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bound on R, such that P,,->O as n~:c, For unquantized (soft-decision) 
decoding, R" is given as 

2 
R = log {} 2 1 _ e--f./Nl ! 

(8-1-102) 

where 'to! No = R, Y. is the SNR per dimension_ This result was derived in 
Section 7-2. 

On the other hand, if the output of the demodulator is quantized to Q levels 
prior to decoding, the Chernoff bound may be used to upper-bound the 
ensemble average binary error probability Pis;, 8m ) defined in Section 7-2. The 
result of this derivation is the same upper bound on Pe given in (8-1-101) but 
with R" replaced by R Q , where 

(8-1-103) 

In (8-1-103), {Pi} are the prior probabilities of the two signals at the input to 
the channel and {P(i I j)} denote the transition probabilities of the channel. For 
example. in the case of a binary symmetric channel, we have p, = po = t 
P(O 10) = p(llt) = 1- P, and P(O 11) = p(ll 0) = p. Hence, 

2 
RQ =log21 +v'4p(1_p) Q=2 (8-:-104) 

where 

p = Q(v'2Yb RJ (8-1-105) 

A plot of RQ versus 10 log ('lJNol is illustrated in Fig, 8-1-15 for Q =2 and 
Q = 00 (soft-decision decoding). Note that the difference in decoder perfor
mance between unquantized soft-decision decoding and hard-decision decod
ing is approximately 2 dB. In fact. it is easily demonstrated again that as 
'lJNll~O. the loss in performance due to hard-decision decoding is 

FlGURE 11-1-15 Comparison of Ro (soft·decision decoding) with RQ (hard
decision decoding.) as a function of the SNR per dimension. 
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to log", ~Jr = 2 dB, which is the same decibel difference that was obtained in 
our comparison of the channel capacity relations. We mention that about 1 dB 
of this loss can be recovered by quantizing the output of the demodulator to 
three levels instead of two (see Problem 7-11). Additional improvements are 
possible by quantizing the output into more than three levels. as shown in 
Section 7-3. 

8-1-7 Bounds on Minimum Distance of Linear Block Codes 
The expressions for the probability of error derived in this chapter for 
sofl-decision and hard-decision decoding of linear binary block codes clearly 
indlcate the importance that the minimum distance parameter plays in the 
performance of the code. If we consider soft-decision decoding, for example, 
the upper bound on the error probability given by (8-1-52) indicates that, for a 
given code rate K = kin, the probability of error in an A WON channel 
decrease', exponentially with dm •n • When this bound is used in conjunction with 
the lower bound on d m " given below, we obtain an upper bound on PM that 
can be achieved by many known codes. Similarly, we may use the upper bound 
given by (8-1-82) for the probability of error for hard-decision decoding in 
conjunction with the lower bound on d min to obtain an upper bound on the 
error probability for linear binary block codes on the binary symmetric 
channel.· 

On the other hand, an upper bound on dmin can be used to determine a 
lower bound on the probability of error achieved by the best code. For 
example, suppose that hard-decision decoding is employed. In this case, we 
have the two lower bounds on PM given by (8-1-86) and (8-1-87). with the 
former being the tighter. When either one of these two bounds is used in 
conjunction with an upper bound on d min the result is a lower bound on PM for 
the best (n. k) code. Thus, upper and lower bounds on dmin are important in 
assessing the capabilities of codes. 

A simple upper bound on the minimum distance of an (n. k) binary or 
non-binary linear block code was given in (8-1-14) as dmin ,;; n - k + 1. It is 
convenient to normalize this expression by the block size n. That is. 

d min 1 
~ ~ (l - R,.) + -

n n 
(8-1- j(}6) 

where Rc is the code rate. For large n. the factor lin can be neglected. 
If a code has the largest possible distance, i.e., dmin = n - k + 1, it is called a 

maximum-distance-separable code. Except for the trivial repetition-type codes. 
there are no binary maximum-separable codes. In fact, the upper bound in 
(8-1-106) is extremely loose for binary codes. On the other hand. nonbinary 
codes with dnin = n - k + 1 do exist. For example, the Reed-Solomon codes, 
which comprise a subclass of BCH codes, are maximum-distance-separable. 

In addition to the upper bound given above, there are several relatively 
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tight hounds on the minimum distance of linear block codes. We shall briefly 
descrihe four important hounds. three of which are upper bounds and the 
other a lower hound. The derivations of these hounds are lengthy and are not 
of particular interest in our subsequent discussion. The interested reader may 
Tefer 10 Chapler 4 of the hook by Peterson and Weldon (1972) for those 
derivations. 

One upper hound on the minimum distance can be obtained from the 
inequality in [8-1-83). By taking the logarithm of hoth sides of (8-1-83) and 
dividing by If. we obtain 

I ' (n) 1 - R.- ;. - log, 2: . 
n ;00-0 I 

(8-1-\07) 

Since the error-correcting capability of the code. measured by I, is related to 
the minimum distance. the ahove relation is an upper bound on the minimum 
distance. It is called the Hamming upper bOllnd. 

The asymptotic form of {8-1-107) is obtained by letting n-+ ce. Now, for any 
II. let t" be the largest integer I for which (8-1-107) holds. Then, it can be shown 
(Peterson and Weldon. 1972) that as n.- x , the ratio tin for any (n, k) block 
code cannot exceed r,,/n, where tuln satisfies the equation 

1- Rc = H(lo/n) (8-1-108) 

and H(xl is the binary entropy function defined by (3-2-10)_ 
The generalization of the Hamming bound to nonbinary codes is simply 

1 - Rc;' !.Iog., [± (.~)(q - I)i] 
n (=0 1 

(8-1-109) 

Another upper hound. developed by Plotkin (1960), may be stated as 
follows. The number of check digits required to achieve a minimum distance 
dmh in an (n. k) linear block code satisfies the inequality 

qdm ;, -I 
n-k:;;' -I-loud· 

I oq mm q-
(8-1-110) 

where q is the alphabet size. When the code is binary, (8-1-110) may be 
expressed as 

dmin (1 ) 1 ( 2) -- 1 - -2d . log2 d min ,,;; - 1 - R,. + -
n min 2 n 

In the limit asn.- lC with dminln ,,;;~, (8-1-110) reduces to 

(8-1-111) 
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Finally, there is another tight upper bound on the minimum distance 
obtained by Elias (Berlekamp. I 96i'i). It may be expressed in its asymptotic 
form as 

(~-1-112) 

where the parameter A ,s related (e) the code rate through the equation 

R,= I +Alog,A -tl-A)log,(I-A). (hA~1 (~-I-II3) 

Lower bounds on the minimum distance of (fl, k) block codes also exist. In 
particular. binary block codes exist that have a normalized minimum distance 
that asymptotically satisfies the inequality 

(8-1-1141 

where a is related u the code rate through the equation 

R, = I - fi(a) 

= I + a log, '" + (I - (Y) log, (l - a). (8-1-115) 

ThiS lower bound is a special case of a lower bound developed by Gilbert 
(1952) and Varsharmov (1957). which applies to non binary and b:nary block 
codes. 

The asymptotic bounds given above arc plotted in Fig. 8·1-16 for binar) 
codes. Also plotted in the figure for purposes of comparison are curves of the 
minimum distance as a function of code rate for BCH codes of block lengths 
n = 31 and 63. We observe that for n = 31 and 63, the normalized minimum 
distance falls well above the Varsharmov-Gilbcrl lower bound. As the block 
lcn~lh n increa,cs. \he efficiencv of the BCH codes diminishes. For example, 
when n = 1023, the curve for the normalized minimum distance falls close to 

FIC;l.:RE 8-1-16 l;ppt:r and lower hounds un normalizl'd minimum 
Jistance as.a function of code fJte. 
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the Varsharmov-Gilbert bound. As n increases beyond n = 1023. the normal
ized minimum distance of the BCH codes continues to decrease and falls below 
the Varsharmov-Gilbert bound. That is, dm;n/n approaches zero as n tends to 
infinity. Consequently the BCH codes. which are the most important class of 
cyclic codes. are not very efficient at large block lengths. 

8-1-8 Nonbinary Block Codes and Concatenated Block 
Codes 

A non binary block code consists of a set of fixed-length code words in which 
the elements of the code words are selected from an alphabet of q symbols. 
denoted by {a, 1,2 ..... q - I}. Usually. q = 2*, so that k information bits are 
mapped into one of tbe q symbols. The length of the non binary code word is 
denoted by N and the number of information symbols encoded into a block of 
N symbols is denoted by K. The minimum distance of the nonbinary code is . 
denoted by D m ;". A systematic (N, K) block code consists of K information 
symbols and N - K parity check symbols. 

Among the various types of nonbinary linear block codes, the Reed
Solomon codes are some of the most important for practical applications. As 
indicated previously, they comprise a subset of the BCH codes, which in turn 
are a class of cydic codes. These codes are described by the parameters 

N=q-!=2"-1 

K = 1.2.3, ' " , N - I 

Dm;n=N- K + 1 

R,=K/N 

Such a code is guaranteed 10 correct up to 

1= U(Dm ," - l)J 
=U(N - K)J 

(8-1-116) 

(8-1-117) 

symbol errors. Of course, these codes may be extended or shortened in the 
manner described previously for binary block codes. 

The weight distribution {A,} of the class of Reed-Solomon codes is known. 
The coefficients in the weight enumerating polynomial are given as 

(8-I-WI) 

where D == Dm ," and q = 2*, 
One reason for the importance of the Reed-Solomon codes is their good 

474

464 DIGITAL COMMF"ICATIONS 

the Varsharmov-Gilbert bound. As n increases beyond n = 1023. the normal
ized minimum distance of the BCH codes continues to decrease and falls below 
the Varsharmov-Gilbert bound. That is, dm;n/n approaches zero as n tends to 
infinity. Consequently the BCH codes. which are the most important class of 
cyclic codes. are not very efficient at large block lengths. 

8-1-8 Nonbinary Block Codes and Concatenated Block 
Codes 

A non binary block code consists of a set of fixed-length code words in which 
the elements of the code words are selected from an alphabet of q symbols. 
denoted by {a, 1,2 ..... q - I}. Usually. q = 2*, so that k information bits are 
mapped into one of tbe q symbols. The length of the non binary code word is 
denoted by N and the number of information symbols encoded into a block of 
N symbols is denoted by K. The minimum distance of the nonbinary code is . 
denoted by D m ;". A systematic (N, K) block code consists of K information 
symbols and N - K parity check symbols. 

Among the various types of nonbinary linear block codes, the Reed
Solomon codes are some of the most important for practical applications. As 
indicated previously, they comprise a subset of the BCH codes, which in turn 
are a class of cydic codes. These codes are described by the parameters 

N=q-!=2A-1 

K = 1.2.3, ' " , N - I 

Dm;n=N- K + 1 

R,=K/N 

Such a code is guaranteed 10 correct up to 

1= U(Dm ," - l)J 
=U(N - K)J 

(8-1-116) 

(8-1-117) 

symbol errors. Of course, these codes may be extended or shortened in the 
manner described previously for binary block codes. 

The weight distribution {A,} of the class of Reed-Solomon codes is known. 
The coefficients in the weight enumerating polynomial are given as 

(8-I-WI) 

where D == Dm ," and q = 2*, 
One reason for the importance of the Reed-Solomon codes is their good 



CHAPTER K: BLOCK AND CON\iOLUTlO~AL {,HA~NL CODES 46S 

distance properties. A second reason for their importance is the existence of 
efficient hard-decision decoding algorithms, which make it possible to imple
ment relatively long codes in many practical applications where coding is 
desirable. 

A nonbinary code is particularly matched to an M-ary modulation technique 
for transmitting the 2' possible symbols. Specifically, M-ary orthogonal 
signaling. e.g., M-ary FSK, is frequently used. Each of the 2* symbols in the 
q-ary alphabet .is mapped to one of the M = 2* orthogonal signals. Thus, the 
transmission of a code word is accomplished by transmitting IV orthogonal 
signals, where each signal is selected from the set of M = 2' possible signals. 

The optimum demodulator for such a signal corrupted by A WGN consists 
of M matched filters (or cross-correIa tors) whose outputs are passed to the 
decoder, either in the form of soft decisions or in the form of hard deciSions. If 
hard decisions are made by the demodulator, the symbol error probability f" 
and the code parameters are sufficient to characterize the performance of the 
decoder. In fact, the modulator, the A WGN channel, and the demodulator 
form an equivalent discrete (M-ary) input, discrete (M-ary) output, symmetric 
memoryless channel characterized by the transition probabilities p. = 1 - PM 
and f,,/(M - 1). This channel model, which is illustrated in Fig. 8-1-17. is a 
generalization of the BSe. 

The performance of the hard-decision decoder may be characterized by the 
following upper bound on the code word error probability: 

P. "". ~ (IV)' r (1- P )N-, (L.J.M M 
1'-' -<-- 1 I 

(8-1-119) 

where I is the number of errors guaranteed to be corrected by the code. 
When a code word error is made. the corresponding symbol error 

probability is 

["'IV'. p, .• = ~ ~ i( . 1p',,(I- f,,)" 
'"Y 1= ttl I J 

FIGURE 8-1-17 M-ary input. M-ary output, s},mrnetric merroryless 
channel. 

(8-1-120) 
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Furthermore, if the symbols are converted to binary digits, the hit error 
probability corresponding to (8-1-120) is 

(8-1-121) 

Example 8-1-13 

Let us evaluate the performance of an N = 2' - I = 31 Reed-Solomon code 
with Dm ," = 3, 5, 9, and 17, The corresponding values of K are 29, 21, n. 
and 15. The modulation is ll/! = 32 orthogonal FSK with noncoherem 
detection at the receiver. 

The probability of a symbol error is given by (5-4-46), and may he 
expressed as. 

(8-,-122) 

where y is the SNR per code symbol. By using (8-1-122) in (8-1-120l and 
combining the result with (8-1-121), we obtain the bit error probability. The 
results of these computations are plotted in Fig. 8-1-1/;. Note that the more 
powerful codes (large D mi,) give poorer performance at low SNR per bit 
than the weaker codes. On the other hand, at high SNR, the more powerful 
codes give better perfolmance. Hence, there are crossovers among the 
various codes, as illustrated for example in Fig. 8-1-18 for the t = 1 and 1 = 8 
codes. Crossovers also occur among the I = I, 2, and 4 codes at smaller 
values of SNR per bit. Similarly, the curves for t = 4 and 8 and for 1=1-: and 
2 cross in the region of high S"lR. This is the characteristic behavior for 
noncoherent detection of the coded waveforms. 

If the demodulator docs nOl make a hard deciSIon on each sl'mbol. buL 

"'FIGURE 8.1-18 Perforrna!lce of ~everal i\- =-: 1L (-crror correcting Reeu-So\omon 
code5 wi!:') 32-ary FSK moduhtion on an A. WGN channel 
(nHncohe~enr demodulation). 
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probability corresponding to (8-1-120) is 

(8-1-121) 

Example 8-1-13 

Let us evaluate the performance of an N = 2' - I = 31 Reed-Solomon code 
with Dm ," = 3, 5, 9, and 17, The corresponding values of K are 29, 21, n. 
and 15. The modulation is ll/! = 32 orthogonal FSK with noncoherem 
detection at the receiver. 

The probability of a symbol error is given by (5-4-46), and may he 
expressed as. 

(8-,-122) 

where y is the SNR per code symbol. By using (8-1-122) in (8-1-120l and 
combining the result with (8-1-121), we obtain the bit error probability. The 
results of these computations are plotted in Fig. 8-1-1/;. Note that the more 
powerful codes (large D mi,) give poorer performance at low SNR per bit 
than the weaker codes. On the other hand, at high SNR, the more powerful 
codes give better perfolmance. Hence, there are crossovers among the 
various codes, as illustrated for example in Fig. 8-1-18 for the t = 1 and 1 = 8 
codes. Crossovers also occur among the I = I, 2, and 4 codes at smaller 
values of SNR per bit. Similarly, the curves for t = 4 and 8 and for 1=1-: and 
2 cross in the region of high S"lR. This is the characteristic behavior for 
noncoherent detection of the coded waveforms. 

If the demodulator docs nOl make a hard deciSIon on each sl'mbol. buL 
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instead, passe, the unquantized matched filter outputs to the d.::coder, 
soft-decision decoding can he performed. This decoding involves the formation 
of q" = 2"< correlation metrics. where each metric corresponds to one of the 
q" code words and consists of a sum of /II matched filter outputs corr.:spon<.iing 
to the N code symt>ols. The matched filter outputs may be added coherently. or 
they may be envelope-cetected and then added, or they may he 'quare law 
detected and then added. If coherent detection is used and the channel noise is 
AV .... GN, the computation of the prohability of error is a straightforward 
extension of the hinary case considered in Section 8-1-4. On the other hand. 
when envelope detection or square-law detection and noncoherent combining 
are used to form the decision variables, the computation of the decoder 
performance is considerably more complicated. 

Concatenated Block Codes A concatenated code consists 01 tWe) separate 
codes which are combined to form a larger code. Usually one code is selected 
to be nonbinarv and the other is binary. The two codes are concatt:nated as 
illustrated in Fig. 8-1-\9. The nonbinary (N, K; code forms the <'uter code and 
the binary code forms the inner code. Code words are formed by subdividing a 
block of kK information bits into K groups, called symbols, where each symhol 
consists of k bits. The K k-bit symbols are encoded into N k-bit symbols by the 
outer encoder, as is usually done with a nonbinary code. The inner encoder 
takes each k-bit symbol and encodes it into a binary block code of length fl. 

Thus we obtain a concatenated block code having a block length nf Nfl bits and 
containing kK information bits. That is, we have created an equivalent 
(Nn, Kk) long binary code. The bits in each code word are transmitted over 
the channel by means of PSK or, perhaps. by FSK. 

We also indicate that the minimum distance of til, concatenated code is 
dm;nDm;m where Dm'n is the minimum distance of the outer code and d""n is the 
minimum distance of the inner code. Furthermore, the rate of 'he t'oneaten
ated code is KkiNfl, which is equal to the product of the two code rates. 

A hard-decision decoder for a concatenated code is conveniently separated 
into an inner decoder and an outer decoder. The inner decoder takes the hard 
decisions on each group of n bits, corresponding to a code word of the inner 
code, and makes a decision on the k information bits based on maximum
likelihood (minimum-distance) decoding. These k bits represent one symbol of 
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likelihood (minimum-distance) decoding. These k bits represent one symbol of 
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the outer code. When a block of N k-bit symbols are received from the inner 
decoder, the outer decoder makes a hard decision on the K k -bit symbols 
based on maximum-likelihood decoding. 

Soft-decision decoding is also a possible alternative with a concatenated 
code. Usually, the soft-decision decoding is performed on the inner code, if it is 
selected to have relatively few code words, i.e., if 2' is not too large. The outer 
code is usually decoded by means of hard-decision decoding, especially if the 
block length is long and there are many code words. On the other hand, there 
may be a significant gain in performance when soft -decision decoding is used 
on both the outer and inner codes, to justify the additional decoding 
complexity. This is the case in digital communications over fading channels. as 
we shall demonstrate in Chapler 14. 

We conclude this subsection with the following example. 

EXlllllpJe 8-1·14 

Suppose that the (7,4) Hamming code described in Examples 8-1-1 and 
8-1-2 is used as the inner code in a concatenated code in which the outer 
code is a Reed-Solomon code. Since k = 4, we select the length of the 
Reed-Solomon code to be N = 24 - 1 = 15. The number of iniormation 
symbols K per outer code word may be selected over the range 1 .;;; K .;;; 14 
in order to achieve a desired code rate. 

8-1·9 Interleaving or Coded Data for ChanBeis with Burst 
Errors 

Most of the well-known codes that have been devised for increasing the 
reliability in the transmission of information are effective when the errors 
caused by the channel are statistically independent. This is the case for the 
A WON channel. However, there are channels that exhibit bursty error 
characteristics. One example is the class of channels characterized by multipath 
and fading, which is described in detail in Chapter 14. Signal fading due to 
time-variant mUltipath propagation often causes the signal to fal! below the 
noise level, thus resulting in a large number of errors. A second example is the 
class of magnetic recording channels (tape or disk) in which defects in the 
recording media result in clusters of errors. Such error clusters are not usually 
corrected by codes that are optimally designed for statistically independent 
errors. 

Considerable work has been done on the construction of codes that are 
capable of correcting burst errors. Probably the best known burst error 
correcting codes are the subclass of cyclic codes called Fire codes, named after 
P. Fire (1959), who discovered them. Another class of cyclic codes for burst 
error correction were subsequently discovered by Burton (1969). 
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FIGURE 8-1-20 Block diagram of system employing inlerleaving for burst-error channel. 

A burst of errors of length b is defined as a sequence of b-bit errors, the first 
and last of which are I',. The burst error correction capability of a code is 
defined as one less than the length of the shortest uncorrect~ble burst. It is 
relatively easy to show that a systematic (n, k) code, which has n - k parity 
check bits, can correct bursts of length b ,,; U(n - k )J. 

An effective method for dealing with burst error channels is to interleave 
the coded data in such a way that the bursty channel is transformed into a 
channel having independent errors. Thus, a code designed for independent 
channel errors (short bursts) is used. 

A block diagram of a system that employs interleaving is shown in Fig. 
8-1-20. The encoded data are reordered by the interleaver and transmitted 
over the ,hannel. At the receiver, after (either hard- or soft-decision) 
demodulation, the deinterleaver puts the data in proper sequence and passes it 
to the decoder. As a result of the interleaving/deinterleaving, error bursts are 
spread out in time so that errors within a code word appear to be independent. 

The interleaver can take one of two forms: a block structure or a 
convolutional structure. A block interleaver formats the encoded data in a 
rectangular array of m rows and n columns. Usually, each row of the array 
constitutes a code word of length n. An interleaver of degree m consists of m 
rows (m code words) as illustrated in Fig. 8-1-21. The bits are read out 

FIGURE 8·1-21 A block interleaver lor coded data. 

Read out bits to :nodulator 

t t t t t t t t ..... I 8 15 22 29 36 mn-O 

..... 2 9 10 : 23 30 }7 . .. mn-5 

..... 3 10 17 : 24 31 )8 mn-4 

..... 4 II 18 25 32 39 mn-3 mm ws ..... 5 12 .9 26 33 ,0 . . mn- 2 

..... 6 13 20 27 34 41 mn- I ..... 7 14 21 28 35 42 mn 

~ 11 - k parity bus k data bih 
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colur.m-wise and transmitted over the channel. At the receiver, the deinler
leaver stores the data in the same rectangular array format, hut it is read out 
row-wise, one code word at a time. As a result of this reordering of the data 
during transmission, a burst of errors of length I = mb is broken up into m 
bursts of length b. Thus, an (n, k) code that can handle burst errors of length 
b s;lHn - k)J can be combined with an interleaver of degree m to create an 
interleaved (mn, mk) block code that can handle bursts of length mb. 

A conw/utionai interleauer can be used in place of a block interleaver in 
much the same way. Convolutional interleavers are better matched for use 
with the class of convolutional codes that is described in the following section. 
Convolutional interleaver structures have been described by Ramsey (1970) 
and Forney (1971). 

8-2 CONVOLUTIONAL CODES 
A convolutional code is generated by passing the information sequence to be 
transmitted through a linear finite-state shift register. In general, the shift 
register consists of K (k-bit) stages and n linear algebraic function generators. 
as shown in Fig. 8-2-1. The input data to the encoder, which is assumed to be 
binary, is shifted into and along the shift register k bits at a time. The number 
of output bits for each k-bit input sequence is n bits. Consequently. the code 
rate is defined as R, = k/ fl, consistent with the definition of the code rate for a 
block code. The parameter K is called the constraint length of the convolu
tional code. t 

""1----------- Kk,>[ages -----------+. I 
k 

infonnallon L..,c-'-.....".L..--''-,.-=:' 
bit~ 

lV 2 n 

~~. _________ _=E=nc~~~d------. 
sequence 

FIGURE 11-2·1 Convolutional encoder. 10 modulator 

t In many cases. the constraint length of the code is given in bits rather than k~bit ~ytes. Hence 
the shift register may be called a L-slag~ shift register, where L = Kk. Furthermore. l. may not be a 
multiple of k. in general. 
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One method for describing a convolutional code is to giv-: its generator 
matrix, just as we did for block codes. In general, the generator matrix for a 
convolutional code is semi-infinite since the input sequence is semi-infinite in 
length. As an alternative to specifying the generator matrix. we shall usc a 
functionally equivalent representation in which we specify a set of 11 vectors, 
one vector for each of the n modul0-2 adders. Each vector has Kk dimensions 
and contains the connections of the encoder to that modulo-2 adder. A 1 in the 
ith position of the vector indicates that the corresponding stage in the shift 
register is connected to the modul0-2 adder and a 0 in a given position 
indicates that no connection exists between that stage and the modul0-2 adder. 

To be specific, let us consider the binary convolutional encoder with 
constraint length K = 3, k = 1, and n = 3, which is shown in Fig. 8-2-2. Initially, 
the shift register is assumed to be in the all-zero state. Suppose the first input 
bit is a 1. Then the output sequence of 3 bits is Ill. Suppose the second bit is a 
O. The output sequence will then be 001. If the third bit is a L the output will 
be 100, and so on. Now, suppose we number the outputs of the function 
generators that generate each three·bit output sequence as I, 2. and 3, from 
top to bottom, and similarly number each corresponding function generator. 
Then, since only the first stage is connected to the first function generator (no 
modul0-2 adder is needed), the generator is 

g = [100] 

The second function generator is connected to stages I and 3. Hence 

g, = [lOIJ 

Finally, 

g=[lll] 

The generators for this code are Dore conveniently given in octal form as 
(4,5,7). We conclude that. when k = L we require n generators. each of 
dimension K to specify the encoder. 

For a rate kin binary convolutional code with k> 1 and constraint length K. 
the n generators are Kk-dimensional vectors, as stated above. The following 
example illustrates the case in which k = 2 and n = 3. 
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Example 8·2·1 

Consider the rate 2/3 convolutional encoder illustrated in Fig. 8-2-3. In this 
encoder, two bits at a time are shifted into it and three output bits are 
generated. The generators are 

g, = [lOll], g;, = [1101], g., = [1010] 

In octal form, these generators are (13.15,12). 

There are three alternative methods that are often used to describe a 
convolutional code. These are the tree diagram, the trellis diagram, and the 
state diagram. For example, the tree diagram for the convolutional encoder 
shown in Fig. 8-2-2 is illustrated in Fig. 8-2-4. Assuming that the encoder is in 
the all-zero state initially, the diagram sbows that, if the first input bit is a 0, 
the output sequence is 000 and, if tbe first bit is a 1; the output sequence is Ill. 
Now, if the first input bit is a 1 and the second bit is a 0, the second set of three 
output bits is 001. Continuing through the tree, we see that if the tbird bit is a 

000 

o 

III 

FIGURE 8-2-4 Tree diagram for rate 1/3. K = 3 convolutional code. 

482

472 DlGITA.L COMMU!'>.IKATIONS 

Zoutput 
'+----02 

FlGURE 8-2-3 K ~ 2. k = 2. n = 3 convolutional encoder. '-___ -03 

Example 8·2-1 

Consider the rate 2/3 convolutional encoder illustrated in Fig. 8-2-3. In this 
encoder, two bits at a time are shifted into it and three output bits are 
generated. The generators are 

g, = [1011], g;, = [1101], g., = [1010] 

In octal form, these generators are (13.15,12). 

There are three alternative methods that are often used to describe a 
convolutional code. These are the tree diagram, the trellis diagram, and the 
state diagram. For example, the tree diagram for the convolutional encoder 
shown in Fig. 8-2-2 is illustrated in Fig. 8-2-4. Assuming that the encoder is in 
the all-zero state initially, the diagram shows that, if the first input bit is a 0, 
the output sequence is 000 and, if tbe first bit is a 1; the output sequence is 111. 
Now, if the first input bit is a 1 and the second bit is a 0, the second set of three 
output bits is 001. Continuing through the tree, we see that if the third bit is a 

000 

o 

III 

FIGURE 8-2-4 Tree diagram for rate 1/3. K = 3 convolutional code. 
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o then the output is 011, while if the third bit is a 1 then the output is 100. 
Given that a particular sequence has taken us to a particular node in the tree, 
the branching rule is to follow the upper branch if the next input bit is a 0 and 
the lower branch if the bit is a 1. Thus, we trace a particular path through the 
tree that is determined by the input sequence. 

Close observation of the tree that is generated by the convolutional encoder 
shown in Fig. 8-2-2 reveals that the structure repeats itself after the third stage. 
This behavior is consistent with the fact that the constraint length K = 3. That 
is, the three-bit output sequence at each stage is determined by the input bit 
and the two previous input bits, i.e., the two bits contained in the first two 
stages of the shift register. The bit in the last stage of the shift register is shifted 
out at the right and does not affect the output. Thus we may say that the 
three-bit output sequence for each input bit is determined by the input bit and 
the four possible states of the shift register, denoted as a = 00, b = 01, c = 10, 
d = 11. If we label each node in the tree to correspond to the four possible 
states in the shift register, we find that at the third stage there are two nodes 
with the label a, two with the label b, two with the label c, and two with the 
label d. Now we observe that all branches emanating from two nodes having 
the same label (same state) are identical in the sense that they generate 
identical output sequences. This means that the two nodes having the same 
label can be merged. If we do this to the tree shown in Fig. 8-2-4, we obtain 
another diagram, which is more compact, namely, a trellis. For example, the 
trellis diagram for the convolutional encoder of Fig. 8-2-2 is shown in Fig. 
8-2-5. In drawing this diagram, we use the convention that a solid line denotes 
the output generated by the input bit 0 and a dotted line the output generated 
by the input bit 1. In the example being considered, we observe that, after the 
initial transient, the trellis contains four nodes at each stage, corresponding to 
the four stales of tbe shift register, D, b, c, and d. After the second stage, each 
node in the trellis has two incoming paths and two outgoing paths. Of the two 
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o then the output is 011, while if the third bit is a 1 then the output is 100. 
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identical output sequences. This means that the two nodes having the same 
label can be merged. If we do this to the tree shown in Fig. 8-2-4, we obtain 
another diagram, which is more compact, namely, a trellis. For example, the 
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8-2-5, In drawing this diagram, we use the convention that a solid line denotes 
the output generated by the input bit 0 and a dotted line the output generated 
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outgoing paths, one correspcnds to the input bit () and the other to the path 
followed if the input hit is a 1. 

Since the output ot the encoder is determined by the input and the stat" of 
lite encoder, an even more compact diagram than the trellis i, the stale 
j;agram. The state diagram is simply a graph of the possible stat", of the 
encoder and the possible transitions from one state to another. For example 
thc state diagram for the encoder shown in Fig. H-2-2 is illustrated in Fig. ~-2-6. 
This diagram shows l~at the possible transitions are 

a ~a, a..!....c, bJl~a. b-iorc, c~b, c-4d, d~b. dJ....,.d. 

where a'!'" {3 denotes the trans:tion from state [l to f3 when the inpul hit is a L 
The three bits shown next to each branch in the state diagram represent the 
output bits. A dottcd line in the graph indicates that the input bit is a 1. while 
the solid line indicates that the input bit is a 0. 

Example 8-2-2 

Let us consider the k = 2, rate 2/3 convolutional code described in Example 
8-2-1 and shown in Fig. 8-2-3. The first two input bits may be 00, 01, 10, or 
11. The corresponding output bits are 000, 010, Ill, 101. When the next pair 
of input bits enter the encoder, the first pair is shifted to the second stage. 
The corresponding output bits depend on the pair of bits shifted into the 
second stage and the new pair of input bits. Hence, the tree diagram for this 
code, shown in Fig. 8-2-7, has four branches per node, corresponding to the 
four possible pairs of input symbols. Since the constraint length of the code 
is K = 2, the tree begins to repeat after the second stage. As illustrated in 
Fig. 8-2-7, all the branches emanating from nodes labeled a (state a) yield 
identical outputs. By merging the nodes having identical labels, we obtain 
the trellis, which is shown in Fig. 8-2-8. Finally, the state diagram for this 
code is shown in Fig. 8-2-9. 
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output bits. A dottcd line in the graph indicates that the input bit is a 1. while 
the solid line indicates that the input bit is a 0. 

Example 8-2-2 

Let us consider the k = 2, rate 2/3 convolutional code described in Example 
8-2-1 and shown in Fig. 8-2-3. The first two input bits may be 00, 01, 10, or 
11. The corresponding output bits are 000, 010, Ill, 101. When the next pair 
of input bits enter the encoder, the first pair is shifted to the second stage. 
The corresponding output bits depend on the pair of bits shifted into the 
second stage and the new pair of input bits. Hence, the tree diagram for this 
code, shown in Fig. 8-2-7, has four branches per node, corresponding to the 
four possible pairs of input symbols. Since the constraint length of the code 
is K = 2, the tree begins to repeat after the second stage. As illustrated in 
Fig. 8-2-7, all the branches emanating from nodes labeled a (state a) yield 
identical outputs. By merging the nodes having identical labels, we obtain 
the trellis, which is shown in Fig. 8-2-8. Finally, the state diagram for this 
code is shown in Fig. 8-2-9. 
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f'n ",:ncr3iizc, we state that a rak kin. constraint length K. convdutional 
cmle is ,_haracterized by 2' hranches emanating from each node of the tree 
Jiagram. The trellis and the state diagrams each have 2'(1-: "possible state,. 
There arc 2' branches entcnng each ,tatc and 2' branches kaving each statc 
(in the trelils and tree. this is true after the initial transient), 

The three types of diagrams described above are also used to represent 
nonbinary convolutional codes. \\Then the number of symbols in the code 
alphahet is q = 2'. k > 1, the resulting nonbinary code may also be represented 
as an equivalent binary code. The following example considers a convolu~ional 
code of this type, 

Example 8-2-3 

Let us consider the convolutional code generated by the encoder shown in 
Fig. 8-2-10. This code may be described as a binary convolutional code with 
parameters K = 2, k = 2. 1/ = 4. R, = 1/2. and having the generators 

g, = [0101]. g,=[lllOj, 1:-1 = [100 I] 
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Example 8-2-3 

Let us consider the convolutional code generated by the encoder shown in 
Fig. 8-2-10. This code may be described as a binary convolutional code with 
parameters K = 2. k = 2. II = 4. R, = 1/2. and having the generators 

g, = [0101]. g,=[lllOj, I:-I = [100 I] 
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FIGURE 8-2-8 Trellis diagram for K ~ 2. k ~ 2. n = 3 convolutional oode. 

FIGURE 8-1-9 State diagram for K = 2. k = 2. n = 3 convolutional code. 
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FIGURE 8-1-9 State diagram for K = 2. k = 2. n = 3 convolutional code. 
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FIGURE 8-2-10 K = 2, k = 2. n = 4 convolutional encoder. 

input 

/.:=1 

L....,~-------o 3 

'----------04 

Except for the difference in rate, this code is similar in form to the rate 213. 
k = 2 convolutional code considered in Example 8-2-1. 

Alternatively, the code generated by the encoder in Fig. 8-2-10 may be 
described as a nonbinary (q = 4) code with one quaternary symbol as an 
input and two quaternary symbols a5 an output. In fact, if the output of the 
encoder is treated by the modulator and demodulator as q-ary (q = 4) 
symbols that are transmitted over the channel by means of some M-ary 
(M = 4) modulation technique, the code is appropriately viewed as 
nonbinary. 

In any case, the tree, the trellis, and the state diagrams are independent 
of how we view the code. That is, this particular code is characterized by a 
tree with four branches emanating from each node, or a trellis with four 
possible states and four branches entering and leaving each stat~ or, 
equivalently, by a state diagram having the same parameters as the trellis. 

8-2-1 The Transfer Function of a Convolutional Code 
The distance properties and the error rate performance of a convolutional code 
can be obtained from its state diagram. Since a convolutional code is linear, the 
set of Hamming distances of the code sequences generated up to some stage in 
the tree, from the all-zero code sequence, is the same as the set of distances of 
the code sequences with respect to any other code sequence, Consequently, we 
assume without loss of generality that the all-zero code sequence is the input to 
the encoder. 

The state diagram shown in Fig. 8-2-6 will be used to demonstrate the 
method for obtaining the distance properties of a convolutional code. First, we 
label the branches of the state diagram as either DO = 1, D', D2, or D', where 
the exponent of D denotes the Hamming distance of the sequence of output 
bits corresponding to each branch from the sequence of output bits corres
ponding to the all-zero branch. The self-loop at node a can be eliminated, since 
it contributes nothing to the distance properties of a code sequence relative to 
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Except for the difference in rate, this code is similar in form to the rate 213. 
k = 2 convolutional code considered in Example 8-2-1. 

Alternatively, the code generated by the encoder in Fig. 8-2-10 may be 
described as a nonbinary (q = 4) code with one quaternary symbol as an 
input and two quaternary symbols a5 an output. In fact, if the output of the 
encoder is treated by the modulator and demodulator as q-ary (q = 4) 
symbols that are transmitted over the channel by means of some M-ary 
(M = 4) modulation technique, the code is appropriately viewed as 
nonbinary. 

In any case, the tree, the trellis, and the state diagrams are independent 
of how we view the code. That is, this particular code is characterized by a 
tree with four branches emanating from each node, or a trellis with four 
possible slates and four branches entering and leaving each stat~ or, 
equivalently, by a state diagram having the same parameters as the trellis. 

8-2-1 The Transfer Function of a Convolutional Code 
The distance properties and the error rate performance of a convolutional code 
can be obtained from its state diagram. Since a convolutional code is linear, the 
set of Hamming distances of the code sequences generated up to some stage in 
the tree, from the all-zero code sequence, is the same as the set of distances of 
the code sequences with respect to any other code sequence, Consequently, we 
assume without loss of generality that the all-zero code sequence is the input to 
the encoder. 

The state diagram shown in Fig. 8-2-6 will be used to demonstrate the 
method for obtaining the distance properties of a convolutional code. First, we 
label the branches of the state diagram as either DO = 1, D', D2, or D', where 
the exponent of D denotes the Hamming distance of the sequence of output 
bits corresponding to each branch from the sequence of output bits corres
ponding to the all-zero branch. The self-loop at node a can be eliminated, since 
it contributes nothing to the distance properties of a code sequence relative to 
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FIGURE 8-2-Il State diagram for rate 1/3, K ~ 3 convolutional code. 

the all-zero code sequence. Furthermore, node a is split into two nodes. one of 
which represents the input and the other the output of the state diagram. 
Figure 8-2-11 illustrates the resulting diagram. We use this diagram. which now 
consists of five nodes because node a was split into two, to write the four state 
equations 

Xc = D'Xa + DXh 

Xb=DXc +DXd 

X,= D'Xc +D2X, 

X,= D'Xh 

(8-2-1) 

The transfer function for the code is defined as T(D) = X,/Xa. By solving 
the state equations given above. we obtain 

where, by definition, 

= D t . + 2D8 + 4D \0 + 8D 12 + ... 

{even d) 

(odd d) 

(8-2-2) 

(8-2-3) 

The transfer function for this code indicates that there is a single path of 
Hamming distance d = 6 from the all-zero path that merges with the all-zero 
path at a given node. From the state diagram shown in Fig. 8-2-6 or the trellis 
diagram shown in Fig. 8-2-5, it is observed that t_he d = 6 path is acbe. There is 
no other path from node a to node e having a distance d = 6. The second term 
in (8-2-2) indicates that there are two paths from node a to node e having a 
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the all-zero code sequence. Furthermore, node a is split into two nodes. one of 
which represents the input and the other the output of the state diagram. 
Figure 8-2-11 illustrates the resulting diagram. We use this diagram. which now 
consists of five nodes because node a was split into two, to write the four state 
equations 

Xc = D'Xa + DXh 

Xb=DXc +DXd 

X,= D'Xc +D2X, 

X,= D'Xh 

(8-2-1) 

The transfer function for the code is defined as T(D) = X,/Xa. By solving 
the state equations given above. we obtain 

where, by definition, 

= D t . + 2D 8 + 4D \0 + 8D 12 + ... 

{even d) 

(odd d) 

(8-2-2) 

(8-2-3) 

The transfer function for this code indicates that there is a single path of 
Hamming distance d = 6 from the all-zero path that merges with the all-zero 
path at a given node. From the state diagram shown in Fig. 8-2-6 or the trellis 
diagram shown in Fig. 8-2-5, it is observed that I_he d = 6 path is acbe. There is 
no olher path from node a to node e having a distance d = 6. The second term 
in (8-2-2) indicates that there are two paths from node a to node e having a 
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distance d = 8. Again, from the state diagram or the trellis, we observe that 
these paths are acdbe and acbcbe. The third term in (8-2-2) indicates that there 
are four paths of distance d = 10, and so forth. Thus the transfer function gives 
us the distance properties of the convolutional code. The minimum distance of 
the code is called the minimum free distance and denoted by d f«e' I n our 
example, d"ee = 6. 

The transfer function can be used to provide more detailed information than 
just the distance of the various paths. Suppose we introduce a factor N into all 
branch transitions caused by the input bit 1. Thus, as each branch is traversed. 
the cumulative exponent on N increases by one only if that branch transition is 
due to an input bit 1. Furthermore, we introduce a factor of J into each branch 
of the state diagram so that the exponent of J will serve as a counting variable 
to indicate the number of branches in any given path fr9m node a to node e. 
For the rate 1/3 convolutional code in our example, the state diagram that 
incorporates the additional factors of J and N is shown in Fig. 8-2-12. 

The state equations for the state diagram shown in Fig. 8-2-12 are 

Xc =JND"X. +JNDXh 

Xh=JDX,+JDX" 

Xd =JND2X, +JND'X" 

Xc = J0 2X h 

(8-2-4) 

Upon solving these equations for the ratio X,I X., we obtain the transfer 
function 

T(O. N. J) 

= J3 NO b + rN2D" + J 5N 2 0 X + J 5N 3 01:J 

+ 21"N'OIO +PN'O'" + ... (8-2-5) 

This form for the transfer functions gives the properties of all the paths in 
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distance d = 8. Again, from the state diagram or the trellis, we observe that 
these paths are acdbe and acbcbe. The third term in (8-2-2) indicates that there 
are four paths of distance d = 10, and so forth. Thus the transfer function gives 
us the distance properties of the convolutional code. The minimum distance of 
the code is called the minimum free distance and denoted by d f«e- I n our 
example, d"ee = 6. 

The transfer function can be used to provide more detailed information than 
just the distance of the various paths. Suppose we introduce a factor N into all 
branch transitions caused by the input bit 1. Thus, as each branch is traversed. 
the cumulative exponent on N increases by one only if that branch transition is 
due to an input bit 1. Furthermore, we introduce a factor of J into each branch 
of the state diagram so that the exponent of J will serve as a counting variable 
to indicate the number of branches in any given path fr9m node a to node e. 
For the rate 1/3 convolutional code in our example, the state diagram that 
incorporates the additional factors of J and N is shown in Fig. 8-2-12. 

The state equations for the state diagram shown in Fig. 8-2-12 are 

Xc =JND"X. +JNDXh 

Xh=JDX,+JDX" 

X d =JND2X, +JND'X" 

Xc=JD2Xh 

(8-2-4) 

Upon solving these equations for the ratio X,I X., we obtain the transfer 
function 

J'ND h 

T(D N J) = --"--=--:'::--
•. 1-1ND2(l +J) 

= J3 ND b + rN2D" + J 5N 2 D x + J 5N 3 DI:J 

+ 21"N'D IO +PN'D'" + ... (8-2-5) 

This form for the transfer functions gives the properties of all the paths in 
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the convolutional code. That is, the first term in the expansion of T(D, N, J) 
indicates that the distance d = 6 path is of length 3 and of the three 
information bits, one is a }. The second and third terms in the expansion of 
T(D, N, J) indicate that of the two d = 8 terms, one is of length 4 and the 
second has length 5. Two of the four information bits in the path having length 
4 and two of the five information bits in the path having length 5 are Is. Thus, 
the exponent of the factor J indicates the length of the path that merges with 
the all-zero path for the first time, the exponent of the factor N indicates the 
number of Is in the information sequence for that path, and the exponent of D 
indicates the distance of the sequence of encoded bits for that path from the 
all-zero sequence. 

The factor J is particularly important if we are transmitting a sequence of 
finite duration, say m bits. In such a case, the convolutional code is truncated 
after m nodes or m branches. This implies that the transfer function for the 
truncated code is obtained by truncating T(D, N, J) at the term Jm

. On the 
other hand, if we are transmitting an extremely long sequence, i.e., essentially 
an infinite-length sequence, we may wish to suppress the dependence of 
T(D, N, J) on the parameter J. This is easily accomplished by setting J = 1. 
Hence, for the example given above, we have 

ND" 
T(D,N,J)=T(D,N)= D2 

}-2N 

= ND 6 +2N2D" +4N3DIO+ ... 

~ 

= 2: adN(d-4)Il.Dd 

d:6 

where the coefficients {ad} are defined by (8-2-3). 

(8-2-6) 

The procedure outlined above for determining the transfer function of a 
binary convolutional code is easily extended to nonbinary codes. In the 
following example, we determine the transfer function of the nonbinary 
convolutional code previously introduced in Example 8-2-3. 

Example 8-2-4 

The convolutional code shown in Fig. 8-2-10 has the parameters K =2, 
k = 2, n '" 4. In this example, we have a choice of how we label distances 
and count errors, depending on whether we treat the code as binary or 
nonbinary. Suppose we treat the code as nonbinary. Thus, the input to the 
encoder and the output are treated as quaternary symbols. In particular, if 
we treat the input and output as quaternary symbols 00, 01, 10, and 11, the 
distance measured in symbols between the sequences 0111 and 0000 is 2. 
Furthermore, suppose that an input symbol 00 is decoded as the symbol 11; 
then we have made one symbol error. This convention applied to the 
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The factor J is particularly important if we are transmitting a sequence of 
finite duration, say m bits. In such a case, the convolutional code is truncated 
after m nodes or m branches. This implies that the transfer function for the 
truncated code is obtained by truncating T(D, N, J) at the term Jm
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an infinite-length sequence, we may wish to suppress the dependence of 
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binary convolutional code is easily extended to nonbinary codes. In the 
following example, we determine the transfer function of the nonbinary 
convolutional code previously introduced in Example 8-2-3. 

Example 8-2-4 

The convolutional code shown in Fig. 8-2-10 has the parameters K =2, 
k = 2, n '" 4. In this example, we have a choice of how we label distances 
and count errors, depending on whether we treat the code as binary or 
nonbinary. Suppose we treat the code as nonbinary. Thus, the input to the 
encoder and the output are treated as quaternary symbols. In particular, if 
we treat the input and output as quaternary symbols 00, 01, 10, and 11, the 
distance measured in symbols between the sequences 0111 and 0000 is 2. 
Furthermore, suppose that an input symbol 00 is decoded as the symbol 11; 
then we have made one symbol error. This convention applied to the 
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convolutional code shown in Fig. 8-2-10 results in the state diagram 
illustrated in Fig. 8-2-13, from which we obtain the state equations 

X h = NJD'X" + NJDX, + NJDX, + NJD'X" 

X, = NJD'Xa + NJD'Xh + NJDXc + NJDX,/ 

Xci = NJD'Xa + NJDXh + NJD'X, + NJDX" 

X, = JD'(Xh + X, + Xd) 

Solution of these equations leads to the transfer function 

T(D, N, J) = 1- 2NJD _ NJD' 

(8-2-7) 

(8-2-8) 

This expression for the transfer function is particularly appropriate when the 
quaternary symbols at the output of the encoder are mapped into a 
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corresponding set of quaternary waveforms sm(t), m = 1, 2, 3, 4, e.g .. four 
orthogonal waveforms. Thus, there is a one-to-one correspondence between 
code symbols and signal waveforms. 

Alternatively. for example. the output of the encoder may be transmitted 
as a sequence of binary digits by means of binary PSK. In such a case. it is 
appropriate to measure distance in terms of bits. When this convention is 
employed, the state diagram is labeled as shown in Fig. 8-2-14. Solution of 
the state equations obtained from this state diagram yields a transfer 
function that is different from the one given in (8-2-8). 

Some convolutional codes exhibit a characteristic behavior that is called 
catastrophic error propagation. When a code that has this characteristic is used 
on a binary symmetric channel. it is possible for a finite number of channel 
errors to cause an infinite number of decoding errors. Such a code can be 
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identified from its state diagram. It will contain a zero-distance path (a path 
wilh multiplier D" = 1) from some nonzero state back to the same state. ThlS 
means that one call loop around this zero-distance path an intinite number of 
:imes w,thoul increasing the distance relative to the all-zero path. Bul. if th" 
sL'lf-loop correspunds J() the transmission of a L the decoder will make an 
:nl1nite numher of crr~)rs, Since such ('L)dL'~ ar~ easily recllgnij'eJ~ they an.' 
easily a\ol(kJ in practlce. 

8-2-2 Optimum Decoding of Convolutional Codes-The 
Viterbi Algorithm 

In the decoding of a block cod" for a memoryless channel. we CC1mpuh:d the' 
distances (Hamming distance for hard-deci,ion decoding and cucii(it:an di,
tance fur soft-dccisI<m decoding) hetween the received code word and the :' 
possible transmitted code words. Then we selected the code wonI that was 
dose,t in distallce to the received code word. This declSion rule, which rC4uTc, 
th(' CIH11putatiun of =_I NU'tric.'i, is optin1um in the- sense that '1 rL':-;llh~ in ,\ 
minimum proodbil11V of error for the hinary ,ymmetric channel with I' - ; and 
the additi\\"~ whik gau~~lan noi~c l'hanneL 

L:nlikc a block code. which has a fixed length n, a convolutional encoder" 
basicalh- a finite-stale machine. Hence the optimum decoder is a maXlmum
likelihood sequence estimator (ivILSE) of the type described in Section 5-1--1 
tor signals with memory, such as NRZI and CPM. Theref"rc, optimum 
decoding of a convolutional code involves a search through the trellis lor the 
most prohdhle sequence. Depe:1ding on whether the detector following the 
demodulator performs hard or soft decisions, the corresponding metric in the 
trellis search may be either a Hamming metric or a euc/Jdean melric, 
respectively. We daborate below, using the trellis in Fig. ;->-2-5 for tile 
convolutional code shown III Fi/!. g-2-2. 

Consider the twu paths in the trellis that begll1 at the inithl slall' (I and 
remerge at state a after three state transItions (three branches). correspondin!,
to the two information sequt'llces (JOO and JOO and the transmitted s~gucnce, 
()()() 000 000 and III OOl 011, respectively. We denote the transmitted bits b} 
{el"" i = 1.2.3; m = I, 2, 3}, where the index j indicates the jth branch and the 
index JI1 the mth bit in thaI branch. Correspondingly, we define jr

l
"" j = 1.2.3: 

til = L 2, 3} as the output of the demodulator. If the deteclor performs 
hard-decision decoding, its output for each transmitted bit is either () or 1. On 
the other hand, if soft-decision decoding is employed and the coded sequence 
is transmitted by binary coherent PSK, the input to the decoder is 

(8-2-'1) 

where Ilpn represents the additive noise and if; is the transmitted signal energy 
for each code hit. 

A metric is defined for the jth branch of the ilh path through the trellis as 
the logarithm of the joint probability of the sequence h ... til = 1. c. _,} 
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conditioned on the transmitted sequence {cj;~, m = 1,2, 3} for the ith path. 
That is. 

J.L)" = log P(Y, I Cyi), j = 1,2,3, ... (8-2-10) 

Furthermore. a metric for the ith path consisting of B branches through the 
trellis is defined as 

(8-2-11) 
j=f 

The criterion for deciding between two paths- through the trellis is to select 
the one having the larger metric. This rule maximizes the probability of a 
correct decision or. equivalently, it minimizes the probability of error for the 
sequence, of information bits. For example, suppose that hard-decision 
decoding is performed by the demodulator, yielding the received sequence 
{IOI 000 I DO}. Let i = 0 denote the three-branch all-zero path and i = 1 the 
second three-branch path that begins in the initial state a and remerges with 
the all-zero path at state a after three transitions. The metrics for these two 
paths are 

PM(O) =6 log (1 - p) + 310gp 

PM(I)=4Iog(1-p)+510gp 
(8-2-12) 

where p is the probability of a bit error. Assuming that p <: t we find that the 
metric PM(O) is larger than the metric P M(l). This result is consistent with 
the observation that the all-zero path is at Hamming distance d = 3 from the 
received sequence, while the j = 1 path is at Hamming distance d = 5 from the 
received path. Thus, the Hamming distance is an equivalent metric for 
hard-decision decoding. 

Similarly, suppose that soft-decision deC9ding is employed and the channel 
adds white gaussian noise to the signal. Then the demodulator output is 
described statistically by the probability density function 

( I (it) __ 1_ {[rjm - ~(2c)2 - 1 W} 
P 'i... C jm - V2ir: IT exp 2ci2 (8-2-13) 

where 0'2 = ~No is the variance of the additive gaussian noise. If we neglect the 
terms that are wmmon to all branch metrics, tbe branch metric for the jlh 
branch of the ilh path may be expressed as 

n 

p.)il = L rjm(2cj:,! - l) (8-2-14) 
m-l 

where, in our e"ample, n = 3. Thus the correlation metries for the two paths 
under consideration are 

3 3 

CM(O) = L L 'im(2cJ2! - 1) 
j=l m=1 

3 3 
(8-2-15) 

CM(li = L L rjm(2cj,!! -1) 
j=l m=l 
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Having defined the branch metnes and path metrics computed by the 
decoder. we now consider the use of the ViIerbi algorithm for optimum 
decoding of the convolution ally encoded information sequence. We consider 
the two paths described above. which merge at state a after three transitions. 
Note that any particular path through the trellis that stems from this node will 
add identical terms to the path melrics CM!f)1 and CMI'I. Consequently. if 
eM''') > CM(I) at the merged node a after three transitions CM(lll will continue 
10 be larger than CM(ll for any path that stems from node a. This means that 
the path corresponding to CM'" can be discarded from further consideration. 
The path corresponding to the metric CM!lIj is the survivor. Similarly. one of 
the two paths that merge at state b can be elminated on the basis of the two 
corresponding metrics. This procedure is repeated at state c and state d. As a 
rt!sull. after the first three transitions. there are four surviving paths. one 
terminating at each state. and a corresponding metric for each survivor. This 
procedure is rt!peated at each stage of the trellis as new signals are received in 
subsequent time intervals. 

In general. when a binary convolutional code with k = I and constraint 
length K is decoded by means of the Viterbi algorithm, there are 2" - 1 states. 
Hence. there are 2" - I surviving paths at each stage and 2" -I metrics, one for 
each surviving path. Furthermore. a binary convolutional code in which k bits 
at a time are shifted into an encoder that consists of K (k-bit) shift-register 
stages generates a trellis that has 2k

(I<-1) states. Consequently, the decoding of 
such a code by means of the Viterbi algorithm requires keeping track of 2k

(1< I) 

surviving paths and 2k
(K -, I metrics. At each stage of the trellis. there are 2' 

paths that merge at each node. Since each path that converges at a common 
node requires the computation of a metric, there are 2' metrics computed for 
each node. Of the 2' paths that merge at each node, only one survives, and this 
is the most-probable (minimum-distance) path. Thus the number of computa
tions in decoding performed at each stage increases exponentially with k and 
K. The exponential increase in computational burden limits the use of the 
Viterbi algorithm to relatively small values of K and k. 

The decoding delay in decoding a long information sequence that has been 
convolutionally encoded is usually too long for most practical applications. 
Moreover. the memory required to store the entire length of surviving 
sequences is large and expensive. As indicated in Section 5-1-4. a solution to 
this problem is to modify the Viterbi algorithm in a way which results in a fixed 
decoding delay without significantly affecting the optimal performance of the 
algorithm. Recall that the modification is to retain at any given time! only the 
most recent 0 decoded information bits (symbols) in each surviving sequence. 
As each new information bit (symbol) is received, a final decision is-made on 
the bit (symbol) received 0 branches back in the' trellis, by comparing the 
metrics in the surviving sequences and deciding in favor of the bit in the 
sequence having the largest metric. If 0 is chosen sufficiently large, all surviving 
sequences will contain the identical decoded bit (symbol) o branches back in 
time. That is. with high probability, all surviving sequences at time t stem from 
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the same node at r - S. It has been found experimentally (computer simula
tion) that a delay /l ~ 5K results in a negligible degradation in the performance 
relative to the optimum Viterbi algorithm. 

8-2-3 Probability of Error for Soft-Decision Decoding 

The topic of this subsection is the error rate performance of the Viterbi 
algorithm on an additive white gaussian noise channel with soft-decision 
decoding. 

[n deriving the probability of error for convolutional codes, the linearity 
property for this class of codes is employed to simplify the derivation. That is. 
we assume that the all-zero sequence is transmitted and we determine the 
probability of error in deciding in favor of another sequence. The coded binary 
digits for the jlh branch of the convolutional code, denoted as ic",,, 
m = 1, 2, ... , n} and defined in Section 8-2-2, are assumed to be transmitted by 
binary PSK (or four-phase PSK) and detected coherently at the demodulator. 
The output of the demodulator, which is the input to the Viterbi decoder, is 
the sequence {I)"" m = 1,2, ... , n; j = 1,2, ... ) where 'fm is defined in (8-2-9). 

The Viterbi soft -decision decoder forms the branch melfics defined by 
(8-2-14) and from these computes the path metrics 

B B n 

CM(<) = 2: 11-)')= 2: 2: rfm (2cj;2-1) (8-2-16) 
j=! j=J m=l 

where i denotes anyone of the competing paths at each node and B is the 
number of branches (information s)robols) in a path. For example, the all-zero 
path, denoted as i = 0, has a path metric 

B n 

CM(O)=2: 2: (-~+njm)(-l) 
;=1 m=l 

B n 

= ~ Bn + 2: 2: n jm (8-2-17) 
j= 1 m'" I 

Since the convolutional code does not necessarily have a fixed length, we 
derive its performance from the probability of error for sequences that merge 
with the all-zero sequence for the first time at a given node in the trellis. In 
particular, we define the first-event error probability as the probability that 
another path that merges with the all-zero path at node B has a metric that 
exceeds the metric of the all-zero path for the first time. Suppose the incorrect 
path. call it i = 1, that merges with the all-zero path differs from the all-zero 
path in d bits, i.e., there are d Is in the path i = 1 and the rest are Os. The 
probability of error in the pairwise comparison of the metrics CM(O) and CM(I) 

is 

P2(d) = P(CMO ) ~ CM(O) = P(CM(I) - CM(O) ~ 0) 

P,(d) = p[ 2 jt, n~l Tjm{CJ,!! - c)21) ~ 0] (8-2-18) 
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Since the coded bits in the two paths are identical except in the d positions, 
(8-2-18) can be written in the simpler form 

P2(d) = p(#, r; ~o) (8-2-19) 

where the index I runs over the ,et of d bits in which the two paths differ and 
the set {rn represents the input to the decoder for these d bits. 

The {ril are independent and identically distributed gaussian random 
variables with mean - v'i;: and variance !No. Consequently the probability of 
error in the pairwise comparison of these two paths that dilIer in d bits is 

PM) = Q( 5-) 
= Q(V21bR cd ) (8-2-20) 

where Y. = 'ifb! No is the received SNR per bit and Rc is the code rate. 
Although we have derived the first-event error probability for a path of 

distance d from the all-zero path, there are many possible paths with different 
distances that merge with the all-zero path at a given node B. In fact, the 
transfer function T(D) provides a complete description of all the possible 
paths that merge with the all-zero path at node B and their distances. Thus we 
can sum the error probability in (8-2-20) over all possible path distances. Upon 
performing this summation, we obtain an upper bound on the first-event error 
probability in the form 

(, =dfrce 

x 

,,; L ad Q(Y2Yb Rc d ) (8-2-21) 

where ad denotes the number of paths of distance d from the all-zero path that 
merge with the all-zero path for the first time. . 

There are two reasons why (8-2-21) is an upper bound on the first-event 
error probability. One is that the events that result in the error probabilities 
{P2(dj} are not disjoint. This can be seen from observation of the trellis. 
Second, by summing over all possible d ~ d'T'", we have implicitly assumed that 
the convolutional code has infinite length. If the code is truncated periodically 
after B nodes, the upper bound in (8-2-21) can be improved by summing the 
error events for d',ee"; d ~ B. This refinement has some merit in determining 
the performance of short convolutional codes, but the effect on performance is 
negligible when B is large. 

The upper bound m (8-2-21) can be expressed in a slightly different form if 
the Q function is upper-hounded by an exponentiaL That is. 

Q(\/)v R d) '" 0 - y"R,J = D'''I ... ,h c -.::.;. D=f' ',~R, (8-2-22 ) 
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If we use (8-2-22) in (8-2-21), the upper bound on the first-evellt error 
probability can be expressed as 

(8-2-23) 

Although the first-event error probability provides a measure of the 
performance of a convolutional code, a more useful measure of performance is 
the bit error probability. This probability can be upper-bounded by the 
procedure used in bounding the first-event error probability_ Specifically, we 
know that when an incorrect path is selected, the information bits in which the 
selected path differs from the correct path will be decoded incorrectly. We also 
know that the exponents in the factor N contained in the transfer function 
T(D, N) indicate the number of information bit errors (number of Is) in 
selecting an incorrect path that merges with the all-zero path at some node B. 
If we multiply the pairwise error probability P2(d) by the number of incorrectly 
decoded information bits for the incorrect path at the node where they merge, 
we obtain the bit error rate for that path. The average bit errot probability is 
upper-bounded by multiplying each pairwise error probability P2(d) by the 
corresponding number of incorrectly decoded information bits, for each 
possible incorrect path thai merges with the correct path at the Bth node, and 
summing over all d. 

The appropriate multiplication factors corresponding to the number of 
information bit errors for each incorrectly selected path may be obtained by 
differentiating T(D, N) with respect to N. In general, T(D, N) can be 
expressed as 

x 

T(D, N)= L adDdNf{d) (8-2-24) 
d=dfw;c 

where fed) denotes the exponent of N as a function of d. Taking the derivative 
of T(D, N) with respect to N and setting N = 1. we obtain 

(8-2-25) 

where fJd = ad/Cd). Thus tbe bit error probability for k = 1 is upper-bounded 
by 

~ 

Pb < L f3dP2(d) 
d=df~ 

x 

< L f3dQ(V2Yb Rcd) (8-2-26) 
d;dfr« 
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If the Q function is upper-bounded by an exponential as indicated in (8-2-22) 
then (8-2-26) can be expressed in the simple form 

Pb < d~'= f3dDdID~'_"'" 
<dT~ N)L~,.D~e" .. (8-2-27) 

If k > I, the equivalent bit error probability is obtained by dividing (8-2-26) 
and (8-2-27) by k. 

The expressions for the probability of error given above are based on the 
assumption that the code bits are transmitted by binary coherent PSK. The 
results also hold for four-phase coherent PSK, since this modulation} 
demodulation technique is equivalent to two independent (phase-quadrature) 
binary PSK systems. Other modulation and demodulation techniques. such as 
coherent and noncoherent binary FSK, can be accommodated by recomputing 
the pairwise error probability Pi,.d). That is, a change in the modulation and 
demodulation technique used to transmit the coded information sequence 
affects only the computation of P2( d). Otherwise, the derivation for Pb remains 
the same. 

Although the above derivation of the error probability for Viterbi decoding 
of a convolutional code applies to binary convolutional codes, it is relatively 
easy to g<;neralize it to nonbinary convolutional codes in which each nonbinary 
symbol is mapped into a distinct waveform. In particular, the coefficients {f3d} 
in the expansion of the derivative of T(D. N), given in (8-2-25), represent the 
number of symbol errors in two paths separated in distance (measured in terms 
of symbols) by d sYmbols. Again, we denote the probability of error in a 
pairwise comparison of two paths that are separated in distance by d as P2(d). 
Then the symbol error probability, for a k-bit symbol, is upper-bounded by 

" 
PM';; 2: f3"P2(d) 

d=drwe 

The symbol error probability can be converted into an equivalent bit error 
probability. For example, if 2' orthogonal waveforms are used to transmit the 
k-bit symbols, the equivalent bit error probability is PM multiplied by a factor 
2*-'/(2' -1), as shown in Chapter 5. 

8-2-4 Probability or Error for Hard-Decision De<:odin~ 
We now consider the performance achieved by the Viterbi decoding algorithm 
on a binary symmetric channel. For hard-decision decoding of the convolu
tional code, the metrics in the Viterbi algorithm are the Hamming distances 
between the received sequence and the 20

(K -Ij surviving sequences at each 
node of the trellis. 

As in our treatment of soft-decision decoding, we begin by determining the 
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first-event error probability. The all-zero path is assumed to be transmitted. 
Suppose that the path being compared with the all-zero path at some node B 
has distance d from the all-zero path. If d is odd, the all-zero path will be 
correctly selected if the number of errors in the received sequence is less than 
Hd .... I); otherwise, the incorrect path will be selected. Consequently, the 
probability of selecting the incorrect path is 

(8-2·28) 

where p is the probability of a bit error for the binary symmetric channel. If d 
is even, the incorrect path is selected when the number of errors exceeds ~d. If 
the number of errors equals 1d, there is a tie between the me tries in the two 
paths, which may be resolved by randomly selecting one of the paths: thus, an 
error occurs half the time. Consequently, the probability of selecting the 
incorrect path is 

(8-2·29) 

As indicated in Section 8-2-3, there are many possible paths with different 
distances that merge with the all-zero path at a given node. Therefore, there is 
no simple exact expression for the first-event error probability. However, we 
can overbound this error probability by the sum of the pairwise error 
probabilities P2(d) over all possible paths that merge with the all-zero path at 
the given node. Thus, we obtain the union bound 

. 
P, < L a"P2( d) (8-2·30) 

where the coefficients {ad} represent the number of paths corresponding to the 
set of distances {d}. These coefficients are the coefficients in the expansion of 
the transfer function T(D) or T(D, N). 

Instead of using the expressions for P2(d) given in (8-2-28) and (8-2-29), we 
C'1n use the upper bound 

P,(d) < [4p(1- p)]"!2 (8-2-31) 

which was given in Section 8-1-5. Use of this bound in (8-2-30) yields a looser 
upper bound on the first-event error probability, in the form 

~ 

p,. < L Qd[4p (l - p) Jdl2 

d ;..1",-.., 

(8-2·32) 
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Let us now determine the probability of a bit error. As in' the case of 
soft-decision decoding, we make use of the fact that the exponents in the 
factors of N that appear in the transfer function T(D, N) indicate the number 
of nonzero information bits that are in error when an incorrect path is selected 
O\'er the all-zero path. By differentiating T(D, N) with respect to N and setting 
N = I, the exponents of IV become mUltiplication factors of the corresponding 
error-event probabilities ?zed), Thus, we obtain the expression for the upper 
bound on the bit error probability. in the form 

(8-2-33) 

where the {{3d} are the coefficients in the expansion of the derivative of 
T(D, N), evaluated at N = l. For P2(d), we may use either the expressions 
given in (8-2-28) and (8-2-29) or the upper bound in (8-2-31). If the latter is 
used, the upper bound on Ph can be expressed as 

p. dT(D, N)' 

h < d.V IVo-I.D~V'P(1 pi 
(8-2-34 ) 

When k > I. the results given in (8-2-33) and (8-2·34) for Ph should be divided 
by k. 

A comparison of the error probability for the rate 1/3, K = 3 convolutIOnal 
code with soft-decision decoding and hard-decision decoding is made in Fig, 
8-2-15. Note that the Chernoff upper bound given by (8-2-34) is less than I dB 
above the tighter upper bound given by (8-2-33) in conjunction with (8-2-28) 
and (8-2-29). The advantage of the Chernoff bound is its computational 

FIGURE 8~2-15 Comparison of soft-decision and hard-decisIOn decoding 
for K = 3, k ::::: ;. n =.'3 convoiutioni:li code 
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simplicity. In comparing the performance between soft-decision and hard
decision decoding, note that the difference obtained from the upper bounds is 
approximately 2.5 dB for 10-6

"" p.. "" 10-2
. 

Finally, we should mention that the ensemble average error rate perfor
mance of a convolutional code on a discrete memoryless channel, just as in the 
case of a block code, can be expressed in terms of the cutoff rate parameter Rn 
as (for the derivation, see Viterbi and Omura, 1979). 

A < (q _1)q-KR,{R, 

h [1- q (R" R,)IR,j" 

where q is the number of channel input symbols, K is the constraint length of 
the code, K is the code rate, and Ro is the cutoff rate defined in Sections 7-2 
and 8-1. Therefore, conclusions reached by computing Ro for various channel 
conditions apply to both block codes and convolutional codes. 

8-2-5 Distance Properties of Binary Conl'olutional Codes 
In this subsection, we shall tabulate the minimum free distance and the 
generators for several binary, short -constraint -length convolutional codes for 
several code rates. These binary codes are optimal in the sense that, for a given 
rate and a given constraint length. they have the largest possible dr,ec' The 
generators and the corresponding values of df<ee tabulated below have been 
obtained by Odenwalder (1970), Larsen (1973), Paaske (1974), and Daut et af. 
(1982) using computer search methods. 

HeUer (1968) has derived a relatively simple upper bound on the minimum 
free distance of a rate lIn convolutional code. It is given by 

l 2'" J d"ee .;; min -,-- (K + I - l)n 
''''' 2 - I 

(8-2-35) 

where Ld denotes the largest integer contained in x. For purposes of 
comparison, this upper bound is also given in the tables for the rate l/n codes. 
For rate kin convolutional codes, Daut et al. (1982) has given a modification tl) 
Heller's bound. The values obtained from this upper bound for kin codes are 
also tabulated. 

Tables 8-2-1 to 8-2-7 list the parameter of rate lIn convolutional codes for 
n = 2, 3, ... ,8. Tables 8-2-8 to 8·2-11 list the parameters of several ralt: kIn 
convolutional codes for k "" 4 and n "" 8. 

8-2-6 NonbiDary Dual-k Codes and Concatenated Codes 
Our treatment of convolutional codes thus far has been focused primarily on 
binary codes. Binary codes are particularly suitable for channels in which 
binary or quaternary PSK modulation and coherent demodulation is possible. 
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RATE 1/2 MAXIMUM FREE DISTANCE CODE 

ConstnoiDt Upper booDd 
rengtll K Genera.on in octal t4.. o. d .... 

3 5 7 5 5 

4 15 17 6 6 

5 23 35 7 8 
6 53 75 8 8 
') 133 171 10 10 

8 247 371 10 11 
9 561 753 12 12 

10 1.167 1.545 12 13 
II 2.335 3.661 14 14 

11 4,335 5,723 15 15 

13 10,533 17,661 16 16 

14 21,675 27,123 16 17 

Souru: Odenwalder (1970) and La::-sen {1973j. 

However. there are many applications in which PSK modulation and coherent 
demodulation is not suitable or possible. In such cases, other modulation 
techniques, e.g., M-ary FSK, are employed in conjunction with noncoherent 
demodulation. Nonbinary codes are particularly matched to M-ary signals that 
are demodulated noncoherently. 

In this subsection, we describe a class of nonbinary convolutional codes, 
called dual-k codes, that are easily decoded by means of the Viterbi algorithm 
using either soft-decision or hard-decision decoding. They are also suitable 
either as an outer code or as an inner code in a concatenated code, as will also 
be described below. 

RATE 1/3 MAXIMUM FREE DISTANCE CODES 

Conscnin' Upper bound 
lenglll K Gen ..... ors in octal t4.. ond_ 

3 5 7 7 8 8 
4 13 15 ]7 10 10 
5 25 33 37 12 12 
6 47 53 75 13 13 
7 133 145 175 15 IS 
8 225 331 367 1;' 16 
9 557 663 711 18 18 

10 1,117 1.365 1.633 20 20 
11 2,353 2,671 3,175 22 22 
12 4,767 5.723 6,265 24 24 
13 10,533 10.675 17,661 24 24 
14 21,645 35.661 37.133 26 26 

Sour(es; Odcnwalder (1970) and Larsen (1973). 
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In this subsection, we describe a class of nonbinary convolutional codes, 
called dual-k codes, that are easily decoded by means of the Viterbi algorithm 
using either soft-decision Of hard-decision decoding. They are also suitable 
either as an outer code or as an inner code in a concatenated code, as will also 
be described below. 

RATE 1/3 MAXIMUM FREE DISTANCE CODES 

ConscniR' Upper bound 
lenglll K Gen ..... ors in octal t4.. ond_ 

3 5 7 7 8 8 
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9 557 663 711 18 18 

10 1,117 1.365 1.633 20 20 
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TABLE 8-2·3 RATE 1i4 MAXIMUM FREE DISTANCE CODES 

Constraint Upper bound 
length /( Generators in octal d".. on drr_ 

-' 5 7 , 7 I~ 10 

4 13 l5 15 17 12 15 

5 25 27 33 37 16 16 

n 53 &7 71 ,< 
'-' 18 IS 

, 135 \35 147 163 20 20 , 
8 235 275 313 357 22 22 
9 463 535 733 745 2" 24 

III LlI7 1,365 I/i33 L6S) ry7 -, 27 
II 2,387 2353 2,671 3.175 29 29 
12 4_767 5,723 6,265 ',455 32 32 
B 11.145 12,477 15537 16,727 ::n 33 
14 21.113 23,175 35.527 35537 36 36 

SOUTH': Larsen \ J97~"I. 

TABtE 8-2·4 RAl E 1/5 MAX[MUvj FREE D[STANCE CODES 

Constraint Upper bound 
length /( Generators in octal d",. on dire.;, 

3 7 7 7 5 5 13 13 
4 :7 17 13 15 15 16 16 
5 37 27 33 25 35 20 20 
& 75 7\ 73 65 57 22 22 

• 
1 
I 

7 1'5 131 135 135 [47 25 25 
8 257 2_13 323 271 357 28 IX 

Source: Dau·, er al. (l9~2). 

TABLE 8-2·5 RATE 116 MAX[MliM FREE DISTANCE CODES 

Censtraint Upper bound 
length K Generators in octal dfn~ on df~e 

3 7 7 7 16 16 
; " 5 

4 17 17 13 20 20 
J3 15 15 
-, -" 35 27 24 24 
33 25 35 

5 7' 

' -' 75 55 27 27 
65 "7 57 

7 173 151 135 30 30 
:35 In3 137 

I< 253 375 "~nl 34 34 
235 313 357 

SOlace- Daul e{ al. i It,lH2). 

• 
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TABLE 30U RATE 1/7 MAXIMUM FREE DISTANCE CODES 

COIUIaIaI Uppu ........ 
Ie .... K G_iII~ II-. ... ~ 

3 7 7 7 7 18 18 
5 5 5 

4 17 17 13 13 23 23 
13 15 15 

5 35 27 25 27 28 28 
33 35 37 

6 53 75 65 75 32 32 
47 67 57 

7 165 145 173 135 36 36 
135 147 137 

8 275 253 375 331 40 40 
235 313 357 

Soura: Daut rt al. (1982). 

TABLE 302-7 RATE 1/8 MAXIMUM FREE DISTANCE CODES 

I 
C~ Uppu boaacI 
IeIIJIII K G_ ill octal d .... ... ~ 

I 3 7 7 5 5 21 21 
j 5 7 7 7 

4 17 17 13 13 26 26 
\3 15 15 17 

5 37 33 25 25 32 32 
35 33 27 37 

6 57 73 51 65 36 36 
75 47 67 57 

7 153 111 165 173 40 40 
135 135 147 137 

8 275 275 253 371 45 45 
331 235 313 357 

Souru: Daut tt al. (1982). 

TABLE 8-U RATE 213 MAXIMUM FREE DISTANCE CODES 

C .... ltNlnt Upper boun' 
IeIIJIII K Geaerators In octal ~ oad .... 

2 17 06 15 3 4 
3 27 75 72 5 • 4 236 155 337 7 7 

Source: Duat ft aI. (1982}. 
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TABLE 8-2-9 RATE k/5 MAXIMUM FREE DISTANCE CODES 

COIIStnIiJII Upper boUDd 

Rate IeqlIl K Generators III ~ t4... .... 4_ 

2/5 2 17 07 11 12 04 6 6 
3 27 71 52 65 57 10 10 

4 247 366 171 266 373 12 12 

3/5 2 35 23 75 61 47 5 5 

4/5 2 237 274 156 255 337 3 4 

SOJ"C(': Daut ('{ aI. ( (982), 

TABLE 8-2-10 RATE k/7 MAXIMUM FREE DISTANCE CODES 

Conslr8iDl Upper bound 
Kate IeqIh K GeRerators ill ~ 4 .... .... t4... 

2/7 2 OS 06 12 15 9 9 
15 \3 17 

3 33 55 72 47 14 14 
25 53 75 

4 312 125 247 366 IS 18 
171 266 373 

3/7 2 45 21 36 62 8 8 
57 43 71 

4/7 2 130 067 237 274 6 7 
156 255 337 

Sa,rce: Daut et 0'- (1982). 

TABLE 8-2-11 RATES 3/4 AND 3/8 MAXIMUM fREE DISTANCE CODES 

ConsIJ1Iinl Upper bound 
Rille IeqIh K Generalon 18 odal d .... .... 4_ 

3/4 2 13 25 61 47 4 4 

3/8 2 15 42 23 61 8 8 
51 36 75 47 

S{Jl.fru: Daut et d/. (1982). 

A dual-k rate 1/2 convolutional encoder may be represented as shown in 
Fig. 8-2-16. It consists of two (K = 2) k-bit shift-register stages and n = 2k 
function generators. Its output is two k-bit symbols. We note that the code 
considered in Example 8-2-3 is a dual-2 convolutional code. 
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Funclion 

--::::::~~f"""~'iooA~~ ~ 
generatO<S 

&""1"· . -I. 

FIGURE 8-2-16 Encoder for rate 1/2 dual-k codes. 

The 2k function generators for the dual-k codes have been given by Viterbi 
and Jacobs (1975). These may be expressed in the form 

[~~~] [' 0 0 0 1 0 0 }rl. <-~--+ = ~ 0 0 0 1 0 --. 
I.J . . . . 

<-I.< --+ 0 0 0 1 0 0 0 

'E-It+l-+ 1 0 0 0 1 0 0 0 

~Kk+2-+ 0 0 1 0 0 0 t 0 0 

0 0 0 1 0 0 0 0 0 0 

0 0 0 0 1 

<-g,.--+ 1 0 0 0 0 0 0 0 1 

1 0 0 0, 

0 0 1 0 oj 
oj -0 0 0 1 0 . I. 

------.. _-----_.--- -------_._---_. __ .. _ .. _-----: 
0 0 0 0 1 ' 

0 0 ... 0 o~ 

(8-2-36) 
where I. denotes the k x k identity matrix. 

The general form for the transfer function of a rate 1/2 dual-k code has 
been derived by Odenwalder (1976). It is expressed as 

(2' - 1)D4J'N 
T(D. N. J) • 2 

1 - NJ[2D + (2 - 3)D I 
x 

= 2: Q,D'Nf(i)Jh(i) (8-2-37) 
i=4 
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where D represents the Hamming distance for the q-ary (q = 2k) symbols, the 
f{i) exponent on N represents the number of information symbol errors that 
are produced in selecting a branch in the tree or trellis other than a 
corresponding branch on the all-zero path, and rhe h(i) exponent on J is equal 
to the nwnber of branches in a given path. Note that the minimum free 
distance is d"ee = 4 symbols (4k bits). 

Lower-rate dual-k con YO] utional codes can be generated in a number of 
ways, the simplest of which is to repeat each symbol generated by the rate 1/2 
code r times, where r = 1, 2 .... ,m (, = 1 corresponds to each symbol 
appearing once). If each symbol in any particular branch of the tree or trellis 
or state diagram is repeated r times, the effect is to increase the distance 
parameter from D to D'. Consequently the transfer function for a rate l/2r 
dual-k code is 

(2k -1)D 4'J2N 
T(D, N. J) = 1 _ NJ[2D' + (2' - 3)D2'J (8-2-38) 

In the transmission of long information sequences, the path length pal a
meter J in the transfer function may be suppressed by setting J = 1. The 
resulting transfer function T(D, N) may be differentiated with respect to N, 
and N is set to unity. This yields 

dT(D,N)[ 

dN I'H 
(2' - I)D'" 

(1 - 2D' - (2* - 3)DI'J2 

= L f3iD' (8-2-39) 

where f3i represents the number of symbol errors associated with a path having 
distance D' from the all-zero path, as described previously in Section 8-2-3. 
The expression in (8-2-39) may be used to evaluate the error probability for 
dual-k codes under various channel conditions, 

Performance of Dnal·k Codes witb M -ary Modula1ioD Suppose that a 
dual-k code is used in conjunction witt! M-ary orthogonal signaling at the 
modulator, wbere M = 2'. Each symbol from the encoder is mapped into one 
of the M possible orthogonal wavefonns. The channel is assumed to add white 
gaussian noise. The demodulator consists of M matched filters. 

If the decoder performs hard-decision decoding, the performance of the 
code is determined by the symbol error probability PM' This error probability 
has been computed in Chapter 5 for both coherent and noncoherent detection. 
From PM. we can determine P2(d) according to (8-2-28) or (8-2-29), which is 
the probability of error in a pairwise comparison of the all-zero path with a 
path that differs in d symbols. The probability of a bit error is upper-bounded 
as 

(8-2-40) 

The factor 2'-'/(2* -1) is used to convert the symbol error probability to the 
bit error probability. 
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where f3i represents the number of symbol errors associated with a path having 
distance D' from the all-zero path, as described previously in Section 8-2-3. 
The expression in (8-2-39) may be used to evaluate the error probability for 
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modulator, wbere M = 2'. Each symbol from the ellcoder is mapped into one 
of the M possible orthogonal wavefonns. The channel is assumed to add white 
gaussian noise. The demodulator consists of M matched filters. 

If the decoder performs hard-decision decoding, the performance of the 
code is determined by the symbol error probability PM' This error probability 
has been computed in Chapter 5 for both coherent and noncoherent detection. 
From PM. we can determine P2(d) according to (8-2-28) or (8-2-29), which is 
the probability of error in a pairwise comparison of the all-zero path with a 
path that differs in d symbols. The probability of a bit error is upper-bounded 
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The factor 2'-'/(2* -1) is used to convert the symbol error probability to the 
bit error probability. 
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Instead of hard-decision decoding. suppose that the decoder performs 
soft -decision decoding using the output of a demodulator that employs a 
square-law detector. The expression for the bit error probability given by 
(8-2-40) still applies. but now P2(d) is given by (see Section 12-1-1) 

1 d-' 
P,(d)= 2d-' exp(-hbR,d) L Ki<h.Rcd) (8-2-41) 

2 ,~O 

where 
I J-t-, (2d - 1) 

K=- L 
, i! I~O I 

and Rc = 1/2r is the code rate. This expression follows from the result (8-1-63). 

Concatenated COOe!i In Section 8-1-8. we considered the concatenation of 
two block codes to form a long block code. Now that we have described 
convolutional codes. we broaden our viewpoint and consider the concatenation 
of a block code with a convolutional code or the concatenation of two 
convolutional codes. 

As described previously. the outer code is usually chosen to be nonbinary. 
with each symbol selected from an alphabet of q = 2* symbols. This code may 
be a block code, such as a Reed-Solomon code, or a convolutional code, such 
as a dual-k code. The inner code may be either binary or nonbinary, and either 
a bloc.k or a convolutional code. For example, a Reed-Solomon code may be 
selected as the outer code and a dual-k code may be selected as the inner code. 
In such a concatenation scheme. the number of symbols in the outer 
(Reed-Solomon) code q equals 2', so that each symbol of the outer code maps 
into a k-bit symbol of the inner dual-k code. M-ary orthogonal signals may be 
used to transmit the symbols. 

The decoding of such concatenated codes may also take a variety of 
different forms. If the inner code is a convolutional code having a short 
constraint length, the Viterbi algorithm provides an efficient means for 
decoding. using either soft-decision or hard-decision decoding. 

If the inner code is a block code, and the decoder for this code performs 
soft -decision decoding. the outer decoder may also perform >oft -decision 
decoding using as inputs the metrics corresponding to each word of the inner 
code. On the other hand, the inner decoder may make a hard decision after 
receipt of the code word and feed the hard decisions to the outer decoder. 
Then the outer decoder must perform hard-decision decoding. 

The following example describes a concatenation code in which the outer 
code is a convolutional code and the inner code is a block code. 

Example 8-2-5 

Suppose we construct a concatenated code by selecting a dual-k code as the 
outer code and a Hada~ard code as the inner code. To be specific, we select 
a rate 1/2 dual-5 code and a Hadamard (16, 5) inner code. The dual-5 rate 
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1/2 code has a minimum free distance Dr,." = 4 and the Hadamard code has 
a minimum distance dmin = 8. Hence, the concatenated code has an effective 
minimum distance of 32. Since there are 32 code words in the Hadamard 
code and 32 possible symbols in the outer code, in effect, each symbol from 
the outer code is mapped into one of the 32 Hadamard code words. 

The probability of a symbol error in decoding the inner code may be 
determined from the results of the performance of block codes given in 
Sections 8-1-4 and 8-1·5 for soft-decision and hard-decision decoding, 
respectively. First, suppose that hard·decision decoding is performed in the 
inner decoder with the probability of a code word (symbol of outer code) 
error denoted as P32, since M = 32. Then the performance of the outer code 
and, hence, the performance of the concatenated code is obtained by using 
this error probability in conjunction with the transfer function for the dual-s 
code given by (8·2-37). 

On the other hand, if soft -decision decoding is used on both the outer 
and the inner codes, the soft-decision metric from each received Hadamard 
code word is passed to the Viterbi algorithm, which computes the 
accumulated metrics for tne competing paths through the trellis. We shall 
give numerical results on the performance of concatenated codes of this 
type in our discussion of coding for Rayleigh fading channels. 

8-2-7 Other Decoding Algorithms for Convolutional Codes 
The Viterbi algorithm described in Section 8-2-2 is the optimum decoding 
algorithm (in the sense of maximum-likelihood decoding of the entire 
sequence) for convolutional codes. However, it requires the computation of 
2'" metrics at each node of the trellis and the storage of 2'(K-I) metrics and 
2'(K -1) surviving sequences, each of which may be about skK bits long. The 
computational burden and the storage required to implement the Viterbi 
algorithm make it impractical for convolutional codes with large constraint 
length. 

Prior to the discovery of the optimum algorithm by Viterbi, a number of 
other algorithms had been proposed for decoding convolutional codes. The 
earliest was the sequential decoding algorithm originally proposed by Wozen· 
craft (1957, 1961). and subsequenlly modified by Fano (1963). 

The Fano sequential decoding algorithm searches for the most probable 
path through the tree or trellis by examining one path at a time. The increment 
added to the metric along each branch is proportional to the probability of the 
received signal for that branch, just as in Viterbi decoding, with the exception 
that an additional negative constant is added to each branch metric. The value 
of this constant is selected such that the metric for the correct path will 
increase on the average, while the metric. for any incorrect path will decrease 
on the average. By comparing the metric of a candidate path with a moving 
(increasing) threshold, Fano's algorithm detects and discards incorrect paths. 

To be more specific, let us consider a memoryless channel. The metric for 
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the ith path through the tree or trellis from the first branch to branch B may be 
expressed as 

8 " 
eMU) = L L J.LJ::' (8-2-42) 

j=1 ",=1 

where 

(8-2-43) 

In (8-2-43), Ij", is the demodulator output sequence, p(lj", I cJ~) denotes the pdf 
of rIm conditional on the code bit cJ2 for the mth bit of the jth branch of the ilh 
path, and J( is a positive constant. J( is selected as indicated above so that the 
incorrect paths will have a decreasing metric while the correct path will have 
an increasing metric on the average. Note that the term p(rjm ) in tbe 
denominator is independent of the code sequence, and, hence, may be 
subsumed in the constant factor. 

The metric given by (8-2-43) is generally applicable for either hard- or 
soft-decision decoding. However, it can be considerably simplified when 
hard-decision decoding is employed. Specifically, if we have a BSe with 
transition (error) probability p, the metric for each received bit, consistent with 
the form in (8-2-43) is given by 

(i) = {lOg, [2(1 - p) J - Rc if i}m = cJ.:.! 
J.L}m I 2 R ·f - Ii) og, p- c I rjm""c}m 

(8-2-44) 

where rim is the hard-decision output from the demodulator and cj:': is the m th 
code bit in the jtb branch of the ith path in the tree and R, is the code rate. 
Note that tbis metric requires some (approximate) knowledge of the error 
probability. 

Example 8-2-6 

Suppose we have a rate Rc = 1/3 binary convolutional code for transmitting 
information over a BSe with p = 0.1. By evaluating (8-2-44) we find that 

(Tl _ r 0.52 if T}m = cJ:.! 
J.Ljm -1-2.65 if Tjm "" C}:,; (8-2-45) 

To simplify the computations, tbe metric in (8-2-45) may be normalized. It is 
well approximated as 

~i) = I rIm - Cjm 
{ 

1 ·f - - (I) 

J.L,m -5·f - ...<. (i) 
1 r JI7I r- Cjm 

(8-2-46) 

Since the code rate is 1/3, there are three output bits from the encoder for 
each input bit. Hence, the branch metric consistent with (8-2-46) is 

/Ljil=3-6d 
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or. equivalently, 
(8-2-47) 

where d is the Hamming distance of the three received bits from the three 
branch bits. Thus, the metric p.j') is simply related to the Hamming distance 
of the received bits to the code bits in the jtb brancb of the jtb path. 

Initially, the decoder may be forced to start on the correct path by the 
transmission of a few known bits of data. Then it proceeds forward from node 
to node, taking the most probable (largest metric) branch at each node and 
increasing the threshold such that the threshold is never more than some 
preselected value, say 1', below the metric. Now suppose that the additive noise 
(for soft-decision decoding) or demodulation errors resulting from noise on the 
channel (for hard-decision decoding) cause the decoder to take an incorrect 
path because it appears more probable than the correct path. This is illustrated 
in Fig. 8-2-17. Since the metrics of an incorrect path decrease on the average, 
the metric will fall below the current threshold, say 1'0' When this occurs, the 
decoder backs up and takes alternative paths through the tree or trellis. in 
order of decreasing branch metrics, in an attempt to find another path that 
exceeds the threshold 1'0' If it is successful in finding an alternative path, it 
continues along that path, always selecting the most probable branch at each 
node. On the other hand, if no patb exists tbat exceeds the threshold 1'0, the 
threshold is reduced by an amount r and the original path is retraced. If the 
original path does not stay above the new threshold, the decoder resumes its 
backward search for other paths. This procedure is repeated, with the 
threshold reduced by r for each repetition, until the decoder finds a path that 
remains above the adjusted threshold. A simplified flow diagram of Fano's 
algorithm is shown in Fig. 8-2-18. 

The sequential decoding algorithm requires a buffer memory in the decoder 
to store incoming demodulated data during periods when the decoder is 
searching for alternate paths. When a search terminates, the decoder must be 
capable of processing demodulated bits sufficiently fast to empty the buffer 
prior to commencing a new search. Occasionally, during extremely long 
searches, the buffer may overflow. This causes loss of data, a condition that 
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can be remedied by retransmission of the lost information. In this regard, we 
should mention that the cutoff rate Ro has special meaning in sequential 
decoding. It is the rate above which the average number of decoding 
operations per decoded digit becomes infinite, and it is termed the 
computational cutoff rate Roomp. In practice, sequential decoders usually 
operate at rates near Ro. 

The Fano sequential decoding algorithm has been successfully implemented 
in several communication systems. Its error rate performance is comparable to 
that of Viterbi decoding. However, in comparison with Viterbi decoding. 
sequential decoding has a significantly larger decoding delay. On the positive 
side. sequential decoding requires less storage than Viterbi decocl:ng and. 
hence, it appears attractive for convolutional codes with a large constraint 
length. The issues of computational complexity and storage requirements for 
sequential decoding are interesting and have been thoroughly investigaled. For 
an analysis of these topics and other characteristics of the Fano algorithm. the 
interested reader may refer to Gallager (1968). Wozencraft and .Iacobs (1965). 
Savage (1966), and Forney (1974). 

Another type of sequential decoding algorithm, tailed a -'flick lI/Korithm. has 
been proposed independently by Jelinek (1%9) and Zigangirov (1966}. In 
contrast to the Viterbi algorithm, which keeps track of 2" I,. paths and 
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FIGURE 8-2·19 A example of the stacie: algorilhm 
for decoding a rale 1/3 
convolutional code. 
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corresponding metrics, the stack sequential decoding algorith.m deals with 
fewer paths and their corresponding metrics. In a stack algorithm, the more 
probable paths are ordered according to their metrics, with the path at the top 
of the stack having the largest metric. At each step of the algorithm, only the 
path at the top of the stack is extended by one branch. This yields 2* successors 
and their corresponding metrics. These 2' successors along with the other paths 
are then reordered according to the values of the metries and all paths with 
metrics that fall below some preselected amount from Ule metric of the top 
path may be discarded. Then the process of extending the path with the largest 
metric is repeated. Figure 8-2-19 illustrates the first few steps in a stack 
algorithm. 

It is apparent that when none of the 2' extensions of the path with the 
largest metric remains at the top of the stack, the next step in the search 
involves the extension of another path that has climbed to the top of the stack. 
It follows that the algorithm does not necessarily advance by one branch 
through the trellis in every iteration. Consequently, some amount of storage 
must be provided {or newly received signals and previously received signals in 
order to allow the algorithm to extend the search along one of the shorter 
paths, wilen such a path reaches the top of the staCK. 
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corresponding metrics, the stack sequential decoding algorithm deals with 
fewer paths and their corresponding metrics. In a stack algorithm, the more 
probable paths are ordered according to their metrics, with the path at the top 
of the stack having the largest metric. At each step of the algorithm, only the 
path at the top of the stack is extended by one branch. This yields 2* successors 
and their corresponding metrics. These 2' successors along with the other paths 
are then reordered according to the values of the metries and all paths with 
metrics that fall below some preselected amount from Ule metric of the top 
path may be discarded. Then the process of extending the path with the largest 
metric is repeated. Figure 8-2-19 illustrates the first few steps in a stack 
algorithm. 

It is apparent that when none of the 2' extensions of the path with the 
largest metric remains at the top of the stack, the next step in the search 
involves the extension of another path that has climbed to the top of the stack. 
It follows that the algorithm does not necessarily advance by one branch 
through the trellis in every iteration. Consequently, some amount of storage 
must be provided {or newly received signals and previously received signals in 
order to allow the algorithm to extend the search along one of the shorter 
paths, when such a path reaches the top of the staCK. 
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In a companson of the stack algorithm with the Viterbi algorithm, the stack 
algorithm requires fewer metric computations, but this computational saving is 
offset to a large extent by the computations involved in reordering the stack 
after every iteration. In comparison with the Fano algorithm, the stack 
algorithm is computationally simpler, since there is no retracing over the same 
path as is done in the Fano algorithm. On the other hand, the stack algorithm 
requires more storage than the Fano algorithm. 

A third alternative to the optimum Viterbi decoder is a method called 
feedback decoding (Heller, 1975). which has been applied to decoding for a 
BSe (hard-decision decoding). In feedback decoding, the decoder makes a 
hard decision on the information bit at stage i based on metrics computed from 
stage j to stage j + m, where m is a preselected positive integer. Thus. the 
decision on the information bit is either 0 or I depending on whether the 
minimum Hamming distance path that begins at stage j and ends at stage j + m 
contains a 0 or 1 in the branch emanating from stage j. Once a decision is made 
on the information bit at stage j. only that part of the tree that stems from tbe 
bit selected at stage j is kept (half the paths emanating from node j) and the 
remaining part is discarded. This is the feedback feature of the decoder. 

The next step is to extend the part of the tree that has survived to stage 
j + I + m and consider the paths from stage j + I to j + 1 + m in deciding on 
the bit at stage j + L Thus, this procedure is repeated at every stage. The 
parameter m is simply the number of stages in the tree that the decoder looks 
ahead before making a hard decision. Since a large value of m results in a large 
amount of storage, it is de~irable to select m as small as possible. On the other 
hand, m must be sufficiently large to avoid a severe degradation in perfor
mance. To balance these two conHicting requirements, m is usually selected in 
the range K "'<m";: 2K. where K is the constraint length. Note that this 
decoding delay is significantly smaller than the decoding delay in a Viterbi 
decoder, which is usually about 5K. 

Example 8-2-7 

Let us consider the use of a feedback decoder for the rate 1/3 convolutional 
code shown in Fig. 8-2-2. Figure 8-2-20 illustrates the tree diagram and the 
operation of the feedback decoder for m = 2. That is, in decoding the bit at 
branch j, the decoder considers the paths at branches j. j + 1. and j '" 2. 
Beginning with the first branch, the decoder computes eight metries 
(Hamming distances). and decides that the bit for the first branch is 0 if the 
minimum distance path is contained in the upper part of the tree, and I if 
the minimum distance path is contained in the lower part of the tree. In this 
example, the received sequence for tbe first tbree branches is assumed to be 
101111110, so that the minimum distance path is in the upper part of the 
tree. Hence, the first output bit is O. 

The next step is to extend the upper part of the tree (the part of the tree 
that bas survived) by one branch, and to compute the eight metrics for 
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FIGURE 8-2-%8 An example of feedback decoding 
for a rate 1/3 convolutional code. 

Receivd 
-equence 

o 

101 

Step I : Upper-tree- met.riei.: 7.6,5.2-; lower-tree metncs: 5.4.3,4 -+ 0 

Step 2 : Upper-tree metrics.: 7.6,5,6; lower-uec mctrics : 3,6,1* ,2 -+ I 

branches 2. 3, lmd 4. For the assumed received sequence 111110011. the 
minimum·distance path is contained in the lower part of the section of the 
tree that surVived from the firsi step. Hence, the second output bit is 1. The 
third step is to extend this lower part of the tree and to repeat the procedure 
described for the first two steps. 

Instead of computing metrics as described above, a feedback decoder for 
the BSC may be efficiently implemented by computing the syndrome from the 
received sequence and using a table lookup method for correcting errors. This 
method is similar to the one described for decoding block codes. For some 
convolutional codes, the feedback decoder simplifies to a form called a 
majority logic decoder or a threshold decoder (Massey, 1963: Heller, 1975). 

8-2-8 Practical CoDSiderations in the Application of 
COBvolutionai Codes 

Convolutional codes are widely used in many practical applications of 
oommunications system design. Viterbi decoding is predominantly used for 
short constraint lengths (K.;; 10). while sequential decoding is used for long 
oonstraint length codes, where the complexity of Viterbi decoding becomes 
prohibitive. The choice of constraint length is dictated by the desired coding 
gain. 

From the error probability results for soft-decision decoding given by 
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TABLE 8-2-12 

CHAPTER K;- BUX'K AND CO~VOU)llONAL CHASNEL (nOES 507 

UPPER BOUNDS ON CODING GAIN FOR SOFT-DECISION DECODING OF SOME 
CONVOLUTION CODES 

Rate 1/2 wcIes Rate 1/3 codes 

COllllniRt Upper ........ C_niat Upper baud 
le ...... K d .... (db) leapll K t4... (dBl 

3 5 3.98 3 8 4.26 
4 (, 4.77 4 10 5.23 
5 7 5.44 5 12 6.02 
6 8 6.02 6 13 6.37 
7 10 6.99 7 15 6.99 
8 10 6.99 8 16 7.27 
9 12 7.78 9 18 7.78 

10 12 7.78 10 20 8.24 

(8-2-26) it is apparent that the coding gain achieved by a convolutional code 
over an uncoded binary PSK or QPSK system is 

coding gain.;; 10 IOg10 (R,dfree) 

We also know that the minimum free distance dl•e• can be increased either by 
decreasing the code rate or by increasing the constraint length, or both. Table 
&-2-12 provides a list of upper bounds on the coding gain for several 
convolutional codes. For purposes of comparison, Table &-2-13 lists the actual 
coding gains and the upper bounds for several short constraint length 
convolutional codes with Viterbi decoding. It should be noted that the coding 
gain increases toward the asymptotic limit as the SNR per bit increases. 

These results are based on soft-decision Viterbi decoding. If hard-decision 
decoding is used, the coding gains are reduced by approximately 2 dB for the 
A WON channel. 

Larger coding gains than those listed in the above ~ables are achieved by 

TABLE 8-1-13 CODING GAIN (dB) FOR SOFT-DECISION VITERBI DECODING 

WJN. R,=l/3 R,= 1/2 R,=l/3 R,-314 
UDal.!. 

p. (0) K=7 K=I K=5 K=6 K=7 K=6 K=I K=6 K=9 

10-> 6.8 4.2 4.4 3.3 3.5 3.8 2.9 3.1 2.6 2.6 
10-> 9.6 5.7 5.9 4.3 4.6 5.1 4.2 4.6 3.6 4.2 
10-7 113 6.2 6.5 4.9 5.3 5.8 4.7 5.2 3.9 4.8 

SoIUC<: lacobs (1974); ~ IEEE. 
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Performance of rale 1/2 and rale 1/3 Vilerbi and 
sequential decoding, (From Omura and Levitt 
(l9&?) © 1982 IEEE.) 
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employing long constraint length convolutional codes, e.g., K = SO, and 
decoding such codes by sequential decoding. Invariably, sequential decoders 
are implemented for hard-decision decoding to reduce complexity, Figure 
8-2-21 illustrates the error rate performance of several constraint-length K = 7 
convolutional codes for rates 1/2 and 1/3 and for sequential decoding (with 
hard decisions) of a rate 1/2 and a rate 1/3 constraint-length K ~ 41 
convolutional codes. Note that the K = 41 codes achieve an error rale of 10-6 

at 2.5 and 3 dB, which are within 4-4.5 dB of the channel capacity limit, i.e" in 
vicinity of the cutoff rate limit, However, the rate 1/2 and rate 113, K = 7 codes 
with soft-decision Viterbi decoding operate at about 5 and 4.4 dB at 10-6

, 

respectively. These short-constraint-length codes achieve a coding gain of 
about 6 dB at 10-6

, while the long constraint codes gain about 7.5-8 dB. 
Two important issues in the implementation of Viterbi decoding are 

1 the effect of path memory truncation, which is a desirable feature that 
ensures a fixed decoding delay, and 

2 the degree of quantization of the input signal 10 the Vilerbi decoder. 

As a rule of thumb, we stated that path memory truncation to about five 
constraint lengths has been found to result in negligible performance loss. 
Figure 8-2-22 illustrates the performance obtained by simulation for rate 1/2, 
constraint-lengths K = 3, 5. and 7 codes with memory path length of 32 bits. In 
addition to path memory truncation, the computations were performed with 
eight-level (three bits) quantized input signals from the demodulator. The 
broken curves are performance results obtained from the upper bound in the 
bit error rate given by (8-2-26). Note that the simulation results are close to the 
theoretical upper bounds, which indicate that the degradation due to path 
memory truncation and quantization of the input signal has a minor effect on 
performance (0.20-0.30 dB). 
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Figure 8-2-23 illustrates the bit error rate performance obtained via 
simulation for hard-decision decoding of convolutional codes with K = 3-8. 
Note that with the K = 8 code, an error rate of 10-5 requires about 6 dB, which 
represents a coding gain of nearly 4 dB relative to uncoded QPSK_ 

The effect of input signal quantization is further illustrated in Fig_ 8-2-24 for 
a rate 1/2, K = 5 code. Note that three-bit quantization (eight levels) is about 
2 dB better than hard-decision decoding, which is the ultimate limit between 
soft-decision decoding and hard-decision decoding on the A WGN channel. 
The combined elIect of signal quantization and path memory trunction for the 
rate 1/2, K = 5 code with 8-, 16-, and 32-bit path memories and either one- or 
three-bit quantization is shown in Fig_ 8-2-25. It is apparent from these results 
that a path memory as short as three constraint lengths does not seriously 
degrade performance. 

When the signal from the demodulator is quantized to more than two levels, 
another problem that must be considered is the spacing between quantization 
levels. Figure 8-2-26 illustrates the simulation results for an eight-level uniform 
quantizer as a function of the quantizcr threshold spacing. We observe that 

FIGURE 8-1023 Performance of rate 1/2 cod .. with hard-decision Viterbi 
decoding and 32-bit path memory truncation. 
IFrom Heller and lacobs (1971). © 1971 lEEEI 
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f1GURE IJ.z.U Performance 01 rate 1/2, K ~ 5 code with eight" four-, and 
two-level quantization at the input to the Viterbi decoder. 
Path truncation length ~ 32 bits. [From Heller and Jacobs 
(1971). © 1971 IEEE.] 

f1GURE IJ.z.ZS Performance of rate 1/2, K ~ 5 code with 32-, 16-, and S-bi. 
path memory truncation and eight- and two-level 
quantization. [From Heller and Jacobs (1971). © 1971IE££.] 

f1GURE IJ.z.Z6 Error rate performance of rate 1/2. K = 5 Viterbi decoder 
for 'lib/No ~ 3.5 dB and eight-level quantization as a function 
of quantizer tilTeshold level spacing for equally spaced 
thresholds (From Heller and Jacobs (J97/). © 1971 IEEE.l 
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there is an optimum spacing between thresholds (approximately equal to 0,5), 
However, the optimum is sufficiently broad (0.4-0,7) so that, once it is set, 
there is little degradation resulting from variations in the AGe level of the 
order of ±20%. 
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FIGURE 8-2-21 Performance of a rate 1/2. K = 7 code with Viterbi 
decoding and eight-level quantization as a function of 
the carrler phase tracking loop SNR '''h _ I From Heller 
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Finally. we should point out some important results in the performance 
degradation due to carrier phase variations. Figure 8-2-27 illustrates the 
performance of a rate 112. K = 7 code with eight-level quantization and a 
carrier phase tracking loop SNR 'fL. Recall that in a PLL. the phase error has 
a variance that is inversely proportional to YL' The results in Fig. 8-2-27 
indicate that the degradation is large when the loop SNR is small (YL < 12 dB l. 
and causes the error rate performance to bottom out at relatively high error 
rate. 

8-3 CODED MODULATION FOR BANDWIDTH
CONSTRAINED CHANNELS 

In the treatment of block and convolutional codes in Sections 8-1 and 8-2. 
respectively. performance improvement was achieved by expanding the band· 
width of the transmitted signal by an amount equal to the reciprocal of the 
code rate. Recall for example that the improvement in performance achieved 
by an (n, k) binary block code with soft-decision decoding is approximately 
1OloglO (R,dmin - k In 2/Yh) compared with uncoded binary or quaternary 
PSK. For example. when Yb = 10 the (24, 12) extended Golay code gives a 
coding gain of 5 dB. This coding gain is achieved at a cost of doubling the 
bandwidth of the transmitted signal and, of course, at the additional cost in 
receiver implementation complexity. Thus. coding provides an effectiw 
method for trading bandwidth and implementation complexity against tran,
miller power. This situation applies to digital communications systems that are 
designed to operate in the power-limited region where R/W < l. 

In this section. we consider the use of coded signals for bandwidth
constrained channels. For such channels, the digital communications system is 
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In this section. we consider the use of coded signals for bandwidth
constrained channels. For such channels, the digital communications system is 
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designed to use bandwidth-efficient multilevel/phase modulation, such as 
PAM, PSK, DPSK, or QAM, and operates in the region where R/W> l. 
When coding is applied to the bandwidth-constrained channel, a performance 
gain is desired without expanding the signal bandwidth. This goal can be 
achieved by increasing the number of signals over the corresponding uncoded 
system to compensate for the redundancy introduced by the code. 

For example, suppose that a system employing uncoded four-phase PSK 
modulation achieves an R/W '" 2 (bits/s)/Hz at an error probability of 10-6 

For this error rate the SNR per bit is "Yb'" 10.5 dB. We may try to reduce the 
SNR per bit by use of coded signals. but this must be done without expanding 
the bandwidth. If we choose a rate Rc = 2/3 code, it must be accompanied by 
an increase in the number of signal points from four (two bits per symbol) to 
eight (three bits per symool). Thus, the rate 2/3 code used in conjunction with 
eight-phase PSK, for example, yields the same data throughput as uncoded 
four-phase PSK. However, we recall that an increase in the number of signal 
phases fram four to eight requires an additional 4 dB approximately in signal 
power to maintain the same error rate. Hence, if coding is to provide a benefit, 
the performance gain of the rate 2/3 code must overcome this 4 dB penalty. 

If the modulation is treated as a separate operation independent of the 
encoding, the use of very powerful codes (Iarge-constraint-Iength convolutional 
codes or large-block-length block codes) is required to offset the loss and 
provide some significant coding gain. On the other hand, if the modulation is 
an inregral part of the encoding process and is designed in conjunction with the 
code to increase the minimum euclidean distance between pairs of coded 
signals, the loss from the expansion of the signal set is easily overcome and a 
significant coding gain is achieved with relatively simple codes. The key to this 
integrated modulation and coding approach is to devise an effective method for 
mapping the coded bits into signal points such that the minimum euclidean 
distance is maximized_ Such a method was developed by Ungerooeck (1982). 
based on the principle of mapping by set partitioning. We describe this 
principle by means of two examples. 

Example 8-3-1: An 8-PSK Signal Constellation 

Let us partition the eight-phase signal constellation shown in Fig. 8-3-1 into 
subsets of increasing minimum euclidean distance. In the eight-phase signal 
set, the signal points are located on a circle of radius',,~ and have a 
minimum distance separation of 

do = 2v'isin ~K =0 V(2 - V2)~= 0.765v'i 

In the first partitioning, the eight points are subdivided into two subsets of 
four points each, such that the minimum distance between. points increases 
to d l = m. In the second level of partitioning, each of the two subsets is 
subdivided into two subsets of two points, such that the minimum 'distance 
increases to d z = 2~. This results in four subsets of two points each. 
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based on the principle of mapping by set partitioning. We describe this 
principle by means of two examples. 

Example 8-3-1: An 8-PSK Signal Constellation 

Let us partition the eight-phase signal constellation shown in Fig. 8-3-1 into 
subsets of increasing minimum euclidean distance. In the eight-phase signal 
set, the signal points are located on a circle of radius',,~ and have a 
minimum distance separation of 

do = 2v'isin ~K =0 V(2 - V2)~= 0.765v'i 

In the first partitioning, the eight points are subdivided into two subsets of 
four points each, such that the minimum distance between. points increases 
to d l = m. In the second level of partitioning, each of the two subsets is 
subdivided into two subsets of two points, such that the minimum 'distance 
increases to d z = 2~. This results in four subsets of two points each. 
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nGURE 8-3-1 Sel partiltOning of an 8-PSK signal set. 

Finally, the last stage of partitioning leads to eight subsets, where each subset 
contains a single point. Note that each level of partitioning increases the 
minimum euclidean distance between signal points. The results of these three 
stages of partitioning are illustrated in Fig. 8-3-\. The way in which the coded 
bits are mapped into the partitioned signal points is described below. 

Example 8-3-2: A 16-QAM Signal Constellation 

The H)-point rectangular signal constellation shown in Fig. 8-3-2 is fir,! 
divided into two subsets by assigning alternate points to each subset as 
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illustrated in the figure. Thus, the distance between points is increased from 
2~ to 2m by the first partitioning. Further partitioning of the two 
subsets leads to greater separation in euclidean distance between signal 
points as illustrated in Fig. 8-3-2. It is interesting to note tbat for tbe 
rectangular signal constellations, eacb level of partitioning increases the 
minimum euclidean distance by Yz, i.e., di + "di = Yz for all i. 

In these two examples, the partitioning was carried out to the limit where 
each subset contains only a single point. In general, this may not be necessary. 
For example, the 16-point QAM signal constellation may be partitioned only 
twice, to yield four subsets of four points each. Similarly. the eight-phase PSK 
signal constellation can be· partitioned twice, to yield four subsets of two points 
each. 

The degree to which the signal is partitioned depends on the characteristics 
of the code. In general, the encoding process is performed as illustrated in Fig. 
8·3-3. A block of m information bits is separated into two groups of length kl 
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and k 2• The k I bits are encoded into n bits while the k2 bits are left uncoded. 
Then, the n bits from the encoder are used to select one of the 2n possible 
subsets in the partitioned signal set while the k2 bits are used to select one of 
the 2k, signal points in each subset. When k2 = 0, all m information bits are 
encoded. 

Example 8-3-3 

Consider the use of the rate 1/2 convolutional code shown in Fig. 8-3-4 to 
encode one information bit while the second information bit is left uncoded. 
When used in conjunction with an eight-point signal constellation. e.g., 
eight-phase PSK or eight-point QAM, the two encoded bits are used to 

select one of the four subsets in the signal constellation, while the remaining 
infonnation bit is used to select one of the two points within each subset. 
In this case. k I = 1 and k2 = 1. The fOUI-state trellis. which is shown in Fig. 
8-3-4(b). is basically the trellis for the rate lI2 convolution encoder with the 
addition of parallel paths in each transition to accommodate the uncoded bit 
C3' Thus. the coded bits (c" C2) are used to select one of the four subsets 
that contain two signal points each. while the uncoded bit is used to select 
one of the two signal points within each subset_ Note that signal points 
within a subset are separated in distance by d2 = 2Vi Hence. the euclidean 
distance between parallel paths is d2• The mapping of coded bits (c" C2, c;) 
to signal points is illustrated in FiS- 8-3-4(c). As an alternative coding 
scheme. we may use a rate 2/3 convolutional encoder. and. thus. encode 
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I'1GURE 8-3-5 Rate 2/3 convolutional encoder for encoding both information bit •. 

both information bits as shown in Fig. 8-3-5. This encoding leads to an 
eight -state trellis and results in better performance, but also requires a more 
complex implementation of the decoder as described below. 

Either block codes or convolutional codes may be used in conjunction with 
the partitioned signal constellation. In general, convolutional codes provide 
comparable coding gains to block codes and the availability of the Viterbi 
algorithm results in a simpler implementation for soft-decision decoding. For 
this reason, we limit our discussion to convolutional codes (linear trellis codes) 
and more generally to (nonlinear) trellis codes. 

Trellis-Coded Modulation Let us consider the use of the 8-PSK signal 
constellation in conjunction with trellis codes. Uncoded four-phase PSK 
(4-PSK) is used as a reference in measuring coding gain. Uncoded 4-PSK 
employs the signal points in either subset Bo or B. of Fig. 8-3-1, for which the 
minimum distance of the signal points is m. Note that this signal corres· 
ponds to a trivial one·state trellis with four parallel slate transitions as shown 
in Fig. 8-3-6(a). The subsets Do, D2 , D4 , and D6 are used as the signal points 
for the purpose of illustration. 

For the coded 8-PSK modulation, we may use the four-state trellis shown in 
Fig. 8-3-6(b). Note that each branch in the trellis corresponds to one of the 
four subsets Co. C .. C2 , or C,. For the eight-point constellation, each of the 
subsets Co, C" C2 , and CJ • contains two signal points. Hence, the state 
transition Co contains the two signal points corresponding to the bits (000, 100) 
or (0,4) in octal representation. Similarly, C, contains the two signal points 
corresponding to (010, 110), or to (2,6) in octal, C. contains the points corre
sponding to (001,101), or (1,5) in octal, and C3 contains the points 
corresponding to (011,111), or (3,7) in octal. Thus, each transition in the 
four -state trellis contains two parallel paths, as shown in more detail in Fig. 
8-3-6(c). Note that any two signal paths that diverge from one state and 
remerge at the same state after more than one transition have a squared 
euclidean distance of dt, + 2d1 = d~ + d~ between them. For example, the 
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flGURE 8-3-6 Uncoded 4-PSK and trellis-coded 8-PSK modulation. 

signal paths 0, 0, ° and 2, I, 2 are separated by d~ + d~ = [(0.765), + 4J g = 
4.585)/;. On the other hand, the squared euclidean distance between parallel 
transitions is d~ = 4)/;. Hence, the minimum euclidean distance separation 
between paths that diverge from any state and remerge at the same state in the 
four-state trellis is d2 = 2~. This minimum distance in the trellis code is called 
the free euclidean distance and denoted by D,ed' 

In the four-state trellis of Fig. 8-3-6(b). D'ed = 2W. When compared with 
the euclidean distance do = m for the uncoded 4-PSK modulation, we 
observe that the four-slale trellis code gives a coding gain of 3 dB. 

We should emphasize that the four-state trellis code illustrated in Fig. 
8-3-6( b) is optimum in the sense that it provides the largest free euclidean 
distance. Clearly, many other four-state Irellis codes can be constructed, 
including the one shown in Fig. 8-3-7. which consists of four distinct transitions 
from each state to all other states. However, neither this code nor any of the 
other possible four-state trellis codes gives a larger D'ed' 

The construction of the optimum four-state trellis code for the eight-point 
constellation was performed on the basis of the following heuristic rules: 

(a) Parallel transitions (when they occur) are assigned to signal points 
separated by the maximum euclidean distance, e.g., d 2 = 2YG for 8-PSK in the 
four subsets Co> C,> C1 • C,. 
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FIGURE 8-3-7 An alternali\'e fouf·state trellis code. 

(b) The transition originating from and merging into any state is assigned 
the subsets (Co, C 2) or (C, C ,), which have a maximum distance d 1 = m. 

(el The signal points should occur with equal frequency. 

Note that rules (a) and (b) guarantee that the euclidean distance associated 
with single and multiple paths that diverge from any state and remerge in that 
state exceeds the euclidean distance of uncoded 4-PSK. Rule (c) guarantees 
that the trellis code will have a regular structure. 

We should indicate that the specific mapping of coded bits into signal points. 
as illustrated in Fig. 8-3-1, where the eight signal points are represented in an 
equivalent binary form, is not important. Other mappings can be devised by 
permuting subsets in a way that preserves the main property of increased 
minimum distance among the subsets. 

In the four-stale trellis code. the parallel transitions were separated by the 
euclidean distance 2n, which is also Dfed• Hence, the coding gain of 3 dB is 
limited by the distance of the parallel transitions. Larger gains in performance 
relative to uncoded 4-PSK can be achieved by using trellis codes with more 
states, which allow for the elimination Qf the parallel transitions. Thus, trellis 
codes with eight or more states would use distinct transitions to obtain a larger 

D'ed' 
For example, in Fig. 8-3-8, we illustrate an eight-state trellis code due to 

Ungerboeck (1982) for the 8-PSK signal constellation. The state transitions for 
maximizing the free euclidean distance were determined from application of 
the three basic rules given above. In this case, note that the minimum squared 
euclidean distance is 

Died = d~ + 2d~ = 4.585~ 

which. when compared with d~ = 2'(; for uncoded 4-PSK, represents a gain of 
3.6dB. Ungerboeck (1982. 1987) has also found rate 2/3 Irellis codes with 16, 
32,64. 128, and 256 states that achieve coding gains ranging from 4 to 5.75 dB 
for 8-PSK modulation. 
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FtGl-';{E 8-3-8 Eight-state trellis cooe for coded 
8-PSK modulation. 

The basic principle of set partitioning is easily extended to larger PSK signal 
constellations that yield greater bandwidth efficiency. For example. 
3 (bits/s)/Hz can be achieved with either uncoded 8-PSK or with trellis-coded 
16-PSK modulation. Ungerboeck (1987) has devised trellis codes and has 
evaluated the coding gains achieved by simple rate 1/2 and rate 2/3 
convolutional codes for the J6-PSK signal constellations. The results are 
summarized below. 

Soft-decision Viterbi decoding for trellis-coded modulation is accomplished 
in two steps. Since each branch in the trellis corresponds to a signal subset. the 
first step in decoding is to determine the best signal point within each subset. 
Le .• the point in each subset that is closest in distance to the received point. We 
may call this subset decoding. In the second step, the signal point selected from 
each subset and its squared distance metric are used for the corresponding 
branch in the Viterbi algorithm to determine the signal path through the code 
trellis that has the minimum sum of squared distances from the sequence of 
received (noisy channel output) signals. 

The error rate performance of the trellis-coded signals in the presence of 
additive gaussian noise can be evaluated by following the procedure described 
in Section 8-2 for convolutional codes. Recall that this procedure involves the 
computation of the probability of error -for all different error events and 
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where NrcJ denotes the number of signal sequences with distance DIeJ that 
diverge at any state and remerge at that slate after one or more transitions. 

In computing the coding gain achieved by trellis-coded modulation. we 
usually focus on the gain achieved by increasing Died and neglect the effect of 
N"J' However; trellis codes with a large number of states may result in a large 
NIcJ that cannot be ignored in assessing the overall coding gain. 

In addition to the trellis-coded PSK modulations described above. powerful 
trellis codes have al<;o been developed for PAM and QAM signal constella
tions. Of particular practical importance is the class of trellis-coded lwo
dimensional rectangular signal constellations. Figure 8-3-9 illustrates these 
signal constellations for M-QAM where M = 16. 32. 64. and 121i. The M = 32 
and 128 constellations have a cross pattern and are sometimes called 
cross-constellations. The underlying rectangular grid containing the signal 
points in M-QAM is called a /a((ic~ of rvpe Z, (the subscript indicates the 
dimensionality of the space). When set partitioning is applied to thIS class of 
signal constellations. the minimum euclidean distance between successive 
partitions is d,. ,/d, = v'2 for all i. as previously observed in Example ~-3-2. 
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FlGURE 8-3-10 Eigat-state trellis for rectangular QAM signal 
constellations. 

Figure 8-3-10 iHuslrates an eight-state trellis code thaI can be used with any 
of the M-QAM rectangular signal constellations for which M = 2" where 
k = 4, 5,6. . . . • etc. With the eight-state trellis, we associate eight signal 
subsets, so that any of the M -QAM signals sets for M ~ 16 are suitable. For 
M = 2m +', two input bits (k, = 2) are encoded into n = 3 (n = k, + 1) bits that 
are used to select one of the eight stales corresponding to the eight subsets. 
The additional k2 = m - k, input bits are used to select signal points within a 
subset, and result in parallel transitions in the eight-state trellis. Hence, 
16·QAM involves two parallel transitions in each branch of the trellis. More 
generally, the choice of an M = 2m +'-point QAM signal constellation implies 
that the eight-state trellis contains 2rn - 2 patallel transitions in each branch. 

The assignment of signal subsets to transitions is based on the same set of 
basic (heuristic) rules described above for the 8-PSK signal constellation. Thus, 
the four (branches) transitions originating from or leading to the same state are 
assigned either the subsets Do. D2 • D., D. or D,. D3 , Ds, D,. Parallel 
transitions are assigned signal points contained within the corresponding 
subsets. This eight -state trellis code provides a coding gain of 4 dB. The 
euclidean distance of parallel transitions exceeds the free euclidean distance, 
and. hence, the code performance is not limited by parallel transitions. 

Larger size trellis codes for M-QAM provide even larger coding gains. For 
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CODING GAINS FOR TRELLIS-CODED PAM SIGNALS 

Code m= 1 m=2 m_'" 
Number rate coding pin (dB) coding pin (dB) asymptotic 

of ~ of 4-PAM ve ...... of 8-PAM versus roding gain m~" 

states k, k, + I uncoded 2-PAM unroded 4-P AM (dB) N,ttd 

4 1/2 2.55 3.31 3.52 4 
H 1/2 3.DI 3.77 3.97 4 

II> 1/2 3 .. 2 4.111 4.3Y X 
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04 1/2 4.47 5.23 5.44 36 

12H 1/2 5.'):; 5.1\1 o.!l2 66 

SOlinI:': Ungcrtxx.xk 119X7), 

example, trellis codes with r states for an M = 2m
+ 1 QAM signal constellation 

can be constructed by convolutionally encoding k 1 input bits into k 1 + I output 
bits. Thus, a rate R, = k d(k 1 -+- I) convolutional code is employed for this 
purpose. Usually, the choice of k I = 2 provides a significant fraction of the total 
coding gain that is achievable. The additional k2 = m - k 1 input bits are 
uncoded, and are transmitted in each signal interval by selecting signal points 
within a subset. 

Tables 8-3-1 to 8-3.3, taken from lhe paper by Ungerboeck (1987), provide 
a summary of coding gains achievable with trellis-coded modulation. Table 
8-3-1 summarizes the coding gains achieved for trellis-coded (one-dimensional) 
PAM modulation with rate 1/2 trellis codes. Note that the coding gain with a 
128-state trellis code is 5.8 dB for octal PAM, which is close 10 the channel 
cutoff rate R" and less than 4 dB from the channel capacity limit for error rates 
in the range of \0 h -10". We should also observe that the number of paths 
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TABLE 8-3-3 CODING GAINS FOR TRELLlS·CODED QAM MODULATION 

.. =3 ",=4 '" =5 
Code pin (dB) of pin (dB) of pin (dB) of .::01: 

Number rate 16-QAM ....... 32-QAM ........ ti4-QAM ftlSUS asymptolk 
or ~ ua ..... ed IUlCOIIed ......... ed rod1nc 

stat.,. k, k, + 1 8-QAM 16-QAM 31-QAM pin (dB) N .... 

4 I 1/2 3.01 3.01 2.80 3.01 4 

8 2 2/3 3.98 3.98 3.77 3.98 16 
16 2 2,3 4.77 4.77 4.5. 4.77 56 
32 2 2/3 4.77 4.11 456 4.17 16 
64 2 2;3 5.44 5.44 4.23 5.44 56 

128 2 2j3 6.02 6.02 5.81 6.02 344 
256 2 2/3 6.02 6.02 5.81 6.02 44 

50urc.."e: Ungerhoeck (1987)_ 

N'ed with free euclidean distance D'ed becomes large with an increase in the 
number of states. 

Table 8-3-2 lists the coding gain for trellis-coded 16-PSK. Again, we observe 
that the coding gain for eight or more trellis stages exceeds 4 dB. relative to 
uncoded 8-PSK. A simple rate 1/2 code yields 5.33 dB gain with a 128-stage 
trellis. 

Table 8-3·3 contains the coding gains obtained with trellis-coded QAM 
signals. Relatively simple rate 2/3 trellis codes yield a gain of 6 dB with 128 
trellis stages for m = 3 and 4. 

The results in these tables clearly illustrate the significant coding gains that 
are achievable with relatively simple trellis codes. A 6 dB coding gain is close 
to the cutoff rate Ro for the signal sets under consideration. Additional gains 
that would lead to transmission in the vicinity of the channel capacity bound 
are difficult to attain without a significant increase in coding/decoding 
complexity. 

Since the channel capacity provides the ultimate limit on code performance, 
we should emphasize that continued partitioning of large signal sets quickly 
leads to signal point separation within any subset that exceeds the free 
euclidean distance of the code. In such cases, parallel transitions are no longer 
the limiting factor on D'ed' Usually, a partition to eight subsets is sufficient to 
obtain a coding gain of 5-6 dB with simple rate 1/2 or rate 2/3 trellis codes 
with either 64 or 128 trellis stages, as indicated in Tables 8-3-1 to 8-3-3. 

Convolutional encoders for the linear trellis codes listed in Tables 8-3-1 to 
8-3-3 for the M-PAM, M-PSK, and M-QAM signal constellations are given in 
the papers by Ungerboeck (1982, 1987). The encoders may be realized either 
with feedback or without feedback. For example Fig. 8-3-11 illustrates three 
feedback-free convolutional encoders corresponding to 4-, 8-, and 16-state 
trellis codes for 8-PSK and 16-QAM signal constellations. Equivalent realiza
tions of these trellis codes based on systematic convolutional encoders with 
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(1982). © 1982 IEEE.] 

feedback are shown in Fig_ 8-3-12. Usually, the systematic convolutional 
encoders are preferred in practical applications. 

A potential problem with linear trellis codes is that the modulated signal 
sets are not usually invariant to phase rotations. This poses a problem in 
practical applications where differential encoding is usually employed to avoid 
phase ambiguities when a receiver must recover the carrier phase afler a 
tempOrary loss of signal. The problem of phase invariance and differential 
encoding/decoding was solved by Wei (1984a, b), who devised linear and 
nonlinear trellis codes that are rotationally invariant under either 1800 or 90° 
phase rotations, respectively. For example, Fig. 8-3-13 illustrates a nonlinear 
eight-state convolutional encoder for a 32-QAM rectangular signal constella
tion that is invariant under 90° phase rotations. This trellis code has been 
adopted as an international standard for 9600 and 14,000 bits/s (high-speed) 
telephone line modems. 

Trellis-coded modulation schemes have also been developed for multi
dimensional signals. In practical systems, multidimensional signals are trans
mitted as a sequence of either one-dimensional (PAM) or two-dimensional 
(QAM) signals. Trellis codes based on 4-, 8-, and 16-dirnensional signal 
constellations have been constructed. and some of these codes have been 
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implemented in commercially available modems. A potential advantage of 
trellis-coded multidimensional signals is that we can use smaller constituent 
two-dimensional signal constellations that allow for a trade-off between coding 
gain and implementation complexity. The papers by Wei (1987), Ungerboeck 
(1987), Gersho and Lawrence (1984), and Forney et al. ([984) treat 
multidimensional signal constellations for trellis-coded modulation. 

Finally, we should mention that a new design technique for trellis-coded 
modulation based on lattices and cosets of a sublattice has been described by 
Calderbank and Sloane (1987) and Forney (1988). This method for 
constructing trellis codes provides an alternative to the set partitioning method 
described above. -However, the two methods are closely related. In this 
alternative method. a block of k I bits is fed to a convolutional encoder. Each 
block of k I input bits produces an output symbol that is a coset of the 
sublattice A'. which is a subset of the chosen lattice. A second block of k2 input 
bits is used to select one of the points in the coset at the output of the 
convolutional encoder. It is apparent that the cosets of the subJattice are akin 
to the subsets in set partitioning and the elements of the cosets are akin to the 
signal points within a subset. This new method has led to the discovery of new 
powerful trellis codes involving larger signal constellations, many of which are 
listed in the paper by Calderbank and Sloane (1987). 
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implemented in commercially available modems. A potential advantage of 
trellis-coded multidimensional signals is that we can use smaller constituent 
two-dimensional signal constellations that allow for a trade-off between coding 
gain and implementation complexity. The papers by Wei (1987), Ungerboeck 
(1987), Gersho and Lawrence (1984), and Forney et al_ ([984) treat 
multidimensional signal constellations for trellis-coded modulation. 

Finally, we should mention that a new design technique for trellis-coded 
modulation based on lattices and cosets of a sublattice has been described by 
Calderbank and Sloane (1987) and Forney (1988). This method for 
constructing trellis codes provides an alternative to the set partitioning method 
described above. -However, the two methods are closely related. In this 
alternative method. a block of k I bits is fed to a convolutional encoder. Each 
block of k I input bits produces an output symbol that is a coset of the 
sublattice A'. which is a subset of the chosen lattice. A second block of k2 input 
bits is used to select one of the points in the coset at the output of the 
convolutional encoder. It is apparent that the eosets of the subJattice are akin 
to the subsets in set partitioning and the elements of the eosets are akin to the 
signal points within a subset. This new method has led to the discovery of new 
powerful trellis codes involving larger signal constellations, many of which are 
listed in the paper by Calderbank and Sloane (1987). 
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Gilbert (1952). new codes by Muller (1954) and Reed (1954), and coding 
techniques for noisy channels by Elias (1954. 1955) and Slepian (1956). 

During the period 1960-1970. there were a number of significant contribu
tions in the development of coding theory and decoding algorithms. In 
particular, we cite the papers by Reed and Solomon (1960) on Reed-Solomon 
codes, the papers by Hocquenghem (1959) and Bose and Ray-Chaudhuri 
(l960a. b) on BCH codes. and the Ph.D dissertation of Forney (1966a) on 
concatenated codes. These works were followed by the papers of Goppa (1970, 
1971) on the construction of a new class of linear cyclic codes, now called 
Goppa codes (see also Beriekamp, 1973). and the'paper of Justesen (1972) on 
a constructive technique for asymptotically good codes. During this period, 
work on decoding algorithms was primarily focused on BCH codes. The first 
decoding algorithm for binary BCH codes was developed by Peterson (1960). 
A number of refinements and generalizations by Chien (1964), Forney (1965). 
Massey (1965), and Berlekamp (1968) led to the development of a computa
tionally efficient algorithm for BCH codes, which is described in detail by Lin 
and Costello (1983). 

In parallel with these developments on block codes are the developments in 
convolutional codes, which were invented by Elias (1955). The major problem 
in convolutional coding was decoding. Wozencraft and Reiffen (1961) de
scribed a sequential decoding algorithm for convolutioool codes. This algo
rithm was later modified and refined by Fano (1%3), and it is now called the 
Fano algorithm. Subsequently, the stack algorithm was devised b}' Ziganzirov 
(1966) and Jelinek (1969), and the Viterbi algorithm was devised by Viterbi 
(1967). The optimality and the relatively modest complexity for small 
constraint lengths have served to make the Viterbi algorithm the most popular 
in decoding of convolutional codes with K '" 10. 

One of the most important contributions in coding during the 19705 was the 
work of Ungerboeck and Csajka (1976) on coding for bandwidth-constrained 
channels. In this paper, it was demonstrated that a significant coding gain can 
be achieved through the introduction of redundancy in a bandwidth
constrained channel and trellis codes were described for achieving" coding gains 
of 3-4 dB. This work has generated much interest among researchers and has 
led to a large number of publications over the past 10 years. A number of 
references can be found in the papers by Ungerboeck (1982, 1987) and Forney 
et al. (1984). Additional papers on coded' modulation for bandwidth
constrained channels may also be found in the Special Issue on Voiceband 
Telephone Data Transmission, IEEE Journal on Selected Areas in Com
munication (September 1984). A comprehensive treatment of trellis·coded 
modulation is given in the book by Biglieri et al. (1991). 

In addition to the references given above on coding, decoding, and coded 
signal design, we should mention the collection of papers published by the 
IEEE Press entitled Key Papers in the Development of Coding Theory, edited 
by Berlekamp (1974). This book contains important papers that were 
published in the first 25 years of coding theory. We should also cite the Special 
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PROBLEMS 

Issue on Error-Correcting Codes. / EEE Transactions on CammullIcatio/lS 

(October 1971). 

8-1 The generator matriK for a linear binary code is 

[

0 () I I I 

G= 0 I 0 0 1 

1 0 0 I I 

a Express G ill systematic III PJ form. 

() I] 
1 1 
I 0 

b Determine the parity check matrix H for the code. 
c Construct the table of syndromes for the code. 
d Determine the minimum distance of the code. 
e Demonstrate that Ihe code word corresponding 10 Ihe informalin sequence 101 

is orthogonal to H. 
8-2 Lisl the code words generated by the matrices given in (8-1-35) and (8-1-37), and. 

thus, demonstrate that these matrices generate the same set of code words. 
8-3 The weight distribulion of Hamming codes is known. Expressed as a polynomial in 

powers of x, the weight distribution [or the binary Hamming codes of block length 
nlS 

" 
A(x) = L A,x' 

, _II 

=_1- [(1 +x)" +n(l +x)'" 1)~(l-x)("'''''1 
n + I 

where A, is the number of code words of weight i. Use Ihis formula to determine 
the weight distributoon of the (7,4) Hamming code and check your result with lhe 
lis! of code words given in Table 8·1-2. 

8-4 The polynomial 

g(p)=p4+p+ I 

is the generator for the (15. II) Hamming binary code. 
s Determine a generator matrix G for this code in systematic form. 
b Determine the generator polynomial for the dual code. 

8-S For the (7,4) cyclic Hamming code with generator polynomial g(p) = p' + p' + L 
construct an (iI.4) extended Hamming code and list all the code words. What is 
£1,,111, for the extended code? 

8-6 An (1\,4) linear block code is constructed hy shortening a (15. II) Hamming code 
generated by the generator polynomial g(p) = I" + I' + L 
a Construct the code words of the (X. 4) code and list them. 
b What is the minimum distance of the (1\.4) code" 

8-7 The polynomial p" + 1 when f "ctored yields 

{'" T I = (I" + p' + 1)(1" + 1" + ,,: + I' + I) 

X C!" + l' + I HI' . +" ~ 1)(1' + I) 

a Construcl a syslcmatk (15.5) code using the generator pol.vllomial 

K( p) = (p' + I' ' + 1" + " + 1)( p' -'-1' + 1)( p' ~ 1'+ I) 
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b What is the minimum distance of the code? 
c How many random errors per code word can be corrected? 
d How many errors can be detected by this code? 
e List the code words of a (15,2) code constructed from the generator polynomial 

g(p) = (p" + 1 )/(p' + p + 1) 

and determine the minimum distance. 
8-8 Construct the parity check matrices HI and H2 corresponding to the generator 

matrices G I and G2 given by (8-1-34) and (8-1-35), respectively. 
8-9 Construct an extended (8,4) code from the (7,4) Hamming code by specifying the 

generator matrix and the parity check matrix. 
8-10 A systematic (6.3) code has the generator matrix 

[
1 0 0 I 1 O~] 

G= 0 1 0 0 1 
o 0 I 1 0 

Construct the standard array and determine the correctable error patterns and 
their corresponding syndromes. 

8·11 Construct the standard array for the (7,3) code with generator matnx 

G = [~ ~ ~ : 0 011] 
001 0 

and determine the correctable patterns and their corresponding syndromes. 
8-12 Determine the correctable error patterns (ofleast weight) and their syndromes for 

the systematic (7,4) cyclic Hamming code. 
8·13 Prove that if the sum of two error patterns e l and e, is a valid code word C; then 

each pattern has the same ,yndrome. 
8-14 Let g(p) = p" + p. + p' + p' + 1 be a polynomial over the binary field. 

a Find tbe lowest-rate cyclic code whose generator polynomial is g(p). What is 
the rate of this code? 

b Find the minimum distance of the code found in (a). 
c What is the coding gain for the code found in (a). 

8-15 The polynomial g( p ) = p + lover the binary field is considered. 
a Show that this polynomial can generate a cyclic code for any choice of ". Find 

the corresponding k. 
b Find the systematic form of G and H for the code generated by g(p). 
c Can you say what type of code this generator polynomial generates? 

8-16 Design a (6,2) cyclic code by choosing the shortest possible genuator polynomial. 
a Determine the generator matrix G (in the systematic form) for this code and 

find all possible code words. 
b How many errors can be corrected by this code? 

8·17 Prove that any two ,,·tuples in the same row of a standard array add to produce a 
valid code word. 

8-18 Beginning with a (15.7) BeH code, construct a shortened (12,4) code. Give the 
generator matrix for the shortened code. 

8-19 In Section 8-1·2, it was indicated that when an (n, k) Hadamard code is mapped 
into waveforms by means of binary PSK, the corresponding M = 2' waveform, 
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b What is the minimum distance of the code? 
c How many random errors per code word can be corrected? 
d How many errors can be detected by this code? 
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arc orthogonal. Determine the handwidth expansion factor for the M orthogonal 
waveforms and compare this with the bandwidth requirements of orthogonal fSK 
detected coherently. 

8-20 Show that the signaling waveforms generated from a maximum-length shift
register code by mapping each bit in a code word into a binary PSK signal are 
equicorrelated with correlation coefficient p, = -I/(M -I), i.e., the M waveforms 
form a simplex sel. 

8-21 Compute the error probahility ohtained with a (7.4) Hamming code on an 
A WGN channel. both for hard-decision and ,oft-decision decoding. Use (il-I-50), 
18-1-52). (8-1·82). (8-]-90), and (8-]-91}. 

8-22 Use the results in Section 2-1-6 to obtain the Chernoff bound for hard-decision 
decoding given by (8-1-89) and (8-1-90). Assume that the all-zero code word is 
:ransmitled and determine an upper hound on the probability that code word C" 
having weight w"" is selected. This occurs if lw", or more bits are in error. To 
apply the Chernoff hound. define a sequence of w'" random variables as 

x = j I 
, '.-1 

with probability p 
witl! probability I - P 

where i = 1,2 ..... IV"" and p IS the probability of error. For the BSC. the IX,) are 
statisllcally independent. 

8-23 A convolutiDnal code is described by 

g, = (I 0 0]. g, = [I 0 lJ. g, = [I Ij 

a Draw the encoder corresponding to this code. 
b Draw tbe state-transition diagram for this code. 
c Draw the trellis diagram fo, this code. 
d Find the transfer function and the free distance of fhls code. 
c Verify whether or not this code is catastrophic. 

8-24 The convolutional code of Problem 8-23 is used for transmission over a A WGN 
channel with hard-decision decoding. The output of the demodulator detector is 
(lOlOOWIIllOIII ... j. Using the V,terbi algorithm, find the transmitted sequence. 

8-25 Repeat Problem 8-23 for a code with 

g = [I 01. g, = (I 0 II, 11., = [I I i 
8-26 The block diagram of a binary convolutional code is shown in Fig. P8-26. 

a Draw the state diagram for the code. 
b Find the transfer function of the code. T(D). 
t' What is dln:~. the minimum free distance of the code: 
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d Assume that a message has been encoded by this cod.: and trammitted over a 
binary-symmetric channel with an error probabilily of p = 10-', If the received 
sequence is r = (!l0, llO, 110,111,010, 1(n, 101), using the Viterbi algorithm, 
find the transmitted bit sequence, 

e Find an upper bcund to the bit error probability of the code when the abcve 
binary-symmetric channel is employed. Make any reasonable approximation, 

8-27 The block diagram of a (3,1) convolutional code is shown in Fig, PS-27, 
a Draw tbe state diagram of the code, 
b Find the transfer function T(D) of the code. 
c Find the minimum free distance (d,,=) of the code and show the corresponding 

path (al distance d,,« from the all-zero code word) on the trellis, 
d Assume Ihal four informalion bits (x" x" x" x.). followed by two zero bits. 

have been encoded and sent via a binary-symmetric channel with crossover 
probability equal to O. L The received sequence is (111, Ill, Ill, 11 L Ill. III l. 
Use the Vlterbi decoding algorithm to find the most likely data sequence, 

8-lS In the convolutional code generated by the encoder shown in Fig. P8-28. 
a Find the transfer (unction of the code in the form T(N, D). 
b Find tif". of Ihe code. 
c If the code is used on a channel using hard-decision Viterbi decoding. assuming 

the crossover probability of the channel is p = 10-·, use the hard-decision bound 
\0 find an upper bound on the average bit error probabilily of the code. 

~rll=:=O---: l,-I ::,8,= 100 l! 
1 .... ___ • Y g, =!l 10j 

'------' 

8-29 Figure P8-29 depicts a rale 1/2, constraint length K = 2, convolutional code. 
a Sketch the tree diagram. the trellis diagram. and the state diagram. 
b Solve for the Iransfer function T(D, N, J) and. from this, specify the minimum 

free distance, 
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d Assume that a message has been encoded by this cod.: and trammitted over a 
binary-symmetric channel with an error probabilily of p = 10-', If the received 
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8-30 A rate 1/2, K = 3, binary convolutional encoder is shown in Fig. PS-30. 
a Draw the tree d!agram, the trellis diagram, and the state diagram. 
b Determine the transfer function T(D, N, l) and, from this, specify the minimum 

free distance. 
8-31 Sketch the convolutional encoders for the following codes: 

a rate 1/2, K = 5, maximum free distance code (Table 8-2-1): 
b rate 1/3, K = 5, maximum free distance code (Table 8-2-2); 
crate 2/3, K = 2, maximum free distance code (Table 8-2-8). 

8·32 Draw the state diagram for the rate- 2/3, K = 2, convolutional code indicated in 
Problem 8-31(c) and, for each transition, show the output sequence and the 
distance of the output sequence from the all-zero sequence. 

8-33 Consider the K = 3, rate 1/2, comolutional code shown in Fig. P8-30. Suppose 
that the code is used on a binary symmetric channel and the received sequence for 
the first eight branches is 0001100000001001. Trace the decisions on a 
trellis diagram and label the survivors' Hamming distance metric at each node 
level. If a tie occurs in the metnes required for a decision, always choose the upper 
path (arbitrary choice). 

8-34 Use the transfer function derived in Problem 8-30 for the R, = I/Z, K = 3, 
convolutional code to compute tbe probability of a bit error for an A WGN 
channel with (ai hard-decision and (b) soft-decision decoding. Compare the 
performance by plotting the results of the computation on the same graph. 

8-35 Use the generators given by (8-2-36) to obtain the encoder for a dual-3, rate 1/2 
convolutional code. Determine the state diagram and derive the transfer function 
T(D, N,l). 

8-36 Draw the state diagram for the convolutional code generated by the encoder 
shown in Fig. P8-36 and, thus, determine if the code is catastrophic or 
noncatastrophic. Also, give an example of a rate 1/2, K = 4, convolutional encoder 
that exhibits catastrophic error propagalion. 

8-37 A trellis coded signal is formed as shown in Fig. P8-37 by encooing one bit by use 

+ 
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0 0} <D Coded bit, 

<D OQ)} 
CD 

Uncoded 
00 bits 

0 00 

of a rate 1/2 convolutional code, while three additional infonnation bits are left 
uncoded. Perform the set partitioning of a 32-QAM (cross) consteBation and 
indicate the subsets in the partition. By how much is the distance between adjacent 
signal points increased as a result of partitioning? 

8-311 Let x, and x, be two code words of length n with distance d and assume that these 
two code words are transmitted via a binary-symmetric channel with crossover 
probability p. Let P(d) denote the error probability in transmission of these two 
code words. 
a Show that 

P(d),,;;2: v'p(y, I X,)P(Yi I x,) 
1'"'1 

where the summation is over all binary sequences Yi' 
b From the above, conclude that 

P(d)';; [4p(1- p»)'" 

543

FIGURE P8-37 

CHAPTER 8: BLOCK AND CONVOLUnONAL CHANNEL CODES SJ3 

0 0} <D Coded bit, 

<D OQ)} 
CD 

Uncoded 
00 bits 

0 00 

of a rate 1/2 convolutional code, while three additional infonnation bits are left 
uncoded. Perform the set partitioning of a 32-QAM (cross) consteBation and 
indicate the subsets in the partition. By how much is the distance between adjacent 
signal points increased as a result of partitioning? 

8-311 Let x, and x, be two code words of length n with distance d and assume that these 
two code words are transmitted via a binary-symmetric channel with crossover 
probability p. Let P(d) denote the error probability in transmission of these two 
code words. 
a Show that 

P(d),,;;L: v'p(y, I X,)P(Yi I x,) 
1'"'1 

where the summation is over all binary sequences Yi' 
b From the above, conclude that 

P(d)';; [4p(1- p»)'" 



9 
SIGNAL DESIGN FOR 
BAND-LIMITED CHANNELS 

In previous chapters, we considered the transmission of digital information 
through an additive gaussian noise channel. In effect, no bandwidth constraint 
was imposed on the signal design and the communication system design. 

In this chapter, we consider the problem of signal design when the channel 
i~ band·limited to some specified bandwidth W Hz. Under this condition. th~ 
channel may be modeled as a linear filter having an equivalent lowpass 
frequency response C(f) that is lero for I/f> W. 

The first topic that is treated is the design of the signal pulse g(1) in a 
linearly modulated signal, represented as 

v(r) = 2.J"g«( - nT) 

that efficiently utilizes the total availahle channel bandwidth W. We shall see 
that when the channel is ideal for 1/1'" W, a signal pulse can be designed that 
allows us to transmit at symbol rates comparable to or exceeding the channel 
bandwidth W. On the olher hand. when the channel is not ideal, signal 
transmission at a symbol rate equal to or exceeding W results in intersymbol 
interference (lSI) among a number of adjacent symbols. 

The second topic that is treated in rhis chapter is the use of coding to shape 
the spectrum of the transmitted signa! and, thus, to avoid the problem of lSI. 

We begin our discussion with a general characterization of band.limited. 
linear filter channels. 

9-1 CHARACTERIZATION OF BAND-LIMITED 
CHANNELS 

Of the various channels available for digital communications, telephone 
channels are by far the most widely used. Such channels are characterized as 
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band-limited linear filters. This is certainly the proper characterization when 
fTequency-division multiplexing (fDM) is used as a means for establishing 
channels in the telephone network. Recent additions to the telephone network 
employ pulse-code modulation (PCM) for digitizing and encoding the analog 
signal and time-division multiple)(ing (TDM) for establishing multiple chan
nels. Nevertheless. filtering is still used on the analog signal prior 10 sampling 
and encoding. Consequently. even though the present telephone network 
employs a mixture of FDM and TDM for transmission, the linear filter model 
for telephone channels is still appropriate. 

For our purposes, a band· limited channel such as a telephone channel will 
be characterized as a linear filter having an equivalent lowpass frequency 
response characteristic C(f). Its equivalent lowpass impulse response is 
denoted bye(t). Then. if a signal of the form 

s(t) = Re [v(t)e-'~"r.1 (9-1·1) 

is transmitted over a bandpass telephone channel, the equivalent lowpass 
received signa! is 

r,{t) = f, v{r)e(t - r)dr+ z(t) (9-1-2) 

where the integral represents the convolution of eft) with v(t), and 1:(1) 
denotes the additive noise. Alternatively. the signal term can be represented in 
the frequency domain as V (f)C(f). where V (f) is the Fourier transform of 
Vel). 

If the channel is band-limited to W Hz then C(f) = 0 for If I > W. As a 
consequence, any frequency components in VU) above If I = W will not be 
passed by the channel. For this reason, we limit the bandwidth of the 
transmitted signal to W Hz also. 

Within the bandwidth of the channel, we may express the frequency 
response C(f) as 

CU) = 1C(f)1 t!81fl (9-1-3) 

where 1C(f)1 is the amplitude response characteristic and e(f) is the phase 
response characteristic. Furthermore, the envelope delay characteristic is 
defined as 

ref) = - J.. dO(f) 
21r df 

(9-1-4) 

A channel is said to be nondistorting or ideal if the amplitude response I C(f)1 is 
constant for all If I "" Wand 0(/) is a linear function of frequency, i.e., ref) is a 
constant for all If I.;; w. On the other hand, if 1C(f)1 is not constant for all 
If I.;; W. we say that the channel distorts the transmitted signal V (f) in 
amplilude. and. if ,(f) is not constant for all If I "" W. we say that the channel 
distorts the signal V(f) in delay. . 
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FIGURE 9-1-1 Efft:d uf channel distortion: (o) channel mput: /h) ch.mne! output; k ~ equalizcr ;}urpur. 

As a result of the ampiitude and delay distortion caused by the noniceal 
channel frequency response characteristic C(f), a succession of pulses trans
mitted through the channel at rates comparable (0 the bandwidth Ware 
smeared to the point that they are no longer distinguishable as well-defined 
pulses at the receiving terminal. Instead, they overlap and, thus, we have 
intersymbol interference. As an example of the effect of delay distortion on a 
transmitted pulse, Fig. 9-1-1 (a) illustrates a band-limited pulse having zeros 
periodically spaced in time at points labeled ± T, ±2T, etc. If information is 
conveyed bv the pulse amplitude. as in PAM. for example. then one can 
transmit a se4uence of pulses. each of which has a peak at the periodic zeros of 
the other pulses. However. transmission of the pulse through a char.ne! 
modeled as having a linear envelope delay characteristic r(f) 14uadratic phase 
O(fl] results in the received puis<: shown in Fig. 9-1-1(/1) having zero-crossmgs 
that arc no longer periodically spaced. Consequently. a scquenc~ of successive 
pulses would be smeared into one another and the peaks of the pulses would 
no longer he distinguishahle. Thus. the channel delay distort. ion results in 
inter,ymhol interference. As will he discussed in Chapter 10. it is possibk 10 

compensate (or the non ideal frc4uency response characteristic of the channel 
hy usc of a filter or equalizer al the demodulator. Figure 9-1-1(,,) illustrates the 
output of a linear equalizer that eompen",lcs for the linear distortion in the 
channel. . 

Th,' extent of the interWnlhol interference on a telephone channd can be 
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FIGURE 9-1-2 Average amplitude and delay characteristics of medium-range telephone channel. 

appreciated by observing a frequency response characteristic of the channel. 
Figure 9-1-2 illustrates the measured average amplitude and delay as functions 
of frequency for a medium-range (180-725 mi) telephone channel of the 
switched telecommunications network as given by Dully and Tratcher (1971). 
We observe that the usable band of the channel extends from about 300 Hz to 
about 3000 Hz. The corresponding impulse response of this average channel is 
shown in Fig. 9-1-3. Its duration is about lOms. In comparison, the transmitted 
symbol rates on such a channel may be of the order of 2500 pulses or symbols 
per second. Hence, intersymbol interference might extend oyer 20-30 symbols. 

In addition to linear distortion, signals transmitted through telephone 
channels are subject to other impairments, specifically nonlinear distortion. 
frequency offset, phase jitter, impulse noise and thermal noise. 

Nonlinear distortion in telephone channels arises from nonlinearities in 

FIGURE 9~1·3 Impulse response of average channel with amphtude and delay shown in Fig. 9-1-2. 
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amplifiers and compandors used in the telephone system. This type of 
distortion is usually small and it is very difficult to correct. 

A small frequency offset. usually less than 5 Hz. results from the use of 
carrier equipment in the telephone channel. Such an offset cannot be tolerated 
in high-speed digital transmission systems that use synchronous phase-coherent 
demodulation. The offset is usually compensated for by the carrier recovery 
loop in the demodulator. 

Phase jitter is basically a low-index frequency modulation of the transmitted 
signal with the low frequency harmonics of the power line frequency 
(50-60 Hz). Phase jitter poses a serious problem in digital transmission of high 
rates. However. it can be tracked and compensated for. to some extent. at the 
demodulator. 

Impulse noise is an additi~e disturbance. It arises primarily from the 
switching equipment in the telephone system. Thermal (gaussian) noise is Jlso 
present at levels of 20-30 dB below the signal. 

The degree to which one must be concerned with these channel impairments 
depends on the transmission rate over the channel and the modulation 
technique. For rates below 1800 bits/s (R/W < 1). one can choose a modula
tion technique, e.g., FSK. that is relatively insensitive to the amount of 
distortion encountered on typical telephone channels from all the sources listed 
above. For rates between 1800 and 2400 bits/s (R/W = 1), a more bandwidth
efficient modulation technique such as four-phase PSK is usually employed. At 
these rates, some form of compromise equalization is often employed to 
compensate for the average amplitude and delay distortion in the channel. In 
addition, the carrier recovery method is designed to compensate for the 
frequency offset. The other channel impairments are not that serious In their 
effects on the error rate performance at these rates. At transmission rates 
above 2400 bitsfs (R/W > I), bandwidth-efficient coded modulation techniques 
such as trellis-coded QAM. PAM, and PSK are employed. For such rates. 
special attention must be paid to linear distortion, frequency offset, and phase 
jitter. Linear distortion is usually compensated for by means of an adaptive 
equalizer. Phase jitter is handled by a combination of signal G~sign and some 
type of phase compensation at the demodulator. At rates above 9600 bits/s, 
special attention must be paid not only to linear distortion, phase jitter, and 
frequency offset, but also 10 the other channel impairments mentioned aoove. 

Unfortunately, a channel model that encompasses all the impairments listed 
above becomes difficult to analyze. For mathematical tractability the channel 
model that is adopted in this and the next two chapters is a linear filter that 
introduces amplitude and delay distortion and adds gaussian noise. 

Besides the telephone channels, there are other physical channels that 
exhibit some form of time dispersion, and thus, introduce intersymbol 
interference. Radio channels such as shortwave ionospheric propagation (HF) 
and tropospheric scatter are two examples of time-dispersive channels. In these 
channels, time dispersion and, hence, intersymbol interferenj::e is the result of 
multiple propagation paths with different path delays. The number of paths 
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Unfortunately, a channel model that encompasses all the impairments listed 
above becomes difficult to analyze. For mathematical tractability the channel 
model that is adopted in this and the next two chapters is a linear filter that 
introduces amplitude and delay distortion and adds gaussian noise. 

Besides the telephone channels, there are other physical channels that 
exhibit some form of time dispersion, and thus, introduce intersymbol 
interference. Radio channels such as shortwave ionospheric propagation (HF) 
and tropospheric scatter are two examples of time-dispersive channels. In these 
channels, time dispersion and, hence, intersymbol interferenj::e is the result of 
multiple propagation paths with different path delays. The number of paths 
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FlGllRE: 9-1-4 Scattering function of a medium~range tropospheric scatter channel. 

and the relative time delays among the paths vary with time, and, for this 
reason, these radio channels are usually called time-variant mu/ripath channels. 
The time-variant multipath conditions give rise to a wide variety of frequency 
response characteristics. Consequently the frequency response characterization 
that is used for telephone channels is inappropriate for time-variant multipath 
channels. Instead, these radio channels are characterized statistically, as 
explained in more detail in Chapter 14, in terms of the scattering function. 
which, in brief, is a two-dimensional representation of the average received 
signal power as a function of relative time delay and Doppler frequency. 

For illustrative purposes, a scattering function measured on a medium-range 
(150 mi) trophospheric scatter channel is shown in Fig. 9-1-4. The total time 
duration (multi path spread) of the channel response is approximately 0.7 JLS on 
the average, and the spread between "half-power points" in Doppler fre
quency is a little less than 1 Hz on the strongest path and somewha t larger on 
the other paths. Typically, if one is transmitting at a rate of 107 s)'mbols/s over 
such a channel, the multipath spread of 0.7 p.s will result in intersymbol 
interference that spans about seven symbols. 

In this chapter, we deal exclusively with the linear time-invariant filter 
model for a band-limited channel. The adaptive equalization techniques 
presented in Chapters 10 and 11 for combating intersymbol interference are 
also applicable to time-invariant multipath channels. under the condition that 
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the time variations in the channel are relatively slow in comparison to the total 
channel handwidth or, equivalently. to the symbol transmission rate over the 
channel. 

9-2 SIGNAL DESIGN FOR BAND-LIMITED 
CHANNELS 

It was shown in Chapter 4 that the equivalent lowpass transmitted signal for 
several different types of digital modulation techniques has the common form 

v(t) = L /',g(l - nT) (9-2-1) 
n-~n 

where {I,,} represents the discrete information-bearing sequence of symbols and 
g(l) is a pulse that, for the purposes of this discussion. is assumed to have a 
hand-limited frequency response characteristic G(f). i.e., G(f) = 0 for If I > W. 
This signal is transmilled over a channel having a frequency response C(f). 
also limited to If I ,,; W. Consequently, the received signal can be represented as 

w 

f,(l) = L /"h(1 - n T) + z(t) (9-2-2) 
ll':O 

where 

h(l) = r~ g( r)c(l - r) dr (9-2-3) 

and z(t) represents the additive white Gaussian noise. 
Let us suppose that the received signal is passed Ifrst through a filter and 

then sampled at a rate liT samples Is. We shall show in a subsequent section 
that the optimum filter from the point of view of signal detection is one 
matched to the received pulse. That is, the frequency response of the receiving 
filter is H*(f). We denote the output of the receiving filter as 

= 

y(t) = L Inx(t - nT) + vet) (9-2-4) 
It =0 

where X(l) is the pulse representing the response of the receiving filter to the 
input pulse her) and v(t) is the response of the receiving filter to the noise z(t). 

Now, if y(r) is sampled at times t = kT + Tn, k = O. 1 •.... we have 

~ 

y(kT + Tn) == y, = L l.,x(kT - nT + To) + v(kT + Tn) 

or, equivalently. 
11=0 

Yk = L II/X" -tl + VA:. 
1/ ~n 

k = O. I .... 

(9-2-5) 

~9-2-6) 
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where Til is the transmission delay through the channeL The sample values can 
be expressed as 

1 .~ 

Yk = X,,( I,. + -- 2: lux" -n) + v,. k = O. 1, - - . 
Xu tl=1I 

,lo#i.: 

('1-2-7) 

We regard Xo as an arbitrary scale factor, which we arbitrarily set equal to 
unity for convenience_ Then 

y~ =h + 2: J/lXJ;_II+ Vk 
I: -.1) 

fI~k 

The term 1, represents the desired information symbol at the k th sampling. 
instant. the term 

2: In-x}..: 11 

fF (I 

rl#J.. 

represents the intersymbol interference (lSI). and v, is the additive gauss,an 
noise variable at the kth sampling instant. 

The amount of intersymbol interference and noise in a digital communica
tions system can be viewed on an oscilloscope. For PAM signals. we can 
display the received signal }'(/) on the vertical input with the horizontal sweep 
rate set at 1/ T_ The resulting oscilloscope display is called an eve ,'>IIII"n! 

because of its resemblance to the human eye_ For example. Fig. 9-2-! 
illustrates the eye patterns for binary and four-level PAM modulation. The 
effect of lSI is to cause the eye to close. thereby reducing the margin for 
additive noise to cause errors. Figure 9-2-2 graphically illustrates the effect of 
intersymhol interference in reducing the opening of a binary eye_Note that 
intersymbol interference distorts the position of the zero-crossings and cause's 

F1GliRE 9~2·1 Examples of eye patterns for binary and quaternary amplitude shift kt'ying \Of PAM). 

81NAH QUATERNARY 
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FIGURE 9.-2~2 Effect of iiltersymbol interference on eye opening. 
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a reduction in the eye opening. Thus. it causes the system to be more sensitive 
to a synchronization error. 

For PSK and QAM it is customary to display the "eye pattern" as a 
two-dimensional scatter diagram illustrating the sampled values {y.l that 
represent the decision variables at the sampling instants. Figure 9-2·3 illustrates 
such an eye pattern for an 8-PSK signal. In the absence of intersymbol 
interference and noise, the superimposed signals at the sampling instanls would 
result in eight distinct points corresponding to the eight transmitted signal 
phases. lntersymbol interference and noise result in a deviation of the received 
samples {y.} from the desired 8-PSK signal. The larger the intersymbol 
interference and noise, the larger the scattering of the received signal samples 
relative to the transmitted signal points. 

Below, we consider the problem of signal design under tne condition that 
there is no intersymbol interference at the sampling instants. 

9-2-1 DESIGN OF BAND-LIMITED SIGNALS FOR NO 
INTERSYMBOL INTERFERENCE-THE NYQUIST 
CRITERION 

For the discussion in this section and in Section 9-2-2, we assume that the 
band-limited channel has ideal frequency response characteristics, i.e .. C(f} = 1 
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elghl-pha...e "ignill allhe OUlput of demodulawf 

FIGURE: 9-2-3 Two·dimensional digital "eye patterns:' '0' 'h' 
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for If I.; w. Then the pulse x(t) has a spectral characteristic X(f} = IG(!)I', 
where 

x(t) = r~ X (f)e""" df (9-2-9) 

We are interested in determining the spectral properties of the pulse Xli} ana, 
hence, the transmitted pulse g(l), that results in no intersymbol interference, 
Since 

ro 

Y,l.: = I;, + 2: Inx,l.: --n + VA: 
II--() 

n¥k 

the condition for no intersymbol interference is 

{
I (k =0) 

x(t=kT)=x = 
k 0 (k;;60) 

(9-2-10) 

(9-2-1 I) 

Below, we derive the necessary and sufficient condition on X(!) in order for 
X(I) to satisfy the above relation. This condition is known as the Nyquist 
pulse-shaping criterion or N)'quist condition for zero /S/ and is stated in the 
following theorem. 

Theorem (Nyquist) 

The necessary and sufficient condition for X(I) to satisfy 

{
I (11=0) 

X nT -( ) - 0 (n;;6 0) 

is that its Fourier transform X If) satisfy 

L X(f +m/T)= T 
m= -00 

Proof 

In general, x(t) is the inverse Fourier transform of XI!)' Hence, 

At the sampling instants I = nT, this relation becomes 

x(nT) = fro X(f)e J2 ><J
nT df 

(9-2-12) 

(9-2-13) 

(9-2-14) 

(9-2-15) 
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Let US break up the integral in (9-2-15) into integrals covering the finite 
range of 11 T. Thus, we obtain 

x(nT) = t 12m
+ ,)',T X(f)ei2~fnT df 

m=-X (1m-l)J2T 

~ J'I2T = m~x -"21' X(f + mIT)el'''f
nr 

dt 

= f"::T [mtT X(f ~ mIT) Jel2.fnT dj 

= J'I2T B(!)el'''fnTdf 
-l12T 

(9-2-16) 

where we have defined B(f) as 

~ 

B(f) = 2: XU + mIT) (9-2-17) 
m=-x 

Obviously B(f) is a periodic function with period liT, and, therefore, it can be 
expanded in terms of its Fourier series coefficients ibn} as 

x 

B(!) = 2: bnel2 r.nfT (9-2-18) 
n=-X 

where 

(9-2-19) 

Comparing (9-2-19) and (9-2-16), we obtain 

bn = Tx(-nT) (9-2-20) 

Therefore, the necessary and sufficient condition for (9-2-10) to be satisfied is 
that 

{ 
T (n = 0) 

b = 
n 0 (n,.. 0) 

which, when substituted into (9-2-18), yields 

B(f) = T 

or, equivalently, 
x 

2: XU + miT) = T 
m=-:)C 

(9-2-21 ) 

(9-2-22) 

(9-2-23) 
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fiGURE 9-2-4 Plot of BIn for the case T < 1/2W. 

This concludes the proof of the theorem. 

,f! \, 
Lw 
T 

! 
T 

Now suppose that the channel has a bandwidth of W. Then C(f) lE 0 for 
If I > Wand, consequently, X(f) = 0 for If I > w. We distinguish three cases. 

1 When T < l/2W, or, equivalently, lIT> 2W, since B(!) = I.;,: _~ X(! + 
nIT) consists of nonoverlapping replicas of X(f), separated by liT as shown 
in Fig. 9-2-4, there is no choice for X(f) to ensure BU)'" T in this case and 
there is no way that we can design a system with no lSI. 

2 When T = 1/2W, or, equivalently, lIT = 2W (the Nyquist rate), the 
replications of XCf), separated by lIT, are as shown in Fig. 9-2-5. It is clear 
that in this case there exists only one X(f) that results in BU) = T, namely, 

X(f) = {OT Ofl < W) 
(otherwise ) 

which corresponds to the pulse 

() sin (mIT) . (m) x t =smc -
mIT T 

(9-2-24) 

(9-2-25) 

This means that the smallest value of T for which transmission with zero lSI is 
possible is T = l/2W, and for this value, x(t) has to be a sinc function. The 
difficulty with this choice of x(t) is that it is noncausal and therefore 
nonrealizable. To make it realizable, usually a delayed version of it, i.e., 
sine [n(t - to)/ T] is used and to is chosen such that for t < 0, we have 
sine [n(t - to)IT] =0. Of course, with this choice of x(t), the sampling time 

FIGURE 9-2-S Plot of B(n for the case T = 1/2W. 
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F1GURE 9·2-6 Plot of B(f) for the case T> InW. 

must also be shifted to mT + to. A second difficulty with this pulse shape is that 
its rate of convergence to zero is slow. The tails of x(r) decay as lit; 
consequently, a small mistiming error in sampling the output of the matched 
filter at the demodulator results in an infinite series of lSI components. Such a 
series is not absolutely summable because of the lit rate of decay of the pulse, 
and, hence, the sum of the resulting lSI does not converge. 

3 When T> 1/2 W, B(f) consists of overlapping replications of X (f) 
separated by liT. as shown in Fig. 9-2·6, In this case, there exist numerous 
choices for XU) such that 8U) = T. 

A particular pulse spectrum, for the T> 1/2W case, that has desimble 
spectral properties and has been widely used in practice is the raised cosine 
spectrum. The raised cosine frequency characteristic is given as (see Problem 
9·11 ) 

T 

X",(f) = !.{l +cos[1tT (lfl- 1- (3)]} 
2 {3 \, 2T 

o 

(9·2·26) 

where {3 is called the wI/off factor. and takes values in the range 0 .,,;; f3 .,,;; 1, The 
bandwidth occupied by the signal beyond the Nyq uist frequency 1/2 T is called 
the excess bandwidth and is usually expressed as a percentage of the Nyquist 
frequency, For example. when f3 = !. the excess bandwidth is 50%, and when 
{3 = 1, the excess bandwidth is 100%. The pulse x(t), having the raised cosine 
spectrum, is 

x(t) 
sin (miT) cos (tr{3tfT) 

m!T I -4{32[2IT2 

.. cos (tr{3l/ T) 
= sme (miT) 2 'I 2 1 - 4{3 t T 

(9·2·27) 
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F1GURE 9·2-6 Plot of B(f) for the case T> InW. 
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Note that x(t) is normalized so that x(O) = 1. Figure 9-2-7 illustrates the raised 
cosine spectral characteristics and the corresponding pulses for f3 = 0, ~ and L 
Note that for f3 = 0, the pulse reduces to x(r) = sine (TtIIT), and the symbol 
rate liT = 2W, When f3 = 1, the symbol rate is liT = W, In general. the tails 
of x(t) decay as 11t3 for f3 >0. Consequently, a mistiming error in sampling 
leads to a series of lSI components that converges to a finite value. 

Due to the smooth characteristics of the raised cosine spectrum. it is possible 
to design practical filters for the transmitter and the receiver that approximate 
the overall desired frequency response, In the special case where the channel is 
ideal, i.e" C(fJ = 1, If I '" W, we have 

(9-2-28) 

where CT (!) and CR (!) are the frequency responses of the two filters, In this 
case, if the receiver filter is matched to the transmitter filter, we have 
X,,(f) = GT(f)GR(f) = ICT(fW Ideally, 

(9-2-29) 

and GR(f) = C«.n, where to is some nominal delay that is required to ensure 
physical realizability of the filter. Thus, the overall raised cosine spectral 
characteristic is split evenly between the transmitting filter and the receiving 
filter. Note also that an additional delay is necessary to ensure the physical 
realizability of the receiving filter. 
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9·2-2 Design or Band·Limited Signals witb ControUed ISI
Partial· Response Signals 

As we have observed from our discussion of signal design for zero 151, it IS 

necessary to reduce the symbol rate I IT below the Nyquist rate of 2W 
symbols/s to realize practical transmitting and receiving filters. On the other 
hand, suppose we choose to relax the condition of zero lSI and, thus, achieve a 
symbol transmission rate of 2W symbols/s, By allowing for a controlled 
amount of lSI, we can achieve this symbol rate. 

We have already seen Ihal the condition for zero lSI is .l(nT) = 0 for n "" 0, 
However, suppose that we design the band-limited signal to have controlled 
lSI at one time instant. This means that we allow one additional nonzero value 
in the samples {x(nT)}, The lSI that we introduce is deterministic or 
"controlled" and. hence. it can be taken into account at the receiver, as 
discussed below. 

One special case that leads to (approximately), physically realizable 
transmitting and receiving filters is specified by the sampJest 

, {I (n=O,l) 
x(nT)= 0 

(otherwise) 

Now, using (9-2·20), we obtain 

{
T (n =0, -1) 

b" = 0 (otherwise) 

which, when substituted into (9-2-18), yields 

8(f) = r + Te J2nfT 

(9-2-30) 

(9-2·31 ) 

(9-2·32) 

As in the preceding section. it is impossible to satisfy the above equation for 
T < 1/2W, However. for T = I/2W, we obtain 

-(I+e l""") ([f:<W) 
X(f)= 2W 

{

I,,,. 

o (otherwise) 

{ 

~ e -1,,(12'" cos lCf 
= W 2W 

o 

(lfI< W) 

(otherwise) 

Therefore, x(t) is given by 

x(i) = sine (2JrWt) + sine {2li{Wt - Dl 

(9-2-33) 

(9-2·34 ) 

This pulse is called a duobinary signal pulse, It is illustrated along with its 

th is com'enient to deal ""'ith samples of X(I j that are normalized to unity for n :::::- O. L 
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fiGURE 9·2·8 Time domain and frequen<.:·y domain cn,aracleristlcs of a rluohinary signal. 
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magnitude spectrum in Fig. 9-2-8. Note thai the spectrum decays to zero 
smoothly, which means that physically realizable filters can be designed that 
approximate this spectrum very closely. Thus, a symbol rate of 2W is achieved. 

Another special case that leads to (approximately) physically realizable 
transmitting and receiving filters is specified by the samples 

x(-f-) =x(nTl = {-~ _w 
o 

(n = -1) 

(n = 1) 

(otherwise) 

The corresponding pulse X(I) is given as 

. [1[(/ + Tl] [1[(1 - Tl] 
x(r)=smc T -sinc T 

and ils spectrum is 

{

_.I_<eJ"ffw _ e-f"{!w) =,Lsin Jif 
X(f)= 2W . W W 

(I 

fl~W 

fl>W 

(9-2-35) 

(9-2-36) 

(9-2-37) 

This pulse and its magnitude spectrum are illustrated in Fig. 9-2-9. II is called a 
modified duobinary signal pUlse. It is interesting to note that the spectrum of 

FIGURE 9·2·9 Time domain and frequency domain characteristic5- of a modified duohinary signal. 
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this signal has a zero at f = 0, making it suitable for transmission over a 
channel that does not pass d,c, 

One can obtain other interesting and physically realizable filter characteris
tics, as shown by Kretzmer (1966) and Lucky et al. (1968), by selecting 
different values for the samples (x(n/2W)} and more than two nonzero 
samples. However, as we select more nonzero samples, the problem of 
unraveling the controlled lSI becomes more cumbersome and impractical. 

In general, the class of bandlimited signals pulses that have the form 

x(t) = i x(~) sine [2ITW(t - nw)] 
n~ --x 2" 2 

and their corresponding spectra 

(If I ,,;;; W) 

Of!",,:W) 

(9-2-38) 

(9-2-39) 

are called partial-response signals when controlled lSI is purposely introduced 
by selecting two or more nonzero samples from the set {x(nI2W)}. The 
resulting signal pulses allow us to transmit information symbols at the Nyquist 
rate of 2W symbols/s. The detection of the received symbols in the presence of 
controlled lSI is described below. 

Alternative CharaderizatioD of Partial.Response Signals We conclude 
this subsection by presenting another interpretation of a partial-response 
signal. Suppose that the partial-response signal is generated, as shown in Fig. 
9-2-10, by passing the discrete-time sequence {In} through a discrete-time filter 

FIGURE 9-Z-18 An alternative method for generating a partial-response signal. 
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with coefficients Xn '=x(n/2W), n = 0,1, .... N -1, and using the output 
sequence {B,,} from this filter to excite periodically with an input B,,8(1- nT} 
an analog filter having an impulse response sinc (2trWt). The resulting output 
signal is identical to the partial-response signal given by (9-2-38). 

Since 
,0.,;-1 

Eft = 2: X/<I,I-k 
k""O 

(9-2-40) 

the sequence of symbols {B,,} is correlated as a consequence of the filtering 
performed on the sequence {I"}. In fact, the autocorrelation function of the 
sequence {B,,} is 

N--I lV-I 

= 2: L x.x,E(I.-kln +m _,) 
.\=0 1=0 

When the input sequence is zero-mean and white, 

(9-2-41) 

(9-2-42) 

where we have used the normalization E(I~) = 1. Substitution of (9-2-42), into 
(9-2-41) yields the desired autocorrelation function for {Bn} in the form 

fI/--l-1m1 

cf>(m)= L x.XH!m!' m=O.±l, ... ,±(N-l) (9-2-43) 
k=O 

The corresponding power spectral density is 

N-I 

<I>(f) = L <b(m)e-J2",mr 

m=-(f~"-l) 

(9-2-44) 

where T = 1/2W and If I ",1 /2T = W. 

9-2-3 Data Detection for ControUed lSI 

In this section, we describe two methods for detecting the information symbols 
at the receiver when the received signal contains controlled lSI. One is a 
symbol-by-symbol detection method tbat is relatively easy to implement. The 
second met~od is based on the maximum-likelihood criterion for detecting a 
sequence of symbols. The latter method minimizes the probability of error but 
is a little more complex to implement. In particular, we consider the detection 
of ·the duobinary and the modified duobinary partial response signals. In both 
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cases. we assume that the desired spectral characteristic X (f) for the partial 
response signal is split evenly between the transmitting and receiving filters, 
i.e .. IGT(f)1 = IG«(f)1 = IX(f)I"o. This treatment is based on PAM signals, but 
it is easily generalized to QAM and PSK. 

Symbol-by·Symbol Suboptimum Detection For the duobinary signal 
pulse. X(II T) = I, for II = O. 1, and zero otherwise. Hence. the samples at the 
output of the receiving filter (demodulator) have the form 

(9·2-45) 

where {J".} is :he transmitted sequence of amplitudes and {vm } is a sequence of 
additive gaussian noise samples. Lei us ignore the noise for the moment and 
consider the binary case where 1m = ± I with equal probability. Then Bm takes 
on one of three possible values, namely. Bm = -2, 0, 2 with corresponding 
probabilities 1/4. 1/2. 1/4. If 1m _, is the detected symbol from the (m - 1) th 
signaling interval, lts effect on Bn .. the received signal in the m th signaling 
interval, can be eliminated by subtraction, thus allowing '"' to be detected, This 
process can be repeated sequentially for every received symbol. 

The major problem with this procedure is thaI errors arising from the 
additive noise tend to propagate. For example, if l",~, is in error, its effect on 
Bm is not eliminated but, in fact, it is reinforced by the incorrect subtraction. 
Consequently, the detection of Bm is also likely to be in error. 

Error propagation can be avoided by precoding the data at the transmitter 
instead of eliminating tbe controlled ISf by subtraction at tbe receiver. The 
precoding is performed on the binary data sequence prior to modulation. From 
the data sequence {Dn} of Is and Os that is to be transmitted, a new sequence 
{P,,}. called the precoded sequence, is generated. For the duobinary signal, the 
precoded sequence is defined as 

(9·2-46) 

where e denotes modulo-2 subtraction. t Then we set 1m = -1 if Pm = 0 and 
I", = 1 if Pm = 1. i.e., 1m = 2P", - 1. Note that this precoding operation is 
identical to that described in Section 4·3-2 in the context of our discussion of 
an NRZI signaL 

The noise-free samples at the output of the receiving filter are given by 

Consequently, 

Bm=lm+1m_, 

= (2Pm - 1) + (2P,,,- I - 1) 

= 2(Pm + Pm~' - 1) (9·2-47) 

(9·2-48) 

t Although this is identical to moduJo-2 addition, i1 is convenient to view the precoding 
ope;ation for duoblnary in terms of modulo-2 subtraclion. 
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BINARY SIGNALING WITH DVOBINARY PULSES 

Data 
sequence D'f I () 0 0 I 0 0 0 1 0 

Precooed 
sequence P" 0 0 I I 0 0 0 I 1 1 0 I 1 (I 

Transmitted 
sequence 1m -I -I -I -I -I 1 1 -I 1 I -I 

Received 
sequence B,! n 0 (j 2 0 -2 -2 0 2 2 2 0 0 2 0 

Decooed 
sequence Dt/ 1 0 0 0 () () 0 0 

Since Dm = Pm E9 Pm " it follows that the data sequence Dm is obtained from 
8 m using the relation 

Dm = ~Bm + 1 (mod 2) (9-2-49) 

Consequently, if Bm = ±2 then Dm = 0, and if 8 m =0 then Dm = 1. An 
example that illustrates the precoding and decoding operations is given in 
Table 9-2-L In the presence of additive noise, the sampled outputs from the 
receiving filter are given by (9-2-45)_ In this case Ym = 8 m + Vm is compared 
with the two thresholds set at + 1 and -1_ The data sequence {Dn} is obtained 
according to the detection rule 

D ={l (ly ... I<I) 
m 0 (lYm!;;' J) 

(9-2-50) 

The extension from binary PAM to multilevel. PAM signaling using the 
duobinary pulses is straightforward_ In this case the M-Ievel amplitude 
sequence {1m} results in a (noise-free) sequence 

(9-2-51 ) 

which has 2M - 1 possible equally spaced levels_ The amplitude levels are 
determined from the relation 

(9-2-52) 

where {Pm} is the precoded sequence that is obtained from an M -level data 
sequence {Dm} according to the relation 

(9-2-53) 

where the possible values of the sequence {Dm} are 0, 1,2, ___ , M - I. 
In the absence of noise, the samples at the output of the receiving filter may 

be expressed as 

8 m = 1m + [",-I = 2[Pm + Pm-I - (M -1)] (9-2-54) 
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BINARY SIGNALING WITH DVOBINARY PULSES 

Data 
sequence D'f I () 0 0 I 0 0 0 1 0 

Precooed 
sequence P" 0 0 I I 0 0 0 I 1 1 0 I 1 (I 

Transmitted 
sequence 1m -I -I -I -I -I 1 1 -I 1 I -I 
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FOUR-LEVEL SIGNAL TRANSMISSION WITH DUOBINARY PULSES 

Data 
sequence Dm 0 () 3 2 0 3 3 2 0 0 

Precoded 
seq:Jence p;" () 0 [) 2 ,1 3 2 3 2 2 

Transmitted 
seq'Jence I", -3 -3 -3 -1 3 3 -1 -1 -1 3 

Received 
sequence 8 m -6 -6 -4 U 4 6 2 0 0 -2 2 4 2 

Decoded 
~equence D", U () .1 2 () 3 3 2 0 0 

Hence. 
(9-2-55) 

Since Dm = Pm + P,,, I (mod M). it follows that 

Dm = ~Bm + (M - L) (mod M) (9-2-56) 

An exampLe illustrating multiLeveL precoding and decoding is given in Table 
9-2-2. 

In the presence of noise. the received signal-plus-noise is quantized to the 
nearest of the possible signal levels and the rule given above is used on the 
quantized values to recover the data sequence. 

In the case of the modified duobinary pulse. the controlled lSI is specified 
by the values x(n/2W) = -1. for n = 1, x(n/2W) = I for n = -1. and zero 
otherwise. Consequently. the noise-free sampled output from the receiving 
filter is given as 

(9-2-57) 

where the M-Ievel sequence {/"j is obtained by mapping a precoded sequence 
according to the relation (9-2-52) and 

P,,, = D",@p,,, 2 (mod M) (9-2-58) 

From these relations. it is easy to show that the detection rule for recovering 
the data sequence {D",} from {Bm} in the absence of noise is 

(9-2-59) 

As demonstrated above. the precoding of the data at the transmitter makes 
it possible to detect the received data on a symbol-by-symbol basis without 
having to look back at previously detected symbols. Thus. error propagation is 
avoided. 

Tile symbol-by-symbol detection rule described above is not the optimum 
detection scheme for partial response signaLs due to the memory inherent in 
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the received signal. Nevertheless. symbol-by-symbol detection is relatively 
simple to implement and is used in many practical applications involving 
duobinary and modified duobinary pulse signals. Its performance is evaluated 
in the following section. 

Maximum-likelihood Sequence Defection It is clear from the above 
discussion that partial-response waveforms are signal waveforms with memory_ 
This memory is conveniently represented by a trellis. For example_ the trellis 
for the duobinary partial-response signal for binary data transmission is 
illustrated in Fig. 9-2-11. For binary modulation, this trellis contains two states. 
corresponding to the two possible input values of In" i.e.. im = ± 1. Each 
branch in the trellis is labeled by two numbers. The first number on the left is 
the new data bit, i.e .• 1m + I = ± 1. This number determines the transition to the 
new state. The number on the right is the received signal level. 

The duobinary signal has a me'mory of length L = L Hence. for binary 
modulation the trellis has Sf = 2 states. In general. for M -ary modulation. the 
number of trellis states is ML. 

The optimum maximum-likelihood (ML) sequence detector selects the most 
probable path through the trellis upon observing the received data sequence 
{Ym} at the sampling instants I = m T, m = 1, 2 ..... In general. each node in the 
trellis will have M incoming paths and M corresponding metrics. One out of 
the M incoming paths is selected as the most probable, based on the values of 
the metrics and the other M - I paths and their metrics are discarded. The 
surviving path at each node is then extended to M new paths. one for each of 
the M possible input symbols. and the search process continues. This is 
basically the Viterbi algorithm for performing the trellis search. 

For the class of partial response signals. the received sequence {Ym. I ,;; m ,;; 
N} is generally described statistically by the joint pdf f(YN! t~), where 
YN = [.v, Y2 ... }'N1 1 and IN = [I, I, ... Ivl' and fl.' > L. When the additive 
noise is zero-mean gaussian. f(y." Iv) is a multivariate gaussian pdf. i.e .. 

I 
f(yv II ... ) = (2n det C)"" exp 1- !(Yv - Bd'C- '(Yv - Bv)1 (9-2-60) 

where Hili = [B. B, ... 8,1', is the mean of the vector y~ and C is the N x N 
covariance matrix of y~. Then. the ML sequence uetector selects the sequence 
through the trellis that maximizes the pdf f(y,... II,,). 
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The computation for finding the most probable sequence through the trellis 
is simplified by taking the natural logaritbms of f(yv lIN)' Thus, 

Inf(YN II,,) = -~N In (2trdet C) - !(YN - BNyC-t(YN - BN ) (9-2-61) 

Given the received sequence {Ym}. the data sequence {1m} that maximizes 
In I(y N liN) is identical to the sequence {INI that minimizes (y N -

BN),C-t(YN - BN). i.e. 

iN = arg min [(YN - BNYC-t(YN - BN )] (9-2-62) 
I,. 

The metric computations in the trellis search are complicated by the 
correlation of the noise samples at the output of the matched filter for the 
partial response signal. For example, in the case of the duobinary signal 
waveform, the correlation of the noise sequence {vro} is over two successive 
signal samples. Hence, Vro and VmH are correlated for k = 1 and uncorrelated 
for k > 1. In general, a partial response signal waveform with memory L will 
result in a correlated noise sequence at the output of the matched filter, which 
satisfies the condition E[ Vm vm+d = 0 for k > L. In such a case, the Viterbi 
algorithm for performing the trellis search may be modified as described in 
Chapter 10_ 

Some simplification in the metric computations result if we ignore the noise 
correlation by assuming that E( Vm VmH) = 0 for k > O. Then, by assumption, 
the covariance matrix C = U;lN, where u~ = E[ v!,j and IN is the N x N 
identity matrix. t In this case, (9-2-62) simplifies to 

where 

= arg min [f (Ym - ± Xklm _ k)2] 
IN m=l k=O 

L 

Bm= 2: XJ.}m-ic. 
1<=0 

(9-2-63) 

and x. = x(kT) are the sampled values of the partial response signal waveform_ 
In this case, the metric computations at each node of the trellis have the form 

DMm(lml = DMm-t(lm-tl + (Ym - .t Xklm-.)' (9-2-64) 

where DMm(lm) are the distance me tries at time t =mT. DMm-t(Im- t ) are the 
distance metrics at time (= (m - l)T and the second term on the right-hand 
side of (9-2-64) represents the new increments to the metries based on the new 
received-sample Ym' 

tWe are using 1,'V h~re to a\'oid confusion with IN-
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As indicated in Section 5-1-4, ML sequence detection introduces a variable 
delay in detecting each transmitted information symbol. In practice, the 
variable delay is avoided by truncating' the surviving sequences to IV. most 
recent symbols, where N,» 5L. thus achieving a fixed delay. In the case that 
the ML surviving sequences at time t = mT disagree on the symbollm - N,. the 
symbol in the most probable surviving sequence may be chosen. The loss in 
performance resulting from this truncation is negligible if Nt> 5L. 

9·2-4 Signal Design for Channels witb Distortion 
In Sections 9-2-1 and 9-2-2, we described signal design criteria for the 
modulation filter at the transmitter and the demodulation filter at the receiver 
when the channel is ideal. In this section, we perform the signal design under 
the condition that the channel distorts the transmitted signal. We assume that 
the channel frequency response C(f) is known for 111-- Wand that C(f) = 0 
for If I > W. The criterion for the optimization of the filte~ responses Gr(f) and 
GR(f) is the maximization of the SNR at the output of the demodulation filter 
or equivalently, at the input to the detector. The additive channel noise is 
assumed to be gaussian with power spectral density ¢>",,(f). Figure 9-2-12 
illustrates the overall system under consideration. 

For the signal component at the output of the demodulator, we must satisfy 
the condition 

(9-2-65) 

where X d(f) is the desired frequency response of the cascade of the 
modulator, channel, and demodulator, and to is a time delay that is necessary 
to ensure the physical realizability of the modulation and demodulation filters. 
The desired frequency response X.(f) may be selected to yield either zero lSI 
or controlled lSI at the sampling instants. We shall carry out the optimization 
for zero lSI by selecting Xd{f) = Xrc(f). where Xrc(f) is the raised cosine 
spectrum with an arbitrary roUoff factor. 

The noise at the output of the demodulation filter may be expressed as 

V(I) = fx n(r - 'l')gR('r) d'l' 

FIGURE 9-loU System model for the design of the modulation and demodulation filteB. 

Input 

data 

Modulation 

filter 
Grit) 

Cbanoel 

C(tj 

Gaussian 
noise 

Output 
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(9-2-66) 
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where nit) is the input to the filter. Since net) is zero-mean gaussian, vet) is 
zero-mean gaussian, with a power spectral density 

(9·2-67) 

For simplicity, we consider binary PAM transmission. Then, the sampled 
output of the matched filter is 

(9·2-68) 

where Xo is normalizedt to unity, 1m = ±d, and Vm represents the noise term, 
which is zero-mean gaussian" with variance 

(9·2-69) 

Consequently. the probability of error is 

1 i~ P2 = - e~y"2 dy = Q(Vd21(T~) 
v2i diu. 

(9-2-70) 

The probability of error is minimized by maximizing the SNR = d 2/ if .. or, 
equivalently, by minimizing the noise-to-signal ratio (T~/d2. But d 2 is related to 
the transmitted signal power as follows: 

£(p ) f= d' foo Pa• = _m_ g~t) dt = - g~t) dt 
T _~ T ~OO 

(9·2-71) 

However, GT(f) must be chosen to satisfy the zero lSI condition. 
Consequently, 

If I..;; W (9-2-72) 

and GT(f) = 0 for If I ", W. Hence 

(9-2-73) 

Therefore, the noise-to-signal ratio that must be minimized with respect to 
IGR(f)1 for If I..;; W is 

(T2 1 fW fW IX (f)12 

d> p.J _ w <p •• (f) IGR(f)1
2 
df ~W 1C(f)I;cIGR(f)I' df (9-2-74) 

tRy setting Xu = 1 and 1m = ±d, the scaling by Xi} is incorporated into the parameter d. 
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The optimum IGR(!)I can be found by applying the Cauchy-Schwartz 
inequality, 

(9-2-75) 

where IU,(!)I and IU2(!)1 are defined as 

IU,(!)I =IV4>nn(f)IIGR(f)1 

(f) 
IX,,(f)1 

IU, 1= 1C(f)IIGR(f)1 

(9-2-76) 

The minimum value of (9-2-74) is obtained when IU,U)I is proportional to 
IU,(!)I. or, equivalently, when 

(9-2-77) 

where K is an arbitrary constant. The corresponding modulation filter has a 
magnitude characteristic 

G 
_ 1 IX",(!)1"2 [<Pnn(f)]'" 

I T(f)I- K IC(f)I'12 • III'" W (9-2-78) 

Finally, the maximum SNR achieved by these optimum transmitting and 
receiving filters is 

d' P""T 

u! {f", w IX,.,(!)I [4>nn(f)]'12 IC(f)1 'dff 
(9-2-79) 

We note that the optimum modulation and demodulation filters are 
specified in magnitude only. The phase characteristics for GT(f) and G

R
(!) 

may be selected so as to satisfy the condition in (9-2-65), i.e., 

(9-2-80) 

where eTC!). ee(f). and BR (!) are the phase characteristics of the modulation 
filter, the channel, and the demodulation filter, respectively. 

In the special case where the additive noise at the input to the demodulator 
is white gaussian. with spectral density !No, the optimum filter characteristics 
specified by (9·2-77) and (9-2-78) reduce to 

IX,e(f)i'l2 
IGR(f)1 = K, 1C(!)I'I2' III'" W 

IX,e(f):,12 
IGT(f)1 = K2 1C(!)1"2 ' III'" W 

(9-2-81) 
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receiving filters is 

d' P""T 
u! {f", w IX",(!)I [4>nn(f)]II2IC(f)1 I dff 

(9-2-79) 

We note that the optimum modulation and demodulation filters are 
specified in magnitude only. The phase characteristics for GT(f) and G

R
(!) 

may be selected so as to satisfy the condition in (9-2-65), i.e., 

(9-2-80) 

where eTC!). ecU). and BR (!) are the phase characteristics of the modulation 
filter, the channel, and the demodulation filter, respectively. 

In the special case where the additive noise at the input to the demodulator 
is white gaussian. with spectral density !No, the optimum filter characteristics 
specified by (9·2-77) and (9-2-78) reduce to 

IX,cU)I I12 

IGR(f)1 = Kl 1C(!)I'r.1' Ifl '" w 
IX,cU):'r.1 

IGT(f)1 = K2 1C(!)I'I2' If I '" w 
(9-2-81) 
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where Kl and Kz are arbitrary scale factors. Note that, in this case, IGR C!) I is 
the matched filter to IGT(f)I· The corresponding SNR at the detector, given by 
(9-2-79) reduces to 

(9-2-82) 

Example 9-2-1 

Let us determine the optimum transmitting and receiving filters for a binary 
communication system that transmits data al a rate of 4800 bits/s oyer a 
channel with frequency (magnitude) response 

IC(!)I = VI + /, Iwf ' ill.,;;: W (9-2-83) 

where W = 4800 Hz. The additive noise is zero-mean, white, gaussian with 
spectral density ~No = 10-15 WI Hz. 

Since W = 11 T = 4800, we use a signal pulse with a raised cosine 
spectrum and f3 = 1. Thus, 

Xrc(f) = ~ TIl + cos (1fT IfD 1 

=TCOS2(~) (9-2-84) 

Then, 

(9-2-85) 

andGT(f)1 = IGk(!)1 = 0, otherwise. Figure 9-2-13 illustrates the filter 
characteristic GT(!). 

One can now use these optiinum filters to determine the amount of 
transmitted energy '1! required to achieve a specified error probability. This 
problem is left as an exercise for the reader. 

FIGURE 9-1-13 Frequency response of optimum Iransmitter filter. 4!OO ( 
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9-3 PROBABILITY OF ERROR IN DETECTION OF PAM 

In this section, we evaluate tbe performance of the receiver for demodulating 
and detecting an M-ary PAM signal in the presence of additive, white, gaussian 
noise at its input. First. we consider the case in which the transmitter and 
receiver filters Gr(f) and GR(f) are designed for zero lSI. Then, we consider 
the case in which GT(f) and GR(f) are designed such that x(t) = gT(t) * gR(t) 
is either a duobinary signal or a modified duobinary signal. 

9-3-1 Probability of Error for Detection of PAM with Zero lSI 

In the absence of lSI, the received signal sample at the output of the receiving 
matched filter has the form 

where 

and v no is the additive gaussian noise that has zero mean and variance 

<T~= }ggNo 

(9-3-1) 

(9-3-2) 

(9-3-3) 

In general, 1m takes one of M possible equally spaced amplitude values with 
equal probability. Given a particular amplitude level, the problem is to 
determine the probability of error. 

The problem of evaluating the probability of error for digital PAM in a 
band-limited, additive white gaussian noise channel, in the absence of lSI, is 
identical to the evaluation of the error probability for M -ary PAM as given in 
Section 5-2. The final result that is obtained from the derivation is 

(9-3-4) 

But ~g = 3 ~avl(M2 - 1). ~av = k~b.v is the average energy per symbol and ~bav 
is the average energy per bit. Hence, 

p _ 2(M - 1) ( /6(1082 M)~b") 
M- M Q 'J (M2-1)No (9-3-5) 

This is exactly the form for the probability of error of M-ary PAM derived in 
Section 5-2 (see (5-2-46». In 'the treatment of PAM given in this chapter, we 
imposed the additional constraint that the transmitted signal is band-limited to 
the bandwidth allocated for the channel. Consequently, the transmitted signal 
pulses were designed to be band-limited and to have zero lSI. 

In contrast. no bandwidth constraint was imposed on the PAM signals 
considered in Section 5-2. j'l;evertheless, the receivers (demodulators and 
detectors) in both cases are optimum (matched filters) for the corresponding 

571

CHAPTER 't SIGN,4"L DESI(;~ FOR BAND-LIMiTED CHANNELS 561 

9-3 PROBABILITY OF ERROR IN DETECTION OF PAM 

In this section, we evaluate tbe performance of the receiver for demodulating 
and detecting an M-ary PAM signal in the presence of additive, white, gaussian 
noise at its input. First. we consider the case in which the transmitter and 
receiver filters Gr(f) and GR(f) are designed for zero lSI. Then, we consider 
the case in which GT(f) and GR(f) are designed such that x(t) = gT(t) * gR(t) 
is either a duobinary signal or a modified duobinary signal. 

9-3-1 Probability of Error for Detection of PAM with Zero lSI 

In the absence of lSI, the received signal sample at the output of the receiving 
matched filter has the form 

where 

and v no is the additive gaussian noise that has zero mean and variance 

<T~= }ggNo 

(9-3-1) 

(9-3-2) 

(9-3-3) 

In general, 1m takes one of M possible equally spaced amplitude values with 
equal probability. Given a particular amplitude level, the problem is to 
determine the probability of error. 

The problem of evaluating the probability of error for digital PAM in a 
band-limited, additive white gaussian noise channel, in the absence of lSI, is 
identical to the evaluation of the error probability for M -ary PAM as given in 
Section 5-2. The final result that is obtained from the derivation is 

(9-3-4) 

But ~g = 3 ~avl(M2 - 1). ~av = k~b.v is the average energy per symbol and ~bav 
is the average energy per bit. Hence, 

p _ 2(M - 1) ( /6(1082 M)~b") 
M- M Q 'J (M2-1)No (9-3-5) 

This is exactly the form for the probability of error of M-ary PAM derived in 
Section 5-2 (see (5-2-46». In 'the treatment of PAM given in this chapter, we 
imposed the additional constraint that the transmitted signal is band-limited to 
the bandwidth allocated for the channel. Consequently, the transmitted signal 
pulses were designed to be band-limited and to have zero lSI. 

In contrast. no bandwidth constraint was imposed on the PAM signals 
considered in Section 5-2. /'I."evertheless, the receivers (demodulators and 
detectors) in both cases are optimum (matched filters) for the corresponding 



561 DIGITAL COMMUNICATIONS 

M-lcvel 

data 
ID.I L-_---l 

Transmining 
filler 

IP",) G1 (f) 

AWGN 

Receving 
filter 

G;<f) 

FlGVRE II-J..l Block diagram of modulator and demodulator for partial-response signals_ 

Detector 
Output 

transmitted signals. Consequently, no loss in error rate performance results 
from the bandwidth constraint when the signal pulse is designed for zero lSI 
and the channel does not distort the transmitted signal. 

9-3-2 Probability of Error for Detection of Partial-Response 
Signals 

In this section we determine the probability of error for detection of digital 
M -ary PAM signaling using duobinary and modified duobinary pulses. The 
channel is assumed to be an ideal bandlimited channel with additive white 
gaussian noise. The model for the communication system is shown in Fig. 
9-3-1. 

We consider two types of detectors. The first is the symbol-by-symboJ 
detector and the second is the optimum ML sequence detector described in the 
previous section. 

Symbol-by-Symbo/ DeIec:tOl' At the transmitter, the M -level data se
quence {D",} is precoded as described previously. The precoder output is 
mapped into one of M possible amplitude levels. Then the transmitting filter 
with frequency response Gr(f) has an output 

x 

vet) '" 2: IngT(t - fiT) (9-3-6) 
n:=-Xl 

The partial-response function X (f) is divided equally between the transmitting 
and receiving filters. Hence, the receiving filter is matched to the transmitted 
pulse, and the cascade of the two filters results in the frequency characteristic 

(9-3-7) 

The matched filter output is sampled at t = nT = n/2W and the samples are fed 
to the decoder. For the duobinary signal, the output of the matched filter al the 
sampling instant may be expressed as 

(9-3-8) 

where Vm is the additive noise component. Similarly, the output of the matched 
filter for the modified duobinary signal is 

(9-3-9) 
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For binary transmission, let 1m = ±d, where 2d is the distance between signal 
levels. Then, the corresponding values of Bm are (2d, 0, -2d). For M-ary PAM 
signal transmission, where 1m = ±d, ±3d • ...• ±(M -l)d, the received signal 
levels are Bm = 0, ±2d, ±4d . ...• ±2(M - 1 )d. Hence, the number of received 
levels is 2M - I, and the scale factor d is equivalent to Xo = ~ .. 

The input transmitted symbols {1m} are assumed to be equally probable. 
Then, for duobinary and modified duobinary signals. it is easily demonstrated 
that, in the absence of noise, the received output levels have a (triangular) 
probability distribution of the form 

M--Iml 
PCB = 2md) = M2 m =0, ±1, ±2 .... , ±(M - J) (9-3-10) 

where B denotes the noise-free received level and 2d is the distance between 
any two adjacent received signal levels. 

The channel corrupts the signal transmitted through it by the addition of 
while gaussian noise with zero mean and power spectral density ~No. 

We assume that a symbol error occurs whenever the magnitude of the 
additive noise exceeds the distance d. This assumption neglects the rare event 
that a large noise component with magnitude exceeding d may result in a 
received signal level that yields a correct symbol decision. The noise 
component '1m is zero-mean gaussian with variance 

u! = ~No f: ICRUlI' df 

= iNn LW)X (f)1 df = 2Nohr (9-3-11 ) 

for both the duobinary and the modified duobinary signals. Hence, an upper 
bound on the symbol probability of error is 

M-2 

PM < L P(ly - 2mdi > d I B = 2md)P(B = 2md) 
m= - (M-2) 

+2P(y + 2(M -l)d > d I B = -2(M -l)d)P(B = -2(M -l)d) 

= POYi > d I b = 0)[ 2 ]~ PCB = 2md) - PCB = 0) - PCB = - 2(M - 1 )d) J 
= (1- M-')P(lyl >d I B = 0) (9-3-12) 

But 

( I 2 1~ -.,' P lyl>d B=O)= e- x
" "'dx 

\l2Huy d 

= 2Q(Y~1Ul""2~/2~N.~O) (9-3-13) 
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Therefore, the average probability of a symbol error is upper-bounded as 

PM < 2(1 - M-2 )Q(v'mf/2No) (9-H4) 

The scale factor din (9-3-14) can he eliminated by expressing it in terms of 
the average power transmitted into the channel. For the M -ary PAM signal in 
which the transmitted levels are equally probable, the average power at the 
output of the transmitting filter is 

P., = E~;") i: IGr(fW df 

= E(1;,,) fW IX(!)I df = ~ E(l;') (9-3-15) 
T -w 1fT 

where E(l!.) is the mean square value of the M signal levels, which is 

Therefore, 

d2 = 31fP •• T 
4(M2-1) 

(9-3-16) 

(9-3-17) 

By substituting the value of d 2 from (9-3-17) into (9-3-14), we obtain the upper 
bound on the symbol error probability as 

(9-3-18) 

where ~ .. is the average energy per transmitted symbol, which can be also 
expressed in terms of the average bit energy as ~av = k~bav = (log, M)~b.v-

The expression in (9-3-18) for the probability of error of M-ary PAM holds 
for both duobinary and modified duobinary partial-response signals_ If we 
compare this result with the error probability of M-ary PAM with zero lSI, 
which can be obtained by using a signal pulse with a raised cosine spectrum, we 
note that the performance of partial response duobinary or modified duobinary 
has a loss of (!71Y or 2_1 dB_ This loss in SNR is due to the fact that the 
detector for the partial response signals makes decisions on a sym.bol-by 
symbol basis, thus ignoring the inherent memory contained in the received 
signal at the input to the detector_ 

Maximum·Likelillood Sequence Detector The ML sequence detector 
searches through the trellis for the most probable transmitted sequence {1m} as 
previously described in Section 9-2-3_ At each stage of the search process the 
detector compares the metries of paths that merge at each of the nodes and 
selects the path that is most probable al each node_ The performance of the 
detector may be evaluated by determining the probability of error events, 
based on a euclidean distance metric, as was done for soft-decision decoding of 
convolutional codes. The general derivation is given in Section lO-l-'t In the 
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case of the duobinary and modified duobinary signals, it is demonstrated that 
the 2.1 dB loss inherent in the suboptimum symbol-by-symbol detector is 
completely recovered by the ML sequence detector. 

9-3-3 Probability of Error for Optimum Signals in II Channel 
with Distortion 

In Section 9-2-4, we derived the filter responses for. the modulation and 
demodulation filters that maximize the SNR at the input to the detector when' 
there is channel distortion. When the filters are designed for zero lSI at the 
sampling instants, the probability of error for M-ary PAM is 

(9-3-19) 

The parameter d is related to the average transmitted power as 

p.v = E[;;'] fw IGT(f)f df 

(M' 1)d2fW 
= IGT (f)12 df 

3T -w 
(9-3-20) 

and the noise variance is given by (9-2-69). For AWGN, (9-3-19) may be 
expressed as 

2(M -1) ( 
P,,, = M Q 

611:.. [fW IX...,(f)1 J-') 
(M2 -l)No -w 1C(f)1 df 

(9-3-21) 

Finally, we observe that the loss due to channel distortion is 

20 log [fW IKre(f)1 d'] 
10 _ w 1C(f)1 J 

(9-3-22) 

Note that when C(f) = 1 for If I '" W. the channel is ideal and 

(9-3-23) 

so that no loss is incurred. On the other hand, when there is amplitude 
distortion, 1C(f)1 < 1 for some range of frequencies in the band If I '" Wand, 
hence, there is a loss in SNR incurred, as given by (9-3-22). This loss is 
independent of channel phase distortion, because phase distortion has been 
perfectly compensated, as implied by (9-2-80). The loss given by (9-3-22) is due 
entirely to amplitude distortion and is a measure of the noise enhancement 
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resulting from the receiving filter, which compensates for the channel 
distortion. 

9-4 MODULATION CODES FOR SPECTRUM 
SHAPING 

We have observed that the power spectral density of a digital communication 
signal can be controlled and shaped by selecting the transmitted sigral pulse 
get) and by introducing correlation through coding, which is used to combat 
channel distortion and noise in transmission. Coding for spectrum shaping is 
introduced following the channel encoding so that the spectrum of the 
transmitted signal matches the spectral characteristics of a baseband or 
equivalent lowpass channel. . 

Codes that are used for spectrum shaping are generally called either 
modulation codes, or fine codes, or data translation codes. Such codes generally 
place restrictions on the sequence of bits into the modulator and, thus. 
introduce correlation and, hence, memory into the transmitted signal. It is this 
type of coding that is treated in ~is section. 

Modulation codes are usually employed in magnetic recording, in optical 
recording, and in digital communications over cable systems to achieve spectral 
shaping and to eliminate or minimize the d.c. content in the transmitted· (or 
stored) baseband signal. In magnetic recording channels, the modulation code 
is designed to increase the distance between transitions in the recorded 
waveform and, thus, intersymbol interference effects are also reduced. 

As an example of the use of a modulation code, let us consider a magnetic 
recording system, which consists of the elements shown in the block diagram of 
Fig. 9-4-1. The binary data sequence to be stored is used to generate a write 
current. This current may be viewed as the output for the "modulator." The 
most commonly used method to map the information sequence into the write 
current waveform is NRZI, which was described in Section 4-3-2. Recall that in 
NRZI, a transition from one amplitude to another (A to -A or -A to A) 
occurs only when the information bit is a 1. No transition occurs when the 
information bit is a 0, i.e., the amplitude level remains the same as in the 
previous signal interval. The positive amplitude pulse results in magnetizing 

FIGURE 9-4-1 Block diagram of magnetic slorage read/w.ite system. 
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FIGURE 9~4-Z Read-back pulse in magnetic recording system. 
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the medium in one (direction) polarity and the negative pulse magnetizes the 
medium in the opposite (direction) polarity. 

Since the input data sequence is basically random with equally probable I s 
and 0 s. we shall encounter level transitions from A to -A or -A to A with 
probability 1/2 for every data bit. The readback signal for a positive transition 
(-A to A) is a pulse that is well-modeled mathematically as 

1 
get) = 1 + (2r/Tv.li (9-4-1) 

where T", is defined as the width of the pulse at its 50% amplitude level, as 
shown in Fig. 9-4-2. Similarly, the readback signal for a negative transition (A 
to -A) is the pulse -get). The value of T,o is determined by the characteristb 
of the medium, the read/write heads, and the distance of the head to the 
medium. 

Now. suppose we write a positive transition followed by a negative 
transition. Let's vary the time interval between the two transitions, which we 
denote as 'ft, (the bit time interval). Figure 9-4-3 illustrates the readback signal 
pulses, which are obtained by a superposition of pet) with -p(t - To). The 
parameter ::l = T so/ Tn is defined as the normalized density. The closer the bit 
transitions (To small). the larger will be the value of the normalized density 
and. hence, the larger will be the packing density. We notice that as A is 

FIGURE 9-4-3 Read-back signal response to a pulse. 
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increased, the peak amplitudes of the read back signal are reduced and are also 
shifted in time from the desired time instants. In other words, the pulses 
interfere with one another, thus limiting the density with which we can write. 
This problem serves as a motivation to design modulation codes that take the 
original data sequence and transform (encode) it into another sequence that 
results in a write waveform in which amplitude transitions are spaced farther 
apart. For example, if we use NRZI, the encoded sequence into the modulator 
must contain one or more Os between Is. 

The second problem encountered in magnetic recording is the need to avoid 
(or minimize) having a d.c. content in the modulated signal (the write current) 
due to the frequency response characteristics of the read back system and 
associated electronics. This requirement also arises in digital communication 
over cable channels. This problem can be overcome by altering (encoding) the 
data sequence into the modulator. A class of codes that satisfy these objectives 
are the modulation codes described below. 

RlIDlength-Limited Codes Codes that have a restriction on the number of 
consecutive 1 s or Os in a sequence are generally called runlength-limited codes. 
These codes are generally described by two parameters, say d and K, where d 
denotes the minimum number of Os between two Is in a sequence, and K 

denotes the maximum number of Os between two Is in a sequence. When used 
with NRZI modulation, the effect of placing d zeros between successive Is is to 
spread the transitions farther apart, thus reducing the overlap in the channel 
response due to successive transitions and hence reducing the intersymbol 
interference. Setting an upper limit K on the runlength of Os ensures that 
transitions occur frequently enough so that symbol timing information can be 
recovered from the received modulated signal. Runlength·lirnited codes are 
usually called (d, K) codes.t 

The (d, K) code sequence constraints may be represented by a finite-Slate 
sequential machine with K + 1 states, denoted as S" I '" i '" K + 1, as shown in 
Fig. 9-4-4. We observe that an output data bit 0 takes the sequence from state 
Si to Si+1> i'" K. The output data bit 1 takes the sequence to state St. The 
output bit from the encoder may be a 1 only when the sequence is in state S" 
d + 1 '" i ,;; K + 1. When the sequence is in state S,+" the output bit is always 
1. 

FIGURE 94-4 Finite·state sequential machine fOT a (d. K )-coded sequence. 

() 

tIn fact, they are usua]y called (d, k) codes, where k is the maximum run length of zeros, We 
ha"e substituted the Greek letter kappa I( for k, to avoid confusion with our previous use of k 
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The finile-stale sequential machine may also be represented by a state 

transit;o/l lJIatrix. denoted as D, which is a square (K + I) X (<< + 1) wIth 
elements d". where 

Example 9-4-1 

dd = I (i ,., d + 1) 

{
I (j=i+ 1) 

d,j = 0 (otherwise) 
(9-4-2) 

Let us determine the state transition matrix for a (d, «) = (1,3) code. The 
(1,3) code has four states. From Fig. 9-4-4, we obtain its state transition 
matrix, which is 

D{ ~ r f] (9-4·3\ 

An important parameter of any (d, «) code is the number of sequences of 
a certain length, say n, that satisfy the (d, «) constraints. As n is allowed to 
increase, the number of sequences N(n) that satisfy the (d, «) constrainl 
also increases. The number of information bits that can be uniquely 
represented with N{n) code sequences is 

k = llog, N(n)J 

where lxJ denotes the largest integer contained in x. 
rate is then R, = kin. 

The maximum code . 
The capacity of a (d, K) code is defined as 

C{d, rc) = lim .!.IOg, N(n) (9-4-4) 
n __ <JC n 

Clearly, C(d, K) is the maximum possible rate that can be achieved with th" 
(d, K) constraints. Shannon (1948) showed that the capacity is given as 

C(d, K) = log, Am.. (9-4·51 

where Ama. is the largest real eigenvalue of the state transition matrix D. 

Example 9-4-2 

Let us determine the capacity of a (d, K) = (1, 3) code. Using the state
transition matrix given in Example 9-4-1 for the (1,3) code, we have 

det(D_AI)=det[~A -\ ~ ~] 
~ ~ ~A _\ 

=A4-A2-A-l=O (9-4-6) 
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TABLE 9-+1 
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CAPACITY C(d. K) VERSUS RUNLENGTH PARAMETERS d AND K 

" d=O d=l d=2 d=3 d=4 d=S d=6 

2 .8791 .4057 
3 .9468 .5515 .2878 
4 .9752 .6174 .4057 .2232 
5 .9881 .6509 .4650 .3218 .1823 

6 .9942 .6690 .4979 .3746 .2269 .1542 

7 .9971 .679] .5174 .4057 .3142 2281 .1335 

8 .9986 .ii853 .5293 .4251 .3432 .2709 .1993 

9 .9993 .6888 .5369 .4376 .3620 .2979 .2382 

10 .9996 .f909 .5418 .4460 .3746 .3158 .2633 

11 .9998 .6922 .5450 .4516 .3833 .3285 .2804 

12 .9999 .6930 .5471 .4555 .3894 .3369 .2924 
13 .9999 .6935 .5485 .4583 .3937 .3432 .3011 
14 .9999 .6938 .5495 .4602 .3968 .3478 .3074 
15 .9999 .6939 5501 .4615 .3991 .3513 .3122 
x 1.000 .6942 .5515 .4650 A057 .3620 .3282 

The maximum real root of this polynomial is found to be Ama< = 1.4656. 
Therefore, the capacity C(I, 3) = log? Ama< = 0.5515. 

The capacities of (d, K) codes for 0,,;;; d,,;;; 6 and 2,,;;; K '" 15 are given in 
Table 9-4-1. We observe that C(d, K) < ~ for ,,' '" 3 and any value of K. The 
most commonly used codes for magnetic recording employ d ,,;;; 2; hence. their 
rate R, is at least!. 

Now let us turn our attention to the construction of some runlength-limited 
codes. In general, (d, K) codes can be constructed either as fixed-length 'codes 
or as variable-length codes. In a fixed-length code. each bit or block of k bits is 
encoded into a block of n > k bits. 

In principle, the construction of a fixed-length code is straightforward. For a 
given block length n, we may select the subset of the 2n code words that satisfy 
the specified runlength constraints. From this subset, we eliminate code words 
that do nol satisfy the runlengtll constraints when concatenated. Thus, we 
obtain a set of code words that satisfy the constraints and can be used in the 
mapping of the input data bits to the encoder. The encoding and decoding 
operations can be performed by use of a look -up table. 

Example 9-4-3 

Let us construct a d = 0, K = 2 code of length n = 3, and determine its 
efficiency. By listing all the code words, we find that the following five code 
words satisfy the (0,2) constraint: (010), (011), (101), (1 to), (Ill). We 
may select any four of these code words and use then to encode the pairs of 
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data bits (00,01,10,11). Thus, we have a rate kin = 2/3 code that satisfies 
the (0,2) constraint. 

The fixed-length code in this example is not very efficient. The capacity is 
qo, 2) = 0.8791, so that this code has an efficiency of 

R, 2/3 
efficiency = = --= 0.76 

qd, K) 0.8791 

Surely, better (0,2) codes can be constructed by increasing the block length 
n. 

In the following example, we place no restriction on the maximum 
runlength of zeros. 

Example 9-4·4 

Let us construct a d = 1, K = 00 code of length n = 5. In this case, we are 
placing no constraint on the number of consecutive z:eros. To construct the 
code, we select from the set of 32 possible code words those that satisfy the 
d = 1 constraint. There are eight such code words, which implies that we can 
encode three information bits with each code word. The code is given in 
Table 9-4·2. Note that the first bit of each code word is a 0, whereas the last 
bit may be either 0 or 1. Consequently, the d = 1 constraint is satisfied when 
these code words are concatenated. This code has a rate Rc = 3/5. When 
compared with the capacity ql, 00) = 0.6942 obtained from Table 9-4-1, the 
code efficiency is 0.864, which is quite acceptable. 

The code construction method described in the two examples above 
produces fixed-length (d, K) codes that are state-independent. By state
independent, we mean that fixed-length code words can be concatenated 
without violating the (d, K) constraints. In general, fiKed-length state
independent (d, K) codes require large block lengths, except in cases such as 
those in the examples above where d is small. Simpler (shorter-length) codes 

TABLE 9-4-1 FIXED LENGTH d = 1, K =., CODE 

l&put data bits Olltput ro4ed ""IUeate 

000 00000 
00 1 00001 
010 00010 
o 1 1 001 00 
100 o 0 1 0 I 
I 0 1 o 1 000 
I 1 0 o 1 0 0 1 
I 1 1 o 1 010 
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are generally possible by allowing for state"dependence and for variable length 
code words. Below, we consider codes for which both the input blocks to the 
encoder and the output blocks may have variable length. For the code words to 
be uniquely decodable at the receiver, the variable-length code should satisfy 
the prefix condition, described in Chapter 3. 

Eumple 9-4-5 

A very simple uniquely decodable variable-length d = 0, K = 2 code is 

The code in the above example has a fixed output block size but a variable 
input block size. In general, both the input and output blocks may be variable. 
The following example illustrates the latter case. 

ElUIIIlple 9.4-6 

Let us construct a (2,7) variable block size code. The solution to this code 
construction is certainly not unique, nor is it trivial. We picked this example 
because the (2,7) rode has been widely used by IBM in many of its disk 
storage systems. The code is listed in Table 9-4-3. We observe that the input 
data blocks of 2, 3, and 4 bits are mapped into output data blocks of 4, 6, 
and 8 bits, respectively. Hence, the code rate is Rc = 1/2. Since this is the 
code rate for all code words, the code is called a fixed-rate code. This code 
has an efficiency of 0.5/0.5174 = 0.966. Note that this code satisfies the prefix 
condition. 

TABLE 9-4-3 CODE BOOK FOR VARIABLE· 
LENGTH (2,7) CODE 

I 0 
I I 
o I I 
/} 1 0 
000 
o 0 1 I 
o 0 1 0 

100 0 
0-1 0 0 
000100 
DOlOOO 
100100 
00100100 
000 0 1 000 
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TABLE 9-4-4 ENCODER FOR (1,3) MILLER CODE 

laput uta bits Output (Oded sequence 

o x 0 
o 1 

x = 0, if preceding input bit is I 
x = i, if precedmg input bit ls 0 

Another code that has been widely used in magnetic recording is the rale 
1/2, (d, K) = (1, 3) code in Table 9-4-4. We observe that when the information 
bit is a 0, the first output bit is 1 if the previous input bit was 0, or a 0 if the 
previous input bil was a 1. When the information bit is aI, the encoder oulpUI 
is 01. Decoding of this code is simple. The first bit of the two-bit block is 
redundant and may be discarded. The second bit is the information bit. This 
code is usually called the Miller code. We observe that this is a state-dependent 
code, which is described by the state diagram shown in Fig. 9-4-5. There are 
two states labeled 5, and S, with transitions as shown in the figure. When the 
encoder is a state 5" an input bit 1 results in the encoder staying in state 5, and 
outputs 01. This is denoted as 1/01. If the input bit is a 0, the encoder enters 
state S, and outputs 00. This is denoted as 0/00. Similarly, if the encoder is in 
state s" an input bit 0 causes no transition and the encoder output is to. On 
the other hand, if the input bit is a 1, the encoder enters state 5, and outputs 
01. Figure 9-4-6 shows the trellis for the Miller code. 

The Mapping of Coded Bits into Signal Waveforms The output sequence 
from a (d, K) encoder is mapped by the modulator into signal waveforms for 
transmIssion over the channel. If the binary digit 1 is mapped into a 
rectangular pulse of amplitude A and the binary digit 0 is mapped into a 

fiGURE 9-4-5 State diagrams for d = 1. K = 3 (Miller) code. HOI 

State 
lml lIOJ lIOI 

fiGURE 9-4-6 Trellis for d = I, K = 3 (Miller) code. 
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rectangular pulse of amplitude -A, the result is a (d, K) coded NRZ 
modulated signal. Note that the duration of the rectangular pulses is 
T,. = R,I Rb = R.I., where Rb is the information (bit) rate into the encoder, To 
is the corresponding (uncoded) bit interval, and Rc is the code rate for the 
(d, K) code. 

When the (d, K) code is a state-independent fixed-length code with code 
rate Rc = kIn, we may consider each n-bit block as generating one signal 
waveform of duration nT,. Thus, we have M = 2" signal waveforms, one for 
each of the 2k possible k-bit data blocks. These coded waveforms have the 
general form given by (4-3-6) and (4-3-38). In this case, there is no dependence 
between the transmission of successive waveforms. 

In contrast to the situation considered above, the modulation signal is no 
longer memoryless when NRZI is used and/or the (d, K) code is state
dependent. Let us consider the elIect of mapping the coded bits into an NRZI 
signal waveform. 

Recall that the state dependence in the NRZI signal is due to the 
differential encoding of the information sequence. The differential encoding is 
a form of precoding, which is described mathematically as 

P. =dk $Pk-l 

where {dk} is the binary sequence into the precoder, {Pk} is the output binary 
sequence from the precoder, and $ denotes modulo·2 addition. This encoding 
is characterized by the state diagram shown in Fig. 9-4-7(a). Then, the 
sequence {pd is transmitted by NRZ. Thus, when Pk = 1, the modulator 
output is a rectangular pulse of amplitude A, and when Pk = 0, the modulator 

FIGURE 9-4-7 State and trellis diagrams for NRZI signal. 

UIO Oil 

ce: III {Y 
I/O 

01-$(1) O/s{t) 

ce~I/S-'!.L..(1) -{Y 
1/-5(1) 

(aJ e(k 
T r 

(b) 

011 WI 
Ie) 

584

574 DIGITAL CO ..... MUNICATIONS 

rectangular pulse of amplitude -A, the result is a (d, K) coded NRZ 
modulated signal. Note that the duration of the rectangular pulses is 
T,. = R,I Rb = R.I., where Rb is the information (bit) rate into the encoder, To 
is the corresponding (uncoded) bit interval, and Rc is the code rate for the 
(d, K) code. 

When the (d, K) code is a state-independent fixed-length code with code 
rate Rc = kIn, we may consider each n-bit block as generating one signal 
waveform of duration nT,. Thus, we have M = 2" signal waveforms, one for 
each of the 2k possible k-bit data blocks. These coded waveforms have the 
general form given by (4-3-6) and (4-3-38). In this case, there is no dependence 
between the transmission of successive waveforms. 

In contrast to the situation considered above, the modulation signal is no 
longer memoryless when NRZI is used and/or the (d, K) code is state
dependent. Let us consider the elIect of mapping the coded bits into an NRZI 
signal waveform. 

Recall that the state dependence in the NRZI signal is due to the 
differential encoding of the information sequence. The differential encoding is 
a form of precoding, which is described mathematically as 

P. =dk $Pk-l 

where {dk} is the binary sequence into the precoder, {Pk} is the output binary 
sequence from the precoder, and $ denotes modulo·2 addition. This encoding 
is characterized by the state diagram shown in Fig. 9-4-7(a). Then, the 
sequence {pd is transmitted by NRZ. Thus, when Pk = 1, the modulator 
output is a rectangular pulse of amplitude A, and when Pk = 0, the modulator 

FIGURE 9-4-7 State and trellis diagrams for NRZI signal. 

UIO Oil 

ce: III {Y 
I/O 

01-$(1) O/s{t) 

~--~I~h(~I)--{Y 
1/-5(1) 

(aJ e(k 
T r 

(b) 

011 011 WI 
Ie) 



~·HAPTER 9- SIGNAL DESIGN fOR BA:so...UM!TED CHANNELS 575 

output is a rectangular pulse of amplitude -A. When the signal waveforms are 
superimposed on the state diagram of Fig. 9-4-7(a), we obtain the correspond
ing state diagram shown in Fig. 9-4-7(b). The corresponding treDis is shown in 
Fig. 9-4-7 (c ). 

When the output of a state-dependent (d, K) encoder is followed by an 
NRZI modulator, we may simply combine the two-state diagrams into a 
single-state diagram for the (d, K) code with precoding_ A similar combination 
can be performed with the corresponding trellises. The following example 
illustrates the approach for the (1,3) Miller code followed by NRZI 
modulation. 

Example 9-4-7 

Let us determine the state diagram of the combined (1,3) Miller code 
followed by the precoding inherent in NRZI modulation. Since the (1,3) 
Miller code has two states and the precoder has two states, the state 
diagram for the combined encoder has four states, which we denote as 
(SM' SN) = (Ub s,), (u" S2), (tT2' s,), (Ul' S2). where SM = {UI. 0',) represents 
the two states of the Miller rode and SN = {SI. $2) represents the two states 
of the precoder fOT NRZI. For each data input bit into the Miller encoder. 
we obtain two output bits which are then precoded to yield two precoded 
output bits. The resulting state diagram is shown in Fig. 9-4-8, where the 
first bit denotes the information bit into the Miller encoder and the next two 
bits represent the corresponding output of the preroder. 

The trellis diagram for the Miller precoded sequence may be obtained 
directly from the combined state diagram or from a combination of the trellises 
of the two codes_ Th·e result of this combination is the four-state trellis, one 
stage of which is shown in Fig. 9-4-9. 

It is left as an exercise for the reader to show that the four signal waveforms 
obtained by mapping each pair of bils of the Miller-precoded sequence into an 

FIGURE 9-4-8 State diagram of the Miller code followed by the precoder. 
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FIGURE 9.4-9 One stage of treUis diagram for the Miller code followed by the prec<1der. (0,. ,,) 

NRZ signal are biorthogonal and that the resulting modulated signal waveform 
is identical to the delay modulation that was described in Section 4-3-2. 

From the state diagram of a slate·dependent runlength-limited code, one 
can obtain the transition probability matrix, as described in Section 4-3-2. 
Then, the power spectral density of the code may be determined, as shown in 
Section 4-4-3. 

9-5 BIBLIOGRAPHICAL NOTES AND REFERENCES 

PROBLEMS 

The pioneering work on signal design for bandwidth-constrained channels was 
done by Nyquist (1928). The use of binary partial response signals was 
originally proposed by Lender (1963), and was later generalized by Kretzmer 
(1966). Other early work on problems dealing with intersymbol interference 
(lSI) and transmitter' and receiver optimization with constraints on lSI was 
done by Gerst and Diamond (1961), Tufts (1965), Smith (1965), and Berger 
and Tufts (1967). "Faster than Nyquist" transmission has been studied by 
Mazo (1975) and Foschini (1984). 

Modulation codes were also first introduced by Shannon (1948). Some of 
the early work on the construction of runlength·limited codes is found in the 
papers by Freiman and Wyner (1964), Gabor (1967), Franaszek (1968, 1969, 
1970), Tang and Bahl (1970), and Jacoby (1977). More I~cenl work is found in 
papers by Adler Coppersmith and Hassner (1983), and Karabed and Siegel 
(1991). The motivation for most of the work on runlength-limited codes was 
provided by applications to magnetic and optical recording. A well-written 
tutorial paper on runlength-limited codes has been published by Immink 
(1990); 

9-1 A channel is said to be distorlionless if the response y(t) to an input X(I) is 
Kx( I - to), where K and 10 are constants. Show that if the frequency response of 
the channel is A(f)~[). where AU) and 8(f) are real, the necessary and 
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sufficient conditions for distortion!ess transmission are A(f) = K and 8(f) = 

2Jrfto ± mr, n = 0., 1,2, .... 
9-2 The raised-cosine spectral characteristic is given by (9-2-26). 

a Show that the corresponding impuise response is 

sin (trt I T) cos (13m IT) 
x(t) = mIT 1 - 4f3't'/T' 

b Determine the Hilbert transform of x(t) when fJ = 1. 
c Does £(1) possess the desirable properties of x(t) that make it appropriate for 

data transmission? Explain. 
d Determine the envolope of the SSB suppressed-carrier signal generated from 

X(I). 
9-3 a Show that (Poisson sum formula) 

X(I) = ,t g(t)h(t - kT)~X(f) = j:.t H(f)G(t -~) 
Him: Make a Fourier-series expansion of the periodic factor . 

L h(t-kT) 

bUsing Ibe result in (a), verify the .following versions of the Poisson sum: 

(i) 

(ii) 

(iii) 

c Derive the condition for no intersymbol interference (Nyquist criterion) bv 
using the Poisson sum formula. 

9-4 Suppose a digital communications system employs gaussian-shaped pulses of the 
form 

x(t) = exp (-IfiI't') 

To reduce the level of intersymbol interference to a relatively small amount, we 
impose the condition that x(T) =0.0.1, where T is the symbol interval. The 
bandwidth W of the pulse X{I} is defined as that value of W for which 
X(W)/X(o.) = 0..0.1, where X(f) is the Fourier transform of x(t). Determine the 
value of W and compare this value 10 that of raised-cosine spectrum with 100% 
rolloff. 

9-5 A band-limited signa! having bandwidth W can be represented as 

() ~ ",sin~[2=KW~(t_-~n~/2~W~)1 
XI=L.Jxn 

"~_. 21rW(1 - n/2W) 

a Determine the spectrum X(f) and plot IX(f)1 for the following cases: 

xo =2, x,~l, x,~-l, x.=O, n"O,1.2 (i) 

L,=-l. xo~2, x,=-I, x.=o., n",-l,O.l (ii) 
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b Plot X (I) for these two cases. 
< If these signals are used for :,inary signal transmission. determine the number of 

received levels possible at the sampling instants t = n T = n /2 W. and the 
probabilities of occurrence of the received levels. Assume thaI the binary digits 
at the transmitter are equall)' probable. 

9-6 A 4 kHz bandpass channel is to be used for transmission of data at a rate of 
9600 bits/so If 1,\\) = 10 - '" W 1Hz is the spectral density of the additive. zero-mean 
gaussian noise in the channel. design a QAM modulation and determine the 
~verage power that achieves a bit error probability of 10 •. Use a signal pulse with 
a raised-cosine spectrum having a roll-off factor of at least 50%. 

9·7 Determine the bit rate that can be transmitted through a 4 kHz voice-band 
telephone (bandpass) channel if the following modulation methods are used: (a) 
binary PAM: (b) four-phase PSK; (0) 8-point GAM; (d) binary orthogonal FSK. 
with noncorerent detection; (e) orthogonal four-FSK with noncoherent detection; 
(f) orthogonal 8-FSK with noncoherent detection_ For (a)-(c), assume that the 
transmitter pulse shape has a raised-cosine spectrum with a 50% roll-off. 

9-S An ideal voice-band telephone line channel has a bandpass frequency response 
chara.;teristic spanning the frequency range 600-3000 Hz. 
a Design an M = 4 PSK (quadrature PSK or QPSK) system for transmitting data 

at a rate of 2400 bitsls and a carrier frequency f = 1800 Hz. For spectral 
shaping. use a raised-cosine frequency-response characteristic. Sketch a block 
diagram of the system and describe the functional operation of each block. 

b Repeat (a) for a bit rate R = 4800 bits/s. 
9·9 A voice-bar.d telephone channel passes the frequencies in the band from 300 to 

3300 Hz. It is desired to design a modem that transmits at a symbol rate of 240(j 
symbolsls, with the objective of achieving 9600 bits/s. Select an appropriate QAM 
signal constellation, carrier frequency. and the roll-off factor of a pulse with a 
raised cosine spectrum that utllizes the entire frequency band. Sketch the spectrum 
of the transmitted signal pulse and indicate the important frequencies. 

9-11) A communication system fOf a voice-band (J kHz) channel is designed for a 
received SNR at the detector of 30 dB when the transmitter power is Ps = 

~ 3 dEW. Determme the value of Ps if it is desired to expand the bandwidth of the 
system to 10 kHz. while maintaining the same SNR at the detector. 

9·11 Show that a pulse having the raised cosine spectrum given by (9-2-26) satisfies the 
Nyquist criterion given by (9-2-13) for any value of the roll-off factor {I 

9-12 Show that, lor any value of!3. the raised cosine spectrum given by (9-2-26) satisfies r Xo(f)df= 1 

(Hint: Use the fact that X,Af) satisfies the Nyquist criterion given by (9-2-13).] 
9·13 The Nyquist criterion gives (he necessary and sufficient condition for the spectrum 

X (f) of the pulse x(t) that yields zero lSI. Prove that for any pulse that is 
hand-limited to ill < liT. the zero-lSI condition is satisfied if Re [X(f)], for f > 0, 
consists of a rectangular function plus an arbitrary odd function around f = 1/2 T. 
and 1m [X(fl] is any arbitrary even function around J = 1/2T. 

9-14 A voice-band telephone channel has a passband characteristic m the frequency 
range 300 Hz < I < 3000 Hz. 
a Select a symbol rate and a power efficient constellation size to achieve 

9600 bitsls signal transmission. 
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b If a square-root raised cosine pulse is used for the transmitter pube g(l). select 
the roll-off factor. Assume that the channel has an ideal fr.:quency response 
characteristic. 

9·15 Design an M·ary PAM system that transmits digital information over an ideal 
channel with bandwidth W = 2400 Hz. The bit rate is 14400 hit/so Specify the 
number of transmiued points. the number of received signal points using a 
duobinary signal pulse. and the required 'If. to achieve an error probability of 10 '. 
The additive noise is zero· mean gaussian with a power spectral density 
1O··W/Hz. 

9-16 A binary PAM signal is generated by exciting a raised cosine roll-off filter with a 
50% roll·off factor and is then DSB·SC amplitude-modulated on a sinusoidal 
carrier as illustrated in Fig. P9-16. The bit rate is 2400 bit/so 
a Determine the spectrum of the modulated binary PAM signal and sketch it. 
b Draw the block diagram illustrating the optimum demodulator/detector for the 

received signal. which is eqUilI to the transmitted signal plus additive white 
gaussian noise. 

9-17 The elements of the sequence {a"}:~ x are independent binary random variables 
laking values of ± 1 with equal probability. This data sequence is used to modulate 
the basic pulse get} shown :n Fig. P9-17(a). The modulated signal is 

X(II = 2: a"g(t - nT) 

a find the po,",er spectral density of X(I). 
b If g,(t) (shown in Fig. 9-17b) is used instead of g(t), how would the power 

spectrum in (a) change? 
c In (b) assume we want to bave a null in the spectrum at f = 1/3T. This is done 

by a precoding of t~e form b. = a" + I>a,,_,. find the a that provides the desired 
null. 

d Is it possible to employ a precoding of the form b. = a" + L,' ,aja" , for some 
finite N such that the final power spectrum will be identical to zero for 
1/3T "'If I '" 1/2T? If yes. how? If no. why? [flint; Use propertie, of analytic 
functions.] 
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9.18 Consider lhe transmission of data via PAM over a voice-band telephone channel 
that has a bandwidth of 3000 Hz_ Show bow tbe symbol rate varies as a function of 
the excess bandwidth. In particular, determine tbe symbol rate for an excess 
bandwidth of 25%, 33%, 50%, 67%, 75%, and 100%. 

9·19 The binary sequence 10010110010 is the input to a precoder whose output is used 
to modulate a duobinary transmitting filter. Construct a table as in Table 9-2-1 
showing the precoded sequence, the transmitted amplitude levels, the received 
signal levels and tbe decoded sequence. 

9·ZO Repeat Problem 9-19 for a modified duobinary signal pulse. 
9·21 A precoder for a partial response signal fails to work if the elesired panial 

response at n = 0 is zero modulo M, For example, consider the desired response 
for M=2: 

x(nn=\ ~ -1 

o 

(n = 0) 

(n = 1) 

(n =2) 

(otberwise ) 

Show why this response cannot be precoded. 
9·22 Consider the RC lowpass filter shown in Fig. P9-22, where r = RC = 10 -0, 

R Determine and sketch the envelope (group) delay of the filter as a function of 
frequency. 

b Suppose that the input to the filter is a lowpass signal of bandwidth t:J.f = 1 kHz. 
Determine tbe elIect of tbe RC filter on tbis Signal. 

9-23 A microwave radio channel bas a frequency response 

C(f) = I + 0.3 cos 21CjT 

Determine the frequency response characteristic of tbe optimum transmitting and 
receiving filters that yield zero lSI at a rale of lIT symbolsls and ha'e a 50% 
eXcess bandwidth. Assume that the additive noise spectrum is flat. 

.,.24 M = 4 PAM modulation is used for transmitting at a bit rate of 9600 bitls on a 
channel having a frequency response 

C(f) = 1 + ;(f 12400) 

for 1/1'" 2400, and CU) = 0 OIherwise. The additive noise is zero-mean, while 
Gaussian with power spectral density ~No W/Hz_ Determine the (magnitude) 
frequency response characteristic of the optimum transmitting and receiving filters. 

'·25 Determine the capacity of a (0, 1) runlength-limiled code. Comp.re its capacity 
with that of a (1,00) code and explain the relationsbip. 

9·26 A ternary signal format is designed for a channel that does not pass d.c. The 
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binary input information sequence is transmitted by mapping a into either a 
positive pulse or a negative pulse, and a zero is transmitted by the absence of a 
pulse. Hence, for the transmission of Is. the polarity of the pulses alternate. This is 
called an AMI (alternate mark inversion) code. Determine the capacity of the 
code. 

9·27 Give an alternative descriplion of the AMI code described in Problem 9·26 using 
the running digit sum (RDS) with the constraint that the RDS can :ake only the 
values 0 and + I. 

9-28 (kBnT codes) From Problem 9-26. note that the AMI code is a "pseudo-ternary" 
code in that it transmits one bit per symbol using a ternary alphabet. which has the 
capacity of log, 3 = 1.58 b,tS. Such a code does not provide sufficient spectral 
shaping. Belter spectral shaping is achieved by the class of block codes designated 
as kBnT. where k denotes the number of information bits and n denotes the 
number of ternary symbols per block. By selecting the largest k possible for each 
n. we obtain the following lable: 

k 

3 
4 
6 

n 

I 
2 
3 
4 

Code 

lBIT 
3B2T 
4B3T 
6B4T 

Determine the efficiency of these codes by computing the ratio of the code in 
bits/symbol divided by log,3. Note that IBlT is the AMI code. 

9-29 This problem deals with the capacity of two (d. K) codes. 
a Determine the capacity af a (d. K) code that has the following state transition 

matrix: 

D = [~ ~] 
b Repeat (a) for 

D=[I I] o I 

c Comment on the differences between (a) and (b). 
9-30 A simplified model of the telegraph code consists of two symbols (Blahut, 1990). 

A dot consists of one lime unit of line closure followed by one time unit of line 

~ J J J I J I 
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open. A dash consists of three units of line closure followed by one time unit of 
line open. 
a Viewing this code as a constrained code with symbols of equal duration. give the 

constraints. 
b Determine the state-transition matrix. 
c Determine the capacity. 

9-31 Determine Ihe state-transition matrix for the runlength-constrained code described 
by the state diagram snown in Fig. P9-3l. Sketch the corresponding Irellis. 

9-3l Determine the slale-transition matrix for the (2,7) runlength-limited code 
specified by the state diagram shOlom in Fig. P9-32. 

592

S82 OiGIl A L COMMUNK A T10SS 

open. A dash consists of three units of line closure followed by one time unit of 
line open. 
a Viewing this code as a constrained code with symbols of equal duration. give the 

constraints. 
b Determine the state-transition matrix. 
c Determine the capacity. 

9-31 Determine Ihe state-transition matrix for the runlength-constrained code described 
by the state diagram snown in Fig. P9-3l. Sketch the corresponding Irellis. 

9-3l Determine the slale-transition matrix for the (2,7) runlength-limited code 
specified by the state diagram shOlom in Fig. P9-32. 



10 
COMMUNICATION 

THROUGH BAND-LIMITED 
LINEAR FILTER CHANNELS 

In Chapter 9, we focused on the design of the modulator and demodulator 
filters for band-limited channels. The design procedure was based on the 
assumption that the (ideal or non-ideal) channel response characteristk C(fl 
was known a priori. However, in practical digital communications systems thaI 
are designed to transmit at high speed through band-limited channels. the 
frequency response C(f) of the channel is not known with sufficient precision 
to design optimum filters for the modulator and demodulator. For example, in 
digital communication over the dial-up telephone network, the communication 
channel will be different every time we dial a number, because the channel 
route will be different. This is an example of a channel whose characteristics 
are unknown a priori. There are other Iypes of channels, e.g .• wireless channels 
such as radio channels and underwater acoustic channels, whose frequency 
response characteristics are time-variant. For such channels, it is not possible 
to design optimum fixed demodulation filters. 

In this chapter. we consider the problem of receiver design in Ihe presence 
of channel distortion, which is no! known a priori, and A WGN. The channel 
distortion results in intersymbol interference, which. if left uncompensated, 
causes high error rates. The solution to the lSI problem is to design a receiver 
that employs a means for compensating or reducing the lSI in the receiv~d 
signal. The compensator for the lSI is called an equalizer. 

Three types of equalization methods are treated in this chapter. One is 
based on the maximum-likelihood (ML) sequence detection criterion, which is 
optimum from a probability of error viewpoint. A second equalization method 
is based on the use of a linear tilter with adjustable coefficients. The third 
equalization method that is described exploits the use of previous detected 
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symbols to suppress the lSI in the present symbol being detected, and it is 
called decision-feedback equalization. We begin with the derivation of the 
optimum detector for channels with lSI. 

10-1 OPTIMUM RECEIVER FOR CHANNELS WITH 
lSI AND AWGN 

In this section, we derive the structure of the optimum demodulator and 
detector for digital transmission through a nonideal, band-limited channel with 
additive gaussian noise. We begin with the transmitted (equivalent lowpass) 
signal given by (9-2-1). The received (equivalent lowpass) signal is expressed as 

(10-1-1) 
n 

where h(t) represents the response of the channel to the input signal pulse g(t) 
and z(t) represents the additive white gaussian noise. 

First we demonstrate that the optimum demodulator can be realized as a 
filter matched to h(t), followed by a sampler operating at the symbol rate 1/ T 
and a subsequent processing algorithm for estimating the information sequence 
{In) from the sample values. Consequently, the samples at the output of the 
matched filter are sufficient for the estimation of the sequence {In}. 

10-1-1 Optimum Maximum-Likelihood Receiver 

Let us expand the received signal r,(t) in the series 

N 

r,(t) = lim L r,[.(t) 
,v_x k=i 

(10-1-2) 

where {f.(t)} is a complete set of orthonormal functions and {rd are the 
observable random variables obtained by projecting r,(I) onto the set (fk(t)}. It 
is easily shown that 

(10-1-3) 
n 

where hkn is the value obtained from projecting h(t - n T) onto [.(t). and z. is 
the value obtained from projecting z(t) onto [.(1). The sequence {Zk} is 
gaussian with zero mean and covariance 

(10-1-4) 

The joint probability density function of the random variables 
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rN '" Ir, '2 ... r",] conditioned on the transmitted sequence Ip '" [I, 
where p '" N. is 

l)N ( 1 IV I I') p(rN 31,,) = (21fN
o 

exp - 2No t:, rk - ~ I~hkn (10-1-5) 

In the limit as the number N of observable random variables approaches 
infinity, the logarithm of p(rN 31p ) is proportional to the metrics PM(lp ). 

defined as 

PM(lp) = - r Irl/) - ~ l.h(1 - nT)1
2 

dt 

= - [~lr,(I)I' dt + 2 Re ~ [I: [~"(/)h*(1 - nT) dl] 

- ~ ~ 1:[", [~ h*(t - nT)h(t - mT)dt (10-1-6) 

The maximum-likelihood estimates of the symbols i" [2 •... , lp are those that 
maximize this quantity. Note, however, that the integral of Ir,(tW is common to 
all metrics, and, hence, it may be discarded. The other integral involving r(t) 
gives rise to the variables 

Yn=y(nT) = [~r,(t)h*(t-nT)dt (10-1-7) 

These variables can be generated by passing ret) through a filter matched to 
h(l) and sampling the output at the symbol rate 1fT. The samples {yn} form a 
set of sufficient statistics for the computation of PM(J.,) or, equivalently, of the 
correlation metrics 

CM(lp) = 2 Re (2: I!Yn) - 2: 2: 1!/",x._m 
n n m 

(10-1-8) 

where, by definition, X(I) is the response of the matched filter to h(t) and 

x. =x(nT) = [00 h*(I)h(t + nT) dl (1()"1-9) 

Hence, x(t) represents the output of a filter having an impulse response h*( -I) 
and an excitation h(t). In other words, X(I) represents the autocorrelation 
function of h(t). Consequently, {x.} represents the samples of the autocorrela
tion function of h(I). taken periodically at 1fT. We are not particularly 
concerned with the noncausal characteristic of the filter matched to h(/), since, 
in practice, we can introduce a sufficiently large delay to ensure causality of the 
matched filter. 

If we substitute for rl(l) in (10-1-7) using (lO-l-i), we obtain 

(10-1-10) 
n 
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where Vk denotes the additive noise sequence of the output of the matched 
filter, i.e., 

Vk = fx z(t)h*(t - kT) dt (10-1-11) 

The output of the demodulator (matched filter) at the sampling instants is 
corrupted by lSI as indicated by (10-1-10). In any practical system, it is 
reasonable to assume that the lSI affects a finite number of symbols. Hence, 
we may assume that x. = 0 forn I > L. Consequently, the lSI observed at the 
output of the demodulator may be viewed as the output of a finite state 
machine. This implies that the channel output with lSI may be represented by 
a trellis diagram, and the maximum-likelihood estimate of the information 
sequence (I" /2, ... ,lp) is simply the most probable path through the trellis 
given the received demodulator output sequence {Yo}. Clearly, the Viterbi 
algorithm provides an efficient means for performing the trellis search. 

The metrics that are computed for the MLSE of the sequence {lk} are given 
by (10-1-8). It can be seen that these metries can be computed recursively in 
the Viterbi algorithm, according to the relation 

Figure 10-J-1 illustrates the block diagram of the optimum receiver for an 
A WGN channel with lSI. 

10-1-2 A Discrete-TIme Model for a Channel with lSI 

In dealing with band-limited channels that result in lSI, it is convenient to 
develop an equivalent discrete-time model for the analog (continuous-time) 
system. Since the transmitter sends discrete-time symbols at a rate 
11 T symbols/ s and the sampled output of the matched filter at the receiver is 
also a discrete-time signal with samples occurring at a rate liT per second, it 
follows that the cascade of the analog filter at the transmitter with impulse 
response g(t), the channel with impulse response e(f), the matched filter at the 
receiver with impulse response h*( -t), and the sampler can be represented by 

FIGURE 10.1-1 Optimum r=iver for an AWGN channel with lSI. 
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Figure 10-J-1 illustrates the block diagram of the optimum receiver for an 
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system. Since the transmitter sends discrete-time symbols at a rate 
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follows that the cascade of the analog filter at the transmitter with impulse 
response g(t), the channel with impulse response e(f), the matched filter at the 
receiver with impulse response h*( -t), and the sampler can be represented by 

FIGURE 10.1-1 Optimum r=iver for an AWGN channel with lSI. 
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FIGURE 10-1-2 Equivalent discrete·time model of ohannel with inter.ymbol interference. 

an equivalent discrete-time transversal filter having tap gain coefficients {x,,}. 
Consequently, we have an equivalent discrete-time transversal filter that spans 
a time interval of 2L T seconds. Its input is the sequence of information 
symbols {f.} and its output is the discrete-time sequence {y.} given by 
(10-1-10). The equivalent discrete-time model is shown in Fig. 10-1-2. 

The major difficulty with this discrete-time model occurs in the evaluation of 
perfonnance of the various equalization or estimation techniques that are 
discussed in 'he following sections. The difficulty is caused by the correlations 
in the noise sequence {v.} at the output of the matched filter. That is, the set of 
noise variables {v.} is a gaussian-distributed sequence with zero mean and 
autocorrelation function (see Problem 10-5) 

1£( • ) _ {NoXkOi Ok -;1"" L) 
2 VIt\'--
.' 0 (otherwise) 

(10-1-13) 

Hence, the noise sequence is correlated unless x. = 0, k ,.. O. Since it is more 
convenient to deal with the white noise sequence when calculating the error 

. rate perfonnance, it is desirable' to whiten the noise sequence by further 
filtering the sequence {y.}. A discrete-time noise.whitening filter is determined 
as follows. 

Let X(z) denote the (two-sided) z transform of the sampled autocorrelation 
function {x.}, i.e., 

L 

X(z) = L XAZ·· (10-1-14) 
l<=-L 

Since x. =x!., it follows that X(z) =X*(ZO'} and the 2L roots of X(z) have 
the symmetry that if p is a root, IIp' is also a root. Hence, X(z) can be 
factored and expressed as 

X(z) = F(z)F*(z .,) (10-1-15) 
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where Fez) is a polynomial of degree L having the roots PI, Pz, ... , PL and 
P*(Z-l) is a polynomial of degree L having the roots l/pt, lip!,.·· , lip!. 
Then an appropriate noise-whitening filter has a z transform l/p*(Z-I). Since 
there are ZL possible choices for the roots of p*(Z-I), each choice resulting in 
a filter characteristic that is identical in magnitude but different in pbase from 
other choices of the roots, we propose to choose the unique F*(Z-l) having 
minimum phase, i.e., the polynomial having all its roots inside the unit circle. 
Thus. when all the roots of F*(Z-l) are inside the unit circle, I/P*(Z-I) is a 
physically realizable, stable, recursive discrete-time filter.t Consequently, 
passage of the sequence {Y.} through the digital filter l/F*(Z-I) results in an 
output sequence {Vk} that can be expressed as 

L 

Vk = 2: In!. -n + 11, (10-1-16) 
n=f' 

where {11k} is a white gaussian noise sequence and {fk} is a set of tap 
coefficients of an equivalent discrete-time transversal filter having a transfer 
function F(z). In general, the sequence {Uk} is complex-valued. 

In summary, the cascade of the transmitting filter get), the channel e(t), the 
matched filter h*( -tl. the sampler, and the discrete-time noise-whitening filter 
I/P*(Z-I) can be represented as an equivalent discrete-time transversal filter 
having the set {t.} as its tap coefficients. The additive noise sequence {11k} 
corrupting the output of the discrete-time transversal filter is a white gaussian 
noise sequence having zero mean and variance No. Figure 10-1-3 illustrates the 
model of the equivalent dis<:rete-time system with white noise. We refer to this 
model as the equivalent discrete-time white noise filter model. 

FIGURE UI-1-3 Equivalent discrete-time modet of inter,ymbol interference cbannel with WGN. 
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Z~I-= delay of T 

tBy remDving Ihe slability condition, we c.n .Iso ,bow P( t - I) to bave root. on the unit circle. 
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ElUUDple 10-1·1 

Suppose that the transmitter signal pulse g(t) has duration T and unit 
energy and the received signal pulse is h(/) = g(l) + ag(l - T). Let us 
determine the equivalent discrete-time white-noise filter model. The sample 
autocorrelation function is given by 

{

a" (k = -1) 

Xk = 1 + raf (k = 0) 
a (k = 1) 

The z transform of x. is 
I 

X(z)= L x.Z-· 
k=-1 

= a*z + (1 + laF) + az- 1 

= (az- I + 1)(a*z + 1) 

(10-1-17) 

(10-1-18) 

Under the assumption that lal > 1, one chooses F(z) = az- 1 + 1. so that the 
equivalent transversal filter consists of two taps having tap gain coefficients 
/0 = 1, f, = a. Note that the correlation sequence {x.} may be expressed in 
terms of the Un} as 

L-' 

x. = L r:.tn H, k = 0, 1, 2, .. , , L (10-1-19) 
"=0 

When the channel impulse response is changing slowly with time, the 
matched filter at the receiver becomes a time-variable filter. In this case, the 
time variations of the channel/matched-filter pair result in a discrete-time filter 
with time-variable coefficients. As a consequence, we have time-variable 
intersyrnbol interference effects, which can be modeled by the filter illustrated 
in Fig. 10-1-3, where the tap coefficients are slowly varying with time. 

The discrete-time white noise linear filter model for the intersymbol 
interference effects that arise in high-speed digital transmission over nonideaJ 
band-limited channels will be used throughout the remainder of this chapter in 
our discussion of compensation techniques for the interference. In general, the 
compensation methods are called equalization techniques or equalization 
algorilhms. . 

10-1·3 The Viterbi Algorithm for the Discrete·TIme White 
Noise Filter Model 

MLSE of the information sequence Ilk} is most easily described in terms of the 
received sequence {II.} at the output of the whitening filter. In the presence of 

599

CHAPTER lO: COMMUNICATION THROUGH BAND-LIMITED CHANNELS 519 

ElUUDple 10-1·1 

Suppose that the transmitter signal pulse g(t) has duration T and unit 
energy and the received signal pulse is h(/) = g(l) + ag(l - T). Let us 
determine the equivalent discrete-time white-noise filter model. The sample 
autocorrelation function is given by 

{

a" (k = -1) 

Xk = 1 + raf (k = 0) 
a (k = 1) 

The z transform of x. is 
I 

X(z)= L x.Z-· 
k=-1 

= a*z + (1 + laF) + az- 1 

= (az- I + 1)(a*z + 1) 

(10-1-17) 

(10-1-18) 

Under the assumption that lal > 1, one chooses F(z) = az- 1 + 1. so that the 
equivalent transversal filter consists of two taps having tap gain coefficients 
/0 = 1, f, = a. Note that the correlation sequence {x.} may be expressed in 
terms of the Un} as 

L-' 

x. = L r:.tn H, k = 0, 1, 2, .. , , L (10-1-19) 
"=0 

When the channel impulse response is changing slowly with time, the 
matched filter at the receiver becomes a time-variable filter. In this case, the 
time variations of the channel/matched-filter pair result in a discrete-time filter 
with time-variable coefficients. As a consequence, we have time-variable 
intersyrnbol interference effects, which can be modeled by the filter illustrated 
in Fig. 10-1-3, where the tap coefficients are slowly varying with time. 

The discrete-time white noise linear filter model for the intersymbol 
interference effects that arise in high-speed digital transmission over nonideaJ 
band-limited channels will be used throughout the remainder of this chapter in 
our discussion of compensation techniques for the interference. In general, the 
compensation methods are called equalization techniques or equalization 
algorilhms. . 

10-1·3 The Viterbi Algorithm for the Discrete·TIme White 
Noise Filter Model 

MLSE of the information sequence Ilk} is most easily described in terms of the 
received sequence {II.} at the output of the whitening filter. In the presence of 



S90 DIGITAL COMMUNKATIONS 

intersymbol interference that spans L + 1 symbols (L interfering components), 
the MLSE criterion is equivalent to the problem of estimating the state of a 
discrete-time finite-state machine. The finite-state machine in this case is the 
equivalent discrete-time channel with coefficients {fiJ. and its state at any 
instant in time is given by the L most recent inputs, i.e., the state at time k is 

(10-1·20) 

where I. = 0 for k,,; O. Hence, if the information symbols are M-ary, the 
channel filter \las ML states. Consequently, the channel is described by an 
ML-state trellis and the Viterbi algorithm may be used to determine the most 
probable path through the trellis. 

The metrics used in the trellis search are akin to the metrics used in 
soft-decision decoding of convolutional codes. In brief, we begin with the 
samples v,. V2, ...• Vu I> from which we compute the M L +' metrics 

L+L 

L lnp(vk 11.. I.." ... , I.--d (10-1-21) 
k=t 

The ML+' possible sequences of [u,. [v ... • [2. [, are subdivided into ML 
groups corresponding to the ML states (h + 1. h ..... 12)' Note that the M 
sequences in each group (stale) differ in I, and correspond to' the paths through 
the trellis that merge at a single node. From the M sequences in each of the 
ML states, we select the sequence with the largest probability (with respect to 
I,) and assign to the surviving sequence the metric 

PM, (IL+ ,) '" PM1(/L+l. h .... , 12 ) 

L+' 

= max 2: Inp(vk I 1., 1..1>'" . lk-d 
II k=l 

(10-1-22) 

The M - 1 remaining sequences from each of the ML groups are discarded. 
Thus, we are left with ML surviving sequences and their metrics. 

Upon reception of VL+2, the ML surviving sequences are extended by one 
stage, and the corresponding ML + 1 probabilities for the extended sequences 
are computed using the previous metrics and the new increment, which. is 
Inp(vL+2Ih+"h+J, ... ,I,). Again, the M L +1 sequences are subdivided into 
ML groups corresponding to the ML possible states (fL+2, ... ,13) and the most 
probable sequence from each group is selected, while the other M - 1 
sequences are discarded. 

The procedure described continues with the reception of subsequent signal 
samples. In general, upon reception of v L+k, the metriest 

tWe observe that the metries PM.(I) are simply related to the euclidean distance metries 
DM.(I) when the additive noise is gaussian. 

, 
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that are computed give the probabilities of the M' surviving sequences. Thus, 
as each signal sample is received, the Viterbi algorithm involves first the 
computation of the M' + I probabilities 

Inp(v'H I h .. " ,. ,/d + PMk-I(IL+k-l) (10-1-24) 

corresponding to the M L
+

I sequences that form the continuations of.the ML 
surviving sequences from the previous stage of the process. Then the M L + I 

sequences are subdivided into M' groups, with each group containing M 
sequences that terminate in the same set of symbols h .. ,. ,. ,[hI and differ in 
the symbol 1., From each group of M sequences, we select the one having the 
largest probability as indicated by (10-1-23), while the remaining M - 1 
sequences are discarded. Thus, we are left again with ML sequences having the 
metrics PM.(luk), 

As indicated previously, the delay in detecting each information symbol is 
variable, In practice, the variable delay is avoided by truncating the surviving 
sequences to the q most recent symbols, where q p L, thus achieving a fixed 
delay. In the case that the ML surviving sequences at time k disagree on the 
symbol l'_q, the symbol in the most probable sequence may be chosen. The 
loss in performance resulting from this suboptimum decision procedure is 
negligible if q ;;. 5L. 

Example ID-l·2 

For illustrative purposes, suppose that a duobinary signal pulse is employed 
to transmit four-level (M = 4) PAM. Thus, each symbol is a number 
selected from the set {-3, -1, 1, 3}. The controlled intersymbol interference 
in this partial response signal is represented by the equivalent discrete-time 
channel model shown in Fig. 10-1-4. Suppose we have received VI and V2, 

where 

FIGURE 10-1-4 Equivalent discrete·time model 
fOT intersymbof interference 
resulting from a duobinary pulse, 

V, =[, +1)1 

V, = 12 + I, + "I, 

o T 
la} 

Inpot / t 

x 

(b) 

(10-1-25) 

output 
vk.=ik +I'~I +l1t 
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and {'l'/i} is a sequence of statistically independent zero-mean gaussian noise. 
We may now compute the 16 metrics 

1" /2 = ±1. ±3 (10-1-26) 

where lk = 0 for k ,,;; O. 
Note that any subsequently received signals {Vi} do not involve I,. Hence, 

at this stage, we may discard 12 of the 16 possible pairs {I" 12}. This step is 
illustrated by the tree diagram sbown in Fig. 10-1-5. In otber words, after 
computing the 16 metrics corresponding to the 16 paths in the tree diagram, 
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we discard three out of the four paths that terminate with 12 = 3 and save the 
most probable of these four. Thus, the metric for the surviving path is 

PMI(/2 = 3, II) = max [- ± (Vk - ± h_i)2] 
II *=1 j=O 

The process is repeated for each set of four paths terminating with 12 = 1, 
12 = -1, and 12 = - 3. Thus four paths and their corresponding- metrics survive 
after VI and u, are received. 

When U3 is received, the four paths are extended as shown in Fig. 10-1-5, to 
yield 16 paths and 16 corresponding metrics, given by 

PM,(/3, 12 , II) = PMI(l" II) - (V3 - ± I3 - if 
J-O 

(10-1-27) 

Of the four paths terminating with the I, = 3, we save the most probable. This 
procedure is again repeated for /3=1, /3=-1, and 13 =-3. Consequently, 
only four paths survive at this stage. The procedure is then repeated for each 
subsequently received signal Uk for k > 3. 

10-1-4 Performance of MLSE for Channels with lSI 

We shall now determine the probability of error for MLSE of the received 
information sequence when the information is transmitted via PAM and the 
additive noise is gaussian_ The similarity between a convolutional code and a 
finite-duration intersymbol interference channel implies that the method for 
computing the error probability for the latter carries over from the former. In 
particular, the method for computing the performance of soft -decision decod
ing of a convolutional code by means of the Viterbi algorithm, described in 
Section 8-2-3, applies with some modification. 

In PAM signaling with additive gaussian noise and intersymbol interference, 
the metries used in the Viterbi algorithm may be expressed as in (10-1-23), or 
equivalently, as 

PMk-L(Ik ) = PMk-L-I(lk-l) - (Uk - ± fih-ir (10-1-28) 
,-0 

where the symbols {In} may take the values ±d, ±3d, . . _ , ±(M - l)d, and 2d 
is the distance between successive levels. The trellis has ML states, defined at 
time k as 

(10-1-29) 

Let the estimated symbols from the Viterbi algorithm be denoted by {l.} 
and the corresponding estimated state at time k by 

(10-1-30) 
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When U3 is received, the four paths are extended as shown in Fig. 10-1-5, to 
yield 16 paths and 16 corresponding metrics, given by 

PM,(/3, 12 , II) = PMI(l" II) - (U3 - ± I3 - if 
J-O 

(10-1-27) 

Of the four paths terminating with the I, = 3, we save the most probable. This 
procedure is again repeated for /3=1, /3=-1, and 13 =-3. Consequently, 
only four paths survive at this stage. The procedure is then repeated for each 
subsequently received signal Uk for k > 3. 

10-1-4 Performance of MLSE for Channels with lSI 

We shall now determine the probability of error for MLSE of the received 
information sequence when the information is transmitted via PAM and the 
additive noise is gaussian_ The similarity between a convolutional code and a 
finite-duration intersymbol interference channel implies that the method for 
computing the error probability for the latter carries over from the former. In 
particular, the method for computing the performance of soft -decision decod
ing of a convolutional code by means of the Viterbi algorithm, described in 
Section 8-2-3, applies with some modification. 

In PAM signaling with additive gaussian noise and intersymbol interference, 
the metries used in the Viterbi algorithm may be expressed as in (10-1-23), or 
equivalently, as 

PMk-L(Ik ) = PMk-L-I(lk-l) - (Uk - ± fih-ir (10-1-28) 
,-0 

where the symbols {In} may take the values ±d, ±3d, . . _ , ±(M - l)d, and 2d 
is the distance between successive levels. The trellis has ML states, defined at 
time k as 

(10-1-29) 

Let the estimated symbols from the Viterbi algorithm be denoted by {l.} 
and the corresponding estimated state at time k by 

(10-1-30) 
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Now suppose that the estimated path through the trellis diverges from the 
correct path at time k and remerges with the correct path at time k + I. Thus, 
S. = S. and SHI = S'+I, but Sm ¥ Sm for k < m < k + J. As in a convolutional 
code. we call this an error event. Since the channel spans L + 1 symbols, it 
follows that I ;3 L + 1. 

For such an error event. we have 1. ¥ I. and l"~I-L_l ¥ lk+I-L-h but 1m = 1m 
for k - L ,.; m ,.; k - 1 and k + I - L ,.; m ,.; k + I - 1. It is convenient to define 
an error vector £ corresponding to this error event as 

(10-1-31) 

where the components of E are defined as 

(10-1-32) 

The normalization iactor of 2d in (10-1-32) results in elements E; that take on 
the values ± 1, ±2, ±3, ... , ±(M -1). Moreover, the error vector is charac
terized by the properties that e • .. 0, Ek+/-L-l" 0, and there is no sequence of 
L consecutive elements that are zero. Associated with the error vector in 
(10-1-31) is the polynomial of degree 1- L -1, 

(10·1-33) 

We wish to determine the probability of occurrence of the error event that 
begins at time k and is characterized by the error vector E given in (10-1-31), 
or, equivalently, by the polymonial given in (10-1-33). To accomplish this, we 
follow the procedure developed by Forney (1972). Specifically, for the error 
event £ 10 occur, the following three subevents E" E2 , and E3 must occur: 

E,: at time k, S. = s.; 
E2 : the information symbols 1 •• h+h·.·' lk+f-L-l when added to the 

scaled error sequence 2d(£h E.+b'" , EHI-L-l) must result in an 
allowable sequence, i.e., the sequence Ib 1.+" ... , lH,- L - , must have 
values selected from ±d, ±3d, ± ... ± (M -l)d; 

E,: for k '" m < k + I, the sum of the branch metrics of the estimated path 
exceed the sum of the branch metrics of the correct path. 

The probability of occurrence of E3 is 

But 

[
k+I-l ( L )2 <+/-1 ( L )2] 

P(E,) = P ~ v, - ~fjl,_; <,~ lJi - ~fjl;-J 

L 

Vi = 2: f/i-; + '1, 
j=O 

(10-1-34) 

(10-1-35) 

604

594 DiGITAL COMMUNICATIONS • 

Now suppose that the estimated path through the trellis diverges from the 
correct path at time k and remerges with the correct path at time k + I. Thus, 
S. = S. and SHI = S'+I, but Sm ¥ Sm for k < m < k + J. As in a convolutional 
code. we call this an error event. Since the channel spans L + 1 symbols, it 
follows that I ;3 L + 1. 

For such an error event. we have 1. ¥ I. and l"~I-L_l ¥ lk+I-L-h but 1m = 1m 
for k - L ,.; m ,.; k - 1 and k + I - L ,.; m ,.; k + I - 1. It is convenient to define 
an error vector £ corresponding to this error event as 

(10-1-31) 

where the components of E are defined as 

(10-1-32) 

The normalization iactor of 2d in (10-1-32) results in elements E; that take on 
the values ± 1, ±2, ±3, ... , ±(M -1). Moreover, the error vector is charac
terized by the properties that e • .. 0, Ek+/-L-l" 0, and there is no sequence of 
L consecutive elements that are zero. Associated with the error vector in 
(10-1-31) is the polynomial of degree 1- L -1, 

(10·1-33) 

We wish to determine the probability of occurrence of the error event that 
begins at time k and is characterized by the error vector E given in (10-1-31), 
or, equivalently, by the polymonial given in (10-1-33). To accomplish this, we 
follow the procedure developed by Forney (1972). Specifically, for the error 
event £ 10 occur, the following three subevents E" E2 , and E3 must occur: 

E,: at time k, S. = s.; 
E2 : the information symbols 1 •• h+h·.·' lk+f-L-l when added to the 

scaled error sequence 2d(£h E.+b'" , EHI-L-l) must result in an 
allowable sequence, i.e., the sequence Ib 1.+" ... , lH,- L - , must have 
values selected from ±d, ±3d, ± ... ± (M -l)d; 

E,: for k '" m < k + I, the sum of the branch metrics of the estimated path 
exceed the sum of the branch metrics of the correct path. 

The probability of occurrence of E3 is 

But 

[
k+I-l ( L )2 <+/-1 ( L )2] 

P(E,) = P ~ v, - ~fjl,_; <,~ lJi - ~fjl;-J 

L 

Vi = 2: f/i-; + '1, 
j=O 

(10-1-34) 

(10-1-35) 



('HAPTER 19; COMMUNICATION nlROUGH BAND-LIMITED CHANNELS S9S 

where {1,J is a real-valued white gaussian noise sequence. Substitution of 
(10-1-35) into (10-1-34) yields 

[ 

1+/-, (L ) <+/-, ( L )2] 
= P 4d i~ 'Ii J~/j£i-j < -4d

2 i~ j~.t;£i-j 

where ei = 0 for i < k and j > k + I - L - 1. If we define 

L 

ai = 2: !JEi-i 
j=O 

then (10-1-36) may be expressed as 

(10-1-36) 

(10-1-37) 

(10-1-38) 

where the factor of 4d common to both terms has been dropped. Now 
(10-1-38) is just the probability that a linear combination of statistically 
independent guassian random variables is less than some negative number. 
Thus 

(10-1-39) 

For convenience, we define 

Jr:+I-1 Jr:+/-l ( L )2 

.. f(E) = 6 a~ = i~ ~jjEi-j (l0-1-40) 

where ei = 0 for j < k and j > k + I - L - 1. Note that the {ail resulting from 
the convolution of {t.J with {Ej} are the coefficients of the polynomial 

Q(Z) = F(z)e(z) 

(10-1-41) 

Furthermore, 62
{ £) is simply equal to the coefficient of ZO in the polynomial 

a(z)a(C') = F(z)F(z-')e(z)e(z-l) 

= X(z)e(z)e(z -I) 

We call 62(£) the euclidean wei/!hl of the elT')r event E. 

(10-1-42) 
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An alternative method for representing the result of convolving {Ji} with {eJ 
is the matrix form 

Dt = ef 

where Dt is an I-dimensional vector, r is an (L + 1 )-dimensional vector, and e is 
an I x (L + 1) matrix, defined as 

e. 0 0 0 

E'k+l Ek 0 0 
e= Ek +2 ek+ 1 Ek 0 

Ek.+k-l 

Then 
82(£} = a'a 

=r'e'ef 

=r' Af 

where A is an (L + 1) x (L + 1) matrix of the form 

and 

130 fl. P2 
fJI (30 fJI 

A=e'e= fJ, fll Po PI 

k+/-l-m 

Pm = L: Ci.ei+m 
i=k 

o 
o 
o 

(10-1-43) 

(10-1-44) 

(10-1-45) 

(10-1-46) 

We may use either (10-1-40) and (10-1-41) or (10-1-45)-(10-1-46) in evaluating 
the error rate performance_ We consider these computations later_ For now we 
conclude that the probability of the subevent E 3 , given by (10-1-39), may be 
expressed as 

( ~' peE,) = Q \IN;; S2(E) ) 

(10-1-47) 

where we have used the relation 

2 3 
d = M2 -1 TP,v (10-1-48) 

to eliminate d 2 and y •• = TP,JNo• Note that, in the absence of intersymbol 
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interference, 82(10) = 1 and P(£3) is proportional to the symbol error prob
ability of M-ary PAM. 

The probability of the subevent £2 depends only on the statistical properties 
of the input sequence. We assume that the information symbols are equally 
probable and that the symbols in the transmitted sequence are statistically 
independent. Then, for an error of the form 1£,1 = j, j = 1, 2, ... , M - I, there 
are M - j possible values of I, such that 

Hence 
Ii = I, + 2dti, 

, /-L-j M - Iii 
PtE,) = II 

'-0 M 
(10-1-49) 

The probability of the subevent £, is much more difficult to compute exactly 
because of its dependence on the subevent £,. That is, we must compute 
P(£j I E3)' However, p(E,1 E3) = 1 - PM, where PM is the symbol error 
probability. Hence P(E1 I E,) is well approximated (and upper-bounded) by 
unity for reasonably low symbol error probabilities. Therefore, the probability 
of the error event E is well approximated and upper-bounded as 

( 
6 )J-L-l M -Iii 

P(E)~Q M2-1 'Ya.82(E) !! M (10-1-50) 

Let £ be the set of all error events E starting at time k and let w( E) be the 
corresponding number of nonzero components (Hamming weight or number of 
symbol errors) in each error event E. Then the probability of a symbol error is 
upper-bounded (union bound) as 

PM ~ 2: W(E)P(E) 

(10-1-51) 

Now let D be the set of all 8(10). For each 8 E D, let E8 be the subset of error 
events for which 8(10) = 8. Then (10-1-51) may be expressed as 

where 

I~ 6 )[ J-L-l M 1'1] 
PM';; 2: Ql M2 _ 1 y.,8' 2: w(e) n ~ 1 

6eD £E£~ ,.,,0 

~ 8~D K8Q( ~M26_ 1 'Yn8
2

) (10-1-52) 

J-L-I M -Iii 
K.= 2: w(e) n--

EeEl i=O M 
(10-1-53) 

The expression for the error probability in (10-1-52) is similar to the form of 
the error probability for a convolutional code with soft-decision decoding given 
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by (8-2-26). The weighting factors {K.} may be determined by means of the 
error state diagram, which is akin to the state diagram of a convolutional 
encoder. This approach has been illustrated by Forney (1972) and Viterbi and 
Omura (I,}79). 

In general, however, the use of the error state diagram for computing PM is 
tedious. Instead, we may simplify the computation of PM by focusing on the 
dominant term in the summation of (10-1·52). Due to the exponential 
dependence of each term in the sum, the expression PM is dominated by the 
term corresponding to the minimum value of 8, denoted as 8m.,. Hence the 
symbol error probability may be approximated as 

where 

6 2 ) 
M' - 1 )'avOmin 

I~L-I M -iii 
K .... = ,.t""o w(e) n ----;.{ 

(10-1-54) 

(10-1-55) 

In general, 8;'." ~ 1. Hence, 10 log 8!'m represents the loss in SNR due to 
intersymbol interference. 

The minimum value of 8 may be determined either from (10-1-40) or from 
evaluation of the quadratic form in (10-1-44) for different error sequences. In 
the following two examples we use (10-1-40). 

Eumple 10-1-3 

Consider a two-path channel (L = 1) with arbitrary coefficients 10 and It 
satisfying the constraint n + f~ = 1. The channel characteristic is 

F(z) = 10+ h.z~1 

For an error event of length n, 

( ) _ + -1 +- ~(n~l) 
EZ-EOEIZ .•. +En-1Z , 

The product a(z) = F(z)£(z) may be expressed as 

lr(z)=a,,+a,z~l+ ... +a.z- n 

where ao=Eofoand an = fIEn-I' Since 100,.,0, En~l T'O, and 

n 

';2(£) = L ai 
k=O 

it follows that 

8~in ;a. f~ + fJ : 1 

(10-1-56) 

(10-1-57) 

(10-1-58) 

(10-1-59) 

Indeed, 8;;"n = 1 when a single error occurs, i.e. e(Z) = Eo. Thus, we 
conclude that there is no loss in SNR in maximum-likelihood sequence 
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estimation of the information symbols when the channel dispersion has 
length 2. 

Example 10-1-4 

The controlled intersymbol interference in a partial response signal may be 
viewed as having been generated by a time-dispersive channel. Thus, the 
intersymbol interference from a duobinary pulse may be represented by the 
(normalized) channel characteristic 

Similarly, the representation for a modified duobinary pulse is 

F(z) = VI - VIZ-2 
The minimum distance S~jn = 1 for any error event of the. form 

e(Z)= ±(I-z-' -z-' ... _z-(n-I)}, n;,,1 

for the channel given by (10-1-60) since 

a(zi = ± VI 'f VIz-n 
Similarly, when 

e(Z) = ±(1 + Z·2_ Z -4+ ..• + z-2(n-I), n;,,1 

S~';n = 1 for the channel given by (10·1-61), since 

a(z)= ±VI 'f VIz-ln 

(10-1-60) 

(10-1-61) 

(10-1-62 ) 

(10-1-63) 

Hence MLSE of these two partial response signals results in no loss in SNR. 
In contrast, the suboptimum symbol-by-symbol detection described pre
viously resulted in a 2.1 dB loss. 

The constant K sm," is easily evaluated for these two signals. With 
precoding. the number of output symbol errors (Hamming weight) as
sociated with the error events in (1Q..1-62) and (}Q..1-63) is two. Hence. 

K sm," = 2 2: --- = 2(M - 1) x (M I)" 
n=1 J'4 

(10-1-64) 

On the other hand, without precoding, these error events result in n symbol 
errors, and, hence, 

x (M l)n K.~"=2 2: n --- =2M(M-l) .-1 M 
(10-1-65) 

As a final exercise, we consider the evaluation of S;';n from the quadratic 
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form in (10-1-44)_ The matrix A of the quadratic form is positive-definite; 
hence, all its eigenvalues are positive_ If {IL.(E)} are the eigenvalues and {V.(E)} 
are the corresponding orthonormal eigenvectors of A for an error event E then 
the quadratic form in (10-1-44) can be expressed as 

L+l 

,52(E) = 2: I-'-k(E)[rV,(E)Y (10-1-66) 
k=1 

In other words, S2( E) is expressed as a linear combination of the squared 
projections of the channel vector f onto the eigenvectofli of A_ Each squared 
projection in the sum is weighted by the corresponding eigenvalue Po(E), 
k = 1. 2 ..... L + 1. Then 

s;;. •• = min 82(E) (10-1-67) 
• 

It is interesting to note that the worst channel characteristic of a given 
length L + 1 can be obtained by finding the eigenvector corresponding to the 
minimum eigenvalue. Thus, if Pmin(E) is the minimum eigenvalue for a given 
error event E and v mine E) is the corresponding eigenvector then 

I-'-min = min ,umin( £) 
• 

r= min "min(E) 
• 

and 

Example It-1-5 

Let us determine the worst time-dispersive channel of length 3 (L = 2) by 
finding the minimum eigenvalue of A for different error events. Thus, 

F(z) = to + Ii Z -, + hz-2 

where 10, f" and h are the components of the eigenvector of A 
corresponding to the minimum eigenvalue. An error event of the form 

E(Z) = 1- z-' 
results in a matrix 

A=[-~ -~ -~] 
o -1 2 

which has the eigenvalues ,u, = 2, 1-'-2 = 2 + v'2, /1-, = 2 - V2. The eigenvec
lor corresponding to IL3 is 

(10-1-68) 
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We may also consider the dual error event 

E(z)=1+z- 1 

which results in the matrix 

A= [~ ~ ~] 
o 1 2 

This matrix has eigenvalues identical to those of the one for E(Z) = 1- Z-l 

The corresponding eigenvector for J1.3 = 2 - v'2 is 

v;=[-! V1 -!] (10-1-69) 

Any other error events lead to larger values 10r J1.m.n' Hence, ILmin = 

2 - v'2 and the worst-case channel is either 

[~ VI !l or [-! VI -!l 
The loss in SNR from the channel is 

-10 log O~i. = -10 log J1.m.n = 2.3 dB 

Repetitions of the above computation for channels with L = 3, 4, and 5 
yield the results given in Table 10-1-1. 

10-2 LINEAR EQUALIZATION 

The MLSE for a channel with IS] has a computational complexity that grows 
exponentially with the length of the channel time dispersion. If the size of the 
symbol alphabet is M and the number of interfering symbols contributing to 
lSI is L, the Viterbi algorithm computes M L + 1 metrics for each new received 
symbol. In most channels of practical interest, such a large computational 
complexity is prohibitively expensive to implement. 

In this and the following sections, we describe two SUboptimum channel 
equalization approaches to compensate for the lSI. One approach employs a 
linear transversal filter, which is described in this section. These filter 

TABLE 10-1-1 MAXIMUM PERFORMANCE LOSS AND CORRESPONDING 
CHANNEL CHARACTERISTICS 

Clu!nneJ length 
L+l 

3 
4 
5 
6 

P.rf............,.. ....... 
-10 log &!.... IdB) MluimUlll-distaKe dlmnel 

2.3 0.50,0.71,0.50 
4.2 0.38,0.60,0.60,0.38 
5.7 0.29,0.50,0.58,0.50,0.29 
7.0 0.23,0.42. 0.52, 0.52, 0.42, 0.23 
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L-________ 1-~ga:in~OO~ju:':'~~n~'~~------~ 

FIGURE 10-2-1 Linear Iransversal fiI!er. 

structures have a computational complexity that is a linear function of'the 
channel dispersion length L. 

The linear filter most often used for equalization is the transversal filter 
shown in Fig. 10-2-1. Its input is the sequence {II.} given in (10-1-16) and its 
output is the estimate of the information sequence {I.}. The estimate of the 
k th symbol may be expressed as 

K 

1, = 2: Cjll._ j 
j=-K 

(10-2-1) 

where {Cj} are the 2K + 1 complex-valued tap weight coefficients of the filter. 
The estimate 1. is quantized to the nearest (in distance) information symbol to 
form the decision i •. If i. is not identical to the transmitted information symbol 
I., an error has been made. 

Considerable research has been performed on the criterion for optimizing 
the filter coefficients {c.}. Since the most meaningful measure of performance 
for a digital communications system is the average probability of error, it is 
desirable to choose the coefficients to minimize this performance index_ 
However, the probability of error is a highly nonlinear function of {cJ 
Consequently, the probability of error as a performance index for optimizing 
the tap weight coefficients of the equalizer is impractical. 

Two criteria have found widespread use in optimizing the equalizer 
coefficients {cJ. One is the peak distortion criterion and the other is the mean 
square error criterion. 

10·2-1 Peak Distortion Criterion 

The peak distortion is simply defined as the worst-case intersymbol inter
ference at the output of the equalizer. The minimization of this performance 
index is called the peak distortion criterion. First we consider the minimization 
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of the peak distortion assuming that the equalizer has an infinite number of 
taps. Then we shall discuss the case in which the transversal equalizer spans a 
finite time duration. 

We observe that the cascade of the discrete-time linear filter model having 
an impulse response {fn} and an equalizer having an impulse response {en} can 
be represented by a single equivalent filter having the impulse response 

~ 

q. = L eJ.-j (10-2·2) 
j::;:-~ 

That is, {q.J is simply the convolution of {en} and {fn}. The equalizer is assumed 
to have an infinite number of taps. Its output at the k th sampling instant can 
be expressed in the form 

~ 

1" = qoh + L Inqk.-n + L C/T/,,_; (10-2·3) 
n,,*k j=-'I.: 

The first term in (10-2-3) represents a scaled version of the desired symbol. 
For convenience, we normalize qo to unity. The second term is the intersymbol 
interference. The peak value of this interference, which is called the peak 
distortion, is 

n=-x 

= n~~ li~~ Cjfn-il (10-2-4) 

,,"0 
Thus, ~(c) is a function of the equalizer tap weights. 

With an equalizer having an infinite number of taps, it is possible to select 
the tap weights so that ~(c) = 0, Le., q. = 0 for all n except n = O. That is, the 
intersymbol interference can be completely eliminated. The values of the tap 
weights for accomplishing this goal are determined from the condition 

~ {I (n =0) 
qn = j~S Cdn-j= 0 (n ""0) 

By taking the z transform of (l0-2-5), we obtain 

Q(z) = C(z)F(z) = I 
or, simply, 

1 
C(z)=

F(z) 

(10-2-5) 

(10-2-6) 

(10-2-7) 

where C(z) denotes the z transform of the {Cj}. Note that the equalizer, with 
transfer function C(z). is simply the inverse filter to the linear filter model 
F(z). In other words, complete elimination of the intersymbol interference 
requires the use of an inverse filter to F(z). We call such a filter a zero-forcing 
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FlGURF 10-2-2 Block diagram of channel with zero-forcing equalizer. 

Channel 

Flz) 

AWGN 

f~,1 

filter. Figure 10-2-2 illustrates in· block diagram the equivalent discrete-time 
channel and equalizer. 

The cascade of the noise-whitening filter having the transfer function 
l/F*(i~l) and the zero-forcing equalizer having the transfer function 1IF(z) 
results in an equivalent zero-forcing equalizer having the transfer function 

• _ 1 1 
c (z) - F(z)F*(Z-l) = X-(z-) (10-2-8) 

as shown in Fig. 10-2-3. This combined filter has as its input the sequence {y.} 
of samples from the matched filter, given by (10-1-10). Its output consists of 
the desired symbols corrupted only by additive zero-mean gaussian noise_ The 
impulse response of the combined filter is 

c~ = 2~ fC(z)zk-l dz 

I f Z*~l 
= 21tj X(z) dz (10-2-9) 

where the integration is performed on a closed contour that lies within the 
region of convergence of C(z). Since X(z) is a polynomial with 2L roots 
(PI, P2."·, PL, IIp:' l/p!, ...• l/pt), it follows that C(z) must converge 
in an annular region in the z plane that includes the unit circle (z = ej8

). 

Consequently, the closed contour in the integral can be the unit circle. 
The performance of the infinite-tap equalizer that completely eliminates the 

intersymbol interference can be expressed in terms of the signal-to-noise ratio 
(SNR) at its output. For mathematical convenience, we normalize the received 

FlGURE 10-2-3 Block of channel with equivalent zero-forcing equalizer. 

X(z}=F(z)F*(z-IJ + 
~ Channel H {y,} 
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signal energy to unity. t This implies that qo = I and that the' expected value of 
1/.12 is also unity. Then the SNR is simply the reciprocal of the noise variance 
.r" at the output of the equalizer. 

The value of CT~ can be simply determined by observing that the noise 
sequence {v.} at the input to the equivalent zero-forcing equalizer C(z) has 
zero mean and a power spectral density 

(10-2-10) 

where X(ei~~ is obtained from X(z) by the substitution z = e''''T. Since 
C'(z) = 1/X(z), it follows that the noise sequence at the output of the 
equalizer has a power spectral density 

(10-2-11) 

Consequently, the variance of the noise variable at the output of the equalizer 
is 

T i'<IT 0-; = 2- <11 .. (",) dw 
R -KIT 

TNo (""IT dw 

= 2/f L"'TX(eiw~ 
and tbe SNR for the zero-forcing equalizer is 

)'x= l/o-~ 

[
TN. ("iT d ]-' 

"" ;tr° LITX(;"~ 

(10-2-12) 

(10-2-13) 

where the subscript on )' indicates that the equalizer has an infinite number of 
taps. 

The spectral characteristics X(ei~~ corresponding to the Fourier transform 
of the sampled sequence {x.} has an interesting relationship to the analog filter 
H( w) used at the receiver. Since 

Xk = [~ h*(t)h(t + kT) dt 

use of Parseval's theorem yields 

Xk = 21 [ IH(wW ei"",T dw 
If -x 

(10-2-14) 

where H(w) is the Fourier transform of h(/)_ But the integral in (10-2-14) can 
be expressed in the form 

1 rlT 

[ x I ( 21m'12] 
x. = 21f L.fT n~~ H W + T) ei""'T dw (10-2-15) 

t This normalization is used throughout this chapter for mathematical convenience. 

615

CHAPTER 1(1 COMMUNICATION THROUGH BAND-L1Ml1'ED rn ... NNELS 60S 

signal energy to unity. t This implies that qo = I and that the' expected value of 
1/.12 is also unity. Then the SNR is simply the reciprocal of the noise variance 
.r" at the output of the equalizer. 

The value of CT~ can be simply determined by observing that the noise 
sequence {v.} at the input to the equivalent zero-forcing equalizer C(z) has 
zero mean and a power spectral density 

(10-2-10) 

where X(ei~~ is obtained from X(z) by the substitution z = e''''T. Since 
C'(z) = 1/X(z), it follows that the noise sequence at the output of the 
equalizer has a power spectral density 

(10-2-11) 

Consequently, the variance of the noise variable at the output of the equalizer 
is 

T i'<IT 0-; = 2- <11 .. (",) dw 
R -KIT 

TNo (""IT dw 

= 2/f L"'TX(eiw~ 
and the SNR for the zero-forcing equalizer is 

)'x= l/o-! 

[
TN. ("iT d ]-' "" ;tr° LITX(;"~ 

(10-2-12) 

(10-2-13) 

where the subscript on )' indicates that the equalizer has an infinite number of 
taps. 

The spectral characteristics X(ei~~ corresponding to the Fourier transform 
of the sampled sequence {x.} has an interesting relationship to the analog filter 
H( w) used at the receiver. Since 

Xk = [~ h*(t)h(t + kT) dt 

use of Parseval's theorem yields 

Xk = 21 [ IH(wW ei"",T dw 
If -x 

(10-2-14) 

where H(w) is the Fourier transform of h(/)_ But the integral in (10-2-14) can 
be expressed in the form 

1 rlT 

[ x I ( 21m'12] x. = 21r L.,T n~~ H W + T) ei""'T dw (10-2-15) 

t This normalization is used throughout this chapter for mathematical convenience. 



606 DJGITAL COMMUl\J{'ATtONS 

Now, the Fourier transform of {xd is 

x 

X(e'wT)= 2: x.e~i~kT (10~2-16) 
k=-", 

and the inverse transform yields 

UO-2-t7) 

From a comparison of (l0-2-15) and (10-2-17), we obtain the desired 
relationship between X(e;W~ and H(w). That is, 

. Tr 
IWI';:. T ( 10-2-18) 

where the right-hand side of (10-2-18) is called the folded spectrum of IH(wW. 
We also observe that IH(w)j' =X(w), where X(w) is the Fourier transform of 
the waveform X(l) and x(t) is the response of the matched filter to the input 
h(t). Therefore the right-hand side of (to·2-18) can also be expressed in terms 
of X(w). 

Substitution for X(eiwT
) in (10-2-13) using the result in (10-2-18) yields the 

desired expression for the SNR in the form 

(10-2-19) 

We observe that if the folded spectral characteristic of H(w) possesses any 
zeros, the integrand becomes infinite and the SNR goes to zero. In other 
words, the performance of the equalizer is poor whenever the folded spectral 
characteristic possesses nuUs or takes on small values. This behavior occurs 
primarily because the equalizer, in eliminating the intersymbol interference, 
enhances the additive noise. For example, if the channel contains a spectral 
null in its frequency response, the linear zero-forcing equalizer attempts to 
compensate for this by introducing an infinite gain at that frequency. But this 
compensate) for the channel distortion at the expense of enhancing the 
additive noise. On the other hand, an ideal channel coupled with an 
appropriate signal design that results in no intersymbol interference will have a 
folded spectrum that satisfies the condition 

Jr 
Iwl,,; -, T 

In this case, the SNR achieves its maximum value, namely, 

1 
y.= No 

(10-2-20) 

(10-2-21) 

616

606 DJGITAL COMMUl\J{'ATtONS 

Now, the Fourier transform of {xd is 

x 

X(e'wT)= 2: x.e~i~kT (10~2-16) 
k=-", 

and the inverse transform yields 

UO-2-t7) 

From a comparison of (l0-2-15) and (10-2-17), we obtain the desired 
relationship between X(e;W~ and H(w). That is, 

. Tr 
IWI';:. T ( 10-2-18) 

where the right-hand side of (10-2-18) is called the folded spectrum of IH(wW. 
We also observe that IH(w)j' =X(w), where X(w) is the Fourier transform of 
the waveform X(l) and x(t) is the response of the matched filter to the input 
h(t). Therefore the right-hand side of (to·2-18) can also be expressed in terms 
of X(w). 

Substitution for X(eiwT
) in (10-2-13) using the result in (10-2-18) yields the 

desired expression for the SNR in the form 

(10-2-19) 

We observe that if the folded spectral characteristic of H(w) possesses any 
zeros, the integrand becomes infinite and the SNR goes to zero. In other 
words, the performance of the equalizer is poor whenever the folded spectral 
characteristic possesses nuUs or takes on small vahles. This behavior occurs 
primarily because the equalizer, in eliminating the intersymbol interference, 
enhances the additive noise. For example, if the channel contains a spectral 
null in its frequency response, the linear zero-forcing equalizer attempts to 
compensate for this by introducing an infinite gain at that frequency. But this 
compensate) for the channel distortion at the expense of enhancing the 
additive noise. On the other hand, an ideal channel coupled with an 
appropriate signal design that results in no intersymbol interference will have a 
folded spectrum that satisfies the condition 

Jr 
Iwl,,; -, T 

In this case, the SNR achieves its maximum value, namely, 

1 
y.= No 

(10-2-20) 

(10-2-21) 



CHAPTER Jll COMMUNICATION THROliGH BAND-LIMITED CHANro;:ELS 607 

Fmite-Length Equalizer Let us now turn our attention to an equalizer 
having 2K + 1 taps. Since Cj = 0 for Ijl > K, the convolution of {fn! with {en} is 
zero outside the range - K,,; n ,,; K + L - 1. That is, q. = 0 for n < - K and 
n > K + L -1. With qo normalized to unity, the peak distortion is 

(10-2-22) 

Although the equalizer has 2K + 1 adjustable parameters, there are 2K + L 
nonzero values in the response {qn}. Therefore, it is generally impossible to 
completely eliminate the intersymbol interference at the output of the 
equalizer. There is always some residual interference when the optimum 
coefficients are used. The problem is to minimize £»(t:) with respect to the 
coefficients {cJ 

The peak distortion given by (10-2-22) has been shown by Lucky (1%5) 10 

be a convex function of the coefficients {Cj}. That is, it possesses a global 
minimum and no relative minima. Its minimization can be carried out 
numerically using, for example, the method of steepest descent. Little more 
can be said for the general solution to this minimization problem. However, for 
one special but important case, the solution for the minimization of £»(t:) is 
known. This is the case in which the distortion at the input to the equalizer. 
defined as· 

1 L 

Do = 1101 ~l IJ, I (10-2-23) 

is less than unity. This cQndilion is equivalent to having the eye open prior to 
equalization. That is, the intersymbol interference is not severe enough to close 
the eye. Under this condition, the peak distortion £»(c) is minimized by 
selecting the equalizer coefficients to force q. = 0 for 1,,; Inl '" K and qo = 1. In 
other words, the general solution to the minimization of £»( c), when Do < 1, is 
the zero-forcing solution for {qn} in the range 1,,; Inl ,,; K. However, the values 
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where I. is the information symbol transmitted in the k th signaling interval 
and 1. is the estimate of that symbol at the output of the equalizer, defined in 
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(10-2-1). When the information symbols {Ik} are complex-valued, the perfor
mance index for the MSE criterion, denoted by 1. is defined as 

1 = E 1£,12 

(10-2-25) 
= E Ilk -lkl2 

On the other hand, when the information symbols are real-valued, the 
performance index is simply the square of the real part of EJc In either case, 1 
is a quadratic function of the equalizer coefficients {e,}. In the following 
discussion, we consider the minimization of the complex-valued form given in 
(10-2-25). 

IBfiRite-Length Equalizer First, we shall derive the tap weight coefficients 
that minimize J when the equalizer has an infinite number of taps. In this case, 
the estimate 1. is expressed as 

(10-2-26) 

Substitution of (10-2-26) into the expression for J given in (10-2-25) and 
expansion of tbe result yields a quadratic function of the coefficients {Cj}. This 
function can be easily minimized with respect to the {Cj} to yield a set (infinite 
in number) of linear equations for the {cJ}. Alternatively, the set of linear 
equations can be obtained by invoking the orthogonality principle in mean 
square estimation. That is, we select the coefficients {cj} to render the error Ek 
orthogonal to the signal sequence {Ur-f} for -co < I < 00. Thus, 

E(EkUt_,) = o. - oc < I < '" (10-2-27) 

Substitution fOT Ek in (10-2-27) yields 

£[ (Ik - j~X CjUk-i)Vt-f] =0 

or, equivalently, 
x 

2.: CjE(Vk_jVt_,) = E(/kvt-,), -co <I < 00 (10-2-28) 
j=-x. 

To evaluate the moments in (10-2-28), we use the expression foe u. given in 
(10-1-16). Thus, we obtain 

L 

£(vk-jvt_,) = 2.: !!!n+J-j + No8/i 
n=O 

= {X'-i + No8/j (1/- Jl,.;; L) 
o (otherwise ) 

(10-2-29) 

and 

£(1 * {!!/ ( -L .. I ,.;; 0) 
kVk-,) = 0 

(otherwise) 
(10-2-30) 
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Now, if we substitute (10-2-29) and (10-2-30) into (10-2-28) and take the z 
transform of both sides of the resulting equation, we obtain 

(10-2-31) 

Therefore, the transfer function of the equalizer based on the MSE criterion is 

F*(z -I) 
(10-2-32) 

When the noise-whitening filter is incorporated into C{z), we obtain an 
equivalent equalizer having the transfer function 

1 
C(z)= F(Z)F*(Z-I)+N

o 

1 
X(z) + No 

(10-2-33) 

We observe that the only difference between this expression for C(z) and 
the one based on the peak distortion criterion is the noise spectral density 
factor No that appears in (10-2-33). When No is very small in comparison with 
the signal, the coefficients that minimize the peak distortion 9il(t) are 
approximately equal to the coefficients that minimize the MSE performance 
index J. That is, in the limit as No-+ 0, the two criteria yield the same solution 
for the tap weights. Consequently, when No = 0, the minimization of the MSE 
results in complete elimination of the intersymbol interference. On the other 
hand, that is not the case when No"" O. In general, when No "" 0, there is both 
residual intersymbol interference and additive noise at the output of the 
equalizer. 

A measure of the residual intersymbol interference and additive noise is 
obtained by evaluating the minimum value of J, denoted by Jm ;., when the 
transfer function C(z) of the equalizer is given by (10-2-32). Since J = E 11',12 = 

E(E.It) - E(E,it), and since E(E.it) = 0 by virtue of the orthogonality 
conditions given in (10-2-27), it follows that 

1m;. =E(e.m 
~ 

= E 11.1'- 22 CjE(Vk_/D 
j= -'X 

x 

=1- L cd-, 
j=-x 

(10-2-34) 

This particular form for Jm;. is not very informative. More insight on the 
performance of the equalizer as a function of the channel characteristics is 
obtained when the summation in (10-2-34) is transformed into the frequency 
domain. This can be accomplished by first noting that the summation in 
(10-2-34) is the convolution of {cJ with it;}. evaluated at a shift of zero. Thus, 
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if {b.} denotes the convolution of these two sequences, the summation in 
(1O-2-34) is simply equal to bo. Since the z transform of the sequence {bd is 

the term b" is 

B(z) = C(z )F(z) 

Ftz)F*(z ') = ---'-~--'::=--'---
F(z)F*(z I) + No 

X(z) 

X(z) + No 

b __ 1 fB(Z)d-
0-

2 
. ~ 

1C] z 

=_1 1.. X(z) dz 
2,q j z[X(z) + "Ill 

( 10-2-35) 

(10-2-36) 

The contour integral in (10-2-36) can be transformed into an equivalent line 
integral by the change of variable z = ~wT. The result of this change of variable 
is 

T f"IT X (~wI) 
bo=- . dw 

21f .'''TX(elwI) + No 
(10-2-37) 

Finally, substitution of the result in (10-2-37) for the summation in (10-2-34) 
yields the desired expression for the minimum MSE in the form 

T 1"IT X(eiw
') 

J. = 1-- . dw 
m.n 21f ."'TX(el"'I) + No 

T f"IT No 
= 2/r ."!TX(~w') + No dw 

T f"IT No 
=2- I~z 2 dw 

1f .lEIT T ,..,"~·.IH(w + 21mIT~ + No 
(10-2-38) 

In the absence of intersymboJ interference, X(eiwT
) = 1 and, hence. 

No 1· =-
mm 1 + No (10-2-39) 

We observe that 0.;; Jmin .;; 1. Furthermore. the reJatiozWlip between the output 
(normalized by the signal energy) SNR 'Yx and J",'n must be 

(10-2-40) 

More importantly, this relation between Yx and Jmin also holds when there is 
residual intersymbol interference in addition to the noise. 
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Finke-Lellgth Equalizer Let us now tum our atlention to the case in 
which the transversal equalizer spans a finite time duration. The output of the 
equalizer in the k th signaling interval is 

J( 

10 = 2: CjV'-J 
j=-K 

The MSE for the equalizer having ZK + 1 taps. denoted by J(K), is 

J(K) = Ell. - 1.12 = Ell. - j~J( CjV,.jl' 

(1O-Z-41 ) 

(10-Z-42) 

Minimization of J(K) with respect to the tap weights {Cj} or, equivalently, 
forcing the error Eo = i. -1. 10 be orthogonal to the signal samples vi-b III ,., K. 
yields the following set of simultaneous equations: 

where 

and 

K 

2: cjf'j = ~" 1 = - K • ...• -1,0, 1, ...• K 
j=-K 

rr = {XI_j + Noo'j (11- il'" L) 
'0 (othel1Vise ) 

{
/!J (-L'" I ,.,0) 

~l = o (otherwise) 

(1O-Z-43) 

(1O-Z-44) 

(10-2-45) 

It is convenient to express the set of linear equations in matrix form. Thus, 

(10-2-46) 

where C denotes the column vector of 2K + 1 tap weight coefficients, r 
denotes the (2K + I) x (2K + I) Hermitian covariance matrix with elements 
[,j. and ~ is a (2K + 1)-dimensional column vector with elements ~l. The 
solution of (10-2-46) is 

Copt = r-It (1O-Z-47) 

Thus, the solution for Cop. involves inverting the matrix r. The optimum tap 
weight coefficients given by (10-2-47) minimize the performance index J(K). 
with the result that the minimum value of J(K) is 

o 
Jmin(K) '" 1 - 2: Cj!_j 

j--I( 

(10-2-4B) 

where e represents the transpose of the column vector~. Jmin(K) may be used 
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in (10-2-40) 10 compute the output SNR for the linear equalizer with 2K + 1 
tap coefficients. 

10-2-3 Performance Characteristics or the MSE Equalizer 
In this section, we consider the performance characteristics of the linear 
equalizer that is optimized by using the MSE criterion. Both the minimum 
MSE and the probability of error are considered as performance measures tor 
some specific channels. We begin by evaluating the minimum MSE ]min and the 
output SNR y ~ for two specific channels. Then, we consider the evaluation of 
the probability of error. 

Example 10-2-1 

First, we consider an equivalent discrete-time channel model consisting of 
two components fo and j;, which are normalized to Ifol' + If,!' = 1. Then 

and 

X(z) = /oJrz + 1 + ftf,z" 

The corresponding frequency response is 

X(e-'wT) = fdfejwr + I + rU,e 'Jw1' 

= 1 + 2 !foll"l cos (wT + 9) 

(10-2-49) 

(10-2-50) 

(10-2-51) 

where 11 is the angle of for. We note that this channel characteristic 
possesses a null at w = 1r f T when 10 = " = VI. 

A linear equalizer with an infinite number of taps, adjusted on the basis 
of the MSE criterion, will have the minimum MSE given by (10-2-38). 
Evaluation of the integral in (10-2-38) for the X(~wT) given in (10-2-51) 
yields the result 

No 
1min = v'N~ + 2Nonti + I.M2) + Oti -1M)' 

No 
(10-2-52) 

Let us consider the special case in which fo =" = v} The minimum MSE 
is Jmin = No/v' N~ + 2No and the corresponding output SNR is 

{-2 
i'~= -yl.+ No-1 

= (~J12. No ~ 1 (10-2-53) 

This result should be compared with the output SNR of 1/ No obtained in 
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the case of no intersymbol interference. A significant loss in SNR occurs 
from this channel. 

ElWDpIe 10-2·2 

As a second example, we consider an exponentially decaying characteristic 
of the form 

t. =~a" k=O, 1, ... 

where a < 1. The Fourier transform of this sequence is 

. I-a 2 

X(e'wT) = -~----= 
1+a2 -2acoswT 

which is a function that contains a minimum at II) = 1ft T. 
The output SNR for this channel is 

( 
1'---1 + -"'-2 - )-' 

')I~ = 'J 1 + 2No 1 _ :2 + N~ - 1 

1 - a2 

= 
(1 + a2 )No ' 

(10-2-54) 

(10-2-55) 

Therefore, the Joss in SNR due to the presence of the interference is 

1010glOG ::~) 

ProbaIJiIity or ElTor Pedormaoc:e or IJDelII' MSE Eqlllliizer Above, we 
discussed the performance of the linear equalizer in terms of the minimum 
achievable MSE Jmin and the output SNR 'I that is related to Jmin through the 
formula in (10-2-40). Unfortunately, there is no simple relationship between 
these quantities and the probability of error. The reason is that the linear MSE 
equalizer contains some residual intersymbol interference at its output. This 
situation is unlike that of the infinitely long zero-forcing' equalizer, for which 
there is no residual interference, but only gaussian noise. The residual 
interference at the output of the MSE equalizer is not well characterized as an 
additional gaussian noise term, and, hence, the output SNR does not translate 
easily into an equivalent error probability. 

One approach to computing the error probability is a brute force method 
that yields an exact result. To illustrate this method, let us consider a PAM 
signal in which the information symbols are selected from the set of values 
2n - M - 1, n = 1,2, ... , M, with equal probability. Now consider the decision 
on the symbol In. The estimate of I" is 

K 

1" = qoI" + 2: Ikq.-k + L C(Ff"-j (10-2-56) 
kY'n ;--K 
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2n - M - 1, n = 1,2, ... , M, with equal probability. Now consider the decision 
on the symbol In. The estimate of I" is 

K 

1" = qoI" + 2: Ikq.-k + L C(Ff"-j (10-2-56) 
kY'n ;--K 
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where {qn} represent the convolution of the impulse response of the equalizer 
and equivalent channel, I.e., 

" 
q" = L CA/" A (10·2-57) 

/.. = -- K 

and the input signal to the equalizer is 

I. 

V k = L hi, i + 11k ( ]()·2-58) 
)'''" U 

The first term in the right-hand side of (10-2-56) is the desired symbol, the 
middle term is the intersymbol interference, and the last term is the gaussian 
noise. The variance of the noise is 

(10-2-59) 

For an equalizer with 2K + I taps and a channel response that spans L + 1 
symbols, the number of symbols involved in the intersymbol interference is 
2K+L 

Define 

f0 = L i.q" k (10·2-60) 
'''''" 

For a particular sequence of 2K + L information symbols, say the sequence IJ • 

the intersymbol interference term g; '" D j is fixed. The probability of error for 
a fixed DJ is 

(]()·2-61 ) 

where N denotes the additive noise term. The average probability of error is 
obtained by averaging P,,,(Dj ) over all possible sequences Ij. That is, 

" 
(10-2-62) 

When all the sequences are equally likely, 

(10-2-63) 

The conditional error probability terms PM(D]) are dominated by the 
sequence that yields the largest value of D j • This occurs when In = ±(M -1) 
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and the signs of the information symbols match the signs of the corresponding 
{q"}. Then, 

D1 = (M -1) L: Iq.1 
k...-O 

and 

( 10-2-64) 

Thus, an upper bound on the average probability of error (or equally likely 
symbol sequences is 

(lO-2-65) 

If the computalion of the exact error probability in (10-2-62) proves to be 
too cumbersome and too time consuming because of the large number of terms 
in the sum and if the upper bound is too loose, one can resort to one of a 
number of different approximate methods that have been devised, which are 
known 10 yield tight bounds on PM' A discussion of these different approaches 
would take us too far afield_ The interested reader is referred to the papers by 
Saltzberg (1968), Lugannani (1969), Ho and Yeh (1970), Shimbo and Celebiler 
(1971), Glave (1972), Yao (1972), and Yao and Tobin (1976). 

As an illustration of the performance limitations of a linear equalizer in the 
presence of severe intersymbol interference, we show in Fig_ 10-2-4 the 
probability of error for binary (antipodal) signaling, as measured by Monte 
Carlo simulation, for the three discrete-fime channel characteristic shown in 

FIGURE 10-2-4 Error rate performance of linear 
MSE equalizer. 
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Fig. 10-2·5. For purposes of comparison, the performance obtained for a 
channel with no intersymbol interference is also illustrated in Fig. 10-2-4. The 
equivalent discrete-time channel shown in Fig. 10-2-5(a) is typical of the 
response of a good quality telephone channel. In contrast, the equivalent 
discrete-time channel characteristics shown in Fig. 10-2-5(b) and (el result in 
severe intersymbol interference. The spectral characteristics iX(e'W)1 for the 
three channels. illustrated in Fig. 10·2-6, clearly show that the channel in Fig. 
1O-2-S(c) has the worst spectral characteristic. Hence the performance of the 
linear equalizer for this channel is the poorest of the three cases. Next in 
performance is the channel shown in Fig. IO-2-S(b). and finally. the best 
performance is obtained with the channel shown in Fig. 10-2-5(0). In fact. the 
error rate of the latter is within 3 dB of the error rate achieved with no 
interference. 

One conclusion reached from the results on output SNR 1'< and the limited 
probability of error results illustrated in Fig. 10-2-4 is that a linear equalizer 
yields good performance on channels such as telephone lines. where the 
spectral characteristics of the channels are well behaved and do not exhibit 
spectral" nulls. On the other hand, a linear equalizer is inadequate as a 
compensator for the intersymbol imerference on channels with spectral nulls, 
which may be encountered in radio transmission. 
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The basic limitation of the linear equalizer to cope with severe lSI has 
motivated a considerable amount of research into nonlinear equalizers with 
low computational complexity. The decision-feedback equalizer described in 
Section 10-3 is shown to be an effective solution to this problem. 

10-2-4 Fractionally Spaced Equalizers 
In the linear equalizer structures that we have described in the previous 
section. the equalizer taps are spaced at the reciprocal of the symbol rate, i.e., 
at the reciprocal of the signaling rate lIT. This tap spacing is optimum if the 
equalizer is preceded by a filter matched to the channel distorted transmitted 
pulse. When the channel characteristics are unknown, the receiver filter js 
usually matched to the transmitted signal pulse and the sampling time is 
optimized for this suboptimum filter. In general, this approach leads to an 
equalizer performance that is very sensitive to the choice of sampling time. 

The limitations of the symbol rate equalizer are most easily evident in the 
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equalizer is preceded by a filter matched to the channel distorted transmitted 
pulse. When the channel characteristics are unknown, the receiver filter js 
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optimized for this suboptimum filter. In general, this approach leads to an 
equalizer performance that is very sensitive to the choice of sampling time. 
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frequency domain. From (9-2-5), the spectrum of the signal at the input to the 
equalizer may be expressed as 

YT(f) = .!. 2: X(f - ~ )el'"' InITl'" 
Tn' T 

( 10-2-66) 

where V,.(f) is the folded or aliased spectrum, where the folding frequency is 
1/2T. Note that the received signal spectrum is dependent on the choice of the 
sampling delay To. The signal spectrum at· the output of the equalizer is 
CT(f)Vr(f). where 

K 

CT(f) = 2: c.e-J'''fkT 
k -~ -I( 

(10-2-67) 

It is clear from these relationships that the symbol rate equalizer can only 
compensate for the frequency response characteristics of the aliased received 
signal. It cannot compensate for the channel distortion inherent in X (f)el'''''''. 

In contrast to the symbol rate equalizer, a fractionally spaced equalizer 
(FSE) is based on sampling the incoming signal at least as fast as the Nyquist 
rate. For example, if the transmitted signal consists of pulses having a raised 
cosine spectrum with a roll-off factor /3. its spectrum extends to Fmax = 
(1 + (3)12 T. This signal can be sampled at the receiver at a rate 

1+/3 
2Fmax = T (10-Z-68) 

and then passed through an equalizer with tap spacing of T/(1 + IJ). For 
example, if f3 = 1. we would have a!; T -spaceq equalizer. If f3 = 0.5, we would 
have a ~T-spaced equalizer, and so forth. In general, then, a digitally 
implemented fractionally spaced equalizer has tap spacing of MT I N where M 
and N are integers and N> M Usually, a ! T-spaced equalizer is used in many 
applications. 

Since the frequency response of the FSE is 
K 

Cdf) = 2: cke-j'''f/<r 
k~ --K 

(10-2-69) 

where T' = MT {N, it follows that C rtf) can equalize the received signal 
spectrum beyond the Nyquist frequency f=l1ZT to f=(l +(3)/T=NIMT 
The equalized spectrum is 

Cdf)Yr(f) = Cd/) ~ x(t - ;, )el2Ku
-

n
!T),n 

= Cr(f) ~ x(t - ~)~2"(f-.NJMT)<" 

Since X(f) = Of or if I > N/ MT, (10-2-10) may be expressed as 

1 
Cr(f)Yr(f) = Cr (f)X(f)eJ2,q,,,, if I.,; 2T' 

(10-2-70) 

(10-2-71) 

628

618 DIGITAL (1}MMliNICATJO~S 

frequency domain. From (9-2-5), the spectrum of the signal at the input to the 
equalizer may be expressed as 

YT(f) = .!. 2: X(f - ~ )el'"' InITl'" 
Tn' T 

( 10-2-66) 

where V,.(f) is the folded or aliased spectrum, where the folding frequency is 
1/2T. Note that the received signal spectrum is dependent on the choice of the 
sampling delay To. The signal spectrum at· the output of the equalizer is 
CT(f)Vr(f). where 

K 

CT(f) = 2: c.e-J'''fkT 
k -~ -I( 

(10-2-67) 

It is clear from these relationships that the symbol rate equalizer can only 
compensate for the frequency response characteristics of the aliased received 
signal. It cannot compensate for the channel distortion inherent in X (f)el'''''''. 

In contrast to the symbol rate equalizer, a fractionally spaced equalizer 
(FSE) is based on sampling the incoming signal at least as fast as the Nyquist 
rate. For example, if the transmitted signal consists of pulses having a raised 
cosine spectrum with a roll-off factor /3. its spectrum extends to Fmax = 
(1 + (3)12 T. This signal can be sampled at the receiver at a rate 

1+/3 
2Fmax = T (10-Z-68) 

and -then passed through an equalizer with tap spacing of T/(1 + /3). For 
example, if f3 = 1. we would have a!; T -spaceq equalizer. If f3 = 0.5, we would 
have a ~T-spaced equalizer, and so forth. In general, then, a digitally 
implemented fractionally spaced equalizer has tap spacing of MT I N where M 
and N are integers and N> M Usually, a ! T-spaced equalizer is used in many 
applications. 

Since the frequency response of the FSE is 
K 

Cdt) = 2: cke-j'''f/<r 
k~ --K 

(10-2-69) 

where T' = MT {N, it follows that C rtf) can equalize the received signal 
spectrum beyond the Nyquist frequency f=l1ZT to f=(l +(3)/T=NIMT 
The equalized spectrum is 

Cdf)Yr(f) = Cd/) ~ x(t - ;, )el2Ku-nITJ,n 

= Cr(f) ~ x(t - ~)~2"(f-.NJMT)<" 

Since X(f) = Of or if I > N/ MT, (10-2-10) may be expressed as 

1 
Cr(f)Yr(f) = Cr (f)X(f)eJ2,q,,,, if I.,; 2T' 

(10-2-70) 

(10-2-71) 



ct-IAI'H:R Iii COMMU'ICATloN lHROL'tsH BA~D-U~lIll-D CH-\~SFLS 619 

Thus, we observe that the FSE compensates for the channel distortion in the 
received signal before Ihe aliasing effects due to symbol rale sampling. In other 
words, C r(f) can compensate for any arbitrary timing phase. 

The FSE output is sampled at the symbol rate !/T and has the spectrum 

2 C TV - ~ )X(f -. '5.. )e""(1 "1")" 
, . T T-

(10-2-72) 

In effect, the optimum FSE is equivalent to the optimum linear receiver 
consisting 01 the matched filter followed by a symbol rate equalizer. 

Let us now consider the adjustment of the tap coefficients in the FSE. The 
input to the FSE may be expressed as 

( kMT)' (' kMT ) (kMT) Y -- ~LI"x ---liT +v --
,1'1/ n N ' lV 

(10-2-73 ) 

In each symbol interval, the FSE produces an output of the form 

" ( nMT) 
1, = "f=. C"Y kT - N (10-2-74) 

where the coefficients of the equalizer are selected to minimize the MSE. This 
optimization leads to a set of linear equations for the equalizer coefficients that 
have the solution 

C = A' 'II 
UP' 

(lO-2-75) 

where A is the covariance matrix of the input data and II is the ve~tor of 
cross-correlations. These equations are identical in form to those for the 
symbol rate equalizer, but there are some subtle differences. One is that A is 
Hermitian, but not Toeplitz. In addition, A exhibits periodicities that are 
inherent in a cyclostationary process, as shown by Qureshi (1985). As a result 
of the fractional spacing, some of the eigenvalues of A are nearly zero. 
Attempts have been made by Long el al. (1988a, b) to exploit this property in 
the coefficient adjustment. 

An analysis of the performance of fractionally spaced equalizers, induding 
their convergence properties, is given in a paper by Ungerboeck (1976). 
Simulation results demonstrating the effectiveness of the FSE over a symbol 
rate equalizer have also been given in the papers by Qureshi and Forney 
(1977) and Gitlin and Weinstein (1981). We cite two examples from these 
papers. First, Fig. 10·2-7 illustrates the performance of the symbol rate 
equalizer and a ~ T -FSE for a channel with high-end amplitude distortion, 
whose characteristics are also shown in this figure. The symbol-spaced 
equalizer was preceded with a filter matched to the transmitted pulse that had 
a (square-root) raised cosine spectrum with a 20% roll-off (fJ = 0.2). The FSE 
did not have any filter preceding it. The symbol rate was 2400 symbols Is and 
the modulation was QAM. The received SNR was 30 dB. Both equalizers had 
31 taps: hence, the ~T -FSE spanned one-half of the time interval of the 
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symbol rate equalizer. Nevertheless, the FSE outperformed the symbol rate 
equalizer when the latter was optimized at the best sampling time. 
Furthermore, the FSE did not exhibit any sensitivity to timing phase, as 
illustrated in Fig. 10-2-7. 

Similar results were obtained by Gitlin and Weinstein. For a channel with 
poor envelope delay characteristics, the SNR performance of the symbol rate 
equalizer and a !T-FSE are illustrated in Fig. 10-2·8. In this case, both 
equalizers had the same time span. The T-spaced equalizer had 24 taps while 
the FSE had 48 taps. The symbol rate was 2400symbols/s and the data rate 
was 9600 bits/s with 16-QAM modulation. The signal pulse had a raised cosine 
spectrum with f3 = 0.12. Note again that the FSE outperformed the T-spaced 
equalizer by several decibels, even when the latter was adjusted for optimum 

FIGURE 10-U Performance of T and ~ T equalize .. as a function of 
timing phase for 2400symbols/s 16.QAM on a cllannel 
with poor envelope delay. [From Gidin and Weinstein 
(J981). Reprinted with permirsion from BeU System 
Technical Journal. ©1981 AT& T.] 
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symbol rate equalizer. Nevertheless, the FSE outperformed the symbol rate 
equalizer when the latter was optimized at the best sampling time. 
Furthermore, the FSE did not exhibit any sensitivity to timing phase, as 
illustrated in Fig. 10-2-7. 
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sampling. The results in these two papers clearly demonstrate the superior 
performance achieved with a fractionally spaced equalizer. 

10-3 DECISION-FEEDBACK EQUALIZATION 

The decision-feedback equalizer (DFE), depicted in Fig. 10-3-1, consists of two 
filters, a feedforward filter and a feedback filter. As shown, both have taps 
spaced at the symbol interval T. The input to the feedforward section is the 
received signal sequence {Vk}' In this respect, the feedforward filter is identical 
to the linear transversal equalizer described in Section 10-2. The feedback filter 
has as its input the sequence of decisions on previously detected symbols. 
Functionally, the feedback filter is used to remove that part of the intersymbol 
interference from the present estimate caused by previously detected symbols. 

10-3-1 Coellident Optimization 

From the description given above, it follows that the equalizer output can be 
expressed as 

(10-3-1 ) 

where 1. is an estimate of the k th information symbol, {cJ are the tap 
coefficients of the filter, and {I.-I> ... , I.-K ,} are previously detected symbols. 
The equalizer is assumed to have (K 1 + 1) taps in its feedforward section and 
K2 in its feedback section. It should be observed that this equalizer is nonlinear 
because the feedback filter contains previously detected symbols {Ik}' 

Both the peak distortion criterior and the MSE crit-:rion result in a 
mathematically tractable optimization of the equalizer coefficients, as can be 
concluged from the papers by George et al. (1971). Price (1972), Salz (1973), 
and Proakis (1975). Since the MSE criterion is more prevalent' in practice, we 
focus our attention on it. Based on the assumption that previously detected 
symbols in the feedback filter are correct, the minimization of MSE 

(10-3-2) 
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leads to the following set of linear equations for the coefficients of the 
feedforward filter: 

() 

2: ofiljC,=/*,. 1= -K, •... , -1.0 (10-3·3) 
j~ - KI 

where 
-I 

ofifJ= 2: j::"'[m+'-' + N.,8/j' I.j= -K , • ...• -1,0 (10-3-4) 
1n=f} 

The coefficients of the feedback filter of the equalizer are given in terms of the 
coefficients of the feedforward section by the following expression: 

!) 

Ck =- 2: CJk-j' k=1.2 •...• K2 (10-3-5) 
j=--/(, 

The values of the feedback coefficients result in complete elimination of 
intersymbol interference from previously detected symbols. provided that 
previous decisions are correct and that K z ;;,. L (see Problem 1O-9). 

10-3-2 Performance Characteristics of DFE 
We now turn our attention to the performance achieved with decision
feedback equalization. The exact evaluation of the performance is complicated 
to some extent by occasional incorrect decisions made by the detector, which 
then propagate down the feedback section, In the absence of decision errors, 
the minimum MSE is given as 

() 

I nin (K,) = 1 - 2: cJ-i (10·3-6) 
j=-K, 

By going to the limit (K I --+ "") of an infinite number of taps in the feedforward 
filter, we obtain the smallest achievable MSE, denoted as 1min. With some 
effort 1mm can be expressed in terms of the spectral characteristics of the 
channel and additive noise. as shown by Salz (1973). This more desirable form 
for 1m " is 

{ 
T f~/T [ NQ ] } 

1min = exp 2n -"IT In X(e1w1) + No dw (10-3-7) 

The corresponding output SNR is 

I-1m " 
'Yx = 

'min 

{ T f"'T [No + X(ef"''i)] } = -1 + exp - In dw 
21e -"IT No 

(10-3-8) 

We observe again that, in' the absence of intersymbol interference, 
X(e jwT

) = 1 and, hence, Imin = Nol(1 + No). The corresponding output SNR is 
)'x = 1/No· 

I 
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Example 10-3-1 

It is interesting to compare the value of Jm •• for the decision-feedback 
equalizer with the value of Jm •• obtained with the linear MSE equalizer. For 
example, ler us consider the discrete-time equivalent channel consisting of 
two taps f" and t.. TI!e minimum MSE for this channel is 

{ T fH" [ N" ] } Jmi• = exp - In dOl 
211" -HIT 1 + No + 21.t.Hf,1 cos (wT + 8) 

= Nuexp [- _I.. f" In (1 + N,J + 211011[,1 cos w) dW] 
2n -6 

2No 

1 + No + V(1 + No)2 - 4110[,12 

Note that 1m •• is maximized when IJi.1 = If II = VI. Then 

J.= 2No 
moo 1 + No + V(l + Nol' - 1 

=2No• No~l 

The corresponding Qutput SNR is 

I 
')I~ = 2N

o
' 

(10-3-9) 

(10-3-10) 

(10-3-11 ) 

Therefore, there is a 3 dB degradation in output SNR due to the presence of 
intersymbol interference. In comparison, the performance loss for the linear 
equalizer is very severe. Its output SNR as given by (10-2-53) is ')Ix = 
(21 NO)'12 for No ~ 1. 

Example 10-3-2 

Consider the exponentially decaying channel characteristic of the form 

t. = (1- a')ll2a ·, k = 0,1,2,. .. (10-3-12) 

where a < 1. The output SNR of the decision-feedback equalizer is 

I {
I J" 1n[I+a

2
+(1-a

2
)/No-ZaCOSW] } 'Yx = - + exp - dw 

21f -x 1 + a' - Za cos W 

1 
= -1 + -{I-a2 +No{1 +a2

) + V[I- a2 +No(1 +a2)f - 4a2N~} 
2Nu 

(1 - a2 )[1 + No(1 + a2)/(1 - a')J - No 

No 

1- a2 

=/i;;' (10-3-13) 
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Thus, the loss in SNR is 10 log,o (l - a 2
) dB. In comparison, the linear 

equalizer has a loss of 10 logw [(I - a2 )/(1 + all) dB. 

These results illustrate the superiority of the decision-feedback equalizer 
over the linear equalizer when the effect of decision errors on performance is 
nt:g1ected. It is apparent that a considerable gain in performance can be 
achieved relative to the linear equalizer by the inclusion of the decision
feedback section, which eliminates the intersymbol interference fTOrn pre
viously detected symbols. 

One method' of assessing the effect of decision errors on the error rate 
performance of the decision-feedback equalizer is Monte Carlo simulation on a 
digital computer. For purposes of illustration, we offer the following results for 
binary PAM signaling through the equivalent discrete-time channel models 
shown in Figs to-2-5(b) and (c). 

The results of the simulation are displayed in Fig. 10-3-2, First of all. a 
comparison of these results with those presented in Fig, 10-2-4 leads us to 
conclude that the decision-feedback equalizer yields a significant improvement 
in performance relative to the linear equalizer having the same number of taps. 
Second, these results indicate that there is still a signifiCant degradation in 
performance of the decision-feedback equalizer due to the residual intersymbol 
interference, especially on channels with severe distortion such as the one 

F1GURE 1~J.2 Performan<'" of decision-feedback equalizer with and without error propagatjon, 
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shown in Fig. 1O-2-5(c). Finally, the performance loss due to incorrect 
decisions being fed back is 2 dB, approximately, for the channel responses 
under consideration. Additional results on the probability of error for a 
decision-feedback equalizer with error propagation may be found in the papers 
by Duttweiler el at. (1974) and Beaulieu (1992). 

The structure of the DFE that is analyzed above employs a T ·spaced filter 
for the feedforward section. The optimality of such a structure is Ilased on the 
assumption that the analog filter preceding the DFE is matched to the 
channel-corrupted pulse response and its output is sampled at the optimum 
time instant. In practice, the channel response is not known a priori, so it is not 
possible to design an ideal matched filter. In view of this difficulty, it is 
customary in practical applications to use a fractionally spaced feedforward 
filter. Of course, the feedback filter tap spacing remains at T. The use of tbe 
FSE for the feedforward filter eliminates the system sensitivity to a timing 
error. 

Performanc:e Comparison witll MLSE We conclude this subsection on the 
performance of the DFE by comparing its performance against that of MLSE. 
For the two·path channel with 10 = f, = VI. we have shown that MLSE suffers 
no SNR loss while the decision·feedback equalizer suffers a 3 dB loss. On 
channels with more distortion, the SNR advantage of MLSE over decis:on
feedback equalization is even greater. Figure 10-3-3 illustrates a comparison of 
the error rate performance of these two equalization techniques, obtained via 
Monte Carlo simulation, for binary PAM and the channel characteristics 
shown in Figs 10-2-5(b) and (c). The error rate curves for the two methods 
have different slopes; hence the difference in SNR increases as the error 

flGURE 10-3-3 Comparison of performance between MLSE and decision·feedback equalization for channel 
characteristics shown (a) in Fig. IO-Z·S(b) and (b) in Fig. 10-2·5(c). 
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probability decreases. As a benchmark, the error rate for the A WON channel 
with no intersymbol interference is also shown in Fig. 10 .. 3 .. 3. 

10-3-3 Predictive Dedsion-Feedbac:k Equalizer 

Belfiore and Park (1979) proposed another DFE structure that is equi~alent to 
the one shown in Fig. 10 .. 3 .. 1 under the condition that the feedforward filter has 
an infinite number of taps. This siructure consists of a FSE as a feedforward 
filter and a linear predictor as a feedback filter, as shown in the configuration 
given in Fig. 10-3-4. Let us briefly consider the performance characteristics of 
this equalizer. 

First of all, the noise at the output of the infinite length feedforward filler 
has the power spectral density 

NoX(eiwT
) 

INn + X(eiw7)12' 

The residual intersymbol interference has the power spectral density 

I 
X(e'wT) 12 N~ 1f 

1 - N" + X(eiwT) = IN" + X(~WT)J' , Iwl':; T 

(lO-3-14) 

( 10-3-15) 

The sum of these two spectra represents the power spectral density of the total 
noise and intersymbol interference at the output of the feedforward filter. 
Thus, on adding (10-3 .. 14) and (10-3 .. 15), we obtain 

(10 .. 3-16) 

As we have observed previously, if X(~7) = I, the channel is ideal and, 
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hence, it is not possible to reduce the MSE any further. On the other hand, if 
there is channel distortion, the power in the error sequence at the output of the 
feedforward filter can be reduced by means of linear prediction based on past 
values of the error sequence. 

If ~(w) represents the frequency response of the infinite length feedback 
predictor, i.e., 

~ 

~(w) = 2: bne j_T (10-3-17) 
Ii'~ i 

then the error at the output of the predictor is 

E(w) - E(w)OO(w) = E(w)[l- ;l1(w}j (10-3-18) 

The minimization of the mean square value of this error, i.e .. 

(10-3-19) 

over the predictor coefficients ibn} yields the optimum predictor in the form 

G(w) 
9/l(w) = 1--

go 

where G( w) is the solution to the spectral factorization 

G(w)C*(-w) 

and 
~ 

G(w) = 2: g"e-1-
T 

n=O 

(1O-3-20) 

(10-3-21) 

(10-3-22) 

The output of the infinite length linear predictor is a wqite noise sequence with 
power spectral density Ilg~ and the corresponding minimum MSE is given by 
(10-3-7). Therefore, the MSE performance of the infinite-length predictive 
OFE is identical to the conventional OFE. 

Although these two OFE structures result in equivalent performance if their 
lengths are infinite, the predictive OFE is suboptimum if the lengths of the two 
filters are finite. The reason for the optimality of the conventional OFE is 
relatively simple. The optimization of its tap coefficients in the feed forward 
and feedback filters is done jointly. Hence, it yields the minimum MSE. On the 
other hand, the optimizations of the feedforward filter and the feedback 
predictor in the predictive OFE are done separately. Hence, its MSE is at least 
as large as that of the conventional OFE. In spite ofAhis suboptimality of the 
predictive OFE, it is suitable as an equalizer for trellis-coded signals, where the 
conventional OFE is not as suitable, as described in the next chapter. 
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and feedback filters is done jointly. Hence, it yields the minimum MSE. On the 
other hand, the optimizations of the feedforward filter and the feedback 
predictor in the predictive OFE are done separately. Hence, its MSE is at least 
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predictive OFE, it is suitable as an equalizer for trellis-coded signals, where the 
conventional DFE is not as suitable, as described in the next chapter. 
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10-4 BIBLIOGRAPHICAL NOTES AND REFERENCES 

PROBLEMS 

Chanllel equalization for digital communications was developed by Lucky 
(1965. 1966). who focused on linear equalizers that were optimized using the 
peak distortion criterion. The mean square error criterion for optimization of 
the equalizer coefficients was proposed by Widrow (1966). 

Decision-feedback equalization was proposed and analyzed by Austin 
(1967). Analyses of the performance of the DFE can be found in the papers by 
Monsen (1971). George et al. (1971), Price (1972), Salz (1973), Duttweiler er al. 
0974}, and Altekar and Beaulieu (1993). 
, The use of the Viterbi algorithm as the optimal maximum-likelihood 
sequence estimator for symbols corrupted by lSI was proposed and analyzed 
by Forney (1972) and Omura (1971). Its use for carrier-modulated signals was 
considered by Ungerboeck (1974) and MacKenchnie (1973). 

10-1 In a binary PAM system, the input to the detector is 

where a~ = ± 1 is the desired signal. nm is a zero-mean Gaussian random variable 
with variance u;, and i~ represents the lSI due to channel distortion, The lSI 
term is a random variable that takes the values -~. 0, and I with probabilities I. 
!. and l, respectively. Determine the average probability of error as a function 
of u~, 

10-2 In a binary PAM system, the clock that specifies the sampling of the correlator 
output is offset from the optimum sampling time by 10%. 
a If the signal pulse used is rectangular. determine the loss in SNR due to the 

mi5timing. 
b Determine the amount of lSI introduced by the mistiming and determine its 

effect on performance. 
10-3 The frequency response characteristic of a lowpass channel can be approximated 

by 

H(!) = {I +a cos 21rf/" (lal< I, If("" W) 
o (otherwise) 

where W is the channel bandwidth. An input signal sit) whose spectrum is 
bandlimited to W Hz is passed through the channel. 
a Show that 

y(t) = 5(1) + ~als(1 -/u) + s(t + full 

Thus. the channel produce. a pair of echoes. 
b Suppose that the received signal Y(I} is passed through a filter matched to 5(1), 

Determine the output of the matched filter at t = kT. k = 0, ± I. ±2 ... ' 
where T is the symbol duration. 

c What is the lSI pattern reSUlting from the channel if t" = T? 
10-4 A wireline channel of length 1000 km is used to transmit data by means of binary 
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PAM. Regenerative repeaters are spaced 50 km aparl along the system. Each 
se~m.:nt of the channel has an ideal (constant) frequency response over the 
fr;quency hand 0 .. f .. 1200 Hz and an attenuation of I dB/km. The channel 
noise is AWGN . 
• What is the highesl hit rale thai can he transmitted without [SI? 
b Determine the required 'f:./N" to achieve a bit error of P, = 10 7 for each 

repeater. 
e Determine the transmitted power at each repeater to achieve the desired 

'f:.1 N", where N" = 4.1 X 10" W 1Hz. 
10-5 Prove the relationship in (10-1-13) for the autocorrelation of the noise al the 

OUlput of the matched filter. 
18-6 [n the case of PAM with correlated noise, the correlation metrics in the Viterbi 

algorithm may he eKpressed in general as (Ungerboeck, (974) 

where x. = x(n T) is the sampled signal output of the matched filter. {I.} is the 
data sequence. and lr.} is the received signal sequence at the output of Ihe 
matched filter. Delermine the metric for the duobinary signal. 

10-7 Consider the use of a (square-root) raised cosine signal pulse with a roll-olf factor 
of unity for transmission of binary PAM over an ideal bandlimited channel that 
passes the pulse without distortion. Thus, tbe transmitted signal is 

v(t) = 2: l.gT(t - kT.) 
*~-'" 

wltere tlte signal interval r;, = ~ r. Thus. the symbol rale is double of that for no 
lSI. 
• Determine the lSI values at the output of a matched filter demodulalor. 
b Sketch the trellis for the maximum-likelihood sequence detector and label the 

stales. 
1&-3 A binary anlipodal signal is transmitled over a nonideal band-limited channel. 

which introduces lSI over two adjacent symbols. For' an isolated transmitted 
si8!l.al pulse set), the (noise-free) output of Ihe demodulator is ~ at t = T, 
V'l,,14 at t = 2T. and zero for t = kT, k > 2. where it. is Ihe signal energy and Tis 
the signaling interval. 
• Determine the average probability of error, assuming thaI the two signals are 

equally probable and the additive noise is white and gaussian. 
b By plotting Ibe error probability obtained in (a) and that for the case of no lSI, 

determine Ihe relative difference in SNR of the error probability of 10--. 
11-' Derive tlte expression in (10-3-5) for the coefficients in the feedback filter of the 

DFE, 

10.11 Binary PAM is used to transmit informal ion over an unequalized linear liller 
channel. When a = 1 is transmitted, Ihe noise-free outpul of the demodulator is 

{

0.3 (m = I) 
0.9 (m =0) 

x = 
~ 0.3 (m=-l) 

o (otherwise) 
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a Design a three-tap zero-forcing linear equalizer so that the output is 

{
l (m=O) 

qn'= 0 (m=±l) 

b Determine qm for m = ±2. ±3. by convolving the impulse response of the 
equalizer with the channel response. 

10-11 The transmission of a signal pulse with a raised cosine spectrum through a 
channel results in the fol/owing (noise-free) sampled outp'" from the 
demodulator: 

x* = 

-0.5 (k = -2) 
0.1 (k=-I) 

1 (k = 0) 
-0.2 (k = 1) 
0.05 (k = 2) 

o (otllerwise) 

a Determine the tap coefficients of a three-tap linear equalizer based on the 
lera-forcing criterion .. 

b For the coefficients determined in (a), determine the outpul of the equalizer 
for the case of the isolated pulse. Thus. determine the residual lSI and its span 
in time. 

10-12 A nonideal band-limited channel introduces lSI over three successive symbols, 
The (nOIse-free) response of the matched filter demodulator sampled at the 
sampling time kT is 

[ 
0.9~. (k = ±I) 

{ 

~ (k =0) 

_~ s(t)s(t - kT) dt = 0.1 ~b (k = ±2) 

o (otherwise) 

a Determine the tap coellicients of a three-tap linear equalizer that equalizes the 
channel (received signal) response to an equivalent partial response (duobi
nary) signal 

{ ~. y, = 0 
(k=O,l) 

(otherwise ) 

b Suppose that the linear equalizer in (a) is followed by a Vilerbi sequence 
detector for the partial signal. Give an estimate of the error probability if .the 
additive noise is white and gaussian, with power spectral density !No W 1Hz. 

"10-13 Determine the tap weight coefficients of a three-tap zero-forcing equalizer if the 
lSI spans three symbols and is charaClerized by tbe values .:r(O) = l,x( - J) = 0,3, 
x(l) =0.2. Also determine the residual lSI at the output of the equalizer [or the 
optimum tap coefficients. 

10-14 In line-of-sight microwave radio transmission. the signal arrives at the receiver 
via two propagation paths: the direct palh and a delayed path that occurs due to 
signal reflection from surrounding lerrain. Suppose Ihal the received signal has 
Ihe form 

ret) =S(/) + as(t - T) + nIt) 
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where S(I) is the Iransmilled signal, a is the attenuation (cr < I) of the secondary 
path and n(l) is AWGN. 
a Determine the output of the demodulator at I = T and 1= 2T that employs a 

filler matched to 5(/). 
b Determine the probability of error for a symbol·by-symbol detector if the 

transmitted signal is binary antipodal and the detector ignores the lSI. 
c What is the error-rate performance of a simple (one-tap) DFE that estimates a 

and removes the lSI? Sketch the detector structure that employs a DFE. 
1&-15 Repeat Problem 10-10 using the MMSE as the criterion for optimizing the tap 

coefficients. Assume that the noise power spectral density is 0.1 W 1Hz . 
... 16 In a magnetic recording channel. where the readback pulse resulting from a 

positive transition in the write current has the form 

p(l) = [I + G~Y] , 
a linear equalizer is used 10 equalize the pulse to a partial response. The 
parameter T" is· defined as the width of the pulse at the 50% amplitude level. 
The bit rate ;s I/T,. and the ratio of T ... ,/T,. = A is the normalized density of the 
recording. Suppose the pulse is equalized to the partial·response values 

{

I (n=-I.l) 
x(nT)= 2 (n=O) 

o (otherwise) 

where X(I) represents the equalized pulse shape. 
a Determine the spectrum X (f) of the band-limited equalized pulse. 
b Determine the possible output levels at the detector. assuming that successive 

transitions can occur at the rate 1/ T,.. 
c Determine the eITor rate performance of the symbol-by-symbol detector for 

this signal. assuming that the additive noise is zero-mean gaussian with 
variance u 2

• 

10-17 Sketch the trellis for the Viterbi detector ofthe equalized signal in Problem 10-16 
and label all the states. Also. determine the minimum euclidean distance between 
merging path •. 

to-18 Consider the problem of equalizing the discrete-time equivalent cbannel shown 
in Fig. PIO-IS. The information sequence {I.} is binary (±I) and uncorrelated. 

I 
I, = Jl 
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I 
10" If 

The additive noise {v,1 is white and real-valued, with variance N •. The received 
sequence {Y.} is processed by a linear three-tap equaIizer tbat is optimized on the 
basis of the MSE criterion . 
• Determine the optimum coefficients of the equaIizer as a function of No. 
b Determine the three eigenvalues A" A2. and A, of the covariance matrix rand 

the corresponding (normalized to unit length) eigenvectors T" "2, V,. 

c Determine the minimum MSE for the three-tap equalizer as a function of No. 
d Determine the OUtpul SNR [Of" Ihe three-lap e~ualizer as a function of No. 

How does this compare with the output SNR for the infinite-tap equaIizer? For 
example, evaluate the output SNR Cor these two equalizers when N. = 0.1. 

19-19 Use the orthogonality principle to derive the equations for the coefficients in a 
decision-feedback equalizer based on the MSE criterion and given by (10-3-3) 
and (10-3-5)_ 

19-1.0 Suppose that the discrete-lime model for the intersymbol interference is 
characterized by the tap coefficients fa. J, • ... ,k From the equations for the tap 
coefficients of a decision-feedback equalizer (OFE), show that only L taps are 
needed in Ihe feedback filter of the OPE. ThaI is, if {c.} are the coefficients of the 
feedback filter then e, = 0 for k ;0 L + I. 

19-U Consider the channel model shown in Fig. P10-21. {v,J is a real-valued 
white-noise sequence with zero mean and' variance No. Suppose the channel is to 
be equalized by OPE having a two-tap feedforward filter (co, e_ l ) and a one-tap 
feedback filter (e,), The {ci } are optimized using the MSE criterion. 
a Determine the optimum coefficients and their approxima1e values for No -< 1. 
b Determine the exact value of tbe minimum MSE and a first-order approxima

lion appropriate to the case No .. t:t. 
c Determine the exact value of the output SNR foe the three-lap equalizer as a 

function of N. and a first-order approximation appropriate to the case No <1. 
d Compare tbe results in (b) and (c) with the performance of tbe infinite-tap 

DFE. 
e Evaluate and compare the c!xact values of the output SNR for the three-tap 

and infinite-tap DPE in the special cases where N. = 0_1 and 0.01. Comment on 
how well tbe three-tap ~uaJizer performs relative to the infinite-tap equalizer-

19-22 A pulse and its (raised-cosme) speclral characteristic are shown in Fig_ PI 0-22_ 
This pulse is used for transmitting digital information over a band-limited 
channel at a rate lIT symbols/s. 
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19-22 A pulse and its (raised-cosme) speclral characteristic are shown in Fig_ PI 0-22_ 
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(a) 
1,0 

0.6 

--0.4 {c} 

• What is the roll-off factor 13? 
b What is the pulse rate? 

G(f) 

0.5 ---------

o 900 1200 
j{Uz) 

(hI 

0.1 

3T 

c The channel distorts the signal pulses. Suppose the sampled values of the 
filtered received pulse X(I) are as shown in Fig. P10-22(c) It is obvious that 
there are five interfering signal components. Give the sequence of + is and -Is 
that will cause the largest (destructive or constructive) interference and the 
corresponding value of the interference (the peak distortion). 

d What is the probability of occurrence of the worst sequence obtained in (c), 
assuming that all binary digits are equally probable and independent? 

1 .. 23 A time·dispersive channel having an impulse response h(l) is used to transmit 
four·phase PSK at a rate R = l/T symbols/s. The equivalent discrete-time 
channel is shown in Fig. PlO-23. The sequence I".} is a white noise sequence 
baving zero mean and variance u' = No-
R What is the sampled autocorrelation function sequence {x.} defined by 

x, = [. h*(I)h(1 + kT) dt 

1M • 
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for this channel? 
b The minimum MSE performance of a linear equalizer and a decision-feedback 

equalizer having an infinite number of taps depends on the folded s~ctrum of 
the channel 

where H (.,) is the Fourier transform of h (I). Determine the folded spectrum 
of the channel given above. 

c Use your answer in (b) to express the minimum MSE of a linear equalizer in 
terms of the folded spectrum of the channel. (You may leave your answer in 
integral form.) 

d Repeat (c) for an infinite-tap decision-feedback equalizer. 
10-24 Consider a four·level PAM system with possible trallSlIlitted levels, 3,1, -1, and 

- 3. The channel through which the data are transmitted introduces intersymbol 
interference over two successive symbols. The equivalent discrete-time channel 
model is shown in Fig. P10-24. {".} is a sequence of real-valued independent 
zero-mean gaussian noise variables witb variance cr = No. The received sequence 
is 

y, = 0.8/, + n, 

Yz = 0.8/2 - 0.6/, + n2 

y, = 0.81, - 0.612 + n, 

y. = 0.8[. -0.6/._. + n. 

• Sketch the tree structure, sbowing tbe possible signal sequences for the 
received signals y" Yz and y,. 

b Suppose tbe Viterbi algorithm is used to detect the information sequence. How 
many probabilities must be computed at each stage of tne algorithm? 

c How many surviving sequences are there in the Viterbi illgorithm for this 
channel? 

II Suppose that the received signals are 

y, = 0.5, Yz = 2.0, y, = -1.0 
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Determine the surviving sequences through stage y, and the correspondinf 
metrics. 

e Give a tight upper bound for the probability of error for four-level PAM 
transmitted over this channel. 

10-25 A transversal equalizer with K taps has an impulse response 

• I 

e(l) = L c,~(t - kT) 
, " 

where T is the delay between adjacent taps. and a transfer function 

" I 

E(z) = .L c,z' 
/.: -0 

The discrete Four;" transform (OFT) of the equalizer coefficients {C, I is defined 
as 

" , 
E" '" £(z)I. .. " •.• , = .L c,e 

I.. --0 

The inverse DFT is defined as 

n=O.I. .... K-) 

I" , 
b, = - .L £,,""''''''', k = 0,1. ... , K - I 

Kt/-o 

a Show that b, = c" by substituting for En in the above expression. 
b From the relations given above. derive an equivalent filter structure having the 

<: transform 

E(z) 

£2(Z) 

c If E(z) is considered as two separate filters E,(z) and £,(<) in cascade. sketch 
a block diagram for each of the filters, using z·, to denote a unit of delay. 

d In the transversal equalizer. the adjustable parameters are the equalizer 
coefficients Ie,}. What are the adjustable parameters of the equivalent 
equalizer in (b), and how are they related to {e,}? 
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11 
ADAPTIVE 
EQUALIZATION 

In Chapter 10, we introduced both optimum and sUboptimum receivers that 
compensate for 151 in the transmission of digital information through band
limited, nonideal channels. The optimum receiver employed maximum
likelihood sequence estimation for detecting.the information sequence from 
the samples of the demodulation filter. The sUboptimum receivers employed 
either a linear equalizer or a decision-feedback equalizer. 

In the development of the three equalization methods, we implicitly. 
assumed that the channel characteristics, either the impulse response or the 
frequency response, were known at the receiver. However, in mosl com
munication systems that employ equalizers" the channel characteristics are 
unknown a priori and, in many cases, the channel response is time-variant. In 
such a case, the equalizers are designed to be .adjustable to the channel" 
response and, for time-variant channels, to be adaptive to the time variations 
in the channel response. 

In this chapter, we present algorithms for automatically adjusting the 
equalizer coefficients to optimize a specified performance index and 10 

adaptively compensate for time variations in the channel characteristics. We 
also analyze the performance characteristics of the algorithm, including their 
rate of convergence and their computational complexity. 

11-1 ADAPTIVE LINEAR EQUALIZER 

In the case of tbe linear equalizer, recall that we considered two different 
criteria for determining the values of the equalizer coefficients {c.l. One 
criterion was based on the minimization of the peak distortion at the output of 
6J(i 
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the equaJizer, which is defined by (10-2-4). The other criterion was based on 
the minimization of the mean-square error at the output of the equalizer, 
which is defined by (10-2-25). Below, we describe two algorithms fOf 
performing the optimization automatically and adaptively. 

11·1·1 The Zero·Fordng AlJoritbm 
In the peak-distortion criterion, the peak distortion :?iI(c), given by (10-2-22), is 
minimized by selecting the equalizer coefficients {e .. }. In general. there is no 
simple computational algorithm for performing this optimization, except in the 
special case where the peak distortion at the input to the equalizer, defined as 
:?iI" in (10-2-23), is less than unity. When ~ < 1, the distortion :?iI(c) at the 
output of the equalizer is minimized by forcing the equalizer response q. = 0, 
for 1,.; Inl,.; K, and qo = L In this case, there is a simple computational 
algorithm, called the zero-forcing algorithm, that achieves these conditions. 

The zero-forcing solution is achieved by forcing the cross-correlation 
between the error sequence E. = I. -1. and the desired information sequence 
{I.} to be zero for shifts in the range 0", Inl ,.; K. The demonstration that this 
leads to the desired solution is quite simple. We have 

£(E.It-) = £[(1. -l.)It-i) 

= £(Mt-i ) - £(1.It-i ), j = -K, ... • K 01-1-1) 

We assume that the information symbols are uncorrelated, i.e., £(/./7) = Skj' 

and that the information sequence {l.} is uncorrelated with the additive noise 
sequence {'I.}. For I •. we use the expression given in (10·2-41). Then, after 
taking the expected values in (11·1-1), we obtain 

(11-1·2) 

Therefore, the conditions 

£(E,I;-J = 0, j = - K, ... , K (11-1·3) 

are fulfilled when q(): 1 and q. = 0, 1 ,.; in I,.; K. 
When the channel response is unknown, the cross-correlations given by 

(11-1-1) are also unknown. This difficulty can be circumvented by transmitting 
a known training sequence {lk} to the receiver, which can be used to estimate 
the cross-correlation by substituting time averages for the ensemble averages 
given in (11-1-1). After the initial training, which will require the transmission 
of a training sequence of some predetermined length that equals or exceeds the 
equalizer length, the equaJizer coefficients that satisfy (11-1-3) can be 
determined. 
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A simple recursive algorithm for adjusting the equalizer coefficients is 

C (H 1) = C(') + ~e J* 
J J k k~j7 j = - K, ... , -1, 0, 1, ... , K (11-1-4) 

where cj') is the value of the jth coefficient at time t = kT, e. = J. -1. is the 
error signal at time t = kT. and ~ is a scale factor that controls the rate of 
adjustment, as will be explained later in this section. This is the zero-forcing 
algorithm. The term e.It- j is an estimate of the cross-correlation (ensemble 
average) E(e.lZ_j). The averaging operation of the cross-correlation is 
accomplished by means of the recursive first-order difference equation 
algorithm in (11-1-4), which represents a simple discrete-time integrator. 

Following the training period, after which the equalizer coefficients have 
converged to their optimum values, the decisions at the output of the detector 
are generally sufficiently reliable so that they may be used to continue the 
coefficient adaptation process. This is called a decision-directed mode of 
adaptation. In such a case, the cross-correlations in (11-1-4) involve the error 
signal E. = lk -1. and the detected output sequence I._ j , j = -K, ... ,K. Thus, 
in the adaptive mode, (11-1-4) becomes 

(11-1-5) 

Figure 11·1-1 illustrates the zero-forcing equalizer in the training mode and the 
adaptive mode of operation. . 

The characteristics of the zero-forcing algorithm are similar to those of the 
LMS algorithm, which minimizes the MSE and which is described in detail in 
the following section. 

FIGURE 11-1-1 An adaptive zero-forcing equalizer. 
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11-1-2 The LMS Algorithm 
In the minimization of the MSE, treated in Section 10-2-2, we found that the 
optimum equalizer coefficients are determined from the solution of the set of 
linear equations, expressed in matrix form as 

rc=~ (11-1-6) 

where r is the (2K + l) x (2K + I) covariance matrix of the signal samples 
{Vk}. C is the column vector of (2K + I) equalizer coefficients. and ~ is a 
(2K + 1 )-dimensional column vector of channel filter coefficients. The solution 
for the optimum equalizer coefficients vector COPI can be determined by 
inverting the covariance matrix r. which can be efficiently performed by use of 
the Levinson-Durbin algorithm described in Appendix A. 

Alternatively, an iterative procedure that avoids the direct matrix inversion 
may be used to compute C'>pI' Probably the simplest iterative procedure is the 
method of steepest descent, in which one begins by arbitrarily choosing the 
vector C, say as C", This initial choice of coefficients corresponds to some point 
on the quadratic MSE surface in the (2K + 1 )-dimensional space of 
coefficients. The gradient vector G", baving the 2K + 1 gradient components 
I illloco/" k = - K • ...• -I. O. I •...• K. is then computed at this point on the 
MSE surface. and each tap weight is changed in the direction opposite to its 
corresponding gradient component. The change in the jth tap weight is 
proportional to the size of the jlh gradient component. Thus. succeeding values 
of the coefficient vector C are obtained according 10 the relation 

C .. 1= Ck - AG.. k = 0, I. 2. "_ {I 1-1-7) 

where the gradient vector G. is 

(11-1-8) 

The vector C. represents the set of coefficients at the kth iteration. ii. = I" -1, 
is the error signal at the kth iteration. V. is the vector of received signal 
samples that make up the estimate I., i.e., V. = (V'+R ... v. '" V'-K\'. and 
A is a positive number chosen small enough to ensure convergence of the 
iterative procedure. If the minimum MSE is reached for some k = kIt then 
G. = 0, so that no further change occurs in the tap weights. In general, Jm;n(K) 
cannot be attained for a finite value of k() with the steepest-descent method. It 
can, however, be approached as closely as desired for some finite value of kIt. 

The basic difficulty with the method of steepest descent for determining the 
optimum tap weights is the lack of knowledge of the gradient vector G •. which 
depends on both the covariance matrix r and the vector ~ of cross-correlations. 
In turn, these quantities depend on the coefficients {.r.} of the equivalent 
discrete-time channel model and on the covariance of the information 
sequence and the additive noise, all of which may be tlnknown at the receiver 
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in general. To overcome the difficulty, estimates of the gradient vector may be 
used. That is, the algorithm for adjusting the tap weight coefficients may be 
expressed in the form 

(11-1-9) 

where G. denotes an estimate of the gradient vector G. and C. denotes the 
estimate of the vector of coefficients. 

From (11-1-8) we note that G. is the negative of the expected value of the 
e. vt. Consequently. an estimate of G. is 

G
A 

_ •• 

k - -Ek ". (11-1-10) 

Since E(G.) = G •• the estimate Gk is an unbiased estimate of the true gradient 
vector G •. Incorporation of (11-1-10) into (11-1-9) yields the algorithm 

(11-1-11 ) 

This is the basic LMS (least-mean-square) algorithm for recursively adjusting 
the tap weight coefficients of the equalizer lirst proposed by Widrow and Hoff 
(1960). It is illustrated in the equalizer shown in Fig. 11-1-2. 

The basic algorithm given by (11-1-11) and some of its possible variations 
have been incorporated into manv commercial adaptive equalizers that are 

FIGURE 11·1·2 Linear adaptive equalizer based on MSE critenon, 
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used in high-speed modems. Three variations of the basic algorithm are 
obtained by using only sign information contained in the error signal £. and/or 
in the components of V,. Hence, the three possible variations are 

C(k+'l, = Ckj + Il csgn (£.)vt-i' j = -K, . .. , -1,0,1 •.. " K (11-1-12) 

C{k+'lj=Ckj+ll£kcsgn(vt-j). j=-K •...• -1.0.1, ... ,K (11-1-13) 

C(h'lj=Ck,+llcsgn(£k)csgn(vt-,), j= -K •... , -1,0, 1, ... ,K (11-1-14) 

where csgn (x) is defined as 

{ 

l+j (Re(x»O.lm(x»O) 

1-j (Re (x» o. Im(x)<O) 
csgn (xl = 1 . 

- + J (Re (x)< O. 1m (x» 0) 

-1-j (Re(x)<O,lm(x)<O) 

(l1-I-IS) 

(Note that in (11-1-1S), j == V'=!, as distinct from the index j in (11-1-12)-(11-
1-14).) Clearly, the algorithm in (11-1-14) is the most easily implemented, but 
it gives the slowest rate of convergence to the others. 

Several other variations of the LMS algorithm are obtained by averaging or 
filtering the gradient vectors over several iterations prior to making adjust
ments of the equalizer coefficients. For example, the average over N gradient 
vectors is 

;w;" 1 lV-I 

GmN = - Al L E'mN+nV!f',i+n 
J~ 11=0 

(11-1-16) 

and the corresponding recursive equation for updating the equalizer 
coefficients once very N iterations is 

(11-1-17) 

In effect, the averaging operation performed in (11-1-16) reduces the noise in 
the estimate of the gradient vector, as shown by Gardner (1984). 

An alternative approach is to filter the noisy gradient vectors by a lowpass 
filter and use the output of the filter as an estimate of the gradient vector. For 
example, a simple lowpass filter for the noisy gradients yields as an output 

G k = wG'- 1 + (1- w)Gk • G(O) = G(O) (11-1-18) 

where the choice of 0"" w < 1 defermines the bandwidth of the lowpass filter. 
When w is close to unity, the filter bandwidth is small and the effective 
averaging is performed over many gradient vectors. On the other hand, when 
w is small, the lowpass filter has a large bandwidth and, hence, it provides little 
averaging of the gradient vectors. With the filtered gradient vectors given by 
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(11-1-18) in place of G,. we obtain the filtered gradient LMS algorithm given 
by 

(11-1-19) 

[n the above discussion. it has been assumed that the receiver has 
knowledge of the transmitted information sequence in forming the error signal 
between the desired symbol and its estimate. Such knowledge can be made 
available during a short training period in which a signal with a known 
information sequence is transmitted to the receiver for initially adjusting the 
tap weights. The length of this sequence must be at least as long as the length 
of the equalizer so that the spectrum of the transmitted signal adequately 
covers the bandwidth of the channel being equalized. 

In practice. the training sequence is often selected to be a periodic 
pseudo-random sequence. such as a maximum length shift-register sequence 
whose period N is equal to the length of the equalizer (N = 2K + 1). In this 
case. the gradient is usually averaged over the length of the sequence as 
indicated in (11-\-16) and the equalizer is adjusted once a period according to 
(11-\-17). A practical scheme for continuous adjustment of the tap weights 
may be either a decision-directed mode of operation in which decisions on the 
information symbols are assumed to be correct and used in place of I, in 
forming the error signal £ •• or one in which a known pseudo-random-probe 
sequence is inserted in the information-bearing signal either additively or by 
interleaving in time and the tap weights adjusted by comparing the received 
probe symbols with the known transmitted probe symbols. In the decision· 
directed mode of operation. the error signal becomes e. = 7. -1 •. where 1. is 
the decision of the receiver based on the estimate 1 •. As long as the receiver is 
operating at low error rales. an occasional error will hllVe a negligible effect on 
the convergence of the algorithm. 

If tbe channel response changes. this change is reflected in the coefficients 
{J.} of the equivalent discrete-time channel modt-L It is also reRected in the 
error signal 10k. since it depends on (fd. Hence. the tap weights will be changed 
according to (11-1-11) to reRect the change in the channel. A similar change in 
the tap weights occurs if the statistics of the noise or the information sequence 
change. Thus. the equalizer is adaptive. 

11·1·3 COD\lergence Properties of tile LMS Algorithm 

The convergence properties of the LMS algorithm given by (II-I-ll) are 
governed by the step-size parameter a. We shall now consider the choice of 
the parameter .i to ensure convergence of the steepest-descent algorithm in 
(H-!-?). which employs tQ~t value of the gradient. 

From (11-)-7) and (11-1-8). we have 

ChI = C. - .iG, 

= (I - .if')C. + .i~ (11-1-20) 
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FIGURE 11-\-3 Closed-loop control s)'Stem representation of recursive 
equation in 01-1-20). 

Fillet 

n:J=~ z- J 

where I is the identity matrix, r is the autocorrelation matrix of the received 
signal, C. is the (2K + 1 )-dimensional vector of equalizer tap gains, and ~ is the 
vector of cross-correlations given by (10-2-45). The recursive relation in 
(11-1-20) can be represented as a closed-loop control system as shown in Fig. 
1\-1-3. Unfortunately, the set of 2K + 1 first-order difference equations in 
(11-1-20) are coupled through the autocorrelation matrix r. In order to solve 
these equations and. thus., establish the convergence properties of the recursive 
algorithm. it is mathematically convenient to decouple the equations by 
performing a linear transformation. The appropriate transformation is 
obtained by noting that the matrix r is Hermitian and. hence. can be 
represented as 

r=UAut
• (1l-1-21) 

where U is the normalized modal matrix of r and A is a diagonal matrix with 
diagonal elements equal to the eigenvalues of r. 

When (11-1-21) is substituted into (11-1-20) and if we define the trans
formed (ortbogonalized) vectors G= U'·Ck and~" = U/·~. we obtain 

(11-1-22) 

This set of first order difference equations is now decoupled. Their conver
gence is determined from the homogeneous equation 

C~+)=(I-dA)q (11-1-23) 

We see that the recursive relation will converge provided that all the poles lie 
inside the unit circle. i.e., 

11 - dA.kl < 1, k = - K, ... , -1, 0, 1 •... , K (11-1-24) 

where {A..} is the set of 2K + 1 (possibly nondistinct) eigenvalues of r. Since r 
is an autocorrelation matrix, it is positive-definite and. hence, Ak > 0 for all Ie 
Consequently convergence of the recursive relation in (1l-1-22) is ensured if (\ 
satisfies the inequality 

(11-1-25) 

where Am •• is the largest eigenvalue of r. 
Since the largest eigenvalue of a positive-definite matrix is less than the sum 
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of all the eigenvalues of the matrix and, furthermore, since the sum of the 
eigenvalues of a matrix is equal to its trace, we have the following simple upper 
bound on Am .. : 

K 

Am .. < L A. = tr r = (2K + l)r .. 
k=-K 

= (2K -,- l)(xo + No) (11-1-26) 

From (11-1-23) and (11-1-24) we observe that rapid convergence occurs 
when II - I1A.1 is small, i.e., when the pole positions are far from the unit 
circle. But we cannot achieve this desirable condition and still satisfy (11-1-25) 
if there is a large difference between the largest and smallest eigenvalues of r. 
In other words, even if we select ~ to be near the upper bound given in 
(11-1-25), the convergence rate of the recursive MSE algorithm is determined 
by the smallest eigenvalue Amin. Consequently. the ratio A .... .1 Amin ultimately 
determines the convergence rate. If Amaxl Amin is small, 11 can be selected so as 
to achieve rapid convergence. However. if the ratio Am"/Am •• is large, as is the 
case when the channel frequency response has deep spectral nUlls, the 
convergence rate of the algorithm will be slow. 

11-1-4 Excess MSE Due to Noisy Gradient Estimates 
The recursive algorithm in (11-1-11) for adjusting the coefficients of the linear 
equalizer employs unbiased noisy estimates of the gradient vector. The noise in 
these estimates causes random fluctuations in the coefficients about their 
optimal values and, thus, leads to an increase in the MSE at the output of the 
equalizer. That is, the final MSE is Jm•n + Ja, where J~ is the variance of the 
measurement noise. The term Jil due to the estimation noise has been termed 
excess means-square error by Widrow (1966). 

The total MSE at the output of the equalizer for any set of coefficients C 
can be expressed as 

(11-1-27) 

where Copt represents the optimum coefficients, which satisfy (11-1-6). This 
expression for the MSE can be simplified by performing the linear orthogonal 
transformation used above to establish convergence. The result of this 
transformation applied to (11-1-27) is 

K 

J =)rn'n + LAkE Ie. - e~optl2 
k~-K 

(11-1-28) 

where the {ekl are the set of transformed equalizer coefficients. The excess 
MSE is the expected value of the second term in (11-1-28), i.e_. 

/( 

J Il = 2: AkE Ie. - e. optl2 
Ic=-K 

(11-1-29) 
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It has been shown by Widrow (1970, 1975) that the excess MSE is 

(11-1-30) 

The expression in (11-1-30) can be simplified when 4 is selected such that 
.1.A, « 1 for all k. Then 

K 

J" "" !.1.Jm;n 2: A. 
k=-K 

"" ~.1.Jmin tr r 

Note that Xo + No represents the received signal plus noise power. 

(11-1-31) 

It is desirable to have J" < Jmin• That is, 4 should be selected such that 

or, equivalently, 

J" 1 -"" 2.1.(2K + l)(xo + No) < 1 
Jmin 

2 
4 < ----==---

(2K + l)(xo + No) 

For example, if 4 is selected as 

4 = __ --=0:.;:.2=--__ 
(2K + 1 )(xo + No) 

(11-1-32) 

(11-1-33) 

the degradation in the output SNR of the equalizer due to the excess MSE is 
less than 1 dB. 

The analysis given above on the excess mean square error is based on the 
assumption that the mean value of the equalizer coefficients has converged to 
the optimum value Copt. Under this condition, the step size 4 should satisfy the 
bound in (11-1-32). On the other hand, we have determined that convergence 
of the mean coefficient vector requires that 4 < 2/ Am ... While a choice of 4 
near the upper bound 2/ A",.. may lead to initial convergence of the 
deterministic (known) steepest-descent gradient algorithm, such a large value 
of 4 will usually result in instability of the LMS stochastic gradient algorithm. 

The initial convergence or transient behavior of the LMS algorithm has 
been investigated by several researchers. Their results clearly indicate that the 
step size must be reduced in direct proportion to the length of the equalizer as 
specified by (11-1-32). Hence, the upper bound given by (11-1-32) is also 
necessary to ensure the initial convergence of the LMS algorithm. The papers 
by Gitlin and Weinstein (1979) and Ungerboeck (1972) contain analyses of the 
transient behavior and the convergence properties of the LMS algorithm. 
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Initial convergence characteristics of tbe LMS 
algorithm with different step sizes. [From Digital 
Sign.l Processing. by J. G. Prookis and D. G. Mane/akis. 
1988. Macmillan Publishmg Company. Reprinted with 
permission of the publisher.\ 
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The following example serves to reinforce tbe important points made above 
regarding the initial convergence of the LMS algorithm. 

Example 11·1·1 

The LMS algorithm was used to adaptively equalize a communication 
channel for which the autocorrelation matrix r has an eigenvalue spread of 
Amaxl Amin = 11. The number of taps selected for the equalizer was 2K + 1 = 
11. The input signal plus noise power Xo + ~, was normalized to unity. 
Hence. the upper bound on .:l given by (11-1-32) is 0.18. Figure 11-1-4 
illustrates the initial convergence characteristics of the LMS algorithm for 
ll. = 0.045, 0.09, and 0.115. by averaging the (estimated) MSE in 200 
simulations. We observe that by selecting ll. = 0.09 (one-half of the upper 
bound) we obtain relatively fast initial convergence. If we divide ll. by a 
factor of 2 to ll. = 0.045, the convergence rate is reduced but the excess 
mean square error is also reduced, so that the LMS algorithm performs 
better in steady state (in a time-invariant signal environment). Finally. we 
note that a choice of ll. = 0.115, which is still far below the upper bound, 
causes large undesirable fluctuations in the output MSE of the algorithm. 

In a digital implementation of the LMS algorithm, the choice of the 
step-size parameter becomes even more critical. In an attempt to reduce the 
excess mean square error, it is possible to reduce the step-size parameter to the 
point where the total mean square error actually increases. This condition 
occurs when the estimated gradient components of the vector f. vt after 
multiplication by the small step-size parameter d are smaller than one-half of 
the least significant bit in the fixed-point representation of the equalizer 
coefficients. In such a case, adaptation ceases. Consequently, it is important for 
the step size to be large eilough to bring tbe equalizer coefficients in the 
vicinity of Copt. If it is desired to decrease the step size significimtly, it is 
necessary to increase the precision in the equalizer coefficients. Typically, 16 
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bits of precision may be used for the coefficients, with about 10-12 of the mosl 
significant bits used for arithmetic operations in the equalization of the data. 
The remaining least significant bits are required to provide the necessary 
precision for the adaplation process. Thus, the scaled, estimated gradient 
components .1£ V: usually affect only the least -significant bits in anyone 
iteration. In effect, the added precision also allows for the noise to be averaged 
out, since many incremental changes in the least -significant bits are required 
before any change occurs in the upper more significant bits used in arithmetic 
operations for equalizing the data. For an analysis of roundoff errors in a 
digital implementation of the LMS algorithm, the reader is referred to the 
papers by Gitlin and Weinstein (1979), Gitlin et al. (1982), and Caraiscos and 
Liu (1984). 

As a final point, we should indicate that the LMS algorithm is appropriate 
for tracking slowly time· invariant signal statistics. In such a case. the minimum 
MSE and the optimum coefficient vector will be time-variant. In other words. 
Jmin(n) is a function of time and the (2K + 1 }-dimensional error surface is 
moving with the time index n. The LMS algorithm attempts to fellow the 
moving minimum Jm'n(n) in the (2K + 1 )-dimensional space, but it is always 
lagging behind due to its use of (estimated) gradient vectors. As a conse
quence, the LMS algorithm incurs another fonn of error. called the lag error, 
whose mean square value decreases with an increase in the step size a. The 
total MSE error can now be expressed 'as 

where i, denotes the mean square error due to the lag. 
In any given non stationary adaptive equalization problem. if we plot the 

errors J.. and J, as a function of ~. we expect these errors to behave as 
illustrated in Fig. 11-1-5. We observe that J" increases with an increase in a 
while if decreases with an increase in .1. The total error will exhibit a 
minimum, which will determine the optimum choice of the step-size parameter. 

When the statistical time variations of the signal occur rapidly, the lag error 

E:xcess mean square error J ~ and lag 
error J, as a function of the step size. 
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will dominate the performance of the adaptive equalizer. In such a case, 
J,»Jmin+JA • even when the largest possible value of .1 is used. When this 
condition occurs, the LMS algorithm is inappropriate for the application and 
one must rely on the more complex recursive least-squares algorithms 
described in Section 11-4 to obtain faster convergence and tracking. 

11-1-5 Baseband and Passband LinelU' EquaJizers 

Our treatment of adaptive linear equalizers has been in terms of equivalent 
lowpass signals. However, in a practical implementation, t/le linear adaptive 
equalizer shown in Fig. 11-1-2 can be realized either al baseband or at 
bandpass. For example Fig. 11-1-6 illustrates the demodulation of QAM (or 
multiphase PSK) by first translating the signal to baseband and equalizing the 
baseband signal with an equalizer having complex·valued coefficients. In effect, 
the complex equalizer with complex-valued (in-phase and quadrature com
ponents) input is equivalent to four parallel equalizers with real-valued tap 
coefficients as shown in Fig. 11-1-7. 

As an alternative. we may equalize the signal at passband. This is 

FIGURE 11-1-7 Complex-valued baseband equalizer for 
OAM ,ignals. 
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component 
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accomplished as shown in Fig. 11-1-8 for a two-dimensional signal constellation 
such as QAM and PSK. The received signal is filtered and, in parallel, it is 
passed through a Hilbert transformer, called a phase-splitting filter. Thus, we 
have the equivalent of in-phase and quadrature components at passband, 
which are fed to a passband complex equalizer. Following the equalization, the 
signal is down-converted to a baseband and detected. The error signal 
generated for the purpose of adjusting the equalizer coefficients is formed at 
baseband and frequency-translated to passband as illustrated in Fig. 11-1-8. 

11-2 ADAPTIVE DECISION-FEEDBACK EQUALIZER 
As in the case of the linear adaptive equalizer, the coefficients of the 
feedforward filter and the feedback filter in a decision-feedback equalizer may 
be adjusted recursively, instead of inverting a matrix as implied by (10-3-3). 
Based on the minimization of the MSE at the output of the DFE, the 
steepest-descent algorithm takes the form 

(11-2-1) 

where C. is the vector of equalizer coefficients in the kth signal interval, 
E(E. '1) is the cross-correlation of the error signal Ek = I. -1. with V k and 
V. = [Vk+K, ... v.I._ I ••• I.-K,l'. representing the signal values in the 
feedforward and feedback filters at time t = kT. The MSE is minimized when 
the cross-correlation vector E( E. Vt) = 0 as k -+ 00. 

Since the exact cross-correlation vector is unknown at any time" instant, we 
use as an estimate the vector Ek V: and average out the noise in the estimate 
through the recursive equation 

(11-2-2) 

This is the LMS algorithm for the DFE. 
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H(;URE 11-2·1 Decision·feedback equalizer. 

As in the case of a linear equalizer, we may use a training sequence to 
adjust the coefficients of the DFE initially. Upon convergence to the (near-) 
optimum coefficients (minimum MSE), we may switch to a decision-directed 
mode where the decisions at the output of the detector are used in forming the 
error signal c. and fed to the feedback filter. This is the adaptive mode of the 
DFE, which is illustrated in Fig 11-2-1. In this case, the recursive equation for 
adjusting the equalizer coefficient is 

(11-2-3 ) 

where E. = 1. -1, and V. = [IIH/(, ... II. 7'-1 ... 7,_/(,]'. 
The performance characteristics of the LMS algorithm for the DFE are 

basically the same as the development given in Sections 11-1-3 and 11-1-4 for 
the linear adaptive equalizer. 

11-2-1 Adaptive Equalization of Trellis-Coded Signals 

Bandwidth efficient trellis-coded modulation that was described in Section 8-3 
is frequently used in digital communications over telephone channels to reduce 
the required SNR per bit for achieving a specified error rate. Channel 
distortion of the trellis-coded signal forces us to use adaptive equalization in 
order to reduce the intersymbol interference. The output of the equalizer is 
then fed to the Viterbi decoder, which performs soft-decision decoding of the 
trellis-coded signal. 
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The question that arises regarding such a receiver is how do we adapt the 
equalizer in a data transmission mode? One possibility is to have the equalizer 
make its own decisions at its outputso!ely for the purpose of generating an 
error signal for adjusting its tap coefficients, as shown in the block diagram in 
Fig. 11·2·2. The problem with this approach is thaI such decisions are generally 
unreliable, since the pre-decoding coded symbol SNR is relatively low. A high 
error rate would cause a significant degradation in the operation of the 
equalizer, which would ultimately affect the reliability of the decisions at the 
output of the decoder. The more desirable alternative is to use the post· 
decoding decisions from the Viterbi decoder, which are much more reliable, to 
continuously adapt the equalizer. This approach is certainly preferable and 
viable when a linear equalizer is used prior to the Viterbi decoder. Tbe 
decoding delay inherent in the Viterbi decoder can be overcome by introduc
ing an identical delay in the tap weight adjustment of the equalizer coefficients 
as shown in Fig. 11-2-3. The major price that must be paid for the added delay 
is that the step-size parameter in the LMS algorithm must be reduced. as 
described by Long et al. (1987, 1989), in order to achieve stability in tbe 
algorithm. 

III channels with one or more in-band spectral nulls, the linear equalizer is 

FIGURE 11·2-3 Adjustment of equalizer based on decisions from the Viterbi decoder. 
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FIGURE 11-2-4 Use of predictive DFE with interleaving and trellis-coded modulation. 

no longer adequate for compensating the channel intersymbol interference. 
Instead, we should like to use a DFE. But the DFE requires reliable decisions 
in its feedback filter in order to cancel out the intersymbol interference from 
previously detected symbols. Tentative decisions prior to decoding would be 
highly unreliable and, hence, inappropriate. Unfortunately, the conventional 
DFE cannot be cascaded with the Viterbi algorithm in which post-decoding 
decisions from the decoder are fed back to the DFE. 

One alternative is to use the predictive DFE described in Section 10-3-3. In 
order to accommodate for the decoding delay as it affects the linear predictor, 
we introduce a periodic interleaver/deinterleaver pair that has the same delay 
as the Viterbi decoder and, thus, makes it possible to generate the appropriate 
error signal to the predictor as illustrated in the block diagram of Fig. 11-2-4. 
The novel way in which a predictive DFE can be combined with Viterbi 
decoding to equalize treJ/is-coded signals is cescribed and analyzed by 
Eyuboglu (1988). This same idea has been carried over to the equalization of 
fading multipath channels by Zhou et at. (1988, 1990), but the structure of the 
DFE was modified to use recursive least-squares laUice-type filters, which 
provide faster adaptation to the time variations encountered in the channel. 

11·3 AN ADAPTIVE CHANNEL ESTIMATOR 
FOR ML SEQUENCE DETECflON 

The ML sequence detection criterion implemented via the Viterbi algorithm as 
embodied in the metric computation given by (10-1-23) and the probabilistic 
symbol-by-symbol detection algorithm described in Section 5·1-5 require 
knowledge of the equivalent discrete-time channel coefficients {Ix}. To accom
modate a channel that is unknown or slowly time-varying, one may include a 
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FIGURE ll-3-1 BlocK diagram of method for eotimating the channel 
characteristics for the Viterbi algorithm. 

Channel estimatt 

channel estimator connected in parallel with the detection algorithm, as shown 
in Fig. 11-3-1. The channel estimator, which is shown in Fig. 11-3-2 is identical 
in structure to the linear transversal equalizer discussed previously in Section 
11-1. In fact, the channel estimator is a replica of the equivalent discrete-time 
channel filter that models the intersyrnbol interference. The estimated tap 
coefficients, denoted by {f.}, are adjusted recursively to minimize the MSE 
between the actual received sequence and the output of the estimator. For 
example, the steepest-descent algorithm in a decision-directed mode of 
operation is 

(11-3-1 ) 

where l is the vector of tap gain coefficients at the kth iteration, A is the step 
size, 10, = Uk - V. is the error signal, and i. denotes the vector of detected 
information symbols in the channel estimator at the kth iteration. 

We now show that when the MSE between v. and V. is minimized, the 
resulting values of the tap gain coefficients of the channel estimator are the 
values of the discrete-lime channel model. For mathematical tractability, we 
assume that the detected information sequence {/k} is correct, i.e., {lk} is 

nGURE ll-l-Z Adaptive transve",,1 filter for estim.ting the channel dispersion. 

L-______ ~~+~------~ 
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identical to the transmitted sequence {J.}. This is a reasonable assumption 
when the system is operating at a low probability of error. Thus, the MSE 
between the received signal VA and the estimate Vk is 

( 11-3-2) 

The tap coefficients lId that miniwize 1(0 in (11-3-2) satisfy the set of N linear 
equations 

N- 1 

2: I;<I>,} = db k = O. 1 ..... N - I (11-3-3) 
j .- j) 

where 
" -) 

d., = '" r,<I> .. ~ • .1 J 
(11-3-4) 

From (11·3-3) and (11-3-4). we conclude that, as long as the information 
sequeri'ce {I.} is uncorrelated, the optimum coefficients are exactly equal to the 
respective values of the equivalem discrete-time channel. It is also apparent 
that when the number of taps N in the channel estimator is greater than or 
equal 10 L + I, the optimum tap gain coefficients {f.} are equal to the 
respective values of the {t.}, even when the information sequence is correlated. 
-Subject to the above conditions, the minimum MSE is simply equal to the 
noise variance N.,. 

In the above discussion, the estimated information sequence at the output of 
the Viterbi algorithm or the probabilistic symbol-by-symbol algorithm was 
used in making adjustments of the channel estimalor. For startup operation, 
one may send a short training sequence to perform the initial adjustment of the 
tap coefficients. as is usuall~' done in the case of the linear transversal 
equalizer. In an adaptive mode of operation. the receiver simply uses its own 
decisions to form an error signal. 

11·4 RECURSIVE LEAST·SQUARES ALGORITHMS 
FOR ADAPTIVE EQUALIZATION 

The LMS algorithm that we described in Sections 11-1 and 1I-2 for adaptively 
adjusting the tap coefficients of a linear equalizer or a DFE is basically a 
(stochastic) steepest-descent algorithm in which the true gradient vector is 
approximated by an estimate obtained directly from the data. 

The major advantage of the steepest-descent algorithm lies in its computa
tional simplicity. However, the price paid for the simplicity is slow conver
gence, especially when the channel characteristics result in an autocorrelation 
matrix r whose eigenvalues bave a large spread, i.e., Am.'! Ami"» L Viewed in 
another way, the gradient algorithm has only a single adjustable parameter for 

, 
• 
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respective values of the {t.}, even when the information sequence is correlated. 
-Subject to the above conditions, the minimum MSE is simply equal to the 
noise variance N.,. 

In the above discussion, the estimated information sequence at the output of 
the Viterbi algorithm or the probabilistic symbol-by-symbol algorithm was 
used in making adjustments of the channel estimalor. For startup operation, 
one may send a short training sequence to perform the initial adjustment of the 
tap coefficients. as is usuall~' done in the case of the linear transversal 
equalizer. In an adaptive mode of operation. the receiver simply uses its own 
decisions to form an error signal. 

11·4 RECURSIVE LEAST·SQUARES ALGORITHMS 
FOR ADAPTIVE EQUALIZATION 

The LMS algorithm that we described in Sections 11-1 and 1I-2 for adaptively 
adjusting the tap coefficients of a linear equalizer or a DFE is basically a 
(stochastic) steepest-descent algorithm in which the true gradient vector is 
approximated by an estimate obtained directly from the data. 

The major advantage of the steepest-descent algorithm lies in its computa
tional simplicity. However, the price paid for the simplicity is slow conver
gence, especially when the channel characteristics result in an autocorrelation 
matrix r whose eigenvalues bave a large spread, i.e., Am.'! Ami"» L Viewed in 
another way, the gradient algorithm has only a single adjustable parameter for 

, 
• 
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controlling the convergence rate, namely, the parameter ll. Consequently the 
slow convergence is due to this fundamental limitation. 

In order to obtain faster convergence, it is necessary to devise more complex 
algorithms involving additional parameters. In particular, if the matrix f' is 
N x 11/ and has eigenvalues A'I' A2, ...• AN, we may use an algorithm that 
contains N parameters-one for each of the eigenvalues. The optimum 
selection of these parameters to achieve rapid convergence is a topic of this 
section. 

In deriving faster converging algorithms, we shall adopt a least-squares 
approach. Thus, we shall deal directly with the received data in minimizing the 
quadratic performance index, whereas previously we minimized the expected 
value of the squared error. Put simply, this means that the performance index 
is expressed in terms of a time average instead of a statistical average. 

It is convenient to e)(press the recursive leasHquares algorithms in matri)( 
form. Hence, we shall define a number of vectors and matrices that are needed 
in this development. In so doing, we shall change the notation slightly. 
Specifically, the estimate of the information symbol at time I, where t is an 
integer, from a linear equalizer is now expressed as 

K 

1(1) = L Cj(1 - l)v'-J 
j=-K 

By changing the index j on CJ(I - 1) to run from j = 0 to j = N - 1 and 
.simultaneously defining 

the estimate 1(1) becomes 

N-] 

lei) = 2: Cj(t- l)y(1 - j) 
jeD 

(11-4-1) 

where CN(r -1) and Y",(t) are, respectively, the column vectors of the 
equalizer coefficients cAt -1), j = 0,1, ... , N - 1, and the input signals y(t
j), j = 0, 1,2, ... , N - 1. 

Similarly, in the decision-feedback equalizer, we have tap coefficients cj(t), 
j = 0,1, ... ,IV - 1, where the first K, + 1 are the coefficients of the feedfor
ward filter and the remaining K2 = N - K, - 1 are the coefficients of the 
feedba~k filter. The data in the estimate l(t) is V'+K" . .. , V,+l, i,_" . .. ,1'-K" 
where I,_j, 1 s;;,j s;;,K2 , denote the decisions on previously detected symbols. In 
this development, we neglect the effect of decision errors in the algorithms. 
Hence, we assume that l'-J = 1,_ j, 1 s;;, j s;;, K2 • For notational convenience, we 
also define 

(11-4-2) 
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Thus, 

Y,,(t) = [yet) y(t -1) ." yet - N + 1)], 

(11-4-3) 

11-4-1 Recursive Least-Squares (Kalman) Algorithm 
The recursive least-squares (RLS) estimation of l(t) may be formulated as 
follows. Suppose we have observed the vectors Y Nln), n = 0, I, ...• t, and we 
wish to determine the coefficient vector CN(t) of the equalizer (linear or 
decision-feedback) that minimizes the time-average weighted squared error 

I 

g~5 = 2: w'-n leN(n. t)I' (11-4-4 ) 
n=O 

where the error is defined as 

0 1-4-5) 

and w represents a weighting factor 0 < w < 1. Thus we introduce exponential 
weighting into past data. which is appropriate when the channel characteristics 
are time-variant. Minimization of ~NS with respect to the coefficient vector 
CN(i) yields the set of linear equations 

. 
(11-4-6) 

where KN(t) is the signal correlallon matrix defined as 

, 
KN(I) = 2: w'-"YMn)Y~{n) (11-4-7) 

n=O 

and D,v(i) is the cross-correlation vector 

I 

D.v(t) = 2: w'-nl(n)Y~n) ( 11-4-8) 
n=() 

The solution of (11-4-6) is 

( 11-4-9) 

The matrix K,,(t) is akin to the statistical autocorrelation matrix r N. while 
the vector DN(I) is akin to the cross-correlation vector ~N' defined previously. 
We emphasize, however, that KN(t) is not a Toeplitz matrix. We also should 
mention that, for small values of t, KN(I) may be ill conditioned; hence, it is 
customary to initially add the matrix 81N to KN(t), where 8 is a small positive 
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constant and IN is the identity matrix. With exponential weighting into the 
past, the effect of adding ~IN dissipates with time. 

Now suppose we have the solution (11-4-9) for time t -I, Le., CI\I(t - I), 
and we wish to compute CN(t). It is inefficient and, hence, impractical to solve 
the set of N linear equations for each. new signal component that is received. 
To avoid this, we proceed as follows. first, RI\I(I) may be computed recursively 
as 

(11-4-10) 

We call (11-4-10) the time-update equation for RI\I(t). 
Since the inverse of RN(I) is needed in (11-4-9), we use the matrix-inverse 

identity 

R-'(t) = ~ [R '(t -1) R,,'(I - I)Y~(t)Y!v(t)RiV'(1 - 1)] 
N WNW + Y:-V(t)RN'(t -1)YX,(t) 

(11-4-11) 

Thus RN'(t) may be computed recursively according to (1l-4·11). 
For convenience, we define PN(t) = RiV'(t). It is also convenient to define an 

N-dimensional vector, called the Kalman gain vector, as 

1 
KN(t) = ()PN(I-I)Y~t) 

w +!J.N t 

where /lw(t) is a scalar defined as 

!J.N(r) = Y~..,(t)PN(t -1)Yx,(t) 

With these definitions, (11-4-11) becomes 

1 
PN(t) = - [PN(t -1) - KN(t)Y!v(t)PN(t - 1)1 

w 

Suppose we postmultiply both sides of (11-4-14) by YMt). Then 

1 
P N(/)Y~(t) = - [PN(t - 1 )Y~t) - KN(t)YN(t)PN(t - l)Y;t.(/)] 

w 

1 
= -([w + !J.N(t)]KN(t) - K,v(t)J'N(t)} 

w 

= KN(I) 

(1I-4-12) 

(ll-4-B} 

(11-4-14) 

(11-4-15) 

Therefore, the Kalman gain vector may also be defined as PN(r)Y N(l). 
Now we use the matrix inversion identity to derive an equation for 

obtaining CN(t) from CI\I(t - 1). Since 

CN(t) = PN(t)D~1) 
and 

(11-4-16) 
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we have 

CN(f) = ~ [PNli - I) - KN(t)Y~(I)p,,(r - 11I1,,'D,,(r - I) + 1(i)YW») 
w 

- K, (I)Y\(£}P N(I - l)D, (i - I) 

1 
- - f(I)K,(t)Y\(r)P,(r - 1 )Yt(r) 

'" 

Nott' thar Y',(t)C,(r - 1) is the output of the equalizer at time I, i.e" 

itt) = v'y(t)C,,(t - l) 

and 
e,(T, t-1J=I(tJ-IU)=ev(!) 

(11-4-\7) 

(11-4-18) 

(11-4-19) 

is the error between the desired symbol and the estimate. Hence, CN(I) is 
upd3ted recursively according to the relation 

C,(t) = C,v(r - 1) + K,(I)e,,(i) 

The rcsidual MSE resulting from this optimization is 
, 

".l,s = '" 1\"" 1/(1/ )1' - C' .(t)D*(I) '\imln..t..J ' , .\ _"< 

( 11-4-20) 

(11-4-21) 

To summarizc, suppose we have CN(t - \) and P.v(1 - I). When a new 
signal component is received, we have Vv(t), Then the recursive computation 
for the time update of CN(t) and P,,(t) proceeds as follows: 

• compute output: 
i(l) = Y'.,.(t)C.v(1 - I) 

• compute error: 
e,(t) = l(t)-I(1) 

• compute Kalman gain vector: 

K,(I) = PN(I - 1 }\",,(I) 
, w + V:,,,{I)P,,(r - 1 )¥:t(t) 

• update inverse of the correlation matrix: 

1 
P,,,(t) =-[PN(t -1) - K",(t}Y: ... (r)P",(t -1)J 

w 

• update coefficients: 

CN{r} = C,,(t - \) + Kx(t)e,,(t) 

= CN(t - 1) + P..,(I)Y*(t)e,,,(t) ( 11-4-22) 
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The algorithm described by (11-4-22) is called the RLS direct form or Kalman 
algorithm. It is appropriate when the equalizer has a transversal (direct-form) 
structure. 

Note that the equalizer coefficients change with time by an amount equal to 
the error £,,(/) multiplied by the Kalman gain vector KN(I}. Since K,,(t) is 
N-dimensional, each tap coefficient in effect is controlled hy one of the 
elements of KN(I). Consequently rapid convergence is obtained. In contrast, 
the steepest-descent algorithm, expressed in our present notation, is 

CN(t) = C,,(t -1) + AY~(I)eN(f) (1l-4-23) 

and the only variable parameter is the step size A. 
Figure 11-4-1 illustrates the initial convergence rate of these two algorithms 

for a channel with fixed parameters to = 0.26, t. = 0.93, h = 0.26, and a linear 
equalizer with 11 taps. The eigenvalue ratio for this channel is Am •• 1 Amin = 11. 
All the equalizer coefficients were initialized to zero. The steepest-descent 
algorithm was implemented with A = 0.020. The superiority of the Kalman 
algorithm is clearly evident. This is especially important in tracking a 
time-variant channel. For example, the time variations in the characteristics of 
an (ionospheric) high-frequency (HF) radio channel are too rapid to be 
equalized by the gradient algorithm, but the Kalman algorithm adapts 
sufficiently rapidly to track such variations. 

In spite of its superior tracking performance, the Kalman algorithm 
described above have two disadvantages. One is its complexity. The second is 
its sensitivity to roundoff noise that accumulates due to the recursive 
computations. The latter may cause instabilities in the algorithm. 

The number of computations or operations (multiplications, divisions, and 
subtractions) in computing the variables in (11-4-22) is proportional to N 2

• 

Most of these operations are involved in the updating of P N(t). This part of the 
computation is also susceptible to roundoff noise. To remedy that problem, 
algorithms have been developed that avoid the computation of PN(t) according 
to (11-4-14). The basis of these algorithms lies in the decomposition of P,,(t) in 
the form 

(11-4-24) 
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where SN(t) is a lower-triangular matrix whose diagonal elements are unity, 
and AN(t) is a diagonal matrix. Such a decomposition is called a sqlUlre-root 
factorization (see Bierman, 1m). This factorization is described in Appendix 
D. In a square-root algorithm, PN(t) is not updated as in (11-4-14) nOl is it 
computed. Instead, the time updating is performed on SN(t) and AN(t). 

Square-root algorithms are frequently used in control systems applications 
in which Kalman ftltering is involved. In digital communications, the square
root Kalman algorithm has been implemented in a decision-feedback-equalized 
PSK modem designed to transmit at high speed over HF radio channels with a 
nominal 3 kHz bandwidth. This algorithm is described in the paper by Hsu 
(1982). It has a computational complexity of 1.5N1 + 6.5N (complex-valued 
multiplications and divisions pel output symbol). It is also numerically stable 
and exhibits good numerical properties. For a detailed discussion of square· 
root algorithms in sequential estimation, the reader is referred to the book by 
Bierman (1m). 

It is also possible to derive RLS algorithms with computational complexities 
that grow linearly with the number N of equalizer coefficients. Such algorithms 
are generally called fast RLS algorithms and have been described in the papers 
by Carayannis et al. (1983), Cioffi and Kailath (1984), and Slock and Kailath 
(1988). 

11-4-2 Linear Prediction ami the Lattice Filter 
In Chapter 3, we considered the linear prediction of a signal, in the context of 
speech encoding. In this section, we shall establish the connection between 
linear prediction and a lattice filter. 

The linear prediction problem may be stated as follows: given a set of data 
y(t -1), y(t - 2), ... , yet - p), predict the value of the next data point yet). 
The predictor of order p is 

(11-4-25) 

Minimization of the MSE, defined as 

1:" = E[y(t) - 51 (t)]2 

= E[y(t) - i Opky(1 _ k>]2 
k-I 

(11-4-26) 

with respect to the predictor coefficients {apk} yields the set of linear equations 

i tlpk.p(k - I) = .p(l), I = I, 2, ... ,p 
k-I 

(11-4-27) 

where 
.p(l) = E[y(t)y(t + l)j 

These are called the normal eqUlltions or the Yule-Walker equations. 
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y(t -1), y(t - 2), ... , y(t - p), predict the value of the next data point y(t). 
The predictor of order p is 

(11-4-25) 

Minimization of the MSE, defined as 

1:" = E[y(t) - 51 (t)]2 

= E[y(t) - i Opky(1 _ k>]2 
k-I 

(11-4-26) 

with respect to the predictor coefficients {apk} yields the set of linear equations 

i tlpk';(k - I) = ';(/), I = I, 2, ... ,p 
k-I 

(11-4-27) 

where 
';(/) = E[y(t)y(t + l)j 

These are called the normal eqUlltions or the Yule-Walker equations. 
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The matrix 41 with elements 4>{k - I) is a Toeplitz matrix, and, hence, the 
Levinson-Durbin algorithm described in Appendix A provides an efficient 
means for solving the linear equations recursively, starting with a first-order 
predictor and proceeding recursively to the solution of the coefficients for the 
predictor of order p. The recursive relations for the Levinson-Durbin 
algorithm are 

~=4>(0) 

Qmm= 
4>(m) - A:"4>~_, 

~m-' 
(11-4-28) 

for m = 1. 2 •...• p. where the vectors Am-I and 4>:"-, are defined as 

4>:"-1 = [4>(m - 1) </I(m - 2) ... ~(I)J' 

The linear prediction filter of order m may be realized as a transversal filter 
with transfer function 

m 

Am(z) = 1 - L omZ-k (11-4-29) 
k=1 

Its input is the data {y(t)} and its output is the error e(t) = y(t) - J(t). The 
prediction filter can also be realized in the form of a lattice, as we now 
demonstrate. 

Our starting point is the use of the Levinson-Durbin algorithm for the 
predictor coefficients am. in (11-4-29). This substitution yields 

m-I 
Am(z) = 1 - L (am-,* - ammam-, m_t)Z-k - ammZ-m 

.-1 

(11-4-30) 

Thus we have the transfer function of the mth-order predictor in terms of the 
transfer function of the (m - 1 )th-order predictor. 

Now suppose we deline a filter with transfer function Gm(z) as 

Gm(Z) = Z -mAm(z-l) 

Then (11-4-30) may be expressed as 

Am(z) = Am-I(z) - ammz-'Gm-,(z)' 

(11-4-31) 

(11-4-32) 
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Note that Gm-I(z) represents a transversal filter with, tap coefficients 
(-am -1m-I> -Om-Im-b"" -0",-1" 1), while the coefficients of A m - t(,) 

are exactly the same except that they are given in reverse order. 
More insigbt into the relationship between A",(z) and Gm(t) can be 

obtained by computing the output of these two filters to an input sequence 
yet). Using z-transform relations, we have 

We define the outputs of the filters as 

Then (J 1·4-33) becomes 

. F,.,(z) =Am(z)Y(z) 

B",(z) = Gm(z)Y(z) 

Fm(z) = Fm_,(z) - ammz-'Bm-,(z) 

In the time domain, the relation in (11-4-35) becomes 

where 
m-' 

!m(t) = yet) - 2: amky(t - k) 
k=1 

m~J 

bm(t) = yet - m) - 2: am.y(t - m + k) 
1:=1 

(11-4-33) 

(11-4-34) 

(11-4-35) 

(11-4-36) 

(11-4-37) 

(11-4-38) 

To elaborate, [met) in (11-4-37) represents the error of an mth-order forward 
predictor, while b .. (t) represents the error of an mth-order backward 
predictor. 

The relation in (11-4-36) is one of two that specifies a lattic~ filter. The 
second celation is obtained from Gm(z) as follows: 

Gm(z) = Z-mAm(z-l) 

= z-m[Am_l(z-l) - o,....zmAm_l(z)] 

= z-'Gm - 1(z) - ommAm-,{z) (11-4-39) 

Now, if we multiply both sides of (11-4-39) by Y(z) and express the result in 
terms of Fm(z) and Bm(z) using the definitions in (11-4-34), we obtain 

(11-4-40) 

By transforming (11-4-40) into the time domain, we obtain the second relation 
thaI corresponds to the lattice filter, namely, 

(11-4-41) 
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y(1) 

{a) (b) 

FIGURE 11-4-2 A lattice filter. 

The initial condition is 

fo(t) = bolt) = yet) (11-4-42) 

The lattice filter described by the recursive relations in (11-4-36) and (11-4-41) 
is illustrate~ in Fig. 11-4-2. Each stage is characterized by its own multiplication 
factor {aii}' i = I, 2, ... ,m, which is defined in the Levinson-Durbin algorithm. 
The forward and backward errors Im(t) and b ... (t) are usually called the 
residuals. The mean square value of these residuals is 

(11-4-43) 

~M is given recursively, as indicated in the Levinson-Durbin algorithm, by 

~m = ~,"_,(1- a;'m) 

(11-4-44) 
i=l 

where ~ = .p(0). 
The residuals {[met)} and {bm(t)} satisfy a number of interesting properties, 

as described by Makhoul (1918). Most important of these are the orthogonality 
properties 

E[hm(t)b.(t)] = ~Sm. 
E[fm(t + m)t.(t +n)] = 'lmSnm 

Furthermore, the cross-correlation between I.,(t) and b.(t) is 

E[/",(t)b.(t») = {~ .. ~m i:::i m, n ~ 0 

(11-4-45) 

(11-4-46) 

As a consequence of the orthogOnality properties of the residuals, the 
different sections of the lattice exhibit a form of independence that allows us to 
add or delete one or more of the last stages without affecting the parameters of 
the remaining stages. Since the residual mean square error ~m decreases 
monotonically with ·the number of sections, ~ can be used as a performance 
index in determining where the lattice should be terminated. 

From the above discussion, we observe that a linear prediction filter can be 
implemented either as a linear transversal filter or as a lattice filter. The lattice 
filter is order-recursive, and, as a consequence, the number of sections it 
contains can be easily increased or decreased without affecting the parameters 
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of the remaining sections. In contrast, the coefficients of a transversal filter 
obtained on the basis of the RLS criterion are interdependent. This means that 
an increase or a decrease in the size of the filter results in a change in all 
coefficients. Consequently, the Kalman algorithm described in Section 11-4-1 is 
recursive in time but not in order. 

Based on least-squares optimization, RLS lattice algorithms have been 
developed whose computational complexity grow linearly with the number N 
of filter coefficients (lattice stages). Hence, the lattice equalizer structure is 
computationally competitive with the direct-form fast RLS equalizer algo
rithms. RLS lattice algorithms are described in the papers by Morf er al. 
(1973), Satorius and Alexander (1979), Satorius and Pack (1981). Ling and 
Proakis (1984), and Ling et al. (1986). 

RLS lattice algorithms have the distinct feature of being numerically robust 
to round-olI error inherent in digital implementations of the algorithm. A 
treatment of their numerical properties may be found in the papers by Ling et 
al. (1984, 1986). 

u-s SELF-RECOVERING (BLIND) EQUALIZATION 
In the conventional zero-forcing or minimum MSE equalizers, we assumed that 
a known training sequence is transmitted to the receiver for the purpose of 
initially adjusting the equalizer coefficients. However, there are some applica
tions, such as mUltipoint communication networks. where it is desirable for the 
receiver to synchronize to the received signal and to adjust the equalizer 
without having a known training sequence available. Equalization techniques 
based on initial adjustment of the coefficients without the benefit of a training 
sequence are said to be self -recovering or blind. 

Beginning with the paper by Sato (1975), three different classes of adaptive 
blind equalization algorithms have been developed over the past two decades. 
One class of algorithms is based on steepest descent for adaptation of Ihe 
equalizer. A second class of algorithms is based on the use of second- and 
higher-order (generally, fourth-order) statistics of the received signal to 
estimate the channel characteristics and to design the equalizer. More recently, 
a third class of blind ettralization algorithms based on the maximum-likelihood 
criterion have been investigated. In this section, we briefly describe these 
approaches and give several relevant references to the literature. 

11-5-1 Blind Eqt.alizadon Based 011 Maximum-Likelihood 
Criterion 

It is convenient to use the equivalent. discrete-time channel model described in 
Section 10-1-2. Recall that the output of this channel model with lSI is 

L 

Vn = L {.In-k + fin 
k-O 

(11-5-1) 
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where {t.} are the equivalent discrete-time channel coefficients, {In} represents 
the information sequence, and {l1n} is a white gaussian noise sequence. 

For a block of N received data points, the (joint) probability density 
function of the received data vector v = [v, V2 ••• VN)' conditioned on 
knowing the impulse response vector r = [10 It ... ILl' and the data vector 
I = (I, I, ... IN]' is 

1 ( . 1 NIL 12) p(v I f, I) = (2 2)Nex:p - 2~ L v. - L Mn-. 
lCu U 11'=1 k=O 

(11-5-2) 

The joint max:imum-likelihood estimates of f and I are the values of these 
vectors that maximize the joint probability density function p(v 11.1) or. 
equivalently. the values of f and I that minimize the term in the exponent. 
Hence. the ML solution is simply the minimum over f and Iof the metric 

NIL I' DM(I, £) =~, Vn - .'5;/*1.-•. 

= IIv-Afll' ( 11-5-3) 

where the matrix A is called the data matrix and is defined as 

I, 0 0 0 

I, I, 0 0 

A= I, 12 I, 0 (11-5-4) 

IN [N-' IN - 2 IN - L 

We make several observations. First of all. we note that when the data 
vector I (or the data matrix A) is known, as is the case when a training 
sequence is available at the receiver, the ML channel impulse response 
estimate obtained by minimizing (11-5-3) over fis 

fML(I) = (A'A)-'A'v (11-5-5) 

On the other hand, when the channel impulse response r is known, the 
optimum ML detector for the data sequence I performs a trellis search (or tree 
search) by utilizing the Viterbi algorithm for the lSI channel. 

When neither I nor f are known. the minimization of the performance index 
DM(I,£) may be performed jointly over I and f. Alternatively, f may be 
estimated from the probability density function p(v I £). which may be obtained 
by averaging p(v, f II) over all possible data sequences. That is, 

m (11-5-6) 

.. 
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where p(l(m» is the probability of the sequence 1= I(m), for m = 1,2, ... , MN 
and M is the size of the signal constellation. 

ChlUlllel Estimation Based on Average over Data Sequences As indi
cated in the above discussion, when both I and r are unknown, one approach is 
to estimate the impulse response r after averaging the probability density 
p{v, II () over :./1 possible data sequences. Thus, we have 

m 
(11-5-7) 

= '" [1 (_ Ilv - A(m lfll , )]p(I,m» 
-;: (21t"u1 )'vexp 21T2 

Then, the es'imate of f that maximizes p(v I I) is the solution of the equation 

(11-5-8) 

Hence, the estimate of f may be expressed as 

f = [I p(I,m»A(m"A(m)g(v, A (m), I)]"! 
m 

(11-5-9) 

m 

~here the function g(v, A(m\ I) is defined as 

(11-5-10) 

The resulting solution for the optimum f is denoted by fML . 

Equatwn (11-5-9) is a nonlinear equation for the estimate of tne channel 
impulse response, given the received signal vector v. It is generally difficult to 
obtain the optimum solution by solving (11-5-9) directly. On the other hand, it 
is relatively simple to devise a numerical method that solves for fML 

recursively. Specifically, we may write 

":>+1) = [~ p(l(m»A ''')'Atmlg(v, AIm), r k»] -) 

(11-5-11) 
m 

Once f.\lL is obtained from the solution of (11-5-9) or (11-5-11), we may 
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simply use the estimate in the minimization of the metric DM(I. f t•1l ). given \>\ 
(1l-5-3), over all the possible data sequences. Thus, I"l. is the sequence I Ih~; 
mimimizes DM(l f ML ). i.e., 

min DM(I, fMd = min IIv - AfMLf ( 11·5-12) 
I I 

We know that the Viterbi algorithm is the computationally efficient algorithm 
for performing the minimization of DM(I, rMd over •. 

This algorithm has two major drawbacks. First, the recursion for fUI given 
by (1/-5-11) is computationally intensive. Second, and. perhaps, more impor
tantly, the estimate fML is not as good as the maximum-likelihood estimate 
' .. L(I) that is obtained when the sequence I is known. Consequently, the error 
rate performance of the blind equalizer (the Viterbi algorithm) based on the 
estimate fML is poorer than that based on ("L(I). Next, we consider joint 
channel and data estimation. 

Joint CblUlllellUld Data Estimation Here, we consider the joint optimiza
tion of the performance index DM(I, f) given by (11-5-3). Since the elements 
of the impulse response vector. f are continuous and the elements of the data 
vector I are discrete, one approach is to determine the maximum-likelihood 
estimate of r for each possible data sequence and, then, to select the data 
sequence that minimizes DM(I, f) for each corresponding channel estimate. 
Thus, the channel estimate corresponding to th&mth data sequence 11m

) is 

(][.5-13 ) 

For the mth data sequence, the metric DM(I,£) becomes 

(11-5-14) 

Then, from the set of MN possible sequences, we select the data sequence that 
minimizes the cost function in (11-5-14), i.e., we determine 

(11-5-15) 

The approach described above is an exhaustive computational search 
method with a computational complexity that grows exponentially with the 
length of the data block. We may select N = L, and, thus, we shall have one 
channel estimate for each of the ML surviving sequences. Thereafter, we may 
continue to maintain a separate channel estimate for each surviving path of the 
Viterbi algorithm search through the trellis. 

A similar approach has been proposed by Seshadri (1991). In essence. 
Seshadri's algorithm is a type of generalized Viterbi algorithm (GVA) that 
retains K;;. 1 best estimates of the transmitted data sequence into each state 
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Joint CblUlllellUld Data Estimation Here, we consider the joint optimiza
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of the impulse response vector. f are continuous and the elements of the data 
vector I are discrete, one approach is to determine the maximum-likelihood 
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) is 
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For the mth data sequence, the metric DM(I,£) becomes 

(11-5-14) 
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(11-5-15) 

The approach described above is an exhaustive computational search 
method with a computational complexity that grows exponentially with the 
length of the data block. We may select N = L, and, thus, we shall have one 
channel estimate for each of the ML surviving sequences. Thereafter, we may 
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A similar approach has been proposed by Seshadri (1991). In essence. 
Seshadri's algorithm is a type of generalized Viterbi algorithm (GVA) that 
retains K;;. 1 best estimates of the transmitted data sequence into each state 
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of the trellis and the corresponding channel estimates. In Seshadri's GVA, the 
search is idenlicallo the conventional VA from the beginning up 10 the L stage 
of the trellis, i.e., up to the point where the received sequence (VI. V2.··· . lid 
has been processed. Hence, up to the L stage, an exhaustive search is 
performed. Associated with each data sequence I'm}, there is a corresponding 
channel estimate fML(I''''}). From this stage on, the search is modified, to retain 
K ;;. 1 surviving sequences and associated channel estimates per state instead of 
only one sequence per state. Thus, the GV A is used for processing the 
received signal sequence {Un .l1;;' L + I}. The channel estimate is updated 
recursively at each stage using the LMS algorithm to further reduce the 
computational complexity. Simulation results given in the paper by Seshadri 
(1991) indicate that this GV A blind equalization algorithm performs rather 
well at moderate signal-to-noise ratios with K = 4. Hence, there is a modest 
increase in the computational complexity of the GV A compared with that for 
the conventional V A. However, there are additional computations involved 
with the estimation and Updating of the channel estimates f(1(m) associ"ted 
with each of the surviving data estimates. 

An alternative joint estimation algorithm that avoids the least-squares 
computation for channel estimation has been devised by Zervas ef al. (1991 j. 
In this algorithm, the order for performing the joint minimization of the 
performance indel( DM(I, f) is reversed. That is. a channel impulse response. 
say f = fn is selected and then the conventional V A is used to find the 
optimum sequence for this channel impulse response. Then, we may modify f I) 

in some manner to t 2
) '" tIl + At') and repeat the optimization over the data 

sequences ·{fm )}. 

Based on this general approach, Zervas developed a new ML blind 
equalization algorithm, which is called a qual1tized-channel algorithm. The 
algorithm operates over a grid in the channel space. which becomes finer and 
finer by using the ML criterion to confine the estimated channel in the 
neighborhood of the original unknown channel. This algorithm leads to an 
efficient parallel implementation, and its storage requiremellts are only those 
of the VA. 

11-5-2 Stochastic Gradient Algorithm 
Another class of blind equalization algorithms are stochastic-gradient iterative 
equalization schemes that apply a memoryless nonlinearity in the output of a 
linear FIR equalizatio~ filter in order to generate the "desired response" in 
each iteration. 

Let us begin with an initial guess of the coefficients of the optimum 
equalizer. which we denote by {en}. Then. the convolution of the channel 
response with the equalizer response may be expressed as 

{en} * {t.} = {8,,} + {e,,} (11-5-16) 

where {lln} is the unit sample sequence and fen} denotes the error sequenc~ 
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that results from our initial gueS5 of the equalizer coefficients. If we con\'oj,~ 
the equalizer impulse response with the received sequence {v.}, we obtain 

{In} = {vn} * {en} 

= {In} * {tn} * {en} + {'In) * {en} 

= {In} * ({c5n) + {en}) + hn} * {en} 

= {In} + {In} * {en} + {'I)n} * {enl (11-5-17) 

The term {In} in (11-5-17) represents the desired data sequence, the term 
{In} * len} represents the residual lSI, and the term {lin} * len} represents the 
additive noise. Our problem is to utilize the deconvolved sequence {lnl to find 
the "best" estimate of a desired response, denoted in general by {dn }· In the 
case of adaptive equalization using a training sequence, {d.} = {In}. In a blind 
equalization mode, we shall generate a desired response from fl.}. 

The mean square error (MSE) criterion may be employed to determine the 
"best" estimate of {I.} from the observed equalizer output {In}. Since the 
transmitted sequence {In) has a nongauS5ian pdf, the MSE estimate is a 
nonlinear transformation of {In}. In general, the "best" estimate {dn} is given 
by 

(memoryless ) 

(mth-order memory) 
(U-5-J8) 

where g( ) is a nonlinear function. The sequence {do} is then used to generate 
an error signal, which is fed back into the adaptive equalization filter, as shown 
in Fig. 11-5-1. 

A well-known claS5ical estimation problem is the following. If the equalizer 
output 1n is expressed as 

(11-5-19) 

where i1n is assumed 10 be zero-mean gauS5ian (the central limit theorem may 

FlGUKE lJ·5-! Adaptive hlind equalization with stochastic 
gradient algorithms. 
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TABLE 11-5-1 STOCHASTIC GRADIENT ALGORITHMS FOR BLIND EQUALIZATION 

Equajj2er tap coefficients 
Received signal sequence 
Equalizer output sequence 
Equalizer error sequence 

kn.O.;n.;N-I) 
Iv..} 
{in} ~ 1v,,1 * k,,} 
Ie,,} = g(f,,) - t 

Tap coefficient update equatIon C.,+l =Cn + ~v:t'" 

Godard 

Sato 

BenveJjiste~Goursat 

Stop·and-Go 

i. . - ., , EIII,t} 
li,,1 0/,,1 + R 21/ .. 1 - If,,1J, R, = EIII"I'I 

• EURe (I.)]') 
.. csgn (I.) •• - EORe (In)11 

j .. + k ,(i .. - In) ;- k,Ii.. -1,,1 f. csgo (in) -In}. k, and 
k 2 are positive constants 

j" + IA(in -I .. ) + \B(1. - i.)- (A. B) = (2. 0), (1,1). 
O. -1). or (Do 0), depending on the signs of decision· 
directed error t - i fJ and the enor ,csgn (i'I) - in 

be invoked here for the residual lSI and the additive noise), {In} and {iin} are 
statistically independent, and {l"} are statistically independent and identically 
distributed random variables, then the MSE estimate of {In} is 

d" = E(l" /In) (11-5-20) 

which is a nonlinear function of the equalizer output when {In} is nongaussian. 
Table 11·5·1 illustrates the general form of existing blind equalization 

algorithms that are based on LMS adaptation. We observe that the basic 
difference among these algorithms lies in the choice of the memoryless 
nonlinearity. The most widely used algorithm in practice is the Godard 
algorithm, somenmes also called the conslanl-modulus algorithm (CMA). 

It is apparent from Table 11·5·1 that the output sequence {dnl obtained by 
taking a nonlinear function of the equalizer output plays the role of the desired 
response or a training sequence. It is also apparent tbat these algorithms are 
simple to implement, since they are basically LMS·type algorithms. As such, 
we expect thaI the convergence characteristics of these algorithms will depend 
on the autocorrelation matrix of the received data {vn}, 

With regard to convergence, the adaptive LMS·type algorithms converge in 
the mean when 

(11-5-'21) 

and, in the mean square sense, when (superscript H denotes the conjugate 
transpose) 

E[e!'vng*(l")) = E[c~1JnJ:J 
E[l.g*(in)] = E[lUJ (!I·5·22) 
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Therefore, it is required that tbe equalizer output {in} satisfy (11-5-22). Note 
that (11·5-22) states that the autocorrelation of {in} (the right-hand side) equals 
the cross-correlation between In and a nonlinear transformation of 1. (left-hand 
side). Processes that satisfy this property are called Bussgang (1952), as named 
by Bellini (1986). In summary, the algorithms given in Table 11-5-1 converge 
when the equalizer output sequence In satisfies the Bussgang property. 

The basic limitation of stochastic gradient algorithms is their relatively slow 
convergence. Some improvement in the convergence rate can be achieved by 
modifying the adaptive algorithms from LMS-type to recursive-least-square 
(RLS) type. 

Godard Algorithm As indicated above, the Godard blind equalization 
algorithm is a steepest-descent algorithm that is widely used in practice when a 
training sequence is not available. Let us describe this algorithm in more detail. 

Godard considered the problem of combined equalization and carrier phase 
recovery and tracking. The carrier phase tracking is performed at baseband, 
following the equalizer as shown in Fig. 11-5-2. Based on this structure, we 
may express the equalizer output as 

(11-5-23) 
n=-K 

and tbe input to the decision device as lk exp (-j~.). where ~k is the carrier 
phase estimate in the kth symbol interval. 

If the desired symbol were known, we could form the error signal 

E:. = I. -I.e -j4>. 

and minimize the MSE with respect to ~k and {cn }, i.e .• 

!!lin EOh -I.e -i4>'j2) 
tIIk,C 

FIGURE 11-5-2 Godard scheme for combined adaptive (blind) equalization .and carner phase tracking. 
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This critenon leads us to use the LMS algorithm for recursively estimating C 
and tb •. The LMS algorithm based on knowledge of the transmitted sequence 
is 

(11-5-26) 

(11-5-27) 

where .1.. and .l" are the step·size parameters for the two recursive equations. 
Note that these recursive equations are coupled together. Unfortunately, these 
equations will not converge, in general, when the desired symbol sequence {I.} 
is unknown. 

The approach proposed by Godard is to use a criterion that depends on the 
amount of intersymbol interference at the output of the equalizer bul one that 
is independent of the QAM signal constellation and the carrier phase. For 
example, a cost function that is independent of carrier phase and has the 
property that ils minimum leads 10 a small MSE is 

( 11-5·28) 

where p is a positive and real integer. Minimization of GIP) with respect to the 
equalizer coefficients results in the equalization of the signal amplitude only. 
Based on this ohservation, Godard selected a more general cost function, 
called the dispersion of order p. defined as 

(11-5-29) 

where Rp is a positive real constant. As in the case of G(P), we observe that 
DIP' is independent of the carrier phase. 

Minimization of D'P) with respect to the equalizer coefficients can be 
performed recursively according to the steepest-descent algorithm 

dDtP) 
C. + I = C. - fl.? dC. ( 11-5-30) 

where fl.p is the step-size parameter. By differentiating Dip} and dropping the 
expectation operation, we obtain the following LMS-type algorithm for 
adjusting the equalizer coefficients: 

where fl.,> is the step-size parameter and the optimum choice of R" is 

R = £(11,121') 
P £(11.1") 

(11-5-31) 

( 11-5-32) 

As expected, the recursion in (11-5-31) for C. does not require knowledge 
of the carrier phase. Carrier phase tracking may be carried out in a 
deCISion-directed mode according to (11-5-27). 
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Of particular importance is the case p = 2, which leads to the relatively 
simple algorithm 

C. + I = C. + t:..p Vtl.(R 2 -11.12
) 

- - -. i <PH 1 = <P. + !:J. .. lm (T.Ite' .) 

where f. is the output decision based on I., and 

R2 
£(11.14

) 

£0/.12
) 

(11-5-33) 

(11-5-34) 

Convergence of the algorithm given in (11-5-33) was demonstrated in the 
paper by Godard (1980). Initially, the equalizer coefficients were set to zero 
except for the center (reference) tap, which was set according to the condition 

2 £ 1/.1' 
ICul > 2lxol2 [£01.12)1' (11-5-35) 

which is sufficient, but not necessary, for convergence of the algorithm. 
Simulation results performed by Godard on simulated telephone channels with 
typical frequency response characteristics and transmission rates of 7200-
12000bits/s indicate that the algorithm in (11-5-31) performs well and leads to 
convergence in 5000-20000 iterations, depending on the signal constellation. 
Initially, the eye pattern was closed prior to equalization. The number of 
iterations required for convergence is about an order of magnitude greater 
than the number required to equalize the channels with a known training 
sequence. No apparent difficulties were encountered in using the decision
directed phase estimation algorithm in (11-5-33) from the beginning of the 
equalizer adjustment process. 

U-S·3 Blind Equalization Algorithms Based on Second· and 
Higher-Order Signal Statistics 

It is well known that second-order statistics (autocorrelation) of the received 
signal sequence provide information on the magnitude of the channel 
characteristics, but not on the phase. However, this statement is not correct if 
the autocorrelation function of the received signal is periodic, as is· the case 
for a digitally modulated signal. In such a case, it is possible to obtain a 
measurement of the amplitude and tbe phase of the channel from the received 
signal. This cycIostationarity property of the received signal forms the basis for 
a channel estimation algorithm devised by Tong et al. (1993). 

It is also possible to estimate the channel response from the received signal 
by using higher-order statistical methods. In particular, the impulse response of 
a linear, discrete-time-invariant system can be obtained explicitly from 
cumulants of the received signal, provided that the channel input is nongaus
sian. We describe the following simple method for estimation of the channel 
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impulse response from fourth-order cumulants of the received signal sequence. 
The fourth-ord~r cumulant is defined as 

c(vJ..' Vi. + '11' 1;.1. • 'I' VJ,: • J) == cl..(m, n, l) 

= E(v;. vt.:>-mvJ,:-fnvJ.../) 

- E(v, lIk+m)E(v, en Vk./) 

- E(v, V" ,,)E(v, -m v" /) 

- E(II, 1I,.,)E(v,.",v .. ,,) (11-5-36 ) 

(The fourth-order cumulant of a gaussIan signal process is zero.) Consequently, 
it follows that 

" 
'Am. n, I) = c(f" 1,."" 1, "" I, ./) 2: fdHmfH"f,,, (11-5-37) 

I.:. ~-o 

For a statistically independent and identically distributed input sequence {I,,} 
to the channel, c(l,. f, .",. f, CO" I,d) = k, a constant, called the kurtosis. Then, 
if the length of the channel response is L + 1, we may let m = n = (= - L so 
that 

<A-L, -L, -L)=kfJ,; 

Similarly. if we let m = 0, n = L and I = p. we obtain 

c,(O, L, p) = kfJt,[p 

(11-5-38) 

(11-5-39) 

If we combine (11-5·3S) and (11-5-39), we obtain the impulse response within a 
scale factor as 

. c,IO, L,p) 
J;, = fOe (-L -L -L) , , , 

p = 1,2, ... ,L (11-5-40) 

The cumulants c,(m, n, I) are estimated from sample averages of the received 
signal sequence {II,.}. 

Another approach based on higher-order statistics is due to Hatzinakos and 
Nikias (1991). They have introduced the first polyspectra-based adaptive blind 
equalization method named the tricepstrum equalization algorithm (TEA), This 
method estimates the channel response characteristics by using the complex 
cepstrum of the fourth-order cumulants (tricepstrum) of the received signal 
sequence {vn}. TEA depends only on fourth-order cumulants of {lin} and is 
capable of separately reconstructing the minimum-phase and maximum-phase 
characteristics of the channel. The channel equalizer coefficients are then 
computed from the measured channel characteristics. The basic approach used 
in TEA is to compute the tricepstrum of the received sequence {vn }, which is 
the inverse (ttlree-dimensional) Fourier transform of the logarithm of the 
trispectrum of {vn }. (The trispectrum is the three-dimensional discrete Fourier 
transform of the fourth-order cumulant sequence c,(m, n, /)J. The equalizer 
coefficients are then computed from the cepstral coefficients. 
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By separating the channel estimation from the channel equalization. it is 
possible .to use any type of equalizer for the lSI, i.e .• either linear. or 
decision-feedback, or maximum-likelihood sequence detection. The major 
disadvantage with this class of algorithms is the large amount of data and the 
inherent computational complexity involved in the estimation of the higher. 
order moments (cumulants) of the received signaL 

In conclusion. we have provided an overview of three classes of blind 
equalization algorithms that find applications in digital communications. Of the 
three families of algorithms described. those based on the maximum-likelihood 
criterion for jointly estimating the channel impulse response and the data 
sequence are optimal and require relatively few received signal samples for 
performing channel estimation. However. the computational complexity of tho: 
algorithms is large when the lSI spans many symbols. On some channels, such 
as the mobile radio channel. where the span of the lSI is relatively short, these 
algorithms are simple to implement. However, on telephone channels. where 
the lSI spans many symbols but is usually not too severe. the LMS-type 
(stochastic gradient) algorithms are generally employed. 

11·6 BIBLIOGRAPHICAL NOTES AND REFERENCES 
Adaptive equalization for digital communications was developed by Lucky 
(1965, 1966). His algorithm was based on the peak distortion criterion and led 
to the zero-forcing algorithm. Lucky's work was a major breakthrough. which 
led to the rapid development of high-speed modems within five years of 
publication of his work. Concurrently_ the LMS algorithm was devised by 
Widrow (1966). and its use for adaptive equalization for complex·valued 
(in-phase and quadrature components) signals was described and analyzed in a 
tutorial paper by Proakis and Miller (1969). 

A tutorial treatment of adaptive equalization algorithms that were de· 
veloped during the period 1965-1975 is given by Proakis (1975). A more recenl 
tutorial treatment of adaptive equalization is given in the paper by Qureshi 
(1985). The major breakthrough in adaptive equalization techniques, beginning 
with the work of Lucky in 1965 coupled with the development of trellis-coded 
modulation. which was proposed by Ungerboeck and Csajka (1976), has led to 
the development of commercially available high speed modems with a 
capability of speeds of 9600-28800 bits/s on telephone channels. 

The use of a more rapidly converging algorithm for adaptive equalization 
was proposed by Godard (1974). Our derivation of the RLS (Kalman) 
algorithm. described in Section· 11-4-1. follows the approach outlined by 
Picinbono (1978). RLS lattice algorithms for general signal estimation applica
tions were developed by Morf et al. (1977, 1979). The applications of these 
algorithms have been investigated by several researchers, including Makhoul 
(1978), Satorius and Pack (1981), Satorius and Alexander (1979), and Ling and 
Proakis (1982, 1984a-c, 1985). The fast RLS Kalman algorithm for adaptive 
equalization was first described by Falconer and Liung (1978). The above 
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references are just a few of the important papers that have been published on 
RLS algorithms for adaptive equalization and other applications. 

Sato's (1975) original work on blind equalization was focused on PAM 
(one-dimensinal) signal constellations. Subsequently it was generalized to 
two-dimensional and multidimensional signal constellations in the algorithms 
devised by Godard (1980), Benveniste and Goursat (1984), Sato (1986), 
Foschini (1985), Picchi and Prati (1987), and Shalvi and Weinstein (1990). 
Blind equalization methods based on the use of second· and higher-order 
moments of the received signal were proposed by Hatzinakos and Nikias 
(1991) and Tong et al. (1994). The use of the maximum-likelihood criterion for 
joint channel estimation and data detection has been investigated and treated 
in papers by Seshadri (1991), Ghosh and Weber (1991), Zervas et ai. (1991) 
and Raheli et al. (1995). Finally, the convergence characteristics of stochastic 
gradient blind equalization algorithms have been investigated by Ding (1990). 
Ding et al. (1989), and Johnson (1991). 

n·] An equivalent discrete-time channel with white gaussian noise is shown in Fig. 
Pll-1. 
a Suppose we use a linear equalizer to equalize the channel. Determine the tap 

coefficients c _" Co, c,' of a three-tap equalizer. To simplify the computation, let 
the AWON be zero. 

b The tap coefficients of the linear equalizer in (a) are determined recursively via 
the algorithm 

c,_, = C, - tl.1lk, C, = Ie" co, e,,], 

where Ilk = rc, - b is the gradient vector and tl. is the step size. Determine the 
range of values of tl. to ensure convergence of the recursive algorithm. To 
simplify the computation, let the AWOl' be zero. 

c Determine the tap weigbts of a DFE with two feed forward taps and one 
feedback gap. To simplify the computation, let the A WON be zero. 

11·2 Refer to Problem 10-18 and answer the following questions. 
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UtAPTi:R II ADAPTIVE EQlIAUZATlO!'l: '77 

a Determine the maximum value of ~ thaI can be used 10 ensure that Ihe 
equalizer coefficients converge during operation in the adaptive mode. 

b What is the variance of tile self-noise generated by the three-tap equalizer when 
operating in an adaptive mode. as a function of A? Suppose it is desired to limit 
the variance of the self-noise to 10% of the minimum MSE for the three-tap 
equali,er when N" = 0.1. What value of A would you select? 

c If the optimum coefficients of the equalizer are computed recursively by the 
method of steepest descent. the recursive equation can be expressed in the form 

C,". " = (I - J.f)C,n) + J.~ 

where I. is !he identity matrix. The above represents a set of three coupled 
first-order difference equations. They can be demur-led by a linear transforma
lion that diagonalizes the matrix f. That is, f = UAU' where A is the diagonal 
matrix having the eigenvalues of r as ils diagonal elements and U is the 
(normalized) modal matrix that can be obtained from your answer to 1O-18(b). 
Let C' = U'C and determine the steady-state solution for C'. From this. evaluate 
C = (U') - 'e = UC' and. thus, show Ihat your answer agrees with Ihe result 
obtained in 1O-18{a). 

11·3 When a periodic pseudo-random sequence of length N is used to adjust the 
coefficients of an N-tap linear equalizer. the computations ca~ be performed 
efficiently in !he frequency domain oy use of the discrete fourier transform 
(DFf). Suppose that {Ynl is a sequence of N recei,!ed samples (taken at the symbol 
rate) at the equalizer input. Then the computation of the equalizer coefficients is 
performed as follows. 
8 Compute the OFf of one period of the equalizer input sequence Lv.l. i.e., 

1\ -! 

Y4 = L: Yrze -i2Knk.IA 

,,"0 

to Compute the desired equalizer spectrum 

C _ X.l1' 
• - 11~12 . k =0, I, ... , N-I 

where {Xi} is the precomputed OFf of the training sequence. 
c Compute the inverse OFf of {C.jlo obtain the equalizer coefficients (c.j. Show 

that this procedure in the absence of noise yields an equalizer whose frequency 
response is equal to the frequency response of the inverse folded channel 
spectrum at the N uniformly spaced frequenCies!. = k/NT, k = 0,1, .... N - l. 

11-4 Show that the gradient vector in the minimization of the MSE may be expressed as 

G. = -E(e,V:) 

where the error E. = 1, - i .. and the estimate of G •• i.e., 

GI;, = -£kV: 

satisfies the condition that £(G.) = G,. 
11·5 The lap-leakage LMS algorithm proposed in the paper by Gitlin et al. (1982) may 

be expressed as 

C,,(n + I) = wC",(n) + <1e(n)VJ:,(II) 
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where 0 < w < 1, .l is the step size, and V M:n) is the data vector at time n. 
Determine the condition for the convergence of the mean value of CN{n). 

11-6 Consider the random process 

x(n)=gv(n)+w(n}. n =0.1 •. ,., M-J 

where v(n) is a known sequence, g is a random variable with E(g) = O. and 
E(g') = G. The process w(n) is a white noise sequence with 

Determine the coefficients of the linear estimator for g. that is, 

M--I 

g = 2: h(n)x(n) 
,,=0 

that minimize the mean square error 
11.7 A digital transversal filter can be realized in the frequency.sampling form with 

system function (see Problem 10-25) 

l_Z- MM - 1 HI< 
H(z)= M ~ol-ei''''Mz 

= H,(z)H,(z) 

where H,(z) is the comb filter, Hiz) is the parallel bank of resonators, and {H.} 
are the values of the discrete Fourier transform (DFf). 
a Suppose that this structure is implemented as an adaptive filter using the LMS 

algorithm to adjust the filter (DFf) parameters {H.}. Give the time,update 
equation for these parameters. Sketch the adaptive filter structure. 

b Suppose that this structure is used as an adaptive channel equalizer in which the 
desired signal is 

-\(-~ ] 

d(n) = 2: A, cos w.n. 
1:=0 

21fk 
w'='M 

With this form for the desired signal. what advantages are there in the LMS 
adaptive algorithm for the DFf coefficients {H.} over the direct-form structure 
with coefficients {h(n)}1 (see Proakis, 1970). 

U·S Consider the performance index 

J=h'+4Oh+28 

Suppose ihat we search for the minimum of J by using the sleepest-de,cent 
algorithm 

h(n + 1) = h(n) - l~g(n) 

where g(n) is the gradient . 
• Determine the range of values of d that provides an overdamped system for the 

adjustment process. 
b Plol the expression for J as a function of n for a value of d in this range. 
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11·9 Determine the coefficients D, and a, for the linear predictor shown in Fig. PII·9, 
given that the autocorrelation "Y,.(m) of the input signal is 

"Y,,(m)=b''', O<b<l 

11·11) Determine the lattice filter and its optimum reRection coefficients corresponding to 
the linear predictor in Problem 11-9. 

n·ll Consider the adaptive FIR filter shown in Fig. Pll-ll. The system C(z) is 
characterized by the system function 

C(Z)=1-O.9z' 

Determine the optimum coefficients of the adaptive transversal (FIR) filter 
B(z)=b,,+b,z" that minimize the mean square error. The additive noise is 
while with variance .r. = O. J. 

11·12 An N x,IV correlation matrix r has eigenvalues A, > ,1.2 > ... > AN >0 and 
associated eigenvectors v" ,'" .... VIV' Such a matrix can be represented as 

H 

r= ~ A vv" L.J itt 

• If r = r'''r''', where r"" is the square root of r, show that r '" can be 
represented as 

,'1 

b Using this representation, determine a procedure for computing rLl. 

w(n) 

Ci.;;) 
Adaptive 

FIR 
filler 
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represented as 

,'1 

b Using this representation, determine a procedure for computing rLl. 

w(n) 

Ci.;;) 
Adaptive 

FIR 
filler 



12 
MULTICHANNEL AND 
MULTICARRIER SYSTEMS 

In some applications, it is desirable to transmit the same information-bearing 
signal over several channels_ T~is mode of transmission is used primarily in 
situations where there is a high probability that one or more of the channels 
will be unreliable from time to time. For example, radio channels such as 
ionospheric scatter and tropospneric scatter suffer from signal fading due to 
multipath, which renders the channels unreliable for short periods of time. As 
another example. multichannel signaling is sometimes employed in military 
communication systems as a means of overcoming the effects of jamming of the 
transmitted signal. By transmitting the same information over mUltiple 
channels, we are providing signal diversity, which the receiver can exploit to 
recover the information. 

Another form of multichannel communications is multiple carrier transmis
sion, where the frequency band of the channel is subdivided into a number of 
subchannels and information is transmitted on each of the subchannels. A 
rationale for subdividing the frequency band of a channel into a number of 
nanowband channels is given below. 

In this chapler, we consider both multichannel signal transmission and 
multicarrier transmission. We begin with a treatmenl of multichannel 
transmission. 

12·1 MULTICHANNEL DIGITAL COMMUNICATION 
IN A WGN CHANNELS 

In this section, we confine our attention to multichannel signaling over fixed 
channels thaI differ only in attenuation and phase shifl. The specific modd for 
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the multichannel digital signaling system may be described as follows. The 
signal waveforms, in general are expressed as 

s;::'(t) = Re (s);V)t"""idl. 0"" r"., T 

n=I.2 •.... L. m=1.2 ..... M (12-H) 

where L is the number of channel, and M is the number of waveforms. The 
waveforms are assumed to have equal energy and to be equally probable a 
priori. The waveforms {.I!::'(tl! transmitted over the L channels are scaled by 
the factors {a,,}. phase-shifted by {</>,,}, and corrupted I,y additive noise. The 
equivalent lowpass signals received from the L channels may be expressed as 

d"'(t) = "ne ''''''S);;,'(I) - Z,,(I). 0"., t '" T 

11 = 1.2 ..... L, m = I, 2 .... , M (12-1-2) 

where {s)::.'(t») are the equivalent lowpass transmitted waveforms and {z,,(t») 
represent the additive noise processes on the L channels. We assume that 
{z,,(r)} are mutually statistically independent and identically distributed gaus
sian noise random processes. 

We consider two types of processing at the receiver, namely. coherent 
detection and noncoherent detection. The receiver for coherent detection 
estimates the channel parameters {a,,} and {</>"l and uses the estimates in 
computing the decision variables. Suppose we define g" = a"e ;d>" and let it.. be 
the estimate of g". The mllitichannel receiver correlates each of the L received 
signals with a replica of the corresponding transmitted signals, multiplies each 
of the correlator outputs by the corresponding estimates {g~l, and sums the 
resulting signals. Thus, the decision variables for coherent detection are the 
correlation metrics 

I T 

CMm="~, Re[e:L d"'(t)sl::,'*(t)dt]. m=I,2 .... ,M (12-1-3) 

In noncoherent detection, no attempt is made to estimate the channel 
parameters. The demodulator may base its decision either on the sum of the 
envelopes (envelope detection) or the sum of the squared envelopes (square
law detection) of the matched filter outputs. In general, the performance 
obtained with envelope detection differs little from the performance obtained 
with square-law detection in A WGN. However, square-law detection of 
multichannel signaling in A WG N channels is considerably easier to analyze 
than envelope detection. Therefore, we confine our attention to square-law 
detection of the received signals of the L channels, which produces the 
decision variables 

(12-1-4) 

Let us consider binary signaling first, and assume that s~;'), n = 1, 2, ... , L 
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are the L transmitted waveforms. Then an error is committed if CM, > CM,. 
or. equivalently, if the difference D = CM, - CM, < O. For noncoherent 
detection, this difference may be expressed as 

I. 

D = L eX .. I' -IY"I') (12-1-5) 

where the variables {X,,} and {Y,,} are defined as 

T 

X .. = f d"'(I)S)~'*(I) dr, n = I. 2, ... , L 

" (12-1-6) 

• Y" = (' d"'(I)S)~'*(t) dr. n = 1. 2 ..... L 
J" 

The {X,,} are mutually independent and iderltical!y distributed gaussian random 
variables. The same statement applies to the variables {Y,,). However. for any 
n. X" and Y" may be correlated. For coherent detection, the difference 
D = CAf, - eM, may be expressed as 

L 

D = 1 L (X" y~ + X!Y,,) (12-1-7) 
1t~1 

where, by definition, 

Yn =gll' n=],2, ... ,L 

T 

X" = f r)"'(t)!s)j"*(t) - s)r'*(t)] dt 

" 

(12-1-8) 

If the estimates {gn} are obtained from observation of the received signal ovef 
one or more signaling intervals, as described in Appendix C, their statistical 
characteristics are described by the gaussian distribution. Then the {Y,,} are 
characterized as mutually independent and identically distributed gaussian 
random variables. The same statement applies to the variables {X.). As in 
noncoherent detection, we allow for correlation between X" and Y", but not 
between Xm and Y" for m .. n. 

'12-1-1 Binary Signals 

In Appendix B, we derive the probability that the general quadratic form 

i. 

D= 2: (AIXni2+B!y,l+CX"Y~+C*X~y,,) (l2-1-9) 
I' -~ 1 

in complex-valued gaussian random variables is less than zero. This prob
ability, which is given in (B-21) of Appendix B, is the probability of error for 
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binary multichannel signaling in AWGN. A number of special cases are of 
particular importance. 

If the binary signals are antipodal and the estimates of {gn} are perfect. as in 
coherent PSK. the probability of error takes the simple form 

Ph = Q(v'ZYb) (12-1-10) 

where 

(12-1-11) 

is the SNR per bit. If the channels are all identical. an = a for all n and, hence. 

L~ , 
-Yh = - a

N" 
(12-1-12) 

We observe that L'6 is the total transmitted signal energy for the L signals. The 
interpretation of this result is that the receiver combines the energy from the L 
"Channels in an optimum manner. That is, there is no loss in performance in 
dividing the total transmitted signal energy among the L channels. The same 
performance is obtained as in the case in which a single waveform having 
energy L'It is transmitted on one channel. This behavior holds true only if the 
estimates g" = gn' for all n. If the estimates are not perfec!. a loss in 
performance occurs. the amount of which depends on the quality of the 
estimates, as described in Appendix C. 

Perfect estimates for {g,,} constitute an extreme case. At the other extreme. 
we have binary DPSK signaling_ In DPSK, the estimates {in} are simply the 
(normalized)'signal-plus-noise samples at the outputs of the matched filters in 
the previous signaling interval. This is the poorest estimate that one might 
consider using in estimating {gn}. For binary DPSK, the probability of error 
obtained from (B-21) is 

where, by definition, 

I 1. .. I 

Po = ~e-Y;' 2: Cn'Yb 
2 n~' 1 

I L·'·"(ZL-l) 
c =- 2: 
" n!. 00 k 

(12-1-13) 

(12-1-14) 

and Yb is the SNR per bit defined in (1Z-1-11) and. for identical channels in 
(12-1-12). This result can be compared with the single-channel (L = 1) error 
probability. To simplify the comparison, we a~surne that the L channels have 
identical attenuation factors. Thus, for the same value of Yb. the performance 
of the multichannel system is poorer than that of the single-channel system. 
That is, splitting the total transmitted energy among L channels results in a loss 
in performance, the amount of which depends on L. 
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FIGURE 12-1·1 Combining loss In «o«coberent detection and combination of binary multichannel signals. 

A loss in perfonnance also occurs in square-law detection of orthogonal 
signals transmitted over L channels, For binary orthogonal signaling, the 
expression for the probability of error is identical in fonn to that for binary 
DPSK given in (12-1-13), except that 'Yb is replaced by hb. That is, 
binary orthogonal signaling with noncoherent detection is 3 dB poorer than 
binary DPSK. However, the loss in performance due to noncoherent combina
tion of the signals received on the L channels· is identical to that for binary 
DPSK. 

Figure 12-1-1 illustrates the loss resulting from noncoherent (square-law) 
combining of the L signals as a function of L. The probability of error is not 
shown, but it can be easily obtained from the curve of the expression 

(12-1-15) 

which is the error probability of binary DPSK shown in Fig. 5-2-12 and then 
degrading the required SNR per bit, rb, by the noncoherent combining loss 
corresponding to the value of L. 

U-1-2 M-ary Orthogonal Signals 

Now let us consider M-ary orthogonal signaling with square-law detection and 
combination of the signals on the L channels. The decision variables are given 
by (12-1-4). Suppose that the signals s)~)(t), n = 1, 2, ... , L, are transmitted 
over the L A WGN channels. Then, the decision variables are expressed as 

L 

UI = 2: 12~a" + NnII2 

L (12-1-16) 

Um "" 2: IN_f, m = 2, 3, ... , M 
"~I 
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where the {N .... } are complex-valued zero-mean gaussian random variables 
with variance u 2 = iE(lN",,,f) = 2'€Nu. Hence V, is described statistically as a 
noncentral chi-square random variable with 2L degrees of freedom and 
noncentrality parameter 

L L 

S2 = 2: (2iSa,,), = 4~2 2: a~ (12-1-17) 
n=\ 

Using (2-1-118), we obtain the pdf of V, as 

1l,;;;'0 (12-1-18) 

On the other hand, the {Vm }, m = 2, 3, ... ,M, are statistically independent 
and identically chi-square-distributed random variables, each having 2L 
degrees of freedom. Using (2-1-110), we obtain the pdffor Vm as 

m =2,3, ... , M (12-1-19) 

The probability of a symbol error is 

PM=I-P,. 

= !-P(Vz<V" U3 < V" ... , VM < V,) 

= 1 - [ (P(U, < u, I V, = U,»)M-'p(U,) du, (12-1-20) 

But 

• () L-I I ( k P(V,<u.jU,=u,)=l-exp -~ 2:-~) 
4'lNo k-O k! 4'lNo 

(12-1-21) 

where 
L 

y= 'l L a~lNo 
n=l 
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The integral in (12-1-22) can be evaluated numerically. It is also possible to 
expand the term (1- X)M-l in (12-1-22) and carry out the integration term by 
term. This approach yields an expression for PM in terms of finite sums. 

An alternative approach is to use the union bound 

PM < (M -1)P,(L) (12-1-23) 

where P,(L) is the probability of error in choosing between U, and anyone of 
the M - 1 decision variables fUm}, m = 2, 3, ... ,M. From our previous 
discussion on the performance of binary orthogonal signaling, we have 

1 L-l 

P. (L) - - -'>..n '" (lk )" 
2 - 22L-1 e n~O Cn 2 1'b 

(12-1-24) 

where C. is given by (12-1-14). For relatively small values of M, the union 
bound in (12-1-23) is sufficiently light for most practical applications. 

U-2 MULTICARRIER COMMUNICATIONS 

From our treatment of nonideal linear filter channels in Chapters 10 and 11, we 
have observed that such channels introduce lSI, which degratJes performance 
compared with the ideal channel. The degree of perforniance degradation 
depends on the frequency response characteristics. Furthermore, the com
plexity of the receiver increases as the span of the lSI increases. 

Given a particular channel characteristic, the communication system desig
ner must decide how to efficiently utilize the available channel bandwidth in 
order to transmit the information reliably within the transmitter power 
constraint and receiver complexity constraints. For a nonideal linear filter 
channel, one option is to employ a single carrier system in which the 
information sequence is transmitted serially at some specified rale R symbols/so 
In such a channel, the time dispersion is generally much greater than the 
symbol rate and, hence, lSI results from the nonideal frequency response 
characteristics of the channel. As we have observed, an equalizer is necessary 
to compensate for the channel distortion. 

An alternative approach to the design of a bandwidth-emcient communica
tion system in the presence of channel distortion is to subdivide the available 
channel bandwidth into a number of subchannels, such that each subchannel is 
nearly ideal. To elaborate, suppose that C(f) is the frequency response of a 
nonideal, band-limited channel with a bandwidth lV, and that the power 
spectral density of the additive gaussian noise is <Pnn(f). Then, we divide the 
bandwidth W into II' = WI!J.! subbands of width !J.f, where !J.! is chosen 
sufficiently small that 1C(f)12/<PM (f) is approximately a constant wit,/Jin each 
subband. Funhermore. we shall select the transmitted signal power to be 
distributed in frequency as Pc!), subject to the constraint that 

L P(f) df ", Pav (12-2-1 ) 

, 
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where, Pa. is the available average power of the transmitter. Let us evaluate 
the capacity of the nonideal additive gaussian noise channel. 

12-2-1 Capacity of a Nonideal Linear Filtel' Channel 
Recall that the capacity of an ideal, band-limited, A WON channel is 

( 
Pa. ) C = W log, 1 +--

WNo 
(12-2-2) 

where C is the capacity in bits/ s, W is the channel bandwidth, and Pa• is the 
average transmitted power. In a multicarrier system, with Af sufficiently small, 
the subchannel has capacity 

C = M I [1 + tlf P(t) lc(fW] (12-2-3) 
• "og, AfiPnn(/;) 

Hence, the total capacity of the channel is 

C = ± c, = ilf ± lo~ [1 + P(fi) IC(/;)I'] 
.=1 .~I <11",,(/;) 

(12-2-4) 

In the limit as t:.J ..... 0, we obtain the capacity of the overall channel in bits/s as 

C = f log2 [1 + P(!) 1c(!)I'] df 
w <II •• (f) 

(12·2-5) 

Under the constraint on P(!) given by (12-2-1). the choice of P(!) that 
maximizes C may be determined by maximizing the integral 

1 {log, [1 + P(!) IC(!)I'] + AP(f)} df 
w <linn (f) 

(12·2-6) 

where A is a Lagrange multiplier, which is chosen to satisfy the constraint. By 
using the calculus of variations to perform the maximization, we find that the 
optimum distribution of transmitted signal power is the solution to the 
equation 

( 12·2-7) 

Therefore. P(!) + iPnn(f)/Ic(fW must be a constant. whose value is adjusted 
to satisfy the average power constraint in (12-2-1). That is, 

P(f) = {K - <IInn (f)/IC(f)l' (f E W) 
, 0 (f ~ W) 

(12-2-8) 

This expression for the channel capacity of a nonideal linear filter channel with 
additive gaussian noise is due to Shannon (1949). The basic interpretation of 
this result is that the signal power should be high when the channel SNR 
IC(f)12/<I>n,,(f) is high, and low when the channel SNR is low. This result on 
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FlG\JRE n·l·l The optimum water-pouring spectrum. 

the transmitted power distribution is illustrated in Fig. 12-2-1. Observe that if 
4>nn(f)/Ic(fW is interpreted as the bottom of a bowl of unit depth, and we 
pour an amount of water equal to Pa• into the bowl, tbe water will distribute 
itself in the bowl so as· to achieve capacity. This is called the wlJIer-jilling 
interpretation of the optimum power distribution as a funclion of frequency. 

It is interesting to note that the channel capacity is tbe smallest when the 
channel SNR IC(f)12J4>nn(f) is a constant for all fEW. In this case, P(f) is a 
constant for all fEW. Equivalently, if the channel frequency response is ideal, 
i.e., C(f) = 1 for fEW, then the worst gaussian noise power distribution, from 
the viewpoint of maximizing capacity. is white gaussian noise. 

The above development suggests that multicarrier modulation that di'ides 
the available channel bandwidth into subbands of relatively narrow width 
Ai : W J N provides a solution that could yield transmission rates close to 
capacity. The signal in each subband may be independently coded and 
modulated at a synchronous symbol rate of 1/ At, with the optimum power 
allocation P(f). If At is small enough then C(f) is essentially constant across 
each subband. so that no equalization is necessary because the lSI is negligible. 

Multicarrier modulation has been used in modems for both radio and 
telephone channels. Multicarrier modulation bas also been proposed for future 
digital audio broadcast applications. 

A particularly suitable application of multicarrier modulation is in digital 
transmission over copper wire subscriber loops. The typical channel attenua
tion characteristics for such subscriber lines are illustrated in Fig. 12-2-2. We 

FIGURE u.z..Z Attenuation characteristic of 8 24 gauge 12 tft PIC loop. 
(FTQm WtmeT (1991) @IEEE.] 
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observe that the attenuation increases rapidly as a function of frequency. This 
characteristic makes it extremely difficult to achieve a high transmission rate 
with a single modulated carrier and an equalizer at the receiver. The lSI 
penalty in performance is very large. On the other hand, multicarrier 
modulation with optimum power distribution provides the potential for a 
higher transmission rate. 

The dominant noise in transmission over subscriber lines is crosstalk 
interference from signals carried on other telephone lines located in the same 
cable. The power distribution of this type of noise is also frequency
dependent, which can be taken into consideration in the allocation of the 
available transmitted power. 

A design procedure for a multicarrier QAM system for a nonideal linear 
filter channel has been given by Kalet (1989). In this procedure, the overall bit 
rate 'is maximized, through the design of an optimal power division among the 
subcarriers and an optimum selection of the number of bits per symbol (sizes 
of the QAM signal constellations) for each subcarrier, under an average power 
constraint and under the constraint that the symbol error probabilities for all 
subcarriers are equal. 

Below, we present an implementation of a multicarrier QAM modulator 
and demodulator that is based on the discrete Fourier transform (OFT) for the 
generation of the multiple carriers. 

12-2-2 An FFT-Based Multicarrier System 

In this section, we describe a multicarrier communication system that employs 
the fast Fourier transform (FFT) algorithm to synthesize the signal at the 
transmitter and to demodulate the received signal at the receiver. The FFT is 
simply the efficient computational tool for implementing the discrete fourier 
transform (DFT). 

Figure 12-2-3 illustrates a block diagram of a multicarrier communication 

FIGURE 11·1-3 Multicarrier communication system. 
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system. A serial-to-parallel buffer segments the informalio,! sequence into 
frames of Nf bils. The Nt bits in each frame are parsed into N groups, where 
the ilh group is assigned if; bits, and 

(12-2-9) 

Each group may be encoded separately, so that the number of output bits from 
the encoder for the ith group is ni ;;;. ii,. 

It is convenient to view the multicarrier modulation as consisting of iii 
independent OAM channels, each operating at the same symbol rate 1/ T, but 
each channel having a distinct OAM constellation, i.e., the ith channel will 
employ M, = 2"' signal points. We denote the complex-valued signal points 
corresponding to the information symbols on the subchannels by Xx, " = 
0, 1, ... , iii - 1. In order to modulate the iii subcarriers by the information 
symbols {Xx}, we employ the inverse DFT (IDFT). 

However, if we compute the lV-point IDIT of {Xk }, we shall obtain a 
complex-valued time series, which is not equivalent to N OAM-modulated 
subcarriers. Instead, we create N = 2ii1 information symbols by defining 

X"'_k=X:' k=l, ... ,iiI-l (12-2-10) 

and XG = Re (Xo), X N = 1m (Xo). Thus, the symbol Xo is split into two parts, 
both real. Then, the N -point IDFT yields the real-valued sequence 

1 N-l 

X =-" X e'''_,N n - 0 1 N 1 n YFi" k , -, •..• , -
k=O 

(12-2·11) 

where uviV is simply a scale factor. 
'!:he sequence {X., 0,;;; n ,;;; N - I} corresponds to the samples of the sum x(t) 

of N subcarrier signals, which is expressed as 

(12-2-l2) 

where T is the symbol duration. We observe that the subcarrier frequencies are 
f" = kIT, k = 0, 1, ... , it. Furthermore. the discrete-time sequence {x~} in 
(12-2-10) represents the samples of x(t) taken at times 1= nTfN where 
n =0,1, ... , N-1. 

The computation of the IDIT of the data {Xd as given in (12-2-10) may be 
viewed as multiplication of each data point X. by a corresponding vector 

where 

11 = _1_e(2"IN)kn 
kn YFi 

(12-2-13) 

(12-2-14) 
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FIGURE 12-2.... Signal synthesis for multicarrier modulation 
based on inverse DfT. 

To 

as illustrated in Fig, 12-2-4. In any case, the computation of the DFf is 
performed efficiently by the use of the FFf algorithm. 

In practice, the signal samples {xn} are passed through a D/ A converter 
whose output, ideally, would be the signal waveform X(I), The output of the 
channel is the waveform 

r(l) = X(I) * h(t) + n(l) (12-2·15) 

where h(t) is the impulse response of the channel and * denotes convolution. 
By selecting the bandwidth A! of each subchannel to be very small, the symbol 
duration T = I/t:.! is large compared with the channel time dispersion. To be 
specific, let us assume that the channel dispersion spans v + 1 signal samples 
where v« N. One way to avoid the effect of lSI is to insert a time guard band 
of duration vT IN between transmissions of successive blocks. 

An alternative method that avoids lSI is to append a cyclic prefix to each 
block of N signal samples {xo, X,, ... ,XN-t}. The cyclic prefix for this block of 
samples consists of the samples XN-v,XN-v+,,'" ,x",_,. These new samples 
are appended to the beginning of each block. Note that the addition of the 
cyclic prefix to the block of data increases the length of the block to N + v 
samples, which may be indexed from n = -Y,. , . ,N - 1, where the first Y 

samples constitute the prefix. Then, if {hn , 0"" n "" v} denotes the sampled 
channel impulse response, its convolution with {xn , -V"" n "" N - I} produces 
{rn}, the received sequence. We are interested in the samples of {rn} for 
0"" n "" N - 1, from which we recover the transmitted sequence by using the 
N-point DFf for demodulation. Thus, the first v samples of {r,,} are discarded. 

From a frequency-domain viewpoint, when the channel impulse response is 
{hn • 0"" n "" v}, its frequency response at the subcarrier frequencies t. = k! N is 

(12-2-16) 

Due to the cyclic prefix, successive blocks (frames) of the transmitted 
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information sequence do not interfere and, hence, the demodulated sequence 
may be expressed as 

(12-2-17) 

where {..f,} is the output of the ,y-point OFf demodulator, and 71, is the 
additive noise corrupting the signal~ We note that by selecting N» v, the rate 
loss due to the cyclic prefix can be rendered negligible. 

As shown in Fig. 12-2-3, the information is demodulated by computing the 
OFf of the received signal after it has been passed through an A/O converter. 
The OFf computation may be viewed as a multiplication of the received signal 
samples {rn} from the AID converter by v:. where Vn is defined in (12-2-12). As 
in the case of the modulator, the OFf computation at the demodulator is 
performed efficiently by lise of the fFT algorithm. 

It is a simple matter to estimate and compensate for the channel factors {Hk } 

prior to passing the data to the detector and decoder, A training signal 
consisting of either a known modulated sequence on each of the subcarriers or 
unmodulated subcarriers may be used to measure the {H.} at the receiver. If 
the channel parameters vary slowly with time, it is also possible to tract the 
time variations by using the decisions at the output of the detector or the 
decoder, in a decision-directed fashion. Thus, the multicarrier system can be 
rendered adaptive. 

Multicarrier QAM modulation of the type described above has been 
implemented for a variety of applications, including high-speed transmission 
over telephone lines, such as digital subscriber lines. 

Other types of implementation besides the Off are possible. For example, 
a digital filter bank that basically performs theDFf may be substituted for the 
FFf-based implementation when the number of subcarriers is small, e.g., 
N ~ 32 For a large number of subcarriers, e.g., N > 32. the FFf-based systems 
are computatively more efficient. 

One limitation of the DFT-type modulators and demodulators arises from 
the relatively large sidelobes in frequency that are inherent in OFf-type filter 
banks. The first sidelobe is only 13 dB down from the peak at the desired 
subcarrier. Consequently, the OFf-based implementations are vulnerable to 
interchannel interference (ICI) unless a full cyclic prefix is used. If lCI is a 
problem, due to channel anomalies, one may resort to other types of digital 
filter banks that have much lower sidelobes. In particular, the class of multirate 
digital filter banks that have the perfect reconstruction property associated 
with wavelet-based filters appear to be an attractive alternative (see Tzannes el 

aI., 1994; Rizos et 01 .• 1994). 

12-3 BIBLIOGRAPHICAL NOTES AND REFERENCES 
Multichannel signal transmission is commonly used on lime-varying channels 
to overcome the effects of signal fading. This topic is treated in some detail in 
Chapter 14, where we provide a number of references to published work. Of 
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particular relevance to the treatment of multichannel digital communications 
given in this chapter are the two publications by Price (1962a,b). 

There is a large amount of literature on multicarrier digital communication 
systems. Such systems have been implemented and used for over 30 years. One 
of the earliest systems, described by Doeltz et aL (1957) and called Kineplex, 
was used for digital transmission in the HF band. Other early work on 
multicarrier system design has .been reported in the papers by Chang (1966) 
and Saltzburg (1967). The use of the DFr for modulation and demodulation of 
multicarrier systems was proposed by Weinstein and Ebert (1971). 

Of particular interest in recent years is the use of multicarrier digital 
transmission for data, facsimile, and video on a variety of channels, including 
the narrowband (4kHz) switched telephone network, the 48 kHz group 
telephone band, digital subscriber lines, cellular radio, and audio broadcast. 
The interested reader may refer to the many papers in the literature. We cite 
as examples the papers by Hirosaki et al. (1981, 1986), Chow et al. (1991), and 
the survey paper by Bingham (1990). The paper by Kale! (1989) gives a design 
procedure for optimizing the rate in a multicarrier QAM system given 
constraints on transmitter power and channel characteristics. Finally, we cite 
the book by Vaidyanathan (1993) and the papers by Tzannes et aL (1994) and 
Rizos et aI. (1994) for a treatment of multirale digital filter banks. 

12-1 XI, X" ... , X N are a set of N statistically independent and identically distributed 
real gaussian random variables with moments E(X.) = m and var (X,) = 0". 

a Define 
N 

U= 2: X. 

Evaluate the SNR of U, which is defined as 

where O'~ is the variance of U. 
b Deline 

(SNR) = [E(U)I' 
u 2tT~ 

N 

V = 2: X; .-1 
Evaluate the SNR of V, which is defined as 

where O'~ is the variance of V. 
c Plot (SNR)u and (SNR)v versus m'Ju' on the same graph and, thus, compare 

the SNRs graphically. 
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d What does tlle result in (c) imply regarding coherent detection and combining 
versus square-law detection and combining of multichannel signals? 

12-2 A binary communication system transmits tbe same information on two diversity 
channels. The two received signals are 

r, = ±~+n, 

rz= ±fl,,+n2 

where E(n,) = E(n,) = 0, £(nD = u; and E(nD = ui, and n, and n, are uncorre
laled gaussian.variables. The detector bases its decision Dn Ibe linear combination 
of T{ and rz' i.e., 

a Determine tbe value of k that minimizes Ihe probability of error. 
b Plol the probability of error for a; = I, u; =}, and either k = I or k is the 

optimum value found in (a). Compare tbe results. 
lZ-3 Assess the cost of the cyclic prefix (used in multitone modulation to avoid lSI) in 

terms of 
a extra channel bandwidth: 
b extra signal energy. 

12-4 Let x(n) be a finite-duration signa! wilh length N and leI X(k) be ils N-point OFf. 
Suppose we pad x(n) with L zeros and compute tbe (N + L)-poinl OFT, X'(k). 
Wbat is tbe relationship between X(O) and X'(O)? If we plot IX(k)1 and IX'(k)1 (m 
the same graph. explain the relationsbips between the two graphs. 

12-5 Show that the sequence {x,J given by (12-2-11) corresponds to the samples of the 
signal X(I) gh'en by (12-2·12), 

12-6 Show that the I OFf of a sequence {X" 0"" k "" N - l} can be computed by passing 
the sequence IX,) through a banI< of N linear discrete-time fillers with system
functions 

12-7 Plot p,\ L) for L = I and L = 2 as a function of 10 log y, and determine the loss in 
SNR due to the combining loss for y, = 10 
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13 
SPREAD SPECTRUM 

SIGNALS FOR DIGITAL 
COMMUNICATIONS 

Spread spectrum signals used for the transmission of digital information are 
distinguished by the characteristic that their bandwidth W is much greater than 
the information rate R in bits/so That is, the bandwidth expansion factor 
B. = WI R for a spread spectrum signal is much greater than unity. The large 
redundancy inherent in spread spectrum signals is required to overcome the 
severe levels of interference that are encountered in the transmission of digital 
information over some radio and satellite channels. Since coded waveforms are 
also characterized by a bandwidth expansion factor greater than unity and 
since coding is an efficient method for introducing redundancy, it follows that 
coding is an important element in the design of spread spectrum signals. 

A second important element employed in the design of spread spectrum 
signals is pseudo-randomness, which makes the signals appear similar to 
random noise and difficult to, demodulate by receivers other than the intended 
ones. This element is intimately related with the application or purpose of such 
signals. 

To be specific, spread spectrum signals are used for 

• combatting or suppressing the detrimental effects of interference due to 
jamming, interference arising from other users of the channel, and self
interference due to multipath propagation; 

• hiding a signal by transmitting it at low power and, thus, making it 
difficult for an unintended listener to detect in the presence of background 
noise; 

• achieving message privacy in the presence of other listeners. 

In 'applications other than communications, spread spectrum signals ate used 
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to obtain accurate range (time delay) and range rate (velocity) measurements 
in radar and navigation. For the sake of brevity, we shall limit our discussion to 
digital communications applications. 

In combatting intentional interference (jamming), it is important to the 
communicators tbat the jammer who is trying to disrupt the communication 
does not have prior knowledge of the signal characteristics except for the 
overall channel bandwidth and the type of modulation, (PSK, FSK, etc.) being 
used. If the digital information is just encoded as described in Chapter 8, a 
sophisticated jammer can easily mimic the signal emitted by the transmitter 
and, thus, confuse the receiver. To circumvent this possibility, the transmitter 
introduces an element of unpredictability or randomness (pseudo-randomness) 
in each of the transmitted coded signal waveforms that is known to the 
intended receiver but not to the jammer. As a consequence. the jammer must 
synthesize and transmit an interfering signal without knowledge of the 
pseudo-random pattern. 

Interference from tne otner users arises in multiple-access communication 
systems in which a number of users share a common channel bandwidth. At 
any given time, a subset of these users may transmit information simul
taneously over the common channel to corresponding receivers. Assuming that 
all the users employ the same code for the encoding and decoding of their 
respective infonl1ation sequences, the transmitted signals in this common 
spectrum may be distinguished from one another by superimposing a different 
pseudo-random pattern, also called a code, in each transmitted signal. Thus, a 
particular receiver can recover the transmitted information intended for it by 
knowing the pseudo-random pattern, i.e., the key, used by the corresponding 
transmitter. This type of communication teChnique, which allows multiple users 
10 simultaneously use a commOli channel [or transmission of information, is 
called code division multiple access (CDMA). CDMA win be considered in 
Sections 13-2 and 13-3. 

Resolvable mllltipath components resulting from lime-dispersive propaga
tion through a channel may be viewed as a form of self-interference. This type 
of interference may also be suppressed by the introduction of a pseudo·random 
Ilattern in the transmitted signal, as will be described below. 

A message may be hidden in the background noise by spreading its 
bandwidth with coding and transmitting the resultant signal at a low average 
power. Because of its low power level, the transmitted signal is said to be 
"covert." It has a low probability of being intercepted (detected) by a casual 
listener and, hence, is also called a low-probability-o!-inJercept (LPI) signal. 

Finally, message privacy may be obtained by superimposing a pseudo
random pattern on a transmitted message. The message can be demodulated 
by the intended receivers, who know the pseudo-random pattern or key used 
at the transmitter, but not by any other receivers who do not have knowledge 
of the key. 

In the following sections, we shall describe a number of different types of 
spread spectrum signals, their characteristics, and their application. 'file 
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emphasis will be on the use of spread spectrum signals for combatting, 
jamming (antijam or AJ signals), for CDMA, and for LPI. Before discussing 
the signal design problem, however, we shall brielly describe the types of 
channel characterilltics assumed for the applications cited above. 

13 .. 1 MODEL OF SPREAD SPECfRUM DIGITAL 
COMMUNICATION SYSTEM 

The block diagram shown in Fig. 13-1-1 illustrates the basic elements of a 
spread spectrum digital communication system with a binary information 
sequence at its input at the transmitting end and at its output at the receiving 
end. The channel encoder and decoder and the modulator and demodulator 
are basic elements of the system. which were treated in Chapters S, 7 and 8. In 
addition to these elements, we have two identical pseudo-random pattern 
generators, one that interfaces with the modulator at the transmitting end and 
a second that interfaces with the demodulator at the receiving end. The 
generators generate a pseudo-random or pseudo-noise (PN) binary-valued 
sequence, which is impressed on the transmitted signal at the modulator and 
removed from the received signal at the demodulator. 

Synchronization of the PN sequence generated at the receiver with the PN 
sequence contained in the incoming received signal is required in order to 
demodulate the received signal. Initially, prior to the transmission of informa
tion, synchronization may be achieved by transmitting a fixed pseudo-random 
bit pattern that the receiver will recognize in the presence of interference with 
a high probability. After time synchronization of the generators is established, 
the transmission of information may commence. 

Interference is introduced in the transmission of the information-bearing 
signal through the channel. The characteristics of the interference depend to a 
large extent on its origin. It may be categorized as being either broadband or 
narrowband relative to the bandwidth of the information-bearing signal, and 
either continuous or pulsed (discontinuous) in time. For example. a jamming 
signal may consist of one or more sinusoids in the bandwidth used to transmit 
the information. The frequencies of the sinusoids may remain fixed or they 
may change with time according to some rule. As a second example, the 
interference generated in CDMA by other users of the channel may be either 
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broadband or narrowband, depending on the type of spread spectrum signal 
that is employed to achieve multiple access. If it is broadband, it may be 
characterized as an equivalent additive white gaussian noise. We shall consider 
these types of interference and some others in the fonowing sections. 

OUT treatment of spread spectrum signals win focus on the performance of 
the digital communication system in the presence of narrowband and broad
band interference. Two types of modulation are considered: PSK and FSK. 
PSK is appropriate in applications where phase coherence between the 
transmitted signal and the received signal can be maintained over a time 
interval that is relatively long compared to the reciprocal of the transmitted 
signal bandwidth. On the other hand, FSK modulation. is appropriate in 
applications where such phase coherence cannot be maintained due to 
time· variant effects on the communications link. This may be the case in a 
communications link between two high-speed aircraft or between a high-speed 
aircraft and a ground terminal. 

The PN sequence generated at the modulator is used in conjunction with the 
PSK modulation to shift the phase of the PSK signal pseudo-randomly as 
described in Section 13-2. The resulting modulated signal is called a direct 
sequence (OS) or a pseudo-noise (PN) spread spectrum signal. When used in 
conjunction with binary or M-ary (M > 2) FSK, the pseudo-random sequence 
selects the frequency of the transmitted signal pseudo-randomly. The resulting 
signal is called a frequency·hopped (FH) spread spectrum signal. Although a 
number of other types of spread spectrum signals will be briefly described, the 
emphasis of our treatment will be on PN and FH spread spectrum signals. 

13-2 DlRECI SEQUENCE SPREAD SPECIRUM 
SIGNALS 

In the model shown in Fig. 13-1-1, we assume that the information rate at the 
input to the encoder is R bits/s and the available channel bandwidth is W Hz. 
The modulation is assumed to be binary PSK. In order to utilize the entire 
available channel bandwid!h, the phase of !he carrier is shifted pseudo
randomly according to the pattern from the PN generator at a rate W times/so 
The reciprocal of W, denoted by "fe, defines the duration of a rectangular 
pulse, which is called a chip while 7; is called the chip interval. The pulse is the 
basic element in a DS'spread spectrum signal. 

If we define TI> = 1/ R to be the duration of a rectangular pulse correspond
ing to the transmission time of an information bit, the bandwidth expansion 
factor W / R may he expressed as 

B =W=Tb 

, R 1"-
c 

In practical systems, the ratio Tbl"fe is an integer, 

L =Tb 
c 7;, 

(13-2-1) 

(13-2-2) 
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FIGURE 13-2-1 The PN and data signals (a) and Ihe QPSK modulator (b) for a DS spread spectrum system. 

which is the number of chips per information bit. That is, L, is the number of 
phase shifts that occur in the transmitted signal during the bit duration 
~ = HR. Figure 13-2-1(a) illustrates the relationships between the PN signal 
and the data signal. 

Suppose that the encoder takes k information bits at a time and generates a 
binary linear (n, k) block code. The time duration available for transmitting 
the n code elements is kTb s. The number of chips that occur in this time 
interval is kLc • Hence, we may select the block length of the code as n = kLc• 

If the encoder generates a binary convolutional code of rate kin, the number 
o[ chips in the time interval kTb is also 11 = kLc• Therefore, the following 
discussion applies to both block codes and convolutional codes. 

One method for impressing the PN sequence on the transmitted signal is to 
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alter directly the coded bits by modulo-2 addition with the PN sequence. t 
Thus. each coded bit is altered by its addition with a bit from the PN sequence. 
If b, represents the ith bit of th~ PN sequence and c, is the corresponding bit 
from the encoder, the modulo-2 sum is 

a, =bi$Ci (13-2-3) 

Hence, a, = 1 if either bi = 1 and Ci = 0 or b, = 0 and Ci = 1; also, a, = 0 if either 
b, = 1 and c, = 1 or b, = 0 and Ci = O. We may say that ai = 0 when bi = Ci and 
ai = 1 when bi ,tCi' The sequence {a,} is mapped into a binary PSK signal of the 
form S(I) = ± Re [g(t)e""[.'l according to the convention 

(t) = f get - i7;.) (a, = 0) 
g, l-g(t - iTJ (ai = 1) 

(13-2-4) 

where g(t) represents a pulse of duration 7;. s and arbitrary shape. 
The modulo·2 addition of the coded sequence {c,} and the sequence {b,} 

from the PN generator may also be represented as a multiplication of two 
waveforms. To demonstrate this point, suppose that the elements of the coded 
sequence are mapped into a binary PSK signal according to the relation 

c,(t) = (2c, - 1 )g(t - i1;) (13-2-5) 

Similarly. we define a waveform Pi(t) as 

Pi(t) = (2bi - l)p(t - i7;.) (13-2-6) 

where pet) is a rectangular pulse of duration 7;.. Then the equivalent lowpass 
transmitted signal corresponding to the ith coded bit is 

gj(t) = Pi(t)c,{I) 

= (2b i -1)(2c, -l)g(t -i7;.) (13-2-7) 

This signal is identical to the one given by (13-2-4), which is obtained from the 
sequence {a;}. Consequently, modulo-2 addition of the coded bits with the PN 
sequence followed by a mapping that yields a binary PSK signal is equivalent 
to multiplying a binary PSK signal generated from the coded bilS with a 
sequence of unit amplitude rectangular pulses, each of duration 7;., and with a 
polarity which is determined from the PN sequence aocording to (13-2-6). 
Although it is easier to implement modul0-2 addition followed by PSK 
modulation instead of waveform multiplication, it is convenient, for purposes 
of demodulation, to consider tne transmitted signal in the multiplicative form 

t When four-phase PSK is desired, one PN sequence is added to the information sequence carried 
on the in·phase signal component and • second PN sequence is added to the inlonnation sequence 
carried on the quadrature component. In many PN-spread spectrum systems, the same binary 
inforIlllltion sequence is added to the two PN sequeoces to form the two quadrature components. 
Thus, a four-phase PSK signal is generated with a binary information stream. 
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given by (13-2-7). A functional block diagram of a four-phase PSK DS spread 
spectrum modulator is shown in Fig_ 13-2-1(b). 

The received equivalent lowpass signal for the ith code element ist 

ri(t) = Pi(/)ci(t) + z(t), 

= (2b, - l)(2ci -l)g(t - i1;.) + z(t) (13-2-8) 

where Z (I) represents the interferen~ or jamming signal corrupting the 
information-bearing signal. The interference is assumed to be a stationary 
random process with zero mean. 

If z(t) is a sample function from a complex-valued gaussian process, the 
optimum demodulator may be implemented either as a filter matched to the 
waveform 8(t) or as a correlator, as illustrated by the block diagrams in Fig. 
13-2-2. In the matched filter realization, the sampled output from the matched 
filter is multiplied by 2b, - I, which is obtained from the PN generator at the 

FIGURE 13-2-2 Possible demodulator structures for PN spread spectrum signals. 
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t For simplicity, we ..... me tllat III< channel allenuatWn a = 1 aod the pbase shift of the 
channel is zero. Since coherent PSK detection is assumed, any arbitrary channel phase shift is 
compensated for in the demodulation. 
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demodulator when the PN generator is properly synchronized. Since (2b,-
1)' = 1 when b, = 0 and bi = 1, the effect of the PN sequence on the received 
coded bits is thus removed. 

In Fig. 13-2-2, we also observe that the cross-correlation can be accompl
ished in either one of two ways. The first, illustrated in Fig. 13-2-2(b), involves 
premultiplying ri(t) with the waveform Pi(C) generated from the output of the 
PN generator and then cross-<:orrelating with g*(t) and sampling the output in 
each chip interval. The second method, illustrated in Fig. 13-2-2(e), involves 
cross-correlation with g*(t) first, sampling the output of the correlator and, 
then, mUltiplying this output with 2b, - 1. which is obtained from the PN 
generator. 

If z(t) is not a gaussian random process, the demodulation methods 
illustrated in Fig. 13-2-2 are no longer optimum. Nevertheless. we may still use 
any of these three demodulator structures to demodulate the received signal. 
When the statistical characteristics of the interference z (c) are unknown a 
priori, this is certainly one possible approach. An alternative method, which is 
described later, utilizes an adaptive filter prior to the matched filter or 
correlator to suppress narrowband interferenct:. The rationale for this second 
method is also described later. 

In Section 13-2·], we derive the error rate performance of the DS spread 
spectrum system in the presence of wideband and narrowband interference. 
The derivations are based on the assumption that the demodulator is any of 
the three equivalent structures shown in Fig. 13-2-2. 

13-2·1 Error Rate Performance of the Decoder 

Let the unquantized output of the demodulator be denoted by Y" 1 ""oj ~ n. 
First we consider a linear binary (n, k) block code and, without loss of 
generality, we assume that the all-zero code word is transmitted. 

A decoder that employs soft-decision decoding computes the correlation 
metrics 

n 

CMi = 2: (2cij - l)y;. i = 1, 2, ... ,2" (13-2-9) 
j=1 

where eij denotes the jth bit in the ith code word. The correlation metric 
corresponding to the all-zero code word is 

n 

CM, = 2n~c + 2: (2c'l -1)(2b, - l)vj 
j= 1 

n 

= 2n~c - 2: (2b j - ])Vj 
j=1 

(13-2-10) 

where Vj' 1.;; j ~ n, is the additive noise term corrupting the jth coded bit and 
~c is the chip energy. It is defined as 

vj=Re{{ g*(t)Z[t-(j-1)J;,jdt}, j=],2, .. :,n (13-2-11) 
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Similarly. the correlation metric corresponding to code word em having 
weight Wm is 

(13-2-12) 

Following the procedure used in Section 8-1-4, we shall determine the 
probability that eM", > eM,. The difference between eM, and eMm is 

• 
= 4~cwm - 2 ~ cmj(2bj - l)vj (13-2-13) 

j=1 

Since the code word em has weight W~. there are w'" nonzero components in 
the summation of noise terms contained in (13-2-13). We shall assume that the 
minimum distance of the code is sufficiently large that we can invoke the 
central limit theorem for the summation of noise components. This assumption 
is valid for PN spread spectrum signals that have a bandwidth expansion of 20 
or more. t Thus, the summation of noise components is modeled as a gaussian 
random variable. Since E{2bj - 1) = 0 and E( vJ = 0, the mean of the second 
term in (13-2-13) is also zero. 

The variance is 

n n 

a~ = 4 I ~ c""cmjE[(2bj -1)(2bi -1)JE(vi v,) (13-2-14) 
i"" 1 ;=1 

The sequence of binary digits from the PN generator are assumed to be 
uncorrelated. Hence, 

E[(2bj - 1)(2bi -1)J = Oil (13-2-15) 

and 

(13-2-16) 

where £(v2) is the second moment of anyone element from the set {Vj}' This 
moment is easily evaluated to yield 

E( v2) = r r g*(t )g( -')<1>" (I - r) dl dr 

(13-2-17) 

t Typically. the bandwidth expansion factor in a spread spectrum signal is of the order of 100 
and higher. 
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where q,,,( r) = ~E[~*(t)z(t + r)] is the autocorrelation function and ¢>u(f) is 
the power spectral density of the interference z(t). 

We observe that when the interference is spectrally lIat within the 
bandwidtht occupied by the transmitted signal, i.e., 

¢>,,(f) = 10 Ifl "'!w (13-2-18) 

the second moment in (13-2-17) is E(V2)=2'i:.Jo. and, hence, the variance of 
the interference term in (13-2-16) becomes 

(13-2-19) 

In this case, the probability that D < 0 is 
~-

( 
/2'i:c ) 

P2(m) = Q Yi; Wm (13-2-20) 

But the energy per coded bit '6', may be expressed in terms of the energy per 
information bit '1:. as 

k 
'1:, = - '1:. = R,. ~b 

n 

With this substitution, (13-2-20) becomes 
~--

P2(m) = Q( 

(13-2-21) 

(13-2-22) 

where Y. = 'lbtlo is the SNR per information bit. Finally, the code word error 
probability may be upper-bounded by the union bound as 

M 

Pm'" L: Q(V2y.R,wm) (13-2-23) 
m=2 

where M = 2'. Note that this expression is identical to the probability of a code 
word error for sofl-decision decoding of a linear binary block code in an 
A WGN channeL 

Although we have considered a binary block code in the derivation given 
above, the procedure is similar for an (n, k) convolutional code. The result of 
such a derivation is the following upper bound on the equivalent bit error 
probability: 

(13-2-24) 

The set of coefficients {Po} is obtained from an expansion of the derivative of 
the transfer function T(D, N), as described in Section 8-2-3. 

Next, we consider a narrowband interference centered at the carrier (at d.c. 

t If the bandwidth of the bandpass cbanne] is W. that of the equivalent low-pass channel is ! w. 
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for the equivalent lowpass signal). We may fix the total (average) jamming 
power to Jav = J() W, where Jo is the value of the power spectral density of an 
equivalent wideband interference (jamming signal). The narrowband inter· 
ference is characterized by the power spectral density 

{

Jov_JOW ""lW 
4>,,(1)= W, - W, (lfI~2 ,) 

o (JfI>~W,) 

(13-2-25) 

where W» W,. 
Substitution of (13·2·25) for 4>,,(f) into (13-2-17) yields 

J fw.n 
£( y2) = ~ IG(f)f df 

W. ~WII2 
(13-2-26) 

The value of £(y2) depends on the spectral characteristics of the pulse g(t). In 
the following example, we consider two special cases. 

Example 13-2·1 

Suppose that g(t) is a rectangular pulse as shown in Fig. 13-2-3(a) and 
IG (f)12 is the corresponding energy density spectrum shown in Fig. 
13-2·3(b). For the narrowband interference given by (13-2-26), the variance 
of the total interference is 

0" = 4w £(y2) m m 

= 8~cw,,: TJa. fW,12 Cin /if'lc)' df 
W, - w,n 7!/'lc 

8'" J f"12 ( . 2 = ",Wm av Sin lrX) dx 
W, -fll2 lrX (13-2-27) 

FIGURE 13-2-3 Rectangular pulse and its energy density spectrum. 
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FIGURE 13-2-4 Plot of the value of the integral in (13-2·27). ~ 

where {3 = W, 'fe. Figure 13-2-4 illustrates the value of this integral for 
0,,;; (3";; 1. We observe that the value of the integral is upper-bounded by 
W, 'fe. Hence, u;;. '" 8~lVm T.)av' 

In the limit as W, becomes zero, the interference becomes an impulse at 
the carrier. In this case the interference is a pure frequency tone and it is 
usually called a CW jamming signal. The power spectral density is 

(13-2-28) 

and the corresponding variance for the decision variable D = eM, - CMm is 

IT;;' = 4wm l. v IG(O)f 

(13-2-29) 

The probability of a code word error for CW jamming is upper-bounded as 

(13-2-30) 

But il'c = R,'tb · Furthermore, 'fe = l!W and I.vIW = 10 , Therefore (13-2-30) 
may be expressed as 

(13-2-31) 

which is the result obtained previously for broadband interference. This 
result indicates that a CW jammer has the same effect on performance as an 
equivalent broadband jammer. This equivalence is discussed further below. 

Example 13-2-2 

Let us determine the performance of the DS spread spectrum system in the 
presence of a CW jammer of average power la. when the transmitted signal 
pulse g(r) is one-half cycle of a sinusoid as illustrated in Fig. 13-2-5, i.e., 

~i\'" 1tt 
g(t) = -sin-, 0";;(,,, 'fe (13-2-32) 

'fe 'Fe 
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FIGURE 13 .. 2-5 A sinusoidal signal pulse. 

The variance of the interference of this pulse is 

U!, = 4w.".l .. IG(0)12 

64 
= r lEcTcl"wm 

girl 

o 

Hence, the upper bound on the code word error probability is 

[47. 1tf 

Jr:SInT 

(13 .. 2 .. 33) 

(13-2 .. 34) 

We observe that the performance obtained with this pulse is 0 .. 9 dB better 
than that obtained with a rectangular pulse. Recall that this pulse shape 
when used in offset QPSK results in an MSK signal. MSK modulation is 
frequently used in DS spread spectrum systems. 

The Processing Gain and the Jamming Margin An interesting interpreta .. 
tion of the performance characteristics for the DS spread spectrum signal is 
obtained by expressing the signal energy per bit lEb in terms of the average 
power. That is, IE. = p .. 1/" where Pa• is the average signal power and T. is the 
bit interval. Let us consider the performance obtained in the presence of CW 
jamming for the rectangular pulse treated in Example 13 .. 2 .. 1. When we 
substitute for gb and 10 into (13 .. 2 .. 31), we obtain 

(13 .. 2-35) 

where L, is the number of chips per information bit and p • ./} •• is the 
signal-to-jamming power ratio. 

An identical result is obtained with broadband jamming for which the 
performance is given by (13-2-23). For the signal energy per bit, we have 

(13-2-36) 
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where R is the information rate in bits/so The power spectral density for the 
jamming signal may be expressed as 

1. _ la> 
0- W (13-2-37) 

Using the relation in (13-2-36) and (13-2-37), the ratio 'lb/lo may be 
expressed as 

~b p.v/R WIR 
-=--=-- (13-2-38) 
10 1.vlW 1 .. / Pav 

The ratio lay! Pay is the jamming-to-signal power ratio, which is usually 
greater than unity. The ratio W / R = TblTc = B, = Lc is just the bandwidth 
expansion factor, or, equivalently, the number of chips per information bit. 
This ratio is usually called the processing gain of the DS spread spectrum 
system. It represents the advantage gained over the jammer that is obtained by 
expanding the bandwidth of the transmitted signal. If we interpret '4/10 as the 
SNR required to achieve a specified error rate performance and W f R as the 
available baftdwidth expansion factor, the ratio 1.vI p .. is called the jamming 
margin of the DS spread spectrum system. In other words, the jamming margin 
is the largest value that the ratio l.vl Pay can take and still satisfy the specified 
error probability. 

The performance of a soft-decision decoder for a linear (n. k) binary code, 
expressed in terms of the processing gain and the jamming margin, is 

(13-2-39) 

In addition to the processing gain W / Rand 1.vI Pa.. we observe that the 
performance depends on a third factor, namely, Rcwm. This factor is the coding 
gain. A lower bound on this factor is Rcdm;n. Thus the jamming margin 
achieved by the DS spread spectrum signal depends on the processing gain and 
the coding gain. 

UllCOded DS Spread Spedrum Signals The performance results given 
above for DS spread spectrum signals generated by means of an (n, k) cooe 
may be specialized to a trivial type of code, namely, a binary repetition code. 
For this case, k = 1 and the weight of the nonzero code word is W = n. Thus, 
Rcw = 1 and, hence, the performance of the binary signaling system reduces to 

P2 =Q( ~2:b) 

=Q( ~~a:~~) (13-2-40) 
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Note that the trivial (repetition) code gives no coding gain. It does result in 
a processing gain of WI R. 

ElUIIDpie 13-2-3 

Suppose that we wish to achieve an error rate performance of 10-6 or less 
with an uncoded DS spread spectrum system. The available bandwidth 
e"pansion factor is WI R = 1000. Let us determine the jamming margin. 

The 'libl!" required to achieve a bit error probability of 10-6 with 
uncoded binary PSK is 10.5 dB. The processing gain is 10 10glO 1000 = 30 dB. 
H~nce the maximum jamming-to-signal power that can be tolerated, i.e., the 
jamming margin, is 

Jav 101og,op-= 30-10.5= 19.5 dB 
BY 

Since this is the jamming margin achieved with an uncoded DS spread 
spectrum system, it may be increased by coding the information sequence. 

There is another way to view the modulation and demodulation processes 
for the uncoded (repetition code) DS spread spectrum system. At the 
modulator, the signal waveform generated by the repetition code with 
rectangular pulses, for example, is identical to a unit amplitude rectangular 
pulse s(t) of duration 1/, or its negative, depending on whether the information 
bit is 1 or 0, respectively. This may be seen from (13-2·7), where the coded 
chips {c,} within a single information bit are either all Is or Os. The PN 
sequence multiplies either s( t) or -s( t). Thus, when the information bit is aI, 
the L< PN chips generated by the PN generator are transmitted with the same 
polarity. On the other hand, when the information bit is a 0, the L, PN chips 
when multiplied by -s(t) are reversed in polarity. 

The demodulator for the repetition code, implemented as a correlato!, is 
illustrated in Fig. 13-2-6. We observe that the integration interval in the 
integrator is the bit interval 1/,. Thus, the decoder for the repetition code is 
eliminated and its function is subsumed in the demodulator. 

Now let us qualitatively assess the effect of this demodulation process on 

flGURE 13-2-6 eorrelation-type demodulator for a 
repetition code. 
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the interference z(t). The multiplication of z(t) by the output of the PN 
generator, which is expressed as 

w(t) = 2: (2b, - l)p(1 - iTe) 

yields 
vet) = w(t)z(t) 

The waveforms wet) and z(t) are statistically independent random processes 
each with zero mean and autocorrelation functions .pww(r) and .puCr), 
respectively. The product vet) is also a random process having an autocorrela
tion function equal to the product of 4>ww( t) with <p.A r). Hence, the power 
spectral density of the process vet) is equal to the convolution of the power 
spectral density of wet) with the power spectral density of z(t}. 

The effect of convolving the two spectra is to spread the power in 
bandwidth. Since the bandwidth of wet) occupies the available channel 
bandwith W, the result of convolution of the two spectra is to spread the power 
spectral density of z(t) over the frequency band of width W. If z(t) is a 
narrowband process, i.e., its power spectral density has a-width much less than 
W. the power spectral density of the process v(r) will occupy a bandwidth 
equal to at least W. 

The integrator used in the cross-correlation shown in Fig. 13-2-6 has a 
bandwidth approximately equal to liT •. Since 1/T" « W, only a fraction of the 
total interference power appears at the output of the correlator. This fraction is 
approximately equal to the ratio of bandwidths 11 r" to W. That is, 

I/Tb =_l_= 7; =..!_ 
W WTb T" L, 

In other words, the multiplication of the interference with the signal from the 
PN generator spreads the interference to the signal bandwidth W, and the 
narrowband integration following the multiplication sees only the fraction II Lc 
of the total interference. Thus, the performance of the uncoded DS spread 
spectrum system is enhanced by the processing gain Le. 

Linear Code Concateuted wid! • Binary Repetition Code As illustrated 
above, a binary repetition code provides a margin against an interference or 
jamming signal but yields no coding gain. To obtain an improvement in 
performance, we may use a linear (n" k) block or convolutional code, where 
n 1 ,,;; n = kLe. One possibi.:ty is to select n, < n and to repeat each code bit n2 
times such that n = nl n2' Thus, we can construct a linear (n 1, k) code by 
concatenating the (n" k) code with a binary (n2' 1) repetition code. This may 
be viewed as a trivial form of code concatenation where the outer code is the 
(n" k) c~ and the inner code is the repetition code. 

Since the repetition code yields no coding gain, the coding gain achieved by 
the combined code must reduce to that achieved by the (n" k) outer code. It 
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is demonstrated that this is indeed the case. The coding gain of the overall 
combined code is 

But the weights {w",} for the combined code may be expressed as 

where {W?H} are the weights of the outer code. Therefore, the coding gain of the 
combined code is 

(13-2-41 ) 

which is just the coding gain obtained from the outer code. 
A coding gain is also achieved if the (n" k) outer code is decoded using 

hard decisions. The probability of a bit error obtained with the (n,. I) 
repetition code (based on soft-decision decoding) is 

(13-2-42) 

Then the code word error probability [or a linear (n" k) block code is 
upper-bounded as 

n, 'n) 
PM";; 2: ( 'p"'(l-p)",-m 

m~'+ 1 m 
(13-2-43) 

where t =U(dmin - l)J, or as 

M 

PM ~ 2: [4pO- p)r~,12 (13-2-44) 
m=2 

where the latter is a Chernoff bound. For an (n,. k) binary convolutional code. 
the upper bound on the bit error probability is 

x 

P, ~ 2: (3"P,(d) (13-2-45) 
d=odl,,"c 

where Pz(d) is defined by (8-2-28) [or odd d and by (8-2-29) for even d. 

CDncatenated Coding for DS Spread Spertrum Systems It is apparent 
from the above discussion that an improvement in performance can be 
obtained by replacing the repetition code by a more powerful code that will 
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yield a coding gain in addition to the processing gain. BasicaHy, the objective in 
a OS spread spectrum system is to construct a long, low ·rate code having a 
large minimum distance. This may be best accomplished "by"using code 
concatenation. When binary PSK is used in conjunction with OS spread 
spectrum, the elements of a concatenated code word must be expressed in 
binary form. 

Best performance is obtained when soft-decision decoding is used on both 
the inner and outer codes. However, an alternative, which usually results in 
reduced complexity [or the decoder, is to employ soft-decision decoding on the 
inner code and hard-decision decoding on the outer code. The expressions for 
the error rate performance of these decoding schemes depend, in part, on the 
type of codes (block or convolutional) selected for the inner and outer codes. 
For example, the concatenation of two block codes may be viewed as an 
overall long binary (n. k) block code having a performance given by (13-2-39). 
The performance of other code combinations may also be readily derived. For 
the sake of brevity, we shall not consider such code combinations. 

13-2·2 Some Applica.ioBS of DS Spread Spectrum Signals 
In this subsection, we shall briefly consider the use of coded OS spread 
spectrum signals fOT three specific applications. One is concerned with 
providing immunity against a jamming signal. In the second, a communication 
signal is hidden in the background noise by transmitting the signal at a very 
low power level. The third application is concerned with accommodating a 
number of simultaneous signal transmissions on the same channel, i.e .. 
COMA. 

Antijamming Application In Section 13-2-1, we derived the error rate 
performance for a OS spread spectrum signal in the presence of either ~ a 
narrow band or a wide band jamming signal. As examples to illustrate the 
performance of a digital communications system in the presence of a jamming 
signal, we shall select three codes. One is the Golay (24, 12), which is 
characterized by the weight distribution given in Table 8-1-1 and has a 
minimum distance dm;n = 8. The second code is an expurgated Golay (24, 11) 
obtained by selecting 2048 code words of constant weight 12. Of course this 
expurgated code is nonlinear. These two codes will be used in conjunction with 
a repetition code. The third code to be considered is a maximum-length 
shift-register code. 

The error rate performance of the Golay (24, 12) with soft-decision 
decoding is 

PM';; [759Q( -6.:) + 2576Q( 

+ 759Q( I6WIR) ( 
l •• 'P.. + Q 

I2WfR) 
l • ./P .. 

24WIR)] 
la.IP •• 

(13-2-46) 
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where WI R is the processing gain and f • .1 p .. is the jamming margin. Since 
" "" "."2 "" 12W f Rand ". = 24, eacb coded bit is, in effect, repeated "1 = 
W/2R times. For example, if W/R = 100 (a processing gain of 20dB), tbe 
block length of tbe repetition code is" 1 = SO. 

If hard-decision decoding is used, the probability o( error for a coded bit is 

({Nf.IR) p-Q --
- fa.!P •• 

(13-2-47) 

and the corresponding probability of a code word error is upper-bounded as 

~",,;; n~4 (:)pn'(1 - p)24-m (13-2-48) 

As an alternative, we may use the Chernoff bound for hard-decision decoding, 
wbich is 

PH";; 7S9[4p(1 - p)r + 2576[4p(1 - p »)6 

+ 759[4p(1 - P )]8 + [4p(l - P W2 (13-2-49) 

Figure 13-2-7 illustrates the performance of the Golay (24, 12) as a function of 
the jamming margin i.vlp ... with the processing gain as a parameter. The 
Chernoff bound was used to compute the error probability for bard-decision 
decoding. The error probability for soft-decision decoding is dominated by the 
term 

7S9Q( ~8W / R) 
fa.!P •• 

and that for bard-decision decoding is dominated by tbe term 759[4p(1 - P W. 
Hence, the coding gain for soft-decision decoding t is at most 10 log 4 = 6 dB. 
We note that the two curves corresponding to W /R = 1000 (30dB) are 
identical in shape to tbe ones for W / R = 100 (20 dB), except that the latter are 
shifted by 10 dB to tbe right relative to the former. This shift is simply the 
difference in processing gain between these two DS spread spectrum signals. 

The error rate performance of the expurgated Golay (24, 11) is upper
bounded as 

PM '" 2047Q( III W (R) 'J fa.!P .. 

(or soft-decision decoding and ast 

(13-2-50) 

(13-2-51) 

t The coding gain is less tlwt 6 dB due to the multiplicative (actor of 759, which increases the 
error probability relative to the performance of the binary uncoded system. 

t We remind die reader thaI the union bound is nOI very tight for large signal sets. 
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Hence, the coding gain for soft-decision decoding t is at most 10 log 4 = 6 dB. 
We note that the two curves corresponding to W /R = 1000 (30dB) are 
identical in shape to the ones for W / R = 100 (20 dB), except that the latter are 
shifted by 10 dB to the right relative to the former. This shift is simply the 
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The error rate performance of the expurgated Golay (24, 11) is upper
bounded as 

PM '" 2047Q( III W (R) 'J fa.!P .. 

(or soft-decision decoding and ast 

(13-2-50) 

(13-2-51) 

t The coding gain is less tlwt 6 dB ciue to the multiplicative (actor of 759, which increases the 
error probability relative to the performance of the binary uncoded system. 

t We remind die reader thaI the union bound is nOI very tight for large signal sets. 
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for hard-decision decoding, where p is given as 

(13-2-52) 

The performance characteristics of this code are also plotted in Fig. 13-2-7 for 
W/R = 100. We observe that this expurgated Golay (24,11) code performs 
about 1 dB better than the Golay (24, 12) code. 

Instead of using a block code concatenated with a low-rate (1/n2) repetition 
code, let us consider using a single low-rate code. A particularly suitable set of 
low-rate codes is the set of maximum-length shift-register codes described in 
Section 8-1-3. We recall that for this set of codes, 

(n, k)=(2m -1. m) 

dmin=2m-1 
(13-2-53) 
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All code words except the all-zero word have an identical weight of 2
m

-' 

Hence. the error rate for sofl-decision decoding is upper-bounded ast 

2W!R m2m
-

1
) -----

f., I p .. 2'" - I 

( 
W/R m2

m
-') ,,;; 2m exp - ---m-

i.vlp .. 2 -I' 
(13-2-54) 

For moderate values of m, R,dmin = !m and, hence, (13-2-54) may be expressed 
as 

(13-2-55) 

Hence, the coding gain is at most 10 log ~m. 
For example, if we select m = 10 then n = 2 \0 - I = 1023. Since n = k W I R ~ 

m W I R, it follows that WI R = 102. Thus, we have a processing gain of about 
20 dB and a coding gain of 7 dB. This performance is comparable to that 
obtained with the expurgated Golay (24, 11) code. Higher coding gains can be 
achieved with larger val ues of m. 

It hard-decision decoding is used for the maximum-length shift-register 
codes, the error rale is upper-bounded by the Chernoff bound as 

(13-2-56) 

where p is given as 

2WIR') (V2W1R m ) --R ~Q ----
f,vI Pay C i.vi Pay 2m - 1 

(13-2-57) 

For m = 10, the code word error rale PM is comparable to that obtained with 
the expurgated Golay (24,11) code for hard-decision decoding. 

The reslts given above illustrate the performance that can be obtained with 
a single level of coding. Greater coding gains can be achieved with concaten
ated codes. 

t The M = r waveforms generated by a maximum-length shift-register code form a simplex set 
(see Problem 8·}3). The exact expression for the error probability, given in Section 5-2-4. may be 
used {Of large values of M. where the union bound becomes very loose. 
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Low-DeteeUbilty Signal Tl'IIDSIIIissiou In this application, the signal is 
purposely transmitted at g very low power level relative to the background 
channel noise and thermal noise that is generated in the front end of the 
receiver. If the OS spread spectrum signal occupies a bandwidth Wand the 
spectral density of the additive noise is No W 1Hz, the average noise power in 
the bandwidth W is No. = WN(), 

The average received signal power at the intended receiver is Pav• If we wish 
to hide the presence of the signal from receivers that are in the vicinity of the 
intended receiver, the signal is transmitted at a low power level such that 
PavlNav « 1. The intended receiver can recover the information-bearing signal 
with the aid of the processing gain and the coding gain. However, any other 
receiver that has no prior knowledge of the PN se,quence is unable to take 
advantage of the processing gain and the coding gain. Hence, the presence of 
the information-bearing signal is difficult to detect. We say that the signal has a 
low probability of being intercepted (LPI) and it is called an LPl sigfUll. 

The probability of error results given in Section 13-2-1 also apply to the 
demodulation and decoding of LPI signals at the intended receiver. 

Code Division Multiple A£cess The enhancement in performance ob
tained from a OS spread spectrum signal through the processing gain and 
~ng gain can be used to enable many DS spread spectrum signals to occupy 
the same channel bandwidth provided that each signal has its own distinct PN 
sequence, Thus, it is possible to have several users transmit messages 
simultaneously over the same channel bandwidth. This type of digital 
communication in which each user (transmitter-receiver pair) has a distinct PN 
code for transmitting over a common channel bandwidth is called either code 
division multiple access (COMA) or spread spectrum multiple access (SSMA). 

In the demodulation of each PN signal, the signals from the other 
simultaneous users of the channel appear as an additive interference. The level 
of interference varies, depending on the number of users at any given time. A 
major advantage of COMA is that a large number of users can be accommod
ated if each transmits messages for a short period of time. In such a multiple 
access system, it is relatively easy either to add new users or to decrease the 
number of users without disrupting the system. 

Let us determine the number of simultaneous signals that can be supported 
in a COMA system.t For simplicity, we assume that all signals have identical 
average powers .. Thus, if there are Nu simultaneous users, the desired 
signal-lo-noise intederence power ratio at a given receiver is 

Pav p.. 1 
-= 
J.v (N. -l)P., N. - 1 

(13-2-58) 

t In this section the in~rference from other use", is treated as a random process. This is the 
case if there is 110 cooperation amons the usets. III Chapler 15 we consider COMA transmission in 
whick interference from other \lien is k1lOwn and is suppressed by the rea:iver. 
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Hence, the perfonnance for soft -decision decoding at the given receiver is 
upper-bounded as 

'" (12W/R) ( 
P", '" m~2 Q 'V N" -1 Rcwm '" (M -I)Q 

(13-2-59) 

In this case, we have assumed that the interference from other users is 
gaussian. 

As an example, suppose that the desired level of performance (eCTor 
probability of to- 6

) is achieved when 

W!R 
-- Redm.n = 20 
N .. -I 

Tllen tile maximum number of users that can be supported in the CDMA 
system is 

(13-2-60) 

If WI R = 100 and Redm.n = 4, as obtained with the Golay (24, 12) code, the 
maximum number is IV" = 21. If W (R = 1000 and Redm;n = 4, this number 
becomes N" = 20l. 

In determining the maximum number of simultaneous users of the channel, 
we have implicitly assumed that the PN code sequences are mutually 
orthogonal and the interference from other users adds on a power basis only. 
However, orthogonality among a number of PN code sequences is not easily 
achieved, especially if the number of PN code sequences required is large. In 
fact, the selection of a good set of PN sequences for a CDMA system is an 
important problem that has received considerable attention in the technical 
literature. We shall brielly discuss this problem in Section 13-2-3. 

lJ..2-3 Eft'ed of Pulsed Interference on DS Spread Spectrum 
Systems 

Thus far, we have considered the effect of continuous interference or jamming 
on a DS spread spectrum signal. We have observed that the processing gain 
and coding gain provide a means for overcoming the detrimental effects of this 
type of interference. However, there is a jamming threat that has a dramatic 
effect on the performance of a DS spread spectrum system. That jamming 
signal consists of pulses of spectrally fiat noise that covers the entire signal 
bandwidth W. This is usually called pulsed interference or partial-time jamming. 

Suppose the jammer has an average power Jav il\ the signal bandwidth W. 
Hence Jo = JavlW. Instead of transmitting continuously, the jammer transmits 
pulses at a power J.vI u for u % of the time, i.e., the probability that the 
jammer is transmitting at a given instant is u. For simplicity, we assume that 
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an interference pulse spans an integral number of signaling inteP/als and, thus, 
it affects an integral number of bits. When the jammer is not transmitting, the 
transmitted bits are assumed to be received error-free, and when the jammer is 
transmitting, the probability of error for an uncoded DS spread spectrum 
system is Q(v2o.'€bIJo). Hence, the average probability of a bit error is 

2o.WIR) 
I.,IP,v 

(13-2-61 ) 

The jammer selects the duty cycle a to maximize the error probability. On 
differentiating (13-2-61) with respect to a., we find that the worst-case pulse 
jamming occurs when 

0.* = 'l"IIo ('€bIIo;;;'O.71) 
{ 

0.71 

(13-2-62) 
1 ('l,,/Io < 0.71) 

and the corresponding error probability is 

{

0'083 = 0.083I,./P .. 
P. _ '€,,/Io W / R 

,- Q(V2WfR) 
I • ./P •• 

(~/1o>O.71) 

(13-2-63) 

(~/1o<0.71) 

The error rate performance given by (13-2-61) for u = 1.0, 0.1, and 0.01 
along with the worst-case performance based on u* is plotted in Fig. 13-2-8. 

FIGURE 1J.Z-8 Performance of DS binary PSK with pulse 
jamming_ 

10' 

.:" 

~ Ht-' 

:S 
• 
'0 f I~) 

10-< 

, 
........... wont-case puisejamilling (a= Ct·} 

, , , 

1~'~~~~~~~~--~L-~~ 
OSlO IS 20 2S 30 3S 

.!/J.(dB) 

728

718 DIGITAL COMMUNICATIONS 

an interference pulse spans an integral number of signaling inteP/als and, thus, 
it affects an integral number of bits. When the jammer is not transmitting, the 
transmitted bits are assumed to be received error-free, and when the jammer is 
transmitting, the probability of error for an uncoded DS spread spectrum 
system is Q(v2o.'€bIJo). Hence, the average probability of a bit error is 

2o.WIR) 
I.,IP,v 

(13-2-61 ) 

The jammer selects the duty cycle a to maximize the error probability. On 
differentiating (13-2-61) with respect to a., we find that the worst-case pulse 
jamming occurs when 

0.* = 'l"IIo ('€bIIo;;;'O.71) 
{ 

0.71 

(13-2-62) 
1 ('l,,/Io < 0.71) 

and the corresponding error probability is 

{

0'083 = 0.083I,./P .. 
P. _ '€,,/Io W / R 

,- Q(V2WfR) 
I • ./P •• 

(~/1o>O.71) 

(13-2-63) 

(~/1o<0.71) 

The error rate performance given by (13-2-61) for u = 1.0, 0.1, and 0.01 
along with the worst-case performance based on a* is plotted in Fig. 13-2-8. 

FIGURE 1J.Z-8 Performance of DS binary PSK with pulse 
jamming_ 

10' 

.:" 

~ Ht-' 

:S 
• 
'0 f I~) 

10-< 

, 
........... wont-case puisejamilling (a= Ct·} 

, , , 

1~'~~~~~~~~--~L-~~ 
OSlO IS 20 2S 30 3S 

.!/J.(dB) 



CHAPTER lJ. SPREAD S?ECTRLM SJG/'o.ALS FOR DlGrTAl COMMUNJCATIONS 719 

By comparing the error rate for continuous gaussian noise jamming with 
worst-case pulse jamming, we observe a large difference in performance, which 
is approximately 40 dB at an error rate of 10-6

• 

We should point out that the above analysis applies when the jammer pulse 
duration is equal to or greater than the bit duration. [n addition, we should 
indicate that practical considerations may prohibit ttie jammer from achieving 
high peak power (small values of a). Nevertheless, the error probability givell 
by (13·2-63) serves as an upper bound on the performance of the uncoded 
binary PSK in worst·case pulse jamming. Clearly, the performance of the DS 
spread spectrum system in the presence of such jamming is extremely poor. 

If we simply add coding to the DS spread spectrum system, the improve
ment over the uncoded system is the coding gain. Thus, '(;bf 10 is reduced by the 
coding gain, which in most cases is limited to less than 10 dB. The reason for 
the poor performance is that the jamming signal pulse duration may be 
selected to affect many consecutive coded bits when the jamming signal is 
turned on. Consequently, the code word error probability is high due to the 
burst characteristics of the jammer. 

In order to improve the performance, we should interleave the coded bits 
prior to transmission over the channel. The effect of the interleaving, as 
discussed in Section 8-1·9, is 10 make the coded bits that are hit by the jammer 
statistically independent. 

The block diagram of the digital communication system that includes 
interleaving/deinterleaving is shown in Fig. 13-2-9. Also shown is the pos· 
sibility that the receiver knows the jammer state, i.e., that it knows when 
the jammer is on or off. Knowledge of the jammer state (called side 
informalion) is sometimes available from channel measurements of noise 
power levels in adjacent frequency bands. In our treatment, we consider two 

FIGURE 13-2-9 Block diagram of AJ communication system. 
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extreme cases, namely. no knowledge of the. jammer state or complete 
knowledge of the jammer stale. In any case, the random variable ( 
representing the jammer state is characterized by the probabilities 

P(, = 1) = a, P«( = 0) = 1 - a 

When the jammer is on, the channel is modeled as an A WON with power 
spectral density No = JolO1 = l.vI 01 W; and when the jammer is off. there is no 
noise in the channel. Knowledge of the jammer state implies that the decoder 
knows when (= 1 and when (= 0, and uses this information in the 
computation of the correlation metrics. For example. the decoder may weight 
the demodulator output for each coded bit by the reciprocal of the noise power 
level in the interval. Alternatively. the decoder may give zero weight (erasure) 
to a jammed bit. 

First, let us consider the effect of jamming without knowledge of the jammer 
slate. The interleaver/deinterleaver pair is assumed to result in statistically 
independent jammer hits of the coded bits. As an example of the performance 
achieved with coding, we cite the performance results from the paper of Martin 
and McAdam (1980). There the performance of binary convolutional codes is 
evaluated for worst-case pulse jamming. Both hard and soft-decision Viterbi 
decoding are considered. Soft decisions are obtained by quantizing the 
demodulator output to eight levels. For this purpose. a uniform quantizer is 
used for which the threshold spacing is optimized for the pulse jammer noise 
level. The quantizer plays the important role of limiting the size of the 
demodulator output when the pulse jammer is on. The limiting action ensures 
that any hit on a coded bit does not heavily bias the corresponding path 
metrics. 

The optimum duty cycle for the pulse jammer in the coded system is 
generally inversely proportional to the SNR. but its value is different from that 
given by (13-2-62) for the uncoded system. Figure 13-2-10 illustrates graphi· 
cally the optimal jammer duty cycle for both hard- and soft-decision decoding 
of the rate 1/2 convolutional codes. The corresponding error rate results for 
this worst-case pulse jammer are illustrated in Figs 13-2-11 and 13-2-12 for rate 
1/2 codes with constraint lengths 3 "" K "" 9. For example, note thaI at 
P, = 10-', the K = 7 convolutional code with soft·decision decoding requires 
~blJo =7.6dB, whereas hard-decision decoding require~ 'ChIlo = 11.7 dB. This 
4.1 dB difference in SNR is relatively large. With continuous gaussian noise, 
the corresponding SNRs for an error rate of 10-6 are 5 dB for soft -decision 
decoding and 7 dB for hard·decision decoding. Hence. the worst -case plilse 
jammer has degraded the performance by 2.6 dB for soft-decision decoding 
and by 4.7 dB for hard-decision decoding. These levels of degradation increase 
as the constraint length of the convolutional code is decreased. The important 
point, however, is that the loss in SNR due to jamming has been reduced from 
41) dB for the uncoded system to less than 5 dB for the coded system based on 
a K = 7, rate 1/2 convolutional code. 

730

728 OI(HTAl COMMl/NJCA nON5 
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FIGURE 1) .. 2 .. 10 Optimal duty cycle for pulse jammer. [From 
Martin and McAdam (1980). © 1980 IEEE.] 
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A simpler method for evalUating the performance of a coded Ai com
munication system is to use the cutoff rate parameter Ro as proposed by 
Omura and Levitt (1982). For example, with binary .. coded modulation, the 
cutoff rate may be expressed as 

Ro = I -log(1 + Do) (13 .. 2-64) 

FIGURE 13-2 .. 11 Performance of rate 1/2 convolution.l codes 
with hard-decision Vite,bi decoding binary 
PSK with optimal pulse jamming. [From 
Martin and McAdam (1980). © 1980 IEEE I 

.. ~ 
g 
~ 

:0 
~ 

'Q 

£ 
:0 

1 

10-.1 

lo-' 

\Q-s 

l<T" 

Union bound 
Opc:imal pulse jamming 
Binary J:hase shift keying 
Rate: 1/2 coo votuion.aJ code 

K=5 

K=7 

K=9 

I~' L...._ ......... _~_~~~'-~~~_~ 
5 7 9 II 13 15 17 19 

,.(",jJo (dB) 

731

CHAPTER B- SPREA.D S?ECTRUM SlGNALS FOR DIGlTAL COMMUN1CAT10f'!S 711 

FIGURE 1) .. 2 .. 10 Optimal duty cycle for pulse jammer. [From 
Martin and McAdam (1980). if) 1980 IEEE.] 

Pulse jammin! 
Binary phase sill£! keying 

}O-' 

]0-4 L....-'_--'-_..L.._..L....._L---'_~ 

-5 0 5 10 15 20 25 JO 

&',jJ. (dB} 

A simpler method for evalUating the performance of a coded Ai com
munication system is to use the cutoff rate parameter Ro as proposed by 
Omura and Levitt (1982). For example, with binary .. coded modulation, the 
cutoff rate may be expressed as 

Ro = I -log(1 + Do) (13 .. 2-64) 

FIGURE 13-2 .. 11 Performance of rate 1/2 convolutional codes 
with hard-decision Vite,bi decoding binary 
PSK with optimal pulse jamming. [From 
Martin and McAdam (1980). © 1980 IEEE I 

.. ~ 
g 
~ 

:E 
~ 

'Q 

£ 
15 

1 

10-.1 

lo-' 

\Q-s 

l<T" 

Union bound 
Opc:imal pulse jamming 
Binary J:hase shift keying 
Rate: 1/2 coo votuion.aJ code 

K=7 

I~' L.._..L....._~_~~~~~_~ __ 
5 7 9 II 13 15 17 19 

,.(",jJo (dB) 



722 DIGITAL COMMUNICA nONS 

.. ' 
~ 
u 

1l 
~ 

'1; 

f 

10-' 

10-< 

11r' 

IIF' 

U.ionbound 
Optimal pulse jamming 
8i""l' p/lu< $/Uft keying 
kate 112 convmuion&l code 

with Viterbi dec«till( 
Soft dc:ciS1on~ 

X=9 

FIGURE 13-2·)2 Performance of rate 1/2 convolutional codes 
with soft-decision Viterbi decoding binary 
PSK with optimal pulse jamming. [From 
Martin and McAdam (1980). If:! 1980 IEEE.] 

llr' ~~~~~~~~i-~~~~ 
l 4 6 8 10 12 14 16 

6JJ,{dB) 

where the factor Do depends on the channel noise characteristics and the 
decoder processing. Recall that for binary PSK in an A WGN channel and 
soft-decision decoding, 

(13-2-65) 

where lfJc is the energy per coded bit; and for hard-decision decoding, 

Do = V4p(l- p) (13-2-66) 

where p is the probability of a coded bit error. Here. we have No"" 10 , 

For a coded binary PSK, with pulse jamming, Omura and Levitt (1982) have 
shown that 

for soft-decision decoding with 
knowledge of jammer state 

Po = min {[a exp (;"''i.No/a) + 1- a) exp (-2A~J} 
A~O 

for soft·decision decoding with 
no knowledge of jammer state 

for hard-decision decoding with 
knowledge of the jammer state 

Do = V4ap(1 - ap) for hard-decision decoding with 

(13-2-67) 

(13-2-68) 

(13-2-69) 

no knowledge of the jammer state (13-2-70) 
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where the probability of error for hard-decision decoding of binary PSK is 

The graphs for Ro as a function of 'ifJ No are illustrated in Fig_ l3-2-13 for 
the cases given above_ Note that these graphs represent the cutoff rate for the 
worst-case value of a = a* that maximizes Da (minimizes Ro) for each value of 
'l!J No. Furthermore, note that with soft-decision decoding and no knowledge 
of the jammer state, Ro = O. This situation results from the fact that the 
demodulator output is not quantized_ 

The graphs in Fig. 13-2-l3 may be used to evaluate the performance of 
coded systems. To demonstrate the procedure, suppose that we wish to 
determine the SNR required to achieve an error probability of 10 -6 with coded 
binary PSK in worst-case pulse jamming. To be specific, we assume that we 
have a rate 1/2, K = 7 convolutional code. We begin with the performance of 
the rate 1/2, K = 7 convolutional code with soft-decision decoding in an 
A WGN channel. At P2 = 10-6

, the SNR required is found from Fig. 8-2-21 to 
be 

Since the code is rate 1/2, we have 
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Now, we go to the graphs in Fig. 13-2-13 and find that for the A WGN cbannel 
(reference system) with 'l:el No = 2 dB, the corresponding value of the cutolf 
rate is 

Ro = 0.74 bits/symbol 

If we have another channel with different noise characteristics (a worst-case 
pulse noise channel) but with the same value of the cutoff rate Ro, then the 
upper bound on the bit error probability is the same, i.e., 10-6 in this case. 
Consequently, we can use this rate to determine the SNR required for the 
worst-case pulse jammer channel. From the graphs in Fig. 13-2-13, we find that 

10 dB for hard-decision decoding with 
no knowledge of jammer state 

'l:e 5 dB for hard-decision decoding with 
-= 
Jo knowledge of jammer state 

3 dB for soft-decision decoding with 
knowledge of jammer state 

Therefore, the corresponding values of 'l:bIJO for the rate 1/2, K = 7 convolu
tional are 13, 8, and 6 dB, respectively. 

This general approach may be used to generate error rate graphs fOT coded 
binary signals in a worst-case pulse jamming channel by using corresponding 
error rate graphs fOT the A WGN channel. The approach we describe above is 
easily generalized to /If -ary coded signals as indicated by Omura and Levitt 
(1982). 

By comparing the cutoff rate for coded DS binary PSK modulation shown in 
Fig. 13-2-13, we note tbat for rates below 0.7, there is no penalty in SNR with 
soft-decision decoding and jammer state information compared with the 
performance on the A WGN channel (a = 1). On the other hand, at Ro = 0.7, 
there is a 6dB difference in performance hetween the SNR in an AWGN 
channel and that required for hard-decision decoding with no jammer stale 
information. At rates below 0.4, there is no penalty in SNR with hard-decision 
decoding if the jammer state is unknown. However, there is the expected 2 dB 
loss in hard-decision decoding compared with soft -decision decoding in the 
A WGN channel. 

13-2-4 Generation of PN Sequences 
The generation of PN sequences for spread spectrum applications is a topic 
tbat has received considerable attention in the technical literature. We shall 
briefly discuss the construction of some PN sequences and present a number of 
important properties of the autocorrelation and cross-correlation functions of 
such sequences. For a comprehensive treatment of this subject. the interested 
reader may refer to the book by Golomb (1967). 
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FIGURE 13-2-14 Gener.1 m-stage shift regisler with linear feedback. 

By far the most widely known binary PN sequences are the maximum
length shift-register sequences introduced in Section 8-1-3 in tile context of 
coding and suggest.ed again in Section 13-2-2 for use as low-rate codes. A 
maximum-length shift-register sequence, or m-sequence for short, has length 
n = 2m 

- I bits and is generated by an m -stage shift regi&ter with linear 
feedback as illustrated in Fig. 13-2-14. The sequence is periodic with period n. 
Each period of the sequence contains 2m

-
1 ones and 2m

-
1 -I zeros. 

In DS spread spectrum applications the binary sequence with elements {O, I} 
is mapped into 3 corresponding sequence of positive and negative pulses 
according to the relation 

Pi(t) = (2bi - I)p(t - iT) 

where Pi(t) is the pulse corresponding to the element b i in the sequence with 
elements to, I}. Equivalently, we may say that the binary sequence with 
elements to, I} is mapped into a corresponding binary sequence with elements 
{-I, I}. We shall call the equivalent sequence with elements i-I. I} a bipolar 
sequence, since it results in pulses of positive and negative amplitudes. 

An important characteristic of a periodic PN sequence is its periodic 
autocorrelation function, which is usually defined in terms of the bipolar 
sequence as 

n 

rf>Ul = 2: (2b, - 1 )(2bi +] - 1), 0 ~ j ~ n - I (13-2-71 ) 
i=1 

where n is the period. Clearly, </>U + Tn) = q,(j) for any integer value r. 
Ideally, a pseudo-random sequence should have an autocorrelation function 

with tile property that </>(0) = nand </>u) = 0 for 1 ~ j ~ n - 1. In the case of m 
sequences, the periodic autocorrelation function is 

</>U) = {n (j = 0) 
-1 (I ~j~n -1) 

(13-2-72) 

For large values of n, i.e., for long m sequences, the size of the off-peak values 
of </>0) relative to the peak value </>(i)/q,(O) = -lIn is small and, from a 
practical viewpoint, inconsequential. Therefore, m sequences are almost ideal 
when viewed in terms of their autocorrelation function. 
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In antijamming applications of PN spread spectrum signals, the period of 
the sequence must be large in order to prevent the jammer from learning the 
feedback connections of the PN generator. However, this requirement is 
impractical in most cases because the jammer can determine the feedback 
connections by observing only 2m chips from the PN sequence. This 
vulnerability of the PN sequence is due to the linearity property of the 
generator. To reduce the vulnerability 10 a jammer, the output sequences from 
several stages of the shift register or the outputs from severa! distinct m 
sequences are combined in a nonlinear way to produce a nonlinear sequence 
that is considerably more difficult for the jammer to learn. Further reduction in 
vulnerability is achieved by frequently changing the feedback connections 
and/ or the number of stages in the shift register according to some prear
ranged plan formulated between the transmitter and the intended receiver. 

In some applications, the cross-correlation properties of PN sequences are 
as important as the autocorrelation properties. For example, in CDMA, each 
user is assigned a particular PN sequence. Ideally, the PN sequences among 
users should' be mutually orthogonal so that the level of interference 
experienced by anyone user from transmissions of other users adds on a power 
basis. However, the PN sequences used in practice exhibit some correlation. 

To be specific, we consider the class of m sequences. It is 'known (Sarwate 
and Pursley, 1980) that the periodic cross-correlation function between any 
pair of m sequences of the same period can have relatively large peaks. Table 
13-2-1 lists the peak magnitude 4>max for the periodic cross-correlation between 
pairs of m sequences for 3 '" m '" 12. The table also shows the number of m 
sequences of length n = 2m 

- 1 for 3'" m '" 12. As we can see, the number of 
m sequences of length n increases rapidly with m. We also observe that, for 
most sequences, the peak magnitude <Pm •• of the cross-correlation function is a 
large percentage of the peak value of the autocorrelation function. 

Such high values for the cross-correlations are undesirable in CDMA. 

PEAK CROSS-CORRELATION OF m SEQUENCES AND GOLD SEQUENCES 

Peak 
Number of c:J()SS.Corre)ati_ 

m .. =1"'-1 1ft 8efjuences 4>_ ",_",,(0) tIm) t(m)/4>(OI 

3 7 2 5 0.71 5 0.71 
4 15 2 9 060 9 0.60 
5 31 6 11 0.35 9 0.29 
6 63 6 23 0.36 17 0.27 
7 127 18 41 0.32 17 0.13 
8 255 16 95 0.37 33 0.13 
9 511 48 113 0.22 33 0.06 

10 1023 60 383 0.37 65 0.06 
11 2047 :76 287 0.14 65 0.03 
12 4095 144 1407 0.34 129 0.03 
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Althollgh it is possible to select a small subset of m' sequences that have 
relatively smaller cross-correlation peak values, the number of sequences in the 
set is usually too small for CDMA applications. 

PN sequences witb better periodic cross-correlation properties than 111 

sequences have been given by Gold (1%7, 1%8) and Kasami (1966). They are 
derived from m sequences as described below. 

Gold and Kasami proved that certain pairs of m sequences of length 11 

exhibit a three·valued cross-correlation function with values {-I, -t(m). 
t(m) - 2}, where 

, _ {2(m+llt2 + 1 (odd m) 
t(m} - ( 2" 2 m + ),- + 1 (even m) 

(13·2-73) 

for example, if m = 10 then 1(10) = 26 + 1 = 65 and tbe three possible values of 
the periodic cross-correlation function are {-1, -65,63). Hence the maximum 
cross-correlation for the pair of m sequences is 65, while the peak for the 
family of 60 possible sequences generated by a lO-stage shift register with 
different feedback connections is <Pm .. = 383-about a sixfold difference in 
peak values, Two m sequences of length n with a periodic cross-correlation 
function that takes on the possible values {-1, -t(m), t(m) - 2} are called 
preferred sequences. " 

From a pair of preferred sequences, say a = [0,02' , ,anJ and b = 

[b,b t , '. bn ], we construct a set of sequences of length n by taking the 
modulo-2 sum of a with the n cyclicly shifted versions of b or vice versa. Thus, 
we obtain n new periodic sequencest with period n = 2~ - L We may also 
include the original sequences 8 and b and, thus, we have a total of n + 2 
sequences. The n + 2 sequences constructed in this' manner are called Gold 
sequences. 

Example 13-2-4 

Let us consider the generation of Gold sequences of length n = 31 = 2' - 1. 
As indicated above for m = 5, the cross-correlation peak is 

t(5) = 2' + 1 = 9 

Two preferred sequences, which may be obtained from Peterson and 
Weldon (1972), are described by the polynomials 

g,(p) =p' +p'+ 1 

g2(P) = p5 + p' + p' + P + 1 

t An equivalent method for generating the n new sequences is to employ a shift register 01 • 
length 2m with feedback connections specified by the polynomial h(p)= 1f,(P)g2(P), where g,(p) 
and g,( p) are the polynomials that specify the feedback connections of the m-stage shifl regislers 
that generate the m sequences a and D. 
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KIP) ~ P' +". • p' + p • I 

FIGURE 13-2-15 Generation of Gold sequences of Ien81h 31. 

Gold __ -{+ 

sequenee 

The shift registers for generating the two m sequences and the 
corresponding Gold sequences are shown in Fig. 13-2·15. In this case, there 
are 33 different sequences, corresponding to the 33 relative phases' of the 
two m sequences. Of these,· 31 sequences are non-maximal-length 
sequences. 

With the exception of the sequences a and b, the set of Gold sequences does 
not comprise maximum-length shift-register sequences of length n. Hence, 
their autocorrelation functions are not two-valued. Gold (1968) has shown that 
the cross-correlation function for any pair of sequences from the set of n + 2 
Gold sequences is three-valued with possible values {-1, - t(m), t(m) - 2}, 
where t(m) is giv~n by (13-2-73). Similarly, the off-peak autocorrelation 
function for a Gold sequence takes on values from the set {-1, -t(m), t(m)-
2}. Hence, the off-peak values of the autocorrelation function are upper
bounded by t(m). 

The values of the off-peak autocorrelation function and the peak cross
correlation function, i.e., t(m), for Gold sequences is listed in Table 13-2-1. 
Also listed are the values normalized by 4>(0). 

It is int~resting to compare the peak cross-correlation value of Gold 
sequences with a known lower bound on the cross-correlation between any 
pair of binary sequences of period n in a set of M sequences. A lower bound 
developed by Welch (1974) for <Pm .. is 

~ 
<Pmax ~ n ""Mn=l (13-2-74) 

which, for large values of nand M, is well approximated as Yn.. For Gold 
sequences, n = 2m 

- 1 and, hence, the lower bound is q.mp '" rl2. This bound 
is lower by v'2 for odd m and by 2 for even m relative to 4>ma. = t(m) for Gold 
sequences. 
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A procedure similar 10 that used for generating Gold sequences will 
generate a smaller set of M = 2",12 binary sequences of period n = 2m 

- 1. 
where m is even. In this procedure, we begin with an m sequence a and we 
form a binary sequence b by taking every 2m12 + 1 bit of a. Thus. the sequence 
b is formed by decimating a by 2""2 + I. It can be verified that the resulting b is 
periodic with period r l2 

- L For example, if m = 1O.!he period of a is 
" = 1023 and the period of b is 31. Hence, if we observe 1023 bits of the 
sequence b, we shall see 33 repetitions of the 31·bit sequence. Now. by taking 
n = 2"' - 1 bits of the sequences a and b, we form a new set of sequences by 
adding, modulo-2, the bits from a and the bits from b and all 2,"12 - 2 cyclic 
shifts of the bits from b. By including a in tbe set, we obtain a sel of 2m

!2 binary 
sequences of length n = 2m - I. These are called Kasami sequences. The 
autocorrelation and cross-correlation functions of these sequences take on 
values from the set {-I, _(2",,2 + 1).2",12 - I}. Hence, the maximum cross
correiation value for any pair of sequences from the set is 

(13-2-75) 

This value of <P", .. satisfies the Welch lower bound for a set of 2ml2 sequences 
of length n = 2m 

- 1. Hence, the Kasami sequences are optimal. 
Besides the well-known Gold and Kasami sequences, there are other binary 

sequences appropriate for CDMA applications. The interested reader may 
refer to the work of Scholtz (1979), Olsen (1977), and Sarwate and Pursley 
(1980). 

Finally, we wish to indicate that. although we ha\'e discussed -the periodic 
cross-correlation function between pairs of periodic sequences, many practical 
CDMA system, may use information bit durations that encompass only 
fractions of a periodic sequence. In such cases, it is the partial-period 
cross-correlation between two sequences that is important. A number of 
papers deal with this problem, including those by Lindholm (1968), Wain berg 
and Wolf (1970), Fredricsson (1975), Bekir et al. (1978). and Pursley (1979). 

13·3 FREQUENCY·HOPPED SPREAD SPECTRUM 
SIGNALS 

In a frequency-hopped (FH) spread spectrum communications system the 
available channel bandwidth is subdivided into a large number of contiguous 
frequency slots. In any signaling interval, the transmitted signal occupies one 
or more of the available frequency slots. The selection of the frequency slot(5) 
in each signaling interval is made pseudo-randomly according to the output 
from a PN generator. Figure 13-3-1 illustrates a particular frequency-hopped 
pattern in the time-frequency plane. 

A block diagram of the transmitter and receiver for a frequency-hopped 
spread spectrum system is shown in Fig. 13-3-2. The modulation is uSl1ally 
either binary or M-ary FSK. For example, if binary FSK is employed, the 
modulator selects one of two frequencies corresponding to the transmission of 
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IilGURE 13-3-1 An example of a frequency-hopped (FH) patlern< Time interval 

either a I or a O. The resulting FSK signal is translated in frequency by an 
amount that is determined by the output sequence from the PN generator, 
which, in turn, is used to select a frequency that is synthesized by the frequency 
synthesizer. This frequency is mixed with the output of the modulator and the 
resultant frequency-translated signal is transmitted over the channel. For 
example, m bits from the PN generator may be used to specify 2m 

- 1 possible 
frequency translations. 

At the receiver, we have an identical PN generator, synchronized with the 
received signal, which is used to control the output of the frequency 
synthesizer. Thus, the pseudo-random frequency translation introduced at the 
transmitter is removed at the receiver by mixing the synthesizer output with 
the received signal. The resultant signal is demodulated by means of an FSK 
demodulator. A signal for maintaining synchronism of the PN generator with 
the frequency-translated received signal is usually extracted from the received 
signal. 

Although PSK modulation gives better performance than FSK ill an 

IilGURE 13-3-2 Block diagram of • FH "Pread spectrum system< 
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Encoder 

FIGURE 13-3-3 Block diagram of an independent tone FH spread spectrum system. 

A WGN channel, it is difficult to maintain pbase coherence in the syntbesis of 
the frequencies used in the hopping pattern and, also, in the propagation of the 
signal over the channel as the signal is hopped from one frequency to' another 
over a wide bandwidth. Consequently, FSK modulation witb noncoherent 
detection is usually employed with FH spread spectrum signals. 

In the frequency-hopping system depicted in Fig. 13-3-2, the carrier 
frequency is pseudo-randomly hopped in every signaling interval. The M 
information-bearing tones are contiguous and separated in frequency by 1/'Fc. 
where '1;, is the signaling interval. This type of frequency bopping is called 
block hopping. 

Another type of frequency hopping that is less vulnerable to some jamming 
strategies is .independent tone hopping. In this scheme, the M possible tones 
from th~ modulator are assigned widely dispersed frequency slots. One method 
for accomplishing this is iUustrated in Fig. 13-3-3. Here, the m bits from the PN 
generator and the Ie information bits are used to specify the frequency slots for 
the transmitted signal. 

The frequency-hopping rale is usually selected to be either equal to the 
(coded or uncoded) symbol rate or faster than that rate. If tbere are multiple 
hops per symbol, we have a fast-hopped signal. On the other hand, if the 
bopping is performed at the symbol rate, we have a slow·hopped signal. 

Fast frequency bopping is" employed in AJ applications when it is necessary 
to prevent a type of jammer, called a !oHower jammer, from having sufficient 
time to intercept the frequency and retransmit it along with adjacent 
frequencies so as to create interfering signal components. However, there is a 
penalty incurred in subdividing a signal into several frequency-hopped ele
ments because the energy from these separate elements is combined non
coherently. Consequently, the demodulator incurs a penalty in the form of a 
noncoherent combining loss as described in Section 12-l. 

FH spread spectrum signals are used primarily in digital communications 
systems that require AJ projection and in CDMA, where many users share a 
common bandwidth. In most cases, a FH signaI is preferred over a DS spread 
spectrum signal because of. the stringent synchronization requirements 
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inherent in DS spread spectrum signals. Specifically, in a DS system, timing 
and synchronization must be established to within a fraction of the chip 
interval T.c = I/W. On the other hand, in an FH system, the chip interval is the 
time spent in transmitting a signal in a particular frequency slot of bandwidth 
B« W. But this interval is approximately l/B, which is much larger than lrW. 
Hence the timing requirements in a FH system are not as stringent as in a PN 
system. 

In Sections 13·3·2 and ]3·3·3, we shall focus on the AJ and CDMA 
applications of FH spread spectrum signals. First, we shall determine the error 
rate performance of an uncoded and a coded FH signal in the presence of 
broadband A WGN interference. Then we shall consider a more serious type of 
interference that arises in AJ and CDMA applications, called partial-band 
interference. The benefits obtained from coding for this type of interference are 
determined. We conclude the discussion in Section 13-3-3 with an example of 
an FH CDMA system that was designed for use by mobile users with a satellite 
serving as the channel. 

13-3-1 Performance of FH Spread Spectrum Signals in 
AWGN Channel 

Let us consider the performance of a FH spread spectrum signal in the 
presence of broadband interference characterized statistically as A WON with 
power spectral densily 10 , For binary orthogonal FSK with noncoherent 
detection and slow frequency hopping (1 bop/bit). tbe probability of error, 
derived in Section 5-4-1, is 

(13-3-1) 

where l'b = 'l:b/1o- On the other hand, if the bit interval is subdivided into L 
subintervals and FH binary FSK is transmitted in each subinterval, we have a 
fast FH signal. With square-law combining of the output signals from the 
corresponding matched filters for the L subintervals, the error rate perfor
mance of the FH signal, obtained from the results in Section 12-1, is 

1 L~l . 

P2(L) = 22L~1 e~>·12 B, K;(hb)' (13-3·2) 

where the SNR per bit is 'Yb = 'iblJo = L'Y" 'Yc is the SNR per chip in the 
L-chip symbol, and 

1 L~l~' (2L -1) K=- ~ 
I ., ~ 

l. ,.;;0 r 
(13-3-3) 

We recall that, for a given SNR per bit Yb, the error rate obtained from 
(13-3·2) is larger than that obtained from (13-3-1). The difference in SNR for a 
given error rate and a given L is called the noncoherent combining loss, wbich 
was described and illustrated in Section 124. 

Coding improves tlle performance of the FH spread spectrum system by an 
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amount, which we call the coding gain, that depends on the code parameters. 
Suppose we use a linear binary (n, k) block code and binary FSK modulation 
with one hop per coded bit for transmitting the bits. With soft-decision 
decoding of the square-law -demodulated FSK signal. the probability of a code 
word error is upper-bounded as 

(13-3-4) 

where P,(m) is the error probability in deciding between the mth code word 
and the all-zero code word when the latter has tK:en transmitted. The 
expression for P,(m) was derived in Section 8-1-4 and has the same form as 
(13-3-2) and (13-3-3), with L being replaced by Wm and 'Yb by 'Y.Rew,", where 
Wm is the weight of the mth code word and Re is the code rate. The product 
Rcwm' which is not less than Rcdmift• represents the coding gain. Thus, we have 
the performance of a block coded FH system with slow frequency hopping in 
broadband interference. 

The probability of error for fast frequency hopping with n, hops per coded 
bit is obtained by reinterpreting the binary event probability P,(m) in (13-3-4). 
The n, hops per coded bit may be interpreted as a repetition code, which, 
when combined with a nontrivial (n" k) binary linear code having weight 
distribution {wml, yields an (n,n" k) binary linear code with weight distribu
tion {n, wm }. Hence, p,(m) has the form given in (13-3-2), with L replaced by 
n'Wm and 'Yb' by 'YbRcn,wm, where Re = kln,n,. Note that 'YbRcn,wm = 
Ybwmkln" which is just the coding gain obtained from the nontrivial (n" k) 
code. Consequently, the use of the repetition code will result in an increase in 
tpe noncoherent combining loss. 

With hard-decision decoding and slow frequency hopping, the probability of 
a coded bit error at the output of the demodulator for noncoherent detection is 

(13-3-5) 

The code word error probability is easily upper-bounded, by use of the 
Chernoff bound, as 

M 

PM ~ L [4p(1 - p »)".,12 (13-3-6) ... -, 
However, if fast frequency hopping is employed with n2 hops per coded bit, 
and the square-law-detected outputs from the corresponding matched filters 
for the nz hops are added as in soft-decision decoding to form the two decision 
variables for the coded bits, the bit error 'probability p is also given by (13-3-2), 
with L replaced by n2 and 'Yb replaced by YbRcn2. where Rc is the rate of the 
nontrivial (n,. k) code. Consequently, the performance of the fast FH system 
in broadband interference is degraded relative to the slow FH system by an 
amount equal to the noncoherent combining loss of the signals received from 
the n2 hops_ 
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We have observed that for both hard-decision and soft-decision decoding, 
the use of the repetition code in a fast-frequency-hopping system yields no 
coding gain. The only coding gain obtained comes from the (n I. k) block code. 
Hence, the repetition code is inefficient in a fast FH system with noncoherent 
combining. A more efficient coding method is one in which either a single 
low-rate binary code or a concatenated code is employed. Additional improve
ments in performance may be obtained by using nonbinary codes inconjunc
tion with M-ary FSK. Bounds on the error probability for this case may be 
obtained from the results given in Section 12-1. 

Although we have evaluated the performance of .linear block codes only in 
the above discussion, it is relatively easy to derive corresponding performance 
results for binary convolutional codes. We leave as an exercise for the reader 
the derivation of the bit error probability for soft-decision Viterbi decoding 
and hard-decision Viterbi decoding of FH signals corrupted by broadband 
interference. 

Finally. we observe that '(;,,, the energy per bit, can be expressed as 
'l:b = PaJ R. where R is the information rate in bits per second and in = iaJW. 
Therefore, 'Y. may be expressed as 

'tb W IR 
'Yb =-=---

in iavlP" 
( 13-3-7) 

In this expression, we recognize WI R as the processing gain and J" I Pa , as the 
jamming margin for the FH spread spectrum signal. 

13·3-2 Performance or FH Spread Spectrum Signals in 
Pamal·Band Interference 

The partial-band interference considered in this subsection is modeled as a 
zero-mean gaussian random process with a Hat power spectral density over a 
fraction a of the total bandwidth Wand zero elsewhere. In the region or 
regions where the power spectral density is nonzero, its value is <P,,(!) = Jo/ a, 
0< a '" 1. This model of the interference may be applied to a jamming signal 
or to interference from other users in a FH CDMA system. 

Suppose that the partial-band interference comes from a jammer who may 
select a to optimize the effect on the communications system. In an uncoded 
pseudo·randomly hopped (slow-hopping) FH system with binary FSK modula
tion and noncoherent detection, the received signal will be jammed with 
probability a and it will not be jammed with probability 1 - a. When it is 
jammed, the probability of error is ! exp (- ~baI2lo). and when it is not 
jammed, the demodulation is error-free. Consequently, the average probability 
of error is 

I (' a!!'b) P,(a)=;;aexp --. 
2Jo 

( 13-3-8) 

where "i.IJo may also be expressed as (W I R)f(J.vI Pa,). 

744

734 D[GITAl (,OMMl!~ICA110NS 

We have observed that for both hard-decision and soft-decision decoding, 
the use of the repetition code in a fast-frequency-hopping system yields no 
coding gain. The only coding gain obtained comes from the (n I. k) block code. 
Hence, the repetition code is inefficient in a fast FH system with noncoherent 
combining. A more efficient coding method is one in which either a single 
low-rate binary code or a concatenated code is employed. Additional improve
ments in performance may be obtained by using nonbinary codes inconjunc
tion with M-ary FSK. Bounds on the error probability for this case may be 
obtained from the results given in Section 12-1. 

Although we have evaluated the performance of .linear block codes only in 
the above discussion, it is relatively easy to derive corresponding performance 
results for binary convolutional codes. We leave as an exercise for the reader 
the derivation of the bit error probability for soft-decision Viterbi decoding 
and hard-decision Viterbi decoding of FH signals corrupted by broadband 
interference. 

Finally. we observe that '(;,,, the energy per bit, can be expressed as 
'l:b = PaJ R. where R is the information rate in bits per second and in = iaJW. 
Therefore, 'Y. may be expressed as 

'tb W IR 
'Yb =-=---

in iavlP" 
( 13-3-7) 

In this expression, we recognize WI R as the processing gain and J" I Pa , as the 
jamming margin for the FH spread spectrum signal. 

13·3-2 Performance or FH Spread Spectrum Signals in 
Pamal·Band Interference 

The partial-band interference considered in this subsection is modeled as a 
zero-mean gaussian random process with a Hat power spectral density over a 
fraction a of the total bandwidth Wand zero elsewhere. In the region or 
regions where the power spectral density is nonzero, its value is <P,,(!) = Jo/ a, 
0< a '" 1. This model of the interference may be applied to a jamming signal 
or to interference from other users in a FH CDMA system. 

Suppose that the partial-band interference comes from a jammer who may 
select a to optimize the effect on the communications system. In an uncoded 
pseudo·randomly hopped (slow-hopping) FH system with binary FSK modula
tion and noneoherent detection, the received signal will be jammed with 
probability a and it will not be jammed with probability 1 - a. When it is 
jammed, the probability of error is ! exp (- ~baI2lo). and when it is not 
jammed, the demodulation is error-free. Consequently, the average probability 
of error is 

I (' a!!'b) P,(a)=;;aexp --. 
2Jo 

( 13-3-8) 

where "i.IJo may also be expressed as (W I R)f(J.vI Pa,). 



CHAPTER I', SPREAD SPECTRVM SIGNALS FOR D1GlTAL ('OMMliNICATIO~S 735 

FlGUR.E 13-3-4 Performance of binary FSK with partial-band interference. 

10" ~-'----'--'---'----'--r-. 

5~~-+-+-~-+-+-~ 

2f->... 
I(T-' ~-+.,-+ Worsl-case partial-band 

5 \.~mhg 
g 2 1-+-I\rPrt---+--+-----1-----1 
v 10-' 1-+-\I-~~+-+-t-_1 

o 5 10 15 ]0 25 30 3" 

SNR per bit. "fit (dB) 

Figure 13-3-4 illustrates the error rate as a function of '(;b!JO for several 
values of a. The jammer's optimum strategy is to select the value of a that 
maximizes the error probability. By differentiating P2( a) and solving for the 
extremum with the restriction that 0.;; a .;; 1, we find that 

(13-3·9) 

The corresponding error probability for the worst-case partial-band jammer is 

e-
I [( W/R )]-1 

P2 = '{;b/lO = e 1.v1 Pay (13-3-10) 

Whereas the error probability decreases exponentially for full-band jamming, 
we now find that the error probability decreases only inversely with 'lb110 for 
the worst-case partial-band jamming. This result is similar to' the error rate 
performance of binary FSK in a Rayleigh fading channel (see Section 14-3) and 
to the uncoded DS spread spectrum system corrupted by worst-case pulse 
jamming (see Section 13-2-3). 

As we shall demonstrate below, signal diversity obtained by means of 
coding provides a significant improvement in performance relative to uncoded 
signals. This same approach to signal design is also effective for signaling over 
a fading channel, as we shall demonstrate in Chapter 14. 

To illustrate the benefits of diversity in a FH spread spectrum signal with 
partial-band interference, we assume that the same information symbol is 

745

CHAPTER I', SPREAD SPECTRVM SIGNALS FOR D1GlTAL ('OMMliNICATIO~S 735 

FlGUR.E 13-3-4 Performance of binary FSK with partial-band interference. 

10" ~-'---'-'---'---r-.--, 

5~~~-+-~~-+-~ 

2k. 
I(T-' ~-+.,~ Worsl-case partial-band 

5 \. ~mhg 
g 2 1-~\rPtt---+--+-----1H 
v 10-' 1-+-\I---':~+~-t--1 , 
~ 51-+-+-~~~-t--1 

'0 \ '" q 2 1-+--l\-H,+-''d-r-""1 

r(T-~ I-+~+-+-+~"" \'>..,' +,-,-1 
11-+~++-~-4-+~-l 

Itr' 1-+-++-11--1\-+-\+ '-I 
5~+~~+-~~-~-1 

5 10 15 ]0 25 30 3" 

SNR per bit. "fit (dB) 

Figure 13-3-4 illustrates the error rate as a function of '(;b!JO for several 
values of a. The jammer's optimum strategy is to select the value of a that 
maximizes the error probability. By differentiating P2( a) and solving for the 
extremum with the restriction that 0", a '" 1, we find that 

(13-3·9) 

The corresponding error probability for the worst-case partial-band jammer is 

e-
I [( W/R )]-1 

P2 = '{;b/lO = e 1.v1 Pay (13-3-10) 

Whereas the error probability decreases exponentially for full-band jamming, 
we now find that the error probability decreases only inversely with 'lb110 for 
the worst-case partial-band jamming. This result is similar to' the error rate 
performance of binary FSK in a Rayleigh fading channel (see Section 14-3) and 
to the uncoded DS spread spectrum system corrupted by worst-case pulse 
jamming (see Section 13-2-3). 

As we shall demonstrate below, signal diversity obtained by means of 
coding provides a significant improvement in performance relative to uncoded 
signals. This same approach to signal design is also effective for signaling over 
a fading channel, as we shall demonstrate in Chapter 14. 

To illustrate the benefits of diversity in a FH spread spectrum signal with 
partial-band interference, we assume that the same information symbol is 



736 DIGITAL COMMliSKATIONS 

transmitted by binary FSK on L independent frequency hops. This may be 
accomplished by subdividing the signaling interval into L subintervals. as 
described previously for fast frequency hopping. After the hopping pattern is 
removed, the signal is demodulated by passing it through a pair of matched 
filters whose outputs are square·law·detected and sampled at the end of each 
subinterval. The square-law-detected signals corresponding to the L frequency 
hops are weighted and summed to form the two decision variables (metries). 
which are denoted as V, and V2• 

When the decision variable V, contains the signal components. VI and V2 

may be expressed as 
l-

V, = L {3. 12~ + Nlk12 
k=l 

(13-3-11 ) 
L 

V2 = L {3. IN2.1
2 

!=I 

where {{hI represent the weighting coefficients, '6,.. is the signal energy per chip 
in the L-chip symbol, and {Nj.l represent the additive gaussian noise terms at 
the output of the matched filters. 

The coefficients· are optimally selected to prevent the jammer frolll 
saturating the combiner should the transmitted frequencies be successfully hit 
in one qr more hops. Ideally, fJ. is selected to be equal to the reciprocal of the 
variance of the corresponding noise terms {N.}. Thus, the noise variance for 
each chip is normalized to unity by this weighting and the corresponding signal 
is also scaled accordingly. This means that when the signal frequencies on a 
particular hop are jammed, the corresponding weight is very small. In the 
absence of jamming on a given hop, the weight is relatively large. In practice, 
for partial-bound noise jamming. the weighting may be accomplished by use of 
an AGC having a gain that is set on the basis of noise power measurements 
obtained from frequency bands adjacent to the transmitted tones. This is 
equivalent to baving side information (knowledge of jammer state) at the 
decoder. 

Suppose that we have broadband gaussian noise with power spectral density 
No and partial-band interference, over aW of tbe frequency band, which is also 
gaussian with power spectral density loi a. In the presence of partial-band 
interference, tbe second moments of the noise terms N,. and N,* are 

-(13-3-12) 

In this case, we select fJk ~ 1/0'7, ~ [2~,(No + lo/a)J-'. In the absence of 
partial-band interference, ui ~ 2'fjcNu and, hence, fJ. ~ (2~No)-'. Note that 13. 
is a random variable. 

An error occurs in the demodulation if V, > VI' Although it is possible to 
determine the exact error probability, we shall resort to the Chernoff bound, 
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which yields a result that is much easier to evaluate and interpret. Specifically. 
the Chernoff (upper) bounds in the error probability is 

P2 = P(U2 - UI > 0) '" E{exp [v(U2 - UI )]} 

= E{exp [ -11 kt,I3.(l2~, + N'kl' -lNvJ) J} (13-3-13) 

where 11 is 3 variable that is optimized to yield the tightest possible bound. 
The averaging in (13-3-13) is performed with respect to the statistics of the 

noise components and the statistics of the weighting coefficients {13k}, which are 
random as a consequence of the statistical natuft" of the interference. Keeping 
the {13.l fixed and averaging over the noise statistics first, we obtain 

P,(P) = E( exp ( -v .t, f3k In, + Na l2 + 11 ~, {3. IN,. 12 )] 

L 

= f1 E[exp (- vp, 12~, + N,,12)JE[exp (v{3. IN,.!')] 
*=1 

I- 1 '-4~{3 V) 
= kBI I - 4v2 exp ( 1 +'2: (13-3-14) 

Since the FSK tones are jammed with probability a, it follows that 13k = 

[2~(No + Jo/a)f' with probability a and (2~eNo)-1 with probability 1 - a. 
Hence, the Chernoff bound is 

L {a [ -2~,v ] I-a [-2~cV]} P'" ---ex + ex 
2 .II 1-4v2 p (No+Jo/a)(I+2v) 1-4Y p No(1+2v) 

(13-3-15) 

The next step is to optimize the bound in (13-3-15) with respect to 'the 
variable v. In its present form, however. the bound is messy to manipulate, A 
significant simplification occurs if we assume that Jol a » No, which renders the 
second term in (13-3-15) negligible compared with the first. Alternatively, we 
let No = 0, so that the bound on P2 reduces 10 

P2 '" It _a4v2 exp (Jo~~:~~)Jr (13-3-16) 

The minimum value of this bound with respect to V and the maximum with 
respect to a (worst-case partial-band interference) is easily shown to Occur 
when a = 3Jo/~c '" 1 and v = 1. For these values of the parameters, (13-3-16) 
reduces to 

( 4)1- (147)1-P2~P2(L)= - = -'- , 
e1'e Ye 

~c ~b 
l' = -= -.-;i> 3 , Jo U o 

(13-3-17) 
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where )I, is the SNR per chip in the L-chip symboL Equivalently, 

[ 
1.47(1,,1 Pav)]L 

P2
"" W/R ' 

W/R 
----;;.3 
L(J.vip.v ) 

(13-3-18) 

The result in (13-3-17) was first derived by Viterbi and jacobs (1975). 
We observe that the probability of error for the worst-case partial-band 

interference decreases exponentially with an increase in the SNR per chip 'Ye' 
This result is very similar to the performance characteristics of diversity 
techniques for Rayleigh fading channels (see Section 14-4). We may express 
the right-hand side of (13-3-17) in the form 

P2(L) = exp[-Ybh(yJI (13-3-19) 

where the function h(-y,) is defined as 

(13-3-20) 

A plot of h( ycl is given in Fig. 13-3-5. We observe that the function has a 
maximum value of t at Yc = 4. Consequently, there is an optimum SNR per 
chip of 10 log Yc = 6 dB. At the optimum SNR, the error rate is upper-bounded 
as 

(13-3-21) 

When we compare the error probability bound in (13-3-21) with the error 
probability for binary FSK in spectrally flat noise. which is given by (13-3-1), 
we see that the combined effect of worst-case partial-band interference and the 
noncoherent combining loss in the square-law combining of the L chips is 3 dB. 
We emphasize, however, that for a given g./lo, the loss is greater when the 
order of diversity is not optimally selected. 

fiGURE 1l-3-5 Graph of the function h(y,.). 
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Coding provides a means lor improving the performance of the frequency
hopped system corrupted by partial-band interference. In particular, if a block 
orthogonal code is used, with M = 2k code words and Lth-order diversity per 
code word, the probability of a code word error is upper-bounded as 

PM"; (2' -1)P2(L) = (2* -If~:7r = (2k -1)(k~~7Lr (13-3-22) 

and the equivalent bit error probability is upper-bounded as 

k-1(- 1.47 )L Ph,.;2 --
kYblL 

(13-3-23) 

Figure 13-3-6 illustrates the probability of a bit error for L = I, 2, 4, 8 and 

FIGURE 13-3-6 Performance of binary and octal FSK with L-order diversity for a channel with worst-case 
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k = 1, 3. With an optimum choice of diversity, the upper bound can be 
expressed as 

(13-3-24) 

Thus. we have an improvement in performance by an amount equal to 
10 log [k(l - 2.77/1'.->]. For example. if Yo = 10 and k = 3 (octal modulation) 
then the gain is 3.4dB. while If k =5 then the gain is 5_6dB. 

Additional gains can be achieved by employing concatenated codes in 
conjunction with soft-decision decoding. In the example below. we employ a 
dual-k convolutional code as the outer code and a Hadamard code as the inner 
code on the channel with partial-band interference_ 

Example 13-3-1 

Suppose we use a Hadamard H(/!, k) constant weight code with on-off 
keying (OOK) modulation for each code bit. The minimum distance of the 
code is dmm = ~n, and. hence. the effective order of diversity obtained with 
OaK modulation is ~dmin =!n There are ~n frequency-hopped tones 
transmitted per code word. Hence. 

( 13-3-25) 

when this code is used alone. The bit error rate performance for 
soft-decision decoding of these codes for the partial-band interference 
channel is upper-bounded as 

( 13-3-26) 

Now, if a Hadamard (n. k) code is used as the inner code and a rate 1/2 
dual-k convolutional code (see Section 8-2-6) is the outer code. the bit error 
performance in the presence of worst-case partial-band interference is (see 
(8-2-40» 

where P,(L) is given by (13-3-17) with 

k 
'Yc = - 'Yb = R"'Yb 

n 
(13-3-28) 
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codes for a channel with worst,,",ase partial-band interference. SNR per bit, Til (dB! 

Figure 13-3-7 illustrates the performance of the dual-k codes for k = 5, 4, 
and 3 concatenated with the Hadamard H(20, 5), H(16,4), and H(12, 3) 
codes, respectively. 

In the above discussion, we have focused on soft-decision decoding. On the 
other hand, the performance achieved with hard-decision decoding is sig
nificantly (several decibels) poorer than that obtained with soft-decision 
decoding. In a concatenated coding scheme, however, a mixture involving 
soft -decision decoding of the inner code and hard-decision decoding of the 
outer code represents a reasonable compromise between decoding complexity 
and performance. 

Finally, we wish to indicate that another serious threat in a FH spread 
spectrum system is partial-band multitone jamming. This type of interference is 
similar in effect to partial-band spectrally flat noise jamming. Diversity 
obtained through coding is an effective means for improving the performance 
of the FH system. An additional improvement is achieved by properly 
weighting the demodulator outputs so as to suppress the effects of the jammer. 

13-3-3 A CDMA System Based on FH Spread Spectrum 
Signals 

In Section 13-2-2, we considered a CDMA system based on use of DS spread 
spectrum signals. As previously indicated, it is also possible to have a CDMA 
system based on FH spread spectrum signals. Each transmitter-receiver pair in 
such a system is assigned its own. pseudo-random frequency-hopping pattern. 
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Aside from this distinguishing feature, the transmitters and receivers of all the 
users may be identical in that they may have identical encoders, decoders, 
modulators. and demodulators. 

CDMA systems based on FH spread spectrum signals are particularly 
attractive for mobile (land, air. sea) users because timing requiremel1ts are not 
as stringent as in a PN spread spectrum signal. In addition, frequency synthesis 
techniques and associated hardware have been developed that make it possible 
to frequency-hop over bandwidths that are significantly larger than those 
currently possible with OS spread spectrum systems. Consequently, larger 
processing gains are possible with FH. The capacity of COMA with FH is also 
relatively high. Viterbi (1978) has shown that with duaJ-k codes and M -ary 
FSK modulation, it is possible to accomodate up to ~W I R simultaneous users 
who transmit at an informatioll rate R bits/s over a channel with bandwidth W. 

One of the earliest COMA systems based on FH coded spread spectrum 
signals was built to provide multiple-access tactical satellite communications 
for small mobile (land, sea, air) terminals each of which transmitted relatively 
short messages over the challnel intermittently. The system was called the 
Tactical Transmission System (TATS) and it is described in a paper by 
Orouilhet and Bernstein (1969). 

An octal Reed-Solomon (7,2) code is used in the TATS system. Thus, two 
3 bit information symbols from the input to the encoder are used to generate a 
seven-symbol code word. Each 3 bit coded symbol is transmitted by means of 
octal FSK modulation. The eight possible frequencies are spaced 1/7;, Hz 
apart, where T,. is the time (chip) duration of a single frequency transmission. 
In addition to the seven symbols in a code word, an eighth symbol is included. 
That symbol and its corresponding frequency are fixed alld transmitted at the 
beginning of .each code word for the purpose of providing timing and 
frequency synchronizationt at the receiver. Consequently, each code word is 
trallsmitted in 87; s. 

TATS was designed to transmit at information rates of 75 and 2400 bits/so 
Hence, 7;. = 10 ms and 312.5/Ls, respectively. Each frequency tOile corres
ponding 10 a code symbol is f~equency-hopped. Hence, the hopping rate is 
100 hops/s at the 75 bits/s rate and 3200 hops/s at the 2400 bitsis rate. 

There are M = 26 = 64 code words in the Reed-Solomon (7,2) code and the 
minimum distance of the code is dmin = 6. This means that the code provides an 
effective order of diversity equal to 6. 

At the receiver, the received signal is tirst dehopped and then demodulated 
by passing it through a parallel bank of eight matched filters. where each filter 
is tuned to one of the eight possible frquencies. Each tilter output is 
envelope·detected, quantized to 4 bits (one of 16 levels), and fed to the 
decoder. The decoder takes the 56 filter outputs corresponding to the 

t Since mobile users are involved~ there is a Doppler frequency offset associated with 
transmission. This frequency offset must be tracked and compensated for in tbe demodulation of 
lhe signal. The sync symbol is used for this purpose. 
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reception of each seven-symbol code word and forms 64 decision variables 
corresponding to the 64 possible code words in "the (7.2) code by linearly 
combining the appropriate envelope detected outputs. A decision is made in 
favor of the code word having the largest decision variable. 

By limiting the matched filter outputs to 16 levels. interference (crosstalk) 
from other users of the channel causes a relatively small loss in performance 
(0.75 dB with strong interference on one chip and 1.5 dB with strong 
interference on two chips out of the seven). The AGC used in TATS has a 
time constant greater than the chip interval J.. so that no attempt is made to 
perform optimum weighting of the demodulator outputs as described in 
Section 13-3-2. 

The derivation of the error probability for the TATS signal in A WGN and 
worst-case partial-band interference is left as an exercise for the reader 
(Problems 13-23 and 13-24). 

13-4 OTHER TYPES OF SPREAD SPECTRUM 
SIGNALS 

OS and FH are the most common forms of spread spectrum signals used in 
practice. However. other methods may be used to introduce pseudo
randomness in a spread spectrum signal. One method. which is analogous to 
FH. is time hopping (TH). In TH. a time interval. which is selected to be much 
larger than the reciprocal of the information rate, is subdivided into a large 
number of time slots. The coded information symbols are transmitted in a 
pseudo-randomly selected time slot as a block of one or more code words. PSK 
modulation may be used to transmit the coded bits. 

For example, suppose that a time interval T is subdivided into 1000 time 
slots of width T/IOOO each. With an information bit rate of R bits/so the 
number of bits to be transmitted in T s is RT. Coding increases this number to 
RTIR, bits. where R, is the coding rate. Consequently. in a time interval of 
TJ 1000 s. we must transmit RT / R, bits. If binary PSK is used as the 
modulation method. the bit rate is I OOOR / R, and the bandwidth required is 
approximately W = lOOOR/R," 

A block diagram of a transmitter and a receiver for a TH spread spectrum 
system is shown in Fig. 13-4-1. Due to the burst characteristics of the 
transmitted signal. buffer storage must be provided at the transmitter in a TH 
system. as shown in Fig. 13-4-1. A buffer may also be used at the receiver to 
provide a uniform data stream to the user. 

Just as partial-band interference degrades an uncoded FH spread spectrum 
system. partial-time (pulsed) interference has a similar effect on a TH spread 
spectrum system. Coding and interleaving are effective means for combatling 
this type of interference. as we have already demonstrated for FH and DS 
systems. Perhaps the major disadvantage of a TH system is the stringent timing 
requirements compared not only with FH but, also, with OS. 

Other types of spread spectrum signals can be obtained by combining DS. 
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FIGURE 13-4-1 Block diagram of time·hopping (TH) spread spectrum system. 

FH. and TH. For example, we may have a hybrid DS{FH, which means that a 
PN sequence is used in combination with frequency hopping. The signal 
transmitted on a single hop consists of a DS spread spectrum signal which is 
demodulated coherently. However, the received signals from different hops are 
combined noncoherently (envelope or square-law combining). Since coherent 
detection is performed within a hop, there is an advantage obtained relative to 
a pure FH system. However, the price paid for the gain in performance is an 
increase in complexity, greater cost, and more stringent timing requirements. 

Another possible hybrid spread spectrum signal is DS/TH. This does not 
seem to be as practical as DS/FH, primarily because of an increase in system 
complexity and more stringent timing requirements. 

13-5 SYNCHRONIZATION OF SPREAD SPECTRUM 
SYSTEMS 

Time synchronization of the receiver to the received spread spectrum signal 
may be separated into two phases. There is an initial acquisition phase and a 
tracking phase after the signal has been initially acquired. 

Acquisition In a direct sequence spread spectrum system, the PN code 
must be time-synchronized to within a small fraction of the chip interval 
'4 = I/W. The problem of initial synchronization may be viewed as one in 
which we attempt to synchronize in time the receiver clock to the transmitter 
clock. Usually, extremely accurate and stable t{me clocks are used in spread 
spectrum systems. Consequently. accurate time clocks result in a reduction of 
the time uncertainty between the receiver and the transmitter. However, there 
is always an initial timing uncertainty due to range uncertainty between the 
transmitter and the receiver. This is especially a problem when communication 
is taking place between two mohile users. In any case, the usual procedure for 
establishing initial synchronization is for the transmitter to send a known 
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pseudo-random data sequence to the receiver. The receiver is continuously in a 
search mode looking for this sequence in order to establish initial 
synchronization. 

Let us suppose that the initial timing uncertainty is Tu and the chip duration 
is 4. If initial synchronization is to take place in the presence of additive noise 
and other interference, it is necessary to dwell for Ta = NT,. in order to test 
synchronism at each time instant. If we search over the time uncertainty 
interval in (coarse) time steps of !T,. then the time required to establish initial 
synchronization is 

(13·5·1 ) 

Clearly, the synchronization sequence transmitted to the receiver must be al 

least as long as 2N4 in order for the receiver to have sufficienllime to perform 
the necessary search in a serial fashion. 

In principle, matched filtering or cross-correlation are optimum methods for 
establishing initial synchronization. A filter matched to the known data 
waveform generated from the known pseudo-random sequence continuously 
looks for exceedence of a predetermined threshold. When this occurs, initial 
synchronization is established and the demodulator enters the "data receive" 
mode. 

Alternatively, we may use a sliding correlator as shown in Fig. 13-5-1. The 
correlator cycles through the time uncertainty, usually in discrete time intervals 
of ! 4, and correlates the received signal with the known synchronization 
sequence. The cross-correlation is performed over the time interval NT, (N 
chips) and the correlator output is compared with a threshold to determine if 
the known signal sequence is present. If the threshold is not exceeded, the 
known reference sequence is advanced in time by ! T, s and the correlation 
process is repeated. These operations are performed until a signal is detected 
or until the search has been performed over the time uncertainty interval 7". In 
the latter case. the search process is then repeated. 

A similar process may also be used for FH signals. In this case, the problem 
is to synchronize the PN code that controls the hopped frequency pattern. To 
accomplish this initial synchronization, a known frequency hopped signal is 

nGURE 13-5-1 A sliding correlator for DS signal acquisition. 
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pseudo-random data sequence to the receiver. The receiver is continuously in a 
search mode looking for this sequence in order to establish initial 
synchronization. 
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or until the search has been performed over the time uncertainty interval 7". In 
the latter case. the search process is then repeated. 

A similar process may also be used for FH signals. In this case, the problem 
is to synchronize the PN code that controls the hopped frequency pattern. To 
accomplish this initial synchronization. a known frequency hopped signal is 
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transmitted to the receiver. The initial acquisition system at the receiver looks 
for this known FH signal pattern. For example. a bank of matched filters tuned 
to the transmitted frequencies in the known pattern may be employed. Their 
outputs must be properly delayed, envelope- or square-law-detected, weighted, 
if necessary, and added (noncoherent integration) to produce the signal output 
which is compared with a threshold. A signal present is declared when the 
threshold is exceeded. The search process is usually performed continuously in 
time until a threshold is exceeded. A block diagram illustrating this signal 
acquisilion scheme is given in Fig. 13 .. 5 .. 2. As an alternative, a single 
matched .. filter-envelope detector pair may be used, preceded by a frequency· 
hopping pattern generator and followed by a post-detection integrator and a 
threshold detector. This configuration, shown in Fig. 13-5 .. 3, is based on a serial 
search and is akin to the sliding correlator for DS spread spectrum signals. 

The sliding correIa tor for the DS signals or its counterpart shown in Fig. 
\3 .. 5-3 for FH signals basically perform a serial search that is generally 
time-consuming. As an alternative, one may introduce some degree of 
parallelism by having two or more such correlators operating in parallel and 
searching over nonoverlapping time slots. In such a case, the search time is 
reduced at the expense of a more complex and costly implementation. Figure 
13-5-2 represents such a parallel realization for the FH signals. 

During the search mode, there may be false alarms that occur at the 
designed false alarm rate of the system. To handle the occasional talse alarms, 
it is necessary to have an additional method or circuit that checks to confirm 
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if necessary, and added (noncoherent integration) to produce the signal output 
which is compared with a threshold. A signal present is declared when the 
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acquisilion scheme is given in Fig. 13 .. 5 .. 2. As an alternative, a single 
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threshold detector. This configuration, shown in Fig. 13-5 .. 3, is based on a serial 
search and is akin to the sliding correlator for OS spread spectrum signals. 

The sliding correIa tor for the OS signals or its counterpart shown in Fig. 
\3 .. 5-3 for FH signals basically perform a serial search that is generally 
time-consuming. As an alternative, one may introduce some degree of 
parallelism by having two or more such correlators operating in parallel and 
searching over nonoverlapping time slots. In such a case, the search time is 
reduced at the expense of a more complex and costly implementation. Figure 
13-5-2 represents such a parallel realization for the FH signals. 

Ouring the search mode, there may be false alarms that occur at the 
designed false alarm rate of the system. To handle the occasional talse alarms. 
it is necessary to have an additional method or circuit that checks to confirm 
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that the received signal at the output of the correia tor remains above the 
threshold. With such a detection strategy, a large noise pulse that causes a false 
alarm will cause only a temporary exceedence of the threshold. On the other 
hand, when a signal is present, the correlator or matched filter output will stay 
above the threshold for the duration of the transmitted signal. Thus. if 
confirmation fails, the search is resumed. 

Another initial search strategy, called a sequential search, has been 
investigated by Ward (1965,1977). In this method, the dwell time at each delay 
in the search process is made variable by employing a correlator with a 
variable integration period whose (biased) output is compared with two 
thresholds. Thus, there are three possible decisions: 

1 if the upper threshold is exceed by the correia tor output, initial 
synchronization is declared established; 

2 if the correia tor output falls below the lower threshold, the signal is 
declared absent at that delay and the search process resumes at a different 
delay; 

3 if the correia tor output falls between the two thresholds, the integration 
time is increased by one chip and the resulting output is compared with t'Ie two 
thresholds again. 

Hence, steps I, 2. and 3 are repeated for each chip interval until the correlator 
output either exceeds the upper threshold or falls below the lower threshold. 
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confirmation fails, the search is resumed. 
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1 if the upper threshold is exceed by the correia tor output, initial 
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declared absent at that delay and the search process resumes at a different 
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3 if the correia tor output falls between the two thresholds, the integration 
time is increased by one chip and the resulting output is compared with t'Ie two 
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Hence, steps I, 2. and 3 are repeated for each chip interval until the correlator 
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FIGURE 1.l-S-4 Initial search for Doppler frequency offset in a DS system. 

The sequential search method falls in the class of sequential estimation 
methods proposed by Wald (1947), which are known to result in a more 
efficient search in the sense that the average search time is minimized. Hence, 
the search time for a sequential search is less than that for the 'fixed dwell time 
integrator. 

In the above discU5Sion, we have considered only time uncertainty in 
establishing initial synchronization. However, another aspect of initial synchro
nization is frequency uncertainty. If the transmitter and/or the receiver are 
mobile, the relative velocity hetween them results in a Doppler frequency shift 
in the received signal relative to the transmitted signal. Since the receiver does 
not usually know the relative velocity, a priori, the Doppler frequency shift is 
unknown and must be determined by means of a frequency search method. 
Such a search is usually accomplished in parallel over a suitably quantized 
frequency uncertainty interval and serially over the time uncertainty interval. 
A block diagram of this scheme is shown in Fig. 13-5-4. Appropriate Doppler 
frequency search methods can also be devised for FH signals. 

Tnu:king Once the signal is acquired, the initial search process is stopped 
and fine synchronization and tracking hegins. The tracking maintains the PN 
code generator at the receiver in synchronism with the incoming signal. 
Tracking includes both fine chip synchronization and, for coherent demodula
tion, carrier phase tracking. 

The commonly used tracking loop for a DS spread spectrum signal is the 
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the search time for a sequential search is less than that for the 'fixed dwell time 
integrator. 

In the above discU5Sion, we have considered only time uncertainty in 
establishing initial synchronization. However, another aspect of initial synchro
nization is frequency uncertainty. If the transmitter and/or the receiver are 
mobile, the relative velocity hetween them results in a Doppler frequency shift 
in the received signal relative to the transmitted signal. Since the receiver does 
not usually know the relative velocity, a priori, the Doppler frequency shift is 
unknown and must be determined by means of a frequency search method. 
Such a search is usually accomplished in parallel over a suitably quantized 
frequency uncertainty interval and serially over the time uncertainty interval. 
A block diagram of this scheme is shown in Fig. 13-5-4. Appropriate Doppler 
frequency search methods can also be devised for FH signals. 

Tnu:king Once the signal is acquired, the initial search process is stopped 
and fine synchronization and tracking hegins. The tracking maintains the PN 
code generator at the receiver in synchronism with the incoming signal. 
Tracking includes both fine chip synchronization and, for coherent demodula
tion, carrier phase tracking. 

The commonly used tracking loop for a DS spread spectrum signal is the 
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fiGURE 13-5-5 Delay-locked loop (DLL) for PN code tracking_ 

delay-locked loop (DLL), wh.ich is shown in Fig_ 13-5-5. In this tracking loop, 
the received signal is applied to two multipliers, where it is multiplied by two 
outputs from the local PN code generator, which are delayed relative to each 
other by an amount 28.;; T.c. Thus, the product signals are the cross
correlations between the received signal and the PN sequence at the two values 
of delay. These products are bandpass-filtered and envelope- (or square-Iaw-) 
detected and then subtracted. This difference signal is applied to tbe loop filter 
that drives the voltage controlled clock (Vee). The vee serves as the clock 
for the PN code signal generator. 

If tbe synchronism is not exact, the filtered output from one correlalor will 
exceed the other and the vee will be appropriately advanced or delayed. At 
the equilibrium point. the two filtered correIa tor outputs will be equally 
displaced from th.e peak value, and the PN code generator output will be 
exactly synchronized to the received signal that is fed to the demodulator. We 
observe that this implementation of the DLL for tracking a DS signal is 
equivalent to the early-late gate bit tracking synchronizer previously discussed 
in Section 6-3-2 and shown in Fig. 6-3-5. 

An alternative method for time tracking a DS signal is to use a tau-dither 
loop (TDL), illustrated by the block diagram in Fig. 13-5-6. The TDL employs 
a single "arm" instead of the two "arms" shown in Fig. 13-5-5. By providing a 
suitable gating waveform, it is possible 10 make Ihis "single-arm" implementa
tion appear to be equivalent to the "two-arm" realization. In this case, the 
cross-correlation is regularly sampled at two values of delay, by stepping the 
code dock forward or backward in lime by an amount 8. The envelope of the 
cross-correlation that is sampled at ±8 has an amplitude modulation whose 
phase relative to the tau-dither modulator determines the sign of the tracking 
error_ 
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the received signal is applied to two multipliers, where it is multiplied by two 
outputs from the local PN code generator, which are delayed relative to each 
other by an amount 28.;; T.c. Thus, the product signals are the cross
correlations between the received signal and the PN sequence at the two values 
of delay. These products are bandpass-filtered and envelope- (or square-Iaw-) 
detected and then subtracted. This difference signal is applied to tbe loop filter 
that drives the voltage controlled clock (Vee). The vee serves as the clock 
for the PN code signal generator. 

If tbe synchronism is not exact, the filtered output from one correlalor will 
exceed the other and the vee will be appropriately advanced or delayed. At 
the equilibrium point. the two filtered correIa tor outputs will be equally 
displaced from th.e peak value, and the PN code generator output will be 
exactly synchronized to the received signal that is fed to the demodulator. We 
observe that this implementation of the DLL for tracking a DS signal is 
equivalent to the early-late gate bit tracking synchronizer previously discussed 
in Section 6-3-2 and shown in Fig. 6-3-5. 

An alternative method for time tracking a DS signal is to use a tau-dither 
loop (TDL), illustrated by the block diagram in Fig. 13-5-6. The TDL employs 
a single "arm" instead of the two "arms" shown in Fig. 13-5-5. By providing a 
suitable gating waveform, it is possible 10 make Ihis "single-arm" implementa
tion appear to be equivalent to the "two-arm" realization. In this case, the 
cross-correlation is regularly sampled at two values of delay, by stepping the 
code dock forward or backward in lime by an amount 8. The envelope of the 
cross-correlation that is sampled at ±8 has an amplitude modulation whose 
phase relative to the tau-dither modulator determines the sign of the tracking 
error_ 
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A major advantage of the TDL is the less costly implementation resulting 
from elimination of one of the two arms that are employed in the conventional 
DLL A second and less apparent advantage is that the TDL does not suffer 
from performance degradation that is inherent in the DLL when the amplitude 
gain in the two arms is not properly balanced. 

The DLL (and its equivalent, the TDL) generate an error signal by 
sampling the signal correlation function at ±.s off the peak as shown in Fig. 
13-5-7(0). This generates an error signal as shown in Fig. 13-5-7(b). The 
analysis of the performance of the DLL is similar to that for \he phase-locked 
loop (PLL) carried out in Section 6-3. If it were not for the envelope detectors 
in the two arms of the DLL, the loop would resemble a Costas loop. In 
general, the variance of the time estimation error in the DLL is inversely 
proportional to the loop SNR, which depends on the input SNR to the loop 
and the loop bandwidth. Its performance is somewhat degraded as in the 
squaring PLL by the nonlinearitles inherent in the envelope detectors, but this 
degradation is relatively small. 

FIGURE 13·5·7 AutocQrrelation function and tracking error signal for DLL. 
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A typical tracking technique for FH spread spectrum signals is illustrated in 
Fig. 13-5-8(a). This method is also based on the premise that, although initial 
acquisition has been achieved, there is a small timing error between the 
received signal and the receiver clock. The bandpass filter is tuned to a single 
intermediate frequency and its bandwidth is of the order of lIT;, where T. is 
the chip interval. Its output is envelope-detected and then multiplied by the 
clock signal to produce a three-level signal, as shown. in Fig. 13-5-8(b), which 
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A typical tracking technique for FH spread spectrum signals is illustrated in 
Fig. 13-5-8(a). This method is also based on the premise that, although initial 
acquisition has been achieved, there is a small timing error between the 
received signal and the receiver clock. The bandpass filter is tuned to a single 
intermediate frequency and its bandwidth is of the order of lIT;, where T. is 
the chip interval. Its output is envelope-detected and then multiplied by the 
clock signal to produce a three-level signal, as shown. in Fig. 13-5-8(b), which 
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drives the loop filter. Note that when the chip transitions from the locally 
generated sinusoidal waveform do not occur at the same time as the transitions 
in the incoming signal, the output of the loop filter will be either negative or 
positive, depending on whether the VCC is lagging or advanced relative to the 
timing of the input signal. This error signal from the loop filter will provide the 
control signal for adjusting the vee timing signal so as to drive the frequency 
synthesized pulsed sinusoid to proper synchronism with the received signal. 

13-6 BIBLIOGRAPHICAL NOTES AND REFERENCES 
The introductory treatment of spread spectrum signals and their performance 
that we have given in this chapter is necessarily brief. Detailed and more 
specialized treatments of signal acquisition techniques, code tracking methods, 
and hybrid spread spectrum systems, as well as other general topics on spread 
spectrum signals and systems, can be found in the vast body of technical 
literature that now exists on the subject. 

Historically, the primary application of spread spectrum communications 
has been in the development of secure (AJ) digital communication systems for 
military use, In fact, prior to 1970, most of the work on the design and 
development of spread spectrum communications was classified, Since then, 
this trend has been reversed. The open literature now contains numerous 
publications on all aspects of spread spectrum signal analysis and design, 
Moreover, we have recently seen publications dealing with the application of 
spread spectrum signaling techniques to commercial communications such as 
interoffice radio communications (see Pahlavan, 1985) and mobile-user radio 
communications (see Yue, 1983), 

A historical perspective on the development of spread spectrum com
munication systems covering the period 1920-1960 is given in a paper by 
Scholtz (1982). Tutorial treatments focusing on the basic concepts are found in 
the papers by Scholtz (1977) and Pickholtz et al. (1982). These papers also 
contain a large number of references to previous work. In addition, there are 
two papers by Viterbi (1979, \985) that provide a basic review of the 
performance charact((ristics of DS and FH signaling techniques, 

Comprehensive treatments of various aspects of analysis and design of 
spread spectrum signals and systems, including synchronization techniques are 
now available in the texts by Simon er aI, (1985), Ziemer and Peterson (1985), 
and Holmes (1982). In addition to these texts, there are several special issues 
of the IEEE Transactions on Communications devoted 10 spread spectrum 
communications (August 1977 and May 1982) and the IEEE Transactions on 
Selected Areas in Communication (September 1985, May 1989, May 1990, and 
June 1993), These issues contain a collection of papers devoted to a variety of 
topics, including multiple access tecbniques, synchronization techniques, and 
performance analyses with various types of interference, A number of 
important papers that have been published in IEEE journals have also been 
reprinted in book form by the IEEE Press (Dixon, 1976; Cook et ai, 1983). 
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of the IEEE Transactions on Communications devoted 10 spread spectrum 
communications (August 1977 and May 1982) and the IEEE Transactions on 
Selected Areas in Communication (September 1985, May 1989, May 1990, and 
June 1993), These issues contain a collection of papers devoted to a variety of 
topics, including multiple access tecbniques, synchronization techniques, and 
performance analyses with various types of interference, A number of 
important papers that have been published in IEEE journals have also been 
reprinted in book form by the IEEE Press (Dixon, 1976; Cook et ai, 1983). 
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Finally. we recommend the book by Golomb (1967) as a basic reference on 
shift register sequences for the reader who wishes to delve deeper into this 
topic. 

13-1 Following the procedure outlined in Example 13-2-2, determine the error rate 
performance of a DS spread spectrum system in the presence of CW jamming 
when the signal pulse is 

g(l) ~ /16t; cos' [.!: (I - \7;)], 0'" I '" T 'V 37; T. 

13-2 The sketch in Fig. PI3-2 illustrates the power spectral densities of a PN spread 
spectrum signal and narrowband interference in an uncoded (trivial repetition 
code) digital communication system. Referring to Fig. 13-2-6, which shows Ihe 
demodulator for Ihi, signal, sketch the (approximate) spectral characleristics of 
the signal and the interference after the multiplication of r(I) with the output of 
the PN generator. Delermine Ihe fraction of the total interference that appears at 
Ihe output of Ihe correlator when the number of PN chips per bit is L,. 

13-3 Consider Ihe concatenation of a Reed-Solomon (31,3) (q = 32-ary alphabet) as 
Ihe outer code with a Hadamard (16,5) binary code as Ihe inner code in a DS 
spread spectrum system. Assume that soft-decision decoding is performed on both 
codes. Determine an upper (union) bound on the probability of a bit error based 
on the minimum distance of the concatenated code. 

13-4 The Hadamard (n. k) = (2"', m + I) codes are low-rate codes with dm" = 2" '. 
Determine the performance of this class of codes for OS spread. spectrum signals 
with binary PSK modulation and either soft-decision or hard-decision decoding. 

13-5 A rale 1/2 convolutional code wilh d,.« = 10 is used to encode a data sequence 
occurring al a rate of 1000 bils/s. The modulation is binary PSK. The DS 
spread-spectrum sequence has a chip rale of 10 MHz. 
a Delermine Ihe coding gain. 
b Determine the processing gain. 
c Delermine the jamming margin assuming an 'i:h/J" = 10. 

13-6 A tOlal of 30 equal-power users are 10 share a common communication channel by 
CDMA. Each user transmits information at a rate of to kbits/s via OS spread· 
spectrum and binary PSK. Delermine the minimum chip rate to obtain a bit error 
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probability of 10-'. Additiw noise at the receiver 1m" be ignored in this 
computatiun. 

13-7 A CDMA system is designed based on DS spread spectrum with a processing gain 
of 1000 and binary PSK modulation. Derermine the number of users if each user 
has equal power and the desired level of performance is an error probability of 
10 ". Repeat the computation if the processing gain is changed to 500. 

B-1! A DS spread-spectrum system transmits at a rate of 1000 bils/s in the presence of 
a tone jammer. The jammer power is 20 dB greater than the desired signal and the 
required #"/1,, to achieve sat:sfactory performance is !O dB. 
a Determine the spreading bandwidth required to meet the specifications. 
b If the jammer is a pulse jammer. determine the pulse dUly cycle that results in 

worst-case jamming and the corresponding probability of error. 
13.9 A CDMA system consists of 15 equal-power users that transmit information at a 

rate of 10 000 bits/s, each using a DS spread spectrum signal operating at a chip 
rate of I MHz. The modulation is binary PSK. 
a Determine the '8,11". where J" is the spectral density of the combined 

interference. 
b What is the processing gain 0 

c How much should the processing gain be i!lcreased to allow for doubling the 
number of users without affecting the output SNR? 

13-18 A DS binary PSK spread spectrum signal has a processing gain of 500. What is the 
jamming margin against a continuous-tone jammer if the desired error probability 
is 10 '0 

13·11 Repeat Problem 13-10 if the jammer is a pulsed-noise jammer with a duty cycle of 
1 °/0. 

13-12 Consider the DS spread spectrum signal 
< 

C(I) = L C.p(1 - n7;.) 

where c. is a periodic m sequence with a period N = 127 and p{!) is a rectangular 
pulse of duration 7; = I iJ.S. Determine the power spectral density of the signal 
c(t). 

13-13 Suppose that {c,,} and {eli) are two binary (V, J) periodic sequences with periods N, 
and N" respectively. Determine the period of the sequence obtained by forming 
the modul0-2 sum of Ie,,} and (e,.). 

13-14 An m = I() ML shift register is used to generate the pseUdorandom sequence in a 
DS spread spectrum system_ The chip duration is '4 = 1 !J.S, and the bit duralion is 
T. = /1/7;, where N is the length (period) of the m sequence. 
a Determine the processing gain of the system in dB. 
b Determine the jamming margin if the requITed io,/Jo = 10 and the jammer is a 

tone jammer with an average power J". 
13-15 A FH binary orthogonal FSK system employs an m = 15 stage linear feedback 

shift register that generates an ML sequence. Each state of the shift register selecls 
one of L nonoverJapping frequency bands in the hopping pattern. The bit rate is 
l00bits/s and the hop rate is once per bit. The demodulator employs noncoherent 
detection. 
a Determine the hopping bandwidth for this channeL 
b What is the processing gain? 
c What is the probability of error in the presence of A WGN? 
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IJ.16 Consider the FH binary orthogonal FSK system described in Problem 13-]5. 
Suppose that the hop rate is increased to 2 hops/bit. The receiver uses square-law 
combining to combine the signal over the two hops. 
a Determine the hopping bandwidth for tbe channel. 
b What is the processing gain? 
c What is the error probability in the presence of A WGN? 

IJ.17 In a fast FH spread-spectrum system, the information is transmitted via FSK, with 
noncoherent detection. Suppose there are N = 3 hops/bit, with hard-deciSIon 
decoding of the signal in each hop. 
a Determine the probab.lity 0: error for this system in an A WGN channel with 

power spectral density \N" and an SNR = 13 dB (total SNR over the three 
hops). 

b Compare the result in (a) with the error probability of a FH spread-spectrum 
system that hops once per bit. 

13-18 A slow FH bmary FSK system wilh non coherent detection operates al ~,,~, = 10. 
with a hopping bandwidlh of 2 GHz, and a bit rate of 10 kbits/s. 
a What is the processing gain fOT the system:' 
b If the jammer operates as a partial-band jammer, what is the bandwidth 

occupancy for worst-case jamming') 
c What is the probability of error for the worst-case partial-band jammerO 

13-19 Determine the error probabilit) for a FH spread spectrum signal in which a binan 
convolutional code is used in combination with binary FSK. The interference on 
the channel is- A WGN_ The FSK demodulator outputs are square-law detected and 
passed to the decoder. which performs optimum soh-decision Viterbi decoding a, 
described in Section 8-2. Assume that the hopping rate is I hop per coded bit. 

13-20 Repeal Problem 13-19 for hard-decision Viterbi decoding. 
13-21 Repeat Problem 13-19 when fast frequency hopping is performed at J hopping rate 

of L hops per coded bit. 
13-22 Repeat Problem 13-]9 when fast frequency hopping is performed "'ith L hops per 

coded bit and the decoder is a hard-decision Viterbidecoder. The L chips per 
coded bit are square-law-detected and combined prior to the hard decision. 

13-23 The TATS signal described in Section 13-3-3 is demodulated by a parallel bank of 
eight matched filters (octal FSK), and each filter output is square-law-detected. 
The eight outputs obtained in each of seven signal intervals (56 total outputs) arc 
used to form the 64 possible deciSlon variables corresponding Iu the Reed
Solomon (7,2) code. Determine an upper (union) bound of the code word error 
probability for A WGN and soft-decision decoding. 

13-24 Repeat Problem 13-23 for the worst-case partial-band interference channel. 
13-25 Derive the results in (13-2-62) and (13-2-63) from (13-2-6]). 
13-26 Show that (13-3-14) follows from (13-3-13). 
13-27 Derive 03-3-l7) from (13-3-16). 
IJ.28 The generator polynomials for constructing Gold code sequences of length n ~ 7 

are 

lil(P)=p'+p+1 

K,(P) = p-' -t- pO + I 

Generate all the Gold codes of length 7 and determine the cross-correlations 01 
one sequence with each of the others. 
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13-29 In Section 13-2-3, we demonstrated techniques for evaluating the error probability 
of a coded system with interleaving in pulse interference by using the cutoff rate 
parameter Ro. Use the error probability curves given in Fig. P13·29 for rate 1/2 
and 1/3 convolutional codes with soft-decision Viterbi decoding to determine the 
corresponding error rates for a coded system in pulse interference. Perform this 
computation for K = 3, 5, and 7. 

13-30 In coded and interleaved DS binary PSK modulation with pulse jamming and 
soft-decision decoding, the cutoff rate is 

Ro.= 1 -log, (1 + cre ·.".wO) 

where a is tile fraction of the time the system is being jammed, <!; = 'l:.R, R is the 
bit rate. and No = 10 , 

• Show that the SNR per bit, 'l:.INo, can be expressed as 

'1;. 1 a 
- = ~ In -;--=-~ 
Nt! aR 21 8 0 _1 

b Delermine Ihe value of a Ihat maximizes Ihe required 'tblN., (worst-case pulse 
jamming) and the resulting maximum value of '1:.1 No. 

b Plot the graph of 10 log (~.lrN[,) versus Re, where r = RoIR, for ""orst·case 
pulse jamming and for AWGN (a = 1). What conclusions do you reach 
regarding the effect of worst-case pulse jamming? 
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13-31 In a coded and interleaved frequency-hopped q-ary FSK modulation with partial 
band jamming and coherent demodulation with soft-decision decoding, the cutoff 
rate is 

Ro = log, L + (q _ l~ae .v,l2N,] 

where tl is the fraction of the band being jammed, Z', is the chip (or tone) energy, 
and No=Jo, 
a Show that the SNR per bit can be expressed as 

~·=~ln(q-l)a 
No aR q2 RO_l 

II Determine the value of a that maximizes the required ~blNo (worst-case partial 
band jamming) and the resulting maximum value of Z'.I No. 

" Define r = RofR in the result for ~./No from (b), and plot 10 log 1~.lrNo) versus 
the normalized cutoff rate Ro/log, q for q = 2, 4, 8, 16, 32. Compare these 
graphs with the results of Problem 13-3O(c). What conclusions do you reach 
regarding the effect of worst-case partial band jamming? What is the effect of 
increasing the alphabet size q? What is the penalty in SNR between the results 
in Problem 13-3O(c) and q-ary FSK as q--+ oo? 
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13-31 In a coded and interleaved frequency-hopped q-ary FSK modulation with partial 
band jamming and coherent demodulation with soft-decision decoding, the cutoff 
rate is 

Ro = log2 L + (q _ l~ae .v,l2N,] 

where tl is the fraction of the band being jammed, Z', is the chip (or tone) energy, 
and No=Jo, 
a Show that the SNR per bit can be expressed as 

~·=~In(q-l)a 
No aR q2 RO_l 

II Determine the value of a that maximizes the required ~blNo (worst-case partial 
band jamming) and the resulting maximum value of Z'.I No. 

" Define r = RofR in the result for ~.INo from (b), and plot 10 log 1~.lrNo) versus 
the normalized cutoff rate Ro/log, q for q = 2, 4, 8, 16, 32. Compare these 
graphs with the results of Problem 13-3O(c). What conclusions do you reach 
regarding the effect of worst-case partial band jamming? What is the effect of 
increasing the alphabet size q? What is the penalty in SNR between the results 
in Problem 13-3O(c) and q-ary FSK as q--+ oo? 



14 
DIGITAL 
COMMUNICA TION 
THROUGH FADING 
MULTIPATH CHANNELS 

The previous chapters have described the design and performance of digital 
communications systems for transmission on either the classical A WGN 
channel or a linear filter channel with A WGN. We observed tbat the distortion 
inberent in linear filter channels requires special signal design techniques and 
rather sophisticated adaptive equalization algorithms in order to achieve good 
performance. 

In this chapter, we consider the signal design, receiver structure. and 
receiver performance for more complex channels, namely, channels baving 
randomly time-variant impulse responses. This characterization serves as a 
model for signal transmission over many radio channels such as shortwave 
ionospheric radio communication in the 3-30 MHz frequency band (HF), 
tropospheric scatter (beyond-the-horizon) radio communications in the 300-
3000 MHz frequency band (UHF) and 3000-30000 MHz frequency band 
(SHF), and ionospheric forward scatter in the 30-300MHz frequency band 
(VHF). The time-variant impulse responses of t!lese channels are a conse
quence of the constantly changing physical characteristics of the media. For 
example, the ions in the ionospheric layers that reflect the signals transmitted 
in the HF frequency band are always in motion. To the user of the channel, the 
motion of the ions appears to be random. Consequently, if the same signal is 
transmitted at HF in two widely separated time intervals, the two received 
signals will be different The time-varying responses that occur are treated in 
statistical terms. 

We shall begin our treatment of digital signalling over fading multipath 
channels by first developing a statistical charactenzation of the channel. Then 
we shall evaluate the performance of severa! basic digital signaling techniques 
for communication over such channels. The performance results will demons-
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signals will be different The time-varying responses that occur are treated in 
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We shall begin our treatment of digital signalling over fading multipath 
channels by first developing a statistical charactenzation of the channel. Then 
we shall evaluate the performance of severa! basic digital signaling techniques 
for communication over such channels. The performance results will demons-
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Irale Ihe severe penalty in SNR that must be paid as a consequence of the 
fading characteristics of the received signal. We shall then show that the 
penalty in SNR can be dramatically reduced by means of efficient 
modulation/coding and demodulation/decoding techniques. 

14-1 CHARACTERIZATION OF FADING MULTIPATH 
CHANNELS 

If we transmit an extremely short pulse, ideally an impulse. over a time-varying 
multi path channel, the received signal might appear as a train of pulses. as 
shown in Fig. 14-1-1. Hence, one characteristic of a multipath medium is the 
time spread introduced in the signal that is transmitted through the channel. 

A second characteristic is due to the time variations in the structure of the 
medium. As a result of such time variations, the nature of the multipath varies 
with time. 'rhat is, if we repeat the pulse-sounding experiment over and over, 
we shall observe changes in the received pulse train. which will include changes 
in the sizes of the individual pulses, changes in the relative delays among the 
pulses, and, quite often, changes in the number of pulses observed in the 
received pulse train as shown in Fig. 14-1-1. Moreover, the time variations 
appear to be unpredictable to the user of the channel. Therefore, it is 
reasonable to characterize the time-variant multipath channel statistically. 

FIGURE 14-1·1 Example of the response of a time-variant 
multipath channel 10 a very narr;)w pulse. 
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Toward this end, let us examine the effects of the channel on a transmitted 
signal that is represented in general as 

(14-1-1) 

We assume that there are multiple propagation paths. Associated with each 
path is a propagation delay and an attenuation factor. Both the propagation 
delays and the attenul>tion factors are time-variant as a result of changes in the 
structure of the medium. Thus, the received bandpass signal may be expressed 
in the form 

x(t) = 2: ","(I)S(I- ,,,(t» (14-1·2) 
• 

where a.(I) is the attenuation factor for the signal received on the nth path 
and T.(I} is the propagation delay for the nth path. Substitution for SCI) from 
04-1·1) into (14-1·2) yields the result 

ret) = Re {l ~ ",.(I)e -j2""T'{<)S,(t - 'net)~ ],J2T./.,} (14-1-3) 

It is apparent from (14-1-3) that the equivalent lowpass received signal is 

(14-1-4) 

" 
Since r,(/) is the response of an equivalent lowpass channel to the equivalent 
lowpass signal 5,(1), it follows that the equivalent lowpass channel is described 
by the tiwe-variant impulse response 

(14-1-5) 
n 

For some channels, such as the tropospheric scatter channel, it is more 
appropriate to view the received signal as consisting of a continuum of 
multipath components. In such a case, the received signal x(t) is expressed in 
the integral form 

x(t) = [x a(.; t)s(t - r) d. (14-1-6) 

where aCT; t) denotes the attenuation of the signal components al delay rand 
at time instant t. Now substitution for set) from (14-1-1) into (14-1-6) yields 

X(I) = Re {[[~ a( r; t)e- j
2""TS/(t - ,) dt'Jei""'''} (14-1-7) 

Since the integral in (14-1-7) represents the convolution of s,(t) with an 
equivalent lowpass time-variant impulse response c( r; t), it follows that 

c(r; t) = a(';l)e-j~r (14-1-8) 
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where c( r: t) represents the response of the channel at time t due to an impulse 
applied at time t - T. Thus (14-1-8) is the appropriate definition of the 
equivalent lowpass impulse response when the channel results in continuous 
multipath and (14-1-5) is appropriate for a channel that contains discrete 
multi path components. 

Now let us consider the transmission of an unmodulated carrier a1 frequency 
f,. Then Stet) = I for all I. and" hence, the received signal for the case of 
discrete mulupath, given by (14-1~4). reduces 10 

,,(I) = 2: u,,(t)e-J2 '{.T.(1} 

" 
(14-1-9) 

" 

where 8,{!) = 27rf,z,,(t). Thus. the received signal consists of the sum of a 
number of time-variant vectors (phasors) 'having amplitudes o,,{t) and phases 
O,,(r). Note that large dynamic changes in the medium are required for a,,(I) to 
change sufficiently to cause a significant change in the received signal. On the 
other hand, 0,,(1) will change by 27r rad whenever T" changes by lIfe. But Ilf, is 
a small number and, hence, 0" can change by 2Jr rad with relatIvely small 
motions of the medium. We also expect the delays ,"(I) associated with the 
different signal paths to change at different rates and in an unpredictable 
(random) manner. This implies that the received signal ,,(I) in (14-1-9) can be 
modeled as a random process. When there are a large number of paths, the 
central limit theorem can be applied. That is, rt(t) may be modeled as a 
complex-valued gaussian random process. This means that the time-variant 
impulse response c( r; I) is a complex-valued gaussian random process in the I 

variable. 
The multi path propagation model for the channel embodied in the received 

signal rt(l). given in (14-1-9), results in signal fading. The fading phenomenon 
is primarily a result of the time variations in the phases {On(t)}. That is, the 
randomly time-variant phases {8n (t)} associated with the vectors lane -c8

.} at 
times result in the vectors adding destructively. When that occurs, the resultant 
received signal 't(t) is very small or practically zero. At other times, the vectors 
{une -j8o

} add constructively, so tbat the received signal is large. Thus, the 
amplitude variations in the received signal, termed signal fading. are due to the 
time-variant multipath characteristics of the channel. 

When the impulse response c(r; /) is modeled as a zero-mean complex
valued gaussian process, the envelope Ic( r; 1)1 at any instant I is Rayleigh
distributed. In this case the channel is said to be a Rayleigh fading channel. In 
the event that there are fixed scallerer. or signal reflectors in the medium. il1 
addition to randomly moving scatterers, c( r; I) can no longer be modeled as 
having zero mean. In this case, the envelope Ic( r; 1)1 has a Rice distribution 
and Ihe channel is said to be a Ricean fading channel. Another probability 
distribution function that has been used to model the envelope of fading 

771

rHAPTER !.l [)1(.IlAL (,OM\H!~HCATJON THROliGH FADL'iG MlJlTIPATH CHANSFLS 761 

where c( r: t) represents the response of the channel at time t due to an impulse 
applied at time t - T. Thus (14-1-8) is the appropriate definition of the 
equivalent lowpass impulse response when the channel results in continuous 
multipath and (14-1-5) is appropriate for a channel that contains discrete 
multi path components. 

Now let us consider the transmission of an unmodulated carrier a1 frequency 
f,. Then Stet) = I for all I. and" hence, the received signal for the case of 
discrete mulupath, given by (14-1~4). reduces 10 

,,(I) = 2: u,,(t)e-J2 '{.T.(1} 

" 
(14-1-9) 

" 

where 8,{!) = 27rf,z,,(t). Thus. the received signal consists of the sum of a 
number of time-variant vectors (phasors) 'having amplitudes o,,{t) and phases 
O,,(r). Note that large dynamic changes in the medium are required for a,,(I) to 
change sufficiently to cause a significant change in the received signal. On the 
other hand, 0,,(1) will change by 27r rad whenever T" changes by lIfe. But Ilf, is 
a small number and, hence, 0" can change by 2Jr rad with relatIvely small 
motions of the medium. We also expect the delays ,"(I) associated with the 
different signal paths to change at different rates and in an unpredictable 
(random) manner. This implies that the received signal ,,(I) in (14-1-9) can be 
modeled as a random process. When there are a large number of paths, the 
central limit theorem can be applied. That is, rt(t) may be modeled as a 
complex-valued gaussian random process. This means that the time-variant 
impulse response c( r; I) is a complex-valued gaussian random process in the I 

variable. 
The multi path propagation model for the channel embodied in the received 

signal rt(l). given in (14-1-9), results in signal fading. The fading phenomenon 
is primarily a result of the time variations in the phases {On(t)}. That is, the 
randomly time-variant phases {8n (t)} associated with the vectors lane -c8

.} at 
times result in the vectors adding destructively. When that occurs, the resultant 
received signal 't(t) is very small or practically zero. At other times, the vectors 
{une -j8o

} add constructively, so tbat the received signal is large. Thus, the 
amplitude variations in the received signal, termed signal fading. are due to the 
time-variant multipath characteristics of the channel. 

When the impulse response c(r; /) is modeled as a zero-mean complex
valued gaussian process, the envelope Ic( r; 1)1 at any instant I is Rayleigh
distributed. In this case the channel is said to be a Rayleigh fading channel. In 
the event that there are fixed scallerer. or signal reflectors in the medium. il1 
addition to randomly moving scatterers, c( r; I) can no longer be modeled as 
having zero mean. In this case, the envelope Ic( r; 1)1 has a Rice distribution 
and Ihe channel is said to be a Ricean fading channel. Another probability 
distribution function that has been used to model the envelope of fading 



762 D!{;JTAI COM\1["SWATJONS 

signals is the Nakagami-m distribution. These fading channel models are 
considered in Section 14-1-2. 

14-1-1 Channel Correlation Functions and Power Spectra 
We shall now develop a number of useful correlation functions and power 
spectral density functions that define the characteristics of a fading multipath 
channel. Our starting point is the equivalent lowpass impulse response c(r;t), 
which is characterized as a complex·valued random process in the t variable. 
We assume that c( r;!) is wide-sense-stationary. Then we define the autocor
relation function of clr: t) as 

(14-1-10) 

In most radio transmission media, the attenuation and phase shift of the 
channel associated with path delay r, is uncorrelated with the attenuation and 
phase shift associated with path delay '2' This is usually called uncorrelated 
scattering. We make the assumption that the scattering at two different delays 
is uncorrelated and incorporate it into (14-1-10) to obtain 

(14-1-11) 

If we let t:.l = O. the resulting autocorrelation function </>J r: 0) '" </>,( r) is 
simply the average power output of the channel as a function of the time delay 
r. For this reason. <p,( ,) is called the multipath inlensity profile or the delay 
power spectrum of the chaNnel. In general. <p,.(r; .:It) gives the average power 
output as a function of the time delay r and the difference at in observation 
time. 

In practice. the function </>,.( r; at) is measured by transmitting very narrow 
pulses or, equivalently. a wideband signal and cross-correlating the received 
signal with a delayed version of itself. Typically, the measured function </>, (r) 
may appear as shown in Fig. 14-1-2. The range of values of, over which </>,( r) 

FIGURE 14-1-2 Multipath intensity profile. 
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is essentially nonzero is called the mu/tipath spread of the channel and is 
denoted by Tm. 

A completely analogous characterization of the time-variant multipath 
channel begins in the frequency domain. By taking the Fourier transform of 
c( r; t) we obtain the time-variant transfer function C(I; t). where f is the 
frequency variable. Thus, 

(14-1-12) 

If c( r; t) is modeled as a complex-valued zero-mean gaussian random process 
in the t variable, it follows that C(f; t) also has the same statistics. Under the 
assumption that the channel is wide-sense-stationary, we define the autocor
relallon function 

(14-1-13) 

Since C(f; r) is the Fourier transform of c( r; t), it is not surprising to find 
that tPdf, ./,; At) is related to <f:dT; At) by the Fourier transform. The 
relationship is easily established by substituting (14-1·12) into (14-1-13). Thus. 

tPdf, , Ji; At) = ~ [=[~ E[c*(r,: t)c(r,; t + .:}.t)]e'2,,(/,r, fir,) dr, dr, 

= [~[~ tPc(r,;.:}.t)o(r, - T,)ePXCA',-hr,jdr, dr, 

= [w tl>A r,; A/)ei'''(r. -Jil" dr, 

(14-1-14) 

where Af=li-f,. From (14-1-14), we observe that tPc(Af;!!.1) is the Fourier 
transform of the muitipalh intensity profile. Furthermore., the assumption of 
uncorrelated scattering implies that the autocorrelation function of Clf; r) in 
frequency is a function of only the frequency difference ilf = Ii - f,. Therefore. 
it is appropriate to call tPc(Af;!!.1) the spaced-[requl'ncy, spaced-time corre/a
tion function of the channel. It can be measured in practice by transmitting a 
pair of sinusoids separated by III and cross-correlating the two separately 
received signals with a relative delay !!.1. 

Suppose we set .:}.t=O in (14-t-14). Then, with tPd!.f;O)=tP,(Af) and 
<l>A r; 0) '" <l>c( '1'). the transform relationship is simply 

(14-1-1 S) 
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FIGURE 14-1-3 Relationship between 4>dll!) and 4>,( r). 

Multipath intensity profile 

The relationship is depicted graphically in Fig. 14-1-3. Since t/>cC&f) is an 
autocorrelation function in the frequency variable, it provides us with a 
measure of the frequency coherence of the channel. As a result of the Fourier 
transform relationship between </IdA!) and <$,(,), the reciprocal of the 
multipath spread is a measure of the coherence bandwidth of the channel. That 
is, 

I 
{Af),=-

7.. 
(14-1-16) 

where (&f), denotes the coherence bandwidth. Thus, two sinusoids with 
frequency separation greater than (A!)e are affected differently by the channel. 
When an information-bearing signal is transmitted through the channel, if 
(ll!), is small in comparison to the bandwidth of the transmitted signal, the 
channel is said to be frequency-selective. In this case, the signal is severely 
distorted by the channel. On the other hand, if (&!), is large in comparison 
with the bandwidth of tbe transmitted signal, tbe channel is said to be 
frequency-nonselective. 

We now focus our attention on the time variations of the channel as 
measured by the parameter At in 4>cC At; Ill). The time variations in the 
channel are evidenced as a Doppler broadening and, perhaps, in addition as a 
Doppler shift of a spectral line. In order to relate the Doppler effects to the 
time variations of the channel, we define the Fourier transform of <pdl::.t; At) 
with respect to the variable At to be the function Sc(l::.f; A). That is, 

(14-1-17) 

With tlf set to zero and SdO; A) == Sd A), the relation in (14-1-17) becomes 

SdA) = r </Ic(At)e- j2
"" ~ dl::.t (14-1-18) 

J_= 
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Doppler power spectrum 

The function Sc(,I) is a power spectrum that gives the signal in~ensi'y as a 
function of the Doppler frequency ,I, Hence, we call Sc(A) the Doppler power 
spectrum of the channel. 

From (14-1-18), we observe that if the channel is time-in.variant, "'dAl) = 1 
and Sc(A) becomes equal to the delta function <5(,1). Therefore, when there are 
no time variations in the channel, there is no spectral broadening observed in 
the transmission of a pure frequency lone. 

The range of values of A over which Sc(A) is essentially nonzero is called the 
Doppler spread Bd of the channel. Since Sc(,\) is related to <f>c(AI) by the 
Fourier transform, the reciprocal of Bd is a measure of the coherence time of 
the channel. That is, 

1 
(At)" =

Bd 
(14-1-19) 

where (At)e denotes the coherence time. Clearly, a slowly changing channel has 
a large coherence time or, equivalently, a small Doppler spread. Figure 14-1-4 
illustrates the relationship between </IdAt) and Sc('\). 

We have now established a Fourier transform relationship between 
<l>dM; At) and <l>e( r; At) involving the variables (r, 1lf), and a FOllrier 
transform relationship between <l>dAf; At) and Sdfl/; A) involving the vari
ables (At, A). There are two additional Fourier transform relationships that we 
can define, which serve to relate tPe( r; At) to Sc(Af; A) and, thus, close the 
loop. The desired relationship is obtained by defining a new function, denoted 
by S( r; A), to be the Fourier transform of <1>,,( r: At) in the At variable. That is, 

(14-1-20) 

It follows that SCI'; A) and Sc(l1f; A) are a Fourier transform pair. That is, 

(14-1-21) 
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(At)" =

Bd 
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Furthermore, S(.; A) and cf>ddf: !J.I} are related by the double Fourier 
transform 

S( r: A) = roo r~ cf>c(!J.f: J.1)e -1"""<:,28':'f d til dtV (14-1-22) 

~is new function S( r: A) is called the scatlering function of the channel. It 
provides us with a measure of the average power output of the channel as a 
function of the time delay r and the Doppler frequency A. 

The relationships among the four functions cf>ddf: !J.I). cf>c( r; dt), 
<l>d!J.f: A), and S(.; A) are summarized in Fig. 14-1-5, 

FIGURE 14-1-5 Relationships. among the channel correlation functions and power spectra. [From Greel! (1962). 
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FlGURE 14--14) Scattering function of a medium-range tropospheric scatter channel. The taps delay increment is 
0.11'5. 

The scattering function S(,: A) measured on a 150mi tropospheric scatter 
link is shown in Fig. 14-1-6. The signal used to probe the channel had a time 
resohltion of 0.1 p.s. Hence, the time-delay axis is quantized in increments of 
0.1 p.s. From the graph, we observe that the multipath spread Tm = 0.7 p.s. On 
the other hand, the Doppler spread, which may be defined as the 3 dB 
bandwidth of the power spectrum for each signal path, appears to vary with 
each signal path. For example, in one path it is less than 1 Hz, while in some 
other paths it is several hertz. For our purposes, we shall take the largest of 
these 3 dB bandwidths of the various paths and call that the Doppler spread. 

14-1·2 Statistical Models for Fading Channels 
There are several probability distributions that can be considered in attempting 
to model the statistical characteristics of the fading channel. When there are a 
large number of scatterers in the channel that contribute to the signal at the 
receiver, as is the case in ionospheric or tropospheric signal propagatio~, 
application of the central limit theorem leads to a gaussian process model for 
the chalmel impulse response. If the process is zero-mean, then the envelope of 
the channel response at any time instant has a Rayleigh probability distribution 
and the phase is uniformly distributed in the interval (0, 21e). That is, 

(14-1-23) 
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where 
0= £(R') (14-1-24) 

We observe that the Rayleigh distribution is characterized by the single 
parameter £(R'). 

An alternative statistical model for the envelope of the channel response is 
the Nakagami-m distribution given by the pdf in (2-1-147). In conslrast to the 
Rayleigh distribution. which has a single parameter that can be used to match 
the fading channel statistics, the Nakagami-m is a two-parameter distribution, 
namely, involving the parameter m and the ~econd moment Q = E(R'). As a 
consequence, this distribution provides more Hexibility and accuracy in 
matching the observed signal statistics. The Nakagami-m distribution can be 
used to model fading channel conditions that are either more or less severe 
than the Rayleigh distribution, and it includes the Rayleigh distribution as a 
special case (m = 1). For example, Turin (1972) and Suzuki (1977) have shown 
that the Nakagami-m distribution is the best fit for data signals rect;ived in 
urban radio multipalh channels. 

The Rice distribution is also a two-parameter distribution. It may be 
expressed by the pdf given in (2-1-141), where the parameters are sand u 2

• 

Recall that sZ.is called the non centrality parameter in the equivalent chi-square 
distribution. It represents the power in the nonfading signal components, 
sometimes called specular components, of the received signal. 

There are many radio channels in which fading is encountered that are 
basically line-of-sight (LOS) communication links with mUltipath components 
arising from secondary reflections, or signal paths, from surrounding terrain. In 
such channels, the number of multipath components is small, and, hence, the 
channel may be modeled in a somewhat simpler form. We cite two channel 
models as examples. 

As the first example, let us consider an airplane to ground communication 
link in which there is the direct path and a single mUltipath component at a 
delay to relative to the direct path. The impulse response of such a channel may 
be modeled as 

CiT; t) = uB(r) + !3(t)Bfr - ro(/» (14-1-25) 

where a is the attenuation factor of the direct path and fJ(t) represents.the 
time-variant multipath signal component resulting from terrain reflections. 
Often, pet) can be characterized as a zero-mean gaussian random process. The 
transfer function for this channel model may be expressed as 

C(f; t) = u + /J(t)e-j2"fr</I) (14-1-26) 

This channel fits the Ricean fading model defined previously. The direct path 
with attenuation u represents the specular component and f3(t) represents the 
Rayleigh fading component. 

A similar model has been found to hold for microwave LOS radio channels 
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used for long-distance voice and video transmission by telephone companies 
throughout the world. For such channels, Rummier (1979) has developed a 
three-path model based on channel measurements performed on typical LOS 
links in the 6 GHz frequency band. The differential delay on the two multipatb 
components is relatively small, and, hence, the model developed by Rummier 
is one that has a channel transfer function 

(14-1-27) 

where a is the overall attenuation parameter, P is called a shape parameter 
which is due to the multipath components, Iu is the frequency of the fade 
minimum, and To is the relative time delay between the direct and the 
multi path components. This simplified model was used to fit data derived from 
channel measurements. 

Rummle.r found that the parameters a and f3 may be characterized as 
random variables that, for practical purposes, are nearly statistically indepen
dent. From tile channel measurements, lie found that the distribution of P has 
the form (1 - (3)2'. The distribution of a is well modeled by the lognormal 
distribution, i.e., -log" is gaussian. For f3 >0.5, the mean of -2010ga was 
found to be 25 dB and the standard deviation was 5 dB. For smaller values of 
/3, the mean decreases to 15 dB. The delay parameter determined from the 
measurements was Til = 6.3 ns. The magnitude-square response of C(f) is 

iC(f)I' = a 2[1 + f3' - 2fJ oos 21'C(I - 10)1'01 (14-1-28) 

ICU)I is plotted in Fig. 14-1-7 as a function of the frequency f - 10 for 
To = 6.3 ns. Note that the effect of the rnultipath compo.nent is to create a deep 
attenuation at f = 10 and at multiples of 1/1'0"'" 159 MHz. By comparison, the 
typical channel bandwidth is 30 MHz. This model was used by Lundgren and 
Rummier (1979) to determine the error rate performance of digital radio 
systems. 

FIGURE 14-1-7 Magnitude frequency response of LOS channel model 
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14-2 THE EFFECT OF SIGNAL CHARACTERISTICS 
ON THE CHOICE OF A CHANNEL MODEL 

Having discussed the statistical characterization of time-variant multipath 
channels generally in terms of the correlation functions described in Section 
14-1. we now consider the effect of signal characteristics on the selection of a 
channel model that is appropriate for the specified signal. Thus, let s,(t} be the 
equivalent lowpass signal transmitted over the channel and let St(f) denote its 
frequency content. Then the equivalent lowpass received signal, exclusive of 
additive noise, may be expressed either in terms of the time domain variables 
c( t; t) and St(t) as 

(14-2-1) 

or in terms of the frequency functions C(f; r) and St(f) as 

(14-2-2) 

Suppose we are transmitting digital information over the channel by 
modulating (either in amplitude, or in phase. or both) the basic pulse St(t) al a 
rate 1fT. where T is the signaling interval. II is apparent from (14-2-2) that the 
time-varilmt channel characterized by the transfer function C(f; I) distorts the 
signal SI(f). If SI(f) has a bandwidth W greater than the coherence bandwidth 
(af)e of the channel, St(f) is subjected to different gains and phase shifts across 
the band. In such a case, the channel is said to be frequency-selective. 
Additional distortion is caused by the time variations in C(f; t). This type of 
distortion is evidenced as a variation in the received signal strength, and has 
been termed fading. It should be emphasized that the frequency selectivity and 
fading are viewed as two different types of distortion. The former depends on 
the multipath spread or, equivalently, on the coherence bandwidth of the 
channel relative to the transmitted signal bandwidth W. The latter depends on 
the time variations of the channel, which are grossly characterized by the 
coherence lime (at)e or, equivalently, by the Doppler spread Bd • 

The effect of the channel on the transmitted signal s,(/) is a function of our 
choice of signal bandwidth and signal duration. For example, if we select the 
signaling interval T to satisfy the condition T» Tm , the channel introduces a 
negligible amount of intersymbol interference. H the bandwidth of the signal 
pulse SI(t) is W"" liT. the condition T» T", implies that 

1 
W «r: = (af>c 

m 
(14-2-3) 

That is. the signal bandwidth W is much smaller than the coherence bandwidth 
of the channel. Hence, the channel is frequency-nonselective. In other words, 
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all of the frequency components in S,(f) undergo the same attenuation and 
phase shift in transmission through the channel. But this implies that, within 
the bandwidth occupied by StU), the time-variant transfer function C(f; t) of 
the channel is a complex-valued constant in the frequency variable. Since StU) 
has its frequency content concentrated in the vicinity of f = 0, c(t; t) = C(O; I). 
Consequently, (14-2-2) reduces to 

r,(t) = C(O; t) r~ S,(f)e'LK{' df 

= C(O; t)s,(t) (14-2-4) 

Thus, when the signal bandwidth W is much ~'maller than the coherence 
bandwidth (tl/lc of the channel, the received signal is simply the transmitted 
signal multiplied by a complex·valued random process C(O; I), which rep
resents the time-variant characteristics of the channel. In this case, we say that 
the multipath components in the received are not resolvable because W« 
(tJ.f).. 

The transfer function C(O; t) for a frequency-nonselective channel may he 
expressed in the form 

C(O; r) = a(t}e'j<l>(O (14-2-5) 

where a(l) represents the envelope and <p(t) represents the phase of the 
equivalent lowpass channel. When C(O; t) is modeled as a zero-mean complex
valued gaussian random process, the envelope a(t) is Rayleigh·distributed for 
any fixed value of t and <p(t) is uniformly distributed over the interval (-Jr, Jr). 
The rapidity of the fading on the frequency-nonselective channel is determined 
either from the correlation function <Pc( tJ.t) or from the Doppler power 
spectrum SetA). Alternatively, either of the channel parameters (tJ.t),. or Bd can 
be used to characterize the rapidity of the fading. 

For example, suppose it is possible to select the signal bandwidth W to 
satisfy the condition W« (tJ.f)< and the signaling interval T to satisfy. the 
condition T «(tJ.t)c. Since T is smaller than the coherence time of the cha~nel, 
the channel attenuation and phase shift are essentially fixed for the duration of 
at least one signaling interval. When this condition holds, we call the channel a 
slowly fading channel. Furthermore, when W." lIT, the conditions that the 
channel be frequency-nonselective and slowly fading imply that the product of 
Tm and B" must satisfy the condition TmB" < 1. 

The product T,,,Bd is called the spread factor of the channel. If TmBd < 1, the 
channel is said to be underspread; otherwise, it is overspread. The multipath 
spread, the Doppler spread, and the spread factor are listed in Table 14-2-1 for 
several channels. We observe from this table that several radio channels, 
including the moon when used as a passive reflector, are underspread. 
Consequently, it is possible to select the signal Stet) such that these channels 
are frequency-nonselective and slowly fading. The slow-fading condition 
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Consequently, it is possible to select the signal Stet) such that these channels 
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TABLE 14-2-1 

m DKilTAL COMMUN!CATJ(}NS 

MULTIPATH SPREAD. DOPPLER SPREAD, AND SPREAD FACTOR 
fOR SEVERAL TIME·VARIANT MULTIPATH CHANNELS 

Multipath Doppler Spread 

Typo of chaRnel dur.tI .... spreod fador 

Shortwave ionospberic 
propagation (HF) 10-'·10" 10' '-I 10-'.10' 2 

Ionospheric propagation 
under disturbed auroral 
conditions (HF) 1O-".IO' z 10-100 10"-1 

Ionospheric forward scatter 
(VHF) 10-' 10 10" 

Tropospheric scalIer (SHF) 10'" 10 10" 

Orbital scatter (X band) 10" 10' 10'\ 

Moon at max. libration 
(I. = OAkmc) lO-z 10 10'\ 

implies that the channel characteristics vary sufficiently slowly that they can be 
measured. 

In Section 14·3, we shall determine tile error rate performance for binary 
signaling over a frequency-nonselective slowly fading channel. This channel 
model is, by far, the simplest to analyze. More importantly, it yields insight 
into the performance characteristics for digital signaling on a fading channel 
and serves to suggest the type of signal waveforms that are effective in 
overcoming the fading caused by the channel. 

Since the mUltipath components in the received signal are not resolvable 
when the signal bandwidth W is less than the coherence bandwidth (l1f)c of the 
channel, the received signal appears to arrive at the receiver via a single fading 
path. On the other hand, we may choose W» (t:.f)co so thai the channel 
becomes frequency·selective. We shall show later that, under this condition, 
the multipath components in the received signal are resolvable with a 
resolution in time delay of l/W. Thus, we shall illustrate that the frequency
selective channel can be modeled as a tapped delay line (transversal) filter with 
time-variant lap coefficients. We shall then derive the performant;e of binary 
signaling over such a frequency-selective channel model. 

14-3 FREQ(JENCY-NONSELECTIVE, SLOWLY 
FADING CHANNEL 

In this section, we derive the error rate performance of binary PSK and binary 
FSK when these signals are transmitted over a frequency-nonselective, slowly 
fading channel. As described in Section 14-2, the frequency·nonselective 
channel results in multiplicative distortion of tbe transmitted signal SI(t). 
Furthermore, the condition that the channel fades slowly implies that tne 
multiplicative process maybe regarded as a constant during at least one 
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signaling interval. ConsequentlY, if the transmitted signal is s;{t), the received 
equivalent lowpass signal in one signaling interval is 

r,(t)=ae-j<l>s,(t) +z(t), O.,;t.,:; T (14-3-1) 

where z(r) represents the complex-valued white gaussian noise process 
corrupting the signal. 

Let us assume that the channel fading is sufficiently slow that the phase shift 
<I> can be estimated from the received signal without error. In that case, we can 
achieve ideal coherent detection of the received signal. Thus, the received 
signal can be processed by passing it through a matched filter in the case of 
binary PSK or through a pair of matched filters in the case of binary FSK. One 
method that we can use to determine the performance of the binary 
communications systems is to evaluate the decision variables and from these 
determine the probability of error. However, we have already done this for a 
fixed (time-invariant) channel. That is, for a fixed attenuation a, we have 
previously derived the probability of error for binary PSK and binary FSK. 
From (5-2-5), the expression for the error rate of binary PSK as a function of 
the received SNR 'Yo is 

(14-3-2) 

where 'Yo = 0'2 go! No. The expression for the error rate of binary FSK, detected 
coherently, is given by (5-2-10) as 

P'( Yb} = Q(v:r;) (14-3-3) 

We view (14-3-2) and (14-3-3) as conditional error probabilities, where the 
condition is that a is fixed. To obtain the error probabilities when a is random, 
we must average P,( 'Yo), given in (14-3-2) and (14-3-3), over the probability 
density function of i'b' That is, we must evaluate the integral 

P2 = r P'(Yb)P(Yb) t1'Yb (14-3-4) 

where p( 'Yb) is the probability density function of Yb when a is random. 

RayleiKh FadiDII Sinee a is Rayleigh-distributed, a' has a chi-square 
probability distribulion with two degrees of freedom. Consequently, 'Yb also is 
chi-square-distributed. It is easily shown that 

1 -
P(Yb) = =-e-y,,/», 1b"'0 (14-3-5) 

'Yb 

where Yb is the average signal-la-noise ratio, defined as 
~ . 

Yb =-£(a2
) 

No 

The term £(a2
) is simply the average value of a'. 

(14-3-6) 
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Now we can substitute (14-3-5) into (14-3-4) and carry out the integration 
for Piy.) as given by (14-3-2) and (14-3-3). The result of this integration for 
binary PSK is 

(14-3-7) 

If we repeat the integration with P2(Yh) given by (14-3-3), we obtain 
probability of error for binary FSK, detected coherently, in the form 

the 

1 ( rT."") P2=2 1-\j~ (14-3-8) 

In arriving at the error rate results in (14-3-7) and (14-3-8), we have 
assumed that the estimate of the channel phase shift, obtained in the presence 
of slow fading, is noiseless. Such an ideal condition may not hold in practice. In 
such a case, the expressions in (14-3-7) and (14-3-8) should be viewed as 
representing the best achievable performance in th'e presence of Rayleigh 
fading. In Appendix C we consider the problem of estimating the phase in the 
presence of noise and we evaluate the error rate performance of binary and 
multiphase PSK. 

On channels for which the fading is sufficiently rapid to preclude the 
estimation of a stable phase reference by averaging the received signal phase 
over many signaling intervals, DPSK, is an alternative signaling method, Since 
DPSK requires phase stability over only two consecutive signaling intervals, 
this modulation technique is quite robust in the presence of signal fading. In 
deriving the performance of binary DPSK for a fading channel, we begin again 
with the error probability for a nonfading channel, which is 

(14-3-9) 

This expression is substituted into the integral in (14-3-4) along with p( Yb) 
obtained from (14-3-5). Evaluation of the resulting integral yields the 
probability of error for binary DPSK, in the form 

1 
P2 =-:-:---

2(1 + 1'.) 
(14-3-10) 

It we choose not to estimate the channel phase shift at all, but instead 
employ a noncoherent (envelope or square-law) detector with binary, orthogo
nal FSK signals, the error probability for a nonfading channel is 

(14-3-11) 

When we average Pi Y.) over the Rayleigh fading channel attenuation, the 
resulting error probability is 

(14-3-12) 

784

Now we can substitute (14-3-5) into (14-3-4) and carry out the integration 
for Piy.) as given by (14-3-2) and (14-3-3). The result of this integration for 
binary PSK is 

(14-3-7) 

If we repeat the integration with P2(Yh) given by (14-3-3), we obtain 
probability of error for binary FSK, detected coherently, in the form 

the 

1 ( rT."") P2=2 1-\j~ (14-3-8) 

In arriving at the error rate results in (14-3-7) and (14-3-8), we have 
assumed that the estimate of the channel phase shift, obtained in the presence 
of slow fading, is noiseless. Such an ideal condition may not hold in practice. In 
such a case, the expressions in (14-3-7) and (14-3-8) should be viewed as 
representing the best achievable performance in th'e presence of Rayleigh 
fading. In Appendix C we consider the problem of estimating the phase in the 
presence of noise and we evaluate the error rate performance of binary and 
multiphase PSK. 

On channels for which the fading is sufficiently rapid to preclude the 
estimation of a stable phase reference by averaging the received signal phase 
over many signaling intervals, DPSK, is an alternative signaling method, Since 
DPSK requires phase stability over only two consecutive signaling intervals, 
this modulation technique is quite robust in the presence of signal fading. In 
deriving the performance of binary DPSK for a fading channel, we begin again 
with the error probability for a nonfading channel, which is 

(14-3-9) 

This expression is substituted into the integral in (14-3-4) along with p( Yb) 
obtained from (14-3-5). Evaluation of the resulting integral yields the 
probability of error for binary DPSK, in the form 

p = 1 
2 2(1 + i'.) (14-3-10) 

It we choose not to estimate the channel phase shift at all, but instead 
employ a noncoherent (envelope or square-law) detector with binary, orthogo
nal FSK signals, the error probability for a nonfading channel is 

(14-3-11) 

When we average Pi Y.) over the Rayleigh fading channel attenuation, the 
resulting error probability is 

(14-3-12) 



FIGURE 14-3-1 

l't-/,.UTnR ).,1. l)J(;ffAi. c'O\JM: ~JCt\1I0N IHROl)(iH f-ADIMi MUll"IPAril (HAN~j-[_:-. n5 

Performance of binary signaling on a 
Rayleigh fading channel. 

"-~ 

~ 
Z 
~ 

~ 

Z 
:2 c 
0: 

0.5 

0.2 

lO 
, 

5 

2 

10 

5 

1 

lU-J 

5 

I('-~ 

5 

2 

10 

~ 
f'-.,~ ~ .,,,, 

'" FSK 

, FSK '" ~ 
noncohc:renl 

1 coherer,( " detcci!on 
detection 

'" :>...' , 
i DP5K /' ~~ '" ps} ~ b-. 

'" "', l 

"'~ "-
"" ~" 

"" 
: 

I 
o 10 15 20 25 

The error probabilities in (14-3-7), (14-3-8), (14-3-10), and (14-3-12) arc 
illustrated in Fig. 14-3-1. In comparing the performance of the four binary 
>ignaling systems, we focus our attention on the probabilities of error for large 
SNR, i.e., Yb»!. Under this condition, the error rates in (J4-3-7), (14-3-1$), 
(14-3-10). and (14-3-12) simplify to 

for coherent PSK 

for coherent, orthogonal FSK 

for DPSK 

for noncoherent, orthogonal FSK 

(14-3-13) 

From (14-3-13), we observe that coherent PSK is 3 dB better than DPSK 
and 6 dB beller than noncoherent FSK. More striking, however. is the 
observation that the error rates decrease only inversely ~ith SNR. In contrast, 
the decrease in error rate on a nonfading channel is exponential with SNR. 
This means that, on a fading channel, the transmitter must transmit a large 
amount of power in order to obtain a low probability of error. In many cases, a 
large amount of power is not possible, technically and/or economicaHy. An 
alternative solution to the problem of obtaining acceptable performance on a 
fading channel is the use of redundancy. which can be obtained by means of 
diversity techniques, as discussed in Section 14-4. 
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Nakagami Fading If a is charactenzed statistically by the Nakagami-m 
distribution, the random variable i' = a''ihlNu has the pdf (see Problem 14-15) 

(14-3-14) 

where 'Y = E(a')'i/N". 
The average probability of error for any of the modulation methods is 

simply obtained by averaging the appropriate error probability for a nonfading 
channel over the fading signal statistics. 

As an example of the performance obtained with Nakagami-m fading 
statistics, Fig. 14-3-2 illustrates the probability of error of binary PSK with m as 
a parameter_ We recall that m = 1 corresponds to Rayleigh fading. We observe 
that the performance improves as m is increased above m = I. which is 
indicative of the fact that the fading is less severe. On the other hand. when 
m < I, the performance is worse than Rayleigh fading. 

Other Fading Signal Statistics Following the procedure described above, 
one can determine the performance of the various modulation methods for 
other types of fading signal statistics, such as the Rice distribution. 

Error probability results for Rice-distributed fading statistics can be found 
in the paper by Lindsey (1964). while for Nakagami-m fading statistics. the 

FIGURE 14-3-2 Average error probability for two-phase PSK 
symbol in nondiversity reception. 
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reader may refer to the papers by EspOsito (1967), Miyagaki et af. (1978), 
Charash (1979), AI-Hussaini et al. (1985), and Beaulieu et al. (1991). 

14-4 DIVERSITY TECHNIQUES FOR FADING 
MULllPATH CHANNELS 

Diversity techniques are based on the notion that errors occur in reception 
when the channel attenuation is large. i.e., when the channel is in a deep fade. 
If we can supply to the receiver several replicas of the same information signal 
transmitted over independently fading channels, the probability that all the 
signal components will fade simultaneously is reduced considerably. That is, if 
p is the probability that anyone signd will fade below some critical value then 
pL is the probability that all L independently fading replicas of the same signal 
will fade below the critical value. There are several ways in which we can 
provide the receiver with L independently fading replicas of the same 
information-bearing signal. 

One method is to employ frequency diversity. That is, the same information
bearing signal is transmitted on L carriers, where the separation between 
successive carriers equals or exceeds the coherence bandwidth (~f),. of the 
channel. 

A second method for achieving L independently fading versions of the same 
information-bearing signal is to transmit the signal in L different time slots, 
where the separation between successive time slots equals or exceeds the 
coherence time (.It)c of the channel. This method is called lime diversify. 

Note that the fading channel fits the model of a bursty error channel. 
Furthermore, we may view the transmission of the same information either at 
different frequencies or in difference time slots (or both) as a simple form of 
repetition coding. The separation of the diversity transmissions in time by (at), 
or in frequency by (Af),. is basically a form of block-interleaving the bits in the 
repetition code in an attempt to break up the error bursts and, thus, to obtain 
independent errors. Later in the chapter, we shall demonstrate that, in general. 
repetition coding is wasteful of bandwidth when compared with nontrivial 
coding. 

Another commonly used method for achieving diversity employs multiple 
antennas. For example, we may employ a single transmitting antenna and 
multiple receiving antennas. The latter must be spaced sufficiently far apart 
that the multipath components in the signal have significantly different 
propagation delays at the antennas. Usually a separation of at least 10 
wavelengths is required between two antennas in order to obtain Signals that 
fade independently. 

A more sophisticated method for obtaining diversity is based on the use of a 
signal having a bandwidth much greater than the coherence bandwidth (~f),. of 
the channel. Such a signal with bandwidth W will resolve the mUltipath 
components and, thus. provide the receiver with several independently fading 
signal paths. The time resolution is l/W. Consequently, with a multipath 
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spread 01 T,,, s. there are Tn> W resolvable signal components. Since 7,,, = 
l/(!V)" the number of resolvable signal components may also be expressed as 
W I(!:;.f), .. Thus. the use of a ~ideband signal may be viewed as just another 
method for obtaining frequency diversity of order L = W {(Af)c' The optimum 
receiver for processing the wideband signal will be derived in Section 14-5. It is 
called a RAKE correialOr or a RAKE marched filrer and was invented by Price 
and Green \1958). 

There are other diversity techniques that have received some consideration 
in practice. such as angle-of-arrival diversity and polarization diversity. 
However, these have not been as widely used as those described above. 

14-4-1 Binary Signals 

We shall now determine the error rate performance for a binary digital 
communications system with diversity. We begin by describing the mathemati
cal model for the communications system with diversity. First of all. we assume 
that there are L diversity l:hannels. carrying the same information-bearing 
signal. Each channel is assumed to be frequency-nonselective and slowly fading 
with Rayleigh-distributed envelope statistics. The fading processes among the 
L diversity channels are assumed to be mutually statistically independent. The 
signal in each channel is corrupted by an additive zero-mean white gaussian 
noise process. The noise processes in the L channels are assumed to be 
mutually statistically independent, with identical autocorrelation functions. 
Thus. the equivalent low-pass received signals for the L channels can be 
expressed in the form 

r,.(I) = a.e-i<i>'s'm(t) + z.(tI. k = 1,2, ... , L, m = 1, 2 (14-4-1) 

where {ake -N',} represent the attenuation factors and phase shifts for the L 
channels. 5.",(1) denotes the mth signal transmitted on the kth channel, and 
Zk (I) denotes the additive white gaussian noise on the kth channel. All signals 
in the set (Skm(t)} have the same energy. 

The optimum demodulator for the signal received from the kth channel 
consists of two matched filters. one having the impulse response 

b,,(t) = sl,(T -I) 

and the other having the impulse response 

b.,(t) = slo(T - t) 

(14-4-2) 

(14-4-3) 

Of colH'se. if binary PSK is the modulation method used to transmit the 
information. then S.,(I) = -S.2(1). Consequently. only a single matched filter is 
required for binary PSK. Following the matched filters is a combiner that 
forms the two decision variables. The combiner that achieves the best 
performance is one in whIch each matched filter output is multiplied by the 
corresponding complex-valued (conjugate) channel gain a.ei4>,. The effect of 
this multiplication is to compensate for the phase shift in the channel and to 
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FIGURE 14-4-1 Model of binary digital communications system with diversity. 

weight the signal by a factor that is proportional to the signal strength. Thus, a 
strong signal carries a larger weight than a weak signal. After the complex· 
valued weighting operation is performed, two sums are formed. One consists of 
the real parts of the weighted outputs from the matched filters corresponding 
to a transmitted O. The second consists of the real part of the outputs from the 
matched filters -corresponding to a transmitted 1. This optimum combiner is 
called a lrUlXimal ratio combiner by Brennan (1959). Of course, the realization 
of this optimum combiner is based on the assumption that the channel 
attenuations {ak} and the phase shifts {<I>.} are known perfectly. That is, the 
estimates of the parameters {a.} and {<I>klcontain no noise. (The effect of noisy 
estimates on the error rate performance of multi phase PSK is considered in 
Appendix C. 

A block diagram illustrating the model for the binary digital communica· 
tions system described above is shown in Fig. 14-4-l. 

Let us first consider the performance of binary PSK with Lth·order 
diversity. The output of the maximal ratio combiner can be expressed as a 
single decision variable in the form 

U=Re(2~.tl ai+ ~1 a.N.) 
L L 

= n 2: a~ + 2: a,N., (14-4-4) 
k =} k=l 

where Nk , denotes the real part of the complex-valued gaussian noise variable 

N. = e'''·r z.(t)st(t) dt (14-4-5) 

We follow the approach used in Section 14·3 in deriving the probability of 
error. That is, the probability of error conditioned on a fixed set of attenuation 
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factors {aAJ is obtained first. Then the conditional probability of error is 
averaged over the probability density function of the {a.}. 

Rayle .. Fading For a fixed set of {a.} the decision variable U is gaussian 
wilh mean 

L 

£(U) = 2'8 L ai (14-4-6) 
k~l 

and variance 
L 

lT~ = 2'iNo L a! (14-4-7) 
k~l 

For these values of the mean and variance, the probability that U is less than 
zero is simply 

(14-4-8) 

where the SNR per bit, 1'b, is given as 

~ L 

1'b = No L a; 
o t=l 

L 

= L 1'. (14-4-9) 
k=l 

where Yk = ~aiJ No is the instantaneous SNR on the kth ch.annel. Now we 
must determine the probability density function p( 1'.). This function is most 
easily determined via the characteristic function of Yb' First af all, we note that 
for L = 1, 1'. "" 1'. has a chi-square probability density function given in 
(14-3-5). The characteristic function of y, is easily shown to be 

"",(jv) = E(&"Y') 

1 
1 - jvYc 

(14-4-10) 

where 1c is the average SNR per channel, which is assumed to be identical for 
all channels. That is, 

~ 
yc= No E(a!} (14-4-11) 

independent of k. This assumption applies fOT Ihe results throughout this 
section. Since the fading on the L channels is mutually statistically indepen
dent, the h.} are statistically independent, and, hence, the characteristic 
fU/l(;tion for the sum "Yb is simply tbe result in (14-4-10) raised to the Llh 
power, i.e., 

(14-4-12) 
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But this is the characteristic function of a chi-square-distributed random 
variable with 2L degrees of freedom. It follows from (2-1-107) that the 
probability density function p( 'Y.) is 

( ) _ 1 "L-le-y.lY, 
P 1'. - (L -1)!y; ,b 

(14-4-13) 

The final step in this derivation is to average the conditional errOl 
probability given in (14-4-8) over the fading channel statistics. Thus, we 
evaluate the integral 

Pz = r P2(')'b)P( Yh) d-y. (144-14) 

There is a closed-form solution for (14-4-14), which can be expressed as 

(144-15) 

where, by definition. 

11- = ~ 1'c 
1 + Yc 

(144-16) 

When the average SNR per channel, Yo satisfies the condition 1c » 1. the term 
HI + 11-)= 1 and the term HI-I1-)=1/4Y,. Furthermore, 

Lf ('L-1 T k) = (2L-l) 
k~O k • L 

(14-4-17) 

Therefore. when 1, is sufficiently large (greater than 10 dB), the probability of 
error in (14-4-15) can be approximated as 

(14-4-18) 

We observe from (14-4-18) that the probability of error varies as I/y, raised to 
the Llh power. Thus, with diversity, the error rate decreases inversely with the 
Lth power of the SNR. 

Having obtained the performance of binary PSK with diversity, we now turn 
our attention to binary. orthogonal FSK that is detected coherently. In this 
case, the two decision variables at the output of the maximal ratio combiner 
may be expressed as 

VI =Re (2~ '~l a~ + Jl akNhl ) 

V2 = Re (~l a.N.2 ) 

(14-4:19) 

where we have assumed that signal s .. (t) was transmitted and where {NAl } and 
{Nu } are the two sets of noise component at the output of the matched filters. 
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The probability of error is simply the probability that V, > VI' This computa
tion is similar to (he one performed for PSK. except that we now have twice 
the noise power. Consequently. when the {Uk} are fixed, the conditional 
probability of error is 

(14-4-20) 

We use (14-4-13) to average P'(Yb) over the fading. It is not surprising to find 
that the result given in (14-4-15) still applies, with lc replaced by He- That is, 
(14-4-15) is the probability of error for binary, orthogonal FSK with coherent 
detection, where the parameter Ii is defined as 

Ii = )2 :cYc (14-4-21) 

Furthermore, for large values of y,.. the performance Po can be approximated 
as 

( 14-4-22) 

In comparing (14-4-22) with (14-4-18), we observe that the 3 dB difference in 
performance between PSK and orthogonal FSK with coherent detection, which 
exists in a nonfading, nondispersive channel, is the same also in a fading 
channel. 

In the above discussion of binary PSK and FSK, detected coherently, we 
assumed that noiseless estiinates of the complex-valued channel parameters 
{Uke -j4>,} were used at the receiver. Since the channel is time-variant, the 
parameters {a,e-!"') cannot he estimated perfectly. In fact, on some channels, 
the time variations may be sufficiently fast to preclude the implementation of 
coherent detection. In such a case, we should consider using either DPSK or 
FSK with noncoherent detection. 

Let us consider DPSK first. In order for DPSK to be a viable digital 
signaling method, the channel variations must be sufficiently slow so that the 
channel phase shifts {.p.J do not change appreciably over two consecutive 
signaling intervals. In our analysis. we assume that the channel parameters 
{ake -j"'} remain constant over two successive signaling intervals. Thus the 
combiner for binary DPSK will yield as an output the decision variable 

V = Re [t (2l!'Qke -;0, + N.,)(lgQk e'<P, + Nt.)] (14-4-23) 

where {N .. } and {N.,l denote the received noise components at the output of 
the matched filters in the two consecutive signaling intervals. The probability 
of error is simply the probability that V < O. Since V is a special case of the 
general quadratic form in complex-valued gaussian random variables treated in 
Appendix B, the probability of error can be obtained directly from the results 
given in that appendix. Alternatively, we may use the error probability given in 
(12-1-3), which applies to binary DPSK transmitted over L time-invariant 
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channels, and average it over the Rayleigh fading channel statistics. Thus, we 
have the conditional error probability 

L-I 

P2(Yb) = mn-'e-" L bkY~ 
A:=O 

where 'Yh is given by (14-4-9) and 

1 L-I-k (2L-l) 
b=- L 

!£ k! n=O n 

(14-4-24) 

(14-4-25) 

The average of P,( 'Yb) over the fading channel statistics given by p( 'Yb) In 

(14-4-13) is easily shown to be 

(14-4-26) 

We indicate that the result in (14-4-26) can be manipulated into the form given 
in (14-4-15), which applies also to coherent PSK and FSK. For binary DPSK. 
the parameter JL in (14-4-15) is defined as (see Appendix C) 

(14-4-27) 

For y,,» I, the error probability in (14-4-26) can be approximated by the 
expression 

(14-4-28) 

Orthogonal FSK with noncoherent detection is the final signaling technique 
that we consider in this section. It is appropriate for both slow and fast fading. 
However, the analysis of the performance presented below is based on the 
assumption that the fading is sufficiently slow so that the channel parameters 
{ute -i .. ,} remain constant for the duration of the signaling interval. The 
combiner for the multichannel signals is a square-law combiner. Its output 
consists of the two decision variables 

L 

U I = 2: 12~ake-N" + NkII2 
k=l 

L 

U2 = 2: INd2 

*=t 

(14-4-29) 

where U, is assumed to contain the signal. Consequently the probability of 
error is the probability that U2 > U,. 
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As in DPSK, we have a choice of two approacbes in deriving the 
perfonnance of FSK with square-law combining. In Section 12-1, we indicated 
that the expression for the error probability for square-Jaw combined FSK is 
the same as that for DPSK with 'Yb replaced by h •. That is. the FSK system 
requires 3 dB of additional SNR to achieve the same performance on a 
time-invariant channel. Consequently, the conditional error probability (or 
DPSK given in (14-4-24) applies to square-Iaw-cornbilled FSK when 'Yo is 
replaced by h •. Furthermore, the result obtained by averaging (14-4-24) over 
the fading, which is given by (14-4-26), must also apply to FSK with "Yc 
replaced by ~1c. But we also stated previously that (14-4-26) and (14-4-15) are 
equivalent. Therefore, the error probability given in (14-4-15) also applies to 
square-Iaw-combined FSK with the parameter p. defined as 

(14-4-30) 

An alternative derivation used by Pierce (1958) to obtain the probability 
that the decision variable V, > VI is just as easy as the method described 
above. It begins with the probability density functions p( V.) and p( V2 ). Since 
the complex-valued random variables {ake-i.,), {Nkl }, and {Nul are zero-mean 
gaussian-distributed, the decision variables VI and V, are distributed according 
to a chi-square probability distribution with 2L degrees of freedom. That is, 

where 

Similarly, 

where 

_ 1 L-I (V, ) 
p(V,) - (2!?'l(L -I)! VI exp - 2!?, 

(T~ : !E(l2't'akC -i •• + N • .I') 

; 2~No(1 + "Yc) 

ui =2~No 

(14-4-31) 

(14-4-32) 

The probability of error is just the probability that V, > VI' It is left as an 
exercise for the reader to show that this probability is given by (14-4-15), 
where p- is defined by (14-4-30). 

When Yo» 1. the performimce of square-Jaw-detected FSK can be simpl
ified as we have done for the other binary multichannel systems. In this case, 
the error rate is well approximated by the expression . 

~=e )L(2L -1) 
''Yo L 

(14-4-33) 

The error rate performance of PSK, DPSK, and square-law-detected 
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ui =2~No 

(14-4-31) 

(14-4-32) 

The probability of error is just the probability that V, > VI' It is left as an 
exercise for the reader to show that this probability is given by (14-4-15), 
where p- is defined by (14-4-30). 

When Ye» 1. the performimce of square-Jaw-detected FSK can be simpl
ified as we have done for the other binary multichannel systems. In this case, 
the error rate is well approximated by the expression . 

~=e )L(2L -1) 
''Yo L 

(14--4-33) 

The error rate performance of PSK, DPSK, and square-law-detected 
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orthogonal FSK is illustrated in Fig, 14-4-2 for L = 1, 2, and 4, The 
performance is plotted as a function of the average SNR per bit, Yh. which is 
related to the average SNR per channel, Ye' by the formula 

(14-4-34) 

The results in Fig. 14-4-2 clearly illustrate the advantage of diversity as a 
means for overcoming the severe penalty in SNR caused by fading, 

14-4-2 Multiphue Signals 

Multiphase signaling over a Rayleigh fading channel is the topic presented in 
some detail in Appendix C. Our main purpose in this section is to cite the 
general result for the probability of a symbol error in M-ary PSK and DPSK 
systems and the probability of a bit error in four-phase PSK and DPSK. 
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The results in Fig. 14-4-2 clearly illustrate the advantage of diversity as a 
means for overcoming the severe penalty in SNR caused by fading, 

14-4-2 Multiphue Signals 

Multiphase signaling over a Rayleigh fading channel is the topic presented in 
some detail in Appendix C. Our main purpose in this section is to cite the 
general result for the probability of a symbol error in M-ary PSK and DPSK 
systems and the probability of a bit error in four-phase PSK and DPSK. 
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The general result for the probability of a symbol error in AI -ary PSK and 
DPSK is 

where 

(14-4-36) 

for coherent PSK and 

(14-4-37) 

for DPSK. Again, Yc is the average received SNR per channel. The SNR per 
bit is Yb = Lyclk, where k = log, M. 

The bit error rate for four-phase PSK and DPSK is derived on the basis that 
the pair of information bits is mapped into the four phases according to a Gray 
code. The expression for the bit error rate derived in Appendix. C is 

(14-4-38) 

where p. is again given by (14-4-36) and (14-4-37) for PSK and DPSK, 
respectively. 

Figure 14-4-3 illustrates the probability of a symbol error of DPSK and 
coherent PSK for M = 2, 4, and 8 with L = 1. Note that the dillerence in 
pe~ormance between DPSK and coherent PSK is approx.imately 3 dB for all 
three values of M. In fact, when Yo» 1 and L = 1, (14-4-35) is well 
approximated as 

(14-4-39) 

for DPSK and as 

M-l 

(M log, M)[sin2 (lft M)]2Yb 
(14-4-40) 

for PSK. Hence, at high SNR, coherent PSK is.3 dB better than DPSK on a 
Rayleigh fading channel. This difference also holds as L is increased. 

Bit error probabilities are depicted in Fig. 14-4-4 for two-phase, [our-phase, 
and eight-phase DPSK signaling with L = 1, Z, and 4. The expression for the 
bit error probability of eight-phase DPSK with Gray encoding is not given 
here, but it is available in the paper by Proakis (1968). In this case, we observe 
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that the performances for two- and four-phase DPSK are (approximately) the 
same, while that for eight-phase DPSK is about JdB poorer. Although we 
have not shown the bit error probability for coherent PSK, it can be 
demonstrated that two- and four-phase coherent PSK also yield approximately 
the same performance. 

14-4-3 M-ary Orthogonal Signals 

In this sub-section, we determine the performance of M -ary orthogonal signals 
transmitted over a Rayleigh fading channel and we assess the advantages of 
higber-order signal alphabets relative to a binary alphabet. The orthogonal 
signals may be viewed as M -ary FSK with a minimum frequency separation of 
an integer multiple of lIT, where T is the signaling interval. The same 
information-bearing signal is transmitted on L diversity channels. Each 
diversity channel is assumed to be frequency-nonselective and slowly fading, 
and the fading processes on the L channels are assumed to be mutually 
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statistically independent. An additive white gaussian noise process corrupts the 
signal on each diversity channel. We assume that the additive noise processes 
are mutually statistically independent. 

Although it is relatively easy to formulate the structure and analyze the 
performance of a maximal ratio combiner for the diversity channels in the 
M -ary communication system, it is more likely that a practical system would 
employ noncoherent detection. Consequently, we confine OUT attention to 
square-law combining of the diversity signalS. The output of the combiner 
containing the signal is 

L 

UI = L 12~a.e-j", + N.,jZ 
'-1 

while the outputs of the remaining M - 1 combiners are 
L 

Um==LINkmf. m=2,3,4, ... ,M 
'-1 

(l4-4-41) 

(14-4-42) 
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The probability of error is simply 1 minus the probability that VI > Vm for 
m = 2. 3 •...• M. Since the signals are orthogonal and the additive noise 
processes are mutually statistically independent, the random variables 
VI> V2 • ••• ,VM are also mutually statistically independent. The probability 
density function of V, was given in (144-31). On the other hand. V2, ••• , VN 

are identically distributed and described by the marginal probability density 
function in (14-4-32). With VI fixed, the joint probability P(V2< VI, V3 < 
VI>'" , Vm < VI) is equal to P(V2< V,) raised to the M - 1 power. Now, 

(
V, ) L-' 1 ( VI )k =1-exp -- 2: - -
2q~ .-0 k! 2~ 

(14-4-43) 

where q~ = 2'1No. The M - 1 power of this probability is then averaged over 
the probability density function of V, to yield the probability of a correct 
decision. If we subtract this result from unity, we obtain the probability of 
error in the form given by Hahn (1962) 

P _ 1 [ 1 VL-' ( VI) 
M - - 0 (2uf)L(L -I)! I exp - 2~ 

[ ( V)L-Il(V)k]M-' X 1 - exp - _I L - -' dV, 
2~ k-ok! 201 

_ 1 [ 1 V L - I ( VI) 
- - 0 (1 + y<)L(L -I)! • exp - 1 + y< 

( L-' Vk)M-' 
X l-e-u, L -+ dV, 

>-0 k. 
(14-4-44) 

where 1< is the average SNR per diversity channel. The average SNR per bit is 
Yb = Lycflog:; M = LyJk. 

The integral in (14-4-44) can be expressed in closed form as a double 
summation. This can be seen if we write 

(

L-' V~).. mIL-I) 

2: -k' = 2: Pkm V1 
1::=0· k={} 

(14-4-45) 

where (lkm is the set of coefficients in the above expansion. Then it follows that 
(14-4-44) reduces to 

(14-4-46) 
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When there is no diversity (L = I), the error probability in (14-4-46) reduces to 
the simple form 

( 14-4-47) 

The symbol error rate PM may be converted to an equivalent bit error rale by 
multiplying PM with 2' -1/(2' - 1). 

Although the expression (or PM given in (14-4-46) is in closed form, it is 
cornputalionally cumbersome to evaluate for large values of M and L. An 
alternative is to evaluate PM by numerical integration. using the expression in 
(14-4-44). The results illustrated in the following graphs were generated from 
( 14·4-44). 

First of aI!, let us observe the error rate performance of M-ary orthogonal 
signaling with square-law combining as a function of the order of diversity. 
Figures 14-4-5 and 14-4-6 illustl;ilte the characteristics of PM for M = 2 and 4 as 
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M = 4 orthogonal signals as a function 
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a function of L when the total SNR, defined as y, = L Yn remains fixed. These 
results indicate that there is an optimum order of diversity for each Y/' That is. 
for any rr, there is a value of L for which PM is a minimum. A careful 
observation of these graphs reveals that the minimum in PM is obtained when 
Yc = yJ L "= 3. This result appears to be independent of the alphabet size M. 

Second, let us observe the error rate PM as a function of the average SNR 
per bit, defined as Yb = LyJk. (If we interpret M-ary orthogonal FSK as a 
form of codingt and the order of diversity as the number of times a symbol is 
repeated in a repetition code then Yb = yJ Rp where Rc = k I L is the code 
rate.) The graphs of PM versus Yb for M = 2, 4, S, 16, 32 and L = 1, 2, 4 are 
shown in Fig. 14-4-7. These results illustrate the gain in performance as M 
increases and L increases. First, we note that a significant gain in performance 
is obtained by increasing L. Second, we note that the gain in performance 
obtained with an increase in M is relatively small when L is small. However, 

t In Section 14-6. we show that M-ary orthogonal FSK with diversity may be viewed as 0 block 
orthogonal code. 
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FIGURE 14-4-7 Performance of orthogonal signaling with M and L as parameters. 

as L increases, the gain achieved by increasing M also increases. Since an 
increase in either parameter results in an expansion of bandwidth. i.e., 

LM 
B. 

log, M 

the results illustrated in Fig. 14-4-7 indicate that an increase in L is more 
efficient than a corresponding increase in M. As we shall see in Section 14-6. 
coding is a bandwidth-effective means for obtaining diversity in the signal 
transmitted over the fading channel. 

CIleraoIr IlouaIl Before concluding this section, we develop a Chernoff 
upper bound on the error probability of binary orthogonal signaling with 
Llh-order diversity, which will be useful in our discussion of coding for fading 
channels, the topic of Section 14-6. Our starting point is the eKpression for the 
two decision variables VI and U2 given by (14-4-29), where V, consists of the 
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square-law-combined signal-plus-noise terms and U2 consists of square-Iaw
combined noise terms. The binary probability of error, denoted here by P2(L). 
as 

geL) = P(U, - UI >0) 

=P(X>O)= fp(X)dX 

where the random variable X is defined as 

L 

X = U2 - UI = 2: (lNd2 
- j2%'ak + Nu 12) 

k=l 

(14-4-48) 

(14-4-49) 

The phase terms {<p.} in U, have been dropped since they do not affect the 
performance of the square-law detector. 

Let SeX) denote the unit step function. Then the error probability in 
(14-4-48) can be expressed in the form 

(14-4-50) 

Following the development in Section 2-1-5, the Chernoff bound is obtained by 
over bounding the unit step function by an exponential function. That is. 

(14-4-51) 

where the parameter l is optimized to yield a tight bound. Thus, we have 

(14-4-52) 
-

Upon substituting for the random variable X from (14-4-49) and noting that 
the random variables in the summation are mutually statistically independent. 
we obtain the result 

But 

and 

L 

P2(L).;; n E(e"N";')E{e-'12~Q,+N..l') 
.=1 

n., 2 1 
E(e'··'" ) = --""7 

1-2'~' 

1 
(<-

2~ 

-1 ,>-
2uI 

(14-4-53) 

(14-4-54) 

(14-4-55) 

where u~ =2%'No, uT = 2%'N.,(1 + i'c), and lc is the average SNR per diversity 
channel. Note that u; and u~ are independent of k, i.e., the additive noise 
terms on the L diversity channels as well as the fading statiStics are identically 
distributed. Consequently, (14-4-53) reduces to 

(14-4-56) 
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By differentiating the right-hand side of (14-4-56) with respect to (. we find 
t hat the upper bound is minimized when 

u 2 - (Jl 
? = 1 2 (14-4-57) 

4<ri(T~ 

Substitution of (14-4-57) for? into (14-4-56) yields the Chernoff upper bound 
in the form 

P
2
(L) "" [4(1 + Yc;]L 

(2+y,) 

It is interesting to note that (14-4-58) may also be expressed as 

P,(L) "" [4p(1 _ p)]L 

(14-4-58) 

(14-4-59) 

where p = 1/(2 + y,) is the probability of error for binary orthogonal signaling 
on a fading channel without diversity. 

A comparison of the Chernoff bound in (14-4-58) with the exact error 
probability for binary orthogonal signaling and square-law combining of the L 
diversity signals. which is given by the expression 

( 
I )LL-l(L-I+k)(I+Yc)k 

P(L)= - L -
2 1 + y, • _() k 2 + y,-> 

L-I (L-I +k) 
=pLt-O k (I-p)k (14-4-60) 

reveals the tightness of the bound. Figure (14-4-8) illustrates this comparison. 

FlGURE 14-4-3 Comparison of Chernoff boulld with exact 
error probability. 
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We observe that the Chernoff upper bound is approximately 6dB from the 
e){act error probability for L = 1, but, as L increases, it becomes tighter. For 
example, the difference between the bound and the exact error probability is 
about 2.5 dB when L = 4. 

Finally we mention that the error probability for M -ary orthogonal signaling 
with diversity can be upper-bounded by means of the union bound 

PM";;; (M - 1)P2(L) (14-4-61) 

where we may use either the exact expression given in (14-4-60) or the 
Chernoff bound in (14-4-58) for P2(L). 

14-5 DIGITAL SIGNALING OVER A FREQUENCY
SELECTIVE, SLOWLY FADING CHANNEL 

When the spread faclor of the channel satisfies the condition T",Bd « 1, it is 
possible to select signals having a bandwidth W« (Af), and a signal duration 
T « (Ilt )c' Thus, the channel is frequency-nonselective and slowly fading. In 
such a channel, diversity techniques can be employed to overcome the severe 
consequences of fading. 

When a bandwidth W» (Af), is available to the user, the channel can be 
subdivided into a number of frequency-division multiplexed (FDM) subchan
nels having a mutual separation in center frequencies of at least (Atk. Then 
the same signal can be transmitted on the FDM subchannels, and, thus, 
frequency diversity is obtained. In this section, we describe an alternative 
method. 

14-5-1 A Tapped-Delay-Line Channel Model 

As we shall now demonstrate, a more direct method for achieving basically the 
same: result is to employ a wideband signal covering the bandwidth W. The 
channel is still assumed to be slowly fading by virtue of the assumption that 
T« (At),. Now suppose that W is the bandwidth occupied by the real 
bandpass signal. Then the band occupancy of the equivalent lowpass signal 
S/(t) is III,,;;;! W. Since S/(t) is band-limited to If I ,.;! W, application of the 
sampling theorem results in the signal representation 

( ) _ ~ (!:) sin [JrW(t - n/W)] 
SI t - "-' S, 

R~-= W 1rW(t - n/W) 

The Fourier transform of S,(I) is 

_ {.! i: sl(n/W)e-;2>ifn1w (It,,;;; !W) 
SM)- W n~~ 

o (If>~W) 

(14-5-1) 

(14-5-2) 
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The noiseless received signal from a frequency-selective channel was 
previol,lSly expressed in the form 

(14-5-3) 

where C(f; t) is the time·variant transfer function. Substitution for St(t) from 
(14-5-2) into (14-5-3) yields 

r,(t) = ~ "~~ s/(n/W) [~ C(f; t)ei21rfel.nIW) df 

1 x 

= - L sl(n/W)c(t - n/W; t) 
WPl'~-~ 

(14-5-4) 

where c(r; t) is the time·variant impulse response. We observe that (14-5-4) 
has the form of a convolution sum. Hence, it can also be expressed in the 
alternative form 

I ~ 

ret) = - L SI(t - n/W)c(n/W; t) 
W n=-x 

(14-5-5) 

It is convenient to define a set of time-variable channel coefficients as 

(14-5-6) 

Then (14-5-5) expressed in terms of these channel coefficients becomes 

~ 

ret) = L C~(t)sl(t - n/W) (14-5-7) 
n=-QII 

The form for the received signal in (14-5-7) implies that the time-variant 
frequency-selective channel can be modeled or represented as a tapped delay 
line with tap spacing l/Wand tap weight coefficients {cn(tH. In fact, we deduce 
from (14-5-7) tha t the lowpass impulse response for the channel is 

« 

C(T;t)= L cn(t)S(r-n/W) (14-5-8) 
n=-:IO 

and the corresponding time-variant transfer function is 

~ 

C(f;t) = L c.(t)e-i2>rfn
IW (14-5-9) 

n=-:X: 
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1ft) 

Thus, with an equivalent lowpass signal baving a bandwidth iw, where 
W »(A/)" we achieve a resolution of l/W in the multipath delay profile_ 
Since the total multipath spread is Tm , for all practical purposes tbe tapped 
delay line model for the cbannel can be truncated at L = [T", W] + 1 taps. Then 
the noiseless received signal can be expressed in the form 

r,{t) = ~l c,,(t)s,(, - ;) (14-5-10) 

The truncated tapped delay line model is shown in Fig. 14-5-1. In 
accordance with the statistical characterization of the channel presented in 
Section 14-1, tbe time-variant tap weights {c.(ln are complex-valued stationary 
random processes. In the special case of Rayleigh fading, tbe magnitudes 
)c,,(t)l- an(l) are Rayleigh-distributed and the phases </1,,(t) are uniformly 
distributed. Since the {C,,(I}} represent the tap weights corresponding to the L 
different delays ~ = n/W, n = 1. 2, ... , L. the uncorrelated scattering 
assumption made in Section 7-1 implies that the (c,,(r)} are mutually 
uncorrelated. When the {c,,(t)} are gaussian random processes, they are 
statistically independent. 

14-5-2 The RAKE Demodulator 
We now consider the problem of digital signaling over a frequency-selective 
channel that is modeled by a tapped delay line with statistically independent 
time-variant tap weights tenet)}. It is apparent at the outset, however, that the 
tapped delaY line model with statistically independent tap weights provides us 
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with 1. replicas of the same transmitted signal at the receiver. Hence. a receiver 
that processes the received signal in an optimum manner will achieve the 
performPnce of an equivalent Lth-order diversity communications system. 

Let us consider binary signaling over the channel. We have two equal
energy signals .I"/I(r) and sI2(r), which are either antipodal or orthogonal. Their 
time duration T is selected to satisfy the condition T» Tm. Thus, we may 
neglect any intersymbol interference due to multipath. Since the bandwidth of 
the signal exceeds the coherent bandwidth of the channel, the received signal is 
expressed as 

L 

rl(l) = I C.(t)sli(t - k/W) + z(t) 
k-=:l 

= Vi(t) + z(r), O";t,.;T. i=1,2 (14-5-11) 

where z(t) is a complex-valued zero-mean white gaussian noise process. 
Assume for the moment that the channel tap weights are known. Then the 
optimum receiver consists of two filters matched to VI(t) and v,(t), followed by 
samplers and a decision circuit that selects the signal corresponding to the 
largest output. An equivalent optimum receiver employs cross correlation 
instead of matched filtering. In either case, the decision variables for coherent 
detection of the binary signals can be expressed as 

Urn = Re [f rl(e)v!.(t) de] 

= Re [± iT rl(t)c:(t)st.,(t - k/W) dt], m = 1,2 (14-5-12) 
k-l 0 

Figure 14-5-2 illustrates the operations involved in the computation of the 
decision variables. In this realization of the optimum receiver, the two 
reference signals are delayed and correlated with the received signal rl(I). 

An alternative realization of the optimum receiver employs a single delay 
line through which is passed the received signal r~t). The signal at each tap is 
correlated with Ct(t)st.,(t), where k = I, 2, ... , Land m = 1, 2. This receiver 
structure is shown in Fig. 14-5-3. In effect, the tapped delay line receiver 
attempts to collect the signal energy from all the received signal paths that fall 
within the span of the delay line and carry the same information. Its action is 
somewhat analogous to an ordinary garden rake and, consequently, the name 
"RAKE receiver" has been coined for this receiver structure by Price and 
Green (1958). 

14-5-3 Performance of RAKE Receiver 
We shall now evaluate the performance of the RAKE receiver under the 
condition that the fading is sufficiently slow to allow us to estimate Ck(t) 
perfectly (without noise). Furthermore, within anyone signaling interval, ek(t) 
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Uj=le{) 

FIGURE 14-5-2 Optimum demodulator for wideband binary signals (delayed reference configuration). 

is treated as a constant and denoted as c.. Thus the decision variables In 

(14-5-12) may be expressed in the form 

Urn = Re [± c: (T r(t)s:;"(t - k/W) dt]. m = 1, 2 
k.~l Jo 

(14-5-13) 

Suppose the transmitted signal is SIl(t); then the received signal is 
L 

T/(t) = 2: CnS/I(1 - n/W) + z(t). 0,,;: t ~ T (14-5-14) 
'1=1 

Substitution of (14-5-14) into (14-5-13) yields 
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FIGURE 14-5-2 Optimum demodulator for wideband binary signals (delayed reference configuration). 
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FIGURE 14-5-3 Optimum demodulator for wideband binary signals (delayed received signal configuration). 

Usually the wideband signals s,,(t) and sn(t) are generated from pseudo
random sequences, which result in signals that have the property 

fs/;(t-nIW>S:(t-kIW)dt=O, k~n, ;=1,2 (14-5-16) 

If we assume that our binary signals are designed to satisfy this property then 
(14-5-15) simplifies tot 

Um = Re [± ICkl2iT s,,(t - k/W>st.,(t - kIW)dt] 
*-1 (} 

+ Re [~I c: f z(t)st.,(t - k/W) dt]' m = 1,2 (14-5-17) 

t Although the orthognnality property specitied by (14-5-16) can be salisfied by proper 
selection of the pseudo-random sequences, the CI'05S-COrrelalion of s,,(t - n/W) with -,%(1 - k/W) 
Sives rise to a signa/-dependent sell·noise, ..... ich ullimalely limit! lhe pcrlorma,.,.. For simplicity, 
we do not consider the self-noise term in the folk>wins calculations. Consequently, the 
performance results presented below sItouId be considered as lower hounds (ideal RAKE). A.n 
approQnatlon to the petforman<e of the RAKE can be obtained by treatin, tbe self·noise u an 
additional gaussian noise compo..,nt with noise power equal to its variance. 
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When the binary signals are antipodal, a single decision variable suffices. In 
this case, (14-5-17) reduces to 

V, = Re (2~ .~, a~ + ,~, a.N.) (14-5-18) 

N. =e1··f z(t)sr(t-k/W)dt (14-5-19) 

But (14-5-18) is identical to the decision variable given in (14-4-4), which 
corresponds to the output of a maximal ratio combiner in a system with 
Llh -order diversity. Consequently, the RAKE receiver with perfect (noiseless) 
estimates of the channel tap weights is equivalent to a maximal ratio combiner 
in a system with Lth-order diversity. Thus, when all the tap weights have the 
same mean-square value, i.e., E(ai) is the same for all k, the error rate 
performance of the RAKE receiver is given by (14-4-15) and (14-4-16). On the 
other hand, when the mean square values E( ail are not identical for all k, tbe 
derivation of the error rate performance must be repeated since (14-4-15) no 
longer applies. 

We shall derive the probability of error for binary antipodal and orthogonal 
signals under the condition that the mean-square values of {a.} are distinct. 
We begin with the conditional error probability 

(14-5-20) 

where p, = -} for antipodal signals, p, = 0 for orthogonal signals, and 

'i L 

"Yb = N. 2: a~ 
Ok=-I 

L 

= 2: "Yk (14-5-21') 

Each of the b.} is distributed according to a chi-squared distribution with 
two degrees of freedom. That is, 

1 ,_ 
ph.) = ~e-"'~' 

"'fk 

where i'. is the average SNR for the kth path, defined as 

- ~ 
y.=-E(an 

No 

tJ.4-5-22) 

(14-5-23) 

Furthermore, from (14-4-10) we know that the characteristic function of Yk is 

1 

1-ivY. (14-5-24) 
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Since "!. is the sum of L statistically independent components {yd, the 
characteristic function of 'Yb is 

L 1 
"'>t(jv) = n 1 . _ (14-5-25) 

k~l -]v,,!. 

The inverse Fourier transform of the characteristic function in (14-5-25) yields 
the probability density function of Yb in the form 

(14-5-26) 

where 1f. is defined as 

(14-5-27) 

When the conditional error probability in (14-5-20) is averaged over the 
probability density function given in (14-5-26), the result is 

'Y.(1- p,) ] 
2 + 'Yk(l - Prj 

This error probability can be approximated as ('Y. » 1) 

P2 = (2L -1) n __ 1 __ 
L '~I2-y.(1 - p,) 

(14-5-28) 

(14-5-29) 

By comparing (14-5-29) for p,= -1 with (14-4-18), we observe that the same 
type of asymptotic behavior is obtained for the case of unequal SNR per patli 
and the case of equal SNR per path. 

In the derivation of the error rate performance of the RAKE receiver, we 
assumed that the estimates of the channel tap weights are perfect. In practice, 
relatively good estimates can be obtained if the channel fading is sufficiently 
slow, e.g., (l!.I)c/T~ 100, where T is the signaling interval. Figure 14-5-4 
illustrates a method for estimating the tap weights when the binary signaling 
waveforms are orthogonal. The estimate is the output of the lowpass filter at 
each tap. At anyone instant in time, the incoming signal is either SIl(t) or S/2(1). 
Hence, the input to the lowpass filter used to estimate e.(t) contains signal phis 
noise from one of the correlaloes and noise only from the other correlator. 
This method for channel estimation is not appropriate fOT antipodal signals, 
because the addition of the two correlator outputs results in signal cancellation. 
Instead, a single correlator can be employed for antipodal signals. Its output is 
fed to the input of the lowpass filter after the information-bearing signal is 
removed. To accomplish this, we must introduce a delay of one signaling 
interval into the channel estimation procedure, as illustrated in Fig. 14-5-5. 
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Deeiskxf, variable 

nGURE 14-5-6 RAKE demodulator for DPSK signals. 

That is, first tbe receiver must decide whether the information in the received 
signal is + 1 or -1 and, then, it uses the decision to remove the information 
from the correlator output prior to feeding it to the lowpass fiter. 

If we choose not to estimate tbe tap weights of the frequency-selective 
channel, we may use either DPSK signaling or noncoherently detected 
orthogonal signaling. The RAKE receiver structure for DPSK is illustrated in 
Fig 14-5-6. It is apparent that when the transmitted signal waveform SAl) 
satisfies the orthogonality property given in (14-5-16), the decision variable is 
identical that given in (14-4-23) for an Lth-order diversity system. Conse
quently, the error rate performance of the RAKE receiver for a binary DPSK 
is identical to that given in (14-4-15) with J.t = 'Ye/(1 + Ye), when all the signal 
paths have the same SNR 'Ye. On the other hand, when the SNRs {Yk} are 
distinct, the error probability can be obtained by averaging (14-4-24), which is 
the probability of error conditioned on a time-invariant channel, over the 
probability density function of 'Yb given by (14-5-26). The result of this 
integration is 

p,. = (!)2L-1 'fl m!h .. ± ~k( 'Yk_ r+1 
(14-5-30) 

",-0 k-t"Yk 1 + 'Yk 

where Jr, is defined in (14-5-27) and b", in (14-4-25). 
Finally, we consider binary orthogonal signaling over the frequency

selective channel with square-law detection at the receiver. This type of signal 
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FIGURE 14-5-7 RAKE demodulator for square-la .. combination of orthogonal signals. 

is appropriate when either the fading is rapid enough to preclude a good 
estimate of the channel tap weights or the cost of implementing the channel 
estimators is high. The RAKE receiver with square-law combining of the signal 
from each tap is illustrated in Fig. 14·5-7. In computing its performance. we 
again assume that the orthogonality property given in (14-5-16) holds. Then 
the decision variables at the output of the RAKE are 

L 

VJ = 2: 12~. + Nu l2 

(14-5-31 ) 

where we have assumed that $,,(/) was the transmitted signal. Again we 
observe that the decision variables are identical to the ones given in (14-4-29), 
which apply to orthogonal signals with Lth-order diversity. Therefore. the 
performance of the RAKE receiver for square-law-detected orthogonal signals 
is given by (14-4-15) with p. = -ic/(2 + "Yc) when all the signal paths have the 
same SNR. If the SNRs are distinct, we ean average the conditional error 
probability given by (14-4-24), with "Yb replaced by hho over the probability 
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density function P(Yh) given in (14-5-26). The result of this averaging is given 
by (14-5-30). with 'Yk replaced by ~'Y" 

In the above analysis. the RAKE demodulator shown in Fig. 14-5-7 for 
square-law combination of orthogonal signals is assumed to contain a signal 
component at each delay. If that is not the case. its performance will be 
degraded. since some of the tap correia tors will contribute only noise. Under 
such conditions. the low-level. noise-only contributions from the tap CO(

relators should be excluded fram the combiner. as shown by Chyi et 01. (1988). 
This concludes OUf discussion of signaling over a frequency-selective 

channel. The configurations of the RAKE receiver presented in this section 
can be easily generalized to multilevel signaling. In fact. if M-ary PSK or 
DPSK is chosen. the RAKE structures presented in this section remain 
unchanged. Only the PSK and DPSK detectors that follow the RAKE 
correIa tor are different. 

14·6 CODED WAVEFORMS FOR FADING CHANNELS 
Up to this point. we have demonstrated that diversity techniques are very 
effective in overcoming the detrimental effects of fading caused by the 
time-variant dispersive characteristics of the channel. Time- and/or frequency
diversity techniques may be viewed as a form of repetition (block) coding of 
the information sequence. From this point of view. the combining techniques 
described previously represent soft·decision decoding of the repetition code. 
Since a repefition code is a trivial form of coding. we shalf now consider the 
additional benefits derived from more efficient types of codes. In particular. we 
demonstrate that coding pro.ides an efficient means for obtaining diversity 011 

a fading channel. The amount of diversity provided by a code is directly related 
to its minimum distance. 

As explained in Section 14-4. time diversity is obtained by transmitting the 
signal components carrying the same information in multiple time intervals 
mutually separated by an amount equal to or exceeding the coherence time 
(AI),. of the channel. Similarly. frequency diversity is obtained by transmitting 
the signal components carrying the same information in multiple frequency 
slots mutually separated by an amount of at least equal to the coherence 
bandwidth (.11>.. of the channel. Thus. the signal components carrying the same 
information undergo statistically independent fading. 

To extend these notions to a coded information sequence, we simply require 
that the signal waveform corresponding to a particular code or code symbol 
fade independently of the signal waveform corresponding to any other code bit 
or code symbol. This requirement may result in inefficient utilization of the 
available time·frequency space. with the existence of large unused portions in 
tnis two-dimensional signaling space. To reduce the inefficiency. a number of 
code words may be interleaved in time or in frequency or /loth. in such a 
manner that the waveform corresponding 10 the bits or sym/lols of a given c(ld~ 
word fade independently. Thus. we assume that Ihe time-frequency signaling 
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space is partitioned inlo nonoverlapping lime-frequency cells. A signal 
waveform corresponding 10 a code bit or code symbol is Iransmilled within 
such a cell. 

In addition 10 the assumption of statistically independent fading of the 
signal components of a given code word. we also assume that the additive noise 
components corrupting the received signals are white gaussian processes Ihat 
are statistically independent and identically distributed among the cells in Ihe 
time-frequency space. Also. we assume that there is sufficient separation 
between adjacent cells so that intercell interference is negligible. 

An import anI issue is the modulation technique that is used to transmit the 
coded information sequence. If the channel fades slowly enough to allow the 
establishment of a phase reference then PSK or DPSK may be employed. If 
this is not possible then FSK modulation with noncoherent detection at the 
receiver is appropriate. In our treatment. we assume that it is not possible to 
establish a phase reference or phase references for the signals in the different 
cells occupied by the transmitted signal. Consequently, we choose FSK 
modulation with noncoherent detection. 

A model of the digital communications system for which the error rate 
performance will be evaluated is shown in Fig. 14-6-1. The encoder may be 
binary, nonbinary. or a concatenation of a nonbinary encoder with a binary 
encoder. Furthermore. the code generated by the encoder may be a block 
code, a convolutional code, or. in the case of concatenation, a mixture of a 
block code and a convolutional code. 

In order to explain the modulation, demodulation. and decoding for 
FSK-type (orthogonal) signals, consider a linear binary block code in which k 
information bits are encoded into a block of n bits. For simplicity and without 
loss of generality, let U~ assume that all n bits of a code word are transmitted 
simultaneously over the channel on multiple frequency cells. A code word C, 
having bits {eli} is mapped into FSK signal waveforms in the following way. If 
cij = 0, the tone !oj is transmitted, and if c') = 1. the tone IIi is transmitted. This 
means that 2n tones or cells are available to transmit the n bits of the code 
word, but only n tones are transmitted in any signaling interval. Since each 
code word conveys k bits of information, the bandwidth expansion factor for 
FSK is Be = 2n/k. 

The demodulator for the received signal separates the signal into 211 
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spectral components corresponding to the available tone frequencies at the 
transmitter. Thus, the demodulator can be realized as a bank of 2n fillers, 
where each filter is matched to one of the possible transmitted lones. The 
outputs of the 2n filters are detected noncoherently. Since the Rayleigh fading 
and the additive white gaussian noises in t,he 2n frequency cells are mutually 
stalistkally independent and identically distributed random processes, the 
optimum maximum-likelihood soft-decision decoding criterion requires that 
these filter responses be square-law-detected and appropriately combined for 
each code word to form the M = 2' decision variables. The code word 
corresponding to the maximum of the decision variables is seJected. If 
hard-decision decoding is employed, the optimum maximum-likelihood de· 
coder selects the code word having the smallest Hamming distance relative to 
the received code word. 

Although the discussion above assumed the use of a block code, a 
convolutional encoder can be easily accommodated in the block diagram 
shown in Fig. 14-6-1. For example, if a binary convolutional code is employed, 
each hit in the output sequence may be transmitted by binary FSK. The 
maximum-likelihood soft-decision decoding criterion for the convolutional 
code can be efficiently implemented by means of the Viterbi algorithm. ill 
which the metries for tlte surviving sequences at any point in the trellis consist 
of the square-Iaw-combined outputs for the corresponding paths through the 
trellis. On the other hand, if hard-decision decoding is employed, the Viterbi 
algorithm is implemented with Hamming distance as the metric. 

14+1 ProbabiliCy of Error for Soft-Decision Decoding of 
Linear Binary Block Codes 

Consider tbe decoding of a linear binary (n, k) code transmitted over a 
Rayleigh fading channel, as described above. The optimum soft-decision 
decoder, based on the maximum-likelihood criterion, forms the M = 2' 
decision variables 

n 

Vi = L ((1 - c,) IYQ/ + Cij Iy,ll 
j=l 

n 

= L [Jy"i + cii{ly,/ -Iy,,/»). i = 1. 2 •...• 2' P4-6-1) 
j= I 

where iy,i, j = 1, 2 •.... n, and r = 0, I represent the squared envelopes at the 
outputs of the 2n filters that are tuned to the 2n possible transmitted tones. A 
decision is made in favor of the code word corresponding to the largest 
decision variable of the set {VJ. 

Our objective in Ihis section is the determination of the error rate 
perfonnance of the soft-decision decoder. Toward this end, leI us assume tbal 
the all-zero code word C, is transmitted. The average received signal-to-noise 
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ratio per tone (cell) is denoted by ii,. The total received SNR for the n tones in 
nii, and. hence. the average SNR per bit is 

where R,. is the code rate. 

= lc 
R,. 

(14-6-2) 

The decision variable V, corresponding to the code word C , is given by 
(14-6-1) with eij = 0 for all j. The probability that a decision is made in favor of 
the mth code word is just 

P2(m) = P(Vm > U,)= P(V, - u,;, <0) 

= p[± (C'j - Cmj)(IYll-IYc;f) <0] 
,~I 

= p[~ (IYuiI2 -/YI/) < 0] 
,01 

(14-6-3) 

where W", is the weight ofthe mth code word. But the probability in (14-6-3) is 
just the probability of error for square-law combining of binary orthogonal 
FSK with wmth-order diversity. That is. 

"',.,-1 1 k 
~ (Wo , - +) • P2(m)=pk·m .:.. (l-p) 
'.0 k 

(14-6-4) 

"~I(·Wo.-I+k) (2Wm-l) ~pW", .c. = pW", 
•• 0 k w'" 

(14-6-5) 

where 
1 1 

p=--= 
2 + ii, 2 + R, iib 

(14-6-6) 

As an alternative. we may use the Chernoff upper bound derived in Section 
14-4, which in the present notation is 

(14-6-7) 

The sum of the binary error events over the M - 1 nonzero-weight code 
words gives an upper bound on the probability of error. Thus, 

(14-6-8) 

Since the minimum distance of the linear code is equal to the minimum 
weight. it follows that 
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Since the minimum distance of the linear code is equal to the minimum 
weight. it follows that 
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The use of this relation in conjunction with (14-6-5) and (14-6-8) yields a 
simple, albeit looser, upper bound that may be expressed in the form 

"~2 CW

:
m
-

1
) 

PM < (2+ R,.y.)dmm (14-6-9) 

This simple bound indicates that the code provides an effective order of 
diversity equal to dmin• An even simpler bound is the union bound 

PM < (M - 1)[4p(1 - pWmm (14-6-10) 

which is obtained from the Chernoff bound given in (14-6-7). 
As an example serving to illustrate the benefits of coding for a Rayleigh 

fading channel, we have plotted in Fig. 14-6-2 the performance obtained with 
the extended Golay (24, 12) code and the performance of binary FSK and 
quarternay FSK each with dual diversity. Since the extended Golay code 
requires a total of 48 cells and k = 12, the bandwidth expansion factor B, = 4. 
This is also the bandwidth expansion factor for binary and quaternary FSK 
with L = 2. Thus, the three types of waveforms are compared on the basis of 
the same. bandwidth expansion factor. Note that at p. = 10-4

, the Golay code 
outperforms quaternary FSK by more than 6dB, and at Ph = 10- 5 , the 
difference is approximately lOdB. 

FIGURE 14-0-2 Example of performance obtained 
with conventional diversity versus coding 
for B. = 4. 
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The reason for the superior performance of the Golay code is its large 
minimum distance (dmin = 8), which translates into an equivalent eighth-order 
(L = 8) diversity. In contrast, the binary and quaternary FSK signals have only 
second-order diversity. Hence, the code makes more efficient use of the 
available channel bandwidth. The price that we must pay for the superior 
performance of the code is tbe increase in decoding complexity. 

14-6-2 Probability of Error for Hard-Decision Decoding of 
Linear Binary Block Codes 

Bounds on the performance obtained with hard-decision decoding Qf a linear 
binary (n, k) code have already been given in Section 8-1-5. These bounds are 
applicable to a general binary-input binary-output memoryless (binary sym
metric) channel and, hence, they apply without modification to a Rayleigh 
fading A WGN channel with statistically independent fading of the symbols in 
the code word. The probability of a bit error needed to evaluate these bounds 
when binary FSK with noncoherent detection is used a~ the modulation and 
demodulation technique is given by (14-6-6). 

A particularly interesting result is obtained when we use the Chernoff upper 
bound on the error probability for hard-decision decoding given by (8-1-89). 
Tbat is, 

(14-6-11) 

and P,.., is upper-bounded by (14-6-8). In comparison, the Chernoff upper 
bound for p,(m) when soft-decision decoding is employed is given by (14-6-7). 
We observe that the effect of hard-decision decoding is a reduction in the 
distance between any two code words by a factor of 2. Wben the minimum 
distance of a code is relatively small, the reduction of tbe distances by a factor 
of 2 is much more noticeable in a fading channel than in a nonfading channel. 

For illustrative pruposes we have plotted in Fig. 14-6-3 the performance of 
the Golay (23, 12) code when hard-decision and soft-decision decoding are 
used. The difference in performance at Pb = 10 -5 is approximately 6 dB. This is 
a significant difference in performance compared with the 2 dB difference 
between soft- and hard-decision decoding in a nonfading A WGN channel. We 
also note that the difference in performance increases as Pb decreases. In short, 
these results indicate the benefits of a soft-decision decoding over hard
decision decoding on a Rayleigh fading channel. 

14-6-3 Upper Bounds on the Perfonnance of Convolutional 
Codes for a Rayleigh Fading Channel 

In this Subseclion, we derive the performance of binary convolutional codes 
when used on a Rayleigh fading A WGN channel. The encoder accepts k 
binary digits at a time and puts out n binary digits at a time. Thus, the code 
rate is Rc = kin. The binary digits at the output of the encooer are transmitted 
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fiGURE 14+3 Comparison of performance between hard
and soft-decision decoding. 
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over the Rayleigh fading channel by means of binary FSK, which is 
square-Iaw-detected at the receiver. The decoder for either soft- or hard
decision decoding performs maximum-likelihood sequence estimation, which is 
efficiently implemented by means of the Viterbi algorithm. 

First, we consider soft-decision decoding. In this case, the metrics computed 
in the Viterbi algorithm are simply sums of square-law-detected outputs from 
the demodulator. Suppose the all-zero sequence is transmitted. Following the 
procedure outlined in Section 8-2-3, it is easily shown that the probability of 
error in a pairwise comparison of the metric corresponding to the all-zero 
sequence with the metric corresponding to another sequence that merges for 
the first time at the all-zero state is 

PM) = pd~: (d -~ + k)(1_ p). (14-6-12) 

where d is the number of bit positions in which the two sequences diller and p 
is given by (14-6-6). That is, P2(d) is just the probability of error for binary 
FSK with square-law detection and dth-order diversity. Alternatively, we may 
use the Chernoff bound in (14-6·7) for P2(d). In any case, the bit error 
probability is upperbounded, as shown in Section 8-2-3 by the expression 

(14-6-13) 
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where the weighting coefficients {,Bd} in the summation are obtained from the 
expansion of the first derivative of the transfer function T(D, N), given by 
(8-2-25). 

When hard-decision decoding is performed at the receiver, the bounds on 
the error rate performance for binary convolutjonal codes derived in Section 
8-2-4 apply. That is, Pb is again upper-bounded by the expression in (14-6-13), 
where P2(d) is defined by (8-2-28) for odd d and by (8-2-29) for even d, or 
upper-bounded (Chernoff bound) by (8-2-31), and p is defined by (14-6-6). 

As in the case of block coding, when the respective Chernoff bounds are 
used for P2(d) with hard-decision and soft-decision decoding, it is interesting to 
note that the effect of hard-decision decoding is to reduce the distances 
(diversity) by a factor of 2 relative to soft-decision' decoding. 

The following numerical results illustrate the error rate performance of 
binary, rate 11 n, maximal free distance convolutional codes for n = 2, 3, and 4 
with soft -decision Vilerbi decoding. First of all, Fig. 14-6-4 shows the 
performance of the rate 1/2 convolutional codes for constraint lengths 3, 4, and 
5. The bandwidth expansion factor for binary FSK modulation is B. = 2n. 
Since an increase in the constraint length results in an increase in the 
complexity of the decoder to go along with the corresponding increase in the 
minimum free distance, the system designer can weigh these two factors in the 
selection of the code. 

Another way to increase the distance without increasing the constraint 
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length of the code is to repeat each output bil m times. This is equivalent to 
reducing the code rate by a factor of m or expanding the bandwidth by the 
same factor. The result is a convolutional code that has a minimum free 
distance of md',ec' where d'm is the minimum free distance of the original code 
without repetitions. Such a code is almost as good. from the viewpoint of 
minimum distance. as a maximum free distance. rate l/mn code. Tile error rate 
performance with repetitions is upper-bounded by 

(14-6-14) 

where P2(md) is given by (14-6-12). Figure (14-6-5) illustrates the performance 
of the rate 1/2 codes with repetitions (m = 1.2.3.4) for constraint length 5. 

14-6-4 Use of Constant-Weight Codes and Concatenated • 
Codes for a Fading Channef 

FIGURE 14-6-5 

Our treatment of coding for a Rayleigh fading channel to this 'point was based 
on the use of binary FSK as the modulation technique for transmitting each of 
the binary digits in a code word. For this modulation technique. all the 2" code 
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words in the (n, k) code have identical transmitted energy. Furthermore, under 
the condition that the fading on the n transmitted tones is mutually statistically 
independent and identically distributed, the average received signal energy for 
the M = 2k possible code words is also identical. Consequently, in a soft
decision decoder, the decision is made in favor of the code word having the 
largest decision variable. 

The condition that the received code words have identical average SNR has 
an important ramification in the implementation of the receiver. If the received 
code words do not have identical average SNR, the receiver must provide bias 
compensation for each received code word so as to render it equal energy. In 
general, the determination of the appropriate bias terms is difficult to 
implement because it requires the estimation of the average received signal 
power: hence, the equal-energy condition on the received code words 
considerably simplifies the receiver processing. 

There is an alternative modulation method for generating equal-energy 
waveforms from code words when the code is constant-weight, i.e., when every 
code word has the same number of Is. Note that such a code is nonlinear. 
Nevertheless, suppose we assign a single tone or cell to each bit position of the 
2k code words. Thus, an (n. k) binary block code has n tones assigned. 
Waveforms are constructed by transmitting the tone corresponding to a 
particular bit in a code word if that bit is a 1; otherwise, that tone is not 
transmitted for the duration of the interval. This modulation technique for 
transmitting the coded bits is called on-off keying (OOK). Since the code is 
constant-weight, say w, every coded waveform consists of w transmitted tones 
that dep~nd on the positions of the Is in each of the code words. 

As in FSK, all tones in the OOK signal that are transmitted over the 
channel are assumed to fade independently across the frequency band and in 
time from one code word to another. The received signal envelope for each 
tone is described statistically by tbe Rayleigh distribution. Statistically inde· 
pendent additive white gaussian noise is assumed to be present in each 
frequency cell. 

The receiver employs maximum·likelihood (soft·decision) decoding to map 
the received waveform into one of the M possible transmitted code words. For 
this purpose, n matched filters are employed, eacb matched to one of the 1J 
frequency tones. For the assumed statistical independence of the signal fading 
fOT the n frequency cells and additive white gaussian noise, the envelopes of 
the matched filter outputs are squared and combined to form the M decision 
variables 

" 
f./ = LC'lly)'. i = 1,2, .... 2' 

j= 1 
(14-6·15) 

where l.vi corresponds to the squared envelope of the filter corresponding to 
the jth frequency. where j = l. 2 .... , n. 

It may appear that the constant-weight condition severely restricts our 
choice of codes. This is not the case, however. To illustrate this point. we 
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brietly describe some methods for constructing constant-weight codes. This 
discussion is by no means exhaustive. 

Method 1: Nonlinear TranslonaatioD of a Linear Code In general, if in 
each word of an arbitrary binary code we substitute one binary sequence for 
every occurrence of a 0 and another sequence for each 1, a constant-weight 
binary block code will be obtained if the two substitution sequences are of 
equal weights and lengths. If the length of the sequence is v and the original 
code is an (n, k) code then the resulting constant-weight code will be an (vn, k) 
code. The weight will be n times the weight of the substitution sequence, and 
the minimum distance will be the minimum distances of the original code times 
the distances between the two substitution sequences. Thus, the use of 
cornplemenlllry sequences when v is even resulls in a code with minimum 
distance vdmin and weight !vn. 

The simplest form of this method is the case v = 2, in which every 0 IS 

replaced by the pair Ol and every 1 is replaced by the complementary sequence 
10 (or vice versa). As an example, we take as the initial code the (24.12) 
extended Golay code. The parameters of the original and the resultant 
constant-weight code are given in Table 14-6-1. 

Nole that this substitution process can be viewed as a separate encoding. 
This secondary encoding clearly does not alter the information content of a 
code word-it merely changes the form in which it is transmitted. Since the 
new code word is composed of pairs of bits--one "on" and Qne "off'-the use 
of OOK transmission of this code word produces a waveform that is identical 
10 that obtained by binary FSK modulation for the underlying linear code. 

Method 2: Expurgation In this method, we start with an arbitral) binary 
block code and select from it a subset consisting' of all words of a certain 
weight. Several different constant-weight codes can be obtained from one 
initial code by varying the choice of the weight w. Since the code words of Ihe 
resulting expurgated code can be viewed as a subset of all possible permuta
tions of anyone code word in the set, the term binary expurgated permutation 
modulation (BEXPERM) has been used by Gaarder (1971) to describe such a 
code. In fact, the constant-weight binary block codes constructed by the other 

TABLE 146-1 EXAMPLE OF CONSTANT-WEIGHT CODE FORMED BY 
METHOD I 

Code ......... eter> Original Golly co..-t-weitJ>t 

II 24 4~ 

k 12 12 
M 4W6 40% 

d mm 8 16 
w variahle 24 
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TABLE 14+1 EXAMPLES OF CONSTANT-WEIGHT CODES FORMED BY EXPURGATION 

P ..... eten 0rIPuI C_t weipt No. I Co_ ........ tNo_l 

n 24 24 24 
k 12 9 11 
M 4096 759 2576 

d,mn 8 ;.8 .. g 

w variable 8 12 

methods may also be viewed as BEXPERM codes. This method of generating 
constant-weight codes is in a sense opposite to the first method in that the 
word length n is held constant and the code size M is changed. The minimum 
distance for the constant-weight subset will clearly be no less than that of the 
original code. As an example, we consider the Golay (24,12) code and form 
the two different constant-weight codes shown in Table 14-6-2. 

Method 3: HIIdamard Matrkes This method might appear to form a 
constant-weight binary block code directly, but it actually is a special case of 
the method of expurgation. In this method, a Hadamard matrix is formed as 
described in Section 8-1-2, and a constant-weight code is created by selection 
of rows (code words) from tbis matrix. Recall that a Hadamard matrix is an 
n X n malri,,' (n even integer) of Is and Os with the property that any row 
differs from any other row in exactly ~n positions. One row of the matrix is 
normally chosen as being all Os. 

In each of the other rows, half of the elements are Os and:the other half Is. 
A Hadamard code of size 2(n -1) code words is obtained by selecting these 
n - 1 rows and their complements. By selecting M = 2* ~ 2(n - 1) of these 
code words, we obtain a Hadamard code, which we denote by H(n, k), where 
each code word conveys k information bits. The resulting code has constant 
weight !n and minimum distance dmln = !n. 

Since n frequency cells are used to transmit k information bits, the 
bandwidth expansion factor for the Hadamard H(n, k) code is defined as 

n 
B, = k cens peT information bit 

which is simply the reciprocal of the code rate. Also, the average signal-to
noise ratio (SNR) per bit, denoted by Yb, is related to the average SNR per 
cell, 'Yo by the expression 

k _ _ 2Yb 
= 2 - 'Yo = 2Rc 'Y. = -

n B. 
(14-6-16) 
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Let US compare the performance of the constant-weight Hadamard codes 
under a lilted bandwidth constraint with a conventional M -ary orthogonal set 
of waveforms where each waveform has diversity L. The M orthogonal 
waveforms with diversity are equivalent to :J block orthogonal code having a 
block length n = LA! and k = log2 M. For example, if M = 4 and L = 2, the 
code words of the block orthogonal code are 

C 1 = [1 0 0 0 0 0 OJ 

C2 = [0 0 1 0 0 0 OJ 
C)=[O 0 0 0 1 1 0 OJ 
c. = [0 0 0 0 0 0 1 I} 

To transmit these code words using OOK modulation requires n = 8 cells, and 
since each code word conveys k = 2 bits of information, the bandwidth 
expansion factor Be = 4. In general, we denote the block orthogonal code as 
O(n, k). The bandwidth expansion factor is 

n LM 
B =-=-

, k k (14-6-17) 

Also, the SNR per bit is related to the SNR per cell by the expression 

(14-6-18) 

Now we turn our attention to the performance characteristics of these 
codes. First, the exact probability of a code word (symbol) error for M-ary 
orthogonal signaling over a Rayleigh fading channel with diversity was given if! 
closed form in Section 14-4. As previously indicated, this expression is rather 
cumbersome to evaluate, especially if either L or M or both are large. Instead, 
we shall use a union bound that is very convenient. That is, for a set of A! 
orthogonal waveforms, the probability of a symbol error can be upper
bounded as 

PM'" (M - I)P2(L) 

= (2' -1)P2(L) <2"P2(L) (14-6-19) 

where P,(L), the probability of error for two orthogonal waveforms, each with 
diversity L, is given by (14-6-12) with P = 1!{2 + Yc)· The probability of bit 
error is obtained by multiplying PM by 2' -I / (2" - 1), as explained previously. 
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A simple upper (union) bound on the probability of a code word error for 
the Hadamard H(n, k) code is obtained by noting the probability of error in 
deciding between the transmitted code word and any other code word is 
bounded from above by P,(~dmin)' where d min is the minimum distance of the 
code. Therefore, an upper bound on PM is 

PM";; (M - I )Pi~dm;n) < 2' P,(!dmin ) (14-6-20) 

Thus the "effective order of diversity" of the code for OOK modulation is 
ldmin. The bit error probability may be approximated as !PM • or slightly 
overbounded by mUltiplying PM by the factor 2'-1/(2' - 1), which is the factor 
used above for orthogonal codes. The latter was selected for the error 
probability computations given below. 

Figures 14-(j-6 and 14-6-7 illustrate the error rate performance of a selected 
number of Hadamard codes and block orthogonal codes, respectively, for 
several bandwidth expansion factors. The advantage resulting from an increase 
in the size M of the alphabet (or k, since k = log, M) and an increase in the 
bandwidth expansion factor is apparent from observation of these curves. 
Note, for example, that the H(20, 5) code when repeated twice results in a 
code that is denoted by ,H(20, 5) and has a bandwidth expansion factor B. = 8. 
Figure 14-6-8 shows the performance of the two types of codes compared on 
the basis of equal bandwidth expansion factors. It is observed that the error 
rate curves for the Hadamard codes are steeper than the corresponding curves 

FlGURE 14+6 Performance of Hadamard codes. 
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FIGURE 14+7 Performance of block orthogonal codes. 

FIGURE 14-6-3 Comparison of performance between 
Hadamard code. and block orthogonal 
codes. 
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FIGURE 14+7 Performance of block orthogonal codes. 
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for the block orthogonal codes. This characteristic behavior is due simply to 
the fact that, for the same bandwidth expansion factor, the Hadamard codes 
provide more diversity than block orthogonal codes. Alternatively, one may 
say that Hadamard codes provide better bandwidth efficiency than block 
orthogonal codes. It should be mentioned, however, that at low SNR. a 
lower·diversity code outperforms a higher-diversity code as a consequence of 
the fact that, on a Rayleigh fading channel, there is an optimum distribution of 
the total received SNR among the diversity signals. Therefore, the curves for 
the block orthogonal codes will cross over the curves for the Hadamard codes 
at the low-SNR (high-error-rate) region. 

Method 4: Concatenation In this method, we begin with two codes: one 
binary and the other nonbinary. The binary code is the inner code and is an 
(n, k) constant-weight (nonlinear) block code. The nonbimiry code, which may 
be linear, is the outer code. To distinguish it from the inner code, we use 
uppercase letters, e.g., an (N, K) code, where Nand K are measured in terms 
of symbols from a q-ary alphabet. The size q of the alphabet over which the 
outer code is defined cannot be greater than the number of words in the inner 
code. The outer code, when defined in terms of the binary inner code words 
rather than q-ary symbols, is the new code. 

An important special case is obtained when q = 2* and the inner code size is 
chosen to be 2*. Then the number of words is M = 2kK and the concatenated 
structure is an (nN, kK) code. The bandwidth expansion factor of this 
concatenated code is the product of the bandwidth expansions for the inner 
and outer codes. 

Now we shall demonstrate the performance advantages obtained on a 
Rayleigh fading channel by means of code concatenation. Specifically, we 
construct a concatenated code in which the outer code is a dual-k (nonbinary) 
convolutional code and the inner code is either a Hadamard code or a block 
orthogonal code. That is, we view the dual-k code with M-ary (M = 2*) 
orthogonal signals for modulation as a concatenated code. In all cases to be 
considered, soft-decision demodulation and Viterbi decoding are assumed. 

The error rate performance of the dual-k convolutional codes is obtained 
from the derivation of the transfer function given by (8-2-39). For a rate-1{2, 
dual-k code with no repetitions, the bit error probability, appropriate for the 
case in which each k-bit output symbol from the dual-k encoder is mapped into 
one of M = 2k orthogonal code words, is upper-bounded as 

"k-l or. 

Pb < 2: _ 1 ~4 fJm P2(m) (14-6-21 ) 

where P2(m) is given by (14-6-12). 
For example, a rate-I/2, dual-2 code may employ a 4-ary orthogonal code 

0(4,2) as the inner code. The bandwidth expansion factor of the resulting 
concatenated code is, of course, the product of the bandwidth expansion 
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factors of the inner and outer codes. Thus, in this example, the rate of the 
outer code is 1/2 and the inner code is 1/2. Hence, B, = (4/2){2) = 4. 

Note that if every symbol of the dual-k is repeated r times, this is equivalent 
to using an orthogonal code with diversity L = r. If we select r = 2 in the 
example giveu above, the resulting orthogonal code is denoted as 0(8,2) and 
the bandwidth expansion factor for the rate-l/2, dual-2 code becomes B, = 8. 
Consequently, the term P2(m) in (14-6-21) must be replaced by P2(mL) when 
the orthogonal code has diversity L. Since a Hadamard code has an "effective 
diversity" !dm;n> it follows that when a Hadamard code is used as the inner 
code with a dual-k outer code, the upper bound on the bit error probability of 
the resulting concatenated code given by (14-6·21) still applies if P2(m) is 
replaced by P'(imdmin ). With these modifications. the upper bound on the bit 
error probability given by (14-6-21) has been evaluated for rate-l/2, dual-k 
convolutional codes with either Hadamard codes or block orthogonal codes as 
inner codes. Thus the resulting concatenated code bas a bandwidth expansion 
factor equal to twice the bandwidth expansion factor of the inner code. 

First, we consider the performance gains due to code concatenation. Figure 
14-6-9 illustrates the performance of dual-k codes with block orthogonal inner 
codes compared with the performance of block orthogonal codes for band
width expansion factors B, = 4, 8, 16, and 32. The performance gains due to 
concatenation are very impressive. For example, at an error rate of 10-6 and 
Be = 8, the dual-k code outperforms the orthogonal block code by 7.5 dB. In 

FIGURE 14-6-9 Comparison of performance between block 
orthogonal <XXies and dual-k with block 
orthogonal in.er codes. 
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factors of the inner and outer codes. Thus, in this example, the rate of the 
outer code is 1/2 and the inner code is 1/2. Hence, B, = (4/2){2) = 4. 

Note that if every symbol of the dual-k is repeated r times, this is equivalent 
to using an orthogonal code with diversity L = r. If we select r = 2 in the 
example giveu above, the resulting orthogonal code is denoted as 0(8,2) and 
the bandwidth expansion factor for the rate-l/2, dual-2 code becomes B, = 8. 
Consequently, the term P2(m) in (14-6-21) must be replaced by P2(mL) when 
the orthogonal code has diversity L. Since a Hadamard code has an "effective 
diversity" !dm;n> it follows that when a Hadamard code is used as the inner 
code with a dual-k outer code, the upper bound on the bit error probability of 
the resulting concatenated code given by (14-6·21) still applies if P2(m) is 
replaced by P'(imdmin ). With these modifications. the upper bound on the bit 
error probability given by (14-6-21) has been evaluated for rate-l/2, dual-k 
convolutional codes with either Hadamard codes or block orthogonal codes as 
inner codes. Thus the resulting concatenated code bas a bandwidth expansion 
factor equal to twice the bandwidth expansion factor of the inner code. 

First, we consider the performance gains due to code concatenation. Figure 
14-6-9 illustrates the performance of dual-k codes with block orthogonal inner 
codes compared with the performance of block orthogonal codes for band
width expansion factors B, = 4, 8, 16, and 32. The performance gains due to 
concatenation are very impressive. For- example, at an error rate of 10-6 and 
Be = 8, the dual-k code outperforms the orthogonal block code by 7.5 dB. In 

FIGURE 14-6-9 Comparison of performance between block 
orthogonal <XXies and dual-k with block 
orthogonal in.er codes. 

... ~ 
~ 
~ 

:E 
• 
'0 
-~ 
:E 

i 

[0-_1 

5 

2 

l!r' 

5 

2 

lO-~ 

5 

2 

Icr' 
5 

2 

10-7 

5 

2 

m-' 

\. \'. . 
()(8. 2) -, , 

\', "\ 
, 

B~=4 , , , . , 
, \ 

, , . , , , 

1\ 1\'. "\ . 
O()6,2) , 

\ \'. " \ '8 ~8 , ' 

\ \' '\ . Dual-2 

\' . " \ • ",0(4.21 
\ , 

, B == 4 

\ \ .. 
, 

\'" "' .. ' , , 

\ \ \ " \ , 

\ \ \. , , 

\ \,DU81-3 \: ~28."1. \ 0(24.3) 

\ \,8, = 16 ~~,= 32 " 

\ Dual-2\ " , \" 
DuaI-4 0(8.2J \ • . '\ 0(64.4 ,\ \ 8,d 0(48.3i. 

B,= 32 \ \ \ ',8r =1 16 " 

10 12 14 16 1~ 20 n 24 

SNR per bit. y,(dBl 



FIGURE 14-6-Hl Comparison of performance between 
Hadamard codes and dual-k codes. with 
Hadamard Inner codes. 
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short, this gain may be attributed to the increased diversity (increase in 
minimum distance) obtained via code concatenation. Similarly, Fig, 14-6·10 
illustrates the perfonnance of two dual-k codes with Hadamard inner codes 
compared with the performance of the Hadamard codes alone for B, = 8 and 
12. It is observed that the performance gains due to code concatenation are 
still significant, but certainly not as impressive as those iPustrated in Fig, 
14-6-9. The reason is that tile Hadamard codes alone yield a large diversity. so 
that the increased diversity arising from concatenation does not result in as 
large a gain in performance for tile range of error rates covered in Fig. 14-6-10. 

Next, we compare the performance for the two types of inner codes used 
with dual-k outer codes. Figure 14-6-11 shows the comparison for B, = 8. Note 

'that the 2H(4, 2) inner code has d min = 4, and, hence, it has an effective order 
of diversity equal to 2. But this dual diversity is achieved by transmitting four 
frequencies per code word. On the other hand, the orthogonal code 0(8,2} 
also gives dual diversity, but this is achieved by transmitting only two 
frequencies per code word. Consequently, the 0(8,2) code is 3 dB better than 
the 2H(4, 2). This difference in performance is maintained when the two codes 
are used as inner codes in conjunction with dual-2 code. On tile other hand. for 
B, = 8, one can use the H(20, 5) as the inner code of a dual-5 code, and its 
performance is significantly better than that of the dual-2 code at low error' 
rates. This improvement in performance is achieved at the expense of an 
increase in decoding complexity. Similarly, in Fig. 14-6-12, we compare the 
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performance of the dual-k codes with two types of inner codes for Be = 16. 
Note that the ,H(S.3) inner code has d min = 12. and, hence. it yields an 
effective diversity of 6, This diversity is achieved by transmitting 12 frequencies 
per code word. The orthogonal inner code 0(24,3) gives only third-order 
diversity. which is achieved by transmitting three frequencies per code word. 
Consequently the 0(24.3) inner code is more efficient at low SNR. that is, for 
the range of erTOr rates covered in Fig. 14-6-12. At large SNR, the dual-3 code 
with the Hadamard .,H(8, 3) inner code outperforms its counterpart with the 
0(24.3) inner code due to the large diversity provided by the Hadamard code. 
For the same bandwidth expansion factor B, == 16, one may use a duaJ-6 code 
with a H(48. 6) code to achieve an improvement over the dual-3 code with the 
,H(8.3) inner code. Again, this improvement in performance (which in this 
case is not as impressive as that shown in Fig. 14-6-11), must be weighed 
against the increased decoding complexity inherent in the dual-6 code. 

The numerical results given ahove illustrate the performance advantages in 
using codes with good distance properties and soft-decision decoding on a 
Rayleigh fading channel as an alternative to conventional M-ary orthogonal 
signaling with diversity. In addition, the results illustrate the benefits of code 
concatenation on such a channel, using a dual·k convolutional code as the 
outer code and either a Hadamard code or a block orthogonal code as the 
inner code. Although dual-k codes were used for the outer code, similar results 
are obtained when a Reed-Solomon code is used for the oUler code. There is 
an even greater choice in the selection of the inner code. 

The important parameter in Ihe selection of both the outer and the inner 
codes is the minimum distance of the resultant concatenated code required 10 

achieve a specified level of performance. Since many codes will meet the 
performance requirements. the ultimate choice is made on the basis of 
decoding complexity and bandwidth requirements. 

14-6-5 System Design Based 011 the Cutoff Rate 

In the above treatment of coded waveforms, we nave demonstrated the 
effectiveness of various codes for fading channels. In particular, we have 
observed the benefits of soft-decision decoding and code concatenation as a 
means for increasing the minimum distance and, hence. the amount of diversitv 
in the coded waveforms. In this subsection, we consider randomly selected 
code words and derive an upper (union) bound on the error probability that 
depends on the cutoff rate parameter for the Rayleigh fading channel. 

Let us consider the model for the communication system illustrated in Fig. 
14-6-1. The modulator has a q-ary orthogonal FSK alphabet Code words of 
block length n are mapped into waveforms by selecting n tones from the 
alphabet of q tones. The demodulation is performed by passing the signal 
through a· bank of q matched filters followed by square-law detectors. The 
decoding is assumed to be soft-decision. Thus, the square-law detected outputs 
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Let us consider the model for the communication system illustrated in Fig. 
14-6-1. The modulator has a q-ary orthogonal FSK alphabet Code words of 
block length n are mapped into waveforms by selecting n tones from the 
alphabet of q tones. The demodulation is performed by passing the signal 
through a· bank of q matched filters followed by square-law detectors. The 
decoding is assumed to be soft-decision. Thus, the square-law detected outputs 
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from the demodulator are appropriately combined (added) with equal weight
ing to form M decision variables corresponding to the M possible transmitted 
code words. 

To evaluate the union bound on the probability of error in a Rayleigh 
fading channel with A WGN, we first evaluate the binary error probability 
involving the decision variable V" which corresponds to the transmitted code 
word, and any of the other M - 1 decision variables corresponding to the other 
code words. Let V2 be the other decision variable and suppose that V, and Vz 
have I tones in common. Hence, the contributions to V, and V, from these I 
tones are identical and, therefore, cancel out when we form the difference 
V, - V,. Since the two decision variables differ in n - J tones, the probability of 
error is simply that for a binary orthogonal FSK system with n - I order 
diversity. The exact form for this probability of error is given by (14-6-4), 
where P = 1/(2 + y,,). and "Yc is the average SNR per tone. For simplicity, we 
choose to use the Chernoff bound for this binary event error probability, given 
by (14-6-7), i.e., 

P,( V" V,i/) '" [4p(1 - p »"-1 (14-6-22) 

Now, let us average over the ensemble of binary communication systems. 
There are q" possible code words, from which we randomly select two code 
words. Thus. each code word is selected with equal probability. Then, the 
probability that two randomly selected code words have I tones in common is 

(n) 1)1( 1)"-1 
pel) = I (q 1 - q (14-6-23) 

When we average (14-6-22) over the probability distribution of I given by 
• (14-6-23), we obtain 

n 

P2( V" V,) - L P2( V,. V2 [I)P(I) 
f=O 

'" {~ (~)(;)'[ 4( 1- ;)P(l- p) r l 

'" U [1 + 4(q -l)p(l- p)l r (14-6-24) 

Finally, the union bound for communication systems that uSe M = 2" 
randomly selected code words is simply 

(14-6-25) 

By combining (14-6-24) with (14-6-25), we obtain the upper bound on the 
symbol error probability as 

(14-6-26) 
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where R, = kIn is the code rate and Ro is the culoff rate defined as 

with 

q Ro = log, _-----:_--'-c __ ----,--
1 +4(q -1)p(l- p) 

1 
p=--

2 + y, 

(l4-6-27) 

(14-6-28) 

Graphs of Ro as a function of y, are shown in Fig. 14-6-13 for q = 2, 4, 
and 8. 

A more interesting form of (14-6-26) is obtained if we express PM in terms 
of the SNR per bit. In particular, (14-6-26) may be expressed as 

(14-6-29) 
where, by definition, 

_ Ro 
g(q, 1',.) = -=-

I'c 

1 [ q ] =-log2 y,. 1 + 4(q - 1 )p(l - p) 
(14-6-30) 
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Graphs of g(q, ifcl as a function of 1, are plotted in Fig. 14-6-14, with q as a 
parameter. First, we note thate is an optimum y, for each value of q that 
minimizes the probability of error. For large q, this value is approximately 
y, = 3 (5 dB), which is consistent with our previous observation for ordinary 
square-law diversity combining. Furthermore, as q-+ x. the function g(q, y,) 
approaches a limit, which is 

. _ _ 1 [<2+y,f] 
11m g{q, 'Y,) = g~( 'Y,) = -=-Iog, 4(1 + ) 
q-tOO ')'{' 1'("' 

The value of g=<"y,) evaluated at y, = 3 is 

g.(3) = max g.( if,) 
Y.· 

= 0.215 

(14-6-31) 

(14-6-32) 

Therefore, the error probability in (14-6-29) for this optimum division of total 
SNR is 

(14-6-33) 
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This result indicates that the probability of error can be made arbitrarily small 
with optimum SNR per code chip, if the average SNR per bit jb > 4.65 
(6.7 dB). Even a relatively modest value of q = 20 comes close to this minimum 
value. As seen from Fig. 14-6-14, g(20, 3) =0.2. so that PM-+O, provided 
jb > 5 (7 dB). On the other hand, if q = 2, the maximum value of g(2, iiJ = 
0.096 and the corresponding minimum SNR per bit is 10.2 dB. 

In the case of binary FSK waveforms (q = 2), we may easily compare the 
cutoff rate for the unquantized (soft-decision) demodulator output with the 
cutoff rate for binary quantization, for which 

RQ = I-log!I + v'4p(1- p)l, Q = 2 

as was given in (8-\-104). Figure 14-6-15 illustrates the graphs for Ro and RQ . 

Note that the difference between Ro and RQ is approximately 3 dB for rates 
below 0.3 and the dift'erence increases rapidly at high rates. This loss may be 
reduced significantly by increasing the number of quantization levels to Q = 8 
(three bits). 

Similar comparisons in the relative performance between unquantized 
soft-decision decoding and quantized decision decoding can also be made for 
q>2. 
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FIGURE 14+15 Cutoff rate for (unquantized) soft
decision and hard-decision decoding of 
coded binary FSK. 
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14-6-6 Trellis-Coded Modulation 
Trellis-coded modulation was described in Section 8-3 as a means for achieving 
a coding gain on bandwidth-constrained channels, where we wish to transmit at 
a bit-rate-to-bandwidth ratio R/W> I. For such channels, the digital com
munication system is designed to use bandwidth-efficient multilevel or multi
phase modulation (PAM, PSK, DPSK or QAM), which allows us to achieve 
an R /W > L When coding is applied in signal design for a bandwidth 
constrained channel, a coding gain is desired VI'ithout expanding the signal 
bandwidth_ This goal can be achieved, as described in Section 8-3, by 
increasing the number of signal points in the constellation over the corres
ponding uncoded system to compensate for the redundancy introduced by the 
code, and designing the trellis code so that the euclidean distance in a sequence 
of transmitted symbols corresponding to paths that merge at any node in the 
trellis is larger than the euclidean distance per symbol in an uncoded system. 

In contrast, the coding schemes that we have described above in conjunction 
with FSK modulation expand the bandwidth of the modulated signal for the 
purpose of achieving signal diversity_Coupled with FSK modulation, which is 
not bandwidth-efficient, the coding schemes we have described are inappropri
ate for use on bandwidth-constrained channels. 

In designing trellis-coded signal waveforms for fading channels, we may usc 
the same basic principles that we have learned and applied in the design of 
conventional coding schemes. In particular, the most important objective in 
any coded signal design for fading channels is to achieve as large a signal 
diversity as possible. This implies that successive output symbols from the 
encoder must be interleaved or sufficiently separated in transmission, either in 
time or in frequency, so as to achieve independent fading in a sequence of 
symbols that equals or exceeds the minimum free distance of the trellis code. 
Therefore, we may represent such a trellis-coded modulation system by the 
block diagram in Fig. 14-6-16, where the interleaver is viewed broadly as a 
device that separates the successive coded symbols so as to provide indepen
dent fading on each symbol (through frequency or time separation of symbols) 
in the sequence. The receiver consists of a signal demodulator whose output is 
deinterleaved and fed to the trellis decoder. 

FIGURE 14-6-16 Block diagram of treGis-coded mot:ulation systems. 
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As indicated above, the candidate modulation methods that achie\'e high 
bandwidth efficiency are M-ary PSK, DPSK, QAM and PAM. The choin; 
depends to a large extent on the channel characteristics. If there are rapid 
amplitude variations in the received signal, QAM and PAM may be particu
larly vulnerable, because a wide band automatic gain control (AGe) must I:>e 
used to compensate for the channel variations. In such a case, PSK or DPSK 
are more suitable. since the information is conveyed by the signal phase and 
not by the signal amplitude. DPSK provides the additional benefit that carrier 
phase coherence is required only over two successive symbols. However. there 
is an SNR degradation in DPSK relative to PSK. 

In the design of the trellis code, our objective is to achieve as large a free 
distance as possible, since this parameter is equivalent to the amount of 
diversity in the received signal. In conventional l:lngerboeck trellis coding, 
each branch in the trellis corresponds to a single M-ary (PSK, DPSK, QAM) 
output channel symbol. Let us define the shortest error event path as the erf(lr 
event path with the smallest number of nonzero distances between itself and 
the correct path. and let L be its length. In other words, L is the Hamming 
distance between the M -ar} symbols on the shortest error event path and those 
in the correct path. Hence, if we assume that the transmitted sequence 
corresponds to the all-zero path in the trellis, L is the number of branches in 
the shortest-length path with a nonzero M-ary symbol. In a trellis diagram with 
parallel paths, the paths are constrained to have a shortest error event length 
of one branch, so that L = 1. This means that such a trellis code provides no 
diversity in a fading channel and, hence, the prohability of error is inverselv 
proportional to the SNR per symbol. Therefore, in conventional trellis coding 
for a fading channel, it is undesirable to design a code that has parallel paths in 
its trellis, because such a code yields no diversity. This is the case in a 
conventional rate-m/(m + I) trellis code, where we are forced to have parallel 
paths when the number of slates is less than 2'". 

One possible way to increase the minimum free distance and, thus, the 
order of diversity in the code, is to introduce asymmetry in the signal point 
constellation. This approach appears to be somewhat effective, and has been 
investigated by Simon and Divsalar (1985), Divsalar and Yuen (1984), and 
Divsalar et al. (1987). 

A more effective way to increase the distance L and. thus, the order of 
diversity is to employ multiple trellis-coded modulation (MTCM). In MTCM. 
illustrated in Fig. 14-6-17, b input bits to the encoder are coded into c output 
bits, which are then subdivided into k groups. each of m bits, such that c = km. 
Each m-bit group is mapped into an M-ary symbol. Thus, we obtain the M-ary 
output symbols. The special case k = 1 corresponds to the conventional 
Ungerboeck codes. With k M-ary output symbols, it is possible to design trellis 
codes with parallel paths having a distance L = k. Thus, we can achieve an 
error probability that decays inversely as ('it No)". 

An important consideration in the design of the decoder for the trellis code 
is the use of any side information regarding the channel attenuation for each 
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symbol. In the case of FSK modulation with square-law combination at the 
decoder to form the decision metrics, it is not necessary to know the channel 
attenuation for demodulated symbols. However, with coherent detection, the 
optimum euclidean distance metric for each demodulated symbol is of the form 
Ir. - ilns.I', where an is the channel attenuation for the transmitted symbol Sn 

and Tn is the demodulation output. Hence, the sum of branch metrics for any 
given path through the trellis is of the form 

D(r, 5(1» = L irn - ans~)I' 
n 

where the superscript (i) indicates the ith path through the trellis. Therefore, 
the estimati'on of the channel attenuation must be performed in order to 
realize the optimum trellis decoder. The estimation of the channel attenuation 
and phase shift, is considered iIl Appendix C for the case of PSK modulation 
and demodulation. The effect of the quality of the attenuation and phase 
estimates on the performance of PSK (uncoded) modulation is also assessed in 
Appendix C. 

14-7 BIBLIOGRAPHICAL NOTES AND REFERENCES 
In this chapter, we have considered a number of topics concerned with digital 
communications over a fading multipath channel. We began with a statistical 
characterization of the channel and then described the ramifications of the 
channel characteristics on the design of digital signals and on their perfor
mance. We observed that the . reliability of the communication system is 
enhanced by the use of diversity transmission and reception. Finally we 
demonstrated that channel encoding and soft-decision decoding provide a 
bandwidth-efficient means for obtaining diversity over such channels. 

The pioneering work on the characterization of fading multipalh channels 
aod on signal and receiver design for reliable digital communications over such 
channels was done by Price (1954, 1956). This work was followed by additional 
significant contributions from Price and Green (1958, 1960), Kailath (1960, 
19(1), and Green (1962). Diversity transmission and diversity combining 
techniques under a vatiety of channel conditions have been considered in the 
papers by Pierce (1958), Brennan (1959), Turin (1961, 1962), Pierce and Stein 
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In this chapter, we have considered a number of topics concerned with digital 
communications over a fading multipath channel. We began with a statistical 
characterization of the channel and then described the ramificalions of the 
channel characteristics on the design of digital signals and on their perfor
mance. We observed that the . reliability of the communication system is 
enhanced by the use of diversity transmission and reception. Finally we 
demonstrated that channel encoding and soft-decision decoding provide a 
bandwidth-efficient means for obtaining diversity over such channels. 

The pioneering work on the characterization of fading multipalh channels 
aod on signal and receiver design for reliable digital communications over such 
channels was done by Price (1954, 1956). This work was followed by additional 
significant contributions from Price and Green (1958, 1960), Kailath (1960, 
19(1), and Green (1962). Diversity transmission and diversity combining 
techniques under a vatiety of channel conditions have been considered in the 
papers by Pierce (1958), Brennan (1959), Turin (1961, 1962), Pierce and Stein 
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(1960), Barrow (1963), Bello and Nelin (1%2a, b, 1%3), Price (l%2a~ b), and 
Lindsey (1964 J. 

Our treatment of coding for fading channels nas relied on contributions 
from a number of researchers. In particular, the use of dual-k codes with 
M-ary orthogonal FSK was proposed in publications by Viterbi and jacobs 
(1'175) and Odenwalder (1976). The importance of coding for digital com
munications over a fading channel was also emphasized in a paper by Chase 
(1'176). The benefits derived from concatenated coding with soft-decision 
decoding for a fading channel were demonstrated by Pieper et al. (1978). 
There, a Reed-Solomon code was used for the outer code and a Hadamard 
code was selected as the inner code. The performance of dual-k codes with 
either block orthogonal codes or Hadamard codes as inner code were 
investigated by Proakis and Rahman (1979). The error rate perforrna'lce of 
maximal free distance binary convolutional codes was evaluated by Rahman 
(1981). Finally, the derivation of the cutoff rate for Rayleigh fading channels i. 
due to Wozencraft and Jacobs (1965). 

Trellis-coded modulation for fading channels has been investigated by many 
researchers, whose work was motivated to a large extent by applications to 
mobile and cellular communications. The book by Biglieri et al. (1991) gives a 
tutorial treatment of this topic and contains a large number of references to the 
technical literature. 

Our treatment of digital communications over fading channels focused 
primarily on the Rayleigh fading cnannel model. For the most part, this is due 
10 the wide acceptance of this model for describing the fading effects on many 
radio channels and to its mathematical tractability. Although other statistical 
models, such as a Ricean fading model or the Nakagami fading model may be 
more appropriate for characterizing fading on some real channels, the general 
approach in the design of reliable communications presented in this chapter 
carries over. 

14·1 The scattering function 5(1; A) for a fading multipath channel is nonzero (or the 
range of values 00;;; ,0;;; 1 ms and -0.1 Hz 0;;; A 0;;; 0.1 Hz. Assume that the scattering 
function is approximately uniform in the two variables. 
a Give numerical values for the following parameters; 

(i) the multipath spread of the cllannel; 
(ii) the Doppler spread o( the channel: 

(iii) the coherence time of the channel; 
(iv) the coherence bandwidth of the channel: 
(v) the spread factor of the channel. 

b Explain the meaning of the following, taking into consideration the answers 
given in (a); 

(i) the channel is frequency-nonselective; 
(ii) the channel is slOWly fading; 

(iii) the channel is frequency-selective. 
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c Suppose that we have a frequency allocation (bandwidth) of 10 kHz and we wish 
to transmit at a rate of 100 bits!s over this channel. Design a binary 
communications system with frequency diversity. In particular. specify (il the 
type of modulation. (ii) the number of subehannels. (iii) the frequency 
separation between adjacent carriers. and (iv) the signaling interval used in your 
design. Justify your choice of parameters. 

14-2 Consider a binary communications system for transmitting a binary sequence over 
a fading channel. The modulation is orthogonal FSK with third-order frequency 
diversity (L ~ 3). The demodulator consists of matched filters followed by 
square-law detectors. Assume that the FSK carriers rade independently and 
identically according to a Rayleigh envelope distribution. The additive noises on 
the diversity signals are zero-mean gaussian wilh aU1ocorreiation functions 
lE[z:(t)z,U + T)I = NoS( r). The noise processes are mutually statistically 
independent. 
a The transmilled signal may be viewed as binary FSK with square-law detection. 

generated by a repetition code of the form 

IJ. 0 .... C" ~ [0 0 OJ 

Determine the error rate performance P", for a hard-decision decoder following 
the square-law-detected signals. 

b Evaluate P", for '1, ~ 100 and 1000. 
c Evaluate the error rate P" for y, = 100 and WOO if the decoder employs 

soft-decision decoding. 
d Consider the generalization of the result in (a). If a repetition code of block 

length L (L odd) is used. determine the error probability P,,, of the 
hard-decision decoder and compare that with P", Ihe error rate of the 
soft-decision decoder. Assume y» l. 

14-3 Suppose thaI the binary signal S/(I) is transmilted over a fading channel and the 
received signal is 

,,(I) = ±as,(t) + ~(I l. 0,;;; I '" T 

where Z(l) is zero-mean while gaussian noise with autocorrelation function 

The energy in the transmitted signal is ~ ~ ; J; ~,,(I)I' dl. The channel gain (/ is 
specified by the probability density runction 

p(a) ~ 0.1 o(a 1+ O.98(a - 2) 

a Determine Ihe average probahility of error P, for the demodulator that employs 
a filter matched to ... ,(1). 

b What value does P, approach as !fINQ approaches infinity. 
c Suppose that the same signal is transmitted on two statistically ind"pendm/l" 

fadillg channels with gains '" and ",. where . 

p(a,) =().Io(a.) + 0.98({/_ - 2). ,,= I. 2 

The noiscs on the two channels are statislically independent and id"ntically 
distributed. The demodulator employs a matched Ii Iter for each channel and 
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simply adds the two filter outputs to form the decision variable. Determine the 
average P,. 

d For the case in (c) what value does P, approach as 'lIN;, approaches infinity. 
14-4 A multipath fading channel has a multipath spread of 7;" = I s and a Doppler 

spread B,J = 0.01 Hz. The total channel bandwidth at bandpass available for signal 
transmission is W = 5 Hz. To reduce the effects of intersymbol interference, the 
signal designer selects a pul.e duration T = \0 s. 
a Determine the coherence bandwidth and the coherence time. 
b Is the channel frequency selective? Explain. 
c Is the channel fading slowly or rapidly? Explain. 
d Suppose that the channel is used to transmit binary data via (antipodal) 

coherently detected PSK in a frequency diversity mode. Explain how you would 
use the available channel bandwidth to obtain frequency diversity and deter
mine how much diversity is available. 

e For the case in (d), what is the approximate SNR required per diversity to 
achieve an error probability of 10 '? 

r Suppose that a wide band signal is used for transmission and a RAKE-type 
receiver is used for demodulation_ How many taps would you use in the RAKE 
receiver? 

g Explain whether or not the RAKE receiver can be implemented as a coherent 
receiver with maximal ratio combining. 

h If binary orthogonal signals are used for the wideband signal with square-law 
postdetection combining in the RAKE receiver, what is the approximate SNR 
required to achieve an error probability of 10 -6?( assume that all taps have the 
same SNR.) 

14-5 In the binary communications system shown in Fig_ PI4-5. c,(t) and z,{t) are 
statistically independent white gaussian noise processes with zero mean and 
identical autocorrelation functions </>,,( r) = .111,,8 ( r). The sampled values V, and V, 
represent the real parts of the matched filter outputs. For example, if .,(1) is 
transmitted, then we have 

V, =2't:+N, 

V,=N, +N, 

where 'l is the transmitted signal energy and 

N, = Re [f s,*(tlz.(t) at l k = 1 2 

Opimum 
combiner 

u= VI + 1JU1 

u 
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It is apparent that VI and V, are correlated gaussian varables wbile N, and N, are 
independent gaussian variables. Thus, 

I (n~) 
p(n,) = V21ru exp - 20-' 

where the variance of N. is u' = 2 'tNu. 
a Show that the joint probability density function for VI and V, is 

if ;(/) is transmitted and 

if -s(t} is transmitted. 
b Based on the likelihood ratio, show tbat the optimum combination of V, and V, 

results in the decision variable 

V = VI + f3U, 

where f3 is a constant. What is the optimum value of fJ? 
c Suppose that s(/) is transmitted. What is the probability density function of V? 
d What is the probability of error assuming that s(t) was transmitted? Express 

your answer as a function for the SNR 'if No. 
e What is the loss in performance if only V = U, is the decision variable? 

14-6 Consider tbe model for a binary communications system with diversity as shown in 
Fig. P14-6. The channels have fixed attenuations and phase shifls. The {I.(tl} are 

$1(1) 

or 

-~ al~~' ~--y-+'(~-')~ 
St(t) ~ Zj(t) ~ 

. . or . . 

-~ "'-~-;., I--y--+'(~ -')~ 
ZL(I) 
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complex-valued white gaussian noise processes with zero mean and autocorrela
tion functions 

(Note th.at the spectral densitie, {No,) are all different.) Also. the noise processes 
lz.(/)} are mutually statistically independent. The {13.} are complex-valued 
weighting factors to be determined. The decision variable from the combiner is 

U = Re (~ f3.U. ) ~ 0 

a Determine the pdf p( UJ when + I is transmitted. 
b Determine the probability of error P,. as a function of the weights {13k}' 
< Determine the values of (13.l !hat minimize P2' 

14-7 Determine the probability of error for binary orthogonal signaling with Lth-order 
diversity over a Rayleigb fading channel. The pdfs of the two decision variables 
are given by (14-4-31) and (14-4-32). 

14-3 The rato·I/3. L = 3, binary convolutional code with. transfer function given by 
(8-2-5) is used for transmitling data over a Rayleigh fading channel via binary 
PSK . 
• Determine and plot the probability of eITor for bard-decision decoding. Assume 

that the transmitted waveforms corresponding to tne coded bits fade 
independently. 

b Determine and plot the probability of error for soft-decision decoding. Assume 
that the waveforms correspondit18 to the coded bits fade independently. 

14-9 A binary sequence is transmitted via binary antipodal signaling over a Rayleigh 
fading channel wilh LIb-order diversity. When 5,(t) is transmitled, the received 
equivalent lowpass signals are 

The fading among the L subchannels is statistically independent. The additive 
noise terms {z.(t)} are zero-mean, statisticaUy independent and identically 
distributed white gaussian noise processes with autocorrelation function <p.,(r) ~ 
No5(r). Each of the L signals is passed through a filter matched to 5,(1) and the 
output is phase-corrected to yield 

U, = Re [e"'L
T 

r.(r)sr*(t) dt]' k = I, 2, ... , L 

The {U.} are combined by a linear combiner to form the decision variable 

L 

U=L U. 
,-I 

• Determine the pdf of U conditional on fixed values for the {a.l. 
b Determine the expression for the probability of error when the {a.1 are 

statistically independent and identicaUy distributed Rayleigh random variables. 
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14-10 The Chernoff bound for the probability of error for binary FSK with diversity L in 
Rayleigh fading was shown to be 

[ 
1 ~ - ]1. 

P,(L)<[4p(l-pW= 4(2+;)2 

where 

B Plot g( 1',) and determine its approximate maximum value and the value of 1', 
where the maximum occurs. 

b For a given 1'" determine the optimal order of diversity. 
e Compare P,(L), under the condition that g(y,) is maximized (optimal diversity). 

with the error probability for binary FSK in A WGN with no fading. which is 

p~ = ~e -Yi>''! 

and determine the pena:ty in SNR due to fading and noncoherent (square-law) 
combining. 

14-11 A DS spread·spectrum system is used to resolve the multipath signal components 
in a two·path radio signal propagation scenario. If the path length of the secondary 
path is 300 m longer than that of the direct path, determine the minimum chip rate 
necessary to resolve the multipath components. 

14-12 A baseband digital communication system employs the signals shown in Fig. 
P14·12(a) for the transmission of two equiprobable messages. It is assumed that 
the communication problem studied here is a Hone-shot" communication problem: 
that is, the above messages are transmitted just once and no transmission takes 
place afterward. The channel has no attenuation (a = I), and the noise is A WG 
with power spectral density INn. 
II Find an appropriate orthonormal basis for the representation of the signals. 
b In a block diagram. give the- precise specifications of the optimum ceceiver using 

matched fillers. Label the diagram carefully. 
c Find the error probability of the optimum receiver. 
d Show that the optimum receiver can be implemented by using just one filter 

.<f---, A 

o t r 

AWGN 
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A 1-------, 

o T o T 

-A 

(see the block diagram in Fig. PI4-l2(b). What are the characteristics of the 
matched filter and the sampler and decision device? 
e Now assume that the channel is not ideal but has an impulse response of 

cit) = S(/) + l~(t -17). Using the same matched filter as (d), design an 
optimum reciever. 

f Assuming that the channel impulse response is c(t) = 8(1) + oO(/-lTl, where a 
is a random variable uniformly distributed on (0,1 j, and using the same matched 
filter as in (d), design the optimum receiver. 

14-13 A communication system employs dual antenna diversity and binary orthogonal 
FSK modulation. The received signals at the two antennas are 

ret) = a,r(l) + n,(t) 

r,(I) = a,s(l) + n,(I) 

where a, and <x, are statistically iid Rayleigh random variables, and n,(I) and n,(t) 
are statistically independent. zero-mean white gaussian random processes with 
power-spectral density lNo• The two si~nals are demodulated, squared and then 
combined (summed) prior to detection. 
a Sk.etch the functional block diagram of the entire receiver, including the 

demodulator, the combiner and the detector. 
b Plot the probability of error for the detector and compare the result with the 

case of no diversity. 
14-14 The two equivalent lowpass signals shown in Fig. P14-14 are used to transmit a 

binary sequence. The equivalent lowpass impulse response of the channel is 
h(tl = 4S(/) - 2S(t - T). To avoid pulse overlap between successive transmissions, 
the transmission rate in bits/s is selected to be R = l/2T. The transmitted signals 
are equally probable and are corrupted by additive zero-mean white gaussian 
noise having an equivalent lowpass representation z(t) with an autocorrelation 
function 

.p,,(r) = ~E[z'(t)z(t + 1'») = NoS(r) 

a Sketch the two possible equivalent lowpass noise-free received waveforms. 
b Specify the optimum receiver and sketch the equivalent lowpass impulse 

responses of all filters used in the optimum receiver. Assume coherenl delection 
of the signals. 

14-15 Verify the relation in (14-3·14) by making the change of variable y = a''i.INo in 
the Nakagami-m distribution. 
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15 
MULTIUSER 

COMMUNICATIONS 

Our treatment of communication systems up to this point has been focused on 
a single communication link involving a transmitter and a receiver. In tbis 
chapter, the focus shifts to multiple users and multiple communication links. 
We explore the various ways in which the multiple users access a common 
channel to transmit information. The multiple access methods that are 
described in this chapter form the basis for current and future wire line and 
wireless communication networks, such as satellite networks, cellular and 
mobile communication networks, and underwater acoustic networks. 

15·1 INTRODUCTION TO MULTIPLE ACCESS 
TECHNIQUES 

It is instructive to distinguish among several types of multiuser communication 
systems. One type is a multiple access system in which a large number of users 
share a common communication channel to transmit information to a receiver. 
Such a system is depicted in Fig. 15-1-1. The common cbannel may be the 
up-link in a satellite communication system, or a cable to which are connected 
a set of terminals that access a central computer, or some frequency band in 
the radio spectrum that is used by multiple users to communicate with a radio 
receiver. For example, in a mobile cellular communication system, the users 
are tbe mobile transmitters in any particular cell of the system and the receiver 
resides in the base station of the particular cell. 

A second type of multiuser communication system is a broadcast network: in 
which a single transmitter sends information to multiple receivers as depicted 
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FIGURE 15-1-1 A multiple access system. 

FIGURE 15-1-2 

in Fig. 15-1-2. Examples of broadcast systems include the common radio and 
TV broadcast systems, as well as the down-links in a satellite system. 

The multiple access and broadcast networks are probably the most common 
multiuser communication systems. A third type of multiuser system is a 
store-and-forward network, as depicted in Fig. 15-1-3. Yet a fourth type is the 
two-way communication system shown in Fig. 15-1-4. 

In this chapter, we focus on multiple access methods for multiuser 
communications_ In general, there are several different ways in which multiple 
users can send information through the communication channel to the receiver. 
One simple method is to subdivide the available channel bandwidth mto a 
number, say .V, of frequency nonoverlapping subchannels, as shown in Fig. 
15-1-5, and to assign a subchannel to each user upon request by the users. This 

A broadcast network. 
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FI{;VRE: 15-1~3 A swre-and-forwzrd communication 
network with satellite relays. 
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flGURE 15-1-4 A two-way communication channel. 

FIGURE 15-1-5 Subdivisions. of the channel into 
nonoverlapping freq uency bands.. 

method is generally called frequency-diVision mUltiple access (FDMA). and is 
commonly used in wireline channels to accommodate multiple users for voice 
and data transmission. 

Another method for creating multiple subchannels for mUltiple access is to 
subdivide the duration 7j. called the frame duration. into. say. N 
nOl1overlapping subil1tervals. each of duration 7j/N. Then each user who 
wishes to transmit information is assigned to a particular time slot within each 
frame .. This multiple access method is called time-division multiple access 
(TDMA) and it is frequently used in data and digital voice transmission. 

We observe that in FDMA and TDMA. the channel is basically partitioned 
into independent single-user subchannels. In this sense. the communication 
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system design methods that we have described for single-user communication 
are directly applicable afld no new problems are encountered in a multiple 
access environment, except for the additional task of assigning users to 
available channels. 

The interesting problems arise when the data from the users accessing the 
network is bursty in nature. In other words, the information transmissions from 
a single user are separated by periods of no transmission, where these periods 
of silence may be greater than the periods of transmission. Such is the case 
generally with users at various terminals in a computer communications 
network lhat contains a central computer. To some extent, this is also the case 
in mobile cellular communication systems carrying digitized voice, since speech 
signals typically contain long pauses. 

In such an environment where the transmission from the various users is 
bursty and low-duty-cycle, FDMA and TDMA tend to be inefficient because a 
certain percentage of the available frequency slots or time slots assigned to 
users do not carry information. Utimately, an inefficiently designed multiple 
access system limits the number of simultaneous users of the channel. 

An alternative to FOMA and TDMA is to allow more than one user to 
share a channel or subchannel by use of direct-sequence spread spectrum 
signals. I n this method, each user is assigned a unique code sequence or 
signature sequence that allows the user to spread the information signal across 
the assigned frequency band. Thus signals from the various users are separated 
at the receiver by cross-correlation of the received signal with each of the 
possible user signature sequences. By designing tllese code sequences to have 
relatively small cross-correlations, the crosstalk inherent in the demodulation 
of the signals received from multiple transmitters is minimized. This multiple 
access method is called code-division multiple access (CDMA). 

In COMA, the users access the channel in a random manner. Hence. the 
signal transmissions among the multiple users completely overlap both in time 
and in frequency. The demodulation and separation of these signals at the 
receiver is facilitated by the fact that each signal is spread in frequency by the 
pseudo·random code sequence. COMA is sometimes called spread-spectrum 
multiple access (SSMA). 

An alternative to COMA is nonspread random access. In such a case, when 
two users attempt to use the common channel simultaneously. their transmis
sions collide and interfere with each other. When that happens, the informa
tion is lost and must be retransmitted. To handle collisions, one must establish 
protocols for retransmission of messages that have collided. Protocols for 
scheduling tile retransmission of collided messages are described below. 

15·2 CAPACITY OF MULTIPLE ACCESS METHODS 
It is interesting to compare FOMA, TDMA, and COMA in terms of the 
information rate that each multiple access method achieves in an ideal A WGN 
channel of bandwidth W. Let us compare the capacity of K users, where each 
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user has average power P, = P, for all 1.;; i ~ K. Recall that in an ideal 
band·limited A WGN channel of bandwidth W. the capacity of a single user is 

C = W log, ( 1 + ;.) (15-2-1) 

where ~N" is the power spectral density of the additive noise. 
In FDMA. each user is allocated a bandwidth W / K. Hence, the capacity of 

each user is 

(15-2-2) 

and the total capacity for the K users is 

(15-2-3) 

Therefore, the total capacity is equivalent to that of a single user with average 
power Pay = KP. 

It is interesting to note that for a fixed bandwidth W, the total capacity goes 
to infinity as the number of users increases linearly with K. On the other hand, 
as K increases, each user is allocated a smaller bandwidth (WI K) and, 
consequently, the capacity per user decreases. Figure 15-2-1 illustrates the 
capacity C K per user normalized by the channel bandwidth W, as a function of 
'€bl No. with K as a parameter. This expression is given as 

CK 1 [ CK(~b)] -=-log 1 +K- -
W K 2 W No 

(15·2-4) 

A more compact form of (15-2-4) is obtained by defining the normalized 

FIGURE 15-2-1 Normalized capacity as a function of 
~blNo for FDMA. 
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total capacity Cn = KCK/W, which is the total bit rate for all K users per unit 
of bandwidth. Thus. (15-2-4) may be expressed as 

or. equivalently, 

Cn = log2 (1+ Cn~) 

~ 2c• -1 

No Cn 

(15-2-5) 

(15-2-6) 

The graph of Cn versus ~bl No is shown in Fig. 15-2-2. We observe that Cn 

increases as 'Cbl No increases above the minimum value of In 2. 
In a TDMA system, each user transmits for 11K of the time through the 

channel of bandwidth W. with average power KP. Therefore, the capacity per 
user is 

CK = (~)W log2 ( 1 + :~J (15-2-7) 

which is identical to the capacity of an FDMA system. However. from a 
practical standpoint, we should emphasize that, in TDMA, it may not be 
possible for the transmitters to sustain a transmitter power of KP when K is 
very large. Hence, there is a practical limit beyond which the transmitter power 
cannot be increased as K is increased. 

In a CDMA system, each user transmits a pseudo-random signal of a 
bandwidth Wand average power P. The capacity of the system depends on the 
level of cooperation among the K users. At one extreme is noncooperative 
CDMA, in which the receiver for each user signal does not know the spreading 
waveforms of the other users, or chooses to ignore them in the demodulation 
process. Hence, the other users signals appear as interference at the receiver of 
each user. In this case, the multiuser receiver consists of a bank of K 
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single-user receivers. If we assume that each user's pseudorandom signal 
waveform is gaussian then each user signal is corrupted by gaussian 
interference of power (K - l)P and additive gaussian noise of power WHu, 

Therefore, the capacity per user is 

CK = W log2 [ 1 + WNo + ~K - l)P] ( 15-2-8) 

or, equivalently, 

CK I lC CK '€Jh/No ] 
W= og2 1+ Wl+(K-l)(CKIW)~bINo (15-2-9) 

Figure 15-2-3 illustrates the graph of CK/W versus 'tbINo. with K as a 
parameter. 

For a large number of users, we may use the approximation In (I + x) '" x. 
Hence, 

or, equivalently, 

CK CK 'tblNe 
W'" WI + K(CKIW)('€JbINo) log, e 

1 
C '" loa- e - --

" 0.< 'i:b I No 

1 1 1 
"'----<

In 2 '!;bl No In 2 

(15-2-10) 

(15-2-11) 

In this case, we observe that the total capacity does not increase with K as in 
TDMA and FDMA. 

On the other hand, suppose that the K users cooperate by transmittmg 
synchronously in time, and the multiuser receiver knows the spreading 
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waveforms of all users and jointly demodulates and detects all the users 
signals. Thus. each user is assigned a rate Ri , I,,; i,,; K. and a codebook 
containing a set of 2"R, codewords of power P. In each signal interval. each 
user selects an arbitrary codeword. say X" from its own codebook and all users 
transmit their code words simultaneously. Thus. the decoder at the receiver 
observes 

K 

Y = 2: X, + Z (15-2-12) 
, I 

where Z is an additive noise vector. The optimum decoder looks for the K 
codewords, one from each codebook. that have a vector sum closest to the 
received vector Y in euclidean distance. 

The achievable K -dimensional rate region for the K users in an A WG ~ 
channel. assuming equal power for each user, is given by the following 
equations: 

R, < W log, (1 + ~J, (15-2-13) 

( 
2P' 

R, + R) < W log, 1 + --). 
WN", 

I s, i, j ,,; K (15-2-14) 

K (KP) 2: Ri < W log, 1 + --
,~I ,WAIl' 

(15-2-15) 

In the special case when all the rates are identical, the inequality (15-2-15) is 
dominant over the other K - I inequalities. It follows that if the rates 
(R" I s, i s, K) for the K cooperative synchronous users are selected to fall in 
the capacity region specified by the inequalities given above then the 
probabilities of error for the K users tend to zero as the code block length n 
tends to infinity. 

From the above discussion, we conclude that the sum of the rates of the K 
users goes to infinity with K. Therefore, with cooperative synchronous users, 
the capacity of CDMA has a form similar to that of FDMA and TDMA. Note 
that if all the rates in the CDMA system are selected to be identical to R then 
(15-2-15) reduces to 

R < W log, (1 + KP) 
K \ WNo' 

(15-2-16) 

which is identical to the rate constraint in FDMA and TDMA. In this case. 
CDMA does not yield a higher rate than TDMA and FDMA. However. if the 
rates of the K users are selected to be unequal such that the inequalities 
(\5-2-13)-(15-2-15) are satisfied then it is possible to find the points in the 
achievable rate region such tbat the sum of the rates for the K users in CDMA 
exceeds the capacity of FDMA and TDMA. 
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R, < W log, ( 1 + ~J, (15-2-13) 

( 
2P' 

R, + R) < W log, 1 + --). 
WN", 

I s, i, j ,,; K (15-2-14) 

K (KP) 2: R, < W log, 1 + -
,~I ,WN,I' 

(15-2-15) 

In the special case when all the rates are identical, the inequality (15-2-15) is 
dominant over the other K - I inequalities. It follows that if the rates 
(R" I s, i s, K) for the K cooperative synchronous users are selected to fall in 
the capacity region specified by the inequalities given above then the 
probabilities of error for the K users tend to zero as the code block length n 
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the capacity of CDMA has a form similar to that of FDMA and TDMA. Note 
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R < W log, (1 + KP) 
K \ WNo' 

(15-2-16) 

which is identical to the rate constraint in FDMA and TDMA. In this case. 
CDMA does not yield a higher rate than TDMA and FDMA. However. if the 
rates of the K users are selected to be unequal such that the inequalities 
(15-2-13)-(15-2-15) are satisfied then it is possible to find the points in the 
achievable rate region such tbat the sum of the rates for the K users in CDMA 
exceeds the capacity of FDMA and TDMA. 
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Example 15-2-1 
Consider the case of two users in a CDMA system that employs coded 
signals as described above. The rates of the two users must satisfy the 
inequalities 

R! < W log2 ( 1 + :NJ 
R2 < W log, ( 1 + : •• J 

( 
2P' 

R, + R2 <Wlog, 1 + WN) 

where P is the average transmitted power of each user and W is the signal 
bandwidth. LeI us determine the capacity region for the two-user CDMA 
system. 

The capacity region for the two-user CDMA system with coded signal 
waveforms has the form illustrated in Fig. 15-2-4, where 

Ci=WJOg,(I+:~J i=1.2 

are the capacities corresponding to the two users with P, = P, = P. We note 
that if user 1 is transmitting at capacity C ,. user 2 can transmit up to a 
maximum rate 

Rlm = W log, (1 + 2P) - C I 
WNo 

=WIog,(l+ P) 
P+WNo 

(15-2-17) 

which is illustrated in Fig. 15-2-4 as point A. This result has an interesting 

FIGURE 15024 Capacity region of two-user CDMA multiple 
access gaussian channel. 

c, t----,.IB 
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interpretation. We note til at rate Rm, corresponds to the case in which the 
signal from user 1 is considered as an equivalent additive noise in the 
detection of the signal of user 2. On the other hand, user 1 can transmit at 
capacity C I. since the receiver knows the transmitted signal from user 2 and, 
hence, it can eliminate its effect in detecting the signal of user 1. 

Due to symmetry, a similar situation exists if user 2 is transmitting at 
capacity C,. Then, user 1 can transmit up to a maximum rate Rim = R 2",. 

which is illustrated in Fig. 15.2.4 as point B. In this case, we have a similar 
interpretation as above, with an interchange in the roles of user 1 and user 
2. 

The points A and B are connected by a straight line. It is easily seen that 
this straight line is the boundary of the achievable rate region, since any 
point on the line corresponds to the maximum rate W log, (1 + 2P/WNo). 
which can be obtained by simply time-sharing the channel between the two 
users. 

In the next section. we consider the problem of signal detection for a 
multiuser CDMA system and assess the performance and the computational 
complexity of several receiver structures. 

15-3 CODE-DIVISION MULTIPLE ACCESS 
As we have observed, TDMA and FDMA are multiple access methods in 
which the channel is partitioned into independent, single-user subchannels. i.e., 
nonoverlapping time slots or frequency bands, respectively. In CDMA, each 
user is assigned a distinct signature sequence (or waveform), which the user 
employs to modulate and spread the information-bearing signal. The signature 
sequences also allow the receiver to demodulate the message transmitted by 
multiple users of the channel, who transmit simultaneously and, generally, 
asynchronously. 

In this section, we treat the demodulation and detection of multiuser 
CDMA signals. We shall see that the optimum maximum-likelihood detector 
has a computational complexity til at grows exponentially with the number of 
users. Such a high complexity serves as a motivation to devise suboptimum 
detectors having lower computational complexities. Finally, we consider the 
performance characteristics of the various detectors. 

15-3-1 CDMA Sipal and Chanllel Models 
Let us consider a CDMA channel that is shared by K simultaneous users. Each 
user is assigned a signature waveform g.(t) of duration T, where T is the 
symbol interval. A signature waveform may be expressed as 

L-I 

g.(t) = 2: a.(n)p(t - nTcl, 0.;;; t '" T (15-3·1 ) 
n""O 
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where {ak(n), 0., n ., L - I} is a pseudo-noise (PN) code sequence consisting 
of L chips that take values {±l}, p(t) is a pulse of duration T" and "". is the 
chip interval. Thus, we have L chips per symbol and T = L 7;.. Without loss of 
generality, we assume that all K signature waveforms have unit energy, i.e., 

iT gUt) dt = 1 (15-3-2) 
o 

The cross-correlations between pairs of signature waveforms play an 
important role in the me tries for the signal detector and on its performance. 
We define the following cross-correlations: 

Pij( r) = r g,(t)g,(t - .) dl, i.;; j (15-3-3) 

p,,(.) = r gi(t)g,(t + T - .) dt, i ~ j (15·3-4) 

For simplicity, we assume that binary antipodal signals are used to transmit 
the information from each user. Hence, let the information sequence of the klh 
user be denoted by {b.(m)}, where the value of each information bit may be 
± 1. It is convenient to consider the transmission of a block of bits of some 
arbitrary length, say N Then, the data block from the kth user is 

b. = [bk(l) ... bk(N)l' (15-3-5) 

and the corresponding equivalent lowpass, transmitted waveform may be 
expressed as 

N 

SkU) = ~ 2: bk(i)gk(t - iT) (15-3-6) 
i=1 

where 'l:. is the signal energy per bit. The composite transmitted signal for the 
K users may be expressed as 

K 

s(t) = 2: Sk(t - ,.) 
k=1 

K N 

= 2: ~2:bk(i)gk(t-iT-'k) (15-3-7) 
.1.:=1 i=1 

where {Tk} are the transmission delays, which satisfy the condition 0.;; tk < T 
for 1 ~ k ., K. Without loss of generality, we assume that 0 ~ " .;; T2 .;; ... .;; 

tk < T. This is the model for the multiuser transmitted signal in an asynchro
nous mode. In the special case of synchronous transmission, 'k = 0 for 
1" k ., K. The values of T of interest in the cross-correlations given by (15-3-3) 
and (15-3-4) may also be restricted to 0" ,< T, without loss of generality. 

The transmitted signal is assumed to be corrupted by A WGN. Hence, the 
received signal may be expressed as 

r(t) = S(I) + n(t) (15-3-8) 
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where sit) is given by (15-3-1 ) and nIt) is the noise, with power spectral density 
!No< 

15-3-2 The Optimum Receiver 
The optimum receiver is defined as the receiver that selects the most probable 
sequence of bits {bk(n), l';;;n ~N, l,;;;k "'K} given the received signal r(t) 
observed over the time interval 0,;;; t '" NT + 2 T. First, let us consider the case 
of synchronous transmission; later, we shall consider asynchronous 
transmission. 

Synchronous Transmission In synchronous transmission, each (user) inter
ferer produces exactly Dne symbol which interferes with the desired symbol. In 
additive white gaussian noise, it is sufficient to consider the signal received in 
one signal interval, say 0", t ~ T, and determine the optimum receiver. Hence, 
r( I) may be expressed as 

K 

,(t)= L ~bk(l)g.(t)+n(t), O~t~ T (15-3-9) 
k: =-1 

The optimum maximum-likelihood receiver computes the log-likelihood 
function 

A(b) = ([r(t) - ± fl.hk(l)gk(t)]2 dt 10 k=1 
(15-3-10) 

and selects the information sequence {b.(I), 1", k '" K} that minimizes A(b). If 
we expand the integral in (15-3-10), we obtain 

iT K 1T 
A(b) = 0 r2(t)dt - 2 f;, ~b.(1) 0 r(t)g.(t)dt 

K K (T 
+ ~ ~I v'~~kb.(I)bJ(1)Jo g.(t)gj(t) dt (15-3-11) 

We observe that the integral involving ,zIt) is common to all possible 
sequences {b.(I)} and is of no relevance in determining which sequence was 
transmitted. Hence, it may be neglected. The term 

,T 

'. = ), r(t)g.(t) dt, 1 ~ k ~ K (15-3-12) 

represents the cross-correlation of the received signal with each of the K 
signature sequences. Instead of cross-correlators, we may employ matched 
filters. Finally, the integral involving g.(t) and git) is simply 

Pjk(O) = f gj(t)g.(t) dt (15-3-13) 

Therefore, (15-3-11) may be expressed in the form of correlation metrics 
KKK 

C(rK,bK )=2 L ~b.(I)'. - 2: L v'~~kb.(l)bJ(I)pj'(O) (15-3-14J 
k=1 j=l *""1 
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These correlation metrics may also be expressed in vector inner product form 
as 

(15-3-15) 

where 

rK = ['1 '2 ... rK)', bK = [fl,b1(1) ... v'i;;:OK(l») 

and Rs is the correlation matrix, with elements Pjk(O). It is observed that the 
optimum detector· must have knowledge of the received signal energies in 
order to compute the correlation metrics. 

There are ZK possible choices of the bits in the information sequence of the 
K users. The optimum detector computes the correlation metrics for each 
sequence and selects the sequence that yields the largest correlation metric. 
We observe that the optimum detector has a complexity that grows exponen
tially with the number of users, K. 

In summary, the optimum receiver for symbol-synchronous transmission 
consists of a bank of K correIa tors or matched filters followed by a detector 
that computes the ZK correlation metrics given by (15-3-15) corresponding to 
the 2K possible transmitted information sequences. Then, the detector selects 
the sequence corresponding to the largest correlation metric. 

Asyndaronous Tl'IIIISIIlission In this case, there are exactly two consecutive 
symbols from each interferer that overlap a desired symbol. We assume that 
the receiver knows the received signal energies {~.} for the K users and the 
transmission delays {r.}. Clearly. these parameters must be measured at the 
receiver or provided to the receiver as side information by the users via some 
control channel. 

The opt.imum maximum-likelihood receiver computes the log-likelihood 
function 

i
NT

+
2T

[ K N J2 
A(b) = 0 r(l) - k~' ~ ~ o.(i)g.(r - iT - '1'.) dt 

INT+2T K N iNT +- 2T 

= c r2(I)dt - 2 t?, Vi". ~ bk(i) 0 r(t)g.(t - iT - '1'.) dt 

K K N N LNT+27 
+ ~1 ~ v'g. Z', ~ ~ b.(i)b,(j) 0 g.(t - iT - T.)g,(t - jT - 1,) dt 

(15-3-16) 

where b represents the data sequences from the K users. The integral involving 
r2(1) may be ignored, since it is common to all possible information sequences. 
The integral 

(15-3-17) 
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represents the outputs of the correIa tor or matched filter for the kth user in 
each of the signal intervals. Finally. the integral 

= r:' :,1' .T - c, g.(t)gl(t + iT - jT + 'k - 'I) dt (15-3-18) 

may be easily decomposed into terms involving the cross-correlation PkI( ,) = 

(Jkl( 'k - TI) for k", I and Plk( ,) for k > l. Therefore, we observe that the 
log-likelihood function may be expressed in terms of a correlation metric that 
involves the outputs {r.(i), I", k ", K, 1 ", i,,;; N} of K correlators or matched 
filters--one for each of the K signature sequences. Using vector notation. it 
can be shown that the NK correlator or matched filter outputs (r.(i)} can be 
expressed in the form 

(15-3-19) 
where, by definillon 

r = [1'(1) 1'(2) ... r'(N)]' 

rU) = [T, (i) r2(i) ... rK(i)]' 
(15-3-20) 

b = [b'(I) b'(2) ... b'{N)]' 

b(i) = [n,b)(i) ~b2(i) ... ~bK(i)J' (15-3-21 ) 

0=[0'(1) 0'(2) o'(N»)' 

o(i) = [n,(i) n2(i) ... nK(i)]' 
(15-3-22) 

.(0) R~(l) 0 0 

Ra(l) Ra(O) R~(l) 0 0 

RN= (15-3-23) 

0 0 0 Ra(l) Ra(O) R~(I) 

0 0 0 0 Ra{l) Ra(O) 

and RAm) is a K x K matrix with elements 

R.im) = L=~ g.(t - ,.)g,(t + mT - 'I) dt (15-3-24 ) 

The gaussian noise vectors n(i) have zero mean and autocorrelation matnx 

£[o(k)o'(j)] = !NoRa(k - j) (15-3-25) 

Note that the vector r given by (15-3-19) constitutes a set of sufficient statistics 
for estimating the transmitted bits b.(i}. 

If we adopt a block processing approach, the optimum ML detector must 
compute 2NK correlation metrics and select the K sequences of length N that 
correspond to the largest correlation metric. Clearly, such an approach is 
much too complex computationally to be implemented in practice, especially 
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when K and N are large. An alternative approach is M L sequence estimation 
employing. the Viterbi algorithm. In order to construct a sequential-type 
detector, we make use of the fact that each transmitted symbol overlaps at 
most with 2K ~ 2 symbols. Thus, a significant reduction in computational 
complexity is obtained with respect to the block size parameter N, but the 
exponential dependence on K cannot be reduced. 

It is apparent that the optimum M L receiver employing the Viterbi 
algorithm involves such a high computational complexity that its use in practice 
is limited to communication systems where the number of users is extremely 
small, e.g., K < 10. For larger values of K. one should consider a sequential
type detector that is akin to either the sequential decoding or the stack 
algorithms described in Chapter 8. Below. we consider a number of sub
optimums detectors whose complexity grows linearly with K. 

15·3-3 Suboptimum Detectors 
In the above discussion. we observed that the optimum detector for the K 
CDMA users has a computational complexity, measured in the number of 
arithmetic operations (additions and mUltiplications/divisions) per modulated 
symbol, that grows exponentially with K. In this subsection we describe 
suboptimum detectors with computational complexities that grow linearly with 
the number of users, K. We begin with the simplest suboptimum detector, 
which we call the conventional (single-user) detector. 

Conventional Single-User Detector In conventional single-user detection, 
the receiver for each user consists of a demodulator that correlates (or 
match-filters) the received signal with the signature sequence of the user and 
passes the correlator output to the detector, which makes a decision based on 
the single correia tor output. Thus. the conventional detector neglects the 
presence of the other users of the channel or, equivalently, assumes that the 
aggregate noise plus interference is white and gaussian. 

Let us consider synchronous transmission. Then, the output of tbe cor
relator for the kth user for the signal in the interval 0"" r "" Tis 

r. = IT r(r)g.(I) dr 
() K 

= ~bk(1) + L ~bJ(I )Pik(O) + 11.(1) 
f= I 
j#k 

where the noise compenent n.(l} is given as 

n.(I}=jT n(r}g.(r)dt 
[) 

(15-3-26) 

(15-3-27) 

(15-3-28) 

Since net) is white gaussian noise with power spectral density ~Nt,. the variance 
of nk(l) is ,1 

E[nl{!)1 = !NuL g1(1) dt = ~Nu (15-3-29) 
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Clearly. if the signature sequences are orthogonal, the interference from tn(' 
other users given by the middle term in (15-3-27) vanishes and the conven
tional single-user detector is optimum. On the other hand. if one or more of 
the other signature sequences are not orthogonal to the user signature 
sequence. the interference from the other users can become excessive if tne 
power levels of the signals (or the received signal energies) of one or more of 
the other users is sufficiently larger than the power level of the kth user. Thi, 
situation is generally called the near-far problem in multiuser communications. 
and necessitates some type of power control for conventional detection . 

. In asynchronous transmission, the conventional detector is more vulnerable 
to interference from other users. This is because it is not possible to design 
signature sequences for any pair of users that are orthogonal for all time 
offsets. Consequently, interference from other users is unavoidable in asyn
chronous transmission with the conventional single-user detection. In such a 
case, the near-far problem resulting from unequal power in the signals trans
mitted by the various users is particularly serious. The practical solution 
generally requires a power adjustment method that is controlled by the 
receiver via a separate communication channel that all users are continuousl) 
monitoring. Another option is tu employ one of the multiuser detectors 
described below. 

Decorrelating Detector We observe that the conventional detector has a 
complexity that grows linearly with the number of users, but its vulnerability to 
the near-far problem requires some type of power control. We shall now 
devise another type of detector that also has a linear computational complexity 
but does not exhibit the vulnerability to other-user interference. 

Let us first consider the case of symbol-synchronous transmission. In this 
case, the received signal vector r I( that represents the output of the K matched 
filters is 

(lS-3-30) 

where bl( = [Y'e,b,(I) ~b2(1) ... ~bK(l)J' and the noise vector with 
elements nK = [n,(l) n,(l) ... nK(I)1' has a covariance 

(15-3-31 ) 

Since the noise is gaussian, rK is described by a K -dimensional gaussian pdf 
with mean R.-bl( and covariance R,. That is, 

The best linear estimate of b", is the value of bK that minimizes the likelihood 
function 

(15-3-33) 
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FlGl.:RE 15-3-1 Recei\'er structure for decorrelation receiver. 

The result of this minimization yields 

Linear 
Transformation 

aod 
Detector 

Decision 

(15-3-34) 

Then. the detected symbols are obtained by taking the sign of each element of 
b~, i.e. 

(15-3-35) 

Figure 15-3-1 illustrates the receiver structure. Note from (15-3-34) and 
(15-3-35) that the decorrelator requires knowledge of the relative delays. in 
general, to form Rs; no knowledge of the signal amplitudes is required. 

Since the estimate b';: is obtained by performing a linear transformation on 
tbe vector of correlalor outputs, the computational complexity is linear in K. 

The reader should observe thaI the best (maximum-likelihood) linear 
estimate of bK given by (15-3-34) is different from the optimum nonlinear ML 
sequence detector that finds the best discrete-valued {± I} sequence Ihat 
maximizes the likelihood function. It is also interesting to note that the 
estimate b~ is the best jinear estimate that maximizes the correlation metric 
given by (15-3-15). 

An interesting interpretation of the detector that computes b~ as in 
(15-3-34) and makes decisions according to (15-3-35) is obtained by considering 
the case of K ~ 2 users_ In this case, 

(15-3-36) 

(15-3-37) 
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where 

p = f7

g,(I)g2(r) dt 

" 
(15-3-38) 

Then. if we correlate the received signal 

r(t) = V?:;b,g,(I) + Vt;,b!g,(t) + n(l) (15-3-39) 

with g,(I) and g,(I). we obtain 

r, = [v't,b, + pY'l,b, +n,] 
- pV'fc,b, + y;g;b, + n, 

(15-3-40) 

where II, and 11, are the noise components at the output of the correlators. 
Therefore, 

= [V.'t',b, + (n, - pn,)/(I - p:l] 
~b, + (11, - pn,)/(I - p ) 

(15-3-4ll 

This is a very interesting result, because the transformation R,-' has eliminated 
the interference components between the two users. Consequently, the 
near-far problem is eliminated and there is no need for power control. 

It is interesting to note that a result similar to (15-3-41) is obtained if we 
correlate r(l) given by (15-3-39) with the two modified signature waveforms 

g:(I) = g,(t) - pg,{I) 

g;(I) = g,(I) - pg,(I) 

(15-3-421 

( 15-3-431 

This means that, by correlating the received signal with the modified signature 
waveforms, I we have tuned out or decorrelated the multiuser interference. 
Hence, the detector based on (15-3-34) is called a decorreiatillg detector. 

In asynchronous transmission, the received signal at the output of the 
correIa tors is given by (15-3-19). Hence, the log-likelihood function is given as 

A(b) = (r - RNb)'R,v'(r - Rvb) (15-3-44) 

where RN is defined by (15-3-23) and b is given by (15-3-21). It is relatively 
easy to show that the vector b that minimizes A(b) is 

(15-3-45) 

This is the ML estimate of b and it is again obtained by performing a linear 
transformation of the outputs from the bank of correia tors of matched filters. 

Since r = RNb + n, it follows from (15-3-45) that 

bO=b+RN'n (15-3-46) 

Therefore, b" 1S an unbiased estimate of b. This means that the multiuser 
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interference has been eliminated, as in the case of symbol-synchronous 
transmission. Hence, this detector for asynchronous transmission is also called 
a decorrelaring detector. 

A computationally efficient method for obtaining the solution given by 
(15-3-45) is the square-root factorization method described in Appendix D. Of 
course, there are many other methods that may be used to invert the matrix 
RN • Iterative methods to decorrelate the signals have also been explored. 

Minimum Mean-Square-Error Detector In the above discussion, we 
showed that the linear ML estimate of b is obtained by minimizing the 
quadratic log-likelihood function in (15-3-44). Thus, we obtained the result 
given by (15-3-45), which is an estimate derived by performing a linear 
transformation on the outputs of the bank of correlatDrs or matched lilters. 

Another. somewhat different, solution is obtained if we seek the linear 
transformation bO = Ar, where the matrix A is to be determined so as to 
minimize the mean square error (MSE) 

J(b) = E[<h - bD)'(b - b0JJ 

= E[(b - Ar)'(b - Ar)] (15-3.47) 

It is easily shown that the optimum choice of A that minimizes J(b) is 

(15-3-48) 

and, hence. 

(15-3-49) 

The output of the detector is then b = sgn (bO). 
The estimate given by (15-3-49) is called the minimum MSE (MMSE) 

estimate of b. Note that when ~No is small compared with the diagonal 
elements of R"" the MMSE solution approaches the ML solution given by 
(15-3-45), On the other hand, when the noise level is large compared with the 
signal level in the diagonal elements of R"" AO approaches the identity matrix 
(scaled by IN"). In this low-SNR case, the detector basically ignores the 
interference from other users, because the additive noise is the dominant term. 
It should also be noted that the MMSE criterion produces a biased estimate of 
b. Hence, there is some residual multiuser interference. 

To perform the computations that lead to the values of b, we solve the set of 
linear equations 

(RN + ~NoI)b = r (15·3-50) 

This solution may be computed efficiently using a square-root factorization of 
the matrix RN + 1NoI as indicated above. Thus, to detect NK bits requires 
3NK2 multiplications. Therefore, the computational complexity is 3K 
multiplications per bit, which is independent of the block length N and is linear 
in K. 
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Otller Types or Detectors The decorrelating detector and the MMSE 
detector described above involve performing linear transformations on a block 
of data from a bank of K correlators or matched filters. The MMSE detector is 
akin to the linear MSE equalizer described in Chapter 10. Consequently. 
MMSE multiuser detection can be implemented by employing a tapped-delay
line filter with adjustable coefficients for each user and selecting the filter 
coefficients to minimize the MSE for each user signal. Thus, the received 
information bits are estimated sequentially with finite delay, instead of as a 
block. 

The estimate b" given by (15-3-46), which is obtained by processing a block 
of N bits by a decorrelating detector. can also be computed sequentially. Xie el 

al. (1990) have demonstrated that the transmitted bits may be recovered 
sequentially from the received signal, by employing a form of a decision
feedback equalizer with finite delay. Thus, there is a similarity between the 
detection of signals corrupted by lSI in a single-user communication system 
and the detection of signals in a multiuser system with asynchronous 
transmission. 

15-3-4 Performance Characteristics of Detectors 

The bit error probability is generally the desirable performance measure in 
multiuser communications. In evaluating the effect of multiuser interference on 
the performance of the detector for a single user, we may use as a benchmark 
the probability of a bit error for a single-user receiver in the absence of other 
users of the channel, which is 

(15-3-511 

where )" = 'ld N", 't{. is the signal energy per bit and !No is the power spectral 
density of the A WGN. 

In the case of the optimum detector for either synchronous or asynchronous 
transmission, the probability of error is extremely difficult and tedious to 
evaluate. In this case, we may use (15-3-51) as a lower bound and the 
performance of a SUboptimum detector as an upper bound. 

Let us consider, first, the suboptimum, conventional single-user detector. 
For synchronous transmission, the output of the correia tor for the kth user is 
given by (15-3-27). Therefore, the probability of error for the kth user. 
conditional on a sequence b, of bits from other users, is 

Then, the average probability of error is simply 

I< 

Pk =0)1<-' 2: P.(bj ) 

i=! 
i#k. 

(15-3-521 

(:5-3-531 
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The probability in (15-3-53) will be dominated by the term that has the 
smallest argument in the Q function. The smallest argument will result in an 
SNRof 

(15-3-54) 

Therefore, 

A similar development can be used to obtain bounds on the performance for 
asynchronous transmission. 

In the case of a decorrelating detector, the other-user interference is 
c~mpletely eliminated. Hence, the probability of error may be expressed as 

(15-3-56) 

where ui is the variance of the noise in the kth element of the estimate bOo 

Example 15-3-1 

Consider the case of synchronous, two-user transmission, where .,g is given 
by (15-3-41). Let us determine the probability of error. 

The signal component for the first term in (15-3-41) is ~. The noise 
component is 

111 - pn2 
n= 

1- p2 

where p is the correlation between the two signature signals. The variance 
of this noise is 

and 

2 £[(n1 - pn2W 
(T -
,- (l-p'f 

1 No ---
)- p2 2 

(15-3-57) 

(15-3-58) 

A similar result is obtained for the performance of the second user. 
Therefore, the noise variance has increased by the factor (1 - p2) -1. This 
noise enhancement is the price paid for the elimination of the multiuser 
interference by the decorrelation detector. 

The error rate performance of the MMSE detector is similar to that for the 
decorrelation detector when the noise level is low. For example, from 
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(15-3-49), we observe that when No is small relative to the diagonal elements of 
the signal correlation matrix R N , 

b"= R;;;'r (15-3-59) 

which is tbe solution for the decorrelation detector. For low multiuser 
interference, the MMSE detector results in a smaller noise enhancement 
compared with the decorrelation detector, but has some residual bias resulting 
from the other users. Thus, the MMSE detector attempts to strike a balance 
between the residual interference and the noise enhancement. 

An alternative to the error probability as a figure of merit that has been 
used to characterize the performance of a multiuser communication system is 
the ratio of SNRs with and without the presence of interference. In particular, 
(15-3-51) gives the error probability of the kth user in the absence of 
other-user interference. In this case, the SNR is 'I. = t.IN." In the presence of 
multiuser interference, the user that transmits a signal with energy 't:k will have 
an error probability P, that exceeds PkCy,)· The effective SNR 'Y" is defined as 
the SNR required to achieve the error probability 

(15-3-60) 

The efficiency is defined as the ratio y"h. and represents the performance 
loss due to the multiuser interference. The desirable figure of merit is the 
asymptotic efficiency. defined as 

(15-3-61 ) 

This figure of merit is often simpler to compute than the probability of error. 

Example 15-3-2 

Consider the case of two symbol-synchronous users with signal energies f I 

and #',. Let us determine the asymptotic efficiency of the conventional 
detector. 

In this case, the probability of error is easily obtained from (15-3-52) and 
(15-3-53) as 

PJ = ~Q(V2(n, + pVCi;,i/No ) + ~Q(V2(~ - pV~)'IN() 
However, the asyn:ptotic efficiency is much easier to compute, It follows 
from the definition (15-3·61) and from (15-3-52) that 

1)J = [ max (0,1 - Ji Ipl) r 
A similar expression is obtained for 1),. 

The asymptotic efficiency of the optimum and suboptimum detectors that 
wc have described has been evaluated by Verdu (1986), Lupas and Verdu 
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(1989), and Xie et al. (1990). Figure 15-3-2 illustrates the asymptotic efficiencies 
of these detectors when K = 2 users are transmitting synchronously. These 
graphs show that when the interference is small (~2~ 0), the asymptotic 
efficiencies of these detectors are relatively large (near unity) and comparable. 
As ~2 increases, the asymptotic efficiency of the conventional detector 
deteriorates rapidly. However, the other linear detectors perform relatively 
well compared with the optimum detector. Similar conclusions are reached by 
computing the error probabilities, but these computations are often more 
tedious. 

15-4 RANDOM ACCESS METHODS 
In this section, we consider a multiuser communication system in which users 
transmit information in packets over a common channel. In contrast to the 
COMA method described in Section 15-3, the information signals of the users 
are not spread in frequency. As a consequence, simultaneous transmission of 
signals from multiple users cannot be separated at the receiver. The access 
methods described below are basically random, because packets are generated 
according to some statistical model. Users access the channel when they have 
one or more packets to transmit. When more than one user attempts to 
transmit packets simultaneoudy, the packets overlap in time, i.e., they collide, 
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(a) packets from a typicar user: 
(b) packets from several users. 
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and, hence, a conflict results, which must be resolved by devising some channel 
protocol for retransmission of the packets. Below, we describe several random 
access channel protocols that resolve conflicts in packet transmission. 

15-4-1 ALOHA Systems and Protocols 

Suppose that a random access scheme is employed where each user transmits a 
packet as soon as it is generated. When a packet is transmitted by a user and 
no other user transmits a packet for the duration of the time interval then the 
packet is considered successfully transmitted. However, if one or more of the 
other users transmits a packet that overlaps in time with the packet [rom the 
first user. a collision occurs and the transmission is unsuccessful. Figure 15-4-1 
illustrates this scenario. If the users know when their packets are transmitted 
successfully and when they have collided with other packets. it is possible to 
devise a scheme, which we may call a channel access protocol, for retransmis
sion of collided packets. 

Feedback to the users regarding the successful or unsuccessful transmission 
of packets is necessary and can be provided in a number of ways. In a radio 
broadcast system. such as one that employs a satellite relay as depicted in Fig. 
15-4-2. the packets are broadcast to all the users on the down-link. Hence, all 

FIGURE 15-4-2 Broadcast system. 
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the transmitters can monitor their transmissions and, thus, obtain the following 
ternary information: no packet was transmitted, or a packet was transmitted 
successfully, or a collision occurred. This type of feedback to the transmitters is 
generally denoted as (0, 1, c) feedback. In systems that employ wire line or 
filter-optic channels, the receiver may transmit the feedback signal on a 
separate channel. 

"The ALOHA system devised by Abramson (1973, 1977) and others at the 
University of Hawaii employs a satellite repeater that broadcasts the packets 
received irom the various users who access the satellite. In this case, all the 
users can monitor the satellite transmissions and, thus, establish whether or not 
their packets have been transmitted successfully. 

There are basically two types of ALOHA systems: synchroilized or slotted 
and unsynchronized or unslotted. In an unslotted ALOHA system, a user may 
begin transmitting a packet at any arbitrary time. In a slotted ALOHA. the 
packets are transmitted in time slots that have specified beginning and ending 
times. 

We assume that the start time of packets that are transmitted is a Poisson 
point process having an average rate of A packets/so Let 1'" denote the time 
duration of a packet. Then, the normalized channel traffic G, also called the 
offered channel traffic, is defined as 

G=AT" (15-4-1) 

There are many channel access protocols that can be used to handle 
collisions. Let us consider the one due to Abramson (1973). In Abramson's 
protocol, packets that have collided are retransmitted with some delay r, 
where r is randomly selected according to the pdf 

( 15-4-2) 

where a is a design parameter. The random delay T is added to the time of the 
initial transmission and the packet is retransmitted at the new time. If a 
collision occurs again, a new value of r is randomly selected and the packet is 
retransmitted with a new delay from the time of the second transmission. This 
process is continued until the packet is transmitted successfully. The design 
parameter a determines the average delay between retransmissions. The 
smaller the value of ex, the longer the delay between retransmissions. 

Now, let A', where A' < A, be the rate at which packets are transmitted 
successfully. Then, the normalized channel throughput is 

(15-4-3) 

We can relate the channel throughput S to the olered channel traffic G by 
making use of the assumed start time distribution. The probability that a 
packet will not overlap a given packet is simply the probability that no packet 
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begins T" s before or Tp s after the start time of the transmitted packet. Since 
the start time of all packets is Poisson-distributed, the probability that a packet 
will not overlap is exp (-2A T,,) = exp (-2G). Therefore, 

5 = Ge-2G (15-4-4) 

This relationship is plotted in Fig. 15-4-3. We observe that the maximum 
throughput is 5ma> = I/'Ze = 0.184 packets per slot, which occurs at G = i. 
When G > t the throughput 5 decreases. The above development illustrates 
that an unsynchronized or unslotted random access method has a relatively 
small throughput and is inefficient. 

Throughput for slotted ALOHA To determine the throughput in a 
slotted ALOHA system, let G, be the probability that the ith user will transmit 
a packet in some slot. If all the K users operate independently and there is no 
statistical dependence between the transmission of the user's packet in the 
current slot and the transmission of !,he user's packet in previous time slots, the 
total (normalized) offered channel traffic is 

K 

G = 2; G, (15-4-5) 
1=1 

Note that, in this case, G may be greater than unity. 
Now, let S. ,,;;; G, be the probability that a packet transmitted in a time slot is 

received without a collision. Then, the normalized channel throughput is 

K 

5=2;s, (15-4-6) 
i=l 
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The probability that a packet from the ith user will not have a collision with 
another packet is 

" Q, = f1 (I - G,I (15-4-7) 
i 1 

I" 

Therefore. 

5, = (;,Q, (15-4-R) 

A simple exprcs;ion for the channel throughput is ohtained hy considering 
K identical users. Then. 

S=~ , K' 

and 

G 
(j=, K 

Then. if we let K - "X, we obtain the throughput 

S=Ge (, 

(15-4-4 ) 

(15-4-10) 

This result is also plotted in Fig. 15-4·3, We observe that S reaches a maximum 
throughput of Sm." = lie = 0.368 packets per slot at G = I. which is twice the 
throughput of the unslotted ALOHA system. 

The performance of the slotted ALOHA system given above is based on 
Abramson's protocol for handling collisions. A higher throughput is possible 
by devising a better protocol. 

A basic weakness in Ahramson's protocol is that it does not take into 
account the information on the amount of traffic on the channel that is 
available from observation of the collisions that occur. An improvement in 
throughput of the slotted ALOHA system can he obtained by using a tree-type 
protocol devised by Capetanakis (1979). In this algorithm. users are not 
allowed to transmit new packets that arc generated until all earlier collisions 
are resolved, A user can transmit a new packet in a time slot immediately 
following its generation. provided that all previous packets that have collided 
have been transmitted .successfully. If a new packet is generated while the 
channel is clearing the previous collisions. the packet is stored in a buffer. 
When a new packet collides with another. each Jser assigns its respective 
packet to one of two sets. say A or B. with equal probability (by flipping a 
coin). Then. if a packet is put in set A. the user transmits it in the next time 
slot. If it collides again, the user will again randomly assign the packet to one 
of two sets and the process of transmission is repeated. This process contmues 
until all packets contained in set A are transmitted successfully. Then. all 
packets in set B are transmitted following the same procedure, All the users 
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monitor the state of the channel, and, hence, they know when all the collisions 
have been serviced. 

When the channel becomes available for transmission of new packets, the 
earliest generated packets are transmitted first. To establish a queue, the time 
scale is subdivided into subintervals of sufficiently short duration such that, on 
average, approximately one packet is generated by a user in a subinterval. 
Thus, each packet has a '"time tag" that is associated with the subinterval in 
which it was generated. Then, a new packet belonging to the first subinterval is 
transmitted in the first available time slot. If there is no collision then a packet 
from the second subinterval is transmitted, and so on. This procedure 
continues as new packets are generated and as long as any backlog of packets 
for transmission exists. Capetanakis has demonstrated that this channel access 
protocol achieves a maximum throughput of 0.43 packets per slot. 

In addition to throughput. another important performance measure in a 
random access system is the average transmission delay in transmitting a 
packet. In an ALOHA system. the average number of transmissions per packet 
is GIS. To this number we may add the average waiting time between 
transmissions and, thus, obtain an average delay for a successful transmission. 
We recall from the above discussion that in the Abramson protocol, the 
parameter a determines the average delay between retransmissions. If we 
select a small, we obtain the desirable effect of smoothing out the channel load 
at times of peak loading, but the result is a long retransmission delay. This is 
the trade-off in the selection of a in (15-4-2). On the other hand, the 
Capetanakis protocol has been shown to have a smaller average delay in the 
transmission of packets. Hence, it outperforms Abramson's protocol in both 
average delay and throughput. 

Another important issue in the design of random access protocols is the 
stability of the protocol. In our treatment of ALOHA-type channel access 
protocols, we implicitly assumed that for a given offered load, an equilibrium 
point is reached where the average number of packets entering the channel is 
equal to the average number of packets transmitted successfully. In fact, it can 
be demonstrated that any channel access protocol, such as the Abramson 
protocol, that does not take into account the number of previous unsuccessful 
transmissions in establishing a retransmission policy is inherently unstable. On 
the other hand, the Capetanakis algorithm differs from the Abramson protocol 
in this respect and has been proved to be stable. A thorough discussion of the 
stability issues of random access protocols is found in the paper by Massey 
(l (88). 

15-4-2 Caerier Sense Systems and Protocols 

As we have observed, ALOHA-type (slotted and unslotted) random-access 
protocols yield relatively low throughput. Furthermore, a slotted ALOHA 
system requires that users transmit at synchronized time slots. In channels 
where transmission delays are relatively small, it is possible to design random 
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access protocols that yield higher throughput. An example of such a protocol is 
carrier sensing with collision detection, which is used as a standard Ethernet 
pro/ocol in local area networks. This protocol is generally known as carrier 
sense multiple access with collision detection (CSMA}CD). 

The CSMAICD protocol is simple. All users listen for transmissions on the 
channel. A user who wishes to transmit a packet seizes the channel when it 
senses that the channel is idle. Collisions may occur when two or more users 
sense an idle channel and begin transmission. When the users that are 
transmitting simultaneously sense a collision, they transmit a special signal, 
called a jam signal, that serves to notify all users of the collision and abort their 
transmissions. Both the carrier sensing feature and the abortion of transmission 
when a collision occurs result in minimizing the channel down-time and, hence, 
yield a higher throughput. 

To elaborate on the efficiency of CSMA/CD, let us consider a local area 
network having a bus architecture, as shown in Fig. 15-4-4. Consider two users 
U1 and U2 at the maximum separation, i.e., at the two ends of the bus, and let 
Td be the propagation delay for a signal to travel the length of the bus. Then, 
the (maximum) time required to sense an idle channel is rd. Suppose that U, 
transmits a packet of duration Tp' User U2 may seize the channel rd s later by 
using carrier sensing, and begins to transmit. However, user U, would not 
know of this transmission until rd s after U2 begins transmission. Hence, we 
may define the time interval 2rd as the (maximum) time interval 10 detect a 
collision. If we assume that the time required to transmit the jam signal is 
negligible, the CSMA/CD protocol yields a high throughput when 2rd« Tp-

There are several possible protocols that may he used to reschedule 
transmissions when a collision occurs. One protocol is called nonpersistent 
CSMA, a second is called i-persistent CSMA, and a generalization of the latter 
is called p -persistant CSMA. 

Nonpersistent CSMA In this protocol, a user that has a packet to transmit 
senses the channel and operates according to the following rule. 

(8) If the channel is idle, the user transmits a packet. 
(b) If the channel is sensed busy, the user schedules the packet 
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transmission at a later time according to some delay distribution. At the end of 
the delay interval, the user again senses the channel and repeats steps (a) and 
(b). 

I-Persistent CSMA This protocol is designed to achieve high throughput 
by not allowing the channel to go idle if some user has a packet to transmit. 
Hence, the user senses the channel and operates according to the following 
rule. 

(a) If the channel is sensed idle, the user transmits the packet with 
probability 1. 

(b) If the channel is sensed busy, the user waits until the channel becomes 
idle and transmits a packet with probability one. Note that in this protocol, a 
collision will always occur when more than one user has a packet to transmit. 

p-Persistent CSMA To reduce the rate of collisions in I-persistent CSMA 
and increase the throughput, we should randomize the starting time for 
transmission of packets, In particular, upon sensing that the channel is idle, a 
user with a packet to transmit sends it with probability p and delays it by T with 
probability 1 - p, The probability p is choser! in a way that reduces the 
probability of collisions while the idle periods between consecutive (nonover
lapping) transmissions is kept small. This is accomplished by subdividing the 
time allis into minislots of duration T and selecting the packet transmission at 
the beginning of a minislot. In summary, in the p-persistent protocol, a user 
with a packet to transmit proceeds as follows. 

(a) If the channel is sensed idle, the packet is transmitted with probability 
p, and with probability 1 - P the transmission is delayed by n. 

(b) If at I = T, the channel is still sensed to be idle, step (a) is repeated. If a 
collision occurs, the users schedule retransmission of the packets according to 
some preselected transmission delay distribution. 

(c) If at t = T, the channel is sensed busy, the user waits until it becomes 
idle. and then operates as in (a) and (b) above. 

Slotted versions of the above protocol can also be constructed. 

The throughput analysis for the nonpersistent and the p-persistent 
CSMA/CD protocols has been performed by Kleinrock and Tobagi (1975), 
based on the following assumptions: 

1 the average retransmission delay is large compared with the packet 
duration Tp; 

2 the interarrival times of the point process defined by the start times of 
all the packets plus retransmissions are independent and exponentially 
distributed. 
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For the nonpersistent CSMA, the throughput is 

S = Ge~·G 

G(I+20)+e oG 
(15-4-1l) 

where the parameter a = rdrr.. Note that as 0->0, S-+G/(I + G). Figure 
15-4-5 illustrates the throughput versus the offered traffic G. with a as a 
parameter. We observe that S -> 1 as G -> x for a = O. For 0 > O. the value of 
Sma. decreases. 

For the I-persistent protocol, the throughput obtained by Kleinrock and 
Tobagi (1975) is 

In this case, 

S = G[1 + G + oG(J + G + !aG)Je~G(1+2') 
G(l +20)- (l-e~aG)+ (1 +aG)e~G(1+a) 

I
. _ G(I + G)e~G 
ImS - c 

,,_iJ G+e' 

which has a smaller peak value than the nonpersistent protocol. 

(15-4-12) 

(15-4-13) 

By adopting the p-persistent protocol, it is possible to increase the 
throughput relative to the I-persistent scheme. For example, Fig. 15-4-6 
illustrates the throughput versus the offered traffic with a = r,I1;, fixed and 
with p as a parameter. We observe that as p increases toward unity, the 
maximum throughput decreases, 

The transmission delay was also evaluated by Kleinrock and Tobagi (1975). 
Figure 15-4-7 illustrates the graphs oi the delay (normalized by 7;,) versus the 
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throughput S for the slotted nonpersistent and p -persistent CSMA protocols. 
Also shown for comparison is the delay versus throughput characteristic of the 
ALOHA slotted and unslotted protocols. In this simulation, only the newly 
generated packets are derived independently from a Poisson distribution. 
Collisions and uniformly distributed random retransmissions are handled 
with.out further assumptions. These simulation results illustrate the superior 
performance of the p-persistenl and the nonpersistent protocols relative tD the 
ALOHA protocols. Note that the graph. labeled "optimum p-persistent" is 
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obtained by finding the optimum value of p for each value of the throughput. 
We observe that for small values of the throughput, the I-persistent (p = 1) 
protocol is optimal. 

15-5 BIBLlOGRAPillCAL NOTES AND REFERENCES 
FDMA was the dominant multiple access scheme that has been used for 
decades in telephone communication systems for analog voice transmission. 
With the advent of digital speech transmission using PCM, DPCM, and other 
speech coding methods, TDMA has replaced FDMA as the dominant multiple 
access scheme in telecommunications. CDMA and random access methods, in 
general, have been developed over the past three decades, primarily for use in 
wireless signal transmission and in local area wireline networks. 

Multiuser information theory deals with basic information-theoretic limits in 
source coding for multiple sources, and channel coding and modulation for 
multiple access channels. A large amount of literature exisli on these topics, In 
the context of our treatment of multiple access methods, the reader will find 
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the papers by Cover (1972), EI Gamal and Cover (1980) Bergmans and Cover 
(1974), and Hui (1984) parti..:ularly relevant. The capacity of a cellular CDMA 
system has been considered in the paper by Gilhousen et ai. (1991). 

Signal demodulation and detection for multiuser communications has 
received considerable attention in recent years. The reader is referred \0 the 
papers by Verdu (1986a-c, 1989), Lupas and Verdu (1990), Xie et al. (1990a, 
b), Poor and Verdu (1988), Zhang and Brady (1993), and Zvonar and Brady 
(1995). Earlier work on signal design and demodulation for multiuseI 
communications is found in the papers by Van Etten (1975, 1976), Horwood 
and Gagliardi (1975), and Kaye and George (1970). 

The ALOHA system, which was one of the earliest random access systems, 
is treated in the papers by AbraITllion (1970, 1977) and Roberts (1975). These 
papers contain the throughput analysis for unsloned and slotted systems, 
Stability issues regarding the ALOHA protocols may. be found in the papers by 
Carleial and Hellman (1975), Ghez et al. (1988), and Massey (1988). Stable 
protocols based on tree algorithms for random access channels were first given 
by Capetanakis (1977). The carrier sense multiple access protocols that we 
described arp. due to Kleinrock and Tobagi (1975). Finally, we mention the 
IEEE Press book edited by Abramson (1993), which contains a collection of 
papers dealing with multiple access comqlUnications. 

15·1 In Ihe formulation of the CDMA signal and channel models described in Section 
15-3-1, we assumed that the received signals are real. For K > 1, this assumption 
implies phase synchronism at all transmitters, which is not very realistic in a 
practical system, To accommodate the case where the carrier phases are not 
synchronous, we may simply alter the signature waveforms for the K users, given 
by (15-3-1), to be complex-valued, of the form 

L-' 
g,(I) = eo' L a,(n)p(t - nT,J, 1.;; k.;; K ._0 

where 8, represents the constant phase olIset of the kth transmitter as seen by the 
common receiver. 
8 Given this complex·valued form for the signature waveforms, determine the 

form of the optimum ML receiver that computes the correlation metrics 
analogous to (15-3-15). 

b Repeal the derivation for the optimum ML detector for asynchronous transmis
sion that is analogous to (15-3-19). 

15-2 Consider a TDMA system where each user is limited to a transmitted power P, 
independent of the number of users. Determine the capacity per user, C", and the 
total capacity KC". Plot C, and KC" as functions of ~bl No and comment on the 
results as K -+ ". 

15-3 Consider an FDMA system with K = 2 users, in an A WGN channel, where user 1 
is assigned a bandwidth W. = a Wand user 2 is assigned a bandwidth W, = 
(1- cr)W, where 0.;;",.;;1. Let P, and P, be the average powers of the two users. 
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• Determine the capacities C, and C, of the two users and their sum C = C I + C, 
as a function of a. On a two-dimensional gtaph of the rates R, versus R I • plot 
the graph of the points (C" C I ) as a varies in the range 0 ... a'" 1-

b Recall that the rates of the two users must satisfy the conditions 

R, + R, < W log, (1 + P;.,-;:') 
Determine the total capacity C when Plla = P,I(1 - a) = PI + P" and, thus, 
show that the maximum rate is achieved when a/(1 - oj = PIIP, = W,/W,. 

15-4 Consider a TDMA system with K = 2 users in an A WGN channel. Suppose that 
the two transmitters are peak-power-limited lop' and J>z.. and leI user 1 Iransmit 
for 1000% of the available time and user 2 transmit 100(1 - a)% of the time. The 
available bandwidth is W. 
a Determine the capacities C. C,. and C = C , + C, as functions of a. 
b Plotlhe graph of the points (C" C ,) as a varies in the range 0 ... a '" l. 

15-5 Consider a TDMA system with K = 2 users in an A WGN channel. Suppose that 
the two transmitters are average-power-limited, with powers P, and P,. User I 
transmits lOOa% of the time and user 2 transmits 100(1 - a)% of the time. The 
channel bandwidth is W. 
a Determine the capacities C,. C,. and C = C, + C, as functions of a. 
b Plot the graph of the points (C" C I) as a varies in the range 0 .. a '" 1-
c What is the similarity between tbis solution and the FDMA system in Problem 

15-3. 
15-6 Consider the two-user, synchronous, multiple-access channel and Ihe signature 

sequences shOWD in Fig. PI5-6. The parameter A'" 0 describes the relative 
strength between the two users, and 0 ... B '" I describes the degree of correlation 
between the waveforms. Let 

, . 
r(l} = L L b.(i)S.(I- i) + net) 

*=1 i~_'X. 

A 1-_--, 

r 12 

-AS 
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denote the received wavefonn at time I, where n(l) is white gaussian noise with 
power spectral density (T', and b,(i) E {-I, + I}. In the.following problems, you 
wiD compare the structure of the conventional multiuser detector to optimimum 
receiver structures for various values of A, 0 .. B .. 1, and u'. 
a Show that, given the observation {r(I), -oe < I .. I}, a sufficient statistic for the 

data b,(O) and b,(O) is the observation during t E [0, IJ. 
b Conventional (suboptimum) multiuser detection chooses the data b,(O) accord

ing to the following rule: 

6.(0) = sgn (y,) 

where 

Y. = l' r(t).s.(r) dt 

" 
Determine an expression for the probability of bit error for user I, using the 
notation 

w, = J.' si(l) dl 

PI' = f s,(I)s,(I) dl. 

e What is the form of this expression for A .... O. B < 1. and arbitrary u'? 
d What is the form of this expression for arbitrarily large A, B < I. and arbitrary 

II'? What does this say about conventional detection? 
e What is the form of this expression for B = 1, and arbitrary (T' and A? Why 

does this differ from the result in (d)? 
r Determine the form of this expression for arbitrarily large u'. arbitrary A. and 

B<l. 
g Determine the form of this expression for a' ..... O. arbitrary A. and B < 1. 

15-7 Refer to Problem 15-6. The maximum-likelihood sequence receiver for this 
channel selects the data b 1(0) and b,(O) transmitted during the interval [0. lJ 
according to the rule 

«~b,(O» = argmax A[{r(I). 0 < I < I} I hi' h,j 
1>1.102 

where A[{r(I). 0 < I < III b I. b,j is the likelihood function of h, and h, given an 
observation 01 {,(I). 0 < 1< I}. It will be helpful to write this maximization as 

«b,(O):"M® = argmax argmax Af{r(I). 0 < I < I} I hi. h2J 
!> ~ f> :: 

where the value bf that satisfies the inner maximization may depend on bl. Note 
that the need for "sequence detection" is obviated. 
8 Express this maximization in the simplesl possible terms. using the same 

notation as in Problem J5-6(b). Reduce this maximization to simplest form. 
using facts like 

argmax Kef,u, =argmaxf,(x) , , 

if. say. K is independent of x. 
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b What is the simplest structure of the MLS receiver as the relative strength of the 
interferer vanishes, A ~ O? How does it compare with conventional detectlon? 

c What is the simplest structure of the MLS receiver for B = 1 and arbitrary A 
and a'? How does it compare with cmventional detection? Why? 

d What is the simples! structure of the MLS receiver for arbitrarily large a' and 
arbitrary A and B? How does it compare with conventional detection? 
Determine the error rate for user I in this case. [Hint: Use the fact that 
sgo (y,) = sgn (y, ± p,,) with high probability in this case.} 

e Determine the error probability of user I of the MLS receiver for a< ~ 0, and 
arbitrarily large A and B < I? How does it compare with conventional 
detection? 

f What is the structure of the MLS receiver for arbitrarily large A. and B < I. and 
arbitrary a,? How does it compare with conventional detection? What does this 
say about conventional detection in this case? [Hint: Use the fact that E ly,1 is 
roughly A times greater than E ly,I.] 

15-8 Consider the asynchronous communication system shown in Fig. PIS-S. The two 
receivers are not colocated, and the white noise processes n'''(t) and n· 2 '(t) may be 
considered to be independent. The noise processes are identically distributed, with 
power spectral density (T2 and zero mean. Since the receivers are not colocated, 
the relative delays between the users are not the same--<lenote the relative delay 
of user k at receiver i by r~". All other signal parameters coincide for the receivers, 
and the received signal at receiver i is 

, 
r"'(t) = L L b.(lls,(t -IT - .1'» + n"'(t) 

k"'" I 1= ~ or 

where s, has support on [0, T]. You may assume that tne receiver i has full 
knowledge of the waveforms, energies, and relative delays rii' and Ti' Although 
receiver i is eventually interested only in the data from transmitter·i. note that 
there is a free communication link between lhe sampler of one receiver, and the 
postprocessing circuitry of the other. Following each postprocessor, the decision is 
attained by threshold detection. In this problem; you will consider options for 
postprocessing and ,for the communication link in order to improve performance. 

886

FIGURE PlS-8 

876 DIGITAL C()\(MlJNlfATlONS 

Mal~-hed 

I----~., hIler I 

CommllfllCalKm linh 

)----1 M<lh:hed 
filter 2 

" 

Pos;

pn:x:eliMlf 

Post

ptocessor 

b-Pi=-I 

b What is the simplest structure of the MLS receiver as the relative strength of the 
interferer vanishes, A ~ O? How does it compare with conventional detectlon? 

c What is the simplest structure of the MLS receiver for B = 1 and arbitrary A 
and a'? How does it compare with cmventional detection? Why? 

d What is the simples! structure of the MLS receiver for arbitrarily large a' and 
arbitrary A and B? How does it compare with conventional detection? 
Determine the error rate for user I in this case. [Hint: Use the fact thai 
sgo (y,) = sgn (y, ± p,,) with high probability in this case.} 

e Determine the error probability of user I of the MLS receiver for a< ~ 0, and 
arbitrarily large A and B < I? How does it compare with conventional 
detection? 

f What is the structure of the MLS receiver for arbitrarily large A. and B < I. and 
arbitrary a,? How does it compare with conventional detection? What does this 
say about conventional detection in this case? [Hint: Use the fact that E ly,1 is 
roughly A times greater than E ly,I.] 

15-8 Consider the asynchronous communication system shown in Fig. PIS-S. The two 
receivers are not colocated, and the white noise processes n'''(t) and n· 2 '(t) may be 
considered to be independent. The noise processes are identically distributed, with 
power spectral density (T2 and zero mean. Since the receivers are not colocated, 
the relative delays between the users are not the same--<lenote the relative delay 
of user k at receiver i by r~". All other signal parameters coincide for the receivers, 
and the received signal at receiver i is 

, 
r"'(t) = L L b.(lls,(t -IT - .1'» + n"'(t) 

k"'" I 1= ~ or 

where s, has support on [0, T]. You may assume that the receiver i has full 
knowledge of the waveforms, energies, and relative delays rii' and ri' Although 
receiver i is eventually interested only in the data from transmitter·i. note that 
there is a free communication link between lhe sampler of one receiver, and the 
postprocessing circuitry of the other. Following eacb postprocessor, the decision is 
attained by threshold detection. Cn this problem; you will consider options for 
postprocessing and ,for the communication link in order to improve performance. 



CHAPTER I:': MULTIUSER ("OMMUSICATIONS 877 

a What is the bit error probability for users 1 and 2 of a receiver pair that does nOI 
utilize the communication link, and does not perform postprocessing. Use the 
following notation: 

vdl) = J s, (t ~ IT - r\")r'''(1) dt 

pi,' = I",(t ~ r',")s,(t + T ~ t{') cit 

b Consider a postprocessor for receiver I that accepls y,(I - I} and y,(i) from Ihe 
communication link. and implements lhe following postprocessing on ,v,(1) 

~,(I) = v, (/) - p\;' sgn [v,(J ~ l)j ~ p\~' sgo I y,(I)}. 

Determine an exact expression for the bit error rate for user 1. 
c Determine the asymptotic multiuser efficiency of the receiver proposed in (b l. 

amI compare "ith that in (a). Does this receiver always perform beller than that 
proposed in (aJ" 

15-~ The basenand waveforms shown i~ Fig. PIS-6 are assigned to two users who share 
the ~ame ,uYflcilroI10/(S. narrowband channel. Assume Ihal B = I and A = 4. We 
should like to compare the performance of several receivers, with a criterion of 
.,1',(0). Since this expression is too complicated in some cases. we shall also be 

interested in comparing the asymptotic multiuser efficiency 1], of each receiver. 
Assume that r, ~ [) but that 0 < r, < T is fixed and known at the receiver, and 
assume thaI we have mfinite horizon transmjssion~ 2lJ + } ---+ x. 

a For the conventional. multiuser detector: 
(i) Find the exact bit probability of ermr for user L Express this result in terms 

of W" p", p". and <T'. [Hint: Conditioning on b,( ~ I) and b,(O) will help,] 
(ii) Plot the asymptotic multiuser efficiency 7/, as a function of f,. Indicate and 

explain the maximum and minimum values of 7/, in Ihis plot. 
b For the MLS receiver: 

Ii) Plot 1), as a function of f,. Explain maximum and minimum values, and 
compare with (a)(ii). 

(ii) Which error sequences are most likely for e<leh value of r," 
c fur the limiting decorrelating detector: 

Ii) Find an exact expression for the probability of error for user l. with similar 
parameters as in (a)(i) [Hint: Don't forget to normalize p" and P2l.j 

(ii) Plot ,/, as a function of r,. Explain the minimum value of 7/, in this case, 
and compare with (a)(ii). 

15·10 The symbol-by-symbol deleclor that minimizes the probabilit} of a symbol erTOr 
differs from the maximum-likelihood sequence detector. The former is more 
completely described as the detector that selects each b.(O) according to the rule 

h..(O) = argmax A[(r(t), 0 < {< I} I b,(O) 1 
l>~t'l) 
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---a Show that this decision rule minimizes A[b,(O) "b.(O)] among all decision rules 
with observation {r(t), 0< 1 < I}. Subject to this criteria, it is superior to the 
MLS receiver. 

b Show that the simplest structure of the minimum-probability-of-error receiver 
for user I is given by 

--- [(b,y,) (V2-b,P",] b,(O) = argmax exp --,- cosh' , }' 
b[ a _ (I' 

<,Find the simplest form of the minimum-probability-of-error receiver for B = I 
and arbitrary A and U'. How does this compare with the above receivers? 

d Find the limiting form of the minimum-probability-of-error receiver for arbit
rarily large a' and arbitrary A and B. Compare with the above receivers . 

• Find the limiting form of the minimum-probability-of-error receiver for A » I 
and arbitrary IT' and B. Compare with the above receivers. 

r Find the limiting form of the minimum-probability-of-error receiver for A » I 
,,' ..... 0 and arbitrary B. Compare with the above receivers_ 

15-11 In a pure ALOHA system, the channel bit rate is 2400 bits/so Suppose that each 
terminal transmits a 100 bit message every minute on the average. 
a Determine the maximum number of terminals that can use the channel. 
b Repeat (a) if slotted ALOHA is used. 

15-]2 Determine the maximum input traffic for the pure ALOHA and slotted ALOHA 
protocols. 

15-13 For a Poisson process, the probability of k arrivals in a time interval Tis 

P(kJ = e AT(A1'-)' 
k' 

k=O,l,2, ... 

a Determine the average number or arrivals in the interval T. 
b Determine the variance {T' in the number of arrivals in the interval T. 
c What is the probability of at least one aITh'al in the interval T? 
d What is the probability of exactly one arrival in the interval T? 

15-14 Refer to Problem 15-13. The average arrival rate is A = 10 packets/so Determine 
a the average time between arrivals; 
b the probability that another packet will arrive within I s; within 100 ms. 

15-15 Consider a pure ALOHA system that is operating with a throughput G = 0.1 and 
packets are generated with a Poisson arrival rate A. Determine 
a the value of A; 
b the average number of attempted transmissions to send a packet. 

15-16 Consider a CSMA/CD system in which the transmission rate on the bus is 
10 Mbits/s. The bus is 2 km and the propagation delay is 5 ;.<s/km. Packets are 
lOOO bits long. Determine 
a the end-to-end delay Tn; 

b the packet duration ~; 
c the ratio rj ~; 
d the maximum utilization of the bus and the maximum hit rate. 
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APPENDIX A 
THE LEVINSON-DURBIN 

ALGORITHM 

The Levinson-Durbin algorithm is an order-recursive method for determining the 
solution to the set of linear equations 

(A-I) 

where «1>, is a p X P Toeplitz matrix, ." is the vector of predictor coefficients exp,essed 
as 

a;, = [ap1 Op]. .•. a",,] 

and <1>" is a p-dimensional vector with elements 

<1>;=[<1>(1) <1>(2) ." <I>(p)] 

For a first-order (p = I) predictor. we have the solution 

<1>(0)«,. = q,(\) 

a,. = q,(l )/<1>(0) 

The residual mean square error (MSE) for the first-order predictor is 

'i, = <b(O) -a,. <1>(1) 

= <1>(0) -0;,<1>(0) 

= <1>(0)(1 - a;') 

(A-2) 

(A-3) 

[n general. we may express the solution for the coefficients of an mth-order 
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predictor in terms of the coefficients of the (m - l)th-order predictor. Thus, we express 
8 m as the sum of two vectors, namely, 

(A-4) 

where the vector dm _, and the scalar km are to be determined. Also, tl>m may be 
expressed as 

(A-5) 

where 4>:'-, is jusl the vedor 4>.,-, in reverse order. 
Now 

(A-6) 

From (A-6), we obtain two equations. The first is the matrix equation 

(A-7) 

But Ci>m_,8m .. , = 4>m-" Hence, (A-7) simplifies to 

(A-S) 

This equation has the solution 

(A-9) 

But 4>;"-, is just 4>m-' in reverse order. Hence, the solution in (A-9) is simply am , in 
reverse order multiplied by - k",. That is, 

[

am '''.'] d :::; -k il..,-lm-2 
in -< "I • 

flm _! I 

The second equation obtained from (A-6) is the scalar equation 

4>:'-,8m-, + 4>;',d",_, + </J(U)km ~ </J(m) 

(A-IO) 

(A-II) 

We eliminate dro _, from (A-II) by use of (A-lO). The resulting equation gives us k.,. 
That is, 

km 

</J(m) - ",;".,8m _, 

.p(0) - 8;" ,4>", , 

.p(m) - <t>;". ,8m . , 

'€n;- I 
(A-12) 
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where 'l", I is the residual MSE given as 

(A-I3) 

By substituting (1\-10) for dm - I in (A-4), we obtain the order-recursive relation 

am' ~a"'Ik-k",am_lm __ .. k = 1,2, ... ,m-I, m =I,2, .... p (A-14) 
and 

The minimum MSE may also be computed recursively. We have 

m 

'tm ~ ,p(0) - 2: a",,<I>(k) (A-15) 
k=l 

Using (A-14) in (A-IS). we obtain 

'1'", = <1>(0) - mf am ,,<I>(k) - amm[<I>(m) - ~Ia",_" '" .<I>(k») 
A=1 .I:~I 

(A-16) 

But the term in square ~rackets in (A·16) is just the numerator of km in (A-I2). Hence. 

(A-17) 
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APPENDiX B 
ERROR PROBABILITY 
FOR MULTICHANNEL 
BINARY SIGNALS 

b multichannel communication systems that employ binary signaling for transmitting 
information over the A WGN channel, the decision variable at the detector can be 
expressed as a special case of the general quadratic form 

I 

D = L (A IX.!' + B i¥,.j' + ex, Y: + e*xty,j (B·I) 
, I 

in complex-valued gaussian random variables. A. S, and C are constants: X, and Y, are 
a pair of correlated complex-valued gaussian random variables. For the channels 
considered, the L paiTs (X,. Y, I aTe mutually statistically independent and identically 
distTibuted. 

The probability of error is the probability that D < n. This probability is evaluated 
helow. 

The computation begms with the characteristic function, denoted by 1jJ,,(jv), of the 
general quadratic (orm. The probability that D < 0, denoted heTe as the probability of 
error Ph' is 

(B-2) 

where p( D), the probability density function of D. is related to 1jJ,,(jv) by the Fourier 
transform. i.e .. 
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Hence. 

(B-3) 

Let us interchange the order of integration and carry out first the integration with 
respect to D. The result is 

I [-" "'o(jv) P,= -- ---dv 
21Cj -00-..,#- v 

(B-4) 

where a small positive number F has been inserted in order to move the path of 
integration away from the singularity at v = 0 and which must be positive in order 10 
allow for the interchange in the order of integration. 

Since D is the sum of statistically independent random variables, the characteristic 
function of D factors into a product of L characteristic functions, with each function 
corresponding to the individual random vanables d" where 

d. = A IX,I' + B iY,l' + CX,l1 + C' X;"Y, 

The characteristic function of d s is 

(' ) v,v, [v,,,,(-,,'a,. +;va2k~ 
q,d, IV (v + jv,)(v - iv,) exp [ (v + jv,)(v - jv,) -J (B-5) 

where the parameters v" v" a,., and u" depend on the means X, and V- and the 
second (central) moments /-L.,., p.", and ILn of the complex-vlaued gaussian variables X, 
and Y. through the following definitions (ICY - AB > 0): 

_) , 1 
VI - W + 2 2 - w 

4(/-L,,/-L,y - IILx,1 lOCI - AB) 

AJLn + BillY + elL:\, + C*JL.>:y 
W 2 2 . 

4(ILxxIL" -IILnl lOCI - AB) 

a,. = 20Cl' - AB)(JX.I' IL,,. + iV-I' /-Lxx - X:V-ILxy - X, Y;"IL:;) 

au< = A IX.I' + B IV-I' + cx:¥. + C· x. Y: 

/-L" = ~E[(X. - X,l(Y, - V-)*] 

(B-6) 

Now, as a result of tbe independence of the random variables d., the characteristic 
function of D is 

L 

",,,(jv} = n "'.,(jv) .. , 
(v, ",)L L:..v ,!..:V~2::d.(IVc.:· :=a;.2 _-...:v:,-':=a~l)] 

"'D(jv) exp rc 
(v + ju,)L(V - iv,)L V + jv,)(v - j V2) (B-7) 

where 

(B-8) 
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The result iB-7) is substituted for ",,,Uv) in (8-4). and we obtain 

(v, v,)' fX>" dv Lv,v,(jvu, - v'n,)} 
f, = - 2nf -"" v(v + jVll'lv - jv,l,exp l(v + jv,)(l! - jv,) (B-9) 

This integr.! is evaluated as follows. 
The first step is to express the exponential function in the form 

( 
jA, jA, ) 

exp -A, +--.----:
u + jU, V-IV, 

where one can easily verify tllat the constants A" A" and A.I are given as 

(B-IO) 

Second, a conformal transformation is made from Ihe " plane onto the p plane via 
the change in v~ab!e 

VI V - jV2 
p=----.-

V z v + ,v t 

(B-1! ) 

In Ihe p plane, the inlegralgiven by (B-9) becomes 

p, = exp [v, v,( -20vl v, + a,u, - a,v,)/(vl + v,)"J ...!..- f. f ) d 
• (l + v,lvl)lL I 2/tj r (p p 

(B-12) 

where 

f 
[1 + (v,!V,)pj'L-1 [A,(V21t1,) A,(v,!v,) IJ 

(p) = L exp P + .:.="'-""-= 
p (I-p) v, +v, v, +0, p 

(S-B) 

and r is a circular contour of radius less than unity that encloses the origin. 
The third step is to evaluate the integral 

...!..- ff(p)d = _1_ f (1 + (v,/v,)p)2L-' 
2/tj lr p 21<j lr p'(1 - p) 

[
A,iv,'tI,) A,(vl/v,) IJd 

xexp p+ p 
VI + liz VI + "2 P 

(B-14) 

In order to facilitate subsequent manipulations, the constants a;;. 0 and b .. 0 are 
introduced and defined as follows: 

A,(v'/v,) 

VI + Vz 

A,(v,/v,) 

VI +1'1 
(B-15) 
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Let us also expand the function [I + (UO!U,)p!" I as a binomial seri"s. As a result, we 
ontain 

x _1-. f J p' exp (laO + lb'P) dp 
2tfJ ,.p(l-p) p 

(B-16 ) 

The contour integral giwn tn (B-16) is one representation of the Bessel function. It 
can he solv"d by making use of the relations 

{2~j W" [/' exp (l;' + WP )dp 
I,,(ab) = Ib" d , 

-I -) f p" 'exp I ,a + ~b'p ) dp 
21<J \a I \ p 

where L,(x) is the nth order modified Bessel function of the first kind and the series 
representation of Marcum's Q function in terms of Bessel functions, i.e., 

. (a)" Q,(a. b) ~ exp [-\(a' + b')! + 2: b I.,(ab) 
n=\l 

First, consider the case 0.,; k .,; L - 2 in (B-16). In this case, the resulling contour 
integral can be wrillen in the formt 

,1 1 exp ea
' + \b'p )dp = Q,(a, b) exp [Ha' + b')] + I ±' (~rI,,(ab) 

1.I-p, p . "., \a. 

(B-17) 

Next, consider the term k = L - L The resulting contour integral can be expressed in 
terms of the Q function as follows: 

_1_. r 1 exp (la
2 

+ lb2p)dP ~ Q,(a. b) exp {Ha' + b')] 
21<1 JIP(l - p) p 

(B-18) 

Finally, consider the case L .,; k .,; 2L - 1. We have 

1 1 p' .J ( 'a' ) --'--, -- exp ~ + lb'p dp 
2ICj I 1 - P P 

• I 1 . da' ) =2:-. pk-L"expl_-_+~b2p dp 
"~l 21<J r \ P 

.,~,tL (~rl.,(ab) =Q,(a, b)exp [l(a'+ b2)j - ~: W"l,,<ab) (B-19) 

Collecting the terms that are indicated on the right-hand side of (B·16) and using 

t This contour integral is related to the generalized Marcum Q function. defined as 

Q~(a, b) ~ f x(xla)m -, exp [-l(x' +a')]/m_,(ax).Ix, m '" 1 

in the following manner: 

Q~(". b) e,p [Ma' + b'l] = 2~ 1r pm(ll_ p) exp (~;' + ~b'p ) dp 
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the results given in (B-17)-(8-19), the following expression for the contour integral is 
obtained after some algebra: 

-, [(p)dp= \Tv, [expH(a'+b')]Q,(a,b)-I,.(ab)) 1 i ()'L-' 
21TJ " V,) 

+ lo(ab) ~~ e\-l)(::)' 
L-' L-'-n (2L -1)[(b)"(V')' (a')O(v,)'L-'-*] + L Io(ab) L - - - - -
n~! 1;-U k a VI b, V j 

(B-20) 

Equation (8·20) in conjunction with (8-12) gives the result for the probability of 
error. A further simplification results wnen one uses the following identity, which can 
easily be proved: 

f VI V2 ] l' Z 2 ] eXPl ,(-2"".,v,+a,v,- ""V,) =exp[-,{a +b) 
(V, + v,) 

Therefore, it follows that 

Pb = Q,(a. b) -/o(ab) exp I-~(a' + b'») 

:'(ab) exp [-Ha' + b'») ~' (2L - 1 )(V')' * exp [- Ha' + b'») 
+ ( . }'L'':'' + ( / )'L , 1 + VZ/v1 k=O k. VI 1 + V2 VI -

X 't: I.(ab) L%: C\-l) (B-21) 

Pb = Q,(a, b) 

(L> 1) 

tJ2/VI l 2 , 

I 
Io(ab)exp[-,(a +b») (L=l) 

1 + V2 VI 

This is the desired expression for the probability of error. It is now a simple matter 
to relate the par~meters a and b to the moments of the pairs tK •. Y.). Substituting for 
A, and A, from (B-IO) into (B-15), we obtain 

a = [lv~v2(alvl- (Xl)]'" 
l (VI + V,)' 

b = [2V1V~("'IVI + "'2)1'" 
(v, + II,)' J 

(B-22) 

Since v" 112, a" and a2 have been given in (B-6) and (B-8) directly in terms of the 
moments of the pairs X. and Y,.. our task is completed. 
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APPENDIX C 
ERROR PROBABILITIES 

FOR ADAPTIVE RECEPTION 
OF M-PHASE SIGNALS 

In this appendix, we derive probabilities of error for two- and four·phase signaling over 
an L-diversity-branch time-invariant additive guassian noise channel and fur M ·pha"" 
signaling over an L-diversity-branch Rayleigh fading additive gaussian noise channel. 
Both channels corrupt the signaling waveforms transmitted through them by introduc· 
ing additive white gaussian noise and an unknown or random multiplicative gain and 
phase shift in the transmitted signal. The receiver processing consists of cross· 
correlating the signal plus noise received over each diversity branch by a nois\" 
reference signal, which is derived either from the previously received information· 
bearing signals or from the transmission and reception of a pilot signal, and adding the 
outputs from all L·diversity branches to form the decision variable. 

C-l MATHEMATICAL MODEL FOR AN M-PHASE 
SIGNALING COMMUNICATIONS SYSTEM 

In the general case of M-ph",e signaling, the signaling waveforms at ,he transmitter 
aret 

5,,(/) = Re!s,,,(/)e',·,·ij 

t The complex representation of real signals is used throughout, Complex conjugation IS 

denoted by an asterisk. 
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where 

n = 1,2, ... ,M, 0,,; I": T (C-I) 

and T is tbe time duration of the signaling interval. 
Consider the case in which one of these M waveforms is t.ansmitted, for the 

duration of Ihe signaling interval, over L channels. Assume thaI each of the channels 
corrupts the signaling waveform transmitted through it by introducing a multiplicative 
gain and phase shift, represented by the complex-valued number gk' and an additive 
noise <k(I). Thus, when the transmitted waveform is s,.(f), the waveform received over 
the k th channel is 

T'k(I)=gkS",(I)+Zk(I). O""-I..:T, k=1,2 •... ,L (C-2) 

The noises {Zk(l)} are assumed to be sample functions of a stationary white gaussian 
random process with zero mean and autocorrleation function q,,( r) = Noo( rl. where No 
is the value of the spectral density. These sample functions are assumed to be mutualIy 
statistically independent. 

At the demodUlator, ,,,(I) is passed through a filter whose impulse response IS 
matched to the waveform get). The output of this filter. sampled at time t = T. is 
denoted as 

(C-3) 

where g is the transmitted signal energy per channel and N. is the noise sample from 
the kth tilter. In order for the demodulator 10 decide which of the M phases was 
transmitted in the' signaling interval 0,,; t ,,; T. it attempts to undo the phase shift 
introduced by each channel. In practice, tnis is accomplished by multiplying the 
matched filter output X, by the complex conjugate of an estimate g, of the channel gain 
and phase shift. The result is a weighted and phase-shifted sampled output from the 
kth-channel filter, which is then added to the weighted and phase-shifted sampled 
outputs from the other L - I channel filters. 

The estimate g. of the gain and phase shift of the kth channel is assumed to be 
derived either from the transmission of a pilot signal or by undoing the modulation on 
the information-bearing signals received in previous signaling intervals. As an example 
of the fonner, suppose that a pilot signal, denoted by '".(1). 0";1"'" T, is transmitted 
over the kth channel for the purpose of measuring the channel gain and phase shift. 
The received waveform is 

g,sp,(t)+Zp.(t), O..:t,,;T 

where zp,{t) is a sample function of a stationary white gaussian random process with 
7ero mean and autocorrelation function q,p( f) = Noll( f). This signal plus noise is passed 
through a filter matched to $".(1). The filter output is sampled at time 1 = T to yield the 
random variable X". = 2~g, + N .. , where if. is the energy in the pilot signal, which is 
assumed to be identical for all channels, and N". is the additive noise sample. An 
estimate of g, is obtained by properly normalizing Xp ., i.e., g, = g. + N"./2'fip-

On the other hand, an estimate of g. can be obtained from the information-bearing 
signal as follows. If one knew the information component contained in the matched 
filter output then an estimate of g, could be obtained by properly normalizing this 
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On the other hand, an estimate of g. can be obtained from the information-bearing 
signal as follows. If one knew the information component contained in the matched 
filter output then an estimate of g, could be obtained by properly normalizing this 



APPENDIX C': ERROR PROBABILITIES FOR ADAPTIVE RECEPTION OF AI-PHASE SIGNALS 889 

output. For example, the information component in the filter output given by (C-3) is 
2'1:g, exp (j(2lf/M)(n - 1)]. and hence, the estimate is 

where N; = N, exp [- j(2lf/M)(n - I)] and the pdf of N; is identical to the pdf of N, 
An estimate that is obtained from the information-bearing signal in this manner is 
called a clairooyant estimate. Although a physically realizable receiver does not po,sess 
such clairvoyance, it can approximate this estimate by employing a time delay of one 
signaling interval and by feeding back: the estimate of the transmitted phase in the 
f'revious signaling interval. 

Whether the estimate of g, is obtained from a pilot signal or from the information
bearing signal, the estimate can be improved by extending the time interval over which 
it is formed to include several prior signaling intervals in a way that has been described 
by Price (1962a, b). As a result of extending the measurement interval, the 
signal·to-noise ratio in the estimate of g, is increased. In the general case where the 
estimation interval is the infinite past, the normalized pilot Signal estimate is 

- ' I' 
8, = g, + ~ c,Np ,,/ 211>, ~ c, (C-4) 

where C, is the weighting coefficient on the subestimate of g. derived from the ith prior 
signal interval and N p>< is the sample of additive gaussian noise at the output of the filter 
matched to sp.(t) in the ith prior signaling interval. Similarly, the clairvoyant estimate 
that is obtained from the information-bearing signal by undoing the modulation over 
the infinite past is 

(C-5) 

As indicated, the demodulator forms the product between g: and X. and adds tbis to 
tbe products of the other L - I channels. The random variable tbat results is 

L L 

Z = 2: X,g: = 2: X,Y:' 
k=l k" I 

= z,. + jZi (C-6) 

where, by definilion, Y" = g" Z, = Re (z), and z, = 1m (z). The phase of z is the decision 
variable. This is simply 

C-2 CHARACTERISTIC FUNCTION 
AND PROBABILITV DENSITY FUNCTION 
OF THE PHASE (J 

(C-7) 

The following derivation is based on the assumption thaI the transmitted signal pbase IS 

zero, i.e., n = l. If desired, the pdf of /I conditional on any otber transmitted signal 
phase can be obtained by translating p(/I) by tbe angle 21r(n - 1)/ M. We also assume 
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that the complex-valued numbers {g.l. which characterize the L channels, are mutually 
statistically independent and identically distributed zero-mean gauSsian random vari
ables_ This characterization is appropriate for slowly Rayleigh fading channels_ As a 
consequence. the rrandom variables (X,. Y,) are correlated, complex-valued, zero
mean, gaussian, and statistically independent, but identically distributed with any other 
pair (X" ~). 

The method that has been used in evaluating the probability density p( 0) in the 
general case of diversity reception is as follows. First, the characteristic function of the 
joint probability distribution function of z. and z" where z. and z, are 'wo components 
that make up the decision variable 8, is obtained. Second, the double Fourier transform 
of the characteristic function is performed 'and yields the density p(z" z')' Then the 
transformation 

r = v' z; + z;, 0 = tan ,( ~ ) 
z, 

(C-8) 

yields the joint pdf of the envelope r and the phase O. Finally, integration of this joint 
pdf over the random variable r yields the pdf of e. 

The joint characteristic function of the random variables Z, and z. can be expressed in 
the form 

where, by definicion, 

m" = E(lX.I') 

m" = E(IY.I') 

m" = E(X, }1') 

identical for all k 

identical for all k 

identical for all k 

(C-9) 

(C-IO) 

The result of Fourier-transforming the function !/I(jIJ,. jv,) with respect to the 
variables VI and U::, is 

( ) _ (I-IILI')'- (v?"+?)L~' 
p Z,. Z, - (L _ 1)"r21 Z, + 4, 

X exp [IlL I (z, cos e + z, sin e)]KL_,(Y z; + zf) (C-ll) 

where Kn(x) is the modifiell Hankel function of order n. Then the transformation of 
random variables, as indicated in (C-8) yields the joint pdf of the envelope r and the 
phase e in the form 

(C-12) 
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Now, integration over the variable r yields the marginal pdf of the phase e. We have 
evaluated the integral to obtain p (9) in the form 

(_1)1 '(l-I/-LI')' {il l -' [ 1 
p( 9) = 2Jr(L - I)! ilb' , b - I/-LI' cos' (9 - e) 

!/-Llcos(9-E), (_I/-LIcos (.9-f»)]}! 
+ 2::1 I ... · .. cos /...1'2 ; [b - !/-LI cos (9 - E) - "h 

In this equation. the notation 

0:1 fIb, /-Lt, 

denotes the Llh partial derivative of the function f(b.lL) evaluated at b = 1. 

C-3 ERROR PROBABILITIES FOR SLOWLY 
RAYLEIGH FADING CHANNELS 

(C-J3) 

In this section. the probability of a c"aracter error and the probability of a binary digit 
error are derived for til -phase signaling. The probabilities are evaluated via the 
probability density function and the probability distribution function of 11. 

The ProbabUity Distribution Function of the Phase In order to evaluate the 
probability oi error, we need to evaluate the definite integral 

P(9,';;9';; 9,) = f' p(9)de ' 
", 

where e, and 9, are limits of integration and pte) is given by (C-l3). All subsequent 
calculations are made for a real cross-correlation coefficient IL. A rcal-valued IL implie, 
that the signals have symmetric spectra. This is tbe usual situation encountered. Since a 
complex-valued /-L causes a shift of f in the pdf of e, i.e .• £ is simply a bias term. the 
results that are given for real /-L can be altered in a trivial way to cover the more general 
case of complex-valued IL. 

In the integration of p( e), only the range 0.;; 9.;; Jr is considered. because p( 9) is an 
even function. Furthermore, the continuity of the integrand and its derivatives and Ihe 
fact that the limits 9, and 8, are independent of b allow for the interchange of 
integration and differentiation. When this is done, the resulting integral can be 
evaluated quite readily and can be expressed as follows: 

f"' _ (-1),--'(1 - /-L')I. 
)., p(9)de- 2Jr(L-I)! 

.1.-, { 1 [/-LVI x-- --
"b L

-' b-/-L' 

(bl/-L' - l).x' 
bill cot l.l 

(C-14) 

where, by definition, 

-/-L cos 9, 
x'=Yb-/-L'cose," ;=1,2 (C-15\ 
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Probability of • Symbol Error The probability of a symbol error for any M -phase 

signaling system is 

PM = 2f' p(8) dB 
,,;'" 

When (C-14) is evaluated at these two limits, the result is 

(-ll-I(l- /1-')' il'-' { 1 [1r 
PM -- -- -(M-I) 

1r(L-l)! ilb L
-' b-IL' M 

I-'sin(1r/M) _I ( -p.cos(1r/M) ))}I 
- Vb _I-" co'! (1r/M) cot Vb _I-" cos' (triM) b" 

(C-16) 

Probability or • Binary Digit Error First, let us consider two-phase signaling. In 
this case, the probability of a binary digit error is obtained by integrating the pdf p(6) 
over the range jtr < 6 < 3J1'. Since p( 6) is an even function and the signals are a priori 
equally likely, this probability can be written as 

P, ~ 2J~ p(8) de 

It is easily verified that 8, = jtr im"lies x, = 0 and e, = tr implies x, = p. /~. Thus, 

(-IlL-I(I - IL'Y aL
-' [ I IL]I 

P, = 2(L -1)l ab L
-

I b _I-" - b '12(b - 1") b-I 
(C-I7) 

After performing the differentiation indicated in (C-17) and evaluating Ihe resulting 
funclion at b = 1. the probability of a binary digit error is obtained in the form 

1 [ L-' (2k)(1 _ /1-2)'] P,=-I-p.2 --
2 '-0 k . 4 

(e-18) 

Next, we consider the case of four-phase signaling in which a Gray code is used to map 
pairs of bils ;nlo phases. Assuming again that the !ransmilted s)gnal is Sf,(I). it is clear 
that a single error is committed when the received phase is ~1r < 8 < ~tr. and a double 
error is committed when the received phase is ~tr < 6 < tr. That is, the probability of a 
binary digit error is 

P 4b = E:'p( 0) d9 .,. 2(/(8) d6 

It is easily established from (C-14) and (C-19) that 

(-1),-'(1- IL')L aL
-' [ 1 /L)I 

p .. = 2(L -l)t ab L -
I b - IL' - (b - p.')(2b - IL')"' b~1 

Hence, the probability of a binary digit error for {our-phase signaling is 

_ I [ I-' L-' (2k)( 1 + IL' ).] 
P'b-2 l-~.~ k 4-2/,' 

(C-19) 

(C-20) 

Note that if one defines the quantity p = IJ-/~. the expression for p .. in terms 
of p is 

(C-2l) 
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In other words, P" has the same form as P, given in (C-18), Furthermore, note that p, 
just like 1', can be mterpreted as a cross-correlation coefficient, since the range of p is 
0'" p '" I for 0 '" I' '" L This simple fact' will be u""d in Section C-4, 

The above procedure for obtaining the bit error probability for an M-phase signal 
"'ith a Gray code can be used to generate results for M = 8, 16, etc" as shown by 
Proakis (1968), 

Evaluation or Ihe Cross-Conelalion Coellicienl The expressions lor the prob
abilities of error given above depend on a single parameter, namely, the cross
correlation coefficient 1'- The clairvoyant estimate is given by (C-5), and the matched 
filter output, when signal waveform S,,(l) is transmitted. is X, = 2jgg, + N" Hence, tbe 
cross-correlation coefficient is 

VCy, '+ l)(y,:' + v) 
(C-ll) 

where. by definition. 

(C-23) 
k=1.2,,,,.L 

The parameter v represents the effective number of signaling intervals over which the 
estimate is formed. and y, is the average SNR per channel. 

In tbe case of differential phase signaling. the weighting coefficients are c, = I. c, = 0 
for i .. L Hence, v = 1 and I' = y,./(l + y,), 

When v = x, the estimate is perfect and 

I' ~ 1, .m/-L= --
\'---'" )Ie + 1 

Finally, in the case of a pilot signal estimate, given by (C-4) the cross-correlation 
coefficient is 

where. by definition. 

_ [(' r + 1)( r + 1)]-"2 1'- 1+-_- 1+-_-
. r"y, V"Y, 

- '{;, £( ') 
"f, = No IgAr 

~,= ~+ \!)' 

r = 'ittp 

The values of I' given above are summarized in Table CoL 

C-4 ERROR PROBABILITIES FOR TIME.INV ARIANT 
AND RICEAN FADING CHANNELS 

(C-24l 

In Section C-2, the complex-valued channel gains /g.} were characterized as zero-mean 
gaussian random variables. which is appropriate for Rayleigh fadmg channels, In tllis 
section, the channel gains /g,} are assumed to be nonzero-mean gaussian random 
variables, Estimates of the channel gains are formed by the demodulator and are used 
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TABLE Col RAYLEIGH FADING CHANNEL 

Type of estimate 

Clairvoyant estimate 

Pilot signal estimate 

Dilferential phase signaling 

Perfect estimate 

V(1';' +1)(y, '+ v) 

vr;; 

(T+ l)~(t,+,; l)(t,+ r: J 
y, 

1(" + 1 
r--

~-/~1 

as described in Section C-l. Moreover, the decision variable 9 is defined again by (C-7). 
However, in this case, the gaussian random variables X. and Y •• which denote the 
matched filter output and the estimate, respectively, for the kth channel, have nonzero 
means, which are denoted by X, and Y.. Furthermore, the second moments are 

mxx = £(lX. - X,f') identicalforaUchannels - , 
myy = £(lY, - Y.I ) identical for aU channels 

me, = £[(X, - X,)(Yt - Yt») identicalfor aU channels 

and the normalized <Xlvariance is defined as 

Error probabilities are given below only for two- and four-phase signaling with this 
channel model. We are interested in the special case in which the fluctuating component 
of each of the channel gains Is,} is zero, so that the channels are time-invariant, If, io 
addition to this time invariance, the noises between the estimate and the matched filter 
output are uncorrelated then p. = o. 

In the general case, the probability of error for two-phase signaling over L 
statistically independent channels characterized in the manner described above can be 
obtained from the results in Appendix B. In its most general form, the expresssion for 
the binary error rate is 

P, = Q,(a. b) - lo(a) exp [-t(a' + b'») 

+ 4(ab) .xp [-H~: ~ b'Wf (2L - 1)(1 + P.)' 
[2/(1 - JL») '-0 k I-p. 

exp [-Ha' + b')J 
+ {2/(1-p.»)2L I 

(C-2S) 

L~I L~I~" (2L -1)[(b)"(1 + P.)' (a)"(1 + p.)'L~I-'] xL I.(ab) L - - - - -
t-I '-0 k a 1 - I' b 1- #L 

(L~2) 

P, = Q,(a. b) - HI + p.)Io(ab) exp [-~(a' + I>')J (L = 1) 
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However, in this case, the gaussian random variables X. and Y •• which denote the 
matched filter output and the estimate, respectively, for the kth channel, have nonzero 
means, which are denoted by X, and Y.. Furthermore, the second moments are 

mxx = £(lX. - X,f') identicalforaUchannels - , 
myy = £(lY, - Y.I ) identical for aU channels 

me, = £[(X, - X,)(Yt - Yt») identicalfor aU channels 

and the normalized <Xlvariance is defined as 

Error probabilities are given below only for two- and four-phase signaling with this 
channel model. We are interested in the special case in which the fluctuating component 
of each of the channel gains Is,} is zero, so that the channels are time-invariant, If, io 
addition to this time invariance, the noises between the estimate and the matched filter 
output are uncorrelated then p. = o. 

In the general case, the probability of error for two-phase signaling over L 
statistically independent channels characterized in the manner described above can be 
obtained from the results in Appendix B. In its most general form, the expresssion for 
the binary error rate is 

P, = Q,(a. b) - lo(a) exp [-t(a' + b'») 

+ 4(ab) .xp [-H~: ~ b'Wf (2L - 1)(1 + P.)' 
[2/(1 - JL») '-0 k I-p. 

exp [-Ha' + b')J 
+ {2/(1-p.»)2L I 

(C-2S) 

L~I L~I~" (2L -1)[(b)"(1 + P.)' (a)"(1 + p.)'L~I-'] xL I.(ab) L - - - - -
t-I '-0 k a 1 - I' b 1- #L 

(L~2) 

P, = Q,(a. b) - HI + p.)Io(ab) exp [-~(a' + I>')J (L = 1) 
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where, by definition, 

( L I X Y. I')'" {J- lL -'---'-
- 2 i:=l vm: v;;;: 

t. X Y. I' '" b- 1 L -'-+--'--(',.,Ivrn: ~) (C-26) 

Q,(a, b) = r x exp [-Ha' + x')J/.,<ax)dx 

I .. (x) is the modified Bessel function of the first kind and of order n. 
Let us evaluate the constants a and b when the channel is time-invariant, p. = 0, and 

the channel gain and phase estimates are those given in Section C-l. Recall that when 
signal s,(r) is transmitted, the matched filter output is X, = 2l:g, + N,. The clairvoyant 
estimate is given by (C·5). Hence, for this estimate, the moments are X, = 2~g., 
Y. = g" m ... = 4t:N", and m,y = Noft:v, where ~ is the signal energy, No is the value of 
the noise spectral density, and v is defined in (C-23). Substitution of these moments into 
(C·26) results in the following expressions for a and b: 

a = vTY; IYv - 11 

b = vTY; IYv + I I (C-27) 

This is a result originally derived by Price (1962). 
The probability of error for differential phase signaling can be obtained by setting 

v = 1 in (C-27). 
Next, consider a pilot signal estimate. In this case, the estimate is given by (C·4) and 

the matched filter output is again X, = 2'1:g, + N,. When the moments are caiculated 
and these are substituted into (C-26), the fonowing expressions for a and bare 
obtained: 

(C-2S) 

where 
~ I. 

')1/ = N:
l 
~ 18*1

2 

~=g'+jf;p 

r= 'ill, 

Finally, we consider the probability of a binary digit error for four-phase signaling 
over a time-invariant channel for which the condition p. = 0 obtains, One approach that 
can be used to derive this error probability is to determine the pdf of 9 and then to 
integrate this over the appropriate range of values of 9. Unfortunately, this approach 
proves to be intractable mathematically. Instead, a simpler, albeit roundabout, method 
may be used that involves the Laplace transform. In short, the integral in (14-4·14) of 
the text that relates the error probability P,( Y.) in an A WGN channel to tbe error 
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TIME-INVARIANT CHANNEL 

Type of estimate a b 

Two-pluose oipaliD& 

Clairvoyant vrr,:IVv-11 VTY;;(Vv+ 1) 
estimate 

Differential phase 
() vz:r;: 

signaling 

Pilot signal ftl~ rr-I ft(~ ~) estimate 21 r+I-\jr+1 2 r+I+\lr+1 

Four-phase oipaJiq 

Clairvoyant vrr,: IVy+ 1 + V7+i vrr,:( v;::- ,- v?+1 
estimate -Vv+ 1- V7+i1 + v'v + 1- Yv'+l) 

DiffcTcnt:aJ phase VTY,;(V2 + \/2 - "';2 - V2) v1Y.('h + Yz + V2- Yz) signaling 

'-----1 ~ Pilot signal ~ __ r'_Iv' v + y + ";>1- + r' \!--y,- (Vv+ r + ,,'7+7 estimate 4(r + I) '4(r+l) 

- v'Y+T- v'Y'+7
1
1 + Vv+r-V?+?) 

probability P, in a Rayleigh fading channel is a Laplace transform. Since the bit error 
probabilities P, and p .. for a Rayleigh fading channel, given by (C-18) and (C-21), 
respectively, have the same form but differ only in the correlation coefficient, it follows 
that the bit error probabilities for the time-invariant channel also have the same form. 
That is, (C-25) with,.. = 0 is also the expression for the bit error probability of a 
four-phase signaling system wilh the parameters a and b modified to reflect the 
difference in the correlation coefficient. The detailed derivation may be found in the 
paper by Proakis (1968). The expressions for a and b are given in Table C-2_ 

I 

( 

I 

906

TABLE C·2 

896 DIGrT AL ro...,.MUNICA TrONS 

TIME-INVARIANT CHANNEL 

Type of estimate a b 

Two-pluose oipaliD& 

Clairvoyant vrr,:IVv-11 VTY;;(Vv+ 1) 
estimate 

Differential phase 
() vz:r;: 

signaling 

Pilot signal ftl~ rr-I ft(~ ~) estimate 21 r+I-\jr+1 2 r+I+\lr+1 

Four-phase oipaJiq 

Clairvoyant vrr,: IVy+ 1 + V7+i vrr,:( v;::- ,- v?+1 
estimate -Vv+ 1- V7+i1 + v'v + 1- Yv'+l) 

DiffcTcnt:aJ phase VTY,;(V2 + \/2 - "';2 - V2) v1Y.('h + V'2 + V2- V'2) signaling 

'-----1 ~ Pilot signal ~ __ r'_Iv' v + y + ";>1- + r' \!--y,- (Vv+ r + ,,'7+7 estimate 4(r + I) '4(r+l) 

- v'Y+T- v'Y'+7
1
1 + Vv+r-V?+?) 

probability P, in a Rayleigh fading channel is a Laplace transform. Since the bit error 
probabilities P, and p .. for a Rayleigh fading channel, given by (C-18) and (C-21), 
respectively, have the same form but differ only in the correlation coefficient, it follows 
that the bit error probabilities for the time-invariant channel also have the same form. 
That is, (C-25) with,.. = 0 is also the expression for the bit error probability of a 
four-phase signaling system wilh the parameters a and b modified to reflect the 
difference in the correlation coefficient. The detailed derivation may be found in the 
paper by Proakis (1968). The expressions for a and b are given in Table C-2_ 

I 

( 

I 



APPENDIX D 
SQUARE-ROOT 

FACTORIZATION 

Consider the solution of the set of linear equations 

R"C" = U, (D-il 

where R.v is an N x N positive-definite symmetric matrix, CN is an N-dimensional vector 
of coefficients to he determined, and UN is an arbitrary IV -dimensional vector. The 
equations in (D-1) can be solved efficiently by expressing RN in the factored form 

(D-c) 

where SN is a lower triangular matrix with elements is,,} and DN is a diagonal matrix 
.... ith diagonal elements {d,j. The diagonal elements of SN "re set to unity. i.e., s" = 1. 
Then we have 

rrl = ! SjI(d.S,k> 1 ~ j ~ i - ], i ~ 2 
Ie = I (D-3) 

where {r,J arte the elements of RN . Consequently, the elements (s,,) and {d.} are 
determined from (D-3) according to the equations 

; I 

s"d, = r'f - 2: s'Ad"Sik' l~j~i-l. 2~i~/V 
(D-4 ) k=1 

, - I 

d; = r" - L s; .. d1o 2 ~ i ~ N 
k = I 

Thus, (D-4) define S" and DN in terms of the elements of RN . 
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The solution to (0,1) is performed in two steps, With (D,2) ,ubslitutcd into (D-I) 

we have 

Let 

Then 
S,Y, = U, 

First we solve (0-6) for Y,. Because of the triangular form of S,. we have 

, , 
y, = tt, - L S,t.~'" . , 2 ~i ~N 

Having obtained Y,. the second step is to compute C,. That is. 

Beginning with 

D,S\-C, = Y \ 

S',C\ = D.\ Iy \ 

{', :::: .\, .... jli, 

the remaining coefficients of C, arc obtained recursively as follows: 

l.;j.;N-] 

(0-5) 

(0-6) 

(0-7) 

(0-8) 

(0-9) 

The number of multIplications and divisions required to perform the factorization of 
R ,. is proportional to N '_ The number of multiplications and divisions required to 
compute C,. once S, is determined. is proportional 10 N'. In contrast. when R., is 
Toeplitz the Levinson-Durbin algorithm should be used to determine the solution of 
(0-1). since the number of multiplications and divisions is proportional to N'. On the 
other hand, in a recursive least-squares formulation, S, and DN are not computed as in 
(0-3). but they are updated recursively_ The update is accomplished with N' operations 
(multiplications and divisions)_ Then the solution for the vector c., follows the steps 
(0-5)-(0-9). Consequently. the computational burden of the recursi.'e least-squares 
formulation is proportional to N'. 

I 
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noncoherent (Con/.): 

optimum, 302-312 
symbol-by-symbol,254-256 

Differential encoding, 187 
Differential entropy, 92 
Dilferenlial phase-shift keying (DPSK). 

274-278 
Digital communication system model. 1-_~ 
Digital modulator, 2 
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Direct sequence (see Spread spectrum signals) 
Discrete memoryless channel (DMe). 376-377 
Discrete random variable. 23 
Dislanrc (see Block codes; Convolutional codes. 

minimam free distance) 
DistortIon (See also Channel distonion)' 

from qu.anlization, 113-1'25 
granular noise. 134 
slope overload, JJ4 

Distortion rale runction, 110 
Distributions (see Probability distributions) 
Diversity: 

antenna. 717 
frequency, 777 
pc-rformance of. 777-795 
polarization. 778 
RAKE,77& 
time. 777 

Douhle-sidcband modulat;on. 176 
DPCM (Differential pulse code modulation} (see Source. 

encoding) 
DPSK (differenlial phase-shift keying). 274-278 
Dual code, 420 
Dual-k codes. 492-499 
Duobinary signal, 548-549 

Early-late gate synchronil,cr. 362-365 
Effective an1enna area. 316 
Effective radiated power. 316 
Eigenvalue. 164 
Eigenvector, 164 
Elias bound, 461-463 
Encodlng (sC'e Block codes: Conventional codes) 
Energy, 156 
EnsembJe averages. 64-65 
Entropy, 88 

conditional, 88 
differential. 92 
discrete memoryless sources, 94-103 
discrete stationary sources, 103-106 

Entropy coding, 96, 117 
Envelope, 155 
Envelope detection, JQ6 

Equalizers (See also Adaptive equalizers) 
decision-feedback, 621-627. 649-650 
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Equalizers (COnI.): 
decision-feedback (Cont.): 

adaptive, 649-652 
e~amples of performance, 622-623 
01 trellis·coded signals. 650-652 
minimum MSE, 622 
predictive form. 626-027 

linear. 601-620. 648-649 
adaptive, 636-644 
convergence of MSE algorithm, tt42-644 
error probability. 613-617 
examples of performance, 613-617 
excess MSE. 644-648 
lractionally spaced. 617-620 
LMS (MSE) algorithm. 639-642 
limit on s.tep size. 645-646 
mean-square error (MSE) criterion, 607-620 
minimuI:l MSE. 610-tll 
output SNR fot. 605. 610 
peak distortion, 602 
peak distortion criterion. 602-607 
zero-forcing_ 603-604.637-638 

maximum-likelihood sequence estimation. 584-586. 
589-593.607-616 

self· recovering (blind). 644-675 
"' ilh trellis-coded modulation. 650-652 
using the Vilerbi aigorithm. 589-593 

channel estimator for, 652-654 
performance of. 593-601 

Equivalent codes. 418 
Equivalent lowpass impulse res.ponse, 157-15H 
Equivalent lowpass signal. 155 
Equivoca lion. 90 
Error funclwn. 40 
Error probability: 

coherent demodulation: 
binary coded, 266-267 
for binary signals, 257-260 
for DPSK. 274-278 
for M-ary biorlhogonal. 264-265 
for ,W-ary equicorrdated. 266 
for M -ary orthogonal, 260-2&3 
for M-ary PAM. 267-269 
for PSK. 269-274 
for QAM. 278-282 
union bound for, 263-264 

mUhichanncl,6S0-6X6 
noncohcrcnt demodulation. 30! -3! 3 

for binary signsls. 30J-lOR 
for M-ar':f orthogonal. 308.-312 

Estimate-
biased. 367 
consistent. 59, 30;"; 
effieien r, 368 

Estimate jCollt.) 

unbiased. 367 
Estimate of phase (See also Carrier phase eS-limation) 

clairvoyant~ 889 
pilot signat 89) 

Estimation. maximum-likelihood sequence (MLSE). 249-
254 

Estimation: 
maximum like',ihood, 334-335 
of carrier phase. 337-358 
of signal parameters, 333-335 
of symlx>l timing. 358-365 
of symlx>l timing and carrier phase, 365-371 
performance 01, 367-370 

Euclidean: 
dIstance, 251 
weight. 595 

Events, 18 
intersection of, 19 
jOint. lq 

mutually exclusive. 19 
null. Iq 
probability of. 19 
union of. 19 

Excess bandwidth. 546 
Excess MSE. 644--648 
Expected value. 33 
Expurgated codes. 816-817 
Extended code. 420 
Extension field. 415 
Eye pauern. 541 

Fading channels. 8. 758-839 (See a/sa Channels) 
Feedback decoding. 505-506 
FH spread spectrum signals (see Spread spectrum signals) 
Filter: 

integrator. 238 
matched. 239 

Folded spectrum. 606 
Follower jammer. 731 
Fourier transform. 35 
Free eudidian distance, ~17 
Free-space path loss. 317 
Frequenc~· diversity, 777 
Frequ. .. 'ncy division multiple a;;ce~<.; (rDMAl. 842~844 
Frequency- hopped (FH) spread spectrum (see Spread 

spectrum signals} 
Frequency-shift keying (FSK), 181-183. 190-191 

continuous-phase (CPFSK): performance of. 284-301 
ptl"i(;'[ dens;ty spectrum of. 213-217 
rcpn.scntation of, 190-1'l1 

FUnCIlOJ1~ of random variables. 28-32 

932

922 ,NDEX 

Equalizers (COnI.): 
decision-feedback (Cont.): 

adaptive, 649-652 
e~amples of performance, 622-623 
01 trellis·coded signals. 650-652 
minimum MSE, 622 
predictive form. 626-027 

linear. 601-620. 648-649 
adaptive, 636-644 
convergence of MSE algorithm, tt42-644 
error probability. 613-617 
examples of performance, 613-617 
excess MSE. 644-648 
lractionally spaced. 617-620 
LMS (MSE) algorithm. 639-642 
limit on s.tep size. 645-646 
mean-square error (MSE) criterion, 607-620 
minimuI:l MSE. 610-tll 
output SNR fot. 605. 610 
peak distortion, 602 
peak distortion criterion. 602-607 
zero-forcing_ 603-604.637-638 

maximum-likelihood sequence estimation. 584-586. 
589-593.607-616 

self· recovering (blind). 644-675 
"' ilh trellis-coded modulation. 650-652 
using the Vilerbi aigorithm. 589-593 

channel estimator for, 652-654 
performance of. 593-601 

Equivalent codes. 418 
Equivalent lowpass impulse res.ponse, 157-15H 
Equivalent lowpass signal. 155 
Equivoca lion. 90 
Error funclwn. 40 
Error probability: 

coherent demodulation: 
binary coded, 266-267 
for binary signals, 257-260 
for DPSK. 274-278 
for M-ary biorlhogonal. 264-265 
for ,W-ary equicorrdated. 266 
for M -ary orthogonal, 260-2&3 
for M-ary PAM. 267-269 
for PSK. 269-274 
for QAM. 278-282 
union bound for, 263-264 

mUhichanncl,6S0-6X6 
noncohcrcnt demodulation. 30! -3! 3 

for binary signsls. 30J-lOR 
for M-ar':f orthogonal. 308.-312 

Estimate-
biased. 367 
consistent. 59, 30;"; 
effieien r, 368 

Estimate jCollt.) 

unbiased. 367 
Estimate of phase (See also Carrier phase eS-limation) 

dairvoyant~ 889 
pilot signat 89) 

Estimation. maximum-likelihood sequence (MLSE). 249-
254 

Estimation: 
maximum like',ihood, 334-335 
of carrier phase. 337-358 
of signal parameters, 333-335 
of symlx>l timing. 358-365 
of symlx>l timing and carrier phase, 365-371 
performance 01, 367-370 

Euclidean: 
dIstance, 251 
weight. 595 

Events, 18 
intersection of, 19 
jOint. lq 

mutually exclusive. 19 
null. Iq 
probability of. 19 
union of. 19 

Excess bandwidth. 546 
Excess MSE. 644--648 
Expected value. 33 
Expurgated codes. 816-817 
Extended code. 420 
Extension field. 415 
Eye pauern. 541 

Fading channels. 8. 758-839 (See a/sa Channels) 
Feedback decoding. 505-506 
FH spread spectrum signals (see Spread spectrum signals) 
Filter: 

integrator. 238 
matched. 239 

Folded spectrum. 606 
Follower jammer. 731 
Fourier transform. 35 
Free eudidian dislance, ~17 
Free-space path loss. 317 
Frequenc~· diversity, 777 
Frequ. .. 'ncy division multiple a;;ce~<.; (rDMAl. 842~844 
Frequency- hopped (FH) spread spectrum (see Spread 

spectrum signals} 
Frequency-shift keying (FSK), 181-183. 190-191 

continuous-phase (CPFSK): performance of. 284-301 
ptl"i(;'[ dens;ty spectrum of. 213-217 
rcpn.scntation of, 190-1'l1 

FUnCIlOJ1~ of random variables. 28-32 



GaloIS field, 415 
Gamma function, 42 
Gaussian distribution, 39-4 i 

multivariate. 49-52 
Gam.sian noise. 11 
Gaussian random 'Process. 65 
Gaussian random variables. linear transformation of. 

50-52 
Generator matrix, 417 
Generator polynomial. 424 
Gilbert-Varsharmov bound, 463 
Gol.y codes. 423, 433 

extended, 423 
generator polynomiat of. 433 
performance on A WGN char.nel, 454-455 

Gold sequences. 727 
Gram-Schmidt procedure. 167-173 
Granular noise, 134 
Gray encoding. liS 

Hadamard codes, 422-423. H17-821 
Hamming bound Dn minimum distance. 462 
Hamming codes. 421-422, 433 
Hamming distance. 415 
Hard-decision decoding: 

hlock codes. 445-456 
convolutional codes. 489-492 

Hilhcrt transform. (S4 
Huffman coding. %-103 

Wuminalion efficiency factor, 317 
Impulse noisc, 51K 
Impulse response. hH 
Independent events. 21 
Indcpendent random variahles. 28 
I nforam(lOn, X4-S5 

equivocation, 'Xl 
measure of. H4-fJ 1 
mutual,84 

average. S7 
self·, ~5 

average (entropy). ~ 
scquence. J. X3 

Inkrieaving.408-470 
block, 469 
convolutionaL 470 

Intcrsymhol interference, S36-5~7 
c::mlrol1cd (set" Partial H.'spo:1Se signals) 
discretc-lime model for, 586-589 
l-'qulva(cnt white nois\: filter model. 5HS 
Qptimum demodulator for, 584-593 

Inverse tiller. 603 

Jacobian, 32 
Jamming marg:n. 707 
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Joint cdf {cumulative distribution function), 25 
Joint pdf (probabiltiy density function). 25 
Joint processes. 65 

Kalman (RLSl algorilhm, 656-658 
fast. 660 

Kasami sequcnccs~ 729 
Kraft inequality, 97-98 

Laplace probability density function. 56 
Lauice: 

filter, 660-61>4 
recursive Icast-squares. 664 

law oflargc numbers (weak), 59 
least favorable pdf. 305 
Least-squares algorithms, 654-664 
lempel-Zlv algorithm. 106-108 
Levinson-Durbin algorithm, 12H. 139, H79-HRI 
Likelihood ratio, -'04 
Line codes. 5<l6 
Linear codes (see Block codes. linear: 

Convolutional codes) 
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Linear C"qualilalion (see Equahzer~. linear) 
Linear-feedback shift-register. maximal length. 4.13-435, 

724-727 ' 

Linear predictIOn. 12K-DO, 13H-I44. 60(]~-664 
backward,66I-662 
forward. 661-662 
residuals. 663 

Linear prcdiclivc coding (LPC): 
speech. 138-144 

Linear time· invariant system. 68-69 
response to stocnasti<: input. 68-72 

Linear transformation of random yariahlL:s, 2X-29, 50-:S2 
Link budgel analysis. 316-319 
Link margin, ::\19 
Lloyd-Max quantizer. 11.1 
Lowpass signal. 15:; 
Lowpass. system. lSI 
Low prohahillty or intercept. 6%, 715-716 

Magnetic recording, 507--56X 
normalized density. 567 

Majority logic decoder, 506 
Mapping by sct parlitioning. 512 
Marginal probability density, 26 
Marcum's Q-function. 44 
Markov' chain. 1~9 

transition probability matrix of. I ~N 
Matched filler, 23~244 
Maximal ratio combintng. 779 

performance of. 7!lO-782 
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Maximum a posteriori probability (MAP) 
ailerion, 245, 254-257 

Maximum free distance codes, tables of, 492-496 
Maximum length shift-register cooes, 433-435, 724-727 
Maximum likelihood: 

parameter estimation. 333-335, 339-341 
for carrier phase, 339-341 
for joint carrier and symboJ. 365-367 
for symbol timing, 358-364 
performance of, 367 -370 

Maximum·likeljhood crilerion, 245-246 
Maximum-likelihood receiver, 233-257 
Maximum-likelihood sequence estimation (MLSE), 249-

254 
Mean-square error (MSE) enterion, 607-617 
Mean value. 33 
Microwave LOS channel, 768-769 
Miller oO<ie, 188, 575 
Minimum distance: 

bounds on, 461-464 
definition, 416 
Euctidean, 173 
Hamming. 416 

Minimum-shift keying (MSK), 1%-199 
power spectrum of, 213-219 

Models: 
channel. 375-386 
source, 82-84, 93-95 

Modified duobinary signal, 549-550 
Modulation: 

binary, 257-260 
biorthogonal, 264-266 
comparisoo of, 282-284 
continuous·phase FSK (CPFSK). 190-191 

power spectrum. 213-219 
DPSK, 274-278 
equicorrelated (simplex). 266 
index. 191 
line.r, 174-186 

power spectrum of, 204-209 
M-ary orthogonal, 26()"'264 
multichannel. 680-686 
nonlinear, 19()...203 
offset QPSK, 198 
PAM (ASK), 267-269 
PSK,269-274 
QAM,278-2S2 

Modulation codes, 566-576 (See also Partial response 
signals) 

capacity of. 569 
Miller code. 573 
NRZ,574 
NRZI. 566, 568, 574-575 
run·length limited, 568-576 

Mooulation codes (Cone.): 
run·length limited (Cont.): 

fixed rate, 572 
state dependent, 571 
state independent, 571 

Mooulator: 
binary. 2 
digit.I,2 
M·aTy,2 

Moments. 33 
Morse Code, V 
Muhicarrier communications 

capacity of, 687-689 
FIT-based system. 689-692 

Multichannel communications. 680-686 
with binary signals, 6!Q-684 
with M·ary orthogonal signals, 684-686 

Multipath cbannels. 8, 758-839 
Multipath intensity profile. 762 
Muftipath spread. 763 
Multiple access metboos, 84()...849 

capacity of, 843-849 
COMA, 843, 849-862 
FOMA.842 
random access. 962 -872 
TOMA.842 

Multiuser communications. 840-872 
Multivariate gaussian distribution, 49-52 
Mutual information, 84 

average. 87-88 
Mutually exclusive events. 18 

Narrowband interference. 704-706 
Narrowband process. 152 

carrier frequency of. 153 
Narrowband signal. 152 
Noise: 

gaussian. 162 
wbite, 162-l63 

Noisy channel coding theorem, 386-387 
Noncoherent combining loss 683-684 
Nonlinear distortion, 537 
Nonlinear mod\l.ation~ 190 
Nonstationary stochastic process. 63 
Norm, l65 
Normal equations. 128 
Normal random .... ariables (set' Gaussian distribution) 
Null event. 18 
Null space. 416 
Nyquist criterion, 542-547 
Nyquist rate. 14.72 

Ollset quadrature PSK (OQPSK), 198 
On-off signalling (OOK), 321 
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Optimum demodulation: (see Demodulation/Detection) 
Orthogonal signals. 165-166 
Orthogonality prir.cipie. mean-square estimation, 608 

OrthDnormaJ: 
expansion, 165-173 
functions, 165-166 

Parity cheel. 417 
matrix. 419 

Pari!),' polynomial. 426 
Partial-band interference, 734-141 
Partial response signals. 548-56J 

duobinary. 548-549 
error probability of. 562-565 
modified duobinary. 549 
p«coding for. 551-555 

Partial-time (pulsed) jamming. 717-724 
Peak dlstortion criterion. 602-fiJ7 
Peak frequenL7}' deviation. J 90 
Perfect codes. 453-454 
Periodically stationary. wide sensc. 75-76~ 205 
Phase jitter. 538 
Phase-locked loop (PLL). 341-346 

Costas. 355-356 
decision-directed. 347-350 
M-Iaw type. 356-358 
non-decislon-directed,35O-351 
square-law type. 353-355 

Phase-shift keying (PSK). 177-178.269-274 
adaptive receptIon of, 887-896 
pdf of phase, 270-271 
performance for A WGN channel. 271-274 
performance for Rayleigh fading channel. 780-787. 

887-894 
Plotkin bound on minimum distance, 462 
Power density spectrum. 67-68, 204-223 

at output of linear system. 69 
of digitally modulated signal,. 204-223 

Prediction (set' Linear prediction) 
Preferred sequences, 727 
Prefix condition, 96 
Probability: 

a priori, 21 
a posteriori. 21 
conditional. 20.26-28 
of events. 18 
joint. 19.25-26 

Probability density funclion (pdf). 24 
Probability dIstribution function. 23 
Probability distributions. 37-52 

binomiai.37-38 
chI-square. 41-45 

central, 42-43 
noncentraI. 42-44 

Probability distributions (Conl.): 

gamma. 43 
gaussian. 39-41 
multivariate gaussian. 49-52 
Nakagami. 48-49 
Rayleigh. 45-46 
Rice. 47-48 
uniform. 39 

Probabihty tranSition matrix, 377 
Processing gain, 707 
Pseudo-noise t,PN) sequences: 

autocorrelation function, 725-726 
generation via shift register. 724-729 
Gold,727 
Kasami. 72f1 
maximal-length. 725-726 
peak cross-corrdation, 726-727 
preferred. 727 
(See also Spread spectrum signals) 
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Pulse amplitude modulation (PAM). 174-176.267-269 
Pulse code modulation (PCM). 125-133 

adaptive (ADPCM). 131-133 
differential (DPCM). 127-129 

Pu.sed interference. 717 
effec! on error rate performance. 717-724 

Quadrature amplitUde modulation (OAM). 178-180. 
278-282 

Quadrature components, 155 
of narrowband process. 155-156 
properties of. 161-162 

Quantization. 108-125 
block. 118-125 
optimization (Lloyd-Max). 113-118 
scalar. 113-118 
vector. 118-125 

Quantization error. 125-UJ 
Quasiperfect codes, 454 

Raised cosine spectrum. 546 
excess bandwldth~ 546 
folloff parameter, 546 

RAKE correl.tor. 797-798 
RAKE receiver: 

for binary antipodal signals. 798-803 
for binary orthogonal signals. 8()1-8(f2 
for DPSK Signals. 804 
for noncoherent detection of orthogonal signals. 805 

RAKE matched tilter. 799-800 
Random access, 862-872 

ALOHA. 863-867 
carrier sense, 867-872 

with collision detection. 868 
non persistent. 868 
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p«coding for. 551-555 

Partial-time (pulsed) jamming. 717-724 
Peak dlstortion criterion. 602-fiJ7 
Peak frequenL7}' deviation. J 90 
Perfect codes. 453-454 
Periodically stationary. wide sensc. 75-76~ 205 
Phase jitter. 538 
Phase-locked loop (PLL). 341-346 

Costas. 355-356 
decision-directed. 347-350 
M-Iaw type. 356-358 
non-decislon-directed,35O-351 
square-law type. 353-355 

Phase-shift keying (PSK). 177-178.269-274 
adaptive receptIon of, 887-896 
pdf of phase, 270-271 
performance for A WGN channel. 271-274 
performance for Rayleigh fading channel. 780-787. 

887-894 
Plotkin bound on minimum distance, 462 
Power density spectrum. 67-68, 204-223 

at output of linear system. 69 
of digitally modulated signal,. 204-223 

Prediction (set' Linear prediction) 
Preferred sequences, 727 
Prefix condition, 96 
Probability: 

a priori, 21 
a posteriori. 21 
conditional. 20.26-28 
of events. 18 
joint. 19.25-26 

Probability density funclion (pdf). 24 
Probability dIstribution function. 23 
Probability distributions. 37-52 

binomial. 37-38 
chI-square. 41-45 

central, 42-43 
noncentraI. 42-44 

Probability distributions (Conl.): 

gamma. 43 
gaussian. 39-41 
multivariate gaussian. 49-52 
Nakagami. 48-49 
Rayleigh. 45-46 
Rice. 47-48 
uniform. 39 

Probabihty tranSition matrix, 377 
Processing gain, 707 
Pseudo-noise t,PN) sequences: 

autocorrelation function, 725-726 
generation via shift register. 724-729 
Gold,727 
Kasami. 72f1 
maximal-length. 725-726 
peak cross-corrdation, 726-727 
preferred. 727 
(See also Spread spectrum signals) 
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Pulse amplitude modulation (PAM). 174-176.267-269 
Pulse code modulation (PCM). 125-133 

adaptive (ADPCM). 131-133 
differential (DPCM). 127-129 

Pu.sed interference. 717 
effec! on error rate performance. 717-724 

Quadrature amplitUde modulation (OAM). 178-180. 
278-282 

Quadrature components, 155 
of narrowband process. 155-156 
properties of. 161-162 

Quantization. 108-125 
block. 118-125 
optimization (Lloyd-Max). 113-118 
scalar. 113-118 
vector. 118-125 

Quantization error. 125-UJ 
Quasiperfect codes, 454 

Raised cosine spectrum. 546 
excess bandwldth~ 546 
folloff parameter, 546 

RAKE correl.tor. 797-798 
RAKE receiver: 

for binary antipodal signals. 798-803 
for binary orthogonal signals. 8()1-8(f2 

for DPSK Signals. 804 
for noncoherent detection of orthogonal signals. 805 

RAKE matched tilter. 799-800 
Random access, 862-872 

ALOHA. 863-867 
carrier sense, 867-872 

with collision detection. 868 
non persistent. 868 
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Random access (COlli.): 

carrier se.nse (C onto ): 
I-persistent~ 869 
p-persistent. 869 

offered channel traffic. 864 
slotted ALOHA, 864 
throughput, 865-867 
unslotted. 864 

Random coding, 3,}:J--400 
binary coded signals, 390-397 
multiamplitude signals, 397-399 

Random Processes (see Stochastic processes) 
Random variables. 22-28 

function of. 28-32 
muhiple.25 
orthogonal. 35 
single. 22-24 
statistically independent. 2K 
sums 01, 58-63 

central limit them-em. 61-62 
transformation of, 28-32 

Jacobian of, 32 
lincar, 28, 32, 4'1-52 

uncorrelated, 34 
Rate: 

code, 2. 414 
of encoded information (see Source encoding) 

Rale distortion function, 108-113 
of bandlimited gaussian source. 112 
of memory less gausslan source, 109-110 
table of, 112 

Rayleigh distribution, 45-46 
Rayleigh fading (s" Channel. fading multipath; Channel. 

Rayleigh lading) 
Reciprocal polynomial. 42h 
Recursive least squares (RlSJ algorithms. 654-664-

fast RLS, 660 
RLS Kalman. 65b-6NJ 
RLS lauice, 660-664 

Reed-Solomon codes. 464-466 
References, 899-916 
Reflection coefficients. 140 
Regenerative repeaters. 314-316 
Residuals. 663 
Rice dtstribution~ 47 -4g 
Riccan fadIng channel. 761 
Run-length limited codes. 568.--576 

fixed rate, 572 
state dependent, 571 
state independent. 571 

Sample function. 63 
Sample l1)ean. 58 
Sample space. 17 -18 

Sampling theorem, 72-73 
Scattering function. 766 
Self-informati.on.85 

average (entropy), 88 
Sequential decoding, SOI-503 
Set partitioning. 512 
Shennan limit. 264 
Shortened code, 421 
Signal constellations: 

PAM,174-176 
PSK,I77-178 
QAM, :78-180 

Signal design, 54)-576 
for band-limited channel, 540-551 
for char;nels with distortion, 557 -560 
for no intcrsymbol interference. 540-547 
with partial response pu~ses. 548-551 
with raised cosine spectrai pulse. 546-547 

Sig,al-to-noise ratio (SNR), 258 
Sigilals: 

bandpass, 152-157 
base band, 176, 186-189 
binary antipodal, 257 
binary coded, 266-267 
hnary orlhogonal. 258 
hiorthogonal, 183-184. 264-266 
carrier ot 159 
characteril.ation of. 152-163 
complex envelope of. ISS 
digitally modulated, 173-209 

cyclostationary. 204-206 
representation of. 173-202 
spectral characteristics of. 202-223 

discrete·timc~ 74-76 
energy of. 156 
envelope of, 155 
equivalent )owpass. 155 
lowpass. 155 
M-ary orthogonal, 181-183 
muitiamplitude, 174-176 
multidimensional. 180-181 
multiphase, 177-178 
narrowband. 152 
optimum demodulation of, 233-257 
quadrature amplitude modulated (QAM), 178-160 
quadrature components of, 155-156 

properties 0(, 161-162 
Simplex. 184,266 
speech, 143-144 
stochastic,62-77, 159-163 

autocorrelation of, 64. 68-70, 75-76 
autocovariance,64 
bandbass stationary, 159-163 
cross correlation of, 65 
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Signals {Cant. ); 
stochastic (( ·onl.): 

ensemble averages of. 64-65 
power density spectrum, 67-68.204-223 
properties of quadrature components, 161- )62 
white noisc. 162-163 

Signature sequence. 843 
Simplex signals. 266 
Single-sideband Modulalion, 1i6 
Skin depth, 9 
Slope overload distortion. IJ4 
Slope overload distortion. 134 
Soft decision decoding: 

hlock codes, 436-445 
convotu~ional codes, 4M-4S9 

Source: 
analog, :i2-g) 

binary, 83 
discrete memory less (DMS), 82-83 
disuetc stationary, 103-106 
endoding, 93-144 

adaplive OM, 135-136 
adaptive DPCM, IJ 1-133 
adaptive PC'vI. 131-133 
delta modulation (DM), 133-136 
differential pulse code modulation {DPCM}. 127-129 
discrete mCrlory)css, 94-103 
Huffman, 99-1113 
Lempel-Ziv,I06-IOX 
linear predictive coding (lPC). 13R-142 
pulse code modulalion (?eM), J2'i-l27 

models, 82-84 
speech, 143-144 
spectral, 136-138 
waveform, 125-144 

Source coding, 82-144 
Spaced-frequency, spaced-time correlation function. 763 
Spectrum: 

of CPFSK and CPM, 209-219 
of digit.1 signals, 203-223 
of linear modulation. 204-2U9 
of signals with memory, 220-223 

Spread factor. 771 
table 01. 771 

Spread spectrum multiple access (SSMA), 711> 
Spread spectrum sjgnals: 

acquisition of. 774-74~ 
for antijamming, 712~715 
for code division mUlliple ace-esC'; (CDMA). 090. 716-

717,741-743 
concatenated codes for. 711-712, 740-741 
direct sequence, o97-71Xl 

applications of. 711-717 
coding for, 710-712 

Spread slXctrum signals (Con!.}: 
direct sequence ((,(mi.): 

demodulalion of, 701-702 
performance oL 702-712 
with pulse interference. 717-724 

examples of DS, 712-717 
frequency-hopped lFH), 729-743 

hlock hopping, n I 
foriower jammer (or. 731 
performance- of, 732-734 
with partiaJ-band interference, 734. 741 

hybrid combinations. 743-744 
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for low·probability of intercept jlPI), 6%. 715-71~ 
for rnultipath channels, 795-806 
synchronization of. 744-152 
time-hopped (TH), 743 
tracking of. 748 
uncoded PI', 708 

Spread spectrum system model, 697 -698 
Square·faw detcctj(m~ 306 
Square~root factorization, 660. 897-898 
Staggered quadralure PSK (SQPSK), 19M 
Stale diagram, 196,474-477 
Slationary stochastJc processes, 63-64 

slrlct~scnsc. 63-64 
wide-sense. 64 

Statislical averages, 64-67 
Steepe,t-descent (gradient) algorithm, 639-642 
Stochastic process. 62-72, 159-163 

cydostalionary, 75-76 
dlscrele~timc, 74-76 
narrowband, 159 
nonstationary, 63 
stricl·scnse stationary. 63-64 
wide-sense stationary. 64 

Storage channel. 10 
Strict-s.ense stalionalY~ 63-64 
Subband coding, 137 
Symbol interval, 174 
Synchronization: 

carrier. 337-35.8 
effect of noise, 343-340 
for muhiphasc- signals. 356-35~ 
with Costas loop, 355-356 
with decision-feedback loop. 347-.,50 
wilh phase~lockcd loop (PlL), 341-346 
with squaring loop, 353-355 

of spread spectrum signals. 744-752 
shding corrclator. 747 
symool, 336-137 

Syndrome. 446 
Syndrome decoding. 446-451 
System. linear. ns-72 

autocorrelation function at output. 69 
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System, linear (ConI.): 
bandpass, response of, 157-159 
power density spectrum at output, 69-70 

Systematic code, 418 

Tail probability bounds, 53-57 
Chebyshev inequality, 53-54 
Chernoff bound, 54-57 

TATS (tactical transmission system), 741-743 
Telegraphy, 13 
Telephone channels, 4, 563-538 
Thermal noise, 3, II 
Threshold decoder, 506 
Time divemty, 771 
Time division multiple access (TDMA), 842-844 
T oeplitz matrix, 879 
Tr.ansfer function: 

of convolutional code, 477-483 
of linear system, 68-72 

Transformation of random variables, 29-32~ 49-52 
Transition probabilities, 189 
Transition probabitity matrix. 189 

for channel, 375-378 
for delay modulation, 189-190 

Tree diagram, 192-195,471-472 
Trellis-coded modulation. 511-526 

free Euclidean distance. 517 
subset decoding, 519 
tabies of coding gains for. 522-523 

Trellis diagram, 473 

Uncorrelated random variables. 34 
Uniform distribution, 39 

Union bound, 263-264. 387-389 
Union of events, 18 
Un,iquely decodable, 96 
Universal source coding, 106 

Variable-length encoding, 95-103 
Variance. 33 
Vector space, 163-165 
Vector quantization, 118-125 
Viterbi algorithm, 251, 287-289, 483-486 
Vocal tract, 141-143 
Voltage-controlled oscillator (VCO), 341-343 

Weak law of large numbers, 59 
Weight: 

of code word, 414 
distribution, 414 
for Golay, 423 

Welch bound, 128 
W,bite noise, 162-163 
Whitening filter, 587-588 
Wide~sense stationary, 64 
Wiener filter. 14 

Yule-Walker equations, 128 

Z transform, 587 
Zero-forcing equalizer. 602--605 
Zero-forcing filter, 603-604 
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