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Foreword 

The field of systems programming primarily grew out of the efforts of many programmers 
and managers whose creative energy went into producing practical, utilitarian systems 
programs needed by the rapidly growing computer industry. Programming was practiced as 
an art where each programmer invented his own solutions to problems with little guidance 
beyond that provided by his immediate associates. In 1968, the late Ascher Opler, then at 
IBM, recognized that it was necessary to bring programming knowledge together in a form 
that would be accessible to all systems programmers. Surveying the state of the art, he 
decided that enough useful material existed to justify a significant codification effort. On his 
recommendation, IBM decided to sponsor The Systems Programming Series as a long term 
project to collect, organize, and publish those principles and techniques that would have 
lasting value throughout the industry. Since 1968 eighteen titles have been published in the 
Series, of which six are currently in print. 

The Series consists of an open-ended collection of text-reference books. The contents 
of each book represent the individual author's view of the subject area and do not 
necessarily reflect the views of the lBM Corporation. Each is organized for course use but is 
detailed enough for reference. 

Representative topic areas already published, or that are contemplated to be covered by 
the Series, include: database systems, communication systems, graphics systems, expert 
systems, and programming process management. Other topic areas will be included as the 
systems programming discipline evolves and develops. 

The Editorial Board 

ix 
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Preface 

Interactive graphics is a field whose Lime has come. Until recently it was an esoteric 
specialty involving expensive display hardware, substantial computer resources, and 
idiosyncratic software. In the last few years, however, it has benefited from the steady 
and sometimes even spectacular reduction in the hardware price/performance ratio 
(e.g., personal computers for home or office with their standard graphics terminals), 
and from the development of high-level , device-independent graphics packages that 
help make graphics programming rational and straightforward. Interactive graphics is 
now finally ready to fulfill its promise to provide us with pictorial communication and 
thus to become a major facilitator of man/machine interaction. (From preface, 
Fundamemals of Interactive Computer Graphics, James Poley and Andries van Dam, 
1982) 

This assertion that computer graphics had finally arrived was made before the revolution in 
computer culture sparked by Apple's Macintosh and the ffiM PC and its clones. Now even 
preschool children are comfortable with interactive-graphics techniques , such as the 
desktop metaphor for window manipulation and menu and icon selection with a mouse. 
Graphics-based user interfaces have made productive users of neophytes, and the desk 
without its graphics computer is increasingly rare. 

At the same time that interactive graphics has become common in user interfaces and 
visualization of data and objects, the rendering of 30 objects has become dramatically 
more realistic , as evidenced by the ubiquitous computer-generated commercials and movie 
special effects. Techniques that were experimental in the early eighties are now standard 
practice, and more remarkable " photorealistic" effects are around the comer. The simpler 
kinds of pseudorealism, which took hours of computer time per image in the early eighties, 
now are done routinely at animation rates (ten or more frames/second) on personal 
computers. Thus "real-time" vector displays in 1981 showed moving wire-frame objecL~ 
made of tens of thousands of vectors without hidden-edge removal; in 1990 real-time raster 
displays can show not only the same kinds of line drawings but also moving objects 
composed of as many as one hundred thousand triangles rendered with Gouraud or Phong 
shading and specular highlights and with full hidden-surface removal. The highest
performance systems provide real-time texture mapping, antialiasing, atmospheric attenua
tion for fog and haze , and other advanced effects. 

Graphics software standards have also advanced significantly since our first edition. 
The SIGGRAPH Core '79 package, on which the first edition's SGP package was based, 
has all but disappeared, along with direct-view storage tube and refresh vector displays. The 
much more powerful PHlGS package, supporting storage and editing o( structure hierarchy, 
h,ts become an official ANSI and ISO standard, and it is widely available for real-t ime 
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xii Preface 

geometric graphics in scientific and engineering applications, along with PHIGS+, which 
suppons lighting, shading, curves, and surfaces. Official graphics standards complement 
lower-level. more efficient de facto standards, such as Apple's QuickDraw, X Window 
System's Xlib 20 integer raster graphics package, and Silicon Graphics ' GL 30 library. 
Also widely available are implementations of Pixar's RenderMan interface for photorealis
tic rendering and PostScript interpreters for hardcopy page and screen image description. 
Better graphics software has been used to make dramatic improvements in the .. look and 
feel ' 'of user interfaces. and we may expect increasing use of 3D effects, both for aesthetic 
reasons and for providing new metaphors for organizing and presenting, and navigating 
through information. 

Perhaps the most important new movement in graphics is the increasing concern for 
madding objects, not just for creating their pictures. Furthermore, interest is growing in 
describing the time-varying geometry and behavior of 30 objects. Thus graphics is 
increasingly concerned with simulation, animation, and a " back to physics" movement in 
both modeling and rendering in order to create objects that look and behave as realistically 
as possible. 

As the tools and capabilities available become more and more sophisticated and 
complex, we need to be able to apply them effectively. Rendering is no longer the 
bottleneck. Therefore researchers are beginning to apply anificial-intelligence techniques to 
assist in the design of object models , in motion planning, and in the la~ut of effective 20 
and 30 graphical presentations. 

Today the frontiers of gr.tphics are moving very rapidly, and a text that sets out to be a 
standard reference work must periodically be updated and expanded. This book is almost a 
total rewrite of the Fundamentals of Interactive Computer Graphics , and although this 
second edition contains nearly double the original 623 pages, "''e remain painfully aware of 
how much material we have been forced to omit. 

Major differences from the first edition include the following: 

• The vector-graphics orientation is replaced by a raster orientation. 

• The simple 20 floating-point graphics package (SGP) is replaced by two packages
SRGP and SPHIGS- that reflect the two major schools of interactive graphics 
programming. SRGP combines features of the QuickDraw and Xlib 20 integer raster 
graphics packages. SPHIGS, based on PHIGS, provides the fundamental features of a 30 
floating-point package with hierarchical display lists. We explain how to do applications 
programming in each of these packages and show how to implement the basic clipping, 
scan-conversion, viewing, and display list traversal algorithms that underlie these 
systems. 

• User-interface issues are discussed at considerable length, both for 20 desktop metapbors 
and for 30 interaction devices. 

• Coverage of modeling is expanded to include NURB (nonuniform rational 8-spline) 
curves and surfaces, a chapter on solid modeling, and a chapter on advanced modeling 
techniques, such as physically based modeling, procedural models, fractals, L-grammar 
systems. and particle systems. 

• Increased coverage of rendering inc.ludes a detailed treatment of antialiasing and greatly 
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Preface xiii 

expanded chapters on visible-surface determination, illumination, and shading, including 
physically based il.lumination modcls, ray tracing, and radiosity. 

• Material is added on advanced raster graphics architectures and algorithms, including 
clipping and scan-conversion of complex primitives and simple image-processing 
operations, such as compositing. 

• A brief introduction to animation is added. 

This text can be used by those without prior background in graphics and only some 
background in Pascal programming, basic data structures and algorithms, computer 
architecture, and simple linear algebra. An appendix reviews the necessary mathematical 
foundations. The book covers enough material for a full-year course, but is partitioned into 
groups to make selective coverage possible. The reader, therefore, can progress through a 
carefully designed sequence of units, starting with simple, generally applicable fundamen
tals and ending with more complex and specialized subjects. 

Basic Group. Chapter I provides a historical perspective and some fundamental issues in 
hardware, software, and applications. Chapters 2 and 3 describe, respectively, the use and 
the implementation of SRGP, a simple 20 integer grdphics package. Chapter 4 introduces 
graphics hardware, including some hints about how to use hardware in implementing the 
operations described in the preceding chapters. The next t~ chapters , 5 and 6 , introduce 
the ideas of transformations in the plane and 3·space, representations by matrices. the use 
of homogeneous coordinates to unify linear and affine transformations , and the description 
of 30 views, including the transformations from arbitrary view volumes to canonical view 
volumes. Finally, Chapter 7 introduces SPHIGS, a 30 floating-point hierarchical graphics 
package that is a simplified version of the PHIGS standard, and describes its use in some 
basic modeling operations. Chapter 7 also discusses the advantages and disadvantages of the 
hierarchy avai.lable in PHIGS and th.e structure of applications that use this graphics 
package. 

U ser Interface Group. Chapters 8-10 describe the current technology of interaction 
devices and then address the higher-level issues in user-interface design. Various popular 
user-interface paradigms are described and critiqued. In the final chapter user-interface 
software, such as window managers, interaction technique-libraries, and user-interface 
management systems, is addressed. 

Model Definition Group. The first ~ modeling chapters, ll and 12, describe the 
current technologies used in geometric modeling: the representation of curves and surfaces 
by parametric functions , especially cubic splines, and the representation of solids by 
various techniques, including boundary representations and CSG models. Chapter 13 
introduces the human color-vision system, various color-description systems, and conver
sion from one to another. This chapter also briefly addresses rules for the effective use of 
color. 

Image Synthesis Group. Chapter 14, the first in a four-chapter sequence, describes 
the quest for realism from the earliest vector drawings to state-of-the-art shaded graphics. 
The artifacts caused by aliasing are of crucial concern in raster graphics, and this 
chapter discusses their causes and cures in considerable detail by introducing the Fourier 
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xiv Preface 

transfonn and convolution. Chapter I 5 describes a variety of strategies for visible-surface 
detennination in enough detail to allow the reader to implement some of the most im
portant ones. Tllumination and shading algorithms are covered in detail in Chapter 16. 
The early part of this chapter discusses algorithms most commonly found in current 
hardware, while the remainder treats texture, shadows, transparency. reftections, physical
ly based illumination models, ray tracing, and radiosity merhods. The last chapter in 
this group, Chapter l 7, describes both image manipulations, such as scaling, shearing, 
and rotating pixmaps, and image storage techniques, including various image-compres
sion schemes. 

Advanced Techniques Group. The last four chapters give an overview of the current 
stare of tbe art (a moving target, of course). Chapter 18 describes advanced graphics 
hardware used in high-end commercial and research machines; this chapter was contributed 
by Steven Molnar and Henry Fuchs, authorities on high-perfonnance graphics architec
tures. Chapter 19 describes the complex raster algorithms used for such tasks as 
scan-converting arbitary conics, generating antialiased text, and implementing page
description languages, such as PostScript. The final two chapters survey some of the most 
important techniques in the fields of high-leYCI modeling and computer animation. 

The firs! two groups cover only elementary material and thus can be used for a basic 
course at the undergraduate leYCI . A follow-on course can then use the more advanced 
chapters. Alternatively, instructors can assemble customized courses by picking chapters 
out of the various groups. 

For example, a course designed to introduce students to primarily 20 graphics would 
include Chapters I and 2 , simple scan conversion and clipping from Chapter 3, a 
rechoology overview with emphasis on raster architectures and interaction devices from 
Chapter 4, homogeneous mathematics from Chapter 5, and 3D viewing only from a "how 
to use it'" poinl of view from Secrions 6.1 to 6 .3. The User Inrerface Group, Chapters 
8-10. would be followed by selected introductory sections and simple algorithms from tbe 
Image Synthesis Group, Chapters 14, 15, and 16. 

A one-course general overview of graphics would include Chapters I and 2, basic 
algorirhms from Chapter 3, raster architectures and interaction devices from Chapter 4, 
Chaprer 5, and most of Chapters 6 and 7 on viewing and SPHJGS. The second half of the 
course would include sections on modeling from Chapters I I and 13, on image synthesis 
from Chapters 14, 15, and 16, and on advanced modeling from Chapter 20 to give breadth 
of coverage in these slightly more advanced areas. 

A course emphasizing 30 modeling and rendering would start with Chapler 3 secrions 
on scan converting, clipping of lines and polygons, and introducing anrialiasing. The 
course would then progress 10 Chapters 5 and 6 on the basic mathematics of traosfonna
rions and viewing, Chapre.r 13 on color, and chen cover !he key Chapters 14, 15, and 16 in 
the Image Synrhesis Group. Coverage would be rounded off by selections in surface and 
solid modeling, Chapter 20 on advanced modeling, and Chapter 21 on animation from the 
Advanced Techniques Group. 

Graphics Packages. The SRGP and SPHIGS graphics packages, designed by David 
Sklar, coauthor of the two chapters on these packages, are available from the publisher for 
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the LBM PC (ISBN 0-201-54700-7), the Macintosh (ISBN 0-201-54701-5), and UNIX 
workstations running X II , as are many of the algorithms for scan conversion, clipping, and 
viewing (see page I 17 5). 
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machine-readable copies of many of the algorithms, suggest exercises, report errors in the 
text and in SRGP/SPHIGS, and obtain errata lists for the text and software. Send email to 
" graphtext@ cs.brown.edu" with a Subject line of "Help" to receive the current list of 
available services. (See page 1175 for information on how to order SRGP and SPHIGS.) 

Washington. D.C. 
Providence, R.I. 
New York. N.Y. 

Providence, R.I. 

J.D.F. 
A.v.D. 
S. K.F. 
J.F.H. 

TEXAS INSTRUMENTS EX. 1009 - 17/1253



CHAPTER 1 
INTRODUCTION 

Contents 

1 

1.1 lmage Processing as Picture Analysis . . . . . • . . . . . . . . . . . . . • . . . 2 
1.2 The Advantages of Interactive Graphics . . . . . . . . . . . . . . . . . . • . . . 3 
1.3 Representative Uses of Computer Graphics . . . . . . . . . . . . . . . . . . . . 4 
1.4 Classification of Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 
1.5 Development of Hardware and Software for Computer Graphics . . . . . . . 8 r 6 Conceptual Framework for Inter.!ctive Graphics . . . . . . . . . . . . . . . . . 17 
1.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . 2 1 

Exercises . . . . . . . . . . ... •. . • . • . . . . . . . . . . . . . . . • . . . . . . 22 

CHAPTER 2 
PROGRAMMING IN THE SIMPLE RASTER 
GRAPHICS PACKAGE (SRGP) 25 

2.1 Drawing with SRGP . . . . . . . . . . . . . . . •. . . . . . . . . . . . . . . . . . 26 
2.2 Basic Interaction Handling . . . . . . . . . • . • . . . . . . . . . . . . . • . . . 40 
2.3 Raster Graphics Features . . . . . . . . . . . • . . . . . . • . . . . . . . . • . . . 52 
2.4 Limitations of SRGP . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . 60 
2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 

Exercises . . . . . .. . . . . . . . . . .. .. . . . . . . .. . . .. .. .. . .. . 64 

CHAPTER 3 
BASIC RASTER GRAPHICS ALGORITHMS 
FOR DRAWING 2D PRIMITIVES 67 

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 
3.2 Scan Converting Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 
3.3 Scan Converting Circles .. ................ , . . . . . . . . . . . . 81 
3.4 Scan Converting Ellipses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 
3.5 Filling Rectangles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 
3.6 Filling Polygons . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . 92 
3.7 Filling Ellipse Arcs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 
3.8 Pattern Filling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 
3.9 Thick Primitives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 
3.10 Line Style and Pen Style .................. • ...... . ..... 109 
3.11 Clipping in a Raster World . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 
3.12 Clipping Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . Ill 

TEXAS INSTRUMENTS EX. 1009 - 18/1253



xviil Contents 

3. 13 Clipping Circles and EUipses ......•.•................... 124 
3.14 Clipping Polygons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 
3.15 Generating Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 
3. 16 SRGP ..copy Pixel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 
3.17 Anuahasmg ....... . .......... ... .................. 132 
3. 18 Summary ........................................ 140 

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2 

CHAPTER 4 
GRAPHICS HARDWARE 145 

4. 1 Hardcopy Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 
4.2 Display Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . 155 
4.3 Raster-Scan Display Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 
4.4 The Video Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 
4.5 Random-Scan Display Processor .... ..... ....... ....... ... 184 
4.6 Input Devices for Operator Interaction .......... . . .. ........ 188 
4. 7 Image Scanners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I 97 

CHAPTER 5 
GEOMETRICAL TRANSFORMATIONS 201 

5. I 2D Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 I 
5 .2 Homogeneous Coordinates and Matrix Representation of 

2D Transformations .................................. 204 
5.3 Composition of 2D Transformations .... ...... ..... ... ...... 208 
5.4 The Window-to-Viewport Transformation ........ ...... ...... 210 
5.5 Efficiency ....... ..... ..... ..... .......... ........ 212 
5.6 Matrix Representation of 3D Transformations ...... .... ........ 213 
5. 7 Composition of 3D Transformations ........................ 217 
5.8 Transformations as a Change in Coordinate System .............. 222 

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226 

CHAPTER 6 
VIEWING IN 30 229 

6. I Projections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230 
6.2 Specifying an Arbitrary 3D View ......................... 237 
6.3 Examples of 3D Viewing .............................. 242 
6.4 The Mathematics of Planar Geometric Projections .... ..... ...... 253 
6.5 Implementing Planar Geometric Projections ................... 258 
6.6 Coordinate Systems .................................. 279 

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 I 

TEXAS INSTRUMENTS EX. 1009 - 19/1253



Contents xix 

CHAPTER 7 
OBJECT HIERARCHY AND SIMPLE PHIGS (SPHIGS) 285 

7 . I Geometric Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286 
7.2 Characteristics of Retained-Mode Graphics Packages . . . . . . . . . . . . . . 293 
7.3 Defining and Displaying Structures . . . . . . . . . . . . . . . . . . . . . . . . 295 
7.4 Modeling Transformations ..... 0 •••• 0 • • • • • • • • • • • • • • • • • • • 304 
7.5 Hierarchical Structure Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 308 
7.6 Matrix Composition in Display Traversal ... 0 ••••••••••••••••• 315 
7.7 Appearance-Attribute Handling in Hierarchy .......... .... ..... 318 
7.8 Screen Updating and Rendering Modes . . . . . . . . . . . . . . . . . . . . . . 322 
7.9 Structure Network Editing for Dynamic Effects .. 0 •••• • ••••• 0 0 • 0 324 
7.10 Interaction ............ 0 ••••• • ••••••••••••• • •••••• 328 
7 . II Additional Output Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332 
7. 12 Implementation Issues ......................... . ...... 334 
7. 13 Optimizing Display of Hierarchical Models ............ . ..... 0 340 
7 . 14 Limitations of Hierarchical Modeling in PHIGS .......... . ...... 341 
7.15 Alternative Forms of Hierarchical Modeling . . . . . . . . . . . . . 0 • • • • • 343 
7. 16 Summary ......... . ................ . ...... . . ..... 345 

Exercises . . . . . . . 0 • • • • • 0 0 0 • • 0 • • • • • • 0 0 • • • • • 0 • • • • • • • 346 

CHAPTER 8 
INPUT DEVICES, INTERACTION TECHNIQUES, 
AND INTERACTION TASKS 

8.1 
8.2 
8.3 

Interaction Hardware 
Basic Interaction Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Composite T nteraction Tasks . . . . . . . 0 • • • • • • • • • • • • • 0 • • • • • • • 

Exercises 0 0 0 • 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 • 0 0 0 0 0 0 0 • 0 0 0 0 • 0 

CHAPTER 9 
DIALOGUE DESIGN 

347 

349 
358 
381 
388 

391 

9.1 The Form and Content of User-Computer Dialogues .............. 392 
9.2 User-Interface Styles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395 
9.3 Important Design Considerations 0 0 0 • 0 • 0 • 0 0 •• 0 0 0 0 0 0 0 • 0 0 0 0 •• 403 
9.4 Modes and Syntax .................. • ........ . ...... 414 
9.5 Visual Design ..................................... 418 
9.6 The Design Methodology .............................. 429 

Exercises . . 0 • • • 0 • 0 0 0 • • • • • • • • • • • • • • • • • • • • • • • 0 • • 0 • 0 431 

CHAPTER 10 
USER INTERFACE SOFTWARE 435 

10.1 Basic Interaction-Handling Models 0 • 0 0 •• 0 0 0 • • ••• • • •••• 0 0 ••• 436 
10.2 Window-Management Systems ........... • ........... • ... 439 
10.3 Output Handling in Window Systems ..... • ..... .. ...... • ... 443 

TEXAS INSTRUMENTS EX. 1009 - 20/1253



xx Contents 

10.4 Input Handling in Window Systems ............... ... ...... 447 
10.5 Interaction-Technique Toolkits ....... .... ...... ........ .. 451 
10.6 User-Interface Management Systems ........ • ..... .. ........ 456 

Exercises ........ ................. ..... ..... ..... 468 

CHAPTER 11 
REPRESENTING CURVES AND SURFACES 471 

11 . 1 Polygon Meshes . ................................... 473 
II . 2 Parametric Cubic Curves . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . 4 78 
11.3 Parametric Bicubic Surfaces ............................. 516 
11 .4 Quadric Surfaces ................................... 528 
II .5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 529 

Exercises . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . 530 

CHAPTER 12 
SOLID MODELING 533 

12.1 Representing Solids .................................. 534 
12.2 Regularized Boolean Set Operations ........................ 535 
12.3 Primitive Instancing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 539 
12.4 Sweep Representations ................................ 540 
12.5 Boundary Representations .... .... ....... .... ......... .. 542 
12.6 Spatial-Partitioning Representations .... . ........... . ....... 548 
12.7 ConStructive Solid Geometry .................... .. . • .... 557 
12.8 Comparison of Representations ........................... 558 
12.9 User Interfaces for Solid Modeling ......................... 561 
12.10 Summary .............. . ................ ... ...... 561 

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 562 

CHAPTER 13 
ACHROMATIC AND COLORED LIGHT 563 

13. 1 Achromatic Light ................................... 563 
13.2 Chromatic Color ......................... ... ........ 574 
13.3 Color Models for Raster Graphics .... ..... ....... .... ..... 584 
13.4 Reproducing Color ........ . . ...... . . . . ... ....... .... 599 
13.5 Using Color in Computer Graphics . . ........ • .... .... ..... 601 
13.6 Summary ........................................ 603 

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 603 

CHAPTER 14 
THE QUEST FOR VISUAL REALISM 605 

14.1 Why Realism? .................. ..... ..... ......... 606 
14.2 Fundamental Difficulties ............................... 607 
14.3 Rendering Techniques for Line Drawings ..................... 609 

TEXAS INSTRUMENTS EX. 1009 - 21/1253



Contents ui 

14.4 Rendering Techniques for Shaded Images .....•............... 612 
14.5 Improved Object Models ...................... • ........ 615 
14.6 Dynamics ............. . .......................... 615 
14.7 Stereopsis ............. • ... . ...... . ............... 616 
14.8 Improved Displays .......................... . ........ 617 
14.9 Interacting with Our Other Senses ................ . ........ 617 
14.10 Aliasing and Antialiasing .............................. 617 
14.11 Summary ........................................ 646 

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 647 

CHAPTER 15 
VISIBLE-SURFACE DETERMINATION 649 

15. I Functions of Two Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 651 
15.2 Techniques for Efficient Visible-Surface Algorithms . . . . . . . . . . . . . . 656 
15.3 Algorithms for Visible-Line Determination .......... • ..... . ... 665 
15.4 The z-Buffer Algorithm ............................... 668 
15.5 List-Priority Algorithms .. ........ •. • ........ • ......... 672 
15.6 Scan-Line Algorithms ................................ 680 
15.7 Area-Subdivision Algorithms ....... . ............... • ... . 686 
15.8 Algorithms for Octrees .... . ...... • ............... . .... 695 
15.9 Algorithms for Curved Surfaces ..... • ............... • .... 698 
15.10 Visible-Surface Ray Tracing ........... . ..... . ........... 701 
15.1 1 Summary ............................ . . ...... • ... 715 

Exercises ... . .............. • ..................... 718 

CHAPTER 16 
ILLUMINATION AND SHADING 721 

16.1 lllumination Models ................................. 722 
16.2 Shading Models for Polygons .............. .... .......... 734 
16.3 Surface Detail ........ . ............................ 741 
16.4 Shadows ........ . ..................... . .......... 745 
16.5 Transparency .................... • ..... ... ......... 754 
16.6 Interobject Reflections ................... •.. ..... ..... 758 
16.7 Physically Based lllumination Models ............ . .... • ..... 760 
16.8 Extended Light Sources .................... . ...... . ... 772 
16.9 Spectral Sampling ....................... . ....... . ... 773 
16.10 Improving the Camera Model ............................ 774 
16.11 Global lllumination Algorithms . . . . . . . . . . . . • . . . . . . . . . . . . . . 775 
16.12 Recursive Ray Tracing ................. . .............. 776 
16.13 Radios ity Methods ................... . .............. 793 
16. 14 The Rendering Pipeline ..... . ................. . ....... 806 
16.15 Summary .......... . ................ . .... . ....... 813 

Exercises ..................................... . .. 813 

TEXAS INSTRUMENTS EX. 1009 - 22/1253



xxil Contents 

CHAPTER 17 
IMAGE MANIPULATION AND STORAGE 815 

17. 1 What Is an Image? ........ ............ ...... ...... .. 816 
17.2 Filtering . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . 817 
17.3 Image Processing .............. ... .......... . ....... 820 
17.4 Geometric Transformations of Images ..................... .. 820 
17.5 Multipass Transformations .............................. 828 
17.6 Image Compositing .................................. 835 
17.7 Mechanisms for Image Storage ........................... 843 
17.8 Special Effects with Images ................... .... ...... 850 
17.9 Summary ........................................ 85 1 

Exercises . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . • . . . . . . 85 I 

CHAPTER 18 
ADVANCED RASTER GRAPHICS ARCHITECTURE 856 

18.1 Simple Raster-Display System ................... .. ...... 856 
18.2 Display-Processor Systems .............................. 861 
18.3 Standard Graphics Pipeline ..... ... ..................... 866 
18.4 Introduction to Multiprocessing ... ... ........... ....... ... 873 
18.5 Pipeline Front-End Architectures .......................... 877 
18.6 Parallel Front-End Architectures .................... . ..... 880 
18.7 Multiprocessor Rasterization Architectures .............. . ..... 882 
18.8 Image-Parallel Rasterization ............................. 887 
18.9 Object-Parallel Rasterization ......... .. .......... .. ..... 899 
18.10 Hybrid-Parallel Rasterization .... ....... ................. 902 
18.11 Enhanced Display Capabilities ........................... 907 
18.12 Summary ........................................ 920 

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . 920 

CHAPTER 19 
ADVANCED GEOMETRIC AND RASTER ALGORITHMS 923 

19. I Clipping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 924 
19.2 Scan-Convening Primitives ............................. 945 
19.3 Antialiasing .................................. ...... 965 
19.4 The Special Problems of Text .... ...... .................. 976 
19.5 Filling Algorithms ....................... ..... ....... 979 
19.6 Making copyPixel Fast ................................ 986 
19.7 The Shape Data Structure and Shape Algebra .................. 992 
19.8 Managing Windows with bitBit ....................... . ... 996 
19.9 Page-Description Languages ......................... • ... 998 
19.10 Summary ............ ...... ............. ..... • ... 1006 

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I 006 

TEXAS INSTRUMENTS EX. 1009 - 23/1253



Contents xxiii 

CHAPTER 20 
ADVANCED MODEUNG TECHNIQUES 1 011 

20.1 Extensions of Previous Techniques ........... ..... ........ . 1012 
20.2 Procedural Models ............. . .................... 1018 
20.3 Fractal Models ..................................... 1020 
20.4 Grammar-Based Models .•............................. 1027 
20.5 Particle Systems .. .......... .... ......... ..... ...... 1031 
20.6 Volume Rendering ................................... 1034 
20.7 Physically Based Modeling ............................. 1039 
20.8 Specia.l Models for Natural and Synthetic Objects ...... ....... .. 1043 
20.9 Automating Object Placement ........................... 1050 
20.10 Summary ..................... • .... . ............. 1054 

Exercises . . . . . . . . . . • . . . . . . . . . . • . . . . . . . . . . . . . . . . . . I 054 

CHAPTER 21 
ANIMATION 1057 

21.1 Conventional and Computer-Assisted Animation ....... .... ..... 1058 
21.2 Animation Languages ....................... .......... 1065 
21.3 Methods of Controlling Animation ........................ 1070 
21.4 Basic Rules of Animation ...... ........... ... ...... .... 1077 
21.5 Problems Peculiar to Animation ........ ......... .... ..... 1078 
21.6 Summary ........................................ 1080 

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I 080 

APPENDIX: MATHEMATICS FOR COMPUTER GRAPHICS 1083 

A. I Vector Spaces and Affine Spaces .......................... 1083 
A.2 Some Standard Constructions in Vector Spaces ................. 1091 
A.3 Dot Products and Distances ............................. 1094 
A.4 Matrices ............................... . ... . ..... 1103 
A.S Linear and Affine Transformations ............... . ......... 1106 
A.6 Eigenvalues and Eigenvectors .................. • ...... ... 1108 
A. 7 Newton-Raphson Iteration for Root Finding ................... 1109 

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I I I I 

BIBUOGRAPHY 1113 

INDEX 1153 

TEXAS INSTRUMENTS EX. 1009 - 24/1253



1 
Introduction 

Computer graphics started with the display of data on hardcopy plotters and cathode ray 
tube (CRT) screens soon after the introduction of computers themselves. It has grown to 
include the creation, storage, and manipulation of models and images of objects. These 
models come from a diverse and expanding set of fields , and include physical, mathemati
cal. engineeri11g, architeetural, and even conceptual (absuuct) structures, natural phenome
na, and so on. Computer graphics today is hugely inurocti•Y!: The user controls the 
contents, structure, and appearance of objects and of their displayed images by using input 
devices, such as a keyboard, mouse. or touch-sensitive panel on the screen. Because of the 
close relationship between the input devices and the display, the handling of such devices is 
included in the study of computer graphics. 

Until the early 1980s, computer graphics was a small, speeializ.ed field, largely because 
the hardware was expensive and graphics-based application programs that were easy to use 
and cost-effeetive were few. Then, personal computers with built-in raster graphics 
displays--such as the Xerox Star and, later, the mass-produced, even less expensive Apple 
Macintosh and the IBM PC and its clones-popularized the use of bitnuJp graphics for 
user-computer interaction. A bitmap is a ones and zeros representation of the rectangular 
array of points (pixels or pels, short for "picture elements") on the screen. Once bitmap 
graphics became affordable, an explosion or easy-to-use and inexpensive graphics-based 
applications soon followed. Graphics-based user interfaces allowed millions of new users to 
control simple, low-cost application programs. such as spreadsheets. word processors, and 
drawing programs. 

The concept of a " desktop" now became: a popular metaphor for organizing screen 
space. By means of a window ~r. the user could create, position, and resize 
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2 Introduction 

rectangular screen areas , cal led windows, that acted as virtual graphics terminals, each 
running an application. This allowed users to switch among multiple activities just by 
pointing at the desired window, typically with the mouse. Like pieces of paper on a messy 
desk, windows could overlap arbitrarily. Also part of this desktop metaphor were displays 
of icons that represented not just data files and application programs, but also common 
office objects, such as file cabinets, mailboxes, printers, and trasbcans, that performed the 
computer-operation equivalents of their real-life counterparts. Direct manipultJtion of 
objects via "pointing and clicking" replaced much of the typing of the arcane commands 
used in earlier operating systems and computer applications. Thus, users could select icons 
to activate the corresponding programs or objects, or select buttons on pull-down or pop-up 
screen menus to make choices. Today, almost all interactive application programs, even 
those for manipulating text (e.g., word processors) or numerical data (e.g., spreadsheet 
programs), use graphics extensively in the user interface and for visualizing and 
manipulating the application-specific objects. Graphical interaction via raster displays 
(displays using bitmaps) has replaced most textual interaction with alphanumeric terminals. 

Even people who do not use computers in their daily work encounter computer 
graphics in television commercials and as cinematic special effects. Computer graphics is 
no longer a rarity. It is an integral part of all computer user interfaces, and is indispensable 
for visualizing two-dimensional (20) , three-dimensional (30), and higher-dimensional 
objects: Areas as diverse as education, science, engineering, medicine, commerce, the 
military , advertising, and entertainment all rely on computer graphics. Learning how to 
program and use computers now includes learning how to use simple 20 graphics as a 
matter of routine. 

1.1 IMAGE PROCESSING AS PICTURE ANALYSIS 

Computer graphics concerns the pictorial synthesis of real or imaginary objects from their 
computer-based models , whereas the related field of ifllllge processing (also called picture 
processing) treats the converse process: the analysis of scenes, or the reconstruction of 
models of 20 or 30 objects from their pictures. Picture analysis is important in many 
arenas: aerial surveillance photographs , slow-scan television images of the moon or of 
planets gathered from space probes, television images taken from an industrial robot's 
"eye," chromosome scans , X-ray images, computerized axial tomography (CAT) scans, 
and fingerprint analysis all exploit image-processing technology (see Color Plate 1.1). 
Image processing has the subareas image enhancement, pa11ern detection and recognitiofl, 
and scene analysis and compwer vision. Image enhancement deals with improving image 
quality by eliminating noise (extraneous or missing pixel data) or by enhancing contrast. 
Pattern detection and recognition deal with detecting and clarifying standard patterns and 
finding deviations (distortions) from these patterns. A particularly important example is 
optical character recognition (OCR) technology, which allows for the economical bulk 
input of pages of typeset, typewritten, or even handprinted characters. Scene analysis and 
computer vision allow scientists to recognize and reconstruct a 30 model of a scene from 
several 20 images. An example is an industri.al robot sensing the relative sizes, shapes, 
positions, and colors of parts on a conveyor belt. 
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1.2 The Advantages of Interactive Graphics 3 

Although boch computer graphics and image processing deal with computer processing 
of pictures, they hll\'e until recently been quite separate disciplines. Now that they boch use 
raster displays, howe\oer, the overlap between the two is growing, as is particularly evident in 
two areas. First, in interactive image processing, human input via menus and other 
graphica.l interaction techniques helps to control various subprocesses while transforma
tions of continuous-tone images are shown on the screen in real time. For example, 
scanned-in photographs are electronically touched up, cropped, and combined with others 
(even with synthetically generated images) before publication. Second, simple image
processing operations are often used in computer graphics to help synthesize the image of a 
model. Certain ways of transforming and combining synthetic images depend largely on 
image-processing operations. 

1.2 THE ADVANTAGES OF INTERACTIVE GRAPHICS 

Graphics provides one of the most natu1111 means of communicating with a computer, since 
our highly developed 20 and 30 pattern-recognition abilities allow us to perceive and 
process pictorial data rapidly and efficiently. In many design, implementation, and 
construction processes today, the information pictures can give is virtually indispensable. 
Scientific visualization became an important field in the late 1980s, when scientists and 
engineers realized that they could not interpret the prodigious quantities of data produced in 
supercomputer runs without summarizing the data and highlighting trends and phenomena 
in various kinds of graphical representations . 

Creating and reproducing pictures, however, presented technical problems that stood in 
the way of their widespread use. Thus, the ancient Chinese proverb '"a picture is worth ten 
thousand words· • became a cliche in our society only after the advent of inexpensive and 
simple technology for producing pictures-first the printing press, then photography. 

Interactive computer graphics is the most imponant means of producing pictures since 
the invention of photography and television; it has the added advantage that, with the 
computer. we can make pictures not only of concrete, "'real-world"' objects but also of 
abstract. synthetic objects. such as mathematical surfaces in 40 (see Color Plates 1.3 and 
1.4), and of data that have no inherent geometry, such as survey results. Furtbennore, we 
are not confined to static images. Although static pictures are a good means of 
oommunicating information, dynamically varying pictures are frequently even better-to 
coin u phrase, a moving picture is worth ten thousand static ones. This is especially true for 
time-varying phenomena, both real (e.g., the deflection of an aircraft wing in supersonic 
flight, or the development of a human face from childhood through old age) and abstract 
(e.g., growth trends, such as nuclear energy use in the United States or population 
movement from cities to suburbs and back to the cities). Thus, a movie can show changes 
over time more graphically than can a sequence of slides. Similarly, a sequence of frames 
displayed on a screen at more than 15 frames per second can convey smooth motion or 
changing form better tban can a jerky sequence, with several seconds between individual 
frames . Tile use of dynamics is especially effective when the user can control the animation 
by adjusting the speed, the ponion of the total scene in view, the amount of detail shown. 
the geometric relationship of the objects in the scene to one another, and so on. Much of 
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interactive graphics technology therefore contains hardware and software for user
controlled motion dynamics and update dynamics. 

With motion dynamics, objects can be moved and tumbled with respect to a sta.tionary 
observer. The objects can also remain stationary and the viewer can move around them, pan 
to select the portion in view, and zoom in or out for more or less detail , as though looking 
through the viewfinder of a rapidly moving video camera. In many cases, both the objects 
and the camera are moving. A typical example is the flight simulator (Color Plates 1.5a and 
1.5b), which combines a mechanical platform supporting a mock cockpit with display 
screens for windows. Computers control platform motion, gauges, and the simulated world 
of both stationary and moving objects through which the pilot navigates. These 
multimillion-dollar systems train pilots by letting the pilots maneuver a simulated craft over 
a simulated 30 landscape and around simulated vehicles. Much simpler flight simulators 
are among the most popular games on personal computers and workstations. Amusement 
parks also offer "motion-simulator" rides through simulated terrestrial and extraterrestrial 
landscapes. Video arcades offer graphics-based dexterity games (see Color Plate 1.6) and 
racecar-driving simulators , video games exploiting interactive motion dynamics: The player 
can change speed and direction with the "gas pedal" and "steering wheel," as trees, 
buildings, and other cars go whizzing by (see Color Plate 1.7). Similarly, motion dynamics 
lets the user fly around and through buildings, molecules, and 30 or 40 mathematical 
space. In another type of motion dynamics, the ''camera" is held fixed, and the objects in 
the scene are moved relative to it. For example, a complex mechanical linkage, such as the 
linkage on a steam engine, can be animated by moving or rotating all the pieces appropriately. 

Update dynamics is the actual change of the shape, color, or other properties of the 
objects being viewed. For instance, a system can display the deformations of an airplane 
structure in flight or the state changes in a block diagram of a nuclear reactor in response to 
the operator's manipulation of graphical representations of the many control mechanisms. 
The smoother the change, the more realistic and meaningful the result . Dynamic interactive 
graphics offers a large number of user-controllable modes with which to encode and 
communicate information: the 20 or 30 shape of objects in a picture, their gray scale or 
color, and the time variations of these properties. With the recent development of digital 
signal processing (DSP) and audio synthesis chips, audio feedback can now be provided to 
augment the graphical feedback and to make the simulated environment even more 
realistic. 

Interactive computer grdphics thus pe.rmits extensive, high-bandwidth user-<omputer 
interaction. This significantly enhanoes our ability to understand data, to perceive trends, 
and to visualize real or imaginary objects-indeed, to create "virtual worlds" that we can 
explore from arbitrary points of view (see Color Plates 1.15 and 1.16). By making 
communication more efficient, graphics makes possible higher-quality and more precise 
results or products, greater productivity, and lower analysis and design costs. 

1.3 REPRESENTATIVE USES OF COMPUTER GRAPHICS 

Computer graphics is used today in many different areas of industry, business, government, 
education, entertainment, and , most recently, the home. The list of applications is 

TEXAS INSTRUMENTS EX. 1009 - 28/1253



1.3 Representative Uses of Computer Graphics 5 

enonnous and is growing rapidly as computers with graphics capabilities become 
commodity products . Let's look at a representative sample of these areas. 

• User imerfaces. As we mentioned, most applications that run on personal computers 
and worksta tions, and even those that run on terminals attached to time-shared computers 
and network compute servers, have user interfaces that rely on desktop window systems to 
manage multiple simultaneous activities, and on point-and-click facilities to allow users to 
select menu items, icons, and objects on the screen; typing is necessary only to input text to 
be stored and manipulated . Word-processing, spreadsheet, and desktop-publishing pro
grams are typical applications that take advantage of such user-imerface techniques. The 
authors of this book used such programs to create both the text and the figures: then. the 
publisher and their contractors produced the book using similar typesetting and drawing 
software. 

• (lmeractive) plolling in busines.v, science, and technology. The next most common use 
of graphics today is probably to create 20 and 30 graphs or mathematical, physical. and 
economic functions; histograms. bar and pie charts; task-scheduling charts: inventory and 
production charts; and the like. All t.hesc are used to present meaningfully and concisely the 
trends and patterns gleaned from data, so as to clarify complex phenomena and to facilitate 
informed decision making. 

• Offict awomalion and el~tronic publishing. The use of graphics for the creation and 
dissemination of information has increased enormously since the ad\'Cnt or desktop 
publishing on personal computers. Many organizations whose pub I ications used to be 
printed by outside specialists can now produce printed materials inhouse. Office automu
tion and electronic publishing can produce both traditional printed (hardcopy) documents 
and electronic (softcopy) documents that contain text , tables. graphs, and other forms of 
drawn or scanned-in graphics. Hypermedia systems that allow browsing of networks of 
interlinked multimedia documents are proliferating (sec Color Plate 1.2). 

• Compwer-oided drofting and design. In computer-aided design (CAD), interactive 
graphics is used to design components and systems of mechanical, electrical, electrome· 
chanica!, and electronic devices, including structures such as buildings, automobile bodies, 
airplane and ship hulls , very large-scale-integrated (VLSI) chips, optical systems. and 
telephone and computer ne tworks. Sometimes, the user merely wants to produce the precise 
drawings of components and assemblies, as for online drafting or architectural blueprints. 
Color Plate 1.8 shows an example of such a 30 design program, intended for nonprofession
als: a "customize your own patio deck" program used in lumber yards. More frequently, 
however, the emphasis is on interact.ing with a computer-based model of the component or 
system being designed in order to test, for example. its structural. electrical , or thermal 
propcnies. Often, the model is interpreted by a simulator that feeds baclc the behavior of the 
system to the user for further interactive design and test cycles. After objects have been 
designed, utility programs can postprocess the design database to make parts lists. to 
process ·'bills of materials," to define numerical control tapes for cutting or drilling parts , 
and so on. 

• Simulation and animation for sciemific visMiization and emenainmelll. Computer
produced animated movies and displays of the time-varyil\8 behavior of real and simulated 
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objects are becoming increasingly popular for scientific and engineering visualization (see 
Color Plate l.l 0). We can use them to study abstract mathematical entities as well as 
mathematical models of such phenomena as fluid How, relativity, nuclear and chemical 
reactions, physiological system and organ function, and deformation of mechanical 
structures under various kinds of loads. Another advanced-technology area is interactive 
cartooning. The simpler kinds of systems for producing "Hat" cartoons are becoming 
cost-effective in creating routine "in-between" frames that interpolate between two 
explicitly specified "key frames." Cartoon characters will increasingly be modeled in the 
computer as 30 shape descriptions whose movements are controlled by computer 
commands, rather than by the figures being drawn manually by cartoonists (see Color 
Plates D and F). Television commercials featuring flying logos and more exotic visual 
trickery have become common, as have elegant special effects in movies (see Color Plates 
1.12, 1.13, D.l8, and G). Sophisticated mechanisms are available to model the objects and 
to represent light and shadows. 

• Art 011d commerce. Overlapping the previous category is the use of computer graphics 
in art and advertising; here , computer graphics is used to produce pictures that express a 
message and attract attention (see Color Plates 1.9, 1.11 , and H). Personal computers and 
Teletext and Videotex terminals in public places such as museums, transportation terminals, 
supermarkets , and hotels , as well as in private homes , offer much simpler but still 
informative pictures that let users orient themselves, make choices, or even "teleshop" and 
conduct other business transactions. Finally, slide production for commercial, scientific, or 
educational presentations is another cost-effective use of graphics, given the steeply rising 
labor costs of the traditional means of creating such material. 

• Process control. Whereas flight simulators or arcade games let users interact with a 
simulation of a real or artificial world, many other applications enable people to interact 
with some aspect of the real world itself. Status displays in refineries, power plants, and 
computer networks show data values from se'lsors attached to critical system components, 
so that operators can respond to problematic conditions. For example, military command
ers view field data-number and position of vehicles, weapons launched, trOOp movements, 
casualties--<Jn command and control displays to revise their tactics as needed; Hight 
controllers at airports see computer-generated identification and status information for the 
aircraft blips on their radar scopes, and can thus control traffic more qulckly and accurately 
than they could with the unannotated radar data alone; spacecraft controllers monitor 
telemetry data and take corrective action as needed. 

• Cartography. Computer graphics is used to produce both accurate and schematic 
representations of geographical and other natural phenomena from measurement data. 
Examples include geographic maps, relief maps, exploration maps for drilling and mining, 
oceanographic chartS, weather maps, contour maps, and population-density maps. 

1.4 CLASSIFICATION OF APPLICATIONS 

The diverse uses of computer graphics listed in the previous section differ in a variety of 
ways, and a number of classifications may be used to c-.1tegorize them. The first 
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classification is by 1~ (dimensiOfiiJJity) of the object to be represented and tbe kind of 
picture to be produced. Tile range of possible combinations is indicated in Table I . I. 

Some of the objects represented graphically are clearly abstract, some are real; 
similarly, the pictures can be purely symbolic (a simple 20 graph) or realistic (a rendition 
of a still life). The same object can, of course, be represented in a variety of ways. For 
example, an electronic printed circuit board populated with integrated circuits can be 
portrayed by many ditferent2D symbolic representations or by 30 synthetic photographs of 
the board. 

The second classification is by the type of imeraction, which determines the user's 
degree of control over the object and its image. The range here includes offline plotting, with 
a predefined database produced by other application programs or digitized from physical 
models; imeractillfl plotting, in which the user controls iterations of "supply some 
parameters. plot, alter parameters, replot"; predefining or Cillculating the object and flying 
around it in real time under user control, as in real-time animat.ion systems used for 
scientific visualization and flight simulators: and imtractillfl designing, in which tbe user 
starts with a blank screen, defines new objects (typically by assembling them from 
predefined components), and then IJlOIII:S around t.o get a desired view. 

The third classification is by tbe role of the picturt, or the degree to which the picture is 
an end in itself or is merely a means to an end. In cartography, drafting, raster painting, 
animation, and artwork, for example, the drawing is the end product; in many CAD 
applications, however, the drawing is merely a representation of the geometric properties of 
the object being designed or analyzed. Here the drawing or construction phase is an 
important but small part of a larger process, the goal of which is to create and postprocess a 
common database using an integrated suite of application programs. 

A good example of graphics in CAD is the creation of a VLSI chip. The engineer makes 
a preliminary chip design using a CAD package. Once all the gates are laid out, she then 
subjects the chip to hours of simulated use. From the first run, for instance, she learns that 
the chip works only at clock speeds above 80 nanoseconds (ns). Since the target clock speed 
of the machine is 50 ns, the engineer calls up the initial layout and redesigns a port.ion of tbe 
logic to reduce its number of stages. On the second simulation run, she learns that the chip 
will not work at speeds below 60 os. Once again, she calls up the drawing and redesigns a 
portion of the chip. Once the cbip passes all the simulation tests, sbe invokes a 
postprocessor to create a database of information for the manufacturer about design and 
materials specifications, such as conductor path routing and assembly drawings. In this 

TABLE 1 .1 CLASSIFICATION OF COMPUTER GRAPHICS BY 
OBJECT AND PICTURE 

Type or object 
20 

30 

Pictorial representation 

Line drawing 
Gray scale image 
Color image 
Line drawing (or wirifrr~rM) 
Line drawing, with .arious effects 
SMded, color image with various effects 

Example 

Fig. 2.t 
Fig. 1.1 
Color Pla!e 1.2 
Color Plates 0 .21 - 11.23 
Color Plates 0 .24--11.27 
Color Plates 0 .2&-0.39 
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example, the representation of the chip's geomeuy produces output beyond the picture 
itself. ln fact, the geometry shown on the screen may contain less detail than the underlying 
database. 

A final categorization arises from the logical and temporal relationship between objects 
aruitheir pictures. The user may deal, for example, with only one picture at a time (typical 
in plotting), with a time-varying sequence of related pictures (as in motion or update 
dynamics), or with a structured collection of objects (as in many CAD applications that 
contain hierarchies of assembly and subassembly drawings). 

1 .5 DEVELOPMENT OF HARDWARE AND SOFTWARE FOR 
COMPUTER GRAPHICS 

This book concentrates on fundamental principles and techniques that were derived in the 
past and are still applicable today-and generally will be applicable in the future. In this 
section, we take a brief look at the historical development of computer graphics , to place 
today's systems in context. Fuller treatments of the interesting evolution of this field are 
presented in [PRIN71}, [MACH78] , (CHAS81],C1and [CACM84]. It is easier to chronicle 
the evolution of hardware than to document that of software, since hardware evolution has 
had a greater influence on how the field developed. Thus, we begin with hardware. 

Crude plotting on hardcopy devices such as teletypes and I ine printers dates from the 
early days of computing. The Whirlwind Computer developed in 1950 at the Massachusetts 
Institute of Technology (MIT) had computer-driven CRT displays for output, both for 
operator use and for cameras producing hardcopy. The SAGE air-defense system developed 
in the middle 1950s was the first to use command and comrol CRT display consoles on 
which operators identified targetS with light pens (hand-held pointing devices that sense 
light emitted by objectS on the screen). The beginnings of modem interactive graphics, 
however, are found in Ivan Sutherland's seminal doctoral work on the Sketchpad drawing 
system [SUTH63]. He introduced data structures for storing symbol hierarchies built up via 
eru;y replication of standard components, a technique akin to the use of plastic templates for 
drawing circuit symbols. He also developed interaction techniques that used the keyboard 
and light pen for making choices , pointing, and drawing, and formulated many other 
fundamental ideas and techniques still in use today. lndeed, many of the features 
introduced in Sketchpad are found in the PHIGS graphics package discussed in Chapter 7. 

At the same time, it was becoming clear to computer, automobile, and aerospace 
manufacturers that CAD and computer-aided manufacturing (CAM) activities had enor
mous potential for automating drafting and other drawing-intensive activities. The General 
Motors DAC system [JACK64] for automobile design, and the ltek Digitek system 
[CHASSI] for lens design, were pioneering efforts that showed the utility of graphical 
interaction in the iterative design cycles commQil in engineering. By the mid-sixties, a 
number of research projects and commercial products bad appeared. 

Since at that time computer inpuf/output (l/0) was done primarily in batch mode using 
punched cards, hopes were high for a breakthrough in interactive user-<omputer communi
cation. lnterac1ive graphics, as "the window on the computer," was to be an integral part 
of vastly accelerated interactive design cycles .' The results were not nearly so dramatic, 
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00..-ever, since interactive graphics remained ~nd the resources of all but !he most 
technology-intensive organizations. Among the reasons for this were these: 

• The high cost of the graphics hardware, when produced without benefit of economies 
of scale--at a time when automobiles cost a few thousand dollars , computers cost several 
millions of dollars, and !he first commercial computer displays cost more than a hundred 
thousand dollars 

• The need for large-scale, expensive computing re.~ources to support massive design 
databases, interac tive picture manipulation , and the typically large suite of postprocessing 
programs whose input came from the graphics-design phase 

• The difficulty of writing large, illleractil'e programs for the new rime-sharing environ
ment a t a time when both graphics and interJction were new to predominantly batch
oriented FORTRAN programmers 

• One-ofa-kind. nonporroble software, typically wriuen for a particular manufacturer's 
display device and produced without tbe benefit of modem software-engineering principles 
for building modular, structured systems; when software is nonponable, moving to new 
display devices necessitates expensive and time-<Onsuming rewriting of "'mldng programs. 

h was the advent of graphics-based personal computers, such as the Apple Macintosh 
and the IBM PC, that finally drove down the costs of both hardware and software so 
dramatically that millions of graphics computers were sold as ·•appliances" for office and 
home; when the field s tarted in the early s ixties, itS practitioners ne,er dreamed !hut 
personal computers featuring graphical interaction would become so common so soon. 

1 .5 .1 Output Technology 

The display devices developed in the mid-sixties and in common usc umil the mid-eighties 
are called vector. stroke, line drawing, or cttlligraphic displays. The term vector is used as a 
synonym for line here; a stroke is a short line. and characrers are made of sequences of such 
strokes. We shall look briefly at vector-system architecture, because many modem raster 
graphics systems use similar techniques. A typical vector system consists of a display 
processor connected as an 110 peripheral to the central processing unit (CPU), a display 
buffer memory. and a C RT. The buffer s tores !he computer-produced display list or display 
program; it contai ns point- and line-plotting commands with (x, y) or (x, y, z) endpoint 
coordinates, as well as character-ploning commands. Figure 1.1 shows a typical vector 
architecture; the display list in memory is shown as a symbolic representation of lhe output 
commands and their (x, y) or character values . 

The commands for plotting points, lines , and charac ters are interpreted by lhe display 
processor. It sends digital and point coordinates to a vecror generator t.hat converts the 
digital coordinate V"Jiues to analog voltages for beam-deRection circuits that displace an 
e lectron beam writing on the CRT's phosphor coating (!he details are given in Chapter 4) . 
The essence of a vector system is that the beam is deHected from endpoint to endpoint , as 
dictated by the arbitrary order of !he display commands; this technique is called random 
scan. (Laser shows also use random-scan deHection of !he laser beam.) Since the light 
output of the phosphor decays in tens or at most hundreds of microseconds, tbe display 

TEXAS INSTRUMENTS EX. 1009 - 33/1253



1 0 Introduction 

..--, 

. I 
MOVE 

10 
15 

LINE 
400 
300 

CHAR 
Lu 

L~ 

I 
I 
I 
I 
I 
I 
I 
I 
I 

JUP _ .. 

Refresh buffer 

Interface with host computer 

I + 
(Display commands) (Interaction data) 

I 
Dllplar COiilluleo (DC) 

Fig. 1 . 1 Architecture of a vector display. 

processor must cycle through the display list to refresh the phOSphor at least 30 times per 
seoond (30Hz) to avoid flicker; hence, the buffer holding the display list is usually called a 
refresh buffer. Note that. in Fig. 1. 1, the jump instruction loops back to the top of the 
display list to provide the cyclic refresh. 

In the sixties, buffer memory and processors fast enough to refresh at (at least) 30 Hz 
were expensive , and only a few thousand lines could be shown without noticeable flicker. 
Then, in the late sixties, the direct-view storage tube (DVST) obviated both the buffer and 
the refresh process, and eliminated all flicker. This was the vital step in making interactive 
graphics affordable. A DVST stores an image by writing that image once with a relatively 
slow-moving electron beam on a storage mesh in which the phosphor is embedded. The 
small, self-sufficient DVST terminal was an order of magnitude less expensive than was the 
typical refresh system; further, it was ideal for a low-speed (300- to 1200-baud) telephone 
interface to time-sharing systems. DVST terminals introduced many users and program
mers to interactive graphics. 

Another major hardware advance of the late sixties was attaching the display to a 
minicomputer; with this configuration, the central time-sharing computer was relieved of 
the heavy demands of refreshed display devices, especially user-interaction handling, and 
updating the image on the screen. The minicomputer typically ran application programs as 
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well. and could in mm be connected to the larger central mainframe to run large analysis 
programs. Both minicomputer and DVST configurations led to installations of thousands of 
graphics systems. Also at this time, the hardware of the display processor itSelf was 
becoming more sophisticated, taking over many routine but time-consuming jobs from the 
graphics software. Foremost among such devices was the invention in 1968 of refresh 
display hardware for geometric transformations that could scale, rotate, and translate points 
and lines on the screen in real time, could perform 20 and 30 clipping, and could produce 
parallel and perspective projections (see Chapter 6). 

The development in the early seventies of inexpensive raster graphics, based on 
television technology, contributed more to the growth of the field than did any other 
technology. Raster displays store the display primitives (such as lines , characters, and 
solidly shaded or patterned areas) in a refresh buffer in tem1s of their component pixels, as 
shown in Fig. 1.2. In some raster displays, there is a hardware display controller that 
receives and interprets sequences of output commands similar to those of the vector displays 
(as shown in the figure); in simpler, more common systems, such as those in personal 
computers, the display controller exists only as a software component of the graphics 
library package. and the refresh buffer is just a piece of the CPU's memory that can be read 
out by the image display subsystem (often called the video controller) that produces the 
actual image on the screen. 

The complete image on a raster display is formed from the raster, which is a set of 
horizontal raster lines, each a row of individual pixels; the raster is thus stored as a matrill 
of pixels representing the entire screen area. The entire image is scanned out sequentially by 
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Fig. 1.2 Architecture of a raster display. 
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the video controller, one raster line at a time, from top to bouom and then back to the top 
(as shown in Fig. 1.3). At each pixel, the beam's intensity is set to rellect the pixel's 
intensity; in color systems, three beams are controlled-one each for the red, green, and 
blue primary colo~ specified by the three color components of each pixel's value (see 
Chapters 4 and 13). Figure 1.4 shows the difference between random and raster scan for 
displaying a simple 20 line drawing of a house (part a). In part (b), the vector arcs are 
notated with arrowheads showing the random deflection of the beam. Dotted lines denote 
deOection of the beam, which is not turned on (''blanked"), so that no vector is drawn. Part 
(c) shows the unfilled house rendered by rectangles, polygons, and arcs, whereas part (d) 
shows a filled version. Note the jagged appearance of the lines and arcs in the raster scan 
images of parts (c) and (d); we shall discuss that visual artifact shortly. 

In the early days of raster graphics, refreshing was done at television rates of 30 Hz; 
today, a 60-Hz or higher refresh rate is used to avoid ft ickering of the image. Whereas in a 
vector system the refresh buffer stored op-codes and endpoint coordinate values, in a raster 
system the entire image of, say, 1024 lines of 1024 pixels each, must be s tored explicitly. 
The term bi1map is still in common use to describe both the refresh buffer and the array of 
pixel values that map one for one to pixels on the screen. Bitmap graphics has the advantage 
over vector graphics that the actual display of the image is handled by inexpensive scan-out 
logic: The regular, repetitive raster scan is far easier and less expensive to implement than is 
the random scan of vector systems, whose vector generators must be highly accurate to 
provide linearity and repeatability of the beam's dellection. 

The availability of inexpensive solid-state random-access memory (RAM) for bitmaps 
in the early seventies was the breakthrough needed to make raster graphics the dominant 
hardware technology. Bilevel (also called monochrome) CRTs draw images in black and 
white or black and green; some plasma panels use orange and black. Bilevel bitmaps contain 
a single bit per pixel, and the entire bitmap for a screen with a resolution of 1024 by I 024 
pixels is only 220 bits, or about 128,000 bytes. Low-end color systems have 8 bits per pixel, 
allowing 256 colors simultaneously; more expensive systems have 24 bits per pixel, 
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' ...... ----------
~----------- ' 

Scan line 
I 

Horizontal retrace " _______ ...., - - - -
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Fig. 1.3 Raster scan. 
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(a) Ideal line drawing 
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(c) Raster scan with outline primitives 
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(b) Vector scan 

(d) Raster scan with filled primitives 

13 

Fig. 1.4 Random scan versus raster scan. We symbolize the screen as a rounded 
rectangle filled with a light gray shade that denotes the white background; the image is 
drawn in black on this background. 

allowing a choice of any of l 6 mill ion colors; and refresh buffers with 32 bits per piltel, and 
screen resolution of 1280 by 1024 pixels are available even on personal computers. Of the 
32 bits, 24 bits are devoted to representing color, and 8 to control purposes, as discussed in 
Chapter 4. Beyond that, buffers with 96 bits (or more) per pixel1 are avai lable at 1280 by 
I 024 resolution on the high-end systems discussed in Chapter 18. A typical 1280 by I 024 
color system with 24 bits per pixel requires 3.75 MB of RAM-inexpensive by today's 
standards. The tenn bitmap, strictly speaking, applies only to 1-bit-per-pixel bilevel 
systems; for multiple-bit-per-pixel systems, we use the more general term pixmap (short for 
pixel map). Since pi.xmap in common parlance refers both to the contents of the refresh 

10f these 96 bils, typiC'ally 64 bits are used for twO 32-bil color-and-contrOl buffers 10 allow 
double-buffering of two images: while one image is being refreshed,the second one is being updated. 
The remaining 32-bil buffer is used to implement a hardware technique called :-buffering, used to do 
visible-surface determination for creating realistic 3D images (see Chapters 14 and 15). 
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Fig. 1.4 Random seen versus raster seen. We symbolize the screen as a rounded

rectangle titled with alight gray shade that denotes the white background; the image is
drawn in black. on this background.
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buffer and to the buffer memory itself, we use the term frame lmffer when we mean the 
actual buffer memory. 

The major advantages of raster gJllphics Q\'er >ector graphics include lower cost and the 
ability to display areas filled with solid colors or patterns, an especially rich means of 
communicating information that is essential for realistic images of 3D objects. Further
more, the refresh process is independent of the complexity (number of polygons, e tc.) of 
the image , si nce the hardw-Jre is fast enough that each pixel in the buffer can be read out on 
each refresh cycle. Most people do not percei-e flicker on screens refreshed abQ\'e 70 H:r:. In 
cont.rast. vector displays flicker when the number of primiti-es in the buffer becomes too 
large; typically a maximum of a few hundred thousand short vectors may be displa)ed 
nicker-free. 

The major disadvantage of raster systems compared to vecto r systems arises from the 
discrete nature of the p ixel representation. First. primiti-es such as lines and polygons are 
specified in terms of their endpoints (vertices) and must be SCtJn-com'l!rtM into their 
component pixels in the frame buffer. The term dcri-es from the notion that the 
programmer specifies endpoint or vertex coordinates in random-scan mode, and this 
information must be reduced by the system to pixels for ras ter-scan- mode display. Scan 
conversion is commonly done with softw-.tre in personal computers and low-end work
stations. where the microprocessor CPU is responsible for all graphics. For higher 
performance, scan conversion can be done by special-purpose hardware, including roster 
image processor (RIP) chips used as coprocessors or accelerators. 

Because each primitive must be scan-converted, real-ti me dynamics is far more 
computational ly demanding on raster systems than o n vector systems. First , transform ing 
1000 lines on a >ector system can mean transforming 2000 endpoints in the worst case. In 
the next refresh cycle, the \'eCtor-generator hardware automatically redraws the transformed 
lines in their new positions. In a raster S}'litem, h~ever. not only must the endpoints be 
transformed (using hardw-J.re transformation un its identical to those used by vector 
systems), but also each transformed primitive must then be scun-convcrted using its new 
endpoints, which define its new si7.e and position. None o f the contents of the frame buffer 
can be salvaged. When the CPU is responsible for both endpoint transformation and scan 
con-ersion, only a small number of primith'CS can be tranSformed in real time. 
Transformation and scan-<:on-ersion hardware is thus needed for dynamics in raster 
systems; as a result of s teady progress in VLSI . that has become feasible even in low-end 
systems. 

The second drawback of raster systems arises from the nature of the raster itself. 
Whereas a vector system can draw a continuous, smooth line (and even some smooth 
CUT\'CS) from essentially any point on the CRT face to any other. the raster system can 
display mathematically smooth lines, polygons, and boundaries of curved primitives such 
as circles and ellipses only by approximating them with pbtels on the raster grid. This can 
cause lhe familiar problem of "jaggies" or "staircasing," as shown in Fig. 1.4 (c) and 
(d). This visual artifact is a manifestation of a sampling error called aliasing in 
signal-processing t.heory; such artifacts occur when a function of a continuous variable that 
contains sharp changes in intensity is approximated with discrete samples. Both theory and 
practice in modem computer graphics are concerned with techniques for amialiasing on 
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gray-scale or color systems . These techniques specify gradations in intensity of neighboring 
pixels at edges of primitives, rather than setting pixels to maximum or zero intensity only; 
see Chapters 3, 14, and 19 for further discussion of this important topic. 

1.5.2 Input Technology 

Input technology has also improved greatly over the years. The clumsy , fragile light pen of 
vector systems has been replaced by the ubiquitous mouse (first developed by office
automation pioneer Doug Engelban in the mid-sixties [ENGE68]), the data tablet, and the 
transparent, touch-sensitive panel mounted on the screen. Even fancier input devices that 
supply not just (x, y) locations on the screen, but also 30 and even higher-dimensional input 
values (degrees of freedom), are becoming common, as discussed in Chapter 8. Audio 
communication also has exciting potential , since it allows hands-free input and natural 
output of simple instructions, feedback, and so on. With the standard input devices. the 
user can specify operations or picture components by typing or drawing new information or 
by pointing to existing information on the screen. These interactions require no knowledge 
of programming and only a little keyboard use: The user makes choices simply by selecting 
menu buttons or icons, answers questions by checking options or typing a few characters in 
a form, places copies of predefined symbols on the screen, draws by indicating consecutive 
endpoints to be connected by straight lines or interpolated by smooth curves, paints by 
moving the cursor over the screen, and fills closed areas bounded by polygons or paint 
contours with shades of gray, colors, or various patterns. 

1.5 .3 Software Portability and Graphics Standards 

Steady advances in hardware technology have thus made pos.~ible the evolution of graphics 
displays from one-of-a-kind special output devices to the standard human interface to lbe 
computer. We may well wonder whelber software has kept pace. For example, to what 
extent have early difficulties with overly complex, cumbersome, and expensive graphics 
systems and application software been resolved? Many of these difficulties arose from the 
primitive graphics software that was available, and in general there has been a long, slow 
process of maturation in such software. We have moved from low-level, device-depende/11 
packages supplied by manufacturers for their particular display devices to higher-level , 
device-independent packages. These packages can drive a wide variety of display devices, 
from laser printers and plotters to film recorders and high-performance real-time displays. 
The main purpose of using a device-independent package in conjunction with a high-level 
programming language is to promote application-program portability. This portability is 
provided in much lbe same way as a high-level, machine-independent language (such as 
FORTRAN, Pascal, or C) provides portability: by isolating the programmer from most 
machine peculiarities and providing language features readily implemented on a broad 
range of processors. " Programmer portability" is also enhanced in that programmers can 
now move from system to system, or even from installation to installation, and find familiar 
software. 

A general awareness of the need for standards in such device-independent graphics 
packages arose in the mid-seventies and culminated in a specification for a 3D Core 
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Gmphics System (the Core, for short) produced by an ACM SIGGRAPH2 Committee in 
1977 [GSPC77] and refined in 1979 [GSPC79). The first three authors of ihis book were 
actively involved in the design and documentation of the 1977 Core. 

The Core specification fulfilled its intended role as a baseline specification. Not only 
did it have many implementations, but also it was used as input to official (governmental) 
standards projects within both ANSJ (ihe American National Standards Institute) and ISO 
(the International Standards Organization). The first graphics specification to be officially 
standardized W<IS OKS (the Graphical Kernel System [ANSl85b}), an elaborated, cleaned
up version of the Core that, unlike the Core, was restricted to 2D. In 1988, OKS-3D 
f£NTE88], a 3D extension of OKS, became an official standard, as did a much more 
sophisticated but even more complex graphics system called PHJ.GS (Programmer's 
Hierarchical Interactive Graphics System [ANSI88J). OKS supports the grouping of 
logically related primitives-such as lines, polygons, and character strings-and their 
attributes into collections called segments; these segments may not be nested. PH lOS, as its 
name implies. does support nested hierarchical groupings of 3D primitives, called 
structures. ln PHlGS, all primitives, including invocations of substructures , are subject to 
geometric transfonnations (scaling. rotation, and translation) to accomplish dynamic 
movement. PffiGS also supports a retained database of structures that the programmer may 
edit selectively; PHJGS automatically updates the screen whenever the database has beeo 
altered. PHJGS has been extended with a set of features for modern, pseudorealistic 
rendering3 of objects on raster displays; this extension is called PHIGS+ [PHJG88]. PHJGS 
implementations are large packages, due to the many features and to the complexity of the 
specification. PHJGS and especially PHJGS+ implementations run best when there is 
hardware support for their transformation, clipping, and rendering features. 

This book discusses graphics software standards at some length. We first study SRGP 
(the Simple Ra~ter Graphics Package), which borrows features from Apple's popular 
QuickDraw integer raster graphics package [ROSE85] and MIT's X Window System 
[SCHE88a) for output and from GKS and PHIGS for input. Having looked at simple 
applications in this low-level raster graphics package, we then study the scan-conversion 
and clipping algorithms such packages use to generate images of primitives in the frame 
buffer. Then, after building a mathematical foundation for 2D and 3D geometric 
trdllsformations and for parallel and perspective viewing in 3D, we study a far more 
powerful package called SPHTGS (Simple PH~IGS). SPHJGS is a subset of PHIGS that 
operates on primitives defined in a floating-point, abstract, 3D world-coordinate system 

'SIGGRAPH is the Special interest Group on Graphics. one of tbe professional groups within ACM. 
the Association for Computing Machinery. ACM is one of the two major professional societies for 
computer professionals: the IEEE Computer Society is the other. SJGGRAPH publishes a research 
journal and sponsors an annual conference that features presentations of research papers in the field 
and an equipment exhibition. The Computer Society also publishes a research journal in graphics. 
1A pseudorealistic rende.ring is one that simulates the simple laws of optics describing how light is 
reflected by objects. Photorealistic rendering uses better approximations to the way objecl~ reflect 
and refract light: these approximations require more computation but produce images that are more 
nearly photographic in quality (see Color Plate E). 
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independent of any type of display technology, and that supports some simple PHIGS+ 
features. We have oriented our discussion to PHIGS and PHIGS+ because we believe they 
will have much more influence on interactive 3D graphics than will GKS-30, especially 
given the increasing availability of hardw-dre that supports real-time transformations and 
rendering of pseudorealist ic images. 

1.6 CONCEPTUAL FRAMEWORK FOR INTERACTIVE GR.APHICS 

1.6 .1 Overview 

The high-level conceptual framework shown in Fig. 1.5 can be used to describe almost any 
interactive graphics system. At the hardware level (not shown explicitly in the diagram), a 
computer receives._input from interaction devices, and outputs images to a display device. 
The software has three components. The first is the application program; it creates, stores 
into, and retrieves from the second component. the application model, which represents the 
data or objects to be pictured on the screen. The application program also handles user 
input. It produces views by sending to the third component, the graphics system, a series of 
graphics output commands that contain both a detailed geometric description of what is to 
be vie\\oed and the attributes describing how the objects should appear. The graphics system 
is responsible for actually producing the picture from the detailed descriptions and for 
passing the user's input to the application program for processing. 

The graphics system is thus an intermediary between the application program and the 
display hardware that effects an outpturransformation from objects in the application model 
to a view of the model. Symmetrically, it effects an inptlltransformation from user actions 
to inputs to the application program that will cause the application to make changes in the 
model and/or picture. The fundamental task of the designer of an interactive graphics 
application program is to specify what classes of data items or objects are to be generated 
and represented pictorially, and how the user and the application program are to interact in 
order to create and modify the model and its visual representation. Most of the 
programmer' s task concerns creating and editing the model and handling user interaction, 
not actually creating views, since that is hand led by the graphics system. 

D 
Fig. 1.5 Conceptual framework for interactive graphics. 
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1.6.2 Application Modeling 

The application model captures all the data, objects, and relationships among them that are 
relevant to the display and interaction part of the application program and to any 
nongraphical postprocessing modules. Examples of such postprocessing modules are 
analyses of the !ranSient behavior of a circuit or of the stresses in an aircraft wing, 
simulation of a population model or a "''Cather s~tem, and pricing computations for a 
building. In the class of applications typified by "painting'' programs such as MacPaint 
and PCPaint , the intent of the program is to produce an image by letting the user set or 
modify individual pixels. Here an explicit application model is not needed-the picture is 
both means and end. and the dispi3)'Cd bitmap or pix map senes in effect as the application 
model. 

More typically. however, there is an identifi able application model representing 
application objects through some combinntion of data and procedural description that is 
independent of a particular display device . Procedural descriptions are used, for example, to 
define fractals, as described in Section 20.3. A data model can be as rudimentary as an 
array of data points or as complex as a linked list representing a net~rk data structure or a 
relational database storing a set of relations. We often speak of storing the application 
model in the application database; the terms are used interchangeably here. Models 
typicaHy store descriptions of primitilon (points, lines and polygons in 20 or 30, and 
polyhedra and free-form surfaces in 30) that define the shape of components of the object , 
object auribwts such as line style, color, or surface texture; and connecrivity relationships 
and positioning data that describe how the components fit together. 

'The objects stored in the model can differ greatly in the amount of intrinsic geometry 
needed to specify them. At the geometry-is-everything end of the spectrum, an industrial 
robot of the l)'pe discussed in Chapter 7 is described almost completely in te.rms of the 
geometry of its component polyhedra, each of which is a collection of 30 polygonal facets 
connected at common edges defined in terms of common vertices and enclosing a volume. 
A spreadsheet has much less intrinsic geometry. Tbe spatial relationships between adjacent 
cells are sto!UI, but the exact size or placement of each cell on the " paper" is n01 sto!UI; 
instead, these values are determined dynamically by the spreadsheet program as a function 
of the contents of cells. At the geometry-free end of the spectrum, a demographic model 
storing statistics, such as income and age of individuals in some population, has no intrinsic 
geometry. These statistics can then be operated on by a procedure to derive some 
geometrioo/ imerpretation, such as a 20 graph, scatter diagram, or histogram. 

Another class of applications without intrinsic geometry deals with the directed-graph 
networks used in various fields such as engineering and project management. These 
networks may be represented internally by adjacency matrices describing how nodes are 
connected , plus some property data for nodes and edges, and the application must then 
derive a layout in a p!Uielined format in order to create a view of the graph. This 
representation might be created once and subsequently edited, as for a VLSI circuit layout 
computed over many hours. The model would then contain both a nongeometric and an 
almost purely geometric description of the circuit. Alternatively, if a layout for a particular 
application is simple and fast enough to derive, such as a project-scheduling chart with 
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labeled boxes and arrows, it can be created on the fly each time the data on which it is based 
change. 

Geometric data in the application model often arc accompanied by nongeometric 
textual or numeric property information useful to a postprocessing program or the 
interactive user. Examples of such data in CAD applications include manufacturing data; 
"price and supplier" data; thermal, mechanical, electrical, or electronic properties; and 
mechanical or electrical tolerances. 

1 .6 .3 Describing to the Graphics System What Is to Be Viewed 

The application progrdm creates the application model either a priori as a result of prior 
computation, as in an engineering or scientific simulation on a supercomputer, or as part of 
an interactive session at the display device during which the user guides the construction 
process step by step to choose components and geometric and nongeometric property data. 
The user can ask the application program at any time to show a view of the model it ha~ 
created so far. (The word view is used intentionally here, both in the sense of a visual 
rendering of some geometric properties of the objects being modeled and in the technical 
database sense of a 2D presentation of some properties of some subset of the model.) 

Models arc application-specific and are created independently of any particular display 
system. Therefore, the application program must convert a description of the portion of the 
model to be viewed from the internal representation of the geometry (whether explicitly 
stored in the model or derived on the fly) to whatever procedure calls or commands the 
graphics system uses to create an image. This con":Crsion process has two phases. First, the 
application program trdverses the application database that stores the model in order to 
extract the portions to be viewed, using some selection or quety criteria. Then, the 
extracted geometry is put in a format that can be sent to the graph ics system. The selection 
criteria can be geometric in nature (e.g., the portion of the model to be viewed has been 
shifted via the graphics equivalent of a pan or zoom camera operation), or they can be 
similar to traditional database query criteria (e.g., create a view of all the activities after 
March 15, 1989 in the scheduling chart for producing this book). 

The data extracted during the database traversal must either be geometric in nature or 
must be converted to geometric data; the data can be described to the graphics system in 
terms of both primitives that the system can display directly and attributes that control the 
primitives' appearance. Display primitives typically match those stored in geometric 
models: lines , rectangles, polygons, circles, ellipses, and text in 2D, and polygons, 
polyhedra, and text in 3D. Advanced graphics systems such as PHIGS+ support additional 
primitives, including curves and surfaces defined by polynomials of higher degrees. 

If the model stores geometric primitives not directly supported by the graphics 
package, the appl ication program must reduce them to those that arc accepted by the 
system. For example, if spheres and free-form surfaces arc not supported, the application 
must approximate such surfaces by tiling or tessellating them with meshes of polygons that 
the graphics system can handle. Appearance attributes supported by the graphics package 
also tend to correspond to the ones stored in the model , such as color, line style, and line 
width. In addition to primitives and attributes, advanced graph ics packages such as PHIGS 
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support facilities for specifying geometric transformations for scaling, rotating, and 
positioning components. for specifying how components are to be viewed in 30, and for 
grouping logically related primitives, attributes, and transformations so that they can be 
invoked by a single reference to a named structure. 

The graphics system typically consists of a set of output subroutines corresponding to 
the various primitives, attributes, and other elements. These are collected in a graphics
subrouJine library or package that can be called from high-level languages such as C. Pascal , 
or LISP. The application program specifies geometric primitives and attributes to these 
subroutines, and the subroutines then drive the specific display device and cause it to display 
the image. Much as conventional 110 systems create logical 110 units to shield the 
application progr.unmer from the messy details of hardw.ue and device drivers, graphics 
systems create a logical display device. Thus, the graphics programmer can ignore such 
details as which part of image generation is done in the display hardware and which is done 
by the graphics package, or what the coordinate system of the display is. This abstraction of 
the display device pertains both to the output of images and to interaction via l.ogical input 
devices. For example, the mouse, data tablet, touch panel, 20 joystick, or trackball can all 
be treated as the locator logical input device that returns an (x, y) screen location. The 
application program can ask the graphics system either to sample the input devices or to 
wait at a specified point until an eve/11 is generated when the user activates a device being 
waited on. With input values obtained from sampling or waiting for an event , the 
application program can handle user interactions that alter the model or the display or that 
change its operating mode. 

1.6.4 Interaction Handling 

The typical application-program schema for interaction handling is the event-driven loop. It 
is easily visualized as a finite-state machine with a central wait state and transitions to other 
states that are caused by user-input events. Processing a command may entail nested event 
loops of the same format that have their own states and input transitions. An application 
program may also sample input devices such as the locator by asking for their values at any 
time; the program then uses the returned value as input to a processing procedure that also 
changes the state of the application program, the image, or the database. The event-driven 
loop is characterized by the following pseudocode schema: 

generate initial display, derived from application model as appropriate 
while (!quit ) { I• User has not selected the "quit" option •I 

} 

enable selection of commands objects 
I• Program pauses inde.finitely in "wait state" until user acts •/ 
waii /tlr user selection 
s witch (selection) { 

} 

proce.ts selection to complete Ctlmmand or process completed commat~d, 
updoting model tmd screen as needed 

Let's examine the application's reaction to input in more detail. The application program 
typically responds to user interactions in one of two modes. First, the user action may 
require only that the screen be updated-for example, by highlighting of a selected object 
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or by making available a new menu of choices. The application then needs only to update its 
internal state and to call the graphics package to update the screen; it does not need not to 
update the database. If, however, the user action calls for a change in the model-for 
example, by adding or deleting a component-the application must update the model and 
then call the graphics package to update the screen from the model. Either the entire model 
is retraversed to regenerate the image from scratch, or, with more sophisticated incremen
tal-update algorithms, the screen is updated selectively. It is important to understand that 
no significant change can take place in the objects on the screen without a corresponding 
change in the model. The screen is indeed the window on the computer in that the user, in 
general, is manipulating not an image but the model that is literally and figuratively behind 
the image. Only in painting and image-enhancement applications are the model and the 
image identical. Therefore, it is the application's job to interpret user input. The graphics 
system has no responsibi lity for building or modifying the model, either initially or in 
response to user interaction; its only job is to create images from geometric descriptions and 
to pass along the user's input data. 

The event-loop model, although fundamental to current practice in computer graphics, 
is I imited in that the user-<:omputer dialogue is a sequential, ping-pong model of alternating 
user actions and computer reactions. In the future. we may expect to see more of parallel 
conversations, in wltich simultaneous input and output using multiple communications 
channels-for example, both graphics and voice-take place. Formalisms, not to mention 
programming-language constructs, for such free-form conversations are not yet well 
developed; we shall not discuss them further here. 

1.7 SUMMARY 

Graphical interfaces have replaced textual interfaces as the standard means for user
computer interaction. Graphics has also become a key technology for communicating 
ideas, data, and trends in most areas of commerce, science, engineering, and education. 
With graphics, ~-e can create artificial realities, each a computer-based "exploratorium" 
for examining objects and phenomena in a natural and intuitive way that exploits our highly 
developed skills in visual-pattern recognition. 

Until the late eighties, the bulk of computer-graphics applications dealt with 2D 
objects; 3D applications were relatively rare, both because 3D software is intrinsically far 
more complex than is 2D software and because a great deal of computing power is required 
to render pseudorealistic images. Therefore , until recently, real-time user interaction with 
3D models and pseudorealistic images was feasible on only very expensive high
performance workstations with dedicated, special-purpose graphics hardware. The spectac
ular progress of VLSI semiconductor technology that was responsible for the advent of 
inexpensive microprocessors and memory led in the early 1980s to the creation of 2D, 
bitrnap-grdphics-based personal computers. That same technology has made it possible, 
less than a decade later, to create subsystems of only a few chips that do real-time 3D 
animation with color-shaded images of complex objects, typically described by thousands 
of polygons. These subsystems can be added as 3D accelerators to workstations or even 10 

personal computers using commodity microprocessors. It is clear that an explosive growth 
of 3D applications will parallel the current growth in 2D applications. Furthermore, topics 
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such as photorealistic rendering that were considered exotic in the 1982 edition of this book 
are now part of the state of the art and are available routinely in graphics software and 
increasingly in graphics hardware. 

Much of the task of creating effective graphic communication, whether 20 or 30, lies 
in modeling the objects whose images we want to produce. The graphics system acts as the 
intermediary between the application model and the output device. The application 
program is responsible for creating and updating the model based on user interaction; the 
graphics system does the best-understood, most routine part of the job when it creates views 
of objects and passes user events to the application. II is important to note that, although 
this separation between modeling and graphics was accepted practice at the time this book 
was written, our chapters on modeling (Chapters II, 12, and 20) and animation (Chapter 
21 ), as well as the growing literature on various types of physically based modeling, show 
that graphics is evolving to include a great deal more than rendering and interaction 
handling. Images and animations are no longer merely illustrations in science and 
engineering--they have become part of the content of science and engineering and are 
inHuencing how scientists and engineers conduct their daily Y.'Ork. 

EXERCISES 

J.J List the interactive graphics programs ~u use on a routine basis in }'OUr "knowledge work": 
writing, calculating, graphing, programming, debugging, and so on. Which of these programs would 
work almost as well on an alphanumerics-only terminal? 

1.2 The phrase "look and feel" has been appl ied extensively to the user interface of graphics 
programs. Itemize the major components-such as icons, windows, scroll bars, and menus-of the 
look of the graphics interface of ~ur tiworite word-processing or window-manager program. List the 
kinds of graphics capabilities these ''widgets" require. What opportunities do ~u see for applying 
color and 30 depictions to the look? For example, how might a ''cluttered office" be a more powerful 
spatial metaphor for organizing and accessing information than is a " messy desktop?" 

1.3 In a similar vein to that of Exercise l .2, what opportunities do ~usee for dynamic icons to 
augment or even to replace the static icons of current desktop metaphors? 

1.4 Break down ~ur favorite graphics application into its major modules, using t.he conceptual 
model of Figure 1.5 as a guide. How much of the application actually deals with graphics perse? How 
rnucb deals with data-structure creation and maintainance? How much deals with calculations, such 
as simulation? 

1.5 The terms simulation and animation are often used together and even interchangeably in 
computer graphics. This is natural when the behavioral (or structural) changes over time of some 
physical or abstract system are being visualized. Construct some examples of systems that eould 
benefit from such visualizations. Specify what form the simulations would take and how they would 
be executed. 

J .6 As a variation on Exercise 1.5, create a high-level design of a graphical "exploratorium" for a 
nomrivial topic in science, mathematics, or engineering. Discuss how the interaction sequences 
would work and what facilities the user should have for experimentation. 

1. 7 Consider an image containing a set of 10,000 l -inch unconnected vectors. Contrast the storage 
required for a vector display list with that for a 1-bit raster image for a 1024-by-1024 bilevel display to 
store this image. Assume that it takes a 8-bit "oJH:ode" to specify "vector-draw," and four 10-bit 
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coordinates (i.e., 6 bytes) to store a vector in lhe vector display list. How do lhese numbers vary as a 
function of the number and size of lhe \-ectonl, lhe number of bilS per pixel. and lhe resolution of lhe 
raster display? What conclusion can )Oil draw aboutlhe relath<e sizes of refresh merno.y required? 

1.8 Wilhout peeking at Chapter 3, construct a straightfOfW&rd algorithm for scan converting a line in 
lhe first quadrant. 

1.9 Aliasing is a serious problem in that it produces unpleasant or C\'eo misleading visual artifacts. 
Discuss situations in which these anifacts matter. and those in which they do noL Discuss various 
ways to minimize the effects of jaggies, and explain what the ··costs•· of those remedies might be. 
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2 
Programming in 

the Simple Raster 
Graphics Package (SRGP) 

Andries van Dam 
and David F. Sklar 

ln Chapter I, we saw that vector and raster displays arc two substantially different hardware 
technologies for creating images on the screen. Raster displays are now the dominant 
hardware technology, because they support severa.l features that are essential to the majority 
of modem applications. First, raster displays can fill areas with a uniform color or a 
repeated pattern in two or more colors; vector displays can. at best, only simulate filled 
areas with closely spaced sequences of parallel YCCtors . Second, raster displays store images 
in a way that allows manipulation at a fine level : individual pixels can be read or written. 
and arbitrary portions of the image can be copied or 111()\'ed. 

The first graphics package we discuss, SRGP (Simple Raster Graphics Package), is a 
device· independent graphics package that exploits raster capabilities. SRGP's repertoire of 
primitives (lines, rectangles, circles and ellipses. and text strings) is similar to that of the 
popular Macintosh QuickDraw raster package and that of the Xlib package of the X 
Window System. Its intemction-handling features, on the other hand, are a subset of those 
of SPHIGS. the higher-level graphics package for displaying 30 primitives (covered in 
Chapter 7). SPHIGS (Si mple PHJGS) is a simplified dialect of the standard PHIGS 
graphics package (Programmer's Hiera.rchical lnterJctive Graphics System) designed for 
both raster and vector hardware . Although SRGP and SPHIGS were wriuen specifically for 
this text. they are also very much in the spirit of mainstream graphics packages, and most of 
what you will learn here is immediately applicable to commercial packages. In this book. 
we introduce both packages; for a more complete description. you should consult the 
reference manuals distributed with the software packages. 

We stan our discussion ofSRGP by examining the operations that applications perform 
in order to draw o n the screen: the specification of primiti''CS and of the attributes that affect 

25 
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their image. (Since graphics printers display information essentially as raster displays do, 
we need not concern ourselves with them until we look more closely at hardware in Chapter 
4.) Next we learn how to make applications interactive using SRGP's input procedures. 
Then we cover the utility of pixel manipulation, available only in raster displays. We 
conclude by discussing some limitations of integer raster graphics packages such as SRGP. 

Although our discussion of SRGP assumes that it controls the entire screen, the 
package has been designed to run in window environments (see Chapter 10), in which case 
it controls the interior of a window as though it were a virtual screen. The application 
programmer therefore does not need to be concerned about the details of running under 
control of a window manager. 

2.1 DRAWING WITH SRGP 

2.1 .1 Specification of Graphics Primitives 

Drawing in integer raster graphics packages such as SRGP is like plotting graphs on graph 
paper with a very fine grid. The grid varies from 80 to 120 points per inch on conventional 
displays to 300 or more on high-resolution displays . The higher the resolution, the better the 
appearance of fine detail. Figure 2.1 shows a display screen (or the surface of a printer's 
paper or fi lm) ruled in SRGP's integer Cartesian coordinate system. Note that pixels in 
SRGP lie at the intersection of grid lines. 

The origin (0, 0) is at the bottom left of the screen; positivex increases toward the right 
and positive y increases toward the top. The pixel at the upper-right comer is (width.- I, 
height- I), where width and height are the device-dependent dimensions of the screen. 

On graph paper, we can draw a continuous line between two points located anywhere 
on the paper; on raster displays, however, we can draw lines only between grid points, and 
the line must be approximated by intensifying the grid-point pixels lying on it or nearest to 
it. Similarly, sol id figures such as filled polygons or circles are created by intensifying the 
pixels in their interiors and on their boundaries. Since specifying each pixel of a line or 
closed figure would be far too onerous, graphics packages let the programmer specify 
primitives such as lines and polygons via their vertices; the package then fills in the details 
using scan-conversion algorithms, discussed in Chapter 3. 

y 

s~-+4-~~~+-~~ 
4~~~4-~~~4-~ 
3~~~4-~HI~4-~ 
2~~~-+~~~+-+-~ 
1 ~~~4-~~~4-~ 
0

0 1 2 3 4 5 6 7 8 9 1023 X 

Fig. 2 .1 Cartesian coordinate system of a screen 1024 pixels wide by 800 pixels high . 
Pixel (7, 3) is shown. 
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their image. [Since graphics printers display information essentially as raster displays do.

we need not concern ourselves with them until we loolc more closely at hardware in Chapter

4.) Next we learn how to make applications interactive using SRGPs input procedures.

Then we cover the utility of pixel manipulation. available only in raster displays. We

conclude by discussing some limitations of integer raster graphics packages such as SEEP.

Although our discussion of SRGF assumes that it controls the entire screen, the

package has been designed to run in window environmems {see Chapter ill}. in which case

it controls the interior of a window as though it were a virtual screen. The application

programmer therefore does not need to be concerned about the details of running under

control of a window manager.

2.1 DRAWING 1ll'ii'lTH SHGP

2.1.1 Specification or Graphics Primitives

Drawing in integer raster graphics packages such as ERG? is like plotting graphs on graph

paper with a very fine grid. The grid varies from EU to 12!) points per inch on conventional

displays to see or more on highrresolution displays. The higher the resolution. the better the

appearance of fine detail. Figure 2.l shows a display screen (or the surface of a printer‘s

paper or film} ruled in SflGP’s integer Cartesian coordinate system. Note that pixels in

SRIGP lie at the intersection of grid lines.

The origin lfl. Ll} is at the bottom left of the screen; positive it increases toward the right

and positive y increases toward the top. The pixel at the upper-right corner is (width—l .

height—l}. where width and height are the device-dependent dimensions of the screen.

[in graph paper, as can draw a continuous line between two points located anywhere

on the paper; on raster displays, however. we can draw lines only between grid points. and

the line must be approaimated by intensifying the grid-point pixels lying on it or nearest to

it. Similarly, solid figures such as filled polygons or circles are created by intensilying the

pixels in their interiors and on their boundaries. Since specifying each pixel of a line or

closed figure 1would be far too onerous, graphics packages let the programmer specify
primitives such as lines and polygons via their vertices: the package then fills in the details

using scan-«conversion algorithms. discussed in Chapter 3.
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Fig. 2.1 Castes isn coordinate system of a screen 102d pixels wide by 300 pixels high.
Pixel ['l', 3] is shown.
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SRGP supports a basic collection of primitives: lines, polygons, circles and eUipses, 
and text.' To specify a primitive, the application sends the coordinates defining the 
primitive's shape to the appropriate SRGP primitive-generator procedure. It is legal for a 
specified point to lie outside the screen's bounded rectangular area; of course, only those 
ponions of a primitive that lie inside the screen bounds will be visible. 

Lines and poly lines. The following SRGP procedure draws a line from (xl , yl) to 
(x2, y2): 

void SRGP_IineCoord (intx/, int yl , int x2, int y2): 

Thus, to plot a line from (0, 0) to (100, 300). we simply call 

SRGP_IineCoord (0 , 0 , 100, 300): 

Because it is often more natural to think in terms of endpoints rather than of individual x 
and y coordinates, SRGP provides an alternate line-drawing procedure: 

void SRGP_line (point pll, point pr2): 

Here "point" is a defined type, a record of two integers holding the point's x andy values: 

typed.ef struct { 
int x, y; 

} poim; 

A sequence of lines connecting successive vertices is called a polyline. Although polylines 
can be created by repeated calls to the line-drawing procedures, SRGP includes them as a 
special case. There are two polyline procedures, analogous to the coordinate and point 
forms of the line-drawing procedures. These take arrays as parameters: 

void SRGP_polyUneCoord (int verrexCount, int •xArray, int •yArray): 
void SRGP_polyline (int venexCounr, point • vertices); 

where "xArray," "yArray," and "vertices" are pointers to user-declared arrays-arrays of 
integers, integers, and points, respectively. 

The first parameter in both of these polyline calls tells SRGP how many vertices to 
expect. In the first call, the second and third parameters are integer armys of paired x and y 
values, and the polyline is drawn from vertex (xArray[O), yArray[O]), to vertex (xArray[l] , 
yArray[ l]), to vertex (xArray[2), yArray[2)), and so on. This form is conven ient, for 
instance, when plotting data on a standard set of axes, where xArray is a predetermined set 

'Specialized procedures that draw a single pixel or an array of pixels are described in the SRGP 
reference manual. 
' We use C with the following typesetting conventions. C key"-QrdS and built-in types are in boldface 
and user-defined types are in normal face. Symbolic constants are in uppercase type, and variables are 
italicized. Comments are in braces, and pseudocode is italicized. For brevity, declarations of 
constants and variables are omitted when obvious. 
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of values of the independent variable and yArray is the set of datll being computed or input 
by the user. As an ex.ample, let us plot the output of an economic analysis program that 
computes month-by-month trade figures and stores them in the 12-entry integer data array 
balanceO[Jrade. We will start our plot at (200, 200). To be able to see the differences 
between successive points, we will graph them 10 pixels apart on thex axis. Thus , we will 
create an integer array, months, to represent the 12 months, and will set the entries to the 
desired x values , 200,2 10, .. . , 3 10. Similarly, we must increment each value in the datll 
array by 200 to put the 12 y coordinates in the right place. Then , the graph in Fig. 2.2 is 
plotted with the following code: 

I• Plot lhe axes •I 
SRGP. IineCoord ( 175, 200, 320, 200): 
SRGP.IineCoord (200, 140, 200, 280): 

I• Plotlhe data •/ 
SRGP. polyLineCoord ( 12, months, balanceOfTrade); 

We can use the second poly! ine fonn to draw shapes by specifying pairs of x and y values 
together as points , passing an array of such points to SRGP. We create the bowtie in Fig. 
2.3 by calling 

SRGP.polyLine (7, bowtieArray); 

The table in Fig. 2.3 shows how bowtieArray was defined. 

Markers and polymarkers. It is often convenient to place markers (e.g., dots, 
asterisks, or circles) at the data points on graphs. SRGP therefore offers companions to the 
line and polyline procedures. The following procedures wiU create a marker symbol 
centered at (x, y): 

void SRGP. markerCoord (lnt x , int y); 
void SRGP. marker (point pt); 

The marker's style and size can be changed as well, as explained in Section 2.1.2. To create 

(100, 100) 

~ 

Fig. 2 .2 Graphing a data array. 
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Fig. 2 .3 Drawing a polyline. 
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of values of the independent variable and ydmty is the set of data being eomputed or input

by the user. As an example. let us plot the output of an economic analysis program that

computes month-by-rnonth trade figures and stores them in the ll—eotry integer data array.r

beinnceflffmde. We 1will start our plot at {200. 2(1)}. ‘Ib be able to see the dlfl‘erenees

between successive points. we will gmph them 1i} pixels apart on the: axis. Thus. we will

create an integer array. months. to represent the i2 months, and will set the entries to the

desired xvaiues. 200. 21G. . . ., 3113. Similarly, we must increment each value in the data

array,-r by 200 to put the [2 y mordinates in the right place. Then. the graph in Fig. 2.2 is

plotted with the Following ends:

is Plotlhe axes at

SRGEiioeCoord {115. 2111i]. 32!], see}:

SRGElineCDuId [203. T41}. 10'}. 23E};

It Plot the data st

SRGP. polyLineCeord ill. mat-trier. boioneeflflmde];

as can use the seeend polvline form to draw shapes by specifying pairs bit and v values

together as points. passing an array of such points to SEEP. We create the how'tie in Fig.

2.3 by calling

SEEP. poleine {‘i. hammer-ray}:

The table in Fig. 2.3 shows how bowtieArmy was defined.

Markers and polymarkers. It is often convenient to piaee markers {c.g.. dots.

asterisks, or circles} at the data points en graphs. SRGP therefore offers Dompaniuns t0 the

line and polyline proeedures. The following procedures will create a rnarlter smbol

centered at ix. 3:}:

1Inniltl SRGP. markerConrd {int x. int y}:

vmusaoammeutmmumh

The market's style and size can be changed as well. as explained in Section 1L2. To create
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Fig. 2.2 Graphing a data arrav. Fig. 2.3 Drawing a polvlrine.
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a sequence of identical markers at a set of points , we call either of 

void SROP.polyMarkerCoord (int venexCount, int •xArray, lot •yArray); 
void SROP. polyMarker (lot venexCounr, point•venices); 

29 

Thus, the following additional call will add markers to the graph of Fig. 2.210 produce Fig. 
2.4. 

SROP. polyMarkerCoord ( 12, momlrs, balanceOfTrade ); 

Polygons and r ectangles. To draw an outline polygon, we can either specify a polyline 
that closes on itself by making the first and last vertices identical (as we did to draw the 
bowtie in Fig. 2.3), or we can use the following specialized SRGP call: 

void SROP. polygon (int verrexCowu, point •vertices); 
• 

This call automatically closes the figure by drawing a line from the last vertex to the first. To 
draw the bowtie in Fig. 2.3 as a polygon, we use the following call, where bowtieArray is 
now an array of only six points: 

SROP. polygon (6, bowtitArray); 

Any rectangle can be specified as a polygon having four vertices, but an upright rectangle 
(one whose edges are parallel to the screen's edges) can also be specified with the SRGP 
"rectangle" primitive using only two vertices (the lower-left and the upper-right comers). 

void SROP_ rectangleCoord (int lejiX, int bouomY, int riglrtX, int topY); 
void SROP. ~tanglePI (point bottomLejl, pointtopRight}; 
void SROP.~tangle (~tangle roct); 

The "rectangle" recond stores the bottom-left and top-right corners: 

typeder struel { 
point bottomLeft, topRight; 

} rectangle; 

Fig. 2 .4 Graphing the data array using markers. 
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(a) (b) (C) 

Fig. 2 .5 Ellipse arcs. 

Thu~ the following call draws an upright rectangle 101 pixels wide and 151 pixels high: 

SRGP. recutngleCoord (50, 25, 150, 175); 

SRGP provides the following utilities for creating rectangles and points from coordinate 
data. 

point SRGP. detPoint (int x, int y): 
rectangle SRGP.defRectangle (int leftX, int lxmomY, lnt righrX, In! ropY); 

Our example rectangle could thus have been drawn by 

rec;t = SRGP. defRec1angle (50, 25, 150, 175); 
SRGP.rectangle (rect): 

Circles and ellipses. Figure 2.5 shows circular and elliptical arcs drawn by SRGP. Since 
circles are a special case of ellipses, we use the term ellipse arc for all these forms, whether 
circular or elliptical, closed or partial arcs. SRGP can draw only standard ellipses, those 
whose major and minor axes are parallel to the coordinate axes. 

Although there arc many mathematically equivalent methods for specifying ellipse 
arcs, it is convenient for the programmer to specify arcs via the upright rectangles in which 
they are inscribed (see Fig. 2.6); these upright rectangles are called bounding boxes or 
ext ems. 

The width and height of the extent detennine the shape of the ellipse. Whether or not 
the arc is closed depends on a pair of angles that specify where the ar.: starts and ends. For 
convenience, each angle i.s measured in rectangular degrees that run counte, ·lockwise, with 
o• corresponding to the positive portion of the x axis, 90• to the positive portion of they 

endAngle 
270° 

45° 
startAngle 

Fig. 2.6 Specifying ellipse arcs. 
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{a} {bi til

Fig. 2.5 Ellipse area.

Thus the following call draws an upright rectangle Itil pixels wide and ISI pixels high:

SEEP. roctangleCoord {5t}. 25. 151'}. ['15];

SRGP provides the following utilities for creating rectangles and points from coordinate
data.

point SEEP. defPoint (let x, int y}:

rectangle SRGEtlei'llectangle {int Mix. inl hornet-ll". int rightX. lnl ropl'}:

Dur eitarnple rectangle could thus have been drawn by

rec! = SEEP. defRectangie {it}, 25. ISO. 175]:

SRGP. rectangle {reef}:

Circles and ellipses. Figure 2.5 shows circular and elliptical arcs drawn by SRGF. Since

circles are a special case of ellipses. we use the term ellipse etc for all these forms. whether

circular or elliptical. closed or partial arcs. SRGP can draw only standard ellipses. those

whose major and minor sites are parallel to the coordinate antes.

Although there are many mathematically equivalent methods for specifying ellipse

arcs, it is convenient for the programmer to specify arcs via the upright rectangles in which

they are inscribed tsee Fig. 2.6}; these upright rectangles are called boiurdirtg bores or
extents.

The width and height of the extent determine the shape ot" the ellipse. Whether or not

the arc is closed depends on a pair of angles that specify where the arc starts and ends. For

convenience, each angle is measured in rectangular degrees that run counts. 'inckwise. with

0” corresponding to the positive portion of the 1 axis. 90‘“ to the positive portion of the y

engineer 45°

 
andAngle
ETD “

Fig. 2.5 Specifying ellipse arcs.
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(a) (b) -• • • • • • • • • • • • • • • • • • • 

Drawing with SRGP 

(C) 

Fig. 2 . 7 Lines of various widths and styles. 

3 1 

axis, and 45° to the "diagonal" extending from the origin to the top-right comer of the 
rectangle. Clearly, only if the extent is a square are rectangular degrees equivalent to 
circular degrees. 

The general ell ipse procedure is 

void SRGP. ellipseArc (rectangle exteliiRect , double stariAngle, double endAngle); 

2. 1.2 Attributes 

Line style and Une width. The appearance of a primitive can be controlled by 
specification of its arrributes. 3 The SRGP attributes that apply to lines, polylines, polygons, 
rectangles, and ellipse arcs are line style, line widrh, color, and pen style. 

Attributes are set modally; that is, they are global state variables that retain their values 
until they are changed explicitly. Primitives are drawn with the attributes in effect at the 
time the primitives are specified; therefore, changing an attribute's value in no way affects 
previously created primitives-it affects only those that are specified after the change in 
attribute value. Modal attributes are convenient because they spare programmers from 
having to specify a long parameter list of attributes for each primitive, since there may be 
dozens of different attributes in a production system. 

Line style and line width are set by calls to 

void SRGP.setlineStyle (CONTINUOUS I DASHED I DOTIEDj • .. lineStyle);4 

void SRGP.setlineWidth (int width); 

The width of a line is measured in screen uni~hat is, in pixels. Each attribute has a 
default: line style is CONTINUOUS, and width is I . Figure 2. 7 shows lines in a variety of 
widths and styles; the code that generated the figure is shown in Fig. 2.8. 

' The descriptions here of SRGP's attributes often lack fine detail, particularly on interactions between 
different attributes. The detail is omiued because the exact effect of an attribute is a function of its 
implementation, and , for perfonnance reasons, different implementations are used on different 
systems; for these details. consult the implementation-specific reference manuals. 
'Here and in the following text, we use a shorthand notation. ln SRGP, these symbolic constants are 
actually values of an enumerated data type " lineStyle." 
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lfli lbl

Fig. 2.? Lines of various widths and styles.

axis. and 45° to the “diagonal" extending from the origin to the top-right corner of the

rectangle. Clearly. only if the extent is a square are rectangular degrees equivalent to
circular degrees.

The general ellipse procedure is

void SEEP. ellipsethrc (rectangle extentflect. double start-tingle. double endingie}:

2.1.2 Attributes

Line style and line width. The appearance of a primitive can be controlled by

Specification of its attributes.” The SRGP attributes that apply to lines, poiylines. polygons.
rectangles, and ellipse arcs are tine style. tine width. enter. and pen style.

Attributes are set modoiiy; that is. they are global state variables that retain their values

until they are changed explicitly. Primitives are drawn with the attributes in efiect at the

time the primitives are specified; therefore. changing an attribute‘s value in no way affects

previously created primitives—it afi'ects only those that are specified after the change in

attribute value. Modal attributes are convenient because they spate programmers from

having to specify a long parameter list of attributes for each primitive. since there may be

dozens of different attributes in a production system.

Line style and line width are set by calls to

vote SRGP.snLine$tyle {communes r ossnso.f oornsof. . . lineStyle‘j'.“
void snot. setLineWidth {on width]:

The width of a line is measured in screen units—that is. in pixels. Each attribute has a

default: line style is CONTINUOUS. and width is I. Figure 2.1" shows lines in a variety of

widths and styles; the eerie that generated the figure is shown in Fig. 2.3.

iThc descriptions here of SRGF‘S attributes oficn lack fine detail. particularly on interactions between
dificreat atoibutes. The detail is omitted because the exact effect of an attribute is a function of its

imptententation. and. for performance reasons. different implementations are used on different

system: for these details. consult the implementation-specific reference manuals.

‘Hen: and in the following text. we use a shorthand notation. In SEEP. these symbolic constants are
actually values of an enunterated data type “iineStyle.”
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SRGP. setLineWidth (5): 
SRGP. IineCOOt'd (55, 5, 55, 295); 

SRGP.setLineStyle (DASHED); 
SRGP. seiLineWidth ( 10); 
SRGP.IineCoord (105, 5, 155, 295): 

SRGP. seiLineWidth ( 15): 
SRGP. seiLineStyle (DOTI'ED): 
SRGP. IineCOOt'd (155, 5, 285, 255) 

I • Line a •I 

I• Line b •/ 

I • Line c •I 

Fig. 2 .8 Code used to generate Fig. 2.7. 

We can think of the line style as a bit mask used to write pixels selectively as the 
primitive is scan-converted by SRGP. A zero in the mask indicates that this pixel should not 
be written and thus preserves the original value of this pixel in the frame buffer. One can 
think of this pixel of lbe line as transparent, in that it letS the pixel " underneath'' show 
through. CON'TlNl.JOUS thus corresponds to the string of all Is, and DASH£0 to the string 
11110011110011 11 . . . , the dash being twice as long as lbe transparent interdash 
segments. 

Each attribute has a default: for example, the default for line style is CONTINUOUS, that 
for line width is I , and so on. In the early code examples, we did not set the line style for the 
first line we drew; thus , we made use of the line-style default. In pr.Ictice, however, making 
assumptions about lbe current state of auributes is not safe. and in the code examples that 
follow we set attributes explicitly in each procedure, so as to make the procedures modular 
and thus to facilitate debugging a.nd maintenance. In Section 2.1.4, we see that it is even 
safer for the programmer to sa\'C and restore attributes explicitly for each procedure. 

Auributes that can be set for the marker primiti\'C are 

void SRGP.setMarlcerSize (lnt mark~rSiu) ; 
void SRGP.setMarlcerStyie (MARKER.CIRCLE / MARK.ER.SQUARE/ ... markerSryle): 

Marker size specifies the length in pixels of the sides of the square extent of each marker. 
The complete set of marker styles is presented in lbe reference manual; the circle style is the 
default shown in Fig. 2.4. 

Color. Each of tbe attributes presented so far affects only some of the SRGP primiti\'CS, 
but the integer-valued color attribute affects all primiti\'CS. Obviously. lbe color attribute's 
meaning is heavily dependent on the underlying hardwane; the two color values found on 
e\'Cry system are 0 and I. On bilevel systems, these colors ' appearances are easy to 
predict--(:Oior- 1 pixels are black and color-0 pixels are white for black-on-white devices, 
green is I and black is 0 for green-on-black devices, and so on. 

The integer color attribute does not specify a color directly: mther, it is an index into 
SRGP's color table, each entry of which defines a color or gmy-scale value in a manner that 
lbe SRGP programmer does not need to know about. There are 2' entries in the color table, 
where dis the depth (number of bits stored for each pixel) of lbe frame buffer. On bilevcl 
implementations, lbe color table is hardwired; on most color implementations, howe\'Cr, 
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SRGP allows the application to modify the table. Some of the many uses for the 
indirectness provided by color tables are explored in Chapters 4 , 17, and 21. 

There are twO methods that applications can use to specify colors. An application for 
wbich machine independence is important should use the integers 0 and I directly; it will 
then run on all bilevel and color displays. If the application assumes color support or is 
written for a particular display device, then it can use the implementation-dependent color 
names supported by SRGP. These names are symbolic constants that show where certain 
standard colors have been placed within the default color table for that display device. For 
instance, a black-on-white implementation provides the two color names COLORJJLACl< (I) 

and COLOR_ WHITE (0); we use these two values in the sample code fragments in this 
chapter. Note that color names are not useful to applications that modify the color table. 

We select a color by calllng 

void SRGP. setColor (int colorlndex); 

2. 1.3 Filled Primitives and Their Attributes 

Primitives that enclose areas (the so-called area-defining primitives) can be drawn in two 
ways: outlined or filled. The procedures described in the previous section generate the 
former style: closed outlines with unfilled interiors. SRGP's filled versions of area-defining 
primitives draw the interior pixels with no outline. Figure 2.9 shows SRGP's repertoire of 
filled primitives, including the filled ellipse arc, or pie slice. 

Note that SRGP does not draw a contrasting outline, such as a 1-pixel-thick solid 
boundary, around the interior; applications wanting such an outline must draw it explicitly. 
There is also a subtle issue of whether pixels on the border of an area-defining primitive 
should actually be drawn or whether only pixels that lie strictly in the interior should. This 
problem is discussed in detail in Sections 3.5 and 3.6. 

To generate a filled polygon, we use SRGP _fiiiPolygon or SRGP JiiiPolygonCoord. 
with the same parameter lists used in the unfilled versions of these calls. We define the other 
area-filling primitives in the same way, by prefixing "till" to their names. Since polygons 

(d) 

(a) 

(c) 

Fig. 2.9 Filled primitives. (a-c) Bitmap pattern opaque. (d) Bitmap pattern transpar
ent. (e) Solid. 
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may be concave or even self-inter.>ecling, we need a rule for specifying what regions are 
interior and thus should be filled, and what regions are exterior. SRGP polygons follow the 
odd-parity rule. To determine whether a region lies inside or outside a given polygon, 
choose as a test point any point inside the particular region. Next , choose a ray that starts nl 
lhe tesl poinl and exlends infinilely in any direclion , and lhUI does nol pass through any 
vertices. If 1his ray inlerseciS the polygon outline an odd number of times, the region is 
considered to be in1erior (see Fig. 2.10). 

SROP does not actuaUy perform t.his test for each pixel while drawing; rather, it uses 
the optimized polygon scan-<X>nversion techniques described in Cha)Xer 3, in which the 
odd-parily rule is efficiently applied to an entire row of adjaocnl pixels that lie either inside 
or outside. Also, the odd-parity ray-intersection tesl is used in a process called pick 
correlatloll to determine the objecl a user is selecting with 1he cursor, as described in 
Chap1er 7. 

Fill style and fill pattern for a.reas. The fill-style attribute can be used to control 1he 
appearance of a filled primitive's imerior in four differenl ways, using 

void SRGP. sctFHIStyle ( 
souo I BITMAP. PA'ITERN.OPAQUE I BIJ'MAe. PAlTERN.TRANSPARENT I 
PIXMAP. PATfERN drawStyle); 

The first option, SOLID, produces a primitive uniformly filled with the current v-dlue of the 
color attribute (Fig. 2.9e, with color set to COLOR..WHITB). The second two options, 
BITMAP .J'A'fT!!RN_OPAQUE and BITMAP ..PA'fT!!RN_TRANSPARENT, fill primitives with a 
regular, nonsolid pattern, the former rewriting all pixels underneath in either the current 
color, or anocher color (Fig. 2.9c), the latter rewriting some pixels underneath the primitive 
in the current color, but letting ochers show through (Fig. 2.9d). The last option, 
PIXMAP ..PA'fT!!RN, writes patterns containing an arbitrary numher of colors, always in 
opaque mode. 

Bitmap fill patterns are bitmap arrays of Is and Os chosen from a table of available 

v2 

V4 

vt v3 

Interior 
points have an 
odd number 
of crossings 

Fig. 2 .10 Odd-parity rule for determining interior of a polygon. 
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patterns by specifying 

void SRGP-setFiiiBitmapPattem (l niJ){JIIemlndex); 

Each entry in the panern table stores a unique pauern; the ones provided with SRGP, shown 
in the reference manual , include gray-scale tones (ranging from nearly black to nearly 
white) and vdrious regular and random patterns. In transparent mode, these paucrns are 
generated as follows. Consider any pattern in the pattern table as a small bitmap--say, 8 by 
8--{0 be repeated as needed (riled) to fill the primitive. On a bilevel system, the current 
color (in effect, the foregrowzd color) is wrinen where there are Is in the pattern; where 
there are Os-the " holes''-{he corresponding pixels of the original image are not written, 
and thus "show through'' the par!ially transparent primitive written on top. Thus, the 
bitmap pattern acts as a "memory write-enable mask" for patterns in transparent mode, 
much as the line-style bit mask did for lines and outline primitives. 

In the more commonly used BITMAP _PATTERN_OPAQUE mode, the Is are written in the 
current color, but the Os are written in another color, the background color, previously set 
by 

void SRGP-setBackgroundColor (int colorlndex); 

On bilevcl displays, each bitmap pattern in OPAQUE mode can generate only tWO distinctive 
fill patterns. For example, a bitmap pattern of mostly Is can be used on a black-and-white 
display to generate a dark-gray fill pattern if the current color is set to black (and the 
background to white), and a light-gray fill pattern if the current color is set to white (and the 
background to black). On a color display, any combination of a foreground and a 
background color may be used for a variety of two-tone effects. A typical application on a 
bilevel display always sets the background color whenever it sets the foreground color, since 
opaque bitmap patterns are not vis.ible if the two are equal; an application could create a 
SetColor procedure to set the background color automatically to contrast with the 
foreground whenever the foreground color is set explicitly. 

Figure 2.9 W'dS created by the code fragment shown in Fig. 2. 1 I . The advantage of 

SRGP-setFiiiStyle (BITMAP_PATI'ERN-OPAQUE); 
SRGP_ setFiiiBitmapPauem (BRJCK..BIT_ PATTERN): 
SRGP_fiUPolygon (3 , rriansleCoords); 

SRGP-setFiiiBitmapPauem (MEDIUM.ORAY .BIL.PAITERN); 
SRGP_ fiiiEIIipseArc (ellipseArcRect, 60.0, 290.0); 

SRGP_setFiiiBitmapPauem {DIAOONAJ....BIT.PATTERN); 
SRGP_ fiURectangle (opaqueFilledRect); 

SRGP-setFillStyle (BITMAP_ PATTERN-TRANSPARENT); 
SRGP_ fiiiRecta.ngle (trtmsparentFille.dRecr); 

SRGP_setFiiiStyle (SOLID); 
SRGP_serColor {COLOR_ WHITE); 
SRGP_fiiiEilipse (circleRecr); 

I• Brick panem •I 
I• a -.1 

I• 50 percent gray •I 
I• b •/ 

I• c •I 

,. d *' 

I• e •I 

Fig. 2 .11 Code used to generate Fig. 2 .9. 
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having two-tone bitmap patterns is that the colors are not specified explicitly, bUl rather are 
determined by the color attributes in effect , and thus can be generated in any color 
combination. 1be disadvantage, and the reason that SRGP also supports pixmap patterns , is 
that only two colors can be generated . Often, we would like to fill an area of a display with 
multiple colors, in an explicitly specified pattern . In the same way that a bitmap pattern is a 
small bitmap used to tile the primitive, a small pixmap can be used to tile the primitive, 
where the pix map is a pattern array of color-table indices. Since each pixel is explicitly set 
in tbe pix map, there is no concept of holes, and therefore there is no distinction between 
transparent and opaque fi lling modes. To fill an area with a color pattern, we select a fill 
style of PtXMAP ...PA1TERN and use the corresponding pixmap pattern-selection procedure: 

void SRGP. setFi ii PixmapPauem (lnt pauemlndu); 

Since both bitmap and pixmap patterns generate pixels with color values that are indices 
into the current color table , the appearance of filled primitives changes if tbe programmer 
modifies the color-table entries. The SRGP reference manual discusses how to change or 
add to both the bitmap and pixmap pattern tables. Also, although SRGP provides default 
entries in the bitmap pattern table, it does not give a default pixmap pattern table, since 
there is an indefinite number of color pixmap patterns that might be useful. 

Pen pattern for outlines. The advantages of patterning are not restricted to the use of 
this technique in area-defining primitives; patterning can also be used to affect the 
appearance of lines and outline primitives, via the pen-s()•le attribute . Using the line-width , 
line-style, and pen-style attributes, it is possible. for example, to create a 5-pixel-thick, 
dot-dashed ellipse whose thick dashes are patterned. Examples of solid and dashed thick 
lines with various patterns in transparent and opaque mode and their interactions with 
previously drawn primitives are shown in Fig. 2.12: the code that generated the image is in 
Fig. 2. 13. The use or a pen pattern for extremely narrow lines ( I or 2 pixels wide) is not 
recommended, because the pattern is not discernible in such cases. 

The interaction between line style and pen style is· simple: Os in the line-style mask 

(I ) 

-• • 

• • • 
(b) (C) (d) 

Fig. 2 .12 Interaction between pen style and line style. (a) Continuous solid. 
(b) Dashed solid. (c) Dashed bitmap panern opaque. (d) Dashed bitmap pattern 
transparent. 
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having hwrtone bitmap patten'ts is that the colors are not specified explicitly. but rather are

determined by the color attributes in ell'ect. and thus can be generated in any ooior

etnnbinatiim. The disadvantage. and the reason that SRCiP also supports pismap patterns. is

dutonly tuneolorscanbegenerated. Often. weaould lilte tolill anareaofadispiay with

moitipie colors. in an explicitly specified pattern. In the same way that a bitmap pattern is a

small bitmap used to tile the primitive. a small pismap can be used to tile the primitive.

when: the pismap is a pattern away of enlnetable indiees. Since each pixel is explicitly set

indtepismap.dtoeisnoomceptofholfi.andtbueftaememisnodistbtfion betaeen

transparentandopaque filling modes. To lill anat'eawitbaoolor pattern. weseiectafill

style of HXHAPJMTERN and use the oonesporaiing pismap pattern-selection procedure:

volt! SEEP. setfittPixmapPattem {lat potteml'ttdex}:

Since both bitmap and pittmap patterns generate pixels with color values that are lattices

intodtecurrentenlctubte. dreappearanceetlilledprimitiveschangcsitmeprogranmm

modifiesthecolmtableentries. 'I'l'teSBfiFrefereme nianual discloses how toehangeer

add to both the bitmap and pittmap pattern tables. Also. although SRGF provides default

entries in the bitmap pattern table. it does not give a default pismap pattern table. since

there is an indefinite number of color piamap patterns that might be useful.

Pen patternl'oruetllles. 'Iheadvantagesot'patterningarenotresoictedtomeusenf

this technique in area-defining primitives; patterning can also be used to affect the

appearanee oilines and outline primitives, via the pen-saris attribute. Using the line-width.

Iinestyie. and pen-style attributes. it is possible. for example. to create a S-piseI-thiclt.

dot-dashed ellipse whose thick dashes are patterned. Examples of solid and dashed thick

lines with various patterns in uareaparent and opaque mode and their interactions with

previously drawn primitivesate steam in Fig. 2.12; thecode that germated the image is in

Fig. 2.13. The use of a pen pattern for extremely nan-cm lines it or 2 pixels wide} is not

recommended. because the pattern is not discernible in such cases.

The interaction between line style and pen style is simple: [is in the line-style mask

- I l-

. I9 ’1!

I ill! {It

 
I is a
I 'a as
I . .

ill [hi {it} till

Fig. 2.12 Interaction between pan style and line style. {a} Continuous solid.
{bi Dashed solid. tci Dashed bitmap pattern opaque. [d] Dashed bitmap pattern
transparent.
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I• We show only the drawing of the lines, not the background rectangle. •I 
I• We draw the lines in order from left to right •I 

SRGP-selLineWidth ( IS); I• Thick lines 5how the interaction better. • I 

SRGP_sellineStyle (CONTINUOUS); 
SRGP_setPenStyle (souo): 
SRGP_Iine (pta I, pra2); I• a: Solid, continuous •I 

SRGP-setLineStyle (DASHED): 
SRGP_line (ptbl , ptb2): I• b: Solid, dashed •I 

SRGP_setPenBitmapPattem (DIAGONALBIT_PATI'ERN); 
SRGP_setPenStyle (BITMAP- PATI'ERN-OPAQUE): 
SRGP_line (pte/, prc2): / • c: Dashed, bitmap pattern opaque •/ 

SRGP_ setPenStyle (BITMAP-PATI'ERN_ TRANSPARENT); 
SRGP- Iine (ptd I , ptd2}: I• d: Dashed, bitmap pattern transparent *' 

Fig. 2.13 Code used to generate Fig. 2.12. 

37 

fully protect the pixels on which theY fall, so the pen style influences only those pixels for 
which the line-style mask is I . 

Pen style is selected with the same four options and the same patterns as till style. The 
same bitmap and pix map pattern tables are also used , but separate indices are maintained 
so that resetting a pen style's pattern index will not a.tfect the fill style's pattern index. 

void SRGP_setPenStyle (SOUD / BI'TMAe.PATI'ERN-OPAQUE/ •.. drawStyle): 
void SRGP_setPenBill1lapPauem (tnt panemlndex): 
void SRGP_setPenPixmapPanern (lnt parremlndex): 

Application screen background. We have defined "background color" as the color of 
the 0 bits in bitmap patterns used in opaque mode , but the term background is used in 
another, unrelated way. Typically, the user expects the screen to display primitives on some 
uniform applicotion screen background pa1rern that covers an opaque window or the entire 
screen. The application screen background pattern is often solid color 0, since SRGP 
inilializ.es the screen tO that color upon initialization. However, the background partcm is 
sometimes nonsolid , or solid of some other color; in these cases, the application is 
responsible for setting up the application screen background by drawing a full-screen 
rectangle of the desired pattern, before drawing any other primitives. 

A common technique to "erase" primitives is to redraw them in the application screen 
background pattern, rather than redrawing the entire image each time a primitive is deleted. 
However, this "quick and dirty" updating technique yields a damaged image when the 
erased primitive overlaps with other primitives. For example, assume that the screen 
baclcground pattern in Fig. 2.9 is solid white and that we erase the rectangle marked (c) by 
redrawing it using solid COLOR.... WHITE. This would leave a white gap in the filled ellipse are 
(b) underneath . "Damage repair" involves going back to the application database and 
respecifying primitives (see Exercise 2.9). 
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2 .1 .4 Saving and Restoring Attributes 

As you can see, SRGP supports a variety of attributes for its various primitives. Individual 
attributes can be saved for later restoration; this feature is especially useful in designing 
application procedures that perform their functions without side effects-that is, without 
affecting the global attribute state. For each attribute-setting SRGP procedure, there is a 
corresponding inquiry procedure that can be used to determine the current value; for 
example, 

lineStyle SRGP_ inquireLineStyle (void): 

For convenience, SROP allows the inquiry and restoration of the entire set of attributes
called the auribute group-via 

void SRGP_ inquireAnributes (attribmeGroup *group): 
void SRGP_setAuributes (attributeGroup •group); 

In the current implementation of SROP, unlike in previous versions, the application 
program can access the internal fields of the attributeOroup structure. Directly modifying 
these fields , however, is a bit tricky and the programmer does so at her own risk . 

2 .1 .5 Text 

Specifying and implementi11g text drawing is always complex in a graphics package, 
because of the large number of options and attributes text can have. Among these are the 
style or font of the characters (Times Roman, Helvetica, Clarinda, etc.), their 
appearance ("Roman," bold, italic, underlined, etc.), their size (typically measured in 
poim~) and widths, the intercharacter spacing, the spacing between consecutive lines , the 
angle at which characters are drawn (horizontal, vertical , or at a specified angle), and so on. 

The most rudimentary facility, typically found in simple hardware and software, is 
fixed-width, monospace character spacing, in which aU characters occupy the same width , 
and the spacing between them is constant. At the other end of the spectrum, proportional 
spacing varies both the width of characters and the spacing between them to make the text 
as legible and aesthetically pleasing as possible. Books, magazines, and newspapers all use 
proportional spacing, as do most raster graphics displays and laser printers. SRGP provides 
in-between functionality: Text is horizontally aligned, character widths vary, but space 
between characters is constant. With this simple form of proportional spacing, the 
application can annotate graphics diagrams, interact with the user via textual menus and 
fill-in forms, and even implement simple word processors. Text-intensive applications, 
however, such as desktop-publishing programs for high-quality documen.ts, need special
ized packages that offer more control over text specification and attributes than does SROP. 
PostScript [ADOB87] offers many such advanced features and bas become an industry 
standard for describing text and other primitives with a large variety of options and 
attributes. 

' A point is a unit commonly used in the publishing industry; it is equal to approximately \Ia inch. 
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Thxt is generated by a call to 

void SRGP_text (point origin, char •ttxr); 

The location of a text primitive is controlled by specificat ion of its origin, also known as its 
anchor point. The x coordinate of the origin marks the left edge of the first character, and 
they coordinate specifies where the baseline of the string should appear. (The baseline is 
the hypothetical line on which characters rest , as shown in the textual menu button of Fig. 
2. 14. Some characters, such as " y" and " q," have a tail , called the descender, that goes 
below the baseline.) 

A text primitive's appearance is determined by only two attributes, the current color 
and the font , which is an index into an implementation~ependent table of fonts in various 
siz.es and styles: 

void SRQP_setFonr (lnt fontlndtx); 

Each character in a font is defined n.s a rectangular bitmap. and SRGP draws a char.tcter by 
filling a rectangle using the char.JCtcr's bitmap as a pattern. in bitmap-pattern-transparent 
mode. The Is in the bitmap define the character's interior, and the Os specify the 
surrounding space and gaps such as the hole in " o." (Some more sophisticated packages 
define characters in pixmaps, allowing a character's interior to be patterned.) 

Formatting text. Because SRGP implementations offer a restricted repertoire of fonts 
and sizes. and because implementations on different hardware rarely offer equivalent 
repertoires, an application has limited control over the height and width of text strings. 
Since text-extent information is needed in order to produce well-balanced compositions (for 
instance, to center a text string within a rectangular frame), SRGP provides the following 
procedure for querying the extent of a given string using the current value of the font 
attribute: 

void SRGP- inquireTextExtent ( 
ehar •tat, int •width, lnt •htighl, int •descent}; 

Although SRGP does not support bitmap opaque mode for writing characters, such a mode 
can be simulated easily. As an example, the procedure in Fig. 2.15 shows how extent 

Computed Computed center 
text origin of button's extent 

I I 

Q~t IHelg hi 
Baseline 

t 
De seen 

f.-Width _. 

Fig. 2.14 Dimensions of text centered within a rectangular button and points comput
ed from these dimensions for centering purposes. 

TEXAS INSTRUMENTS EX. 1009 - 62/1253



40 Programming in the Simple Raster Graphics Package (SRGP) 

void MakeQuitBuuon (rectangle burronRect) 
{ 

point cemerOf/Jutton, textOrigi11; 
int width, ht!ight, descent: 

SRGP_setFiiiStyle (SOLID): 
SRGP_setColor (COLOR.. WHITE): 
SRGP_ fill Rectangle (butro71Rect); 
SRGP_setColor (COLOR..BLACK); 
SRGP_se!LineWidth (2): 
SRGP_ Recta.ngle (buuonRect); 

SRGP_inquireTextExtent ("quit", &width, &Jr~ight, &dt!sc:tnt): 

u nterOf/)uuon.x = (buttonRect.bottomuft.x + buuonRtct.topRight.x) I 2; 
etntuOf/)tmon.y = (buuonRect.bottomuft.y + buttonRect.topRight.y) I 2; 

textOrigln .. r = cemerOf/)utl<m.x - (width / 2): 
textOrigin.)• = unttrOJBuuon.y- (height / 2); 

SRGP_ text ( tw Origln , ·quit"): 
} /• MakeQuitBuuon •/ 

Fig. 2 .15 Code used to create Fig. 2. 14. 

infonnation and text-specific attributes can be used to produce black text, in the current 
font, centered within a white enclosing rectangle, as shown in Fig. 2. 14. The procedure 
first creates the background button rectangle of the specified size, with a separate border, 
and then centers the text within it. Exercise 2 .10 is a variation on this theme. 

2.2 BASIC INTERACTION HANDLING 

Now that we know how to draw basic shapes and text, the next step is 10 learn how to write 
interacti~-e programs that communicate effectively with the user, using input devices such as 
the keyboard and the mouse. First, we look at general guidelines for making effective and 
pleasant-to-use interactive programs; then, we discuss t.he fundamental notion of logical 
(abstrJct) input devices . Finally, we look at SRGP's mechanisms for dealing with various 
aspects of interaction handling. 

2.2. 1 Human Factors 

The designer of an interactive program must deal with many matters that do 001 arise in a 
non interactive, batch program. These are the so-called human facto~ of a program, such as 
its interaction style (often called "look and feel") and its ease of learning and of use, and 
they are as important as its functional completeness and correctness . Techniques for 
user-computer interaction that exhibit good human factors are Studied in more detail in 
Chapters 8 and 9. The guidelines discussed there include these: 
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• 
• 
• 
• 
• 

Provide simple and consLstem interaction sequences . 

Do not overload the user with too many different options and styles . 

Show the available options clearly at every stage of the interaction . 

Give appropriate feedback tO the user . 

Allow the users to recover gracefully from mistakes . 
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We attempt to follow these guidelines for good human factors in our sample programs. For 
example, we typically use menus to allow the user to indicate the next function he wants to 
execute by picking a text bunon in a menu of such buttons with a mouse. Also common are 
paletles (iconic menus) of basic geometric primitives, application-specific symbols , or fill 
patterns. Menus and palettes satisfy our first three guidelines in that their entries prompt the 
user with the list of available options and provide a single, consistent way of choosing 
among these options. Unavailable options may be either deleted temporarily or "grayed 
out" by being drawn in a low-intensity gray-scale pattern rather ihan a solid color (see 
Exercise 2. 15). 

Feedback occurs at every step of a menu operation to satisfy the fourth guideline: The 
application program will highlight the menu choice or object selection-for example, 
display it in inverse video or framed in a rectangle-to draw attention to it. The package 
itself may also provide an echo that gives an immediate response to the manipulation of an 
input device. For example, characters appear immediately at the position of the cursor as 
keyboard input is typed; as the mouse is moved on the table or desktop, a cursor echoes the 
corresponding location on the screen. Graphics packages offer a variety of cursor shapes 
that can be used by the application program to reflect the state of the program. In many 
display systems, the cursor shape can be varied dynamically as a function of the cursor's 
position on the screen. In many word-processing programs, for example, the cursor is 
shown as an arrow in menu areas and as a blinking vertical bar in text areas. 

Graceful error recovery, our fifth guideline, is usually provided through cancel and 
undo/redo features. These require the application program to maintain a record of 
operations (see Chapter 9). 

2 .2.2 logical Input Devices 

Device types in SRGP. A major goal in designing graphics packages is device
independence, which enhances portability of applications. SRGP achieves this goal for 
graphics output by providing primitives specified in terms of an abstract integer coordinate 
system, thus shielding the application from the need to set the individual pixels in the fran1e 
buffer. To provide a level of abstraction for graphics input, SRGP supports a set of logical 
input devices that shield the application from the details of the physical input devices 
available. The two logical devices supported by SRGP are 

• Locator, a device for specifying screen coord.inates and the state of one or more 
associat.ed buttons 

• Keyboard, a device for specifying character string input 
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SRGP maps !he logical devices onto !he physical devices available (e.g., !he locator could 
map to a mouse, joystick, tablet, or touch-sensitive screen). This mapping of logical to 
physical is familiar from conventional procedural languages and operating systems, where 
UO devices such as terminals, disks. and tape drives are abstracted to logical data files to 
achieve bolh device-independence and simplicity of application programming. 

Device handling in other packages. SRGP's input model is essentially a subset of !he 
GKS and PHIGS input models. SRGP implementations support only one logical locator 
and one keyboard device, whereas GKS and PHIGS allow multiple devices of each type. 
Those packages also support additional device types: the strou device (returning a polyline 
of cursor positions entered with the physical locator), the choice device (abstracting a 
function-key pad and returning a key identifier), the valuator (abstracting a slider or control 
dial and returning a floating-point number), and the pick device (abstracting a pointing 
device, such as a mouse or data tablet, with an associated button to signify a selection, and 
returning the identification of the logical entity picked). Olher packages, such as 
QuickDraw and !he X Window System, handle input devices in a more device-dependent 
way !hat gives !he programmer finer control over an individual device • s operation, at the 
cost of greater application-program complexity. 

Chapter 8 presents !he history of logical devices and elaborates further on their 
properties. Here, we briefly summarize modes of interacting with logical devices in 
general , and then examine SRGP's interaction procedures in more detail. 

2.2.3 Sampling Versus Event-Driven Processing 

There are two fundamental techniques for receiving information created by user interac
tions. In sampling (also called polling), the application program queries a logical input 
device 's current value (cal led the measure of the device) and continues execution. The 
sampling is performed regardless of whelher the device's measure has changed since !he last 
sampling; indeed. only by continuous sampling of !he device will changes in the device's 
state be known to the application. This mode is costly for interactive applications, because 
!hey would spend most of !heir CPU cycles in tight sampling loops waiting for measure 
changes. 

An alternative to the CPU-intensive polling loop is !he use of interrupt-driven 
interaction; in this technique , the application enables one or more devices for input and then 
continues normal e~ecution until interrupted by some input evem (a change in a device's 
state caused by user action); control then passes asynchronously to an interrupt procedure, 
which responds to the event. For each input device, an event trigger is defined; the event 
trigger is the user action that causes an event to occur. Typically, the trigger is a button 
push, such as a press of the mouse button ("mouse down") or a press of a keyboard key. 

To free applications programmers from the tricky and difficult aspects of asynchronous 
transfer of control, many graphics packages, including GKS, PHIGS, and SRGP, offer 
ewmr-driven interaction as a synchronous simulation of interrupt-driven interaction. Jn this 
technique, an application enables devices and then continues execution. Jn !he background, 
the package monitors the devices and stores information about each event i.n an evem queue 
(Fig. 2.16). The application, at its convenience, checks t.he event queue and processes !he 
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Commands: 
setlnputMode 
set<attribute> 
waitE vent 

get<device> 

Basic Interaction Handling 

Keyboard 

Mouse 

Fig. 2.16 Sampling versus event-handling using the event queue. 
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events in temporal order. In effect, the application specifies when it would like to be 
"interrupted. " 

When an application checks the event queue, it specifies whether it would like to enter a 
wait state. If the queue contains one or more event reports, the head event (representing the 
event that occurred earliest) is removed, and its information is made available to the 
application. If the queue is empty and a wait state is not desired, the application is informed 
that no event is available and it is free to continue execution. If the queue is empty and a 
wait state is desired, the application pauses until the oeltt event occurs or until an 
application-specified m3ltimum-wait-time interval passes. In effect, event mode replaces 
polling of the input devices with the much more efficient waiting on the event queue. 

In summary, in sampling mode, the device is polled and an event measure is collected, . 
regardless of any user activity. In event mode, the application either gets an event report 
from a prior user action or waits until a user action (or timeout) occurs. It is this "respond 
only when the user acts" behavior of event mode that is the essential difference between 
sampled and event-driven input. Event-driven programming may seem more complex than 
sampling, but you are already familiar with a similar technique used with the scanf function 
in a C program: C enables the keyboard, and the application waits in the scanf until the user 
has completed entering a line of teltt. You can access individual key-press events in C using 
the getc function. 

Simple event-driven programs in SRGP or similar packages follow the reactive 
"ping-pong" interaction introduced in Section 1.6.4 and pseudocoded in Fig. 2.17; it can 
be nicely modeled as a finite-state automaton. More complex styles of interaction, allowing 
simultaneous program and user activity, are discussed in Chapters 8 through 10. 

Event-driven applications typically spend most of their time in a wait state, since 
interaction is dominated by "think time" during which the user decides what to do neltt; 
even i.n fast-paced game applications, the number of events a user can generate in a second 
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Fla. 2.15 Sampling versus event—handling using the event queue.

events in temporal order. In efl'ect, the application specifies when it mold like to be

“interrupted."

1lii'hen an application checks the event queue1 it specifies whether it would like to enter a

wait state. If the queue contains one or more event reports. the head event I.” representing the

extent that occurred earliest] is removed. and its information is made available to the

application. If the queue is empty and a wait state is not desired. the application is informed

that no event is available and it is free to continue execution. If the queue is empty and a

trait state is desired. the application pauses until the next event occurs or until an

application-specified maximum-wait‘tinre interval passes. [n efl'ect. event mode replaces

polling of the input devices with the much more efficient waiting on the event queue.

In summary, in sampling mode. the device is polled and an event measure is collected,

regardless of any user activity. In event mode, the application either gets an event report

from a prior user action or 1waits until a user action (or timeout} occurs. it is this “respond

only when the user acts" behavior of event mode that is the essential difference between

sampled and event-driven input. Event-driven programming mayr seem more complex than

sampling. but you are already familiar with a similar technique used with the scant function

in a C program: C enables the keybom. and the application waits in the scanf until the user

has completed entering a line of text. You can access individual key-press etents in C using

the get: function.

Simple event-driven programs in SHOP or similar packages foil-2mr the reactive

“ping-pong" interaction introduced in Section 1.6.4 and pseudoeoded in Fig. 11?; it can

be nicely modeled as a finite-state automaton. More complex styles of interaction, allowing

simultaneous program and user activity. are discussed in Chapters 3 through it].

Event-driven applications typically spend most of their time in a wait state, since

interaction is dominated by “think time" during which the user decides what to do next;

even in fast-paced game applications. the number of events a user can generate in a second
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initialize, Including generclling the initial image; 
activate lmeractive device(.r) in event mode; 
while (user has notl'f!quested quit} { / • main event loop •I 

} 

wait for user-triggel'f!d evmt on any of several devices; 
switch (de>•/ce that caused event} { 

} 

cast OEVlCE • .I: collect DEVlCE..I event measul'f! data , process, l'f!Spond: 
case DEVJCE..2: collect DEVJCE..2 evem measure data , procus, respond; 

Fig, 2 .17 Event-driven interaction scheme. 

is a fraction of what the application could handle. Since SRGP typically implements event 
mode using true (hardware) interrupts, the wait state effectively uses no CPU time. On a 
multitasking system, the advantage is obvious: The event-mode application requires CPU 
time only for short bursts of activity immediately following user action, thereby freeing the 
CPU for other tasks. 

One other point, about correct use of event mode, should be mentioned. Although the 
queueing mechanism does allow program and user to operate asynchronously, the user 
should not be allowed to get too far ahead of the program, because each event should result 
in an echo as well as some feedback from the application program. It is true that 
experienced users have learned to use " typeahead" to type in parameters such as file names 
or even operating-system commands while the system is processing earlier requests, 
especially if at least a character-by-character echo is provided immediately. In contrast, 
"mouseahead" for graphical commands is generally not as useful (and is much more 
dangerous), because the user usually needs to see the screen updated to reflect the 
application model 's current state before the next graphical interaction. 

2.2 .4 Sample Mode 

Activating, deactivating, and setting the mode of a device. The following procedure 
is used to activate or deactivate a device; it takes a device and a mode as parameters: 

•·old SRGP. setlnputMode ( 
LOCATOR I KEYBOARD inputDevice, INACTIVE I SAMPLE I EVENT inpulModc}; 

Thus, to set the locator to sample mode, m! call 

SRGP. setlnputMode (LOCAJOR, SAMPLE); 

Initially, both devices are inactive. Placing a device in a mode in no way affects the other 
input device-both may be active simultaneously lind even then need not be in the same 
mode. 

T he locator's measure. The locator is a logical abstraction of a mouse or data tablet, 
returning the cursor position as a screen (x, y) coordinate pair. the number of the button 
which most recently experienced a transition, and the state of the buuons as a chord array 
(since multiple buttons can be pressed simultaneously). The second field lets the application 
know which button caused the trigger for that event. 
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typedef struct { 
point position; 
int burronO}MosrRecenrTransirion; 
enum {UP, DOWN} buuonChord[MAJL.BIJTTON.COUNT]; 

} locatorMeasure; 
I• TypicaUy I to 3 •I 
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Having activated the locator in sample mode with the SRGP _setlnputMode procedure, we 
can ask its current measure using 

void SRGP. sampleLocator (locatorMeamre *measure); 

Lei us examine the prototype sampling applicarion shown in Fig. 2.18: a simple 
"painting" loop involving only button I on the locator. Such painting entails leaving a ttail 
of paint where the user has dragged the locator while holding down this button; !he locator 
is sampled in a loop as the user moves it. Firsr, we must detect when the user starts painting 
by sampling the button until it is depressed; then, we place the paint (a filled rectangle in 
our simple example) a1 each sample poinl until the user releases the button. 

The results of this sequence are crude: the paint rectangles are arbitrarily close rogether 
or far apart, with their density completely dependent on how far the locator was moved 
between consecutive samples. The sampling rate is detennined essentially by the speed at 
which the CPU runs the operating system, the package, and the application. 

Sample mode is available for both logical devices; however, the keyboard device is 
almost always operated in event mode, so techniques for sampling it are not addressed here. 

2 .2.5 Event Mode 

Using event mode for initiation of s ampling loop. Although the two sampling loops 
of the painting example (one to detecr the button-down transition , the other to paint until 

setup colorfpauern auribures, and brush size in hai/BrushHeighr and hal/Brush Width; 
SRGP.setlnputMode (LOCATOR, SAMPLE); 

I• First. sample until the button goes down. •I 
do { 

SRGP. sampleLocator ( &locMeasure ); 
} while (locMeasure.burronC/tord(OJ == UP); 

I • Perform the painting loop: •I 
I• Continuously place brush and then sample, until button is releao;ed. •I 
do { 

recr = SRGP. defRectnngle (locMeasure.posilion.x- ha/fBrushWidrh, 
locMeasure.posirion.y- halfBrushHeighr, 
locMeasure.poslrion.x + ilalfBrusiiWidrh, 
locMeasure.pasirion.y + ha/fBrushHeighr): 

SRGP. filiRectangle (recr): 
SRGP_ sampleLocatOr (&foe Measure ): 

} while (locMeasul'l'.i>uuonCIIord(O] == DOWN): 

Fig. 2 .18 Sampling loop for painting. 
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the button-up transition) cenainly do the job, they put an unnecessary load on the CPU. 
Although this may not be a serious concern in a personal computer, it is not advisable in a 
system running multiple tasks, let alone doing time-sharing. Although it is certa inly 
nccessmy to sample the locator repetitively for the painting loop itself (because we need to 
know the position of the locator at all times while the button is down). we do not need to use 
a sampling loop to wait for the buuon-down event that initiates the painting interaction. 
Event mode can be used when there is no need for measure information while waiting for an 
C\-ent. 

S RGP. waitEvent. At any time after SRGP _setlnputMode has activated a device in event 
mode, the program may inspect the event queue by entering the wait state with 

inputDevice SRGP. waitEvent {lnl max1Vait7Tme); 

The procedure returns immediately if the queue is not empty; otherwise, the first parameter 
specifies the maximum amount of time (measured in Y60 second) for which the procedure 
should wait for an event if the queue is empty. A negative maxiVaitTimt- (specified by the 
symbolic constant lNOEFINrrE) causes the procedure to wait indefinitely, whereas a value of 
zero causes it to return immediately, regardless of the state of the queue. 

The identity of the device that issued the head event is returned in the de~~ice parameter. 
The special value NO.J)IMCS is returned if no event was available within the specified time 
limit-chat is, if the device timed out. The device type can then be tested to determine how 
the head event's measure should be retrieved (described Inter in this section). 

The keyboard device. The trigger event for the keyboard device depends on the 
processing mode in which the keyboard device has been placed. EDIT mode is used when the 
application receives strings (e.g., file names, commands) from the user, who types and 
edits the string and then presses the Return key to trigger the event. In RAW mode, used for 
interactions In which the keyboard must be monitored closely. every key press triggers an 
event. The application uses the following procedure to set the processing mode. 

void SRGP_setKeyboardProoessingMode {EDIT / RAW keyboardMode): 

In EDIT mode, the user can type entire strings. correcting them with the backspace key 
as necessary. and then use the Return (or Enter) key as trigger. This mode is used when the 
user is to type in an entire string, such as a file name or a figure label. All control keys 
except backspace and Return are ignored. and the measure is the string as it appears at the 
time of the trigger. ln RAW mode, on the other hand, each character typed, including control 
characters, is a trigger and is returned individually as the measure. This mode is used when 
individual keyboard characters act as commands-for example, for moving the cursor, for 
simple editing operations, or for video-game actions. RAW mode provides no echo, whereas 
EDIT mode echoes the string on the sereen and displays a text Cltrwr (such as an underscore 
or block character) where the next character to be typed will appear. Each backspace causes 
the text cursor to back up and to erase one character. 

When SRGP_waitEvent returns the device code KEYBOARD, the application obtains the 
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measure associated with the event by calling 

void SRQP_getKeyboard (char *measure, int measureSize): 

When the keyboard device is active in RAW mode, its measure is always exactly one 
character in length. ln this case, the first character of the measure string returns the RAW 
measure. 

The program shown in Fig. 2. 19 demonstrates the use of EDIT mode. It receives a list of 
file names from the user, deleting each file so entered. When the user enters a null string (by 
pressing Return without typing any other characters), tlle interaction ends. During the 
interaction, the program waits indefinitely for the user to enter the next string. 

Although this code explicitly specifies where the text prompt is to appear, it does not 
specify where the user 's input string is typed (and corrected with the backspace). The 
location of this keyboard echo is specified by the programmer, as discussed in Section 
2.2.7. 

Tbe locator device. The trigger event for the locator device is a press or release of a 
mouse button. When SRGP_waitEvent returns the device code LOCATOR, the application 
obtains the measure associated with the event by calling 

void SRGP_getLocator (iocatorMeasure *"'easure); 

Typically, th.e position field of the measure is used to detem1ine in which area of the screen 
the user designated the point. For example, if the locator cursor is in a rectangular region 
where a menu button is displayed, the event should be interpreted as a request for some 
action; if it is in the main drawing area, the point might be inside a previously drawn object 
to indicate it should be selected, or in an "empty" region to indicate where a new object 
should be placed. 

The pseudocode shown in Fig. 2.20 (similar to that shown previously for the keyboard) 
inlplements another use of the locator, letting the user specify points at which markers are 
to be placed. The user exits the marker-placing loop by pressing the locator button wbile tlle 
cursor points to a screen button, a rectangle containing the text " quit. " 

ln this example, only the user' s pressing of locator button 1 is significant; releases of 
the button are ignored. Note that the button must be released before the next button-press 
event can take place-the event is triggered by a transition. not by a button state. 
Furthermore, to ensure that events coming from the otller buttons do not disturb this 

SRGP_setlnputMode (KEYBOARD, EVENT); /• Assume only the keyboard is active. •I 
SRGP_ setKeyboardProcessingMode (EDIT); 
pr = SRQP_defPoint (100, 100); 
SRGP_text (pr, "Specify one or more files to be deleted; to exit, press Return."); 

I• main event loop •/ 
do { 

device = SRGP_ wai!Event (fNDEFINTTE); 
SRGP_getKeyboard (measure,measureSize}; 
if ( •measure != NULL) 

DeleteFiie (measurt>); I• Oelet.eFile does confirmation, etc. *' 
} while (•measure !=NULL); 

Fig. 2. 19 EDIT -mode kevbo~~rrl interaction. 
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const int QU!T..BUTI'ON = O, QUIT_ MASK = 0~1; 

create the on-screen Quit button; 
SRGP.setLocatorButtooMask (QU!L.MASK); 
SRGP.sellnpu!Mode (LOCATOR, EVENT); /• Assume only locator is active. •I 

I• main evem loop •I 
terminate = FALSE: 
while (!tenninate) { 

} 

device = SRGP. waitEvent {INDEFINITE); 
SRGP.getLocator (&measure); 
if (measure.butionChoni[QU!T..BUTI'ON] ==DOWN) { 

if {PickedQuitButton (meli.Sure.position)) 
terminate = TRUE; 

else 
SRGP. markcr (measure.position) ; 

} 

Fig. 2.20 Locator interaction. 

i.nteraction, the application tells SRGP which buuons are to trigger a locator ewnt by calling 

void SRGP.setLocatorButtonMask {lnt activeBIIIIons}; 

The default locator-button mask is set to one, but no matter what the mask is, all buttons 
always have a measure. On implementations that support fewer than three buttons, 
references to any nonexistent buuons are simply ignored by SRGP, and these buttons' 
measures always contain UP. 

The function PickedQuitButton compares the measure position against the bounds of 
the quit button rectangle and returns a Boolean value signifying whether or not the user 
picked the quit burton. This process is a simple example of pick correlation , as discussed in 
in the next section. 

Waiting for multiple events. The code fragments in Figs. 2.19 and 2.20 did not 
illustrate event mode's greatest advantage: the ability to wait for more than one device at the 
same time. SRGP queues events of enabled devices in chronological order and Jets the 
application program take the first one off the queue when SRGP _waitE vent is called. Unlike 
hardware interrupts, which are processed in order of priorities, events are thus processed 
strictly in temporal order. The application ~amines the returned device code to determine 
which device caused the ewnt. 

The procedure shown in Fig. 2.21 allows the user to place any number of small circle 
markers anywhere within a rectangular drawing area. The user places a marker by pointing 
to the desired position and pressing buuon I; she requests that the interaction be terminated 
by either pressing button 3 or typing ''q" or ''Q." 

2 .2 .6 Pick Correlation fo r Interaction Handling 

A graphics application customarily divides the screen area into regions dedicated to specific 
purposes. When the user presses the locator button, the application must determine exactly 
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ronst lnt PI..ACE.BUTTON = 0, PLACE.MASK = Ox I , 
QUn: BUTTON = 2. QUIT. MASK= Ox4: 

gmuate initial scrr~n layout; 
SRGP. setlnputMode (KEYBOARD, EVENT): 
SRGP.setKcyboardProcessingMode (RAW); 
SRGP. sellnputModc (LOCATOR, EVENT): 
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SRGP. setLocnwBuuonMnsk (PLACE.MASK I QUn: MASK): I• Ignore middle buuon. •I 

I• Main event loop •I 
ttmrinat~ = FALSE; 
while (!terminate) { 

de1•ice = SRGP. waitEvent (INDEFINITE): 
switeh (devic~) { 

case KEYBOARD: 
SRGP.aetKeyboard (uyMeosurr, keyMeasurrSi:.~): 
temrinote = (keyMeosun(O) == 'q ') II (keyMeo.rurr(O) == 'Q'): 
break; 

case LOCATOR: 
SRGP. getl.ocator (&locMeasurr~): 
s witch (locMeosure.bunanO/MostRecentTrtmsition) { 

case PLACB.BUTTON: 
It ((locMeasure.buttonChorti[PLACB.BUTTON) == DOWN} 

&& lnDmwingArea (lorMea.vure.po.rltitm)) 
SRGP. marker (locMeasure.posltlon): 

break; 
case Qun:. BUTTON: 

ttmrinau = TRUE: 
break: 

} / • button switch • / 
} / • device switch -./ 

} / • while •/ 

Fig. 2 .21 Use of several devices simultaneously. 

what screen button, icon, or other object wus selected , if any, so !hat it can respond 
appropriately. This determination, called pick correlation, is a fundamental part of 
interactive graphics. 

An application program using SRGP performs pick correlation by determining in which 
region the cursor is located, and then which object within that region, if any , the user is 
selecting. Points in an empl)' subregion might be ignored (if the point is between menu 
buuons in a menu. for example) or might specify the desired position for a new object (if the 
point lies in the main drawing area). Since a great many regions on the screen are upright 
rectangles, almost all the work for pick correlation can be done by a simple, frequently used 
Boolean function that checks whether a given point lies in a given rectangle. The GEOM 
package distributed with SRGP includes this funetion (GEOM_ptlnRect) as well as other 
utilities for coordinate arithmetic. (For more information on pick correlation, see Section 
7.12.) 
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Let us look at a classic example of pick correlation. Consider a painting appliauion 
with a menu bar across lhe top of the screen. This menu bar conlllins the names of 
pull-down menus, called menu !readers. When lhe user picks a header (by placing the 
cursor on top of the header's text string and pressing a locator buuon), the corresponding 
menu body is displayed on the screen below the header and the header is highlighted. Afie.r 
the user selects an entry on the menu (by releasing the locator bunon),6 the menu body 
disappears and lhe header is unhighlighted. The rest of lhe screen contains lhe main 
drawing area in which the user can place and pick objects. The application, in creating each 
object. has assigned it a unique identifier (ID) lhat is returned by the pick-correlation 
procedure for further processing of the object. 

When a point is obtained from lhe locator via a bunon-down event, the high-level 
interaction-handling schema shown in Fig. 2.22 is executed; it is essentially a dispatching 
procedure that uses pick correlation within lhe menu bar or the main drawing area to divide 
lhe work among menu- and object-picking procedures. First. if the cursor was in the menu 
bar, a subsidiary correlation procedure determines whether the user selected a menu header. 
lf so, a procedure (detailed in Section 2.3.1) is called to perfom1 the menu interaction: it 
returns an index specifying which item within the menu 's body (if any) was chosen. The 
menu 10 and item index together uniquely identify the action lhat should be taken in 
response. If the cursor was not in the menu bar but rather in the main drawing area, another 
subsidiary correlation procedure is called to determine what object was picked, if any. If an 
object was picked, a processing procedure is called to respond appropriately. 

The procedure CorrelateMenuBar performs a finer correlation by calling GEOM~point
lnRect once for each menu header in the menu bar; it accesses a database storing the 
rectangular screen extent of each header. The procedure CorrelateDrawingArea must do 
more sophisticated correlation because, typically , objects in the drawing area may overlap 
and are not necessarily rectangular. 

2 .2 . 7 Setting Device Measure and Attributes 

Each input device has its own set of attributes, and the application can set lhese attributes to 
custom-tailor lhe feedback the device presents to lhe user. (The button mask presented 
earlier is also an attribute; it differs from those presented here in that it does not affect 
feedback .) Like output-primitive attributes, input-device attributes are set modally by 
specific procedures. Attributes can be set at any time, whether or not the device is active. 

In addition, each input device's measure, normally determined by the user's actions, 
can also be set by the application. Unlike input-device attributes, an input device's measure 
is reset to a default value when the device is deactivated: thus, upon reactivation, devices 
initially have predictable values, a convenience to the progmmmer and to lhe user. This 
automatic resetting can be overridden by explicitly setting a device's measure while it is 
inactive. 

Locator echo attributes. Several types of echo are useful for the locator. The 

•This sequence. couesponding to the Macintosh menu-interaction Styte, is only one of many diffetent 
ways the user interface could be designed. 
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void Highl.evellnteractionHandler (locatorMeasure meo.sureOjLocator) 
{ 

if (GEOM.poinlinRect (measureOjLocator.posirion, menuBarExrenr)) { 
I• Find out which menu's header, if nny, the user selected. •I 
I• Then, pull down that menu's body. •I 
menu/D = CorrelateMenuBar (measureOfLocaror.position); 
i.f (menu/D > 0) { 

} 

clwsenltemlndex = PerformPulldownMenulnteraction (numuiD): 
if (chosenlremlndex > 0) 

PerfonnActionCbosenfromMenu (me11ulD, chosenflemlndex): 

51 

} else { I• The user picked within the drawing area; find out what nnd respond. •I 
objectiD = CorrelateDrawingArea (measureOfLocator.position); 
if (object/D > 0) 

ProcessObject (object/D); 
} 

} I• Highl.evellnteractionHandler •I 

Fig. 2.22 High-level interaction scheme for menu handling. 

programmer can control both echo type and cursor shape with 

void SRGP. setLocatOTEchoType ( 
NO..ECHO I CURSOR I RUBBBRJ..INB I RUBBER.RE!CT echo Type); 

The default is CURSOR, and SRGP implementations supply a cursor table from which an 
application selects a desired cursor shape (see the reference manual). A common use of the 
ability to specify the cursor shape dynamically is to provide feedback by changing the 
cursor shape according to the region in which the cursor lies. RUBBE!l.LINE and 
RUBBER...RE!CT echo are commonly used to specify a line or box. With these set, SRGP 
automatically draws a continuously updated line or rectangle as the user moves the locator. 
The line or rectangle is defined by two points , the anchor point (another locator attribute) 
and the current locator position. Figure 2.23 illustrates the use of these two modes for user 
specification of a line and a rectangle. 

ln Fig. 2.23(a), the echo is a cross-hair cursor, and the user is about to press the locator 
button. The application initiates a rubber echo, anchored at the current locator position, in 
response to the button press. In parts (b) and (c), the user's movement of the locator device 
is echoed by the rubber primitive. The locator position in part (c) is rerumed to the 
application when the user releases the button, and the application responds by drawing a 
line or rectangle primitive and restoring normal cursor echo (see part d). 

The anchor point for rubber ecbo is set with 

void SRGP. setLocatorEchoRubberAnchor (point position); 

An application typically uses the position field of the measure obtained from the most 
recent Locator-button-press event as the anchor position, since that button press typically 
initiates the rubber-echo sequence. 

Locator measure control. The po.sirion ponion of the locator measure is automatically 
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+ 

+ D I I --Fig. 2 .23 Rubber-echo scenarios. 

reset to the center of the screen whenever the locator is deactivated. Unless the programmer 
explicitly resetS it, the measure (and feedback position. if the echo is active) is initialized to 
that same position when the device is reactivated. At any time, whether the device is active 
or inactive. the programmer can rese1 the locator's measure (the position portion, not the 
fields concerning the buttons) using 

void SRGP.setLocatorMeasure (point positwn); 

Resetting the measure while the locator is inactive has no immediate effect on the 
screen, but resetting it while the locator is active changes the echo (if any) accordingly. 
Thus, if the program wantS the cursor to appear initially at a position other than the center 
when the locator is activated. a call to SRGP JCI.LocatorMeasure with that initial position 
must precede the call to SRGP _setlnputMode. This technique is commonly used to achieve 
continuity of cursor position; The last measure before the locator was deactivated is stored, 
and the cursor is returned to that position when it is reactivated. 

Keyboard attributes and measure control. Unlike the locator, whose echo is posi
tioned to reflect movements of a physical device, there is no obvious screen position for a 
keyboard device's echo. The position is thus an attribute (with an implementation-specific 
default value) of the keyboard device that can be set via 

void SRGP.setKeyboardEchoOrigin (point origin); 

The default measure for the keyboard is automatically reset to the null string when the 
keyboard is deactivated. Setting the measure explicitly to a nonnull initial value just before 
activating the keyboard is a convenient way to present a default input string (displayed by 
SRGP as soon as echoing begins) that the user can accep1 as is or modify before pressing the 
Return key, thereby minimizing typing. The keyboard 's measure is set via 

void SRGP.setKeyboardMeasure (char •m~os11re); 

2.3 RASTER GRAPHICS FEATURES 

By now, we have introduced most of the features of SRGP. This section discusses the 
remaining facilities that take particular advantage of raster hardware, especially the ability 
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to save and restore pieces of the screen as they are overlaid by other images, such as 
windows or temporary menus. Such image manipulations are done under control of 
window- and menu-manager application programs. We also introduce otfscreen bitmaps 
(called canvases) for storing windows and menus, and we discuss the use of c.lipping 
rectangles. 

2.3.1 Canvases 

The best way to make complex icons or menus appear and disappear quickly is to create 
them once in memory and then to copy them onto the screen as needed. Raster graphics 
packages do this by generating the primitives in invisible, otfscreen bitmaps or pixmaps of 
the requisite size, called canvases in SRGP, and then copying the canvases to and from 
display memory. This technique is, in effect, a type of buffering. Moving blocks of pixels 
back and forth is faster, in general, than is regenerating the information, given the existence 
of the fast SRGP _copy Pixel operation that we shall discuss soon. 

An SRGP canvas is a data structure that stores an image as a 20 array of pixels . It also 
stores some control information concerning the size and attributes of the image. Each 
canvas represents its image in its own Cartesian coordinate system, which is identical to that 
of the screen shown in Fig. 2. I; in fact, the screen is i!Self a canvas, special solely in that it 
is the only canvas that is displayed. To make an image stored in an off-screen canvas visible, 
the application must copy it onto the screen canvas. Beforehand, the portion of the screen 
image where the new image--for example , a menu-will appear can be saved by copying 
the pixels in that region to an offscreen canvas. When the menu selection has taken place, 
the screen image is restored by copying back these pixels. 

At any given time, there is one curremly active canvas: the canvas into which new 
primitives are drawn and to which new attribute settings apply. This canvas may be the 
screen canvas (the default We have been using) or an otfscreen canvas. The coordinates 
passed to the primitive procedures are expressed in terms of the local coordinate space of 
the currently active canvas. Each canvas also has its own complete set of SRGP attributes, 
which affect all drawing on that canvas and are set to the standard default values when the 
canvas is created. Calls to attribute-setting procedures modify only the attributes in the 
currently active canvas. It is convenient to think of a canvas as a virtual screen of 
program-specified dimensions, having its own associated pixmap, coordinate system, and 
attribute group. These properties of the canvas are sometimes called the state or comext of 
the canvas. 

When SRGP is initialized, the screen canvas is automatically created and made active. 
All our programs thus far have generated primitives into only that canvas. It is the only 
canvas visible on the screen, and its lD is SCREEN_CANVAS, an SRGP constant. A new 
offscreen canvas is created by calling the following procedure, which returns the ID 
allocated for the new canvas: 

canvasiO SRGP_createCanvas (lnt width, lot height); 

Like the screen, the new canvas's local coordinate system origin (0, 0) is at the bottom-left 
corner and the top-right corner is at (width-I, height- I). A I by I canvas is therefore 
defined by width and height of I , and its bottom-left and top-right comers are both (0, 0)! 
This is consistent with our treatment of pixels as being at grid intersections: The single pixel 
in a I by I canvas is at (0, 0). 
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A newly created canvas is automatically made active and its pixels are initialized to 
color 0 (as is also done for the screen canvas before any primitives are displayed). Once a 
canvas is created, its size cannot be changed. Also, the programmer cannot control the 
number of bits per pixel in a canvas, since SRGP uses as many bits per pixel as the hardwam 
allows. The attributes of a canvas are kept as part of its ''local" state information; thus, the 
program does not need to save the currently active canvas's attributes explicitly before 
creating a new active canvas. 

1lle application selects a previously created canvas to be the currently active canvas via 

,-old SRGP.useCanvas (canvasiD ld}; 

A canvas being activated in no way implies that that canvas is made visible; an image in an 
offscreen canvas must be copied ooto the screen canvas (using the SGRP _copy Pixel 
procedure described shortly) in order to be seen. 

Canvases are deleted by the following procedure, which may not be used to delete the 
screen canvas or the currently active canvas. 

void SRGP.deleteCanvas (canvasiD id}; 

The following procedure.~ allow inquiry of the size of a canvas; one returns the rectangle 
which defines the canvas coordinate system (the bottom-left point always being (0, 0)), and 
the ocher returns the width and height as separate quantities. 

rectang.le SRGP. inquireCanvas6xtem (canvaslD id); 
, ·old SROP. inquireCanvasSize (canvaslO id, lot • width, lnt •height); 

Let us examine the way canvases can be used for the implementation of Perform· 
PulldownMenulnteraction, the procedure called by the high-level intemction bandler 
presented in Fig. 2.22 and Section 2.2.6. The procedure is implemented by the pseudocode 
of Fig. 2.24, and itS sequence of actions is illustrated in Fig. 2.25. Each menu has a unique 

tnt PerforrnPulldownMenulnteraction (int menu/D); 
I• The saving/copying of rectangular regions of canvases is described in Section 2.3.3. •/ 
{ 

highlight the mtfiU header in the menu bar. 
memllJodyScrunExumt = .tcfY!en·area rectangle at which menu b<Jdy should appear. 
sa1•e the cut'~Ynt pixels of the menuBodyScfY!enEx1ent in a temporary canvas; 

I• &e Fig. 2.2Sa. •I 
copy menu body image from body canvas to mmu8od)•ScfY!tnEx1enr; 

I• See Fig. 2.251> and C code in Fig. 2.28. •I 
wait for button-up signaling the user made a selection, then get locator measufY!; 
copy saved itMgefrom temporary canvas back to menuBodyScfY!enExunr; 

I• &e Fig. 2.25c •I 
If (OEOM.poinllnRect (measuN!Ofl.ocator.position, menuBodyScfY!enExtent)) 

calculate and retum indtx of choun lttm, using y coord of measure position; 
else 

retum O; 
} I• PetfonnPulldownMenulntcruction •/ 

Fig. 2 .24 Pseudocode for PerfonnPulldownMenulnteraction. 
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ID (returned by the CorrelateMenuBar function) that can be used to locate a database record 
containing the following infonnation about the appearance of the menu body: 

• 
• 

The roof the canvas storing the menu's body 

The rectangular area (called menuBodyScreenExtent in the pseudocode), specified in 
sereen-canvas coordinates, in whicb the menu's body should appear when the user 
pulls down the menu by clicking in its header 

2 .3 .2 Clipping Rectangles 

Often, it is desirable to restrict the effect of graphics primitives to a subregion of the active 
canvas, to protect other portions of the canvas. To facilitate this, SRGP maintains a clip 
rectangle attribute. All primitives are clipped to the boundaries of this rectangle; that is, 
primitives (or portions of primitives) lying outside the clip rectangle are not drawn. Li.k.e any 
attribute, the clip rectangle can be changed at any time, and itS most recent setting is stored 
with the canvas's attribute group. Tbe default clipping rectangle (what we have used so far) 
is the full canvas; it can be cbanged to be smaller than th.e canvas, but it cannot extend 
beyond the canvas boundaries. The relevant set and inquiry calls for the clip rectangle are 

void SRGP. setClipRectangle (rectangle clipRecr); 
rectangle SRGP.inquineCiipRectangle (void): 

A painting application lik.e that presented in Section 2.2.4 would use the clip rectangle to 
restrict the placement of paint to the drawing region of the sereen, ensuring that the 
surrounding menu areas are not damaged. Although SRGP offers only a slngle upright 
rectangle clipping boundary, some more sophisticated software such as POSTSCRJPT offers 
multiple, arbitrarily shaped clipping regions. 
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  canvases

File Edit Pen Shape Pattern
menu menu menu menu

Fly. 2.25 Saving and restoring area covered by menu body.

ID (returned by the Correlatelvienuflar function} that can be used to locate a database record

containing the following information about the appearance of the menu body:

" The ID ofthe canvas storing the menu’s body

I The rectangular area {called menaflodySmeaExtenr in the pseudoeode}, specified in

screen-canvas coordinates. in which the menu’s body should appear when the user

pulls down the menu by clicking in its header

2.3.2 Clipping Hectanglsa

Dfien, it is desirable to restrict the efl’ect of graphics primitives to a subregion of the active

canvas. to protect other portions of the canvas. To facilitate this, SRGP' maintains a clip
rectmtgie attribute. All primitives are clipped to the boundaries of this rectangle; that is.

primitives {or portions of primitives) lying outside the clip rectangle are not drawn. Like any

attribute. the clip rectangle can be changed at any time, and its nlost recent setting is stored

with the canvas's attribute group. The default clipping rectangle {what we have used so far)
is the full canvas; it can be changed to be smaller than the canvas. but it cannot extend

beyond the canvas boundaries. The relevant set and inquiry calls for the clip rectangle are

void SRGP.setClipReetangle [rectangle dialled}:

rectangle Ell-GP. inquireClipRectangle [void]:

A painting application like that presented in Section 2.2.4 would use the clip rectangle to
restrict the placement of paint to the drawing region of the screen. ensuring that the

surrounding menu areas are not damaged. Although SRGP offers only a single upright

rectangle clipping boundary. some more sophisticated software each as PoercaIPr otters

multiple, arbitrarily shaped clipping regions.
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2 .3.3 The SRGP _copyPixel Operation 

The powerful SRGP_copyPixel command is a typical raster command that is often called 
bit81t (bit block transfer) or pix Bit (pixel Bit) when implemented directly in hardware; it 
first became available in microcode on the pioneering ALTO bitmap workstation at Xerox 
Palo Alto Research Center in the early 1970s [INGA811. This command is used to copy an 
array of pixels from a rectangular region of a canvas, the source region, to a destination 
region in the currently active canvas (see Fig. 2.26). The SRGP facility provides only 
restricted functionality in that the destination rectangle must be of the same size as the 
soun:e. In more powerful versions, the soutee can be copied to a destination region of a 
different sia:, being automatically scaled to fit (see Chapter 19). Also. additional feaiUres 
may be available, such as mask.r to selectively shield desired soun:e or destination pixels 
from copying (see Chapter 19), and halftone pauerns that can be used to ·•screen" (i.e. , 
shade) the destination region. 

SRGP _copy Pixel can copy between any two canvases and is specified as follows: 

•·old SRGP_ copyPixel ( 
canvasiO sourc~Camm, rectangle sourceR~ct, point d~stCorner): 

The sourceRect specifies the soutee region in an arbitrary canvas, and des/Corner specifies 
the bottom-left comer of the destination rectangle inside the currently active canvas, each in 
their own coordinate systems. The copy operation is subject to the same ctip rectangle that 
prevents primitives from generating pixels into protected regions of a canvas. Thus, the 
region into which pixels are ultimately copied is the intersect ion of the extent of the 
destination canvas, the destination region, and the clip rectangle, shown as the striped 
region in Fig. 2.27. 

To show the use of copyPixel in handling pull-down menus, let us implement the fourth 
statement of pseudocode-"copy menu body image" -from the PetformPulldownMenu
lnteraction function (Fig. 2.24). In the third statement of the pseudocode, we saved in an 
off screen canvas the screen region where the menu body is to go; now. we wish to copy the 
menu body to the screen. 

The P..1scal code is shown in Fig. 2.28. We must be sure to distinguish between the two 
rectangles thut are of identical size but that arc expressed in different coordinate systems. 

Destlnation 
rectangle r -,llli : :·:·:·. 

Source 

Oestina~nP-~~ rec:1angle r-n : ·.·.· .. olig1n ~ 

~ :, ) 
........... ·- --~ 

Currently active canvas 
Source canvas 

Fig_ 2 .26 SRGP _copyPixel. 
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Source canvas 

r····· ··----
: Destination 

origin 

Raster Graphics Features 

.....---. Extent of 
destination 
before clipping 

Currently active canvas 

Fig. 2 .27 Clipping during copyPixel. 

57 

The first rectangle, which we call memJJody£rtent in the code, is simply !he extent of the 
menu body's canvas in itS own coordinate system. This extent is used as the source 
rectangle in the SRGP _copyPixel operation !hat putS the menu on the screen. The 
menuBodyScrunExrent is a rectangle of the same size !hat specifies in screen coordinates 
the position in whicb !he menu body should appear; that extent's bottom-left comer is 
horizontally aligned with !he left side of the menu beadcr, and its top-right comer abuts the 
bottom of the menu bar. (Figure 2.25 symbolizes !he Edit menu's screen extent as a dotted 
outline, und its body extent as a solid outline.) The menuBodyScreen£rrent's bottom-left 
point is used to specify the destination for the SRGP _copy Pixel that copies the menu body. 
It is also the source rectangle for the initial save of the screen area to be overlaid by the 
menu body and the destination of the final restore. 

I• This code fragment copies a menu-body image onto screen. •I 
I• at the screen position stored in the body's record. •I 

I• Save the ID of the currently active canvas. •I 
saveCtmva.<ID = SRGP. inquircAetiveCanvas{); 

I• Save the screen canvas' clip-rectangle attribute value. •I 
SRGP. uscCanvas (SCREEN.CANVAS): 
•av~CIIpR~crangle = SRGP. inquireCiipRcctangle (): 

I• Temporarily set screen clip rectangle to allow writing to all of the screen. •I 
SRGP. setCiipRectangle (SCREEN ..EXTENT): 

I• Copy menu body from its canvas to its proper area below the header in the menu bar. •I 
SRGP. oopyPixel (menuCarrvosiO, merru8a<ly£xtem, merruBodyScreenExrem.bottomuft); 

I• Restore screen attributes and sctive canvas. •I 
SRGP. setCiipRectanglc (sav~CiipRecrangl~ ); 
SRGP. uscCanvas (sa•·~CanmsiD): 

Fig . 2 .28 Code for copying the menu body to the screen. 
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Fig. 2.2? Clipping during eopvPisal.

The first rectangle. which we call mnuflodvfirrmr in the ends. is simply the extent of the

menu body's canvas in its own coordinate system. This estent is toe-d as the source

mieintheSHEP_eovaiselopn-uimthatpoofltentemmmeseoen.m

WMEamtgieolflnsmsizemuspeeifiainmnmdim

flit-position in “miehflsenteno hodyshouldappeanthatestent'sbottom—Iet‘toomeris

hfll’imfllly aligned with the left side of the menu header. and its top-right oorner abuts the

bottom of the menu has. (Figure 1.15 symbolizes the Edit menu's screen extent as adotted

outline. and its hotlyr extent as a solid outline.) The memtfi'odyfi'creenfixtenr's bottom-left

point is used to specify the destination for the SRGP_eop1vPisel that eopim the menu body.

ltisolsothesourcerectsngle forthe initial smeofdtescreenareatoheoverlaidbythe

nteratbo-dyandfltetlcstinationoitheflnalrestore.

to This eo-tte fragment copies a menu-body image onto screen. i-l

t- at the screen position stored in thebo-tlv‘srecord. at

in Save the ID of the tummy ttctive canvas. 4-!

soveCtrtrwtslfl = SRGPanuireA-eliveflmvosl l;

l- Save the screen canvas‘ clip~rec11ngle attribute value. rt

SEEP. useCaJtvas {SCREENJZ‘AN‘IMS};

meE'hpRemmgl'e = SHEEit'tquirt'eCltpRet'tttngle l]:

l- Temporarily set screen clip rectangle mallow writing to all ofthe screen. In"

SEER setCIipReaangle {mes-ram}:

l- Copy menu bet-:1}r from its canvas to its proper area below the header in the menu bar. at

ERG ReopyPittel {menufonmsli}. mettttfladyflttem‘. tttertttBrtthfi't'rrertfltent.botrom£.efl]'.

it Restm'e screen attributes and letive canvas. ti

SEEP. setCIipRectaogle {sowflipflecrottgleh

SEER. ttseCanvas [mefontmlflh

Fig. 2.25 Code for copying the menu body to the screen.
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Notice that the- application's state is saved and restored to eliminate side effects. We set 
the screen clip rectangle to SCREEN,JlX'l'ENT before copying; alternatively, we could set it to 
the exact menuBodyScreenExtmt. 

2.3.4 Write Mode or RasterOp 

SRGP _copy Pixel can do more than just move an array of pixels from a source region to a 
destination. h can also execute a logical (bitwise) operation bet'I\'CCil each corresponding 
pair of pixels in the source and destination regions, then place the result in the destination 
region. This operation can be symbolized as 

D +-Sop D 

where op, frequently called the RasttrOp or write mode, consists in general of the 16 
Boolean operators. Only the most common of these-replace, or , xor, and ancl--rue 
supported by SROP: these are shown for a 1-bit-per-pixel image in Fig. 2.29. 

Write mode affects not only SROP_copyPixel, but also any new primitives written onto 
a canvas. As each pixel (either of a source rectangle of a SROP _copyPixeJ or of a primitive) 
is stored in its memory location, either it is written in destructive replace mode or its value 
is logically combined with the previously stored value of the pixel. (This bitwise 
combination of source and destination values is similar to the way a CPU's hardware 
performs arithmetic or logical operations on the contents of a memory location during a 
read-modify-write memory c~le.) Although replace is by far the most common mode, 
xor is quite useful for generating dynamic objects, such as cursors and rubberband ecboes. 
as we discuss shortly. 

Sou roe 

o- White 

1. Black 

Op • 

replace 

or 

xor 

and 

Fig. 2 .29 Write modes for combining source and destination pixels. 
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Notice that the application 's state is saved and restorod to eliminate side efloets. We set

the screen clip rectangle tomum before copying; alternatively. we could set it to

the clan wnufloddtfirmnfixrmr.

2.3.4 Writs Mods or Ras'toer

SRGPjopyPisel can do more than just mote an amt}r of pixels from a souroe region to a

distination. It can also uremic a logical {bitwisei operation bets-sen each mWing

pair of pixels in the source and diminution regions. then place the result in the destination

region. This operation can be symbolized as

Dir—Sop!)

Where op. froquently filled the Rosierflp or write unlit. cmuisls in general of the to

Rimless operators. Only the out eon-union of truss—replace. or. tor. and nil—are

supported by SEEP; these are shown for a [shit-perspiltei image in Fig. 2.29.

Write mode alfoets not oniy SRij_eop},rPthel. but also any.l new primitives written onto

a canvas. Aseaeh pisei {either of: source rectangle of: SEPjopyPisel orofa primitive:

is stored in its mortuary location. either ii is written in dash-miss: replace and: or its value

is lop-jean}.r combined with the Wifllfiif stored value of the pixel. (This bitwise

combination of source and destination values is similar to the way a CFU‘s hardware

performs arithmetic or logical operations on the contents of a memoryr location during a

read-4nodify—write tricolor}: eye-lo] Allhtmgh rephoe is by far the most oommon mode.

ttorisquite useful forgum'uingdynmnieohkets. such asmrsorsand rubberbarsioehoos.

as one dismiss sl'lortly.

.-..... [I .....
1-Eiflfl-

Souros Destination fir

flwg'a...
Ea...

Fig. 2.29 Writs modes for combining source and destination pixels.
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We set the write-mode attribute with: 

void SRGP. setWriteMode ( 
WRJTE.REPLACE I WRJTE..XOR I WRJTE.OR I WRJTE.AND writeMode); 

Since all primitives are generated according to the current write mode, the SRGP 
programmer must be sure to set this mode explicitly and not to rely on the default setting of 
WRITE..REPLACE. 

To see how RasterOp works, we look at how the package actually stores and 
manipulates pixels; this is the only place where hardware and implementation considera
tions intrude on the abstract view of raster graphics that we have maintained so far. 

RasterOps are performed on the pixel values, which are indices into the color table, not 
on the hardware color specifications stored as entries in the color table. Thus , for a bilevel, 
1-bit-per-pixel system, the Raste!Op is done on two indices of I bit each. For an 
8-bit-per-pixel color system, the Raste!Op is done as a bitwise logical operation on two 
8-bit indices. 

Although the interpretation of the (our basic operations on 1-bit-per-pixel monochrome 
images shown in Fig. 2.29 is natural enough, the resultS of all but replace mode are not 
nearly so natural for 11-bit-per-pixel images (11 > 1), since a bitwise logical operation on the 
source and destination indices yields a third index whose color value may be wholly 
unrelated to the source and destination colors. 

The replace mode involves writing over what is already on the screen (or canvas). This 
destructive write operation is the nonnal mode for drawing primitives, and is customarily 
used to move and pop windows. It can also be used to •·erdSC" old primitives by drawing 
over them in the application screen background pattern. 

The or mode on bilevel displays makes a nondestructive addition to what is already on 
the canvas. With color 0 as white background and color I as black foreground , or ing a gray 
fill pattern onto a white background changes the underlying bit~ to show the gray pattern. 
But or ing the gray pattern over a black area has no effect on the screen. Thus, oring a 
light-gray paint swath over a polygon filled with a brick pattern merely fills in the bricks 
with the brush pattern; it does not erase the black edges of the bricks, as replace mode 
would. Painting is often done in or mode for this reason (see Exercise 2. 7). 

The xor mode on bilevel displays can be used to invert a destination region. For 
example, to highlight a button selected by the user, we set xor mode and generate a tilled 
rectangle primitive with color I , thereby toggling all pixels of the botton: 0 xor I = I , 1 
xor I = 0. To restore the button 's original status, we simply stay in xor mode and draw the 
rectangle a second time, thereby toggling the bits back to their original state. This technique 
is also used internally by SRGP to provide the locator's rubber-tine and rubber-rectangle 
echo modes (see Exercise 2.4). 

On many bilevel graphics displays, the xor technique is used by the underlying 
hardware (or in some cases software) to display the locator's cursor image in a 
nondestructive manner. There are some disadvantages to this simple technique; when the 
cursor is on top of a background with a fine pattern that is almost 50 percent black and 50 
percent white, it is possible for the cursor to be only barely noticeable. Therefore, many 
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bilevel displays and most color displays use replace mode for the cursor echo; this 
technique complicates the echo hardware or soflware (see Exercise 2.5). 

The and mode can be used. for example, to reset pixels selectively in the destination 
region to color 0. 

2 .4 LIMITATIONS OF SRGP 

Although SRGP is a powerful package supporting a large class of applications, inherent 
limitations make it less than optimal for some applications. Most obviously, SRGP provides 
no support for applications displaying 30 geometry. There are also more subtle limitations 
that affect even many 20 applications: 

• 

• 

The machine-dependent integer coordinate system of SRGP is too inflexible for those 
applications that require the greater precision, range, and convenience of floating
point. 

SRGP stores an image in a canvas in a semantics-free ma.nner as a matrix of 
unconnected pixel values rather than as a collection of graphics objects (primitives), 
and thus does noc support object-level operations, such as " delete," "move," 
•·change color." Because SRGP keeps no record of the actions that produced the 
current screen image, it also cannot refresh a screen if the image is damaged by other 
soflware. nor can it re-scan-convert the primitives to produce an image for display on a 
device with a different resolution. 

2 .4 .1 Applicat ion Coordinate Systems 

In the previous chapter, we introduced the notion that, for most applications, drawings are 
only a means to an end, and that the primary role of the application database is to support 
such processes as analysis, simulation, verification, and manufacturing. The database must 
therefore store geometric information using the range and precision required by these 
processes, independent of the coordinate system and resolution of the display device. Por 
example, a VLSI CAD/CAM program may need to represent circuits that are I to 2 
centimeters (em) long at a precision of half a micron, whereas an astronomy program may 
need a range of I to 109 light-years with a precision of a million miles. Por max.imum 
Oexibility and range, many applications use floating-point world coordinates for storing 
geometry in their database. 

Such an application could do the mapping from world to device coordinates itself; 
however, considering the complexity of this mapping (which we shall discuss in Chapter 6), 
it is convenient to use a graphics package that accepts primitives specified in world 
coordinates and maps them tO the display device in a machine-independent matmer. The 
recent availability of inexpensive lloating-point chips offering roughly the performance of 
integer arithmetic has significantly reduced the time penahy associated with the use of 
floating-point-the flexibility makes it well worth its cost to the applications that need it. 

For 20 graphics, the most common software that provides floating-point coordinates is 
Adobe's PostScript (see Chapter 19), used both as the standard page-description language 
for driving hardcopy printers and (in an extension called Display PostScript) as the graphics 
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package for windowing systems on some workstations. For 3D floating-point graphics, 
PHlGS and PHJGS+ are now widely available, and various 3D extensions to PostScript are 
appearing. 

2.4 .2 Storage of Primitives for Respecification 

Consider what happens when an application using SRGP needs to redn1w a picture at a 
different size, or at the same size on a display device with a different resolution (such as a 
higher-resolution printer). Because SRGP has no record of the primitives it has drawn, the 
application must respecify the entire set of primitives to SRGP after scaling the coordinates. 

If SRGP were enhanced to retain a record of all specified primitives, the application 
could let S.RGP regenerate them from its own storage. SRGP could then support anotber 
commonly needed operation, refresning the screen. On some grapnics systems, the 
application 's screen image can be damaged by messages from other users or applications; 
unless the screen canvas can be refreshed from a redundantly stored copy in an offscreen 
canvas, respecification of the primitives is the only way to repair the damage. 

The most important advantage of having the package store primitives is the support of 
editing operations that are the essence of drawing or construction applications, a class of 
programs that is quite different from the painting applications illustrated in this chapter's 
examples. A painting program allows the user to paint arbitrary swaths using a brush of 
varying size, shape, color, and pauern. More complete painting programs also allow 
placement of sucn predefined shapes as rectangles, polygons, and circles. Any part of the 
canvas can be subsequently edited at a pixel level; portions of an object can be covered with 
paint, or arbitrdl)' rectangular regions of the canvas can be copied or moved elsewhere. The 
user cannot point to a previously drawn shape or to a painted swath and then delete or move 
it as a coherent, indivisible object. This limitation ex ists because a painting program allows 
an object, once placed on the canvas, to be mutilated and fragmented, losing its identity as 
a coherent object. For example, what would it mean for the user to point to a fragment of an 
object that had been split into pieces that were independently positioned in various areas of 
the screen? Would the user be referring to the tragment itself, or to tbe entire original 
object? In essence, the ability to affect individual pixels makes pick correlation-and 
therefore object picking and editing- impossible. 

A drawing program, conversely, allows the user to pick and edit any object at any time. 
These applications, also called layour editors or graphical illustrarors. allow a user to 
position standard shapes (also called symbols, templates, or objects) and then to edit the 
layout by deleting, moving, rotating, and sc-Jiing these shapes. Similar interactive programs 
that allow users to assemble complex 3D objectS from simpler ones are called geometric 
editors or coiiStrliCtion programs. 

Scaling, screen refreshing, and object-level editing all require the storage and 
respecification of primitives by the application or by the graphics package. If the application 
stores the primitives, it can perform the respecification; however, these operations are more 
complex tban they may seem at first glance. For example, a primitive can be deleted 
trivially by erasing the screen and respecifying all the primitives (except, of course, the 
deleted one); however, a more efficient merbod is to erase the primitive's image by drawing 
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t-

(a) (b) 

~c) (d) 

(e) 

Fig. 2.30 The effects of pixel replication. (a) Original image at screen resolution. (b) 
Zoomed (2x) image at screen resolution. (c) Original image printed on device with 
twice the screen's resolution. (d) Zoomed image on same device as (c), using pixel 
replication to maintain image size. (e) Original image printed on same device as (c), 
using re-scan-conversion to maintain image size. 
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Fig. 2.3!} The effects of pixel replication. [a] Original image at screen resolution. {b}
Zoomed [2x1 image at screen resolution. is} Original image printed on device with
twice the screen's resolution. {di Zoomed image on same device as is]. using pixel
repiieation to maintain image size. is} Original image printed on same device as to].
using reusean-oonuersion to maintain image size.
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the application screen ba.ckground on top of it and then to respecify any primitives that may 
have been damaged. Because these operations are both complex and frequently needed, 
there is good reason for moving their functionality into the graphics package itself. 

An object-level, geometric graphics package, such as GKS or PHlGS, let~ the 
application define objects using a 20 or 30 floating-point coordinate system. The package 
stores objects internally, allows the application to edit the stored objects, and updates the 
screen whenever necessary due to an editing oper-.1tion. The package also performs pick 
correlation, producing an object ID when given a screen coordinate. Because these 
packages manipulate objects , they cannot permit pixel-level manipulations (copyPixel and 
write mode)-this is the price of preserving object coherence. Thus, neither a raster 
graphics package without primitive storage nor a geometric graphics package with primitive 
storage satisfies all needs. Chapter 7 discusses the pros and cons of the retention of 
primitives in the graphics package. 

Image scaling via pixel replication. If neither the application nor the package has a 
record of the primitives (as is typical of most painting programs), scaling cannot be done by 
respecifying the primitives with scaled endpoint coordinates. All that can be done is to scale 
the contents of the canvas using read-pixel and write-pixel operations. The simple, fast way 
to scale up a bitmap/pix map image (to make it larger) is via pixel replication, as shown in 
Fig. 2.30(a,b); here , each pixel is replaced by anN by N block of pixels. thus enlarging the 
image by a scale factor of N. 

With pixel replication, the image becomes larger, but it also becomes coarser, since no 
new information is provided beyond that contained in the original pixel-level representation 
(compare Fig. 2.30a to Fig. 2.30b). Moreover, pixel replication can increase an image's 
size by only an integer factor. We must use a second technique-area sampling and filtering 
(discussed in Chapters 3, 14, 17, and 19)-to scale up or down properly. Filtering works 
best on pixmaps with depth > I . 

The problem of image scaling arises frequently. particularly when an image created by 
a painting program is to be printed. Let us consider sending a canvas to a printer that 
provides twice the resolution of the screen. Each pixel is now one-half itS original size; thus , 
we can show the original image with the same number of pixels at half the size (Fig. 2.30c), 
or we can usc pixel replication to produce an image of the original size without taking 
advantage of !he liner resolution of the printer (Fig. 2.30d). Either way , something is lost, 
size or quality, and the only scaling method that does not sacrifice quality is respecification 
(Fig. 2.30e). 

2.5 SUMMARY 

In this chapter, we have discussed a simple but powerful raster graphics package, SRGP. It 
lets the application program draw 20 primitives subject to various attributes that affect the 
appearance of those primitives. Drawing can be performed directly onto the screen canvas 
or onto an offscreen canvas of any desired size. Dr-awing can be restricted to a rectangular 
region of a canvas via the clip rectangle attribute. Besides the standard 20 shapes, SRGP 
also supports intra- and intercanvas copying of rectangular regions. Copying and drawing 
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can be affected by the write-mode attribute, allowing a destination piltel's current value to 
play a role in the determination of its new value. 

SRGP also introduces the notion of logical input devices. which are high-level 
abstractions of physical input devices. The SRGP keyboard device abstracts the physical 
keyboard , and the locator device abstracts such devices as the mouse, the data tablet , and 
the joystick. Logical devices may operate either in sampled (polled) mode or in event mode. 
ln e\'ent mode, a user action triggers the placing of an event repon on the event queue, 
which the application may examine at its own convenience. ln sample mode, the 
application continuous.ly examines the device's measure for imponant changes. 

Because SRGP sean converts primitives to their component piJtelS and does not store 
their original geometry, the only editing SRGP permits is the alteration of individual pixels, 
by drawing new primitives or by using the copyPiltel operation on blocks of pixels. Object 
manipulations such as moving, deleting, or resizing must be done by the application 
program itself, which must respecify the updated image to SRGP. 

Other systems offer a different set of features for graphics. For example, the PostScript 
language offers Hoating-point primitives and attributes, including far more general curved 
shapes and clipping facilities. PHIGS is a subroutine package that offers manipulation of 
hierarchically modeled objects, defined in a 30 Hoating-point world-coordinate system. 
These objects are stored in an editable database; the package automatically regenerates the 
image from this stored representation afier any editing operation. 

SRGP is a subroutine package, and many developers are finding that an interpreted 
language such as Adobe's PostScript provides maximal power and flexibility . Also, 
opinions differ on which should become standard-subroutine packages (integer or 
floating-point, with or without retention of primitives) or display languages such as 
PostScript that do not retain primitives. Each has its appropriate application domain. and 
we expect each to persist for some time. 

In the next chapter, we see how SRGP does its drawing via sean conversion and 
clipping. In the following chapters, after an overview of hardware, we discuss the 
mathematics of transformations and 30 viewing in preparation for learning about PHlGS. 

EXERCISES 

2.1 SRGP runs in window environments. but does not allow the application to take advantage of 
multiple windows: 1be screen canvas is mapped to a single window on ihe screen, and no other 
canvases are visible. What changes would you make to ihe SRGP design and application-programmer 
interface to allow an application to take advantage of a window system? 

2.2 An SRGP application can be fully machine-independent only if it uses solely the t..o colors 0 and 
I. De\'clop a Stnltegy for enhancing SRGP so that SRGP simulates color when necessary. allowing an 
application to be designed to take advantage of color but still to operate in a useful way on a bile"'!l 
display. Discuss the problems and conOicts that any such strategy creates. 

2.3 Implement an animation sequence in which several trivial objectS move and resize. First, 
generate each frame by emsing the screen and then specifying the objects in their new positions. 
Then, try doubl~·buff~rillg; use an offscrcen canvas as a buffer into which each frame is drawn before 
being copied to ihe screen canvas. Compare ihe t~ methods· resultS. Also. consider ihe use of 
SRGP _copyPi.el. Under "'hat restricted circumstances is it useful for animation? 
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2.4 Implement a rubber-ed!o interaction, without using the built-in locator echo. Watch for artifacts. 
especially upon initiation and termination or the intCTaetion fcedbacl<. 

2.5 Implement nondestruCtive cursor llaekiog without using SRGP's built-in cursor echo. Use a 
bitmap or pixmap pattern to store a cursor's image, with Os in the pattern representing transparency. 
Implement an xor cursor on a bilevel display, and a replace-mode cursor on a bilevel or color display. 
To test the tracking, )'OU should perform a sampling loop with the SRGP locator device and move the 
cursor over a nonempry screen background. 

2.6 Consider Implementing the following feature in a painting application: The user can paint an xor 
swath that inverts the colors under tbe brush. Lt might seem that this is easily implemented by selling 
the write mode and then e.<ecuting the code of Fig. 2. 18. What complications arise? Propose 
solutions. 

2.7 Some painting applications provide a "spray-painting" mode, in which passing the brush over 
an area affecu an apparently random minority of the pillet in the area. Each time the brush passes 
0\-er an area, different pixels are touched, so the more an area is touched by the brush. the "denser" 
the paint becomes. Implement a spray-painting intCTaetion for a bilevel display. (Bew.ue: The l1lOISI 

obvious algorithms produce streaks or fail to provide increasing density. You will bave to create a 
library of sparse bitmaps or panems; see the reference manual for information on making CUStom 
panems.) 

2.8 lmplementltllnsparent-background text for bilevel displays, without using SRGP's built-in te.<t 
primitive. Use an otrscreen canvas to store the bitmap shape for each character, but suppon no more 
than six characters-this is not a lesson in font design I (Hint: You may have to use tVoU different 
algorithms to suppon both colors 0 and 1.) 

2.9 A drawing program can update the screen after a deletion operation by filling the deleted object's 
shape with the application screen background pattern. This of course may damage other objects on 
the screen. Why is it not sufficient to repair the damage by simply respccifying aU objects whose 
rectangular e.<tcnlS Intersect the extent of the deleted object? Discuss solutions to the problem of 
optimizing damage repair. 

2.10 Implement a procedure that draws teXt oentercd within an opaque rectangle with a thin border. 
Allow the caller to specify the colors for the tCl<t, bacl<ground. and border. the screen position at 
which the center of the " buuon" sbould be placed; a pair of minimax dimensions for both widt.h and 
height; and the font and the text string itself. tr the wing cannot fit on one line within the button at itS 
maximum length. break the wing at appropriate places (e.g .. spaces) to make multiline text for the 
button. 

2.11 Implement an onscreen valuator logical input device that allows the user to specify a 
temperature by using the mouse to vary the length of a simulated column of mercury. The device's 
attributes should include the range of the measure, the initial measure, the desired granularity of the 
measure (e.g., accuracy to 2 F degrees), and the desired length and position of the thermometer's 
screen image. To test )\)Ur device, use an intentction that simulates an indefinite waitEvent where the 
only active device is the valuator. 

2.12 Imagine customizing an SRGP implementation by adding an onscreen valuator device (like that 
described in Exercise 2.11) to the i.nput model and supporting it for bolh c--ent and sample modes. 
What kinds of problems might arise if the implementation is installed on a \\OOcswion having only 
one physical locator device? Propose solutions. 

2.13 Implement a "rounded-rectangle"primiti,..,...._.. rectangle whose comers are rounded. each 
comer being an ellipse arc of90 reaaogulardegn:es. Allow the application to haveconuol of the radii 
of the ellipse arc. Support bolh outlined and filled versions. 
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PROGRAMMING PROJECTS 

2.14 lmplememche pull-down menu pad:agc whose high· level design is presenced in code flll8JDCntS 
in Sections 2.2.6, 2.3.1. and 2.3.3. Have the package inhialize the menu bar and menu bodies by 
reading scrings from an inpul fl le. Allow the program 10 deactivate a menu 10 make the header 
disappear. and to activate a menu (with itS horizontal position on the menu bar as a parameter) to 
make that menu appear. 

2.15 Enhance )'OUr menu package from Exercise 2.14 by implementing disabling of sclecced menu 
Items. Disabled items in a menu body should appear "grayed out" '; since SRGP does not support the 
drawing of text using a pen style, on a bilcvel display )'011 must paint over solid text using a write mode 
in order to adliC\'C this effect . 

2.16 Enhance )'OUr menu package from Exercise 2.14 by highl~ting the item to which the locator 
currently points while the user is choo5ing a.n item from the menu body. 

2.17 Implement a layout application that allows the user 10 place objeciS in a square subregion of the 
screen. Ellipses , rectangles, and equilateral triangles should be supported. The user will elide on a 
screen bunon to select an object type or to initiate an action (redraw screen, 511\'e scene to tile. restore 
scene from file. or quit). 

2.18 Add object editing to your layout application from Exercise 2.17. The user must be able to 
delete, move, and resize or rescale objects. Usc this simple pick-correlation method: scan the objects 
in the application database and cboose the first object whose rectangular extent encloses the locator 
position. (Show that this naive method has a disturbing side etfecc II is possible for a visible object to 
be unpickable!) Be sure to give the user feedback by highlighting the currencly selected object. 

2.19 Add an extra half dimension to your layout application from Exercise 2.17 by implemenling 
overlap priority. The user must be able 10 push/pop an object (force hs priority to be the vety 

lowesllhighest). Enhance pick correlation to use overlap priority to resohoe conflicts. How does the 
push/pop functionality, along with the use of priority by the pick correlator, allow the user 10 ownide 
the inaccurdcy of naive pick correlation? 

2.20 Optimize the screen-update algorithm of your la)Qut application from Exercise 2.17 using the 
resultS of Exercise 2.9. so that a minimum number of objectS is rcspecified in response to an edit 
operation. 

2.21 Enhance )'OUr la)'Oilt application from Exercise 2.17 so that the keyboard and locator arc 
enabled simultaneously, to provide keyboard abbreviations for common operations. For example, 
pressing the ''d" key could delete the currently selected objecc. 

2.22 Design and implement analytical techniques for pick oom:lation for the three types of objects 
supported by )'OUr layout application from Exercise 2.17. Your new techniques should provide full 
aocuracy; the user should no longer have to use pop/push to pick a visible low-priority object. 
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Basic Raster 
Graphics Algorithms 

for Drawing 
2D Primitives 

A raster graphics package approximates mathematical (" ideal") primitives, described in 
terms of vertices on a Canesian grid , by sets of pixels of the appropriate intensity of gray or 
color. These pixels are stored as a bilrnap or pixmap in CPU memory or in a fr.une buffer. 
In the previous chapter, we studied the features of SRGP. a typical raster gn~phic~ package, 
from an applica1ion programmer's point of view. The purpose of this chapter is to look at 
SRGP from a package imp/eme/1/or' s point of view--that is, in terms of the fundamental 
algorithms for scan converting primitives to pixels, subject to their attributes, and for 
clipping them against an upright clip rectangle. Examples of scan-convened and clipped 
primitives are shown in Fig. 3.1. 

More advanced algorithms that handle features not supponed in SRGP are used in 
more sophisticated and complex packages: such algorithms are treated in Chapter 19. The 
algorithms in this chapter are discussed in tenns of the 20 integer Canesian grid, but most 
of the sean-conversion algorithms can be extended to lloating point, and the clipping 
algorithms can be extended both to floating point and to 3D. The final section introduces 
the concept of antialiusing- that is. minimizing jaggies by making usc of a system's ability 
to vary a pixel's intensity. 

3.1 OVERVIEW 

3.1 . 1 Implications of Display-System Architecture 

The fundamental conceptual model of Section I. 7 presents a graphics package us the 
system that mediates between the application program (and its application data structure/ 
model ) and the display hardware. The package gives the application program a device-
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(a) (b) 

Fig. 3 .1 Clipping S RGP primitives to a rectangular clip region. (a) Primitives and 
clipping rectangle. (b) Clipped results . 

independent interface to the hardware. as shown in Fig. 3.2, where SRGP's procedures are 
partitioned into those forming an output pipeline and those forming an input pipeline. 

Tn the output pipeline, the application program takes descriptions of objects in terms of 
primitives and attributes stored in or derived from an application model or data structure, 
and specifies them to the graphics package, which in tum clips and scan converts them to 
the pixels seen on the screen. The package's pri mitive-generation procedures specify what 
is to be generated, the attribute procedures specify how primitives are to be generated, the 
SRG P _copy Pixel procedure specifies how images are to be modi lied, and the canvas-control 
procedures specify where the images are to be generated. In the input pipeline, a user 
int.eract ion at the display end is converted to measure values returned by the package's 
sampling or event-driven input procedure.~ to the application program; itl)'pically uses those 

Application 
model 

Application 
program 

Output pipeline 

Output primitives 

Output attributes 

Canvas control 

copyPixel 

Input device control 

Input device measures 

Input pipeline 

I 

SRGP 

r--- ---, 
1 Display : 
: Hardware 1 

: (see Fig. 3.3 : 
1 

for details) 1 

Fig . 3 .2 SRGP as intermediary between the application program and the g raphics 
system, providing output and input pipelines. 
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Fig. 3.1 Clipping SEEP primitives to a rectangular clip region. [a] Primitives and
clipping rectangle. lhi Clipped results.

independent interface to the hardware. as shmyn in Fig. 3.2. where SRGP's procedures are
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is to be generated. the attribute procedures specify how primitives are to be generated. the
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Fig. 3.2 SHGP as intermediary between the application program and the graphics
system. providing output and input pipelines.
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values to modify the model or the image on the screen. Procedures relating to input include 
those to initialize and control input devices and those to obtain the latter's measures during 
interaction. We do not cover either SRGP's canvas management or its input handling in this 
book, sinee these topics have little to do with raster graphics and are primarily 
data-structure and low-level systems-software issues, respectively. 

An SRGP implementation must communicate with a potentially wide variety of display 
devices. Some display systems are attached as peripherals with their own internal frame 
buffers and display controllers. These display controllers are processors specialized to 
interpret and execute dmwing commands that genemte pixels into the frame buffer. Other. 
simpler systems are refreshed directly from the memory used by the CPU. Output-only 
subsets of the package may drive raster hardcopy devices. These various types of hardware 
architectures are discussed in more detail in Chapters 4 and 18. In any display-system 
architecture, the CPU must be able to read and write individual pixels in the frame buffer. It 
is also convenient to be able to move rectangular blocks of pixels to and from the frame 
buffer to implement the copyPixel (bitBit) type of operation. This facility is used not for 
generating primitives directly but to make portions of off screen bitmaps or pix maps visible 
and tO save and restore pieces of the screen for window management, menu handling, 
scrolling, and so on. 

Whereas all implementations for systems that refresh from CPU memory are 
essentially identical because all the worlc is done in software, implementations for display 
controller and hardcopy systems vary considembly, depending on what the respective 
hardware devices can do by themselves and what remains for the software to do. Naturally, 
in any architecture, software scan conversion must be used to generate both primitives and 
attributes not directly supponed in hardware. Let"s look briefly at the range of architectures 
and implementations. 

Displays with frame buffers and display controUers. SRGP has the least amount of 
work to do if it drives a display controller that does its own scan conversion and handles all 
of SROP's primitives and attributes directly. In this case, SROP needs only to conven its 
internal representation of primitives, attributes, and write modes to the formats accepted by 
the display peripheral that actually draws the primitives (Fig. 3.3 a). 

The display-controller architecture is most powerful when memory mapping allows the 
CPU to access the frame buffer directly and the display controller to access the CPU"s 
memory. The CPU can then read and write individual pixels and copy Pixel blocks of pixels 
with normal CPU instructions, and the display controller can scan convert into offscreen 
canvases and also use its copy Pixel instruction to move pixels between the two memories or 
within its own frame buffer. Wben the CPU and the display controller eM run 
asynchronously, there must be synchronization to avoid memory conHicts. Often. the 
display controller is controlled by tbe CPU as a coprocessor. If the display peripheral's 
display controller can only scan convert into its own frame buffer and cannot write pixels 
into CPU memory, we need a way to generate primitives in an off screen canvas. The 
package then uses the display controller for scan conversion into the screen canvas but must 
do its own software scan conversion for otfscreen canvases. The package can, of course, 
copyPixel images sc.an converted by the hardw-are from the frame buffer to offscreen 
canvases. 
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Fig. 3.3 SRGP driving two types of display systems. (a) Display peripheral with 
display controller and frame buffer. (b) No display controller. memory-shared frame 
buffer. 

Displays with frame buffers only. For displays without a display controller, SRGP does 
its QWll scan con~oersion into bolh offscreen canvases and the frame buffer. A typical 
organization for such an SRGP implementation that drives a shared-memory frame buffer is 
shown in Fig. 3.3 (b). Note that we show only the parts of memory that constitute the frame 
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3 .1 Overview 71 

buffer and store Lhe canvases managed by SROP; the rest of Lhe memory is occupied by all 
the usual software and data. including, of course, SRGP itself. 

Hardcopy devices. As explained in Chapter 4, hardcopy devices range in their 
capabilities along the same specuum as display systems. The simplest devices accept only 
one scan line at a time and rely on the software to provide that scan line exactly "''hen it is to 
be imaged on film or on paper. For such simple hardware. SROP must generate a oomplete 
bitmap or pixmap and scan it out one line at a time to the output device. Slightly smarter 
devices can accept an entire frame (page) at a time. Yet more powerful equipment has 
built-in scan-conversion hardware, often called raster image processors (RIPs). At the high 
end of the scale, PostScript printers have internal '"engines" that rend PostScript programs 
describing pages in a device-independent fashion; they interpret such programs to produce 
the primitives and attributes Lhat are then scan onnverted. The fundamental clipping and 
scan<onversion algorithms are essentially independent of the raster device's output 
technology; therefore , we need not address hardcopy devices further in this chapter. 

3.1 .2 The Output Pipeline in Software 

Here we examine the output pipeline driving simple frame-buffer displays only in order to 
address Lhe problems of software clipping and scan oonversion. The various algorithms 
introduced are discussed at a general, machine-independent level. so they apply to both 
software and hardware (or microcode) implementations. 

As each output primitive is encountered by SROP, the package scan converts the 
primitive: Pixels are written in the current canvas according to their applicable attributes 
and current write mode. The primitive is also clipped to the clip rectangle; that is. pixels 
belonging to the primitive Lhat are outside the clip region are n01 displayed. There are 
several ways of doing clipping. The obvious technique is to clip a primitive prior to scan 
oonversion by oomputing its analytical intersections wilh the clip-rectangle boundaries; 
these intersection points are then used to define new vertices for the clipped version of the 
primitive. The advantage of clipping before scan converting is, of course, that the scan 
converter must deal with only the clipped version of Lhe primitive, not with the original 
(possibly much larger) one. This technique is used most often for clipping lines, rectangles, 
and polygons, for which clipping algorithms are fairly simple and efficient. 

The simplest, brute-force clipping technique, called scisscring, is to scan onnvert the 
entire primitive but to write only Lhe visible pixels in the clip-rectangle region of the canvas. 
In principle, Lhis is done by checking each pixel 's coordinates against the (x, y) bounds of 
the rectangle before writing that pixel. In practice, Lhere are shortcuts that obviate having to 
check adjacent pixels on a scan Line, as we shall see later. This type of clipping is thus 
accomplished on the lly: if the bounds check can be done quickly (e.g., by a tight inner loop 
running completely in microcode or in an inst.ruction cache), Lhis approach may actually be 
faster Lhan first clipping the primitive and then scan converting Lhe resulting. clipped 
portions. It also generalizes to arbitrary clip regions. 

A Lhird technique is to generate the entire collection of primitives into a temporary 
canvas and then to copy Pixel only Lhe contents of the clip rectangle to the destination can
vas, J;his !ij1proach is wasteful of both space-and tirne,-bpt is easy to implement and is olten 
use<! for text.. Data suuctures for minimizing this overhead are discussed in Chapter 19. 
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72 Basic Raster Graphics Algorithms for Drawing 20 Primitives 

Raster displays invoke clipping and scan~nversion algorithms each time an image is 
created or modified. Hence. these algorithms not only must create visually satisfactory 
images. but also must execute as rapidly as possible. As discussed in detail in later sections, 
scan-conversion algorithms usc incrememal merhods to minimize the number of calculu· 
tions (especially mulliplies and divides) performed during each iteration; further, these 
calculations employ integer rather than floating-point arithmetic. As shown in Chapter 18, 
speed can be increased even further by using mulliple par.JIIel processors to scan convert 
simullaneously entire output primitives or pieces of them. 

3.2 SCAN CONVERTING LINES 

A scan-conversion algorithm for lines computes the coordinates of the pixels that lie on or 
ncar an ideal. infinitely thin straight line imposed on a 20 raster grid. In principle , we 
would like the sequence of pixels to lie as close to the ideal line as possible and to be as 
straight as possible. Consider a !-pixel-thick approximation to an ideal line; what properties 
should it ha ... e? For lines with slopes between -I and I inclusive, exactly I pixel should be 
illuminated in each column; for lines with slopes outside this range, exactly I pixel should 
be illuminated in each row. All lines ~hould be drawn with constant brightness, independent 
of length and orientation, and as rapidly as possible. There should also be provisions for 
drawing lines that are more than I pixel wide, centered on the ideal line, that are affected by 
line-style and pen-sryle attributes, and that create other effects needed for high-quality 
illustrtUions. For example, the shape of the endpoi nt regions should be under programmer 
control tO allow beveled, rounded, and mitered comers. We would even like to be able to 
minimize the jaggies due to the discrete approximation of the ideal line by using 
antialiasing techniques exploiting the ability to set the intensity of individual pixels on 
n-bits-per-pixel displays. 

For now. we consider only "optimal." !-pixel-thick lines that have e.uctly I bilevel 
pixel in each column (or row for steep lines). Later in the chapter, we consider thick 
primitives and deal with styles. 

1b visualize the geometry, we recall that SRGP represents a pixel as a circular dot 
centered atthut pixel's (.r, y) location on the integer grid. This representation is a convenient 
approximation to the more or less circular cross-section of the C RT's electron beam, butt he 
exact spacing between the beam spots on an actual display can vary greatly among systems. 
In some s~tems. adjacent spots overlap: in 01hers, there may be space between adjacent 
\'ertical pixels; in most systems, the spacing is tighter in the horizontal than in the vertical 
direction. Another variation in coordinate-system representation arises in systems, such as 
the Macintosh. that treat pixels as being centered in the rectangular box between adjacent 
grid lines instead of on the grid lines themselves. In this scheme, rectangles are defined to 
be all pixels interior to the mathematical rectangle defined by two corner points. This 
definition allows zero-width (null) canvases: The rectangle from (x, y) to (x. y) contains no 
pixels, unlike the SRG P canvas, which has a single pixel at that point. For now, we continue 
to represent pixels as disjoint circles centered on a uniform grid, although we shall make 
some minor changes when "~discuss anlialiasing. 

Figure 3.4 shows a highly magnified view of a 1-pixcl-thick line and of the ideal line 
that it approximates. The intensified pixels are shown as filled circles and the nonimensified 
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Raster displays invoke clipping and scan-conversion algorithms each time an image is

created or modified. Hence. these algorithms not only rrnrst create visually satisfactory

images. but also must execute as rapidly as possible. As discossed in detail in later sections.

scan-conversion algorithms use incremental methods to minimize the number of calcula-

tions {especially multiplies and div'ides} performed during each iteration: further. these

calculations employ integer rather than floating-point arithmetic. As shown in Chapter Ill.

speed can be increased even further by using multiple parallel processors to m convert

simultaneously entire output primitives or pieces of them.

3.2 SCAN CDHVEFITIHG LINES

A scan-conversion algorithm for lines computes the coordinates of the pixels that lie on or

near an ideal. infinitely thin straight line imposed on a 2D raster grid. In principle. the

would like the sequence of pixels to lie as close to the ideal line as possible and to be as

straight as possible. Consider a l-pixel-thiclt apprtntirnation to an ideal line: what properties

should it have? For lines with slopesbetueen -i and I inciusive. exactly 1 pixel should be

illuminated in each coll-Him: for lines with slopes outside this range. exactly I pixel should

be ilhtrninated in each row. All lines star-old be drawn with constant brightness. independent

at length arid orientation. and as rapidly as possible. There slaiuld also be provisions for

drawing lines that are more than 1 pixel wide. centered on the ideal line. that are affected by

line-style and pen-style attributes. and that create other ell'ects needed for high-quality

illustrations. For example. the shape of the endpoint regions should be under programmer
control to allmv beveled. rounded. and mitered corners. We would even like to be able to

minimise the jaggies due to the discrete appronimation of the ideal line by using

antialiain'ng tedmicples exploiting the ability to set the intensity of individual pixds on

shits-per-pixel displays.

For now. we consider only “optimal." l-pixet-thick litres that have exactly I bilevel

pixel in each column tor row for steep lines}. Later in the chapter. we consider thick

primitives and deal with styla.

To visualise the geometry. we recall that SRGP represents a pixel as a circular dot

centered at that pixei's it. y] location on the integer grid. This representation is a convenient

approdtimation to the more or less circular cross-section of the CRT's electron beam. but the

exact spoolttg between the beam spots on an actual display can vary greatly among systems.

Insomeiystems. adjaceruspitsoverlap; inothers.theremay bespaoe between adjacent

vertical piaels: in nasal systems. the spacing is tighter in the hcaizotttal than in the vertical

direction. Another variation in coordinateearstem representation arises in systems. such as

the Macintosh. that treat pixels as being centered in the rectangular box between adjacent

grid lines instead ofon the grid lines themselvm. [n this scheme. rectangles are defined to

be all pixels interior to the mathematical rectangle defined by two corner points. This

definition allows zero-width tnulll canvases: The rectangle from Lt. y} to ix. y} contains no

pixels. unlike the SEEP canvas. which has a single pixel at that point. For now. we continue

to represent pixels as disjoint circles centered on a uniform grid. although we shall make

some minor chanm when we discuss antialiasing.

Figure 1* shouts a highly magnified view ol'a i-pixel-thiclt line and of the ideal line
that it apprrrtimates. The intensified pixels are shown as tilled circim and the nonintensified
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3 .2 Scan Converting Unes 73 

Fig. 3 .4 A scan-converted line showing intensified pixels as black circles. 

pixels are shown as unfilled circles. On an actual screen, the diameter of the roughly 
circular pixel is larger than the interpixel spacing, so our symbolic representation 
exaggerates the discreteness of the pixels. 

Since SRGP primitives are defined on an integer grid, the endpoints of a line have 
integer coordinates. In fact, if we first clip the line to the clip rectangle, a line intersecting a 
clip edge may actually have an endpoint with a noninteger coordinate value. The same is 
true when we use a floating-point raster graphics package. (We discuss these noninteger 
intersections in Section 3.2.3.) Assume that our line has slope lml :S I; lines at other slopes 
can be handled by suitable changes in the development that follows. Also, the most 
common lines-those that are horizontal , are vertical, or have a slope of :t l~n be 
handled as trivial special cases because these lines pass through only pixel centers (see 
Exercise 3.1). 

3.2.1 The Basic Incremental Algorithm 

The simplest strategy for scan conversion of lines is to compute the slope mas /::;.y/tu, to 
increment x by I starting with the leftmost point, to ca.lculate Y; = "IX;+ B for each x;, and 
to intensify the pixel at (X;, Round(y1)), where Round(y;) = Floor(0.5 + yi). This 
computation selects the closest pixel- that is , the pixel whose distance to the true line is 
smallest.1 This brute-force strategy is inefficient, ho"e'-er, because each iteration requires a 
floating-point (or binary fraction) multiply , addition, and invocation of Floor. We can 
eliminate the multiplication by noting that 

Yt+ 1 = mri+ 1 + 8 = m(x1 + tu) + 8 = y1 + mtu, 

and , if tu = I , then y1• 1 = y1 + m. 
Thus, a unit change in x changes y by m, which is the slope of the line. For all points 

(.x;, yi) on the line , we know that, if x1• 1 = X; + I, then y1., = y1 + m; that is , the values of x 
and y are defined in terms of their previous values (see Fig. 3.5). This is what defines an 

1ln Chapter 19. we discuss various measures of closeness for lines and general curves (also called 
error measures). 
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Fig. 3.4 A scan-converted line showing intensified pixels as black circles.

pixels are shown as unfilled circles. On an actual screen. the diameter of the roughly

circular pine] is larger than the interpisel spacing. so our symbolic representation

exaggerates the discretencss ot' the pixels.

Since SRGP primitives are defined on an integer grid. the endpoints of a line have

integer coordinates. in fact. if we first clip the line to the clip rectangle. a line intersecting a

clip edge may actually have an endpoint with a noninteger coordinate value. The same is

true when we use a floating-point raster graphics package. {We discuss these noninteger

intersections in Section 3.2. 3.] Assume that our line has slope im| s 1; lines at other slopes

can be handled by suitable changes in the development that follows. Also. the most

common lines—those that are horizontal. arc vertical. or have a slope of il—can be

handled as trivial special cases because these lines pass through only pixel centers {see

Excrcise 3.”.

3.2.1 The Basie Incremental Algorithm

The simplest strategy for scan conversion of lines is to compute the slope in as dryibx. to
increment x by ] starting with the leftmost point. to calculate y. = ms.- + H for each n. and

to intensify the pixel at (xi. Roundiyill. where RoundUil' I Floor-(flj + J’.-l- This

computation selects the closest pixel—that is. the pixel whose distance to the true line is

smallest.I This brute-force strategy is inefficient. however. because each iteration requires a

floating-point {or binary fraction) multiply. addition. and invocation of Floor. We can

eliminate the multiplication by noting that

Fifi: i+l+H=m(xI-+fix}+3=_vi+mfix.

and. ifi'lx = I. thenyI-H = y.- + m.

Thus. a unit change in .r changes y by m. which is the slope of the line. For all points

t_r.-.y.] on the line. we know that. ifs... = .r. + i. then y... = y.- + m; that is. the values of);

and y are defined in terms of their previous values [see Fig. 3.5). This is what defines an

IIn Chapter 19. we discuss various measures of closeness for lines and general curves [aim called
error measures].
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Fig. 3 .5 Incremental calculation of (K1, y1). 

incremental algorithm: At each step, we make incremental calculations based on the 
preceding step. 

We initialize the incremental calculation with (Xo, y~. the integer ooordinates of an 
endpoint. Note that this incremental technique avoids the need to deal with they intercept, 
8, explicitly. If lml > I, a step in x creates a step in y that is greater than I. Thus, we must 
reverse the roles of x andy by assigning a unit step toy and incrementing x by d.t = l:l.ylm = 
1/m. Line, the procedure in Fig. 3.6, implements this technique. The start point must be 
the left endpoint. Also, it is limited to the case -I s m s I, but other slopes may be 
accommodated by symmetry. The checking for the special cases of horizontal , vertical, or 
diagonal lines is omined. 

WritePixel, used by Line, is a low-level procedure provided by the device-level 
software; it places a value into a canvas for a pixel whose ooordinates are given as the first 
two arguments .1 We assume here that we scan convert only in replace mode; for SRGP's 
other write modes, we must use a low-level ReadPixel procedure to read the pixel at the 
destination location, logically combine that pixel with the source pixel, and then write the 
result into the destination pixel with WritePixel. 

This algorithm is often referred to as a digital differential analyzer ( DDA) algorithm. 
The DDA is a mechanical device that solves differential equations by numerical methods: It 
traces out successive (x, y) values by simultaneously incrementing x andy by small steps 
proportional to the first derivative of x andy. In our case, the x increment is I, and the y 
increment is dyldx = m. Since real variables have limited precision, summing an inexact m 
repetitively introduces cumulative error buildup and eventually a drift away from a true 
Round(y;); for most (short) lines, this will not present a problem. 

3.2.2 Midpoint Une Algorithm 

The drawbacks of procedure Line are that rounding y to an integer takes time, and that the 
variables y and m must be real or fractional binary because the slope is a fraction. 
Bresenham developed a classic algorithm [BRES65]that is attractive because it uses only 

'If such a low-level procedure is not available, the SRGP _pointCoord procedure may be used, as 
described in the SRGP reference manual. 
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Fig. 3.5 Incremental calculation of be. ml.

incremental algorithm: At each step. vie malte incremental calculations based on the

preceding step.

We initialize the inctemental calculation with us. ya]. the integer coordinates of an

endpoint. Note that this incremental technique avoids the need to deal with the y intercept,

E. explicitly. il'iml 1* l. a step in .r creates a step in y that is greater than I. Thus. we must
rmersedtemlesofxandyhyassigningaonitsteptoyand incrementingxby tit = fiylm =

llm. Line. the procedure in Fig. 3.6. implements this technique. The start point must be

the left endpoint. Also. it is limited to the case -1 E'- m 5 I. but other slopes may be

accommodated by symmetry. The checking for the special cases of horizontal. vertical. or

diagonal lines is omitted.

WritePisel. used by Line. is a low-level procedure provided by the device-level

software; it places a value into a canvas for a pine] whose coordinates are given as the first

two arguments.2 We assume here that we scan convert only in replace mode; for SRGP's

other write modes. we must use a low-level ReadPiitel procedure to read the pixel at the

destination location. logically combine that pixel with the source pixel, and then write the

result into the destination pixel with 1Fo‘l’ritcPiitel.

This algorithm is often refen'ed to as a digital timer-eerie! analyzer {Dist} algorithm.
The DEA is a mechanical device that aches dilferential equations by numerical methods: It

traces out successive {.r. y] values by simultaneously incrementing .r and y by small steps

proportional to the first derivative of; and y. In our case. the; increment is l. and they
increment is dyldr = in. Since real variables have limited precision. summing an inexact in

repetitively introduces cumulative error buildup and eventually a drift away from a true

Roundtyi}; for most {slant}I lines. this will not present a problem.

3.2.2 Midpoint Line Algorithm

The drawbacks of procedure Line are that rounding y to an integer takes time. and that the

variables y and or must be real or fractional binary because the slope is a fraction.

Eresenham developed a classic algorithm [BRESISSJ that is attractive because it uses only

2H such a low—Mel procedure is not available. the SlitfiPJointCoord pt'DCDdI-tfl: my be Iliad. 15
described in the SRGP refereme manual.
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3.2 

void Line ( 

{ 

lnt xO, lnt yO, 
int x l , lnt yl , 
lnt value) 

int x; 

double dy = yl - yO: 
double tb: = xi - xO; 
double m = dy / tb:: 
double y =yO; 
for (x = xO;x <= xl ;x++) { 

} 

WritePixel (x , Round (y) , value): 
y+= m; 

} I• Line •I 

Scan Converting Unes 

I• Assumes - I :S m :S I, xO <xi •I 
I• Left endpoint •I 
I• Right endpoint •I 
I• Value to place in line's pixels •I 

I• x runs from xO to xl in unit increments. •I 

I• Set pixel to value •I 
I• Step y by slope m •I 

Fig. 3.6 The incremental line scan-conversion algorithm. 

76 

integer arithmetic, thus avoiding the Round function, and allows the calculation for 
(x1.., y1.,) to be performed incrementally- that is, by using the calculation already done at 
(x,, y,). A floating-point version of this algorithm can be applied to lines with arbitrary 
real-valued endpoint coordinates. Furthermore, Bresenham's incremental technique may 
be applied to the integer computation of circles as well, a.lthough it does not generalize 
easily to arbitrary conics. We therefore use a slightly different formulation , the midpoim 
technique, first published by Pitteway [PITT67] and adapted by Van Aken [VANA84] and 
other researchers. For lines and integer circles , the midpoint formulation, as Van Aken 
shows [VANA85), reduces to the Bresenham formulation and therefore generates the same 
pixels. Bresenham showed that his line and integer circle algorithms provide the best-fit 
approximations to true lines and circles by minimizing the error (distance) to the true 
primitive fBRES77]. Kappel discusses the effects of various error criteria in [KAPP85] . 

We assume that the line's slope is between 0 and I . Other slopes can be handled by 
suitable reflections about the principal axes. We call the lower-left endpoint C..to. y0) and the 
upper-right endpoint (x1, y1). 

Consider the line in Fig. 3.7, where the previously selected pixel appears as a black 
circle and the two pixels from which to choose at the next stage are shown as unfilled 
circles . Assume that we have just selected the pixel P at (Xp, yp) and now must choose 
between the pixel one increment to the right (called the east pixel , E) or the pixel one 
increment to the right and on.e increment up (called the nonheast pixel , NE). Let Q be the 
intersection point of the line being scan-convened with the grid line x = Xp + I. In 
Bresenham's formulation, the difference between the ven.ical distances from E and NE to Q 
is computed, and the sign of the difference is used to select the pixel whose distance from Q 
is smaller as the best approximation to the line. In the midpoint formulation, we observe on 
which side of the line the midpoint M lies . It is e~-y to see that, if the midpoint lies above 
the line, pixel E is closer to the line; if the midpoint lies below the line, pixel NE is closer to 
the line . The line may pass between E and NE, or both pixels may lie on one side, but in any 
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Previous Choices for Choices for 
pixel current pixel next pixel 

Fig. 3. 7 The pixel grid for the midpoint line algorithm, showing the midpoint M. and the 
E and NE pixels to choose between. 

case, the midpoint test chooses the closest pixel. Also, the error-lhat is, the vertical 
distance between the chosen pixel and the actual line-is always :s In. 

The algorithm chooses NE as the next pixel for the line shown in Fig. 3. 7. Now all we 
need is a way to calculate on which side of the line the midpoint lies. Let's represent the line 
by an implicit function) with coefficients a, b. and c: F(x, y) = ax + by + c = 0. (The b 
coefficient of y is unrelated to they intercept Bin the slope-intercept form.) If dy = y1 - y0 , 

and dx = x1 - x,, the slope-intercept form can be written as 

therefore, 

Y =~X+ B . 
dx ' 

F(x, y) = dy · x - dx · y + B · dx = 0. 

Here a = dy, b = -dx, and c = B · dx in the implicit form.• 
rt can easily be verified that F(x, y) is zero on the line, positive for points below the 

line, and negative for points above the line. To apply the midpoint criterion, we need only to 
compute F(M) = F(xp + I, yp + t> and to test its sign. Because our decision is based on 
the value of the function at (xp + I, YP + 1), we define a decision variable d = F (Xp + I, 
YP +i). By definition, d = a(xp + I)+ b(yp +t) + c. l f d > 0, we choose pixel NE; if d < 0, 
we choose E; and if d = 0, we can choose either, so we pick E. 

Next, we ask what happens to the location of M and therefore to the value of d for the 
next grid line; both depend, of course, on whether we chose E orNE. lf E is chosen, M is 

1This functional form extends nicely to lhe implicit formulation of both circles and ellipses. 

'It is important for the proper functioning of lhe midpoint algoritnm to choose a to be positive; we 
meet this criterion if dy is positive, since y1 > y0• 
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octet current pixel nest plant

Fin. 3.? The pittoi grid for the midpoint line algorithm, showing the midpoint M. and the
E and NE pixels to choose between.

case, the midpoint test chooses the closest pixel. Also, the error—that is, the vertical

distance between the drosen pixel and the actual line—is always 5 ”2.

The algorithm chooses NE as the next pixel for the line shown in Fig. 3.1va all we

need is a way to calculate on which side of the line the midpoint lies. Let's represent the line

by an implicit ftn'lction3 with coefiicients a, b. and c: Fix, y} = as + by + c = l}. (The b
coefficient ofy is unrelated to the y interoept B in the slope-intercept form.) If d3; = y, — y”,

and ti: = x1- x... the slope-intercept form can be written as

=fl -
)1 dxx+fl,

therefore.

th.y}=dy-x-dr-y+B-dx=fl.

Here a = dy, it = "tilt, and c = B - tit in the implicit form.‘

[t can easilg,r be verified that F[.r, y] is zero on the line, positive for points below the

line. and negative for points show the line. To apply.I the midpoint criterion, we need onl},Ir to

compute HM} = Flip + l, 31,. + 11-) and to test its sign. Because our decision is based on
the value ofthe function at [IP + 1, )5. + in}, we define a decision variabied = F {x}. + I,
fififi. Bytlelinition,d=tr{xp + l} + biyp+fl + c. lfdl‘efl, wechoose pixclNE;ifd<fl,
wechoose E; and ifd= fl, necanchooseeither. sonepicltE.

Next, we aslt what happens to the location ofll-f and therefore to the value of n' for the

nest grid line; both depend. of course, on whether we chose E or NE. “’5 is chosen. M is

a"l'l'tit: Functional form extends nicely to the implicit formulation of both circles and ellipsu.

‘It is important For the pimple-r Emotioning of the midpoint algorithm to choose a to be positive; we
meet this criterion ii'dy is positive, since 3;. :- m.
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incremented by one step in the x direction. Then. 

d,.,... = F(xp + 2, YP + t) = a(xp + 2) + b(yp + tJ + c, 
but 

tlold = a(xp + I) + b(yp + t> + c. 

Subtracting dold from d..,. to get the incremental difference, we write d,_ = dold + a. 
We call the increment to add after E is chosen .6.8 ; .6.8 = a = dy. In other words, we can 

derive the value of the decision variable at the next step incrementally from the value at the 
current step without having to compute F (M) directly, by merely adding .6.8 . 

If NE is chosen , M is incremented by one step each in both the x andy directions. 
Then, 

d.,., = F(xp + 2, YP + f) = a(xp + 2) + b(yp + !> + c . 

Subtracting dold from d,.... to get the incremental difference, we write 

d.,.. = dold + a + b. 

We call the increment to add to d after NE is chosen .6."'8 ; .6."'8 = a + b = dy - dx. 
Let's summarize the incremental midpoint technique. At each step, the algorithm 

chooses between 2 pixels based on the sign of the decision variable calculated in the 
previous iteration; then, it updates the decision variable by adding either .6.8 or .6-Ns to the 
old value, depending on the choice of pixel. 

Since the first pixel is simply the first endpoint (x0 , y0), we can directly calculate the 
initial value of d for choosing between E and NE. The first midpoint is at (Xo + I , y

0 
+ tJ, 

and 

F(Xo + I , Yo + !> = a(x0 + I ) + b(y0 + t> + c 

= ax0 + by0 + c + a + b/2 

= F(x0 , y0) + a + b/2. 

But (x0, y0) is a point on the line and F(x0, y0) is therefore 0; hence , d~~m. is just a + b/2 = 
tly - dx/2. Using d,"", we choose the second pixel , and so on. To eliminate the fraction in 
tl_., we redefine our original F by multiplying it by 2; F(x, y) = 2(ax + by + c). This 
multiplies each constant and the decision variable by 2, but does not affect the sign of the 
decision variable , which is all that matters for the midpoint test. 

The arithmetic needed to evaluate d..., for any step is simple addition . No time
consuming multipl ication is involved. Further, the inner loop is quite simple, as seen in the 
midpoim algorithm of Fig. 3.8. The first statement in the loop, the test of d, determines the 
choice of pixel, but we actually increment x and y to that pixel location after updating the 
decision variable (for compatibility with the circle and ellipse algorithms). Note that this 
version of the algorithm works for only those lines with slope between 0 and I; generalizing 
the algorithm is left as Exercise 3.2. In [SPR082), Sproull gives an elegan't derivation of 
Bresenham's formulation of this algorithm as a series of program transformations from the 
original brute-force algorithm. No equivalent of that derivation for circles or ellipses has yet 
appeared , but the midpoint technique does generalize, as we shall see. 
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void MidpointLine (int xO, int yO, int xl , int yl, int value) 
{ 

lnt dx = xl - xO; 
int dy=yl- yO; 
lnt d = 2 • dy - dx; I• Initial value of d •I 
int incr£ = 2 * dy; I• Increment used for move to E •I 
lnt incrNE = 2 • (dy- dx}: I• Increment used for move toNE •I 
lnt x =xO; 
int y =yO; 
WritePixel (x, y, value); I• The start pixel •I 

while (x < xJ) { 
It (d <= 0) { I• Choose E •I 

d +=incrE; 
x++; 

} else { I• Choose NE •I 
d+=incrNE; 
.:c++; 
y++; 

} 
WritePixel (x, y, value); 

} I• while •I 
I• The selected pixel closest to the line •I 

} I• MidpoiotLine • I 

Fig. 3 .8 The midpoint line scan-conversion algorithm. 

For a line from point (5, 8) to point (9, II ), the successive values of dare 2, 0, 6, and 
4, resulting in the selection of NE, E, NE, and then NE, respectively, as shown in Fig. 3.9. 
The line appears abnormally jagged because of the en larged scale of the drawing and the 
artificially large interpixel spacing used to make the geometry of the algorithm clear. For 
the same reason , the dr.tWings in the following sections also make the primitives appear 
blockier than they look on an actual screen. 

3 .2.3 Additionallssues 

Endpoint order. Among the complications to consider is that we must ensure that a line 
from P0 to P1 contains the same set of pixels as the line from P, to P0, so that the appearance 
of the line is independent of the order of specification of the endpoints. The only place 
where the choice of pixel is dependent on the direction of the line is where the line passes 
exactly through the midpoint and the decision variable is zero; going left to right, we chose 
to pick E for this case. By symmetry, while going from right to left , we would also expect to 
choose W ford = 0, but thai would choose a pixel one unit up in y relative to the one chosen 
for the left-to-right scan. We therefore need to choose SW when d = 0 for right-to-left 
scanning. Similar adjustments need to be made for lines at other slopes. 
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Fig. 3 .9 The midpoint line from point (5, 81 to point (9, 11). 

The alternative solution of switching a given line's endpoints as needed so that scan 
conversion always proceeds in the same direction does not work when we use line styles. 
The line style always ··anchors" the specified write mask at the start point, which would be 
the boltom-left point, independent of line direction. That does not necessarily produce the 
desired visual effect. In particular, for a dot-dash line pattern of, say, 111100, we would 
like to have the pattern start at whichever start point is specified. not automatically at the 
bottom-left point. Also, if the algorithm always put endpoints in a canonical order, the pat
tern might go left to right for one segment and rightto left fort he adjoining segment, as a func
tion of the second line's slope; this would create an unexpected discontinuity at the shared 
vertex, where the pattern should follow seamlessly from one line segment to the next. 

Starting at the edge of a clip rectangle. Another issue is that we must modify our 
algorithm to accept a line that has been analytically clipped by one of the algorithms in 
Section 3.12. Fig. 3.10(a) shows a line being clipped at the left edge. x = x..,, of the clip 
rectangle. The intersection point of the line with the edge has an integer x coordinate but a 
real y coordinate. The pixel at the left edge, (x ... , Round(mxon~. + B)), is the same pixel that 
would be drawn at this x value for the unclipped line by the incremental algorithm.' Given 
this initial pixel value, we must next initialize the decision variable at the midpoint between 
the£ and NE positions in the next column over. It is important tO realize that this strategy 
produces the correct sequence of pixels, while clipping the line at the x,;. boundary and 
then scan converting the clipped line from (x,;., Round(m.r.. + B)) to (x1, yJ using the 
integer midpoint line algorithm would not---Ulat clipped line has a different slope! 

The situation is more complicated if the line intersects a horizontal rather than a 
vertical edge, as shown in Fig. 3.10 (b). For the type of shallow line shown, there will be 
multiple pixels lying on the scan line y =)',;, that correspond to the bottom edge of the clip 
region. We want to count each of these as inside the clip region, but simply computing the 
analytical intersection of the line with they= Ymin scan line and then rounding thex value of 
the intersection point would produce pixel A, not the leftmost point of the span of pixels 
shown. pixel B. From the figure. it is clear that the leftmost pixel of the span, B, is the one 

'When mx.., + 8 lies exactly halfway belv.ttn horizontal grid lines. we actually must round down. 
This is a consequence of choosing pixel E when d ~ 0. 
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X • Xmln 

Chp rectangle 
L---L--_..:. __ .::.._ _ _ Y • Ymin 

(a) 

(b) 

Fig. 3 .10 Starting the line at a clip boundary. (a) Intersection with a vertical edge. 
(b) Intersection with a horizontal edge (gray pixels are on the line but are outside the 
clip rectangle). 

that lies just above and to the right of the place on the grid where the line first crosses above 
the midpoint y = Ymm - t. Therefore, we simply find the intersection of the line with the 
horizontal line y = Y..m - t. and round up the x value; the first pixel , 8 , is then the one at 
(Round(x,.,.,_V• y011. ). 

Finally, ihe incremental midpoint algorithm works even if endpoints are specified in a 
floating-point raster graphics package; the only difference is that the increments are now 
reals , and the arithmetic is done with reals. 

Varying the intensity ofa line as a function ofslope. Consider the two scan converted 
lines in Pig. 3. II. Line 8 . the diagonal line, has a slope of I and hence is v2 times as long 
as A. the horiwntal line. Yet the same number of pixels ( 10) is drawn to represent each line. 
Lf the intensity of each pixel is /, then the intensity per unit length of I ine A is / , whereas for 
li ne B it is only /IYl; this discrepancy is easily detected by the viewer. On a bilevel display, 
there is no cure for this problem, but on an n-bits-per-pixel system we can compensate by 
setting the intensity to be a function of the line 's slope. Antialiasing, discussed in Section 
3.17, achieves an even better result by treating the line as a thin rectangle and computing 
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Fig. 3.1!} Starting the line at a clip boundary. {a} Intersection with a vertical edge.
“Ill Intersection with a horizontal edge {gray pixels are on the line but are outside the
clip rectangle].

that lies just above and to the right of the place on the grid where the line first crosses above

the midpoint y = ym - 12-. Therefore we simply find the intersection of the line with the
horizontai line y = Fm - g and round up the x value; the first pixel. H. is then the one at

(Rfimixym_ i JIM-til
Finally. incremental midpoint algorithm 1ttttterits even if endpoints are specified in a

floating-point raster graphics package; the only difference is that the increments are now
reaJs1 and the arithmetic is done with reals.

1'Ir'nrztriog the intensity ofa line as a function ofslope. Consider the too scan converted

lines in Fig. 3. ll. Line B. the diagonal line, has a slope of i and hence is Vi times as long
as A, the horizontal line. Yet the same number of pixels { iii) is drawn to represent each line.

If the intensity of each pixel is i. then the intensity per unit length of liner-i is I. whereas for

line B it is only IIVE; this discrepancy is easily detected by the viewer. (in a bilevel display.
there is no cure for this problem. but on an n-bits-per-pittel system we can eomtmnsate by

setting the intensity to be a function of the line‘s slope. Antialiasing. discussel in Section

3.1T, achieves an even better result by treating the line as a thin rectangle and computing

TEXAS INSTRUMENTS EX. 1009 - 103/1253



3 .3 Scan Converting Circles 8 1 

1 O UMS ,/~ 
~~ 

/ 

~~· 
.J..t'r 

" 

.......... lineA 

Fig. 3 .11 Varying intensity of raster lines as a function of slope. 

appropriate intensities for the multiple pixels in each column that lie in or near the 
rectangle. 

Treating the line as a rectangle is also a wJy to create thick lines. ln Section 3.9, we 
show how to modify the basic scan-conversion algorithms to deal with thick primitives and 
with primitives whose appearance is affected by line-style and pen-style attributes. Chapter 
19 treats several other enhancements of the fundamental algorithms, such as handl ing 
endpoint shapes and creating joins between lines with multiple-pixel width. 

Outline primitives composed of lines. Knowing how to scan convert lines, how do we 
scan convert primitives made from lines? Polylines can be scan-converted one line segment 
at a time. Scan converting rectangles and polygons as area-defining primitives could be 
done a line segment at a time but that would result in some pixels being drawn that lie 
outside a primitive's area-see Sections 3.5 and 3.6 for special algorithms to handle this 
problem. Care must be taken to draw shared vertices ofpolylines only once. since drawing a 
vertex twice causes it to change color or to be set to background when writing in xor mode 
to a screen, or to be written at double intensity on a film recorder. ln fact, other pixels may 
be shared by two line segments that I ie close together or cross as well. See Section 19.7 and 
Exercise 3.8 for a discussion of this, and of the difference between a polyline and a 
sequence of connected line segmentS. 

3.3 SCAN CONVERTING CIRCLES 

Although SROP does not offer a circle primitive, the implementation will benefit from 
treating the circu lar ellipse arc as a special case because of its eight-fold symmetry, both for 
clipping and for scan conversion. The equation ofacirclecentered at the origin isx2 + y2 = R2• 

Circles not centered at the origin may be translated to the origin by integer amounts and then 
scan converted. with pixels written with the appropriate offse1. There are several easy but 
inefficient ways to scan convert a circle. Solving for y in the implicit circle equation, we get 
the explicit y = f(x) as 

y = ±YRz- xz. 

To draw a quarter circle (the other quarters are drawn by symmetry), we can increment x 
from 0 to R in unit steps, solving for +y at each step. This approach "urks, but it is 
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inefficient because of the multiply and square-root operations. Furthermore, the circle will 
have large gaps for values of x close to R, because the slope of the circle becomes infinite 
there (see Fig. 3.12). A similarly inefficient method, which does, however , avoid the large 
gaps, is to plot (R cos9, R sinl1) by stepping 9 from o• to 90•. 

3 .3 .1 Eight-Way Symmetry 

We can improve the drawing process of the previous section by taking greater advantage of 
the symmetry in a circle. Consider first a circle centered at the origin. If the point (x, y) is 
on the circle, then we can trivially compute seven other points on the circle, as shown in 
Pig. 3.13. Therefore, we need to compute only one 45• segment to determine the circle 
completely. For a circle centered at the origin, the eight symmetrical points can be displayed 
with procedure CirclePoints (the procedure is easily gener.dized to the case of circles with 
arbitrary origins): 

void Circle Points (lot x, lot y, lot value) 
{ 

WritePixel (x, y, value); 
WritePixel (y, x, value); 
WritePixel (y, -x, value): 
WritePixel (x, - y, value); 
WritePixel ( -x, -y, ..alue); 
WritePixel ( - y, - x , value); 
WritePixel ( - y, x, value); 
WritePi><.el (-x, y, value); 

} I• CirclePoints •I 

We do not want to call CirclePoints when x = y, because each of four pixels would be 
set twice; the code is easily modified to handle that boundary condition. 

(17, 0) 

Fig. 3.12 A quarter circle generated with unit steps in x, and with y calculated and then 
rounded. Unique values of y for each x produce gaps. 
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hieflicient because of the multiply and square-root operations. Furthennore, the circle wit]

havelargegepeforyalues ofxclose toil. hecemetheslopeofthecirclebemmes infinite

there {see Fig. 3.12}. A similarly inefiicient method. which does, however; avoid the large

gaps. is to plot [R cosll. R sinfl} by stepping ll from [1" to 90".

3.3.1 Eight-Way Symmetry

“It can imprmre the drawing process of the previous section by taking greater advantage of

the symmetry in a circle. Consider first a circle centered at the origin. It" the point (I. y] is

on the circle. then we can trivially compute sewn other points on the circle, as shown in

Fig. 3.13. Therefore. we need to compute only one 45“ segment to deten'nihe the circle

completely. For a circle eentered at the origin. the eight symmetrical points can be displayed

with procedure CirclePoints {the proeedure is easily generalized to the case of circles with

arbiuary origins};

void CirclcPoints {Int .1. Int y, ill. value)

{

WritePixel {.r. y, value}:

WritePixel ly. I. value]:

WritePittel Ly. —rx. vain-e]:

WritePixel (x, —y. value};

WritePiscl [—x. —y. value}:

WritePisel [-y. —1. value);

WritePixel {—y. I. raise}:

WritePisel (vs. y. value]:

} it lIIIircleP’oints ml

We do not want to call CirclePoinls when .r = y, because each of four pixels mold be

set twice: the code is easily modified to handle that boundary condition.

[I]. 1?}

 
{11c}

Fig. 3.1 2 A quarter circle generated with unit steps in x. and with 1.: calculated and then

rounded. Unique values of y for each x produce gape.
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(-y, x) 

(-y, -X) (y. - x) 

Fig. 3.13 Eight symmetrical points on a circle. 

3.3.2 Midpoint Circle Algorithm 

Bresenham [BRES77) developed an incremental circle generator that is more efficient than 
the methods we have discussed. Conceived for use with pen plotters, the algorithm 
generates all points on a circle centered at the origin by incrementing all the way around the 
circle. We derive a similar algorithm, again using the midpoint criterion, which, for the case 
of integer center point and radius, generates the same, optimal set of pixels. Furthermore, 
the resulting code is essentially the same as that specified in patent 4,371,933 [BRES83). 

We consider only 45° of a circle, the second octant from x = 0 to x = y = RrV2, and 
use the CirclePoints procedure to display points on the entire circle. As with the midpoint 
line algorithm, the strategy is to select which of2 pixels is closer to the ci.rcle by evaluating 
a function at the midpoint between the 2 pixels. In the second octant, if pixel Pat (xp, yp) 
has been previously chosen as closest to the circle, the choice of the next pixel is between 
pixel E and S£ (see Fig. 3.14) . 

Previous Choices for Choices for 
pixel current pixel next pixel 

Fig. 3.14 The pixel grid for the midpoint circle algorithm showing M and the pixels E 
and SE to choose between. 
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Let F(x, y) = r + :1- R2; this function is 0 on the circle, positive outside the circle, 
and negative inside the circle. lt can be shown that if the midpoint between the pixels E and 
SE is outside the circle, then pixel SE is closer to the circle. On the other hand, if the 
midpoint is inside the circle, pixel E is closer to the circle. 

As for lines, we choose on the basis of the decision variable d, which is the v-alue of the 
function at the midpoint, 

do~~~= F(xp + I , YP - tJ = (xp + 1)2 + (yp - tJ2 - ~. 

If d<M < 0, E is chosen, and the next midpoint will be one increment over in x. Then, 

d,_ = F(xp + 2, YP -!) = (xp + 2)2 + (yp - tf - R2, 

and d,... = dold + (2xp + 3); therefore, the increment li8 = 2xp + 3. 
If d.~~ 0 , SE is chosen,6 and the next midpoint will be one increment over in x and one 

increment down in y. Then 

d.,. = F(xp + 2, YP - i) = (xp + 2)2 + (yp -if - R2• 

Since ti_ = dold + (2xp - 2yP + 5), the increment lis8 = 2xp - 2yp + 5. 
Recall that, in the linear case, lit; and li,w; were constants; in the quadratic case, 

however, lit; and !i58 vary at each step and are functions of the particular values of Xp and YP 

at the pixel chosen in the previous iteration. Because these functions are expressed in terms 
of (Xp, yp), we call P the point of evaluation. The !!J. functions can be evaluated directly at 
each step by plugging in the values of x and y for the pixel chosen in the previous iteration. 
This direct evaluation is not expensive computationally, since the functions are only linear. 

In summary, we do the same two steps at each itenuion of the algorithm as we did for 
the line: ( I) choose the pixel based on the sign of the variable d computed during the 
previous iteration, and (2) update the decision variable d with the !!J. that corresponds to the 
choice of pixel. The only difference from the line algorithm is that, in updating d, we 
evaluate a linear function of the point of evaluation. 

All that remains now is to compute the initial conrution. By limiting the algorithm to 
integer radii in the second octant, we know that the starting pixel lies on the circle at (0, R). 
The next midpoint lies at (1, R - t>. therefore, and F( l , R -!) = I + (R2 - R + t> - ~ = 
t- R. Now we can implement the algorithm directly, as in Fig. 3. 15. Notice how similar in 
structure this algorithm is to the line algorithm. 

The problem with this version is that we are forced to do real arithmetic because of the 
fractional initialization of d. Although the procedure can be easily modified to handle 
circles that are not located on integer centers or do not have integer radii , we would like a 
more efficient, purely integer version. We thus do a simple program transformation to 
eliminate fractions. 

First, we define a new decision variable , h, by h = d- t. and we substitute h + tror d 
in the code. Now, the intialization is h = I - R, and the comparison d < 0 becomes h < -t. 

'Choosing SE when d = 0 differs from our choice in the line algorithm and is arbitrary. The reader 
may wish to s imulate the algorithm by hand to see that, for R = 17, I pixel is changed by this 
choice. 
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void MidpointCin:le (lnt radius, lot wuu) 
I• Assumes center of circle is at origin •I 
{ 

i.nt x = O; 
lot y = radius; 
double d = S.O / 4.0 - radius; 
Cin:lePoints (x, y, value): 

while ()' > x) { 
If (d < 0) /• Select E o/ 

d += 2.0 •x+ 3.0; 
else { / o Select SE •I 

} 

d += 2.0 • (x- )') + S.O; 
y--; 

x++: 
Cin:lePoints (x, y, value); 

} /• while •/ 
} I• MidpointCin:le • I 

Fig. 3.15 The midpoint circle scan~onversion algorithm. 

85 

However, since h starts out with an integer value and is incremented by integer values (.6.,; 
and .6.56), we can change the comparison to just h < 0. We now have an integer algorithm in 
terms of h; for consistency with the line algorithm, we will substitute d for h throughout. 
The final. fully integer algorithm is shown in Fig. 3. 16. 

Figure 3.17 shows the second octant of a circle of radius 17 generated with the 
algorithm. and the first octant generated by symmetry (compare the results to Fig. 3.12). 

Second-order differences. We can improve the performance of the midpoint circle 
algorithm by using the incremental computation technique even more extensively. We noted 
that the .6. functions are linear equations, and we computed them directly. Any polynomial 
can be computed incrementally, however. as we did with the decision variables for both the 
line and the circle. In effect, we are calculating .first- and m;ond-order partial differmces, a 
useful technique that we encounter again in Chapters I I and 19. The strategy is to evaluate 
the funct.ion directly at two adjacent points, to calculate the difference (which, for 
polynomials, is always a polynomial of lower degree), and to apply that difference in each 
iteration. 

If we choose E in the current it.eration, the point of evaluation moves from (Xp, y,.) to 
(x,. + I, yp). As we saw, the first-order difference is .6.6 .., at (Xp, y,.) = 2xp .f 3. Therefore, 

.6.11_ at (Xp + I, yp) = 2(x,. + I) + 3. 

and the second-order difference is .6.,;_ - .6.E.M = 2. 
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void Midpoin!Cirtle (lnt radius, ln t value) 
I• Assumes center of circle is at origin. Integer arithmetic only .t 
{ 

lnt x = 0; 
int y = radiu.f; 
int d = I - radius; 
CirtlePoints (x, y, l'lllue); 

while (y > x) { 
if (d < 0) I • Select E •I 

d += 2 • x+ 3; 
else { I • Select SE •I 

d += 2o (x- y) + S; 
y--; 

} 
x++; 
CirtlePoints (x, y, l'lllue); 

} I• while •I 
} I• MidpointOrtle •I 

Fig. 3 .1 6 The integer midpoint circle scan-conversion algorithm. 

Similarly, 4ss,.. at (x,., y,.) • 2x,. - 2y,. + 5. Therefore, 

4sg_ at (x,. + I. y,.) = 2(x,. + I) - 2y,. + 5, 

and the second-order difference is 4u- - 4ss.., = 2. 
If we choose SE in the current iteration, the point of evaluation moves from (x,., y,.) to 

(x,. + I , y,. - 1). Therefore , 

48_ at (x,. + I, y,. - I) = 2(x,. + I) + 3, 

and the second-order difference is 48_ - 4 8,.. = 2. Also, 

458_ at (x,. + I, y,.- I) = 2(x,. + I)- 2(y,.- I) + 5, 

and the second-order difference is 4u-- 4sg,.. = 4. 
The revised algorithm then consists of the following steps; ( I ) choose the pixel based 

on the sign of the variable d computed during the previous iter,uion; (2) update the decision 
variable d with either 48 or 458, using the value of the corresponding 4 computed during 
the previous iteration; (3) update the 4 s to take into account the move to the new pixel. 
u.~ing the constant differences computed previously; and (4) do the move. 4 8 and 4ss are 
initialized using the start pixel (0, R). The revised procedure using this technique is shown 
in Fig. 3. 18. 
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3.3 Scan Converting Circles 

Second octant generated by algorithm 

First octant 
generated 
by symmetry 

87 

Fig. 3.17 Second octant of circle generated with midpoint algorithm, and first octant 
generated by symmetry. 

void MidpointCircle (lnt radius, lnt value) 
I• This procedure uses second-order panial differences to compute increments •I 
I• in the decision variable. Assumes center of circle is at origin •I 
{ 

intx = 0; 
lnt y = radius; 
lnt d = I - radius; 
lnt delta£ = 3; 
lnt deltaS£= -2 • radius + 5; 
CirclePoints (x, y, value); 

while (y > x) { 
It (d < 0){ 

d +=delta£; 
delta£ += 2; 
deltaS£ += 2; 

} else { 

} 

d += deltaS£; 
delta£+= 2; 
deltaS£+= 4; 
y--~ 

x++; 

I• Select E •I 

I• SelectS£ •I 

CirclePoints (x, y, value); 
} I• while •I 

} I• MidpointCircle • I 

Fig. 3 .18 Midpoint circle scan-conversion algorithm using second-order differences. 
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3.4 SCAN CONVERTING ELLIPSES 

Consider the standard ellipse of Fig. 3.19, centered at (0, 0). It is described by the equation 

F(x. y) = /Jr + at-1 - at-1} = o, 

where 2a is the length of the major axis along the x axis, and 2b is the length of the minor 
axis along the y axis. The midpoint technique discussed for lines and circles can also be 
applied to the more general conics. ln this chapter, we consider the standard ellipse that is 
supported by SRGP; in Chapter 19, we deal with ellipses at any angle. Again , to simplify 
the algorithm, we draw only the arc of the ellipse that lies in the first quadrant, since the 
other three quadrants can be drawn by symmetry. Note also that standard empses centered 
at integer points other than the origin can be drawn using a simple translation. The 
algorithm presented here is based on DaSilva's algorithm, which combines the techniques 
used by Pitteway [PITf67], Van Aken (VANA84] and Kappel [KAPP85] with the use of 
partial differences [DAS189]. 

We first divide the quadrant into ~ regions; the boundary between the two regions is 
the point at which the curve has a slope of -I (see Fig. 3.20). 

Determining this point is more complex than it was for circles, however. The vector 
that is perpendicular to the tangent to the curve at point P is called the gradient, defined as 

gmd F(x, y) = aFiax i + <JFI<Jy j = Wx i + 2riy j . 

The boundary between the two regions is the point at which the slope of the curve is -I , 
and that point occurs when the grad ient vector ha~ a s1ope of 1- that is, when the i and j 
components of the gradient are of equa1 magnitude. The j component of the gradient is 
larger than the i component in region I, and vice versa in region 2. Thus, if at the next 
midpoint, cr(yp - 1:) s IJ(xp + I), we switch from region I to region 2. 

As with any midpoint algorithm, we evaluate the function at the midpoint between two 
pixels and use the sign to determine whether the midpoint lies inside or outside the ellipse 
and, hence, which pixel lies closer to the ellipse. Therefore , in region I , if the current pixel 
is located at(xp,yp), then the decision variable for region I , d1, is F(x,y) evaluated at (xp + I , 
yp - f>, the midpoint between E and SE. We now repeat the process we used for deriving the 

y 

b 

Fig. 3 .19 Standard ellipse centered at the origin. 
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3.4 SCAN CONVERTING ELLIPSES

Consider the standard ellipse of Fig. 3. 19. centered at {{l, D}. It is described by the equation

Hazy} = £7212 + as); — flab: = G,

where 2a is the length of the major axis along the x axis, and 2b is the length of the minor

axis along the y axis. The midpoint technique discussed for lines and circles can also be

applied to the more general conics. In this chapter, we consider the standard ellipse that is

supported by SEEP; in Chapter 19, we deal with ellipses at any angle, Again, to simplify

the algorithm, we draw only the arc of the ellipse that lies in the first quadrant. since the

other three quadrants can be drawn by symmetry. Note also that standard ellipses centered

at integer points other than the origin can be drawn using a simple translation. The

algorithm presented here is based on [Ila Silva's algorithm, which combines the techniques

used by Pitteway [PITTa't], van seen [misses] and Kappel [Kama] with the use of

partial differences [DASIEQ'].

We first divide the quadrant into two regions; the boundary between the two regions is

the point at which the curve has a slope of -| [see Fig. 3.20].

Determining this point is more complex than it was for circles. however. The sector

that is perpendicular to the tangent to the curve at point P is called the gradient, defined as

grad so, y) = dFidxi + dFidy j = later + stay].

The boundary between the two regions is the point at which the slope of the curve is — l ,

and that point occurs adieu the gradient vector has a slope of l—that is. when the i and j

components of the gradient are of equal magnitude. The j component of the gradient is

larger than the i component in region 1, and vice scrsa in region 2. Thus, if at the next

midpoint. £2pr ‘13-} 5 «Wisp + l], we switch from region 1 to region 2.

As with any midpoint algorithm, we evaluate the function at the midpoint between two

pixels and use the sign to determine whether the midpoint lies inside or outside the ellipse

and, hence, which pixel lies closer to the ellipse. Therefore, in region l, if the current pixel

is located at (1;... yr}. then the decision variahle for region l , d1, is Fix, :I evaluated at (I? + 1.

)5: Mil. the midpoint between E and SE. We now repeat the process we used for deriving the

 
Fifi. 3.19 Standard ellipse centered at the origin.
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3.4 

Region 1 

Region 2 

Tangent 
slope= -1 
~/Gradient 
~vector 

Scan Converting Ellipses 

I component 

Gradient 
vector 

Fig. 3.20 Two regions of the ellipse defined by the 4 5° tangent. 

89 

two .:ls for the circle. For a move tO£, the next midpoint is one increment over in x. Then, 

dold = F(xp + I. YP - t> = ll(xp + 1)2 + ll(yp - tJ~ llll, 

d,_ = F(xp + 2, Yr - !l = ll(xp + 2)2 + a1(yp - W - a211. 

Since d ... = dold + 11(2xp + 3), the increment .:l8 = 11(2xp + 3). 
For a move to S£, the next midpoint is one increment over in x and one increment down 

in y. Then, 

d..., = F(xp + 2. YP - il = ll(xp + 2f + a2(y, - f}2 - llll. 

Since d,_ = dol<1 + 11(2xp + 3) + a2(-2yp + 2), the increment Ast· = 11(2xp + 3) + 
«< -2yp + 2). 

ln region 2, if the current pixel is at (xp, yp), the decision variable d2 is F(xp + t, 
YP- 1), the midpoint between SandS£. Computations similar to those given for region I 
may be done for region 2. 

We must also compute the initial condition. Assuming integer values a and b, the 
ellipse starts at (0, b). and the first midpoint to be calculated is at ( I, b - t>. Then, 

F( I , b - !) = II + a!(b - !)2 - «II = II + a2(-b + f). 
At every iteration in region I , we must not only test the decision variable d1 and update the 
.:l functions, but also see whether we should switch regions by evaluating the gradient at the 
midpoint between£ and S£. When the midpoint crosses over into region 2, we change our 
choice of the 2 pixels to compare from E and S£ to S£ and S. At the same time. we have to 
initialize the decision variable t4 for region 2 to the midpoint between S£ and S. That is, if 
tbe last pixel chosen in region I is located at (xp, yp), then the decision ll'driable d2 is 
initialized at (x, + t. Yr - I). We stop drawing pixels in region 2 when the y value of the 
pixel is equal to 0. 

As with the circle algorithm, we can either calculate the .:l functions directly in each 
iteration of the loop or compute them with differences. Da Silva shows that computation of 
second-order partials done for the .:ls can, in fact, be used for the gradient as well 
[DASI89]. He also treats general ellipses that have been rotated and the many tricky 

TEXAS INSTRUMENTS EX. 1009 - 112/1253

3.4 Sean Converting Ellipse: BS

lGradient
vemor 

I component

Fig. 3.20 Two regions of the ellipse defined by the 45° tangent.

two its for the circle. For a move to E. the nest midpoint is one increment over in .r. Then.

so” = my + i.y..-t_-J = biop+ n2 + ism—ts — tetra.

am = Fix.» + 2, he w i] = sin... + 2}2 + fly... — iii — nit-F.

Since rim = dun + Earp + 3}. the increment fig : lazily. + iii.

For a move to SE. the next midpoint is one increment over in .1: and one increment down

in y. Then.

elm = Fix? + 2. Iv? — g} = Hixp + 2? -l- oath. "%3 - “b3.

Since d“ = rim + H21... + 3} + 32.1—11.1, + 2]., the incrEment a... = hallo. + 3} +
rfimlyp + 2}.

In region 2. it" the current pixel is at {A}, vs]. the decision variable rig is For]. + 55
:r'p - ii. the midpoint between S and SE. Computations similar to those given for region 1

may.r be done For region 2.

We must also compute the initial condition. Assuming integer values a and h. the

ellipse starts at {{l. hi. and the first midpoint to be calculated is at [1. h — it Then.

Foe—lg]=s=+a=(a—h=-a”b2=ai+a={—s+—h.

At every iteration in region l. we must not onlyr test the decision variable d. and update the

d. functions. but also see whether we should switch regions by evaluating the gradient at the

midpoint between E and SE. WMn the midpoint crosses mrer into region 2. we change our

choice of the 2 pixels to compare from E and SE to SE and 3. At the same time. we have to

initialize the decision variable if: for region 2 to the midpoint hetween 3E and 3. That is. il'

the last pixel chosen in region 1 is located at (IF, .‘r'r-l: then the decision variable d: is

initialized at Le... + e. 3-,. — t]. We stop drawing pixels in region 2 when the _v value of the
pixel is equal to D.

As with the circle algorithm. we can either calculate the it functions directly in each

iteration of the loop or compute them with differences. Da Silva shows that computation of

socondvorder partials done for the dis can, in fact. be used for the gradient as well

[DASISQ]. He also treats general ellipses that have been rotated and the man},f trick}.r
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boundary conditions for very thin ellipses. The pseudocode algorithm of Fig. 3.2 1 uses the 
simpler direct evaluation rather than the more efficient formulation using second-order 
differences; it also skips various tests (see Exercise 3.9). In the case of integer a and b, we 
can eliminate the fractions via program transformations and use only integer arithmetic. 

void MidpointEIIipse {int a, int b, int value) 
I• Assumes center of ellipse is at the origin. Note that overflow may occur •I 
I• for 16-bit integers because of the squares. *' 
{ 

dou.ble d2; 

intx=O; 
int y = b; 
double dl = b2 - (a2b) + (0.25 a2

); 

EUipsePoints {x, y, value); I• The 4-way symmetrical WritePixel •I 

I• Test gradient if still in region I •I 
while { a2{y- 0.5) > b2(x + I) ) { I• Region I • I 

if (dl < 0) I• Select E •I 
dl += b2 (2x + 3); 

else { I• Select SE •I 
dl += b2(2x + 3) + a2

( -2y + 2); 
y--; 

} 
x++; 
Ellipse Points (x, y, value); 

} I• Region I •I 

d2 = b2 (x + 0.5)2 + a2 (y - I )2 
- a2if; 

while (y > 0) { /• Region 2 •/ 
if (d2 < 0) { I• Select SE •I 

d2 += b2(2x + 2) + al( - 2y + 3); 
x++; 

} else 
d2 += a2

( -2y + 3); 
y--: 
EllipsePoints (x, y, value); 

} I• Region 2 •I 

I• SelectS •I 

} I• MidpointEllipse •I 

Fig. 3.21 Pseudocode for midpoint ellipse scan-conversion algorithm . 

• 
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Now that we have seen how to scan convert lines I pixel thick as well as unfilled 
primitives, we turn our attention to modifications of these algorithms that fill area-defining 
primitives with a solid color or a pattern, or that draw unfilled primitives with a 
combination of the line-width and pen-style attributes. 

3.5 FILLING RECTANGLES 

The task of filling primitives can be broken into two parts: the decision of which pixels to fil l 
(this depends on the shape of the primitive, as modified by clipping), and the easier 
decision of with what value to fill them. We first discuss filling unclipped primitives with a 
sol id color; we deal with pattern filling in Section 3.8. In general, determining which pixels 
to fill consists of taking successive scan lines that intersect the primitive and filling in spans 
of adjacent piltels that lie inside the primitive from left to right. 

To fill a rectangle with a solid color, we set each pixel lying on a scan line running from 
the left edge to the right edge to the same pixel value; i.e., fill each span from x.,;. to x...,.. 
Spans exploit a primitive's spatial coherence: the fact that primitives often do not change 
from pixel to pixel within a span or from scan line to scan I ine. We exploit coherence in 
general by looking for only those pixels at which ch1lilges occur. For a solidly shaded 
primit ive, all pixels on a span are set to the same value, which provides sparr coherence. The 
solidly shaded rectangle also exhibits strong scarr·lirre coherence in that consecutive scan 
lines that intersect the rectangle are identical; later, we also use edge coherence for the edges 
of general polygons. We take advantage of various types of coherence not only for scan 
converting 20 primitives, but also for rendering 30 primitives. as discussed in Section 
15.2. 

Being able to treat multiple pixels in a span identically is especially important because 
we should write the frame buffer one word at a time to minimize the number of 
time-consuming memory accesses. For a bi level display, we thus write 16 or 32 pixels at a 
time; if spans are not word-aligned, the algorithm must do suitable masking of words 
containing fewer than the full set of pixels. The need for writing memory efficiently is 
entirely similar for implementing copyPixel, as briefly discussed in Section 3.16. ln our 
code, we concenlrate on defining spans and ignore the issue of writing memory efficiently; 
see Chapters 4 and 19 and Exercise 3. 13. 

Rectangle scan conversion is thus simply a nested for loop: 

for (y from Ymm w )'mu of the rectangle) 
for (x from Xmio to Xnw. ) 

WritePixel (x, y, value); 

I• By scan line o./ 
I• By pixel in span •/ 

An interesting problem arises in this straighrtorward solution, similar to the problem of scan 
converting a polyline with line segments that share pixels. Consider two rectangles that 
share a common edge. If we scan convert each rectangle in tum, we wi ll write the pixels on 
the shared edge twice, which is undesimble, as noted earlier. This problem is a 
manifestation of a larger problem of area-defining primitives, that of defining which pixels 
belong to a primitive and which pixels do not. Clearly, those pixels that lie in the 
mathematical interior of an area-defining primitive belong to that primitive. But what about 
those pixels on the boundary? If we were looking at a single rectangle (or just thinking 
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about the problem in a mathematical way), a straightforward an&-wer would be to include the 
pixels on the boundary, but since we want to avoid the problem of scan converting shared 
edges twice , we must define some rule that assigns boundary pixels uniquely. 

A simple rule is to say that a boundary pixel-that is, a pixel lying on an edge-is not 
considered part of the primitive if the halfplane defined by that edge and containing the 
primitive lies below or to the left of the edge. Thus, pixels on left and bottom edges will be 
drawn, but pixels that lie on top and right edges will not be drawn. A shared vertical edge 
therefore "belongs" to the rightmost of the two sharing rectangles. In effect, spans within a 
rectangle represent an interval that is closed on the left end and open on the right end. 

A number of pointS must be made about this rule. First, it applies to arbitrary polygons 
as well as to rectangles. Second, the bottom-left vertex of a rectangle still would be drawn 
twice-we need another rule to deal with that special case, as discussed in the next section. 
Third, we may apply the rule also to unfilled rectangles and polygons. Fourth, the rule 
causes each span to be missing its rightmost pixel, and each rectangle to be missing its 
topmost row. These problems illustrate that there is no " perfect" solution to the problem of 
not writing pixels on (potentially) shared edges twice, but implementors generally consider 
that it is better (visually less distracting) to have missing pixels at the right and top edge than 
it is to have pixels that disappear or are set to unexpected colors in xor mode. 

3.6 FILLING POLYGONS 

The general polygon scan-conversion algorithm described next handles both convex and 
concave polygons, even those that are self-intersecting or have interior holes. It operates by 
computing spans that lie between left and right edges of the polygon. The span extrema are 
calculated by an incremental algorithm that computes a scan line/edge intersection from the 
intersection witb the previous scan line. Figure 3.22, which illustrates tbe basic polygon 
scan-conversion process, shows a polygon and one scan line passing through it. The 
intersections of scan line 8 with edges FA and CD lie on integer coordinates, whereas those 
for EF and DE do not; the intersections are marked in the figure by vertical tick marks 
labeled a through d. 

We must determine which pixels on each scan line are within the polygon, and we must 
set the corresponding pixels (in this case, spans from x = 2 through 4 and 9 through 13) to 

12 
D 

10 
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Fig. 3.22 Polygon and scan line 8. 

TEXAS INSTRUMENTS EX. 1009 - 115/1253

52 Basic Raster Graphics Algorithms for Drawing 2|} Primitives

about the problem in a mathematical way). a straightforward answer would be to include the

pixels on the boundary. but since we want to avoid the problem of scan converting shared

edges twice. we must define some rule that assigns boundary pixels uniquely.

A simple rule is to say that a boundary pixel—that is. a pixel lying on an edge—is not

considered part of the primitive it" the hallplane defined by that edge and containing the

primitive lies below or to the left of the edge. Thus. pixels on left and bottom edges will be

drawn. but pixels that lie on top and right edges will not be drawn. A shared vertical edge

therefore “belongs” to the rightmost of the the sharing rectangles. in effect, spans within a

rectangle represent an interval that is closed on the left end and open on the right end.

A number of points must be made about this rule. First. it applies to arbitrary polygons

as 1still as to rectangles. Second. the bottom-left vertex of a rectangle still “would be drawn

twice—we need another rule to deal with that special case. as discussed in the next section.

Third. we may apply the rule also to unfilled rectanglm and polygons. Fourth. the rule

causes each span to be missing its rightmost pixel. and each rectangle to be missing its

topmost row. These problems illustrate that there is no ”pcrfect' ' solution to the problem of

not writing pixels on {potentially} shared edges twice. but implementors generally consider

that it is better {visually less distracting} to have missing pixels at the right and top edge then

it is to have pixels that disappear or are set to unexpected colors in 101' mode.

3.5 FlLlJl'th POLYGDNS

The general polygon scan-conversion algorithm described next handles both convex and

concave polygons. even those that are self-intersecting or have interior holes. It operates by

computing spans that lie between left and right edges of the polygon. The span extrema are

calculated by an incremental algorithm that computes a scan lineiedge intersection from the

intersection with the previous scan line. Figure 3.22. which illustratea the basic polygon

scan-conversion process. shows a polygon and one scan line passing through it. The

intersections of scan line B with edges Fit and CD lie on integer coordinates. whereas those

for EF and DE do not; the intersections are marked in the figure by vertical tick rnarlts

labeled a through d.

‘We must determine which pixels on each scan line are within the polygon. and we must

set the corresponding pixels (in this case. spans from x = 2 through 4 and 9 through 13] to

 
24EE1D1214

Fig. 3.2.2 Polygon and scan line B.
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their appropriate values. By repeating this process for each scan line that intersccts the 
polygon, we scan convert the entire polygon, as shown for another polygon in Fig. 3.23. 

Figure 3.23(a) shows the pixels defi ning the extrema of spans in black and the interior 
pixels on the span in gray. A straightforward way of deriving the extrema is to use the 
midpoint line scan-conversion algorithm on each edge and tO keep a table of span extrema 
for each scan line, updating an entry if a new pixel is produced for an edge that extends the 
span. Note that this strategy produces some extrema pixels that lie outside tbe polygon; they 
were chosen by the scan-conversion algorithm because they lie closest to an edge, without 
regard to the side of the edge on wh.ich they lie-the line algorithm has no notions of 
interior and exterior. We do not want to draw such pixels on the outside of a shared edge, 
however, because they would intrude into the regions of neighboring polygons , and this 
would look odd if these polygons had different colors . It is obviously preferable to draw 
only those pixels that are strictly interior to the region, even when an exterior pixel would be 
closer to the edge. We must therefore adjust the scan-conversion algorithm accordingly; 
compare Fig. 3.23 (a) with Fig. 3.23 (b), and note that a number of pixels outside the ideal 
primitive are not drawn in part (b). 

With this technique, a polygon does not intrude (even by a single pixel) into the regions 
defined by other primitives. We can apply the same technique to unfilled polygons for 
consistency or can choose to scan convert rectangles and polygons a line segment at a time, 
in which c-.1se unfilled and filled polygons do not contain the same boundary pixels! 

As with the original midpoint algorithm, we use an incremental algorithm to calculate 
the span extrema on one scan line from those at the previous scan line without having to 
compute the interscctions of a scan I ine with each polygon edge analytically . In scan line 8 
of Fig. 3.22, for instance, there are two spans of pixels within the polygon. The spans can 
be filled in by a three-step process: 

t-
t- t- ~ ~ -~ t- t-

I ~ 

t- -

~·~ ~ 
t- -
1- 1-

- -

~ ,p 
I 

(a) (b) 

• Span extrema 

0 Other pixels in the span 

Fig. 3.23 Spans for a polygon. Extrema shown in black, interior pixels in gray. 
(a) Extrema computed by midpoint algorithm. (b) Extrema interior to polygon. 
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I. Find the intersections of the scan line with all edges of the polygon. 

2 . Sort the intersections by increasing x coordinate. 

3. Fill in all pixels between pairs of intersections that lie interior to the polygon, using the 
odd-parity rule to determine that a point is inside a region: Parity is initially even, and 
each intersection encountered thus inverts the parity bit-draw when parity is odd, do 
not draw when it is even. 

The first two steps of the process, finding intersections and sorting them, are treated in 
the next section. Let's look now at the span-filling strategy. ln Fig. 3.22, the sorted list of x 
coordinates is (2, 4.5, 8.5, 13). Step 3 requires four elaborations: 

3. J Given an intersection with an arbitrary, fr.tcrional x value, how do we determine which 
pixel on either side of that intersection is interior? 

3.2 How do we deal with the special case of intersections at integer pixel coordinates? 

3.3 How do we deal with the special case in 3.2 for shared vertices? 

3.4 How do we deal with the special case in 3.2 in which the vertices define a horizontal 
edge? 

To handle case 3.1, we say that, if we are approaching a fractional intersection to the 
right and are inside the polygon, we round down the x coordinate of the intersection to 
define the interior pixel; if we are outside the polygon, we round up to be inside. We handle 
case 3.2 by applying the criterion we used to avoid conllicts at shared edges of rectangles: If 
the leftmost pixel in a sp'lll has integer x coordinate, we define it to be interior; if the 
rightmost pixel has integer x coordinate, we define it to be exterior. For case 3.3, we count 
the Ymin vertex of an ed0 t: in the parity calculation but not the y.,.. vertex; therefore, a y,.... 
vertex is drawn only if it is the Ym1n vertex for the adjacent edge. Vertex A in Fig. 3.22, for 
example. is counted once in the parity calculation because it is the Ymln vertex for edge FA 
but they.,... vertex for edge A8. Thus, both edges and spans are treated as intervals that are 
closed at their minimum value and open at their maximum value. Clearly, the opposite rule 
would work as well. but this rule seems more natural since it treats tlae minimum endpoint 
as an entering point, and the maximum as a leaving point. When we :reat case 3.4, 
horizontal edges, the desired effect is that, as with rectangles, bottom edges are drawn but 
top edges are not. As we show in the next section , this happens automatically if we do not 
count the edges' vertices, since they are neither Ymm nor y.,.. vertices. 

Let's apply these rules to scan line 8 in Fig. 3.22, which h.its no vertices. We fill in 
pixels from point a, pixel (2, 8),to the first pixel to the left of point b, pillel (4, 8), and from 
the first pixel to the right of point c, pillCI (9, 8). to I pixel to the left of point d, pixel 
( 12, 8). For scan line 3, vertex A counts once because it is the )',.;. vertex of edge FA but the 
y""" vertex of edge A8; this causes odd parity, so we draw the span from there to I pixel to 
the left of the intersection with edge CB, where the parity is set to even and the span is 
terminated. Scan line I hits only vertex 8; edges AB and 8C both have their >'lllil> vertices at 
8, which is therefore counted twice and leaves the parity even. This vertex acts as a null 
span-enter at the vertell, draw the pixel, exit at the vertex. Although such local minima 
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draw a single pixel, no pixel is drawn at a local mnimum, such as !he intersection of scan 
line 9 with the vertex F, shared by edges FA and EF. Bolh vertices are y.,.. vertices and 
therefore do not affect the parity, which stays even. 

3.6.1 Horizontal Edges 

We deal properly wilh horizontal edges by not counting their vertices, as we can see by 
examining various cases in Fig. 3.24. Consider bottom edge A B. Vertex A is a Ymin vertex for 
edge JA, and AB does not contribute. Therefore, the parity is odd and !he span AB is drawn. 
Vertical edge BC has its Y,;, at B, but again AB does not contribute. The parity becomes 
even and the span is terminated. At vertex. J, edge lJ has a y""" vertex. but edge JA does not , 
so the parity becomes odd and the span is drawn to edge BC. Tbe span !hat starts at edge /J 
and hits C sees no change at C because Cis a y .... vertex for BC, so the span continues along 
bottom edge CD; at D, however, edge DE has a Ymin vertex., so !he parity is reset to even and 
!he span ends. At/, edge IJ has its y.,.. vertex and edge HI also does not contribute, so 
parity stays even and the top edge IH is not drawn. At H, however, edge GH has a Ymin 

vertex., the parity becomes odd, a.nd !he span is drawn from H to the pixel to the left of the 
intersection with edge EF. FinaiJy, there is no Ymin vertex at G, nor is !here one at F , so top 
edge FG is not drawn. 

The algorithm above deals with shared vertices in a polygon, wilh edges shared by two 
adjacent polygons, and wilh horizontal edges. It aiJows self-intersecting polygons. As 
noted, it does not work perfectly in that it omits pixels. Worse, it cannot totally avoid 
writ.ing shared pixels multiple times without keeping a history: Consider edges shared by 
more !han two polygons or a y.,,, vertex shared by two otherwise disjoint triangles (see 
Exercise 3.14). 

3.6.2 Slivers 

There is another problem with our scan-conversion algorithm !hat is not resolved as 
satisfactorily as is !hat of horizontal edges: polygons with edges !hat lie sufficiently close 
together create a sliver-a polygonal area so thin !hat its interior does not contain a distinct 
span for each scan line. Consider, for ex.ample, the triangle from (0, 0) to (3, 12) to (5, 12) 
to (0, 0), shown in Fig. 3.25. Because of the rule that only pixels that lie interior or on a left 

G F 

H 

E 

J c D 

A B 

Fig. 3 .24 Horizontal edges in a polygon. 
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draw a single pixel. no pixel is drawn at a local maximum. such as the intersection of scan

line 9 with the vertex F. shared by edges Fat and EF. Both vertices are ym vertices and

therefore do not afiect the parity. which stays even.

3.5.1 Horizontal Edges

“it deal prop-crly with horizontal edges by not counting their 1entices. as we can see by

examining various cases in Fig. 3.24. Consider bottom edge .43. IIvitrtrsx A is a ymin vertex for

edge Jd. and AB does not contrihute. Therefore, the parity is odd and the span AB is drawn.

IIIr'ertical edge BC has its J’m at B. but again AB does not contribute. The parity becomes

even and the span is Laminated. At vertex .r'. edge I! has aym vertex but edge .l‘d does not.

so the parity becomes odd and the span is drawn to edge BC. The span that starts at edge H

and hits (2' sees no change at C because C is a y...“ vertex for BC. so the span continues along

bottom edge CD; at I). however. edge BE has a yd, vertex. so the parity is reset toevcn and

the span ends. At t. edge H has its y“ vertex and edge Ht also does not contribute. so

parity stays even and the top edge EH is not drawn. At H. however. edge SH has a has

vertex. the parity becomes odd. and the span is drawn from H to the pixel to the left of the

intersection with edge EF. Finally. there is no y“ vertex at G. nor is there one at F. so top
edge F0 is not drawn.

The algorithm above deals with shared vertices in a polygon, with edges shared by two

adjacent polygons. and with horizontal edges. It allows self-intersecting polygons. As

noted. it does not work perfectly in that it omits pixels. Worse. it cannot totally avoid

1Writing shared pixels multiple times without keeping a history: Consider edges shared by

more than two polygons or a ym vertex shared by two otherwise disjoint triangles [see
Exercise 3.14}.

3.6.2 Slivara

There is another problem with our scan-con version algorithm that is not resolved as

satisfactorily as is that of horizontal edges: polygons with edges that lie sufficiently close
together create a sitter—a polygonal area so thin that its interior does not contain a distinct

span for each scan line. Consider. for example. the triangle from [0. [l] to (3. i2} to [5, [2}

to {l}. ll}. shown in Fig. 3 .25. Because of the rule that only pixels that lie interior or on a left

J C D

A E

Fig. 3.24- Horizontal edges in a polygon.
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or bottom edge are drawn, there will be many scan lines with only a single pixel or no 
pixels . The problem of having "missing" pixels is yet another CJ~ample of the aliasing 
problem; that is, of representing a continuous signal with a discrete approximation. If we 
had multiple bits per pixel, we could usc anti aliasing techniques, as introduced for lines in 
Section 3. 17 and for polygons in Section 19.3. Antialiasing would involve softening our 
rule· 'draw only pixels that lie interior or on a left or bottom edge" to allow boundary pixels 
and even exterior pixels to take on intensity values that vary as a function of distance 
between a pixel's center and the primitive; multiple primitives C'.!n then contribute to a 
pixel 's value. 

3 .6 .3 Edge Coherence and the Scan-Une Algorithm 

Step I in our procedure-calculating intersections-must be done cleverly lest it be slow. 
In particular, we must avoid the brute-force technique of testi ng each polygon edge for 
intersection with each new scan line. Very often, only a few of the edges are of interest for a 
given scan line. Furthermore, we note that many edges intersected by scan line i are also 
intersected by scan line i + I . This edge coherence occurs along an edge for as many scan 
lines as intersect the edge. As v.oe move from one scan line to the next, we can compute the 
new x intersection of the edge on the basis of the old x intersection, just as we computed the 
next pixel from the current pixel in midpoint line scan conversion, by using 

x,.1 = X; + lim, 

where m is the slope of the edge. In the midpoint algorithm for scan converting lines, we 
avoided fractional arithmetic by computing an integer decision variable and checking only 
its sign to choose the pixel closest to the mathematical line; here, we would like to use 
integer arithmetic to do the required rounding for computing the closest interior pixel. 

Consider lines with a slope greater than +I that are left edges; right edges and other 
slopes are handled by similar, though somewhat trickier, arguments, and vertical edges are 
special cases. (Horizontal edges are handled implicitly by the span rules, as we saw.) At 
the (x...,, )'no~o) endpoint, we need to draw a pixel . As y is incremented, the x coordinate of 
the point on the ideal line will increase by 1/m, where m = ()' .... - Ym~n)/(x...,. - x,J is the 

- -I r- -
r-~ 1-

; 
VJ_ 

I 
(0.0) 

Fig. 3 .25 Scan convening slivers of polygons. 
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slope of the line. This increase will result in x having an integer and a fractional part, wbich 
can be expressed as a fraction with a denominator of y,... - y...,. As we iterate this process, 
tbe fractional part will overflow and the integer part will have to be incremented. For 
example, if the slope is!, and x.,. is 3. then the sequence of x values will be 3, 3f, Jt, 3f • 
<If, and so on. When the fractional part of xis zero, we can draw the piJu:l (x, y) that lies on 
tbe line, but when tbe fractional part of x is nonzero, we need to round up in order to get a 
pixel that lies strictly inside tbe line. When the fractional part of x becomes greater than I, 
we increment x and subtract I from tbe fractional part; we must also move I piliCI to tbe 
rig)lt. If we increment to lie eltactly on a pixel . we draw that pixel but must decrement the 
fraction by I to have it be less than I . 

We can avoid the use of fractions by keeping track only of the numerator of the fraction 
and observing that the fractional part is greater than I when the numerator is greater than 
the denominator. We implement this technique in the algorithm of Fig. 3.26, using the 
variable incremem to keep track of successive additions of the numerator until it 
"overflows" past the denominator, when the numerator is decremented by the denominator 
and x is incremented. 

We now develop a sam-line algorithm that takes advantage of this edge coherence and, 
for each scan line. keeps track of the set of edges it interseCtS and the intersection pointS in a 
data structure called the active-edge table (AET). The edges in the AET are soned on their x 
intersection values so that we can fill the spans defined by pairs of (suitably rounded) 
intersection values--that is, the span extrema. As we move to the next scan line at y + I , 
the AET is updated. First , edges currently in the AET but not intersected by this next scan 
line (i.e .. those whose y,... = y) are deleted. Second, any new edges intersected by this next 
sean line (i.e .. those edges whose y,. = y + I ) are added to the AET. Finally. new x 
intersections are calculated, using the preceding incremental edge algorithm, for edges that 
were in the AET but are not yet completed. 

,·old LeflEdgeScan ( In! xmin , In! ymin, lnt xma.r, lot ymax, lnt value) 
{ 

lnt y; 

lnt x = xmin; 
lot numerator= xmax - xmin~ 

lnt deMIIUnator = ymax - ymin; 
lnt int:f't'ment = denominator: 

for (y = ymin; y <= )'IIIQ.r, y++) { 
WritePixel (x, y , m/11e): 
incf't'ment += numercl/or; 

} 

If (incf't'melll > denominator) { 

} 

I• Overflow, so round up to next pixel and decrement the increment. • I 
x++; 
increment -= dtnomi11a1or. 

} / • LeflEdgeScan of 

Figure 3.26 Seen converting left edge of a polygon. 
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To make the addition of edges to the AET efficient, we initiaUy create a global edge 
table (ET) containing all edges sorted by their smaller y coordinate. The ET is typically 
built by using a bucket sort with as many buckets as there are scan lines. Within ench 
bucket, edges are kept in order of increasing x coordinate of the lower endpoint. Each entry 
in the ET contains the y_ coordinate of the edge, the x coordinate of the bottom endpoint 
(x..,), and thex increment used in stepping from one scan line to the next, 1/m. Figure 3.27 
shows how the six edges from the polygon of Fig. 3.22 would be sorted, and Fig. 3.28 
shows the AET at scan lines 9 and 10 for that polygon. (In an actual implementation, we 
,.oold probably add a Oag indicating left or right edge.) 

Once the ET has been formed. the processing steps for the scan-line algorithm are as 
follows: 

I. Set y to the smallest y coordinate that has an entry in the ET; i.e., y for the first nonempty 
bucket 

2. Initialize the AET to be empty 

3. Repeat until the AET and ET are empty: 

3.1 MOYe from ET bucket yto the AET tho6e edges whose >'- = y (entering edges). 

3.2 Remove from the AET those entries for which y• >'-(edges noc in"'OYed in the next 
scan line), then son the AET on x (made easier because ET is presocted). 

3.3 Fill in desired pixel values on scan line y by using pairs of xcoordinates from the AET 

3.4 Increment y by t (to the coordinate of the ne~t SC!ln line) 

3.5 For each nonvettical edge remaining in the AET, update x for the new y 

11 A 

10 .. 
9 A 

8 .t EF DE 
J!! .. 7 

I 6 

"' 5 

•17111 ..... .,."17H I . .a 1 .. CD 
tHi[ol aj 

4 .t FA 

3 tl 2lo l1l 
2 .t AS BC 

s 17111 J te_liltl al 
0 .t • £ -te 

~ e 

Fig. 3 .27 Bucket-sorted edge table for polygon of Fig. 3.22. 
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AET 
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Filling Ellipse Arcs 99 
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(a) 

AET 
pointer DE CD 

&111 1121 f I e>H 11 1131 0 I A 

(b) 

Fig. 3 .28 Active-edge table for polygon of Fig. 3 .22. (a) Scan line 9. (b) Scan line 10. 
(Note DEs x coordinate in (b) has been rounded up for that left edge.) 

This algorithm uses both edge coherence to calculate x intersections and scan-line 
coherence (along with sorting) to calculate spans. Since the sorting works on a small 
number of edges and since the resorting of step 3.1 is applied to a mostly or completely 
sorted list, either insertion son or a simple bubble son that is O(N) in this case may be u~. 

In Chapters 15 and 16, we see how to eJttend this algorithm to handle multiple polygons 
during visible-surface determination, including the case of handling polygons thnt arc 
transparent; in Chapter 17, we see how to blend polygons that overlap at a pixel. 

For purposes of scan conversion. triangles and trapez.oids can be treated as special 
cases of polygons, since they have only tv.'O edges for any scan line (given that horizontal 
edges are not scan-ronverted explicitly). Indeed, since an arbitrary polygon can be 
decomposed into a mesh of triangles sharing vertices and edges (see Exercise 3. 17), we 
could scan convert general polygons by first decomposing them into triangle meshes, and 
then scan converting the component triangles. Such triangulation is a classic problem in 
computational geometry fPREP85) and is easy to do for convex polygons; doing it 
efficiently for nonconvex polygons is difficult . 

Note that the calculation of spans is cumulative. That is. when the current iter.uion of 
the scan-ronversion algorithm in Step 3.5 generates multiple pixels falling on the same scan 
line. the span extrema must be updated appropriately. (Dealing with span calculations for 
edges that cross and for slivers takes a bit of special casing.) We can either compute all 
spans in one pass, then fill the spans in a second pass, or compute a span and fill it when 
completed. Another benefit of using spans is that clipping can be done at the same time as 
span arithmetic: The spans may be individually clipped at the left and right coordinates of 
the clip rectangle. Note that , in Section 15. 10.3 we use a slightly different 'wsion of span 
arithmetic to combine 30 solid objectS that arc rendened using "raytracing." 

3.7 FILLING ELLIPSE ARCS 

The same general strJtegy of calculating spans for each scan line cun be used for circles and 
ellipses as well. We accumulate span extrema for each iteration of the algorithm. rounding 
each extremum to ensure that 1he pixel is inside the region. As with scan con,"Cning the 
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Hy. 3.23 Active-edge tehlefor potmonofFig. 3.22. {at Sean line 5. [h] Scan line 10.
{Note We at coordinate in lb} has been rounded up for that left edge}

This algorithm uses both edge coherence to calculate it intersections and scan-line

ertltereasce [along with sorting] to calculate spans. Since the sorting marks on a small

mother of edges and since the resorting ol'step 3.1 is applied to a roost];r or completelyI

sorted list. either insertion sort or a simple huhhie son that is film in this case ma},r he used.

In Chapters 15 and lo. we see how to extend this algorithm to handle multiple polygons

during 1trisil:Ile-stit'l’ace detcnnination. including the case of handling polygons that are

entrapment: in Chapter l'i'. the see how to blend polygons that o~ertap at a pixel.

Forptn'pomofscan contusion. trianglesandtlspezoidsmn hen-satedssspeeisl

canolpotygms. since they hat-eonlytwoedges tinsrnrscan Iinetgitenthst horizontal

edges are not sun-converted exrflicitlyt. Indeed. since an attain-at}.r polygon can be

decomposed into a mesh ofo'iangtes sharing tedious and edges [see Exercise 3.”). use

could scan convert general polygons by first decomposing them into triangle meshes. and

then scan converting the component triangles. Such triangulation is a classic problem in

cooperation-at gentrietnr [FREPBS] and is ens}.r to do for cont-ex polygons; doing it

ellieiently for none-invert potygons is ditficult.

Note that the calculation ot'spans is cumulative. That is. when the cement iteration of

the sean-eonversion algorithm in Step3.5 generates multiple pixels fallingon the same scan

line. the anion extrema must he updated appropriately. [Dealing with span calculations for

edges that cross and for slivers takes a hit of speeial casing.) We can either eompute all

opens in one pass. then fill the spans in a second pass. or compute a span and fill it when

mpleted. Another benefit of using spans is that clippingcan bedone at tiresome time as

span arithmetic: The spans may be individually clipped at the left and right coordinates of

the clip rectangle. Note that. in Section 1.5.10.3 the use a slightly difl‘ereot torsion of span

arithmetic to combine SD solid objects that are rendered using “resuming."

3.? FILLING ELLIPSE ARCS

The samegeneral stonegy ofcalculsting spans foreaeh scan line can he used for circlesand

ellipses as well. We accumulate span extrema for each iteration of the algorithm. rounding

each extrcmurn to ensure that the pixel is inside the region. As with scan converting the
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Yi-R+ 1 

Yi- R 

(a) (b) 

[xmin • Xmaxl . R 1 1- + 

Fig. 3.29 Filling a circle with spans. (a) Three spans. (b) Span table. Each span is 
stored with its extrema. 

unfilled primitive, we can take advantage of symmetry to scan convert only one arc, being 
careful of region changes, especially for ellipses. Each iteration generates either a new pixel 
on the same scan line, thereby potentially adjusting the span extrema, or a pixel on the next 
scan line, starting the next span (see Fig. 3.29). To determine whether a pixel Plies inside 
the region, we simply check the sign of the function F(P) and choose the next pixel over if 
the sign is positive. Clearly, we do not want to evaluate the function directly, any more than 
we wanted to evaluate the function F(M) at the midpoint directly; we can derive the value of 
the function from that of the decision variable. 

Since we know that a scan line crosses the boundary only twice, we do not need any 
equivalent of an edge table, and we maintain only a current span. As we did for polygons, 
we can either make a list of such spans for each scan line intersecting the primitive and then 
fill them after they have all been computed, or we can fill each one as it is completed-for 
example , as soon as they value_ is incremented. 

The special case of filled wedges should be mentioned. The first problem is to calculate 
the intersection of the rays that define the starting and ending angles with the boundary, and 
to use those to set the starting and ending values of the decision variable. For circles we can 
do this calculation by converting from rectangular degrees to circular degrees, then using 
(Round(R cosO), Round(R sinO)) in the midpoint formula. The perimeter of the region to 
scan convert, then, consists of the two rays and the boundary arc between them. Depending 
on the angles, a scan line may start or end on either a ray or the boundary arc, and the 
corresponding incremental algorithms, modified to select only interior pixels, must be 
applied (see Exercise 3.19). 

3.8 PATTERN FILLING 

In the previous sections, we filled the interiors of SRGP's area-defining primitives with a 
solid color by passing the color in the value field of the WritePixel procedure. Here, we 
consider filling with a pattern, which we do by adding extra control to the part of the 
scan-conversion algorithm that actually writes each pixel. For pixmap patterns, this control 
causes the color value to be picked up from the appropriate position in the pixmap pattern, 

TEXAS INSTRUMENTS EX. 1009 - 123/1253



3.8 Pattern Filling 101 

as shown nCltt. To write bitmap panerns U'ansparently, we do a Write Pixel with foreground 
color at a pixel for a I in the panern, and we inhibit the WritePixel for a 0, as with line style. 
lf, on the other hand, the bitmap pattern is applied in opaque mode, the Is and Os select 
foreground and ba.ckground color, respectively. 

The main issue for filling with pauerns is the relation of the area of the pattern to that of 
the primitive. In other words, we need to decide where the pauern is " anchored'' so thm we 
know which pixel in the pattern corresponds to the current pixel of the primitive. 

Tile first technique is to anchor the pattern at a ver!Clt of a polygon by placing the 
leftmost pixel in the pattern's first row there. This choice allows the panem to mO\-e when 
the primitive is mO\'Cd, a visual effect that would be Cltpected for panerns with a strong 
geometric organization, such as the cross-hatches often used in drafting applications. But 
there is no distinguished point on a polygon that is obviously right for such a relative 
anchor, an,d no distinguished points at all on smoothly varying primitives such as circles nod 
ellipses. Therefore, the programmer must specify the anchor point as a point on or within 
the primitive. In some systems, the anchor point may even be applied to a group of 
primitives. 

Tile second technique, used in SRGP, is to consider the entire screen as being tiled with 
the pauem and to think of the primitive as consisting of an oulline or filled area of 
transparent bits that let the pattern show through. The standard position for such an absolute 
anchor is the screen origin. The pixels of the primitive are then treated as Is that are anded 
with the panern. A side effect of this technique is that the pattern does not "stick to" the 
primitive if the primitive is moved slightly. Instead, the primitive moves as though it were a 
cutout on a fixed , patterned background, and thus its appearance may change as it is moved; 
for regular patterns without a strong geometric orientation, users may not even be awJre of 
this effect. In addition to being computationally efficient, absolute anchoring allows 
primitives to overlap and abut seamlessly. 

To apply the pattern to the primitive, we indClt it with the current pixel's (x, y) 
coordinates. Since patterns are defined as small M by N bitmaps or pix_maps, .,.-e use 
modular arithmetic to make the pattern repeat. The pall~rn[O, OJ pixel is considered 
onincident with the screen origin,7 and we can write , for example, a bitmap pattern in 
transparent mode with the statement 

lf (pattern(.< % M] [y % N]) 
WritePixel (x, y, value): 

lf we are filling an entire span in replace write mode, we can copy a whole row of the 
pattern at once, assuming a low-level version of a copyPixel facility is available to write 
multiple pixels. Let's say, for example, that the pattern is an 8 by 8 matriJt. It thus repea~~ 
for every span of 8 pixels. lf the leftmost point of a span is byte-aligned-that is, if the x 
value of the first pixel mod 8 is 0--then the entire first row of the pattern can be written out 
with a copy Pixel of a I by 8 array; this procedure is repeated as many times as is necessary 
to fill the span. If either end of the span is not byte-aligned, the pixels not in the span must 
be masked out. lmplementors spend much time making special cases of raster algorithms 
particularly efficient; for Cltample, they test up-front to eliminate inner loops, and they write 

' In window systems. the pattern is often anchored at the origin of the .,.;ndow coordinate system. 
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hand-tuned assembly-language code for inner loops that lllkes advan1age of special 
hardware features such as instruction caches or particularly efficient loop instructions. This 
type of optimization is discussed in Chapter 19. 

3.8 .1 Pattern Filling Without Repeated Scan Conversion 

So far, we have discussed filling in the context of scan conversion. Another technique is to 
scan convert a primiti"'! first into a rectangular ~rk area, and then to write each pixel from 
that bitmap to the appropriate place in the canvas. This so-called rectangle write to the 
canvas is simply a nested for loop in which a I writes the current color and a 0 writes 
nothing (for transparency) or writes the background color (for opacity). This two-step 
process is twice as much v..'Ork us filling during scan conversion. and therefore is not 
worthwhile for primitives that arc encountered and scan-converted only once. It pays off, 
however. for primitives that would otherwise be scan-converted repeatedly. This is the case 
for characte.rs in a given font and size. which can be scan-converted ahead of time from their 
outlines. For characters defined only as bitmap fonts , or for other objects, such as icons and 
application symbols, that are painted or scanned in as bitmap images, scan conversion is 
not used in any case, and the rectangle write of their bitmaps is the only applicable 
technique. The advantage of a p~n-convcrted bitmap lies in the fact that it is clearly 
faster to write each pixel in a rectangular region, without having to do any clipping or span 
arithmetic, than to scan convert the primitive each time from scratch while doing such 
clipping.8 

But since we have to write a rectangular bitmap into the canvdS, why not just copyPixel 
the bitmap directly, rather than writing I pixel at a time? For bilevcl displays, writing 
current color I. copyPixel ~rks line: For tranSparent mode, we use or write mode: for 
opaque mode, we use replace write mode. For multilevel displays, we cannot write the 
bitmap directly wilh a single bit per pixel , but must convert each bit to a full n·bit color 
value that is then wrinen. 

Some systems have a more powerful copyPillelthat can make copying subject to one or 
more source-read or destination-write masks. We can make good use of such a faci lity for 
ll'ansparcnt mode (used tor characters in SRGP) if we can specify !he bitmap as a 
destination-write mask and the source as an array of constant (current) color. Then, pixels 
are written in the current color only where !he bitmap write mask bas Is; the bitmap write 
mask actS as an arbitrary clip region. lo a sense, the explicit nested for loop for 
implementing the rec1angle write on n-bit~·per-pixel systems simulates this more powerful 
"copy Pixel wilh write mask" facility. 

Now consider another variation. We wish to draw a filled leuer, or some other shape, 
not with a solid interior but with a patterned one. For example, we ~ld like to create a 
thick letter " P" with a 50 percent gray stipple pattern (graying out the character) , or a 
house icon with a two-tone brick-and-mortar pattern. How can we write such an object in 
opaque mode without having to scan convert it each time? The problem is that "holes" 
interior to the region where there are Os in the bitmap should be wriuen in background 
color, whereas holes outside the region (such as !he cavity in the " P") must still be written 

1There are added complicarions in the case of antialiasing, as discussed in Chapter 19. 
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tranSparently so as not to affect the image underneath. In other words, we want Os in the 
shape's interior to signify background color, and Os in its exterior, including any cavities, to 
belong to a write mask used to protect pixels outside the shape. If we scan convert on the 
fty, the problem that the Os mean different things in different regions of the bitmap does not 
arise, because we neYer look at pixels outside the shape's boundary. 

We use a four-step process to avoid repeated scan conversion, as shown in the mountain 
scene of Fig. 3.30. Using the outline of our icon (b), the first step is to create a "solid" 
bitmap to be used as a write mask/clipping region, with pixels interior to the object set to 
Is, and those exterior set to Os; this is depicted in (c), where white represents background 
pixels (Os) and black represents Is. This scan convers.ion is done only once. As the second 
step, any time a patterned copy of the object is needed, we write the solid bitmap 

D 
(a) (b) 

(C) 

(d) 

(e) 

(f) (g) 

Fig. 3.30 Writing a patterned object in opaque mode with two transparent writes. (a) 
Mountain scene. (b) Outline of house icon. (c) Bitmap for solid version of house 
icon. (d) Clearing the scene by writing background. (e) Brick pattern. (f) Brick pattern 
applied to house icon. (g) Writing the screen transparently with patterned house icon. 
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3.! Pattern Filling 1 O3

nmpuentiy so as not to affect the image underneath. in other needs. we want {is in the

shape's interior to signily background color. and {is in its exterior. including any cavities. tn

[56mg to a write mask used to protect pixels outside the shape. if we scan convert on the

fly. the problem that the (is mean different things in different regions of the bitmap does not

rise. because we nete-r look at piseis outside the shape's boundary.

We use a four-step process to moid repeated scan contention. as shown in the mountain

seette of Fig. 3.33. Using the outline of our icon till. the first step is to create a ”solid"

bitmap to be used as a write maskiclipping region. with pixels interior to the object set to

ls. and those exterior set to Us: this is depicted in ici. where white represents background

pixels {0s} and black represents is. This scan conversion is done only once. As the second

m. anyr time a patterned copy of the object is needed. we write the solid bitmap

ibi

"\
d]

iii!

i   
flk

Fig. 3.30 Writing a patterned object in opaque mode with two transparent writes. la:-
Mountsln scene. ibi {Janine of house teen. is] Bitmap tor solid version of house

icon. [d1 Ciearing the scene by writing background. is} Brick pattern. [f1 Brick pattern

applied to house icon. lg} Writing the screen transparently with patterned house icon.
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transparently in background color to the canvas. This clears to background color a region of 
the shape of the object, as shown in (d). where the house-shaped region is set to white 
background within the existing mountain image. The third step is to create a panerned 
version of the object's solid bilmap by doing a copy Pixel of u pattern rectangle (e) to the 
solid bitmap. using and mode. This turns some pixels internal to the object's shape from Is 
to Os (f). and can be seen as clipping out a piece of the arbitrari ly large pattern in the shape 
of the object. Finally, we again write this new bitmap transparently to lhe same place in the 
canvas. but this time in lhe current, foreground color, as shown in (g). As in lhe first write 
to the canvas. all pixels outside the object's region are Os. to protect pixels outSide the 
region. whereas Os inside the region do not affect the previously written (white) 
background; only where there are Is is the (black) foreground written. To write the house 
wilh a solid red-brick panem with gmy mortar, we would write the solid bitmap in gray and 
the patterned bitmap in red; the pattern would have Is everywhere except for small bands of 
Os representing the mortar. In effect. we have reduced the rectangular write procedure that 
had to write two colors subject to a write mask to two write procedures that write 
transparently or copy Pixel wilh a write mask. 

3.9 THICK PRIMITIVES 

Conceptually. we produce thick prtmtllves by tracing the sean-converted single-pixel 
outline primitive. We place the center of a brush of a specified cross-section (or another 
di•tinguished J>Oint , such as the upper-left corner of a rectangular brush) at each pixel 
chosen by the scan-conversion :tlgorithm. A single-pixel-wide line can be conceived as 
being drawn with a brush the size of a single pixel. However. this simple description masks 
a number of tricky questions. First. what shape is the brush? Typical implementations use 
circular and rectangular brushes. Second, what is the orientation of a noncircular brush? 
Does the rectangular pen always stay upright. so thatlhe brush has constant width, or does it 
turn as the primitive turns. so that the vertical axis of the brush is aligned with the tangent to 
the primitive? What do the ends of a thick line look like, both ideally and on the integer 
grid'~ What happens at the vertex of a thick polygon? How do line style and pen style 
interact'/ We shall answer the simpler questions in this section, and the others in Chapter 19. 

There are four basic methods for drawing thick primitives, illustrated in Figs. 3.31 
through 3.36. We show the ideal primitives for these lines in black-on-white outline; the 
pixels genemted to define the 1-pixel-thick scan-converted primitive in black; and the pixels 
added to form the thick primitive in gray. The reduced-scale versions show what the thick 
primitive actually looks like at still mtber low resolution, with all pixels set to black. The 
first method is a crude approximation that uses more than I pixel for each column (or row) 
during scan conversion. The second trJces the pen's cross-section along the single-pixel 
outline of the primitive. The third draws two copies of a primitive a thickness r apart and 
fills in the spans between these inner and outer boundaries. The fourth approximates all 
primitives by polylines and then uses a thick line for each polyline segment. 

Let's look briefly at each of these methods and consider its advantages and 
disadvantages. All the methods produce effectS thai are satisfactory for many, if not most, 
purposes, at least for viewing on the screen. For printing. the higher resolution should be 
used to good advantage, especially since the speed of an algorithm for printing is 001 as 
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critical as for online primitive generation. We can then use more complex algorithms to 
produce better-looking resultS. A package may even use different techniques for different 
primitives. For example, QuickDraw traces an upright rectangular pen for lines. but fills 
spans between confocal ellipse boundaries. 

3.9 . 1 Replicating P ixels 

A quick extension to the scan-conversion inner loop to write multiple pixels at each 
computed pixel works reasonably well for lines: here, pixels are duplicated in columns for 
lines with -I <slope < I and in rows for all other lines. The effect, however, is that the 
line ends are always vertical or horizontal, whicb is not pleasing for rather thick lines , as 
Fig. 3.3 1 shows. 

The pixel-replication algorithm also produces noticeable gaps in places where line 
segments meet at an angle, and misses pixels where there is a shift from horizontal to 
vertical replication as a function of the slope. This Iauer anomaly shows up as abnormal 
thinness in ellipse arcs at the boundaries between octants. as in Fig. 3.32. 

Funhermore, lines that are horizontal and venical have a different thickness from lines 
at an angle. where the thick11ess of the primitive is defined as the distaoce between the 
primitive's boundaries perpendicular toiLS tangent. Thus, if the thickness parameter is t , a 
horizontal or venical line has thickness t, whereas one drawn at 45" has an average 
thickness of 11V2. This is another result of having fewer pixels in the line at an angle, as 
first noted in Section 3.2.3; it decreases the brightness contrast with horizontal and "':rtical 
lines of the same thickness. Still another problem with pixel repl ication is the generic 
problem of even-numbered widths: We cannot center the dupl icatcd column or row about 
the selected pixel, so we must choose a side of the primitive to have an "extra" pixel. 
Altogether, pixel replication is an eflicient but crude approximation that works best for 
primitives that are not very thick. 

3.9 .2 The Moving Pen 

Choosing a rectangular pen whose center or comer tra"':IS along the single-pixel outline of 
the primitive works reasonably well for lines; it produces the line shown in Fig. 3.33. 
Notice that this line is similar to that produced by pixel replication but is thicker at the 
endpoints. As with pixel replication, because the pen stays vertically aligned, r.he perceived 
thickness of the primitive varies as a function of the primitive's angle, but in r.he opposite 

Fig. 3.31 Thick line drawn by column replication. 
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critical as for online primitive generation. “lie can then use more complex algorithms to

produce better-limiting results. A package ma},r even use different techniques For diflerent

primitives. For example. QuickDraw traces an upright rectangular pen for lines. but lills

spans belt-teen confocal ellipse boundaries.

3.9.1 Replicating Finale

A quick extension to the scan-conversion inner loop to write multiple pisels at each

computed pixel works reasonany well for lines; here. pixels are duplicated in columns for

Hm with ~—l s: slope: st: I and in rates Forall od‘terlines. Theefl'ect. lithium. islhal the

line ends are always vertical or horircntal. which is not pleasing for rather thick lines. as

Fig. 3.3” shows.

The pisel-replimtion algorithm also produces noticeable gaps in places where line

segments meet at an angle. and misses pixels where there is a shift from horizontal to

vertical replication as a function of the slope. This latter anomalyr shows up as abnormal

thinness in ellipse arcs at the boundaries between octanls. as in Fig. 3.32.

Furthermore. lines that are mrimntal and vertical have a different thickness from lines

at an angle. “here the lithium or the primiti‘te is defined as the distance between the

primitivc's btmndaries perpendicular to its tangent. Thus. if the thickness parameter is r. a

Mini or tertical line has thickness r. whereas one drawn at 45" has an average

thickness of n'VE. This is another result of having fetter pixels in the line at an angle. as
first noted in Section 3.2.3: it decreases the brightness contrast with horizontal and vertical

lines of the same thickness. Still another problem with pittel replication is the generic

problem of men-numbered widths: We cannot center the duplicated column or row about
the selected pisel. so we must classic a side ut' the primitise to have an “extra" pisel.

Hanged-tar. pixel replication is an ellicient hut crude apprusimation that marks best [or

primitives that are not very thick.

19.! The Moving Pen

Chewing a rectangular pen whose center or comer travels along the single-pixel outline of

the primitive nurlts reasonahl}.r well for lines: it produces the line shown in Fig. 3.33.

Notice that this line is similar to that produced by pixel replication but is thicker at the

endpoints. As with pixel replication. because the pen stays verticallyI aligned. the perceived

thickness of the primitive varies as a function of the primitive‘s angle. but in the opposite

 
Fig. 3.31 Track line drawn by column replication.
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0 
Fig. 3 .32 Thick circle drawn by column replication. 

way: The width is thinnest for horiz.ontal segments and thickest for segments with slope of 
±I. An ellipse arc, for example, varies in thickness along its entire trajectory, being of the 
specified thickness when the tangem is nearly horiz.ootal or vertical , and thickened by a 
factor of V2 around ± 45° (see Fig. 3.34). This problem would be eliminated if the square 
turned to follow the path, but it is much better to use a circular cross-section so that the 
thickness is angle-independent. 

Now let's look at how to implement the moving-pen algorithm for the simple case of an 
upright rectangular or circular cross-section. The easiest solution is to copyPillel the 
required solid or patterned cross-section (also called footprint) so that its center or comer is 
at the chosen pixel; for a circular footprint and a pattern drawn in opaque mode, we must in 
addition mask off the bits outside the circular region, which is not an easy task un.less our 
low-level copyPixel has a write mask for the destination region. The brute-force copy Pixel 
solution writes pixels more than once, since the pen's footprints overlap at adjacent pixels. 
A better technique that also handles th.e circular-cross-section problem is to use the spans of 
the footprint to compute spans for successive footprints at adjacent pixels. As in filling 

Fig. 3.33 Thick line drawn by tracing a rectangular pen. 
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Fig. 3.32 Thick circle drawn by column replication.

way: The width is thinnest for horizontal segments and thickest for segments with slope of

i E. An ellipse are, for example, varies in thickness along its entire trajectory. being of the

specified thickness when the tangent is nearly.r horizontal or vertical. and thickened by a
factor of V3 around :45” [see Fig. 3.34}. This problem would be eliminated ifthe square
turned to follow the path. but it is much better to use a circular cross-section so that the

thickness is angle-independent.

Now let's look at how to implement the moving-pen algorithm for the simple case of an

upright rectangular or circular cross—section. The easiest solution is to copyPisel the

required solid or patterned cross-section (also called footprint] so that its center or corner is
at the chosen pixel; for a circular footprint and a pattern drawn in opaque mode, we must in

addition mas}: off the bits outside the circular region. which is not an easyr task unless our

low-level copyf’iscl has a write mask for the destination region. The brute-force copyPisel

solution writes pixels more than once. since the pen's footprints overlap at adjacent pixels.

A better technique that also handles the circular-cross-section problem is to use the spans of

the footprint to compute spans for successive footprints at adjacent pixels. As in filling

 
Fig. 3.33 Thick line drawn by tracing a rectangular pen.
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0 
Fig. 3.34 Thick circle drawn by t racing a rectangular pen. 

area-defining primitives, such combining of spans on a raster line is merely a union or 
merge of line segments, entailing keeping track of the minimum and maximum x of the 
accumulated span for each raster line. Figure 3. 35 shows a sequence oft~ positions of the 
rectangular footprint and a portion of the temporary data structure that stores span extremes 
for each scan line. Each scan-line bucket may contain a list of spans when a thick polygon or 
ellipse arc is intersected more than once on a scan line, much like the active-edge table for 
polygons. 

3.9.3 Filling Areas Between Boundaries 

The third method for displaying a thick primitive is to construct the primitive's inner and 
outer boundary at a distance t/2 on either side of the ideal (single-pixel) primitive trajectory. 
Alternatively, for area-defining primitives, we can leave the original boundary as the outer 
boundary, then draw the inner boundary inward. This filling technique bas the advantage of 
handling both odd and even thicknesses, and of not increasing the extent of a primitive 
when the primitive is thickened. The disadvantage of this technique, however, is that an 
area-defining primitive effectively "shrinks" a bit , and that its "center line," the original 
1-pixel outline, appears to shift. 

A thick line is drawn as a rectangle with thickness t and length of the original line. 
Thus , the rectangle's thickness is independent of the line's angle, and the rectangle's edges 
are perpendicular to the line. ln general, the rectangle is rotated and its vertices do not lie 
on the integer grid; thus, they must be rounded to the nearest pixel , and the resulting 
rectangle must then be scan-converted as a polygon. 

To create thick circles, we scan convert t~ circles, the outer one of radius R + t/2, the 
inner one of radius R - t/2, and fill in the single or double spans between them, as shown in 
Fig. 3.36. 
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Fig. 3 .36 Recording spans of the rectangular pen: (a) footprint at x = j + 1; 
(b) X • j + 2. 

For ellipses, the situation is not nearly so simple. It is a classic result in differential 
geometry that the curves formed by moving a distance tn perpendicular to an ellipse are not 
confocal ellipses, but are described by eighth-order equations (SALM96].' These functions 
are computationally expensive to scan convert; therefore, as usual, we approximate. We 
scan convert two confocal ellipses, the inner with scmidiameters a - 112 and b - t/2, the 
outer with scmidiameters a + t/2 and b + t/2. Again, we calculate spans and fill them in, 
either after all span arithmetic is done, or on the fly. The standard problems of thin ellipses 
(treated in Chapter 19) pertain. Also, the problem of generating the inner boundary, noted 
here for ellipses, also can occur for Other primitives supported in raster graphics packages. 

•The eighth-«der curves so generated may have self-intersections or cusps, as may be seen by 
COR5fructing the normal lines by hand. 
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0 
Fig. 3.36 Thick circle drawn by filling between concentric circles. 

3.9 .4 Approximation by Thick Polylines 

We can do piecewise-linear approximation of any primitive by computing points on the 
boundary (with floating-point coordinates), then connecting these points with line segments 
to form a poly! ine. The advantage of this approach is that the algorithms for both line 
clipping and line scan conversion (for thin primitives) , and for polygon clipping and 
polygon scan conversion (for thick primitives), are efficient. Naturally, the segments must 
be quite short in places where the primitive changes direction rapidly. Ellipse arcs can be 
represented as ratios of parametric polynomials, which lend themselves readily to such 
piecewise-linear approximation (see Chapter II). The individual line segments are then 
drawn as rectangles with the specified thickness. To make the thick approximation look 
nice, however, we must solve the problem of making thick lines join smoothly, as discussed 
in Chapter 19. 

3.10 LINE STYLE AND PEN STYLE 

SRGP's line-style atribute can affect any outline primitive. ln general , we must use 
conditional logic to test whether or not to write a pixel , writing only for Is. We store the 
pattern write mask as a string of 16 booleans (e.g. , a 16-bit integer); it should therefore 
repeat every 16 pixels. We modify the unconditional WritePixel statement in the line 
scan-conversion algorithm to handle this; for example, 

If (bitstring[i % 1.6]) 
WritePixel (x, y, value); 

where the index i is a new variable incremented in the inner loop for this purpose. There is a 
drawback to this technique , however. Since each bit in t.he mask corresponds to an iterat.ion 
of the loop, and not to a unit distance along the line, the length of dashes varies with the 
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Fig. 3.35 Thicir. circle drawn by filling between concentric circles.

3.9.4 Approximation by Thick Polylines

We can do piecewise—linear approximation of any primitive by computing points on the

boundary [with floating-point coordinates}. then connecting these points with line segments

to Form a polyline. The advantage of this approach is that the algorithms for both line

clipping and line scan conversion {for thin primitives}, and for polygon clipping and

polygon scan conversion {for thick primitives}. are efficient. Naturally. the segments must

be quite short in places where the primitive changes direction rapidly. Ellipse arcs can be

represented as ratios of parametric polynomials. which lend themselves readily to such

piecewise-linear approximation [see Chapter ii]. The individual line segments are then

drawn as rectangles with the specified thicknefis. To make the thick approaimation limit

nice. however. we must solve the problem of making thick lines join smoothly. as discussed

in Chapter l9.

3.1!} LINE STYLE AND PEl'iI STYLE

SRGP‘s line—style atribute can aflect any outline primitive. In general. we must use

conditional logic to [cst whether or not to write a pixel. writing only for Is. We store the

pattern write mask as a string of to bouleans te.g.. a lo-hit integer}: it should therefore

repeat every to pixels. We modify the unconditional WritePixel statement in the line

scan—conversion algorithm to handle this: for example.

if {biirrtrt'rtgfi £17 In];

WtitePisel (I. y. value]:

where the index i is a new 1variable incremented in the inner loop for this purpose. There is a

drawback to this technique. hot-sever. Since each bit in the mask corresponds to an iteration

of the loop, and not to a unit distance along the line. the length of dashes varies with the
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angle of the line; a dash at an angle is longer than is a horizontal or vertical dash. For 
engineering drawings, this variation is unacceptable, and the dashes must be calculated and 
sean-converted as individual line segments of length invariant with angle. Thick lines are 
created as sequences of alternating solid and transparent rectangles whose vertices are 
calculated exactly as a function of the line style selected. The rectangles are then 
sean-converted individually; for horizontal aod vertical lines, the program may be able to 
copyPixel the rectangle. 

Line style and pen style interact in thick outline primitives. The line style is used to 
calculate the rectangle for each dash, and each rectangle is filled with the selected pen 
pattern (Fig. 3.37). 

3.11 CLIPPING IN A RASTER WORLD 

As we noted in the introduction to this chapter. it is essential that both clipping and scan 
conversion be done as rapidly as possible, in order to provide the user with quick updates 
resulting from changes to the application model. Clipping can be done analytically, on the 
fly during sean conversion. or as part of a copy Pixel with the desired clip rectangle from a 
canvas storing unclipped primitives to the destination canvas. This third technique would be 
useful in situations where a large canvas can be generated ahead of time, and the user can 
then examine pieces of it for a significant period of time by panning the clip rectangle, 
without updating the contents of the canvas. 

Combining clipping and scan conversion , sometimes cal led scissori11g, is easy to do for 
filled or thick primitives as part of span arithmetic: Only the extrema need to be clipped, 
and no interior pixels need be examined. Scissoring shows yet another advantage of span 
coherence. Also. if an outline primitive is not much larger than the cUp rectangle, not many 
pixels, relatively speaking, wi ll fall outside the clip region. For such a case, it may well be 
faster to generate each pixel and to clip it (i.e., to write it conditionally) than to do 
analytical clipping beforehand. In particular, although the bounds test is in the inner loop, 
the expensive memory write is avoided for exterior pixels, and both the incremental 
computation and the testing may run entirely in a fast memory, such as a CPU instruction 
cache or a display controller's microcode memory. 

------.... ~-- -., 
l ~ 
t I 

' ;' ~.... , ______ ... 

Fig. 3.37 Combining pen panern and line style. 
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Other tricks may be useful. For example, one may " home in" on the intersection of a 
line with a clip edge by doing the standard midpoint scan<Onversion algorithm on every ith 
pixel and testing the chosen pixel against the rectangle bounds until the first pixel that lies 
inside the region is encountered. Then the algorithm has to back up, find the first pixel 
inside, and to do the normal scan conversion thereafter. The last interior pixel could be 
similarly determined. or each pixel could be tested as part of the s<:an<Onversion loop and 
scan conversion stopped the first time the test failed. Testing every eighth pixel works well , 
since it is a good compromise between having too many tests and too many pixels to baclc up 
(see Exercise 3.26). 

For graphics packages that operate in floating point, it is best to clip analytically in the 
ftoating-point coordinate system and then to scan convert the clipped primitives, being 
careful to initialize decision variables correctly, as we did for lines in Section 3.2.3. For 
integer graphics packages such as SRGP, there is a choice between preclipping and then 
scan converting or doing clipping during scan conversion. Since it is relatively easy to do 
analytical clipping for lines and polygons, clipping of those primitives is often done before 
scan com-ersion, while it is faster to clip other primitives during scan conversion. Also, 
it is quite common for a floating-point graphics package to do analytical clipping in its coor· 
dinate system and then to call 1~-er-level s<:an<Onversion software that actually generates 
the clipped primitives; this integer graphics software could then do an additional raster clip 
to rectangular (or even arbitrary) window boundaries. Because analytic clipping of primi
tives is both useful for integer graphics packages and essential for 20 and 30 floating· 
point grnphics packages, we discuss the basic analytical clipping algorithms in this chapter. 

3.12 CLIPPING LINES 

This section treats analytical clipping of lines against rectangles;10 algorithms for clipping 
other primitives are handled in subsequent sections. Although there are specialized 
algorithms for rectangle and polygon clipping, it is important to note that SRGP primitives 
built out of lines (i.e., polylines, unfilled rectangles, and polygons) can be clipped by 
repeated application of the line clipper. Furthermore, circles and ellipses may be piecewise
linearly approximated with a sequence of very short lines, so that boundaries can be treated 
as a single polyline or polygon for both clipping and scan conversion. Conics are 
represented in some systems as rnt ios of parametric polynomials (see Chapter II), a 
representation that also lends itself readily to an incremental , piecewise Linear approxima· 
tion suitable for a line-dipping algorithm. Clipping a rectangle against a rectangle results in 
at most a single rectangle. Clipping a convex polygon against a rectangle results in at most a 
single oonvex polygon, but clipping a concave polygon may produce more than one concave 
polygon. Clipping a circle or ellipse against a rectangle resul tS in as many as four arcs. 

Lines intersecting a rectangular clip region (or any convex polygon) are always clipped 
to a single line segment; lines lying on the clip rectangle's border ure considered inside and 
hence arc displayed. Figure 3.38 shows severn! examples of clipped lines. 

10This chapter docs 1t01 cxwer clipping primi1h-es 10 multiple rectangles (as when windows 0\'erlap in a 
windowing system) or to nonrectangubr regions; the laner topic is discussed briefly in Section 
19.7. 
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Fig. 3.38 Cases for clipping lines. 

3.12.1 Clipping Endpoints 

D' 

riJ1" G' 

(b) 

Before we discuss clipping lines, let' s look at the simpler problem of clipping individual 
points. Lf the x coordinate boundaries of the clip rectangle are at x....., and x....,, and they 
coordinate boundaries are at Ymin andy.,.., then four inequalities must be satisfied for a point 
at (x, y) to be inside the clip rectangle: 

xmlo < X < x,.,, Ymin s y :$ Ymax · 

If any of the four inequalities does not hold , the point is outside the clip rectangle. 

3 .12.2 Clipping lines by Solving Simultaneous Equations 

To clip a line, we need to consider only its endpoints, not its infinitely many interior points. 
If both endpoints of a line lie inside the clip rectangle (e.g., AD in Fig. 3 .38), the entire line 
lies inside the clip rectangle and can be rrivially accepted. Lf one endpoint lies inside and 
one o utside (e.g. , CD in the figure), the line intersects the clip rectangle and we must 
compute the intersection point. If both endpoints are outside the clip rectangle, the Line may 
(or may not) intersect with the clip rectangle (EF , GH, and IJ in the figure), and we need to 
perform further calculations to determine whether there are any inte.rsections, and if there 
are, where they occur. 

The brute-force approach to clipping a line that cannot be trivially accepted is to 
intersect that line with each of the four c lip-rec tangle edges to see whether any intersection 
points lie on those edges; if so, the line cuts the clip rectangle and is partially inside. For 
each line and clip-rectangle edge, we therefore take the two mathematically infinite lines 
that contain them and intersect them. Next, we test whether this intersection point is 
" interior" -that is, whether it lies within both the clip rectangle edge and the line; if so, 
there is an intersection with the clip rectangle. In Fig. 3.38, intersection points 0' and H' 
are interior, but I' and J' are not. 

When we usc this approach , we must solve 1wo simultaneous equations using 
multiplication and division for each <edge, line> pair. Although the s lope-intercept 
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Fig. 3.33 Cases for clipping tines.

 3.12.1 Clipping Endpoints

Before we discuss clipping lines. |et*s look at the simpler problem of clipping individual

points. if the Jr coordinate boundaries of the clip rectangle are at 1min and 1m: and the y

coordinate boundaries are at ym and ym. then four ineqaalities must he satisfied for a point

at it. y} to be inside the clip rectangle:

Imfixixrnutfmsngm~

if any of the four inequalities does not hold. the point is outside the clip rectangle.

3.12.2 Clipping Lines by Solving Simultaneous Equations

To clip a line. we need to consider only its endpoints. not its infinitely many interior points.

If truth endpoints of a line lie inside the clip rectangle [e.g. . AB in Fig. 3.33}. the entire line

lies inside the clip rectangle and can be trivially accepted. If one endpoint lies inside and

one outside {e.g.. CD in the figure]. the line intersects the clip rectangle and we must

compute the intersection point. Ifboth endpoints are outside the clip rectangle. the line may

[or may not} intersect with the clip rectangle (HF. GH. and H in the figure]. and we need to

periorm ftnther calculations to determine whether there are any intersections. and if there
are. where they occur.

The brute-force approach to clipping a line that cannot be trivially accepted is to

intersect that line with each of the low clip~rectangle edges to see whether any intersection

points lie on those edges; if so. the line cuts the clip rectangle and is partially inside. For

each line and clip-rectangle edge. we thereftne talte the two mathentatically infinite lines
that contain them and intersect them. Next. we test whether this intersection point is

”interior“—that is. whether it lies within both the clip rectangle edge and the line: if so.

there is an intersection with the clip rectangle. In Fig. 3.38. intersection points 5" and H"
are interior. but i" and J” are not.

When we use this approach, we must solve [Ml simultaneous equations using

multiplication and division for each {edge line} pair. Although the slope-intercept
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formula for lines learned in analytic geometry could be used , it describes infinite lines , 
whereas in graphics and clipping we deal with finite lines (called line segmellls in 
mathematics). ln addition, the slope-intercept formula does not deal with vertical lines-a 
serious problem, given our upright clip rectangle. A parametric formulation for line 
segments solves both problems: 

x = x0 + 1(X1 - JCo), y = Yo + 1(y• - Yo). 

These equations describe (x, y) on the directed line segment from (x0, y0) to (x1, y 1) for the 
parameter 1 in the range [0, I], as simple substitution for 1 confim1s. Two sets of 
simultaneous equations of this parametric form can be solved for parameters l..tge for the 
edge and 1..., for the line segment. The values of 1,.... and 111.,. can then be checked to see 
whether both lie in [0, I]; if they do, the intersection point lies within both segments and is 
a true clip-rectangle intersection. Furthermore, the special case of a line parallel tO a 
clip-rectangle edge must also be tested before the simultaneous equations can be solved. 
Altogether, the brute-force approach involves considerable calculation and testing; it is thus 
inefficient. 

3.12.3 The Cohen- Sutherland Line-Clipping Algorithm 

The more efficient Cohen-Sutherland algorithm performs initial tests on a line to determine 
whether intersection calculations can be avoided. First, endpoint pairs are checked for 
trivial acceptance. If the line cannot be trivially accepted, region checks are done. For 
instance, two simple comparisons on x show that both endpoints of line EF in Fig. 3.38 
have an x coordinate less than X...n and thus lie in the region to the left of the clip rectangle 
(i.e., i.n the outside halfplane defined by the left edge); therefore, line segment EF can be 
trivially rejeaed and needs to be neither clipped nor displayed. Similarly, we can trivial· 
ly reject lines with both endpoints in regions to the right of x_., below Ymm• and above 
y...,. 

lf the line segment can be neither trivially accepted nor rejected, it is divided into two 
segments at a clip edge, so that one segment can be trivially rejected. Thus, a segment is 
iteratively clipped by testing for trivial acceptance or rejection, and is then subdivided if 
neither test is successful, until what remains is completely inside the clip rectangle or~ be 
trivially rejected. The algorithm is particularly efficient for two common cases. In the first 
case of a large clip rectangle enclosing all or most of the display area, most primitives can be 
trivially accepted.ln the second case of a smal l clip rectangle, almost all primitives can be 
trivially rejected. This latter case arises in a standard method of doing pick correlation in 
which a small rect.angle surrounding the cursor, called the pick window, is used to clip 
primitives to determine which primitives lie within a small (rectangular) neighborhood of 
the cursor's pick poim (see Section 7.12.2). 

To perform trivial accept and reject tests, we extend the edges of the clip rectangle to 
divide the plane of the clip rectangle into nine regions (see Fig. 3.39). Each region is 
assigned a 4-bit code, determined by where the region lies with respect to the outside 
halfplanes of the clip-rectangle edges. Each bit in the outcode is set to either I (true) or 0 
(false); the 4 bits in the code correspond to the following conditions: 
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First bit 

Second bit 

Third bit 

Fourth bit 

1001 ' 1000 1010 

0001 0000 0010 

0101 t 0100 I 0110 

Clip 
rectangle 

Fig. 3 .39 Region outcodes. 

outside halfplane of top edge, above top edge 

outside halfplane of bottom edge, below bottom edge 

outside halfplane of right edge, to the right of right edge 

outside halfplane of left edge. to the left of left edge 

y>y..,. 

y <y""" 

x>xi'I'IU 

X < X.,;, 

Since the region lying above and to the left of the clip rectangle, for example, lies in the 
outside halfplane of the top and left edges, it is assigned a code of I 00 I. A particularly 
efficient way to calculate the outcode derives from the observation that bit I is the sign bit of 
(y- - y); bit 2 is that of (y- Y..m); bit 3 is that of (x_- x); and bit4 is that of (x- x,;,). 
Each endpoint of the line segment is then assigned the code of the region in which it lies. 
We can now use these endpoint codes to determine whether the line segment Lies completely 
inside the clip rectangle or in the outside halfplane of an edge. If both 4-bit codes of the 
endpoints are zero, then the line lies completely inside the clip rectangle. However, if both 
endpoints lie i.n the outside halfplane of a particular edge, as for EF in Fig. 3.38, the codes 
for both endpoints each have the bit set showing that the point lies in the outside halfplane of 
that edge. For EF, the outcodes are ()()()I and I 00 I , respectively, showing with the fourth 
bit that the line segment lies in the outside halfplane of the left edge. Therefore, if the 
logical and of the codes of the endpoints is not zero, the line can be trivially rejected. 

If a line cannot be trivially accepted or rejected, we must subdivide it into two segments 
such that one or both segments can be discarded. We accomplish this subdivision by using 
an edge that the line crosses to cut the line into two segments: The section lying in the 
outside halfplane of the edge is thrown away. We can choose any order in which to test 
edges, but we must , of course, use the same order each time in the algorithm; we shall use 
the top-to-bottom, right-to-left order of the outcode. A key property of the outcode is that 
bits that are set in a nonzero outcode correspond to edges crossed: lf one endpoint lies in the 
outside halfplane of an edge and the Line segment fails the trivial-rejection tests, then the 
other point must I ie on the inside haLfplane of that edge and the line segment must cross it. 
Thus , the algorithm always chooses a point that lies outside and then uses an outcode bit 
that is set to determine a cljp edge; the edge chosen is the first in the top-to-bottom, 
right-to-left order-that is, it is the leftmost bit that is set in the outcode. 

The algorithm works as follows. We compute the outcodes oJ both endpoints and check 
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for trivial acceptance and rejection. If neither test is succcsful , we find an endpoint that lies 
outside (at least one will), and then test the outcode to find the edge that is crossed and to 
determine the corresponding intersection point. We can then clip off the line segment from 
the outside endpoint to the .intersection point by replacing the outside endpoint with the 
intersection point, and compute the outcode of this new endpoint to prepare for the next 
iteration. 

For example, consider the line segment AD in Fig. 3.40. Point A bas outcode 0000 and 
point D has outcode 1001. The line can be neither trivially accepted or rejected. Therefore, 
the algorithm chooses D as the outside point, whose outcode shows that the line crosses the 
top edge and the left edge. By our testing order, we first use the top edge to clip AD to AB, 
and we compute B's outcode as 0000. In the next iteration, we apply the trivial 
acceptance/rejection tests to AB, and it is trivially accepted and displayed. 

Line El requires multiple iterations. The first endpoint, E, has an outcode of 0100, so 
the algorithm chooses it as the outside point and tests the outcode to find that the first edge 
against which the line is cut is the bottom edge, where EI is clipped to Fl. In the second 
iteration, Fl cannot be trivially accepted or rejected. The outcode of the first endpoint, F, is 
0000, so the algorithm chooses the outside point/ that has outcode 1010. The first edge 
clipped against is therefore the top edge, yielding FH. H's outcode is determined to be 
0010, so the third iteration results in a clip against the right edge to FG. This is trivially 
accepted in the fourth and final iteration and displayed. A different sequence of clips would 
have resulted if we had picked I as the initial point: On the basis of its outcode, we would 
have clipped against the top edge first, then the right edge, and finally the bottom edge. 

In the code of Fig. 3.41, we use constant integers and bitwise arithmetic to represent 
the outcodes, because this representation is more natural than an array with an entry for 
each outcode. We use an internal procedure to calculate the outcode for modularity; to 
improve performance, we would, of course, put this code in line. 

We can improve the efficiency of the algorithm slightly by not recalculating slopes (see 
Exercise 3.28). Even with this improvement, however, the algorithm is not the most 
efficient one. Because testing and clipping are done in a fixed order, the algorithm will 
sometimes perform needless clipping. Such clipping occurs when the intersection with a 
rectangle edge is an "external intersection" ; that is, when it does not lie on the 
clip-rectangle boundary (e.g ., point H on line El in Fig. 3.40). The Nicholl , Lee, and 

Clip 
rectangle 

D 

Fig. 3 .40 Illustration of Cohen- Sutherland line clipping. 
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for trivia] acceptance and rejection. If neither test is succesful. we find an endpoint that lies

entaide (at least one will}. and then test the outoode to find the edge that is crossed and to

determine the corresponding intersection point. We can then slip off the line segment from

the outside endpoint to theintersection point by replacing the outside endpoint with the

intersection point. and compute the outcode of this new endpoint to prepare for the nest
iteration.

For example. consider the line segment AD in Fig. 3.41:}. Point A has outeode D050 and

point D has outeode 100 l. The line can be neither trivially accepted or rejected. Therefore.

the algorithm chooses D as the outside point. where outeode shows that the line Crosses the

topedge and the left edge. By our testing order. we first use the top edge to clip AD to All.

and vie compute B‘s outcode as 00th]. In the next iteration. we apply the trivial

acceptanoetrejection tests to A3. and it is trivially accepted and displayed.

Line Etrequires multiple iterations. The first endpoint. E. has an outcode of tlltlll. so

the algorithm chooses it as the outside point and tests the outcode to find that the first edge

against which the line is cut is the bottom edge. where E! is clipped to Ft. In the second

iteration. Ff cannot be trivially accepted or rejected. The outeode of the first endpoint. F. is

com. so the algorithm chooses the outside point t that has outcode ltllfl. The first edge

clipped against is therefore the top edge. yielding FH. H‘s outoode is detennined to be

tlllltl. so the third iteration results in a clip against the right edge to F6. This is trivially

accepted in the fourth and final iteration and diaplayed. A. different sequence of clips should

have resulted if we had piclted it as the initial point: Do the basis of its outoodc, we would

have clipped against the top edge first. then the right edge. and finally the bottom edge.

In the code of Fig. 3.41. we use constant integers and hitwise arithmetic to represent

the outcodes. because this representation is more natural than an array with an entry for

each outeode. We use an internal procedure to calculate the outeode for modularity; to

improve performance. we should. of course. put this code in line.

we can improve the efficiency of the algorithm slightly by not recalculating slopes (see

Exercise 3.23]. Even with this improvement. however. the algorithm is not the most

efileient one. Because testing and clipping are done in a titted order. the algorithm will

sonietimes perform needless clipping. Such clipping occurs when the intersection with a

rectangle edge is an “external intersection"; that is. when it does not lie on the

clip-rectangle boundary {e.g.. point H on line E! in Fig. 3.40}. The Nichol]. Lee. and

l
I
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Fig. 3.40 Illustration of Cohen—Sutherland lina clipping.
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typedef unsigned lnt outcode: 
enum {TOP = Ox I, BO'ITOM = 0x2, RIGHT = Ox4, LEFT = Ox8}; 

void CohenSmherlandLineClipAndDraw ( 
double xO, double yO, double xl , double yl, double xmin, double xmax, 
double ymin, double ymax, int value) 

I• Cohen-Sutherland clipping algorithm for line PO = (xO. yO) to PI = (xl. y I ) and •I 
I• clip rectangle with diagonal from (xmin, ymin) to (xmax, ymax) •I 
{ 

I• Outcodes for PO, PI, and whatever point lies outside the clip rectangle •I 
outcode aurcodeO, ourcodei, ourcodeOIII; 
boolean accepr = FALSE, done = FALSE; 
ourcodeO = CompOutCode (xO, yO, Amin, xmax, ymin , ymax); 
owcodel = CompOutCode (xi , y/ , xmin, xmax, ymin , ymax); 
do { 

if (!(ourcodeO I outcodel)) { I• Trivial accept and exit •I 
accept = TRUE; done = TRUE; 

} else II (ourcodeO & ourcodel) I• Logical and is true, so trivial reject and exit .J 
done=TRUE; 

else { 
I• Failed both tests, so calculate the line segment to clip: •I 
I• from an outside point to an intersection with clip edge. •I 
doublex,y; 
I• At least one endpoint is outside the clip rectangle; pick iL •I 
ourcodeOur = ourcodeO ? ourcodeO : ourcodeJ; 
I• Now find intersection point: *' 
I• use formula~ y = yO+ slope • (x- • ..0), x = xO + (lis/ope) • (y- ><>). •I 
II (oulcodeOul & TOP) { I• Divide line at top of clip rect •I 

x = xO + (xl - xO) • (ymax- yO) I (yl - ><>); 
y=ymax; 

} else II (ourcodeOur & B01TOM) { I• Divide line at bottom edge of clip rect •/ 
x = xO + (xi - xO) • (ymin - ><>) I (yi - }-Q); 
y=ymin; 

} el~ It (ourcodeOur & RIGHT) { I• Divide line at right edge of clip rect •I 
y =yO+ (yi - yO) • (xmax- xO) I (xl - xO); 
x=xmax~ 

} else { I• Divide line at left edge of clip rect •/ 
y = )-Q + (yi - }-Q) • (xmin - xO) / (xl - xO); 
x=xmin; 

} 
I• Now we move outside point to intersection point to clip, •I 
I• and gel ready for next pass. •I 
if (ourcode011t == ourcodeO) { 

xO = .t;)<J = y; outcodeO = CompOutCode (xO, ><>, xmin, xmax, ymin, ymax); 
} else { 

xl = x;yl = y; ourcodel = CompOotCode (xl , yl , xmin, xmax, ymin , ymax); 
} 

} I• Subdivide •I 
} while (done == FALSE); Fig. 3.4 1 (Cont.). 
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If (accept) 
MidpointUncReal (xO, y(), xl , yl , val.u); I• Version for double coordinates •I 

} I• CobenSulherlandLincCiipAndDraw •I 

outcode CompOutCode ( 

{ 
double x, double y, doublexmin, double xmax, double ymln, double ymax); 

outcode code = 0: 
if (y > ymax) 

code I= TOP; 
else It (y < ymin) 

code I= BOtTOM; 
if (x > xmax) 

code I= RIGHT: 
dse It (x < xmin) 

code I= LEFT: 
mum code; 

} , . CompOutCode . , 

Fig. 3 .41 Cohen-Sutherland line-clipping algorithm. 
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Nicholl (NICH87] algorithm, by contrast, avoids calculating external intersections by 
subdividing !he plane into many more regions; it is discu.c;sed in Chapter 19. An advantage 
of !he much simpler Cohen-Sulherland algorithm is that its extension to a 30 orthographic 
view volume is straightforward , as seen in Section 6.5.3 

3.12.4 A Par:~metric Une-Ciipping Algorithm 

The Cohen-Sulherland algorithm is probably still the most commonly used line-clipping 
algorithm because it has been around longest and has been published widely. ln 1978, 
Cyrus and Beck published an algorilhm that takes a fundamentally different and generally 
more efficient approach to line clipping [CYRU78). The Cyrus-Beck technique can be used 
to clip a 20 line against a rectangle or an arbitrary convex polygon in the plane, or a 30 line 
against an arbitrary convex polyhedron in 30 space. Liang and Barsky later independently 
developed a more efficient parametric line-clipping algorithm that is especially fast in the 
special cases of upright 20 and 30 clip regions [LIAN84]. In addition to taking advantage 
of these simple clip boundaries, !hey introduced more efficient trivial rejection tests !hat 
~rk for generul clip regions. Here we follow !he original Cyrus-Beck development to 
introduce parumetric clipping. Since we are concerned only wilh upright clip rectangles, 
however, we reduce the Cyrus-Beck formulation to the more efficient Liang-Barsky case at 
the end of the development. 

Recall !hat the Cohen-Sutherland algorithm, for lines that cannoe be trivially accepced 
or rejected, calculates the (x, y) intersection of a line segment with a clip edge by 
substituting the known value of x or y for the vertical or horizontal clip edge, respectively. 
The parametric line algorithm,~. finds the value of !he parumeter 1 in the parametric 
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representation of the line segment for the point at which that segment intersects the infinite 
line on which the clip edge lies. Because all clip edges are in general intersected by the line, 
four values of 1 are calculated. A series of simple comparisons is used to determine which 
(if any) of the four values of 1 correspond to actual intersections. Only then are the (x, y) 
values for one or two actual intersections calculated. In general. this approach saves time 
over the Cohen-Sutherland intersection-calculation algorithm because it avoids the repeti
tive looping needed to clip to multiple clip-rectangle edges. Also, calculations in I D 
parameter space are simpler than those in 30 coordinate space. Liang and Barsky improve 
on Cyrus- Beck by examining each 1-value us it is generated, to reject some line segments 
before all four 1-v-.dues have been computed. 

The Cyrus-Beck algorithm is based on the following formulation of the intersection 
between two lines. Figure 3.42 shows a single edge£, of the clip rectangle and that edge's 
outward normal N1 (i.e .. outward to the clip rectangle11), as well as the line segment from P0 
tO P1 that must be clipped to the edge. Either the edge or the line segment may have to be 
extended to find the intersection point. 

As before, this line is represented parametrically as 

P(1) = Pe + (P1 - Po)1, 

where 1 = 0 at P0 and t "' I at P1• Now, pick an arbitrary point P 8 , on edge£, and consider 
the three "l:Ctors P(l)- P8, from P8,to three designated points on the line from P0 to P1: the 
intersection point to be determined, an endpoint of the line on the inside halfplanc of the 
edge, and an endpoint on the line in the outside half plane of the edge. We can distinguish in 
which region a point lies by looking at the value of the dot product N1 • [P(1)- P8 1]. This 
value is negative for a point in the inside half plane, zero for a point on the line containing 
t.he edge, and positive for a point that lies in the outside halfplane. The definitions of inside 
and outside halfplanes of an edge correspond to a counterclockwise enumeration of the 
edges of the clip region, a convention we shall use throughout this book. Now we can solve 
for the vo~lue of 1 at the intersection of P0P1 with the edge: 

N1 • [P(1) - Pe,l = 0. 

First, substitute for P(1): 

N1 • !Pt + (P1 - P~1 - P8 J = 0. 

Next, group terms and distribute the dot product: 

N; • fPo - Pe,l + N1 • [P, - POJt = 0. 

Let D = (P1 - P0) be the \'eCtOr from P0 to P1, and solve for 1: 

_ N, · !Pe- P8J 
1 - -N · D . 

I 

(3 . 1) 

Note that this gives a va.lid value of 1 only if the denominator of the expression is nonzero. 

"Cyrus and Beck u.<>e inward normals, but we prefer to use outward normals for consistency with 
plane normals in 30, whieh are ourward. Our rormulation therefore differs only in the testing or a 
sign. 
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Outside of clip region Inside of clip reclangle 

Edge E1 

Po N, • (P(I) - PE1J • 0 

N, • [P(I) - PE;J > 0 

Clipping Unes 119 

Fig. 3 .42 Dot products for three points outside, inside. and on the boundary of the clip 
region. 

For Ibis to be true, the algorithm checks that 

N1 otl 0 (that is , the normal should n01 be 0; this could occur only as a mistake), 

D yl 0 (that is. P, otl P0), 

N1 • D ~ 0 (that is , the edge £ 1 and the line from P0 to P, are not parallel. If they were 
parallel, there can be no single intersection for this edge, so the algorithm moves on to 
the next case.). 

Equation (3.1) can be used to find the intersections between P0P1 and each edge of the 
clip rectangle. We do this calculation by determining the normal and an arbitrary P 8 ,-say, 
an endpoint of the edge-for each clip edge, then using these values for all line segments. 
Gi\'en the four values of 1 for a line segment, the next step is to determine which (if any) of 
the values correspond to internal intersections of the line segment with edges of the clip 
rectangle. As a first step, any value of 1 outside the interval [0, I) can be discarded , since it 
lies outside P1P1• Next, we need to determine whether the intersection Lies on the clip 
boundary. 

We could try simply sorting the remaining values of 1, choosing the intermediate 
values of 1 for intersection points , as suggested in Fig. 3.43 for the case of line I . But 
how do we distinguish this case from that of line 2, in which no portion of the line 
segment lies in the clip rectangle and the intermediate values of 1 correspond to points 
not on the clip boundary? Also, which of the four intersections of line 3 are the ones on 
the clip boundary? 

The intersections in Fig. 3.43 are characterized as "potentially entering" (PE) or 
"potentially leaving" (PL) the clip rectangle, as follows: If moving from P0 to P1 causes us 
to cross a particular edge to enter the edge's inside ha.lfplane, the intersection is PE; if it 
causes us to leave the edge's inside halfplane, it is PL. N01ice that , with this distinction , 
two interior intersection points of a Line intersecting the clip rectangle have opposing labels. 

Formally, intersections can be classified as PE or PL on the basis of the angle between 
P1P1 and N,: If the angle is less than 90", the intersection is PL; if it is greater than 90", it is 
PE. This information is contained in the sign of the dot product of N1 and P1 P1: 
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Fig . 3 .43 Lines lying diagonal to the clip rectangle. 

N1 • D < 0 ~ PE (angle greater than 90), 
N1 • D > 0 ~ PL (angle less than 90). 

Notice that N1 • D is merely the denominator of Eq. (3 . I ), which means that , in the process 
of calculating r, the intersection can be trivially categorized. 

With this categorization, line 3 in Fig. 3.43 suggests the final step in the process. We 
must choose a (PE. PL) pair that defines the clipped line. The portion of the infinite line 
through P0 P1 that is within the clipping region is bounded by the PE intersection with the 
largest 1 value, which we callr8, and the PL intersection with the smallest r value, t~.. The 
intersecting line segment is then defined by the range (r8 , 11). But because we are interested 
in intersecting P0P1, not the infinite line, the definition of the range must be further 
modified so that/ = 0 is a lower bound for 18 and 1 = I is an upper bound for ' L· What if 
18 > 1L? This is exactly the case for line 2. It means that no portion of P0P1 is within the clip 
rectangle, and the entire line is rejected. Values of 18 and rL that correspond to actual 
intersections are used to calculate the corresponding x and y coordinates. 

The completed algorithm for upright clip rectangles is pseudocoded in Fig. 3.44. Table 
3. 1 shows for each edge the values of N1, a canonical point on the edge, Pt ,• the vector 
P0 - Pf:, and the parameter 1. Interestingly enough, because one coordinate of each normal 
is 0, we do not need to pin down the correspondjng coordinate of P 8 , (denoted by an 
indeterminate x or y). Indeed, because the clip edges are horizontal and vertical , many 
simplifications apply that have natural interpretations. Thus we see from the table that the 
numerator, the dot product N; · ( P 0 - P 8 ) determining whether the endpoint P 0 lies inside 
or outside a specified edge, reduces to the directed horizontal or vertical distance from the 
point to the edge. This is exactly the same quantity computed for the corresponding 
component of the Cohen-Sutherland outcode. The denominator dot product N1 • D. which 
determines whether the intersection is potentially entering or leaving, reduces to ± dx or dy: 
if dx is positive , the line moves from left to right and is PE for the left edge, PL for the right 
edge, and so on. Finally, the parameter 1, the ratio of numerator and denominator, reduces 
to the distance to an edge divided by dx or dy, exactly the constant of proportionality we 
could calculate directly from the parametric line formulation. Note that it is important to 
preserve the signs of the numerator and denominator instead of cancelling minus signs, 
because the numerator and denominator as signed distances carry information that is used in 
the algorithm. 
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Fig. 3.43 Lines lying diagonal to the clip ractangla.

N.- - D s”. {l :1." PE [angle greater than 90}.

N,- - I) I} {l :15 PL [angle less than 9G}.

Notice that N. + D is merely the denominator of Eq. {3. | it. which means that. in the process

of calculating r, the intersection can he trivially categorized.

1|it‘ilith this categorization. line 3 in Fig. 3.43 suggests the final step in the pmcess. We

must choose a (PE. PL} pair that defines the clipped line. The portion of the infinite line

through PEP] that is within the clipping region is bounded by the PE intersection with the

largest I value. which we call f5, and the PL intersection with the smallest I value. t5. The

intersecting line segment is then defined by the range its. Itl- But because we are interested

in intersecting PEP“ not the infinite line. the definition of the range must be further

modified so that t = {l is a lower bound for t; and r = l is an upper bound for lg. What if

tE 2‘:- rfi‘? This is exactly the case for line 2. It means that no portion of PEP. is within the clip

rectangle, and the entire line is rejected. "I-I'hlues of t; and tL that correspond to actual

intersections are used to calculate the corresponding .1: and y coordinates.

The completed algorithm for upright clip rectanglm is pseudocoded in Fig. 3.44. Table

3.1 shows for each edge the values of ”1" a canonical point on the edge. Pg. the vector

Pu - PE and the parameter 1. Interestingly enough. because one coordinate of each normal
is til. we do not need to pin down the corresponding coordinate of Pg (denoted by an

indeterminate .r or y}. Indeed. because the clip edges are horizontal and vertical, many

simplifications applyr that have natural interpretations. Thus we see from the table that the

numerator. the dot product N,- - (Fl. - Pg} determining whether the endpoint PC. lies inside

or outside a specified edge. reduces to the directed horizontal or vertical distance from the

point to the edge. This is exactly the same quantity computed for the corresponding

component of the Cohen-Suttunland outcode. The denominator dot product N.- ' D. which

detennines whether the intersection is potentially entering or leaving. reduces to : air or dy:

if dr is positive. the line mew-es from left to right and is PE for the left edge. PL for the right

edge. and so on. Finally. the parameter r, the ratio of numerator and denominator. reduces

to the distance to an edge divided by dr or dy. exactly the constant of proportionality we

could calculate directly from the parmnetric line formulation. Note that it is important to

preserve the signs of the numerator and denominator instead of cancelling minus signs,

because the numerator and denominator as signed distances carry information that is used in

the algorithm.
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precalculate N; and select a P e, for each edge; 

for (each line segmem to be clipped) { 
if (P, ==Po) 

line is degenerate so clip as a point; 
else { 

t6 = 0; t s., = l; 
for (each ctmdidate imersection with a clip edge) { 

if (N, • D != 0) { I• Ignore edges parallel to line for now •I 

} 
} 

calculate t; 
use sign of N; • D to categorite as PE or PL; 
If (P£) t 6 = max (ts, t); 
if (PL) IL = min (tL , t}; 

return NULl. ; 

else 
return P(ts) and P(tL) os true clip intersections; 

Fig. 3.44 Pseudocode for Cyrus-Beck parametric line clipping algorithm. 

The complete version of the code, adapted from [LlAN84) is shown in Fig. 3.45. The 
procedure calls an internal function, CLlPt(), thai uses the sign of the denominator to 
determine whether the line segment-edge intersection is potentially entering (PE) or leaving 
(PL), computes the parameter value of the intersection and checks to see if trivial rejection 
can be done because the new value of t8 or rL would cross the old value of tL or It·· 
respectively. It also signals trivial rejection if the line is parallel to the edge and on the 

TABLE 3 .1 CALCULATIONS FOR PARAMETRIC LINE CUPPING ALGORITHM• 

Nonnal N, Pc, Po - PB, 
N1 • (P0 - P&J 

r= 
-N; · D Clip edge, 

left x = x,.,. (- 1, 0) (X,.;., y) (xo - X...,. Yo - y) 
- (x.,- Xml 

(x, ~ 

( I , 0) (x.,.., y) (xo - x....,, Yo - y) 
(x., - x .... ) 
-(x,- x0) 

right: X= X""' 

(0. -I) (x. y..J (xo - x, Yo - y.,,.) 
- (yo- y.,..) 

()', -Yo) 
bonom: y = y,.;, 

top: y = y,.. (0, I ) (x, y,..) (xo - x, Yo - y....) 
()'. - y....) 

(y, y,) 

•The exact coordinates of the point P £,on each edge are irrelevant co the computation, so they have been denoted 
by variables x andy. For a point on the right edge. x•x.... a.< indiealed in the first row. third entry. 
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premleulnte N,- nnd .tele‘t‘l :1 PH. for end: edge:

fur {each line segment in be clipped} {

fl' {P1 :2 Pu}

line is degenerate .tn clip :13 a mint;

else {
n: = ti: n, = l:

for {each candidate interteetinn with a flip edge} {

if (N. I D l: D} { l: Ignore edges parallel in line for new *i'
calculate I:

use .rign qu, I D tn categorize :13 PE nr PL:

11’ {PE} :5 = mm: “E. t]:

if {PL} ti. = min (IL. l}:

l

}

ll' [15' :2»- n.)
return NULL:

else

return H15] and File} as true clip interreetr'nnr‘.

}

i

Fig. 3.44 Pseudeende for Cyrus—Heel: parametric line clipping elgntithm.

The complete vereinn til" the code, adapted from [LIANfi-l] i5 shown in Fig. 3.45. The

proeedure eells an internal function. CLlPtll. that use: the Sign of the dennrninatnr tn

determine whether the line segment-edge intersection is potentially entering {PE} er leaving

(PL). cemputee the permneter value of the intersection and checks to see if trivial rejection

can he done because the new value of IE or {L meld cross the old value el' n! nr 13,

respectively. It also signals trivial rejectinn if the line is parallel tn the edge and en the

TABLE 3.1 CALCULATIONS FDR PAHAMETFIIC LINE ELIPPING ALGORITHM“

N- P -P.

CliPDdSBt “Mali“ Fe. Pia—Pb"- I: I—IJ.D£J
_ n _ _ _ -t1:r*xml

Ian; I.“ t Lfl} {any} in rum-n vi ——l11"'$nl

. , _ _ _ M
nghLI- x... l]. U] lxmvl'l (I: 1m: In: 3"} 'i-Tt _ x.)

- - }
buttotn:y=_vm (fl. -ll {like} {1a"1:}'a‘l’ml M

U] J’Il

Drill—FF“)
: = m (Ll . m _ - _ 'nuu: —""““mp} y t 1 try} (I: 1n: i 1' -tn—nl 

“The exact coordinates al' the point l":I On each edge are irrelevant in the camputatinn. so lhq' have been denoted
by variables x and y. For I. point an the rigl'tl edge. elem an indicate-2| in the first m. third entry.
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void Clip2D (double •x0, double •yO, double •xl , double •y/ , boolean •visible) 
I• Clip 20 line segment with endpoints (xO, yO) and (xI , y 1). against upright •I 
I• clip rectangle with comers at (xmin, ymin) and (xmax, ymax); these are •I 
I• globals or could be passed as parameters also. The ftag visible is set TRUE. • I 
I• if a clipped segment is returned in endpoint parameters. If the line • I 
I• is rejected, the endpoints are not changed and visibk is set to FALSE. • I 
{ 

double dx = •xl - •x0; 
double dy = •yl - • yO; 
I• Output is generated only if line is inside all four edges. •I 
•visible = FALSE; 
I• First test for degenerate line and clip the point; ClipPoint returns •I 
I• TRUll if the point lies inside the clip rectangle. •I 
if (dx == 0 && dy == 0 && ClipPoint (• xO, •yO)) 

•visible = TRUE; 
else { 

doubler£ = 0.0; 
double tL = 1.0; 
If (CUPt (dx, xmin - •xO, &t£, &!L) ) I• Inside wrt left edge •I 

It (CUPt ( -dx, •xO- xmax, &t£, &IL)) 
if (CLJI'I (d)', ymin - • yO, &tE, &tL)) 

if (CUI'I ( -dy, • yO- ymax, &t£, &tL)) { 
• visible = TRUE; 

I• Inside wn right edge •I 
I• Inside wn bottom edge • I 
I• Inside wn top edge •I 

} 
} 

} I• Clip2D •I 

I• Compute PL intersection, if tL has moved •I 
it (tL < I){ 

} 

•xi = ...0 + tL• dx; 
•yl = •>{) + rL • dy; 

I• Compute PE intersection, if t£ has moved •I 
if (t£ > 0) { 

} 

..xa += t£ * dx; 
•yO += t£. dy; 

boolean CLII'I (double denom, double num, double •t£, double •tL) 
I• This function computes a new value of tE or tL for an interior intersection •I 
I• of a line segmem and an edge. Parameter denom is -{.N1 • D), which reduces to *' 
I• ± Ax, Ay for upright rectangles {as shown in Table 3.1 ): its sign •I 
I• determines whether the intersection is PE or PL. Parameter num is N, • (Po- Ps, ) •I 
I• for a particular edge/line combination, whicb reduces to directed horizontal • I 
I• and vertic,al distances from Po to an edge; its sign determines visibility •I 
I• of Po and is used to trivially reject horizontal or vertical lines. If the •I 
I• line segment can be trivially rejected, FALSE is returned; if it cannot be, •I 
I• TRUE is returned and the value of tE or tl.. is adjusted, if needed, for the •I 
I• portion of the segment that is inside the edge. *' 

Fig. 3 .45 (Cont.). 
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{ 
doublet; 

if (denom > 0) { f• PE intersection •f 
I = num / denom~ f• Value oft at the intersection •f 
if (t > rt.) f• t£ and tl. crossover •f 

return FALSE; f• so prepare to reject line •f 
el~ if (t > t£) f• A newt£ has been found "'' 

tE= t; 
} else if (denom < 0) { f• Pl. intersection •f 

t = mmr / denom; f• Value of 1 at the intersection •f 
if (t < tE) f• t£ and tl. crossover •f 

return FALSE; f• so prepare to reject line -.r 
else f• A new tl. has been found •f 

IL = t; 
} else l.r (nurn > 0) f• Line on outside of edge •f 

return FALSE: 
return TRUE; 

} f• CLIPt • f 

Fig. 3.45 Code for Liang- Barsky parametric line-clipping algorithm. 

outside; i.e., would be invisible. The main procedure then does the actual clipping by 
moving the endpoints to the most recent values of te and 1~ computed, but only if there is a 
line segment inside all four edges. This condition is tested for by a four-deep nested if that 
checks the flags returned by the function signifying whether or not the line segment was 
rejected. 

In summary, the Cohen-Sutherland algorithm is efficient wben outcode testing can be 
done cheaply (for example, by doing bitwise operations in assembly language) and trivial 
acceptance or rejection is applicable to the majority of line segments. Parametric line 
clipping wins when many line segments need to be clipped, since the actual calculation of 
the coordinates of the intersection points is postponed until needed , and testing can be done 
on parameter values. This parameter calculation is done even for endpoints that would have 
been trivially accepted in the Cohen-Sutherland strategy, however. The Liang- Barsky 
algorithm is more efficient than the Cyrus-Beck version because of additional trivial 
rejection testing that can avoid calculation of all four parameter values for lines that do not 
intersect the clip rectangle. For tines that cannot be trivially rejected by Cohen-Sutherland 
because they do not lie in an invisible halfplane, the rejection tests of Liang-Barsky are 
clearly preferable to the repeated clipping required by Coben-Sutberland. The Nicholl et 
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al. algorithm of Section 19. I. I is generally preferable to either Cohen-Sutherland or 
Liang-Barsky but does not generalize to 30, as does parametric clipping. Speed-ups to 
Cohen-Sutherland are discussed in [DUVA90). Exercise 3.29 concerns instruction counting 
for the two algorithms covered here , as a means of contrasting their efficiency under various 
conditions. 

3 .13 CLIPPING CIRCLES AND ELLIPSES 

To clip a circle against a rectangle, we can first do a trivial accept/reject test by intersecting 
the circle's extent (a square of the size of the circle's diameter) with the clip rectangle , using 
the algorithm in ihe next section for polygon clipping. If the circle intersects the rectangle, 
we divide it into quadrants and do the trivial accept/reject test for each. These tests may lead 
in tum to tests for octants. We can then compute the intersection of the circle and the edge 
analytically by solving their equations simultaneously, and then scan convert the resulting 
arcs using the appropriately initialized algorithm with the calculated (and suitably rounded) 
starting and ending points. If scan conversion is fast, or if the circle is not too large, it is 
probably more efficient to scissor on a pixel-by-pixel basis , testing each boundary pixel 
against the rectangle bounds before it is written . An extent check would certainly be useful 
in any case. If the circle is filled, spans of adjacent interior pixels on each scan line can be 
filled without bounds checking by clipping each span and then filling its interior pixels , as 
discussed in Section 3.7. 

To clip ellipses, we use extent testing at least down to the quadrant level, as with circles. 
We can then either compute the intersections of ellipse and rectangle analytically and use 
those (suitably rounded) endpoints in the appropriately initialized scan-conversion algo
rithm given in the next section, or clip as we scan convert. 

3 .14 CLIPPING POLYGONS 

An algorithm that clips a polygon must deal with many different cases, as shown in Fig. 
3.46. The case in part (a) is particularly noteworthy in that the concave polygon is clipped 
into two separate polygons. All in all , the task of clipping seems rather complex. Each edge 
of the polygon must be tested against each edge of the clip rectangle; new edges must be 
added, and existing edges must be discarded, retained, or divided. Multiple polygons may 
result from clipping a single polygon. We need an organized way to deal with all these 
cases. 

3.14.1 The Sutherland- Hodgman Polygon-Clipping Algorithm 

Sutherland and Hodgman's polygon-clipping algorithm [SUTH74b] uses a divide-and
conquer strategy: It solves a series of simple and identical problems that, when combined, 
solve the overall problem. The simple problem is to clip a polygon against a single infinite 
clip edge. Four clip edges, each defining one boundary of the clip rectangle (see Fig. 3.47), 
successively clip a polygon against a clip rectangle. 

Note the difference between this strategy for a polygon and the Cohen-Sutherland 
algorithm for clipping a line: The polygon clipper clips against four edges in succession, 
whereas the line clipper tests the outcode to see which edge is crossed, and clips only when 
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Clip rectangle 

(a) (b) 

(c) 

Fig. 3 .46 Examples of polygon clipping. (a) Multiple components. (b) Simple convex 
case. (c) Concave case with many exterior edges. 

necessary. 1lle actual Sutherland-Hodgman algorithm is in fact more general : A polygon 
(convex or concave) can be clipped against any convex clipping polygon; in 30, polygons 
can be clipped against convex polyhedral volumes defined by planes. The algorithm accepts 
a series of polygon vertices v10 v8, • • • , v •. In 20, the vertices define polygon edges from v; 
to v;., and from v. to v1• The algorithm clips against a single , infinite clip edge and outputs 
another series of vertices defining the clipped polygon. In a second pass, the partially 
clipped polygon is then clipped against the second clip edge, and so on. 

The algorithm moves around the polygon from v. to v1 and then on back to v., at each 
step examining the relationship between successive vertices and the clip edge. At each step. 

(a) (b) 

(c) (d) 

Roght Clip 
boundary 

(e) 

Fig. 3 .4 7 Polygon clipping. edge by edge. (a) Before clipping. (b) Clip on right. 
(c) Clip on bottom. (d) Clip on left. (e) Clip on top; polygon is fully clipped. 
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Fig. 3.46 Examples of polygon elipping. {at Weontpononte. to} Simple control:
one. 1::inme exterioradgos.

my.11nacnml5uflrflend—Hodgmnflgoriflmisinm1nmm:hpolygon

[convex orconeeuelm he clipped against any corner clinging polygon: in 3D. polygon:

mbeeiippedminsteouvetpdyhedrfl volunmsdeflnedby plariee+11iealgoiithmnoecpte

arteries ofpolygon vertioee v1. vi. . . .. v... In ED. the vertim define polygon edge: from r,

to v“. end from tr, to P1. The algorithm clips agentst a single. infinite clip edge and outputs

mother series of vertioee defining the clipped polygon. In a second pass. the partially

clipped polygon is then clasped against the second clip edge. and so on.

Tl'ienlgorithmmmmdfltepolygonfmmvltoviandfltenonhfltovflaleedt

mpminingflterdmiomlfiphflmmmieeemdfltedipedge. Ateachstep.

Clip rectangle I |mm WP
{a} to]:

bound-a

fie lawman mwedge taJEIeMelieping. initiponrigm.
{elCIiponb-Ottom Idlfiponiarfl. tolClipontop:pdvgoniefuflfolippod.
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zero, one, or two vertices are added to the output list of vertices that defines the clipped 
polygon. Four possible cases must be analyzed, as shown in Fig. 3.48. 

Let's consider the polygon edge from vertex s to vertex p in Fig. 3.48. Assume that 
start points has been dealt with in the previous iteration. In case I , when the polygon edge 
is completely inside the clip boundary, vertex pis added to the output list. In case 2, the 
intersection point i is output as a ve.rtex because the edge intersectS the boundary. In case 3, 
both vertices are outSide the boundary, so the.re is no output. In case 4, the intersection 
point i and p are both added to the output list. 

Function SutherlandHodgmanPolygonClip() in Fig. 3.49 acceptS an array in Vertex
Array of vertices and creates another array outVertexArray of vertices. To keep the eode 
simple, we show no error checking on array bounds, and we use the function Output() to 
place a vertex into outVertexArray. The function Intersect() calculates the intersection of 
the polygon edge from vertex s to vertex p with clip Boundary, which is defined by two 
vertices on the clip polygon's boundary. The function Inside( ) returns true if the vertex is 
on the inside of the clip boundary, where "inside" is defined as "to the left of the clip 
boundary when one looks from the first vertex to the second vertex of the clip boundary. • · 
This sense corresponds to a counterclockwise enumeration of edges. To calculate whether a 
point lies outside a clip boundary, we can test the sign of the dot product of the normal to 
the clip boundary and the polygon edge, as described in Section 3.12.4. (For the simple 
case of an upright clip rectangle, we need only test the sign of the horizontal or vertical 
distance to its boundary.) 

Sutherland and Hodgman show how to structure the algorithm so that it is reentrant 
[SUTH74b]. As soon as a vertex is output , the clipper calls itSelf with that vertex. Clipping 
is performed against the next clip boundary, so that no intermediate storage is necessary for 
the partially clipped polygon: In essence, the polygon is passed through a "pipeline" of 
clippers. Each step can i:le implemented as special-purpose hardware with no intervening 
buffer space. This property (and itS generality) makes the algorithm suitable for today's 
hardware implementations. 1n the algorithm as it stands, however, new edges may be 
introduced on tbe border of the clip rectangle. Consider Fig. 3.46 (a)-a new edge is 
i.otroduced by connecting the left top of the triangle and the left top of the rectangle. A 

Inside Outside 

$ 
Polygon 
being 
clipped 

p: output 

Case 1 

Inside Outside 

1: output 

Case 2 

Inside Outside 

Case 3 
(no output) 

Fig. 3 .48 Four cases of polygon clipping. 

Inside Outside 

p: second 
output 

1: first 
output 

s 

Case 4 
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zero, one. or two vertices are added to the output list of vertices that defines the clipped

polygon. Four possible cases must be analyzed. as shown in Fig. 3.48.

Let's consider the polygon edge from vertex .5 to vertex p in Fig. 3.43. Assume that

start points has been dealt with in the previous iteration. In case i. when the polygon edge

is completely inside the clip boundary. vertex p is added to the output list. In case 2. the

intersection poinii is output as a vertex because the edge intersects the boundary. In case 3.

bath vertices are outside the boundary. so there is no output. In Case 4. the intersection

point i and p are both added to the output list.

Function SutherlandHodgmanPolygonCiipi} in Fig. 3.49 accepts an array ini’erree

Array of vertices and creates another array outI’ertentinuy of tertices. To keep the code

simple. we show no error checking on array bounds. and no use the function Outputi J to

place a testes into oarh'ertemrmy. The function Intersecti} calculates the intersection of

the polygon edge from sertex r to vertex p with dip Boundary. which is defined by five

vertices on the clip polygon's boundary. The function lnsidei J returns true if the I.uertex is

on the inside of the clip boundary, where ”insi ” is defined as “to the left of the clip

boundary when one looks from the first vertex to the second vertex of the clip boundary."

This sense corresponds to a counterclockwise enumeration of edges. Tb calculate whether a

point lies outside a clip boundary. we can test the sign of the dot product of the normal to

the clip boundary and the polygon edge. as described in Section 3. list. {For the simple

case of an upright clip rectangle. we need only test the sign of the horizontal or vertical

distance to its boundary.)

Sutherland and Hodgman show how to structure the algorithm so that it is meant

{SUIT-Fifi]. As soon as a vertex is output. the clipper calls itself with that vertex. Clipping

is perforated against the next clip boundary, so that no intermediate storage is necessary for

the partially clipped polygon: In essence. the polygon is passed through a ”pipeline” of

clippers. Each step can be implemented as special-purpose hardware with no intervening

buffer space. This property (and its generality} makes the algorithm suitable for today‘s

hardware implementations. In the algorithm as it stands, however, new edges may be

introduced on the border of the clip rectangle. Consider Fig. 3.415 {aJ—a new edge is

introduced by connecting the left top of the triangle and the left top of the rectangle. A

Inside Outside Inside Outside Inside Outside Inside Outside

i: first
p: second
MM output

it a
s

Polygon
being
clipped P *

Clip 3

Pim-ItFH-fl ”3”an i: output

Case 1 Case 2 Case 3 Case a

in” MM}

 
Fig. 3.48 Four cases of polygon clipping.
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posrprocessing phase can eliminare these edges, as discussed in Chapter 19. A polygon
clipping algorithm based on the parametric-line representation for clipping to upright 
rectangular clip regions is discussed, along with the 'Weiler algorithm for clipping polygons 
to polygons, in Section 19. 1. 

3.15 GENERATING CHARACTERS 

3.15.1 Defining and Clipping Characters 

There are two basic techniques for defining characters. The most general but most 
computationally C)( pensive way is to deli ne each charJcter as a curved or polygonal out I inc 
and to scan convert it as needed. We fiJSt discuss the other, simpler way, in which each 
character in a given font is specified as a small rectangular bitmap. Generating a char.teter 
then entails simply using a copyPixel to copy the character's image from an offscreen 
canvas, called a font roche, into the frame buffer at the desired position. 

The font cache may actually be in the frame buffer, as follows. In most graphics 
S)'litems in which the display is refreshed from a private frame buffer, that memory is larger 
than is strictly required for storing the displayed image. For example, the pixels for a 
rectangular screen may be stored in a square memory, leaving a rectangular strip of 
"invisiblc"screen memory. Alternatively, there may be enough memory for two screens. 
one of which is being refreshed and one of which is being drawn in , to double-buffer the 
image. The font cache for the currently displayed font{s) is frequently stored in such 
invisible screen memory because the display controller's copyPixel works fastest within 
local image memory. A related use for such invisible memory is for saving screen areas 
temporarily obscured by popped-up images, such as windows, menus, and forms. 

The bitmaps for the font cache are usually created by scanning in enlarged pictures of 
charactCJS from typesetting fonts in various sizes; a typeface designer can then usc a paint 
program to touch up individual pixels in each c!Jaracter's bitmap as necessary. Alternative
ly, the type designer may use a paint program to create, from scratch. fonts that are 
especially designed for screens and low-resolution printCJS. Since small bitmaps do not 
scale well, more than one bitmap must be deli ned for a given character in a given font just to 
provide various standard sizes. Furthermore. each type face requires its own set of bitmaps. 
Therefore, a distinct font cache is needed for each font loaded by the application. 

Bitmap characters are clipped automatically by SRGP as pan of its implementation of 
copy Pixel. Each character is clipped to the destination rectangle on a pixel-by-pixel basis, a 
technique that lets us clip a character at any row or column of its bitmap. For systems with 
slow copyPixel operations, a much faster, although cruder, method is to clip the character 
or even the entire string on an all-or-nothing basis by doing a trivial accept of the character 
or string C)(tent. Only if the C)(tent is triviaHy accepted is the copyPixel applied to the 
character or string. For systems with a fast copyPixel, it is st.ill useful to do trivial 
accept/reject testing of the string extent as a precUISOr to clipping individual characters 
during the copyPixel operation. 

SRGP's simple bitmap font-cache technique stores the characters side by side in a 
canvas that is quite wide but is only as taU as the tallest character. Fig. 3.50 shows a portion 
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typed~f point vertex; 
typedd vertex edge(2); 

I• poim holds double x, y •I 

typedef vertex vertexArray[MAX); I• MAX is a declaned constant •I 

static void Output (vertex, int • , vertexArray); 
static boolean Inside (vertex, edge); 
static vertex Intersect (vertex, vertex, edge); 

void SutherlandHodgmanPolygonCiip ( 
venexArray inVertexArray, 
vertexArray outVenexArray, 

I• Input vertex array •I 
I• Output verte:< array •I 

{ 

lot inLength , 
int •outLength, 
edge clipBoundary) 

venex s, Pt 
i; 
lnt j; 

I• No. of entries in in VertexArray •I 
I• No. of entries in outVenexArray •I 
I• Edge of clip polygon • I 

I• Stan. end pt. of current polygon edge •I 
I• lnte.rsection pt. with a clip boundary •I 
I• Vertex loop counter •I 

•au/Length = 0; ;. Stan with tbe last vertex io in VenexArray *f 
s = in VmexArray[inLength - I J; 
for (j = O;j < inLength:i++) { 

p = in VertexArray[J1; /• Now s and p correspond to lhe vertices in Fig. 3.48 *f 
It (Inside (p, clipBoundary)) { I• Cases I and 4 •I 

if (Inside (s, clipBountblry)) I• Case I •I 
Output (p, outLength, ourVenexArray); 

else { I• Case 4 •I 
i = Intersect (s, p, clipBoun®ry); 
Output (i, <>llll..ength, outVertexArray); 
Output (p, outungth, ou!VenexArray); 

} 
} else I• Cases 2 and 3 •I 

if (Inside (s, c/ipBoundary)) { I• Case 2 •I 
i =Intersect (s, p, clipBoundary); 
Output (i, outLength, outVertexArray); 

} I• No action for case 3 •I 
s = p: I• Advance to next pair of vertices •I 

} I• for •I 
} I• SutherlandHodgmanPolygonCiip •I 

I• Adds new Vertex to outVerrexArr(l)' and then updates outLength •I 
static void Output (vertex new Vertex, inl •outLength, vertexArray outVertexArr(l)') 
{ 

} 
I• Checks wbelher lhe vertex lies inside the clip edge or not •I 
static boolean lnside (ve.rtex test Vertex, edge clipBoundary) 

Fig. 3 .49 (Cont.). 
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{ 

} 

Generating Characte rs 

I• Clips polygon edge (jim, second) against clipBoundary. outputs tbe new point •I 
static vertex Intersect (vertex first , vertex second, edge clipBoundary) 

{ 

} 

Fig. 3.49 Sutherland-Hodgman polygon-clipping algorithm. 

129 

of the cache, along with discrete instances of the same characters at low resolution. Each 
loaded font is described by a struct (declared in Fig. 3.5 I) containing a reference to the 
canvas that stores the characters' images, along with infonnat.ion on the height of the 
characters and the amount of space to be placed between adjacent characters in a text string. 
(Some packages store the space between characters as pan of a character's width, to allow 
variable intercharacter spacing.) 

As described in Section 2.1.5, descender height and total height are constants for a 
given font-the fonner is the number of rows of pixels at the bottom of the font cache used 
only by descenders, and the latter is simply the height of the font-cache canvas. The width 
of a character, on the other hand, is not considered a constant; thus, a character can occupy 
the space that suits it, rather than being forced into a fixed-width character box. SRGP puts 
a fixed amount of space between characters when it draws a text string, the amount being 
SPCCificd as part of each font's descriptor. A word-processing application can display lines 
of text by using SRGP to display individual words of text, and can right-justify Lines by 
using variable spacing between words and after punctuation to fill out lines so that their 
rightmost characters are aligned at the right margin. This inYOives using the text-extent 
inquiry facilities to detennine where the right edge of each word is, in order to calculate the 
start of the next word. Needless to say, SRGP's text-handling facilities are really too crude 
for sophisticated word processing, let alone for typesetting programs, since such applica
tions require far Jiner control over the spacing of individual letters to deal with such effects 
as sub- and superscripting, kerning, and printing text that is not horizontally aligned. 

hijk 
Fig. 3.50 Portion of an example of a font cache. 
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l

i

it: Clips polygon edge Uirrr. second} against t‘lipfiottntitrry. outputs the new point all

stifle setter Intersect [series first. vertex second. edge t'ir'pflrrurtduryj

l

}

Fig. 3.49 Sutherland—Hodgman polygon-clipping algorithm.

ofthe cache. along with discreteinstancesol’thesarrreci‘taraetersatlowmohrtimr. Eadr

loaded tool is described by a street {declared in Fig. 3.51} containing a reference to the

canvas that stores the characters' images. along with inl'onrtation on the height of the

Wandtheamounrotspacemheplaeed betueerr adjaeeueharaetersinaterttstring.

{Sornepackages storethemacehenyeencharactersaspart ol'acharactw's widthdo allow

variable intercharacter spacing.)

As described in Section 2.I.5. descender height and total height are constants for a

given font—the former is the number of rows of pixels at the bottom of the font cache used

only by descendant. and the latter is simply the height of the font-cache canvas. The width

of a character. on the other hand, is not mnsidered a constant; thus. a character can occupy

the space that sales it. rather than being forced into a fitted-width character boll. Sit-GP puts

a fitted anrouht of Space between characters when it draw-s a test string. the amount being

qrecitied as part of each font's descriptor. A “it'd-processing application can display lines

of test try using SEEP to display irrdirridual writes of test, and can right—justify tines try

using variable spacing between WDI'dS and alter punctuation to fill out How so that their

rightmost characters are aligned at the right margin. This invokes using the test-extent
inquiry facilities to determine when: the right edge ofeach trot-dts irt ordertocalealate the

start ol'the treat nerd. Needless to say. SRGP's test-handling Facilities are really too cnrde

for sophisticated “word processing. let alone for typesetting programs. since such applica-

tions require far finer control otter the spacing of individual letters to deal with such efleets
as sub- and superscripting. hemirrg. and printing tertt that is not horizontally aligned.

 
hijk

Fig. 3.50 Person of an example ot a font cache.
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~~rstrud { 
int J~ftX, width; 

} charLocation; 
I• Horiz.ontallocation. width of image in font cache •I 

typedd struct { 
canvas!D ctrche; 
lot duutuluHeight, tota/Heigltr. 
lnt interCharocterSpacing; 
charlocation location Table{ 128]: 

I• Height is a constant; width varies •I 
I• Measured in pixels •I 
I • E.itplained in the text •I 

} fontCacheDewiptOr. 

Fig. 3.51 Type declarations for the font cache. 

3 .15.2 Implementation of a Text Output Primitive 

In the code of Fig. 3.52, we show how SRGP text is implemented internally: Each charJcter 
in the given srring is placed individually, and the space between characters is d.ictatcd by the 
appropriate field in the font descriptor. Note that complexities such as dealing with mixed 
fonts in a string must be handled by the application program. 

void SROP. characterText ( 
point origin, I• Where to place the character in the current canvas •I 

{ 

char •stringToPrint, 
fontCacheDescriptor fontlrifo) 

lot i: 

I• Origin specified by the application is for baseline and does not include descender. •I 
orig/n.y -== fontlnfo.dtsunduHtighl; 

ror (i == 0: i < strlen (srringToPrinr); I++) { 
rectanglefontCacheRectangle; 

} 

char charToPrint = srringToPrint{i]; 
I • Find the rectangular region within the cache wherein the character lies •I 
charl..ocation •fip == &fontlnfo.locationTable{charToPrintJ; 

fontCacheRecUJngle.bonomLeft == SROP. defPoint (/ip->ltftX, 0); 
fontCacheRectangle.topRight = SROP. deiPoint (fip->ltftX + fip->width- I, 

fomltifo.toralHeight - I); 

SROP. copyPixel (fonrltifo.cacht,fomCaclreRectangle, origin); 
I• Update the origin to move past the new character plus intercharacter spacing •I 
origin.x += jip->width + interCharacterSpacing; 

} /• SROP.characterText •I 

Fig. 3.52 Implementation of character placement for SRGP's text primitive. 
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We mentioned that the bitmap technique requires a distinct font cache for each 
combination of font, size, and face for each different resolution of display or output device 
supported. A single font in eight different point sizes and four faces (normal, bold, italic, 
bold italic) thus requires 32 font caches! Figure 3.53(a) shows a common way of allowing a 
single font cache to support multiple face variations: The italic face is approximated by 
splining the font's image into regions with horizontal "cuts," then offsetting the regions 
while performing a sequence of calls to SRGP _copyPixel. 

This crude approximation does not make pleasing chamcters; for example, the dot over 
the "i" is noncircular. More of a problem for the online user. the method distorts the 
intereharacter spacing and makes picking much more difficult. A similar trick to achieve 
boldface is to copy the image twice in or mode with a slight horizontal offset (Fig. 3.53b). 
These techniques are not particularly satisfactory, in !hat they can produce illegible 
characters, especially when combined with subscripting. 

A better way to solve the storage problem is to store chamcters in an abstract, 
device-independent form using polygonal or curved outlines of their shapes defined with 
lloating-point pammeters, and then to transform them appropriately. Polynomial functions 
called splines (see Chapter II) provide smooth curves with continuous first and higher 
derivath'CS and are commonly used to encode text outlines. Although each character 
definition takes up more space than its representation in a font cache, multiple sizes may be 
derived from a single stored representation by suitable scaling; also, italics may be quickly 
approximated by shearing the outline. Another major advantage of storing characters in a 
completely device-independent fom1 is that the outlines may be arbitrarily translated, 
rotated, scaled, and clipped (or used as clipping regions themselves) . 

The storage economy of splined characters is not quite so great as !his description 
suggests. For instance, not all point sizes for a character may be obtained by scaling a single 
abstract shape, because the shape for an aesthetically pleasing font is typically a function of 
point size; therefore, each shape suffices for only a limited range of point sizes. Moreover, 
scan conversion of splined text requires far more processing than the simple copyPixel 
implementation, because the device-independent form must be converted to pixel coordi
nates on the basis of the current size, face, and transformation attributes. Thus, the 
font-cache technique is still the most common for personal computers and even is used for 
many workstations. A strategy that offers the best of both methods is to store the fonts in 
outline form but to convert the ones being used in a given application to their bitmap 
equivalents-for exan1plc, to build a font cuche on the fly . We discuss processing of splined 
text in more detail in Section 19.4. 

•••• •••• • •• •• •• •• •• •• 
(a) 

h h 
(b) 

Fig. 3.53 Tricks for creating different faces for a font. (a) Italic. (b) Bold . 
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We mentioned that the bitmap technique requires a distinct font cache for each

combination of font. size. and face for each different resolution of display or output device

supported. fit single font in eight different point sizes and four faces {not-inst. bold. italic.

bold italic} thus requires 32 font caches! Figure 3.53{a} slms a common way ofallotving a

tingle font cache to support multiple face variations: The italic face is approximated by

splitting the fool‘s image into regime with hrnirontat “can.“ then otfsetting the regions

ttti'tile perfonning a sequence of calls to SRGP_copyPiitcl.

This crude approximation does not matte pleasing characters; for example. the dot over

the ”i" is noneircular. More of a problem for the online user. the method distorts the

inttn'chttracter spacing and makes picking much more ditficuit. A. similar trick to achieve

boldface is to copy the image twice in or mode with a slight horirontal olfset fFig. 3.53M.

These techniques are not particularly satisfactory. in that they can produce illegible

dwacters. especially when combined with subscripting.

A better way to solve the storage problem is to store characters in an abstract.

device-independent form using polygonal or curved outlines of their shapes defined with

floating-point parameters. and then to transition them appropriately. Polynomial functions

called splines {see Chapter [It provide smooth curves with continuous first and higher

derivatives and are commonly used to encode test outlines. Although each character

definition takes up more space than its representation in a font cache. multiple sires may be

dotted frotn a single stored mammalian by suitable scaling: also. italics may he quickly

approximated by shearing the outline. Another major advantage of storing characters in a

completely device-independent form is that the outlines may be arbitrarily translated.

rotated. sealed. and clipped {or ttsed as clipping regions themselves].

The storage warranty of splined diameters is not quite so great as this dcseription

tows. For instance. not all point sizes for a charactermay be obtained by sterling a single

abstract shape. because the shape foran aeothetically pleasing font is typically a function of

point size; therefore. each shape suflices for only a limited range of point sizes. Moreover.

scan comersion of splined test requires far more processing than the simple cnpyPtset

implementation. because the device-independent form must be converted to pixel coordi-
nates on the basis of the current size. face. and transformation attributes. Thus. the

font-cache technique is still the most common for personal computers and even is used for

many 1turn-Iterations. A strategy that ofl'ers the hem of both methods is to store the fonts in

outline form but to convert the ones being used in a given application to their bitmap

etativaients-for example. to build a font cache on the fly. We discuss processing of spline-d
test in more detail in Section [9.4.

fiflf.
Fig. 3.53 Trielta for creating different faces for a tent. [at Italic. thl Bold.
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3.16 SRGP _copyPixel 

If only WritePixel and ReadPixel low-level procedures are available, the SRGP _copy Pixel 
procedure can be implemented as a doubly nested for loop for each pixel. For simplicity, 
assume first that we are working with a bilevel display and do not need to deal with the 
low-level considerations of writing bits that are not word-aligned; in Section 19.6, we cover 
some of these more realistic issues that take hardware-memory organization into account. 
In the inner loop of our simple SRGP_copyPixel, we do a ReadPixel of the source and 
destination pixels, logically combine them according to the SRGP write mode, and then 
WritePixelthe result. Treating replace mode, the most common write mode, as a special 
case allows a simpler inner loop that does only a ReadPixei/WritePixel of !he source into the 
destination, without having to do a logical operation. The clip rectangle is used during 
address calculation to restrict the region into which destination pixels are wrilten. 

3 .17 ANTIALIASING 

3 .17 .1 Increasing Resolution 

The primitives drawn so far have a common problem: They ha'-e jagged edges. This 
undesirable effect, known as tire jaggies or staircosing, is the result of an aU-or-nothing 
approach to scan conversion in which each pixel either is replaced with the primitive's color 
or is left unchanged. Jaggies are an instance of a phenomenon known as aliasing. The 
application of techniques that reduce or eliminate aliasing is referred to as antia/iasing , and 
primitives or images produced using these techniques are said LO be antialiased. In Chapter 
14, we discuss basic ideas from signal processing that explain how aliasing got itS name, 
why it occurs, and how to reduce or eliminate it when creating pictures. Here, we content 
ourselves wilh a more intuitive explanation of why SRGP's primitives exhibit aliasing, and 
describe how to modify the line scan-conversion algorithm developed in this chapter to 
generate antialiased lines. 

Consider using the midpoint algorithm to draw a !-pixel-thick black Line, with slope 
between 0 and I, on a white background. In each column through which the line passes, the 
algorithm sees the color of the pixel that is closest to the line. Eacb time the line moves 
between columns in which the pixels closest to the line are not in the same row, there is a 
sharp jag in the line drawn into the canvas, as is clear in Fig. 3.54(a). Tbe same is true for 
other scan-ronverted primitives that can assign only one of t~~o'O intensity values to pixels. 

Suppose we now use a display device with twice the horizonta.l and vertical resolution. 
As shown in Fig. 3.54 (b), the line passes through twice as many columns and therefore has 
twice as many jags, but each jag is half as Large in x and in y. Although the resulting picture 
looks better, the improvement comes at the price of quadrupling the memory cost, memory 
bandwidth, and scan-conversion time. Increasing resolution is an expensive solution that 
only diminishes the problem of jaggies-it does not eliminate the problem. In the following 
sections, we look at antialiasi11g techniques !hat are less costly, yet result in significantly 
bener images. 

3.17 .2 Unweighted Area Sampling 

The first approach to improving picture quality can be developed by recognizing that. 
although an ideal primitive such as the line has zero width. the primitive we are drawing has 
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(a) (b) 

Fig. 3 .64 (a) Standard midpoint line on a bilevel display. (b) Same line on a display that 
has twice the linear resolution. 

nonzero width. A scan-converted primitive occupies a finite area on the screen-even the 
thinnest horizontal or vertical line on a display surface is I pixel thick and lines at other 
angles have width that varies over the primitive. Thus, we think of any line as a rectangle of 
a desired thickness covering a portion of the grid, as shown in Fig. 3.55. It follows that a 
line should not set the intensity of only a single pixel io a column to black, but rather should 
contribute some amount of intensity to each pixel in the columns whose area it intersects. 
(Such varying intensity can be shown on only those displays with multiple bits per pixel, of 
course.) Then, for 1-pixel-thick lines, only horizontal and vertical lines would affect exactly 
I pixel in their column or row. For lines at other angles, more than I pixel would now be set 
in a column or row, each to an appropriate intensity. 

But what is the geometry of a pixel? How large is it? How much intensity should a line 
contribute to each pixel it intersects? It is computationally simple to assume that the pixels 
form an array of nonoverlapping square tiles covering the screen, centered on grid points. 
(When we refer to a primitive overlapping all or a portion of a pixel, we mean that it covers 
(part of) the tile; to emphasize this we sometimes refer to the square as the area represented 
by the pixel.) We also assume that a line contribules to each pixel's intensity an amount 
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Figure 3.56 Line of nonzero width from point (1,1) to point (10.4). 

TEXAS INSTRUMENTS EX. 1009 - 156/1253

3.11r Willing 1 33

  
{bl

Fig. 3.54 lal Standard midpoint line on a bilaval display. {bl Same line on a display that
he tuition the lit-war reaohrtion.
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line should not set the intensity of only a single pixel in a column to black. but rather should

corttribute some amount of intensity toeaeh pixel in the columns “rinse area it intersects.

{Such varying intensity can be shown on only those diquays with multiple hits per pixel. oi

course} Them for l-pixehthiek lines. only horizontal and vertical lines would affect exactly

1 pixel in their column or row. For lines at other angles. more than I pixel would now be set

in a column or row. each to an appropriate intensity.

But what is the geometry o-i'a pixel? Hou-r large is it? Hott-r much intensity should a line

connibute to each pixel it intersects? It is computationally simple to assume that the pixels

form an array of nonmerlapping square tiles entering the screen. centered on grid points.

[When we refer to a primitive merlapping all or a portion of a pixel. the mean that it covers

(part on the tile; to emphasize this we sometimes refer to the square as the rarer: mprerenred

by the pied.) We also assume that a line contributes to each pixel's intensity an amount
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Figure 3.55 Lino oi nonzero width from point [1.11 to point 110.4}.
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proportional tO the percentage of the pixel's tile it covers. A fully covered pixel on a black 
and white display will be colored black, whereas a partially covered pixel will be colored a 
gray whose intensity depends on the line's coverage of the pixel. This technique, as applied 
tO the line shown in Fig. 3.55, is shown in Fig. 3.56. 

For a black line on a white background, pixel (2, I) is about 70 percent black, whereas 
pixel (2, 2) is about 25 percent black. Pixels not intersected by the line; such as (2, 3), are 
completely white. Setting a pixel 's intensity in proportion to the amount of its area covered 
by the primitive softens the harsh, on-off characteristic of the edge of the primitive and 
yields a more gradual transition between full on and full off. This blurring makes a line look 
beuer at a distance, despite the fact that it spreads the on-off transition over multiple pixels 
in a column or row. A rough approximation to the area overlap can be found by dividing the 
pixel into a finer grid of rectangular subpixels , then counting the number of subpixels inside 
the line-for example, below the line's top edge or above its bottom edge (see Exercise 
3.32). 

We call the technique of setting intensity proportional to the amount of area covered 
unweiglued area sampling. This technique produces noticeably better results than does 
seni11g pixels to full intensity or zero intensity , but there is an even more effective strategy 
called weighted area sampling. To explain the difference between the two forms of area 
sampling, we note that unweighted area sampling has the following three properties. First , 
the intensity of a pixel intersected by a line edge decreases as the distance between the pixel 
center and the edge increases: The farther away a primitive is, the less influence it has on a 
pixel 's intensity. This relation obviously holds because the intensity decreases as the area of 
overlap decreases, and that area decreases as the line's edge moves away from the pixel's 
center and toward the boundary of the pixel. When the I ine covers the pixel completely, the 
overlap area and therefore the intensity are at a maximum; when the primitive edge is just 
tangent to the boundary, the area and the.refore the intensity are zero. 

A second property of unweighted area sampling is that a primitive cannot influence the 
intensity at a pixel at all if the primitive does not intersect the pixel- that is, if it does not 
intersect the square tile represented by the pixel. A third property of unweighted area 

Fig. 3.56 Intensity proportional to area covered. 
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proportional to the percentage of the pixel’s tile it covers. A fully covered pixel on a black

and white display will be colored black. whereas a partially covered pixel will be colored a

gray whose intensity depends on the line's coverage of the pixel. This technique. as applied

to the line shown in Fig. 3.55, is shown in Fig. 3.56.

Far a black line on a white background. pixel [2. 1} is about 'l'tl percent black. whereas

pixel {2. 2} is about 25 percent black. Pixels not intersected by the line. such as [2. 3), are

completely white. Setting a pixei's intensity in proportion to the amount of its area covered

by the primitive softens the harsh. on-ofl' characteristic of the edge of the primitive and

yields a more gradual tr'ansition between full on and full off. This blurring makes a line look

better at a distance. despite the fact that it spreads the on—ofi' transition over multiple pixels

in a column or row. A rough appcoximation to the area overlap can be found by dividing the

pixel into a finer grid of rectangular suhpixels. then counting the number of subpixels inside

the line—for example, below the line‘s top edge or above its bottom edge {see Exercise

3.32}.

We call the technique of setting intensity proportional to the amount of area covered

unueighted erect sampling. This technique produces noticeably better results than does

setting pixels to full intensity or zero intensity, but there is an even more effective strategy

called ueighted urea sampling. To explain the difi'erence between the two forms of area

sampling. we note that unweighted area sampling has the following three properties. First.

the intensity of a pixel intersected by a line edge decreases as the distance between the pixel

center and the edge increases: The fanher away a primitive is. the less influence it has on a

pixel's intensity. This relation obviously holds because the intensity decreases as the area of

overlap detn'eases. and that area decreases as the line’s edge moves away from the pixei’s

center and toward the boundary of the pixel. 1When the line covers the pixel completely. the

overlap area and therefore the intensity are at a maximum; when the primitive edge is just

tangent to the boundary. the area and therefore the intensity are zero.

A second property of unweighted area sampling is that a primitive cannot influence the

intensity at a pixel at all if the primitive does not intersect the pixel—that is. if it does not

intersect the square tiie represented by the pixei. A third property of unweighted area
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Fig. 3.55 intensity proportional to area covered.
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sampling is that equal areas contribute equal intensity, regardless of the distance between 
the pixel 's center and the area; only the total amount of overlapped area matters. Thus, a 
small area in the comer of the pixel contributes just as much as does an equal-sized area 
near the pixel 's center. 

3.17 .3 Weighted Area Sampling 

In weighted area sampling, we keep unweighted area sampling's first and second properties 
(intensity decreases with decreased area overlap, and primitives contribute only if they 
OYCrlap the area represented by the pixel), but we alter the third property. We let equal areas 
contribute unequally: A small area closer to the pixel center has greater influence than does 
one at a greater distance. A theoretical basis for this change is given in Chapter 14, where 
we discuss weighted area sampling in the context of filtering theory. 

To retain the second property, we must make the following change in the geometry of 
the pixel. In unweighted area sampling, if an edge of a primitive is quite close to the 
boundary of the square tile we have used to represent a pixel until now, but does not actually 
intersect this boundary, it will not contribute to the pixel 's intensity. In our new approach, 
the pixel represents a circular area larger than the square tile; the primitive will intersect this 
larger area; hence, it will contribute to the intensity of the pixel. 

To explain the origin of the adjectives unweighted and weighred, we define a weighting 
fu11Ction that determines the influence on the intensity of a pixel of a given small area dA of 
a primitive, as a function of dA 's distance from the center of the pixel. This function is 
constant for unweighted area sampling, and decreases with increa~ing distance for weighted 
area sampling. Think of the weighting function as a function , W(x, y), on the plane, whose 
height above the {x, y) plane gives the weight for the area dA at (x, y). For unweighted area 
sampling with the pixels represented as square tiles, the graph of W is a box, as shown in 
Fig. 3.57. 

Fig. 3.57 Box filter for square pixel. 
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sampling is that equal areas contribute equal intensity. regardless of the distance between

Ill: pittel's center and the area; only.' the total amount oi" overlapped area matters. Thus. a

null area in the corner of the pixel contributes just as much as does an equal-sized area

near the pinch; center.

3.11.3 Weighted Area Sampling

laweighted area satnpling. we keep uneeighted area sampling's first and second properties

iinlerttsitzgr decreases with decreased area ova-lap. and primitives contribute only it the)r

ctr-tiriurthtearea1epreeer‘ttetlhgr thepirteii.buteeaiterthe third property. 1ihieleterlualareas

contribute unequally: A small area closer to the pixel center has greater influence than does

one at a greater distance. A theoretical basis forthis change is given in Chapter 14, where

we discuss weighted area sampling in the contest of filtering theory.

'IiJ retain the accent! property. the must make the following change in the geometryI of

the pine]. In unweighted area sampling. if an edge of a primithe is quite close to the

boundary ofthe square tile we have used to represent a pixel until new. but does not actually

intersect this boundary. it will not Contribute to the piael's intensity. In our new approach.

the pixel represents a circular area larger than the square tile; the primitive will intersect this

lager area; hence. it will contribute to the intensity of the pixel.

To explain the origin of the adjectives unsetglrtfli and weighted. we define a weighting

Melon that determines the influence on the intensity ofa pixel oi a given small area die of

I primitive. as a function of tlA‘s distance from the center of the pixel. This function is

constant for unweighted area sampling. and decreases with increasing distance for weighted

Ire: sampling. Think of the weighting function as a function. Wlx. 3;}. on the plane. whose

height above the {.r. 3'} plane gives the height for the area rid at Lt. Jr}. For unweighted area

sampling with the pixels represented as square tiles. the graph of ii" is a box. as showrr in

Fig. 3.57.

 
Fig. 3.5? Be: fitter tot actuate pixel.
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The figure shows square pixels, with centers indicated by crosses at the intersections of 
grid I ines; !he weighting function is shown as a box whose base is that of the current pixel. 
The intensity contributed by the area of the pixel covered by !he primitive is the total of 
intensity contributions from all small areas in the region of overlap between the primitive 
and the pixel. The intensity contributed by each small area is proportional to the area 
multiplied by the weight. Therefore , the total intetlsity is the integral of the weighting 
function over the area of overlap. The volume represented by this integral , W5, is always a 
fraction between 0 and I , and the pixel 's intensity I is I""" · W5. ln Fig. 3.57, W5 is a wedge 
of the box. The weighting function is also called a filter function , and the box is also called a 
box filter. For unweighted area sampling, the height of the box is normalized to I, so that 
!he box's volume is I, which causes a thick line covering the entire pixel to have an intensity 
I = I .,.. · I = 1..,... 

Now let us construct a weighting function for weighted area sampling; it must give less 
weight to small areas farther aw-dy from the pixel center than it does to those closer. Let's 
pick a weighting function that is the simplest decreasing function of distance; for example, 
we choose a function that has a maximum at the center of the pixel and decreases linearly 
with increasing distance from the center. Because of rotational symmetry,the graph of this 
function forms a circular cone. The circular base of the cone (often called !he support of the 
filter) should have a radius larger than you might expect; the filtering theory of Chapter 14 
shows that a good choice for the radius is the unit distance of the integer grid. Thus, a 
primitive fairly far from a pixel 's center can still influence that pixel's intensity; also, the 
supports associated with neighboring pixels overlap , and therefore a single small piece of a 
primitive may actually contribute to several different pixels (see Fig. 3.58 ). This overlap 
also ensures that there are no areas of the grid not covered by some pixel , which would be 
the case if the circul.ar pixels had a radius of only one-half of a grid unit. 12 

As with the box filter, the sum of all intensity contributions for the cone filter is the 
volume under the cone and above the intersection of the cone's base and the primitive; this 
volume W5 is a vertical section of the cone, as shown in Fig. 3.58. As with the box filter, 
the height of the cone is first normalized so that the volume under the entire cone is I ; this 
allows a pixel whose support is completely covered by a primitive to be displayed at 
maximum intensity. Although contributions from areas of the primitive far from the pixel's 
center but still intersecting the support are rather small, a pixel whose center is sufficiently 
close to a line receives some intensity contribution from that line. Conversely , a pixel that, 
in the square-geometry model, was entirely covered by a line of unit thickness13 is not quite 
as bright as it used to be. The net effect of weighted area sampling is to decrease the contrast 
between adjacent pixels, in order to provide smoother transitions . (n particular, with 
weighted area sampling, a horizontal or vertical line of unit thickness has more than I pixel 

"As noted in Section 3.2. 1, pixels displayed on a CRT are roughly circular in cross-section, and 
adjacent pixels typically overlap; !he model of overlapping circles used in weighted area sampling. 
however, is not d.irectly related to !his fdct and holds even for display technologies, such as the plasma 
panel. in which the physical pixels are actually nonoverlapping square tiles. 
" We now say a "a line of unit thickness" ralher !han "a line I pixel thick" to make it clear that !he 
unit of line width is still !hat of the SRGP grid, whereas !he pixel 's support has grown to have a 
two-unit diameter. 
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Fig. 3 .58 Cone filter for circular pixel with diameter of two grid units. 

intensified in each column or row, which \\Uuld not be the case for unweighted area 
sampling. 

TI1e conical filter has t\\U useful properties: rotational symmetry and linear decrease of 
the function with radial distance. We prefer rotational symmetry because it not only makes 
area calculations independent of the angle of the line, but also is theoretically optimal , as 
shown in Chapter 14. We also show there, however, that the cone's linear slope (and its 
radius) are only an approximation to the optimal filter function , although the cone filter is 
still better than the box filter. Optimal filters are computationally most expensive, box 
filters least , and therefore cone fi lters are a very reasonable compromise between cost and 
quality. The dramat-ic difference between an unfiltered and filtered line drawing is shown in 
Fig. 3.59. Notice bow the problems of indistinct lines and moire patterns are greatly 
ameliorated by filtering. Now we need to integrate the cone filter into our scan-conversion 
algorithms. 

3 .17 .4 Gupta- Sproull Antialiased lines 

The Gupta-Sproull scan-conversion algorithm for lines [GUPT8la] described in this 
section precomputes the subvolume of a normalized filter function defined by lines at 
various directed distances from the pixel center, and stores them in a table. We use a pixel 
area with radius equal to a grid unit-that is, to the distance between adjacent pixel 
centers-so that a line of unit thickness with slope less than I typically intersectS three 
supports in a column, minimally 1\\U and maximally five , as shown in Fig. 3.60. For a 
radius of I , each circle partially covers the circles of its neighboring pixels. 

Figure 3.61 shows the geometry of the overlap between line and pixel that is used for 
table lookup of a function Filter (D, t ). Here Dis the (angle-independent) distance between 
pixel and li ne centers, r is a constant for lines of a given thickness, and function Filter() is 
dependent on the shape of the filter function. Gupta and SprouU's paper gives the table for a 
cone fi lter for a 4-bit display; it contains fractional values of Filter (D, 1) for equal 
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Fig. 3.59 Filtered line drawing. The left half is unfiltered; the right half is filtered. 
(Courtesy of Branko Gerovac. Digital Equipment Corporation.) 

increments of D ranging from 0 to 1.5 and for 1 = I. The function, by definition, is 0 
outside the support, forD <:: I + t =~ in this case. The precision of the distance is only l 
in 16, because it need not be greater than that of the intensity-4 bits, in this case. 

Now we are ready to modify the midpoint line scan-conversion algorithm. As before, 
we use the decision variable d to cboose between E and NE piJtels, but must then set the 
intensity of the cbosen piltel and its two vertical neighbors, on the basis of the distances 
from these pixels to the line. Figure 3.61 shows the relevant geometry; we can calculate the 

Fig. 3.60 One-unit-thick line intersects 3-pixel supports. 
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Fig. 3.59 Filtered line drawing. The left half is unfiltered: the right hair is filtered.

[Courtesv of Brsnko Gerovse. Digital Equipment Corporation:

increments of D ranging from U to LS and for! = I. The function. by definition. is G

outside the support. for D a | + -Q— ~11 31:— in this case. The precision of the distance is only |

in lo. because it need not he greater than that of the intensity—4 hits, in this case.

Now we are ready to rnotlil'}.r the midpoint line man-conversion algorithm. As before.

we use the decision variable a' to choose between E and NE pixels. but must then set the

intensity of the chosen pixel and its tvuo vertical neighbors. on the basis of the distances

than these pixels to the line. Figure lol siltnvs the relevant geometry: we can calculate the

 
Fig. 3.ED Une-unit—thicit line intersects 3-pittel supports.
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true, perpendicular distanceD from the vertical distance v, using simple trigonometry. 
Using similar triangles and knowing that the slope of the line is dyldx, we can see from 

the diagram that 

vdx 
D = v cos¢ = -:-;;#:=;:;; 

Vfix2 + df 
(3.2) 

The vertical distance v between a point on the line and the chosen pixel with the same x 
coordinate is just the difference between their y coordinates. It is important to note that this 
distance is a signed value. That is, if the line passes below the chosen pi.xel, v is negative; if 
it passes above the chosen pixel, vis positive. We should therefore pass the absolute value of 
the distance to the fi lter function. The chosen pixel is also the middle of the 3 pixels that 
must be intensified. The pixel above the chosen one is a vertical distance I - v from the 
line, whereas the pixel below is a vertical distance I + v from the line. You may want to 
verify that these distances are valid regardless of the relative position of the line and the 
pixels , because the distance v is a signed quantity. 

Rather than computing v directly, our strategy is tO use the incremental computation of 
d = F(M) = F(xp + I , Yr + t>. In general, if we know the x coordinate of a point on the 
line, we can compute that point 's y coordinate using the relation developed in Section 
3.2.2, F(x, y) = 2(ax + by + c) = 0: 

y = (ax + c)l-b. 

For pixel £, x = xp + I, and y = yp, and v = y -yp; thus 

v = ((a(x1• + I ) + c)l-b) - YP· 

Now multiplying both sides by - b and collecting terms, 

-bv = a(Xp + I) + byp + c = F(xp + I , yp)/2. 

But b = -dx. Therefore, vdx = F(xp + I , yp)/2. Note that vdx is the numerator of Eq. 
(3.2) forD, and that the denominator is a constant that can be precomputed. Therefore, we 

NE 

1 - v 

____ _L _M 

P= (X , y) E 
p p 1 + v 

Fig. 3 .61 Calculating distances to line in midpoint algorithm. 
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true, perpendicular distance D from the vertical distance 1:, using simple trigonomeuy.

Using similar triangles and knowing that the slope of the line is (file's, we can see from

the diagram that

wit

m

The vertical distance v between a point on the line and the chosen pixel with the same .1:

coordinate is just the difference between their _v coordinates. It is important to note that this

distance is a signed value. That is, if the line passes below the chasm pixel, v is negative; if

it passes above the chosen pixel, v is positive. We should therefore pass the absolute value of

the distance to the filter function. The chosen pixel is also the middle of the 3 pixels that

natst be intensified. The pixel above the chosen one is a vertical distance 1 - v from the

line, whereas the pixel below is a vertical distance i + v from the line. You may' wam to

verify that these distances are valid regardless of the relative position of the line and the

pixels. because the distance v is a signed quantity.

Rather than computing v direetlv, our strategy is to use the incremental computation of

d = HM) = Fiji:JD + I, yp +5. In general, ifwc know the xcoordinate ofa point on the

line, we can compute that point‘s y coordinate using the relation developed in Section

3.2.2, Fix, 3!} = Ibex + by + c} = U:

y = [or + chi-b.

D = v cosei = {3.2}

Forpixel E,,r= .rp +1, and}r =33), andv =3; “yp; thus

it = {tats}. + I} + cit-b} - yp.

Now multiplying both sides by -.b and collecting terms,

-tw = site: + I} + has + c = Firi- + 1: J's-it'l-

But it = nix. Therefore, we: I Fix-P + l, ypiifl. Note that air is the numerator of Eq.

(3.2) for D, and that the denominator is a constant that can be prccomputed. Them-time, he

 
Fig. 3.131 Calculating distances to line in midpoint algorithm.
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would like to compute vdx incrementally from the prior computation of d = F(M), and 
avoid division by 2 to preserve integer aritbmetic. Thus, for the pixel E, 

Thus 

2vdx = F(xp + I , yp) = 2a(x1, + I) + 2byp + 2c 

= 2a(xp + I) + 2b(yp + t> - 2b/2 + 2c 

= d + dx. 

D= d+dx 
2Vx2 + y2 

and the constant denominator is 1/(2 V x2 + y2). The corresponding numerators for the 
pixels at yp + I and YP - l are then easily obtained as 2(1 - v)dx = 2dx - 2vdx, and 
2( I + v)dx = 2dx + 2vdx, respectively. 

Similarly, for pixel NE, 

2vdx = F(xp + I, yp + I) = 2a(xp + l) + 2b(yp + t> + 2bl2 + 2c, 

= d- dx, 

and the corresponding numerators for the pixels at yp + 2 and yp are again 2( I - v)dx = 
2dx - 2vdx and 2(1 + v)dx = 2dx + 2vdx, respectively. 

We have put a dot in front of the statements added to the midpoint algorithm of Section 
3.2.2 to create the revised midpoint algorithm shown in Fig. 3.62. The WritePixel of E or 
NE has been replaced by a. call to lntensifyPixel for the chosen pixel and its vertical 
neighbors; lntensifyPixel does the table lookup that converts the absolute value of the 
distance to weighted area overlap, a fraction of maximum intensity. In an actual 
implementation, this simple code, of course, would be inline. 

The Gupta-Sproull algorithm provides an efficient incremental method for antialiasing 
lines, although fractional arithmetic is used in this version. The extension to antialiasing 
endpoints by using a separate look-up table is covered in Section 19.3.5. Since the lookup 
works for the intersection with the edge of the line, it can also be used for the edge of an 
arbitrary polygon. The disadvantage is that a single look-up table applies to lines of a given 
thickness only. Section 19.3.1 discusses more general techniques that consider any line as 
two parallel edges an arbitrary distance apart. We also can antialias characters either by 
filtering them (see Section 19.4) or, more crudely, by taking their scanned-in bitmaps and 
manually softening pixels at edges. 

3.18 SUMMARY 

In this chapter, we have taken our first look at the fundamental clipping and scan-conversion 
algorithms that are the meat and potatoes of raster graphics packages. We have covered only 
the basics here; many elaborations and special cases must be considered for robust 
implementations. Chapter 19 discusses some of these, as well as such topics as general 
regions and region filling. Other algorithms that operate on bitmaps or pixmaps are 
discussed in Chapter 17, and a fuller treatment of the theory and practice of antialiasing is 
found in Chapters 14 and 19. 
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static void lntensifyPixel (int, int, double) 

void AnliAliasedLineMidpoint (int xO, lnt yO, lnt xl , i11t yl) 
I• This algorithm uses Gupta-Sproull's table of intensity as a function of area •I 
I• coverage tor a circular support in the lntensifyPixel function. Note that •I 
I• overflow may occur in the computation of the denominator for 16-bit integers, •I 
I• because of the squares. •I 
{ 

I• Initial value d,..., as before •I 

141 

int dx = xl - xO; 
lnt dy =yl-yO; 
int d= 2 •dy- dx; 
int incrE = 2 • dy; 
lnt incrNE = 2 • (dy- dx) ; 

• int rwo.v..dJC = 0; 

I• Increment used for move toE •I 
I • Increment used for move toNE •I 
I• Numerator; v = 0 for start pixel •I 

• double invDenom = 1.0 / 
{2.0 • sqrt (dx • dx + dy * dy)); 

• double rwo..dJC.invDenom = 
2.0 • dx * invDe110m; 

lnt x = xO; 
int y = yO; 

• lntensifyPixel (x, y, 0); 
• lntensifyPixel (x, y + I , two..dJC.invDenom ); 
• IntensifyPixel (x, y - I , two..dJC.invDenom); 

whlle (x < xl) { 
if (d < 0) { 

• rwo.v..dJC = d + dx; 
d += incrE; 

• 

x++; 
} else { 

} 

rwo.v..dJC = d - d.x; 
d+=incrNE; 
x++; 
y++; 

I• Precomp01ed inverse denominator •I 
I• Precomputed constant •/ 

I• Start pixel • I 
I• Neighbor •I 
f,. Neighbor •I 

I• Choose E •d 

I• Choose NE •I 

I• Now set chosen pixel and its neighbors •I 
• lntensifyPixel (x, y, rwo.v..dJC • invDenom); 
• Intensify Pixel (x, y + I, two.v..dJC.invDenom - rwo. v..dJC * invDenom); 
• lntensifyPixel (x, y- I, rwo.v..dx.invDenom + rwo.v..dJC • im•Denom); 

} 
} I• AntiAiiasedLineMidpoint •I 

void lntensifyPixel (Int x, int y, double distance) 
{ 

double intensity= Filter (Round (fabs (distance))); 
I• Table lookup done on an integer index; thickness I •I 
WritePixel (x, y , intensity); 

} I• lntensifyPixel •I 

Fig. 3 .62 G\Jpta-Sproull algorithm for antialiased scan conversion of lines. 
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The most important idea of this chapter is that , since speed is essential in interactive 
raster graphics, incremental scan-conversion algorithms using only integer operations in 
their inner loops are usually the best. The basic algorithms can be extended to handle 
thickness, as well as panems for boundaries or for filling areas. Whereas the basic 
algorithms that convert single-pixel-wide primitives try to minimize the error between 
chosen pixels on the Cartesian grid and the ideal primitive defined on the plane, the 
algorithms for thick primitives can trade off quality and "correctness" for speed. Although 
much of 20 raster graphics today still operates, even on color displays, with single-bit-per
pixel primitives, we expect that techniques for real-time antialiasing will soon become 
prevalent. 

EXERCISES 

3. 1 Implement the special-case code for scon converting horizontal and ver1icallioes. and lines with 
slopes of : I . 
3.2 Modify the midpoint algorithm for scan convening lines (Fig. 3.8) to handle lines at any angle. 

3.3 Show why the point-to-line error is always s t for the midpoint line scan.conversion algorithm. 

3.4 Modify the midpoint algorithm for scan convening lines of Exercise 3.2 to handle endpoi.ot 
order and intersections with clip edges. as discussed in Section 3.2.3. 

3.5 Modify the midpoint algorithm for scan conver~ing lines (Exercise 3.2) to write pixels with 
varying intensity as a function of line slope. 

3.6 Modify the midpoint algorithm for scan con\'erting lines (Exercise 3.2) tO deal with endpointS 
that do not have integer coordinates-this is easiest if you use floating point throughout your 
algorithm. As a more difficult exercise. handle lines of rational endpoints using only integers. 

3.7 Determine whether the midpoint algorithm for scan converting lines (Exercise 3.2) can take 
advantage of symmetry by using the decision variable d tO draw simultaneouSly from both ends of the 
line toward the center. Does your algorithm consistently accommodate the case of equal error on an 
atbitraty choice that arises when dx and dy have a largest common factor c and dxlc is even and dylc is 
odd (0 < dy < dx), as in the line between (0. 0) and (24, 9)? Does it deal with the subset case in which 
dx is an integer multiple of2dy. such as for the Une between (0, 0) and (16, 4)? (Contributed by J. 
Bresenham.) 

3.8 Show bow polylines may share more than VCrlcx pixels. De.elop an ai&Ofithm that avoids writing 
pixels twice. Hint: Consider scan conversion and WTiting to the canvas in xor mode as separate 
phases. 

3.9 Expand the pseudocode for midpoint ellipse scon conversion of Pig. 3.2 1 to code that tests 
properly for various conditions that may arise. 

3.10 Apply the technique of forward differencing shown for circles in Section 3.3.2 to develop the 
second-order forward differences for scan con\'erting standard ellipses. Write the code that 
implements this technique. 

3.11 Develop an altemntive tO the midpoint circle scan-conversion algorithm of Section 3. 3. 2 based 
on a piecewise·linear appr<»timation of the circle with a polyline. 
3. 12 Develop an algorithm for scan convening unfilled rounded rectangles with a specified radius for 
the quaner-circle cornen. 
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3.! Modify the midpoill elgorithln [or oelneonverting lines {th. 3.11} to handle lime It any angle.

3.3 Show mmwn-wtnemenweihoemn line seen-conversion algorithm.

3.4 Modify the midpoint algorithm [or scan converting lines of Elfl'll'ih‘.‘ 3.2 to handle endpoint

order and intersections with clip edges. as discussed in Section 3.2.3.

3.5 Modify the midpoint W I-'or scan contesting lines {Exercise 3.21 to write pixels with

varying My II I function ti line slope.
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thetdonot hate integercoordinfles—this iseaaiest il'you use fleeting point throughout your
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3.3 Expand the pseudo-code for midpoint ellipse scan conversion of Fig. 3.1] to code that tests
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the new-circle corners.
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3.13 Write a scan-conversion procedure for solidly filled upright rectangles at arbitrary screen 
positions that writes a bilevel frame buffer efficiently, an entire word of pixels at a time. 

3.14 Construct examples of pbtels that are "missing" or written multiple times , using the rules of 
Section 3.6. Try to develop alternative. possibly more complex, rules that do not draw shared pixels 
on shared edges twice , yet do not cause pixels to be missing. Are these rules worth the added 
oYerhcad? 

3.15 Implement the pseudocode of Section 3.6 for polygon scan conversion. tak.ing into account in 
the span bookkeeping of potential sliver polygons. 

3.16 Develop scan-conversion algorithms for triangles and trapezoids that take advantage of the 
simple nature of these shapes. Such algorithms are common in hardware. 

3.17 Investigate triangulation algorithms for decomposing an arbitrury, possibly concave or 
self-intersecting, polygon into a mesh of triangles whose vertices are shared . Docs it help to restrict 
the polygon to being, at worse, concave without self-intersections or interior holes? (See also 
[PREP85] .) 

3.18 Extend the midpoint algorithm for scan converting circles (Fig. 3. 16) to handle fi lled circles 
and circular wedges (for pie charts), using span tables. 

3.19 Extend the midpoint algorithm for scan converting ellipses (Fig. 3.21) to handle filled elliptical 
wedges , using span tables . 

3.20 Implement both absolute and relative anchor algorithms for polygon pattern filling, discussed in 
Section 3. 9, and contrast them in terms of visual effect and computational efficiency. 

3.21 Apply the technique of Fig. 3.30 for writing characters filled with patterns in opaque mode. 
Show bow having a copyPixel with a write mask may be used to good advantage for this class of 
problems. 

3.22 Implement a technique for drawing various symbols such as cursor icons represented by small 
bitmaps so that they can be seen regardless of the background on which they are written. Hint: Define 
a mask for each symbol that ''encloses" the symbol-that is, that covers more pixels than the 
symbol-and that draws masks and symbols in separate passes. 

3.23 Implement thick-line algorithms using the techniques listed in Section 3.9. ContraSt their 
efficiency and the quality of the results they produced. 

3.24 Extend the midpoint algorithm for scan converting circles (Fig. 3. 16) to handle thick circles. 

3.25 Implement a thick-line algorithm that accommodates line style as well as pen style and pauem. 

3.26 Implement scissoring as part of scan converting lines and unfilled polygons , using the 
fast-scan-plus-backtracking technique of checking every ith pixel. Apply the technique to filled and 
thick lines and to filled polygons. For these primitives, contrast the efficiency of this type of on-the-fly 
clipping with that of analytical clipping. 

3.27 Implement scissoring as part of scan converting unfilled and filled circles and ellipses. For these 
primitives, contrast the feasibility and efficiency of this type of on-the-fty clipping with that of 
analytical clipping. 

3.28 Modify the Cohen-Sutherland line-clipping algorithm of Fig. 3.41 to avoid recalculation of 
slopes during successive passes. 

3.29 Contrast the efficiency of the Sutherland-Cohen and Cyrus-Beck algorithms for several typical 
and atypical cases, using instruction counting. Are horizontal and vertical lines handled optimally? 

3.30 Consider a convex polygon with 11 vertices being clipped against a clip rectangle. What is the 
maximum number of vertices in the resulting clipped polygon? What is the minimum number? 
Consider the same problem for a concave polygon. How many polygons might result? If a single 
polygon resultS, what is the largest number of vertices it might have? 

TEXAS INSTRUMENTS EX. 1009 - 166/1253



144 Basic Raster Graphics Algorithms for Drawing 20 Primitives 

3.31 Explain why the Sutberland-Hodgman polygon-clipping algorithm works for only conve.< 
clipping regions. 

3.32 Devise a st:rategy for subdividing a pixel and counting the number of subpixels covered (at least 
to a significant degree) by a line, as part of a line-drawing algorithm using unweighted area sampling. 

3.33 Create tables with various decreasing functions of the distanoe between pixel center and line 
center. Use them in the antialiased line algorithm of Fig. 3.62. Contrast the results produced with 
those produced by a box-filtered line. 

3.34 Generdlize the antialiasing techniques for lines to polygons. How might you handle 
nonpolygonal boundaries of curved primitives and characters? 
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Graphics 

Hardware 

In this chapter. we describe how the importam hardware elements of a computer graphics 
display system work. Section 4.1 covers hardcopy technologies: printers, pen plotters, 
electrostatic plouers, laser printers, ink-jet plotters, thennal·transfer plotters. and fi lm 
recorders . The basic technological concepts behind each type of device are described 
brieRy, and a concluding section compares the various devices. Section 4.2, on display 
technologies, discusses monochrome and color shadow-mask CRTs. the direct-view storage 
tube (DVST), liquid-<:rystal displays (LCDs), plasma panels, electroluminescent displays. 
and several more specialized technologies. Again, a concluding section discusses the pros 
and cons of the various display technologies. 

Raster display systems, which can use any of the display technologies discussed here, 
are discussed in Section 4.3. A simple, straightforward rdSter system is first introduced. and 
is then enhanced with respect to graphics functionality and integration of raster- and 
general-purpose processors into the system address space. Section 4.4 describes the role of 
the look-up table and video controller in image display, color control. animation. and 
image mixing. The almost-obsolete vector (also called random, calligraphic. s1roke) 
display system is discussed brieRy in Section 4.5, followed in Section 4.6 by user 
interaction devices such as tablets, mice. touch panels, and so on. Again, operational 
concepts rather than technological details are stressed. Section 4.7 briefly treats image
input device~. such as film scanners, by means of which an existing image can by input to a 
computer. 

Figure 4.1 shows the relation of these hardware devices to one another. The key 
element is t.he integrated CPU and display processor known as a graphics worlcsuuion. 
typically consisting of a CPU capable of executing at least several million instructions per 
second (MIPS), a large disk. and a display with resolution of at least 1000 by 800. The 
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Fig. 4.1 Components of a typical interactive graphics system. 

local-area network connectS multiple workstations for file sharing, electronic mail, and 
access to shared peripherals such as high-quality film plotters, large disks. gateways to other 
networks, and higher-performance computers. 

4.1 HARDCOPY TECHNOLOGIES 

In this section, we discuss various hardcopy technologies, then summarize their character
istics. Several important terms must be defined first. 

The image quality achievable with display devices depends on both the addressability 
and the dot si:z.e of the device. Dot size (also called sp6t size) is the diameter of a single dot 
on the device's output. Addressability is the number of individual (not necessarily 
distinguishable) dots per inch that can be created; it may differ io the horizontal and vertical 
directions. Addressability in x is just the reciprocal of the distance bet~n the centers of 
dots at addresses (x, y) and (x + I , y); addressability in y is defined similarly. lnrerdot 
distance i.s the reciprocal of addressabi lity. 
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(a) lnterdot spacing (b) lnterdot spacir\Q (c) lnterdot spacir\Q 
equal to dot size one-half dot size one-third dot size 

(d) lnterdot spacirlQ 
one-quarter dot size 

Fig. 4 .2 The effects of various ratios of the dot size to the interdot distance. 

It is usually desirable that dot size be somewhat greater than the interdot distance, so 
that smooth shapes can be created. Figure 4.2 illustrates this reasoning. Tradeoffs arise 
here , however: dot size several times the interdot distance allows very smooth shapes to be 
printed, whereas a smaller dot size allows liner detail. 

Resolution, which is related to dot size and can be no greater than addressability, is the 
number of distinguishable lines per inch that a device can create. Resolution is defined as 
the closest spacing at which adjacent black and white lines can be distinguished by 
observers {this again implies that horizontal and vertical resolution may differ). lf 40 black 
lines interleaved with 40 white lines can be distinguished across one inch, the resolution is 
80 lines per inch {also referred to as 40 line-pairs per inch). 

Resolution also depends on the cross-sectional intensity distribution of a spot. A spot 
with sharply delineated edges yields higher resolution than does one with edges that trail 
off, as shown in Fig. 4.3. 

/'t f', f', /'t 

\ 
' 

(a) (b) 

A 
(C) (d) 

Fig. 4 .3 The effect of cross-sectional spot intensity on resolution. (a) A spot with 
well-defined edges. (b) Several such overlapping spots. (c) A wider spot, with less 
height, since the energy is spread out over a larger area; its edges are not well defined, 
as are those in (a). (d) Several of these spots overlapping. The distinction between the 
peaks in (b) is much clearer in (d). The actual image intensity is the sum of each spot's 
intensity. 

TEXAS INSTRUMENTS EX. 1009 - 170/1253

4.1 Hardeopv Technologies 14?

I. I III III' .I'
III

IIII III --

[at Interdct spacing {bi lnterdot spacing tel interest spacing id: lnterdct spacing
equal to dot size ens-halt dct size one-third tint size one quarter dot size

 
Fig. 4.2 The effects of various ratios of the dot size to the interdot distance.
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that smooth shapes can be created. Figure 4.2 illustrates this reasoning. Tradeofis arise
here. however: dot size several times the interdot distance allows very smooth shapes to be
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Fig. 4.3 The effect of cross—seetional spot intensitv on resolution. {a} A spot with
well-defined edges. lb} Several such overlapping spots. {cl A wider spot. with less
height. since the energy is spread out over a larger area; its edges are not well defined.
as are those in {a}. {di Several of these spots overlapping. The distinction between the

peel-ts in {bi is much clearer in {d}. The actual image intensity is the sum of each spot's
Intensitv.
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Many of the devices to be discussed can create only a few colors at any one point. 
Additional colors can be obtained with dither patterns, described in Chapter 13, at the cost 
of decreased spatial resolution of the resulting image. 

Dot-matrix printers use a print head of from 7 to 24 pins (thin, stiff pieces of wire), 
each of which can be individually fired, to strike a ribbon against the paper. The print head 
moves across the paper one step at a time, the paper is advanced one line, and the print head 
makes another pass across the paper. Hence, these printers are raster output devices, 
requiring scan conversion of vector images prior to printing. 

The addressability of a dot-matrix printer does not need to be Limited by the physical 
distance between pins on th.e prim head. There can be t\\Q columns of pins, offset vertically 
by one--half the interpin spacing, as seen in Fig. 4.4. Alternatively, t\\Q passes over tbe 
paper can be used to achieve the same effect, by advancing the paper by one-half the 
interpin spacing between the first and second passes. 

Colored ribbons can be used to produce color hardcopy. Two approaches are possible. 
The first is using multiple print heads, each head with a different color ribbon. Alternatively 
and more commonly, a single print head is used with a multicolored ribbon. 

More c.olors than are actually on the ribbon can be created by overstriking two different 
colors at the same dot on the paper. The color on top may be somewhat stronger than that 
underneath. Up to eight colors can be created at any one dot by overstriking with three 
colo~ypically cyan, magenta, and yellow. However, the black resulting from striking all 
three is quite muddy, so a true black is often added to the ribbon. 

Just as there are random and raster displays, so too there are random and raster plotters. 
Pen p/ouers move a pen over a piece of paper in rdndom, vector-drawing style. In drawing a 
line, the pen is positioned at the start of the line, lowered to the paper, moved in a straight 
path to the endpoint of the line, raised , and moved to the start of the next line. There are 
two basic varieties of pen plotters. The flatbed p/ouer moves the pen in x and yon a sheet of 
paper spread out on a table and held down by electrostatic charge, by vacuum, or simply by 
being stretched tightly (Fig. 4.5). A carriage moves longitudinally over the table. On the 
carriage is a pen mount moving latitudinally along the carriage; the pen can be raised and 
lowered. Flatbed plotters are available in sizes from 12 by 18 inches tO 6 by 10 feet and 

•• •• •• • • : v Print pins 

•• •• •• •• 
Fig. 4 .4 A dot-matrix print head with two columns of print pins, offset vertically by half 
the interpin spacing to increase resolution. 
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Fig. 4 .5 A flatbed plotter. (Courtesy of CaiComp-California Computer Products, 
Inc.) 

larger. In some cases, the •·pen" is a light source for exposing photographic negatives or a 
knife blade for scribing, and often pens of multiple colors or widths are used. 

In contrast, drum plouers move the paper along one axis and the pen along the other 
axis. Typically , the paper is stretched tightly across a drum, as shown in Fig. 4.6. Pins on 
the drum engage prepunched holes in the paper to prevent slipping. The drum can rotate 
both forward and backward. By contrast, many desk-top plollers move the paper back and 
forth between pinch rollers, while the pen moves across the paper (Fig. 4.7). 

Pen plotters include a microprocessor that accepts commands such as "draw line," 
"move," "draw circle," "draw text," "set line style," and "select pen." (The 
microprocessor sometimes also optimizes pen movements to minimize the distance the pen 
moves while up; Anderson [ANDE83] has developed an efficient algorithm for doing this.) 
The microprocessor decomposes the output primitives into incremental pen movements in 
any of the eight principal directions. A feedback system of position sensors and 
servomotors implements the motion commands, and an electromagnet raises and lo'M:rs the 
pen. Plotting speed depends on the acceleration and velocity with which the pen can be 
moved. In turn, pen acceleration is partially a function of the mass of the plot head; many 
multipen plotters keep al l but the active pens at the side of the plotter to minimize this mass. 

ln contrast to the pen plotter. the electrostatic plouer places a negative charge on those 
parts of white paper that are to be black , then flows positively charged black toner over the 
paper (Fig. 4.8). The toner particles adhere tO the paper where the charge has been 
deposited. The charge is placed on the paper, which in current systems can be up to 72 
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Fig. 4.6 A drum plotter. (Courtesy of Hewlett-Packard Company.) 

inches wide, one row at a time. The paper moves at speeds up to 3 inches per second under 
a fine comb of electric contacts spaced horizontally 100 to 400 to the inch. Each contact is 
either on (to impart a negative charge) or off (to impart no charge). Each dot on an 
electrostatic plot is either black or white; gray levels must be created with dither patterns. 

Fig. 4. 7 A desk-top plotter. (Courtesy of Hewlett-Packard Company.) 
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Fig. 4 .8 Organization of an electrostatic plotter. 

Electrostatic plotters may include a scan-conversion capability, or scan conversion can 
be done by the CPU. In the Iauer case, because the density of information on a 400 by 400 
dot-per-square inch electrostatic plotter is quite high (see Exercise 4.1), correspondingly 
high transfer rates are needed. 

Some color electrostatic plotters make multiple passes 0\'er the paper, rewinding 10 the 
start of the plot after each pass. On the first pass, black calibration marks are placed near 
the edge of the paper. Subsequent passes complete the plot with black, cyan, magenta, and 
~low toners, using the calibration marks to maintain alignment. Others use multiple heads 
to deposit all the colors in a single pass. 

Electrostatic plotters are often faster than pen plotters, and can also double as 
high-quality printers. On the other hand, pen plotters create images with higher contrJSI 
than those made by electrostatic plotters, since the latter deposit a toner even in areas where 
the paper is not negatively charged. 

LAser prinle~ scan a laser beam across a positively charged rotating drum coated with 
selenium. The areas hit by the laser beam lose their charge, and the positive charge remains 
only where the copy is to be black. A negatively charged powdered toner adheres to the 
positive areas of the drum and is then transferred to blank paper to form the copy. In color 
xerography.this process is repeated three times, once for each primary color. Figure 4.9 is 
a partial schematic of a monochrome laser printer. 

Just as with the electrostatic plotter, the positive charge is either present or not present 
at any one spot on the drum, and there is either black or not black at the corresponding spot 

Scan 
line 

Laser 
beam 

Deflection 
system 

Fig. 4.9 Organization of a laser printer (the toner-applicat.lon mechanism and the peper 
feeder are not shown). 
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on the copy. Hence. the laser printer is a two-level monochrome device or an eight-color 
color device. 

Laser printers have a microprocessor to do scan conversion and to control the printer. 
An increasing number of laser printers accept the Postscript document and image 
description language as a defacto standard [AD08 85al. Postscript provides a procedural 
description of an image to be printed, and can also be used to store image descriptions 
(Chapter 19). Most laser printers work with 8.5- by I l-inch or 8.5- by 14-inch paper, but 
considerably wider {30-inch) laser printers are available for engineering drawing and 
map-making applications. 

lnk-jtt printers spray cyan, magenta. yellow, and sometimes black ink onto paper. In 
most cases, the ink jets are mounted on a head in a printer! ike mechanism. The print head 
moves across the page to draw one scan line, returns while the paper advances by one 
inter- scan-line spacing. and draws the next scan line. Slight irregularities in interline 
spacing can arise if the paper transport moves a bit too much or too little. Another approach 
is to wrap the paper around a drum; the drum then rotates rdpidly whiJe the print head 
slowly moves along the drum. Figure 4.10 shows this arrangement. ln both eases, all the 
colors are deposited simultaneously, unlike the multipass laser and electroStatic plotters and 
printers. Most ink-jet printers are limited to orH>ff {i.e .• bilevel) control of each pixel: a 
few have a variable dOt-size capability. 

Some ink-jet printers accept video input as well as digital, which makes them attrdctive 
for creating hardcopy images of raster display screens. Note that the resolution of a resulting 
image is limited by the resolution of the video input- typically between 640 by 480 and 
1280 by 1024. Ink-jet printers tend to require more maintenance than do many of the other 
types. 

Thtmml-tronsfer printers. anOther raster hardcopy device, are reminiscent of electro
Static plotters. Finely spaced (typically 200-per-inch) heating nibs tranSfer pigments from 
colored wax paper to plain paper. The wax paper and plain paper are drawn together over 
the strip of heating nibs, which are selectively heated to cause the pigment transfer. For 
color printing (the most common use of this technology), the wax paper is on a roll of 
alternating cyan, magenta, yellow, and black strips. each of a length equal to the paper size. 
Because the nibs heal and cool very rapidly, a single color hardcopy image can be created in 
less than I minute. Some thermal-transfer printers accept a video signal and digital bitmap 
input. making them convenient for creating hardcopy of video images. 

Ink jets 

Paper wrapped 
around drum 

Fig . 4 .10 A rotary ink-jet plotter. 

Track 
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Thermal sublimation dye transfer printers work simi larly to the thermal U'ansfer 
printers, except the heating and dye transfer process permit 256 intensities each of cyan, 
magenta , and yellow to be transferred, creating high-quality full-color images with a spatial 
resolution of 200 dots per inch. The process is slower than wax transfer, but the quality is 
near-photographic. 

A camera that photographs an image displayed on a cathode-ray (television) tube can be 
considered another hardcopy device. This is the most common hardcopy technology we 
discuss that yields a large number of colors at a single resolution point; film can capture 
many different colors. 

There are two basic techniques for color film recorders. In one, the camera records the 
color image directly from a color CRT. Lmage resolution is limited because of the shadow 
mask of the color monitor (see Sect ion 4.2.2) and the need to usc a raster scan with the 
color monitor. In the other approach, a black-and-white CRT is photographed through color 
filters, and the different color components of the image are displayed in sequence (Fig 
4.11). This technique yields very high-quality rdSter or vector images. Colors are mixed by 
double-exposing parts of the image through two or more filters, usually with different CRT 
intensities. 

Input to film recorders can be a raster video signal , a bitmap, or vector-style 
instructions. Either the video signal can drive a color CRT directly, or the red, green, and 
blue components of the signal can be electronically separated for time-sequential display 
through filters. In either case, the video signal must stay constant during the entire 
recording cycle, which can be up 10 I minute if relatively slow (low-sensitivity) film is being 
used. High-speed, high-resolution bitmap or vector systems are expensive, because the 
drive electronics and CRT itself must be designed and calibrated carefully. As speed and 
resolution decrease, costs are reduced dramatically. 

The recently developed Cycolor technique embeds in paper millions of microcapsules 
filled with one of three colored dyes-<:yan , magenta, or yellow. The capsules harden 
selectively when exposed to light of a specific color. For instance, when exposed to green 

Color 
wheel 

Camera 

""'--"-"Motor to 
rotate color 
wheel 

Fig. 4 .11 A film recorder for making color photographs using colored filters. 
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TABLE 4 .1 A COMPARISON OF SEVERAL MONOCHROME HAROCOPY 
TECHNOLOGIES• 

Pen Dot Electro- Ink 
J!IOI!er matrix static Laser Jet Thermal 

intensity levels per dot 2 2 2 2 2-m any 2 
addressability, points per inch 1000+ to 250 to 400 to ISOO to 200 to 200 
dot size. thousandths of inch 6-IS 10-18 8 5 8-20 7-10 
relathoe COSI range L-M VL-L M M-H L-M L-M 
relathoe COSI per image L VL M M L M 
image quality L-M L-M M H M M 
speed L M H-H M-H M M 

*VL • YCt'}' tow. L =low, M • medium, H • high. 

Pboto 
many 
to 800 
6-20 
L-H 
H 
H 
L 

light, chemicals in the magenta-filled capsule cause thai capsule to harden. The paper is 
passed through pressure rollers and pressed against a sheet of plain paper. The unhardened 
capsules (cyan and ~Uow, in this example) break, but the hardened capsule (magenta) does 
not . The cyan and yellow colors mix and are transferred to lhe plain paper, creating a 
high-<Juality green image. Unlike most other technologies, this one requires only a single 
pass. 

Table 4. 1 summarizes lhe differences among black-and-white hardcopy devices; Thble 
4.2 covers most of the color hardcopy devices. Conside.rable detail on the technology of 
hardcopy devices can be found in (DURB88). The current pace of technological innovation 
is, of course, so great that the relative advantages and disadvantages of some of these 
devices will surely change. Also, some of the technologies are avai lable in a wide range of 
prices and perfonnances. Film recorders and pen plotters, for instance, can cost from about 
SIOOO to $100,000. 

Note that, of alllhe color devices, only lhe film recorder, Cycolor, and some ink-jet 
printers can capture a wide range of colors. All lhe other technologies use essentially a 
binary on-off control for lhe three or four colors they can record directly. Note also that 
color control is tricky: there is no guarantee that the eight colors on one device will look 
anything like the eight colors on the display or on another hardcopy device (Chapter 13). 

Wide laser printers are becoming available: they wi ll slowly preempt electrostatic 
plotters, which have a lower contraSt ratio between black and white and are more difficult to 
maintain. 

TABLE 4.2 A COMPARISON OF SEVERAL COLOR HARDCOPY TECHNOLOGIES• 

Pen Dot Electro- Ink 
~louer matrix static Laser jet Thermal Photo 

color levels per dot to 16 8 8 8 8-many 8-many many 
addressability, points per inch 1000+ to 250 to 400 to 1500 to 200 to 200 to 800 
dot size, thousandths of inch 15-6 18-10 8 5 20-8 10-7 20-6 
relative cost range L-M VL M-H M- H L-M M M-H 
relative cost per image L VL M M L M H 
image quality L-M L M H M M-H M- H 
speed L L-M M M M L-M L 

"VL • \OCrY tow. L • tow. M = medium. H • high. 
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