662 Visible-surface Determination

where b is the number of times the bounding volume is tested for intersection, B is the cost
of performing an intersection test on the bounding volume, o is the number of times the
object is tested for intersection (the number of times the bounding volume is actually
intersected), and O is the cost of performing an intersection test on the object.

Since the object intersection test is performed only when the bounding volume is
actually intersected, o = b. Although O and b are constant for a particular object and set of
tests to be performed, B and ¢ vary as a function of the bounding volume’s shape and size.
A “‘tighter’” bounding volume, which minimizes o, is typically associated with a greater B.
A bounding volume’s effectiveness may also depend on an object’s orientation or the kind
of objects with which that object will be intersected. Compare the two bounding volumes
for the wagon wheel shown in Fig. 15,16. If the object is to be intersected with projectors
perpendicular to the (x, y) plane, then the tighter bounding volume is the sphere. If

|

e E KR -

IR ||

[I SIS IR) x

Fig. 15.16 Bounding volume selection. (Courtesy of Hank Weghorst, Gary Hooper,
Donald P. Greenberg, Program of Computer Graphics, Cornell University, 1984.)

TEXAS INSTRUMENTS EX. 1009 - 709/1253

15.2 Techniques for Efficient Visible-surface Algorithms 663

projectors are perpendicular to the (x, z) or (v, z) planes, then the rectangular extent is the
tighter bounding volume. Therefore, multiple bounding volumes may be associated with an
object and an appropriate one selected depending on the circumstances.

15.2.4 Back-Face Culling

If an object is approximated by a solid polyhedron, then its polygonal faces completely
enclose its volume. Assume that all the polygons have been defined such that their surface
normals point out of their polyhedron. If none of the polyhedron’s interior is exposed by
the front clipping plane, then those polygons whose surface normals point away from the
observer lie on a part of the polyhedron whose visibility is completely blocked by other
closer polygons, as shown in Fig. 15.17. Such invisible back-facing polygons can be
eliminated from further processing, a technique known as back-face culling. By analogy,
those polygons that are not back-facing are often called fronr-facing.

In eye coordinates, a back-facing polygon may be identified by the nonnegative dot
product that its surface normal forms with the vector from the center of projection to any
point on the polygon. (Strictly speaking, the dot product is positive for a back-facing
polygon; a zero dot product indicates a polygon being viewed on edge.) Assuming that the
perspective transformation has been performed or that an orthographic projection onto the
(x, v) plane is desired, then the direction of projection is (0, 0, —1). In this case, the
dot-product test reduces to selecting a polygon as back-facing only if its surface normal has
a negative z coordinate. If the environment consists of a single convex polyhedron,
back-face culling is the only visible-surface calculation that needs to be performed.
Otherwise, there may be front-facing polygons, such as C and E in Fig. 15.17, that are
partially or totally obscured.

If the polyhedra have missing or clipped front faces, or if the polygons are not part of
polyhedra at all, then back-facing polygons may still be given special treatment. If culling is
not desired, the simplest approach is to treat a back-facing polygon as though it were
front-facing, flipping its normal in the opposite direction. In PHIGS +, the user can specify
a completely separate set of properties for each side of a surface.

Fig. 15.17 Back-face culling. Back-facing polygons (A,B,D,F) shown in gray are
eliminated, whereas front-facing polygons (C,E,G,H) are retained. :

TEXAS INSTRUMENTS EX. 1009 - 710/1253

664 Visible-surface Determination

Extrapolating from Section 7.12.2’s parity-check algorithm for determining whether a
point is contained in a polygon, note that a projector passing through a polyhedron
intersects the same number of back-facing polygons as of front-facing ones. Thus, a point in
a polyhedron’s projection lies in the projections of as many back-facing polygons as
front-facing ones. Back-face culling therefore halves the number of polygons to be
considered for each pixel in an image-precision visible-surface algorithm. On average,
approximately one-half of a polyhedron’s polygons are back-facing. Thus, back-face
culling also typically halves the number of polygons to be considered by the remainder of an
object-precision visible-surface algorithm. (Note, however, that this is true only on average.
For example, a pyramid’s base may be that object’s only back- or front-facing polygon.)

As described so far, back-face culling is an object-precision technique that requires
time linear in the number of polygons. Sublinear performance can be obtained by
preprocessing the objects to be displayed. For example, consider a cube centered about the
origin of its own object coordinate system, with its faces perpendicular to the coordinate
system's axes. From any viewpoint outside the cube, at most three of its faces are visible.
Furthermore, each octant of the cube’s coordinate system is associated with a specific set of
three potentially visible faces. Therefore, the position of the viewpoint relative to the cube’s
coordinate system can be used to select one of the eight sets of three potentially visible
faces. For objects with a relatively small number of faces, a table may be made up in
advance to allow visible-surface determination without processing all the object’s faces for
each change of viewpoint.

A table of visible faces indexed by viewpoint equivalence class may be quite large,
however, for an object with many faces. Tanimoto [TANI77] suggests as an alternative a
graph-theoretic approach that takes advantage of frame coherence. A graph is constructed
with a node for each face of a convex polyhedron, and a graph edge connecting each pair of
nodes whose faces share a polygon edge. The list of edges separating visible faces from
invisible ones is then computed for an initial viewpoint. This list contains all edges on the
object’s silhouette. Tanimoto shows that, as the viewpoint changes between frames, only
the visibilities of faces lying between the old and new silhouettes need to be recomputed.

15.2.5 Spatial Partitioning

Spatial partitioning (also known as spatial subdivision) allows us to break down a large
problem into a number of smaller ones. The basic approach is to assign objects or their
projections to spatially coherent groups as a preprocessing step. For example, we can divide
the projection plane with a coarse, regular 2D rectangular grid and determine in which grid
spaces each object’s projection lies. Projections need to be compared for overlap with only
those other projections that fall within their grid boxes, This technique is used by
[ENCAT2; MAHNT73; FRANBO;, HEDGS82]. Spatial partitioning can be used to impose a
regular 3D grid on the objects in the environment. The process of determining which
objects intersect with a projector can then be sped up by first determining which partitions
the projector intersects, and then testing only the objects lying within those partitions
(Section 15.10).

If the objects being depicted are unequally distributed in space, it may be more efficient
to use adaptive partitioning, in which the size of each partition varies. One approach to
adaptive partitioning is to subdivide space recursively until some termination criterion is

TEXAS INSTRUMENTS EX. 1009 - 711/1253

15.3 Algorithms for Visible-line Determination 665

Building

Floor 1 Floor2 Floor3 Floor 4

Room1 Room2 Room3

Fig. 15.18 Hierarchy can be used to restrict the number of object comparisons
needed. Only if a projector intersects the building and floor 1 does it need to be tested
for intersection with rooms 1 through 3.

fulfilled for each partition. For example, subdivision may stop when there are fewer than
some maximum number of objects in a partition [TAMMS2]. The quadtree, octree, and
BSP-tree data structures of Section 12.6 are particularly attractive for this purpose.

15.2.6 Hierarchy

As we saw in Chapter 7, hierarchies can be useful for relating the structure and motion of
different objects. A nested hierarchical model, in which each child is considered part of its
parent, can also be used to restrict the number of object comparisons needed by a
visible-surface algorithm [CLAR76; RUBI80; WEGHS&4|. An object on one level of the
hierarchy can serve as an extent for its children if they are entirely contained within it, as
shown in Fig. 15.18. In this case, if two objects in the hierarchy fail to intersect, the
lower-level objects of one do not need to be tested for intersection with those of the other.
Similarly, only if a projector is found to penetrate an object in the hierarchy must it be
tested against the object’s children. This use of hierarchy is an important instance of object
coherence. A way 1o automate the construction of hierarchies is discussed in Section
15.10.2.

15.3 ALGORITHMS FOR VISIBLE-LINE DETERMINATION

Now that we have discussed a number of general techniques, we introduce some visible-line
and visible-surface algorithms to see how these techniques are used. We begin with
visible-line algorithms. The algorithms presented here all operate in object precision and
produce as output a list of visible line segments suitable for vector display. The
visible-surface algorithms discussed later can also be used for visible-line determination by
rendering each surface as a background-colored interior surrounded by a border of the
desired line color; most visible-surface algorithms produce an image-precision array of
pixels, however, rather than an object-precision list of edges.

15.3.1 Roberts’s Algorithm

The earliest visible-line algorithm was developed by Roberts [ROBE63]. It requires that
each edge be part of the face of a convex polyhedron. First, back-face culling is used to
remove all edges shared by a pair of a polyhedron’s back-facing polygons. Next, each
remaining edge is compared with each polyhedron that might obscure it. Many polyhedra

TEXAS INSTRUMENTS EX. 1009 - 712/1253

666 Visible-surface Determination

can be trivially eliminated from the comparison through extent testing: the extents of their
projections may fail to overlap in x or y, or one object’s extent may be farther back in z than
is the other. Those polyhedra that are tested are compared in sequence with the edge.
Because the polyhedra are convex, there is at most one contiguous group of points on any
line that is blocked from the observer by any polyhedron. Thus, each polyhedron either
obscures the edge totally or causes one or two pieces to remain. Any remaining pieces of the
edge are compared with the next polyhedron.

Roberts’s visibility test is performed with a parametric version of the projector from
the eye to a point on the edge being tested. He uses a linear-programming approach to solve
for those values of the line equation that cause the projector to pass through a polyhedron,
resulting in the invisibility of the endpoint. The projector passes through a polyhedron if it
contains some point that is inside all the polyhedron’s front faces. Rogers [ROGESS]
provides a detailed explanation of Roberts's algorithm and discusses ways in which that
algorithm can be further improved.

15.3.2 Appel’s Algorithm

Several more general visible-line algorithms [APPE67; GALI69; LOUT70] require only
that lines be the edges of polygons, not polyhedra. These algorithms also consider only
lines that bound front-facing polygons, and take advantage of edge-coherence in a fashion
typified by Appel’s algorithm. Appel [APPE67] defines the quantitative invisibiliry of a
point on a line as the number of front-facing polygons that obscure that point. When a line
passes behind a front-facing polygon, its quantitative invisibility is incremented by 1; when
it passes out from behind that polygon, its quantitative invisibility is decremented by 1. A
line is visible only when its quantitative invisibility is 0. Line AB in Fig. 15.19 is annotated
with the quantitative invisibility of each of its segments. If interpenetrating polygons are not
allowed, a line’s quantitative invisibility changes only when it passes behind what Appel

Fig. 156.19 Quantitative invisibility of a line. Dashed lines are hidden. intersections of
AB’s projection with projections of contour lines are shown as large dots (e), and each
segment of A8 is marked with its quantitative invisibility.

TEXAS INSTRUMENTS EX. 1009 - 713/1253

15.3 Algorithms for Visible-line Determination 667

calls a contour line. A contour line is either an edge shared by a front-facing and a
back-facing polygon, or the unshared edge of a front-facing polygon that is not part of a
closed polyhedron. An edge shared by two front-facing polygons causes no change in
visibility and therefore is not a contour line. In Fig. 15.19, edges AB, CD, DF, and KL are
contour lines, whereas edges CE, EF, and JK are not.

A contour line passes in front of the edge under consideration if it pierces the triangle
formed by the eyepoint and the edge’s two endpoints. Whether it does so can be determined
by a point-in-polygon containment test, such as that discussed in Section 7.12.2. The
projection of such a contour line on the edge can be found by clipping the edge against the
plane determined by the eyepoint and the contour line. Appel’s algorithm requires that all
polygon edges be drawn in a consistent direction about the polygon, so that the sign of the
change in quantitative invisibility is determined by the sign of the cross-product of the edge
with the contour line.

The algorithm first computes the quantitative invisibility of a “‘seed’” vertex of an
object by determining the number of front-facing polygons that hide it. This can be done
by a brute-force computation of all front-facing polygons whose intersection with the pro-
jector to the seed vertex is closer than is the seed vertex itself. The algorithm then takes ad-
vantage of edge coherence by propagating this value along the edges emanating from
the point, incrementing or decrementing the value at each point at which an edge passes
behind a contour line. Only sections of edges whose quantitative invisibility is zero are
drawn. When each line’s other endpoint is reached, the quantitative invisibility asso-
ciated with that endpoint becomes the initial quantitative invisibility of all lines emanat-
ing in turn from it.

At vertices through which a contour line passes, there is a complication that requires us
to make a correction when propagating the quantitative invisibility. One or more lines
emanating from the vertex may be hidden by one or more front-facing polygons sharing the
vertex. For example, in Fig. 15.19, edge JK has a quantitative invisibility of 0, while edge
KL has a quantitative invisibility of 1 because it is hidden by the object’s top face. This
change in quantitative invisibility at a vertex can be taken into account by testing the edge
against the front-facing polygons that share the vertex.

For an algorithm such as Appel’s to handle intersecting polygons, it is necessary to
compute the intersections of edges with front-facing polygons and to use each such
intersection to increment or decrement the quantitative invisibility. Since visible-line
algorithms typically compare whole edges with other edges or objects, they can benefit
greatly from spatial-partitioning approaches. Each edge then needs to be compared with
only the other edges or objects in the grid boxes containing its projection.

15.3.3 Haloed Lines

Any visible-line algorithm can be easily adapted to show hidden lines as dotted, as dashed,
of lower intensity, or with some other rendering style supported by the display device. The
program then outputs the hidden line segments in the line style selected, instead of
suppressing them. In contrast, Appel, Rohlf, and Stein [APPE79] describe an algorithm for
rendering haloed lines, as shown in Fig. 15.20. Each line is surrounded on both sides by a
halo that obscures those parts of lines passing behind it. This algorithm, unlike those

TEXAS INSTRUMENTS EX. 1009 - 714/1253

668 Visible-surface Determination

(a) (b) ()

Fig. 15.20 Three heads rendered (a) without hidden lines eliminated, (b) with hidden
lines haloed, and (c) with hidden lines eliminated. (Courtesy of Arthur Appel, IBM T.J.
Watson Research Center.)

discussed previously, does not require each line to be part of an opaque polygonal face.
Lines that pass behind others are obscured only around their intersection on the view plane.
The algorithm intersects each line with those passing in front of it, keeps track of those
sections that are obscured by halos, and draws the visible sections of each line after the
intersections have been calculated. If the halos are wider than the spacing between lines,
then an effect similar to conventional hidden-line elimination is achieved, except that a
line’s halo extends outside a polygon of which it may be an edge.

In the rest of this chapter, we discuss the rich variety of algorithms developed for
visible-surface determination. We concentrate here on computing which parts of an object’s
surfaces are visible, leaving the determination of surface color to Chapter 16. In describing
each algorithm, we emphasize its application to polygons, but point out when it can be
generalized to handle other objects.

15.4 THE z-BUFFER ALGORITHM

The z-buffer or depth-buffer image-precision algorithm, developed by Catmull [CATM74b],
is one of the simplest visible-surface algorithms to implement in either software or
hardware. It requires that we have available not only a frame buffer F in which color values
are stored, but also a z-buffer Z, with the same number of entries, in which a z-value is
stored for each pixel. The z-buffer is initialized to zero, representing the z-value at the back
clipping plane, and the frame buffer is initialized to the background color. The largest value
that can be stored in the z-buffer represents the z of the front clipping plane. Polygons are
scan-converted into the frame buffer in arbitrary order. During the scan-conversion process,
if the polygon point being scan-converted at (x, y) is no farther from the viewer than is the
point whose color and depth are currently in the buffers, then the new point’s color and
depth replace the old values. The pseudocode for the z-buffer algorithm is shown in Fig.
15.21. The WritePixel and ReadPixel procedures introduced in Chapter 3 are supplemented
here by WriteZ and ReadZ procedures that write and read the z-buffer.

TEXAS INSTRUMENTS EX. 1009 - 715/1253

15.4 The z-Buffer Algorithm 669

void zBuffer(void)
{

int x, y;

for (y=0;y < YMAX; y++) { /+ Clear frame buffer and z-buffer +/
for (x = 0; x < XMAX; x++) {
WritePixel (x, y, BACKGROUND_VALUE);
WriteZ (x, v, 0);

}
}
for (each polygon) { /+ Draw polygons #/
for (each pixel in polygon's projection) {
double pz = polygon’s z-value at pixel coords (x, y);
if (pz >= ReadZ (x,y)) { /+ New point is not farther +/
WriteZ (x, y, pz);
WritePixel (x, y, polygon's color at pixel coords (x, v));
}
}
}
} 1+ zBuffer #/

Fig. 15.21 Pseudocode for the z-buffer algorithm.

No presorting is necessary and no object—object comparisons are required. The entire
process is no more than a search over each set of pairs {Z(x ,y), F(x, y)} for fixed x and y, to
find the largest Z,. The z-buffer and the frame buffer record the information associated with
the largest z encountered thus far for each (x, y). Thus, polygons appear on the screen in the
order in which they are processed. Each polygon may be scan-converted one scan line at a
time into the buffers, as described in Section 3.6. Figure 15.22 shows the addition of two
polygons to an image. Each pixel’s shade is shown by its color; its z is shown as a number.

Remembering our discussion of depth coherence, we can simplify the calculation of z
for each point on a scan line by exploiting the fact that a polygon is planar. Normally, to
calculate z, we would solve the plane equation Ax + By + Cz + D = 0 for the variable z:

_ =D —Ax— By

. 4 , (15.6)

Now, if at (x, ¥) Eq. (15.6) evaluates to z,, then at (x + Ax, y) the value of z is

A
7 = ¢lax). (15.7)
Only one subtraction is needed to calculate z(x + 1,y) given z(x, y), since the quotient A/C

is constant and Ax = 1. A similar incremental calculation can be performed to determine
the first value of z on the next scan line, decrementing by B/C for each Ay. Alternatively, if

TEXAS INSTRUMENTS EX. 1009 - 716/1253

670 Visible-surface Determination

gjojojojojoio
gjojojojojojo 0
ojojojojojojo 0|0
pjojojojojojo + = 0|00
gjojojojojojo Djojo0|0
gjojojojojojo ojojo(o|O
ojojojojojo|o of(ojojojo|O
(a) ojojojojojojo gjojofofojo|oO

o000 |oo|lo|o ojlo|jojojojo|o|o

=Rl=lf=Ri=31=0 =][=0F=] olojojlo|jo|o (oo

(b)

Fig. 15.22 The z-buffer. A pixel's shade is shown by its color, its z value is shown as a
number. (a) Adding a polygon of constant z to the empty z-buffer. {b) Adding another
polygon that intersects the first.

the surface has not been determined or if the polygon is not planar (see Section 11.1.3),
z(x, y) can be determined by interpolating the z coordinates of the polygon’s vertices along
pairs of edges, and then across each scan line, as shown in Fig. 15.23. Incremental
calculations can be used here as well. Note that the color at a pixel does not need to be
computed if the conditional determining the pixel’s visibility is not satisfied. Therefore, if
the shading computation is time consuming, additional efficiency can be gained by
performing a rough front-to-back depth sort of the objects to display the closest objects
first.

The z-buffer algorithm does not require that objects be polygons. Indeed, one of its
most powerful attractions is that it can be used to render any object if a shade and a z-value

y ¥
4 o 1 :
Yi &y s T . " ¥y
. z %5 Scan line Z =z —(z,~2Z) il
b 1 1 ¥ ¥~ Ys

¥s

¥s Z, P

Fig. 15.23 Interpolation of z values along polygon edges and scan lines. z, is
interpolated between z, and z,; z, between z, and z,; z, between z, and 2,

TEXAS INSTRUMENTS EX. 1009 - 717/1253

15.4 The z-Buffer Algorithm 671

can be determined for each point in its projection; no explicit intersection algorithms need
to be written.

The z-buffer algorithm performs radix sorts in x and y, requiring no comparisons, and
its z sort takes only one comparison per pixel for each polygon containing that pixel. The
time taken by the visible-surface calculations tends to be independent of the number of
polygons in the objects because, on the average, the number of pixels covered by each
polygon decreases as the number of polygons in the view volume increases. Therefore, the
average size of each set of pairs being searched tends to remain fixed. Of course, it is also
necessary to take into account the scan-conversion overhead imposed by the additional
polygons.

Although the z-buffer algorithm requires a large amount of space for the z-buffer, it is
easy to implement. If memory is at a premium, the image can be scan-converted in strips,
so that only enough z-buffer for the strip being processed is required, at the expense of
performing multiple passes through the objects. Because of the z-buffer’s simplicity and the
lack of additional data structures, decreasing memory costs have inspired a number of
hardware and firmware implementations of the z-buffer, examples of which are discussed in
Chapter 18. Because the z-buffer algorithm operates in image precision, however, it is
subject to aliasing. The A-buffer algorithm [CARP84], described in Section 15.7,
addresses this problem by using a discrete approximation to unweighted area sampling.

The z-buffer is often implemented with 16- through 32-bit integer values in hardware,
but software (and some hardware) implementations may use floating-point values.
Although a 16-bit z-buffer offers an adequate range for many CAD/CAM applications, 16
bits do not have enough precision to represent environments in which objects defined with
millimeter detail are positioned a kilometer apart. To make matters worse, if a perspective
projection is used, the compression of distant z values resulting from the perspective divide
has a serious effect on the depth ordering and intersections of distant objects. Two points
that would transform to different integer z values if close to the view plane may transform to
the same z value if they are farther back (see Exercise 15.13 and [HUGH89]).

The z-buffer’s finite precision is responsible for another aliasing problem. Scan-
conversion algorithms typically render two different sets of pixels when drawing the
common part of two collinear edges that start at different endpoints. Some of those pixels
shared by the rendered edges may also be assigned slightly different z values because of
numerical inaccuracies in performing the z interpolation. This effect is most noticeable at
the shared edges of a polyhedron’s faces. Some of the visible pixels along an edge may be
part of one polygon, while the rest come from the polygon’s neighbor. The problem can be
fixed by inserting extra vertices to ensure that vertices occur at the same points along the
common part of two collinear edges.

Even after the image has been rendered, the z-buffer can still be used to advantage.
Since it is the only data structure used by the visible-surface algorithm proper, it can be
saved along with the image and used later to merge in other objects whose z can be
computed. The algorithm can also be coded so as to leave the z-buffer contents unmodified
when rendering selected objects. If the z-buffer is masked off this way, then a single object
can be written into a separate set of overlay planes with hidden surfaces properly removed
(if the object is a single-valued function of x and y) and then erased without affecting the
contents of the z-buffer. Thus, a simple object, such as a ruled grid, can be moved about the

TEXAS INSTRUMENTS EX. 1009 - 718/1253

672 Visible-surface Determination

image in x, y, and z, to serve as a **3D cursor’’ that obscures and is obscured by the objects
in the environment. Cutaway views can be created by making the z-buffer and frame-buffer
writes contingent on whether the z value is behind a cutting plane. If the objects being
displayed have a single z value for each (x, y), then the z-buffer contents can also be used to
compute area and volume. Exercise 15.25 explains how to use the z-buffer for picking.

Rossignac and Requicha [ROSS86] discuss how to adapt the z-buffer algorithm to
handle objects defined by CSG. Each pixel in a surface’s projection is writien only if it is
both closer in z and on a CSG object constructed from the surface. Instead of storing only
the point with closest z at each pixel, Atherton suggests saving a list of all points, ordered by
z and accompanied by each surface’s identity, to form an object buffer [ATHES1]. A
postprocessing stage determines how the image is displayed. A variety of effects, such as
transparency, clipping, and Boolean set operations, can be achieved by processing each
pixel’s list, without any need to re-scan convert the objects.

15.5 LIST-PRIORITY ALGORITHMS

List-priority algorithms determine a visibility ordering for objects ensuring that a correct
picture results if the objects are rendered in that order, For example, if no object overlaps
another in z, then we need only to sort the objects by increasing z, and to render them in that
order. Farther objects are obscured by closer ones as pixels from the closer polygons
overwrite those of the more distant ones. If objects overlap in z, we may still be able to
determine a correct order, as in Fig. 15.24(a). If objects cyclically overlap each other, as
Fig. 15.24(b) and (c), or penetrate each other, then there is no correct order. In these cases,
it will be necessary to split one or more objects to make a linear order possible.
List-priority algorithms are hybrids that combine both object-precision and image-
precision operations. Depth comparisons and object splitting are done with object
precision. Only scan conversion, which relies on the ability of the graphics device to
overwrite the pixels of previously drawn objects, is done with image precision, Because the
list of sorted objects is created with object precision, however, it can be redisplayed
correctly at any resolution. As we shall see, list-priority algorithms differ in how they
determine the sorted order, as well as in which objects get split, and when the splitting
occurs. The sort need not be on z, some objects may be split that neither cyclically overlap
nor penetrate others, and the splitting may even be done independent of the viewer's

position.

L 4
-

N/

(a) (b) (c)
Fig. 16.24 Some cases in which z extents of polygons overlap.

TEXAS INSTRUMENTS EX. 1009 - 719/1253

15.5 List-priority Algorithms 673

15.5.1 The Depth-Sort Algorithm

The basic idea of the depth-sort algorithm, developed by Newell, Newell, and Sancha
[NEWET72], is to paint the polygons into the frame buffer in order of decreasing distance
from the viewpoint. Three conceptual steps are performed:

1. Sort all polygons according to the smallest (farthest) z coordinate of each

2. Resolve any ambiguities this may cause when the polygons’ z extents overlap, splitting
polygons if necessary

3. Scan convert each polygon in ascending order of smallest z coordinate (i.e., back to
front).

Consider the use of explicit priority, such as that associated with views in SPHIGS.
The explicit priority takes the place of the minimum z value, and there can be no depth
ambiguities because each priority is thought of as corresponding to a different plane of
constant z. This simplified version of the depth-sort algorithm is often known as the
painter's algorithm, in reference to how a painter might paint closer objects over more
distant ones. Environments whose objects each exist in a plane of constant z, such as those
of VLSI layout, cartography, and window management, are said to be 2iD and can be
correctly handled with the painter’s algorithm. The painter’s algorithm may be applied to a
scene in which each polygon is not embedded in a plane of constant z by sorting the
polygons by their minimum z coordinate or by the z coordinate of their centroid, ignoring
step 2. Although scenes can be constructed for which this approach works, it does not in
general produce a correct ordering.

Figure 15.24 shows some of the types of ambiguities that must be resolved as part of
step 2. How is this done? Let the polygon currently at the far end of the sorted list of
polygons be called P. Before this polygon is scan-converted into the frame buffer, it must
be tested against each polygon Q whose z extent overlaps the z extent of P, to prove that P
cannot obscure Q and that P can therefore be written before Q. Up to five tests are
performed, in order of increasing complexity. As soon as one succeeds, P has been shown
not to obscure @ and the next polygon Q overlapping P in z is tested. If all such polygons
pass, then P is scan-converted and the next polygon on the list becomes the new P. The five
tests are

Do the polygons’ x extents not overlap?

Do the polygons’ y extents not overlap?

3. Is P entirely on the opposite side of Q’s plane from the viewpoint? (This is not the case
in Fig. 15.24(a), but is true for Fig. 15.25.)

4. Is Q entirely on the same side of P's plane as the viewpoint? (This is not the case in
Fig. 15.24(a), but is true for Fig. 15.26.)

5. Do the projections of the polygons onto the (x, y) plane not overlap? (This can be
determined by comparing the edges of one polygon to the edges of the other.)

Exercise 15.6 suggests a way to implement tests 3 and 4.
If all five tests fail, we assume for the moment that P actually obscures Q, and therefore
test whether Q can be scan-converted before P. Tests 1, 2, and 5 do not need to be repeated,

TEXAS INSTRUMENTS EX. 1009 - 720/1253

674 Visible-surface Determination

\/

Fig. 15.25 Test 3 is true.

but new versions of tests 3 and 4 are used, with the polygons reversed:

*

3. Is Q entirely on the opposite side of P’s plane from the viewpoint?
4', Is P entirely on the same side of Qs plane as the viewpoint?

In the case of Fig. 15.24(a), test 3’ succeeds. Therefore, we move Q to the end of the list
and it becomes the new P. In the case of Fig 15.24(b), however, the tests are still
inconclusive; in fact, there is no order in which P and Q can be scan-converted correctly.
Instead, either P or Q2 must be split by the plane of the other (see Section 3.14 on polygon
clipping, treating the clip edge as a clip plane). The original unsplit polygon is discarded,
its pieces are inserted in the list in proper z order, and the algorithm proceeds as before.

Figure 15.24(c) shows a more subtle case. It is possible for P, Q, and R to be oriented
such that each polygon can always be moved to the end of the list to place it in the correct
order relative to one, but not both, of the other polygons. This would result in an infinite
loop. To avoid looping, we must modify our approach by marking each polygon that is
moved to the end of the list. Then, whenever the first five tests fail and the current polygon
Q is marked, we do not try tests 3’ and 4'. Instead, we split either P or Q (as if tests 3’ and
4' had both failed) and reinsert the pieces.

Can two polygons fail all the tests even when they are already ordered correctly?
Consider P and Q in Fig. 15.27(a). Only the z coordinate of each vertex is shown. With P
and Q in their current position, both the simple painter’s algorithm and the full depth-sort
algorithm scan convert P first. Now, rotate Q clockwise in its plane until it begins to
obscure P, but do not allow P and Q themselves to intersect, as shown in Fig. 15.27(b).
(You can do this nicely using your hands as P and Q. with your palms facing you.) P and Q

L
z

Fig. 15.26 Test 3 is false, but test 4 is true.

TEXAS INSTRUMENTS EX. 1009 - 721/1253

16.5 List-priority Algorithms 675

(b)

Fig. 16.27 Correctly ordered polygons may be split by the depth-sort algorithm.
Polygon vertices are labeled with their z values. (a) Polygons P and Q are scan-converted
without splitting. (b) Polygons P and Q fail all five tests even though they are correctly
ordered.

have overlapping z extents, so they must be compared. Note that tests 1 and 2 (x and y
extent) fail, tests 3 and 4 fail because neither is wholly in one half-space of the other, and
test 5 fails because the projections overlap. Since tests 3’ and 4° also fail, a polygon will be
split, even though P can be scan-converted before (. Although the simple painter’s
algorithm would correctly draw P first because P has the smallest minimum z coordinate,
try the example again with z = —0.5 at P's bottom and z = 0.5 at P’s top.

15.5.2 Binary Space-Partitioning Trees

The binary space-partitioning (BSP) tree algorithm, developed by Fuchs, Kedem, and
Naylor [FUCHRBO0; FUCHB83], is an extremely efficient method for calculating the visibility
relationships among a static group of 3D polygons as seen from an arbitrary viewpoint. It
trades off an initial time- and space-intensive preprocessing step against a linear display
algorithm that is executed whenever a new viewing specification is desired. Thus, the
algorithm is well suited for applications in which the viewpoint changes, but the objects do
not.
The BSP tree algorithm is based on the work of Schumacker [SCHU69], who noted
that environments can be viewed as being composed of clusters (collections of faces), as
shown in Fig. 15.28(a). If a plane can be found that wholly separates one set of clusters
from another, then clusters that are on the same side of the plane as the eyepoint can
obscure, but cannot be obscured by, clusters on the other side. Each of these sets of clusters
can be recursively subdivided if suitable separating planes can be found. As shown in Fig.
15.28(b), this partitioning of the environment can be represented by a binary tree rooted at

TEXAS INSTRUMENTS EX. 1009 - 722/1253

676 Visible-surface Determination

P1 P1
A front back
‘_ypz /\
P2 P
D . B &
0% hont /N ok ot /\ pk
c
D C A B
3, 1.2 321 .23 21,3

(a) (b)

Fig. 15.28 Cluster priority. (a) Clusters 1 through 3 are divided by partitioning planes
P1 and P2, determining regions A through D in which the eyepoint may be located. Each
region has a unique cluster priority. (b) The binary-tree representation of (a). (Based on
[SUTH74a).)

the first partitioning plane chosen. The tree’s internal nodes are the partitioning planes; its
leaves are regions in space. Each region is associated with a unique order in which clusters
can obscure one another if the viewpoint is located in that region. Determining the region in
which the eyepoint lies involves descending the tree from the root and choosing the left or
right child of an internal node by comparing the viewpoint with the plane at that node.
Schumacker selects the faces in a cluster so that a priority ordering can be assigned to
each face independent of the viewpoint, as shown in Fig. 15.29. After back-face culling has
been performed relative to the viewpoint, a face with a lower priority number obscures a
face with a higher number wherever the faces' projections intersect. For any pixel, the
correct face to display is the highest-priority (lowest-numbered) face in the highest-priority
cluster whose projection covers the pixel. Schumacker used special hardware to determine
the frontmost face at each pixel. Alternatively, clusters can be displayed in order of increasing
cluster priority (based on the viewpoint), with each cluster’s faces displayed in order of their
increasing face priority. Rather than take this two-part approach to computing an order in
which faces should be scan-converted, the BSP tree algorithm uses a generalization of
Schumacker's approach to calculating cluster priority. It is based on the observation that a
polygon will be scan-converted correctly (i.e., will not incorrectly overlap or be incorrectly

Viewpoint
(a) (b)

Fig. 15.29 Face priority. (a) Faces in a cluster and their priorities. A lower number
indicates a higher priority. (b) Priorities of visible faces. (Based on [SUTH74a).)

TEXAS INSTRUMENTS EX. 1009 - 723/1253

15.5 List-priority Algorithms 677

overlapped by other polygons) if all polygons on the other side of it from the viewer are
scan-converted first, then it, and then all polygons on the same side of it as the viewer, We
need to ensure that this is so for each polygon.

The algorithm makes it easy to determine a correct order for scan conversion by
building a binary tree of polygons, the BSP tree. The BSP tree’s root is a polygon selected
from those to be displayed; the algorithm works correctly no matter which is picked. The
root polygon is used to partition the environment into two half-spaces. One half-space
contains all remaining polygons in front of the root polygon, relative to its surface normal;
the other contains all polygons behind the root polygon. Any polygon lying on both sides of
the root polygon’s plane is split by the plane and its front and back pieces are assigned to the
appropriate half-space. One polygon each from the root polygon’s front and back
half-space become its front and back children, and each child is recursively used to divide
the remaining polygons in its half-space in the same fashion. The algorithm terminates
when each node contains only a single polygon. Pseudocode for the tree-building phase is
shown in Fig. 15.30; Fig. 15.31 shows a tree being built.

Remarkably, the BSP tree may be traversed in a modified in-order tree walk to yield a
correct priority-ordered polygon list for an arbitrary viewpoint. Consider the root polygon.
It divides the remaining polygons into two sets, each of which lies entirely on one side of the
root’s plane. Thus, the algorithm needs to only guarantee that the sets are displayed in the
correct relative order to ensure both that one set’s polygons do not interfere with the other’s
and that the root polygon is displayed properly and in the correct order relative to the others.
If the viewer is in the root polygon’s front half-space, then the algorithm must first display
all polygons in the root’s rear half-space (those that could be obscured by the root), then the
root, and finally all polygons in its front half-space (those that could obscure the root).
Alternatively, if the viewer is in the root polygon’s rear half-space, then the algorithm must
first display all polygons in the root's front half-space, then the root, and finally all
polygons in its rear half-space. If the polygon is seen on edge, either display order suffices.
Back-face culling may be accomplished by not displaying a polygon if the eye is in its rear
half-space. Each of the root’s children is recursively processed by this algorithm.
Pseudocode for displaying a BSP tree is shown in Fig. 15.32; Fig. 15.33 shows how the tree
of Fig.15.31 (c) is traversed for two different projections.

Each polygon's plane equation can be transformed as it is considered, and the
polygon’s vertices can be transformed by the displayPolygon routine. The BSP tree can also
assist in 3D clipping. Any polygon whose plane does not intersect the view volume has one
subtree lying entirely outside of the view volume that does not need to be considered
further.

Which polygon is selected to serve as the root of each subtree can have a significant
effect on the algorithm’s performance. Ideally, the polygon selected should cause the fewest
splits among all its descendants. A heuristic that is easier to satisfy is to select the polygon
that splits the fewest of its children. Experience shows that testing just a few (five or six)
polygons and picking the best provides a good approximation to the best case [FUCH83].

Like the depth-sort algorithm, the BSP tree algorithm performs intersection and
sorting entirely at object precision, and relies on the image-precision overwrite capabilities
of a raster device. Unlike depth sort, it performs all polygon splitting during a pre-
processing step that must be repeated only when the environment changes. Note that more

TEXAS INSTRUMENTS EX. 1009 - 724/1253

678 Visible-surface Determination

typedef struct {
polygon root;

BSP.tree «backChild, *frontChild,
} BSP.tree;

BSF_tree *BSP. makeTree (polygon spolyList)
{
polygon root;
polygon sbackList, frontList,
polygon p, backPart, frontParr, /+ We assume each polygon is convex. */

if (polyList == NULL)
return NULL;
else {
root = BSP. selectAndRemovePoly (&polyList);
backList = NULL;
frontList = NULL;
for (each remaining polygon p in polyList) {
if (polygon p in front of root)
BSP.addToList (p, &frontList);
else if (polygon p in back of root)
BSP. addToList (p, &backList);
else { /= Polygon p must be split. =/
BSP._splitPoly (p, root, &frontPart, &backPart);
BSP._addToList (frontPart, &frontList);
BSP. addToList (backPart, &backList);
}
}
return BSP. combineTree (BSP. makeTree (frontList),
roor,
BSP.makeTree (backList));

}
} /= BSP.makeTree #/

Fig. 15.30 Pseudocode for building a BSP tree.

polygon splitting may occur than in the depth-sort algorithm.

List-priority algorithms allow the use of hardware polygon scan converters that are
typically much faster than are those that check the z at each pixel. The depth-sort and BSP
tree algorithms display polygons in a back-to-front order, possibly obscuring more distant
ones later. Thus, like the z-buffer algorithm, shading calculations may be computed more
than once for each pixel. Alternatively, polygons can instead be displayed in a front-to-back
order, and each pixel in a polygon can be written only if it has not yet been.

If a list-priority algorithm is used for hidden-line removal, special attention must be
paid to the new edges introduced by the subdivision process. If these edges are

TEXAS INSTRUMENTS EX. 1009 - 725/1253

TEXAS INSTRUMENTS EX. 1009 - 726/1253

680 Visible-surface Determination

void BSP. displayTree (BSP.tree «tree)

{
if (tree '= NULL) {

if (viewer is in front of tree—>root) {
f+ Display back child, root, and front child. »/
BSP._displayTree (tree—>backChild);
displayPolygon (tree—>root);
BSP_displayTree (tree—>frontChild);

} else {
f+ Display front child, root, and back child. #/
BSP._displayTree (tree—=>frontChild);
displayPolygon (tree—>>root); /= Only if back-face culling not desired »/
BSP_displayTree (tree—>backChild);

}

}

} /+ BSP.displayTree =/
Fig. 15.32 Pseudocode for displaying a BSP tree.

scan-converted like the original polygon edges, they will appear in the picture as
unwelcome artifacts, and they thus should be flagged so that they will not be scan-
converted.

156.6 SCAN-LINE ALGORITHMS

Scan-line algorithms, first developed by Wylie, Romney, Evans, and Erdahl [WYLI67],
Bouknight [BOUK70a; BOUK70b], and Watkins [WATK70], operate at image precision to
create an image one scan line at a time. The basic approach is an extension of the polygon
scan-conversion algorithm described in Section 3.6, and thus uses a variety of forms of
coherence, including scan-line coherence and edge coherence. The difference is that we

Fig. 16.33 Two traversals of the BSP tree corresponding to two different projections.
Projectors are shown as thin lines. White numbers indicate drawing order.

TEXAS INSTRUMENTS EX. 1009 - 727/1253

15.6 Scan-line Algorithms 681

deal not with just one polygon, but rather with a set of polygons. The first step is to create
an edge table (ET) for all nonhorizontal edges of all polygons projected on the view plane.
As before, horizontal edges are ignored. Entries in the ET are sorted into buckets based on
each edge’s smaller y coordinate, and within buckets are ordered by increasing x coordinate
of their lower endpoint. Each entry contains

The x coordinate of the end with the smaller y coordinate
2. The y coordinate of the edge’s other end

3. The x increment, Ax, used in stepping from one scan line to the next (Ax is the inverse
slope of the edge)

4. The polygon identification number, indicating the polygon to which the edge belongs.

Also required is a polygon table (PT) that contains at least the following information
for each polygon, in addition to its ID:

The coefficients of the plane equation
2. Shading or color information for the polygon
3. An in—out Boolean flag, initialized to faise and used during scan-line processing.

Figure 15.34 shows the projection of two triangles onto the (x, y) plane; hidden edges
are shown as dashed lines. The sorted ET for this figure contains entries for AB, AC, FD,
FE, CB, and DE. The PT has entries for ABC and DEF.

The active-edge table (AET) used in Section 3.6 is needed here also. It is always kept in
order of increasing x. Figure 15.35 shows ET, PT, and AET entries. By the time the
algorithm has progressed upward to the scan line y = a, the AET contains AB and AC, in
that order. The edges are processed from left to right. To process AB, we first invert the
in—out flag of polygon ABC. In this case, the flag becomes true; thus, the scan is now *‘in"’
the polygon, so the polygon must be considered. Now, because the scan is *‘in’’ only one
polygon (ABC), it must be visible, so the shading for ABC is applied to the span from edge
AB to the next edge in the AET, edge AC. This is an instance of span coherence. At this

Fig. 156.34 Two polygons being processed by a scan-line algorithm.

TEXAS INSTRUMENTS EX. 1009 - 728/1253

682 Visible-surface Determination

ET entry X j A Ax D - - = Scan line Ent

ry+t

PT entry D Plane eq. Shading info in—out a
T+

Fig. 16.35 ET, PT, AET for the scan-line algorithm.

edge the flag for ABC is inverted to false, so that the scan is no longer “‘in’" any polygons.
Furthermore, because AC is the last edge in the AET, the scan-line processing is completed.
The AET is updated from the ET and is again ordered on x because some of its edges may
have crossed, and the next scan line is processed.

When the scan line y = B is encountered, the ordered AET is AB, AC, FD, and FE.
Processing proceeds much as before. There are two polygons on the scan line, but the scan
is “‘in"" only one polygon at a time.

For scan line y = v, things are more interesting. Entering ABC causes its flag to
become frue. ABC's shade is used for the span up to the next edge, DE. At this point, the
flag for DEF also becomes true, so the scan is *‘in"" two polygons. (It is useful to keep an
explicit list of polygons whose in—out flag is true, and also to keep a count of how many
polygons are on the list.) We must now decide whether ABC or DEF is closer to the viewer,
which we determine by evaluating the plane equations of both polygons for z at y = y and
with x equal to the intersection of y = ¥ with edge DE. This value of x is in the AET entry
for DE. In our example, DEF has a larger z and thus is visible. Therefore, assuming
nonpenetrating polygons, the shading for DEF is used for the span to edge CB, at which
point ABC's flag becomes false and the scan is again ““in’" only one polygon DEF whose
shade continues to be used up to edge FE. Figure 15.36 shows the relationship of the two
polygons and the y = ¥ plane; the two thick lines are the intersections of the polygons with
the plane.

r=r

L J
]

Z

Fig. 15.36 Intersections of polygons ABC and DEF with the plane y = v.

TEXAS INSTRUMENTS EX. 1009 - 729/1253

15.6

Fig. 15.37 Three nonpenetrating polygons. Depth calculations do not need to be
made when scan line y leaves the obscured polygon ABC. since nonpenetrating
polygons maintain their relative z order.

Suppose there is a large polygon GHIJ behind both ABC and DEF, as in Fig. 15.37.
Then, when the y = ¥ scan line comes to edge CB, the scan is still “*in"” polygons DEF and
GHIJ, so depth calculations are performed again. These calculations can be avoided,
however, if we assume that none of the polygons penetrate another. This assumption means
that, when the scan leaves ABC, the depth relationship between DEF and GHIJ cannot
change, and DEF continues to be in front. Therefore, depth computations are unnecessary
when the scan leaves an obscured polygon, and are required only when it leaves an
obscuring polygon.

To use this algorithm properly for penetrating polygons, as shown in Fig. 15.38, we
break up KLM into KLL'M' and L'MM'’, introducing the false edge M'L’. Alternatively, the
algorithm can be modified to find the point of penetration on a scan line as the scan line is
processed.

Another modification to this algorithm uses depth coherence. Assuming that polygons
do not penetrate each other, Romney noted that, if the same edges are in the AET on one
scan line as are on the immediately preceding scan line, and if they are in the same order,
then no changes in depth relationships have occurred on any part of the scan line and no new
depth computations are needed [ROMNG68]. The record of visible spans on the previous
scan line then defines the spans on the current scan line. Such is the case for scan lines y = y

K
Fig. 15.38 Polygon KLM pierces polygon RST at the line L'M".

TEXAS INSTRUMENTS EX. 1009 - 730/1253

684 Visible-surface Determination

and y = ¥ + | in Fig.15.34, for both of which the spans from AB to DE and from DE to
FE are visible. The depth coherence in this figure is lost, however, as we gofromy = y + |
oy =y + 2, because edges DE and CB change order in the AET (a situation that the
algorithm must accommodate). The visible spans therefore change and, in this case,
become AB to CB and DE to FE. Hamlin and Gear [HAML77] show how depth coherence
can sometimes be maintained even when edges do change order in the AET.

We have not yet discussed how to treat the background. The simplest way is to initialize
the frame buffer to the background color, so the algorithm needs to process only scan lines
that intersect edges. Another way is to include in the scene definition a large enough
polygon that is farther back than any others are, is parallel to the projection plane, and has
the desired shading. A final alternative is to modify the algorithm to place the background
color explicitly into the frame buffer whenever the scan is not *'in"" any polygon.

Although the algorithms presented so far deal with polygons, the scan-line approach
has been used extensively for more general surfaces, as described in Section 15.9. To
accomplish this, the ET and AET are replaced by a surface table and active-surface table,
sorted by the surfaces’ (x, y) extents. When a surface is moved from the surface table to the
active-surface table, additional processing may be performed. For example, the surface may
be decomposed into a set of approximating polygons, which would then be discarded when
the scan leaves the surface’s v extent; this eliminates the need to maintain all surface data
throughout the rendering process. Pseudocode for this general scan-line algorithm is shown
in Fig. 15.39. Atherton [ATHEB3] discusses a scan-line algorithm that renders polygonal
objects combined using the regularized Boolean set operations of constructive solid
geometry.,

A scan-line approach that is appealing in its simplicity uses a z-buffer to resolve the
visible-surface problem [MYER75]. A single-scan-line frame buffer and z-buffer are
cleared for each new scan line and are used 10 accumulate the spans. Because only one scan
line of storage is needed for the buffers, extremely high-resolution images are readily
accommodated.

add surfaces 1o surface table,
inmitialize active-surface table;

for (each scan line) {
update active-surface table,

for (each pixel on scan line) {
determine surfaces in active-surface table that project to pixel:
JSind closest such surface,

determine closest surface’s shade at pixel,

}
}

Fig. 15.39 Pseudocode for a general scan-line algorithm.

TEXAS INSTRUMENTS EX. 1009 - 731/1253

15.6 Scan-line Algorithms 685

Crocker [CROCB84] uses a scan-line z-buffer to exploit what he calls invisibility
coherence, the tendency for surfaces that are invisible on one scan line to be invisible on the
next. When the active-surface table is made up for a given scan line, a separate
invisible-surface table is also built. A surface is added to the invisible-surface table if its
maximum z value for the current scan line is less than the z values in the previous line’s z
buffer at the surface’s minimum and maximum x values. For example, given the cube and
contained triangle shown in Fig 15.40(a), the triangle and the contents of the previous scan
line’s z-buffer projected onto the (x, z) plane are shown in Fig. 15.40(b). The triangle’s z,.
is less than the previous scan line's z-buffer values at the triangle’s x,;, and x_ ., so the
triangle is added to the invisible-surface table. Placing a surface in the invisible-surface
table eliminates it from much of the visible-surface processing. Some surfaces in the
invisible-surface table may not belong there. To remedy this, as each pixel on the current
scan line is processed, surfaces are removed from the invisible-surface table and are added
to the active-surface table if their maximum z value is greater than the z value of what is
currently determined to be the visible surface at the pixel. For example, even though the
triangle shown in Fig. 15.40(c) was placed in the invisible-surface table, it is actually
visible because the cube has been clipped, and it will be removed and added to the
active-surface table.

Sechrest and Greenberg [SECH82] have developed an object-precision algorithm for
nonintersecting polygons that is somewhat in the spirit of a scan-line algorithm. Their
algorithm relies on the fact that the visibility of edges can change only at vertices and edge
crossings. It sorts vertices and edge crossings by y, effectively dividing up the scene into
horizontal bands inside of which the visibility relationships are constant (see Fig. 15.41).
Object-precision coordinates of the edge segments visible in each strip are output as the
strip is processed and are supplemented with information from which the contours of visible
polygons can be reconstructed for scan conversion. Initially, only vertices that are local
minima are inspected in sorted order. An AET is kept, and is modified whenever a vertex is
encountered in the scan. Edge crossings are determined on the fly by testing only the active
edges for intersections.

Scan line

(b) (c)

Fig. 15.40 Invisibility coherence. (a) Triangle in a box. (b) Triangle is correctly placed
in invisible table. (c) Triangle is incorrectly placed in invisible-surface table. (Based on
[CROCB4].)

TEXAS INSTRUMENTS EX. 1009 - 732/1253

6B6 Visible-surface Determination

Fig. 15.41 The Sechrest and Greenberg object-precision algorithm divides the picture
plane into horizontal strips at vertices and edge crossings. (Courtesy of Stuart Sechrest
and Donald P. Greenberg, Program of Computer Graphics, Cornell Univeristy, 1982.)

15.7 AREA-SUBDIVISION ALGORITHMS

Area-subdivision algorithms all follow the divide-and-conquer strategy of spatial partition-
ing in the projection plane. An area of the projected image is examined. If it is easy to
decide which polygons are visible in the area, they are displayed. Otherwise, the area is
subdivided into smaller areas to which the decision logic is applied recursively. As the areas
become smaller, fewer polygons overlap each area, and ultimately a decision becomes
possible. This approach exploits area coherence, since sufficiently small areas of an image
will be contained in at most a single visible polygon.

15.7.1 Warnock's Algorithm

The area-subdivision algorithm developed by Warnock [WARNG69] subdivides each area
into four equal squares. At each stage in the recursive-subdivision process, the projection of
each polygon has one of four relationships to the area of interest (see Fig. 15.42):
Surrounding polygons completely contain the (shaded) area of interest (Fig. 15.42a)
Intersecting polygons intersect the area (Fig. 15.42b)

Contained polygons are completely inside the area (Fig. 15.42¢)

Disjoint polygons are completely outside the area (Fig. 15.42d).

Bow N -

Disjoint polygons clearly have no influence on the area of interest. The part of an
intersecting polygon that is outside the area is also irrelevant, whereas the part of an
intersecting polygon that is interior to the area is the same as a contained polygon and can
be treated as such.

In four cases, a decision about an area can be made easily, so the area does not need to
be divided further to be conquered:

1. All the polygons are disjoint from the area. The background color can be displayed in
the area.

TEXAS INSTRUMENTS EX. 1009 - 733/1253

15.7 Area-subdivision Algorithms 687

THHT]

(a) Surrounding (b) Intersecting (e) Contained (d) Disjoint

Fig. 15.42 Four relations of polygon projections to an area element: (a) surrounding,
(b) intersecting, (c) contained, and (d) disjoint.

2. There is only one intersecting or only one contained polygon. The area is first filled
with the background color, and then the part of the polygon contained in the area is
scan-converted.

3. There is a single surrounding polygon, but no intersecting or contained polygons. The
area is filled with the color of the surrounding polygon.

4. More than one polygon is intersecting, contained in, or surrounding the area, but one is
a surrounding polygon that is in front of all the other polygons. Determining whether a
surrounding polygon is in front is done by computing the z coordinates of the planes of
all surrounding, intersecting, and contained polygons at the four corners of the area; if
there is a surrounding polygon whose four corner z coordinates are larger (closer to the
viewpoint) than are those of any of the other polygons, then the entire area can be filled
with the color of this surrounding polygon.

Cases 1, 2, and 3 are simple to understand. Case 4 is further illustrated in Fig. 15.43.

F T = X . o = X
' * ' ¢ Intersecting
¥ ' Contained polygon polygon
: " i
* E :
: : &, Surrounding
i ; ; ' polygon
: . Intersecting PR
6 —-'-‘é polygon Area of interest
' sy Surounding }

Area of interest
(a) (b)

Fig. 15.43 Two examples of case 4 in recursive subdivision. {a) Surrounding polygon
is closest at all corners of area of interest. (b) Intersecting polygon plane is closest at left
side of area of interest. X marks the intersection of surrounding polygon plane; © marks
the intersection of intersecting polygon plane; * marks the intersection of contained

polygon plane.

TEXAS INSTRUMENTS EX. 1009 - 734/1253

688 Visible-surface Determination

In part (a), the four intersections of the surrounding polygon are all closer to the viewpoint
(which is at infinity on the +z axis) than are any of the other intersections. Consequently,
the entire area is filled with the surrounding polygon's color. In part (b), no decision can be
made, even though the surrounding polygon seems to be in front of the intersecting
polygon, because on the left the plane of the intersecting polygon is in front of the plane of
the surrounding polygon. Note that the depth-sort algorithm accepts this case without
further subdivision if the intersecting polygon is wholly on the side of the surrounding
polygon that is farther from the viewpoint. Warnock’s algorithm, however, always
subdivides the area to simplify the problem. After subdivision, only contained and
intersecting polygons need to be reexamined: Surrounding and disjoint polygons of the
original area are surrounding and disjoint polygons of each subdivided area.

Up to this point, the algorithm has operated at object precision, with the exception of
the actual scan conversion of the background and clipped polygons in the four cases. These
image-precision scan-conversion operations, however, can be replaced by object-precision
operations that output a precise representation of the visible surfaces: either a square of the
area's size (cases 1, 3, and 4) or a single polygon clipped to the area, along with its Boolean
complement relative to the area, representing the visible part of the background (case 2).
What about the cases that are not one of these four? One approach is to stop subdividing
when the resolution of the display device is reached. Thus, on a 1024 by 1024 raster
display, at most 10 levels of subdivision are needed. If, after this maximum number of
subdivisions, none of cases 1 10 4 have occurred, then the depth of all relevant polygons is
computed at the center of this pixel-sized, indivisible area. The polygon with the closest z
coordinate defines the shading of the area. Alternatively, for antialiasing, several further
levels of subdivision can be used to determine a pixel’s color by weighting the color of each

Fig. 15.44 Area subdivision into squares.

TEXAS INSTRUMENTS EX. 1009 - 735/1253

15.7 Area-subdivision Algorithms 689

Fig. 15.45 Area subdivision about circled polygon vertices. The first subdivision is at
vertex A; the second is at vertex B.

of its subpixel-sized areas by its size. It is these image-precision operations, performed
when an area is not one of the simple cases, that makes this an image-precision approach.

Figure 15.44 shows a simple scene and the subdivisions necessary for that scene’s
display. The number in each subdivided area corresponds to one of the four cases; in
unnumbered areas, none of the four cases are true. Compare this approach to the 2D spatial
partitioning performed by quadtrees (Section 12.6.3). An alternative to equal-area
subdivision, shown in Fig. 15.45, is to divide about the vertex of a polygon (if there is a
vertex in the area) in an attempt to avoid unnecessary subdivisions. Here subdivision is
limited to a depth of five for purposes of illustration.

15.7.2 The Weiler—Atherton Algorithm

Warnock's algorithm was forced to use image-precision operations to terminate because it
could clip a polygon only against a rectangular area. Another strategy, developed later by
Weiler and Atherton [WEIL77], subdivides the screen area along polygon boundaries rather
than along rectangle boundaries. This approach requires a powerful clipping algorithm,
such as that described in Section 19.1.4, that can clip one concave polygon with holes
against another. The first step, not mandatory but useful to improve efficiency, is to sort
polygons on some value of z, such as on their nearest z coordinate. The polygon closest to
the viewer by this criterion is then used to clip all the polygons, including the clip polygon,
into two lists containing the pieces inside and outside the clip polygon. All polygons on the
inside list that are behind the clip polygon are then deleted, since they are invisible. If any
polygon on the inside list is closer than is the clip polygon, the initial sort did not give a
correct priority order (in fact, such a priority order does not exist in the case of cyclic

TEXAS INSTRUMENTS EX. 1009 - 736/1253

690 Visible-surface Determination

overlap discussed in Section 15.5). Each such offending polygon is processed recursively to
clip the pieces on the inside list against it. When this recursive subdivision is over, the inside
list is displayed. The algorithm then continues to process the polygons on the outside list.
Clipping is always performed with a copy of one of the original polygons as the clip
polygon, never a fragment, since clipping to the original polygon is assumed to be less
expensive than clipping to one or more fragmented pieces of the original polygon. Thus,

void WA _visibleSurface (void)

{
polvgon spolyList = list of copies of all polygons,
sort polyList by decreasing value of maximum z;
clear stack;

I+ Process each remaining polygonal region. «/
while (polyList '= NULL)
WA _subdivide (first polygon on polyList, &polyList);
} /+ WA visibleSurface «/

void WA _subdivide (polygon clipPolygon, polvgon s+polyList)

{
polygon sinList; I+ Fragments inside clipPolygon «/
polygon soutList, I+ Fragments outside clipPolygon «/
inList = NULL;
ourList = NULL;

for (each polygon in spolyList)
clip polygen to ancestor of clipPolygon, placing inside pieces on
inList, outside pieces on outList,

remove polvgons behind clipPolygon from inList,

/+ Process incorrectly ordered fragments recursively. +/

for (each polygon in inList that is not on stack and not a part of clipPolygon) {
push clipPolygon onto stack;
WA _subdivide (polvgon, &inList),
pop stack;

}

/+ Display remaining polygons inside clipPolvgon. «/
for (each polygon in inList)
display polygon;

spolyList = outList, [+ Subtract inList from =polyList. +/
} /+ WA subdivide #/

Fig. 15.46 Pseudocode for the Weiler—Atherton visible surface algorithm.

TEXAS INSTRUMENTS EX. 1009 - 737/1253

15.7 Area-subdivision Algorithms 691

when a polygon is clipped, each piece must point back to the original input polygon from
which it is derived. As a further efficiency consideration, the clipping algorithm can treat
any polygon derived from the clip polygon as a special case and place it on the inside list
with no additional testing.

The algorithm uses a stack to handle those cases of cyclic overlap in which one polygon
is both in front of and behind another, as in Fig. 15.24(b). The stack contains a list of
polygons that are currently in use as clipping polygons, but whose use has been interrupted
because of recursive subdivision. If a polygon is found to be in front of the current clip
polygon, it is searched for in the stack. If it is on the stack, then no more recursion is
necessary since all polygon pieces inside and behind that polygon have already been
removed. Pseudocode for the algorithm is shown in Fig. 15.46.

For the simple example of Fig. 15.47, triangle A is used as the first clip polygon
because its nearest z coordinate is the largest. A is placed on its own inside list; next,
rectangle B is subdivided into two polygons: B, A, which is added to the inside list, and
B,.A, which is placed on the outside list. B A is then removed from the inside list, since it
is behind A. Now, since no member of the inside list is closer than A, A is output. B A is
processed next, and is trivially output since it is the only polygon remaining.

Figure 15.48 shows a more complex case in which the original sorted order (or any
other order) is incorrect. Part (a) depicts four polygons whose vertices are each marked with
their z value. Rectangle A is considered to be closest to the viewer because its maximum z
coordinate is greatest. Therefore, in the first call to WA_subdivide, A is used to clip all the
polygons, as shown in part (b). The inside list is A, B, A, C, A, and D, A; the outside list is
B, A, C A, and D A. B A and DA are discarded because they are farther back than A is,
leaving only A and C, A on the inside list. Since C, A is found to be on the near side of A’s
plane, however, it is apparent that the polygons were ordered incorrectly. Therefore,
recursive subdivision is accomplished by calling WA_subdivide to clip the current inside list
against C, the ancestor of the offending polygon, as shown in part (c). The new inside list
for this level of recursion is A,,C and C,A; the new outside list is A, C. A,C is removed
from the inside list because it is behind C. Only C, A is left on the inside list; since it is a
part of the clip polygon, it is displayed. Before returning from the recursive call to
WA_subdivide, polyList is set to the new outside list containing only A_,C. Since polyList is
the caller's inList, A,C is displayed next, as shown in part (d), in which displayed

z

Fig. 15.47 Subdivision of a simple scene using the Weiler—Atherton algorithm.

TEXAS INSTRUMENTS EX. 1009 - 738/1253

(b)

Fig. 15.48 Using the Weiler—Atherton algorithm with recursion. Clip polygon is
shown with heavy outline. Displayed polygons are shaded. Numbers are vertex z
values. (a) Original scene. (b) Polygons clipped to A. (c) A's inside list clipped to C during
recursive subdivision. (d) Visible fragments inside A displayed. (e) Polygons clipped to
8. (f) All visible fragments displayed at completion.

692
TEXAS INSTRUMENTS EX. 1009 - 739/1253

16.7 Area-subdivision Algorithms 693

fragments are shaded. The initial invocation of WA_subdivide then sets polyList to its
outside list (B4, C A, and D ;A) and returns.

Next, WA_subdivide is used to process B,,A with the new polyList containing only
B, A, CuAand DA, B, A’s ancestor B is used to clip these polygons, producing an inside
list of B, ,A and C A, B and an outside list of C, A, B and DA, as shown in part ().
CAy B is discarded because it is behind B, leaving only B,,A on the inside list, which is
then displayed. The polygon list is then set to the new outside list before WA _subdivide
returns. Next, WA _subdivide is called once each to process and display C A, B and D A.
The complete set of displayed fragments is shown in part (f).

15.7.3 Subpixel Area-Subdivision Algorithms

As is true of any object-precision algorithm, the Weiler—Atherton algorithm potentially
requires comparing every polygon with every other. Spatial subdivision, discussed in
Section 15.2.5, can reduce the number of comparisons by breaking up the screen into areas
(or the environment into volumes) whose objects are processed separately [WEIL77]. Even
$0, the polygons produced must ultimately be rendered, raising the issue of antialiasing. If
spatial subdivision is performed at the subpixel level, however, it can also be used to
accomplish antialiasing.

Catmull’s object-precision antialiasing algorithm. Catmull [CATM78b] has devel-
oped an accurate but expensive scan-line algorithm that does antialiasing by performing
object-precision unweighted area sampling at each pixel, using an algorithm similar to the
Weiler—Atherton algorithm. In essence, the idea is to perform a full visible-surface
algorithm at every pixel, comparing only the polygon fragments that project to each pixel.
Catmull first uses the Sutherland—Hodgman algorithm of Section 3.14.1 to clip each
polygon intersecting the scan line to the pixels on the line it overlaps, as shown in Fig.
15.49%(a). This determines the polygon fragments that project to each pixel, spatially
partitioning them by the pixel grid. Then an algorithm similar to the Weiler-Atherton
algorithm, but designed for simpler polygon geometry, is executed at each pixel to
determine the amount of the pixel covered by the visible part of each fragment, as shown in
Fig. 15.49(b). This allows a weighted sum of the visible parts’ colors to be computed, and
to be used to shade the pixel. Thus, each pixel's shade is determined by box filtering the
polygon fragments that project to it.

The A-buffer. Using a full object-precision visible-surface algorithm at each pixel is
expensive! Carpenter’s A-buffer algorithm [CARP84] addresses this problem by approxi-
mating Catmull’s per-pixel object-precision area sampling with per-pixel image-precision
operations performed on a subpixel grid. It thus provides a discrete approximation to area
sampling with a box filter. Polygons are first processed in scan-line order by clipping them
to each square pixel they cover. This creates a list of clipped polygon fragments for each
pixel. Each fragment is associated with a 4 by 8 bit mask of those parts of the pixel it covers,
as shown in Fig. 15.49(c). The bit mask for a fragment is computed by xoring together
masks representing each of the fragment’s edges. An edge mask has 1s on the edge and to
the right of the edge in those rows through which the edge passes, as shown in Fig.
15.49(d). When all polygons intersecting a pixel have been processed, the area-weighted

TEXAS INSTRUMENTS EX. 1009 - 740/1253

Jt,Pmm
under

A

A

consideration

-~ 2
List of subpixel fragments
(b)
000QO0O0OO gooo000O0O0 00000000
pooMmoooo 00000000 gooio0000
00Qi1R000 pOo000000| (00010000
gofi11po00 11111114 11111111
List of subpixel fragments
(c)
00000000 ooo00O0O0O 00000000 00000000 00000000
ooopf 1111 D001 111 00010000 00000000 00010000
xor xor
00Qg11111 0000111 goot10000 00000000 00010000
gogy11111 oo0O00Y 11 00111000 0000O0O0O0D 00111000

(d)

()

694

TEXAS INSTRUMENTS EX. 1009 - 741/1253

15.8 Algorithms for Octrees 695

average of the colors of the pixel's visible surfaces is obtained by selecting fragments in
depth-sorted order and using their bit masks to clip those of farther fragments. The bit
masks can be manipulated efficiently with Boolean operations. For example, two fragment
bit masks can be anded together to determine the overlap between them. The A-buffer
algorithm saves only a small amount of additional information with each fragment. For
example, it includes the fragment’s z extent, but no information about which part of the
fragment is associated with these z values. Thus, the algorithm must make assumptions
about the subpixel geometry in cases in which fragment bit masks overlap in z. This causes
inaccuracies, especially where multiple surfaces intersect in a pixel.

Using precomputed convolution tables for better filtering. Both subpixel area-
subdivision algorithms described so far use unweighted area sampling; thus, they restrict a
fragment’s influence to the single pixel to which it is clipped. If we would like to use filters
with wider support, however, we must take into account that each fragment lies within the
support of a number of filters positioned over nearby pixels, as shown in Fig. 15.49(e).
Abram, Westover, and Whitted [ABRABS] describe how to incorporate better filters in
these algorithms by classifying each visible fragment into one of a number of classes, based
on the fragment’s geometry. For each pixel within whose filter the fragment lies (pixels A
through I in Fig 15.49¢), the fragment’s class and its position relative to the pixel are used to
index into a look-up table. The look-up table contains the precomputed convolution of the
desired filter kernel with prototype fragments at a set of different positions. The selected
entry is multiplied by the fragment’s intensity value and is added to an accumulator at that
pixel. Those fragments that do not fit into one of the classes are approximated either as
sums and differences of simpler fragments or by using bit masks.

15.8 ALGORITHMS FOR OCTREES

Algorithms for displaying octree-encoded objects (see Section 12.6.3) take advantage of the
octree’s regular structure of nonintersecting cubes. Since the octree is spatially presorted,
list-priority algorithms have been developed that yield a correct display order for parallel
projections [DOCT81; MEAGS82a; GARGS86]. In a back-to-front enumeration, nodes are
listed in an order in which any node is guaranteed not to obscure any node listed after it. For
an orthographic projection, a correct back-to-front enumeration can be determined from
the VPN alone. One approach is to display the farthest octant first, then those three
neighbors that share a face with the farthest octant in any order, then those three neighbors
of the closest octant in any order, then the closest octant. In Fig. 15.50, one such
enumeration fora VPN fromO0to Vis 0, 1, 2,4, 3, 5, 6, 7. No node in this enumeration can
obscure any node enumerated after it. As each octant is displayed, its descendants are
displayed recursively in this order. Furthermore, because each leaf node is a cube, at most
three of its faces are visible, the identities of which may also be determined from the VPN.

Fig. 15.49 Subpixel area-subdivision algorithms. (a) Sample pixel contents. (b) Catmull
algorithm subpixel geometry. (¢} A-buffer algorithm subpixel geometry. (d) A-buffer
algorithm subpixel mask for a fragment is computed by xoring together masks for its
edges. (e) Abram, Westover, and Whitted algorithm adds polygon’s contribution to all
pixels it affects. {(Part e is based on [ABRABS].)

TEXAS INSTRUMENTS EX. 1009 - 742/1253

696 Visible-surface Determination

z/
/ . v
2/3 .
B
6 ?33
51?,/
. 5
4l 1
= X
5
" 5

¥

Fig. 15.50 Octree enumeration for back-to-front display. (Node O is at the lower-left
back corner.) For a VPN from the origin to V, nodes may be recursively displayed using
several different ordering systems.

Table 15.1 shows eight different back-to-front orders as determined by the signs of the
three coordinates of the VPN and the visible octant faces associated with each. (Note that
only the first and last octants in each order are fixed.) A positive or negative VPN x
coordinate means the right (R) or left (L) face is visible, respectively. Similarly, the y
coordinate determines the visibility of the up (U) and down (D) faces, and the z coordinate
controls the front (F) and back (B) faces. If any VPN coordinate is zero, then neither of the
faces associated with it is visible. Only the VPN's nonzero coordinates are significant in
determining an order. Since all octree nodes are identically oriented, the visible faces and
their relative polygonal projections for all nodes need to be determined only once. Arbitrary
parallel projections can be accommodated by considering the DOP instead of the VPN,

Another approach to back-to-front enumeration for orthographic projections iterates
through the octants in slices perpendicular to one of the axes, and in either rows or columns

TABLE 15.1 BACK-TO-FRONT ENUMERATION AND

VISIBLE FACES
VPN

¥ x Back-to-front order Visible faces®
- — o T;E.S-3!4p2!lin B'DIL

- - + 6,7.4,2,5,3.0,1 B.D.R

- + - 54.7,1,6,0,3,2 B,U.L

- + + 4,5,6,0,7,1,23 B,U,R

+ - - 3.2,1,7,06,54 F.D,L

+ - + 2 ;3’1“ |61- I 1? |4 15 F‘D PR

+ + - 1,0,3,5,2.4.7.6 F.UL

+ B + 0,1,2,4,3,5.6,7 F,U.R

*R = right, L = lefi; U = up; D = down; F = front; B = back.

TEXAS INSTRUMENTS EX. 1009 - 743/1253

16.8 Algorithms for Octrees 697

within each slice. The sign of each component of the VPN determines the direction of
iteration along the corresponding octree axis. A positive component indicates increasing
order along its axis, whereas a negative component indicates decreasing order. The order in
which the axes are used does not matter. For example, in Fig. 15.50, one such enumeration
for a VPN with all positive coordinates is 0, 4, 2, 6, 1, 5, 3, 7, varying first z, then y, and
then x. This approach is easily generalized to operate on voxel arrays [FRIESS].

It is not necessary to display all an object’s voxels, since those that are surrounded
entirely by others will ultimately be invisible; more efficient scan conversion can be
accomplished by rendering only the voxels on the octree’s border [GARG86]. The set of
border voxels can be determined using the algorithm presented in Section 12.6.3. Further
improvement may be obtained by noting that, even when only border voxels are displayed,
some faces may be drawn and then overwritten. Gargantini [GARG86] uses the information
obtained during border extraction to identify for each voxel those faces that abut another
voxel. These faces need not be drawn, since they will always be obscured. Rather than scan
convert each voxel as a small cube, it is also possible to approximate each voxel with a single
upright rectangle (a pixel in the limiting case).

Meagher [MEAGS82b] describes a front-to-back algorithm that uses the reverse of the
back-to-front order described previously. It represents the image being rendered as a
quadtree that is initially empty. Each full or partially full octree node is considered in
front-to-back order and is compared with the quadtree nodes that its projection intersects.
Those octree nodes whose projections intersect only full quadtree nodes are invisible; they
and their descendants are not considered further. If a partially full octree node’s projection
intersects one or more partially full quadtree nodes, then the octree node’s children are
compared with the children of these quadtree nodes. If a full octree node’s projection
intersects partially full quadtree nodes, then only these partially full quadtree nodes are
further subdivided to determine the previously empty nodes that are covered by the
projection. Any empty quadtree node enclosed by a full octree node’s projection is shaded
with the octree node’s value.

As shown in Fig. 15.51, Meagher bounds each octree-node projection with an upright
rectangular extent. Any extent needs to be compared with only four of the lowest-level
quadtree nodes whose edge size is at least as great as the extent’s largest dimension. These

32 a3
2

30 31

>

12 1
0

10 1

Fig. 15.51 Front-to-back octree scan conversion. Each octree node’s projection and
its rectangular extent are compared with four quadtree nodes, here 12, 13, 30, and 31.

TEXAS INSTRUMENTS EX. 1009 - 744/1253

698 Visible-surface Determination

are the quadtree node containing the extent's lower-left corner and the three adjacent
quadtree nodes in the N, E, and NE directions. In Fig. 15.51, for example, these are
quadtree nodes 12, 13, 30, and 31. If the rectangular extent intersects a rectangular
quadtree node, then whether the octree node’s projection (a convex polygon) also intersects
the quadtree node can be determined efficiently [MEAGS82b]. In contrast to the list-priority
back-to-front algorithms, this front-to-back algorithm operates at image precision because
it relies on an image-precision, quadtree representation of the projections on the image
plane.

15.9 ALGORITHMS FOR CURVED SURFACES

All the algorithms presented thus far, with the exception of the z-buffer, have been
described only for objects defined by polygonal faces. Objects such as the curved surfaces
of Chapter 11 must first be approximated by many small facets before polygonal versions of
any of the algorithms can be used. Although this approximation can be done, it is often
preferable to scan convert curved surfaces directly, eliminating polygonal artifacts and
avoiding the extra storage required by polygonal approximation.

Quadric surfaces, discussed in Section 11.4, are a popular choice in computer
graphics. Visible-surface algorithms for quadrics have been developed by Weiss [WEIS66],
Woon [WOONT71], Mahl [MAHL72], Levin [LEVIT76], and Sarraga [SARR83]. They all
find the intersections of two quadrics, yielding a fourth-order equation in x, y, and z whose
roots must be found numerically. Levin reduces this to a second-order problem by
parameterizing the intersection curves. Spheres, a special case of quadrics, are easier to
work with, and are of particular interest because molecules are often displayed as
collections of colored spheres (see Color Plate I1.19). A number of molecular display
algorithms have been developed [KNOW77; STAU78; MAX79; PORT79; FRANSI;
MAXS84]. Section 15.10 discusses how to render spheres using ray tracing.

Even more flexibility can be achieved with the parametric spline surfaces introduced in
Chapter 11, because they are more general and allow tangent continuity at patch
boundaries. Catmull [CATM74b; CATM75] devéloped the first display algorithm for
bicubics. In the spirit of Warnock’s algorithm, a patch is recursively subdivided in s and 1
into four patches until its projection covers no more than one pixel. A z-buffer algorithm
determines whether the patch is visible at this pixel. If it is, a shade is calculated for it and is
placed in the frame buffer. The pseudocode for this algorithm is shown in Fig. 15.52. Since
checking the size of the curved patch itself is time consuming, a quadrilateral defined by the
patch’s corner vertices may be used instead. Extra efficiency may be gained by comparing
each patch (or its extent) with the clip window. If it is wholly inside the window, then no
patch generated from it needs to be checked for clipping. If it is wholly outside the window,
then it may be discarded. Finally, if it may be partially visible, then each patch generated
from it must be checked.

Since then, Blinn and Whitted [LANESOb] have each developed scan-line algorithms
for bicubics that track the visible edges of the surface from one scan line to the next. Edges
may be defined by actual patch boundaries or by silhouette edges, as shown in Fig. 15.53.
At a silhouette edge, the z component of the surface normal in the 3D screen coordinate
system is zero as it passes between positive and negative values.

TEXAS INSTRUMENTS EX. 1009 - 745/1253

16.9 Algorithms for Curved Surfaces 699

for (each patch) {
push patch onto stack,

while (stack nat empty) {
pop patch from stack;,

if (patch covers < | pixel) {
if (patch's pixel closer in 7)
determine shade and draw
} else {
subdivide patch into 4 subpatches,
push subpatches onto stack;

}
}
}

Fig. 15.62 Pseudocode for the Catmull recursive-subdivision algorithm.

Blinn deals directly with the parametric representation of the patch. For the scan line
¥ = a, he finds all s and ¢ values that satisfy the equation

wWs,) —a=0. {15.8)

These values of s and 7 are then used to evaluate x(s, 7) and z(s, r). Unfortunately, Eq. (15.8)
does not have a closed-form solution and its roots are therefore found numerically using
Newton—Raphson iteration (see Appendix). Since the root-finding algorithm requires an
initial value, coherence can be exploited by beginning with the previous scan line’s solution
for the current scan line. There are also special cases in which the roots cannot be found,
causing the algorithm to fail. Similarly, Whitted uses numerical methods plus some
approximations to the curve in the (x, z) plane defined by the intersection of the y = a plane

Fig. 15.53 The visible edges of a patch are defined by its boundary edges and
silhouette edges.

TEXAS INSTRUMENTS EX. 1009 - 746/1253

700 Visible-surface Determination

with the bicubic surface patch. Whitted’s algorithm fails to handle certain silhouette edges
properly, however; an algorithm that does a more robust job of silhouette-edge detection is
described in [SCHW82].

One highly successful approach is based on the adaptive subdivision of each bicubic
patch until each subdivided patch is within some given tolerance of being flat. This
tolerance depends on the resolution of the display device and on the orientation of the area
being subdivided with respect to the projection plane, so unnecessary subdivisions are
eliminated. The patch needs to be subdivided in only one direction if it is already fiat
enough in the other. Once subdivided sufficiently, a patch can be treated like a
quadrilateral. The small polygonal areas defined by the four corners of each patch are
processed by a scan-line algorithm, allowing polygonal and bicubic surfaces to be readily
intermixed.

Algorithms that use this basic idea have been developed by Lane and Carpenter
[LANES8Ob], and by Clark [CLAR79]. They differ in the choice of basis functions used
to derive the subdivision difference equations for the surface patches and in the test
for flatness. The Lane—Carpenter algorithm does the subdivision only as required when
the scan line being processed begins to intersect a patch, rather than in a preprocessing
step as does Clark’s algorithm. The Lane—Carpenter patch subdivision algorithm is des-
cribed in Section 11.3.5. Pseudocode for the Lane—Carpenter algorithm is shown in
Fig. 15.54.

add patches to patch table,
initialize active-patch table;

for (each scan line) {
update active-paich table;

for (each patch in active-patch table) {
if (parch can be approximately by planar quadrilateral)
add patch to polygon table;
else {
split patch into subpatches;
for (each new subpatch) {
if (subparch intersects scan line)

add to active-patch table;
else
add to paich iable;
}
t
}
process polygon table for current scan line,

}
Fig. 15.54 Pseudocode for the Lane—Carpenter algorithm.

TEXAS INSTRUMENTS EX. 1009 - 747/1253

15.10 Visible-surface Ray Tracing 701

Since a patch’s control points define its convex hull, the patch is added to the
active-patch table for processing at the scan line whose y value is that of the minimum y
value of its control points. This saves large amounts of memory. The test for flatness must
determine whether the patch is sufficiently planar and whether the boundary curves are
sufficiently linear. Unfortunately, subdivision can introduce cracks in the patch if the same
patch generates one patch that is determined to be flat and an adjacent patch that must be
subdivided further. What should be a common shared edge between the patches may,
instead, be a single line for the first patch and a piecewise linear approximation to a curve
for the subpatches derived from the second patch. This can be avoided by changing the
tolerance in the flatness test such that patches are subdivided more finely than necessary. An
alternative solution uses Clark’s method of subdividing an edge as though it were a straight
line, once it has been determined to be sufficiently flat.

15.10 VISIBLE-SURFACE RAY TRACING

Ray tracing, also known as ray casting, determines the visibility of surfaces by tracing
imaginary rays of light from the viewer’s eye to the objects in the scene.” This is exactly the
prototypical image-precision algorithm discussed at the beginning of this chapter, A center
of projection (the viewer’s eye) and a window on an arbitrary view plane are selected, The
window may be thought of as being divided into a regular grid, whose elements correspond
to pixels at the desired resolution. Then, for each pixel in the window, an eye ray is fired
from the center of projection through the pixel’s center into the scene, as shown in Fig.
15.55. The pixel’s color is set to that of the object at the closest point of intersection. The
pseudocode for this simple ray tracer is shown in Fig. 15.56.

Ray tracing was first developed by Appel [APPE68] and by Goldstein and Nagel
[MAGI68; GOLD71]. Appel used a sparse grid of rays used to determine shading,
including whether a point was in shadow. Goldstein and Nagel originally used their
algorithm to simulate the trajectories of ballistic projectiles and nuclear particles; only later

*Although ray casting and ray tracing are often used synonymously, sometimes ray casting is used to
refer to only this section’s visible-surface algorithm, and ray tracing is reserved for the recursive
algorithm of Section 16.12.

Center
of
projection

Fig. 15.565 A ray is fired from the center of projection through each pixel to which the
window maps, to determine the closest object intersected.

TEXAS INSTRUMENTS EX. 1009 - 748/1253

702 Visible-surface Determination

select center of projection and window on viewplane,
for (each scan line in image) {
for (each pixel in scan line) {
determine ray from center of projection through pixel,
for (each object in scene) {
if (object is intersected and is closest considered thus far)
record intersection and obfect name;,
¥

set pixels color to that at closest object intersection;

}
b

Fig. 15.56 Pseudocode for a simple ray tracer.

did they apply it to graphics. Appel was the first to ray trace shadows, whereas Goldstein
and Nagel pioneered the use of ray tracing to evaluate Boolean set operations. Whitted
[WHIT80] and Kay [KAY79a] extended ray tracing to handle specular reflection and
refraction. We discuss shadows, reflection, and refraction—the effects for which ray tracing
is best known—in Section 16.12, where we describe a full recursive ray-tracing algorithm
that integrates both visible-surface determination and shading. Here, we treat ray tracing
only as a visible-surface algorithm.

15.10.1 Computing Intersections

At the heart of any ray tracer is the task of determining the intersection of a ray with an
object. To do this task, we use the same parametric representation of a vector introduced in
Chapter 3. Each point (x, y, z) along the ray from (x;, ¥,. 2y) to (x;, ,, z,) is defined by some
value r such that

X=X+ 15— X)), y=y+t{y— v, z=z,+ (2, — 2. (15.9)
For convenience, we define Ax, Ay, and Az such that
Ax =1 — x Ay =y — Yo Az = z; — z,. (15.10)
Thus,
x=x,+ 1A, y =y, + 1Ay, z=7z,+ t Az (15.11)

If (x,, ¥y, 2,) is the center of projection and (x,, v;, ;) is the center of a pixel on the window,
then r ranges from 0 to 1 between these points. Negative values of 7 represent points behind
the center of projection, whereas values of ¢ greater than 1 correspond to points on the side
of the window farther from the center of projection. We need to find a representation for
each kind of object that enables us to determine ¢ at the object’s intersection with the ray.
One of the easiest objects for which to do this is the sphere, which accounts for the plethora
of spheres observed in typical ray-traced images! The sphere with center (a, b, ¢) and radius
r may be represented by the equation

x—aPY+ (O —bFf+(z—cF=r" (15.12)

TEXAS INSTRUMENTS EX. 1009 - 749/1253

15.10 Visible-surface Ray Tracing 703

The intersection is found by expanding Eq. (15.12), and substituting the values of x, y,
and z from Eq. (15.11) to yield

2-2ax+ad+y-2by+ P +2-2z+E=1r, (15.13)
(x + tAxF — 2a(x, + tAx) + a® + (v, + 1Ay — 2b(y, + tAy) + ¥ (15.14)
+ (zy + tAz) = 2c(z, + 1A2) + & = P,
5 + 294xa + APF — 2ax, — 2aAxt + & (15.15)
+ ¥ + 2y, Avt + AY*F — 2by, — 2bAyt + PP
+ %+ 22 Azt + AP =~ 202, = 2clnt 4 & = P
Collecting terms gives

(A + A + A + 2[Ax(xy — a) + Ax(y, — b) + Az(z, — 0)] (15.16)
tg—2a+adt+ty—-2m+tF+-25,+)—-rF=0,
(A + Ay + A2 + 21[Ax (x, — a) + Ay(y, — b) + Az(z, — ©)] (15.17)

+g—af+t =0+ (3 —cP—-—r~=0.

Equation (15.17) is a quadratic in ¢, with coefficients expressed entirely in constants derived
from the sphere and ray equations, so it can be solved using the quadratic formula. If there
are no real roots, then the ray and sphere do not intersect; if there is one real root, then the
ray grazes the sphere. Otherwise, the two roots are the points of intersection with the
sphere; the one that yields the smallest positive ¢ is the closest. It is also useful to normalize
the ray so that the distance from (x,, ¥, z,) to (x;, ¥,, z;) is 1. This gives a value of ¢ that
measures distance in WC units, and simplifies the intersection calculation, since the
coefficient of # in Eq. (15.17) becomes 1. We can obtain the intersection of a ray with the
general quadric surfaces introduced in Chapter 11 in a similar fashion.

As we shall see in Chapter 16, we must determine the surface normal at the point of
intersection in order to shade the surface. This is particularly easy in the case of the sphere,
since the (unnormalized) normal is the vector from the center to the point of intersection:
The sphere with center (a, b, c) has a surface normal ((x — a)/r, (v — b¥r, (z — c)/r) at the
point of intersection (x, v, z).

Finding the intersection of a ray with a polygon is somewhat more difficult. We can
determine where a ray intersects a polygon by first determining whether the ray intersects
the polygon’s plane and then whether the point of intersection lies within the polygon.
Since the equation of a plane is

Ax+ By+ Cz+ D =0, (15.18)

substitution from Eq. (15.11) yields
Alxy + tAx) + B(y, + tAy) + Clz, + tAz) + D = 0, (15.19)
H(AAx + BAy+ CAz) + (Ax, + By, + Cz, + D) = 0, (15.20)

~ (AAx + BAy + CAz) (15.21)

TEXAS INSTRUMENTS EX. 1009 - 750/1253

704 Visible-surface Determination

¥ 4

Fig. 15.57 Determining whether a ray intersects a polygon. The polygon and the ray's
point of intersection p with the polygon’'s plane are projected onto one of the three
planes defining the coordinate system. Projected point p' is tested for containment
within the projected polygon.

If the denominator of Eq. (15.21) is 0, then the ray and plane are parallel and do not
intersect. An easy way to determine whether the point of intersection lies within the
polygon is to project the polygon and point orthographically onto one of the three planes
defining the coordinate system, as shown in Fig. 15.57. To obtain the most accurate results,
we should select the axis along which to project that yields the largest projection. This
corresponds to the coordinate whose coefficient in the polygon’s plane equation has the
largest absolute value. The orthographic projection is accomplished by dropping this
coordinate from the polygon’s vertices and from the point. The polygon-containment test
for the point can then be performed entirely in 2D, using the point-in-polygon algorithm of
Section 7.12.2.

Like the z-buffer algorithm, ray tracing has the attraction that the only intersection
operation performed is that of a projector with an object. There is no need to determine the
intersection of two objects in the scene directly. The z-buffer algorithm approximates an
object as a set of z values along the projectors that intersect the object. Ray tracing
approximates objects as the set of intersections along each projector that intersects the
scene. We can extend a z-buffer algorithm to handle a new kind of object by writing a
scan-conversion and z-calculation routine for it. Similarly, we can extend a visible-surface
ray tracer to handle a new kind of object by writing a ray-intersection routine for it. In both
cases, we must also write a routine to calculate surface normals for shading. Intersection
and surface-normal algorithms have been developed for algebraic surfaces [HANRS3], for
parametric surfaces [KAJI82; SEDE84; TOTHSS; JOY86|, and for many of the objects
discussed in Chapter 20. Surveys of these algorithms are provided in [HAIN89; HANRE9].

15.10.2 Efficiency Considerations for Visible-Surface Ray Tracing

At each pixel, the z-buffer algorithm computes information only for those objects that
project to that pixel, taking advantage of coherence. In contrast, the simple but expensive
version of the visible-surface ray tracing algorithm that we have discussed, intersects each of
the rays from the eye with each of the objects in the scene. A 1024 by 1024 image of 100

TEXAS INSTRUMENTS EX. 1009 - 751/1253

- £

15.10 Visible-surface Ray Tracing 708

objects would therefore require 100M intersection calculations. It is not surprising that
Whitted found that 75 to over 95 percent of his system’s time was spent in the intersection
routine for typical scenes [WHITB0]. Consequently, the approaches to improving the
efficiency of visible-surface ray tracing we discuss here attempt to speed up individual
intersection calculations, or to avoid them entirely. As we shall see in Section 16.12,
recursive ray tracers trace additional rays from the points of intersection to determine a
pixel’s shade. Therefore, several of the techniques developed in Section 15.2, such as the
perspective transformation and back-face culling, are not in general useful, since all rays do
not emanate from the same center of projection. In Section 16.12, we shall augment the
techniques mentioned here with ones designed specifically to handle these recursive rays.

Optimizing intersection calculations. Many of the terms in the equations for object—
ray intersection contain expressions that are constant either throughout an image or for a
particular ray. These can be computed in advance, as can, for example, the orthographic
projection of a polygon onto a plane. With care and mathematical insight, fast intersection
methods can be developed; even the simple intersection formula for a sphere given in
Section 15.10.1 can be improved [HAINS9]. If rays are transformed to lie along the = axis,
then the same transformation can be applied to each candidate object, so that any
intersection occurs at x = y = 0. This simplifies the intersection calculation and allows the
closest object to be determined by a z sort. The intersection point can then be transformed
back for use in shading calculations via the inverse transformation.

Bounding volumes provide a particularly attractive way to decrease the amount of time
spent on intersection calculations, An object that is relatively expensive to test for
intersection may be enclosed in a bounding volume whose intersection test is less expensive,
such as a sphere [WHITS0], ellipsoid [BOUV85], or rectangular solid [RUBIS0; TOTHSS)].
The object does not need to be tested if the ray fails to intersect with its bounding volume.

Kay and Kajiya [KAYS6] suggest the use of a bounding volume that is a convex
polyhedron formed by the intersection of a set of infinite slabs, each of which is defined by
a pair of parallel planes that bound the object. Figure 15.58(a) shows in 2D an object
bounded by four slabs (defined by pairs of parallel lines), and by their intersection. Thus,
each slab is represented by Eq. (15.18), where A, B, and C are constant, and D is either D,
or D,,.. If the same set of parameterized slabs is used to bound all objects, each bound can
be described compactly by the D, and D, of each of its slabs. A ray is intersected with a
bound by considering one slab at a time. The intersection of a ray with a slab can be
computed using Eq. (15.21) for each of the slab’s planes, producing near and far values of 1.
Using the same set of parameterized slabs for all bounds, however, allows us to simplify
Eq.(15.21), yielding

t= (S + D), (15.22)

where § = Ax, + By, + Czyand T = —1/(AAx + BAy + CAz). Both § and T can be
calculated once for a given ray and parameterized slab.

Since each bound is an intersection of slabs, the intersection of the ray with an entire
bound is just the intersection of the ray's intersections with each of the bound’s slabs. This
can be computed by taking the maximum of the near values of ¢ and the minimum of the far
values of 7. In order to detect null intersections quickly, the maximum near and minimum

TEXAS INSTRUMENTS EX. 1009 - 752/1253

706 Visible-surface Determination

FEX

(b)

Fig. 16.68 Bounds formed intersection of slabs. (a) Object bounded by a fixed set of
parameterized slabs. (b) The bounding volume of two bounding volumes.

far values of ¢ for a bound can be updated as each of its slabs is processed, and the
processing of the bound terminated if the former ever exceeds the latter.

Avoiding intersection calculations. Ideally, each ray should be tested for intersection
only with objects that it actually intersects. Furthermore, in many cases we would like each
ray to be tested against only that object whose intersection with the ray is closest to the ray’s
origin. There is a wvariety of techniques that attempt to approximate this goal by
preprocessing the environment to partition rays and objects into equivalence classes to help
limit the number of intersections that need to be performed. These techniques include two
complementary approaches introduced in Section 15.2: hierarchies and spatial partitioning.

Hierarchies. Although bounding volumes do not by themselves determine the order or
frequency of intersection tests, bounding volumes may be organized in nested hierarchies
with objects at the leaves and internal nodes that bound their children [RUBIS0; WEGHS84,
KAY86]. For example, a bounding volume for a set of Kay-Kajiya bounding volumes can
be computed by taking for each pair of planes the minimum D, and the maximum D, of
the values for each child volume, as shown in Fig. 15.58(b).

A child volume is guaranteed not to intersect with a ray if its parent does not. Thus, if
intersection tests begin with the root, many branches of the hierarchy (and hence many

TEXAS INSTRUMENTS EX. 1009 - 753/1253

15.10 Visible-surface Ray Tracing 707

objects) may be trivially rejected. A simple method to traverse the hierarchy is
void HIER _traverse (ray r, node n)

{

if (r intersects n's bounding volume)
if (n is a leaf)
intersect r with n's object;
else
for (each child ¢ of n)
HIER _traverse (r, c);
} /+ HIER_ traverse */

Efficient hierarchy traversal. HIER traverse explores a hierarchy depth first. In
contrast, Kay and Kajiya [KAY86] have developed an efficient method for traversing
hierarchies of bounding volumes that takes into account the goal of finding the closest
intersection. Note that the intersection of a ray with a Kay—Kajiya bound yields two values
of 1, the lower of which is a good estimate of the distance to the object. Therefore, the best
order in which to select objects for intersection tests is that of increasing estimated distance
from the ray’s origin. To find the closest object intersected by a ray, we maintain the list of
nodes to be tested in a priority queue, implemented as a heap. Initially, the heap is empty.
If the root’s bound is intersected by the ray, then the root is inserted in the heap. As long as
the heap is not empty and its top node’s estimated distance is closer than the closest object
tested so far, nodes are extracted from the heap. If the node is a leaf, then its object’s ray
intersection is calculated. Otherwise, it is a bound, in which case each of its children’s
bounds is tested and is inserted in the heap if it is intersected, keyed by the estimated
distance computed in the bound-intersection calculation. The selection process terminates
when the heap is empty or when an object has been intersected that is closer than the
estimated distance of any node remaining in the heap. Pseudocode for the algorithm is
shown in Fig. 15.59.

Automated hierarchy generation. One problem with hierarchies of bounding volumes,
such as those used by the Kay—Kajiya algorithm, is that generating good hierarchies is
difficult. Hierarchies created during the modeling process tend to be fairly shallow, with
structure designed for controlling objects rather than for minimizing the intersections of
objects with rays. In addition, modeler hierarchies are typically insensitive to the actual
position of objects. For example, the fingers on two robot hands remain in widely separated
parts of the hierarchy, even when the hands are touching. Goldsmith and Salmon
[GOLDS87] have developed a method for generating good hierarchies for ray tracing
automatically. Their method relies on a way of determining the quality of a hierarchy by
estimating the cost of intersecting a ray with it.

Consider how we might estimate the cost of an individual bounding volume. Assume
that each bounding volume has the same cost for computing whether a ray intersects it.
Therefore, the cost is directly proportional to the number of times a bounding volume will
be hit. The probability that a bounding volume is hit by an eye ray is the percentage of rays
from the eye that will hit it. This is proportional to the bounding volume’s area projected on
the view plane. On the average, for convex bounding volumes, this value is roughly

TEXAS INSTRUMENTS EX. 1009 - 754/1253

708 Visible-surface Determination

void KayKajiva (void)

{
object *p = NULL; /= Pointer to nearest object hit =/

double | = oc; /+ Distance to nearest object hit #/

precompute ray inlersection,
if (ray hits root’s bound) {

insert root into heap;

while (heap is not empty and distance to top node < t) {
node ¢ = rop node removed from heap;

if (c is a leaf) {
intersect ray with c's object;
if (ray hits it and distance < 1) {
t = distance;
p = object;

} else { /* ¢ is a bound /
for (each child of) {
intersect ray with child’s bound,
if (ray hits child's bound)
insert child into heap;,

}
}
}
} 1+ KayKajiva »/

Fig. 15.59 Pseudocode for using Kay-Kajiya bounds to find the closest object
intersected by a ray.

proportional to the bounding volume's surface area. Since each bounding volume is
contained within the root’s bounding volume, the conditional probability that a ray will
intersect the ith bounding volume if it intersects the root can be approximated by A,/ A,,
where A, is the surface area of the ith bounding volume and A, is the surface area of the root.

If a ray intersects a bounding volume, we assume that we must perform an intersection
calculation for each of the bounding volume's k children. Thus, the bounding volume'’s
total estimated cost in number of intersections is kA; / A,. The root’s estimated cost is just its
number of children (since A, / A, = 1), and the cost of a leaf node is zero (since k = (). To
compute the estimated cost of a hierarchy, we sum the estimated costs of each of its
bounding volumes. Consider, for example, the hierarchy shown in Fig. 15.60 in which each
node is marked with its surface area. Assuming the root A is hit at the cost of one
intersection, the root’s estimated cost is 4 (its number of children). Two of its children (C

TEXAS INSTRUMENTS EX. 1009 - 755/1253

156.10 Visible-surface Ray Tracing 709

Fig. 15.60 Estimating the cost of a hierarchy. Letter is node name; number is node
surface area.

and E) are leaves, and therefore have zero cost. B has two children and a surface area of 5.
Thus, its estimated cost is 2(5/10) = 1.0. D has three children and a surface area of 4, so its
estimated cost is 3(4/10) = 1.2. The only other nonleaf node is F, which has two children
and a surface area of 3, giving an estimated cost of 2(3/10) = .6. The total estimated cost is
I (to hit the root) + 4 + 1.0 + 1.2 + .6 = 7.8 expected intersections.

Since we are interested in only relative values, there is no need to divide by the root’s
surface area. Furthermore, we do not need the actual surface area of the bounding
volume—we need only a value proportional to it. For example, rather than use 2lw +
2lh + 2wh for a rectangular prism, we can factor out the 2 and rearrange terms to yield
(w + h)l + wh.

Goldsmith and Salmon create the hierarchy incrementally, adding one new node at a
time. The order in which nodes are added affects the algorithm. The modeler’s order can be
used, but for many scenes better results can be obtained by randomizing the order by
shuffling nodes. Each node may be added by making it a child of an existing node or by
replacing an existing node with a new bounding volume node that contains both the original
node and the new node. In each case, instead of evaluating the cost of the new tree from
scratch, the incremental cost of adding the node can be determined. If the node is being
added as a child of an existing node, it may increase the parent’s surface area, and it also
increases the parent’s number of children by 1. Thus, the difference in estimated cost of the
parent is k (A, — Ag) + A, where A, and A, are the parent’s new and old surface
areas, and k is the original number of children. If the node is added by creating a new parent
with both the original and new nodes as children, the incremental cost of the newly created
parent is 24 . . In both cases, the incremental cost to the new child's grandparent and older
ancestors must also be computed as k(A,., — A.), where k, A,.,, and A, are the values for
the ancestor node. This approach assumes that the position at which the node is placed has
no effect on the size of the root bounding volume.

A brute-force approach would be to evaluate the increased cost of adding the new node
at every possible position in the tree and to then pick the position that incurred the least

TEXAS INSTRUMENTS EX. 1009 - 756/1253

710 Visible-surface Determination

increase in cost. Instead, Goldsmith and Salmon use a heuristic search that begins at the
root by evaluating the cost of adding the node to it as a child. They then prune the tree by
selecting the subtree that would experience the smallest increase in its bounding volume’s
surface area if the new node were added as a child. The search then continues with this
subtree, the cost of adding the node to it as a child is evaluated, and a subtree of it is
selected to follow based on the minimum surface area increase criterion. When a leaf node
is reached, the cost is evaluated of creating a new bounding volume node containing the
original leaf and the new node. When the search terminates, the node is inserted at the point
with the smallest evaluated increase. Since determining the insertion point for a single node
requires an O(log n) search, the entire hierarchy can be built in O(n log n) time. The search
and evaluation processes are based on heuristics, and consequently the generated
hierarchies are not optimal. Nevertheless, these techniques can create hierarchies that
provide significant savings in inlersection costs.

Spatial partitioning. Bounding-volume hierarchies organize objects bottom-up; in
contrast, spatial partitioning subdivides space top-down. The bounding box of the scene is
calculated first. In one approach, the bounding box is then divided into a regular grid of
equal-sized extents, as shown in Fig. 15.61. Each partition is associated with a list of
objects it contains either wholly or in part. The lists are filled by assigning each object to the
one or more partitions that contain it. Now, as shown in 2D in Fig. 15.62, a ray needs 1o be
intersected with only those objects that are contained within the partitions through which it
passes. In addition, the partitions can be examined in the order in which the ray passes
through them; thus, as soon as a partition is found in which there is an intersection, no more
partitions need to be inspected. Note that we must consider all the remaining objects in the
partition, to determine the one whose intersection is closest. Since the partitions follow a
regular grid, each successive partition lying along a ray may be calculated using a 3D
version of the line-drawing algorithm discussed in Section 3.2.2, modified to list every
partition through which the ray passes [FUJI8S; AMANST].

If a ray intersects an object in a partition, it is also necessary to check whether the
intersection itself lies in the partition; it is possible that the intersection that was found may
be further along the ray in another partition and that another object may have a closer
intersection. For example, in Fig. 15.63, object B is intersected in partition 3 although it is
encountered in partition 2. We must continue traversing the partitions until an intersection is
found in the partition currently being traversed, in this case with A in partition 3. To avoid

Fig. 15.61 The scene is partitioned into a regular grid of equal-sized volumes.

TEXAS INSTRUMENTS EX. 1009 - 757/1253

15.10 Visible-surface Ray Tracing 711

=N

[)
@ — 7]

— R
o

Fig. 15.62 Spatial partitioning. Ray R needs to be intersected with only objects A, B,
and C, since the other partitions through which it passes are empty.

recalculating the intersection of a ray with an object that is found in multiple partitions, the
point of intersection and the ray’s ID can be cached with the object when the object is first
encountered.

Dippé and Swensen [DIPP84] discuss an adaptive subdivision algorithm that produces
unequal-sized partitions. An alternative adaptive spatial-subdivision method divides the
scene using an octree [GLAS84]. In this case, the octree neighbor-finding algorithm
sketched in Section 12.6.3 may be used to determine the successive partitions lying along a
ray [SAMES89b]. Octrees, and other hierarchical spatial partitionings, can be thought of as a
special case of hierarchy in which a node’s children are guaranteed not to intersect each
other. Because these approaches allow adaptive subdivision, the decision to subdivide a
partition further can be sensitive to the number of objects in the subdivision or the cost of
intersecting the objects. This is advantageous in heterogeneous, unevenly distributed
environments.

Spatial partitioning and hierarchy can be used together to combine their advantages.
Snyder and Barr [SNYD87] describe an approach that uses hand-assembled hierarchies
whose internal nodes are either lists or regular 3D grids. This allows the person designing
an environment to choose lists for small numbers of sparsely arranged objects and grids for

A

3 2

Fig. 15.63 An object may be intersected in a different voxel than the current one.

TEXAS INSTRUMENTS EX. 1009 - 758/1253

712 Visible-surface Determination

large numbers of regularly distributed objects. Color Plate I11.1 shows a scene with 2 x 107
primitives that was ray-traced with Snyder’s and Barr’s system.

15.10.3 Computing Boolean Set Operations

Goldstein and Nagel [GOLD71] were the first researchers to ray trace combinations of
simple objects produced using Boolean set operations. Determining the 3D union,
difference, or intersection of two solids is difficult when it must be done by direct
comparison of one solid with another using the methods in Chapter 12. In contrast, ray
tracing allows the 3D problem to be reduced to a set of simple 1D calculations. The
intersections of each ray and primitive object yield a set of r values, each of which specifies
a point at which the ray enters or exits the object. Each ¢ value thus defines the beginning of
a span in which the ray is either in or out of the object. (Of course, care must be taken if the
ray grazes the object, intersecting it only once.) Boolean set operations are calculated one
ray at a time by determining the 1D union, difference, or intersection of spans from the two
objects along the same ray. Figure 15.64 shows the spans defined by a ray passing through
two objects, and the combinations of the spans that result when the set operations are

LuR LR

Fig. 16.64 Combining ray—object intersection span lists. (Adapted from [ROTH82]
with permission.)

TEXAS INSTRUMENTS EX. 1009 - 759/1253

15.10 Visible-surface Ray Tracing 713

span *CSG_intersect (Ray #ray, CSG_node #node)
{

span =leftintersect, =rightintersect; I+ lists of spans */

if (node is composite) {
leftlntersect = CSG.intersect (ray, node—>leftChild);
if (leftlntersect == NULL && node—>o0p = UNION)
return NULL;
else {
rightIntersect = CSG _intersect (ray, node—>rightChild);
return CSG_combine (node—>op, leftlntersect, rightlntersect);

}
} else [+ node is primitive */
return intersections of object with ray;
} I+ CSG.intersect =/

Fig. 15.65 Pseudocode for evaluating the intersection of a ray with a CSG hierarchy.

performed. The CSG hierarchy is traversed for each ray by evaluating the left and right
intersection lists at each node, as shown in the pseudocode of Fig. 15.65. Color Plate 111.2
is a ray-traced bowl defined by a CSG hierarchy.

Roth points out that, if there is no intersection with the left side of the tree, then there is
no reason to intersect with the right side of the tree if the operation is a difference or
intersection [ROTHS82]. Only if the operation is a union can the result be nonempty. In fact,
if we need to determine only whether or not the compound object is intersected (rather than
the actual set of intersections), then the right-hand side need not be evaluated if the
left-hand side intersects and the operation is a union.

The CSG_combine function takes two lists of intersection records, each ordered by
increasing t, and combines them according to the operation being performed. The lists are
merged by removing the intersection record that has the next largest value of 1. Whether the
ray is *“in"’ the left list or the right list is noted by setting a flag associated with the list from
which the record is removed. Whether the span starting at that intersection point is in the
combined object is determined by table lookup based on the operator and the two “*in”’
flags, using Table 15.2. A record is then placed on the combined list only if it begins or

TABLE 15.2 POINT CLASSIFICATION FOR
OBJECTS COMBINED BY BOOLEAN SET

OPERATIONS

Lefi Right U] ==
in in in in out
in out in out in
out in in out out
out out out out out

TEXAS INSTRUMENTS EX. 1009 - 760/1253

714 Visible-surface Determination

ends a span of the combined object, not if it is internal to one of the combined object’s
spans. If a ray can begin inside an object, the flags must be initialized correctly.

15.10.4 Antialiased Ray Tracing

The simple ray tracer described so far uses point sampling on a regular grid, and thus
produces aliased images. Whitted [WHIT80] developed an adaptive method for firing more
rays into those parts of the image that would otherwise produce the most severe aliasing.
These additional samples are used to compute a better value for the pixel. His adaprive
supersampling associates rays with the corners, rather than with the centers, of each pixel,
as shown in Fig. 15.66(a) and (b). Thus, at first, only an extra row and an extra column of
rays are needed for the image. After rays have been fired through all four corners of a pixel,
the shades they determine are averaged; the average is then used for the pixel if the shades
differ from it by only a small amount. If they differ by too much, then the pixel is
subdivided further by firing rays through the midpoints of its sides and through its center,
forming four subpixels (Fig. 15.66¢). The rays at the four corners of each subpixel are then
compared using the same criterion. Subdivision proceeds recursively until a predefined
maximum subdivision depth is reached, as in the Warnock algorithm, or until the ray shades
are determined Lo be sufficiently similar. The pixel’s shade is the area-weighted average of
its subpixels’ shades. Adaptive supersampling thus provides an improved approximation o
unweighted area sampling, without the overhead of a uniformly higher sampling rate.

Consider, for example, Fig. 15.66(a), which shows the rays fired through the corners of
two adjacent pixels, with a maximum subdivision depth of two. If no further subdivision is
needed for the pixel bordered by rays A, B, D, and E in part (b), then, representing a ray’s
shade by its name, the pixel’s shade is (A + B + D + E)4. The adjacent pixel requires
further subdivision, so rays G, H, [, J, and K are traced, defining the vertices of four
subpixels in part (c). Each subpixel is recursively inspected. In this case, only the
lower-right subpixel is subdivided again by tracing rays L, M, N, O, and P, as shown in part
(d). At this point, the maximum subdivision depth is reached. This pixel’s shade is

B+G+H+f+l G+L+H+N+L+C+H+0+M+N+J+F+

1
3 4 Il 3 4 1

N+O+P+J| H+I+E+K I+J+K+F
3 = 3 . 3

Aliasing problems can also arise when the rays through a pixel miss a small object.
This produces visible effects if the objects are arranged in a regular pattern and some are not
visible, or if a series of pictures of a moving object show that object popping in and out of
view as it is alternately hit and missed by the nearest ray. Whitted avoids these effects by
surrounding each object with a spherical bounding volume that is sufficiently large always to
be intersected by at least one ray from the eye. Since the rays converge at the eye, the size of
the bounding volume is a function of the distance from the eye. If a ray intersects the

TEXAS INSTRUMENTS EX. 1009 - 761/1253

15.11 Summary 7156

D E F
c

A E/ ¢

b
- E K F
J

H

/ ¢ ¢

(c)

(a)

(d)

Fig. 16.66 Adaptive supersampling. (a) Two pixels and the rays fired through their
corners. (b) The left pixel is not subdivided. (c) The right pixel is subdivided. (d) The
lower-right subpixel is subdivided.

bounding volume but does not intersect the object, then all pixels sharing that ray are further
subdivided until the object is intersected. Several more recent approaches to antialiased ray
tracing are discussed in Section 16.12.

156.11 SUMMARY

Sutherland, Sproull, and Schumacker [SUTH74a] stress that the heart of visible-surface
determination is sorting. Indeed, we have seen many instances of sorting and searching in
the algorithms, and efficient sorting is vital to efficient visible-surface determination.
Equally important is avoiding any more sorting than is absolutely necessary, a goal typically
achieved by exploiting coherence. For example, the scan-line algorithms use scan-line
coherence to eliminate the need for a complete sort on x for each scan line. Hubschman and
Zucker use frame coherence to avoid unnecessary comparisons in animation sequences
[HUBS82].

Algorithms can be classified by the order in which they sort. The depth-sort algorithm
sorts on z and then on x and y (by use of extents in tests | and 2); it is thus called a zxy
algorithm. Scan-line algorithms sort on y (with a bucket sort), then sort on x (initially with

TEXAS INSTRUMENTS EX. 1009 - 762/1253

716 Visible-surface Determination

an insertion sort, then with a bubble sort as each scan line is processed), and finally search
in z for the polygon nearest the viewpoint; therefore, they are yxz algorithms. Warnock's
algorithm does a parallel sort on x and y, and then searches in z, and hence is an (xy)z
algorithm (sorting on a combination of dimensions is indicated by parentheses). The
z-buffer algorithm does no explicit sorting and searches only in z; it is called an (xyz)
algorithm.

Sancha has argued that the order of sorting is unimportant: There is no intrinsic benefit
in sorting along any particular axis first as opposed to another because, at least in principle,
the average object is equally complex in all three dimensions [SUTH74a]. On the other
hand, a graphics scene, like a Hollywood set, may be constructed to look best from a
particular viewpoint, and this may entail building in greater complexity along one axis than
along another. Even if we assume roughly symmetric object complexity, however, all
algorithms are still not equally efficient: They differ in how effectively coherence is used to
avoid sorting and other computation and in the use of space-time tradeoffs. The results
reported in [SUTH74a, Table VII], which compare the estimated performance of four of
the basic algorithms we have presented, are summarized in Table 15.3. The authors suggest
that, because these are only estimates, small differences should be ignored, but that **we
feel free to make order of magnitude comparisons between the various algorithms to learn
something about the effectiveness of the various methods™ [SUTH74a, p. 52].

The depth-sort algorithm is efficient for small numbers of polygons because the simple
overlap tests almost always suffice to decide whether a polygon can be scan-converted. With
more polygons, the more complex tests are needed more frequently and polygon
subdivision is more likely to be required. The z-buffer algorithm has constant performance
because, as the number of polygons in a scene increases, the number of pixels covered by a
single polygon decreases. On the other hand, its memory needs are high. The individual
tests and calculations involved in the Warnock area-subdivision algorithm are relatively
complex, so it is generally slower than are the other methods.

In addition to these informal estimates, there has been some work on formalizing the
visible-surface problem and analyzing its computational complexity [GILO78; FOURSS;
FIUM89]. For example, Fiume [FIUMB89] proves that object-precision visible-surface
algorithms have a lower bound that is worse than that of sorting: Even the simple task of

TABLE 15.3 RELATIVE ESTIMATED
PERFORMANCE OF FOUR ALGORITHMS FOR
VISIBLE-SURFACE DETERMINATION

Number of polygonal faces in

SCEne
Algorithm 100 2500 60,000
Depth sort 1* 10 507
z-buffer 54 54 54
Scan line 5 21 100
Warnock area subdivision 11 6 307

*Entries are normalized such that this case is unity.

TEXAS INSTRUMENTS EX. 1009 - 763/1253

15.11 Summary 717

computing the visible surfaces of a set of n convex polygons can result in the creation of
(n*) polygons, requiring {}(n*) time to output, as shown in Fig. 15.67.

In general, comparing visible-surface algorithms is difficult because not all algorithms
compute the same information with the same accuracy. For example, we have discussed
algorithms that restrict the kinds of objects, relationships among objects, and even the kinds
of projections that are allowed. As we shall see in the following chapter, the choice of a
visible-surface algorithm is also influenced by the kind of shading desired. If an expensive
shading procedure is being used, it is better to choose a visible-surface algorithm that
shades only parts of objects that are visible, such as a scan-line algorithm. Depth sort would
be a particularly bad choice in this case, since it draws all objects in their entirety. When
interactive performance is important, hardware z-buffer approaches are popular. The
BSP-tree algorithm, on the other hand, can generate new views of a static environment
quickly, but requires additional processing whenever the environment changes. Scan-line
algorithms allow extremely high resolution because data structures need to represent fully
elaborated versions only of primitives that affect the line being processed. As with any
algorithm, the time spent implementing the algorithm and the ease with which it can be
modified (e.g., to accommodate new primitives) is also a major factor.

One important consideration in implementing a visible-surface algorithm is the kind of
hardware support available. If a parallel machine is available, we must recognize that, at
each place where an algorithm takes advantage of coherence, it depends on the results of
previous calculations. Exploiting parallelism may entail ignoring some otherwise useful
form of coherence. Ray tracing has been a particularly popular candidate for parallel
implementation because, in its simplest form, each pixel is computed independently. As we
shall see in Chapter 18, there are many architectures that have been designed to execute
specific visible-surface algorithms. For example, plummeting memory costs have made
hardware z-buffer systems ubiquitous.

Fig. 15.67 n/2 rectangles laid across n/2 more distant rectangles can yield n/2 visible
whole rectangles + (n/2) (n/2 + 1) visible fragments. This is {}(n’) visible polygons.
(After [FIUM8S].)

TEXAS INSTRUMENTS EX. 1009 - 764/1253

718 Visible-surface Determination

EXERCISES

15.1 Prove that the transformation M in Section 15.2.2 preserves (a) straight lines, (b) planes, and
(c) depth relationships.

15.2 Given a plane Ax + By + Cz + D = 0, apply M from Section 15.2.2 and find the new
coefficients of the plane equation.

15.3 How can a scan-line algorithm be extended to deal with polygons with shared edges? Should a
shared edge be represented once, as a shared edge, or twice, once for each polygon it borders, with no
record kept that it is a shared edge? When the depth of two polygons is evaluated at their common
shared edge, the depths will, of course, be equal. Which polygon should be declared visible, given
that the scan is entering both?

15.4 Warnock's algorithm generates a quadtree. Show the quadtree corresponding to Fig. 15.44.
Label all nodes to indicate how the triangle (T) and the rectangle (R) relate to the node, as (a)
surrounding, (b) intersecting, (c) contained, and (d) disjoint.

15.5 For each of the visible-surface algorithms discussed, explain how piercing polygons would be
handled. Are they a special case that must be treated explicitly, or are they accommodated by the
basic algorithm?

15.6 Consider tests 3 and 4 of the depth-sort algorithm. How might they be implemented efficiently?
Consider examining the sign of the equation of the plane of polygon P for each vertex of polygon Q,
and vice versa. How do you know to which side of the plane a positive value of the equation
corresponds?

15.7 How can the algorithms discussed be adapted to work with polygons containing holes?

15.8 Describe how the visible-line algorithms for functions of two variables, described in Section
15.1, can be modified to work as visible-surface algorithms using the approach taken in the painter's
algorithm.

159 Why does the Roberts visible-line algorithm not eliminate all lines that are edges of a
back-facing polygon?

15.10 One of the advantages of the z-buffer algorithm is that primitives may be presented to it in any
order. Does this mean that two images created by sending primitives in different orders will have
identical values in their z-buffers and in their frame buffers? Explain your answer.

15.11 Consider merging two images of identical size, represented by their frame-buffer and z-buffer
contents. If you know the z,, and z,,, of each image and the values of z to which they originally

corresponded, can you merge the images properly? Is any additional information needed?

15.12 Section 15.4 mentions the z-compression problems caused by rendering a perspective
projection using an integer z-buffer. Choose a perspective viewing specification and a small number of
object points. Show how, in the perspective transformation, two points near the center of projection
are mapped to different z values, whereas two points separated from each other by the same distance,
but farther from the center of projection, are mapped to a single z value.

15.13 a. Suppose view volume V has a front clipping plane at distance F and a back clipping plane at
distance B, and that view volume V' has clipping planes at F' and B'. After transformation
of each view volume to the canonical-perspective view volume, the back clipping plane of V
will be at z = —1, and the front clipping plane at z = A. For V', the front clipping plane will
beatz =A". Show that, ifB/F=RB"/F'. thenA = A",

TEXAS INSTRUMENTS EX. 1009 - 765/1253

Exercises 719

b. Part (a) shows that, in considering the effect of perspective, we need to consider only the
ratio of back-plane to front-plane distance. We can therefore simply study the canonical
view volume with various values of the front-plane distance. Suppose, then, that we have a
canonical-perspective view volume, with front clipping plane z = A and back clipping plane
z = —1, and we transform it, through the perspective transformation, to the parallel view
volume between z = 0 and z = — 1. Write down the formula for the transformed :z
coordinate in terms of the original z coordinate. (Your answer will depend on A, of course.)
Suppose that the transformed z values in the parallel view volume are multiplied by 27, and
then are rounded to integers (i.e., they are mapped to an integer z-buffer). Find two values
of z that are as far apart as possible, but that map, under this transformation, to the same
integer. (Your answer will depend on n and A.)

c. Suppose you want to make an image in which the backplane-to-frontplane ratio is R, and
objects that are more than distance Q apart (in z) must map to different values in the
z-buffer. Using your work in part (b), write a formula for the number of bits of z-buffer
needed.

15.14 Show that the back-to-front display order determined by traversing a BSP tree is not
necessarily the same as the back-to-front order determined by the depth-sort algorithm, even when no
polygons are split. (Hint: Only two polygons are needed.)

15.15 How might you modify the BSP-tree algorithm to accept objects other than polygons?
15.16 How might you modify the BSP-tree algorithm to allow limited motion?

15.17 Suppose that you are designing a ray tracer that supports CSG. How would you handle a
polygon that is not part of a polyhedron?
15.18 Some graphics systems implement hardware transformations and homogeneous-coordinate
clipping in X, Y, and Z using the same mathematics, so that clipping limits are

-W=X=W, -W=sYsW. -W=ZI=sW,
instead of

-WsX=W, -W=sYsW, -W=sZ=0.

How would you change the viewing matrix calculation to take this into account?

15.19 When ray tracing is performed, it is typically necessary to compute only whether or not a ray
intersects an extent, not what the actual points of intersection are. Complete the ray—sphere
intersection equation (Eq. 15.17) using the quadratic formula, and show how it can be simplified to
determine only whether or not the ray and sphere intersect.

15.20 Ray tracing can also be used to determine the mass properties of objects through numerical
integration. The full set of intersections of a ray with an object gives the total portion of the ray that is
inside the object. Show how you can estimate an object’s volume by firing a regular array of parallel
rays through that object.

15.21 Derive the intersection of a ray with a quadric surface. Modify the method used to derive the
intersection of a ray with a sphere in Egs. (15.13) through (15.16) to handle the definition of a
quadric given in Section 11.4.

15.22 In Eg. (15.5), O, the cost of performing an object intersection test, may be partially
underwritten by B, the cost of performing a bounding-volume intersection test, if the results of the

TEXAS INSTRUMENTS EX. 1009 - 766/1253

720 Visible-surface Determination

bounding-volume intersection test can be reused to simplify the object intersection test. Describe an
object and bounding volume for which this is possible.
15.23 Implement one of the polygon visible surface algorithms in this chapter, such as a z-buffer
algorithm, scan-line algorithm, or BSP tree algorithm.

15.24 Implement a simple ray tracer for spheres and polygons, including adaptive supersampling.
(Choose one of the illumination models from Section 16.1.) Improve your program's performance
through the use of spatial partitioning or hierarchies of bounding volumes.

15.25 If you have implemented the z-buffer algorithm, then add hit detection to it by extending the
pick-window approach described in Section 7.12.2 to take visible-surface determination into account.
You will need a SetPickMode procedure that is passed a mode flag, indicating whether objects are 1o
be drawn (drawing mode) or instead tested for hits (pick mode). A SetPick Window procedure will let
the user set a rectangular pick window. The z-buffer must already have been filled (by drawing all
objects) for pick mode to work, When in pick mode, neither the frame-buffer nor the z-buffer is
updated, but the z-value of each of the primitive’s pixels that falls inside the pick window is compared
with the corresponding value in the z-buffer. If the new value would have caused the object to be
drawn in drawing mode, then a flag is set. The flag can be inquired by calling InquirePick, which then
resets the flag. If InquirePick is called after each primitive’s routine is called in pick mode, picking
can be done on a per-primitive basis. Show how you can use InquirePick to determine which object is
actually visible at a pixel.

TEXAS INSTRUMENTS EX. 1009 - 767/1253

16

[1lumination
and Shading

In this chapter, we discuss how to shade surfaces based on the position, orientation, and
characteristics of the surfaces and the light sources illuminating them. We develop a number
of different illumination models that express the factors determining a surface’s color at a
given point. [llumination models are also frequently called lighting models or shading
models. Here, however, we reserve the term shading model for the broader framework in
which an illumination model fits. The shading model determines when the illumination
model is applied and what arguments it will receive. For example, some shading models
invoke an illumination model for every pixel in the image, whereas others invoke an
illumination model for only some pixels, and shade the remaining pixels by interpolation.

When we compared the accuracy with which the visible-surface calculations of the
previous chapter are performed, we distinguished between algorithms that use the actual
object geometry and those that use polyhedral approximations, between object-precision
and image-precision algorithms, and between image-precision algorithms that take one
point sample per pixel and those that use better filters. In all cases, however, the single
criterion for determining the direct visibility of an object at a pixel is whether something
lies between the object and the observer along the projector through the pixel. In contrast,
the interaction between lights and surfaces is a good deal more complex. Graphics
researchers have often approximated the underlying rules of optics and thermal radiation,
either to simplify computation or because more accurate models were not known in the
graphics community. Consequently, many of the illumination and shading models
traditionally used in computer graphics include a multitude of kludges, “*hacks,”” and
simplifications that have no firm grounding in theory, but that work well in practice. The

721
TEXAS INSTRUMENTS EX. 1009 - 768/1253

722 lllumination and Shading

first part of this chapter covers these simple models, which are still in common use because
they can produce attractive and useful results with minimal computation.

We begin, in Section 16.1, with a discussion of simple illumination models that take
into account an individual point on a surface and the light sources directly illuminating it.
We first develop illumination models for monochromatic surfaces and lights, and then show
how the computations can be generalized to handle the color systems discussed in Chapter
13. Section 16.2 describes the most common shading models that are used with these
illumination models. In Section 16.3, we expand these models to simulate textured
surfaces.

Modeling refraction, reflection, and shadows requires additional computation that is
very similar to, and often is integrated with, hidden-surface elimination. Indeed, these
effects occur because some of the *‘hidden surfaces’" are not really hidden at all—they are
seen through, reflected from, or cast shadows on the surface being shaded! Sections 16.4
through 16.6 discuss how to model these effects. We next introduce, in Section 16.7,
illumination models that more accurately characterize how an individual surface interacts
with the light sources directly illuminating it. This is followed by coverage of additional
ways (0 generate more realistic images, in Section 16.8 through 16.10.

Sections 16.11 through 16.13 describe global illumination models that attempt to take
into account the interchange of light between all surfaces: recursive ray tracing and radiosity
methods. Recursive ray tracing extends the visible-surface ray-tracing algorithm introduced
in the previous chapter to interleave the determination of visibility, illumination, and
shading at each pixel. Radiosity methods model the energy equilibrium in a system of
surfaces; they determine the illumination of a set of sample points in the environment in a
view-independent fashion before visible-surface determination is performed from the
desired viewpoint. More detailed treatments of many of the illumination and shading
maodels covered here may be found in [GLAS89; HALLE9].

Finally, in Section 16. 14, we look at several different graphics pipelines that integrate
the rasterization techniques discussed in this and the previous chapters. We examine some
ways to implement these capabilities to produce systems that are both efficient and
extensible.

16.1 ILLUMINATION MODELS

16.1.1 Ambient Light

Perhaps the simplest illumination model possible is that used implicitly in this book’s
carliest chapters: Each object is displayed using an intensity intrinsic to it. We can think of
this model, which has no external light source, as describing a rather unrealistic world of
nonreflective, self-luminous objects. Each object appears as a monochromatic silhouette,
unless its individual parts, such as the polygons of a polyhedron, are given different shades
when the object is created. Color Plate 11.28 demonstrates this effect.

An illumination model can be expressed by an illumination equation in variables
associated with the point on the object being shaded. The illumination equation that
expresses this simple model is

I =k, (16.1)

TEXAS INSTRUMENTS EX. 1009 - 769/1253

16.1 Hlumination Models 723

where [is the resulting intensity and the coefficient k; is the object’s intrinsic intensity.
Since this illumination equation contains no terms that depend on the position of the point
being shaded, we can evaluate it once for each object. The process of evaluating the
illumination equation at one or more points on an object is often referred to as lighting the
object.

Now imagine, instead of self-luminosity, that there is a diffuse, nondirectional source
of light, the product of multiple reflections of light from the many surfaces present in the
environment. This is known as ambient light. If we assume that ambient light impinges
equally on all surfaces from all directions, then our illumination equation becomes

I = Lk, (16.2)

I, is the intensity of the ambient light, assumed to be constant for all objects. The amount of
ambient light reflected from an object’s surface is determined by k,, the ambient-reflection
coefficient, which ranges from 0 to 1. The ambient-reflection coefficient is a material
property. Along with the other material properties that we will discuss, it may be thought of
as characterizing the material from which the surface is made. Like some of the other
properties, the ambient-reflection coefficient is an empirical convenience and does not
correspond directly to any physical property of real materials. Furthermore, ambient light
by itself is not of much interest. As we see later, it is used to account for all the complex
ways in which light can reach an object that are not otherwise addressed by the illumination
equation. Color Plate I1.28 also demonstrates illumination by ambient light.

16.1.2 Diffuse Reflection

Although objects illuminated by ambient light are more or less brightly lit in direct
proportion to the ambient intensity, they are still uniformly illuminated across their
surfaces. Now consider illuminating an object by a point light source, whose rays emanate
uniformly in all directions from a single point. The object’s brightness varies from one part
to another, depending on the direction of and distance to the light source.

Lambertian reflection. Dull, matte surfaces, such as chalk, exhibit diffuse reflection,
also known as Lambertian reflection. These surfaces appear equally bright from all viewing
angles because they reflect light with equal intensity in all directions. For a given surface,
the brightness depends only on the angle @ between the direction L to the light source and
the surface normal N of Fig. 16.1. Let us examine why this occurs. There are two factors at
work here. First, Fig. 16.2 shows that a beam that intercepts a surface covers an area whose
size is inversely proportional to the cosine of the angle @ that the beam makes with N. If the

Fig. 16.1 Diffuse reflection.

TEXAS INSTRUMENTS EX. 1009 - 770/1253

724 lllumination and Shading

Surface 1 Surface 2

Fig. 16.2 Beam (shown in 2D cross-section) of infinitesimal cross-sectional area dA at
angle of incidence @ intercepts area of dA / cos 4.

beam has an infinitesimally small cross-sectional differential area dA, then the beam
intercepts an area dA / cos 8 on the surface. Thus, for an incident light beam, the amount of
light energy that falls on dA is proportional to cos #. This is true for any surface,
independent of its material.

Second, we must consider the amount of light seen by the viewer. Lambertian surfaces
have the property, often known as Lambert’s law, that the amount of light reflected from a
unit differential area dA toward the viewer is directly proportional to the cosine of the angle
between the direction to the viewer and N. Since the amount of surface area seen is
inversely proportional to the cosine of this angle, these two factors cancel out. For example,
as the viewing angle increases, the viewer sees more surface area, but the amount of light
reflected at that angle per unit area of surface is proportionally less. Thus, for Lambertian
surfaces, the amount of light seen by the viewer is independent of the viewer's direction and
is proportional only to cos @, the angle of incidence of the light.

The diffuse illumination equation is

I = [k, cos 6. (16.3)

I, is the point light source’s intensity; the material’s diffuse-reflection coefficient k; is a
constant between 0 and 1 and varies from one material to another. The angle # must be
between 0° and 90° if the light source is to have any direct effect on the point being shaded.
This means that we are treating the surface as self-occluding, so that light cast from behind a
point on the surface does not illuminate it. Rather than include a max(cos #, 0) term
explicitly here and in the following equations, we assume that # lies within the legal range.
When we want to light self-occluding surfaces, we can use abs(cos) to invert their surface
normals. This causes both sides of the surface to be treated alike, as if the surface were lit by
two opposing lights.

Assuming that the vectors N and L have been normalized (see Appendix), we can
rewrite Eq. (16.3) by using the dot product:

1=1k®N-L). (16.4)

The surface normal N can be calculated using the methods discussed in Chapter 11. If
polygon normals are precomputed and transformed with the same mairix used for the
polygon vertices, it is important that nonrigid modeling transformations, such as shears or

TEXAS INSTRUMENTS EX. 1009 - 771/1253

16.1 lHlumination Models 725

Fig. 16.3 Spheres shaded using a diffuse-reflection model (Eq. 16.4). For all spheres,
I, = 1.0. From left to right, k, = 0.4, 0.55, 0.7, 0.85, 1.0. (By David Kurlander, Columbia
University.)

differential scaling, not be performed; these transformations do not preserve angles and may
cause some normals to be no longer perpendicular to their polygons. The proper method to
transform normals when objects undergo arbitrary transformations is described in Section
5.6. In any case, the illumination equation must be evaluated in the WC system (or in any
coordinate system isometric to it), since both the normalizing and perspective transforma-
tions will modify 6.

If a point light source is sufficiently distant from the objects being shaded, it makes
essentially the same angle with all surfaces sharing the same surface normal. In this case,
the light is called a directional light source, and L is a constant for the light source.

Figure 16.3 shows a series of pictures of a sphere illuminated by a single point source.
The shading model calculated the intensity at each pixel at which the sphere was visible
using the illumination model of Eq. (16.4). Objects illuminated in this way look harsh, as
when a flashlight illuminates an object in an otherwise dark room. Therefore, an ambient
term is commonly added to yield a more realistic illumination equation:

I= Ik + Ik (N-L). (16.5)
Equation (16.5) was used to produce Fig. 16.4.

Light-source attenuation. If the projections of two parallel surfaces of identical
material, lit from the eye, overlap in an image, Eq. (16.5) will not distinguish where one
surface leaves off and the other begins, no matter how different are their distances from the
light source. To do this, we introduce a light-source attenuation factor, f,,, yielding

I = Lk + fulks (N - L) (16.6)

Fig. 16.4 Spheres shaded using ambient and diffuse reflection (Eq. 16.5). For all
spheres, /, =/, = 1.0, k, = 0.4. From left to right, k, = 0.0, 0.15, 0.30, 0.45, 0.60. (By
David Kurlander, Columbia University.)

TEXAS INSTRUMENTS EX. 1009 - 772/1253

726 lllumination and Shading

An obvious choice for f,, takes into account the fact that the energy from a point light
source that reaches a given part of a surface falls off as the inverse square of 4, , the distance
the light travels from the point source to the surface. In this case,

fu = Et“- (16,7

In practice, however, this often does not work well. If the light is far away, 1 / df does not
vary much; if it is very close, it varies widely, giving considerably different shades to
surfaces with the same angle @ between N and L. Although this behavior is correct for a
point light source, the objects we see in real life typically are not illuminated by point
sources and are not shaded using the simplified illumination models of computer graphics.
To complicate matters, early graphics researchers often used a single point light source
positioned right at the viewpoint. They expected f,, to approximate some of the effects of
atmospheric attenuation between the viewer and the object (see Section 16.1.3), as well as
the energy density falloff from the light to the object. A useful compromise, which allows a
richer range of effects than simple square-law attenuation, is

: 1
fuu = mm(ﬁ g |), (16.8)

Here ¢, ¢,, and c; are user-defined constants associated with the light source. The constant
¢, keeps the denominator from becoming too small when the light is close, and the
expression is clamped to a maximum of 1 to ensure that it always attenuates. Figure 16.5
uses this illumination model with different constants to show a range of effects.

Colored lights and surfaces. So far, we have described monochromatic lights and
surfaces. Colored lights and surfaces are commonly treated by writing separate equations
for each component of the color model. We represent an object’s diffuse color by one value
of 0, for each component. For example, the triple (O, Oy, O4) defines an object’s
diffuse red, green, and blue components in the RGB color system. In this case, the
illuminating light’s three primary components, /g, I, and [y, are reflected in proportion
o kyOyp, kyOyq, and ky045, respectively. Therefore, for the red component,

Iy = IgkOup + fud pkiOgp (N - L). (16.9)

Similar equations are used for /; and [, the green and blue components. The use of a single
coefficient to scale an expression in each of the equations allows the user to control the
amount of ambient or diffuse reflection, without altering the proportions of its components.
An alternative formulation that is more compact, but less convenient to control, uses a
separate coefficient for each component; for example, substituting k,; for k0, and k,;, for
kO

A simplifying assumption is made here that a three-component color model can
completely model the interaction of light with objects. This assumption is wrong, as we
discuss in Section 16.9, but it is easy to implement and often yields acceptable pictures. In
theory, the illumination equation should be evaluated continuously over the spectral range
being modeled; in practice, it is evaluated for some number of discrete spectral samples.

TEXAS INSTRUMENTS EX. 1009 - 773/1253

16.1 llumination Models 727

Fig. 16.5 Spheres shaded using ambient and diffuse reflection with a light-source-
attenuation term (Eqs. 16.6 and 16.8). For all spheres, /, = [, = 1.0, k,= 0.1, k, = 0.9.
From left to right, sphere’s distance from light source is 1.0, 1.375, 1.75, 2.125, 2.5.
Top row: ¢, = ¢; = 0.0, ¢; = 1.0 (1/d}). Middle row: ¢, = ¢, = 0.25, ¢; = 0.5. Bottom
row: ¢, = 0.0, ¢; = 1.0, ¢3 = 0.0 (1/d). (By David Kurlander, Columbia University.)

Rather than restrict ourselves to a particular color model, we explicitly indicate those terms
in an illumination equation that are wavelength-dependent by subscripting them with a A.
Thus, Eq. (16.9) becomes

I, = IkOy + ful KOy (N - L). (16.10)

16.1.3 Atmospheric Attenuation

To simulate the atmospheric attenuation from the object to the viewer, many systems
provide depth cueing. In this technique, which originated with vector-graphics hardware,
more distant objects are rendered with lower intensity than are closer ones. The PHIGS +
standard recommends a depth-cueing approach that also makes it possible to approximate
the shift in colors caused by the intervening atmosphere. Front and back depth-cue
reference planes are defined in NPC:; each of these planes is associated with a scale factor, s,
and s, respectively, that ranges between 0 and 1. The scale factors determine the blending
of the original intensity with that of a depth-cue color, I ,. The goal is to modify a
previously computed /, to yield the depth-cued value [that is displayed. Given z,, the
object’s z coordinate, a scale factor s, is derived that will be used to interpolate between /,
and [,,, to determine

Iy =g] =g)l (16.11)

TEXAS INSTRUMENTS EX. 1009 - 774/1253

728 Humination and Shading

14

EI'

o A T

Scale
factor

]
|
|
|
|
|
1
|
|
|
[
I
I
|

z Dt 4

Fig. 16.6 Computing the scale factor for atmospheric attenuation.

If z, is in front of the front depth-cue reference plane’s z coordinate z,, then 5, = s,. If z, is
behind the back depth-cue reference plane’s z coordinate z,, then s, = s,. Finally, if z_ is
between the two planes, then

:_, i Z_L.Hj-. = -‘.h]I l]ﬁ.l:l

5, =3 ek

The relationship between s, and z, is shown in Fig. 16.6. Figure 16.7 shows spheres shaded
with depth cueing. To avoid complicating the equations, we ignore depth cueing as we
develop the illumination model further. More realistic ways to model atmospheric effects
are discussed in Section 20.8.2.

16.1.4 Specular Reflection

Specular reflection can be observed on any shiny surface. Illuminate an apple with a bright
white light: The highlight is caused by specular reflection, whereas the light reflected from
the rest of the apple is the result of diffuse reflection. Also note that, at the highlight, the
apple appears to be not red, but white, the color of the incident light. Objects such as waxed
apples or shiny plastics have a transparent surface; plastics, for example, are typically
composed of pigment particles embedded in a transparent material. Light specularly
reflected from the colorless surface has much the same color as that of the light source.

Fig. 16.7 Spheres shaded using depth cueing (Eqs. 16.5, 16.11, and 16.12). Distance
from light is constant. For all spheres, /, =/, = 1.0, k,=0.1,k,=0.9,2z=1.0,z,= 0.0,
s = 1.0, 5, = 0.1, radius = 0.09. From left to right, z at front of sphere is 1.0, 0.77,
0.55, 0.32, 0.09. (By David Kurlander, Columbia University.)

TEXAS INSTRUMENTS EX. 1009 - 775/1253

16.1 Hlumination Models 729

M~
i

ol 1 ’!:‘]‘

Fig. 16.8 Specular reflection.

Now move your head and notice how the highlight also moves. It does so because shiny
surfaces reflect light unequally in different directions; on a perfectly shiny surface, such as a
perfect mirror, light is reflected only in the direction of reflection R, which is . mirrored
about N. Thus the viewer can see specularly reflected light from a mirror only when the
angle a in Fig. 16.8 is zero; a is the angle between R and the direction to the viewpoint V.

The Phong illumination model. Phong Bui-Tuong [BUIT75] developed a popular
illumination model for nonperfect reflectors, such as the apple. It assumes that maximum
specular reflectance occurs when a is zero and falls off sharply as & increases. This rapid
falloff is approximated by cos™ a, where n is the material’s specular-reflection exponent.
Values of n typically vary from 1 to several hundred, depending on the surface material
being simulated. A value of 1 provides a broad, gentle falloff, whereas higher values
simulate a sharp, focused highlight (Fig. 16.9). For a perfect reflector, n would be infinite.
As before, we treat a negative value of cos a as zero. Phong’s illumination model is based
on earlier work by researchers such as Warnock [WARNG9], who used a cos™ @ term to
model specular reflection with the light at the viewpoint. Phong, however, was the first to
account for viewers and lights at arbitrary positions.

The amount of incident light specularly reflected depends on the angle of incidence #.
If W(#) is the fraction of specularly reflected light, then Phong’s model is

I, = I,kOy, + fud,, (k04 cos 8 + W(B) cos” a]. (16.13)

If the direction of reflection R, and the viewpoint direction V are normalized, then cos a =
R - V. In addition, W(@) is typically set to a constant k,, the material’s specular-reflection
coefficient, which ranges between 0 and 1. The value of £, is selected experimentally to

cos a cos? @ cosf a cos® o

0 0 0 oL
0° 90° 0° a0° 0° 90° Q° a0°

Fig. 16.9 Different values of cos" « used in the Phong illumination model.

TEXAS INSTRUMENTS EX. 1009 - 776/1253

730 lllumination and Shading

produce aesthetically pleasing results. Then, Eq. (16.13) can be rewritten as
I = LkOy + fulilkOuN - L) + k (R - V)"]. (16.14)

Note that the color of the specular component in Phong's illumination model is not
dependent on any material property; thus, this model does a good job of modeling specular
reflections from plastic surfaces. As we discuss in Section 16.7, specular reflection is
affected by the properties of the surface itself, and, in general, may have a different color
than diffuse reflection when the surface is a composite of several materials. We can
accommaodate this effect to a first approximation by modifying Eq. (16.14) to yield

'IA > 'fu'tuﬂ-:lh + -ﬂi:l!hi!knlﬂcljrlﬁ o E] + "EHURJ. {E ’ 1_;}”]‘ “E" IS}

where O, is the object’s specular color. Figure 16.10 shows a sphere illuminated using Eq.
(16.14) with different values of k, and n.

Calculating the reflection vector. Calculating R requires mirroring L about N. As
shown in Fig. 16.11, this can be accomplished with some simple geometry. Since Nand L
are normalized, the projection of L onto N is N cos 6. Note that R = N cos 8 + S, where |S]

15 sin @. But, by vector subtraction and congruent triangles, S is just N cos 8 — L. Therefore,
= 2 N cos 8 — L. Substituting N - L for cos @ and R - V for cos a yields

R= ; (16.16)
R-V=) - V. (16.17)

]
=
=
b=
=~

} —_

[o]
b=
=
=]
|l |

=

Fig. 16.10 Spheres shaded using Phong's illumination model (Eq. 16.14) and different
values of k, and n. For all spheres, /, =/, = 1.0, k,= 0.1, k, = 0.45. From left to right, n =
3.0, 5.0, 10.0, 27.0, 200.0. From top to bottom, k, = 0.1, 0.25, 0.5. (By David
Kurlander, Columbia University.)

TEXAS INSTRUMENTS EX. 1009 - 777/1253

16.1 Hlumination Models 731

Fig. 16.11 Calculating the reflection vector.

If the light source is at infinity, N - L is constant for a given polygon, whereas R - V varies
across the polygon. For curved surfaces or for a light source not at infinity, both N - L and
R - V vary across the surface.

The halfway vector. An alternative formulation of Phong’s illumination model uses the
halfway vector H, so called because its direction is halfway between the directions of the
light source and the viewer, as shown in Fig. 16.12. H is also known as the direction of
maximum highlights. If the surface were oriented so that its normal were in the same
direction as H, the viewer would see the brightest specular highlight, since R and V would
also point in the same direction. The new specular-reflection term can be expressed as
(N - Hy", where H = (L + V) / |L + V|. When the light source and the viewer are both at
infinity, then the use of N - H offers a computational advantage, since H is constant. Note
that 8, the angle between N and H, is not equal to a, the angle between R and V, so the
same specular exponent n produces different results in the two formulations (see Exercise
16.1). Although using a cos" term allows the generation of recognizably glossy surfaces,
you should remember that it is based on empirical observation, not on a theoretical model
of the specular-reflection process.

16.1.5 Improving the Point-Light-Source Model

Real light sources do not radiate equally in all directions. Warn [WARNBS3] has developed
easily implemented lighting controls that can be added to any illumination equation to
model some of the directionality of the lights used by photographers. In Phong’s model, a
point light source has only an intensity and a position. In Warn’s model, a light L is
modeled by a point on a hypothetical specular reflecting surface, as shown in Fig. 16.13.
This surface is illuminated by a point light source L' in the direction L'. Assume that L' is
normal to the hypothetical reflecting surface. Then, we can use the Phong illumination

4“'11[;_;&'?*",'* ﬂ';ﬁi}: B,

Fig. 16.12 H, the halfway vector, is halfway between the direction of the light source
and the viewer.

TEXAS INSTRUMENTS EX. 1009 - 778/1253

732 lllumination and Shading

Reflector ~
- '.r-

L1
LY

L !
L X
1T \
*— %
iye b
B!

Point light
source

=|

Fig. 16.13 Warn's lighting model. A light is modeled as the specular reflection from a
single point illuminated by a point light source.

equation to determine the intensity of L at a point on the object in terms of the angle y
between L and L'. If we further assume that the reflector reflects only specular light and has
a specular coefficient of 1, then the light’s intensity at a point on the object is

I, cos? ¥, (16.18)

where I, is the intensity of the hypothetical point light source, p is the reflector’s specular
exponent, and v is the angle between —L and the hypothetical surface's normal, L', which
is the direction to L'. Equation (16.18) models a symmetric directed light source whose
axis of symmetry is L', the direction in which the light may be thought of as pointing. Using
dot products, we can write Eq.(16.18) as

I, (=L -L'P. (16.19)

Once again, we treat a negative dot product as zero. Equation (16.19) can thus be
substituted for the light-source intensity /,, in the formulation of Eq. (16.15) or any other
illumination equation. Contrast the intensity distribution of the uniformly radiating point
source with the cos” distribution of the Warn light source in Fig. 16.14. Each distribution is
plotted in cross-section, showing intensity as a function of angular direction around the
light’s axis in polar coordinates. L' is shown as an arrow. These plots are called goniometric
diagrams. The larger the value of p, the more the light is concentrated along L'. Thus, a

180° 180° 180°

135° 135° 135° ik 135° 135° 135° 135° 135°
90° 90° 90° 80° 80° 90° 90° 90°
45° 45° 45° 45° 45 45° 45°
cos y cos™ y

‘ 45°
Uniformly radiating cos* y
point source

Fig. 16.14 Intensity distributions for uniformly radiating point source and Warn light
source with different values of p.

TEXAS INSTRUMENTS EX. 1009 - 779/1253

16.1 lllumination Models 733

(a) (b) {c) (d) (e)

Fig. 16.15 Cube and plane illuminated using Warn lighting controls. (a) Uniformly
radiating point source (orp = 0). (b) p = 4. (¢} p = 32. (d) Flaps. (e} Cone with § = 18°.
(By David Kurlander, Columbia University.)

large value of p can simulate a highly directional spotlight, whereas a small value of p can
simulate a more diffuse floodlight. If p is 0, then the light acts like a uniformly radiating
point source. Figure 16.15(a—) shows the effects of different values of p. Verbeck
[VERB84] and Nishita et al. [NISH85b] have modeled point light sources with more
complex irregular intensity and spectral distributions. In general, however, once we
determine a point light source’s intensity as seen from a particular direction, this value can
be used in any illumination equation.

To restrict a light’s effects to a limited area of the scene, Warn implemented flaps and
cones. Flaps, modeled loosely after the **barn doors"" found on professional photographic
lights, confine the effects of the light to a designated range in x, v, and z world coordinates.
Each light has six flaps, corresponding to user-specified minimum and maximum values in
each coordinate. Each flap also has a flag indicating whether it is on or off. When a point’s
shade is determined, the illumination model is evaluated for a light only if the point’s
coordinates are within the range specified by the minimum and maximum coordinates of
those flaps that are on. For example, if L’ is parallel to the y axis, then the x and z flaps can
sharply restrict the light's effects, much like the photographic light’s barn doors. Figure
16.16(a) shows the use of the x flaps in this situation. The y flaps can also be used here to

,
L]
o
=

(a) (b)

Fig. 16.16 The Warn intensity distribution may be restricted with (a) flaps and
(b) cones.

TEXAS INSTRUMENTS EX. 1009 - 780/1253

734 lllumination and Shading

restrict the light in a way that has no physical counterpart, allowing only objects within a
specified range of distances from the light to be illuminated. In Fig. 16.15(d) the cube is
aligned with the coordinate system, so two pairs of flaps can produce the effects shown.

Warn makes it possible to create a sharply delineated spotlight through the use of a
cone whose apex is at the light source and whose axis lies along L'. As shown in Fig.
16.16(b), a cone with a generating angle of 8 may be used to restrict the light source’s
effects by evaluating the illumination model only when y < & (or when cos ¥ > cos 8, since
cos v has already been calculated). The PHIGS + illumination model includes the Warn
cos” ¥ term and cone angle 8. Figure 16.15(e) demonstrates the use of a cone to restrict the
light of Fig. 16.15(c). Color Plate I1.17 shows a car rendered with Warn's lighting controls.

16.1.6 Multiple Light Sources

If there are m light sources, then the terms for each light source are summed:

L=1LkOu+ 2 fudu kOuN L) + k0, R - V). (16.20)

l=is=m

The summation harbors a new possibility for error in that /, can now exceed the maximum
displayable pixel value. (Although this can also happen for a single light, we can easily
avoid it by an appropriate choice of f;, and the material coefficients.) Several approaches
can be used to avoid overflow. The simplest is to clamp each [, individually to its maximum
value. Another approach considers all of a pixel’s I, values together. If at least one is too
big, each is divided by the largest to maintain the hue and saturation at the expense of the
value. If all the pixel values can be computed before display, image-processing transforma-
tions can be applied to the entire picture to bring the values within the desired range. Hall
[HALLB9] discusses the tradeoffs of these and other technigues.

16.2 SHADING MODELS FOR POLYGONS

It should be clear that we can shade any surface by calculating the surface normal at each
visible point and applying the desired illumination model at that point. Unfortunately, this
brute-force shading model is expensive. In this section, we describe more efficient shading
models for surfaces defined by polygons and polygon meshes.

16.2.1 Constant Shading

The simplest shading model for a polygon is constant shading, also known as faceted
shading or flat shading. This approach applies an illumination model once to determine a
single intensity value that is then used to shade an entire polygon. In essence, we are
sampling the value of the illumination equation once for each polygon, and holding the
value across the polygon to reconstruct the polygon’s shade. This approach is valid if
several assumptions are true:

1. The light source is at infinity, so N + L is constant across the polygon face
The viewer is at infinity, so N - V is constant across the polygon face

The polygon represents the actual surface being modeled, and is not an approximation
to a curved surface.

TEXAS INSTRUMENTS EX. 1009 - 781/1253

16.2 Shading Models for Polygons 735

If a visible-surface algorithm is used that outputs a list of polygons, such as one of the
list-priority algorithms, constant shading can take advantage of the ubiquitous single-color
2D polygon primitive.

If either of the first two assumptions is wrong, then, if we are to use constant shading,
we need some method to determine a single value for each of L and V. For example, values
may be calculated for the center of the polygon, or for the polygon's first vertex. Of course,
constant shading does not produce the variations in shade across the polygon that should
occur in this situation.

16.2.2 Interpolated Shading

As an alternative to evaluating the illumination equation at each point on the polygon,
Wylie, Romney, Evans, and Erdahl [WYLI67] pioneered the use of interpolated shading,
in which shading information is linearly interpolated across a triangle from values
determined for its vertices. Gouraud [GOUR71] generalized this technique to arbitrary
polygons. This is particularly easy for a scan-line algorithm that already interpolates the z
value across a span from interpolated z values computed for the span’s endpoints. For
increased efficiency, a difference equation may be used, like that developed in Section 15.4
to determine the z value at each pixel. Although z interpolation is physically correct
(assuming that the polygon is planar), note that interpolated shading is not, since it only
approximates evaluating the illumination model at each point on the polygon.

Our final assumption, that the polygon accurately represents the surface being
modeled, is most often the one that is incorrect, which has a much more substantial effect
on the resulting image than does the failure of the other two assumptions. Many objects are
curved, rather than polyhedral, yet representing them as a polygon mesh allows the use of
efficient polygon visible-surface algorithms. We discuss next how to render a polygon mesh
so that it looks as much as possible like a curved surface.

16.2.3 Polygon Mesh Shading

Suppose that we wish to approximate a curved surface by a polygonal mesh. If each
polygonal facet in the mesh is shaded individually, it is easily distinguished from neighbors
whose orientation is different, producing a *‘faceted’’ appearance, as shown in Color Plate
I1.29. This is true if the polygons are rendered using constant shading, interpolated
shading, or even per-pixel illumination calculations, because two adjacent polygons of
different orientation have different intensities along their borders. The simple solution of
using a finer mesh turns out to be surprisingly ineffective, because the perceived difference
in shading between adjacent facets is accentuated by the Mach band effect (discovered by
Mach in 1865 and described in detail in [RATL72]), which exaggerates the intensity change
at any edge where there is a discontinuity in magnitude or slope of intensity. At the border
between two facets, the dark facet looks darker and the light facet looks lighter. Figure
16.17 shows, for two separate cases, the actual and perceived changes in intensity along a
surface.

Mach banding is caused by lateral inhibition of the receptors in the eye. The more light
a receptor receives, the more that receptor inhibits the response of the receptors adjacent to

TEXAS INSTRUMENTS EX. 1009 - 782/1253

736 lllumination and Shading

i

Dm'ma}h;mm:u Dismma[lgmsurfm
a]]

Intensity
1
Intensity

Fig. 16.17 Actual and perceived intensities in the Mach band effect. Dashed lines are
perceived intensity; solid lines are actual intensity.

it. The response of a receptor to light is inhibited by its adjacent receptors in inverse relation
to the distance to the adjacent receptor. Receptors directly on the brighter side of an
intensity change have a stronger response than do those on the brighter side that are farther
from the edge, because they receive less inhibition from their neighbors on the darker side.
Similarly, receptors immediately to the darker side of an intensity change have a weaker
response than do those farther into the darker area, because they receive more inhibition
from their neighbors on the brighter side. The Mach band effect is quite evident in Color
Plate 11.29, especially between adjacent polygons that are close in color.

The polygon-shading models we have described determine the shade of each polygon
individually. Two basic shading models for polygon meshes take advantage of the
information provided by adjacent polygons to simulate a smooth surface. In order of
increasing complexity (and realistic effect), they are known as Gouraud shading and Phong
shading, after the researchers who developed them. Current 3D graphics workstations

typically support one or both of these approaches through a combination of hardware and
firmware.

16.2.4 Gouraud Shading

Gouraud shading [GOURT71], also called intensity interpolation shading or color interpola-
tion shading, eliminates intensity discontinuities. Color Plate 11.30 uses Gouraud shading.
Although most of the Mach banding of Color Plate I1.29 is no longer visible in Color Plate
I1.30, the bright ridges on objects such as the torus and cone are Mach bands caused by a
rapid, although not discontinuous, change in the slope of the intensity curve; Gouraud
shading does not completely eliminate such intensity changes.

Gouraud shading extends the concept of interpolated shading applied to individual
polygons by interpolating polygon vertex illumination values that take into account the
surface being approximated. The Gouraud shading process requires that the normal be
known for each vertex of the polygonal mesh. Gouraud was able to compute these verrex
normals directly from an analytical description of the surface. Alternatively, if the vertex
normals are not stored with the mesh and cannot be determined directly from the actual
surface, then, Gouraud suggested, we can approximate them by averaging the surface

TEXAS INSTRUMENTS EX. 1009 - 783/1253

16.2 Shading Models for Polygons 737

Fig. 16.18 Normalized polygon surface normals may be averaged to obtain vertex
normals. Averaged normal N,is Z,.,z, NV, / | 212120 N/ |.

normals of all polygonal facets sharing each vertex (Fig. 16.18). If an edge is meant to be
visible (as at the joint between a plane’s wing and body), then we find two vertex normals,
one for each side of the edge, by averaging the normals of polygons on each side of the edge
separately. Normals were not averaged across the teapot’s patch cracks in Color Plate I1.30.
(See caption to Color Plate 11.21.)

The next step in Gouraud shading is to find verfex intensities by using the vertex
normals with any desired illumination model. Finally, each polygon is shaded by linear
interpolation of vertex intensities along each edge and then between edges along each scan
line (Fig. 16.19) in the same way that we described interpolating z values in Section 15.4.
The term Gouraud shading is often generalized to refer to intensity interpolation shading of
even a single polygon in isolation, or to the interpolation of arbitrary colors associated with
polygon vertices.

The interpolation along edges can easily be integrated with the scan-line visible-surface
algorithm of Section 15.6. With each edge, we store for each color component the starting
intensity and the change of intensity for each unit change in y. A visible span on a scan line
is filled in by interpolating the intensity values of the two edges bounding the span. As in all
linear-interpolation algorithms, a difference equation may be used for increased efficiency.

y
‘ |
1
- Yi=¥s
ly=1y=(f{=1
a=h-(h ﬂ)"t'}'z
i la ": Iy Scan line [
y fo =ty = Iy = lg) ——
xh-ﬂ:,,
Iy=ly—(h—1
R i o=k ’ij-xa

Fig. 16.19 Intensity interpolation along polygon edges and scan lines.

TEXAS INSTRUMENTS EX. 1009 - 784/1253

738 lllumination and Shading

16.2.5 Phong Shading

Phong shading [BUIT75], also known as normal-vector interpolation shading, interpolates
the surface normal vector N, rather than the intensity. Interpolation occurs across a polygon
span on a scan line, between starting and ending normals for the span. These normals are
themselves interpolated along polygon edges from vertex normals that are computed, if
necessary, just as in Gouraud shading. The interpolation along edges can again be done by
means of incremental calculations, with all three components of the normal vector being
incremented from scan line to scan line. At each pixel along a scan line, the interpolated
normal is normalized, and is backmapped into the WC system or one isometric to it, and a
new intensity calculation is performed using any illumination model. Figure 16.20 shows
two edge normals and the normals interpolated from them, before and after normalization.

Color Plates I1.31 and I1.32 were generated using Gouraud shading and Phong shading
respectively, and an illumination equation with a specular-reflectance term. Phong shading
yields substantial improvements over Gouraud shading when such illumination models are
used, because highlights are reproduced more faithfully, as shown in Fig. 16.21. Consider
what happens if n in the Phong cos” a illumination term is large and one vertex has a very
small a, but each of its adjacent vertices has a large a. The intensity associated with the
vertex that has a small a will be appropriate for a highlight, whereas the other vertices will
have nonhighlight intensities. If Gouraud shading is used, then the intensity across the
polygon is linearly interpolated between the highlight intensity and the lower intensities of
the adjacent vertices, spreading the highlight over the polygon (Fig. 16.21a). Contrast this
with the sharp drop from the highlight intensity that is computed if linearly interpolated
normals are used to compute the cos" a term at each pixel (Fig. 16.21b). Furthermore, if a
highlight fails to fall at a vertex, then Gouraud shading may miss it entirely (Fig. 16.21c),
since no interior point can be brighter than the brightest vertex from which it is interpolated.
In contrast, Phong shading allows highlights to be located in a polygon’s interior (Fig.
16.21d). Compare the highlights on the ball in Color Plates 11.31 and I1.32.

Even with an illumination model that does not take into account specular reflectance,
the resujts of normal-vector interpolation are in general superior to intensity interpolation,
because an approximation to the normal is used at each point. This reduces Mach-band
problems in most cases, but greatly increases the cost of shading in a straightforward
implementation, since the interpolated normal must be normalized every time it is used in
an illumination model. Duff [DUFF79] has developed a combination of difference

Fig. 16.20 Normal vector interpolation. (After [BUIT75].)

TEXAS INSTRUMENTS EX. 1009 - 785/1253

16.2 Shading Models for Polygons 739

(a) (b) (c) (d)

Fig. 16.21 A specular-reflection illumination model used with Gouraud shading and
Phong shading. Highlight falls at left vertex: (a) Gouraud shading, (b) Phong shading.
Highlight falls in polygon interior: (c) Gouraud shading, (d) Phong shading. (By David
Kurlander, Columbia University.)

equations and table lookup to speed up the calculation. Bishop and Weimer [BISH86]
provide an excellent approximation of Phong shading by using a Taylor series expansion that
offers even greater increases in shading speed.

Another shading model, intermediate in complexity between Gouraud and Phong
shading, involves the linear interpolation of the dot products used in the illumination
models. As in Phong shading, the illumination model is evaluated at each pixel, but the
interpolated dot products are used to avoid the expense of computing and normalizing any
of the direction vectors. This model can produce more satisfactory effects than Gouraud
shading when used with specular-reflection illumination models, since the specular term is
calculated separately and has power-law, rather than linear, falloff. As in Gouraud shading,
however, highlights are missed if they do not fall at a vertex, since no intensity value
computed for a set of interpolated dot products can exceed those computed for the set of dot
products at either end of the span.

16.2.6 Problems with Interpolated Shading

There are many problems common to all these interpolated-shading models, several of
which we list here.

Polygonal silhouette. No matter how good an approximation an interpolated shading
model offers to the actual shading of a curved surface, the silhouette edge of the mesh is still
clearly polygonal. We can improve this situation by breaking the surface into a greater
number of smaller polygons, but at a corresponding increase in expense.

Perspective distortion. Anomalies are introduced because interpolation is performed
after perspective transformation in the 3D screen-coordinate system, rather than in the WC
system. For example, linear interpolation causes the shading information in Fig. 16.19 to
be incremented by a constant amount from one scan line to another along each edge.
Consider what happens when vertex 1 is more distant than vertex 2. Perspective
foreshortening means that the difference from one scan line to another in the untransformed
z value along an edge increases in the direction of the farther coordinate. Thus, if y, = (y, +
ye) / 2, then I, = (I, + I;) / 2, but z, will not equal (z; + z,) / 2. This problem can also be

TEXAS INSTRUMENTS EX. 1009 - 786/1253

740 Illumination and Shading

A
B

D B A@ c
D

C

(a))

Fig. 16.22 Interpolated values derived for point P on the same polygon at different
orientations differ from (a) to (b). P interpolates A, 8, D in (a) and A, 8, C in (b).

reduced by using a larger number of smaller polygons. Decreasing the size of the polygons
increases the number of points at which the information to be interpolated is sampled, and
therefore increases the accuracy of the shading.

Orientation dependence. The results of interpolated-shading models are not indepen-
dent of the projected polygon’s orientation. Since values are interpolated between vertices
and across horizontal scan lines, the results may differ when the polygon is rotated (see Fig.
16.22). This effect is particularly obvious when the orientation changes slowly between
successive frames of an animation. A similar problem can also occur in visible-surface
determination when the z value at each point is interpolated from the z values assigned to
each vertex. Both problems can be solved by decomposing polygons into triangles (see
Exercise 16.2). Alternatively, Duff [DUFF79] suggests rotation-independent, but expen-
sive, interpolation methods that solve this problem without the need for decomposition.

Problems at shared vertices. Shading discontinuities can occur when two adjacent
polygons fail to share a vertex that lies along their common edge. Consider the three
polygons of Fig. 16.23, in which vertex C is shared by the two polygons on the right, but
not by the large polygon on the left. The shading information determined directly at C for
the polygons at the right will typically not be the same as the information interpolated at
that point from the values at A and B for the polygon at the left. As a result, there will be a
discontinuity in the shading. The discontinuity can be eliminated by inserting in the

B

Fig. 16.23 Vertex C is shared by the two polygons on the right, but not by the larger
rectangular polygon on the left.

TEXAS INSTRUMENTS EX. 1009 - 787/1253

16.3 Surface Detail 741

Fig. 16.24 Problems with computing vertex normals. Vertex normals are all parallel.

polygon on the left an extra vertex that shares C's shading information. We can preprocess a
static polygonal database in order to eliminate this problem; alternatively, if polygons will
be split on the fly (e.g., using the BSP-tree visible-surface algorithm), then extra
bookkeeping can be done to introduce a new vertex in an edge that shares an edge that is
split.

Unrepresentative vertex normals. Computed vertex normals may not adequately
represent the surface’s geometry. For example, if we compute vertex normals by averaging
the normals of the surfaces sharing a vertex, all of the vertex normals of Fig. 16.24 will be
parallel to one another, resulting in little or no variation in shade if the light source is
distant. Subdividing the polygons further before vertex normal computation will solve this

problem.

Although these problems have prompted much work on rendering algorithms that handle
curved surfaces directly, polygons are sufficiently faster (and easier) to process that they
still form the core of most rendering systems.

16.3 SURFACE DETAIL

Applying any of the shading models we have described so far to planar or bicubic surfaces
produces smooth, uniform surfaces —in marked contrast to most of the surfaces we see and
feel. We discuss next a variety of methods developed to simulate this missing surface detail.

16.3.1 Surface-Detail Polygons

The simplest approach adds gross detail through the use of surface-detail polygons to show
features (such as doors, windows, and lettering) on a base polygon (such as the side of a
building). Each surface-detail polygon is coplanar with its base polygon, and is flagged so
that it does not need to be compared with other polygons during visible-surface
determination. When the base polygon is shaded, its surface-detail polygons and their
material properties take precedence for those parts of the base polygon that they cover.

16.3.2 Texture Mapping

As detail becomes finer and more intricate, explicit modeling with polygons or other
geometric primitives becomes less practical. An alternative is to map an image, either

TEXAS INSTRUMENTS EX. 1009 - 788/1253

742 Hiumination and Shading

digitized or synthesized, onto a surface, a technique pioneered by Catmull [CATM74b] and
refined by Blinn and Newell [BLIN76]. This approach is known as texture mapping or
pattern mapping, the image is called a texture map, and its individual elements are often
called texels. The rectangular texture map resides in its own (i, v) texture coordinate space.
Alternatively, the texture may be defined by a procedure. Color Plate I1.35 shows several
examples of texture mapping, using the textures shown in Fig. 16.25. At each rendered
pixel, selected texels are used either to substitute for or to scale one or more of the surface’s
material properties, such as its diffuse color components. One pixel is often covered by a
number of texels. To avoid aliasing problems, we must consider all relevant texels,

As shown in Fig. 16.26, texture mapping can be accomplished in two steps. A simple
approach starts by mapping the four corners of the pixel onto the surface. For a bicubic
patch, this mapping naturally defines a set of points in the surface’s (s, r) coordinate space.
Next, the pixel's corner points in the surface’s (s, 1) coordinate space are mapped into the
texture’s (u, v) coordinate space. The four (1, v) points in the texture map define a
quadrilateral that approximates the more complex shape into which the pixel may actually
map due 1o surface curvature. We compute a value for the pixel by summing all texels that
lie within the quadrilateral, weighting each by the fraction of the texel that lies within the
quadrilateral. If a transformed point in (u, v) space falls outside of the texture map, the
texture map may be thought of as being replicated, like the patterns of Section 2.1.3.

(d)

Fig. 16.25 Textures used to create Color Plate il.35. (a) Frowning Mona. (b} Smiling
Mona. (c) Painting. (d) Wizard's cap. (e) Floor. (f) Film label. (Copyright @ 1990, Pixar.
Images rendered by Thomas Williams and H. B. Siegel using Pixar’s PhotoRealistic
RenderMan™ software.)

TEXAS INSTRUMENTS EX. 1009 - 789/1253

16.3 Surface Detail 743

Texture Four corners of
e pixel on screen

Fig. 16.26 Texture mapping from pixel to the surface to the texture map.

Rather than always use the identity mapping between (s, f) and (u, v), we can define a
correspondence between the four corners of the 0-to-1 (s,) rectangle and a quadrilateral in
(1, v). When the surface is a polygon, it is common to assign texture map coordinates
directly to its vertices. Since, as we have seen, linearly interpolating values across arbitrary
polygons is orientation-dependent, polygons may be decomposed into triangles first. Even
after triangulation, however, linear interpolation will cause distortion in the case of
perspective projection. This distortion will be more noticeable than that caused when
interpolating other shading information, since texture features will not be correctly
foreshortened. We can obtain an approximate solution to this problem by decomposing
polygons into smaller ones, or an exact solution, at greater cost, by performing the
perspective division while interpolating.

The approach just described assumes square pixel geomeltry and simple box filtering. It
also fails to take into account pixels that map to only part of a surface. Feibush, Levoy, and
Cook [FEIB80] address these problems for texture-mapping polygons. Think of the square
pixel in Fig. 16.26 as the bounding rectangle of the support of an arbitrary filter centered at
a pixel. Pixels and texels can then be treated as points. In effect, all texels that lie within the
mapped intersection of the transformed bounding rectangle and polygon are selected, and
these texels’ coordinates are transformed into the coordinate system of the bounding
rectangle. Each texel's transformed coordinates are used to index into a filter table to
determine the texel’s weighting, and the weighted average of the texel intensities is
computed. This weighted average must in turn be weighted by the percentage contribution
that the polygon makes to the pixel’s intensity. The process is repeated for each polygon
whose projection intersects the pixel, and the values are summed. Section 17.4.2 discusses
this algorithm in more detail.

The Feibush, Levoy, and Cook algorithm can be quite inefficient. Consider mapping a
checkerboard pattern onto an infinite ground plane. An extremely large number of texels
may have to be weighted and summed just to texture a single distant ground-plane pixel.
One solution to this problem is to prefilter the texture and to store the results in a way that is
space-efficient and that allows quick determination of the weighted average of texels
mapping to a pixel. Algorithms by Williams [WILL83], Crow [CROWS4|, Glassner
[GLASS86], and Heckbert [HECK86a] that take this approach are discussed in Section

TEXAS INSTRUMENTS EX. 1009 - 790/1253

744 lllumination and Shading

17.4.3. Catmull and Smith’s efficient technique [CATMB80] for mapping an entire texture
map directly to a surface is discussed in Exercise 17.10. Heckbert [HECK86] provides a
thorough survey of texture-mapping methods.

16.3.3 Bump Mapping

Texture mapping affects a surface’s shading, but the surface continues to appear
geometrically smooth. If the texture map is a photograph of a rough surface, the surface
being shaded will not look quite right, because the direction to the light source used to
create the texiure map is typically different from the direction to the light source
illuminating the surface. Blinn [BLIN78b] developed a way to provide the appearance of
modified surface geometry that avoids explicit geometrical modeling. His approach
involves perturbing the surface normal before it is used in the illumination model, just as
slight roughness in a surface would perturb the surface normal. This method is known as
bump mapping, and is based on texture mapping.

A bump map is an array of displacements, each of which can be used to simulate
displacing a point on a surface a little above or below that point’s actual position. Let us
represent a point on a surface by a vector P, where P = [x(s, 1), ¥(s, 1), 2(s, 1)]. We call the
partial derivatives of the surface at P with respect to the surface's s and r parameterization
axes, P, and F,. Since each is tangent to the surface, their cross-product forms the
(unnormalized) surface normal at P. Thus,

N=P xP. (16.21)

We can displace point P by adding to it the normalized normal scaled by a selected
bump-map value B. The new point is

= _ =5, BN
P=P+—. (16.22)
M
Blinn shows that a good approximation to the new (unnormalized) normal N’ is
NN+ XD B NXT) (16.23)

N

where B, and B, are the partial derivatives of the selected bump-map entry B with respect to
the bump-map parameterization axes, u and v. N' is then normalized and substituted for the
surface normal in the illumination equation. Note that only the partial derivatives of the
bump map are used in Eq. (16.23), not its values. Bilinear interpolation can be used to
derive bump-map values for specified (u, v) positions, and finite differences can be used to
compute B, and B,.

The results of bump mapping can be quite convincing. Viewers often fail to notice that
an object’s texture does not affect its silhouette edges. Color Plates 111.3 and 111.4 show two
examples of bump mapping. Unlike texture mapping, aliasing cannot be dealt with by
filtering values from the bump map, since these values do not correspond linearly to
intensities; filtering the bump map just smooths out the bumps. Instead, subpixel intensities
may be computed and filtered for each pixel, or some prefiltering may be performed on the
bump map to improve gross aliasing.

TEXAS INSTRUMENTS EX. 1009 - 791/1253

16.4 Shadows 745

16.3.4 Other Approaches

Although 2D mapping can be effective in many situations, it often fails to produce
convincing results. Textures frequently betray their 2D origins when mapped onto curved
surfaces, and problems are encountered at texture ‘‘seams.’’ For example, when a
wood-grain texture is mapped onto the surface of a curved object, the object will look as if
it were painted with the texture. Peachey [PEAC85] and Perlin [PERLS5] have investigated
the use of solid textures for proper rendering of objects *‘carved”” of wood or marble, as
exemplified by Color Plate IV.21. In this approach, described in Section 20.8.3, the texture
is a 3D function of its position in the object.

Other surface properties can be mapped as well. For example, Gardner [GARDS84] has
used transparency mapping to make impressionistic trees and clouds from otherwise simple
shapes, as described in Section 20.8.2. Color Plate 1V.24 shows the application of a
complex functional transparency texture to objects formed from groups of quadric surfaces.
Cook has implemented displacement mapping, in which the actual surface is displaced,
instead of only the surface normals [COOKS84a]; this process, which must be carried out
before visible-surface determination, was used to modify the surfaces of the cone and torus
in Color Plate I1.36. Using fractals to create richly detailed geometry from an initial simple
geometric description is discussed in Section 20.3.

So far, we have made the tacit assumption that the process of shading a point on an
object is unaffected by the rest of that object or by any other object. But an object might in
fact be shadowed by another object between it and a light source; might transmit light,
allowing another object to be seen through it; or might reflect other objects, allowing
another object to be seen because of it. In the following sections, we describe how to model
these effects.

16.4 SHADOWS

Visible-surface algorithms determine which surfaces can be seen from the viewpoint;
shadow algorithms determine which surfaces can be “‘seen’’ from the light source. Thus,
visible-surface algorithms and shadow algorithms are essentially the same. The surfaces
that are visible from the light source are not in shadow; those that are not visible from the
light source are in shadow. When there are multiple light sources, a surface must be
classified relative to each of them.

Here, we consider shadow algorithms for point light sources; extended light sources are
discussed in Sections 16.8, 16.12, and 16.13. Visibility from a point light source is, like
visibility from the viewpoint, all or nothing. When a point on a surface cannot be seen from
a light source, then the illumination calculation must be adjusted to take it into account. The
addition of shadows to the illumination equation yields

L= LkOy+ 2, 5 Susilos [kiO0(N * L) + kO, R, - V)", (16.24)

I=si=m

where

g = |0, if light i is blocked at this point;
! 1, if light i is not blocked at this point.

TEXAS INSTRUMENTS EX. 1009 - 792/1253

746 llumination and Shading

Note that areas in the shadow of all point light sources are still illuminated by the ambient
light.

Although computing shadows requires computing visibility from the light source, as
we have pointed out, it is also possible to generate ‘‘fake’” shadows without performing any
visibility tests. These can be created efficiently by transforming each object into its
polygonal projection from a point light source onto a designated ground plane, without
clipping the transformed polygon to the surface that it shadows or checking for whether it is
blocked by intervening surfaces [BLIN88]. These shadows are then treated as surface-detail
polygons. For the general case, in which these fake shadows are not adequate, various
approaches to shadow generation are possible, We could perform all shadow processing
first, interleave it with visible-surface processing in a variety of ways, or even do it after
visible-surface processing has been performed. Here we examine algorithms that follow
each of these approaches, building on the classification of shadow algorithms presented in
[CROW77a)]. To simplify the explanations, we shall assume that all objects are polygons
unless otherwise specified.

16.4.1 Scan-Line Generation of Shadows

One of the oldest methods for generating shadows is to augment a scan-line algorithm to
interleave shadow and visible-surface processing [APPEL68; BOUK70b]. Using the light
source as a center of projection, the edges of polygons that might potentially cast shadows
are projected onto the polygons intersecting the current scan line. When the scan crosses
one of these shadow edges, the colors of the image pixels are modified accordingly.

A brute-force implementation of this algorithm must compute all n(n—1) projections
of every polygon on every other polygon. Bouknight and Kelley [BOUK70b] instead use a
clever preprocessing step in which all polygons are projected onto a sphere surrounding the
light source, with the light source as center of projection. Pairs of projections whose extents
do not overlap can be eliminated, and a number of other special cases can be identified to
limit the number of polygon pairs that need be considered by the rest of the algorithm. The
authors then compute the projection from the light source of each polygon onto the plane of
each of those polygons that they have determined it could shadow, as shown in Fig. 16.27.
Each of these shadowing polygon projections has associated information about the
polygons casting and potentially receiving the shadow. While the scan-line algorithm’s
regular scan keeps track of which regular polygon edges are being crossed, a separate,
parallel shadow scan keeps track of which shadowing polygon projection edges are crossed,
and thus which shadowing polygon projections the shadow scan is currently ““in.”” When
the shade for a span is computed, it is in shadow if the shadow scan is “in’" one of the
shadow projections cast on the polygon’s plane. Thus span be in Fig. 16.27(a) is in shadow,
while spans ab and cd are not. Note that the algorithm does not need to clip the shadowing
polygon projections analytically to the polygons being shadowed.

16.4.2 A Two-Pass Object-Precision Shadow Algorithm

Atherton, Weiler, and Greenberg have developed an algorithm that performs shadow
determination before visible-surface determination [ATHE78]. They process the object
description by using the same algorithm twice, once for the viewpoint, and once for the

TEXAS INSTRUMENTS EX. 1009 - 793/1253

16.4 Shadows 747

Viewer

Fig. 16.27 A scan-line shadow algorithm using the Bouknight and Kelley approach.
Polygon A casts shadow A’ on plane of B.

light source, The results are then combined to determine the pieces of each visible part of a
polygon that are lit by the light source, and the scene is scan-converted. Thus, since the
shadows are not dependent on the viewpoint, all the shadow calculations may be performed
Jjust once for a series of images of the same objects seen from many different viewpoints, as
long as the light source and objects are fixed.

The algorithm, shown in overview in Fig. 16.28, first determines those surfaces that
are visible from the light source’s viewpoint, using the Weiler-Atherton visible-surface
algorithm discussed in Section 15.7.2. The output of this pass is a list of lit polygons, each
of which is tagged with the identity of its parent polygon. All the objects must fit into the
light source’s view volume, since parts of the objects that do not fit are not recognized as
lit. If a light source’s view volume cannot encompass all the objects, multiple
nonoverlapping view volumes can be constructed that radiate out from the light source, a
technique called sectoring.

Next, the lit polygons are transformed back into the modeling coordinates and are
merged with a copy of the original database as surface-detail polygons (Section 16.3),
creating a viewpoint-independent merged database, shown in Fig. 16.29. Note that the
implementation illustrated in Fig. 16.28 performs the same transformations on both
databases before merging them. Hidden-surface removal is then performed on a copy of this
merged database from the viewpoint of an arbitrary observer, again using the Weiler—
Atherton algorithm. All processing so far is performed with object precision and results in a
list of polygons. A polygon scan-conversion algorithm is then used to render the image.
Visible surfaces covered by surface-detail polygons are rendered as lit, whereas uncovered
visible surfaces are rendered in shadow. Color Plate III.5 was generated using this
approach. Multiple light sources can be handled by processing the merged database from
the viewpoint of each new light source, merging the results of each pass.

TEXAS INSTRUMENTS EX. 1009 - 794/1253

748 lllumination and Shading

TEXAS INSTRUMENTS EX. 1009 - 795/1253

16.4 Shadows 749

Projectors

from light

source

Polygon
:‘“"7 castr%g shadow
N\~
—— Shadow on top
face of cube

Lit detail > Face
polygons “‘-_ “ | completely in
> _ i:.'-w 50 Mo
detail polygon
Shadow on L a:idec:F'o‘1
front faca ¥
of cuba

Fig. 16.29 Lit surface-detail polygons.

16.4.3 Shadow Volumes

Crow [CROW77a) describes how to generate shadows by creating for each object a shadow
volume that the object blocks from the light source. A shadow volume is defined by the light
source and an object and is bounded by a set of invisible shadow polygons. As shown in
Fig. 16.30, there is one quadrilateral shadow polygon for each silhouette edge of the object
relative to the light source. Three sides of a shadow polygon are defined by a silhouette edge
of the object and the two lines emanating from the light source and passing through that
edge’s endpoints. Each shadow polygon has a normal that points out of the shadow volume.
Shadow volumes are generated only for polygons facing the light. In the implementation
described by Bergeron [BERG86a], the shadow volume—and hence each of its shadow
polygons —is capped on one end by the original object polygon and on the other end by a
scaled copy of the object polygon whose normal has been inverted. This scaled copy is
located at a distance from the light beyond which its attenuated energy density is assumed to
be negligible. We can think of this distance as the light’s sphere of influence. Any point
outside of the sphere of influence is effectively in shadow and does not require any
additional shadow processing. In fact, there is no need to generate a shadow volume for any
object wholly outside the sphere of influence. We can generalize this approach to apply to
nonuniformly radiating sources by considering a region of influence, for example by culling

Fig. 16.28 Shadow creation and display in the Atherton, \Weiler, and Greenberg
algorithm. (Images by Peter Atherton, Kevin Weiler, Donald P. Greenberg, Program of
Computer Graphics, Cornell University, 1978.)

TEXAS INSTRUMENTS EX. 1009 - 796/1253

750 llumination and Shading

Light

Fig. 16.30 A shadow volume is defined by a light source and an object.

objects outside of a light's flaps and cone. The shadow volume may also be further clipped
to the view volume if the view volume is known in advance. The cap polygons are also
treated as shadow polygons by the algorithm.

Shadow polygons are not rendered themselves, but are used to determine whether the
other objects are in shadow. Relative to the observer, a front-facing shadow polygon
(polygon A or B in Fig. 16.30) causes those objects behind it to be shadowed; a back-facing
shadow polygon (polygon C) cancels the effect of a front-facing one. Consider a vector
from the viewpoint V to a point on an object. The point is in shadow if the vector intersects
more front-facing than back-facing shadow polygons. Thus, points A and C in Fig. 16.31(a)
are in shadow. This is the only case in which a point is shadowed when V is not shadowed;
therefore, point B is lit. If V is in shadow, there is one additional case in which a point is
shadowed: when all the back-facing shadow polygons for the object polygons shadowing the
eye have not yet been encountered. Thus, points A, B, and C in Fig. 16.31(b) are in shadow,

&

(@) (b)

Fig. 16.31 Determining whether a point is in shadow for a viewer at V. Dashed lines
define shadow volumes (shaded in gray). (a) V is not in shadow. Points A and C are
shadowed; point 8 is lit. (b) V' is in shadow. Points A, B, and C are shadowed.

TEXAS INSTRUMENTS EX. 1009 - 797/1253

16.4 Shadows 751

even though the vector from V to B intersects the same number of front-facing and
back-facing shadow polygons as it does in part (a).

We can compute whether a point is in shadow by assigning to each front-facing (relative
to the viewer) shadow polygon a value of +1 and to each back-facing shadow polygon a
value of —1. A counter is initially set to the number of shadow volumes that contain the eye
and is incremented by the values associated with all shadow polygons between the eye and
the point on the object. The point is in shadow if the counter is positive at the point. The
number of shadow volumes containing the eye is computed only once for each viewpoint,
by taking the negative of the sum of the values of all shadow polygons intercepted by an
arbitrary projector from the eye to infinity.

Although is is possible to compute a shadow volume for each polygon, we can take
advantage of object coherence by computing a single shadow volume for each connected
polyhedron. This can be accomplished by generating shadow polygons from only those
edges that are silhouette edges relative to the light source; these are the contour edges
relative to the light source (as defined in Section 15.3.2).

Multiple light sources can be handled by building a separate set of shadow volumes for
each light source, marking the volume’s shadow polygons with their light source identifier,
and keeping a separate counter for each light source. Brotman and Badler [BROT84] have
implemented a z-buffer version of the shadow-volume algorithm, and Bergeron [BERGB6a]
discusses a scan-line implementation that efficiently handles arbitrary polyhedral objects
containing nonplanar polygons.

Chin and Feiner [CHIN89] describe an object-precision algorithm that builds a single
shadow volume for a polygonal environment, using the BSP-tree solid modeling representa-
tion discussed in Section 12.6.4. Polygons are processed in front-to-back order relative to
the light source. Each polygon facing the light source is filtered down the tree, dividing the
polygon into lit and shadowed fragments. Only lit fragments cast shadows, so the
semi-infinite pyramid defined by the light source and each lit fragment is added to the
volume. Because of the front-to-back order, every polygon is guaranteed not to lie between
the light source and the polygons processed previously. Therefore, since no polygon needs
to be compared with the plane of a previously processed polygon, the polygons themselves
do not need to be added to the shadow volume. As with the Atherton—Weiler—Greenberg
algorithm, the lit fragments may be added to the environment as surface-detail polygons or
the lit and shadowed fragments may be displayed together instead. Multiple light sources
are accommodated by filtering the polygon fragments of one shadow-volume BSP tree
down the shadow-volume BSP tree of the next light source. Each fragment is tagged to
indicate the light sources that illuminate it, allowing the resulting fragmented environment
to be displayed with any polygon visible-surface algorithm. Because of the shadow volume
representation, lights may be positioned anywhere relative to the objects; thus, sectoring is
not necessary. Several optimizations and a parallel version of the algorithm are discussed in
[CHIN90]. Color Plate III.6(a) is rendered with the algorithm; Color Plate III.6(b) shows
the fragments created in filtering the polygons down the shadow-volume BSP tree.

16.4.4 A Two-Pass z-Buffer Shadow Algorithm

Williams [WILL78] developed a shadow-generation method based on two passes through a
z-buffer algorithm, one for the viewer and one for the light source. His algorithm, unlike the
two-pass algorithm of Section 16.4.2, determines whether a surface is shadowed by using

TEXAS INSTRUMENTS EX. 1009 - 798/1253

752 Hlumination and Shading

image-precision calculations. Figure 16.32(a) shows an overview of an environment lit by a
light at L; a shadowless image from viewpoint V is shown in Fig. 16.32(d). The algorithm
begins by calculating and storing just the z-buffer for the image from the viewpoint of the
light (Fig. 16.32b). In Fig. 16.32(b), increasing intensities represent increasing distance.
Next, the z-buffer (Fig. 16.32¢) and the image (Fig. 16.32e) are calculated from the
viewpoint of the observer using a z-buffer algorithm with the following modification.
Whenever a pixel is determined to be visible, its object-precision coordinates in the
observer's view (x,, y,, z,) are transformed into coordinates in the light source’s view (x,

z;). The transformed coordinates x/, and y', are used to ueleu the value z; in the light
source’s z-buffer to be compared with the transformed value z}. If z; is closer to the light
than is z{, then there is something blocking the light from the pulnt and the pixel is shaded
as being in shadow; otherwise the point is visible from the light and it is shaded as lit. In
analogy to texture mapping, we can think of the light’s z-buffer as a shadow map. Multiple
light sources can be accommodated by use of a separate shadow map for each light source.

Like the regular z-buffer visible-surface algorithm, this algorithm requires that each
rendered pixel be shaded. Here, this means that shadow calculations must be performed for
the pixel, even if it is ultimately painted over by closer objects. Williams has suggested a
variation on his algorithm that exploits the ease with which the z-buffer algorithm can
interleave visible-surface determination with illumination and shading, and eliminates
shadow calculations for obscured objects. Rather than computing just the shadow map first,
the modified algorithm also computes the regular shaded image from the observer’s point of
view (Fig. 16.32d), along with its z-buffer (all these computations can use conventional
z-buffer-based hardware). Shadows are then added using a postprocess that is linear in the

(a) (b)

(d) (e)
Fig. 16.32 z-buffer shadow-generation method. (a) Overview. (b) Light's z-buffer. (c)
Observer's z-buffer. (d) Observer's image. (e) Observer's image with shadows. (f)

Observer’'s image with post-processed shadows. (By David Kurlander, Columbia
University.)

TEXAS INSTRUMENTS EX. 1009 - 799/1253

16.4 Shadows 753

Fig. 16.33 Shadow map used to create Color Plate 11.36. (Copyright @ 1990, Pixar.
Shadow map rendered by Thomas Willlams and H. B. Siegel using Pixar's
PhotoRealistic RenderMan™ software.)

number of pixels in the image to produce Fig. 16.32(f). The same transformation and
comparison operation as before are performed for each pixel in the observer’s image. If z; is
closer to the light than is z}, then the pixel’s previously computed shade in the observer’s
image is darkened. Although this approach is significantly more efficient than is the original
algorithm, it results in artifacts; most noticeably, shadowed objects will have (darkened)
specular highlights, even though there should be no specular highlights on an object that is
shielded from the light source. In addition, the z, to be transformed is at object precision in
the first version, but at the typically lower z-buffer precision here. (See Exercise 16.15.)

Unlike the other shadow algorithms discussed so far, Williams’s algorithm makes it
especially easy to generate shadows for any object that can be scan-converted, including
curved surfaces. Because all operations are performed in image precision, however,
allowance must be made for the limited numerical precision. For example, the transforma-
tion from z, to z,, should also move z/, a little closer to the light source, to avoid having a
visible point cast a shadow on itself. Like the z-buffer visible-surface algorithm from which
it is constructed, this shadow algorithm is prone to aliasing. Williams describes how
filtering and dithering can reduce the effects of aliasing. Reeves, Salesin, and Cook
[REEV87] demonstrate improvements using percentage closer filtering. Each z{ is
compared with values in a region of the shadow map, and the percentage of closer values
determines the amount of shadowing. This improved algorithm was used to render Color
Plates D, F, and 11.36. Figure 16.33 shows the shadow map used to create Color Plate
I1.36.

16.4.5 Global lllumination Shadow Algorithms

Ray-tracing and radiosity algorithms have been used to generate some of the most
impressive pictures of shadows in complex environments. Simple ray tracing has been used
to model shadows from point light sources, whereas more advanced versions allow
extended light sources. Both are discussed in Section 16.12. Radiosity methods, discussed
in Section 16.13, model light sources as light-emitting surfaces that may have the same
geometry as any other surface; thus, they implicitly support extended light sources.

TEXAS INSTRUMENTS EX. 1009 - 800/1253

754 Nllumination and Shading

16.5 TRANSPARENCY

Much as surfaces can have specular and diffuse reflection, those that transmit light can be
transparent or translucent. We can usually see clearly through transparent materials, such as
glass, although in general the rays are refracted (bent). Diffuse transmission occurs through
rranslucent materials, such as frosted glass. Rays passing through translucent materials are
jumbled by surface or internal irregularities, and thus objects seen through translucent
materials are blurred.

16.5.1 Nonrefractive Transparency

The simplest approach to modeling transparency ignores refraction, so light rays are not
bent as they pass through the surface. Thus, whatever is visible on the line of sight through a
transparent surface is also geometrically located on that line of sight. Although refraction-
less transparency is not realistic, it can often be a more useful effect than refraction. For
example, it can provide a distortionless view through a surface, as depicted in Color Plate
I11.7. As we have noted before, total photographic realism is not always the objective in
making pictures.

Two different methods have been commonly used to approximate the way in which the
colors of two objects are combined when one object is seen through the other. We shall

refer to these as interpolated and filtered transparency.

Interpolated transparency. Consider what happens when transparent polygon 1 is
between the viewer and opaque polygon 2, as shown in Fig. 16.34. Imerpolated
transparency determines the shade of a pixel in the intersection of two polygons’

projections by linearly interpolating the individual shades calculated for the two polygons:
L= — kI, + kJ,. (16.25)

The rransmission coefficient k,, measures the transparency of polygon 1, and ranges between
0 and 1. When k, is 0, the polygon is opaque and transmits no light; when k, is 1, the
polygon is perfectly transparent and contributes nothing to the intensity /,; The value 1 — k,,
is called the polygon’s opacity. Interpolated transparency may be thought of as modeling a
polygon that consists of a fine mesh of opaque material through which other objects may be
seen; k,, is the fraction of the mesh’s surface that can be seen through. A totally transparent

-

Line of sight
Fig. 16.34 Cross-section of two polygons.
TEXAS INSTRUMENTS EX. 1009 - 801/1253

16.5 Transparency 7556

polygon that is processed this way will not have any specular reflection. For a more realistic
effect, we can interpolate only the ambient and diffuse components of polygon 1 with the
full shade of polygon 2, and then add in polygon 1's specular component [KAY79b].

Another approach, often called screen-door transparency, literally implements a mesh
by rendering only some of the pixels associated with a transparent object’s projection. The
low-order bits of a pixel’s (x, y) address are used to index into a transparency bit mask. If
the indexed bit is 1, then the pixel is written; otherwise, it is suppressed, and the next closest
polygon at that pixel is visible. The fewer | bits in the mask, the more transparent the
object’s appearance. This approach relies on having our eyes perform spatial integration to
produce interpolated transparency. Note, however, that an object fully obscures any other
object drawn with the same transparency mask and that other undesirable interactions
between masks are difficult to avoud.

Filtered transparency. Filtered transparency treats a polygon as a transparent filter that
selectively passes different wavelengths; it can be modeled by

1, =1, + kOul, (16.26)

where O, is polygon 1’s fransparency color. A colored filter may be modeled by choosing a
different value of O, for each A (but see Section 16.9). In either interpolated or filtered
transparency, if additional transparent polygons are in front of these polygons, then the
calculation is invoked recursively for polygons in back-to-front order, each time using the
previously computed /, as /,,.

Implementing transparency. Several visible-surface algorithms can be readily adapted
to incorporate transparency, including scan-line and list-priority algorithms. In list-priority
algorithms, the color of a pixel about to be covered by a transparent polygon is read back
and used in the illumination model while the polygon is being scan-converted.

Most z-buffer-based systems support screen-door transparency because it allows
transparent objects to be intermingled with opaque objects and to be drawn in any order.
Adding transparency effects that use Eqgs. (16.25) or (16.26) to the z-buffer algorithm is
more difficult, because polygons are rendered in the order in which they are encountered,
Imagine rendering several overlapping transparent polygons, followed by an opaque one.
We would like to slip the opaque polygon behind the appropriate transparent cnes.
Unfortunately, the z-buffer does not store the information needed to determine which
transparent polygons are in front of the opaque polygon, or even the polygons” relative
order. One simple, although incorrect, approach is to render transparent polygons last,
combining their colors with those already in the frame buffer, but not modifying the
z-buffer; when two transparent polygons overlap, however, their relative depth is not taken
into account.

Mammen [MAMMBS9] describes how to render transparent objects properly in
back-to-front order in a z-buffer-based system through the use of multiple rendering passes
and additional memory. First, all the opaque objects are rendered using a conventional
z-buffer. Then, transparent objects are processed into a separate set of buffers that contain,
for each pixel, a transparency value and a flag bit, in addition to the pixel’s color and :
value. Each flag bit is initialized to off and each z value is set to the closest possible value. If
a transparent object’s z value at a pixel is closer than the value in the opaque z-buffer, but is

TEXAS INSTRUMENTS EX. 1009 - 802/1253

756 lllumination and Shading

more distant than that in the transparent z-buffer, then the color, z value, and transparency
are saved in the transparent buffers, and the flag bit is set. After all objects have been
processed, the transparent object buffers contain information for the most distant
transparent object at each pixel whose flag bit is set. Information for flagged pixels is then
blended with that in the original frame buffer and z-buffer. A flagged pixel’s transparency
z-value replaces that in the opaque z-buffer and the flag bit is reset. This process is repeated
to render successively closer objects at each pixel. Color Plate I11.7 was made using this
algorithm.

Kay and Greenberg [KAY79b] have implemented a useful approximation to the
increased attenuation that occurs near the silhouette edges of thin curved surfaces, where
light passes through more material. They define k, in terms of a nonlinear function of the z
component of the surface normal after perspective transformation,

k= ki + (i = X1 — (1 = 2™, (16.27)

where k., and k__ are the object’s minimum and maximum transparencies, zy is the z
component of the normalized surface normal at the point for which £, is being computed,
and m is a power factor (typically 2 or 3). A higher m models a thinner surface. This new
value of k, may be used as k, in either Eq. (16.25) or (16.26).

16.5.2 Refractive Transparency

Refractive transparency is significantly more difficult to model than is nonrefractive
transparency, because the geometrical and optical lines of sight are different. If refraction is
considered in Fig. 16.35, object A is visible through the transparent object along the line of
sight shown; if refraction is ignored, object B is visible. The relationship between the angle
of incidence 8 and the angle of refraction 8, is given by Snell’s law

(16.28)

Line of sight

Fig. 16.35 Refraction.

TEXAS INSTRUMENTS EX. 1009 - 803/1253

16.5 Transparency 757

where 7, and 7, are the indices of refraction of the materials through which the light
passes. A material’s index of refraction is the ratio of the speed of light in a vacuum to the
speed of light in the material. It varies with the wavelength of the light and even with
temperature. A vacuum has an index of refraction of 1.0, as does the atmosphere to close
approximation; all materials have higher values. The index of refraction’s wavelength-
dependence is evident in many instances of refraction as dispersion—the familiar, but
difficult to model, phenomenon of refracted light being spread into its spectrum [THOMS6;
MUSG89].

Calculating the refraction vector. The unit vector in the direction of refraction, T, can
be calculated as

T = sin 6, M — cos 6, N, (16.29)

where M is a unit vector perpendicular to N in the plane of the incident ray 7 and N
[HECK84] (Fig. 16.36). Recalling the use of S in calculating the reflection vector R in
Section 16.1.4, we see that M = (N cos 6, — I) / sin 6, By substitution,

T=:: (N cos 6, — T) = cos 6, N. (16.30)

If we let n,, = n,, / n,, = sin 6, / sin 6, then after rearranging terms
T =(n,cos 6 —cos@)N~-n,l (16.31)

Fig. 16.36 Calculating the refraction vector.

TEXAS INSTRUMENTS EX. 1009 - 804/1253

758 lllumination and Shading

Note that cos @ is N - I, and cos 6, can be computed as

cos 6, = V1 — sin®g, = V1 = pisin®6 = V1 — i, (1 = (N - TP. (16.32)

T= (n,,fﬁ ‘D=-V1-n(-@N- F)*})H - 7,1 (16.33)

Total internal reflection. When light passes from one medium into another whose index
of refraction is lower, the angle 6, of the transmitted ray is greater than the angle 6, If 6,
becomes sufficiently large, then 6, exceeds 90° and the ray is reflected from the interface
between the media, rather than being transmitted. This phenomenon is known as total
internal reflection, and the smallest @, at which it occurs is called the critical angle. You can
observe total internal reflection easily by looking through the front of a filled fish tank and
trying to see your hand through a side wall. When the viewing angle is greater than the
critical angle, the only visible parts of your hand are those pressed firmly against the tank,
with no intervening layer of air (which has a lower index of refraction than glass or water).
The critical angle is the value of 6, at which sin 6, is 1. If sin 6, is set to 1 in Eq. (16.28), we
can see that the critical angle is sin"'(n,, / m,). Total internal reflection occurs when the
square root in Eq. (16.33) is imaginary.

Section 16.12 discusses the use of Snell’s law in modeling refractive transparency with
ray tracing; translucency is treated in Sections 16.12.4 and 16.13. An approximation of
refraction can also be incorporated into renderers that proceed in back-to-front order
[KAY79b].

16.6 INTEROBJECT REFLECTIONS

Interobject reflections occur when a surface reflects other surfaces in its environment.
These effects range from more or less sharp specular reflections that change with the
viewer’s position (like specular highlights), to diffuse reflections that are insensitive to
the viewer’s position. Ray tracing (Section 16.12) and radiosity methods (Section 16.13)
have produced some of the most visually impressive pictures exhibiting specular and
diffuse interobject reflections; earlier techniques, however, can also produce attractive
results.

Blinn and Newell [BLIN76] developed reflection mapping (also known as environment
mapping) to model specular interobject reflection. A center of projection is chosen from
which to map the environment to be reflected onto the surface of a sphere surrounding the
objects to be rendered. The mapped environment can then be treated as a 2D texture map.
At each point on an object to be displayed, the reflection map is indexed by the polar
coordinates of the vector obtained by reflecting V about N. The reflection map’s x and
y axes represent longitude (from 0° to 360°) and latitude (from —90° to 90°), respectively,
as shown in Fig. 16.37(a). Hall [HALLS86] suggests a variant in which the y axis is sin (lati-
tude), so that equal areas on the sphere map to equal areas on the reflection map (Fig.

TEXAS INSTRUMENTS EX. 1009 - 805/1253

16.6 Interobject Reflections 759

20° B B
sin
-80° R = =
o° 360° o° 360°
Longitude Longitude
() (b)

Fig. 16.37 Reflection map coordinate systems. (a) Latitude-longitude. (b) Sin
(latitude)—longitude.

16.37b). Alternatively, six projections onto the sides of a surrounding cube may be
used. The cube is aligned with the WC axes, so that the largest coordinate of the
normalized reflection vector indicates the appropriate side to index. Figure 16.38(a)
shows the correspondence between the unfolded sides and the cube; Fig. 16.38(b) is the
reflection map used for the teapot in Color Plate I1.37. As in texture mapping, antialiasing is
accomplished by filtering some number of reflection-map values surrounding the
indexed value to determine the reflected light at the given point on the object. In Fig.
16.38(b) an angle slightly wider than 90° was used to provide a margin about each side’s
borders that helps avoid the need to consider more than one side at a time when
filtering.

Although reflection mapping can be used to produce a number of useful effects
[GREES6], it provides only an approximation to the correct reflection information. By
taking into account just the surface’s reflection direction and not its position in the sphere, it
models an infinitely large environment sphere. This problem can be partly remedied by
using the surface’s position to help determine the part of the reflection map to index,
modeling a sphere of finite size. In either case, however, the farther a surface is from the
center of projection used to create the map, the more distorted a view of the world it shows,
since the reflection map takes into account visibility relationships at only a single point. A
useful compromise is to create multiple reflection maps, each centered about a key object,
and to index into the one closest to an object whose surface is being mapped. Simple but
effective reflection effects can be obtained with even a 1D reflection map. For example, the
y component of the reflection of V may be used to index into an array of intensities
representing the range of colors from ground through horizon to sky.

Planar surfaces present difficulties for reflection mapping. because the reflection angle
changes so slowly. If reflections from a planar surface are to be viewed from only a single
viewpoint, however, another technique can be used. The viewpoint is reflected about the
surface’s plane and an inverted image of the scene is rendered from the reflected viewpoint,
as shown in cross-section in Fig. 16.38(c). This image can then be merged with the original
image wherever the surface is visible. Figure 16.38(d) was created with this technique and
was used to render the reflections on the floor in Color Plate 11.37.

TEXAS INSTRUMENTS EX. 1009 - 806/1253

760 Ilumination and Shading

(b)

16.7 PHYSICALLY BASED ILLUMINATION MODELS

The illumination models discussed in the previous sections are largely the result of a
common-sense, practical approach to graphics. Although the equations used approximate
some of the ways light interacts with objects, they do not have a physical basis. In this
section, we discuss physically based illumination models, relying in part on the work of
Cook and Torrance [COOKS2].

Thus far, we have used the word intensiry without defining it, referring informally to the
intensity of a light source, of a point on a surface, or of a pixel. It is time now to formalize
our terms by introducing the radiometric terminology used in the study of thermal
radiation, which is the basis for our understanding of how light interacts with objects
[NICO77; SPARR78; SIEG81; IES87]. We begin with flix, which is the rate at which light
energy is emitted and is measured in watts (W). To refer to the amount of flux emitted in or
received from a given direction, we need the concept of a solid angle, which is the angle at
the apex of a cone. Solid angle is measured in terms of the area on a sphere intercepted by a
cone whose apex is at the sphere’s center. A steradian (sr) is the solid angle of such a cone

TEXAS INSTRUMENTS EX. 1009 - 807/1253

16.7 Physically Based lllumination Models 761

V"‘“Er_f;::)
= -'_'h___ »
—
_\"""—..____.’H_'_?-l . _-_':_E:"_‘— —
Planar reflector
v

(c)

(d)

Fig. 16.38 Reflection maps. (a) Cube reflection map layout. (b) Reflection map for
teapot in Color Plate 11.37. (c) Geometry of planar reflection. (d) Reflected image merged
with floor in Color Plate 11.37. (Copyright ® 1990, Pixar. Images in (b) and (d) rendered
by Thomas Williams and H. B. Siegel using Pixar's PhotoRealistic RenderMan™
software.)

that intercepts an area equal to the square of the sphere’s radius r. If a point is on a surface,
we are concerned with the hemisphere above it. Since the area of a sphere is 47r®, there are
47r®/ 2r* = 27 sr in a hemisphere. Imagine projecting an object’s shape onto a hemisphere
centered about a point on the surface that serves as the center of projection. The solid angle
@ subtended by the object is the area on the hemisphere occupied by the projection, divided
by the square of the hemisphere’s radius (the division eliminates dependence on the size of
the hemisphere). Thus, for convenience, we often speak of solid angle in terms of the area
projected on a unit sphere or hemisphere, as shown in Fig. 16.39.

Radiant intensiry 1s the flux radiated into a unit solid angle in a particular direction and
is measured in W / sr. When we used the word infensity in reference to a point source, we
were referring to its radiant intensity.

Radiance is the radiant intensity per unit foreshortened surface area, and is measured in
W / (sr + m®). Foreshortened surface area, also known as projected surface area, refers to
the projection of the surface onto the plane perpendicular to the direction of radiation. The
foreshortened surface area is found by multiplying the surface area by cos 8,, where 8, is the

TEXAS INSTRUMENTS EX. 1009 - 808/1253

762 lllumination and Shading

Fig. 16.39 The solid angle subtended by an object from a point on a surface is the area
covered by the object’s projection onto a unit hemisphere above the point.

angle of the radiated light relative to the surface normal. A small solid angle dw may be
approximated as the object’s foreshortened surface area divided by the square of the
distance from the object to the point at which the solid angle is being computed. When we
used the word intensity in reference to a surface, we were referring to its radiance. Finally,
irradiance, also known as flux density, is the incident flux per (unforeshortened) unit
surface area and is measured in W / m®.

In graphics, we are interested in the relationship between the light incident on a surface
and the light reflected from and transmitted through that surface. Consider Fig. 16.40. The
irradiance of the incident light is

E = I(N * L) dw, (16.34)
where I, is the incident light’s radiance, and N - L is cos 6,. Since irradiance is expressed per

Fig. 16.40 Reflected radiance and incident irradiance.

TEXAS INSTRUMENTS EX. 1009 - 809/1253

16.7 Physically Based lllumination Models 763

unit area, whereas radiance is expressed per unit foreshortened area, multiplying by N * L
converts it to the equivalent per unit unforeshortened area.

It is not enough to consider just /; (the incident radiance) when determining /, (the
reflected radiance); E; (the incident irradiance) must instead be taken into account. For
example, an incident beam that has the same radiant intensity (W / sr) as another beam but a
greater solid angle has proportionally greater E; and causes the surface to appear
proportionally brighter. The ratio of the reflected radiance (intensity) in one direction to the
incident irradiance (flux density) responsible for it from another direction is known as the
bidirectional reflectiviry, p, which is a function of the directions of incidence and reflection,

= L
p=F. (16.35)

Thus, substituting for E; from Eq. (16.34), we get
I, = pl(N - L)dw,. (16.36)

The irradiance incident on a pixel in the image (the image irradiance) is proportional to
the radiance emitted by the scene (the sceme radiance) that is focused on the pixel
[HORNT9]. The factor of proportionality is a function of the imaging system being used.

As we have seen, it is conventional in computer graphics to consider bidirectional
reflectivity as composed of diffuse and specular components. Therefore,

P = kdpd + kapa' {]63?}

where p; and p, are respectively the diffuse and specular bidirectional reflectivities, and k;
and k, are respectively the diffuse and specular reflection coefficients introduced earlier in
this chapter; k; + k, = 1. It is important to note that Eq. (16.37) is a useful approximation
that is not applicable to all surfaces. For example, the lunar surface has a p that peaks in the
direction of incidence [SIEG81]. During a full moon, when the sun, earth, and moon are
nearly in line, this accounts for why the moon appears as a disk of roughly uniform
intensity. If the moon had a Lambertian surface, it would, instead, reflect more light at its
center than at its sides.

In addition to the effects of direct light-source illumination, we need to take into
account illumination by light reflected from other surfaces. The lighting models discussed
so far have assumed that this ambient light is equally incident from all directions, is
independent of viewer position, and is not blocked by any nearby objects. Later in this
chapter we shall discuss how to lift these restrictions. For now we retain them, modeling the
ambient term as pl,, where p, is the nondirectional ambient reflectivity, and [, is the
incident ambient intensity.

The resulting illumination equation for n light sources is

L=pl+ 2 L(N-L) dogkp, + k,p,). (16.38)

1sj=n
To reinterpret the illumination model of Eq. (16.15) in terms of Eq. (16.38), we expressed
diffuse reflectivity as the object’s diffuse color, and specular reflectivity using the product
of the object’s specular color and a cos” a term. We have already noted some of the

TEXAS INSTRUMENTS EX. 1009 - 810/1253

764 Illumination and Shading

inadequacies of that specular reflectivity formulation. Now we shall examine how to re-
place it.

16.7.1 Improving the Surface Model

The Torrance-Sparrow model [TORR66; TORR67], developed by applied physicists, is a
physically based model of a reflecting surface. Blinn was the first to adapt the
Torrance-Sparrow model to computer graphics, giving the mathematical details and
comparing it to the Phong model in [BLIN77a); Cook and Torrance [COOKS82] were the
first to approximate the spectral composition of reflected light in an implementation of the
maodel.

In the Torrance—-Sparrow model, the surface is assumed to be an isotropic collection of
planar microscopic facets, each a perfectly smooth reflector. The geometry and distribution
of these microfacets and the direction of the light (assumed to emanate from an infinitely
distant source, so that all rays are parallel) determine the intensity and direction of specular
reflection as a function of /, (the point light source intensity), N, L, and V. Experimental
mmmﬂmammmmmmmﬁmm&u
reflection predicted by this model [TORR67].

For the specular component of the bidirectional reflectivity, Cook and Torrance use

o (16.39)

TN-VN-L)

where D is a distribution function of the microfacet orientations, G is the geometrical
attenuation factor, which represents the masking and shadowing effects of the microfacets
on each other, and F, is the Fresnel term computed by Fresnel’s equation (described later),
which, for specular reflection, relates incident light to reflected light for the smooth surface
of each microfacet. The # in the denominator is intended to account for surface roughness
(but see [JOYSS, pp. 227-230] for an overview of how the equation is derived). The N - V
term makes the equation proportional to the surface area (and hence to the number of
microfacets) that the viewer sees in a unit piece of foreshortened surface area, whereas the N
+ L term makes the equation proportional to the surface area that the light sees in a unit
piece of foreshortened surface area.

16.7.2 The Microfacet Distribution Function

Since the microfacets are considered to be perfect specular reflectors, the model considers
only those microfacets whose normals lie along the halfway vector H, introduced in Section
16.1.4. Only a fraction D of the microfacets have this orientation. Torrance and Sparrow
assumed a Gaussian distribution function for D in their original work. Blinn used the
Trowbridge and Reitz distribution [TROW75], and Cook and Torrance used the Beckmann
distribution function [BECK63]. Cook and Torrance point out the Beckmann distribution
has a good theoretical basis and has no arbitrary constants, unlike the distributions used by
Torrance and Sparrow, and by Blinn. The Beckmann distribution function for rough
surfaces is

D= w;orﬂr'ﬂm*”. (16.40)

TEXAS INSTRUMENTS EX. 1009 - 811/1253

16.7 Physically Based lllumination Models 765

.........

rrrrrr
o e o e e e e s -
T

Fig. 16.41 Beckmann microfacet distribution function for (a) m = 0.2 and (b) m = 0.6.
(From [COOKB82] with permission. By Robert Cook, Program of Computer Graphics,
Cornell University.)

where S is the angle between N and H, and m is the root-mean-square slope of the
microfacets.” When m is small, the microfacet slopes vary only slightly from the surface
normal and, as we would expect, the reflection is highly directional (Fig. 16.41a). When m
is large, the microfacet slopes are steep and the resulting rough surface spreads out the light
it reflects (Fig. 16.41b). To model surfaces that have multiple scales of roughness, Cook
and Torrance use a weighted sum of distribution functions,

D= 2 wDm), (16.41)

1=j=n

where the sum of the weights w; is 1.

16.7.3 The Geometrical Attenuation Factor

The model takes into account that some microfacets may shadow others. Torrance and
Sparrow and Blinn discuss the calculation of G, considering three different situations.
Figure 16.42(a) shows a microfacet whose incident light is totally reflected. Figure
16.42(b) shows a microfacet that is fully exposed to the rays, but has some reflected rays
that are shielded by other microfacets. These shielded rays ultimately contribute to the
diffuse reflection. Figure 16.42(c) shows a microfacet that is partially shielded from the
light. The geometric attenuation factor G ranges from 0 (total shadowing) to 1 (no
shadowing).

'Hall [HALLS89] mentions that [COOKB82] is missing the 4 in the denominator.
TEXAS INSTRUMENTS EX. 1009 - 812/1253

766 lllumination and Shading

(b) (c)

Fig. 16.42 Light rays reflecting from surface microfacets in the Torrance-Sparrow
model. (a) No interference. (b) Partial interception of reflected light. (c) Partial intercep-
tion of incident light. (After [BLIN77a].)

To simplify the analysis, the microfacets are assumed to form V-shaped grooves that
are symmetric about the average surface normal N. In Fig. 16.42(a), all the incident light is
reflected to the viewer; thus, G, is 1. In both other cases, the ratio of intercepted light is
given by m / [, where [is the total area of the facet and m is the area whose reflected light is
blocked (Fig. 16.42b) or that is itself blocked (Fig 16.42¢) from the light. Therefore, G, =
G, = 1 — m/ . Blinn gives a trigonometric derivation of the proportion of reflected light in
Fig. 16.42(b) as

_2N-HN-V)
Gb . —_— — .
(V- H)
The ratio for the case in Fig. 16.42(c) follows by noticing that it is the same as the case in
part (b), except that L and V trade places:

& sl)
i (V- H)
The denominator does not need to change because (V - H) = (L - H) by definition of H as

the halfway vector between V and L.
(is the minimum of the three values:

(16.42)

(16.43)

(16.44)

16.7.4 The Fresnel Term

The Fresnel equation for unpolarized light specifies the ratio of reflected light from a
dielectric (nonconducting) surface as

=1 (tan’(8 — 6) sin'6 — 6)) _ 1sin(6 — 6) (cos¥(6, + EJ)
t2 (tan“{ﬂ. T6) " sind T El]) 2 sin®(6, + 6,) i cosi(6, — 6,/ (16.45)

TEXAS INSTRUMENTS EX. 1009 - 813/1253

16.7 Physically Based lllumination Models 767

where #, is the angle of incidence relative to H (i.e., cos™! (L - H)), and, as before, B, is the
angle of refraction; sin @, = (n,, / n,,)sin 8, where n, and n,, are the indices of refraction of
the two media. The Fresnel equation can also be expressed as

I{g—rlz([c(g + ¢) = I]E)

= — + ; 2
i 2(g+c)f ! [ce(g — ¢) + 1 e
wherec =cos =L -H, g2=n+c - 1,and 0, = 0, / .

In a conducting medium, which attenuates light, it is necessary to refer to 7,, the
material's complex index of refraction, defined as

Mm = M — K, (16.47)

where k, is the material’s coefficient of extinction, which measures the amount that the
material attenuates intensity per unit path length. To simplify the reflection computations
for conductors, x, can be assumed to be zero and a single equivalent real value for), can be
determined.

Blinn created Figs. 16.43 and 16.44, comparing the effects of the Phong illumination
model and the Torrance—Sparrow model. He made the simplifying assumptions that the
specular term depends on only the color of the incident light, and that the viewer and light
source are both at infinity. Figures 16.43 and 16.44 show the reflected illumination from a
surface for angles of incidence of 30° and 70°, respectively. In each figure, the vertical
arrow represents the surface normal, the incoming arrow represents the direction of light
rays, and the outgoing arrow represents the direction of reflection for a perfect reflector.
The rounded part of each figure is the diffuse reflection, whereas the bump is the specular
reflection. For the 30° case in Fig. 16.43, the models produce nearly similar results, but for
the 70° case in Fig. 16.44, the Torrance—Sparrow model has much higher specular
reflectance and the peak occurs at an angle greater than the angle of incidence. This
so-called off-specular peak is observed in actual environments. Figure 16.45, also by Blinn,
shows a marked difference in the visual effect of the two models as the light source moves
away from the viewpoint to the side and then to the rear of a metallic sphere.

(a) Phong model (b) Torrance-Sparrow model

Fig. 16.43 Comparison of Phong and Torrance—Sparrow illumination models for light
at a 30° angle of incidence. (By J. Blinn [BLIN77a), courtesy of the University of Utah.)

TEXAS INSTRUMENTS EX. 1009 - 814/1253

768 lHlumination and Shading

(a) Phong model (b) Torrance-Sparrow model

Fig. 16.44 Comparison of Phong and Torrance—Sparrow illumination models for light
at a 70" angle of incidence. (By J. Blinn [BLIN7 7a], courtesy of the University of Utah.)

The specular-reflection color shift. Like Blinn, Cook and Torrance use the Torrance-
Sparrow surface model to determine the specular term. Unlike Blinn, however, they make
the color of the specular reflection a function of the interaction between the material and the
incident light, depending both on the light's wavelength and on its angle of incidence. This
i1s correct because the Fresnel equation, Eq. (16.45), is responsible for a shift in the specular
reflection color based on the angle the incident light makes with the microfacet normal H,
as shown in Fig. 16.46.

When the incident light is in the same direction as H, then , = 0,soc =l and g = n,.
Substituting these values in Eq. (16.46) yields the Fresnel term for 8 = 0,

(16.48)

(a) Phong model (b} Torrance-Sparrow model

Fig. 16.45 Comparison of Phong and Torrance-Sparrow illumination models for a
metallic sphere illuminated by a light source from different directions. Differences are
maost apparent for back-lit cases (bottom rows). (By J. Blinn [BLIN7 7a], courtesy of the
University of Utah.)

TEXAS INSTRUMENTS EX. 1009 - 815/1253

16.7 Physically Based lllumination Models 769

Fig. 16.46 Fresnel term for a copper mirror as a function of wavelength and angle of
incidence. (By Robert Cook, Program of Computer Graphics, Cornell University.)

When the incident light grazes the surface of the microfacet, then 8, = 7/ 2, so ¢ = 0.
Substituting in Eq. (16.46) yields the Fresnel term for 8, = #/ 2,

Fon =1, (16.49)

Thus, if light is normal to the surface, then F;, and hence the specular reflectance p,, are
functions of the surface’s index of refraction, which in turn varies with the wavelength.
When the light grazes the surface (and when the viewer is looking 180° opposite from the
light, since only microfacets with normals of H are considered), F,_., and hence the
specular reflection, are both 1. Specular reflectance depends on 7, for all 8, except 7/ 2.
For metals, essentially all reflection occurs at the surface and is specular. Only at extreme
glancing angles is the specular reflection not influenced by the object’s material. Notice
how this differs from the Phong specular-reflection term, which was always unaffected by
the object color. Cook and Torrance point out that the monochromatic Phong specular term
is a good model of plastic, which is colored by pigment particles embedded in a transparent
substrate. The presence of these particles causes the diffuse reflection, resulting from light
bouncing around in the substrate, to be a function of the pigment and light colors. Specular
reflection occurs from the transparent surface, however, and therefore is unaffected by the
pigment color. This is why objects rendered with a Phong illumination model look plastic.

If the indices of refraction at different wavelengths are known, they may be used
directly in the Fresnel equation. More typically, however, they are not known. Reflectance,
however, has been measured for many materials with 8, = 0 at a variety of wavelengths, as
recorded in sources such as [TOUL70; TOUL72a; TOUL72b]. In this case, each 5, may be
determined from Eq. (16.48), as

§ - 1 +VE;
A s e —— e = il

| =V,
A derived value of 7, may then be used in the Fresnel equation to determine F, for an

arbitrary #,. Rather than perform this calculation for each value of A, Cook and Torrance
simplify the computationally expensive color shift calculation by calculating ., for .,

(16.50)

TEXAS INSTRUMENTS EX. 1009 - 816/1253

770 Hlumination and Shading

the average index of refraction for average normal reflectance. They use the value computed
for E,, to interpolate between the color of the material at 8 = 90° and the color of the
material at 8 = 0° for each component of the color model. Because F,, is always |, the
color of the material at 8 = 90° is the color of the light source. Thus, when the light grazes
the surface at a 90° angle of incidence, the color of the reflected light is that of the incident
light. Using the RGB system, we call the red component of the material at 8, = 0°, Red,,
and the red component of the light, Red_,. Red, is calculated by integrating the product of
F,, the spectrum of the incident light, and the color-matching curves of Fig. 13.22, and
applying the inverse of matrix M of Eq. (13.24) to the result. Red,, is obtained by applying
the inverse of M to Eq. (13.18). The approximation computes the color of the material at 6,
ds

max{ﬂ‘ Flr.vgi‘i I 'F;#gﬂ}

Red,; = Red; + (Red,; — Red,) (16.51)

'Fl-'\'g“lﬂ =¥ 'F;;:rgﬂ

Red,; is then used in place of F, in Eq. (16.39). Because the approximation takes the light’s
spectrum into account, Eq. (16.38) must be modified to multiply the specular term by a
wavelength-independent intensity scale factor, instead of by the light’s spectrum. Hall
[HALLS89] suggests an alternative approximation that interpolates a value for F,,, given F,.
Since F,,, is always 1 (as is F.» in Eq. 16.51),

max (0, ., — Fug) (16.52)

Fo = Fy+ (1 - F
Ad AD ': J.U}]—F;‘,ﬂ

Color Plate 1I1.8 shows two copper vases rendered with the Cook—Torrance model,
both of which use the bidirectional reflectance of copper for the diffuse term. The first
models the specular term using the reflectance of a vinyl mirror and represents results
similar to those obtained with the original Phong illumination model of Eq. (16.14). The
second models the specular term with the reflectance of a copper mirror. Note how
accounting for the dependence of the specular highlight color on both angle of incidence
and surface material produces a more convincing image of a metallic surface.

In general, the ambient, diffuse, and specular components are the color of the material
for both dielectrics and conductors. Composite objects, such as plastics, typically have
diffuse and specular components that are different colors. Metals typically show little
diffuse reflection and have a specular component color that ranges between that of the metal
and that of the light source as # approaches 90°. This observation suggests a rough
approximation to the Cook-Torrance model that uses Eq. (16.15) with O, chosen by
interpolating from a look-up table based on #,.

Further work. Kajiya [KAJI8S] has generalized the Cook—Torrance illumination model
to derive anisotropic illumination models whose reflective properties are not symmetric
about the surface normal. These more accurately model the way that light is reflected by
hair or burnished metal—surfaces whose microfeatures are preferentially oriented. To do
this, Kajiva extends bump mapping to perturb not just the surface normal, but also the

TEXAS INSTRUMENTS EX. 1009 - 817/1253

16.7 Physically Based lllumination Models 771

tangent and a binormal formed by the cross-product of the tangent and normal. Together
these form a coordinate system that determines the orientation of the surface relative to the
anisotropic illumination model. The surface shown in Fig. 16.47 is mapped to an
anisotropic texture that represents a cross-weave of threads. Cabral, Max and Springmeyer
[CABR87] have developed a method for determining G and p for a surface finish specified
by an arbitrary bump map by computing the shadowing and masking effects of the bumps.

The Fresnel equation used by Blinn and by Cook and Torrance is correct only for
unpolarized light. The polarization state of light changes, however, when light is reflected
from a surface, and a surface’s p is a function of the polarization state of the light incident
on it, Wolff and Kurlander [WOLF90] have extended the Cook—Torrance model to take this
into account and have generated images that evidence two effects that are most visible after
two or more interobject reflections. First, dielectrics have an angle of incidence, known as
the Brewster angle, at which incident light is completely polarized when reflected, or is not
reflected at all if it is inappropriately polarized. If interobject specular reflection of initially
unpolarized light occurs between two dielectric surfaces such that the angle of incidence of
each reflection is equal to the Brewster angle, and the plane defined by N and L on one
surface is perpendicular to that of the other, then no light at all will be specularly reflected
from the second object; we can produce noticeable, but less dramatic, attenuation if the
angles and orientations are varied. Second, colored conductors (metals such as copper or
gold) tend to polarize light at different wavelengths differently. Therefore, when a colored
conductor is reflected from a dielectric surface, the reflection will have a color slightly
different from that when polarization is not taken into account.

Fig. 16.47 Anisotropic texture. (By J. Kajiya [KAJI8S], California Institute of Tech-
nology.)

TEXAS INSTRUMENTS EX. 1009 - 818/1253

772 lllumination and Shading

I Umbra
B Penumbra

Fig. 16.48 Umbra and penumbra.

16.8 EXTENDED LIGHT SOURCES

The light sources discussed thus far have been point lights. In contrast, extended or
distributed light sources actually have area and consequently cast “‘soft’’ shadows
containing areas only partially blocked from the source, as shown in Fig. 16.48. The part of
a light source’s shadow that is totally blocked from the light source is the shadow’s umbra;

Penumbra volume

Fig. 16.49 Determining the penumbra and umbra volumes. (After [NISHB5a].)

TEXAS INSTRUMENTS EX. 1009 - 819/1253

16.9 Spectral Sampling 773

that part of the shadow that is only partially shielded from the source is the shadow’s
penumbra. All of a point light source’s shadow is umbra. An obvious approach to modeling
an extended light source is to approximate it with closely clustered point light sources
[VERB84; BROT84]. The process is computationally expensive, however, and the results
are less than satisfactory unless there are very many point sources and no specular
reflection.

Nishita and Nakamae [NISH83; NISH85a; NISH85b] have developed an extension of
shadow wvolumes for modeling linear, convex polygonal, and convex polyhedral light
sources with Lambertian intensity distributions. Their method employs an object-precision
algorithm for determining shadow volumes for convex polyhedral objects. As shown in Fig.
16.49, the shadow volumes defined by each vertex of the source and the polyhedron are
determined. The penumbra volume is then the smallest convex polyhedron containing these
shadow volumes (their convex hull), and the umbra volume is the intersection of the shadow
volumes. The volumes are then intersected with the faces of the objects to determine the
areas in each penumbra or umbra volume. Any point lying within an umbra volume defined
by a light source and any other polyhedron is not affected by the light source. Determining
the color of a point in a penumbra involves computing those parts of the light source visible
from the point on the object. A BSP-tree—based approach is discussed in [CHIN90].

Excellent simulations of extended light sources have been achieved by using variations
on ray-tracing (Section 16.12) and radiosity methods (Section 16.13).

16.9 SPECTRAL SAMPLING

As light is reflected from a surface, the spectral energy distribution P, of the incident light is
modified by the spectral reflectance function of the surface, p,. This curve specifies the
percentage of light of each wavelength A that is reflected. Therefore, the spectral energy
distribution of the reflected light is P,p,. Similarly, light passing through a material is
modified by the spectral transmittance function of the material, 7,. Once a final spectral
energy distribution for light falling on the eye at a particular point (i.e., for a particular
pixel) is determined, then Eq. (13.18) can be used to find the corresponding CIE XYZ
specification for the light, and this result can be converted to RGB using the inverse of M of
Eq. (13.24).

It is tempting to assume that g, and 7, can be replaced by equivalent tristimulus RGB or
XYZ color specifications. If this could be done, then the product P,p, could be replaced by
a sum of the tristimulus values for each of P, and p,, of the form

Rpp + Gp; + Bpg. (16.53)

This is clearly incorrect. Consider the P, and p, shown in Fig. 16.50. P, is uniform except
for a narrow interval around 600 nanometers, whereas p, reflects light only at the same
narrow interval. The product P,p, is thus zero everywhere, and the surface appears black.
On the other hand, the XYZ components of P, will be nonzero (this can be seen by applying
the inverse of M to the results of Eq. (13.18). Similarly, substituting p, for P, in Eq.
(13.18) and applying the inverse of M gives nonzero values for pg, pg, Py, 50 the product
(Eq. 16.53) is also nonzero! This is the wrong answer, and demonstrates that p, and T,
cannot in general be replaced by an equivalent tristimulus color specification. As Hall

TEXAS INSTRUMENTS EX. 1009 - 820/1253

774 Hlumination and Shading

Ene
Energy /'.—'V\ A
| | 1 - | i i i -

400 500 600 700 400 500 600 700
Wavelength (nm) Wavelength (nm)

Fig. 16.50 A and p, whose product is 0 everywhere.

[HALLS3] points out, this approach fails because it is actually point sampling in color
space and consequently is prone to all the problems that arise from undersampling.

A more accurate representation of a light source’s spectral distribution or a surface’s
reflectivity or transmissivity can be obtained by representing either one as a curve that
interpolates a sufficiently large set of samples spaced across the visible spectrum. Color
Plate 111.9 shows images, generated with different color models, of two overlapping filters
lit by a D6500 light source. The filters do not pass a common band of wavelengths, so no
transmitted light should be visible where they overlap. Color Plate II1.9(a), the control
picture, was generated using spectra maintained at l-nm intervals from 360 to 830
nanometers. Color Plates I11.9(b) and II1.9(c) were generated with three samples for the
primaries of the CIE and RGB color spaces, respectively. Color Plate 111.9(d) approximates
the spectra of Color Plate I11.9(a) with nine spectral values. Note how much more closely
Color Plate I11.9(d) maiches the control picture than do the others.

16.10 IMPROVING THE CAMERA MODEL

Thus far, we have modeled the image produced by a pinhole camera: each object, regardless
of its position in the environment, is projected sharply and without distortion in the image.
Real cameras (and eyes) have lenses that introduce a variety of distortion and focusing
effects.

Depth of field. Objects appear to be more or less in focus depending on their distance
from the lens, an effect known as depth of field. A lens has a focal length F corresponding to
the distance from the lens at which a perfectly focused image of an object converges. If a
point is out of focus, its image converges on a plane that is closer or farther than F. An
out-of-focus point projects on a plane at F as a circle known as the circle of confusion.
Potmesil and Chakravarty [POTMB82] have developed a postprocessing technique for
simulating some of the effects of depth of field and other properties of real lenses,
demonstrated in Color Plate 11.38. Their system first produces images using a conventional
pinhole-lens renderer that generates not only the intensity at each point, but also that point’s
z value. Each sampled point is then turned into a circle of confusion with a size and
intensity distribution determined by its z value and the lens and aperture being used. The
intensity of each pixel in the output image is calculated as a weighted average of the
intensities in the circles of confusion that overlap the pixel. Since the image is initially
computed from a single point at the center of projection, the results of this technique are

TEXAS INSTRUMENTS EX. 1009 - 821/1253

16.11 Global lllumination Algorithms 775

still only an approximation. A real lens's focusing effect causes light rays that would not
pass through the pinhole to strike the lens and to converge to form the image. These rays see
a slightly different view of the scene, including, for example, parts of surfaces that are not
visible to the rays passing through the pinhole. This information is lost in the images
created with the Potmesil and Chakravarty model.

Motion blur. Motion blur is the streaked or blurred appearance that moving objects have
because a camera’s shutter is open for a finite amount of time. To achieve this effect, we
need to solve the visible-surface problem over time, as well as over space, to determine
which objects are visible at a given pixel and when they are visible. Korein and Badler
[KORES3] describe two contrasting approaches: an analytic algorithm that uses continuous
functions to model the changes that objects undergo over time, and a simple image-
precision approach that relies on temporal supersampling. In the temporal-supersampling
method, a separate image is rendered for each point in time to be sampled. The
motion-blurred image is created by taking a weighted sum of the images, in essence
convolving them with a temporal filter. For example, if each of n images is weighted by 1/n,
this corresponds to temporal box filtering. The more closely the samples are spaced, the
better the results. Temporal supersampling, like spatial supersampling, suffers from
aliasing: Unless samples are spaced sufficiently close together in time, the final image will
appear to be a set of discrete multiple exposures. Potmesil and Chakravarty [POTM83] have
extended their depth-of-field work to model the ways in which actual camera shutters move.
As we shall see in Section 16. 12, the stochastic sampling techniques used in distributed ray
tracing offer a uniform framework for integrating lens effects, motion blur, and spatial
antialiasing demonstrated in Color Plates 11.39 and III.16.

16.11 GLOBAL ILLUMINATION ALGORITHMS

An illumination model computes the color at a point in terms of light directly emitted by
light sources and of light that reaches the point after reflection from and transmission
through its own and other surfaces. This indirectly reflected and transmitted light is often
called global illumination. In contrast, local illumination is light that comes directly from
the light sources to the point being shaded. Thus far, we have modeled global illumination
by an ambient illumination term that was held constant for all points on all objects. It did
not depend on the positions of the object or the viewer, or on the presence or absence of
nearby objects that could block the ambient light. In addition, we have seen some limited
global illumination effects made possible by shadows, transparency, and reflection maps.

Much of the light in real-world environments does not come from direct light sources.
Two different classes of algorithms have been used to generate pictures that emphasize the
contributions of global illumination. Section 16.12 discusses extensions to the visible-
surface ray-tracing algorithm that interleave visible-surface determination and shading to
depict shadows, reflection, and refraction. Thus, global specular reflection and transmis-
sion supplement the local specular, diffuse, and ambient illumination computed for a
surface. In contrast, the radiosity methods discussed in Section 16.13 completely separate
shading and visible-surface determination. They model all an environment’s interactions
with light sources first in a view-independent stage, and then compute one or more images

TEXAS INSTRUMENTS EX. 1009 - 822/1253

776 lllumination and Shading

for the desired viewpoints using conventional visible-surface and interpolative shading
algorithms.

The distinction between view-dependent algorithms, such as ray tracing, and view-
independent ones, such as radiosity, is an important one. View-dependent algorithms
discretize the view plane to determine points at which to evaluate the illumination equation,
given the viewer’s direction. In contrast, view-independent algorithms discretize the
environment, and process it in order to provide enough information to evaluate the
illumination equation at any point and from any viewing direction. View-dependent
algorithms are well-suited for handling specular phenomena that are highly dependent on
the viewer's position, but may perform extra work when modeling diffuse phenomena that
change little over large areas of an image, or between images made from different
viewpoints. On the other hand, view-independent algorithms model diffuse phenomena
efficiently, but require overwhelming amounts of storage to capture enough information
about specular phenomena.

Ultimately, all these approaches attempt to solve what Kajiya [KAJI86] has referred to
as the rendering equation, which expresses the light being transferred from one point to
another in terms of the intensity of the light emitted from the first point to the second and
the intensity of light emitted from all other points that reaches the first and is reflected from
the first to the second. The light transferred from each of these other points to the first is, in
turn, expressed recursively by the rendering equation. Kajiya presents the rendering
equation as

I (x, x') = glx, x') [afx, x') + fp(x. x',) I, x"‘)d.x”] ; (16.54)
=

where x, x’, and x” are points in the environment. /(x, x') is related to the intensity passing
from x’ to x. g(x, x’) is a geometry term that is 0 when x and x’ are occluded from each
other, and 1 / r* when they are visible to each other, where r is the distance between them.
e(x, x') is related to the intensity of light that is emitted from x’ to x. The initial evaluation
of g(x, x")e(x, x') for x at the viewpoint accomplishes visible-surface determination in the
sphere about x. The integral is over all points on all surfaces S, p(x, x’, x) is related to the
intensity of the light reflected (including both specular and diffuse reflection) from x” to x
from the surface at x’. Thus, the rendering equation states that the light from x' that reaches
x consists of light emitted by x’ itself and light scattered by x’ to x from all other surfaces,
which themselves emit light and recursively scatter light from other surfaces.

As we shall see, how successful an approach is at solving the rendering equation
depends in large part on how it handles the remaining terms and the recursion, on what
combinations of diffuse and specular reflectivity it supports, and on how well the visibility
relationships between surfaces are modeled.

16.12 RECURSIVE RAY TRACING

In this section, we extend the basic ray-tracing algorithm of Section 15.10 to handle
shadows, reflection, and refraction. This simple algorithm determined the color of a pixel at
the closest intersection of an eye ray with an object, by using any of the illumination models
described previously. To calculate shadows, we fire an additional ray from the point of
intersection to each of the light sources. This is shown for a single light source in Fig.

TEXAS INSTRUMENTS EX. 1009 - 823/1253

16.12 Recursive Ray Tracing 177

Fig. 16.51 Determining whether a point on an object is in shadow. (Courtesy of Arthur
Appel, IBM T.J. Watson Research Center.)

16.51, which is reproduced from a paper by Appel [APPE68]—the first paper published on
ray tracing for computer graphics. If one of these shadow rays intersects any object along
the way, then the object is in shadow at that point and the shading algorithm ignores the
contribution of the shadow ray’s light source. Figure 16.52 shows two pictures that Appel
rendered with this algorithm, using a pen plotter. He simulated a halftone pattern by placing
a different size **+'" at each pixel in the grid, depending on the pixel’s intensity. To
compensate for the grid’s coarseness, he drew edges of visible surfaces and of shadows
using a visible-line algorithm.

Fig. 16.52 Early pictures rendered with ray tracing. (Courtesy of Arthur Appel, IBM
T.J. Watson Research Center.)

TEXAS INSTRUMENTS EX. 1009 - 824/1253

778 Nlumination and Shading

The illumination model developed by Whitted [WHIT80] and Kay [KAY79a]
fundamentally extended ray tracing 1o include specular reflection and refractive transparen-
cy. Color Plate II1. 10 is an early picture generated with these effects. In addition to shadow
rays, Whitted’s recursive ray-tracing algorithm conditionally spawns reflection rays and
refraction rays from the point of intersection, as shown in Fig. 16.53. The shadow,
reflection, and refraction rays are often called secondary rays, to distinguish them from the
primary rays from the eye. If the object is specularly reflective, then a reflection ray is
reflected about the surface normal in the direction of R, which may be computed as in
Section 16.1.4. If the object is transparent, and if total internal reflection does not occur,
then a refraction ray is sent into the object along T at an angle determined by Snell’s law, as
described in Section 16.5.2. (Note that your incident ray may be oppositely oriented to
those in these sections.)

Each of these reflection and refraction rays may, in turn, recursively spawn shadow,
reflection, and refraction rays, as shown in Fig. 16.54. The rays thus form a ray free, such
as that of Fig. 16.55. In Whitted's algorithm, a branch is terminated if the reflected and
refracted rays fail to intersect an object, if some user-specified maximum depth is reached
or if the system runs out of storage. The tree is evaluated bottom-up, and each node’s
intensity is computed as a function of its children’s intensities. Color Plate I11.11(a) and (b)
were made with a recursive ray-tracing algorithm.,

We can represent Whitted's illumination equation as

I, = IkOy + 1% S fuduidkOuN - L) + k(N « Hy) + kI, + kdy,, (16.55)

where [, is the intensity of the reflected ray, k, is the transmission coefficient ranging
between 0 and 1, and /,, is the intensity of the refracted transmitted ray. Values for /,, and [,
are determined by recursively evaluating Eq. (16.55) at the closest surface that the reflected
and transmitted rays intersect. To approximate attenuation with distance, Whitted multi-
plied the /, calculated for each ray by the inverse of the distance traveled by the ray. Rather
than treating S, as a delta function, as in Eq. (16.24), he also made it a continuous function

N

Fig. 16.53 Reflection, refraction, and shadow rays are spawned from a point of
intersection.

TEXAS INSTRUMENTS EX. 1009 - 825/1253

16.12 Recursive Ray Tracing 779

Fig. 16.54 Rays recursively spawn other rays.

of the k, of the objects intersected by the shadow ray, so that a transparent object obscures
less light than an opaque one at those points it shadows.

Figure 16.56 shows pseudocode for a simple recursive ray tracer. RT_trace determines
the closest intersection the ray makes with an object and calls RT_shade to determine the
shade at that point. First, RT_shade determines the intersection’s ambient color, Next, a
shadow ray is spawned to each light on the side of the surface being shaded to determine its
contribution to the color. An opaque object blocks the light totally, whereas a transparent
one scales the light’s contribution. If we are not too deep in the ray tree, then recursive calls
are made to RT_trace to handle reflection rays for reflective objects and refraction rays for
transparent objects. Since the indices of refraction of two media are needed to determine
the direction of the refraction ray, the index of refraction of the material in which a ray is
traveling can be included with each ray. RT _trace retains the ray tree only long enough to
determine the current pixel’s color. If the ray trees for an entire image can be preserved,
then surface properties can be altered and a new image recomputed relatively quickly, at the

Viewpoint

Fig. 16.55 The ray tree for Fig. 16.54.

TEXAS INSTRUMENTS EX. 1009 - 826/1253

780 lllumination and Shading

select center of projection and window on view plane;
for (each scan line in image) {
for (each pixel in scan line) {
determine ray from center of projection through pixel,
pixel = RT_trace (ray, 1);
}
}

f+ Intersect ray with objects and compute shade at closest intersection. +/
f+ Depth is current depth in ray tree. */

RTcolor RT_trace (RT_ray ray, int depth)
{

determine closest intersection of ray with an object,

if (object hir) {
compitte normal at intersection,
return RT._shade (closest object hit, ray, intersection, normal, depth);
} else
return BACKGROUND._VALUE;
} I+ RT.trace »/

/+ Compute shade at point on object, tracing rays for shadows, reflection and refraction. +/
RT. color RT.shade (

RT. object object, /+ Object intersected =/
RT_ray ray, /= Incident ray */
RT. point point, /= Point of intersection to shade */
RT. normal normal, /= MNormal at point =/
int depth) /+ Depth in ray tree »/
{
RT_color color, /# Color of ray +/

RT._ray rRay, tRay, sRay; /+ Reflected, refracted, and shadow rays =/
RT_color rColor, tColor, /= Reflected and refracted ray colors #/

color = ambient term;,
for (each light) {
sRay = ray to light from point,
if (dot product of normal and direction to light is positive) {
compute how much light is blocked by opaque and transparent surfaces,
and use to scale diffuse and specular terms before adding them to color,

Fig. 16.56 (Cont'd)

TEXAS INSTRUMENTS EX. 1009 - 827/1253

16.12 Recursive Ray Tracing 781

if (depth < maxDepth) { /+ Return if depth is too deep. =/
if (object is reflective) {
rRay = ray in reflection direction from point;
rColor = RT.trace (rRay, depth + 1),
scale rColor by specular coefficient and add to color;

}

if (object is transparent) {
tRay = ray in refraction direction from point,
if (total internal reflection does not occur) {
tColor = RT_trace (tRay, depth + 1);
scale tColor by transmission coefficient and add to color,

}
}
}

return color, {* Return color of ray #*/
} /= RLshade =/

Fig. 16.56 Pseudocode for simple recursive ray tracing without antialiasing.

cost of only reevaluating the trees. Sequin and Smyrl [SEQU89] present techniques that
minimize the time and space needed to process and store ray trees.

Figure 16.54 shows a basic problem with how ray tracing models refraction: The
shadow ray L, is not refracted on its path to the light. In fact, if we were to simply refract L,
from its current direction at the point where it exits the large object, it would not end at the
light source. In addition, when the paths of rays that are refracted are determined, a single
index of refraction is used for each ray. Later, we discuss some ways to address these
failings. =
Ray tracing is particularly prone to problems caused by limited numerical precision.
These show up when we compute the objects that intersect with the secondary rays. After
the x, y, and z coordinates of the intersection point on an object visible to an eye ray have
been computed, they are then used to define the starting point of the secondary ray for
which we must determine the parameter 7 (Section 15.10.1). If the object that was just
intersected is intersected with the new ray, it will often have a small, nonzero ¢, because of
numerical-precision limitations. If not dealt with, this false intersection can result in visual
problems. For example, if the ray were a shadow ray, then the object would be considered
as blocking light from itself, resulting in splotchy pieces of incorrectly *‘self-shadowed™
surface. A simple way to solve this problem for shadow rays is to treat as a special case the
object from which a secondary ray is spawned, so that intersection tests are not performed
on it, Of course, this does not work if objects are supported that really could obscure
themselves or if transmitted rays have to pass through the object and be reflected from the
inside of the same object. A more general solution is to compute abs(z) for an intersection,
to compare it with a small tolerance value, and to ignore it if it is below the tolerance.

TEXAS INSTRUMENTS EX. 1009 - 828/1253

782 Hlumination and Shading

The paper Whitted presented at SIGGRAPH 79 [WHIT80], and the movies he made
using the algorithm described there, started a renaissance of interest in ray tracing.
Recursive ray tracing makes possible a host of impressive effects—such as shadows,
specular reflection, and refractive transparency — that were difficult or impossible to obtain
previously. In addition, a simple ray tracer is quite easy to implement. Consequently, much
effort has been directed toward improving both the algorithm’s efficiency and its image
quality. We provide a brief overview of these issues here, and discuss several parallel
hardware implementations that take advantage of the algorithm’s intrinsic parallelism in
Section 18.11.2. For more detail, see [GLAS89].

16.12.1 Efficiency Considerations for Recursive Ray Tracing

Section 15.10.2 discussed how to use extents, hierarchies, and spatial partitioning to limit
the number of ray—object intersections to be calculated. These general efficiency techniques
are even more important here than in visible-surface ray tracing for several reasons. First, a
quick glance at Fig. 16.55 reveals that the number of rays that must be processed can grow
exponentially with the depth to which rays are traced. Since each ray may spawn a reflection
ray and a refraction ray, in the worst case, the ray tree will be a complete binary tree with
2" = 1 rays, where the tree depth is n. In addition, each reflection or refraction ray that
intersects with an object spawns one shadow ray for each of the m light sources. Thus, there
are potentially m(2" — 1) shadow rays for each ray tree. To make matters worse, since rays
can come from any direction, traditional efficiency ploys, such as clipping objects to the
view volume and culling back-facing surfaces relative to the eye, cannot be used in recursive
ray tracing. Objects that would otherwise be invisible, including back faces, may be
reflected from or refracted through visible surfaces.

Item buffers. One way of speeding up ray tracing is simply not to use it at all when
determining those objects directly visible to the eye. Weghorst, Hooper, and Greenberg
[WEGHB84] describe how to create an irem buffer by applying a less costly visible-surface
algorithm, such as the z-buffer algorithm, to the scene, using the same viewing
specification. Instead of determining the shade at each pixel, however, they record in the
item buffer pixel the identity of the closest object. Then, only this object needs to be
processed by the ray tracer to determine the eye ray’s exact intersection for this pixel, so that
further rays may be spawned.

Reflection maps. Tracing rays can be avoided in other situations, too, Hall [HALLS6]
shows how to combine ray tracing with the reflection maps discussed in Section 16.6. The
basic idea is to do less work for the secondary rays than for primary rays. Those objects that
are not directly visible in an image are divided into two groups on the basis of an estimation
of their indirect visibility. Ray tracing is used to determine the global lighting contributions
of the more visible ones, whereas indexing into a suitably prepared reflection map handles
the others. One way to estimate the extent to which an object is indirectly visible is to
measure the solid angle subtended by the directly visible objects as seen from the centroid
of the indirectly visible object. If the solid angle is greater than some threshold, then the
object will be included in the environment to be traced by reflection rays (this environment

TEXAS INSTRUMENTS EX. 1009 - 829/1253

16.12 Recursive Ray Tracing 783

includes the directly visible objects); otherwise, the object will be represented only in the
reflection map. When ray tracing is performed, if a reflection ray does not intersect one of
the objects in the reflection-ray environment, then the ray is used to index into the reflection
map. Hall also points out that reflected and refracted images are often extremely distorted.
Therefore, good results may be achieved by intersecting the reflection and refraction rays
with object definitions less detailed than those used for the eye rays.

Adaptive tree-depth control. Although ray tracing is often used to depict highly
specular objects, most of an image's area is usually not filled with such objects.
Consequently, a high recursion level often results in unnecessary processing for large parts
of the picture. Hall [HALLS3] introduced the use of adaptive tree-depth control, in which a
ray is not cast if its contribution to the pixel’s intensity is estimated to be below some preset
threshold. This is accomplished by approximating a ray's maximum contribution by
calculating its intensity with the assumption that the ray’s child rays have intensities of 1.
This allows the ray’s contribution to its parent to be estimated. As the ray tree is built, the
maximum contribution of a ray is multiplied by those of its ancestors to derive the ray's
maximum contribution to the pixel. For example, suppose that R, and R, in Fig. 16.55 are
spawned at surfaces with k, values of .1 and .05, respectively. At the first intersection, we
estimate the maximum contribution to the pixel of R, to be .1. At the second intersection,
we estimate the maximum contribution to the pixel of R, to be .05 X .1 = .005. If this is
below our threshold, we may decide not to cast R,. Although adaptive tree-depth control has
been shown to work well for many images, it is easy to design cases in which it will fail.
Although one uncast ray may have an imperceptible effect on a pixel's shade, a pixel may
receive a significant amount of light from a large number of individually insignificant rays.

Light buffers. We noted that m shadow rays are spawned for each reflection or refraction
ray that hits an object. Shadow rays are special, however, in that each is fired toward one of
a relatively small set of objects. Haines and Greenberg [HAIN86] have introduced the
notion of a light buffer to increase the speed with which shadow rays are processed. A light
buffer is a cube centered about a light source and aligned with the world-coordinate axes, as
shown in Fig. 16.57(a). Each side is tiled with a regular grid of squares, and each square is
associated with a depth-sorted list of surfaces that can be seen through it from the light. The

(b)

Fig. 16.57 Light buffer centered about a light source. (a) Volume defined by one
square. (b) Cross-section shows volume of square in 2D with intersected surfaces.
Square's depth-sorted list is initially 4, 8, E, G, H, and /.

TEXAS INSTRUMENTS EX. 1009 - 830/1253

784 Nlumination and Shading

lists are filled by scan converting the objects in the scene onto each face of the light buffer
with the center of projection at the light. The scan-conversion algorithm places an object on
the list of every square covered by that object’s projection, no matter how small the overlap.,
Figure 16.57(b) shows a square’s set of intersecting surfaces. A shadow ray is processed by
determining the light-buffer square ﬂtrnugh which it passes. The ray needs to be tested only
for intersection against that square's ordered list of surfaces. Thus, a light buffer
implements a kind of 3D spatial partitioning of the 3D view of its light.

A number of efficiency speedups are possible. For example, any object whose
projection onto the light buffer totally covers a square (e.g., G in Fig. 16.57b) can be
associated with a special “*full-occlusion™ record in the square’s list; any object more
distant from the light than a fully occluding object is purged from the list. In this case, H
and [are purged. Whenever the ray from an intersection point is tested against a square’s
list, the test can be terminated immediately if there is a full-occlusion record closer to the
light than the intersection point. In addition, back-face culling may be used to avoid adding
any faces to a list that are both part of a closed opaque solid and back facing relative to the
light. Color Plate II1.12 was made using the light-buffer technique.

Haines and Greenberg also mention an interesting use of object coherence to
determine shadows that can be applied even without using light buffers. A pointer is
associated with each light and is initialized to null. When an object is found to be shadowed
from a light by some opaque surface, the light’s pointer is set to the shadowing surface, The
next time a shadow ray is cast for the light, it is first intersected with the object pointed at by
the light's pointer. If the ray hits it, then intersection testing is finished; otherwise, the
pointer is set to null and testing continues.

Ray classification. The spatial-partitioning approaches discussed in Section 15.10.2
make it possible to determine which objects lie in a given region of 3D space. Arvo and
Kirk [ARVO87] have extended this concept to partition rays by the objects that they
intersect, a technique called ray classification. A ray may be specified by its position in SD
ray space, determined by the 3D position of its origin in space and its 2D direction in
spherical coordinates. A point in ray space defines a single ray, whereas a finite subset of
ray space defines a family of rays or beam. Ray classification adaptively partitions ray space
into subsets, each of which is associated with a list of objects that it contains (i.e,. that one
of its rays could intersect). To determine the candidate objects that may be intersected by
any ray, we need only to retrieve the list of objects associated with the subset of ray space in

Instead of using spherical coordinates to specify direction, Arvo and Kirk use the (i, v)
coordinate system on each of the six sides of an axis-aligned cube centered about a ray’s
origin. They subdivide ray space with six copies of a 5D bintree (Section 12.6.3); one copy
is needed for each direction along an axis, since a (w, v) pair specifies a position on the
cube's side, but not the side itself. As shown in Fig. 16.58(a), in 2D a set of ray origins (a
rectangle in (x, y)), combined with a set of ray directions (an interval in u on one of four
sides), define a partially bounded polygon that defines the beam. In 3D, shown in Fig.
16.58(b), a set of ray origins (a rectangular parallepiped in (x, y, z)), combined with a set of
ray directions (a rectangle in (u, v)), defines a partially bounded polyhedral volume that
defines the beam, Objects (or their extents) may be intersected with this volume (e.g., using

TEXAS INSTRUMENTS EX. 1009 - 831/1253

16.12 Recursive Ray Tracing 785

oo [=y

xy intervals xyz intervals
Directi z—r
u imerval uv intervals
‘ '
xyvinervals xyzuv intervals
(a) (b)

Fig. 16.58 Ray classification: (a) 2-space beams; (b) 3-space beams. (After
[ARVO87].)

the BSP-tree-based approach of Section 12.6.4) to determine whether they are contained in
it. Initially, each unpartitioned bintree represents positions in all of the environment's
3-space extent, and directions that pass through any part of the bintree’s designated side.
Each bintree is initially associated with all the objects in the environment.

Arvo and Kirk use lazy evaluation 1o build the trees at the same time that they trace
rays. When a ray is traced, its direction selects the root of the bintree whose (1, v)
coordinate system it will intersect. If more than some threshold number of objects exist at
the node, the bintree is subdivided equally along each of its five axes. With each
subdivision, only the child node in which the ray resides is processed; it inherits from its
parent those objects that lie within the child. When subdivision stops, only those objects
associated with the ray’s partition are returned for intersection. Partitioning data structures
as the rays are traced minimizes the amount of processing done for objects that are not
intersected.

16.12.2 A Better lllumination Model

It is possible to make a number of extensions to Eq. (16.55). Hall [HALLS83] has developed
a model in which the specular light expressions are scaled by a wavelength-dependent
Fresnel reflectivity term. An additional term for transmitted local light is added to take into
account the contribution of transmitted light directly emitted by the light sources, and is
also scaled by the Fresnel transmissivity term. The global reflected and refracted rays

TEXAS INSTRUMENTS EX. 1009 - 832/1253

786 llumination and Shading

further take into account the transmittance of the medium through which they travel. Hall’s
model may be expressed as

L= 1kOu + 2 Sifu by kOu(N - L) + k(N - HY'F, + k(N - H J'T,]

Isis=m
+ k,FlLA% + kT A%, (16.56)

where d, is the distance traveled by the reflected ray, d, is the distance traveled by the
transmitted ray, A, is the transmissivity per unit length of material for the reflected ray, and
A, is the transmissivity per unit length of material for the transmitted ray. H' is the normal
for those microfacets that are aligned such that they will refract light directly from the light
source to the viewer. It may be computed as

' = Tj S {naugit / ﬂum}z
{ﬂug!: / ﬂwgﬂ} <

where 7,,.,, is the average coefficient of refraction of the object through which the ray to the
light passes. T, is the Fresnel transmissivity term for the material. Note that &, is not used
here; instead, k, is scaled by either F, or T,. Since all light that is not reflected is transmitted
(and possibly) absorbed, F, + T, = 1.

Color Plate III.13 shows the same scene rendered with Whitted's model and with
Hall's model. The color of the glass sphere in part (b) clearly shows the filtering effects
resulting from the use of the transmissivity terms.

(16.57)

16.12.3 Area-Sampling Variations

One of conventional ray tracing’s biggest drawbacks is that this technique point samples on
a regular grid. Whitted [WHIT80] suggested that unweighted area sampling could be
accomplished by replacing each linear eye ray with a pyramid defined by the eye and the
four corners of a pixel. These pyramids would be intersected with the objects in the
environment, and sections of them would be recursively refracted and reflected by the
objects that they intersect. A pure implementation of this proposal would be exceedingly
complex, however, since it would have to calculate exact intersections with occluding
objects, and to determine how the resulting pyramid fragments are modified as they are
recursively reflected from and refracted by curved surfaces. Nevertheless, it has inspired
several interesting algorithms that accomplish antialiasing, and at the same time decrease
rendering time by taking advantage of coherence.

Cone tracing. Cone rracing, developed by Amanatides [AMANS4], generalizes the
linear rays into cones. One cone is fired from the eye through each pixel, with an angle wide
enough to encompass the pixel. The cone is intersected with objects in its path by
calculating approximate fractional blockage values for a small set of those objects closest to
the cone’s origin. Refraction and reflection cones are determined from the optical laws of
spherical mirrors and lenses as a function of the surface curvature of the object intersected
and the area of intersection. The effects of scattering on reflection and refraction are
simulated by further broadening the angles of the new reflection and refraction cones. The

TEXAS INSTRUMENTS EX. 1009 - 833/1253

16.12 Recursive Ray Tracing 787

soft-edged shadows of extended light sources are reproduced by modeling the sources as
spheres. A shadow cone is generated whose base is the cross-section of the light source.
The light source’s intensity is then scaled by the fraction of the cone that is unblocked by
intervening objects. Color Plate III.14 was rendered using cone tracing; the three spheres
have successively rougher surfaces, and all cast soft shadows.

Beam tracing. Beam tracing, introduced by Heckbert and Hanrahan [HECKS84], is an
object-precision algorithm for polygonal environments that traces pyramidal beams, rather
than linear rays. Instead of tracing beams through each pixel, as Whitted suggested,
Heckbert and Hanrahan take advantage of coherence by beginning with a single beam
defined by the viewing pyramid. The viewing pyramid’s beam is intersected with each
polygon in the environment, in front-to-back sorted order, relative to the pyramid’s apex. If
a polygon is intersected, and therefore visible, it must be subtracted from the pyramid using
an algorithm such as that described in Section 19.1.4. For each visible polygon fragment,
two polyhedral pyramids are spawned, one each for reflection and refraction. The algorithm
proceeds recursively, with termination criteria similar to those used in ray tracing. The
environment is transformed into each new beam’s coordinate system by means of an
appropriate transformation. Although beam tracing models reflection correctly, refraction
is not a linear transformation since it bends straight lines, and the refracted beam is thus
only approximated. Beam tracing produces an object-precision beam tree of polygons that
may be recursively rendered using a polygon scan-conversion algorithm. Each polygon is
rendered using a local illumination equation, and then its reflected and refracted child
polygons are rendered on top and are averaged with it, taking into account the parent’s
specular and transmissive properties. Beam tracing takes advantage of coherence to provide
impressive speedups over conventional ray tracing at the expense of a more complex
algorithm, limited object geometry, and incorrectly modeled refraction. Color Plate III. 15
was rendered using this algorithm.

Beam tracing can accommodate shadows by using a variant of the Atherton—Weiler—
Greenberg shadow algorithm (Section 16.4.2). Beams are traced from the point of view of
each light source to determine all surfaces directly visible from the light sources, and the
resulting polygons are added to the data structure as lit detail polygons that affect only the
shading. This produces shadows similar to those obtained with conventional ray tracing.

Pencil tracing. Shinya, Takahashi, and Naito [SHIN87] have implemented an approach
called pencil tracing that solves some of the problems of cone tracing and beam tracing. A
pencil is a bundle of rays consisting of a central axial ray, surrounded by a set of nearby
paraxial rays. Each paraxial ray is represented by a 4D vector that represents its relationship
to the axial ray. Two dimensions express the paraxial ray’s intersection with a plane
perpendicular to the axial ray; the other two dimensions express the paraxial ray’s direction,
In many cases, only an axial ray and solid angle suffice to represent a pencil. If pencils of
sufficiently small solid angle are used, then reflection and refraction can be approximated
well by a linear transformation expressed as a 4 X 4 matrix. Shinya, Takahashi, and Naito
have developed error-estimation techniques for determining an appropriate solid angle for a
pencil. Conventional rays must be traced where a pencil would intersect the edge of an
object, however, since the paraxial transformations are not valid in these cases.

TEXAS INSTRUMENTS EX. 1009 - 834/1253

788 lllumination and Shading

16.12.4 Distributed Ray Tracing

The approaches we have just discussed avoid the aliasing problems of regular point
sampling by casting solid beams rather than infinitesimal rays. In contrast, distributed ray
tracing, developed by Cook, Porter, and Carpenter [COOKS84b], is based on a stochastic
approach to supersampling that trades off the objectionable artifacts of aliasing for the less
offensive artifacts of noise [COOKS86]. As we shall see, the ability to perform antialiased
spatial sampling can also be exploited to sample a variety of other aspects of the scene and
its objects to produce effects such as motion blur, depth of field, extended light sources, and
specular reflection from rough surfaces. The word distributed in this technigue’s name
refers to the fact that rays are stochastically distributed to sample the quantities that produce
these effects. The basic concepts have also been applied to other algorithms besides ray
tracing [COOKR7].

Stochastic sampling. As explained in Section 14.10, aliasing results when a signal is
sampled with regularly spaced samples below the Nyquist rate. This is true even if we
supersample and filter to compute the value of a pixel. If the samples are not regularly
spaced, however, the sharply defined frequency spectrum of the aliases is replaced by noise,
an artifact that viewers find much less objectionable than the individually recognizable
frequency components of regular aliasing, such as staircasing.

It is not enough, however, merely to replace ray tracing’s regular grid of eye rays with
an equal number of rays passing through random points on the image plane, since purely
random samples cluster together in some areas and leave others unsampled. Cook
[COOK86] suggests the desirability of a minimum-distance Poisson distribution in which
no pair of random samples is closer than some minimum distance. Calculating such a
distribution is expensive, however, and even if one is created in advance, along with filters
to determine each sample's contributions to neighboring pixels, a very large look-up table
will be required to store the information. Instead, a satisfactory approximation to the
minimum-distance Poisson distribution is obtained by displacing by a small random
distance the position of each element of a regularly spaced sample grid. This technique is
called jittering. In sampling the 2D image plane, each sample in a regular grid is jittered by
two uncorrelated random quantities, one each for x and y, both generated with a sufficiently
small variance that the samples do not overlap (Fig. 16.59). Figure 16.60 shows a
minimum-distance Poisson distribution and a jittered regular distribution. In fact, if the

.
3 M =
’]
e o ° .
- " = original position
®x x » e position after jitter

Fig. 16.59 Jittered sampling. Each sample in a regular 2D grid is jittered by two small
uncorrelated random quantities. x = original position; e = position after jitter.

TEXAS INSTRUMENTS EX. 1009 - 835/1253

16.12 Recursive Ray Tracing 789

-

. w R, i - " Ry
LT R ™"y . " % sgan *w
% .'_l-."d- -"‘,.‘I-..-,

- & 5 = a sy abas

Fa® s mgea 4 & " 8
s e a” By ® ® 3% s ga® a® gy

*# g gn ma® N & seaY B

s
."1.-'-."'.- ey ™ T |.."Il..-."'
"'i“"..t.l‘ ii'f...."l a® &
W Pl Ty Sy oanoan Wt e L, "
I" L l..‘. L Lo] o s -

Ly & & i a il el

] - -

«®a «® an T a® a 'l‘ it | s g
".-" L™ ™ I'l.I LN - g a0
N ol R P Pl led s TR H
* ¥ (B
- - - 5 - - Eg #
e S P e, | » "ee a%e e, " s
-
S T s @ e g B e
I"il'....i - ot BE e B, g W
LI

. .’ "': w" Pa s aE, W, e
_"i.._i '-_' a® nen ® a0 sauw
=" . wid "7 5 . " a® s 8w "

"y . T me i * et g
ym ..;. e o a® e ".i."i"'-.l "

-

.i..-.-‘-i..I'. LY N M * 5 oaE w

g w PR » LR RRaR R, ey
Ry BT, . st F ¥ WY g e
- s - - '

PR Lt ettty SR i Aoy T il Y e
P - ® - g --,.,.l'.‘i.||. -

Fig. 16.60 (a) A minimum distance Poisson distribution. (b) A jittered regular distribu-
tion. (Courtesy of Mark A. Z. Dippé and Earl Wold, University of California, Berkeley.)

amount of jitter is small compared to the filter width, then the filter can be precomputed,
taking into account the positions of the unjittered samples. Cook, Porter, and Carpenter
found that a 4 X 4 subpixel grid is adequate for most situations. Poisson and jittered
sampling are analyzed in [DIPP85], and strategies for performing adaptive stochastic
sampling, including the statistical analysis of samples to determine whether to place new
ones, are discussed in [DIPP8S; LEE8Sb; KAJI86; MITCRE7].

Figure 16.61 compares the use of regularly spaced samples with and without added
jitter to sample frequencies at rates above and below the Nyquist rate. In Fig. 16.61(a),
sampling above the Nyquist rate, the shape of the signal is captured well, but with
some added noise. In Fig. 16.61(b), the sampled amplitude is totally random if there
is an integral number of cycles in the sampled range. If there is a fractional number of
cycles in the range, then some parts of the waveform have a better chance of being sampled
than do others, and thus a combination of aliasing and noise will result. The higher the
frequency, the greater the proportion of noise to aliasing. Figure 16.62 demonstrates how a
comb of regularly spaced triangles, each (n + 1)/n pixels wide, produces an aliased image
when it is sampled by regularly spaced sample points, and produces a noisy image when the
sample points are jittered.

Sampling other dimensions. As long as the extra rays needed for spatial antialiasing
have been cast, this same basic technique of stochastic sampling can also be used to
distribute the rays to sample other aspects of the environment. Motion blur is produced by
distributing rays in time. Depth of field is modeled by distributing the rays over the area of
the camera lens. The blurred specular reflections and translucent refraction of rough
surfaces are simulated by distributing the rays according to the specular reflection and
transmission functions. Soft shadows are obtained by distributing the shadow rays over the
solid angle subtended by an extended light source as seen from the point being shaded. In
all cases, distributed ray tracing uses stochastic sampling to perturb the same rays that
would be cast to accomplish spatial antialiasing alone.

TEXAS INSTRUMENTS EX. 1009 - 836/1253

790 Hlumination and Shading

(a)

[
L J

(b)

Fig. 16.61 Use of regularly spaced samples with added jitter to sample frequencies (a)
above and (b) below the Nyquist rate. The nominal position of each sample is shown as
a dot (e). Horizontal arrows indicate the range of jittered sample positions. Vertical
arrows indicate how much sampled values can vary. (After [COOK86].)

Sampling in a nonspatial dimension is accomplished by associating each of the pixel’s
subsampled rays with a range of the value being sampled. Jittering is then used to determine
the exact sample point. The ranges may be allocated by partitioning the entire interval being
sampled into the same number of subintervals as there are subpixels and randomly
allocating subintervals to subpixels. Thus, subpixel ij of each pixel is always associated with
the same range for a particular dimension. It is important to ensure that the method of
allocating the ranges for each dimension does not correlate the values of any two
dimensions. For example, if temporally earlier samples tended to sample the left side of an
extended light source, and later samples tended to sample the right side, then obscuring the
right side of the light early in the temporal interval being depicted might have no effect on
the shadow cast. In the case of temporal sampling, each object being intersected must first
be moved to its position at the point in time associated with the sampling ray. Cook
[COOKS6] suggests computing a bounding box for the object’s entire path of motion, so
that the bounding-box test can be performed without the expense of moving the object.

A weighted distribution in some dimension can be simulated by applying unequal
weights to evenly distributed samples. Figure 16.63(a) shows such a distribution. A more
attractive alternative, however, is to use importance sampling, in which proportionately
more sample points are located at positions of higher weight. This is accomplished by
dividing the weighting filter into regions of equal area and assigning the same number of
equally weighted sample points to each, as shown in Fig. 16.63(b). The amount of jitter

TEXAS INSTRUMENTS EX. 1009 - 837/1253

16.12 Recursive Ray Tracing 791

e e bl B R W el T ol B Yy B T et 2/ Tt S L T et
H #]‘I, "".'I, "Illl ofl o fle [lo [l& [P |¢ HI "-I T °||I ¢ (R | I|!f I"“ L
. .LI|| ¢| J| °' || .| II|~=II Illu '! I'n II Ib 'Ilt |i l!l‘I _Il', ilrl'_ ql I' u||| o I!.:.II II.-- |I Ilr 'Ik II# I*I
I'.Iil III" !il I# II + 'lnli i| :F|II I|c|I II: |I * |i| I ||.. II |I' III T IIT III r|i |I:|I II-’I i ‘ |I‘| |‘|
I'!:I"|'I|,Il'|:ll' |.; '.e_' b '. ': I.,|'.:|m .' Jn'-iw_l | L. '|4

oo lfole o le b w alelaaelalole o s el e
liliilltfi f_“i.j.i‘l.i.l.l.i.l.k Jo‘t'll .

(a)

(d) (e)

Fig. 16.62 Aliasing vs. noise. (a) A comb with regularly spaced triangles, each
{n + 1)/n pixels wide, sampled with one sample per pixel. o = samples that fall outside
comb; e = samples that fall inside comb. (b) A comb with 200 triangles, each 1.01
pixels wide and 50 pixels high. 1 sample/pixel, regular grid. (c) 1 sample/pixel, {rttered
:t% pixel. (d) 16 samples/pixel, regular grid. (e) 16 samples/pixel, jittered x5 pixel.
(Images (bj—(e) by Robert Cook, Lucasfilm Ltd.)

associated with a region also varies in proportion to its size. Color Plate III. 16 was created
using distributed ray tracing. It shows five billiard balls with motion blur and penumbrae
cast by extended light sources. Note the blurred shadows and reflections of the four moving
billiard balls.

|

|
_—

- |

1

]

|

(@) (b)

Fig. 16.63 Importance sampling is accomplished by partitioning the weighting func-
tion into regions of equal area. The horizontal axis is the dimension sampled; the vertical
axis is the weighting. Dots show nominal position of samples; arrows show jitter range.
(a) Evenly distributed, unequally weighted samples. (b) Importance sampling: unevenly
distributed, equally weighted samples.

TEXAS INSTRUMENTS EX. 1009 - 838/1253

792 lllumination and Shading

Path tracing and the integral equation method. Kajiya [KAJIB6] has implemented an
efficient variation on distributed ray tracing called path tracing. Rather than each ray being
grown into a binary tree, exactly one reflection or refraction ray is fired at each intersection
to form a linear path, along with one ray to each light source. The decision to shoot either a
reflection or a refraction ray is guided by the desired distribution of the different kinds of
rays for each pixel. Kajiya has also extended this algorithm to develop a solution to the
rendering equation (Eq. 16.54), called the integral equation method, that takes into account
all ways in which light can reach a point. He uses variance-reduction methods to calculate a
random variable based on the specular, diffuse, and transmission coefficients at each
intersection. The random variable is used to determine whether the single ray cast from the
intersection will be a specular reflection, diffuse reflection, or refraction ray, and the ray’s
direction is then chosen by sampling. In addition, a shadow ray is cast to a point on a light
source, also chosen using variance-reduction methods. Because diffuse rays are traced, this
approach models diffuse interobject reflections, an effect that we shall discuss in Section
16.13. Color Plate I1I.17 was rendered with the integral equation method. All objects
shown are gray, except for the floor and green glass balls. The gray objects reflect green
light focused by the balls and reddish light diffusely reflected from the floor, phenomena
not modeled by conventional ray tracing (or by path tracing).

Kajiya's two approaches evaluate the diffuse reflection separately at each pixel, even
though diffuse reflection tends to change relatively little from one pixel to the next. Ward,
Rubinstein, and Clear [WARDS88] have supplemented a ray tracer with a recursive diffuse
reflection stage in which rays are used to trace some number of diffuse bounces from a
surface to others illuminating it. Rather than computing the diffuse reflection for each pixel
separately, they instead cache all of the values computed. When a pixel is processed, they
use an estimate of the illuminance gradient at each cached diffuse reflection value
“‘nearby”’ the pixel’s intersection point to estimate the error associated with using that
value. If the error is considered acceptable, then a weighted average of these cached values
is used to compute a new value for the pixel; otherwise, a new diffuse calculation is made by
tracing rays that sample the hemisphere, and its value is cached. The cached values can then
be reused in computing other views of the same scene. Color Plate I11.18 shows a series of
images rendered using this technique, with different numbers of diffuse bounces. Color
Plate I11.19 contrasts a photograph of a conference room with a rendered image.

16.12.5 Ray Tracing from the Light Sources

One serious problem with ray tracing is caused by tracing all rays from the eye. Shadow rays
are cast only to direct sources of light that are treated separately by the algorithm.
Therefore, the effects of indirect reflected and refracted light sources, such as mirrors and
lenses, are not reproduced properly: Light rays bouncing off a mirror do not cast shadows,
and the shadows of transparent objects do not evidence refraction, since shadow rays are
cast in a straight line toward the light source.

It might seem that we would need only to run a conventional ray tracer *‘backward™
from the light sources to the eye to achieve these effects. This concept has been called
backward ray tracing, to indicate that it runs in the reverse direction from regular ray
tracing, but it is also known as forward ray tracing to stress that it follows the actual path
from the lights to the eye. We call it ray tracing from the light sources to avoid confusion!

TEXAS INSTRUMENTS EX. 1009 - 839/1253

16.13 Radiosity Methods 793

Done naively, ray tracing from the light sources results in new problems, since an
insufficient number of rays ever would strike the image plane, let alone pass through the
focusing lens or pinhole. Instead, ray tracing from the light sources can be used to
supplement the lighting information obtained by regular ray tracing. Heckbert and
Hanrahan [HECKB84] suggest an elaboration of their proposed beam-tracing shadow
method (Section 16.12.3) to accomplish this. If a light’s beam tree is traced recursively,
successive levels of the tree below the first level represent indirectly illuminated polygon
fragments. Adding these to the database as surface-detail polygons allows indirect specular
illumination to be modeled.

Arvo [ARVOB6] has implemented a ray tracer that uses a preprocessing step in which
rays from each light source are sent into the environment. Each ray is assigned an initial
quota of energy, some of which is deposited at each intersection it makes with a diffusely
reflecting object. He compensates for the relative sparseness of ray intersections by mapping
each surface to a regular rectangular grid of counters that accumulate the deposited energy.
Each ray’s contribution is bilinearly partitioned among the four counters that bound the grid
box in which the ray hits. A conventional ray-tracing pass is then made, in which the first
pass's interpolated contributions at each intersection are used, along with the intensities of
the visible light sources, to compute the diffuse reflection. Unfortunately, if a light ray
strikes an object on the invisible side of a silhouette edge as seen from the eye, the ray can
affect the shading on the visible side. Note that both these approaches to ray tracing from
the light sources use purely specular reflectivity geometry to propagate rays in both
directions.

16.13 RADIOSITY METHODS

Although ray tracing does an excellent job of modeling specular reflection and
dispersionless refractive transparency, it still makes use of a directionless ambient-lighting
term to account for all other global lighting contributions. Approaches based on
thermal-engineering models for the emission and reflection of radiation eliminate the need
for the ambient-lighting term by providing a more accurate treatment of interobject
reflections. First introduced by Goral, Torrance, Greenberg, and Battaile [GORA84] and
by Nishita and Nakamae [NISH85a], these algorithms assume the conservation of light
energy in a closed environment. All energy emitted or reflected by every surface is
accounted for by its reflection from or absorption by other surfaces. The rate at which
energy leaves a surface, called its radiosity, is the sum of the rates at which the surface emits
energy and reflects or transmits it from that surface or other surfaces. Consequently,
approaches that compute the radiosities of the surfaces in an environment have been named
radiosity methods, Unlike conventional rendering algorithms, radiosity methods first
determine all the light interactions in an environment in a view-independent way. Then,
one or more views are rendered, with only the overhead of visible-surface determination
and interpolative shading.

16.13.1 The Radiosity Equation

In the shading algorithms considered previously, light sources have always been treated
separately from the surfaces they illuminate. In contrast, radiosity methods allow any
surface to emit light; thus, all light sources are modeled inherently as having area. Imagine

TEXAS INSTRUMENTS EX. 1009 - 840/1253

794 lllumination and Shading

breaking up the environment into a finite number n of discrete patches, each of which is
assumed to be of finite size, emitting and reflecting light uniformly over its entire area. If we
consider each patch to be an opaque Lambertian diffuse emitter and reflector, then, for
surface i,

Bi=E+p > BE.,S. (16.58)

Isjsn Ai

B; and B, are the radiosities of patches i and j, measured in energy/unit time/unit area (i.e.,
W / m®). E, is the rate at which light is emitted from patch i and has the same units as
radiosity. p; is patch i’s reflectivity and is dimensionless. F_; is the dimensionless form
factor or configuration factor, which specifies the fraction of energy leaving the entirety of
patch j that arrives at the entirety of patch i, taking into account the shape and relative
orientation of both patches and the presence of any obstructing patches. A, and A; are the
areas of patches i and j.

Equation (16.58) states that the energy leaving a unit area of surface is the sum of the
light emitted plus the light reflected. The reflected light is computed by scaling the sum of
the incident light by the reflectivity. The incident light is in turn the sum of the light leaving
the entirety of each patch in the environment scaled by the fraction of that light reaching a
unit area of the receiving patch. B,F,_; is the amount of light leaving a unit area of A, that
reaches all of A;. Therefore, it is necessary to multiply by the area ratio A; / A, to determine
the light leaving all of A, that reaches a unit area of A,.

Conveniently, a simple reciprocity relationship holds between form factors in diffuse
environments,

AF_;= AF._;. (16.59)
Thus, Eq. (16.58) can be simplified, yielding
B.=E+p 2 BFE. (16.60)
Rearranging terms, I
B,—p, > BF_ =E. (16.61)
1sjsn

Therefore, the interaction of light among the patches in the environment can be stated
as a set of simultaneous equations:

l =l =Py ... BB, B, E,
=pofy L=yl i —paks B, E,

: g - X 0 L (16.62)
L, _pnﬁ—! _pn'F:.—E wlals A pl'E'I-—H- _H:l_l _En_

Note that a patch’s contribution to its own reflected energy must be taken into account
(e.g., it may be concave); so, in the general case, each term along the diagonal is not merely
1. Equation (16.62) must be solved for each band of wavelengths considered in the lighting
model, since p; and E; are wavelength-dependent. The form factors, however, are

TEXAS INSTRUMENTS EX. 1009 - 841/1253

16.13 Radiosity Methods 795

a b c
1 2
d f
e
a 4
g h i

Fig. 16.64 Computing vertex radiosities from patch radiosities.

independent of wavelength and are solely a function of geometry, and thus do not need to be
recomputed if the lighting or surface reflectivity changes.

Equation (16.62) may be solved using Gauss—Seidel iteration [PRES88], yielding a
radiosity for each patch. The patches can then be rendered from any desired viewpoint with
a conventional visible-surface algorithm; the set of radiosities computed for the wavelength
bands of each patch are that patch’s intensities. Instead of using faceted shading, we can
compute vertex radiosities from the patch radiosities to allow intensity interpolation
shading.

Cohen and Greenberg [COHESS] suggest the following approach for determining
vertex radiosities. If a vertex is interior to a surface, it is assigned the average of the
radiosities of the patches that share it. If it is on the edge, then the nearest interior vertex v is
found. The radiosity of the edge vertex when averaged with B, should be the average of the
radiosities of the patches that share the edge vertex. Consider the patches in Fig. 16.64. The
radiosity for interior vertex ¢ is B, = (B, + B, + B, + B,) / 4. The radiosity for edge vertex b
is computed by finding its nearest interior vertex, e, and noting that b is shared by patches |
and 2. Thus, to determine B, we use the preceding definition; (B, + B,) /2= (B, + B,)/ 2.
Solving for B,, we get B, = B, + B, — B,. The interior vertex closest to a is also e, and a is
part of patch 1 alone. Thus, since (B, +.B,)/ 2 = B,, we get B, = 2B, — B,. Radiosities for
the other vertices are computed similarly.

The first radiosity method was implemented by Goral et al. [GORA84], who used
contour integrals to compute exact form factors for convex environments with no occluded
surfaces, as shown in Color Plate II1.20. Note the correct *‘color-bleeding’’ effects due to
diffuse reflection between adjacent surfaces, visible in both the model and the rendered
image: diffuse surfaces are tinged with the colors of other diffuse surfaces that they reflect.
For radiosity methods to become practical, however, ways to compute form factors between
occluded surfaces had first to be developed.

16.13.2 Computing Form Factors

Cohen and Greenberg [COHES85] adapted an image-precision visible-surface algorithm to
approximate form factors for occluded surfaces efficiently. Consider the two patches shown
in Fig. 16.65. The form factor from differential area dA, to differential area dA, is

dF;_y = cos #;cos 6,

—— Hy A, (16.63)

TEXAS INSTRUMENTS EX. 1009 - 842/1253

796 Illumination and Shading

Fig. 16.65 Computing the form factor between a patch and a differential area.

For the ray between differential areas dA; and dA; in Fig. 16.65, 6, is the angle that the ray
makes with A;'s normal, E", is the angle that it makes with ASs normal, and r is the ray’s
length. H; is either 1 or 0, depending on whether or not dA; is visible from dA,. To
determine Fj;_;, the form factor from differential area dA, to finite area A;, we need to
integrate over the area of patch j. Thus,

cos ,cos 0,

> 7 Hy dA,. (16.64)

r
Finally, the form factor from A; to A, is the area average of Eq. (16.64) over patch i:

= f —JﬂmEHdAda (16.65)

If we assume that the center point on a patch typifies the patch’s other points, then F_; can
be approximated by F; _; computed for dA; at patch i’s center.

Nusselt has shown [SIEG81] that computing F;; _; is equivalent to projecting those parts
of A, that are visible from dA; onto a unit hemisphere centered about dA,, projecting this
projected area orthographically down onto the hemisphere’s unit circle base, and dividing
by the area of the circle (Fig. 16.66). Projecting onto the unit hemisphere accounts for
cos 6;/ r* in Eq. (16.64), projecting down onto the base corresponds to a multiplication by
cos @, and dividing by the area of the unit circle accounts for the # in the denominator.

Rather than analytically projecting each A; onto a hemisphere, Cohen and Greenberg
developed an efficient image-precision algorithm that projects onto the upper half of a cube
centered about dA., with the cube’s top parallel to the surface (Fig. 16.67). Each face of this
hemicube is divided into a number of equal-sized square cells. (Resolutions used in pictures
included in this book range from 50 by 50 to several hundred on a face.) All the other
patches are clipped to the view-volume frusta defined by the center of the cube and each of
its upper five faces, and then each of the clipped patches is projected onto the appropriate
face of the hemicube. An item-buffer algorithm (Section 16.12.1) is used that records the

TEXAS INSTRUMENTS EX. 1009 - 843/1253

16.13

Fig. 16.66 Determining the form factor between a differential area and a patch using
Nusselt's method. The ratio of the area projected onto the hemisphere’s base to the
area of the entire base is the form factor. (After [SIEGB1].)

=]

dA,

Fig. 16.67 The hemicube is the upper half of a cube centered about the patch. (After
[COHESS].)

TEXAS INSTRUMENTS EX. 1009 - 844/1253

798 Hlumination and Shading

identity of the closest intersecting paich at each cell. Each hemicube cell p is associated
with a precomputed delta form factor value,

AF, = Mam (16.66)
wr

where @, is the angle between the cell p’s surface normal and the vector between dA, and p,
r is this vector’s length, and AA is the area of a cell, as shown in Fig. 16.68. Assume that
the hemicube has its own (x, y, z) coordinate system, with the origin at the center of the
bottom face. For the top face in Fig. 16.68(a), we have

r=Vx+y+1, (16.67)

cosfi,-=cnsﬂp=£,

where x, and y, are the coordinates of a hemicube cell. Thus, for the top face, Eq. (16.66)
simplifies to

ih |
ﬁﬁ-ﬂ(x§+y§+l}2

For a side face perpendicular to the hemicube’s x axis, as shown in Fig. 16.68(b), we have
r=Vyl+z2+1, (16.69)

AA. (16.68)

cusﬁ‘i=i, oﬂsﬂ=l.
r r

Here, Eq. (16.66) simplifies to

AF = % AA. 16.70
P oo+ + 1) (‘

Because of symmetry, the values of AF, need to be computed for only one-eighth of the top
face and one-quarter of a single side half face.

(a) (b)
Fig. 16.68 Delta form factors. (a) The top face. (b) A side face. (After [COHE85].)

TEXAS INSTRUMENTS EX. 1009 - 845/1253

16.13 Radiosity Methods 799

We can approximate Fj; _; for any patch j by summing the values of AF, associated with
each cell p in A,’s hemicube projections. (Note that the values of AF, for all the hemicube’s
cells sum to 1.) Assuming that the distance between the patches is large relative to the size
of the patches, these values for Fy; _, may be used as the values of F_; in Eq. (16.62) to
compute the patch radiosities. Color Plate II.21(a~b) was made with the hemicube
algorithm. Because much of the computation performed using the hemicube involves
computing item buffers, it can take advantage of existing z-buffer hardware. On the other
hand, because it uses image-precision operations, the hemicube is prone to aliasing.

Nishita and Nakamae [NISH85a] have adopted a different approach to computing form
factors in occluded environments by incorporating their shadow algorithm for area light
sources (Section 16.8) into a radiosity algorithm that was used to make Color Plate
I11.22(a~b). Color Plate I11.22(c) [NISH86] adds to this a model of sky light, approximated
by a large hemispherical source of diffuse light. The hemisphere is divided into bands that
are transversely uniform and longitudinally nonuniform. As with other luminous surfaces,
the effects of occluding objects are modeled.

16.13.3 Substructuring

The finer the patch parametrization, the better the results, at the expense of increased
computation time for n° form factors. To prevent this square-law increase in the number of
form factors, Cohen, Greenberg, Immel, and Brock [COHES6] adaptively subdivide
patches into subpatches at places in the patch mesh at which a high radiosity gradient is
found. The subpatches created by this substructuring process are not treated like
full-fledged patches. Whenever a patch i is subdivided into subpatches, the form factors F, _
from each subpaich s to each patch j are computed using the hemicube technique, but form
factors from the patches to the subpatches are not computed. After a patch has been broken
into subpatches, however, the previously calculated values of each form factor from the
patch to other patches are replaced by the more accurate area-weighted average of the form
factors from its m subpatches:

N U~ (16.71)

! Ai Isgsm
After patch radiosities are calculated as described before, the radiosity of each subpatch s of
patch i can be computed as

B,=E+p 2 BF_, (16.72)

1=j=n

The algorithm iterates, adaptively subdividing subpatches at places of high radiosity
gradient, until the differences reach an acceptable level. The final subpatch radiosities are
then used to determine the wvertex radiosities. Color Plate [11.21(b), made using a
nonadaptive version of the algorithm in which subdivision is specified by the user, shows
that the same image takes substantially less time to compute when patches are divided into
one level of subpatches, than when an equivalent number of patches are used. The adaptive
version of the algorithm is initialized with a **first guess’’ subdivision specified by the user.
Color Plate I11.21(c) was created by adaptively subdividing the subpatches of Color Plate
l1.21(b). Note the improved shadow resolution about the table’s legs.

TEXAS INSTRUMENTS EX. 1009 - 846/1253

800 HNlumination and Shading

Substructuring allows subpatch radiosities to be determined without changing the size
of the matrix to be solved in Eq. (16.62). Note that a subpatch’s contribution to other
patches is still approximated coarsely by its patch’s radiosity, but this is a second-order
effect in diffuse environments. In a similar fashion, texture mapping can be implemented by
computing a single average reflectivity value for a texture-mapped patch that is used for the
radiosity computations [COHES6]. When each pixel in the texture-mapped surface is
finally rendered, its shade is scaled by the ratio of the texture-map reflectivity value
computed for the pixel and the average reflectivity used for the patch.

16.13.4 Progressive Refinement

Given the high costs of executing the radiosity algorithm described thus far, it makes sense
to ask whether it is possible to approximate the algorithm’s results incrementally, Can we
produce a useful, although perhaps inaccurate, image early on, which can be successively
refined to greater accuracy as more time is allocated? The radiosity approach described in
the previous sections will not let us do this for two reasons. First, an entire Gauss—Seidel
iteration must take place before an estimate of the patch radiosities becomes available.
Second, form factors are calculated between all patches at the start and must be stored
throughout the computation, requiring O(n®) time and space. Cohen, Chen, Wallace, and
Greenberg [COHESBS8] have developed a progressive-refinement radiosity algorithm that
addresses both of these issues.

Consider the approach described thus far. Evaluating the ith row of Eq. (16.62)
provides an estimate of patch i’s radiosity, B,, expressed in Eq. (16.60), based on the
estimates of the other patch radiosities. Each term of the summation in Eq. (16.60)
represents patch j's effect on the radiosity of patch i:

B;dueto B, = pB,F_,, forallj. (16.73)

Thus, this approach gathers the light from the rest of the environment. In contrast, the
progressive-refinement approach shoots the radiosity from a patch into the environment. A
straightforward way to do this is to modify Eq. (16.73) to yield

B; due to B; = p,B,F, _,, for all j. (16.74)

Given an estimate of B;, the contribution of patch i to the rest of the environment can be
determined by evaluating Eq. (16.74) for each patch j. Unfortunately, this will require
knowing F, _; for each j, each value of which is determined with a separate hemicube. This
imposes the same overwhelmingly large space—time overhead as does the original approach.
By using the reciprocity relationship of Eq. (16.59), however, we can rewrite Eq. (16.74) as

B, due to B; = ;;jsfﬁ_j.‘%;, for all j. (16.75)

Evaluating this equation for each j requires only the form factors calculated using a single
hemicube centered about patch i. If the form factors from patch i can be computed quickly
(e.g., by using z-buffer hardware), then they can be discarded as soon as the radiosities shot

TEXAS INSTRUMENTS EX. 1009 - 847/1253

16.13 Radiosity Methods 801

from patch i have been computed. Thus, only a single hemicube and its form factors need to
be computed and stored at a time.

As soon as a patch’s radiosity has been shot, another patch is selected. A patch may be
selected to shoot again after new light has been shot to it from other patches. Therefore, it is
not patch i's total estimated radiosity that is shot, but rather AB,, the amount of radiosity
that patch i has received since the last time that it shot. The algorithm iterates until the
desired tolerance is reached. Rather than choose patches in random order, it makes sense to
select the patch that will make the most difference. This is the patch that has the most
energy left to radiate. Since radiosity is measured per unit area, a patch i is picked for which
AB, A, is the greatest. Initially, B, = AB, = E, for all patches, which is nonzero only for light
sources. The pseudocode for a single iteration is shown in Fig. 16.69.

Each execution of the pseudocode in Fig. 16.69 will cause another patch to shoot its
unshot radiosity into the environment. Thus, the only surfaces that are illuminated after the
first execution are those that are light sources and those that are illuminated directly by the
first patch whose radiosity is shot. If a new picture is rendered at the end of each execution,
the first picture will be relatively dark, and those following will get progressively brighter.
To make the earlier pictures more useful, we can add an ambient term to the radiosities.
With cach additional pass through the loop, the ambient term will be decreased, until it
disappears.

One way to estimate the ambient term uses a weighted sum of the unshot patch
radiosities. First, an average diffuse reflectivity for the environment, p,. is computed as a
weighted sum of the patch diffuse reflectivities,

Pos ™ 2 PAI 2 A (16.76)

I1sisn 1sisn
This equation is used to compute an overall reflection factor R, intended to take into
account the different reflected paths through which energy can travel from one patch to
another,

|
P = Py

St W S S S P (16.77)

select paich i;
calculate F;_ ; for each patch j;

for (each paich j) {
ARadiosity = p;AB.F;_ ;A [A;;
AB; 4= ARadiosity:;
By 4= ARadiosity,

}

AB, =0

Fig. 16.69 Pseudocode for shooting radiosity from a patch.

TEXAS INSTRUMENTS EX. 1009 - 848/1253

- 802 lllumination and Shading

for (each patch i) {
AB; = E;;
for (each subpatch s in i)
B, =E;;
}

AreaSum = Z Al

I<isn

Ambient = R Z (AB:A;)/AreaSum;

1<i<n

while (not converged) {
select patch i with greatest ABA,;
determine F;_, for all subpatches s in all patches;

/* AEnergy is initialized to the total energy shot. +/
AEnergy = ABA;; &

/+ Shoot radiosity from patch i. */
for (each patch j seen by i) {
OIdAB = AB;:
for (each subparch s in j seen by i) {
ARadiosity = p;ABiFi- A JA,;
B, += ARadiosiry,
AB; += ARadiosity A, [A;;
}
/* Decrement AEnergy by total energy gained by patch j. #/
AEnergy —= (AB; — OldAB) A;;

}

determine vertex radiosities from subpatch radiosities, using
B, + p; Ambient as radiosity of subpatch s of patch J;
if (radiosity gradient between adjacent vertices is too high)
subdivide offending subpatches and reshoot from patch i to them;
.ﬁ.ﬂi = ﬂ‘,

perform view-dependent visible-surface determination and shading;,
/* Use AEnergy (energy absorbed by patches hit) to determine new value of Ambient. +/

Ambient —= R AEnergy [AreaSum,
} /% while +/

Fig. 16.70 Pseudocode for progressive-refinement radiosity method with ambient
light and substructuring.

TEXAS INSTRUMENTS EX. 1009 - 849/1253

16.13 Radiosity Methods 803

Each patch’s unshot radiosity is weighted by the ratio of the patch’s area to the
environment's area, providing an approximation to the form factor from an arbitrary
differential area to that patch. Thus, the estimate of the ambient term accounting for unshot
radiosity is
Ambient = R 2, (ABA)/ 2, A. (16.78)
Isi=sn 1si=n
This ambient term is used to augment the patch’s radiosity for display purposes only,
yielding
B; = B; + p,Ambient. (16.79)

Figure 16.70 shows the pseudocode for the entire algorithm. Substructuring is provided by
shooting radiosity from patches to subpatches to determine subpatch radiosities. Thus,
hemicubes are created for patches, but not for subpatches. Adaptive subdivision is
accomplished by subdividing a patch further when the radiosity gradient between adjacent
subpatch vertices is found to be too high. Color Plate 111.23, which is rendered using an
ambient term, depicts stages in the creation of an image after 1, 2, 24, and 100 iterations.

16.13.5 Computing More Accurate Form Factors

Although the use of fast z-buffer hardware makes the hemicube an efficient algorithm, the
technique has a number of failings [BAUMBS9; WALLS9]:

* Recall that the identity of only one patch is stored per hemicube pixel. Therefore, a
grid of patches may alias when projected onto a side of the hemicube, just as they
would when processed with a z-buffer algorithm. This can show up as a regular pattern
of patches that are not represented in the hemicube. Furthermore, a patch that is small
when projected on the hemicube may be large when projected on the image plane.

® Use of the hemicube assumes that the center point of a patch is representative of the
patch’s visibility to other patches. If this assumption is shown to be untrue, the surface
can be broken up into subpatches, but there is only a single subdivision granularity for
the patch; the same patch cannot be subdivided to different levels for different patches
that it views.

* Paiches must be far from each other for the hemicube approach to be correct. This is a
serious problem if two patches are adjacent; since all calculations are done from the
center of the hemicube, the form factor will be underestimated, because the
calculations do not take into account the proximity of the adjacent parts of the patches.

A progressive radiosity approach developed by Wallace, Elmquist, and Haines
[WALLB9] uses ray tracing to evaluate form factors, instead of the hemicube. When a
source patch is to shoot its radiosity, rays are fired from each vertex in the scene to the
source to compute the form factor from the source to the vertex. This is accomplished by
decomposing the source patch into a number of small finite subareas, each of which is the
target of a ray shot from a vertex. If the ray is not occluded, then the target is visible, and
the form factor between the differential vertex and the finite area target is computed, using
an analytic expression, based on some simplifying geometric assumptions. If desired, the

TEXAS INSTRUMENTS EX. 1009 - 850/1253

804 Hiumination and Shading

ray intersection calculations can be performed with a resolution-independent true curved-
surface database, so that the time for an individual ray test does not depend on the number
of polygons. The form factor between the vertex and the entire source is computed as an
area-weighted average of the form factors between each subarea and the vertex, and the
result is used to compute the contribution of the source to the vertex. This approach has a
number of advantages. Radiosities are computed at the vertices themselves, where they are
ultimately needed for shading. Vertex normals can be used, allowing polygonal meshes that
approximate curved surfaces. Nonphysical point light sources can be handled by tracing a
single ray to the light source and using its illumination equation to determine the irradiance
at each vertex. The number of areas into which a source is decomposed and whether rays are
actually fired (i.e., if shadow testing is to be performed) can all be determined individually
for each vertex. Color Plates [11.24 and III.25 were created using this algorithm.

A contrasting approach to solving inaccuracies caused by the hemicube is taken by
Baum, Rushmeier, and Winget [BAUMBS9]. They recognize that the hemicube form factors
often are accurate; therefore, they have developed error-analysis tests to choose, for each
patch, when to use the hemicube, when to subdivide the patch further, and when to use a
more expensive, but more accurate, analytic technique for computing form factors.

16.13.6 Specular Reflection

The radiosity methods described so far treat only diffuse reflection. Therefore, all of a
patch’s radiosity may be treated uniformly when it is dispersed to other patches: The
radiosity leaving a patch in any direction is influenced by the patch’s total radiosity, not by
the directions from which its incoming energy was acquired. Immel, Cohen, and
Greenberg [IMMES6] extended the radiosity method to model specular reflection. Rather
than compute a single radiosity value for each patch, they partition the hemisphere over the
patch into a finite set of solid angles, each of which establishes a direction for incoming or
outgoing energy. Given the patch’s bidirectional reflectivity (Section 16.7), they compute
the outgoing radiosity in each direction in terms of its emittance in that direction and the
incident light from each of the set of directions, weighting each direction’s contribution
accordingly. Finally, they render a picture from intensities that are determined at each
vertex by using the direction from the vertex to the eye to interpolate among the closest
directional radiosities. Although the results shown in Color Plate I11.26 are promising, the
approach has a tremendous overhead in both time and space, which will only increase if
highly specular surfaces are modeled. One solution is to combine a radiosity method with
ray tracing.

16.13.7 Combining Radiosity and Ray Tracing

Consider the tradeoffs between radiosity methods and ray tracing. Radiosity methods are
well suited to diffuse reflection because a diffuse surface’s bidirectional reflectivity is
constant in all outgoing directions. Thus, all radiosities computed are view-independent.
On the other hand, the pure radiosity method for specular surfaces described previously is
not practical, because specular reflection from a surface is highly dependent on the angle
with which an observer (or another surface) views the surface. Therefore, much extra

TEXAS INSTRUMENTS EX. 1009 - 851/1253

16.13 Radiosity Methods 805

information must be computed, because no information about the desired view is provided.
In addition, this directional information is discretized and must be interpolated to
accommodate a specific view. Not only does the interpolation make it impossible to model
sharp reflections, but also the sampling performed by the discretization can result in
aliasing.

In contrast, ray tracing calculates specular reflections well, since the eyepoint is known
in advance. Although conventional ray tracing does not model global diffuse phenomena,
some of the approaches discussed in Section 16.12.4 do. Correctly solving for the diffuse
reflection from a piece of surface requires that all the surfaces with which a surface
exchanges energy be taken into account; in short, it requires a radiosity method.

It makes sense to combine ray tracing and radiosity to take advantage of ray tracing’s
ability to model specular phenomena and of the radiosity method’s ability to model diffuse
interactions. Unfortunately, simply summing the pixel values computed by a diffuse
radiosity method and a specular ray tracer will not suffice. For example, the diffuse
radiosity method will fail to take into account the extra illumination falling on a diffuse
surface from a specular surface. It is necessary to account for transfer from diffuse to
diffuse, diffuse to specular, specular to diffuse, and specular to specular reflection.

Wallace, Cohen, and Greenberg [WALLS87] describe a two-pass approach that
combines a view-independent radiosity method, executed in the first pass, with a
view-dependent ray-tracing approach, executed in the second pass. As mentioned previous-
ly, the first pass must take into account specular, as well as diffuse, reflection. If only
perfect, mirrorlike specular reflection is allowed, this can be supported by reflecting each
patch about the plane of a specular surface [RUSH86). Each specular patch is thus treated as
a window onto a ‘‘mirror world.”” The form factor from a patch to one of these mirror
reflections accounts for the specular reflection from the patch that is doing the mirroring.

In the second view-dependent pass, a reflection frustum is erected at each point on a
surface that corresponds to a pixel in the image. As shown in Fig. 16.71, the reflection
frustum consists of a little z-buffer, positioned perpendicular to the reflection direction, and
covering the small incoming solid angle that is most significant for the surface’s

Fig. 16.71 The reflection frustum. (After [WALL87].)

TEXAS INSTRUMENTS EX. 1009 - 852/1253

806 Hlumination and Shading

bidirectional reflectivity. The patches are z-buffered onto the frustum, using Gouraud
shading to interpolate the patches’ first-pass diffuse intensities across their projections. A
ray is traced recursively through each pixel on the frustum that sees a specular surface,
spawning a new reflection frustum at each intersection. The values computed for each
frustum pixel are then weighted to model the surface’s p,. The second pass thus uses
specular transport to combine radiosities determined during the first pass. Transparency can
be accommodated by erecting a transmission frustrum in the direction of refraction. The
image on the cover of this book (Color Plate 1.9) was created using this algorithm.

The mirror-world approach used in the first pass handles only perfect specular
reflection and results in a proliferation of form factors. Shao, Peng, and Liang [SHAO88]
have implemented a two-pass approach that allows Phong-like bidirectional reflectance
functions in the first pass, without the need to duplicate patches.

Sillion and Puech [SILL8Y] extend the two-pass technique 1o calculate exiended form
factors in the first pass that model any number of specular reflections or refractions. Rather
than proliferating mirror-reflection form factors, they instead use recursive ray tracing to
compute the form factors, as well as in the view-dependent second pass. Color Plate [11.27
demonstrates why the diffuse first pass must take specular reflection into account. Color
Plate I11.27(a) shows the results of a conventional diffuse radiosity approach. (The part of
the table near the mirror is lit by light diffusely reflected from the inside of the tall lamp.)
The conventional diffuse first pass was augmented with a pure ray-tracing second pass to
produce Color Plate I11.27(b), which includes a specular reflection from the mirror. In
contrast, Color Plate IT11.27(c) shows the results of Sillion and Puech’s two-pass approach.
It shares the same ray-tracing second pass as Color Plate 111.27(b), but uses extended form
factors in the first pass. Each surface acts as a diffuse illuminator in the first pass, but the
use of the extended form factors means that the diffusely emitted energy takes specular
interreflection into account. Note the light specularly reflected from the mirror onto the
table and the back of the vase during the first pass. Color Plate 111.28 is a more complex

example that includes a reflecting sphere.

16.14 THE RENDERING PIPELINE

Now that we have seen a variety of different ways to perform visible-surface determination,
illumination, and shading, we shall review how these processes fit into the standard
graphics pipeline introduced in Chapter 7 and depicted in Fig. 7.26. For simplicity, we
assume polygonal environments, unless otherwise specified. Chapter 18 provides a more
detailed discussion of how some of these pipelines may be implemented in hardware.

16.14.1 Local lllumination Pipelines

z-buffer and Gouraud shading. Perhaps the most straightforward modification to the
pipeline occurs in a system that uses the z-buffer visible-surface algorithm to render
Gouraud-shaded polygons, as shown in Fig. 16.72. The z-buffer algorithm has the
advantage that primitives may be presented to it in any order. Therefore, as before,
primitives are obtained by traversing the database, and are transformed by the modeling
transformation into the WC system.

Primitives may have associated surface normals that were specified when the model was
built. Since the lighting step will require the use of surface normals, it is important to

TEXAS INSTRUMENTS EX. 1009 - 853/1253

16.14 The Rendering Pipeline 807

Fig. 16.72 Rendering pipeline for z-buffer and Gouraud shading.

remember that normals must be transformed correctly, using the methods discussed in the
Appendix. Furthermore, we cannot just ignore stored normals and attempt to recompute
new ones later using the correctly transformed vertices. The normals defined with the
objects may represent the true surface geometry, or may specify user-defined surface
blending effects, rather than just being the averages of the normals of shared faces in the
polygonal mesh approximation.

Our next step is to cull primitives that fall entirely outside of the window and to
perform back-face culling. This trivial-reject phase is typically performed now because we
want to eliminate unneeded processing in the lighting step that follows. Now, because we
are using Gouraud shading, the illumination equation is evaluated at each vertex. This
operation must be performed in the WC system (or in any coordinate system isometric to
it), before the viewing transformation (which may include skew and perspective transforma-
tions), to preserve the correct angle and distance from each light to the surface. If vertex
normals were not provided with the object, they may be computed immediately before
lighting the vertices. Culling and lighting are often performed in a lighting coordinate
system that is a rigid body transformation of WC (e.g., VRC when the view orientation
matrix is created with the standard PHIGS utilities).

Next objects are transformed to NPC by the viewing transformation, and clipped to the
view volume. Division by W is performed, and objects are mapped to the viewport. If an
object is partially clipped, correct intensity values must be calculated for vertices created
during clipping. At this point, the clipped primitive is submitted to the z-buffer algorithm,
which performs rasterization, interleaving scan conversion with the interpolation needed to
compute the z value and color-intensity values for each pixel. If a pixel is determined to be
visible, its color-intensity values may be further modified by depth cueing (Eq. 16.11), not
shown here.

Although this pipeline may seem straightforward, there are many new issues that must
be dealt with to provide an efficient and correct implementation. For example, consider the
problems raised by handling curved surfaces, such as B-spline patches, which must be
tessellated. Tessellation should occur after transformation into a coordinate system in which
screen size can be determined. This enables tessellation size to be determined adaptively,
and limits the amount of data that is transformed. On the other hand, tessellated primitives
must be lit in a coordinate system isometric to world coordinates. Abi-Ezzi [ABIE89]
addresses these issues, proposing a more efficient, yet more complex, formulation of the
pipeline that incorporates feedback loops. This new pipeline uses a lighting coordinate
system that is an isometric (i.e., rigid or Euclidean) transformation of WC, yet is
computationally close to DC to allow tessellation decisions to be made efficiently.

TEXAS INSTRUMENTS EX. 1009 - 854/1253

808 Hlumination and Shading

Fig. 16.73 Rendering pipeline for z-buffer and Phong shading.

z-buffer and Phong shading. This simple pipeline must be modified if we wish to
accommodate Phong shading, as shown in Fig. 16.73. Because Phong shading interpolates
surface normals, rather than intensities, the vertices cannot be lit early in the pipeline.
Instead, each object must be clipped (with properly interpolated normals created for each
newly created vertex), transformed by the viewing transformation, and passed to the
z-buffer algorithm. Finally, lighting is performed with the interpolated surface normals that
are derived during scan conversion. Thus, each point and its normal must be backmapped
into a coordinate system that is isometric to WC to evaluate the illumination equation.

List-priority algorithm and Phong shading. When a list-priority algorithm is used,
primitives obtained from traversal and processed by the modeling transformation are
inserted in a separate database, such as a BSP tree, as part of preliminary visible-surface
determination. Figure 16.74 presents the pipeline for the BSP tree algorithm, whose
preliminary visible-surface determination is view-independent. As we noted in Chapter 7,
the application program and the graphics package may each keep separate databases. Here,
we see that rendering can require yet another database. Since, in this case, polygons are
split, correct shading information must be determined for the newly created vertices. The
rendering database can now be traversed to return primitives in a correct, back-to-front
order. The overhead of building this database can, of course, be applied toward the creation
of multiple pictures. Therefore, we have shown it as a separate pipeline whose output is a
new database. Primitives extracted from the rendering database are clipped and norma-
lized, and are presented to the remaining stages of the pipeline. These stages are structured
much like those used for the z-buffer pipeline, except that the only visible-surface process
they need to perform is to guarantee that each polygon will correctly overwrite any

Fig. 16.74 Rendering pipeline for list-priority algorithm and Phong shading.

TEXAS INSTRUMENTS EX. 1009 - 855/1253

TEXAS INSTRUMENTS EX. 1009 - 856/1253

Plate I1.3 A torus bump mapped
with a hand-generated bump function
(Section 16.3.3). (By Jim Blinn.
Courtesy of University of Utah.)

Plate .4 A strawberry bump
mapped with a hand-generated bump
function (Section 16.3.3). (By Jim
Blinn. Courtesy of University of Utah.)

Plate L5 Objects with shadows
genarated by two-pass object
precision algorithm of Section 16.4.2.
(a) One light source. (bl Two light
sources. (Peter Atherton, Kevin
Weiler, and Donald P. Greenberg,
Program of Computer Graphics,
Cornell University, 1978.)

(&) (b}

TEXAS INSTRUMENTS EX. 1009 - 857/1253

Plate lIL8 Room with
shadows generated by object-
precision shadow-volume
BSP tree algorithm of Section
16.4.3. (a) Scene with two
point light sources. (b) Same
scane with black lines
indicating polygon fragmen-
tation. Dark gray fragments
are lit by no lights, light gray
fragments are lit by one light,
and non-gray fragments are
lit by baoth lights. (Courtesy of
MNorman Chin, Columbia
University.]

{a)

Plate IIl.7 MNonrefractive trans-
parency using extanded z-buffer
algorithm of Saction 16.5.1. Unter-
lafette database is courtesy of CAM-|
(Computer Aided Manufacturing
International, Inc., Arlington, TX)
iRendered on a Stardent 1000 by
Abraham Mammen.)

TEXAS INSTRUMENTS EX. 1009 - 858/1253

TEXAS INSTRUMENTS EX. 1009 - 859/1253

Plate 11.10 Spheres and checkerboard. An early image produced
with recursive ray tracing (Section 16.12). (Courtesy of Turner
Whitted, Bell Laboratories.)

Plate INl.11 Ray-traced
images. (a) Scene from short
film Quest(1985). (Michaal
Sciulli, James Arvo, and
Melissa White. © Hewlett-
Packard.) {b) "Haute Air."
Functions were used to modify
color, surface normals, and
transparency at nearly every
pixel. {Courtesy of David
Kurlander, Columbia Univer-
sity, 1986.)

TEXAS INSTRUMENTS EX. 1009 - 860/1253

TEXAS INSTRUMENTS EX. 1009 - 861/1253

(a)

(b}
Plate .13 Comparison of
illumination models for ray
tracing (Section 16.12.2). Note
differences in reflectivity of the
base of the dish, and the color
of the transparent and reflec- '
tive spheres. (al Whitted
illumination model. (b) Hall
illumination model. (Roy A.
Hall and Donald P. Greenberg,
Program of Computer Graph-
ics, Cornell University, 1983.)

Plate .14 Cone
tracing (Section 16.12.3).
Three spheres. Dull re
flections are created by
increasing the angular
spread of reflected rays
by 0.0,0.2, and 0.4
radians, respectively, for
spheres from left to
right. (Courtesy of John
Amanatides, University
of Toronto.)

TEXAS INSTRUMENTS EX. 1009 - 862/1253

Plate lIl.16 Beam tracing (Section 16.12.3). A mirrored cube in a
texture-mapped room. (Paul Heckbert and Pat Hanrahan, © NYIT
1984.)

Plate I1l.16 7584, Rendered using distributed ray tracing (Section
16.12.4} at 4096 = 3550 pixels with 16 samples per pixel. Note the mo
tion-blurred reflections and shadows with penumbrae cast by extended
light sources. (By Thomas Porter. © Pixar 1984. All Rights Reserved.)

TEXAS INSTRUMENTS EX. 1009 - 863/1253

Plate .17 Scene rendered
with integral equation mathod
(Section 16.12.4), All opaque
objects are Lambertian. Note
interobject reflections.
Computed at 512 x 512
resolution with 40 paths/pixel
in 1221 minutes on an IBM
a081. (J. Kajiya, California
Institute of Technology.)

Plate lI1.1B Daylit office rendered by
ray tracing with diffuse interreflection
{Section 16.12.4). (a) Direct illumi
nation only. (b} 1 diffuse bounce.

ic) 7 diffuse bounces. (Courtesy of
Greg Ward, Lawrence Berkeley
Laboratory.)

TEXAS INSTRUMENTS EX. 1009 - 864/1253

TEXAS INSTRUMENTS EX. 1009 - 865/1253

TEXAS INSTRUMENTS EX. 1009 - 866/1253

TEXAS INSTRUMENTS EX. 1009 - 867/1253

TEXAS INSTRUMENTS EX. 1009 - 868/1253

TEXAS INSTRUMENTS EX. 1009 - 869/1253

TEXAS INSTRUMENTS EX. 1009 - 870/1253

(c)

Plate .27 Combining radiosity and ray
tracing (Section 16.13.7). (a) Difuse
radiosity algorithm. (b) Diffuse first pass
and ray-traced second pass. (¢) Diffuse first
pass with extended form factors and ray
traced second pass. (Courtesy of Frangois
Sillion, Liens, Ecole Normale Superiaure,
Paris, France.)

Plate Il.28 Room rend
ared with combined
radiosity and ray tracing
(Courtesy of Francois
Sillion, Liens, Ecole Normale

Superieure, Paris, France.)

TEXAS INSTRUMENTS EX. 1009 - 871/1253

16.14 The Rendering Pipeline 809

Fig. 16.75 Rendering pipeline for radiosity and Gouraud shading.

previously scan-converted polygon that it intersects. Even this simple overwrite capability is
not needed if we instead use an object-precision algorithm that generates a list of fully
visible primitives, such as the Weiler—Atherton algorithm.

16.14.2 Global lllumination Pipelines

Thus far, we have ignored global illumination. As we have noted before, incorporating
global illumination effects requires information about the geometric relationships between
the object being rendered and the other objects in the world. One approach, of which we
have seen many examples, is to calculate needed information from a specific viewpoint in
advance of scan conversion and to store it in tables (e.g., reflection maps and shadow
maps). This eliminates the need to access the full db representation of other objects while
processing the current object. In the case of shadows, which depend only on the position of
the light source, and not on that of the viewer, preprocessing the environment to add
surface-detail polygon shadows is another way to allow the use of an otherwise conventional

pipeline.

Radiosity. The diffuse radiosity algorithms offer an interesting example of how to take
advantage of the conventional pipeline to achieve global-illumination effects. These
algorithms process objects and assign to them a set of view-independent vertex intensities.
These objects may then be presented to a modified version of the pipeline for z-buffer and
Gouraud shading, depicted in Fig. 16.75, that eliminates the lighting stage.

Ray tracing. Finally, we consider ray tracing, whose pipeline, shown in Fig. 16.76, is
the simplest because those objects that are visible at each pixel and their illumination are
determined entirely in WC. Once objects have been obtained from the database and
transformed by the modeling transformation, they are loaded into the ray tracer’'s WC
database, which is typically implemented using the techniques of Sections 15.10.2 and
16.12.1, to support efficient ray intersection calculations.

Fig. 16.76 Rendering pipeline for ray tracing.

TEXAS INSTRUMENTS EX. 1009 - 872/1253

810 llumination and Shading

16.14.3 Designing Flexible Renderers

As we have seen, a wide variety of illumination and shading models has been created. The
choice of which to use may be based on concerns as diverse as increasing efficiency,
increasing realism, or obtaining visually interesting effects. Simply put, there is no one
model that pleases all users. Therefore, several design approaches have been suggested to
increase the ease with which illumination and shading algorithms may be implemented and
used.

Modularization. A straightforward approach is to modularize the illumination and
shading model in a part of the rendering system that is often known as its shader. Whitted
and Weimer [WHITB2] showed that, by establishing a standard mechanism for passing
parameters to shaders, different shaders can be used in the same system; the decision about
which shader to call can even be made at run time based on some attribute of the object.
Their system performs scan conversion using a scan-line algorithm, and accumulates results
as a linked list of spans for each line. Each span contains information about a set of values
associated with its endpoints, including their x and z values, and additional information
such as normal components, and intensities. The shader interpolates specified values across
each span. (Since it typically uses the interpolated z values to perform visible-surface
determination with a scan-line z-buffer, the term shader is being used quite loosely.)

The Doré graphics system [ARDES9] is designed to offer the programmer additional
flexibility. It provides a standard way of expressing a scene database in terms of a set of
objects that have methods for performing operations such as rendering, picking, or
computing a bounding volume. The display list and its traversal functions form a common
core that is intended to make it easy to interface to different rendering systems. A
programmer can use the standard set of objects, methods, and attributes, or can design her
own using the framework.

Special languages. In contrast to providing extensibility at the level of the programming
language in which the system is built, it is possible to design special languages that are
better suited to specific graphics tasks. Cook [COOKB84a] has designed a special-purpose
language in which a shader is built as a tree expression called a shade tree. A shade tree is a
tree of nodes, each of which takes parameters from its children and produces parameters for
its parent. The parameters are the terms of the illumination equation, such as the specular
coefficient, or the surface normal. Some nodes, such as diffuse, specular, or square root,
are built into the language with which shade trees are specified. Others can be defined by
the user and dynamically loaded when needed. All nodes can access information about the
lights. Figure 16.77 shows a shade tree for a description of copper. A shade tree thus
describes a particular shading process and is associated with one or more objects through
use of a separate modeling language. Different objects may have different shade trees, so
that an image can be rendered in which a multiplicity of different special-purpose models
are mixed. Similarly, in Cook’s system, lights and their parameters are defined by light
trees, and atmospheric effects, such as haze, are defined by atmosphere trees.

Perlin [PERL85] has developed the notion of a pivel-stream editor that takes as input
and produces as output arrays of pixels. A pixel is not rigidly defined and may include

TEXAS INSTRUMENTS EX. 1009 - 873/1253

16.14 The Rendering Pipeline 811

Final color

\

e
/"\WEE
/\ /\

Ambient k. Specular
N 7]

roughness
Fig. 16.77 Shade tree for copper. (After [COOK84].)

arbitrary data for a point in the image, such as the material identifier or normal vector at that
point. An output pixel need not have the same structure as an input pixel. The pixel-stream
editor executes a program written by the user in a high-level language oriented toward pixel
manipulation. Thus, the user is encouraged to think of creating images in a series of passes,
with intermediate results represented by arrays of pixels that may differ in the kind of
information they encode.

The flexibility of shade trees and pixel-stream editors may be combined by designing a
rendering system that allows its users to write their own shaders in a special programming
language and to associate them with selected objects. This approach is taken in the
RenderMan Interface [PIXAB8; UPST89], a scene description specification that provides
such a shading language. RenderMan defines a set of key places in the rendering process at
which user-defined or system-defined shaders can be called. For example, the most
common kind of shader, called a surface shader, returns the light reflected in a specified
direction given a point on the surface, its orientation, and a set of light sources. A
user-provided surface shader could implement an illumination equation totally different
from those discussed so far. Other shaders include atmosphere shaders that modify the
color of light passing between two points, and —in another example of how the word shader
can be stretched—projection shaders that allow user-defined projections implementing
other than parallel or linear perspective projections.

An example. Cook, Carpenter, and Catmull’s Reyes Rendering Architecture
[COOK87], which was used to produce Color Plates 11.24-37, D, and F, provides an
interesting example of how to structure a renderer. Reyes chops all objects up into
micropolygons: small, constant-shaded quadrilaterals that are approximately % pixel on a
side. This approach, known as dicing, occurs along boundaries that are natural for the

TEXAS INSTRUMENTS EX. 1009 - 874/1253

812 Hlumination and Shading

object. A patch, for example, is diced parallel to its (s,¢) coordinate system. Dicing is
performed prior to perspective transformation, based on an estimate of the size of the
resulting micropolygons after projection. Much like Catmull’s patch subdivision algorithm
of Section 15.9, which subdivides patches until they are pixel-sized, Reyes subdivides
objects until they are sufficiently small. Each kind of object is associated with a procedure
that determines whether it should be subdivided further into other primitives or diced. An
object is subdivided further if no method has been provided for dicing it directly, if it is
determined that it would give rise to too many micropolygons, or if it is estimated that its
micropolygons would differ too much in their final projected size. This recursive
subdivision must ultimately result in objects that can be diced. To avoid the need to clip
objects analytically to the view volume, when Reyes subdivides objects, only those parts
that are at least partially within the view volume are kept. Perspective problems that would
result from projecting an object that is too close to or behind the eye are avoided by
subdividing further any object that spans both the hither plane and another plane that lies
slightly in front of the eye.

Dicing an object results in a quadrilateral mesh of micropolygons that is shaded in WC.
Because the micropolygons are sufficiently small, each is given a single shade, avoiding all
the interpolated shading problems discussed in Section 16.2.6. Since a patch is diced
parallel to its (s,f) coordinate system, some of the texture-mapping approaches discussed in
Chapter 17 are particularly efficient to use. Dicing and shading can both take advantage of
incremental algorithms. Reyes relies on the mapping techniques discussed in this chapter
for its global lighting effects.

Visible surface determination is done with a subpixel z-buffer whose subpixel centers
are jittered to accomplish stochastic sampling. The closest micropolygon covering a
subpixel center is visible at that subpixel. To avoid the need to store micropolygon meshes
and subpixel z and intensity values for the entire image, Reyes uses spatial partitioning. The
image is divided into rectangular partitions into which each object is sorted by the upper left
hand corner of its extent. The partitions are then processed left to right, top to bottom. As
objects are subdivided or diced, the resulting subobjects or micropolygons are placed in the
partitions that they intersect. Thus, only enough z-buffer memory is needed for a single
partition, and other storage needed for a partition can be freed after it is processed.

16.14.4 Progressive Refinement

One interesting modification to the pipelines that we have discussed takes advantage of the
fact that the image is viewed for a finite time. Instead of attempting to render a final version
of a picture all at once, we can first render the picture coarsely, and then progressively refine
it, to improve it. For example, a first image might have no antialiasing, simpler object
models, and simpler shading. As the user views an image, idle cycles may be spent
improving its quality [FORRSS5]. If there is some metric by which to determine what to do
next, then refinement can occur adaptively. Bergman, Fuchs, Grant, and Spach [BERGS6b]
have developed such a system that uses a variety of heuristics to determine how it should
spend its time. For example, a polygon is Gouraud-shaded, rather than constant-shaded,
only if the range of its vertex intensities exceeds a threshold. Ray-tracing [PAIN89) and
radiosity [COHER8S8] algorithms are both amenable to progressive refinement.

TEXAS INSTRUMENTS EX. 1009 - 875/1253

Exercises B13

16.15 SUMMARY

In this chapter, we encountered many different illumination models, some inspired
primarily by the need for efficiency, others that attempt to account for the physics of how
surfaces actually interact with light. We saw how interpolation could be used in shading
models, both to minimize the number of points at which the illumination equation is
evaluated, and to allow curved surfaces to be approximated by polygonal meshes. We
contrasted local illumination approaches that consider in isolation each surface point and
the lights illuminating each point directly, with global approaches that support refraction
and reflection of other objects in the environment. In each case, we noted that there are
some methods that use the full geometric description of the environment in computing
global effects, and others that use simpler descriptions, such as reflection maps.

As we have stressed throughout this chapter, the wide range of illumination and
shading algorithms gives rise to a corresponding diversity in the images that can be
produced of the same scene with the same viewing specification. The decision about which
algorithms should be used depends on many factors, including the purposes for which an
image is to be rendered. Although photorealism is often sacrificed in return for efficiency,
advances in algorithms and hardware will soon make real-time implementations of
physically correct, global illumination models a reality. When efficiency is no longer an
issue, however, we may still choose to render some images without texture, shadows,
reflections, or refraction, because in some cases this will remain the best way to
communicate the desired information to the viewer.

EXERCISES

16.1 (a) Describe the difference in appearance you would expect between a Phong illumination
model that used (N - H)" and one that used (R - V)", (b) Show that @ = 28 when all vectors of Fig.
16.12 are coplanar. (c) Show that this relationship is nor true in general.

16.2 Prove that the results of interpolating vertex information across a polygon’s edges and scan
lines are independent of orientation in the case of triangles.

16.3 Suppose there are polygons A, B, and C intersecting the same projector in order of increasing
distance from the viewer. Show that, in general, if polygons A and B are transparent, the color
computed for a pixel in the intersection of their projections will depend on whether Eq. (16.25) is
evaluated with polygons A and B treated as polygons | and 2 or as polygons 2 and 1.

16.4 Consider the use of texture mapping to modify or replace different material properties. List the
effects you can produce by mapping properties singly or in combination. How would you apply
antialiasing to them?

16.5 Although using a reflection map may appear to require precomputing the lighting for the
environment, a reflection map containing object identities and surface normals could be used
instead. What are the disadvantages of using this kind of map?

16.6 Explain how to simulate reflections from surfaces of different roughness using a reflection
map.

16.7 What other lighting effects can you think of that would generalize Warn's flaps and cones?
16.8 Suppose that the array of patches shown in Fig. 16.64 is continued for another two rows, adding
patches 5 and 6, and that the radiosity values for the patches are B, =B, =2, B; =B, =4, B, = B; =
6. Show that B, and B, are 5 and 3, respectively. Then show that B, is 1. Is this a reasonable value?

TEXAS INSTRUMENTS EX. 1009 - 876/1253

814 HNlumination and Shading

Notice that it extends the linear trend from h to e. What happens as you add more rows of patches in a
similar pattern? Suppose that you added a mirror image of the patches about the line ac and computed
the radiosity values. Then B, would be 2. Does this seem contradictory? Explain your answer.

16.9 Implement a simple recursive ray tracer based on the material in Sections 15.10 and 16.12.

16.10 Make your ray tracer from Exercise 16.9 more efficient by using some of the techniques
discussed in Section 16.12.1.

16.11 Extend your ray tracer from Exercise 16.10 to do distributed ray tracing.

16.12 Implement a progressive-refinement radiosity algorithm, based on the pseudocode of Fig.
16.70. Use the hemicube method of computing form factors. Begin by computing only patch to patch
exchange (ignoring substructuring). Leave out the ambient computation to make coding and visual
debugging easier. Check your hemicube code by verifying that the delta form factors sum to
(approximately) 1.

To display your images, you will need to implement a polygon visible-surface algorithm (perhaps
the one used by your hemicube) or have access to an existing graphics system. Using constant-shaded
polygons will improve interactivity if shaded graphics hardware is not available (and will make
programming and debugging easier).

16.13 Explain why lighting must be done before clipping in the pipeline of Fig. 16.72.

16.14 Implement a testbed for experimenting with local illumination models. Store an image that
contains for each pixel its visible surface’s index into a table of material properties, the surface
normal, the distance from the viewer, and the distance from and normalized vector to one or more
light sources. Allow the user to modify the illumination equation, the intensity and color of the lights,
and the surface properties. Each time a change is made, render the surface. Use Eq. (16.20) with
light-source attenuation (Eq. 16.8) and depth-cueing (Eq. 16.11).

16.15 Add a shadow algorithm to a visible-surface algorithm that you have already implemented.
For example, if you have built a z-buffer system, you might want to add the two-pass z-buffer shadow
algorithm discussed in Section 16.4.4. (The postprocessing variant may be particularly easy to add if
you have access to a graphics system that uses a hardware z-buffer. Explain how extra storage at each
pixel, as described in Exercise 16.14, could be used to design a shadow postprocess that produced
correct shading and proper highlights.)

16.16 Add interobject reflections to a visible-surface algorithm. Use reflection mapping for curved
surfaces and the mirror approach for planar surfaces, as described in Section 16.6.

TEXAS INSTRUMENTS EX. 1009 - 877/1253

17

Image
Manipulation
and Storage

In this chapter, we explore methods for manipulating and storing images efficiently. We
begin by considering the kinds of operations we would like to perform on images. Bear in
mind that the images we are manipulating may be used either as images in their own right,
or in the manufacture of some subsequent image, as in the environment mapping described
in Chapter 16.

Several sorts of operations on images immediately come to mind. One is combining
two images by overlaying or blending them, known as compositing. One application of
compositing is in animation, when we wish to show a character moving around in front of a
complicated background that remains unchanged. Rather than rerendering the background
for each frame, we can instead render the background once and then generate many frames
of the character moving about on a black background. We can then composite these
individual frames as overlays to the background frame, thus producing images of a character
moving about on the background. In compositing operations like this, antialiasing becomes
extremely important to ensure that the outline of the character is not jagged against the
background. It is also necessary to distinguish the background of an image from the
content; in our example, the black background against which the character is drawn is the
background, and the character itself is the content.

Often, the images to be composited are of different sizes, so we may wish to translate,
scale, or rotate them before the composition. We may even wish to distort an image, so that
it appears in perspective or appears to have be drawn on a rubber sheet and then stretched.
Although we could make these changes by rerendering the image with an appropriate
geometric transformation, this is often so difficult or time consuming as to be impractical.
Indeed, it can be impossible if, say, the image has been obtained from an optical scan of a

815
TEXAS INSTRUMENTS EX. 1009 - 878/1253

816 Image Manipulation and Storage

photograph, or if the original program or parameters used to create it have been lost.

We might also wish to apply various filters to an image so as to produce false colors, to
blur the image, or to accentuate color or intensity discontinuities. This sort of filtering is
applied to satellite photographs and to computed-tomography (CT) data, where the
intensity of a point in the image reflects the density of material in the body. For example,
very slight changes in intensity may indicate the boundaries between normal and cancerous
cells, and we may wish to highlight these boundaries.

Images tend to be very large collections of data. A 1024 by 1024 image in which the
color of each pixel is represented by a n-bit number takes /8 MB of memory (in an
8-bit-per-byte machine). As described in Chapter 4, many graphics systems dedicate a
great deal of memory to image storage (the frame buffer). If the image memory is
accessible by other programs, then it may be used for output by one program, and then for
input by another, or even for output by two different programs. This happens, for example,
when we use a pixel-painting program to adjust individual pixels of a rendered image. This
use of image memory (and the rigid structure of the memory, which constitutes a database
format for diverse programs) has been called **frame-buffer synergy™* by Blinn [BLINSS].

When an image is being stored in secondary memory, it is often convenient to
compress the stored data (but not the image). Several schemes have been developed. The
look-up tables (LUTS) described in Chapter 4, for example, significantly reduce the storage
needed for an image, provided the image contains substantial color repetition. Of course,
storing LUTSs is typically done only when the frame buffers used for displaying the image
support LUTs. We discuss several more sophisticated methods in Section 17.7.

Here we begin by reexamining our notion of an image. Then we describe some
elementary operations on images: filtering and geometric transformations. We then discuss
techniques for storing additional data with each pixel of an image, and using these data in
compositing. Following this, we discuss various image storage formats; finally, we describe
a few special effects that can be performed at the image level rather than in modeling or
rendering.

17.1 WHAT IS AN IMAGE?

Images, as described in Chapter 14, are (at the most basic level) arrays of values, where a
value is a collection of numbers describing the attributes of a pixel in the image (in bitmaps,
e.g., the values are single binary digits). Often these numbers are fixed-point representa-
tions of a range of real numbers; for example, the integers 0 through 255 often are used to
represent the numbers from 0.0 to 1.0. Often, too, these numbers represent the intensity at
a point in the image (gray scale) or the intensity of one color component at that point. The
dimensions of the array are called the widrh and height of the image, and the number of bits
associated with each pixel in the array is called the depth.

We often consider an image as more than a mere array of values, however. An image is
usually intended to represent an abstract image, which is a function of a continuous
variable; each position in the abstract image has some value.! The images we work with

'What we are really talking about is a function whose domain is a rectangle in the Euclidean plane,
rather than a discrete lattice of points in the plane.

TEXAS INSTRUMENTS EX. 1009 - 879/1253

17.2 Filtering 817

(sometimes called digital images or discrete images) are functions of a discrete variable; for
each [i, j] pair, a value is associated with the pixel labeled [i. j]. As described in Chapters 3
and 14, choosing the best discrete image to represent an abstract image is difficult. In this
chapter, we sometimes discuss reconstructing the abstract image in order to take new
samples from it. Of course, we do not actually perform this reconstruction, since to do so
we would need to generate values at infinitely many points. But we can reconstruct any
individual value in the abstract image—in particular, we can reconstruct the finitely many
values we want to sample.

If we create a discrete image from an abstract image by sampling (see Chapter 14), then
reconstruct an abstract image from the digital image, the reconstructed abstract image and
the original abstract image may or may not be the same. If the original abstract image had
no high-frequency components, then the reconstructed image would be the same as the
original, and the reconstruction would be said to be faithful. On the other hand, if the
original image had components whose frequencies were too high, then the sampled image
could not represent it accurately, and the reconstructed image would differ from the
original.

One other aspect of images is important. Although filtering theory tells us a great deal
about selecting a discrete image to represent an abstract image most accurately, much of the
theory assumes that the abstract-image values at each point are real numbers and that the
discrete-image values at each pixel will also be real numbers. In the case of bitmaps,
however, nothing could be further from the truth: The values are binary. In more complex
pixmaps, the values may be small binary numbers (e.g., 4 bits per pixel), or may range over
50 large a collection of numbers as to be effectively continuous. This value discretization
leads to significant questions in image manipulation, such as how best to compress a
bitmap. If 4 pixels—2 white and 2 black—are to be compressed into 1, should the
compressed pixel be black or white? We discuss the consequences of value discretization
when they are known and significant, but note that there is much that we do not yet
understand.

17.2 FILTERING

Suppose we have an image produced without any antialiasing— for example, a drawing of a
graph that was read into memory with an optical scanner that sampled the drawing at an
array of points. How can we improve its appearance? The image certainly has jaggies that
we would like to remove. But every image we can create is correct for some source image
(where by correct we mean that it accurately represents a sample of the source image after
low-pass filtering). If applying some mechanism alters and improves one image, applying
the same mechanism to another image may damage that image. Thus, the mechanism we
are about to describe should be used only on images that need smoothing. If jagged steps
are present in a image that has been generated properly, then they are meant to be there, and
postfiltering will only blur the image. (After all, what should an image of a staircase look
like?)

Suppose we do want to smooth out an image to hide some jaggies. What can we do? An
obvious start is to replace each pixel with the average of itself and its neighbors. This
process, applied to the discrete image rather than to the abstract image, is called

TEXAS INSTRUMENTS EX. 1009 - 880/1253

818 Image Manipulation and Storage

postfiltering. With postfiltering, pixels near the stair steps in the jaggies are blended so as to
hide the steps; see Fig. 17.1, in which the filtering has been exaggerated. As we saw in
Chapter 14, this constitutes filtering with a box filter; other, more sophisticated filters may
vield better results. Before we examine other filters, let us consider the drawbacks of even
this simple filtering method.

Suppose that we point sample a photograph of a picket fence. The pickets and the gaps
between them are of the same width, the pickets are white, and the background is black.
The pickets are spaced in the photograph so that the width of nine pickets and nine gaps
covers a width of 10 pixels in the image. What will the sampled image look like? If the
photograph is positioned so that the first pixel is exactly at the left-hand edge of the first
picket, then the first pixel will be white, the next 5 pixels will be black, but the sixth through
tenth pixels will be at pickets and hence will be white. The next 5 pixels will be black, and
so on (see Fig. 17.2).

Now, what does our postfiltering do in this situation? It smoothes out the boundary
between the sixth and seventh pixels, and leaves a large block of black followed by a large
block of white. It cannot possibly fix all the problems implicit in the image. Clearly,
postfiltering is not a good solution to the aliasing problem. In addition, since postfiltering
will also blur any other edges in the image (even those that should be there), the resulting
image will be unpleasantly fuzzy.

This problem can be partly remedied at the cost of shrinking the image: We can convert
a 2n by 2n image into an n by n image by imagining that the source image is overlaid with a
grid, each square of the grid enclosing 4 pixels of the source image. We can then average the
4 pixels in the square to create 1 pixel in the target image for each grid square. This amounts
to postfiltering the image, then selecting alternate pixels on alternate scan lines. Note that
less filtering computation is involved; we need to apply the filter to compute values for only
those pixels included in the final image. That is, for only those pixels to appear in the output
image, we compute a weighted average of pixels around the corresponding point in the
source image. Of course, the resulting image is one-fourth the size of the original.

We can see how this works by recalling the analysis in Chapter 14. If the source image
is produced by sampling at a frequency of 2w, then any component of the original signal
whose frequency is between 0 and @ will be accurately represented. For any frequency
above w, say w + ¢, the sampled signal will contain an alias at frequency @ — ¢. Box
filtering the sampled signal with a filter of width 2 substantially (but not completely) filters
out the components of this signal with frequencies greater than /2 (because the Fourier
transform of the box filter is a sinc function, which tapers off rapidly as the frequency
increases). Resampling at alternate pixels yields an effective sampling rate of w; with this

90
i ssedssstits
0000 00000000000600
BOG® T 2222220000

Fig. 17.1 The stair steps are smoothed by box filtering.

TEXAS INSTRUMENTS EX. 1009 - 881/1253

17.2 Filtering 819

Scan line

Sampling points

(R [[[7] -

Fig. 17.2 Aliasing in a sampled image.

sampling rate, all frequencies up to /2 can be accurately represented. But after applying
the filter, these are exactly the frequencies that remain. If the original signal had
components @ + ¢ for which ¢ was large (i.e., greater than w/2), then the aliases of these
components occur at frequencies below /2, and hence persist in the final image. But for
small values of ¢, the aliases are filtered out, and so supersampling and postfiltering really
do help reduce aliases.

Remember that the signals that represent such primitives as lines, rectangles, and any
other geometric objects with clearly defined edges have components of arbitrarily high
frequencies, so there is no hope of representing these correctly by any such method. At
best, we can hope postfiltering will improve a bad image at the cost of fuzziness.

Other filters, such as the sinc filter, the Catmull—Rom filter, and the triangle filter, can
produce better postfiltering results than can a pure box filter. The analysis of those filters
given in Chapter 14 applies here as well. As a convenient rule of thumb, Whitted has
suggested that postfiltering a high-resolution image produces obvious fuzziness, but that a
2048 by 2048 image can usually be postfiltered and sampled down to a 512 by 512 image
with good results [WHIT85].

Now consider a temporal analogue of this problem: The spokes on a wagon wheel pass
by a pixel on the screen very fast in an animation of a rolling wagon (this is the temporal
analog of an object being striped with rapidly changing color; i.e., to closely spaced
stripes). The frequency with which the spokes pass a point may be far greater than 30 times
per second, the speed of typical video recording. Temporal aliasing is the inevitable result:
The spokes appear to stand still or to turn backward. We are used to seeing this effect in
movies, of course. In a movie, however, we actually see a blurred wagon wheel moving
backward, because, in each exposure of a movie frame, the shutter is open for a brief (but
not infinitesimal) time period (about one half of the time allocated to the frame; the
remaining half is dedicated to moving the film forward). The shutter effectively applies a
box filter to the scene in the time dimension. The result is some blurring, but aliases are still
present. The blurring is due to the box filtering, and the aliases are due to the narrowness of
the filter. All the box filters taken together cover only about half of the time sequence of the
movie—the remainder is lost while the shutter is closed. The implication for computer
graphics is clear: To get movie-quality frames for animation, we need to do (at the very

TEXAS INSTRUMENTS EX. 1009 - 882/1253

820 Image Manipulation and Storage

least) box filtering— prefiltering—over time. Postfiltering removes some ill effects, but
many remain. Notice that, to get really accurate images, we should actually do sinc filtering
over the time domain. If movie cameras did this (or even had wider box filters), the wagon
wheels would look the way they do in life—they would appear to roll forward and then to
blend into a continuous blur.

17.3 IMAGE PROCESSING

Now we briefly turn to a different problem: How can we highlight or suppress certain
features in an image? This question is really in the domain of image processing rather than
computer graphics, but a few basic ideas are worth discussing. By scanning an image for
rapid changes in value at adjacent points, we can do edge detection and enhancement. At
places where the values of adjacent points differ sufficiently, we can push the values even
further apart. If an image is noisy—that is, if random displacements have been added to its
pixel values—then it can be smoothed by the filtering techniques discussed in the previous
section. If the noise is sufficiently random, then filtering, which computes averages of
adjacent pixels, should average out the noise, or at least filter its high-frequency
components.

Another image-processing technique is thresholding, in which the points of an image at
or near a particular value are highlighted. In a gray-scale image, this highlighting can be
done by converting all pixels below some value to black, and all pixels above that value to
white, producing a threshold edge between the black and white regions. The marching-
cubes algorithm discussed in Chapter 20 gives a different mechanism for thresholding (in
3D): It explicitly constructs the boundary between the two regions as a surface (or a curve,
in the 2D case). The components of this boundary can then be rendered into a new image
with appropriate antialiasing to give a smoother indication of the threshold. For further
information on this, see [GONZS87; SIG85].

17.4 GEOMETRIC TRANSFORMATIONS OF IMAGES

Suppose we wish to transform an image geometrically. Such transformations include
translation, rotation, scaling, and other, nonlinear, operations. How can we do this?

Translating an image makes sense only if the image is thought of as a subimage of some
larger image. Suppose we wish to move an n by k array of pixels (the source), whose
upper-left corner is at (a, b), to a new position, with the upper-left corner at position (c, d)
(the targer). This transformation should be easy; we simply copy pixels from the source
position to the target position, and (if we want) replace all source pixels that are not target
pixels with the background color (see Fig. 17.3). Provided that care is taken to ensure that
the copying is done in an order that prevents overwriting source pixels, when the source and
destination overlap, and provided that the four numbers a, b, ¢, and d are all integers, this
approach works fine.

But what if the starting and ending positions are not integers? Then we wish to
reconstruct the abstract image for the source image, to translate it, and to sample this
translated version. To do this explicitly is not feasible—we certainly do not wish to
reconstruct the abstract image at every possible location, and then to select just a few of

TEXAS INSTRUMENTS EX. 1009 - 883/1253

17.4 Geometric Transformations of Images 821

X

en /|

Fig. 17.3 A simple translation of an image.

these (infinitely many) points. Indeed, the same objection holds for scaling and rotation.
Algorithms have been developed, however, that perform these operations in ways that are
computationally correct (in various senses). Weiman has developed algorithms for
performing scaling and shearing of images by rational amounts [WEIMS0]. Rotations can
be performed by a clever combination of these algorithms (see Exercise 17.1). Finding a
similar algorithm for translating by arbitrary rational amounts is posed as Exercise 17.2.

17.4.1 Basic Geometric Transformations

Weiman posits that a gray-scale pixmap represents an abstract image in the following
fashion: The abstract image is divided into squares (one square per pixel), and the average
intensity of this abstract image in the square is the value assigned to the pixel. He thus
assumes that he can perform a faithful reconstruction by drawing a picture consisting of
gray squares whose tone is determined by the pixel values. Stretching a pixmap by a factor
of p/q takes g columns of the original and stretches them to cover p columns of the target
image. Performing area sampling on the result then generates the target image. Filtering
theory tells us that this assumption about the nature of a sampled image and the consequent
stretching algorithm are wrong in every sense: An abstract image should never be sampled
while it has frequency components above the Nyquist frequency, and hence a proper
reconstruction of an abstract image from a sampled one never has high-frequency
components. An image in which adjacemt squares have different (constant) values is a
perfect example of an image with lots of high-frequency components, so this is certainly a
bad reconstruction. And finally, filtering theory says that when converting such an image to
a pixmap, we should use sinc filtering rather than box filtering. Nevertheless, if Weiman's
hypotheses are allowed, his algorithm for performing these linear transformations is quite
clever. It is also the basis for a very good bitmap-scaling algorithm (see Exercise 17.3).
Suppose we wish to scale an image by. a factor p/g (where p > g, and p and g are
integers with no common factors). The first step is to generate a Rothstein code [ROTH76]
for the number p/q. This code is a binary sequence that describes a line whose slope is g/p
(any scan-converted line can be used to generate a similar code). Figure 17.4 shows a line of
slope £ with 15 tick marks on it. As the line passes from left to right through the figure, it
crosses the horizontal grid lines. If a column contains such a grid-line crossing, it is marked

TEXAS INSTRUMENTS EX. 1009 - 884/1253

822 Image Manipulation and Storage

Slope = &

il
/.‘j’

SEie 6 1 o

Fig. 17.4 The Rothstein code for a line of slope 4.

with a 1; otherwise, is marked with a 0. Each column contains three tick marks; the bit
associated with the column is 0 unless one of the three tick marks is at a multiple of 5, since
multiples of 5 are where horizontal-line crossings occur. Thus, the interval between mark 9
and mark 12 is assigned a 1, since mark 10 lies within it. (A tick at the left side of a column
is considered to be in the column, whereas ticks on the right are not.)

The Rothstein code may be viewed as a mechanism for distributing g 1s evenly among
p binary digits. We can therefore use it to tell us how to distribute each of the g columns of
the source image among p columns of the target image. Unfortunately, using the 1s in the
Rothstein code as indicators of where to copy the source data leaves some of the target
columns blank. The Rothstein code can be cyclically permuted, however, to give different
mappings of source to destination.” Taking the average of these gives the result.

The pseudocode for this procedure is shown in Fig. 17.5.

To scale by a number smaller than 1, we simply reverse the process. The Rothstein code
for g/p tells us which of the source columns should appear in the target (a 1 in the Rothstein
code tells us to select that column). Again, we average over all cyclic permutations of the
code.

The Rothstein code can also be used to generate a description of shearing. A 1 in the
Rothstein code indicates that the corresponding column of the source pixmap should be
shifted up 1 pixel. Over the course of g columns, there are p shifts, resulting in a vertical
shear of amount ¢/p. Once again, we should cyclically permute and average the results.

17.4.2 Geometric Transformations with Filtering

Feibush, Levoy, and Cook give a somewhat more sophisticated mechanism for transform-
ing images [FEIB80]. (Their algorithm is developed for use in an algorithm for mapping
textures onto surfaces—see Chapter 16.) Before discussing the details, we note the
algorithm’s good and bad points. The algorithm has the advantage that it computes
reasonable values for boundary pixels: If an image is rotated so that some target pixel is
only partly covered by a source pixel, the algorithm recognizes that pixel as a special case
and processes it accordingly. It computes values by applying a weighted filter to the source
image to determine pixel values for the target image, which helps to reduce aliasing in the
resulting image. But since this filter is more than 1 pixel wide, if the algorithm is used to

A cyclic permutation of a binary sequence is the repeated application of logical shift operations to the

sequence.

TEXAS INSTRUMENTS EX. 1009 - 885/1253

