
48 Overview of Parallel Methods for Image Genemtion

machine rather than simulated, it is also possible to determine
quantitatively how well each implementation has succeeded.

2.3. Conclusions
In the first section of this chapter, a number of criteria are given to
evaluate the different parallel decompositions which are presented in
the second section. These criteria for evaluation include granularity,
type of parallelism, use of coherence, load balancing characteristics,
methods of data access, and scalability.

In the second section, a number of past as well as yet untested
possible parallel approaches are presented and categorized into a
taxonomy. The image space pixel decompositions based on areas of
pixels seem to hold the most promise for high performance on an
MIMD architecture. In chapter 5, the implementations of approaches
are described in an effort to conclusively show that one technique is
optimal. Since most of the past work has involved simulations and
not multiprocessor implementations, these implementations allow us
to compare different task decompositions and memory referencing
strategies on an equal basis for the first time.

TEXAS INSTRUMENTS EX. 1011 - 58/229

3

Issues in Parallel
Algorithm
Development

In this chapter, different advanced parallel computer architectures
are compared according to their suitability for implementation of a
graphics display algorithm.

In the first section, the architectures are presented and analyzed
with regard to the development of a parallel graphics rendering
algorithm. Although SIMD architectures (single instruction, multiple
data path) have been used for graphics applications in the past, this
mode of operation generally requires task execution in lock step
fashion. Work done at the pixel level can be accomplished in this
manner, but higher level tasks are not well suited to this type of
parallel approach.

The type of architectures investigated here is restricted to MIMD
machines (multiple instruction, multiple data path) since different
tasks can proceed simultaneously under separate control flow. These
machines can be configured with small to large processor counts,
allowing flexibility in performance versus cost. An inexpensive
MIMD architecture can be obtained for as little as $10,000, while

49

TEXAS INSTRUMENTS EX. 1011 - 59/229

50 Issues in Parallel Algorithm Development

extremely high performance machines can cost several million
dollars. The algorithms presented here are designed to be useful on a
small system containing only 2 processors, as well as a large system
of 100 or more processors.

The second section involves a comparison of the two main
architectural choices in MIMD hardware. These two methods,
message passing and shared memory, are analyzed with regard to a
parallel graphics implementation. Finally, we describe the
programming environment which is specific to the BBN Butterfly
multiprocessor since this machine was chosen for the implementation
comparisons here.

3.1. Architectural Choices
There are currently a number of commercial message passing
architectures (Intel iPSC, NCube, Inmos transputer based machines)
and shared memory multiprocessors (Sequent Balance, Encore
Multi max, Alliant F'X/2800, and BBN Butterfly1) on the market.
Coarse grained MIMD architectures such as those offered by Cray,
Convex, Silicon Graphics, and others allow only limited parallelism.
The issues in developing programs for the latter machines are not as
pronounced as for the previously mentioned machines due to their
small processor counts (typically 2 to 8 processors).

In this section, we describe a few specific commercial machines to
illustrate the differences among the classes of architectures. These
differences allow us to evaluate how well the various types of
computer image generation algorithms can be expected to run on a
variety of parallel computers.

The first subsection describes the impact of using conventional
MIMD hardware to perform computer graphics rendering. Different
issues by which the architectures are evaluated are given in this
section. The amount of memory used in a graphics application, as
well as the high data movement involved in this application,
influences the choice for the appropriate architecture suitable for this
type of application.

Distributed memory architectures are useful for applications
where the data can be partitioned initially among the nodes2 of the
system with little communication thereafter. These types of machines
typically have a high message passing cost, and any time spent

lBBN Advanced Computers, Inc. is no longer marketing the Butterfly,
although it is still being supported.

2The terms processors and nodes are used interchangeably here.

TEXAS INSTRUMENTS EX. 1011 - 60/229

Architectural Choices 51

communicating is time wasted from computation. The Intel
hypercube family of machines are examples of distributed memory
architectures in which the processors are connected in a hypercube
topology. Although hypercube connections are a common design, Intel
is also experimenting with a mesh design on what is currently
reported to be the fastest computer in the world: the prototype Intel
Touchstone machine installed at California Institute of Technology.

The BBN Butterfly contains physically distributed memory, but it
is classified as a shared memory architecture since remote memory
can be logically shared. The Encore Multimax is an example of global
shared memory architecture which uses caching to speed up
references to the memory modules. These machines are analyzed as
representative examples of their genre in the second subsection.

3.1.1. Impact of Graphics Rendering on System
Requirements

Utilizing a multiprocessor for an application such as computer
graphics rendering imposes certain demands on the system that other
applications might not introduce. The large amount of data
movement in this type of algorithm presents unusual problems for
certain types of architectures. Following are two characteristics of
graphics display algorithms which can affect the performance of the
computer architecture to be used for implementation of the software
algorithm.

3. 1. 1. 1. Image Quality

In this book, we are primarily interested in trying to achieve good
performance when rendering highly complex images in a graphics
display algorithm on a parallel processor. This increase in image
complexity can arise from several factors given in [Whit89]:

Anti-aliasing. This is a correction mechanism for the typically
inadequate sampling of high frequencies in a computer
generated scene. More information about the geometric
structure ofthe scene must be available to do anti-aliasing, and
this affects the size of the data structures and the amount of
information which must be shared by each processor. In
general, polygon fragment or sub-pixel information must be
stored to perform anti-aliasing.

TEXAS INSTRUMENTS EX. 1011 - 61/229

52 Issues in Parallel Algorithm Development

Mapping. The data structures required for texture, bump, and
reflection mapping are very large and must be shared by a
large number of processors, which increases the communica­
tion between processors. These mapping operations enhance
the quality ofthe image by simulating different types of surface
attributes for the objects in the scene.

Shadows. Some shadow casting algorithms require data struc­
tures as large as those required for texture, bump, and
reflection mapping, with the same resultant communication
problems. If a Z-buffer shadow algorithm is used, the visibility
calculations are repeated for each light source and this adds
time complexity [Will78]. The shadow volumes technique
requires additional geometric data and this adds to the
memory requirement [Crow77].

Resolution. Instead of generating 640 x 4843 images, 1280 x 968
or evengreater pixel resolution is desired to enhance image
quality.

Data Elements. An increase in the number of geometric elements
provides enhanced realism in the scene.

Anti-aliasing, mapping, and shadowing involve increasing the
complexity of the rendering calculations. Increased resolution raises
the number of rendering calculations necessary since more pixels are
displayed. Shadow casting and higher resolution increase the overall
realism in the scene description by providing more detail. Each factor
which increases image quality introduces distinct problems into the.
parallelization process. The random access memory referencing
patterns associated with mapping and shadow casting can degrade
performance significantly if this data is not managed effectively. The
implementation of these factors in a parallel environment is strongly

· dependent on the decomposition and general memory referencing
scheme chosen. Because this book focuses primarily on the analysis
of the decomposition and memory referencing strategies, the focus
here is on anti-aliasing, resolution, and number of data elements,
leaving mapping and shadowing to be analyzed in a future work.
Both greater resolution in image size and larger datasets require
more memory to be available in the system.

If the frame buffer is stored internally in RAM and resolution is
increased from 640 x 484 to 1280 x 968, the memory storage require­
ments quadruple. If a Z-buffer [Catm74] or A buffer [Carp84) hidden

3This refers to a display resolution of 640 pixels across by 484 pixels
down the screen, which is standard video resolution.

TEXAS INSTRUMENTS EX. 1011 - 62/229

Architectural Choices 53

surface algorithm is used, even more memory is needed due to the
additional data stored per pixel. For a 1280 x 968 image maintaining
4 bytes for red, green, blue, and coverage in addition to 4 bytes for the
z-value, 8 megabytes of memory is needed. This memory needs to be,.
accessible by all of the processors. ·.,.

An increase in the number of geometric elements also requires a
corresponding linear increase in the memory required. If we assume
that the elements used are quadrilateral polygons, each polygon
requires 12 bytes to store each point, 12 bytes to store each normal,
and 10 bytes (minimally) to store the connectivity information. This
adds up to 106 bytes per polygon, although we can in general assume
that each normal and point are shared by 4 other polygons. This
results in 32 bytes per polygon. Based on these values, the amount of
memory can be determined for different levels of image quality, as
shown next.

The following are scenarios for memory usage based on image
quality. Memory requirements for each image quality level are
variable within a certain range, depending on the features included
and the algorithm chosen.

Case 1. A "low quality" image generated today might involve
1,000 to 10,000 geometric elements at a resolution of 640 x 484
(standard video resolution).
Memory requirement for data: 32K up to 320K

Case 2. A "normal" image would involve 10,000 to 70,000
geometric elements, include at least anti-aliasing and possibly
additional visual effects. Resolution would be 640 x 484 up to
1280 X 968.
Memory requirement for data: 320K up to 2.2 megabytes

Case 3. A "high quality" image would involve 70,000 up to
1,000,000 geometric elements, include anti-aliasing and one or
more visual effects. Resolution would be 1280 x 968 up to 4K x
4K
Memory requirement for data: 2.2 megabytes up to 32
megabytes

These estimates do not include storage for maintaining edgelists
and interpolation values, in addition to the space required for
advanced features such as anti-aliasing. Frame buffer or Z-buffer
storage in RAM will make matters worse at all levels. The actual
memory requirements are at least double and possibly quadruple the
values given previously for the data storage. Access to all of this data
remotely on a shared memory machine will likely cause problems

/;;.· ·;

TEXAS INSTRUMENTS EX. 1011 - 63/229

54 Issues in Parallel Algorithm Development

with excessive usage of the interconnection network unless the data is
carefully managed. On message passing architectures, access to
remote data requires knowledge of the location of the data and a
complex mechanism for distributing it among the processors in the
system. In addition, the time to pass the data back and forth in a
message passing machine will degrade performance. One of the
reasons to use a multiprocessor for graphics rendering is to handle
large and complicated scenes. Therefore, the memory requirements
and manipulation of data in the system need to be carefully evaluated
to reduce the overhead effects.

3.1.1.2. vo
Some advanced architectures use parallel disk setups such as the
data vault mechanism in the Connection Machine. In general, though,
most multiprocessors employ only a single disk for 1/0. The large
scene descriptions required in various applications may require a
time of several seconds up to many minutes to read in the data from
disk. This can only be accomplished sequentially on a conventional
von Neumann architecture. In a parallel machine, however, this
presents a bottleneck in performance if only one processor interacts
with the disk. One can see that it is desirable to be able to exploit
some type of parallelism in disk usage. At the end of the graphics
computation, an image is sent out either to an external frame buffer
or to the disk for storage. This operation should also be parallelized.
The assumption in this book is that only a single disk is available for
1/0 operations, so parallelism may take the form of pipe lining. For
machines which allow parallel 1/0, performance will greatly benefit if
this feature is exploited.

As was stated in chapter 1, the 1/0 phases of a display algorithm
are not the focus of this book. Too often, though, computer graphics
specialists have ignored this portion of the program in their parallel
algorithms. The 1/0 can directly affect how the algorithm is
structured and optimization might not be feasible within the context
of any given parallel tiling algorithm. An example parallel implemen­
tation of the 1/0 operations is illustrated later in this text.

3. 1.2. Message Passing
In a message passing architecture, all of the processors are connected
by an interconnection network through which messages are passed.
This is the only form of communication between processors because
they do not share any memory. The Intel iPSC is an example of this

TEXAS INSTRUMENTS EX. 1011 - 64/229

Architectural Choices 55

type of architecture. The processor nodes in the iPSC are connected
in a hypercube fashion whereby each processor can communicate with
n other nodes which differ by exactly one bit in their addresses in a
fully configured system containing 2n nodes. The more recent
versions of the Intel hypercube use a type of message passing
mechanism that is called "wormhole" routing [Nuge88]. This routing
mechanism allows processors to communicate with each other directly
even if they are not directly connected. A path which is held open for
the entire length of the message is created from the source to the
destination. This type of path is only created for sufficiently long
messages to prevent unfair use of the interconnection network.

The programmer's burden of "mapping" a parallel algorithm onto
the hypercube is lessened since optimizing the algorithm for nearest
neighbor communication is no longer a necessary consideration for
this architecture. The issue of multiple messages contesting for
portions of the same path still exists in this scheme since the worm­
hole is maintained as long as a message is being transferred. If
another route is not available, any other messages vying for a portion
of this path must wait. In addition to the above hypercube connec­
tions between nodes, there exists another processing node called the
cube manager which is connected to all the processors via ethernet
link. A three-dimensional hypercube is illustrated in figure 3.1.

Some choices for algorithm decomposition favor one type of
architecture over another solely because of the method of memory
distribution. Much work has been directed at the problem of mapping

Cube
Manager

(100) (000)

Figure 3.1: Example of hypercube architecture (8 nodes)

TEXAS INSTRUMENTS EX. 1011 - 65/229

56 Issues in Parallel Algorithm Development

algorithms to architectures [Berm87], but no single methodology is
optimal across different architectural models and algorithmic
paradigms. Since the optimal mapping problem is NP-complete in
most realistic settings [Chen88], heuristics are usually used.
Sadayappan and Ercal [Sada87] have developed a technique in which
data locality is exploited by a nearest neighbor mapping to reduce
communication costs in a mesh architecture. This approach would be
applicable to a graphics display application when it is to be
implemented on such a machine.

The Intel hypercube has several limitations which make this
machine a less likely candidate for a graphics image generation
implementation. This type of architecture is primarily intended for
problems which exhibit high parallelism and high computation costs,
but little data movement. The cost of sending messages between the
cube manager and each processor, as well as between the processors
themselves, is very high and is only reduced when a wormhole is
used. A message must contain greater than 256 bytes in order for
wormhole routing to occur. The low bandwidth of the ethemet and
high set-up time for messages allow only limited dynamic load
balancing to be accomplished since data movement is costly. For a
graphics display algorithm, the cost of propagating part or all of the
database to . the nodes is high, as is the cost for retrieving the
rendered pixels. Parallel 1/0 cannot be achieved in this machine since
only the cube manager processor can access the disk. The Intel
hypercube was not designed for high data movement applications,
and therefore the bottleneck created by the cube manager for disk 1/0,
as well as the cost of message passing, limits the use of this machine
for graphics algorithms.

A reasonable solution might involve an initial communication of
data to be scattered throughout the processors with successive com­
munication involving very small amounts of data. This would be
viable in a graphics context in which the computing cost overwhelm­
ingly outweighs the communication cost, such as in a ray tracing
program. Badouel [Bado90] has used a ray tracing algorithm with
good success on the iPSC by employing a caching scheme for subse­
quent communication after the initial data distribution.

3.1.3. Shared Memory
There are a number of distinct interconnection network strategies for
connecting processors to a global memory. Next we describe two
types of shared memory multiprocessor architectures: bus-based

TEXAS INSTRUMENTS EX. 1011 - 66/229

Architectural Choices 57

tightly coupled shared memory and multistage switch-based shared
memory.

3. 1.3. 1. Bus-based Shared Memory

The shared memory paradigm allows the programmer to think in
terms of parallel tasks, rather than assigning tasks to processors as in
a message passing design. The Encore Multimax is an example of a
shared memory multiprocessor which uses a single bus for processor
to memory communication. Other bus-based systems may use
multiple buses for faster communication and fewer conflicts. The
Multimax can contain up to 20 processors and from 32 to 128
megabytes of memory. A drawing of this type of architecture is given
in figure 3.2, where P indicates a processor.

The Encore's primary limitation is the fixed bandwidth of the bus,
which restricts the number of processors that can be used efficiently.
This does not allow testing of the algorithm on large scale processor
configurations. Another factor weighing against this type of
architecture is the notion of a single contiguous memory shared by all
processors. Processors do not have any local memory to access, and
therefore contention for the bus can become a performance
degradation factor even when referencing data that does not need to
be shared. A memory cache provides a form of local access and
alleviates this bottleneck somewhat. For some algorithmic choices
and for initial implementation and debugging, bus-based
architectures could be a good choice for a graphics image generation
algorithm, but they do not provide the scalable performance that is
necessary to achieve fast processing of large graphics databases.

Memory

Figure 3.2: An example of a bus-based multiprocessor architecture

TEXAS INSTRUMENTS EX. 1011 - 67/229

58 Issues in Parallel Algorithm Development

3. 1.3.2. Switch-based Shared Memory
The BBN family of multiprocessors (which includes the Butterfly
GPlOOO and TC2000) are shared memory multiprocessors which
utilize a complex interconnection network to connect processors to
shared memory modules. For the purposes of this discussion, we will
restrict ourselves to analyzing the architecture of the Butterfly
GPlOOO. The Butterfly GPlOOO is a scalable multiprocessor which
can be configured from 1 to 256 processors, each containing 4
megabytes of memory. The network in this machine is built up from a
basic 4 x 4 crossbar switch, which allows simultaneous communica­
tion between processors and memory as long as more than one
processor does not try to communicate with the same memory module
at the same time. This switch is shown in figure 3.3. A description of
the advantages of this type of switch over a bus-based interconnection
network is given in [BBN84].

The memory in this machine can be logically shared, but it is
physically distributed across a multi-stage network switch. The
processors each have access to their own local memory, as well as to
remote memory modules, by making references across the switch.
This puts the Butterfly into the NUMA (non-uniform memory access)
class of shared memory multiprocessors since the local data access is
faster than the remote data access. Other NUMA machines include
the Cedar [Kuck86] project from University of Illinois as well as the
NYU Ultracomputer [Gott83]. The software interface provided for the
programmer in the Butterfly makes this remote referencing
transparent. The interconnection network provides very high
performance with a 32 Megabit/second communication bandwidth.
This network is illustrated in figure 3.4.

There is no notion of a single main processor in the Butterfly,
although one of the processors is connected to the multibus and serves
as the processor through which I/0 is accomplished. This could create
a possible I/0 bottleneck similar to the one stated previously for the
Intel iPSC. In the case ofthe Butterfly, however, each processor can
access the disk transparently through the I/0 processor, whereas the
cube manager is the only processor which can access the disk in the
iPSC. This transparent disk access allows any processor to perform a
disk read or write operation, although semaphores may be required to
prevent interference. The I/0 bottleneck still exists in the GPlOOO,
but it is easier to program the reading in of data in the GPlOOO than
in the iPSC.

TEXAS INSTRUMENTS EX. 1011 - 68/229

Architectural Choices 59

PI

P2

P3

P4

Ml M2 M3

4x4 Crossbar Switch

M4

....

.,

.... ,. ..

Figure 3.3: Connection of processors to memory with crossbar switch

Each processor is connected
through a multi-stage ·

interconnect to remote
memory.

p
R
0
c
E
s
s
0
R
s

Figure 3.4: Multi-stage interconnection network in BBN Butterfly

M
E
M
0
R
y

TEXAS INSTRUMENTS EX. 1011 - 69/229

60 Issues in Parallel Algorithm Development

3.2. Comparison of MIMD Methodologies
In comparing shared memory and message passing architectures for a
graphics display algorithm, several items are worth considering. One
important item to note when choosing an architecture for
implementation is the fact that the amount of memory to be managed
when generating high quality imagery can grow to be very large.
Based on the algorithmic requirements given previously, it is
desirable to develop parallel graphics algorithms on a machine with
the following characteristics:

1. Ease of programming
2. High performance interconnection network
3. Scalable to high processor configurations

First, the shared memory programming paradigm is generally
considered to be easier than message passing for the programmer to
work with in developing code for an MIMD computer. The reason is
that data which all processors need access to can be stored once in the
system in logically shared memory. It does not need to be copied to
each processor, which would otherwise waste time and/or space. Nor
does the actual physical memory module location need to be specified
by the programmer and sent to each processor. This is handled by the
operating system (or hardware) as if the collection of memory modules
is in one global address space (in the case of the Butterfly, for
instance).

Secondly, the interconnection network performance in shared
memory architectures is generally better suited for frequent commu­
nication of very small to very large packets of data. This is not
usually the case for message passing machines. On the other hand,
recent work described in [Nitz91] indicates that it is feasible to simu­
late a shared memory environment on a distributed memory parallel
computer. In the future, this type of architecture/programming
methodology might provide the type of scalable performance for which
a graphics application would be well suited. Message passing
architectures would be well suited to complex image generation
algorithms such as ray tracing or radiosity because the cost of image
generation is amortized when the task time is large in comparison to
the data transfer time.

The performance of the Butterfly multistage interconnection
network is much higher than the interconnection network in the
iPSC, although the former is more costly. In addition, the Butterfly

TEXAS INSTRUMENTS EX. 1011 - 70/229

Comparison ofMIMD Methodologies 61

network can scale to large processor configurations, and therefore
provide better performance than a bus-based shared memory system.

Since the Encore Multimax and other bus-based systems are
limited in the number of processors they can support, low or normal
quality image generation would fit well onto that type of architecture.
Higher quality imagery demands more compute power as well as
more memory than is normally available on bus architectures. One
exception is the Alliant FX/28000, which uses up to 28 Intel i860
processors. The number of processors cannot be increased beyond
this, but very high performance has been obtained on this system.
Still, the Butterfly TC2000 is a faster version of the GPlOOO and does
provide the scalability necessary to render extremely large datasets.
If judicious distribution of graphics data is used, memory latency can
be reduced to a negligible overhead.

Although all of these architectures are suitable for graphics
algorithms, the Butterfly environment provides a stronger case for
high performance. In summary, with regard to the issues discussed
previously, the BBN Butterfly is the best example of a shared memory
multiprocessor which meets these requirements. The distributed
memory modules within the Butterfly allow the programmer to take
advantage of local memory access while a global view is provided of
shared memory. The performance of the interconnection network and
memory modules is better than a bus-based system such as the
Encore Multimax, and the number of processors that the machine is
capable of supporting allows massive parallelism.

The BBN Butterfly GP1000 at The Ohio State University's
Computer and Information Science Department was used for the
primary development and debugging of the algorithms presented in
this book. This machine only had 10 processors, so it was desirable to
test the programs on a larger machine. The Naval Research Lab,
Georgia Institute of Technology, and Michigan State University all
provided access to machines with larger configurations for this
purpose: Final testing was done on the Butterfly GP1000 located at
the headquarters of BBN Advanced Computers, Inc. This machine
contains 107 processors, but we have limited testing of the programs
to 96 processors. Under all circumstances, this machine was not
being used by others at the time of testing, so no other processes in­
terfered with the timings. The BBN TC2000 is their next generation
multiprocessor which contains numerous enhancements to the design
used in the GP1000. For some of the tests given in chapter 5, access
was provided to a 47 processor TC2000 at Argonne National
Laboratory, as well as to a 128 processor TC2000 at Lawrence
Livermore National Laboratory. As a note to the reader, for further

TEXAS INSTRUMENTS EX. 1011 - 71/229

62 Issues in Parallel Algorithm Development

reference in the rest of this book, the term processor is used to denote
a processor-memory module on the Butterfly.

3.3. The BBN Programming Environment
An algorithm can be designed to take advantage of a particular
machine's characteristics to enhance overall performance. The
algorithms illustrated here were designed for an MIMD architecture
and optimized for implementation on the BBN Butterfly. Ideally, one
would like to design program code so that it will run unmodified on a
variety of parallel architectures. Although some parallel
environments are available on a wide variety of machines (notably
Linda [Ahuh86]), we did not have access to these programming tools.
The parallel programming paradigms available on the Butterfly at
Ohio State (where the code was originally developed) are BBN's
Uniform System and a version of C-Threads originally developed at
Carnegie-Mellon University [Coop87]. Additionally, Lawrence
Livermore provides a split-join programming model called PCP, but it
is currently only supported on the TC2000 [Gord91], and not the
GPlOOO.

The Uniform System approach is a BBN specific parallel pro­
gramming scheme [BBN89a]. This method uses the concept of
generators which spawn off parallel tasks in a number of different
ways selectable by the programmer. The second paradigm is C­
Threads, which was ported to the Butterfly at The Ohio State
University [Sami89]. The Uniform System was used for implementa­
tion purposes since it is supported by BBN and the program code
would be able to run unmodified on the TC2000 as well.

The Uniform System parallel programming paradigm is designed
to allow the programmer to develop parallel applications which are
insensitive to the actual number of processors in the system. The
program code does not need to be modified, nor special cases taken
into account when it is run under different processor configurations.
This also allows for debugging and testing on a small number of
processors and later using all of the processors in the system for
timing measurements. The Uniform System is a library of routines
that the user links with in a C or Fortran program. In the case of the
algorithms presented here, all of the code is written in C. The
Uniform System can basically be divided into two sections: the shared
memory portion and the task assignment portion. In addition, special
routines are available to handle atomic operations, locks for synchro­
nization, spin waits, and other configuration operators. Memory can
be allocated in the system as:

TEXAS INSTRUMENTS EX. 1011 - 72/229

The BBN Programming Environment 63

1. Local variables
2. Global variables
3. Dynamic storage
4. Shared dynamic storage
5. Copied storage

Local, global, and dynamically allocated memory are treated the
same as in any normal C program, with each processor having its own
copy of a variable. Processor i and processor j may both reference a
variable l, but its value is different on each processor since each has
its own local copy.

Shared dynamic storage allows one to create space for data which
can be stored somewhere in global memory. The data is available to
each processor, but is only stored physically in one processor's
memory module so that if processor i updates the value to shared
variable s, processor j would also see the new value. Of course,
synchronization must be used to correctly update a shared variable if
two processors could possibly change it simultaneously. Routines
exist in the Uniform System where a shared variable can be specified
to be stored on a particular memory module (for instance the local
processor's module) or scattered somewhere in the system. This
allows the programmer to create efficient access to shared memory
and to prevent hot spot contention. Hot spot contention occurs when
a large number of remote references backup on a single switch node,
causing delays in the network. The process node controller (PNC) on
the processor board determines the location of a shared memory
reference and handles the message traffic to complete the write or
read operation. The memory allocator forces all shared memory to be
allocated to locations which are above a given virtual address fence
register.

The last type of storage, copied storage, allows data to be copied to
all of the processors, effectively providing local access to a common
variable. After the variable is copied, each processor has its own local
copy of the variable so a modification will not be propagated to all the
other processors, as in the shared memory case. This method is used
to copy read-only data to all processors. It is also used to allow
processors to know the location of a shared memory variable. As an
example, a processor allocates a shared variable and places a value in
the memory location, only that particular processor knows which
memory location is used in shared storage. In order to allow the other
processors to know the location, a call is made to the Uniform System
routine Share, which propagates the address of the shared variable to

TEXAS INSTRUMENTS EX. 1011 - 73/229

64 Issues in Parallel Algorithm Development

all of the other processors so that they all can refer to the single
memory location. The Share routine can also be used to just copy
data, so instead of propagating the address of the variable, the value
of the variable itself is propagated. The latter method of usage is an
example ofthe copied storage approach.

Task assignment in the Uniform System is handled by a
mechanism known as task generators which is a distributed task
assignment system that works as follows. A program starts off
running on a single processor. When a parallel environment is
created on P processors, shared memory can be allocated and the
other (P- 1) processors start a spin-loop where they execute code that
detects if there are any tasks available to work on. As soon as a
generator (a procedure initializing a parallel environment) is executed
by the first processor, a specified number of processors (any number
from 1 toP with the choice of inclusion of the initiating processor)
execute a task activator procedure to generate the next task. If a
parallel for loop is desired, the task activator would consist of an
atomic operation which increments the for loop index. As soon as the
index is atomically updated on processor i, that processor begins work
using the index as a parameter to a worker procedure. This happens
throughout the system so that each processor essentially finds work
for itself rather than using a central controlling mechanism. As soon
as a worker is finished, that processor tries to find additional work by
checking the task activator again. Note that more than one task
activator can be running at the same time by using recursive
generator calls, although the order of execution is difficult to predict.
When all of the tasks are exhausted, the generator finishes, and if no
other generators have created tasks, the initial processor proceeds
serially while the others spin-wait until more work comes along.

3.4. Summary
In the first section of this chapter, a number of multiprocessor
architectures are presented for the purpose of examining their
characteristics with regard to a graphics display algorithm. In the
second section, criteria for evaluation of these architectures is given,
and each type of machine (of which all were available for testing) is
scrutinized based on its characteristics and suitability for
implementation of a parallel graphics algorithm. The BBN Butterfly
is shown to be the computer most suitable for implementation of a
parallel graphics display algorithm. In the third section, the
Butterfly programming environment is described to give the reader a

TEXAS INSTRUMENTS EX. 1011 - 74/229

Summary 65

better understanding of its operational characteristics from a
software point ofview.

The next chapter describes the serial algorithm upon which the
different parallel decompositions are based. In addition, timing
measurements as well as measurements of performance analysis are
discussed.

TEXAS INSTRUMENTS EX. 1011 - 75/229

4

Overview of
Base Level
Implementation

In this chapter, we describe the choices that were made for a base
level implementation of the different parallel graphics decomposi­
tions. The approach used for developing the parallel programs is to
devise a single basis graphics rendering algorithm, and then build
different parallel task partitioning and memory referencing schemes
on top of it. This allows an equal comparison of a number of different
approaches for parallelism since the underlying algorithm is the
same. This basis algorithm is not compromised by the parallel
algorithms since it can be modified to the specifics of each particular
parallel approach. The first section of this chapter presents this basis
algorithm by describing the underlying serial approach, as well as the
choices that were made which were common to all of the parallel
formulations. The second section of this chapter describes the
measurement techniques used to obtain timings for the different
programs. The last section gives the performance analysis measures
used to analyze the different parallel implementations that are
presented in the next chapter.

67

TEXAS INSTRUMENTS EX. 1011 - 76/229

68 Overview of Base Level Implementation

4.1. Design of the Basis Algorithm
The purpose of implementing a number of parallel graphics rendering
algorithms is to analyze different parallel work decompositions and
shared memory referencing schemes to determine which method is
the most viable for general use. In order to make a straightforward
comparison of the possible decompositions, a serial algorithm has
been developed upon which the various parallel formulations are
based. Most parallel rendering algorithms developed in the past were
designed similarly. Essentially, some portion of the parallel
algorithm consists of a single task resembling a serial algorithm in a
smaller context. This approach makes it easier to compare the
parallel implementations because their relative speed for the basic
portion of the algorithm is the same. This may seem like we are
compromising the aspects of a parallel machine by using smaller
serial tasks, but such is not the case. It just turns out that for this
type of problem, the solutions presented are the most straightforward
and yield the highest performance compared with a functional work
decomposition.

Based on the taxonomy and algorithm analysis presented in chap­
ter 2, several variations on an image space parallel decomposition
have been implemented. Each single task of the parallel algorithms
consists of solving the rendering problem in a serial manner for a
particular area of the image space. Chapter 5 describes these algo­
rithms, which vary in their method of task assignment to processors,
area size, and memory referencing characteristics. In this chapter,
the basis sequential algorithm for the front end and the single task
tiling portion are described.

This serial basis algorithm is a scan line Z-buffer algorithm
[Myer75] which incorporates the stochastic sampling method
[Cook86] for anti-aliasing as an extension. The serial algorithm used
here was originally developed separately as part of a project to enable
scientists to render polygonal datasets at varying degrees of accuracy.
Several different anti-aliasing methods can be used including a
straight Z-buffer, an analytic method, and a stochastic sampling
method with 16 samples per pixel. In addition, several illumination
models are available, including those developed by Gouraud [Gour71],
Phong [Phon75], Blinn [Blin77], and Cook-Torrance [Cook82]. The
rendering method which is used for the comparison tests incorporates
stochastic sampling for anti-aliasing with the Blinn shading model
using various images rendered at a resolution of 640 x 484. We will
elaborate on the test scenes in section 4.2.1.

TEXAS INSTRUMENTS EX. 1011 - 77/229

Design of the Basis Algorithm 69

As stated previously, each algorithm involves a break-up of the
image space into different areas, and the image rendering problem is
essentially solved serially in a given area. Clipping is done initially
for the entire screen, but for each individual area, single scan line
clipping is used instead of polygon clipping to the area boundaries. It
might be interesting to compare scan line versus polygon clipping, but
this would only minimally affect the overall performance of the
algorithms.

4.1.1. Front End
The files which are used for the test object data are called detail files.
This format was developed at The Ohio State University Computer
Graphics Research Group (now known as the Advanced Computing
Center for Arts and Design) in the 1970s. This format is fairly
compact and the data in the file is stored in binary. The format is
shown here:

num_pts num_polys
xl yl zl
x2 y2 z2

num vertices pointl point2 point3
num vertices pointl point2 point3

The number of points and number of polygons are 16 bit integers,
which means that only 32,767 points and polygons are allowed in a
single object. The points list follows these two values, and each point
is represented as three floating point values. After that, the polygon
list includes the number of vertices in a polygon and indices to the
points list above. An edge is implied between adjacent vertices in the
list. The polygons are guaranteed to be convex, and it is assumed
that the last vertex listed for a polygon is connected to the first by an
edge. Since the object detail files limit the number of vertices and
polygons, larger objects must be broken up into smaller objects so that
the same format may be used.

The front end of each parallel graphics program consists of the
following phases:

TEXAS INSTRUMENTS EX. 1011 - 78/229

70 Overview of Base Level Implementation

1. Read in object data files from disk.
2. Perform necessary transformations.
3. Reject back-facing polygons and clip polygons to screen

borders.
4. Place polygons into shared data structure.

A parallel pipelined implementation of this front end is described
in the following subsections.

4. 1. 1. 1. Reading in Objects

It was necessary to modify the detail file format so that the regular
objects could be broken up into sub-objects to allow sufficient
parallelism in the front end. This allows the object data to be
distributed across the memories of the processors. In order to do this,
a separate program was written which reads in an object file and
creates a new object file, consisting of the same original object but
subdivided into components. The sub-object size is determined based
on the number of polygons in the original object; it can be as small as
100 polygons for simple objects and increases to 1000 polygons for
more complex objects. The only problem with subdividing the object
is that the original normals at the vertices need to be kept with the
points since a new normal calculated for a sub-object alone could be
incorrect.

An incorrect normal would be calculated in the following scenario.
A polygon which was previously part of the original object is moved
into a new sub-object. The normal of this polygon will no longer
influence the vertex normals of its neighbors unless this normal is
calculated prior to the subdivision of the object and copied along with
its vertex. Thus, the untransformed vertex normals are calculated
and stored with the sub-object directly after the points list in each
file. This creates a somewhat larger data file format, but is the only
solution that allows distributing the objects across memories. There
is a slight problem with storing the untransformed normal if the
object transformation from object space to eye space includes non­
uniform scaling operations, so this situation was prevented from
occurring in the test cases used here. The time for manipulating the
datafiles prior to program execution is not accounted for in the
timings since this is just a variation of the original object format
which could be output from any data generation package.

TEXAS INSTRUMENTS EX. 1011 - 79/229

Design of the Basis Algorithm 71

4. 1. 1.2. Parallelizing the Front End

The diagram in figure 4.1 illustrates how phases 1, 2, and 3 of the
front end can be overlapped in parallel execution. When a processor
is available to do a read operation, it performs a single pass check of a
global array to see how much data is currently stored on all the other
processors. If a given processor contains fewer polygons than the
average of all the processors, then this processor puts itself on the
queue to read an object from disk into its own local memory.

The number of polygons read in and determined to be front facing
is then stored in a global array. By using this scheme, the input data
is scattered among all the memory modules in roughly equal portions.
The data is also sharable so that all processors have access to it.
After the data is read in on a given processor, the disk is available for
the next processor to access. This algorithm creates a pipeline which
is faster than serially processing the data and distributing it.

This scattering of polygons allows a nearly uniform scattering of
data as well as work for the front end, so that each processor's work is
approximately of time complexity O(N/P) where N is the total number
of polygons read in. For datasets which are small, the pipeline does
not become completely saturated if the number of sub-objects is less
than the number of processors. This situation would not provide
enough work for all ofthe processors during the front end phases, nor
would the object data get completely scattered throughout the

Processors
c:::lc:::::Jc:::::Jc:::lc::::Jc::Jc::Jc::J
@~------------------
~ @~-------------

~ ~ ~
~ ~

(J

1- Read
2 - Transform
3- Cli

[1)....,._ ____ _

[21
131

Figure 4.1: Overlapped disk access with front end phases

TEXAS INSTRUMENTS EX. 1011 - 80/229

72 Overview of Base Level Implementation

memories in the system. For the test cases here, we were not
interested in completely optimizing the front end; it was developed
merely as an efficient method to read-in and scatter the object
datasets. Obviously this portion of the program needs to be optimized
for each combination of object data format and chosen hardware. The
method given here is a general outline of one way to parallelize this
section of code.

The front end should be optimized depending on the intended
application of the renderer. For animated sequences, reading in data
is only necessary when a new object enters the scene for a given
frame. More optimization might be spent on the transformation and
clipping phases for this application. If still images are required, it
might be desirable to optimize the entire front end. Regardless, it can
be seen that it is worthwhile to parallelize this section of the parallel
program.

This example parallelization of the front end is the same for all of
the algorithms described herein. The only difference occurs in the
section where polygons are put into data structures depending on
their screen space location, as described in section 4.1.1.3. Since this
latter portion of the front end of each parallel algorithm may be
slightly different in complexity, we include the time differences for
this portion of the front end in our overall algorithm analysis in
chapter 6. The data structure used for storing the polygons according
to their location is described in the next subsection.

4. 1. 1.3. Placing Polygons in Shared Data Structure

Each of the parallel algorithms is a variation on an area screen space
subdivision algorithm. Prior to the parallel tiling and rendering
phases, the polygons must be tagged as to which subdivision(s) they
belong to. The polygons are placed in a data structure which is
shared among all of the processors so that each processor can obtain
the exact polygons relevant to any subdivision. Each parallel
decomposition scheme employs an approach in placing the data in
this structure that is slightly different than the one used in a
traditional serial scan line algorithm. In a serial approach, this
section consists ofloading polygons into an array of linked lists called
a y-bucket list (see [Roge85] for details on how this is done). Each
linked list (or y-bucket) corresponds to a scan line and contains
pointers to polygons which have their minimum y-extent on that
particular scan line. During the tiling section of a serial algorithm,
the program investigates the active y-bucket to determine which new
polygons start on the given scan line and should be stored in the

TEXAS INSTRUMENTS EX. 1011 - 81/229

Design of the Basis Algorithm 73

active polygon list. For the parallel image space decompositions, it is
necessary to do a pre-culling operation prior to creating a y-bucket list
for a given area on the screen. This pre-culling operation involves
loading the polygons into an area bucket data structure so that it is
possible to find out which polygons are relevant to a given area on the
screen, not just a single scan line.

Although the various parallel algorithms rely on different size
areas for their partitions, the basic culling operation is similar in
each. The area bucket list is used to store polygons for the areas
which will later become separate parallel tasks in the tiling section.
During the front end, the bounding box of each polygon read in by a
processor is checked against the area mesh created for the given
parallel decomposition. A pointer to the polygon is then stored in
each area bucket that the bounding box crosses. The polygons are not
clipped to these areas, nor is a more stringent test employed to see if
the actual polygon (not just its bounding box) intersects the area.
Although a stricter test could be used, the approach used here is fast
and uncomplicated, with the only drawback being lack of accuracy. In
other words, a polygon's bounding box might cross over an area in
which the polygon itself is not actually present. The common thread
to this portion of the program, which is the same for all the parallel
formulations, is that the area bucket list is a shared data structure
available to all processors. As the polygons are read in during the
front end, each processor determines the appropriate area bucket to
place a shared pointer to the polygon. A lock is used to prevent more
than one processor from placing the pointer into the same area bucket
list at the same time. This constitutes what we will call the
Uniformly Distributed (UD) memory referencing scheme since the
polygons themselves are scattered throughout global memory, in
addition to a scattering of the polygon pointers in the area bucket
data structure.

As was mentioned previously, each partitioning scheme
implements this section of the front end in a slightly different manner
since the size and number of areas is dependent on the parallel
partitioning scheme. Specific details on the usage of the area bucket
data structure are given with each individual algorithm description in
chapter 5.

4.1.2. Tiling
The tiling section of a scan line based graphics rendering algorithm is
the most time consuming portion of this type of program. It consists
primarily of the following phases:

TEXAS INSTRUMENTS EX. 1011 - 82/229

74 Overview of Base Level Implementation

For each scan line in an area:
1. Determine which polygons are new to the current scan line.
2. Build edge lists for those polygons and determine which edge

pairs start on the current scan line.
3. Update any edge pairs from the previous scan line in which

one or both of the original edges in the pair is no longer active.
4. Interpolate vertically from the previous scan line to the

current scan line for all parameters, such as edge position,
color, and normal.

5. Perform hidden surface elimination and anti-aliasing.
6. Shade the fragments which are visible within each pixel for

the scan line.
7. Send finished scan line out to the frame buffer.
8. Deactivate polygons, edge pairs, and edge lists which end on

the current scan line.

In a traditional serial approach, the area refers to the entire
screen and each scan line is the width of the screen. In the case of a
parallel image space algorithm, an area is a single task and a scan
line is the width of that area (each area may be different in size,
though). We will now systematically go through each of the preceding
phases, pointing out the choices made which are common to all of the
parallel implementations.

In the tiling phase, a task corresponding to a particular area on
the screen is obtained by a processor. The polygons which are
relevant to this area are stored in an area bucket in shared memory
during the front end. During the tiling phase, this processor
determines which polygons to work with by examining the
appropriate area bucket. The polygons which are in this area bucket
are loaded into that processor's local memory y-bucket list. They­
bucket list contains the pointers to the polygons in shared memory.
Since some polygons could have started above the first scan line of the
area, these polygons are stored in the top scan line y-bucket for that
area. Phase 1 of the tiling operation involves traversing they-bucket
for the current scan line and extracting those polygons which start on
this scan line.

Phase 2 involves building the edge lists and edge pairs and
storing them in the processor's local memory. These are put in local
memory because this type of access is much faster than remotely
referencing the data. There are several reasons why this is wasteful,
however. If a polygon crosses the boundaries of more than one area,
the edge lists are constructed for each area in addition to the

TEXAS INSTRUMENTS EX. 1011 - 83/229

Design of the Basis Algorithm 75

duplication of memory required to store these data structures in each
processor's local memory. It is possible to store these data structures
in shared memory but the following complications could arise.
Synchronization would be required if two processors try to build the
same edge lists at the same time. In addition, although the initial
interpolation parameters and delta values are the same for a
duplicated edge, the current value of an interpolation parameter
depends on which scan line is active for each processor sharing the
edge. It is likely that the active scan line is different in each
processor. Consequently, the memory savings of storing the data in
each processor's local memory is more than offset by the additional
remote referencing cost that would otherwise be incurred. Therefore,
although the local referencing method may be slightly wasteful in
memory usage and involve duplication to build some data structures,
it is superior in speed. As a result, the tiling portion of the program
will execute faster and the interconnection network will not be used.

Phase 3 (updating the edge pairs) of the tiling operation proceeds
as in a traditional scan line algorithm, and no remote referencing is
incurred here. Phase 4 (scan line interpolation) is also the same as a
serial method with no remote referencing. Phase 5 (hidden surface
removal) involves the use of a stochastic sampling anti-aliasing
technique which allows hidden surface removal and anti-aliasing to
occur simultaneously. Some remote referencing is required in the
Uniformly Distributed memory referencing scheme to obtain the
plane equation for a given polygon from shared memory. Phase 6
(shading) involves performing the illumination calculation on the
visible polygon fragments left over from phase 5. After the fragments'
colors are detennined, a box filter is used to convolve the fragments
with each pixel to determine the overall pixel color. At the current
time, the filter is limited to the width of a single pixel since it is
difficult to handle pixels which are beyond the border of the current
area in a parallel environment. An area for future work might
include applying a Gaussian filter which extends beyond a single
pixel boundary. After the the pixel colors are detennined, they are
loaded into a single scan line buffer and block transferred to the
virtual frame buffer in phase 7. The block transfer is faster than
updating each pixel in the virtual frame buffer one at a time. After
this phase, the polygons, edges, and edge pairs which expire on the
current scan line are deactivated in phase 8. More information on
how the scan line data is stored in the frame buffer and how it is
written out is included in the next subsection.

TEXAS INSTRUMENTS EX. 1011 - 84/229

76 Overview of Base Level Implementation

4.1.3. Back End
Since the areas on the screen are computed in a random order

which depends on the scheduling of tasks onto processors, full scan
lines cannot be output onto the frame buffer during the computation
of the image. On the other hand, each individual area could be output
as it is calculated, but this is distracting to the user, in addition to
creating additional network traffic. The solution then, is to store the
frame buffer internally in memory and output the pixel data after the
tiling is completed. This is accomplished in the following manner. A
virtual frame buffer is stored in the physical memory of the machine
by scattering the rows of the frame buffer among the different
memory modules. This allows uniform scattering of the data and
avoids hot spot contention. As stated previously, rather than have
the processors directly write pixel values to remote memory, each
processor contains a small local memory buffer corresponding to the
width of a scan line. Mter an area-width scan line is finished, this
buffer is block transferred from local memory to its place in the
globally shared virtual frame buffer. This continues throughout the
tiling portion of the program. At the end of the tiling operation, the
virtual frame buffer is completely filled and can be displayed.

After the image has been calculated, each scan line is compressed
using run-length encoding. Run-length encoding allows the image to
be stored using less space than is required with a simple pixel map
method. This operation is done in parallel but no information is kept
from one scan line to the next, though this would be done in a
sequential implementation. As the run-length encoding is proceeding,
each processor checks a shared variable that indicates the current
scan line which is available to write out to disk. If the variable
indicates that a given processor's scan line can be written out, that
processor writes out the run-length encoded scan line and proceeds to
find more scan lines to process. This allows the image to be written
out in scan line order while the run-length encoding is performed in
parallel. Of course, the scan line order forces a bottleneck situation,
but this is the only way the image can be written out. Modifications
to this section of the program would allow tuning to a particular
application.

The preceding descriptions above constitute the basis serial algo­
rithm and parallel extensions which are common to all of the parallel
partitioning schemes. These schemes are outlined in detail in chapter
5 and compared to each other, along with an evaluation of shared
memory referencing in chapter 6. The next section is a description of

TEXAS INSTRUMENTS EX. 1011 - 85/229

r
I

Testing Procedures 77

the testing procedures and performance analysis methods employed
in the analysis of the algorithms.

4.2. Testing Procedures
In this section, we discuss how the algorithms are evaluated according
to a number of criteria. The scenes which are used to test the various
algorithms are described, as is the timing procedure utilized.

4.2.1. Test Scenes
It is important that the three-dimensional scenes which are used as
test data accurately reflect what might occur in everyday usage of a
graphics display program. Since it is hard to imagine what an
"average" scene might entail, numerous researchers have developed
their own methods of analyzing algorithms by providing a number of
test circumstances. The only unfortunate aspect of this situation is
that the data is not available to other researchers to test their own
programs on. To rectify this situation, Eric Haines has developed
what he calls the standard procedural database (SPD), which is used
for the sole purpose of testing rendering algorithms [Hain87a]. His
intended application was ray tracing, but these scenes can be used for
testing any display algorithm. Among the scenes available are: a
group of balls, a set of gears, a tetrahedron, a tree, a group of rings,
and a fractal mountain. Each scene can be generated to create as
many polygons as the user desires since the programs create the
database procedurally. It was decided to test the algorithms here
using small to large databases. The tree was generated with
approximately 106,000 polygons, while the mountain was generated
with 131,000 polygons. Haines has given view parameters as well
which are also part of the database specification. In the case of the
mountain image, a much denser version was created than Haines
used in his testing (his mountain only contained 8K polygons). Using
his viewing matrix, a majority of the polygons would have been
clipped out of the scene. To rectify this, a new view matrix was
constructed to allow the entire mountain to be seen. The 4 x 4 matrix
used for viewing is included in the appendix in equation A.l.

It was also desirable to test the algorithms on some real world
type data, so we used a stegosaurus image which was designed for an
animation and a Chrysler Laser automobile which was designed from
a CAD/CAM program. The stegosaurus is not rendered with its
plates since they were unavailable at the time of testing. The
stegosaurus contains approximately 10,000 polygons, while the

TEXAS INSTRUMENTS EX. 1011 - 86/229

78 Overview of Base Level Implementation

automobile contains approximately 46,000 polygons. The stegosaurus
data was created by John Donkin of ACCAD (the Ohio State
University Advanced Computing Center for the Arts and Design) for
the Fernbank Museum in Atlanta. The car was created by Chrysler
and obtained from Evans & Sutherland Computer Corporation. All
tests were performed at a resolution of 640 x 484 using Blinn's
[Blin77] light model for the specular component. An illustration of
these images appears in color plate 1.

In chapter 6, higher density images were used to test the
algorithms with more demanding data. For these tests, a version of
Haines' rings database was created with approximately 568,000
polygons, and a denser version of the tree database was generated
with 851,000 polygons.

4.2.2. Timing
It is important to state how the programs were timed on the system to
show what is included in the performance graphs given later in this
book. On a multiprocessor such as the Intel iPSC, program code must
be loaded into all of the processors prior to running the program itself.
On the Butterfly, this is not the case. The Butterfly is a virtual
memory machine, and the program code is paged into memory as it is
needed [BBN89a]. Prior to starting a parallel environment, the first
processor contains the resident code and any allocated memory.
When a parallel environment is started and a processor references a
page of memory or program code that is not resident in that
processor's local memory module, this item is paged in automatically.
The first time this happens, it may occur almost simultaneously on all
processors since they will likely be executing the same code at the
start of a parallel environment. A bottleneck situation occurs since
all of the processors are trying to obtain pages of program code at
nearly the same time. Although this method is significantly faster
than the loading operation in the iPSC (primarily due to the speed
and topology of the Butterfly interconnect), any timings which include
this startup cost are somewhat misleading since they do not indicate
the true performance of the machine. An adequate solution used by
most researchers is to run the parallel portion a second time within
the program itself and evaluate program performance for this second
iteration only. This method is used for the results given in chapter 5.

Another overhead is encountered due to the implementation of
the Uniform System on the Butterfly which occurs when a task
generator is called for the first time. This is due to the fact that all of
the processors need to be notified that a generator is available for

TEXAS INSTRUMENTS EX. 1011 - 87/229

Perfonnance Analysis 79

execution, and this takes O(P) time. To alleviate this effect, each
processor starts off its first task inside the generator by hitting a
barrier. Once all processors have hit the barrier, the processors are
released and the timing starts. On the Butterfly GP1000, a time of
approximately 2 seconds has been measured for our maximum test
configuration of 96 processors to hit this barrier. This time is seen
only once at the onset of a generator and would not be present in
other parallel programming models.

The timing mechanism used on the GP1000 is a routine called
getrtc (get real-time clock) which gives time increments of 64.5 JlSec.
On the TC2000, the clock ticks are accurate to 1 Jlsec. The
performance of all algorithms is evaluated using these routines from
within the program. There is no differentiation between system time
and program time since during most of these tests, no other processes
were running besides the normal MACH system processes. The
Uniform System ensures that only one user process is assigned to a
processor, resulting in no interference caused by other user processes.
The nature of interprocessor communication and overhead due to
system processes can change the performance, and as a result, the
same test run multiple times can vary by several tenths of a second.
In most cases, this amounts to less than 1% ofthe total parallel time,
so we did not rerun the programs to obtain an average time. This was
done in all cases except in the case of the final timing on 96 processors
which was averaged over five runs for additional accuracy. The tests
consumed much CPU time and took many months of programmer
time to initiate and gather results.

4.3. Performance Analysis
Various graphics researchers in the past have written simulators in
software to verify their parallel algorithms which may have been
designed for hardware or a conventional multiprocessor. At the time
of their research, the hardware was either not available or was too
costly to obtain for actual tests. Unfortunately, some very real factors
such as communication, network contention, and load balancing
cannot be fully analyzed in a simulated environment.

The first subsection here describes the measures usually used to
gauge performance of a parallel program: time, speedup, and
efficiency. The value of these factors is that they provide an
indication of the actual realized performance, relative parallel
performance, and processor utilization, respectively. It is not
sufficient to look at any one of these measurements alone since one
might be misled by not observing the whole picture.

TEXAS INSTRUMENTS EX. 1011 - 88/229

' l

I
80 Overview of Base Level Implementation

In the context of parallelizing a circuit simulation application,
Sadayappan and Visvanathan [Sada88] develop a framework where
the overall performance of a parallel algorithm is evaluated by
breaking it down into relevant component factors. It would be
desirable to develop a similar framework to interpret performance of
a parallel graphics algorithm in terms of quantitative measures
characterizing relevant factors.

A number of overhead factors are introduced when a program is
implemented on a parallel architecture and these are outlined in the
second subsection. In some cases, these factors relate to the machine
itself, and in other cases they relate to the changes necessary to allow
the program to run in parallel. Initially, a program is modified or
specifically designed for implementation on a parallel architecture.
The changes represent the differences between the serial and parallel
versions of the program. While these changes are introduced by the
programmer, additional overhead factors are introduced by the fact
that a particular machine architecture is used and communication is
necessary to allow the processors to work on the problem
simultaneously.

4.3.1. Time, Speedup, and Efficiency
Due to the size of the data sets, the 4 megabyte limit in memory per
processor (on the GP1000), and the size of the data structures needed
for algorithm storage, it was necessary to initiate the timing tests
above one processor. The reason this was done was to avoid paging
during the computation if the datasets did not fit into physical
memory. Since there is only a single disk on the Butterfly, paging
would cause a serial bottleneck which would not provide realistic
parallel timings for the given datasets. By checking to see if a given
timing run is paging (using the MACH command vmstat), the
minimum number of processors which can be used without paging
effects can be determined. This minimum number for each dataset is
as follows: 2 processors for the stegosaurus image, 6 processors for
the Laser image, and 12 processors for the tree and mountain images.
These minimum processor configurations are used since it is not
possible to determine the amount of time incurred due to paging and
then eliminate that time from the results.

The potential speedup in a parallel algorithm is calculated by the
formula given in equation 4.1 (also called Amdahl's law [Amda6.7]).

TEXAS INSTRUMENTS EX. 1011 - 89/229

Performance Analysis 81

T(l) = (s +p)

T(P) (s +~)
(4.1)

T(x) is the computation time on x processors, P is the number of
processors, sis the sequential portion of the computation, and pis the
parallel portion (identified on one processor). If s = 0, then we have
obtained linear speedup. The potential speedup as given in Amdahl's
law is limited by the sequential portion of the program. If one
assumes that s and p are percentage values, then we can rewrite the
law with a numerator of 1 since the total computation time on 1
processor adds up to 100%.

Amdahl's law has gained acceptance as a predictor of the maxi­
mum expected speedup of parallel algorithms on multiprocessors. In
a sense, this law expresses doubt about the amount of speedup at­
tainable by parallel algorithms on real machines. The doubt is well­
founded since most algorithms involve some inherently sequential
portions of code. Operations such as synchronization of processes,
message passing delays, and memory latency also reduce the
potential parallelism.

For parallel programs, Amdahl's law can be applied if we know
the serial percentage of the algorithm for a given value of P. Often,
this is difficult to calculate prior to running the program on P
processors, but it does serve as a good indicator of performance if we
calculate the percentages after running the program. Instead, the
speedup is used as a guideline to relative program performance as the
number of processors is increased. Equation 4.2 shows how speedup
is normally determined. The time using 1 processor for a parallel
program and its single memory module is divided by the time using P
processors and P memory modules. This is indicated in equation 4.2
where T x(y) refers to the time using x memory modules on y
processors. The speedup is basically an indication of the effective
number of processors utilized.

T 1(1)
Speedup=-~

Tp(P) (4.2)

The minimum number of processors (MIN) in which each test
scene fits into the physical memory of the machine without paging
precludes direct testing of the algorithms on one processor to
determine speedup (recall MIN is image dependent). Instead, a work­
around solution is used to evaluate the time that the algorithms

TEXAS INSTRUMENTS EX. 1011 - 90/229

82 Overview of Base Level Implementation

would take if they could be run on a single processor with enough
physical memory.

The programs are started for each image on MIN number of
processors so that there is enough physical memory available without
paging. The data is read in, transformed, and clipped using this
number of processors, which incorporates the Uniformly Distributed
memory scattering scheme. The tiling section is run using only one
processor, however. This processor retrieves the data from global
memory as is necessary. This would be the fastest method to run
each sequential algorithm on the physical machine, given the amount
of memory actually available per processor. Equation 4.3 is used to
calculate the estimated speedup on 96 processors.

. T (1)
EsbmatedSpeedup= MIN

T 96(96) (4.3)

Efficiency is calculated using equation 4.4, where Pmax is the
maximum number of processors used for testing (here, Pmax = 96).
Efficiency is an indication of the utilization of the processors in the
system.

Effi
. Estimated Speedup

1c1ency =
Pmax (4.4)

For the results shown in chapter 5, the time and speedup graphs
are shown only for the tiling section of the programs since this is the
most time consuming, as well as the most parallelizable portion of the
program. In chapter 6, a comparison of all the algorithms' times is
included, along with the time for the initial startup operations from
the front end which are specific to each approach. This gives us a fair
basis for comparison of each of the algorithms. The total front end
and back end times are not included, although considerable effort was
spent in parallelizing this portion of the code. The reason is that the
optimization of this portion of the code would be handled differently
depending on the application intended.

Next we describe a number of different overhead factors and their
effects on a parallel program.

4.3.2. Overhead of Parallel versus Serial
Implementation

Factors which are introduced by the difference between the unipro­
cessor and multiprocessor version of the programs include: schedul-

r

I
l
!
!
i
f

I

I

TEXAS INSTRUMENTS EX. 1011 - 91/229

Performance Analysis 83

ing, memory latency, communication utilizing block transfers, over­
head due to adaptation of the algorithm for parallel execution, load
imbalance, contention, and synchronization. In this section, we
describe each overhead factor and the testing method used to evaluate
each factor's impact on the algorithms presented in chapter 5. The
testing method used to determine each overhead factor is generally
common to all of the parallel algorithms presented in chapter 5, but
some differences in measurement occur due to the nature of these
algorithms. These differences are elaborated upon at their point of
reference in chapter 5. All of the testing to evaluate these overheads
was done at 96 processors since the maximum number of processors
used provides the worst case scenario as far as the overhead factors
are concerned. It should also be noted that this testing was done
separate from the performance timing for the algorithms.

The different overhead factors discussed in this subsection are
determined as a percentage of the total processor-time space, as
shown in figure 4.2.

Each processor may take a different amount of time to complete
its work. The leftover time is idle time, as is illustrated in the figure.
The time when the last of P processors finishes its work is T(P) or just
Tp. There may be a number of different ways of evaluating the
overhead factors, but the method chosen here is to determine a
percentage value of the overhead with respect to the total processor­
time space (P * Tp). This expression is used as the denominator in the

p
R
0
c
E
s
s
0
R
s

t---------Work

t---------Time :::::::::::::::::JEIEIE4t1~ri~

Time ..,._

Figure 4.2: Processor-time space

TEXAS INSTRUMENTS EX. 1011 - 92/229

84 Overview of Base Level Implementation

equations since a processor must wait until all other processors are
finished before it is able to work on some other job outside ofthe given
program. The overhead percentage value should be taken to mean
the effect of the overhead on the total processor-time space.

4.3.2. 1. Scheduling

In discussing scheduling overhead, we first describe our definition of
this effect and then go over the mechanism by which tasks are
assigned in the Uniform System. Scheduling overhead in a parallel
context refers to the time it takes for a given task to be scheduled by
the system. In this case, it is assumed that a parallel environment
has already been started and a set of tasks are available for
execution. Scheduling is accomplished by use of a critical section
which must be executed by one processor at a time. The time of
scheduling overhead for a single task is the amount of time it takes to
run through this critical section.

Scheduling in the Uniform System works by dynamic task
assignment, as stated previously. A worker routine constitutes an
individual task that is called with a given parameter list. The
example used previously referred to a parallel version of a for loop as
shown below:

for (i 0; i < range; i++)
do_work(i);

The Uniform System code to accomplish this involves calling the
generator as shown below:

GenOni(do_work, range);

One processor calls the generator GenOni, and then all processors
request work from this generator. The non-deterministic nature of
dynamic scheduling insures that processors are assigned individual
iterations of the for loop and execute the routine do_ work for their
given iteration. The Uniform System provides other generators which
can generate tasks in a more complex manner; this example just
illustrates how a simple one works.

The Uniform System generator mechanism is fairly efficient and
easy to use, but there do exist some overheads. The real overhead in
scheduling that occurs in parallel programs is the entering of the
critical section for obtaining the next task. In this case, scheduling
tasks consists of incrementing the shared loop index and assigning
the next task to an available processor. Using the Uniform System,

TEXAS INSTRUMENTS EX. 1011 - 93/229

Plate 1. Test images for
parallel programs: tree,
stegosaurus, Laser, and
mountain.

TEXAS INSTRUMENTS EX. 1011 - 94/229

i·

Plate 2a. Rectangular, data
non-adaptive decomposition
scheme.

Plate 2b. Top-down, data
adaptive decomposition
scheme.

Plate 2c. Task adaptive

TEXAS INSTRUMENTS EX. 1011 - 95/229

Plate 3. Rings image.

TEXAS INSTRUMENTS EX. 1011 - 96/229

.. ./\- '·.
\
'

TEXAS INSTRUMENTS EX. 1011 - 97/229TEXAS INSTRUMENTS EX. 1011 - 97/229

Performance Analysis 85

the time has been measured as 24 J.l.sec on the GP1000 for a single
task (call this Tcrit>· The scheduling is an inherent sequential
process, so a task must take longer than P * Tcrit for a bottleneck due
to scheduling to be avoided. On 96 processors, the minimum task
time which would limit bottlenecks due to scheduling needs to be at
least 2.3 msec (denoted Tsched). The scheduling overhead for the
various images is the total time devoted to scheduling tasks divided
by the total parallel execution time, as shown in equation 4.5.

p . 1

L i • T crit + W - P) • T crit

Scheduling%= ..:.i=....:0'----------* 100 %
Tp •P (4.5)

For the ith processor to start working, it has to wait for (i - 1)
tasks to be scheduled before it. It therefore takes a total time of (i •
Tcrit> to be scheduled. Summing this up for all processors yields the
first term in the numerator in equation 4.5. The second term is the
additional scheduling time required for each of the (N - P) tasks left
after the first one is scheduled for each processor (N is the total
number of tasks to be scheduled) assuming that each task takes more
than (P- 1) • Tcrit time to execute. Thus, a key factor in evaluating
scheduling overhead involves making sure that no bottleneck results
from a task taking less than (P- 1) • Tcrit to execute. For a graphics
algorithm, the minimum task time is based on sending the
background color to the virtual frame buffer. Therefore, this time is
measured to see ifthere is potentially a bottleneck. The denominator
is the total processor-time space where T p is the ending parallel
execution time on the maximum processor configuration.

4.3.2.2. Memory Latency

Memory latency in a multiprocessor refers to the extra time required
to send (write) or send and receive (read) a request for/from remote
memory. This time is somewhat dependent on the number of switch
nodes the message must travel through, but since we are dealing with
a 4 column switch on the test GP1000, the times measured are as
follows: a 4 byte read takes 7 J.l.sec, while a 4 byte write takes 4 J.l.sec.
In contrast, a local read takes 0.53 J.l.sec, while a local write takes 0.38
J.l.SeC.

Memory latency can be measured by counting the number of
remote references during program execution and adding up the
additional time of remote versus local referencing time required for

TEXAS INSTRUMENTS EX. 1011 - 98/229

86 Overview of Base Level Implementation

all of those references. This is done by using one of the Uniform
System library calls which can detect if a given shared memory
reference is a reference to a local or a remote memory module. The
memory latency overhead (latency %) is determined by using equation
4.6.

[# refs * (T rref (P) - T lref (P}}]
Latency % = * 100 %

~·P ~~

In the equation, #refs is the average number of remote references
per task, T rref refers to the remote reference time, Tzre{ refers to the
local reference time, and, as before, Tp is the ending time in parallel
on the maximum processor configuration.

4.3.2.3. Communication

Although any kind of message traffic across the network could be
termed communication, with regard to the BBN Butterfly, we are
specifically referring to messages which are initiated using the
machine's block transfer mechanism. This mechanism is built into
the hardware of the GP1000 switch and allows a message path to stay
open as long as necessary in order to get the message through. This
requires a one time setup cost for the message of 8 J.lSeC (Tsetup) plus a
cost of 0.25 JJ.Sec per byte transferred (Tbt> [BBN89b]. To alleviate
blocking in the switch, block transfers are limited to 256 bytes and a
software mechanism is provided to allow the programmer to use block
transfers of longer messages. Since this cost is incurred once for a
block of data and thereafter the data element is referenced locally, it
is prudent to use block transfers if data can be partitioned into
contiguous chunks. The cost of transferring these messages is the
communication overhead but after this is taken into account, memory
latency is no longer a factor since the data is available locally.

This overhead factor is derived by measuring the total number of
bytes transferred in the system. Using the data for block transfer
time for this number of bytes, taking into account that each message
is a maximum of 256 bytes long, the total communication time is
derived and shown in the numerator of equation 4.7.

Comm. Overhead % =
(# bytes • T setup) + (#bytes • Tb~

256 * 100%
Tp • p (4.7)

TEXAS INSTRUMENTS EX. 1011 - 99/229

Performance Analysis 87

4.3.2.4. Overhead due to Adaptation for Parallelism

It is generally necessary to either modify a serial algorithm with
parallel constructs or develop an entirely new parallel approach to
run a program on a multiprocessor. There is an inherent overhead
built into this new parallel algorithm which is not present in the
serial algorithm. New constructs and task setup instructions used to
achieve parallelism are required for the parallel implementation. For
numerical parallel algorithms, this overhead is typically very small.
For a graphics display algorithm, one of the benefits of executing in a
sequential fashion is compromised: graphical coherence. When a
large number of tasks is required, such as on 96 processors, the loss
due to coherence may become a significant factor. The overhead due
to adaptation for parallelism is measured as part of the total
processor-time space as well; it primarily consists of loss due to the
lack of coherence. The other portion of this overhead involves the
additional setup costs for each task prior to its execution on a
processor.

The overhead due to lack of coherence is directly related to the
number of tasks in most cases. That is, if more tasks are used, more
coherence is lost. Since this overhead is measured at the maximum
processor configuration (which represents the most tasks for a
particular algorithm), the loss due to coherence is highest and this
represents the worst case scenario.

Different algorithms may have different amounts of this
overhead. This fact should be taken into account when looking at the
speedup graphs of a parallel algorithm. If the speedup curve is nearly
linear but the overhead due to adaptation is large, the performance of
a given algorithm may not be good in comparison to other algorithms
if the other parallel algorithms have smaller overheads. If the
speedup in an algorithm with a small loss due to coherence is better
than another algorithms' speedup, it will eventually provide better
parallel performance as P increases. .

The overhead due to adaptation, or more accurately, the code
modification overhead, can be measured in the following manner. A
sequential algorithm with no code modification overhead is analogous
to the situation of TMIN(l). Recall that Tx(y) refers to a situation
where x is the number of memory modules and y is the number of
processors. If more than one area is used, the number of areas is
subscripted afterward so that T x(y)r refers to using r areas with x
memory modules on y processors. The actual amount of work on P
processors is thus Tp(P)R•P· where R is the granularity ratio (R =
#tasks I P). To simulate this work without any contention effects,

TEXAS INSTRUMENTS EX. 1011 - 100/229

88 Overview of Base Level Implementation

TMJN{l)R•P is measured since this gives the time overhead and ifthe
communication cost is deducted, the actual computation cost is
derived. The same is done for an essentially sequential task, which
corresponds to TMJMlh. Subtracting the difference between these
two values results in the exact extra work which is involved in setting
up the tasks necessary for parallel execution. For instance, the
coherence lost in both the vertical and horizontal directions is
inherently included in this value. Equation 4.8 is used to measure
this overhead based on the work assigned to P processors.

Code Mod. Overhead%= TMIN(l)R.P- TMIN (1)1 * 100%
Tp • P (4.8)

4.3.2.5. Synchronization

Arvind and Ianucci [Arvi86] identify several basic synchronization
situations:

a) Producer-Consumer - a data structure is produced by a given
task to be used by another task on another processor. In order
to insure that the consumer waits for the producer, synchro­
nization must occur.

b) Fork and Join - ajoin operation indicates that two or more
tasks have completed from a previous fork. To implement the
join, a synchronization event must occur. The fork operation is
basically a scheduling overhead, as discussed previously.

c) Mutual Exclusion - when two or more parallel tasks wish to
execute a given region that only one is allowed in, this presents
a critical section of the code which requires synchronization.

In the algorithms presented here, these situations do not come up
that frequently in the tiling portion of the programs. The producer­
consumer situation does occur in one algorithm but for the most part,
the data structures used by the algorithms are mutually readable and
very few are read-write. The overhead due to synchronization is
measured as follows. The time in which a processor waits at a
semaphore lock is summed up throughout the system. This time is
indicated in the numerator in equation 4.9. The denominator is the
total processor-time space as before.

TEXAS INSTRUMENTS EX. 1011 - 101/229

Performance Analysis 89

Synchronization % = ---'-i=-
1---* 100%

Tp •P (4.9)

In the equation, T lynch refers to the synchronization wait time for
task i. The fork operation occurs at the beginning of a generator,
while the join operation occurs at the end of a generator. These
factors are measured as part of the scheduling overhead and thus will
not be a part of the synchronization measurement. Mutual exclusion
is used for serial sections in the programs, but the measurements
given here ignore the small serial sections at the beginning of the
program.

4.3.2.6. Network Contention

Network contention refers to the slowdown incurred when more
than one message attempts to use the same switch node at the same
time. This can be categorized as the probability that a memory
request will block at a switch node due to another message already
using the given path. BBN refers to this phenomenon as switch
contention in their literature. Tree saturation [Kuma86] will not
occur since the Butterfly interconnect is a non-blocking network.
That is, the Butterfly switch forces uncompleted messages to retreat
back to their source rather than buffer-up behind a blocked switch
node. An alternate route is then tried for the message after some
random delay time. The amount of time taken to serve a given
request will increase as more messages enter the network since it
may take longer to find a free path in this situation. In fact, if we
distribute the dataset uniformly throughout the processor memories,
this probability increases non-linearly as P is increased since the
number of switch paths in the Butterfly grows as log(P) while the
number of processors grows linearly.

Network contention in the different algorithms is measured in the
following manner. First, the time for task i is measured with P active
processors (in this case, P = 96). Then, the time for task i is measured
with only a single processor active, but using the memory of MIN
processors (so no paging occurs). The time difference between the two
scenarios is a result of contention in the P processor case, but no
contention in the single processor case. Latency and/or
communication costs are factored out of the times in each situation.
Equation 4.10 shows the formula for computing network contention.
The superscripted i refers to a particular task i.

TEXAS INSTRUMENTS EX. 1011 - 102/229

90 Overview of Base Level Implementation

''I_" (T(Pi - T(li]
Switch Contention % = _.!:i=O,!.I ______ * 100 %

Tp •P (4.10)

Another form of contention which is more specific to a particular
switch location is called hot spot contention. This occurs when a
disproportionately large amount of references are aimed at either: 1)
a particular memory location or 2) a particular switch node. The first
situation can usually be rectified by copying this data item to all
memory modules in the system except in situations in which the data
item is writable where there would be no solution. This copying
involves the use of the network which can contribute to other
contention problems. The second situation is less easily identifiable,
but scattering of the shared data structures uniformly throughout the
network is the usual way to solve this problem. Both types of
solutions are used when possible in the algorithms described in this
book and no adverse effects due to hot spot contention were noticed.

4.3.2. 7. Load Imbalance

Load balancing is the primary focus of most designers of parallel
programs. It is usually desirable for all processors to finish working
on a problem at the same time so that none are left idle while others
are busy. This is almost impossible to achieve in general practice,
though. The idle time delay in which processors wait until all tasks
are finished is due to load imbalance. Any solution used to solve this
problem should take into account the performance of the given
machine with regard to scheduling time, its CPU speed, and of course
parallel program decomposition.

In measuring the contribution of load imbalance in each
algorithm, the finishing times of each processor are noted. The
average of these finishing times is the theoretical ideal finishing time
if load balancing is perfect. To calculate the percentage overhead, the
difference in time between the last processor's finishing time and the
average of all processors is recorded. This difference is used as the
numerator for calculating the load imbalance percentage, as shown in
equation 4.11. This is essentially the same as adding up the total idle
time at the end of the computation for all processors in the system.

Load Imbalance % = T l7lll% • p - T aug • p * 100 %
Tp•P (4.11)

TEXAS INSTRUMENTS EX. 1011 - 103/229

Summary 91

It is very difficult in reality to isolate how well a particular
algorithm is load balanced. A problem with equation 4.11 is that it
does not delete the effects of network contention. In fact, it may turn
out that this overhead percentage is artificially increased or
decreased in a situation where contention is significant. Although we
cannot isolate how load balancing would be treated in each instance if
contention is not present, the load balancing percentage determined
by equation 4.11is a rough indication of this overhead factor. This
allows direct comparisons to be made between the different
algorithms by using a common measurement parameter.

4.4. Summary
In this chapter, we present the serial algorithm on which all of the
parallel algorithms are based. A detailed description is provided of
each of the important phases of the program, elaborating upon the
data structures which are common to all the implementations in their
use of shared memory. Information is given about the test scenes
used for timing purposes. Next, methods describing performance
analysis for the parallel programs are elaborated upon. The
traditional performance measurements of time, speedup, and
efficiency as well as other overhead factors are described.

In the next chapter, these additional overhead factors are
quantitatively presented in an analysis of parallel graphics display
algorithms to show where the performance degradation actually
occurs. In addition, the different parallel partitioning schemes
identified in chapter 2 were implemented on the Butterfly, and their
results are presented. An analysis of their performance is included in
regard to: the execution time of the tiling section, speedup, and effect
of the overhead factors.

TEXAS INSTRUMENTS EX. 1011 - 104/229

5

Comparison of Task
Partitioning Schemes

In this chapter, we describe a number of parallel decomposition
schemes and our implementations of these schemes on the BBN
Butterfly GPlOOO. In these algorithms, tasks are assigned to regions
of image space, but there are a number of different ways of
determining the size and number of these regions. Task partitioning
can be divided into two main techniques which are discussed in this
chapter: data non-adaptive and data adaptive. In the data non­
adaptive method, tasks are determined without regard to the input
data set. In the data adaptive approach, the number and size of tasks
are based on the input dataset. The data non-adaptive partitioning
scheme relies on dynamic scheduling of tasks onto processors. These
tasks are determined in a simple manner, so little overhead is needed
prior to tiling. Load balancing is achieved by creating enough tasks
so that the tasks left to work on at the end of the computation are
fairly small. Data adaptive partitioning in a graphics context involves
creating tasks based on the location of the data elements on the
screen. The basic idea in this method is that tasks are chosen prior to
tiling, so that each task takes approximately the same amount of time
to finish. Extra work is required to set up these tasks prior to tiling

93

TEXAS INSTRUMENTS EX. 1011 - 105/229

94 Comparison of Task Partitioning Schemes

but the benefit of this is reduced scheduling overhead. For each of
these methods, one can assign a number of tasks equal to the number
of processors (T = P) or greater than the number of processors (T > P).
This is illustrated in figure 5.1. There is also an important extension
to the data non-adaptive technique known as task adaptive.

Each section in this chapter describes a different task partitioning
scheme in detail The algorithm implementations which are
discussed in chapter 2 are presented in detail here and categorized
according to their task partitioning scheme. Each implementation is
then evaluated according to the parallel program measurements of
time and speedup. Then, the overhead factors of scheduling, memory
latency, communication, network contention, load imbalance,
overhead due to adaptation for parallel execution, and
synchronization are quantified for each algorithm. The results from
this analysis help form a basis for comparison of all of the
implemented approaches. The values reported in this chapter pertain
only to the tiling section of the parallel programs. In the next
chapter, a comparative analysis of the operations required prior to
tiling is included along with the time of the tiling section.

The various schemes are described in the following sections. We
analyze the implementations with regard to the issues discussed in
the previous chapters. The task partitioning schemes as discussed in
this chapter are given in the following order: data non-adaptive
approach, data adaptive approach, and task adaptive approach.

Task Partitioning

I. Data Adaptive II. Data Non-Adaptive

~ ~
A. T=P B. T>P A.T=P B. T>P

1\ 1\
1. Regular l. Task 1. Regular l . Task

Areas A.dllptiv~ Scanlin.. A.dllptiv.
Ext~IUion. Areas E.xt~tUiOII

Figure 5.1: Task partitioning techniques

TEXAS INSTRUMENTS EX. 1011 - 106/229

Data Non-Adaptive Partitioning Scheme 95

5.1. Data Non-Adaptive Partitioning Scheme
The data non-adaptive partitioning scheme relies on subdividing the
image space regardless of the screen location of the polygon datasets.
When this method is implemented under the Uniform System, it
employs a dynamic scheduling mechanism whereby tasks are
scheduled onto processors as each processor is available for work.
Each task is a single region or area; a single scan line is a task in the
first method, and a small rectangular region is a task in the second
method. The granularity ratio, which is the ratio of total areas to the
number of processors (R=#tasks/ P), must be chosen carefully since it
can have a significant impact on load imbalance and execution
overheads. We will see how this value affects the overall performance
in the decomposition schemes outlined below.

In this partitioning method, image space is broken up into a
number of rectangular areas, all the same size. The two methods
from chapter 2 which were implemented are Hu and Foley's dynamic
scan line scheme and the rectangular area scheme suggested by
Kaplan and Greenberg, as well as Whelan.

5.1.1 . Scan line Decomposition
A scan line decomposition is probably the most natural parallel
partitioning scheme. It was first suggested by Hu and Foley in their
paper describing a hardware parallel rendering machine [Hu85]. The
basic idea involves partitioning the image space such that each scan
line is a task by itself (T=#scan lines). The granularity ratio R varies
asP is increased since Tis constant for all values of P. The algorithm
has less flexibility than if T could be increased with P since load
balancing is limited as this number is approached by P. Some details
regarding the implementation of this decomposition in parallel are
given here.

As in a serial scan line algorithm, a y-bucket list is used to store
the polygons relevant to a particular scan line. Additional work is
required in constructing the y-bucket data structure for a parallel
implementation because all polygons relevant to that scan line are
stored in a given y-bucket, not just those that start on a given scan
line. The set of operations necessary to construct this shared data
structure is performed in the front end prior to tiling. In reference to
a conventional serial algorithm, extra memory is required for the y­
bucket list in addition to the extra time necessary to store the data.
These extra requirements are small when compared with the benefit
gained through parallel processing.

TEXAS INSTRUMENTS EX. 1011 - 107/229

96 Comparison of Task Partitioning Schemes

The storage and access for they-bucket list is accomplished in the
following manner. Only one processor works on a given scan line, so
no synchronization is necessary for extracting the polygons from this
data structure. They-bucket list is stored as an array corresponding
to the number of scan lines, where each element of the array is a
pointer to a linked list of the polygons relevant to that scan line (a
single y-bucket). Since all processors need to reference this array of
pointers, it is copied to each processor's local memory to avoid hot spot
contention. Prior to tiling, the links for each scan line are loaded into
the y-bucket data structure and scattered throughout the memory
modules; thus there is only one copy of each link. This achieves a
uniform distribution of the polygonal dataset, without adding
contention. They-bucket array is read-only in the tiling phase ofthe
program, which is why it can be copied to all the processors. The
links could also be copied, but the time to do so and the memory
required make this inefficient.

Hu and Foley's research showed that dynamic assignment of
single scan lines to processors resulted in better performance than
interleaving groups of successive scan lines statkally. The reason the
dynamic technique was superior was that it minimized load
imbalance, and this had a greater impact on performance than
maximizing coherence in a group of contiguous scan lines. This
dynamic assignment method was implemented and tested on the
Butterfly to evaluate the algorithm on a real machine. A graph of the
times for each of the test images is given in figure 5.2.

It is important to note that Hu and Foley achieved their results
from simulation data rather than from an actual implementation. In
addition, their design was intended for hardware implementation and
required all the data to be present in each processor, while we are
using a more flexible memory model in a software algorithm.
Consequently, issues like remote memory referencing come into play
in this implementation, whereas Hu and Foley did not analyze their
algorithm with regard to these issues. The results given here
compare favorably with their results, although different test cases
were used and exact speedup was not recorded in their paper. The
relative speedup for the images is shown in figure 5.3.

The equation to calculate speedup is known as Amdahl's law and
is shown in equation 5.1 where P is the maximum number of
processors used (in this case, P = 96). As we explained in the previous
chapter, all the tests were started above one processor, so the actual
speedup must be estimated. The estimated speedup is derived by
using TMIN(l) in the numerator of equation 5.1. This value refers to
the fact that the program is run on one processor using MIN memory

TEXAS INSTRUMENTS EX. 1011 - 108/229

Data Non-Adaptive Partitioning Scheme 97

modules with a deduction for the communication cost. This was
shown in equation 4.3 in the previous chapter.

Speedup - T(l)
T(P) (5.1)

We will now discuss the various issues associated with parallel
computation, described in section 4.3.2 for this algorithm. As a guide
to the reader, the range of percentage contributions for each overhead
based on the minimum and maximum overhead of the four test
images is included in parentheses after the section title. The
overhead factors determined are based on the percentage of the
processor-time space using the equations given in chapter 4. The
appendix contains all of the results from the tests used to determine
these overheads.

In the previous chapter, a description is given of how each over­
head factor is actually measured. Due to the variance in the way each
algorithm works, some changes in the way these overheads are mea­
sured is required. These changes are described as necessary here.

All of the tests were run on a maximum of 96 processors. Since
this maximum value of P represents the worst case scenario in rela­
tion to the overhead factors, these factors are evaluated at P = 96.

5.1.1.1. Scheduling (0.002%- 0.01%}

Scheduling in the parallel scan line algorithm proceeds by calling a
generator procedure which is provided by the Uniform System. It is
equivalent to a parallel for loop based on the number of scan lines in
the final image. Processors extract iterations from the generator as
each processor is available to work on a task. The minimum time
that it takes to render a scan line occurs when no polygons are
present and only the background color is displayed. The average time
to calculate background for a scan line of 640 pixels and then write
the scan line to the virtual frame buffer is Tback = 2.0 msec.

As stated in section 4.3.2.1, the time to schedule the first task on
each of the 96 processors is 96 * Tcru (the critical region time Tcrit =
24 J.I.Sec) which is 2.3 msec and is denoted as Tsched· Tsched is the
total serial scheduling time overhead. It is slightly larger than Tback
(the background color rendering time), so it is possible to create a
bottleneck if a very high proportion of the tasks to be executed are
background tasks.

TEXAS INSTRUMENTS EX. 1011 - 109/229

98 Comparison of Task Partitioning Schemes

Parallel Scan line Algorithm Performance

1.000e+04

1000

Time 100
(seconds)

10

--e- Stegosaurus - G . Laser

~----n- ~ - Tree ~Mountain
[-· -·..: -· .o. .- ... '-A-
'"-- u_·.. ----

-~ -- <>.. --A l3_ -""6,...
--0...._:-g-·1:]_· . -'b.

-- - ~- £!:. -'" -o- - u· - u:--A
... _ - Q. o-6.

--s-..:0 -e.: -&.t
e ... e-_-8:-~ ~~

~-e-.e.{

10 100

Processors

Figure 5.2: Scan line data non-adaptive perfonnance

96
-e-Stegosaurus -a-Laser

84 · -t..-Mountain -+-Ideal

72

60

Speedup 48

36

24

12

0
0 12 24 36 48 60 72 84 96

Processors

Figure 5.3: Speedup for scan line data non-adaptive algorithm

TEXAS INSTRUMENTS EX. 1011 - 110/229

Data Non-Adaptive Partitioning Scheme 99

This bottleneck is unlikely to occur in practical use and would
only degrade overall performance by a fraction of a millisecond if it
should occur. Using equation 4.5, we plug in values of P = 96, N =
484, and Tent= 24 JJ.Sec as shown in equation 5.2. Note that (P * (P-
1))/2 can be substituted for the summation in equation 4.5. Tp is the
parallel execution time on 96 processors for each image .

..:...(9-5-·-96~) • 24 JJ.Sec + (484- 96) • 24 JJ.Sec
Scheduling% = --'2!:!......_ ___________ _

Tp • 96 (5.2)

The overhead due to scheduling in the parallel scan line
algorithm ranges from 0.002% for the mountain image to 0.01% for
the stegosaurus image.

5.1.1.2. Memory Latency (3.0%- 5.6%)

Recall that memory latency is the additional time delay incurred
when a reference is made to a remote rather than a local memory
module. The latency is calculated using equation 4.6, by using the
total number of remote references during the computation to
determine the extra time spent in accessing non-local data.

We have calculated the latency overhead percentage for the paral­
lel scan line algorithm at 96 processors for the various images to be a
minimum of 3.0% for the stegosaurus image and up to the maximum
of 5.6% for the mountain image. Although it might be expected that
the larger datasets require more remote references, it is interesting to
note that the percentage overhead due to latency also increases with
dataset size. In other words, even though the larger datasets require
more execution time, the latency requires an even greater percentage
of this time. This suggests that latency might become a major
degradation factor for particularly large input datasets.

5.1.1.3. Network Contention (8.9%- 23.1%)

Network contention is a function of the probability that a conflict will
occur in the interconnection network for a particular memory
reference. AsP is increased, the likelihood of a blocked network path
increases since the number of remote references is proportional to p2
while the number of switch paths only increases by P •log(P). In the
appendix, the network contention is quoted as two percentage values.
The first value, denoted "% of Total-Processor Time Space," is
measured using equation 4.10, as given in the previous chapter. The
second value is calculated as described next.

TEXAS INSTRUMENTS EX. 1011 - 111/229

100 Comparison of Task Partitioning Schemes

We assume that the measurements used for load imbalance,
memory latency, communication, code modification, and scheduling
are all somewhat accurate. This is a reasonable assumption since
with the exception of load imbalance, all of these overheads can be
measured independently from the others. Load balancing is affected
by all of the overhead values, but this cannot be avoided in normal
timings or in specialized performance measurement situations. The
value given for load imbalance is probably a culmination of other
factors as well. Network contention is a completely separate matter.
Although the measurement technique used for this culprit should be
somewhat indicative of the effect of this overhead, the method given
in chapter 4 does not involve a true measurement of the actual
network contention. Doing so would require hardware monitoring
which can only be done by the manufacturer. Therefore, the
assumption given above is used to help estimate the actual network
contention. This is done by subtracting the sequential time and
overheads, which are assumed to be accurate from the total processor­
time space, as is shown in equation 5.3.

Contention= T • p -[TMIN(l) +Code Mod.+ Latency/Comm. +]
P Load Imbal. + Synch. + Sched. (5.3)

In other words, we assume that the total of the sequential time
plus all overhead factors is exactly the parallel execution time.
Therefore, if all other overheads are deemed to be accurately
measured, then the only overhead left is contention. In most cases,
our measured value of contention using equation 4.10 and the
calculated value of contention did not differ by a large amount,
meaning that the measurement technique is fairly reasonable. This
can be seen in the values given in the appendix. This calculated value
for contention is given in the header of this subsection and the other
algorithms' subsections as well.

Since this algorithm requires a large amount of remote references,
as shown above, it is likely that the contention is fairly high as well.
The results from the tests bear this out. Based on the scan line
algorithm overhead measurements, the calculated network contention
ranges from 8.9% for the tree image to 23.1% for the stegosaurus
image.

5.1.1.4. Load Imbalance (6.8%- 10.4%)

It is hard to obtain good load balancing in this task partitioning
scheme since the number of processors comes close to the number of
total tasks. In this case, 96 processors and 484 scan lines provide

TEXAS INSTRUMENTS EX. 1011 - 112/229

Data Non-Adaptive Partitioning Scheme 101

approximately a 5 to 1 ratio of tasks to processors. Since it is entirely
possible that any given task will take more than 5 times longer than
another task, it is possible that load balancing will not be adequate
with this number of tasks. For 96 processors, the load imbalance for
the test images has been measured from 6.8% for the mountain image
to 10.4% for the laser image.

5.1.1.5. Code Modification (4.9%- 9.8%)

Overhead due to parallel processing is fairly significant in this
algorithm. The main contributor to the overhead in this rendering
algorithm is the loss of coherence incurred by starting a new scan line
in parallel rather than continuing execution on the same processor.
While this factor is constant (since the number of tasks is constant
regardless of the number of processors used) and will not affect the
speedup of the parallel algorithm, it can be used to determine the
relative performance of this algorithm versus the other parallel
algorithms. The overall percentage effect due to code modification
varies from 4.9% for the tree image to 9.8% for the mountain image.

5.1.1.6. Explanation of Results

The two primary contributors to performance degradation in this
algorithm include overhead due to code modification and network
contention. Memory latency and load imbalance also degrade overall
performance, although to a lesser degree. The percentages for each of
the major overhead factors as related to each test image are given in
figure 5.4. The effects of scheduling are so minimal in comparison to
the other factors that it is not worth consideration as a problem area
here.

Recall from the previous chapter that the dataset sizes are as
follows:

1. Stegosaurus
2. Laser
3. Tree
4. Mountain

9. 7K polygons
46.3K polygons

106.4K polygons
131.1K polygons

As one can see from the figure, latency increases with dataset
size. The overhead measured for load imbalance is stable, although it
is reduced slightly for the mountain image. Since the mountain data
is more uniformly spread across the screen, this may be the reason
that load balancing is better for this image than the others.

TEXAS INSTRUMENTS EX. 1011 - 113/229

102 Comparison of Task Partitioning Schemes

It seems remarkable that even with an average of only 5 tasks per
processor using test cases in which the data is not uniformly
distributed, the load imbalance is less than 10% for most of the test
images. It is certainly true, however, that if the number of processors
were to be increased significantly beyond 96, load balancing would
suffer due to a reduction in the number of tasks available for parallel
execution. This provides a motivation to seek algorithms which are
better able to handle large processor configurations as well as
variable size resolution images.

Lack of vertical scan line coherence is the primary contributor to
the overhead in adapting this algorithm for parallel processing. This
is manifest as the total degradation due to code modification. The
code modification overhead is less than 10% for all the test images.
The actual time due to code modification is invariant to the number of
processors in the system. Unfortunately, as P is increased signifi­
cantly, load balancing tends to suffer to a large degree in this
algorithm. A better algorithmic solution would be one which does not
have this overhead effect.

Network contention is a major contributor to performance
degradation, and it increases as a function of the number of

1111 Contention
~ Latency

[] Ld. lmbal.
0 Usable Time

e'd Code Mod.

100-+--------r--------r-------1------~

80

60
Percentage

40

20

0
Laser

Image

Figure 5.4: Degradation factors for scan line decomposition for (P = 96)

TEXAS INSTRUMENTS EX. 1011 - 114/229

