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(54) Controller for rendering pipelines

(57) The invention provides a method and appara-
tus for rendering graphic data as an image. Graphic data
that possibly contribute to the image is identified. The
identified graphic data is read into a rendering pipeline.
Samples are generated in the rendering pipeline only if
they possibly contribute to the image for the identified
graphic data. The identified graphic data and samples
are processed in the rendering pipeline only as long as
the identified graphic data and sample continue to con-
tribute to the image. All other identified graphic data and
samples are discarded from the pipeline.
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Description

Cross-Reference to Related Application

[0001] This is a continuation-in-part of U.S. Patent Application. 09/410,770 "Voxel and Sample Pruning in a Parallel
Pipelined Volume Rendering System," filed by Lauer et al. on October 1, 1999.

Field of the Invention

[0002] The present invention is related to the field of computer graphics, and in particular to rendering graphic data
with a parallel pipelined rendering engine.

Background of the Invention

[0003] Volume rendering is often used in computer graphics applications where three-dimensional data need to be
visualized. The volume data can be scans of physical or medical objects, or atmospheric, geophysical, or other scientific
models where visualization of the data facilitates an understanding of the underlying real-world structures represented
by the data.
[0004] With volume rendering, the internal structure, as well as the external surface features of physical objects and
models are visualized. Voxels are the fundamental data items used in volume rendering. A voxel is data that represent
values at a particular three-dimensional portion of the object or model. The coordinates (x, y, z) of each voxel map the
voxels to positions within the represented object or model.
[0005] A voxel represents one or more values related to a particular location in the object or model. For a given prior
art volume, the values contained in a voxel can be one or more of a number of different parameters, such as, density,
tissue type, elasticity, or velocity. During rendering, the voxel values are converted to color and opacity (RGBα) values
in a process called classification. These RGBα values can be blended and then projected onto a two-dimensional
image plane for viewing.
[0006] One frequently used technique during rendering is ray-casting. There, a set of imaginary rays are cast through
the array of voxels. The rays originate from some view point or image plane. Sample points are then defined along the
ray. The voxel values are interpolated to determine sample values, and the sample values along each ray are combined
to form pixel values.
[0007] U.S. Patent Application Sn. 09/315,742, "Volume rendering integrated circuit," filed on May 20, 1999 by Bur-
gess et al., incorporated herein by reference describes a rendering system that uses parallel pipelines. The rendering
system includes a host processor connected to a volume graphics board (VGB) by a bus. The VGB includes a voxel
memory and a pixel memory connected to a Volume Rendering Chip (VRC). The VRC includes all logic necessary for
performing real-time interactive volume rendering operations. The VRC includes four interconnected rendering pipe-
lines. In effect the VGB provides a rendering engine or "graphics accelerator."
[0008] During operation, application software executing in the host transfers volume data to the VGB for rendering.
The application software also loads rendering registers accessible by the pipelines. These registers specify how the
rendering is to be performed. After all data have been loaded, the application issues a command to initiate the rendering
operation. When the rendering operation is complete, the output image is moved from the pixel memory to the host or
to a 3D graphics card for display.
[0009] One problem with prior art hardware rendering pipelines is that frequently "bubbles" appear in the pipelines.
Bubbles are due to the fact that data are not available on a given clock cycle. Once a bubble is introduced, it has to
pass all the way through the pipeline. Consequently, bubbles waste time, and reduce the performance of the system.
[0010] Another problem with prior art hardware pipelines is that they typically process all voxels in a data set. It is
well known that for a given visualization of volume data, that there are clusters of voxels that contribute useful infor-
mation to the image and other clusters that are totally irrelevant. For example, in medical data sets, the percentage of
voxels that do not contribute to the final image is typically in the range of 70-95%. Thus, eliminating unnecessary voxel/
sample processing could eliminate up to 90% of the work.
[0011] Therefore, there is a need for a rendering system that can dynamically adapt to the complexities of the ren-
dering data, and furthermore there is a need for a pipelined rendering system that does not process unnecessary data.

Summary of the Invention

[0012] The invention provides a method and apparatus for rendering graphic data as an image. Graphic data that
possibly contribute to the image is identified. The identified graphic data is read into a rendering pipeline. Samples are
generated in the rendering pipeline only if they possibly contribute to the image for the identified graphic data. The
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identified graphic data and samples are processed in the rendering pipeline only as long as the identified graphic data
and sample continue to contribute to the image. All other identified graphic data and samples are discarded from the
pipeline.

Brief Description of the Drawings

[0013]

Figure 1 is a block diagram of a pipelined rendering system that uses a controller according to the invention;

Figure 2 is a block diagram of a rendering engine;

Figure 3 is a block diagram of stages of rendering pipelines;

Figure 4 is a block diagram of a controller connected to rendering pipelines;

Figure 5a-b are block diagrams of sample slices and voxel slabs;

Figures 6a-b are block diagrams of sample stamps and tiles;

Figures 7a-b, and 8 are block diagrams of rays passing through voxels;

Figure 9 is a block diagram of a controller according to the invention;

Figures 10-11 are block diagrams of controller state machines;

Figure 12 is a block diagram of instruction tags;

Figure 13 is a block diagram of stamp motion;

Figure 14 is a block diagram of section motion; and

Figure 15 is a block diagram of a controller execution unit.

Detailed Description of the Preferred Embodiment

Pipeline Organization

[0014] Figure 1 shows the overall organization of a volume rendering system 10 using a controller (CTRL) 400 ac-
cording to our invention. The system includes a host computer 100 connected to rendering subsystem 200 by a bus
121. As an advantage, the rendering subsystem is fabricated as a single ASIC. The host includes a CPU 110 and a
main memory 120.
[0015] As also shown in Figure 2, the principal modules of the rendering subsystem 200 are a memory interface
210, bus logic 220, a controller 400, and four parallel hardware pipelines 300. Except for shared slice buffers 250,
which span all four pipelines, the pipelines (A, B, C, and D) operate independent of each other. The. pipelines form
the core of our rendering engine.

Memory Interface

[0016] The memory interface 210 controls eight double data rate (DDR) synchronous DRAM channels that comprise
an off-chip rendering memory 160. The rendering memory provides a unified storage for all data 211 needed for ren-
dering volumes, i.e., voxels, pixels, depth values, look-up tables, and command queues. The memory interface 210
implements all accesses to the rendering memory 160, arbitrates the requests of the bus logic 220 and the controller
400, and distributes array data across the modules and the rendering memory 160 for high bandwidth access and
operation.
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Bus Logic

[0017] The bus logic 220 provides an interface with the host computer system 100. If the host is a personel computer
(PC) or workstation, then the bus can be a 64-bit, 66 MHz PCI bus 121 conforming to version 2.2 of the PCI specification.
The bus logic also controls direct memory access (DMA) operation for transfering data to and from the rendering
memory 160 via the memory interface 210. The DMA operations are burst-mode data transfers.
[0018] The bus logic also provides access to internal register files 221 of the controller 400. These accesses are
direct reads and/or writes of individual registers initiated by the host computer 100 or by some other device on the PCI
bus. The bus logic 220 also interprets access commands for efficient control of data transfers. The bus logic also sends
register values directly to the controller 400 for controlling rendering operations and receives status back from the
controller.

Controller

[0019] The controller 400 controls the operation of the volume rendering engine 300 using control signals 401. Note,
the controller is coupled to the pipelines in a parallel manner. The controller determines what data to fetch from the
memory, dispatches that data to the four pipelines, sends control information, such as interpolation weights, to the
individual pipeline stages at the right time, and receives output data and status from rendering operations.
[0020] A major function of the controller is to discard as much data as possible. By discarding data that are not
needed rendering can be greatly accelerated.
[0021] The controller, in part, is implemented as a finite state machine controlled by a large number of registers.
These are typically written by the bus logic 220 in response to load register commands of a command queue. Internally,
the controller maintains the counters needed to step through sample space one section at a time, to convert sample
coordinates to voxel coordinates, and to generate the control information needed by the stages of the pipelines. The
controller 400 is described in greater detail below.
[0022] The controller is designed to operate, time-wise, well in advance of the pipelines 300. Thus, the controller
can determine what samples and voxels are needed, and those that can be discarded. Recall, as many as 90% of the
voxels in certain classes of volume data do not affect the resulting image. Not reading voxels saves memory bandwidth,
and not processing samples saves pipeline cycles. In effect, the controller attempts to dynamically "prune" the volume
data to a bare minimum.
[0023] Some samples and voxels may enter early stages of the pipeline, before this determination can be made. In
that case, the samples and voxels are discarded in later stages, perhaps causing "bubbles." However, because the
various stages of the pipeline are buffered and may operate at different rates, bubbles can sometimes be squeezed
out to greatly decrease the amount of time it takes to render a volume. Because the peak rate at which the controller
produces commands is faster than the pipelines can process commands, bubbles can be replaced with good data so
that the performance of the pipelines is maximized.
[0024] As an additional feature, the controller can operate asynchronously with respect to the pipelines. This greatly
simplifies the timing relationship. In fact, the pipelines can be though of as having variable lengths (in terms of cycles).
For some operations the pipelines are (time-wise) shorter than for others. The controller is capable of time-aligning
the control signals with the data even though the control signals are generated well in advance. Even though the
controller does not know in advance how many clock cycles it will take for certain data to reach a particular stage in
any of the pipelines. The signals are buffered so that they arrive at the stage when they are needed by the data.

Pipelines, Miniblocks and Stamps

[0025] Figure 3 shows the four rendering pipelines of the rendering engine in greater detail, and it also shows how
data and rendering operations are distributed among the piplines. Each pipeline includes a gradient estimation stage
301, a classifier-interpolator stage 302, an illuminator stage 303, and a compositor stage 304.
[0026] Voxels are stored in the rendering memory 160 as miniblocks 310, that is, small cubic arrays of 2�2�2 voxels
each. During rendering, the controller 400 causes the memory interface to read streams of miniblocks. The miniblocks
are presented to the pipelines at the rate of one miniblock per clock cycle. In actual fact, the mini-blocks are passed
to the pipelines via the controller 400.
[0027] Miniblocks are read from the volume data set in x-y-z-order. That is, they are read sequentially in the x-
direction to fill up a row of a section, and row-by-row in the y-direction to fill a slice, and slice-by-slice in the z-direction
to render the entire section. Each miniblock is decomposed into four 1�1�2 arrays of voxels 320, that is, four pairs
of voxels (A, B, C, and D) aligned in the z-direction. One pair 320 of voxels is forwarded to each pipeline as shown in
Figure 3.
[0028] Each pair of voxels is passed through the gradient estimation stage 301 to obtain gradient values at each
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voxel. As a result of a central difference filter used to obtain gradients, the output voxels and gradients are offset by
one unit in each dimension from the inputs. This requires a small amount of data exchange between pipelines.
[0029] From the gradient estimation stage, the voxels and gradients are passed to the classifier-interpolator 302. In
this stage, voxel fields are converted to RGBα values and, along with gradients, are interpolated to values at sample
points along rays. The interpolator first performs interpolation in the Z-direction, and then in the Y and X directions.
The classification and interpolation steps can occur in either order. Note that the classifier-interpolator has one pair of
slice buffers 250 that are shared among all four pipelines, as well as unshared buffers that store the voxel data used
for Z interpolation.
[0030] The output of the four classifier-interpolators of the four pipelines is an array of RGBα values and gradients
at a 2�2 array of points in sample space called a stamp. The points of a stamp always lie in a plane that is parallel to
the voxel slab, at XY positions corresponding to the intersection of the slice with four of the rays being cast through
the volume. When the rays are defined so as to pass through pixels on the image plane, we call it xy-image order,
because the x- and y-coordinates of the rays are the same as those of image space. Ordinary image order, as known
in the prior art, selects points in sample space on planes that are parallel to the image plane, rather than on planes
that are parallel to the xy planes in the volume.
[0031] The stamp of RGBα values and gradients is next passed to the four illuminators 303. These apply the well
known Phong lighting using reflectance maps. The illuminator of each pipeline is independent of those of the other
pipelines, in the sense that they do not exchange data during rendering. The pipelines all operate synchronously ac-
cording to the same clock.
[0032] The gradients are consumed in the illuminator stages, except when the rendering operation specifies the
output of gradients. In this case, the three gradient components are substituted for the red, green, and blue color
components in the pipelines.
[0033] The output of the illuminator stage of each pipeline is an illuminated RGBα value representing the color con-
tribution of its sample point. The RGBα value is passed to the compositor stage 304. The compositor accumulates the
RGBα values of the rays into an on-chip buffer. At the end of rendering a section, the outputs of the four compositor
stages are read out, a stamp at a time, for storage in the rendering memory 160 as, for example, pixel values.

Controller-Pipeline Interface

[0034] Figure 4 shows how the controller 400 is connected in parallel to the various stages 301-304 of the pipelines
300. For clarity, the interconnects between the controller and the pipeline are shown at an abstract level. The actual
implementation includes a large number of parallel interconnect lines and more separate interconnects, see Figure 9
for a next level of detail.
[0035] The raw input data, e.g., voxels 402 from the rendering memory 160 pass through the controller 400 on the
way into the pipelines 300 via bus 405. The stages 301-304 convert voxel values to sample values, and combine
sample values to pixel values 403. The pixels are written back to the rendering memory via the controller.
[0036] In contrast with the prior art, the present rendering engine 300 is adaptively elastic. The controller 400 issues
output control signals 401 to the pipelines 300. The output control signals are transferred to the pipelines via queues
404. These are first-in-first-out (FIFO) queues. The output control signals are used to control the operation of the
pipeline stages 301-304. Input control signals 420 are received from the pipeline stages. The input control signals
indicate when each corresponding queue 404 is about to become full, so that the controller should stop sending data.
[0037] The output control signals 401, individually or as sets, include tags described in greater detail below. The tags
indicate the beginnings and ends of the various types of data structures into which the volume data are organized,
such as sections, slices, and slabs, described in further detail below. The tags also mark types of data processed inside
the controller, including stacks, tiles, stamps, etc., also described in further detail below.
[0038] The purpose of the tags in the queues 404 is to time-align the output control signals 401 with the data in the
various stages of the pipelines. Buffers 410 provide elasticity in the pipeline. For clarity, the buffers 410 are shown
between the stages, but in the preferred embodiment, some of the stages, such as the interpolator, have internal
buffers. The buffers provide a place to store data when a next stage is not yet ready to accept the data. It is the buffers,
in part, that give the pipelines a variable length or elasticity. The preferred implementation can save gates by eliminating
the buffers between some of the stages, in particular stages where buffers do not help eliminate bubbles, e.g., between
the classifier/ interpolator and the illumination stages.
[0039] During operation, depending on unknown dynamics of data availability, bus loads, and computation complex-
ity, the various stages can process the data at different rates. Thus, if a down stream stage is still busy, then an upstream
stage can continue to process and write its output to one of the buffers 410. Then, when the downstream stage com-
pletes the previous task, the input data that the downstream stage needs will be readily available.
[0040] The tags ensure that the data are always synchronized with respect to each other, even when the stages
operate asynchronously with respect to each other, and with respect to the controller 400. Additional input control lines
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