
17.4 Geometric Transformations of Images

I• Expand the width of an image by p/q. •I
void WeimanExpansioo(

{

const grayscalePixmap source,
grayscalePixmap target,
lot 11, lot k,
lot p, lnt q)

char roth[MAX);
inl i , j , s;

I• Source image. siz.e 11 x k •I
I• Target image, width at least k • plq *I
I• Siz.e of source image •I
I• Scale factor is plq •I

I• The array must hold at least p items. •I
I• Loop indices • I

I• Source image is 11 x k. target image is to be 11 x ceil (k • plq).3 •I
lot target Width = ceil (k • p /(double} q);

823

Rothstein (roth, p, q) ;
SetToBiank (target , n, target\Vuith};
for (i = 0; i < p; i++) {

I• Store the Rothstein oode for pfq in array roth. •I
I• Clear the target array. •I

}

lnt sourceCol = 0;
Permute (roth);
I• For each column of the target •I
for U = O;j < target Width;}++) {

I• For several passes through the algorithm. .. •I

I• Apply cyclic permutation to Rothstein code. • I

If (rothlt1 == I) { I• If code says to copy source column *I
for (s = 0; s < n; s++) { I• Copy aU the pixels. •I

target[sJit1 += source[sJisourcecoq;
}
souroeCol++: I • Go to next column. •I

}
}

I• Divide by q to compensate for adding each source column to target q times. •I
for (i = 0; i < n; I++)

for U = O;j < targetWidJh;J++)
target(iJV) =riot (target(iJVJ / (double} q):

} I• WeimanExpansion •I

Fig. 17.5 The Weiman algorithm for expanding an image.

perform the identity transformation on an image, it blurs the values. ln Section 17 .5.3, we
discuss this and other drawbacks of transformation algorithms.•

At this point , it is worthwhile to separate two aspects of image transformation. The first
is computing which point in the source image is mapped to the center of the pixel in the

"The ceiling of a number is the smallest integer greater than or equal to the number; ceiling(l.6) = 2.
ceiling(I. I) = 2, and ceiling(6.0) = 6.
'Feibush, Levoy and Cook note that any filter can be used, but describe the algorithm in terms of a
filter of diameter 2. The algorithm generally performs better wit.h this filter than it does with a
unit-area box filter.

TEXAS INSTRUMENTS EX. 1009 - 886/1253

824 Image Manipulation and Storage

Source space Source Image

:--,----:
I I

I I

Map

L------..J

Target space

Target Image

These pixels
need new
values assigned

Fig. 17.6 The relationship of the source space, source image, target space, and target
image in the Feibush- levoy- Cook algorithm.

target image. The second is computing the value for the pixel in the target image. The first
task is merely algebraic, in that it involves computing values (and inverse values) of a
transformation. This may be done efficiently by various incremental methods. The second
task also has numerous solutions, all of which involve choosing some filtering function to
apply to the original image. The method described in the next few pages assumes a filtering
function that is circularly symmetric and has a modest size (i.e., is nonzero only on a small
part of the plane).

The algorithm starts with a source image (thought of as lying in one copy of the
Euclidean plane, c.alled the source space), a projective map5 from another copy of the
Euclidean plane (the target space) to the source space, and a polygonal region in the target
space. The target image is the collection of pixels in the target space that are near the
polygonal region, and it is these pixels whose values need to be assigned (see Fig. 17.6).
Note that the projective map here goes from target to source, the reverse of the usual
naming convention for mathematical functions.

To start, we choose a symmetric filter function that is nonzero only for (x, y) very close
to (0, 0) (perhaps within a 2-pixel distance). The support of this filter function is the set of
points on which it is nonzero. We take a copy of the bounding rectangle for the support of
the filter and translate it to each pixel in the target space. Whenever this rectangle intersects
the target polygon, the pixel is considered to be in the target image. This translated
rectangle is called the bounding rectangle for the target pixel, and the translated support of
the filter function is called the pixel 's convolution mask (see Fig. 17.7).

The vertices of the target polygon are transformed to source space just once, for
repeated use. The resulting polygon is called the source polygon. The bounding rectangle of
each target pixel is transformed to the source space, where it becomes a quadrilateral. A
bounding rectangle for this quadrilateral is computed, then is clipped by the source polygon
(because clipping a rectangle by the source polygon is much easier than clipping a general
quadrilateral). The pixels in the source space that lie in this clipped quadrilateral are
transformed to the target space; only those that fall within the target pixel 's bounding
rectangle are retained.

' A projectil'<' map is a map represented by a 3 X 3 matrix operating on the plane using homogeneous
coordinates, in the manner described in Chapter 5.

TEXAS INSTRUMENTS EX. 1009 - 887/1253

17.4 Geometric Transformations of Images 825

Transform

Source polygon Convolution mask

Fig. 17.7 Terms used in the Feibush-levoy-cook algorithm.

These transfonned pixels are then averaged together by the weights given by the fi Iter to
yield a value for the target pixel . This target pixel value is correct only if the entire pixel is
within the transfonned image boundaries. If the image has been rotated , for example, then
the transformed edges of the image may cut across pixels (more precisely, across their
convolution masks).

Thus pixels are not entirely determined by the value just computed; that value only
contributes to the pixel' s value , in proportion to the coverage of the pixels. The contribution
can be determined analytically. Figure 17.8 shows the transformed edge of the source
image passing through a pixers bounding rectangle, and within that rectangle passing
through the pixel' s convolution mask. To find the contribution of the computed value to the
pixel 's final value, we do the following:

I . Clip the image polygon against the bounding rectangle for the pixel (see Fig. 17 .9).
The points of intersection with the edges of the bounding rectangle were already
computed in determining whether the pixel was in the target image.

2. For each vertex of the clipped polygon (in Fig. 17 .9, a single triangle with vertices

- ---Transformed
po4ygon edge

Convolution mask
or filter support

Fig. 17.8 Filtering for a pixel at the edge of the polygon.

TEXAS INSTRUMENTS EX. 1009 - 888/1253

826 Image Manipulation and Storage

Side 1 Side1 Side2

A

Base

Side2 Base

Fig. 17.9 The steps in f iltering an edge.

labeled A, 8 , and C, in clockwise order), construct a triangle with sides BASE (the edge
from this vertex to the next vertex in clockwise order around the polygon), SIDE/ (the
edge from this vertex to the center of the pixel) and SJDE2 (the edge from the next
vertex to the center of the pixel).

3. Consider the filter function as being planed in a third dimension above the convolution
mask. The weight a region contributes to the total for a pixel is proportional to the
volume above that region and under the graph of the filter. So we now compute the
volumes above each triangle. As Fig. 17.9 shows, some of these volumes must be
added and some subtracted to create the correct total contribution for the region. The
rule is that the volume is added if the cross-product of SIDE/ and SJDE2 points into the
page; otherwise, it is subtracted (see Exercise 17 .4).

Computing the volumes in step 3 is easier than it might appear, in that they can be
precomputed and then extracted from a look-up table during the actual filtering process.
Exercise 17.5 shows how to do this precomputation.

17 .4.3 Other Pattern Mapping Techniques

The Feibush-Levoy·Cook algorithm provides excellent results for pattern mapping onto
polygons, but requires computing a filtered value at each point, so that for each pixel in the
image a filtering computation is perfonned. In a perspective picture of a plane (receding to a
vanishing point) a single pixel in the final image may correspond to thousands of pixels in
the source pattern, and thus require an immense filtering computation. Several techniques
have been developed to produce more rapid (if sometimeS slightly less accurate) filtering .

Williams [W1LL83] takes the source image and creates a M£P (multum in parvo­
many things in a small place) map, which occupies t of the memory of the original. If the
original image is a 512 by 512 pixel, 24-bit true color image, using 8 bits each for the red ,
green, and blue information, the MIP map is a 1024 by 1024 by 8 bit image. The red,
green, and blue parts of the original image each occupy one quarter of the MIP map, and
the remaining quarter is filled with filtered versions of these, as shown in Fig. 17 .10. When
a target pixel is covered by a collection of source pixels, the MIP map pixels corresponding
to this collection most closely are used to give a filtered value. Linear interpolation between
levels of filtering is used to further smooth the values.

Crow [CROW84] devised a scheme by which box filtering of an image over any aligned
rectangle can be done rapidly. For quick pattern mapping, this suffices in many cases-a
rectangular box corresponding closely to the shape of the transformed target pixel is used to

TEXAS INSTRUMENTS EX. 1009 - 889/1253

17.4 Geometric Transformations of Images 827

G A

G A
B

G A
B

B

Fig. 17.10 A MIP map. The red, green, and blue channels of the original image fill three
quarters of the MIP map. Each is filtered by a factor of 4, and the three resulting images
fill up three quarters of the remaining quarter. The process is continued until the MIP
map is filled.

compute a filtered pattern value for the pixel. The scheme is based on the algebraic identity
(x + a)(y +b)- (x +a) y- x (y +b)+ xy = ab. Interpreted geometrically, this says that
the area of the small white rectangle in Fig. 17 .I I can be computed by taking the area of the
large rectangle and subtracting the areas of both the vertically and the horizontally shaded
rectangles, and then adding back in the crosshatched rectangle (which has been subtracted
twice). By taking the source image and creating a new image, whose value at pixel (x, y) is
the sum of all the values in the source image in the rectangle with comers (0, 0) and (x, y),
we create a summed area table, S. We can now compute the sum of the pixels in the
rectangle with comers at (x, y) and (x +a, y +b), for example, by taking S[x +a, y +b)
- S[x + a, y] - S[x, y + b) + S[x, y].

Glassner [GLAS86] observes that if the transformed pixel is not approximately an
aligned rectangle, then summed area tables may blur the result excessively. He therefore
develops a system in which the excess area in the aligned bounding box for the pixel is
systematically trimmed, in order to provide a more accurate estimate of the filtered source
image at the point. This requires detecting the geometry of the inverse-mapped target pixel
relative to its bounding box.

Heckbert [HECK86a) proposes a system using both the Feibush-Levoy-Cook method
and MIP maps. He maps the target pixel's filter support (which is supposed to be circular,

(0, y +b)

(0. y)

(0, 0) (x, 0)

(x +a, y + b)

(x + a , 0)

Fig. 17 .11 The area of the small white rectangle in the image is computed by
subtracting the horizontally and vertically shaded areas from the area of the large
rectangle, and then adding back in the area of the crosshatched rectangle.

TEXAS INSTRUMENTS EX. 1009 - 890/1253

828 Image Manipulat ion and Storage

(a) {b)

(C) (d)

Fig. 1 7.12 (a) Point sampling of the source image. (b) MIP map filtering. (c) Summed
area table filtering . (d) Elliptical weighted average using MIP maps and a Gaussian filter.
(Courtesy of P. Heckbert.)

and is defined by a quadratic function) to an elliptical region in the source image (defined
by a different quadratic). Depending on the size of this region in the source image. an
appropriate level in a MIP map for the source image is selected, and the pixels within it are
collected in a weighted sum over the elliptical region. This weighted sum is the value
assigned to the target pixel. This combines the accuracy of the Feibush-Levoy-Cook
technique with the efficiency of the MIP map system. A comparison of pattern-mapping
results is shown in Fig. 17 .12.

17.5 MULTIPASS TRANSFORMATIONS

Suppose that we take the image shown in Fig. 17 .13(a) and apply a vertical shearing
transformation to it, as shown in part (b), and then we follow this with a horizontal shearing
transformation,• as shown in pan (c). Provided we choose the right transformations, the net
effect is to rotate the image as shown [CATM80]. Such a two-pass technique may be much

"'The t"1> ~hearing transformations are actually shear-and-scale transformations. Tile first takes a
column of pixels and translates and compresses it in the venical direction. The second does the same
for a WN of pixels.

TEXAS INSTRUMENTS EX. 1009 - 891/1253

17.5

-
_...;.; , ' . :'1

" r - :-:
l . , .

(I

~-

(a)

(b)

,__
·-·

•

'1

.

,.,.. ·-

~.

Multipass Transformations 829

Fig. 17.13 A rotation may be expressed
as a composit ion of a column-preserving
and a row-preserving transformation. (a)
The original image. (b) A column-preserving
transformation has been applied to the im­
age. (c) A row-preserving transformation
has been applied to the second image.
(Courtesy of George Wolberg, Columbia
University.)

(c)

faster to compute than a direct application of the rotation transformation, since it operates
on one vertical or horizontal line of pi~s at a time, and the computations within each such
line can be performed incrementally. Also , in many cases, the filtering necessary to a\'Oid
aliasing artifacts can be performed line by line as well . More important still is that a wide
class of trans formations can be implemented as multipass transformations [CATMSO,
SMIT87 j . This multipass technique has been implemented in the Ampex digital optics
(ADO) machine [BENN84), which is widely used in video production. A survey ofthis and
other image warping techniques is given in [WOLB90] .

Implementing t'M:l-pass (or multipass) transformations can be divided into two
subtasks: finding the correct transformations for the individual passes, which is a purely
algebraic problem, and applying the correct filtering to generate new pixels , which is an
antialiasing problem. Since the second part will depend on the solution to t_he first , we
begin by solving the first problem in the case of a rotation.

TEXAS INSTRUMENTS EX. 1009 - 892/1253

830 Image M anipulation and Storage

17.5 .1 The Algebra of Multipass Transforms

To simplify the discussion, we will use three different sets of coordinates. 'The original
image will be written in (x, y) coordinates , the vertically sheared image in (u, v)
coordinates. and the final image in (r, s) coordinates. The first shearing transformation will
be called A, the second 8, and their composition, which is the rotation, will be called T.
Thus,

(~) = A ~).
and

From Chapter 5, we know the formula forT:

(:) = t) = (~~~:; ;: :).

From this, we will determine the formulae for A and B.
The transformation A is supposed to be column preserving; that is, it must send each

column of the original image into the corresponding column of the transformed image.
Thus, if the pixel (x, y) is sent to (11, v) by A, then 11 = x. In other 'Mlrds, A must be wriuen
in the form

(11)-ix)-(x) v - \y - f(x, y)

for some function f. In the same way, 8 is supposed to be row preserving, so 8 must be
written in the form

for some function g. To determine the formulae for A and 8 , we need to find the functions f
and g.

Writing out the composite. we have

(') = s(") = s(ix)) = 8(x) = (s<x.f(x, Y»).
s v \y j(x, y) f(x, y)

From this equation, we see that s andf(x, y) are equal. Thus, the formula for sin terms of x
andy gives the formula for f(x, y):j(x, y) = x sin t/> + y cos tf>. Determining the formula for
g(u, v) is more complex. We know that, in terms of x and y, we can write g(u, v) = x cost/>
- y sin tf>. To write this in terms of 11 and v, we must solve for x andy in terms of 11 and v and
substitute. Solving for x is easy. ince we observed previously thatu = x. Solving for y is
slightly more difficult: v = j(x, y) "' x sin t/> + y cos t/>, soy = (v - x sin t/>) I cos t/> =

TEXAS INSTRUMENTS EX. 1009 - 893/1253

17.5 Mult ipass Transformations 831

(v- u sin 1/>) I cos if>. Substituting this result into the formula for g(u, v) in terms of x andy.
we get

v- 11 sin 4> .
g(11 , v) = 11 cos 4> - .l. san 4> = 11 sec 4> - v tan 1/>.

cos'+'

In summary, if we define

ix) = (x) \y xsinl/>+ycosl/>'

and

s(~) =("sec 4>: v tan 4>).

then computing the composite gives

s(AC)) = (~~: t ; ;: :).
as desired.

To do this for a general tranSformation T. we must do exactly the same work. If

rC) = (:j;: ~0·
then we define 11 = x and v = f(x , y) = t2(x, y). To define g(u, v), we need to solve for y in
terms of 11 and v, using these definitions-that is, to find a function h such that (u, v) =
(x. t.f.x, y)) is equivatent to (x, y) = (11, h(u, v)). When we have found h, the formula for
g(u, v) is just g(u, v) = t,/.11 , h(u, v)).

The difficult part of the process is finding h. ln fact, in our example, h(u. v) =
(v- u sin 1/>) I cos 4>, which is undefined if cos 4> = 0-that is, if 4> = 90" or 2700-so that
finding h may be impossible. Fortunately, rotating by 90" is very easy (just map (x, y) to
(-y, x)), so that this is not a problem. ln fact, we shall see that, to rotate nearly 90°, it is
better to rotate the full 90" and then to rotate a small amount back; thus, to rotate 87", we
would rotate 90" and then -3". Algebraically, there is no difference between the two maps;
at the pixel level , however, where filtering is involved, the difference is significant.

A rotation can also be broken into three tranSformations so as to avoid this bouftntck
problem [PAET86; TANA86; WOLB90). The decomposition for a rotation by 4> is [:: ~= :J = [~ -~ 4>12) [si~ 4> ~] [~ -t~ 4>12).
Note that each transformation involves a computation with one multiplication and one
addition. Also, when 4> > 90", we can do the rotation by first rotating by 180" and then by
180" - 1/>, so that the argument of the tangent function is never greater than 45".1

"The tangent functioo is -tl behaved for angles neat 0", but has singularities at z90". Evaluating it
for angles near 0" is lbcreforc preferable.

TEXAS INSTRUMENTS EX. 1009 - 894/1253

832 Image Manipulation and Storage

To show lhatthe multipass technique is notlimiu:d to rotations, let us factor a different
map, which distorts a square into a trJpezoid. (Such maps arise in the perspective
transformations described in Chapter 6.) As an example, we take

.../x) = (:d(y + I))
I \y \yt(y + I) .

Just as before, we wish to find functions

and

such that B(A(y)) = r(y). In lhis case, v = f(x, y) = t.f..x, y) = yl(y + I). We need to find
g(u, v) so that g(u, v) = :d(y + 1). Solving the equation of/for y, we get y = -vl(v- 1).
Thus (recalling lhatu = x), we can writeg(u, v) = u l (-vl(v- I)+ I)= u l(-ll(v- I))=
u(l - v). Ourtwo passes become

and (;) = (u(l : v>).

You should check that the composition of these transformations is really the original
transformation T.

The technique has been generalized to handle other map by Smith and colleagues
ISMIT87l. Translation, rotation, scaling. and shearing all work easily. In addition, Smith
considers functions of the form

T(x, y) = S(m(x) h.(y), m(x) ht<J)),

where Sis a standard computer grapbics transform-that is, a transformation of the plane
by translation, scaling. rotation, and perspective transformations-and m(x) . h1(y) and h.f..y)
are arbitrary. He also considers maps T whose component functions t1(x, y) and t.f..x. y) are
bicubic functions of x and y, under the special hypothesis thai Tis injective (i.e .• no two
(x. y) points map to I he same (r , s) point).

1 7 .5.2 Generating Transformed Images with Filtering

When we transform an image by a row-preserving (or column-preserving) transformation,
the source pixels are likely not to map exactly to the target pixels. For example, the pixels in
a row might all be translated by Jt pixels to the right. In this case, we must compu1e values
for the target pixels by taking combinations of the source pixels. What we are doing, in
effect, is considering the values of the source pixels as samples of a function on a real line
(the row); the values at t.he target pixels will be different samples of lhis same function.
Hence. t.he process is called resampling.

The theoretically ideal resampling process is to take, for a given target pixel , a weighted
averdge ofthe source pixels whose transformed positions are near it. The weights associated
wilh each source pixel should be sioc(kd), where d is the distance from lhe 1ransformed
source pixel to the targel pixel and k is some constant. Unfortunately, lhis requires lhat
every source pixel in a row contribute to every target pixel. As usual. ~-e can instead work

TEXAS INSTRUMENTS EX. 1009 - 895/1253

17.5

•

(a) (b)

Multipass Transformations

• •• ••• ••• • •• •• •
(C)

833

Fig. 17 .14 The pixels that contribute to a n output pixel in a two-pass rotation form a
small area in (x. y) space. (a) A single pixel in (r, s) space; (b) The horizontal span of pixels
in (u, v) space that contribute to the value of that pixel; (c) The pixels in (x, y) space that
contribute to the values of the pixels in (u, v) space.

with various approximations ro the sine filter. The simplest is a box filter: Each source pixel
is assumed to represent an interval in its row, and the endpoints of this interval are
transformed. The contribution to the target pixel is the overlap of this transformed interval
with the target pixel's interval multiplied by the value of the source pixel.

Using this method, each target pixel has a value that is a weighted average of a short
span of source pixels (the length of the span depends on the exact transformation). In a
two-pass rotation, a pixel in (r, s)-space has a value that is a weighted average of a
horizontal span of (u, v)-pixels . Figure 17 .14(a) shows a pixel in (r, s) space, and (b) shows
the span of pixels in (u, v) space that contribute to the value of that pixel. Each of these
(u, v) pixels, however, has a value that is an average of a vertical span of pixels in (x, y)
space. Figure 17.14(c) shows these pixels in (x, y) space. Notice that the vertical spans in
(x, y) space form a rhombus rather than a square, since the transformation from (x, y) to
(u, v) is a shearing transformation.

We know from Chapter 14 that the pixels contributing to an output pixel really ought to
form a circular shape" (i.e., the filter should be radially symmetric). If the rhombus is too
dift'erent from a square, the filtering will begin to degenerate and will produce bad results .
The result of such a sepanuion of the filtering process into two component filters is
discussed further in [MITC88].

In addition , we want to avoid rbe boulenecking problem described previously, where
many pixels in the source for a transformation contribute to each output pixel. In the case of
a shear-and-scale operation, this occurs when the scale factor is small.

Thus, in doing two-pass rotations (or any other multipass transformation) we want to
avoid extreme s.hearing or botllenecking in our transformations. This is why rotating by 90•
and then by -3" is superior to rotating by 87°. In general , when we are constructing a
two-pass transform, we can transform by rows and then columns, or by columns and then
rows, or can rotate 90° before doing either of these. According to Smith, one of these
approaches appears always to resolve the bottlenecking problem, at least for standard
operations such as translation , rotation, scaling, and shearing fSM!T87]. Nonetheless,
there are more general transformations where this technique may not succeed: If one
portion of an image is rotated 90" whi le some other stays fixed (imagine bending a long thin

&rhis is particular to the case of a rotation. For a general transfonnation, the source pixe.ls
contributing to an output pixel should consist of those pixels that are transfonned into a small disk
about the target pixel; these pixels may or may not constitute a disk in the source image.

TEXAS INSTRUMENTS EX. 1009 - 896/1253

834 Image Manipulation and Storage

rectangle into a quarter-circle shape), then there is certain to be bonlenecking at some
point. no matter what the order in which the transformations are applied.

Wolberg and Boult [WOLB891 have developed a technique in which two simultaneous
versions of a multipass transform are done at once. The original image is first transformed
by a row-preserving map and a column-preserving map, and then also is transformed by a
90" rotation and a different pair of maps. For both transformation sequences, the method
records the amount of bottlenecking present at each pixel.

Thus, each output pixel can be computed in two different ways. Wolberg and Boult
select, for each pixel, the route that has less bottlenecking, so that some portions of the
image may be row--column transformed, whereas others are column-row transformed.
Since the two sets of transformations can be performed simultaneously in parallel
processors, this technique is ideally suited to implementation in hardware.

17 .5 .3 Evaluating Transformation Methods

There are several criteria for judging image-transfom1ation algorithms. Filtering theory
tells us that an image can be reconstructed from its samples, provided the original image
had no high-frequency components. Indeed, from any set of samples, one can reconstruct
som~ image with no high-frequency components. If the original image had no high
frequencies, then "e get the original back; if it did contain high frequencies, then the
sampled image contained aliases, and the reconstructed image is likely to differ from the
original (see Exercise 17.6).

So how should we judge a tr"'dnsformation algorithm'/ Ideally, a transformation
algorithm would have the following properties:

•
•

•

•

Translation by a zero \'eCtor should be the identity

A sequence of translations should have t.he same effect as a single, composite
translation

Scaling up by a factor of A > I and then sealing down by I/ A should be the identity
transfom1ation

Rotating by any sequence of angles totaling 360° should be the identity transformation .

Many workable algorithms clearly fail to satisfy any of these criteria. Weiman's algorithm
fails on all but the fourth criterion. Feibusb, Levoy, and Cook's algorithm fails on the first
if a filter more than I pixel wide is used. Even Catrnull and Smith's two-pass algorithm fails
on all four criteria.

None of this is surprising. To resample an image, we ought to reconstruct it faithfully
from its samples by convolving with a sine filter. Thus, each new pixel ought to be a
weighted average of a// the pixels in the original image. Since all the methods are sensible
enough to use filters of finite extent (for the sake of computational speed), all of them end
up blurring the images.

There are many image-transformation methods not covered here. They eacll have
advantages and disadvantages, mostly in the form of time- space tradeoffs. These are
described in detail in an excellent survey by Heckbert (HECK86b).

TEXAS INSTRUMENTS EX. 1009 - 897/1253

17 .6 Image Composit ing 835

17.6 IMAGE COMPOSITING

In this section, we discuss compositing of images- that is, combining images to create new
images. Porter and Duff [PORT84) suggest that compositing is a good way to produce
images in general, since it is fairly easy to do, whereas rendering the individual portions of
the image may be difficult. With compositing, if one portion of the image needs alteration,
the whole image does not need to be regenerated. Even more important, if some portions of
an image are not rendered but have been optically scanned into memory instead,
compositing may be the only way to incorporate them in the image.

We describe compositing using the a channel in Section 17 .6. I , compositing using
frame-buffer hardware in Section 17.6.2, the artificial generation of a values in Section
17.6.3, and an interface for image assembly in Section 17.6.4.

17 .6.1 a -Channel Com positing
What sort of operations can be done in compositing? The value of each pixel in the
composited image is computed from the component images in some fashion. ln an overlay,
the pixels of the foreground image must be given tnmsparency val11es as well as whatever
other values they may have (typically ROB or other color information). A pixel's value in
the composited image is taken from the background image un less the foreground image has
a nontransparent value at that point, in which case the V'<llue is taken from the foreground
image. In a blending of two images, the resulting pixel value is a linear combination of the
values of the two component pixels. Ln this section, we describe the Port.er-Dulf
mechanism for compositing images using such combinations and transparency values
fPORT84].

Suppose we have two images, one of a red polygon and one of a blue polygon, each on
a transparent background. If we overlay the two images with the red polygon in front, then,
at interior points of the front polygon, only the color red is visible. At points outside the
front polygon but inside the back polygon, only blue is visible. But what about a pixel lying
on the edge of the front polygon but inside the back polygon (see Fig. 17 .15)? Here, the
front polygon covers only pan of the area of the pixel. If we color it red only, aliasing
artifacts will result. On the other hand, if we know that the front polygon covers 70 percent

Tricky pixel

Fig . 17.1 5 Compositing operations near an ed ge: Ho w do we color the pixel?

TEXAS INSTRUMENTS EX. 1009 - 898/1253

836 Image Manipulation and Storage

of the pixel, we can make the composited pixel 70 percent red and 30 percent blue and get a
much more attracti~~e result.

Suppose that as an image is produced, coverage infonnation is recorded: The color
associated with each pixel in the image is given an a value representing the coverage of the
pixel. For an image that is to become the foreground element of a composited image, many
of the pixels are registered as having coverage zero (they are transparent); the remainder,
which constitute the important content of the foreground image, have larger coverage values
(usually one).

To do compositing in a reasonable fashion , we need this a infonnation at each pixel of
the images being cornposited. We therefore assume that , along with the RGB values of an
image, we also have an a value encoding the c011erage of each pixel. This collection of a
values is often called the a channel (see Section 17. 7). Some types of renderers generate
this coverage information easily, but it may be more difficult to generate for images that
have been scanned into memory. We discuss this problem briefly in Section 17.6.3.

How do a values combine? Suppose we have a red polygon covering one-third of the
area of a pixel , and a blue polygon that, taken separately, covers one-half of the area of the
pixel. How much of the first polygon is covered by the second? As Fig. 17.16 shows, the
first polygon can be completely cOIIered, partly covered, or not covered at all. But suppose
we know nothing more than the coverage information given. What is a reasonable guess for
the amount of the first polygon covered by the second? Let us suppose that the area covered
by the first is randomly distributed through the pixel area, and that the same is true of the
second. Then any tiny spot's chance of being in the red polygon is t, and its chance of being
in the blue polygon is t. so its chance of being in both is t. Notice that this value is exactly
one-half oft, so that exactly one-half of the first polygon is covered by the second. This will
be our general assumption: The area covered is distributed randomly across the pixel, so
that the fraction of the first polygon cOIIered by the second (within a particular pixel) is the
same as the fraction of the whole pixel covered by the second polygon. The consequence of
this assumption in practice is that compositing images with very fine detail that is parallel in
the two images can have bad results. Porter and Duff report, however, that they have had no
noticeable problems of this sort [PORT84j.

Now, how do we compute the color of the pixel resulting from a 60-40 blend of these
2 pixels? Since the pixel is one-third covered by a color that. if it totally covered the pixel,
would generate light of (1,0,0), the color's contribution to the light of the pixel is
$(I ,0,0). We want to take 60 percent of this and combine it with 40 percent of the
other. We thus combine the ROB triple for the red pixel, (I , 0. 0), and the ROB triple for the

No overlap Total overlap Proportlonal
overlap

Fig. 17.16 The ways in which polygons can overlap within a pixel. In image
composition. the first two cases are considered exceptional; the third is treated as the
rule.

TEXAS INSTRUMENTS EX. 1009 - 899/1253

17.6 Image Compositing

TABLE 17.1 AREAS AND POSSIBLE
COLORS FOR REGIONS OF OVERLAP IN
COMPOSITING

Region Area Possible colors

neither (I - aA)(I - as) 0
A alone <>A(l - ag) O,A
8 alone as(l - a,.) 0,8
both aAaB O, A, 8

blue pixel, (0, 0, 1), as follows: We say that

0.6 (i)(l ,0,0) + 0.4 (:!}(0 , 0, I) = (0.2, 0, 0.2)

i.s the resulting color.

837

Note that, whenever we combine 2 pixels, we use the product of the a value and the
color of each pixel. This suggests that, when we store an image (within a compositing
progmm), we should store not (R, G, B, a), but rather (aR, aG, aB, a) for each pixel , thus
saving ourselves the trouble of performing the multiplications each time we use an image.
Henceforth, when we refer to an RGBa value for a pixel, we mean exactly this. Thus, it
should always be true that the R, G and B components of a pixel are no greater than that
pixel's a componen1.9 (In rare cases, we may want to consider pixels for which this
condition is violated. Such pixels are effectively luminescenl.)

Suppose now that two images, A and B, are to be combined, and suppose that we are
looking at pixel P. lfthe a value of Pin image A is a,. and the a value of Pin image B is a8,
we can ask what fraction of the resulting pixel is covered by A only, what part by B only,
what part by both, and what part by neither.

We have already assumed that the amount covered by both is aAa8. This means that a A

- aAa8 is covered just by A, and a8 - aAa8 is covered just by B. The amount left is 1
minus the sum of these three, which reduces algebraically to (1 - a A)(I - a8) . In the
composited image, the area that was covered by A alone might end up with color A or no
color, and similarly for color 8. The area that was covered neither by A nor 8 should end up
with no color, and the area covered by both might end up with no color, color A, or color B.
Table 17 .I lays out these possibi lities.

How many possible ways of coloring this pixel are there? With three choices for the
both-colors region, two for each of the single-color regions , and one for the blank region,
we have 12 possibilities. Figure 17.17 lists these possibilities.

Of these operations, the ones that make the most intuitive sense (and are most often
used) are A over 8, A in 8 and A held out by 8 , which denote respectively the result of
hiding 8 behind A, showing only the part of A that lies within 8 (useful if B is a picture of a
hole), and showing only the part of A outside of 8 (if B represents the frame of a window.
this is the part that shows through the pane of the window).

9ln a fixed-point scheme for representing the colors, pixels whose a value is small have a more discrete
realm of colors than do those whose a value is I. Porter and Duff say that this lack of resolution in the
color spectrum for pixels with small a values has been of no consequence to them.

TEXAS INSTRUMENTS EX. 1009 - 900/1253

838 Image Manipulation and Storage

operation quadruple diagram

clear (0. 0, o. 0) 0 0

A (0, A, 0, A) 1 0

8 (0, 0, 8, 8) 0 1

A over 8 (0, A, 8, A) 1 1- a11

8 over A (0, A, 8, 8) 1-a8 1

A ln 8 (0, 0, 0, A) a a 0

8 inA (0, 0, 0, B) 0 all

A held
(0, A. 0, 0) 1- a8 0 out by 8

8 held
out by A (0, 0, 8, 0) 0 1-a11

A atop 8 (0, 0, 8, A) a a 1- a11

8 atop A (0, A, 0, 8) 1-aa all

A xor 8 (0, A, 8, 0) 1-aa 1-a11

Fig. 17.17 The possibilities for compositing operations. The quadruple indicates the
colors for the "neither," " A, " " B," and "both" regions. Adapted from [PORT84).
(Courtesy of Thomas Porter and Tom Duff.)

In each case we can compute , as before, how much of each color should survive in the
result. For example, in A over B, all the color from image A survives, while only a fraction
(I - a11) of the color from B survives. The total color in the result is c11 + (I - a11)c8 ,

where c" denotes the color from image A (with a11 already multiplied in).
In general, if F" denotes the fraction of the pixel from image A that still shows , and

similarly for F8 , then the resulting color will be F"c11 + Fae8 . We must also compute the
resulting a value: If fraction F11 of A is showing, and the original contribution of A is a 11 ,

then the new contribution of A to the coverage is F11aA- The same goes forB; hence, the
total coverage for the new pixel is F11a11 + F,rx8 •

TEXAS INSTRUMENTS EX. 1009 - 901/1253

17.6 Image Composit ing 8 39

A few unary operations can be perfonned on images. For example, the darken
operation is defined by

Osps I,

which effectively darkens a pixel while maintaining the same coverage. In contrast, the fade
operator acts by

Os.S<I

which causes a pixel to become more transparent while maintaining its color (the color
components are multiplied by .S because of the requirement that the colors must always be
premultiplied by the a value).

A natural third operator (essentially a composite of these two) is the opaque operator,
which acts on the a channel alone and is defined by

opaque(A, w) := (RA• GA• BA• waA).

As w varies between 0 and I , the coverage of the background by the pixel changes. Of
course, if w is made small, one of the color components may end up larger than the a
component. For example, if w is zero, then we get a pixel with color but a zero a
component. Such a pixel cannot obscure anything, but can contribute light to a composited
pixel; hence, it is called luminous. l'he possibility that color components can be larger than
the a component requires that we clip the colors to the interval [0, I) when reconstructing
the true color (to reconstruct the color, we compute (Ria, G/a, 8/a), and then clamp all
three numbers to a maximum of 1).

One last binary operator, plus, is useful. In this operation, the color components and a
components are added. Thus, to fade smoothly from image A to image B, we use

fade(A, 1) plus fade(B, I - 1),

and let t vary from I to 0. Judicious combinations of these operations let us combine
pictures in a great variety of ways.

We should examine the consequences of the assumptions made at the start: If a pixel is
covered a fraction F1 by one polygon and a fraction F2 by another, then the first polygon
(within the pixel) is covered a fraction F2 by the second. If the two polygons happen to
overlap in a reasonable way, this 'Mlrks fine, as in Figure 17.17. But if they happen to cross
the pixel as parallel stripes, as in Fig. 17 .18, then the assumption is inval.id. When
geometric entities are being composited, this problem is not particularly likely to occur.

Fig. 17.18 A case w here the overlap assumptions fail in compositing.

TEXAS INSTRUMENTS EX. 1009 - 902/1253

840 Image Manipulation and Storage

However, when repeated instances of an image are composited atop one another, it may
happen frequently.

To illustrJte the use of compositing, we describe the composition of the frame from the
Genesis effect described in Chapter 20, and shown in Color Plate IV . 14. In this case, there
are four images composited: FFire, the particle systems in front of the planet; 8Fire, the
particle systems in back of the planet; Planet, the planet ilwlf; and Stars, the backg.round
star field . The composite expression for the image is [PORT84, p. 259]:

(FFire plus (8Fire held out by Planer)) over darken (Pinner , 0.8) over Stars.

The planet is used to mask out the partS of the particle systems behind it, and the results are
added to the front particle systems. These are composited over a slightly darkened planet
(so that the particles obscure the underlying planet), and the result is placed over the
background star field.

17.6 .2 Alternate Compositing Methods

Let us consider two other mechanisms for compositing. The first of these is to composite
images in compressed form (e.g., bitmaps that are stored with 8 pixels per byte}, by doing
very simple operations (A over 8 , A and 8 , A xor 8) on the compressed forms. These
operations are simple to implement: For any two possible bytes, we use a bitwise operation
in hardware to combine them. In a more sophisticated version, the algorithm can be
extended to handle this sort of compositing on run-length- encoded bitmaps.

The other compositing technique uses the frame-buffer hardware to implement
compositing. Consider a simple example. We usually think of a 3-bit-per-pixel bitmap as
containing a single image with 3 bits per pixel. However, we can also think of it as
containing two images, one with 2 bits per pixel and the other with I bit per pixel, or as
three separate images, each with I bit per pixel. In any case, the look-up table is used to
select or combine the separate images to form a single composite image displayed on the
view surface. For instance, to display only image 2, the image defined by the high-order bit
of each pixel value, we load the table as shown in Fig. 17 . 19. To display image 0, the image

Entry number
{decimal)

0
I
2
3
4
s
6
7

Entry number
(binary)
0 0 0
0 0 I
0 I 0
0 I I
I 0 0
I 0 I
I I 0
I I I

N 0

~~~ E E E ---

ContentS of look-up table 
(decimal) 

0 
0 
0 
0 
7 
7 
7 
7 

0 • black 
7 = white 

Fig. 17 .19 Look-up table to display an image defined by the high-order bit of each 
pixel. 

TEXAS INSTRUMENTS EX. 1009 - 903/1253



17.6 

Entry numbe1' 
(decimal) 

0 
1 
2 
3 
4 
5 
6 
7 

Entry numbe1' 
(binary) 

0 0 0 
0 0 I 
0 I 0 
0 I 1 
I 0 0 
1 0 1 
I I 0 
1 I 1 

.... 0 

t!A ~ ~ 
;;' .. "' 
.§ .§ .§ 

Image Compositing 

Concents of look-up table 
(decimal) 

0 
2 
2 
4 
2 
4 
4 
6 

Fig. 17.20 Look-up table to display a sum of three 1-bit images. 

841 

defined by the low-order bit of each pixel, we load the table with a 7 in those locations for 
which the low-order bit is I, and with a 0 for the other locations: 0, 7, 0, 7, 0, 7, 0, 7. If the 
displayed image is to be the sum of the three images and if each image that is "on •' at a 
pixel is to contribute t~ units of intensity, then "''e load the table as shown in Fig. 17.20. lf 
I of the 3 pixel bits is on, a 2 is placed in the table; if2 of 3 are on, a 4 ; and if 3 of 3 are on, 
a 6. 

As another example, think of each image as being defined on parallel planes, as in Fig. 
17.21. The plane of image 2 is closest to the viewer; the plane of image 0 is farthest away. 
Thus, image 2 obscures both images 0 and I, whereas image I obscures only image 0. This 
priority can be reflected in the look-up table , as shown in Fig. 17.22. ln this case, image 2 
is displayed at intensity 7, image I at intensity 5, and image 0 at intensity 3, so that images 
"closer'' to the viewer appear brighter than those farther away. Where no image is defined , 
intensity 0 is displayed. 

Yet another possibility is to use the look-up table to store a weighted sum of the 
intensities of 1~ images, creating a double-exposure effect. If the weight applied to one 
image is decreased over time as the weight applied to the other is increased, we achieve the 
fade-out, fade-in effect called a lap-dissolve. When colored images are used, the colors 
displayed during the fade sequence depend on the color space in which the weighted sum is 
calculated (see Chapter 13). 

Plane of image o ~ 
Plane of Image 1 
Plane of Image 2 ~ 

VIewing 
direction 

Fig . 17.21 Relation of three images to the viewing direction. 

TEXAS INSTRUMENTS EX. 1009 - 904/1253



842 Image Manipulation and Storage 

Eouy number 
(decimal) 

0 
I 
2 
3 
4 
5 
6 
7 

Entry number 
(binary) 

0 0 0 
0 0 l 
0 I 0 
0 I I 
I 0 0 
I 0 I 
I I 0 
I I I 

"' 0 

~~~ 
E E E - -

ConteniS of look-up table
(decimal)

0 no image present
3 image 0 visible
5 image I visible
5 image I visible
7 image 2 visible
7 image 2 visible
7 image 2 visible
7 image 2 visible

Fig. 17.22 Look-up table to assign priorities to three 1-bit images.

Deciding how to load the look-up table to achieve a particular result can be tedious,
especially if many images are used and the table has many entries. The Image Composition
Language (ICL) [FOLE87c) allows the programmer to declare images (made up of one or
more bit planes) as variables. The image to be displayed is described by a composition
expression consisting of variables combined by arithmetic, relational, and conditional
operations. The lap-dissolve is specified in TCL with the expression

new/mage • 1 + old/mage • (I - 1),

in which the variables old/mage and 11ew!mage are images in the bit plane and 1 is a scalar
variable varying from 0 to I. The following composition expression adds red (the triplets in
braces are RGB color specifications) to those values of an image c in the range [0.6, 0.8]
and green to those values in the range [0.3, 0.5):

if (c < 0.8) and (c > 0.6) then c + {I ,0,0}
else if (c < 0.5) and (c > 0.3) then c + {0, 1,0}
else c

endif endif

This short composition expression replaces a code segment that has a considerably larger
number of lines.

17 .6 .3 Generating a Values with Fill Mechanisms

In the preceding section, we described compositing images that come equipped with an a
channel. What if an image is produced by scanning of a photograph or is provided by some
other source lacking this information? Can it still be composited? If we can generate an a
channel for the image, we can use that channel for compositing. Even if we merely assign an
a value of zero to black pixels and an a value of I to all others, we can use the preceding
algorithms, although ragged-edge problems will generally arise.

Recall from Chapters 3 and 4 that there are various ways to fill regions of an image with
new values. If we use a fill algorithm to alter not the color of a pixel but its a value, we can
assign a values to various regions in the image. If the colors in the image represent
foreground and background (e.g. , a picture of a person standing in front of a white wall),

TEXAS INSTRUMENTS EX. 1009 - 905/1253

17.7 Mechanisms for Image Storage 843

we can choose to fill the background region with its original color but assign it a reduced a
value. Fishldn and Barsky give an algorithm for recognizing regions that consist of pixels
that are either entirely or partially made up of some color [FISH84]. For the details of this
algorithm, see Section 19.5.3.

Of course, applying a seed-fill algorithm (see Section 19.5.2) is bound to fail if the
background is not a single connected piece. If we attempt to com:ct this difficulty by
applying the Fishkin-Barsky criterion for similarity to the background to every pixel in the
image, items in the foreground whose colors are close to the background color are treated
incorrectly. (Imagine the person in our example, standing in front of a white wall. Is the
white writing on his green T-sbirt part of the background?) If we try to seed fill each
separate piece of background, the task may be hopeless. (imagine our person again and
suppose that the background shows through his curly hair. There may be thousands of
background regions.) Nonetheless, a soft-seedfill of the background to determine new a
values makes a good preliminary step, and for simple images can improve substantially on
the approach of assigning a values of 0.0 or 1.0 to every pixel.

17 .6.4 An Interface for Image Assembly

How are the tools used for compositing and applying geometric transformations of images
used in practice? An image like Color Plate fV .19 is described by a complex collection of
operations. The compositing operations such as A over 8 can be described by a tree

structure, where the leaf nodes are images and the intemal nodes are operators with
operands as child nodes. But before the images can be composited, they must be placed
correctly. This requirement suggests an imllge-assembly tree structure, in which each
internal node is either an image transformation or a compositing operation, and each leaf
node is an image.

Such an image-assembly structure can be implemented in a convenient user interface,
in which the user adds nodes or moves pieces of the tree with a mouse, and places a marker
at some node to view the image described by that node and its children. This view can be
structural, merely showing the relative positions and sizes of the child images within the
parent. On a workstation with limited color capabilities, the view can be a dithered version
of the true-color image; on a sophisticated workstation, it can be a full -sized version of the
image in full color. The structural view can be extremely useful, since the user can edit the
geometric transformations i.n this view by mouse dragging, eliminating the need to type
exact coordinates for geometric transformations; of course, the ability to enter precise
coordinates is also essential.

An image assembler of this sort has been developed by Kauffman [KAUF88a]. Far
more sophisticated image assemblers form the core of the video processors that generate
many of the special effects seen on televi.sion.

17.7 MECHANISMS FOR IMAGE STORAGE

When we store an image, we are storing a 20 array of values, where each value represents
the data associated with a pixel in the image. For a bitmap, this value is a binary digit. For a
color image, the value may be a collection of three numbers representing the intensities of
the red, green, and blue components of the color at that pixel, or three numbers that are

TEXAS INSTRUMENTS EX. 1009 - 906/1253

844 Image Manipulation and Storage

indices into tables of red, green, and blue intensities, or a single number that is an index
into a table of color triples, or an index into any of a number of other data structures that can
represent a color, including CIE or XYZ color systems, or even a collection of four or five
spectral samples for each color.

In addition, each pixel may have other information associated with it, such as the
z-buffer value of the pixel, a triple of numbers indicating the normal to the surface drawn at
that pixel, or the a-channel information. Thus, we may consider an in1age as consisting of a
collection of channels , each of which gives some single piece of information about the
pixels in the image. Thus, we speak of the red, green, and blue clumnels of an image.

Although this idea might seem contrary to good programming practice, in which we
learn to collect information associated with a single object into a single data structure, it
often helps to separate the channels for convenience in storage. However, some methods of
image compression do treat the image as a 20 array, such as the quad tree and fractal
encoding schemes described later, so separation into channels is inappropriate.

Before discussing algorithms for storing images as channels or arrays, we describe rwo
important methods for storing pictures: use of the metafile and use of application-dependem
data. Neither of these is , strictly speaking, an image format, but each is a mechanism for
conveying the information that is represented in an image.

If an image is produced by a sequence of calls to some collection of routines, a metafile
stores this sequence of calls rather than the image that was generated. This sequence of calls
may be far more compact than the image itself (an image of the Japanese flag can be
produced by one call to a rectangle-drawing routine and one call to a circle-drawing routine,
but could take several MB to store as RGB triples). If the routines are sufficiently simple or
are implemented in hardware, redisplaying a metafile image may be faster than redisplaying
a pixel image. The term metafile is al.so used to refer to a device-independent description of
a standardized data structure, such as the PJ-OGS data structure described in Chapt.er 7. To
store an image in such a metafile, we trnverse the current data structure and record the data
structure in some device-independent fashion for redisplay later. This description may be
not a sequence of function calls, but instead a telltual transcription of some hierarchical
structure.

The second storage scheme entails application-dependent data. lf an application
displays a particular class of images, it may be convenient to record the data from which
these images were created, or even differences between the data and some standard set of
data. If the images are all head-on views of human faces described as polygons, it may be
simpler to store just a list of those polygons whose positions are different from their position
in some standard facial image (and their new positions, of course). A more extreme version
of this sort of condensation of information has been use in the Talking Heads project at the
MIT Media Lab, in which only the positions of eyeballs, lips, and other high-level features
are stored [BOLT84]. At this point, image description becomes more of a scene
description, and properly belongs to the domain of modeling, rnther than to that of image
storage.

17.7. 1 Storing Image Data

Now let us consider how to store the sort of image that consists of several channels of data.
If our displays expect to be given information about an image in the form of RGB triples, it

TEXAS INSTRUMENTS EX. 1009 - 907/1253

17.7 Mechanisms for Image Storage 845

may be most convenient to store the image as RGB triples. But if space is at a premium, as
is often the case, then it may be worth trying to compress the channels in some way.
Approaches to compression must be weighed against the cost of decompression: The more
sophisticated the compression technique, the more likely decompression is to be expensive.
Although all of these techniques apply equally well to any channel of information, our
discussion will be couched in terms of color channels, since these are the ones most often
present in images (z-buffer, normal vector, and other information being optional).

lf an image has few colors and each color occurs many times (as in an image of a
newspaper. in which there may be only black, dark gray, light gray, and white), it may be
worthwhile to make a table of colors that occur (here, the table would have only four
entries), and then to make a single channel that is an index into this color table. ln our
newspaper example, this single channel would need only 2 biL~ of information per pixel,
rather than perhaps 8 bits per color per pixel; the resulting image is compressed by a factor
of 12. In pictures with more colors, the savings are less substantial; in the extreme case
where each pixel in the image is a different color, the look-up table is as large as the image
would have been if stored as RGB triples, and the indices into the look-up table take even
more space. Roughly speaking, indexing into a look-up table begins to be worthwhile if the
number of colors is less than one-half the number of pixels. (Of course, if the hardware for
displaying the image works by using look-up tables as well, it may be easier and faster to
store the image in this fashion than as RGB triples. Typically, such hardware provides a
modest space for the look-up table, about 8 to 12 bits per pixel.)

This single-channel approach still requires at least one piece of information per pixel.
If the image has a great deal of repetition, it may be possible to compress it further by
run-length encoding a channel. Run-length encoding consists of giving a count and a va.lue,
where the count indicates the number of times the value is to be repeated. The design of the
Utah Raster Toolkit [PETE86] includes a number of improvements on this basic idea. For
instance, the count, n, is an 8-bit signed integer (with values -128 through 127): a negative
count indicates that n pixels' worth of unencod.ed data follow; a nonnegative count indicates
that the next piece of information is the value to be used for n + J pixels. Further
improvements might include reserving certain negative values for special meanings: -128
might indicate that the next few bytes of information give a scan line and position to which
to jump (in order to skip the recording of large areas of background color), and -127 might
be reserved to indicate a jump to the start of a specified scan line. Such a naive
run-lengtkncoding scheme at worst adds I byte for every 126 values (a -126 indicating
that 126 pixels worth of unencoded data follow), a cost of aboui 0.25 percent for an image
with 8 bits per pixel for each of red, green, and blue.ln the best case, an image in which all
pixels have the same value. the compression would be by a factor of about 100: 128 pixels'
worth of values compress to l pixel ' s worth (24 bits, in this example), but the count byte
adds another 8 bits.

There are other clever formats for compressing channels. For example, we could store
the value of each pixel from a bitmap in an integer (as a 0 or 1), but most of the bits in the
integer would be wasted. Instead, we might store one pixel value in each bit (this is the
origin of the term bitmap). If the image being represented contains regions filled with
patterns whose width is a factor of 8, then we can perform a similar run-length encoding, in
which the first byte gives a count, 11, and the next byte gives a pattern to be repeated for the
next 811 pixels of the bitmap. This method is less likely to generate savings than is the

TEXAS INSTRUMENTS EX. 1009 - 908/1253

846 Image Manipulation and Storage

ordinary run-length encoding for color images, since a block of 8 values must be repeated
for any compression to take place.

Run-length encoding and other standard information-theory approaches such as
Huffman encoding treat the image in channels, which can be imagined as linear arrays of
values (although multiple channels can be considered a single large channel, so that we can
run-length encode sets of RGB triples as well). Other methods treat the image as a 20 array
of values, and hence can exploit any inter-row coherence. One of these techniques is based
on the use of quad trees.

The fundamental idea of the quadtree-based image description is that a region of an
image may be fairly constant, and hence all pixels in the region can be treated as having the
same value. Determining these near-constant regions is the core of the algorithm. This
algorithm can be used either on a single component of the image, such as the 20 array of
red values, or on the aggregate value associated with each pixel; for simplicity, we shall
describe the algorithm for a single numerical component. The algorithm requires a
mechanism for determining the mean value of the image in a region, and the extent of the
deviations from the mean within a region.

The image is first considered as a whole. If the deviation from the mean in the image is
sufficiently small (less than or equal to some nonnegative tolerance), then the image is
reported as having a value equal to the mean, repeated over the entire image. (If the
tolerance is set to zero, then the image really must be constant for this to occur.) If the
deviation from the mean is not smaller than the tolerance, the mean of the image
is recorded, the image is divided into quadrants, and the same algorithm is applied to
each quadrant. The algorithm tem1inates because repeated subdivision of quadrants even·
tually breaks them i.nto single-pixel regions, if necessary; for a single-pixel region, the
deviation from the mean must be zero, and hence is less than or equal to any tolerance
value.

We can improve the algorithm by recording not the mean of the image, but rather the
means of the four quadrants whenever the image is subdivided, and the mean of the image
when it is not. The advantage is that, when the image is redisplayed, if the quadtree is
parsed breadth-first, the display may be constantly updated to show more and more refined
im11ges. The first image is four colored rectangles. Then, each rectangle is subdivided and
its color is refined, and so on. In a system designed for scanning through a large number of
images, this approach may be extremely convenient: after just a few bytes of information
have been t.ransmitted, a general sense of the image may begin to appear, and the user may
choose to reject the image and to move on to the next one. This rapid detection of the sense
of an image is especially useful if the images are transmitted over a low-bandwidth
communications channel. Quadtree compression of images has been exploited by
Knowlton, Sloan, and Tanimoto (KNOW80, SLOA79], and the algorithm has been further
refined by Hill [HILL83). Exercise 17.7 discusses other mechanisms for building a
quadtree describing an image, some of which may be more efficient than the one described
here.

17.7 .2 Iterated Function Systems for Image Compression

A second image-compression algorithm is based on the notion of iterated function systems
(IFSs). In this case, the compression factor can be extremely high, but t.he cost of

TEXAS INSTRUMENTS EX. 1009 - 909/1253

17.7 M echanisms for Image Storage 847

compressing the image tends to be large as well. The algorithm requires , for each image,
that the user interactively solve a geometric problem, described later [BARN88a). Also,
like all nondestructive compression schemes, Lhe pigeonhole principle10 says that, if some
images are compressed, others must be expanded by some modest amount (since there can
be no one-to-one mapping of al l n. by k arrays to all p by q arrays where pq is less than 11k).
The adv-dnt.age of the IFS technique is that images with substantial geometric regularity are
the ones that are compressed, whereas those that look like noise are more likely to be
expanded.

An IFS code is a finite collection of affine maps {w1 •••• , w,} of the plane to itself,
together with a probability p; associated with w;. The maps must be COlllracJive; that is , the
distance between points must be reduced by the maps, on the average (the precise
requirement is described in [BARN88a]). Rec.:al l that an affine map of the plane is given by
a formula of the form

w [~]=[: ~] [~]+Dl (17.1)

so it is entirely determined by six numbers, a, b, c, d, e, and f. Notice that these affine maps
are just combinations of rotations, translations and scalings in the plane. The condition that
they be contractive says that the scaling factors must be less than I.

The next several pages give a rough description of bow to produce a gray-scale image
from an lFS code; the method is easily generalized to producing three gray-scale images
[rom three IFS codes, that can then be used as the RGB components of a color image.
([BARN88a] uses a somewhat different scheme for encoding color.) This production of an
image from an IFS code is essentially this decompression part of the IFS algorithm; we
discuss it first.

Consider a rectangle, V, in the plane defining our image, and imagine Vas divided into
a rectangular grid whose subrectangles are Vii, i = l , ... , n.;j = I, ... , k. Choose a point
(x0, y0) that remains fixed under one of the maps (say w1, without loss of generality) . We
now proceed to apply the maps w1, • • • , w, in fairly random order (determined by the
probabilities p;), and wdtch where the point (x0, y0) is sent. We use the number of times it
lands in Vq for each i and j to determine the eventual brightness of pixel [i, J] in the image.
The pseudocode for this process is shown in Fig. 17.23.

Before the last step of this algorithm, each image[i, 11 entry indicates how often the
starting point, in the course of being moved randomly by the affine maps, falls into the
[i, J]th square of the image. For this number accurately to represent the probability of falling
i.nto the square over an infinite sequence of steps, the number of iterations of the algorithm
must be very large: K should be a large multiple of the number of pixels in the image.

The effect of this algorithm is essentially to create a picture of the attract or of the IFS.
The attractor is a set, A, with the property that, if all the affine maps are applied to A, and
the results are combined. the result is A:

'
A= U w,{A).

i •l

10The pigeonhole principle is Lhe observation Lhat. if more Lhan m objects are placed in m b<»tes, then
some bolt must contain more than one object.

TEXAS INSTRUMENTS EX. 1009 - 910/1253

848 Image Manipulation and Storage

void IFS (double image[MAX](MAX])
I• Given a collection of affine maps w;. with associated probabilities p;, •I
I• which are global variables, generate a gray-scale image. •I
{

inl x,y;
int 1,};
lnt m;

I• A location in the plane •I
I• Loop counters •I

Initial hex andy to be a fixed point ofwo:
lnitialile image[tWJ to 0 for all i and j;
for (i = 0: I < K; I++) {

}

double r = Random (0, I);
double total = p(O];
inl k = 0;
while (total < r) {

}

k++;
tara/ += p(k);

apply (k, x, y);
for (each l, j pair)

if (Liesln (x, y, i,J))
image[iJV]++;

I• A random number 0 <= r <= I • I
I• Probability tally •I

I• Apply wk to the point (x. y) •I

I• TRUE if (x. y) is in Vt; •I

m = maximum of all image[iJVJ entries;
for (each (i, j) pair)

image[iJVJ/= m;
} I• IFS •I

Fig. 17.23 The iterated function system rendering algorithm.

The set A consists of the places to which (.to. yo) is sent in the course of iterating the maps.
Some places are visited more often than others are, and the likelihood of a region being
visited defines a probability measure on the set. The measure associated with a small region
Q is p if a point, in the course of infinitely many iterations of the maps, spends a fraction p
of its time in the region Q. lt is this probability measure that we are using to associate values
to pixels.

Since K must be so large, the time spent in reconstructing an image from an [FS code is
substantial (although the process is highly parallelizable). What about creating an [FS code
from an image? To do so, we must find a collection of affine maps of the plane to itself with
the property that , after the affine maps have been applied to the original image , the union of
the results " looks like" the original image. Figure 17.24 shows how to make a leaf by

TEXAS INSTRUMENTS EX. 1009 - 911/1253

17.7 Mechanisms for Image Storage 849

Fig. 17.24 A leaf made as a collage. (@ Michael Barnsley, Frscrals Everywhere,
Academic Press.)

creating four (slightly overlapping) smaller versions of the leaf and making a collage from
them.

The collage theorem [BARN88a] guarantees that any IFS that uses these affine maps
has an attractor that looks like the original image. Choosing the probability associated with
w1 changes the brightness of the portion of the image coming from wJ. Still, to compress an
image into an IFS code, a user must find a way to recreate the original image as a union of
repeated subimages, each of which is an affine transform of the original. This is the
previously mentioned geometric problem to be solved by the user. Bamsley has announced
that this process can be automated [BARN88bj; until a mechanism for doing so is made
public. the technique is hardly usable for compressing large numbers of images. It is usable
for modeling interesting objectS, however (see Chapter 20). Color Plate IV . I shows an
entire forest modeled with an IFS.

17.7 .3 Image Attributes

When we store an image in the conventional manner as a collection of channels, we
certainly must store information about each pixel-namely, the value of each channel at
each pixel. Other information may be associated with the image as a whole, such as width
and height , and any image-description format must include this kind of information as well.
It is insufficient to allocate a few bytes at the start of the image description for width and
height; experience has shown that other image attributes will arise. Typical examples are
the space required for look-up tables, the depth of the image (the number of bitplanes it
occupies), the number of channels that follow, and the name of the creator of the image.
For accurate color reproduction of images on other devices , we may also want to record
reference spectra for the pure red, green, and blue colors used to make the image, and some
indication of what gamma correction , if any, has been applied.

The need to store such properties has prompted the creation of flexible formats such as
RIFF (SELF79] and BRIM (derived from RIF F) [MEIE83], which are general attribute·
value database systems. In BRIM , for example, an image always has a width, height, and
creator, and also a " history" field, which describes the creation of the image and
modifications to it. Programs using BRlM c.an add their own signature and timestamp to the
history field so that this information is automatically kept up to date. Figure 17.25 shows a
text listing of a typical BRIM header for an image.

TEXAS INSTRUMENTS EX. 1009 - 912/1253

850 Image Manipulat ion and Storage

TYPE (string, 5) : BRIM
FORMAT (string, 11) : FORMAT ..SEQ
TITLE (string, 31): Molecular Modeling I ntro Frame
NAME (string, 27) : Charles Winston 447 C. I. T .
DATE(string, 25): Sun Oct 91.2 : 42 :161988
HISTORY (string, 82): Sun Oct 912 :42 : 161988crwRAY/n/
00033 : Sun Oct 9 13 : 13 : 18 1988 crw br i m._convert
DESC (string, 21) : A ray-t r aced picture
lMAGE...WIDTH (int, 1) : 640
IMAGE...HEIGHT (int. 1) : 512
BRilL VERSION (int, 1) : 1
CHANNEL...DESC (string, 21) : RED GREEN BLUE ALPHA
CHANNEl-WIDTH (short, 4) : 8 8 8 8
ENCODING (string, 4) : RLE

Fig. 17.25 A BRIM header for an image.

Many image-handling packages have been developed. One of the most widely used is
the Utah Raster Toolkit [PETE86], which was written in fairly portable C so that the same
tools can be used on a number of different architectures. Particularly troublesome issues for
designing such toolkits are the numbers of bytes per word and the ordering of bytes within a
wOrd.

17.8 SPECIAL EFFECTS WITH IMAGES

The image-processing techniques described in Section 17.3 can be applied to an image to
generate interesting special effects. If an image is processed with a high-pass filter, onJy the
small details of the image remain, while all slowly varying aspects are deleted. By
processing an image with a derivative filter, we can arrange to highlight all points where
sharp transitions occur. Filters that reduce all intensity vaJues below a certain level to 0 and
increase all other values to I can be used to generate high-contrast images, and so on.

A large number of video techniques can be applied to blur images, to fade them, to
slide them off a screen in real tin1e , and so on. Many of these effects are created by using the
electronic hardware for generating video signals, and modifying the signals as they are
being shown. These techniques all lie in the domain of electrical engineering rather than in
that of computer graphics, although the combination of effects from both disciplines can be
fruitful.

We conclude this chapter by describing a digital technique for simulating neon tubing.
If we paint the shape of a neon tube onto a black background, using a constant-width
(antialiased) brush of constant color, our image does not look part.icularly exciting. But
suppose we filter the image with an averaging fi lter-each pixel becomes the average of its
immediate neighborhood. If we do this severaJ times, the edges of the band we have drawn
become blurred. If '>I.'C now filter the image with an imensity-mapping filter that brightens
those pixels whose intensities are above some threshold and dims those pixels whose
intensities are lower than that threshold , the result looks quite a lot like neon tube. (There is
another way to produce the same effect; see the discussion of antialiased brushes in Section

TEXAS INSTRUMENTS EX. 1009 - 913/1253

Exerc ises 851

19.3.4.) Compositing such an image using an w value greater than I and an a value less
than I can cause the " neon" to illuminate whatever it is placed over, while the tube remains
partially transparent.

17.9 SUMMARY

We have discussed several techniques for storing images, including some that are organized
by programming considerations (multiple channels, headers), and some that are motivated
by compactness or ease of transmission (quadtrees, IFS encodings). There are many other
image storage formats, including a number of commercial formats competing for the
privilege of being the ''standard." Given the differences of opinion about the amount of
color information that should be stored (should it be just RGB or should it consist of
multiple spectral samples?), and about what information should be present in an image
(should z-buffer values or a values be stored?), we expect no universal image format to
evolve for some time.

We have also discussed geometric transformations on images, including multipass
algorithms with filtering and the necessity of performing the filtering during such
tr.msformations. The number of interesting effects possible with image transformations is
quite surprising. Due to the filtering used in such transformations , however, repeated
transformations can blur an image. Transforming bitmaps involves other difficulties, since
no gray scale is available to soften the aliasing artifacts that arise in the transfo.rmations.
The simplicity of the data, however, makes it possible to develop very fast algorithms.

We also have discussed image compositing, which bas become an extremely popular
tool for generating complex images. When the a channel is used, composited images show
no seams at the points where the component images overlap, unless the component images
have some high geometric correlation. rr rendering speed increases to the point where
regenerating images is inexpens ive, compositing may cease to be as important a tool as it
now is. But if progress in computer graphics continues as it has, with each new generation
of hardware allowing more complex rendering techniques, we should expect the image
quality to increase, but the time-per-image to remain approximately constant. Therefore,
we should expect compositing to be in use for some time.

EXERCISES

17.1 Show that the product of the matrices

is exactly

[OJ tan(r)] [I
I -sin(r)cos(r)

o] [1 o] [1/cos(r) o
1
]

I o cos{t) 0

[
cos(I) sin(I)]
-sin(I) cos(r)

Use this result to show how to create a rotation map from shears and scales. Use this technique to
describe a pixmap-rotation algorithm derived from the Weiman algorithm (see Section 17.4. 1).

17.2 How would you create a Weiman-style translation algorithm? Suppose a pixmap has alternating

TEXAS INSTRUMENTS EX. 1009 - 914/1253

852 Image M anipulation and Storage

colwnns of black and white pixels. What is the result of translating this pixmap byt pixel? What is the
resu.lt of applying Weiman's scaling algorithm to stretch this image by a factor of 2? What do you
think of these results?

17.3 When scaling a bitmap, you cannot perform averaging, as you can in the Weiman algorithm.
What is a good selection rule for the value of the target pixel? Is majority rule best? What if you want
to preserve features of the image, so that scaling an image with a black line in the middle of a white
page should result in a black line still being present? Is the cyclic permutation of the Rothstein code
still necessary?

17.4 Show that in the Feibush. Levoy and Cook fih.ering method (see Section 17.4.2), the correct
sign is assigned to volumes associated with triangles in step 3 of the edge-fi ltering process. (Hint
Evidently some sign must be given to each triangle, and this sign is a continuous function of the shape
of the triangle-two triangles that look alike will have the same sign. The s ign changes only when you
modify a triangle by passing it through a degenerate triangle-one where the vertices are collinear.
Thus, to do this exercise, you need only to show that the sign is correct for two triangles, one of each
orientation.)

17.5 This problem fills in the details of the edge>filtering mechanism in the Feibush, _Levay and
Cook image-transformation algorithm (see Section 17 .4.2.) Given a triangle within a rectangular
region, with one vertex at the center, C, of the rectangle, and a function (drawn as height) on the
rectangular region, the volume over the triangle may be computed in the following way:

I. Call the triangle ABC. Draw a perpendicular from C to the base of the triangle, AB. intersecting
AB at the point D. Express the triangle as either the sum or the difference of the two triangles ACD

and BCD.

2. Find the volume over the triangles ACD and BCD, and use these values to compute the volume

over ABC.

3. Observe that, if the filter function is circularly symmetric , then the vol.ume over ACD computed in
step (2) is a function of only the length of the base, AD, and the height of the triangle, CD (the same is
true for BCD, of course).

a. Draw a picture of the situation deseribed in step I. Do this for two cases: angle ACB is less
than 90" and angle ACB is greater than 90".

b. Find a condition on A, B, and D that determines whether ABD is the sum of the difference
of ACD and BCD.

c. Suggest a method for computing the volume above an arbitrary right triangle as described in
step 3. Since the given function may not be integrable in elementary terms, consider Monte

Carlo methods.

d . Describe how you would arrange a table of widths and heights to store all the volumes
computed in step 3 in a look-up table.

17.6 Consider the I by 3 image that is deseribed as follows. The pixe.J centers in this image are at the
points (-2,0). (0, 0), and (2, 0), and the values at these points are - 1, 0, and I. The Nyquist
frequency for the image is I , and the image can be considered as a sample of a unique image that is a
linear combination of sine and cosine functions with frequency I or less. All the cosine terms are zem
(you can see that they are by noting that the function is odd, in the sense that/(-x) = -J(x) for all x).

a. C~mpute the coefficients, a •• of s in(kx) (for 0 s k < I) so that samples of };a• sin(kx) give
this image. Hint a, 'F 0 for only one value of k.

b. The image might appear to be simply a gray-scale ramp (if we imagine - I as black and I as

TEXAS INSTRUMENTS EX. 1009 - 915/1253

Exercises 853

white). What wou.ld happen if we sampled the signal computed in pan a at the points (- 1,
0), and (I, 0). 'Mluld they interpolate the gray-scale rump as expected?

This exercise shows the difficulty we encounter wben we use exiiC1 reconstruction without filtering.

17.7 Assume that)':)U are given an 21 by 2k gray-seale image with intensity values 0 . .. 2" _,. You
can generate a 2' - ' by ~- 1 image by condensing 2 by 2 regions of the image into single bits. In
Section 17 .7. 1, we proposed doing the condensation by computing the mean of the region . There are
other possibilities. however. Analyze the selection method for condensation, where sl!l«tion means
choosing one panicular comer of the region as the representatiYC value.

a. Assume thai)':lU want to transmit a 2k by zt gray-scale image that has been completely
condensed using selection. How many pixel values do)011 need to send? (Assume that the
receiving hardware knows how to decode the incoming data, and can draw filled rectangles
on a display.)

b. On what class of pictures will the selection method giYC bad artifacts until the image is
nearly completely displayed? Would some other condensation rule work better for these
images?

c. What other condensation rules would be preferable for sending black-and-white documents
(such as typical pages from this book. which may contain figures)? Explain)OUt choices.

17.8 (N01e: To do this programming problem,)011 must bave access to hardware that supportS very
rapid bitB/t operations on bitmaps.) Write a program that uses a 1-bit-deep a-buffer to composite
bitmaps. Add such features as painting in a bitmap with an a -buffer (which determines where the
paint " sticks" or shows). This problem is discussed ex~nsiYCiy in [SALE85).

17.9 Suppose)':lu were given a corrupted run-length encoded image, from which several bytes were
missing. Could)':)U reconstruct most of it? Why or why not? Suggest a run-length encoding
enhancement that would make partial reooYCry of a corrupted image easier.

17.10 We saw in Section 17.5 how various transformations can be implemented in multiple passes.
a. If a p31tem is mapped linearly onto a polygon and then projected onto the viewing plane,

show thai the composite map from the paitern map (x, y) coordinaiCS to the image (u. v)
coordinates has the form

where

(x, y) ~ (u, v),

u - (Ax + By + C)I(Dx + Ey + F)
v - (Px + Qy + R)I(Sx + Ty + lf)

b. Show how to factor this map into two passes as we did for the map

u c x/(y + 1), v = y/(y + 1).

This idea of using two-pass transforms for texture mapping was introduced by Catmull and Smith in
[CATMSO). The names of variables for the coordinates here are chosen to agree with the convention
used in Section 17.6 and not with the names of the coordinates used in describing texture mapping
elsewhere.

TEXAS INSTRUMENTS EX. 1009 - 916/1253

18
Advanced Raster

Graphics
Architecture

Steven Molnar
and Henry Fuchs

In this chapter, we discuss in more detail the issues of raster graphics systems architecture
introduced in Chapter 4 . We examine the major computations performed by raster systems,
and the techniques that can be used to accelerate them. Although the range of graphics
architectures and algorithms is wide, we concentrate here on architectures for displaying 30
polygonal models, since this is the current focus in high-end systems and is the foundation
for most systems that suppon more complex primitives or rendering methods.

Graphics systems architecture is a specialized branch of computer architecture. It is
driven, therefore, by the same advances in semiconductor technology that have driven
general-purpose computer architecture over the last several decades. Many of the same
speed-up techniques can be used, including pipelining, parallelism, and tradeoffs between
memory and computation. The graphics appHcation, however, imposes special demands
and makes available new opponunities. For example, since image display generally involves
a large number of repetitive calculations, it can more easily exploit massive parallelism than
can general-purpose computations. In high-performance graphics systems, the number of
computations usually exceeds the capabi.lities of a single CPU, so parallel systems have
become the rule in recent years. The organization of these parallel systems is a major focus
of graphics architecture and of this chapter.

We begin by reviewing the simple raster-display architecture described in Chapter 4.
We then describe a succession of techniques to add performance to the system, discussing
the bottlenecks that arise at each performance level and techniques that can be used to
overcome them. We shall see that three major performance bottlenecks consistently resist
attempts to increase rendering speed: the number of floating-point operations to perform

866
TEXAS INSTRUMENTS EX. 1009 - 917/1253

856 Advanced Raster Graphics Architecture

geometry calculations, the number of integer operations to compute pixel values, and the
number of frame-buffer memory accesses to store the image and to determine visible
surfaces. These demands have a pervasive influence on graphics architecture and give rise to
the diversity of multiprocessor graphics architectures seen today. At the end of the chapter,
we briefly discuss several unusual architectures, such as those for ray tracing, for true 3D
displays, and for commercial flight simulators.

18.1 SIMPLE RASTER-DISPLAY SYSTEM

As described in Chapter 4, a simple raster-display system contains a CPU, system bus,
main memory, frame buffer, video controller, and CRT display (see Fig. 4.18). In such a
system, the CPU performs all the modeling, transformation, and display computations, and
writes the final image to the frame buffer. The video controller reads pixel data from the
frame buffer in raster-scan order, converts digital pixel values to analog, and drives the
display.

It is important to remember that, if such a system has sufficient frame-buffer memory,
has a suitable CRT display, and is given enough time, it can generate and display scenes of
virtually unlimited complexity and realism. None of the architectures or architectural
techniques discussed here enhance this fundamental capability (except for a few exotic 3D
displays treated in Section 18.1 I). Rather, most work in graphics architecture concerns the
quest for increased rendering speed.

In Chapter 4, we discussed two problems that limit the performance of this simple
system: the large number of frame-buffer memory cycles needed for video scanout and the
burden that image generation places on the main CPU. We now consider each of these
problems in greater detail.

18.1.1 The Frame-Buffer Memory-Access Problem

ln Chapter 4, we calculated the time between successive memory accesses when a
low-resolution monochrome display is being refreshed. For a system with 16-bit words, the
access rate is substantial-one memory access every 864 nanoseconds. Systems with
higher-resolution color monitors require much higher memory speeds. For example,
refreshing a 1280 by 1024 screen with 32-bit (one-word) pixels at 60 Hz requires that
memory accesses occur every 11(1280 · 1024 · 60) = 12.7 nanoseconds. Even this is only
the average memory access rate, not the peak rate, since pixels are not scanned out during
horizontal and vertical retrace times [WHIT84]. A simple dynamic rtJJUiom-access memory
(DRAM) system, on the other hand, has a cycle time of approximately 200 nanoseconds, a
factor of 16 slower than the speed required. Clearly, something must be done to increase the
bandwidth to frame-buffer memory.

The following sections discuss solutions that have been used by various system
designers. Some of these provide only modest performance increases, but are sufficient for
low-resolution systems. Others provide greatly increased memory bandwidth, but incur
significant system complexity. We begin by reviewing briefly the fundamentals of DRAM

TEXAS INSTRUMENTS EX. 1009 - 918/1253

18.1 Simple Raster-Display System 857

memories, since the characteristics of DRAMs strongly influence the set of solutions
available.

18.1.2 Dynamic Memories

DRAMs are the memories of choice for most computer memory systems. Static
randJJm-access memories (SRAMs), which retain stored data indefinitely, can be made to
run faster than DRAMs, which must be accessed every few milliseconds to retain data, but
DRAMs are much denser aod cheaper per bit. (DRAMs also require more complicated
timing for reading and writing data, but these problems are easily solved with supporting
circuitry.)

Figure 18.1 is a block diagram of a typical 1-Mbit DRAM chip. As in most DRAMs,
single-bit storage elements are arranged in one or more square arrays (in this case, four
arrays, each with dimension 512 by 512) . Vertical bit lines transfer data to and from the
storage arrays, one bit line for each column of each array. During read and write operations,
one memory cell in each column is connected to its corresponding bit line. A sense
amplifier attached to each bit line amplifies and restores the tiny signals placed on the bit
line during read operations.

In a DRAM chip, read and write operations each require t~ steps. The first step is to
select a row. This is done by asserting the row address strobe (RAS) while the desired row
address is on the address inputs. The row decoder produces a 512-bit vector, whose bits are

Address

RAS

CAS

Read-write

9

/
Q>

§
"0

~ cr:

' J:-.
9 .

Address
control

I

512

9
~

Four 512 x 512 bit
memory arrays

Bit lines 'T 1• 4 x 512 bits

Sense amplifiers [lJ
Data lines 4 x 512 bits

Column decode I
4 4

Data In Data out

Fig. 18 .1 A 1-Mbit (256K x 4) DRAM chip. An entire row is written to or read from
each of the four memory arrays at the same time. The column decoder allows a
particular element (column) of the selected row to be accessed.

TEXAS INSTRUMENTS EX. 1009 - 919/1253

858 Advanced Raster Graphics Architecture

0 everywhere eltcept for a single I at the selected row. This bit vector determines which
row's storage cells are connected to the bit lines and sense amplifiers.

The second step is to select a column, which is done by asserting the column address
strobe (CAS) and read-write signal while the desired column address is on the address
inputs. The column address selects a single bit from.the active row of memory in each
array. The selected bits are either buffered for output (during read operations) or set to the
value on the data inputs (during write operations). Some DRAMs provide a faster access
method called page mode for successive reads or writes to memory locations on the same
row. In page mode, a row is selected just once, and successive columns are selected using
the column address bits and CAS signal. In page mode, consecutive memory accesses
require just one address cycle, instead of two. Thus, if adjacent pixels are stored in the same
memory row, page mode can nearly double the bandwidth available for updating and
displaying from the frame buffer.

Word widths greater than the number of data pins on a single memory chip can be
accommodated by connecting multiple memory chips in parallel. With this arrangement,
an entire word of data can be read from or written to the memory system in a single mem­
ory cycle. For =pie, eight 4-bit-wide DRAMs can be used to build a 32-bit memory
system.

18.1.3 Increasing Frame-Buffer Memory Bandwidth

As we have seen, obtaining sufficient frame-buffer memory bandwidth both for video
scanout and for updates by the CPU is a daunting problem. Different solutions have been
proposed and used in various systems.

A partial solution, suitable for low-resolution displays, is to place the frame buffer on
an isolated bus. This allows video scanout to oecur simultaneously with CPU operations
that do not affect the frame buffer. Only when the CPU needs to read from or write to the
frame buffer must it contend with video scanout for memory cycles.

A second partial solution is to take advantage of DRAMs' page•mode feature . Since
video scanout accesses memory locations in order, DRAM page misses are infrequent, so
the frame buffer can run at almost twice its normal speed. Note, however, that frame-buffer
accesses by the CPU may be less regular and may not be able to take advantage of page
mode. We can decrease the number of page misses by the CPU by providing it with a data
cache. As in conventional computing, a cache decreases the traffic between the CPU and
memory. since a memory location accessed during one cycle is very likely to be accessed
again in the near future. Furthermore. since cache entries frequently occupy several words,
transferring data between the cache and main memory can Cllploit page mode. By
combining page mode and a data cache, we can reduce tbe memory-access problem
substantially, although further measures, as d.iscussed in Section 18.1.5, are necessary for
high-resolution displays.

A third, independent approach is to duplicate the frame-buffer memory, creating a
d!Jublt!-buffered system in which the image in one buffer is displayed while the image in the
other buffer is comput.ed. Figure 18.2 shows one possible implementation, in which
multip!Cllers connect each frame buffer to the system bus and video controller. Double­
buffering allows the CPU to have uninterrupted access to one of the buffers while the video

TEXAS INSTRUMENTS EX. 1009 - 920/1253

18.1

bmain
CPU

Select

< ' ,-,,.,, J·· ,·::·: l -

<:
i

A B

Multiplexer

.

Frame
buffer 0

Simple Raster-Display System

I -
) ·

A

Multiplexer

Frame
bufler1

)

B

bvideo
controller

Fig. 18.2 Double-buffered frame buffer.

8 59

controller has uninterrupted access to the other. Double-buffering in this manner is
expensive, however, since twice as much memory is needed as for a single-buffered display.
Also, the multiplexers that provide dual access to the DRAMs require numerous chips,
which increase the size of the system. (Actual dual-ported memories, with two fully
independent read-write ports, could be used, but their low density and high cost make them
impractical in almost all applications.)

18.1 .4 The Video RAM

In 1983, Texas Instruments introduced a new type of DRAM, the video random-access
memory (VRAM), designed specifically to allow video scanout to be independent of other
frame-buffer operations [PINK83]. A VRAM chip, as shown in Fig. 18.3, is similar to a
conventional DRAM chip, but contains a parallel-in/serial-out data register connected to a
second data port. The serial register is as wide as the memory array and can be parallel
loaded by asserting the transfer signal while a row of memory is being read. The serial
register has its own data clock, enabling it to transfer data out of the chip at high speeds.
The serial register and port effectively provide a second, serial port to the memory array. If
this port is used for video scanout, scanout can occur in parallel with normal reads from and
writes to the chip, virtually eliminating the video-scanout problem.

Since the shift register occupies only a small fraction of a VRAM's chip area and very
few pins are needed to control it, VRAMs ideally should be only slightly more expensive
than DRAMs. Unfortunately, the economics of scale tend to raise the price of VRAMs
relative to DRAMs, since fewer VRAMs are produced (in 1989, VRAMs were roughly
twice as expensive as DRAMs of the same density). In spite of this price differential ,
VRAMs are an excellent choice for many frame-buffer memories.

TEXAS INSTRUMENTS EX. 1009 - 921/1253

860 Advanced Raster Graphics Architecture

Address

RAS

CAS

Clock
Transfer

Read· write

9

/ .,
~
'0
3:
0
a:

' t--.

9

Address
control

512

. I

9

~

Four 512 x 512 bit
memory arrays

Bit lines 'T 1+ 4 x 512 bits

Sense amplifiers OJJ
Bit lines ~TU 4 x 512 bits

Serial data register I lli=:

Data lines 4 x 512 bits

Column decode I
'

4 4

Data In Data out

Serial
data
to video
controller

Fig. 18.3 Diagram of a 1-Mbit (256K x 4) VRAM chip. The serial data register
provides a second (serial) port to the memory array.

18.1.5 A Frame Buffer for a High-Resolution Display

Figure 18.4 shows a typical frame-buffer design using VRAMs. The CPU has essentially
unrestricted access to the frame-buffer memory. Only once every n cycles (where n is the
dimension of the memory array) is a memory cycle required to load a new row into the
VRAMs' serial registers. With screen resolutions up to 512 by 512 pixels, VRAMs can
handle video scanout unassisted. With higher-resolution displays , the pixel rate exceeds the
VRAMs' serial-port data rate of 30 MHz or less. A standard solution is to connect multiple
banks of VRAMs to a high-speed off-chip shift register, as shown in the figure. Multiple
pixels, one from each VRAM bank, can be loaded into the shift register in parallel and then
shifted out serially at video rates . (Notice that this 1280- by 1024-pixel system, with five
times the resolution of a 512 by 512 system, uses five-way multiplexing.) This shift register
frequently is incorporated into a single chip containing look-up tables and digital-to-analog
converters, such as Brooktree's Bt458 RAMDAC [BR0088]. In systems with 24 bits per
pixel , such as the one shown in Fig. 18.4, three RAMDAC chips are typically used-one
for each 8-bit color channel.

VRAMs provide an elegant solution to the frame-buffer memory-access problem. The
bottleneck that remains in such systems is CPU process.ing speed. To generate a raster
image (in 20 or 30), the processor must calculate every pixel of every primitive. Since a
typical primitive covers many pixels, and images typically contain thousands of primitives,

TEXAS INSTRUMENTS EX. 1009 - 922/1253

18.2 Display-Processor Systems 861

To remainder
of system

Six 256K X 4-bit
VRAM chips

<

~ =
VRAM

24

\)
f

Pixels of
columns 0,
5, 10 ...

=
VRAM

t 24

\
f

)

Pixels of
columns 1,

6, ,, . ..

rbUI)

Rando m port

= '= _C c:::

VRAM VRAM VRAM

-t 24 24 t 24
Serial port

l a b c d e High-speed
analog RGB

Video shifter ,rcus
LUTs and D Cs Monnor

(one per color channel)

Fig. 18.4 Block diagram of a 1280- by 1 024-pixel display using VRAMs. A parallel-in/
serial-out shift register provides the high pixel rates required to drive the monitor.

generating a high-resolution image can require many millions of CPU operations. Because
of this, even the fastest CPUs have difficulty rendering images quickly enough for
interactive use.

18 .2 DISPLAY-PROCESSOR SYSTEMS

To build a system with higher performance than the single-CPU system descri.bed in the
previous section, we must either remove some of the graphics burden from the CPU or
increase the CPU's ability to perform these tasks. Here we consider strategies that do not
substantially increase the size or cost of the system (we consider larger, multiprocessing
solutions in Seclions 18.6 through 18.10). These strategies generally fall into three
categories: (I) coprocessors that share the system bus with the main CPU, (2) display
processors with their own buses and memory systems, and (3) integrated processors
containing internal hardware support for graphics operations.

Coprocessors were discussed extensively in Chapter 4 (single-address-space (SAS)
architectures). These have been found useful in 20 systems, but have not achieved wide use
in 30 systems, largely because 3D systems require a larger set of operations than 20
systems and because bus contention in a SAS architecture severely limits system
performance. The latter two approaches have been used successfully for 30 graphics, and
we now discuss them further.

18.2.1 Peripheral Display Processors

Figure 4.22 shows a typical peripheral-display-processor system organization. The display
processor generally has its own memory system (including the frame buffer) and a fast
communication link to the main CPU. The main CPU sends display commands to the
display processor, which executes them using resident software or firmware routines , or
using specialized hardware.

TEXAS INSTRUMENTS EX. 1009 - 923/1253

862 Advanced Raster Graphics Architecture

The display processor may be the same processor type as the main CPU, or it may be a
special-purpose processor. Using the same type of processor, as in the Masscomp MC-500
fMASS851. allows simpler and more flexible hardware and software designs. It does not
exploit the regularity and specialized nature of most graphics calculations. however, and
therefore provides at most a factor of2 increase in performance, since the overall processing
capacity is simply doubled. Most current display-processor systems use peripheral
processors specialized tor graphics operations.

Single-chip graphics processors. Single-chip graphics processors are a successful and
inexpensive type of peripheral-display processor that developed as functional extensions of
single-chip video contrOllers. Consequently, many current graphics-processor chips com­
bine the functions of the video conlroller and display processor. (Section 18.2.2 describes
one popular graphics processor chip, the TMS34020.)

Graphics-processor chips targeted especially for 30 graphics have been introduced
only recently. A pioneering chip of this type is Intel's i860, which can be used either as a
stand-alone processor with support for graphics or as a 30 graphics processor. Unlike many
20 graphics-processor chips, the i860 does not provide hardware support for screen refresh
or video timing. The i860 will be discussed in depth in Section 18.2.4.

Programming the display processor. A major point of difference among display
processor systems is where they store the model or database from which the image is
generated: in the CPU's memory. or in the display processor's memory. Storing the
database in the display processor's memory frees the main CPU from database traversal.
Consequently, only a low-bandwidth channel is needed between the CPU and the display
processor. However, such a system also inherits all the disadvantages of a structure database
described in Chapter 7, particularly the inflexibility of a canonical. " bard-wired' ' database
model.

Whether or not the display processor manages the database, it is an extra processor to
program. Frequently, this program takes the form of a standard grdphics library, such as
PHIGS+, which satisfies the needs of many applications. Applications invariably arise,
however, that require features not supported by the library. In such cases, users are forced
either to program the display processor themselves (which may not even be possible), or to
devise cumbersome workarounds using existing display-processor features.

18.2.2 Texas Instruments' TMS34020- A Single-Chip Peripheral
Display Processor•

Texas Instruments' TMS34020 [TEX.A89] is an example of a single-chip graphics processor
designed to accelerate 20 displays on PCs and workstations. It can be paired with a
TMS34082 floating-point coprocessor, which rapidly performs 30 geometric transforma­
tions and clipping needed for 3D graphics. Unlike graphics-processor chips that perfom1
only graphics-specific operations, the 34020 is a fully programmable 32-bit processor that
can be used as a stand-alone processor if desired.

1Material for this example was contributed by Jerry R. Van A ken of Texas InsuumentS, Inc.

TEXAS INSTRUMENTS EX. 1009 - 924/1253

18.2 Display-Processor Systems 863

Figure 18.5 shows a typical system configuration using the 34020 (and optionally the
34082). As indicated in the figure, the graphics processor's local memory may contain
VRAMs for the frame buffer and DRAMs for code and data storage. Alternatively, the
graphics processor's entire memory may be bu.ilt from VRAMs. The 34020 contains
on-chip timers and registers to control video scanout and DRAM refreshing.

The 34020 supports data types for phlels and pixmaps, aUowing pixels to be accessed
by their (x, y) coordinates as well as by their addresses in memory. The following
instructions implement common 2D graphics operations:

PTXBLT: The PTXBLT (pixel-block transfer) instruction implements a general bitBlt
operation. It copies pixels of I to 8 bits, automatically aligning, masking, and clipping
rows of pixels fetched from the source array before writing them to the destination
array. It uses many of the optimizations discussed in Chapter 19, as weU as processing
several pixels in parallel, so the transfer rate approaches the system's full memory
bandwidth- up to 18 million 8-bit pixels per second. A special version of PIXBLT
supports text by efficiently expanding packed 1-bit bitmaps into 8-bit pixmaps.

FILL: The FILL instruction fills a rectangular array of pixels with a solid color. Large areas
are filled at rates approaching the memory-bus speed. Texas Instruments' 1-Mbit
VRAM supports a special block-write mode that allows up to four memory locations to
be written at once from the same on-chip color register. Using this block-write mode,
the 34020 fills areas at up to 160 million 8-bit pixels per second.

Peripheral
devices Address

CPU

~ /: ~~ ~;,.- - - _""!~1-o_.J..I ----~~~ - - - - -~
< ~llul J/ ///. graphics Graphics 1 r--'\.1 TMS

1

"v--,c-~ ~ / 1 interface processor :;: 34082 :

Floating-point
coprocessor
(optional)

System
memory

r.~ Data I • - - - - - I r/ Only 1 :

~ : : ------
Trans- 1 , 1

1

ceivers (/' // / J ~!J!!!§!!!j~·~DUB~=:~>.Y. DRAMs :
I I I I
I I , _____ I

Program and
data storage
(optional)

I I
I I
I ,....-..=.--, I

1 DRAM Screen I
1 refresh refresh 1

1 control control 1
I

I [I
I_ - - - - - - - - ~:-::--::::_'--------..... ~

r¢:::::::::;=11-
__.. VRAM --.
~'\ frame ~

buffer t-i:=jf+
To video

~ LUTsand
DACs

Fig. 18.5 Block diagram of the TMS34020 graphics-processor chip used as a
peripheral display processor.

TEXAS INSTRUMENTS EX. 1009 - 925/1253

864 Advanced Raster Graphics Architecture

FLINE: The FUNE instruction draws !-pixel-thick straight lines using a midpoint
scan-conversion algorithm (see Section 3.2.2). The FLINE instruction draws up to 5
million pixels per second.

DRAY: The DRAV (draw-and-advance) instruction draws the pixel indicated by a pair of
(x, y) coordinates, then increments the x andy coordinates in parallel. It is used in the
inner loops of incremental algorithms for drawing circles and ellipses; for example, the
inner loop of a midpoint circle routine (see Section 3.3.2) draws 2 million pixels per
second.

Software for the 34020 is typically divided into time-critical graphics subroutines,
written in assembly language, and other software, written in a high-level language.
Software running on the 34020 communicates with the application program running on the
main CPU.

Tbe 34020 contains a 512-byte on-chip instruction cache and 30 general-purpose
registers-enough memory to store the instructions and data required within the inner loop
of many graphics subroutines. Once the instructions and data for the loop have been read
from external memory, the memory bus is available exclusively for moving pixels to and
from the frame buffer.

The TMS34082 floating-point coprocessor chip interfaces directly to the 34020,
providing floating-point instructions and registers that increase the system's capabilities for
3D and other floating-point-intensive applications. The 34082 monitors the 34020's
memory bus and receives floating-point instructions and data transmitted over the bus by
the 34020. The 34082 can transform a 3D homogeneous point (including the homogeneous
di'vide) every 2.9 microseconds.

18.2.3 Integrated Graphics Processors

Another approach to increasing system performance is to add support for graphics directly
to the main CPU. This has become feasible only recently, with the development of very
dense VLSI t.echnologies that allow entire systems to be implemented on a single chip. Fully
programmable 20 graphics processors, such as TI's 34020, are early examples of this
approach, although they dedicate much of their chip area to graphics functions and
comparatively little to general-purpose processing.

Intel 's i860 is the first microprocessor chip to integrate direct support for 30 graphics.
Proponents of this approach argue that the chip area required to support reasonable 3D
graphics performance is relatively small and the payoff is high, since 3D graphics has
become an integral part of many computing environments. This approach may well produce
high-performance, low-cost 3D systems as increasing VLSI densities allow more sophisti­
cated systems and more system components to be built onto a single chip.

18.2.4 Intel's i860-A Single-Chip Microproces.sor with Integrated
Support for 30 Graphics

AdV'ances in VSLI technology have made it possible to build chips with extremely large
numbers of transistors- more than I million in 1989. This allows high-performance CPU
chips to include other features, such as caches, YO controllers, and support for specialized

TEXAS INSTRUMENTS EX. 1009 - 926/1253

18 .2 Display-Processor Systems 865

instructions. Intel's i860 microprocessor, also known as the 80860, [GRIM89) is an
Wllllple of such a chip with features supporting 30 graphics. Figure 18.6 is a block
diagram of the major data paths in the i860.

According to Intel, the i860 achieves the following benchmarks: 33 million ¥AX­
equivalent instructions per second (on compiled C code), 13 double-precision MFLOPs
(using the Linpack benchmark), and 500,000 homogeneous vector transformations
[INTE89].

The i860's graphics instructions operate in parallel on as many pixels as can be packed
into a 64-bit data word. For applications using 8-bit pixels, this means eight operations can
occur simultaneously. For 30 shaded graphics, which generally requires 32-bit pixels, two
operations can occur simultaneously. Parallel graphics instructions include:

•
•
•

Calculating multiple linear interpolations in parallel
Calculating multiple z-buffer comparisons in parallel

Conditionally updating multiple pixels in parallel.

For systems using 8-bit pixels (where eight operations can occur in parallel), the i860
can scan convert and shade 50,000 Gouraud-shaded 100-pixel triangles per second.

The i860 may be used either as a peripheral display processor (with an 80486

3

To external bus_ """ Bus control
~4 bits data, < and memory

2 Its address) '<"""'>"' management

64 bits~ }'

~

< lt

28bits~
,. -i }'

~ ~
64 bits~

~ I
Data cache Instruction

cache (8 KB) (4 KB)

Scuw1
I I

Scuw2
LJ l

~ ~ ~

Graphics un" Floati~·point
a er

Integer unit
and registers
(32 x 32 bits)

~ } 32 bits .. 7
)

1
~ ~

} 128 . bits
7

Floali~·point
contr and

registers
(16 x 64 bits)

I

I I I

64-blt
data­
paths

.. ~ .. ~

Floating-point
multiplier

Fig. 18.6 Stock diagram of Intel i860 microprocessor datapaths (adapted from
(GRIM89JI.

TEXAS INSTRUMENTS EX. 1009 - 927/1253

866 Advanced Rast er Graphics Architecture

microprocessor as the main CPU. for example) or as a stand-alone processor. By
combining front-end and back-end capabil ities in a single processor, the i860 allows a
powerful 30 graphics system to be built with very few parts-essentially the processor,
memory, and the video system.

As VLSI densities continue to improve, we can expect to see even higher perfonnance
and more complex processors designed for graphics. Features commonly found in 20
graphics-processor chips, such as scanout and video-t iming circuitry, may be included in
such processors as well.

18.2 .5 Three Performance Barriers

Systems can be built with a large range of perfonnances using the techniques described up
to this point. Low-end systems using a general-purpose microprocessor for the application
processor and a 20 graphics processor are well suited for displays on PCs. Higher­
pcrfonnance systems using a powerful application processor and a high-speed 30 graphics
processor, containing display-list memory and transfonnation hardware, are suitable for
engineering and scientific workstations.

But how far can such designs be pushed? Let us imagine a display system made with the
fastest available CPU and display processor, and a frame buffer containing the fastest
available VRAMs. Such a system will achieve impressive-but still limited-perfor­
mance. In practice, such single-stream architectures have been unable to achieve the speeds
necessary to display large 3D databases at interactive rates. Architectures that display more
primitives at faster update rates must overcome three barriers:

•

•

•

Floatiog-point geometry processiog: Accelerating the transfonnation and clipping of
primitives ~nd the rates possible in a single floating-point processor

/meyer pixel processing: Accelerating scan conversion and pixel processing ~nd the
rates possible in a single display processor and memory system

Frame-buffer memory bandwidth: Providing higher bandwidth into the frame buffer
(faster reads and writes) than can be supported by a conventional memory system.

These barriers have analogs in conventional computer design: the familiar processing
and memory-bandwidth bottlenecks. ln conventional computers, the presence of these
botLienecks has led to the development of concurrent processing. Similarly, the major focus
of research in grapbics architecture over the last decade has been investigating ways to use
concurrency to overcome these perfonnance barriers.

Before we discuss parallel graphics architectures, let us establish some groundwork
about the demands of graphics applications and the fundamentals of multiprocessing.
Later, we shall discuss various methods for building parallel systems that overcome these
three perfonnance barriers.

18.3 STANDARD GRAPHICS PIPELINE

Here we review from a hardware perspec1ive the standard graphics pipeline discussed in
Chapter 16. As has been mentioned, the rendering pipeline is a logical model for the
computations needed in a raster-display system, but is not necessarily a physical model ,
since the stages of the pipeline can be implemented in eilher software or hardware.

TEXAS INSTRUMENTS EX. 1009 - 928/1253

18.3 Standard Graphics Pipel ine 867

§t::J
\, J

f
\ Geomeuy subsystem) Back-end

'-------------------------~,-------------------------' wooy~9m
Front-end subsystem

Fig. 18.7 Standard graphics pipeline for Gouraud- or Phong-shaded polygons.

Figure 18.7 shows a version of the rendering pipeline that is typical for systems using
conventional primitives (lines and polygons) and conventional shading techniques (con­
stant, Gouraud, or Phong). We shall discuss each stage of the pipeline in tum, paying
particular attention to algorithms that have been used successfully in hardwa.re systems and
to those that may be useful in the future. At the end of this section, we estimate the number
of computations needed at each stage of the graphics pipeline to process a sample database
containing I 0,000 polygons.

18.3 .1 Display Traversal

The first stage of the pipeline is traversal of the display model or database. This is
necessary because the image may change by an arbitrary amount between successive
frames. AU the primitives in the database must be fed into the remainder of the display
pipeline, along with context information, such as colors and current-transformation
matrices. Chapter 7 described the ~ types of traversal: immediate mode and retained
mode. Both methods have advantages and disadvantages, and the choice bet~oeen them
depends on the characteristics of the application and of the particular hardware architecture
used.

Immediate mode offers flexibility , since the display model does not need to C{)nform to
any particular display-list structure and the application has the luxury of recreating the
model differently for every frame. The main CPU must perform immediate-mode traversal,
however, expending cycles it could use in other ways. Retained mode, on the other hand,
can be handled by a display processor if the structure database is stored in its local memory.
Retained-mode structu.re traversal can be accelerated by optimizing the database storage
and access routines or by using a dedicated hardware traverser. Furthermore, since the main
CPU only edits the database each frame, rather than rebuilding it from scratch, a
low-bandwidth channel between the main CPU and the display processor is sufficient. Of
course, relatively few changes can be made to the structure database between frames, or
system performance will suffer.

The choice between traversal modes is a controversial matter for system designers
[AKEL89] . Many argue that retained mode offers efficiency and high performance. Others
believe that immediate mode supports a wider range of applications and does not
necessarily lead to reduced performance if the system has a sufficiently powerful CPU.

Unfortunately, it is difficult to estimate the processing requirements for display
traversal , since they depend on the traversal method used and on the characteristics of the
particular display model. At the very least, a read operation and a write operation must be
performed for each word of data to be displayed. The processing requirements may be much

TEXAS INSTRUMENTS EX. 1009 - 929/1253

868 Advanced Raster Graphics Architecture

greater if the structure hierarchy is deep or if it contains many modeling transformations
(because of the overhead in pointer chasing, state saving, concatenating transformation
matrices, etc.).

18.3.2 Modeling Transformation

In this stage of the pipeline, graphics primitives are transformed from the object-coordinate
system to the world-coord.inate system. This is done by transforming the vertices of each
polygon with a single transformation matrix that is the concatenation of the individual
modeling transformation matrices. In addition, one or more surface-normal vectors may
need to be transformed, depending on the shading method to be applied.

Constant shading requires world-space surface-normal vectors for each polygon. We
compute these by multiplying object-space surface normals by the transpose of the inverse
modeling transformation matrix. Gouraud and Pbong shading require world-space normals
for each vertex, rather than for each polygon, so each vertex-normal vector must be
multiplied by the transpose inverse transformation matrix.

Let us compute the number of floating-point calculations required to transform a single
vertex if Gouraud shading is to be applied. Multiplying a homogeneous point by a 4 x 4
matrix requires 16 multiplications and 12 additions. Multiplying each vertex normal by the
inverse transformation matrix requires 9 multiplications and 6 additions (only the upper-left
3 x 3 portion of the matrix is needed-see Exercise 18.1). Therefore, transforming a
single vertex with surface normal requires 16 + 9 = 25 multiplications and 12 + 6 = 18
additions.

18.3 .3 Trivial Accept/ Reject Classification

In the trivial accept/reject classification stage, primitives (now in world coordinates) are
tested to see whether they lie wholly inside or outside the view volume. By identifying
primitives that lie outside the view volume early in the rendering pipeline, processing in
later stages is minimized. We will clip primitives that cannot be trivially accepted or
rejected in the clipping stage.

To trivially accept or reject a primitive, we must test each transformed vertex against the
six bounding planes of the view volume. ln general, the bounding planes will not be aligned
with the coordinate axes. Each test of a vertex against a bounding plane requires 4
multiplications and 3 additions (the dot product of a homogeneous point with a 3D plane
equation). A total of 6 · 4 = 24 multiplications and 6 · 3 = 18 additions are required per
vertex.

18.3.4 Lighting

Depending on the shading algorithm to be applied (constant, Gouraud, or Phong), an
illumination model must be evaluated at various locations: once per polygon for constant
shading, once per vertex for Gouraud shading, or once per pixel for Phong shading.
Ambient, diffuse, and specular illumination models are commonly used in high-perfor­
mance systems.

TEXAS INSTRUMENTS EX. 1009 - 930/1253

18.3 Standard Graphics Pipeline 869

In constant shading, a single color is computed for an entire polygon, based on the
position of the light source and on the polygon's surface-normal vector and diffuse color
(see Eq. 16.9). Tbe first step is to compute the dot product of the surface-normal vector and
the light vector (3 multiplications and 2 additions for directional light sources). If an
attenuation factor based on the distance to the light source is used, we must calculate it and
multiply it by the dot product here. Then, for each of the red, green, and blue color
components, we multiply the dot product by the Light-source intensity and diffuse-reflection
coefficient (2 multiplications), multiply the ambient intensity by the ambient-reflection
coefficient (I multiplication), and add the results (I addition). If we assume a single
di.rectional light source, calculating a single RGB triple requires 3 + 3 · (2 + 1) = 12
multiplications and 2 + 3 · L = 5 additions. Gou.raud-shading a triangle requires three RGB
triples-one for each vertex.

Phong shading implies evaluating the illumination model at each pixel, rather than once
per polygon or once per polygon vertex. It therefore requires many more computations than
does either constant or Gouraud shading. These computations, however, occur during the
rasterization stage of the pipeline.

18.3 .5 Viewing Transformation

In this stage, primitives in world coordinates are transformed to normalized projection
(NPC) coordinates. This transformation can be performed by multiplying vertices in world
coordinates by a single 4 x 4 matrix that combines the perspective transformation (if used)
and any skewing or nonuniform scaling transformations needed to convert world coordi­
nates to NPC coordinates. This requires 16 multiplications and 12 additions per vertex.
Viewing transformation mab'ices, however, have certain terms that are always zero. If we
take advantage of this, we can reduce the number of computations for this stage by perhaps
25 percent. We will assume that 12 multiplications and 9 additions per vertex are required
in the viewing transformation stage.

Note that if a simple lighting model (one that does not require calculating the distance
between the light source and primitive vertices) is used, modeling and viewing transforma­
tion matrices can be combined into a single matrix. In this case only one b'ansformation
stage is required in the display pipeline- a significant savings.

18.3.6 Clipping

In the clipping stage, lit primitives that were not trivially accepted or rejected are clipped to
the view volume. As described in Chapter 6, clipping serves two purposes: preventing
activity in one screen window from affecting pixels in other windows, and preventing
mathematical overflow and underflow from primitives passing behind the eye point or at
great distances.

Exact clipping is computationally practical only for simple primitives, such as lines and
polygons. These primitives may be clipped using any of the 3D clipping algorithms
described in Section 6.5. Complicated primitives, such as spheres and parametrically
defined patches, are difficult to clip, since clipping can change the geometric nature of the
primitive. Systems designed to display only triangles have a related problem, s.ince a clipped
triangle may have more than three vertices.

TEXAS INSTRUMENTS EX. 1009 - 931/1253

870 Advanced Raster Graphics Architecture

An alternative to exact clipping is scissoring, described in Section 3.11. Here,
primitives that cross a clipping boundary are processed as usual until the rasterization stage,
where only pixels inside the viewport window are written to the frame buffer. Scissoring is
a source of inefficiency, however, since effort is expended on pixels outside the viewing
window. Nevertheless, it is the only practical alternative for clipping many types of complex
primitives.

In the pipeline described here, all clipping is performed in homogeneous coordinates.
This is really only necessary for z clipping, since the w value is needed to recognize vertices
that lie behind the eye. Many systems clip to x and y boundaries after the homogeneous
divide for efficiency. This simplifies x and y clipping, but still allows primitives that pass
behind the eye to be recognized and clipped before w information is lost.

The number of computations required for clipping depends on how many primitives
cross the clipping boundaries, which may change from one frame to the next. A common
assumption is that only a small percentage of primitives (I 0 percent or fewer) need clipping.
If this assumption is violated, system performance may decrease dramatically.

18.3 . 7 Division by wand Mapping to 30 Viewport

Homogeneous points that have had a perspective transformation applied, in general, have w
values not equal to I. To compute true x, y. and z values, we must divide the x, y, and z
components of each homogeneous point by w. This requires 3 divisions per vertex. In many
systems, vertex x andy coordinates must be mapped from the clipping coordinate system to
the coordinate system of the actual 30 viewport. This is a simple scaling and translation
operation in x and y that requires 2 multiplications and 2 additions per vertex.

18.3.8 Rasterization

The rasterization stage converts transformed primitives into pixel values, and generally
stores them in a frame buffer. As discussed in Section 7 . 12.1, rasterization consists of three
subtaSks: scan conversion, visible-surface determination, and shading. Rasterization, in
principle, requires calculating each primitive's contribution to each pixel, an O(nm)
operation, where n is the number of primitives and m is the number of pixels.

In a software rendering system, rasterization can be performed in either of two orders:
primitive by primitive (object order), or pixel by pixel (image order). The pseudocode in
Fig. 18.8 describes each of these t""'O approaches, which correspond to the two main
families of image-precision visibility algorithms: z-buffer and scan-line algorithms.

Most systems today rasterize in object order, using the z-buffer algorithm to compute

for (each primitive P)
for (each pixel q withitl P)

update frame buffer based on color
and visibility of Par q;

(a)

for (each pixel q)
for (each primitive P covering q)

compute Ps contribution ro q,
owpuuing q when finished;

(b)

Fig. 18.8 Pseudocode for (a) object-order and (b) image-order rasterization
algorithms.

TEXAS INSTRUMENTS EX. 1009 - 932/1253

18.3 Standard Graphics Pipeline 8 71

visibility. The z-buffer algorithm has only recently become practical with the availability of
inexpensive DRAM memory. If we assume that visibility is determined using a z-buffer, the
number of computations required in the rasteriz.ation stage still depends on the scan­
conversion and shading methods. Scan-<:onversion ca.lculations are difficult to categorize,
but can be significant in a real system.

Constant shading requires no additional computations in the rasterization stage, since
the polygon's uniform color was determined in the lighting stage. Gouraud shading requires
red, green, and blue values to be bilinearly interpolated across each polygon. Incremental
addition can be used to calculate RGB values for each succeeding pixel. Phong shading
requires significantly more computation. 1be x, y, and z components of the surface normal
must be linearly interpolated across polygons based on the normal vectors at each venex.
Since the interpolated vector at each pixel does not, in general, have unit length, it must be
normalized. This requires 2 additions, an expensive reciprocal square-root operation, and 3
multiplications for every pixel. Then, the Phong illumination model must be evaluated,
requiring a dot product, more multiplications and additions, and, in the general case, the
evaluation of an exponential. Bishop and Weimer's approximation to Pbong shading, as
mentioned in Section 16.2.5, can reduce some of these calculations, albeit at the expense of
realism for surfaces with high specularity. Other shading techniques, such as transparency
and texturing, may be desired as well . The architectural implications of these techniques are
discussed in Section 18.11.

In addition to the shading calculations, updating each pixel requires reading the
z-buffer, comparing old and new z values. and, if the primitive is visible, writing new color
and z values to the frame buffer.

18.3 .9 Performance Requirements of a Sample Application

In Section 18.2, we mentioned the three major performance barriers for raster graphics
systems: the number of floating-point operations required in geometry calculations and the
number of pixel-<>riented computations and frame-buffer accesses required in rasterization.
To appreciate the magnitude of these problems, we shall estimate the number of
computations needed at each stage of the rendering pipeline to display a san1ple database at
a modest update rate. To make this estimate, we must define a representative database and
application.

A sample database_ We use triangles for primitives in our sample database, since they
are common and their computation requirements are easy to estimate (complex primitives
with shared venices, such as triangle strips and quadrilateral meshes, are becoming
increasingly popular, however. Exercise 18.2 explores the savings that can be achieved
using these primitives.) We assume a modest database size of 10,000 triangles, a size that
current workstations can display at interactive rates [AKEL88; APGA88; BORD89;
MEGA89]. In addition, we assume that each triangle covers an average of 100 pixels.

The number of polygons that fall on clipping boundaries can vary widely from one
frame to the next. For simplicity, we assume that no primitives need clipping in our sample
application. This means we underestimate the amount of calculations required for clipping,
but maximize the work required in succeeding Stages. Image depth complexity, the average
number of polygons mapping to a pixel, depends on the database as "'ell as on the view. We

TEXAS INSTRUMENTS EX. 1009 - 933/1253

872 Advanced Raster Graphics Architecture

assume arbitrarily that one-half of the pixels of all the triangles are obscured by some other
triangle.

We assume that an ambient/diffuse illumination model and Gouraud shading are to be
applied to each primitive (this is the lowest common standard for current 30 systems,
although Pbong illumination combined with Gouraud shading is becoming increasingly
popular). We assume a screen size of 1280 by I 024 pixels and an update rate of I 0 frames
per second, typical of current interactive applications, but far from ideal.

•
•

•
•
•

ln summary, our sample application has the following cbaracteri.stics:

10,000 triangles (none clipped)

Each triangle covers an average of 100 pixels, one-half being obscured by other
triangles

Ambient and diffuse il.lumination models (not Phong)

Gouraud shading

1280 by 1024 display sc.reen, updated at 10 frames per seoond .

We cannot calculate all the computation and memory-bandwidth requirements in our
sample application, since many steps are difficult to categorize. Instead, we concentrate on
the three performance barriers: the number of floating-point operations for geometry
computations, the number of integer operations for computing pixel values, and the number
of frame-buffer accesses for rasteriz.ation.

Geometry calculations. For each frame, we must process 10,000 · 3 = 30,000 vertices
and vertex-normal vectors. In the modeling transformation stage, transforming a vertex
(including transforming the normal vector) requires 25 multiplications and 18 addi­
tions. The requirements for this stage are thus 30,000 · 25 = 750,000 multiplications and
30,000 · 18 = 540,000 additions.

Trivial accept/reject classification requires testing each vertex of each primitive against
the six bounding planes of the viewing volume, a total of 24 multiplications and 18
additions per vertex. The requirements for this stage are thus 30,000 · 24 = 720,000
multiplications and 30,000 · 18 = 540,000 additions, regardless of how many primitives
are trivially accepted or rejected.

Lighting requires 12 multiplications and 5 additions per vertex, a total of30,000 · 12 =
360,000 multiplications and 30,000 · 5 = 150,000 additions.

The viewing transformation requires 8 multiplications and 6 additions per vertex, a
total of 30,000 · 8 = 240,000 multiplications and 30,000 · 6 = 180,000 additions.

The requirements for clipping are variable; the exact number depends on the number of
primitives that cannot be trivially accepted or rejected, which in turn depends on the scene
and on the viewing angle. We have assumed the simplest case for our database, that all
primitives lie completely within the viewing volume. If a large fraction of the primitives
needs clipping, the computational requirements could be substantial (perhaps even more
than in the geometric transformation stage).

Division by w requires 3 divisions per vertex, a total of 30,000 · 3 = 90,000 divisions .
Mapping to the 3D viewport requires 2 multiplications and 2 additions per vertex, a total of
60,000 multiplications and 60,000 additions.

TEXAS INSTRUMENTS EX. 1009 - 934/1253

18.4 Introduction to Multiprocessing 873

Summing the floating-point requirements for all of the geometry stages gives a total or
2,220,000 multiplications/divisions and I ,470,000 additions/subtractions per frame. Since
a new frame is calculated every fo- second, a total of 22.2 million multiplications/divisions
and 14.7 million additions/subtractions (36.9 million aggregate floating-point operations)
as required per second-a very substantial number.

Rasterization calculations and frame-buffe.r accesses. Let us now estimate the
number of pixel calculations and frame-buffer memory accesses required in each frame. We
assume that z values and RGB triples each occupy one word (32 bits) of frame-buffer
memory (typical in most current high-performance systetns). For each pixel that is initially
visible (i.e., results in an update to the frame buffer), z, R, G. and 8 values are calculated (4
additions per pixel if forward differences are used), a z value is read from the frame buffer (I
frame-buffer cyc.le), the z values are compared (I subtraction) and new z values and colors
are wrinen (2 frame-buffer cycles). For each pixel that is initially not visible, only the z
value needs to be calculated (I addition), and a z value is read from the frame buffer (l
frame-buffer cycle), and the two z values are compared (1 subtraction). Note that initially
visible pixels may get covered, but initially invisible pixels can never be exposed.

Since we assume that one-half of the pixels of each triangle are visible in the final
scene, a reasonable guess is that three-quarters of the pixels are initially visible and
one-quarter of the pixels are initially invisible. Each triangle covers 100 pixels, so f · 100 ·
10,000 = 750,000 pixels are initially visible andt · LOO • 10,000 = 250,000 pixels are ini­
tially invisible. To display an entire frame, therefore, a total of (750,000 · 5) + (250,000 ·
2) = 4.25 million additions and (750,000 · 3) + (250,000 · I)= 2.5 million frame-buffer
accesses is requ.ired. To initialize each frame, both color and z-buffers must be cleared, an
additional 1280 · 1024 · 2 = 2.6 miUion frame-buffer accesses. The total number or
frame-buffer accesses per frame, therefore, is 2.5 million + 2.6 million = 5.1 million. If
10 frames are generated per second, 42.5 million additions and 51 million frame-buffer
accesses are required per second.

In I 989, the fastest floating-point processors available computed approximately 20
million floating-point operations per second, the fastest integer processors computed
approximately 40 million integer operations per second, and DRAM memory systetns had
cycle times of approximately I 00 nanoseconds. The floating-point and integer requirements
of our sample application, therefore, are just at the limit of what can be achieved in a single
CPU. The number of frame-buffer accesses, however, is much higher than is possible in a con­
ventional memory system. As we mentioned earlier, this database is only modestly sized
for systems available in 1989. In the following sections, we show how multiprocessing can be
used to achieve the performance necessary to display databases that are this size and larger.

18.4 INTRODUCTION TO MULTIPROCESSING

Displaying large databases at high frame rates clearly requires dramatic system perfor­
mance, both in terms of computations and of memory of bandwidth. We have seen that the
geometry portion of a graphics system can require more processing power than a single
CPU can provide. Likewise, rasterization can require more bandwidth into memory than a
single memory system can provide. The only way to anain such performance levels is to

TEXAS INSTRUMENTS EX. 1009 - 935/1253

874 Advanced Raster Graphics Architecture

(a)

(b)

Fig. 18.9 Basic forms of multiprocessing: (a) pipelining, and (b) parallelism.

perform multiple operations concurrently and to perform multiple reads and writes to
memory concurrently- we need concurrent processing.

Concurrent processing, or multiprocessing, is the basis of virtually all high-perfor­
mance graphics architectures. Multiprocessing has 1~ basic forms: pipelining and
parallelism (we reserve the term concurrency for multiproeessing in general). A pipeline
processor contains a number of processing elemems (PEs) arranged such that the output of
one becomes the input of the next, in pipeline fashion (Fig. 18.9a). The PEs of a parallel
processor are arranged side by side and operate simultaneously on different portions of the
data (Fig. 18.9b).

18.4.1 Pipelining

To pipeline a computation, we partition it into stages that can be executed sequentially in
separate PEs. Obviously, a pipeline can run only as fast as its slowest stage, so the
processing load should be distributed evenly over the PEs. If this is not possible, PEs can be
sized according to the jobs they must perform.

An important issue in pipeline systems is throughput versus lf1tency . Throughput is the
overall rate at which data are processed; latency is the time required for a single data
element to pass from the beginning to the end of the pipeline. Some calculations can be
pipelined using a large number of stages to achieve very high throughput. Pipeline latency
increases with pipeline length, however, and certain computations can tolerate only a
limited amount of latency. For e1tample, rea.l-time graphics systems, such as flight
simulators, must respond quickly to changes in Hight controls. If more than one or t~
frames are in the rendering pipeline at once, the system's interactivity may be impaired,
regardless of the frame rate.

TEXAS INSTRUMENTS EX. 1009 - 936/1253

18.4 Introduction to Multiprocessing 875

18.4 .2 Parallelism

To parallelize a computation, we partition the data into portions that can be processed
independently by different PEs. Frequently, PEs can eJtecute the same program. Homoge·
neous parallel processors contain PEs of the same type; heterogeneous parallel processors
contain PEs of different types. In any parallel system, the overall computation speed is
determined by the time required for the s.lowest PE to finish its task. It is important,
therefore, to balance the processing load among the PEs.

A further distinction is useful for homogeneous parallel processors: whether the
processors operate in lock step or independently. Processors that operate in lock step
generally share a single code store and are called single-instruction multiple-data (SIMD)
processors. Processors that operate independently must have a separate code store for each
PE and are called multiple-instruction multiple-data (MTMD) processors.

SIMD processors. Because all the PEs in a SIMD processor share a single code store,
SIMD processors are generally less expens.ive than MIMD processors. However, they do
not perform well on algorithms that contain conditional branches or that access data using
pointers or indirection. Since the path taken in a conditional branch depends on data
specific to a PE, different PEs may follow different branch paths. Because all the PEs in a
SIMD processor operate in lock step, they all must follow every possible branch path. To
accommodate conditional branches, PEs generally contain an enable register to qualify
write operations. Only PEs whose enable registers are set write the results of computations.
By appropriately setting and clearing the enable register, PEs can execute conditional
branches (see Fig. 18. I Oa).

Algorithms with few conditional branches eJtecute efficiently on SIMD processors.
Algorithms with many conditional branches can be extremely inefficient, however, since

statement I;
If not condition tben

enable ~ FALSE;
statement 2;
toggle enable;
statement 3;
sratemem 4;
enable = TRUE;
srare-nr 5;
sratemenl 6;

Total operations:
10 if condition evaluates TRUE,
J 0 if condition evaluates FALSE

(a)

state-nr I;
if condition tben

statement 2;
else

begin
swement 3;
statement 4;

end;
state-nt 5;
statement 6;

Total operations:
5 if condition evaluates TRUE,
6 if condition evaluates FALSE

(b)

Fig. 18.10 (a) SIMD and (b) MIMD expressions of the same algorithm. In a SIMD
program, conditional branches transform into operations on the enable register. When
the enable register of a particular PE is FALSE. the PE executes the current instruction,
but does not write the result .

TEXAS INSTRUMENTS EX. 1009 - 937/1253

876 Advanced Raster Graphics Architecture

most PEs may be disabled at any given time. Data structures containing pointers (such as
linked lists or trees) or indexed arrays cause similar problems. Since a pointer or array index
may contain a different value at each PE, all possible values must be enumerated to ensure
that each PE can make its required memory reference. For large arrays or pointers, this is an
absurd waste of processing resources. A few SIMD processors provide separate address
wires for each PE in order to avoid this problem, but this adds size and complexity to the
system.

MlMD processors. MIMD processors are more expensive than SIMD processors, since
each PE must have its own code store and controller. PEs in a MJMD processor often
execute the same program. Unlike SIMD PEs, however, they are not constrained to operate
in lock step. Because of this freedom, MlMD processors suffer no disadvantage when they
encounter conditional branches; each PE makes an independent control-flow decision,
skipping instructions that do not need to be executed (see Fig. 18. 10b). As a result, MIMD
processors achieve higher efficiency on 1;eneral types of computations. However, since
processors may start and end at different times and may process data at different rates,
synchronization and load balancing are more 11ifficult, frequently requiring FIFO buffers at
the input or output of each PE.

18.4 .3 Multiprocessor Graphics Systems

Pipeline and parallel processors are the basic building blocks of virtuaJJy all current
high-performance graphics systems. Both techniques can be used to accelerate front-end
and back-end subsystems of a graphics system, as shown in Fig. 18.1 I.

Tn the following sections, we examine each of these strategies. Sections 18.5 and 18.6
discuss pipeline and parallel from-end architectures. Sections 18.8 and 18.9 discuss
pipeline and parallel back-end architectures. Section 18. 10 discusses back-end architec­
tures tha.t use parallel techniques in combination.

From ~J Rulerlzatlon traversal
.. r

.. lubllillerh s.tage '"Nyltllm

Pipeline ~ ~
or or

or

• •
....

Parallel

Fig. 18.11 Pipelining and parallelism can be used to accelerate both front-end and
back-end portions of a graphics system.

TEXAS INSTRUMENTS EX. 1009 - 938/1253

18.5 Pipeline Front-End Architectures 877

18.5 PIPELINE FRONT-END ARCHITECTURES

Recall from Section 18.3 that the front end of a graphics display system has two major
tasks: traversing the display model and transforming primitives into screen space. As we
have seen, to achieve the rendering rates required in current applications, we must use
concurrency to speed these computati_ons. Both pipelining and parallelism have been used
for decades to build front ends of high-performance graphics systems. Since the front end is
intrinsically pipelined, its stages can be assigned to separate hardware units. Also, the large
numbers of primitives in most graphics databases can be distributed over multiple
processors and processed in parallel. ln this section, we discuss pipeline front-end systems.
We discuss parallel front-end systems in Section 18.6.

ln introducing the standard graphics pipeline of Fig. 18.7, we mentioned that it
provides a useful conceptual model of the rendering process. Because of its linear nature
and fairly even allocation of processing effort, it also maps well onto a physical pipeline of
processors. This has been a popular approach to building high-performance graphics
systems since the 1960s, as described in [MYER68], a classic paper on the evolution of
graphics architectures. Each stage of the pipeline can be implemented in several ways: as an
individual general-purpose processor, as a custom hardware unit, or as a pipeline or parallel
processor itself. We now discuss implementations for each stage in the front-end pipeline.

18.5.1 Application Program and Display Traversal

Some processor must execute the application program that drives the entire graphics
system . .In addition to feeding the graphics pipeline, this processor generally handles input
devices, file UO, and all interaction with the user. In systems using immediate-mode
traversal, the display model is generally stored in the CPU's main memory. The CPU must
therefore traverse the model as well as run the application. ln systems using retained mode,
the model is generally (but not always) stored in the display processor's memory, with the
display processor performing traversal. Because such systems use two processors for these
tasks, they are potentially faster, although they are less flexible and have other I imitations,
as discussed in Section 7 .2.2.

Where very high performance is desired, a single processor may not be powerful
enough to traverse the entire database with sufficient speed. The only remedy is to partition
the database and to traverse it in parallel. This relatively new technique is discussed in
Section 18.6.1.

18.5 .2 Geometric Transformation

The geometric transformation stages (modeling transformation and viewing transforma­
tion) are highly compute-intensive. Fortunately, vector and matrix multiplications are
simple calculations that require no branching or looping, and can readily be implemented in
hardware.

The most common implementation of these stages is a single processor or functional
unit that sequentially transforms a series of vertices. A pioneering processor of this type
was the Matrix Multiplier fSUTH68], which could multiply a four-element vector by a

TEXAS INSTRUMENTS EX. 1009 - 939/1253

878 Advanced Raster Graphics Architecture

homogeneous tranSformation matrix in 20 microseconds. Other special-purpose geometry
processors have been developed since then, most notably Clark's Geometry Engine, which
can perform clipping as well (see Section 18.5.5). Recent geometry processors have
exploited the power and programmability of commercial floating-point chips.

If pipelining does not provide enough performance, trans formation computations can
be parallelized in several ways:

• Individual components of a vertex may be calculated in parallel. Four parallel
processors, each containing the current transformation matrix , can evaluate the
expressions for x, y, z, and w in parallel.

• Muhiple vertices can be transformed in parallel. If primitives are all of a uniform
type- say, triangles-the three vertices of each triangle can be transformed simulta­
neously.

• Entire primitives can be transformed in parallel. If n transformation engines arc
available, each processor ean transform every nth primitive. This technique has many
of the advantages and disadvantages of parallel front-end systems, which we will
discuss in Section 18.6.

18.5.3 Trivial Accept/ Reject Classification

Trivial accept and reject tests are straightforward to implement, since they require at worst a
dot product and at best a single floating-point comparison (or subtract) to determine on
which side of each clipping plane each vertex lies. Because these tests require little
computation, they are generally performed by the processor that transforms primitives.

18.5 .4 Ughting

Like geometric tranSformation, lighting calculations are straightforward and are floating­
point- intensive. A specialized hardware processor can calculate vertex colors based on a
polygon's color and the light vector. More frequently , lighting calculations are performed
using a programmable floating-point processor. In lower-performance systems, lighting
calculations can be done in the same processor that transforms vertices. Note tha.t if Phong
shading is used, lighting calculations are deferred until the rasterization stage.

18.5.5 Clipping

Polygon clipping was once considered cumbersome, since t.he number of vertices can
change during the clipping process and concave polygons can fragment into multiple
polygons during clipping. Sutherland and Hodgman [SUTH74] showed that arbitrary
convex or concave polygons can be clipped to a convex view volume by passing the
polygon 's vertices through a single processing unit multiple times. Each pass through the
unit clips the polygon to a different plane. In 1980, Clark proposed unwrapping this
processing loop into a simple pipeline of identical processors, each of which could be
implemented in a single VLSI chip, which he named the G~etry Engine [CLAR82). The
Geometry Engine was general enough that it could transform primitives and perform
perspective division as well .

TEXAS INSTRUMENTS EX. 1009 - 940/1253

18.5 Pipeline Front-End Architectures 879

Clipping using a Geometry Engine (or similar processor) can be performed either by a
single processor that clips each polygon by as many planes as necessary, or by a pipeline of
clipping processors, one for each clipping plane. The technique chosen affects the
worst-case performance of the graphics system: Systems with only one clipping processor
may bog down during frames in which large numbers of primitives need to be clipped,
whereas systems with a clipping processor for each clipping plane can run at full speed.
However, most of the clipping processors are idle for most databases and views in the laner
approach.

General-purpose floating-point units recently have begun to replace custom VLSI
transformation and clipping processors. For example, Silicon Graphics, which for many
years employed custom front-end processors , in 1989 used the Weitek 3332 floating-point
chip for transformations and clipping in their POWER TRIS system (described in detail in
Section 18.8.2). The delicate balance between performance and cost now favors commodi­
ty processors. This balance may change again in the future if new graphics-specific
functionality is needed and cannot be incorporated economically into general-purpose
processors .

18.5 .6 Division by wand Mapping to 30 Viewpoint

Like geometric transformation and lighting, the calculations in this stage are straightfor­
ward but require substantial floating-point resources. A floating-point divide is time
consuming even for most floating-point processors (many processors use an iterative
method to do division). Again , these stages can be implemented in custom functional units
or in a commercial floating-point processor. In very high-performance systems, these
calculations can be performed in separate, pipelined processors.

18.5. 7 Limitations of Front-End Pipelines

Even though pipelining is the predominant technique for building high-performance
front-end systems, it has several limitations that are worth considering. First, a different
algorithm is needed for each stage of the front-end pipeline. Thus, either a variety of
hard-wired functional units must be designed or, if programmable processors are used,
different programs must be wrinen and loaded into each processor. In either case, processor
or functional-unit capabilities must be carefully matched to their tasks, or bottlenecks will
occur.

Second, since the rendering algorithm is committed to hardware (or at least to
firmware, since few systems allow users to reprogram pipeline processors), it is difficult to
add new features. Even if users have programming support for the pipeline processors, the
distribution of hardware resources in the system may not adequately support new features
such as complex primitives or collision detection between primitives.

A final shortcoming of pipelined front ends is that the approach breaks down when
display traversal can no longer be performed by a single processor, and this inevitably
occurs at some performance level. For example, if we assume that traversal is performed by
a 20-MHz processor and memory system, that the description of each triangle in the
database requires 40 words of data (for vertex coordinates, normal vectors, colors, etc.),
and that each word sent to the pipeline requires two memory/processor cycles (one to read it

TEXAS INSTRUMENTS EX. 1009 - 941/1253

880 Advanced Raster Graphics Architecture

from memory, another to load it into the pipeline}, then a maximum of20,000,000 I (1 ·
40) = 250,000 triangles per second can be displayed by the system, no matter how powerful
the processors in the pipeline are. Current systems are rapidly approaching such limits.

What else can be done, then, to achieve higher performance? The alternative to
pipelining front-end calculations is to parallel ire them. The following section describes this
second way to build high-performance front-end systems.

18.6 PARALLEL FRONT-END ARCHITECTURES

Since graphics databases arc regular, typically consisting of a large number of primitives
that receive nearly identical processing, an alternate way to add concurrency is to partition
the data into separate streams and to process them independently. For most stages of the
front-end subs}rstem, such partitioning is readily done; for example, the geometric­
transformation stages can use any of the parallel techniques described in Section I g.5.2.
However, stages in which data streams diverge (display traversal) or converge (between the
front end and back end} are problematic, since they must handle the full data bandwidth.

18.6 .1 Display Traversal

Almost all application programs assume a single, contiguous display model or database. In
a parallel front-end system, the simplest technique is to traverse the database in a single
processor (serial traversal) and then to distribute primitives to the parallel processors.
Unfortunately, this serial traversal can become the bottleneck in a parallel front-end system.
Several techniques can be used to accelerate serial traversal:

•
•
•

Traversal routines can be optimized or written in assembly code

The database can be stored in faster memory (i.e. , SRAM instead of DRAM)

A faster traversal processor (or one optimized for the particular structure forn1at) can be
used.

If these optimizations are not enough, the only alternative is to traverse the database in
parallel. The database either can be stored in a single memory system that allows parallel
access by multiple processors (a shared-memory model) , or can be distributed over multiple
processors, each with its own memory system (a distributed-memory model).

The advantage of the shared-memory approach is that the database can remain in one
place, although trclversal must be divided among multiple processors. Presumably, each
processor is assigned a certain portion of the database to traverse. Unfortunately, inherited
attributes in a hierarchical database model mean that processors must contend for access to
the same data. For example, each processor must have access to the current transformation
matrix and to otber viewing and ligllling parameters. Since the data bandwidth to and from
a shared-memory system may not be much higher than that of a conventional memory
system, the shared-memory approach may not provide enough perfonnance.

In the distributed-memory approach, each processor contains a portion of the database
in its local memory. It traverses its portion of the database for each frame and may also
perform other front-end computations. Distributing the database presents its own problems,
however: Unless the system gives the application programmer the illusion of a contiguous
database, it cannot support portable graphics libraries. Also. the load must be balanced

TEXAS INSTRUMENTS EX. 1009 - 942/1253

18.6 Parallel Front-End Architectures 881

over the traversal processors if system resources are to be utilized fully. Hierarchical
databases exacerbate both of these problems, since attributes in one level of a hierarchy
affect primitives below them, and structures deep in a hierarchy may be referenced by
multiple higher-level structure calls.

The following two sections examine two ways to distribute a hierarchical database over
multiple processors: by structure, where each traversal processor is given a complete branch
of the structure hierarchy; or by primitive, where each traversal processor is given a fraction
of the primitives at each block in the hierarchy.

Distributing by structure. Distributing by structure is outwardly appealing, since
state-changing elements in the structure apparently need to be stOred only once. This can be
an illusion, however, since multiple high-level structures may refer to the same lower-level
substructure. For example, a database contain ing several cars, each described by a separate
car structure, can be distributed by assigning each car structure to a separate processor.
However, if each car structure refers to a number of wheel structures, wheel structures must
also be replicated at every processor.

Load balancing among processors is also difficu lt. Since primitives in a structure are
likely to be spatially coherent, changing the viewpoint or geometry within a scene may
cause entire portions of the structure to be clipped or to reappear. Maintaining even loading
among the multiple processors would require reassigning portions of the database
dynamically.

Distributing by primitive. Distributing by primitive is costly, since the entire hierarchi­
cal structure of the database and any state-changing commands must be replicated a.t each
processor. Structure editing is also expensive, since changes must be broadcast to every
processor. Load balancing, however, is automatic. Since objects in a hierarchical database
typically contain a large number of simple primitives (e.g. , polygons forming a tiled
surface), these primitives will be scanered over all the processors, and each processor will
have a similar processing load.

Parallel display traversal is a relatively new technique. In I 989, the highest­
performance architectures were just approaching the point where serial traversal becomes
insufficient, and only a few systems had experimented with parallel traversal [FUCH89].
Neither of the distribution techniques for hierarchical databases that we have described is
ideal. Compared to geometry processing, which easily partitions into paral lel tasks, display
traversal is much more difficult. Nevertheless, parallel traversal is likely to become
increasingly important as system performance levels increase.

18.6 .2 Recombining Parallel Streams

The transition between the front-end and back-eod portions of the rendering pipeline is
troublesome as well. In a parallel front-end system, tbe multiple streams of transformed and
clipped primitives must be d irected to the processor or processors doing rasterization. This
can require sorting primitives based on spatial information if different processors are
assigned to different screen regions.

A second difficulty in parallel front-end systems is that the ordering of data may change
as those data pass through parallel processors. For example, one processor may transform
two small primitives before another processor transforms a single, larger one. This does not

TEXAS INSTRUMENTS EX. 1009 - 943/1253

882 Advanced Raster Graphics Architecture

mauer for many graphics primitives and rendering techniques. Certain global commands,
however, such as commands to update one window instead of another or to switch between
double buffers. require that data be synchronized before and after the command. If a large
number of commands such as these occurs, some type of hardware support for
synchronization may be necessary. A Raster Technologies system [TORB87l incorporates a
special FIFO into each PE that stores tag codes for each command and allows commands to
be resynchronized after they have been processed in separate PEs.

18.6.3 Pipelining versus Parallelism

We have seen that both pipelining and parallelism can be used to build high-performance
front-end subsystems. Although pipelining has been the predominant technique in systems
of the last decade, parallelism offers several advantages, including reconfigurability for
different algorithms, since a single processor handles all front-end calculations, and more
modularity, since PEs in a parallel system can be made homogeneous more easily than in a
pipeline system. Because the performance of a pipeline system is limited by the throughput
of its slowest stage, pipelines do not scale up as readily as do parallel systems. Parallel
systems, on the other hand, require more complicated synchronization and load balancing
and cannOt use specialized processors as well as can pipelined systems. Both designs are
likely to be useful in the future; indeed, the highest-performance systems are likely to
combine the two.

18.7 MULTIPROCESSOR RASTERIZATION ARCHITECTURES

Recall that the output of the front-end subsystem is typicaiJy a set of primitives in screen
coordinates. The rasterization (back-end) subsystem creates the final image by scan
converting each of these primitives, determining which primitives are visible at each pixel,
and shading the pixel accordingly. Section 18.2.4 identified two basic reasons why simple
display-processor/frame-buffer systems are inadequate for high-performance rasterization
subsystems:

I. A single display processor does not have enough processing power for all the pixel
calculations.

2. Memory bandwidth into the frame buffer is insufficient to handle tbe pixel traffic­
even if the display processor could compute pixels rapidly enough.

Much of the research in graphics architecture over the past decade has concerned ways
to overcome these limitations. A great variety of techniques has been proposed, and many
have been implemented in commercial and experimental systems. In this section, we
consider low-cost. moderate-performance architectures that cast conventional algorithms
into hardware. ln Sections 18.8 and 18.9, we consider ways to improve performance by
adding large amountS of parallelism to speed the calculation of the algorithm's "inner
loop." In Section 18.10, we consider hybrid architectures that combine multiple techniques
for improved efficiency or even higher performance. Figure 18.12 summarizes the
concurrent approaches we shall discuss here.

TEXAS INSTRUMENTS EX. 1009 - 944/1253

18 .7 Multiprocessor Rasterization Architectures 883

Rasterization
Architectural technique

algorithm Serial pipeline Highly parallel Hybrid

Object order Pipelined object order Image parallel Virtual buffer/

z-buffer, depth· Polygon/edge/span- Partitioned Image
virtual processor

sort, and BSP-tree processor pipeline memory
algorithms Logic-enhanced

memory Parallel virtual buffer

Image order Plpelined Image order Object parallel

Scanline algorithms Scan-line pipeline Processor per
primitive pipeline

Image composition

Tree-structured

Fig. 18.12 Taxonomy of concurrent rasterization approaches.

18.7 .1 Pipelined Object-Order Architectures

A direct way to add concurrency to rasterization calculations is to cast the various steps of a
software algorithm into a hardware pipeline. This technique has been used to build a
number of inexpensive, moderately high-performance systems. This approach can be used
with either of the two main rasterization approaches: object order (z-buffer, depth-sort, and
BSP-tree algorithms) and image order (scan-line algorithms). We consider object-order
rasteriUUion now and image-order rasterization in Section 18.7.2.

Object-order rasterization methods include the z-buffer, depth-sort, and BSP-tree
algorithms (the z-buffer is by far the most common in 30 systems). The outer loop of these
algorithms is an enumeration of primitives in the database, and the inner loop is an
enumeration of pixels within each primitive. For polygon rendering, the heart of each of
these algorithms is rasterizing a single polygon.

Figure 18.13 shows the most common rasterization algorithm for convex polygons.
This algorithm is an extension of the 20 polygon scan-conversion algorithm presented in
Section 3.6, using fixed-point arithmetic rather than integer arithmetic. Delta values are
used to calculate the expressions for x, z, R, G, and 8 incrementally from scan line to scan
line, and from pixel to pixel. We shall describe each step of the algorithm.

Polygon processidg. Computations performed only once per polygon are grouped into
this stage. The first step is to determine the initial scan line intersected by the polygon (this
is determined by the vertex with the smallesty value). In most cases, the polygon intersects
this scan line at a single pixel , with two edges projecting upward, the left and right edges.
Delta values are calculated for x, z, R, G, and 8 for each edge. These delta values are
sometimes called slopes.

Edge processing. Computations performed once for each scan line are grouped here.
Scan lines within each primitive are processed one by one. The delta values computed
previously are used to calculate x, z, R, G, and 8 values at the intersection points of the left
and right edges with the current scan line (~,.. and Pr;gtJ, in the figure). A contiguous
sequence of pixels on a scan line, such as those between Pleft and P,;pv is called a span. Delta

TEXAS INSTRUMENTS EX. 1009 - 945/1253

884 Advanced Raster Graphics Architecture

Current span

~ 1\:~~
Active scanline

Initial scanline I
l

IJ.X
riQI>1

I J
l l

Right edge

P. : Z; • Z;_1 + liZ

,, . ,,_, + 6r

g, = g,_, + tJ.g

b,- b,_, + tJ.b

Fig. 18.13 Rasterizing a triangle. Each vertex (V~ V, and V,}, span endpoint (P.., and
P.,J. and pixel (p~ p, etc.) has z. R. G. and 8 component.s.

values for incrementing z, R. G, and 8 from pixel to pixel within the span are then
calculated from the values at Jt.11 and Pri&bi.

S pan processing. Operations that must be performed for each pixel within each span are
performed here. For each pixel within the span, z. R. G. and 8 values are calculated by
adding delta values to the values at the preceding pixel. The z value is compared with the
previous z value stored at that location; if it is smaller, the new pixel value replaces the old
one.

Fig. 18.14 A 4 x 4 interleaved memory organization. Each memory partition (" a"
through " p") contains one pixel from each 4 x 4 block of pixels.

TEXAS INSTRUMENTS EX. 1009 - 946/1253

18.7 Multiprocessor Rasterization Architectures 885

Primitives
in screen

coordinates
Rasterizer

1
pixel

(high-
speed
serial)

Pixel
cache

16
pixels

(low-
speed

parallel)

I

Frame
buffer

0 00

To video
LUTs and
DACs v 16 partitions

Fig. 18.15 A pixel cache matches bandwidth between a high-speed serial link to the
rasterizer and a low-speed parallel link to the frame buffer.

A pipelined system containing one PE for each of the preceding three steps generates
images dramatically faster than does a general-purpose display processor. In fact, it may
generate pixels faster than a standard frame-buffer memory can handle. The Hewlett­
Packard SRX [SWAN86], which uses this approach, generates up to 20 million pixels per
second, approximately twice the speed of a typical VRAM memory system. In such
systems, the rasterization bottleneck is access to frame-buffer memory.

Pixel cache. Pixels can be read and written faster if the frame bufl'er has some degree of
parallel access. One way to accomplish this is to divide the memory into multipl~y.

I ~artitions, each of which contains every fourth pixel of every fourth scan line, or
perhaps every sixteenth pixel in every scan line (see Fig. 18.14). In this way, 16 pixels can
be read or written in parallel. This technique, called menwry interleaving, is also used in
general-purpose CPU memory design.

A pixel regist,er or pixel cacJU! containing 16 pixels can be inserted between the
rasterization pipeline and the interleaved image memory [GORI87; APGA88], as in Fig.
18.15. A cache allows the rdsterizer to access individual pixels a1 high speed, assuming that
the pixel is already in the cache. Multiple pixel values can be moved in parallel between the
cache and the frame buffer at the slower speeds accommodated by the frame buffer.

As in any cache memory unit, performance depends on locality of reference, the
principle that successive memory accesses are likely to occur in the same portion of
memory. Erratic access patterns cause a high percentage of cache misses and degrade
performance. For polygon rendering, the access pattern can be predicted precisely, since
the extent of the polygon in screen space and the order in which pixels are generated are
known before the pixels are accessed. Using this information, a cache controller can begin
reading the next block of pixels from the frame buffer while the previous block of pixels is
processed [APGA88].

Enhancing a rasterization subsystem with this kind of parallel-access path to
frame-buffer memory may well increase the system throughput to the point where the
bottleneck now becomes the single-pixel path between the rasterizer and the pixel cache. A
logical next step is to enhance the rasterizer so that it can generate multiple pixel values in
parallel. We consider such image-parallel architectures in Section 18.8 .

18.7 .2 Pipelined Image-Order Architectures

The alternative to object-order rasterization methods is iiiU.Ige-order (or scan-line)
rasterization, introduced .in Section 15.4.4. Scan-line algorithms calculate the image pixel
by pixel, rather than primitive by primitive. To avoid considering primitives that do not

TEXAS INSTRUMENTS EX. 1009 - 947/1253

886 Advanced Rester Graphics Architecture

Bucket-sorted
edges

(one bucket per
scan line)

Active­
segment list
(sorted in~

Visible
spans

Fig. 18.16 Block diagram of a pipelined scan-line rasterizer.

contribute to the current scan line, most scan-line algorithms require primitives to be
transfonned into screen space and sorted into buckets according to the first scan line in
which they each appear.

Scan-line algorithms can be implemented in hardware using tbe same approach as
object-order algorithms: by casting the steps of the software algorithm into a pipelined
series of hardware units. Much of the pioneering -wurk on hardware scan-line systems was
done at the University of Utah in the late 1960s [WYLI67; ROMN69; WATK70].

Figure 18.16 is a bled diagram of a typical scan-line rasterizer. The y .rortl!r places
each edge of each polygon into the bucket corresponding to the scan line in which it first
appears. The active-segment generator reads edges from these buckets, maintaining a table
of active edges for the current scan line. From this table, it builds a list of active segments (a
segment is a span within a single polygon), which is sorted by the x value of the left
endpoint of each segment. The visible-span generator (called the depth sorter in the Utah
system) traverses the active segment list, comparing z values where necessary, and outputs
the sequence of visible spans on the current scan line. The shader perfonns Gouraud
shading on tbese spans, producing a pixel stream that is displayed on the video screen.

Notice that no frame buffer is needed in this type of system, provided that the system
can generate pixels at video rates. The original Utah scan-line system generated the video
signal in realtime for a modest number (approximately 1200) of polygons. H~r, since
the rate ot which pixels are generated depends on local scene complexity, a small amount of
buffering- enough for one scan line, for example-averages the pixel rate within o single
scan line. A double-buffered frame buffer allows complete independence of image­
generation and image-display rates. This architecture was the basis of several generations of
Right-simulator systems built by Evans & Sutherland Computer Corporation in the 1970s
[SCHA83].

18.7 .3 Umits of Pipeline Rasterization and the Need for Parallelism

Two factors limit the speedup possible in a pipeline approach. First, most rasterizatlon
algorithms break down easily into only a small number of sequential steps. Second, some
of these steps are perfonned far more orten than are others, particularly the steps in the
inner loop of the rasterization algorithm. The processor assigned to these steps, therefore,
becomes the bottleneck in the system.

The inner loop in an object-order (z-buffer) system is calculating pixels within spans;
the inner loop in an image-order (scan-line) system is processing active edges on a scan
line. For rasterization to be accelerated ~nd the level possible by simple pipelining, these
inner-loop calculations must be distributed over a number of processors. In z-buffer

TEXAS INSTRUMENTS EX. 1009 - 948/1253

18.8 Image-Parallel Rasterization 887

systems, this produces image parallelism; in scan-line systems, this produces object
parallelism. The following t\IK> sections discuss each of these approaches. Virtually all of
today' s high-performance graphics systems use some variation of them.

18.8 IMAGE-PARALLEL RASTERIZATION

Image parallelism has long been an attractive approach for high-speed rasterization
architectures, since pixels can be generated in parallel in many ways. Two principal
decisions in any such architecture are (I) bow should the screen be partitioned? (into rows?
into columns? in an interleaved pattern?), and (2) how many partitions are needed? In the
following sections, we shall describe the most heavily investigated alternatives, discussing
the advantages and disadvantages of each. Also, we shall identify which schemes are
approaching fundamental Limits in current architectures. Note that , because an image­
parallel system rasterizes in object order, a frame buffer is required to store intermediate
results.

18.8.1 Partitioned-Memory Architectures

Two obvious partitioning strategies are to divide pixels into contiguous blocks (Fig. 18 .17a)
[PARK80] and to divide them into an interleaved checkerboard pattern (Fig. 18.17b)
[FUCH77a]. In either approach, a processor (or PE) is associated with each frame-buffer
partition. Such organizations increase a graphics system's computation power by providing
parallel processing, and its memory bandwidth by providing each PE with a separate
channel into its portion of frame-buffer memory. During rasterization, polygons are
transferred from the front end to the PEs in parallel, and each PE processes primitives in its
portion of the frame buffer.

Contiguous partitioning. In the contiguous-region partitioning scheme, primitives need
to be processed in only those regions in which they may be visible. These regions can be
determined rapidly using geometric extents. lf primitives are small compared to the region
siz.e, each primitive is likely to fall into a single region. Large primitives may fall into

a b c d a b c d a b c d

e f g h e f g h e f g h

I j k I i j k I i j k I
PEa m n 0 p m n 0 p m n 0 p

a b c d a b c d a b c d

e I I a h e f g h e f Q h

i j k I I j k I i I k I

m n 0 p m n 0 p m n 0 p

(a) (b)

Fig. 18.17 Two schemes for frame-buffer partitioning. In (a), processors are assigned
contiguous blocks of pixels; in (b), processors are assigned pixels in an interleaved
pattern.

TEXAS INSTRUMENTS EX. 1009 - 949/1253

888 Advanced Raster Graphics Architecture

multiple regions. If the region size is chosen appropriately, the number of primitives
handled by each processor will be approximately m/p, where m is the number of primitives
in the database and p is the number of processors. Note, however, that if the viewpoint is
chosen so unfortunately that all of the primitives fall into a single screen region, one
processor must rasterize all of the primitives, and system performance decreases dramati­
cally. In a contiguous region system, the frame rate is determined by !he number of
primitives in the busiest region.

Interleaved partitioning. Interleaved partitioning, on the other hand, achieves a better
balance of workload, since all but the tiniest polygons lie in all partitions of the frame
buffer. Since each processor handles every primitive (although only a fraction of its pixels),
this scheme is less efficient in the best case than is the contiguous region approach.
However, its worst-case performance is much improved, since it depends on the tow/
number of primitives, rather than on the number in the busiest region. Because of this
intri.nsic load balancing, interleaved systems have become the dominant partitioned­
memory architecture.

The polygon scan-conversion algorithm described in Section 18.7.1 requires set-up
calculations to determine delta values and span endpoints before pixel computations can
begin. These calculations need be performed only once per polygon or once per span, and
can be shared among a number of PEs. The first proposed interleaved memory architectures
[FUCH77a; FUCH79] contained no provision for factoring out these calculations from the
PEs (see Fig. 18. 18). Since each PB had to perform the entire msterization algorithm for
every polygon, many redundant calculations were performed.

Cl.ark and Hannah [CLAR80] proposed an enhancement of this architecture to take
advantage of calculations common to multiple PEs. In their approach, two additional levels
of processors are added to perform polygon and edge processing. A single polygon
processor receives raw transformed polygon data from the front-end subsystem and
determines the polygon's initial scan line, slopes of edges, and so on. Eight edge processors
(one per column in an 8 X 8 grid of pixel processors) calculate x, z. R, G, and 8 values at
span endpoints. The edge processors send span information to the individual PEs (span
processors), which interpolate pixel values along the span. The added levels of processing
allow the PEs to perform only the calculations that are necessary for each pixel-a large
improvement in efficiency. The rasterization portion of Silicon Graphics' recent high­
performance systems uses this approach (see Section 18.8.2).

SIMD versus MIMD. A variation between systems of this type is whether PEs are
SfMD or M!MD. Let us consider SIMD processors first. Figure 18.14 shows the mapping
of processors tQ pixels in a 4 x 4 interleaved scheme. With a SfMD processor, the 16 PEs
work on a contiguous 4 x 4 block of pixels at the same time. This arrangement is
sometimes called afoorprim processor because the 4 x 4 array of processors (the footprint)
marches across the polygon, stamping out 16 pixels at a time. Notice that, if any pixel of a 4
x 4 block needs updating, the footprint must visit that block. For example, in the block of
pixels shown in the inset of Fig. 18.14, processors a, b, c, d, g. and h must disable
themselves, while processors e, f, i, j, k, /, m, n, o, and p process their respective pixels.

A disadvantage of SlMD processors is that they do not utilize their PEs fu lly. This
occurs for two reasons. First, many of the PEs map LO pixels outside the current primitive if

TEXAS INSTRUMENTS EX. 1009 - 950/1253

18.8 Image-Parallel Rasterization

Transformed, clipped
primitives from geometry
subsystem

Parallel pixels In Serial Video
Video pixels out LUTs and out
shifter DACs

889

Fig. 18. 18 Block diagram of a typical interleaved memory system. Each PE is
responsible for one pixel in every 4 x 4 block of pixels.

small primitives are being rendered. For example, PEs in a 4 X 4 footprint processor
rasterizing HX>-pixel polygons map to pixels within the triangle as little as 45 percent of the
time [APGA88]. Second, the choice of rasterization algorithm affects PE utilization. As
remarked in Section 18.4.2, algorithms containing few conditional branches (including
rasterizing convex polygons with Gouraud shading) can be implemented quite efficiently.
Algorithms containing many conditional branches or using complicated data structures
(such as rendering curved-surface primitives, texturing, shadowing, or antialiasing with a
list of partially covering polygons) can be extremely difficult to make efficient. SIMD
processors, however, can be built inexpensively and compactly, since a single code store
and controller suffice for all the PEs. This offsets to some degree the poor PE utilization in a
SIMD system. Several SIMD interleaved memory systems have been proposed and
developed, including Gupta and Sproull's 8 by 8 Display [GUPT8lb) and Stellar' s GS2000
(see Section 18. 11.3).

If we wish to support complex algorithms or to eliminate the idle processor cycles
indicated in Fig. 18.14, we can add a control store to each PE, changing it from SIMD to
MIMD. In a MIMD syst.em, PEs do not need always to work on the same4 x 4 pixel block
at the same time. If each PE has FIFO input buffering, PEs can even work on different
primitives. The separate control stores, FIFO queues, and hardw.ue required to synchronize
PEs add size and complexity to the system. Examples of successful MIMD interleaved­
memory systems include AT&T's Pixel Machine [MCM187) and Silicon Graphics'
POWER IRIS (Section 18.8.2). Such systems compete well against SIMD systems on more
complicated types of primitives or with more complicat.ed rendering algorithms. For

TEXAS INSTRUMENTS EX. 1009 - 951/1253

890 Advanced Raster Graphics Architecture

example, AT&T's Pixel Machine Model PXM 924 ray trac.es simple scenes at interactive
speeds-a Feat unmatched by any SIMD system.

Since interleaved-memory architectures distribute the frame buffer over multiple
processors, some provision must be made for scanning out pixels in the uninterrupted
stream required by the video controller and display monitor. U the distributed frame buffer
is constructed of VRAMs, this can be done in the manner shown in Fig. 18.18. Note that
this is very similar to the technique described in Section 18.1.5 for implementing
high-speed video scan out in a conventional frame-buffer memory.

Furtber subdivision. Suppose we wish to build a system with even higher performance.
Since increasing the number of partitions in an interleaved-memory system increases the
system's memory bandwidth and processing power, we might consider increasing the
number of frame-buffer partitions--say, from 16 to 64, or even more. Unfortunately, the
additional processors and datapaths required for each partition make such systems
increasingly expensive.

An even more serious difficulty is supporting a larger number of partitions with the
same number of frame-buffer memory chips. Each partition requires a minimum number of
chips. For example, a partition with a 32-bit datapath between the PE and memory requires
8 4-bit wide chips, or 32 1-bit wide chips. Suppose we wish to build a 16-partition I 024- by
I 024-pixel frame buffer with 128 bits per pixel. Using 256K x 4 VRAM chips, each
partition requires 8 256K X 4 VRAM chips, so 16 · 8 = 128 chips are needed to support all
16 memory partitions. This is the exact number required to store the pixel data.

Suppose, however, that we increase the number of partitions from 16 to 64 (an 8 x 8
footprint). Although we still need only 128 memory chips to store the pixel data, we need
64 · 8 = 512 memory chips to support the PE-memory bandwidth. The extra 384 memory
chips arc needed only to provide communication bandwidth-not for memory. This is an
extra expense that continues to grow as we subdivide the frame buffer further.

Increasing the density of memory parts from I Mbit to 4 Mbit exacerbates this problem
even further. For example, if IMbit x 4 VRAM memory chips are used in the example
mentioned above, 512 chips are still needed, even though each one contains sixteen times
tbe memory actually required. Current systems such as the Silicon Graphics' POWER IRIS
GTX (described in the next section), which uses 20 frame-buffer partitions, are already at
the bandwidth limit. A way to ameliorate this problem would be for memory manufacturers
to provide more data pins on high-density memory parts. Some 4-Mbit DRAM chips have
eight data pins, rather than four, which helps somewhat, but only reduces the bandwidth
problem by a factor of 2.

18.8 .2 Silicon Graphics' POWER IRIS 4D/240GTX- An Interleaved
Fra~e-Buffer Memory Archit.ectureu

Silicon Graphics' POWER IRIS 4D/240GTX (AKEL88; AKEL89) uses many of the
techniques described in this chapter. Like a number of its competitors, including the Ardent

'Material for this example is adapted from [AKEL88] and [AKEL89J.
'In 1990, Silicon Graphics announced POWERV!SION (similar to the OTX) that renders I miUioo
Gouraud-shaded triangles/sec and with 268 bits/pixel for antialiasing and texturing_

TEXAS INSTRUMENTS EX. 1009 - 952/1253

18.8 Image-Parallel Rasterization 891

Titan (BORD89), the Megatek Sigma 70 (MEGA89), and the Stellar GS2000 (Section
18.11 .3), the SGI POWER IRIS is a high-end graphics workstation, designed to combine
general-purpose processing and high-speed 30 graphics for engineering and scientific
applications.

The POWER IRIS has a powerful general-purpose CPU composed of four tightly
coupled multiprocessors sharing a single memory bus. Its graphics subsystem can render
over 100,000 full-colored, Gouraud-shaded, z-buffered quadrilaterals per second
[AKEL89]. The POWER IRIS continues Silicon Graphics' tradition of immediate-mode
display traversal , aggressive use of custom VLSI, hardware front-end pipeline, and
interleaved-memory frame-buffer architecture. The POWER IRIS's architecture, dia­
grammed in Fig. 18.19, is composed of five major subsystems:

I. CPU subsystem- runs lhe application and traverses the display model

2. GeonU!try sr1bsystem-transfo.rms and clips graphical data to screen coordinates

3. Scan-com'f!rsion srlhsysrem-breaks points, lines, and polygons into pixels

4. Raster subsystem-computes visibility and wri tes pixel data to frame buffer

5. Display subsystem-displays contents of frame buffer on color monitor.

CPU subsystem. The CPU subsystem runs the application and traverses lhe database. It
is composed of four tightly coupled, symmetric, shared-memory multiprocessors. Hard­
ware provides high-speed synchronization between processors, so parallelism can be
achieved within a single process (although special programming constructs are required).

Geometry subsystem. The geonuttry subsystem transforms, clips, and lights primitives.
It is composed of five floating-point processors arranged in a pipeline. Each of these
processors, called a geometry engine (GE), contains an input FIFO, a controller, and a
floating-point unit capable of 20 MFLOPS. Unlike Silicon Graphics' earlier Geometry
Engine (see Section 18.5.4), lhe POWER IRIS' GEs are based on a commercial
floating-point chip, lhe Weitek 3332.

The first GE tranSforms vertices and vertex normals. The second GE performs light ing
calculations (supporting up to eight point light sources). The third GE perfomlS trivial
accept/reject clipping tests. The fourth GE performs exact clipping on primitives that cross
clipping boundaries, and also does perspective division for all primitives. The fifth GE clips
color components to maximum representable values, calculates depth-cued colors where
necessary, and converts all coordinates to screen-space integers.

Scan-conversion subsystem. The scan-conversion subsystem rasteri7..es primitives using
tbe pipeline approach described in Section 18.7. 1, except that its spans are vertical columns
of pixels, rather than the horizontal rows we have assumed so far (the only effect on lhe
rasterization algorithm is !hat x and y coordinates are interchanged).

The single polygon processor sorts the vertices of each polygon from left to right in
screen space. The sorted vertices are !hen used to decompose lhe polygon into vertically
aligned trapezoids. The upper pair of vertices and the bottom pair of vertices of each
trapezoid are used to calculate slopes for use by the edge processors.

The edge processt)r uses vertex and slope information to compute x. y. and z
coordinates and color values for each pixel that lies on the top or bottom edges of each

TEXAS INSTRUMENTS EX. 1009 - 953/1253

<

I

892 Advanced Raster Graphics Architecture

Primftive~ _.,. Geomeuy f-t Geometry f---t Geometry I-t Geomeuy I-t Geometry
trom CPU I-

subsystem engine engine engine engine engine

Geometric Ughting Clipping Pe~e Conversion
transformation di slon to integer

Pixel Polygon Edge 4 f-t cache processor processor

"'--IIIII ')

Spen
SPa I SP t I SP 2 I I SP3 I r SP4 sor proces

> lE I
L

)I IE I
L

'>I IE I
....
)f IE l ~ IE lma ~e

ne ., "I" ., ~ eng1

l vRAM]+ IVRAM}+ I VRAM}+ I VRAM}+ VRAM}+

>IE I
....

)I IE I . , -Y)I IE I)I IE I r?i-~ I
IVRA~ I VRAMJ-- I VRAMJ-- I VRAIA_r. vRAMJ--

...... I.... L... L...
-,)1 IE I '>I IE I ·)I IE I)I IE -1 rJ IE I

I VRAIAfl I VAAIAfl I VRAMft I VRAMfl VRAMI-t

~ IE I
.... u. L...

._.....)! IE ·I_)! IE I _)I IE l W _'P
IVRAMft I VRAIAft I VRAIAJ-- lvRAMJ-- VRA~

MuUimode Multi mode MuUimode Muldmode Multi mode
graphlcs graphics graphics graphics graphics
processor processor processor processor processor

t t t t t
Loolwp
table

l.ool<up
table

Loolwp
table

Lookup
table

Lookup
table

I I

Parallel pixels In • • High-speed

Multi~exer
analog RGB

and ACs Mon~or

Fig. 18.19 Silicon Graphics· GTX system architecture (based on (AKEL88]).

TEXAS INSTRUMENTS EX. 1009 - 954/1253

18.8 Image-Parallel Rasterizat ion 893

trapezoid. In a given vertical column, a pair of pixels determines the top and b<>llom
endpoints of a vertical span. These pixel pairs, together with slope information, are passed
on to the span processors.

Each of the five parallel span processors is responsible for one-fifth of the columns of
the display screen. For example, span processor 0 manages scan lines 0, 5, 10, and so on.
Span processors calculate z. R, G, 8, and a (for transparency and antialiasing) values for
each pixel in the span. Because spans generated from a single polygon are adjacent, the
processing load over span processors is approximately uniform.

The pixel cache buffers blocks of pixels during pixel copy operations so that the full
bandwidth of the pixel bus can be used.

Raster subsystem. The rasrer subsystem takes pixel data generated by the span
processors and selectively updates the image and z bitplanes of the frame buffer, using the
results of a z comparison and a blending. The raster subsystem is composed of 20 image
engines. each responsible for one-twentieth of the screen's pixels, arranged in a 4- x 5-pixel
interleaved fashion. 96 bits are associated with each pixel on the screen: two 32-bit image
buffers (r, G. 8, and a), a 24-bit z-buffer, four overlay/underlay bitplanes, and four window
bitplanes.

The overlay/underlay bitplanes support applications that use pop-up menus or
windowing backgrounds. The window bitplanes define the display mode (single- or
double-buffered, etc.) and window-masking information.

The 20 image engines work on pixels in parallel. Each can blend values based on the
pixel's a value, allowing transparent or semitransparent objects to be displayed, and
allowing supersampling antialiasing.

Display subsystem. The display subsystem contains five mul1imode graphics processors
(MGPs), each assigned one-fifth of the columns in the display. The MGPs concurrently
read image data from the frame buffer (together with window-display-mode bits), process
them using the appropriate display mode (RGB or pseudocolor), and send them on to
digital-to-analog converters for display.

TheGTX's architecture is a good example of many of the techniques we have discussed
so far. It provides high performance for polygon rendering at a reasonable cost in hardware.
Because the GTX's rendering pipeline is highly specialized for graphics tasks, ho,vever, the
system has difficu lty with the advanced rendering techniques we shall discuss in Section
18.1 1, and its resources cannot be applied easily to nongraphics tasks. Section 18.1 1.3
discusses the architecture of Stellar's GS2000, which has complementary advantages and
disadvantages.

18.8.3 Logic-Enhanced Memory

Since commercial memories may not support enough frame-buffer partitions, one might
consider building custom memories with a large number of concurrently accessible
partitions on a single chip. Since each (intrachip) partition must have its own connection to
its associated (external) processor, extra pins must be added to each memory package to
support these additional UO requirements. Altematively, multiple processors could be built

TEXAS INSTRUMENTS EX. 1009 - 955/1253

894 Advanced Raster Graphics Architecture

onto the chip itself. The first possibility-that of adding pins to memory chips-directly
increases the memory bandwidth, but makes the chip package and associated circuit boards
larger and more expensive, and also increases the power requirements. These packaging
effects become progressively more seve.re as memory densities increase. (In the past two
decades, the number of bits in a typical RAM has increased by a factor of I 000, while the
si.ze of the package and the number of pins have changed hardly at all.)

In this section, we shall concentrate on the second option-that of adding processing to
multipartition memory chips. ln the simplest schemes, only new addressing modes are
provided, such as the ability to address an entire rectangle of memory pixels in parallel. At
the other extreme, an entire microprocessor (including code store) could be provided for
each internal partition of memory.

Before \ve describe specific logic-enhanced-memory approaches, let us consider the
advantages and disadvantages of any logic-enhanced-memory scheme. First, adding logic
or processing to memories has the potential to increase vastly the processing power within a
system. By increasing the number of internal memory partitions and providing processing
for each on the same chip, enormous processor/memory bandwidths can be achieved.
Second, in custom VLSl chips, options become available that are impractical in board-level
systems, since VLSI technology has an entirely different set of cost constraints for gates,
wiring channels, and memory. Third, olf-chip 1/0 bandwidth can potentially be reduced,
since the only off-chip communication needed is to control the processor and to scan pixels
out of the chip; this translates into fewer pins in the package and thus to a smaller package
and less board space.

The principal disadvantages of an enhanced-memory approach are low memory
densities and increased cost. With enormous production volumes, commercial DRAM
manufacturers can afford to develop specialized, high-density fabrication capabilities and to
incur large development costs to fine-tune their designs. Design and fabrication resou.rces
for custom memory chips, however, are generally more limited, resulting in densities lower
than those of commercial RAMs. The price per chip is also high, since the costS for
designing a custom VLSI chip are not offset by such large sales volumes. In spite of these
disadvantages, at least one custom memory chip for graphics has become commercially
successfu l- the VRAM. It remains to be seen whether other custom memory designs for
graphics have sufficient market appeal to justify large-scale commercial development.

Pixel-Planes. An early and very general logic-enhanced-memory design is Pixel-Planes
[FUCHS!]. Pixel-Planes pushes frame-buffer subdivision to its extreme: It provides a
separate processor for every pixel in the display. Each SlMD pixel processor is a 1-bit
processor (ALU) with a small amount of memory. Figure 18.20 shows a block diagram of
an enhanced-memory chip in Pixel-Planes 4, a prototype system completed in 1986
[EYLE88]. Its design is similar to that of the VRAM chip of Fig. 18.3, only here the 1-bit
ALUs and associated circuitry replace the video shifter. Each enhanced-memory chip
contains 128 pixels (columns in the memory array) , and each pixel contains 72 bits of local
memory (rows within the column).

Pixel-Planes' performance is not based simply on massive paralleHsm. lf it was, each
PE would have to perform all the operations for scan conversion independently, resu.hing in
many redundant calculations and a grossly inefficient system. Rather, Pixel-Planes uses a

TEXAS INSTRUMENTS EX. 1009 - 956/1253

18 .8 Image-Parallel Rasterization 895

"' 8
"' "0

~
0
a:

7

Address

ALU
control

- 128 pixels (columns) --+

72

Chip's
screen­
address
register

Memory array
(128 pixels.

72 bits per pixel)
72 bits
per pixel
(rows)

Bit lines

Data lines

ALU Inputs

X

A
B
c

" :l

72 E 8
.!'! To video
"' "0 controller

Video 0 ..
data :2

>

Scan out
control

1 pixel"s
memory.
sense amp.
ALU.
expression evaluator

Fig. 18.20 Pixel-Planes 4 logic-enhanced- memory chip.

global computing srructu.re called a linear expression tree that evaluates linear expressions
of the form F(x, y) = Ax + By + C for every pixel (x, y) of the screen in parallel
[FUCH85]. A. 8 , and C floating-point coefficients are input to the tree; each pixel receives
its own value ofF in its local memory, I bit per clock cycle (approximately 20-30 cycles
are required for each linear expression). The linear expression tree is especially effective for
accelerating rasterization calculations, since many of these can be cast as linear expressions.
For example,

•

•
•

Each edge of a convex polygon can be described by a linear expression. All points
(x, y) on one side of the edge have F(x. y) 2: 0; all points on the other side of the edge
have F(x, y) :S 0.

The z value of all points (x, y) within a triangle can be described as a linear expression .

R, G, and B color components of pixels in a Gouraud-shaded triangle can be described
as linear expressions.

Double-buffering is implemented within Pixel-Planes chips by providing a video-data
multiplexer that reads pixel values from specific bits of pixel memory while the image is
computed in the remaining bits . Video data are scanned out of the chip on eight video data
pins.

Displaying images on Pixel-Planes requires modifying the algorithms we have assumed
so far. In addition to transforming and clipping primitives in the usual manner, the

TEXAS INSTRUMENTS EX. 1009 - 957/1253

896 Advanced Raster Graphics Architecture

front-end subsystem must compute coefficient sets for the linear equations describing each
primitive's edges, z values, and color values. Also, rasterization proceeds in parallel, since
large areas of pixels can be affected at once using the linear expression tree. The following
section describes a sample algorithm on Pixel-Planes.

Rasterizing a triangle on Pixel-Planes. Here, we briefly describe the algorithm to
display Gouraud-shaded triangles on a Pixel-Planes system. Pixel-Planes can display more
general polygons, although the algorithms are somewhat more complicated.

Scan conversion. Figure 18.21 shows the steps in scan converting a triangle. The first step is
to enable all the pixel processors in the display. Edges are encoded as linear expressions .
F(x, y) = Ax + By + C = 0, as described previously. Each expression is then evaluated in
parallel at every pixel in the screen, using the linear expression tree. Each pixel processor
tests the sign of F to determine whether it lies on the proper side of the edge. If it Hes
outside the edge, the pixel processor disables itself by setting its enable bit to 0. After all the
edges of a polygon have been tested, the only pixel processors sti ll enabled are those lying
within the polygon. These pixel processors alone participate in visibility and shading
calculations .

z-buffering. After a polygon has been scan converted, Pixel-Planes evaluates the linear
expression for z for all pixels in parallel. Each pixel processor compares this new z value
with the one stored in its z-butfer. lf the new z value is .smal ler, the current polygon is
visible at the pixel; the pixel processor updates its z-butfer and remains enabled. If the new z
value is larger, the pixel disables itself and does not participate in shading calculations.

Gouraud shading. The Hnear expressions for R, G. and 8 components of the color are
evaluated for each pixel in parallel by the linear expression tree. Pixel processors that are
still enabled write the new color components into their pixels' color bufl'ers.

9

8

7

6

5

4

3

2

1

0

0 1 2 3 4 5 6 7 8 9

edge 1: F
1
(x. y) = 1.64x- Y+ 0.97

edge 2: F
2

(x, y) • - 2.07x- y+ 16.92

edge 3: F
3

(x. y) = - 0.04x + y - 1.3

• ~
D
D

Pixels disabled by edge 1

Pixels disabled by edge 2

Pixels disabled by edge 3

Pixels enabled after all three
edges have been processed

Fig. 18.21 Rasterizing a triangle on Pixel-Planes.

TEXAS INSTRUMENTS EX. 1009 - 958/1253

18.8 Image-Parallel Rasterization 897

Note that scan conversion in Pixel-Planes is completely independent of a polygon's
size, so a large polygon is rnsterized as rapidly as a small one. Note, also, that operations
that cannot be expressed as linear equations may take much longer to execute on
Pixel-Planes than those that can (e.g .• a quadratic expression can be calculated in pixel
memory by multiplying values I bit at a time). Nevertheless, efficient algorithms for
drawing spheres, casting shadows, antia.liasing, and texture mapping have been developed
for Pixel-Planes [FUCH85].

A full-scale system, Pixel-Planes 4, containing 262.144 processors forming a 512- by
512-pixel image, was completed in 1986. Although its performance was impressive for its
time (40,000 Gouraud-shaded triangles of arbitrary size per second), it contained 2048
custom memory chips-a prohibitive expense for a commercial graphics system. This
highlights the fundamental disadvantage of such a highly parallel SIMO approach: the very
low utilization of pixel processors. Since all the PEs work in lock step, they cannot be
retargeted to other tasks, even if only a few of them are still calculating useful resu lts. This
problem is especially severe when large numbers of small polygons are being drawn,
because the first steps of the scan-conversion process disable almost all the screen's pixel
processors.

Se~.1:ral logic-enhanced-memory graphics architectures have been developed that are
more frugal in their use of silicon, at some sacrifice in either speed or generality. Although
neither of the architectures described next directly supports the 30 rendering techniques
assumed to this point, both provide very high performance in their respective domains
(displaying 20 rectangles and generating 20 halftone images). and both provide insight into
the potential of the logic-enhanced-memory approach.

Rectangle area-filling memory chip. Whelan proposed modifying the row and column
addressing in the 2D memory-cell grid of a typical RAM to allow an entire rectangular
region to be addressed at once [WHEL82]. Minimum and maximum row and column
addresses specify the left, right. top, and bottom boundaries of the region. One write
operation can store a single data value in every location within the region. This allows
upright , constant-shaded rectangles to be rnsterized in very few clock cycles-just enough
to specify the four address values and the constant data.

Scan Line Access Memory. Demetrescu designed a more complicated chip called a
Scan Line Access Memory (SLAM) for rasterizing more general20 primitives [OEME85].
Like VRAMs and Pixel-Planes, SLAM takes advantage of the fact that. internally, a RAM
reads or writes an entire row of its memory array in one cycle. Figure 18.22 shows a block
diagram of a single SLAM chip. Each chip contains 256 x 64 bitS of frame-buffer memory.
Each row of memory corresponds to I bit in a scan line of pixels. In a system with k bits per
pixel , a SLAM chip can store up to 64/k scan lines of 256 pixels each. In each memory
cycle, a SLAM chip can read or write one row of memory from its memory arrJy. By
specifying appropriate x.u. and x.,.. values, one can address any contiguous span of pixels on
the cun1:nt scan line, allowing fast polygon scan conversion. Video scanout is accomplished
using a display shifter in exactly the same manner as a VRAM chip.

In a single clock cycle, either a row address, an x_ value, an x.,. value. or a 16-bit
repeating data pattern (for specifying halftone patterns) can be specified. Concum:nt with

TEXAS INSTRUMENTS EX. 1009 - 959/1253

898 Advanced Raster Graphics Architecture

/ ..
8 ..
"0
;r;
0
a:

' ~
6

Row address -
Plxe Is In

data Halftone
ALU co ntrol

"min ,x,...

64

16

13

Memory array

64 rows
(256 pixels

k bits per ~lxel,
(64/k scan 64/k scan lnes)
lines)

256 columns
(pixels)

Bit lines l 256 bits

Sense amplifiers

Data floes l 256 bits

J Serial data register
"I

Data llnes l 256 bits

: I Pixel ALUs

Condition codes f 256 bits

J
I

Parallel comparator

} Firsts

} Seoon

can line

d scan line

} 64/kth scan llne

I
I

Pixels out

Fig. 18.22 Block diagram of a SLAM chip (for a system configured with k bits per
pixel) .

any one of these commands, SLAM can write the current scan-line segment into its
memory array and can optionally increment the row address. Since, for many primitives,
row addresses and halftone patterns need to be specified only once (for the initial scan line),
succeeding scan lines can be processed rapidly. SLAM therefore can scan convert a convex
polygon covering n scan lines in 2n + 2 cycles (four cycles to specify the row address,
x,.1., x_, and the halftone pattern for the initial scan line, and two cycles to specify Xmin and
x.,.. for each of the remaining 11 - l scan lines).

A SLAM system is composed of a number of SLAM ch.ips (the number depends on the
dimensions of the display screen). Figure 18.23 shows a SLAM system for updating a 512
by 512 monochrome display screen. Systems with more bits per pixel require proportion­
ately more SLAM chips. SLAM can also be extended to display Gouraud-shaded polygons
by adding a Pixel-Planes-style linear-expression tree. However, this enhanced version of
SLAM would require approximately the same amount of hardware as Pixel-Planes and
would suffer the same low utilization of PBs, s.ince the pixels in any given (small) primitive
would likely be contained in just a few SLAM chips.

Although both Whelan's architecture and the original SLAM architecture use less
hardware than does Pixel-Planes, they do not offer the generality necessary to render
realistic 30 images. Pixel-Planes and the enhanced version of SLAM do offer this
generality, but sutler poor PE utilization. It would be useful to gain the performance of
these processor-per-pixel architectures, but with higher PE utilization for small primitives.
Section 18. 10.1 examines a way to accomplish this using enhanced-memory arrays smaller
than the full screen size.

TEXAS INSTRUMENTS EX. 1009 - 960/1253

18.9

Primitives
in screen

coordinates

Object-Pa rallel Rast e rization

Each scan· line processor Each SLAM chip contains
controls 64 scan lines 64 lines of 256 pixels

Scan-line
processor

1

• • •

Commands for individual
SLAM chips (row address,

19

19

xmin, xmax, etc.)

• • •
• • •

899

Fig. 18.23 SLAM system for updating a 512- by 51 2-pixel monochrome d isplay.

18.9 OBJECT-PARALLEL RASTERIZATION

So far, we have focused on image-parallel architectures. The object-parallel family of
parallel architectures parallelizes the inner loop of image-order (generally scan-line)
algorithms. In an object-parallel architecture, multiple primitives (objects) are processed in
parallel, so that final pixels may be generated more rapidly.

The usual object-parallel approach is to assign primitives (either statically or
dynamically) to a number of homogeneous object processors, each of which can generate an
entire image containing its primitive(s). During rasterization, each object processor
enumerates the pixels of the display in some specific order (generally scan-line), generating
color, z, and possibly partial-coverage values for its primitive(s). The pixel streams from
each of the object processors are then combined to produce a single pixel stream for the
final image. Although aoy number of primitives may be assigned to each object processor,
most designs allocate a single primitive per processor. The advantage is that each processor
can perform a well-defined task and thus can be reproduced inexpensively.

General Electric's NASA II. A pioneering real-time processor-per-primitive system
was General Electric's NASA H flight simulator [BUNK89], delivered to NASA in 1967.
The NASA ll contained a number of hardware units called face cards, each of which
rasterized a single polygon at video rates. At any given instant, each face card would
process the same pixel.

The NASA ll used a depth-sort visibility algorithm, rather than a z-buffer. The output
of each face card included a bit indicating whether or not the pixel was covered by its
polygon, the pixel color, and the polygon priority number. This information was fed into
a priority multiplexer so that , at each pixel, the color of the highest-priority visible poly­
gon was output. Since face cards were expensive, they were reassigned to new polygons
when their polygons no longer intersected the current scan line. The NASA LI system

TEXAS INSTRUMENTS EX. 1009 - 961/1253

900 Advanced Raster Graphics Architecture

could display a maximum of 60 polygons on any given scan line.
Later processor-per-primitive designs have adopted z-comparison visibility algorithms

that allow greater flexibility. Processors are typically arranged in a pipeline or binary tree,
so that streams of pixels can be merged to produce the pixel stream of the final image.

18.9 .1 Processor-per-Primitive Pipelines

A simple way to combine the multiple pixel color and z streams produced by the multiple
object processors is to pipeline the processors so that a stream of color values and z values
passes between them (Fig. 18.24). Each processor generates color and z values for its
primitive at the current pixel, and compares its z value with the incoming z value. If the
incoming z value is smaller, the color and z values are passed on unchanged; if it is greater,
the primitive's color and z values are sent out. The output of the last processor in the
pipeline is the video stream of the final image.

Cohen and Demetrescu [DEME80] designed what was perhaps the first processor-per­
polygon pipeline system. In this design , each polygon is assigned a polygon processor for
the duration of the frame-generation time. Weinberg [WEINS I] proposed an enhancement
of this architecture to generate antialiased images. Instead of passing pixel color and z
values between adjacent processors, Weinberg's design passes, for each pixel, an arbitrarily
long packet of polygon-fragment information relating to that pixel. Each polygon processor
compares z and edge information for its polygon with the incoming packet describing the
pixel. The packet is updated to take the new polygon into account, and is forwarded to the
next polygon processor. A set of filtering engines at the end of the pipeline calculates the
single color value for each pixel from the (final) packet associated with that pixel.

A team at Schlumberger proposed a design combining aspects of the NASA Il,
Cohen-Demetrescu, and Weinberg designs [DEER88j. Their Triangle Processor and
Normal Vector Shader uses a pipeline of triangle processors that passes along surface­
normal and polygon-color data, rather than actual pixel colors. Triangles are assigned to
processors only during scan lines in which they are active in the same manner as in the
NASA n. A pipeline of Nonnal Vector Shaders computes the Phong lighting model for
pixels emerging from the triangle-processor pipeline. Because lighting and shading
calculations are delayed until the end of the pipeline, Phong calculations need to be
performed only once for each pixel in the final image, rather than once for each pixel of
every polygon- a substantial savings.

18.9 .2 Tree-Structured Processor-per-Primitive Architectures

An alternative to pipeliniog object processors is to arrange them in parallel and to use a
binary tree of compositors to merge the color and z streams. This approach allows

Background
color Video

controller

Discard

Fig. 1 8.24 Processor-per-polygon pipeline system.

TEXAS INSTRUMENTS EX. 1009 - 962/1253

18.9 Object-Parallel Rasterization 901

rasterization within the object processors to be truly synchronous (there is no pipeline delay
between the times at which two processors compute the same pixel), and reduces latency
incurred by a long pipeline. However, special logic is required to perform the composition
operation.

Fussell [FUSS82) proposed the first binary-tree-structured processor-per-primitive
design. He observed that, since z comparators are simple, they can be made to run at video
rates. Shaw, Green, and Schaeffer [SHAW91] proposed a way to anti alias images generated
using Fussell's scheme. In their approach, custom VLSI composiwrs combine images at
each of the nodes in the image-composition tree. These compositors implement a simplified
version of Duff's image-composition algorithm (see Section 17.6), providing proper
treatment of many partial-pixel-coverage cases. A disadvantage of this approach is that the
antialiasing is not perfect; color bleedthrough between abutting polygons is possible,
whereas this does not occur if z values alone are used to determine visibility.

Kedem and Ellis's Ray Casting Machine [KEDE84] directly rasterizes images from a
constructive solid geometry (CSO) tree representation (see Chapter 7). The Ray Casting
Machine maps a CSO tree to hardware by assigning each CSG primitive to a processor
called a primitive classifier and each operator to a processor called a classification combiner.

The image is traversed pixel by pixel in raster-scan order. For each pixel, primitive
classifiers compute the segment of the ray through that pixel that is interior to their
respective CSG primitives. These segments are then passed upward to the classification
combiners, which perform set operations on them using the techniques described in Section
15.10.3. Segments are split and combined as needed. The updated segment~ are passed
upward in the tree until they reach the root of the tree.

The set of segments emerging from the root of the classification-combiner tree
describes the intersection of the current ray with the entire CSG object. The near endpoint
of the nearest segment contains the z value of the visible surface at that pixel. This value is
used to compute a color value for the pixel using any desired lighting model. If all the
segments for a pixel, rather than just the closest one, are considered, the Ray Casting
Machine can calculate the volume of the object or other geometric quantities about the CSG
object. A prototype Ray Casting Machine completed in 1988 computes the surfaces of CSG
objects with 32 primitives in near real time, although shading calculations, which are
currently performed by the host computer, take several seconds.

18.9 .3 Object Parallelism versus Image Parallelism

Although object-parallel architectures are simple and appealing, they have received much
less attention than have the image-parallel techniques discussed previously; a number of
experimental object-parallel systems have been proposed, but few have led to commercial
products. Several factors may be responsible:

•

•

Object-pardllel systems typically require specialized processors. This implies heavy
reliance on custom VLSI chips, making system design difficult and expensive.
Image-parallel systems, on the other hand, place more reliance on frame-buffer
memory, which can be built with commercial parts such as VRAMs.

The specialized nature of object processors limits the types of primitives that can be
displayed and the shading algorithms that can be used.

TEXAS INSTRUMENTS EX. 1009 - 963/1253

902 Advanced Raster Graphics Architecture

• Object-parallel systems have poor overload characteristics. Generally , object-parallel
systems perform at full speed as long as there are enough object processors. Special
provisions must be made to handle large databases, and performance generally
decreases rapidly.

In addition to these factors, system designers have so far been able to increase system
performance using image parallelism alone, so the designers of commercial systems by and
large have not had to confront the challenges of object-parallel systems. Nevertheless, as
discussed in Section 18.8, image parallelism may be reaching a point of diminishing
returns, and object parallelism may appeal to the designers of future systems. The following
section discusses another promising approach toward increasing system efficiency and
performance: building hybrid-parallel systems that combine aspects of the approaches we
have discussed so far.

18.1 0 HYBRID-PARALLEL RASTERIZATION

We have seen that when image parallelism and object parallelism are pushed to the extreme,
systems with low utilization result. This poor utilization can be reduced if object-order and
image-order rasteri:c:ation techniques are used in combination. Such hybrid-parallel systems
frequently are more complex than are the systems we have discussed so far, but they can be
much more efficient. They also provide us with one more layer of paralle(jsm that can be
used to bui ld still higher-performance systems.

18.10.1 Virtual Buffers and Virtual Processors

A major drawback of highly parallel arehitecture designs, both object-parallel and
image-parallel, is the low utilization of each PE. As discussed in Section 18.8.2,
image-parallel architectures with many partitions can have extremely poor PE utili:c:ation.
For example, in a fully instantiated processor-per-pixel system such as Pixel-Planes 4, PEs
may be doing useful work less th.an I percent of the time. Similarly, in an object-parallel
architecture such as Cohen and Demetreseu's processor-per-polygon pipeline, PEs may be
actively rasterizing their polygons less than I percent of the time.

One way to achieve higher utilization is to build only a fraction of the hardware, but to
allocate its resources dynamically around the screen as they are needed. Two variants of this
technique exist: virtual buffers (for image-parallel systems) and virtual processors (for
object-parallel systems). Like classic virtual memory, both attempt to increase a system's
apparent physical resources by reallocating resources dynamically as needed.

Virtual buffers. ln a virtual-buffer system [GHAR89], the screen is divided (conceptual­
ly) into a number of regions of uniform size, and a parallel rasterization buffer the size of a
region computes the image one region at a time. Since this buffer is small , it can be built
using fast or custom processing/memory at a reasonable price. A full-sized conventional
frame buffer is generally provided to store the final image.

A region can be a single scan line, a horizontal or vertical band of pixels, or a
rectangular area. Virtual buffers differ from interleaved-memory " footprint" processors in
one critical respect: A virtual buffer remains in one screen region until a /I the primitives for

TEXAS INSTRUMENTS EX. 1009 - 964/1253

18.10 Hybrid-Parallel Rasterization 903

that region are processed, whereas an interleaved-memory f001print processor moves about
the image to rasterize each primitive, typically returning to the same region more than once.

Virtual processors. A virtual-processor system is outwardly similar to a scan-line
virtual-buffer system; in both cases, the image is computed one scan line at a time. A
virtual-processor system, however, uses object-parallel PEs, rather than image-parallel
PEs. Since object processors are needed for only the primitives active on a single scan line,
the number of object processors can be a small fraction of the number of primitives.
General Electric's NASA D and Deering's Triangle Processor, discussed in Section 18.9,
are both virtual-processor systems.

Complete versus incremental bucket sorting. Because virtual-buffer/virtual-processor
systems visit a region only once, bucket sorting is required. The shape of the region
influences the nature of the bucket sort. In virtual-buffer systems with rectangular regions,
primitives can be stored in the buckets of all the regions in which they appear, since most
primitives lie entirely within one region. We call this complete bucket soning. In systems
with scan-line-sized regions, complete bucket sorting is impractical, since a single
primitive typically covers more than one scan line. Incremental bucket soning, in which a
primitive is stored only in the bucket associated with its initial scan line, is generally the
method of choice.

The virtual-buffer/virtual-processor approach has seve.ral advantages and disadvantag­
es. The most important advantage is that it makes possible the rasterization speed of a fully
instantiated image-parallel system with a fraction of the hardware. It also decreases traffic
to and from the frame buffer, since each region's pixels are written only once. Finally, no
full-screen z-buffer is needed.

Virtual-buffer/virtual-processor systems have two major disadvantages, however. First ,
extra memory is required to buffer the scene during bucket sorting. If transformed
primitives require the same amount of storage as do primitives in object coordinates, this
approximately doubles the memory requirements in the front end. It also places a hard limit
on the number of primitives that can be displayed in a single frnme. These disadvantages
offset, to some degree, the advantage of not needing a full-screen z-buffer. Another
important disadvantage is that latency is added to the display process. Even though bucket
sorting can be pipelined with rasterization, bucket sorting for one frame must be completed
before rasterization of that frame can begin. This increases the system's latency by one
frame time, which can be detrimental in real-time systems.

Systolic Array Graphics Engine (SAGE). We now consider a system that uses the
virtual-buffer approach (we discussed several virtual-processor systems in Section 18.9).
SAGE is a scan-line virtual-buffer system thai uses a I D array of pixel processors
implemented in VLSI [GHAR88). Like other scan-line systems, it generates the image one
scan line at a rime. However, SAGE uses an image-parallel z-buffer algorithm to r'.!Sierize
primitives within a single scan line.

In addition to the array of pixel processors, SAGE contains auxiliary processors 10

maintain the active-edge list and 10 break polygons inlo spans (see Fig. 18.25). A polygon
maooger maintains the list of active polygons as scan lines are processed (at each new scan
line. il adds polygons from the next bucket and deletes polygons that are no longer active).

TEXAS INSTRUMENTS EX. 1009 - 965/1253

904 Advanced Raster Graphics Architecture

Polygon
manager

Polygon
memory

/'

v

Vertical interpolation
processors

Pipeline of pixel processors

• r
~.~VIP

x,ioht VIP

zVIP

AzVIP

A VIP

.o.R VIP

GVIP

.o.G VIP

BVIP

.o.B VIP

To
monitor

' ~---- r------
Xlen .1.

~
I

Xnv!>t ,. X X t: ~ I I

z I

~
I

t: Az, z
~

z
T I

R I I I I I I

H:; \..1..-
AR 1 R R tr-,.-

G ~ I

~
I I

~ .O.G I G G I

r.-
I I I I I I

B 1

~
I

.o.B ,.- B B t: ~
I I I I I I

I I I I

I Video rP+ Video ff,-I
I I I I

Pixel Pixel
processor processor

0 ,

X

z

Pixel
processor

1022

Fig. 18.25 Block diagram of a complete SAGE system.

X

z

R

G

B

Video

Pixel
processor

1023

It also calculates delta values for computing span endpoints on successive scan lines.
Verrica/ interpolation processors use these delta values to compute span endpoints for each
polygon active on the current scan line. So that many accesses to polygon memory can be
avoided, these processors contain internal memory for storing delta values and x, z, R, G,
and B values for up to 512 active polygons.

After these set-up operations, the vertical interpolation processors load the endpoints
of each active polygon's current span into the pipeline of pixel processors. When a pixel
processor receives a span, it compares its local x value against the span's endpoint values. If
the pixel lies within the span, the processor calculates z and color values for its pixel (again
using the span-endpoint values). lf the new z value is smaHer than the value stored at the
pixel, the z and color values for the pixel are updated. Pixel values are scanned out for
display using a serial shifting scheme similar to that used in VRAMs. The video stream
flows in the opposite direction from that of the stream of spans.

18.10.2 Parallel Virtual-Buffer Architectures

Another level of parallelism is available in virtual-buffer systems that use rectangular
regions and complete bucket sorting. Since complete bucket sorting allows a region to be
rasterized without any knowledge of preceding regions (unlike incremental bucket sorting,
which requires knowledge of the active-polygon list from the preceding region), a system

TEXAS INSTRUMENTS EX. 1009 - 966/1253

18 .10 Hybrid-Parallel Rasterization 905

that uses complete bucket sorting can have multiple rasterization buffers. These
rasterization buffers can work in parallel on different screen regions, allowing even faster
systems to be built.

In such a system, each buffer is initially assigned to a region. Wben it has processed all
the primitives in the region 's bucket, it is assigned to the next region needing processing.
This provides an additional coarse-grained level of image parallelism that can be used
regardless of the rasterization method used by the individual virtual buffers.

Pixel-Planes 5. Pixel-Planes 5, which was under construction in 1989 [FUCH89], is one
of the first systems to use parallel virtual buffers. Pixel-Planes 5 uses I 0 to 16
logic-enhanced memory rasterization buffers that are 128 pixels on a side. Each buffer is a
miniature Pixel-Planes 4 array, and is capable ofrasterizing all primitives falling into a 128
by 128 region. These rasterizers can be assigned dynamically to any of the 80 regions in a
1280- by 1024-pixel screen.

Rasterization in Pixel-Planes 5 occurs in two phases. First , the front-end processors (16
to 32 Hoating-point processors) transform and sort primitives into screen regions. Sorting is
done by checking a primitive's screen extent against the 128-pixel- aligned region
boundaries; primitives that cross region boundaries are placed in the buckets of all regions
affected (this occurs approximately 20 percent of the time for 100-pixel triangles). After
bucket sorting is complete, the multiple rasterizers process regions in parallel. Wben a
rasterizer finishes a region, it transfers its newly computed image to the appropriate part of
a conventional frame buffer and begins process.ing primitives from an unassigned region
(see Fig. 18.26). All communication between system components is performed over a
l .28-gigabyte-per-second token ring.

Pixel-Planes 5 achieves much higher processor utilization than did previous Pixel­
Planes systems, since 128 by 128 regions are much closer to the size of most primitives than
is a single 512 by 512 region. Since virtual-buffer rasterizers can be assigned to screen
regions dynamically, system resources can be concentrated on the regions that need them
the most.

I
1024
pixels

j

(((?\\~\
a, b, c, d,
as d3

' _ /

a2 d2

} 1/
/

1280
pixels

b2 c2 c3 b3

• -Typical
128 by 128
pixel patch

Fig. 18 .26 Dynamic assignment of rasterizers to regions in Pixel-Planes 5 . (Reprinted
with permission f rom (FUCH89]. © ACM.)

TEXAS INSTRUMENTS EX. 1009 - 967/1253

906 Advanced Raster Graphics Architecture

Parallel virtual-buffer systems do present two difficulties. First, transferring buckets to
multiple rasterization buffers in parallel requires a high-performance data network between
the front-end and rasterization subsystems, as well as sophisticated control and synchroni­
zation software [ELLS89]. Second, in some images, most of the primitives in the database
can fall into a single region, making the extra layer of parallelism useless. The primitives in
the overcrowded region could be allocated to more than one rasterizer, but then the multiple
partial images would have to be combined. Although this complicates the rasterization
process, it can be done by compositing the multiple images into one buffer at the end of
rasterization.

18 .10 .3 Image-Composition Architectures

The notion of combining images after rasterization can be used to build a second type of
multilevel parallel architecture, image-composition or composite architectures [MOLN88;
SHAW88]. The central idea is to distribute primitives over a number of complete rendering
systems. The multiple renderers are synchronized so they use identical transformation
matrices and compute the same frame at the same time. Each renderer then computes its
partial image independently and stores that partial image in its own frame buffer.

Video scan out from each frame buffer occurs in the normal way, except that z-buffer
contents are scanned out as well . Scanout processes in each frame buffer are synchronized
so that each frame buffer scans out the same pixel at the same time. A tree or pipeline of
compositors combines the RGB and z streams from each renderer using the technique

Frame
buger ~ RGB/z

• Compos-

Jl
it or

Frame
VRGB/z

RGBiz
buffer

1
Compos-

It or
Frame
bu~er ~

RGBiz

RGB
Analog

" Compos- Compos- LUTs RGB - and Monitor it or it or
~ DACs Frame / buffer 8n triangles

3 per second
Compos-

I it or
I
I
I ...
I Compos-

/'
I tor

Frame
buffer

7

Fig. 18.27 An image-composition system composed of eight individual renderers.

TEXAS INSTRUMENTS EX. 1009 - 968/1253

18.11 Enhanced Display Capabilities 907

described in Section 18.9.2. Figure 18.27 shows a composite system for displaying 8n
triangles per second built from eight renderers, each of which can display n triangles per
second.

This technique can be exploited to build systems of arbitrarily high performance by
using a large number of parallel renderers. The main difficulties with this approach are the
need to distribute the database over multiple processors, which incurs all the difficulties of
parallel front ends (described in Section 18.6. I); aliasing or erroneous pixels caused by the
image-composition operation; and a Jack of flexibility , since image composition restricts
the class of rasteriz.ation algorithms that can be implemented on the machine. Nevertheless,
this approach provides an important way to realize systems of extremely high performance.

18.11 ENHANCED DISPLAY CAPABILITIES

This section discusses the architectural implications of a variety of enhancements to the
standard Gouraud-shaded polygon-rendering algorithm. Increasing numbers of these
features are judged necessary or desirable by suppliers and users. At the end of this section,
we discuss a few aspects of flight simulators, the systems that traditionally have included the
greatest number of advanced features.

18.11 .1 Support for Multiple Windows

As mentioned in Chapter 10, the ability to display multiple overlapping windows controlled
by separate applications has become a necessity in current workstations. Without hardware
support for this capability, the overall speed of the graphics system may suffer seriously.
For example, operations such as pushing one window behind another, popping a window so
that all of it becomes visible, and dragging a window around the screen, all require the
ability to copy pixels rapidly from one frame-buffer region to another, and, in some cases,
to regenerate part or all of an image. Also, if multiple images are to be generated in
different windows simultaneously, the rendering pipeline must be able to switch rapidly
between applications.

The architectural enhancements needed to provide such support often cut across the
design of the entire graphics subsystem: from display traversal, to geometric transforma­
tion, to clipping, to rasteriz.ation, and to the frame-buffer memory organization. We discuss
here some of the main difficulties in building a windowing system that supports multiple
interactive applications. For a more complete treatment of these issues, see [RHOD89).

Context switching between applications. When the graphics system switches from an
application running in one window to an application running in another, state information
must be saved and restored at many places in the graphics pipeline. For example, in the
modeling-transformation stage, the stack of current transformation matrices must be saved
for the current application and loaded for the next application; in the video controller,
look-up table enuies may have to be reassigned. To save and restore state rapidly, local
memory is needed at many stages in the rendering pipeline.

Having a fixed amount of local storage, of course, limits the number of applications
that can run simultaneously. If fast context switching is not possible, graphics systems

TEXAS INSTRUMENTS EX. 1009 - 969/1253

908 Advanced Raster GraphiC$ Architecture

generally switch between windows as infrequently as possible (perhaps only a few times per
second), causing a noticeable hesitation in the movement of objects in the various windows.

Clipping to noncom·ex screen windows. When windows overlap, pixels must be
written only to the exposed portions of their respective windows. This requires clipping
pixels to window boundaries that may not be convex. Several solutions to this problem are
possible.

Writing an entire window to offscreen memory. This allows the rendering pipeline to be
largely isolat.ed from windowing issues. A fast pixel copy can rransfer exposed portions of
the window to the actual frame buffer after each frame update. This requires ex£ra
processing for the pixel copy and adds latency to the image-generation process, both of
which can seriously hamper interactivity. Alternatively, the video system can assemble the
video stream on the fly from disjoint portions of video memory, as is done in Lexidata's
Lex 90 system [SUYD86] or Inters 82786 graphics coprocessor chip [SHIR86]. This
approach does not add latency, but may res£rict the locations and number of windows, since
assembling the video image on the Hy from different memory locations places heavy
demands on the memory system.

Selectively updating screen pixels. A second alternative is to compute all the pixels for each
window, but to update only those pixels in exposed portions of the window. This is
analogous to scissoring, described in Chapter 3. To make this operation fast, hardware
support is generally needed. A popular approach is to use window ID bits [AKEL88].
Here, a few (generally 4 to 8) additional bits are associated with each pixel. These bits
specify a unique ID for each window. When the frame buffer is updated , hardware
compares the window ID of the pixel to be written with the window ID stored in the frame
buffer. The frame-buffer pixel is updated only if the window IDs agree.

Clipping within the rendering pipeline. The main disadvantage of both of the preceding
schemes is that they generate many pixels that may never be displayed. The alternative is to
clip within the rendering pipeline, so that the only pixels computed are those that will
actually be displayed. The main difficulty with this approach is that the exposed part of a
window may not be a simple rectangle: It may have concavities caused by partially
overlapping windows of higher priority, or it may even contain a hole consisting of a
smaller, higher-priority window. Clipping to arbitrary boundaries such as these is
computationally expensive. One solution is to tesselate the exposed region with a series of
rectangular windows and to clip primitives to these simple window boundaries. Of course,
this too affects system performance, since primitives must be processed multiple times,
once for each rectangular region.

It is extremely difficult, in general, to provide full performance for all possible window
configurations and desired actions. System designers typically begin with a list of desired
windowing capabilities and try to find ways of implementing these without incurring
exorbitant system costs. Most systems run at full speed only under certain simple situations,
and take a big performance hit otherwise. For example, a system may run at full speed only
when the rendering window is fully uncovered (or is mostly uncovered , or when its visible
portion is a rectangular region), or its rendering speed may suffer when more than one
window is being updated simultaneously.

TEXAS INSTRUMENTS EX. 1009 - 970/1253

18.11 Enhanced Display Capabilities 909

18.11 .2 Support for Increased Realism

Our discussion of graphics architecture thus far has primarily concerned the quest for
speed. With the continued increase in speed of affordable systems over the past years, users
have desired increasingly realistic images as well. Algorithms for generating realistic
images are discussed in Chapters 14, 15, 16, and 20; we discuss here the impact realistic
rendering has on graphics system architecture.

Antlaliasiog. As discussed in Chapter 14, the t"-Q main approaches to antialiasing use
area sampling and point sampling. In area sampling, we need to know the fractional
contribution of each primitive to each pixel (ideally , we "-Quid like to weight these
contributions using an appropriate filter). Unfortunately , calculating the precise fractional
contribution is very difficult for 3D images. Architectures that provide hardware support for
antialiasing generally use some sort of supersampling scheme. Depending on the
characteristics of the rasterization processors, uniform or adaptive supersampling is used.

Uniform supersampling. Uniform supersampling involves calculating the entire image at
high resolution and combining multiple sample points at each pixel to determine the pixel 's
single color value. This appears to be the only feasible approach in SIMD image-parallel
systems. Unfortunately, supersampling with n samples per pixel reduces system perfor­
mance by a factor of n. For this reason, some systems of this type adopt a successive­
refinement approach to antialiasing, in which a crude image is generated at full speed when
high update rates are desired; when no changes in the image are pending, the system
computes further sample points and uses them to refine the image [FUCH85).

Adap1ive supersampling. Adaptive supersampling involves calculating the image at high
resolution only where necessary. This can be performed most readily on image-order
rasterization systems, where information is available on whether or not pixels are partially
covered. A well-known adaptive supersampling technique useful for object-order rasteriza­
tion is the A-buffer (see Section 15.7.3). The linked lists needed to store partially covering
primitives are feasible only in MIMD systems that have an arbitrary amount of memory
available for each pixel.

Transparency. As mentioned in Chapter 16, true transparency, including refractions and
translucency, is difficult to model in software. Even simple models of transparency that
exclude refraction and translucency are difficult to implement on many hardware systems.
Image-parallel architectures in particular have difficulty with transparency, since the
z-buffer algorithm does not handle multiple surfaces well (an extra z value is potentially
needed for every transparent surface). Image-parallel systems with SIMD PEs, or systems
with fixed amounts of storage per pixel, can generally display a few transparent objects by
rasterizing in multiple passes-one pass for all the opaque primitives, aod then a separate
pass for each transparent surface [MAMM89l U more than a few transparent surfaces are
required , a screen-door transparency scheme generally must be used. MIMD systems may
be able to represent pixels as linked lists of visible surfaces, allowing larger numbers of
transparent objects to be displayed.

Object-parallel architectures handle transparency more gracefully, since they do not
require intermediate storage for the entire image, and have all the potentially visible

TEXAS INSTRUMENTS EX. 1009 - 971/1253

91 0 Advanced Raster Graphics Architecture

polygons in hand when the color for each pixel is computed. The rasterizer, however. must
be configured to allow multiple CO\'ering polygons and to perform the weighted-sum
calculations needed to compute final pixel values.

Textures. Until recently, the only systems that performed texturing at interactive rates
were multimillion-dollar night simulators. Increasingly, however, different forms of
texturing are becoming available on graphics workstations and even low-end systems.
Textures can be simulated, of course, on any architecture using myriad small triangles with
interpolated shading between venices. This approach, however, places high demands on the
display system and is feasible only in hlgh-performance workstations or when simple
textures are displayed.

The two traditional methods of texturing are texture maps and procedura.ltextures (see
Chapter 16). The drawback of both of these methods is that texturing is applied at the end
of the rendering pipeline-after the image has already been converted into pixels. In many
architectures, pixel data are not accessible by a general-purpose processor at this point.
Flight simulators add an extra hardware stage to perform texture-map lookups. A few
graphics workstations, such as the Stellar GS2000 (see Section 18.11.3). store the
generated image in malo memory, where it is accessible by the system's general-purpose
processors.

In architectures in which large-grain MIMD processors have access to the computed
image, the texture-map approach is the most appropriate. Texture coordinates, rather than
colors, can be stored at each pixel. If each of these MIMD processors is provided with a
copy of the texture maps, it can perform the texture-map lookup, replacing the texture
coordinates with the appropriate colors. Note that simple texture-map lookup is generally
insufficient here-some sort of multiresolution texture map or summed-area table is
needed to avoid aliasing.

In architectures in which only fine-grain parallel processors have access to the
computed image, procedural textures may be more feasible. Fine-grain processors may not
contain enough memory to store the texture maps. lf many PEs are available, however, they
may be able to compute simple procedural texture models at interactive rates [FUCH89].

Shadows. Computing true shadows, as described in Section 16.4, exacts a high
computational price; on many architectures, true shadows cannot be computed at all. For
these reasons, few high-performance systems implement true shadows [FUCH85], although
a number of techniques can be used to approilinate shadows under cenain condition . A
common technique used in commercial Hight simulators and in a number of workstation
systems is to generate shadows for the ground plane only. as described in Section 16.4.

Ray-tracing architectures. Ray t.racing, described in Chapters 15 and 16, is a powerful
rendering method that can gener.ue extremely realistic image.~. Unfortunately, it requires a
great deal of computation (a typical image can require minutes or hours to compute on a
typical workstation). Fortunately, ray-tracing algorithms can be parallelized in several
ways. many of which have analogs in conventional rendering:

• Component pomllelism. Computations for a single ray can be parallelized. For
example, reHcction, refraction, and intersection calculations all require computing the

TEXAS INSTRUMENTS EX. 1009 - 972/1253

18.11 Enhanced Display Capabilities 911

•

•

x. y. and z components of vectors or points. These three components can be calculated
in parallel, resulting in a speedup by a factor of 3.

Image parallelism. Ray- primitive intersections can be calculated in parallel in separate
PEs, since the calculations for each ray are independent. To take advantage of this form
of parallelism, however, PEs potentially need access to the entire database, since the
ray tree for a particular ray may reach any portion of the database.

Object parallelism. Primitives in the database can be distributed spatially over multiple
PEs. Each PE, then, is responsible for all rays that pass through its region. It computes
ray-object intersections if the ray hits an object, and forwards the ray to the next PE
otherwise.

Many architectures for ray tracing have been designed using these techniques alone or
in combination. Most use a large number of MIMD PEs, si.nce ray-tracing typically
requires a large amount of braJlChing and random addressing.

The simplest type of image-parallel architecture assigns one or more rays to each PE
and replicates the entire database at each PE. This technique was used in the LINKS-I
[NISH83a), built at Osalca University in 1983. The LINKS- I has been used to compute
numerous animation sequences. This technique was also used in SIGHT [NARU87), a
more recent design done at Nippon Telegraph and Telephone. The SIGHT architecture also
takes advantage of component parallelism in its TARA I floating-point unit.

The first proposed object-parallel ray-tracing architectures used uniform spatial
subdivision to assign portions of the universe to PEs [CLEA83]. Th.is resulted in poor
efficiency for many scenes, since most of the primitives were clustered in a few regions.
Other proposed architectures subdivided the scene adaptively to improve the load balance
among PEs IDIPP84]. Although this approach improves PE utilization, it makes mapping
rays to PEs much more difficult .

Since many ray-tracing architectures closely resemble commercial parallel computers,
which offer advantages of lower cost and mature programming environ.ments, research in
parallel ray tracing has shifted largely to developing efficient algorithms for commercial
multiprocessors, such as hypercubes, Transputer meshes, and the Connection Machine.
Two chief concerns are achieving high utilization and balanced load among PEs,
particularly when distributed database models are used.

An image-parallel ray-tracing algorithm has been developed for Thinking Machines'
SIMD Connection Machine [DELA88), in which the database is repeatedly broadcast to all
of the PEs, which perform ray-object intersections in parallel.

Implementations have also been reported on shared-memory multiprocessors, such as
the BBN Butterfly [JENK89). Here, the database does not need to be stored at each PE or
broadcast repeatedly; instead, PEs request portions of the database from the memory
system as needed. Unfortunately, contention for shared memory resources increases with
the number of PEs, so only modest performance increases can be achieved in such systems.

Nemoto and Omachi [NEM086], Kobayashi and Nakamura [KOBA81], Schcrson and
Caspary [SCHE88], and others (see [JEVA89)) have proposed various methods for
adaptively assigning objects to PEs and for passing rays bet\\-een those PEs. AT&T's Pixel
Machine, a MlMD multiprocessor with PEs based on digital signal-processor chips, ray

TEXAS INSTRUMENTS EX. 1009 - 973/1253

912 Advanced Raster Graphics Architecture

traces simple images at interactive rates [POTM89]. Such systems offer a dramatic glimpse
of the performance possible in parallel ray tracers of the future.

18 .11.3 Stellar's G52000- A Tightly Integrated Architecture that
Facilitates Realistic Rendering

Systems such as Silicon Graphics' POWER IRIS (Section 18.8.2) use dedicated hardware
to compute images rapidly. Many of these calculations, particularly in the geometric
transformation and other front-end stages, are similar to the types of processing needed in
many types of scientific computing. The Stellar GS2000 (similar to its predecessor, the
Stellar GS 1000 [APGA88]) seeks to make its computing resources available both for image
generation and for accelerating other compute-intensive jobs that may run oo the machine.

Figure 18.28 shows a block diagram of the GS2000 architecture. The Multi-Stream
Processor is a single high-performance processor that simultaneously executes instructions
from four independent instruction streams; its peak processing rate is 25 million
instructions per second. The vector Hoating-point processor performs scalar and vector
floating-point operations; it can process a maximum of 40 million floating-point operations
per second. The rendering processor uses a setup processor to perform polygon-processing
calculations and a 4 x 4 SlMD footprint processor to perform pixel operations. The
GS2000 renders 150,000 pseudocolored, Gouraud-shaded, z-buffered, 100-pixel triangles
per second and 30,000 Phong-shaded polygons per second.

All the GS2000 's processing and memory resources are organized around a central
512-bit-widc communication structure called the DataPath. The DataPath has an unusual
design in which all of the 110 connections and registers for a single bit of the datapath are
built onto a custom gate-array chip (each DataPath chip contains circuitry for 16 bits, so a
total of 32 are needed).

Multi- Vedor Rendering Stream floating-point
Processor processor processor

512 bits 384 bits 512 bits

512-bit (includes integer, floating-point,
DataPath"' vector, and pixel registers)

~

512 bits 512 bits

f-B Cache Main Frame r--- Video
(1 MB) memory buffer controller

Fig. 18.28 Block diagram of the Stellar GS2000 (based on (APGA88)).

TEXAS INSTRUMENTS EX. 1009 - 974/1253

18.11 Enhanced Display Capabilities 913

In a typical graphics application, the Multi-Stream Processor traverses a structure
database stored in main memory; it then feeds data to the vector processor, which performs
geometry calculations. The vector processor sends transformed primitives to the rendering
processor, wlticb calculates the pixels of the image. Rather than storing images directly in a
frame buffer, the rendering processor stores them in main memory as virtual pixel maps,
visible portions of which are copied to the appropriate portion of the frame buffer for
display.

Because virtual pixel maps are stored in main memory and are accessible to the
Multi-Stream Processor and vector processor, a Ydfiety of postprocessing operations (as
well as image processing and other operations) can be performed. For example, to display
textures, the rasteri~ing unit generates texture indices in pixels, rather than final colors.
Later, one of the general-purpose processors passes over the half-generated image and
substitutes proper color:,values for each pixel by table lookup of texture indices. Also,
overlapping windows can be implemented easily, since the contents of each screen window
are always available in main memory. The main disadvantages of virtual pixel maps are the
extra bandwidth and time required to copy image data from main memory to the frame
buffer.

18.11 .4 Support for Advanced Primitives

We have focused so far on architectures that display polygons rapidly. Increasing demand is
being placed on systems to handle other types of primitives. Many complex-surface
primitives, such as spline patches and mesh primitives, can be converted into polygons with
little time penalty. For other types of primitives, however, such conversions can be either
time-consuming or difficult. For example, converting a CSG object to boundary representa­
tion is time-consuming, and can result in a large expansion in the amount of data;
polygonalizing a volume dataset is slow as well, and tends to obscure data and to produce
undesirable artifacts. When more complicated primitives are displayed directly, many of
these difficulties can be avoided; in many cases, system performance can be increased as
well.

Curved surfaces. As discussed in Chapter II, polygons are simple, regular primitives
that are convenient to display (especially in hardware). Unfortunately, since they are very
low-level, they are inconvenient for modeling and lead to inaccuracies, especially for
complex, curved surfaces. Other representations for surfaces, such as Bezier patches and
NURBS, are more convenient to specify when modeling, but require complicated
processing to render directly.

Most hardware systems that display high-order primitives decompose the primitives
into polygons for display purposes. For many types of surface primitives (particularly
Bezier patches and NURBS), this decomposition can be done rapidly in hardware using
forward-difference engines [LIEN87). In some cases, however, it may be faster to display
curved su.rfaces directly, especially in systems with programmable parallel rasterization
processors. When this book was written, few systems provided this capability [MCLE88].
It remains to be seen whether systems of the future will continue to tile such surfaces with
polygons, or whether they will render curved surfaces directly.

TEXAS INSTRUMENTS EX. 1009 - 975/1253

914 Advanced Raster Graphics Architecture

Volume data. Volume rendering-the direct rendering of data represented as 3D scalar
fields (discussed in Section 20.6)---is becoming an important branch of computer graphics.
In many ways, it ha~ an even greater need for hardware acceleration than does polygon
rendering, since volume datasets are generally much larger than are polygon datasets (a
typical dataset from a cr scanner might be 64 · 256 · 256 = 4.2 million voxels, whereas
few polygon datasets contain more than I million polygons). Furthem10re, voxel
calculations are simpler than polygon calculations.

The first architectures designed to accelerate the display of volume datasets classified
voxels as either "occupied" or ''empty," and displayed occupied voxels. This approach
minimizes the amount of processing but obscures data in the interior of the object and
produces a "sugar-cube" effect in the generated image. Phoenix Data Systems' Insight
system [MEAG85] uses this approach: It interactively displays volume datasets encoded as
octrees. Kaufman's Cube architecture [KAUF88b] provides special hardware for accessing
in parallel the entire row of voxels corresponding to a single pixel. In addition, this
hardware can determine the nearest visible voxel in the row in logarithmic time. Views from
arbitrary angles are implemented by rotating the dataset in Cube's 3D memory.

More recent volume-rendering methods ·llssign partial transparencies (or opacities) to
each voxel, rather than using binary classification, and anempt to eliminate sampling
artifacts (see Section 20.6). Since more voxels contribute to each pixel than when binary
classi lication is used , these algorithms substantially increase image-generation time.

Volume-rendering architectures based on these algorithms generally use variations of
the image- or object-parallel approaches we have seen before. Image-parallel architectures
assign PEs to pixels or to groups of pixels [LEV089). Object-parallel architectures
generally partition the voxels into contiguous 3D regions and assign to each a separate PE
[WEST89]. During rendering, PEs compute their voxels' contributions to each pixel in the
image as though their voxels were the only ones in the dataset. The contributions from
multiple regions are then composited using these aggregate colors and opacities.

The primary adv-antage of the object-parallel approach is that it divides the database
among PEs. The disadvantage is that pixel values calculated in one PE may be obscured by
pixels calculated in another PE whose voxels lie nearer to the eyepoint. Image parallelism
has complementary advantages and disadvantages: Each PE processes only voxels that are
potentially visible, but each PE needs access to the entire (very large) database.

Dynamic Digital Displays' parallel Voxel Processor system is an example of an
object-parallel architecture [GOLD88] . A hypercube architecture could also be used in an
object-parallel approach by assigning each vox.el in each image slice (or even in the entire
database) to a separate PE. Levoy proposed a hybrid system using Pixel-Planes 5, in which
voxel shading is done in an object-parallel fashion and the image is generated in an
image-parallel fashion [LEV089]. The Pixar Image Computer computes red, green, and
blue components of an image in parallel [LEVI84]. Because volume rendering is a relatively
new area, it is difficult to pred.ict what architectures (or even algorithms) will be dominant
in the future.

Constructive-solid-geometry (CSG) architectures. As we saw in Chapter 12, CSG is
one of ihe more popular techniques for modeling solid objects. Chapter IS described ways
to display a CSG object directly from that object's binary-tree representation. The two

TEXAS INSTRUMENTS EX. 1009 - 976/1253

18.11 Enhanced Display Capabilities 915

popular approaches for direct CSG rendering are generalizations of the imllge-order and
object-order rasterization techniques described earlier in this chapter.

Image-order esc rasterization. This approach was described in Section 18.9. 2. Kedem
and Ellis's Ray Casting Machine is a hardware implementation of this algorithm. Their
current system displays small CSG objects at interactive rates.

Object-order esc rasterizmion. Chapter 15 also described object-order (or depth-buffer)
CSG rasterization algorithms that are generalizations of the z-buffer algorithm. CSG
depth-buffer algorithms can be implemented on any architecture that has enough memory
for each pixel to store two z-buffers, two color buffers, and three 1-bit Hags [GOL086].
Many current high-performance workstations provide frame buffers with sufficient memo­
ry. If enough pixel-level processing is available, depth-buffer CSG display algorithms can
display modest objects at interactive speeds [GOL089]. If more memory per pixel is
available, more complicated CSG objects can be displayed even faster [JANS87].

18.11 .5 Support for Enhanced 30 Perception

Recall from Chapter 14 that 30 images displayed on a 20 screen contain only a few 30
depth cues: obscuration, kinetic depth effect, lighting, and occasionally shadows. The real
30 world provides such additional powerful cues as stereopsis and head-motion parallax.
This section discusses architectures and architectural enhancements that seek to provide
these extra cues.

Stereo display. Stereopsis can be achieved with a 20 display by computing separate
images for the left and right eyes and channeling each image to the respective eye. Image
pairs can be displayed on separate monitors (or in separate windows on the same monitor),
or left and right images can be displayed in alternating frames. In the former case, image
pairs can be viewed with a stereo viewer that optically channels the two images to a fixed
point in front of the screen where the viewer must be positioned. Disadvantages of this
scheme are that only one person at a time can view the scene, and that only one-half of the
monitor's resolution is ava.ilable (unless two monitors are used, in which case the cost of the
system increases dramatically).

Multiplexing left and right images in time is a more popular technique. This requires
displaying left and right images alternately in rapid succession, and blocking each eye's
view while the other eye's image is being displayed. A graphics system displaying stereo
images generally must have a frame buffer large enough to store four complete images­
enough to double-buffer the image for each eye. Also, some scheme is needed to block each
eye's view of the screen at the appropriate time. One approach uses a mechanical shutter
synchronized to the frame buffer so that left and right images are displayed at the correct
time (UPS79]. Unfortunately, mechanical shutters can be heavy, noisy, and, in some
cases, dangerous (one design used a rapidly spinning cylinder less than I inch from the eye).

A more popular mechanism is an electronic shutter that alternately polarizes light in
one direction and then another. The electronic shutter may be the same size as and mounted
in front of the display screen, or it can be smaller and worn on special goggles. In either
case, lenses polarized in opposite directions are placed before each eye. When the
polarization of the electronic shutter corresponds to the polarization of one of these lenses,

TEXAS INSTRUMENTS EX. 1009 - 977/1253

916 Advanced Raster Graphics Architecture

the screen becomes visible; when the polarization is in the opposite direction, the view is
blocked. Placing the shutter in front of the display screen allows several users to view the
image simultaneously, if each wears a pair of inexpensive, passive glasses. Large electronic
shutters are expensive, however. Stereo displays with electronic shutters tend to be darker
than mechanical ones as well, since the polarizing film transmits only a fraction of the light
from the monitor.

Varifocal mirror. A varifocal mirror is an unusual display device that uses an oscillating
mirror to display true 30 images. These images provide stereopsis and head-motion
parallax without requiring the user to wear special headgear. The basic idea is to use a
flexible mirror whose focal length can be changed rapidly, and to position it so that it
reflects an image of the display monitor to the viewer (Fig. 18.29) [TRAU67; FUCH82;
JOHN82]. When the mirror is vibrated with an ordinary loudspeaker, the mirror's focal
length changes sinusoidally. This is generally done at a frequency of approximately 30Hz.

The mirror's periodically changing focal length makes the distance to the monitor
appear to increase and decrease by several i.ncbes or more during each 30-Hz cycle. Points,
lines, and similar data are displayed on a point-plotting (not raster-scan) display monitor.
Tbe perceived depth of a point is determined by its position in the display list: "near"

x y Intensity

r~N~e~a~r:z~~~~~lr=> Graphics Refresh
processor processor

Far z x y Intensity

Near z t:=t~±~

lma(Je
point

30-Hz sine wave
(synchronized to
frame refresh)

'VVVV

~

<1>:.:"" location of
3D objects

Refresh list

__ . \7 Observer

Flexible Mylar
mirror

Audio
speaker

Fig. 18.29 Varifocal-mirror display system.

TEXAS INSTRUMENTS EX. 1009 - 978/1253

18.11 Enhanced Display Capabilities 917

points are stored in the beginning or end of tbe refresh list ; "far" points are stored in the
middle of the refresh list . Note that there are two places in the list at which a point appears
at the same depth-when the mirror is moving forward, and when it is moving backward.

Varifoeal-mirror displays have several limitations. One drawback is that nearer objects
do not obscure more distant ones, and thus only nonobscuring primitives such as points.
lines, and transparent volume data can be displayed. A second difficulty is that only a
limited amount of data can be displayed at a time-the amount that can be refreshed during
a single mirror cycle. ln spite of these limitations, the varifoeal mirror is one of the very few
true 30 display devices to be made into a commercial product, the Genisco SpaceGraph
[STOV82].

H ead-mounled display. In a seminal address at the 1965 International Federation for
lnfonnation Processing Congress [SUTH65], Ivan Sutherland proposed that the ultimate
display would be one that produced images and other sensory input with such fidelity that
the observer could not tell the simulated objects from real ones. ln 1968, he showed a
prototype display that was worn on the head and that demonstrated the most important
property of the ulrimate display-it allowed the user to walk around in a virtual ·world.
Specifically, the system comprised the following:

I . Headgear with two small display devices, each optically channeled to one eye

2. A tracking system that allowed the computer system to know the precise location of the
user's helmet (and thus head) at all times

3. A hand-held wand, whose position was also tracked by the system, that allowed the
user to reach out to grab and move objects in the virtual environment

4 . A real-time graphics display system that constantly regenerated the images to the
display devices as the user moved, giving the user the illusion of walking around
"virtual" objects in the room.

This system, with its rich 30 cues of head-motion parallax and stereopsis and its
simple, direct 30 manipulation of objects inside the virtual world, convincingly demon­
strated to many people that the conventional way of interacting with 30 scenes using a
desktop CRT is an unsatisfying, constrained mechanism that keeps the user outside the
CRT's window to the 30 virtual world. Unfortunately, several technical problems have
prevented the head-mounted display from reaching full effectiveness-indeed, they have
kept it to a level discouragingly close to the capabilities of Sutherland's 1968 prototype
[FISH86; CHUN89]. These technical problems include:

I . Developing headgear with high-resolution displays that allows a wide-screen view of
the graphics display screen superimposed on the real world (a difficult optical problem)

2. Developing a tracking system for the helmet and hand that has the range of a room with
!-millimeter resolution and response time of a few milliseconds or less

3. Designing a graphics system that generates at least 30 frames per second with minimal
latency (low latency is a particularly important concern here, since latency in a
head-mounted display can induce motion sickness [DEY089]).

TEXAS INSTRUMENTS EX. 1009 - 979/1253

918 Advanced Raster Graphics Architecture

The most visible and widespread use of head-lllQUDled displays has been for heads-up
displays in cockpits of mililllry aircraft. Heads-up displays, however, give only auxiliary
information to the user, rather than creating a virtual world, complete with objects that can
be directly manipulated. In 1989, two companies, Autodesk and VPL Research, introduced
commercial head-mounted display systems based on off-the-shelf technology. Proponents
of such systems predict that these kinds of systems will be the twenty-first century graphics
equivalents of Sony Walkman personal stereos, to be used not only for real -time 30
applications but also for general portable interactive computing.

Digital bolograpby.4 Holography is another method for displaying true 30 images
without using special headgear or tracking the viewer's location. Traditional holograms are
produced by exposing photographic film simultaneously to laser light scattered from the
object to be recorded and to a reference beam from the same laser. The interference patterns
recorded on the film encode the object's appearance from a range of viewpoints. The
hologram is viewed by illuminating it with laser light from the opposite direction.

Holograms of imaginary objects can be produced by simulating the laser-interference
process on a computer and writing the computed fringes onto high-resolution film .
Unfortunately, holograms produced by this technique can require JOlt Fourier transforms
(each of which requires a large number of multiplications and additions) and need a
VLSI-type electron-beam writer to inscribe the results on film fDALL80; TRJC87]. For
these reasons, this technique is currently too expensive for almost all applications. Fully
computed holograms, however, contain more information than is needed by the human eye.
A promising approach is to reduce these calculations to the number actually needed. This is
the subject of ongoing research.

Holographic stereograms, which are built up from a sequence of computer-generated
perspective views, are attractive in the meantime. In a holographic stereogram, a sequence
of approximately 100 views from slightly differing side-to-side viewpoints is projected with
laser light onto holographic film, each from the direction from which it was calculated. A
second reference beam from the same laser overlaps the projection beam to record the view
direction in an interference pattern. After exposure and processing, the film (now the
holographic stereogram) is illuminated by a reference beam in the opposite direction.
lmage beams then diffract back in the directions from which they were projected. An eye
moving from one view to the next perceives a smooth progression of perspective
information that yields an impression of a solid object or 30 scene floating in the vicinity of
the film. Combined with all the conventional monocular depth cues of 30 computer
graphics, this holographic image gives a particularly effective sense of shape and space
[BENT82].

Although holographic stereograms are much less expensive to produce than are
traditional holograms, they still require a large amount of computation (dozens to hundreds
of images for a single stereogram). Furthermore, the need to record the stereogram on
photographic film adds expense and time to the image-generation process. Consequently,
digital holography is unlikely to yield interactive 30 images in the near future, although it

'Material for this section was contributed by Stephen A. Benton of the MIT Media Laboratory.

TEXAS INSTRUMENTS EX. 1009 - 980/1253

18.11 Enhanced Display Capabilit ies 919

may pi"'Ve useful for recording 30 still images, just as photographic film records 20 still
images today.

18.11 .6 Real· Time Flight Simulators

The systems that "put it all together" to generate the most realistic simulation of30 scenes
for interactive tasks are the multimlllion-dollar flight simulators. Flight simulation is not
unique in being able to benefit from truly real-time systems. It is, however, the one
application for which customers have consistently been willing to spend miJiions of dollars
for a single system, largely because of tbe cost and danger of training pilots solely in actual
airplanes. Because the community of flight-simulator users is fairly small, and because the
systems tend to use proprietary, hardware-specific software provided by the manufacturer,
detailed information about ftight-simulator architectures has not appeared in the literature.

Early flight simulators include General Electric's NASA U (see Section 18.9) and
Evans & Sutherland designs based on the scan-line systems developed at the University of
Utah in the late 1960s. Some of these early flight-simulator systems could display 1000 or
more polygons in real time, but all used simple shading methods and provided few image
enhancements. Later systems have not substantially increased the number of primitives that
can be displayed. For example, Evans & Sutherland's current high-end system, the
ESIG-1000, displays only 2300 polygons at 60 Hz [EVAN89J. Ratber, system developers
have increased scene realism and reduced distracting artifacts by incorporating features
such as antialiasing, haze and fog, point light sources, clouds, and filtered textures
[SCHA83j. The effectiveness of these techniques can be seen in Color Plates I.S(a) and
1.5(b).

Flight simulators from major manufacturers such as Evans & Sutberland, General
Electric, McDonnell-Douglas, and Singer/Link all share several architectural themes: Since
flight simulat.ion involves predictable interactions with very large datasets , these systems
tend to use more specialized processing than do other graphics systems. For example,
custom processors are frequently built to manage the image database, to transform
primitives, to rasterize the image, and to perform image-enhancement operations after­
ward. A typical simulator system is composed of a long pipeline of proprietary processors
[SCHA83].

Certain simplifications can sometimes be made in a flight simulator that are not
possible in more general graphics systems. For example, since a typical s.imulator dataset
involves a small number of moving objects and a wide, unchanging backdrop, tbe generality
of the z-buffer visibility algorithm may not be needed and a simpler depth-son algorithm
may suffice.

Flight simulators also must manage complex databases without hesitatian. A typical
database may represent a region LOO miles square. Detail needed for low-level flight cannot
be displayed when the airplane is at40,000 feet. This requires the ~)'stem to maintain object
descriptions with different levels of detail that can be swapped in and out in'real time. The
architecture also must handle overloading gracefully, since image complexity may increase
drastically at t.be most crucial times, such as during takeoffs, during landings, and in
emergency situations (SCHU80]. Frames must be generated at least 30 times per
second- even in these situations.

TEXAS INSTRUMENTS EX. 1009 - 981/1253

920 Advanced Raster Graphics Architecture

18.12 SUMMARY

This chapter has provided an overview of the architectural techniques used to build
high-performance graphics systems. We have seen that the computational demands of many
interactive applications quickly surpass the capabilities of a single processor, and that
concurrent processing of various kinds is needed to meet the performance goals of
demanding 30 applications, such as computer-aided design, scientific visualization, and
Hight-simulation.

We have shown how the two basic approaches to concurrency-pipelining and
parallelism-can be applied to accelerate each stage of the display process, together with
the advantages and limitations of each of these choices. The design of any real graphics
system (indeed, any complex system in general) representS a myriad of compromises and
tradeoffs between interrelated factors, such as performance, generality, efficiency, and
cost. As a result, many real systems use combinations of architectural techniques we have
described.

The current state of hardware technology also plays an important role in deciding what
architectural techniques are feasible. For example, the memory-intensive architectures that
now dominate the field would have been impractical just ten years ago before inexpensive
DRAMs became available. ln the future, we can expect rapidly improving technology to
continue to improve graphics system performance.

The designs of future systems will be complicated by demands not just for rendering
standard primitives such as pointS, lines, and Gouraud-shaded polygons, but also for
rendering with more advanced capabilities-transparency, textures, global illumination,
and volume data. These all complicate not only the calculations, but also the basic structure
of the display process, making it more difficult to design systems with both high
performance for the basic capabilities and sufficient generality to handle the advanced
features.

EXERCISES

18.1 Section 5.6 showed that we can transform a plane equation by multiplying it by the transpose of
the inverse point-transformation matrix . A surface-normal vector can be considered to be a plane
equation in which the D component does not matter. How many multiplications and additions are
needed to transform a surface-normal vector if the point-transformation matrix is composed of
translations, rotations, and scales? (Hint: Consider the form of transformation matrix.)

18.2 A simple way to reduce the number of front-end calculations when displaying polygonal meshes
is to use a mesh primitive, such as a triangle strip. A triangle srrip is a sequence of three or more
vertices, in which every consecutive set of three venices defines a triangle. A triangle strip of n + 2
vertices, therefore, defines a connected strip of n triangles (whereas 3n vertices are needed to define n
individual triangles). Estimate the number of additions/subtractions and multiplications/divisions
required to display the sample database of Section 18.3.9 if the 10,000 triangles are contained in:

a. 5000 triangle strips, each containing 2 triangles
b. I 000 triangle strips, each containing I 0 triangles
c. A single triangle strip conlllining 10,000 triangles.

TEXAS INSTRUMENTS EX. 1009 - 982/1253

Exercises 921

What is the maximum speedup you could obtain in the front-end subsystem by converting a database
of discrete triangles into triangle strips? Are there any disadvantages to using triangle strips?

18.3 Assume thattbe IO.OQO.triangle database described in Section 18.3.9 is displayed at24 Hz on
a pipelined graphics system with the following characteristics: 1280 by 1024 color display refreshed at
72 Hz, 32-bit color values, and 32-bit : values.

a. Estimate the data bandwidth between the following points of the display pipeline: (I)
bet..,oeen display-traversal and modeling-transformation stages (assume that 24 32-bit ~rds
of data are required for each triangle in the object database); (2) between front-end and
back-end subsystems (assume that 15 32-bit ~rds are required for each transfonned
triangle); (3) between rasterizer and frame buffer; and (4) between frame buffer and video
controller.

b. Repeat the calculations in part (a) for a database with 100,000 polygons with an average
area of I 0 pixels and the same overlap factor.

c. Repeat the calculations in part (a) for a database with 100,000 polygons with an average area
of 100 pixels. but assume that only 10 percent of the pixels are initially visible.

18.4 Consider the pipelined object-order rasterization architecture described in Section 18.7 .I . If
separate processors are provided for polygon processing. edge processing, and span processing, all
these operations can be overlapped. Assume that we have a sophisticated span processor that can
process an entire pixel (i.e. compute its RGB and : values , compare : values , and update the frame
buffer) in a single 250-nanosecond clock cycle. Ignoring the time required for clearing the screen
between frames, calculate how many triangles per second this system can display under the following
conditions:

a. 100-pixel triangles; negligible time for polygon and edge processing
b. I 00-pixeltriangles; 20 microseconds per triangle for polygon processing; negligible time for

edge processing
c. I 00-pixel triangles; 20 microseconds per triangle for polygon processing; 2 microseconds

per scan line for edge processing (assume that a typical triangle covers 15 scan lines)
d. tO-pixel triangles; 20 nticroseconds per triangle for polygon processing; 2 nticroseconds per

scan line for edge processing (assume that a typical triangle covers four scan lines)
e. I 000-pixel triangles; 20 microseconds per triangle for polygon processing; 2 microseconds

per scan line for edge processing (assume that a typical triangle CO\'ers 50 scan lines).

18.5 A frame buffer is to be built with 32 bits per pixel, and access to the frame buffer is to be by
single pixels (a 32-bit-wide memory system). What frame-buffer sizes with aspect ratios 1:1.5:4, and
2: I (up to a maximum dimension of 2048 pixels) are possible if the following commercial memory
parts are used and no memory is to be wasted (i.e., all memory in the frame buffer should be used to
store visible pixels):

a. 64K X 4 VRAMs (256 Kbit)
b. 256K X 4 VRAMs (1 Mbit)
c. 512K X 8 VRAMs (4 Mbit).

Answer the following questions assuming frame buffers of sizes 512 by 512, 1024 by 1024, and 2048
by 2048 (each refreshed at 60 Hz):

d. How frequently must the serial port of each memory chip be accessed during video scanout?
(Assume that vertical and horizontal retrace times are neglible, and that VRAM outputs are
not multiplexed.)

e. Given that the serial-port cycle time of tbe fastest VRAMs is about 35 nanoseconds, which
of these frame buffers could be built? (Again, assume no rnuhiplexing.)

TEXAS INSTRUMENTS EX. 1009 - 983/1253

922 Advanced Raster Graphics Architecture

f. Which frame buffers could be built if multiple pixels were read simultaneously and
multiplexed as described in Section 18.1.5 (again assuming a VRAM cycle time of 35
nanoseconds)? How many pixels would have to be read at once for each of these frame
buffers?

18.6 Consider the pipelined, object-order rasterization architecture described in Section 18.7.1.

a. Detennine to what accuracy screen-space (x. y) vertex coordinates must be calculated (i.e. ,
how many bits of precision are needed) if vertices are to be specified to within lo pixel of
their true position in the following displays: a 320 by 200 PC display; a 1280 by 1024
workstation display; and a 1840 by 1035 high-definition TV display.

b. How many fractional bits are needed in left and right x slopes (calculated during polygon
processing) if left and right span endpoints are t.o lie within i pixel of their true position in
all polygons displayable in each of the systems in part (a)? (Assume that vertex coordinates
have been calculated with infinite precision and that additions are perfonned with perfect
accuracy.)

c. What are the maximum and minimum possible values fort:. x in each of the systems of part
(a)? (Assume that horizontal edges have been recognized and removed before delta values
are calculated.)

d. If fixed-point arithmetic is used, how many bits are needed to represent t:. x values that can
range from the minimum to maximum values calculated in part (c) and the precision
calculated in part (b), for the three systems?

18.7 The perfonnance of image-parallel architectures that partition the frame buffer into contiguous
blocks of pixels is reduced if many primitives fall into more than one region. Assume that the display
screen is divided into a number of regions of width W and height H and that a typical primitive covers
a rectangular area of width w (w << W) and height h (h << H) on the display screen. Derive an
expression in terms of W, H, w, and h for the average number of regions affected by a typical
primitive, assuming that the primitive has an equal probability of appearing anywhere on the screen.

TEXAS INSTRUMENTS EX. 1009 - 984/1253

19
Advanced

Geometric
and

Raster Algorithms

In Chapter 3, we described a number of methods for clipping and scan converting
primitives. In this chapter, we begin by discussing more advanced clipping techniques.
These are purely geometric techniques, to be applied to geometric primitives being clipped
to geometrically defined regions.

Following these clipping algorithms, we reconsider the description and scan conversion
of the primitives discussed in Chapter 3, beginning by analyzing the attributes associated
with primitives. This analysis is necessary because attributes such as line style have arisen
from diverse demands on raster graphics packages; some line styles, such as dotted lines,
are cosmetic, some, such as the dot-dash lines used in mechanical drawings , are geometric.
It will be important to understand the differences.

We ntllt consider the criteria for selecting pixels in the scan-conversion process;
different criteria sometimes lead to different choices. Then, after doing some analytic
geometry, we give algorithms for noninteger lines, noninteger circles, and general ell ipses,
and discuss the perils of representing arbitrary curves as short line segments in an integer
world. We then discuss antialiasing, including its application to rendering thick lines,
polylines, and general curves . After this, we analyze the problems associated with drawing
teJtt both in bitmllp graphics and with gray-scale antialiasing, and we eJtamine some
solutions. We also discuss a data structure that can be used to speed the manipulation of
scan-converted primitives, especially for bilevel displays , and some techniques for making a
fast copyPixel operation for bilevel displays (bitBlt). We conclude the chapter with three
further topics: the management of overlapping windows, fill algorithms, and 20 pllge·
description graphics. One eJtample is lnterpress [HARR88]; another is POSTSCRIPT

923

TEXAS INSTRUMENTS EX. 1009 - 985/1253

924 Advanced Geometric and Raster Algorithms

[ADOB85b], which is really more than a page-description model-it also offers the full
functionality of a relatively complex programming language, so complex images may be
described compactly through the use of notions of iteration and procedural definitions of
image elements. Such page-description languages are now being used to provide not merely
static image descriptions, but also screen descriptions for interactive graphics.

19.1 CUPPING

Before giving details of specific clipping algorithms, we first discuss the general process of
cl ipping, and then its specialized application to lines. As described in Chapter 2, clipping is
the process of determining the portion of a primitive lying within a region called the clip
region. The clip region is typically either a window on a screen or a view volume. The
second case is handled by the Sutherland-Hodgman algorithm described in Chapter 3, so
we concentrdte on the first here. ln the discussion in Chapter 3, the clip region was always a
rectangle; because primitives are typically drawn on a rectangular canvas, this is an
important special case. In multiple-window environments, such as the Macintosh operating
system or the X Windows System, various rectangular windows overlap one another, and
the clip region can be an arbitrary set of polygons with only horizomal and vertical edges. In
systems such as PoSTSCRIPT, a clipping region can be defined by an arbitrary set of outlines
in the plane. Furthermore, the primitives being clipped may be 10 (e.g., lines) or2D (e.g.,
filled polygons).' It is easy to think that once Line clipping is solved, so is polygon clipping:
Just clip all the edges of the polygon to the window and draw. This assumption fails,
however, if the polygon completely encloses the clip window. Clipping 20 primitives is a
more difficult problem than is clipping ID primitives.

One method for drawing clipped primitives deserves discussion, although it is not
actually a clipping method per se. It consists of computing the points that 'M>Uid be drawn
on an infinite canvas, and then drawing only those points that actually lie within the cl ip
region. This method (called scissoring in Chapter 3) has one drawback: the cost of
rendering all of a primitive lying substantially outside the clip region. This drawback is
offset, however, by scissoring's simplicity and generality, so the technique turns out to be a
reasonable approach for many systems. If the time taken to draw a pixel in the frame buffer
is long compared to the computation time for each pixel, then, while visible pixels are
queued up to be drawn, other invisible ones may be computed. It is also simple to address
clipping to multiple windows through this method: An application can maintain a notion of
the current window, and the drawing algorithm can s imply draw up to the border of this
window, then pass control back to the application, which then passes the next window to
the drawing algorithm. There are many applications, however, in which clipping to a single
clip region is essential. We therefore discuss methods that take into account the geometry of
the clip region before scan conversion.

1 References 10 I D and 20 primitives refer to lhe intrinsic geometry of lhe primitive: Position on a line
can be specified wilh a single number: hence, it is said to be I D. Position on a surface can be specified
by two numbers; it is called 20. Thus, even a helical curve in 30 is a I D primitive.

TEXAS INSTRUMENTS EX. 1009 - 986/1253

19.1 Clipping 925

19.1.1 Clipping Unes to Rectangular Regions

Clipping lines to upright reclangular regions is a purely geometric problem, in that it is
completely independent of the size or even the existence of the pixels; it involves computing
intersections of lines and rectangles in the Euclidean plane. In Chapter 3, we discussed the
Cyrus-Beck/Liang-Barsky line-clipping algorithm. Nicholl, Lee, and Nicholl have created
a better line clipper for this 20 case [NICH87]. Although the algorithm has a great many
cases, the basic idea is simple enough that understanding one case lets us generate all the
others.

Before discussing this algorithm, let us restate the problem: Given a collection of
(zero-width) line segments and an upright clipping rectangle, find the endpoints of th~
(possibly empty) intersections of the line segments and the rectangle. Each line segment is
given as a pair of endpoints, and the upright clipping rectangle is given by four equations:
x = x,;,., x = x , y = Ymm• andy = Ymax (see Fig. 19.1). For convenience, we assume for
the time being that the line segment to be clipped is neither vertical nor horizontal.

The most simple-minded algorithm computes the equation of the line containing the
line segment, then computes all intersection points of this line with the clip-rectangle
boundary lines. Except for degenerate cases, either zero or t~ of these points lie within the
clip reclangle (see Fig. 19.2); if~. they are compared with the endpoints of the original
segment to give the clipped segment. Of course, this comparison requires the computation
of four intersections, even if the line segment is entirely within (or entirely outside) the clip
region. Recall from Chapter 3 that the parametric algorithm instead computes the
parameter values for the intersections of the line with the boundaries of the clip rectangle
and compares these with the parameter values 0 and I to determine whether the segment
lies within the clip rectangle, (the line is parameterized so that parameter values between 0
and I correspond to the segment). Only when the parameter values of intersections with the
clip rectangle are computed does the algorithm go on to compute the intersection points.

The Nicholl-Lee-Nicholl (NLN) algorithm is based on an improvement of this simple
delaying tactic. Consider a segment PQ that is to be clipped. We first determine where P
lies. lf we divide the plane into the same nine regions used in the parametric clipping
algorithm (see Fig. 19.3), then P must lie in one of these regions (each boundary line is
assigned to one of the regions it touches). By determining the position of Q relative to the

X= "'min X = xma.x

Fig. 19.1 The equations defining the clipping rectangle, and a typical line segment to
be clipped.

TEXAS INSTRUMENTS EX. 1009 - 987/1253

926 Advanced Geometric and Raster Algorithms

X• XIMX

0

Original segment
Line containing original segment
Intersections with edge lines

• Endpoints of original segment

Fig. 1 9.2 Clipping by finding intersections with all clip-rectangle boundary lines.

lines from P to each of the corners, we can determine which edges of the clip rectangle PQ
intersect .

Suppose that Plies in the lower-left-<:<>mer region, as in Fig. 19.4. If Q lies below)'""'
or to the left of x,., then PQ cannot intersect the clip region (this amounts to checking the
Cohen-Sutherland outcodes). The same is true if Q lies to the left of the line from P to the
upper-left comer or if Q lies to the right of the line from P to the lower-right comer. Many
cases can be trivially rejected by these checks. We also check the position of Q relative to the
ray from P through the lower-left corner. We will discuss the case where Q is above this ray,
as shown in Fig. 19.4. lf Q is below the top of the clip region, it is either in the clip region or
to the right of it; hence the line PQ intersects the clip region either at its left edge or at both
the left and right edges. If Q is above the top of the clip region, it may be to the left of the
ray from P through the top-left comer. If not, it may be to the right of the right edge of the
clip region. This latter case divides into the two cases: Q is to the left of the line from P to
the upper-right comer and to the right of it. The regions in Fig. 19.4 are labeled with the
edges cut by a segment from P to any point in those regions. The regions are labeled by
abbreviations; LT, for example, means " the ray from P to any point in this region intersects
both the left and top sides of the clipping rectangle."

Assuming that we have a function LeftS ide (point, line) for detecting when a point is to
the left of a ray , and a function Intersect (segmelll, line) that returns the intersection of a

Fig. 19.3 The nine regions of the plane used in the Nichoii-Lee-Nicholl algorithm.

TEXAS INSTRUMENTS EX. 1009 - 988/1253

19.1 Clipping 927

p

Fig. 19.4 The regions determined by the lines from P to the corners.

segment and a line, the structure of the algorithm for these cases is shown in Fig. 19.5. P
and Q are records of type "point" and have x and y fields.

The interesting thing about this computation is the possibility of reusing intermediate
results. For example, in computing whether Q is to the left of the ray from P to the
upper-right corner (x.,.,., Ymu), we must check whether

(Q.y - P.y)(x_ - P.x) - ()',... - P.y)(Q.x - P.x)

is positive (see Exercise 19 .25). Similar computations are used for the other edges, and the
numbers Q.y - P.y and Q.x- P.x appear in all of them, so these are kept once computed.
The two products in this formula are also reused, so they too are recorded. For example, if
Q is to the right of the line, when we compute the intersection of PQ with the right edge, the
y coordinate is given by

P.y + (Q.y - P.y)(x.,... - P.x)(l l (Q.x - P.x)),

and the first product can be reused (the formula is just an application of the point-slope
formula for a line). Since the reciprocal of Q.x- P.x occurs in computing the intersection
with the right edge, it too is stored. We leave it to you to make this particular code fragment
as efficient as possible (Exercise 19.1). The remaining cases, where Pis in the center region
or in one of the side regions, are similar. Thus, it is worthwhile to recognize the symmetries
of the various cases and to write a program to transform three general cases (P in the center,
in a comer, or i.n an edge region) into the nine different cases.

Nicholl, Lee, and Nicholl present an analysis of the NLN, Cohen-sutherland (CS),
and Liang- Barsky(LB) algorithms in the plane and find that (I) NLN has the fewest
divisions, equal to the number of intersection points for output, and (2) NLN has the fewest
comparisons, about one-third of those of the CS algorithm, and one-half of those of the LB
algorithm. They also note that-assuming subtraction is slower than addition, division is
slower than multiplication, and the first difference is smaller than the second-their
algorithm is the most efficient. Of course, unlike the others, NLN works only in 20.

Clipping lines against more general regions is a special case of clipping generic
primitives against such regions. We next discuss clipping polygons against arbitrary
polygons. Clipping general primitives to the arbitrary regions defined in POSTSCRIPT and
some other imaging models is described later in the chapter, since this is implemented by
raster algorithms.

TEXAS INSTRUMENTS EX. 1009 - 989/1253

928 Advanced Geometric and Raster Algorithms

I• Clip PQ to a rectangle bounded by xMin, xMax. yMin, and yMax . • I
I• This code handles only the case where Pis in the lower-left comer of the •I
I• region--other cases are similar. •I
void PartialNLNclip(point •P, point •Q)
{

boolean visible; / • TRUE if clipped segment is nonempty •/

if(Q->y < yMin)
visible = FALSE;

else If (Q->x < xMin)
visible = FALSE;

else if (LeftS ide (Q, ray from P to lower-left comer)) {
if (Q->y < = yMax) { I• Region Lor LR •I

visible = TRUE;
•P = Intersection (PQ, left edge of clip region); I• Stores intersection in P •I
if (Q->x > xMax) I• Region LR •I

•Q = Jmerseelion (PQ, right edge of clip region);
} else {

I• Above top ,.,
If (LeftSide (Q, ray from P to upper-left comer))

visible = FALSE;
else If (Q->x < xMax) { I• First region LT •I

visible = TRUE;
•P = In tersection (PQ, left edge of clip region);
•Q = Intersection (PQ, top edge of clip regicn);

} e.lse if (LeftSide (Q, ray from P to upper-right comer)) {
visible = TRUE: /• Region LT •/
• P =Intersection (PQ, left edge of clip region);
•Q = Intersection (PQ, rop edge of clip region);

} else { I• Region LR •I

}

visible = TRUE;
• P = Intersection (PQ, leftedgeofclip region);
•Q = Intersection (PQ, righ! edge of clip region);

} /• else •I
} else

I• Cases where Q is to the right of line from P to lower-left comer • I

} I• PartiaiNLNclip •/

Fig. 19.5 Part of the Nichoii-Lee-Nicholl algorithm.

TEXAS INSTRUMENTS EX. 1009 - 990/1253

19.1 Clipping 929

or

Fig. 19.6 Should the clipped V-shaped polygon contain the degenerate edge?

19.1.2 Clipping Polygons against Rectangles and other Polygons

In drawing a polygon in a rectangular region , we may wish to clip it to the region to save
drawing time. For truly general clipping regions (where the interior of the region is
specified, for example, by giving a canvas corresponding to a region on the screen, and for
which the interior of the clip region consists of those points corresponding to black pixels in
the canvas) , scissoring is quite practical: We simply compute all the (rasterized) points of
the primitive, then draw only those lying within the rasterized clip region. The shape
algebra described in Section 19.7 can be used as well , to determine rapidly the regions of
overlap between the pixels of the clipping shape and those of the primitive; this is the most
efficient technique until the clip regions become extremely complex-for example, a
gray-scale bitmap. Since the analytic algorithms for clipping are interesting in their own
right, and have other applications beyond windowing systems (e.g., the visible-surface
algorithm presented in Chapter 15), we cover two algorithms in detail: the Liang-Barsky
(LB) [LIAN83) and Weiler [WEfL80) algorithms.

There is some difference of opinion on what constitutes the clipped version of a
polygon. Figure 19.6 shows a polygon being clipped against a rectangular window and the
two possible outputs, one connected and one disconnected. The Sutherland-Hodgman
[SUTH74b) and Liang-Barsky algorithms both generate connected clipped polygons,
although the polygons may have degenerate edges (i.e. , edges that overlap other edges of
the polygon, or whose length is zero) . The Weiler algorithm produces nondegenerate
polygons, which are therefore sometimes disconnected. Since the Weiler algorithm is
designed to do somewhat more than clipping-it can produce arbitrary Boolean combina­
tions of polygons-it is clear that these combinations may need to be represented by
disconnected polygons if they are to be truly disjoint.: Figure 19.7 shows two polygons such
that A - 8 and 8 - A cannot be simultaneously made into connected polygons (by adding
just a single degenerate edge pair to each) without an intersection being introduced between
them.

In practice, the degenerate edges in the output polygon may be irrelevant. If the
polygon is used merely to define a filled area, then the degenerate edges have no area

1The Weiler algorithm also handles general polygons-that is, polygons with holes in them. These
are described by multiple nested contours.

TEXAS INSTRUMENTS EX. 1009 - 991/1253

930 Advanced Geometric and Raster Algorithms

8-A A-8
8 A

A-8 8-A

Fig. 19.7 The regions A - 8 and 8- A cannot be made into connected polygons
(using edges of the original polygons) without intersecting at least at a point.

between them, and hence cause no problems. If the polygon is used to define a polyline,
however, the degenerate edges must be removed; see Exercise 19.2.

19.1.3 Clipping against Rectangles: The liang- Barsky Polygon
Algorithm

Let us begin with the Liang-Barsky (LB) algorithm. To distinguish between the polygon to
be clipped and the rectangle against which the polygon is clipped, we call the upright
rectangle the window and th.e polygon to be clipped the input polygon; the result of clipping
is the ourpur polygon. Each edge to be clipped is represented parametrically, and the
intersections with the window edges are computed only when needed. In contrast to line
clipping, however, an edge entirely outside the window can contribute to the output
polygon. Consider the case where the input polygon entirely encloses the window: The
output polygon is the boundary of the window, as shown in Fig. 19.8.

The mathematically inclined reader may object to the result in the case shown in Fig.
19.9: The interior of the input polygon misses the window entirely, but the LB algorithm
produces a polygon that includes all edges of the window (although it includes each one
once in each direction, as shown by the dotted lines; these are drawn slightly outside the
window so as to be visible). Exercise 19.2 discusses algorithms for removing such excess
edges to get a minimal form for a clipped polygon.

We assume the input polygon is given as a sequence of points ft , Pz, . . . , P., where the
edges of the polygon are Pa?z, PzPa, ... , P,.Pa. Each edge can be considered as a vector
starting from P; and going toward P; . 1• and this determines the parametric form P(r) =
(I - r)Pa + tP2• Values of r between 0 and I represent points on the edge. (To be more

Original polygon Clipped polygon

I

D
Fig. 19.8 An edge outside the window can contribute to the output (clipped) polygon.

TEXAS INSTRUMENTS EX. 1009 - 992/1253

19 .1 Clipping 931

-
r-

'D ... D L I.

Fig. 19.9 The input polygon lies entirely outside the window, but the Liang-Barsky
algorithm produces a nonempty result .

precise, we let values 0 < 1 s I represent pointS on the edge, so that each edge fails to
contain its starting point. Each vertex of the polygon is therefore contained in exactly one of
the two edges that meet there. The choice to omit the starting point differs from that in
Chapter 3, but it makes the explanation of the algorithm slightly simpler.) Other values of 1

represent points that are on the line containing the edge, but not on the edge itself. In the
LB algorithm, we will consider one edge, llll +t• at a time, and let L; denote the line
containing llll + 1•

We initially consider only diagonal lines- those that are neither horizontal nor
vertical. Such a line must cross each of the lines that determine the boundary of the
window. In fact , if we divide the plane into the nine regions determined by the edges of the
windows, as in Fig. 19.10, it is clear that every diagonal line passes from one comer region
to the opposite one. Each window edge divides the plane in two halfplanes. We call the one
containing the window the inside halfplane. The nine regions in Fig. 19 . I 0 are labeled by
the number of inside halfplanes they lie in. The window is the only region lying in all four,
of course. We call the regions at the comers (labeled "inside 2 ") corner regions, and the
other outer regions (labeled "inside 3 ") edge regions.

Before we discuss details, we show rhe use of this algorithm by a few examples. First, if
some portion of the edge (not just the line containing it) lies in the window, that portion
must be part of the output polygon. The vertices this edge adds to the output polygon may
be either the ends of the edge (if it lies entirely within the window) or the intersections of
the edge with the window edges (if the endpoints of the edge lie outside the window), or
there may be one of each.

inside 2 inside 3

inside 3 inside all 4

inside 2 inside 3

inside 2 - rrside the region to the
nghl of x m1n and above y-

'" '
inside 3

inside 2

Fig. 19.10 The plane is divided into nine regions by the extended edges of the
window. Each region is on the .. inside .. side of at least two edges.

TEXAS INSTRUMENTS EX. 1009 - 993/1253

932 Advanced Geometric and Raster Algorithms

On the other hand, if the edge lies entirely outside the window, the next edge may
intersect the window (see Fig. 19.11). If so. the place where it intersects the window is
determined by its starting point: An edge starting in the upper-edge region can begin its
intersection with the window only by hitting the top edge of the window; one starting in the
upper-left comer region can begin its intersection with the window either along the top
boundary or along the left boundary, and so on.

Suppose the last edge to intersect the window generated a vertex at the top of the
window, and the next edge to intersect the window will do so on the right edge of the
window, as in Fig. 19. 12. The output polygon will then have to contain the upper-right
comer of the window as a vertex. Since we are processing the polygon one edge at a time,
we will have to add this vertex now, in amicipation of the next intersection with the clip
window. Of course if the next edge intersected the top edge of the window, this vertex
would be redundant; we add it regardless, and handle the removal of redundant vertices as a
postprocess.ing step. The idea is that, after processing of an edge, any intersection point
added by the next edge must be able to be reached from the last vertex that we output.

In general , an edge that enters a comer region will add the corresponding corner vertex
as an output vertex. Liang and Barsky call such a vertex a turning vertex. (The original
algorithm operates in a slightly different order: Rather than adding the turning vertex when
the edge enters the comer region , it defers adding the vertex until some later edge leaves the
comer region. This cannot entirely remove the degenerate-edge problem, and we find that it
makes the algorithm more difficult to understand, so we have used our alternative
formulation.)

We now examine the various cases carefully, using the analysis of the parametric form
of clipping in Chapter 3. The line L 1 containing the edge P;P; + 1 crosses all four window
boundaries. 1\vo crossings are potentially entering and two are potentially leaving. We
compute the parametric values of the intersection points and call them r~~~., . 111>..2• r..._1, and
lout.$· Notice that 1;•.1 is the least of these, and t 001.$ is the greatest, since every non vertical ,
nonhorizontal line starts in a comer region and ends in a comer region. The other t\\'0
values are in between and may be in either order. As noted in Chapter 3, if 1;,_2 s lou~_1, the

If the last edge ended
here, the next
edge could only ~
hit the top side
of the window.

-~~).L::::::f:-_

If the last edge ended
here, then the next
edge could hit the top
or the left side
of the window .

.-. --....
\

;

Fig. 19.11 If the previous edge terminated in the upper-middle region, and the next
edge intersects the window, then it can do so only at the top. If the previous edge
terminated in the upper-left region, a nd the next edge intersects the window, then it can
do so only at the top edge or left edge.

TEXAS INSTRUMENTS EX. 1009 - 994/1253

19.1

The bold edge at the
left generated the
bold edge at the right.

~

The bold edge at the
left will generals the
bold edge at the right.

~

We must add the comer.

Clipping 933

Fig. 19 .12 A vertex must be added to the output polygon at the upper-right corner of
the window: The next edge (after the one that fails to intersect the window) could
intersect either the top or the right side. We must add a vertex that can reach all possible
intersection points.

line intersects the window; if f;n_z > r..,._., the line passes through a comer region instead
(see Fig. I 9 .13).

The parameter values r = 0 and r = I define the endpoints of the edge within the line
L ,. The relationship between these parameter values and the values of r1• 1, r1n 2, r..,, 1, and
r •• ,_z characterizes the contribution of tbe edge to the output polygon. If the edge intersects
the window, tbe visible segment of tbe edge must be added to the output polygon. In this
case, 0 < r..,~,_, and I > r;._z; that is, the edge begins before the containing line leaves the
window and also ends after it enters the window- the edge is not entirely outside the
window.

If the edge does not intersect the window, the line containing it starts in one comer
region, passes through another, and terminates in a third. If the edge enters either of the

TEXAS INSTRUMENTS EX. 1009 - 995/1253

934 Advanced Geometric and Raster Algorithms

t,.,,_2

Fig. 19.13 The two possibilities for a line that crosses a window.

laner two corner regions, a turning vertex must be added. Entering the intermediate corner
region is characterized by 0 < t""' 1 < I (since t..._ 1 is the parameter value at which the line
enters the corner region). Entering the final comer region is characterized by 0 < tout_t s 1.

This last statement is true for lines that intersect the window as well-if 0 < tout.t < I,
then a turning vertex must be added.

Figure 19.14 gives a sketch of the algorithm. Notice that the vertices contributed by
each line must be added in order. The complete algorithm is somewhat more complex,
since the special cases of vertical and horizontal edges must also be considered. There are

Cor (each edge e) {
determine di~ction of edge;
use this to detennine which bounding lines for the clip ~gion the

containing line hits first;
find t-values for exit points;
it (t0ut..2 > 0)

find t-valuefor seco11d entry point;
if (t/11..2 > tOurJ) { /• No visible segment •I

if (0 < tOuU && tOutJ <= I)
OutpuLvert (ruming.vertex);

} else {

}

If (O < tOuU && I >= tln..2) { I• There is some visible part. •I

}

If (0 <= tln..2)
OutpuLvert (appropriate side intersection);

else
Output. vert (starting vertex);

if (I >= tOutJ)
OurpuLvert (approprime side intersection);

el'>l!
Output. vert (ending vertex);

It (0 < t0ut..2 && t0ut..2 <= I)
OutpuLvert (appropriate comer);

} I• for each edge •I

Fig. 19.14 A sketch of the liang- Barsky polygon-clipping algorithm.

TEXAS INSTRUMENTS EX. 1009 - 996/1253

19.1 Clipping 936

two possible approaches. The first is to treat such edges as special cases, and simply to
expand the code to detect and process them. Detection is easy: Either de/taX or deltaY (the
two components of the direction vector for the edge) is zero. Processing proceeds on a
case-by-case analysis. For example, a vertical edge to the right of the clip window may cross
into the upper-right or the lower-right comer, and hence may add a turning vertex. A
vertical edge between the left and right window boundaries may cross the window in a
visible segment or not at all, and so on. The alternate approach is to force each vertical or
horizontal edge to conform to the pauem of the rest of the algorithm by assigning entering
and leaving values of ±co.

Figure 19. 15 gives the entire algorithm for this latter solution. We assume that real
variables can be assigned a value, infinite, with the property that x <infinite for all x unless
x = infinite. Exercise 19.3 asks you to generate the details of the algorithm when no such
infinite values are available and special casing must be used for vertical and horizontal lines.
So that the size of the program can be reduced, the macro AssignTWo, which per­
forms two simultaneous assignments, has been defined. The code also uses several vari­
ables (such as X in and X out, which denote the sides of the clip window through which

lkldlne MAXPT 50:
lkleflne MAX2 150:

typedef double sma/larray(MAXPT] ;
typedef double bigarray(MAX2);

I• Perform two assignments. •/
lkleflne ASSIGNTWO(x, y, a, b) { \

(x) =(a):\
(y) =(b):\

}

I • Clip ann-sided input polygon to a window. •I
void LiangBarskyPolygonCIIp(

{

lnt n,
const SrtUJUorray x, const srtUJIIarray y,
bigarray u, biga"ay v,
doublt xMax, double .rMin,
double yMax, doublt yMin,
lnt •aurCoulll)

double xln, xOut, yin, yOw;
double tOutl , tln2, t0ut2;
double tbzX, tOutX, tlnY, tOutY;
double tkltaX, delta Y;
lnt I;

I• Vertices of input polygon • /
I• Yen ices of output polygon •/
I • Edges of clip window *'
I • Counter for output vertices •I

I • Coordinates of entry and exit points •I
I• Parameter values of same •I
I• Parameter values for intei"Sections •I
I• Direction of edge •/

Fig. 19. 15 (Cotu.)

TEXAS INSTRUMENTS EX. 1009 - 997/1253

936 Advanced Geometric and RaS1er Algorithms

x[n) = x[OI;
y(n) = y[OI:
•owCount = 0;
for (i = 0; i < n; i++) {

de/taX = x(i + I I - x(i);
delraY= y[i + I I - y[i);

I• Make polygon closed •I
I• Initialize output vertex counter •I
I• for each edge •I
I• Detennine direction of edge • I

I• Use this to detennine which bounding lioes for the clip region the •I
I• containing line hits first. •I
i.f ((de/taX > 0) II (de/taX = 0 && x(il > xMax))

ASSlGNTWO (xln, xOut, xMin , xMax)
else

ASSIGNTWO (xln, xOur, xMax, xMin)
It ((delraY > 0) II (delraY== 0 && y[iJ > yMax))

ASSJGNTWO (yin, yOUI, yMin, yMax)
else

ASSIGNTWO (yin, yOur, yMax, yMin)
I• Find the 1 values for the x and y exit points. •I
if (de/taX != 0)

tOutX = (xOut - x[i)) I de/taX:
else if (x[iJ <= xMax && xMin <= x[t1)

tOutX= oo:
else

tOutX = - oo;
if (delraY != 0)

tOutY = (yOur - y(i)) I delraY;
else If {y[i) <= yMax && yMin <= y[i))

tOutY= oo;
else

tOutY = -oo;

I• Order the two exit points. •I
if (tOutX < tOutY)

ASSJGNTWO (tOur/ , t0ut2, tOutX, rOutY)
else

ASS!GNTWO (tOur/ , t0ut2, tOutY, tOutX)
if (t0ut2 > 0} { I• There could be output-compute rln2. +I

if (de/taX != 0)
tlnX = (xln - x[i)) I de/taX;

else
tlnX = -oo:

It (delraY I= 0)
tinY= (yin - y(i)) I delraY;

else
tinY = - oo;

if (tlnX < tinY)
tln2= tinY;

else
tln2 = tllrX; Fig. 19. 15 (Cont.)

TEXAS INSTRUMENTS EX. 1009 - 998/1253

19.1

if (rOut/ < rln2) { I• No visible segment •I
if (0 < tOur/ && tOut/ <= 1) {

}

I• Line crosses over intermediate comer region •I
l.r (rlnX < rln Y)

OutputVert (u, v, outCounr, xOut, yin);
else

Output Vert (u , v, outCount, xln, yOur);

} el..e {
I• Line crosses through window •I
if (0 < tOut/ && tln2 <= 1) {

if (0 < tln2) { I• Visible segment •I
It (tlnX > tinY)

Output Vert (u, v, outCount, xln, y[i) + tlnX • delraY) ;
else

Output Vert (u, v, outCount, x[iJ + tinY • de/taX, yin);

if (I > rOutl) {
If (tOutX < tOurY)

Clipping

Output Vert (u, v, ourCount, xOur, y(i) + rOutX • delraY);
else

OutputVert (u, v, outCount, x[iJ + tOutY • delraY, yOur);
}

} else
Output Vert (u, v, outCounr, x(i + I), y[i + I));

}
}
if (0 < r0ur2 && r0ur2 <= I)

Output Vert (u, v, outCount, xOut, yOur);
} /• if t0ut2 •I

} I• for •I
} I+ LiangBarskyPolygonCiip •I

Fig. 19.15 The Liang-Barsky polygon-clipping algorithm.

937

the containing line for the segment enters and leaves) that could be eliminated. But these
variables reduce the case structure of the code, and henoe make the code more readable.
The OutputVert routine (not shown) stores values in u and v and increments a counter.

19.1 .4 The Weiler Polygon Algorithm

We now move to the problem of clipping one polygon to another arbitrary polygon, an issue
that arose in the visible-surface computations in Section 15.7 .2. Figure 19.16 shows several
polygons to be clipped and the resu.lts of clipping. Notice that the clipped polygon may be
disconnected and may be nonconvex even if the original polygon was convex.

The Weiler polygon algorithm [WBIL80] is an improvement on the earlier Weiler­
Atherton algorithm [WEIL77], and it is based on the following observation. l f we draw the
edges of the clipping polygon, A, and the polygon to be clipped, B, in black pencil on a
white sheet of paper, then the part of the paper that remains white is divided into disjoint

TEXAS INSTRUMENTS EX. 1009 - 999/1253

938 Advanced Geometric and Raster Algorithms

Bef0f8 dipping

A her clipping

Fig. 19.16 Several examples of clipping polygons against polygons.

regions (if the polygon edges are thought of as borders on a map, then these regions are the
countries). Each of these regions is entirely in A, entirely in B, entirely contained in both, or
contained in neither. The algorithm works by finding a collection of closed polylines in the
plane that are the boundaries of these disjoint regions. The clipped input polygon consists of
the regions contained in both A and B. ln this algorithm, the clipping polygon and the input
polygon play identical roles; since we want the regions inside both, we shall refer to them as
A and B from now on. (Notice the similarity between this approach to clipping and the
polyhedral constructive solid geometry in Chapter 12. In fact, we might use the phrase
constmctive planar geometry to describe this polygon-polygon clipping.)

Before discussing the details of the algorithm, we consider one example that exhibits
most of its subtlety. Figure 19. 17(a) shows two intersecting polygons, A and B. In part (b),
the intersections of the polygons have been added as vertices to each of the polygons; these
new vertices are indicated by the dots in the figure. lf two edges intersect in a single point (a
tran.nY!rse intersection), that point is added as a vertex. If they intersect in a segment, any

A
8 X A X

I 1 A I 8 AX

l J X II
8 X

(a) (b) (c)

X A X X

A I[8 AX AXIl A8

X II
8X

II 8X

(d) (8)

Fig. 19.17 The Weiler polygon algorithm applied to two polygons. (a) The two
polygons A and 8 . (b) Intersections are added as vertices. (c) The polygons are drawn
as doubled contours with labels. (d) The contours are reconnected so they do not cross.
(e) The labels on the contours are collected into labels for the regions they bound.

TEXAS INSTRUMENTS EX. 1009 - 1000/1253

19.1 Clipping 939

vertex of one that lies in the intersection segment is added as a vertex of the other. ln part
(c), we double the edges of the polygons. Although these doubled polygons are drawn
slightly displaced from the original polygon, they should be thought of as infinitely close to
the original edge. The resulting curves are called contours. Each edge of a polygon
contributes to two contours. We shall use the term segment for the partS of the contours that
it contributes, and reserve the word edge for pieces of the original polygons. Once these
contours are created, we label each segment of the inner contour of each polygon with the
name of the polygon (A or 8), those on the outer contour are labeled X. (Only some of the
labels are shown; also, the segment where two edges overlap really has four contour
segments, but only two are drawn.)

The idea is to rearrange the contours so that they form the borders of the disjoint
regions we described, as is done in part (d). ln part (e), the labels on each contour are
collected to give a label for the region; these labels determine in which of the original
polygons the region lies. For the intersection of two polygons , we are interested in only
those regions labeled by both A and B (the diagram uses the label AB to indicate this). In
reality, the doubled contours are generated when the polygons are first read into the
algorithm; in an efficient implementation, the contours can be merged at the same time as
the intersections are found.

The algorithm actually works for an arbitrary number of polygons; when more than two
are intersected, there may be regions entirely contained in other regions (e.g., a square in a
larger square). We will need to determine these containment relationships to complete the
algorithm in such cases.

The three steps in the algorithm are setting up, determining the regions, and selecting
those regions that are in both A and B. Setting up involves determining all intersections of
edges of A with edges of 8 (since all such intersections will be vertices of the output
polygon), then redefining A and B to include these intersection points as vertices. Standard
algorithms from computational geometry can be used to determine all edge intersections
[PREP85].

To determine the regions, we must rearrange the contours. We want no two contours to
intersect. Thus, at each vertex where the two polygons intersect, an adjustment must be
made. Suppose we have a transverse intersection of the polygons, as shown in Fig.
19.18(a). The corresponding contours are shown in Fig. 19.18(b). Contours are imple-

L

T

B
(a)

R

(b) (c) (d) (e) (f)

Fig. 19.18 Merging contours when edges cross. (a) The two polygons cross at a
vertex. (b) The contours for the edges. (c) The final arrangement of contours. (d) Adding
the contour segments contributed by edgeR to the vertical contour segments. (e) The
result of this addition. (f) The result after a similar merge of the segments from edge L.

TEXAS INSTRUMENTS EX. 1009 - 1001/1253

940 Advanced Geometric and Rast er Algorithms

mented as doubly linked lists, and we wish to rearrange the links to the pattern shown in
Fig. 19.18(c). At a transverse intersection, we do this by taking the contour segments
associated with the edges of one polygon and merging in the contour segments associated
with the other polygon, a pair at a time. Thus, in Fig. 19.18(d), we start with the vertical
contour segments, and we wish to merge the pair of segments associated with edgeR. In
Fig. 19.18(e), these segments have been merged into the vertical contour segments by
rearranging links. The segments associated with the edges T and B have two sides (i.e.,
there are two vertical contours), and it is important to add the new segments to the proper
side. We compare the remote vertex (the one not at the intersection point) of the edgeR, to
the vertical line (consisting of edges T and B), to determine which side R is on. After this
attachment, the segments associated with edge L are left hanging. ln Fig. 19. 18(f), the
segments associated with L have also been merged into the contour, so the resulting
contours have no intersections at the vertex. Notice that this process involved only local
information: we needed to know only the positions of the edges being considered, and did
not need to traverse any more of the polygon.

Merging contours is more difficult at a oontransverse intersection, as shown in Pig.
19.19. In part (a), we see a nontransverse intersection of two polygons: They share a short
vertical piece. Of course, in the actual data structures , this short vertical piece is an edge in
each polygon. We call such edges coincident. The remarkable thing about coincident edges
is that they are easy to process. Each edge contributes two segments to the contours, one on
each side, as shown in Fig. 19.19(b), where one set of contours has been drawn within the
other to make them distinct, and where a dotted segment shows the original shared edge.
Each segment has an label (we have shown sample labels in Fig. 19.19b). The labels from
each pair of segments on one side of the coincident edge are merged together, and the
vertical segments corresponding to the coincident edge in one polygon are deleted. The

--Coincident edge

(a) (b) (c)

(d) (e)

Fig. 19.19 Merging contours along coincident edges. (a) The zig-zag contour and the
more vertical contour have short vertical coincident edges. (b) The contours associated
with this arrangement of edges; the original vertical edge is shown as a dotted line.
(c) The vertical segments from the zig-zag polygon have been deleted. and their labels
merged with the labels of the other segments. (d) One adjoining edge's contour
segments have been merged. (e) The other adjoining edge's contour segments have
been merged as well.

TEXAS INSTRUMENTS EX. 1009 - 1002/1253

19.1 Clipping 941

resulting intermediate structure is shown i.n part (c) of the figure. The merged labels are
shown on the remaining segments from the coincident edge. The arrows indicate dangling
pointers. In parts (d) and (e), the segments corresponding to the dangling pointers are
merged with the other contour just as before. If we process the contours by proceeding in
order around one polygon, then we will always have at most one set of dangling pointers. If
this set corresponds to a transverse intersection, it can be processed as before; if it
corresponds to another coincident edge, it can be processed as this edge was.

There is another class of nontransverse intersections of polygons, as shown in Fig.
19.20(a). Since each of the diagonal edges intersects the vertical edge transversely , the
process of merging contours is no more complex than in the original transverse case. The
contour structure before and after merging is shown in parts (b) and (c).

Finally, we remark that, in processing intersections, the inside and outside contours
associated with the original polygons are split into subcontours; since our output is derived
from these subcontours, we must keep track of them. We do this record keeping by
maintaining a reference to at least one segment of each contour. lf we track all the segments
processed at any intersection, this technique is guaranteed to provide such a list of entry
points, although the list may have several entry points for some contours. In fact, for each
intersection, we create a new contour for each segment, and set the startingPoint field of the
contour to be the segment. We also set a backpointer (the contourPtr field) from the
segment to the contour, which is used later.

These various tasks described lead us to the data structures for the Weiler algorithm:
vertices, edges, and contours, shown in Fig. 19.21. An edge bas two vertices and two sides.
These sides are the segments that initially form the inner and outer contours for the
polygons, and contribute to the output contours at the end. Thus, an edge side is what we
have been calling a segment of a contour. Each edge side points to its clockwise and
counterclockwise neighbors, and ea.ch edge side also has a list of owners (i.e ., labels).
Except in the case just described, the contourPtr field of an edge side is NULL.

When the polygons are first read in by the algorithm, they must be processed to
establish the data structure given. Doing this efficiently is the task of Exercise 19.4. The
second step is to take these data structures for A and 8 and to create a single data structure
consisting of lots of contours, each contour being the boundary of one region. Since all the
intersections between edges of A and B appear as vertices of these contours, we first
compute these intersection points.

(a) (b) (C)

Fig. 1 9 .20 Merging contours at a tangential intersection. (a) The edge configuration.
(b) The initial contour configuration. (c) The final contour configuration.

TEXAS INSTRUMENTS EX. 1009 - 1003/1253

942 Advanced Geometric and Raster Algorithms

ildefioe SIDE 2
ildefine END 2

I• Each polygon edge has two sides •I
I • Each edge has two ends. too •I

typedef eoum {cw, ccw} direction;
I• Clockwise, counterclockwise directions for contours •I

typedef struct {
unsigned int X: I;
unsigned int A: I ;
unsigned lnt 8: I ;

} owne.rs;

typedef struct {
double x, y;

} vertex;

I• Exterior region, A, and 8 •I

typedef struct comourStruct comour;
typedef structedgeStruct edge;

struct comourStruct {
owners belongsTo;
struct {

};

edge •enrryEdge;
int enrrySide;

} staningPoint;

struct edgeStruct {

};

vertex •venices{END];
edge •edgeLinks{SlDE]{2J;
owners edgeOwners[SlDE];
contour • contourPtr[SIDE];

I• FiUed in during traversal stage •/
I• Where traversal of contour begins •I

1• The ends of the edge *'
I• Double link structure •I
I• Owners of inside and outside •I
I• Points to any contour whose entry point •I
I• is this edge side •I

Fig. 19.21 The data structures used in the Weiler algorithm.

We !hen merge the contours at these intersection points, as described previously,
generating new contour data structures as we do so. At this point in the algorithm, we have a
collection of contour data structures with startingPoints pointing to various edge sides; by
following all the links from such an edge side, we traverse a contour. The owner labels on
these edge sides may be different from one another. The owners of the entire contour can be
found by taking the union of the owners of the edges sides of the contour.

We must traverse each contour once to collect this information. For each contour, we
follow the list of edge sides associated with the startingPoint. If we encounter a vertex
pointing back to another contour data structu.re, that data structure is deleted, so we are left
with exactly one contour data structure for each contour in the plane. The pseudocode for
this process is given in Fig. 19.22.

We now have a complete collection of contours, each corresponding to a single entry
point. lf the input polygons are simple closed curves in the plane, we are done: The output
polygons are simple closed curves, and no output contour is contained in any olher, so we

TEXAS INSTRUMENTS EX. 1009 - 1004/1253

19.1

for (each com our c) {
c.belongsTo = NULL;

Clipping

for (each edge-side pair e and sin c, beginning at c.starringPoint) {

943

I• if edge side doesn't poimto c, delete the contour to which it poims •I
if (e.contourPtr(s) l= &c)

delete •e .comourPtr[s]:
c.belongsTo I= e.edgeOwners(s]:

}
}

Fig. 19.2 2 Pseudocode for merging contours.

can simply select those contours whose owner sets contain both A and B. In general,
however, the problem is more subtle: The Weiler algorithm can be used to find any Boolean
combination of A and B, and some of these combinations may have holes (if A is a square
inside another square B, say, then B-Ahasa hole). Also, A and B may have holes to begin
with , and in this case even the intersection may not be nice. Since these cases are imponant
in some applications, such as 30 clipping (see Chapter 15), we continue the analysis. We
also note that the algorithm can be applied to polygons defined by such coUections of
contours, so that unions, differences, and intersections of polygons with holes can all be
computed using this algorithm.

The contours we now have are disjoint , and each has an owner set indicating in which,
if any, of the original polygons it is located. On the other hand, the regions bounded by
these contours may well overlap (as in the case of the two nested squares). To determine the
output.of the algorithm, we must determine the nesting structure of the contours. We do so
by storing the contours in a binary tree structure, in which the left child of a contour is a
contour contained within it, and the right chi.ld is a contour at the same nesting depth as the
parent. (We must first enlarge the data structure for a contour by adding two fields: a
containedContour and a coexistingContour, each of which is a cptr- a pointer to a
contour.) Figure 19.23 shows a collection of contours and an associated tree structure (this
tree structure may not be unique).

Pseudocode for one algorithm for the construction of this tree is shown in Fig. 19 .24.

~ =Contains

a
+ =Coexists

I

(a)
(b)

Fig. 19.23 (a) A collection of contours in the plane. and (b) an associated tree
structure.

TEXAS INSTRUMENTS EX. 1009 - 1005/1253

944 Advanced Geometric and Raster Algorithms

for (each unassignedconraurc) {

}

compare this contour with a lithe others on the 1massigned list;
if (it is inside one and only one, q) {

remove c from the list;
if (q.containtd == NULL)

q.contalntd = &c;
else

lnsen (&c, &q); I • Insert c into tree staning at q. • I
} else if (it is contained by more than one)

skip this contour and go to the next one;

void lnsen(contour • c, contour •q)
{

It (q->contained== NULL)
q- >contained = c;

else if (oc contains • (q->contained)) {
c->contained = q->contained
q->contained = c;

} else if (• (q->containtd) contains • c)
lnsen (c, q->conrained);

tlse If (q->conwintd->coexist ==NULl..)
q->comalned->coexist = c:

else It (•c coma ins • (q->contained->coexist)) {
c->containtd = q->contained->coexist;
q->contained->couist = c;

} else if (• (q->contained->coexist) contains • c) {
lnsett(c, q->containl'd->coexist);

}
} , . lnsen .,

Fig. 19.24 Pseudocode for building a containment tree structure from a collection of
nested contours.

Note that at least one contour is assigned in each pass through the list, so the algorithm will
eventually terminate. We encouraged ~ to find more efficient algorithms for detennining
the containment tree (see Exercise 19.5).

When the algorithm terminates, we have a tree structure that detennines the
containment relationships for the comours. We can then select the subtree corresponding to
the Boolean operation in which we are interested (for clipping, this subtree consists of all
contours whose owner list contains both A and 8).

Before we leave the Weiler algorithm, consider what is necessary to make it work for
more than two polygons. 11le owner fields for the edges and for the contours must be

TEXAS INSTRUMENTS EX. 1009 - 1006/1253

19.2 Scan-Converting Primitives 945

enlarged to allow them to contain however many polygons we wish to combine at a time.
Aside from this change, the algorithm remains essentially the same. Of course, it may be
more efficient to compute the intersection of A, 8, and C by computing the intersection of A
and 8 , and then the intersection of this result with C, since the number of intersections of
edges of C with edges of the intersection of A and 8 is likely to be smaller than is the
number of intersections of C with all of A and 8.

19.2 SCAN-CONVERTING PRIMITIVES

We now return to the topic of scan conversion, discussed in Chapter 3. Each primitive we
scan convert has an underlying geometry (i.e., a shape) and certain attributes, such as line
style, fill pattern, or line-join style.

The process of deterrn!ning what pixels should be written for a given object is
independent of any clipping, or of the write mode for the pixel-drawing operation. It does
depend, however, on attributes that alter the object's shape, and on our criteria for pixel
selection. We therefore begin by discussing attributes; then we discuss the geometry of lines
and conics and the criteria that can be used for selecting pixels. We complete this section
with a scan-conversion algorithm for general ellipses. We delay the consideration of text
until after we have d.iscussed antialiasing.

19.2.1 Attributes

Pdmitives are drawn with various attributes, as discussed in Chapter 3; these include line
style, fill style, thickness, Line-end style, and line-join style. These may be considered
either cosmetic or geometric attributes. For example, if a line is to be drawn in 4-on, I -off
style, and it is scaled by a factor of 2, should it be drawn 8-on, 2-off'? If your answer is yes,
then you are treating the line style as a geometric attribute; if no, you are treating it as
cosmetic. ln this discussion, we assume that all line attributes are cosmetic. Since curves,
polylines, circles, and ellipses are also intended to represent infinitely thin shapes, we
extend the same assumption to them. What about rectangles, filled circles, and other
area-defining primitives? As discussed in Chapter 3, when we apply a fill style to a
primitive, we may choose to anchor it either to the primitive, to an arbitrary point, or to the
bitmap into which the primitive is drawn. ln the first case, the attribute is geometric; in the
second, it could be either; in the third, it is cosmetic. The first case is not always entirely
geometric, however-in most systems, the fill pattern is not rotated when the primitive is
rotated. In some vector systems, on the other hand, cross-hatching (a form of patterning) is
applied to primitives in a coordinate system based on the primitive itself, so that rotating a
vector~ross-hatched primitive rotates the cross-hatching too; in these systems, the attribute
is entirely geometric.

Whether attributes are cosmetic or geometric, whether a pixel Lies at the grid center or
grid crossing, and whether a window includes its boundary all constitute a reference rrwdel
for a graphics system. A reference model is a collection of rules for determining the
semantics of a graphics system, so that all the questions about ambiguities in the
specification can be resolved. It should be designed from abstract principles, which are then
embodied in the actual algorithms. It will be important to keep a reference model in mind

TEXAS INSTRUMENTS EX. 1009 - 1007/1253

946 Advanced Geometric and Raster Algorithms

as we construct scan-conversion algorithms; only if we have defined this model clearly can
we evaluate the success or correctness of the algorithm.

1 9 .2 .2 Criteria for Evaluating Scan-Conversion Algorithms

In drawing a line segment in Chapter 3, we drew the pixels nearest to the segment. For lines
of slope greater than I, we drew I pixel in each row, selecting I of the 2 pixels the segment
passed between; when the segment passed exactly through a pixel, of course, we selected
that pixel. The distance from a pixel to a segment can be measured in two ways: as the
distance along a grid line, or as the perpendicular distance to the segment. Figure 19.25
shows, by similar triangles, that these distances are proportional, so that our choice of a
distance measure is irrelevant.

ln deriving the Gupta-Sproull antialiasing algorithm in Section 3.17 .4, we found that,
if the line equation was Ax + By + C = 0, then the perpendicular distance from a point
(x, y) to the line was proportional to F(x, y) = Ax + By + C . This value, F(x, y), is
sometimes called the residual at the point (x, y) , and the line can therefore be described as
the set of all points in the Euclidean plane where the residual is zero. Thus residuals can
also be used as a measure of distance to the line; the resulting choices of pixels are the same
as with perpendicular distance or grid-line distance.

For circles, also, we can determine pixel choice by grid-line distance, perpendicular
distance, or residual value. Mcilroy has shown [MCIL83]that , for a circle with integer
center and radius (or even one for wh.ich the square of the radius is an integer), the three
choices agree. On the other hand, for circles whose center or radius fails to satisfy the
assumption, the choices disagree in general and we must select among them. (For circ.les
with half-integer centers or radii, the choices are not unique, because the choice made in
tie-breaking cases may disagree, but Mcilroy shows that there is always only I pixel that is a
" closest" pixel by all three measures.)

For ellipses, the situation is even worse. Again, there are three ways to measure the
amount by which a pixel fails to lie on the eiJipse: the grid-line distance, the perpendicular
distance, and the residual value. The grid-line distance is well-defined, but may lead to
peculiar choices. In the case of the thin slanted ellipse in Fig. 19 .26(a), for example, pixels

Fig. 19.25 Grid-line distance and perpendicular distance to a line are proportional. as
the similar t riangles show.

TEXAS INSTRUMENTS EX. 1009 - 1008/1253

19.2 Scan-Converting Primitives 947

A A
~

_.. p

~ :-I""" -J; -
B

(a) (b)

Fig. 19.26 Choosing ellipse points by different criteria. (a) 8 will be chosen in
scan-converting both edges of the ellipse-should it be written twice? (b) In scan
converting the bottom of the ellipse, pixel A will be chosen by both the grid-distance
method and the residual method, even though 8 is evidently a better choice.

A and 8 are at the two ends of a grid line intersected by the upper side of the ellipse.
Unfortunately, the bott.om side of the ellipse also passes between them. Both sides are
closer to B than to A. measured by grid-line distance. If we choose B in scan converting
both edges, we will write the same pixel twice. The perpendicular distance to the ellipse is
also well defined (it is the minimum of the distances between the point and all points of the
ellipse), but a single point may be close to several points on the eiJipse. For example, in scan
converting the bottom side of the ellipse in Fig. 19.26(b), pixel A is closer to the ellipse
than is pixel 8, but we would like to draw pixel 8 regardless, since the part of the ellipse to
which A is close happens to be unrelated to the part to which B is close. The residuals in this
case determine the same (wrong) choice-the residual at A is less than the residual at 8.
Thus, there is no easy answer in choosing a measure of closeness for an ellipse. For tightly
curved ellipses, all measures of closeness fail. We shall discuss ways to circumvent this
difficulty later.

Part of the difficulty with using residuals as an error measure is implicit in the nature of
residuals. For a circle, for example, it is true that the circle of radius Rat the origin consists
of all points (x, y) satisfying x2 + y 2 - R2 = 0, so x 2 + y 2 - R2 is a reasonable measure of
the extent to which the point (x, y) fails to lie on the circle. Unfortunately, the circle can
also be defined as the set of points satisfying (x2 + y 2) 112 - R = 0 , so residuals computed
using (x2 + yZ)112 - R could be used as well (but they are different from- not even
proportional to- the first type of residual), as could residuals computed us.ing (x2 + yZ)• -
R"" for any positive value of a. Thus, use of residuals is really an arbitrary method of
measurement.

Finally, for general curves, there is no clear choice. We still find the midpoint criterion
convincing: In a place where the curve is near horizontal, we choose between vertically
adjacent pixels by determining on which side of the midpoint the curve passes (this amounts
to the grid-distance criterion), and we present an algorithm based on this criterion.

It is important, in designing a scan-conversion algorithm, to choose a way to measure
error, and then to design the algorithm to minimize this error. Only if such a measure bas
been chosen can an algorithm be proved to be correct. It is also important to specify the
point at which approximations are incorporated. An algorithm that approximates a curve by
line segments, and then scan converts them, may have a very small error if the error is
measured as distance to the Line segments, but a very Large error measured by distance to
the curve.

TEXAS INSTRUMENTS EX. 1009 - 1009/1253

948 Advanced Geometric and Raster Algorithms

19.2 .3 Another look at Unes

In Chapter 2, we discussed only those line segments that could be easily described in a
rasterized world- that is, segments whose endpoints had integer coordinates. For such
lines, we developed an incremental algorithm (the midpoint algorithm) for computing
which pixels were closest to the line segment. For each integer x value, we chose between
two integer y values by examining a decision variable that was then incremented for use at
the next x value. Initializing this decision variable was easy, because the coefficients of the
line equation (Ax + By + C = 0) were all integers, and the starting point of the segment,
(Xo, y0), was guaranteed to satisfy the line equation (i.e., Axo + By0 + C = 0).

Not all line segments have integer endpoints however. How can we draw on a raster
device a line segment whose endpoints are real numbers? Suppose we wish to draw a line
from (0, 0) to (I 0, 0.51) on a black-and-white raster device. Clearly, pixels (0, 0) through
(9, 0) should be drawn, and pixel (10, I) should be drawn. If we take the simple approach of
rounding the endpoints to integer values, however, we draw pixels (0, 0) to (5, 0) and (6, I)
to (10, 1), which is completely different. Instead, we could compute the equation of the
line:

l.Oy- 0.051x + 0.0 = 0.0,

and apply the midpoint algorithm to this line. This approach requires using a floating-point
version of the midpoint algorithm, however, which is expensive. Another possibility is to
recognize that, if we multiply the line equation by 1000, we get

lOOOy - 51x + 0 = 0,

which is an integer line we could draw instead. We can use this approach in general, by
converting floating-point numbers into fixed-point numbers and then multiplying by an
appropriately large integer to give integer coefficients for the line.3 In most cases, the
multiplier determines the subpixel resolution of the endpoints of the line: If we wish to place
endpoints on quarter-integer locations, we must multiply by 4; for tenth-integer locations,
we multiply by 10.

Yet another problem arises if the first pixel to be drawn does not lie exactly on the line.
Consider the line from (0, 0.001) to (10, 1.001). Its equation is

y- O.Lx- 0.001 = 0,

or

1000y - IOOx- I = 0,

and the first pixel to be drawn is (0, 0), which does not lie exactly on the line. In this case,
we need to initialize the decision variable by explicitly computing the value of the residual ,
Ax+ By+ C, at the starting point; none of the simplification from the original algorithm is
possible here. Choosing the starting point in such a case is also a problem. If the actual
endpoint is (x0, y0), we must choose an integer point near (x0, y0). For a line of slope less

' We must be careful not to multiply by too large an integer; overflow could result.

TEXAS INSTRUMENTS EX. 1009 - 1010/1253

19.2 Scan-Converting Primitives 949

than one, we can round Xo to get a starting x value, then compute a y value so that (.x, y) lies
on the line, and round y (see Exercise 19.6).

Lines with noninteger endpoints do arise naturally, even in an integer world. They are
often generated by clipping, as we saw in Chapter 3. Suppose we have a line from (0, 0) to
(10, 5), and wish to draw rhe portion of it that is within the strip between x = 3 and x .. 7.
This segment has endpoints (3, !> and (7, i), which are not integer values. But note that,
when such lines are scan-converted, the equation for the original line should be used, lest
roundoff error change lhe shape of the line (see Exercise 19. 7).

In summary, then, we can take an arbitrary line segment, convert its endpoints to
rational numbers with some fixed denominator, generate an integer equation for the line,
and scan con\'ert with lhe algorithm from Chapter 3 (after explicitly initializing the decision
variable).

19.2 .4 Advanced Polyline Algorithms

In creating rasterized polylines (unfilled polygons), there is little more to do than to use the
line-drawing algorithm repeatedly. But the issue of a reference model arises here- we must
decide what we want before we design lhe algorithm. Consider a polyline with a very sharp
point, as shown in Fig. 19.27. In scan conversion of one edge, the pixels shaded
horizontally are drawn. In scan conversion of the other edge, the pixels shaded vertically are
drawn. The pixels drawn by both are cross-hatched. If this polyline is drawn in xor mode.
the pixels drawn by both lines are xored twice, which is probably not what is wanted. There
are two possible solutions: to draw the primitive into an offscreen bitmap in replace mode,
and then to copy the resulting bitmap to the screen in xor mode, or to create a data structure
representing the entire primitive and to render this data structure into the bitmap. The shape
data structure described in Section 19.7 provides a means for doing this (and can
accommodate patterned lines or polylines as wel l).

19.2 .5 Improvements to the Circle Algorithm

We have an algorithm for generating circles rapi<!Jy (the midpoint algorithm). In Chapter 3,
we discussed using this algorithm to draw thick circles and filled circles. The algorithm
presented there, however, handled only circles with integer radii and integer centers. When
the center or radius is non integer, none of the symmetries of the original algorithm apply,
and each octant of the circle must be drawn individually, as Fig. 19.28 shows.

Fig. 19.27 A polyline with a sharp point may cause some pixels to be drawn more
than once.

TEXAS INSTRUMENTS EX. 1009 - 1011/1253

950 Advanced Geometric and Raster Algorithms

...
'J 1\

'\. ri
J

Fig. 19.28 This circle has noninteger center and radius, and each of its octants is
different from the others, so no symmetries can be used to speed up scan conversion.

Unfortunately, an arbitrary circle (with real values for center and radius) cannot be
converted to an integer conic. If the values of the center and radius are constrained to be
rational numbers with a particular denominator, • then after computing (in floating point)
the coefficientS of the equation for the circle, we can multiply through by four times this
denominator and round the coeftic.ients. Applying a midpoint algorithm to the resulting
equation with integer coefficients yields almost the same pointS as would result if the
algorithm were applied to the original floating-point equation. To see this, suppose the
center is (hlp, kip) and the radius is R. The equation of the circle is

sex. Y> = (x - ~Y + (y - ~Y -RZ = o.
Multiplying by 4p, we get

4pS(x, y) = 4px 2
- Bhx + 4py 2

- Sky + 4(~ + ~- pR2
) = 0.

Recall that, in the midpoint algorithm, we test the sign of the decision variable.
Rounding the term in parentheses (the only noninteger) replaces a rational number by an
integer, which alters the value of 4pS(x, y) by less than I . Since we are evaluating Sat points
where one of x or y is an integer and the other is an integer plus t. the first few terms of the
expression for 4pS(x, y) are integers; altering an integer by a number less than I cannot
change its sign , unless the integer is 0. ~ Thus , we can use the rounded version of 4pS as our
decision variable for a midpoint algorithm; the sol.e consequence is that, when the circle
passes through the midpoint between 2 pixels, the integer and floating-point versions of the
algorithm may make opposite choices.

'We choose to have all numbers have the same denominator, since the algebra is simpler. Since any
t~ fractions can be put over a common denominator, this is not a severe restriction.
' We must, in designing a midpoint algorithm, decide whether 0 is positi'IC or negative. Adding a small
number to 0 can change this choice of sign.

TEXAS INSTRUMENTS EX. 1009 - 1012/1253

19.2 Scan-Converting Primitives 951

The partial differences are the same as before, except that they have been multiplied by
a constant4p. So, rather than incrementing by 2, we increment by 8p. initialization is more
complex as well. The point resulting from adding (0, R) to the center point is no longer an
integer point, so we must choose some nearby point at which to start the circle. To draw the
top-right eighth of the circle, we begin with the point at or just to the right of the top of the
circle. We getthex coordinate by rounding up hlp to an integer, but then must compute the
y coordinate explicitly and initialize the decision variable explicitly. We do these steps only
once in the course of the algorithm, so their cost is not particularly significant. The code
shown in Fig. 19.29 generates only one-eighth of the circle; seven more similar parts are
needed to complete it.

19.2 .6 A General Conic Algorithm

Chapter 3 presented an algorithm for scan converting ellipses whose axes are aligned with
the axes of the plane. ln this section, we describe an algorithm, developed by Van Aleen
[VANA89], for general conks, including ellipses with tilted axes, hyperbolas, circles, and
parabolas. The algorithm is based on Pineway's curve-tracking algorithm, which was
published in 1967 [PITT67], just2 years after Bresenham introduced his incremental line
algorithm. At the time, Pineway's algorithm received little attention, and much of it has
been rediscovered several times.

Algorithms for conics have two separate elements: specifying the conic and performing
the scan conversion. Since the general conic can be described as the solution to an equation
of the form

S(x, y) = Ax2 + Bxy + Cy2 + Dx + Ey + F = 0,

the conic could be specified by the six coefficients A, 8, C, D, E, and F. These are hardly
intuitive, however, so we instead consider an alternative. We discuss only ellipses here, but
similar techniques can be used for hyperbolas and parabolas (see Exercise 19.9) .

A circle in the plane fits nicely into a unit square (see Fig. 19.30a). If an affine
transformation (a linear transformation using homogeneous coordinates) is applied to the
plane, the square is transformed to a parallelogram and the circle is transformed to an
ellipse, as in Fig. 19.30(b). This is a generalization of SRGP's specification of an ellipse,
where an aligned rectangle was used as a bounding box for an aligned ellipse. The
midpoints of the sides of the parallelogram are points on the ellipse. Specifying these and
the center of the parallelogram uniquely determines the parallelogram, and hence the
ellipse. So our specification of an ellipse will consist or the center, J, and midpoints of the
sides, P and Q. of a parallelogram. Observe that , if we can determine the coefficients in the
case where J is the origin, then we can handle the general case: We just apply the simpler
case to P' = P - J and Q' = Q - J, scan convert, and add the coordinates of J to each
output pixel before drawing it. (This works only if J has integer coordinates, of course.) We
therefore assume that J is the origin, and that P and Q have been adjusted accordingly. We
also assume that the short arc of the ellipse from P to Q goes counterclockwise around the
origin; otherwise, we exchange P and Q.

To find the equation of the ell.ipse, we first find a transformation taking the points [b]
and [?] to P and Q (it is given by a matrix whose first column is P and whose second column

TEXAS INSTRUMENTS EX. 1009 - 1013/1253

void MidpointEighthGeneralCirc:le (
lnt h, k; I• Numerat0111 of x and y coordinates of center •I

I• Denominator of both -1

{

lnt p,
doo.ble radius)

lnt x, y,
d,
A,D ,E,F,
A2, A4,
dtltaE,
dtlcaSE;

double temp;

I• Radius of circle • I

I • Last point drawn • I
I • Decision variable • I
I • CoefficieniS for equation •I
I• Multiples of A for efficiency •I
I • d(x+2,y- 112)- d(x+ l,y-1/2) •I
I• d(x + 2,y - 3/2) - d(x + I, y- 1/2) •I

I • lnitializ.e coeffic:ieniS x. y and differences -1
A = 4 •p;
A2 = 2 •A;
A4 = 4 •A;
D = - 8 •h;
£ = - 8 • .1:;
temp = 4 • (-p • radius • radius+ (h•h + .t.k) f (dooble)p);
F = round (temp); I• Introduces error less than I •I
x = ceil (h / (double)p); I• Smallest integer >= hlp •I
y =round (sqn (rodius•rodius - (x- h/(clouble)p) • (x- h/{dooble}p)) +

k/(clouble)p);
I • The next line must be computed using real arithmetic, not integer; it • I
I • can be rewritten to avoid this requirement. •I
d = round (A • ((x + 1.0) • (x + 1.0) + (y- O.S) • (y - 0.5)) +

D • (x + 1.0) + E • (y - 0 . .5) + F);
dt/taE = A2 • (x + I) + A + D;
de/raSE= A2 • (x - y) + 5 • A + [J - £ ;
Draw Pixel (x, y):
wbllt ({p • y - k) > (p • x - h)) {

II (d < 0){
d +=dtlta£;
delta£+= A2;
de/caSE += A2;
x++:

} else {

}

d += deltaS£:
delta£ += A2;
deltaS£ += A4;
x++;
y--;

DrawPixel (x, >');
} I• while • I

I • While within this octant -1
I• Select£ pixel. • I

I• Select S£ pixel. •I

} I• MidpointEigbthGeneraJCircle •I

Fig. 19.29 The general midpoint-circle algorithm.

952

TEXAS INSTRUMENTS EX. 1009 - 1014/1253

19.2 Scan-Converting Primitives 953

D
(a) (b)

Fig. 19.30 (a) The bounding square for a circle. (b) The transformed square and the
ellipse it bounds.

is Q). This transformation takes points on the unit circle, which have the form cos(/) [~] +
sin(t) [?J. into points on the ellipse, which therefore have the fonn (x] = cos(t)P + sin(t)Q.
Solving this equation for cos(I) and sin(t) gives each as a linear ex~ression in x and y. By
substituting these linear eltpressions into the identity cos2(t) + sin2(1) = I , we can arrive at a
quadratic expression in x andy that describes the ellipse (see Exercise 19.8). lf we write .P,.
P, for the coordinates of P, and similarly for Q, the resulting coefficients are

A = Pi + Qi. 8 = -2(.P,P, + Q,Q,), C = P; + Qi,
D = 0, E = 0, F = - (P,Q, - P,Q.)2•

We now translate the resulting ellipse to a new coordinate system centered at the point - P;
that is, we replace the equation for the ellipse by a new equation:

A(x + P.f + B(x + P.)(y + P,) + C(y + P,f + D(x + P.) + E(y + P,) + F =
A'x2 + 8'xy + C'y2 + D'x + E'y + F' = 0.

The resulting coefficients in this new coord.inate system are

A' = A. 8' = 8, C' = C,

D' = 2Q,(P,Q, - P,Q,) E' = -2Q.(.P,Q,- P,Q.) F' = 0.

The origin lies on this new conic, and if we scan convert this conic, but add (P., P,) to each
point before drawing it, we get the points of the original conic centered at the origin. Since
A , 8 , and Care unchanged, we useD and E to denote the terms called D' and E' (since the
original D and E were both zero).

Now, having derived the coefficients of the ellipse equation, we need to scan convert it.
We divide the scan-conversion process into eight drawing octants (for the circle algorithm in
Chapter 3, these corresponded to octants of the circle; here, they do not). The drawing
octant indicates the direction in which the algorithm is tracking. In octant I, the choice is
between moving to the right and moving diagonally up and to the right. The moves to be
made are classified as square mcves or diagonal moves, depending on whether one
coordinate changes or both do. Figure 19.31 shows the eight octants, a table indicating the
directions of motion in each, and the corresponding arcs on a typical ellipse.

Our algorithm has two different loops-one for tracking in odd-numbered octants,
terminated by reaching a diagonal octant boundary, and one for even-numbered octants,
terminated by reaching a square octant boundary. To determine the starting octant, we
observe that, at any point of a conic given by an equation S(x, y) = 0, the gradient of S,

TEXAS INSTRUMENTS EX. 1009 - 1015/1253

954 Advanced Geometric and Raster Algorithms

1 uctant 1 :;quare Move 1 Diagonal Move
t:.X t:.Y t:.X AY

1 1 0 1 1
2 0 1 1 1
3 0 1 -1 1
4 -1 0 - 1 1
5 -1 0 - 1 -1
6 0 -1 - 1 -1
7 0 -1 1 -r
8 1 0 1 -1

(a) (b) (c)

Fig. 19.31 (a) The eight drawing octants. (b) the corresponding directions of motion.
(c) a typical ellipse.

which is (2Ax + By+ D, Bx + 2Cy + £),points perpendicular to the conic (this was used
to determine the ellipse octants in the algorithm in Chapter 3). We use the coordinates of
the gradient to det.ermine the direction of motion (by rotating it 90° counterclockwise) and
hence the drawing octant. Since our starting point is (0, 0), this gradient is just (0, £).The
code fragment in Fig. 19.32 shows how the dassification into octants is done.

Now, for each octant we must determine what the value of a decision variable, d, is,
what its meaning is, and how to update it. When we move diagonaiJy, we will updated by
adding an increment v; for square moves, the increment will be called u. lf S(x, y) = 0 is the
equation of the ellipse, we defined by evaluating Sat the midpoint of the segment between
the next two possible pixel choices. Since S(x, y) < 0 inside the ellipse, and S(x, y) > 0
outside the ellipse, a negative value of d will indicate that the ellipse passes outside the
midpoint, and we will want to choose the outer pixeL When dis positive, we choose the
i.onerpixel. When dis zero, we must choose between the 2 pixels- Van Aken's choice (in
odd-numbered octants) is to make a square step whenever dis negative, and a diagonal step
otherwise. In even octants, he makes a diagonal step when dis negative, and a square step
otherwise.

In octant I , if we have just drawn pixel (x,, y,), we denote by d, the value we use to
decide between (x,. + I, y,) and (x1 + I, y1 + I). We write u1• 1 and v1• 1 for the quantities
to be added to d1 in order to create d1 +I' The work to be done at each pixel is therefore (I)
drawing the pixel, (2) choosing the next pixel to draw based on-the value of d;, (3) updating
u, and v1 to u1 • 1 and "• + 1 on the basis of the choice made, (4) updating d; to d, + 1 by adding
either u,. 1 or v, • ., and (5) checking for an octant change.

lnt GetOctant (int D, lnt £)
{

if (D > 0 && E < 0)
return (D < -E) ? I : 2;

If . • . I• Handle remaining six cases •I
} /• GetOctant • I

Fig. 19.32 A function for determining the drawing octant from the components of the
gradient.

TEXAS INSTRUMENTS EX. 1009 - 1016/1253

19.2 Scan-Converting Primitives 955

Recall that d1 + 1 can be computed from d1 by a differencing technique. Suppose we are
in the first drawing octant, have just drawn pixel (X;. y1), and have decided which pixel to
choose next using d1 = S(x1 + l , y1 + t>. lf we make a square move, then X;+ 1 = X; + I and
y1 + 1 = y1• The new decision variable d; + 1 is S(X; + 2, y1 + t>; the difference between this and
d1 is

= A(x, + 2)2 + B(x, + 2)(y1 + i) + C(y1 + 1:)2

+ D(X; + 2) + E(y1 + t> + F

- [A(x1 + 1)2 + B(x1 + I)(y1 + t> + C(y; + i)Z

+ D(x, + I) + E(y1 + i) + F]

= A[2(x1 + I) + I) + B(y1 +!) + D

= A(2(x,) + I) + B(y1 + t> + D + 2A.

On the other hand, if we make a diagonal move, then d; is S(x1 + 2, y, + 1), and the
increment is

= (2A + B)x;. 1 + (B + 2C)y1+1 + A + B/2 + D + E

= (2A + B)X; + (B + 2C)y1 +A + B/2 + D + E + [2A + 2B + 2C).

If we let 11; denote A [2(x;) + I] + B(y1 + i) + D, then for the square move we see that
111+1 = ,,.+ 2A. Similarly, ifv1denotes(2A + B)x1 + (B+ 2C)y1 +A +BI2+D +£,then
for a diagonal move, v1 + 1 = V; + (2A + 28 + 2C). To keep correct values of u, and v, for
both diagonal and square moves, we must update these values even if they are not used.
Thus, for a square move,

v1• 1 = (2A + B)xi+1 + (B + 2C)y,. 1 +A + B/2 + D + E

= (2A + B)(X; + I) + (B + 2C)y1 + A + 812 + D + E

= v1 + (2A + B);

for a diagonal move, u1• 1 = 11; + 2A +B. We encourage you to work out a table that shows
the increments in u, and v, for a square move or a diagonal move in each drawing octant (see
Exercise 19 .I 0). The algebra is tedious but instructive.

If k1 = 2A, "-t = 2A + B, and ~ = 2A + 28 + 2C, then the update procedure for the 11S

and vs can be described by the following rules.

Square move:

11;+1 = II; + k1,

Diagonal move:

TEXAS INSTRUMENTS EX. 1009 - 1017/1253

956 Advanced Geometric and Raster Algorithms

Let us now consider how to determine octant changes. We see that we leave drawing
octant 1 when the gradient vector points down and to the right-that is, when it is a multiple
of (1 , -I). In other words, we leave octant I when the sum of the two componen.ts of the
gradient vector goes from being negative to being zero (see Fig. 19.33).

Now observe that the components of the gradient vector,

(
iJS iJS) ox' iJy = (2Ax +By+ D, Bx + 2Cy +E),

can be expressed in terms of the values of 11; and v; given previously:

If we therefore check the sign of v; - ki2. we can detect when we leave the first drawing
octant. The corresponding check for leaving the second drawing octant is the sign of
II; - kt1.

Before we can write the actual code, however, we need to consider one last issue. When
we go from drawing octant I to drawing octant 2, the definition of d1 changes, as do those of
u; and v,; they still correspond to the increments for square moves and diagonal moves,
respectively, but the square moves are now vertical rather than horizontal, and the value
being updated is no longer S(X; + I, y1 + i) but rather S(x; + t. Y; + I). Using primes to
denote the values in octant 2, and unprimed symbols to denote the values in octant I , we
compute

d~ - d; = s(x; + 4, y1 + t) - s(x; + I , Y; + 4)
V; 3 I

= 2 - II; + gka - 2~'

vi - v; = [(2A + B)X; + (8 + 2C)y; + ~ + C + D + £]

- [(2A + 8)x; + (8 + 2C)y1 + A + ~ + D + E)

=-A+ C

II• - u = v - u - & + ~ f i i i 2 2.

2

This vector lies on a line of slope - 1

Fig. 19.33 While we draw in octant 1, the sum of the components of the gradient is
negative. When we enter octant 2, the sum becomes positive.

TEXAS INSTRUMENTS EX. 1009 - 1018/1253

19.2 Scan-Converting Primitives 957

The computations involved in deriving the first and third equations are straightforward
but long. The variables for incrementing u1 and v1 need to be updated as well. Assuming you
have worked out the table of increments, it is clear that ks' = ks, ks' = ks - k2, and k1' =
k, - 2ks + ks·

We now have all the tools we need to generate the algorithm, at least for two octants.
We include the coefficient F (the constant term for the conic) in the code, even though we
are assuming it is zero; for a more gen.eral conic, whose center is not an integer, the starting
point for the algorithm may not lie exactly on the conic, in which case F may be nonzero.
We leave it to you to experiment with this case.

The code for the algorithm in Fig. 19.34 is followed by a procedure, Conjugate, which
determines the coefficients for an ellipse (at the origin) from the endpoints of conjugate
diameters . If the points are P and Q, then the parallelogram whose vertices are P + Q,
P - Q, - P - Q, and -P + Q bounds the ellipse; the ellipse is tangent to this
parallelogram at the midpoints of the sides as in Fig. 19 .30.

The code finishes by entering the ending octant, counting the number of steps in the
square-step direction needed to reach the final pixel , then continuing the algorithm until that
many steps have been taken. We leave the details of this step to you (see Exercise 19.13).
Surprisingly, the code that updates the increments during the first two octant changes
actually works for all octant changes.

One last issue remains in drawing ellipses. As shown in Fig. 19.35, sometimes a
diagonal step in the algorithm takes the drawing point clear across to the other side of the
ellipse-it changes several octants at once. When this occurs, the algorithm breaks down
and marches away from the ellipse, as shown. It is remarkable that this is a form of
aliasing- the signal S(x, y) that we are sampling contains frequencies too high to be
resolved by sampling at integer grid points.

Prall has proposed a solution to this problem [PRAT85]. While the algorithm is
tracking pixels in drawing octant I , a jump across the ellipse causes the gradient vector to
change direction radically. In fact, the gradient vector in drawing octant I always has a
negative y component and positive x component. In jumping across the ellipse, we arrive at
a point in octant 3, 4 , 5, or 6. We determine the dividing line between these octants and
octants 7, 8, I , and 2, by setting the x component of the gradient to zero-that is, 2Ax +
By + D = 0. Since u1 = 2Ax1 + By1 + D + A + 812 , u1 can be used to detect such
crossings. Similar checks can be generated for each octant. Notice that these checks need to
be applied during only one type of move for each octant: one type of move steps away from
the ellipse, and hence the check is not needed, but one steps toward it, and hence the check
is needed. For further information on conic tracking algorithms see Exercise 19. 14 and
[Pm67; PRAT85; DASI89].

One other type of algorithm for conics has been developed by Wu and Rokne I WU89] ,
but is suited for only gray-scale displays. Instead of scan converting one pixel at a time, it
scan converts by blocks of pixels. Suppose we are stepping horizontally, and that the
curvature is concave up. If we have just drawn pixel (x, y), and after two more steps we are
drawing pixel (x + 2, y + 2), then the intervening pixel must be (x + I , y + 1). Similarly,
if after two more steps we are drdwing (x + 2, y), then the intervening pixel must be
(x + I , y). Only if after two steps we draw pixel (x + 2, y + I) is there any ambiguity:
Then, the intervening pixel may have been (x + I , y) or (x + I , y + 1). On a gray-scale

TEXAS INSTRUMENTS EX. 1009 - 1019/1253

958 Advanced Geometric and Raster Algorithms

I• Ordw an arc of a conic between the points (xs, ys) and (xe, ye) on the conic; •I
I• the conic is given by M + 8xy + Cl + Dx + Ey + F = 0. If the conic is a •I
I• hyperbola, the two points must lie on the same branch. •I
void Conic (

lnt .u, y.r,
lnt xe, ye,

I• Starting point •I
I• Ending point • I
I • Coefficients •I

{
lot A, 8 , C, D , £, F)

Int x, y;
Int octant;

I• Current point •I
I• Current ocumt •/

Int dx.rquare, dysquare:
In I d.xdiag, dydiag;
lnt d,, ,v,kl ,lc2,k3;
lnt dSdx, dSdy;

I• Chnnge in (x. y) for square moves •I
I• Change in (x. y) for diagonal moves •I
I• Deeision variables and increments •I
I• Components of gradient • I

lnt ocramCount;
lnt rmp;

I• Number of octants to be drawn •/
I• Used to perform a swap •I

ocranr = GetOcwn (D, £): I• Starting octant number •I
switch (octant) {

case I:
d = round (A + 8 * 0.5 + C • 0.25 + D + £ • 0.5 + F):
u = round (A + B • 0.5 + D);
• = round (A + 8 • 0.5 + D + £):
kl = 2 •A:
lc2 = 2 •A + 8:
k3 = 1c2 + B + 2•C;
dxsquare = I :
dysquare = 0:
dxdiag =I:
dydiag =I;
break;

case 2:
d = round (A • 0.25 + 8 • 0.5 + C + D • O.S + £ + F) ;
u = round (8 • 0.5 + C + £):
v = round (8 • 0.5 + C + D + £);
lc/ = 2•C;
lc2 = 8 + 2•C;
k3=2•A+2•8+2•C;
dxsquare = 0;
dysqtwre = l :

Fig. 19.34 (Cont.)

TEXAS INSTRUMENTS EX. 1009 - 1020/1253

19.2 Scan-Converting Primitives

dxdiag = I ;
dydiag = 1:
break:

. . . six more cases . ..
} I• switch •I

x = xe - xs; I • Translate (xs, ys) to origin. •I
y=ye - ys;
dSdx = 2 • A • x + 8 • y + D; I• Gradient at endpoint •I
dSdy = 8 • x + 2 * C * y + £:
I• This determines the ending octant. .t
octantCoum = GetOctant (dSdx, dSdy) - octant;
If (octamCoum <= 0) octantCount += 8:

I• Now we acrually draw the curve. • I
x = xs:
y=ys:
whUe (octantCormt > 0) {

If (octant & I) {
whUe (v <= k2 * 0.5) {

DrawPixel (x, y);
if(d < 0) {

x += dxsquare:
y += d)•sqrwre;
u += kl;
v+=k2;
d += u;

} else {

}

x+= dxdiag;
y + = dydiag;
u+= k2;
v+= k3;
d += v;

} I• while v <= k2 • 0.5 •I
I• We now cross the diagonal octant boundary. • I
d = round (d- u- v • 0.5 - k2 • 0.5 + 3 • k3 • 0 .125);
u = round (-u + v- k2 • 0.5 + k3 • 0 .5);

Fig. 19.34 (Cont.)

959

TEXAS INSTRUMENTS EX. 1009 - 1021/1253

960 Advanced Geometric end Rester AlgOI'ithms

v = round (v- k2 + k3 • 0.5};
kl = kl - 2•k2 +kJ;
k2 = kJ - k2;
Imp ., dxsquarr;
dxsquare = -dysquarr;
dysquare = tmp;

} else { I• Octant is even • I
while (u < k2 • 0.5) {

OrawPixel (x, y);
It (d <0) {

x+= dxdiag;
y += dydiag;
u +=k2;
v+-kJ;
d +=v;

} else {

}

x += dxsquare;
y ~ dysquarr;
u +=kl;
v += k2;
d+=u;

} I• while u < k2 • 0.5 •I
I • We now cross over square octant boundary. •I
d += u - v + kl - k2; I• Do v first; it depends on u. • I
v = 2 . u - v + kl - k2;
u += kl - k2;
k3 += 4 • (kl - k2};
k2 = 2. kl - k2;
tmp = dxdiag;
dxdiag = - dydiag;
dydlag = rmp;

} I• Octanl is even •I
OCUJnt++;
If (octa/11 > 8} octant -= 8;
octamCount--;

} I• while octantCount > 0 •I
Having tnttrrd last octam, continue drawing until you rrach tht fast pixtf;

} I• Conic •I

Fig. 19.34 (Cont.)

TEXAS INSTRUMENTS EX. 1009 - 1022/1253

19.2 Scan-Converting Primitives

I* Specify and draw an eUipse in terms of !be endpoints P = (xp. yp) and • I
I• Q = (xq, yq) of two conjugate diameters of !be eUipse. The endpoints are •I
I• specified as offsets relative to the center of !be ellipse, assumed to be !be •/
I• origin in !his case. •I
void Conjugate (int xp, lnt yp, lnt xq, int yq, int mode)
{

lnt xprod,tmp, xe,ye,A, B, C, D, E, F;

xprod = xp • yq- xq • yp;

If (xprod != 0) {
If (xprod < 0) {

}

cmp = xp; xp = xq; xq = tmp;
tmp = yp; yp = yq; yq = cmp;
xprod = -xprod;

A = yp * yp + yq * yq;
B = - 2 • (xp *YP +xq * yq);
C = xp • xp +xq •xq;
D = 2 • yq + xprod;
E = -2•xq•xprod;
F=O;

If (mode== FULL..ELUPSE) {
xe = xp;ye = yp;

I• If it is zero, !be points are collinear! • I

I• Set starting and ending points equal •I

} else { I• mode == ELLIPSE.ARC; draw only !be ate between P and Q •I
xe = xq; ye = yq;

}
Conic (xp, yp, xe, ye, A, B, C, D, E, F);

} I• if •I
} I• Conjugate •I

Fig. 19.34 The general ellipse algorithm.

961

display, however, we can simply draw both these pixels at half intensity. Thus, we can step
by 2 pixels at a time, reducing the computation substantially. At the junctions of drawing
octants, the algorithm must be tuned so that it does not overstep, but this is not too difficult.
The algorithm is cleatly suited only for gray-scale displays, but illustrates how certain
algorithms may be simplified when antialiasing is possible. We shall see this again in our
discussion of text.

19.2. 7 Thick Primitives

We are now ready to discuss thick primitives: thick lines, thick polylines, and th.ickened
general curves (thick lines, circles, and ellipse arcs were discussed in Chapter 3; here we
extend and refine the ideas presented there). The first step in scan converting thick
primitives is to decide what is actually in the primitive as a geometric object-that is, to

TEXAS INSTRUMENTS EX. 1009 - 1023/1253

962 Advanced Geometric and Raster Algorithms

Fig. 19.35 The breakdown of the algorithm for a thin ellipse.

define the reference model for a thick object. For example (see Fig. 19.36), does a thick
line look like a rectangle, or like a rectangle with semicircular endcaps, or li.ke something
else?

If we imagine the thick line as being drawn by a broad pen, we are in effect asking
whether the pen has a flat or a round tip. More mathematically, we can describe the choice
as one between the set of all points whose distance from the center line is less than one-half
of the width of the thick line (this includes the rounded ends) and the set of all points whose
distance from the center line along a normal (perpendicular) to the center line is less than
one-half of the width of the thick line. A third mathematical description that will prove
useful later is to consider two parallel copies of the center line, infinitely extended and then
pushed off from the center line by the same amount in opposite directions. The thickened
line consists of the area between these pushed-off lines, trimmed by two other lines through
the endpoints of the original segment. If these trim lines are perpendicular to the original
segment, the result is a rectangular thick line; if not, then the ends of the thick line are
slanted (see Fig. 19.37). These slanted ends can be joined to make thick polylines; shaping
the corners this way is called mitering.

A special case is to consider the line as being drawn with a pen with an aligned tip; that
is, the tip is a line segment that is always either vertical or horizontal. A thick line drawn
with such a pen looks like a rectangle if it is horizontal or vertical , and like a parallelogram
otherwise. You should draw a few such lines, and determine why this is a bad way to draw
thick lines. We mention this case only because it can be implemented quickly: We alter the
midpoint line-drawing algorithm to place several pixels at once, rather than just a single
one. Joints between horizontally and vertically drawn segments can be generated by
extending the segments beyond the join points and then, in addition to the original
segments, drawing the points lying in both extensions.

Fig. 19.36 A thick line may look like a rectangle or have rounded or slanted ends.
Which is the correct version?

TEXAS INSTRUMENTS EX. 1009 - 1024/1253

19.2 Scan-Converting Primitives 963

Fig. 19.37 We can define a wide class of thickened lines by pushing off parallel copies
of a segment and trimming by arbitrary lines through the endpoints. These slanted ends
can then be joined together to make thick polylines in a process called mitering.

Each of these classes of thick lines can be used to make thick polylines, as shown in
Fig. 19.38. Butt-ended lines do not join well-they leave a notch at the joinL~ (see Fig.
19.38a). Rounded-end lines join nicely-the exterior of the bend at each joint is a smooth
curve, and the interior is a sharp angle (see Fig. !9.38b). Slanted-end lines (of the same
thickness) join nicely only if the slant is the san1e on both sides-otherwise, the slanted
edges of the two lines have different lengths. We can achieve the same slant on both sides by
choosing the trim line to be midway between the two segments. If we miter-join lines that
are nearly parallel , the miter point extends well beyond the actual intersection of the center
lines (see Fig. 19.38d). This extension is sometimes undesirable, so trimmed miter joints
are sometimes used to join lines. The trim on the miter is a line perpendicular to the miter
line at some distance from the center-line intersection (see Fig. 19.38e).

These various methods of line joining are available in many dmwing packages,
including POSTSCRIPT, QuickDraw, and the X Windows System. Most such graphics
packages provide not only a line-join style, but also a line-end style, so that , for example,
we can use rounded ends but mitered joins for a polyline that is not closed.

There are several approaches to thickening general curves, including curves produced
by freehand drawings or by other nonanalytic methods. To draw a thickened curve, we can
use the method in Chapter 3 and simply convert the curve to many short line segments, each
of which is then drawn thickened. lf the segments are short enough and the resolution of the
output device is high enough, the result may be adequate. It is important that the short line
segments be constructed without rounding to integer coordinates (although the coefficients
for the equations may be converted to integers by the methods discussed for scan converting
geneml lines). l f the endpoints of the segments were rounded to grid points, then there
would be only a few possible choices for the segment slopes, and the curve would have a
highly twisted shape.

•

(a) (b) (c) (d) (9)

Fig. 19.38 Joining various classes of lines. (a) Butt-end lines mate poorly at joints. (b)
Round-end lines mate nicely, but have curved segments, which may not be desired in
some applications. (c) Mitered joints can be made by joining slant-end lines. (d) A miter
at a joint w here the angle is small may look bad. (e) Such joints can be trimmed.

TEXAS INSTRUMENTS EX. 1009 - 1025/1253

964 Advanced Geometric and Raster Algorithms

'-./,:X.,. • Original curve
. \.../ '1 ~ Rrst disk

/ ""'-.:: '1

"
® Pixels due to 2nd point of curve

l/ :\
....

® Pixels due to 3rd point of curve

• Pixels due to 4th point of curve

0 Pixels due to 5th point of curve

1\:
.~

/. .,
['-..; v. d .

~ Pixels due to 6th point of curve

s Pixels due to 7th point of curve

® Pixels due to 8th point of curve

0 Pixels due to 9th point of curve

0 Pixels missed because of diagonal step

Fig. 19.39 A disk is drawn around the starting pixel of the thick line. After that, each
pixel on the curve generates a semicircle. Notice the 2 pixels that were missed (shown
as large circles in the figure).

A different approach is to draw the curve with a circular pen; Posch and Fellner
[P0SC89] describe a clever way to do this . Their method is of particular interest because it
is designed for hardware implementation. The basic notion is first to scan convert the curve
into a list of pixels that are adjacent diagonally, vertically, or horizontally (called eight-way
stepping). This list of pixels is then expanded, so that any 2 pixels are adjacent horizontally
or vertically (called four-way stepping). At the start of the curve, a filled circle (disk) is
drawn. For each subsequent pixel, a half-circle (unfilled) is drawn, centered at the new
pixel, and with its diameter perpendicular to the line from the previous pixel to the current
one. Since there are only four possible directions of motion, there are only four possible
half-circles to be drawn. Figure 19.39 shows the technique being applied to a curve using
eight-way stepping instead, to show that , without the four-way stepping, some pixels are
missed.

One difficulty with this method is that, for odd-thickness curves, the algorithm must be
able to generate the points on a circle of half-integer radius centered on the original curve.
These can be generated with a modified midpoint algorithm by multiplying the coefficients
of the circle by 4. Another difficulty is that four-way stepping must be used to avoid gaps;
unfortunately. this generates rougher curves. The algorithm also generates individual pixels
instead of generating spans, so it is difficult to move the pixels to the screen quickly. The
shape data structure described in Section 19.7 can be used to assemble the pixels into spans
before they are copied to the screen.

19.2 .8 Filled Primitives

In Chapter 3, we discussed filled pnmtuves and the interiors of standard geometric
primitives such as the circle, rectangle, or ellipse. These were reasonably unambiguous.
The definition of interior for self-intersecting primitives is less obvious. We discussed two
definitions for closed (possibly self-intersecting) polylines in Chapter 3. One is the
even-odd or parity rule, in which a line is drawn from a point to some other point distant

TEXAS INSTRUMENTS EX. 1009 - 1026/1253

19.3 Antialiasing 965

(a) (b) (c)

Fig. 19.40 (a) A polygon filled using the even-odd rule. (b) A polygon filled using the
nonexterior rule. (c) A polygon filled using the nonzero winding rule.

from the polyline. If this line crosses the polyline an odd number of times , the point is
inside, if not, it is outside. It is important that the test line pass through no vertices of the
polyline, or else the intersection count can be ambiguous. The resulting interior region bas a
checkerboard appearance, as shown in Fig. 19.40(a). Another rule is the nonexterior rule,
in which a point distant from the polyline is used. Any point that can be connected to this
seed point by a path that does not intersect the polyline is said to be outside the polyline.
The resulting interior region consists of everything one might fill in if asked to fill in
whatever is within the curve. Put differently , if we think of the curve as a fence, the interior
is the region within which animals can be penned up. See, for example, Fig. J9.40(b).

A third rule is the nonzero winding rule. The winding number of a point P with respect
to a curve C that does not contain the point is defined as follows. Consider a point Q that
travels once around C . The endpoint of a vector from P to Q, after normalization. travels
along the unit circle centered at P. If we imagine the track of this endpoint as a rubber band,
and let the band contract, it will end up wrapped about the circle some number of times.
The winding number is the number of wraps (for clockwise wraps, the winding number is
negative).

For closed polylines , this number can be computed much more easily. As before, we
take a ray from the point out to a point far away from the polyline. The rar must bit DO

vertices of the poly! ine. If the ray is given parametrically as P + td , and d = l~] , we define
d' = [7] , which is just d rotated counterclockwise by 90•. Again , we coum infursections of
the ray with the polyline, but this time each intersection is assigned a value of +I or - I
according to the following rule: If the dot product of the direction vector of the edge of the
polyline with d' is positive, the value is + I, if it is negative, the value is - I. The sum of
these values is the winding number of C with respect toP. Pixels for which the winding
number is nonzero are said to be inside according to the winding-number rule. Figure
19.40(c) shows a region defined by the winding-number rule.

19.3 ANTIALIASING

To antialias a primitive, we want to draw it with fuzzy edges, as discussed in Chapter 3. We
must take into account the filtering theory discussed there and in Chapter 14, where we saw
that a signal with high-frequency components generates aliases when sampled. This fact
indicates that we need to fi Iter the signal before sampling it; the correct filter turned out to

TEXAS INSTRUMENTS EX. 1009 - 1027/1253

966 Advanced Geometric and Raster Algorithms

be a sinc(x) = sin(x)/x filter. We now consider the consequences of a mathematical analysis
of this situation.

If we compute the intensity of two images containing nonoverlapping primitives, we
can find the intensity of an image containing both primitives simply by adding the
ind.ividual intensity values (this principle of superposition is a consequence of defining the
image by an integral). By this reasoning, if we break down a primitive into many tiny
nonoverlapping pieces, we can compute an antialiased picture of it simply by computing the
images of each of the little pieces and then adding the results.

Taking this approach to its logical limit, if we can draw an antialiased image of a single
point, we can draw any antialiased primitive by representing it as a union of points, and
summing (by an integral) the antialiased values for all these points to compute the values
that should be drawn in the final image. We propose this not as a workable solution to the
ami aliasing problem, but as a motivation for various techniques. To avoid the technical
difficulties of defining intensities for regions with infinitesimal areas , like points , we will
instead speak of very small regions (dots). 6 What is the antialiased picture of such a dot? To
compute the intensity at a pixel (x, y}, we place a sine filter over the pixel, and convolve it
with a function 4> that is I above the dot and 0 elsewhere. Mathematically, assuming the dot
is at location (a, b) and the pixel is at (x, y), we get

• •
l(x, y) = J J 1/>(t, s) sinc(v'(t - x)2 + (s - y)'l) ds dt.

-·-· The integrand will be 0 except at points (t, s) that are close to (a, b); at those points it will
be approximately sinc(r), where r is the distance from (x, y) to (a, b)-that is, from the
pixel to the dot-and the intensity at (x, y) is approximately proportional to sinc(r). Thus,
an antialiased dOl (drawn in white on black) has a bright sp01 near its center and dim
concentric rings at larger distances from the center. (These rings are related to the
diffraction patterns produced when a light sh.ines through a pinhole-see [BERK68).)
Notice that, although sinc(r) is sometimes negative, it is impossible to represent these
values accurately, since we cannot draw a color darker than black. In the limit, as the dots
get very small, the approximation to sinc(r) becomes exact (although the values must be
scaled by the inverse of the areas of the dots to prevent them from becoming 0).

If we now use this relation to antialias a line (which is just a collection of points), the
result is a superposition of the individual antialiased patterns for the points7; the positive
ripples from one point cancel the • ·negative" ripples from another, and the net result is a
bright area near the line that fades gradually to black at greater distances. Furthermore,
since a line drc1wn on a plane has a great deal of symmetry (it is invariant under translation
along itself) , the sum of the antialiased values is a function of the distance from the line and
is independent of position along the line. This invariance suggests that, if we compute the
profile of the intensity as we move away from the line along some perpendicular, we might
be able to use the profile in a different way. Suppose the line is ever-so-slightly curved.lf, at
each point of the line, we lay down a copy of the intensity profile along the normal line to

6The matbemnlically inclined render may use delta functions to make this precise.
1More precisely, the result is an integral of the contributions from the individual points.

TEXAS INSTRUMENTS EX. 1009 - 1028/1253

19.3 Antialiasing 987

the curve at that point, the sum of these profiles 'M)Uid give a decent filtered image of the
curved line. Of coo~. at some dislallce from lhe curve these nonnallines overlap, but if
the line curvature is small, then the overlap will happen very far out, where the profile value
is nearly zero anyway. This idea has been used by Hatfield to generate the general
antialiasing scheme described in Section 19.3.3 [HATF89].

To antialias a filled region, we im~gine it as a collection of points, or as being built up
as a family of the lines described previously. The area solidly within tbe region has full
intensity, and the intensity outside the region falls off with distance. lf we compute what an
antialiased halfplane looks like, we can antialias otber regions by assuming lhat the edge of
the region is (locally) very like a halfplane. In actual practice, however, we first draw
antialiased lines or curves for the edges, then fill the region at full intensity.

19.3.1 Antialiasing Unes

ln Chapter 3, we discussed the Gupta-Sproull method for generating antialiased lines. For
each pixel near a line, the distance to tbe line is used to determine the brightness of the
pixel. In an efficient implementation, this dislallce is converted to an integer value between
0 and some small number, say 16, and this number is used as an index into a table of
gray-scale values. These gray-scale values were computed by determining the overlap
between a conical filter and the region represented by the line. For lines of a fixed width, the
possible overlaps of the filter and line can be computed a priori, but for general widths (and
for rectangles, discussed in Section 19.3.5) it is preferable to compute the weighted overlap
of the filter base with a halfplane. The overlap of the filter with a line can then be computed
by subtnlcting its overlap with two slightly offset halfplanes (see Fig. 19.41).

Recall that the distance from the pixel center to the line must be signed, since the
centers of a three-founhs-covered pixel and one-quarter-<:overed pixel are at the same
distance from the side of the line. A particularly clever trick is available here: In the
midpoint-line algorithm, the decision variable d determines whether the pixel center is on
one side of the line or on the other. 1be value of this variable is closely related to the
distance from the chosen pixel to the line. lf we let D(x, y) = ax + by + c, then our
decision variable at the point (x,, yiJ is just D(x,. Y; - t), and (x,. y1) lies on the line exactly
when D is 0. Thus, the amount by which D fails to be 0 measures the signed distance from a
(x;, y;) to the line. The implementation in Chapter 3 used exactly this fact to determine the
distance to the line.

(a) (b) (c)

Fig. 19.41 The cone filter c·entered at P overlaps both sides of the thin line. We can
compute the coverage of the filter over two halfplanes (band c), one bounded by each
side of the line, and subtract to obtain the actual line coverage (a) .

TEXAS INSTRUMENTS EX. 1009 - 1029/1253

968 Advanced Geometric and Raster Algorithms

A more complex indexing scheme is required to handle ends of lines. If the line is
butt-ended, we must compute all possible overlaps of a comer of a square with the base of
the cone filter, and we must store these in a table. This task is really pan of a more general
problem of drawing antialiased rectangles, aod we postpone further discussion of it to
Section 19.3.5 below.

The Gupta-Sproull method works for lines drawn in a foreground color on a
background, but does not handle the case where a second line crosses the first. Consider
two white lines drawn on a black background. If, during the drawing of the second line, the
intensity for each pixel is computed as a milt of white with the background, two results are
possible. If t.he current pixel value is used as the background intensity, then the point at
which the lines cross will be overly bright. On the other hand, if the background intensity is
taken to be black during the drawing of the second line, then points near the crossing of the
two lines will not be bright enough.

The problem is compounded when color is introduced. First, a decision must be made
about crossings. Is the color at the crossing point the color of the last line drawn? Or is it a
mix of the color already there and the color last drawn? ln essence, we must choose one of
the compositing operations described in Chapter 17. Unfortunately, the assumption made
in the Duff-Porter approach to compositing (that if a primitive covers a fraction a of a pixel,
it covers a fraction a of any other primitive in that pixel) is false in the generic case of
intersecting lines, so that using an a value compositing approach to choosing a color for the
intersection pixel fails us here.

The Texas Instruments Tl34020 chip provides a MAX operator that takes two pixel
values, src and desr, aod replaces dest with the larger of the two values. This use of the
larger value to provide a value for pixels at intersections of antialiased colored lines has
been a successful compromise.

An early paper by Barros and Fuchs [BARR79) describes a method for producing
antialiased I ines on a gray-scale device. The method is essentially a scao-lioe renderer for
polygonal regions (which include 1-piltcl-wide lines as a special case). All the polygons to
be drawn are accumulated, and then the intensity of each piJtel is computed by determining
the portion of the pixel not covered by lines. A subdivision approach determines disjoint
uncovered regions of each pixel , and the areas of such regions are then tallied.

Another approach to antialiasing of lines deserves mention, for the special case where
the resolution of the device is very small, perhaps 2 bits (as in the NeXT machine). Here,
the choice of pixel value is so coarse that Gupta-Sproull antialiasing is a waste of
computation. A strict area-sampling technique works perfectly well instead. (The difference
between area sampling and Gupta-Sproull is generally so small that, wben area sampling is
discretized to one of four levels, the results teod to be the same.) Several authors (PITr87;
PITr80] have proposed that the decision variable d for the midpoint algorilhm applied to
the line Ax + By + C = 0 (which can range in value between -A and 8 , for lines with
slope between -I and I) be used to compute the antialiased value: We simply compute
(d + A)I(A + 8). which can range from 0 to I, for pixels next to the geometric line. lf
only a few gray-scale values are ava.ilable (e.g., on a 2-bit-per-piJteJ machine), this approxi­
mation to the weighted overlap proves adequate. Because of its application to displays with
few bits per pixel, this approach has been caJled 2-bir anrialiasing.

TEXAS INSTRUMENTS EX. 1009 - 1030/1253

19.3 Antialiasing 969

Finally, Hatfield's method [HATF89], described in detail in Section 19.3.3, can be
applied rapidly to lines; in this case, it degenerates i.nto an extension of a Gupta-Sproull
scheme, in which the shape of the filter is defined at wiJI.

19.3.2 Antialiasing Circles

Before we discuss antialiasing of circles, let us establish some terminology. A disk is a filled
circle. A circle is the set of points at a fixed distance from a point in the plane, and hence is
infinitely thin. When we refer to a thick circle, we mean the set of points whose distance to
some center point lies between two values. The difference in the values is the thickness of
the thick circle. Thus, a thick circle can be thought of as the (setwise) difference of a large
disk and a slightly smaller one.

To antialias a circle drawn with a pen of unit thickness, we can do the following. For
each point (x, y) near the ci.rcle, let S(x, y) denote the decision variable in the circle
algorithm. Then S(x, y) is proportional to the signed distance of the point from the circle.
This number, appropriately scaled, can be used as an index into a Gupta-Sproull-style
look-up table, just as for lines. Recall that, with lines, we could take the overlap with two
offset halfplanes and subtract. For circles, we can do a similar operation: We can compute
the weighted overlap of the base of the filter with two concentric disks, and subtract the
results to get the overlap with a thickened circle. With circles, however, there is a difference:
The overlap of the base of the cone filter and a disk depends not only on the distance from
the pixel to the edge of the disk, but also on the radius of the disk (see Fig. 19.42a).

We therefore need different tables for disks of different radii. Observe that, however, if
we have a small region (i.e., a region contained in a disk of radius 2) near the edge of a disk
whose radius is 10 pixels, as in Fig. 19.42(b), and another at the same distance from a
halfplane, the coverage of the regions by the two primitives is similar (the difference is less
than 0.004 for most distances). Thus, we can safely approximate all disks of radius 10 or
greater as halfplanes, for the purpose of computing the pixel value in antialiasing, and can
therefore use the intensity table developed in the straight-line antialiasing algorithm for

This distance is the same

·~~-@ ~ ~
(a)

Large-radius
circle

(b)

Fig. 19.42 (a) The overlap of the base of the cone filter (shown as an open circle) and a
disk differs for disks of different radii, even at the same distances from the disks . (b) The
overlap of the base of the filter (or any other small region) and a disk of radius 10 is
about the same as the overlap of the filter base and a hatfplane.

TEXAS INSTRUMENTS EX. 1009 - 1031/1253

970 Advanced Geometric and Raster Algorithms

circles of large radii. Smaller circles need individual tables; one table for each integer-sized
disk, with linear interpolation to fill in the gaps, gives adequate results.

Pseudocode for an antialised circle algorithm is shown in Fig. 19.43. The algorithm
determines the intensity values for pixels near a unit-thickness circle. The method is to
determine, for each pixel near the circle of radius r, by how much it overlaps a disk of radius
r + t and a disk of radius r - t. and to subtract the two overlap values to find the overlap
with a circle of thickness 1. at radius r. Of course, all these overlap computations are
weighted. The sole difficulty is that, if r is not an integer, the overlaps with the two disks
must be linearly interpolated. For example, if r = 6.25, we need to know the overlap of the
pixel (remember that the pixel represents a round area in weighted-area sampling) with the
disk of radius 5.75 and with the disk of radius 6.75. We estimate the first number by
computing the overlap with the disk of radius 5 and the disk of radius 6, then interpolating
three-quarters of the way from the first to the second. The second number is estimated
similarly.

Finally, to render a thick circle (say 5 or more pixels), we can draw two concentric
circles and invoke a fill algorithm; for thinner circles, we can draw spans, as in Chapter 3.

I• Draw an antiaHased circle of radius r. •I
void AnlialiasedCircle (double r)
{

lot rO;
double[.
double i/ ,

i2,
i3;

double ilnnu,
iOutu:

I• The integer pan of (r + 112) •I
I• The fractional pan of (r + 112) •I
I• Intensity due to a disk of radius (r0 - I) •I
I• Intensity due to a disk of radius rO •I
I• Intensity due to a disk of radius (r0 + I) •I
I• Intensity due to a disk of radius (rO - 0.5) of

I• Intensity due to a disk of radius (r - 0.5) •I

rO =greater imeger less than or equal tor+ .5;
f = 0.5 + r - rO;
ror (each pixel near the scan-converted circle of radius r) {

d = distance to circle of radius r.

}

I• Proportional to the decision variable, S(x, y) •I
il = weighted area coverage of pixel by disk of radius (rO- I);
i2 = weighted area coverage of pixel by disk of radius (rO):
i3 = weighted area coverage of pixel by disk of radius (rO + I);

ilnner = (I - f) • il + f * i2: I• Interpolations •I
iOIIIer = (I - /) * i2 + f • i3;
inrensity = iOurer - ilnner,
WritePixel (current pixel, intensity);

} I• AntialiasedCircle •I

Fig. 19.43 Pseudocode for the antialiased circle algorithm.

TEXAS INSTRUMENTS EX. 1009 - 1032/1253

19.3 Antialiasing 971

A somewhat simpler algorithm is based on two observations. The first is that the
overlap of the filter with a thickened circle is (for circles with large enough radii) directly
related to the distance between the center of the filter and the circle. The second is that this
distance is directly related to the value of the residual at the filter center. It is easy to prove
that, for a point (x. y) near the circle, the residual F(x, y) = x2 + y 2 - R2 is approximately
2Rs, where s is the distance from (x, y) to the circle. Thus, by dividing the residual by twice
the radius, we can compute the distance to the circ,le. This distance can be used as an index
into a table of intensity values, and hence can be used to determine the intensities for points
near the circle (see Exercise 19.26).

19.3.3 Antialiasing Conics

Considerable effort has been expended on the search for a good way to generate antialiased
conics. Pitteway's 2-bit algorithm [P1T'T87] is fine for machines with a few bits per pixel,
but does not extend well to larger numbers of bits per pixel; it malces a linear approximation
to the weighted overlap that differs perceptibly from the correct value when displays with
several bits per pixel are used. Field • s circle and ellipse algorithm [FIEL86] can handle only
circles and aligned ellipses with integer centers, and does only unweighted area sampling. If
we can keep track of the curvature of the conic at each point, and if the curvature is not too
great, then using a collection of Gupta-SprouU-style look-up tables for circles of the same
curvature can be made to work, but at considerable cost.

Hagen [HAGE88] gives a general method for antialiasing lines, conics, and cubic
curves that is based on using an antialiasing value related to the distance of a point from the
curve as usual , but his mechanism for determining nearby pixels is clever. If we want to fuzz
out a curve over several pixels, we must determine which pixels are close to the curve. When
an incremental algorithm is used to compute the points of the curve, it is either stepping in a
principally horizontal direction (choosing between the east and northeast pixels at each
stage, for example), or in a principally vertical direction (e.g., choosing between the north
and northeast pixels at each stage). When the curve-tracking algorithm is stepping in a
vertical direction, we can find points near to the curve by stepping out horizontally, and
vice versa. As described in Chapter 3, however, this process leaves "notches" in thick
curves at the changes of quadrant. Moreover, if this technique is used to determine which
pixels to antialias, it leaves gaps in the antialiasing at the same points. Hagen's solution is to
widen horizontally soirtetimes, vertically other times, and diagonally at other times (see
Fig. 19.44).

Of course, this means that some points near the curve are assigned intensity values
twice. The two values assigned should be nearly equal, so this reassignment is not a
problem (assuming we are drawing in replace mode).8 A difficulty does arise, however, in
tightly bent curves (see Exercise 19. I 8). A pixel can be very near to two different parts of a
curve, as in Fig. 19.45, so the value assigned to it should be the sum of the values from the

1All the algorithms we present are best suited for drawing primitives on an empty canvas in replace
mode. To draw multiple primitives, we can generally draw the primitive on a private canvas, and then
copy it to the final canvas using a MAX operator or some compositing operation.

TEXAS INSTRUMENTS EX. 1009 - 1033/1253

972 Advanced Geometric and Raster Algorithms

Notch

I
p

(a) (b)

Fig. 19.44 Choosing where to compute antialiased values by determining which pixels
are near a curve. If we always move either vertically or horizontally to determine nearby
pixels, we get notches, as in (a). If we sometimes move diagonally, these notches can
be filled in, as in (b).

two parts. Hagen notes this problem but presents no solution. Note that simply
accumulating values in a pixel will not solve the problem: The pixel may be assigned a value
twice either because of an overlap between a two different widenings of the curve (e.g . • a
pixel that is hit by both a horizontal and a diagonal widening, such as pixel Pin Fig. 19.44),
or because it is close to two different parts of the curve (e.g., pixel Q in Fig. 19.45).

Hagen's paper concludes by proposing a method for antialiasing of such curves using
width scans: At each point, a line is drawn normal to the curve (using a scan-conversion
algorithm for lines), and then an intensity is computed for each (sufficiently close) point
along this normal line. This notion, described earlier, bas been implemented and improved
by Hatfield [HATF89]. He observes that, in scan converting a curve defined by an implicit
function (such as F(x, y) = x 2 + y 2 - R2 for the circle), when we compute the residue at
each point P of the curve, we are computing various partial derivatives of the function.
These in tum give the direction vector for a normal line to the curve. 9

We can also find a good approximation to the place where a cubic curve crosses
bet~<een two pixels by comparing the residuals at the pixels and doing a linear interpolation
to infer where the residual is zero (see Fig. 19.46). If the residual is not zero at this point,
iterating the procedure once will produce a very good estimate of the zero-crossing. (This
technique is actually applicable to curves defined by higher-order polynomials as well.)

We can also compute, from the partial differences, a good approximation of the radius
of curvature at each point. The formula for this is complex, but involves only the first and
second derivatives of the implicit function F. The radius of curvature is the radius of the
circle that best appro11imates the curve at the point; we therefore consider t.he curve to
locally be a circle of that radius.

Thus, for each point on t.he scan-converted curve, we know the slope of the curve, the
direction vector of the normal, the distance to the curve, and the radius of curvature of the

' Recall that we used the gradient in Chapter 3 to determine rhe normal vector.

TEXAS INSTRUMENTS EX. 1009 - 1034/1253

19.3 Antialiasing 973

Fig. 19.45 On the inside of a tightly bent curve, points are close to two different
pieces of the curve, and so should be brighter.

curve. Instead of horizontal, vertical, or diagonal stepping to widen the curve, we now scan
convert the nonnal line to the curve, and compute the distance to the curve for each pixel.
We use this distance as an index into an intensity profile describing the falloff of intensity as
we move away from a circle whose radius is the current radius of curvature. To do exactly
this would require computing (or providing by fine-tuning) an intensity profile for each
possible radius of curvature, which is impractical. Fortunately, for radii greater than 10,
Hatfield shows that assuming that the curve is straight at the point yields adequate results.
For noninteger radii of curvature, indexing into adjacent (integer-radius) tables and
interpolating can smooth out the results.

If we start with an intensity profile for an antialiased halfplane, we can compute the
appropriate intens.ity profile for a narrow line or curve by shifting the profile slightly and
subtracting. This corresponds to taking a halfplane and subtracting out a slightly shifted
halfplane to generate values for a thin line. This technique works well for shifts as small ast
pixel (see Fig. 19.47). Por shifts smaller than this, the lines look faint, but not thin. Of
course, the total intensity of the pixels described by this profile curve is proportional to the
area under the curve, so, to get comparably intense narrow curves, we must multiply the
intensity profile by a number greater than I. Hatfield reports that choosing the profile so as
to maintain the intensity of the line without smearing is still more a matter of art than of
science.

We can treat thick lines in a similar fashion, by simply adding up a collection of offset
intensity profiles. For very thick curves, it is best to antialias the outside of the curve, and
just to area fill the inside.

' I'..

p 0

ey ~ ~P Negative residual her osltive residual here

Fig. 19.46 The curve passes between the grid points P and Q, and hence the residuals
at P and Q have opposite signs. If the residual at Pis -10 and the residual at Q is 5, we
can estimate that the curve crosses at a point two-thirds of the way from P to Q.

TEXAS INSTRUMENTS EX. 1009 - 1035/1253

974 Advanced Geometric and Raster Algorithms

I"'"
(a) (b)

(c) (d)

Fig. 19.4 7 The intensity profile for a halfplane is shown in (a). In (b), a second copy has
been slightly displaced from it. In (c), the right half of the difference between them is
shown; in (d), we see the full profile for a narrow line.

Note that the various lines along which the antialiasing is done may intersect if the
width of the intensity profile is greater than the radius of curvature (see Fig. 19.48). The
resulting intensities must be accumulated rather than just stored in the output pixmap.

19.3.4 Antialiasing General Curves

Methods for antialiasing general curves are few. One approach is to consider the curve as a
sequence of very short straight lines and to use polygon antialiasing methods rruRK82;
CROW78]. Another approach, described by Whitted [WHIT83], actuaUy allows painting
with an antialiased brush. The brush (a square array of pixels) is created at a very high
resolution (it is 16 times as dense in each direction as the canvas into which the paint will be
applied), and then is filtered to eliminate high-frequency components (the filter reduces the
frequencies to one-sixteenth of the high-resolution sampling frequency; since this high­
resolution brush eventually determines the values of pixels in a low-resolution bitmap, this
filtering is necessary to avoid aliasing). The path along which the brush is dragged is also
stored at high resolution (16 times the resolution in each direction). For each point on the
path, those pixels in the high-resolution brush that correspond exactly to pixels in the

Fig. 19.48 When the radius of curvature is small but the intensity profile is wide,
different points of the curve may contribute to the same output pixel.

TEXAS INSTRUMENTS EX. 1009 - 1036/1253

19.3

Filter base

Antialiasing

These distances are used
to index into a table.

975

Fig. 19.49 We determine the intensity value for P by computing P"s distances from
each of the edges at the corner. This pair of numbers is then used as an index into a
look-up table.

low-resolution output pixmap are copied. Furthermore, each pixel in the brush and the
output image is given a z value, and a z-buffer algorithm is used to control pixel copying. If
the brush is given any nonflat (e.g., hemispherical) profile, then it does not overwrite itself
each time it is moved slightly. Furthermore, a values (coverage values) like those described
in Section 17.6. I are used to enhance the appearance of edges. The results of this technique
are impressive (see Color Plate rv.2), but the computations for the image are costly,
especially in terms of memory, since each image pixe.l needs R, G, B, and z values, and
each brush pixel requires R, G, B, z, and a values. On the other hand, the preparation of
brushes, although expensive, is done only once per brush, and catalogs of brushes can be
stored for later use. In particular, brushes that draw lines of various widths can be generated
so as to create smooth curves, although this technique becomes impractical for very wide
curves.

19.3 .5 Antialiasing Rectangles, Polygons, and Line Ends

Gupta and Sproull [GUPT81 a) present a method for generating antialiased line ends as well
as lines. To begin with, computing antialiasing va.lues for pixels near the comer of a large
rectangle can be done explicitly, just as it was for lines. In this case, however, it depends on
two numbers-the distances to each of the nearby sides-instead of on just the distance to
the line. The overlap of a rectangle and the filter base for a pixel are shown in Fig. 19.49.
What if the rectangle is very thin, however, as in Fig. 19.50? The filter base for pixel Q hits
three sides of the rectangle. We can compute an antial iasing value for Q by subtraction: We
compute its filter base's weighted overlap with two rectangles whose difference is the small
rectangle, and subtract the two numbers to get the weighted overlap with ·the small
rectangle. Thus, instead of having to make a table of values for overlaps for all possible

(a) (b) (c)

Fig. 19.50 The intensity value for a pixel near the end of a thin rectangle (or a thick line)
can be computed by subtraction. Here, intensity for pixel Q in (a) is obtained by
subtraction of (c) from (b).

TEXAS INSTRUMENTS EX. 1009 - 1037/1253

976 Advanced Geometric and Raster Algorithms

distances from the pixel center to the four sides (which would be a table with four indices),
we can use a two-index table twice, and perform a subtraction. If the pixel overlaps all four
sides, we need to perform another addition and subtraction.

In a similar fashion, we can antialias a rectangle with rounded e nds by computing the
intensity of a rectangle plus that of a half-disk. Mitered thick lines can be trear.ed by the
methods used for a rectangle and, according to Hagen [HAGE88], polygons can be handled
similarly. The intensity of a point near a corner of a polygon is computed by lookup into the
tab.le for the comer of a rectangle. If the angle is very different from 90°, the results are not
particularly good. Hagen uses two additional tables , for 45° and 135° angles, as
representative of acute and obtuse angles, and obtains good results with little effort.

19.4 THE SPECIAL PROBLEMS OF TEXT

The algorithms given so far have generated bitmap or antialiased versions of various
geometric primitives, but we have not yet dealt with text. Text is a highly specialized entity,
and our earlier techniques are usually not sufficient. In Chapter 3, we discussed using a font
cache to store characters that could then be copied directly to the bitmap, but we also
observed certain limitations of this approach; A different cache may be needed for each size
of text , and the intercharacter spacing is fixed. Furthermore, although versions of bold or
italic text can be creat.ed from this font cache, they are usually unsatisfactory.

Consider the letter " m." How do we create a bitmap version of an "m" from a precise
description of it , given as a geometric drawing, by a font designer? Figure 19.51 shows a

0 0 0 0 0 0 0 0 0 0 0
0 0 0
0 • 0 0
0 • • • • • 0 0
0 • 0 • 0 0 0 • • 0 0
0 • 0 • 0 00 • • 0 0
0 • 0 • 0 0 0 • • 0 0
0 • 0 • 0 00 • • 0 0
0 • 0 • 0 0 0 • • 0 0
0 • 0 • 0 0 0 • • 0 0
0 • 0 0 • 0 0 0 • • 0 0
0 • 00 • 0 0 0 • • 00
0 • 00 • 000 • • 00
0 • 00 • 000 • • 0 0
0 • 0 0 • 0 0 0 • • 0 0
0 • 0 0 • 000 • • 0 0

(a) (b)

• Fig. 19.5 1 The bitmap version of
• • • • • the character looks bad because the • • • • • middle leg is too thin. (a) The outline • • • • • • • • • • (fi"IIJC"Ifl of the character. (b) The pixels within
• • • • • il i II the outline have been made black. (c) • • • • • II I II The appearance of the resulting char-

(C) acter. at full scale and reduced.

TEXAS INSTRUMENTS EX. 1009 - 1038/1253

19.4 The Special Problems of Text 977

drawing and a bitmap representation of an "m." Notice that, even with very careful
scan-conversion, the middle leg of the "m" is thinner than are the outer two.

Thus, characters cannot be scan converted on a stroke-by-stroke basis. The geometry
of character shape is deeply interrelated-certain elements must have the same width,
certain topological characteristics must be preserved, and certain relationships among
different characters in the same font must be preserved (in some fonts, for example, a width
of a vertical segment of a capital ''H'' may need to be the same as the width of the hole in a
capital "0"). Even if one manages to create characters with the right geometric
relationships within and among then, there are artifacts that must be avoided. For example,
in generating a capital "0'' from a font-designer's plan, we must create two concentric ova.!
arcs. When these are scan-converted to generate pixels representing the lener at some poin.t
size, the results can be disastrous. Figure 19.52 shows a letter "0" on a grid and the results
of the scan-conversion process. The top of the "0" pokes just above a scan line, so that
exactly 1 pixel on that scan line is turned on. The resulting character, which is said to have a
pimple, is unattractive and difficult to read. Bitmap font-generating software must avoid
such artifacts. Various vendors have developed rule-based software for satisfying geometric
and typographical considerations such as these, but fonts must still be adjusted by hand,
especially at very low resolutions. Such problems as these are only the most obvious. A
great many others also arise, and addressing these is the task of the specialized field of
digital typography; for further information, see [RUBE88).

In many ways, antialiased text is simpler than single-bit-per-pixel text. As long as the
character is going to be antialiased, its location is irrelevant (antialiasin.g happens in the
continuous, not in the discrete, world), so subpixel specification of character locations is
possible, which is needed for high-quality output. Also, such artifacts as pimples, holes,
and uneven-width stems disappear automatically. The problem that does remain is
memory. Fonts are typically described by sequences of spline curves giving an outline for
each character. Precomputing the appearance of all possible characters in a font (at several
different subpi.xellocations, called phases) requires an immense amount of storage. Naiman
and Fournier [NAfM87] estimate that, for a typical screen pixel density with a resolution of
8 bits per pixel, storing Roman, bold, italic, and bold-italic versions of two 128-character
fonts at five point sizes and eight phases in both the vertical and horizontal directions
requires over 50 MB of storage. Having 64 different phases may seem excessive to anyone

0 0 0 0 0 0 0 0 0 0 00 0 0 0
0 0 0 0 0 0 0 0 0 0 o.o
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 000
0 0 0 0 0 0 0 0 0 0
0 0 000 00 00 0

Fig. 19.52 Scan converting a letter "0'" can generate a pimple at the top of the letter.

TEXAS INSTRUMENTS EX. 1009 - 1039/1253

978 Advanced Geometric and Raster Algorithms

who has not tried to produce high-quality text ourput. But recall that we are talking about
two fonts in only five sizes. Even ignoring phases, if we expand this to I 0 fonts in I 0 sizes,
we soon approach the same 50 MB.

Another way to generate a character from such a family is to scale and translate the
spline curves until they represent the character in the correct posirion,10 and then to compute
the antialiased image of the character at this position. This approach requires recomputing
the antialiasing for each character every time it is used, and is computationally impractical
unless clever methods for accelerating the process are discovered. Naiman and Fournier
have developed just such a method. They decompose each character into subpieces much
like the shape data structure described in the next section: each character is represented by a
union of rectangles. This decomposition is done by scan converting the character at some
very large point size to generate a master for it. This master is then broken into rectangles,
and all smaller-sized characters are derived from the master by filtering.

At the most basic level , the filtered character is generated by convolving the master
character (an m x m array of Os and Is, where m is typically much larger than the largest
size character to be produced) with a filter function, which we represent as anj x jarray of
numbers whose sum is 1.0. The convolution is done by selecting an array of sample points
within the master character array. If the output character is to beag x g array (where g is
less than m, of course), the sampling grid is also g x g, and the space between samples is
mfg. Notice that the sampling grid can be placed in mig different positions in each of the
horizontal and vertical directions (these offsets are the phases of the character). At this
point. a copy of the/ x /filter array is placed at each of the points in the sampling grid, and
a value for the sample poim is computed as follows: For each point in the filter array, the
value of the filter is multiplied by the value in the master character bitmap at that point, and
these results are summed. The resulting g X g array of samples is the filtered character (see
Fig. 19.53).

Naiman and Fournier observe that computing the filtered value at each pixel is
unnecessarily expensive. They represent the filter by a summed area table, as in Section
17 .4.3; it is then easy to compute the filtered value of any rectangle. Since the master
character is decomposed into rectangular pieces, they simply loop through all the rectangles
in the master, compute overlaps with the filter box at the sample point, and determ.ine the
contribution to the intensity at the sample point by using summed area-table lookup. These
intensities are accumulated over all rectangles in the master; the final result is the intensity
of the pixel. Although this calculation must be done for each sample, it is still much faster
on the average than is computing the filtered value at each point directly. We can improve
the performance of the algorithm considerably by doing extent checking on the rectangle
and the filter box before anything else, and by using inter-sample-point coherence in the list
of rectangles that are intersected.

Antialiased text looks very good, and is already in use in the YODA display developed
at IBM [GUPT86). This kind of text, at normal size and magnified, is show in Color Plate
IV.3.

10Stightly different curves may be needed to define a font at different sizes - scaling is not always
sufficienl.

TEXAS INSTRUMENTS EX. 1009 - 1040/1253

19.5 Filling Algorithms 979

(a) (b) (c) (d)

Fig. 19. 53 (a) The master character overlaid with the sample grid. (b) A picture of the
continuous filter. (c) A gray-scale representation of the filter, enlarged. (d) The filtered
character, also enlarged. Courtesy of Avi Naiman, University of Toronto.

19.5 FILLING ALGORITHMS

Sometimes, after drawing a sequence of primitives, we may wish to color them in, or we
may wish to color in a region defined by a freehand drawing. For example, it may be easier
to make a mosaic pattern by creating a grid of lines and then filling it in with various colors
than it is to lay down the colored squares evenly in the first place. Note that, when the first
technique is used, no 20 primitives are drawn: We use only the 20 areas that happen to
make up the background after the lines are drawn. Thus, determining bow large a region to
color amounts to detecting when a border is reached. Algorithms to perform this operation
are called fill algorithms. Here we discuss boundary fill, flood fill, and tint fill. The last of
these is a more subtle algorithm, being a type of soft fill. In it, the border of a region is
determined not by the point at which another color is detected, but rather by the point at
which the original color bas faded to zero. Thus, a red region that fades to orange and then
yellow (as might occur in the inside of a yellow circle drawn on a red canvas with
antialiasing) can be converted to blue using tint fill. The orange areas are partly red, so their
red component is replaced by blue; the result is a blue area, fading to green and bounded by
yellow.

In all the filling algorithms we discuss, the value to be assigned to the interior pixels is
called new Value. Following Fishkin and Barsky [FlSH84], each algorithm can be logically
divided into four components: a propagation method, wllich determines the next point to be
considered; a start procedure, which initializes the algorithm; an inside procedure, which
determines whether a pixel is in the region and should be filled; and a set procedure, which
changes the color of a pixel.

19.5 .1 Types of Regions, Connect ivity, and Fill

A region is a collection of pixels. The.re are two basic types of regions. A region is
4-connected if every 2 pixels can be joined by a sequence of pixels using only up, down,
left, or right moves. By contrast, a region is 8-connected if every 2 pixels can be joined by a
sequence of pixels using up, down, left, right, up-and-right, up-and-left, down-and-right,
or down-and-left moves. Note that every 4-connected region is also 8-connected.

TEXAS INSTRUMENTS EX. 1009 - 1041/1253

980 Advanced Geometric and Raster Algorithms

••• ooo
••• ooo
••• ooo
ooo •••
ooo •••
ooo •••

(a)

••••••• e ooo • • • eo••• o•
••••••

(b)

••••••• ••••• •• • • ••• o• • •••••
(c)

Fig. 19.54 The black pixels in (a) define an a-connected region that is not 4-
connected, since the diagonal between the two squares is not a 4-connection. The
white pixels in (b) form the interior of the region if the region is interior-defined. The
light· and dark-gray pixels are also in the interior if the region is boundary-defined by
black pixels. If we try to fill this region with dark gray, starting at a white pixel, the result
may be the one shown in (c), where the pixels on the extreme right were leh unfilled
because of the dark-gray pixel between them and the starting point.

A region can be defined in two ways. For each, we use a starting pixel, P. The
imerior-defined region is the largest connected region of points whose value is the same as
that of the P. A bowufary-defined region is the largest connected region of pixels whose
value is nor some given boundary value. Since most fi 11 algorithms work recursively, and
the recursion terrninat.es when the next pixel already has the new color, problems may arise
if the new value appears within a boundary-defined region, since some branch of the
recursion may return prematurely (see Fig. 19. 54).

Algorithms that fill interior-defined regions are called flood-fill algorithms; those that
fill boundary-defined regions are called boundary-fill algorithms. Since both start from a
pixel within the region, they are sometimes both called seed-fill algorithms.

19.5.2 The Basic Filling Algorithms

The most primitive propagation method is to move from the starting pixel in all four or all
eight directions and to apply the algorithm recursively. For the FloodFill and Boundary Fill
procedures given here, we have already determined the inside of the region, and the
pixel-setting routine is just a call to WritePi.xel. Figure 19.55 presents the code for the
4-connected versions of the algorithms; the code for the &-connected version has 8 recursive
calls instead of four in each procedure.

These procedures, although simple, are highly recursive, and the many levels of
recurs.ion take time and may cause stack overflow when memory space is limited. Much
more efficient approaches to region filling have been developed [LIEB78; SMIT79;
PAVL81]. They require considerably more logic, but the depth of the stack is no problem
except for degenerate cases. The basic algorithm in these approaches works with spans.
These spans are bounded at both ends by pixels with value boundary Value and contain no
pixels of value new Value. Spans are filled in iteratively by a loop. A span is identified by its
rightmost pixel; at least one span from each unfilled part of the region is kept on the stack.

The algorithm proceeds as follows. The contiguous horizontal span of pixels
containing the starting point is filled. Then the row above the just-fi lled span is examined
from right to left to find the rightmost pixel of each span, and these pixel addresses are

TEXAS INSTRUMENTS EX. 1009 - 1042/1253

19.5

void AoodFill4 (

Filling Algorithms

I• Starting point in region •I
I• Value that defines interior •I

981

lnt x, lnt)',
color oldValu~,

color newM-Ilu~) I• Replacement value. must differ from oldValue •I
{

if (ReadPixel (x.y) == o/dValue) {
WritePiJ<ei (x , y , new Value);

}

AoodFiU4 (x, y - I , oldValue, newValue);
AoodFill4 (x, y + I, oldValue, new\blue);
Aoodfill4 (x- I, y, oldValue, new \blue);
AoodFiJI4 (x + I, y, oldVolue, newValue);

} I• AoodFill4 •I

void BouodaryFill4 (
int x, lnt y, I• Starting point in region • I

{

color boundary\blut,
color newVa/ue)

I• Value that defines boundary •I
I• Replacement value •I

color c = ReadPixel (x.y);
i.f (c != bo•mdaryVo/11~ && I• Not yet at the boundary .. . •I

}

c != new Value) { I • Nor have we been here before. . . •I
WritePixel (x, y, new Value);
BoundaryFill4 (x, y - I, bo•mdaryValue, newValue);
three other cases;

} I • BoundaryFill4 • I

Fig. 19.55 The flood-fill and boundary-fill algorithms.

stacked. The same is done for the row below the just-filled span. When a span has been
processed in this manner, the pixel address at the top of the stack is used as a new start.ing
point; the algorithm tenninates when the stack is empty. Fig we 19.56 shows bow a typical
algorithm works . In Fig. 19.56(a), the span containing the starting point bas been ti lled in
(the starting point is shown with a hollow center), and the addresses of numbered pixels
have been saved on a stack. Tile numbers indicate order on the stack: I is at the bottom and
is processed last. The figure shows only part of the region-tilling process; we encourage you
to complete the process, step by step, for the rest of the region (see Exercises 19. 19 and
19.20).

This algorithm can be further improved by avoiding redundant examinations of
adjacent scan lines [SMITI9]. lf, after a scan line bas been filled, the line just abo\'e it is
scanned for new span, and all the new spans have extents that lie entirely within the extents
of the current scan line's spans (called the shadow of the current scan line), then during

TEXAS INSTRUMENTS EX. 1009 - 1043/1253

982 Advanced Geometric and Raster Algorithms

(b)

(c) (d)

(e) (f)

Fig. 19.56 The progress of the recursive fill algorithm. (a) The region with one span of
pixels filled. The starting pixel has a hollow center. (b) through (f) Filling of subsequent
spans.

processing of the upper scan line, the one beneath it does not need to be scanned for new
spans. Also, the process of scanning a line for the spans can be combined with the process
of tilling the pixels, so multiple reads of each pixel are not necessary.

Better still, the entire process of scanning the lines above and below the current line can
be accelerated at the cost of slightly greater memory use. After filling the current span of
pixels, the line above is searched for a pixel that is connected to the current span, and this
seed pixel is pushed onto the stack, along with the endpoints of the currem span (henceforth
called the parent span). The fill procedure is then invoked by starting at the seed pixel. If,
after the fill procedure, the span that was filled does not extend past the ends of the parent
span, scanning of the shadow of the parent span continues until another seed pixel is found ,
and this seed is used for starting a till. ln many cases, the span above the current span will
be as large or larger than the current ~'Pan, so that scanning for add.itional seed points is
unnecessary [LEV082).

TEXAS INSTRUMENTS EX. 1009 - 1044/1253

19.5 Filling Algorithms 983

19.5.3 Soft-Filling Algorithms

Son filling is used to fill a region whose edge is blumd for some reason, typically
antialiasing. It has been investigated by several authors [LEV078; SMITI9] , and Fishkin
and Barsky have greatly extended Smith's techniques [FISH84]. We assume that the region
is initially rendered in some foreground color against some other background color. If the
region to be filled has an associated a value, as in Section 17 .6.1, 'M! can use it to detect the
points inside the region and determine how they should be set: The newValue is mixed with
the background color according to the fraction a , as is discussed in fLEV078]. But many
regions may require recoloring even though an a value is unavailable. Following Fishkin
and Barsky, let us make three assumptions:

I. The region is rendered in a foreground color, F, against a background color, C. Each
pixel in the image is a convex combination of F and C; that is , P = IF+ (I - 1)C.

2. We have a region-traversal algorithm that visits each point once. The improved
seed-filling algoritbm can be tuned to do this; alternatively, 'M! can mark each visited
pixel with a flag.

3. The colors F and Care known and are not equal.

The basic algoritbm for SoftFill is shown in Fig. 19.57.
Only the second step of this algorithm is difficult. Assuming that the colors are

expressed as RGB triples , and writing F = (F8 , Fe, Fa), and similarly for C and P, 'M!

know that, for some t , the following equations hold (by assumption 1):

P8 = tF8 + (I - r)C8 , Pc = tFc + (I - t) Cc, Pa = tF8 + (I - 1) Ca.

If Fa ~ C8 , 'M! can solve for 1 using just the first equation. If not, we can use the
second, or even the third. TWo problems arise. What if aU sbt values on the right-hand sides

void LinearSoftFill (
regionType ngion,

{

color F, I• Foreground color •I
color C, I• Background color •l
color IV) I• New foreground color •I

for (each pixel in the region) {

}

color P = color value for the pixel;
find 1 so thorP = tF +(I - t) C;
replace P with tN + (I - 1) C:

} I • LinearSoftFill *'
Fig. 19.57 The basic soft-fill algorithm.

TEXAS INSTRUMENTS EX. 1009 - 1045/1253

984 Advanced Geometric and Raster Algorithms

are pairwise equal? What if the t values obtained by solving the three equations differ? The
first situation occurs only if F and C are identical , which is ru.led out by assumption 3.
(Note that this assumption is entirely natural: If you were given a picture of a polar bear in a
snowstorm and were asked to redraw the polar bear in brown, how >wUuld you know where
the bear stopped and the snow began?) The second situation is more serious. In the strictest
mathematical sense, it cannot happen, because P was formed as a linear combination ofF
and C. Nonetheless, in an integer >wUrld (which is how color values are typically expressed),
there is roundoff error. The best inference of the value of 1 will come from the equation with
the greatest difference between the F and C values. Thus, a slightly more robust algorithm
is given in Fig. 19.58.

This algorithm has the disadvantage that it allows filling against a single background
color only. We would like to be able to fill a picture of a frog sitting on a red-and-black
checkerboard. Fishkin and Barsky [FlSH84] address this problem by using some linear
algebra, as follows . In an n-dimensional linear space, any sufficiently general n + I points
determine a coordinate system. (All that is required is that no (n - I)-dimensional affine
subspace contain them all. For example, in 30 , four points are sufficiently general if no
plane contains all of them.) [f the points are v0, v1, ••• , v., then any point pin the space

void LinearSoftFil l (
region Type region ,

{

color F, I• Foreground color •I
color C, I• Background color •I
color N) I• New foreground color •I

int i;
lnt d:

I • Initialization section *'
find the i that maximizes IF, -C1I over i = R, G, 8 ;
d= IF;-C;I;

I • Inside Test •I
for (each pixel} {

}

color P = color value for rhe pixel;
int r = (P; - C;) / d;
If (r > some smnll value) {

}

I• Setting pixel value • I
replace P wirh eN+ (I - c) C;

} I• LinearSoftFill •I

Fig. 19.58 The more robust sof t-fill algorithm.

TEXAS INSTRUMENTS EX. 1009 - 1046/1253

19.5 Filling Algorithms 985

can be wriuen uniquely as a combination

where the t1 are real numbers. This is typically done with v0 being the origin of the space and
v1, ••• , v. being a basis. By assuming that pictures drawn in several colors have pixels
whose values are linear combinations of those colors, Fishkin and Barsky observe that each
pixel value lies in an affine subspace of the color space. In the case of a foreground color
drawn against a background color, this subspace is a line- the line consisting of all color
triples between the foreground color and the background color in RGB space. If the
foreground color is drawn aga.inst two background colors, then the subspace is a plane
determined by the locations of the three colors in RGB space (unless the three colors all lie
on a line, a degenerate case; this is an example of a set of points being insufficiently
general). If the foreground color is drawn against three background colors, then the
subspace is the entire RGB space, unless all four lie in a plane (another degeneracy). Notice
that the analysis can go no further: Any five points in RGB space Lie in a 3D affine space,
and hence constitute a degenerate case. (If the colors are represented by n spectral samples,
where n > 3, then more complex cases can be handled by similar methods.)

So let us consider the case of a foreground color, F, drawn against two background
colors, C and D. Each pixel in the image is a convex combination of these:

P = I * F + s * C + (I - 1 - s) * D.

The problem is to determine the values of 1 and s, so we can replace the pixel with the color

P = 1 • N + s * C +(I -I-s)* D.

Writing the first equation in terms of R, G, and B components yields three
simultaneous equations in two unknowns. Just as in linear fill, we can use any two of these
to determine s and 1. If two of the vectors F - C, F - D and C - D are close to parallel,
however, then using the corresponding two equations produces greater roundoff error. The
other problem with linear fill was the possibili.ty that the system of equations had no
solution. The analogous problem in this case occurs when the points F, C, and D are
colinear in color space. Thus, for tbe algorithm to be effective, it is important that the colors
be in general position in RGB space (i.e., that no three of them lie on a line in that space).
This requirement can be seen intuitively as follows. Imagine a background composed of
various shades of red, pink, and white, all of which are convex combinations of red and
white. Now imagine a foreground image drawn in a salmon color-pink with just a little
yellow. It is difficult for us to determine where the salmon ends and the pink begins. The
algorithm bas troubles making this type of discrimination as well.

We conclude with an extension that does not appear to be in the literature. If a
foreground object is rendered in two colors on a background of another two colors, we can
recolor the foreground object in a different two colors. Thus, we can change a red-and-green
checkerboard lying on a zebra into a yellow-and-orange checkerboard. The mechanism is
identical to the four-color extension of the fill algorithm just described. Suppose the two

TEXAS INSTRUMENTS EX. 1009 - 1047/1253

986 Advanced Geometric and Raster Algorithms

foreground colors are E and F and the background colors are C and D. We can solve the
equation

P = rE + sF + tC + (I - r - s - t)D

for !he values r, s, and 1 (provided the colors C, D , E, and Fare in general position). If we
now wish to replace E and F by M and N, we simply set

P = rM + sN + 1C + (I - r - s - 1)D .

An application of Ibis mechanism is the following. A red sphere illuminated by a white
light is rendered wilh careful shading, so !he resulting object has smoothly varying colors
that are combinations of red and white. This image is composited onto a blue-and-green
checkerboard. We now decide that the sphere should have been a bluish-green sphere
illuminated by a greenish-blue light . We can perform !he preceding operation and generate
the new image. Notice that this cannot be done by two applications of !he more basic fill
algorithm- after one substitution, the general-position condition no longer holds.

19.6 MAKING copyPixel FAST

ln all our scan-conversion algorilhms, we have tried to maintain scan-line coherence, since
copying pixels (or writing pixels in any mode) is fastest when done for many pixels on a scan
line at the same time. ln !he important case of 1-bit graphics. it is also a lot easier to copy a
whole word's worth of bits at once. Setting individual bits in a word is almost ;.s expensive
as setting all the bits in the word. Thus, in a screen memory organized by words, doing a
pixel-by-pixel operation is about n times slower than is doing a word-by-word operation,
where there are n bits per word. (Even wilh 8-bit color, a 32-bit processor can copy 4 pixels
at a time.) In discussing chis operation in Chapter 3, we simply used SRGP_copyPixel,
saying that its implementation was system-dependent. In general , a copyPi.xel procedure,
when applied to 1-bit images, is known as bitBit (for "bit block-transfer"); in chis section,
we discuss optimizing the bitBh procedure, following Pike 's description of a fast bitBh
routine for an MC68000 microprocessor [PIKE84].

We want to implement a bitBit function that supports clipping to a rectangle, arbitrary
write modes, and texturing. Texturing is essentially patterning during bitBit. A window
manager can usc texturing when a window becomes inactive. By texturing the window with
a stipple texture, the window manager can inform the user chat the window must be
activated before it can be used. Doing chis stippling in !he course of a bitBit is much faster
chan is redrawing all !he primith-es in !he window wilh a stipple pattern. Thus, we want to
define a procedure as shown in Fig. 19.59.

The region to be copied is a rectangle of the same size as reel with origin at pi in the
source bitmap. The target region is the one specified by reel in the destination bitmap. The
texture is a w x w array of bits , where w is the size of a word on the machine. We assume
chat w is 32 and chat a texture is actually represented by an array of 32 words.

Implementing this procedure is straighforward, but involves a fair number of cases. If
the texture is all Is, we want to avoid applying it. If either the source rectangle or
destination rectangle lies partially or completely outside the corresponding bitmap, we want
to avoid accessing those regions. The two bitmaps may be the same, and the source and

TEXAS INSTRUMENTS EX. 1009 - 1048/1253

19.6

void bitBh(
birmap soun:e,
poin1 pr,
lexture rex,
bilmap destination,
rectangle rect,
wrireModemode);

Making copyPixel Fast

'* Source bilmap •I '* Comer of region 10 be copied •/
I• Texture to apply during copying •/ '* Targer bi1map •/
I• Location of target region •/

Fig. 19.59 The procedure declaration for bitBit.

987

destination rectangles may overlap, so we must do our copying in a nondestructive order.
And finally, each write mode may require special handling, since some may be easily
implemented by single machine instructions, whereas others may require multiple
instructions, especially when they operate on partial words.

lt is fonuna1e !hat C provides direct access to processor memory, since !he bitBit
operation involves operations on individual bits, of course, and doing this as directly as
possible can vastly increase the efficiency. The first version of the algorithm !hal we'll
describe uses bi1-shifting, bit-masking, poin.ler arithmetic, and pointer comparison exten­
sively, and by doing so achieves a reasonable speed-one which would be impossible in
languages that did not provide such direct memory access. Nonelheless, as we'll see, even
!his is not fast enough for practical use, and the ultimate version of bitBlt must be
implemented in assembly language. This represents a standard design trade-off: that for !he
core of a time-critical system, one must make lhings as efficient as possible, while
operations at the periphery may often be less efficient but more easily maintained or
modified.

The basic data structure is !he bitmap. To take advantage of word-by-word operations,
we must arrange the bitmap as an array of words. We also want to be able to create bitmaps
whose size is not a multiple of 32. Our bitmaps are therefore records with three fields: a
pointer to an array of words (see Fig. 19.60); a rectangle describing a subset of the bits

/Base /Rectangle representing actual bits

Width -----~

Fig. 19.60 The bitmap is an array of words, containing a recta ngle that represents the
actual bits of the bitmap.

TEXAS INSTRUMENTS EX. 1009 - 1049/1253

988 Advanced Geometric and Raster Algorithms

represented by that array; and an integer, widJJr, that says how many bits there are in each
group of words storing a row of the rectangle. If the edges of the rectangle are aligned with
the word boundaries, this value is just the width of the rectangle in pixels; if not, it is
somewhat greater. Figure 19.61 gives the pseudocode for the basic bitBlt algorithm.
Unfortunately, the actual code is quite a lot messier. The basic bitBit code in Pascal is
shown in Fig. 19.62.

Pike remarks that a C version of this code takes about 8 minutes to scroll an 800- by
1024-pixel bitmap horizontally, on an 8-MHz MC68000 processor. He also describes
several improvements. The first is to eliminate the many calls to MoveBit by constructing a
word of bits and moving it all at once, using word-at-a-time logical instructions available in
C and assembler. This change gives a speedup of a factor of 16- the same scrolling takes
only about 30 seconds.

When we bitBit a large region on the screen with the basic code, we call the MoveBit
routine hundreds of thousands of times. Even if we move only words, we stiU must do so
thousands of times. Executing the smallest possible amount of code in this inner loop is
thus extremely desirable. Notice that , when the source and destination bitmaps have the
same offsets. much of the bit shifting can be avoided. If regions are to be copied off of and
onto some bitmap (typically the screen), keeping the offscreen bitmaps with the same offset
as their onscreen correspondents can sa\'e a great deal of time.

Since moving large regions on the screen is an extremely common activity, accelerating
this process in any way possible is worthwhile. Since all that is really involved is detecting
this special case and then calling (repeatedly) the assembler instruction to move a 32-bit
word, indirectly, and to increment pointers, we can do nothing more than to hope that the
instruction is very fast.

To accelerate bitBit substantially, we must move to assembler language. The trick here
is to look at the regions moved and the mode used, and to determine from these whether to
scan left to right or rigbt to left, whether to scan top to bottom or bottom to top, whether
any roc at ion of bits is necessary, and so on. From this information, a fast bitBlt routine can
generate optimal assembler code to execute the actual bitS It , and then can jump to that

clip the nctangles to tlte source and destination bitmaps;
find rhe widJh and height of tltt nctangle in bits;
if (eirhu is negative)

nturn gracefully from procedun:

compllle a pointer, pI, to tlte first bit of the source nctanglt;
compute a pointu, p2, to the jirsr bit of the dt.ftinatlon ncr angle;
if (pi comes before p2 ilr memory) {

move plto the lower right word in tire source rectangle;
move p2 to tire lower right word in the destination rectangle;
copy rows of the source to rows of the destionatlon, bo11om to top:

} else
copy rows of the source to rows of the destination, top to bo11om;

Fig. 19.61 Pseudocode for the basic bitBlt algorithm.

TEXAS INSTRUMENTS EX. 1009 - 1050/1253

19.6 Making copyPixel Fast 989

typedef struct { I• This is not the rectangle type of Chapter 2 •I
point ropLefr, borromRighr;

} rectangle;

typedef struct {
char •bas~
l.nt width;
rectangle recr;

I• Pointer to first word of memory for the bitmap •I

} bitmap;

typedef struct {
unsigned int birs:32;

} texture;

typedef struct {
char •wordptr;
tnt bit;

} bitPointer;

void biiBlt(
I• Source bitmap •I bitmap map/ ,

point point I;
teKrure rex;
bitmap map2;
rectangle recr2;
writeMode mode)

I• Comer of region to be copied •I

{

I• Texture to apply during copying •I
I• Target bitmap •I
I• Location of target region •I

lnt width;
lnt height;
bitPointer pi, p2;

I• Clip the source and destination rectangles to their bitmaps. •I
clip x-values; I• See procedure that follows •I
clip y-values;
I• width and height of region in bits •I
width= rect2.bottomRight.x - rect2.topLeft.x;
height= recr2.bottomRiglu.y - recr2.ropLeft.y;
if (wid!h < 0 II height < 0)

return;

pl .wordprr = mapl.base; I• Points at source bitmap •I
pl .bit= mapl.recr.topLeft.x % 32;

Fig. 19.62 (Cont .)

TEXAS INSTRUMENTS EX. 1009 - 1051/1253

990 Advanced Geometric and Raster Algorithms

I• And the first bil in the billllap is a few bits funher in • I
I• lncremem pi until it points to the specified point in the lim bilmap of

lncrememPointer (pi , pointl.x- mopl ." ct.topufr.x + mapl .widrh •
(painrl .y- mapl ." cr.ropuft.y)) ;

I• Same for p2- 11 points to the origin of the destination rectangle •I
p2.worldptr = llutp2.base;
p2.bit = Tlutp2.rect.topuft.x% 32;
lncrememPointer (p2, rect2.ropuft.x - map2.recl.lopuft.x +

map2.width • (" ct2.topuft.y - mop2.rect.topuft.y));
t.r (pi < p2) {

I• The pointer pi comes before p2 in memory; if they are in the same bitmap, • I
I• the origin of the source rectangle is either above the origin for the • I
I• destination or. if at the sume level, to the left of it. • I
lncrementPointer (pi , height • mapl .width +width);
I• Now pi points to the lower-right word of the rectangle •I
IncrementPointer (p2, Miglu • mapl .width + width);
I• Same for p2. but the destination rectangle o./
point l .x += width;
poiml.y += height;
I• This point is now just beyond the lower right in tbe rectangle •/
while (height--> 0) {

I• Copy rows from the souroe to the target bottom to top. right to left • /
Decrement Pointer {pi, mopl.widrh);
Decrement Pointer {p2, mop2.width);
remp.y = poinrl .y% 32; I• Used to index into texture •I
temp.x = point l .x % 32;
I • Now do the real bitBit from bottom right to top le ft • I
RowBitNegative (pi , p2, width, BitRotate (ta[temp.y),t1'mp.x) ,1710<h);

} I• while • I
} else { /• ifpl ?. p2 •I

while (height-- > 0) {
I• Copy rows from source to destination, top to bottom. left to right •I
I• Do the real bitBlt, from top left to bottom right •I
RowBilPositive (same argumelll.r as before);

Fig. 19.62 (Cont.)

code. The idea is that this assembler code is so brief and efficient that it can be cached and
executed very quickly. For example, the screen-scrolling described previously is executed in
0.36 seconds-an impressive speedup! The assembly code generated to scroll the whole
screen is a masterpiece of compactness: It consistS of only eight instructions (assuming that
various registerS have been set up beforehand).

TEXAS INSTRUMENTS EX. 1009 - 1052/1253

19.6 Making copyPixel Fast

increment pointers;
} I• while •I

} I • else •I
} I• bitBit •I

void Clip Values (bitmap •map! , bitmap •map2, point •pointl , rectangle •rect2)
{

if (•pointl not inside •map/) {
adjust •point/ to be inside •map!;
a4just origin of •rect2 by the same amomu;

}
if (origin of •recl2 not inside •map2) {

}

adjust origin of •rect2 10 be inside •map2;
adjust •point/ by same amount;

if (opposite comer of •rect2 not inside •map2)
adjust opposite comer of •rect2 to be inside;

if (opposite comer of corresponding rectangle in •mapl not inside •map/)
adjust opposite corner of rectangle;

} I• ClipValues •I

void RowBIIPositive(
bitPtr pi , bitPtr p2,
int n ,
char rword,
write Mode mode)

{

I• Source and destination pointers •I
I• How many bits to copy •I
I• Texture word •I
I • Mode to bit pixels •I

I• Copy 11 bits from position pi to position p2 according to mode. •I
while (n-- > 0) {

if (BitisSei (rword, 32))
MoveBit (pi , p2, mode) ;

lncrementPointer (pi);
lncrementPointer (p2);
Rotatel..eft (rword);

I• Iftexturesays it isOKtocopy ... •I
I• ihen copy ihe bit. •I

I• Rotate bits in rword LO the left. • I
} I • while • I I

} /• RowBltPositive •I

Fig. 19.62 The bitBlt algorithm (with some special cases omitted).

991

The code for more complex cases is more elaborate but is equally efficient. We could
design bitBit by using massive switch statements or case statements to execute all possible
combinations of rectangles, textures, modes, and so on. In fact, the entire program could
be written as a loop in the fonn ''for each row, for each word, do the following: If the word
is a partial word, do ... ; if it needs a texture, do ... ; and so on." The disadvantage with

TEXAS INSTRUMENTS EX. 1009 - 1053/1253

992 Advanced Geometric and Raster Algorithms

this is that all the cases must be examined, even for the simplest case to be executed. All the
assembler code for the massive if and switch statements would never fit into a tiny
instruction cache. Since the loop is executed many times, the cost of loading the code into
the instruction cache might far outweigh the cost of actually doing the work of bitBlt.
Alternatively, the cod.e might be written as a massive nested if statement, in which each
possible case is optimally coded and occurs as a branch in the decision tree. Then when this
case occurred, that tiny fragment of optimal code could be loaded into the instruction cache
and executed very quickly. The problem with this approach is that there are a great many
cases; Pike estimates that there are about 2000 different cases, taking about 150 bytes on the
average. This makes the code for bitBit approach I MB , which is clearly excessive. So,
instead, we have the bitBit routine collect bits of assembler code, which are then used to
execute the loop. Each case in the nested if statement contributes its own fragment to the
final code to be executed. Of course, since this code must be collected in the data space,
instead of in the address space of the processor, the instruction cache must be informed that
certain bytes are no longer valid, so that it will be certain to reload the code instead of using
the code from the last bit.Bit that executed. All this must be combined with a certain amount
of knowledgeable juggling to determine whether to separate out a case and to hard code it
(e.g., bitBit for very small rectangles-less than one full word).

lmplementors of such systems should look for hardware support as well. The more of
bitBit we implement in microcode, the easier it is to make the rest extremely efficient.

19.7 THE SHAPE DATA STRUCTURE AND SHAPE ALGEBRA

The shape data structure has been developed to make raster operations (especially clipping)
more efficient [DONA88; GOSL89; STEI89]. It lies somewhere on the boundary between
the geometries of the Euclidean plane and the rasterized plane, in that shapes are used to
represent raster approximations or regions that are typically defined by geometric
constructions, but have been scan-converted into rasterized representations. The advantages
of shapes over bit masks in defining regions are twofold: shapes are typically smaller data
structures, and Boolean operations on shapes are fast. Furthermore, shapes are organized in
a way that takes advantage of scan-line coherence, so that line-by-line processing of shapes
can be made fast. Other methods for implementing faster raster operations have been
developed as well, including implementations of the shape data structure using run-length
encoding [STEIN89], and quadtreelike systems [ATKI86].

Before giving a precise definition of a shape, let's consider an example. The U-shaped
region shown in Fig. 19 .63(a) can be broken into several rectangular pieces, as shown in
part (b).

In fact, any collection of pixels can be broken into a disjoint union of rectangular
regions in the plane. ln the most extreme case, for example, we can place a small square
around each pixel. The shape data structure i.s designed to describe regions in the rasterized
plane as lists of rectangles. More precisely, a shape consists of a list of intervals along they
axis and, for each of these, a list of intervals on the x axis. Each (y inte.rva.l, x interval) pair
represents the rectangle that is the Cartesian product of the two intervals. The region in Fig.
19.63(a), for example, would be decomposed into the rectangles [0, 10] X [0, 2], [0, 3] X

[2, 4], and [7, 10] x [2, 4] , as shown in Fig. 19.63(b); these would be stored in two groups,

TEXAS INSTRUMENTS EX. 1009 - 1054/1253

19.7

10

5

0

0 5
(a)

10

The Shape Data Structure and Shape Algebra 993

10

5

0

0 5
(b)

10

)"Span x-spans

(0, 2J [0, 1 OJ

[2, 4J (0, 3] [7. 1 OJ

(c)

Fig. 19.63 (a) A region. (b) Its division into rectangles. (c) The shape data structure for
the region.

corresponding to they intervals (0, 21 and [2, 4]. The first group would have one x interval
and the second would have two, as shown in Fig. 19.63(c). Note, however, that although
this data structure is extremely efficient for rectangu.lar regions and simple regions such as
the one in Fig. 19.63(a), for more general regions it becomes less efficient. For a filled
circle, for example, there is a rectangle for each borizonta.l scan line, so the structure
becomes just a list of spans.

If we create a shape for a scan-<:onverted primitive, and also ha"-e a shape for the region
within which we want to draw the primitive (typically a window), we can find the shape of
the clipped version of the primitive by taking the intersections of the shapes. Furthermore,
creating a shape for the scan-converted primitive may be easy, since many scan-conversion
algorithms work in some scan-line order. For exan1ple, the polygon scan-conversion
algorithm in Chapter 3 used an active-edge table. which it then scanned to generate
horizontal spans. These spans are exactly tile rectangles needed for tile shape structure. A
similar technique can be used for a region witll curved edges. Since curves can have multiple
x values for a single y value, it is important to break them into pieces with the property that
for each y value, tiJere is only one x value on tile curve segment (see Fig. 19.64), and then
to scan convert tllese witll an algorithm like tltat for the active-edge table, described in
Chapter 3.

Shapes can also be used to generate joined lines or polylines without the problems
caused by repeated xor operations on the same pixel. Here. the entire shape is constructed
and then is drawn once in xor mode. Figure 19.65 shows how a blunt line join can be
represented as a union of shapes (see also Exercise 19.21).

One of the principal virtues of shapes is the ease with which they are combined under
Boolean operations (recall from Section 15.10.3 tltat Boolean operations on intervals in a

(a) (b)

Fig. 19.64 The curved outline for the area shown in (a) must be broken into curve
segments. as shown in (b), before it can be used to generate a shape structure for the
area.

TEXAS INSTRUMENTS EX. 1009 - 1055/1253

994 Advanced Geometric and Raster Algorithms

Fig. 19.65 Making a blunt join between two lines using a union of shapes.

line were used in ray tracing to implement constructive solid-geometry operations).
Consider the intersection of the t\W shapes shown in Fig. 19 .66(a). The shape structures for
bolh are given in the table , and the intersection and its shape structure are shown in pan (b).
How can the intersection be computed from the original shapes?

NOtice that the intersection of two overlapped rectangles is always a rectangle. Thus,
we can compute the intersection of two shapes by searching for overlapping rectangles. We
first check to see that the y extents of the shapes overlap (if not, there is no intersection).
Then, starting with the first y interval for each shape (i.e., the one with lowest y value), we
compare y intervals. If they overlap, we compare x intervals to generate output. If not , we
increment the one with the lower y value to the next y interval in its data structure, and
repeat. Assuming we have a function, Overlap, that compares two y intervals for overlap,
returning a code characterizing the type of overlap, the pseudooode for this operation is as
given in Fig. 19.67.

The processing of overlapping x intervals is exactly the same: If two x intervals overlap,
the intersection is output and one or both of the two intervals is updated. Thus. the entire
algorithm rests on processing the overlaps to determine a result code, then deciding what to
do depending on the result code.

The six cases of x-imerval overlap are shown in Fig. 19.68. In the first case, shown in
pan (a), the two segments are disjoint. No output is generated, and the update process
consists of taking the next segment in shape2. The second case is the same, as shown in pan
(b), except tbat the next segment is taken from shape! . ln the third case, in part (c), there is
an overlap of the segments given by the minimum end of the segment from shape I and the
maximum end of the segment from shape2. Updating entails taking the next segment from

A
10

.~ A

5

8
0

0 5 10
(a)

y-span x·spans

(3, 7] (7, 9]
(7, 9] (3. 9]
(9, 11) (3. 5)

(4, 6) (4, 11]
(6. 8) (4, 8)

10

5

0

0 5 10
(b)

y-span x·spans

(4, 6] [7. 9]
(6, 7] [7. 8]
[7. 8] (4, 8]

Fig. 19.66 The intersection of two shapes. (a) The two shapes, and their associated
data structures. (b] The intersection, and its data structure.

TEXAS INSTRUMENTS EX. 1009 - 1056/1253

19.7 The Shape Data Structure and Shape Algebra

void Intersect (shape shape/ , shape slwpe2)
{

lnt yl/,y/2;
int y21, y22;
int result;

I• Endpoints of y interval in shape I •I
I• Endpoints of y interval in shape 2 •/

lf (neither shape is empty && bounding boxes overlap) {
y/1 = lowest y-valuefor shape/ ;
y 12 = other end of first y-lntuval in slwpel:
same for y21, y22;

while (still have y-brlerval in both shapes) {
result = Overlap (y/1 , y/2, y21, y22):

}

if (result says overlap occurred) {

}

output overlap ofy-range, determined from code;
output overlapping x-ranges if any;
if no x-output generated, delete they-overlap just out pill

update one or both y-interva/s based on result;

} else ,. if . ,
donorhing;

} /• Intersect •I

Fig. 19.67 The algorithm for intersecting two shapes.

995

shape2. The remaining cases are similar. The algorithms for union and difference are based
on the same consideration of the overlap structure (see Exercise 19 .22).

The shape algebra can be extended to a combined intersect-and-fill routine to be used
in drawing primitives in a clip region. Instead of merely generating the x and y ranges of the
shapes, we take each rectangular piece in the output and draw it as a filled rectangle (using a
fast copyPixel procedure).

Tbis shape algebra has been used in implementing the NeWS and Xl l/NeWS window
systems. Three optimizations are worth considering. First , in some cases, the shapes
representing a primitive are cumbersome (slanted lines are a good example), and, to
compute the intersection of the primitive with another shape, we may find it simpler to do

Shape1
Shape2

(a) (b) (c) (d) (e)

Fig. 19.68 The six ways that two intervals can overlap.

(f)

TEXAS INSTRUMENTS EX. 1009 - 1057/1253

996 Advanced Geometric and Raster Algorithms

analytic clipping to each rectangle of the shape (Gosling suggests this for lines [GOSL89]).
Second, shapes may become fragmented after many operations (taking (A - B) U B can do
this), and it may be worthwhile to condense a shape after several operations. Th.ird, in
window managers, it may be worthwhile to write a special-purpose intersect-and-fill
routine that computes the shape intersection between a primitive and a window, optionally
applies a pattern to the result, and draws the result all in one operation. Thus, instead of the
output shape data structure beingjlenerated, the spans generated by the intersection routine
are passed directly to a drawing routine.

19.8 MANAGING WINDOWS WITH bitBit

In a seminal paper, Pike [PIKE83) described using the bitBit procedure to manage windows
(which he called " layers") on a bitmapped screen. The critical features were that the
overlapping and refreshing of windows were isolated from the application program
generating the window contents, that the nonscreen memory used was not too great (about
one screen's worth of offscreen memory), and that the windows could be drawn in even
when partially or completely obscured. Although overlapping windows had already been
introduced in the SmalJtalk world [BYTE85], this paper was the first to show how to
implement them on an arbitrary machine supporting bitBlt. The ideas of this paper are now
seen in the X Windows System, the Lisa operating system, the Macintosh operating system,
and many other windowing systems.

Otfscreen management of obscured windows is still done in some systems, as we
discussed in Chapter 10 (it is called "backing store" in the X Windows System), but it has
a substantial cost: As the number of windows increases, the amount of backing store
required increases as well. The results when the machine runs out of physical memory must
be considered. If the writer of applications for the window system knows that the window
system provides a " virtual window" in which to write, that the application may write to it
even when it is obscured, and that the window system takes care of refreshing the screen
when the window is moved to the top, then the window system must provide this feature
regardless of what else appears on the screen. Since an application's window may be
completely covered at some point, the window system must allocate enough memory to
provide backing store for the whole window at the time the window is created. Doing this
for every one of several applications running simultaneously may become prohibitively
expensive.

For this reason, some window systems (e.g., the X Windows System) provide backing
store as a option hut also allow windows that are not backed up, which must use a different
regeneration strategy, as we discussed in Chapter 10. When a window is exposed after
being partially or completely hidden, the window manager tells the application which parts
of the window need to be refreshed, and the application may regenerate these portions in
any manner it chooses. TypiC'.tlly , it redraws any primitive that intersects the newly exposed
region. The benefits of such a system are that the application can determine as it runs how
much memory it needs (so that the window manager can never tell the application that no
more memory is available for storing the offscreen portion of the bitmap), and that the time
spent in restoring the offscreen portions can be eliminated in cases where the restoration is
unnecessary. The costs are that eacb application must be aware of the status of the window

TEXAS INSTRUMENTS EX. 1009 - 1058/1253

19.8 Managing Windows with bitBit 997

into which it is drawing, and that application programmers cannot pretend they bave
completely exposed windows.

Assuming, however, that we wish to have backing store for each window, we still must
implement, in an efficient manner, the various window operations described in Chapter 10.
These include window creation, deletion, exposure, and hiding, as well as drawing into
windows. Th.e remainder of this section is a description of Pike 's method for doing these
operations.

The data structure representing a window consists of a rectangle and an array of words
(i.e., the bitmap record of Section 19.6), together with three additional fields: two window
pointers, to the windows in front of and in back of the window; and one pointer to an
obscured list, which is a linked list of bitmaps representing obscured portions of a window.
The pointers to the windows in front and in back help in making windows visible or biding
them, since the list helps to determine what must be exposed or hidden. The ordering of
windows is only partial, so the choices of front and back pointers are not completely
determined. In any case where the choice is not obvious, an arbitrary one is made.

Hiding a window entails finding all windows behind it and placing them in front of it,
in order. Doing this may require merely clearing space on the screen and calling the
application that owns each window to do damage repair, or may involve more work if the
windows actually maintain information in their obscured list. For example, if the refresh
task has been left to the windows' software, then biding involves bitBiting the obscured
portion of the newly exposed window onto the screen, while bitBiting the newly obscured
portion of the current window into its obscured list. Fortunately, the amount by which
window A can cover window 8 is exactly the same as the amount by which window 8 can
cover window A, so no new memory needs to be allocated to execute this change of places.
Exposing a window is similar, and moving a window involves revealing or hiding new
portions and doing bitBlts to move the visible portions of the window. Of course, the
assumption that there is a piece of memory that is just the right size to represent the amount
by which 8 covers A or vice versa requires that the obscured lists be very finely divided:
Each bounding rectangle for an obscured region must lie entirely within any window that it
intersects.

Another task to consider is drawing into a window. ln Fig. 19.69, there are two
overlapping windows. ln drawing an item in the lower window (shown as a shaded region),

Visible bitmaps

On the screen In memory

Obscured bitmap
(backing store)

Fig. 19.69 Drawing into a partially obscured layer requires drawing in both the visible
portion and in'some obscured portions. We split the item to be drawn into two pieces,
and draw each in the appropriate bitmap.

TEXAS INSTRUMENTS EX. 1009 - 1059/1253

998 Advanced Geometric and Raster Algorithms

part of the item is drawn in the visible portion and part is drown in an obscured rec1a11gle.
This is a specific case of a general task: Take some operation and do it in each of the
bitmaps representing the target region of the operation. Such an operation might be to clear
a rectangle or to draw a line, for example. This operation can be condensed into a single
recursive procedure that applies the operation to the intersection of the target region and the
window, and then calls itself on each item in the window's obscured list.

Note that the design of the window data structure includes a choice regarding
rec1a11gles: each rectangle is defined to contain its left and bottom edges and its lower-left
comer, just as it did in Chapter 3. Thus, no ~u abutting rectangles share any points. This
choice vastly simplifies many operations, since it becomes possible to sallsfy the rule that
each rectangle in any obscured list lies entirely within any window it intersects. lf rectangles
contained both their edges, satsifying the condition would be impossible.

The original " layers" model for window management has been greatly extended.
Several features have been added, including color. When color is added, copying images to
and from the screen becomes more complex. Bach pixel is represented by a collection of
bits, rather than by a single bit, and transferring all the bits for the pixel may take a long
time. Suppose, for example, that the display uses 4 bits for each of red, green, and blue. We
could imagine this as simply 12 planes' worth of bits needing to be transferred to the
screen, and we could apply the bitBit operation to each. This strategy is called the
plane-suial approach, since the planes are processed one at a lime. The plane-serial
approach has the advantage of being easy to implement as an extension of the bitmap
version of the window-management software, but has two serious drawbacks: It is (in this
case) 12 times as slow, which may be disastrous for performance; and, while the various
planes are being transferred, the window may look very peculiar. For example, when all tbe
red planes have been handled but the green and blue have not, the window looks like a
blue-green version of the old material with a red overlay of the new material. This effect is
extremely distracting if it persists for long enough to be detected. In a color-table system,
the results would be even more exotic: During the transfer of planes, the color indices would
become permuted wildly, which would result in an extremely distracting appearance. The
alternative is the pkme-para/lel approach, in which all the planes of the pixmap are copied
at the same time (perhaps by special-purpose hardware). Since the organization of display
memory and of main memory can be somewhat different (although the Pike paper assumes
they are not) , it is essential in doing block transfers to use the most efficient method for the
given source and target. This requirement in tum demands that, in any practical
implementation of this kind of system, the block transfer operation be implemented at the
lowest possible level-in assembler or machine language, or even in hardware.

19.9 PAGE-DESCRIPTION LANGUAGES

A page-description language is basically a graphics package developed to insulate the
appl ieation writer from the machine-dependent details of printers, and to aid in the layout of
printed pages in the publishing industry. A page-description language differs from an
ordinary graphics package in several ways: it is output-only, it is a 20 package (although 30
extensions to some languages are being developed), it has extensive support for curves and
text , and it supports sampled images as first-class primitives. More important, it is a

TEXAS INSTRUMENTS EX. 1009 - 1060/1253

19 .9 Page-Description languages 999

language instead of a subroutine package. Thus, an interpreter for the language can be
resident in a printer; as a result, short programs, instead of huge volumes of pixel data, are
sent to the printer. Furthermore, page-description languages can be used more readily than
can subroutine packages as an interchange format. A sequence of subroutine calls can be
made in many different languages; transferring the sequence of calls to another installation
may require translation to a new language. A program in a page-description language can be
transferred to any installation that supports the language. Thus, a page-description language
supersedes the notion of metafiles described in Section 7 .11.3.

The best-known page-description language is POSTSCRIPT. The original intent of this
language was to describe tbe appearance of a bitmap page (to be produced typically on a
very high-resolution printer). POSTSCR!PT is now being used as a screen-description
language as well. Page-description languages are particularly well suited to this task,
especially in client-server window managers, where downloading a PoSTSCRIPT program to
the server can reduce network traffic and overhead on the client. As described in Chapter
10, invoking a dialogue box in a POSTSCRIPT-based window manager can be done by
downloading a PoSTSCRIPT procedure that displays the dialogue box and then invoking the
procedure. Subsequent invocations of the dialogue box are made by simply invoking the
procedure again.

There is also interest in generating a national or interoational standard page-description
language derived from PosTSCRIPT and lnterpress [ISO]. Such a language might provide a
standard format for both the publishing industry and the computing industry.

In this section, we describe aspects of POSTSCRIPT, to give you a sense of how
page-description languages work. The imagiJ1g model of a page-description language is the
definition of the abstract behaviour of the language on an ideal 20 plane. ln POSTSCRIPT,
the imaging model is based on the notion of painting with opaque paint on a plane. The
paint is applied by a pen or brush of a user-specified width, and many PoSTSCRIPT
operators control the position of this pen. This imaging model is actually implemented by
having a large raster memory that reflects the contents of a page; the contents of this raster
memory are eventually transferred to the output page by a printer.

The POSTSCRIPT language has effectively three components: the syntax, the semantics,
and the rendering. The difference between the semantics and the rendering is a subtle one.
The POSTSCRIPT program

10.5 11.3 moveto
40 53.6 lineto
sbowpage

means " move the pen, without drawing, to position (10.5, 11.3) on the page, draw a line to
position (40, 53.6), and display the results." This sentence is an example of the semantics
of the language. The rendering is the production of actual output on a particular grc~phics
device. On a laser printer, this program might draw 5000 tiny black dots on a piece of
paper; on a bitmapped screen, it might draw 87 pixels in black. Thus, what we are calling
the rendering of a POSTSCR!PT program is at the level of a device driver for a bitmapped
device.

PoSTSCRIPT syntax is fairly simple. It is a postfix interpreter in which operands are
pushed onto a stack and then are processed by operators that use some number of operands

TEXAS INSTRUMENTS EX. 1009 - 1061/1253

1 000 Advanced Geometric and Raster Algorithms

from the stack (popping them off the stack) and place some number of results on the stack.
Thus, in the preceding example, the operands 10.5 and 11.3 were pushed on the stack, and
the moveto operator popped them from the stack and used them. The data types supported
include numbers, arrays, strings, and associative tables (also known as dictionaries). (More
precisely, there is only one data class-the object; each object has a type, some attributes,
and a value. The type may be "integer," "real," "operator," etc.) The associative tables
are used to store the definitions of various objects, including operator definitions. The
flow-of-control constructs include conditionals, looping, and procedures. Thus, a typical
application producing POSTSCRIPT output may either (I) produce a long string of standard
POSTSCRIPT calls, or (2) define a collection of procedures more closely related to its own
needs (called a prologue), then produce a collection of calls to these procedures.

POSTSCRIPT also includes the notion of contexts that can be saved on a stack, so that the
state of the POSTSCRIPT world can be saved before an operation is performed, and restored
afterward. Applications that define their own procedures do not need to worry about
naming conflicts if they agree to restore the PoSTSCRIPT world to its initial state.

The semantics of POSTSCRIPT are more complex. The fundamental entities are
graphical entities and operators acting on them. AU graphical entities are cons.idered the
same, so a line, a circular arc, a cubic curve, a blob, a string of text, and a sampled image
can all be translated, rotated, or scaled by identical operators. Various operators are used to
support multiple coordinate systems, so objects can be created in one coordinate system and
then transformed by arbitrary affine transformations into any other coordinate system. A
few operators can detect the environment in which PoSTSCRIPT is running, which is
important for making device-independent images. Thus, we can write a POSTSCRIPT

program to produce a 1- by l-inch square, regardless of the resolution of the device being
used (unless of course its pixels are 1.5 inches wide!), by enquiring the environment to
determine the number of pixels per inch on the current device.

PoSTSCRIPT operators fall into six categories [ADOB85b]:

I . Graphics-state operators. These operators affect a collection of objects defining certain
current atlributes of the PoSTSCRIPT world, such as the current line width, or the
current clipping region.

2. Coordinate-system operators and transfomwtions. These operators are used to alter the
coordinate systems i.n which further objects are to be defined. In particular, they alt.er
the mapping from coordinates within POSTSCRIPT to the coordinates of the output
device.

3. Path-construction operators. These operators are used to define and update another
graphics-state entity called the currelll path. They can be used to begin a path, to add
coUections of lines or arcs to the path, or to close the path (i.e., to join its beginning to
its end with a straight-line segment). The current path is an abstract entity-it is not
rendered on the page unless some painting oper;11or is invoked.

4. Pointing operawrs. These "rendering" operators generate data in a raster memory that
evenwally determine which dots appear on the printed page. AU painting operators
refer to the current path. lf we imagine the path-construction operations as defining a
mask, then the painting operators can be thought of as placing paint dots on the raster
memory at each place aUowed by the mask.

TEXAS INSTRUMENTS EX. 1009 - 1062/1253

