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1 
INTRODUCfION 

In this book, we present the basic principles that underlie the analysis and 
design of digital communication systems. The subject of digital communica­
tions involves the transmission of information in digital form from a source 
that generates the information 10 one or more destinations. Of particular 
importance in the analysis and design of communication systems are the 
characteristics of the physical channels through which the information is 
transmitted. The characteristics of the channel generally affect the design of 
the basic building blocks of the communication system. Below, we describe the 
elements of a communication system and their functions. 

1-1 ELEMENTS OF A DIGITAL COMMUNICATION 
SYSTEM 

Figure 1-1-1 illustrates the functional diagram and the basic elements of a 
digital communication system. The source output may be either an analog 
signal, such as audio or video signal, or a digital signal, such as the output of a 
teletype machine, that is discrete in time and has a finite number of output 
characters. In a digital communication system, the messages produced by the 
source are converted into a sequence of binary digits. Ideally, we should like to 
represent the source output (message) by as few binary digits as possible. In 
other words, we seek an efficient representation of the source output that 
results in little or no redundancy. The process of efficiently converting the 
output of either an analog or digital source into a sequence of binary digits is 
called source encoding or dala compression. . 

The sequence of binary digits from th~ source encoder, which we call the 
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information sequence, is passed to the channel encoder. The purpose of the 
channel encoder is to introduce, in a ~ontrolled manner, some redundancy in 
the binary information sequence that can be used at the receiver to overcome 
the effects of noise and interference encountered in the transmission of the 
signal through the channel. Thus, the added redundancy serves to increase the 
reliability of the. received data and improves the fidelity of the received signal. 
In effect, redundancy in the information sequence aids the receiver in decoding 
the desired information sequence. For example, a (trivial) form of encoding of 
the binary information sequence is simply to repeat each binary digit m times, 
where m is some positive integer. More sophisticated (nontrivial) encoding 
involves taking k information bits at a time and mapping each k-bit seq"ence 
into a unique n-bit sequence, called a code word. The amount of redundancy 
introduced by encoding the data in this manner is measured by the ratio n/k. 
The reciprocal of this ratio, namely kIn, is called the rate of the code or, 
simply, the code rate. 

The binary sequence at the output of the channel encoder is passed to the 
digital modulator, which serves as the interface to the communications channel. 
Since nearly all of the communication channels encountered in practice are 
capable of transmitting electrical signals (waveforms), the primary purpose of 
the digital modulator is to map the binary information sequence into signal 
waveforms. To elaborate on this point, let us suppose that the coded 
information sequence is to be transmitted one bit at a time at some uniform 
rate R bits/so The digital modulator may simply map the binary digit 0 into a 
waveform so(t) and the binary digit 1 into a waveform SI(t). In this manner, 
each bit from the channel encoder is lransmitted separately. We call this binary 
modulation. Alternatively, the modulator may transmit b coded information 
bits at II time by using M = 2b distinct waveforms 5,(/), i = 0, 1, ... , M - 1, one 
waveform for each or the 21> possible b-bi! sequences. We call this M-ary 
modulation (M > 2). Note that a new b-bit sequence enters the modulator 
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every b I R seconds. Hence, when the channel bit rate R is fixed, the amount of 
time available to transmit one of the M waveforms corresponding to a b-bit 
sequence is b times the time period in a system that uses binary modulation. 

The communication channel is the physical medium that is used to send the 
signal from the transmitter to the receiver. In wireless transmission, the 
channel may be the atmosphere (free space). On the other hand, telephone 
channels usually employ a variety of physical media, including wire lines, 
optical fiber cables, and wireless ( microwave radio). Whatever the physical 
medium used for transmission of the information, the essential feature is that 
the transmitted signal is corrupted in a random manner by a variety of possible 
mechanisms, such as additive thermal noise generated by electronic devices, 
man-made noise, e.g., automobile ignition noise, and atmospheric noise, e.g., 
electrical lightning discharges during thunderstorms. 

At the receiving end of a digital communications system, the digital 
demodulator processes the channel-corrupted transmitted waveform and re­
duces the waveforms to a sequence of numbers that represent estimates of tbe 
transmitted data symbols (binary or M-ary). This sequence of numbers is 
passed to the channel decoder, which attempts to reconstruct the original 
information sequence from knowledge of the code used by the channel 
encoder and the redundancy contained in the received data. 

A measure of how well the demodulator and decoder perform is the 
frequency with which errors occur in the decoded sequence. More precisely. 
the average probability of a bit-error at the output of the decoder is a measure 
of the performance of the demodulator-decoder combination. In general, the 
probability of error is a function of the code characteristics, the types of 
waveforms used to transmit the information over the channel, the transmitter 
power, the characteristics of the channel, i.e., the amount of noise, the nature 
of the interference, etc., and the method of demodulation and decoding. These 
items and their etfect on performance will be discussed in detail in subsequent 
chapters. 

As a final step, when an analog output is desired, the source decoder accepts 
the output sequence from the channel decoder and, from knowledge of the 
source encoding method used, attempts to reconstruct the original signal from 
the source. Due to channel decoding errors and possible distortion introduced 
by the source encoder and, perhaps, the source decoder, the signal at the 
output of the source decoder is an approximation to the original source output. 
The 'difference or some function of the difference between the original signal 
and the reconstructed signal is a measure of the distortion introduced by the 
digital communication system. 

1-2 COMMUNICATION CHANNELS AND mEIR 
CHARACfERlSTICS 

As indicated in the preceding discussion, the communication channel provides 
the connection between the transmitter and the receiver. The physical channel 
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may be a pair of wires that carry the electrical signal, or an optical fiber that 
carries the information on a modulated light beam, or an underwater ocean 
channel in which the information is transmitted acoustically, or free space over 
which the information-bearing signal is radiated by use of an antenna. Other 
media that can be characterized as communication channels are data storage 
media, such as magnetic tape, magnetic disks, and optical disks. 

One common problem in signal transmission through any channel is additive 
noise. In general, additive noise is generated internally by components such as 
resistors and solid-state devices used to implement the communication system. 
This is sometimes called thermal noise. Other sources of noise and interference 
may arise externally to the system, such as interference from other users of the 
channel. When such noise and interference occupy the same frequency band as 
the desired signal, its effect can be minimized by proper design of the 
transmitted signal and its demodulator at the receiver. Other types of signal 
degradations that may be encountered in transmission over the channel are 
signal attenuation, amplitude and phase distortion, and multipath distortion. 

The effects of noise may be minimized by increasing the power in the 
transmitted signal. However, equipment and other practical constraints limit 
the power level in the transmitted signal. Another basic limitation is the 
available channel bandwidth. A bandwidth constraint is usually due to the 
physical limitations of the medium and the electronic components used to 
implement the transmitter and the receiver. These two limitations result in 
constraining the amount of data that can be transmitted reliably over any 
communications channel as we shall observe in later chapters. Below, we 
describe some of the important characteristics of several communication 
channels. 

Wireline Channels The telephone network makes extensive use of wire 
lines for voice signal transmission, as well as data and video transmission. 
Twisted-pair wire lines and coaxial cable are basically guided electromagnetic 
channels that provide relatively modest bandwidths. Telephone wire generally 
used to connect a customer to a central office has a bandwidth of several 
hundred kilobertz (kHz). On the other hand, coaxial cable has a usable 
bandwidth of several megahertz (MHz). Figure 1-2·1 illustrates the frequency 
range of guided electromagnetic channels, which include waveguides and 
optical fibers. 

Signals transmitted through such channels are distored in both amplitude 
and phase and further corrupted by additive noise. Twisted-pair wireline 
channels are also prone to crosstalk interference from physically adjacent 
channels. Because wireline channels carry a large percentage of our daily 
communications around the country and the world, much research has been 
pedormed on the characterization of their transmission properties and on 
methods for mitigating the amplitude and phase distortion encountered in 
signal transmission. In Chapter 9, we describe methods for designing optimum 
transmitted signals and their demodulation: in Chapters 10 and 11, we 
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consider the design of channel equalizers that compensate for amplitude and 
phase distortion on these channels. 

Fiber Opdc a..m.. Optical fibers offer the communications system 
designer a channel bandwidth that is several orders of magnitude larger than 
coaxial cable channels. During tbe past decade. optical fiber cables have been 
developed that have a relatively low signal attenuation. and highly reliable 
pbotonic devices have been developed for signal generation and signal 
detection. These technological advances have resulted in a rapid deployment of 
optical fiber channe1s. both in domestic telecommunication systems as well as 
for trans-Atlantic and trans· Pacific communications. With the large bandwidth 
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available on fiber optic channels. it is possible for telephone companies to offer 
subscribers a wide array of telecommunication services, including voice. data. 
facsimile, and video. 

The transmitter or modulator in a fiber optic communication system is a 
light source, either a light-emitting diode (LED) or a laser. Information is 
transmitted by varying (modulating) the intensity of the light source with the 
message signal. The light propagates through the fiber as a light wave and is 
amplified periodically (in the case of digital transmission, it is detected and 
regenerated by repeaters) along the transmission path to compensate for signal 
attenuation. At {he receiver, the light intensity is detected by a photodiode, 
whose output is an electrical signal that varies in direct proportion to the 
power of the light impinging on the photodiode. Sources of noise in fiber optic 
channels are photodiodes and electronic amplifiers. 

It is envisioned that optical fiber channels will replace nearly all wire line 
channels in the telephone network by the turn of the century. 

W_less EledroDlJlllletic Chaonels In wireless communication systems, 
electromagnetic energy is coupled to the propagation medium by an antenna 
which serves as the radiator. The physical size and the configuration of the 
antenna depend primarily on the frequency of operation. To obtain efficient 
radiation of electromagnetic energy, the antenna must be longer than rt, of the 
wavelength. Consequently, a radio station transmitting in the AM frequency 
band, say at !c = 1 MHz (corresponding to a wavelength of A = el!c = 300m). 
requires an antenna of at least 30 m. Other important characteristics and 
attributes of antennas for wireless transmission are described in Chapter 5. 

Figure 1-2-2 illustrates the various frequency bands of the electromagnetic 
spectrum. The mode of propagation of electromagnetic waves in the atmo­
sphere and in free space may be subdivided into three categories. namely. 
ground-wave propagation, sky-wave propagation. and line-of-sight (LOS) 
propagation. In the VLF and audio frequency bands, where the wavelengths 
exceed 10 km, the earth and the ionosphere act as a waveguide for electromag­
netic wave propagation. In these frequency ranges, communication signals 
practically propagate around the globe. For this reason, these frequency bands 
are primarily used to provide navigational aids from shore to ships around the 
world.- TIte channel bandwidths available in these frequency bands are 
relatively small (usually 1-10% of the center frequency), and hence the 
information that is transmitted through these channels is of relatively slow 
speed and generally confined to digital transmission. A dominant type of noise 
at these frequencies is generated from thunderstorm activity around the globe. 
especially in tf{)pical regions. Interference results from the many users of these 
frequency bands. - • 

Ground-waye propagation, as illustrated in Fig. 1-2-3, is the dominant mode 
of propagation for frequencies in the MF band (0.3-3 MHz). This i~ the 
frequency band used tor AM broadcasting ana maritime radio broadcasting. In 
AM broadcasting, the range with groundwave propagation of even the more 
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FIGURE 1-1-4 IUuslntion of sky-wave propagation. 

, , 

~->-- ---

, , , 

powerful radio stations is limited to about 150 kID. Atmospheric noise, 
man-made noise, and thermal noise from electronic components at the receiver 
are dominant disturbances for signal transmission in the MF band_ 

Sky-wave propagation, as illustrated in Fig_ 1-2-4 results from transmitted 
signals being rellected (bent or refracted) from· the ionosphere, which consists 
of several layers of charged particles ranging in .altitude from 50 to 400 km 
above the surface of the earth. During the daytime hours, the heating of the 
lower atmosphere by the sun causes the formation of the lower layers at 
altitudes below 120 km_ These lower layers, especially the D-Iayer, serve to 
absorb frequencies below 2 MHz, thus severely limiting sky-wave propagation 
of AM radio broadcast. However, during the night-time hours, the electron 
density in the lower layers of the ionosphere drops sharply and the frequency 
absorption that occurs during the daytime is significantly reduced. As a 
consequence, powerful AM radio broadcast stations can propagate over large 
distances via sky wave over the F-Iayer of the ionosphere, which ranges from 
140 to 400km above the surface of the earth. 

A frequently occurring problem with electromagnetic wave propagation via 
sky wave in the HF frequency range is signal multipath. Signal multipath occurs 
y<hen the transmitted signal arrives at the receiver via multiple propagation 
paths at different delays. It generally results in intersymbol interference in a 
digital communication system. Moreover, the signal components arriving via 
different propagation paths may add destructively, resulting in a phenomenon 
cailed signal fading, which most people have experienced when listening to a 
distant radio station at night when sky wave is the dominant propagation 
mode. Additive noise at HF is a combination of atmospheric noise and thermal 
noise. 

Sky-wave ionospheric propagation ceases to exist al frequencies above 
approximately 30 MHz, which is the end of the HF band. However, it is 
possible to have ionospheric scatter propagation at frequencies in the range 
30-60 MHz, resulting from signal scattering from the lower ionosphere. It is 
also possible to communicate over distances of several hundred miles by use of 
tropospheric scattering at frequencies in the range 40-300 MHz. Troposcatter 
results from signal scattering due to particles in the atmosphere at altitudes of 
10 miles or less. Generally, ionospheric scatter and tropospheric scatter 
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involve large signal propagation losses and require a large amount of 
transmitter power and relatively large antennas. 

Frequencies above 30 MHz propagate through the ionosphere with rela­
tively little loss and make satellite and extraterrestrial communications 
possible. Hence, at frequencies in the VHF band and higher. the dominant 
mode of electromagnetic propagation is line-of-sight (LOS) propagation. For 
terrestrial communication systems. thi~ means that the transmitter and receiver 
antennas must be in direct LOS with relatively little or no obstruction. For this 
reason, television stations transmitting in the VHF and UHF frequency bands 
mount their antennas on high towers to achieve a broad coverage area. 

In general, the coverage area for LOS propagation is limited by the 
curvature of the earth. If the transmitting antenna is mounted at a height h m 
above the surface of the earth, the distance to the radio horizon. assuming no 
physical obstructions such as mountains, is approximately d = v'15h km. For 
example, a TV antenna mounted on a tower of 300 m in height provides a 
coverage of approximately 671cm. As another example, microwave radio relay 
systems used extensively for telephone and video transmission at frequencies 
above 1 GHz have antennas mounted on tall towers or on the top of tall 
buildings. 

The dominant noise limiting the performance of a communication system in 
VHF and UHF frequency ranges is thermal noise generated in the receiver 
front end and cosmic noise picked up by the antenna. At frequencies in the 
SHF band above 10 GHz, atmospheric conditions playa major role in signal 
propagation. For example. at 10 GHz. the attenuation ranges from about 
0.003 dB/km in light rain to about 0.3 dB/km in heavy rain. At 100 GHz. the 
attenuation ranges from about 0.1 dB/km in light rain to about 6 dB/km in 
heavy rain. Hence, in this frequency range, heavy rain introduces extremely 
high propagation losses that can result in service outages (total breakdown in 
the communication system). 

At frequencies above the EHF (extremely high frequency) band, we have 
the infrared and visible light regions of the electromagnetic spectrum. which 
can be used to provide LOS optical communication in free space. To date, 
these frequency bands have been used in experimental communication 
systems. such as satellite-to-satellite links. 

Ynderwater Acoustic Channels Over the past few decades. ocean ex­
ploration activity has been steadily increasing. Coupled with this increase is the 
need to transmit data, collected by sensors placed under water, to the surface 
of the ocean. From there. it is possible to relay the data via a satellite to a data 
collection center. 

Ele~romagnetic waves do not propagate over long distances under water 
except at extremely low frequencies. However. the transmission of signals at 
such low frequencies is prohibitively expensive because of the large and 
powerful transmitters required. The attenuation of electromagnetic waves in 
water can be expressed in terms of the skin depth, which is the distance a signal 
is attenuated by lIe. For sea water, the skin depth II = 250/0. where / is 
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~xprcssed in Hz and {j is in m. For example. at 10 kHz. the skin depth is 2.5 m. 
In contrast. acoustic signals propagate over distances of tens and even 
hundreds of kilometers. 

An underwater acoustic channel is characteri2ed as a multipath channel due 
to signal reflections from the surface and the boltom of the sea. Because of 
wave motion. the signal multipath components undergo time-varying propaga­
tion delays that result in signal fading. In addition, there is frequency­
dependent attenuation, which is approximately proportional to lhe square of 
the signal frequency. The sound velocity is nominally about 1500m/s. but the 
actual value will vary either above or below the nominal value depending on 
the depth at which the signal propagates. 

Ambient ocean acoustic noise is caused by shrimp. fish, and various 
mammals. Near harbors. there is also man-made acoustic noise in addition to 
the ambient noise. In spite of this hostile environment. it is possible to design 
and implement efficient and highly reliable underwater acoustic communica­
tion systems for transmitting digital signals over large distances. 

Storage Channels Information storage and retrieval systems constitute a 
very significant part of data-handling activities on a daily basis. Magnetic tape. 
including digital audio tape and video tape. magnetic disks used for stoTing 
large amounts of computer data. optical disks used for computer data storage. 
and compact disks are examples of data storage systems that can be 
characterized as communication channels. The process of storing data on a 
magnetic tape or a magnetic or optical disk is equivalent to transmitting a 
signal over a telephone or a radio channel. The readback process and the 
signal processing involved in storage systems to recover the stored information 
are equivalent to the functions performed by a receiver in a telephone or radio 
communication system to recover the transmitted information. 

Additive noise generated by the electronic components and interference 
from adjacent tracks is generally present in the readback signal of a storage 
system. just as is the case in a telephone or a radio communication system. 

The amount of data that can be stored is generally limited by the size of the 
disk or tape and the density (number of bits stored per square inch) that can be. 
achieved by the write/read electronic systems and heads. For example, a 
packing density of 10" bits per square inch has been recently demonstrated in 
an experimental magnetic disk storage system. (Current commercial magnetic 
storage products achieve a much lower density.) The speed at which data can 
be written on a disk or tape and the speed at which it can be read back are also 
limited by the associated mechanical and electrical subsystems tha! constitute 
an information storage system. 

Channel coding and modulation are essential components of a well-designed 
digital magnetic Qr optical storage system. In the readback process. (he signal is 
demodulated and the added redundancy introduced by the channel encoder is 
used to correct errors in the read back signal. 
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1-3 MATHEMATICAL MODELS FOR 
COMMUNICATION CHANNELS 

CHAPTER Ie INTRODUCTION 11 

In the design of communication systems for transmitting information through 
physical channels, we tind it convenient to construct mathematical models that 
reflect the most important characteristics of the transmission medium. Then, 
the mathematical model for the channel is used in the design of the channel 
encoder and modulator at the transmitter and the demodulator and channel 
decoder at the receiver. Below, we provide a brief description of the 
channel models that are frequently used to characterize many of the physical 
channels that we encounter in practice. 

The Additil'e Noise Channel The simplest mathematical model for a 
communication channel is tbe additive noise channel, illustrated in Fig. 1-3-1. 
In this model, the transmitted signal s(t) is corrupted by an additive random 
noise process n (t). Physically, the additive noise process may arise from 
electronic components and amplifiers at the receiver of the communication 
system, or from interference encountered in transmission (as in the case of 
radio signal transmission). 

If the noise is introduced primarily by electronic components and amplifiers 
at the receiver, it may be characterized as thermal noise. This type of noise is 
characterized stati~tically as a gaussian noise process. Hence, Ihe resulting 
mathematical model for the channel is usually called the addiliue gaussian 
noise channel. Because this channel model applies to a broad class of physical 
communication channels and because of its mathematical tractability, this is 
the predominant channel model used in our communication system analysis 
and design. Channel attenuation is easily incorporated into the model. When 
the signal undergoes attenuation in transmission through the channel, the 
received signal is 

r(l) = as(I) + nit) (1-3-1) 

where a is the attenuation factor. 

The Lillear Filter Channel In some physical channels, such as wire line 
telephone channels, filters are used to ensure that the transmitted signals do 
not exceed specified bandwidth limitations and thus do not interfere with one 
another. Such channels are generally characterized mathematically as linear 
filter channels with 'additive noise, as illustrated in Fig. 1-3-2. Hence, if the 

Channel 

.r{1J 
-'=-+---...{ + }----f- rfJ)=.~U! +n40 

FIGURE I-J.l The addilive noise channel. nIt; 
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fiGURE 1-302 The Imear filter channel with 
additive noise. 
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channel input is the signal set), the channel output is the signal 

ret) = set) * c(t) + nIt) 

= !'. c( r)s(1 - r) dr + 1/(/) (1-3-2) 

where c(l) is the impulse response of the linear filter and * denotes 
convolution. 

The Linear TIme-VariaRt Filter Claannel Physical channels such as under­
water acoustic channels and ionospheric radio channels that result in time­
variant multi path propagation of the transmitted signal may be characterized 
mathematically as lime-variant linear filters. Such linear filters are charac­
terized by a time-variant channel impulse response c( r; f), where c( r; f) is the 
response of the channel at time t due to an impulse applied at time t - r. Thus, 
r represents the "age" (elapsed-time) variable. The linear time-variant filter 
channel with additive noise is illustrated in Fig. 1-3-3. For an input signal set), 
the channel output signal is 

ref) = set) * c(r; I) + net) 

= f, c( r; r)s(1 - r) dr + nIt) (1·3-3) 

A good model for multipath signal propagation through physical channels, 
such as the ionosphere (at frequencies below 30 MHz) and mobile cellular 
radio channels. is a special case of (1 -3-3) in which the time-variant impulse 
response has the form 

l. 

c( r; I) = 2: a.(/Jo( r - Tt) (1-3-4) 
k= I 

fiGURE 1-303 Linear lime· varian/filler channel with additive noise. 
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where the {a.(t)} represents the possibly time-variant attenuation factor for the 
L multipath propagation paths and {To} are the corresponding time delays. If 
(1-3-4) is substituted into (1-3-3), the received signal has the form 

L 

ret) = L a.(t)s(t - To) + net) (1-3-5) .-1 
Hence, the received signal consists of L multipath components, where each 
component is attenuated by {ao(t)} and delayed by {To}. 

The three mathematical models described above adequately characterize the 
great majority of the physical channels encountered in practice. These three 
channel models are used in this text for the analysis and design of communica­
tion systems. 

1-4 A HISTORICAL PERSPECTIVE IN THE 
DEVELOPMENT OF DIGITAL COMMUNICATIONS 

It "is remarkable that the earliest form of electrical communication, namely 
telegraphy, was a digital communication system. The electric telegraph was 
developed by Samuel Morse and was demonstrated in 1837. Morse devised the 
variable-length binary code in which letters of the English alphabet are 
represented by a sequence of dots and dashes (code words). In this code, more 
frequently occurring letters are represented by short code words, while letters 
occurring less frequently are represented by longer code words. Thus, the 
Morse code'was the precursor of the variable-length source coding methods 
described in Chapter 3. 

Nearly 40 years later, in 1875, Emile Baudot devised a code for telegraphy 
in which every letter was encoded into fixed-length binary code words of length 
5. In the Baudot code, binary code elements are of equal length and designated 
as mark and space. 

Although Morse is responsible for the development of the first electrical 
digital communication system (telegraphy), the beginnings of what we now 
regard as modem digital communications stem from the work of Nyquist 
(1924), who investigated the problein of determining the maximum signaling 
rate that can be used over a telegraph channel of a given bandwidth without 
intersymbol interference. He formulated a model of a telegraph system in 
which a transmitted signal has the general form 

(1-4-1 ) 
n 

where' gel) represents a basic pulse shape and {an} is the binary data sequence 
of {±1} transmitted at a rale of I/Tbits/s. Nyquist set out to determine the 
optimum pulse shllpe that was bandlimited to W Hz and maximized the bit rate 
under the constraint that the pulse caused no intersymbol interference at the 
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sampling time k ;T. k = 0, ± I, ±2 •.... His studies led him to conclude that the 
maximum pulse ratc is 2W pulses/so This rate is now called the Nyqllist rate. 
Moreover. this pulse rate can be achieved by using the pulses g(l) = 
(sin 2I1'Wt)J2I1'WI. This pulse shape allows recovery of the data without 
intersymbol interference at the sampling instants. Nyquist's result is equivalent 
to a version of the sampling theOiem for bandlimiled signals. which was later 
stated precisely by Shannon (l9~8). The sampling theorem states that a signal 
of bandwidth W can be reconstructed 1rom samples taken at the Nyquist rale 
of 2W samp1es/s using the interpolation formula 

5 I = L: s('!!"") sin [2;rW(t -n/2W») 
() " 2W 2nW(t - n!2W) 

(1-4-2 ) 

In light of Nyquist's work, Hartley (1928) considcred the issue of the 
amount of data that can be transmitted reliably over a bandlimited channel 
when multiple amplitude levels are used. Due to the presence of noise and 
other interference, Hartley postulated that the receiver can reliably estimate 
the received signal amplitude to some accuracy, say A". This investigation led 
Hartley 10 conclude that there is a maximum data rate that can be 
communicated reliably over a bandlimited channel when the maximum signal 
amplitude is limited to Am .. (fixed power constraint) and the amplitude 
resolution is A,. 

Another significant advance in the developmen> of communications was the 
work of Wiener (1942). who considered {he problem of estimating a desired 
signal waveform s(/) in the presence of additive noise n{I), based on 
observation of the received signal r(l) = S(I) + n(t~ This problem arises in 
signal demodulation. Wiener determined the linear filter whose output is the 
best mean-square approximation to the desired signal S(I). The resulting filter 
is called the optimum linear (Wiener) filter. 

Hartley's and Nyquist's results on the maximum transmission rate of digital 
information were precursors to the work of Shannon (1948a,b). who establ­
ished the mathematical foundations for information transmisl>ion and derived 
the fundamental limits for digital communication systems_ In his pioneering 
work, Shannon formulated the basic problem of reliable transmission of 
information in statistical terms. using probabilistic models for information 
sources and communication channels. Based on such a statistical formulation, 
he adopted a logarithmic measure for the information content of a source. He 
also demonstrated that the effect of a transmitter power constraint. a 
bandwidth constraint, and additive noise can be associated with the channel 
and incorporated into a single parameter, called the channel capacity. For 
example, in the case of an additive white ( spectrally fiat) gaussian noise 
inJerference, an ideal bandlimited channel of bandwidth W has a capacity C 
given by 

C = W log2 ( I + ;) bits/s (1-4-3) 
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where P is the average transmitted power and Nil is the power spectral density 
of the additive noise. The significance of the channel capacity is as follows: If 
the information rate R from the source is less than C (R < C) then it is 
theoretically possible to achieve reliable (error-free) transmission through the 
channel by appropriate coding. On the other hand, if R > C, . reliable 
transmission is not possible regardless of the amount of signal processing 
performed at the transmitter nnd receiver. Thus, Shannon established basic 
limits on communication of information, and gave birth to a new field that is 
now called information theory. 

Another important contribution to tbe field of digital communication is the 
. wor~ of Kotelnikov (1947). who provided a coherent analysis of the various 
digital communication systems based on a geometrical approach. Kotelnikov's 
approach was later expanded by Wozencraft and Jacobs (1965). 

Following Shannon's publications, came the classic work of Hamming 
(1950) on error-detecting and error-correcting cooes to combat the detrimental 
effects of channel noise. Hamming's work stimulated many researchers in the 
years that followed, and a variety of new and powerful codes were discovered, 
many of which are used today in the implementation of modern communica­
tion systems. 

The increase in demand for data transmission during the last tbree to four 
decades, coupled with the development of more sophisticated integrated 
circuits, has led to the development of very efficient and more reliable digital 
communication systems. In the course of these developments, Shannon's 
original results and the generalization of his results on maximum transmission 
limits over a channel and on bounds on the performance achieved have served 
as benchmarks for any given communication system design. The theoretical 
limits derived by Shannon and other researchers that contributed to the 
development of information theory serve as an ultimate goal in the continuing 
efforts to design and develop more efficient digital communication systems. 

There have been many new advances in the area of digital communications 
following the early work of Shannon, Kotelnikov, and Hamming. Some of the 
most notable developments are the following: 

• The development of new block codes by Muller (1954), Reed (1954), 
Reed and Solomon (1960), Bose and Ray-Chaudhuri (l%oa,b), and Goppa 
(1970, 1971). 

• The development of concatenated codes by Forney (1966). 
• The development of computationally efficient decoding of BCH codes, 

e.g., the Berlekamp-Massey algorithm (see Chien, 1964; Berlekamp, 19(8). 
• The development of convolutional codes and decoding algorithms by 

Wozencraft and Reiffen (1961), Fano (1963), Zigangirov (1966), Jelinek 
(1969), Forney (1970, 1972), and Viterbi (1967, 1971). 

• The development of trellis-coded modulation by Ungerboeck (1982). 
Forneyet ai. (1984), Wei (1987), and others. 

• The development of efficient source encodings algorithms for data 
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compression, such as those devised by Ziv and Lempel (1977, 1978) and Linde 
el ai, (J 980). 

l-S OVERVIEW OF THE BOOK 
Chapter 2 presents a brief review of the basic notions in the theory of 
probability and random processes. Our primary objectives in this chapter are 
to present results that are used throughout the book and to establish some 
necessary notation. 

In Chapter 3, we provide an introduction to source coding for discrete and 
analog sources. Included in this chapter are the Huffman coding algorithm and 
the Lempel-Ziv algorithm for discrete sources, and scalar and vector quantiza­
tion techniques for analog sources. 

Chapter 4 treats the characterization of communicatic;m signals and systems 
from a mathematical viewpoint. Included in this chapter is a geometric 
representation of signal waveforms used for digital communications. 

Chapters 5-8 are focused on modulation/demodulation and channd 
coding/decoding for the additive. white gaussian noise channel. The emphasis 
is on optimum demodulation and decoding techniques and their performance. 

The design of efficient modulators and demodulators for linear filter 
channels with distortion is treated in Chapters 9-11, The focus is on signal 
design and on channel equalization methods to compensate for the channel 
distortion. 

The final four chapters treat several more specialized topics. Chapter 12 
treats multichannel and multicarrier communication systems. Chapler 13 is 
focused on spread spectrum signals for digital communications and their 
performance characteristics. Chapter 14 provides a in-depth treatment of 
communication through fading multipath channels. Included in this treatment 
is a description of channel characterization, signal design and demodulation 
techniques and their performance. and coding/decoding techniques and their 
performance. The last chapter of the book is focused on multiuser communica­
tion systems and multiple access methods. 

1-6 BIBLIOGRAPHICAL NOTES AND REFERENCES 
There are several historical treatments regarding the development of radio and 
telecommunications during the past century. These may be found in the books 
by McMahon (1984). Millman (1984), and Ryder and Fink (1984). We have 
already cited the classical works of Nyquist (1924), Hartley (1928), Kotelnikov 
(1947). Shannon (1948), and Hamming (1950). as well as some of the more 
important advances that have occurred in the field since 1950. The collected 
papers by Shannon have been published by IEEE Press in a book edited by 
Sloane and Wyner (1993). Other collected works published by the IEEE Press 
that might be of interest to the reader are Key Papers in the Development of 
Coding Theory, edited by Berlekamp (1974), and Key Papers in the 
Development of Information Theory, edited by Slepian (1974). 
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2 
PROBABILITY AND 

STOCHASTIC 
PROCESSES 

The theory of probability and stochastic processes is an essential mathematical 
tool in the design of digital communication systems. This subject is important 
in the statistical modeling of sources that generate the information, in the 
digitization of the source output, in the characterization of the channel through 
which the digital information is transmitted, in the design of the receiver that 
processes the information-bearing signal from the channel, and in the 
evaluation of the performance of the communication system. Our coverage of 
this rich and interesting subject is brief and limited in scope. We present a 
number of definitions and basic concepts in the theory of probability and 
stochastic processes and we derive several results that are important in the 
design of efficient digital communication systems and in the evaluation of their 
performance. 

We anticipate that most readers have had some prior exposure to the theory 
of probability and stochastic processes, so that our treatment serves primarily 
as a review. Some readers, however, who have had no previous exposure may 
find the presentation in this chapter extremely brief. These readers will benefit 
from additional reading of engineering-level treatments of the subject found in 
the texts by Davenport and Root (1958), Davenport (1970), Papoulis (1984), 
Helstrom (1991), and Leon-Garcia (1994). 

2-1 PROBABILITY 

Let us consider an experiment, such as the rolling of a die, with a number of 
possible outcomes. The sample space S of the experiment consists of the set of 
all possible outcomes. In the case of the die, 

S = {I, 2, 3, 4, 5, 6} (2-1-1) 
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where the integers I, ... ,6 represent the number of dots on the six faces of the 
die. These six possible outcomes are the sample points of the experiment. An 
event is a subset of S, and may consist of any number of sample points. For 
example, the event A ddined as 

A = {2, 4} (2-1-2) 

consists of the outcomes 2 and 4. The complement of the event A, denoted by 
.4, consists of all the sample points in S that are not in A and, hence, 

A = {I, 3 5,6} (2-1-3) 

Two events are said to be mutally exclusive if they have no sample points in 
common-that is, if the occurrence of one event excludes the occurrence of the 
other. ~ ·.)r example. if A is defined as in (2-1-2) and the event B is defined as 

B = {I, 3, 6} (2-1-4) 

then A and B are mutually exclusive events. Similarly, A and A are mutually 
exclusive events. 

The union (sum) of two events is an event thai consists of all the sample 
points in the two e\'ents. For example, if B is the event defined in (2-1-4) and C 
is the event defined as 

C={1,2,3} (2-1-5) 

then, the union of Band C. denoted by B U C. is the event 

D=BUC 

= {I, 2,3, 6} (2-1-6) 

Similarly, A U A = S, where S is the entire sample space or the certain event. 
On the other hand, the intersection of two events is an event that consists of 
the points that are common to the two events. Thus, if E = B n C represents 
the intersection of the events Band C, defined by (2-1-4) and (2-1-5), 
respectively, then 

£ = {1.3} 

When the events are mutually exclusive, the intersection is the null event, 
denoted as 0. For example, A n B = 0, and A n A = 0. The definitions of 
union and intersection are extended to more than two events in a straightfor­
ward manner. 

Associated with each event A contained in S is its probability P(A). In the 
assignment of probabilities to events, we adopt an axiomatic viewpoint. That 
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is, we postulate that the probability of the event A satisfies the condition 
P(A);;. O. We also postulate that the probability of the sample space (certain 
event) is P(S) = 1. The third postulate deals with the probability of mutually 
exclusive events. Suppose that Ai> i = 1,2, ...• are a (possibly infinite) number 
of events in the sample space S such thai 

A, n Ai = 0 i '" j = 1,2, ... 

Then the probability of the union of these mutually exclusive events satisfies 
the condition 

(2-1-7) 

For example, in a roll of a fair die, each possible outcome is assigned the 
probability t. The event A defined by (2-1-2) consists of two mutually exclusive 
subeve~ts or outcomes, and, hence, P(A) = i =~. Also, the probability of the 
event A U B, where A and B are the mutually exclusive events defined by 
(2-1-2) and (2-1-4), respectively, is peA) + P(B) = ~ +! =~. 

Joint Events and Joint Probabilities Instead of dealing with a single 
experiment, let us perform two experiments and consider their outcomes. For 
example, the two experiments may be two separate tosses of a single die or a 
single toss of two dice. In either case, the sample space S consists of the 36 
two-tuples (i, j) where i, j = 1, 2, ... ,6. If the dice are fair, each point in the 
sample space is assigned the probability f". We may now consider joint events, 
such as {i is even, j = 3}, and determine the associated probabilities of such 
events from knowledge of the probabilities of the sample points. 

In general. if one experiment has the possible outcomes A" i = 1. 2, ... , n, 
and the second experiment has the possible outcomes Bj , j = I, 2, ... , m, then 
the combined experiment has the possible joint outcomes (Ai. B)}, i = 

1,2, ... ,n, j = 1, 2, ...• m. Associated with each joint outcome (A" 8,) is the 
joint probability P(A" 8,) which satisfies the conditiol,l 

Assuming that the outcomes 8 j , j = 1, 2, ... ,m, are mutually exclusive, it 
follows that 

no 

2: P(A" Bj ) = P(Ai } (2-1-8) 
j=l 

Similarly. if the outcomes Ai, i = I, 2, ... ,n, are mutually exclusive then 

n 

2: P(A j , Bj ) = P(Bi ) (2-1-9) 
i=1 
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Furthermore, if all the outcomes of the two experiments are mutually exclusive 
then 

n m 

L: 2: P(A" B) = I (2-1-10) 
t= t J= 1 

The generalization of the above treatment to more than two experiments is 
straightforward. 

Conditional Probabilities Consider a combined experiment in which a 
joint event occurs with probability PtA, 8). Suppose that the event B has 
occurred and we wish to determine the probability of occurrence of the event 
A. This is called the conditional probability of the event A given the occurrence 
of the event B and is defined as 

PtA I B) = PtA, B) 
PCB) 

(2-t-11) 

provided P(B) > O. In a similar manner, the probability of the event B 
conditioned on the occurrence 01 the event A is defined as 

P(B I A) = PtA, B) 
PtA) 

(2-1-12) 

provided PtA) > O. The relations in (2-1-11) and (2-1-12) may also be 
expressed as 

PtA, B) = PtA I B}P(B) = P(B I A)P(AJ (2-1-13) 

The relations in (2-1-11), (2-1-12), and (2-1-13) also apply to a single 
experiment in which A and B are any two events defined on the sample space S 
and PtA, BJ is interpreted as the probability ot the .4 n B. That is, PtA. B) 
denotes the simultaneous occurrence of A and B. For example. consider the 
events Band C given by (2-J-4) and (2-1-5), respectively, for the single toss of 
a die. The joint event consists of the sample points {1, 3}. The conditional 
probability of the event C given that B occurred is 

z 
P(CIBJ=~=~ 

6 

In a single experiment. we observe that when two events A and Bare 
mutually exclusive, An B = 0 and. hence, PtA I B) = O. Also, if A is a subset 
ot B then A n B = A and, bence, 

PtA I B) = PtA) 
P(B) 
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On the other hand, if B is a subset of A, we have A n B = B and, hence, 

. _ P(B)_1 
P\A I B) - P(B) -

An extremely useful relationship for conditional probabilities is Bayes' 
theorem, which states that if A j , i = 1,2, ... ,n, are mutually exclusive events 
such that 

n 
UAj=S 
i=: 

and B is an arbitrary event with nonzero probability then 

P(A j I B) 
P(Aj , B) 

P(B) 

P(B I Aj)P(A;) 

" L P(B I Aj)P(Aj ) 
j=l 

(2-1-14) 

We use this formula in Chapter 5 to derive the structure of the optimum 
receiver for a digital communication system in which the events Ai' i = 
1, 2, ... ,n, represent the possible transmitted message, in a given time 
interval, P(A;) represent their a priori probabilities, B represents the received 
signal, which consists of the transmitted message (one of the Ai) corrupted by 
noise, and P(Ai I B) is the a posteriori probability of A, conditioned on having 
observed the received signal B. 

Statistical Independence The statistical independence of two or more 
events is another important concept in probability theory. It usually arises 
when we consider two or more experiments or repeated trials of a single 
experiment. To explain this concept, we consider two events A and B and their 
conditional probability PtA I B j, which is the probability of occurrence of A 
given that B has occurred. Suppose that the occurrence of A does not depend 
on the occurrence of B. Thai is, 

P(A I B) = PtA) (2-1-15) 

Substitution of (2-1-15) into (2-1-13) yields the result 

P(A, B) = P(A)P(B) (2-1-16) 

That is, the joint probability of the events A and B factors into the product of 
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the elementary or marginal probabilities P(A) and P(B). When the events A 
and B satisfy the relation in (2-1-16). they are said to be sllItislically 
independent. 

For example. consider two successive ~xperiments in tossing a die. Let A 
represent the even-numbered sample poillts {2. 4, 6) in the first toss and B 
represent the even-numbered possible outcomes {2, 4. 6) in the second toss. In 
a fair die. we assign the probabilities P(A) = ! and P{B) = ~. Now. the joint 
probability of the joint event "even-numbered outcome on the first toss and 
even·numbered outcome on the second tms" is just the probability of the nine 
pairs of outcomes (i.j). i = 2. 4,6: j = 2. 4. 6. which is ~. Also. 

P(A. B) = P(AiP(B) = l 

Thus. the events A and B are statistically independent. Similarly. we may say 
that,the outcomes of the two experiments are statistically independent. 

The definition of statistical independence can be extended to three or more 
events. Three statistically independent events A,. A" and A., must satisfy the 
following conditions: 

P(A" A,) = P(A,)P(A,) 
(2-1-17) 

In the general case. the events Ai, i = I, 2, ... ,n, are statistically independent 
provided that the probabilities of the joint events taken 2.3,4, ... , and n at a 
time factor into the product of the probabilities of the individual events. 

2·1·1 Random Variables, Probability Distributions, and 
Probability Densities 

Given an experiment having a sample space S and elements S E S, we define a 
function X (5) whose domain is S and whose range is a set of numbers on the 
real line. The function X(s) is called a random lJariable. For example, if we flip 
a coin the possible outcomes are head (H) and tail (T), so S eontains two 
points labeled Hand T. Suppose we define a function X(s) such thaI 

{
I (5 = H) 

X(s) = 
-I (.I = T) 

(2-1-18) 

Thus we have mapped the two possible outcomes of the coin-flipping 
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experiment into the two points (±i) on the real line. Another experiment is 
the toss of a die with possible outcomes S = {I, 2, 3, 4, 5, 6}. A random variable 
defined on this sample space may be X(s) = s, in which case the outcomes of 
the experiment are mapped into the integers I, ... ,6, 'or, perhaps, X (s) = Sl. 

in which case the possible outcomes are mapped into the integers 
{I,4. 9,16. 25, 36}. These are examples of discrete random variables. 

Although we have used as examples experiments that have a finite set of 
possible outcomes. there are many physical systems (experiments) that 
generate continuous outputs (outcomes). For example, the noise voltage 
generated by an electronic amplifier has a continuous amplitude. Conse­
quently, the sample space S of voltage amplitudes v E S is continuous and so is 
the mapping X (v) = v. In such a case. the random variablet X is said to be a 
continuous random variable. 

Given a random variable X, let us consider the event {X .;; xr where x is any 
real number in the interval (- x, ox). We write the probability of this event as 
P(X .;;x) and denote it simply by F(x), i.e., 

F(x) = P(X';;x) (-oo<x <x) (2-1-19) 

The function F(x) is called the probability distribution function of the random 
variable X. It is also called the cumulative distribution function (edf). Since 
F(x) is a probability, its range is limited to the interval 0.;; F(x).;; 1. In fact, 
F(-x) = 0 and F(x) = 1. For example, the discrete random variable generated 
by flipping a fair coin and defined by (2-1-18) has the cdf shown in Fig. 
2-l-l(a). There are two discontinuities or jumps in F(x), one at x = -I and 
one at x = 1. Similarly, the random variable Xes) = s generated by tossing a 
fair die has the edf shown in Fig. 2-1-1(b). In this case F(x) has six jumps. one 
at each of the points x = 1, ' ... 6. 

FIGURE 2·{·1 Examples of the cumulative distribution functions of two discrete random variahles. 
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t The random variable X (s) will be written simply as X. 
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FIGURE 2·1·2 An exampk of the cumulative distribution f'.1nction of a 
continuous random variable. 

Fix) 

I ------------

o 

The cdf of a continuous random variable typically appears as shown in Fig. 
2-1-2. This is a smooth, nondecreasing function of x. In some practical 
problems, we may also encounter a random variable of a mixed type. The cdf 
of such a random variable is a smooth, non decreasing function in certain parts 
of the real line and contains jumps at a number of discrete values of x. An 
example of such a cdf is illustrated in Fig. 2-1-3. 

The derivative of the cdf F(x), denoted as p(x). is called the probability 
density function (pdf) of the random variable X. Thus, we have 

or, equivalently 

dF(x) 
p(x)=--· (-oc<x<;:"") 

dx 

F(x) = r~p(U)dU (-oo<x<oc) 

(2-1-20) 

(2-1-21) 

Since F(x) is a nondecreasing function, it follows that p(x);;. O. When the 
random variable is discrete or of a mixed type, the pdf contains impulses at the 
points of discontinuity of F(x). In such cases, the discrete part of p(x) may be 
expressed as 

n 

p(x) = 2: P(X = Xi) Ii(x - Xi) (2-1-22) 
i=1 

where Xi. i = I, 2, ... ,n, are the possible discrete values of the random 

FIGURE 1-1-3 An example of tlte cumulative diSlribution 
function of • random variable of a mixed type. 
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variable; PiX = x,), i = 1.2, .... n. are the probabilities, and o(x) denotes an 
impulse al x = o. 

Often we are faced with the problem of determining the probability that a 
random variable X falls in an interval (x,. x2), where X, > x ,. To determine the 
probability of this event, let us begin with the event {X"" X2}. The event can 
always be expressed as the union of two mutually exclusive events {X"" x ,I and 
{x, < X -SX2}. Hence the probability of the event {X -sx,} can be expressed as 
the sum of the probabilities of the mutually exclusive events. Thus we have 

or, equivalently. 

P(X -SX2) = P(X-sx,) + PIx, <X ";;x,) 

F(x,) = F(x,) + Pix, <X ";;X2) 

Pix, < X <SX2) = F(x2) - F(x,) 

f" = p(x) dx 

" 
(2·1-23) 

In olher words. the probability of the event {x, <X <SX2} is simply the area 
under the pdf in the range x, < X -s X2. 

Multiple Random Variables. Joint Probability Distributions, and Joint 
Probability Densities In dealing with combined experiments or repeated 
trials of a single experiment, we encounter multiple random variables and their 
cdfs and pdfs. Multiple random variables are basically multidimensional 
functions defined on a sample space of a combined experiment. Let us begin 
with two random variables X, and Xl, each of which may be continuous. 
discrete. or mixed. The joint cumulative distribution function (joint cdf) for the 
two random variables is defined as 

F(x" X2) = P(X, ";;x,. X 2 -SX2) 

= f~[p(U'. u2)du, dU2 (2-1-24) 

where p(x,. x2 ) is the joint probability density function Goinl pdf). The latter 
may also be expressed in the form 

il 
p(x" x,) = F(x,. X2) 

aX,OX2 
(2-1-25) 

When the joint pdf p(x 1• X2) is integrated over one of the variables. we 
obtain the pdf of the other variable. That is, 

r~ p(x" x2)dx, = P(X,) 

[~P(X' ,X2) dx2 = P(Xl) 

(2-1-26) 
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(2-1-26) 
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The pdfs p(x ,) and P(X2) obtained from integrating over one of the variables 
are called marginal pdfs. Furthermore, if p(x" X2) is integrated over both 
variables, we obtain 

(2-1-27) 

We also note that F(-oo. -ro)= F(-"",X2)=F(x" -00)=0. 
The generalization of the above expressions to multidimensional random 

variables is straightforward. Suppose that X" i = 1,2, ... , n, are random 
variables with a joint cdf defined as 

(2-1-28) 

where p(x" X2, ... , xn) is the joint pdf. By taking the partial derivatives of 
F(x" X2,' " • xn) given by (2-1-28), we obtain 

(2-1-29) 

Any number of variables in p(x" X" •.. , xn) can be eliminated by integrating 
over these variables. For example, integration over X2 and X3 yields 

(2-1-30) 

It also follows that F(x" 00,00, x 4 , ..• , xn) = F(x" X4, x" ... , xn) and 

CoJlditional Probability Distribution Functions Let us consider two ran­
dom variables X, and X 2 with joint pdf p(x,. X2)' Suppose that we wish to 
determine the probability that the random variable X, ", x 1 conditioned on 

where ~X2 is some positive increment_ That is, we wish to determine the 
probability of the event (X, "'Xj I X2 - AX2 < X 2 "'X2). Using the relations 
established earlier for the conditional probability of an event, the probability 
of the event (X, "'x, IX2 - AX2 <X2 "'X2) can be expressed as the probability 
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of the joint event (XI"'X\,X2-,:1X2<X,';;X,) divided by the probability of 
the event (x, - ax, <X2 "'X2)' Thus 

J~;'J;;-AX'P(U" U,) du, dU2 

J;:-tu, p(u,) dU2 

F(x" x,) - F(x, , X2 - AXz) 

F(x,) - F(xz - ax,) 
(2-1-3l) 

Assuming that the pdfs p(x" x,) and p(x,) are continuous functions over the 
interval (xz - Ax" x,), we may divide both numerator and denominator in 
(2-1-31) by Ax, and take the limit as 1x, ..... O. Thus we obtain 

I I 
iJF(x I, x,)/ iJx, 

P(X,';;x, X 2 =X2)=F(x, x,)= F()I 
iJ X, iJx, 

iJ!f':xJ"':xp(u" u,l du,du,]/iJx, 
iJ[f:>x p(u,) du,]/ ilx, 

Y·xp(u., x,)du, 
pIx,) 

(2-1-32) 

which is the conditional cdf of the random variable X, given the random 
variable X 2. We observe that F( - '" I x,) = 0 and F( 00 I X2) = 1. By 
differentiating (2-1-32) with respect to x" we obtain the corresponding pdf 
p(x, I x,) in the form 

( I ) - p(x" x,) 
p X, X2 - () p X, 

(2-1-33) 

Alternatively. we may express the joint pdf p(x" x,) in terms of the 
conditional pdfs, p(x 1 I X,) or p(x, I x,), as 

p(x" X,) = p(x, I x,)p(x,) 

=p(x,lx,)p(x,) (2-1-34) 

The extension of the relations given above to multidimensional random 
variables is also easily accomplished. Beginning with the joint pdf of the 
random variables Xi' i = 1,2, .. , , n, we may write 

p(x"x" ... ,xn )=P(X"X2,'" ,x.IXk+"'" ,Xn)P(Xk+"'" ,xn } (2-1-35) 

where k is any integer in the range 1 < k < n. The joint conditional cdf 
corresponding to the pdf p(x" x,.' .. , x* I XH"'" ,xn ) is 

F(X1, X2, # • • , Xk.1 Xk+h ... ,xn ) 

f~'x' .. f~'XP(Ub U2~" . , U4:, Xlc:+l" .. J xn) dUJ dU2' . . dUk 

p(Xk+" ... ,xn ) 
(2-1-36) 
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This conditional cdf satisfies the properties previously established for these 
functions, such as 

F(oo,X2""' ,Xk IXk+b'" ,xn )= F(X'!,X3."· ,Xl lXt-tIJ.· .• x,J 

F( -00, X z).,. I Xk I Xk+h' .. , Xn) = 0 

StatisticaUy Independent Random Variables. We have already define.d 
statistical independence of two or more events of a sample space S. The 
concept of statistical independence can be extended to random variables 
defined on a sample space generated by a combined experiment or by repealed 
trials of a single experiment. If the experiments result in mutually exclusive 
outcomes, the probability of an outcome in one experiment is independent of 
an outcome in any other experiment. That is, the joint probability of the 
outcomes factors into a product of the probabilities corresponding to each 
outcome. Consequently, the random variables corresponding to the outcomes 
in these experiments are independent in the sense that their joint pdf factors 
into a product of marginal pdfs. Hence the multidimensional random variables 
are statistically independent if and only if 

F(Xh X2.'" • x.) = F(x,)F(x,)" . F(xn) (2-1-37) 

or, alternatively, 

p(Xt. .1.2 ." •• Xn) = p(X,)p(X,) ... p(Xn) (2-1-38) 

2-1-2 Functions of Random Variables 
A problem that arises frequently in practical applications of probability is the 
following. Given a random variable X, which is characterized by its pdf p(x). 
determine the pdf of the random variable Y = g(X), where g(X) is some given 
function of X When the mapping 15 trom X to Y is one-to-one, the 
determination of p(y) is relatively straightforward. However, when the 
mapping is not one-to-one, as is the case, for example, when Y = X 2

, \lie must 
be very careful in our derivation of p(y). 

Example 2-1-1 

Consider the random variable Y defined as 

Y=aX +b (2-1-39) 

where a and b are constants. We assume that a > O. If a < 0, the approach is 
similar (see Problem 2-3). We note that this mapping, illustrated in Fig. 
2-1-4(a) is linear and monotonic. Let Fx(x) and Fy(y) denote the cdfs for X 
and Y. respectively.t Then 

Fy(y) = P(Y ,,;;y) = P(aX + b ",y) = p(x ",Y: b) 

f
ly-.• )I. (b 

= ~~ px(x)dx=Fx Y: ) (2-1-40) 

t To a .... oid confusion In changing variables. subscripts are used in the respective pdfs and cdfs. 
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FIGURE 2-1-4 A linear transform.lion of a random variable X and an example of the corresponding pdf. of X 
and Y. 

By differentiating (2-1-40) with respect to y, we obtain the relationship 
between the respective pdfs. It is 

py(y) = ;pxe: b) (2-1-41 ) 

Thus (2-1-40) and (2-1-41) specify the cdf and pdf of the random variable Y 
in terms of the cdf and pdf of the random variable X for the linear 
transformation in (2-1-39). To illustrate this mapping for a specific pdf 
Px(x), consider the one shown in Fig. 2-1-4(b). The pdf py(y) that results 
from the mapping in (2-1-39) is shown in Fig.2-1-4(c). 

Example 2-1-2 

Consider the random variable Y defined as 

Y=aX' + b, a >0 (2-1·42) 

As in Example 2-1-1, the mapping between X and Y is one-to-one. Hence 

Fy(y) = P(Y,,;;;y) = P(aX3+ b ,,;;;y) 

(2-1-43) 
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y 

FIGURE 2-1-5 A quadratic transformation of the random variable X 
b 

----;;!Of----- X 

Differentiation of (2-1-43) with respect to y yields the desired relationship 
between the two pdfs as 

1 [(Y - b)113] 
py(y) = 3a[(y - b)/a]WPx -a- (2-1-44) 

Example 2-1-3 

The random variable Y is defined as 

Y=aX2 +b, a>O (2-1-45) 

In contrast to Examples 2-1-1 and 2-1-2, the mapping between X and Y, 
illustrated in Fig. 2-1-5, is not one-Io-one. To determine the cdf of y, we 
observe that 

Fy(y) = P(Y.;; y) = P(aX2 + b .;; y) 

= P(IXI';; ~l: b) 

Hence 

(2-1-46) 

Differentiating (2-1-46) with respect to y, we obtain the pdf of Y in terms of 
the pdf of X in the form 

( )
_px(V(y-bJ/aj px(-V(y-b)/aj 

p y)' - + ~"':i;::===77~'" 
2aV[(y -b)/a) 2aV[(y -b)/a] 

(2-1-47) 

In Example 2-1-3, we observe that the equation g(x) = ax' + b =)' has two 
real solutions, 

/y -b x, = 'J-a-

X2= _ ~y :b 
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and that py(y) consists of two terms corresponding to these two solutions. 
That is, 

px[x, ~ V(y - b)/aJ PX[x2 = -\l(y - b)/aJ 
py(y) = Ig'[x, = V(y - b)/aJl +"-lgo..:'[x'-2~=---\--r!(=y=-=b==)~/a=::JI (2-1-411) 

where g'(x) denotes the first derivative of g(x). 
In the general case, suppose that x I. X2 • •••• x. are the real roots of the 

equation g(x) = y. Then the pdf of the random variable Y = g(X) may be 
expressed as 

" Px(x,) 
py(y) = ~ 19'(xi)1 

where the roots Xi' ; = 1, 2 •...• n. are functions of y. 

(2-1-49) 

Now let us consider functions of multidimensional random variables. 
Suppose that Xi. i = 1. 2 •... ,n. are random variables with joint pdf 
Px(x" X2 •••. • x,,). and let v,. i = 1.2 •...• n. be another set of n random 
variables related to the Xi by the functions 

(2-1-50) 

We assume that the gj(X,.X, •... ,X,,). ;=1.2 •.... n. are single-valued 
functions with continuous partial derivatives and invertible. By "invertible" we 
mean that the Xi. i = 1. 2 ..... n. can be expressed as functions of 1":. 
i = 1.2 •...• n, in the form 

Xi = g,-I(yl • Y, •...• Y,,). i = 1. 2 •... ,n (2-1-51 ) 

where the inverse functions are also assumed to be single-valued with 
continuous partial derivatives. The problem is to determine the joint pdf of Y,. 
i = I. 2 ..... n. denoted by Py(Y" Y2 ... .• Yn), given the joint pdf 
PX(XI 1 X2,'" ,xn )· 

To determine the desired relation, let Rx be the region in the n-dimensional 
space of the random variables Xi. i = I. 2 •...• n. and let R y be the 
(one-to-one) mapping of Rx defined by the functions Y, ~ gi(X,. X 2 ••• .• X,,). 
Clearly, 

J J ... I py(Y,. Yz •.. .• Yn) dYI dy>' .. dYn 
Ry 

= If··· J Px(xI.x, •... ,x,,)dx, dX2" ·dx" (2-1-52) 
R, 

By making a change in variables in the mUltiple integral on the right-hand side 
of (2-1-52) with the substitution 

x,=g;'(y"y2 ....• y,,)=gi', ;=1.2 •... ,n 
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we obtain 

f f· .. f p,.(y. y, ... .. .1'.) dy, dv, . , . dy" 
f<, 

= Jf··· f p.dx, =g, '.x,=g,.", .x" =g" ')IJlll\',dv," '£1.1'" 
N, 

(2-1-53) 

where J denotes the jacobian of the transformation. de:ined by the delerminant 

ilg " , a' 82 ilg" 
, 

ilv . , iiy, dYI 

J= (2-1-54) 

ilg, ' ilg,' Ng/~ I 

riYII aYn fly" 

Consequentlv, the desired relation for the joint pdf of the Y.. i = 1,2, .. , ,n. is 

p,·{y,.y", .. ,y,,)=px(.r,=g,'.x,=g,', ...• x,,=g,,')1l1 (2-1-55) 

Example 2-1-4 

An important functional relation between two sets of n -dimensional random 
variables that frequently arises in practice is the linear transformation 

" 
Y; = 2: aiIX;. i = 1,2 ..... n 

;=1 
(2-1-56) 

where the {ad are constants. II is convenient to employ the matrix form for 
the transformation, which is 

¥=AX (2-1-57) 

where X and ¥ are n-dimensional vectors and A is an n X n matrix. We 
assume that A is nonsingular. Then A is invertible and, hence, 

(2-1-58) 
Equivalently, we have 

" 
Xi = 2: bill!. i = I, 2 .... , n (2-1-59) 

/=1 

where {b,) are the elements of the inverse matrix A - t. The jacobian of this 
transformation is J = t/det A. Hence 

py(y" Y2, ... , y,,) 
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Example 2-1-4 

An important functional relation between two sets of n -dimensional random 
variables that frequently arises in practice is the linear transformation 

" 
Y; = 2: aiIX;. i = 1,2 ..... n 

;=1 
(2-1-56) 

where the {ad are constants. II is convenient to employ the matrix form for 
the transformation, which is 

¥=AX (2-1-57) 

where X and ¥ are n-dimensional vectors and A is an n X n matrix. We 
assume that A is nonsingular. Then A is invertible and, hence, 

(2-1-58) 
Equivalently, we have 

" 
Xi = 2: bill!. i = I, 2 .... , n (2-1-59) 

/=1 

where {b,) are the elements of the inverse matrix A - t. The jacobian of this 
transformation is J = t/det A. Hence 

py(y" Y2, ... , y,,) 
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2-1-3 Statistical Averages of Random Variables 

A verages play an important role in the characterization of the outcomes of 
experiments and the random variables defined on the sample space of the 
cxpenments. Of particular interest are the first and second moments of a single 
random variable and the joint moments, such as the correlation and covari­
ance, between any pair of random variables in a multidimensional set of 
random variables. Also of great importance are the characteristic function for a 
single random variable and the Joint characteristic function for a multidimen­
sional set of random variables. This section is devoted to the definition of these 
important statistical averages. 

First we consider a single random variable X characterized by its pdf p(x). 
The mean or expected value of X is defined as 

E(X)=m, = fx xp(x)dx (2-1-61) 

where £( ) denotes expectation (statistical averaging). This is the first moment 
of the random variable X. In general, the nth moment is defined as 

(2-1-62) 

Now, suppose that we define a random variable Y = g(X), where g(X) is 
some arbitrary function of the random variable X. The expected value of Y is 

E( Y) = £[g(X) J = r g(x )p(x) dx (2-1-63) 

In particular. if Y = (X - m,)" where m, is the mean value of X, then 

£(Y) = E[(X - m,)") = r (x - mSp(x) dx (2-1-64) 

This expected value is called the nth central moment of the random variable X, 
because it is a moment taken relative to the mean. When n = 2, the central 
moment is called the variance of the random variable and denoted as 0';. 
That is, 

(2-1-65) 

This parameter provides a measure of the dispersion of the random variable X. 
By expanding the term (x - mxf in the integral of (2-1-65) and noting that the 
expected value of a constant is equal to the conslant, we obtain the expression 
that relates the variance to the first and second moments, namely. 

O'~ = E(X2) - [E(X)J' 

= £(X2)_ m; (2-1-66) 
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In the case of two random variables, X, and X2, with joint pdf p(x" X2), we 
define the joint moment as 

(2-1-67) 

and the joint central moment as 

E[(X, - m,)k(X2 - m,)"] 

= r~r~(x,-m.)*(Xl-m2)"p(X"X2)dXldxl (2-1-68) 

where mi = E(Xi ), Of particular importance to us are the joint moment and 
joint central moment corresponding to k = n = 1. These joint moments are 
called the cotreiation and the covariance of the random variables X, and X 2, 

respectively. ' 
In considering multidimensional random variables, we can define joint 

moments of any order. However, the moments that are most useful in practical 
applications are the correlations and covariances between pairs of random 
variables. To elaborate, suppose that Xi, i = 1, 2, ' , , ,n, are random variables 
with joint pdf p(x" X,. ' , , ,Xn ). Let p(x" xJ be the joint pdf of the random 
variables Xi and Xi' Then the correlation between Xi and Xj is given by the 
joint moment 

(2-1-69) 

and the covariance of Xi and ~ is 

1-£., "" £[(Xi - mi)(X, - m)) 

= fX~ L~ (Xi - mi)(Xj -mj)p(xi• Xi) dx i dXj 

(2-1-70) 

The n X n matrix with elements Poi; is called the covariance matrix of the 
random variables Xi> j = 1. 2 •. ' , • n. We shall encoultlet' the covariance matrix 
in our discussion of jointly gaussian random variables in Section 2-14. 

Two random variables are said to be uncorrelated if E(XiXj ) = 
£(Xi )E(XJ = mimj' In that case, the covariance ILi' = O. We note that when Xi 
and Xi are statistically independent, they are also uncorrelated. However, if Xi 
and Xj are uncorrelated, they are not necessarily statistically independent. 
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Two random variables are said to be orthogonal if £(XiX) = O. We note 
that this condition holds when Xi and Xj are uncorrelated alld either one or 
both of the random variables have zero mean. 

Characteristic Functions The characteristic function of a random variable 
X is defined as the statistical average 

(2-1-71) 

where the variable v is real and j ~ v=T. We nole that "'Uu) may be described 
as the Fourier transformt of the pdf p(x). Hence the inverse Fourier trans· 
form is 

(2-1-72) 

One useful property of the characteristic function is its relation to the 
moments of the random variable. We note that the first derivative of (2-1-71) 
with respect to v yields 

By evaluating the derivative at v ~ 0, we obtain the first moment (mean) 

£(X) = m. = _/"'Ov) I 
dlJ .=0 

(2-1-73) 

The differentiation process can be repeated, so that the nth derivative of I/IUv) 
evaluated at v = a yields the nth moment 

(2-1-74) 

Thus the moments of a random variable can t>e determined from the 
characteristic function. On the other hand, suppose that the characteristic 
function can be expanded in a Taylor series about the point v = O. That is, 

(2-1-75) 

Using the relation in (2-1-74) to eliminate the derivative in (2-1-75), we obtain 

t Usually the Fourier transfonn of a function g(u) is defined as G(u) ~ r:.. g(u)e -,.. du, which 
differs from (2-1-71) by the negative.sign in the exponenlial. This is a trivial difference, however, so 
..., caillbe integral in (2-1-71) a Fowier transform. 
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an expression for the characteristic function in terms of its moments in the 
form 

I/!{jv) = i E(X") Uvr 
"",0 n. 

(2-1-76) 

The characteristic function provides a simple method for determining the 
pdf of a sum of statistically independent random variables. To illustrate this 
point. leI Xi. j = 1. 2 ....• n, be a set of n statistically independent random 
variables and leI 

" y=2:x, (2-1-77) 
i-I 

The problem is to determine the pdf of Y. We shall determine the pdf of Y by 
first finding its characteristic function and then computing the inverse Fourier 
transform_ Thus . 

I/Iy(jv) = E(eiv') 
= E[ exp (jv ,t, Xi) ] 

= E[D (eI"X) ] 

= f,···fx(Dei V'}(X,.x, .... ,x"ldx,dX2 ··,dXn (2-1-78) 

Since the random variables are statistically independent. p(x" X"., . ,xu) = 

p(x,)p(xJ·· . p(x,,). and. hence. the nth-order integral in (2-1-78) reduces to a 
product of n single integrals, each corresponding to the characteristic function 
of one of the X .. Hence, 

n 

I/Iy(jv) = n t/lx.(jv) (2-1-79) 
i=; 

If, in addition to their statistical independence,- the Xi are identically 
distributed then all the oiJ.,(jv) are identical. Consequently. 

(2-1-80) 

Finally, the pdf of Y is determined from the inverse Fourier transform of 
l{Jy(jv). given by (2-1-72). 

Since the characteristic function of the sum of n statistically independent 
random variables is equal to the product of the characteristic functions of the 
individual random variables Xu i = 1,2, ... , n, it follows that. in the transform 
domain, the pdf of Y is the n-fold convolution of the pdfs of the X,. Usually 
the n-fold convolution is more difficult to perform than the characteristic 
function method described above in determining the pdf of Y. 

When working with n-dimensional random variables, it is appropriate to 
define and n-dimensional Fourier transform of the joint pdf. In particular, if 
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Xi' i = 1, 2 •... ,n, are random variables with pdf P(XI. X2 • ..•• x.). the 
n -dimensional characteristic function is defined as 

Of special interest is the two-dimensional characteristic function 

"'(jV"jV2) = r~rx ~(v,x,+v'X')p(x" x2)dx , <ix, (2-1-82) 

We observe that the partial derivatives of ",(jV" ;v,) with respect to VI and V, 
can be used to generate the joint moments. For example, it is easy to show that 

rPt/I(jV1>jV2)I 
aV l avz VI = l1:2 =0 

(2-1-83) 

Higher-order moments are generated in a straightforward manner. 

2-1-4 Some Useful Probability Distribalions 

In subsequent chapters, we shall encounter several different types of random 
variables. In this section we list these frequently encountered random 
variables, their pdfs, their cdfs, and their moments. We begin with the binomial 
distribution, which is the distribution of a discrete random variable, and then 
we present the distributions of several continuous random variables. 

Binomial DistnDution Let X be a discrete random variable that has two 
possible values, say X = 1 or X = O. with probabilities p and 1 - p, 
respectively. The pdf of X is shown in Fig. 2-1-6_ Now, suppose that 

n 

y= 2: X, 
i=l 

where the Xi' i = 1, 2, ... , n, are statistically independent and identically 

I -p p 

I'1GURE 2-1-6 The probability distribution function of X. 
I I 
o I 

. , 
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distributed random variables with the pdf shown in Fig. 2-1-6. What is the 
probability diMribution function of Y? 

To answer this question, we observe that the range of Y is the set of 
integers from 0 to n. The probability that Y = 0 is simply the probability that 
all the X, = O. Since the X, are statistically independent, 

P( Y = 0) = (1 - p)" 

The probability that Y = I is simply the probability that one X; = 1 and the rest 
of the x: = O. Since this event can occur in 11 different ways, 

P(Y=I)=np(l-pr' 

To generalize, the probability that Y = k is the probability that k of the Xi are 
equal to one and 11 - k are equal to zero. Since there are 

(n) n! 
k =k!(II-k)! 

(2-1-84) 

different combinations that result in the event {Y = k}. it follows that 

(2-1-85) 

where G) is the binomial coefficient. Consequently, the pdf of Y may be 

expressed as 

The cdf of Y is 

n 

ply) = 2: PlY = k) illy - k) 

F(y)=P(Y";;y) 
[y) 

= 2: (n)pk(l - prk 

.~O k 

(2-1-86) 

(2-1-87) 

where [yj denotes the largest integer m such that m ,,;; y. The edf in (2-1-87) 
characterizes a binomially distributed random variable. 

The first two moments of Yare 

E(Y)=np 

E(y2) = np(l - p) + n 2p2 

u 2 =np(l-p) 

and the characteristic function is 

I/t(jv) = (1 - p + p~)" 

(2-1-88) 

(2-1-89) 
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p(.f} 
F(xj 

lI'b ~ (1 

Q 0 b ~oL-°O~-----+b-------'X 

ta) (b) 

FIGURE Z-I-7 The pdf and cd! of a uniformly distributed random variable. 

Uniform Distribution The pdf and cdf of a uniformly distributed random 
variable X are shown in Fig. 2-1-7. The first two moments of X are 

£(X) = Ha +b) 

£(X2) = Ha 2 + b 2 + ab) (2-1-90) 

and the characteristic function is 

e". - e''''' 
t/I(jv) = . (b )-

JV - a 
(2-1-91) 

Gaussian (Normal) Distribution The pdf of a gaussian or normally 
distributed random variable is 

(2-1-92) 

where m, is the mean and (72 is the variance of the random variable. The cdf is 

- e (u--m.)1,'2a2 du 1 f' - Y21r u -x 

1 2 fix m,IN'" _, 
= -- e ( dt 

2 VJr x 

_I ) ('x-m,) - ,+,erf ~ 
-. v2u (2-1-93) 
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p(x) 

iT. " --- --

FiX} 

I 
:1 

--:O+---m~,----- .• --'O+---n~',----- ., 

«(1) lb) 

FIGURE 2-1-11 The pdf and edf of a gaussian·distributed ra"darn variable. 

where erf (x) denotes the error function, defined as 

2 LX , erf(x) = _ f e-" dt 
V1t 0 

The pdf and cdf are illustrated in Fig. 2-1-8. 

(2-1-94) 

The cdf F(x) may also be expressed in terms of the complementary error 
function. That is, 

(
X -m ) 

F(x)=l-!erfc V'l.;' 
where 

2 IX . erfc(x) = Vii , eO"~ de 

=1-erf(x) (2-1-95) 

We note that erf(-x) = -erf(x), erfc{-x)=2-erfc(x), erf(O) = erfc(oo) = 
0, and erf(oc) = erfc (0) = 1. For x >mn the complementary error function is 
proportional to the area under the tail of the gaussian pdf. For large values of 
x, the complementary error function erfc(x) may be approximated by the 
asymptotic series 

e- X

'( 1 1·3 1·3·5 ) erfc (x) = -- 1 - - + - - + ... 
xVii 2x' 2'x· 2-'x6 

(2-1-96) 

where the approximation error is less than the last tenn used. 
The function that is frequently used for the area under the tail of the 

gaussian pdf is denoted by Q(x) and defined as 

1 JX -Q(x) =- e-"·"dr. v11r, 
By comparing (2-1-95) with (2-1-97), we find 

Q(x)= ~erfC( ~) 
V2 

x",o (2-1-97) 

(2-1-98) 
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The cdf F(x) may also be expressed in terms of the complementary error 
function. That is, 

(
X -m ) 

F(x)=l-!erfc V'l.;' 
where 

2 IX . erfc(x) = Vii , eO"~ de 

=1-erf(x) (2-1-95) 

We note that erf(-x) = -erf(x), erfc{-x)=2-erfc(x), erf(O) = erfc(oo) = 
0, and erf(oc) = erfc (0) = 1. For x >mn the complementary error function is 
proportional to the area under the tail of the gaussian pdf. For large values of 
x, the complementary error function erfc(x) may be approximated by the 
asymptotic series 

e- X

'( 1 1·3 1·3·5 ) erfc (x) = -- 1 - - + - - + ... 
xVii 2x' 2'x· 2-'x6 

(2-1-96) 

where the approximation error is less than the last tenn used. 
The function that is frequently used for the area under the tail of the 

gaussian pdf is denoted by Q(x) and defined as 

1 JX -Q(x) =- e-"·"dr. v11r, 
By comparing (2-1-95) with (2-1-97), we find 

Q(x)= ~erfC( ~) 
V2 

x",o (2-1-97) 

(2-1-98) 
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The .:h"racteristic function of a gaussian random variable with mean m, and 
. . . 

vananc:c' {T- IS 

':rUv) = f' eru,[-I-e -(, -m,)'",,'] dx 
• VzJr". 

The central moments of a gah>ian random variable are 

{
I' 3 ... (k - l)".A 

E[(X-m,)"J=l1-k= 0 
(even k) 

(odd k) 

(2-1-99) 

(2-1-\00) 

and the ordinary moments may be expressed in terms of the central moments 
as 

(2-\-101) 

The sum of n statistically independent gaussian random variables is also a 
gaussian random variable. To demonstrate this point, let 

n 

y=2;x, (2-1- 102) 
i=1 

where the Xi. i = 1. 2, ...• n, are statistically independent gaussian random 
variables with means mi and variances a~. Using the result in (2-\-79), we find 
that the characteristic function of Y is 

n 

o/Iy(fv) = n "'x, (jv ) 
1""'1 

(2-1-\ 03) 

where 

n 
(2-\-104) 

, "" ' a~. = L.J (7'; 
i=l 

Therefore, Y is gaussian·distributed with mean m. and variance <T~. 

Chi-Square Distribution A chi·square·distributed random variable is reo 
lated to a gaussian·distributed random variable in the sense that the former can 
be viewed as a transformation of the latter. To be specific, let Y = X'. where X 
is a gaussian random variable. Then Y has a chi·square distribution. We 
distinguish between two types of chi·square distributions. The first is called a 
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central chi-square distribllfion and is obtained when X has zero mean. The 
second is called a non-central chi-square distrilmtion. and is obtained when X 
has a nonzero mean. 

First we consider the central chi-square distribution. Let X be gaussian­
distributed with zero mean and variance u 2 Since Y = X', the result given in 
(2-1-47) applies directly with 0 = i lind b = O. Thus we obtain the pdf of Y in 
the form 

(2-1-105) 

The edf of Y is 

Fy(y) = J'p,.(II) d" 
Il 

1 f' 1 "..-2.T':: du 
=~ ---;=::-e 

V21CfJ " Vu 
(2-1-106) 

which cannot be expressed in closed form. The characteristic function, 
however. can be determined in closed form. It is 

.p(jv) = (l - j2vU')'12 (2-1-107) 

Now. suppose that the random variable Y is defined as 

" 
y= Ix~ (2-1-108) 

1=1 

where the Xi. i = 1. 2 .... ,n. are statistically independent and identically 
distributed gaussian random variables with zero mean and variance u'. As a 
consequence of the statistical independence of the X" the characteristic 
function of Y is 

. 1 
.py(Jv) = (1 - j2v(2)"12 

The inverse transform of this characteristic function yields the pdf 

1 . 
py(y)= u"2"l2r(~n)y"!2-'e-Yi'ff-. y30 

where r(p) is the gamma function. defined as 

f(p)=ftp"e-'d,. p>O 

r(p) =(p -l)!. pan irlteger,p >0 

rm = '\I'1r. r(~) = ~ v1i 

(2-1-109) 

(2-1-110) 

(2-1-111) 

This pdf. wflich is a generalization 0(2-1-105). is called a chi-square (or 
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FIGURE 2-1-9 The pdf or a chi-square-distributed random 
variable for several degrees of freedom, 

pry) 

0.5 

0.4 

0.3 

0.1 

o 

n= I 

n=2 

2 4 8 10 12 14 

gamma) pdf with n degrees offreedom. It is illustrated in Fig. 2-1-9. The case 
n = 2 yields the exponential distribution. 

The first two moments of Yare 

E(Y) = nu2 

E(y2) = 2nu4 + n2u' (2-1-112) 

The edf of Y is 

(2-1-113) 

This integral can be easily manipulated into the form of the incomplete gamma 
function, which is tabulated by Pearson (1965). When n is even, the integral in 
(2-1-113) can be expressed in closed form. Specifically, let m = ~n, where m is 
an integer. Then, by repeated integration by parts, we obtain 

rn-l 1 ( )k 
Fy(y) = 1 - e-yI2u' L I .L , 

.~O k. 20-> 
(2-1-114) 

Let us now consider a noncentral Chi-square distribution, which results from 
squaring a gaussian random variable having a nonzero mean. If X is gaussian 
with mean mx and variance 0'2, the random variable Y = X 2 has the pdf 

1 . l)~.' (vYmx) py(y) = r e -.y 'm, ."~ cosh --2 - , 

V2Jryu 0' 
(2-I-lIS) 

which is obtained by applying the result in (2-1-47) to the gaussian pdf given by 
(2-1-92). The characteristic function corresponding to this pdf is 

(2-1-116) 
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which is obtained by applying the result in (2-1-47) to the gaussian pdf given by 
(2-1-92). The characteristic function corresponding to this pdf is 

(2-1-116) 
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To generalize these results, let Y be the sum of squares of gaus.'iian random 
variables as defined by (2-1-108). The X" i = I, 2, ... ,n, are assumed to be 
statistically independent with means m" i = 1, 2, ... ,n, and identical variances 
equal to IT'. Then the characteristic function of Y, obtained from (2-1-116) by 

applying the relation in (2-1-79), is (jV i m i ) 

l/Jy(jv) = (1 _ j2~1T2rl1. exp 1 ':';2vu2 (2-1·117) 

This characteristic function can be inverse-Fourier-transformed to yield the pdf 

1 ( )(.-2)14 (S ) Y - (s< +-." )!"2o-~ py(y)=;;-; '2 e fnl2-l vY, , 
... IT S . fT 

(2-1-118) 

where, by definition, 

(2-1-119) 

and falx) is the ath-order modified Bessel function of the first kind, which may 
be represented by the infinite series 

x (x12)a"2k 

la(x) = tok! f(a + k + 1)' X;;,.o (2-1-120) 

The pdf given by (2-1-118) is called the noncentral chi-square pdf wirh n 
degrees of freedom. The parameter S2 is called the noncentrality parameter of 
the distribution. 

The cdf of the noncentral chi square with n degrees of freedom is 

ly 1 (U)(.-ZY
4. (S) F,(y)= - - e-(s'+u)'2u2f Yu- du 

y 2 _2 2 .12-' 1. o IT- S U 
(2-1-121) 

There is no closed-form expression. for this integral. However, when m = in is 
an integer, the cdf can be -expressed in terms of the generalized Marcum's Q 
function, which is defined as 

(2-1-122) 

where 

Q,(a, b) = e-(Q2+b
1

)12 i (~b)\(ab), b>a>O 
k=O } 

(2-1-123) 

If we change the variable of integration in (2-1-121) from u to x, where 

x2=u/a2 
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and let a2 = s2/a2, then it is easily shown that 

(2-1-124) 

Finally. we state that the first two moments of a noncentral chi-square­
distributed random variable are 

E(Y) = ncf1 + S2 

E(y2) = ma4 + 4U2S2 + (nu2 + S2)2 

(72 = ma' + 4U2s2 
y 

(2-1-125) 

Rayleigb Distribu1iOD The Rayleigh distribution is frequently used to 
model the statistics of signals transmitted through radio channels such as 
cellular radio_ This distribution is closely related to the central chi-square 
distribution. To illustrate this point, let Y = X~ + X~ where X I and X 2 are 
zero-mean statistically independent gaussian random variables, each having a 
variance (72. From the discussion above, it follows that Y is chi-square­
distributed with two degrees of freedom. Hence, the pdf of Y is 

(2-1-1261 

Now, suppose we define a new random variable 

(2-1-1211 

Making a simple change of variable in the pdf of (2-1-126), we obtain the pdf 
of R in the form 

(2-1-128) 

This is the pdf of a Rayleigh-distributed random variable. The corresponding 
edf is 

FR(r) = L' ~e-"'12~2 du 
0(72 

= 1 - e-,l,'2r:r
2

, r ~ 0 

The moments of Rare 

(2-1-129) 

(2-1-130) 
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and the variance is 
(2-1-13I) 

The characteristic function of the Rayleigh-distributed, random variable is 

(2-1-132) 

This integral may be expressed as 

oX [ r 
o/tR(jV) = J -; e - ,2i2c' cos vr dr + j ;; e _r'I2~2 sin vr dr 

u a () (T 

=11';(1,!:_~v20"2)+jv1Jrv0"2e "'all2 (2-1-133) 

where 11';(1, !; -a) is the confluent hypergeometric function, which is defined 
as 

x qa + k)qp).x* 
II';(a. f3;:X) = t-or(a)f{f3 +k)k!' f3 #0. -1, -2.... (2-1-134) 

Beaulieu (1990) has shown that ,Fdl, J: -a) may be expressed as 

(2-1-135) 

As a generalization of the above expression, consider the random variable 

R= )tXf (2-1-136) 

where the Xi' i = 1. 2 ....• n, are statistically independent, identically distrib­
uted zero mean gaussian random variables. The random variable R has a 
generalized Rayleigh distribution. Clearly, Y = R2 is chi-square-distributed 
with n degrees of freedom. Iiti pdf is given by (2-1-110). A simple change in 
variable in (2-1-110) yields the pdf of R in the form 

r;;'O (2-1-137) 

As a consequence of the functional relationship between the central 
chi-square and the Rayleigh distributions, the correspondiqg cdfs are" similar. 
Thus, for any n. the cdf of R can be put in the form of the incomplete gamma 
function. In the special case when n is even, i.e.; n = 2m, the cdf of R can be 
expressed in the closed form 

(2-1-138) 

I 
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Finally, we state tnat the kth moment of R"is 

(2-1-l39) 

wnich holds for any integer II, 

Rice Distribution Just as the Rayleigh distribution is related to the central 
chi-square distribution, the Rice distribution is related to the noncentral 
chi-square distribution. To illustrate this relation, let Y = xl + X~, where X, 
and X 2 are statistically independent gaussian random variables with means mi. 
i = 1, 2, and common variance (F2. From the previous discussion, we know that 
Y has a noncentral chi-square distribution with noncentralit), parameter 
S2 = mi + m~, The pdf of Y, obtained from (2-1-118) for n = 2, is 

(2-1-140) 

Now, we define a new random variable R = vY. The pdf of R, obtained 
from (2-1-140) by a simple change of variable, is 

(2-1-141) 

This is the pdf of a Ricean-distributed random variable. As will be shown in 
Chapter 5, this pdf characterizes the statistics of the envelope of a signal 
corrupted by additive narrowband gaussian noise. It is also used to model the 
signal statistics of signals transmitted through some radio channels. The cdf of 
R is easily obtained by specializing the results in (2-1-124) to the case m = 1. 
This yields 

(2-1-142) 

where Q,(a, b) is defined by (2-1-123), 
As a generalization of the expressions given above, let R be defined as in 

(2-1-136) where the Xi' i = 1,2" .. , n are statistically independent gaussian 
random variables with means mi , j = 1, 2, ... ,n, and identical variances equal 
to (T2, The random variable R2 = Y has a noncentral chi-square distribution 
with n degrees of freedom and noncentralilY parameter S2 given by (2-1-119). 
Its pdf is given by (2-1-118). Hence the pdf of R is 

(2-1-143) 
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and the corresponding cdf is 

FR(r) = P(R ""- r) = P(vY";; r) = P(Y";; ,2} = Fy(r2) (2-1-144) 

where Fy(r') is given by (2-1-121). In the special case where m =!n is an 
integer, we have 

(2-1-145) 

which follows from (2-1-124). Finally, we slate that the kth moment of R is 

, ,r(~(n + k» (n + k n S') E(Rk) = (2 ')'12 -d2,,' - F -- -'-
0' e f(!n) I I 2 ' 2 '2".' , 

(2-1·146) 

where ,F,(a, f3;x) is the confiuent hypergeometric function. 

NaklllllDli m-Distribution Both the Rayleigh distribution and the Rice 
distribution are frequently used to describe the statistical fluctuations of signals 
received from a multipath fading channel. These channel models are con­
sidered in Chapter 14. Another -distribution that is frequently used to 
characterize the statistics of signals transmitted through multipath fading 
channels is the Nakagami m-distribution. The pdf for this distribution is given 
by Nakagami (1960) as 

(2-1-147) 

where Q is defined as 

(1= E(R') (2-J-148} 

and the parameter m is defined as the ratio of moments, called the fading 
figure, 

m = E[(R2 - nf] , (2-1-149) 

A normalized version of (2-1-147) may be obtained by defining another 
random variable X = RJVn (see Problem 2-15). The nth moment of R is 

f(m + ~n)(n)n'2 
£(R") = --

f(m) m 

By setting m = I, we observe that (2-l-l47) reduces to a Rayleigh pdf. For 
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and the corresponding cdf is 
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(2-1-145) 
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, ,r(~(n + k» (n + k n S') E(Rk) = (2 ')'12 -d2,,' - F -- -'-
0' e f(!n) I I 2 ' 2 '2".' , 

(2-1·146) 
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values of m in the range! "" m "" 1, we obtain pdfs that have larger tails than a 
Rayleigh-distributed random variable. For values of m > I, the tail of the pdf 
decays faster than that of the Rayleigh. Figure 2-1-10 illustrates the pdfs for 
different values of m. 

Multivariate Gaussian Distribution Of the many multivariate or multi­
dimensional distributions that can be defined, the multivariate gaussian 
distribution is the most important and the one most likely to be encountered in 
practice. We shaH briefly introduce this distribution and state its basic 
properties. 

Let us assume that Xi. i = 1. 2, ...• n, are gaussian random variables with 
means mi. i = 1, 2, ... ,n, variances uf, i = 1, 2, ... ,n, and covariances ILi/' 
i, j = 1,2 •...• n. Oearly, ILii = uf. i = 1. 2, ... ,n. Let M denote the n x n 
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covariance matrix with elements {iL'll. let X denote the n x 1 column vector of 
random variables, and Ie! m, denote the n x I column vector of mean values 
m" i = I, 2, ... ,n. The joint pdf of the gaussian random variables X" 
i = 1. 2 ..... n, is defined as 

(2-1-150) 

where 1\1' , denotes the inverse of M and x' denotes the transpose of x. 
The characteristic function corresponding to this n-dimensional joint pdf is 

where v is an n-dimensional vector with elements Vi' i = 1, 2, ...• n. 
Evaluation of this n-dimensional Fourier transform yields the result 

"'Uv) = exp (jm;v ~ !v'M~) (2-1-151) 

An important special case of (2-1-150) is the bivariate or two-dimensional 
gaussian pdf. The mean Mx and the covariance matrix M for this case are 

[ ~ M~ 

iLl1 

(2-1-152) 

where the joint central moment !-t 11 is defined as 

It is convenient to define a normalized covariance 

i""i (2-1-153) 

where Pi, sati~fies the condition 0"" Ipill "" 1. When dealing with the two­
dimensional case, it is customary to drop the subscripts on 11-" and PI2' Hence 
the covariance matrix Is expressed as 

(2-1-154) 

Its inverse is 

(2-1-155) 

60

so DlGlrAL CUMML'NlCA HONS 

covariance matrix with elements {iL'll. let X denote the n x 1 column vector of 
random variables, and Ie! m, denote the n x I column vector of mean values 
m" i = I, 2, ... ,n. The joint pdf of the gaussian random variables X" 
i = 1. 2 ..... n, is defined as 

(2-1-150) 

where 1\1' , denotes the inverse of M and x' denotes the transpose of x. 
The characteristic function corresponding to this n-dimensional joint pdf is 

where v is an n-dimensional vector with elements Vi' i = 1, 2, ...• n. 
Evaluation of this n-dimensional Fourier transform yields the result 

"'Uv) = exp (jm;v ~ !v'M~) (2-1-151) 

An important special case of (2-1-150) is the bivariate or two-dimensional 
gaussian pdf. The mean Mx and the covariance matrix M for this case are 

[ ~ M~ 

iLl1 

(2-1-152) 

where the joint central moment !-t 11 is defined as 

It is convenient to define a normalized covariance 

i""i (2-1-153) 

where Pi, sati~fies the condition 0"" Ipill "" 1. When dealing with the two­
dimensional case, it is customary to drop the subscripts on 11-" and PI2' Hence 
the covariance matrix Is expressed as 

(2-1-154) 

Its inverse is 

(2-1-155) 



CHAPTER 2 PROBAB1UTY A~D STOCHAH1C PR(X'ESSES 51 

and del M = a;a~(l- p'), Substitution for M-' into (2-1-150) yields the 
desired bivariate gaussian pdf in the form 

1 
p(x"x,)= ,~ 

2lra, a, \0 J - p 

xexp [ 
a~(x, - m,)' - 2pa,CT2(xl - ml)(x2 - m,) + cd (x, - m2i] 

2a~a',(1 - p2) 

(2-1-156) 

We note that when p =0, the joint pdf p(x" x,) in (2-1-156) factors into the 
product p(X,)P(X2), where P(Xi), i = 1, 2, are the marginal pdfs. Since p is a 
measure of the correlation between X, and X 2 , we have shown that when the 
gaussian random variables X, and X 2 are uncorrelated. they are also 
statistically independent. This is an important property of gaussian random 
variables, which does not hold in general for other distributions. It e.~tends to 
n-dimensional gaussian random variables in a straightforward manner. That is. 
if Pij = 0 for i "# j then the random variables Xi' i = I. 2, .... n are uncorrelated 
and, hence. statistically independent. 

Now, let us consider a linear transformation of n gaussian random variables 
X" i = 1. 2 ....• n. with mean vector m, and covariance matrix M. Let 

Y=AX (2-1-157) 

where A is a nonsingular matrix. As shown previously. the jacobian of this 
transformation is J = Ildet A. Since X = A "ly, we may substitute for X in 
(2-1-150) and, thus, we obtain the joint pdf of Y in the form 

1 
p(y) = (21r)"I2(det M)"2 det A exp [-K4. - '.y - mxl'M -'(A "y - m,)] 

1 
= (21r)"I2(det Q)"2 exp [-Hy - my)'Q - '(y - m,)] (2-1-158) 

where the vector m. and the matrix Q are defined as 

(2-1-159) 

Thus we have shown that a linear transformation of a set of jointly gaussian 
random variables results in another set of jointly gaussian random variables. 

Suppose that we wish to perform a linear transformation that results in n 
statistically independent gaussian rand'om variables. How should the matrix A 
be selected? From our previous discussion, we know that the gaussian random 
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variables are statisticaUy independent if they are pairwise-uncorrelated, i.e., if 
the covariance matrix Q is diagonal. Therefore. we must have 

AMA'=D (2-1-160) 

where D is a diagonal matrix. The matrix M is a covariance matrix; hence, it is 
positive definite. One solution is to select A to be an orthogonal matrix 
(A' = A -I) consisting of columns that are the eigenvectors of the covariance 
matrix M. Then D is a diagonal matrix with diagonal elements equal to the 
eigenvalues of M. 

EDIIIpIe 2-1-5 

Consider the bivariate gaussian pdf with covariance matrix 

[1 l~] M= ! 

Let us determine the transformation A that will result in uncorrelated 
random variables. First, we solve for the eigenvalues of M. The characteris­
tic equation is 

det (M - .\I) = 0 

(I-A),-1=0 

Next we determine the two eigenvectors. If a denotes an eigenvector, we 
have 

(M - AI). = 0 

With AI = 1 and ,1.2 = t we obtain the eigenvectors 

Therefore, 

It is easily verified that A-I = A' and that 

AMA'=D 

where the diagonal elements of D are ~ and 1. 
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2·1·5 Upper Bounds on the Tail Probability 
In evaluating the performance of a digital communication system, it is often 
necessary to determine the area under the tail of the pdf. We refer to this area 
as the tail probability. In this section, we present (wo upper bounds on the tail 
probability. The first. obtained from the Chebyshev inequality. is rather loose. 
The second, called the Chernoff bound, is much tighter. 

Chebyshev Inequality Suppose that X is an arbitrary random vanable with 
finite mean mx and finite variance {T~ For any positive number 8, 

(2-1-161) 

This relation is called the Chebyshev inequality. The proof of this bound is 
relatively simple. We have , 

{T~ = [x (x - mSp(x) fix;;. L-m" .. , (x - mx )'p(x) fix 

;;. 82 J p(x) fix = 8 2P(lX - mxl;;. 8) 
IX -m"I __ S 

Thus the validity of the inequality is established. 
It is apparent that the Chebyshev inequality is simply an upper bound on 

the area under the tails of the pdf p(y), where Y = X - m" i.e., the area of 
p(y) in the intervals (-00, -Il) and (8,00). Hence, the Chebyshev inequality 
may be expressed as 

(2-1-162) 

or, equivalently, as 

(2-1-163) 

There is another way to view the Chebyshev bound. Working with the zero 
mean random variable Y = X - m.. for eonvenience, suppose we define a 
function g( Y) as 

{
I (lYI;;. 8) 

g(Y) = 0 (IYI < 8) (2-1-164) 

Since g(Y) is either 0 or 1 with probabilities P(lYI <~) and P(IYI;;. 8), 
respectively, its mean value is 

E(g(Y)] = P(IYI;;. 0) (2-1-165) 
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nGUltE 2-1·11 A quadratic upper bound on g( Y) used in 
obtaining the taU prob.obility (Chebyshev 
bound). 

------~--~d-~--r_-------Py 

Now suppose that we upper-bound g(Y) by the quadratic (yrB)', i.e., 

(2-1-166) 

The graph of g(Y) and the upper bound are shown in Fig. 2-1-11. It follows 
that 

y2) £(y2) ~ u2 
E\g(Y}]';;E(B2 =52=~= 8; 

Since E[g(Y)J is the tail probability. as seen from (2-1-165), we have obtained 
tbe Chebyshev bound. 

For many practical applications, the Chebyshev bound is extremely loose. 
The reason for this may be attributed to the looseness of the quadratic (Y / B)2 
in overbounding g( Y). There are certainly many other functions that can be 
used to overbound g(Y). Below. we use an exponential bound to derive an 
upper bound on the tail probability that is extremely tight. 

CIJemeff Bound The Chebyshev bound given above involves the area 
under the two tails of the pdf. In some applications we are interested only in 
the area under one tail, either in the interval (8, "") or in the interval (- x, [». 

In such a case we can obtain an extremely tight upper bound by overbounding 
the function g(Y) by an exponential having a parameter that can be optimized 
to yield as tight an upper bound as possible. Specifically. we consider the tail 
probability in the interval (I>, 00). The function g(Y) is overbounded as 

where g(Y) is now defined as 

g(Y) = {Ol (Y ~ o) 
(Y<o) 

(2·1-167) 

(2.1-168) 
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flGURE l-l-U An exponential upper bound on g(Y) used in 
obtaining the tail probability (Chernoff bound). 

-=~~--~--------~-----+y 

and v;;. 0 is the parameter to be optimized. The graph of g(Y) and the 
exponential upper bound are shown in Fig. 2-1-12. 

The expected value of g(Y) is 

E[g(Y)] = P(Y;;. 8)..; E(e>1 Y
-

8 !) (2-1-169) 

This bound is valid for any v;;. O. The tightest upper bound is obtained by 
selecting the value of v that minimizes E(ev(Y-8». A necessary condition for a 
minimum is 

(2-1-170) 

But the order of differentiation and expectation can be interchanged, so that 

.!!..E(e>1Y-O) = E(!!....e V(Y-8l) 
dv 'dv 

= E[(Y - O)eV(Y-61] 

= e- V6[E(Ye vY
) - 6E(evY

)] = 0 

Therefore the value of v that gives the tightest upper bound is the solution to 
the equation 

(2-1-11l) 

Let l> be the solution of (2-1-171). Then, from (2-1-169), the upper bound on 
the one-sided tail probability is 

(2-1-In) 

This is the Chernoff bound for the upper tail probability for a discrete or a 
continuous random variable having a zero mean. t This bound may be used to 
show that Q(x) ";e-X 'I2, where Q(x) is the area in the tail of the gaussian pdf 
(see Problem 2-18). 

t Note that E(e vY
) for real v is not the characteristic function of Y. It is called the momtn! 

g_roling funCIWn of Y. 
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FIGURE 2·1·13 Tile pdf of a Laplace-distributed random variable. 
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An upper bound on the lower tail probability can be obtained in a similar 
manner, with the result that 

P(Y'" c5) '" e- "E(e VY
) 

where if is the solution to (2-1-171) and c5 <0. 

Example 2-1-6 

Consider the (Laplace) pdf 

(2-1-173) 

(2-1-174 ) 

which is illustrated in Fig. 2-1,13. Let us evaluate the upper tail probability 
from the Chernoff bound and compare it with the true tail probability, 
which is 

(2-1-175) 

To solve (2-1-171) for if, we must determine the moments E(Ye vY
) and 

E(evY
). For the pdf in (2-1-174), we find that 

2v 
E(Ye vY

) 
(v + 1)'(v -1)' 

E(e vY
) = 1 

(1 + v)(1 - v) 

(2-1-176) 

Substituling these moments into (2·1-171), we obtain the quadratic equation 

y 2c5 +2v - c5 =0 

which has the solutions 

-l±~ 
1) = --=--=--~-=-

c5 
(2-1-177) 

Since 1) must be positive, one of the two solutions is discarded. Thus 

-1+~ 
1)= (2-1-178) 

li 
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Finally, we evaluate the upper bound in (2-1-172) by eliminating E(e<Y) 
using the second relation in (2-1-176) and by sUbstituting for 9 from 
(2-1-178). The result is 

8 2 

P(Y;. 8).. e 1- Vl+
a2 

2(-1+~) 
(2-1-179) 

For 8» 1, (2-1-179) reduces to 

(2-1-180) 

We note that the Chernoff bound decreases exponentially as 8 increases. 
Consequently, it approximates closely the exact tail probability given by 
(2-1-175). In contrast, the Chebyshev upper bound for the upper tail 
probability obtained by taking one-half of the probability in the two tails (due 
to symmetry in the pdf) is 

Hence, this bound is extremely loose. 
When the random variable has a nonzero mean, the Chernoff bound can be 

extended as we now demonstrate. If Y = X - mx , we have 

P(Y;. 8) = P(X - m x ;' 8) = P(X;. mx + 8) = P(X;. 8 .. ) 

where, by definition, 8m = M. + 8. Since 8> 0, it follows that 8", > m .. Let 
g(X) be defined as 

(2-1-181) 

and upper-bounded as 
g(X) "ev(x-8".) (2-1-182) 

From this point, the derivation parallels the steps contained in (2-1-169)­
(2-1-172). The final result is 

P(X;' 8m )" e-~8".E(e<X) 

where 8", > m. and 9 is the solution to the equation 

E(Xe'X ) - 8",E(eYX
) = ° 

(2-1-]83) 

(2-1-184) 

In a similar manner, we can obtain the Chernoff bound for the lower tail 
probability. For ~ < 0, we have 

P(X - m," 8) = P(X .. mx + 8) = P(X .. 8",) .. E(e>(x-a.» (2-1-185) 

From our previous development, it is apparent that (2-1-185) results in the 
bound 

P(X .. 3",)" e- 98".E(e'X) 

where 8", <mx and 9 is the solution to (2-1-184). 

(2-1-186) 
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2-]-6 Sums of Random Variables and the Central 
Limit Theorem 

We have previously considered the problem of determining the pdf of a sum of 
n statistically independent random variables. In this section, we again consider 
the sum of statistically independent random variables, but our approach is 
different and is independent of the particular pdf of the random variables in 
the sum. To be specific, suppose that Xi. i = 1,2 •...• n, are statistically 
independent and identically distributed random variables, each having a finite 
mean m, and a finite variance u~. Let Y be defined as the normalized sum. 
called the sample mean: 

1 n 

Y=-L:xi 
n ;=1 

(2-1-187) 

First we shall determine upper bounds on the tail probabilities of Y and then 
we shall prove a very important theorem regarding the pdf of Y in the limit as 

The random variable Y defined in (2-1-187) is frequently encountered in 
estimating the mean of a random variable X from a number of observations Xi. 
i = 1. 2 •... ,n. In other words, the Xi. i = 1, 2, ... ,n, may be considered as 
independent samples drawn from a distribution Fx (x), and Y is the estimate of 
the mean mx . 

The mean of Y is 

J n 

E(Y) = my = - L: E(X,) 
n i=l 

=mx 

The variance of Y is 

1 n 1 n n 

= '2 L E(XT) + '2 L: L: E(Xi)E(Xj ) - m~ 
n i=l n i-) ; .... 1 

;""j 

I 1 
= - (~+ m!)+'2n(n -l)m~-m; 

n n 

n 

When Y is viewed as an estimate for the mean m .. we note that its expected 
value is equal to mx and its variance decreases inversely with the number of 
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samples n. As " approaches infinity, the variance <T; approaches zero. An 
estimate of a parameter (in this case the mean mx ) that satisfies the conditions 
that its expected value converges to the true value of the parameter and the 
variance converges to zero as n --+ 00 is said to be a consistent estimate 

The tail probability of the random variable Y can be upper-bounded by use 
of the bounds presented in Section 2-1-5. The Chebyshev inequality applied to 
Y is 

(2-1-188) 

(11 n I) u' PI - 2: Xi - mr "" 0 .;; ~ 
, n i=l n8 

In the limit as n--+ ce, (2-1-188) becomes 

(
11 n ') 

lim P 1- 2: X, - mr ! "" 8. = 0 
II ........ :.:: n i=l I 

(2-1-189) 

Therefore, the probability that the estimate of the mean differs from the 1rue 
mean m, by more than 0 (8 > 0) approaches zero as n approaches infinity_ This 
statement is a form of the law of large numbers. Since the upper bound 
converges to zero relatively slowly, i.e., inversely with n, the expression in 
(2-1-188) is called the weak law of large numbers. 

The Chernoff bound applied to the random variable Y yields an exponential 
dependence of n, and thus provides a tighter upper bound on the one-sided tail 
probability. Following the procedure developed in Section 2-1-5, we can 
determine that the tail probability for y is 

P(Y - my "" 8) = p(~ i Xi - mr ~ 0) 
n j;= 1 

where Om = mx + 0 and ~ > O. But the Xi' i = 1, 2, ... ,n, are statistically 
independent and identically distributed. Hence, 

n 

= e-vn'~ n E(e'x.) 
';=1 

(2-1-191 ) 

where X denotes anyone of the Xi' The parameter v that yields the tightest 
upper bound is obtained by differentiating (2-1-191) and setting the derivative 
equal to zero. This yields the equation 

(2-1-192) 
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Let the solution of (2-1-192) be denoted by v. Then, the bound on the upper 
tail probability is 

p(~ ~ Xi ~ 8m ) .;0 [e -DOm E(e-DX)J", 8m > mx (2-1-193) 

In a similar manner, we find that the lower tail probability is upper-bounded as 

P(y.;o8m).;o[e-o'mE(eDX))", 8m <mx (2-1-194) 

where v is the solution to (2-1-192). 

EXlIBIpie 2·1·' 

Let Xi' i = 1,2, ... ,n, be a set of statistically independent random variables 
defined as 

X. ={ 1 
'. -1 

with probability p < ~ 
with probability 1 - p 

We wish to determine a tight upper bound on the probability that the sum 
of the Xi is greater than zero. Since p < t we note that the sum will have a 
negative value for the mean; hence we seek the upper tail probability. With 
8m = 0 in (2-1-193), we have 

p(~ X, ~o),;;; [E(e'x»" 

where v is the solution to the equation 

E(Xe VX
) =0 

Now 

Hence 

Furthermore, 

E(Xe VX
) = -(1- p)e- V + pe v = 0 

, FP) v=ln(\f7 

E(eox) = pe v + (1- p)e-D 

Therefore the bound in (2-1-195) becomes 

p(~ Xi ~o) .;0 [pe' + (1- p)e-Dr 

[ FP rPJ" .;0 P'Jp+(I-p)\f~ 

.;0 [4p(1 - p )Inn 

(2-1-195) 

(2-1-196) 

(2-1-197) 

(2-1-198) 

We observe that the upper bound decays exponentially with n, as expected. 
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In contrast, if the Chebyshev bound were evaluated, the tail probability 
would decrease inversely with n. 

Central Limit Theorem We conclude this section with an extremely useful 
theorem concerning the cdf of a sum of random variables in the limit as the 
number of terms in the sum approaches infinity. There are several versions of 
this theorem. We shall prove the theorem for the case in which the ranjom 
variables X" i = 1, 2, ... ,n, being summed are statistically independent and 
identically distributed. each having a finite mean m, and a finite variance iT;. 
For convenience, we define the normalized random variable 

U.=X,-m, 
I ,i=1,2, ... ,H 

iT, 

Thus Vi has a zero mean and unit variance. Now, let 

1 n 

Y=-L Vi 
Vni~l 

(2-1-199) 

Since each term in the sum has a zero mean and unit variance, it follows that 
the normalized (by llYn) random variable Y has zero mean and unit variance. 
We wish to determine the edf of Y in the limit as n __ "'. 

The characteristic function of Y is 

n (jV) 
= IT I/Iu, • r 

i=1 vn 

(2-1-200) 

where V denotes any of the ll;, which are identically distributed. Now, let us 
expand the characteristic function of V in a Taylor series. The expansion yields 

<{Iu(i. ~) = 1 + j, ~ £(U) - 11
2

2

, £(U') + !in!) £(U3) - ... 
Yn vn n . ( n) 3! 

(2-1-201 ) 

Since E(U) = 0 and E(U2) = 1, (2-1-201) simplifies to 

(2-1-202) 

where R(V,II)/1I denotes the remainder. We note that R(v, 11) approaches 
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zero as n ~ "". Substitution of (2-1-202) into (2-1-200) yields the characteristic 
function of Y in the form 

[ 
V2 R(v n)]" 

t/ty(jv) = 1 - - + ' 
2n n 

Taking the natural logarithm of (2-1-203), we obtain 

[
V' R(v, n)] 

In t/ly(jv) =n In 1 - 2n + n 

For small values of x, In (I + x) can be expanded in the power series 

In (1 + x) = x - tx2 + ~x" -.,. 

This expansion applied to (2-1-204) yields 

[
V' R(v,n) !(_V'+R(v.n»)2+ ... ] 

In t/ly(ju) = n - 2n + n 2 2n n 

(2-1-203) 

(2-1-204) 

(2-1-205) 

Finally, when we take the limit as n-+ "". (2-1-205) reduces to 
limn-x In "'y(ju) = -!u2, or, equivalently, 

(2-1-206) 

But, this is just the characteristic function of a gaussian random variable with 
zero mean and unit variance. Thus we have the important result that the sum 
of statistically independellt and identically distributed random variables with 
finite mean and variance approaches a gaussian cdt as n -+ x, This result is 
known as the central limit theorem, 

Although we assumed that the random variables in the sum are identically 
distributed, the assumption can be relaxed provided that additional restrictions 
are imposed on the properties of the random variables. There is one variation 
of the theorem, for example, in which the assumption of identically distributed 
random variables is abandoned in favor of a condition on the third absolute 
moment of the random variables in the sum. For a discussion of this and other 
variations of tbe central limit theorem, the reader is referred to the book by 
Cramer (1946). 

2·2 STOCHASTIC PROCESSES 

Many of the random phenomena that occur in nature are functions of time. 
For example, the meteorological phenomena such as the random fluctuations 
in air temperature and air pressure are functions of time. The thermal noise 
voltages generated in the resistors of an electronic device such as a radio 
receiver are also 'a function of time. Similarly, the signal at the output of a 
source that generates information is characterized as a random signal that 
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varies with time. An audio signal that is transmitted over a telephone channel 
is an example of such a signal. All these are examples of stochastic (random) 
processes. In our study of digital communications, we encounter stochastic 
processes in the characterization and modeling of signals generated by 
information sources, in the characterization of communication channels used to 
transmit the information, in the characterization of noise generated in a 
receiver, and in the design of the optimum receiver for processing the received 
random signal. 

At any given time instant, the value of a stochastic process, whether it is the 
value of the noise voltage generated by a resistor or the amplitude of the signal 
generated by an audio source, is a random variable. Thus, we may view a 
stochastic process as a random variable indexed by the parameter t. We shaH 
denote such a process by X(/). In general, the parameter t is continuous. 
whereas X may be either continuous or discrete, depending on the characteris­
tics of the source that generates the stochastic process. 

The noise Voltage generated by a single resistor or a single information 
source represents a single realization of the stochastic process. Hence, it is 
called a sample function of the stochastic process. The set of all possible sample 
functions, e.g., the set of all noise voltage waveforms generated by resistors, 
constitute an ensemble of sample functions or. equivalently, the stochastic 
process X(I). In general, the number of sample functions in the ensemble is 
assumed to be extremely large; often it is infinite. 

Having defined a stochastic process X(/) as an ensemble of sample 
functions, we may consider the values of the process at any set of time. instants 
I, > 12 > t3 > ... > In where n is any positive integer. In general. the random 
variables X" == X(t,}, i = 1, 2, ...• n, are characterized statistically by their joint 
pdf p(x

'
" x", .... XIJ. Furthermore, all the probabilistic relations defined in 

Section 2-1 for multidimensional random variables carry over to the random 
variables X", i = 1, 2, ... , n. 

Stationary Stodutstic Processes As indicated above, the random variables 
X", i = 1,2, ... ,n, obtained from the stochastic process X(t) for any set of 
time instants t, > t2 > '3>' .. > tn and any 11 are characterized statistically by 
the joint pdf P(X", x," ... ,x,.), Let us consider another set of n faildom 
variables X,,+l"" X(ti + I), i = 1,2, ... ,n, where I is an arbitrary time shift. 
These random variables are ch'lracterized by the joint pdf 
p(x"+,, X '1+"" ., X,. H)' The joint pdfs of the random variables X" and X ,,+,. 
i = 1, 2 •... ,n, mayor may not be identical. When they are identical. i.e .. 
when 

(2-2-1) 

for all t and all 11, the stochastic process is said to be stationary in the stricl 
sense. That is, the statistics Iilf a stationary stochastic process are invariant to 
any translation of the time axis. On the other hand, when the joint pdfs are 
different, the stochastic process is nonstationary. 
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(2-2-1) 

for all t and all 11, the stochastic process is said to be stationary in the stricl 
sense. That is, the statistics Iilf a stationary stochastic process are invariant to 
any translation of the time axis. On the other hand, when the joint pdfs are 
different, the stochastic process is nonstationary. 
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2-2-1 Statistical Avenges 
Just as we have defined statistical averages for random variables, we may 
similarly define statistical averages for a stochastic process. Such averages are 
also called ensemble averages. Let X(t) denote a random process and let 
X, "" X(t,). The nth moment of the random variable X" is defined as 

E(X7,) = r x7,p(x,) dx, (2-2-2) 

In general, the value of the nth moment will depend on the time instant I, if the 
pdf of X" depends on ti • When the process is stationary, however, p(x,,+,) = 

p(x,) for all t. Hence, the pdf is independent of time, and, as a consequence, 
the nth moment is independent of time. 

Next we consider the two random variables X" "" X (t,), i = 1, 2. The 
correlation between X" and X" is measured by the joint moment 

E(X"X,) = fx fx x"x"p(x", x,,) dx" dx" (2-2-3) 

Since this joint moment depends on the time instants t, and t2 • it is denoted by 
cf>(t" t2)' The function cf>(t" t2) is called the autocorrelation function of the 
stochastic process. When the process X(t) is stationary, the joint pdf of the pair 
(X", X,,) is identical to the joint pdf of the pair (X" +!' X,,+,) for any arbitrary t. 
This implies that the autocorrelation function of X(t) does not depend on the 
specific time instants t, and 12, but, instead, it depends on the time difference 
t, - t 2• Thus, f\JT a stationary stochastic process, the joint moment in (2-2-3) is 

(2-2-4) 

where r = I, - 12 or, equivalently, 12 = I, - -r. If we let t, =', + r, we have 

cf>( - r) = E(X"X,._,) = E(X,.X,._ ,) = 4>( r) 

Therefore, </I( r) is an even function. We also note that 4>(0) = E(X;) denotes 
the average power in the process X(t). 

There exist nonstationary processes with the property that the mean value 
of the process is independent of time (a constant) and where the autocorrela­
tion function satisfies the condition that 4>(t" t2 ) = 4>(t, - t2)' Such a process is 
called wide-sense stationary. Consequently, wide-sense stationarity is a less 
stringent condition than strict-sense stationarity. When reference is made to a 
stationary stochastic process in any subsequent discussion in which correlation 
functions are involved, the less stringent condition (wide-sense stationarity) is 
implied. 

Related to the autocorrelation function is the autocovariance function of a 
stochastic process, which is defined as 

p.(t" (2) = E{[X" - m(t,)][X" - m(t2)]} 

= 4>(f ,• t 2 ) - m(l, )m(l,) (2-2-5) 
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where m(/l) and m(t2) are the means of x., and X'I' respectively. When the 
process is stationary, the autocovariance function simplifies to 

(2-2-6) 

where r = tl - 12, 

Higher-order joint moments of two or more random variables derived from 
a stochastic process X(r) are defined in an obvious manner. With the possible 
exception of the gaussian random process, for which higher-order moments can 
be expressed in terms of first and second moments, high-order moments are 
encountered very infrequently in practice. 

Averages for a Gaussian Process Suppose that X(t) is a gaussian random 
process. Hence, at time instants I = Ii' i = I, 2, ... ,n. the random variables X", 
i = I, 2, ... ,n, are jointly gaussian with mean values m(/i ), i = 1,2, ... ,n, and 
autocovariances 

P.(ti' tj) = £[(X" - m(t;))(X'i - met)~)]. i, j = 1,2, ... ,n (2-2-7) 

If we denote the n x n covariance matrix with elements P.(li' tj) by M and the 
vector of mean values by m., then the joint pdf of the random variables X", 
i = I, 2, ... , " is given by (2-1-1SO). 

If the gaussian process is stationary then m(ti ) = m for all Ii and p.(t" ti ) = 

#L(ti - Ij). We observe that the gaussian random process is completely specified 
by the mean and autocovariance functions. Since the joint gaussian pdf 
depends only on these two moments, it follows that if the gaussian process is 
wide-sense stationary, it is also strict-sense stationary. Of course, the converse 
is always true for any stochastic process. 

Avel8ges for Joint StoclJllstic ProcesIIes Let X(t) and Y(/) denote two 
stochastic processes and let X,,'" X(li). j = I, 2, ... ,n, and Y,;'"' Y(lj), j = 
1, 2, ... ,m, represent the random variables at times II> (2 > 13 > ... > In and 
Ii > I; > ... > I:", respectively. The two processes are characterized statisti­
cally by their joint pdf 

for any set of time iru;tants (" (2 •... ,tno I:, I;' ...• t:., and for any positive 
integer values of nand m. 

The cross·correlation function of X(t) and Y(/), denoted by </Ixy(t1, I,). is 
defined as the joint moment 

4>.,(1" t2) = E(X" ¥,,) = L~~ [~ x"y"p(JC", Yr,) dx
" 

dy" (2-2-8) 

and the cross-covariance is 

(2-2-9) 
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When the processes are jointly and individually stationary, we have 
$"(t,, t2) = $.,.(1, -1,) and iJ.n(I,. I,) = iJ.".(t, - I,). In this case, we note that 

$,,( - r) = E(X, Y" ,,) = E(X,; . ,Y,;) = c/l,.,( r) (2-2-10) 

The stochastic processes X(I) and Y(r) are said to be statistically indepen­
dent if and only if 

p(x'" x", ... , x,,,, y,;, y" . ... , y,J = p(x", x,., ... , x'" )p(y". y,; • ...• y,;,) 

for all choices of I, and I: and for all positive integers nand m. The processes 
are said to be uncorrelaied if 

Hence. 
!Lxy(I,. i,) = 0 

A complex-valued stochastic process Z(n is defined as 

Z(t) = XU) + jY(t) (2-2-11) 

where X(t) and Y(r) are stochastic processes. The joint pdf of the random 
variables Z" "" Z(I,). i = 1. 2 .. , .. is given by the joint pdf of the components 
(X", Y,,), i = 1. 2,. ", n. Thu~, the pdf that characterizes Z", i = I. 2, ... , n, is 

The comple1(-valued stochastic process Z(t) is encountered in the represen­
tation of narrowband bandpass noise in terms of its equivalent lowpass 
components. An importallt characteristic of such a process is its autocorrela­
tion function. The function is defined as 

c/l,,(c,. t,) = ~E(Z"Z~} 

= ~E[(X" + jY")(X,, - jYd] 

= HoP,At" I,) + 4>,,(1,, t,) + iloP'x(t" 1,) - oP"(t,, (2)J} (2-2-12) 

where oPu(t" t,) and <P,,(rl' (,) are the autocorrelation functions of X(I) and 
Y(t}. respectively. and' <p,At" t,) and 4>,,(/,,12) are the cross-correlation 
functions. The factor of ! in the definitioll of the autocorrelation function of a 
complex-valued stochastic process is an arbitrary but mathematically con­
venient normalization factor. as we will demonstrate in our treatment of such 
processes in Chapter 4. 

When the processes X(I) and. yet) are jointly and individually stationary, 
the autocorrelation function ofZV> becomes 

4>"(/,, 12) = 4>,,(1( -I,} = 4>,,(1') 

where 12 = II - 1'. Also. the complex conjugate of (2-2-12) is 

oP~A 1') = !E(Z~Z,,_,) = !E(Z~.,z,;) = 4>,,( -1') 

Hence. cP,,(1') = <pi,(-f). 

• 

(2-2-13) 
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Now, suppose that Z(t) = X(t) + jY(t) and Wet) = Vet) + jV(r) are two 
complex-valued stochastic processes. The cross-correlation function of Z(/) 
and W (t) is defined as 

"',w(l"t,) = !£(Z"W~) 
= ~£[(X" + jY,)(V" - jv,,)] 

= ~(4>,u(1 I, ( 2) + 4>v.(t I, (2) + i[ .py .. (1 I, I,) - 4>,.(1" (2)]} (2-2-14) 

When X(t), Y(t), V(t), and Vet) are pairwise-stationary, the cross-correlation 
functions in (2-2-14) become functions of the time difference r = I, - '2-
Furthermore, 

(2-2-IS) 

2-2·2 Power Density Spectrum 
The frequency content of a signal is a very basic characteristic that distin­
guishes one signal from another. In general, a signal can be classified as having 
either a finite (nonzero) average power (infinite energy) or finite energy. The 
frequency content of a finite energy signal is obtained as the Fourier transform 
of the corresponding time function. If the signal is periodic, its energy is 
infinite and, consequently, its Fourier transform does not exist. The mechanism 
for dealing with periodic signals is to represent them in a Fourier series. With 
such a representation, the Fourier coefficients determine the distribution of 
power at the various discrete frequency components. 

A stationary stochastic process is an infinite energy signal, and, hence, its 
Fourier transform does not exist. The spectral characteristic of a stochastic 
signal is obtained by computing the Fourier transform of the autocorrelation 
function. That is, the distribution of power with frequency is given by the 
function 

The inverse Fourier transform relationship is 

We observe that 

4>(0) = [t <Il(!) df 

= £(lX,12) ,., 0 

(2-2-16) 

(2-2-17) 

(2-2-18) 

Since 4>(0) represents the average power of the stochastic signal, which is the 
area under <Il(f). <Il(!) is the distribution of power as a function of frequency. 
Therefore, <t>(f) is called the power density speclrum of the stochastic process. 
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If the stochastic process is real, q,( r) is real and even, and, hence ¢(f) is 
real and even. On the other hand, if the process is complex, 4>( r) = 4>*( - r) 
and, hence 

<1>*(f) = f. </>*( !)ei''''' dr = f. </>*( - r)e-
j2

".f
T 
dr 

= f. q,(f)ePI<'<dr=¢(f) 

Therefore, ¢(f) is real. 
The definition of a power density spectrum can be extended to two jointly 

stationary stochastic processes X(t) and Y(t). which have a cross-correlation 
function 4>, .. ( f). The Fourier transform of </>,,( r), i.e., 

¢,,(f) = f. <l>w(r)e-P.J<'T dr (2·2·20) 

is caJled the cross-power density spectrum. If we conjugate both sides of 
(2·2-20), we have 

¢~,(f) = f. q,:y(r)e'2KfT dr = fx </>~v( - r)e-j~* dr 

= f. </>y,(r)e-;2J<fT dr = <t>,., (f) (2-2-21 ) 

This relation holds in general. However, if X(t) and Y(t) are real stochastic 
processes, 

(2·2·22) 

By combining the result in (2-2-21) with the result in (2-2-22), we find that the 
cross· power density spectrum of two real processes satisfies the condition 

2-2-3 Response of a Unear Time-Invariant System to a 
Random Inpat Signal 

(2-2·23) 

Consider a linear time· invariant system (filter) that is characterized by its 
impulse response h(l) or, equivalently, by its frequency response H(f). where 
h(t) and H(f) are a Fourier transform pair. Let x(t) be the input signal to the 
system and let y(t) denote the output signal. The output of the system may be 
expressed in terms of the convolution integral as 

Y(I)= f, h(r)x(t - r)4r (2-2-24) 
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Now, suppose that x(t) is a sample function of a stationary stochastic process 
X(t). Then, the output yet) is a sample function of a stochastic process Yet). 
We wish to determine the mean and autocorrelation functions of the output. 

Since convolution is a linear operation performed on the input signal x(t), 
the expected value of the integral is equal to the integral of the expected value. 
Thus, the mean value of Y(I) is 

my = E(Y(t)] = [~h(r)E[X(t- r)ldr 

= m" [x h( r) de = m"H(O) (2-2-25) 

where H(O) is the frequency response of the linear system at f = O. Hence, the 
mean value of the output process is a constant. 

The autocDlTelation function of the output is 

= i L [~ h(J3)h*(a)E[X(11 - (j)X*(t2 - all da dJ3 

= [~[~ h(J3)h*(a ).,xx(tl - t2 + a - 13) da dJ3 

The last step indicates that the double integral is a function of the time 
di1ference t, - 12, In other words, ifthe input process is stationary, the output is 
also stationary. Hence 

(2-2-26) 

By evaluating the Fourier transform of both sides of (2-2-26), we obtain the 
power density spectrum of the output process in the form 

<l>yy(!) = [~ "yy( e)e -j2><f< de 

= [~[~[~ h*(a)h(J3).,,,Ar + a - /3)e-j
2
rf< deda df3 

= <'Pu(!) IH(f)12 (2-2-27) 

Thus, we have the important result that the power density spectrum of the 
output signal is the product of the power density spectrum of the input 
multiplied by the magnitude squared of the frequency response of the system. 
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We wish to determine the mean and autocorrelation functions of the output. 

Since convolution is a linear operation performed on the input signal x(t), 
the expected value of the integral is equal to the integral of the expected value. 
Thus, the mean value of Y(I) is 

my = E(Y(t)] = [~h(r)E[X(t- r)ldr 

= m" [x h( r) de = m"H(O) (2-2-25) 

where H(O) is the frequency response of the linear system at f = O. Hence, the 
mean value of the output process is a constant. 

The autocDlTelation function of the output is 

= i L [~ h(J3)h*(a)E[X(11 - (j)X*(t2 - all da dJ3 

= [~[~ h(J3)h*(a ).,xx(tl - t2 + a - 13) da dJ3 

The last step indicates that the double integral is a function of the time 
di1ference t, - 12, In other words, ifthe input process is stationary, the output is 
also stationary. Hence 

(2-2-26) 

By evaluating the Fourier transform of both sides of (2-2-26), we obtain the 
power density spectrum of the output process in the form 

<l>yy(!) = [~ "yy( e)e -j2><f< de 

= [~[~[~ h*(a)h(J3).,,,Ar + a - /3)e-j
2
rf< deda df3 

= <'Pu(!) IH(f)12 (2-2-27) 

Thus, we have the important result that the power density spectrum of the 
output signal is the product of the power density spectrum of the input 
multiplied by the magnitude squared of the frequency response of the system. 
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When the autocorrelation function </>,,( r) is desired, it is usually easier to 
determine the power density spectrum <t>yy(f) and then to compute the inverse 
transform. Thus, we have 

<Pyy( r) = [~ <t>yy(f)e12>rfT df 

= [ <t>.Af) IH(fW e'"2>rfT df (2-2-28) 

We observe that the average power in the output signal is 

</>,y(O) = [ rt>.Af) IH(fW df (2-2-29) 

Since 4>,y(O) = £(1 Y.12
). it follows that 

Suppose we let IH(f)f = 1 for any arbitrarily small interval l '" f '" f2. and 
H(f) = 0 outside this interval. Then, 

But this is possible if and only if <t> .. (f) ~ 0 for all f 

Example 2-201 

Suppose that the lowpass filter illustrated in Fig. 2-2-1 is excited by a 
stochastic process x(t) having a power density spectrum 

<t>~(f) = !No for all f 

A stochastic process having a flat power density spectrum is called white 

FIGURE 2-2-1 An exomple of a lowpass filter. 
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FIGURE 2·2·2 The power density spectrum of the I"wpass filter output when 
the inpuc is white noise. 

<t" I}l 

Il 

noise. Let us determine the power density spectrum of the output process. 
The transfer function of the lowpass filler is 

R 1 
H(f) = R + j2JrfL = 1 + j21!fLl R 

and, bence, 

(2-2-30) 

The power density spectrum of the output process is 

¢> =N" I 
n·(f) 2 1 + (21!L/ R )21' (2-2-31) 

This power density spectrum is illustrated in Fig. 2-2-2. Its inverse Fourier 
transform yields the autocorrelation function 

(2-2-32) 

The autocorrelation function </>n( r) is shown in Fig. 2-2-3. We observe that 
the second moment of the process Y(t) is </>,.,.(0) = RN;,/4L. 

FIGURE 2·2·3 The autocorrelation function of the output or the lowpass filter 
for a white-noise input. o 
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As a final exercise, we determine the cross-.:orrelation function between 
y(l) and x(t), where xU) denotes the input and y(l) denotes the output of the 
linear system. We have 

I J'n "',,(t,. tJ = !E(Y"X~) = 2 '" h(a )E[X(I, - a iX*(t.)] da 

= r~ h(a)"'xx(l, - I, - aida = ""A(t, - I,) 

Hence, the stochastic processes X(t) and Y(t) are jointly stationary, With 
t,-I,= r. we have 

(2-2-331 

Note tilat the integral in (2-2-33) is a convolution integral. Hence in the 
frequency domain the relation (2-2-33) becomes 

rf>,,(f) = 4>,,(j)H(f) (2-2-34) 

We observe that if the mput process is white noise, the cross correlation of the 
input with the output of the system yields the impulse response h(l) to within a 
scale factor. 

2-2-4 Sampling Theorem for Band-UlIlited 
Stochastic Processes 

Recall that a deterministic signal s(t} that has a Fourier transform S(f) is 
called band-limited if S(f) = 0 for If! > W. where W is the highest frequency 
contained in s(t). Such a signal is uniquely represented by samples of S(I) taken 
at a rate of Is ;;. 2W samples's. The minimum rate fv = 2W samples/s is called 
the Nyquist rate" Sampling below the Nyquist rate results in frequency aliasing. 

The band-limited signal sampled at the Nyquist rate can be reconstructed 
from its samples by use of the interpolation formula 

sin [2JrW(1 - ~)] 
5{ I) = i: s (_n_) ___ , _--:;2_W--c-

"~_=2W t n) 2JtW t--
2W 

(2-2-35) 

where {s(n/2W)} are the samples of s(t) taken at I = n/2W. n = 0, ± I, ±2 ..... 
Equivalently. s(t) can be reconstructed by passing the sampled signal through 
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-. 

fiGURE 2-2.... Signal reconstruction based on ideal 
interpolation. in - 2)T (n - Of nT (rt ... OT 

an ideal low-pass filter with impulse response h(t) = (sin 2/tWt)I2/tWt. Figure 
2-2-4 illustrates the signal reconstruction process based on ideal interpolation. 

A stationary stochastic process X(t) is said to be band-limited if its power 
density spectrum 1>(!) ~ 0 for If I > W. Since 4>(f) is the Fourier transform of 
the autocorrelation function rf>(f), it follows that </1(1:) can be represented as 

(2·2-36) 

where {.p(n/2W)} are samples of rf>(f} taken at f = n/2W, n ~ 0, ±1, ±2, .... 
Now, if X(t) is a band-limited stationary stochastic process then X(I) can be 

represenled as 

~ II sin [21tW(t - 2~)) 
X (I) = 2: X (-) --=----.-:;..;.;-=. 

n~ -w 2W 21tW(1 - 2~) 
(2-2-37) 

where {X(n/2W)} are samples of X(t) taken at I'" n/2W, n == 0, ± 1, ±2, .... 
This is the sampling representation for a stationary stochastic process. The 
samples are random variables that are described statistically by appropriate 
joint probability density functions. The signal representation in (2-2-37) is 
easily established by showing that (Problem 2-17) 

(2-2-38) 

Hence, equality between the sa91pling representation and the stochastic 
process X(t) holds in the sense that the mean square error is zero. 
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2-2-5 Discrete-Time Stoc:hastic Signals and Systems 
The characterization of continuous-time stochastic signals given above can bc 
easily carried over to discrete-time stochastic signals. Such signals are usually 
obtained by uniformly sampling a continuous-time stochastic process. 

A discrete-time stochastic process X (n) consists of an ensemble of sample 
sequences {x(n n. The statistical properties of X(n) are similar to the 
characterization of X(t) with the restriction that n is now an integer (time) 
variable. Hence. the mth moment of X (II) is defined as 

E[X:'J = r X:~p(X")dX,, (2-2-39) 

and the autocorrelation sequence is 

4>(n. k) = 1E(X"Xt) = r r X"X:p(X". X,JdX" dX. (2-2-40) 

Similarly. the autocovariance sequence is 

}.t(n. k)= 4>(n. k) - E(X,,)E(Xn (2-2-41 ) 

For a stationary process, we have <ben. k);; <b(n - k). p.(n. k) == }.t(n - k). and 

/L(n - k) = <b(n - k) - Im,f (2-2-42) 

where m., = E(X,,) is the mean value. 
As in the case of continuous-time stochastic processes, a discrete-time 

stationary process has infinite energy but a finite average power. which is 
given as 

E(lX,,12) = <b(0) (2-2-43) 

The power densitv spectrum for the discrete-time process is obtained by 
computing the Fv~rier transrorm of </>(n). Since 4>(n) is a discrete-time 
sequence, the Fourier transform is defined as 

x 

<I>(f) = L </>(n )e -}21<!" (2-2-44) 
n= -x 

and the inve= transform relationship is 

(2-2-45) 

We make the observation that the power density spectrum <I>(f) is periodic 
with a period!" = 1. In other words, <1>([ + k) = <I>(f) for k = ±t. ±2 ..... This 
is a characteristic of the Fourier transform of any discrete-time sequence such 
as t/>(n). 

Finally, let us consider the response of a discrete-time, linear time-invariant 
system to a stationary stochastic input signal. The system is characterized in 
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the time domain by its unit sample response h(n) and in the frequency domain 
by the frequency response H(t), where 

~ 

H(!) = 2: hen V ,2",_ (2-2-46) 
,,= -"" 

The response of the system to the stationary stochastic input signal X(n) is 
given by the convolution sum 

x 

yin) = 2: h(k)x(n - k) (2-2-47) 
J. --. -- x 

The mean value of the output of the system is 
x 

m,. = E[y(n)] = L h(k)E[x(n-k)] 
/.. ~ --x 

(2-2-4g) 

m,. = m, L h(k) = m,H(O} 
J,.-- -

where H(O) is the zero frequency (dc) gain of the system. 
The autocorrelation sequence for the output process is 

c/>,,(k) = ~E[y*(n )y(n + k)] 
x 

= ~ L L h*(i)h(j)Efx*(n - i)x(n + k - j)} 

x X 

= ~ L h*(i)h(j)<I>,Ak-j+i) (2-2-49) 
"£ I c. - -x 

This is the general form for the autocorrelation sequence of the system output 
in terms of the autocorrelation of the system input and the unit sample 
response of the system. By taking the Fourier transform of <I>,,(Ic) and 
substituting the relation in (2-2-49), we obtain the corresponding frequency 
domain relationship 

(2-2-50) 

which is identical to (2-2-27) except that in (2-2-50) the power density spectra 
"',,(f) and if>,,(f) and the frequency response H(t) are periodic functions of 
frequency with period[" = I. 

2-2-6 Cycloslationary PrO£esses 
In dealing with signals that carry digital information we encounter stochastic 
processes that have statistical averages that are periodic. To be specific, let us 
consider a stochastic process of the form 

x 

X(t)= 2: Q"g(t-nT) (2-2-51 ) 
n=-x 
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where {ani is a (discrete-time) sequence of random variables with mean 
m. = E(an) for all n and autocorrelation sequence <p .. (k) = !E(a!anH)' The 
signal g(t) is deterministic_ The stochastic process X(t) represents the signal for 
several different types of linear modulation techniques which are introduced in 
Chapter 4. The sequence {an} represents the digital information sequence (of 
symbols) that is transmilted over the communication channel and liT 
represents the rate of transmission of the information symbols. 

Let us determine the mean and autocorrelation function of X(t). First, the' 
mean value is 

x 

E[X(t)] = 2: E(an)g(t - nT) 
n=-X 

x 

= m. 2: g(1 - nT) (2-5-52) 
n=-x 

We obsel"\le that the mean is time-varying. In fact, it is periodic with period T. 
The autocorrelation function of X(t) is 

<PxAt + r, t) = !E[X(t + r)X*(t)] 

x x 

=! 2: 2: E(a!am)g*(t - nT)g(t + T - mT) 
n=-x ",=-x 

x x 

= 2: 2: <Paa(m -n)g*(t-nT)g(t+ r-mT) (2-2-53) 
n=-x m=-x 

Again, we observe that 

1>xAt + r + kT, t + kT) = <Pu(t + T, I) (2-2-54) 

for k = ±l, ±2 ..... Hence, the autocorrelation function of X(t) is also 
periodic with period r. 

Such a stochastic process is called cyclostationary or periodically stationary. 
Since the autocorrelation function depends on both the variables t and r, its 
frequency domain representation requires the use of a two-dimensional 
Fourier transform. 

Since it is highly desirable to characterize such signals by their power 
density spectrum, an alternative approach is to compute the time-average 
autocorrelation function over a single period, defined as 

- 1 f712 
<Px.( r) = -T 4>,,(t + 1, t) dl 

-T/2 
(2-2-55) 

Thus, we eliminate the time dependence by dealing with the average 
autocorrelation function. Now, the fourier transform of 4>xAr) yields the 
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average power density spectrum of the cyclostationary stochastic process. This 
approach allows us to simply characterize cyclostationary processes in the 
frequency domain in terms of the power spectrum. That is, the power density 
spectrum is 

<I> (f) = IX 4> (r)e -;2K/' dr n . .\1"" 

- > 

(2-2-56) 

2-3 BIBLIOGRAPHICAL NOTES AND REFERENCES 

PROBLEMS 

In this chapter we have provided a review of basic concepts and definitions in 
the theory of probability and stochastic processes. As stated in the opening 
paragraph, this theory is an important mathematical tool in the statistical 
modeling of information sources, communication channels. and in the design of 
digital communication systems. Of particular importance in the evaluation of 
communication system performance is the Chernoff bound. This bound is 
frequently used in bounding the probability of error of digital communication 
systems that employ coding in the transmission of information. Our coverage 
also highlighted a number of probability distributions and their properties, 
which are frequently encountered in the design of digital communication 
systems. 

The texts by Davenport and Root (1958), Davenport (1970), Papoulis 
(1984) Pebbles (1987), Helstrom (1991) and Leon-Garcia (1994) provide 
engineering-oriented treatments of probability and stochastic processes. A 
more mathematical treatment of probability theory may be found in the text by 
Loeve (1955). Finally, we cite the book by Miller (1964), which treats 
multidimensional gaussian distributions. 
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2-2 The random variables X" i = I, 2. ' .. ,n, have the joint pdf p(x" x". , . ,x,,) 
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p(x"x"x".".x .. ) 

=p(x"lx,_"".,x,)p(x. ,Ix" " .. "x,)··'p(x,lx"x,)p(x,lx,)p(x,) 
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- > 
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2-3 The pdf of a random variable X is p(x}. A random variable Y is defined as 

Y=aX+h 

where Q < O. Detennine the pdf of Y in terms of the pdf of X 
2-4 Suppose that X is a gaussian random variable with zero mean and unit variance, 

Let 

Y = aX' + b, a> 0 

Determine and plot the pdf of Y. 
2-5 a Let X, and X, be statistically independent zero·mean gaussian random variables 

witb identical variance. Show that a (rotational) transformation of the form 

Y, + jY, = (X, + jX,)e''' 

results in another pair (~, Y,) of gaussian random variables that have the same 
joint pdf as the pair (X" X,). 

" Note that 

where A is a 2 x 2 matrix. As a generalization of the two-dimensional 
transformation of the gaussian random variables conSIdered in (a), what 
property must the linear transformation A satisfy if tbe pdfs for X and V. where 
Y = AX, X = (X,X 2' •• Xn) and Y = (Y, Y, ... Yn), are identical? 

2-6 The random variable Y is defined as 

n 

Y=LX, 
,=1 

where the X, i = 1,2, ... , n, are statistically independent random variables with 

X = {I , 0 
with probability p 

with probability I - p 

• Determine the characteristic function of Y. 
b From the characteristic function. determine the moments E(Y) and E(Y'). 

2-7 The four random variables X" X" X,. X, are zero-mean jointly gaussian 
random variables with covariance /L'i = E(X,X,) and characteristic function 
"'(jv, , jv" jv" jv.). Show that 

2-8 From the characteristic functions for tbe central chi-square and noncentral 
chi-square random variables given by (2·1-109) and (2-1-117), respectively. 
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determine the corn:sponding li .... t and second moments given by (2-1-112) and 
(2-1-125) 

2-9 The pdf of a Cauchy distributed random variable X is 

"IIC p(x) = -,--,. 
.c +a-

• Determine the mean and variance of X. 

-x<x<x 

b Determine the tharacteristic function of X. 
2-le The ra~dom varilitile Y is defined as 

1 " y=-L;x, 
"I 1 

where X" i = 1,2 .... ,n, are statislically independent and identically distributed 
random variables each of which has the Cauchy pdf given in Problem 2-9 
a Determine the characteristic function of Y. 
b Determine the pdf of Y. 
c Consider the pdf of Y in the limit as n _ x. Does the central limit hold'! Explain 

your answer. 
2-11 Assume that random processes X(I) and Y(/) are individually and jointly stationary. 

a Determine the autocorrelation function of Z(/) = x(t) + y(t). 
b Determine the autocorrelation function of z(t) when X(I) and .1'(1) are 

uncorrelated. 
c Determine the autocorrelation function of z(t) when .t(e) and \"(1) arc 

uncorrelated and have zero means. 
2-12 The autocorrelation function of a stochastic process X(e) is 

</>" (T) = \N"o( T) 

Such a process is called whife noise. Suppose .t(l) is the input to an ideal bandpass 
filter having the frequency response characteristic shown in Fig. P2-12. Determine 
the total noise power at the output of the filter. 

2·13 The covariance matrix of three random variables X" X, and X. is 

[ 
ILO." 

IL" 

o 
p." 
o 

_8 __ 
-i, 

1Jh.! II 

t 
_fl_ 

" I, 
. , 
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w-

eI R 

XV) rlt} 

T 
The linear transformation Y = AX is made where 

Determine the covariance matrix of V. 
lo14 Let X(r) be a stationary real normal process with zero mean. Let a new process 

Y{t) be defined by 

Y(t) = X'(I) 

Determine the autocorrelation function of Y(tl in terms of the autocorrelation 
function of X(I). Hint: Use the result on gaussian variables derived in Problem 
2-7. 

lots For the Nakagami pdf. given by (2-1-147), define the normalized random variable 
X = R/v'O. Determine the pdf of X. 

2-16 The input X(t) in the circuit shown in Fig. P2-16 is a stochastic process with 
£[X(I)] =0 and <puCr) = 0"1>(1'), Le., X(I) is a white noise process . 
• Determine the spectral density <I>".(f). 
b Determine <p,.,( r) and E[Y'!t)). 

2-17 Demonstrate the validity of (2-2-38). 
2-18 Use the ChemoR bound to show that Q(x),.e .''2 where Q(x) is defined by 

(2-1-97). 
2-J9 Determine the mean, the autocorrelation sequence, and the power density 

spectrum of the output of a system with unit sample response 

{

I (n =0) 

-2 (n=l) 
hen) -

I (n = 2) 
o (otherwise) 

when the input X/II) is a white-noise process with variance u;. 
lo20 The autocorrelation sequence of a discrete-time stochastic process is <p(k) = (\ )"1. 

Determine its power density spectrum. 
2-21 A discrete-time stochastic process X(n) .. X(nT) is obtained by periodic sampling 

of a continuous-time zero-mean stationary process X(/) where T is the sampling 
interval, Le., f. = 1/ T is the sampling rate . 
• Determine the relationship between the autocorrelation function of X(t) and 

the autocorrelation sequence of X (n ). 
b Express the power density spectrum of X in) in terms of the power density 

spectrum of the process X( r). 

• 
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\: Determine the conditions under which the power density spectrum of X(n) is 
equal to the power density spectrum of X ('). 

loU Consider a band-limited zero-mean stationary stochastic X(I) with power density 
spectrum 

{
l (Ifl'" W) 

4>(f) = 0 (lfI> W) 

X(I) is sampled at a rate {.. = lIT to yield a discrete-time process K(n) - X(nT). 
a Determine the expression for the autocorrelation sequence of K(n). 
b Determine the minimum value of T that results in a white (spectraUy lIat) 

sequence. 
\: Repeat (b) if the power density spectrum of X(I) is 

rt>(f) = {1 -lfllW (If\" W) 
o (If I > W) 

2·13 Show that the functions 

k =0. ±1. ±2 •. " 

are orthogonal over the interval [- oc, ,,], i.e., 

f' {l12W (k = j) 
.t.(I)fAI)dl = 0 (k '" j) 

Therefore, the sampling theorem reconstruction formula may be viewed as a series 
expansion of the band-limited signal S(I). where the weights are samples of 5(1) 
and the U(t)} are the set of orthogonal functions used in the series expansion. 

Z·U The noise equivalent bandwidth of a system is defined as 

1 I" B •• = G " !H(f)l'df 

where G = max IH(!)I', Using tbis definition, determine the noise equivalent 
bandwidth of the ideal bandpass filter shown in Fig. P2-12 and the lowpass system 
shown in Fig. P2-16. 
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3 
SOURCE CODING 

Communication systems are designed to transmit the information generated by 
a source to some destination. Information sources may take a variety of 
different forms. For example, in radio broadcasting, the source is generally an 
audio source (voice or music). In TV broadcasting, the information source is a 
video source whose output is a moving image. The outputs of these sources are 
analog signals and, hence. the sources are called analog sources. In contrast. 
computers and storage devices, such as magnetic or optical disks. produce 
discrete outputs (usually binary or ASCII characters) and, hence, they are 
called discrete sources. 

Whether a source is analog or discrete, a digital communication system is 
designed to transmit information in digital form. Consequently, the output of 
the source must be converted to a format that can be transmitted digitally. This 
conversion of the source output to a digital form is generally performed by the 
source encoder, whose output may be assumed to be a sequence of binary 
digits. 

In this chapter, we treat source encoding based on mathematical models of 
information sources and a quantitative measure of the information emitted by 
a source. We consider the encoding of discrete sources first and then we discuss 
the encoding of analog sources. We begin by developing mathematical models 
for information sources. 

3·1 MATHEMATICAL MODELS FOR INFORMATION 
SOURCES 

Any information source produces an output that is random, i.e., the source 
output is characterized in statistical terms. Otherwise, if the source output 
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were known exactly, there would be no need to transmit it. In this section. we 
consider both discrete and analog information sources. and we postulate 
mathematical models for each type of source. 

The simplest type of discrete source is one that emits a sequence of letters 
selected from a finite alphabet. For example, a binary source emits a binary 
sequence of the form 100101110 ...• where the alphabet consists of the two 
letters to, I}. More generally, a discrete information source with an alphabet of 
L possible letters, say {x,. X2,' ..• xa, emits a sequence of letters selected 
from the alphabet. 

To construct a mathematical model for a discrete source, we assume that 
each letter in the alphabet {x" X2>" •• XL} has a given probability P. of 
occurrence. That is. 

where 

We consider two mathematical models of discrete sources. In the first, we 
assume that the output sequence from the source is statiSlically independent. 
That is, the current output letter is statistically independent from all past and 
future outputs. A source whose output satisfies the condition of statistical 
independence among output letters in the sequence is said to be memory less. 
Such a source is called a discrete memoryless source (DMS). 

If the discrete source output is statistically dependent, as, for example, 
English text, we may construct a mathematical model based on statistical· 
stationarity. By definition, a discrete source is said to be stationary if the 
joint probabilities of two sequences of length n, say a,. a, . ... , an and 
a,. "" a2+"" ' ..• 0" .m, are identical for all n '" 1 and for all shifts m. In other 
words, the joint probabilities for any arbitrary length sequence of source 
outputs are invariant under a shift in the time origin. 

An analog source has an output waveform x(t) that is a sample function of a 
stochastic process X(t). We assume that X(t) is a stationary stochastic process 
with autocorrelation function <(>,,( t') and power spectral density <l>.Af). When 
X(t) is a bandlimited stochastic process, i.e., <l>xAf) = 0 for If I '" W. the 
sampling theorem may be used to represent X(t) as 

(3-1·1) 

where {X(n/2W)} denote the samples of the process X(r) taken at the 
sampling (Nyquist) rate of t. = 2W samples/s. Thus, by applying the sampling 
theorem, we may convert the output of an analog source into an equivalent 
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x n sin[21l'W(t-2~)) 
X(I)= 2: X(-)----

n" -x 2W, (n ) 2lfW t--
2W 

(3-1·1) 
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discrete-time source. Then, the source output is characterized statistically by 
the joint pdf p(X" X2' ..• ,X ... ) for all m ;;'1. where X~ = X(n/2W), 1 ... n .. m, 
are the random variables corresponding to the samples of X(t) . 

. We note that the output samples {X(n/2W)} from the stationary sources are 
generally contimlOus, and, hence, they cannot be represented in digital form 
without some loss in precision. For example, we may quantize each sample to a 
set of discrete values, but the quantization process results in loss of precision, 
and, consequently, tbe original signal cannot be reconstructed exactly fropt the 
quantized sample values. Later in this chapter. we shaD consider the distortion 
resulting from quantization of the samples from an analog source. 

3-2 A LOGAIUTIIMIC MEASURE OF INFORMATION 
To develop an appropriate measure of information, let us consider two discrete 
random variables with possible outcomes Xi, j = 1,2, ... ,n, and Yi. j "" 

I, 2 .... ,m, respectively. Suppose we observe some outcome Y = Yi and we 
wisb to determine, quantitatively, tbe amount of information that tbe 
occurrence of the event Y = Yi provides about the event X = Xi> i = I, 2, ... , n. 
We observe that when X and Y are statistically independent, the occurrence of 
Y "" Y/ provides no information about the occurrence of the event X = Xi' On 
the other hand, when X and Y are fully dependent such that the occurrence of 
Y:; Yi determines the occurrence of X = Xi, tbe information cootent is simply 
that provided by the event X = Xi' A suitable measure that satisfies these 
conditions is tbe logarithm of the ratio of the conditional probability 

P(X "" X, I Y "" Y;) - P(x, I y/) 

divided by the probability 

P(X = Xi) - P(x;) 

That is, the information content provided by the occurrence of the event Y = y; 
about the event X = Xi is defined as 

I(x.' v.) = 10gP(Xi I Yj) 
".rJ P(x,) (3-2-1) 

[(Xi; Yi) is called the mutual information between Xi and Yi' 
The units of I(x,; Yi) are determined by the base of tbe logarithm, which is 

usually selected as either 2 or e. Wben tbe base of the logarithm is 2, the units 
of (Xi; Yi) are bits, and when the base is e, the units of I(Xi; yJ are called nats 
(natural units). (The standard abbreviation for log.. is In.) Since 

J 

III a "" In 210gz a = 0.693 15 logz a 

the information measured in nats is equal to In 2 times the information 
measured in bits. 

When the random variables X .and Yare statistically independent, 
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P(x,Iy;) = P(Xi) and, hence. [(xi:y;) = O. On the other hand. when the 
occurrence of the event Y = Yi uniquely determines the occurrence of the event 
X = .ti' the conditional probability in the numerator of (3-2-1) is unity and. 
hence. 

I 
[(Xi:Y') = log -( ) = -log P(Xi) 

P Xi 
(3-2-2) 

But (3-2-2) is just the information of the event X = Xi' For this reason. it is 
called the self -information of the event X = Xi and it is denoted as 

1 
lex,) = log P(Xi) = -log P(x;) (3-2-3 ) 

We note that a high-probability event conveys less information than a 
low-probability event. In fact. if there is only a single event x with probability 
PIx) = I then I(x) = O. To demonstrate further that the logarithmic measure of 
information content is the appropriate one for digital communications, let us 
consider the following example. 

ElIIUDple 3-Z~1 

Suppose we have a discrete information source that emits a binary digit. 
either 0 or I. with equal probability every T, seconds. The information 
content of each output from source is 

[(x,) = -log, P(Xi). Xi = 0,1 

= -log, ~ = I bit 

Now suppose that successive outputs from the source are statistically 
independent. i.e., the source is memory/ess. Let us consider a block of k 
binary digits from the source that occurs in a time interval kr" There are 
M = 2k possible k -bit blocks, each of which is equally probable with 
probability 11M = 2 ok. The self-information of a k-bit block is 

[(xi) = -1082 2-' = k bits 

emitted in a time interval kT., Thus the logarithmic measure of information 
content possesses the desired additivity property when a number of source 
outputs is considered as a block. 

Now let us return to the definition of mutual information given in (3-2-1) 
and mUltiply the numerator and denominator of the ratio of probabilities by 
PlY). Since 

P(Xi I y;) P(Xi I Yj)P(Yi) 

P(x;) P(x;)P(Yj) 
P(x;. Yj) 

P(x,lP(y;) 
P(Y; IXi) 

P(y;) 
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we conclude that 

(3-2-4) 

'Therefore the information provided by the occurrence of the event Y = y/ 
about the event X = Xi is identical to the information provided by the 
occurrence of the event X = Xi about the event Y = Yj. 

Ea.pIe3-l-1 

Suppose that X and Y are binary-valued {O, I} random variables that 
represent the input and output of a binary-input, binary-output channel. 
The input symbols are equally likely and the output symbols depend on the 
input according to the conditional probabilities 

P(Y =0 IX =0)= I-po 

P(Y=IIX=O)=po 

P(Y= llx = I): I-Pt 

p(y=olx=I):p, 

Let us determine the mutual information about the occurrence of the events 
X =0 and X = 1, given that Y= O. 

From the probabilities given above, we obtain 

P(Y=O)= p(Y:ol X =O)P(X =0) + P(Y =0 I X = I)P(X = I) 

: W - Po+P,) 

P(Y = l)=P(Y = 11 X =O)P(X =0) + P(Y = llx = l)P(X = 1) 

= HI -Pt +Po) 

Then, the mutual information about the occurrence of the event X = 0, 
given that Y = 0 is observed, is 

/(X' )=/(0:0\=1 p(y=olx=O) 10 2(1-po) 
"y, "og. P(y=o) ~1-Po+Pt 

Similarly, given that Y = 0 is observed, the mutual information about the 
occurrence of the event X = 1 is 

96

86 DIGITAL ('{)MMUNICATION$ 

we conclude that 

(3-2-4) 

'Therefore the information provided by the occurrence of the event Y = y/ 
about the event X = Xi is identical to the information provided by the 
occurrence of the event X = Xi about the event Y = Yj. 

Ea.pIe3-l-1 

Suppose that X and Y are binary-valued {O, I} random variables that 
represent the input and output of a binary-input, binary-output channel. 
The input symbols are equally likely and the output symbols depend on the 
input according to the conditional probabilities 

P(Y =0 IX =0)= I-po 

P(Y=IIX=O)=po 

P(Y= llx = I): I-Pt 

p(y=olx=I):p, 

Let us determine the mutual information about the occurrence of the events 
X =0 and X = 1, given that Y= O. 

From the probabilities given above, we obtain 

P(Y=O)= p(Y:ol X =O)P(X =0) + P(Y =0 I X = I)P(X = I) 

: W - Po+P,) 

P(Y = l)=P(Y = 11 X =O)P(X =0) + P(Y = llx = l)P(X = 1) 

= HI -Pt +Po) 

Then, the mutual information about the occurrence of the event X = 0, 
given that Y = 0 is observed, is 

/(X' )=/(0:0\=1 p(y=olx=O) 10 2(1-po) 
"y, "og. P(y=o) B21-Po+Pt 

Similarly, given that Y = 0 is observed, the mutual information about the 
occurrence of the event X = 1 is 



CHAPTER" SOURCE COOING 87 

Let US consider some special cases: First, if Po = P, = 0, the channel is called 
noiseless and 

/(0; 0) = log, 2 = 1 bit 

Hence, the output specifies the input with certainty. On the other hand, if 
Po = P, = !. the channel is useless because 

/(0: 0) = log, 1 = 0 

However, if Po = p; = t then 

1(0; 0) = log2 ~ = 0,587 

/(0; 1) =log2 != -1 bit 

. In addition to the definition of mutual information and self-information, it is 
useful to define the condiliOlUlI self -informolion as 

1 
lex, I Y/) = log P(x, I Y/) -log P(x, I yJ (3-2·5) 

Then, by combining (3-2-1). (3-2·3), and (3-2·5), we obtain the'relationship 

(3-2-6) 

We interpret lex, I YI) as the self-information about the event X = Xi after 
having observed the event Y=YI' Since both l(x,)"'O and I(x,IYj)"'O' it 
follows that l(x,;y/) < 0 when lex, t YI) > lex,), and l(xi;YI) > 0 when l(xi I Yl) < 
l(x,). Hence, the mutual information between a pair of events can be either 
positive, or negative, or zero. 

3-2-1 Average Mutual lDfonnaoon and Entropy 
Having defined the mutual information associated with the pair of events 
(x" YI)' which are possible outcomes of the two random variables X and y, we 
can obtain the average value of the mutual information by simply weighting 
lex,; YI) by the probability of occurrence of the joint event and summing over 
all possible joint events. Thus, we obtain 

n m 

leX; Y) = L L P(Xi. Yj)/(x,: y;) 
i=1 ;=<1 

(3-2-7) 

as the average mutual information between X and Y. We observe that 
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I(X; Y) = 0 when X and Yare statistically independent. An important 
characteristic of the average mutual information is that I(X; Y);;.O (see 
Problem 3-4). 

Similarly, we define the average self·information, denoted by H(X), as 

n 

H(X) = L P(xi)l(x,) 
i=J 

n 

= - L P(xi ) log P(x,) (3-2-8) 
i-I 

When X represents the alphabet of possible output letters from a source, H(X) 
represents the average self-information per source letter, and it is called the 
entropyt of the source. In the special case in which the letters from the source 
are equally probable, P(Xi) = 1/ n for all i, and, hence, 

nIl 
H(X) = - L -log-

i'-"l n n 

=Iogn (3-2-9) 

In general, H(X) ..;; log n (see Problem 3-5) for any given set of source letter 
probabilities. In other words, the entropy of a discrete source is a maximum 
when the output letters are equally probable. 

E_pIe 3-2-3 

Consider a source that emits a sequence of statistically independent letters, 
where each output letter i<; either 0 with probability q or 1 with probability 
.1 - q. The entropy of this source is 

H(X) .. H(q) = -qlogq - (l-q)Iog(I-q) (3-2-10) 

The binary entropy function H(q) is illustrated in Fig. 3-2-1. We observe 
that the maximum value of the entropy function occurs at q =! where 
HO)=I. 

The average conditional self-information is called the conditional entropy 
and is defined 

" '" 1 
H(X I Y) = ~ ~ P(Xi. Yi) log P(x; I Yi) (3-2-11) 

We interpret H(X I Y) as the information or uncertainty in X after Y is 

t1be term ~nlTOpy is lakea from slalislicaJ mechanits (thermodynamics). where a fllllClion 
similar 10 (3-2-8) is c:alled (thenooodynamic) entropy. 
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observed. By combining (3-2-7), (3-2-8), and (3-2-11) we obtain the 
relationship 

I(X; Y) = H(X) - H(X I Y) (3-2-12) 

Since I(X; Y) ~ 0, it follows that H(X) ~ H(X I Y), with equality if and 
only if X and Yare statistically indepen<iellt. If we interpret H(X I Y) as the 
average amount of (conditional self-inf()rmation) uncertainty in X after we 
observe Y, and H(X) as the average amount.of uncertainly (self-infonnalion) 
prior to the observation, then /(X: Y) is the average amount of (mutual 
information) uncertainty provided about the set X by the observation of the set 
Y. Since H(X)~ H(X I Y), it is clear that conditioning on the observation Y 
does not increase the entropy. 

Let us evaluate the H(X I Y) and I(X; y) for the binary-input. binary­
output channel treated previously in Example 3-2-2 for the case where 
Po:: PI = p. Let the probabilities of the input symbols be P(X = 0) = q and 
P(X = 1) = 1- q. Then the entropy is 

H(X)-H(q) = -q Iogq - (l-q)log(l- q) 

where H(q) is the binary entropy functioa and the conditional catropy 
H(X I Y) is defined by (3-2-11). A plot of H(X I Y) as a function of q with 
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FIGURE 3-1-1 Condition.l entropy for binary-input, binary­
output symmetric channel. 
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As in the preceding· example, when the conditional entropy H(X I Y) is 
viewed in terms of a channel whose input is X and whose output is Y. 
H(X I Y) is called the equivocoJion and is interpreted as tbe amount of average 
uncertainty remaining in X after observation of Y. 
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The results given above can be generalized to more than two random 
variables. In particular, suppose we have a block of k random variables 
X ,X 2,··X .. with joint probability P(X,X2···X.)=P(XI=x,.X,= 
X2.' ..• X. = x.). Then, the entropy for the block is defined as 

"1".' 'It 

H(X,X,···X.)=-L L"'LP(Xj,X,,"'xh)logP(X,h"X,J (3-2-\3) 
jl"' I 1.:>==1 ;,=1 

Since the joint probability P(x ,X 2 ••• x.) can be factored as 

P(X,x,· .. x.) = P(x,lP(x,1 x,)P(x, I X,X2)'" P(x. I X,X,' ,. x. ,) 

(3-2-14) 

it follows that 

H(X,X,X,' , . X,) = H(X,) + H(X,I X,) + H(X3 1 X,X,) 

+,., +H(X. I X,'" X. ,) 

• 
= L H(Xi I X,X,'" X i-,) 

I ~ I 
(3-2·15) 

By applying the result H(X);;. H(X I Y). where X = Xm and Y = 
X,X,'" X"". in (3-2-15) we obtain 

• 
H(X,X", ,Xd,.;; L H(X",) (3-2-16) 

llJ --I 

with equality if and only if the random variables X,. X, . . , .. X. are 
statistically independent. 

3-2·2 lafonnatioo MellSures for Continuous 
Random Variables 

The definition of mutual information given above for discrete random variables 
may be extended in a straightforward manner to continuous random variables. 
In particular. if X and Yare random variables with joint pdf p(x. y) and 
marginal pdfs p(x) and ply). the average mutual information between X and 
Y is defined as 

f~ f~ pry I x)P(x) 
I(X; Y) = p(x)p(y I x) log dx dy 

-. -. p(x )p(y) 
(3-2-17) 

Althougb the definition of the average mutual information carries over to 
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may be extended in a straightforward manner to continuous random variables. 
In particular. if X and Yare random variables with joint pdf p(x. y) and 
marginal pdfs p(x) and ply). the average mutual information between X and 
Y is defined as 

f~ f~ pry I x)P(x) 
I(X; Y) = p(x)p(y I x) log dx dy 

-. -. p(x )p(y) 
(3-2-17) 

Althougb the definition of the average mutual information carries over to 
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continuous random variables, the concept of self-information does not. The 
problem is that a continuous random variable requires an infinite number of 
binary digits to represent it exac:t1y. Hence, its self-information is infinite and, 
therefore, its entropy is also infinite. Nevertheless, we shaH define a quantity 
that we call the differential entropy of the continuous random variable X as 

H(X) = - f p(x) logp(x) dx (3-2-18) 

We emphasize that this quantity does nOl have the physical meaning of 
self-information, although it may appear to be a natural extension of the 
definition of entropy for a discrete random variable (see Problem 3-6). 

By defining the average conditional entropy of X given Y as 

H(X I Y) = - Lfp(x,Y)IOgP(X Iy) dxdy (3-2-19) 

the average mutual information may be expressed as 

/(X; Y) = H(X) - H(X I Y) 

or, alternatively, as 

J(X; Y) = H(Y) - H(Y IX) 

In some. cases of practical interest, the random variable X is discrete and Y 
.5 continuous. To be specific, suppose that X has ,pcssi.ble outcomes Xi> 

i = 1, 2, ... ,n, and Y is described by its marginal pdf p(y). When X and Yare 
statistically dependent, we may express p(y} as 

• 
p(y) = L p(y I Xi)P(Xi) 

i-I 

The mutual information provided about the event X = XI by the occurrence of 
the event Y = y is 

/(Xi;Y) = logP(Y I Xi}P(Xi) 
p(y)P(x,) 

= logP(Y I Xi) 
p(y) 

Then, the average mutual information between X and Y is 

/(X; Y) = i [ p(y I Xi}P(X,) IogP(~ I ;i) dy 
i-I" -z P y 

(3-2-26) 

(3-2-21) 
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Example 3-2·5 

Suppose that X is a discrete random variable with two equally probable 
outcomes x I = A and X2 ~ -A. Let the conditional pdfs p(y I x.). i = I. 2, be 
gaussian with mean Xi and variance u 2

• That is, 

( I A) = _1_e-(Y-A)'/2"> 
P Y v'2iu 

ply I -A) = _l_e-(Y+AJ'!2q> 

v'2iu 

The average mutual information obtained fTOm (3-2-21) becomes 

(3-2-22) 

(3-2-22) 

I(X; Y) =~ fJp(y I A) IOgP~l:) + p(y I-A) IOgP(;~y~A)] dy 

(3·2-23) 

ply) = Hp(y I A) + p(y I-A)l (3-2-24) 

In Chapter 7, it will be shown that the average mutual information I(X; Y) 
given by (3-2·23) represents the channel capacity of a binary-input additive 
while gaussian noise channel. 

3-3 CODING FOR DISCRETE SOURCES 
In Section 3-2 we introduced a measure for the information content associated 
with a discrete random variable X. When X is the output of a discrete source, 
the entropy H(X) of the source represents the average amount of information 
emitted by the source. In this section, we cpnsider the process of encoding the 
output of a source, i.e., the process of representing the source output by a 
sequence of binary digits. A measure of tbe efficiency of a source-encoding 
method can be obtained by comparing the average number of binary digits per 
output letter from the source to the entropy H(X). 

The encoding of a discrete source baving a finite alphabet size may appear, 
at first glance, to be a relatively simple problem. However, this is true only 
when tbe source is memoryless, i.e., wben successive symbols from the source 
are statistically independent and each symbol is encoded separately. The 

. discrete memoryless source (DMS) is by far the simplest model that can be 
devised for a physical source. Few physical sources, however, closely fit this 
idealized mathematical model. For example, successive output letters from a 
machine printing English text are expected to be statistically dependent. On 
tbe otber hand, if the machine output is a compoter program coded in Fortran, 
the sequence of output letters is expected to exhibit a much smaller 
dependence. In any case, we shall demonstrate that it is always more efficient 
to encode blocks of symbol instead of encoding each symbol separately. By 
making the block size sufficiently large, the average number of binary digits 
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per output leiter from the source can be made arbitrarily close to the entropy 
of the source. 

3-3-1 Coding for Discrete Memoryless Sources 
Suppose that a OMS produces an output letter or symbol every r, seconds. 
Each symbol is selected from a finite alphabet of symbols Xi. i = 1. 2 •...• L. 
occurring with probabilities P(x,). i = 1.2 •...• L. The entropy of the OMS in 
bils per source symbol is 

L 

H(X) = - 2: P(x,) logz P(x,) "']og, L (3-3-1) 
;=J 

where equality holds when the symbols are equally probable. The average 
number of bits per source symbol is H(X) and the source rate in bils/s is 
defined as H(X)/r,. 

Fixed-Length Code Wonts First we consider a block encoding scheme 
that assigns a unique set of R binary digits to each symbol. Since there are L 
possible symbols, the number of binary digits. per symbol required for unique 
encoding when L is a power of 2 is 

R = log, L (3-3-2) 

and, when L is not a power of 2, it is 

R = LIog, LJ + 1 (3-3-3) 

where Ld denotes the largest integer less than x. The code rate R in bits per 
symbol is now R and, since H(X) os;; log, L, it follows that R ~ H(X). 

The efficiency of the encoding for the' OMS is defined as the ratio H(X)/R. 
We observe that when L is a power of 2 and the source letters are equally 
probable, R = H(X). Hence, a fixed-length code of R bits per symbol attains 
100% efficiency. However, if L is not a power of 2 but the source symbols are 
still equally probable, R differs from H(X) by at most 1 bit per·symbol. When 
log2 L» 1, the efficiency of this encoding scheme is high. On the other hand, 
when L is small, the efficiency of the fixed-length code can be increased by 
encoding a sequence of I symbols at a time. To accomplish the desired 
encoding, we require LJ unique code words. By using sequences of N binary 
digits, we can accommodate 2N possible code words. N must be selected such 
that 

N"'llog, L 

Hence, the minimum integer value of N required is 

N = lJ log, LJ + 1 (3-3-4) 

Now the average number of bits per source symbol is NIl = R, and, thus, the 
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inefficiency bas been reduced by approximately a factor of III relative to the 
symbol-by-symbol encoding described above. By making 1 sufficiently large. 
the efficiency of the encodin~ procedure, measured by the ratioiH(X)/N. can 
be made as close to unity as desired. 

The encoding metbods described above introduce no distortion since the 
encoding of source symbols or blocks of symbols into code words is unique. 
This type of encoding is called noiseless. 

Now, suppose we attempt to reduce the code rate R by relaxing the 
condition that the encoding process be,unique. For example, suppose that only 
a fraction of the L' blocks of symbols is encoded uniquely. To be specific, let 
us select the 2" - I most probable i-symbol blocks and encode each of them 
uniquely, while the remaining U - (2'" - 1) 1-symbol blocks are represented 
by the single remaining code word. This procedure results in a decoding failure 
or (distortion) probability of error every time a low probability block is 
mapped into this single code word. Let P, denote this probability of error. 
Based on this block encoding procedure, Shannon (l948a) proved the 
following source coding theorem. 

Source Coding Ibeorem I 

Let X be the ensemble of letters from a DMS with finite entropy H(X). 
Blocks of J symbols from the source are encoded into code words of length 
N from a binary alphabet. For any E > 0, the probability P, of a block 
decoding failure can be made arbitrarily small if 

N 
R=-;:;.H(X)+£ 

1 

and 1 is sufficiently large. Conversely, if 

R";;H(X)-E 

then p" becomes arbitrarily close to 1 as 1 is made sufficiently large. 

(3-3-5) 

(3-3-6) 

From this theorem, we observe that the average number of bits per symbol 
required to encode the output of a DMS with arbitrarily small probability of 
decoding failure is lower bounded by the source entropy H(X). On the other 
hand, if R < H(X), the decoding failure rate approaches 100% as J is 
arbitrarily increased. 

Variable-Length Code Words When the source symbols are not equally 
probable, a more efficient encoding met~od is to use variable-length code 
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TABLE 3-J.l VARIABLE-LENGTH CODES 

LetIft p(",) Coolel Coole n coolem 

II, 1 1 0 0 2 

Il, 1 00 10 61 • 
aJ 

1 Ol 110 011 • 
a, 1 \0 111 111 • 

words. An example of such encoding is the Morse code, which dates back 10 

the nineteenth century. In the Morse code, the letters that occur more 
frequently are assigned short code words and those that occur infrequently are 
assigned long code words. Following this general philosophy, we may use the 
probabilities of occurrence of the different source letters in the selection of the 
code words_ The problem is to devise a method for selecting and assign­
ing the code words to source letters. This type of encoding is called entropy 
coding. 

For example, suppose that a OMS wilh output letters a" 02. a" a. and 
corresponding probabilities P(a,) = t P(a2): t and P(a3) = P(a.) = ~ is 
encoded as shown in Table 3-3-1. Code I is a variable-length code that has a 
basic flaw. To see the flaw, suppose we are presented with the sequence 
001001 ... , Clearly, the first symbol corresponding 10 00 is a2' However, the 
next lour bits are ambiguous (not uniquely decodable). They may be decoded 
either as a.a, or as o,a2a,. Perhaps, the ambiguity can be resolved by waiting 
for additional bits, but such a decoding delay is highly undesirable. We shall 
only consider codes that are decodable instantaneously, that is, without any 
decoding delay. 

Code II in Table 3-3-} is uniquely decodable and instantaneously decodoble. 
It is convenient to represent the code words in this code graphically as terminal 
nodes of a tree, as shown in Fig. 3-3-1. We observe that the digit 0 indicates the 
end of a code word for the first three code words. This characteristic plus the 
fact that no code word is longer than three binary digits makes this code 
instantaneously decodable. Nole that no code word in this code is a prefix of 
any other code word. In general, the prefix condition requires that for a given 
code word C. of length k having elements (b,. b 2 • •••• b.). there is no other 
code word of length I < Ie with elements (b l • 02 •...• bt> for I"'" I "'" k -1. In 

FIGURE 3-3-1 Code tree for code II in Table 3-3-1. 

", 
• 
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other words, there is no code word of length I < k that is identical to the first I 
binary digits of another code word of length k > I. This propert~ makes the 
code words instantaneously decodable_ 

Code III given in Table 3-3-1 bas the tree structure shown in Fig. 3-3-2. We 
note that in this case the code is uniquely decodable but not instantaneously 
decodable. Clearly, this code does not satisfy the prefix condition_ 

Our main objective is to devise a systematic predure for constructing 
uniquely decodable variable-length codes that are efficient in the sense that the 
average number of bits per source letter, defined as the quantity 

L 

R = ~ nkP(o.) (3-3-7) 
k~1 

is minimized. The conditions for the existence of a code that satisfies the. prefix 
condition are given by the Kraft inequality. 

Kraft Inequality A necessary and sufficient condition for the existence of a 
binary code with code words having lengths n, ~ n, ~ ... ~ ilL that satisfy the 
prefix condition is 

(3-3-8) 

First. we prove that (3-3-8) is a sufficient condition for the existence of a 
code that satisfies the prefix condition. To construct such a code, we begin with 
a full binary tree of order n = nL that has 2" terminal nodes and two nodes of 
order k stemming from each node of order k - I, for each k. I ~ k ~ n. Let us 
select any node of order n, as the first code word C ,. This choice eliminates 
2"-" terminal nodes (or the fraction 2-'" of the 2" teTl1linal nodes)_ From the 
remaining available npdes of order n2. we select one node for the second code 
word C2• This choice eliminates 2"-"' terminal nodes (or the fraction r n

, of 
the 2" terminal nodes)_ This process continues until the last code word is 
assigned at terminal node n = nL' Since, at the node of order i < L. the 
fraction of the number of terminal nodes eliminated is 

I. • 

~ Z-" < 2: 2-n, ~ I 
k-1 k=1 
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FIGURE J.J.3 Construction "f a binary tree code embedded in a full tree. 

there is always a node of order k > j available to be assigned to the next code 
word. Thus, we have constructed a code tree that is embedded in the full tree 
of 2" nodes as iUustrated in Fig. 3-3-3, for a trce having 16 terminal nodes and 
a source output consisting of five letters with n, = 1, 112 = 2. n, = 3, and 
n.=n,=4. 

To prove that (3-3-8) is a necessary condition, we observe that in the code 
tree of order II = Ill., the number of terminal nodes eliminated from the total 
number of 2" terminal nodes is 

Hence. 

and the proof of (3-3-8) is complete. 
The Kraft inequality may be used to prove the following (noiseless) source 

coding theorem, which applies to codes that satisfy the prefix condition. 

SOIIJ'Ce Codiag 1'heorem II 

Let X be the ensemble of letters from a DMS with finite entropy H(X), and 
output letters x., 1.., k'" L. with corresponding probabilities of occurrence 
Ph, 1.., k .., L. It is possible to constrllCt a code that satisfies the prefix 
conditioll and has an average length R that satisfies the inequalities 

H(X)"'" R <H(X) + 1 (3-3-9) 

108

• DIGITAL COMMUNICATIONS 

FIGURE J.J.3 Construction "f a binary tree code embedded in a full tree. 

() 

__ --c, 
C5 

there is always a node of order k > j available to be assigned to the next code 
word. Thus, we have constructed a code tree that is embedded in the full tree 
of 2" nodes as iUustrated in Fig. 3-3-3, for a tree having 16 terminal nodes and 
a source output consisting of five letters with n, = 1, 112 = 2. n, = 3, and 
n.=n,=4. 
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tree of order II = Ill., the number of terminal nodes eliminated from the total 
number of 2" terminal nodes is 

Hence. 
L 

2: 2-n ,,,,; 1 
k=l 

and the proof of (3-3-8) is complete. 
The Kraft inequality may be used to prove the following (noiseless) source 

coding theorem, which applies to codes that satisfy the prefix condition. 

SOIIJ'Ce Codiag 'Ibeorem II 

Let X be the ensemble of letters from a DMS with finite entropy H(X), and 
output letters x., 1.., k'" L. with corresponding probabilities of occurrence 
Ph, 1.., k .., L. It is possible to constrllCt a code that satisfies the prefix 
conditioll and has an average length R that satisfies the inequalities 

H(X)""'- R <H(X) + 1 (3-3-9) 
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To establish the lower bound in (3-3-9), we note that for code words that 
have length n", 1 ... k'" L, the difference H(X) - R may be expressed as 

(3-3-10) 

Use of the inequality In x'" x-I in (3-3-10) yields 

where the last inequality follows from the Kraft inequality. Equality holds if 
and only if P. = r o

, for 1 ... k "'" L. 
The upper bound in (3·3-9) may be established under the constraint thaI nk, 

1 ... k ... L. are integers. by selecting the {n.} such that 2-·· ... p. < r·;+I. But if 
the terms P. ~ 2 -n, are summed over 1 ... k ... L, we obtain the Kraft inequality, 
for which we have demonstrated that there exists a code that satisfies the prefix 
condition. On the other hand, if we take the logarithm of p.<2-- n,+" we 
obtain 

logp. < -no + 1 

or, equivalently, 

(3-3-11) 

If we multiply both sides of (3-3-11) by P. and sum over 1 ... k'" L. we obtain 
the desired upper bound given in (3-3-9). This completes the proof of (3-3-9). 

We have now established that variable length codes that satisfy the prefix 
condition are efficient source codes for any DMS With source symbols that are 
not equally probable. Let us now describe an algorithm for constructing such 
codes. 

Hal'man Coding Algorithm Huffman (1952) devised a variable-length 
encoding algorithm. based on the source letter probabilities P(xj ). i = 
1, 2, ...• L. This algorithm is optimum in the sense that the average number of 
binary digits required to represent the source symbols is a minimum. subject to 
the constraint that the code \Vords satisfy the prefix condition, as defined 
above, which allows the received sequence to be uniquely and instantaneously 
decodable. We illustrate this encoding algorithm by means of two examples. 
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tlGURE 3-3-4 An e<ample of variable-length-sOurce 
encoding (or a DMS. 
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Consider a OMS with seven possible symbols x" Xl,' .. ,X7 having the 
probabilities of occurrence illustrated in Fig. 3-3-4. We have ordered the 
source symbols in decreasing order of tbe probabilities, i.e .. P(Xl) > P(XI) > 
... > P(X7)' We begin the encoding process with the two least probable 
symbols X. and X7' These two symbols are tied together as shown in Fig. 
3-3-4. with the upper branch assigned a 0 and the lower branch assigned a 1. 
The probabilities of these two branches are added together at the node 
where the two branches meet to yield the probability 0.01. Now we have the 
source symbols Xl, ... , Xs plus a new symbol, say x;', obtained by combining 
Xb and X7' The next step is to join the two least probable symbols from the 
set Xl> Xz, X" X., x" x;,. These are X5 and x~, which have a combined 
probability of 0.05. The branch from x, is assigned a () and the branch from 
x;' is assigned a 1. This procedure eontinues until'we exhaust the set of 
possible source letters. The result is a code tree with branches that contain 
the desired code words. The code words are .obtained by beginning at the 
rightmost node in the tree and proceeding to. the left. The resulting code 
words are listed in Fig. 3-3-4. The average number of binary digits per 
symbol for this code is R = 2.21 bits/symbol. The entropy of the source is 
2.11 bits/symbol. 

We make the observation that the code is not necessarily unique. For 
example, at the next to the last step in the encoding procedure, we have a tie 
between Xl and Xl, since these symbols are equally probable. At this point. we 
chose to pair x 1 with x 2' An alternative is to pair X2 with xi. If we choose this 
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pairing. the resulting code is illustrated in Fig. 3-3-5. The average number of 
bits per source symbol for this code is also 2.21. Hence, the resulting codes are 
equally efficient. Secondly. the assignment of a 0 to the upper branch and a 1 
to the lower (less probable) branch is arbitrary. We may simply reverse the 
assignment of a 0 and 1 and still obtain an efficient code satisfying the prefix 
condition. 

Enlllple 3-3-2 

As a second example, let us determine the Huffman code for the output of a 
DMS illustrated in Fig. 3·3-6. The entropy of this source is H(X) = 
2.63 bits/symbol. The Huffman code as iHustrated in Fig. 3·3-6 has an 
average length of R = 2.70 bits/symbol. Hence, its efficiency is 0.97. 

Huffman code for Example 3-3-2. 
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The variable-length encoding (Huffman) algorithm described in the above 
examples generates a prefix code having an R that satisfies (3-3-9). However, 
instead of encoding on a symbol-by-symbol basis, a more efticient procedure is 
to encode blocks of J symbols at a time. In such a case, the bounds in (3-3-9) of 
source coding theorem II become 

JH(X)'" RJ < JH(X) + 1, (3-3-12) 

since the entropy of a J-symbol block from a DMS is JH(X), and RJ is the 
average number of bits per J-symbol blocks. If we divide (3-3-12) by J, we 
obtain 

R 1 
H(X)'" -1..< H(X) +-

1 J 
(3-3-13) 

where RJ/l" R is the average number of bits per source symbol. Hence R can 
be made as close to H(X) as desired by selecting J sufficiently large. 

Example 3-3-3 

The output of a DMS consists of letters XI> X2. and X3 with probabilities 0.45, 
0.35, and 0.20, respectively. The entropy of this source is H(X) = 
1.518 bits/symbol. The HulIman code for this source, given in Table 3-3-2, 
requires Rl = 1.55 bits/symbol and results in an efficiency of 97.9%. If pairs 
of symbols are encoded by means of the Huffman algorithm, the resulting 
code is as given in Table 3-3-3. The entropy of the source output for pairs of 
letters is 2H(X) = 3.036 bits/symbol pair. On the other hand, the Hulfman 
code requires R2 = 3.0675 bits/symbol pair. Thus. the efficiency of the 
encoding increases to 2H(X)/R2 = 0.990 or, equivalently, to 99.0%. 

In summary, we have demonstrated that efficient encoding for a DMS may 
be done on a symool-by-symool basis using a variable-length code based on 

TABLE 3-3-2 HUFFMAN CODE FOR EXAMPLE 3-3-3 

Letter 

x, 
X2 

XJ 

l'1oW111ity Self ............... 

0.45 1.156 
0.35 1.520 
0.20 2.330 

H(X) = 1.518 bits/letter 
R, ~ 1.55 bits/letter 
Efficiency = 97.9% 

1 
00 
01 
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TABLE 3-3-3 HUFFMAN CODE FOR ENCODING PAIRS OF LETIERS 

Leiter ..... ProIIobIIIty 
SeIf-lllf __ Code 

XIX, 0.2025 2.312 10 
X 1X 2 0.1575 2.676 001 
XlX I 0.1575 2.676 010 
.(2.(2 0.1225 3.039 011 
.l'IX:\ 0.09 1486 1 J I 
'(:;Xl 0.09 1486 0000 
X2 X .,\ 0.07 1850 0001 
XJX1 0.07 1850 1100 
x.,x:; (104 4.660 HOI 

2H(X) = 3.036 bits/letter pair 
R, = 3.0675 bits/letter pair 

~R, = 1.534 bits/letter 
Efficiency = 99.0% 

the Huffman algorithm. Furthennore, the efficiency of the encoding procedure 
is increased by encoding blocks of J symbols at a time. Thus, the output of a 
OMS with entropy H(X) may be encoded by a variable-length code with an 
average number of bits per source letter that approaches H(X) as closely as 
desired. 

3-3-2 Discrete Stationary Sources 
In the previous section, we described the efficient encoding of the output of a 
OMS. In Ihis section, we consider discrete sources for which the sequence of 
output letters is statistically dependent. We limit our treatment to sources that 
are statistically stationary. 

Let us evaluate the entropy of any sequence of letters from a stationary 
source. From the definition in (3-2-13) and the result given in (3-2-15), the 
entropy of a block of random variables XIX,' .. X. is 

• 
H(X,X 2 '" Xd = 2: H(Xi I X,X,'" X;.,J (3-3-14) 

where H(X;! X ,X 2 ••• X;_,} is the conditional entropy of the ilh symbol from 
the source given the previous i-I symbols. The entropy per leiter for the 
k -symbol block is defined as 

. 1 
HAX) = k H(X,X,· .. Xx) (3-3-15) 

We define the information content of a stationary source as the entropy per 
letter in (3-3-15) in the limit as k ~ "". That is, 

Hx(X) = lim H.(X) = lim -k
l 

H(X, X 2 ••• X.) 
k_x k_~ 

(3-3-16) 
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The eXistence of this limit is established below. 
As an alternative. we may define the entropy per leiter from the source in 

terms (}f the conditional entropy H(X.! X I X 2 '" X._ I ) in the limit as k 
approaches infinitv. Fortunately. this limit also exists and is identical to the 
limit in (3-3-16). That is, 

H.(X) = lim H(X, I X,X,' " X,_,) (3-3-17) ,_x 

This result is also established below. Our development follows the approach in 
Gallager (1968). 

First, we show that 

(3-3-18) 

for k;;;. 2. From our previous result that conditioning on a random variable 
cannot increase entropy. we have 

(3-3-19) 

From the stationarity of the source, we have 

Hence, (3-3-18) follows immediately. This result demonstrates that 
H(X.IXIXZ '·' X._ I ) is a nonincreasing sequence in k. 

Second, we have the result 

H.(X);;;. H(X.I X ,X 2' • , X._ d (3-3-21) 

which follows immediately from (3-3-14) and (3-3-15) and the fact that the last 
term in the sum of (3-3-14) is a lower bound on each of the other k - 1 terms. 

Third, from the definition of H.(X). we may write 

1 
H.(X) =k(H(XI X 2 .. , X.- I) + H(X.I Xl' .. X._,») 

= i [(k - l)lI._,(X) + H{X. I X, ' , , X k -,)] 

k - 1 1 
.;; -k- H._I(X) + k H.(X) 

which reduces to 

(3-3-22) 

Hence, H.(X) is a nonincreasing sequence in k. 
Since H.(X) and the conditional entropy H(X.'!X,"·X._ ,) are both 
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nonnegative and nonincreasing with k, both limits must exist. Their limiting 
forms can be established by using (3-3-14) and (3-3-15) to express Hk+j(X) as 

1 
H",(X)=-k .H(X,X2 ···X._,) 

+f 

I 
+ k + j[H(X.1 X,· .. X.-,) + H(X.+, I X, ... X.) 

+ ... + H(X'+J I X, ... Xk+j-,)] 

Since the conditional entropy is nonincreasing. the first term in the square 
brackets serves as an upper bound on the other terms. Hence, 

For a fixed k. the limit of (3-3-23) as j -4 00 yields 

H~(X) ";'H(X.I X,X2 • •• Xk-I) 

But (3-3-24) is valid for all k; hence. it is valid for k- or;. Therefore, 

Hx(X),.;. lim H(X. I X,X2 ••• XH ) 
k_x 

On the other hand, from (3-3·21), we obtain in the limit as k-+ 00, 

Hx(X) ~ lim H(X. I X,X2 •• • X.- t ) ._x 
which establishes (3-3-17). 

(3-3-23) 

(3-3-24) 

(3-3-25) 

(3-3-26) 

Now suppose we have a discrete stationary source·that emits J letters with 
Hl(X) as the entropy per letter. We can encode the sequence of I letters with a 
variable-length Huffman code that satisfies the prefix condition by following 
the procedure described in the previous section. The resulting code has an 
average number of bits for the I-letter block that satisfies the condition 

H(X t ••• Xl)";' Rl < H(X 1 ••• Xl) + 1 (3-3-27) 

By dividi~g e~ch term of (3-3-27) by I, we obtain the boules on ~he average 
number R = Rlll of bits per source letter as 

- 1 
HAX),.;. R < HAX) + ; (3-3-28) 

By increasing the block size J, we can approach HJ(X) arbitrarily closely. and 
in the limit as J _ 00, R satisfies 

(3-3-29) 
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nonnegative and nonincreasing with k, both limits must exist. Their limiting 
forms can be established by using (3-3-14) and (3-3-15) to express Hk+j(X) as 

1 
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+f 

I 
+ k + j[H(X.1 X,· .. X.-,) + H(X.+, I X, ... X.) 

+ ... + H(X'+J I X, ... Xk+j-,)] 
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k_x 
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where E approaches zero as 1/1. Thus, efficient encoding of stationary sources 
is accomplished by encoding large blocks of symbols into code words. We 
should emphasize, however, that the design of the Huffman code requires 
knowledge _ of the joint pdf for the J -symbol blocks. 

Ie Lempel-Ziv Algorithm 
From our preceding discussion. we have observed that the Huffman coding 
algorithm yields optimal source codes in the sense that the code words satisfy 
the prefix condition and the average block length is a minimum. To design a 
Huffman code for a DMS, we need to know the probabilities of occurrence of 
all the source letters. In the case of a discrete source with memory, we must 
know the joint probabilities of blocks of length n;;' 2. However, in practice. 
the statistics of a source output are often unknown. In principle. it is possible 
to estimate the probabilities of the discrete source output by simply observing 
a long information sequence emitted by the source and obtaining the 
probabilities empirically. Except for the estimation of the marginal prob­
abilities {P.}, corresponding to the frequency of occurrence of the individual 
source output letters, the computational complexity involved in estimating 
joint probabilities is extremely high. Consequently. the application of the 
Huffman coding method to· source coding for many real sources with memory 
is generally impractical. 

In contrast to the Huffman coding algorithm, the Lernpel-Ziv source coding 
algorithm is designed to be independent of the source statistics. Hence. the 
Lempel-Ziv algorithm belongs to the class of universal source coding 
algorithms. It is a variable-to-fixed-Iength algorithm, where the encoding is 
performed as described below. 

In the Lempel-Ziv algorithm, the sequence at the output of the discrete 
source is parsed into variable-length blocks, which are called phrases. A new 
phrase is introduced every time a block of letters from the source differs from 
some previous phrase in the last letter. The phrases are listed in a dictionary, 
which stores the location of the existing phrases. In encoding a new phrase, we 
simply specify the location of the existing phrase in the dictionary and append 
the new letter. 

As an example, consider the binary sequence 

10IOII0IOOl0011101~lOOOOll00lll0101100011011 

Parsing the sequence as described above produces the following phrases: 

I, 0, 10, 11, 01, 00, 100, Ill, 010, 1000, 011, 001, 110, 101, 10(M)1, lOll 

We observe that each phrase in the sequence is a concatenation of a previous 
phrase with a new output letter from the source. To encode the phrases. we 
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TABLE 3-3-4 

CHAPTER.l SOVRre COD1NO J07 

DICTIONARY FOR LEMPEL-ZIV 
ALGORITHM 

Dktion8l'}' ~ry Code 
loaotloo contents word 

0001 1 00001 

2 0010 () 00000 

3 0011 10 00010 

4 IlIOO 11 00011 

5 0101 OJ 00101 , 0110 00 00100 

7 Gill 100 ItlIlO 

" 1000 III 01001 

9 1001 010 01010 
\0 1010 1000 011 to 
11 1011 011 01011 

12 IHJO 001 OW)! 

lJ 1101 110 01000 
14 IllV 101 00111 
15 1111 10001 10101 

16 1011 11101 

construct a dictionary as shown in Table 3·3·4. The dictionary locations are 
numbered consecutively. beginning with 1 and counting up. in this case to 16, 
which is the number of phrases in the sequence. The different phrases 
corresponding to each location are also listed, as shown, The codewords are 
determined by listing the dictionary location (in binary form) of the previous 
phrase that matches the new phrase in all but the last location. Then, the new 
output letter is appended to the dictionary location of the previous phrase. 
Illitially. the location 0000 is used to encode a pbrase that bas not appeared 
previously. 

The source de!=oder for the code constructs an identical table at the 
receiving end of the communication system and decodes the received sequence 
accordingly. 

It should be observed that the table encoded 44 source bits into 16 code 
words of five bits each, resulting in 80 coded bits. Hence, the algorithm 
provided no data compression al alL However, the inefficiency is due to the 
fact that the sequence we have considered is very short. As the sequence is 
increased in length, the encoding procedure becomes more efficiellt and results 
in a compressed sequence at tbe output of the source. 

How do we select the overall length of the table? In general, no matter how 
large the table is, it will eventually overflow. To solve the overflow problem, 
the source encoder and source decoder must agree to remove pbrases from the 
respective dictionaries that are not useful and substitute new phrases in their 
place. 
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The Lempel-Ziv algorithm is widely used in the compression of computer 
files. The "compress" and "uncompress" utilities under the UNIX© operating 
system and numerous algorithms under the MS-DOS operating system are 
implementations of various versions of this algorithm. 

3-4 CODING FOR ANALOG SOURCES-OPTIMUM 
QUANTIZATION 

As indicated in Section 3-1. an analog source emits a message waveform x(t) 
that is a sample function of a stochastic process X(/). When X(c) is a 
bandlimited, stationary stochastic process, the sampling theorem allows us to 
represent XCI) by a sequence of uniform samples taken at the Nyquist rate. 

By applying the sampling theorem; the output of an analog source is 
converted to an equivalent discrete-lime sequence of samples. The samples are 
then quantized in amplitude and encoded. One type of simple encoding is to 
represent each discrete amplitude level by a sequence of binary digits. Hence, 
if we have L levels, we need R = log, L bits per sample if L is a power of 2, or 
R = lIog, LJ + 1 if L is not a power of 2. On the other hand, if the levels are 
not equally probable, and the probabilities of the output levels are known, we 
may use Huffman coding (also called en/ropy coding) to improve the efficiency 
of the encoding process. 

Quantization of the amplitudes of the sampled signal results in data 
compression but it also introduces some distortion of the waveform or a loss of 
signal fidelity. The minimization of this distortion is considered in this section. 
Many of the results given in this section apply directly to a discrete-time, 
continuous amplitude, memoryless gaussian source. Such a source serves as a 
good model for the residual error in a number of source coding methods 
described in Section 3-5. 

3-4-1 Rate-Distortion Fundion 

Let us begin the discussion of signal quantization by considering the distortion 
introduced when the samples from the information source are quantized to a 
fixed number of bits. By the term "distortion," we mean some measure of the 
difference between the actual source samples {x.} and the corresponding 
quantized values x •. which we denote by d{x •• x.}. For example, a commonly 
used distonion measure is the squared-error distortion. defined as 

(3-4-1 ) 

which is used to characterize the quantization error in PCM in Section 3-5-1. 
Other distortion measures may take the general form 

(3-4-2) 

where p takes values from the set of positive integers. The case p = 2 has the 
advantage of being mathematically tractable. 
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If d(x" x.) is the distortion measure per leiter, the dislortion be!ween a 
sequence of n samples Xn and the corresponding n quantized values x" is the 
average over the n source output samples, i.e., 

(3-4-3) 

The source output is a random pr~ess, and, hence, the n samples in Xn are 
random variables. Therefore, d(Xn, x..) is a random variable. Its expected 
value is defined as the distortion D, i.e., 

_ 1 n 

D = E[d(Xn. x,,)] = - L E[d(x .. x.)] = £[d(x, x)] 
n it""l 

(3-4-4) 

where the last step follows from the assumption that the source output process 
is stationary. 

Now suppose we have a memoryless source with a continuous-amplitude 
output X that has a pdf p(xl. a quantized amplitude output alphabet X, and a 
per letter distortion measure d(x. x), where x E X and i E X. Then. the 
minimum rate in bits per source output that is required to represent the output 
X of the memoryless source with a distortion less than or equal to D is called 
the rale·distortion /unction R( D) and is defined as 

R(D) = min _ /(X, X) 
p(i Ix),Eld(''-'l»)'''D 

(3-4-5) 

where leX; X) is the average mutual information between X and i. In general, 
the rate R(D) decreases as D increases or. conversely, R(D) increases as D 
decreases. 

One interesting model of a continuous-amplitude, memoryless information 
source is the gaussian source model. In this case, Shannon proved the following 
fundamental theorem on the rate-distortion function. 

Theorem: Rate-Distortioll Fulldion for a Memoryless Gaussian Source 
(Shannon, 19598) 

The minimum information rate necessary to represent the output of a 
discrete-lime, continuous-amplitude memoryless gaussian source based on a 
mean-square-error distortion measure per symbol (single letter distortion 
measure) is 

(3-4-6) 

where 0'; is the variance of the gaussian source output. 
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FIGURE 3-4-1 Rate distortion function for a continuous-amplitude memoryless 
gaussian source. 

Il 0 0.2 0.4 0.6 0.8 

We should note that (3-4-6) implies that no infonnation need be transmitted 
when the distortion D ~ u~ Specifically, D = u; can be obtained by using 
zeros in the reconstruction of the signal. For D > 0-;, we can use statistically 
independent, zero-mean gaussian noise samples with a variance of D - u~ for 
the reconstruction. R,(D) is plotted in Fig. 3-4-1. 

The rate distortion function R(D) of a source is associated with the 
following basic source coding theorem in infonnation theory. 

TheMem: Soun:e Coding witb .. Distorlioa Measure (ShaanH, 1959a) 

There exists an encoding scheme that maps the source output into code 
words such that for any given distortion D, the minimum rate R(D) bits per 
symbol (sample) is sufficient to reconstruct the source output with an 
average distortion that is arbitrarily close to D. 

It is clear, therefore, that the rate distortion function R(D) for any source 
represents a lower bound on the source rate that is possible for a given level of 
distortion. 

Let us return to the result in (3-4-6) for the rate distortion function of a 
memoryless gaussian source. If we reverse the functional dependence between 
D and R. we may express D in tenns of R as 

D.(R) = T 1R
U; (3-4-7) 

This funcion is called the distortion-rate function for the discrete-time, 
memoryless gaussian source. 

When we express the distortion in (3-4-7) in dB, we obtain 

10 10gl0 D.(R) = -6R + 10 log,,) IT; (3-4-8) 

Note that the mean square distortion decreases at a rate of 6 dB/bit. 
Explicit results on the rate distortion functions for memoryless non-gaussian 

sources are not available. However, there are useful upper and lower bounds 

i 

I 
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on the rate distortion function for any discrete-time, continuous-amplitude_ 
memoryless source. An upper bound is given by the following theorem. 

Theorem: Upper Bound on R \ D) 

The rate-distortion function of a memoryless, continuous-amplitude source 
with zero mean and finite variance a; with respect to the mean-square-error 
distortion measure is upper bounded as 

(0,., D ,., (T~) (3-4-9) 

A proof of this theorem is given by Berger (1971)_ It implies that the 
gaussian source requires the maximum rate among all other sources for a 
specified level of mean square distortion_ Thus, the rate distortion R(D) of any 
continuous-amplitude, memoryless source with zero mean and finite variance 
a~ satisfies the condition R(D)'" R.< D J. Similarly. the distortion-rate function 
of the same source satisfies the condition 

(3-4-10) 

A lower bound on the rate-distortion function also exists. This is called the 
Shannon lower bound for a mean-square-error distortion measure, and is given 
as 

R*(D) = H(X) -jlog2 21CeD (3-4-11) 

where H(X) is the differential entropy of the continuous-amplitude, memory­
less source. The distortion-rate function corresponding to (3-4-11) is 

(3-4-12) 

Therefore. the rate-distortion function for any continuous-amplitude. memory­
less source is bounded from above and below as 

R*(D),., R(D)'" RK(D) (3-4-13) 

and the corresponding distortion-rate function is bounded as 

D*(R)'" D(R) ,., Dg(R) (3-4-14) 

The differential entropy of the memoryless gaussian source is 

(3-4-15) 

so that the lower bound R"(D) in (3-4-11) reduces to R.{D). Now, if we 
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express D*(R) in terms of decibels and normalize it by selling (J'; = I lor 
dividing D*(R) by <T~l, we obtain from (3-4-12) 

10 log", D*(R) = -6R - 6(H.(X) - H(X)] (3-4-16) 

or, equivalently, 

10 10gHl D .• (R) = 6[H.(X) - H(X)J dB 
D*(R) 

= 6[R.(D) - R*(D)] dB (3-4-17) 

The relations in (3-4-16) and (3-4-17) allow us to compare the lower bound in 
the distortion with the upper bound which is the distortion for the gaussian 
source. We note that D*(R} also decreases at -6dB/bit. We should also 
mention that the differential entropy H(X) is upper-bounded by H.(X). as 
shown by Shannon (l948b). 

Table 3-4-1 lists four pdfs that are models commonly used for source signal 
distributions. The table shows the differential entropies. the differences in rates 
in bits/sample, and the difference in distortion between the upper and lower 
bounds. Note that the gamma pdf shows the greatest deviation from the 
gaussian. The Laplacian pdf is the most similar to the gaussian, and the 
uniform pdf ranks second of the pdfs shown in the table. These results provide 
some benchmarks on the difference between the upper and lower bounds on 
distortion and rate. 

Before concluding this section, let us consider a band-limited gaussian 
source with spectral density 

<P(f) = {l1';I2W (If I ,,;; W) 
o (lfI>W) 

(3-4-18) 

When the output of this source is sampled al the Nyquist rate, the samples are 
uncorrelated and. since the source is gaussian, they are also statistically 

TABLE 3-4-1 DIFFERENTIAL ENTROPIES AND RATE DISTORTION COMPARISONS OF FOUR 
COMMON PDFs FOR SIGNAL MODELS 

R.(D)-R*(D) D.(R) - D'(R) 
pdf pix) H(X) (bits/sample) (dB) 

Gaussian 
I - ..-.!I:!(~~ ! log, (2Jfe";) --e 0 0 

VL;r(Tl" 

Uniform 
I 

lv'3 u" ' IXI ., ,," u, pog, (l2a:) 0.255 15} 

Laplacian _1_e-V'21x1lU~ 
v'iu, 

! log, (2.'0';) (J.I04 0.62 

~ 
Gamma 3 e -V)lllf2 ..... } logz (4JZ'e"-42"'u.:/3) 0.709 

',181<0:, l<1 
4.25 

TABI.E .'-4-1 
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independent. Hence, the equivalent discrete-time gaussian source is memory­
less. The rate-distortion function for each sample is given by (3-4-6). 
Therefore, the rate-distortion function for the band-limited white gaussian 
source in bits/s is 

The corresponding distortion-rate function is 

Dg(R) = Z-RIWU ; 

which, w'hen expressed in decibels and normalized by u~, becomes 

10 log Dg(R)/u; = -3R/W 

(3-4-19) 

(3-4-20) 

(3-4-21) 

The more general case in which the gaussian process is neither white nor 
band-limited has been treated by Gallager (1968) and Goblick and Holsinger 
(1967). 

3-4-2 Scalar Quantization 
In source encoding, the quantizer can be optimized if we know the probability 
density function of the signal amplitude at the input to the quantizer. For 
example, suppose that the sequence {xn} at the input to the quantizer has a pdf 
p(x) and let L = 2R be the desired number of levels. We wish to design the 
optimum scalar quantizer that minimizes some function of the quantization 
error q = x - x. where x is the quantized value of x. To elaborate, suppose that 
/(1 - x) denotes the desired function of the error. Then, the distortion 
resulting from quantization of the signal amplitude is 

D = (f(X -x)p(x)dx (3-4-22) 

In general, an optimum quantizer is one :hat minimizes D by optimally 
selecting the output levels and the corresponding input range of each output 
level. This optimization problem has been considered by Lloyd (1982) and Max 
(1960), and the resulting optimum quantizer is usually called the Lloyd-Max 
quantizer. 

For a uniform quantizer, the output levels are specified as x. = ~(2k - I )~. 
corresponding to an input signal amplitude in the range (k - I)~';;x < k~. 
where ~ is the step size. When the uniform quantizer is symmetric with an 
even number of levels, the average distortion in (3-4-22) may be expressed as 

L/2- I rk.l 

D = 2 .~, t_,)/(!(2k -J)./l-x)p(x)dx 

+ 2f' f(~(2k - 1).1- x)p(x) dx 
{UZ-lt.l. 

(3-4-23) 
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TABLE 34-2 OPTIMUM STEP SIZES FOR UNIFORM QUANTIZATION OF A 
GAUSSIAN RA~DOM VARIABLE 

Number of Optimum step Minimum MSE If)!Ol! D ..... 
output levels size A.,.. D_ (dB) 

2 1.596 0.3634 ~4.4 

4 0.9957 0.1188 ~9.25 

~ O.S860 0.03744 ~ 14.27 

16 0.3352 O.fll 154 ~ 19.3R 

.12 O.JX8! O.lXl349 ~?A57 

In this case. the minimization of D is carried out with respect to the step-size 
parameter d. By differentiating D with respect to d, we obtain 

):,' (2k ~ 1)(' I ,~fd(2k - l)d - x)p(x) dx 

+ (L -I) rU2 I)/'WL -1)':>- x)p(x) dx = 0 (3-4-24) 

where f' (x) denotes the derivative of tex). 
By selecting the error criterion function f(x), the solution of (3-4-24) for the 

optimum step size can be obtained numerically on a digital computer for any 
given pdf p(x). For the mean-square-error criterion, for which f(x) = x'. Max 
(1960) evaluated the optimum step size .:lop, and the minimum mean square 
error when the pdf p(x) is zero-mean gaussian with unit variance. Some of 
these results are given in Table 3-4-2. We observe that the minimum mean 
square distortion Dmin decreases by a little more than 5 dB for each doubling of 
the number of levels L Hence, each additional bit that is employed in a 
uniform quantizer with optimum step size .:lop, for a gaussian-distributed signal 
amplitude reduces the distortion by more than 5 dB. 

By relaxing the constraint that the quantizer be uniform, the distortion can 
be reduced further_ In this case, we let the output level be x = x. when the 
input signal amplitude is in the range Xk~l <;;x <xo- For an L-level quantizer, 
the end points are Xo = - oc and XL = x. The resulting distortion is 

L I" D = 2: t(x. -x)p(x)d.r 
1.:=1 _f'/'_l 

(3-4-25) 

which is now minimized by optimally selecting the {x.} and {x.}. 
The necessary conditions for a minimum distortion are obtained by 

differentiating D with respect to tbe {x.} and {x.}. The result of this 
minimization is 1he pair of equations 

IF. - x.) = t(Xk<l - xd. k = 1. 2 ... _ . L - 1 (3-4-26) 

J
" f'(x. ~ x)p(x) dx = 0, 

_1", t 

k = 1,2, .. _ , L (3-4-27) 
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TABLE 3-4-3 OPTIMUM FOUR· LEVEL 
QUANTIZER FOR A GAUSSIAN 
RANDOM VARIABLE 

Level k 

2 
3 
4 

-0.9816 
0.0 
0.9816 

Dm1f) =. 0.1175 

-1.510 
-0A528 

0.4528 
1.510 

\0 log Dm ," = -9.3 dB 
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As a special case, we again consider minimizing the mean square va!ue of 
the dislortion. In this case, f(x) = x 2 and, Ilence, (3-4-26) becomes 

(3-4-28) 

which is the midpoint between x. and Xk+I' The corresponding equations 
determining {i.} are 

I
X, 

(1, -x)p(x)dx =0, 
Xk_1 

k =1. 2, ... , L (3-4-29) 

Thus, 1 k is the centroid of the area of p(x) between x. _I and Xo. These 
equations may be solved numerically for any given p(x). 

Tables 3-4-3 and 3-4-4 give the results of this optimization obtained by Max 

TABLE 3-4-4 OPTIMUM EIGHT·LEVEL 
QUANTIZER FOR A GAUSSIAN 
RANDOM VARIABLE (MAX, 1960) 

Level k x, f. 

1 -1.748 -2.152 
2 -1.050 -1.344 
3 -0-5006 -0.7560 
4 0 -Q.2451 
5 0.5006 0.2451 
6 1.050 0.7560 
7 1.748 1344 
8 "" 2152 

D...,=O.03454 
10 log Dmi• = -14.62 dB 
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TABLE 3-4-S COMPARISON OF OPTIMUM UNIFORM AND 
NONUNIFORM QUANTIZERS FOR A GAUSSIAN 
RANDOM VARIABLE (MAX, 1960; PAEZ AND 
GLlSSON. 1972) 

R 
~ils/s.uple) Uniform (dB) NomanifMm (dB) 

I -4.4 -4.4 
2 -9.25 -9.30 
3 -14.27 -14.62 
4 -19.38 -20.22 
5 -24.57 -26.02 
6 -29.83 -31.89 
7 -35.13 -J7.81 

(1960) for the optimum four-level and eight-level quantizers of a gaussian 
distributed signal amplitude having zero mean and unit variance. In Table 
3-4-5, we compare the minimum mean square distortion of a uniform quantizer 
to that of a nonuniform quantizer for the gaussian-distributed signal amplitude. 
From the results of this table, we observe that the difference in the 
performance of the two types of quantizers is relatively small for small values 
of R (less than 0.5 dB for R ,;; 3), but it increases as R increases. For example, 
at R = 5, the nonuniform quantizer is approximately 1.5 dB better than the' 
uniform quantizer. 

It is instructive to plot the minimum distortion as a function of the bit rate 
R = log2 L bits per source sample (letter) for both the uniform and nonuniform 
quantizers. These curves are illustrated in Fig. 3-4-2. The functional depen­
dence of the distortion D on the bit rate R may be expressed as D(R), the 
distortion-rate function. We observe that the distortion-rate function for the 
optimum nonuniform quantizer falls below that of the optimum uniform 
quantizer. 

Since any quantizer reduces a continuous amplitude source into a discrete 
amplitude source, we may treat the discrete amplitude as letters, say 
X = {ik' 1,;; k .,:;; L}, with associated probabilities {Pk}. If the signal ampli­
tudes are statistically independent, the discrete source is memoryless and, 
hence, its entropy is 

L 

H(X) = - 2: Pklog,Pk (3-4-30) 
*=1 

For example, the optimum four-level nonuniform quantizer for the 
gaussian-distributed signal amplitude results in fhe probabilities PI = P. = 
0.1635 for the two outer levels and P2 = P3 = 0.3365 for the two inner levels. 
The entropy for the discrete source is H(X) = 1.911 bits/letter. Hence, with 
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entropy coding (Huffman coding) of blocks of output letters, we can achieve 
the minimum distortion of -9.30 dB with 1.911 bits/letter instead of 
2 bits/leiter. Max (1960) has given the entropy for the discrete source leuers 
resulting from quantization. Table 3-4-6 lists the values of the entropy for the 
nonuniform quantizer. These values are also plotted in Fig. 3-4-2 and labeled 
entropy coding. 

From this discussion. we conclude that the quantizer can be optimized when 
the pdf of the continuous source output is known. The optimum quantizer of 
L = 2R levels results in a minimum distortion of D(R), where R = log, L 

TABLE l-4-6 ENTROPY OF THE Ol:TPUT OF AN OPTIMUM 
NONUNIFORM QVANTIZER FOR A GAUSSIAN 
RANDOM VARIABLE (MAX. 1%0) 

it Eotropy Disumion 
(bit,/sample) (bit.IIe""r) 10101.8 D .... 

I.Il -4.4 
2 1.911 -9.30 
:t 2.~25 -,4.62 
4 3.765 -2().22 
5 4.730 -26.U2 
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bits/sample. Thus, this distortion can be achieved by simply representing each 
quantized sample by R bits. However, more efficient encoding is possible. The 
discrete source output that results from quantization is characterized by a set 
of probabilities {Pk} that can be used to design efficient variable-length codes 
for the source output (entropy coding). The efficiency of any encoding method 
can be compared with the distortion-rate function or, equivalently, the 
rate-distortion funl.'tion for the discrete-time, continuous-amplitude source that 
is characterized by the given pdf. 

If we compare the performance of the optimum nonuniform quantizer with 
the· distortion-rate function, we find, for example, that at a distortion of 
-26 dB, entropy coding is 0.41 bits/sample more than the minimum rate given 
by (3-4-S), and simple block coding of each letter requires 0.68 bits/sample 
more than the minimum rate. We also observe that the distortion rate 
functions for the optimal uniform and nonuniform quantizers for the gaussian 
source approach the slope of -6 dB/bit asymptotically for large R. 

3-4-3 Vector QUllIltization 

In the previous section, we considered the quantization of the output signal 
from a continuous·amplitude source when the quantization is performed on a 
sample-by-sample basis, i.e., by scalar quantization. In this section, we consider 
lhe joint quantization of a block of signal samples or a block of signal 
parameters. This type of quantization is called block or vector quantization. It 
is widely used in speech coding for digital cellular systems. 

A fundamental result of rate-distortion theory is that better performance 
can be achieved by quantizing vectors instead of scalars, even if the 
continuous-amplitude source is memoryless. If, in addition, the signal samples 
or signal parameters are statistically dependent. we can exploit the dependency 
by jointly quantizing blocks of samples or parameters and, thus, achieve an 
even greater effi~iency (lower bit rate) compared with that which is achieved 
by scalar quantization. 

The vector quantization problem may be formulated as follows. We have an 
n-dimensional vector X = [XI X2 •.• xn] with real·valued, continuous­
amplitude components {Xk> 1 "" k "" n} that are described by a joint pdf 
I?(X"X2,'" ,An)' The vector X is quantized into another n-dimensional vector 
X with components {.i\, 1 "" k "" n}. We express the quantization as Q('), 
so that 

X=Q(X) (3-4-31) 

where i is the output of the vector quantizer when the input vector is X. 
Basically, vector quantization of blocks of data may be viewed as a pattern 

recognition problem involving the classification of blocks of data into a discrete 
number of categories or cells in a way that optimizes some fidelity criterion, 
such as mean square distortion. For example, let us consider the quantization 
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bits/sample. Thus, this distortion can be achieved by simply representing each 
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FIGURE 34-3 An example of quantization in two·dimensional SP;'ICC. 

of two-dimensional vectors X = (XI xcI· The two-dimensional ~pace is' 
partitioned into cells as illustrated in Fig. 3-4·3. where we have arbitrarilv 
selected hexagonal-shaped cells {Cd. All input vectors that fall in cell C, are 
quantized into the vector X •. which is shown in Fig. 3-4-3 as the center of .. he 
hexagon. In this example. there are L = 37 vectors. one for each of the 37 cells 
into which the two-dimensional space has been partitioned. We denote the set 
of possible output vectors as {X,. I ,,;: k ,,;: L}. 

In generaL quantization of the II-dimensional vector X into an Ii· 

dimensional vector X introduces a quantization error or a disto:tion d(X. Xl. 
The average distortion over the set of input vectors X is 

L 

D = L P(X E CdE{d(X. Xd I X E Cd 
A=I 

= ± P(X E Cd i d(X. X,)p(X) dX 
A I X, C .. 

(3-4-32) 

where P(X E Cd is the probability that the vector X falls in the cell C, and 
p(X) is the joint pdf of the II random variables. As in the case of scalar 
quantization. we can minimize D by selecting the cells {e., I,,;: k,,;: L} for a 
given pdf p(X). 

A commonly used distortion measure IS the mean square error (/, norm) 
defined as 

- 1 _ - l~ • 
do(X. X) = - (X - X)'(X - X) = - .:.- (x, - .i\,. 

n II k~ l 

or. more generally. the weighted mean square error 

dc,,(X. Xl = (X - X)'W(X - Xl 

(3-4-33 ) 

(3-4-34 ) 

where W is a positive-definite weighting matrix. Usually. W is selected to be 
the inverse of the covariance matrix of the input data vector X. 
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Other distortion measures that are sometimes used are special cases of the lp 
norm defined as 

(3-4·35) 

The special case p = I is often used as an alternative to p = 2. 
Vector quantization is not limited to quantizing a block of signal samples of 

a source waveform. It can also be applied to quantizing a set of parameters 
extracted from the data. For example, in linear predictive coding (LPC). 
described in Section 3·5·3, the parameters extracted from the signal are the 
prediction coefficients, whietl are the coefficients in the all·pole filter model for 
the source that generates the observed data. These parameters can be 
considered as a block and quantized as a block by application of some 
appropriate distortion measure. In the case of speech encoding, an appropriate 
distortion measure, proposed by Itakura and Saito (1968, 1975), is the 
weighted square error where the weighting matrix W is selected to be the 
normalized autocorrelation matrix tI> of the observed data. 

In speech processing, an alternative set of parameters that may be quantized 
as a block and transmitted to the receiver is the set of reflection coefficients 
{a'i' 1,.; i,.; m}. Yet another set of parameters that is sometimes used for vector 
quantization in linear predictive coding of speech comprises the log-area ratios 
{r.}. which are defined in terms of the reflection coefficients as 

I + a .. 
r, = log -- • 1 ",; k ,.; m 

I-a .. 
(3-4·36) 

Now, let us return to the mathematical formulation of vector quantization 
and let us consider the partitioning of the n ·dimensional space into L cells 
(Ck , 1 ,.; k ",; L} so that the average distortion is minimized over all L·level 
quantizers. There are two conditions fOJ optimality. The first is that the 
optimal qllanlizer employs a nearest·neighbor selection rule, which may be 
expressed mathematically as 

Q(X)= X. 
II alld unl1 if 

(3·4·37) 

The second condition necessary for optimality is that each output vector X. be 
chosen to minimize the average distortion in cell Ck' [n other words, X. is the 
vector in C, that minimizes 

D. = £[d(X. X) I X E C.) = 1 d(X, X)p(X) dX 
XE::C,_ 

(3·4·38) 

The vector X. that minimizes D. is called the centroid of the cell. Thus, these 
conditions for optimality can he applied 10 partition the n-dimensional space 
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into cells {Ck> I 'E k 'E L} when the joint pdf p(X) is known. It is clear that 
these two conditions represent the generalization of the optimum scalar 
quantization problem to the n-dimensional vector quantization problem. In 
general, we expect the code vectors to be closer together in regions where the 
joint pdf is large and farther apart in regions where p(X) is small. 

As an upper bound on the distortion of a vector quantizer, we may use the 
distortion of the optimal scalar quantizer, which can be applied to each 
component of the vector as described in the previous section. On the other 
hand, the best performance that can be achieved by optimum vector 
quantization is given by the rate-distortion function or, equivalently, the 
distortion-rate function. 

The distortion-rate function, which was introduced in the previous section, 
may be defined in the context of vector quantization as follows. Suppose we 
form a vector X of dimension n from n consecutive samples {xm}. The vector X 
is then quantized to form X = Q(X), where X is a vector from the set of 
{X" 1 'E k 'E L}. As described above. the average distortion D resulting from 
representing X by X is E[d(X, Xl]. where d(X, X) is the distortion per 
dimension, e.g., 

_ 1" 
d(X,X)=- L (Xk -X'd 

nk=1 

The vectors {Xb I 'E k 'E L} can be transmitted at an average bit rate of 

H(X) . 
R = -- bltslsample 

n 

where H(X) is the entropy of the quantized source output defined as 
L 

H(X) = - L p(x,) log, P(X,) 
i""l 

(3-4-39) 

(3-4-40) 

For a given average rate R. the minimum achievable distortion Dn(R) is 

Dn(R) = min E[d(X.X)] (3-4-41) 
Q{X) 

where R;;. H(X)/n and the minimum in (3-4-41) is taken over all possible 
mappings Q(X). In the limit as the number of dimensions n is allowed to 
approach infinity, we obtain 

D(R) = lim Dn(R) (3-4-42) 

where D(R) is the distortion-rate function that was introduced in the previous 
section. It is apparent from this development that the distortion-rate function 
can be approached arbitrarily closely by increasing the size n of the vectoTS_ 

The development above is predicated on the assumption that the joint pdf 
p(X) of the data vector is known. However, in practice, the joint pdf p(X) of 
the data may not be known. In such a case, it is possible to select the 

131

CHAPTER J 'illllRCF Co[W";(i 121 

into cells {Ck> I 'E k 'E L} when the joint pdf p(X) is known. It is clear that 
these two conditions represent the generalization of the optimum scalar 
quantization problem to the n-dimensional vector quantization problem. In 
general, we expect the code vectors to be closer together in regions where the 
joint pdf is large and farther apart in regions where p(X) is small. 

As an upper bound on the distortion of a vector quantizer, we may use the 
distortion of the optimal scalar quantizer, which can be applied to each 
component of the vector as described in the previous section. On the other 
hand, the best performance that can be achieved by optimum vector 
quantization is given by the rate-distortion function or, equivalently, the 
distortion-rate function. 

The distortion-rate function, which was introduced in the previous section, 
may be defined in the context of vector quantization as follows. Suppose we 
form a vector X of dimension n from n consecutive samples {xm}. The vector X 
is then quantized to form X = Q(X), where X is a vector from the set of 
{X" 1 'E k 'E L}. As described above. the average distortion D resulting from 
representing X by X is E[d(X, Xl]. where d(X, X) is the distortion per 
dimension, e.g., 

_ 1" 
d(X,X)=- L (Xk -X'd 

nk=1 

The vectors {Xb I 'E k 'E L} can be transmitted at an average bit rate of 

H(X) . 
R = -- bltslsample 

n 

where H(X) is the entropy of the quantized source output defined as 
L 

H(X) = - L p(x,) log, P(X,) 
i""l 

(3-4-39) 

(3-4-40) 

For a given average rate R. the minimum achievable distortion Dn(R) is 

Dn(R) = min E[d(X.X)] (3-4-41) 
Q{X) 

where R;;. H(X)/n and the minimum in (3-4-41) is taken over all possible 
mappings Q(X). In the limit as the number of dimensions n is allowed to 
approach infinity, we obtain 

D(R) = lim Dn(R) (3-4-42) 

where D(R) is the distortion-rate function that was introduced in the previous 
section. It is apparent from this development that the distortion-rate function 
can be approached arbitrarily closely by increasing the size n of the vectoTS_ 

The development above is predicated on the assumption that the joint pdf 
p(X) of the data vector is known. However, in practice, the joint pdf p(X) of 
the data may not be known. In such a case, it is possible to select the 



122 DIGITAL rOMMl'Nlr A nONS 

quantized output vectors adaptively from a set of tramIng vectors X(m). 
Specifically, suppose that we are given a set of M training vectors where M is 
much greater than L (M» L). An iterative clustering algorithm, called the K 
means algorithm, where in our case K = L, can be applied to the training 
vectors. This algorithm iteratively subdivides the M training vectors into L 
clusters such that the two n~ssary conditions for optimality are satisfied. The 
K means algorithm may be described as follows (Makhoul el al. (J985)}. 

K Means Algorithm 

Step 1 Initialize by setting the iteration number i = O. Choose a set of 
output vectors i.(O), 1 "" k "" L. 

Step 2 Classify the training vectors {X(m). 1 "" m "" M} into the clusters 
I e.} by applying the nearest-neighbor rule 

X E ek (;) iff D(X, i.(i» "" D(X, Xj(i» for all k "" j 

Step 3 Recompute (set i to i + 1) the output vectors of every cluster by 
computing the centroid 

- I ~ Xk(i) = - L.J X(m). 
Mk XEC~ 

l""k""L 

of the training vectors that fall in each cluster. Also, compute the 
resulting distortion D(i) at the ittl iteration. 

Step 4 Terminate the test if the change D(i - I} - D(,i) in the average 
distortion is relatively small. Otherwise. go to Step 2. 

The K means algorithm converges to a local minimum (see Anderberg, 
1973; Linde 1'1 Ill., 1980). By beginning the algorithm with different sets of 
initial output vectors {X.(O)} and each time performing the optimization 
described in the K means algorithm, it is possible to find a global optimum. 
However, (he computational burden of this search procedure may limit the 
search to a few initializations. 

Once we have selected the output vectors IX •. I "" k "" L}. each signal vector 
X(m) ;~ quantized to the output vector that is nearest to it according to the 
di'itorfion measure that is adopted. If the computation involves evaluating 
the distance between X(m) and each of the L possible output vectors {X.}. the 
procedure constitutes a full search. If we assume that each computation 
requires n multiplications and additions, the computational requirement for a 
full search is 

'{{ = nL (3-4-43) 

multiplication and additions per input vector. 
If we select L to be a power of 2 then !o~ L is the number of bits required 

to represent each vector. Now, if R denotes the bit rate per sample [per 
component or dimension of X(m)), we have nR = log] L, and. hence. the 
computational cost is 

(3-4-44) 
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Note that the number of computations grows exponentially with the dimen 
sionality parameter n and the bit rate R per dimension. Because of this 
exponential increase of the computational cost, vector quantization has been 
applied to low-bit-source encoding, such as coding the reflection coefficients or 
log area ratios in LPC. 

The computational cost associated with full search can be reduced b\ 
slightly suboptimum algorithms I.see Chang el ai., 1984: Gersho, 1982). 

In order to demonstrate the benefits of vector quantization compared with 
scalar quantization, we present the following example taken from Makhoul el 
at. (1985). 

Example 3-4-1 

Let x, and x 0 be two random variables with a uniform joint pdf 

{
l. (XEC) 

p(x,.xo)=p(X)= ab . 

o (otherwise) 
(3-4-451 

where C is the rectangular region illustrated in Fig. 3-4-4. Note that the 
rectangle is rotated by 45° relative to the horizontal axis. Also shown in Fig. 
3-4-4 are the marginal densities p(x,) and p(x,). 

FIGURE ],,4-4 A uniform pdf In Iwo dlmmsions. (Makhoul el al .. 1985.) 
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If we quantize X, and x, separately by using uniform intervals of length A, 
the number of levels needed is 

a+b 
L, = L z = V2A (3-4-46) 

Hence, the number of bits needed for coding the vector X = [X, X2] is 

Rx = R, + Rz = log, L, + logz L2 

(a + b)2 
Rx = log, 2!J.' 

(3-4-47) 

Thus, scalar quantization of each component is equivalent to vector 
quantization wilh the lotal number of levels 

(a + b )2 
L, = L,Lz = 2A' (3-4-48) 

We observe thaI this approach is equivalent to covering the large square 
that encloses the rectangle by square cells, where each cell represents one of 
tbe Lx Quantized regions_ Since p(X) = 0 except for X E C, this encoding is 
wasteful and results in an increase of the bit rate. 

If we were to cover only the region for which p(X) "" 0 with squares 
having area 1l2 , the total number of levels that will result is the area of the 
rectangle divided by AZ, i.e., 

L' =ab 
x 1>2 (3-4·49) 

Therefore. the difference in bit rate between the scalar and vector 
quantization methods is 

(a + b)' 
Rx-R;=log, 2 

ab 

For instance, if a = 4b, the difference in bi t rate is 

Rx - R; = 1.64 bits/vector 

(3-4-50) 

Thus, vector quantization is 0.82 bits/sample better for the same distortion. 

It is interesting to note that a linear transformation (rotation by 45°) will 
decorrelate X, and X, and render the two random variables statistically 
independent. Then scalar quantiz~tion and vector quantization achieve the 
same efficiency. Although a linear transformation can decorrelate a vector of 
random variables, it does not result in statistically independent random 
variables. in general Consequently, vector quantization will always equal or 
exceed the performance of scalar quantization (see Problem 3-40). 

Vector quantization has been applied to several types of speech encoding 
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exceed the performance of scalar quantization (see Problem 3-40). 

Vector quantization has been applied to several types of speech encoding 
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methods including both wavefonn and model-based methods which are treated 
in Section 3-5. In model-based methods such as LPC, vector quantization has 
made possible the coding of speech at rates below 1000 bits/s (see BUla et al .. 
1980; Roucos et al., 1982; Paul 1983). When applied to waveform t!ncoding 
methods. it is possible to obtain good quality speech at 16000 bits/so or. 
equivalently, at R = 2 bits/sample. With additional computational complexity. 
it may be possible in the future to implement waveform encoders producing 
good quality speech al a rale of R = 1 bit/sample. 

3-5 CODING TECHNIQUES FOR ANALOG SOURCES 
A number of coding techniques for analog sources have been developed over 
the past 40 years. Most of these have been applied to the encoding of speech 
and images. In this section. we briefly describe several of these methods and 
use speech encoding as an example in assessing their performance. 

It is convenient 10 subdivide analog source encoding methods into thTee 
types. One type is called temporal waveform coding. In this type of encoding, 
the source encoder is designed to represent digitally the temporal characteris· 
tics of the source waveform. A second type of source encoding is spectral 
waveform coding. The signal waveform is usually subdivided into different 
frequency bands. and either the lime waveform in each band or its spectral 
characteristics are encoded for transmission. The third type of source encoding 
is based on a mathematical model of the source and is called model-based 
coding. 

3-5-1 Temporal Waveform Coding 

There are several analog source coding techniques that are designed to 
represent tile time·domain characteristics of the signal. The most commonly 
used methods are described in this section. 

Pulse Code ModulatioRt (PCM) Let x(t) denote a sample (unction 
emitted by a source and let x" denote the samples taken at a sampling rate 
t. ,., 2W. where W is the highest frequency in the spectrum of x(t). In PCM. 
each sample of the signal is quantized to one of 2R amplitude levels, where R is 
the number of binary digits used to represent each sample. Thus the rate from 
the source is RJ. bits/so 

The quantization process may be modeled mathematically as 

(3-5-1 ) 

where .in represents the quantized value of x" and qn represents the 
quantization error, which we treat as an additive noise. Assuming thai a 

t PCM. DP<'M. and ADP<'M are source coding technique •. They are not digital modulalion 
methods. 
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FIGURE. 3.-5·1 Input-output characteristic (or a uniform quantizer. 

uniform quantizer is used, having the input-output characteristic illustrated in 
Fig. 3-5-1, the quantization noise is well characterized statistically by the 
uniform pdf 

I 
p(q) =:1. (3-5-2) 

where the step size of the qllantizer is ~ = 2 R. The mean square value of the 
quantization error is 

E(qO)=h~2=hX2 OR 

Measured in decibels. the mean square value of the noise is 

10 log t,~o = 10 log (h x 2- 0R
) = -6R -1O_8dB 

(3-5-3) 

(3-5-4) 

We observe that the quantization noise decreases by 6 dB/bit used in the 
quanlizer. For example, a 7 bit qlJantizer results in a quantization noise power 
of -52.8dB. 

Many source signals such as speech waveforms have the characteristic that 
small signal amplitudes occur more frequently than large ones. However. a 
uniform quantizer provides the same spacing between successive levels 
throughout the entire dynamic range of the signal. A better approach is to 
employ a nonuniform quantizer.· A nonuniform quantizer characteristic is 
usually obtained by passing the signal through a nonlinear device that 
compresses the signal amplitude. followed by a uniform quantizer. For 
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example. a logarithmic compressor has an input-output magnitude 
characteristics of the form 

10g(1 + JL Ixl) 
Lvi = log(l + JL) (3-.'i-5) 

where rtl ~ I is the magnitude of the input. Iyl is the magnitude oi the output. 
and Ii is a parameter that is selected to give the desired compression 
characteristic. Figure 3-5-2 illustrates this compression relationship for several 
values of JL. The vahie Ii = 0 corresponds to no compression. 

In the encoding of speech waveforms. for example. the value of p. = 25S has 
been adopted as a standard in the USA and Canada_ This value results in 
about a 24 dB reduction in the quantization noise power relative to uniform 
quantization. as shown by layant (1974). Consequently. a 7 bit quantizer used 
in conjunction with a p. = 2S:; logarithmic compressor produces a quantization 
noise power of approximately - 77 dB compared with the - 5~ dB for uniform 
quantization. 

In the reconstruction of the signal from the quantized values. the inverse 
logarithmic relation is used to expand the signal amplitude. The combined 
compressor-expandor· pair is termed a compu/ldor. 

Dilferentilll Pulse Code Modulatio. (DPCM) In PCM. each sample of 
the waveform is encoded ~dependently of all the others. However. most 
source signals sampled at the Nyquist rate or faster exhibit significant 
correlation between successive samples. In other words. the average change in 
amplitude between successive samples is relatively small. Consequently. an 
encoding scheme that exploits the redundancy in the samples will result in a 
lower bit rate for the source output. 

A relatively simple solution is to encode the differences between successive 
samples rather than the samples themselves. Since differences between samples 
are expected to be smaller than the actual sampled amplitudes. fewer bits are 
required to represent the differences. A refinement of this general approach is 
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to predict the current sample based on the previous p samples. To be specific, 
let Xn denote the current sample from the source and let i" denote the 
predicted value of x'" defined as 

in = i 0iXIl--i 
i= t 

(3-5-6) 

Thus in is a weighted linear combination of the past p samples and the {a,l are 
the predictor coefficients. The {a,} are selected to minimize some function of 
the error between x" and in" 

A mathematically and practically convenient error function is the mean 
square error (MSE). With the MSE as the performance index for the predictor, 
we select the {a,} to minimize 

lIip = E(e~) = E[ (x" _ ~ aixn -,) 2] 

= E(x~) - 2 i aiE(x"xn-i) + i i ajajE(x,,-iX,,-J (3-5-7) 
i=} i=1 j=1 

Assuming that the source output is (wide-sense) stationary, we may express 
(3-5-7) as 

(3-5-8) 
i~l i=l j=l 

where </>(m) is the autocorrelation function of the sampled signal sequence X". 

Minimization of ~ with respect to the predictor coefficients {a,} results in the 
set of linear equations 

i a,cP(i - j) = q,U), j = I, 2, ... ,p (3-5-9) 
i=-" I 

Thus, the values of the predictor coefficients are established. When the 
autocorrelation function ,p(n) is not known a priori, it may be estimated from 
the samples {x.} using the relationt 

1 N-" 

,j,(n) = N ~ X;X,+n. n = 0, 1, 2, ... ,p (3-5-10) 

and the estimate :j.(n) is used in (3-5-9) to solve for the coefficients {a,}. Note 
that the normalization factor of lIN in (3-S-10) drops out when J,{n) is 
substituted in (3-5-9). 

The linear equations in (3-5-9) for the predictor coefficients are called the 
normal equations or the Yule-Walker eqUillions. There is an algorithm 
developed by Levinson (1947) and Durbin (1959) for solving these equations 
efficiently. It is described in Appendix A. We shall deal with the solution in 
greater detail in the subsequent discussion on linear predictive coding. 

t The estimation of the autocorrelation function from a finite number of observations Ix,} is a 
separate issue. which is beyond the scope oflhis discussion. The estimate in (3-5-10) is one Ihal is 
frequently used in practice. 
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HGURE 3-5-3 (a) Block diagram of a DPCM encoder. (b) DPCM decoder at the receiver. 

Having described the method for determining the predictor coefficients, let 
us now consider the block diagram of a practical DPCM system, shown in Fig. 
3-5-3(a). In this configuration, the predictor is implemented with the feedback 
loop around the quantizer. The input to the predictor is denoted by i no which 
represents the signal sample x. modified by the quantization process, and the 
output of the predictor is 

(3-5-11) 

The difference 

(3-5-12) 

is the input to the quantizer and en denotes the output. Each value of the 
quantized prediction error e. is encoded into a sequence of binary digits and 
transmitted over the channel to the destination. The quantized error en is also 
added to the predicted value i. to yield i •. 

At the destination, the same predictor that was used at the transmitting end 
is synthesized and its output in is added to en to yield 1 •. The signal in is the 
desired excitation for the predictor and also the desired output sequence from 
which the reconstructed signal i(l) is obtained by filtering, as shown in Fig. 
3-5-3(b ). 

The use of feedback around the quantizer. as described above, ensures that 
the error in i. is simply the quantization error q. = en - e. and that there is no 
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accumulation of previous quantization errors in the implementation of the 
decoder. That is, 

q" =:in -en 

=e.-(xn-in) 

(3-5-13) 

Hence i. =Xn +q •. This means that the quantized sample i. differs (rom the 
input Xu by the quantization error qn independent of the predictor used. 
Therefore, the quantization errors do not accumulate. 

In the DPCM system illustrated in Fig. 3-5-3, the estimate or predicted 
value in of the signal sample Xn is obtained by taking a linar combination of 
past values i n - .. k = 1, 2, ... ,P. as indicated by (3-5-11). An improvement in 
the quality of the estimate is obtained by including linearly filtered past values 
Qf the quantized error. Specifically, the in estimate may be expressed as 

(3-5-14) 

where {bi} are the coefficients of the filter for the quantized error sequence i •. 
The hlock diagrams of the encoder af the transmitter and the decoder at the 
receiver are shown in Fig. 3-5-4. The two sets of coefficients {a,} and {bi} are 
selected to minimize some function of the error en = X. - in, such as the mean 
square error. 

fiGURE 3-5-4 DPCM modified by the addition of linearly filtered error sequence. 
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Adllpme PCM and DPCM Many real sources are quasistationary in 
nature. One aspect of the quasistationary characteristic is that the variance and 
the autocorrelation function of the source output vary slowly with time. PCM 
and DPCM encoders. however, are designed on the basis that the source 
output is stationary. The efficiency and performance of these encoders can be 
improved by having them adapt to the slowly time-variant statistics of the 
source. 

In both PCM and DPCM, the quantization error q" resulting from a.uniform. 
quantizer operating on a quasistationary input signal will have a time-variant 
variance (quantization noise power). One improvement that reduces the 
dynamic range of the quantiz~tion noise is the use of an adaptive quantizer. 
Although the quantizer can be made adaptive in different ways. a relatively 
simple method is to use a uniform quantizer that varies its step size in 
accordance with the variance of the past signal samples. For example, a 
short-term running estimate of the variance of x" can be computed from the 
input sequence {x,,} and the step size can be adjusted on the basis of such an 
estimate. In its simplest form. the algorithm for the step-size adjustment 
employs only the previous signal sample. Such an algorithm has been 
successfully used by Jayant (1974) in the encoding of speech signals. Figure 
3-5-5 illustrates such a (3 bit) quanlizer in which the step size is adjusted 
recursively according 10 the relation 

& .. +,=&"M(n) 

I'lGURE 3-5-5 Example of a quantizer with an adaptive step size. (Jayant. /974.) 

Output 

M(4' 

(3-5-15) 
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TABLE ~5-1 MULTIPLICATION FACfORS FOR ADAPTIVE STEP SIZE 
ADJUSTMENT (JAYANT, 1974) 

PCM DPCM 

2 3 4 2 3 

M(I) 0.60 0.85 0.80 0.110 0.90 
M(l) 22IJ 1.00 0.80 1.60 0.90 
M(3) 1.00 0.80 1.25 
M(4) 1.50 0.80 1.70 
M(5) 1.2IJ 
M(6) 1.60 
M(7) 2.00 
M(8) 2.40 

4 

0.90 
0.90 
G.9O 
0.90 
1.20 
1.60 
200 
2.40 

where M(n) is a factor, whose value depends on the quantizer level for the 
sample xn' and An is the step size of the quantizer for processing X n • Values of 
the multiplication factors optimized for speech encoding have been given by 
Jayant (1974). These values are display~d in Table 3-5-1 for 2, 3, and 4 bit 
adaptive quantization. 

In DPCM, the predictor can also be made adaptive when the source output 
in quasistationary. The coefficients of the predictor can be changed periodically 
to reflect the changing signal statistics of the source. The linear equations given 
by (3-5-9) still apply. with the short-term estimate of the autocorrelation 
function of Xn substituted in place of the ensemble correlation function. The 
predictor coefficients thus determined may be transmitted along with the 
quantized error e(n) to the receiver, which implements the same predictor. 
Unfortunately, the transmission of the predictor coefficients results in a higher 
bit rate over the channel. offsetting, in part, the lower data rate achieved by 
having a quantizer with fewer bits (fewer levels) to handle the reduced 
dynamic range in the error en resulting from adaptive prediction. 

As an alternative, the predictor at the receiver may compute its own 
prediction coefficients from en and in. where 

(3-5-16) 

If we neglect the quantization noise, in is equivalent to x •. Hence, in may be 
used to estimate the autocorrelation function 4>(n) at the receiver, and the 
resulting estimates can be used in (3-5-9) in place of <I>(n) to solve fOT the 
predictor coefficients. For sufficiently fine quantization, the difference between 
Xn and.in is very small. Hence, the estimate of tP(n) obtained from xn is usually 
adequate for determining the predictor coc:fficients. Implemented in this 
manner, the adaptive predictor results in a lower source aata rate. 

Instead of using the block processing approach fOT determining the 
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TABLE ~5-1 MULTIPLICATION FACfORS FOR ADAPTIVE STEP SIZE 
ADJUSTMENT (JAYANT, 1974) 

PCM DPCM 

2 3 4 2 3 

M(I) 0.60 0.85 0.80 0.110 0.90 
M(l) 22IJ 1.00 0.80 1.60 0.90 
M(3) 1.00 0.80 1.25 
M(4) 1.50 0.80 1.70 
M(5) 1.2IJ 
M(6) 1.60 
M(7) 2.00 
M(8) 2.40 

4 

0.90 
0.90 
G.9O 
0.90 
1.20 
1.60 
200 
2.40 
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FIGURE 3-5-6 (a) Block diagram of a deU. modulation system. (b) An equivalent realization of a delta 
modulation system. 

predictor coefficients {a.} as described above, we may adapt the predictor 
coefficients on a sample-by-sample basis by using a gradient -type algorithm, 
similar in form to the adaptive gradient equalization algorithm that is described 
in Chapler 11. Similar gradient-type algorithms have also been devised for 
adapting the filter coefficients {ail and {bJ of the DPCM system shown in Fig. 
3-5-4. For details on such algorithms, the reader may refer to the book by 
Jayant and Noll (1984). 

Delta Modulation (DM) Delta modulation may be viewed as a simplified 
form of DPCM in which a two-level (1 bit) quantizer is used in conjunction 
with a fixed first-order predictor. The block diagram of a DM encoder-decoder 
is shown in Fig. 3-5-6(a). We note that 

(3-5-17) 
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Since 

It follows that 

Thus the estimated (predicted) value of X" is really !he previous sample Xn - I 

modified by the quantization noise q._,. We also note that the ditlerence 
equation (3-5-17) represents an integrator with an input e.. Hence, an 
equivalent realization of the one-step predictor is an accumulator with an input 
equal to the quantized error signal e •. In general, the quantized error signal is 
scaled by some value, say A" which is called the step size. This equivalent 
realization is illustrated in Fig. 3-5-6(b). In effect, the encoder shown in Fig. 
3-5-6 approximates a waveform x(t) by a linear staircase function. In order for 
the approximation to be relatively good, the waveform .1(1) must change slowly 
relative to the sampling rate. This requirement implies that the sampling rate 
must be several (a factor of at least S) times the Nyquist rate. 

At any given sampling rate, the performance of the DM encoder is limited 
by two types of distortion, as illustrated in Fig. 3-5-7. One is called 
slope-overlood distortion. It is due to the use of a step size Al that is too small 
to follow portions of the waveform that have a steep slope. The second type of 
distortion, called granular noise, results from using a step size that is too large 
in parts of the waveform having a small slope. The need to minimize both of 
these two types of distortion results in conflicting requirements in the selection 
of the step size AI' One solution is to select ~, to minimize the sum of the 
mean square values of these two distortions. 

Even when A, is optimized to minimize the total mean square value of the 
slope-overload distortion and the granular noise, the performance of the DM 
encoder may still be less than satisfactory. An alternative solution is to employ 
a variable step size that adapts itself to the short-term characteristics of the 
source signal. That is, the step size is increased when the waveform has a steep 

FIGURE J.5-7 An example of slope overload distortion 
and panWar lIOise in a delta modulation 
encoder. 
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FIGURE 3-5-8 An example of variable-step-size delta modulation encoding. 

slope and decreased when the waveform has a relatively small slope. This 
adaptive characteristic is illustrated in Fig. 3-5-8. 

A variety of methods can be used to adaptively set the step size in every 
iteration_ The quantized error sequence e" provides a good indication of the 
slope characteristics of the waveform being encoded. When the quantized error 
e" is changing signs between successive iterations, this is an indication that the 
slope of the waveform in that locality is relatively smalL On the other hand, 
when the waveform has a steep slope, successive values of the error en are 
expected to have identical signs. From these observations, it is possible to 
devise algorithms that decrease or increase the step size depending on 
successive values of en. A relatively simple rule devised by Jayant (1970) is to 
adaptively vary the step size according to the relation 

where K;;" I is a constant that is selected to minimize the total distortion. A 
block diagram of a DM encoder-decoder that incorporates this adaptive 
algorithm is illustrated in Fig. 3-5-9. 

Several other variations of adaptive OM encoding have been investigated 
and described in the technical literature. A particularly effective and popular 
technique first proposed by Greefkes (1970) is called continuously variable 
slope della modulation (CVSD). In CVSD the adaptive step-size parameter 
may be expressed as 

~n = cr~n-' + k, 

if e,,, en-to and en -2 have the same sign; otherwise, 

.1" = cr~"., +k2 

The parameters or. k,. and k 2 are selected such that 0 < or < I and k 1 » k 2 > o. 
For more discussion on this and other variations of adaptive OM, the 
interested reader is referred to the papers by Jayant (1974) and Flanagan eI at. 
(1979), which contain extensive references. 
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FIGURE J.S-9 An example of. delta modulation system wilh adaptive slep size. 

PCM, DPCM, adaptive PCM, and adaptive DPCM and OM are all source 
encoding techniques that attempt to faithfully represent the output waveform 
from the source. The following class of wavefonn encoding methods is based 
on a spectral decomposition of the source signal. 

3-5-2 Spectral Wavefonn Coding 
In this section, we briefly describe waveform coding methods that filter the 
source output signal into a number of frequency bands or subbands and 
separately encode the signal in each subband. The waveform encoding may be 
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performed either on the time-domain waveforms in each subband or on the 
frequency-domain representation of the corresponding time-domain waveform 
in each subband. 

Subband Coding In suhband codIng (SBC) of speech and image signals. 
the signal is divided into a sman number of subbands and the time waveform in 
each subband is encoded separately. In speech coding. for example. the 
lower-frequency bands contain most of the spectral energy in voiced speech. In 
addition, quantization noise is nWI c noticeable to the ear in the lower­
frequency bands. Consequently. more bits are used for the lower-band signals 
and fewer are used for the higher-frequency bands. 

Filter design is particularly important in achieving good performance in 
SBC. In practice. quadrature-mirror filters (QMFs) are generally used because 
they yield an alias-free response due to their perfect reconstruction property 
(see Vaidyanathan, 1993). By using QMFs in subband coding. the lower­
frequency band is repeatedly subdivided by factors of two, thus creating 
octave-band filters. The output of each QMF filler is decimated by a factor of 
two. in order to reduce the sampling rale. For example, suppose that the 
bandwidth of a speech signal extends to 3200 Hz. The first pair of QMFs 
divides the spectrum into the low (0-1600 Hz) and high (1600-3200 Hz) bands. 
Then, the low band is split into low (O-BOO Hz) and high (BOO-1600Hz) bands 
by the use of another pair of QMFs. A third subdivision by another pair of 
QMFs can split the 0-800 Hz band inlo low (0-400 Hz) and high (400-800 Hz) 
bands. Thus, with three pairs of QMFs. we have obtained signals in the 
frequency bands 0-400, 400-800, 800-1600 and 1600-3200 Hz. The time­
domain signal in each subband may now be encoded with different precision. 
In practice, adaptive PCM has been used for waveform encoding of the signal 
in each subband. 

Adaptive Transform Coding In adaptive transform coding (ATC), the 
source signal is sampled and subdivided into frames of Nt samples, and the data 
in each frame is transformed into the spectral domain Jor coding and 
transmission. At the source decoder, each frame of spectral samples is 
transformed back into the time domain and the signal is synthesized from the 
time-domain samples and passed through a Df A converter. To achieve coding 
efficiency, we assign more bits to the more important spectral coefficients and 
fewer bits to the less important spectral coefficients. In addition, by designing 
an adaptive allocation in the assignment of the total number of bits to the 
spectral coefficients, we can adapt to possibly changing statistics of the source 
signal. 

An objective in selecting the transformation from the time domain to the 
frequency domain is to achieve uncorrelated spectral samples. In this sense, the 
Karhunen-Loeve transform (KLT) is optimal in that it yields spectral values 
that are uncorrelated, but the KLT is generally difficult to compute (see 
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Wintz, 1972). The DFf and the discrete cosine transform (DCT) are viable 
alternatives, although they are suboptimum. Of these two, the DCT yields 
good performance compared with the KL T, and is generally used in practice 
(see Campanella and Robinson, 1971; Zelinsky and Noll, 1977). 

In speech coding using A TC, it is possible to attain communication-quality 
speech at a rate of aoout 9600 bits/so 

3-5-3 Model-Based Souree Coding 
In contrast to the waveform encoding methods described above, model-based 
source coding represents a completely different approach. In this, the source is 
modeled as a linear system (filter) that, when excited by an appropriate input 
signal, results in the observed source output. Instead of transmitting the 
samples of the source waveform to the receiver, the parameters of the linear 
system are transmitted along with an appropriate excitation signal. If tile 
number of parameters is sufficiently small, the model-based methods provide a 
large compression of the data. 

The most widely used model-based coding method is called linear predictive 
coding (LPC). In this, the sampled sequence, denoted by Xm 11 = 0, 1, ... , N -
1, is assumed to have been generated by an all-pole (discrete-time) filter 
having the transfer function 

G 
H(z)=----

1 - f a.z-k 

*=1 

(3-5-18) 

Appropriate excitation functions are an impulse, a sequence of impulses, or a 
sequence of white noise with unit variance. In any case, suppose that the input 
sequence is denoted by v., 11 = 0, 1,2, .. , . Then the output sequence of the 
all-pole model satisfies the difference equation 

Xn = f a,x._ k + Gvn , n =0,1,2, ... 
k~1 

(3-5-19) 

In general, the observed source output x., n = 0,1,2, ' .. , N -1, does not 
satisfy the difference equation (3-5-19), but only its model does. If the input is 
a white-noise sequence or an impulse, we may form an estimate (or prediction) 
of x. by the weighted linear combination 

£,. = f 0kXn-k, 11 > 0 
k-I 

The difference between x. and in, namely, 

en=x" -in 

= XII - f Q/rX,,-k 
k-I 

(3-5-20) 

(3-5-21) 
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represents the error between the observed value x" and the estimated 
(predicted) value i". The filter c.oefficients {a,l can be selected to minimize the 
mean square value of this error. 

Suppose for the moment that the input {u,,} is a white-noise sequence. Then, 
the filter output x" is a random sequence and so is the difference en = Xr - .i". 
The ensemble average of the squared error is 

i',. = fee;,) 

l' P I' 

= eb(O) - 2 L a,tP(k) + ~ ~ (I,(I",cf>(k - m) (3-5·22) 
, I k ~ 1 m--I 

where <pim) is the autocorrelation function of the sequence x". n = 
0, l. ... , N - l. But fro is identical to the MSE given by (3·5·)\) for a predictor 
used in DPCM. Consequently. minimization of f'p in (3-5-22) yields the set of 
normal equations givcn prev;ously by (3-5-9). To completely specify the filter 
H(~). we must also determine the filter gain G. From (3-5-19), we have 

[ 
P '] Ef(CvJ) = C'E(!J~) = C' = E (r" - ~ (I',r",) = #" 

k' I . 

(3-5-23) 

where I,. is the residual MSE obtained from (3·5-22) by substituting the 
optimum prediction coefficients, which result from the solution of (3-5-9). With 
this substitution, the expression for '1p and, hence, C' simplifies to 

I' 

~, = C' = cf>(O) - ~ flk<J>(k) (3-5-24) 
J..:=---: 

In practice. we do not usually know (I priori the true autocorrelation 
function of the source output. Hence. in place of cf>(n). we substitute an 
estimate J,(n) as given by (3·5·10). which is obtained from the set of samples 
.tn. n = O. l. ... , N - I. emitted by the source. 

As indicated previously. the Levinson-Durbin algorithm derived in Appen­
dix A may be used to solve for the predictor coefficients {a.} recursivei}, 
beginning with a first-order predictor and iterating the order of tbe predictor 
up to order p The recursive equations for the {a.} may be expressed as 

.. I I '" 
4>(i) - I (Ii "d>(i - k) 

, I 

i = (I - (I,,) t:, I 

J,(I) 
all = 4>(0)' '£U = 4>(0) 

i = 2,3 .... ,p 

l~k,,;i-l 

(3-5-25) 
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function of the SOUTce output. Hence. in place of cf>(n). we substitute an 
estimate J,(n) as given by (3-5-10). which is obtained from the set of samples 
.tn. n = O. l. ... , N - I. emitted by the source. 

As indicated previously. the Levinson-Durbin algorithm derived in Appen­
dix A may be used to solve for the predictor coefficients {a.} recursivel}. 
beginning with a first-order predictor and iterating the order of tbe predictor 
up to order p The recursive equations for the {a.} may be expressed as 

.. I I '" 
4>(i) - E (Ii "d>(i - k) 

, I 
all = ----"------

~(:f I 

i = 2,3 .... ,p 

l~k~i-l 
(3-5-25) 

J,(I) 
a =--

" 4>(0) . 



140 DIGITAL COMMUNICA nONS 

where ai •• k = t. 2, ...• i. are the coefficients of the ltb-order predictor. The 
desired coefficients for the predictor of order pare 

a. ;eop/<, k = 1, 2, ... ,p (3-5-26) 

and the residual MSE is 

~ = G 2 = .,6(0) - i a • .,6(k) 
k~1 

= .,6(0) fI (1 - aft) (3-5-27) 
;=1 

We observe that the recursive relations in (3-5-25) give us not only the 
coefficients of the predictor for order p. but also the predictor coefficients of all 
orders less than p. 

The residual MSE i';, i = 1, 2, ... ,p, forms a monotone decreasing se­
quence, i.e. i'p'" i'P_1 '" ... '" i'l '" i'o. and the prediction coefficients aii satisfy 
the condition 

!a,,1 < t, i = J. 2 .... , p (3-5-28) 

This condition is necessary and sufficient for all the poles of H(z) to be inside 
the unit circle. Thus (3-5-28) ensures that the model is stable. 

LPC has been successfully used in the modeling of a speech source. In this 
case, the coefficients ail, i = 1, 2, ... ,p, are called reflection coefficients as a 
consequence of their correspondence to the reflection coefficients in the 
acoustic tube model of the vocal tract (see Rabiner and Schafer, 1978; Deller et 
al., 1993). 

Once the predictor coefficients and the gain G have been estimated from the 
source output {x.}. each parameter is coded into a sequence of binary digits 
and transmitted to the receiver. Source decoding or waveform synthesis may 
be accomplished at the receiver as illustrated in Fig. 3-5-10. The signal 
generator is used to produce tbe excitation function {II.}, whicb is scaled by G 

FIGURE 3-5-1. Block diagram of. waveform synthesizer (source decoder) for an LPC system. 
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to produce the desired input to the all-pole filter model H(x.) synthesized from 
the received prediction coefficients. The analog signal may be reconstructed by 
passing the output sequence from H(x.) through an analog filter that basically 
performs the function of interpolating the signal between sample points. In this 
realization of the waveform synthesizer. the excitation function and the gain 
parameter must be transmitted along with the prediction coefficients to the 
receiver. 

When the source output is stationary, the filter parameters need to be 
determined only once. However. the statistics of most sources encountered in 
practice are at best quasistationary. Under these circumstances. it is necessary 
to periodically obtain new estimates of the filter coefficients. the gain G. and 
the type of excitation function. and to transmit these estimates to the receiver. 

EumpJe 3-5·1 

The block diagram shown in Fig. 3-5-11 illustrates a model for a speech 
source. There are two mutually exclusive excitation functions to model 
voiced and unvoiced speech sounds. On a short-time basis, voiced·speech is 
periodic with a fundamental frequency fo or a pitch period lifo that depends 
on the speaker. Thus voiced speech is generated by exciting an all-pole filter 
model of the vocal tract by a periodic impulse train with a period equal to 
the desired pitch period. Unvoiced speech sounds are generated by exciting 
the all-pole filter model by the output of a random-noise generator. The 
speech encoder at the transmitter must determine the proper excitation 
function, the pitch period for voiced speech. the gain parameter G, and the 
prediction coefficients. These parameters are encoded into binary digits and 
transmitted to the receiver. Typically. the voiced and unvoiced information 
requires 1 bit, the pitch period is adequately represented by 6 bits, and the 
gain parameter may be represented by 5 bits after its dynamic range is 
compressed logarithmically. The prediction. coefficients require 8-
10 bits/coefficient for adequate representation (see Rabiner and Schafer, 
1978). The reason for such high accuracy is that relatively sma)) changes in 
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FI(;URI': 3-S-12 All-pole lattice filter for synthesizing the speech signal-

Output 

the prediction coefficients result in a large change in the pole positions of 
the filter model H(z). The accuracy requirements may be lessened by 
transmitting the reflection coefficients ail, which have a smaller dynamic 
range. These are adequately represented by 6 bits. Thus, for a predictor of 
order p = 10 [five poles in H(z)j, the total )lumber of bits is 72. Due to the 
quasistationary nature of the speech signal, the linear system model must be 
cllanged periodically, typically once every 15-30 ms. Consequently, the bit 
rate from the source encoder is in the range 4800-2400 bitls. 

When the reflection coefficients are transmitted to the decoder, It IS not 
necessary to recompute the prediction coefficients in order to realize the 
speech synthesizer. Instead, the synthesis is performed by realizing a lattice 
filter, shown in Fig. 3-5-12. which utilizes the reflection coefficients directly and 
which is equivalent to the linear prediction filter. 

The linear all-pole filter model, for which the filter coefficients are estimated 
via linear prediction, is by far the simplest linear model for a source. A more 
general source model is a linear filter that contains both poles and zeros. In a 
pole-zero model, the source output Xn satisfies the difference equation 

Xn = f akXn-k + f bkvn-k 
k=l k'=O 

where v. is the input excitation sequence. The problem now is to estimate the 
filter parameters {a,} and {b.} from the data Xi' i = 0, 1, ... , N - 1, emitted by 
the source. However, the MSE criterion applied to the minimization of the 
error en = x. - in, where in is an estimate of Xn, results in a set of nonlinear 
equations for the parameters {a.} and {b.}. Consequently, the evaluation of the 
{ad and {b.} becomes tedious and difficult mathematically. To avoid having to 
solve the nonlinear equations, a number of suboptimum methods have been 
devised for pole-zero modeling. A discussion of these techniques would lead 
us too far afield, however. 

LPC as described above forms the baSIS for more complex model-based 
source encoding methods. When applied to speech coding, the model-based 
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methods are generally called vocooers (for voice coders). In addition to the 
conventional LPC vocoder described above, other types of vocoders that have 
been implemented include the residual excited LPC (RELP) vocoder, the 
multi pulse LPC vocoder, the code-excited LPC (CELP) vocoder, and the 
vector-sum-excited LPC (VSELP) vocoder. The CELP and VSELP vocoders 
employ vector-quantized excitation code books to achieve communication 
quality speech at low bit rates. 

Before concluding this section, we consider the application of waveform 
encoding and LPC to the encoding of speech signals and compare the bit rates 
of these coding techniques. 

Encoding Methods Applied to Speech SignalS The transmission of speech 
signals over telephone lines, radio channels, and satellite channels constitutes 
by far the largest part of our daily communications. It is understandable, 
therefore, that over the past three decades more research has been performed 
on speech encoding than on any other type of information-bearing signal. In 
fact, all the encoding techniques described in this section have been applied to 
the encoding of speech signals. It is appropriate, therefore, to compare the 
efficiency of these methods in terms of the bit rate required to transmit the 
speech signal. 

The speech signal is assumed to be band-limited to the frequency range 
200-3200 Hz and sampled at a nominal rate of 8000 samples/s for all encoders 
except OM, where the sampling rate is f, identical to the bit rate. For an LPC 
encoder, the parameters given in Example 3-5-1 are assumed. 

Table 3-5-2 summarizes the main characteristics of the encoding methods 
described in this section and the required bit rate. In terms of the quality of the 
speech signal synthesized at the receiver from the (error-free) binary sequence, 
all the waveform encoding methods (PCM, DPCM, ADPCM, OM, ADM) 
provide telephone (toll) quality speech. In other words, a listener would have 
difficulty discerning the difference between the digitized speech and the analog 
speech waveform. AOPCM and ADM are particularly efficient waveform 
encoding techniques. With CVSD, it is possible to operate down to 9600 bits/s 

TA.BLE 3-5-2 ENCODING TECHNIQUES APPLIED TO SPEECH SIGNALS 

Enrodi"l metbod Q ..... 1Izer Coder TnnsmisoIon rale (bits/5) 

PCM Linear 12 bits 96000 
LogPCM Logaritharnic 7-8 bits 56 000-64 000 
DPCM Logarithmic 4-6 bits 32000-48 000 
ADPCM Adaptive 3-4 bits 24000-32000 
DM Binary I bit 32000-64000 
ADM Adaptive binary I bit 16000-32 000 

LPC 2400-4800 
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with some noticeable waveform distortion. In fact. at rates below 16()(J() bits/so 
the distortion produced by waveform encoders increases significantly. Conse· 
quently. these techniques are not used below 9600 bits!s. 

For rates below 9600 bits!s, encoding techniques, such as LPC. that are 
based on linear models of the source are usually employed. The synthesized 
speech obtained from this class of encoding techniques is intelligible. However, 
the speech signal has a synthetic quality and there is noticeable distortion. 

3-6 BIBLIOGRAPHICAL NOTES AND REFERENCES 

PROBLEMS 

Source coding has been an area of intense research activity since the 
publication of Shannon's classic papers in 1948 and the paper by Huffman 
(1952). Over the years, major advances have been made in the development of 
highly efficient source data compression algorithms. Of particular significance 
is the research on universal source coding and universal quantization published 
by Ziv (1985), Ziv and Lempel (1977, 1978), Davisson (1973), Gray (1975), and 
Davisson et al. (1981). 

Treatments of rate distortion theory are found in the books by Gallager 
(! 968). Berger (1971), Viterbi and Omura (1979), Blahut (1987) and Gray 
(1990). 

Much work has been done over the past several decades on speech encoding 
methods. Our treatment provides an overview of this important topic. A more 
comprehensive treatment is given in the books by Rabiner and Schafer (1978), 
Jayant and Noll (1984), and Deller el al. (1993). In addition to these texts. 
there have been special issues of the IEEE Transactions on Communications 
(April 1979 and ~pril 1982) and, more recently, the IEEE Journal on Selected 
Areas in Communications (February 1988) devoted to speech encoding. We 
should also mention the publication by IEEE Press of a book containing 
reprints of published paper, on waveform quantization and coding. edited by 
Jayant (1976). 

Over the past decade, we have also seen a number of important develop· 
ments in vector quantization. Our treatment of this topic was based on the 
tutorial paper by Makhoul et al. (1985). A comprehensive treatment of vector 
quantization and signal compression is provided in the book by Gersho and 
Gray (1992). 

3-1 Consider Ihe joint experiment described in Problem 2-1 with the given jOint 
probabilities P(A" B,l. Suppose we observe the ou:comes A" i = 1, 2. 3. 4 of 
experiment A . 

• Determine the mutual information I(B,; A.l for j = I. 2. 3 and i = 1.2.3.4. in 
bits. 

b Determine the average mUlual informat;on /(8;A). 
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3-2 Suppose the outcomes B,. j = L 2. 3. in Problem 3-1 represent the three possible 
output leiters from the DMS. Determine the entropy of the source. 

3-3 Prove that In u ..: .. - 1 and al.so demonstrate the validity of this inequality by 
plotting In u imd " - 1 on the same graph. 

3-4 X and Yare two discrete random variables with probabilities 

P(X=x, Y=Y)EP(X.Y) 

Show tbat I(X; Y) '" O. with equality if and only if X and Yare statistically 
independent. 
[Hint: Use the inequality In II <" - J, for 0 < II < I, to show that -1(X; Y)": O. J 

3-5 The output of a DMS consists of the possible letters x,. X, •. ..• X", which occur 
with probabilities p,. p, • ... ,p,,, respectively. Prove that the entropy H(X) of the 
source is at most log n. 

l-6 Determine the differential entropy H(X) of the uniformly distributed random 
variable X with pdf 

pIx) = {oa-' (O..:x.;a) 
(otherwise) 

for the following three cases: 
a a = I; 
b a =4; 
c a =~. 

Observe from these results that H(X) is not an absolute measure, but only a 
relative measure of randomness. 

3-7 A DMS has an alphabet of eight letters, x" i = 1.2 •...• 8. with probabilities 0.25. 
0.20,0.15,0.12,0.10,0.08,0.05. and 0.05. 
a Use the HulIman encoding procedure to determine a binary code for the sourCe 

output. 
b Determine the average number R of binary digits per source letter. 
c Determine the entropy of the source and compare it with if. 

3-8 A DMS has an alphabet of five leiters, X" i = 1. 2 ..... 5, each occurring with 
probability \. Evaluate the efficiency of a fixed-length binary code in which 
• each letter is encoded separately into a binary sequence; 
b two letters at a time are encoded into a binary sequence; 
c three leiters al a lime are encoded into a binary sequence. 

3-9 Recall (3-2-6): 

l(x,;Y,) = I(x,) -/(x, I YJ) 

Prove that 
B I(x,:y,) = ley,) -/(}, I x.j: 
b I(x,; y,) = I{x,) + I(y,) -/(x,y,), where I(x,y,) = -log P(x" Yj)' 

3-10 Let X be a geometrically distributed random variable; that is, 

p(X =k) =p{l-pj'" k = I, 2.3, ... 

a Find the entropy of X 
b Knowing that X> K, where K is a posili>e integer, what is the entropy of X? 

155

CHAPTER', SOURCE CODING 145 

3-2 Suppose the outcomes B,. j = L 2. 3. in Problem 3-1 represent the three possible 
output leiters from the DMS. Determine the entropy of the source. 

3-3 Prove that In u ..: .. - 1 and al.so demonstrate the validity of this inequality by 
plotting In u imd " - 1 on the same graph. 

3-4 X and Yare two discrete random variables with probabilities 

P(X=x, Y=Y)EP(X.Y) 

Show tbat leX; Y) '" O. with equality if and only if X and Yare statistically 
independent. 
[Hint: Use the inequality In II <" - J, for 0 < II < I, to show that -/(X; Y)": O. J 

3-5 The output of a DMS consists of the possible letters x,. X, •. ..• X", which occur 
with probabilities p,. p, • ... ,p,,, respectively. Prove that the entropy H(X) of the 
source is at most log n. 

l-6 Determine the differential entropy H(X) of the uniformly distributed random 
variable X with pdf 

pIx) = {oa-' (O..:x.;a) 
(otherwise) 

for the following three cases: 
a a = I; 
b a =4; 
c a =~. 

Observe from these results that H(X) is not an absolute measure, but only a 
relative measure of randomness. 

3-7 A DMS has an alphabet of eight letters, x" i = 1.2 •...• 8. with probabilities 0.25. 
0.20,0.15,0.12,0.10,0.08,0.05. and 0.05. 
a Use the HulIman encoding procedure to determine a binary code for the sourCe 

output. 
b Determine the average number R of binary digits per source letter. 
c Determine the entropy of the source and compare it with if. 

3-8 A DMS has an alphabet of five leiters, x" i = 1. 2 •.... 5, each occurring with 
probability \. Evaluate the efficiency of a fixed-length binary code in which 
• each letter is encoded separately into a binary sequence; 
b two letters at a time are encoded into a binary sequence; 
c three leiters at a lime are encoded into a binary sequence. 

3-9 Recall (3-2-6): 

I(x.;y,) = I(x,) -/(x, I YJ) 

Prove that 
B I(x,:y,) = ley,) -l(}, I x,): 
b lex,; y,) = l{x,) + I(y,) -!(x,y,). where I(x,y,) = -log P(x" Yj)' 

3-10 Let X be a geometrically distributed random variable; that is, 

p(X =k) =p{l-p)," k = I, 2.3 .... 

a Find the entropy of X 
b Knowing that X> K. where K is a positi>e integer, what is the entropy of X? 



146 DJGIT4l COMMD"'J(ATION~ 

3-11 Lei X and Y denote two jointly distributed discrete valued random variables . 
• Show that 

H(X)= - ~ P(.\,y) log P(x) 
x.y 

H(Y) = - ~ P(x. y) log Ply) 
x.r 

b Use the above result to show that 

H(X. Y)" H(X) + H( Y) 

When does equality hold? 
c Show that 

H(X I Y) '" H(X) 

with equality if and only if X and Yare independent. 
3-12 Two binary random variables X and Yare distributed according to the join( 

distributions p(X = Y = 0) = piX = o. Y = 1) = p(X = Y = !) = \. Compute H(X), 
H(Yi. H(X I V). H(Y I Xl. and }fiX. YJ. 

3-13 A Markov process is a process with one-step memory. i.e .. a process such that 

p(X., I x" I. X" 2, X" J •... ") = p(x" i x" I) 

for all n. Show that. fOf a stationary Markov process. the entropy rate is given by 

H(X" 1 X" II· 
3-14 LetY = g(X). where g denotes a deterministic function. Show that. in general. 

J/(Y) ~HlX). When does equality hold? 
3-15 Show that I(X: Y) = N(X) + H(Y) - H(XY). 
3-16 Show that. for statistically independent events. 

" 
H(X,X," . X,,) = 2: }f(X,) 

, , 

3-17 For a noiseless channel. show that J/(X ! Y) = o. 
3-18 Show that 

I(X,: X, I X,) = HIX.I X,) - H(X, I X,X,) 

and that 

H(XJ I X,);;' J/(X, I X,X.) 

3-19 Let X be a random variahle with pdf p ,(.t) and let Y = aX + h he a linear 
transformation of X. where a and h are two constants. Determine the differentia! 
entropy H(Y) in terms of H(X). 

3-20 The outputs XL' ,r,. and x, of a OMS with corresponding probabilities PL = 0,45. 
P 1 = 0.35, and p, = 0.10 are Iransformed by the linear transformation Y = aX + h. 
where a and b arc constant •. Determine the wtmp" H{ Y) and comment on ",hal 
effccl the transtormation has had on the entropy of X. 

3-21 The optimum 'our-level nonuniform quantizer fo, a g"ussian-distrihutcd signal 
amplitudt: results in the four levels a j • £1]. OJ. and (.I". with corr~sponding. 

prohahilities of occurrence I], = p, = (U365 and" J = p, = o. 1635. 

156

146 DJGIT4l COMMD"'J(ATION~ 

3-11 Lei X and Y denote two jointly distributed discrete valued random variables . 
• Show that 

H(X)= - ~ P(.\,y) log P(x) 
x.y 

H(Y) = - ~ P(x. y) log Ply) 
x.r 

b Use the above result to show that 

H(X. Y)" H(X) + H( Y) 

When does equality hold? 
c Show that 

H(X I Y) '" H(X) 

with equality if and only if X and Yare independent. 
3-12 Two binary random variables X and Yare distributed according to the join( 

distributions p(X = Y = 0) = piX = o. Y = 1) = p(X = Y = !) = \. Compute H(X), 
H(Yi. H(X I V). H(Y I Xl. and }fiX. YJ. 

3-13 A Markov process is a process with one-step memory. i.e .. a process such that 

p(X., I x" I. X" 2, X" J •... ") = p(x" i x" I) 

for all n. Show that. fOf a stationary Markov process. the entropy rate is given by 

H(X" 1 X" II· 
3-14 LetY = g(X). where g denotes a deterministic function. Show that. in general. 

J/(Y) ~HlX). When does equality hold? 
3-15 Show that I(X: Y) = N(X) + H(Y) - H(XY). 
3-16 Show that. for statistically independent events. 

" 
H(X,X," . X,,) = 2: }f(X,) 

, , 

3-17 For a noiseless channel. show that J/(X ! Y) = o. 
3-18 Show that 

I(X,: X, I X,) = HIX.I X,) - H(X, I X,X,) 

and that 

H(XJ I X,);;' J/(X, I X,X.) 

3-19 Let X be a random variahle with pdf p ,(.t) and let Y = aX + h he a linear 
transformation of X. where a and h are two constants. Determine the differentia! 
entropy H(Y) in terms of H(X). 

3-20 The outputs XL' ,r,. and x, of a OMS with corresponding probabilities PL = 0,45. 
P 1 = 0.35, and p, = 0.10 are Iransformed by the linear transformation Y = aX + h. 
where a and b arc constant •. Determine the wtmp" H{ Y) and comment on ",hal 
effccl the transtormation has had on the entropy of X. 

3-21 The optimum 'our-level nonuniform quantizer fo, a g"ussian-distrihutcd signal 
amplitudt: results in the four levels a j • £1]. OJ. and (.I". with corr~sponding. 

prohahilities of occurrence I], = p, = (U365 and" J = p, = o. 1635. 



FIGURE P3-Zl 

CHAPTER 3, SOI)RCE CODI~G 147 

a Design a HulIman code that encodes a single level at a time and determine the 
average bit rate. 

b Design a Huffman code that encodes two output levels at a time and determine 
the average bit rate. 

c What is the minimum rate obtained by encoding} output levels at a time as 
J ---+ o:? 

3-22 A first-order Markov source is characterized by the stale probabilities P(.x,), 
i = 1, 2, .. " L, and the transition probabilities p(x.lx,), Ie = 1,2" ..• L, and 
Ie .. i. The entropy of the Markov source is 

1 

H(X) = 2: P(x.)H(X jx.) .-, 
where H(X I x.) is the entropy conditioned on the source being in stale x,. 

Determine the entropy of Ihe binary, first-order Markov source shown in Fig. 
P3-22, which has Ihe transition probabilities P(x,!x,) = 0.2 and P(x, Ix2 ) = 0.3. 
[Nole thai the conditional entropies H(X I x,) and H(X Ix') are given by the 
binary entropy functions H[p(x,lx,») and H[P(x, I x 2 »), respectively.) How does 
the entropy of the Markov source compare with the entropy of a binary DMS witb 
the same output letter probabilities P(x,) and P(x,)? 

3-23 A memoryless source has the alphabet d = {-5, -3, -1. 0, 1,3,5], with corre­
sponding probabilities {O.OS, 0.1, 0.1, 0.15. 0.05, 0.25, 0.3}. 
a Find the entropy of tbe source. 
b Assuming tbat the source is quantized according to the quantization rule 

q(-S}=q(-3) =4 

q( -1)= q(O) = q(l) = 0 

q(3) = q(5) = 4 

find the entropy of the quantized source. 
3-24 Design a ternary Huffman code, using 0, 1, and 2 as letters, for a source with 

output alphabet probabilities given by {O.OS, 0.1, 0.15,0.17,0.18,0,22, 0.13}. What 
is tne resulting average codeword length? Compare the average codeword length 
with the entropy of the source. (In wbat base would you compute the logarithms in 
the expression for the entropy for a meaningful comparison?) 

3-25 Find the Lempel-Ziv source code for the binary source sequence 

000100100000011000010000000100000010100001000000110100000001100 

Recover the original sequence back from the Lempel-Ziv source code. 
[Hint: You require two passes of the binary sequence to decide on the size of the 
dictionary.) 

3-26 Find the differential entropy of the conlinuous random variable X in the following 
cases: 
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• X is an exponential random variable witl! parameter A > 0, i.e., 

f
A -Ie-'" (x >0) 

fx(x) = 0 (otherwise) 

b X is a Laplacian random variable with parameter A> 0, i.e., 

c X is a triangular random variable with parameter A > 0, i.e., 

{

(x + .1.)/ .. ' (-A';;x ';;0) 

fx(x)= (-x +.1.)/,1.' (O<x"'A) 
o (otherwise) 

3-27 It can be shown that the rate-distortion function for a laplacian source, 
fAx) = (2A)-le-~" with an absolute value of error-distortion measure d(x, x) = 
Ix - xl is given by 

R( = {lOg (AfD) (0.,; D,,; A) 
D) ° (D >,1.) 

(see Berger, 1971). 
• How man~' oits per sample are required to represent the outputs of this source 

with an average distortion not exceeding ~A? 
b Plot R(D) for three different values of A and discuss the effect of changes in A 

on these plots. 
3-28 It can be shown tha! if X is a zero-mean continuous random variable with variance 

u', its rate distortion function, subject to squared error distortion measure, 
satisfies the lower and upper rounds given by the inequalities 

h(X) - ~ log 21teD.;; R(D) .,; \ log \a' 

where heX) denotes the differential entropy of the random variable X (see Cover 
and Thomas, 1991). 
• Show that. for a Gaussian random variaole, the lower and upper bounds 

coincide. 
b Plot the lower and upper rounds for a Laplacian source with u = 1. 
" Plot the lower and upper rounds for a triangular source with u = 1. 

3-29 A stationary random process has an autocorrelation function given by R .. : 
~A'e-"! cos 2Jif<,r and it is known that the random process never exceed, 6 in 
magnitude. Assuming A =6, how many quantization levels are required to 
guarantee a signal-to-quantization noise ratio of at least 60 dB? 

3-30 An additive white gaussian noise channel has the output Y = X + G, where X is 
the channel input and G is the noise wilh probability density function 

1 • -p(n) = :;; e -Wa'T;' 

Vhu" 
If X is a whIte gaussian input with E(X) = 0 and E(X') = 17;, determine 
• the conditional differential entropy H(X I G): 
b the average mutual information /(X: V). 

3-31 A DMS has an alphabet of eight letters, x,. i: I, 2 ..... 8. with probabilities 
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given in Problem 3-7. Use the Huffman encoding procedure to determine a ternary 
code (using symbols 0, 1, and 2) {or encoding the source output. 

[Hili/: Add a symbol x. with probability p. = 0, and group three symbols at a 
time.] 

3-32 Determine whether there exists a binary code with code word lengths 
(n l • n" n" n.) = (1, 2, 2, 3) that satisfy the prefix condition. 

3-33 Consider a binary block code with r code words of the same length n. Show that 
the Kraft inequality is satisfied for sucll a code. 

3-34 Show Ihat the entropy of an n-dimensional gaussian vector X = [XI X, .. ' x.J 
with zero mean and covariance matrix M is 

H(X) = ! log, (2JU'r IMI 

3-35 Consider a DMS with output bits (0, 1) that are equiprobable. Define the 
distortion measure as fJ = Po where P, is the probability of error in transmitting 
the binary symbols to the user over a BSe Then the rate distortion function is 
(Berger, 1971) 

R(D) = 1 + fJ log, D + (1 - D) log, (1 - D), 00;; D = P, '" ~ 

Plot R(D) for 0 0;; D o;;~. 
3-36 Evaluate the rale distortion function for an M·ary symmetric channel where 

D= PM and 

I-D 
R(D) = log, M + D log, D + (I-D) log,--' 

M-J 

for M = 2. 4, 8, and 16. PM is the probability of error. 
3-37 Consider the use of the weighled mean-square-error (MSE) distortion measure 

defined as 

where W is a symmetric, PD!itive-definite wieghting matrix. By factorizing W,as 
W = P'P, show thai dw(X, X) is eqUivalent to an unweighted MSE distortion 
measure d,(X',X') involving transformed vectors X'-and X'. 

3-38 Consider a stationary stochastic signal sequence {X(n)} with zero mean and 
autocorrelation sequence 

~(n)=n (n =0) 

(n = ±l) 

(otherwise) 

a Determine the prediction coefficient of the first-order minimum MSE predictor 
for {X(n)} given by 

fen) =a,x(n -1) 

and the corresponding minimum mean square error 11',. 
b Repeat (a) for the second-order predictor 

x(n) = ulx(n - 1) + a,x(n - 2) 
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)-39 Consider the enooding of the random variables x, and x 2 that are characterized by 
the joint pdf p (x, , x,) given by 

r 15/7ab 
p(x"x,) = 10 (x"x, E C) 

(otherwise ) 

as shown in Fig. P3·39. Evaluate the bit rates required for uniform quantization of 
x, and X, separately (scalar quantization) and combined (vector) quantization of 
(x" x,j. Determine the difference in bit rate when a = 4b. 

3-40 Consider the encoding of two random variables X and Y that are uniformly 
distributed on the region between two squares as shown in Fig. P3·40. 
a Find Jx(x) and ty( y). 
b Assume that each of the random variables X and Y are qua~tized using four 

levet uniform quantizers. What is the resulting distortion? What is the resulting 
number of bits per (X. Y) pair? 

y 

2 

-2 -I 

-I 

-2 
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c Now assume that instead o[ scalar quantizers [or X and Y. we employ a vector 
quantizer to achieve the same level o[ distortion as in (b). What is the resulting 
number of bits p<.;r source output pair (X, V)? 

3-41 Two random variables X and Yare uniformly distributed on the square shown in 
Fig. P3-41. 
a Find t.. (x) and j,.( y ). 
b Assume that each of the random variables X and Yare quantized using four 

level uniform quantizers. What is the resulting distortion? What is the resulting 
number of bits per (X. Y) pair? 

t: Now assume that. instead of scalar quantizers for X and Y. we employ a vector 
quantizer with the same number of bits per source output pair (X, Y) as in (b). 
What is the resulting distortion for tnis vector quantizer? 
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4 
CHARACTERIZATION OF 
COMMUNICATION SIGNALS 
AND SYSTEMS 

Signals can be categorized in a number of different ways. such as random 
versus deterministic, discrete time versus continuous time, discrete amplitude 
versus continuous amplitude, lowpass versus bandpass, finite energy versus 
infinite energy, finite average power versus infinite average power, etc. In this 
chapter. we treat the characterization of signals and systems that are usually 
encountered in ·the transmission of digital information over a communication 
channel. In particular. we introduce the representation of various forms of 
digitally modulated signals and describe their spectral characteristics. 

We begin with the characterization of bandpass signals and systems. 
including the mathematical representation of bandpass stationary stochastic 
processes. Then. we present a vector space representation of signals. We 
conclude with the representation of digitally modulated signals and their 
spectra! characteristics. 

4-1 REPRESENTATION OF BANDPASS SIGNALS 
AND SYSTEMS 

Many digital informalion-bearing signals are transmitted by some type of 
carrier modulation. The channel over which the signal is transmitted is limited 
in bandwidth to an interval of frequencies centered about the carrier. as in 
double-sideband modulation. or adjacent to the carrier, as in single-sideband 
modulation. Signals and channels (systems) that satisfy the condition thaI their 
bandwidth is much smaller than the carrier frequency are termed narrowband 
/>andpas.< siwwl.r and channels (systems). The modulation performed at the 
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FIGURE 4-1·1 Spectrum of a bandpass signal. o 

transmitting end of the communication system to g®erate the bandpass signal 
and the demodulation performed at the receiving end to recover the digital 
information involve frequency translations. With no loss of generality and for 
mathematical convenience, it is desirable to reduce all bandpass signals and 
channels to equivalent lowpass signals and channels. As a consequence, the 
results of the performance of the various modulation and demodulation 
techniques presented in the subsequent chaplers are independent of carrier 
frequencies and channel frequency bands. The representation of bandpass 
signals and systems in terms of equivalent lowpass waveforms and the 
characterization of bandpass stationary stochastic processes are the main topics 
of this section. 

4-1-1" Representation of Bandpass Signals 

Suppose that a real-valued signal s(c) has a frequency content concentrated in 
a narrow band of frequencies in the vicinity of a frequency f" as shown in Fig. 
4-1-1. Our objective is to develop a mathematical representation of such 
signals. First, we construct a signal that contains only the positive frequencies 
in S(I). Such a signal may be expressed as 

S+(f} = 2u(f)S(f) (4-1-1) 

where S(f) is the Fourier transform of s(l) and u(f) is the unit step function. 
The equivalent time-domain expression for (4-1-1) is 

S+(I} = r S.(f)ei2"'ft df 

= r'[2u(f)] * r'[S(f)] (4-1-2) 

The signal 5+(1) is called the analytic signal or the pre-envelope of S(I). We 
note that r '(S(f)] = s(t) and 

F-'[2u(f)] = 8(1) +.L 
1rI 

(4-1-3) 
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FIGURE 4-1·1 Spectrum of a bandpass signal. o 
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Hence, 

We define s(l) as 

S.(/) = [8(t) + ~] * s(t) 

I 
=S(I) +j m *5(1) (4-1-4) 

(4-1-5) 

The signal S(I) may be viewed as the output of the filter with impulse response 

1 
h(t)= m' -oo<t<oo (4-1-6) 

when excited by the input signal s(t). Such a filter is called a Hilbert 
Iransformer. The frequency response of this filter is simply 

H(f) = fx h(l)e-J2"f' dl 

1 IX I =- -e-llKf'dl 
JC ~% t 

{

-i (f>0) 
= 0 (f=O) 

j (f<0) 

(4-1-7) 

We observe that 'H(!)I = 1 and that the phase response e(f) = -!lr for />0 
and e(/) = ~lr for f < O. Therefore, this filter is basically a 90" phase shifter for 
all frequencies in the input signal. . 

The analytic signal 5+(1) is a bandpass signal. We may obtain an equivalent 
lowpass represenlation by performing a frequency translation of S+(f). Thus, 
we define SI(/) as 

SI(f) = S+(f + Ic) 

The equivalent time-domain relation is 

$/(t) = s+(t)e-j2
"", 

= [set) + j.f(t)]e -j2Kf.' 

OT, equivalently, 

S(I) + j§(I) = S/(I)eJ"2Kf,l 

(4-1-8) 

(4-1-9) 

(4-1-10) 

In general, the signal sll) is complex-valued (see Problem 4-5), and may be 
expressed as 

s,(t) = x(t) + jy(t) (4-1-11) 
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If we substitute for 5/(1) in (4-1-11) and equate real and imaginary rar!~ on 
each side, we obtain the relations 

set) = r(t) cos 2lfjt - yet) sin 21ftr 

s(t) = X(I) sin 2lftt + y(t) cos 21Ctt 

(4-1-12) 

(4-1-13) 

The expression (4-1-12) is the desired form for the representation of a 
bandpass signal. The low-frequency signal components X(I) and yet) may be 
viewed as amplitude modulations impressed on the carrier componems 
cos 2Trt.t and sin 2nfct, respectively. Since these carrier components are in 
phase quadrature, ret) and y(t) are called the quadrature components of the 
bandpass signal s(t). 

Another representation of the signal in (4-1-12) is 

set) = Re{[x(t) + jy(t)]eihr.,} 

= Re [s/(t)e}2 .. "JI (4-1-14) 

where Re denotes the real part of the complex-valued quantity in the brackets 
following. The lowpass signal Sl(t) is usually called the complex envelope of the 
real signal s(t), and is basically the equivalent lowpass signal. 

Finally, a third possible representation of a bandpass signal is obtained by 
expressing slt} as 

where 

Then 

oCt) = VX2(t) + y2(t} 

-I y(i) 
8(t) = tan -

X(I) 

set) = Re [S/(t)e'2 .. /,,] 

= Re [a(t)e,12 .. t.1+ 6U))j 

= aCt) cos [2Trt.t + 8(1)] 

(4-1-15) 

(4-1-11) 

(4-1-\7) 

(4-1-1E1) 

The signal a(t) is caUed the envelope of s(t), and 8(t) is called the phase of set}. 
Therefore, (4-1-12), (4-1-14), and (4-1-18) are equivalent representations of 
bandpass signals. 

The Fourier transform of s( t) is 

S(/) "" fx S(I)e -,2 .. " dt 

"" f. {Re [S,(t)e'2>if,J]}e-/2
><ft dl (4-1-19) 

Use of the identity 

Re in = !({ + {*) (4-1-20) 
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in (4-1-19) yields the result 

(4-1-21) 

where S,(f) is the Fourier transform of SI(t). This is the basic relationship 
between the spectrum of tlie real bandpass signal S(f) and the spectrum of the 
equivalent lowpass signal S,(f). 

The energy in the signal s(t) is defined as 

'$= fx s\t)dl 

= [1 {Re [s,(t)eJ2>t[.JW dt (4-1-22) 

When the identity in (4-1-20) is used in (4-1-22), we obtain the following result: 

't'=~[ Is,(tWdt 
2 -x 

+ ~ [x 1s,(t)12 cos (41ifct + 28(t)J dl (4-1-Z3) 

Consider the second integral in (4-1-23). Since the signal S(I) is narrowband, 
the real envelope aCt) == IsI(r)1 or, equivalently, a2(t) varies slowly relative 10 

the rapid variations exhibited by the cosine function. A grapnicallJlustration of 
the integrand in the second integral of (4-1-23)·is shown in Fig. 4-1-Z. The 
value of the integral is just the net area under the cosine function modulated 
by a2(t). Since the modulating waveform a2(t) varies slowly relative to the 
cosine function, the net area contributed by the second integral is very small 
relative to the value of the first integral in (4-1-23) and, hence, it can be 

FIGURE 4-1-; The 5ignal .'(1) COS [4lrfct + 28(t)!. 
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neglected. Thus, for all practical pruposes, the energy in the bandpass signal 
s(I), expressed in terms of the equ:valentlowpass signal $,(/), is 

1 f~ 'g = - Isl/)12 dt 
2 -x 

(4-1-24) 

where 1s,(t)1 is just the envelope a(l) of sit). 

4-1·2 Representation of Linear Bandpass Systems 
A linear filter or system may be described either by its impulse response h (I) 
or by its frequency response H(f), which is the Fourier transform of hell· 
Since hit) is real, 

HO( -f) = H(f) 

Let us define H,(! - K) as 

Then 

H,(f - f;) = {OH(f) (f >0) 
(f<0) 

{
o (f>O) 

Hf(-f-t)= H*(-f) (/<0) 

Using (4-1-25), we have 

HU) = H.(f - [.) + m( - f - K) 

(4-1-25) 

(4-1-26) 

(4-1-27) 

(4-1-28) 

which resembles (4-1-21) except for the factor !. The inverse transform of 
H(!) in (4-1-28) yields h(l) in the form 

hit) = h,(t)ei21r/.l + M(t)e -j2"f.1 

= 2 Re [h,(t)ei2.t,IJ (4-1-29) 

where h,(t) is the inverse Fourier transform of H,(!). In general, the impUlse 
response h,{t) otthe equivalent lowpass system is complex-valued. 

4-1·3 Response of a Bandpass System to a Bandpass SipaI 
In Sections 4-1-1 and 4-1-2, we have shown that narrowband bandpass signals 
and systems can be represented by equivalent lowpass signals and systems. In 
this section, we demonstrate that the output of a bandpass system to a 
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bandpass input signal is simply obtained from the equivalent lowpass input 
signal and the equivalent lowpass impulse response of the system. 

Suppose that s(t) is a narrowband bandpass signal and s/(t) is the equivalent 
lowpass signal. This signal excites a narrowband bandpass system characterized 
by its bandpass impulse response h(t) or by its equivalent lowpass impulse 
response h,{t). The output of the bandpass system is also a bandpass signal, 
and, therefore, it can 1-.! expressed in the form 

(4-1-30) 

where ret) is related to the input signal set) and the impulse response h(t) by 
the convolution integral 

ret) = fx s( -r)h(l - -r) d-r (4-1-31) 

Equivalently, the output of the system, expressed in the frequency domain, is 

R(f) = S(f)H(f) (4-1-32) 

Substituting from (4·1-21) for S(n and from (4-1-28) for H(f), we obtain the 
resull 

R(f) = HS/(f - [.) + Sf( -f -/c)JIHtU -/c) + m( -[ -/c)} (4-1-33) 

When set) is a narrowband signal and h(/) is tbe impulse response of a 
narrowband system, S,(f -/c) '" 0 and H,(f - /c) = 0 for f < O. II follows from 
Ihis narrowband condition that 

SM -1c)H'f( -f - [.) = 0, St( -f -/c)H,([ - fc) = 0 

Therefore. (4-1-33) simplifies to 

where 

R(f) = ![S,(f - fc)HM -Ic) + Sf( -f - [.)m( -[ - !c)] 

= UR,(f -/c) + Rf( -[ -Ic)] (4-1-34) 

(4-1-35) 

is the output spectrum of the equivalent lowpass system excited by the 
equivalent lowpass signal. It is clear that the time domain relation for the 
output rl(l) is given by the convolution of stCt) with hl(t). That is, 

(4-1-36) 
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The combination of (4-1-36) with (4-1-30) gives the relationship between 
the bandpass output signal r(r) and the equivalent lowpass time functions s,(r) 
and h/(t). This simple relationship allows us to ignore any linear frequency 
translations encountered in the modulation of a signal for purposes of 
matching its spectral content to the frequency allocation of a particular 
channel. Thus. for mathematical convenience. we shall deal only with the 
transmission of equivalant lowpass signals through equivalent lowpass 
channels. 

4-1-4 Representation of Bandpass Statiollary 
Stochastic Processes 

The representation of bandpass signals presented in Section 4-1·1 applied to 
deterministic signals. In this section, we extend the representation to sample 
functions of a bandpass stationary stochastic process. In particular, we derive 
the important relations between the correlation functions and power spectra of 
the bandpass signal and the correlation functions and power spectra of the 
equivalent low pass signal. 

Suppose that n(l) is a sample function of a wide-st;nse stationary stochastic 
process with zero mean and power spectral density $,,"(/). The power spectral 
density is assumed to be zero outside of an interval of frequencies centered 
around ±f" where f is termed the carrier frequency. The stochastic process 
n(f) is said to be a narrowband bandpass process if the width of the spectral 
density is much smaller than f,.. Under this condition, a sample function of the 
process n(t) can be represented by any of the three equivalent forms given in 
Section 4-1-1, namely, 

nCr) = a(l) cos [2Jrj;t + e(t)] 

= x( t) cos 2Jrj;t - y(t) sin 2Jrj;.1 

= Re [Z(I)ei2,,/.,] 

(4-1-31) 

(4-1-38) 

(4-1-39) 

where 0(1) is the envelope and B(r} is the phase of the real-valued signal, x(1) 
and y(t) aTe the quadrature components of n(t), and z(tJ is called the comp{ex 
envelope of net). 

LeI us consider the form given by (4-1-38) in more detail. First, we observe 
that if n(l) is zero mean. then x(t) and y(t) must also have zero mean values. 
In addition, the stationarity of n(l) implies that the autocorrelation and 
cross-correlation functions of x(t) and y(t) satisfy the following properties: 

<Pr,( r) = <P,.,( r) 

<p".(r) = -<pyAr) 

(4-1-40) 

(4-1-41 ) 
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That these two properties follow from the stationarity of net) is now 
demonstrated. The autocorrelation function <PnA r) of net) is 

E[n(t)n(t + r)] = E{[x(t) cos 2nf,.t - yet) sin 2nj)) 

X [xCt + r) cos 2lif,.(t + r) 

- yet + r) sin 21tfc(t + r)J} 

= "',A r) cos 21tfct cos 21ifc(r + r) 

+ <PyA r) sin 21tfct sin 21t{..(t + r) 

- <p,,,( r) sin 21c{J cos 21tfc(t + r) 

- 4>,,( r) cos 2lif,.t sin 21tJ:.(1 + r) 

Use of the trigonometric identities 

cos A cos B = 1[eos (A - B) + cos (A + B)l 

sin A sin B = Bcos (A - B) - cos (A + B») 

sin A cos B = Hsin (A - B) + sin (A + BJJ 

in (4-1-42) yields the result 

E[n(t)n(t + r») = ~[4>xxCr) + <p,,(r») cos 2Jtj;r 

+ Htf>x,( r) - <p,,( r») cos 21t{;(2t + r) 

- H<fJ,,(r) - <p,,(r») sin 21t{;r 

- U.pyAr) + <p,Ar») sin 21t{;.(21 + r) 

(4-1-42) 

(4-1-43) 

(4-1-44) 

Since net) is stationary. the right-hand side of (4-1-44) must be independent of 
t. But this condition can only be satisfied if (4-1-40) and (4-1-41) hold. As a 
consequence. (4-1-44) reduces to 

<Pn.{ r) = "'xx(r) cos 21ifc r - <Pyx ( r) sin 21c{, r (4-1-45) 

We note that the relation between the autocorrelation function "'nn( r) of the 
bandpass process and the autocorrelation and cross-correJalion functions 
"'xx(r) and4>yx( r) of the quadrature components is identical in form to 
(4-1-38), which expresses the bandpass process in terms of the quadrature 
components. 

The autocorrelation function of the equivalent lowpass process 

z(t) = x(t} + jy(t) (4-1-46) 

is defined as 

"'u(r) = !E[z*(t),(t + r») (4-1-47) 
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Substituting (4-1-46) into (4-1-47) and performing the expectation operation, 
we obtain 

(4-1-48) 

Now if the symmetry properties given in (4-1-40) and (4-1-41) are used in 
(4-1-48), we obtain 

(4-1-49) 

which relates the autocorrelation function of the complex envelope to the 
autocorrelation and cross-correlation functions of the quadrature components. 
Finally, we incorporate the result given by (4-1-49) into (4-1-45), and we have 

q,,,,,(r) = Re [</>,,(r)ei2xf.'] (4-1-50) 

Thus, the autocorrelation function </>".( r) of the bandpass stochastic process is 
uniquely determined from the autocorrelation function <p,,( r) of the equiv­
alent lowpass process z (t) and the carrier frequency !C. 

The power density spectrum <l>nn(f) of the stochastic process n(r) is the 
Fourier transform of <Pnn( r). Hence, 

<I>.n(f) = fx IRe [q"Ar)e-""f.']}e-i2WfT dr 

= 1[<1>,,(/ - t) + <I>,kf - t») (4-1·51) 

where <I>,Af) is the power density spectrum of the equivalent lowpass process 
zit). Since the autocorrelation function of z(t) satisfies the property q,,,(r) = 

q,~J - r), it follows that <I>,,(f) is a real-valued function of frequency. 

Properties of the Quadrature Components It was just demonstrated 
above that the cross·correlation function of the quadrature components X(I) 
and y(/) of the bandpass stationary stochastic process n(/) satisfies the 
symmetry condition in (4·1-41). Furthermore, any cross-correlation function 
satisfies the condition 

"',xC r) = 4>x, (- r) (4-1·52) 

From these two conditions, we conclude that 

(4-1·53) 

That is, 4> .. ( r) is an odd function of r. Consequently, 4>. ... (0) = 0, and, hence, 
x(t) and y(l) are uncorrelated (for r = 0, only), Of course, this does not mean 
that the processes X(I) and )'(1 + r) are uncorrelated for all r, since that would 
imply that 4>".(r) =0 for all r. If, indeed, <p,y(r} =0 for an r, then </>,,(r) is 
real and the power spectral density <I>,,(f) satisfies the condition 

(4-1·54) 

and vice versa. That is, <I>,,(f) is symmetric about I = O. 
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In the special case in which the stationary stochastic process net) is gaussian, 
the quadrature components x(t) and y(t + r) are jointly gaussian. Moreover, 
for T = O. they are statistically independent. and. hence, their joint probability 
density function is 

( ) I -(,'-v')l2ff' P x.y =--e . 
2JC(;L 

where the variance (;L is defined as a 2 = 4>, .• (0) = 4>,.,(0) = 4>.,,(0). 

(4-1-55) 

Representation of White Noise While noise is a stochastic process that is 
defined to have a flat (constant) power spectral density over the entire 
frequency range. This type of noise cannot be expressed in terms of quadrature 
components. as a result of its wideband character. 

In problems concerned with the demodulation of narrowband signals in 
noise. it is mathematically convenient to model the additive noise process as 
white and to represent the noise in terms of quadrature components. This can 
be accomplished by postulating that the signals and noise at the receiving 
terminal have passed through an ideal bandpass lilter, having a passband that 
includes the spectrum of the signals but is much wider. Such a filter will 
introduce negligible, if any, distortion on the signal but it does eliminate the 
noise frequency components outside of the passband. 

The noise resulting from passing the white noise process through a 
spectrally flat Odeal) bandpass filter is termed bandpass white noise and has the 
power spectral density depicted in Fig_ 4-1-3. Bandpass white noise can be 
represented by any of the forms given in (4-1-37), (4-1-38), and (4-1-39). The 
equivalent lowpass noise z(r) has a power' spectral density 

{
No (If I ,,;;: 2iB) 

<t>,Jf) = O· 
0/1> 1B) 

and its autocorrelation function is 

sin TrBT 
4>--( r) = No ---

-- 1fT 

The limiting form of <p,,( T) as B approaches infinity is 

4>,J T) = N,,6( r) 

Bandpass noise with a flat spectrum. 

(4-1-56) 

( 4-1-57) 

( 4-1-58) 
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The power spectral density for white noise and bandpass white noise is 
s}mmetric "hout f = o. so <Pc. (r) = 0 for all r. Therefore. 

(4-1-59) 

That is. the quadrature components xU) and y(t) are uncorrelated for all time 
shifts r and the autocorrelation functions of z(e), X(I), and y(c) are all equal. 

4-2 SIGNAL SPACE REPRESENTATIONS 

In this section. we demonstrate that signals have characteristks that are similar 
to vectors and develop a vector representation for signal waveforms. We hegin 
with some basic definitions and concepts involving vectors. 

4-2-1 Vector Space Concepts 

• 

A vector v in an II-dimensional space is characterized by its II component> 
[v. v, ... v,,]. II may also he represented as a linear combination of "nie 
veccors or basis vectors e,. I ,.;; i ,.;; n, i.e .. 

" ,,= 2: v,e, 
i"'-] 

(4-2-1) 

where. by definition. a unit vector has length unity and v, is the projection of 
the vector" onto the unit vector e,. 

The inner product of two n-dimensional vectors ". = [v" V,, ... v,,,] and 
'" = [V'I V22 ..• v2"j is defined as 

" "J ."2-= 2: V ltU2i 
.·--1 

(4-2-2) 

Two vectors ". and '" are orthogonal if VI' '" = O. More generally. a set of m 
vectors",. I ,.;; k ,.;; m. are orthogonal if 

", . "i = 0 (4-2-3) 

for all I ,.;; i, j .; m and j "" j. 
The norm of a vector" is denoted by """ and is defined as 

IlvlJ = (v· ,,)"2 = ~~I V,' (4-2-4) 

which is simply its length. A set of m vectors is Slid to be orthonormal if the 
vectors are orthogonal and each vector has a unit norm. A set of m "ectors is 
said to be linearly independent if no one vector can be represented as a linear 
combination of the remaining vectors. 

Two n-dimensional vectors "I and '" satisfy the triangle inequality 

(4-2-5) 

with equality if ", and "> are in the same direction. i.e .• "I = atl2 where a is a 
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positive real scalar. From the triangle inequality there follows the Cauchy­
Schwartz inequality 

(4-2-6) 

with equality if VI = aV2' The norm square of the sum of two vectors may be 
expressed as 

Ill', + V21/' = IIv,II' + IIv211' + 2v, • V2 

If v, and v, are orthogonal then v, . v, = 0 and, hence, 

IIv, + ",11 2 = Ilv,1I 2 + Ilv2112 

(4-2-7) 

(4-2-8) 

This is the Pythagorean relation for two orthogonal n-dimensional vectors. 
From matrix algebra, we recall that a linear transformation in an n­

dimensional vector space is a matrix transformation of the form 

v' =Av (4-2~) 

where the matrix A transforms the vector" into some vector v'. In the special 
case where v' = Av, i.e., 

Av=Av (4-2-10) 

where A is some (positive or negative) scalar, the vector v is called an 
eigenvector of the transformation and A is the corresponding eigenvalue. 

Finally, let U5 review the Gram-Schmidt procedure for constructing a set of 
orthonormal vectors from a set of n-dimensional vectors v" 1 .. j .. m. We 
begin by arbitrarily selecting a vector from the set, say",. By normalizing its 
length, we obtain the first vector, say 

'" . ---
, - ""Iil 

(4-2-11) 

Next, we may select "2 and, first, subtract the projection of V2 onto a,. Thus, we 
obtain 

ai =", - (V2 • u,)u, (4-2-12) 

Then, we normalize the vector ~ to unit length. This yields 

(4·2-13) 

The procedure continues by selecting V3 and subtracting the projections of 
V3 into a, and a2' Thus, we have 

II; = V, - (v,' a,)a, - ("3' .,)az 
Then, the orthonormal vector a, is 

IIi . ---
3 - IIII;U 

(4·2-14) 

(4-2-15) 
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By continuing this procedure, we shall construct a set of n" orthonormal 
vectors, where 1'1, '" 1'1, in general. If m < n then I'l, "" m, and if m ;;" 1'1 then 
n l ~n. 

4-2-2 Signal Space Concepts 
As in the case of vectors, we may develop a parallel treatment for a set of 
signals defined on some interval [a, b 1. The inner product of two generally 
complex-valued signals x ,(I) and X,(l) is denoted by (x,(t), Xl(t» and defined 
as 

(X,(/), x,(t» = r x,(t)x!(t) dt 
• 

(4-2-16) 

The signals are orthogonal if their inner product is zero. 
The norm of a signal is defined as 

(b lI2 

\\x(t)1\ = (L \x(t)l' dt) 
o 

(4-2-17) 

A set of m signals are orthonormal if tlley are ortllogonal and their norms are 
all unity. A set of m signals is linearly independent. if no signal can be 
represented as a linear combination of the remaining signals. 

The triangle inequality for two signals is simply 

IIX,(I) + X2(1) \I "" 'lx,(r)1I + IIx,(t)1I 

and the Cauchy~Schwartz inequality is 

If x,(t)X!(/)dtl "" If 1x,(/)/'df
2 If 1x2(/Wdf~ 

with equality when X2(/) = ax,(t). where a is any c()mplex number. 

4-2-3 Orthogonal Expansions of Signals 

(4-2-18) 

(4-2-19) 

In this section, we develop a vector representation for signal waveforms, and. 
thus, we demonstrate an equivalence between a signal waveform and its vector 
representation. 

Suppose tllat s(t) is a deterministic, real-valued signal witb finite energy 

(4-2-20) 

Furthermore, suppose that there exists a set of functions {fn(t). n = 
1, 2, .. , , N} that are orthonormal in the sense that 

(4-2-21) 
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We may approximate the signal S(I) by a weighted linear combination of 
these functions, i.e., 

K 

5(1) = L s'/.(I) (4-2-22) 
k=l 

where {St. 1,;;;, k ,;;;, K} are the coefficients in the approximation of S(I). The 
approximation error incurred is 

e(l) = S(I) - S(I) (4-2-23) 

Let us select the coefficients {Sk} so as to minimize the energy %', of the 
approximation error. Thus, 

~,= [ [S(I) - S(I)j2 dt 

= [[S(I) - .t S.J.(I) r dl (4-2-24) 

The optimum coefficients in the series expansion of S(I) may be found by 
differentiating (4-2-24) with respect to each of the coefficients {s.} and setting 
the first derivatives to zero. Alternatively, we may use a well-known result 

.from estimation theory based on the mean-square-error criterion, which, 
simply stated, is that the minimum of ~ with respect to the {s.} is obtained 
when the error is orthogonal to each of the functions in the series expansion. 
Thus, 

[~[S(t) - .tl s.Mt) ]t.(I) tit = 0, n = 1,2, ... ,K 

Since the functions {f.(t)} are orthonormal, (4-2-25) reduces to 

S. = [~ S(/)/n(t) dt, n = 1, 2, ... , K 

(4-2-25) 

(4-2-26) 

Thus, the coefficients are obtained by projecting the signal set) onto each of the 
functions {J.(t)}. Consequently, S(I) is the projection of set) onto the 
K-dimensional signal space spanned by the functions {f.(t)}. The minimum 
mean square approximation error is 

~mi. = [~ e(t)s(t) dt 

= [~ [s(tW dt - [~tl s.Mt)s{I) dt 

(4-2-27) 

which is nonnegative, by definition. 
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.from estimation theory based on the mean-square-error criterion, which, 
simply stated, is that the minimum of ~ with respect to the {s.} is obtained 
when the error is orthogonal to each of the functions in the series expansion. 
Thus, 

[~[S(t) - .tl s.Mt) ]t.(I) tit = 0, n = 1,2, ... ,K 

Since the functions {f.(t)} are orthonormal, (4-2-25) reduces to 

s. = [~ S(/)/n(t) dt, n = 1, 2, ... , K 

(4-2-25) 

(4-2-26) 

Thus, the coefficients are obtained by projecting the signal set) onto each of the 
functions {J.(t)}. Consequently, set) is the projection of set) onto the 
K-dimensional signal space spanned by the functions {f.(t)}. The minimum 
mean square approximation error is 

~mi. = [~ e(t)s(t) dt 

= [~ [s(tW dt - [~tl s.Mt)s(t) dt 

(4-2-27) 

which is nonnegative, by definition. 



CHAPTER 4. CHARACTERIZATION OF rnMMUNKAT[ON SlGNALS Ai'ofD SYSTEMS 167 

When the minimum mean square approximation error lIJmin = 0, 

't, = ,fl sl = f, [s(tW dt 

Under the condition that 'lmin = n, we may express s(t) as 
K 

set) = 2: skidt) 
A ~ 1 

( 4-2-28) 

(4-2-29) 

where it is understood that equality of 5(1) to its series expansion holds in the 
sense that the approximation error has zero energy. 

When every finite energy signal can be represented by a series expansion of 
the form in (4-2-29) for which 'lrom = O. the set of orthonormal functions {f,,(t)} 
is said to be complete. 

Example 4·2·1: Trigonometric Fourier Series 

A finite energy signal s(t) that is zero everywhere except in the range 
0,,;; ('" T and has a finite nllmber of discontinuities in this interval. can he 
represented in a Fourier series as 

y~ ( 2.'rkt 27rkt') 
s(t) = 2: a. cos -- + b, sin--

All' T T 
(4-2-30) 

where the coefficients {a,. bA} that minimize the mean square error are given 
by 

1 II 27rkl 
a, = .~ S(I)cos--dt 

vT IJ T 

1 IT 27rkt 
b, = . r;;c. 5(1) sin -- dl 

vT Il T 

(4·2·31 ) 

The sel of trigonometric functions {Y2/Tcos2lTkt/T. V2/Tsin 2JCkt/T} is 
complete, and. hence, the series expansion results in zero mean square 
error. These properties are easily established from the development given 
above, 

Gram-Schmidt Procedure Now suppose that we have a set of finite 
energy~ signal waveforms {s,(t l, i = 1, 2, . , . , M} and we wish to construct a set 
of orthonormal waveforms. The Gram-Schmidt orthogonalization procedure 
allows us to construct such a set. We begin with the first waveform sl(I), which 
is assumed to have energy ~\. The first waveform is simply constructed as 

j '/I) = S,(t) ,. VT. 
Thus, /;(1) is.simply SIU) normalized to unit energy. 

( 4-2·.12) 
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The second waveform is constructed from S2(t) by first computing the 
projection of Nt) onto S,(I), which is 

en = fx S,(t)J.(I) dl 

Then, e:,!.(I) is subtracted from 5,(1) to yield 

I;(t) = 52(t) - e'2!.(t) 

(4-2-33) 

(4-2-34) 

This waveform is orthogonal to (,(l) but it does not have unit energy. If 
~ denotes the energy of 1;(1), the normalized waveform that is orthogonal to 
J.(I) is 

Mt)=~ (4-2-35) 

In general, the orthogonalization of the kth function leads to 

t.(t)=~ (4-2-36) 

where . -, 
I~(t) = s.(t) - 2: c"t(t) (4-2-37) 

,~, 

and 

c,. = [~Sk(t)t(t) dl, i = I. 2, .... k - I ( 4-2·38) 

Thus, the orthogonalization process is continued until all the M signal 
waveforms {s,(t)} have been exhausted and N ~ M orthonormal waveforms 
have been constructed. The dimensionality N of the signal space will be equal 
to M if all the signal waveforms are linearly independent, i.e., none of the 
signals waveforms is a linear combination of the other signal waveforms. 

Example 4-2-2 

Let us apply the Gram-Schmidt procedure to the set of four waveforms 
illustrated iii Fig. 4-2-1 (a). The waveform 5,(1) has energy 'if:, = 2, so that 
f,(t) = v1 s,(t}. Next. we observe that el2 = 0; hence, sil) and I,(t) are 
orthogonal. Therefore, Mt) = s,(t)/v"l, = v1 s,(t). To obtain [,(I). we 
compute c" and C23. which are Cn = v'2 and C,' = O. Thus. 

[{(Il = S3(t) - V2f,(t) = . {
-I (2 ~ I ~ 3) 

o (otherwise) 
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Gram~Schmidt orthogonahzation of the signals {SI(r}. j = 1. ~. 3, 4} and the corresponding 
orthogonal signals. 

Since /;(1) has unit energy. it follows that h(l) = /;(1). In determining /..(1), 
we find that c,. = - Vz. C2. = 0, and CJ• = l. Hence. 

/~(t) =5.(1)+ VzI,(I)- f,(t) =0 

Consequently. s.(t) is a linear combination of f,(t) and !,(t) and. hence, 
[.(1) =0. The three orthonormal functions are illustrated in Fig. 4-2-I(b). 
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Once we have constructed the set of orthonormal waveforms U,(t)}. we can 
express the M signals {s,,(til as linear combinations of the {[,(Il}. Thus. we may 
write 

" 
SkU) = L .\,,'/;,(1). k = 1.2 ..... M (4-2-3'1) , , 

and 

fA =_r [.,,(I}]'dl = ± si" = !is, ii' 
'I I 

(4-2-40) 

Based on the expression in (4-2-34), each signal may be represented by the 
vector 

IA\I (4-2-41) 

or, equivalently. as a point in the ,,,,i-dimensional signal space with coordinates 
{Ski. i = 1. 2 ..... lV}. The energy in the kth signal is simply the square of the 
length of the vector or. equivalently. the square of the Euclidean distance from 
the origin to the point in the N-dimensional space. Thus. any signal can be 
represented geometrically as a point in the signal space spanned by the 
orthonormal functions {,f,,(r)}. 

Example 4-2-3 

Let us obtain the vector representation of the four signals shown in Fig. 
4-2-1 (a) by using the orthonormal set of functions in Fig. 4-2-I(h). Since the 
dimensionality of the signal space is lV = 3. each signal is described b~v three 
components. The signal" (I) is characterized by the vector " = (V2 • 0.0). 
Similarly. the signals s'(l). s,(I). and .1'4(1) are characterized bv the vectors 

~ h . ~ -
s, = (0. V2. 0). s, = (v 2.0, I J. and S4 = ( - v 2. n. 1). respectively. These 
vectors are shown in Fig. 4-2-2. Their lengths are Is,! = V~. Is.1 = \~. 

FIGURE 4-2-2 The four signal \'cclors reprt.'\cntl'd '-l~ p\)int\ In 

three dimensional function .... p.lCt·. 

f· 
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Is,l = v3 , and Is.1 = v'3 , and the corresponding signal energies are ~. = Is. I', 
k = 1, 2, 3,4. 

We have demonstrated that a set of M finite energy waveforms {s,,(t)} can 
be represented by a weighted linear combination of orthonormal functions 
{f,.(r)} of dimensionality N.;; M. The functions {f,.(t)} are obtained by applying 
the Gram-Schmidt orthogonalization procedure on {s,,(t)}. It should be 
emphasized, however, that· the functions {fn(t)} obtained from the Gram­
Schmidt procedure are not unique. If we alter the order in which the 
orthogonalization of the signals {s"(t») is performed, the orthonormal wave­
forms will be different and the corresponding vector representation of the 
signals {sn(t» will depend on the choice of the orthonormal functions {fn(t)}. 
Nevertheless. the vectors ISh} will retain their geometrical configuration and 
their lengths will be invariant to the choice of orthonormal functions {f,,(t)}. 

Example 4-2·4 

An alternative set of orthonormal functions for the four signals in Fig. 4-2·1 
is illustrated in Fig. 4-2-3(a). By using these functions to expand.{sn(t)}, we 

FIGURE 4-2·3 An atternative set of orthonormal functions for the four signals in Fig. 4-2·1(a) and the 
corresponding signal points. 

:~, Lo, J~~D.r 
ole 1 20 23 

(0) 

S,=i-l.-l.-l" 
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obtain the corresponding vectors S, = (1. 1, OJ. S2 '" (I, -1. 0), SJ '" (1. 1, -1), 
and S4 = (- L - L -I). which are shown in Fig. 4·2-3(b). Note that the 
vector lengths are identical to those obtained from the orthonormal 
functions (t..(T». 

The orthogonal expansions described above were developed for real-valued 
signal waveforms. The extension to complex-valued signal waveforms is left as 
an exercise for the reader (see Problems 4-6 and 4-7). 

Final/y. leI us consider the case in which the signal waveforms are bandpass 
and represented as 

-'n.(tl = Re [-,",,(t)e"""]. m = 1. 2 ..... M (4-2-42) 

where {s!",(t)} denote the equivalellt lowpass signals. Recall that the signal 
energies may. be expressed either in terms of s",(1) or 5,,,,(1). as 

I I' = 2 ., Is",,(t)I' dl (4-2-43) 

The similarity between any pair of sigllal waveforms. say s,.,(t) and s.(/). is 
measured by the normalized cross-correlatioll 

(4-2-44) 

We define the complex-valued cross-correlation coefficient PAm as 

(4-2-45) 

Then. 

(4-2-46) 

or. equivalently. 

(4-2-47) 

The cross-correlation coefficients between pairs of signal waveforms or 
signal vectors comprise one set of parameters that characterize the similarity 
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of a set of signals, Another related parameter is the Euclidean distance d):j, 
between a pair of signals, defined as 

d~'j, = II Sm - s, II 

= {[ [s",(t) - 5.(t)]' dt}''2 

= {'1m + 'fk - 2v'~n 'lk Re (Pkm)J112 

When i{,,, = If, = 'I for all m and k, this expression simplifies to 

dt,! = fUrl - Re (P,m)j}'12 

(4-2-48) 

(4-2-49) 

Thus, the Euclidean distance is an alternative measure of the similarity (or 
dissimilarity) of the set of signal waveforms or the corresponding signal 
vectoIS_ 

In the following section. we describe digitally modulated signals and make 
use of the signal space representation for such signals. We shall observe that 
digitally modulated signals, which are classified as linear, are conveniently 
expanded in terms of two orthonormal basis functions of the form 

j,(t) = ~~cos 21t/..l 

/Z, 
/2(r) = - V~sm 2Jrt.' 

(4-2-50) 

Hence. if Slm(t) is expressed as SI",(t) = x/(t) + jYi(t), it follows that sm{t) in 
(4-2-42) may be expressed as 

s",(t) = x,(t)!,(t) + YJ(t)f2(t) 

where r,(t) and y,(t) represent the signal modulations, 

4-3 REPRESENTATION OF DIGITALLY 
MODULATED SIGNALS 

(4-2-51) 

In the transmission of digital information over a communications channel. the 
modulator is the interface device that maps the digital information into analog 
waveforms chat match the characteristics of the channel. The mapping is 
generaily performed by taking blocks of k = log, M binary digits at a time from 
the information sequence {au} and selecting one of M = 2* deterministic. finite 
energy waveforms {s",(t), m = 1,2, ' ' , , M} for transmission over the channel. 

When the mapping from the digital sequence {an} to waveforms i~ 

performed under the constraint that a waveform transmItted in any time 
interval depends on one or more previously transmitted waveforms. the 
modulator is said to have memory, On the other hand. when the mapping 
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from the sequence {an} to the waveforms {s ... (t)} is performed without any 
constraint on previously transmitted waveforms, the modulator is called 
memoryless. 

In addition to classifying the modulator as either memoryless or having 
memory, we may classify it as either linear or nonlinear. Linearity of a 
modulation method requires that the principle of superposition applies in the 
mapping of the digital sequence into successive waveforms. In nonlinear 
modulation, the superposition principle does not apply to signals transmitted in 
successive time intervals. We shall begin by describing memory less modulation 
methods. 

4-3-1 Memoryless Modulation Methods 

As indicated above, the modulator in a digital communication system maps a 
sequence of binary digits into a set of corresponding signal waveforms. These 
waveforms may differ in either amplitude or in phase or in frequency, or some 
combination of two or more signal parameters. We consider each of these 
signal types separately, beginning with digital pulse amplitude modulation 
(PAM). In all cases, we assume that the sequence of binary digits at the input 
to the modulator occurs at a rate of R bits/so 

Pulse Amplitude Modulated (PAM) Sipals In digital PAM, the signal 
waveforms may be represented as 

s",(t) = Re [Amg(t)e'2""'] 

=Amg(t)cos2Jif,t, m= 1, 2, ... , M, O,.;;t,.;; T (4-3-1) 

where {Am' 1,.;; m ,.;; M} denote the set of M possible amplitudes corresponding 
to M = 2' possible k-bit blocks or symbols. The signal amplitudes Am take the 
discrete values (levels) 

Am = (2m -1- M)d, m = 1, 2; ... ,M (4-3-2) 

where 2d is the distance between adjacent signal amplitudes. The waveform 
get) is a real-valued signal pulse whose shape influences the spectrum of the 
transmitted signal. as we shall observe later. The symbol rate for the PAM 
signal is R Ik. This is the rate at which changes occur in the amplitude of the 
carrier to reflect the transmission of new information. The time interval 
Tb = l/R is called the bit interoal arid the time interval T = k/R = kTb is called 
the symbol interval. 

The M PAM signals have energies 

~ = f s;"(t)dt 

= !A!, f g2(t)dt 

= !A;'~8 (4-3-3) 
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4-3-1 Memoryless Modulation Methods 
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signal types separately, beginning with digital pulse amplitude modulation 
(PAM). In all cases, we assume tbat the sequence of binary digits at the input 
to the modulator occurs at a rate of R bits/so 

Pulse Amplitude Modulated (PAM) Sipals In digital PAM, the signal 
waveforms may be represented as 

s",(t) = Re [A m g(t)e'2"';,] 

=Amg(t)cos2Jrfct, m= 1, 2, ... , M, O,.;;t,.;; T (4-3-1) 

where {Am' 1,.;; m ,.;; M} denote the set of M possible amplitudes corresponding 
to M = 2' possible k-bit blocks or symbols. The signal amplitudes Am take the 
discrete values (levels) 

Am = (2m -1- M)d, m = 1, 2; ... ,M (4-3-2) 

where 2d is the distance between adjacent signal amplitudes. The waveform 
get) is a real-valued signal pulse whose shape influences the spectrum of the 
transmitted signal. as we shall observe later. The symbol rate for the PAM 
signal is R Ik. This is the rate at which changes occur in the amplitude of the 
carrier to reflect the transmission of new infonnation. The time interval 
Tb = l/R is called the bit interoal arid the time interval T = k/R = kTb is called 
the symbol interval. 

The M PAM signals have energies 

~ = f s;"(t)dt 

= !A!, f g2(t)dt 

= !A;'~8 (4-3-3) 
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where )f:. denotes the energy in the pulse g(t). Clearly. these signals are 
one·dimensional (N ~ I). and. hence, are represented by the general form 

S",(t) = s".!(t) 

where f(t) is defined as the unit·energy signal waveform given as 

t(l) = ~ ~" g(t) cos 21rj.! 

and 

m = 1.2 .. ". M 

(4·3-4) 

(4·3·5 ) 

(4·3·6) 

The corresponding signal space diagrams for M = 2. M = 4 and M = Hare 
shown in Fig. 4-3-1. Digital PAM is also called amplifllde-shift keying (ASK) . 

• The mapping or assignment of k information bits to the M = 2' possihle 
signal amplitudes may be done in a number of ways. The preferred assignment 
is one in which the adjacent signals amplitudes differ by one binary digit as 
illustrated in Fig. 4-3·1. This mapping is called Gray encoding. It is important 
in the demodulation of the signal because the most likely errors caused hy 
noise involve the erroneous selection of an adjacent amplitude to the 
transmitted signal amplitude. In such a case. only a single bit error occurs in 
the k -bit sequence. 

We note thaI the Euclidean distance between any pair of signal points is 

d};! = V'(sm - sn)2 

~ V~ t'. lAm - A"I 

= dV'Fi" 1m -" i (4-3·7) 

Hence. the distance hetween a pair of adjacent signal points, i.e .. the minimum 
Euclidean distance. is 

Akl =d~ 
"'mm S (4·3·H) 
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The carrier-modulated PAM signal represented by (4-3-1) is a double­
sideband (OSB) signal and requires twice the channel bandwidth of the 
equivalent lowpass signal for transmission. Alternatively, we may use single­
sideband (SSB) PAM, which has the representation (lower or upper sideband). 

sm(t) = Re {A .. [g(t) ±jg(t»)ei'</,'}, m = 1. 2, ... , M (4-3-9) 

where g(t) is tbe Hilbert transform of g(I). Thus, the bandwidth of the SSB 
signal is half that of the OSB signa\. 

The digital PAM signal is also appropriate for transmission over a channel 
that does not require carrier modulation. In this case, the signal waveform.may 
be simply represented as 

Sm(t) = A",g(r), m = 1, 2, ... , M (4-3-10) 

This is now called a baseband signa\. For example a four-amplitude level 
baseband PAM' signal is illustrated in Fig. 4·3-2(a). The carrier-modulated 
version of the signal is shown in Fig. 4-3-2(b). 

In the special case of M = 2 signals, the binary PAM waveforms have the 
special property that 

s,(t) = -S2(1) 

FIGURE 4-3-2 Baseband and bandpass PAM signals. 
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Hence, these two signals have the same energy and a cross-correlation 
coefficient of - L Such signals are called antipodal. 

Phase-Modulated Signals In digital phase modulation, the M signal 
waveforms are represented as 

= get) cos [2!if.t + !; (m - I)] 
27r . 27r . 

= g(t) cos - (m - I) cos 21if,t - g(t) Sin - (m - I) sm 21if,.1 
M M 

(4-3-11) 

where g(r) is the signal pulse shape and 8m = 2tr(m - l)IM, m = 1,2, ... , M, 
are the M possible phases of the carrier 'that convey the transmitted 
information. Digital phase modulation is usually called phase-shift keying 
(PSK). 

We note that these signal waveforms have equal energy, Le., 

(4-3-12) 

Furthermore, the signal waveforms may be represented as a linear combination 
of two-orth<,\normal signal waveforms, fr(/) and fief), i.e., 

(4-3-13) 

where 

f,(/) = ~ g(/) cos 2Jifcl (4-3-14) 

f2 . 
fi(t) = - -V ~ get) SIn 21if,.1 (4-3-15) 

i 

and the two-dimensional vectors Sm = ISm' 5m2] are given by 

m = 1, 2, ... , M 

(4-3-16) 
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FIGURE 4-3-3 Signal space diagrams for PSK signal., 

Signal space diagrams for M = 2, 4, and 8 are shown in Fig. 4-3-3. We note that 
M = 2 corresponds to one-dimensional signals, which are identical to binary 
PAM signals. 

As is the case of PAM, the mapping or assignment of k information bits to 
the M = 2' possible phases may be done in a number of ways. The preferred 
assignment is Gray encoding, so that the most likely errors caused by noise will 
result in a single bit error in the k-bit symbol. 

The Euclidean distance between signal points is 

{ [ 27r ]}'" = tf. I - cos M (m - n) (4-3-17) 

The minimum Euclidean distance corresponds to the case in which 1m - 11' = I. 
i.e" adjacent signal phases. In this case, 

d'd - /Cf (1 _ 27r) 
mm - V e-~ cos A1 (4-3·IS) 

Quadrature Amplitude Modulation The bandwidth efficiency of PAM/ 
SSB can also be obtained by simultaneously impressing two separate k-bit 
symbols from the information sequence {an) on two quadrature carriers 
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cos 2lr];t and sin 21rf.1. The fl!sulting modulation technique is called quadrature 
PAM or QAM. and the corresponding signal waveforms may be expressed as 

S,,,(t) = Re[(A",. + jA",,)I(1je,'"t" j, 111= 1.2 ..... M. O",:t,,;T 

= A""X(t) cos21rf.t - A""g(r) sin 2n:(. r (4-3-19) 

where A"" and A"" are the information-bearing signal amplitudes of the 
quadrature carriers and g(l) is the signal pulse. 

Alternatively. the QAM signal waveforms may be expressed as 

,. (/) = Re [V. e9"·g(l)e"rrf.t I • fn . JlI, 

= v,,,g( I) cos (21if.t + 8",) (4-3-20) 

where 11,,, = VA;,,.. + A;", and 8", = tan -, (A.no/A"".). From this expression. it is 
apparent that the QAM signal waveforms may be viewed as combined 
amplitude and phase modulation. 

In fact. we may select any combination of M,-level PAM and M2-phase PSK 
to construct an M = M, M2 combined PAM-PSK signal CDnstellation. If 
M, = 2" and M, = 2m

, the combined PAM-PSK signal constellation results in 
the simultaneous transmission of m - n = log M, M2 binary digit, occurring al a 
symbol rale R I(m + n). Examples of signal space diagrams for combined 
PAM-PSK are shown in Fig. 4-3-4. for M = 8 and M = 16. 

As in the case of PSK signals. the QAM signal waveforms may b~ 

represented as a linear combination of two orthonormal signal waveforms.f,(t} 
and f,(r). i.e .• 

5",(1) = s",J,(t) + 5m 2f2(t) 

where 

!,(r) = ~~ g(t}cos21if.t , 
12 . 

f,(t) = - '\I ~< g(t) Sin 2lrtt 

I'1GURE 4-~4 Example, of combined PAM-PSK 
signal space diagrams. 

(4-3-21) 

(4-3-22) 

M=16 
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and 

= [Am,V~ifg A",;J!~J 

(K is the energy of the signal pulse g(I). 
The Euclidean distance between any pair of signal vectors is 

(4-3-23) 

(4-3-24 ) 

In the special case where the signal amplitudes takes the set of discrete values 
{(2m - I - M)d, m = 1,2, _ .. , M). the signal space diagram is rectangular, as 
shown in Fig. 4-3-5. In this case, the Euclidean distance between adjacent 
points, i.e .. the minimum distance. is 

tI'" = tlV)'f; mm - f::'g (4-3-25) 

which is the same result as for PAM. 

Multidimensional Signals It is apparent from the discussion above that the 
digital modulation of the carrier amplitude and phase allows us to construct 
signal waveforms that correspond to two-dimensional vectors and signal space 
diagrams. If we wish to construct signal waveforms corresponding to higher­
dimensional vectors, we may use either the time domain or the frequency 
domain or both in order to increase the number of dimensions. 

Suppose we have N-dimensional signal vectors. For any N. we may 
subdivide a time interval of length T, = NT into N subintervals of length 
T = TtiN. In each subinterval of length T, we may use binary PAM (a 
one-dimensional signal) to transmit an element of the N-dimensional signal 
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FIGURE 4--3-6 Subdivision of time and frequency axes into distinct slots. 
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vector. Thus. the N time slots are used to transmit the N-dimensional signal 
vector. If N is even. a time slot of length T may be used to simultaneously 
transmit two components of the N-dimensional vector by modulating the 
amplitude of quadrature carriers independently by the corresponding 
components. In this manner, the N-dimensional signal vector IS transmitted in 
~NT seconds(!N time slots). 

Alternatively, a frequency band of width N IV may be subdivided into N 
frequency slots each of width ilf An N-dimensional signal vector can be 
transmitted over the channel by simultaneously modulating the amplitude of N 
carriers_ one in each of the N frequency slots. Care must be taken to provide 
sufficient frequency separation ilf between successive carriers so that there is 
no cross talk interference among the signals on the N carriers. If quadrature 
carriers are used in each frequency slot, the N-dimensional vector (even N) 
may be transmitted in ~N frequency slots, thus reducing the channel bandwidth 
utilization by a factor of 2. 

More generally. we may use both the time and frequency domains jointly to 
transmit an N-dimensional signal vector. For example, Fig. 43-6 illustrates a 
subdivision of the time and frequency axes into 12 slots. Thus. an N = 12-
dimensional signal vector may be transmitted by PAM or an N = 24· 
dlmensional signal vector may be transmitted by use of two quadrature carriers 
(QAM) in each slot. 

Orthogonal Multidimensional Signals As a special case of the construction 
of multidimensional signals, let us consider the construction of M equal-energy 
orthogonal signal waveforms that differ in frequency, and are represented as 

5",(1) = Re [S,m(t)e12""j. m = 1.2 .... ,M. 0"" I "" T 

ru 
= \ffcos[2rr[,I+2rrm Mlj (4-3-261 

where the equivalent lowpass signal waveforms are defined as 

'2'f 
Sfm(t) = ~ "TeI2.W' ~r'. m = 1.2 ..... oW, 0"" I ~ T ( 4-3-27) 

This type of frequency modulation is called frequency-shift keying (FSK). 
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These waveforms are characterized as having equal energy and cross-
correlation coefficients 

P 
= 2,(;/T ( ei2~.m-k)Aft dl 

'm 2'(; 10 

= sin 1tT(m - k) !l.f ei~T(m -k) A, 
1tT(m - k)!l.f 

The real part of Pkm is 

sin [1tT(m - k) !l.1l 
p, == Re (P.",) = tcT(m _ k) at cos [1tT(m - k) All 

= 
sin [21fT(m - k) !l.1l 

2tcT(m - k) ill 

( 4-3-28) 

(4-3-29) 

First, we observe that Re (Pkm) = 0 when !l.1 = 1/2 T and m '" k. Since 
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Orthogonal signals for M = N = 3 and 
M=N=2 

H') 

,'~_-;-n; 
5, 

M=N02 

For the case in which III = } 12T, the M FSK signals are equivalent to the 
N-dimensional vectors 

s] = [Vi 0 0 0 0) 

s, = [0 Vi 0 0 0) 

SN = [0 0 0 " . 0, WJ 
where N = M. The distance between pairs of signals is 

di'':' = vii for all m, k 

(4-3-30) 

(4-3-31) 

which is also the minimlJm distance. Figure 4-3-8 illustrates the signal space 
diagram for M = N=2 and M = N~3. 

Biortbogonal Signals A set of M biorthogonal signals can be constructed 
from ~M orthogonal signals by simply including the negatives of the orthogonal 
signals. Thus, we require N = 1M dimensions for. the construction of a set of M 
biorthogonal signals. Figure 4-3-9 illustrates the biorthogonal signals for M = 4 
and 6. . 

We note that the correlation between any pair of waveforms is either 
Pr = -} or O. The corresponding distances are d = 2Vi or vii, with the latter 
being the minimum distance. 
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FIGURE 4-3-9 Signal space diagrams for M = 4 aod 
M = 6 biorthogorial signals. 
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Simplex Signals Suppose we have a set of M orthogonal waveforms {sm(t)} 
or, equivalently, their vector representation {sm}. Their mean is 

1 M 
$ = - 2: Sm (4-3-32) 

1\1 m=-I 

Now, let us constfllct another set of M signals by subtracting the mean from 
each of the M orthogonal signals. Thus, 

5:,=5",-5, m=I,2 •...• M (4-3-33) 

The effect of the subtraction is to translate the origin of the m orthogonal 
signals to the point s. 

The resulting signal waveforms are called simplex signals and have the 
following propenies. Fir-st, the energy per waveform is 

2 1 
=/f:--i+-i' . M M 

( 
1 . 

=~l--) 
M 

Second, the cross-correlation of any pair of signals is 

R· ) S:,·S:, 
e (P.m. = -. -, -11-'-1 

ISm In 

-11M 

1 -11M 
1 

M-1 

(4-3-34) 

(4-3-35) 

for all m. n. Hence. the set of simplex waveforms is equally correlated and 
requires less energy, by the factor 1- 1/ M. than the set of orthogonal 
waveforms. Since only the origin was translated, the distance between any pair 
of signal points " maintained at d = m. which is the same as the distance 
between any pair of orthogonal signals. 

Figure 4-3·/0 illustrates the simplex signals tor M = 2, 3, and 4. Note that 
the signal dimensionality is N = M - l. 

Signal Waveforms from Binary Codes A set of M signaling waveforms 
can be generated from a set of M binary code words of the form 

Cm=[Cml Cm 1 ... CHIS], m=1.2 ..... M (4-3-36) 

where em, = 0 or 1 for all In and j. Each component of a code word is mapped 
into an elementary binary PSK waveform as follows: 

If~· <'",,= I::}sm,(t)= -cos 27Cf.! (O.;;t.;;7;.) 
7; 

lu 
cmi =O::}sm,(t) = - -V 7;'COS 21ff.t (0.;; t,;;; 7;.) 

(4-3-37) 

where T. = TIN and ~. = t:1N. Thus, the M code words {e",} are mapped into 
a set of M waveforms {smUll. 
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FIGURE 4-3-18 Signal space diagram. for M-ary ,implex 
,ignal,. 
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The waveforms can be represented in vector form as 

f,ltl 

s", = [Sml Sm2 SmNj, m = 1,2, ... ,M (4-3-38) 

where sm} = ±V'i/N for all m and j. N is called the block length of the code, 
and it is also the dimension of the M waveforms. 

We note that there are 2" possible waveforms that can he constructed from 
the 2N possible binary code words. We may select a subset of M < 2N signal 
waveforms for transmission of the information. We also observe that the 2N 
possible signal points correspond to the vertices of an N-dimensional hyper­
cube with its center at the origin. Figure 4-3-11 illustrates the signal points in 
N = 2 and 3 dimensions. 

FIGURE 4-3-11 Signal 'Pace diagram, for signals Nt) 
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Each of the M waveforms has energy ~. The cross-correlation between any 
pair of waveforms depends on how we select the M waveforms from the 2' 
possible waveforms. This topic is treated in Chapter 7. Clearly, any adjacent 
signal points have a cross-correlation coefficient 

If(J - 2/ N) 
p, = If 

and a corresponding distance of 

N-2 

N 

d k ) = V2<€(l - p,) 

= v4fJN 
This concludes our discussion of memoryless modulation signals. 

4-3-2 Linear Modulation with Memory 

( 4-3-39) 

( 4-3-40) 

The modulation signals introduced in the previous section were classified as 
memoryless, because there was no dependence between signals transmitted in 
non-overlapping symbol intervals. In this section, we present some modulation 
signals in which there is dependence between the signals transmit1ed in 
successive symbol intervals. This signal dependence is usually introduced for 
the purpose of shaping the spectrum of the transmitted signal so that it 
matches the spectral characteristics of the channel. Signal dependence between 
signals transmitted in different signal intervals is generally accomplished by 
encoding the data sequence at the input to the modulator by means of a 
modulation code, as described in Chapter 9. . 

In this section, we shall present examples of modulation signals with 
memory and characterize their memory in terms of Markov chains. We shall 
confine our treatment to baseband signals. The generalization to bandpass 
signals is relatively straightforward. 

Figure 4-3-12 illustrates three different baseband signals and the corres· 
ponding data sequence. The first signal, called NRZ, is the simplest. The 
binary information digit J is represented by a rectangular pulse of polarity A 
and the binary dillit zero is represented by a rectangular pulse of polarity - A. 

FIGURE 4-3-12 Baseband signals. 

NRZ 

NRZI 

Dd·W 
mooulalion 

iMilieHOOe' : 

Dat<l 

u L 

o 

196

186 DJGITAl COMMl'~ICATIONS 

Each of the M waveforms has energy ~. The cross-correlation between any 
pair of waveforms depends on how we select the M waveforms from the 2' 
possible waveforms. This topic is treated in Chapter 7. Clearly, any adjacent 
signal points have a cross-correlation coefficient 

If(J - 2/ N) 
p, = If 

and a corresponding distance of 

N-2 

N 

d k ) = V2<€(l - p,) 

= v4fJN 
This concludes our discussion of memoryless modulation signals. 

4-3-2 Linear Modulation with Memory 

( 4-3-39) 

( 4-3-40) 

The modulation signals introduced in the previous section were classified as 
memoryless, because there was no dependence between signals transmitted in 
non-overlapping symbol intervals. In this section, we present some modulation 
signals in which there is dependence between the signals transmit1ed in 
successive symbol intervals. This signal dependence is usually introduced for 
the purpose of shaping the spectrum of the transmitted signal so that it 
matches the spectral characteristics of the channel. Signal dependence between 
signals transmitted in different signal intervals is generally accomplished by 
encoding the data sequence at the input to the modulator by means of a 
modulation code, as described in Chapter 9. . 

In this section, we shall present examples of modulation signals with 
memory and characterize their memory in terms of Markov chains. We shall 
confine our treatment to baseband signals. The generalization to bandpass 
signals is relatively straightforward. 

Figure 4-3-12 illustrates three different baseband signals and the corres· 
ponding data sequence. The first signal, called NRZ, is the simplest. The 
binary information digit J is represented by a rectangular pulse of polarity A 
and the binary dillit zero is represented by a rectangular pulse of polarity - A. 

FIGURE 4-3-12 Baseband signals. 

NRZ 

NRZI 

Dd·W 
mooulalion 

iMilieHOOe' : 

Dat<l 

u L 

o 



(-HAPTI:R"; ('HARA( TERIZA noN OF COMM\ :NICA no!\! SI(j"\lAI.S A~D "·1 .... ' 1:\1', 187 

Hence, the NRZ modulation is memoryless and is equivalent to a hinar, PAM 
or a binary PSK signal in a carrier-modulated system. 

The NRZI signal is different from the NRZ signal in that trdl1sitions from 
one amplitude level to another occur only when a I is transmitted. The 
amplitude Jevel remains unchanged when a zero is transmitted. This type of 
signal encoding is called differential encoding. The encoding operation i, 
described mathematically by the relation 

(4-3-411 

where {ak} is the binary information sequence into the encoder, {b.! is the 
output sequence of the encoder, and Ell denotes addition modulo 2. When 
b. = 1, the transmitted waveform is a rectangular pulse of amplitude A. and 
when b k = 0, the transmitted waveform is a rectangular pulse of amplitude - A 
Hence, the output of the encoder is mapped into one of two waveforms in 
exactly the same manner as for the NRZ signal. 

The differential encoding uperation introduces memory in the signal. The 
combination of the encoder and the modulator operations may be represented 
by a slate diagram (a Markov chain) as shown in Fig. 4-3-13. The state diagram 
may be described by two transition matrices corresponding to the two possible 
input bits {O, n. We note that when ak = 0, the encoder stays in the same state. 
Hence, the state transition matrix for a zero is simply 

(4-3-42) 

where t" = I if a, results in a transition from state i to state j, i = i. 2, and j = 1. 
2; otherwise, t'l = 0. Similarly, the state transition matrix for a. = 1 is 

T2 = [~ ~] (4-3-43) 

Thus, these two state transition matrices characterize the NRZI signal. 
Another way to display the memory introduced by the precoding operation 

is by means of a trellis diagram. The trellis diagram for the NRZI signal is 

FIGURE 4-3-13 State dIagram [or the NRZI signal. 

O-/.f(tj 
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fiGURE 4-3-14 The trellis diagram for the NRZI signal. 

illustrated in Fig. 4-3-14. The trellis provides exactly the same information 
concerning the signal dependence as the state diagram, but also depicts a time 
evolution of the state transitions. 

Tile signal generated by delay modulation also has memory. As shown in 
Chapter 9, delay modulation is equivalent to encoding the data sequence by a 
run-length-limited code called a Miller code and using NRZI to transmit the 
encoded data. This type of digital modulation has been used extensively for 
digital magnetic recording and in carrier modulation systems employing binary 
PSK. The signal may be described by a state diagram that has four states as 
shown in Fig. 4-3-15(a). There are two elementary. waveforms slIt) and s,(t) 
and their negatives -s,(t) and -s,(t), which are used for transmitting the 
binary information. These waveforms are illustrated in Fig. 4-3-15(b). The 
mapping from bits to corresponding waveforms is illustrated in the stale 
diagram. The state transition matrices that characterize the memory of this 
encoding and modulation method are easily obtained from the state diagram in 
Fig. 4-3-15. When a, = 0, we have 

(4-3-44 ) 

fiGURE 4-3-15 State diagram (a) and basic waveforms (b) for delay modulated (Miller-encoded) signal. 
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and when ak = I, the transition matrix is 

o 0] 1 0 

o 0 
1 0 

(4-3-45) 

Thus, these two 4 x 4 state transition matrices characterize the state dia!,ram 
for the Miller-enwded signaL 

Modulation techniques with memory such as NRZI and Miller coding are 
generally cnaracterized by a K -state Markov chain with stationary state 
probabilities {Pi' i = 1, 2, ... ,K) and transition probaoilities {Pii' i, j = 
1,2, ... ,K}. Associated with each transition is a signal waveform S,(I), 
j = I, 2, ... , K. Thus, the transition probability Pij denotes the probability that 
signal waveform sit) is transmitted in a given signaling interval after tne 
transmission of the signal waveform si(r) in the previous signaling interval. The 
transition probabilities may be arranged in matrix form as 

Pl2 '" P1K] 
P22 ... P2K 
· . · . · . 

PK2 PKK 
[" p= P~l 

/(, 

(4-3-46) 

where P is called the transition probability matrix.. 
The transition probability matrix is easily obtained from the transition 

matrices {T,} and the corresponding probabilities of occurrence of the input 
bits (fir, equivalently, the stationary state transition probabilities {Pi})' The 
y<:ne . .11 relationship may be expressed as 

2 

P = L qiTj (4-3-47) 
i=1 

where q, = P(a. = 0) and q. = Pta. = 1). 
For the NRZI signal with equal state probabilities PI = P2 = ! and transition 

matrices given by (4-3-42) and (4-3-43), the transition probability matrix is 

p=u n (4-3-48) 

Similarly, the transItion probability matrix for the Miller-coded signal with 
equally likely symbols (ql = q2 = ~ or, equivalently, PI = P2 = P3 = P4 = 1) is 

P = [~ ! ~ ~] (4-3-49) 
~ 1 0 0 
~ 0 ! 0 

The transition probability matrix is useful in the determination of the spectral 
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characteristics of digital modulation techniques with memory, as we shall 
observe in Section 4-4. 

4-3-3 Nonlinear Modulation Methods with Memory 
In this section, we consider a class of digital modulation methods in which the 
phase of the signal is constrained to be continuous. This constraint results in a 
phase or frequency modulator that has memory. The modulation method is 
also nonlinear. 

ConliRuous-Pluise FSK (CPFSK) A conventional FSK signal is generated 
by shifting the carrier by an amountf" = ~ A/In. In = ±1. ±3, ... , ±(M -1), to 
reflect the digital information that is being transmitted. This type of FSK signal 
was described in Section 4-3-1, and it is memory!ess. The switching from one 
frequency to another may be accomplished by baving M = 2* separate 
oscillators tuned to the desired frequencies and selecting one of the M 
frequencies according to the particular k-bit symbol that is to be transmitted in 
a signal interval of duration T = k/ R seconds. However, such abrupt switching 
from one oscillator output to another in successive signaling intervals results in 
relatively large spectral side lobes outside of the main spectral band of the 
signal and, consequently, this method requires a large frequency band for 
transmission of the signal. 

To avoid the use of signals having large spectral side lobes, the information­
bearing signal frequency modulates a single carrier whose frequency is changed 
continuously. The resulting frequency-modulated signal is phase-continuous 
and, hence, it is called continuous-phase FSK (CPFSK). This type of FSK 
signal has memory because the phase of the carrier is constrained to be 
continuous. 

In order to represent a CPFSK signal, we begin with a PAM signal 

(4-3-50) 
n 

where (In} denotes the sequence of amplitudes obtained by mapping k-bit 
blocks of binary digits from the information sequence {an} into the amplitude 
level~ ± 1, ±3, ... , ±(M -1) andg(t) is a rectangul~r pulse of amplitude 1/2T 
and duration T seconds. The signal de,) is used to frequency-modulate the 
carrier. Consequently, the equivalent lowpass waveform v(t) is expressed as 

vet) = ~exp V[ 41fTfd [~ d('I')d'l' + <fin]} (4-3-51) 

where Jd is the peak frequency deviation and <fio is the initial phase of the 
carrier. 

The carrier-modulated signal corresponding to (4-3-51) may be expressed as 

rn sCt) = \I T eos (21tfct + <f>(t; I) + <fio) (4-3-52) 
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where c!>(t; I) represents the time·varying phase of the carrier. which is defined 
as 

c!>(t; I) = 4 JrTh, J' ~ d( r) dr 

= 4JrTf" L [~l"g(r - nT)] dr (4·3-53) 

Note that. although d{t) contains discontinuities, the integral of d(t) is 
continuous. Hence, we have a continuous-phase signaL The phase of the 
carrier in the interval nT ~ I';'; (n + I)T is determined by integrating (4-3-53). 
Thus, 

,,- I 

c!>(r; I) = 2Jrh, T 2: I. + 2Jr/Ar - n T)l" 
k = -- ox. 

= 6" + 2Jrhl"q(1 -liT) 

where h. em and q(t) are defined as 

h =2JdT 
tl -- I 

8. = Jrh 2: J. 
k=--:o: 

{

o (t <0) 

q(t) = t/2T (O~ t ~ T) 

1 (I> T) 

(4-3-54) 

(4-3-55 ) 

(4-3-56) 

(4-3-57) 

We observe that 9" represents the accumulation (memory) of all symbols up to 
time (n - l)T The parameter h is called the modulation index. 

Continuous-Phase Modulation (CPM) When expressed in the form of 
(4-3-54), Cf"FSK becomes a special case of a general class of continuous-phase 
modulated (CPM) signals in which the carrier phase is 

" 
</>(1;1) =2Jr 2: l.h,q(t -kT), nT~t~(n + l)T (4-3-58) 

k= -x 

where {I.} is the sequence of M-ary information symbols selected from the 
alphabet ±1. ±3, ... , ±(M - I), {h k } is a sequence of modulation indices, and 
q(t) is some normalized waveform shape. 

When h. = h for all k, the modulation index is fixed for all symbols. When 
the modulation index varies from one symbol to another, the CPM signal is 
called multi·h. In such a case, the {h.) are made to vary In a cyclic manner 
through a set of indices. 

The wa~eform q(t) may be represented in general as the integral of some 
pulse g(t). i.e., 

q(t) = Lg(r)dr (4-3-59) 
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FIGURE 4-3016 Pul,e shapes lor full response CPM (a, b) and partial response CPM (c, d). 

If g(/) = 0 for r> T. the CPM signal is called full response CPM, If g(t)"O for 
r> T. the modulated signal is called partial respbme CPM, Figure 4-3,16 
illustrates several pulse shapes for g(t). and the corresponding q(r). It is 
apparent that an infinite variety of CPM signals can be generated by choosing 
different pulse shapes g{r) and by varying the modulation index h and the 
alphabet size M. 

It is imtructive to sketch the set of phase trajectories 4>(1; J) generated by all 
possible values of the information sequence {In}. For example, in the case of 
CPFSK with binary symbols In = ± 1. the set of phase trajectories beginning at 
time t = 0 is shown in Fig. 4-3-17, For comparison, the phase trajectories for 
quaternary CPFSK are illustrated in Fig. 4-3-18. These phase diagrams are 
called phase trees. We observe that the pbase trees for CPFSK are piecewise 
linear as a consequence of the fact that the pulse g(t) is rectangular. Smoother 
phase trajectories and phase trees are obtained by using pulses that do not 
contain discontinuities, such as Ihe class of raised cosine pulses. For example, a 
phase trajectory generated by the sequence (1, -1, -I, -1, I, 1, -1, 1) for a 
partial response, raised cosine pulse of length 3 T is illustrated in Fig. 4-3-19. 
For comparison, the corresponding phase trajectory generated by CPFSK is 
also shown. 

The phase trees shown in these figures grow with time. However. the phase 
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.1T 4T 

of the carrier is unique only in the range from r/> = 0 to tb = 2tr or. equivalently. 
from rf> = -tr to tb = /c. When the phase trajectories are plotted modulo 2n. say 
in the range (-]f. ]f), the phase tree collapses into a structure called a phase 
Ire/lis. To properly view the phase trellis diagram. we may plot the two 
quadrature components .t,(I: I) = cos tb(t: I) and x,(t: I) = sin tb(r: I) as 
functions of time. Thus, we generate a three-dimensional plol in wllich Ille 
quadrature components x, and x, appear on the surface of a cylinder of unit 
radius. For example. Fig. 4-:\-20 illustrates the phase treHis or phase cylinder 
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2h. 
-.1-_~·-I 

FIGURE 4-3-19 Ph.se trajectories for loinary CPFSK (dashed) and binary, partial response CPM based on raised 
rosine pulse of length 3T (solid). (From Slmdberg (/986), © 19861£££., 

obtained with binary modulatioll, a modulation index h = t and a raised 
cosine pulse of length 3 T. 

Simpler representations for the phase trajectories can be obtained by 
displaying only the terminal values of the signal phase at the time instants 
t = nT. In this case, we restrict the modulation index of the CPM signal to be 
rational. In particular, let us assume that h = m/p. where m and pare 
relatively prime integers. Then, a full response CPM signal at the time instants 
t = n T will have the terminal.phase states 

e
s 
= {o. 1tm, 21tm , ... , (p - 1)1tm} 

p p p 
(4-3-60) 

when m is even and 

e
s 
= {o, Itm , 21tm , ... , (2p -1)1tm} 

p p p 
(4-3-61) 

when m is odd. Hence, there are p terminal phase states when m is even and 
2p slates when m is odd, On the other hand, when the pulse shape extends 

FIGURE .... 3-28 Phase cylinder for binary CPM with h = ! and a raised cosine 
pulse oflength 3T. (From Sundberg (J9/16), ©lSl86I£££.j 

205

CHAPTER 4: CHARACfER1ZAT10N Of COMMUNKATION SIGNALS AND SYSTEMS 195 

2h. 
-.1-_~~-I 

FIGURE 4-3-19 Ph.se trajectories for loinary CPFSK (dashed) and binary, partial response CPM based on raised 
rosine pulse of length 3T (solid). (From Slmdberg (/986). © 19861£££., 

obtained with binary modulatioll, a modulation index h = t and a raised 
cosine pulse of length 3 T. 

Simpler representations for the phase trajectories can be obtained by 
displaying only the terminal values of the signal phase at the time instants 
t = nT. In this case, we restrict the modulation index of the CPM signal to be 
rational. In particular, let us assume that h = m/p. where m and pare 
relatively prime integers. Then, a full response CPM signal at the time instants 
t = n T will have the terminal.phase states 

e
s 
= {o. 1tm. 21tm , ... , (p - 1)1tm} 

p p p 
(4-3-60) 

when m is even and 

e
s 
= {o, Itm , 21tm , ... , (2p -1)1tm} 

p p p 
(4-3-61) 

when m is odd. Hence, there are p terminal phase states when m is even and 
2p slates when m is odd. On the other hand, when the pulse shape extends 

FIGURE +3-28 Phase cylinder for binary CPM with h = ! and a raised cosine 
pulse oflength 3T. (From Sundberg (J9/16), ©lSl86I£££.j 



196 DIGITAL COMMUNKATIONS 

o T 2T 3T 4T 

FIGURE 4-3-21 State trellis for binary CPFSK with h ~ ~. 

over L symbol intervals (partial response CPM). the number of pbase states 
may increase up to a maximum of 5.. where 

{
PML

-
I (evenm) 

5= 
, 2pML - 1 (odd m) 

(4-3-62) 

where M is tbe alphabet size. For example. the binary CPFSK signal (full 
response, rectangular pulse) with h = t has S, = 4 (terminal) phase states. The 
state trellis for this signal is illustrated in Fig. 4-3-21. We emphasize that the 
phase transitions from one state to another are not true phase trajectories. 
They represent phase transitions for the (terminal) states at the time instants 
t=nT. 

An alternative representation to the state trellis is the state diagram, which 
also illustrates the state transitions at the time instants t = 11 T. This is an even 
more compact representation of the CPM signal characteristics. Only the 
possible (terminal) ;Jhase states and their transitions are displayed in the state 
diagram. Time does .lot appear explicitly as a variable. For example, the state 
diagram for the CPFSK signal with h = ~ is shown in Fig. 4-3-22. 

Minimum-Shift Keying (MSK) MSK is a special form of binary CPFSK 

-I .. " -. • 1 

-\ 
1 

I -I 

• ' ...... --flGURE 4-3-21 Stale di.agram for binary CPFSK witlo h = ~. -I 
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(and. therefore, CPM) in which the modulation index h = ~. The phase of the 
carrier in the interval nT"'t'" (n f l)T is 

.-, 
</>(1; I) =!Ir :L J. + 1r/.q(1 - n T) 

.t=-:>t 

(
I - nT) = 8" + !nl. -T- , nT"'t';(n + I)T (4-3-63) 

and the modulated carrier signal is 

set) = A cos [2Jif..t + On + ~1rlnC -;T) ] 

= A cos [2n(.f + 41T1n)t - !mrln + 8" J. nT.,.t'" (n + I)T (4-3-64) 

The expression (4-3-64) indicates that the binary CPFSK signal can be 
expressed as a sinusQid baving one of two possible frequencies in the interval 
nT.; t'; (n + 1}T. If we define these frequencies as 

1 
It = Ic - 4T 

1 
h=lc+ 4T 

(4-3-65) 

then the binary £PFSK signal given by (4-3-64) may be written in the form 

Si(tj = A cos [2nht + 8n + !nn( - I)H), j = 1, 2 (4-3-66) 

The frequency separation I1f = h - t. = 1/2 T. Recall that I1f = 1/2 T is the 
minimum frequency separation that is necessary to ensure the orthogonality of 
the signals s,(t) and s,(t) over a signaling interval of length T. This explains 
why binary CPFSK with h =! is called minimum-shift keying (MSK). The 
phase in the nth signaling interval is the phase state of the signal that results in 
phase continuity between adjacent intervals. 

MSK may also be represented as a form of four-phase PSK. Specifically, we 
may express the equivalent lowpass digitally modulated signal in the form (see 
Problem 4-14) 

~ 

vet) = 2: fI",g(t - 2nT) - jl2n+ /g(t - 2nT - T)] (4,3-67) 
n=-% 

where g( t} is a sinusoidal pulse defined as 

{ 

. 1ft 
sm- (O';t.,.2T) 

get) = 0 2T 
(otherwise) 

(4-3-68) 
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Thus, this type of signal is viewed as a four-phase PSK signal in which the 
pulse shape is one-half cycle of a $inusoid. The even-numbered binary-valued 
(± 1) symbols {lln} of the information sequence {In} are transmitted via the 
cosine oLthe carrier, while the odd-numbered symbols {I2n+ ,} are transmitted 
via the sine of the carrier. The transmission rate on the two orthogonal carrier 
components is 1/2T bits per second so that the combined transmission rate is 
l/ T bits! s. Note that the bit transitions on the sine and cosine carrier 
components are staggered or offset in time by T seconds. for this reason. the 
signal 

S(I) = A{[n~x Ilng(t - 2nT)] cos 21if.t 

+ L~, i'n+,g(t-2nT- nJ sin 21if. t } (4-3-69) 

is called offset quadrature PSK (OQPSK) or staggered quadrature PSK 
(SQPSK). 

Figure 4-3-23 illustrates the representation of the MSK signals as two 
staggered quadrature-modulated binary PSK signals_ The corresponding sum 
of the two quadrature signals is a constant amplitude. frequency-modulated 
signal. 

It is also interesting to compare the waveforms for MSK with offset QPSK 
in which the pulse g(l) is rectangular for 0,,;; I";; 27. and with conventional 

Representation of MSK signal as a form of two 
staggered binary PSK signal •• each with. 
sinusoidal envelope. 
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FIGURE 4-),24 Signal waveforms for (a) MSK, (b) offset QPSK (rectangular pulse), and (e) conventional QPSK 
(rectangular pulse). [From Gronemeyer and McBride 11976); © 19761£££.1 

quadrature (four-phase) PSK (QPSK) in which the pulse g(r) is rectangular for 
0..; r '" 2T. aearly, all three of the modulation methods result in identical data 
rates. The MSK signal has continuous phase. The offset QPSK signal with a 
rectangular pulse is basically two binary PSK signals for which the phase 
transitions are staggered in time by T seconds. Thus, the signal contains phase 
jumps of ±90" that may occur as often as every T seconds. On the other hand, 
the conventional four-phase PSK signal with constant amplitude will contain 
phase jumps of ± 180" or ±90° every 2 T seconds. An illustration of these three 
signal types is given in Fig. 4-3-24. 

s..... Space Diagrams for CPM In general, continuous-phase signals 
cannot be represented by discrete points in signal space as in the case of PAM, 
PSK, and QAM, because the phase of the carrier is time-variant. Instead, a 
continuous-phase signal is described by the various paths or trajectories from 
one phase state to another. For a constant-amplitude CPM signal, the various 
trajectories form a circle. 
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FIGURE 4-3-25 Signal space diagram for CPFSK. 

For example, Fig. 4-3·25 illustrates the signal space (phase trajectory) 
diagram for CPFSK signals with h = t h = t. h = !. and h = 5. The beginning 
and ending points of these phase trajectories are marked in the figure by dots. 
Note that the length of the phase trajectory increases with an increase in h. An 
increase in h also results in an increase of the signal bandwidth, as 
demonstrated in the following section. 

Multiamplitude CPM Multiamplitude CPM is a generalization of ordinary 
CPM in which the signal amplitude is allowed to vary over a set of amplitude 
values while the phase of the signal is constrained to be continuous. For 
example, let us consider a two-amplitude CPFSK signal, which may be 
represented as 

s(t) = 2A cos [21rfct + <1>,(1; 1)1 + A cos [2nfcr + <1>,«(; I») (4-3-70) 

where 

n-' 1fhI.{t-nT) 
4>2(t;I)=7rhk~xlk+ T ,nT""t""(n+l)T (4-3-71) 

,,-I Trh./,,(t-nT) 
4>1(t:J)=1fhk~/k+ T ,nT.;;t.;;(n+l)T (4-3-72) 

The information is conveyed by the symbol sequences {In} and {J,,}, which are 
related to two independent binary information sequences {an} and {b,,} that 
take values {O,l}. We observe that the signal in (4-3-70) is a superposition of 
two CPFSK signals of different amplitude. However, the sequences {In} and 
{J,,} are not statistically independent, but are constrained in order to achieve 
phase continuity in the superposition of the two components. 

To elaborate. let us consider the case where h = t so that we have the 
superposition of two MSK signals. At the symbol transition points, the two 
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". b. 1. J. Amplitucle-plttie rdatlou 

Il <) -\ -1 Amplitude is comtant; phase decreases 
J 1 -1 1 Amplitude changes; phale decreases 
1 0 I I Amplitude is constant; phase increases 

1 -I Amplitude changes; phase increases 

amplitude components are either in phase or 180" out of phase. The phase 
change in the signal is determined by the phase of the larger amplitude 
component, while the amplitude change is determined by the smaller 
component. Thus, the smaller component is constrained such that at "the start 
and end of each symbol interval, it is either in phase or 180" out of phase with 
the larger component, independent of its phase. Under this constraint, the 
symbol sequences {In} and {I.} may be expressed as 

1,,=2an -l 

in = In(l - lb") = 1.( 1-~) 
These relationships are summarized in Table 4-3-l. 

As a generalization, a multiamplitude CPFSK signal 
may be expressed as 

N-, 

(4-3-73) 

with n components 

S(I) = 2N-' cos [2trj;! + 4>.v(I;I)] + L 2m
-, cos [21ifc1 + 4>m(I;Jm)] (4-3-74) 

m"'l 

where 

l-nT n-' 
cI>",(t; I) = lrhln -T- + trh k~~ h. nT ~ I ~ (n + 1)7 (4-3-75) 

and 

n-' 
+ 2: 1rl.[h + Wm. + I»), nT., I ~ (n + l}T (4-3-76) 

k=~QD 

The sequences {In} and {Jmn} are statistically independent, binary-valued 
sequences that take values from the set {I, -I}. 

From (4·3-75) and (4-3-16), we observe that each component in the sum 
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FIGURE 4-3-26 Signal space diagrams for two-component CPFSK, 

3 

will be either in phase or 18ff out of phase with the largest component at the 
end of the nth symbol interval, i,e., at t = (n + 1)T. Thus, the signal states are 
specified by an amplitude level from the set of amplitudes {t, 3, 5, ... ,2N 

- I} 
and a phase level from the set {G, ICe, 2ICe, ... , 21r - 1Ch}. The phase constraint 
is required to maintain the phase continuity of the CPM signal. 

Figure 4·3-26 illustrates the signal space diagrams for two-amplitude (N = 2) 
CPFSK with h = t t t and ~. The signal space diagrams for three-component 
(N = 3) CPFSK are shown in Fig. 4-3-27. In this case, there are fouT amplitude 
levels. The number of states depends on the modulation index h as well as N. 
Note that the beginning and ending points of the phase trajectories are marked 
by dots.. 

Additional multiamplitude CPM signal formats may be obtained by using 
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FIGURE 4-J..21 Signal space diagrams for Ihn.:c-t.xlmponenr CPFSK. 

pulse shapes other than rectangular, as well as signal pulses that span more 
than one symbol (partial response). 

4-4 SPECTRAL CHARACTERISTICS OF DIGITALLY 
MODULATED SIGNALS 

In most digital communications systems, the available channel !;andwidth IS 

limited. Consequently, the system designer must consider the constraints 
imposed by the channel bandwidth limitation in the selection of the modula­
tion technique used to transmit the information. For this reason. it is important 
for us to deterrmne the spectral content of the digitally modulated signals 
described in Section 4-3. 

Since the information sCljuence is random. a digitally modulated signal is a 
stochastic process. We arc interested in determining the power density 
spectrum of such a process. From the power density spectrum. we can 
determine the channel bandwidth required to transmit the information-bearing 
signal. Below. we lir~t ,krive the spectral characteristics of the class of linearly 
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modulated signals. Then. we .consider the nonlinear CPFSK. CPM. and 
baseband modulated signals with memory. 

4-4-1 Power Spectra of Linearly Modulated Signals 
Beginning with the form 

set) = Re [v(l)e"·!.'1 

which relates the bandpass signal s(t) to the equivalent lowpass signal vet), we 
may express the autocorrelation function of s(t) as 

(4-4-1) 

where "'w(') is the autocorrelation function of the equivalent lowpass signal 
vet). The Fourier transform of (4-4-1) yields the desired expression for the 
power density spectrum <t>ss(f} in the form 

(4-4-2) 

where <Puv(f) is the power density spectrum of vet). It suffices to determine the 
autocorrelation function and the power density spectrum of the equivalent 
lowpass signal vet). 

First we consider the linear digital modulation methods for which vet) is 
represented in the general form 

V' 

11(/)= 2: fng(t-nT) (4-4-3) 
'1= -QO 

where the transmlSSlO1l rate is liT = R/k symbolsJs and U,} represents the 
sequence of symbols that results from mapping k-bit blocks into corresponding 
signal points selected from the appropriate signal space diagram. Observe that 
in PAM. the sequence {In} is real and corresponds to the amplitude values of 
the transmitted signal. but in PSK, QAM, and combined PAM-PSK, the 
sequence {I"l is complex-valued. since the signal points have a two-dimensional 
representation. 

The autocorrelation function of 11(£) is 

q" .. (t + .; t) = !E{v*(t)u(t + ell 
= ~ 

= ~ L 2: E[I!lmlg*(t - nT)g(t + e - mT) (4-4-4) 

We assume that the sequence of information symbols {In} is wide-sense 
stationary with mean 1'-, and autocorrelation function 

(4-4-5) 
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Hence (4-4-4) can be expressed as 

~ ~ 

<I>~(t + 1';1) = 2: L <l>ii(m - n)g*(t- nT)g(1 + l' - mT) 
n=~::c nl=~X 

~ % 

= L "'i,(m) L g*(1 - nT}g(t + l' - nT - mT) (4-4-6) 
ltl=-X n=-'X 

The second summation in (4-4-6), namely. 

x 

L g*(t - nT)g(t + 1'- nT - mT) 

is periodic in the t variable with period T. Consequently, </Iw(t + r: t) is also 
periodic in the t variable with period T. That is. 

tf>~(1 .,.. T + T; t + T) = "'"v(t + 1'; t) (4-4-7) 

In addition, the mean value of vet), which is 

% 

Erll(t)! = 14, L get - nT) (4-4-8) 
n=-::c 

is periodic with period T. Therefore vet) is a stochastic process having a 
periodic mean and autocorrelation function_ Such a process is called a 
cyclostationary process or a periodically station'ary process in the wide sense, as 
described in Section 2-2-6. 

In order to compute the power density spectrum of a cyclostationary 
process, the dependence of <l>vu(t + r; t) on the t variable must be eliminated. 
This can be accomplished simply by averaging <l>vu{1 + r; t) over a single 
period. Thus, 

(4-4-9) 

We interpret the integral in (4-4-9) as the time-autocorrelation function of g(I) 
and define it as 

(4-4-10) 

215

CHAPTER 4. CHARACTERIZA.TION Of COMMUNIC.~TIO!'ll SlGNALS AND SYSTEMS 20S 

Hence (4-4-4) can be expressed as 

~ ~ 

"'~(t + 1';1) = 2: L: <l>ii(m - n)g*(t- nT)g(1 + l' - mT) 
n=~::c nl=~X 

~ % 

= L <f>i,(m) L g*(1 - nT}g(t + l' - nT - mT) (4-4-6) 
ltl=-X n=-'X 

The second summation in (4-4-6), namely. 

x 

L g*(t - nT)g(t + 1'- nT - mT) 

is periodic in the t variable with period T. Consequently, </Iw(t + r: t) is also 
periodic in the t variable with period T. That is. 

tf>~(1 c- T + T; t + T) = "'"v(t + 1'; I) (4-4-7) 

In addition, the mean value of vet), which is 

% 

E[lI(t)! = 14, L get - nT) (4-4-8) 
n=-::c 

is periodic with period T. Therefore V(I) is a stochastic process having a 
periodic mean and autocorrelation function_ Such a process is called a 
cyclostationary process or a periodically station'ary process in the wide sense, as 
described in Section 2-2-6. 

In order to compute the power density spectrum of a cyclostationary 
process, the dependence of </Iw(1 + r; I) on the t variable must be eliminated. 
This can be accomplished simply by averaging </Ivv{1 + r; t) over a single 
period. Thus, 

(4-4-9) 

We interpret the integral in (4-4-9) as the time-autocorrelation function of g(I) 
and define it as 

(4-4-10) 



206 DIGITAL COMMUNICA nONS 

Consequently (4·4·9) can be expressed as 

_ 1 x 

<f>",,(r) = T m~x <f>ii(m)<pgg(r - mT) (4.4·11) 

The Fourier transform of the relation in (4·4·11) yields the (average) power 
density spectrum of v( () in the form 

(4-4·12) 

where G(!) is the Fourier transform of get), and 4>ii(f) denotes the power 
density spectrum of the information sequence, defined as 

Q 

<l>ji(f) = 2: ""i(m)e-j",fmT (4-4·13) 
m= -OX! 

The result (4·4-12) illustrates the dependence of the power density spectrum of 
vet) on the spectral characteristics of the pulse g(t) and the information 
sequence {J,,}. That is, the spectral characteristics of v(t) can be controlled by 
design of the pulse shape g( t) and by design of the correlation characteristics of 
the information sequence. 

Whereas the dependence of 4>w(f) on G(t) is easily understood upon 
observation of (4-4·12), the effect of the correlation properties of the 
information sequence is more subtle. First of all, we note that for an arbitrary 
autocorrelation "",(m) the corresponding power density spectrum 4>ii(f) is 
periodic in frequency with period 1/ T. In fact, the expression (4-4·13) relating 
the spectrum 4>,,(f) to the autocorrelation "' .. (m) is in the form of an 
exponential Fourier series with the {"',,(m)} as the Fourier coefficients. As a 
consequence, the autocorrel"f;on sequence <Pii(m) is given by 

J
I/2T 

",,,(m) = T -1'2T 4>A!),J2,qmT df (4-4·14) 

Second, let us consider the case in which the information symbols in the 
sequence are real and mutually uncorrelated. In this case, the autocorrelation 
function "'ii(m) can be expressed as 

{
ITT + IL~ (m = 0) 

<p,,(m)= Ii; (mrfO) ( 4-4·15) 

where ut denotes the variance of an informatioll symb'ol. When (4·4·15) is 
used to substitute for "'"Im) in (4·4·13), we obtain 

x 

"'it(f) =: a; + JL~ 2: e -J1Ift/
l
fT (4-4·16) 

The summation in (4·4·16) is periodic with period liT. It may be viewed as 

216

206 DIGITAL COMMUNICA nONS 

Consequently (4·4·9) can be expressed as 

_ 1 x 

<f>",,(r) = T m~x <f>ii(m)<pgg(r - mT) (4.4·11) 

The Fourier transform of the relation in (4·4·11) yields the (average) power 
density spectrum of v( () in the form 

(4-4·12) 

where G(!) is the Fourier transform of get), and 4>ii(f) denotes the power 
density spectrum of the information sequence, defined as 

Q 

<l>ji(f) = 2: ""i(m)e-j",fmT (4-4·13) 
m= -OX! 

The result (4·4-12) illustrates the dependence of the power density spectrum of 
vet) on the spectral characteristics of the pulse g(t) and the information 
sequence {J,,}. That is, the spectral characteristics of v(t) can be controlled by 
design of the pulse shape g( t) and by design of the correlation characteristics of 
the information sequence. 

Whereas the dependence of 4>w(f) on G(t) is easily understood upon 
observation of (4-4·12), the effect of the correlation properties of the 
information sequence is more subtle. First of all, we note that for an arbitrary 
autocorrelation "",(m) the corresponding power density spectrum 4>ii(f) is 
periodic in frequency with period 1/ T. In fact, the expression (4-4·13) relating 
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exponential Fourier series with the {"',,(m)} as the Fourier coefficients. As a 
consequence, the autocorrel"f;on sequence <Pii(m) is given by 

J
I/2T 

",,,(m) = T -1'2T 4>A!),J2,qmT df (4-4·14) 

Second, let us consider the case in which the information symbols in the 
sequence are real and mutually uncorrelated. In this case, the autocorrelation 
function "'ii(m) can be expressed as 

{
ITT + IL~ (m = 0) 

<p,,(m)= Ii; (mrfO) ( 4-4·15) 

where ut denotes the variance of an informatioll symb'ol. When (4·4·15) is 
used to substitute for "'"Im) in (4·4·13), we obtain 

x 

"'it(f) =: a; + JL~ 2: e -J1Ift/
l
fT (4-4·16) 

The summation in (4·4·16) is periodic with period liT. It may be viewed as 
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the exponential Fourier series of a periodic train of impulses with each impulse 
having an area 1/T. Therefore (4-4-16) can also be expressed in the fonn 

IL2 ~ ( m) 
¢>iiU) = c? + ~ L ~ f - -

T m~-~ T 
(4-4-17) 

Substitution of (4-4-17) into (4-4-12) yields the desired result for the power 
density spectrum of vet) when the sequence of information symbols is 
uncorrelated. That is, 

¢>vu(f) = at IG(f)12 + IL; :i: 'IG(~)12 ~(f _ m) 
T T .,,~ -ro T T 

(4-4-18) 

The expression (4-4-18) for the power density spectrum is purposely 
separated into two terms to emphasize the two different types of spectral 
components. The first term is the continuous spectrum, and its shape depends 
only on the spectral characteristic of the signal pulse g( t). The second term 
consists of discrete frequency components spaced 1/T apart in frequency. Each 
spectral line has a power that is proportional to IG(I)I' evaluated at f = mIT. 
Note that the discrete frequency components vanish when the infonnation 
symbols have zero mean, i.e., IL, = 0_ This condition is usually desirable for the 
digital modulation techniques under consideration, and it is satisfied when 
the information symbols are equally likely and symmetrically positioned in the 
complex plane. Thus, the system designer can control the spectral characteris­
tics of the digitally modulated signal by proper selection of the characteristics 
of the information sequence to be transmitted. 

Example 4-4-1 

To illustrate the spectral shaping resulting from get), consider the rectangu­
lar pulse shown in Fig. 4-4-1(0). The Fourier transform of get) is 

G(f) = ATsin tifT e -J'<IT 
tifT 

Rectangular pulse and its energy density spectrum IGU)I' 

o T 
. , 

21T 3fT J 
1M 
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Hence 

(4-4-19) 

This spectrum is illustrated in Fig. 4-4-I(b}. Note that it contains zeros al 

mulliples of liT in frequency and that it decays inversely as the square of 
the frequency variable. As a consequence of the spectral zeros in G(f), all 
but one of the discrete spectral components in (4-4-18) vanish, Thus. upon 
substitution for IGU)I' from (4-4-19), (4-4-18) re~uces to 

<t>wU) = a;A'Tei~~Tr + A Z/Lfl3(f) (4-4-20) 

Example 4-4-2 

As a second illustration of the spectral shaping resulting from g(l). we 
consider the raised cosine pulse 

(4-2-21) 

This pulse is graphically illustrated in Fig. 4-4·2(a). Its Fourier transform is 
easily derived and it rna, be expressed in the form 

( 4-4-22) 

The square of the magnitude of G(f) is shown in Fig. 4-4-2(b). It is 
interesting to note that the spectrum has zeros at f = nIT, n = ±2. ±3, 
±4, .... Consequently, all the discrete spectral components in (4-4-18), ex­
cept the ones at f = 0 and f = ±l/T. vanish. When compared with the 

FIGURE 4-4-2 Raised cosine pulse and its energy densily spectrum IG(f)!'. 
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spectrum of the rectangular pulse, the spectrum of the raised cosine 
pulse has a broader main lobe but the tails decay inversely as f". 

Example 4-4-3 

To illustrate that spectral shaping can also be accomplished by operations 
performed on the input information sequence, we consider a binary 
sequence {bn } from which. we form the symbols 

(4·4-23) 

The {bn } are assumed to be uncorrelated random variables, each having zero 
mean and unit variance. Then the autocorrelation function of the sequence 
{In} is 

</>ii(m) = E(I"ln_m) 

{

2 (m =0) 

= 1 (m = ± 1) 

o (otherwise) 

Hence, the power density spectrum of the input sequence is 

<fJ.(f) = 2{l .,. cos 2tcfT) 

= 4 cos2 HIT 

(4-4-24) 

(4-4-25) 

and the corresponding power density spectrum for the (Iowpass) modulated 
signal is 

4 
<fJvv(f) = T IG(!)12 cos' 7ifT (4-4-26) 

4-4-2 Power Spedra of CPFSK BBd CPM Signals 

In this section, we derive the power density spectrum for the class of constant 
amplitude CPM signals that were described in Section 4-3-3. We begin by 
computing the autocorrelation function and its Fourier transform, as was done 
in the case of linearly modulated signals. 

The constant amplitude CPM signal is expressed as 

S(I: I) = A cos (2nj;.1 + <b(t: I») (4-4-27) 

where 

</>(1; I) = 2Hh L l.q(t - k T) 
N=-Qo 

( 4-4-28) 
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Each symbol in the sequence {I.} can take one of the M values {± 1, ±3, ...• 
±( M - 1 )}. These symbols are statistically independent and identically distrib­
uted with prior probabilities 

p., =P(J. =n), n = ±1, ±3, ... , ±(M -1) (4-4-29) 

where ~n Po = 1. The pulse g(t) = q'(t) is zero outside of the interval [0, LTJ, 
q(t) = 0, t < 0, and q(t) = ~ for t> L T. 

The autocorrelation function of the equivalent lowpass signal 

v(t) = el,,(dJ 

is 

First we express the sum in the exponent as a product of exponents. The 
result is 

"'.",(t + r; t) = ~£( Ii exp{j2Khh[q(1 + r - kT) - q(l - kT)]}) (4-4-31) 
k = --0;, 

Next, we perform the expectation over the data symbols {lo}. Since these 
symbols are statistically independent, we obtain 

4> •.•• (1 + r; t) = ~. fI, ( .. ~ ~: I) p., exp{j2Irhn!q(1 + r - kT) - q(t - kT»)}) 
II odd 

(4-4-32) 

Finally, the average autocorrelation function is 

_ 1 ,.1 

q,,,.( r) = T L 4> •.• (1 + r: I) dl (4-4-33) 

Although (4-4-32) implies that there are an infinite number of factors in the 
product, the pulse g(l) = q'(I) = 0 for 1 < 0 and t> LT, and q(l) = 0 for t < O. 
Consequently only a finite number of terms in the product have nonzero 
exponents. Thus, (4-4-32) can be simplified considerably. In addition. if we let 
r = t + mT. where 0 '" ~ < T and m = 0, 1, ... , the average autocorrelation in 
(4-4-33) reduces to 

4> •.•. U+mT) 

= 21T r. ~~'l. (,. _'~: 1) p., exp {j2Khn[q(1 + f - (k - m)T) - q(r - kT)Jl) 
II odd 

(4-4-34) 
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Let us focus on J;,,"(~ + mT) for ~ + mT;;. LT. In this case. (4-4-34) may be 
expressed as 

elim'(~ + mT) = [r/lUh»)'" IA(~). m ;;. L. 0 "" ~ < T (4-4-35 ) 

where r/lUh) is the charactaistic function of the random sequence {i,,). de­
fined as 

I/IUh) = E(e'''''''') 
M-I 

2: ~teifflrn 
fF--{M-i) 

nodd 

(4-4-36) 

and AU) is the remaining part of the average autocorrelation function. which 
may be expressed as 

A(~) = ZIT r '~~L ("~X'-Il p"exp{j2IrhnH -q(t -kT)U) 
II uoJd 

x '~~I. (,,~'1-I) P"exp li2/rhnq(r + ~ - kT)J)dl. m;;.L (4-4-37) 

" odd 

Thus, .bu., ( r) may be separated into a product of A(~) and r/I(jh) as indicated in 
(4-4-35) for r = ~ + mT;;. LT and 0 "" ~ < T. This property is used below. 

The Fourier transform of eIi .. ( r) yields the average power density spectrum 
as 

But 

<I> •• (f) = fx eIi",,( r)e -i2"" dr 

= 2 Re [{' eIi •• (r)e- j
, .. " dr] 

[ Jivv(r)e-f2
Kfr dr = fT Jivv(r)e-J2

"" dr 

+ IX eli, .• ( r)e -ilK" dr 
LT 

(4-4-38) 

(4-3-39) 

With the aid of (4-4-35), the integral in the range LT",; T < '" may be 
expressed as 

(4-4-40) 
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Now, leI t = f + mT. Then (4-4-40) becomes 

(4-4-41) 

A property of the characteristic function is l"'Uh)I";: 1. For values of h for 
which 1I/J(jh)1 < 1, the summation in (4-4-41) converges and yields 

- . 1 
" ''-''( h)e-J'''fn' - -----::= n-:-o 'I' J - 1 - ",(ih)e j2"fT 

In this case, (4-4-41) reduces to 

(4-4-42) 

(4-4-43) 

By combining (4-4-38), (4-4-39), and (4-4-43), we obtain the power density 
spectrum of the CPM signal in the form 

[fL' -. 1 I'LOI)T - ] 
<I> <I) ~ 2 Re ... (r)e-J2<f'dr+ . ... (r)e-J'''''dr 

vv 'l'uu 1 - ,1,( 'n)e -"xiT 'l'w 
11 ~I l.T 

(4-4-44) 

This is the desired result when IIjJ(jh)1 < 1. In general, the power density 
spectrum is evaluated numerically from (4-4-44). The average autocorrelation 
function ,fi",,(1") for the range 0.;: r.;:(L + I)T may be computed numerically 
from (4-4-34). 

For values of h for which l"'Uh)1 = 1, e.g., h = K, where K is an integer, we 
can set 

(4-4-45) 

Then, the sum in (4-4-411 becomes 

(4-4-46) 
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Thus, the power density spectrum now contains impulses located at frequencies 

n+v t, = -r ' 0 ,;;: v < 1, n = 0, I, 2, ... (4-4-47) 

The result (4-4-46) can be combined with (4-4-41) and (4-4-39) to obtain the 
entire power density spectrum, which includes both a continuous spectrum 
component and a discrete spectrum component. 

Let us return to the case for which 1l/J(jh)1 < L When the symbols are 
equally probable, i.e" 

1 
P =- {or all n 

n M 

the characteristic function simplifies to the form 

1 "'-I 
"'(jh ) ~ - 2: ei""" 

M n~~{M~I) 
nodd 

1 sin Mlth 
=-

M sinnh 
(4-4-48) 

Note that in this case "'(jh) is real. The average autocorrelation function given 
by (4-4-34) also simplifies in this case to 

A: ) 1 iT l'nlT! I sin 2nhM[q(t + r - kT) - q(t - kT)l 
'l'vu(! = - _ 'dt (4-4-49) 

2T 0 kel ~L M sm21rh(q(t + r - kT) - q(t - kT)] 

The corresponding expression for the power density spectrum reduces to 

CPu,(f) ~ 2[1' T Jw ( r) cos 21rfr dr 

l-l/J(jh) cos27ifT l(L+I)T - ] 

+ I + l/J2(jh) - 2l/JUh) cos 21ifT LT "'v,(r) cos 21ifrdr (4-4-50) 

Power Density Spectrum of CPFSK A closed-form expression for the 
power density spectrum can be obtained from (4-4-50) when the pulse shape. 
get) is rectangular and zero outside the interval [0, T). In this case, q(t) is 
linear for 0,,;; I ,,;; T. The resulting power spectrum may be expressed as 
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where 
sin HlfT - l(2n - 1 - M)h 1 

A,,(f) = H[fT - ~(2n - 1 - M)h 1 
cos (2HfT - Qm,,) - '" cos "nm 

1 + ",' - 21/1 cos 2HfT 

an", = Hh(m + n - 1 - M) 

sin MJrh 
'" == "'(jh) = M - h sm Tr. 

(4-4-52) 

The power density spectrum of CPFSK for M = 2, 4, and B is plotted in 
Figs 4-4-3, 4-4-4, and 4-4-5 as a function of the normalized frequency fT, with 
the modulation index h = 2f" T as a parameter. Note that only one-half of the 
bandwidth occupancy is shown in these graphs_ The origin corresponds to the 
carrier t. The graphs illustrate that the spectrum of CPFSK is relatively 
smooth and well confined for h < 1. As h approaches unity, the spectra become 
very pe;lked and, for h = 1 when 1"'1 = 1, we find that impulses occur at M 
frequencies. When h > 1 the spectrum becomes much broader. In communica­
tion systems where CPFSK is used_ the modulation index is designed to 
conserve bandwidth, so that h < I. 

The special case of binary CPFSK with h = I (or f" = 1/4 T) and '" = 0 
corresponds to MSK In this case, the spectrum of the signal is 

16A
2
T( cos 2trfT )' 

4>vv(f) = ----;;> 1 _ J6r'T' , 
(4-4-53 ) 

where the signal amplitude A = 1 in (4-4-52). In contrast the spectrum of 
fOUl-phase offset (quadrature) PSK (OQPSK) with a rectangular pulse g(/) of 
duration T is 

, (Sin HfT)' 
4>,.,,(f) = A-T JefT (4-4-54 ) 

If we compare these spectral characteristics, we should normalize the 
frequency variable by the bit rate or the bit interval ~,. Since MSK is binary 
FSK, it follows that T = Tb in (4-4-53). On the olher hand. in OQPSK, T = 2~, 
so that (4-4-54) becomes 

, (Sin 2trfTb )' 
4>,.,.(f) = 2kTb 2TifT. (4-4-55) 

The spectra of the MSK and OQPSK signals are illustrated in Fig. 4-4-6. 
Note that the main lobe of MSK is 5()% wider than that for OQPSK. However. 
the side lobes in MSK fall off considerably faster. For example. if we compare the 
bandwidth W that contains 99% of the total power. we find that W = I. 2/ 7" for 
MSK and W = SIT" for OQPSK. Consequentl~'. MSK has a narrower spectral 
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occupancy when viewed in terms of fractional out-of-band power above 
fT" = 1. Graphs for the fractional out-of-band.power for OQPSK and MSK are 
shown in Fig, 4-4-7. Note that MSK is si6>,ificantly more bandwidth-efficient 
than QPSK. This efficiency accounts for the popularity of MSK in many digital 
communications systems. 

Even greater bandwidth efficiency than MSK can be achieved by reducing 

225

CHAPTER 4· CHARACTERIZATION Of COMMUNJCATIQN SIGNALS AND SYSTEMS 215 

Spectral density for lwo-Ievel CPFSK Spectral densil)' fO(" two-Jevej Cf'FSK 
1.0 r---.--,..---,---r---,-----, 13 

L2 

1.1 

1.0 

0.9 

O.s 
0.7 

0.6 

0.5 

O. 

O. 

O. 

O. 

0.9 

08~ 11=0.5 

0.7 

~ 
] 06 N (I, 

<; 0.5 h =0.7 
h=2fJ 

i Q'l,..--
'" 

0.3 

0.2 

0.1 

o 

2.G 

1.8 

1.6 

" 
~ 

~ 
1.2 

u 
." 

1.0 g 
~ 0.8 

or. 

0.6 

u. 
III 

U e.o 

.- h=0.6 

, 
1 2 

Normalized frequency f T 

I.; 

Speo:lfai den\ity for two-level CPFSK 

h= 2f,T 

0.4 0.8 

Normillized frequency.rr 
Ie) 

1.2 1.6 

1.) 

1.0 

:>.9 

U 

~ 0.7 
.~ 

c 0.6 u 
." 

~ 05 
8. 
'" J.' 

0.3 

0.2 

0.1 

0 

.. "~ h=0.9 

4 h~0.95 

3~ 

2 

I 

o 0.4 0.8 12 
Normalized frequency f T 

Ib) 

Spectral density for two-level CPFSK 

h= 1.3 

0.8 1,1 

Normaliud frequeocy fT 
(4) 

1.6 

1.6 

FIGURE 4-4-3 Power denSity spectrum of binary CPFSK. 

occupancy when viewed in terms of fractional out-of-band power above 
fT" = 1. Graphs for the fractional out-of-band.power for OQPSK and MSK are 
shown in Fig. 4-4-7. Note that MSK is si6>,ificantly more bandwidth-efficient 
than QPSK. This efficiency accounts for the popularity of MSK in many digital 
communications systems. 

Even greater bandwidth efficiency than MSK can be achieved by reducing 



~ 
c 
~ 
~ 

e 
,; 
8. 
'" 

10 

0.9 

(I.~ 

0.1 

H.t) 

0.5 

0.. 

Ii.J 

02 

IJ.I 

Il 

216 DIGITAL CO'-4Ml:SICATJONS 

S~'trJ.1 dtn .. i,y Itlr fuude'icf CPFSK Speclrai dtns,ity for {our-fe'"C'1 CPF"SK 

Nurm...:.! ,lcd frequen.,.-y rr 
(fl) 

0.' 

(11 

, 

I:===-

0 .. ' 

0.2 

O. 

o 

h=O.95 

h= 2hT 

hr·9..J 

~ 
Ie:=. , 

N("Irmalu~d frequency IT (., 

1.11,---,------..,-------, 

OJ, 

0.1 

}p: LO:'i 

N~lflll<l)ized frequelll.-y.fT 
lei 

fiGURE 444 Power density spectrum of qualernary CPFSK. 

the modulation index. However, the FSK signals will no longer be orthogonal 
and there will be an increase in tbe error probability. 

Spectral Characteristics of CPM In general, the bandwidth occupancy of 
CPM depends on the choice of the modulation index h. the pulse shape g(I). 
and the number of signals M. As we ha\c observed for CPFSK, small values of 
h result in CPM signals with relatively small bandwidth occupancy, while large 
values of h result in signals with large handwidth occupancy. This is also the 
case for the more general CPM signals. 
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the modulation index. However, the FSK signals will no longer be orthogonal 
and there will be an increase in the error probability. 

Spectral Characteristics of CPM In general. the bandwidth occupancy of 
CPM depends on the choice of the modulation index h. the pulse shape g(I). 
and the number of signals M. As we ha\c observed for CPFSK. small values of 
h result in CPM signals with relatively small bandwidth occupancy, while large 
values of h result in signals with large handwidth occupancy. This is also the 
case for the more general CPM signals. 
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g(t) = 02LT LT (4-4-56) 

(otherwise) 

where L == I for full response and L > 1 for partial response, result in smaller 
bandwidth occupancy and, hence, greater bandwidth efficiency than the use of 
rectangular pulses. For example, Fig. 4-4-8 illustrates the power density 
spectrum for binary CPM with different partial response raised cosine (LRC) 
pulses when h = ~_ For comparison, the spectrum of binary CPFSK is also 
shown. Note that as L increases the pulse g(t} becomes smoother and the 
corresponding spectral occupancy of the signal is reduced. 

FIGURE 4-4-8 Power density spectrum for binary ('PM with" = \ 

and different pulse sbapes. [From All/in et a!. (198J); 
[) 1981 IEEE] 
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The effect of varying the modulation index in a CPM signal is illustrated in 
Fig. 4-4-9 for the case of M = 4 and a raised cosine pulse of the form given in 
(4-4-56) with L = 3. Note that these spectral characteristics are similar to the 
ones illustrated previously for CPFSK, except that these spectra are narrower 
due to the use of a smoother pulse shape. 

Finally, in Fig. 4-4-10, we illustrate the fractional out·of-band power for 
two-amplitude CPFSK with several different values of h. 

FIGURE 4-4-10 Fractional out~of-band power (or !wo·component CPFSK. (Mulligan,I988.) 
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4-4-3 Power Spectra of Modulated Signals with Memory 
In the last two sections, we have determined the spectral characterislics for the 
cia,s of linearly modulated signals without memory and' for the class of 
angle-modulated signals such as CPFSK and CPM, which are nonlinear and 
possess memory. In this sectIon, we consider the spectral characteristics of 
linearly modulated signals that have memory that can be modeled by a Markov 
chain. We have already encountered such signals in Section 4-3-2, where we 
described several types of baseband signals. 

The power density spectrum of a digitally modulated signal that is 
generated by a Markov chain may be derived by following the basic procedure 
given in the previous section. Thus, we can determine the autocorrelation 
function and then evaluate its Fourier transform to obtain the power density 
spectrum. For signals that are generated by a Markov chain with transition 
probability matrix P, the power density spectrum of the modulated signal may 
be expressed in the general form (see Titsworth and Welch, 1%1) 

( 4-4-57) 

where S,(f) is the Fourier transform of the signal waveform S,(l). 

K 

s;(t) = S,(l) - 2: PkS.(I) 
k = i 

Pij(f) is the Fourier transform of the discrete-time sequence p,/n), defined as 

~ 

F',j(f) = L p'I(n)e -,2~"J T (4-4-58/ 
n~ I 

and K is the number of states of the modulator. The term p,,(n) denotes the 
probability that the signal s,(t) is transmitted n signaling intervals after 
the transmission of 5,(1), Hence, {p,,(n)} are the transition probabilities in the 
transition probability matrix P", Note that pij(l) = P'I' 

When there is no memory in the modulation method. the signal wa~eform 
transmitted on each signaling interval is independent of the waveforms 
transmitted in previous signaling intervals. The power density spectrum of the 
resultant signal may still be expressed in the form of (4-4-57), if the transition 
probability matrix is replaced by 

~
l P2 

P= ~l ~2 

I P2 

'" PK] ,. - PK 

PI< 

(4-4-59) 

230

220 DIGiTAL COMMUl'l('ATI()f\,;S-

4-4-3 Power Spectra of Modulated Signals with Memory 
In the last two sections, we have determined the spectral characterislics for the 
cia,s of linearly modulated signals without memory and' for the class of 
angle-modulated signals such as CPFSK and CPM, which are nonlinear and 
possess memory. In this sectIon, we consider the spectral characteristics of 
linearly modulated signals that have memory that can be modeled by a Markov 
chain. We have already encountered such signals in Section 4-3-2, where we 
described several types of baseband signals. 

The power density spectrum of a digitally modulated signal that is 
generated by a Markov chain may be derived by following the basic procedure 
given in the previous section. Thus, we can determine the autocorrelation 
function and then evaluate its Fourier transform to obtain the power density 
spectrum. For signals that are generated by a Markov chain with transition 
probability matrix P, the power density spectrum of the modulated signal may 
be expressed in the general form (see Titsworth and Welch, 1%1) 

( 4-4-57) 

where S,(f) is the Fourier transform of the signal waveform S,(l). 

K 

s;(t) = S,(l) - 2: PkS.(I) 
k == 1 

Pij(f) is the Fourier transform of the discrete-time sequence p,/n), defined as 

~ 

P,j(f) = L p'I(n)e -,2~"J T (4-4-58/ 
n~ I 

and K is the number of states of the modulator. The term p,,(n) denotes the 
probability that the signal Sj(t) is transmitted n signaling intervals after 
the transmission of 5,(1), Hence, {p,,(n)} are the transition probabilities in the 
transition probability matrix P", Note that pij(l) = P'I' 

When there is no memory in the modulation method. the signal wa~eform 
transmitted on each signaling interval is independent of the waveforms 
transmitted in previous signaling intervals. The power density spectrum of the 
resultant signal may still be expressed in the form of (4-4-57), if the transition 
probability matrix is replaced by 

~
l P2 

P= ~l ~2 

I P2 

'" PK] ,. - PK 

PI< 

(4-4-59) 
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and we impose the condition that P" = P for all n ;;. 1. Under these condition,. 
the expression for the power density spectrum becomes a function of the 
stationary state probabilities {p,} only, and, hence, it reduces to the simpler 
form 

1 K 

+ Ti~ p,(I - Pi) ISi(f)12 

2 K ~ 

- T i~ J~ PiP, Re [S,(f)stU)] (4-4-60) 

I ' J 

We observe that our previous result for the power density spectrum of 
memoryless linear modulation given by (4-4-18) may be viewed as a special 
case of (4-4-60) in which all waveforms are identical except for a set of scale 
factors that convey the digital information (Problem 4-30). 

We also make the observation that the first term in the expression for the 
power density spectrum given by either (4-4-57) or (4-4-60) consists of discrete 
frequency components. This line spectrum vanishes when 

± p,s,(~) =0 
i=\ T 

(4-4-61 ) 

The condition (4-4-61) is usually imposed in the design of practical digital 
communications systems and is easily ~atisfied by an appropriate choice of 
signaling waveforms (Problem 4-31). 

Now, let us determine the power density spectrum of the baseband­
modulated signals described in Section 4-3-2. First. the NRZ signal is 
characterized by the two waveforms 5\(t) = g(t} and S2(t) = -g(t). where get) is 
a rectangular pulse of amplitude A. For K = 2, (4-4-60) reduces 10 

where 

(4-4-63) 

Observe that when p = ~. the line spectrum vanishes and <1>(f) reduces to 

(4-4-64) 
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The NRZI signal is characterized by the transition probability matrix 

P=[! D (4-4-65) 

Notice that in this case P" = P for all n ~ I. Hence, the special form for the 
power density spectrum given by (4-4-62) applies to this modulation format as 
well. Consequently, the power density spectrum for the NRZI signal is 
identical to the spectrum of the NRZ signal. 

Delay modulation has a transition probability matrix 

[

0 ~ 0 ~] o 0 I 1 
P = 2 2 

~ ~ 0 0 
! 0 1 0 

(4-4-66) 

and stationary state probabilities Pi =! for; = 1,2,3,4_ Powers of P may be 
obtained by use of the relation 

(4-4-67) 

where II is the signal correlation matrix with elements 

(4-4-68) 

and where the four signals {Si(t), i = 1, 2,3, 4} are shown in Fig. 4-3-15. It is 
easily seen that 

Consequently, powers of P can be generated from the relation 

P" '4" = -iP'p, k> I 

(4-4-69) 

(4-4-70) 

Use of (4-4-66). (4-4-69), and (4-4-70) in (4-4-57) yields the power density 
spectrum of delay modulation. It may be expressed in the form 

CPU) = 2l/J2 ( 17 "" 8 cos 81/1) [23 - 2 cos l/J - 22 cos 21/1 - 12 cos 3.p + 5 cos 41/, 

+ 12 cos 51/1 + 2 cos 61/1 - 8 cos 7l/t + 2 cos SI/Il (4-4-7l) 

where .p = TrfT. 
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FIGURE 4-4-11 Power spectral density (one-sided) 
of Miller code (delay modulation) 
and NRZ/NRZI baseband signals. 
[From Htchr and GuidiJ (1969): 
© 1969 IEEE.) 
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The spectra of these baseband signals are illustrated in Fig. 4-4-11. Observe 
that the spectra of the NRZ and NRZI signals peak at f = O. Delay modulation 
has a narrower spectrum and a relatively small zero-frequency content. JIS 

bandwidth occupancy is significantly smaller than that of the NRZ signal. 
These two characteristics make delay modulation an attractive choice for 
channels that do not pass dc, such as magnetic recording media. 

4-S BIBLIOGRAPHICAL NOTES AND REFERENCES 
The characteristics of signals and systems given in this chapter are very useful 
in the design of optimum modulation/demodulation and coding/decoding 
techniques for a variety of channel models. In particular, the digital modula­
tion methods introduced in this chapter are widely used in digital communica­
tion systems. The next chapter is concerned with optimum demodulation 
techniques for these signals and their performance in an additive, white 
gaussian noise channel. A general reference for signal characterization is the 
book by Franks (1969)-

Of particular importance in the design of digital communications systems 
are the spectral characteristics of the digitally modulated signals, which are 
presented in this chapter in some depth. Of these modulation techniques, CPM 
is one of the most important due to its efficient use of bandwidth. For this 
reason, it has been widely investigated by many researchers, and a large 
number of papers have been published in the technical literature. The most 
comprehensive treatment of CPM, including its performance and its spectral 
characteristics, can be found in the book by Anderson et at. (1986). In addition 
to this text, the tutorial paper by Sundberg (1986) presents the basic concepts 
and an overview of the performance characteristics of various CPM techniques. 
This paper also contains over 100 references to published papers on this topic. 

There are a large number of references dealing wilh the spectral charac­
teristics of CPFSK and CPM. As a point of reference, we should mention that 
MSK was invented by Doelz and Heald in 1961- The early work on the power 
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spectral density of CPFSK and CPM was done by Bennett and Rite (1%3), 
Anderson and Salz (1%5), and Bennett and Davey (1965). The book by Lucky 
et al. (1968) also contains a treatment of the spectral characteristics of CPFSK. 
Most of the recent work is referenced in the paper by Sundberg (1986). We 
should also cite the special issue on bandwidth-efficient modulation and coding 
published by the IEEE Transactions on Communications (March 1981), which 
contains several papers on the spectral characteristics and performance of 
CPM. 

The generalization of MSK to multiple amplitudes was investigated by 
Weber el al. (1978). The combination of multiple amplitudes with general CPM 
was proposed by Mulligan (1988) who investigated its spectral characteristics 
and its error probability performance in gaussian noise with and without 
coding. 

4-1 Prove the following properties of Hilbert transforms: 
a If X(I) =x( -I) then X(I) = - x( -t): 
b If x(t) = -x( -I) then .i(t) = x( -t): 
c If x(t) = cos w"t then X(I) = sin w"l: 
d If x(l) = sin w,,1 then .f(t) = -cos w"t; 
e 1(1) =-X(I): 
r r. x'(t) dt = r . x'(c) dl: 
II r· . .«t)l(t) dt = O. 

4-2 If X(I) is a stationary random process with autocorrelation function 4>,,(f) = 

E[x(t)x(t + r)J and spectral density <P,,(!) then show that 4>,,(r) = "',,(f). 
4>,,( f) = -4>" (f). and <P,,(f) = "',M). . 

4-3 Suppose that nrc) is a zero-mean stationary narrowband process represented by 
either (4-1-37), (4-1-38), or (4-1-39). The autocorrelation function of the equiv­
alent lowpass process c(/) =.«t) + }y(l) "defined as 

"' .... (r) = \Elz*(/)«1 + r)j 
a Show that 

£[;:(1);:(1 + f)j = 0 

b Suppose 4>.-.-(r) = NolI(r). and let 

v = (' Z(I) dt 
~" 

Determine E(V') and E(VV*) = E(Wf). 
4-4 Determine the autocorrelation function of the stochastic process 

x(t) = A sin (2Kf,t + 8) 

where J. is a constant and 8 is a uniformly dis!Jitol&ted phase, i.e .. 

I 
p( 8) = 2K . 0.., 8.., 21t 

4-5 Prove that 5/(1) is generally a complex-valued signal and give the condition under 
which it is real. Assume that S(I) is a real-valued bandpass signal. 
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4-6 Suppose that sir) is either a real- or complex-valued signal that is represented as a 
linear combination of orthonormal functions It,(t)}, i.e., 

K 

sit) = L s,/'(t) 
k ·1 

where 

J' {O (m .. n) 
J,(t)f,!(t)dt= 1 (m=n) 

Determine the expressions for the coefficients Is,} in the expansion set) that 
minimize the energy 

~,= f_,S(t) - S(t)12 dl 

and the corresponding residual error \!',. 
4-7 Suppose that a set of M signal waveforms {s",(t)} are complex·valued. Derive the 

equations for the Gram-Schmidt procedure that will result in a set of N'" M 
orthonormal signal waveforms. 

4-8 Determine the correlation coefficients p.,., among the four signal waveforms {S;(I)} 
shown in Fig. 4-2-1, and the corresponding Euclidean distances. 

4-9 Consider a set of M orthogonal signal waveforms Sm(I), 1 "'m '" M, 0", I '" T, all 
of which have the same energy ~ Define a new set of AI waveforms as 

1 M 

s';'(t) = sm(t) - - L s,(t), 1", m '" M, 0 "'t" T 
M *=1 

Show that the M signal waveforms {s';'(t)} have equal energy, given hy 

'C' =(M -l)\!'/M 

and are equally correlated, with correlation coefficient 

1 [T 1 
Pm" = \!" -n s:"(r)s;'(t)dt = - M _I 

4-10 Consider the three waveforms /.(t) shown in Fig. P4-lO. 
a Show that these waveforms are orthonormal. 
b Express the waveform X(I) as a weighted linear combination of /'(1), n = 1. 2. 3. 
~ . 

{

-I (0"1<1) 

x(t) = 1 (1 '" 1 < 3) 
-1 (3"'1<4) 

and determine the weighting coefficients. 
4-11 Consider the four waveforms shown in Fig. P4-11. 

a Determine the dimensionality of the waveforms and a set of basis functions. 
b Use the basis functions to represent the four waveforms by vectors 8" Sz. S" 

and s.. 
c: Determine the minimum distance between any pair of vectors. 

4-12 Determine a set of orthonormal functions for the four signals shown in Fig. P4-l2. 
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4-13 A Iowpass gaussian stochastic process X(I) has a power spectral density 

4>(f) = {No (1/1 < B) 
o (1/1> B) 

Determine the power spectral density and the autocorrelation function of 
y(tl = x'(I). 

4-14 Consider an equivalent lowpass digitally modulated signal of the form 

utI) = ~ [ang(1 - 2nT) - jb"g{t - 2nT - Tl] 

where {a,} and Ibn} are two sequences of statistically independent binary digits and 
g(l) is a sinusoidal pulse defined as 

( {
sin (m/2T) (0 < / < 2T) 

g I) = o (otherwise) 

This type of signal is viewed as a four-phase PSK signal in which the pulse shape i. 
one-half cycle of a sinusoid. Each of the information sequences {a"1 and Ibn} is 
transmitted at a rate of 1/2T bitsls and, hence, the combined transmission rate is 
lIT bits/so The two sequences are staggered in time by T seconds in transmission. 
Consequently, the signal U(I) is called slaggered four-phase PSK. 
a Show that tbe envelope lu(/)1 is a constant, independent of tbe information a" on 

the in-phase component and information b" on the quadrature component. In 
other words, the amplitude of the carrier used in transmitting the signal is 
constant. 

b Determine the power density spectrum of U{I). 
e Compare tbe power density spectrum obtained from (b) with the power density 

spectrum of the MSK signal. What conclusion can you draw from this 
comparison? 

4-15 Consider a four-phase PSK signal represented by the equivalent lowpass signal 

u(r) = ~ I.g(t - nT) 

wbere I" takes on one of tbe four possible values VI( ± 1 ± j) with equal 
probability. The sequence of information symbols {I.} is statistically independent. 
• Determine and sketch the power density spectrum of u(l) when 

b Repeat (a) when 

{
A (O"'t""T) 

g(l) = 0 (otherwise) 

(I) ={A sin (1UIT) (O",/,,;T) 
g 0 (otberwise) 

e Compare tbe spectra obtained in (a) and (b) in tennsof the 3dB bandwidth and 
the bandwidth to the first spectral zero. 
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4-16 The random process v(l) is defined as 

v(t) = X cos 21r[.i - Y sin 21rt. t 

where X and Yare random ,ariables. Show that vii) is wide-sense stationary if 
and only if E(X)=E(Y)=O. £(X')=E(Y'). and E(XY) =0. 

4-17 Carry out the Gram-Schmidt orthogonalization of the signals in Fig. 4-2·1 (a) in 
the order s.(t). s,(I). s.(I}. and, thus. obtain a set of orthonormal functions {/.,,(I)}. 
Then. determine the vector representation of the signals (s,,(lll by using the 
orthonormal functi01l9 {t,,(I)}. Also, determine the signal energies. 

4-18 Determine the signal space representation of Ihe four signals 5,(1). k = 1. 2.3.4. 
shown in Fig. P4-l8. by using as basis functions the orthonormal functions.f.(ll and 
f,(i). Plot Ihe signal space diagram and snow that this signal set is equivalent 10 
that for a four-phase PSK signal. 

4-19 The power density speclrum of Ihe cyclostalionary process 

"It) = L [ .. g(t - nT) 

was derived in Seclion 4-4-1 by averaging the autocorrelation function <1>""(1 + r. I) 
over the period T of the process and then evaluating the Fourier transform of the 
average autocorrelation function. An ahernative approach is to change the 
cyciostationary process inlo a stationary process V~(I) by adding a random variable 
to. uniformly distributed over 0 .. t. < T. so that 

"~(t) = L l"g(1 - liT - t.) 

and defining the spectral density of V(I)' as the Fourier transform of the 
autocorrelation function of the stationary process V~(I). Derive the result in 
(4-4-11). by evaluating the autocorrelation function of v~(I) and its Fourier 
transform. 
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Output 

4-21) A PAM partial response signal (PRS) is genera led as shown in Fig. P4·20 by 
exciting an ideal lowpass filter of bandwidtb W by tbe sequence 

at a rate liT = 2W symbols/s. The sequence {/,,} consists of binary digits selected 
independently from Ihe alphabet II. -:1 with equal probability. Hence. the mlerc.! 
signal has the form 

U(I) = 2: B.g(t - nT). 
j 

T=-
2W 

a Sketch the signal space diagram for lJ(l) and determine the probability of 
occurrence of each symho!. 

b Determine the avtocorreJation and power density spectrum of the rhree-level 
sequence {B,,}. 

c The Signal points "I' the sequence {B.} form a Markov chain. Sketch Ihis Markov 
chain and indicate the transition probabilities among the states. 

4-21 The lowpass equivalent representation of a PAM signal is 

Suppose g(1) IS a rectangular pulse and 

where {II,,} is a sequence of uncorrelated binary-valued (1. - j) random variables 
that occur with equal probability. 
a Determine the autocorrelation function of the sequence {I,,} 
b Determine Ihe power density spectrum of !I(c). 
c Repeat (b) if the possible values of the 0" are (0. I). 

4-22 Show Ihal x(c) = s(c) cos 2rrf. ± .f(/) sin 2rrf..t is a Single-sideband signal. where J(c) 
is band-limited to B ~J. Hz and s(c) is its Hilhert transform. 
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4-23 Use the results in Section 4-4-3 to determine the power density spectrum of the 
binary FSK signals in which the waveforms are 

5,(1)= sin w,l. i = 1.2. 0';;1';; T 

where w,=nirfT and w,=m1tIT. n"'m. and m and n are arbitrary positive 
integers. Assume that P, = p, = I. Sketch the spectrum and compare this result 
with the .pectrum of the MSK signal. 

4-24 Use the results in Section 4-4-3 to determine the power density spectrum of 
multitone FSK (MFSK) signals for which the signal waveforms are 

21m/ 
5,,(I)=sin T . n=I.2 ..... M. O"'I.;;T 

Assume that the probabilities p, = II M for all i. Sketch the power spectral density. 
4-25 A quadrature partial response signal (QPRS)is generated by two separate partial 

response signals of the type described in Problem 4·20 placed in phase quadrature. 
Hence. the QPRS is represented as 

s(r) = Re IU(/)e""" J 
where 

v(l) = v, (t) + )v,(I) 

= ~ B"lI(t - nT) + j L Cnu(! - nT) 

and B" = /" + /" I and C" = i" + J" ,. The sequences {B.} and {C,,} are uncorre­
lated and 1" = ± 1. i" = ± I with equal probability. 
a Sketch the signal space diagram for the QPRS signal and determine the 

probability of occurrence of each symbol. 
b Determine the autocorrelations and power speclra density of u, (I). V,(I). and 

vIti· . . 
c Sketch the Markov chain model and indicate the transition probabilities for the 

QPRS. 
4-26 Determine the autocorrelation functions for the MSK and offset QPSK modulated 

signals based on the assumption that the information sequences for each of the 
two signals are uncorrelated and zero-mean. 

4-27 Sketch the phase tree. the state Irellis. and the state diagram (or partial response 
CPM with h = land 

{
1/4T (0.., "'2T) 

U(I) = . o (otherwIse) 

4-18 Determine the number of termin.1 phase stales in Ihe state trellis diagram for 
a a full response binary CPFSK with either h = ~ or l: 
b a partial response L = 3 binary CPFSK with either h = ~ or ~. 

4-29 Show that 16 QAM can be represented as a superposition of two four-phase 
constant envelope signals where each component is amplified separately before 
summing. i.e. 

sIt) = CIA" cos 2tr{.1 + B" sin 2tr[.1 J + Ie" cOS 2tr{.1 + D" sin 2tr{. / J 

where {A..I. {B"l. {e..}. and {D,,} are statistically mdependent hinary sequences 
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with elements trom the set 1+ 1. - 1 } and G is the amplifier gain. Thus. show that 
the resulting signal is equivalent to 

s/t) =!" cos 21f/.t + Q" sin 21f/.t 

and determine I., and Q .. in terms of A". 8,1' C", and 0". 
4-30 Use the result in (4-4-60) to derive the expression for the power density spectrum 

of memoryless linear modulation given by (4-4·18) under the condition that 

s,(t) = J,s(tl. k = 1. 2 .... , K 

where I, is one of the K possible transmitted symbols that occur with equal 
probability. 

4-11 Show that a sufficient condition [or the absence of the line spectrum component in 
(4-4-60) is 

" 2: p,S,(I) = 0 
, , 

Is this condition necessary? Justify your answer. 
4-32 The information sequence {a..l: , is a sequence of iid random variables. cadi 

taking values + 1 and -1 with equal probability. This sequence is to be transmitted 
at baseband by a biphase coding scheme. described by 

s(l)= 2: a"l(r-nT) 

where g(l) is shown m Fig. N-32. 
a Find the power spectral density of 5(1). 
b Assume that it is Desirable to have a zero in the power spectrum at f = lIT To 

this end. we use a precoding scheme by introducing b" = a" + ka" ,. where k is 
some constant. and then transmit the {b,,} sequence using the same I(t). Is it 
possible to choose k to produce a frequency null at f = lIT? If yes. what are the 
appropriate value and the resulting power spectrum? 

c Now assume we want to have zeros at all multiples of j;, = IJ4T. Is it possible to 
have these zeros with an appropriate choice of k in the previous part? If not 
then what kind of precoding do you suggest to result in the desired nulls" 

4·33 Starting with the definition of the transition probability matrix for delay 
modulation given in (4-4-66). demonstrate that the relation 

holds, and. hence, 

P"'p = -lP'p. k., 1 

o r , 

-I 
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4-34 The two signal waveforms for binary FSK signal transmission with discontinuous 
phase are 

so(t) = ~cos [2n(1 -i)t + eo], 0"'1 < T 

5,(1)= ~COS[2n(/+~01+e,J O"'I"'T 

where 111 = 1/ T «t, and 60 and 6, are uniformly distributed random variables on 
the interval (0,21t). The signals S.(I) and S,(I} are equally probable. 
a Determine the power spectral density of the FSK signal. 
b Show that the power spectral density decays as l/f' for f» t. 
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5 
OPTIMUM RECEIVERS FOR 

THE ADDITIVE WHITE 
GAUSSIAN NOISE 

CHANNEL 

In Chapter 4, we described various types of modulation methods that may be 
~ to transmit digital information through a communication channel. As we 
have observed, the modulator at the transmitter performs the function of 
mapping the digital sequence into signal waveforms. 

This chapter deals with the design and performance characteristics of 
optimum receivers for the various modulation methods, when the channel 
corrupts the transmittea signal by the addition of gaussian noise. In Section 
5-1, we first treat memoryless modulation signals, followed by modulation 
signals with memory. We evaluate the probability of error of the various 
modulation methods in Section 5-2. We treat the optimum receiver for CPM 
signals and its performance in Section 5-3. In Section 5-4, we derive the 
optimum receiver when the carrier phase of the signals is unknown at the 
receiver and is treated as a random variable. Finally, in Section 5-5, we 
consider the use of regenerative repeaters in signal transmission and carry out 
a link budget analysis for radio channels. 

5-1 OPTIMUM RECEIVE~ FOR SIGNALS 
CORRUPTED BY ADDmVE WHlfE 
GAUSSIAN NOISE 

Let us begin by developing a mathematical model for the signal at the input to 
the receiver. We assume that the transmitter sends digital information by use 
of M signal waveforms {sm(t), m = 1, 2, ... , M}. Each waveform is transmitted 
within the symbol (signaling) interval of duration T:To be specific, we consider 
the transmission of information over the interval 0.;; t .;; T. 
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F1GURE 501·1 Model for received signal passed through an 
A WGN channel. 

Notloe 
nUl 

The channel is assumed to corrupt the signal by the addition of white 
gauSsian noise. as illustrated in Fig. 5-]·1. Thus. the received signal in the 
interval 0"'1"; T may be expressed as 

r(t) = S,.,(I) + n(t). 0'" t..; T (5-1-1) 

where n(l) denotes a sample function of the additive white gaussian noise 
(AWGN) process with power spectral density <f>nn(f) = !N .. W/Hz. Based on 
the observation of r(l) over thysignal interval. we wish to design a receiver 
that is optimum in the sense (hat it minimizes tlTe probability of making an 
error. 

It is convenient to subdivide the receiver into two parts-the signal 
demodulator and the detector-as shown in Fig. 5-1-2. The function of the 
signal demodulator is to convert the received waveform r(t) into an N­
dimensional vector r = Ir, '2 ... rNJ. where N is the dimension of the 
tr~nsmitted signal waveforms. The function of the detector is to decide which 
of the M possible signal waveforms was transmitted based of the vector r .. 

Two realizations of the signal demodulator are described in the next two 
sections. One is based on the use of signal correlators. The second is based on 
the use of matched filters. The optimum detector that follows the signal 
demodulator is designed to minimize the probability of error. 

5-1·1 CorrelatiOD Demodulator 
In this section, we describe a correlation demodulator that decomposes the 
received signal and the noise into N-dimensional vectors. In other words, the 
signal and the noise are expanded into a series of linearly weighted 
orthonormal basis functions {j;,(I)}. It is assumed that the N basis functions 
{In(t}} span the signal space, so that every one of the possible transmitted 

F1GURE 501-2 Receiver configuration. 

Output 
1--... 

decision 
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signals of the set {sm{t), 1 ,,; m ,,; M} can be represented as a weighted linear 
combination of {[.,(t)}. In the case of the noise, the functions {fie)} do not span 
the noise space. However, we show below that the noise terms that fall outside 
the signal space are irrelevant to the detection of the signal. 

Suppose the received signal r(/) is passed through a parallel bank of N 
CTosscorrelators which basically compute the projection of ,(c) onto the N basis 
functions {[.,(t)}. as illustrated in Fig. 5-1-3. Thus, we have 

fr(l)t.(l) dt = f [sm(t) + n(t)]A(t) dt 
(5-1-2) 

,,=sm.+n •• k=I.2 •... ,N 

where 

Sm. = r Sm(t)A(I) dt. k = I, 2, ... ,N 

n. = r n(t)A(t)dt, k = 1, 2, ... , N 

(5-1-3) 

The signal is now represented by the vector 8m with components Sm', 

k = I. 2, ... ,N. Their values depend on which of the M signals was ITans­
milled. The components {n.} are random variables that arise from the presence 
of the additive noise. 

In fact, we can express the received signal ret) in the interval 0"" t "" T as 

N N 

,(I) = 2: sm.t.(t) + 2: n.t.(t) + n'(t) 
k=1 k=1 

N 

= 2: ,.1.(1) + n'{t) (5-1-4) 
k=1 

The term n' ((), defined as 
N 

n'(t) = net} - 2: nd.(t) (5-1-5) 
k=l 

is a zero-mean gaussian noise process that represents the ditference between 
the original noise process net) and the part corresponding to the projection of 
n(t) onto the basis. functions {M/H. We shall show below that n'(t) is 
irrelevant to the decision as to which signal was transmitted. Consequently, the 
decision may be based entirely on the correlator output signal and noise 
components rk = s"", + n", k = 1, 2, ...• N. 

Since the signals {sm(t}} are deterministic, the· signal components are 
deterministic. The noise components {n.} are gaussian. Their mean values are 

E(n.) = IT E[n{t)Jt.(t) dl = 0 

" 
(5-1-6) 
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the noise space. However, we show below that the noise terms that fall outside 
the signal space are irrelevant to the detection of the signal. 

Suppose the received signal r(/) is passed through a parallel bank of N 
CTosscorrelators which basically compute the projection of ,(c) onto the N basis 
functions {[.,(t)}. as illustrated in Fig. 5-1-3. Thus, we have 

fr(l)t.(l) dt = f [sm(t) + n(t)]A(t) dt 
(5-1-2) 

,,=sm.+n •• k=I.2 •... ,N 

where 

Sm. = r Sm(t)A(I) dt. k = I, 2, ... ,N 

n. = r n(t)A(t)dt, k = 1, 2, ... , N 

(5-1-3) 

The signal is now represented by the vector 8m with components Sm', 

k = I. 2, ... ,N. Their values depend on which of the M signals was ITans­
milled. The components {n.} are random variables that arise from the presence 
of the additive noise. 

In fact, we can express the received signal ret) in the interval 0"" t "" T as 

N N 

,(I) = 2: sm.t.(t) + 2: n.t.(t) + n'(t) 
k=1 k=1 

N 

= 2: ,.1.(1) + n'{t) (5-1-4) 
k=1 

The term n' ((), defined as 
N 

n'(t) = net} - 2: nd.(t) (5-1-5) 
k=l 

is a zero-mean gaussian noise process that represents the ditference between 
the original noise process net) and the part corresponding to the projection of 
n(t) onto the basis. functions {M/H. We shall show below that n'(t) is 
irrelevant to the decision as to which signal was transmitted. Consequently, the 
decision may be based entirely on the correlator output signal and noise 
components rk = s"", + n", k = 1, 2, ...• N. 

Since the signals {sm(t}} are deterministic, the· signal components are 
deterministic. The noise components {n.} are gaussian. Their mean values are 

E(n.) = IT E[n{t)Jt.(t) dl = 0 

" 
(5-1-6) 
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Received 
signal 
r(!) 

f,(I) 

" · ..--.. • · 

'N 
.0--­, , 

flGURE 5-1-3 Correlation-type demodulator. 
Sample 
at f= T 

for all n. Their covariances are 

E(nknm) = r r E[n(l)n( r)lMt}fm(-r) dE dr 

= !No r r 0(1 - r)!.(t}!m{ r) dt dr 

~ iNo f !.(t)!m(E) dt 

= !NOomk 

To deteCfor 

(5-1-7) 

where Om. = 1 when m = k and zero otherwise_ Therefore, the N noise 
components {n.} are zero-mean uncorrelated gaussian random variables with a 
common variance u; = !No. 

From the above development, it follows that the correIa tor outputs h} 
conditioned on tbe mth signal being transmitted are gaussian random variables 
with mean 

(5-1-8) 
and equal variance 

(5-1-9) 

Since the noise components {n.} are uncorrelated gaussian random variables, 
they are also statistically independent. As a consequence, the correlator 
outputs h} conditioned on the mth signal being transmitted are statistically 
independent gaussian variables. Hence, the conditional probability density 
functions of the random variables [r, ro . - . TN] = r are simply 

N 

per ISm) = Il p(r.1 sm'), m = 1, 2 .... , M 
k=l 

(5-1-10) 
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where 

k = 1, 2, ... , N (5-1-11) 

By substituting (5-1-11) into (5-1-10), we obtain the joint conditional pdfs 

I 
I [~ (r. -Smk)2] 

per sm) = (lfN,.Y"'2 exp - f::1 No ' 
m=I.2, ...• M (5-1-12) 

As a final point we wish to show that the correlator outputs (rl' r, . ... ,rN) 
are sufficient statistics for reaching a decision on which of the M signals was 
transmitted, i.e., that no additional relevant information can be extracted from 
the remaining noise process n'(I). Indeed. n'(I) is uncorrelated with the N 
correfator outputs {r.}. i.e., 

E[n'(I)r.) = E[n'(I}]Smt + E(n'(t)n.] 

= E[n'(I)n.l 

= E{[ n(l) - #. n);(1) ]n.} 

= r E[n(l)n(r»)J.(r) dr - i~ E(njn.)jj(l) 

= !N, • .f.(r)- !N,.!.(I) =0 (S-l-B) 

Since n'(t) and h} are gaussian and uncorrelated. they are also statistically 
independent. Consequently, n' (I) does not contain any information that is 
relevant to the decision as to which signal waveform was transmitted. All the 
relevant information is contained in the correlator outputs {r.}. Hence. n '(I) 
may be ignored. 

Example 5-1-1 

Consider an M-ary baseband PAM signal set in which the basic pulse shape 
g(t) is rectangular as shown in Fig. 5-1-4. The additive noise is a zero-mean 
white gaussian noise process. Let us determine the basis function f(t) and 
the output of the correlation-type demodulator. The energy in the rectangu. 
lar pulse is 

FIGURE 5-1-4 Signal pulse COT Example 5·\-1. 

gil=+-' " 

o T r 
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As a final point we wish to show that the correlator outputs (rl' F2, ... ,rN) 
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transmitted, i.e., that no additional relevant information can be extracted from 
the remaining noise process n'(I). Indeed, n'(I) is uncorrelated with the N 
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E[n'(I)r.) = E[n'(I}]Smt + E(n'(t)n.] 

= E[n'(I)n.l 

= E{[ n(l) - #. n);(1) ]n.} 
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Since n'(t) and h} are gaussian and uncorrelated, they are also statistically 
independent. Consequently, n' (I) does not contain any information that is 
relevant to the decision as to which signal waveform was transmitted. All the 
relevant information is contained in the correlator outputs {rd· Hence. n '(I) 
may be ignored. 

Example 5-1-1 

Consider an M-ary baseband PAM signal set in which the basic pulse shape 
g(t) is rectangular as shown in Fig. 5-]4. The additive noise is a zero·mean 
white gaussian noise process. Let us determine the basis function f(t) and 
the output of the correlation-type demodulator. The energy in the rectangu. 
lar pulse is 

FIGURE 5-14 Signal pulse COT Example 5·\·1. 

gil=+-' " 

o T r 
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Since the PAM signal set has dimension·N = I, there is only one basis 
function f(t). This is given as 

1 
f(t) = . ro;;.g(t) 

va-T 

= {ltVT (O<;;t<;;T) 
o (othe~) 

The output of the correlation-type demodulator is 

r It 
r = J

o 
r(t)f(l)dt = vT J

o 
r{t) dt 

It is interesting to note that the correlator becomes a simple integrator when 
f(t) is rectangular. If we substitute for r(t), we obtain 

r = .Jr {1' [sm(t) + n(t)]} dt 

= \I~ [1' sm(t) dt + r n(t) dt] 

. where the noise term E(n) = 0 and 

!T~ = 4 ~ r r n(t)n(T) dtdT] 

1 LTLT = -. Efn(t)n(T)J dtdT 
Too 

'Yo (r 
= ~; J

o 
J
o 

lJ(t - T) dtdr = !No 

The probability density function fOT the sampled output is 

p(r ISm) = _1_exp [ _ ",(r_-.,..:S""m,L>'] 
V1rNo NfJ 

5-1-2 Matched-Filter Demodulator 

Instead of using a bank of N correlators to generate the variables irk}, we may 
use a bank of N linear filters. To be specific, let us suppose that the impulse 
responses of the N filters are 

h.(t)=A(T-t),O<;;t<;;T (5-1-14) 
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'(~ ~ /1 hHI =x,r -~~ 

-JL-h ~ 
FIGURE 5-1-5 Signal ,.(f) and filter matched :0 S(f). 

la) Signal .. it) (b) Impulse re~poose 
of filler matched 103(0 

where {[.(I)I are the N basis functions and h.(t) = 0 outside of the interval 
0",; t ",; T. The outputs of these filters are 

Jdt) = If r(r)h.(I- r)dr 

" 
= If r(r)t.(T -/ + r)dr. k = 1,2, ...• N 

" 
(5-1-15) 

Now, if we sample the outputs of the filters al I = T. we obtain 

h(T) =Ilr(r)fk(rldr=r., k = 1. 2, .... N 
(j 

(5-1-16) 

Hence. the sampled outputs of the filters at time I = T are exactly the set of 
values {f') obtained from the N linear correlators. 

A filter who~e impulse response h(t) = s(T - t). where s(t) is assumed to be 
confined to the time interval 0",; t ",; T, is called the matched filter to the signal 
5(/). An example of a signal and its matched filter are shown in Fig. 5-1-5. The 
response of h(i)=s(T -I} to the signal s(t) is 

y(t} = if s(r}s(T -/ + rIde 
o 

(5-1-17) 

which is basically the time-autocorrelation function of the signal s(t). Figure 
5-1-6 illustrates y(t) for the triangular signal pulse shown in Fig. 5-1-5. Note 
that the autocorrelation function y(t) is an even function of t. which attains a 
peak at 1= T. 

In the case of the demodulator described above, the N matched filters are 

)-"(/1 = f~s(tJs{T -I ,. t idt 

tlGURE 5-1-6 The matched filter output is the autocorrelation function of sIr). 
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where {[.(I)I are the N basis functions and h.(t) = 0 outside of the interval 
0",; t ",; T. The outputs of these filters are 

Jdt) = If r(r)h.(I- T)dT 

" 
= If r(T)t.(T -/ + r)dr. k = 1,2, ...• N 

" 
(5-1-15) 

Now, if we sample the outputs of the filters al I = T. we obtain 

h(T) =Ilr(r)fk(rldr=r., k = 1. 2, .... N 
(j 

(5-1-16) 

Hence. the sampled outputs of the filters at time I = T are exactly the set of 
values {f') obtained from the N linear correlators. 

A filter who~e impulse response h(t) = s(T - t). where s(t) is assumed to be 
confined to the time interval (}",; I ",; T, is called the malched filter to the signal 
s(/). An example of a signal and its matched filter are shown in Fig. 5-1-5. The 
response of h(i)=s(T -I} to the signal s(t) is 

y(t} = if s(T}s(T -/ + r)dr 
o 

(5-1-17) 

which is basically the time-autocorrelation function of the signal s(t). Figure 
5-1-6 illustrates y(t) for the triangular signal pulse shown in Fig. 5-1-5. Note 
that the autocorrelation function y(l) is an even function of t. which attains a 
peak at 1= T. 

In the case of the demodulator described above, the N matched filters are 

)-"(/1 = f~s(tJs{T -I ,. t idt 

tlGURE 5-1-6 The matched filter output is the autooorrelation function of sIr). ~'---~--~~---
D T 2T 1 
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FIGURE 5-1-7 Matched filter demodulator. 

R~ived 

signa) 
r(l) 

Slunple 
at 1= T 

matched to the basis functions {A(t)}. Figure 5-1-7 illustrates the matched filter 
demodulator that generates the observed variables {r.}. 

Properties of ,the Matclied Filter A matched filter has some interesting 
properties. Let us prove the most important property, which may be stated as 
follows: If a signal S(I) is corrupted by A WGN, the filter witb impulse response 
matcbed to S{I) maximizes the output signal-to-noise ratio (SNR). 

To prove this property, let us assume that the received signal r(t) consists of 
the signal s(t) and AWGN n(t) which has zero-mean and power spectral 
density <t> .. (f) = 1No W 1Hz. Suppose the signal T(t) is passed through a filter 
with impulse response h(t), 0.;; I';; T, and its output is sampled at time 1 = T. 
The filter response to the signal and noise components is 

Y(f) = I r( -r)h(t - -r) dr 

= r S(7:)h(1 - 7:) dr + [n( 7:}h(t - r) dr 
-0 0 

At the sampling instant t = T, the signal and noise components are 

y(T) = f s(-r)h(T - -r) d7: + f n(7:)h(t - -r) d7: 

= ys(T) + Yn(T) 

(5-1-18) 

(5-1-19) 

where ys(T) represents the signal component and Yn(T) the noise component. 
The problem is to select the filter impulse response that maximizes the output 
signal-lo-noise ratio (SNRo) defined as 

SNRo= y;(T) 
E[y;(T)] 

(5-1-20) 
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where ys(T) represents the signal component and Yn(T) the noise component. 
The problem is to select the filter impulse response that maximizes the output 
signal-to-noise ratio (SNRo) defined as 

SNRo= y;(T) 
E[y;(T)] 

(5-1-20) 
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The denominator in (5-1-20) is simply the variance of the noise term at the 
output of the filter. Let us evaluate ELv~(T)]. We have 

E[y;'(Tl] = IT -( E[n( r)n(t)]h(T - r)h(T - t) dr dr () Jil 

T T 

= ~N()I I 8(1- r)h(T - r)h(T- t)dldr 
(I " 

= ~N"fT h'(T -t)dt 

" 
(5-1-21) 

Note that the variance depends on the power spectral density of the noise and 
the energy in the impulse response h(I). 

By substituting for y,(T) and ELv~(t)l into (5-1-20), we obtain the 
expression for the output SNR as 

(JT. s(r)h( T - r) drl2 [I,r h(r)s( T - r) drj' 

~N" I,; h2(T - I) dt !N"JT; h2(T - f) df 
SNR" (5-1-22) 

Since the denominator of the SNR depends on the energy in h(t), the 
maximum output SNR over h(t) is obtained by maximizing the numerator 
subject to the constraint that the demoninator is held constant. The maximiza­
tion of the numerator is most easily performed by use of the Cauchy-Schwarz 
inequality, which states, in general. that if g,(f) and g2(f) are finite-energy 
signals then 

(5-1-23) 

with equality when !?,(!) = Cg 2(t) fOT any arbitrary constant C. If we set 
g,(t) = h(t) and !?2(t) = seT - f). it is clear that the SNR is maximized when 
hIt) = Cs(T - tl. i.e .• hit) is matched to the signal set). The scale factor C' 
drops out of the expression for the SNR. since it appears in both the 
numerator and the denominator. 

The output (maximum) SNR obtained with the matched filter is 

2 IT , SNR" = N. .s-(t) dt 
u (1 

= 2t:/ N" (5-1-24) 

Note that the output SNR from the matched filter depends on the energy of 
the waveform set) but not on the detailed charackristics of 5(t). This is another 
interestIng property of the matched filter. 

Frequency-Domain Interpretation of the Matched Filter The matched 
filter has an interesting frequency-domain interpretation. Since l1(t) = s(T _I). 
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the Fourier transform of this relationship is 

H(f) = r s(T - 1)e~j2"ft dt 

= [f s( r)e'2njf dT Je ~j"'fT 
= S*(f)e ~ j2"fT (5-1-25) 

We observe that the matched filter has a frequency response that is the 
complex conjugate of the transmitted signal spectrum multiplied by the phase 
factor e ~i2"fT, which represents the sampling delay of T. In other words, 
IH(f)1 = IS(f)I, so that the magnitude response of the matched filter is identical 
to the transmitted signal spectrum. On the other hand, the phase of H(f) is the 
negative of the phase of S(f). 

Now, if the signal S(I) with spectrum S(f) is passed through the matched 
filter, the filter output has a spectrum Y(f) = IS{tWe~i2~. Hence, the output 
waveform is 

(5-1-26) 

By sampling the output of the matched ruter at I = T, we obtain 

Ys(T) = L IS(JW dt = r 5 2
(/) dt = ~ (5-1-27) 

where the last step follows from ParsevaJ's relation. 
The noise at the output of the matched filter has a power spectral density 

(5-1-28) 

Hence, the total noise power at the output of the matched filter is 

Pn = r <l>o(f) dt 

= ~No r IH(fW dt '" ~No [ IS(f)12 dt = !~No (5-1-29) 

The output SNR is simply the ratio of the signal power l's, given by 

(5-1-30) 
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The noise at the output of the matched filter has a power spectral density 

(S-1-28) 

Hence, the total noise power at the output of the matched filter is 

Pn = r <l>o(f) dt 

= ~No r IH(fW dt '" ~No [ IS(f)12 dt = !~No (5-1-29) 

The output SNR is simply the ratio of the signal power l's, given by 

(5-1-30) 
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to the noise power Pn. Hence, 
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SNRo=-=-=­

Pn ~~No No 

which agrees with the result given by (5-1-24)_ 

Example S-1-2 

, 

I 

, 

(5-1-31) 

Consider the M = 4 biorthogonal signals shown in Fig. 5-1-8 for transmitting 
information over an A WON channel. The noise is assumed to have zero 
mean and power spectral density !No. Let us determine the basis functions 
for this signal set, the impulse responses of the matched-filter demodulators. 
and the output waveforms of the matched-filter demodulators when the 
transmitted signal is s,(t). 

The M = 4 biorthogonal signals have dimension N = 2. Hence, two basis 
functions are needed to represent the signals. From Fig. 5-1-8, we choose 
J.(t) and f,(t) as 

{ 
Y2fT (0,.; t ,.; ! T) 

h(t) = 0 (otherwise) 

{
Y2f T (!T,.;t,.; T) 

f2(t) = 0 (otherwise) 

(S-1-32) 
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These waveforms are illustrated in Fig. 5-1-8(a). The impulse responses of 
the two matched filters are 

{
Y2IT OT~r"'T) 

h,(l) = f,(T - t) = 0 (otherwise) 

{
'12fT (0'" (~! T) 

h,(r) = f,( T - t) = 0 (otherwise) 

(5-1-33) 

and are illustrated in Fig. S-I-8(b). 
If s,(f) is transmitted, the (noise-free) response, of the two matched 

filters are as shown in Fig. 5-1-8(c); Since y,(t) and y,(t) are s~mfle~ al 
1= T, we observe that y,,(T) = v1A'f and y,,(T) = O. Note that 2A T - 'f, 
the signal energy. Hence, the received vector formed from the two matched 
filter outputs al the sampling instant I = Tis 

r=[r, r2J=[~+n, n,J (5-1-34) 

where n, = y,,,(T) and n2 = y,,,( T) are the noise components al the outputs 
of the matched filters. given by 

y,,,(T) = r n(l'f,.(t)dt, k = I. 2 (5-1-35) 

Clearly. E(n~) = E[Yk,,(T)) = 0, Their variance is 

a;, = E(yi.,(T)1 = 11 r E(n(tln(r))fk(t)f,.Cr)dl dr () Jo 

= ~N"lrlr 8(1 - r)f.( r)Mr) dulr 
o () 

= !No r fUt) dr = !r\{, 

Observe that the SNR" for the first matched filter is 

(~2 2'€ 
SNR,,=-, -=-

,N" No 

(5-1-36) 

(5-1-37) 

which agrees with our previous result. Also note that the four possible 
outputs of the two matched filters. corresponding to the four possible 
transmitted signals in Fig. 5-1-8 are (r"r2l=(~+n,.n,). (n" W+Il,), 
(-n+n,.no) and (n" -y'jg+n,), 

5·1·3 The Optimum Detector 
We have demonstrated that, for a signal transmitted over an A WGN channel, 
either a correlation demodulator or a matched filter demodulator produces the 
vector r = [r, r2 ' " r",J. which contains all the relevant information in the 
received signal waveform. In this section, we describe the optimum decision 
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rule based on the observation vector r. For this development. we assume that 
there is no memory in signals transmitted in successive signal intervals. 

We wish to design a signal detector that makes a decision on the transmitted 
signal in each signal interval based on the observation of the vector r in each 
interval such that the probability of a correct decision is maximized. With this 
goal in mind, we consider a decision rule based on the computation of the 
posterior probabilities defined as 

P(signal s,,, was transmitted I rl, m = 1.2 ..... M 

which we abbreviate as pes,. I r). The decision criterion is based on selecting 
the signal corresponding to the maximum of the set of posterior probabilities 
{P(s", I rl}· Later, we show that this criterion maximizes the probability of a 
correct decision and. hence. minimizes the probability of error. This decision 
criterion is called the maximum a posteriori probability (MAP) criterion. 

Using Bayes' rule. the posterior probabilities may be expressed as 

P( :) _ per I smlP(sm) 
Sm r r - p(r) (5-1-38) 

where p(r I s.,,) is the conditional pdf of the observed vector given Sm. and 
P(s.,,) is the a priori probability of the mth signal being transmitted. The 
denominator of (5-1-38) may be expressed as 

!of 

per) = 2: per I Sm)P(Sm) (5-1-39) 
m=1 

From (5-1-38) and (5-1-39), we observe that the computation of the posterior 
probabilities P(s", i r) requires knowledge of the a priori probabilities P(s",) 
and the conditional pdfs per I s"') for m = 1. 2 .... , M. 

Some simplification occurs in the MAP criterion when the M signals are 
equally probable a priori, i.e .• P(sn,} = 1/ M for all M. Furthermore. we note 
that the denominator in (5-1-38) is independent of which signal is transmitted. 
Consequently, the decision rule based on finding the signal that maximizes 
P(s", I r) is equivalent to finding the signal that maximizes per ISm)' 

The conditional pdf per I Sm) or any monotonic function of it is usually 
called the likelihood function. The decision criterion based on the maximum of 
per I sm) over the M signals is called the maximum-likelihood (ML) criterion. 
We observe that a detector based on the MAP criterion and one that is based 
on the ML criterion make the same decisions as long as the a priore 
probabilities P(s",) are all equal. i.e., the signals {s"'} are equiprobable. 

In the case of an AWGN channel. the likelihood function per I Sm) is given 
by (5-1-12). To simplify the computations. we may work with [he natural 
logarithm of per I Sm). which is a monotonic function. Thus. 

(5·1·40) 
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The maximum of In p(1' I s,n) over Sm is equivalent to finding the signal Sm that 
minimizes the Euclidean distance 

tv 

D(r, 8.,) = L (r.-s",d2 (5-1-4l) 
*=1 

We call D(r, S.,). m = 1. 2, ... ,M, the distance metrics. Hence, for the AWGN 
channel, the decision rule based on the ML criterion reduces to finding the 
signal Sm that is closest' in distance to the received signal vector r. We shall 
refer to this decision rule as minimum distance detection. 

Another interpretation of the optimum decision rule based on the ML 
criterion is obtained by expanding the distance metrics in (5-1-41) as 

N N N 

D(r~ 8m ) = L r~ - 2 L r"Smn + 2: S!m 
n""i n=1 n=1 

(5-1-42) 

The term 11'12 is common to all decision metrics, and, hence, it may be ignored 
in the computations of the metrics. The result is a set of modified distance 
metrics 

(5-1-43) 

Note that selecting the signal Sm that minimizes D'(r,5.,) is equivalent to 
selecting the signal that maximizes the metric C(r, s .. ) = - D' (I', 8m ), i.e., 

(5-1-44) 

The term 1" 5,,, represents the projection of the received signal vector onto 
each of the M possible transmitted signal vectors. The value of each of these 
projections is a measure of the correlation between the received vector and the 
mth signal. For this reason, we call C(r,sm)' m = 1, 2, ...• M. the correlation 
metrics for deciding which of the M signals was transmitted. Finally. the terms 
15".1' = jg." m = 1. 2, .... M, may be viewed as bias terms that serve as 
compensation for signal sets that have unequal energies. such as PAM. If all 
signals have the same energy. Is .. l may also be ignored in the computation of 
the correlation metrics C(r,sm) and the distance metrics D(r,s, .. ) or D'(r.s",). 

It is easy to show (See Problem 5-5) that the correlation metrics e(r. 5",) can 
also be expressed as 

C(r, s,,,) = 2 IT r\t)s ... (t) dt - 'I ... , m ~ O. I. .... M 
o 

(5-1-45) 

Therefore. these me tries can be generated by a demodulator that CTos.~­

correlates the received signal r(t) with each of the M possible transmitted 
signals and adjusts each corrcialor output for the bias in the case of un~qual 
signal energies. Equivalently. the received signal may be passed through a 
bank of M filters matched to the possible transmitted signllis {s ... (t)l and 
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sampled at t = T. the end of the symbol interval. Consequently, the optimum 
receiver (demodulator and detector) can be implemented in the alternative 
configuration illustrated in Fig. 5-1-9. 

[n summary, we have demonstrated that the optimum ML detector 
computes a set of M distances D(r,5,,,) or D'(r, s",) and selects the signal 
corresponding to the smallest (distance) metric. Equivalently, the optimum ML 
detector computes a set of M correlation metrics e(r, s"') and selects the signal 
corresponding to the largest correlation metric. 

The above development for the optimum detector treated the important case 
in which all signals are equally probable. In this case, the MAP criterion is 
equivalent to the ML criterion. However, when the signals are not equally 
probable, the optimum MAP detector bases its decision on the probabilities 
P(s", I r), m = I, 2,." ,M: given by (5-1·38) or, equivalently, on the metrics, 

PM(r, sm) = p(r I sm}P(sm} 

The following example illustrates this computation for binary PAM signal" 

Example 5·1·3 

Consider the case of binary PAM signals in which the two possible signal 
points are 5, = -5, =~, where ~ is the energy per bit. The prior 
probabilities are P(s,) = p and P(S2} = I - p. Let us determine the melrics 
for the optimum MAP detector when the transmitted signal is corrupted 
with AWGN. 

The received signal vector (one-dimensional) for binary PAM is 

r=±~+y,,(T) (5-1-46) 
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where y.(T) is a zero-mean Gaussian random variable with variance 
u~ = tNo. Consequently, the conditional pdfs p(r ! sm) for th~ two signals 
are 

1 [(r - ~)'J 
per Is,) = _ ~ exp - 2" 

v2tr <Tn un 
1 [(r + ~)'] 

per I sz) = _ ~ exp 2 ~ 
v21l' an (Tn 

Then the metrics PM(r,s,) and PM(r,5o) are 

PM(r,s,) = pp(r Is,) 
p [(r- ~)2] 

= exp - 2 
v'2irun 2fT" 

1 - P [(r + vw,:)2) 
PM(r, 52) = _ ~ exp 2 2 

V21t (Tn tTJ'j 

(5-1-47) 

(5-1-48) 

(5-1-49) 

(5-1-50) 

If PM(r, 5,) > PM(r, 52), we select s, as the transmitted signal; otherwise, we 
select S2' This decision rule may be expressed as 

But 

PM(r, 5,)" 1 
~ 

PM(r,5o)', 

PM(r, 5,) P [(r + vg,;)2 - (r - v'i;;)2] 
=--exp 

PM(r,5z) 1 - P 2a~ 

s,o that (5-1-51) may be expressed as 

(r + ~f - (r - ~)2" 1 - P 
~ ~ln--

2<T;1 5: p 
or equivalently, 

- s, I-p I-p 
V~b r ii: 1<T~ In -- = lNo In--

" p p 

(5-1-51) 

(5-1-52) 

(5-1-53) 

(5-1-54) 

This is the final form for the optimllm detector. It computes the 
correlation metric qr, s,) = r~ and compares it with threshold 
~N{jln(J -p)/pJ. Figure 5-1-10 illustrates the two signal points S, and S2' 

The threshold, denoted by Th, divides the real line into two regions, say R, 
and R" where R, consists of the set of points tbat are greater than 'Ch and 

FIGURE 5-1·10 Signal space representation illustrating 
the operation of the optimum detector 
for hinary (PAM) modulation. 

• 
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Rz consists of the set of points that are less than Th' If rV'i;, > Th, the 
declsion is made that s, was transmitted, and if rV'i;, < t., the decision is 
made that 52 was transmitted. The threshold T. depends on No and p. If 
p = t Th = O. If p > t the signal point s 1 is more probable and, hence, 
Th < O. In this case, the region R 1 is larger than R2 , so that 5 I is more likely 
to be selected than 5,. If p <t the opposite is the case. Thus, the average 
probability of error is minimized. 

It is interesting to note that in the case of unequal prior probabilities, it is 
necessary to know not only the values of the prior p~obabilities but also the 
value of the power spectral density No in order to compute the threshold. 
When p = t the threshold is zero, and knowledge of No is not required by the 
detector. 

We conclude this section with the proof that the decision rule based on the 
maximum-likelihood criterion minimizes the probability of error when the M 
signals are equally probable a priori. Let us denote by Rm the region in the 
N-dimensional space for which we decide that signal sm(t) was transmitted 
when the vector r = Ir, " ... 'N] is received. The probability of a decision 
error given that sm(t) was tTansmitted is 

(5·1-55) 

where R';" is the complement of Rm. The average probability of error is 

M 1 
Pte) = 2: - Pee ISm) 

m=l M 

m~, ~ t~ per I sm)dr 

J, ~ [1 - t p{r ISm) dr] (5-1-56) 

Note that Pte) is minimized by selecting the signal Sm if per I Sm) is larger than 
p(r I s.) for all m;of k. . 

When the M signals are not equally probable, the above proof can be 
generalized to show that the MAP criterion minimizes the average probability 
of error. 

5-1-4 The Maximum-Likelihood Sequence Detector 

When the signal has no memory, the symbol-by-symbol detector described in 
the preceding section is optimum in the sense of minimizing the probahility of 
a symbol error. On the other hand, when the transmitted signal has memory, 
i.e., the signals transmitted in successive symbol intervals are interdependenl, 
the optimum detector is a detector that bases its decisions on observation of a 
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sequence of received signals over successive signal intervals. Below, we 
describe two different types of detection algorithms. In this section, we 
describe a maximum-likelihood sequence detection algorithm that searches for 
the minimum euclidean distance path through the trellis that characterizes the 
memory in the transmitted signal. In the following section, we describe a 
maximum a posteriori probability algorithm that makes decisions on a 
symbol-by-symbol basis, but each symbol decision is based on an observation 
of a sequence of received signal vectors. . 

To develop the maximum likelihood sequence detection algorithm, let us 
consider, as an example. the NRZI signal described in Section 4-3-2. Its 
memory is characterized by the trellis shown in Fig. 4-3-14. The signal 
transmitted in each signal interval is binary PAM. Hence, there are two 
possible transmitted signals corresponding to the signal points s, = -S2 = VCt", 
where ~h is the energy per bit. The output of the matched-filter or correlation 
demodulator for binary PAM in the kth signal interval may be expressed as 

(5-1-57) 

where nk is a zero-mean gaussian random variable with variance 0';' = No/2. 
Consequently. the conditional pdfs for the two possible transmitted signals are 

I 
I [(r. - vg,;)2

J p(r. 5,) = v21l exp - 2 2 
~lt Un IT .. 

1 [(rk + ,~)2] 
p(r. I S2) = Vr.:-

2 
exp - 2 ' 

1C (Tn <r; 

(5-1-58) 

Now. suppose we observe the sequence of matched-filter outputs 
r" r2 . ... , r". Since the channel noise is assumed to be white and gaussian, and 
[(I - iT). [(I - jT) for i "" j are orthogonal, it follows that E(n.nj) = 0, k y: j. 
Hence, the noise sequence II" n2, ... ,nK is also white. Consequently, for any 
given transmitted sequence s(m., the joint pdf of r" '" ... , rl( may be expressed 
as a product of K marginal pdfs, i.e., 

I( 

p(r" r2 . ... , r" I sCm) = n p(r.1 51'" J) 
/(=1 

(5·1-59) 

where either s. = vg,; or SA = -~. Then, given the received sequence 
r" r2 • ... , rK at the output of the matched filter or correlation demodulator, the 
detector determines the sequence scm. = {slm), s~m., ... ,s~)} that maximizes 
the conditional pdf p(r" r2, ... , fK I SCM.). Such a detector is called the 
maximum-likelihood (ML) sequellce detector. 

By taking the logarithm of (5-1-59) and neglecting the terms that are 
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FIGURE 5-1·11 Trellis for !'IRZ! signal. 1=T t -:: 2T 

independent of (r" '2.' ... r"c). we find that an equivalent ML sequence 
detector selects the sequence s,m) that minimizes the euclidean distance metric 

K 

D(r. s(m» = L: (r. - s~m»2 (5-1-60) 
k=l 

In searching through the trellis for the sequence that minimizes the 
euclidean distance D(r.5(m». it may appear that we must compute the distance 
D(r. s,m,) for every possible sequence. For the NRZI example. which employs 
binary modulation. the total number of sequences is ZK, where K is the 
number of outputs obtained from the demodulator. However, this is not the 
case, We may reduce the number of sequences in the trellis search by using the 
Viterbi algorilhm to eliminate sequences as new data is received from the 
demodulator. 

The Viterbi algorithm is a sequential trellis search algorithm for performing 
ML sequence detection, It is described in Chapter 8 as a decoding algorithm 
for convolutional codes. We describe it below in the context of the NRZI 
signal. We assume that the search process begins initially at state So. The 
corresponding trellis is shown in Fig. 5-1-11. 

At time t = T. we receive r, = s\'") -" n from the demodulator, and 3t 1= 2T. 
we receive '2 = s~,,) + n2' Since the signal memory is one bit, which we denote 
by L = I, we observe that the trellis reaches its regular (steady state) form 
after two transitions, Thus. upon receipt of TZ at r = ZT (and thereafter). we 
observe that there are two signal paths entering each of the nodes and two 
signal paths leaving each node. The two paths entering node St, at t = 2 T 
correspond to the. information bits (0.0) and (L 1) or. equivalently. to the 
signal points (~~. - vt,;) and (~. - ~). respectively. The two paths 
entering node S, at t = ZTcorrespond to the information bits (0.1) and (1.0) 
or. equivalently. to the signal points (-Vi;:, v'!;:) and (vw". Vir"l. 
respectively, 

For the two paths entering node St" we compute the two Euclidean distance 
me tries 

Do(O, 0) == IT, + ~)2 + (T2 + V'f.)2 

D,,(1. I) = (" - \/~;:)2 + (r2 + ~)2 
(S·1-61) 
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by using the outputs " and r2 from the demodulator. The Viterbi algorithm 
compares these two metria and discards the path having the larger (greater­
distance) metric. t The other path with the lower metric is saved and is called 
the suroivor at t = 2 T. The elimination of one of the two paths may be done 
without compromising the optimality of the trellis search, because any 
extension of the path with the larger distance beyond t = 2T will always have a 
larger metric than the survivor that is extended along the same path beyond 
/=2T. 

Similarly, for the two paths entering node S, at t = 2T, we compute the two 
Euclidean distance metries 

D,(O, 1) = (r, + 0i;,)2 + (r2 - 0i;,)' 
D,(l, 0) = (r, - v~l+ (r2 - ~)2 

(5-1-62) 

by using the outputs r, and r2 from the demodulator. The two metrics are 
compared and the signal path with the larger metric is eliminated. Thus, at 
t = 2T, we are left with two survivor paths, one at node s" and the other at 
node S" and their corresponding metrics. The signal paths at nodes 5" and S, 
are then extended along the two survivor paths. 

Upon receipt' of rJ at t = 3 T, we compute the metries of the two paths 
entering state 5". Suppose the survivors at t = 2T are the paths (0,0) at 50 and 
(0, 1) at S,. Then, the two metrics for the paths entering 50 at t = 3T are 

Do(O, 0, 0) = Do(O, 0) + (r3 + ~)' 
Do(O, 1, 1) = D,(O, 1) + (r3 + ~)2 

(5-1-63) 

These two metrics are compared and the path with the larger (greater­
distance) metric is eliminated. Similarly, the metrics for the two paths entering 
S, at t= 3Tare 

D,(O, 0, 1) = Do(O, 0) + (r3 - ~)2 

D ,(O, I, 0) = D,(O, 1) + (r3 - ~)2 
(5-1-64) 

These two metrics are compared and the path with the larger (greater­
distance) metric is eliminated. 

This process is continued as each new signal sample. is received from the 
demodulator. Thus, the Viterbi algorithm computes two metrics for the two 
signal paths entering a node at each stage of the trellis search and eliminates 
one of the two paths at each node. The two survivor paths are then extended 
forward to the next state. Therefore, the number of paths searched in the 
trellis is reduced by a factor of two at each stage. 

It is relatively easy to generalize the treDis search performed by the Viterbi 
algorithm for M-ary modulation. For example, delay modulation employs 

t Note that, for NRZI, tie reception of r2 from the demodulator neither increases nor decreases 
tbe relative dilferenoe between the Iw<> metrics, Do(O. 0) and Do(l, 1). At Ibis point, one may 
ponder OIl tb. implication of tbis observation. In any case, we continue with the description of the 
ML sequence detector based on Ibe Vilerbi algorithm. 
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FIGURE 5-1-12 One stage of trellis diagram for delay 
modulation. 

• 5, 

5, 

5) 

5, 

M = 4 signals and is characterized by the four-state trellis shown in Fig. 5-1-12. 
We observe that each state has two signal paths entering and two signal paths 
leaving each node. The memory of tne signal is L = 1. Hence, the Viterbi 
algorithm will have four survivors at eacn stage and their corresponding 
metrics. Two metrics corresponding to the two entering paths are computed at 
each node, and one of the two signal paths entering the node is eliminated at 
each state of the trellis. Thus, the Viterbi algorithm minimizes the number of 
trellis paths searched in performing ML sequence detection. 

From the description of the Viterbi algorithm given above, it is unclear as to 
how decisions are made on the individual detected information symbols given 
the surviving sequences. If we have advanced to some stage, say K, where 
K » L in the trellis, and we compare the surviving sequences, we shall find that 
with probability approaching one all surviving sequences will be identical in bit 
(or symbol) positions K - SL and less. In a practical implementation of tne 
Viterbi algorithm, decisions on each information bit (or symbol) are forced 
after a delay of 5L bits (or symbols). and hence, the surviving sequences are 
truncated to the 5L most recent bits (or symbols). Thus. a variable delay in bit 
or symbol detection is avoided. The loss in performance resulting from the 
suboptimum detection procedure is negligible if the delay is at least 5L. 

Example 5-1-4 

Consider the decision rule for detecting the data sequence in an NRZI 
signal with a Viterbi algorithm having a delay of 5L bits. Th,e trellis (or the 
NRZI signal is shown in Fig. 5-1-11. In this case. L = 1, helice the delay in 

. bit detection is set to five bits. Hence, at 1= 6T, we shall have two surviving 
sequences, one for each of the two states and the corresponding metrics 
iJ.6(b" b2 , b3 , b., b" b6 ) and 1L.(b;, b" b" b., bs, b;'). At this stage, with 
probability nearly equal to one. the bit hI will be the same as b;; that is. 
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both surviving sequences will have a common first branch. If b, ¥ b;, we 
may select the bit (b, or h;) corresponding to the smaller of the two metrics. 
Th~n the first bit is dropped from the two surviving sequences. At 1= 7T. 
the two metrics I-Llb 2 , b3 , b •. bs, bo, b7 ) and I-Llbi, bj, b;, bs• b~, b,) will be 
used to determine the decision on bit b2• This process continues at each 
stage of the search through the trellis for the minimum distance sequence. 
Thus the detection delay is fixed at five bits. t 

S-l-S A Symbol-by-Symbol Detector for Signals 
witll Memory 

In contrast to the maximum-likelihood sequence detector for detecting the 
transmitled information, we now describe a detector that makes symbol-by­
symbol decisions based on the computation of the maximum a posteriori 
probability (MAP) for each detected symbol. Hence, this detector is optimum 
in the sense that it minimizes the probability of a symbol error. The detection 
algorithm that is presented below is due to Abend and Fritchman (1970), who 
developed it as a detection algorithm for channels with intersymbol inter­
ference, i.e., channels with memory. 

We illustrate the algorithm in the context of detecting a PAM signal with M 
possible levels. Suppose that it is desired to detect the information symbol 
transmitted in the kth signal interval, and let 'I, '2,'" ,rk+D be the observed 
received sequence, where D is the delay parameter which is chosen to exceed 
the signal memory. i.e., D .. L. where L is the inherent memory in the signaL 
On the basis of the received sequence. we compute the posterior probabilities 

(5-1-65) 

for the M possible symbol values and choose the symbol with the largest 
probability. Since 

P( 
(k) _ A I ) _ p(THD • ...• '1 I S(k) = Am)P(lk) = Am) 

S - m rk+D, ~ .. ,'. -
p(rk+D' 'k+D-lJ ... , '1) 

(5-1-66 

and since the denominator is common for all M probabilities. the maximum a 
posteriori probability (MAP) criterion is equivalent to choosing the value of 
S(k) that maximizes the numerator of (5-1-66). Thus, the criterion for deciding 
on the transmitted symbol i') is 

(5-1-67) 

t One may have observed by now that the ML sequence detector and the symbol.by-symbol 
detector that ignores the memory in the NRZI signal reach tile same decisions. Hence, there is no 
need for a decision delay. Nevertheless. the procedure described above applies in general. 
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symbol decisions based on the computation of the maximum a posteriori 
probability (MAP) for each detected symbol. Hence, this detector is optimum 
in the sense that it minimizes the probability of a symbol error. The detection 
algorithm that is presented below is due to Abend and Fritchman (1970), who 
developed it as a detection algorithm for channels with intersymbol inter­
ference, i.e., channels with memory. 

We illustrate the algorithm in the context of detecting a PAM signal with M 
possible levels. Suppose that it is desired to detect the information symbol 
transmitted in the kth signal interval, and let 'I, '2,'" ,rk+D be the observed 
received sequence, where D is the delay parameter which is chosen to exceed 
the signal memory. i.e., D .. L. where L is the inherent memory in the signaL 
On the basis of the received sequence. we compute the posterior probabilities 

(5-1-65) 

for the M possible symbol values and choose the symbol with the largest 
probability. Since 

P( 
(k) _ A I ) _ p(THD • ...• '1 I S(k) = Am)P(lk) = Am) 

S - m rk+D, ~ .. ,'. -
p(rk+D' 'k+D-lJ ... , '1) 

(5-1-66 

and since the denominator is common for all M probabilities. the maximum a 
posteriori probability (MAP) criterion is equivalent to choosing the value of 
S(k) that maximizes the numerator of (5-1-66). Thus, the criterion for deciding 
on the transmitted symbol i') is 

(5-1-67) 

t One may have observed by now that the ML sequence detector and the symbol.by-symbol 
detector that ignores the memory in the NRZI signal reach tile same decisions. Hence, there is no 
need for a decision delay. Nevertheless. the procedure described above applies in general. 
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When the symbols are equally probable, the probability p(S(k) = Am) may be 
dropped from the computation. 

The algorithm for computing the probabilities in (5-1-67) recursively begins 
with the first symbol s(l). We have 

-[I) - {( I (I' - A JP( II) - A J} s -arg maxpr"'+D, .. ·,rl S - m S - m 
.,(1) 

{ " "( I (I+D) (I»P( (I +D) (Il)} = arg max ~ ... ~ P TI +D,' .. , '1 S , .. . , s s , ... , s 
~(tj .t,HO, s!2) 

(5-1-68) 

where s(l) denotes the decision on s(l) and, for mathematical convenience, we 
have defined 

( 
/I+D) (2) (I»= ( I (I+D) (l»P(· (I+D) ,I» 

PIS , ..• ,s • s - p r 1 + D • ... J Tl S J • •• , s s •... , s 
(5-1-69) 

The joint probability pest I + D) • .•.• 5(2). s('» may be omitted if the symbols are 
equally probable and statistically independent. As a consequence of the 
statistical independence of the additive noise sequence. we have 

( I (I'D) (I» P r1+-iJ.··· ,TI S •...• S 

where we assume that S(k) = 0 for k .;; O. 
For detection of the symbol s(1). we have 

-(2) - {( I 121 - A )P( (2) - A )} s - arg m~xp r2+D • ...• TI S - m S - III 
s{~) 

_ { ";;' .. -" ( I (2+D) (2»P( ,2.1» <'l1} - arg m~x L.. L." P r2 + D • ... • rl S I ' , • ,s S ••..• 5 , 
'1',_1 ,\:12-/1) ~n) 

(5-1-71 i 

The joint conditional probability in: the multiple summation can be expressed 
as 

p(r2+lJ. _ .. _ rl Is(2.n, ..... S(2» 

= p(r2• n Is{2·m ....• s(2+/}-I·»p(r,+l> • H' (» '2)) (- I 72 .. .r,ls ..... .1 ~--) 
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Furthermore, the joint probability 

per, + D, < < < ,r, 1 s" +D), < < < , S(2)p(S(' + D), ... , S(2) 

can be obtained from the probabilities computed previously in the detection of 
s(l). That is, 

(
' "I ("D) ('l) p TI +D, ..• ,'j S , ..•• s 

_ '" ( <I (hDJ OJ)P( (I+D) (I) -L.Jpr1+D, ... ,rl S •... ,s s •... ,s 
s{l) 

= LP,(s(' 'D), < •• ,S:2), s(l) (5-1-73) 
s(l) 

Thus, by combining (5-1-73) and (5-1-72) and then substituting into (5-1-71), 
we obtain 

(5-1-74) 

where, by definition, 
• 

= p(rl+D Is(2+D), ... , S,2.D-I")p(S(2.D) Ip,(s" '0) .. " ,sm. Sl") 
_fil 

(5-1-75) 

In general, the recursive algorithm for detecting the symbol s'" is as follows: 
upon reception of rk.D,' ..• r2. r,. we compute 

-(k) _ {( I (k,)p( Ik)} s - arg maxp r'.D," .• r, s s 
_~(k) 

(5-1-76) 

where, by definItion, 

"" p(rk + D 1 s(' +,0). < •• , S(HD -L»)p(S(k + D» L Pk _ ,(s" -, 'D' . . < < ,s"- '» 
\':~ ! I 

(5-1-77) 

Thus, the recursive nature of the algorithm'is established by the relations 
(5-1-76) and (5-1-77). 
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The major problem with the algorithm is its computational complexity. In' 
. . ~ d h b I (k + D) (H ') (kl' particular, the averagmg penorme over t e sym 0 S s , ... , s , S In 

(5-1-76) involves a large amount of computation per received signal, especially 
if the number M of amplitude levels {Am} is large. On the other hand, if M is 
small and tile memory L is relatively short, this algorithm is easily 
impleme:1ted. 

5-2 PERFORMANCE OF THE OPTIMUM RECEIVER 
FOR MEMORYLESS MODULATION 

In this section, we evaluate the probability of error for the memoryless 
modulation signals described in Section 4-3-1. First, we consider binary PAM 
signals and then M -ary signals of various types. 

5-2-1 Probability of Enor for Binary Modulation 
Let us consider binary PAM signals where the two signal waveforms are 
5,(1) = gil) and S2(t) = -g(t), and gil) is an arbitrary pulse that is nonzero in 
the interval 0,;;, I ,;;, Tn and zero elsewhere. 

Since 5,(/) = -sit), tllese slgnals are said to be antipodal. The energy in the 
pulse g(t) is €h' As indicated in Section 4-3-1, PAM signals are one­
dimensional, and, hence, their geometric' representation is simply the one­
dimensional vector 5, = V'i;" 52 = -~. Figure 5-2-1 illustrates the two signal 
points. 

Let us assume that the two signais are equally likely and that signal 5)(0 was 
transmitted. Then, the received signal from the (matched filter or correlation) 
demodulator is 

r=s)+n=~+n (5-2-1) 

where n represents the additive gaussian noise component, which has zero 
mean and variance a;' = ~NII' [n this case, the decision rule based on the 
correlation metric given by (5-1-44) compares r with the threshold zero_ If 
r > 0, the decision is made in favor of s,U), and if r < 0, the decision is made 
that 52(t) was transmitted. Clearly, the two conditional pdfs ot rare 

J 
p(r Is) = ---r===c c 

V1!N" 

p(r Is,) = ~ e·" "1,.)"-,<, 

- " 1!N" 

FIGURE 5·2-1 Signal POl:lt~ for binary antipodal signals. 

j~ 
• 
" 

(5-2-2) 

(5-2-J) 

17; 
• 

" " 
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FIGURE 5·2·2 Conditional pdfs of two signals. 

These two conditional pdfs are shown in Fig. 5-2-2. 
Given that s,(I) was transmitted, the probability of error is simply the 

probability that r < 0, i.e., 

P(e Is,) = [fer Is,) dr 

= _1_ [ exp [_ (r - -yg;;)2] dr 
YlfNo -x No 

= __ e- xZ!2dx 1 f- V2"hiN
O 

v2i ~r 
1 IX -x'12 dx 

= v2i V2'4>N. e 

=Q( §) 'J No 
(5-2-4) 

where Q(x) is the Q-function defined in (2-1-97). Similarly, if we assume that 
S2(1) was transmitted, r = - W. + n and the probability that r > 0 is also 
Pee I S2} = Q(Y2'I:bfNo), Since the signals s,(I) and .2(1) are equally likely to be 
transmitted, the average probability of error is 

Pb = ~P(e I,,) + iP(e 152) 

= Q( .f!:) (5-2-5) 

We should observe two important chiiracteristics of this performance 
measure. First. we note that the probability of error depends only on the ratio 
'€bl No and not on any other detailed characteristics of the signals and the noise. 
Secondly, we note that 2 'ib! No is also the output SNRo, from the matched-filter 
(and correlation) demodulator. The ratio 'lblNo is usually called the signal·to­
noise ratio per bit. 

We also observe that the probability of error may be expressed in terms of 
the distance between the two signals S1 and S2' From Fig, 5-2-1, we observe 
that the two signals are separated by the distance d 12 = 2~. By substituting 
gb = idi2 into (5-2-5), we obtain 

Pb = Q( ~ ~) (5-2-6) 
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" 

FIGURE 5-2-3 Signal points for oinary orthogonal signals 

This expression illustrates the dependence of Ihe error probability on the 
distance between the two signal points. 

Next, let us evaluate the error probability for binary orthogonal signals. 
Recall that the signal vectors SI and SI are two-dimensional, as shown in Fig. 
5-2-3, and may be expressed, according to (4-3-30), as 

SI = 1Yv. OJ 
52 = [0 ~l 

where 't" denotes the energy for ea.ch of the waveforms. Note that the distance 
between these signal points is dl2 = ;/2'f". 

To evaluate the probability of error, let us assume that 5, was transmitted 
Then, the received vector at the output of the demodulator is 

r=[~+n, n2] (5-2-HI 

We can now substitute for r into the correlation me tries given by (5-1-44) to 
obtain C(r, 5,) and qr,5,). Then, the probability of error is the probability 
that qr, 52) > qT, s,). Thus. 

Pte I sJ = p[qr, 8,) > C(r" s.JJ = PIn, - n I> V~hl ( 5-2-9) 

Since n I and n, are zero-mean statistically independent gaussian random 
variables each with variance 1N", the random variable x = fl, - n I is zero-meall 
gaussian with variance No. Hence. 

=-- eO x ' dx I J~ '/2 

V21r '1/2 ~fiiN" 

(5-2-10) 

Due to symmetry, the same error probability is obtained when we assume that 
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S:! is transmitted. Consequently. the average error probability for bi'nary 
orthogonal signals is 

(5-2-1I) 

where, by definition. y" is the SNR per bit. 
If we compare the probability of error for binary antipodal signals with that 

for binary orthogonal signals. we find that orthogonal signals require a factor 
of two increase in energy to achieve the same error probability as antipodal 
signals. Since 10 log", 2 = 3 dB, we say that orthogonal signals are 3 dB poorer 
than antipodal signals. The difference of 3 dB is simply due to the distance 
between the two signal points, whicll is df2 = 2'l!" for orthogonal signals. 
whereas d12 = 4~b for antipodal signals. 

The error probability versus 10 log", '1!!.1 N, for these two types of signals IS 

shown in Fig. 5-2-4. As observed from this figure. at any given error 
probability. the t:.1 No required for orthogonal signals is 3 dB more than that 
for antipodal signals. 

5-2-2 Probability of Error for M-ary Orthogonal Signals 

For equal energy orthogonal signals. the optimum detector selects the signal 
resulting in the largest cross correlation between the received vector r and each 
of the M possible transmitted signal vectors iSm}. i.e., 

" C(r. s",) = r· s'" = L 'kSmh m = 1.2 .... I M (5-2-12) 
1.:=1 

FIGURE S~24 Probability of error for binary signa1s. 
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To evaluate the probability of error, let us suppose that the signal 8, is 
transmitted. Then the received signal vector is 

(5-2-13) 

where n,. n" ... ,nM are zero-mean, mutually statistically independent gaus­
sIan random variables with equal variance u~ = ~No. In this case, the outputs 
from the bank of M correlalors are 

C(r, s,) = ~(~ + n l ) 

C(r, Sz) = ~n2 
(5-2-14) 

Note that the scale factor ~, may be elminated from the correlator outputs by 
dividing each output by ~. Then, with this normalization, the pdf of the first 
correlator output (" = yg; - n ,) is 

(5-2-15) 

and the pdfs of the other M - 1 correlator outputs are 

P (X )=_I_e-xi.l'l'. m -23M 
'no m '/'rN

o 
' -" ... , (5-2-16) 

It is mathematically convenient to first derive the probability that the 
detector makes a correct decision. This is the probability that 'I is larger than 
each of the other M - 1 correlator outputs n2. n3 • ... nM' This probability may 
be expressed as 

(5-2-17) 

where Pen, < '" nJ < ', .... ,nM <" I r.) denotes the joint probability that 
n,. n" . ... nM are all less than 'l> conditioned on any given '\. Then this joint 
probability is averaged over all ',. Since the {rm} are statistically independent, 
the joint probability factors into a product of M - 1 marginal probabilities of 
the form 

m =2.3 •...• M 

(5-2-18) 

These probabilities are identical for m '" 2, 3 •... ,M, and, hence, the joint 
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sIan random variables with equal variance u~ = ~No. In this case, the outputs 
from the bank of M correlalors are 

qr, s,) = ~(~ + n l ) 

qr, Sz) = ~n2 
(5-2-14) 

Note that the scale factor ~, may be elminated from the correlator outputs by 
dividing each output by ~. Then,. with this normalization, the pdf of the first 
correlator output (" = yg; - n ,) is 

(5-2-15) 

and the pdfs of the other M - 1 correlator outputs are 

P (X )=_l_e-xi.l". m -23M 
'no m V lrNo ' -" ... , (5-2-16) 

It is mathematically convenient to first derive the probability that the 
detector makes a correct decision. This is the probability that 'I is larger than 
each of the other M - 1 correlator outputs n2. n3 • ... nM' This probability may 
be expressed as 

(5-2-17) 

where Pen, < '" nJ < ', .... ,nM <" I r.) denotes the joint probability that 
n,. n" . ... nM are all less than 'l> conditioned on any given '\. Then this joint 
probability is averaged over all ',. Since the {rm} are statistically independent, 
the joint probability factors into a product of M - 1 marginal probabilities of 
the form 

m =2.3 •...• M 

(5-2-18) 

These probabilities are identical for m '" 2, 3 •... ,M, and, hence, the joint 



prohahility under consideration is simply the result in (5-2-IS) raised to the 
(M ~ I )th power. Thus. the probability of a correct decision is 

I', ( 1 Jr
, v2iN,; • )M P = -- e t-

/2 dx 
, -', v'21f ." (5-2-19) 

and the probability of a (k-bit) symbol error is 

(5-2-20) 
where 

PM = ~rJI ~ (~r e·"2dX)" '] exp [~~(v ~ l:n dy 
(5-2-21) 

The same expression for the probability of error is obtained when anyone 
of the other M ~ I signals is transmitted. Since all the M signals are equally 
likely. the expression for P,., given in (5-2-21) is the average probability of a 
symbol error. This expression can be evaluated numerically. 

In comparing the performance of various digital modulation methods, it is 
desirable to have the probability of error expressed in terms of the SNR per 
bit, 'lhl N.,. instead of the SNR per symbol, 'tJ N", With M = 2*, each symbol 
conveys k bits of information, and hence 't, = kg". Thus. (5-2-21) may be 
expressed in terms of 'lhl No by substituting for 't,. 

Sometimes, it is also desirable to convert the probability of a symbol error 
into an equivalent probability of a binary digit error. For equiprobable 
orthogonal signals, all symbol errors are equiprobable and occur with 
probability 

~=~ 
M~1 2'~1 (5-2-22) 

Furthermore, there are (~) ways in which n bits out of k may be in error. 
Hence, the average number of bit errors per k·bit symbol is 

(5-2-23) 

and the average bit error probability is just the result in (5-2-23) divided by k. 
the number of bits per symbol. Thus, 

(5-2-24) 

The graphs of the probability of a binary digit error as a function of the 
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SNR per bit, 'ihi N •. are shown in Fig. 5·2·5 for M = 2. 4. 8. 16. 32 and 64. This 
figure illustrates that, by increasing the number M of wayeforms. one can 
reduce the SNR per bit required to achieve a given probability of a bit error. 
For example. to achieve a P" = 10 " the required SNR per bit is a little more 
than 12 dB for M = 2. but if M is increased to 64 signal waveforms 
(k = 6 bits/symbol), the required SNR per bit is approximately 6 dB. Thus, a 
savings of over 6 dB (a factor-of·four reduction) is realized in transmitter 
power (or energy) required to achieve a Ph = 10-5 by increasing M from M = 2 
to M =114. 

What is the minimum required 'l61 No to achieve an arbitrarily small 
probability of error as M -+ x? This question is answered below. 

A Union Bound on the Probability of Error Let us investigate the effect 
of increasing M on the probability of error for orthogonal signals. To simplify 
the mathematical development, we first derive an upper bound on the 
probability of a symbol error that is much simpler than the exact farm given in 
(5·2-21). 

Recall that the probability of error for binary orthogonal signals is given by 
(5·2-11). Now, if we view the detector for M onhogonal signals as one that 
makes M - I binary decisions between the correlator output C(r, s,) that 
contains the signal and the other M - 1 correlator outputs Clr, s"'). m = 

2,3 ... , , M,the probability of error is upper-bounded by the union bound of 
the M -1 events. That is, if Ei represents the event that C(r.si) > C(r,s,) for 
i "" 1 then we have PM = P(U:'~, Ed '" ~;'c 1 P( Ei)' Hence. 

PM "'(M -1)P2 = (M - I)Q(V\g.lNo)< MQ(V~,/lVn) (5-2-25) 
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This bound can be simplili;,d further by upper-bounding QCV(IN,,). We have 

Q(VfJN..J < e to""" (5-2-26) 

Thus, 
PM<lWe ,-',:2N"=2ke J...t"f2Nu 

P < I:' J...{~,I''Vn 2 In 2)11. 
M 

(5-2-27) 

As k->x, or equivalently. as M-.::c, the probability of error approaches zero 
exponentially, pro~ided that fhl N" is greater than 21n 2, i.e., 

f. 
~ > 21n 2 '" 1.39 (1.42 dB) 
No 

(5-2-28) 

The simple upper bound on the probability of error given by (5-2-27) 
implies that, as long as SNR > 1.42 dB, we can achieve an arbitrarily low PM' 
However, this union bound is not a very tight upper bound at a sufficiently low 
SNR due to the fact that the upper bound for the Q function in (5-2-26) is 
loose. In fact, by more elaborate bounding techniques, it is shown in Chapter 7 
that the upper bound in (5-2-27) is sufficiently tight for 1/,'.1 N" > 41n 2. For 
't,/ N" < 4 In 2. a tighter upper bound on PM is 

(5-2-29) 

Consequently, p" ...... 0 as k _ x, provided that 

'€h 
~> In 2 = 0.693 (-1.6 dB) 
N" 

Hence, - 1.6 dB is the minimum required Sl\'R per bit to achieve an arbitrarily 
slTijlll probability of error in the limit as k -. x (M -:-+ 00). This minimum SNR 
per bit (-1.6 dB) is called the Shannon limit for an additive white Gaussian 
noise channel. 

5-2-3 Probability of Error for M-ary Biorthogonal Signals 
As indicated in Section 4-3, a set of M = 2' biorthogonal signals are 
constructed from iM orthogonal signals by including the negatives of the 
orthogonal signals. Thus, we achieve a reduction in the complexity of the 
demodulator for the biorthogonal signals relative to that for orthogonal signals, 
since the former is implemented with !M cross-correlators or matched filters. 
whereas the latter requires M matched filters or cross-correlators. 

To evaluate the probability of error for the optimum detector, let us assume 
that the signal S I (t) corresponding to the vector 5, = (~ 0 0 ... OJ was 
transmitted. Then, the received signal vector is 

r=[~+nl n2 ... nMI2J (5-2-31) 

where the {n",} are zero-mean, mutually statistically independent and identi- . 
cally distributed gaussian random variables with variance (7;' = !A\,. The-
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is similar to that for orthogonal signals (see fig. 5-2-5). However. in Ihis case. 
the probability of error for M = 4 is greater than that for M = 2. This is due to 
the fact that we have plotted the symbol error probability P", in fig. 5-2-6. If 
we plotted the equivalent bit error probability, we should find that the graphs 
for M = 2 and M = 4 coincide. As in the case of orthogonal signals, as M --t :x; 

(or k-+oo), the minimum required ~/N.J to achieve arbitrarily small prob­
ability of error is ~ 1.6 dB, the Shannon limit. 

5-2-4 Probability of Error for Simplex Signals 

Next we consider the probabilit} of error for M simplex signals, Recall from 
Section 4-3 that simplex signals are a set of M equally correlated signals with 
mutual cross-correlation coefficient p"", = ~ 1I(M ~ 1). These signals have the 
same minimum separation of vii: between adjacent signal points in M­
dimensional space as orthogonal signals. They achieve this mutual separation 
with a transmitted energy of '[;,(M ~ 1)/M. which is less than that required for 
orthogonal signals by a factor of (M ~ 1 )/M. Consequently. the probability of 
error for simplex signals is identical to the probability of error for orthogonal 
signals. but this performance is achieved with a saving of 

M 
10 log (I - p) = \0 log --dB 

M-l 
(5-2-35) 

in SNR. for M = 2. the saving is 3 db, However, as M is increased. the saving 
in SNR approaches 0 dB. 

5-2-5 Probability of Error for M-ary Binary-Coded Signals 

We have shown in Section 4-3 that binary-coded signal waveforms are 
represented by the signal vectors 

Sm = [sm 15m2 • •. SmN J. nl = ]. 2, ... I M 

where S"'j ~ ± V'il N for all m and j. N is the block length of the code, and is 
also the dimension of the M signal waveforms. 

If d~;n is the minimum euclidean distance of the M signal waveforms then 
the probability of a symbol error is upper-bounded as 

P, .. < (M ~ I)Ph = (M ~ I)Q( ~~;:) 

< 2' [(d::;:n)2] exp ---~ 
4N" 

(5-2-36) 
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The value of the minimum euclidean distance will depend on the selectidn of 
the code words, i.e., the design of the code. 

5-2-6 Probability of Error for M-ary PAM 
Recall that M -ary PAM signals are represented geometrically as M one· 
dimensional signal points with value 

- ~ s", - V2'l~Am. m = 1. 2 .... , M (5-2-37) 

where ll'. is the energy of the basic signal pulse g(r). The amplitude values may 
be expressed as 

Am = (2m - 1 - M)d. m = 1. 2 •...• M (5-3-38) 

where Ihe euclidean distance between adjacent signal points is dv"Fi;,. 

1 M d''i M 

'i",. = M I ~,,= ::....::l[2M 2: (2m - I - M)' 
In'" i 111= I 

(5-2-39) 

Equivalently, we may characterize these signals in terms of their average 
power. which is 

(5-2-40) 

The average probability of error for M-ary PAM can be determined from 
the decision rule that maximizes the correlation metrics given by (5-1-44). 
Equivalently, the detector compares the demodulator output r with a set of 
M - I threSholds, which are placed at the midpoints of successive amplitude 
levels, as shown in Fig. 5·2-7. Thus, a decision is made in favor of the 
amplitude level that is closest to r. 

The placing of the thresholds as shown in Fig. 5-2-7 helps in evaluating the 
probability of error. We note that if the mth amplitude level is transmitted. tbe 
demodulator output is 

, =Sm + n := v'~~KAm +n 

"GURE 5-2·7 Placerne", of thresholds al midpoinls of 
successive amplitude !evels. 

, 

.. .\ .. , .. 
t, 

, 
1'''1 

(5-2-41 ) 

, , .. : , . , 
" > J .. , , ;, 

t, • ~ 1".1 
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where the noise variable n has zero mean and variance a~ = !No. On the basis 
that all amplitude levels are equally likely a priori, the average probability of a 
symbol error is simply the probability that the noise variable n exceeds in 
magnitude one-half of the distance between levels. However, when either one 
of the two outside levels ±(M -1) is transmitted, an error can occur in one 
direction only. Thus, we have 

2(M - 1) ( ,id2't,) 
M Q \< No 

(5-2-42) 

The error probability in (5-2-42) can also be expressed in terms of the average 
transmitted power. From (5-2-40), we note that 

2 6 d 'tfg = -2-- P., T 
M -1 

(5-2-43) 

By substituting for d 2
'tfg in (5-2-42), we obtain the average probability of a 

symbol error for PAM in terms of the average power as 

p = 2(M - 1) ( I 6Pav T ) 
M M Q V (M' - I)No (5-2-44) 

or, equivalently, 

p = 2(M - 1) Q(! 6'tav ) 

M M V(M2-1)No (5-2-45) 

where 'tf .. = Pav T is the average energy. 
In plotting the probability of a symbol error for M -ary signals such as M -ary 

PAM, it is customary to use the SNR per bit as the basic parameter. Since 
T = kT. and k = log, M. (5-2-45) may be expressed as 

(5-2-46) 

where 'tfb .. = Pav Tb is the average bit energy and 'tf •• .t No is the average SNR 
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where ~b .. = Pav Tb is the average bit energy and ~.a.t No is the average SNR 
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per bit. Figure 5-2-8 illustrates the probability of a symbol error as a function 
of 10 loglO 'f,b avf No, with M as a parameter. Note, that the case M = 2 
corresponds to the error probability for binary antipodal signals. Also observe 
that the SNR per bit increases by over 4 dB for every factor-of-two increase in 
M, For large M, the additional SNR per bit required to increase M by a factor 
of two approaches 6 dB. 

5-2-7 Probability of Error For M-ary PSK 
Recall from Section 4-3 that digital phase-modulated signal waveforms may be 
expressed as 

Sm(t)=g(t)CoS[21ifct+~(m-l)], l~m~M, O~t~T (5-2-47) 

and have the vector representation 

(5-2-48) 

where ~,= }'f,. is the energy in each of the waveforms and get) is the pulse 
shape of the transmitted signal. Since the signal waveforms have equal energy. 
the optimum detector for the AWGN channel given by (5-1-44) computes the 
correlation metrics 

C(l, Sn.) = r . S~. m = 1. 2, ' , , , M (5-2-49) , 

In other words, the received signal vector r = [rj rzJ is projected onto each of 
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the M possible signal vectors and a decision is made in favor of the signal with 
the largest projection. 

The correlation detector described above is equivalent to a phase detector 
that computes the phase of the received signal from r and selects the signal 
vector Sm whose phase is closest to r. Since the phase of r is 

(5·2-50) 

we will determine the pdf of e,. from which we shall compute the probability 
of error. 

Let us consider the case in which the transmitted signal phase is e, = 0, 
corresponding to the signal s, (I). Hence, the transmitted signal vector is 

s,)=(~ 0] (5-2-51) 

and the received signal vector has components 

(5-2-52) 

Because n, and n, are jointly gaussian random variables, it follows that 7, 

and r2 are jointly gaussian random variables with £(r,) =~, £(r2) = 0, and 
u~, = u~ = ~No = u;. Consequently, 

(5-2-53) 

The pdf of the phase 8, is obtained by a change in variables [rom (r" r,) to . 

V=~ 
(5-2-54) 

This yields the joint pdf 

, (V e )=~ex (_ V'+ jgs-2\1W, vcose,) 
p, .e, ' , 2 ' P 2 ' frU.. lTr 

Integration of Pv.e'(V, e,) over the range of V yields Pe,(8,). That is, 

= - e~2l" sm·e~ Ve-(I,I-V4 y,cos9,)2t2 dV I ., [ -
2lf 0 

(5-2-55) 
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.FIGURE 5-2-9 Probability density function PH,IS,) 
tor y, = 1. 2. 4 and 10. 
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where for convenience, we have defined the symbol SNR as 'Y, = tUN". Figure 
5-2-9 illustrates /8,(8,) for several values of the SNR parameter y, when the 
transmitted phase is zero. Note that /8,(8,) becomes narrower and more 
peaked about 8, = 0 as the SNR 'Y, increases. 

When Sift) is transmitted, a decision error is made if the noise causes the 
phase to fall outside the range -lr/ M "" 8, "" lr / M. Hence, the probability of a 
symbol error is 

J
"!M 

PM=I-. PH,(8,)d0, 
xtM 

(5-2-56) 

In general, the integral of Ps,(0) does not reduce to a simple form and must be 
evaluated numerically, except for M = 2 and M = 4. 

For binary phase modulation, the Iwo signals .5,(1) and S2(1) are antipodal, 
and, hence, the error probability is 

~n P,=Q( _h) 
N" 

(5-2-57) 

When M = 4. we have in effeci two binary phase-modulation signals in phase 
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quadrature. Since there is IiO crosstalk or interference between the signals on 
tfie two quadrature carriers. the bit ~rror probability is identical to that in 
(5-2-57). On the other hand.' the symbol eTror probability for M = 4 is 
determined by noting that 

(5-2-51\\ 

where P. is the probability of a correct decision for the 2-bit symbol. The result 
(5-2-5~) follows from the statistical independence of the noise on the 
quadrature carriers. Therefore. the symbol error probability for M = 4 is 

P,=I-P, 

( yi2f,,)[ I (. ~2t.:")J =2Q\ - I-;Q -
lvo - ]'10 ' 

(S-2-59) 

For M > 4, the symbol error probability P" is obtained by numerically 
integrating (5-2-55). Figure 5-2-10 illustrates this error probability as a function 
of the SNR per bit for M = 2. 4. 8, 16, and 32. The graphs clearly illustrate the 
penalty in SNR peT bit as M increases beyond !vi = 4. For example. at 
P" = 10 " the difference between M = 4 and M = 8 is approximately 4 dB, and 
the difference between M = ~ and M = Ii> is approximately 5 dB. For large 
\alues of M, doublin~ the number of phases requires an additional 6 dB/bit to 
achieve the same performance. 

An approximation to the error probability for large values of M and for 

FIGURE 5-2-10 Prllha~llily of a symhol error for PSK signals. 
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large SNR may be obtained by first approximating p .. ,(e). For 'lJN,,» I and 
le,1 "" ~Ir. Pe.(er ) is well approximated as 

Pe,(e,) = -!f:cose,e-2>",n,e, (5-2-60) 

By substituting for Pe,(e,) in (5-2-56) and performing the change in variable 
from e, to u = ~ sin e" we find that 

(5-2-61 ) 

where k = log, M and 1'., = kl'h' Note that this approximation to the error 
probability is good for all values of M. For example, when M = 2 arid M = 4, 
we have P, = P4 = 2Q(V2y,). which compares favorably (a factor-at-two 
difference) with the exact· probability given by (5-2-57). 

The equivalent bit error probability for M -ary PSK is rather tedious to 
derive due to its dependence on the mapping of k-bit symbols into the 
corresponding signal phases. When a Gray code is used in the mapping, two 
k-bit symbols corresponding to adjacent signal phases differ in only a single bit. 
Since the most probable errors due to noise result in the erroneous selection of 
an adjacent phase to the true phase, most k-bit symbol errors contain only a 
single-bit error. Hence, the equivalent bit error probability for M -ary PSK is 
well approximated as 

1 
Pb =kP. ... (5-2-62) 

Our treatment of the demodulation of PSK signals assumed that the 
demodulator had a perfect estimate of the carrier phase available. In practice, 
however, the carrier phase is extracted from the received signal by performing 
some nonlinear operation that introduces a phase ambiguity. For example, in 
binary PSK, the signal is often squared in order to remove the modulation, aod 
the dOUble-frequency component that is generated is filtered and divided by 2 
in frequency in order to extract an estimate of the carrier frequency and phase 
<jJ. These operations result in a phase ambiguity of 180" in the carrier phase. 
Similarly, in four-phase PSK, the received signal is raised to the fourth power 
in order to remove the digital modulation, and the resulting fourth harmonic of 
the carrier frequency is filtered and divided by 4 in order to extract the carrier 
component. These operations yield a carrier fr~quency component containing 
the estimate of the carrier phase </>, but there are phase ambiguities of ±90° 
and 180" in the phase estimate. Consequently, we do not have an absolute 
estimate of the carrier phase for demodulation. 
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The phase ambiguity problem resulting from the estimation of the carrier 
phase rP can be overcome by encoding the information in phase differences 
between successive signal transmissions as opposed to absolute phase encod­
ing. For example, in binary PSK, the information bit 1 may be transmitted by 
shifting the phase of the carrier by 180" relative to the previous carrier phase, 
while the information bit 0 is transmitted by a zero phase shift relative to the 
phase in the previous Signaling intervaL In four-phase PSK, the relative phase 
shifts between successive intervals are 0,90", 180", and -90", corresponding to 
the information bits 00, 01, 11, and 10, respectively_ The generalization to 
M > 4 phases is straightforward. The PSK signals resulting from the encoding 
process are said to be differemially encoded. The encoding is performed by a 
relatively simple logic circuit preceding the modulator. 

Demodulation of the differentially encoded PSK signal is performed as 
described above, by ignoring the phase ambiguities. Thus, the received signal is 
demodulated and detected to one of the M possible transmitted phases in each 
signaling interval. Following the detector is a relatively simple phase com­
parator that compares the Rhases of the demodulated signal over two 
consecutive intervals in order to extract the information. 

Coherent demodulation of differently encoded PSK results in a higher 
probability of error than the error probability derived for absolute phase 
encoding. With differentially encoded PSK, an error in the demodulated phase 
of the signal in any given interval will usually result in decoding errors over 
two consecutive signaling intervals. This is especiaUy the case for error 
probabilities below 0.1. Therefore, the probability of error in differentially 
encoded M -ary PSK is approximately twice the probability of error for M -ary 
PSK with absolute phase encoding. However, this factor-of-two increase in the 
error probability translates into a relatively small loss in SNR. 

5-2-8 Dilferential PSK (DPSK) and its Performance 
A differentially encod.ed phase-modulated signal also allows another type of 
demodulation that does not require the estimation of the carrier phase. t 
Instead, the received signal in any given signaling interval is compared to the 
pbase of the received signal from the preceding signaling interval. To 
elaborate, suppose that we demodulate the differentially encoded signal by 
mUltiplying r(t) by cos 21r{.,t and sin 21r{.,t and integrating the two products over 
the interval T. At the kth signaling interval, the demodulator output is 

r. = I~cos (9. - rPl + n., ~sin (8. - 4» + nd 
or, equivalently, 

(5-2-63) 

t Because no phase estimation is required" DPSK is often considered to be a noncohereot 
communication technique. We take the view lbat DPSK represents a fonn of digital phase 
modulation in tbe extreme case where !be phase estimate is denved only from the previous symOOl 
interval. 
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where O. is the phase angle of the transmitted signal at the kth signaling 
interval, q, is the carrier phase, and n. = nk, + jn" is the noise vector. Similarly, 
the received signal vector at the output of the demodulator in the preceding 
signaling interval is 

(5-2-64) 

The decision variable for the phase detector is the phase difference between 
these two complex numbers. Equivalently, we can project rk onto rk.' and use 
the phase of the resulting complex number; that is, 

(S-2-6S) 

which, in the absence of noise, yields the phase difference ek - e._ •. Thus. the 
mean value of r,rt_, is independent of the carrier phase. Differentially 
encoded PSK signaling that is demodulated and detected as described above is 
called differential PSK (DPSK). 

The demodulation and detection of DSPK using matched filters is illu,trated 
in Figure 5·2-11. If the pulse g(r) is rectangular, the matched fillers may be 
replaced by integrate-and-dump filters. 

Let us now consider the evaluation of the error probability performance of a 
DPSK demodulator and detector. The derivation of the exact value of the 
probability of error for M -ary DPSK is extremely difficult, except for M = 2. 
The major difficulty is encountered in the determination of the pdf for the 
phase of the random variable r.rt-.. given by (5-2-65). However. an 
approximation to the performance of DPSK is easily obtained, as we now 
demonstrate. 

Without loss of generality, suppose the phase difference ek - Ok _ • = O. 
Furthermore, the exponential factors e-J(B •. ,- .. ) and e)(··-") in (5-2-65) can be 
absorbed into the gaussian noise components n, _, and n., without changing 
their statistical properties. Therefore, r,rt_. in (5-2-65) can be expressed as 

(5-2-66) 

The complication in determining the pdf of the phase is the term n.nt ... 
However, at SNRs of practial interest, the term nknt_, is small relative to the 
dominant noise term ~ (n, + nLJ. If we neglect the term n,n:_. and we 

FIGURE 5-2-11 Block diagram of DPSK demodula~or. 
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also normalize 'k't~1 by dividing through by ~, the new set of decision 
metrics becomes 

x =~+Re(n. +nt~,) 

y = 1m (n. + n:~,) 
(5-2-67) 

The variables x and yare uncorrelated gaussian random variables with 
identical variances ~ = No. The phase is 

(5-2-68) 

At this stage, we have a problem that is identical to the one we solved 
previously for phase-coherent demodulation. The only difference is that the 
noise variance is now twice as large as in the case of PSK. Thus we conclude 
that the performance of DPSK is 3 dB poorer than that for PSK. This result is 
relatively good for M :;.. 4, but it is pessimistic for M = 2 ip the sense that the 
loss in binary DPSK relative to binary PSK is less than 3 db at large SNR. This 
is demonstrated below. 

In binary DPSK, the two possible transmitted phase differences are 0 and 
If rad. As a consequence, only the real part of ,.rt ~ I is needed for recovering 
the information. Using (5-2-67), we express the real part as 

Re (rkrr~,) = ~(rkrt~, + r:rk~l) 

Because the phase difference between the two successive signaling intervals is 
zero, an error is made if Re (r.,t-,) <0. The probability that rkrt~, + rtr._. < 
o is a special case of a derivation, given in Appendix B concerned with the 
probability that a general quadratic form in complex-valued gaussian random 
variables is less than zero. The general form for this probability is given by 
(B-21) of Appendix B, and it depends entirely on the first and second moments 
of the complex-valued gaussian random variables 'k and ',_,. Upon evaluating 
the moments and the parameters that are functions of the moments, we obtain 
the probability of error for binary DPSK in the form 

(5-2-69) 

where 'th ! No is the SNR per bit. 
The graph IS shown in Fig. 5-2-12. Also shown in that illustration is the 

probability of error for binary, coherent PSK. We observe that at error 
probabilities of Po';; lO~j the difference in SNR between binary PSK and 
binary DPSK is less than 3 dB. In fact, at Po';; 10-', the difference in SNR is 
less than 1 dB. 

The probability of a binary digit error for four-phase DPSK with Gray 
coding can be expressed in terms of well-known functions, but its derivation is 
quite involved. We simply state the result at this point and refer the interested 
reader to Appendix C for the details of derivation. It is expressed in the form 

Ph = Q,(a, b) - !!o(ab)exp[-Ha' + b2
)] (5-2-70) 
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FIGURE 5-2-12 Probability of error for binary PSK and DPSK. 
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where Ql(a, b) is the Markum Q function defined by (2-1-122) and (2-1-123), 
/')(x) is the modified Bessel function of order zero, defined by (2-1-120), and 
the parameters a and b are defined as 

a = V~2')'-h-(-1 -_-,,"I}c) 

b = V2'h(H ,,'}) 
(5-2-71} 

Figure 5-2-13 illustrates the probability of a binary digit error for two- and 

FIGURE 5-2-13 Probability of bit error fOT binary and fopT-phase PSK 
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Figure 5-2-13 illustrates the probability of a binary digit error for two- and 
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four-phase DPSK and coherent PSK signaling obfained from evaluating the 
exact formulas derived in this section. Since binary DPSK is only slightly 
inferior to binary PSK at large SNR, and DPSK does not require an elaborate 
method for estimating the carrier phase, it is often used in digital communica· 
tions systems. On the other hand, four-phase DPSK is approximately 2.3 dB 
poorer in performance than four·phase PSK at large SNR. Consequently the 
choice Detween these two four-phase systems is not as clear cut. One must 
weigh the 23 dB loss against the reduction in implementation complexity. 

5-2-9 Probability of Error for QAM 
Recall from Section 4-3 thaI QAM signal waveforms may be expressed as 

S", (I) = A ... ,g(t) (Os 21r{.t - Amsg(r) sin 21ff,1, 0'" t '" T (5-2-72) 

where A",c and Am, are the information-bearing signal amplitudes of the 
quadrature carriers and g{t) is the signal pUlse. The vector representation of 
these waveforms is 

(5-2-73) 

To determine the probability of error for QAM, we must specify the signal 
point constellation. We begin with QAM signal sets that have M = 4 points. 
Figure 5-2-14 illustrates two four-point signal sets. The first is a four-phase 
modulated signal and the second is a QAM signal with two amplitude levels. 
labeled A, and A,. and four phases. Because the probability of error is 
dominated by the minimum distance between pairs of signal points, let us 
impose the condition that d~ln = 2A for both signal constellations and let us 
evaluate the average transmitter power, based on the premise that all signal 
points are equally probable. For the four-phase signal. we have 

. 
~,,= l(4)2A' = 2A' (5-2-74) 

For the two-amplitude. four-phase QAM, we, place the points on circles of 
rad ii A and v'3 A. Th us, d!:;;n = 2A. and 

(5-2·75) 

which is the same average power as the M = 4-phase signal conslellation. 
Hence. for all practical purposes, the error rate performance of the two signal 

FIGURE 5-2-14 Two four'poin, sign.1 constellations. 
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FIGURE 5-l-15 Four eight-point QAM signal constellations. 

sets is the same. In other words, there is no advantage of the two-amplitude 
QAM signal set over M = 4-phase modulation. 

Next, let us consider M = 8 QAM. In this case, there are many possible 
signal constellations. We shall consider the four signal constellations shown in 
Fig. 5-2-15, all of which consist of two amplitudes and have a minim~m 
distance between signal points of 2A. The coordinates (Ame. A~) for each 
signal point, normalized by A. are given in the figure. Assuming that the signal 
points are equally probable, the average transmitted signal power is 

1 ~ 2 2 Pa• = - ~ (Ame + AM,) 
Mm~' 
A2 M 

= M ];, (0;'" + o~c) (5-2-76) 

where (am'" <1m,) are the coordinates of the signal points, normalized by A. 
lle two signal sets (a) and (c) in Fig. 5-2-15 contain signal points that fall 

on a rectangular grid and-have Pa• = 6A'. lle signal set (b) requires an average 
transmitted power p .. = 6.S3A2

, and (d) requires p .. = 4.73A2. llerefore, the 
fourth signal set requires approximately 1 dB less power than the first two and 
1.6 dB less power than the third to achieve the same probability of error. This 
signal constellation is known to be the best eight-point QAM constellation 
because it requires the least power for a given minimum distance between 
signal points. 

For M "" 16, there are many more possibilities for selecting the QAM signal 
points in the two-dimensional space. For example, we may choose a circular 
multiamplitude constellation for M = 16. as shown in Fig. 4-3-4. In this case, 
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the signal points at a given amplitude. level are phase-rotated by ~II" relative to 
the signal points at adjacent amplitude levels. This 16·QAM constellation is a 
generalization uf the optimum 8-QAM constellation. However, the circular 
16-QAM constallation is not the best 16·point QAM signal constellation for 
the A WGN channel. 

Rectangulllr QAM signal constellations have the distinct advantage of being 
easily generated as two PAM signals impressed on phase-quadrature carriers. 
In addition, they are easily demodulated. Although they are not the best M-ary 
QAM signal cC:lstellations for M ~ 16. the average transmitted power required 
to achieve a gi_en minimum distance is only slightly greater than the average 
power required for the best M -ary QAM signal constellation. For these 
reasons, rectangular M -ary QAM signals are most frequently used In practice. 

For rectangular signal constellations in which M = 2*, where k is even, the 
QAM signal constellation is equivalent to two PAM signals on quadrature 
carriers. each having \1M = 2*12 ,;£nal points. Since the signals in the 
phase.quadratUle components can hL perfectly separated at the demodulator. 
the probability of error for QAM is easily determined from the probability of 
error for PAM. Specifically, the probability of a correct decision for the M-ary 
QAM system is 

(5-2-77) 

where PvIJ is the probability of error of a VM - ary PAM with one-half the 
average power in each quadrature signal of the equivalent QAM system. By 
appropriately modifying the probability of error for M~ary PAM, we obtain 

I 

( 1·) ~ 3 Ifav) P,'iJ = 2 1 - . = Q( -_--
vM M I No 

(5-2-78) 

where t;.-1 N" is the average SNR per symbol. Therefore. the probability of a 
symbol error for the M-ary QAM is 

PM = I - (I - Pv ,,)' (5-2-79) 

Note that this result is exact for M = 2* when k is even. On the other hand. 
when k is odd~ there is no equivalent \1M - ary PAM system. This is no 
problem. however, because it is rather easy to determine the error rate for a 
rectangular signal set. If we employ the optimum detector that bases its 
decisions on the optimum distance metries given by (5-1 c43), it is relatively 
straightforward to show that the symbol error probability is tightly upper­
bounded as 

(5-2·80) 
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FIGURE 5-2·16 Probability of a symbol error for QAM. SNR per bJ!. '6,tdB, 

for any k;" 1, where 'tb.jNo is the average SNR per bit. The probability of a 
symbol error is plotted in Fig. 5-2-16 as a function of the average SNR per bit. 

For non-rectangular QAM signal constellations, we may upper-bound the 
. error probability by use of a union bound. An obvious upper bound is 

PM < (M - 1)Q(V!d~(nf/2No) 

where d~ln in tne minimum euclidean distance between signal points. This 
bound may be loose when M is large. In such a case, we may approximate P" 
by rep/acing M - 1 by Mm where Mn is the largest number of neighboring 
points that are at distance d~ln from any constellation point. 

It is interesting to compare the performance of QAM with that of PSK for 
any given signal size M, since both types of signals are two-dimensional. Recall 
that for M -ary PSK, the probability of a symbol error is approximated as 

PM'" 2Q(V2y,Sin ~) (5-2-81) 

where y, is the SNR per symbol. For M-ary QAM, we may use the expression 
(5-2-78). Since the error probability is dominated by the argument of the Q 
function. we may simply compare the arguments of Q forlhe two signal 
formats_ Thus, the ratio of these two arguments is 

3/(M - 1) 
~= 

2 sin2 (n-l M) 
(5-2-82) 

For example. when M = 4, we have fi'iM = 1. Hence. 4-PSK and 4-QAM yield 
comparable performance for the same SNR per symbol. On' the other hand, 
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TABLE 5·2-1 SNR ADVANTAGE OF M-ARY 
QAM OVER M-ARY PSK 

M 10 lOX,. 91., 

8 1.65 
16 4.20 

32 7.02 
64 9.95 

when M > 4 we find that rilM > 1. so that M -ary QAM yields better 
performance than M ·ary PSK. Table 5-2-1 illustrates the SNR advantage of 
QAM over PSK for several values of M. For example, we observe that 
32-QAM has a 7 dB SNR advantage over 32-PSK. 

5-2-10 CompurisoD of Digital Modulation Methods 
The digital modulation methods described in this chapter can be compared in a 
number of ways. For example, one can compare them on the basis of the SNR 
required to achieve a specified probability of error. However, such a 
comparison would not be very meaningful, unless it were made on the basis of 
some constraint, such as a fixed data rate of transmission or, equivalently, on 
the basis of a fixed bandwidth. With this goal in mind. let us consider the 
bandwidth requirements for several modulation methods. 

For multiphase signals, the channel bandwidth required is simply the 
bandwidth of the equivalent lowpass signal pulse g(t). which depends on lts 
detailed characteristics. For our purposes. we assume that g( () is a pulse of 
duration T and that its bandwidth W is approximately equal to the reciprocal 
of T. Thus, W = 1/ T and, since T = k/ R = (log, M)/ R. it follows that 

R 
W=-­

log2 M 
(5-2-83) 

Therefore, as M is increased. the channel bandwidth required. when the bit 
rate R is fixed. decreases. The bandwidth efficiency is measured by the bit rate 
to bandwidth ratio, which is 

R 
-= log, M 
W 

(5-2-84) 

The bandwidth-efficient method for transmitting PAM is single-sideband. 
Then. the channel bandwidth required to transmit the signal is approximately 
equal 10 I/2T and. since T = k/R = (I0g2 M)/R, it follows that 

R 
W=21og,M (5-2-85) 
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QAM OVER M-ARY PSK 

M 10 lOX,. 91., 

8 1.65 
16 4.20 

32 7.02 
64 9.95 
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This is a factor of two better than PSK. 
In the case of QAM. we have two orthogonal carriers. with each carri,'1" 

having a PAM signal. Thus. we double the rate relative to PAM Howe\cr. the 
QAM signal must be transmitted via double sideband. Consequ.:ntly. QAM 
and PAM have the same bandwidth efficiency when the bandwidth is 
referenced to the bandpass signal. 

Orthogonal signals have totally different bandwidth requirements. If the 
.'vi = 2" orthogonal signals are constructed by means of orthogonal carriers with 
minimum frequency separation of 1/2T for orthogonality. the bandwidth 
required for transmission of k = log2 .'vi information bits is 

At M 
W=--=---

2T 2(k/R) 
M R 

2 logo M 
(5·2-Xfl ) 

In this case. the bandwidth increases as M increases. Similar relationships 
obtain for simplex and biorthogonal signals. In the case of biothogonal signals. 
the required bandwidth is one half of that for orthogonal signals. 

A compact and meaningful comparison of these modulation methods is one 
based on the normalized data rate RIW (bits per second per hertz of 
bandwidth) versus the SNR per bit (go/Nn) required to achieve a given error 
probability. Figure 5-2-17 illustrates the graph of R/W versus SNR per bit for 
PAM. QAM, PSK. and orthogonal signals, for the case in which the error 
probability js PM = 10--'. We observe that in the case of PAM. QAM. and PSK. 
increasing M results in a higher bit rate-to-bandwidth ratio R/W. However. the 
cost of achieving the higher data rate is an increase in ihe SNR per bit. 
Consequently. these modulation methods are appropriate for communication 
channels that are bandwidth limited, where we desire a bit rate-to-bandwidth 
ratio R /W > 1 and where there is sufficiently high SNR to support increases in 
M. Telephone channels and digital microwave radio channels are examples of 
such bandlimited channels. 

In contrast, M -ary orthogonal signals yield a bit rate-Io-bandwidth ratio of 
R/W,,;; 1. As M increases, RIW decreases due to an increase in the required 
channel bandwidth. However. the SNR per bit required :to achieve a given 
error probability (in this case, PM = 10-5

) decreases as M increases. Conse­
quently. M-ary orthogonal signals are appropriate for power-limited channels 
that have sufficiently large bandwidth to accommodate a large' number of 
signals. In this case, as M -+ "", the error probability can be made as small 
as desired, provided that ~b/No>O.693 (-1.6dB). This is the minimum SNR 
per bit required to achieve reliable transmission in the limit as the 
channel bandwidth W ..... :x: and the corresponding bit rate-to-bandwidth ratio 
R/W ..... O. 

Also shown in Fig. 5-2-17 is the graph (or the normalized capacity of the 
bandlimited AWGN channel. which is due to Shannon (1948). The ratio OW. 
where C ( = R) is the capacity in bits/s, represents the highest achievable bit 
rate-to-bandwidth ratio on this channel. Hence, it serves as the upper bound 
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on the bandwidth efficiency of any type of modulation. This bound is derived 
in Chapter 7 and discussed in greater detail there. 

5-3 OPTIMUM RECEIVER FOR CPM SIGNALS 
We recall from Section 4-3 that CPM is a modulation method with memory. 
The memory results from the continuity of the transmitted carrier phase from 
one signal interval to the next. The transmitted CPM signal may be expressed 
as 

(5-3-1) 
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where <f>U; I) is the carrier phase. The fillered received signal for an additive 
gaussian noise channel is . 

ret) = S(I) + net) (5-3-2) 

where 

n(t) = n,(t) cos 21ftt - 11,(1) sin 2trtt (5-3-3) 

5-3·} Optimum Demodulation and Detection of CPM 

The optimum receiver for this signal consists of a correia lor followed by a 
maximum-likelihood sequence detector that searches the paths through the 
state trellis for the minimum euclidean distance path. The Viterbi algorithm is 
an efficient method for performing this search. Let us establish the general 
state trellis structure for CPM and then describe the metric computations. 

Recall that the carrier phase for a CPM signal with a fixed mooulation index 
h may be expressed as 

n 

cP(t; I) = 2trh 2: J.q(t - kT) 
I<=-'X. 

n -J~ n 

= trh 2: lk + 2trh 2: l.q(t - kT) 
k=--':L k=Il-L+l 

=8n +8(c;I), nT""t""(n+l)T (5-3-4) 

where we have assumed that q(t) = 0 for t < 0, q(t) =! for t;;;. LT, and 

q(t) = [g(r)dT (5-3-5) 

The signal pulse get) = 0 for 1<0 and I;;;' LT. For L = I, we have a full 
response CPM, and for L > 1, where L is a positive integer; we have a partial 
response CPM signal. 

Now, when 11 is rational, i.e., h = mlp where m and p are relatively prime 
positive integers, the CPM scheme can be represented by a trellis_ In this case, 
there are p phase states 

e = { trm 2trm -,,(P~-...:I:L):.::trm.:.::} 
S OJ , , ... , 

p p p 
(5-3-6) 

when m is even, and 2p phase states 

(5-3-7) 

when m is odd. If L = 1, these are the only states in the trellis. 01\ the other 
hand, if L> I, we have an additional number of states due to tht" partial 
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response character of the signal pulse g(t). These additional states can be 
identified by expressing 8(t. I) given by (5-3-4) as 

.-1 

9(t; I) = 21rh 2: l.q(t - kT) + 21rhlnq(t - nT) (5-3-8) 
k=n-[.+l 

The first term on the right-hand side of (5-3-8) depends on the information 
symbols (/._" 1.-20 ' . _, I.-L+I). which is called the co"elative state vector. 
and represents the phase term corresponding to signal pulses that have not 
reached their final value. The second term in (5-3-8) represents the phase 
contribution due to the most recent symbol In. Hence, the state of the CPM 
signal (or the modulator) at time t = nT may be expressed as the combined 
phase stale and correlative state. denoted as 

(5-3-9) 

for a partial response signal pulse of length LT, where L > 1. In this case, the 
number of states is 

N = {PM L
-

1 
(evenm) 

s 2pM L - 1 (oddm) 
(5-3-10) 

when h =m/p. 
Now, suppose the state of the modulator at t = nT is Sn. The effect of the 

new symbol in the time interval n T .;; t .;; (n + 1) T is to change the state from 
Sn to Sn+:- Hence, at t = (n + 1)T, the state becomes 

where 

Example 5-3-1 

Consider a binary CPM scheme with a modulation index h "" 3/4 and a 
partial response pulse with L = 2. Let us determine the states S. of the CPM 
scheme and sketch the phase tree and state trellis. 

First, we note that there are 2p = 8 phase states, namely, 

a, = {O, ±!1t', ±~x, ±ax, xl 

For each of these phase states, there are two states that result from the 
memory of the CPM scheme. Hence, the total number of states is N, = 16, 
namely, 

(0,1), (0, -1), (x,1), (x, -1), (an, 1), (lIC, -1), (!n:,1), (!n:, -1), 

(~Jr, 1), an, -1), (-ill',1), (-in:, -1), (-til', 1), (-in:, -1), 

(-lJr, 1), (-ix, - J) 
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FlGURE 5-3-1 State trellis for partial response (L = 2) CPM 
with h =~. 

{8,.,/II-I) (8 .. 1, J.,) 

iO. I) (0. I} 

10.-1) 

(~ •. I ) 

U •. -1) 

(lK.I) 
Ii •. -1) 
(i-· I

) 

(~ •. -I) 
(x. 1) 

('. -1) 

(i" I) 
(~ •. -I) 
(~ •. I) 

(~ •. -I) 
H··I) 

If the system is in phase state 9. = -111' and I._I = -1 then 

9#+1 = 8. + nhln - 1 

= -~1t - ~1t = -1t 

The state trellis is illustrated in Fig. 5-3-1. A path through the state trellis 
corresponding to the sequence (1, -1, -1, -1, 1, 1) is illustrated in Fig. 
5-3-2. 

In order to sketch the phase tree, we must know the signal pulse shape 
g(t). Figure 5-3-3 illustrates the phase tree when g(t) is a rectangular pulse 
of duration 2T, with initial state (0,1). 

Having established the state trellis representation of CPM, let us now 
consider the metric computations performed in the Viterbi algorithm. 

Metric: Compatations By referring back to the mathematical development 
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FIGURE S-l-2 A single signal path through the 
treUis. 

:0. t) • 
, , 

(0.-11. \ 

Il' .) • 
11" -; I • 

I
· \ . 
. 411:· -I) • 

(It. II • 

5 . I.n.-.) • 
( ~ n .• \ • - , 

I~·-'l· 
(~1t.i). 

(lx-,) • 

, , , , 
, , 
, , 

-. • 

, , 

, , , 
'9 -, 
( .. n. -11 

-i" 
-~n 
_J,,; 

4 
-I 

_~x 
4 

FIGURE S-l-3 Ph"", tree lor L = 2 partial response CPM _ ~ • 
withh = i- -

-. -I 

• • • • 
{4l- -11 

• 
" , , 
• 

, , 

298

188 DIGITAL ~OM\tt"'.n('ATIOr-.·S 

FIGURE S-l-2 A single signal path through the 
treUis. 

:0. t) • 
, , 

(0.-11. \ 

Il' .) • 
11" -; I • 

I
· \ . 
. 411:· -I) • 

(It. II • 

5 . I.n.-.) • 
( ~ n .• \ • - , 

(~ •. ! j. 
(lx-I) • 

, , , , 
, , 
, , 

-. • 

, , 

, , , 
'9 -, 
( .. n. -11 

-i" 
-~n 
_J,,; 

4 
-I 

_~x 
4 

FIGURE S-l-3 Ph"", tree lor L = 2 partial response CPM _ ~ • 
withh = i- -

-. -1 

• • • • 
{4l- -11 

• 
" , , 
• 

, , 



CHAPTER 5: OPTIMUM RE{'EIVERS FOR THE ADDITIVE WHITE GAUSSIAN NOISE CHASNEl 289 

for the derivation of the maximum likelihood demodulator given in Section 
5-1-4, it is easy to show that the logarithm of the probability of the observed 
signal r(t) conditioned on a particular sequence of transmitted symbols 1 is 
proportional to the cross-correlation metric 

f
(I1+I)T 

CM"(I) = -x r(l) cos [w,1 + 4>(1; I)) dl 

(5-3-11) 

The term CM"_,(I) represents the metrics for the surviving sequences up to 
time nT, and the term 

(n+ 1)T 

un(l; 8,,) = L ret) cos [wet + 8(t; I) + e"] dl 
"T 

(5-3-12) 

represents the additonal increments to tbe metrics contributed by the signal in 
the time interval n T ~ t ,,;;: (n + 1) T. Note that there are ML possible sequences 
1=(/", 1"_,, ... ,I"-L") of symbols and p (or 2p) possible phase states {B"}. 
Therefore, there are pML (or 2pML) different values of lI,,(I, 9"). computed in 
each signal interval. and each value is used to increment the metrics 
corresponding to the pM L -I surviving sequences from the previous signaling 
interval. A general block diagram that illustrates the computations of u"(t: Bn) 
for the Viterbi decoder is shown in Fig. 5-3-4. 

Note that the number of surviving sequences at each state of the Viterbi 
decoding process is pML

- 1 (or 2pML -I). For each surviving sequence, we have 
M new increments of un(l; en) that are added to the existing metrics to yield 
pM'· (or 2pM 1

.) sequences with pML (or 2pML) metrics. However, this number 
is then reduced back to pML

-
1 (or 2pM'·-I) survivors with corresponding 

metrics by selecting the most probable sequence of the M sequences merging 
at each node of the trellis and discarding the other M - 1 sequences. 

FIGURE 5·3-4 Computation of metric increments 
",,(I: /I,,). 

Pha~ 

generator 
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metrics by selecting the most probable sequence of the M sequences merging 
at each node of the trellis and discarding the other M - 1 sequences. 

FIGURE 5·3-4 Computation of metric increments 
",,(I: /I,,). 
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5-3-2 Performance of CPM Signals 
In evaluating the performance of CPM signals achieved with MLSE. we must 
determine the minimum euclidean distance of paths through the trellis that 
separate at the node at ( = 0 and re-emerge at a larei time at the same node. 
The distance between two paths through the trellis is related to the 
corresponding signals as we now demonstrate. 

Suppose that we have two signals s,(t) and Sj(t) corresponding to two phase 
trajectories .p(t: I,) and .p(t; If). The sequences Ii and Ij must be different in 
their first symbol. Then. the euclidean distance between the two signals over an 
interval of length NT. where liT is the symbol rate, is defined as 

INT fNT fNT 
= 0 5~(1) dt + 0 5;(t) dl - 2 0 s,(t)sAt) dt 

?'(; i'''T = -r 0 {I - cos [4>(1; I,) - 4>(t; I;}]} dt (5-3-13) 

Hence the euclidean distance is related to the phase difference between the 
paths in the state trellis according to (5-3-13). 

It is desirable to express the distance d~ in terms of the bit energy. Since 
'jg= jgb log, M, (5-3-13) may be expressed as 

(5-3-14) 
where o~ is defined as 

(5-3-15) 

Furthermore, we observe that .p(t; I,) - 4>(/; Ii) = q,(t; Ii - Ij}. so tnat, with 
~ = Ii -I;. (5-3·15) may be written as 

10 MJNT o~ = ~ 0 (1 - cos <1>(1; ~)J dt (5-3-16) 

where any element of * can take the values 0, ±2, ±4, ± ... ± 2(M - I" 
except that ~ .. O. 
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The error rate performance for CPM is dominated by the term correspond­
ing to the minimum euclidean distance, and it may be expressed as 

I 
, I t,~ ) 

p - K~8' 
',1 - 8"""QI \1 N. min 

\ .j f 

(5-3-17) 

where 

8~m = lim min b~ 
\'~.- l.! 

I log, M JV

' I = lim min ~.---- [1 - cos <1>(1: I, - 1)1 £II 
,,~-,., I.} T II 

(5-3-IX) 

We note that for conventional binary PSK with no memory. N = I and 
c5~", = 0;, = 2. Hence. (5-3-17) agrees with our previous result. 

Since 0;'"" characterizes the performance of CPM with MLSE, we can 
investigate the effect on O~i" resulting from varying the alphahd size A!. the 
modulation index 11, and the length of the transmitted pulse in partial response 
CPM. 

Firs!, we consider full response (L = 1) CPM. If we take }f = 2 as a 
beginning. WI;? note that the sequences 

I, = + I, -I, I" I, 

I, = - I, + 1. I,. /, 
(5-3- t 9) 

which differ for k = O. and agree for k ;. 2. result in two phase trajectories 
that merge after the second symbol. This corresponds to the ditIerence 
sequence 

!; = {2. - 2. O. 0 •... } (5-3-20) 

The euclidean distance for this sequence is easily calculated from (5-3-16). and 
provides an upper hound on 8~in' This upper bound for tv! = 2 is 

, (Sin 211'h') ((;.(h) = 2 1- . 
2Trll 

tv! -., - ~ (5-3-21) 

For example. where II = ~, which corresponds to MSK, we have d~(~) = 2. so 
that /)~"n( ~) .;: 2. 

For M > 2 and full response CPM. it is also easily seen that phase 
trajectories merge at 1= 2 T Hence. an upper hound on /)~Hn can be ot>tained 
by considering the phase difference sequence ~ = {a. -a, n. 0 .... } where 
a = ±2, ±4 ..... ±2( tv! - I), This sequence yields the upper bound 

(
sin ?klrh)} d~(h) = min (2 log, tv!) 1- -

'~h" , 2kfCh 
(5-J-22l 
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FIGURE 5·3-5 The uPP'" bound oj, as a function of the modulation 
index h fur full response ['PM wich rectangular pulses. 
!From Alliin and 5undberg (1984). (1) 1984. John Wile\' 
Ltd. Reprinred with pnmi.'ision of the pubUshf!'r.l 
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The graphs of dt(h) versus h for M = 2.4.8, 16 are shown in Fig. 5-3-5. It is 
apparent from these graphs that large gains in performance can be achieved by 
increasing the alphabet size M. It must be remembered, however. that 
.5;;"n(h)""d~(h). That is. the upper bound may not be achievable for all 
values of h. 

The minimum euclidean distance .5;"'n{h) has been determined, by evaluat­
ing (5-3·16), for a variety of CPM signals by Aulin and Sundberg (1981}. For 
example, Fig. 5·3-6 illustrates the dependence of the euclidean distance for 
binary CPFSK as a function of the modulation index h. with the number N of 

FIGURE 5-3-6 Squared minimum euclidean distance as • function of the 
modulation index for binary CPFSK. The upper 
bound is d'J.. [From Alliin and Sundberg ([981). 
(1}1981IEEE.). 

N=4 
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bit observation (decision) intervals (N = 1, 2, 3. 4) as a parameter. Also shown 
is the upper bound d~(h) given by (5-3-21). In particular, we note that when 
h =~. o~m(l) = 2, which is the same squared distance as PSK (binary or 
quaternary) with N = I On the other hand, the required observation interval 
for MSK is N = 2 intervals, for which we have o~'n(n = 2. Hence, the 
performance of MSK with MLSE IS comparable to (binary or quaternary) PSK 
as we have previously observed. 

We also note from Fig. 5-3-6 that the optimum modulation index for binary 
CPFSK is h = 0,715 when the observation interval is N = 3. This yields 
0;"'n(0.715) = 2.43, or a gain of 0.85 dB relative to MSK. 

Figure 5-3-7 illustrates the euclidean distance as a function of h for 
M = 4 CPFSK, with the length of the observation interval N as a parameter. 
Also shown (as a dashed line where it is not reached) is the upper bound d~ 
evaluated from (5-3-22). Note that o~,. achieves the upper bound for several 
values of h for some N, In particular, note that the maximum value of d~, 
which occurs a't h = 0,9. is approximately reached for N = 8 observed symbol 
intervals. The true maximum is achieved at h = 0.914 with ,'II = 9. For this case, 
0;">0(0.914) = 4.2, which represents a 3.2 dB gain over MSK. Also note that the 
euclidean distance contains minima at h = t ttl. etc. These values of hare 
called weak modulation indices and should be avoided. Similar results are 
available for larger values of M, and may be found- in the paper by Auiin and 
Sundberg (1981) arid the text by Anderson el at. (1986). 

FIGURE 5-3-7 Squared minimum euclidean distance as a function of 
the modulation index for quaternary (,PFSK. 
The upptr Oourld is d~ I From Aulil, and Sundherg 
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FIGURE 5-~ Upper bound d~ on the minimum distance for 
partial response (raised cosine pulse) binary CPM. 
IFrom Sundbrrg (1986). It'> 1986 IEEE.] 
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Large performance gains can also be achieved with MLSE of CPM by using 
partial response signals. For example, the distance bound d~(h) for partial 
response, raised cosine pulses given by 

{
_I (1 _ cos 2m) (0';;'1';;' LT) 

g(t)= 2LT 2LT 
o (otherwise ) 

(5-3-23) 

is shown in Fig. 5-3-8 for M = 2. Here, note that, as L increases, d~ also 
achieves higher values. Clearly, the performance of CPM improves as the 
correlative memory L increases, but h must also be increased in order to 
achieve the larger values of d1.. Since a larger modulation index implies a 
larger bandwidth (for fixed L), while a larger memory length L (for fixed h) 
implies a smaller bandwidth, it is better to compare the euclidean distance as a 
function of the normalized bandwidth 2WTb , where W is the 99% power 
bandwidth and 1"" is the bit interval. Figure 5-3-9 illustrates this type of 
comparison with MSK used as a point of reference (0 dB). Note from this 
figure that there are several decibels to be gained by using partial response 
signals and higher signaling alphabets. The major price to be paid for this 
performance gain is the added exponentially increasing complexity in the 
implementation of the Viterbi decoder. 

The performance results shown in Fig. 5-3-9 illustrate that 3-4 dB gain 
relative to MSK can be easily obtained with relatively no increase in bandwidth 
by the use of raised cosine partial response CPM and M = 4. Although these 
results are for raised cosine signal pulses, similar gains can be achieved with 
other partial response pulse shapes. We 'emphasize that this gain in SNR is 
achieved by introducing memory into the signal modulation and exploiting the 
memory in the demodulation of the signal. No redundancy through coding has 
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FIGURE 5-3-9 Power bandwidlh tradeoff for partial response CPM 
signals with raised cosine pubes. W is the 99 
percent in-band power bandwidth. [From Sundberg 
(/986). if) 1986 IEEE] 
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been introduced. In effect, the code has been built into the modulation and the 
trellis-type (Viterbi) decoding exploits the phase constraints in the CPM signal. 

Additional gains in performance can be achieved by introducing additional 
redundancy through coding and increasing the alphabet size as a means of 
maintaining a fixed bandwidth. In particular, trellis-coded CPM using relatively 
simple convolution codes has been thoroughly investigated and many results 
are available in the technical literature. The Viterbi decoder for the convolu­
tionally encoded CPM signal now exploits the memory inherent in the code 
and in the CPM signal. Performance gains of the order of 4-6 dB, relative to 
uncoded MSK with the same bandwidth, have been demonstrated by combin­
ing convolutional coding with CPM. Extensive numerical results for coded 
CPM are given by Lindell (1985). 

MuI1i-h CPM By varying the modulation index from one signaling interval 
to another. it is possible to increase the minimum euclidean distance c5~;n 
between pairs of phase trajectories and, thus, improve the performance gain 
over constant-h CPM. Usually, multi-h CPM employs a fixed number H of 
modulation indices that are varied cyclically in successive signaling intervals. 
Thus, the phase of the signal varies piecewise linearly. 

Significant gains in SNR are achievable by using only a small number of 
different values of h. For example, with full response (L = 1) CPM and H = 2, 
it is possible to obtain a gain of 3 dB relative to binary or qU/tternary PSK. By 
increasing H to H = 4, a gain of 4.5 dB. relative to PSK can be obtained. The 
performance gain can also be increased with an increase in the signal alphabet. 
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Table 5-3-1 lists the performance gains achieved with M = 2, 4. and 8 for 
several values of H. The upper bounds on the minimum euclidean distance are 
also shown in Fig. 5-3- j 0 for several values of M and H. Note that the major 
gain in performance is obtained when H is increased from H = 1 to H = 2. For 
H> 2, the additional gain is relatively small for small values of {h,}. On tile 
other hand, significant performance gains are achieved by increasing the 
alphabet size M. 

The results shown above hold tor full response CPM. One can also extend 
the use of multi-It CPM to partial response in an attempt to further improve 
performance. It is anticipated that such schemes will yield some additional 
performance gains, but numerical results onparlial response, multi-h ('PM are 
limited. The interested reader is referred to the paper by Aulin and Sundberg 
(l982b). 

MultiampJitude CPM Multiamplilude ('PM (MACPM) is basically a 
combined amplitude and phase digital modulation scheme that allows us to 
increase the signaling alphabet relative to CPM in another dimension and, 
thus, to achieve higher data rates on a band-limited channel. Simultaneously, 
the combination of multiple amplitude in conjunction with CPM results in a 
bandwidth-efficient modulation technique. 

We have already observed the spectral characteristics of MACPM in Section 
4-3. The performance characteristics of MACPM have been investigated by 
Mulligan (1988) for both uncoded and trellis-coded CPM. Of particular interest 
is the result that trellis-coded CPM with two amplitude levels achieves a gain 
of 3-4 dB relative to MSK without a significant increase in the signal bandwidth. 

5-3-3 Symbol-by-Symbol Detection of CPM Signals 
Besides the ML sequence detector, there are other types of detectors that can 
be used to recover the information sequence in a CPM signal, In this section, 
we consider symbol-by-symbol detectors. One type of symbol-by-symbol 
detector is the one described in Section 5-1-5, which exploits the memory of 
CPM by performing matched filtering or cross-correlation over several 
signaling intervals. Because of its computational complexity, however, this 
recursive algorithm has not been directly applied to the detection of CPM. 
Instead, two similar, albeit suboptimal, symbol-by-symbol detection methods 
have been described in the papers by deBuda (1972), Osborne and Luntz 
(1974), and Schonhoff (1976)_ One of these is functionally equivalent to the 
algorithm given in Section 5-1-5, and the second is a suboptimum approxima­
tion of the first. We shall describe these two methods in the context of 
demodulation of CPFSK signals, for which these detection algorithms have 
been applied directly. 

To describe these methods, we assume that the signal is observed over the 
present signaling interval and D signaling intervals into the future in deciding 
on the information symbol transmitted in the present signaling interval. A 
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CPM by performing matched filtering or cross-correlation over several 
signaling intervals. Because of its computational complexity, however, this 
recursive algorithm has not been directly applied to the detection of CPM. 
Instead, two similar, albeit suboptimal, symbol-by-symbol detection methods 
have been described in the papers by deBuda (1972), Osborne and Luntz 
(1974), and Schonhoff (1976)_ One of these is functionally equivalent to the 
algorithm given in Section 5-1-5, and the second is a suboptimum approxima­
tion of the first. We shall describe these two methods in the context of 
demodulation of CPFSK signals, for which these detection algorithms have 
been applied directly. 

To describe these methods, we assume that the signal is observed over the 
present signaling interval and D signaling intervals into the future in deciding 
on the information symbol transmitted in the present signaling interval. A 
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TABLE 5-3-1 MAXIMUM VALUES OF THE UPPER BOUND d;' FOR MULTI·h LINEAR 
PHASE ePMa 

dB pin 
compare. 

M H M .. tf" with MSK 

2 1 2.43 0.85 
2 2 4.0 3.0 
2 3 4.88 3.87 
2 4 5.69 4.54 
4 I 4.23 3.25 
4 2 6.54 5.15 
4 3 7.65 5.83 
8 6.14 4.87 
8 2 7.50 5.74 
8 3 8.40 6.23 

a From Aulin and Sundberg (1982b). 

FIGURE 5-3-10 Upper bounds on minimum squared 
euclidean distance for various ,~ and 
H values. [From Au/ir. and Sundberg 
(l982b). (f}1982 IEEE.] 
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exp{ ) 

.,I,,=M- 1, 

FIGURE 5-3-11 Block diagram of demodulator [or detection of CPFSK. 

block diagram of the demodulator, implemented as a bank of cross-correlators, 
is shown in Fig. 5-3-11. Recall that the transmitted CPFSK signal during the 
nth signaling interval is 

s(t) = Re [V(t)e'2J1f.'] 

where 

{ [
Il"h[t - (n - l)TJ/n n-I ]} 

v(t) = exp j r + Il"h ~o I. + .po 

h = 2fd T is the modulation index. fd is the peak frequency deviation. and .po is 
the initial phase angle of the carrier. 

in detecting the symbol I,. the cross-correlations shown in Fig. 5-3-11 are 
performed with the reference signals S(I. 1,.1,. ... , 1'+D) for all M D

+
1 possible 

values of the symbols 1" I" ... , I, + D transmitted over the D + 1 signaling 
intervals. But these correlations in effect generate the variables rIo r" ...• rl +D' 
which in turn are the arguments of the exponentials that occur in the pdf 

ph. r2.· .. "'+D If,. f2•··· ./'+D) 

Finally, the summations over the MD possible values of the symbols 
12 , I), ... , I, +D represent the averaging of 

p(r,. r2 • ... , r, +D II" I" ...• IJ+D)P(/" f" ...• I,..D) 
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over the MD possible values of these symbols. The M outputs of the 
demodulator constitute the decision variables from which the largest is selected 
to form the demodulated symbol. Consequently the metrics generated by the 
demodulator shown in Fig. 5-3·11 are equivalent to the decision variables given 
by (5-1-68) on which the decision on I, is based. 

Signals received in subsequent signaling intervals are demodulated in the 
same manner. That is. the demodulator cross-correlates the signal received 
over D + I signaling intervals with the M D +' possible transmitted signals and 
forms the decision variables as illustrated in Fig. 5-3-11. Thus the decision 
made on the mth signaling interval is based on the cross-correlations 
performed over the signaling intervals m. m + I ..... m + D. The initial phase 
in the correlation interval of duration (D + l)T is assumed to be known. On 
the other hand. the algorithm described by (5-1-76) and (5-1-77) involves an 
additional averaging operation over the previously detected symbols. In this 
respect, the demodulator shown in Fig. 5-3-1 I differs from the recursive 
algorithm described above. However, the difference is insignificant. 

One SUboptimum demodulation method that performs almost as well as the 
optimum method embodied in Fig. 5-3-11 bases its decision on the largest 
output from the bank of MD +, cross-correia tors. Thus the exponential 
functions and the summations are eliminated. But t1~is method is equivalent 
to selecting the symbol 1m for which the probability density function 
p(rm' rm+ l • .•.• rm+D I/m.lm-+ I" .•• fm+ v) is a maximum. 

The performance of the detector shown in Fig. 5-3-11 has been upper­
bounded and evaluated numerically. Figure 5-3-12 illustrates the performance 
of binary CPFSK with n = D + I as a parameter. The modulation index 
h = 0.715 used in generating these results minimizes the probability of error as 
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shown by Schonhoff (1976). We note that an improvement of about 2_5 dB is 
obtained relative to orthogonal FSK (11 = 1) by a demodulator that cross­
correlates over two symbols. An additional gain of approximately 1.5 dB is 
obtained by extending the correlation time to three symbols. Further extension 
of the correlation time results in a relatively small additional gain. 

Similar results are obtained with larger alphabet sizes. For example. Figs 
5-3-13 and 5-3-14 illustrate the performance improvements for quaternary and 

tlGURE 5-3-14 Performance of octal CPFSK with 'coherent detection. 
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octal CPFSK, respectively. The modulation indices given in these graphs are 
the ones that minimize the probability of a sym bol error. 

Instead of performing coherent detection, which requires knowledge of the 
carrier phase </to, we may assume that <1>0 is uniformly dislributed over the 
interval 0 to 2TC, and average over it in arriving at the decision variables. Thus 
coherent integration (cross-correlation) is performed over the n = D + 1 
signaling intervals. but the outputs of the correlators are envelope-detected. 
This is called noneoherent detee/ion of CPFSK. In this detection scheme. 
performance Is optimized by selecting n to be odd and making the decision on 
the middle symbol in the sequence of n symbols. The nllmerical results on the 
probability of error for noncoherent detection of CPFSK are similar to the 
results illustrated above for coherent detection. That is, a gain of 2-3 dB in 
performance is achieved by increasing the correlation interval from n = 1 to 
n = 3 and to n = 5. 

5-4 OP'IIMUM RECEIVER FOR SIGNALS WITH 
RANDOM PHASE IN A WGN CHANNEL 

In this section. we consider the design of the optimum receiver for carrier 
modulated signals when the carrier phase is unknown at the receiver and no 
attempt is made to estimate its value. Uncertainty in the carrier phase of the 
received signal may be due to one or more of the following reasons: First. the 
oscillators that are used at the transmitter and the receiver 10 generate 
the carrier signals are generally not phase synchronous. Second. the time delay 
in the propagation of the signal from the transmitter to the receiver is n~t 
generally known precisely. To elaborate on this point. a transmitted signal of 
the form 

that propagates through a channel with delay 10 will be received as 

The carrier phase shift due to the propagation delay I" is 

<I> = - 27rf,ln 

Note that large changes in the carrier phase cb can occur due to relatively small 
changes in the propagation delay. For example, if the carrier frequency 
f, = 1 MHz. an uncertainty or a change in the propagation delay of 0.5 I-' swill 
cause a phase lIncertainity of Jr rad. In some channels (e.g., radio channels) the 
time delay in the propagation of the signal from the transmitter to tbe receiver 
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may change rapidly and in an apparently random manner, so that the carrier 
phase of the received signal varies in an apparently random fashion, 

In the absence of knowledge of the carrier phase. we may treat this signal 
parameter as a random variable and determine the form of the optimum 
receiver for recovering the transmitted information from the received signal. 
First. we treat the case of binary signals and, then, we consider M-ary signals. 

5-4-1 Optimum Receiver for Binary Signals 
We consider a binary communication system that uses the two carrier 
modulated signals s\(t) and S2(t) to transmit the information, where 

(5-4-1) 

and SI.,(r), in = 1, 2 are the equivalent lowpass signals. The two signals are 
assumed to have equal energy 

(5-4-2) 

and are characterized by the complex-valued correlation coefficient 

(5-4-3) 

The received signal is assumed to be a phase-shifted version of the 
transmitted signal and corrupted by the additive noise 

net) = Re ([ne(/) + jn,(t)]e12>if"} 

= Re rz(t~2>if1 

Hence, the received signal may be expressed as 

where 

(5-4-4) 

(5-4-5) 

(5-4-6) 

is the equivalent lowpass received signal. This received signal is now passed 
through a demodulator whose sampled output at r = T is passed to the 
detector. 

The Optimum Demodulator In Section 5-1-1, we demonstrated that if the 
received signal was correlated with a set of orthonormal functions {f,,(t)} that 
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spanned the signal space, the outputs from the bank of correlators provide a 
set of sufficient statistics for the detector to make a decision that minimizes the 
probability of error. We also demonstrated that a bank of matched filters could 
be substituted for the bank of correlators. 

A similar orthonormal decomposition can also be employed for a received 
signal with an unknown carrier phase. However, it is mathematically con­
venient to deal with the equivalent lowpass signal and to specify the signal 
correlators or matched filters in terms of the equivalent lowpass signal 
waveforms. 

To be specific, the impulse response h,{t) of a filter that is matched to the 
complex-valued equivalent lowpass signal s,(t), 0,,;; I";; T, is given as (see 
Problem 5-6) 

h,U) = s,*(T - r) (5-4-7) 

and the output of such a filter at r = T is simply 

(5-4-8) 

where 'iC is the signal energy_ A similar result is obtained if the signal slit) is 
correlated with sf(r) and the correlator is sampled at (= T. Therefore. the 
optimum demodulator for the equivalent lowpass received signal slit) given in 
(5-4-6) may be realized by two matched filters in parallel, one matched to 5,,(1) 
and the other to sdt). and shown in Fig. S-4-1. The output of the matched 
filters or correia tors at the sampling instant are the two complex numbers 

. (5-4-9) 

Suppose that the transmitted signal is s,(t). Then, it is ea~ily shown (see 
Problem 5-35) that 

" = 2 '(? cos ¢ + n" + j(2t sm <i> + n,,) 

r, = U Ipi cos (<i> + an) + n,,_ + ;[21" Ipl sin (q, + an) + n,,] 

Filttr 
matched to 

1",(11 

[ktt.'dor 

Filtrf 
" mah,:hcJ h\ ....:.... 

FIGURE 5-4·1 Optimum receivt.'r for hinary signals. 

(S-4-IG) 

Output 

dt'\ j'H.l1l 
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where p is the complex-valued correlation coefficient of the two signals S/I(I) 
and sn(t). which may be expressea as p = Ipi exp (ao). The random noise 
variables n,o n,,, n2" and n2< are jointly gaussian. with zero mean and equal 
variance. 

The Optimum Detector The optimum detector observes the random 
variables [ric r" r2c r2< 1 = T, where r, = ric + jr ... and r2 = r2.. + jr", and bases its 
decision on the posterior probabilities P(S., I r), m = 1. 2. These probabilities 
may be expressed as 

p(r I sm)P(s",) 

per) 
m = 1, 2 

and, hence, the optimum decisioR rule may be expressed as 

P(s, Irl) ~ P(~ I r) 
" 

or, equivalently, 

(5-4-11) 

(5-4-12) 

The ratio of pdfs on the left-hand side of (5-4-12) is the likelihood rario, which 
we denote as 

(5-4-13) 

The right-hand side Qf (5-4-12) is the ratio of the two prior probabilities, which 
takes the value of unity when the two signals are equally probable. 

The probability density functions per I 5,) and per I ~) can be obtained by 
averaging the pdfs per I S"'. <b) over the pdf of the random carrier phase, i.e., 

(5-4-14) 

We sball perform the integration indicated in (5-4-14) for the special case in 
which the two signals are ortbogonal, i.e., p = O. In this case, the outputs of the 
demodulator are 

= 2'l:cos<l> + n" + j(2~sin <I> + n,,) 

rz = rZC" + j r2s 

= 111(" + jn2.~ 

(5-4-15) 
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where (n .... n". n,C' n,,) are mutually uncorrelated and, hence, statistically 
independent, zero-mean gaussian random variables (see Problem 5-25). Hence, 
the joint pdf of r = Ir" r" '2, r~,l may be expressed as a product of the 
marginal pdfs. Consequently, 

1 [(rlc-2l1'COS(t»2+(r,'-2~Sin~f] 
p(r". r" I 5,,~) = 2Hao exp 2a' 

(5-4-16) 

where a' = 2 't'N". 
The uniform pdf for the carrier phase ~ represents the most ignorance that 

can be exhibited by the detector. This is called the least favorable pdf for ~. 
With p(~) = 1/21f. 0.;; <f> .;;2Jf, substituted into the integral in (5-4-14), we 
obtain 

I i2~ 
2
- p(r". r" Is" <f» d~ 
If " 

1 (r;,+d,+4lf) 1 J [2lf:(r.,.cOS~+"'Sin~)J = -exp - , - exp d<f> 
~ 2r 2Jf ~ 

(5-4-17) 

But 

J...12K [2l(rlccos<f>+r"Sin~)] _ (2'lv'r1.+rl,) 
2 

e){p , d<f> - I" , 
Jf " r a-

(5-4-18) 

where lo(x) is the modified Bessel function of zeroth order. defined in 
(2-1-120). 

By performing a similar integration as in (5-4-17) under the assumption that 
the signal S2(1) was transmitted, we obtain the result 

1 '2 ,,' 2"V ' 2 

I ( 
r;, ... r2.,+40-) (" ,:;,.+T>..) 

p(r, ... r2> s,) = 2Jf exp - 2a' . I" a' (5-4-19) 

When, we substitute these results into the likelihood ratio given by (5-4-13), 
we obtain the result 

(5-4-20) 

Thus, the optimum detector computes the two envelopes v'd, + d, and 
Vr~, + 't. a

1
nd 2 the corresJ>~ndinf ~alues of the. ~essel f~nction 

J,,(2'C1ir,< + ' • .fa) and lo(2'tVr,, + r2,/a-) to form the hkehhood ratIO. We 
observe that this computation requires knowledge of the noise variance <T'. 
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The likelihood ratio i~ then compared with the threshold P(s,)! pes,) to 
determine which signal was transmitted. 

A significant simplification in the implementation of the optimum detector 
occurs when the two signals are equally probable. In such a case the threshold 
becomes unity, and, due to the monotonicity of the Bessel function shown in 
Fig. 5·4·2, the optimum detection rule simplifies to 

(5-4-21 ) 

Thus, the optimum detector bases its decision on the two envelopes vd, + rL 
and Yd, + d." and, hence, it is called an envelope detector. 

We observe that the computation of the envelopes of the received signal 
samples at the output of the demodulator renders the carrier phase irrelevant 
in the decision as to which signal was transmitted. Equivalently. the decision 
may be based on the computation of the squared envelopes r~c + d, and 
r}, + rL in which case the detector is called a square-law detector. 

Binary FSK signals are an example of binary orthogonal signals. Recall that 
in binary FSK we employ two different frequencies, say It and Ii = j; + tlf, to 
transmit a binary information sequence. The choice of minimum frequency 
separation fl.! = Ii - !, is considered below. Thus, the signal waveforms may be 
expressed as 

s,(t) = Y2'l:bITbcos2rrj;l, 0';;;1';;; Tb 

s,(t) =Y2'l:bIThcos2Trf,t, 0';;;1';; Tb 

and their equivalent lowpass counterparts are 

The received signal may be expressed as 

I!f~b r(t) = -cos (21r/",t + tPm) + n(t) 
To 

(5-4-22) 

(5-4·23) 

(5-4-24) 
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FIGURE S.~3 Demodulation al'ld square-law detecl~on of binary FSK signals. 

where <Pm is the phase of the carrier frequency f,,,. The demodulation of the 
real signal r(l) may be accomplished, as shown in Fig. 5-4--'. hy using four 
correlators with tl:e basis functions 

(2 
!Im(r) = -V To cos [(2Jrf, + 2Jrlll ant]. III = 0, I 

(2 
f2m(l) = ,I-sin [(2iff, + 2Jrtll !1f)t], III = (), I 

V To 

(5-4-25) 

The four outputs of the correlators are sampled at the end of each signal 
interval and passed to the detector. If the Illth signal is transmitted, the four 
samples at the detector may be expressed as 

_ ~ [Sin [2Jr(k - Ill) l1f T] 
T •• - 0 2Jr(k _ m) ilf T cos <Pm 

cos [21r(k -m)ilfT] -1. ] 
21c(k -m)AfT sm<p", +n." k,m=L2 

(5-4-26) 

T _ n. [COS 2Jr(k - m) AfT - 1 
h - h 2Jr(k _ m) AfT cos <Pm 

+ sin [2Jr(k - m) AfT]. ] 
2Jr(k - m) Af T Sin <P... + Il •. " 

k,m=I,2 

where n.. and Il •.• denote the gaussian noise components in the sampled 
outputs, 
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We observe that when k = m, the sampled values to the detector are 

'me = ~cos <Pm + nmc 
(5-4-27) 

r ..... = ~sin <Pm + n"" 

Furthermore, we observe that when k "" m. the signal components in the 
samples rkc and r ... will vanish, independently of the values of the phase shifts 
q,k. provided that the frequency separation between successive frequencies is 
IlJ = lIT. In such a case, the other two correlator outputs cQnsist of noise 
only, i.e., 

(5-4-28) 

With a frequency separation of IlJ = lIT, the relations (5-4-27) and (5-4-28) 
are consistent with the previous result (5-4-15) for the demodulator outputs. 
Therefore, we conclude that for envelope or square-law detection of FSK 
signals, the minimum freqllency separation required for orthogonality of the 
signals is IlJ = 1fT. This separation is twice as large as that required when the 
detection is phase-coherent. 

5 ..... 2 Optimum Receiver for M -ary Orthoxonal Siguls 
The generalization of the optimum demodulator and detector to the case of 
M-ary orthogonal signals is straightforward. If the equal energy and equally 
probable signal waveforms are represented as 

sm(t) = Re [SJ",(t)ei2..t,,), m = 1, 2, ... ,M, 0 E; t<;; T (5-4-29) 

where s/",(t) are the equivalent Iowpass signals, the optimum correlation-type 
or matched-filter-type demodulator produces the M complex-valu~d random 
variables 

(5-4-30) 

where r,(t) is the equivalent lowpass received signal. Then, the optimum 
detector, based on a random, uniformly distributed carrier phaSe, computes the 
M envelopes 

Ir",1 "" Y;:;'c + ?""" m = 1,2, ... , M (5-4-31) 

or, equivalently, the squared envelopes Irmf, and selects the signal with the 
largest envelope (or squared envelope). 

In the special case of M-ary orthogonal FSK signals, the optimum receiver 
has the structure illustrated in Fig. 5-4-4. There are 2M correlators: two for 
each possible transmitted frequency. The minimum frequency separation 
between adjacent frequencies to maintain orthogonality is AI = 1fT. 

5 ..... 3 Probability of Error for Envelope Detedioa of M-ary 
Ortlwgonal SipaJs 

Let us consider the transmission of M-ary orthogonal equal energy signals over 
an A WON channel, which are envelope-detected at the receiver. We also 
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FIGURE 5-4-4 Demodulation of M-ary FSK signals for no.coherent detection. 

assume that the M signals are equally probable a priori and that the signal S.(I) 
is transmitted in the signal interval 0,;;; (,;;; T. 

The M decision metrics at the detector are the M envelopes 

where 

and 

ric = ~ cos <1>, + nlc 

r" = ~. sin <1>, + n" 

'mc = nmc , Tm .t = nm.fl m=2,3, ... , M 

(5-4-32) 

(5-4-33) 

(5-4-34) 

The additive noise components {nm ,·} and {nm.,} are mutually statistically 
independent zero-mean gaussian variables with equal variance fj2 = !N". Thus 
the pdfs of the random variables at the input to the detector are 

( __ 1_ (d, + d, + 't,) (vg',(rf. + rU) 
P" rIo r,,) - 2 2 e"p - 2 2 10 2 

Trfj fj fj 
(5-4-35) 

m = 2, 3 •...• M (5-4-36) 
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The additive noise components {nm ,·} and {nm.,} are mutually statistically 
independent zero-mean gaussian variables with equal variance fj2 = !N". Thus 
the pdfs of the random variables at the input to the detector are 

( __ 1_ (d, + d, + 't,) (vg',(rf. + rU) 
P" rIo r,,) - 2 2 exp - 2 2 10 2 

Trfj fj fj 
(5-4-35) 

m = 2, 3 •...• M (5-4-36) 
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Let US make a change in variables in the joint pdfs given by (5-4-35) and 
(5-4-36)_ We define the normalized variables 

v'r~+~, 
R =-=----=.:::: 

'" rT 

(5-4-37) 

Clearly, 'mc = rTRm cos em and rms = rTRm sin em. The Jacobian of this transfor­
mation is 

(5-4-38) 

(5-4-39) 

(5-440) 

Finally, by averaging p(R"" em) over em, the factor of Z1t is eliminated from 
(5-4-39) and (5-440). Thus, we find that R, has a Rice probability distribution 
and Rm , m = 2, 3, ... , M, are each Rayleigh-distributed_ 

The probability of a correct decision is simply the probability that R, > R~, 
and R, > R 3 , •• • , and R, > Rm. Hence, 

Pc = P(R2 < R" R3 < R
" 

... ,RM < R,) 

= r P(R2 <R" R3 < R" ... , RM < R, I R, =X)PR,(X) dx (5-441) 

Because the random variables Rm , m = 2, 3, ... ,M, are statistically iid, the 
joint probability in (54-41) conditioned on R, factors into a product of M - 1 
identical terms. Thus, 

(5442) 

where 

P(R2<R, I R, =x)= r PR,(r2) dr2 

= 1 - e-xc/2 (5-443) 

The (M -1)tll power of (54-43) may be expressed as 

(1 _ e-"I2)M-' = Y' (-It( M -l)e-"-<'12 
n=O \ n 

(54-44) 
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Substitution of this result into (5-4-42) and integration over x yields the 
probability of a correct decision as 

'11 "M-1" 1 [ n(;,] 
Pc= L (-1)"( )-exp - ". 

,,~O "n. n + 1 (n + l)N) 
(5-4-45) 

where (;J N., is the SNR per symbol. Then, the probability of a symbol error, 
which 1S P,'1 = 1 - P,. becomes 

'I" "M-l' 1 [ k'f,] p _ )' (_1),1+1( ) __ _!l h 

M - '~, _ n i n + 1 exp (n + I )Nn 
(5-4-46) 

where if;hl N., is the SNR per bit. 
For binary orthogonal signals (M = 2), (5-4-46) reduces to the simple form 

(5-4-47 ) 

For M > 2. we may compute the probability of a bit error by making use of 
the relationship 

..,;.-! 
p,--~-p 
h- 2'-1 '1 (5-4-48) 

which was established in SectiDn 5-2. Figure 5-4-5 shows the bit-error 
probability as a function of the SNR per bit Yh for M = 2. 4. R. 16, and 32_ Just 
as in the case of coherent detection of M -ary orthogonal signals (see Section 
5-2-2). we observe that for any given bit-error probability_ the SNR per bit 
decreases as M increases_ It wil! be shown in Chapter 7 that. in the limit as 
M --+ x (or k = log, M --+ x). the probability of a bit error P" can he made 
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arbitrarily small provided that· the SNR per bit'is .greaCer than the Shannon 
limit of -1.6 dB. The cost. (or increasing M is the bandwidth required to 
transmit the signals. For M-ary FSK, the frequency separation between 
adjacent frequencies is AI = lIT for signal orthogonality. The bandwidth 
required for the M signals is W = M t.J = MIT. AlSO, the bit rate is R = kIT, 
where k = log, M. Therefore, the bit-rate-to-bandwidth ratio is 

R = 10g,M 
W M 

5-4-4 ProbahUity of Error for Envelope Detection 
of Correlated Binary Signals 

(5-4-49) 

In this section, we .consider the performance of the envelope detector for 
binary, equal-energy correlated signals. When the two signals are correlated, 
the input to the detector are the complex-valued random variables given by 
(5-4-10). We assume that the detector bases its decision on the envelopes I''! 
and 1',1. which are correlated (statistically dependent). The marginal pdfs of 
R, = Ird and R, = 1'21 are Ricean distributed, and may be expressed as 

{ 

R", (R;' + /3;') (fJmRm) 
peRm) = 2'iNo exp - 4'tNo 10 2'tNo (R", >°1 

o (Rm <0) 

(5-4-50) 

m = 1,2, where /3, = 2~ and /3, = 211i1pl, based on the assumption that signal 
s,(t) was transmitted. 

Since R, and R2 are statistically dependent as a consequence of the 
nonorthogonality of the signals, the probability of error may be obtained by 
evaluating the double integral 

Pb =P(R2 >R,)= r fp(x"x,)dx,dX2 
o x, 

(5-4-51) 

where p(x" x,) is the joint pdf of the envelopes R, and R,. This approach was 
first used by Helstrom (1955), who determined the joint pdf of R, and R2 and 
evaluated the double integral in (5-4-51). 

An alternative approach is based on the observation that the probability of 
error may also be expressed as 

(5-4-52) 

But R~ - R~ is a special case of a general quadratic form in complex-valued 
gaussian random variables, treated later in Appendix B. For the special case 
under consideration, the derivation yields the error probability in the form 

Ph = Q,(a, b) - !e-(·2+b')I2/o(ab) (5-4-53) 
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where 

a = .J.!~ (l - VI - Ipl') 
'i 2'/11" 

(5-4-54) 

Q,(a, b) is the Q function defined in (2-1-123) and l,,(x) is the modified Bessel 
function of order zero. 

The error probability P" is illustrated in Fig. 5-4-6 for several values of !p. 
Ph is minimized Vllen p = 0; that is, when the signals are orthogonal. For this 
case, a = 0, b = '€h/N, .. and (5-4-53) reduces to 

p, = Q(O ~'ih) _ l" I"'''''',, (5-4-55) 
h '.,' no 

From the definition of Q,(a. 0) in (2-1-123), it follows that 

Q,(o. /'l:h ) = "-I,/2N,, 

VN" 
Substitution of these relations into (5-4-55) yields the desired result given 
previously in (5-4-47). On the other hand, when Ipi = I, the error probability in 
(5-4-53) becomes Ph = t as expected_ 

5-5 REGENERATIVE REPEATERS AND LINK 
BUDGET ANALYSIS 

In the transmission of digital signals through an A WGN channel. we have 
observed that the performance of the communication system. measured in 
terms of the probability of error, depends solely on the received SNR. '1:.1 NQ, 
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nGURE S-5-1 Malhematical model of channel with attenuation 
and additive noise. 
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where '[;h is the transmitted energy per bit and ~No is the power spectral density 
of the additive noise. Hence, the additive noise ultimately limits the 
performance 9f the communication system. 

In addition to the additive noise, another factor that affects the performance 
of a communication system is channel attenuation. All physical channels. 
including wire lines and radio channels, are lossy. Hence, the signal 'is 
attenuated as it travels through the channel. The simple mathematical model 
for the attenuation shown in Fig. 5-5-1 may be used for the channel. 
Consequently. if the transmitted signal is s(t), the received signal, with 
O<u",lis 

r(t) = a,(t) + n(t) (5-5-1) 

Then, if the energy in the transmitted signal is 'th , the energy in the received 
signal is aZ'[;h' Consequently, the received signal has an SNR a

2 'th l N" Hence, 
the effect of signal attenuation is to reduce the energy in the received signal 
and thus to render the communication system more vulnerable to additive 
noise. 

In analog communication systems, amplifiers called repeaters are used to 
periodically boost the signal strength in transmission through the channel. 
However, each amplifier also boosts the noise in the system. In contrast,'digital 
communication systems allow us to detect and regenerate a clean (noise-free) 
signal in a transmission channel. Such devices, called regenerative repeaters, are 
frequently used in wireline and fiber optic communication channels. 

5-5-1 Regenerative Repeaters 

The front end of each regenerative repeater consists of a demodulator idetector 
thaI demodulates and detects the transmitted digital information sequence sent 
by the preceding repeater. Once detected, the sequence is passed to the 
transmitter side of the repeater, which maps the sequence into signal 
waveforms that are transmitted to the nex'! repeater. This type of repeater is 
called a regenerative repeater. 

Since a noise-free signal is regenerated at each repeater, the additive noise 
does not accumulate. However, when errors occur in the detector of a 
repeater, the errors are propagated forward t6 the following repeaters in" the 
chalJnel. To evaluate the effect of errors on the performance of the overall 
system, suppose that the modulation is binary PAM, so that the probability of 
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a hit error for one hop (signal transmission from one repeakr to the n~ Xl 

repeater in the chain) is ,-
Po = 'Q( ~2::) 

Since errors occur with low probability, w~ may ignore the probability that anv 
one bit will be detected incorrectly more Ihan once in transmission through a 
channel with K repeaters. Consequently, the number of errors will increase 
linearly with the number of regenerative repeaters in the channel. and 
therefore, the overall probability of error may be approximated as 

( !Ub) Ph =KQ \/-. 
V No· 

(5-5-2) 

! n contrast, the use of K analog repeaters in the channel reduces the received 
SNR by K. and hence, the bit error probability is 

( ru;.) p - 1--

b-Q VKN" (5-5-3) 

Clearly, for the same probability of error performance. the use of regenerative 
repeaters results in a significant saving in transmitter pmyer compared with 
analog repeaters. Hence, in digital communication systems. regenerative 
repeaters are preferable. However, in wireline telephone channels that are 
used to transmit both analog and digital signals, analoJ( repeaters are generally 
employed. 

Example 5·5·1 

A binary digital communication system transmits data over a wireline 
channel of length 1000 km. Repeaters are used every 10 km to offset the 
effect of channel attenuation. Let us determine the -t:bIN" that is required to 
achieve a probability of a bit error of 10 ' if (a) analog repeaters are 
employed, and (b) regenerative repeaters are employed. 

The number of repeaters used in the system is K = 100. If regenerative 
repeaters are used, the t:bl N" obtained from (5-5-2) is 

105=IOOQ( jn;,) VN.; 
10 7=Q( ~) V No 

which yields approximately 11.3 dB. If analog repeakrs are used, the 'to/'ll" 
obtained from (5-5-3) is 

10 5 = Q( j U b 
) 

\j I ()().'Yo 

which yields tdNQ = 29_6 dB. Hence, the difference in the rCljuired SNR IS 
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FlGURE 5-5-2 lsotropically radiating antenna. 

about 18.3 dB, or approximately 70 times the transmitter power of the 
digital communication system. 

5-5-2 Commumcation Link Budget Analysis 
In the design of radio communications systems that transmit over line-of-sight 
microwave channels and satellite channels, the system designer must specify 
the size of the transmit and receive antennas, the transmitted power, and the 
SNR required to achie,ve a given level of performance at some desired data 
rate. The system design procedure is relatively straightforward and is outlined 
below. 

Let us begin with a transmit antenna that radiates isotropically in free space 
at a power level of Pr walts as shown in Fig. 5-5-2. The power density at a 
distance d from the antenna is PT 141Cd2 W 1m2

• If the transmitting antenna has 
some directivity in a particular direction, the power density in that direction is 
increased by a factor called the antenna gain and denoted by GT • In such.a 
case, the power density at distance dis P.,-GT f41Cd2 W fm2

. The product PTGT is 
usually called the effective radiated power (ERP or EIRP), which is basically 
the radiated power relative to an isotropic antenna, for which GT = 1. 

A receiving antenna pointed in the direction of the radiated power gathers a 
portion of the power that is proportional to its cross-sectional area. Hence. the 
received power extracted by the antenna may be expressed as 

PrGTAR 
4fU/2 (5-5-4) 

where AR is the effective area of the antenna. From electromagnetic field 
theory, we obtain. the basic relationship between the gain GR of an antenna and 
its effective area as 

GRAZ 
2 

AR=--m 
41T 

(5-5-5) 

where A = ellis the wavelength of the transmitted signal, c is the speed of light 
(3 x lOS m/s), and f is the frequency of the transmitted signal. 

If we substitute (5-5-5) for AR il1to (5-5-4), we obtain an expression {or the 
received power in the form 

(5-5-6) 
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The factor 

. "')2 
L, = C1td (5-5-7) 

is called the free-space path loss. If other losses, such as atmospheric losses, are 
encountered in the transmission of the signal, they may be accounted for by 
introducing an additional loss factor, say L •. Therefore, the received power 
may be written in general as 

(5-5-8) 

As indicated above, the important characteristics of an antenna are its gain 
and its effective area. These generally depend on the wavelength of the 
radiated power and the physical dimensions of the antenna. For example, a 
parabolic (dish) antenna of diameter D has an effective area 

(5-5-9) 

where lnD' is the physical area and 1'/ is the illumination efficiency factor, 
which falls in the range 0,5 "" ." "" 0.6. Hence, the antenna gain for a parabolic 
antenna of diameter D is 

(1rD)' 
GR = 11 T (5-5-10) 

As a second example, a hom antenna of physical area A has an efficiency 
factor of 0.8, an effective area of AR = 0.8A, and an antenna gain of 

lOA 
G -­

R - ,,' 
(5-5-11) 

Another parameter that is related to the gain (directivity) of an antenna is 
its beam width. which we denote as 8 B and which is Illustrated graphically in 
Fig. 5-5-3. Usually, the beamwidth is measured as the -3 dB width of the 

FIGURE S-S-3 Antenna beamwidth and pattern. 

Tran!'.minet 
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antenna pattern. For example, the - 3 dB beamwidth of a parabolic antenna is 
approximately 

(5-5-12) 

so that G T is inversely proportional to e~. That is, a decrease of the beamwidth 
by a factor of two, which is obtained by doubling the diameter D. increases the 
antenna gain by a factor of four (6 dB). 

Based on the general relationship for the received signal power given by 
(5-5-8), the system designer can compute PR from a specification of the antenna 
gains and the distance between the transmitter and the receiver. Such 
computations are usually done on a power basis, so that 

(5-5-13) 

EXllII1p1e 5-5-2 

Suppose that we have a satellite in geosynchronous orbit (36000 km above 
the earth's surface) that radiates 100 W of power, i.e., 20 dB above I W 
(20 dBW). The transmit antenna has a gain of 17 dB, so that the ERP = 
37 dBW. Also, suppose that the earth station employs a 3 m parabolic 
antenna and that the downlink is operating at a frequency of 4 GHz. The 
efficiency factor is 1/ = 0.5. By substituting these numbers into (5-5-10), we 
obtain the value of the antenna gain as 39 dB. The free-space path loss is 

Ls = 195.6 dB 

No other losses are assumed. Therefore. the received signal power is 

(PR)dB = 20 + 17 + 39 ~ 195.6 

= -119.6dBW 

or, equivalently, 
PR = 1.1 X lO- 12 W 

To complete the link budget computation, we must also consider the effect 
of the additive noise at the receiver front end. Thermal noise that arises at the 
receiver front end has a relatively flat power density spectrum up to about 
1012 Hz, and is given as 

(5-5-14) 

where kB is Boltzmann's constant (1.38 x 10-23 W s!K) and To is the noise 
temperature in Kelvin. Therefore, the total noise power in the signal 
bandwidth W is No W. 

The performance of the digital communications system is specified by the 
'lbl No required to keep the error rate performance below some given value. 
Since • 

~ TbPR 1 PR -=--=-- (5-5-15) 
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it follows that 

PR _ R( 'tb ) 

No No ceq 
(5-5-16) 

where ('thINo)"q is the required SNR per bit. Hence, if we have PRINo and the 
required SNR per bit, we can determine the maximum data rate that is 
possible. 

Example 5-5-3 

For the link considered in Example 5·5-2, the received signal power is 

P.=l.1XI0' 12 W (-1l9.6dBW) 

Now, suppose the receiver front end has a noise temperature of 300 K, 
which is typical for receiver in the 4 GHz range. Then 

No=4.1 x 10- 21 W/Hz 

or. equivalently, - 203.9 dBW 1Hz. Therefore. 

PR - = -119.6 + 203.9 = 84.3 dB Hz 
1\10 

If the required SNR per bit is IOdB then, from (5-5-16). we have the 
available ra te as 

RdB = 84.3 - 10 

= 74.3 dB (with respect to 1 bit/s) 

This corresponds to a rate of 26.9 megabits/s, which is equivalent to about 
420 peM channels. each operating at 64 000 bits/so 

It is a good idea to introduce some safety margin, which we shall call the 
link margin MdB, in the above computations for the capacity of the com­
munication link. Typically. this may be selected as MdB = 6 dB. Then. the link 
budget computation for the link capacity may be expressed in the simple form 

(5-5-17) 

BIBLIOGRAPHICAL NOTES AND REFERENCES 
In the derivation of the optimum demodulator for a signal corrupted hy 
A WGN, we applied mathematical techniques that were originallv used in 
deriving optimum receiver structures for radar signals. For example. the 
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matched filter was first proposed by North (1943) for use in radar detection, 
and is sometimes called the North filter. An alternative method for deriving 
the optimum demodulator and detector is the Karhunen-Loeve expansion, 
which is described in the classical texts by Davenport and Root (1958), 
Helstrom (1968), and Van Trees (1968). Its use in radar detection theory is 
described in the paper by Kelly el af. (1960). These detection methods are 
based on the hypothesis testing methods developed by statisticians, e.g., 
Neyman and Pearson (1933) and Wald (1947). 

The geometric approach to signal design and detection, which was presented 
in the context of digital modulation and which has its roots in Shannon's 
original work, is conceptually appealing and is now widely used since its 
introduction in the te)(t by Wozencrafl and.Jacobs (1965). 

Design and analysis of signal constellations for the A WGN channel have 
received considerable attention in the technical literature. Of parficular 
significance is the performance analysis of two-dimensional (QAM) signal 
constellations that has been treated in the papers of Cahn (1960), Hancock and 
Lucky (1960). Campopiano and Glazer (1962). Lucky and Hancock (1962). 
Salz el af. (1971), Simon and Smith (1973). Thomas el af. (I974), and Foschini 
et al. (1974). Signal design based on multidimensional signal constellations has 
been described and analyzed in the paper by Gersho and Lawrence (1984). 

The Viterbi algorithm was devised by Viterbi (1967) for the purpose of 
decoding convolutional codes. 11.& use as the optimal maximum-likelihood 
sequence detection algorithm for signals with memory was described by Forney 
(1972) and Omura (1971). lis use for carrier modulated signals was considered 
by Ungerboeck (1974) and MacKenchnie (1973). It was subsequently applied 
to the demodulation of CPM by Aulin and Sundberg (198Ia, b) and others. 

5-1 A matched filter bas the frequency response 

1 - e - rZXf1" 

HU) = j21Cf 

• Determine the impulse response h{l) corresponding to H(f). 
b Determine the signal waveform to which the filler characteristic is matched. 

5-1 Consider the signal 

5(1)= {(AIT)tcos2tr/...I (0"';1"'; T) 
o (otherwise) 

• Determine the impulse response of the matched filter for the signal. 
b Determine the oUtput of the matcl!ed lilter at 1 = T. 
c: Suppose the signal $(1) is passed through a correlator that correlates the input 

S(/) with S(/). Determine the value of tbe correlator output al 1 = T. Compare 
your result with that in (b). 
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5-3 This problem deals with the characteristics of a DPSK signal. 
" Suppose we wish to transmit the data sequence 

I I 0 I 000 I 0 I I 0 

by binary DPSK Let S(I) = A cos (21Cfc1 + 8) represent the transmitted signal in 
any signaling interval of duration T. Give the phase of the transmitted signal for 
the data sequence. Begin with 8 = 0 for the phase of the tirst bit to be 
transmitted. 

b If the data sequence is uncorrelated, determine and sketch the power density 
spectrum of the signal transmitted by DPSK. 

5-4 A binary digital communication system employs the signals 

S,,(t) =0. O,,"t""T 

s,(t) = A. 0 ""t "" T 

for transmitting the information. This is called on-off signaling. The demodulator 
cross-correlates the received signal ret) with S(I) and samples the output of the 
'correlator at t = T. 
" Determine the optimum detector for an A WGN channel and tile optimum 

threshold, assuming that the signals are equally probable. 
b Determine the probability of error as a function of the SNR. How does on-01l 

signaling compare with antipodal signaling? 
5-5 The correlation metrics given by (5-1-44) are 

where 

N N 

C(r,sm)=2L rnsmn - Ll'!.m m=1,2! ... ,M 
11=\ n-l 

Tn = r ,(t)/'(t) dl 

Smn = r sm(t).f..(t) dt 

Show that the correlation metrics are equivalent to the metrics 

C(r,sm) =2 C T(t)sm(t)dt -iT s!.(t)dt 
-u 0 

5-6 Consider the equivalent lowpass (complex-valued) signal S,{I). 0", t "" T, with 
energy 

lIT ~=2 0 1s,{t)I'dl 

Suppose that this signal is corrupted by A WGN, which is represented by its 
equivalent lowpass form z(t). Hence, the observed signal is 

r,(t)=s,(t)+z(t). O""t"'T 

The received signal is passed through a tilter that has an (equivalent Iowpass) 
impulse rllsponse h,(t). Determine h,(t) SO that the filter maximizes the SNR at its 
output (at t = T). 

5-7 Let z(t) =x(t) + jy(t) be a complex-valued. zero-mean white gaussian noise 
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s ,(I) 5 2«(J 

A " 
0 0 

IT T T 
2 

-,A -,4 

process with autocorrelation function .pu( r} = N.B( 1). Let fm(t), m = 1, 2, ... , M, 
be a set of M orthogonal equivalent lowpass waveforms defined on the interval 

o '" t '" T. Define 

Nm,=Re[fZ(I)f!(t)dt). m=1,2, ... ,M 

a Determine the variance of Nm ,. 

b Show fllat E{N~N.,) = 0 for k .. m. 
5-8 The two equivalent lowpass signals shown in Fig. P5-8 are used to transmit a 

binary sequence over an additive white gaussian noise channel. The received signal 
can be expressed as 

'/(t) = Si(t) + z(t), 0";;1'" T, i = I, 2 

where Z(I) is a zero-mean gaussian noise process with autocorrelation function 

4-,Ar) = ~E[z*(t)z(t + r)] = No6(r) 

a Determine the transmitted energy in 5.(t) and S,(I} and the cross-correlation 
coefficient pJ2. 

b Suppose the receiver is implemented by means of coherent detection using two 
matched filters, one matched to 5,(t) and the other to 5,(t). Sketch the 
equivalent lowpass impulse responses of the matched filters. 

c Sketch the noise-free response of the two matched filters when the transmitted 
signal is s,( t). 

d Suppose the receiver is implemented by means of two cross-correlaton 
(multipliers followed by integrators) in parallel. Sketch the output 0' eacb 
integrator as a f)Jnction of lime for the interval 0 ... t '" T when the transmitted 
signal is 5 2(t). 

e Compare the sketches in (e) and (d). Are they the same? Explain briefly, 
r From your knowledge of the signal characteristics, give the probability of error 

for this binary communications system. 
5-9 Suppose Ihat we have a complex-valued gaussian random "ariab)e z = x + jy. 

where (x. y) are statistically independent variables with zero mean and variance 
E(x') = E(y') = t? Let 

,=z +m, where m =m, + jm; 
and define r as 

,=a +jb 

Clearly. a = x + m, and b = y + M i - Determine the following probability density 
functions: 
a p(a, b); 
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b p(ll, ,p), where u ~ Va' + b' and ,p ~ tan' b/a: 
c p(u), 
Nme: In (b) it is convenient to define e = tan' (m,lmJ so that 

m, = v'm; + m; cos e. m, :::: v'm; + m: sin 8. 

Furthermore, you must use the relation 

1 1'" ' ,,, 
2
- en ,,~,.' 8) d,p = lo(a) = L 2'"~ ')' 

Jr (I ,,=0 n. 

where 1,,( ex) is the mDdified Bessel function of order zero, 
S·10 A ternary communication system [rammits one of three signals, sit), 0, or -S(I), 

every T seconds, The received signal is either r,(t) = s(/) + Z(I), ,,(I) = Z(I), or 
r/(t) = -set) + z(t). where Z(I) is white gaussian noise with E(z(I)] ~ 0 and 
,p,,(f) = IElz(r)z*(f)] = N,O(I- rl, The optimum receiver computes the COf­

relation metric 

U = Re [( r(I)s*(t) dl] 
and compares U with a threshold A and a threshold -A. If U > A, the decision ;s 
made that S(I) was sent. If U < -A, the decision is made in favor of -s(t), If 
-A < U < A. the decision is made in favor of 0, 
B Determine the three conditional probabilities of error; P, given that s(t) was 

sent, ~ given that - 5(1) was sent, and P, given that 0 was sent. 
b Determine the average probability of error P, as a function of the threshold A, 

assummg that the three 'Symbols are equally probable a priori. 
c Determine the value of A that minimizes P" 

5-11 The two equivalent lowpass signals shown in Fig, P5-11 are used to tr2n5mit a 
binary information sequence, The transmitted signals. which are equally probable, 
are corrupted by additive zero-mean white gaussian noise having an equivalent 
Jowpass representation z(t) with an autocorrelation function 

,p,,(f) = IElz*(I)z(1 + r») 

= N"Il( f) 

a What is the t~ansmitted signal energy? 
b What is the probability of a binary digit error if coherent detection is employed 

at the receiver? 
c What is the probability of a binary digit error if noncoherent detection is 

employed at the receiver? 
S·12 In Section 4-3-1 it was shown that the minimum frequency separation for 

orthogonality of binary FSK signals with coherent detection is !:if = 1/2T. 

.. 1{!) S!(IJ 

A A 

D 0 
T ~T T / 

4 
-A -A 
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However, a lower error probability is possible with coherent detection of FSK if t:J.! 
is increased beyond 1/2T. Show that the optimum value of tJ.f is 0.715IT and 
determine the probability of error for this value of t:J.'f. 

5-13 The equivalent lowpass waveforms for three signal sets are shown in Fig. PS-13. 
Each set may be used to transmit one of four equally probable messages over an 
additive white gaussian noise channel. The equivalent lowpass noise z(r) has zero 
mean and autocorrelation function <1>,,(1") = Not.(r). 
a Classify the signal waveforms in sets I, II, and III. In other words, state the 

category or class to which each signal set belongs. 
b What is the average transmitted energy for each signal set? 
c For signal set I, specify the average probability of error if the signals are 

detected coherently. 
d For signal set II, give a union bound on the probability of a symbol error if the 
det~tion is performed (i) coherently and (ii) noncoherently. 

e Is It possible to use noncoherent detection on signal set III? Explain. 
f Which signal set or signal sets would you select if you wished to achieve a ratio 

of bit rate to bandwidth (RIW) of at least 2. Briefly explain your answer. 
5-14 Consider a quaternary (M = 4) communication system that transmits, every T 

seconds, one of four equally probable signals: S,(I). -,,(I), S,(I). -S,(I). The 
signals 5j(l) and S,(I) are orthogonal with equal energy. The additive noise is white 
gaussian with zero mean and autocorrelation function <i>,,(') = N.Ii( .). The 
demodulator consists of two filters matched to s,(t) and s,(t). and their outputs at 
the sampling inStant are V, and V,. The detector bases its decision on the 
following rule: 

v, > IV,I:;'s,(t). U, < -IV,I:;' -S,(I) 

U, > IV,I:;' S,(I). U, < -IU,I:;' -s,(t) 

Since the signal set is biorthogonal, the error probability is given by (1 - Pc) where 
P. is given by (5-2-34). Express this error probability in terms of a single integral 
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hlti 

~,~, 
(a) (b) 

and, thu" show that the symbol error probability for a biorthogonal signal set with 
M = 4 is identical to that for four-phase PSK. Hint: A change in variables from U, 
and U, to W, = V, + V, and W, = V, - V, simplifies the problem. 

S-IS The input 5(t) to a bandpass filter is 

5(1) = Re lSu(l)ei"}"J 

where so(t) is a rectangular pulse, as shown in Fig. P5-J5(a}. 
a Determine the output r(t) of the bandpass filter for all t ;;. 0 if the impulse 

response of the filter is 

g(l) = Re [2h(I)e"Kt,'J 

where hit) is an exponential as shown in Fig. 5-15(b). 
b Sketch the equivalent lowpass output of the filter. 
c When would you sample the output of the filter if you wished to have the 

maximum output at the sampling instant? What is the value of the maximum 
output? 

d Suppose that in addition to the input signal sit), there is additive white gaussian 
nOtse 

nit) = Re [z(t)e"'f,,] 

where c{>,,( r) = No&( r). At the sampling instant determined in (c), the signal 
sample is corrupted by an additive gaussian noise term. Determine its mean and 
vanance. 

e What is the signal-to-noise ratio,), of the sampled output? 
f Determine the signal-to-noise ratio when h(t) is the matched filter to 5(1) and 

compare this result with the value of ')' obtained in (e). 
5-11. Consider the octal signal point constellations in Fig. P5-16. 

g·PSK 8-QAM 
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a The nearest·neighbor signal points in the 8-QAM signal constellation are 
separated in distance by A units. Determine the radii a and b of the inner and 
outer circles. 

b The adjacent signal points in the 8-PSK are separated by a distance of A units. 
Determine the radius r of the circle. 

c Determine the average transmitter powers for the two signal constellations and 
compare the two powers. What is the relative power advantage of one 
constellativn over the other? (Assume that all signal points are equally 
probable.) 

5-17 Conslder the 8-point QAM signal constellation shown in Fig. P5-16. 
a Is it possible to assign three data bits to each point of the signal constellation 

such that nearest (adjacent) points differ in only one bit position? 
b Determine the symbol rate if the desired bit rate is 90 Mbits/s. 

5-18 Suppose that binary PSK is used for transmitting information over an A WGN with 
a power spectral density of ~No= IO-IOW/Hz. The transmitted signal energy is 
'i:. = \A'T, where T is the bit interval and A is the signal amphtude. Determine 
the signal amplitude required to acbieve an error probability of 10-' when the data 
rate is (a) 10 kbits/s, (b) 100 kbits/s, and (c) 1 Mbit/s. 

5-19 Consider a signal detector with an input 

r= ±A +n 

where + A and -A occur with equal probability and Ihe noise variable n is 
characterized by the (Laplacian) pdf shown in Fig. P5-I9. 
a Determine the probability of error as a function of the parameters A and rT 

b Determine the SNR required to achieve an error probability of 10-'. How does 
the SNR compare with the result for a Gaussian pdf? 

5-20 Consider the two 8-point QAM signal constellations shown in Fig. P5-20. The 
minimum distance between adjacent points is 2A Determine Ihe average 
transmitted power for each constellation, assuming that the signal points are 
equally probable. Which constellation is more power-efficient? 

5-1I For the QAM signal constellation shown in Fig. P5·21, determine the optimum 
decision boundaries for the detector. assuming that the SNR is sufficiently high so 
that errors only occur between adjacent points. 

+-+-
• •• • 

(0) (b) 
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5-22 Specify a Gray code for the 16-QAM signal constellation shown in F'g. P5·21. 
5-23 Two quadrature carriers cos 211J:I and sin 2trJ:t are used 10 transmit digital 

information thmugh an A WGN channel at two different dala rates, 10 kbils/s and 
lOOkbitsJs. Determine the relative amplitudes of the signals for the two carriers so 
thaI the 'lhlN, for the two channels is identical. 

5-24 Three messages m l , m::!. and m;>. are to be transmitted over an AWGN channel 
with noise power spectral density \N". The messages are 

{
I (0 <;;/<;; T) 

Stet) = . o (otherwIse) 

{

I (O<;;t"'lT) 

5,(1)= -,,(r)= -] (\T<;O<;T) 

o (otherwise) 

a What is the dimensionality of the signal space'! 
b Find an appropriate basis for the signal space. [Hint.' You can find the basis 

without using the Gram-Schmidt procedure. J 
c Draw the Signal constellation for this problem. 
d Derive and ske~ch the optimal decision regions R t , R" and R,. 
e Which of the three messages is more vulnerable to erTOrs and why? In other 

words, whic~. of P~error I m, transmitted), i = 1,2,3, is larger') 
S·lS When the additive noise at the input to the demodulator is colored, the filter 

matched to the signal no longer maximizes the output SNR. In such a case we may 
consider the use of a prefilter that "whitens' the colored noise. T~e prefilter is 
followed by a filter matched to rhe prefiltered signal. Toward, this end, cof)sider 
the configuration shown in Fig. P5-25. 
a Determine the frequency response characteristic of the prefilter that whitens the 

noise. 

f>r<!whitening 
!liter 

HI'(f' ) 

r(/ j = :i"(/i'" ii(ll 
FlIer 

malt'hcd 
!O,\!~ 

~ De~t"Clur r--­
SamplC' 

all -= T 
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b Determine the frequency response characteristic of the filter matched to set). 
e Consider the prefilter and Ihe matched lilter as a single "generalized matched 

filter." What is tbe frequency response characteristic of this filter? 
d Determine the SNR at the input to the detector. 

5-26 Consider a digital communication system that transmits information via QAM 
over a voice-band telephone channel at a rate 2400 symbols/s. The additive noise 
is assumed to be white and gaussian. 
a Determine the 'ih / N" required to achieve an error probability of 10 ' at 

4800 bits/so 
b Repeat (al for a rate of 9600 bits!s. 
t Repeat (a) for a rate of 19200bitsls. 
d What conclusions do you reach from these results? 

5-27 Consider the four-phase and eight-phase signal constellations shown in Fig. PS-27. 
Determine the radii r, and r, of the circles such that the distance between two 
adjacent points in the two constellations is d. From this result, determine the 
additional transmitted energy required in the 8·PSK signal to achieve the same 
error probability as the four-phase signal at high SNR, where the probability of 
error is determined by errors in selecting adjacent points. 

S-lS Digital information is to be transmitted by carrier modulation through an additive 
gaussian noise channel with a bandwidth of 100kHz and N.,= lO-"'W/Hz. 
Determine the maximum rate that can be transmitted through the channel for 
four-phase PSK, binary FSK, and four-frequency orthogonal FSK, which is 
detected noncoherently. 

5-29 In a MSK signal, the inilial state for the phase is either 0 or If rad, Determine lhe 
terminal phase stale for the following four input pairs of input data: (a) 00; (b) OJ; 
tc) 10; (d) 11. 

5-341 A continuous-phase FSK signal with h = ~ is represented as 

12~h ( F.t ) In. (1ft ) 
s(r) = ± V Tb cos 2Tb cos 2trf.t ± -Y=T" sin 2T" sin2trf.t, 

where the ± signs depend on the information bils transmitted. 
a Show that this signal has constant amplitude. 
b Sketch a block diagram of the modulator for synthesizing the signal. 
e Sketch a block diagram of the demodulator and detector for recovering the 

information. 
5-31 Sketch the phase tree, the state trellis, and the state diagram for partial-response 

CPM with h = } and 

{
1/4T (0<>1<>2T) 

U(I)= . o (otherwise) 
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5-32 Det~rmin~ th~ num~r of terminal phase states in the state trellis diagram [or (a) a 
[ull response binary CPFSK with "ither II = i or ~ and (bJ a partial-response L ~ .' 
hioar .. CPFSK with either It = ~ or 1. 

S-J3 Consider a biorthogonal signal set with M = 8 signal points. Determine a union 
bound for the probability of a ,ymoo/ error as a funclion of 1:. I N". The signal 
points are equally likely a priori. 

S-.J4 Consider an M -ary digital communication system where M = ZN. and N is the 
dimension of the signal space. Suppose that the M signal veclors lie on the vertices 
of a hypercube that is centered al the origin. Determine the average probability of 
a symbol error as a function of "f',IN" where t:, is the energy per symbol. !N .. is the 
power spectral density of the AWGN. and aU signal points are equally prObable. 

5-JS Consider the signal waveform 

" 
s(1) = 2: c,p(t - k~) 

i~1 

where p(l) is a rectangular pulse of unit amplitude and duration T.. The {c,} may 
be viewed as a code vector C = (e, e, ... en). where the elements c, = ± 1. Show 
that tbe filter matched to the waveform S(/) may he realized as a cascade of a filter 
matched to p(l) followed by a discrete-time filter matched to the vector C. 
Determine the value of the output of tbe matched filter at the sampling instant 
I =n7; .. 

5-36 A speech signal is sampled at a rate of g kHz, logarithmically compressed and 
enOxled into a PCM format using 8 !>its/sample. The PCM data is transmitted 
through an AWGN baseband channel via M-Ievel PAM. Determine the band­
width required for transmission when <a) M = 4, (b) M = 8, and (c) M = 16. 

5-37 A Hadamard matrix is defined as a matrix whose elements are ± 1 and whose row 
vectors are pairwise orthogonal. In the case when " is a power of 2, an " X n 
Hadamard matrix is constructed by means of the recursion 

H -[I I] 
2- I -I' Hz" = [H" H,,] 

Hn -H" 

a Let Ci denote the ith row of an n X n Hadamard matrix as defined above. Show 
that the waveforms constructed as 

" 
5,(t) ~ 2: <"~pit - u;.), i = 1. 2, ... ,n 

4: '" I 

are orthogonal. where p(l) is an arbitrary pulse con6ned to the lime interval 
(j';;;t"'7;. 

b Show that the matched filters (or cross-correlators) for the n waveforms {s,(r)} 
can he realized by a single filter (or correlator) matcbed to the pulse p(r) 
followed by a set of " cross-correlators using the code words {C,}. 

5-38 The discrete sequence 

r. = ~"c, + n,. k ~ 1. 2, ... , n 

represents tbe output sequence of samples from a demodulator. where c, = ± 1 afe 
elements of one of two possible code words, C, = (I 1 ... II and C, = 

[1 1 .. , I -1 .. ' -1). The code word C, has IV elements that are + I and n - w 
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elements that are -1, where w is some positive integer. The noise sequence {n.} is 
white gaussian with variance (T'. 
• What is the optimum maximum likelihood detector for the two possible 

transmitted signals? 
b Determine the probability of error as a function ofthe parameters (q', 'Ii., w). 
c What is the value of w that minimizes the error probability? 

5-39 Derive the outputs F, and " of the two correlators shown in Fig. 5-4-1. Assume 
that a signal s,,(ej is transmitted and that 

,,(t) = SIl(Ij<# + t(e) 

where Z(I) = nc(t) + jn)t) is the additive gaussian noise. 
5-40 Determine the covariances and variances of the gaussian random noise variables 

n,,, ", .. , n,,. and n" in (5-4-15) and the joint pdf. 
5-41 Derive the matched filter outputs given by (5-4·10). 
5-42 In on-off keying of a carrier-modulated signal. the two possible signals are 

so(t) = 0, 0,.; I"; T. 

rn;, 
s,(I) = VT;cos2;if.t. 0';;1$ r. 

The corresponding received signals are 

,(t) = n(t), I},.; I';; T" 

~'lib 
r(t) = -cos (21rf..t +,p) + n(t), 

1;, 

where", is the carrier phase and nit} is AWGN. 
• Sketch a block diagram of the receiver (demodulator and detector) that employs 

noncoherent (envelope) detection. 
b Determine the pdfs for the two possible decision variables at the detector 

corresponding to the two possible received signals. 
c Derive the probability of error {or the detector. 

5-43 In two-phase DPSK, the received signal in one signaling interval is used as a phase 
reference {or the received signal in the following signaling interval. The decision 
variable is 

"1--

D = Re (V,Y!-,) ~ 0 
"0·' 

VA: =2cr~-':9(-'M + Nic 

represenlli the complex-valued output of the filler matched to the .ransmilled 
signal U(I). N. is a complex-valued gaussian variable having zero mean and 
statistically independent components. 
• Writing V. = X, + jY., show that D is equivalent to 

d = H(xm +X .. _1W + U(y .. + y,"-,)l' - BlX~ - Xm-,)j' - H(y.n - Y .. - 1)]' 

b For mathematical convenience; .suppose that 8. = 9,_,. Show that the random 
variables V,. U2 , V,. and V, are statistically independent gaussian variables, 
where V, = HXm + X .. _1), U, = HY .. + Ym -,), V, = HX~ - X m _,). and U,= 
HYm - Y,"-,). 
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c Deline the random variables W, = U; + V; ar.d W, = vi + U~. Then 

._, 

D=W,-W,i"O 
"1]" 

Determine the probability density functions for W, and W,. 
II De:ermine the probability of ermr P", where 

Ph = P(D < 0) = peW, - w, < 0) = l' pew, > "" I w- )pl" , ) dw, 

" 
5-44 Recall that MSK can be represented as a four-phase offset PSK modulation havmg 

the low pass equivalent form 

u(t) = 2: [1,,,(1 - 2kT,,) + jl,l/(r - 2kT" - T,,}] 

where 

, 

{
sin (lTlI2T,,) 

,,(t) = 0 
(0""'1"';27;,) 

(otherwise ) 

and {I,} and {l,} are sequences of information symbols (±l). 
a Sketch the block diagram of an MSK demodulator for offset QPSK. 
b Evaluate the performance of the four-phase demodulator for A WGN if no 

account is taken of the memory 10 the modulation, 
c Compare the performance obtained in (b) with that for Viterbi decoding of the 

MSK signal. 
d The MSK signal is also equivalent to binary FSK. Determine the performance of 

noncoherent detection of the MSK signal. Compare your result with (t» 

and (c). 
5-45 Consider a transmission line channel that employs n - 1 regenerative repeaters 

pJus the terminal receiver in the transmission of binary informalion. Assume that 
the probability or error at the detector of each receiver is p and that errors among 
repeaters are statistically independent. 
a Show that the binaty error probability at the termmal receiver is 

b If P ~ 10 • and n = 100. determine an approximate value of P,. 
5-46 A digital communication system consists of a transmission line with 100 digital 

(regenerative) repeaters. Binary antipodal signals are used for transmitting the 
information. If the overall end-to-end error probability is 10'. determine the 
probability of error fer each repealer and the required ~.! A:_, to achieve this 
performance in A WGN. 

5-47 A radio transmitter has a power output of PT ~ 1 W at a frequency of 1 GHz. The 
transmitting and receiving antennas are parabolic dishes with diameter D = 3 rn. 
a Determine the antenna gains. 
b Determine the EIRP for the transmitter. 
c The distance Ifree space) between the transmitting and receiVing antennas is 

20 km. Determine the signal power at the output of the receiving antenna in 
dBm. 
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5-48 A radio communication system transmits at a power level of 0.1 W at 1 GHz. The 
transmitting and receiving antennas are parabolic, each having a diameter of 1 m. 
The receiver is located 30 km from the transmitter. 
a Determine the gains of the transmitting and receiving antennas. 
b Determine the EIRP of the transmitted signal. 
c Determine the signal power from the receiving antenna. 

5-49 A satellite in synchronous orbit is used to communicate with an earth station at a 
distance of 40 000 km. The satellite has an antenna with a gain of 15 dB and a 
transmitter power of 3 W. The earth station uses a 10 m parabolic antenna with an 
efficiency of 0.6. The frequency band is at f = 10 GHz. Determine the received 
power level at the output of Ihe receiver antenna. 

5-SO A spacecraft located 1 ()() 000 km from the earth is sending data al a rate of 
R bits/s. The frequency band is centered at 2 GHz and the transmitted power is 
10 W. The earth station uses a parabolic antenna, 50 m in diameter, and the 
spacecraft has an antenna with a gain of 10 dB. The noise tempera lure of the 
receiver front end is To = 300 K. 
a Determine the received power level. 
b If the desired '£.1 No = 10 dB, determine the maximum bil rate Ihal the 

spacecraft can transmit. 
5-51 A satellite in geosynchronous orbit is used as a regenerative repeater in a digital 

communication system. Consider the satellite-to-earth link in which the satellite 
antenna has a gain of 6 dB and the earth station antenna has a gain of 50 dB. The 
downlink is operated at a center frequency of 4 GHz, and the signal bandwidth is 
I MHz. If the required '€hlN., for reliable communication is 15 dB, determine the 
transmitted power for the satellite downlink. Assume that N., = 4.1 X 10-2

' W 1Hz. 
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6 
CARRIER AND SYMBOL 

SYNCHRONIZATION 

We have observed that in a digital communication system, the output of the 
demodulator must be sampled periodically, once per symbol interval, in order 
to recover the transmitted information. Since the propagation delay from the 
transmitter to the receiver is generally unknown at the receiver, symbol liming 
must be derived from the received signal in order to synchronously sample the 
output of the demodulator. 

The propagation delay in the transmitted signal also results in a carrier 
offset, which must be estimated at the receiver if the detector is phase· 
coherent. In tbis chapter, we consider methods for deriving carrier and symbol 
synchronization at the receiver. 

6-1 SIGNAL PARAMETER ESTIMATION 

Let us begin by developing a mathematical model for the signal at the input to 
the receiver. We assume that the channel delays the signals transmitted 
through it and corrupts them by the addition of gaussian noise. Hence, the 
received signal may be expressed as 

r(l) = s(t - r) + n(t) . 
where 

s(t) = Re [s,(t)ei2xf,,] (6-1-1) 

and where r is the propagation delay and Stet) is the equivalent lowpass signal. 
The received signal may he expressed as 

r(l) = Re{[s/(t - r)ei4> + z(t)]ei2"',,} (6-1-2) 

where the carrier phase t/J, due to the propagation delay 'T, is '" = - 21ifc r. 
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Now, from this formulation, it may appear that there is only one signal 
parameter to be estimated, namely, the propagation delay, since one can 
determine t/> from knowledge of fc and •. However, this is not the case. First of 
all, the oscillator that generates the carrier signal for demodulation at the 
receiver is generally not synchronous in phase with that at the transmitter. 
Furthermore, the two oscillators may be drifting slowly with time, perhaps in 
different directions. Consequently, the received carrier phase is not only 
dependent on the time delay r. Furthermore, the precision to which one must 
synchronize in time for purpose of demodulating the received signal depends 
on the symbol interval T. Usually, the estimation error in estimating or must be 
a relatively small fraction of T. For example, ± 1 % of T is adequate for 
practical applications. However, this level of precision is generally inadequate 
for estimating the carrier phase, even if '" depends only on •. This is due to the 
fact that t. is generally large, and, hence, a small estimation error in r causes a 
large phase error. 

In effect, we must estimate both parameters or and t/> in order to demodulate 
and coherently detect the received signal. Hence, we may express the received 
signal as 

r(l) = s(t; t/>, r) + n(/) (6-1-3) 

where </> and or represent the signal parameters to be estimated. To simplify the 
notation, we let", denote the parameter vector {t/>, r}. so that 5(1; </>, or) is 
simply denoted by s(t; ",). 

There are basically two criteria that are widely applied to signal parameter 
estimation: the maximum-likelihood (ML) criterion and the maximum a 
posteriQri probability (MAP) criterion. In the MAP criterion, the signal 
parameter vector '" is modeled as random, and characterized by an a priori 
probability density function p("'). In the maximum-likelihood criterion, the 
signal parameter vector", is treated as deterministic but unknown. 

By performing an orthonormal expansion of r(t) using N orthonormal 
functions {f,,(I)}, we may represent r(t) by the vector of coefficients 
[r, 72 ... rNJ=r. The joint pdf of the random variables [rl r2 ... TNJ in the 
expansion can be expressed as p(r I"'). Then, the ML estimate of '" is the 
value that maximizes p(r I",). On the other hand, the MAP estimate is the 
value of '" that maximizes the a posteriori probability density function 

p("'1 r) =p(r 1 "')p(+) 
p(r) 

(6-1-4) 

We note that if there is no prior knowledge of the parameter vector "', we 
may assume that p(+) is uniform (constant) over the range of values of the 
parameters. (n such a case, the value of + that maximizes p(r I +) also 
maximizes p("'1 r). Therefore, the MAP and ML estimates are identical. 

In our treatment of parameter estimation given below, we view the 
parameters '" and or as unknown, but deterministic. Hence, we adopt the ML 
criterion for estimating them. 
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In the ML estimation of signal parameters, we require that the receiver 
extract the estimate by observing the received signal over a time interval 
7;. '" T. which is called the observation interval. Estimates obtained from a 
single observation interval are sometimes called one-shot estimates. In 
practice. however, the estimation is performed on a continuous basis by using 
tracking loops (either analog or digital) that continuously update the estimates. 
Nevertheless, one-shot estimates yield insight for tracking loop implementa­
tion. In addition, they prove useful in the analysis of the performance of ML 
estimation. and their performance can be related to that obtained with a 
tracking loop. 

6-1-1 The Likelihood Function 
Although it is possible to derive the parameter estimates based on the joint pdf 
of the random variables (r, '2 ... r,,, J obt'iined from the expansion of r(.t), it is 
convenient to deal directly with the signal waveforms when estimating their 
parameters. Hence, we shall develop a continuous-time equivalent of the 
maximization of per I 1/1). 

Since the additive noise n(l) is white and zero-mean gaussian, the joint pdf 
p{r i 1/1) may be expressed as 

p(r 11/1) = (~(J exp { - ~, [rn -2~~IJI>Y} (6-1-5) 

where 

r. = i' r(t)fn(t) dl 
1;, 

s,,(IJIl = i set; IJI)f,,(t) dt 
7;! 

(6-1-6) 

where To represents the integration interval in the expansion of r(t) and set; 1/1). 
We note that the argument in the exponent may be expressed in terms of 

the signal waveforms r(l) and 5{1; IJI), by substituting from (6-1-6) into (6-1-5). 
That is, 

1 N 1 f 
-2 L [r" - Sn(t; I/I)J2 = - [ret) - set; I/IW dt 
2a tl=1 No 7;) 

(6-1-7) 

where the proof is left as an exercise for the reader (see Problem 6-1). Now, 
the maximization of per 11/1) with respect to the signal parameters 1/1 is 
equivalent to the maximization of the likelihood function. 

A(I/I) = exp { - ~ f [ret) - s(t; I/IW dt} 
N.l J111 

(6-1-8) 

Below, we shall consider signal parameter estimation from the viewpoint of 
maximizing A(IJI). 
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Received ;ignal 

FIGURE 6-1-1 Block diagram of binary PSK receiver. 

Signa.! 
pull!ie 

generator 

6·1·2 Carrier Recovery and Symbol Synchronization 
in Signal Demodulation 

Output 
,-----, data 

Symbol synchronization is required in every digital communication system 
which transmits information synchronously. Carrier recovery is required if the 
signal is detected coherently. 

Figure 6-1-1 illustrates the block diagram of a binary PSK (or binary PAM) 
signal demodulator and detector. As shown, the carrier phase estimate 4> is 
used in generating the reference signal g(l) cos (2tifct + .:;,) for the correlator. 
The symbol synchronizer controls the sampler and the output of the signal 
pulse generator. If the signal pulse is rectangular then the signal generator can 
be eliminated. 

The block diagram of an M-ary PSK demodulator is shown in Fig. 6-1-2. In 
this case, two correlators (or matched filters) are required to correlate the 
received signal with the two quadrature carrier signals g(t) cos (2tifct + .:;,) and 
g( t) sin (brlct + ri». where':;' is the carrier phase estimate. The detector is now 
a phase detector, which compares the received signal phases with the possible 
transmitted signal phases. 

The block diagram of a PAM signal demodulator is shown in Fig. 6-1-3. In 
this case, a single correlator is required, and the detector is an amplitude 
detector, which compares the received signal amplitude with the possible 
transmitted signal amplitudes. Note that we have included an automatic gain 
control (AGe) at the front-end of the demodulator to eliminate channel gain 
variations, which would affect the amplitude detector, The AGC has a 
relatively long time constant, so that it does not respond to the signal 
amplitude variations that occur on a symbol·by-symbol basis. Instead, the 
AGe maintains a fixed average (signal plus noise) power ilt its output. 

Finally. we illustrate the block diagram of a QAM demodulator in Fig. 
6-1-4. As in the case of PAM, an AGC is required to maintain a constant 
average power signal at the input to the demodulator. We observe that the 
demodulator is similar to a PSK demodulator, in that both generate in-phase 
and quadrature signal samples (X, Y) for the detector. In the case of QAM. 
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FIGURE 6-1-4 Block diagram of QAM receiver. 

an unmodulated carrier component is transmitted along with the information­
bearing signal, the receiver employs a phase-locked loop (PLL) to acqLlire and 
track the carrier component. The PLL is designed to have a narrow bandwidth 
so that it is not significantly affected by the presence of frequency components 
from the iilformation-bearing signal. 

The second approach, which appears to be more prevalent in practice, is to 
derive the carrier phase estimate directly from the modulated signal. This 
approach has the distinct advantage that the total transmitter power is 
allocated 10 the transmission of the information-bearing signal. In our 
treatment of carrier recovery, we confine our attention to the second approach: 
hence, we assume that the signal is transmitted via suppressed carrier. 

In order to emphasize the importance of extracting an accurate phase 
estimate, let us consider the effect of a carrier phase error on the demodulation 
of a double-sideband, suppressed carrier (DSB/SC) signal. To be specific, 
suppose we have an amplitude-modulated signal of the form 

sell = A(t) cos (2rrfct + <p) (6-2-1 ) 

If we demodulate the signal by multiplying set) with the carrier reference 

e(t) = cos (21th! + 4» (6-2-2) 
we obtain 

c(t)s(t) = !A(l) cos (I/> - t/» + !A(t) cos (41if,.t + '" + .$) 
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The double-frequency component may be removed by passing the product 
signal C(I)S(I) through a lowpass filter. This filtering yields the information­
bearing signal 

y(t) = !A(l) cos ('" - <l> 1 (6-2-3) 

Note that the effect of the phase error ,p - (j, is to reduce the si~nal level in 
voltage by a factor cos (¢> - <l» and in power by a factor cos2 (¢> - <b). Hence, a 
phase error of 10" results in a signal power loss of 0.13 dB, and a phase error of 
30' results in a signal power loss of l.25 dB in an amplitude-modulated signal. 

The effect of carrier phase errors in QAM and multiphase PSK is much 
more severe. The QAM and M-PSK signals may be represented as 

sU) = A(t) cos (21Cj;t +,p) - B(l) sin (21if,1 + </» (6-2-4) 

This signal is demodulated by the two quadrature carriers 

c,.(t) = cos (21Cj;t + (j,) 

C.(I) = -sin (21Cf,t + Ii» (6-2-5) 

Multiplication of 5(1) with Ce(l) followed by lowpass filtering yields the in-phase 
component 

YI(t) = ~A(t) cos (d> - (j,) - !B(t) sin (<p - <l> ) (6-2-6) 

Similarly, multiplication of 5(1) by c,(t) followed by lowpass filtering yields the 
quadrature component 

YQ(t) = ~B(t) cos (ib - (/J) + !A(t) sin (,p - (j,) (6-2-7) 

The expressions (6-2-6) and (6-2-7) clearly indicate that the phase error in the 
demodulation of QAM and M-PSK signals has a much more severe effect than 
in the demodulation of a PAM signal. Not only is there a reduction in the 
power of the desired signal component by a factor cos2 (,p - 1», but there is 
also crosstalk interference from the in-phase and quadrature components. 
Since the average power levels of A(t) and B(I) are similar, a small phase error 
causes a large degradation in performance. Hence, the phase accuracy 
requirements for QAM and multiphase coherent PSK are much higher than 
DSB/SC PAM. 

6-2-1 Maximum-Likelihood Carrier Phase Estimation 

First, we derive the maximum-likelihood carrier phase estimate. For simplicity. 
we assume that the delay r is known and, in particular, we set r = 0. The 
function to be maximized is the likelihood function given in (6-1-8). With <P 
substituted for 1/1, this function becomes 

A(<I» = exp { - ~o If" [r(t) - s(t; <P)f dl} 

= exp { - J..l r2(t) dt + ~ i r(t)s(t; <p) dt - ~ 1 5 2(t; <1» dt}. 
No 1D No 1(J Nu Ttl 

(6-2-8) 
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Note thaI the first term of the exponential factor does not involve the signal 
parameter .p. The third term, which contains the integral of S2(1;.p), is a 
constant equal to the signal energy over the observation interval 10 for any 
value of <p. Only the second term, which involves the cross-correlation of the 
received signal r{l) with the signal S(I:.p), depends on the choice of .p. 
Therefore, the likelihood function A(.p) may be expressed as 

A(</J) = C exd ~ i r(t)s(t; .p)dt] 
No T, 

(6-2-9) 

where C is a constant independent of .p. 
The ML estimate 4>ML is the value of .p that maximizes A(.p) in (6-2-9). 

Equivalently, the value ';'ML also maximizes the logarithm of A(.p), i.e .. the 
log-likelihood function 

(6-2-10) 

Note that in defining AL(t/J) we have ignored the constant term In C. 

ElUlIIlple 6-2-1 

As an example of the optimization to determine the carrier phase, let us 
consider the transmission of the unmodulated carrier A cos 21ifct. The 
received signal is 

r(/) = A cos (21ifc1 + t/» + n(l) 

where t/J is the unknown phase. We seek the value .p, say 4>ML> that 
maximizes 

A necessary condition for a maximum is that 

This condition yields 

or, equivalently, 

i r(t) sin (21ifct + 4>Md dt = 0 
10 

4>ML = -tan'I[i r(l) sin 21f/cl dt /1 r(t) cos 21ifct dl] 
To To 

(6-2-11) 

(6-2-12) 

We observe that the optimality condition given by (6-2-11) implies the use 
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A PLL for obtaining the ML estimate of the phase of an 
unrnodulated carrier. 
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FIGURE 6-2-2 A (one-shot) ML estimate of t:" phase of an 
unmodulated carrier. 

of a loop to extract the estimate as illustrated in Fig_ 6-2-1. The loop filter is 
an integrator whose bandwidth is proportional to the reciprocal of the 
integration interval To. On the other hand, (6-2-12) implies an 
implementation that uses quadrature carriers to cross-correlate with ret). 
Then, 1>Ml is the inverse tangent of the ratio of these two correia tor 
outputs, as shown in Fig. 6-2-2_ Note that this estimation scheme yields 1>Ml 
explicitly. 

This example clearly demonstrates that the PLL provides the ML estimate 
of the phase of an unmodulated carrier. 

6-2-2 The Phase-Locked Loop 

The PLL basically consists of a multiplier, a loop filter, and a voltage­
controlled oscillator (VeO), as shown in Fig. 6-2-3. If we assume that the input 
to the PLL is the sinusoid cos (2Jifct + <p) and the output of the veo is 
sin (27ifct + 1». where 1> represents the estimate of <P. the product of these 
two signals is 

e(t) = cos (27ifct + <b) sin (21C!ct + 1» 
=! sin (,j, - <p) + ! sin (47ifcr + rP + ,j,) (6-2-13) 

FIGURE 6-2-3 Basic elements of a phase-located loop (PLL). 
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The loop filter is a lowpass filter that responds only to the low-frequency 
component ~ sin (4) - .p) and removes the component at· 2tc. This filter is 
usually selected to have the relatively simple transfer function 

G(s) = 1 + T2
S (6-2-14) 

1 + T,S 

where T, and T2 are design parameters (T, P (2) that control the bandwidth of 
the loop. A higher-order filter that contains additional poles may be used if 
necessary to obtain a better loop response. 

The output of the loop filter provides the control voltage v(t) for the yeo. 
The veo is basically a sinusoidal signal generator with an instantaneous phase 
given by 

21ttct + 4>(1) = 2rcfct + K L~ v( T) dr (6-2-15) 

where K is a gain constant in rad/V. Hence, 

(6-2-16) 

By neglecting the double-frequency term resulting from the multiplication of 
the input signal with the output of the veo, we may reduce the PLL into the 
equivalent closed-loop system model shown in Fig. 6-24. The sine function of 
the phase difference .p - 4> makes this system nonlinear, and. as a conse­
quence, the analysis of its performance in the presence of noise is somewhat 
involved but, nevertheless, it is mathematically tractable for some simple loop 
filters. 

In normal operation when the loop is tracking the phase of the incoming 
carrier, the phase error .p - .j, is small and, hence, 

(6-2-17) 

With this approximation, the PLL becomes linear and is characterized by the 
clOsed-loop transfer function 

H(s)= KG(s)/s 
1 + KG(s)/s 

(6-2-18) 

FIGURE 6-2-4 Model of phase-locked loop. 
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where thl! factor of ~ has been absorbed into the gain parameter K. By 
substituting from (6-2-14) for G(s) into (6-2-18), we obtain 

H(s) 
I + r,s 

(6-2-19) 
1+ (r, + IIK)s + (r,IK)s' 

Hence, the closed-loop system for the linearized PLL is second-order when 
G(s) is given by (6-2-14). The parameter rz controls the posillon of the zero, 
while K and r, are used to control the position of the closed-loop system poles. 
It is customary to express the denominator of H(S) in the stand,ard form 

D(s) = s' + 2~w"s + w;, (6-2-20) 

where ( is called the loop damping factor and w" is the natural frequency of the 
loop. In terms of the loop parameters, w" = YK/r,. and ~ = (rz + 1/K)/2wn • 

the closed-loop transfer function becomes 

H(s) 
(2~w" - w;,IK)s + w~ 

S2 + 2{w"s + w~ 
(6-2-21) 

The (one-sided) noise-equivalent bandwidth (see Problem 2-24) of the loop is 

rW/G+K/r,) 
4(r, + 11K) 

1 -+- (T,W,,)' 

8~w" 
(6-2-22) 

The magnitude response 20 log IH(w)1 as a function of the normalized 
frequency w/w" is illustrated in Fig. 6-2-5. with the damping factor, as a 
parameter and r,» I. Note that ~ = 1 results in a critically damped loop 
response, ~ < I produces an underdamped response, and {> 1 yields an 
o\'erdamped response. 

In practice, the selection of the bandwidth of the PLL involves a trade-off 
between speed of response and noise in the phase estimate, which is the topic 
considered below. On the one hand, it is desirable to select the bandwidth of 
the loop to be sufficiently wide to track any time variations in the phase of the 
received carrier. On the other, a wideband PLL allows more noise to pass into 
the loop, which corrupts the phase estimate. Below, we assess the effects of 
noise in the quality of the phase estimate. 

6-2-3 Effect of Additive Noise on the Phase Estimate 

In order to evaluate the effects of noise on the estimate of the carrier phase, Jet 
us assume that the noise at the input to the PLL is narrowband. For this 
analysis, we assume that the PLL is tracking a sinusoidal signal of the form 

s(t) = A, cos [21ft' + cI>(t)] (6-2-23) 
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noise in the quality of the phase estimate. 

6-2-3 Effect of Additive Noise on the Phase Estimate 
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that is corrupted by the additive narrowband noise 

n(t) = x(t) cos 21Cf.t - y(t) sin 21if,t (6-2·24) 

The in-phase and quadrature components of the noise are assumed to be 
statistically independent, stationary gaussian noise processes with (two-sided) 
power spectral density ~No W 1Hz. By using simple trigonometric identities, the 
noise term in (6-2-24) can be expressed as 

where 

We note that 

n(t) = n,(t) cos [27ft I + ,p(t)] - n,(t) sin [27ft! + .pU») 

n,.(t) = x(c) cos <b(t) + y(t) sin .p(t) 

n,(t) = -x(t) sin .p(t) + y(t} cos q,(t) 

ne(t) + jn,(r) = [X(I) + jy(r)Je -j~('1 

(6-2-25) 

(6-2-26) 

so that the quadrature components nAt) and n,(t) have exactly the same 
statistical characteristics as x(t) and yet). 

If sit) + nit) is multiplied by the output of the veo and the double­
frequency terms are neglected, the input to the loop filter is the noise­
corrupted signal 

e(l) = A, sin !lei> + ne{t) sin !lei> - n,(t) cos fl.eI> 

= A, sin!l4> + n,(t) (6-2-27) 
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fiGURE 6-2-6 EquIvalent PLL model with .dditive noise. VCr) 

where, by definition, il<p = t/> - ¢, is the phase errOL Thus, we have the 
equivalent model for the PLL with additive noise as shown in Fig. 6-2-6. 

When the power P, = !A; of the incoming signal is much larger than the 
noise power, we may linearize the PLL and, thus, easily determine the effect of 
the additive noise on the quality of the estimate 1>. Under these conditions. the 
model for the linearized PLL with additive noise is illustrated in Fig. 6-2-7. 
Note that the gain parameter A, may be normalized to unity, provided that the 
noise terms are scaled by l/A" i.e., the noise terms become 

) 
nc(t). n,(I) 

n,(t = --. Sin A<P - --cos At/> 
A, Ac 

(6-2-2S) 

Since the noise n,(t) is additive at the input to the loop, the variance of the 
phase error il.p, which is also the variance of the veo output phase. is 

(6-2-2'1) 

where Bcq is the (one-sided) equivalent noise bandwidth of the loop, given in 
(6-2-22)_ Note that O'~ is simply the ratio of total noise power within the 
bandwidth of the PLL divided by the signal power A2 Hence. 

u' = l/y d> I. 

where 'YL is defined as the signal-to-noise ratio 

A' 
SNR == ''/L = --'­

lV"Bcq 

FIGURE 6·2·7 Linearized PLL model with additive noise. 

(6-2-30) 

(6-2-3 I) 

vC'o 
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FIGURE 6--2~ Comparison of veo phase variance for exact and approximate 
(linear model) first-order PLL. [From Principles of Coherent 
Communication. by A. 1. Viterbi; It) /966 by McGraw· Hill 
Book CompanJ'. Reprinted l..-ith pem!ission of the publisher.] 
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The expression for the variance u~ of the VCO phase error applies to the 
case where the SNR is sufficiently high that the linear model for the PLL 
applies. An exact analysis based on the nonlinear PLL is mathematically 
tractable when G(s) = 1, which results in a first-order loop. In this case, the 
probability density function for the phase error may be derived (see Viterbi, 
19(6) and has the form 

p(t.q,) = exp('YL cosAq,) 
2rr!.,( I'd 

(6-2-32) 

where 1'1. is the SNR given by (6-2-31) with B,g being the appropriate noise 
bandwidth of the first-order loop, and 1,,(.) is the modified Bessel function of 
order zero. 

From the expression for p(b.q,), we may obtain the exact value of the 
variance for the phase error on a first-order PLL. This is plotted in Fig. 6-2-8 as 
a function of 1!'Yl' Also shown for comparison is the result obtained with the 
linearized PLL model. Note that the variance for the linear model is close to 
the exact variance for 'YL > 3. Hence, the linear model is adequate for practical 
purposes. 

Approximate analyses of the statistical characteristics of the phase error for 
the nonlinear PLL have also been performed. Of particular importance is the 
transient behavior of the PLL during initial acquisition. Another important 
problem is the behavior of PLL at low SNR. It is known, for example, that 
when the SNR at the input to the PLL drops below a certain value, there is a 
rapid deterioration in the performance of the PLL. The loop begins to lose 
lock and an impulsive-type of noise, characterized as clicks, is generated which 
degrades the performance of the loop. Results on these topics can be found in 
the texts by Viterbi (1966). Lindsey (1972), Lindsey and Simon (1973), and 
Gardner (1979), and in the survey papers by Gupta (1975) and Lindsey and 
Chie (1981). 

Up to this point, we have considered carrier phase estimation when the 
carrier signal is unmodulated. Below, we consider carrier phase recovery when 
the signal carries information. 
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when the SNR at the input to the PLL drops below a certain value, there is a 
rapid deterioration in the performance of the PLL. The loop begins to lose 
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degrades the performance of the loop_ Results on these topics can be found in 
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6-2-4 Decision-Directed Loops 
A problem arises in maxlmlzmg either (6-2-9) or (6-2-10) when the signal 
s(r; ¢) carries the information sequence {In}. In this case we can adopt one of 
two approaches: either we assume that {In} is known or we treat {in} as a 
random sequence and average over its statistics. 

In decision-directed parameter estimation, we assume that the information 
sequence {In} over the observation interval has been estimated and, in the 
absence of demodulation errors, t = 1m where t denotes the detected value of 
the information In' In this case set; ¢) is completely known except for the 
carrier phase. Decision-directed phase estimation was first described by 
Proakis et at. (1964). 

To be specific, let us consider the decision-directed phase estimate for the 
class of linear modulation techniques for which the received equivalent lowpass 
signal may be expressed as 

n 

(6-2-331 

where s,(t) is a known signal if the sequence {In} is assumed known. The 
likelihood function and corresponding log-likelihood function for the equiv­
alent lowpass signal are 

A(¢) = C exp {Re [~o IT" r(t)sN)e'''' dt]} 

A,.(¢) = Re ([ J, i r(t)s,*(t) dt Je"'} 
""0 7" 

(6-2-341 

(6-2-35 ) 

If we substitute for s,(t) in (6-2-35) and assume that the observation interval 
To = KT. where K is a positive integer, we obtain 

{
.. 1 K-l Iln+l)T } 

A L (¢) = Re e'" - 2: r:: r(t)g*(t - nT) dt 
No '1=0 nT 

(6-2-36) 

where. by definition 
(n+-I)T 

Yn = 1. ret )g*(t - n T) dt 
nT 

(6-2-37) 

Note that Yn is the output of the matched filter in the nth signal interval. The 
ML estimate of ¢ is easily found from (6-2-36) by differentiating the 
log-likelihood 

( 
1 K-I) ( 1 K-I ) 

AL(¢)=Re N. 2: I!Yn cosq,-Im - 2: I!Yn sin'" 
OIt=O No 11=0 . 
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Received 
signal sin(2lt/ ... l'" .,) 

,..-----, 
veo 

Delay 
T 

FIGURE 6-2-9 Carrier recovery witb a decision·feedback PLL. 

with respect to '" and setting the derivative equal to zero. Thus, we obtain 

q,ML = -tan-I [1m (~~ I:Jn) / Re (~~ I:J.)] (6-2-38) 

We call 4>ML in (6-2-38) the decision-directed (or decision-feedback) carTier 
phase estimate. It is easily shown (Problem 6-10) that the mean value of 4>ML is 
tP, so that the estimate is unbiased. FlJrthennore, the pdf of 4>ML can be 
obtained (Problem 6-11) by using the procedure described in Section 5-2-7. 

A decision-feedback PLL (DFPLL) that is appropriate for a double­
sideband PAM signal of the form A(t) cos (21ifct + </J) is shown in Fig. 6-2-9. 
The received signal is multiplied by the quadrature carriers Ce(l) and cs(t), as 
given by (6·2-5), which are derived from the veo. The product signal 

ret) cos (21ifct + 4» = !fACt) + ne(t)] cos 11</J 
- !ns(t) sin 11</J -'- double-frequency terms (6-2-39) 

is used to recover the infonnation carried by A(t). The detector makes a 
decision on the symbol that is received every T seconds. Thus, in the absence 
of decision errors, it reconstructs A (t) free of any noise. This reconstructed 
~ignal is used to muhiply the product of the second quadrature multiplier, 
which has been delayed by T seconds to allow the demodulator to reach a 
decision. Thus, the input to the loop filter in the absence of decision errors is 
the error signal 

e(l) = ~A(t){[A(t) + ne(t}} sin d</J - ns(t) cos .:1t/>} 
+ double-frequency terms 

= !A2(t) sin 11'; + !A(t)(n,(t) sin 11</J - ns(t) cos ~</J] 
+ double-frequency terms (6-2-40) 

The loop filter is lowpass and, hence, it rejects the double-frequency tenn in 
e(t). The desired component is A 2(t) sin 11</J, which contains the phase error for 
driving. the loop. 
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Sampler I-----~ 

FIGURE 6-2~lO Carrier recovery for M-ary PSK using a decision-feedback PLL 

In the case of M-ary PSK, the DFPLL has the configuration shown in Fig. 
6-2-10. The received signal is demodulated to yield the phase estimate 

• 2ll o =-(m -1) 
m M 

which, in the absence of a decision error, is the transmitted signal phase. The 
two outputs of the quadrature multipliers are delayed by the symbol duration 
T and multiplied by cos 0", and sin 0", to yield 

r(t) cos (2tr/ct + 4» sin 8m 

= HAcos 8m + n,(t)] sin 8m cos(cf> - 4» 
- HA sin 8m + n,(t)] sin 8", sin (<I> -4» 
+ double-frequency terms 

r(t) sin (21if,.t + 4» cos 8m 

= - 1[A cos 8m + n,(r)f cos 8m sin (<I> - 4> ) 
- HA sin 8m + n,(t)] cos 8m cos (4) - 4» 
+ double-frequence terms 

(6-2-41) 
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The two signals are added to generate the error signal 

e(l) = -~A sin (<I> - J,) + ~nc(t) sin (<f> - J, - 8m) 

+ }n,(t) cos (t/J - 1> - 8 .. ) + double-frequency terms (6-2-42) 

This error signal is the input to the loop filter that provides the control signal 
for the VCO. 

We observe that the two quadrature noise components in (6-2-42) appear as 
additive terms. There is no term involving a product of two noise components 
as in an Mth-power law device, described in the next section. Consequently, 
there is no additional power loss associated with the decision-feedback PLL. 

This M ·phase tracking loop has a phase ambiguity of 360"1 M, necessitating 
the need to differentially encode the information sequence prior to transmis­
sion and differentially decode the received sequence after demodulation to 
recover the information. 

The ML estimate in (6-2-38) is also appropriate for QAM. The ML estimate 
for offset QPSK is also easily obtained (Problem 6-12) by maximizing the 
log-likelihood function in (6·2-35), with SI(t) given as 

s,(t) = 2: l"g(t - nT) + j 2: !"g(t - nT - ~ T) (6-2-43) 
n n 

where In = ±1 and 1" = ± l. 
Finally, we should also mention that carrier phase recovery for CPM signals 

can be accomplished in 'a decision-directed manner by use of a PLL. From the 
optimum demodulator for CPM signals, which is described in Section 5-3, we 
can generate an error signal that is filtered in a loop filter whose output drives 
a PLL. 

6-2-5 Non-Decision-Directed Loops 
Instead of using a decision-directed scheme to obtain the phase estimate, we 
may treat the data as random variables and simply average A( <f» over these 
random variables prior to maximization. In order to carry out this integration, 
we may use either the actual probability distribution function of the data, if it 
is known or, perhaps, we may assume some probability distribution thai might 
be a reasonable approximation to the true distribution. The following example 
illustrates the first approach. 

Example 6-2·2 

Suppose the real signal 5(t) carries binary modulation. Then, in a signal 
interval, we have 

set) = A cos 2lif,.t, 0.;;; /.;;; T 
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interval, we have 

set) = A cos 2lif,.t, 0.;;; /.;;; T 
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where A = ± I with equal probability. Clearly. the pdf of A is given as 

p(A)= ~o(A -1) + io(A + I) 

Now, the likelihood function A(,p) given by (6-2-9) is conditional on a given 
value of A and must be averaged over the two values. Thus. 

A(,p} = r A(,p )p{A) dA 

=~exp[ ~ f'r(t}COS(2rr!ct+,p)dl] 
1\0 () 

+ ~ exp [- +JT 

r(t)cos(21if,t + <I»dt] 
1\0 (J 

= cosh [.~ 1 r r(t) cos (2rrj;t + <1» dt] 
No 11 

and the corresponding log-likelihood function is 

]\,J <1» = In cosh [2. iT r(t) cos (21T}; I + <1» dt] 
No I) 

(6-2-44) 

If we differentiate '\r(,p) and set the derivative equal to zero. we obtain the 
ML estimate for the non-decision-directed estimate. Unfortunately. the 
functional relationship in (6-2-44) is highly nonlinear and. hence. an exact 
solution is difficult to obtain. On the other hand. ap?roximations are 
possible. In particular. 

{
h2 (Ixl ~ I) 

In cosh x = -
xl (Ixl:.>l) 

With these approximation>. the solution for <I> becomes tractable. 

(6-2-4~) 

In this example. we averaged over the two possible values of the 
information symbol. When the information symbols are M-valued. where M is 
large. the averaging operation yields highly nonlinear functions of the 
parameter to be estimated. In such a case. we may simplify the problem by 
assuming that the information symbols are oontinuous random variables. For 
example. we may assume that the symbols are zero-mean gaussian. The 
following example illustrates this approximation and the resulting form for the 
average likelihood function. 
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EUJllpie 6-2-3 

Let us consider the same signal as in Example 6-2-2, but now we assume 
that the amplitude A is zero-mean gaussian with unit variance. Thus, 

peA) = _l_e-A'12 

V2i 

If we average A(<fJ) over the assumed pdf of A. we obtain the average 
likelihood A( <fJ) in the form 

,\(4)) = C exp {[~JT r(t) cos (21ifct + <fJ) dt n (6-2-46) 

and the corresponding log-likelihood as 

(6-2-47) 

We can obtain the ML estimate of <fJ by differentiating AL (<p) and setting 
the derivative to zero. 

It is interesting to note that the log-likelihood function is quadratic under 
the gallSsian assumption and that it is approximately quadratic, as indicated in 
(6-2-45) for small values of the cross-correlation of ret) with set; <fJ). In other 
words, if the cross-correlation over a single interval is small, the gaussian 
assumption for the distribution of the information symbols yields a good 
approximation to the log-likelihood function. 

In view of these results, we may use the gaussian approximation on all the 
symbols in the observation interval 10 = KT. Specifically, we assume that the K 
information symbols aTe statistically independent and identically distributed. 
By averaging the likelihood function A( <fJ) over the gaussian pdf for each of 
the K symbols in the interval 10 = KT, we obtain the result 

{K-l [ 2 [R+llT ]2} 
A(t/» = C exp 2: - r(t) cas (21ifct + t/» dt 

Il=-O No nT 
(6·2-48) 

If we take the logarithm of (6-2-48), differentiate the resulting log-likelihood 
function, and set the derivative equal to zero, we obtain the condition for the 
ML estimate as 

K;-l [n+ OT 1(n+ l}T 

n~o nT ret) cos (21ifct + 1» dt.r ret) sin (21ifct + if,) dt == 0 

(6-2-49) 
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FIGURE 6-2·11 Non-decision-diH.Tted PLL for carrier phase estimatiom of PAM signals. 

Although this equation can be manipulated further, its present form suggests 
the tracking loop configuration illustrated in Fig. 6-2-11. This loop resembles a 
Costas loop. which is described below. We note that the multiplication of the 
two signals from the integrators destroys the sign carried by the information 
symbol,. The summer plays the role of the loop filter. In a tracking loop 
configuration, the summer may be implemented either as a sliding-window 
digital filter (summer) or as a lowpass digital filter with exponential weighting 
of the past data. 

In a similar manner, one can derive non-decision directed ML phase 
estimates for QAM and M-PSK. The starting point is to average tbe likelihood 
function given by (6-2-9) over the statistical characteristics of the data. Here 
again, we may use the gaussian approximation (two-dimensional gaussian for 
complex-valued information symbols) in averaging over the information 
sequence. 

Squaring Loop The squaring loop is a non-decision-directed loop that is 
widely used in practice to establish the carrier phase of double-sideband 
suppressed carrier signals such as PAM. To describe its operation, consider tbe 
problem of estimating the carrier phase of the digitally modulated PAM signal 
of the form 

s(l) = A(t) cos (2Jrj;.t + <1» (6-2-50) 

where A(l) carries the digital information. Note that E[S(I)J = E[A(t)J = 0 
when the signal levels are symmetric about zero. Consequently, the average 
value of s(t) does not produce any phase coherent frequency components at 
any frequency. induding the carrier. One method for generating a carrier from 
the received signal is to square the signal and, thus, to generate a frequency 
component at 2j;, which can be used to drive a phase-locked loop (PLL) tuned 
to 2j;. This method is illustrated in the block diagram shown in Fig. 6-2-12. 
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FlGURE 6-2-12 Carrier recovery using a square-law device. 

The output of the square-law device is 

s2(1) = A2(t) cos' (21r/ct + <b) 

= !A'(t) + !A2(t) cos (4Jrht + 24» (6-2-51) 

Since the modulation is a cyciostationary stochastic process, the expected value 
of S2(t) is 

E[S2(t)] = ~E[A2(t)J + !E[A2(t)] cos (41Cfct + 2",) (6-2-52) 

Hence, there is power at the frequency 2h-
If the output of the square-law device is passed through a bandpass filter 

tuned to the double-frequency term in (6-2-51), the mean value of the filter is a 
sinusoid with frequency 2£, phase 2"" and amplitude !E[A2(t)jH(2fc), where 
H (2fc) is the gain of the filter at f = 2fc. Thus, the square-law device has 
produced a periodic component from the input signal set). In effect, the 
squaring of set) has removed the sign information contained in A(t) and, thus, 
has resulted in phase-coherent frequency components at twice the carrier. The 
filtered frequency component at 21c is then used to drive the PLL. 

The squaring operation leads to a noise enhancement that increases the 
noise power level at the input to the PLL and results in an increase in the 
variance of the phase error. 

To elaborate on this point, let the input to the squarer be set) + net), where 
set) is given by (6-2-50) and net) repRSents the bandpass additive gaussian 
noise process. By squaring set) + net), we obtain 

yet) = S2(t) + 2s(t)n(t) + n2(t) (6-2-53) 

where S2(t) is the desired signal component and the other two components are 
the signal x noise and noise X noise terms. By computing the autocorrelation 
functions and power density spectra of these two noise components, one can 
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easUv show that both components have specl',,[ power in the frequency vand 
celltered at 2f,. Consequently. the bandpass filter with bandwidth Bop centered 
at 2/:. which produces the desired sinusoidal signal component that drives the 
PLL. also passes noise due to these two terms. 

Since the bandwidth of the loop is designed to be significantly smaller than 
the bandwidth Bop of the bandpass filter. the total noise spectrum at the input 
to the PLL may be approximated 2S a constant within the loop bandwidth. This 
approximation allows us to obtain a simple expression for the variance of the 
phase error as 

(5-2-54) 

where 51 is called thc squaring loss and is given by 

(6-2-55) 

Since SI <: 1, Sf' represents the increase in the variance of the phase error 
caused by the added noise (noise x noise terms) that results from the squarer. 
Note. for example. that when 1'/. = Bhp/2Bc~' the loss is J dB. 

Finally. we observe that the output of the VCO from the squaring IOGp must 
be frequency-divided by 2 to generate the phase-locked carrier for signal 
demodulation. It should be noted that the output of the frequency divider has 
a phase ambiguity of 18(]O relative to the phase of the received signal. For this 
reason, the binary data must be differentially encoded prior to transmission 
and differentially decoded at the receiver. 

Costas Loop Another method for generating a properly phased carrier for 
a double-sideband suppressed carrier signal is illustrated by the block diagram 
shown in Fig. 6-2-1J. This scheme was developed by Costas (1956) and is 

FIGURE 6-2-13 Block diagram of Costas loop. 
x }-__ -.!! lowpa-., 1-__ -' 

tiller 
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called th~ Costas loop. The received signal is multiplied by cos (21Cfct + 4» and 
sin (21C/c1 + 4». which are outputs from the veo. The two products are 

Ye(l) = {s(t) + net») cos (2r¢1 + 4» 
= HA(t) + nett)] cos A</> + ~ns(t) sin tup 

+ double-frequency terms 

ys(t) = [s(/) + net)] sin (2Jifct + 4» 
(6-2-56) 

= ![A(t) + nett») sin fl.</> - ~nS<t) cos 11</> 

+ double-frequency terms 

where the phase error A</> = 4> - </>. The double-frequency terms are eliminated 
by the lowpass filters following the multiplications. 

An error signal is generated by multiplying the two outputs of the lowpass 
filters. Thus, 

e(t) = H[A(t) + neet»' - n;(t)} sin (2 A</» 

- !ns(t)[A(t) + n,(/)J cos (211</» (6-2-57) 

This error signal is filtered by the loop filter, whose output is the control 
voltage that drives the veo. The reader should note the similarity of the 
G:lstas loop to the PLL shown in Fig. 6-2-11. 

We note that the error signal into the loop filter consists of the desired term 
A2(t) sin 2( ~ - </» plus terms that involve signal x noise and noise x noise. 
These terms are similar to the two noise terms at the input to the PLL for the 
squaring method. In fact, if the loop filter in the Costas loop is identical to that 
used in the squaring loop, the two loops are equivalent. Under this condition, 
the probability density function of the phase error and the performance of the 
two loops are identical. 

It is interesting to note that the optimum lowpass filter for rejecting the 
double-frequency terms in the eostas loop is a filter matched to the signal 
pulse in the information-bearing signal. If matched filters are employed for the 
low pass filters. their outputs could be sampled at the bit rate. at the end of 
each signal interval, and the discrete-time signal samples could be used to drive 
the loop. The use of the matched filter results in a smaller noise into the loop. 

Finally, we note that, as in the squaring PLL, the output of the veo 
contains a phase ambiguity of 180°, necessitating the need for differential 
encoding of the data prior to transmission and differential decoding at the 
demodulator. 

Curier Esti_tiOD for Multiple Phase Signals When the digital informa­
tion is transmitted via M-phase modulation of a carrier, the methods described 
above can be generalized 10 provide the properly phased carrier for 
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demodulation. The received M -phase signal. excluding the additive noise. may 
be expressed as 

sU) = A COS [21rfl + '" + ~(m -1)], m = 1. 2, .... M (6-2-58) 

where 21r(1Il - 1)/ M represents the information-bearing component of the 
signal phase. The problem in carrier recovery is to remove the information­
bearing component and. thus. to obtain the unmodulated carrier cos (2;rJ;! + 
"'). One method by which this can be accomplished is illustrated in Fig. 6-2-14. 
which represents a generalization of the squaring loop. The signal is passed 
through an Mth-power-law device. which generates a number of harmonics of 
J:. The bandpass filter selects the harmonic cos (21rMf,t + M <f» for driving the 
PLL. The term 

21r 
-(m - lIM = 2n(m - I) ",0 (mod 2n). 
M 

m = 1.2 ..... M 

Thus. the information is removed. The yeO output is sin (2nMf;1 + Mcb). so 
this output is divided in frequency by M to yield sin (2ni t + J,). and 
phase-shifted by 1n rad to yield cos (2;rfct + cb). These components are then fed 
to the demodulator. Although not explicitly shown, there is a phase ambiguity 
in these reference sinusoids of 36()° 1M. which can be overcome by differential 
encoding of the data at the transmitter and differential decoding after 
demodulation at the receiver. 

lust as in the case of the squaring PLL, the Mth-power PLL operates in the 
presellce of noise thaI has been enhanced by the Mth-power-Iaw device. which 
results in the output 

y(t) = [s(t) + n(t)JM 
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to the demodulator. Although not explicitly shown, there is a phase ambiguity 
in these reference sinusoids of 36()° 1M. which can be overcome by differential 
encoding of the data at the transmitter and differential decoding after 
demodulation at the receiver. 

lust as in the case of the squaring PLL, the Mth-power PLL operates in the 
presellce of noise thaI has been enhanced by the Mth-power-Iaw device. which 
results in the output 

y(t) = [s(t) + n(t)JM 
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The variance of the phase error in the PLL resulting from the additive noise 
may be expressed in the simple form 

S -1 
2 ML u-=-
.p 'YL 

(6-2-59) 

where '/L is the loop SNR and s;.:k is the M-phase power loss. SML has been 
evaluated by Lindsey and Simon (1973) for M = 4 and 8. 

Another' method for carrier recovery in M-ary PSK is based on a 
generalization of the Costas loop_ That method requires multiplying tlte 
received signal by M phase-shifted carriers of the form 

lowpass-filtering each product, and then multiplying the outputs of the lowpass 
filters to generate the error signal. The error signal excites the loop filter, 
which, in turn, provides the control signal for the VCO. This method is 
relatively complex to implement and, consequently, has not been generally 
used in practice. 

Comparison of Decision-Dileded with Non-DedsioD-Direded Loops 
We note that the decision-feedback: phase-locked loop (DFPLL) differs from 
the Costas loop only in the method by which A(t) is rectified for the 
purpose of removing the modulation. In the Costas loop, each of the two 
quadrature signals used to rectify A(t) is corrupted by noise_ In the DFPLL, 
only one of the signals used to rectify A(t) is corrupted by noise. On the 
other hand, the squaring loop is similar to the Costas loop in terms of the 
noise effect on the estimate (1,. Consequently, the DFPLL is superior in 
performance to both the Costas loop and the squaring loop, provided that 
the demodulator is operating at error rates below 10-2 where an occasional 
decision error has a negligible effect on t/>. Quantitative comparisons of the 
variance of the phase errors in a Costas loop to those in a DFPLL have 
been made by Lindsey and Simon (1973), and show that the variance of the 
DFPLL is 4-10 times smaller for signal-to-noise ratios per bit above Odb. 

6-3 SYMBOL TIMING ESTIMATION 
In a digital communication system, the output of the demodulator must be 
sampled periodically at the symool rate, at the precise sampling time instants 
1m = mT + -r. where T is the symbol interval and -r is a nominal time delay that 
accounts for the propagation time of the signal from the transmitter to the 
receiver. To perform this periodic sampling, we require a clock signal at the 

368

358 OIGlT AL COMMUNICA nONS 

The variance of the phase error in the PLL resulting from the additive noise 
may be expressed in the simple fonn 

S -1 
2 ML u-=-
.p 'YL 

(6-2-59) 

where '/L is the loop SNR and s;.:k is the M-phase power loss. SML has been 
evaluated by Lindsey and Simon (1973) for M = 4 and 8. 

Another' method for carrier recovery in M-ary PSK is based on a 
generalization of the Costas loop_ That method requires multiplying tlte 
received signal by M phase-shifted carriers of the form 

lowpass-filtering each product, and then multiplying the outputs of the lowpass 
filters to generate the error signal. The error signal excites the loop filter, 
which, in turn, provides the control signal for the VCO. This method is 
relatively complex to implement and, consequently, has not been generally 
used in practice. 

Comparison of Dedsion-Dileded with Non-DedsioD-Direded Loops 
We note that the decision-feedback: phase-locked loop (DFPLL) differs from 
the Costas loop only in the method by which A(t) is rectified for the 
purpose of removing the modulation. In the Costas loop, each of the two 
quadrature signals used to rectify A(t) is corrupted by noise. In the DFPLL, 
only one of the signals used to rectify A(t) is corrupted by noise. On the 
other hand, the squaring loop is similar to the Costas loop in terms of the 
noise effect on the estimate (1,. Consequently, the DFPLL is superior in 
performance to both the Costas loop and the squaring loop, provided that 
the demodulator is operating at error rates below 10-2 where an occasional 
decision error has a negligible effect on t/>. Quantitative comparisons of the 
variance of the phase errors in a Costas loop to those in a DFPLL have 
been made by Lindsey and Simon (1973), and show that the variance of the 
DFPLL is 4-10 times smaller for signal-to-noise ratios per bit above Odb. 

6-3 SYMBOL TIMING ESTIMATION 
In a digital communication system, the output of the demodulator must be 
sampled periodically at the symool rate, at the precise sampling time instants 
1m = mT + -r. where T is the symbol interval and -r is a nominal time delay that 
accounts for the propagation time of the signal from the transmitter to the 
receiver. To perform this periodic sampling, we require a clock signal at the 



CH:\PTfR 6: 'ARRIE:.~ \.ND "Y!vtHOI \YNOiR()~1I A no\. 359 

receiver. The process of extracting such a clock signal at the receiver is usuall\ 
called symbol synchrunization or timing recovery. 

Timing recovery is one of the most critical functions that is performed at the 
receiver of a synchronous digital communication system. We should note that 
the receiver must know not only the frequency (liT) at which the outputs of 
the matched filters or correlators arc sampled. but also where to take the 
samples within each symbol interval. The choice of sampling instant within the 
symbol interval of duration T is called the timing phase. 
- Symbol synchronization can be accomplished in one of several ways. In 

some communication systems. the transmitter and receiver clocks are syn­
chronized to a master clock. which provides a wry precise timing signal. In this 
case. the receiver must estimate ;,nd compensate for the relative time dela\' 
between the transmitted and received Signals. Such may be the case for radio 
communication systems that operate in the very low frequency (VLF) hand 
(below 30 kHz). where precise clock signals are transmitted fro'll a master 
radio station. 

Another method for achieving symbol synchronization is for the transmillcr 
to simultaneously transmit the clock frequency lIT or a multiple of lIT along 
with the information signal. The receiver may simply employ a narrownanu 
filter tuned to the transmitted clock frequency and. thUS. extract the dock 
signal for sampling. This approach has the advantage of being simple to 
implement. There are several disadvantages. however. One is that the 
transmitter must allocate some of its available power to the transmission of the 
clock signal. Another is Ihat some small fraction of the availanle channel 
bandwidth must be allocated for the transmission of the clock signal. In spite of 
these disadvantages. this method is frequently used in telephone transmission 
systems that employ large bandwidths to transmit the signals of many users. In 
such a case, the transmission of a clock signal is shared in the demodulation of 
the signals among the many users. Through this shared use of the clock signal. 
the penalty in transmitter power and in handwidth allocation is reduced 
proportionally by the number of users. 

A clock signal can also be extracted from the received data signal. There are 
a number of different methods tna! can be used at the receiver to achieve 
self-synchronization. In this seclion. we treat both decision-directed and 
non-decision-directed methods. 

6-3-1 Maximum-Likelihood Timing Estimation 

Let us begin by obtaining the ML estimate of the time delay f. If the signal is a 
baseband PAM waveform, it is represented as 

r(t) ='(1; r) + 11(1) (63- [ ) 

where 

(d-c) 
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As in the case of ML phase estimation, we distinguish between two types of 
timing estimators, decision-directed timing estimators and non-decision­
directed estimators. In the former, the information symbols from the output of 
the demodulator are treated as the known transmitted sequence. In this case, 
the log-likelihood function has the form 

(6-3-3) 

If we substitute (6-3-2) into (6-3-3), we obtain 

AL ( l') = CL L In 1 r(t)g(t - nT - l') dt 
" To 

= CL L Iny.(l') (6-3-4) 

" 
where Yn(t) is defined as 

Yn('r) = f r(t)g(t - nT - l') dt 
T. 

(6-3-5) 

A necessary condition for t to be the ML estimate of l' is that 

(6-3-6) 

The result in (6-3-6) suggests the implementation of the tracking loop shown 
in Fig. 6-3-1. We should observe that the summation in the loop serves as the 
loop filter whose bandwidth is controlled by the length of the sliding window in 
the summation. The output of the loop filter drives the voltage-controlled clock 
(VeC), or voltage-controlled oscillator, which controls the sampling times for 
the input to the loop. Since the detected information sequence {In} is used in 
the estimation of l', the estimate is decision-directed. 

The techniques described above for ML timing estimation of baseband 

I'lGURE 6-3-1 Decision-directed ML estimation of timing for baseband PAM. 

r(t) -­filter 
gH) 

!..o 
dt 

I, 

370

360 DIGITAL COMMUNICATIONS 

As in the case of ML phase estimation, we distinguish between two types of 
timing estimators, decision-directed timing estimators and non-decision­
directed estimators. In the former, the information symbols from the output of 
the demodulator are treated as the known transmitted sequence. In this case, 
the log-likelihood function has the form 

(6-3-3) 

If we substitute (6-3-2) into (6-3-3), we obtain 

AL ( r) = CL L In 1 r(t)g(t - nT - r) dt 
" To 

= CL L Iny.(r) (6-3-4) 
" 

where Yn(t) is defined as 

Yn('r) = f r(t)g(t - nT - r) dt 
T. 

(6-3-5) 

A necessary condition for t to be the ML estimate of r is that 

(6-3-6) 

The result in (6-3-6) suggests the implementation of the tracking loop shown 
in Fig. 6-3-1. We should observe that the summation in the loop serves as the 
loop filter whose bandwidth is controlled by the length of the sliding window in 
the summation. The output of the loop filter drives the voltage-controlled clock 
(VeC), or voltage-controlled oscillator, which controls the sampling times for 
the input to the loop. Since the detected information sequence {In} is used in 
the estimation of r, the estimate is decision-directed. 

The techniques described above for ML timing estimation of baseband 

I'lGURE 6-3-1 Decision-directed ML estimation of timing for baseband PAM. 

r(t) -­filter 
gH) 

!..o 
dt 

I, 



(H .5,.PTER fl. CARRIER AND \YMHOL ~Y!'t.{"HRf)~IZAHO!, 361 

PAM signals can be extended to carrier modulated signal formats such as 
QAM and PSK in a straightforward manner, by dealing with the equivalent 
lowpass form of the signals, Thus, the problem of ML estimation of symbol 
timing for carrier signals is very similar to the problem formulation for the 
baseband PAM signal. 

6-3-2 Non-Decision-Directed Timing Estimation 
A non-decision-directed timing estimate can be obtained by averaging the 
likelihood ratio i\(r) -over the pdf of the information symbols, to obtain .\(r). 
and then differentiating either ArT) or In ?\(r) = AJr) to obtain the-condition 
for the maximum-likelihood estimate f ML -

In the case of binary (baseband) PAM, where 1" = ± 1 with equal prob­
ability, the average over the data yields 

(6-3-7) 

just as in the case of the phase estimator, Since In cosh x = ~X2 for small x, the 
square-law approximation 

(6-3-8) 
n 

is appropriate for low signal-to-noise ratios. For multilevel PAM, we may 
approximate the statistical characteristics of the information symbols {In} by 
the gaussian pdf, with zero mean and unit variance, When we average A( r) 
over the gaussian pdf, the logarithm of A(r) is identical to AL(r) given by 
(6-3-8). Consequently, the non-decision·directed estimate of r may be obtained 
by differentiating (6-3-8). The result is an approximation to the ML estimate of 
the delay time. The derivative of (6-3-8) is 

d
d 2: y!( r) = 22: Yn('r) dY

dn( r) = 0 
Tn n l' 

(6-3-9) 

where Yn( r) is gjven by (6-3-5). 
An implementation of a tracking loop based on the derivative of Ad r} 

given by (6-3-7) is shown in Fig. 6-3-2. Alternatively, an implementation of a 

FIGURE 6·3-2 Non-deClsion·directed estimation 01 timing for binary baseband PAM. 
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tracking loop based on (6-3-9) is illustrated in Fig. 6-3-3. In both structures, we 
observe that the summation serves as the loop filter that drives the vee. It is 
iI1teresting to note the resemblance of the timing loop in Fig. 6-3-3 to the 
Costas loop for phase estimation. 

Early-Late Gate Synchronizers Another non-decision-directed timing es­
timator exploits the symmetry pmperties of the signal at the output of the 
matched filter or correlator. To descril:le this method, let us consider the 
rectangular pulse s(t), O,,;;t,,;; T, shown in Fig. 6-3-4(a). The output of the filter 
matched to s(t) attains its maximum value at time t = T, as shown in Fig. 
6-3-4(b). Thus, the output of the matched filter is the time autocorrelation 
function of the pulse s(t). Of course, this statement holds for any arbitrary 
pulse shape, so the approach that we describe applies in general to any signal 
pulse. Clearly, the proper time to sample the output of the matched filter for a 
maximum output is at t = T, i.e .. at the peak of the correlation function. 

In the presence of noise. the identification of the peak value of the signal is 
generally difficult. Instead of sampling the signal at the peak, suppose we 
sample early. at t = T - 8 and late at t = T + /). The absolute values of the 
early samples ly(m(T --/))1 and the late samples ly(m(T + a»1 will be smaller 
(on the average in the presence of noise) than the samples of the peak value 
y(m T)I. Since the autocorrelation function is even with respect to the 
optimum sampling time t = T. the absolute values of the correlation function at 
I = T - {j and t = T + 8 are equal. Under this condition, the proper sampling 

FIGURE 6-3-4 Rectangular signal pulse (al and its 
matched filter output (b). 
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FIGURE 6--3.5 Block dJ2,gram of early-Iale gate synchronlzec 

time is the midpoint between t = T -ll and ( = T + D. This condition forms the 
basis for the early-late gate symbol synchronizer. 

Figure 6-3-5 illustrates the block diagram of an early-late gate synchronizer. 
In this figure. correlators are used in place of the equivalent matched filters. 
The two correlators integrate over the symbol interval T, but one correlalor 
starts integrating II seconds early relative to the estimated optimum sampling 
time and the other integrator starts integrating 0 seconds late relative to the 
estimated optimum sainpling time. An error signal is formed by taking the 
difference between the absolute values of the two correlator outputs. To 
smoolh the noise corrupting the signal samples. the error signal is passed 
through a lowpass filter. If the timing is off relative to the optimum sampling 
time. the average error signal at the output of the lowpass filter is nonzero. and 
the clock signal is either retarded or advanced, depending on the sign of the 
error. Thus, the smoothed error signal is used to drive a voltage-controlled 
clock (VeCl. whose output is the desired clock signal thaI is used for sampling. 
The output of the vee is also used as a clock signal for a symbol waveform 
generator that puts out the same basic pulse waveform as that of the 
transmitting filter. This pulse waveform is advanced and delayed and then fed 
to the two correlators, as sho"n in Fig. 6-3-5. Note that if the signal pulses are 
rectangular, there is no need for a signal pulse generator within the tracking 
loop. 

We observe that the early-late gate synchronizer is basically a closed-loop 
control system whose bandwidth is relatively narrow compared to the symbol 
rate 1 J T. The bandwidth of the loop determines the quality of the timing 
estimate. A narrowband loop provides more averaging over the additive noise 
and. thus. improves the quality of the estimated sampling instants, provided 
that the channel propagation delay is constant and the clock oscillator at the 
transmitter is not drifting with time (or drifting very slowly with time). On the 
other hand, if the channel propagation delay is changing with time and/or the 
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FIGURE 6-3-6 Block diagram of early-late gate synchronizer-an alternative form. 

transmitter clock is also drifting with time tnen the bandwidth of the loop must 
be increased to provide for faster tracking of time variations in symbol timing. 

In the tracking mode, the two correlators are affected by adjacent symbols. 
However, if the sequence oE information symbols has zero mean, as is the case 
for PAM and some other signal modulations, the contribution to the output of 
the correia tors from adjacent symbols averages out to zero in the lowpass filter. 

An .. equivalent realization of the. early-late gate synchronizer that is 
somewhat easier to implement is shown in Fig. 6-3-6. In this case the clock 
signal from the vee is advanced and delayed by 6, and these clock signals are 
used to sample the outputs of the two correlators. 

The early-late gate synchronizer described above is a non-decision·directed 
estimator of symbol timing that approximates the maximum-likelihood es· 
timator. This assertion can be demonstrated by approximating the derivative of 
the log-likelihood function by the finite difference, i.e., 

dAL(r) AL(H 6) - AL(r - 6) 
dr 26 

(6-3·10) 

If we substitute for Adr) from (6-3-8) into (6-3-10), we obtain the approxima­
tion for the derivative as 

dA (1') C2 :1' =46~ly~(r+8)-y~(r-6)J 

'" C
2 L{[ r r(t)g(t - nT - l' - 6) dtJ2 

46 n 17;, 

- [ITo r(t)g(t - nT - 1'+ 6)dt f} (6-3·11 ) 
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somewhat easier to implement is shown in Fig. 6-3-6. In this case the clock 
signal from the vee is advanced and delayed by 6, and these clock signals are 
used to sample the outputs of the two correlators. 

The early-late gate synchronizer described above is a non-decision·directed 
estimator of symbol timing that approximates the maximum-likelihood es· 
timator. This assertion can be demonstrated by approximating the derivative of 
the log-likelihood function by the finite difference, i.e., 

dAL(1') AL(H 6) - AL(r - 6) 

d1' 26 
(6-3·10) 

If we substitute for Ad1') from (6-3-8) into (6-3-10), we obtain the approxima­
tion for the derivative as 

dA (1') C2 

:1' =46~IY~(1'+8)-Y~(1'-6)J 

'" C
2 L{[ r r(t)g(t - nT - l' - 6) dtJ2 

46 n 17;, 

- [ITo r(t)g(t - nT - 1'+ 6)dt f} (6-3·11 ) 
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But the mathematical expression in (6-3-11) basically describes the functions 
performed by Ine early-late gate symbol synchronizers illustrated in Figs 0-3-5 
and 6-3-6. 

6-4 JOINT ESTIMATION OF CARRIER PHASE 
AND SYMBOL TIMING 

The estimation of the ,arrier phase and symbol timing may be accomplished 
separately as described above or jointly. Joint ML estimation of two or more 
signal parameters yields estimates that are as good and usually better than the 
estimates obtained from separate optimization of the likelihood function. In 
other words, the variances of the signal parameters obtained from joint 
optimization are less than or equal to the variance of parameter estimates 
obtained from separately optimizing the likelihood function. 

Let us consider the joint estimation of the carrier phase and symbol timing. 
The log-likelihood function for these two parameters may be expressed in 
terms of the equivalent lowpass signals as 

AL(rb, r) = Re [~ f r(t)st(t; <1>, r) dt J 
No 111 

(0-4-1) 

where silt; <p, r) is the equivalent lowpass signal, which has the general form 

Sj(l; <1>, r) = e -jd,[ ~ i"g(l- nT - r) + j ~ i"w(1 - nT - r)] ( 6-4-2) 

where {I,,} and {inl are the two information sequences. 
We note that, for PAM, we may set I" = 0 for all n, and the sequence {In} is 

real. For QAM and PSK, we set in = 0 for all n and the sequence {In} is 
complex-valued. For offset QPSK, both sequences {Iff} and {iff} are nonzero 
and w(r) = g(1 - ~T). 

For decision-directed ML estimation of <p and T, the log-likelihood function 
becomes 

(6-4-3 ) 

where 

Yn( r) = J r(t)g*(1 - nT - r) dE 
r" 

( 6-4-4) 

xn(r) = J r(t)w*(t-nT- r)d( 
01 

Necessary conditions for the estimates of <p and r to be the ML estimates are 

(6-4-5) 
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It is convenient to define 

A( r) + j8( r) = ~ L [I!YnCr) + jJ!X.,( r)J 
Nu n 

With this definition, (6-4-3) may be expressed in the simple form 

A,J.p, r)=A(r)cos,p - 8(r) sin <P 

Now the conditions in (6-4-5) for the joint ML estimates become 

M(</>, r) 

a</> 

aA(</>, r) 
ar 

From (6-4-8), we obtain 

-A(r) sin</> - B(r) cos <I> = 0 

dA( T) aB( r) _ 
--cos</> ---SIn '" = 0 ar aT 

The solution to (6-4-9) that incorporates (6-4-10) is 

(A( r) dA( T) + B( r) iJE( r)] _ = 0 
at' iJr l'=TML 

(6-4-6) 

(6-4-7) 

( 6-4-8) 

(6-4-9) 

(6-4-10) 

(6-4-11 ) 

The decision-directed tracking loop for QAM (or PSK) obtained from these 
equations is illustrated in Fig_ 6-4- L 

FIGURE 6-4-1 Decision-directed joint tracking loop for carrier phase and symbol timing in QAM and PSK. 
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Offset QPSK requires a slightly more complex structure for joint estimation 
of .p and r. The structure is easily derived from (6-4-6)-(6-4-11 l_ 

In addition to the joint estimates given above, it is also possible to derive 
non-decision-directed estimates of the carrier phase and symbol timing, 
although we shall not pursue this approach. 

We should also mention that one can combine the parameter estimation 
problem with the demodulation of the information sequence {In}. Thus, one 
can consider the joint maximum-likelihood estimation of {l,,}. the carrier phase 
.p, and the symbol timing parameter r. Results on these joint esti'matioll 
problems have appeared in the technical literature, e.g. Kobayashi (1971), 
Falconer (1976), and Falconer and Salz (1977). 

6-5 PERFORMANCE CHARACTERISTICS OF ML 
ESTIMATORS 

The quality of a signal parameter estimate is usually measured in terms of its 
bias and its variance. In order to define these terms, let us assume that we have 
a sequence of observations [x, X2 x, ... x.1 = x, with pdf pIx 14». from 
which we extract an estimate of a parameter 4>. The bias of an estimate, sav 
tb(x), is defined as ' 

bias = E[ tb(x) I - .p (6-5-1) 

where q, is the true value of the parameter. When E[4>(x)] = 4>. we say that the 
estimate is unbiased. The variance of the estimate ",(x) is defined as 

u~ = E{[~(xm - {E[tb(X)j}2 (6-5-2) 

In general ui may be difficult to compute. However, a well-known result in 
parameter estimation (see Helstrom, 1968) is the Cramer-Rao lower bound on 
the mean square error defined as 

(6-5-3) 

Note that when the estimate is unbiased, the numerator of (6-5-3) is unity 
and the bound becomes a lower bound on the variance u~ of the estimate 
tb(x), i.e., 

(6-5-4) 

Since In p(xl 4» differs from the log-lilcelihood function by a constant factor 
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independent of <1>. it follows that 

E{[a: Inp(x I cf» n = E{L~ In A(q,) n 
=-EL~2InA(cf»} (6-5-5) 

Therefore. the lower bound on the variance is 

ui;;'1 / E{L,: In .'.(<1» n = -1/ EL~2In A(q,)] (6-5-6) 

This lower bound is a very useful result. It provides a benchmark for 
comparing the variance of any practical estimate to the lower bound. Any 
estimate that is unbiased and whose variance attains the lower bound is called 
an efficient estimate. 

In general, efficient estimates are rare. When they exist. they are maximum­
likelihood estimates. A well-known result from parameter estimation theory is 
that any ML parameter estimate is asymptotically (arbitrarily large number of 
observations) unbiased and efficient. To a large extent, these desirable 
properties constitute the importance of ML parameter estimates. It also known 
that an ML estimate is asymptotically gaussian-distributed [with mean t/> and 
variance equal to the lower bound given by (6-5-6).J 

In the case of the ML estimates described in this chapter for the two signal 
parameters, their variance is generally inversely proportional to the signal-to­
noise ratio, or, equivalentl}', inversely proportional to the signal power 
multiplied by the observatioll interval TO. Furthermore, the variance of the 
decision-directed estimates, at low error probabilities, are generally lower than 
the variance of non-decision-directed estimates. In fact, the performance of the 
ML decision-directed estimates for <I> and r attain the lower bound. 

The following example is concerned with the evaluation of the Cramer-Rao 
lower bound for the ML estimate of the carrier phase. 

Example 6-5-1 

The ML estimate of the phase of an unmodulated carrier was shown in 
(6-2-11) to satisfy the condition 

1 r(t)sin (2lC/.t + "'!>ILldr=O (6-5-7) 
T" 

where 
r(t) ~ sit; t/» + nit) 

~ A cos (21if,t + c/» + n(t) (6-5·8) 

The condition in (6-5-7) was derived by maximizing the log likelihood function 

AcCt/J) = N,
2 1 r(t)s(t;q,)dt (6-5-9) 
o 7;1 
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The variance of (j,ML is lower-bounded as 

{ 2A 1 }-' ",'4, ~ - E(r(tl]cos(21!fct+tf»dt 
'-IL No To 

(6-5-10) 

The factor 1/2To is simply the (one-sided) equivalent noise bandwidth of the 
ideal integrator. 

From this example, we observe that the variance of the ML phase estimate 
is lower-bounded as 

(6-5-11 ) 

where YL = A2/2N.IBeq is the loop SNR. This is also the variance obtained for 
the phase estimate from a PLL with decision-directed estimation. As we have 
already observed, non-decision-directed estimates do not perform as well due 
to losses in the nonlinearities required to remove the modulation, e.g., the 
squaring loss and the Mth-power loss. 

Similar results can be obtained on the quality of the symbol timing estimates 
derived above. In addition to their dependence on the SNR, the quality of 
symbol timing estimates is a function of the signal pulse shape. For example, a 
pulse shape that is commonly used in practice is one that has a raised cosine 
spectrum (see Section 9-2). For such a pulse, the rms timing error (O't) as a 
function of SNR is illustrated in Fig. 6-5-1, for both decision-directed and 

Performance of baseband symbol timing estimate for 
fixed signal and loop bandwidths. [From 
Synchronization Subsystems: Analysis and Design. 
by L. Franks, 1983. Reprinted with permission of 
the author. J 
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Performance of baseband symbol timing estimate for fixed 
SNR and fixed loop OOndwidth. [From Synchronization 
Subsyslems: Analysis and Design, by L. Franks. 198.J 
,~eprillied with permission of 'he owhor.] 
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non-decision-directed estimates. Note the significant improvement in 
performance of the decision-directed estimate compared with the non-decision­
directed estimate. Now, if the bandwidth of the pulse is varied, the pulse shape 
is changed and, hence, the rrns value of the timing error also changes. For 
example, when the bandwidth of the pulse that has a raised cosine spectrum is 
varied, the rms timing error varies as shown in Fig. 6-5-2, Note that the error 
decreases as the bandwidth of the pulse increases. 

In conclusion, we have presented the ML method for signal parameter 
estimation and have applied it to the estimation of the carrier phase and 
symbol timing. We have also described their performance characteristics. 

6-6 BIBLIOGRAPHICAL NOTES AND REFERENCES 
Carrier recovery and timing synchronization are two topics that have been 
thoroughly investigated over the past three decades. The Costas loop was 
invented in 1956 and the decision-directed phase estimation methods were 
described by Proakis el al. (1964) and by Natali and Walbesser (1969). The 
work on decision-directed estimation was motivated by earlier work of Price 
(1962a, b). Comprehensive treatments of phase-locked loops first appeared in 
the books by Viterbi (1966) and Gardner (1979). Books that cover carrier 
phase recovery and time synchronization techniques have been written hy 
Stiffler (1971), Lindsey (1972), Lindsey and Simon (1973), and Meyr ilnd 
Ascheid (1990). 

A number of tutorial papers have appeared in IEEE journals on the PLL 
and on time synchronization. We cite. for example, the paper by Gupta (1'l75), 
which treats both analog and digital implementation of PLLs, and the paper hy 
Lindsey andChie (1981), which is devoted to the analysis of digital PLLs. In 
addition, the tutorial paper by Franks (1980) describes· both carrier phase and 
symbol synchronization methods, including methods based on the maximum­
likelihood estimation criterion. The paper by Franks is contained in a special 
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issue of the IEEE Transactions on Communications (August 1980) devoted to 
synchronization. The paper by Mueller and Muller (1976) describes digital 
signal processing algorithms for extracting symbol timing. 

Application of the maximum-likelihood criterion to parameter estimation 
was first described in the context of radar parameter estimation (range and 
range rate). Subsequently, this optimal criterion was applied to carrier phase 
and symbol timing estimation as well as to joint parameter estimation with data 
symbols. Papers on these topics have been published by several researchers. 
including Falconer (1976), Mengali (1977), Falconer and Salz (1977), and 
Meyers and Franks (1980). 

The Cramer-Rao lower bound on the variance of a parameter estimate is 
derived and evaluated in a number of standard texts on detection and 
estimation theory, such as Helstrom (1968) and Van Trees (1968). It is also 
described in several books on mathematical statistics, such as the book by 
Cramer (1946). 

6-1 Prove the relation (6·1-7). 
6-2 Sketch the equivalent realization of the binary PSK receiver in Fig. 6-1·1 thaI 

employs a matched filter instead of a correlator. 
6-3 Suppose that the loop filter (see (6-2-14)] for a PLL has the transfer function 

1 
G(s)=--~ 

s +v2 

a Determine the closed-loop transfer function H(s) and indicate if the loop is 
stable. 

b Determine the damping factor and the natural frequency of the loop. 
~ Consider the PLL for estimating the carrier phase of a signal in \\Chich the loop 

filter is specified as 

K 
G(s)=--

1 + r,s 

a Determine the closed-loop transfer function H(s) and its gain at f = O. 
b For what range of values of r, and K is the loop stable' 

6-5 The loop filter G(s) in a PLL is implemented by the circuit shown in Fig. P6-5. 
Determine the system function G(s) and express the time constants r, and <, in 
terms of the circuit parameters. 

R, 
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a Determine the closed-loop transfer function H(s) and indicate if the loop is 
stable. 

b Determine the damping factor and the natural frequency of the loop. 
~ Consider the PLL for estimating the carrier phase of a signal in \\Chich the loop 

filter is specified as 

K 
G(s)=--

1 + r,s 

a Determine the closed-loop transfer function H(s) and its gain at f = O. 
b For what range of values of r, and K is the loop stable' 

6-5 The loop filter G(s) in a PLL is implemented by the circuit shown in Fig. P6-5. 
Determine the system function G(s) and express the lime constants r, and <, in 
terms of the circuit parameters. 

R, 
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6-6 The loop filter G(s) in a PLL is Implemented with the active /iller shown in Fig. 
P6-6. Determine the system function G(s) and express the time constants " and r, 
in terms of the circuit parameters. 

6-7 Show that the early-late gate synchronizer illustrated in Fig. 6-3·5 is a close 
approximation to the timing recovery system illustrated in Fig. P6-7. 

6-8 Based on a ML criterion, determine a carrier phase estimation method for binary 
on-olf keying modulation. 

6-9 In the transmission and reception of signals to and from moving vehicles, the 
transmitted signal frequency is shifted in direct proportion to the speed of the 
vehicle. The so·called Doppler frequency shift imparted to a signal that is ftceived 
in a vehicle traveling at a velocity v relative to a (fixed) transmitter is given by the 
formula 

where A is the wavelength, .and tbe sign depends on the direction (moving toward 
or moving away) that the vehicle is traveling relative to the transmitter. Suppose 
that a vehicle is traveling at a speed of 100 tmth relative to a base station in 
a mobile cellular communication system. The signal is a narrowband signal 
transmitted at a carrier frequency of 1 G Hz . 
• Determine the Doppler frequency shift. 
h What should be the bandwidth of a Doppler frequency tracking loop if the loop 

is designed to track Doppler frequency shifts for vehicles traveling at speeds up 
to 100 "m/h? 

c Suppose the transmitted signal bandwidth is 2 MHz centered at 1 GHz. 

Sampler 
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Determine the Doppler frequency spread Detween the upper and lower 
frequencies in the signal. 

6.10 Show that the mean value of the ML estimate in (6·2·38) is ,p. i.e .• that the 
estimate is unbiased. 

6-11 Determine the pdf of the ML phase estimate in (6-2·38). 
6-12 Determine the ML phase estimate for offset QPSK. 
6·13 A single·sideband PAM signal may be represented as 

IIm(l) ~ A,./g ,(I) cos Zlrtt - g,(I) sin 21rtt J 

where grIt) is the Hilbert transform of g,(t) and A", is the amplitude level that 
conveys the information. Demonstrate mathematically that a Costas loop can be 
used to demodulate the SSB PAM signal. 

6-14 A carrier component is transmi1led on the quadrature carrier in a communication 
system that transmits information via binary PSK. Hence. the received signal has 
the form 

r(l) = ± V2P cos (2rrt + 1» + v'2P. sin (21Cf. + ,p) + n(1) 

where <b is the carrier phase and nIt) is AWGN. The unmodulated carrier 
component is used as a pilot signal at the receiver to estimate the carrier phase. 
R Sketch a block diagram of the receiver, including the carrier phase estimator. 
b Illustrate mathematically the operations involved in the estimation of the carrier 

phase ,p. 
c Express the probability of error for the detection of the binary PSK signal as a 

function of the total transmitted power PT : P, + P,. What is the loss in 
performance due to the allocation of a portion of the transmitted power to the 
pilot signal? Evaluate the loss for PJPT =0.1. 

6-15 Determine the signal and noise components at the input to a fourth·power (M : 4) 
PLL that is used to generate the carrier phase for demodulation of QPSK. By 
ignoring all noise components except those that are linear in the noise n(ll, 
determine the variance of the phase estimate at the output of the PLL. 

6·16 The probability of error for binary PSK demodulation and detection when there is 
a carrier phase error ,p, is 

Suppose that the phase error from the PLL is modeled as a zero· mean gaussian 
random variable with variance O'~« 11. Determine the expression for the average 
probability of error (in integral form). 
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7 
CHANNEL CAPACITY 
AND CODING 

In Chapter 5, we considered the problem of digital modulation by means of 
M =- 2k signal waveforms, where each waveform conveys k bits of information. 
We observed that some modulation methods provide better performance than 
others. In particular, we demonstrated that orthogonal signaling waveforms 
allow us to make the probability of error arbitrarily small by letting the 
number of waveforms M ...... 00, provided that the SNR per bit Yb;;' -1.6 dB. 
Thus, we can operate at the capacity of the additive, white gaussian noise 
channel in the limit as the bandwidth expansion factor Be = WI R ~ 00. This is 
a heavy price to pay, because Be grows exponentially with the block length k. 
Such inefficient use of channel bandwidth is highly undesirable. 

In this and the following chapter, we consider signal waveforms generated 
from either binary or nonbinary sequences. The resulting waveforms are 
generally characterized by a bandwidth expansion factor that grows only 
linearly with k. Consequently, coded waveforms oller the potential for greater 
bandwidth efficiency than orthogonal M-ary waveforms. We shall observe that. 
in general, coded waveforms oller performance advantages not only in 
power-limited applications where R/W < 1, but also in bandwidth-limited 
systems where R/W > 1. 

We begin by establishing several channel models that will be used to 
evaluate the benefits of channel coding, and we shall introduce the concept of 
channel capacity for the various channel models. Then, we treat the subject of 
code design for efficient communications. 
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7-1 CHANNEL MODELS AND CHANNEL CAPACITY 
in the model of a digital communication system described in Section 1-1, we 
recall that the transmitter building blocks consist of the discrete-input, 
discrete-output channel encoder followed by the modulator. The function of 
the discrete channel encoder is to introduce, in a controlled manner, some 
redundancy in the binary information sequence, which can be used at the 
receiver to overcome the effects of noise and interference encountered in the 
transmission of the signal through the channel. The encoding process generally 
involves taking k information bits at a time and mapping each k-bit sequence 
into a unique n-bit sequence, called a code word_ The amount of redundancy 
introduced by the encoding of the data in this manner is measured by the ratio 
n / k_ The reciprocal of this ratio, namely kIn, is called the code rate. 

The binary sequence at the output of the channel encoder is fed to the 
modulator, which serves as the interface to the communication channel. As we 
have discussed, the modulator may simply map each binary digit into one of 
two possible waveforms, Le., a 0 is mapped into s,(t) and a 1 is mapped into 
S2(1). Alternatively, the modulator may transmit q-bit blocks at a time by using 
M = 2" possible waveforms. 

At the receiving end of the digital communication system, the demodulator 
processes the channel-corrupted waveform and reduces each waveform to a 
scalar or a vector that represents an estimate of the transmitted data symbol 
(binary or M-ary). The detector, which follows the demodulator, may decide 
on whether the transmitted bit is a 0 or a L In such a case, the detector has 
made a hard decision. If we view the decision process at the detector as a form 
of quantization, we observe that a hard decision corresponds to binary 
quantization of the demodulator output. More generally, we may consider a 
detector that quantizes to Q > 2 levels, i.e., a Q-ary detector. If M-ary signals 
are used then Q ~ M. In the extreme case when no quantization is performed, 
Q = 00. In the case where Q> M, we say that the detector has made a soft 
decision. 

The quantized output from the detector is then fed to the channel decoder, 
which exploits th~ available redundancy to correct for channel disturbances_ 

In the following sections, we describe three channel models that will be used 
to establish the maximum achievable bit rate for the channel. 

7-1-1 Channel Models 

In this section we describe channel models that will be useful in the design of 
codes. The simplest is .the binary symmetric channel (BSC), which corresponds 
to the case with M = 2 and hard decisions at the detector. 

Binary Symmetric Channel Let us consider an additive noise channel and 
let the modulator and the demodulator/detector be included as parts of the 
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HGURE 7-1-} A composite discrete-input, discrele-output channel formed by including !lle modulator and the 
demodulator/detector as part of the chaonel. 

channel. If the modulator employs binary waveforms and the detector makes 
hard decisions, then the composite channel, shown in Fig. 7-1-1, has a 
discrete-time binary input sequence and a discrete-time binary output 
sequence. Such a composite channel is characterized by tbe set X = {O, I} of 
possible inputs, the set of Y = {D, I} of possible outputs, and a set of 
conditional probabilities that relate the possible outputs to the possible inputs. 
If the channel noise and other disturbances cause statistically independent 
errors in the transmitted binary sequence with average probability p tnen 

p(Y=DIX=l)=P(Y=IIX=D)=p 

P(Y = llx = l)",P(Y=O/ X=O)= I-p 

(7-1-1) 

Thus. we have reduced the cascade of the binary modulator, the waveform 
channel, and the binary demodulator and detector into an equivalent discrete­
time channel which is represented by the diagram shown in Fig. 7-1-2. This 
binary-input, binary-output, s;mmetric channel is simply called a binary 
symmetric channel (BSC). Since each output bit from the channel depends only 
on the corresponding input bit, we say that the channel is memory less. 

Discrete Memoryless Clumels The BSC is a special case of a more 
general discrete-input, discrete-output channel. Suppose that the output from 
the channel encoder are q-ary symbols, i.e., X = {xo, Xv ... ,x,,_,} and the 
output of the detector consists of Q-ary symbols, where Q:;;. M = 2". If the 

HCURE 7-1-2 Binary symmetric cbannel. 

I-p 
o~----~--~7"0 

I -p 
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IXI In 

FIGURE 7-1-3 Discrete q-ary input, Q-ary output channel. 

channel and tile modulation are memoryless, then the input-output 
characteristics of the composite channel, shown in Fig. 7-1-1. are described by 
a set of qQ conditional probabilities 

(7-1-2) 

where i = 0,1 ..... Q - 1 and j = 0, 1, ... ,q -1. Such a channel is called a 
dicrete memoryless channel (DMC), and its graphical representation is shown 
in Fig. 7-1-3. Hence, if th~ input to a DMC is a sequence of n symbols 
U I. U2 • ..•• Un selected from the alphabet X and the corresponding output is 
the sequence ti,. Vl • ... ,Vn of symbols from the alphabet Y, the joint 
conditional probability is 

" 
(7-1-3) 

= n P(}' = Uk i X = Uk) 
k= I 

This expression is simply a mathematical statement of the memory less 
condition. 

In general, the conditional probabilities {P(Yi I Xj)} that characterize a DMC 
can be arranged in the matrix form P = [Pi,], where, by definition. 
PI' == P(Yi I XI)' P is called the probability transition matrix for the channel. 

Discrete-Input, Continuous-Output Cbannel Now, suppose that the input 
to the modulator comprises symbols selected from a finite and discrete input 
alphabet X = {xo. X I •... , x. -I} and the output of the detector is unquantized 
(Q = x). Then, the input to the channel decoder can assume any value on the 
real line, i.e., Y = {->C. x}. This leads us to define a composite discrete-time 
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memory less channel that is characterized by the discrete input X, the 
continuous output Y, and the set of conditional probability density functions 

p(y!X=x.). k=O,l •.... q-l 

The most important channel of this type is the additive white gaussian noise 
channel (A WON), for which 

Y=X+G (7-1-4) 

where G is a zero-mean gaussian random variable with variance u 2 and 
X = x •• k = 0, 1, ...• q - 1. For a given X. it follows that Y is gaussian with 
mean Xk and variance u Z

• That is, 

I 1 ( )'n' p(y X = x.) = _ ~ e- y-x, _if 

v2tr: (1 

(7-1-5) 

For any given input sequence, Xi' i = 1, 2, .... n, there is a corresponding 
output sequence 

Y; = Xi + Gi • i = 1, 2 •.... n (7-1-6) 

The condition that the channel is memoryless may be expressed as 

n 

p(y"Yl,'" ,Yn iX, = U,. X 2 = Uz,··· .x, = un) = np(y, I Xi = u,) 
i= t 

(7-1-7) 

Waveform Channels We may separate the modulator and demodulator 
from the physical channel. and consider a channel model in which the inputs 
are waveforms and the outputs are waveforms. Let us assume that such a 
channel has a given bandwidth W, with ideal frequenc)" response e(1) = 1 
within the bandwidth W, and the signal at its output is corrupted by additive 
white gaussian noise. Suppose. that x(t) is a band-limited input to such a 
channel and yet) is the corresponding output. Then, 

y(t) = x(t) + n(t) (7-1-8) 

where nell represents a sample function of the additive noise process. A 
suitable method for defining a set of probabilities that characterize the channel 
is to expand X(I), y(t), and net) into a complete set of orthonormal functions. 
That is, we express x(t), y(t), and n(t) in the form 

yet) = 2: Yif,(t) 

x(t) = 2: X;[i(t) (7-1-9) 

n(t) = 2: nif,(t) 
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where {y,}, Ix'}, and In,} are the sets of coefficients In the corresponding 
e!{pansions, e.g., 

Yi = (y(t)fi*(t) dt 
J" 

= IT [x(f) + n(t)Jf,*(t)dt 

" 
(7·1·10) 

The functions {J;(t)} form a complete orthonormal set over the interval 
(0. T). i.e., 

J
T { \ (i = j) 

" j;(t)It(!) dt = 5'j = 0 (i ¥ j) (7.I·ll ) 

where 0'1 is the Kronecker delta function. Since the gaussian noise is white, an) 
complete set of orthonormal functions may be used in the e:<pansions (7·1·9). 

We may now use the coefficients in the expansion for characterizing the 
channel. Since 

where n, is gaussI<;n. it follows that 

i=1.2, .. (7·\·\21 

Since the functions {j;(t)} in the expansion are orthonormal, it follows that the 
In,} are uncorrelated. Since they afe gaussian, they are also statistically 
independent. Hence, 

N 

p(y"Yz,. ··.YN Ixl.x" ... ,x,,)= np(Yi Ix,) 
i=1 

(7·\·13) 

for any N. In this manner, the waveform channel is reduced to an equvalent 
discrete-time channel characterized by the conditional pdf given in (7·1·12). 

When the additive noise is white and gaussian with spectral density !N". the 
variances a}= !N.. for all i in (7·1·12). In this case, samples of x(t) and y(t) 
may be taken at the Nyquist rate of 2W samples/s, so that x, = x(i/2W) and 
Yi = y(i/2W}. Since tbe noise is white, the noise samples are statisticallv 
independent. Thus, (7·1·12) and (7-1·13) describe the statistics of the sampled 
signal. We note that in a time interval of length T, there are N = 2 WT samples. 
This parameter is used below in obtaining the capacity of the band-limited 
A WGN waveform channel. 

The choice of which channel model to use at anyone time depends on our 
objectives. I f we are interested in the design and analysis of the performance 
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where {y,}, Ix'}, and In,} are the sets of coefficients In the corresponding 
e!{pansions, e.g., 

Yi = (y(t)fi*(t) dt 
J" 

= IT [x(f) + n(t)Jf,*(t)dt 

" 
(7·1·10) 

The functions {J;(t)} form a complete orthonormal set over the interval 
(0. T). i.e., 

J
T { \ (i = j) 

" j;(t)It(!) dt = 5'j = 0 (i ¥ j) (7·j·ll ) 

where 0" is the Kronecker delta function. Since the gaussian noise is white, an) 
compjet~ set of orthonormal functions may be used in the e:<pansions (7·1·9). 

We may now use the coefficients in the expansion for characterizing the 
channel. Since 

where n, is gaussI<;n. it follows that 

i = 1, 2 ... (7·\·\21 

Since the functions {j;(t)} in the expansion are orthonormal, it follows that the 
In,} are uncorrelated. Since they afe gaussian, they are also statistically 
independent. Hence, 

N 

p(y"Yz,. ··.YN Ixl.x" ... ,X",) = np(Yi Ix,) 
i=1 

(7·\·13) 

for any N. In this manner, the waveform channel is reduced to an equvalent 
discrete-time channel characterized by the conditional pdf given in (7·1·12). 

When the additive noise is white and gaussian with spectral density !N", the 
variances a}= !N.. for all i in (7·1·12). In this case, samples of x(t) and y(t) 
may be taken at the Nyquist rate of 2W samples/s, so that x, = x(i/2W) and 
,vi = y(i/2W}. Since tbe noise is white, the noise samples are statisticallv 
independent. Thus, (7·1·12) and (7-1·13) describe the statistics of the sampled 
signal. We note that in a time interval of length T, there are N = 2 WT samples. 
This parameter is used below in obtaining the capacity of the band-limited 
A WGN waveform channel. 

The choice of which channel model to use at anyone time depends on our 
objectives. I f we are interested in the design and analysis of the performance 



38D DIGITAL COMMtJNICATIONS 

of the discrete channel encoder and decoder. it is appropriate to consider 
channel models in which the modulator and demodulator are a part of the 
composite channel. On the other hand. if our intent is to design and analyze 
the performance of tbe digital modulator and digital demodulator, we use a 
channel model for the waveform channel. 

'·1·2 Channel Capacity 
Now let us consider a DMC having an input alphabet X = {xQ, x" . .. , xq - l }. 

an output alphabet Y = {Yo, YI, ...• YO-I}, and the set of transition prob­
abilities P(Yi I Xi) as defined in (7-1-2). Suppose that the symbol Xi is 
transmitted and the symbol Yi is received. The mutual information provided 
about. the event X = Xi by the occurrence of the event Y = Yi is 
log [P(y, I Xj)! P(Yi}), where 

P(Yi} '"' P(Y = y,) = ~I P(X,}P(Yi I x.) (7-1-14) 
'-0 

Hence, the average mutual information provided by the output Y about the 
input X is 

leX; Y) = 'f II P(XJP(Yi I x) log P(~ IXi} 
. J~Q ,-0 P y,) 

(7-1-15) 

The channel characteristics determine the transition probabilities P(Yi I Xj), 
but the probabilities of the input symbols are under the control of the discrete 
channel encoder. The value of leX; Y) maximized over the set of input symbol 
probabilities P(xi) is a quantity that depends only on the characteristics of the 
DMC through the conditional probabilities P(Yi I Xj}' This quantity is called the 
capaci/y of the channel and is denoted by C. That is, the capacity of a DMC is 
defined as 

C=max/(X; Y) 
P{X/ ) 

The maximization of leX; Y) is performed under the constraints that 

P(Xj};' 0 

~I P(xi) = 1 
/=0 

(7-1-16) 

The units of C are bits per input symbol into the channel (bits/channel use) 
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FlGllRE 7-1-4 The capacity of a BSe as a function of the error 
prohabllity p. 

when [he logarithm is base 2, and natslinput symbol when the natural 
logarithm (base e) is used. If a symbol enters the channel every T, seconds. the 
channel capacity in bitsls or nats!s is CIT,. 

Example 7-1-1 

For the BSe with transition probabilities 

P(Ojl) = p(lIo) =p 

the average mutual information is maximized when the input probabilities 
P(O) = P( 1) =!. Thus, the capacity of the BSe is 

C=plog2p+(l-p)log2(1-p)=1-H(p) (7-1-17) 

where H(p) is the binary entropy function. A plot of C versus p is 
illustrated in Fig. 7-1-4. Note that for p =0, the capacity is I bit/channel use. 
On the other hand. for p =~, the mutual information between input and 
output is zero. Hence, tile channel capacity is zero. For ~ < p ~ I, we may 
reverse the position of 0 and 1 at the output of the BSe, so that C becomes 
symmetric with respect to tile point p =~. In our treatment of binary 
modulation and demodulation given in Chapter 5, we showed that p is it 

monotonic fUIlction of the signal-to-noise ratio (SNR) as illustrated in Fig. 
7-J·5(a). Consequently when C is plotted as a function of the SNR, it 
increases monotonically as the SNR increases. This characteristic behavior 
of C versus SNR is illustrated in Fig. 7-1-5(b). 

Next let us consider the discrete-time A WGN rnemoryJess channel de­
scribed by the transition probability density functions defined by (7-1·5). The 

FlGURE 7·}-5 General behavior of error probability and cbannel capacity as a 
function of SNR. 

1 C 

l~lz 
o SNR 0 SNR 

lu) In) 
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average mutual information between the discrete input X = {XO' X" . ..• xq _,} 

and the output Y = { - 00. "'} is given by the capacity of this channel in 
bitsl channel use is 

~l [ p(y!xi ) 

C=~~ ~ _f(Y IXi)P(x,)log2 p(y) dy (7-1-18) 

where 

(7-1-19) 

Example 7·1·2 

Let us consider a binary-input A WGN memoryless channel with possible 
inputs X = A and X = -A. The average mutual information /(X; Y) is 
maximized when the input probaoilities are P(X = A) = P(X = -A) =!. 
Hence, the capacity of this channel in bits/channel use is 

C = ~[ ply I A)lOg/(~ I :) dy 
-~ P y 

+lJ~ P(YI-A)IO~P(Y~~A)dY 
_00 P Y 

(7-1-20) 

Figure 7-1-6 illustrates C as a function of the ratio A2/2.r. Note that C 
increases monotonically from 0 to 1 bit/symbol as this ratio increases. 

It is itUeresting to note that in the two channel models described above, the 
choice of equally probable input symbols maximizes the average mutual 
information. Thus, the capacity of the channel is obtained when the input 
symbols are equally probable. This is not always the solution for the capacity 
formulas given in (7-1-16) and (7-1-18), however. Nothing can be said in 
general about the input probability assignment that maximizes the average 
mutual information. However. in the two channel models considered above, 

FIGURE 7-1-6 Channel capacity as a fUlI<!tion of A'/2a' for binary·input AWGN 
memoryless channel. 
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the channel transition probabilities exhibit a form of symmetry that results in 
the maximum of I(X: Y) being obtained when the input symbols are equally 
probable. The symmetry condition can be expressed in terms of the elements 
of the probability transition matrix P of the channel. When each row of this 
matrix is a permutation of any other row and each column is a permutation of 
any other column, the probability transition matrix is symmetric and input 
symbols with equal probability ma){imize /(X: Y). 

In general, necessary and sufficient conditions for the set of input prob­
abilities {P(x,)} to maximize J(X: Y) and, thus, to achieve capacity on a DMC 
are that (Problem 7-1) 

f(x,: Y) = C for all j with PIx,) > 0 

{(Xl; y).;, C for all j with P(x,) = 0 

where C is the capacity of the channel and 

Q-I P( I ) 
fIx,; Y) = 2: P(y, I Xj) log Yi Xi 

i~ll P(Yi) 

(7-1-21) 

(7-1-22) 

Usually. it is relatively easy to check if the equally probable set of input 
symbols satisfy the conditions (7-1-21). If they do not, then one must 
determine the set of unequal probabilities {P(x)} that satisfy (7-1-21). 

Now let us consider a band-limited waveform channel with additive white 
gaussian noise. Formally, the capacity of the channel per unit time has been 
defined by Shannon (1948b) as 

C = lim max.! I(X; Y) 
T -.00 p(x) T 

(7-1-23) 

where the average mutual information I(X; Y) is given in (3-2-17). Alterna­
tively, we may use the samples or the coefficients {y,}, {x,}, and {n,} in the series 
expansions of y(t), xl!). and nIt), respectively, to determine the average 
mutual information between XN=[XI X2 ... XN] and YN = [YI Y2 ... YNJ. 
where N = 2WT, }, = Xi + ni, and P(Yi I Xi) is given by (7-1-12). The a ... erage 
mutual information between '$oN and YN for the AWGN channel is 

I(XN; ¥N) = f. .. J i .. -/P(YN I XN)P(XN) 10gP(YZ I ;N) dx" dy" 
XlV Yill P y'AJ 

= i f~ IX p(y.! Xi)P(Xi) IOgP(~ I ~,) dYi dXi (7-1-24) 
1=1 -en "co P Yi 

where 

1 
p( v·1 x) = __ e-(y·-x,)'IN, 

.• , VtrN
o 

(7-1-25) 
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The maximum of J(X; Y) over the input pdfsp(xi) is obtained when the {x,} 
are statistically independent zero-mean gaussian random variables, i.e., 

1 
p(x ) e - x,2I2fT 'l, 

I =:t:= 
v21ru, 

(7-1-26) 

where u~ is ,the variance of each Xi' Then, it follows from (7-1-24) that 

(7-1-27) 

Suppose that we put a constraint on the average power in x(t). That is, 

Hence, 

P., = .!.. ( E[x2(t)] dt 
T 10 
1 N 

=- L E(x7) 
Ti~l 

Nu~ 
T 

2 TPav 
U =-­, N 

2W 

Substitution of this result into (7-1-27) for u~ yields 

(7-1-28) 

(7-1-29) 

(7-1-30) 

Finally, the channel capacity per unit time is obtained by dividing the result in 
(7-1-30) by T. Thus 

( 
Pa. ) C=Wlog 1+-

WNo 
(7-1-31) 

This is the basic fonnula for the capacity of the band-limited A WGN 
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FIGURE 7t l·7 Normalized channel capacity as. a function of SNR for band-Hmited 
AWGN channel. 

waveform channel with a band-limited and average power-limited input. It was 
originally derived by Shannon (1948b). 

A plot of the capacity in bits/s normalized by the bandwidth W is plotted in 
Fig. 7-1-7 as a function of the ratio of signal power P" to noise power W No. 
Note that the capacity increases monotonically with increasing SI\R. Thus, for 
a fixed bandwidth. the capacity of the waveform channel increases with an 
increase in the transmitted signal power. On the other hand, if P" is fixed. the 
capacity can be increased by increasing the bandwidth W. Figure 7-1-8 
illustrates a graph of C versus W. Note that as W approaches infinity. the 
capacity of the channel approaches the asymptotic value 

Pav Pa•• I 
C~ = -log, e = --bIts s 

N" No In 2 

It is instructive to express the normalized channel 
function of the SNR per bit. Since Pa • represents the 
power and C is the ratio in bits/so it follows that 

Pav =C'if:h 

(7-1-32) 

capacity CIW as a 
average transmitted 

(7-1-33) 

where t'h is the energy per bit. Hence, (7-1-31) may be expressed as 

C (C '10) --; = log2 1 + - -
"' WNo 

fiGURE '·1-8 Channel capacity as a runction of bandwidth with a fixed 
transmitted average power. 

(7-1-34) 
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Consequently, 
'lb 2C!W - 1 

No C/W 
(7-1-35) 

When elw = 1, 'l.INo = 1 (0 dB). As e/w ___ x, 

No e!W 

(7-1-36) 

Thus, 'tbl No increases exponentially as e /W --+ 00. On the other hand, as 
e!W --+0, 

lim 
C!w~o C/W 

In2 (7-1-37) 

which is -1.6 dB. A plot of e /W versus 'lb' No is shown in Fig. 5-2-17. 
Thus, we have derived the channel capacities of three important channel 

models that are considered in this book. The first is the discrete-input, 
discrete-output channel, of which the BSe is a special case. The second is a 
discrete-input, continuous-output memoryless additive white gaussian noise 
channel. From these two channel models, we can obtain benchmarks for the 
coded performance with hard- and soft-decision decoding in digital com­
munications systems. 

The third ·channel model focuses on the capacity in bits/s of a waveform 
channel. In this case, we assumed that we have a bandwidth limitation on the 
channel, an additive gaussian noise that corrupts the signal, and an average 
power constraint at the transmitter. Under these conditions, we derived the 
result given in (7-1-31). 

The major significance of the channel capacity formulas given above is that 
they serve as upper limits on the transmission rate for reliable communication 
over a noisy channel. The fundamental rate that the channel capacity plays is 
given by the noisy channel coding theorem due to Shannon (194&). 

Noisy Channel Coding Theorem 

There exist channel codes (and decoders) that make it possible to achieve 
reliable communication, with as small an error probability as desired, if the 
transmission rate R < C. where e is the channel capacity. If R > e, it is not 
possible to make the probability of error tend toward zero with any code. 

In the following section. we explore the benefits of coding for the additive 
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Thus, 'tbl No increases exponentially as e /W --+ 00. On the other hand, as 
e!W --+0, 

lim 
C!w~o C/W 

In2 (7-1-37) 

which is -1.6 dB. A plot of e /W versus 'lb' No is shown in Fig. 5-2-17. 
Thus, we have derived the channel capacities of three important channel 

models that are considered in this book. The first is the discrete-input, 
discrete-output channel, of which the BSe is a special case. The second is a 
discrete-input, continuous-output memoryless additive white gaussian noise 
channel. From these two channel models, we can obtain benchmarks for the 
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munications systems. 
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channel. In this case, we assumed that we have a bandwidth limitation on the 
channel, an additive gaussian noise that corrupts the signal, and an average 
power constraint at the transmitter. Under these conditions, we derived the 
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given by the noisy channel coding theorem due to Shannon (194&). 

Noisy Channel Coding Theorem 

There exist channel codes (and decoders) that make it possible to achieve 
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transmission rate R < C. where e is the channel capacity. If R > e, it is not 
possible to make the probability of error tend toward zero with any code. 

In the following section. we explore the benefits of coding for the additive 



CHAPTFR 7: CHAN!\IH CAPAnT'f t\~D CODING 387 

noise channel models described above. and use the channel capacity as the 
benchmark for accessing code performance. 

7-1-3 Achieving Ckannel Capacity with Orthogonal Signals 
In Section 5-2. we used a simple union bound to show that, for orthogonal 
signals. the probability of error can be made as small as desired by increasing 
the number M of waveforms, prov;ded that thiN" > 2 In 2. We indicated that 
the simple union bound docs not produce the smallest lower bound on the 
SNR per bit. The problem is that the upper bound used on Q(x) is very loose 
for small x. 

An alternative approach is to use two different upper bounds for Q(x l. 
depending on the value of x. Begin:1ing with (5-2-21). we observe that 

1- [I - Q(y)j" -',;; (M - I)Q(y) <: Me ,'2 (7-I-JR) 

This is just the union bound. which is tight when y is large. Le., for y > Vo. 

where Yo depends on M. When y is small. the union bound exceeds unity for 
large M. Since 

1- [1- Q(y)),,' ',;; I (7-1-39) 

for all y, we may use this bound for y <: y" because it is tighter than tl)c union 
bound. Thus (5-2-21) may be upper-bounded as 

(7-1-40) 

The value of Yo that minmizes this upper bound is found by differentialing 
the righi-hand side of (7-1-40) and setting the derivative equal to zero. It is 
easily verified that the solution is 

or, equivalently. 

Yo = \12 In M = \12 In 2 log2 M 

= \12k In2 

(7-1-4l) 

(7-1-42) 

Having determined Yo. let us now compute simple exponential upper bounds 
for the integrals in (7-1-40). For the first integral. we have 

Yo "" V2 'Y (7-1-43) 

397

CHAPTFR 7: CHAN!\IH CAPAnT'f t\~D CODING 387 

noise channel models described above. and use the channel capacity as the 
benchmark for accessing code performance. 

7-1-3 Achieving Ckannel Capacity with Orthogonal Signals 
In Section 5-2. we used a simple union bound to show that, for orthogonal 
signals. the probability of error can be made as small as desired by increasing 
the number M of waveforms, prov;ded that thiN" > 2 In 2. We indicated that 
the simple union bound docs not produce the smallest lower bound on the 
SNR per bit. The problem is that the upper bound used on Q(x) is very loose 
for small x. 

An alternative approach is to use two different upper bounds for Q(x l. 
depending on the value of x. Begin:1ing with (5-2-21). we observe that 

1- [I - Q(y)J" -',;; (M - I)Q(y) <: Me ,'2 (7-I-JR) 

This is just the union bound. which is tight when y is large. Le., for y > Vo. 
where Yo depends on M. When y is small. the union bound exceeds unity for 
large M. Since 

1- [1- Q(y)),,' ',;; I (7-1-39) 

for all y, we may use this bound for y <: y" because it is tighter than tl)c union 
bound. Thus (5-2-21) may be upper-bounded as 

(7-1-40) 

The value of Yo that minmizes this upper bound is found by differentialing 
the righi-hand side of (7-1-40) and setting the derivative equal to zero. It is 
easily verified that the solution is 

or, equivalently. 

Yo = v'2IrIM = "1/2 In 2 log2 M 

= Y2k In2 

(7-1-4l) 

(7-1-42) 

Having determined Yo. let us now compute simple exponential upper bounds 
for the integrals in (7-1-40). F()r the first integral. we have 

Yo "" V2 'Y (7-1-43) 



388 D1GlTAL COMMUNICATIOSS 

The second integral is upper-bounded as follows: 

~[~ e-"!2e-(,··vT;)'12dy=~e Y!2I
x 

e-"dx 
v21r ~, v'21r v,,-- YyI2 

{
Me->t2 (Y",,;v'h) 

< ~. (7-1-44) 
Me-Y'2e-L~'-Vy,'2)' (y,,3 v'h) 

Combining the bounds for the two integrals and substituting eV5a for M. we 
obtain 

{
e -(V2Y- ,,,J'n + e(yi,- y)t2 (0,,; Yo"; Vh-) 

PM < e -lV2Y-Yn,'12 + elyt.- y)/2e -( -",- Vy12)1 (v'h,,; Yo";; vzr) (7-1-45) 

In the range 0 ~ y,,";; vTY. the bound may be expressed as 

PM <e(~'1~-Y)/2(1 +e-<YU-Vyl2)2) 

< 2ec,i.-yY2. 0,,; Yc ~ vTY (7-1-46) 

In the range v'fY";y,,,,;; V2;, the two terms in (7-1-45) are identical. Hence, 

(7-1-47) 

Now we substitute for Yo and -y, Since Yo = v'21n M = v'2k In 2 and y = kYb. 
the bounds in (7-1-46) and (7-1-47) may be expresed as 

(7-1-48) 

The first upper bound coincides with the union bound presented earlier, but it 
is loose for large values of M, The second upper bound is better fOf large 
values of M, We note that PM -;. 0 as k -+ 00 (M -+ 00) provided that Yb > In 2. 
But, In 2 is the limiting value of the SNR per bit required for reliable 
transmission when signaling at a rate equal to the capacity of the infinite­
bandwidth AWGN channel as shown in Section 7-1-2. In fact, when the 
substitutions 

Yo = v'2k In 2 = v'2RT In 2 

TP .. 
y= N. = TCxln2 

(7-1-49) 

are made into the two upper bounds given in (7-1-46) and (7-1-47), where 
C~ = P.J(No In 2) is the capacity of the infinite-bandwidth A WGN channel, the 
result is 

(7-1-50) 
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Thus we have expressed the bounds in terms of C~ and the bit rale in the 
channel. The first upper bound is appropriate for rates below lC~, while the 
second is tighter than the first for rates between !C~ and C~. Clearly, the 
probability of error can be made arbitrarily small by making T --+ x (M .... '" 
for fixed R), provided that R < C~ = Pav/(No In 2). Furthermore, we observe 
that the set of orthogonal waveforms achieves the channel capacity bound as 
M -> 00, when the rate R < C~. 

7·1·4 Channel. Reliability Functions 

FIGURE 7-1-~ 

The exponential bounds on the error probability for M -ary orthogonal 
signals on an infinite-bandwidth AWGN channel given by (7-1-50) may be 
expressed as 

PM < 2· Z-TE(R) (7-1-51) 

The exponential factor 

(. {!C-R (O";R.,;!Cx) 
E RI= (YC:-vRf OC~";R";C) (7-1-52) 

in (7-1-51) is called the channel reliability function for the infinite-bandwidth 
AWGN charinel. A plot of E(R)/Cx is shown in Fig. 7-1-9. Also shown is the 
exponential factor for the union bound on PM. given by (5-2-27), which may be 
expressed as 

(7-1-53) 

Clearly, the exponential factor in (7-1-53) is not as tight as E(R), due to the 
looseness of the union bound. 

The bound given by (7-1-51) and (7-1-52) has been shown by Gallager 
(1965) to be exponentially tight. This means that there does not exist another 
reliability function, say E1(R), satisfying the condition E1(R) > E(R) for any 
R. Consequently, the error probability is bounded from above and below as 

Channel reliability function for the infinite-bandwidth A WGN 
channel. 

(7-1-54) 

Trar.smission rate R (bits/s) 
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Trar.smission rate R (bits/s) 
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where the constants have only a weak dependence on T. i.e., they vary slowly 
with T. 

Since orthogonal signals provide essentially the same performance as the 
optimum simplex signals for large M. the lower bound in (7-1-54) applies for 
any signal set. Hence, the reliability function E(R) given by (7-1-52) 
determines the exponential characteristics of the error probability for digital 
signaling over the infinite-bandwidth A WGN channel. 

Although the error probability can be made arbitrarily small by increasing 
the number of either orthogonal, biorthogonal, or simplex signals, with 
R < C .. for a relatively modest number of signals, there is a large gap between 
the actual performance and the best achievable performance given by the 
channel capacity formula. For example, from Fig. 5-2-17, we observe that a set 
of M = 16 orthogonal signals detected coherently requires a SNR per bit of 
approximately 7.5 dB to achieve a bit error rate of p~ = 10-5

. In contrast, the 
channel capacity formula indicates that for a C/W = 0.5, reliable transmission 
is possible with a SNR of -0.8 dB. This represents a rather large difference of 
8.3 dB/bit and serves as a motivation for searching for more efficient signaling 
waveforms. In this chapter and in Chapter 8, we demonstrate that coded 
waveforms can reduce this gap considerably. 

Similar gaps in performance also exist in the bandwidth-limited region of 
Fig. 5-2-17, where R/W > 1. In this region, however, we must be more clever 
in how we use coding to improve performance, because we cannot expand the 
bandwidth as in the power·limited region. The use of coding techniques for 
bandwidth-efficient communication is also treated in Chapter 8. 

7-2 RANDOM SELECTION OF CODES 

The design of coded modulation for efficient transmission of information may 
be divided into two basic approaches. One is the algebraic approach, which is 
primarily concerned with the design of coding and decoding techniques for 
specific classes of codes, such as cyclic block codes and convolutional codes. 
The second is the probabilistic approach, which is concerned with the analysis 
of the performance of a general class of coded signals. This approach yields 
bounds on the probability of error that can be attained for communication over 
a channel having some specified characteristic. 

In this section, we adopt the probabilistic approach to coded modulation. 
The algebraic approach, based on block codes and on convolutional codes, i5 
treated in Chapter 8. 

7-2-1 Random Coding Based on M-ary Binary Coded Signals 

Let us consider a set of M coded signal waveforms constructed from a set of 
n-dimensional binary code words of the form 

Ci = [cil Ci2'.' ci"J, i = 1, 2 .... ,M (7-2-1) 
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where c,} = 0 or 1. Each bit in the code word is mapped into a binary PSK 
waveform, so that the signal waveform corresponding to the code word C, may 
be expressed as 

where 

" 
sift) = L Silt(t). i = 1. 2., " • M 

j"=l 

whenci; = 1 
whenci} =0 

(7-2-2) 

(7-2-3) 

and i;. is the energy per code bit. Thus, the waveforms Si(/) are equivalent to 
the n-dimensional vectors 

(7-2-4) 

which correspond to the vertices of a hypercube in n-dimensional space. 
Now, suppose that the information rate into the encoder is R bits/s and we 

encode blocks of k bits at a time into one of the M waveforms. Hence. k = RT 
and M = 2' = 2RT signals are required. It is convenient to define a parameter D 
as 

n 
D = rdimensions/s (7-2-S) 

Thus. n = D T is the dimensionaltty of the signal space. 
The hypercube has 2" = 2DT vertices, of which M = 2RT may be used to 

transmit the information. If we impose the condition that D > R, the fraction 
of the vertices that we use as signal points is 

2' 2RT 
F=_=_=2-·D - R )T 

2" 2DT 

Clearly, if D > R. we have F ..... 0 as T ..... :le, 

(7-2-6) 

The question that we wish to pose is the following. Can we choose a subset 
M = 2RT vertices out of the 2" = 2DT available vertices such that the probability 
of error P __ 0 as T -> 'Xc or, equivalently, as n -> xc? Since the fraction F of 
vertices used approaches zero as T -> x. it should be possible to select ."" 
signal waveforms having a minimum distance that increases as T -> ex; and, 
thus, p,. ..... 0, 

Instead of attempting to find a single set of M coded waveforms for which 
we compute the error probability, let us consider the ensemble of (2")"1 distinct 
ways in which we can select M vertices from the 2" available vertices of the 
hypercube, Associated with each of the 2nM selections, there is a communica· 
tion system, consisting of a modulator, a channel, and a demodulator, that is 
optimum for the selected set of M waveforms. Thus, there are 2"'" 
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II (1) 

lS/\.r)h Oulput 
Modulator + 

nU, 

IS,(f)h Output 

Inpu! Modulacor 

~quence 

ls,(t) I ... Output 
Modulator 

n (f) 

Is,tt)11'~ Output 
Modulator 

FIGURE 7-2-1 An ensemble al 2"" communications system. Each syslem employs a different set of M signals 
from the ~et of 2nM possible choices. 

communication systems, one for each choice of the M coded waveforms, as 
illustrated in Fig. 7-2-1. Each communication system is characterized by ils 
probability of error. 

Suppose that our choice of M coded waveforms is based on random 
selection from the set of 2nM possible sets of codes. Thus, the random selection 
of the mth code, denoted by {s;}m' occurs with probability 

(1-2-7) 

and the corresponding conditional probability of error for this choice of coded 
signals is P,({s'/ml. Then, the average probability of error over the ensemble of 
codes is 

2"" 

P, = L P,({s,} ... )P({S,}m) 
.m= ! 

2"" 

= 2-nM L P,({s,}",) (7-2-8) 
til = I 

where the overbar on p. denotes an average over the ensemble of codes. 
It is clear that some choices of codes will result in large probability of error. 

For example, the code that assigns all M k-bit sequences to the same vertex of 
the hypercube will result in a large probability of error. In such a case, 
P,(fs,}m) > P,. However, there will also be choices of codes for which 
P,({s,}m) < P,. Consequently, if we obtain an upper bound on P" this bound 
will also hold tor those codes for which P,({s,}m) < P,. Furthermore, if P, ..... 0 as 
T ..... 00 then we conclude that, for these codes. P{{s,}m) ..... O as T ..... "'. 

In order to determine an upper bound on P." we consider the transmission 
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of a k-bit message X. == [X,X2X, . .. xd. where xJ = 0 or 1 for j = 1. 2, ... , k. 
The conditional probability of error averaged over the ensemble of codes is 

P,(X.) = L P,(X .. {Si}rn)P({S;}",) (7-2-9) 
all codes 

where P,(X .. {Si}"') is the conditional probability of error for a given k-bit 
message X .. which is transmitted by use of the code {Si}"" For the mth code. 
the probability of error PAX., {Si}"') is upper-bounded as 

M 

P,(X., {s.},") '" L: P2m(s,. s.) (7-2-10) 
/=1 

'''' 
where P2m(s" s.) is the probability of error for a binary communication system 
that employs the signal vectors s, and s. to communicate one of two equally 
likely k-bit messages. Hence, 

M 

P,(X,) '" 2: Pe({s,}",) 2: P2m(s" sd 
Illicodes 1=1 , ... 

If we interchange the order of the summations in (7-2-11) we obtain 
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where P,(s" s.) represents the ensemble average of P2m(s" s.) over the 2"M 
codes or the 2"M communication systems. 
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where d;. = Is, - s.I'. If 51 and s. differ in d coordinates, 
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(7-2-14) 
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Now, we can average P'rn(S/' s.) over the ensemble of codes. Since all 
the codes are equally probable, the signal vector 5/ is equally likely to be 'loy 
of the 2" possible vertices of the hypercube and it is statistically independent 
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of the signal vector s •. Therefore. P(s" = S.,) = i and P(s" ¥ s.;) = t inde­
pendently for all i = 1. 2 •... , n. Consequently. the probability that SI and s. 
differ in £I positions is simply 

P(d) = dr' I (
n' 
£II 

(7-2-16) 

Hence, the expected value of P2m(St. s.) over the ensemble of codes may be 
expressed as 

(7-2-17) 

The result (7-2-17) can be simplified if we upper-bound the Q-function as 

Q( ~2~;)<e-dl'IN" 
Thus, 

~ [W + e-I,'N,,)]" (7-2-18) 

We observe that the right-hand side of (7-2-18) is independent of the indices I 
and k. Hence. when we substitute the bound (7-2-18) into (7-2-12), we obtain 

M 

Pe(Xd ~ 2: -=P2""7(S-h-S.""') = (M -1)U(1 + e-I,IN,,)]" 
1=1 ,,., 

< M[!(i + e-I,IN,,)]" 

Finally.~unconditional average error probability P, is obtained by 
averaging Pe{X.) over all possible k-bit information sequences- Thus, 

Pc = 2: P,(X. )PlX.) < M[!(l + e - I,IN,) J" 2: P(X.) 
k k 

< MIHI + e- lJN")],, (7-2-19) 

This result can be expressed in a more convenient form by first defining a 
parameter Ro. which is called the cutoff rate and has units of bits/dimension, as 

2 
R" = log'l _, • ., + e r,.IVn 

= I - log2 (1 + e I,IN,,) , antipodal signaling (7-2-20) 

Then, (7-2-19) becomes 

(7-2-21) 
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FIGURE 7-2-2 TI.e cutoff rate R" as a function of Ihe SNR per dimension 
in decibels. 

Since n = DT, (7-2-21) may be expressed as 

1.0 

o L--,:---'--'-_'---' 
-ifJ -5 0 5 ;0 

~.!NfI(dB) 

(7-2-22) 

The parameter R" is plotted as a function of 'lelNa in Fig, 7-2-2, We observe 
that 0", Ro'" 1. Consequently, P, ...... 0 as T ~ 'X) , provided that the information 
rate R< DRo· 

Alternatively, (7-2-21) may be expressed as 

(7-2-23) 

The ratio R j D also has units of bitsl dimension and may be defined as 

R R RT k 
R =-=-=-=-

C D nIT n n 
(7-2-24) 

Hence, Rc is the code rate and 

(7-2-25) 

We conclude that when Rc < Ro, the average probability of error P,~O as the 
code block length n ...... "'. Since the average value of the probability error can 
be made arbitrarily small as n -. :xi, it follows that there exist codes in the 
ensemble of 2·M codes that have a probability of error no larger than P,. 

From the derivation of the average error probability given above, we 
conclude that good codes exist. Although we do not normally select codes al 
random, it is interesting to consider the question of whether or not a randomly 
selected code is likely to be a good code. In fact, we can easily show that there 
are many good codes in the ensemble. First, we note that p. is an ensemble 
average of error probabilities over all codes and that all these probabilities are 
obviously positive quantities. If a code is selected at random, the probability 
that its error probability Pe > aPe is less than 1/ t:l. Consequently, no mOTe than 
10% of the codes have an error probability that exceeds lOP,. and no more than 
I % of the codes have an error probability that exceeds lOOP" 
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We should emphasize that codes with error probabilities exceeding p. are 
not necessarily poor codes. For example, suppose that an average error rate of 
P, < 10- 10 can be attained by using codes with dimensionality no when 
Ro > RC' Then, if we select a code with error probability 1000P. = 10-7

, we may 
compensate for this reduction in error probability by increasing n from no to 
n = lOnon. Thus, by a modest increase in dimensionality, we have a code with 
p. < 10- 10

• In summary, good codes are abundant and, hence, they are easily 
found even by random selection. 

It is also interesting to express the average error probability in (7-2-25) in 
terms of the SNR per bit, Yb' To accomplish this, we express the energy per 
signal waveform as 

(7-2-26) 

Hence, n = k'i:b/'tc We also note that Rc 'i:b /'1{c = 1. Therefore, (7-2-25) may be 
expressed as 

where 'Yo is a normalized SNR parameter, defined as 

Rc 
Yo = Ro 'Yb 

(7-2-27) 

(7-2-28) 

Now, we note that P,~O as k -+ "", provided that the SNR per bit, 'Yo> 'Yo. 
The parameter Yo is plotted in Fig. 7-2-3 as a function of Rc 'Yo' Note that as 

Rc Yb ~ 0, Yo -+ 2 In 2. Consequently, the error probability for M -ary binary 
coded signals is equivalent to the' error probability obtained from the union 
bound for M -ary orthogonal signals, provided that the signal dimensionality is 
sufficiently large so that 'Yo ~ 2 In 2. 

The dimensionality parameter D that we introduced in (7:2-5) is propor­
tional to the channel bandwidth required to transmit the signals. Recall from 
the sampling theorem that a signal of bandwidtlt W may be represented by 
samples taken at a rate of 2W samples/so Thus, in the time interval of length T 

FIGURE 7·2-3 Lower bound on SNR per bit. 'Y., for binary antipodal 
signals. 
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there are n = 2WT samples or, equivalently, n degrees of freedom (dimen­
sions). Consequently, D may be equated with 2W. 

Finally, we note that the binary coded signals considered in this section are 
appropriate when the SNR per dimension is small, e.g., €cINo< lO. However, 
when 'l,1 No> 10, Ro saturates at 1 bit/dimension. Since the code rate is 
restricted to be less than Ro, binary coded signals become inefficient at 
't;J No> 10. In such a case, we may use non binary-coded signals to achieve an 
increase in the number of bits per dimension. For example, multiple-amplitude 
coded signal sets can be constructed from nonbinary codes by mapping each 
code element into one of q possible amplitude levels (as in PAM). Such codes 
are considered below. 

7-2-2 Random Coding Based on M-ary 
Multiamplitude Signals 

Instead of constructing binary-coded signals, suppose we employ nonbinary 
codes with code words of the form given by (7-2-1), where the code elements 
c,; are selected from the set {O, 1, ... ,q - I}. Each code element is mapped. 
into one of q possible amplitude levels. Thus, we construct signals correspond­
ing to n-dimensional vectors {Sit as in (7-2-4), where the components {sJ are 
selected from a multiamplitude set of q possible values. Now, we have q" 
possible signals, from which we select M = 2RT signals to transmit k-bit blocks 
of information. The q amplitudes corresponding to the code elements 
{O. J •...• q - i} may be denoted by {a" a, • ... ,aq }, and they are assumed to 
be selected according to some specified probabilities {p,}. The amplitude levels 
are assumed to be equally spaced over the interval [-~, ~l. For example. 
Fig. 7-2-4 illustrates the amplitude values for q = 4. In general, adjacent 
amplitude levels are separated by 2VCi;/(q - I). This assignment guarantees 
not only that each component Sij is peak-energy-limited to ~, but, also. each 
code word is constrained in average energy to satisfy the condition 

(7-2-29) 

By repeating the derivation given above for random selection of codes in an 
A WON channel, we find that the average probability of error is upper­
bounded as 

(7-2-30) 

where Ro is defined as 

Ro= -log, (~ 
'1=\ 

(7-2-31) 

FIGURE 7-2--4 Signal alphabet co!'slSting of four amplitude levels. f7 
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and 

(7-2-32) 

In the special case where all the amplitude levels are equally likely, 
PI = Pm = I/q and (7-2-31) reduces to 

( 
1 q 

Ro= -log, :2: 
q '~I 

i e -dl,.I4NO) 

m-I 
(7-2-33) 

For example. where q = 2 and al = -~, az =~, we have d ll = d22 = 0, 
d 1z = d" = 2~, and, hence, 

2 
R" = log2 1 + e ~,iN,.' q=2 

which agrees with our previous result. When q = 4, al =. -~, a2 = - ~/3, 
a, = ~J3, and a. =~, we have dmm = 0 for m = 1,2,3,4, d l2 = d 23 = d34 = 

d 21 = d" = d4J = 2~/3, dl3 = d31 = d24 = d'2 = 4~/3, and d l4 = d41 = 2~. 
Hence, 

8 
R" = log, -----"c=.,---=--;c:;;-:;:-,,---== 2 + 3e . O,I9N .. + 2e 4ti,!'IN. + e ~,JNo' q=4 (7-2-34) 

Clearly. R" now saturates at 2 bits/dimension as 'le/ No increases. 
The graphs of R" as a function of 't:,/ No for equally spaced and equally likely 

amplitude levels are shown in Fig. 7-2-5 for q = 2, 3, 4, 8, 16, 32, and 64. Note 
that the saturation level now occurs at log, q bits/dimension. Consequently, for 
high SNR, P,~O as n ...... 00, provided that R < DRo = 2WRo bits/so 

If we remove the peak energy constraint on each of the elements, but retain 

FIGURE '·Z·S CUloff rale R" for equally spaced q-Ievel amplilude 
modulation with equal probabilities P •. = I/q. [From Principles 
of Communication Engineering. by J. M. Wozencraft and 
/. M. lacobs.© 1965 by lolln Wiley and Sons. Inc. Reprinted 
with permission of the pulilisher.] 
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the average energy constraint per code word as given by (7-2-29) it is possible 
to obtain a larger upper bound on the number of bits per dimension. For this 
case, the result obtained by Sllannon (1959b) is 

I [ )1;,. ~ ('lEe)'] R6 = - 1 + - - 1 + - log, e 
2 No 1'1" 

(7-2-35, 

The graph of R~ as a function of the SNR per dimension, 't:J M" is also shown 
in Fig. 7-2-5_ It is clear that our selection of the equally spaced, equally likely 
amplitude levels that result in Ro is suboptimum. However, these coded signals 
are easily generated and implemented in practice. This is an important 
advantage that justifies their use. 

7-2-3 Comparison of Rt with the Capacity of the 
A WGN Channel 

The channel capacity of the band-limited additive white gaussian noise channel 
with an average power constraint on the input signal was derived in Section 
7-1-2, and is given by 

. p' 
C = W log, (1 +~) bits/s 

WNo 
(7-2-36, 

where P" is the average power of the input signal and W is the channel 
bandwidth. It is interesting to express the capacity of this channel in terms of 
bits/dimension and the average power in terms of energy/dimension. With 
D =2Wand 

IE Pav T 
g;.=-=--

n n 

we have 

(7-2-37) 

By defining Cn = C/2W = C/D and substituting for Wand Pav , (7-2-36) may be 
expressed as 

I ( g,) C" = '2 log, 1 + 2 -
, N" 

= J log2 (1 + 2Rc 'Yh) bits/dimension (7-2-38) 
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FIGURE 7-2-0 Comparison of cutoff rate R~ with the channel capacity for 
an A WGN channel. 

This expression for the normalized capacity may be compared with Ri:, as 
shown in Fig. 7-2-6. Since Cn is the ultimate upper limit on the transmission 
rate R J D, Rt < Cn as expected. We also observe that for small values of t;,./ Nt" 
the difference between Rt and Cn is approximately 3 dB_ Therefore, the use of 
randomly selected, optimum average power-limited, multiamplitude signals 
yields a rate function R~ that is within 3 dB of the channel capacity. More 
elaborate bounding techniques are required. to show that the probability of 
error can be made arbitrarily small when R < DCn = 2WCn = C. 

7·3 COMMUNICATION SYSTEM DESIGN BASED 
ON THE CUTOFF RATE 

In the foregoing discussion, we characterized coding and modulation per­
formance in terms of the error probability, which is certainly a meaningful 
criterion for system design. However, in many cases, the computation of the 
error probability is extremely difficult, especially if nonlinear operations such 
as signal quantization are performed in processing the signal at the receiver, or 
if the additive noise is nongaussian. 

Instead of attempting to compute the exact probability of error for specific 
codes, we may use the ensemble average probability of error for randomly 
selected code words. The channel is assumed to have q input symbols 
{O, I, ... , q - l} and Q output symbols {O, I, ... , Q - ll. and to be charac­
terized by the transition probabilities P(i I j), where j = 0, I, . , . , q - I and 
i = 0, 1-, ••. , Q - I, with Q "" q. The input symbols occur with probabilities {pJ 
and are assumed to be statistically independent. In addition, the noise on the 
channel is assumed to be statistically independent in time, so that there is no 
dependence among successive received symbols. Under these conditions, the 
ensemble average probability of error for random selected code words may be 
derived by applying the Chernoff bound (see Viterbi and Omura, 1979). 

The general result that is obtained for the discrete memory less channel is 

(7-3-1) 

where n is the block length of the code, R is the information rate in biIS/s, D is 
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where n is the block length of the code, R is the information rate in biIS/s. D is 
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F1GURE 7-3-1 Example of quantization of the 
demodulator output into five levels. 

p\ylj) 

the number of dimensions per second, and RQ is the cutoff rate for a quantizer 
with Q levels, defined as 

RQ = ~p~t: {-log2 ~J% pjVP(i Ii) n (7-3-2) 

From the viewpoint of code design, the combination of modulator, 
waveform channel, and demodulator constitutes a discrete-time channel with q 
inputs and Q outputs. The transition probabilities {P(i I j)} depend on the 
channel noise characteristics, the number of quantization levels, and the type 
of quantizer, e.g., uniform or nonuniform. For example, in the binary-input 
A WGN channel, the output of the correlator at the sampling instant may be 
expressed as 

p(y Ij) = _l_e-(,-m,l'l2u', j = 0,1 
v21ro' (7-3-3) 

where rna = - v'i,:, m, = v'i,:, and 0'2 = ~No. These two pdfs are shown in Fig. 
7·3-1..Also illustrated in the figure is a quantization scheme that subdivides 
the real line into five regions. From such a subdivision, we may compute the 
transition probabilities and optimally select the thresholds that subdivide the 
regions in a way that maximizes RQ for any given Q. Thus, 

P(i In = f p(y Ii) dy 
'; 

(7-3-4) 

where the integral of p(y I j) is evaluated over the region r, that corresponds to 
the transition probability P(i I j). 

The value of the rate RQ in the limit as Q ..... :xl yields the cutoff rate for the 
unquantized decoder. It is relatively straightforward to show that as Q -+ oc. 

the first summation (sum from i = 0 to Q -1) in (7-3-2) becomes an integral 
and the transition probabilities are replaced by the corresponding pdfs. Thus, 
when the channel consists of q discrete inputs and one continuous output y, 
which represents the unquantized output from a matched filter or a cross­
correlator in a system that employs either PSK or a multiamplitude (PAM) 
modulation, the cutoff rate is given by 

Ro=max{-lo~[ dY[~'PJVP(Y In]2} 
lpJ} -:x; }=o 

(7-3-5) 

where Pj. 0", j '" q - I, is the probability of transmitting the jth symbol and 
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p(y I j) is the conditional probability density function of the output y from the 
matched filter or cross-correlator when the jth signal is transmitted. This is the 
desired expression for unquantized (soft-decision) decoding. 

We observe that when the input signal is binary PSK with Po = P I = ~ and 
the noise is additive, white, and gaussian, (7-3-5) teduces to the familiar result 
given previously in (7-2-20). 

The general expressions in (7-3-5) and (7-3-2) allow us to compare the 
performance of various receiver implementations based on a different number 
of quantization levels. 

Example 7-3-1 

Let us compare the performance of a binary PSK input signal in an A WGN 
channel when the receiver quantizes the output to Q = 2,4, and 8 levels. To 
simplify the optimization problem for the quantization of the signal at the 
output of the demodulator, the quantization levels are placed at O. ± rh' 
±2rh • .. , , ±(2b- 1 -1)1'., where 'l'h is the quanti~er step-size parameter, 
which is to be selected, and b is the number of bits of the quantizer. A good 
strategy for the selection of Th is to choose it to minimize the SNR per bit 
'Yb that is required for operation at a code rate Ro. This implies that the 
step-size parameter must be optimized for every SNR, which in a practical 
implementation of the receiver means that the SNR must be measured. 
Fortunately, r. does not exhibit high sensitivity to small changes in SNR. so 
that it is possible to optimize r. for one SNR and obtain good performance 
for a wide range of SNRs about this nominal value by using a fixed rho 

Based on this approach, the expression for RQ given by (7-3-2) was 
evaluated for b = 1 (hard-decision decoding), 2, and 3 bits, corresponding to 
Q = 2, 4, and 8 levels of quantization. The results are plotted in Fig. 7-3-2. 
The value of Ro for unquantized soft-decision decoding, obtained by 
evaluating (7-3-5) is also shown in Fig. 7-3-2. We observe that two-bit 
quantization with 1'. = 1.0 gains about 1.4 dB over hard-decision decoding, 
and three-bit quantization with T. = 0.5 yields an additional 0.4 dB improve­
ment. Thus, with a three-bit quantizer, we are within 0.2 dB of the 

FIGURE 7-3-2 Effec! of quantization on the performance of • coded 
communicatIons system operating at a rate R =:: Ro or 
R = RQ. with binary PSK modulation on an A WGN 
channel. 
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unquantized soft-decision decoding limit. Clearly, there is little to be gained 
by increasing the precision any further. 

When a nonbinary code is used in conjunction with M-ary (M = q) 
signaling, the received signal at the output of the M matched filters may be 
represented by the vector y = [y, Y2 ... YMJ. The cutoff rate for this M-input. 
M-output (unquantized) channel is 

Ro= ~p~d _IOg2~'~J PiPJ~ Vp(y Ij)p(y I i)dY} (7-3-6) 

where ply I j) is the conditional probability density function of the output 
vector y from the demodulator given that the jth signal was transmitted. Note 
that (7-3-6) is similar in form to (7-3-5) except that we now have an M-fold 
integral to perform because there are M outputs from the demodulator. 

Let us assume that the M signals are orthogonal so that the M outputs 
conditioned on a particular input signal are statistically independent. As a 
consequence. 

.'\1-1 

ply I j) = P'+"(Yi) n ph,) 
i~n 

I""'; 

(J-3-7) 

where Ps+,,(Y,) is the pdf of the matched filter output corresponding to the 
transmitted signal and {p"(y,)} corresponds to the noise-OI1.h outputs from the 
otber M -1 matched filters. When (7-3-7) is incorporated into (7-3-6) we 
obtain 

Ro = '%~lx {-log2 [~J pi + '~' ~'PiPi([ dYVPs,n(Y)Pn(Y»)'J} 

i'-j (7-3-8) 

The maximization of Ro over the set of input probabilities yields P, = 11M for 
1 ", j,,;; M. Consequently, (7-3-8) reduces to 

Ro = log, { M } 
1 + (M -1)[f"x VPs+n(Y)Pn(y)dyJ' 

= 1082 M -log2 {I + (M -l)[fx -VP,+n(y)p"(y)dy n (7-3-9) 

This is the desired result for the cutoff rate of an M-ary input, M-ary vector 
output unq uantized channel. 

For phase coherent detection of the M-ary orthogonal signals the appropri­
ate pdfs are 

P () = _1_ -(y-m)'l2n' 
s-n Y Viii: a e 

() 1 _ y'I2~' 
Pn Y = Viii: a e 

(7-3-10) 
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where m = W and ~ = !No. Substituting these relations into (7-3-9) and 
evaluating the integral yields 

Ro = log, [1 + (M ~)e-~"2N"] 

= log2 [1 + (M -~)e R_YblZ ] 
(7-3-11 ) 

where 'l is the received energy per waveform, Rw is the information rate in 
bits/waveform, and I'b = ~bIN() is the SNR per bit. 

We should emphasize that the rate parameter Rw has imbedded in it tbe 
code rate Re. For example, if M = 2 and the code is binary then R~ = Rc- More 
generally, if the code is binary and M = 2' tben each M-ary waveform conveys 
Rw = vRe bits of information. It is also interesting to note that if the code is 
binary and M = 2 then (7-3-11) reduces to 

Ro = logz ( 1 + e ~ R,. ,,12 ). M = 2 orthogonal signals (7-3-12) 

which is 3 dB worse than the cutoff rate for antipodal signals. If we set R~. = Ro 
in (7-3-11) and solve for I'h, we obtain 

2 ( M-l ) --In 
"Yb - Ro 2 RUM - 1 (7-3-13) 

Graphs of Ro versus "Yb for several values of M are illustrated in Fig. 7-3-3. 
Note that the curve for any value of M saturates at Ro = log2 M. 

It is also interesting to consider the limiting form of (7-3-11) in the limit as 
M ~ 00. This yields 

'# 
lim R" = 2 N. I bits/waveform 

M_'C 0 n 2 

SNR per bit required to operate at a rate R" with M·ary 
orthogonal signals detected coherently in an A WGN 
channel. 

3 

12.5 

j 2 

~ 1.5 
oe,; 1 

~ 
'" 0.5 

°a t 

(7-3-14) 

! Limit a5. ,W = 8-
: M ~- ..--',-"-
'(L4dB) , 
• . , 

2 3 4 5 
SNR per-bit. lr,(d8l 

• 7 
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Since 'l = Pa • T. where T is the time interval per waveform. it follows that 

. Rn Pav } 
hm -= ,C, 
M-~ T 2No ln 2 

(7-3-15) 

Hence, in the limit as M ---> x, the cutoff rate is one-half of the capacity for the 
infinite bandwidth A WGN channel. Alternatively, the substitution of '6 = Ro '6, 
into (7-3-14) yields 1'. = 2ln 2 (1.4 dB). which is the minimum SNR required to 
operate at Ro (as M ---> x). Hence, signaling at a rate Ro requires 3 dB more 
power than the Shannon limit. 

The value of Ro given in (7-3-11) is based on the use of M-ary orthogonal 
signals, which are clearly suboptimal when M is small. If we attempt to 
maximize Ro by selecting the best set of M waveforms, we should not be 
surprised to tind that the simplex set of waveforms is optimum. In fact. Ro for 
these optimum waveforms is simply given as 

Ro= log, [1 + (M -1)~ M~12(M lIN") ~7-3-16) 

If we compare this expression with (7-3-11) we observe that Ro in (7-3-16) 
simply reflects the fact that the simplex set is more energy-efficient by a factor 
M/(M - I). 

In the case of noncoherent detection, the probability density functions 
corresponding to signal-plus-noise and noise alone may be expressed as 

Ppn(Y) = ye' (y'+"'~2Io(ay), y ." 0 

Pn(y)=ye'yl!2, y",O (7-3-17) 

;Jh ,re, by definition. a = V2'6/ No, The computation of R. given by (7-3-9) does 
not yield a closed-form solution. Instead, the integral in (7-3-9) must be 
evaluated numerically. Results for this case have been given by Jordan (1%6) 
and Bucher (1980). For example, the (normalized) cutoff rate R" for M -arv 
orthogonal signals with noncoherent detection is shown in Fig. 7-3-4 for 

FIGURE 7-3-4 S~R per bit required to operate at a rate R" with 
M-ary orthogonal signals detected noncoherently 
in an A WGN channel. 
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M = 2, 4, 8, and 16. For purposes of comparison we also plot the cutoff rate for 
hard-decision decoding (Q = M) of the M-ary symbols. In this case, we have 

RQ = iog2 {[V(l _ PM) + ~(M -l)PMf}' Q = M (7-3-18) 

where PM is the probability of a symbol error. For a relatively broad range of 
rates, the difference between soft- and nard-decision decoding is approximately 
ZdB. 

The most striking characteristic of the performance curves in Fig. 7-3-4 is 
tnat there IS an optimum code rate foe any given M. Unlike the case of 
coherent detection, where the SNR per bit decreases monotonically with a 
decrease in code rate, the SNR per bit for noncoherent detection reaches a 
minimum in the vicinity of a normalized rate of 05, and increases for both high 
and low rates. The minimum is rather broad, so there is really a range of rales 
from 0.2 to 0.9 where the SNR per bit is within 1 dB of the minimum. This 
characteristic behavior in the performance with noncoherent detection is 
attributed to the nonlinear characteristic of the detector. 

7·4 BIBLIOGRAPIDCAL NOTES AND REFERENCES 

PROBLEMS 

The pioneering work on channel characterization in terms of channel capacity 
and random coding was done by Shannon (194&, b, 1949). Additional 
contributions were subsequently made by Gilbert (1952), Elias (1955), Galla­
ger (1965), Wyner (1965), Shannon et at. (1967), Forney (1968) and Viterbi 
(1969). All of these early publications are contained in the IEEE Press book 
entitled Key Papers in lhe Deuelopment of In/ormation Theory, edited by 
Slepian (1974). 

The use of the cutoff rate parameter as a design criterion was proposed and 
developed by Wozencraft and Kennedy (1966) and by Wozencraft and Jacobs 
(1965). It was used by Jordan (1966) in the design of coded waveforms for 
M-ary orthogonal signals with coherent and noncoherent detection. Following 
these pioneering works, the cutoff rate has been widely used as a design 
criterion for coded signals in a variety of different channel conditions. 

7-1 Show that the follOWing two relations are necessary and sufficient conditions for 
the set of input probabilities {P(Xj)} to maximize leX; Y) and, thus, to achieve 
capacity tor a DMC: 

l(x,; Y) = C for all j with P(x,) > 0 

l(x,; Y) ,.; C for all j with P(.ti ) = 0 

where C is the capacity of the channel and 

l(xj; Y) = ~ P(Yi I x,) log P(y, I XI) 
i-G P(y,) 
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7·S A telephone channel has a bandwidth W = 3000 Hz and a signal-to-noise power 
ratio of 400 (26dB), Suppose we characterize the channel as a band-limited 
A WGN waveform channel with P,,/WNo = 400, 
a Determine the capacity of the channel in bils/s. 
b Is the capacity of the channel sufficient to support the transmission of a speech 

signal that has been sampled and encoded by means of logarithmic peM? 
c Usually. channel impairments other Ihan additive noise limit the transmission 

rate over the telephone channel to less than the channel capacity of the 
equivalent band-limited AWGN channel considered in (a), Suppose that a 
transmission rate of O.7C is achievable in practice without channel encoding. 
Which of the speech source encoding methods described in Section 3-5 provide 
sufficient compression to fit the bandwidth restrictions of the telephone channel? 

7-6 Consider the binary-input. quaternary-output DMC shown in Fig. P7-6. 
a Determine the capacity of the channel. 
b Show that this channel is equivalent to a BSe. 

7·7 Detennine the channel capacity for the channel shown in Fig. P7-7. 
7·8 Consider a BSC with crossover probability of error p. Suppose that R i< Ihe 

number of oits in a source code word that represents one of 2R possible levels at 
the output of a quantizer. Determine 
a the probability that a code word transmitted over tile BSe is received correctly: 
b the probability of having at least one bit error in a code word transmitt.:d over 

the BSe; 
c the probability of having n, or less bit errors in a code word; 

1-" x, .\"1 

Xl \', 

X, ", 
I-p 
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d Evalua!e the probability in (a), (b), and (c) for R = 5, P =0.01, and no =5, 
7-9 Show that, for a DMC, the average mutual information between a sequence 

X,X, .. , Xn of channel inputs and the corresponding channel outputs satisfy the 
condition 

n 

I(X,X,' , , Xn; 1'., Y,. ", Yn) ~ L I(X,; 1';) 
i=l 

with equality if and only if the set of input symbols is statistically independent. 
7-10 Figure P7·10 illustrates a binary erasure channel with transition probabilities 

P(O 10) = P(l ! 1) = 1 - P and Pte 10) = Pte 11) = p. The prohabilities ior the 
input symbols are P(X = 0) = a and P(X = 1) = I - a. 
a Determine the average mutual information I(X; Y) in bits. 
b Determine tile value of a that maximizes I(X; Y). i.e., the channel capacity C in 

bits/channel use, and plot C as a function of p for the optimum value 01 a 
c For the value of a found in (b), determine the mutual iniormatlon fl,x;y) = 

1(0: 0), 1(1; 1), I{O: e), and J{l, e). 
7-11 Consider the binary-input. ternary-output channel with transition probabilities 

shown in Fig. P7-ll, where e denotes an erasure. For the AWGN channel. Q and p 
are defined as 

a Determine RQ for Q = 3 as a function of the probabilities ex and p. 
b The rate parameter RQ depends on the choice of the threshold .8 through the 

probabilities a and p. For any'€../ No, the value of f3 that maximizes RQ can he 
determined by trial and error. For example, it can be shown that for ~ /.\1, 
below 0 dB. /3"", = 0.6Sv'f,\I;,: for 1 ~ '€./ No ~ 10, /3 ..... ' varies approximately 

1 - p- ~j 
o .... ---O __ ~() 

I-p-a 
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Channel! Channel 2 Channe: 3: 

linearly between O.65V~N" and LOV1N, •. By using (3 = O.65V1N" for the entire 
range of '/;,./ N", plot Ro versus 'i:,IN" and compare this result wIth R" (Q = x). 

7-12 Find the capacity of the cascade connection of n binary-symmetric channels with 
the same crossover probability £. What is the capacity when the number of 
channels goes to infinity? 

7-13 Channels 1, 2, and 3 are shown in Fig. P7 ·13. 
a Find the capacity of channel l. What input distribution achieves capacity? 
b Find the capacity of channel 2. What input distribution achieves capacity" 
c Let C denote the capacity of the third channel and C, and C, represent tpe 

capacities of the first and second channel. Wh,ch of the following relations holds 
true and why? 

C < ltC, + C,) 

c= Hc, + C,) 

c> He, + C,) 

( i) 

(ii) 

( iii) 

7-14 Let C denote the capacity of a discrete memotyless channel with input alphabet 
'1' = {x" x" . .. ,x,} and output alphabet qy = \r" y, . ... ,y.,,}. Show that C ~ 
min {log M, log N}. 

7-15 The channel C (known as the Z channel) is shown in Fig. P7-15. 
a Find the input probability distribution that achieves capacity. 
b What is the input distribution and capacity for the special cases. = O .• = I, and 

• =0.5? 
c Show that if II such channels are cascaded, the resulting channel will be 

equivalent to a Z channel with '" = En. 

d What is tbe capacity of the equivalent Z channel when n -> x. 
7·16 Find the capacity of an additive white Gaussian noise channel with a bandwidth 

1 MHz, power 10 W, and noise power spectral density !N.. = 10 • W 1Hz. 
7-17 Channel C, is an additive "hite gaussian noise channel with a bandwidth W, 

average transmitter power P, and noise power spectral density Vv". Channel C, is 

o I n 

l~' , 
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an additive gaussian noise channel with the same bandwidth and power as channel 
C

I 
hut with noise power spectral density <f>,,(f). It is further assumed thai the total 

noise power for both channels is the same; that is, 

Which channel do you think has a larger capacity? Give an intuitive reasoning. 
7-18 A discrete-time memoryless gaussian source with mean 0 and variance (J' is U he 

transmitted over a binary-symmetric channel with crossover probability p. 
a What is the minimum value of the distortion attainable at the destination 

(distortion is measured in mean-squared error)? 
b If the channel is a discrete-time memoryless additive gaussian noise channel 

with input power P and noise power P,,, what is the minimum attainable 
distortion: 

t Now assume that the source bas the same basic properties hut is nol 
memoryle". Do you expect the distortion in transmission over the binary· 
symmetric channel to be decreased or increased? Why? 

7-19 X is a binary memoryless source with piX =0) =0.3. This source is transmitted 
over a binary-symmetric channel with crossover probability p = o. \. 
a Assume that the source is directly connected to the channel, i.e., no coding is 

employed. What is the error probability at the destination" 
b If coding is allowed, what is the minimum possible enor probability in the 

reconstruction of the source. 
c For what values of p is reliable transmission possible (with coding, of courser' 

7-20 Plot the capacity of an A WGN channel that employs binary antipodal signaling, 
with optimal bit-by·bit detection at the receiver, as a function of '#h/N". On the 
same axis, plot the capacity of the same channel when binary orthogonal signaling 
is employed. 

7-21 In a c0ded communication system, M messages l. 2 •.... M = 2' are transmitted 
by M baseband signals .t1(1). x,(/) • . __ . .tM(I). each of duration nT. The general 
form of X,(I) is given by 

" , 
X,(I) = 2: f.(t - jT) 

J=1l 

where f,,(r) can be either of the two signals 1,(1) or f,(r). where 1,(1) = 1,(1) =0 fnr 
all I <Ie (O, T). We further assume that f,(I) and 1,(1) have equal energy 'li and the 
channel is ideal (no attenuation) with additive white gaussian noise of power 
spectral density ~Nu. This means that the received signal is r(l) =X(I) + n(t). 
where x(t) is one of the x,(t) and n(t) represents the noise. 
a Withf,(t) = -/,(1), show that N. the dimensionality of the signal space, satisfies 
N~n. 

b Show that. in general, N ~ m. 
e Witb M =2, show that, for general f,(t} and h(t). 

p(error I xl(t) sent) ~ r· J \Ip(r i x,)p(r I x,) dr 
R' 

where r, XI, and x, are the vector representations of r(I). x l (£). and x,(t) in the 
N-dimensional space. 
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d Using the result of (c), show that, for general M, 

p(error i xm(t) sent) .. '~~~M(~ J Vp(r I "'m)p(r I xm) dr 
It,"'m 

e Show that 

J J ( IXm - Xml') 
... Yp(r I xm)p(r I "'m') dr = exp - 4~, 
RN 

and, therefore, 
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8 
BLOCK AND 

CONVOLUTIONAL 
CHANNEL CODES 

In Chapter 7, we treated channel coding and decoding from a general 
viewpoint, and showed that even randomly selected codes on the average yield 
performances close to the capacity of a channel. In the case of orthogonal 
signals, we demonstrated that the channel capcity limit can be achieved as the 
number of signals approaches infinity. 

In this chapter, we 'describe specific codes and evaluate their performance 
for the additive white gaussian noise channel. In particular, we treat two 
classes of codes, namely, linear block codes and convolutional codes. The code 
performance is evaluated for both hard-decision decoding and soft-decision 
decoding. 

8·1 LINEAR BLOCK CODES 

A block code consists of a set of fixed-length vectors called code words. The 
length of a code word is the number of elements in the vector and is denoted 
by n. Theelemenls of a code word are selected from an alphabet of q 
elements. When the alphabet consists of two elements, 0 and 1, the code is a 
binary code and the elements of any code word are called bits. When the 
elements of a code word are selected from an alphabet having q elements 
(q > 2), the code is nonbinary. It is interesting to note that when q is a power 
of 2, i.e., q = 2" where b is a positive integer, each q-ary element has an 
equivalent binary representation consisting of b bits, and, thus, a nonbinary 
code of block length N can be mapped into a binary code of block length 
n =bN. 

There are 2" possible code words in a binary block code of length n. From 
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performance is evaluated for both hard-decision decoding and soft-decision 
decoding. 

8·1 LINEAR BLOCK CODES 

A block code consists of a set of fixed-length vectors called code words. The 
length of a code word is the number of elements in the vector and is denoted 
by n. Theelemenls of a code word are selected from an alphabet of q 
elements. When the alphabet consists of two elements, 0 and 1, the code is a 
binary code and the elements of any code word are called bits. When the 
elements of a code word are selected from an alphabet having q elements 
(q > 2), the code is nonbinary. It is interesting to note that when q is a power 
of 2, i.e., q = 2" where b is a positive integer, each q-ary element has an 
equivalent binary representation consisting of b bits, and, thus, a nonbinary 
code of block length N can be mapped into a binary code of block length 
n =bN. 

There are 2" possible code words in a binary block code of length n. From 
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these 2" code words, we may select M = 2' code words (k < n) to forma code. 
Thus. a block of k information bits is mapped into a code word of length n 
selected from the set of M = 2' code words. We refer to the resulting block 
code as an (n, k) code, and the ratio kIn = Rc is defined to be the rate of the 
code. More generally, in a code having q elements, there are q" possible code 
words. A subset of M = 2k code words may be selected to transmit k·bit blocks 
of information. 

Besides the code rate parameter R,., an important parameter of a code word 
is its weight, which is simply the number of nonzero elements that it contains. 
In genera), each code word has its own weight. The set of all weights in a code 
constitutes the weight distribution of the code. When all the M code words 
have equal weight, the code is called a fixed-weight code or a constant-weight 
code. 

The encoding and decoding functions involve the arithmetic operations of 
addition and multiplication performed on code words. These arithmetic 
operations are performed according to the conventions of the algebraic field 
that has as its elements the symbols contained in the alphabet. For example, 
the symbols in a binary alphabet are 0 and 1; hence, the field has two elements. 
In general, a field F consists of a set of elements that has two arithmetic 
operations defined on its elements, namely, addition and multiplication, that 
satisfy the following properties ( axioms). 

Addition 

1 The set F is closed under addition, i.e., if a, b E F than a + b E F. 
2 Addition is associative, i.e., if a, D, and c are elements of F then 

a + (b + e) = (a + b) + e. 
3 Addition is commutative, i.e., a + b = b + a. 
4 The set contains an element called zero that satisfies the condition 

a+O=a. 
5 Every element in the set has its own negative element. Hence, if b is an 

element, its negative is denoted by - b. The subtraction of two elements, such 
as a - b, is defined as a + (-b). 

Multiplication 

1 The set F is closed under mUltiplication, i.e., if a, b E F then ab E F. 
2 Multiplication is associative, i.e., a(bc) = (ab)c. 
3 Multiplication is commutative, i.e., ab = ba. 
4 Multiplication is distributive over addition, i.e., (a + b)c = ac + be. 
5 The set F contains an element, called the identity, that satisfies the 

condition a(i) = a, for any element a E F. 
6 Every element of F, except zero, has an inverse. Hence, if b E F (b,. 0) 
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then its inverse is defined as b -'. and bb -, = 1. The division of two elements. 
such as a 7 b, is defined as ab·-' 

We are very familiar with the held of real numbers and the field of complex 
numbers. These fields have an infinite number of elements. However. as 
indicated above, codes are constructed from fields with a finite number of 
elements. A finite field with q elements is generally called a Galois field and 
denoted by GF(q). 

Every field must have a zero element and a one element. Hence. the 
simplest field is GF(2). In general. when q is a prime, we can construct the 
finite field GF(q) consisting of the elements {a, I, ... , q - I}. The addition and 
multiplication operations on the elements of GF(q) are defined modulo q and 
denoted as (mod q). For example, the addition and multiplication tables fo~ 
GF(2) are 

+ 
o 
1 

o 1 

o 1 

1 0 ITH
o 1 

000 

1 0 1 

which are operations (mod 2). Similarly. the field GF(5) is a set consisting of 
the elements {O. 1,2,3, 4}. The addition and multiplication tables for GF(5) are 

+ 0 1 2 3 4 ' ' 0 1 2 3 4 

0 0 1 2 3 4 0 0 0 0 0 0 

1 1 2 3 4 0 1 0 1 2 3 4 

2 2 3 4 0 2 a 2 4 1 3 

3 3 4 0 1 2 3 0 3 1 4 2 

4 4 0 1 2 3 4 0 4 3 2 1 

In general, the finite field GF(q) can be constructed only if q is a prime or a 
power of a prime. When q is a prime, multiplication and addition are based on 
modulo·q arithmetic as illustrated above, If q = pm where p is a prime and m is 
any positive integer, it is possible to extend the field GF(p) to the field 
GF(pm). This is called the extension field of GF(p). Multiplication and 
addition of the elements in the extension field are based 011 modulo-p 
arithmetic. 

With this brief introduction to the arithmetic operations that may be 
performed on the elements of code words, let us now consider some basic 
characteristics of block codes, 

Suppose C, and Cj are any two code words in an (n, k) block code. A 
measure of the difference between the code words is the number of 
corresponding elements or positions in which they differ. This measure is called 
the Hamming dislance between the two code words and is denoted as d'r 
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Clearly, dij for i "" j satisfies the condition 0 < d jj ,,;; n. The smallest value of the 
set {d'j} for the M code words is called the minimum distance of the code and is 
denoted as d rnin • Since the Hamming distance is a measure of the separation 
between pairs of code words, it is intimately related to the cross-correlation 
coefficient between corresponding pairs of waveforms generated from the code 
words. The relationship is discussed in Section 8-1-4. 

Besides characterizing a code as being binary or nonbinary, one can also 
describe it as either linear or nonlinear. SuppOse C, and Cj are two code words 
in an (no k) block code and let a, and 00 be any two elements selected from 
the alphabet. Then the code is said to be linear if and only if a,C, + a,Cj is 
also a code word. This definition implies that a linear code must contain the 
all-zero code word. Consequently a constant-weight code is nonlinear. 

Suppose we have a binary linear block code. and let C j • i = 1.2 ..... M. 
denote the M code words. For convenience. let C, denote the all-zero code 
word, i.e., C, = [00 ... OJ. and let w, denote the weight of the rth code word. It 
follows that w, is the Hamming distance between the code words C and C,. 
Thus, the distance d" = w,. In general. the distance d'l between any pair of 
code words C, and C

j 
is simply equal !O the weight of the code word formed by 

taking the difference between C, and CI' Since the code is linear. the difference 
(equivalent to laking the modulo-2 sum for a binary code) between C, and C

l 
is 

also a code word having a weight included in the set {w,}. Hence. the weight 
distribution of a linear code completely characterizes the distance properties of 
the code. The minimum distance of the code is. therefore. 

dm1n = m~n {W,.: 
r.r# ! 

(8-1-1) 

A number of elementary concepts from linear algebra are particularly useful 
in dealing with linear block codes. Specifically, the set of all n-tuples (vectors 
with n elements) -form a vector space S. If we select a set of k < n linearly 
independent vectors from 5 and from these construct the set of all linear 
combinations of these vectors, the resulting set forms a subspace of 5, say 5", 
of dimension k. Any set of k linearly independent vectors in the subspace S, 
constitutes a basis. Now consider the set of vectors in 5 that are orthogonal to 
every vector in a basis for 5c (and, hence, orthogonal to all vectors in 5c ). This 
set of vectors is also a subspace of 5 and is called the null space of Sc. If the 
dimension of 5c is k, the dimension of the nuli space is n - k. 

Expressed in terms appropriate for binary block codes, the vector space S 
consists of the 2" binary valued n-luples. The linear (n, k) code is a sel of 2' 
n-tuples called code words, which forms a subspace 5c over the field of two 
elements. Since there are 2k code words in 50 a basis for Sc has k code words. 
That is, k linearly independent code words are required to construct 2' linear 
combinations, thus generating the entire code. The null space of 5, is another 
linear code, which consists of 2"-' code words of block length nand n - k 
information bits. Its dimension is n - k. In Section 8-1-1, we consider these 
relationships in greater detail. 

426

416 DiGITAL COMMV~'rrATIONS 

Clearly, dij for i "" j satisfies the condition 0 < d jj ,,;; n. The smallest value of the 
set {d'j} for the M code words is called the minimum distance of the code and is 
denoted as d rnin • Since the Hamming distance is a measure of the separation 
between pairs of code words, it is intimately related to the cross-correlation 
coefficient between corresponding pairs of waveforms generated from the code 
words. The relationship is discussed in Section 8-1-4. 

Besides characterizing a code as being binary or nonbinary, one can also 
describe it as either linear or nonlinear. SuppOse C, and Cj are two code words 
in an (no k) block code and let a, and 00 be any two elements selected from 
the alphabet. Then the code is said to be linear if and only if a,C, + a,Cj is 
also a code word. This definition implies that a linear code must contain the 
all-zero code word. Consequently a constant-weight code is nonlinear. 

Suppose we have a binary linear block code. and let C j • i = 1,2 .... , M. 
denote the M code words. For convenience. let C, denote the all-zero code 
word, i.e., C, = [00 ... OJ. and let w, denote the weight of the rth code word. It 
follows that w, is the Hamming distance between the code words C and C,. 
Thus, the distance d" = w,. In general. the distance d'l between any pair of 
code words C, and C

j 
is simply equal !O the weight of the code word formed by 

taking the difference between C, and CI' Since the code is linear. the difference 
(equivalent to laking the modulo-2 sum for a binary code) between C, and C

l 
is 

also a code word having a weight included in the set {w,}. Hence. the weight 
distribution of a linear code completely characterizes the distance properties of 
the code. The minimum distance of the code is. therefore. 

dm1n = m~n {W,.: 
r.r# ! 

(8-1-1) 

A number of elementary concepts from linear algebra are particularly useful 
in dealing with linear block codes. Specifically, the set of all n-tuples (vectors 
with n elements) -form a vector space S. If we select a set of k < n linearly 
independent vectors from 5 and from these construct the set of all linear 
combinations of these vectors, the resulting set forms a subspace of 5, say 5c ' 

of dimension k. Any set of k linearly independent vectors in the subspace S, 
constitutes a basis. Now consider the set of vectors in 5 that are orthogonal to 
every vector in a basis for 5c (and, hence, orthogonal to all vectors in Sc). This 
set of vectors is also a subspace of 5 and is called the null space of Sc. If the 
dimension of 5c is k, the dimension of the nuli space is n - k. 

Expressed in terms appropriate for binary block codes, the vector space S 
consists of the 2" binary valued n-luples. The linear (n, k) code is a sel of 2' 
n-tuples called code words, which forms a subspace 5c over the field of two 
elements. Since there are 2k code words in 50 a basis for Sc has k code words. 
That is, k linearly independent code words are required to construct 2' linear 
combinations, thus generating the entire code. The null space of S, is another 
linear code, which consists of 2"-' code words of block length nand n - k 
information bits. Its dimension is n - k. In Section 8-1-1, we consider these 
relationships in greater detail. 



("HAl'1ER~: BLOCK Ar.;D CO:o<.VOLUTIO!'.lAl CHAN~E.L CODES 417 

8-1-1 The Generator Matrix and the Parity Check MaIm 

Let Xoo L, Xm2' - __ 'Xmk denote the k information bits encoded into the code 
word em - Throughout this chapter, we follow the established convention in 
coding of representing code words as row vectors. Thus, the vector of k 
information bits into the encoder is denoted by 

and the output of the encoder is the vector 

The encoding operation performed in a linear binary block encoder can be 
represented by a set of n equations of the form 

(8-1-2) 

where gi, = 0 or 1 and Xmigij represents the product of Xmi and gil' The linear 
equations (8-1-2) may also be represented in a matrix form as 

(8-1-3) 

where G, called the generator matrix of the code, is 

[ 
.-g,-] [gll g'2 ... gin] 

G= .-g2- = g" g22 .,- g2n · ,. . · ,. . · ,. . 
.-g.- gkJ gu gk. 

(8-1-4) 

Note that any code word is simply a linear combination of the vectors {g,} of G, 
i,e .. 

(8-1-5) 

Since the linear (n. k) code with 2" code words is a subspace of dimension k, 
the row vectors {g,} of the generator matrix G must be linearly independent, 
i.e" they must span a subspace of k dimensions, In other words, the {g,} must 
be a basis for the (n. k) code. We note that the set of basis vectors is not 
unique, and, hence, G is not unique, We also note that, since the subspace has 
dimension k, the rank of G is k. 

Any generator matrix of an (n, k) code can be reduced by row operations 
(and column permutations) to the "systematic form." 

[1 0 0 ... 0 PH PIZ Pin '] G = [Ik ' 0 1 0 '" 0 P21 PZ2 Pln k 

: PJ = ~ . (8-1-6) 
. 

Pk~-k 0 0 1 Pkl P.2 
where- I. is the k x k identity matrix and P is a k x (n - k) matrix that 

427

("HAl'1ER~: BLOCK Ar.;D CO:o<.VOLUTIO!'.lAl CHAN~E.L CODES 417 

8-1-1 The Generator Matrix and the Parity Check MaIm 

Let Xoo L, Xm2' - __ 'Xmk denote the k information bits encoded into the code 
word em - Throughout this chapter, we follow the established convention in 
coding of representing code words as row vectors. Thus, the vector of k 
information bits into the encoder is denoted by 

and the output of the encoder is the vector 

The encoding operation performed in a linear binary block encoder can be 
represented by a set of n equations of the form 

(8-1-2) 

where gi, = 0 or 1 and Xmigij represents the product of Xmi and gil' The linear 
equations (8-1-2) may also be represented in a matrix form as 

(8-1-3) 

where G, called the generator matrix of the code, is 

[ 

<-g, ~] [gll g'2 ... gin] 
G= <-g2~ = g" g22 .,- g2n 

· ,. . · ,. . · ,. . 
<-g.~ gkJ gu gk. 

(8-1-4) 

Note that any code word is simply a linear combination of the vectors {g,} of G, 
i,e .. 

(8-1-5) 

Since the linear (n. k) code with 2" code words is a subspace of dimension k, 
the row vectors {g,} of the generator matrix G must be linearly independent, 
i.e" they must span a subspace of k dimensions, In other words, the {g,} must 
be a basis for the (n. k) code. We note that the set of basis vectors is not 
unique, and, hence, G is not unique, We also note that, since the subspace has 
dimension k, the rank of G is k. 

Any generator matrix of an (n, k) code can be reduced by row operations 
(and column permutations) to the "systematic form." 

[1 () 0 ... 0 PH PIZ Pin '] G = [Ik ' 0 1 0 '" 0 P21 PZ2 Pln k 

: PJ = ~ . (8-1-6) 
. 

Pk~-' 0 0 1 Pkl P.2 
where- I. is the k x k identity matrix and P is a k x (n - k) matrix that 



41S DIGITAL (O\1\llr~u -\no~s 

determines the n - k redundant bits or parity check bits. Note that a generator 
matrix of the systematic form generates a linear block code in which the first k 
bits of each code word are identical to the information bits to be transmitted, 
and the remaining n - k bits Of each code word are linear combinations of the 
k information bits. These n - k redundant bits are called parity check bits. The 
resulting (n. k) code is called a systematic code. 

An (n. k) code generated by a generator matrix that is not in the systematic 
form (8-1-6) is called nonsystematic. However. such a generator matrix is 
equivalent to a generator matrix of the systematic form in the sense that one 
can be obtained from the other by elementary row operations and column 
permutations. The two (n. k) linear codes generated by the two equivalent 
generator matrices are said to be equivalent, and one can be obtained from the 
other by a permutation of the places of every element. Thus. every linear 
(fI, k) code is equivalent to a linear systematic (n. k) code. 

Example 8-1-1 

Consider a (7.4) code with generator matrix 

[

I 0 0 0 I 

o I 0 0 I 
G= o 0 I 0 I 

o 0 0 I 0 

A typical code word may be expressed as 

(8-1-7) 

where the {x",J represents the' four information bits and the {emil represent 
the three parity check bits given by 

(8-1-8) 

A linear systematic (n, k) binary block encoder ma}' be implemented by 
using a k-bit shift register and n - k modulo-2 adders tied to the appropriate 
stages of the shift register. The n - k adders generate the parity check bits. 
which are subsequently stored temporarily in a second shift register of length 
n - k. The k-bit block of information bits shifted into the k-bit shift register 
and the n - k parity check bits are computed. Then the k information bits 
followed by the n - k parity check bits are shifted out of the two shift registers 
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FIGURE 8-1-1 A linear snift regIster for generatmg a (7.4: binai]<' 
code. 

lnpUl 
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and fed to the modulator. This encoding is illustrated in Fig. 8-1-1 for the (7.4) 
code of Example 8-1-1. 

Associated with any linear (n, k) codt> is the dual code of dimension n - k 
The dual code is a linear (n, n - k) code with 2"-< code vectors, which is the 
null space of the (n, k) code. The generator matrix for the dual code, denoted 
by H_ consists of n - k linearly independent code vectors selected from the null 
space. Any code word Cm of the (n, k) code is orthogonal to allY code word in 
the dual code. Hence, any code word of the (n, k) code is orthogonal to every 
row of the matrix H, i.e., 

emH' =0 (8-1-9) 

where 0 denotes an all-zero row vector with If - k elements, and Cm is a code 
word of the (n, k) code. Since (8-1-9) holds for every code word of the (n, k) 
code, it follows that 

GH'=O (8-1-10) 

where 0 is now a k x (n - k) matrix with all-zero elements. 
Now suppose that the linear (n, k) code is systematic and its generator 

matrix G is given by the systematic form (8-1-6). Then, since GH' = 0_ it 
follows that 

H=[-P': I".] (1I-1-! I) 

The negative sign in (8-I-ll) may be dropped when dealing with binary codes, 
since modulo-2 subtraction is identical to modulo-2 addition. 

Example 8-1-2 

For the systematic (7,4) code generated by matrix G given by (8-1-7), we 
have. according to (8-1-11), the matrix H in the form 

[

I I 
H= 0 1 

1 I 

1 0 I 

1 1 0 010 
o 0] 
1 0 

o 1 

(8-1-12) 
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where 0 is now a k x (n - k) matrix with all-zero elements. 
Now suppose that the linear (n, k) code is systematic and its generator 

matrix G is given by the systematic form (8-1-6). Then, since GH' = 0_ it 
follows that 

H=[-P': I".] (1I-1-! I) 

The negative sign in (8-I-ll) may be dropped when dealing with binary codes, 
since modulo-2 subtraction is identical to modulo-2 addition. 

Example 8-1-2 

For the systematic (7,4) code generated by matrix G given by (8-1-7), we 
have. according to (8-1-11), the matrix H in the form 

[

I I 
H= 0 1 

1 I 

1 0 I 

1 1 0 

010 

o 0] 
1 0 

o 1 

(8-1-12) 
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Now, the product CmH' yields the three equations 

X ml + Xm2 + Xm-'\ + emS = 0 

X ml + X m ] + Xm.t + emf-. = 0 

Xml + Xm2 + Xm~ + em 7 = 0 

(8-1-13 ) 

Thus, we observe that the product CmH' is equivalent to adding the parity 
check bits to the corresponding linear combinations of the information bits 
used to compute e",!, j = 5,6, 7. That is, (8-1-13) are equivalent to (8-1-8). 
The matrix H may be used by the decoder to check that a received code 
word Y satisfies the condition (8-1·13), i.e., YH' =0. In so doing, the 
decoder checks the received parity check bits with the corresponding linear 
combination of the bits y" ]2, y" and Y. that formed the parity check bits at 
the transmitter. It is, therefore, appropriate to call H the parity check matrix 
associated with the (n, k) code. 
We make the following observation regarding the relation of the minimum 

distance of a code to its parity check matrix H. The product CmH' with Cm "" 0 
represents a linear combination of the n columns of H', Since CmH' = 0, the 
column vectors of H are linearly dependent. Suppose Cj denotes the minimum 
weight code word of a linear (n, k) code, It must satisfy the condition CjH' = 0, 
Since the minimum weight is equal to the minimum distance, it follows that 
dmi• of the c.olumns of H are linearly dependent. Alternatively, we may say 
that nG more than dmin - J columns of H are linearly independent. Since the 
rank of H is at most n - k. we have n - k ;;. denio - 1. Therefore, dmio is 
upper-bounded as 

dmin:s; n - k + (8·1-14) 

Given a linear binary (n, k) code with minimum distance dmin, we can 
construct a linear binary (n + 1, k) code by appending one additional parity 
check bit to each code word. The check bit is usually selected to be a check bit 
on all the bits in the code word. Thus the added check bit is a 0 if the original 
code word has an even number of Is and it is a 1 if the code word has an odd 
number of Is. Consequently, if the minimum weight and, hence, the minimum 
distance of the code is odd, the added parity check bit increases the minimum 
distance by 1. We call the (n + 1, k) code an extended code. Its parity check 
matrix is 

H= < H 

... _----_ .... 

o 
o 

o 
1 1 1 1 1 

where H is the panty check matrix of the original code. 

(8·1-15) 
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A systematic (n, k) code can also be shortened by setting a number of the 
information bits to zero. That is, a linear (n, k) code consisting of k 
informa,ion bits and n - k check bils can be shortened into a (n -I, k - I) 
linear code by setting the first I bits to zero. These I bits are not transmitted. 
The n - k check bits are computed in the usual manner, as in the original code. 
Since 

Cm=Xm G 

the effect of setting the first I bits of Xm to 0 is equivalent to reducil1g the 
number of rows of G by removing the first I rows. Equivalently. since 

CmH' =0 

we may remove the first I columns of H. The sllOnened (n - I. k -I) code 
consists of 2k - I code words. The minimum distance of these 2' -/ code words is 
at \east as large as the minimum distance of the original (n, k) code. 

8-1-2 Some Specific Linear Block Codes 
In this subsection, we shall briefly describe three types of linear block codes 
that are frequently encountered in practice and list their important parameters. 

Hamming Codes There are both binary and nonbinary Hamming codes, 
We limit our discussion to the properties of binary Hamining codes. These 
comprise a class of codes with the property that 

(n, k) = (2m - 1, 2m 
- I - m) 

where m is any positive integer. For example, if m = 3. we have a (7,4) code. 
The parity check matrix H of a Hamming code has a special property that 

allows us to describe the code rather easily, Recall that the parity check matrix 
of an (n. k) code has n - k rows and n columns, For the binary (n, k) 

Hamming code. the n = 2"' - ! columns consist of all possible binary vectors 
with n - k = m elements, except the all-zero vector. For example. the (7.4) 
code considered in Examples 8-]·1 and 8-1-2 is a Hamming code. Its par it} 
check matrix consists of the seven column vectors (00]), (010). (011), (100), 
(101). (110), (l11), 

If we desire to generate a systematic Hamming code. the parity check 
matrix H can be easily arranged in the systematic form (8-1- II). Then the 
corresponding generator matrix G (;an be obtained from (8-1-11), 

We make the observation that no two columns of H are linearly dependent. 
for otherwise the two columns would be identical. However, for m > I. it is 
possible to find three columns of H that add to zero, Consequently. d min = 3 for 
an (n, k) Hamming code, 

By adding an overall parity bit, a Hamming (n, k) code can be modified to 
yield an (n + 1, k) code with d min = 4. On the other hand, an (n, k) Hamming 
code may be shortened to (n - I. k -I) by removing / rows of its generator 
lllatrix G or, eqUivalently, by removing I columns of its parily check matrix H. 
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The weight distribution for the class of Hamming (n, k) codes is known and 
is expressed in compact form by the weight enumerating polynomial 

n 

A(z} = I Aiz' 
io-f) 

= _1~ .. [(l + z)" + n( I + z )'" - J )12( 1 ~ Z )(" + I Yl] 
n+l 

where Ai is the number of code words of weight i. 

(8-1-17) 

Hadamard Codes A Hadamard code is obtained by selecting as code 
words the rows of a Hadamard matrix_ A Hadamard matrix Mn is an n X n 
matrix (n an even integer) of Is and Os with the property that any row differs 
from any other row in exactly ~n positions. t One row of the matrix contains all 
zeros. The other rows contain !n zeros and !n ones. 

For n = 2, the Hadamard matrix is 

M 2 = [~ ~] (8-1-18) 

Furthermore, from Mm we can generate the Hadamard matrix MIn according 
to the relation 

[Mn Mn] 
M 2n = M M 

n n 
(8-1-19) 

where M" denotes the complement (Os replaced by 1 s and vice versa) of M,.. 
Thus, by substituting (8-1-18) into (8-1-19), we obtain 

The complement of M. is 

_ [~ 0 ~ ~J 
M 4 - 0 0 1 

o 1 0 

- 1 

[

1 

M.= : 
o 
1 0 

o 0 iJ 

(8-1-20) 

(8-1-21) 

Now the rows of M4 and M4 form a linear binary code of block length n = 4 
having 2n = 8 code words. The minimum distance of the code is d m;. = ~n = 2. 

By repeated application of (8-1-19), we can generate Hadamard codes with 
block length n = 2''', k = log, 2n = log, 2m

+
l = m + 1, and dm;n = ~n = 2m - J

, 

where m is a positive integer. In addition to the important special case where 
n = 2"', Hadamard codes of other block lengths are possible, but the codes are 
not linear. 

tSometimes the elements of [he Hadamard matrix are denoted by ~ I and -1. Then the rows 
of the Hadamard matrix are mutually orthogonal. We a~50 note that the M = -r signal waveforms. 
constructed from Hadamard code words by mapping each bit in a code word into a hinary PSK 
signal. are orthogonal. 
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TABLE 8-1·1 WEIGHT DISTRIBUTION OF GOLAY 
(23.12) AND EXTENDED GOLAY (24,12) 
CODES 

Somber of code .... 'd. 

Weight (23,12/ code (24, 12) code 

0 1 
7 25.1 0 
8 5UO 7>9 

11 128H (J 

12 1288 2576 
l5 506 0 
16 253 759 

23 1 () 

24 0 I 

Smaa Pt'ferson (lnd Weldon (19721. 

Golay Code The Golay code is a binary linear (23,12) code with d tnin ~ 7, 
The extended Golay code obtained by adding an overall parity to the (23,12) 
is a binary linear (24,12) code with dmin = s: Table 8·1·1 lists the weight 
distribution of the code words in the Golay (23, 12) and the extended Golay 
(24, 12) code~, We discuss the generation of the Golay code in Section 8·1·3, 

8-1-3 Cyclic Cocb!s 
Cyclic codes are a subset of the class of linear codes that satisfy the following 
cyclic shift property: if C = [Cn -lC,,-2'" c,Co) is a code word of a cyclic code 
then [cn -,C,,-3' , . cue,,-d, obtained by a cyclic shift of the elements of C, is 
also a code word, That is, all cyclic shifts of C are code words. As a 
consequence of the cyclic property, the codes possess a considerable amount of 
structure which can be exploited in the encoding and decoding operations, A 
number of efficient encoding and hard-decision decoding algorithms have been 
devised for cyclic codes that make it possible to implement long block codes 
with a large number of code words in practical communications systems. A 
description of specific algorithms is beyond the scope of this book. Our 
primary objective is to briefly describe a number of characteristics of cyclic 
codes. 

In dealing with cyclic codes. it is convenient to associate with a code word 
C = Ie" ·lC". 2 ... (,c,,] a polynomial C(p) of degree,;; n - 1, defined as 

C( ) n- I n--2 . 
P =Cn-lP +C,,-2P +","'C,P+CO (8·1-22) 

For a binary code. each of the coefficients of the polynomial is either zero or 
one. 

Now suppose we form the polynomial 

C( ) - n + nl + 1 P P -C,,_IP C,,-2P ",-ClP +C"p 
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This polynomial cannot represent a code word, since its degree may be equal 
to n (when c,,_, = 1). However, if we divide pC(p) by p" + I, we obtain 

pC(p)=c + C,(p) (8-1-23) 
p" + 1 " - , pn + 1 

where 
C,(P)=C,,-2P"-' +C,,_3P,,-2+ ... +c"p +C,,_I 

Note that the polynomial C1(p) represents the code word C, = 
[Cn 2' •• cocn-,I, which is just the code word C shifted cyclicly by one position. 
Since C,(p) is the remainder obtained by dividing pC(p) by p' + 1, we say 
that 

C,(p)=pC(p) mod(p" + I) (8-1-24) 

In a similar manner, if C(p) represents a code word in a cyclic ~ode then 
p'C(p) mod (p" + 1) is also a code word of the cyclic code. Thus we may write 

piC(p) = Q(p )(p" + 1) + C,(p) (8-1-25) 

where the remainder polynomial Ci(p) represents a code word of the cyclic 
code and Q(p) is the quotient. 

We can generate a cyclic rode by using a generator polynomial g(p) of 
degree n - k. The generator polynomial of an (n, k) cyclic code is a factor of 
p" + 1 and has the general form 

() 
,,- k + "-k - , 1 g P =p g,,-k-'P + ... +g,p + 

We also define a message polynomial X(p) as 

X(p)=x<_,p'-' +Xk_ 2pk-2+ ... +XIP +xo 

(8-1-26) 

(8-1-27) 

where [X.-,Xk-2· .. x,xo] represent the k information bits. Clearly, the product 
X (p )g(p) is a polynomial of degree less than or equal to n - 1, which may 
represent a code word. We note that there are 2' polynomials {Xi(p)}, and, 
hence, there are 2* possible code words that can be formed from a given g(p). 

Suppose we denote these code words as 

Cm(p)= Xm(p)g(p), m = 1. 2, ... ,2' (8-1-28) 
. 

To show that the code words in (8-1-28) satisfy the cyclic property, consider 
any code word C(p) in (8-1-28). A cyclic shift of C(p) produces 

C,(p) = pC(p) +c,,_,(p" + 1) (8-1-29) 

and, since g(p) divides both p" + 1 and C(p), it also divides C,(p), i.e., C,(p) 
can be represented as 

C.(p) = X,(p)g(p) 

Therefore, a cyclic shift of any code word C(p) generated by (8-1-28) yields 
another code word. 

From the above, we see that code words possessing the cyclic property can 
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be generated by multiplying the 2* message polynomials with a umque 
polynomial g(p), called the generator polynomial of the (n, k) cyclic code, 
which divides pn + 1 .and has degree n - k. The cyclic cooe generated in Ihis 
manner is a slibspace Sc of the vector space S. The dimension of Sc is k. 

Example 8-1-3 

ConSIder a code with block length n = 7. The polynomial p 7 + 1 has the 
following factors: 

p 7 + 1 = (p + j !(p' + p' - 1 )(p3 + P + 1) (8-1-30) 
. 

To generate a (7,4) cyclic code, we may take as a generator polynomial one 
of the following two polynomials: 

g,(p) = p3 + p2 + 1 

g2(P) = p3 + P + 1 
(8-1-31) 

The codes generated by g,(p) and g,(p) are equivalent. The code words in 
the (7,4) code generated by g ,(p) '" p3 + p2 + 1 are given in Table 8-1-2. 

In general, the polynomial p" + 1 may be factored as 

p" + 1 = g(p )h(p) 

where g(p) denotes the generator polynomial fOT the (n, k) cyclic code and 

TABLE 8-1-Z (7,4) CYCLIC CODE 
Generator Polynomial: g,{pl = pJ.,.. p2 + 1 

Information bits 

p' p2 

o 0 
o 0 
o 0 
o 0 
o 
o 
o 
o I 

o 
o 
o 
o 

p' 
0 
0 

I 
0 
0 
I 
I 
0 
0 

() 

0 

pO 
0 

0 

0 
! 

0 
I 
0 
I 
0 
1 
0 
1 
0 

Code words 

l' p5 p4 
000 
000 
o 0 
o 0 
o 
o 
o 
o 

1 
o 

I 
o 
o 
} 

o 

o 1 
o 0 
o 0 

p' p' 
0 0 
I I 

0 
0 I 
0 I 
! 0 
I 1 
J 0 
I 0 
0 1 
0 0 

I I 
0 0 
0 I 

0 

p' p" 
0 0 
a 1 
1 0 
I 1 
0 0 
0 I 
J 0 
1 I 
0 0 
0 1 

0 
I 
0 0 
0 I 

0 
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be generated by multiplying the 2* message polynomials with a umque 
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/rep) denotes the parity polynomial that has degree k. The latter may be used 
to generate the dual code. 

For this purpose, we define the reciprocal polynomial of /r(p) as 

pk/r(p-') = p'(p" + h._, p-k+' + hk _ Zp-k+2 + ... + h,p-I + 1) 

=1 +h._IP+h._,p'+ ... +h,p'-' +p' (8-1·32) 

Clearly, the reciprocal polynomial is also a factor of p' + 1. Hence, pkh(p -') is 
the generator polynomial of an (n, n - k) cyclic code. This cyclic code is the 
dual code to the (n, k) code generated from g(p). Thus, the (n, n - k) dual 
code constitutes the null space of the (n, k) cyclic code. 

Example 8-1-4 

Let us consider the dual code to the (7,4) cyclic code generated in Example 
8-1-3. This dual code is a (7,3) cyclic code associated with the parity 
polynomial 

h,(p) = (p-+ 1)(p3 + P + 1) 

= p4 + p' .,. p2 + 1 

The reciprocal polynomial is 

p4h,(p-') = 1 + P + p2 + p4 

(8-1-33) 

This polynomial generales the (7,3) dual code given in Table 8-1-3. The 
reader can verify that the code words in the (7,3) dual code are orthogonal 
to the code words in the (7,4) cyclic code of Example 8-1-3. Note titat 
neither the (7,4) nor the (7,3) codes are systematic. 

It is desirable to sitow how a generator matrix can be obtained from the 
generator polynomial of a cyclic (n, k) code. As previously indicated, the 
generator matrix for an (n, k) code can be constructed from any set 'of k 

(1.3) DUAL CODE 
Gener.,or Polynomial p4h,(p ')=p'+p'+p+ I 

IDformatiou bits Code words 

p' pi po p. p' p' pJ p' pi p" 
0 0 0 0 G 0 0 0 0 0 
0 0 0 a I 0 J J 
0 0 0 I oJ I 0 
0 I 0 I 0 0 I 

0 !l I I) I 0 0 
() I II II 0 I 
I 0 I I 0 II 0 

I 0 0 0 
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linearly independent code words. Hence, given the generator polynomial g(p). 
an easily generated set of k linearly independent code words is the code words 
corresponding to the set of k linearly independent polynomials 

p'-lg(p), p'-2g(p), ... , pg(p), g(p) 

Since any polynomial of degree less than or equal to n - 1 and divisible by 
g(p) can be expressed as a linear combination of this set of polynomials, the 
set forms a basis of dimension k. Consequently, the code words associated with 
these polynomials form a basis of dimension k for the (n, k) cyclic code. 

Example 8·1·5 

The four rows of the generator matrix for the (7,4) cyclic code with 
generator polynomial g 1 (p) = p3 + p2 + 1 are obtained from the polynomials 

pig,(p) = pHi + pHi + pi, i = 3, 2, 1, 0 

It is easy to see that the generator matrix is 

[

1 1 ° 1 0 
G_OIIOI 

1- 0 0 1 1 0 

o ° 0 1 I 

o 0] o 0 

1 0 

o 1 

(8-1-34) 

Similarly, the generator matrix for the (7,4) cyclic code generated by the 
polynomial g2(P) = po + P + 1 is 

[
1 0 1 1 0 0 0] 

G=OIOI100 
20010110 

0001011 

(8-1-35) 

The parity check matrices corresponding to G 1 and G2 can be constructed in 
the same manner by using the respective reciprocal polynomials (Problem 
8-8). 

Note that the generator matrix obtained by this construction is not in 
systematic form. We can construct the generator matrix of a cyclic code in the 
systematic form G = [Ik : PI from the generator polynomial as follows. First, 
we observe that the lth row of G corresponds to a polynomial of the form 
p.-I + RJ!p), 1= 1, 2, ... , k, where R,(p) is a polynomial of degree less than 
n - k. This form can be obtained by dividing p'-/ by g(p). Thus, we have 

p.-/ + R/(p) 
g(p) = Qlp) g(p) , I = 1, 2, ... , k 

or, equivalently, 

pn-I = Q/(p)g(p) + Rlp), {= 1, 2, ... ,k (8-1-36) 

437

CHAPTER 8: BLOCK AND CONVOLVTIONAL CHA~,"¥EL ('DOES 427 

linearly independent code words. Hence, given the generator polynomial g(p). 
an easily generated set of k linearly independent code words is the code words 
corresponding to the set of k linearly independent polynomials 

p'-lg(p), p'-2g(p), ... , pg(p), g(p) 

Since any polynomial of degree less than or equal to n - 1 and divisible by 
g(p) can be expressed as a linear combination of this set of polynomials, the 
set forms a basis of dimension k. Consequently, the code words associated with 
these polynomials form a basis of dimension k for the (n, k) cyclic code. 

Example 8·1·5 

The four rows of the generator matrix for the (7,4) cyclic code with 
generator polynomial g 1 (p) = p3 + p2 + 1 are obtained from the polynomials 

pig,(p) = pHi + pHi + pi, i = 3, 2, 1, 0 

It is easy to see that the generator matrix is 

[

1 1 ° 1 ° 
G_OIIOI 

1- 0 0 1 1 0 

o ° 0 1 I 

o 0] o 0 

1 0 

o 1 

(8-1-34) 

Similarly, the generator matrix for the (7,4) cyclic code generated by the 
polynomial g2(P) = po + P + 1 is 

[
1 0 1 1 0 0 0] 

G=OIOI100 
20010110 

0001011 

(8-1-35) 

The parity check matrices corresponding to G 1 and G2 can be constructed in 
the same manner by using the respective reciprocal polynomials (Problem 
8-8). 

Note that the generator matrix obtained by this construction is not in 
systematic form. We can construct the generator matrix of a cyclic code in the 
systematic form G = [Ik : PI from the generator polynomial as follows. First, 
we observe that the lth row of G corresponds to a polynomial of the form 
p.-I + RJ!p), 1= 1, 2, ... , k, where R,(p) is a polynomial of degree less than 
n - k. This form can be obtained by dividing p'-/ by g(p). Thus, we have 

p.-/ + R/(p) 
g(p) = Qlp) g(p) , I = 1, 2, ... , k 

or, equivalently, 

pn-I = Q/(p)g(p) + Rlp), {= 1, 2, ... ,k (8-1-36) 



428 DKilTAL CO~~il:NICATtONS 

where Q,(p) is the quotient. But p"~' + R,(p) is a code word of the cyclic code 
since p" -, + R,(p) = Q,(p )g(p), Therefore the desired polynomial correspond'­
ing to the lth row of G is p" -, + R,(p), 

Example 8·1·6 

For the (7,4) cyclic code with generator polynomial g2(P) = p' + p + I. 
previously discussed in Example 8-1-5, we have 

pO = (p' + P + l)g2(p) + p2 + 1 

p' = (p2 + I )g2(P) + p' + P + 1 

p' =pg,(p) + p' + P 

p' = g2(P) + p + 1 

Hence, the generator matrix of the code in systematic form is 

[

1 0 0 0 1 

o 1 0 0 I 
G2 =00101 

o 0 0 I 0 

and the corresponding parity check matrix is 

[

I 1 1 0 I 

O 2 = 0 1 1 1 [) 

1 I 0 1 [) 

o 0] 
I 0 

o 1 

(8-1-37) 

(8-1-38) 

It is left as an exercise for the reader to demonstrate that the generator 
matrix G 2 given by (8-1-35) and the systematic form given by (8-1-37) 
generate the same set of code words (Problem 8·2). 

The method for constructing the generator matrix G in systematic form 
according to (8-1-36) also implies that a systematic code can be generated 
directly from the generator polynomial g(p ~ Suppose that we multiply the 
message polynomial X(p) by p.-k, Thus, we obtain 

pn-·x(p) = x. ,p"-' + Xk_2P"-2 +., ,+ X,p"-k+l + XOp·ok 

In a systematic code, this polynomial represents the first k bits in the code 
word C(p). To this polynomial we must add a polynomial of degree less than 
n - k representing the parity check bits. Now, if p"o, X(p) is divided by g(p). 
the result is 

or, equivalently, 

Q(p) + r(p) 
g(p) 

p"-'X(p) = Q(p)g(p) + rIp) (8-1-39) 
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where riP) has degree less than 11 - k. Clearly. Q(p)g(p) is a code word of the 
cyclic code. Hence. by adding (modulo·2) rep) to both sides of (R-I-39). we 
obtain the desired systematic code. 

To summarize. the systematic code may be generated by 

I multiplying the message polynomial X(p) by p"'k; 
2 dividingp"-'X(p) by g(p) to obtain the remainder r(p); and 
3 adding r(p) to p" k X(p). 

Below we demonstrate how these computations can be performed by using 
shift registers with feedback. 

Since p" -+ I = g(p )h(p) or, equivalently, g(p )h(p) = 0 mod (p" -+ I). we 
say that the polynomials g(p) and h(p) aTe orthogonal. Furthermore. the 
polynomials p'g(p) and P'h(p) are also orthogonal for all j and j. However, the 
vectors corresponding to the polynomials g(p) and h(p) are orthogonal only if 
the ordered elements of one of these vectors are reversed. The same statement 
applies to the vectors corresponding to pig(p) and pih{p). In fact, if the parity 
polynomial h(p) is used as a generator for the (n, n - k) dual code, the set of 
code words obtained just comprises the same code words generated by the 
reciprocal polynomial except that the code vectors are reversed. This implies 
that the generator matrix for the dual code obtained from the reciprocal 
polynomial p'h(p-l) can also be obtained indirectly from h(p). Since the 
parity check matrix H for the (n, k) cyclic code is the generator matrix for the 
dual code, it follows that H can also be obtained from h(p). The following. 
example illustrates these relationships. 

Example 8-1-7 

The dual code to the (7,4) cyclic code generated by g,(p) =p'+p' + I is 
the (7,3) dual code that is generated by the reciprocal polynomial 
p4h ,(p -') = p. + p2 -+ P + I. However, we may also use h, (p) to obtain the 
generator matrix for the dual code. Then. the matrix corresponding to the 
polynomials p'h, (p). i = 2. 1. 0, is 

[

1 1 1 

G", = 0 I I 
001 

~ 0 ~ o]OJ 
1 1 0 

The generator matrix for the (7.3) dual code, which is the parity check 
matrix for the 17.4) cyclic code, consists of the rows of Gh1 taken in reverse 
order. Thus, 

H, = [~ ~ ~ 
1 0 1 

o 1 

1 1 

1 ] 

1 IJ 1 0 

o 0 

439

CHAPTER K BLOCK AND (,ONVOl.ttTIO!'Al CHAN"'iEL CODrs 429 

where riP) has degree less than 11 - k. Clearly. Q(p)g(p) is a code word of the 
cyclic code. Hence. by adding (modulo·2) rep) to both sides of (R-I-39). we 
obtain the desired systematic code. 

To summarize. the systematic code may be generated by 

I multiplying the message polynomial X(p) by p"'k; 
2 dividingp"-'X(p) by g(p) to obtain the remainder r(p); and 
3 adding r(p) to p" k X(p). 

Below we demonstrate how these computations can be performed by using 
shift registers with feedback. 

Since p" -+ I = g(p )h(p) or, equivalently, g(p )h(p) = 0 mod (p" -+ I). we 
say that the polynomials g(p) and h(p) aTe orthogonal. Furthermore. the 
polynomials p'g(p) and P'h(p) are also orthogonal for all j and j. However, the 
vectors corresponding to the polynomials g(p) and h(p) are orthogonal only if 
the ordered elements of one of these vectors are reversed. The same statement 
applies to the vectors corresponding to pig(p) and pih{p). In fact, if the parity 
polynomial h(p) is used as a generator for the (n, n - k) dual code, the set of 
code words obtained just comprises the same code words generated by the 
reciprocal polynomial except that the code vectors are reversed. This implies 
that the generator matrix for the dual code obtained from the reciprocal 
polynomial p'h(p-l) can also be obtained indirectly from h(p). Since the 
parity check matrix H for the (n, k) cyclic code is the generator matrix for the 
dual code, it follows that H can also be obtained from h(p). The following. 
example illustrates these relationships. 

Example 8-1-7 

The dual code to the (7,4) cyclic code generated by g,(p) =p'+p' + I is 
the (7,3) dual code that is generated by the reciprocal polynomial 
p4h ,(p -') = p. + p2 -+ P + I. However, we may also use h, (p) to obtain the 
generator matrix for the dual code. Then. the matrix corresponding to the 
polynomials p'h, (p). i = 2. 1. 0, is 

[

1 1 1 

G", = 0 I I 
001 

~o~o]OJ 
1 1 0 

The generator matrix for the (7.3) dual code, which is the parity check 
matrix for the 17.4) cyclic code, consists of the rows of Gh1 taken in reverse 
order. Thus, 

H, = [~ ~ ~ 
1 0 1 

o 1 

1 1 

1 ] 

1 IJ 1 0 

o 0 



430 DIGITAL COMMUNICATIONS 

The reader may verify that G1Hi = O. 
Note that the column vectors of H, consist of all seven binary vectors of 

length 3. except the all-zero vector. But this is just the description of the 
parity check matrix for a (7, 4) Hamming code. Therefore, the (7. 4) cyclic 
code is equivalent to the (7,4) Hamming code discussed previously in 
Examples 8-1·1 and 8-1-2. 

Ellc:oders fOI" Cyclic Codes The encoding operations for generating a 
cyclic code may be performed by a linear feedback shift register based on the 
use of either the generator polynomial or the parity polynomial. First, let us 
consider the use of g(p). 

As indicated above, the generation of a systematic cyclic code involves three 
steps, namely multiplying the message polynomial X(p) by pn-., dividing the 
product by g(p), and, finally. adding the remainder to p·-'X(p). Of these 
three steps, only the division is nontrivial. 

The division of the polynomial A(p) = pn-·x(p) of degree n - 1 by lhe 
polynomial 

may be accomplished by the (n - k) stage feedback shift register illustrated in 
Fig. 8-1-2. Initially, the shift register contains all zeros. The coefficients of A(p) 
are clocked into the shift register one (bit) coefficient at a time, beginning with 
the higher-order coefficients, i.e., with an-I. followed by an -2, and so on. After 
the kth shift, the first nonzero output of the quotient is q, = gn-oa •. 
Subsequent outputs are generated as illustrated in Fig. 8-1-2. For each output 
coefficient in the quotient, we must subtract the polynomial g(p) multiplied by 
that coefficient, as in ordinary long division. This subtraction is performed by 
means of the feedback part of the shift register. Thus, the feedback shift 
register in Fig. 8-1-2 performs division of two polynomials. 

In our case, gn-k = go = I, and, for binary codes, the arithmetic operations 
are performed in modulo-2 arithmetic. Consequently, the subtraction opera­
tions reduce to modulo-2 addition. Furthermore, we are only interested in 

FIGURE 8-1·2 A feedback snift register for dividing the polynomial A(p) by g(p). 

Quotient 
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Parity .check bits 

Message ® 
polynomial -------<..L.,~,-:" 
p"-lXtpJ -\ 

Message bits 

"' .. To modulator 

Encoding of a cyclic code by use of the generator polynomial g(p). 

generating the parity check bits for each code word, since the code is 
systematic. Consequently, tile encoder for the cyclic code· takes the form 
illustrated in Fig. g·1·3. The first k bits at the output of the encoder are simply 
the k information bits. These k bits are also clocked simultaneously into the 
shift register, since the switch 1 is in the closed position. Note that the 
polynomial multiplication of p" -k with X (p) is not performed explicitly. After 
the k information bits are all clocked into the encoder, the positions of the two 
switches are reversed. At this time, the contents of the shift register are simply 
the n - k parity check bits, which correspond to the coefficients of the 
remainder polynomial. These n - k bits are clocked out one at a time and sent 
to the modulator. 

Example 8-1-8 

The shift register for encoding the (7, 4) cyclic code witll generator 
polynomial g(p) = p3 + P + 1 is illustrated in Fig. 8·1·4. Suppose the input 

fiGURE 8·1-4 The encoder for the (7.4) qdic code with 
generator polynomial g(p) = p' + P ;- 1. 

Message bits 
OliO ___ --1---<~ 

Output 
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Encoding of a cyclic code by use of the generator polynomial g(p). 
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F1GURE 11-1-5 Encoder for an (n, k) cyclic code based on parity polynomial h(p). 

message bits are 0110. The contents of the shift register are as follows: 

Input Shift Shift register contents 

o 
1 
1 
o 

o 
1 
2 
3 
4 

000 
000 
1 1 0 
1 0 1 
1 0 0 

Hence, the three parity check bits are H)O, which correspond to the code 
bits c, = O. Co = 0, and c, = 1. 

Instead of using the generator polynomial, we may implement the encoder 
for the cyclic code by making use of the parity polynomial 

hlp) = p' +h._1P·-l + ... +h,p + 1 

The encoder is shown in Fig. 8-1-5. Initially, the k information bits are shifted 
into the shift register and simultaneously fed to the modulator. After all k 
information bits are in the shift register, the switch is thrown into position 2 
and the shift register is clocked n - k times to generate the n - k parity check 
bits as illustrated in Fig. 8-1-5. 

Example 8-1-' 

The parity polynomial for the (7,4) cyclic code generated by g(p) = 
p' + p + 1 is h(p) = p4 + p2 + P + I. The encoder for this code based on the 
parity polynomial is illustrated in Fig. 8-1-6. If the input to the encoder is 

FIGURE 11-1-6 The encoder for the (7,4) cyclic code based on the parity polynomial hIp) = p. + p' + I. 

Output 
ill 10001---JL..-j 
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the message bits OlIO, the parity check bits are c s = 0, Co = 0, and c, = I, a, 
is easily verified, 

It should be noted that the encoder based on the generator polynomial is 
simpler when n - k < k (k > in), I.e., for high rate codes (R,. > !), while tlte 
encoder based on the parity polynomial is simpler when k < n - k (k < !n). 
which corresponds to low rate codes (R,. < ~). 

Cyclic Hamming Codes The class of cyclic codes inClude tlte Hamming 
codes, which have a block length n = 2'" - I and n - k = m parity check bits, 
where m is any positive integer. The cyclic Hamming codes are equivalent to 
the Hamming codes described in Section 8-1-2. 

Cyclic (23,12) GoillY Code The linear (23,12) Golay code described in 
Section 8-1-2 can be generated as a cyclic code by means of the generator 
polynomial 

g(p) = pI' -"- p9 -"- P 7 + pO + p' + P + 1 

The code words have a minimum distance dmin = 7. 

(8-1-40) 

Maximum-Length Shift-Register Codes Maximum-length shift-register 
codes are a class of cyclic codes with 

(n, k) = (2'" -1. m) (8-1-411 

where m is a positive integer. The code words are usually generated by means 
of an m -stage digital shift register with feedback, based on the parity 
polynomial. For each code word to be transmitted, the m information bits are 
loaded into the shift register, and the switch is thrown from position I to 
position 2. The contents of the shift register are sltifted to the left one bit at a 
time for a total of 2m 

- 1 shifts. This operation generates a systematic code 
with the desired output length n = 2m 

- 1. For example, the code word~ 
generated by the m = 3 stage shift register in Fig. 8-1-7 are listed in Table 
8·1-4. 

Note that, with the exception of the all-zero code word, all the code words 
generated by the shift register are different cyclic shifts of a single code word. 
The reason for this structure is easily seen from the state diagram of the shift 
register, which is illustrated in Fig. 8-1-8 for m = 3. When the shift register is 
loaded initially and shifted 2m 

- 1 times, it will cycle through all possible 2m - 1 
states. Hence, the shift resgister is back to its original state in 2m - 1 shifts. 

r---------~+r_--, 

FIGURE 8·1·7 Three·stage (m ~ 3) shift register with 
feedback. Outpul 
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TABLE 8-\-4 

4J4 DIGITAL CO~Mt:SICATIO~S 

MAXIMUM·LENGTH SHIFT·REGISTER CODE FOR m = 3 

Information bils Codew_ 

0 (J {) 0 {) 0 £I 0 0 0 
0 () I {) 0 I 0 I 
0 0 I) {) 0 
II 1 0 1 1 0 0 
I () 0 0 0 I I 0 
1 0 {) I 0 U I 

0 1 0 1 0 0 1 
1 0 0 0 

Consequently, the output sequence is periodic with length n = 2m - L Since 
there are 2'" - 1 possible states, this length corresponds to the largest possible 
period. This explains why the 2m 

- 1 code words are different cyclic shifts of a 
single code word. 

Maximum-length shift-register codes exist for any positive value of m. 

FlGVRE II-J-II The seven states for !he m = 3 maximum length shift 
register. 
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TABLE 8-1-5 SHIFf-REGISTER CONNECTIO'lS FOR GENERATING MAXIMUM-LENGTH 
SEQUENCES 

Stage. con.ected Stages connected Stages CORnected 

m to modulo-2 adder m to modolo-2 adder m 10 modul .... 2 adder 

2 i.2 13 I. 10. 11. 13 24 1.18.23.24 
3 1.3 14 1.5.9.14 25 1. 23 
4 1.4 15 I, 15 26 I, 21. 25. 26 

~ 1.4 16 1.5,14. 16 27 I, 23. 26. 27 

6 1.6 I, 1.15 28 1.26 
7 1.7 18 I. 12 29 l. 2~ 
8 1.5. O. 7 19 I. 15.18. 19 30 I, 8. 29. 30 

9 1.6 20 I. 18 31 1,29 
10 1,8 21 1.20 32 1.11.31.32 
II 1.10 22 1,22 33 I, 21 
12 1.7.9,12 23 I. 19 34 1. 8.33,34 

Suurce.- Forney 1197(h. 

Table 8-1-5 lists the stages connected to the modulo-2 adder that result in a 
maximum-length shift register for 2,;;; m ,;;; 34. 

Another characteristic of the code words in a maximum-length shift-register 
code is that each code word, with the exception of the all-zero code word. 
contains 2m lanes and 2m ~ I zeros. Hence all these code words have identical 
weights. namely, w = 2m

-
I
. Since the code is linear, this weight is also the 

minimum distance of the code, i.e., 

Finally, note thai the (7,3) maximum-length shift-register code shown in 
Table 8-1-4 is identical to the (7,3) code given in Table 8-1-3, which is the dual 
of the (7,4) Hamming code given in Table 8-1-2. This is not a coincidence. The 
maximum-length shift-register codes are the dual codes of the cyclic Hamming 
(2"' -1, 2m -1 - m) codes. 

The shift register for generating the maximum-length code may also be used 
10 generate a periodic binary sequence with period n = 2m 

- I. The binary 
periodic sequence exhibits a periodic autocorrelation "'(m) with values 
q,(m) = n for m = 0, ±n, ±2n, ... , and q,(m} = -1 for all other shifts as 
described in Section 13-2-4. This impulse-like autocorrelation implies that the 
power spectrum is nearly white and, hence, the sequence resembles white 
noise. As a consequence, maximum-length sequences are called pseudo-noise 
(PN) sequences and find use in the scrambling of data and in Ihe generation of 
spread spectrum signals. 

Bose-Cbaudhuri-Hocquenghem (BCH) Codes BGI codes comprise a 
large class of cyclic codes that include both binary and nonbinary alphabets 
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Binary BCH codes may be constructed with parameters 

n -k~mt (8-142) 

dm>n = 21 + 1 

where m (m ~ 3) and 1 are arbitrary positive integers. Hence, this class of 
binary codes provides the communications system designer with a large 
selection of block lengths and code rates. Nonbinary BCH codes include the 
powerful Reed-Solomon codes that are described later. 

The generator polynomials for BCH codes can be constructed from factors 
of pzm- I + 1. Table 8·1-6 lists the coefficients of generator polynomials for 
BCH codes of block lengths 7,,:;; n ~ 255, corresponding to 3,,; m ,,; 8. The 
coefficients are given in octal form, with the left-most digit corresponding to 
the highest-degree term of the generator polynomial. Thus, the coefficients of 
the generator polynomial for the (15, 5) code are 2467, which in binary form is 
10 100 110 111. Consequently, the generator polynomial is g(p) = P IU + p" + 
p' + p' + p2 + P + L 

A more extensive list of generator polynomials for BCH codes is given by 
Peterson and Weldon (l972), who tabulate the polynomial factors of p2

m
.- I + 1 

for m ~34. 

8-1-4 Optimum Soft-Decision Decoding of Linear BIoc:k 
Codes 

In this subsection, we derive the performance of linear binary block codes on 
an AWGN channel when optimum (unquantized) 80ft-decision decoding is 
employed at the receiver. The bits of a code word may be transmitted by any 
one of the binary signaling methods described in Chapter 5. For our purposes, 
we wnsider binary (or quaternary) coherent PSK, which is the most efficient 
method. and binary orthogonal FSK either with coherent detection or 
noncoherent detection. 

Let 'If denote the transmitted signal energy per code word and let '6, denote 
the signal energy required to transmit a single element (bit) in the code word. 
Since there are n bits per code word, g = n go and since each code word 
conveys k bits of information, the energy per information bit is 

'If n ~. 
'If. = k = Ie 'If, = R, (8-1-43) 

The code words are assumed to be equally likely a priori with prior probability 
11M. 

Suppose the bits of a code word are transmitted by binary PSK. Thus each 
code word results in one of M signaling wavefonms. From Chapter 5, we know 
that the optimum receiver, in the sense of minimizing the average probability 
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TABLE 8-1-li COEFFICIENTS OF GENERATOR POLYNOMIALS (IN OcrAL FORM) FOR BCH 
CODES OF LENGTHS 7<C'n ",255 

n k I g(p) 

7 4 13 
15 !1 23 

7 2 721 
5 3 2467 

31 26 45 
21 2 3551 
16 3 107657 
1I 5 5423325 
6 7 313365047 

63 57 1 103 
51 2 12471 
45 3 1701317 
39 1 166623567 
36 5 1033500423 
30 6 157464165547 
24 7 17323260404441 
18 10 1363026512351725 
16 11 6331141367235453 
10 13 472622305527250155 
7 15 5231045543503271737 

127 120 1 211 
113 2 41567 
106 J 11554143 
99 4 3447023271 
92 5 624730022327 
85 6 130704476322273 
78 7 26230002166130115 
71 9 6255010713253127753 
64 10 1206534025570773100045 
57 11 335265252505705053517721 
50 13 54446512523314012421501421 
43 14 17721772213651227521220574343 
36 15 3146074666522075044764574721735 
29 21 403114461367670603667530141176155 
22 23 123376070404722522435445626637647043 
15 27 22057042445604554770523013762217604353 
8 31 7047264052751030651476224271567733130217 

255 247 1 435 
239 2 267543 
231 3 156720665 
223 4 75626641375 
215 5 23157564726421 
207 6 16176560567636227 
199 7 7633031270420722341 
191 8 2663470176115333714567 
187 9 52755313540001322236351 
179 10 22624710717340432416300455 
17l 11 1541621421234235607706163067 
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TABLE II-H, (C ontilUled) 

" Ie t g(p) 

163 12 7500415510075602551574724514601 
155 J3 3757513OOS407665015722506464677633 
147 14 1642130173537165525304165305441011711 
139 15 461401732060175561570722730247453567445 
13: 18 2157133314715101512612502774421420241 

65471 
123 19 1206140522420660037172103265161412262 

72506267 
115 21 6052666557210024726363640460027635255 

6313472737 
107 22 2220577232206625631241730013534742017 

6574750154441 
99 23 1065666725347317422274141620157433225 

241107643230J431 
91 25 6750265030327444172723631724732511075 

550762720724344561 
87 26 1101367634147432364352316343071720462 

06722545273311721317 
79 27 6610003563765750002027034420736617462 

1015326711766541342355 
71 29 2402471052064432151555417211233116320 

5444250362557643221706035 
63 30 1075447505516354432531521735770700366 

6111726455267613656702543301 
55 31 73154252035011oo133015275306032D54325 

414326755010557044426035473617 
47 42 2533542017062646563033041377406233175 

123334145446045005066024552543173 
45 43 1520205605523416113110134637642370156 

3670024470762373033202157025051541 
37 45 5136330255067007414177447245437530420 

735706174323432347644354737403~3 
29 47 3025715536673071465527064012361377115 

34224232420117411406025475741040356 
5037 

21 55 1256215257060332656001773153607612103 
22734140SnS>074542521 15312161446651 
3473725 

13 59 4641732005052564544426573714250066004 
33067744547656140317467721357026134 
460500547 

9 63 1572602521747246320103104325535513461 
41623672120440745451127661155477055 
61677516057 

SOU7«, S<enbit (1964). © 1964 IEEE. 
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139 15 461401732060175561570722730247453567445 
13: 18 2157133314715101512612502774421420241 

65471 
123 19 1206140522420660037172103265161412262 

72506267 
115 21 6052666557210024726363640460027635255 

6313472737 
107 22 2220577232206625631241730013534742017 

6574750154441 
99 23 1065666725347317422274141620157433225 

241107643230J431 
91 25 6750265030327444172723631724732511075 

~50762720724344561 

87 26 1101367634147432364352316343071720462 
06722545273311721317 

79 27 6670003563765750002027034420736617462 
1015326711766541342355 

71 29 2402471052064432151555417211233116320 
5444250362557643221706035 

63 30 1075447505516354432531521735770700366 
6111726455267613656702543301 

55 31 73154252035011oo133015275306032D54325 
414326755010557044426035473617 

47 42 2533542017062646563033041377406233175 
123334145446045005066024552543173 

45 43 1520205605523416113110134637642370156 
3670024470762373033202157025051541 

37 45 5136330255067007414177447245437530420 
735706174323432347644354737403~3 

29 47 3025715536673071465527064012361377115 
34224232420117411406025475741040356 
5037 

21 55 1256215257060332656001773153607612103 
22734140SnS>074542521 15312161446651 
3473725 

13 59 4641732005052564544426573714250066004 
33067744547656140317467721357026134 
460500547 

9 63 1572602521747246320103104325535513461 
41623672120440745451127661155477055 
61677516057 

SOU7«, S<enbit (1964). © 1964 IEEE. 
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of a code word error, for the A WON channel, can be reahzed as a parallel 
bank of M filters matched to the M possible transmitted waveforms. The 
outputs of the M matched filters at the end of each signaling interval, which 
encompasses the transmission of n bits in the code word. are compared and the 
code word corresponding to the largest matched filter output is selected. 
Alternativelv, M cross-correlators can be employed. In either case. the receiver 
implementation can be simphfied. That is, an equivalent optimum receiver can 
be realized by use of a single filter (or cross-correIa tor) matched to the binary 
PSK waveform used to transmit each bit in the code word, followed by a 
decoder that forms the M decision variables corresponding to the M code 
words. 

To be specific, let r" i = 1, 2, ... , n, represent the n sampled outputs of the 
matched filter for any particular code word. Since the signaling is binary 
coherent PSK the output 'I may be expressed either as 

rj = ~ -t- n, 

when the jlh bit of a code word is a I, or as 

rj = -~+nl 

(8-1-44) 

(8-1-45) 

when the jth bit is a O. The variables In,} represent additive white gaussian 
noise at the sampling instants. Each nj has zero mean and variance 4,\1". From 
knowledge of the M possible transmitted code words and upon reception of 
{r,}, the optimum decoder forms the M correlation metrics 

" eM, = qr. C,) = 2: (2c,; - 1)'1, i = 1,2, ... ,!vi (8-1-46) 
J-"-l 

where eii denotes the bit in the jlh position of the ith code word. Thus, if 
c" ; I, the weighting faclor 2c'J - 1 = 1, and if c

N 
= 0, the weighting factor 

2c'J - 1 ; -1. In this manner, the weighting 2Cij - 1 aligns thee signal com­
ponents in {rJ such that the correlation metric corresponding to the actual 
transmitted code word will have a mean value W,n, while the other M - 1 
metrics will have smaller mean values. 

Although the computations involved in forming the correlation metrics for 
soft-decision decoding according to (8-1-46) are relatively simple, it may still be 
impractical to compute (8-1-46) for all the possible code words when the 
number of code words is large. e.g .• M > 210. In such a case it is still possihle 10 

implement soft-decision decoding using algorithms which employ techniques 
for discarding improbable code words without computing their entire correla­
tion metrics as given by (8-1-46). Several different types of soft-decision 
decoding algorithms have been described in the technical literature. The 
interested reader is referred to the papers by Forney (1966b). Weldon (J <)71). 
Chase (1972), Wainberg and Wolf (1973). Wolf (1978), and Matis and 
Modestino (1982). 

In determining the probability of error for a linear block code. note that 
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when such a code is employed on a binary-input, symmetric channel such as 
the A WGN channel with optimum soft-decision decoding, the error probability 
for the transmission of the mth code word is the same for all m. Hence, we 
assume for simplicity that the all-zero code word C, is transmitted. For correct 
decoding of C,. the correlation metric eM, must exceed all the other M - I 
correlation metrics eM"" m = 2, ... , M. All the eM are gaussian distributed. 
The mean value of eM, is ~Il, while the mean values of eM"" m = 2 .... , M 
is ~n(l - 2w",ln). The variance of each decision variable is iN". The 
derivation of the exact expression for the probability of correct decoding or, 
equivalently. the probability of a code word error is complicated by the 
correlations among the M correlation metrics. The cross-correlation 
coefficients between C, and the other M - 1 code words are 

p" = I - 2w,,./n, m = 2 ..... /IJ (8-1-47) 

where w'" denotes the weight of the mth code word. 
Instead of attempting to derive the exact error probability. we resort to a 

union bound. The probability that eM", > eM., is 

where 'l = k ',[0 is the transmitted energy per waveform. 
from (8-1-47) and for 'l yields 

!U 
P2(ffl)=Q( ..j!iR,w",) 

= Q(V2Yh R,Wm) 

(8·1-48) 

Substitution for (Jm 

(8-1-49\ 

where "If> is the SNR per bit and R, is the code rale. Then the average 
probability of a code word error is bounded from above by the sum of the 
binary error events given by (8-1-49). Thus. 

Hr=2 

M 

~ I Q(V2YbR,Wm) (8-1-50) 
fl/=2' 

The computation of the probability of error for soft-decision decoding 
according to (8-1-50) requires knowledge of the weight distribution of the 
code. Weight distributions of many codes are given in a number of texts on 
coding theory, e.g., Beriekamp (1968) and MacWilliams and Sloane (1977). 

A somewhat looser bound is obtained by noting that 

Q(V2YhR,Wm) ~ Q(V2Yb R,dm'n) < exp (-YbR,.d",'n) (8-1-51) 

Consequently, 

(8-1-52) 
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This hound is particularly useful since it does not require knowledge of the 
weight distrihution of the code. When the upper bound in (8-1-52) is compared 
with the performance of an uncoded binary PSK system, which is upper­
hounded as ~ exp ( - Yo), we find that coding yields a gain of approximately 
III log (R. d",;n - k In 2/1'&) dB. We may call this the coding gain. We nOle that 
its value depends on the code parameters and also on the SNR per hit Yo 

The expression for the probability of error for equicorrelated waveforms 
that can be obtained for the simplex signals described in Section 5-2 gives us 
vel a third approximation to the error probabilities for coded waveforms. We 
know that the maximum cross-correlation coefficient between a pair of coded 
waveforms is 

2 
Pmfi'J( =}- -dmin 

n 
(8-1-53) 

If we assume as a worst case that all the M code words have a cross-correlation 
coefficient equal to P. ax then the code word error probability can easily be 
manipulated. Since some code words are separated by more than the minimum 
distance, the error probability evaluated for p, = Pm., is actually an upper 
bound. Thus, 

(R-I-54) 

The bounds on the performance of linear block codes given above are in 
terms of the block error or code word error probability. The evaluation of the 
equivalent bit error probability Pa is much more complicated. In general. when 
a block error is made, some of the k information bits in the b:ock will be 
correct and some will be in error. For orthogonal waveforms, the conversion 
factor that multiplies PM to yield Ph is 2k -'/(2' -1). This factor is unity for 
k = 1 and approaches! as k increases, which is equivalent to assuming that. on 
the average, half of the k bits will be in error when a block error occurs. The 
conversion factor for coded waveforms depends in a complicated way on the 
distance properties of the code, but is certainly no worse than assuming that, 
on the average, half of the k bits will be in error when a block error occurs. 
Consequently, Ph';; !PM . 

The bounds on performance given by (8-1-50), (8-1-52), and (8-1-54) also 
apply to the case in which a pair of bits of a code word are transmitted by 
quaternary PSK, since quaternary PSK may be viewed as being equivalent to 
two independent binary PSK waveforms transmitted in phase quadrature. 
Furthermore, the bounds in (8-1-52) and (8-1-54), which depend only on the 
mmimum distance of the code, apply also to nonlinear binary block codes. 

If binary orthogonal FSK is used to transmit each bit of a code word on the 
AWGN channel, the optimum receiver can be realized by means of two 
matched filters, one matched to the frequency corresponding to a transmission 
of a 0, and the other to the frequency corresponding to a transmission of a 1. 
followed by a decoder that forms the M correlation metrics corresponding to 

451

CH-\I-'ITH: 1'\ Bt nell:. A:'\i{) CON\'()UTIO!\OAL PfA"l~H COf)t-S 441 

This hound is particularly useful since it does not require knowledge of the 
weight distrihution of the code. When the upper bound in (8-1-52) is compared 
with the performance of an uncoded binary PSK system, which is upper­
hounded as ~ exp ( - Yo), we find that coding yields a gain of approximately 
III log (R. d",;n - k In 2/1'&) dB. We may call this the coding gain. We nOle that 
its value depends on the code parameters and also on the SNR per hit Yo 

The expression for the probability of error for equicorrelated waveforms 
that can be obtained for the simplex signals described in Section 5-2 gives us 
vel a third approximation to the error probabilities for coded waveforms. We 
know that the maximum cross-correlation coefficient between a pair of coded 
waveforms is 

2 
Pmfi'J( =}- -dmin 

n 
(8-1-53) 

If we assume as a worst case that all the M code words have a cross-correlation 
coefficient equal to P. ax then the code word error probability can easily be 
manipulated. Since some code words are separated by more than the minimum 
distance, the error probability evaluated for p, = Pm., is actually an upper 
bound. Thus, 

(R-I-54) 

The bounds on the performance of linear block codes given above are in 
terms of the block error or code word error probability. The evaluation of the 
equivalent bit error probability Pb is much more complicated. In general. when 
a block error is made, some of the k information bits in the b:ock will be 
correct and some will be in error. For orthogonal waveforms, the conversion 
factor that multiplies PM to yield Ph is 2k -'/(2' -1). This factor is unity for 
k = 1 and approaches! as k increases, which is equivalent to assuming that. on 
the average, half of the k bits will be in error when a block error occurs. The 
conversion factor for coded waveforms depends in a complicated way on the 
distance properties of the code, but is certainly no worse than assuming that, 
on the average, half of the k bits will be in error when a block error occurs. 
Consequently, Ph';; !PM . 

The bounds on performance given by (8-1-50), (8-1-52), and (8-1-54) also 
apply to the case in which a pair of bits of a code word are transmitted by 
quaternary PSK, since quaternary PSK may be viewed as being equivalent to 
two independent binary PSK waveforms transmitted in phase quadrature. 
Furthermore, the bounds in (8-1-52) and (8-1-54), which depend only on the 
mmimum distance of the code, apply also to nonlinear binary block codes. 

If binary orthogonal FSK is used to transmit each bit of a code word on the 
AWGN channel, the optimum receiver can be realized by means of two 
matched filters, one matched to the frequency corresponding to a transmission 
of a 0, and the other to the frequency corresponding to a transmission of a I. 
followed by a decoder that forms the M correlation metrics corresponding 10 



442 DIGITAL COM~WSIC ATIONS 

the M possible code words. The detection al the receiver may be coherent or 
noncoherent. In either case. let rOj and r" dellote the input samples to the 
combiner. The correlation metries formed by the decoder may be expressed as . 

" 
eM, = L (Ci"" + (1 - e")",,I, i = 1.2 ..... M (8-1-55) 

1=1 

where e,i represents the jlh bit in the ith code word. The code word 
corresponding to the largest of the {eM,} is selected as the transmitted code 
word. 

If the detection of the binary FSK waveforms is coherent, the random 
yariables (roJ and {r,,} are gaussi~n and. hence. the correlation me tries {eM,) 
are also gaussian. In this case. bounds on the performance of the code are 
easily obtained. To be specific, suppose that the all-zero code word C, is 
transmitted. Then, 

(8-1-56) 

where the {lIul, i = 0.1. j = 1,2 ..... n, are mutually statistically independent 
gaussian random variables with zero mean and variance ~No Consequently 
eM, is gaussian with mean VE.'n and variance ~lVo. On the other hand. the 
correlation metric eMm , corresponding to the code word having weight w,'" is 
gaussian with mean ~n(l - w",/n) and variance inN". Since the {eM",} are 
correlated. we again resort to a union bound. The correlation coefficients are 
given by 

Pm = I-wm /n (8-1-57) 

Hence. the probability that eM", > eM, is 

P2(m) = Q(VYbRcwm) (8-1-58) 

Comparison of this result with that given in (8-1-49) for coherent PSK reveals 
that coherent PSK requires 3 dB less SNR to achieve the same performance. 
This is not surprising in view of the fact that uncoded PSK is 3 dB better than 
binary orthogonal FSK with coherent detection. Hence, the advantage of PSK 
over FSK is maintained in the coded waveforms. We conclude. then, that the 
bounds given in (8-1-50), (S-I-52). and (8-1-54) apply to coded waveforms 
transmitted by binary orthogonal coherent FSK with Yb replaced by hh' 

If square-law detection of the binary orthogonal FSK signal is employed at 
the receiver,' the performance is further degraded by the noncoherent 
combining Joss, as shown in Chapter 12. Suppose again that the all-zero code 
word is transmitted. Then the correlation me tries are given by (8-1-55), where 
the input variables to the decoder are now 

rOj = i~ + No/} 
2 j = 1, 2, ... ,n 

r'j =iNljl 
(8-1-59) 
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where {No) and {N,,} represent complex-valued mutually statistically indepen­
dent gaussian random variables with zero mean and variance No. The 
correlation metric CM, is given as 

(8-1-60) 

while the correlation metric corresponding to the code word having weight 
w", is statistically equivalent to the correlation metric of a code word in which 
em} = I for 1,,;; j ,,;; w" and em} = 0 for Wm + 1 '" j,,;; n. Hence, CM., may be 
expressed as 

W,,, n 

CMm = L r'j + L ro} 
J=l )=""...,.+1 

The difference between CM, and CMm is 

eM, - CMrn = L (ro} - r,J 
;=1 

(8-1-61 ) 

(8-1-62 ) 

and the probability of error is simply the probability that eM, - CMm < O. But 
this difference is a special case of the general quadratic form in complex-valued 
gaussian random variables considered in Chapter 12 and Appendix B. The 
expression for the probability of error in deciding between eM, and eM" is 
(see Section 12-1-1) 

1 1<.", - I 

p,(m)=Z2'm_,exp(-hbR,Wm) ~ K,(hbR,WmY (8-1·63) 

where, by definition, 

K =.!. "m~ -j (2Wm - 1 
, ., L. ) 

l. r=U r 
(8-1·64) 

The unfon bound obtained by summing P,(m) over 2 ,,;; m ,,;; M provides us with 
an upper bound on the probability of a code word error. 

As an alternative, we may use the minimum distance instead of the weight 
distribution to obtain the looser upper bound 

M -1 dm",-I . 

PM ~ 22dm,o I exp (- hbRcdm;n) i~ KjCh'bRcdmin)' (8-1·65 ) 

A measure of the noncoherent combining loss inherent in the square-law 
detection and combining of the n elementary binary FSK waveforms in a code 
word can be obtained from Fig. 12-1·1, where dm'n is used in place of L. The 
loss obtained is relative to the case in which the n elementary binary FSK 
waveforms are first detected coherently and combined as in (8-1-55) and then 
the sums are square-law-detected or envelope-detected to yield the M decision 
variables. The binary error probability (or the latter case is 

P2(m)=~expC-hhRwm) (8-1·66) 
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and, hence, 
M 

P",;; I PAm) 
nl=2 

If d min is used instead of the weight distribution, the union bound for the code 
word error probability in the latter case is 

(8-1-67) 

The channel bandwidth required to transmit the coded waveforms can be 
determined as follows. If binary PSK is used to transmit each bit in a code 
word, the required bandwidth is approximately equal to the reciprocal of the 
time interval devoted to the transmission of each bit. For an information rate 
of R bits/s, the time available to transmit k information bits and n - k 
redundant (parity) bits (n total bits) is T =k/R. Hence, 

1 n R 
W=-=-=-

TIn klR R, 
(8-1-68) 

Therefore, the bandwidth expansion factor B, for the coded waveform is 

W 
B=­, R 

n 1 
=-=- (8-1-69) 

On the other hand, if binary FSK with noncoherent detection is employed for 
transmitting the bits in a code word, W =2n/T. and, hence, the bandwidth 
expansion factor increases by approximately a factor of 2 relative to binary 
PSK. In any case, B, increases inversely with the code rate, or, equivalently, it 
increases linearly with the block size n. 

·We are now in a position to compare the performance characteristics and 
bandwidth requirements of coded signaling waveforms with orthogonal signal­
ing waveforms. A comparison of the expression for PM given in (5-2-21) for 
orthogonal waveforms and in (8-1-54) for coded waveforms with coherent PSK 
indicates that the coded waveforms result in a loss of at most 
10 log (n /2dm •n ) dB relative to orthogonal waveforms flaving the same number 
of waveforms. On the other hand, if we compensate for the loss in SNR due to 
coding by increasing the number of code words so that coded transmission 
requires Me = 2', waveforms and orthogonal signaling requires M" = 2'" 
waveforms then [from the union bounds in (5-2-27) and (8-1-52)], the 
performance obtained with the two sets of signaling waveforms at high $NR is 
about equal if 

(8-1-70) 
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Under this condition, the bandwidth expansion factor for orthogonal signaling 
can be expressed as 

(8-1-71) 

while, for coded signaling waveforms, we have B<c = 1/ Rc. The ratio of B,,, 
given in (8-1-71) to Bm which is 

(8-1-72) 

provides a measure of the relative bandwidth between orthogonal signaling 
and signaling with coded coherent PSK waveforms. 

For example, suppose we use a (63,33) binary cyclic code that has a 
minimum distance dm ," = 12. The bandwidth ratio for orthogonal signaling 
relative to this code, given by (8-1-72), is 127. This is indicative of the 
bandwidth efficiency obtained through coding relative to orthogonal signaling. 

8-1-5 Hard-Decision Decoding 
The bounds given in Section 8-1-4 on the performance of coded signaling 
waveforms on the A WGN channel are based on the premise that the samples 
from the matched filter or cross correia tor are not quantized. Although this 
processing yields the best performance, the basic limitation is the computa­
tional burden of forming M correlation metries and comparing these to obtain 
the largest. The amount of computation becomes excessive when the number 
M of code words is large. 

To reduce the computational burden, the analog samples can be quantized 
and the decoding operations are then performed digitally. In this subsection, 
we consider the extreme situation in which each sample corresponding to a 
single bit of a code word is quantized to two levels: zero and one. That is, a 
(hard) decision is made as to whether each transmitted bit in a code word is a 0 
or a 1. The resulting discrete-time channel (consisting of the modulator, the 
A WGN channel, and the demodulator) constitutes a BSe with crossover 
probability p. If coherent PSK is employed in transmitting and receiving the 
bits in each code word then 

P=Q(f!:) 
= Q(V2YbRc) (8-1-13) 

On the other hand, if FSK is used to transmit the bits in each code word then 

p = Q(VYbRc) (8-1-74) 

for coherent detection and 

(8-1-75) 

for noncoherent detection, 
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Minimum-Distance (Maximum-likelihood) Decoding The n bits from the 
demodulator corresponding to a received code word are passed to the decoder, 
which compares the received code word with the M possible transmitted code 
words and decides in favor of the code word that is closest in Hamming 
distance (number of bit positions in which two code words differ) to the 
received code word. This minimum distance decoding rule is optimum in the 
sense that it results in a minimum probability of a code word error for the 
binary symmetric channel. 

A conceptually simple, albeit computationally inefficient, method for 
decoding is to first add (modulo Z) the received code word vector to all the M 
possible transmitted code words Ci to obtain the error vectors e,. Hence, ei 
represents the error event that must have occurred on the channel in order to 
transform the code word C i into the particular received code word. The 
number of errors in transforming C, into the received code word is just equal 
to the number of 1s in e,. Thus, if we simply compute the weight of each of the 
M error vectors {e,} and decide in favor of the code word that results in the 
smallest weight error vector, we have, in effect, a realization of the minimum 
distance decoding rule. 

A more efficient method for hard-decision decoding makes use of the parity 
check matrix H. To elaborate, suppose that Co. is the transmitted code word 
and Y is the received code word at the output of the demodulator. In general, 
Y may be expressed as 

Y=Cm +e 

where e denotes an arbitrary binary error vector. The product YH' yields 

YH' = (Cm + e)H' 

=eH'=S (8-1-76) 

where the (n - k )-dimensional vector S is called the syndrome of the error 
pattern. In other words, the vector S has components that are zero for all parity 
check equations that are satisfied and nonzero for all parity check equations 
that are not satisfied. Thus, S contains the pattern of failures in the parity 
checks. 

We emphasize that the syndrome S is a characteristic of the error pattern 
and not of the transmitted code word. Furthermore, we observe that there are 
zn possible error patterns and only zn-k syndromes. Consequently, different 
error patterns result in the same syndrome. 

Suppose we construct a decoding table in which we list all the 2' possible 
code words in the first row, beginning with the all-zero code word in the first 
(left-most) column. This all-zero code word also represents the all-zero error 
pattern. We fill in the first column by listing first all n - 1 error patterns {e,} of 
weight 1, If n < 2n

-
k

, we may then list all double error patterns, then all triple 
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error patterns, etc., until we have a total of 2"~A entries in the first column. 
Thus, the number of rows that we can have is 2" ~ k, which is equal to the 
number of syndromes . .\Iext, we add each error pattern in the first column to 
the corresponding code words. Thus, we fill in the remainder of Ihe n A (n - k) 

table as follows: 

c, C, C, C2' 

e7 C, + eo C, +e2 C2, + e., 

e, C2 + e3 C, +e,' C2, + e, 

e"2" ~ C2 + e2" , C, + e2"-' C2, + "2'" 

This table is called a standard array. Each row, including the first, consists of k 
possible received code words that would result from the corresponding error 
pattern in the first column. Each row is called a coset and the first (left-most) 
code word (or error pattern) is called a coset leader. Therefore. a coset consists 
of all the possible received code words resulting from a particular error pattern 
(coset leader). 

Example 8-1-10 

Let us construct the standard array for the (5,2), systematic code with 
generator matrix given by 

G=[l 0 1 0 1] 
o 1 0 I 1 

Thic code has a minimum distance dmin = 3. The standard array is given in 
Table 8-1·7, Note that in this code, the coset leaders consist of the all-zero 
error pattern, five error patterns of weight 1, and two error patterns of 

STA:-IDARD ARRAY FOR THE (5,2) CODE 

Code WOrdl 

000119 o 1 011 10101 I 1 1 1 0 

00001 o I 0 I 0 10100 I I I I 1 
00010 o 1 00 J 10111 1 t I 0 a 
o 0 tOO o 1 1 I I 000 1 1 1 0 1 0 
o 1 000 0001 1 1 1 0 1 1 0 1 1 0 
I Q 0 0 a I I 0 I a 0 I 0 I o I 1 1 0 
1 I 0 00 1 0 0 1 I o J 1 0 1 o 0 1 1 0 
10010 1 1 00 J 00111 o I 1 0 0 
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weight 2. Although many more double error patterns exist, there is only 
room for two to complete the table. These were selected such that their 
corresponding syndromes are distinct from those of the single error 
patterns. 

Now, suppose that e, is a coset leader and that em was the transmitted code 
word. Then, the error pattern ei would result in the received code word 

Y=Cm +e i 

The syndrome is 

s = (em + ei)H' = CmH' + e,H' = eiH' 

Clearly. all received code words in the same coset have the same syndrome, 
since the latter depends only on the error pattern. Furthermore, each coset has 
a different syndrome. Having established this characteristic of the standard 
array, we may simply construct a syndrome decoding table in which we list the 
zn-k syndromes and the corresponding zn-k coset leaders that represent the 
minimum weight error patterns. Then, given a received code vector Y, we 
compute the syndrome 

For the computed S, we find the corresponding (most likely) error vector, say 
em' This error vector is added to Y to yield the decoded word 

em =YEBem 

Example 8-1-11 

Consider the (5,2) code with the standard array given in Table 8-1-7. The 
syndromes versus the most likely error patterns are given in Table 8-1-8. 
Now suppose the actual error vector on the channel is 

TABLE 8-1-8 SYNDROME TABLE FOR THE 
(5.2) CODE 

Syndrome Error pattern 

000 00000 
001 o 000 1 
010 o 00 1 0 
1 G 0 001 00 
all o 1 000 
1 0 1 10000 
1 1 0 1 1 000 
1 1 1 1 00 I 0 

e = [1 0 1 0 0] 
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The syndrome computed for the error is S = [0 0 1]. Hence. the error 
determined from the table is e = [0 0 0 0 I). When e is added to y, the 
result is a decoding error. In other words the (5,2) code corrects all single 
errors and only two double errors, namely [l 1 0 0 UJ and f1 0 0 1 0). 

Syndrome Decoding of Cyclic Codes As described above, hard-decision 
decoding of a linear block code may be accomplished by first computing the 
syndrome S = YH', then using a table lookup to find the most probable error 
pattern e corresponding to the computed syndrome S, and, finally, adding the 
error pattern e to the received vector Y to obtain the most probable code word 
em' When the code is cyclic, the syndrome computation may be performed by 
a shift register similar in form to that used for encoding, 

To elaborate, let us consider a systematic cyclic code and let us represent 
the received code vector Y by the polynomial Y(p). In general, Y = C + e, 
where C is the transmitted code word and e is the error vector. Hence, we have 

Y(p)=C(p)+e(p) 

= X(p )g(p) + e(p) (8-1-77\ 

Now, suppose we divide Y(p) by the generator polynomial g(p). This division 
will yield 

or, equivalently, 

Y(p) = Q(p} + R(p) 
g(p) g(p) 

Y(p) = Q(p)g(p) + R(p) (8-1-78) 

The remainder R(p) is a polynomial of degree less than or equal to n - k - l. 
If we combine (8-1·77) with (8-1-78), we obtain 

e(p) = (X(p) + Q(p )Jg(p) + R(p) (8-1-79) 

This relationship illustrates that the remainder R(p) obtained from dividing 
Y(p) by g(p) depends only on the error polynomial e(p), and, hence, R(p) is 
simply the syndrome associated with the error pattern e. Therefore, 

Y(p) = Q(p )g(p) + S(p) (8-1-80) 

where S(p) is the syndrome polynomial of degree less than or equ~j to 
n - k - 1. If g(p) divides Y(p) exactly then S(p) = 0 and the received decoded 
word is em = Y. 

The division of Y(p) by the generator polynomial g(p) may be carried out 
by means of a shift register which performs division as described previously. 
First the received vector Y is shifted into an (n - k )·stage shift register as 
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Receh'ed 
code vector 

fiGURE 8-1·\1 An (n - k)·,lage sbift register fer computing Ihe syndrome, 

Output 
5.)'ndrome 

--.0--
2 

illustrated in Fig. 8-1·9. Initially, all the shift-register contents are zero and the 
switch is closed in position 1. After the entire n-bit received vector has been 
shifted into the register, the contents of the n - k stages constitute the 
syndrome with the order of the bits numbered as shown in Fig. 8-1-9. These 
bits may be clocked out by throwing the switch into position 2. Given the 
syndrome from the (n - k lastage shift register, a table lookup may be 
performed to identify the most probable error vector. 

Example 8-1-U 

Let us consider the syndrome computation for the (7,4) cyclic Hamming 
code generated by the polynomial g(p) = p' + P + 1. Suppose that the 
received vector is Y = [1 0 0 1 1 0 1]. This is fed into the three-stage 
register shown in Fig. 8-1-10. After seven shifts the contents of the shift 
register are llO, which corresponds to the syndrome S = [0 1 1]. The most 
probable error vector corresponding to Ihis syndrome is e = [0 0 D 1 0 0 0] 
and, hence, 

Cm =Y+e=[1 00010 IJ 

The information bits are 1 a 0 O. 

fiGURE 8-1·111 Syndrome computation (or the (7. 4) cyclic code with generator polynomial g(p) = p' + p + 1 and 
received vector Y = [I 0 0 1 1 0 IJ. 

Shift Register contents 

0 000 
100 

2 010 
3 om 
4 010 
5 101 
5 100 

110 
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The table lookup decoding method using the syndrome is practical only 
when n - k is small, e,g., n - k < 10. This method is impractical for many 
interesting and powerful codes. For example. if n - k = 20. the table has 2

20 

(approximately 1 million) entries. Such a large amount of storage and the time 
required to locate an entry in such a large table renders the table lookup 
decoding method impractical for long codes having large numbers of check 
bits. 

More efficient and practical hard-decision decoding algorithms have been 
devised for the class of cyclic codes and, more specifically, the BCH codes. A 
description of these algorithms requires further development of computational 
methods with finite fields, which is beyond the scope of our treatment of 
coding theory. It suffices to indicate that efficient decoding algorithms exist 
which make it possible to implement long BCH codes with high redundancy in 
practical digital communications systems. The interested reader is referred to 
the texts of Peterson and Weldon (1972). Lin and Costello (1983), Blahut 
(1983), and Berlekamp (1968), and to the paper by Forney (1965). 

Error Detection and Error Corredion Capability It is clear from the 
discussion above that when the syndromeconsisls of all zeros, the received 
code word is one of the 2' possible transmitted code words. Since the minimum 
separation between a pair of code words is dmi~; it is possible for an error 
pattern of weight dmin to transform one of these 2' code words in the code inlo 
another code word. When this happens we have an undetected error. On tbe 
other hand, if the actual number of errors is less than dmin, the syndrome will 
have a nonzero weight. When this occurs, we have detected the presence of 
one or more errors on the channel. Clear/y, the (n. k) block code is capable of 
detecting dmin - 1 errors. Error detection may be used in conjunction with an 
automatic repeat-request (ARQ) scheme for retransmission of the code word. 

The error correction capability of a code also depends on the minimum 
distance. However, the number of correctable error patterns is limited by the 
number of possible syndromes or coset leaders in the standard array. To 
determine the error correction capability of an (n; k) code, it is convenient to 
view the 2' code words as points in an n-dimensional space. [f each code word 
is viewed as the center of a sphere of radius (Hamming distance) t. the largest 
value that t may have without intersection (or tangency) of any pair of the 2" 
spheres is t =LHdmin -1)J, where Ld denotes the largest inleger contained in 
x' Within each sphere lie all the possible received code words of distance less 
than or equal to I from the valid code word. Consequently, any received code 
vector that falls within a sphere is decoded into the valid code word at the 
center of the sphere. This implies that an (n. k) eade with minimum distance 
dmin is capable of correcting t = L!(dmin - l)J errors. Figure 8-1·11 is a 
two·dimensional representation of the code words and the spheres. 

As described above, a code may be used to detect dllt", - 1 errors or to 
correct t =U(dmi, -1)1 errors. Clearly, to correct t error implies that we have 
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nGURE 8-1·11 A representation of code words as centers 
of spheres of radius t = ll(dm;n - 1).1. 
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detected I errors. However, it is also possible to detect more than t errors if we 
oompromise in the error correction capability of the code. For example, a code 
with dmin '" 7 can oorrect t '" 3 errors. If we wish to detect four errors, we can 
do so by reducing the radius of the sphere around each code word from 3 to 2. 
Thus, patterns with four errors are detectable but only patterns of two errors 
are correctable. In other words, when only two errors occur, these are 
oorrected, and when three or four errors occur, the receiver may ask for a 
retransmission. If more than four errors occur, they will go undetected if the 
code word falls within a sphere of radius 2. Similarly, for dmin '" 7, five errors 
can be detected and one error corrected. In general, a code with minimum 
distance dmin can detect ed errors and correct e,. errors, where 

and 

Probability of Error Based on Error Correction We oonclude this section 
with the derivation of the probability of error for hard·decision decoding of 
linear binary block codes based on error oorrection only. 

From the above discussion, it is clear that the optimum decoder for a binary 
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svmmetric channel will decode correctly if (but not necessarily only if) the 
dumber of errors in a code word is less than half the minimum distance dm'n of 
the code. That is, any number of errors up to 

1= U(dmin - l)J 

are always correctable. Since the binary symmetric channel is mernoryless. the 
bit errors occur independently. Hence. the probability of m errors in a block of 
n bits is 

P(m.n)=(n)pm(l-pr- m 

m, 
(8-1-IlI) 

and, therefore. the probability of a code word error is upper-bounded by the 
expression 

n 

P",,; L P(m. n) (8-1-1l2) 
f11-=t-t- ! 

Equality holds in (8-1-82) if the linear block code is a perfect code. In order 
to describe the basic characteristics of a perfect code. suppose we place a 
sphere of radius I around each of the possible transmitted code words. Each 
sphere around a code word contains the set of all code words of Hamming 
distance less than or equal to t from the code word. ,Now, the number of code 
words in a sphere of radius r = U(dmon -1)J is 

(n) (n' (n) , 'n') 
1+1 + 2)+"+ I =~)C. 

Since there are M = 2k possible transmitted code words. there are 2k 
nonoverlapping spheres each having a radius I. The total number of code 
words enclosed in the 2" spheres cannot exceed the 2" possible received code 
words. Thus, a I-error correcting code must satisfy the inequality 

or, equivalently, 

2"-' ;", i (n)' 
i=O I 

(8-1-83) 

A perfect code has the property that all spheres of Hamming distance 
t = U(dm'n - l)J around the M = 2k possible transmitted code words are 
disjoint and every received code word falls in one of the spheres. Thus, every 
received code word is at most, at distance t from one of the possible transmitted 
code words and (8-1-83) holds with equality. For such a code. all error 
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patterns of weight less than or equal to t are corrected by the optimum 
(minimum distance) decoder. On the other hand, any error pattern of weight 
I + 1 or greater cannot be corrected. Consequently, tile expression for the error 
probability given in (8-1-82) holds with equality.The Golay (23,12) code, 
having dm •• = 7 and t = 3, is a perfect code. The Hamming codes, which have 
the parameters n = 2n-' - 1, tim'" = 3, and t = 1, are also perfect codes. These 
two nontrivial codes and the trivial code consisting of two code words of odd 
length nand dm •• = n are the only perfect binary block codes. These codes aTe 
optimum on the BSC in the sense that they result in ,a minimum error 
probability among all codes having the same block length and the same 
number of information bits. 

The optimality property defined above also holds for quasiperfeci codes. A 
quasiperfect code is characterized by the property that all spheres of Hamming 
radius I around the M possible transmitted code words are disjoint and every 
received code word is at most at distance I + 1 from one of the possible 
transmitted code words. For such a code, all error patterns of weight less than 
or equal to I and some error patterns of weight t + 1 are correctable, but any 
error pattern of weight t + 2 or greater leads to incorrect decoding of the code 
WOld. Clearly, (8-1-82) is an upper bound on the error probability and 

" 
PM ~ 2: P(m, n) (8-1-84) 

m""'(+2 

is a lower bound. 
A more precise measure of the performance for quasiperfect codes can be 

obtained by making use of the inequality in (8·1-83). That is, the total number 
of code words outside the 2* spheres of radius t is 

N, = 2" - 2. ~ (n) J+1 £J . 
i--O . I 

If these code words are equally subdivided into 2k sets and each set is 
associated with one of the 2k spheres then each sphere is enlarged by the 
addition of 

f3,+1 = 2"-k - ± (~) 
i=O I 

(8-1-85) 

code words having distance t + 1 from the transmitted code word. Conse­

quently, of the C: 1) error patterns of distance t + 1 from each code word, 

we can correct f3t+ 1 error patterns. Thus, the error probability for decoding the 
quasiperfect code may be expressed as 

PM = i p(m,n)+[( n )-f3'+I]P'+\l-P)"-'-' (8-1-86) 
m~'+2 1+1 

There are many known quasiperfect codes, although they do not exist for 
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all choices of nand k. Since such codes are optimum for the binary symmetric 
channel, any (11. k) linear block code must have an error probability that is at 
least as large as (8-1-86). Consequently, (8-1-86) is a lower bound on the 
probability of error for any (n, k) linear block code, where ( is the largest 
integer such that /3,. ; 3 O. 

Another pair of upper and lower bounds is obtained by considering two 
code words that differ by the minimum distance_ First. we note that f" cannot 
be less than the probability of erroneously decoding the transmitted code word 
as its nearest neighbor. which is at distance d min from the transmitted code 
word. That is, 

(8-1-87) 

On the other hand, p'f cannot be greater than M - 1 times the probability of 
erroneously decoding the transmitted code word as its nearest neighbor, which 
is at distance d min from the transmitted code word. That is a union bound. 
which is expressed as 

d<r,.~ 'd _ -
p.,,~ (M - 1) 2: (mon)P'''(I- pj"m,o'" (8-1-88) 

m=fdmon;'Zf+ I ' In 

When M is large, the lower bound in (8·1-87) and the upper bound in (8-1-88) 
are very Ipose. 

A tight upper bound on PM can be obtained by applying the Chernoff bound 
presented earlier in Section 2-1-6. We assume again that the all-zero code was 
transmitted. In comparing the received code word to the all-zero code word 
and to a code word of "eight W .o ' the probability of a decoding error, obtained 
from the Chernoff bound (Problem 8-22), is upper·bounded by the expression 

P,(w",}~ [4p(1- p)]".,J2 (8-1·89) 

The union of these binary decisions yields the upper bound 

M 

P., ~ 2: 14p(1 - p)j"",1 (8-1-90) 

A simpler version of (8-1-90) is obtained if we employ d min in place of the 
weight distribution. That is, 

P" ~ (M - 1)[ 4p( 1 _ p ))"."", (8·1·91) 

Of course (8-1-90) is a tighter upper bound than (8-1-91). 
In Section S-J-6. we compare the various bounds given above for a specific 

code, namely, the Golay (23, 12) code. In addition, we compare the error rate 
performance of hard-decision and soft-decision decoding. 
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8-1-6 Comparison of Performanee between Hard-Decision 
and Soft-Decision Decoding 

It is both interesting and instructive to compare the bounds on the error rate 
performance of linear block codes for soft-decision decoding and hard-decision 
decoding on an A WGN channel. For illustrative purposes, we shall use the 
Golay (23,12) code, which has the relatively simple weight distribution given 
in Table 8-1-1. As stated' previously, this code has a minimum distance 
dmin = 7. 

First we compute and compare the bounds on the error probability for 
hard-decision decoding. Since the Golay (23, 12) code is a perfect code, the 
exact error probability for hard-decision decoding is 

23 (23) PM =];:. m pm(1- p)23-m 

= 1-~o (~)pM(1_p)23-m (8-1·92) 

where p is the probability of a binary digit error for the binary symmetric 
channel. Binary (or four-phase) coherent PSK is assumed to be the 
modulation/demodulation technique for the transmission and reception of the 
binary digits contained in each code word. Thus, the appropriate expression for 
p is· given by (8-1-73). In addition to the exact error probability given by 
(8-1-92), we have the lower bound given by (8-1-87) and the three upper 
bounds given by (8-1-88), (8-1-90), and (8-1-91). 

Numerical results obtained from these bounds are c.ompared with the exact 
error probability in Fig. 8-1-12. We observe that the IlI'ver bound is very loose. 

f1GURE 8-1-U Comparison of bounds with exact error probability for 
hard-decision decoding of Golay (23, 12) code. 
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FIGURE 8-1·13 Comparison of soft-decision decoding with :Jard-decJsion 
decoding for the Golay (23, 12) code 
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At PM = 10-', the lower bound is off by approximately 2 dB from the exact 
error probability. At PM = 10- 2

, the difference increases to approximately 
4 dB. Of the three upper bounds, the one given by (8-1-88) is the tightest: it 
differs by less than 1 dB from the exact error probability at PM = 10 '. The 
Chernoff bound in (8-1-90), which employs the weight distribution, is also 
relatively tight. Finally, the Chernoff bound that employs only the minimum 
distance of the code is the poorest of the three. At PM = 10-'. it differs from 
the exact error probability by approximately 2 dB. All three upp~r bounds are 
very loose for error rates above PM = }I)-2. 

It is also interesting to compare the performance between soft-and 
hard-decision decoding. For this comparison, we use the upper bounds on the 
error probability for soft-decision decoding given by (8-1-52) and the exact 
error probability for hard-decision decoding given by (8-1-92). Figure 8-1-13 
illustrates these performance characteristics. We observe that the two bounds 
for soft-decision decoding differ by approximately 0.5 dB at PM = 10 " and by 
approximately 1 dB at PM = 10-'. We also observe that the difference in 
performance between hard-' and wft-decision decoding is approximately 2 dB 
in the range 10 2 < PM < 10 6

• In the range P" > 10- 2, the curve of the error 
probability for hard-decision decoding crosses the curves for the bounds. This 
behavior indicates that the bounds for sofl-decision decoding are loose when 
P,,, > 10- 2. 

The 2 dB difference between hard- and soft -decision decoding is a charac­
teristic that applies not only to the Golay code, but is a fundamental result thai 
applies in general to coded digital communications over the A WGN channel. 
This result is derived below by computing the capacity of the A WGN channel 
with hard- and soft-decision decoding. 
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FIGURE 8-1·13 Comparison of soft-decision decoding with :Jard-decJsion 
decoding for the Golay (23, 12) code 
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hard-decision decoding. For this comparison, we use the upper bounds on the 
error probability for soft-decision decoding given by (8-1-52) and the exact 
error probability for hard-decision decoding given by (8-1-92). Figure 8-1-13 
illustrates these performance characteristics. We observe that the two bounds 
for sofl-decision decoding differ by approximately 0.5 dB at PM = 10 " and by 
approximately 1 dB at PM = 10-'. We also observe that the difference in 
performance between hard-' and wft-decision decoding is approximately 2 dB 
in the range 10 2 < PM < 10 6

• In the range P" > 10- 2, the curve of the error 
probability for hard-decision decoding crosses the curves for the bounds. This 
behavior indicates that the bounds for sofl-decision decoding are loose when 
P,,, > 10- 2. 

The 2 dB difference between hard- and soft -decision decoding is a charac­
teristic that applies not only to the Golay code, but is a fundamental result that 
applies in general to coded digital communications over the A WGN channel. 
This result is derived below by computing the capacity of the A WGN channel 
with hard- and soft-decision decoding. 
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The channel capacity of the BSe in bits per code symbol, derived in Section 
7-1-2. is 

c = 1 + p log, p + (1 - p) log, (I - p) (8-1-93) 

where the probability of a bit error for binary, coherent PSK on an A WGN 
channel is given by (8-1-73). Suppose we use (8-1-73) fOT p. let C= R, in 
(8-1-93), and then determine the value of Yb that satisfies this equation. The 
result is shown in Fig. 8-1-14 as a graph of R, versus Yh' For exampJe_ suppose 
that we are interested in using a code with rate R, = ~. For this code rate, note 
that the minimum SNR per bit required to achieve capacity with hard-decision 
decoding is approximately 1.6 dB. 

What is the limit on the minimum SNR as the code rate approaches zero? 
For small values of Rp the probability p can be approximated as 

(8-1-94) 

When the expression for p is substituted into (8-1-93) and the 10garUhms in 
(8-1-93) are approximated by 

log, (I + x) = (x - ~x')/ln 2 

the channel capacity formula reduces to 

2 
C = 1f In 2 y"R, (8-1-95) 

Now we set C = R". Thus. in the limit as Rc approaches zero, we obtain the 
result 

y" = ~1f In 2 (0.37 dB) (8-1-96) 

The capacity of the binary-input A WGN channel with soft-decision decod­
ing can be computed in a similar manner. The expression for the capacity in 
bjts per code symbol. derived in Section 7-1-2. is 

(8-1-97) 
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where p(y I k), k = 0, 1, denote the probability density functions of the 
demodulator output conditioned on the transmitted bit being a 0 and ai, 
respectively. For the A WGN channel, we have 

(' I k) = _1_e ·(y·m,)'rlff' k = 0,1 
PY Y21ru ' (8·1-98) 

where m,,=-~, ml=~' (T2=~N(), and 'ie=R,'ib· The unconditional 
probability density p(y) is simply one-half of the sum of p{y 11) and p(y 10). 
As R, approaches zero, the expression (8-1 ~97) for the channel capacity can be 
approximated as 

(8-1-99) 

Again, we set C = R,. Thus, as Re -> 0, the minimum SNR per bit to achieve 
capacity is 

'Yo = In 2 ( -1.6 dB) (8-1-100) 

By using (8-1-98) in (8-1-97) and setting C = Re> a numerical solution can be 
obtained for code rates in the range 0.;; Re .;; 1. The result of this solution is 
also shown in Fig. B-J-14. 

From the above, we observe that in the limit as Re approaches zero, the 
difference in SNR 'Yb between hard- and soft-decision decoding is !1f, which is 
approximately 2 dB. On the other hand, as Re increases toward unity, the 
difference in 'Yb between these two decoding techniques decreases. For 
example, at Re = 0.8, the difference is about 1.5 dB. 

The curves in Fig. 8-1-14 provide more information than just the difference 
in performance between soft· and hard-decision decoding. These curves also 
specify the minimum SNR per bit that is required for a given code rate. For 
example, a code rate of Re = 0.8 can provide arbitrarily small error probability 
at an SNR per bit of 2 dB, when soft-decision decoding is used. By comparison, 
an uncoded binary PSK requires 9.6 dB to achieve an error probability of 10" 
Hence, a 7.6dB gain is possible by employing a rate Re = ~ code. Unfortun­
ately, to achieve such a large coding gain usually implies the use of an 
extremely long block length code, which leads to a very complex receiver. 
Nevertheless, the curves in Fig. 8-1-14 provide a benchmark for comparing the 
coding gains achieved by practically implementable codes with the ultimate 
limits for either soft- or hard-decision decoding. 

Instead of comparing the difference between hard- and soft-decision 
decoding based on the channel capacity relations, we may perform similar 
comparisons based on the random coding rate parameters. In Chapter 7, we 
demonstrated that the ensemble average probability of error for randomly 
selected binary code words is upper-bounded as 

(8·1-101) 

where'Re = kin is the code rate and the cutoff rate Ro represents the upper 
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