel computers. 

The first subsection describes the impact of using conventional 
MIMD hardware to perform computer graphics rendering. Different 
issues by which the architectures are evaluated are given in this 
section. The amount of memory used in a graphics application, as 
well as the high data movement involved in this application, 
influences the choice for the appropriate architecture suitable for this 
type of application. 

Distributed memory architectures are useful for applications 
where the data can be partitioned initially among the nodes2 of the 
system with little communication thereafter. These types of machines 
typically have a high message passing cost, and any time spent 

lBBN Advanced Computers, Inc. is no longer marketing the Butterfly, 
although it is still being supported. 

2The terms processors and nodes are used interchangeably here. 
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communicating is time wasted from computation. The Intel 
hypercube family of machines are examples of distributed memory 
architectures in which the processors are connected in a hypercube 
topology. Although hypercube connections are a common design, Intel 
is also experimenting with a mesh design on what is currently 
reported to be the fastest computer in the world: the prototype Intel 
Touchstone machine installed at California Institute of Technology. 

The BBN Butterfly contains physically distributed memory, but it 
is classified as a shared memory architecture since remote memory 
can be logically shared. The Encore Multimax is an example of global 
shared memory architecture which uses caching to speed up 
references to the memory modules. These machines are analyzed as 
representative examples of their genre in the second subsection. 

3.1.1. Impact of Graphics Rendering on System 
Requirements 

Utilizing a multiprocessor for an application such as computer 
graphics rendering imposes certain demands on the system that other 
applications might not introduce. The large amount of data 
movement in this type of algorithm presents unusual problems for 
certain types of architectures. Following are two characteristics of 
graphics display algorithms which can affect the performance of the 
computer architecture to be used for implementation of the software 
algorithm. 

3. 1. 1. 1. Image Quality 

In this book, we are primarily interested in trying to achieve good 
performance when rendering highly complex images in a graphics 
display algorithm on a parallel processor. This increase in image 
complexity can arise from several factors given in [Whit89]: 

Anti-aliasing. This is a correction mechanism for the typically 
inadequate sampling of high frequencies in a computer 
generated scene. More information about the geometric 
structure ofthe scene must be available to do anti-aliasing, and 
this affects the size of the data structures and the amount of 
information which must be shared by each processor. In 
general, polygon fragment or sub-pixel information must be 
stored to perform anti-aliasing. 
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Mapping. The data structures required for texture, bump, and 
reflection mapping are very large and must be shared by a 
large number of processors, which increases the communica­
tion between processors. These mapping operations enhance 
the quality ofthe image by simulating different types of surface 
attributes for the objects in the scene. 

Shadows. Some shadow casting algorithms require data struc­
tures as large as those required for texture, bump, and 
reflection mapping, with the same resultant communication 
problems. If a Z-buffer shadow algorithm is used, the visibility 
calculations are repeated for each light source and this adds 
time complexity [Will78]. The shadow volumes technique 
requires additional geometric data and this adds to the 
memory requirement [Crow77]. 

Resolution. Instead of generating 640 x 4843 images, 1280 x 968 
or evengreater pixel resolution is desired to enhance image 
quality. 

Data Elements. An increase in the number of geometric elements 
provides enhanced realism in the scene. 

Anti-aliasing, mapping, and shadowing involve increasing the 
complexity of the rendering calculations. Increased resolution raises 
the number of rendering calculations necessary since more pixels are 
displayed. Shadow casting and higher resolution increase the overall 
realism in the scene description by providing more detail. Each factor 
which increases image quality introduces distinct problems into the. 
parallelization process. The random access memory referencing 
patterns associated with mapping and shadow casting can degrade 
performance significantly if this data is not managed effectively. The 
implementation of these factors in a parallel environment is strongly 

· dependent on the decomposition and general memory referencing 
scheme chosen. Because this book focuses primarily on the analysis 
of the decomposition and memory referencing strategies, the focus 
here is on anti-aliasing, resolution, and number of data elements, 
leaving mapping and shadowing to be analyzed in a future work. 
Both greater resolution in image size and larger datasets require 
more memory to be available in the system. 

If the frame buffer is stored internally in RAM and resolution is 
increased from 640 x 484 to 1280 x 968, the memory storage require­
ments quadruple. If a Z-buffer [Catm74] or A buffer [Carp84) hidden 

3This refers to a display resolution of 640 pixels across by 484 pixels 
down the screen, which is standard video resolution. 
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surface algorithm is used, even more memory is needed due to the 
additional data stored per pixel. For a 1280 x 968 image maintaining 
4 bytes for red, green, blue, and coverage in addition to 4 bytes for the 
z-value, 8 megabytes of memory is needed. This memory needs to be,. 
accessible by all of the processors. ·.,. 

An increase in the number of geometric elements also requires a 
corresponding linear increase in the memory required. If we assume 
that the elements used are quadrilateral polygons, each polygon 
requires 12 bytes to store each point, 12 bytes to store each normal, 
and 10 bytes (minimally) to store the connectivity information. This 
adds up to 106 bytes per polygon, although we can in general assume 
that each normal and point are shared by 4 other polygons. This 
results in 32 bytes per polygon. Based on these values, the amount of 
memory can be determined for different levels of image quality, as 
shown next. 

The following are scenarios for memory usage based on image 
quality. Memory requirements for each image quality level are 
variable within a certain range, depending on the features included 
and the algorithm chosen. 

Case 1. A "low quality" image generated today might involve 
1,000 to 10,000 geometric elements at a resolution of 640 x 484 
(standard video resolution). 
Memory requirement for data: 32K up to 320K 

Case 2. A "normal" image would involve 10,000 to 70,000 
geometric elements, include at least anti-aliasing and possibly 
additional visual effects. Resolution would be 640 x 484 up to 
1280 X 968. 
Memory requirement for data: 320K up to 2.2 megabytes 

Case 3. A "high quality" image would involve 70,000 up to 
1,000,000 geometric elements, include anti-aliasing and one or 
more visual effects. Resolution would be 1280 x 968 up to 4K x 
4K 
Memory requirement for data: 2.2 megabytes up to 32 
megabytes 

These estimates do not include storage for maintaining edgelists 
and interpolation values, in addition to the space required for 
advanced features such as anti-aliasing. Frame buffer or Z-buffer 
storage in RAM will make matters worse at all levels. The actual 
memory requirements are at least double and possibly quadruple the 
values given previously for the data storage. Access to all of this data 
remotely on a shared memory machine will likely cause problems 

/;;.· ·; 
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with excessive usage of the interconnection network unless the data is 
carefully managed. On message passing architectures, access to 
remote data requires knowledge of the location of the data and a 
complex mechanism for distributing it among the processors in the 
system. In addition, the time to pass the data back and forth in a 
message passing machine will degrade performance. One of the 
reasons to use a multiprocessor for graphics rendering is to handle 
large and complicated scenes. Therefore, the memory requirements 
and manipulation of data in the system need to be carefully evaluated 
to reduce the overhead effects. 

3.1.1.2. vo 
Some advanced architectures use parallel disk setups such as the 
data vault mechanism in the Connection Machine. In general, though, 
most multiprocessors employ only a single disk for 1/0. The large 
scene descriptions required in various applications may require a 
time of several seconds up to many minutes to read in the data from 
disk. This can only be accomplished sequentially on a conventional 
von Neumann architecture. In a parallel machine, however, this 
presents a bottleneck in performance if only one processor interacts 
with the disk. One can see that it is desirable to be able to exploit 
some type of parallelism in disk usage. At the end of the graphics 
computation, an image is sent out either to an external frame buffer 
or to the disk for storage. This operation should also be parallelized. 
The assumption in this book is that only a single disk is available for 
1/0 operations, so parallelism may take the form of pipe lining. For 
machines which allow parallel 1/0, performance will greatly benefit if 
this feature is exploited. 

As was stated in chapter 1, the 1/0 phases of a display algorithm 
are not the focus of this book. Too often, though, computer graphics 
specialists have ignored this portion of the program in their parallel 
algorithms. The 1/0 can directly affect how the algorithm is 
structured and optimization might not be feasible within the context 
of any given parallel tiling algorithm. An example parallel implemen­
tation of the 1/0 operations is illustrated later in this text. 

3. 1.2. Message Passing 
In a message passing architecture, all of the processors are connected 
by an interconnection network through which messages are passed. 
This is the only form of communication between processors because 
they do not share any memory. The Intel iPSC is an example of this 
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type of architecture. The processor nodes in the iPSC are connected 
in a hypercube fashion whereby each processor can communicate with 
n other nodes which differ by exactly one bit in their addresses in a 
fully configured system containing 2n nodes. The more recent 
versions of the Intel hypercube use a type of message passing 
mechanism that is called "wormhole" routing [Nuge88]. This routing 
mechanism allows processors to communicate with each other directly 
even if they are not directly connected. A path which is held open for 
the entire length of the message is created from the source to the 
destination. This type of path is only created for sufficiently long 
messages to prevent unfair use of the interconnection network. 

The programmer's burden of "mapping" a parallel algorithm onto 
the hypercube is lessened since optimizing the algorithm for nearest 
neighbor communication is no longer a necessary consideration for 
this architecture. The issue of multiple messages contesting for 
portions of the same path still exists in this scheme since the worm­
hole is maintained as long as a message is being transferred. If 
another route is not available, any other messages vying for a portion 
of this path must wait. In addition to the above hypercube connec­
tions between nodes, there exists another processing node called the 
cube manager which is connected to all the processors via ethernet 
link. A three-dimensional hypercube is illustrated in figure 3.1. 

Some choices for algorithm decomposition favor one type of 
architecture over another solely because of the method of memory 
distribution. Much work has been directed at the problem of mapping 

Cube 
Manager 

(100) (000) 

Figure 3.1: Example of hypercube architecture (8 nodes) 

TEXAS INSTRUMENTS EX. 1011 - 65/229



56 Issues in Parallel Algorithm Development 

algorithms to architectures [Berm87], but no single methodology is 
optimal across different architectural models and algorithmic 
paradigms. Since the optimal mapping problem is NP-complete in 
most realistic settings [Chen88], heuristics are usually used. 
Sadayappan and Ercal [Sada87] have developed a technique in which 
data locality is exploited by a nearest neighbor mapping to reduce 
communication costs in a mesh architecture. This approach would be 
applicable to a graphics display application when it is to be 
implemented on such a machine. 

The Intel hypercube has several limitations which make this 
machine a less likely candidate for a graphics image generation 
implementation. This type of architecture is primarily intended for 
problems which exhibit high parallelism and high computation costs, 
but little data movement. The cost of sending messages between the 
cube manager and each processor, as well as between the processors 
themselves, is very high and is only reduced when a wormhole is 
used. A message must contain greater than 256 bytes in order for 
wormhole routing to occur. The low bandwidth of the ethemet and 
high set-up time for messages allow only limited dynamic load 
balancing to be accomplished since data movement is costly. For a 
graphics display algorithm, the cost of propagating part or all of the 
database to . the nodes is high, as is the cost for retrieving the 
rendered pixels. Parallel 1/0 cannot be achieved in this machine since 
only the cube manager processor can access the disk. The Intel 
hypercube was not designed for high data movement applications, 
and therefore the bottleneck created by the cube manager for disk 1/0, 
as well as the cost of message passing, limits the use of this machine 
for graphics algorithms. 

A reasonable solution might involve an initial communication of 
data to be scattered throughout the processors with successive com­
munication involving very small amounts of data. This would be 
viable in a graphics context in which the computing cost overwhelm­
ingly outweighs the communication cost, such as in a ray tracing 
program. Badouel [Bado90] has used a ray tracing algorithm with 
good success on the iPSC by employing a caching scheme for subse­
quent communication after the initial data distribution. 

3.1.3. Shared Memory 
There are a number of distinct interconnection network strategies for 
connecting processors to a global memory. Next we describe two 
types of shared memory multiprocessor architectures: bus-based 
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tightly coupled shared memory and multistage switch-based shared 
memory. 

3. 1.3. 1. Bus-based Shared Memory 

The shared memory paradigm allows the programmer to think in 
terms of parallel tasks, rather than assigning tasks to processors as in 
a message passing design. The Encore Multimax is an example of a 
shared memory multiprocessor which uses a single bus for processor 
to memory communication. Other bus-based systems may use 
multiple buses for faster communication and fewer conflicts. The 
Multimax can contain up to 20 processors and from 32 to 128 
megabytes of memory. A drawing of this type of architecture is given 
in figure 3.2, where P indicates a processor. 

The Encore's primary limitation is the fixed bandwidth of the bus, 
which restricts the number of processors that can be used efficiently. 
This does not allow testing of the algorithm on large scale processor 
configurations. Another factor weighing against this type of 
architecture is the notion of a single contiguous memory shared by all 
processors. Processors do not have any local memory to access, and 
therefore contention for the bus can become a performance 
degradation factor even when referencing data that does not need to 
be shared. A memory cache provides a form of local access and 
alleviates this bottleneck somewhat. For some algorithmic choices 
and for initial implementation and debugging, bus-based 
architectures could be a good choice for a graphics image generation 
algorithm, but they do not provide the scalable performance that is 
necessary to achieve fast processing of large graphics databases. 

Memory 

Figure 3.2: An example of a bus-based multiprocessor architecture 
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3. 1.3.2. Switch-based Shared Memory 
The BBN family of multiprocessors (which includes the Butterfly 
GPlOOO and TC2000) are shared memory multiprocessors which 
utilize a complex interconnection network to connect processors to 
shared memory modules. For the purposes of this discussion, we will 
restrict ourselves to analyzing the architecture of the Butterfly 
GPlOOO. The Butterfly GPlOOO is a scalable multiprocessor which 
can be configured from 1 to 256 processors, each containing 4 
megabytes of memory. The network in this machine is built up from a 
basic 4 x 4 crossbar switch, which allows simultaneous communica­
tion between processors and memory as long as more than one 
processor does not try to communicate with the same memory module 
at the same time. This switch is shown in figure 3.3. A description of 
the advantages of this type of switch over a bus-based interconnection 
network is given in [BBN84]. 

The memory in this machine can be logically shared, but it is 
physically distributed across a multi-stage network switch. The 
processors each have access to their own local memory, as well as to 
remote memory modules, by making references across the switch. 
This puts the Butterfly into the NUMA (non-uniform memory access) 
class of shared memory multiprocessors since the local data access is 
faster than the remote data access. Other NUMA machines include 
the Cedar [Kuck86] project from University of Illinois as well as the 
NYU Ultracomputer [Gott83]. The software interface provided for the 
programmer in the Butterfly makes this remote referencing 
transparent. The interconnection network provides very high 
performance with a 32 Megabit/second communication bandwidth. 
This network is illustrated in figure 3.4. 

There is no notion of a single main processor in the Butterfly, 
although one of the processors is connected to the multibus and serves 
as the processor through which I/0 is accomplished. This could create 
a possible I/0 bottleneck similar to the one stated previously for the 
Intel iPSC. In the case ofthe Butterfly, however, each processor can 
access the disk transparently through the I/0 processor, whereas the 
cube manager is the only processor which can access the disk in the 
iPSC. This transparent disk access allows any processor to perform a 
disk read or write operation, although semaphores may be required to 
prevent interference. The I/0 bottleneck still exists in the GPlOOO, 
but it is easier to program the reading in of data in the GPlOOO than 
in the iPSC. 
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Figure 3.3: Connection of processors to memory with crossbar switch 
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Figure 3.4: Multi-stage interconnection network in BBN Butterfly 
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3.2. Comparison of MIMD Methodologies 
In comparing shared memory and message passing architectures for a 
graphics display algorithm, several items are worth considering. One 
important item to note when choosing an architecture for 
implementation is the fact that the amount of memory to be managed 
when generating high quality imagery can grow to be very large. 
Based on the algorithmic requirements given previously, it is 
desirable to develop parallel graphics algorithms on a machine with 
the following characteristics: 

1. Ease of programming 
2. High performance interconnection network 
3. Scalable to high processor configurations 

First, the shared memory programming paradigm is generally 
considered to be easier than message passing for the programmer to 
work with in developing code for an MIMD computer. The reason is 
that data which all processors need access to can be stored once in the 
system in logically shared memory. It does not need to be copied to 
each processor, which would otherwise waste time and/or space. Nor 
does the actual physical memory module location need to be specified 
by the programmer and sent to each processor. This is handled by the 
operating system (or hardware) as if the collection of memory modules 
is in one global address space (in the case of the Butterfly, for 
instance). 

Secondly, the interconnection network performance in shared 
memory architectures is generally better suited for frequent commu­
nication of very small to very large packets of data. This is not 
usually the case for message passing machines. On the other hand, 
recent work described in [Nitz91] indicates that it is feasible to simu­
late a shared memory environment on a distributed memory parallel 
computer. In the future, this type of architecture/programming 
methodology might provide the type of scalable performance for which 
a graphics application would be well suited. Message passing 
architectures would be well suited to complex image generation 
algorithms such as ray tracing or radiosity because the cost of image 
generation is amortized when the task time is large in comparison to 
the data transfer time. 

The performance of the Butterfly multistage interconnection 
network is much higher than the interconnection network in the 
iPSC, although the former is more costly. In addition, the Butterfly 
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network can scale to large processor configurations, and therefore 
provide better performance than a bus-based shared memory system. 

Since the Encore Multimax and other bus-based systems are 
limited in the number of processors they can support, low or normal 
quality image generation would fit well onto that type of architecture. 
Higher quality imagery demands more compute power as well as 
more memory than is normally available on bus architectures. One 
exception is the Alliant FX/28000, which uses up to 28 Intel i860 
processors. The number of processors cannot be increased beyond 
this, but very high performance has been obtained on this system. 
Still, the Butterfly TC2000 is a faster version of the GPlOOO and does 
provide the scalability necessary to render extremely large datasets. 
If judicious distribution of graphics data is used, memory latency can 
be reduced to a negligible overhead. 

Although all of these architectures are suitable for graphics 
algorithms, the Butterfly environment provides a stronger case for 
high performance. In summary, with regard to the issues discussed 
previously, the BBN Butterfly is the best example of a shared memory 
multiprocessor which meets these requirements. The distributed 
memory modules within the Butterfly allow the programmer to take 
advantage of local memory access while a global view is provided of 
shared memory. The performance of the interconnection network and 
memory modules is better than a bus-based system such as the 
Encore Multimax, and the number of processors that the machine is 
capable of supporting allows massive parallelism. 

The BBN Butterfly GP1000 at The Ohio State University's 
Computer and Information Science Department was used for the 
primary development and debugging of the algorithms presented in 
this book. This machine only had 10 processors, so it was desirable to 
test the programs on a larger machine. The Naval Research Lab, 
Georgia Institute of Technology, and Michigan State University all 
provided access to machines with larger configurations for this 
purpose: Final testing was done on the Butterfly GP1000 located at 
the headquarters of BBN Advanced Computers, Inc. This machine 
contains 107 processors, but we have limited testing of the programs 
to 96 processors. Under all circumstances, this machine was not 
being used by others at the time of testing, so no other processes in­
terfered with the timings. The BBN TC2000 is their next generation 
multiprocessor which contains numerous enhancements to the design 
used in the GP1000. For some of the tests given in chapter 5, access 
was provided to a 47 processor TC2000 at Argonne National 
Laboratory, as well as to a 128 processor TC2000 at Lawrence 
Livermore National Laboratory. As a note to the reader, for further 
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reference in the rest of this book, the term processor is used to denote 
a processor-memory module on the Butterfly. 

3.3. The BBN Programming Environment 
An algorithm can be designed to take advantage of a particular 
machine's characteristics to enhance overall performance. The 
algorithms illustrated here were designed for an MIMD architecture 
and optimized for implementation on the BBN Butterfly. Ideally, one 
would like to design program code so that it will run unmodified on a 
variety of parallel architectures. Although some parallel 
environments are available on a wide variety of machines (notably 
Linda [Ahuh86]), we did not have access to these programming tools. 
The parallel programming paradigms available on the Butterfly at 
Ohio State (where the code was originally developed) are BBN's 
Uniform System and a version of C-Threads originally developed at 
Carnegie-Mellon University [Coop87]. Additionally, Lawrence 
Livermore provides a split-join programming model called PCP, but it 
is currently only supported on the TC2000 [Gord91], and not the 
GPlOOO. 

The Uniform System approach is a BBN specific parallel pro­
gramming scheme [BBN89a]. This method uses the concept of 
generators which spawn off parallel tasks in a number of different 
ways selectable by the programmer. The second paradigm is C­
Threads, which was ported to the Butterfly at The Ohio State 
University [Sami89]. The Uniform System was used for implementa­
tion purposes since it is supported by BBN and the program code 
would be able to run unmodified on the TC2000 as well. 

The Uniform System parallel programming paradigm is designed 
to allow the programmer to develop parallel applications which are 
insensitive to the actual number of processors in the system. The 
program code does not need to be modified, nor special cases taken 
into account when it is run under different processor configurations. 
This also allows for debugging and testing on a small number of 
processors and later using all of the processors in the system for 
timing measurements. The Uniform System is a library of routines 
that the user links with in a C or Fortran program. In the case of the 
algorithms presented here, all of the code is written in C. The 
Uniform System can basically be divided into two sections: the shared 
memory portion and the task assignment portion. In addition, special 
routines are available to handle atomic operations, locks for synchro­
nization, spin waits, and other configuration operators. Memory can 
be allocated in the system as: 
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1. Local variables 
2. Global variables 
3. Dynamic storage 
4. Shared dynamic storage 
5. Copied storage 

Local, global, and dynamically allocated memory are treated the 
same as in any normal C program, with each processor having its own 
copy of a variable. Processor i and processor j may both reference a 
variable l, but its value is different on each processor since each has 
its own local copy. 

Shared dynamic storage allows one to create space for data which 
can be stored somewhere in global memory. The data is available to 
each processor, but is only stored physically in one processor's 
memory module so that if processor i updates the value to shared 
variable s, processor j would also see the new value. Of course, 
synchronization must be used to correctly update a shared variable if 
two processors could possibly change it simultaneously. Routines 
exist in the Uniform System where a shared variable can be specified 
to be stored on a particular memory module (for instance the local 
processor's module) or scattered somewhere in the system. This 
allows the programmer to create efficient access to shared memory 
and to prevent hot spot contention. Hot spot contention occurs when 
a large number of remote references backup on a single switch node, 
causing delays in the network. The process node controller (PNC) on 
the processor board determines the location of a shared memory 
reference and handles the message traffic to complete the write or 
read operation. The memory allocator forces all shared memory to be 
allocated to locations which are above a given virtual address fence 
register. 

The last type of storage, copied storage, allows data to be copied to 
all of the processors, effectively providing local access to a common 
variable. After the variable is copied, each processor has its own local 
copy of the variable so a modification will not be propagated to all the 
other processors, as in the shared memory case. This method is used 
to copy read-only data to all processors. It is also used to allow 
processors to know the location of a shared memory variable. As an 
example, a processor allocates a shared variable and places a value in 
the memory location, only that particular processor knows which 
memory location is used in shared storage. In order to allow the other 
processors to know the location, a call is made to the Uniform System 
routine Share, which propagates the address of the shared variable to 
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all of the other processors so that they all can refer to the single 
memory location. The Share routine can also be used to just copy 
data, so instead of propagating the address of the variable, the value 
of the variable itself is propagated. The latter method of usage is an 
example ofthe copied storage approach. 

Task assignment in the Uniform System is handled by a 
mechanism known as task generators which is a distributed task 
assignment system that works as follows. A program starts off 
running on a single processor. When a parallel environment is 
created on P processors, shared memory can be allocated and the 
other (P- 1) processors start a spin-loop where they execute code that 
detects if there are any tasks available to work on. As soon as a 
generator (a procedure initializing a parallel environment) is executed 
by the first processor, a specified number of processors (any number 
from 1 toP with the choice of inclusion of the initiating processor) 
execute a task activator procedure to generate the next task. If a 
parallel for loop is desired, the task activator would consist of an 
atomic operation which increments the for loop index. As soon as the 
index is atomically updated on processor i, that processor begins work 
using the index as a parameter to a worker procedure. This happens 
throughout the system so that each processor essentially finds work 
for itself rather than using a central controlling mechanism. As soon 
as a worker is finished, that processor tries to find additional work by 
checking the task activator again. Note that more than one task 
activator can be running at the same time by using recursive 
generator calls, although the order of execution is difficult to predict. 
When all of the tasks are exhausted, the generator finishes, and if no 
other generators have created tasks, the initial processor proceeds 
serially while the others spin-wait until more work comes along. 

3.4. Summary 
In the first section of this chapter, a number of multiprocessor 
architectures are presented for the purpose of examining their 
characteristics with regard to a graphics display algorithm. In the 
second section, criteria for evaluation of these architectures is given, 
and each type of machine (of which all were available for testing) is 
scrutinized based on its characteristics and suitability for 
implementation of a parallel graphics algorithm. The BBN Butterfly 
is shown to be the computer most suitable for implementation of a 
parallel graphics display algorithm. In the third section, the 
Butterfly programming environment is described to give the reader a 
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better understanding of its operational characteristics from a 
software point ofview. 

The next chapter describes the serial algorithm upon which the 
different parallel decompositions are based. In addition, timing 
measurements as well as measurements of performance analysis are 
discussed. 
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Overview of 
Base Level 
Implementation 

In this chapter, we describe the choices that were made for a base 
level implementation of the different parallel graphics decomposi­
tions. The approach used for developing the parallel programs is to 
devise a single basis graphics rendering algorithm, and then build 
different parallel task partitioning and memory referencing schemes 
on top of it. This allows an equal comparison of a number of different 
approaches for parallelism since the underlying algorithm is the 
same. This basis algorithm is not compromised by the parallel 
algorithms since it can be modified to the specifics of each particular 
parallel approach. The first section of this chapter presents this basis 
algorithm by describing the underlying serial approach, as well as the 
choices that were made which were common to all of the parallel 
formulations. The second section of this chapter describes the 
measurement techniques used to obtain timings for the different 
programs. The last section gives the performance analysis measures 
used to analyze the different parallel implementations that are 
presented in the next chapter. 

67 
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4.1. Design of the Basis Algorithm 
The purpose of implementing a number of parallel graphics rendering 
algorithms is to analyze different parallel work decompositions and 
shared memory referencing schemes to determine which method is 
the most viable for general use. In order to make a straightforward 
comparison of the possible decompositions, a serial algorithm has 
been developed upon which the various parallel formulations are 
based. Most parallel rendering algorithms developed in the past were 
designed similarly. Essentially, some portion of the parallel 
algorithm consists of a single task resembling a serial algorithm in a 
smaller context. This approach makes it easier to compare the 
parallel implementations because their relative speed for the basic 
portion of the algorithm is the same. This may seem like we are 
compromising the aspects of a parallel machine by using smaller 
serial tasks, but such is not the case. It just turns out that for this 
type of problem, the solutions presented are the most straightforward 
and yield the highest performance compared with a functional work 
decomposition. 

Based on the taxonomy and algorithm analysis presented in chap­
ter 2, several variations on an image space parallel decomposition 
have been implemented. Each single task of the parallel algorithms 
consists of solving the rendering problem in a serial manner for a 
particular area of the image space. Chapter 5 describes these algo­
rithms, which vary in their method of task assignment to processors, 
area size, and memory referencing characteristics. In this chapter, 
the basis sequential algorithm for the front end and the single task 
tiling portion are described. 

This serial basis algorithm is a scan line Z-buffer algorithm 
[Myer75] which incorporates the stochastic sampling method 
[Cook86] for anti-aliasing as an extension. The serial algorithm used 
here was originally developed separately as part of a project to enable 
scientists to render polygonal datasets at varying degrees of accuracy. 
Several different anti-aliasing methods can be used including a 
straight Z-buffer, an analytic method, and a stochastic sampling 
method with 16 samples per pixel. In addition, several illumination 
models are available, including those developed by Gouraud [Gour71], 
Phong [Phon75], Blinn [Blin77], and Cook-Torrance [Cook82]. The 
rendering method which is used for the comparison tests incorporates 
stochastic sampling for anti-aliasing with the Blinn shading model 
using various images rendered at a resolution of 640 x 484. We will 
elaborate on the test scenes in section 4.2.1. 
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As stated previously, each algorithm involves a break-up of the 
image space into different areas, and the image rendering problem is 
essentially solved serially in a given area. Clipping is done initially 
for the entire screen, but for each individual area, single scan line 
clipping is used instead of polygon clipping to the area boundaries. It 
might be interesting to compare scan line versus polygon clipping, but 
this would only minimally affect the overall performance of the 
algorithms. 

4.1.1. Front End 
The files which are used for the test object data are called detail files. 
This format was developed at The Ohio State University Computer 
Graphics Research Group (now known as the Advanced Computing 
Center for Arts and Design) in the 1970s. This format is fairly 
compact and the data in the file is stored in binary. The format is 
shown here: 

num_pts num_polys 
xl yl zl 
x2 y2 z2 

num vertices pointl point2 point3 
num vertices pointl point2 point3 

The number of points and number of polygons are 16 bit integers, 
which means that only 32,767 points and polygons are allowed in a 
single object. The points list follows these two values, and each point 
is represented as three floating point values. After that, the polygon 
list includes the number of vertices in a polygon and indices to the 
points list above. An edge is implied between adjacent vertices in the 
list. The polygons are guaranteed to be convex, and it is assumed 
that the last vertex listed for a polygon is connected to the first by an 
edge. Since the object detail files limit the number of vertices and 
polygons, larger objects must be broken up into smaller objects so that 
the same format may be used. 

The front end of each parallel graphics program consists of the 
following phases: 
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1. Read in object data files from disk. 
2. Perform necessary transformations. 
3. Reject back-facing polygons and clip polygons to screen 

borders. 
4. Place polygons into shared data structure. 

A parallel pipelined implementation of this front end is described 
in the following subsections. 

4. 1. 1. 1. Reading in Objects 

It was necessary to modify the detail file format so that the regular 
objects could be broken up into sub-objects to allow sufficient 
parallelism in the front end. This allows the object data to be 
distributed across the memories of the processors. In order to do this, 
a separate program was written which reads in an object file and 
creates a new object file, consisting of the same original object but 
subdivided into components. The sub-object size is determined based 
on the number of polygons in the original object; it can be as small as 
100 polygons for simple objects and increases to 1000 polygons for 
more complex objects. The only problem with subdividing the object 
is that the original normals at the vertices need to be kept with the 
points since a new normal calculated for a sub-object alone could be 
incorrect. 

An incorrect normal would be calculated in the following scenario. 
A polygon which was previously part of the original object is moved 
into a new sub-object. The normal of this polygon will no longer 
influence the vertex normals of its neighbors unless this normal is 
calculated prior to the subdivision of the object and copied along with 
its vertex. Thus, the untransformed vertex normals are calculated 
and stored with the sub-object directly after the points list in each 
file. This creates a somewhat larger data file format, but is the only 
solution that allows distributing the objects across memories. There 
is a slight problem with storing the untransformed normal if the 
object transformation from object space to eye space includes non­
uniform scaling operations, so this situation was prevented from 
occurring in the test cases used here. The time for manipulating the 
datafiles prior to program execution is not accounted for in the 
timings since this is just a variation of the original object format 
which could be output from any data generation package. 
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4. 1. 1.2. Parallelizing the Front End 

The diagram in figure 4.1 illustrates how phases 1, 2, and 3 of the 
front end can be overlapped in parallel execution. When a processor 
is available to do a read operation, it performs a single pass check of a 
global array to see how much data is currently stored on all the other 
processors. If a given processor contains fewer polygons than the 
average of all the processors, then this processor puts itself on the 
queue to read an object from disk into its own local memory. 

The number of polygons read in and determined to be front facing 
is then stored in a global array. By using this scheme, the input data 
is scattered among all the memory modules in roughly equal portions. 
The data is also sharable so that all processors have access to it. 
After the data is read in on a given processor, the disk is available for 
the next processor to access. This algorithm creates a pipeline which 
is faster than serially processing the data and distributing it. 

This scattering of polygons allows a nearly uniform scattering of 
data as well as work for the front end, so that each processor's work is 
approximately of time complexity O(N/P) where N is the total number 
of polygons read in. For datasets which are small, the pipeline does 
not become completely saturated if the number of sub-objects is less 
than the number of processors. This situation would not provide 
enough work for all ofthe processors during the front end phases, nor 
would the object data get completely scattered throughout the 
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Figure 4.1: Overlapped disk access with front end phases 
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memories in the system. For the test cases here, we were not 
interested in completely optimizing the front end; it was developed 
merely as an efficient method to read-in and scatter the object 
datasets. Obviously this portion of the program needs to be optimized 
for each combination of object data format and chosen hardware. The 
method given here is a general outline of one way to parallelize this 
section of code. 

The front end should be optimized depending on the intended 
application of the renderer. For animated sequences, reading in data 
is only necessary when a new object enters the scene for a given 
frame. More optimization might be spent on the transformation and 
clipping phases for this application. If still images are required, it 
might be desirable to optimize the entire front end. Regardless, it can 
be seen that it is worthwhile to parallelize this section of the parallel 
program. 

This example parallelization of the front end is the same for all of 
the algorithms described herein. The only difference occurs in the 
section where polygons are put into data structures depending on 
their screen space location, as described in section 4.1.1.3. Since this 
latter portion of the front end of each parallel algorithm may be 
slightly different in complexity, we include the time differences for 
this portion of the front end in our overall algorithm analysis in 
chapter 6. The data structure used for storing the polygons according 
to their location is described in the next subsection. 

4. 1. 1.3. Placing Polygons in Shared Data Structure 

Each of the parallel algorithms is a variation on an area screen space 
subdivision algorithm. Prior to the parallel tiling and rendering 
phases, the polygons must be tagged as to which subdivision(s) they 
belong to. The polygons are placed in a data structure which is 
shared among all of the processors so that each processor can obtain 
the exact polygons relevant to any subdivision. Each parallel 
decomposition scheme employs an approach in placing the data in 
this structure that is slightly different than the one used in a 
traditional serial scan line algorithm. In a serial approach, this 
section consists ofloading polygons into an array of linked lists called 
a y-bucket list (see [Roge85] for details on how this is done). Each 
linked list (or y-bucket) corresponds to a scan line and contains 
pointers to polygons which have their minimum y-extent on that 
particular scan line. During the tiling section of a serial algorithm, 
the program investigates the active y-bucket to determine which new 
polygons start on the given scan line and should be stored in the 
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active polygon list. For the parallel image space decompositions, it is 
necessary to do a pre-culling operation prior to creating a y-bucket list 
for a given area on the screen. This pre-culling operation involves 
loading the polygons into an area bucket data structure so that it is 
possible to find out which polygons are relevant to a given area on the 
screen, not just a single scan line. 

Although the various parallel algorithms rely on different size 
areas for their partitions, the basic culling operation is similar in 
each. The area bucket list is used to store polygons for the areas 
which will later become separate parallel tasks in the tiling section. 
During the front end, the bounding box of each polygon read in by a 
processor is checked against the area mesh created for the given 
parallel decomposition. A pointer to the polygon is then stored in 
each area bucket that the bounding box crosses. The polygons are not 
clipped to these areas, nor is a more stringent test employed to see if 
the actual polygon (not just its bounding box) intersects the area. 
Although a stricter test could be used, the approach used here is fast 
and uncomplicated, with the only drawback being lack of accuracy. In 
other words, a polygon's bounding box might cross over an area in 
which the polygon itself is not actually present. The common thread 
to this portion of the program, which is the same for all the parallel 
formulations, is that the area bucket list is a shared data structure 
available to all processors. As the polygons are read in during the 
front end, each processor determines the appropriate area bucket to 
place a shared pointer to the polygon. A lock is used to prevent more 
than one processor from placing the pointer into the same area bucket 
list at the same time. This constitutes what we will call the 
Uniformly Distributed (UD) memory referencing scheme since the 
polygons themselves are scattered throughout global memory, in 
addition to a scattering of the polygon pointers in the area bucket 
data structure. 

As was mentioned previously, each partitioning scheme 
implements this section of the front end in a slightly different manner 
since the size and number of areas is dependent on the parallel 
partitioning scheme. Specific details on the usage of the area bucket 
data structure are given with each individual algorithm description in 
chapter 5. 

4.1.2. Tiling 
The tiling section of a scan line based graphics rendering algorithm is 
the most time consuming portion of this type of program. It consists 
primarily of the following phases: 
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For each scan line in an area: 
1. Determine which polygons are new to the current scan line. 
2. Build edge lists for those polygons and determine which edge 

pairs start on the current scan line. 
3. Update any edge pairs from the previous scan line in which 

one or both of the original edges in the pair is no longer active. 
4. Interpolate vertically from the previous scan line to the 

current scan line for all parameters, such as edge position, 
color, and normal. 

5. Perform hidden surface elimination and anti-aliasing. 
6. Shade the fragments which are visible within each pixel for 

the scan line. 
7. Send finished scan line out to the frame buffer. 
8. Deactivate polygons, edge pairs, and edge lists which end on 

the current scan line. 

In a traditional serial approach, the area refers to the entire 
screen and each scan line is the width of the screen. In the case of a 
parallel image space algorithm, an area is a single task and a scan 
line is the width of that area (each area may be different in size, 
though). We will now systematically go through each of the preceding 
phases, pointing out the choices made which are common to all of the 
parallel implementations. 

In the tiling phase, a task corresponding to a particular area on 
the screen is obtained by a processor. The polygons which are 
relevant to this area are stored in an area bucket in shared memory 
during the front end. During the tiling phase, this processor 
determines which polygons to work with by examining the 
appropriate area bucket. The polygons which are in this area bucket 
are loaded into that processor's local memory y-bucket list. They­
bucket list contains the pointers to the polygons in shared memory. 
Since some polygons could have started above the first scan line of the 
area, these polygons are stored in the top scan line y-bucket for that 
area. Phase 1 of the tiling operation involves traversing they-bucket 
for the current scan line and extracting those polygons which start on 
this scan line. 

Phase 2 involves building the edge lists and edge pairs and 
storing them in the processor's local memory. These are put in local 
memory because this type of access is much faster than remotely 
referencing the data. There are several reasons why this is wasteful, 
however. If a polygon crosses the boundaries of more than one area, 
the edge lists are constructed for each area in addition to the 

TEXAS INSTRUMENTS EX. 1011 - 83/229



Design of the Basis Algorithm 75 

duplication of memory required to store these data structures in each 
processor's local memory. It is possible to store these data structures 
in shared memory but the following complications could arise. 
Synchronization would be required if two processors try to build the 
same edge lists at the same time. In addition, although the initial 
interpolation parameters and delta values are the same for a 
duplicated edge, the current value of an interpolation parameter 
depends on which scan line is active for each processor sharing the 
edge. It is likely that the active scan line is different in each 
processor. Consequently, the memory savings of storing the data in 
each processor's local memory is more than offset by the additional 
remote referencing cost that would otherwise be incurred. Therefore, 
although the local referencing method may be slightly wasteful in 
memory usage and involve duplication to build some data structures, 
it is superior in speed. As a result, the tiling portion of the program 
will execute faster and the interconnection network will not be used. 

Phase 3 (updating the edge pairs) of the tiling operation proceeds 
as in a traditional scan line algorithm, and no remote referencing is 
incurred here. Phase 4 (scan line interpolation) is also the same as a 
serial method with no remote referencing. Phase 5 (hidden surface 
removal) involves the use of a stochastic sampling anti-aliasing 
technique which allows hidden surface removal and anti-aliasing to 
occur simultaneously. Some remote referencing is required in the 
Uniformly Distributed memory referencing scheme to obtain the 
plane equation for a given polygon from shared memory. Phase 6 
(shading) involves performing the illumination calculation on the 
visible polygon fragments left over from phase 5. After the fragments' 
colors are detennined, a box filter is used to convolve the fragments 
with each pixel to determine the overall pixel color. At the current 
time, the filter is limited to the width of a single pixel since it is 
difficult to handle pixels which are beyond the border of the current 
area in a parallel environment. An area for future work might 
include applying a Gaussian filter which extends beyond a single 
pixel boundary. After the the pixel colors are detennined, they are 
loaded into a single scan line buffer and block transferred to the 
virtual frame buffer in phase 7. The block transfer is faster than 
updating each pixel in the virtual frame buffer one at a time. After 
this phase, the polygons, edges, and edge pairs which expire on the 
current scan line are deactivated in phase 8. More information on 
how the scan line data is stored in the frame buffer and how it is 
written out is included in the next subsection. 
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4.1.3. Back End 
Since the areas on the screen are computed in a random order 

which depends on the scheduling of tasks onto processors, full scan 
lines cannot be output onto the frame buffer during the computation 
of the image. On the other hand, each individual area could be output 
as it is calculated, but this is distracting to the user, in addition to 
creating additional network traffic. The solution then, is to store the 
frame buffer internally in memory and output the pixel data after the 
tiling is completed. This is accomplished in the following manner. A 
virtual frame buffer is stored in the physical memory of the machine 
by scattering the rows of the frame buffer among the different 
memory modules. This allows uniform scattering of the data and 
avoids hot spot contention. As stated previously, rather than have 
the processors directly write pixel values to remote memory, each 
processor contains a small local memory buffer corresponding to the 
width of a scan line. Mter an area-width scan line is finished, this 
buffer is block transferred from local memory to its place in the 
globally shared virtual frame buffer. This continues throughout the 
tiling portion of the program. At the end of the tiling operation, the 
virtual frame buffer is completely filled and can be displayed. 

After the image has been calculated, each scan line is compressed 
using run-length encoding. Run-length encoding allows the image to 
be stored using less space than is required with a simple pixel map 
method. This operation is done in parallel but no information is kept 
from one scan line to the next, though this would be done in a 
sequential implementation. As the run-length encoding is proceeding, 
each processor checks a shared variable that indicates the current 
scan line which is available to write out to disk. If the variable 
indicates that a given processor's scan line can be written out, that 
processor writes out the run-length encoded scan line and proceeds to 
find more scan lines to process. This allows the image to be written 
out in scan line order while the run-length encoding is performed in 
parallel. Of course, the scan line order forces a bottleneck situation, 
but this is the only way the image can be written out. Modifications 
to this section of the program would allow tuning to a particular 
application. 

The preceding descriptions above constitute the basis serial algo­
rithm and parallel extensions which are common to all of the parallel 
partitioning schemes. These schemes are outlined in detail in chapter 
5 and compared to each other, along with an evaluation of shared 
memory referencing in chapter 6. The next section is a description of 
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the testing procedures and performance analysis methods employed 
in the analysis of the algorithms. 

4.2. Testing Procedures 
In this section, we discuss how the algorithms are evaluated according 
to a number of criteria. The scenes which are used to test the various 
algorithms are described, as is the timing procedure utilized. 

4.2.1. Test Scenes 
It is important that the three-dimensional scenes which are used as 
test data accurately reflect what might occur in everyday usage of a 
graphics display program. Since it is hard to imagine what an 
"average" scene might entail, numerous researchers have developed 
their own methods of analyzing algorithms by providing a number of 
test circumstances. The only unfortunate aspect of this situation is 
that the data is not available to other researchers to test their own 
programs on. To rectify this situation, Eric Haines has developed 
what he calls the standard procedural database (SPD), which is used 
for the sole purpose of testing rendering algorithms [Hain87a]. His 
intended application was ray tracing, but these scenes can be used for 
testing any display algorithm. Among the scenes available are: a 
group of balls, a set of gears, a tetrahedron, a tree, a group of rings, 
and a fractal mountain. Each scene can be generated to create as 
many polygons as the user desires since the programs create the 
database procedurally. It was decided to test the algorithms here 
using small to large databases. The tree was generated with 
approximately 106,000 polygons, while the mountain was generated 
with 131,000 polygons. Haines has given view parameters as well 
which are also part of the database specification. In the case of the 
mountain image, a much denser version was created than Haines 
used in his testing (his mountain only contained 8K polygons). Using 
his viewing matrix, a majority of the polygons would have been 
clipped out of the scene. To rectify this, a new view matrix was 
constructed to allow the entire mountain to be seen. The 4 x 4 matrix 
used for viewing is included in the appendix in equation A.l. 

It was also desirable to test the algorithms on some real world 
type data, so we used a stegosaurus image which was designed for an 
animation and a Chrysler Laser automobile which was designed from 
a CAD/CAM program. The stegosaurus is not rendered with its 
plates since they were unavailable at the time of testing. The 
stegosaurus contains approximately 10,000 polygons, while the 
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automobile contains approximately 46,000 polygons. The stegosaurus 
data was created by John Donkin of ACCAD (the Ohio State 
University Advanced Computing Center for the Arts and Design) for 
the Fernbank Museum in Atlanta. The car was created by Chrysler 
and obtained from Evans & Sutherland Computer Corporation. All 
tests were performed at a resolution of 640 x 484 using Blinn's 
[Blin77] light model for the specular component. An illustration of 
these images appears in color plate 1. 

In chapter 6, higher density images were used to test the 
algorithms with more demanding data. For these tests, a version of 
Haines' rings database was created with approximately 568,000 
polygons, and a denser version of the tree database was generated 
with 851,000 polygons. 

4.2.2. Timing 
It is important to state how the programs were timed on the system to 
show what is included in the performance graphs given later in this 
book. On a multiprocessor such as the Intel iPSC, program code must 
be loaded into all of the processors prior to running the program itself. 
On the Butterfly, this is not the case. The Butterfly is a virtual 
memory machine, and the program code is paged into memory as it is 
needed [BBN89a]. Prior to starting a parallel environment, the first 
processor contains the resident code and any allocated memory. 
When a parallel environment is started and a processor references a 
page of memory or program code that is not resident in that 
processor's local memory module, this item is paged in automatically. 
The first time this happens, it may occur almost simultaneously on all 
processors since they will likely be executing the same code at the 
start of a parallel environment. A bottleneck situation occurs since 
all of the processors are trying to obtain pages of program code at 
nearly the same time. Although this method is significantly faster 
than the loading operation in the iPSC (primarily due to the speed 
and topology of the Butterfly interconnect), any timings which include 
this startup cost are somewhat misleading since they do not indicate 
the true performance of the machine. An adequate solution used by 
most researchers is to run the parallel portion a second time within 
the program itself and evaluate program performance for this second 
iteration only. This method is used for the results given in chapter 5. 

Another overhead is encountered due to the implementation of 
the Uniform System on the Butterfly which occurs when a task 
generator is called for the first time. This is due to the fact that all of 
the processors need to be notified that a generator is available for 
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execution, and this takes O(P) time. To alleviate this effect, each 
processor starts off its first task inside the generator by hitting a 
barrier. Once all processors have hit the barrier, the processors are 
released and the timing starts. On the Butterfly GP1000, a time of 
approximately 2 seconds has been measured for our maximum test 
configuration of 96 processors to hit this barrier. This time is seen 
only once at the onset of a generator and would not be present in 
other parallel programming models. 

The timing mechanism used on the GP1000 is a routine called 
getrtc (get real-time clock) which gives time increments of 64.5 JlSec. 
On the TC2000, the clock ticks are accurate to 1 Jlsec. The 
performance of all algorithms is evaluated using these routines from 
within the program. There is no differentiation between system time 
and program time since during most of these tests, no other processes 
were running besides the normal MACH system processes. The 
Uniform System ensures that only one user process is assigned to a 
processor, resulting in no interference caused by other user processes. 
The nature of interprocessor communication and overhead due to 
system processes can change the performance, and as a result, the 
same test run multiple times can vary by several tenths of a second. 
In most cases, this amounts to less than 1% ofthe total parallel time, 
so we did not rerun the programs to obtain an average time. This was 
done in all cases except in the case of the final timing on 96 processors 
which was averaged over five runs for additional accuracy. The tests 
consumed much CPU time and took many months of programmer 
time to initiate and gather results. 

4.3. Performance Analysis 
Various graphics researchers in the past have written simulators in 
software to verify their parallel algorithms which may have been 
designed for hardware or a conventional multiprocessor. At the time 
of their research, the hardware was either not available or was too 
costly to obtain for actual tests. Unfortunately, some very real factors 
such as communication, network contention, and load balancing 
cannot be fully analyzed in a simulated environment. 

The first subsection here describes the measures usually used to 
gauge performance of a parallel program: time, speedup, and 
efficiency. The value of these factors is that they provide an 
indication of the actual realized performance, relative parallel 
performance, and processor utilization, respectively. It is not 
sufficient to look at any one of these measurements alone since one 
might be misled by not observing the whole picture. 
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In the context of parallelizing a circuit simulation application, 
Sadayappan and Visvanathan [Sada88] develop a framework where 
the overall performance of a parallel algorithm is evaluated by 
breaking it down into relevant component factors. It would be 
desirable to develop a similar framework to interpret performance of 
a parallel graphics algorithm in terms of quantitative measures 
characterizing relevant factors. 

A number of overhead factors are introduced when a program is 
implemented on a parallel architecture and these are outlined in the 
second subsection. In some cases, these factors relate to the machine 
itself, and in other cases they relate to the changes necessary to allow 
the program to run in parallel. Initially, a program is modified or 
specifically designed for implementation on a parallel architecture. 
The changes represent the differences between the serial and parallel 
versions of the program. While these changes are introduced by the 
programmer, additional overhead factors are introduced by the fact 
that a particular machine architecture is used and communication is 
necessary to allow the processors to work on the problem 
simultaneously. 

4.3.1. Time, Speedup, and Efficiency 
Due to the size of the data sets, the 4 megabyte limit in memory per 
processor (on the GP1000), and the size of the data structures needed 
for algorithm storage, it was necessary to initiate the timing tests 
above one processor. The reason this was done was to avoid paging 
during the computation if the datasets did not fit into physical 
memory. Since there is only a single disk on the Butterfly, paging 
would cause a serial bottleneck which would not provide realistic 
parallel timings for the given datasets. By checking to see if a given 
timing run is paging (using the MACH command vmstat), the 
minimum number of processors which can be used without paging 
effects can be determined. This minimum number for each dataset is 
as follows: 2 processors for the stegosaurus image, 6 processors for 
the Laser image, and 12 processors for the tree and mountain images. 
These minimum processor configurations are used since it is not 
possible to determine the amount of time incurred due to paging and 
then eliminate that time from the results. 

The potential speedup in a parallel algorithm is calculated by the 
formula given in equation 4.1 (also called Amdahl's law [Amda6.7]). 
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T(l) = (s +p) 

T(P) (s +~) 
(4.1) 

T(x) is the computation time on x processors, P is the number of 
processors, sis the sequential portion of the computation, and pis the 
parallel portion (identified on one processor). If s = 0, then we have 
obtained linear speedup. The potential speedup as given in Amdahl's 
law is limited by the sequential portion of the program. If one 
assumes that s and p are percentage values, then we can rewrite the 
law with a numerator of 1 since the total computation time on 1 
processor adds up to 100%. 

Amdahl's law has gained acceptance as a predictor of the maxi­
mum expected speedup of parallel algorithms on multiprocessors. In 
a sense, this law expresses doubt about the amount of speedup at­
tainable by parallel algorithms on real machines. The doubt is well­
founded since most algorithms involve some inherently sequential 
portions of code. Operations such as synchronization of processes, 
message passing delays, and memory latency also reduce the 
potential parallelism. 

For parallel programs, Amdahl's law can be applied if we know 
the serial percentage of the algorithm for a given value of P. Often, 
this is difficult to calculate prior to running the program on P 
processors, but it does serve as a good indicator of performance if we 
calculate the percentages after running the program. Instead, the 
speedup is used as a guideline to relative program performance as the 
number of processors is increased. Equation 4.2 shows how speedup 
is normally determined. The time using 1 processor for a parallel 
program and its single memory module is divided by the time using P 
processors and P memory modules. This is indicated in equation 4.2 
where T x(y) refers to the time using x memory modules on y 
processors. The speedup is basically an indication of the effective 
number of processors utilized. 

T 1(1) 
Speedup=-~ 

Tp(P) (4.2) 

The minimum number of processors (MIN) in which each test 
scene fits into the physical memory of the machine without paging 
precludes direct testing of the algorithms on one processor to 
determine speedup (recall MIN is image dependent). Instead, a work­
around solution is used to evaluate the time that the algorithms 
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would take if they could be run on a single processor with enough 
physical memory. 

The programs are started for each image on MIN number of 
processors so that there is enough physical memory available without 
paging. The data is read in, transformed, and clipped using this 
number of processors, which incorporates the Uniformly Distributed 
memory scattering scheme. The tiling section is run using only one 
processor, however. This processor retrieves the data from global 
memory as is necessary. This would be the fastest method to run 
each sequential algorithm on the physical machine, given the amount 
of memory actually available per processor. Equation 4.3 is used to 
calculate the estimated speedup on 96 processors. 

. T (1) 
EsbmatedSpeedup= MIN 

T 96(96) (4.3) 

Efficiency is calculated using equation 4.4, where Pmax is the 
maximum number of processors used for testing (here, Pmax = 96). 
Efficiency is an indication of the utilization of the processors in the 
system. 

Effi 
. Estimated Speedup 

1c1ency = 
Pmax (4.4) 

For the results shown in chapter 5, the time and speedup graphs 
are shown only for the tiling section of the programs since this is the 
most time consuming, as well as the most parallelizable portion of the 
program. In chapter 6, a comparison of all the algorithms' times is 
included, along with the time for the initial startup operations from 
the front end which are specific to each approach. This gives us a fair 
basis for comparison of each of the algorithms. The total front end 
and back end times are not included, although considerable effort was 
spent in parallelizing this portion of the code. The reason is that the 
optimization of this portion of the code would be handled differently 
depending on the application intended. 

Next we describe a number of different overhead factors and their 
effects on a parallel program. 

4.3.2. Overhead of Parallel versus Serial 
Implementation 

Factors which are introduced by the difference between the unipro­
cessor and multiprocessor version of the programs include: schedul-
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ing, memory latency, communication utilizing block transfers, over­
head due to adaptation of the algorithm for parallel execution, load 
imbalance, contention, and synchronization. In this section, we 
describe each overhead factor and the testing method used to evaluate 
each factor's impact on the algorithms presented in chapter 5. The 
testing method used to determine each overhead factor is generally 
common to all of the parallel algorithms presented in chapter 5, but 
some differences in measurement occur due to the nature of these 
algorithms. These differences are elaborated upon at their point of 
reference in chapter 5. All of the testing to evaluate these overheads 
was done at 96 processors since the maximum number of processors 
used provides the worst case scenario as far as the overhead factors 
are concerned. It should also be noted that this testing was done 
separate from the performance timing for the algorithms. 

The different overhead factors discussed in this subsection are 
determined as a percentage of the total processor-time space, as 
shown in figure 4.2. 

Each processor may take a different amount of time to complete 
its work. The leftover time is idle time, as is illustrated in the figure. 
The time when the last of P processors finishes its work is T(P) or just 
Tp. There may be a number of different ways of evaluating the 
overhead factors, but the method chosen here is to determine a 
percentage value of the overhead with respect to the total processor­
time space (P * Tp ). This expression is used as the denominator in the 
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Figure 4.2: Processor-time space 
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equations since a processor must wait until all other processors are 
finished before it is able to work on some other job outside ofthe given 
program. The overhead percentage value should be taken to mean 
the effect of the overhead on the total processor-time space. 

4.3.2. 1. Scheduling 

In discussing scheduling overhead, we first describe our definition of 
this effect and then go over the mechanism by which tasks are 
assigned in the Uniform System. Scheduling overhead in a parallel 
context refers to the time it takes for a given task to be scheduled by 
the system. In this case, it is assumed that a parallel environment 
has already been started and a set of tasks are available for 
execution. Scheduling is accomplished by use of a critical section 
which must be executed by one processor at a time. The time of 
scheduling overhead for a single task is the amount of time it takes to 
run through this critical section. 

Scheduling in the Uniform System works by dynamic task 
assignment, as stated previously. A worker routine constitutes an 
individual task that is called with a given parameter list. The 
example used previously referred to a parallel version of a for loop as 
shown below: 

for (i 0; i < range; i++) 
do_work(i); 

The Uniform System code to accomplish this involves calling the 
generator as shown below: 

GenOni(do_work, range); 

One processor calls the generator GenOni, and then all processors 
request work from this generator. The non-deterministic nature of 
dynamic scheduling insures that processors are assigned individual 
iterations of the for loop and execute the routine do_ work for their 
given iteration. The Uniform System provides other generators which 
can generate tasks in a more complex manner; this example just 
illustrates how a simple one works. 

The Uniform System generator mechanism is fairly efficient and 
easy to use, but there do exist some overheads. The real overhead in 
scheduling that occurs in parallel programs is the entering of the 
critical section for obtaining the next task. In this case, scheduling 
tasks consists of incrementing the shared loop index and assigning 
the next task to an available processor. Using the Uniform System, 
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parallel programs: tree, 
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mountain. 
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Plate 2a. Rectangular, data 
non-adaptive decomposition 
scheme. 

Plate 2b. Top-down, data 
adaptive decomposition 
scheme. 

Plate 2c. Task adaptive 
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the time has been measured as 24 J.l.sec on the GP1000 for a single 
task (call this Tcrit>· The scheduling is an inherent sequential 
process, so a task must take longer than P * Tcrit for a bottleneck due 
to scheduling to be avoided. On 96 processors, the minimum task 
time which would limit bottlenecks due to scheduling needs to be at 
least 2.3 msec (denoted Tsched). The scheduling overhead for the 
various images is the total time devoted to scheduling tasks divided 
by the total parallel execution time, as shown in equation 4.5. 

p . 1 

L i • T crit + W - P) • T crit 

Scheduling%= ..:.i=....:0'----------* 100 % 
Tp •P (4.5) 

For the ith processor to start working, it has to wait for (i - 1) 
tasks to be scheduled before it. It therefore takes a total time of (i • 
Tcrit> to be scheduled. Summing this up for all processors yields the 
first term in the numerator in equation 4.5. The second term is the 
additional scheduling time required for each of the (N - P) tasks left 
after the first one is scheduled for each processor (N is the total 
number of tasks to be scheduled) assuming that each task takes more 
than (P- 1) • Tcrit time to execute. Thus, a key factor in evaluating 
scheduling overhead involves making sure that no bottleneck results 
from a task taking less than (P- 1) • Tcrit to execute. For a graphics 
algorithm, the minimum task time is based on sending the 
background color to the virtual frame buffer. Therefore, this time is 
measured to see ifthere is potentially a bottleneck. The denominator 
is the total processor-time space where T p is the ending parallel 
execution time on the maximum processor configuration. 

4.3.2.2. Memory Latency 

Memory latency in a multiprocessor refers to the extra time required 
to send (write) or send and receive (read) a request for/from remote 
memory. This time is somewhat dependent on the number of switch 
nodes the message must travel through, but since we are dealing with 
a 4 column switch on the test GP1000, the times measured are as 
follows: a 4 byte read takes 7 J.l.sec, while a 4 byte write takes 4 J.l.sec. 
In contrast, a local read takes 0.53 J.l.sec, while a local write takes 0.38 
J.l.SeC. 

Memory latency can be measured by counting the number of 
remote references during program execution and adding up the 
additional time of remote versus local referencing time required for 
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all of those references. This is done by using one of the Uniform 
System library calls which can detect if a given shared memory 
reference is a reference to a local or a remote memory module. The 
memory latency overhead (latency %) is determined by using equation 
4.6. 

[ # refs * (T rref (P) - T lref (P}}] 
Latency % = * 100 % 

~·P ~~ 

In the equation, #refs is the average number of remote references 
per task, T rref refers to the remote reference time, Tzre{ refers to the 
local reference time, and, as before, Tp is the ending time in parallel 
on the maximum processor configuration. 

4.3.2.3. Communication 

Although any kind of message traffic across the network could be 
termed communication, with regard to the BBN Butterfly, we are 
specifically referring to messages which are initiated using the 
machine's block transfer mechanism. This mechanism is built into 
the hardware of the GP1000 switch and allows a message path to stay 
open as long as necessary in order to get the message through. This 
requires a one time setup cost for the message of 8 J.lSeC (Tsetup) plus a 
cost of 0.25 JJ.Sec per byte transferred (Tbt> [BBN89b]. To alleviate 
blocking in the switch, block transfers are limited to 256 bytes and a 
software mechanism is provided to allow the programmer to use block 
transfers of longer messages. Since this cost is incurred once for a 
block of data and thereafter the data element is referenced locally, it 
is prudent to use block transfers if data can be partitioned into 
contiguous chunks. The cost of transferring these messages is the 
communication overhead but after this is taken into account, memory 
latency is no longer a factor since the data is available locally. 

This overhead factor is derived by measuring the total number of 
bytes transferred in the system. Using the data for block transfer 
time for this number of bytes, taking into account that each message 
is a maximum of 256 bytes long, the total communication time is 
derived and shown in the numerator of equation 4.7. 

Comm. Overhead % = 
(# bytes • T setup) + (#bytes • Tb~ 

256 * 100% 
Tp • p (4.7) 
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4.3.2.4. Overhead due to Adaptation for Parallelism 

It is generally necessary to either modify a serial algorithm with 
parallel constructs or develop an entirely new parallel approach to 
run a program on a multiprocessor. There is an inherent overhead 
built into this new parallel algorithm which is not present in the 
serial algorithm. New constructs and task setup instructions used to 
achieve parallelism are required for the parallel implementation. For 
numerical parallel algorithms, this overhead is typically very small. 
For a graphics display algorithm, one of the benefits of executing in a 
sequential fashion is compromised: graphical coherence. When a 
large number of tasks is required, such as on 96 processors, the loss 
due to coherence may become a significant factor. The overhead due 
to adaptation for parallelism is measured as part of the total 
processor-time space as well; it primarily consists of loss due to the 
lack of coherence. The other portion of this overhead involves the 
additional setup costs for each task prior to its execution on a 
processor. 

The overhead due to lack of coherence is directly related to the 
number of tasks in most cases. That is, if more tasks are used, more 
coherence is lost. Since this overhead is measured at the maximum 
processor configuration (which represents the most tasks for a 
particular algorithm), the loss due to coherence is highest and this 
represents the worst case scenario. 

Different algorithms may have different amounts of this 
overhead. This fact should be taken into account when looking at the 
speedup graphs of a parallel algorithm. If the speedup curve is nearly 
linear but the overhead due to adaptation is large, the performance of 
a given algorithm may not be good in comparison to other algorithms 
if the other parallel algorithms have smaller overheads. If the 
speedup in an algorithm with a small loss due to coherence is better 
than another algorithms' speedup, it will eventually provide better 
parallel performance as P increases. . 

The overhead due to adaptation, or more accurately, the code 
modification overhead, can be measured in the following manner. A 
sequential algorithm with no code modification overhead is analogous 
to the situation of TMIN(l). Recall that Tx(y) refers to a situation 
where x is the number of memory modules and y is the number of 
processors. If more than one area is used, the number of areas is 
subscripted afterward so that T x(y )r refers to using r areas with x 
memory modules on y processors. The actual amount of work on P 
processors is thus Tp(P)R•P· where R is the granularity ratio (R = 
#tasks I P). To simulate this work without any contention effects, 
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TMJN{l)R•P is measured since this gives the time overhead and ifthe 
communication cost is deducted, the actual computation cost is 
derived. The same is done for an essentially sequential task, which 
corresponds to TMJMlh. Subtracting the difference between these 
two values results in the exact extra work which is involved in setting 
up the tasks necessary for parallel execution. For instance, the 
coherence lost in both the vertical and horizontal directions is 
inherently included in this value. Equation 4.8 is used to measure 
this overhead based on the work assigned to P processors. 

Code Mod. Overhead%= TMIN(l)R.P- TMIN (1)1 * 100% 
Tp • P (4.8) 

4.3.2.5. Synchronization 

Arvind and Ianucci [Arvi86] identify several basic synchronization 
situations: 

a) Producer-Consumer - a data structure is produced by a given 
task to be used by another task on another processor. In order 
to insure that the consumer waits for the producer, synchro­
nization must occur. 

b) Fork and Join - ajoin operation indicates that two or more 
tasks have completed from a previous fork. To implement the 
join, a synchronization event must occur. The fork operation is 
basically a scheduling overhead, as discussed previously. 

c) Mutual Exclusion - when two or more parallel tasks wish to 
execute a given region that only one is allowed in, this presents 
a critical section of the code which requires synchronization. 

In the algorithms presented here, these situations do not come up 
that frequently in the tiling portion of the programs. The producer­
consumer situation does occur in one algorithm but for the most part, 
the data structures used by the algorithms are mutually readable and 
very few are read-write. The overhead due to synchronization is 
measured as follows. The time in which a processor waits at a 
semaphore lock is summed up throughout the system. This time is 
indicated in the numerator in equation 4.9. The denominator is the 
total processor-time space as before. 
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Synchronization % = ---'-i=-
1---* 100% 

Tp •P (4.9) 

In the equation, T lynch refers to the synchronization wait time for 
task i. The fork operation occurs at the beginning of a generator, 
while the join operation occurs at the end of a generator. These 
factors are measured as part of the scheduling overhead and thus will 
not be a part of the synchronization measurement. Mutual exclusion 
is used for serial sections in the programs, but the measurements 
given here ignore the small serial sections at the beginning of the 
program. 

4.3.2.6. Network Contention 

Network contention refers to the slowdown incurred when more 
than one message attempts to use the same switch node at the same 
time. This can be categorized as the probability that a memory 
request will block at a switch node due to another message already 
using the given path. BBN refers to this phenomenon as switch 
contention in their literature. Tree saturation [Kuma86] will not 
occur since the Butterfly interconnect is a non-blocking network. 
That is, the Butterfly switch forces uncompleted messages to retreat 
back to their source rather than buffer-up behind a blocked switch 
node. An alternate route is then tried for the message after some 
random delay time. The amount of time taken to serve a given 
request will increase as more messages enter the network since it 
may take longer to find a free path in this situation. In fact, if we 
distribute the dataset uniformly throughout the processor memories, 
this probability increases non-linearly as P is increased since the 
number of switch paths in the Butterfly grows as log(P) while the 
number of processors grows linearly. 

Network contention in the different algorithms is measured in the 
following manner. First, the time for task i is measured with P active 
processors (in this case, P = 96). Then, the time for task i is measured 
with only a single processor active, but using the memory of MIN 
processors (so no paging occurs). The time difference between the two 
scenarios is a result of contention in the P processor case, but no 
contention in the single processor case. Latency and/or 
communication costs are factored out of the times in each situation. 
Equation 4.10 shows the formula for computing network contention. 
The superscripted i refers to a particular task i. 
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''I_" ( T(Pi - T(li] 
Switch Contention % = _.!:i=O,!.I ______ * 100 % 

Tp •P (4.10) 

Another form of contention which is more specific to a particular 
switch location is called hot spot contention. This occurs when a 
disproportionately large amount of references are aimed at either: 1) 
a particular memory location or 2) a particular switch node. The first 
situation can usually be rectified by copying this data item to all 
memory modules in the system except in situations in which the data 
item is writable where there would be no solution. This copying 
involves the use of the network which can contribute to other 
contention problems. The second situation is less easily identifiable, 
but scattering of the shared data structures uniformly throughout the 
network is the usual way to solve this problem. Both types of 
solutions are used when possible in the algorithms described in this 
book and no adverse effects due to hot spot contention were noticed. 

4.3.2. 7. Load Imbalance 

Load balancing is the primary focus of most designers of parallel 
programs. It is usually desirable for all processors to finish working 
on a problem at the same time so that none are left idle while others 
are busy. This is almost impossible to achieve in general practice, 
though. The idle time delay in which processors wait until all tasks 
are finished is due to load imbalance. Any solution used to solve this 
problem should take into account the performance of the given 
machine with regard to scheduling time, its CPU speed, and of course 
parallel program decomposition. 

In measuring the contribution of load imbalance in each 
algorithm, the finishing times of each processor are noted. The 
average of these finishing times is the theoretical ideal finishing time 
if load balancing is perfect. To calculate the percentage overhead, the 
difference in time between the last processor's finishing time and the 
average of all processors is recorded. This difference is used as the 
numerator for calculating the load imbalance percentage, as shown in 
equation 4.11. This is essentially the same as adding up the total idle 
time at the end of the computation for all processors in the system. 

Load Imbalance % = T l7lll% • p - T aug • p * 100 % 
Tp•P (4.11) 
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It is very difficult in reality to isolate how well a particular 
algorithm is load balanced. A problem with equation 4.11 is that it 
does not delete the effects of network contention. In fact, it may turn 
out that this overhead percentage is artificially increased or 
decreased in a situation where contention is significant. Although we 
cannot isolate how load balancing would be treated in each instance if 
contention is not present, the load balancing percentage determined 
by equation 4.11is a rough indication of this overhead factor. This 
allows direct comparisons to be made between the different 
algorithms by using a common measurement parameter. 

4.4. Summary 
In this chapter, we present the serial algorithm on which all of the 
parallel algorithms are based. A detailed description is provided of 
each of the important phases of the program, elaborating upon the 
data structures which are common to all the implementations in their 
use of shared memory. Information is given about the test scenes 
used for timing purposes. Next, methods describing performance 
analysis for the parallel programs are elaborated upon. The 
traditional performance measurements of time, speedup, and 
efficiency as well as other overhead factors are described. 

In the next chapter, these additional overhead factors are 
quantitatively presented in an analysis of parallel graphics display 
algorithms to show where the performance degradation actually 
occurs. In addition, the different parallel partitioning schemes 
identified in chapter 2 were implemented on the Butterfly, and their 
results are presented. An analysis of their performance is included in 
regard to: the execution time of the tiling section, speedup, and effect 
of the overhead factors. 
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Comparison of Task 
Partitioning Schemes 

In this chapter, we describe a number of parallel decomposition 
schemes and our implementations of these schemes on the BBN 
Butterfly GPlOOO. In these algorithms, tasks are assigned to regions 
of image space, but there are a number of different ways of 
determining the size and number of these regions. Task partitioning 
can be divided into two main techniques which are discussed in this 
chapter: data non-adaptive and data adaptive. In the data non­
adaptive method, tasks are determined without regard to the input 
data set. In the data adaptive approach, the number and size of tasks 
are based on the input dataset. The data non-adaptive partitioning 
scheme relies on dynamic scheduling of tasks onto processors. These 
tasks are determined in a simple manner, so little overhead is needed 
prior to tiling. Load balancing is achieved by creating enough tasks 
so that the tasks left to work on at the end of the computation are 
fairly small. Data adaptive partitioning in a graphics context involves 
creating tasks based on the location of the data elements on the 
screen. The basic idea in this method is that tasks are chosen prior to 
tiling, so that each task takes approximately the same amount of time 
to finish. Extra work is required to set up these tasks prior to tiling 
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but the benefit of this is reduced scheduling overhead. For each of 
these methods, one can assign a number of tasks equal to the number 
of processors (T = P) or greater than the number of processors (T > P). 
This is illustrated in figure 5.1. There is also an important extension 
to the data non-adaptive technique known as task adaptive. 

Each section in this chapter describes a different task partitioning 
scheme in detail The algorithm implementations which are 
discussed in chapter 2 are presented in detail here and categorized 
according to their task partitioning scheme. Each implementation is 
then evaluated according to the parallel program measurements of 
time and speedup. Then, the overhead factors of scheduling, memory 
latency, communication, network contention, load imbalance, 
overhead due to adaptation for parallel execution, and 
synchronization are quantified for each algorithm. The results from 
this analysis help form a basis for comparison of all of the 
implemented approaches. The values reported in this chapter pertain 
only to the tiling section of the parallel programs. In the next 
chapter, a comparative analysis of the operations required prior to 
tiling is included along with the time of the tiling section. 

The various schemes are described in the following sections. We 
analyze the implementations with regard to the issues discussed in 
the previous chapters. The task partitioning schemes as discussed in 
this chapter are given in the following order: data non-adaptive 
approach, data adaptive approach, and task adaptive approach. 

Task Partitioning 

I. Data Adaptive II. Data Non-Adaptive 

~ ~ 
A. T=P B. T>P A.T=P B. T>P 

1\ 1\ 
1. Regular l. Task 1. Regular l . Task 

Areas A.dllptiv~ Scanlin.. A.dllptiv. 
Ext~IUion. Areas E.xt~tUiOII 

Figure 5.1: Task partitioning techniques 
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5.1. Data Non-Adaptive Partitioning Scheme 
The data non-adaptive partitioning scheme relies on subdividing the 
image space regardless of the screen location of the polygon datasets. 
When this method is implemented under the Uniform System, it 
employs a dynamic scheduling mechanism whereby tasks are 
scheduled onto processors as each processor is available for work. 
Each task is a single region or area; a single scan line is a task in the 
first method, and a small rectangular region is a task in the second 
method. The granularity ratio, which is the ratio of total areas to the 
number of processors (R=#tasks/ P), must be chosen carefully since it 
can have a significant impact on load imbalance and execution 
overheads. We will see how this value affects the overall performance 
in the decomposition schemes outlined below. 

In this partitioning method, image space is broken up into a 
number of rectangular areas, all the same size. The two methods 
from chapter 2 which were implemented are Hu and Foley's dynamic 
scan line scheme and the rectangular area scheme suggested by 
Kaplan and Greenberg, as well as Whelan. 

5.1.1 . Scan line Decomposition 
A scan line decomposition is probably the most natural parallel 
partitioning scheme. It was first suggested by Hu and Foley in their 
paper describing a hardware parallel rendering machine [Hu85]. The 
basic idea involves partitioning the image space such that each scan 
line is a task by itself (T=#scan lines). The granularity ratio R varies 
asP is increased since Tis constant for all values of P. The algorithm 
has less flexibility than if T could be increased with P since load 
balancing is limited as this number is approached by P. Some details 
regarding the implementation of this decomposition in parallel are 
given here. 

As in a serial scan line algorithm, a y-bucket list is used to store 
the polygons relevant to a particular scan line. Additional work is 
required in constructing the y-bucket data structure for a parallel 
implementation because all polygons relevant to that scan line are 
stored in a given y-bucket, not just those that start on a given scan 
line. The set of operations necessary to construct this shared data 
structure is performed in the front end prior to tiling. In reference to 
a conventional serial algorithm, extra memory is required for the y­
bucket list in addition to the extra time necessary to store the data. 
These extra requirements are small when compared with the benefit 
gained through parallel processing. 
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The storage and access for they-bucket list is accomplished in the 
following manner. Only one processor works on a given scan line, so 
no synchronization is necessary for extracting the polygons from this 
data structure. They-bucket list is stored as an array corresponding 
to the number of scan lines, where each element of the array is a 
pointer to a linked list of the polygons relevant to that scan line (a 
single y-bucket). Since all processors need to reference this array of 
pointers, it is copied to each processor's local memory to avoid hot spot 
contention. Prior to tiling, the links for each scan line are loaded into 
the y-bucket data structure and scattered throughout the memory 
modules; thus there is only one copy of each link. This achieves a 
uniform distribution of the polygonal dataset, without adding 
contention. They-bucket array is read-only in the tiling phase ofthe 
program, which is why it can be copied to all the processors. The 
links could also be copied, but the time to do so and the memory 
required make this inefficient. 

Hu and Foley's research showed that dynamic assignment of 
single scan lines to processors resulted in better performance than 
interleaving groups of successive scan lines statkally. The reason the 
dynamic technique was superior was that it minimized load 
imbalance, and this had a greater impact on performance than 
maximizing coherence in a group of contiguous scan lines. This 
dynamic assignment method was implemented and tested on the 
Butterfly to evaluate the algorithm on a real machine. A graph of the 
times for each of the test images is given in figure 5.2. 

It is important to note that Hu and Foley achieved their results 
from simulation data rather than from an actual implementation. In 
addition, their design was intended for hardware implementation and 
required all the data to be present in each processor, while we are 
using a more flexible memory model in a software algorithm. 
Consequently, issues like remote memory referencing come into play 
in this implementation, whereas Hu and Foley did not analyze their 
algorithm with regard to these issues. The results given here 
compare favorably with their results, although different test cases 
were used and exact speedup was not recorded in their paper. The 
relative speedup for the images is shown in figure 5.3. 

The equation to calculate speedup is known as Amdahl's law and 
is shown in equation 5.1 where P is the maximum number of 
processors used (in this case, P = 96). As we explained in the previous 
chapter, all the tests were started above one processor, so the actual 
speedup must be estimated. The estimated speedup is derived by 
using TMIN(l) in the numerator of equation 5.1. This value refers to 
the fact that the program is run on one processor using MIN memory 
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modules with a deduction for the communication cost. This was 
shown in equation 4.3 in the previous chapter. 

Speedup - T(l) 
T(P) (5.1) 

We will now discuss the various issues associated with parallel 
computation, described in section 4.3.2 for this algorithm. As a guide 
to the reader, the range of percentage contributions for each overhead 
based on the minimum and maximum overhead of the four test 
images is included in parentheses after the section title. The 
overhead factors determined are based on the percentage of the 
processor-time space using the equations given in chapter 4. The 
appendix contains all of the results from the tests used to determine 
these overheads. 

In the previous chapter, a description is given of how each over­
head factor is actually measured. Due to the variance in the way each 
algorithm works, some changes in the way these overheads are mea­
sured is required. These changes are described as necessary here. 

All of the tests were run on a maximum of 96 processors. Since 
this maximum value of P represents the worst case scenario in rela­
tion to the overhead factors, these factors are evaluated at P = 96. 

5.1.1.1. Scheduling (0.002%- 0.01%} 

Scheduling in the parallel scan line algorithm proceeds by calling a 
generator procedure which is provided by the Uniform System. It is 
equivalent to a parallel for loop based on the number of scan lines in 
the final image. Processors extract iterations from the generator as 
each processor is available to work on a task. The minimum time 
that it takes to render a scan line occurs when no polygons are 
present and only the background color is displayed. The average time 
to calculate background for a scan line of 640 pixels and then write 
the scan line to the virtual frame buffer is Tback = 2.0 msec. 

As stated in section 4.3.2.1, the time to schedule the first task on 
each of the 96 processors is 96 * Tcru (the critical region time Tcrit = 
24 J.I.Sec) which is 2.3 msec and is denoted as Tsched· Tsched is the 
total serial scheduling time overhead. It is slightly larger than Tback 
(the background color rendering time), so it is possible to create a 
bottleneck if a very high proportion of the tasks to be executed are 
background tasks. 
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Figure 5.2: Scan line data non-adaptive perfonnance 
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Figure 5.3: Speedup for scan line data non-adaptive algorithm 
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This bottleneck is unlikely to occur in practical use and would 
only degrade overall performance by a fraction of a millisecond if it 
should occur. Using equation 4.5, we plug in values of P = 96, N = 
484, and Tent= 24 JJ.Sec as shown in equation 5.2. Note that (P * (P-
1))/2 can be substituted for the summation in equation 4.5. Tp is the 
parallel execution time on 96 processors for each image . 

..:...(9-5-·-96~) • 24 JJ.Sec + (484- 96) • 24 JJ.Sec 
Scheduling% = --'2!:!......_ ___________ _ 

Tp • 96 (5.2) 

The overhead due to scheduling in the parallel scan line 
algorithm ranges from 0.002% for the mountain image to 0.01% for 
the stegosaurus image. 

5.1.1.2. Memory Latency (3.0%- 5.6%) 

Recall that memory latency is the additional time delay incurred 
when a reference is made to a remote rather than a local memory 
module. The latency is calculated using equation 4.6, by using the 
total number of remote references during the computation to 
determine the extra time spent in accessing non-local data. 

We have calculated the latency overhead percentage for the paral­
lel scan line algorithm at 96 processors for the various images to be a 
minimum of 3.0% for the stegosaurus image and up to the maximum 
of 5.6% for the mountain image. Although it might be expected that 
the larger datasets require more remote references, it is interesting to 
note that the percentage overhead due to latency also increases with 
dataset size. In other words, even though the larger datasets require 
more execution time, the latency requires an even greater percentage 
of this time. This suggests that latency might become a major 
degradation factor for particularly large input datasets. 

5.1.1.3. Network Contention (8.9%- 23.1%) 

Network contention is a function of the probability that a conflict will 
occur in the interconnection network for a particular memory 
reference. AsP is increased, the likelihood of a blocked network path 
increases since the number of remote references is proportional to p2 
while the number of switch paths only increases by P •log(P). In the 
appendix, the network contention is quoted as two percentage values. 
The first value, denoted "% of Total-Processor Time Space," is 
measured using equation 4.10, as given in the previous chapter. The 
second value is calculated as described next. 
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We assume that the measurements used for load imbalance, 
memory latency, communication, code modification, and scheduling 
are all somewhat accurate. This is a reasonable assumption since 
with the exception of load imbalance, all of these overheads can be 
measured independently from the others. Load balancing is affected 
by all of the overhead values, but this cannot be avoided in normal 
timings or in specialized performance measurement situations. The 
value given for load imbalance is probably a culmination of other 
factors as well. Network contention is a completely separate matter. 
Although the measurement technique used for this culprit should be 
somewhat indicative of the effect of this overhead, the method given 
in chapter 4 does not involve a true measurement of the actual 
network contention. Doing so would require hardware monitoring 
which can only be done by the manufacturer. Therefore, the 
assumption given above is used to help estimate the actual network 
contention. This is done by subtracting the sequential time and 
overheads, which are assumed to be accurate from the total processor­
time space, as is shown in equation 5.3. 

Contention= T • p -[TMIN(l) +Code Mod.+ Latency/Comm. + ] 
P Load Imbal. + Synch. + Sched. (5.3) 

In other words, we assume that the total of the sequential time 
plus all overhead factors is exactly the parallel execution time. 
Therefore, if all other overheads are deemed to be accurately 
measured, then the only overhead left is contention. In most cases, 
our measured value of contention using equation 4.10 and the 
calculated value of contention did not differ by a large amount, 
meaning that the measurement technique is fairly reasonable. This 
can be seen in the values given in the appendix. This calculated value 
for contention is given in the header of this subsection and the other 
algorithms' subsections as well. 

Since this algorithm requires a large amount of remote references, 
as shown above, it is likely that the contention is fairly high as well. 
The results from the tests bear this out. Based on the scan line 
algorithm overhead measurements, the calculated network contention 
ranges from 8.9% for the tree image to 23.1% for the stegosaurus 
image. 

5.1.1.4. Load Imbalance (6.8%- 10.4%) 

It is hard to obtain good load balancing in this task partitioning 
scheme since the number of processors comes close to the number of 
total tasks. In this case, 96 processors and 484 scan lines provide 
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approximately a 5 to 1 ratio of tasks to processors. Since it is entirely 
possible that any given task will take more than 5 times longer than 
another task, it is possible that load balancing will not be adequate 
with this number of tasks. For 96 processors, the load imbalance for 
the test images has been measured from 6.8% for the mountain image 
to 10.4% for the laser image. 

5.1.1.5. Code Modification (4.9%- 9.8%) 

Overhead due to parallel processing is fairly significant in this 
algorithm. The main contributor to the overhead in this rendering 
algorithm is the loss of coherence incurred by starting a new scan line 
in parallel rather than continuing execution on the same processor. 
While this factor is constant (since the number of tasks is constant 
regardless of the number of processors used) and will not affect the 
speedup of the parallel algorithm, it can be used to determine the 
relative performance of this algorithm versus the other parallel 
algorithms. The overall percentage effect due to code modification 
varies from 4.9% for the tree image to 9.8% for the mountain image. 

5.1.1.6. Explanation of Results 

The two primary contributors to performance degradation in this 
algorithm include overhead due to code modification and network 
contention. Memory latency and load imbalance also degrade overall 
performance, although to a lesser degree. The percentages for each of 
the major overhead factors as related to each test image are given in 
figure 5.4. The effects of scheduling are so minimal in comparison to 
the other factors that it is not worth consideration as a problem area 
here. 

Recall from the previous chapter that the dataset sizes are as 
follows: 

1. Stegosaurus 
2. Laser 
3. Tree 
4. Mountain 

9. 7K polygons 
46.3K polygons 

106.4K polygons 
131.1K polygons 

As one can see from the figure, latency increases with dataset 
size. The overhead measured for load imbalance is stable, although it 
is reduced slightly for the mountain image. Since the mountain data 
is more uniformly spread across the screen, this may be the reason 
that load balancing is better for this image than the others. 
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It seems remarkable that even with an average of only 5 tasks per 
processor using test cases in which the data is not uniformly 
distributed, the load imbalance is less than 10% for most of the test 
images. It is certainly true, however, that if the number of processors 
were to be increased significantly beyond 96, load balancing would 
suffer due to a reduction in the number of tasks available for parallel 
execution. This provides a motivation to seek algorithms which are 
better able to handle large processor configurations as well as 
variable size resolution images. 

Lack of vertical scan line coherence is the primary contributor to 
the overhead in adapting this algorithm for parallel processing. This 
is manifest as the total degradation due to code modification. The 
code modification overhead is less than 10% for all the test images. 
The actual time due to code modification is invariant to the number of 
processors in the system. Unfortunately, as P is increased signifi­
cantly, load balancing tends to suffer to a large degree in this 
algorithm. A better algorithmic solution would be one which does not 
have this overhead effect. 

Network contention is a major contributor to performance 
degradation, and it increases as a function of the number of 
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Figure 5.4: Degradation factors for scan line decomposition for (P = 96) 
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