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1

INTRODUCTION

In this book, we present the basic principles that underlie the analysis and
design of digital communication systems. The subject of digital communica-
tions involves the transmission of information in digital form from a source
that generates the information to one or mere destinations. Of particular
importance in the analysis and design of communication systems are the
characteristics of the physical channels through which the information is
transmitted. The characteristics of the channel generally affect the design of
the basic building blocks of the communication system. Below, we describe the
elements of a communication system and their functions.

1-1 ELEMENTS OF A DIGITAL COMMUNICATION

SYSTEM

Figure 1-1-1 illustrates the functional diagram and the basic elements of a
digital communication system. The source output may be either an analog
signal, such as audio or video signal, or a digital signal, such as the cutput of a
teletype machine, that is discrete in time and has a finite number of output
characters. In a digital communication system, the messages produced by the
source are converted into a sequence of binary digits. Ideally, we should like to
represent the source output {message) by as few binary digits as possible. In
other words, we seek an efficient representation of the source output that
results in little or no redundancy. The process of efficiently converting the
output of either an analog or digital source into a sequence of binary digits is
called source encoding or daia compression. '

The sequence of binary digits from the source encoder, which we call the

1
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2 DIGITAL COMMUNICATIONS

information Source Channel Digital
i soupce 5"@ encoder encoder modulator
inpul transducer
Channel
Cutpur Output Source Chananel Digital
signal transducer decoder decoder demaoduiator
FIGURE 1-1-1  Basic elements of a digital communication system.

information sequence, is passed to the channel encoder. The purpose of the
channe! encoder is to introduce, in a controlled manner, some redundancy in
the binary information sequence that can be used at the receiver to overcome
the effects of noise and interference encountered in the transmission of the
signal through the channel. Thus, the added redundancy serves to increase the
reliability of the received data and improves the fidelity of the received signal.
In effect, redundancy in the information sequence aids the receiver in decoding
the desired information sequence. For example, 2 (trivial) form of encoding of
the binary information sequence is simply 1o repeat each binary digit m times,
where m is some positive integer. More sophisticated (nontrivial) encoding
involves taking 4 information bits at 2 time and mapping each k-bit sequence
into a unique n-bit sequence, called a code word. The amount of redundancy
introduced by encoding the data in this manner is measured by the ratio n/k.
The reciprocal of this ratio, namely k/n, is called the rate of the code or,
simply, the code rate.

The binary sequence at the output of the channel encoder is passed to the
digital modulator, which serves as the interface to the communications channel.
Since nearly all of the communication channels encountered in practice are
capable of transmitting electrical signals {waveforms), the primary purpose of
the digital modulator is to map the binary information sequence into signal
waveforms. To elaborate on this point, let us suppose that the coded
information sequence is to be transmitted one bit at a time at some uniform
rate R bits/s. The digital modulator may simply map the binary digit 0 into a
waveform sg(¢) and the binary digit 1 into a waveform s,(7). In this manner,
each bit from the channel encoder is iransmitted separately. We call this binary
modulation. Alternatively, the modulator may transmit b coded information
bits at a time by using M = 2° distinct waveforms 5,(¢), i =0,1,..., M ~1, one
waveform for each of the 2* possible 5-bit sequences. We call this M-ary
modulation (M >2). Note that a new b-bit sequence enters the modulator

12



CHAPTER |- INTRODUCTION 3

every b/R seconds. Hence, when the channel bit rate R is fixed, the amount of
time available to transmit one of the M waveforms corresponding to a b-bit
sequence is b times the time period in a system that uses binary modulation.

The communication channel is the physical medium that is used to send the
sighal from the transmitter to the receiver. In wireless transmission, the
channel may be the aimosphere (free space). On the other hand, telephone
channels usually employ a variety of physical media, including wire lines,
optical fiber cables, and wireless (microwave radio). Whatever the physical
medium used for transmission of the information, the essential feature is that
the transmitled signal is corrupted in a random manner by a variety of possible
mechanisms, such as additive thermal noise generated by elecironic devices,
man-made noise, ¢.g., automobile igaition noise, and atmospheric noise, e.g.,
electrical lightning discharges during thunderstorms.

At the receiving end of a digital communications system, the digital
demodulator processes the channel-corrupted transmitted waveform and re-
duces the waveforms to a sequence of numbers that represent estimates of the
transmitted data symbols (binary or M-ary). This sequence of numbers is
passed to the channel decoder, which attempts to reconmstruct the original
information sequence from knowledge of the code used by the channel
encoder and the redundancy contained in the received data.

A measure of how well the demodulator and decoder perform is the
frequency with which errors occur in the decoded sequence. More precisely.
the average probability of a bit-error at the output of the decoder is a measure
of the performance of the demodulator-decoder combination. In general, the
probability of error is a function of the code characteristics, the types of
waveforms used to transmit the information over the channel, the transmitter
power, the characteristics of the channel, i.e., the amount of noise, the nature
of the interference, etc., and the method of demodulation and decoding. These
items and their effect on performance will be discussed in detail in subsequent
chapters.

As a final step, when an analog output is desired, the source decoder accepts
the output sequence from the channel decoder and, from knowiedge of the
source enceding method used, attempts to reconstruct the originat signal from
the source. Due to channel decoding errors and possible distortion introduced
by the source encoder and, perhaps, the source decoder, the signal at the
output of the source decoder is an approximation to the original source output.
The difference or some function of the difference between the original signal
and the reconstructed signal is a measure of the distortion introduced by the
digital communication system.

1-2 COMMUNICATION CHANNELS AND THEIR
CHARACTERISTICS

As indicated in the preceding discussion, the communication channel provides
the connection between the transmitter and the receiver. The physical channei

13



4 DIGITAL COMMUNICATIONS

may be a pair of wires that carry the electrical signal, or an optical fiber that
carries the information on a modulated light beam, or an underwater ocean
channel in which the information is transmitted acoustically, or free space over
which the information-bearing signal is radiated by use of an antenna. Other
media that can be characterized as communication channels are data storage
media, such as magnetic tape, magnetic disks, and optical disks.

One common problem in signal transmission through any channel is additive
noise. In general, additive noise is generated internally by components such as
resistors and solid-state devices used to implement the communication system.
This is sometimes called thermal noise. Other sources of noise and interference
may arise externally to the system, such as interference from other users of the
channel. When such noise and interference occupy the same frequency band as
the desired signai, its effect can be minimized by proper design of the
transmitted signal and its demodulator at the receiver. Other types of signal
degradations that may be encountered in transmission over the channel are
signal attenuation, amplitude and phase distortion, and multipath distortion.

The effects of noise may be minimized by increasing the power in the
transmitted signal. However, equipment and other practical constraints limit
the power level in the transmitted signal. Another basic limitation is the
available channel bandwidth. A bandwidth constraint is usually due to the
physical limitations of the medium and the electronic components used to
implement the transmitter and the receiver. These two limitations result in
constraining the amount of data that can be transmitted reliably over any
communications channel as we shall observe in later chapters. Below, we

describe some of the important characteristics of several communication
channels.

Wireline Channels The telephone network makes extensive use of wire
lines for voice signal transmission, as well as data and video transmission.
Twisted-pair wire lines and coaxial cable are basically guided electromagnetic
channels that provide relatively modest bandwidths. Telephone wire generally
used to connect a customer to a central office has a bandwidth of several
hundred kilohertz (kHz). On the other hand, coaxial cable has a usable
bandwidth of several megahertz (MHz). Figure 1-2-1 illustrates the frequency
range of guided electromagnetic chanmels, which include waveguides and
optical fibers,

Signals transmitted through such channels are distored in both amplitude
and phase and further corrupted by additive noise. Twisted-pair wireline
channels are also prone to crosstalk interference from physically adjacent
channels. Because wireline channels carry a large percentage of our daily
communications around the country and the world, much research has been
performed on the characterization of their transmission properties and on
methods for mitigating the amplitude and phase distortion encountered in
signal transmission. In Chapter 9, we describe methods for designing optimum
transmitted signals and their demodulation; in Chapters 10 and 11, we

14



CHAPTER I: INTRODUCTION 5
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FIGURE 1-2.1  Frequency range for guided wire channel.

consider the design of channel equalizers that compensate for amplitude and
phase distortion on these channels.

Fiber Optic Channels Optical fibers offer the communications system
designer a channel bandwidth that is several orders of magnitude larger than
coaxial cable channels. During the past decade, optical fiber cables have been
developed that have a relatively low signal attenuation, and highly reliable
photonic devices have been developed for signal generation and signal
detection. These technological advances have resulted in a rapid deployment of
optical fiber channels, both in domestic telecommunication systems as well as
for trans-Allantic and trans-Pacific communications. With the large bandwidth

15



§  DICITAL COMMUNICATIONS

available on fiber optic channels, it is possible for telephone companies to offer
subscribers a wide array of telecommunication services, including voice. data,
facsimile, and video.

The transmitter or modulator in a fiber optic communication system is a
light source, either a light-emitting diode (LED} or a laser. Information is
rransmitted by varying (modulating) the intensity of the light source with the
message signal. The light propagates through the fiber as a light wave and is
amplified periodically (in the case of digital transmission, it is detected and
regenerated by repealers) along the transmission path to compensate for signal
attenuation. At {he receiver, the light intensity is detected by a photodiode,
whose output is an electrical signal that varies in direct proportion to the
power of the light impinging on the photodiode. Sources of noise in fiber optic
channels are photodiodes and electronic amplificrs.

It is envisioned that optical fiber channels will replace nearly all wireline
channels in the telephone network by the turn of the century.

Wireless Electromagnetic Channels In wireless communication systems,
electromagnetic energy is coupled to the propagation medium by an antenna
which serves as the radiator. The physical size and the configuration of the
anterna depend primarily on the frequency of operation. To obtain efficient
radiation of electromagnetic energy, the antenna must be longer than ¢ of the
wavelength. Consequentiy, a radio station transmitting in the AM frequency
band, say at f =1 MHz (corresponding to a wavelength of A =c/f, =300m),
requires an antenna of at least 30m. Other important characteristics and
attributes of antennas for wireless transmission are described in Chapter S.

Figure 1-2-2 illusirates the various frequency bands of the electromagnetic
spectrum. The mode of propagation of electromagnetic waves in the atmo-
sphere and in free space may be subdivided into three categories, namely,
ground-wave propagation, sky-wave propagation, and line-of-sight (LOS)
propagation. In the VLF and audio frequency bands, where the wavelengths
exceed 10 km, the earth and the ionosphere act as a waveguide for electromag-
netic wave propagation. In these freguency ranges, communication signals
practically propagate around the globe. For this reason, these frequency bands
are primarily used to provide navigational aids from shore to ships around the
world.. The channel bandwidths available in these frequency bands are
relatively smali {usually 1-10% of the center frequency). and hence the
information that is transmitted through these channels is of relatively slow
speed and generally confined to digital transmission. A dominant type of noise
at these frequencies is generated from thunderstorm activity around the globe,
especially in tropical regions. Interference results from the many users of these
frequency bands.

Ground-wave propagation, as illustrated in Fig. 1-2-3, is the dominant mode
of propagation for frequencies in the MF band {0.3-3MHz). This is the
frequency band used for AM broadcasting and maritime radio broadcasting. In
AM broadcasting, the range with groundwave propagation of even the more

16
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FIGURE 1-22  Frequency range for wireless electromagnetic channels. [Adapted from Carlson {1975),
2nd edition, & McGraw-Hill Book Company Co. Reprinted with permission of the publisher.]
/ ¥
FIGURE 1-23  lllustration of ground-wave propagation. ///Jﬁ
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powerful radio stations is limited to about 150km. Atmospheric noise,
man-made noise, and thermal noise from electronic components at the receiver
are dominant disturbances for signal transmission in the MF band.

Sky-wave propagation, as illustrated in Fig. 1-2-4 results from transmitted
signals being reflected {bent or refracted) from the ionosphere, which consists
of several layers of charged particles ranging in altitude from 50 to 400 km
above the surface of the earth. During the daytime hours, the heating of the
lower atmosphere by the sun causes the formation of the lower layers at
altitudes below 120km. These lower layers, especiaily the D-layer, serve to
absorb frequencies below 2 MHz, thus severely limiting sky-wave propagation
of AM radio broadcast. However, during the night-time hours, the electron
density in the lower layers of the ionosphere drops sharply and the frequency
absorption that occurs during the daytime is significantly reduced. As a
consequence, powerful AM radio broadcast stations can propagate over large
distances via sky wave over the F-layer of the ionosphere, which ranges from
140 to 400 km above the surface of the earth.

A frequently occurring problem with electromagnetic wave propagation via
sky wave in the HF frequency range is signal multipath. Signal multipath occurs
when the transmitted signal arrives at the receiver via multiple propagation
paths at different delays. It generally results in intersymbol interference in a
digital communication sysiem. Moreover, the signal components arriving via
different propagation paths may add destructively, resulting in a phenomenon
called signal fading, which most people have experienced when listening to a
distant radio station at night when sky wave is the dominant propagation
mode. Additive notse at HF is a combination of atmospheric noise and thermat
noise.

Sky-wave ionospheric propagation ceases to exist at frequencies above
approximately 30 MHz, which is the end of the HF band. However, it is
possible to have ionospheric scatter propagation at frequencies in the range
30-60 MHz, resulting from signal scattering from the lower ionosphere. It is
also possible to communicate over distances of several hundred miles by use of
tropospheric scattering at frequencies in the range 40-300 MHz. Troposcatter
resuits from signal scattering due to particles in the atmosphere at altitudes of
10 miles or less. Generally, ionospheric scatter and tropospheric scatter

Hlustration of sky-wave propagation.
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CHAPTER |- INTRODUCTION 9

involve large signal propagation losses and require a large amount of
transmitter power and relatively large antennas.

Frequencies above 30 MHz propagate through the ionosphere with rela-
tively little loss and make satcllite and extraterrestrial communications
possible. Hence, at frequencies in the VHF band and higher, the dominant
mode of electromagnetic propagation is line-of-sight (LOS) propagation. For
terrestrial communication systems, this means that the transmitter and receiver
antennas must be in direct LOS with relatively little or no obstruction. For this
reason, television stations transmitting in the VHF and UHF frequency bands
mount their antennas on high towers to achieve a broad coverage area.

In general, the coverage area for LOS propagation is limited by the
curvature of the earth. If the transmitting antenna is mounted at a height Am
above the surface of the earth, the distance to the radio horizon, assuming no
physical obstructions such as mountains, is approximately d = V15hkm. For
exampie, a TV antenna mounted on a tower of 300m in height provides a
coverage of approximately 67 km. As another example, microwave radio relay
systems used extensively for telephone and video transmission at frequencies
above 1 GHz have antennas mounted on tall towers or on the top of tall
buildings.

The dominant noise {limiting the performance of a communication system in
VHF and UHF frequency ranges is thermal noise geserated in the receiver
front end and cosmic noise picked up by the antenna. At frequencies in the
SHF band above 10 GHz, atmospheric conditions play a major role in signal
propagation. For example, at 10 GHz, the attenuation ranges from about
0.003 dB/km in light rain to about 0.3 dB/km in heavy rain. At 100 GHz, the
attenuation ranges from about 0.1 dB/km in light rain to about 6 dB/km in
heavy rain. Hence, in this frequency range, heavy rain introduces extremely
high propagation losses that can result in service outages (total breakdown in
the communication system).

At frequencies above the EHF (extremely high frequency) band, we have
the infrared and visible light regions of the electromagnetic spectrum, which
can be used to provide LOS optical communication in free space. To date,
these frequency bands have been used in experimental communication
systems, such as satellite-to-satellite links.

Underwater Acousfic Channels Over the past few decades, ocean ex-
ploration activity has been steadily increasing. Coupled with this increase is the
need to transmit data, collected by sensors placed under water, to the surface
of the ocean. From there, it is possible to relay the data via a satellite to a data
collection center.

Ele¢tromagnetic waves de not propagate over long distances under water
except at extremely low frequencies. However, the transmission of signals at
such low frequencies is prohibitively expensive because of the large and
powerful transmitiers required. The attenuation of electromagnetic waves in
water can be expressed in terms of the skin depth, which is the distance a signal
is attenuated by I/e. For sea water, the skin depth 5 = 250/VY, where fis
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expressed in Hz and 8 is in m. For example, at 10 kHz the skin depth is 2.5m.
In contrast. acoustic signals propagate over distances of tens and even
hundreds of kilometers.

An underwater acoustic channel is characterized as a multipath channel due
to signal reflections from the surface and the bottom of the sea. Because of
wave motion, the signal multipath components undergo time-varying propaga-
tion delays that resuls in signal fading. In addition, there is frequency-
dependent attenuation, which is approximately proportional to the square of
the signal frequency. The sound velocity is nominally about 1500 m/s, but the
actual value will vary either above or below the nominal value depending on
the depth at which the signal propagates. _

Ambient ocean acoustic noise is caused by shrimp, fish, and various
mammals. Near harbors, there is also man-made acoustic noise in addition to
the ambient noise. In spite of this hostile environment, it is possible to design
and implement efficient and highly reliable underwater acoustic communica-
tion systems for transmitting digital signals over large distances.

Storage Channeis Information storage and retrieval systems constitute a
very significant part of data-handling activities on a daily basis. Magnetic tape.
including digital audio tape and video tape, magnetic disks used for storing
large amounts of computer data, optical disks used for computer data storage,
and compact disks are examples of data storage systems that can be
characterized as communication channels. The process of storing data on a
magnetic tape or a magnetic or optical disk is equivalent 10 transmitting a
signal over a telephone or a radio channel. The readback process and the
signal processing involved in storage systems to recover the stored information
are equivalent to the functions performed by a receiver in a telephone or radio
communication system to recover the transmitted information.

Additive noise generated by the electronic components and interference
from adjacent tracks is generally present in the readback signal of a storage
system, just as is the case in a telephone or a radio communication system.

The amount of data that can be stored is generally limited by the size of the
disk or tape and the density (number of bits stored per square inch) that can be.
achieved by fhe write/read electronic systems and heads. For example, a
packing density of 10° bits per square inch has been recently demonstrated in
an expenmental magnetic disk storage system. (Current commercial magnetic
storage products achieve a much lower density.) The speed at which data can
be written on a disk or tape and the speed at which it can be read back are also
tlimited by the associated mechanical and electrical subsystems that constitute
an information storage system.

Channel coding and modulation are essential components of a well-designed
digital magnetic or optical storage system. In the readback process, the signal is
demodulated and the added redundancy intraduced by the channel encoder is
used to correct errors in the readback signal.
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CHAPTER 1. INTRODUCTION M

1-3 MATHEMATICAL MODELS FOR
COMMUNICATION CHANNELS

FIGURE 1-3-1

In the design of communication systems for transmitting information through
physical channels, we find it convenient to construct mathematical models that
reflect the most important characteristics of the transmission medium. Then,
the mathematical model for the channel is used in the design of the channel
encoder and modulator at the transmitter and the demodulator and channel
decoder at the receiver. Below, we provide a brief description of the
chanrel models that are frequently used to characterize many of the physical
channels that we encounter in practice.

The Additive Noise Channel The simplest mathematical model for a
communication channel is the additive noise channel, illustrated in Fig. 1-3-1.
In this model, the transmitted signal s{t} is corrupted by an additive random
noise process n(t). Physically, the additive noise process may arise from
electronic components and amplifiers at the receiver of the communication
system, or from interference encountered in transmission {as in the case of
radio signal transmission).

If the noise is introduced primarily by electronic components and amplifiers
at the receiver, it may be characterized as thermal noise. This type of noise is
characterized statistically as a gawssian noise process. Hence, the resulting
mathematical model for the channel is usually calied the addiiive gaussian
noise channel. Because this channel model applies to a broad class of physical
communication channels and because of its mathematical iractability, this is
the predominant channel model vsed in our communication system analysis
and design. Channel attenuation is easily incorporated into the model. When
the signal undergoes attenuation in transmission through the channel, the
received signal is

rity = asft) + n{1) (1-3-1)

where o is the attenuation factor.

The Linear Filter Channel In some physical channels, such as wireline
telephone channels, filters are used to ensure that the transmitted signals do
not exceed specified bandwidth limitations and thus do not interfere with one
another. Such channels are generally characterized mathematically as linear
filter channels with additive noise, as illustrated in Fig. 1-3-2. Hence, if the

Channe!

51}
———-——?‘—- rr)y = sit) + nif}

L {t]

The additive noise channel.
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channel input is the signal s{t), the channel output is the signal
r(t) = s(r) % c{r) + n(e)

= f " (ot — 1y dt+ n(1) (1-3-2)

where ¢(f) is the impuise response of the linear filter and % dernotes
convolution.

The Linear Time-Variant Filter Channel Physical chaanels such as under-
water acoustic channels and ionospheric radio channels that result in time-
variant multipath propagation of the transmitted signal may be characterized
mathemalically as time-variant linear filters. Such linear filters are charac-
terized by a time-variant channel impulse response ¢{t;¢), where c(7:r) is the
response of the channel at time r due to an impuise applied at time ¢ — 7. Thus,
t represents the “‘age” (elapsed-time) variable. The linear time-variant filter
channel with additive noise is illustrated in Fig. 1-3-3. For an input signai s{r),
the channel output signal is

r{1y=s{t) * c(r; t) + n{t)

= Jx c{rit)s(t — Ty dr + nir) (1-3-3)

A good model for multipath signal propagation through physical channels,
such as the ionosphere (at frequencies below 30 MHz) and mobile cellular
radio channels, is a special case of {1-3-3) in which the time-variant impuise
response has the form

i .
=2 a)8(r - 1) {1.3-4)
k=1

Lincar

¥ ]
5 2
$ )
N ]
N v R '
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FIGURE 1-3-3  Linear time-variant filter channel with additive noise. H
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where the {a,{r)} represents the possibly time-variant attenuation factor for the
L multipath propagation paths and {7,} are the corresponding time delays. If
(1-3-4) is substituted into (1-3-3), the received signal has the form

r0)= 3 a5t - 5) + ) (1-3-5)

Hence, the received signal consists of L multipath components, where each
component is attenuated by {a,(7)} and delaved by {1.}.

The three mathematical models described above adeguately characterize the
great majority of the physical channels encountered in practice. These three
channel models are used in this text for the analysis and design of communica-
tion systems.

1-4 A HISTORICAL PERSPECTIVE IN THE
DEVELOPMENT OF DIGITAL COMMUNICATIONS

It 'is remarkable that the earliest form of electrical communication, namely
telegraphy, was a digital communication system. The electric telegraph was
developed by Samue! Morse and was demonstrated in 1837, Morse devised the
variable-length binary code in which letters of the English alphabet are
represented by a sequence of dots and dashes (code words). In this code, more
frequently occurning letters are represented by short code words, while letters
occurring less frequently are represented by longer code words. Thus, the
Morse code'was the precursor of the variable-length source coding methods
described in Chapter 3,

Nearly 40 years later, in 1875, Emile Baudot devised a code for telegraphy
in which every lefter was encoded into fixed-length binary code words of length
3. In the Baudot code, binary code elements are of equal length and designated
as mark and space.

Although Morse is responsible for the development of the first electrical
digital communication system (telegraphy), the beginnings of what we now
regard as modern digital communications stem from the work of Nyquist
(1924}, who investigated the problem of determining the maximum signaling
rate that can be used over a telegraph channel of a given bandwidth without
intersymbol interference. He formulated 2 model of a telegraph system in
which a transmitted signal has the general form

s(ty =2, a,g(t — nT) (1-4-1)

where'g(r) represents a basic pulse shape and {a,} is the binary data sequence
of {1} transmitted at a rate of 1/7 bits/s. Nyquist set out to determine the
optimum pulse shape that was bandlimited to W Hz and maximized the bit rate
under the constraint that the pulse caused no intersymbol interference at the
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4 DIGITAL COMMUNICATIONS

sampling time k7. k =0, £1, x2, . ... His studies led him to conclude that the
maximum pulse rate is 2W pulses/s. This rate is now called the Nyquist rate.
Moreover, this pulse rate can be achieved by using the pulses g(t)=
(sin 2z7Wr)/2aW: This pulse shape allows recovery of the data without
intersymbol interference at the sampling instants. Nyquist’s result is equivalent
to a version of the sampling theorem for bandlimited signals, which was later
stated precisely by Shannon (1948). The sampling theorem states that a signal
of bandwidth W can be reconstructed irom samples taken at the Nyquist rate
of 2W samples/s using the interpolation formula

B n \ sin [21W (i - n/2W)]
s(t) = % S(ZW) 2rW (1 — n/2W)

(1-4-2)

In light of Nyquist's work, Hartiev (1928) considered the issue of the
amount of data that can be transmitted reliably over a bandlimited channel
when mulliple amplitude levels are used. Due to the presence of noise and
other interference, Hartley postulated that the receiver can reliably estimate .
the received signal amplitude to some accuracy, say A,. This investigation led
Hartley to conclude that there is a2 maximum data rate that can be
communicated reliably over a bandlimited channe] when the maximum signal
amplitude is limited to A, (fixed power constraint} and the amplitude
resolution is A;.

Another significant advance in the developmen* of communications was the
work of Wiener (1942}, who considered the problem of estimating a desired
signal waveformm s{f) in the presence of additive noise n{t), based on
observation of the received signal r{¢)=s{t) + n{t). This problem arises in
signal demodulation. Wiener determined the linear filter whose output is the
best mean-square approximation to the desired signa! s{r). The resulting filter
is calied the optimum linear (Wiener) filter.

Hartley’s and Nyquist’s resuits on the maximum transmission rate of digital
information were precursors to the work of Shannon (1948a,b), who establ-
ished the mathematical foundations for information transmission and derived
the fundamental limits for digital communication systems. In his pioneering
work, Shannon formulated the basic probiem of reliable transmission of
information in statistical terms, using probabilistic models for information
sources and communication channels. Based on such a statistical formulation,
he adopted a logarithmic measure for the information content of a source. He
also demonstrated that the effect of a transmitter power conmstraint, a
bandwidth constraint, and additive noise can be associated with the channel
and incorporated into a single parameter, called the channel capacity. For
example, in the case of an additive white (spectrally flat} gaussian noise
interference, an ideal bandlimited channel of bandwidth W has a capacity C
given by

P
=W ( .f.-—._._-..) 4 1” -
C logy {1 : bits/s {1-4-3)
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where P is the average transmitted power and N, is the power spectral density
of the additive noise. The significance of the channel capacity is as follows: If
the information rate R from the source is less than C (R <) then it is
theoretically possible to achieve reliable (error-free} transmission through the
channel by appropriate coding. On the other hand, if R>C, - reliable
transmission is not possible regardless of the amount of signal processing
performed at the transmitter and receiver. Thus, Shannon established basic
limits on communication of information, and gave birth to a new field that is
now called information theory.

Another important contribution to the field of digital communication is the

“work of Kotelnikov (1947), who provided a coherent analysis of the various
digital communication systems based on a geometrical approach. Kotelikov's
approach was later expanded by Wozencraft and Jacobs {(1965).

Following Shannon’s publications, came the classic work of Hamming
(1950) on error-detecting and error-correcting codes to combat the detrimental
efiects of channel noise. Hamming’s work stimulated many researchers in the
years that followed, and a variety of new and powerful codes were discovered,
many of which are used today in the implementation of modern communica-
tion systems.

The increase in demand for data transmission during the last three to four
decades, coupled with the development of more sophisticated integrated
circuits, has led to the development of very efficient and more reliable digital
communication systems. In the course of these developments, Shannon’s
original results and the generalization of his results on maximum transmission
limits over a channel and on bounds on the performance achieved have served
as benchmarks for any givea communication system design. The theoretical
limits derived by Shannon and other researchers that contributed to the
development of information theory serve as an ultimate goal in the continuing
efforts to design and develop more efficient digital communication systems.

There have been many new advances in the area of digital communications
following the early work of Shannon, Kotelnikov, and Hamming. Some of the
most notable developments are the following:

* The development of new block codes by Muller (1954), Reed (1954),
Reed and Solomon (1960), Bose and Ray-Chaudhuri (1960a,b), and Goppa
(1970, 1971).

* The development of concatenated codes by Forney (1966).

* The development of computationally efficient decoding of BCH codes,
e.g., the Berlekamp-Massey algorithm (see Chien, 1964; Berlekamp, 1968).

* The development of convolutional codes and decoding algorithms by
Wozencraft and Reiffen (1961), Fano (1963), Zigangirov (1966), Jelinek
(1969), Forney (1970, 1972), and Viterbi {1967, 1971).

* The development of trellis-coded modulation by Ungerboeck {(1982),
Forney ¢t al. (1984), Wei (1987), ard others.

* The development of efficient source encodings algorithms for data
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compression, such as those devised by Ziv and Lempel (1977, 1978) and Linde
et al. (1980).

1-5 OVERVIEW OF THE BOOK

Chapter 2 presents a brief review of the basic notions in the theory of
probability and random processes. Qur primary objectives in this chapler are
to present results that are used throughout the book and to establish some
necessary notation.

In Chapter 3, we provide an introduction to source coding for discrete and
analog sources, Included in this chapter are the Huffman coding algorithm and
the Lempel-Ziv algorithm for discrete sources, and scalar and vector quantiza-
ticn techniques for analog sources.

Chapter 4 treats the characterization of communication signals and systems
from a mathematical viewpoint. Included in this chapter is a geometric
representation of signal waveforms used for digital communications.

Chapters 5-8 are focused on modulation/demodulation and channel
coding/decoding for the additive, white gaussian noise channel. The emphasis
is on optimum demodulation and decoding techniques and their performance.

The design of efficient modulators and demodulators for linear filter
channels with distortion is treated in Chapters 9-11. The focus is on signal
design and on channel equalization methods to compensate for the chamnel
distortion.

The final four chapters treat several more specialized topics. Chapter 12
treats multichannel and multicarrier communication systems. Chapler 13 is
focused on spread spectrum signals for digital commuasications and their
performance characteristics. Chapter 14 provides a in-depth treatment of
communication through fading multipath channels. Included in this treatment
is a description of channel characterization, signal design and demodulation
techniques and their performance, and coding/decoding technigues and their
performance. The last chapter of the book is focused on mulitiuser communica-
tion systems and multiple access methods.

1-6 BIBLIOGRAPHICAL NOTES AND REFERENCES

There are several historical treatments regarding the development of radio and
telecommunications during the past century. These may be found in the books
by McMahon (1984), Millman (1984}, and Ryder and Fink (1984}. We have
already cited the classical works of Nyquist (1924), Hartley {(1928), Kotelnikov
{1947), Shannon (1948), and Hamming (1950), as well as some of the more
important advances that have occurred in the field since 1950. The collected
papers by Shannon have been published by 1EEE Press in a book edited by
Sloane and Wyner {1993). Other collected works published by the IEEE Press
that might be of interest to the reader are Key Papers in the Development of
Coding Theory, edited by Berlekamp (1974), and Key Papers in the
Development of Information Theory, edited by Slepian (1974).
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2

PROBABILITY AND
STOCHASTIC
PROCESSES

The theory of probability and stochastic processes is an essential mathematical
tool in the design of digital communication systems. This subject is important
in the statistical modeling of sources that generate the information, in the
digitization of the source output, in the characterization of the channel through
which the digital information is transmitted, in the design of the receiver that
processes the information-bearing signal from the channel, and in the
evaluation of the performance of the communication system. Our coverage of
this rich and interesting subject is brief and limited in scope. We present a
number of definitions and basic concepts in the theory of probability and
stochastic processes and we derive several results that are important in the
design of efficient digital communication systems and in the evaluation of their
performance.

We anticipate that most readers have had some prior exposure to the theory
of probability and stochastic processes, so that our treatment serves primarily
as a review. Some readers, however, who have had no previcus exposure may
find the presentation in this chapter extremely brief. These readers will benefit
from additional reading of engineering-level treatments of the subject found in
the texts by Davenport and Root (1958), Davenport (1970), Papoulis (1984),
Helstrom (1991), and Leon-Garcia (1994).

2-1 PROBABILITY

Let us consider an experiment, such as the rolling of a die, with a number of
possible outcomes. The sample space S of the experiment consists of the set of
ali possible outcomes. In the case of the die,

§=1{1,23456} (2-1-1)
17
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where the integers 1,. . ., 6 represent the number of dots on the six faces of the
die. These six possible outcomes are the sampie points of the experimeni. An
event is a subset of §, and may consist of any number of sample points. For
example, the event A defined as

A=1{2,4 2-1-2)

consists of the outcomes 2 and 4. The complement of the event A4, denoted by
A, consists of all the sample points in § that are not in A and, hence,

A=1{1,335,6} (2-1-3)

Two eveats are said to be mutally exclusive if they have no sample points in
common—ithat is, if the occurtence of one event excludes the cceurrence of the
other. .'or eéxample, if A is defined as in (2-1-2) and the event B is defined as

B=1{1,3,6} (2-1-4)

then A and B are mutually exclusive events. Similarly, A and A are mutually
exclusive events.

The union {(sum)j of two evenis is an event that consists of all the sample
points in the two events. For example, if B is the event defined in (2-1-4) and C
is the event defined as '

C=1{1,2,3 (2-1-5)
then, the union of B and C, denoted by B U (, is the event

D=BuUcC
={1,2,3,6} (2-1-6)

Similarly, AU A =S5, where S 1s the entire sample space or the certain event.
On the other hand, the intersection of two eveants is an event that consists of
the points that are common to the two evenis. Thus, if £ = B N C represents
the intersection of the events B and C, defined by (2-1-4) and {(2-1-5},
respectively, then

E={1 3}

When the events are mutually exclusive, the intersection is the nuil event,
denoted as &J. For example, ANB =, and AN A= The definitions of
union and intersection are extended to more than two events in a straightfor-
ward manner.

Associated with each event A4 contained in § is its probability P(A). In the
assignment of probabilities to events, we adopt an axiomatic viewpoint. That
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is, we postulate that the probability of the event A satisfies the condition
P(A)=0. We also postulate that the probability of the sample space (certain
event) is P(S) = 1. The third postulate deals with the probability of mutually
exclusive events. Suppose that A;, i =1,2,..., are a {possibly infinite) number
of events in the sample space § such that

ANA=Q i®j=12...

Then the probability of the union of these mutually exclusive events satisfies
the condition

P(L_;J A,) = 2 P(A) (2-1-7)

For example, in a rol! of a fair die, each possible outcome is assigned the
probability {. The event A defined by (2-1-2) consists of two mutually exclusive
subevents or outcomes, and, hence, P(A) = £ =1. Also, the probability of the
event AUB, where A and B are the mutually exclusive events defined by
(2-1-2) and (2-14), respectively, is P(A) + P(B)=4+4 =3

Joint Events and Joint Probabilities Instead of dealing with a single
experiment, let us perform two experiments and consider their outcomes. For
example, the two experiments may be two separate tosses of a single die or a
single toss of two dice. In either case, the sample space S consists of the 36
two-tuples (i, j) where i, j=1,2,.._,6. If the dice are fair, each point in the
sample space is assigned the probability 4. We may now consider joint events,
such as {i is even, j = 3}, and determine the associated probabilities of such
events from knowledge of the probabilities of the sample points.

In general, if one experiment has the possibie outcomes 4, i=1,2,...,n,
and the second experiment has the possible outcomes B, j=1,2,....m, then
the combined experiment has the possible joint outcomes (A4, 8}, =
L2,....n,j=12,..., m Associated with each joint outcome (A,, B} is the
joint probability P(A;, B,) which satisfies the condition

0<P(4, B)<1

Assuming that the outcomes B;, j=1,2,...,m are mutually exclusive, it
follows that

2 P(A;, B)) = P(A;) (2-1-8)
i=1

H

Similarly, if the outcomes A4, i =1, 2, ..., n, are mutually exclusive then

Eﬂ: P(A;, B;)=P(8B)) {2-1-9)
i=1
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Furthermore, if all the outcomes of the two experiments are mutually exclusive
then

3

n
)
=1

P(A.B)=1 (2-1-10)
H

1l

i

The generalization of the above treatment to more than two experiments is
straightforward.

Conditional Probabilities Consider a combined experiment in which a
joint event occurs with probability P(A, B). Suppose that the event B has
occurred and we wish to determine the probability of occurrence of the event
A. This is called the condirional probabifity of the event A given the occurrence
of the event B and is defined as

P(A, B)

P4 B)= P(B)

£2-1-11)

provided P(B)>0. In a similar manner, the probability of the event B
conditioned on the occurrence of the event A is defined as

P(A, B)

PBIa)="

(2-1-12)

provided P(A)>0. The relations in (2-1-11) and (2-1-12) may also be
expressed as

P(A, B)= P(A | B)P(B)= P(B | A)P(A) (2-1-13)

The relations in (2-1-11), (2-1-12), and (2-1-13) also apply to a single
experiment in which A and B are any two events defined on the sample space §
and P{A, B} is interpreted as the probability of the 4 N 8. That is, P(4, B}
denotes the simultaneous occurrence of 4 and B. For example, consider the
events B and C given by (2-1-4) and (2-1-5), respectively, for the single toss of
a die. The joint event consists of the sample points {1,3}. The conditional
probability of the event C given that B occurred is

il

Lalhd

P(C[B)=

i OB

In a single experiment, we observe that when two events A and B are
mutually exclusive, AN 8 = J and, hence, P(A | B) =0. Also, if A is a subset
of B then AN B = A and, hence,

P
P(AIB)=P—§‘;—;
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On the other hand, if B is a subset of A, we have AN B = B and, hencey

P(B) _

PB)

PiA|B)y =2~

An extremely useful relationship for conditional probabilities is Bayes'
theorem, which states that if A, i =1,2,..., s, are mutually exclusive events
such that

A, =5

and B is an arbitrary event with nonzero probability then

P(Aix B)
F(B)

P(B | A)P(A)

P(A, | B)=

=— (2-1-14)
2 P(B|A)P(4)
ji=1

We use this formula in Chapter 5 to derive the structure of the optimum
receiver for a digital communication system in which the events A, =
1,2,...,n, represent the possible transmitted messages in a given time
interval, P(A,) represent their ¢ priori probabilities, B represents the received
signal, which consists of the transmitted message (one of the A,} corrupted by
noise, and P(A; | B} is the a posteriori probability of A, conditioned on having
observed the received signal B.

Statistical Independence The statistical independence of two or more
events is another important concept in probability theory. It usually arises
when we consider two or more experiments or repeated trials of a single
experiment. To explain this concept, we consider two events A and B and their
conditional probability P(A | B), which is the probability of occurrence of A4
given that B has occurred. Suppose that the occurrence of A doss not depend
on the occurrence of B. That is,

P(A|B)=P(A) (2-1-15)
Substitution of {2-1-15) into (2-1-13) yields the resuit
P(A, B)= P(A)P(B) (2-1-16)

That 1s, the joint probability of the events A and B factors into the product of
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the elementary or marginal probabilities P(A) and P(B). When the events A
and B satisfy the relation in (2-1-16), they are said to be swristically
independent.

For example, consider two successive experiments in tossing a die. Let A
represent the even-numbered sample points {2.4.6] in the first toss and B
represent the even-numbered possible outcomes {2, 4,6} in the second toss. In
a fair die, we assign the probabilities P(A) =} and P{B)= ). Now, the joint
probability of the joint event “‘even-numbered outcome on the first toss and
even-numbered outcome on the second toss” is just the probability of the nine
pairs of outcomes (i.j), i =2, 4,6/ =2, 4,6, which is ;. Also,

P(A.B) = P(AIP(B)=}

Thus, the events 4 and B are statistically independent. Similarly, we may say
that the outcomes of the two experiments are statistically independent.

The definition of statistical independence can be extended to three or more
events. Three statistically independent events 4,, A,, and A; must satisfy the
following conditions:

P(A [ Ay) = P(A)P{A)

P4y, Ax) = PLAP(AS)

(2-1-17)
P(A, A3} = P(A7)P(A5)
P(A;, Az. A}) = P(Al)P(Az)P(A\}
In the general case, the events A,, i=1,2,.. ., n, are statistically independent

provided that the probabilities of the joint events taken 2,3,4,...,and n at a
time factor into the product of the probabilities of the individual events,

2-1-1 Random Variables, Probability Distributions, and
Probability Densities

Given an experiment having a sample space § and elements 5 & S, we define a
function X (s5) whose domain is § and whose range is a set of numbers on the
real line. The function X(s5) is called a random variable. For example, if we flip
a coin the possible ocutcomes are head {H) and tail {T), so § eontains twe
points labeled H and T. Suppose we define a function X(s) such that

1 {(s=H)

X(sz{—l (s=T)

(2-1-18)

Thus we have mapped the two possible outcomes of the coin-flipping
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experiment into the two points {+1) on the real line. Another experiment is
the toss of a die with possible outcomes § = {1,2, 3,4, 5, 6}. A random variable
defined on this sample space may be X(s) =35, in which case the outcomes of
the experiment are mapped into the integers 1,..., 6, or, perhaps, X(s)=s°,
in which case the possible outcomes are mapped into the integers
{1,4.9, 16,25, 36}. These are examples of discrete random variables.

Although we have used as examples experiments that have a finite set of
possible ocutcomes, there are many physical systems {experiments) that
generate continuous outputs (outcomes). For example, the noise voltage
generated by an electronic amplifier has a continuous amplitude. Conse-
quently, the sample space S of voltage amplitudes v € § is continuous and so is
the mapping X (v) = v. In such a case, the random variablet X is said to be a
coniinuous random variable.

Given a random variable X, let us consider the event {X < x} where x is any
real number in the interval (~x, ). We write the probability of this event as
P(X =x) and denote it simply by F(x), ie.,

Fx})=P(X sx) {(—o<x<x) (2-1-19)

The function F(x) is called the probability distribution function of the random
variable X. It is also called the cwmidative distribution function (cdf). Since
F(x) is a probability, its range is limited 1o the interval 0< Fix)=<1. In fact,
F{-x)=0and F(x)= 1. For example, the discrete random variable generated
by flipping a fair coin and defined by (2-1-18) has the cdf shown in Fig.
2-1-1(a). There are two discontinuities or jumps in F(x), one at x = -1 and
one at x = 1. Similarly, the random variable X(s)=s generated by tossing a
fair die has the cdf shown in Fig. 2-1-1(b). In this case F(r) has six jumps, one
at each of thepoints x=1,...,6.

Exampies of the cumulative distribution functions of two discrete random variables.

Fix)

{
]

o

t The random variable X {s} will be writien simply as X,
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Fix)

FIGURE 2-1-2  An exampie of the cumulative distribution function of a
caontinttous random variable.

The odf of a continuous random variable typically appears as shown in Fig.
2-1-2. This 1s a smooth, nondecreasing function of x. In some practical
preblems, we may also encounter a random variable of a mixed type. The cdf
of such a random variable is a smooth, nondecreasing function in certain parts
of the real line and contains jumps at a number of discrete values of x. An
example of such a cdf is illustrated in Fig. 2-1-3.

The derivative of the cdf F(x}, denoted as p(x)}, is called the probability
density function {pdf) of the random variable X. Thus, we have

dF{x) .
px)=—" (-»<x<x) (2-1-20)
dx
or, equivalently
F(x}=f pluydu (o <x<x) (2-1-21)

Since F(x) is a nondecreasing function, it follows that p{x)=0. When the
random variable is discrete or of a mixed type, the pdf contains impulses at the

points of discontinuity of F{x). In such cases, the discrete part of p(x) may be
expressed as

pr) =3 P(X =x) 8(x — x) (21.22)

where x;, /=1,2,...,n are the possible discrete values of the random

FIGURE 2-1-3  An example of the cumalative distribution
function of & random variable of & mixed type.
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variable; P(X =x)), i = 1,2,..., n, are the probabilities, and §(x} denotes an
impulse at x =0.

Often we are faced with the problem of determining the probability that a
random variable X falis in an interval {x;, x;}, where x, > x,. To determine the
probability of this event, let us begin with the event {X = x,}. The event can
alwavs be expressed as the union of two mutually exclusive events {X < x;} and
{x, < X < x,} Hence the probability of the event {X <x,} can be expressed as
the sum of the probabilities of the mutually exclusive events. Thus we have

PIX sx;)=PX=x)+ Plx, <X =x;)
Flxz)= F(x) + P(x; <X S 1)
or, equivalently,

P{I[<X5X2)=F{I2)_F(XI)

:f plx)dx (2-1-23)
In other words, the probability of the event {x, <X =x,} is simply the area
under the pdf in the range x; < X =x,.

Multiple Random Variables, Joint Probability Distributions, and Joint
Probability Densities [n dealing with combined experiments or repeated
trials of a single experiment, we encounter multiple random variables and their
cdfs and pdfs. Multiple random variables are basically multidimensional
functions defined on a sample space of a combined experiment. Let us begin
with two random variables X, and X, each of which may be continuous,
discrete, or mixed. The joint cumulative distribution function {joint cdf) for the
two random variables is defined as

F(xl,xz)=P(X,€§x,,Xz~.<_x2)
=f f pluy, uy) du, du, {2-1-24)

where p(x,, x,) is the joint probability density function {(joint pdf). The latter .
may also be expressed in the form

4

plxy, xp) = Flxy, x2) (2-1-25)

axl éxz

When the joint pdf p(x,, x,) is integrated over one of the variables, we
obtain the pdf of the other variable. That is,

J plx1, x2)dx, = p(x3)
~ (2-1-26)

[ ptnxddn=pex)
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The pdfs p{x,) and p{x,) obtained from integrating over one of the varniables
are called marginal pdfs. Furthermore, if p(x;, x;} is integrated over both
variables, we obtain

r r plxy, X2} dx, dxy = F, 2) =1 (2-1-27)

—X -

We also note that F(—x, —%}= F(—%, x;) = F{x,, —x}=0.

The generalization of the above expressions to multidimensional random
variables is straightforward. Suppose that X, i=1,2,.. ,n, are random
variables with a joint cdf defined as

Flx,x, .. .. x0=PAsx, X35x;,...,X.=1,)

':J‘[f "'f"p(u'“uz,...,u,,)dff;daz"‘dﬂ,,
(2-1-28)

where p(x,,x;,...,x,} is the joint pdf. By taking the partial derivatives of
F(xy, x3, ..., x,) given by (2-1-28), we obtain

aﬂ

=—— F{x{, X3,...,X, 2-1-29
Xy dxp " v 83X, x1: 22 *n) ( )

pPlxy, X2, .., Xa)

Any number of variables in p{x,. x,, ..., x,,) can be eliminated by integrating
over these variables. For example, integration over x; and x; yields

| [ pmaxa o xydr dey=planxes o xa) (2:130)

It also follows that F(x,, =, ®, x4, ..., x, ) =F(x,, x4, Xs, ..., x,,) and
F{xl: —03’ ‘_m;xiy LI ] xﬂ) ={)'

Conditional Probability Distribution Fuactions Let us consider two ran-
dom variables X, and X, with joint pdf p{x,, x,). Suppose that we wish o
determine the probability that the random variable X, < x, conditioned on

XZ'- AXZ<X2‘—=—}:2
where Ax, is some positive increment. That is, we wish to determine the
probability of the event (X, <x,|x,— Ax,<X,=<x;). Using the reiations

established earlier for the conditional probability of an event, the probability
of the event (X, <x, |x,— Ax,;<X,;=<x;) can be expressed as the probability
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of the joint event (X, <x,, x, — Ax,<X,<x,) divided by the probability of
the event {x; — Ax, < X,;=ux,). Thus
jx_;; ;z—éx pluy, uo) dus du,
PX,sx,ix,-A<X.sx)= i
(X, H ‘ z 2 2 2) . P(uz) dity
_Ftxy, x3) = Flxy, %, — Axy)
Fx))— Fx;—Ax3)

(2-1-31)

Assuming that the pdfs p(x,, x,) and p{(x,) are continuous functions over the
interval (x; — Ax,, x,), we may divide both numerator and denominator in
(2-1-31) by Ax, and take the limit as Ax,— 0. Thus we obtain

aF (x,, x,)/ax,
GF(xz);;t?xz
_ . 2 pluy, u) du,duy]/3x,
alf . plu,) dus)/ex,
- e pluy, x5) du
pix;)

P(X;le IXZ:'XI}EF(II lx2}=

(2-1-32)

which is the conditional cdf of the random vanable X, given the random

variable X,. We observe that F(~o|x,)=0 and F(=|x,)=1. By

differentiating (2-1-32} with respect to x,, we obtain the corresponding pdf

p{x, | x,)} in the form

plxi, x3)
p(x3)

Altemnatively, we may express the joint pdf p(x,,x,} in terms of the
conditional pdfs, p(x; | x2) or p(x; | x1), as

pix, | x2)= (2-1-33)

plx,, x;} =plx, fxz)P(xz}
=px; | x)p(x;) (2-1-34)

The extension of the relations given sbove to multidimensional random
variables is also easily accomplished. Beginning with the joint pdf of the

random vaniables X}, i = 1,2, ..., n, we may write

P(’xhx?!"'»xﬂ)=p(‘thx2s'--axk txk-&!r"'}xn)p(xkéll'~';xn) {2’1'35)
where &k is any integer in the range 1<k <n. The joint conditional cdf
corresponding to the pdf p(x,, x5, . .., X | Xpnr, .., X,) S
F(x;,xz,...,xklxh],..., ,,)

[ Py, Uy, Ly Xgans s X ) iy AUty - - du
=f S5 p(u, uy kr Xisy ) du; dusy k (2-1-36)
P(Xiirs- o Xn}
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This conditional cdf satisfies the properties previously established for these
functions, such as

F(w:xz;n-»xklfxns---oxn}':F(x::Xsw--,Xklxhn-----’fn}

Fl=%,x5, . ., X | Xpur,. .., %) =0

Statistically Independent Random VYariables. We have already defined
statistical independence of two or more events of a sample space §. The
concept of statistical independence can be extended to random variables
defined on a sample space generated by a combined experiment or by repeated
trials of a single experiment. If the experiments result in mutually exclusive
outcomes, the probability of an outcome in one experiment is independent of
an outcome in any other experiment. That is, the joint probability of the
outcomes factors into a product of the probabilities corresponding to each
outcome. Consequently, the random variables corresponding to the outcomes
in these experiments are independent in the sense that their joint pdf factors
into a product of marginal pdfs. Hence the multidimensional random variables
are statistically independent if and only if

Flxxy ..., x)=Fx)F(x;) - F(x,) (2-1-37)
or, alternatively,
plxy, Xy, oL, 5,0 = plap(xs) - - pleg) (2-1-38)

2-1-2 Functions of Random Variables

A problem that arises frequently in practical applications of probability is the
following. Given a random variable X, which is characterized by its pdf p(x),
determine the pdf of the random variable Y = g(X), where g{X) is some given
function of X. When the mapping ¢ from X to ¥ is one-to-one, the
determination of p(y) is relatively straightforward. However, when the
mapping is not one-to-one, as is the case, for example, when ¥ = X%, we must
be very careful in our derivation of p(y).

Example 2-1-1
Consider the random variable Y defined as
Y=gX +5b (2-1-39)

where a and b are constants. We assume that a > 0. If a <0, the approach is
similar (see Problem 2-3). We note that this mapping, illustrated in Fig.
2-1-4(a} is linear and monotonic. Let Fy(x) and F,(y) denote the cdfs for X
and Y, respectively.t Then

FAy)=P(Y <y)=P(aX +bsj,)=p(Xs)*_;£)

[T = m(222) (2-1-40)

% To avoid confusion in changing variables, subscripts are used in the respective pdfs and cdfs.
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¥ Py ()
¥Y=z=agX+b.a>0 i
/ - X 2 8 o
o 1 0 i
/ ®)
(a3}
Pyly}

{cy

FIGURE 2-1-4 A linear transformation of a random variable X and an example of the corresponding pdfs of X
and ¥.

By differentiating (2-1-30) with respect to y, we obtain the relationship
between the respective pdfs. It is

pviy)= ﬁpx(y ; b) (2-1-41)

Thus (2-1-40) and {2-1-41) specify the cdf and pdf of the random variable Y
in terms of the ¢df and pdf of the random variable X for the linear
transformation in (2-1-39). To illustrate this mapping for a specific pdf
Px{x), consider the one shown in Fig. 2-1-4(b). The pdf p,(y) that results
from the mapping in {2-1-39) is shown in Fig. 2-1-4(c).

Example 2-1-2
Consider the random variable Y defined as

Y=aX*+b, a>0 (2-1-42)
As in Example 2-1-1, the mapping between X and Y is one-to-one. Hence

F(y)=PY<sy)=PaX’+b<y)
o G B R (U IR
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¥=agXi+b

Differentiation of (2-1-43) with respect to y yields the desired relationship
between the two pdfs as

pr(y} =3a[(y _1b)!a}2,:3px{(y ;b)m] (2-1-43)

Example 2-1-3
The random variable V¥ is defined as
Y=aX?+b, a>0 {2-1-45)

In contrast to Examples 2-1-1 and 2-1-2, the mapping between X and Y,
illustrated in Fig. 2-1-5, is not one-to-one. To determine the cdf of Y, we
observe that

FAy)}=P(Y<y)=PaX’+b<y)

- P({ng y;b)

Hence

R =F{7=2) - B (- =) (2-1-46)

aq

Differentiating (2-1-46) with respect to y, we obtain the pdf of Y in terms of
the pdf of X in the form

pv(¥) _px[Vy — b)/a]  px[~V(y ~ b)/a]
v 2aV[(y - bYa] 2aV[(y - b)/a]

In Example 2-1-3, we observe that the equation g(x) =ax’+ £ =y has two

(2-1-47)

real solutions,
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and that p,(y) consists of two terms corresponding to these iwo solutions.
That is,

px[—’fl V{y — b)/a] Px[xz —V{y - b}l4]
ig'(xi=V(y- b)/‘?]i lg'[x2= —V{y — b)/a)

where g'(x) denotes the first derivative of g{(x).

In the general case, suppose that X, x3,..., x, are the reaj roots of the
equation g(x}=y. Then the pdf of the random vanable Y =g{X) may be
expressed as

py(y)= (2-1-48)

Px(x ) 2.1-49
ply) = ; PRy (2-1-49)
where the roots x;, i =1, 2,. .., n, are functions of y.

Now let us consider functions of multidimensional random wvariables.
Suppose that X, i=1,2,... n, are random variables with joint pdf
Px(x, x2,...,%,), and ¥t Y, i=1,2,...,n be another set of n random
variables reiated to the X, by the funcnons

=g(X:. X5, ... X)), i=1,2,.. . ,n {2-1-50)

We assume that the gi{X,, X,,... . X,). i=12,...,n, are single-valued
functions with continuous partial derivatives and invertible. By “‘invertible™ we
mean that the X, i=1,2,...,n, can be expressed as functions of Y,
i=1,2, ...,n, in the form

=g.'V, Y, ..., Y,), i=412,...,n (2-1-31)

where the inverse functions are also assumed to be single-valued with
continuous partial derivatives. The problem is to determine the joint pdf of ¥,,
i=1,2,...,n denoted by py(y.y:...,¥.), given the joint pdf
PxlXy, X2, 00, X}

To determine the desired relation, let Ry be the region in the n-dimenstonal
space of the random variables X, i=1,2,...,n and let Ry, be the

(one-to-one) mapping of Ry defined by the fum:llons =X, X2, ..., X))
Clearly,

jf'"!P;’{Y:,.Yz,---,yn)d)’l dy, - - dy,
Ry

=Jf~-fpx(xl,X3,...,xn)dx, dxz-..ﬂfxn (2_}_52’
Ry
By making a change in variables in the multiple integral on the right-hand side

cf (2-1-52) with the substitution

Xzzg;‘(}’l,??.--u.}"N)Eg[:, i=1,2,...,f!
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we obtain
fj <. j Pyly ¥, Yerdvodv: - dy,
Ry

=JJ e {’[}X(I; =g L ta=gs o, =g, YW dv dv, - dy,
J
(2-1-53)

Ry

where J denotes the jacobian of the transformaticn. defined by the determinant

g el 08
vy ay, dyy
J=f : (2-1-54)
ég, ' ag:’ 3.
Consequently, the desired relation for the joint pdf of the ¥, i =1,2,... . n,is

Pr(¥ida o v =palti =g, W xa=g X, =g, UV (2-1-55)

Example 2-1-4

An important functional relation between two sets of n-dimensional random
variables that frequently arises in practice is the linear transformation

Yi=2a,X, i=12,....n (2-1-56)

i=t

where the {a,} are constants. It is convenient to employ the matrix form for
the transformation, which is

Y=AX (2-1-57)

where X and Y are rn-dimensional vectors and A is an n X » matrix. We
assume that A is nonsingular. Then A is invertible and, hence,

X=ATY {2-1-58)
Equivalently, we have

X;=Xb,Y, i=1,2...,n (2-1-59)
i=1
where {b,} are the clements of the inverse matrix A~ '. The jacobian of this
transformation is J = 1/det A. Hence

Py, Yo, oY)
n n n i
- = b s = b";—--, u= bn ;)
Px(xz !; y Vjs X2 J; 2 ¥ X ;gl 2 idet A]
(2-1-60)
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2-1-3 Statistical Averages of Random Variables

Averages play an important role in the characterization of the outcomes of
expenments and the random variables defined on the sample space of the
expenments. Of particular interest are the first and second moments of a single
random variable and the joint moments, such as the correlation and covari-
ance, between any pair of random variables in a multidimensional set of
random variables. Also of great importance are the characteristic function for a
single random variable and the joint characteristic function for a multidimen-
sional set of random variables. This section is devoted to the definition of these
important statistical averages.

First we consider a single random variable X characterized by its pdf p(x}.
The mean or expected value of X is defined as

E(X)=m, = r xp(x) dx (2-1-61)

where E{ ) denotes expectation {statistical averaging). This is the first moment
of the random variable X. In general, the nth moment is defined as

E(X™) = f x"p(x) dx (2-1-62)

Now, suppose that we define a random variable ¥ = g(X'), where g(X) is
some arbitrary function of the random variable X. The expected value of Y is

ECY)= EgO0} = | g(elp(r) d (21:63)
In particular, if ¥ = (X — m,)" where m, is the mean value of X, then
E()= EX - my)= | (= m,ype) dx (2-1-64)

This expected value is called the nth central moment of the random variable X,
because it is a moment taken relative to the mean. When n =72, the central

moment is called the varignce of the random variable and denoted as o
That is,

o= f (x = m, ) p(x) dx (2-1-65)

This parameter provides a measure of the dispersion of the random variable X,
By expanding the term (x — m, )’ in the integral of (2-1-65) and noting that the
expected value of a constant is equal 1o the constant, we obtain the expression
that relates the variance to the first and second moments, namely,
oz = E(X) — [E(X)F
=E(XH—m? (2-1-66)
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In the case of two random variables, X, and X,, with joint pdf p(x,, x,), we
define the joint moment as

CExixy = [ [ stetpte, v e a, (2-1-67)

and the joinr certral moment as

E[(X, —m ) (X3 —my)"]
=f f ey~ m Y (= my)'pix,, x;) dx. dx;  (2-1-68)

where m, = E(X,}. Of particular importance to us are the joint moment and
joint central moment corresponding to & =#n =1. These joint moments are
called the cofreiation and the covariance of the random variables X, and X,
respectively.

In considering muitidimensional random variables, we can define joint
moments of any order. However, the moments that are most useful in practical
applications are the correlations and covariances between pairs of random
variables. To elaborate, suppose that X, i=1,2,..., n, are random variables
with joint pdf p{x,,x,....,x,). Let p{x; x;) be the joint pdf of the random
variables X; and X,. Then the correlation between X, and X, is given by the
joint moment

E(X.X;)= j f X% p (X, ;) dx; dx; (2-1-69)

and the covariance of X; and X, is

My = E[(X, —m)}X; ~ m)}

=f f (x; — m;)(x; —my)pix,, x;) dx; dx;

= f J XiX;p (%, x;) d; dx; — mmy;

= E(X,X) - M 2-1-70
£ 1

The n X n matnx with elements u; is called the covariance matrix of the
random variables X, i =1, 2, ..., n. We shall encounter the covariance matrix
in our discussion of jointly gaussian random variables in Section 2-14.

Two random variables are said to be uncorrelated if E(XX))=
E(X)E(X,;) = mm;. In that case, the covariance u,; = 0. We note that when X,
and X; are statistically independent, they are also uncorreiated. However, if X,
and X are uncorrelated, they are not necessarily statistically independent.
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Two random variables are said to be orthogonal if £(X;X;}=0. We note
that this condition holds when X, and X, are uncorrelated and either one or
both of the random varnables have zero mean.

Characteristic Functions The characteristic function of a random variable
X is defined as the statistical average

E(e)=y(p) = f e*"p(x) dx -1-74)

where the varialﬁe v is real and j = V—1. We note that ¢(jv) may be described
as the Fourier transformt of the pdf p(x). Hence the inverse Fourier trans-
form is

plx)= 51.; f plfu)e ™ dv (2-1-72)

One useful property of the characteristic function is its relation to the
moments of the random variable. We note that the first derivative of (2-1-71)
with respect to v yieids

dy(j =
-—ff:—vzzj f-xxe’“"p(x}dx

By evaluating the derivative at v = 0, we obtzin the first moment (mean)

__dg(jv)
1 dv

E(X)=m, = (2-1-73)

v=0

The differentiation process can be repeated, so that the nth derivative of ¢ {jv}
evaluated at v =0 yields the nth moment

dTYY)

E(X")={(-}) . {2-1-74)

v=0

Thus the moments of a random variable can be determined from the
characteristic function. On the other hand, suppose that the characteristic
functicn can be expanded in a Taylor series about the point v = 0. That is,

$ijv)= i {M} v—ﬂ (2-1-75)

a=0 dv" ,,=gﬂ!

Using the relation in (2-1-74) to eliminate the derivative in (2-1-75), we obtain

t Usually the Fourier transform of a function gz} is defined as G(v] = [~ g{uJe " du, which
differs from ¢2-1-71} by the negative sign in the exponential. This is a trivial difference. however, so
we csll the integral in (2-1-71} a Fourier transform.
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an expression for the characteristic function in terms of s moments in the
form
x -v o
s = 3 Ex L (2176)
=41 -

The characteristic function provides a simple method for determining the
pdf of a sum of statistically independent random variables. To illustrate this
point, let X,, i=1,2....,n, be a set of n statistically independent random
variables and let

Y= X, (2-1-77)
i=t

The problem is to determine the pdf of Y. We shall determine the pdf of Y by
first finding its characteristic function and then mmputmg the inverse Fourier
transform. Thus

¥r(jv) = E("7)
= E[exp ( v i: X,)}

+=1

e[ 1)

=t
i

f H et p(xz Xoooo L, X0 dx dxs - - dx,  (2-1-78)
—-= - ifE
Since the randomn variables are statistically imdependent, p(x,, x,,.. ., x,

p(x)plx;) - - - plx,.}. and, hence, the nth-order integral in (2-1-78) reduces to a
product of » single integrals, each corresponding to the characteristic function
of one of the X,. Hence,

o) = [T () (2:179)

If, in addition to their statistical independence. the X, are identically
distributed then all the ¥y {jv) are identical. Consequently,

by (o) =[x (R3] (2-1-80)
Finally, the pdf of Y is determined from the inverse Fourier transform of
y(jv), given by (2-1-72).

Since the characteristic function of the sum of n statistically independent
random variables is equal to the product of the characteristic functions of the
individual random variables X,, i =1, 2, ..., n, it follows that, in the transform
domain. the pdf of Y is the n-fold convolution of the pdfs of the X,. Usually
the n-fold convolution is more difficult 1o perform than the characteristic
function method described above in determining the pdf of Y.

When working with n-dimensional random variables, it is appropriate to
define and n-dimensional Fourier transform of the joint pdf. In particular, if
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X, i=1,2,...,n, are random variables with pdf pix;, x3,...,x,), the
n-dimensional characteristic function is defined as

(o, o2, ... Jun)

-efowls$ 0]

i
=J T j eXp (} 2 vixi)P(xh Xz, 0.y X,) dxy dxy - - - dx,  (2-1-81)
-= - ©i=1
Of special interest is the two-dimensional characteristic function

g‘;(jvhjvz) =f ( ei(wx.+vzxz)P{xh xz)dx1 dx, (2—1—82_}
We observe that the partial derivatives of ¢{jv,, jv;) with respect to v, and v,
can be used to generate the joint moments. For example, it is ¢asy to show that

_ 82&(]-‘”3 ijZ)

E{Xle) N gy, du
i 2

(2-1-83)

v =uy=0

Higher-order moments are generated in a straightforward manner.

2-1-4 Some Useful Probability Distributions

In subsequent chapters, we shall encounter several different types of random
variables. In this section we list these frequently encountered random
variables, their pdfs, their cdfs, and their moments. We begin with the binomial
distribution, which is the distribution of a discrete random variable, and then
we present the distributions of several continuous random variables.

Binomial Disfribution Let X be a discrete random variable that has two

possible values, say X =1 or X =0, with probabilities p and 1-p,
respectively. The pdf of X is shown in Fig. 2-1-6. Now, suppose that

Y= X,
i=1

where the X, i=1,2,...,n, are statistically independent and identicaily

FIGURE 2-1-6 The probability distribution function of X 0 1 4 —
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distributed random variables with the pdf shown in Fig. 2-1-6. What is the
probability distribution function of Y?

To answer this question, we cobserve that the range of Y is the set of
integers from 0 to n. The probability that Y =0 is simply the probability that
all the X, = 0. Since the X are statistically independent,

P(Y=0)=(1-p)

The probability that Y =1 is simply the probability that one X; =1 and the rest
of the X, = 0. Since this event can occur in 2 different ways,

P(Y=1)=np(1 -py !

To generalize, the probability that ¥ = k& is the probability that & of the X are
equal to one and n — k are equal to zero. Since there are

(D E‘;;Tik_). (2-1-84)

different combinations that result in the event {Y = k}, it follows that
POy =)= (7)ot -py (21-85)

where (2) is the binomial coefficient. Consequently, the pdf of ¥ may be

expressed as

p(y)=2 P(Y =k)6(y —k)

k=0

> (F)pra-praty - &) (2:1-86)

&=0

The cdf of ¥ is
F(y)=P(Y<y)
{»}

=3 (Lpra—pr (21-87)

where [y] denotes the largest integer m such that m <y. The cdf in (2-1-87)
characterizes a binomially distributed random variable.
The first two moments of ¥ are

E(Y)=np
E(Y?) =np(1 - p) + n’p? (2-1-88)
o’ =np(l -p)
and the characteristic function is
$(jv)=(1—p+pe*y (2-1-89)
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The pdf and cdf of a uniformly distributed random variable.

Uniform Distribution The pdf and c¢df of a uniformly distributed random
variable X are shown in Fig. 2-1-7. The first two moments of X are

E(X)=3a+b)

E(X?)=Ya?+b" +ab) {2-1-90)
L@’ =fs(a - b)
and the characteristic function is
vk
¢ jv) =m- (2-1-91)

Gaussian (Normal) Distributien The pdf of a gaussian or normally
distributed random variable is

e —{x e, 22t

1
plx)= Y

— (2-1-92)
b s

where m, is the mean and ¢ is the variance of the random variable. The cdf is

Fe)= | pleda

1
Viro

X
f e et — R PRa? du

ix e, YWV2ier

12
= e U dt

f-%erf(x —m‘)

P e

{2-1-93)
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The pdf and odf of a gaussian-distributed random variable.

where erf (x) denotes the error function, defined as

2.
erf(x}=—41{ ¢ “dr 2-1-94)
W=zl ‘
The pdf and cdf are illustrated in Fig. 2-1-8.
The cdf F(x) may also be expressed in terms of the complementary error
function. That is,

Fx)=1-lerfc (xvji’:»)

where
erfc{x) = ifze"la’:
Vrd,

=1—erf(x) (2-1-95)

We note that erf (—x) = —erf (x), erfc{—x) =2~ erfc (x), erf (0) = erfc {x) =
0, and erf (=) =erfc (0) = 1. For x >m,, the complementary error function is
proportional to the area under the tail of the gaussian pdf. For large values of
x, the complementary error function erfc (xr) may be approximated by the
asymplotic series

-x? 1 . . 3.
erfc{x)=e (1 113 13 5+...)

J.’Y(;[ 2[2 22‘x4 23x6
where the approximation error is Iess than the last term used.

The function that s frequently used for the arez under the tail of the
gaussian pdf is dencted by O{x) and defined as

(2-1-96)

1 (7 .
Olx)= ?,2_—};] e Pdr, x=0 (2-1-97)

By comparing (2-1-95) with (2-1-97), we find

O(x) = berfc (i%) (2-1-98)
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The churacteristic function of a gaussian random variable with mean m, and
variance o s

PR
‘,'e VU = e!ux[ e—(y m,)-/.-ﬁ-] fi«r
=] 7w

= pfvn (WDt {2-1-99)
The central moments of a ga.sian random variable are

(1-3---(k—1)0* (evenk)

EICX - m == MVPSICERLY

and the ordinary moments may be expressed in terms of the central moments
as

£y =3 (K )mie, (2-1-100)

i=¢

The sum of n statistically independent gaussian random variables is also a
gaussian random variable. To demonstrate this point, let

Y=2 X, (2-1-102)
i=1
where the X, i =1,2,...,n, are statistically independent gaussian random

variables with means m;, and variances o°. Using the result in (2-1-79), we find
that the characteristic function of ¥ is

y(fu) = ljl Wx(jv)

- lgl ejmi;fuzaff'?.
i=1
= glvm vz (2-1-103})
where
m, = Z ;
- (2-1-104)
i=1

Therefore, Y is gaussian-distributed with mean m, and variance o2

Chi-Square Disfribution A chi-square-distributed random variable is re-
lated to a gaussian-distributed random variable in the sense that the former can
be viewed as a transformation of the latter. To be specific, let Y = X?, where X
is a gaussian random variable. Then Y has a chi-square distribution. We
distinguish between two types of chi-square distributtons. The first is called a
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ceniral chi-square distribution and is obtained when X has zero mean. The
second is called a non-central chi-square distribution, and is obtained when X
has a nonzero mearn.

First we consider the central chi-square distribution. Let X be gaussian-
distributed with zero mean and variance o2, Since ¥ = X?, the result given in
(2-1-47) applies directly with @ =1 and b = (. Thus we obtain the pdf of ¥ in
the form

1 .
: = izt » =0 2-1-105
Thecdfof Y is
R = [ o) die
)]
E ¥ ] i >
= —=e " du (2-1-106)

Vinae o Vu

which cannot be expressed in closed form. The characteristic function,
however, can be determined in closed form. It is

v) = s 1.
P jv) (1= 2002 (2-1-107)
Now, suppose that the random vanable Y is defined as
Y= Xx? (2-1-108)
i=t
where the X, i=1,2....,n, are statistically independent and identically

distributed gaussian random variables with zero mean and variance o As a
consequence of the statistical independence of the X,, the characteristic
function of Y'is

Yrv(ju) = (1~ 2oy (2-1-109)
The inverse transform of this characteristic function yields the pdf
= 1 2~ i, - viZeot
pY(y) 6"2""23_‘('511} e » ¥ :—?0 (2‘1'110}
where I'(p) is the gamma function. defined as
Fip) =] PleTdr, p>0
G
(2-1-111)

Fip)y=(p - 1), p anirteger,p >0
[Gy=Vr, T@)=4iVa

This pdf, which is a generalization of (2-1-105), is called a chi-square (or

52



FIGURE 2-1-%

CHAPTER @ PROBABILITY AND STOCHASTIC FROCESSES 43

The pdi of a chi-square-distributed random
variable for several degrees of freedom.

gamma) pdf with n degrees of freedom. It is illustrated in Fig. 2-1-9. The case
n = 2 yields the exponential distribution.
The first two moments of Y are

E(Y)=na’
E{(Y}) = no* + n’o* (2-1-112)
ol =2na*
The cdf of Y is
¥ } :
Fiy)=| ——m=—u"? e " du, =0 2-1-113

This integral can be easily manipulated into the form of the incomplete gamma
function, which is tabnlated by Pearson (1965). When # is even, the integral in
(2-1-113) can be expressed in closed form. Specifically, let m = in, where m is
an integer. Then, by repeated integration by parts, we obtain

Eiy=1-e2 S LN g 2-1-114
Y(y} -4 = kF 20’2 5 }" ( }

Let us now consider a noncentral chi-square distribution, which results from
squaring a gaussian random variable having a nonzero mean. If X is gaussian
with mean m, and variance ¢, the random variable Y = X? has the pdf

Vym,

1 e
)= e TR h( } =0 2-1-115
pvly) Vary S € cos g ( )

which is obtained by applying the result in (2-1-47) to the gaussian pdf given by
(2-1-92). The characteristic function corresponding to this pdf is

;. 1 imZpil — j2ual
wy(fv)=(———-———l_izwz).,ze’ il =j2va) (2-1-116)
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To generalize these results, let Y be the sum of squares of gaussian random
variables as defined by (2-1-108). The X,, i =1,2,...,#, are assumed to be
statistically independent with means m,, i =1, 2,.. ., n, and identical variances
equal to o°. Then the characteristic function of Y, cbtained from (2-1-116} by
applying the relation in (2-1-79), is

e(ju)= (2-1-117)

i
(1 - 2va?y™” P - jlva?

This characteristic function can be inverse-Fourier-transformed to yield the pdf

1 ¥ (n-2)4 e vyt 5
P =35(5) e (VD) ye0 @rus)
where, by definition,
s*=> m? (2-1-119)
i=1

and [,(x} is the ath-order modified Bessel function of the first kind, which may
be represented by the infinite series

sk Tla+k+ 1)
The pdf given by (2-1-118) is called the noncentrai chi-square pdf with n
degrees of freedom. The parameter 5 is called the noncentrality parameter of
the distribution.

The cdf of the noncentral chi square with n degrees of freedom is

x=0 (2-1-120)

MR B 2 NPT s :
Fy{y)z A g (;‘3) £ g’n!’z—?(v"’;;) du (2‘1‘121)

There is no closed-form expression. for this integral. However, when m = ln is

an integer, the cdf can be expressed in terms of the generalized Marcum’s Q
function, which is defined as

e / -1
Qm(gs b) =£ x(i) e—(xff'azjfzimnl(ﬂx}dx

s m=1 b\k
=0.(a b)+ew+m Y (;} I (ab) (2-1-122)
k=1

whete
* &
Oufa, b)=¢ @92 Y (%) L{ab), b>a>0 (2-1-123)
& =0

I we change the variable of integration in (2-1-121) from « to x, where

x*=ujc?
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and let g = s*/o?, then it is easily shown that

B(y)=1- Qm(i, W) (2-1-124)

o o

Finally, we state that the first two moments of a noncentral chi-square-
distributed random variable are

E(Y)=no’ +5°
E(Y*) =2no* + 40%5% + (no? + s {2-1-125)
ol=2no' + 40%*

Rayleigh Distribution The Rayleigh distribution is frequently used to
model the statistics of signals transmitted through radio channels such as
cellular radio. This distribution is closely related to the central chi-square
distribution, To illustrate this point, let ¥ = X3+ X2 where X, and X, are
zero-mean statistically independent gaussian random variables, each having a

variance o® From the discussion above, it follows that Y is chi-square-
distributed with two degrees of freedom. Hence, the pdf of ¥V is

b yne
priy)=5 57, y=0 (2-1-126)
Now, suppose we define a new random variable

R=VXI+Xi=VY {2-1-127)

Making a simple change of variable in the pdf of (2-1-126), we obtain the pdf
of R in the form

pg(fhée‘ 2ot =0 {2-1-128)

This is the pdf of a Rayleigh-distributed random variable. The corresponding
cdf is

“
Felr) = ¢ wizel gy

=1-e""  r=0 (2-1-129)
The moments of R are

E(R*)= (2627 (1 + k) (2-1-130)
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and the variance is
gi=(2—ix)a? (2-1-131)

The characteristic function of the Rayleigh-distributed random variable is
Yr(jv)= f L e T dr (2-1-132)
v O

This integral may be expressed as

A

Yr(jv) = j % e " cosurdr +§ iz e " sinvrdr
u & o T
=,F(1,}; —}?0?) + jVinvae V7 (2-1-133)

where ,F (1, }; —a) is the confluent hypergeometric function, which is defined
as

o Te + KT ()"

1File, Bix) = g’er‘(a)r(ﬁ TR

B#0,—-1,-2,... (2-1-134)

Beaulieu {1990) has shown that , Fi{1, {; ~a) may be expressed as

< ek

Lhi~a)=-e" ) —— 2-1-13
Al fima)=—e™ 2 s (2-1-135)

As a generalization of the above expression, consider the random variable

R=,/3 x? (2-1-136)
i=1

where the X, i=1,2,...,n, are statistically independent, identically distrib-
uted zero mean gaussian random variables. The random wvariable R has a
generalized Rayleigh distribution. Clearly, ¥ = R? is chi-square-distributed
with n degrees of freedom. Ite pdf is given by (2-1-110). A simple change in
variable in (2-1-110) yields the pdf of R in the form

rn—i

palry= me rRe k20 {2-1-137)

As a consequence of the functional relationship between the central
chi-square and the Rayleigh distributions, the corresponding cdfs are similar.
Thus, for any »n, the cdf of R can be put in the form of the incomplete gamma
function. In the special case when n is even, i.e., n = 2m, the cdf of R can be
expressed in the closed form

Fr(r) =1 W’.,i;l(,z)k (
ry=l—e ™ —{—], r=¢0 2-1-138
" ) k:gk[ 2("2 )
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Finally, we state that the kth moment of R'is

T(i(n +&))

, k=0 2-1-139
rin) (1-139)

E(R*) = 20?}?

which holds for any integer n.

Rice Distribution Just as the Rayleigh distribution is related to the central
chi-square distribution, the Rice distribution is related to the noncentral
chi-square distribution. To illustrate this relation, let ¥ = X!+ X2, where X,
and X are statistically independent gaussian random variables with means m,,
i=1, 2, and common variance 0. From the previous discussion, we know that
Y has a noncentral chi-square distribution with noncentrality parameter
s*=ml+ m3 The pdf of ¥, obtained from (2-1-118) for n =2, is

1 —{sT+y)2a? 5

priy)=5 ze TR fa(\f} ;5). y=0 (2-1-140)
Now, we define a new random variable R = VY. The pdf of R, obtained

from (2-1-140) by a simple change of variable, is

Palr) = S e st 19(32), r=0 (2-1-141)
a [ 4

This is the pdf of a Ricean-distributed random variable. As will be shown in
Chapter 5, this pdf characterizes the statistics of the envelope of a signal
corrupted by additive narrowband gaussian noise. It is also used to model the
signal statistics of signals transmitted through some radio channels. The cdf of
R is easily obtained by specializing the results in {2-1-124) to the case m = 1.
This yieids

s r

Fe(ry=1- Qi(; , ;), r=0 (2-1-142)

where @ ,{a, b) is defined by (2-1-123).

As a peneralization of the expressions given above, let R be defined as in
(2-1-136) where the X, i=1,2,...,n are statistically independent gaussian
random variables with means m,, i =1, 2,..., n, and identical variances equal
to ¢’. The random variable R =Y has a noncentral chi-square distribution
with n degrees of freedom and noncentrality parameter s given by (2-1-119).
Its pdf is given by (2-1-118). Hence the pdf of R is

rm’Z trrstyag? rs
Prir) = pEXEET L (riesy 1,,,2_1(;), r=1 (2-1-143)
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and the corresponding cdf is
Fe(ry=P(R<sry=P(VYsr)= PIY <77} = R () (2-1-144)

where F,(r’) is given by {2-1-121). In the special case where m = {n is an
integer, we have

R =1-0,(2.2). rz0 (2-1-145)
a o
which follows from (2-1-124). Finally, we s1ate that the kth moment of R is

E(R&) (2{}' )HZ —522a?

TR +k)Yy /n+kn s .
rén) ’F’( 2 2202) k=0

(2-1-146)

where ; Fi(a, B;x) is the confluent hypergeometric function.

Nskagami m-Distribution Both the Rayleigh distribution and the Rice
distribution are frequently used to describe the statistical Auctuations of signals
recetved from a multipath fading channel. These channel models are con-
sidered in Chapter 14. Ancther distribution that is frequently used to
characterize the statistics of signals transmitted through multipath fading
channels is the Nakagami m-distribution. The pdf for this distribution is given
by Nakagami {1960} as
m

2 . 21}
palr)= im )(*) P2 le ™™ (2-1-147)

where Q is defined as
(= E{R%) (2-1-148;]
and the parameter m is defired as the ratio of moments, called the fading

figure,

o’ ‘
™= R )’ m=} (2-1-149)

A normalized version of (2-1-147) may be obtained by defining another
random variable X = R/VQ (see Problem 2-15). The nth moment of R is

a1 (2

By setting m = I, we observe that (2-1-147) reduces to a Rayleigh pdf. For
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values of m in the range § <m <1, we obtain pdfs that have larger tails than a
Rayleigh-distributed random variable, For values of m > 1, the tail of the pdf
decays faster than that of the Rayleigh. Figure 2-1-10 illustrates the pdfs for
different values of m.

Multivariate Gaussian Distribution Of the many multivariate or multi-
dimensional distributions that can be defined, the multivariate gaussian
distribution is the most important and the one most likely to be encountered in
practice,. We shall briefly introduce this distribution and state its basic
properties.

Let us assume that X, i=1,2,..., n, are gaussian random variables with
means m;, i=1,2,...,n, variances o7, i=1,2,...,n, and covariances u,
i,j=12,...,n Clearly, pg,=o? i=1,2,...,n Let M denote the n X n
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covariance matrix with elements {g }, let X denote the n x 1 column vector of
random variables, and let m, denote the » X 1 column vector of mean values
m, i=12,...,n The joint pdf of the gaussian random variables X,
i=1.2... . ,n is defined as

1
T 2y (det M)

p('xts LS I I,,) |,.2€xp [‘%(X _m.t)‘M“l(x - mt}E

(2-1-150)

where M’ denotes the inverse of M and x' denotes the transpose of x.
The characteristic function corresponding to this n-dimensional joint pdf is

p(jv) = E(e"™)

where v is an a-dimensional vector with elements v, i=12,. .,n
Evaluation of this n-dimensional Fourier transform yields the result

(v} = exp {jm,v — iv’'Mv} (2-1-151)

An important special case of {2-1-150) is the bivariate or two-dimensional
gaussian pdf. The mean m, and the covariance matrix M for this case are

mr={m1]. Ms["z‘ ‘;’g] (2-1-152)

) iz
where the ‘joim ceniral moment u,, is defined as
o= E[(X, —mUX:- m?)}

It is convenient to define a normalized covariance

pa=tL,  inj (2-1-153)
0’,;(?;

where p; saticfies the condition 0<ip,/=<1 When dealing with the two-
dimensional case, it is customary to drop the subscripts on a4, and p,,. Hence
the covariance matrix is expressed as

2
M = [p(:; 2 "‘:%"2] (2-1-154)
{1s inverse is
1 o3 —pao.g
gl e
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and detM = olgi(1 — p?). Substitution for M™' into (2-1-150) yields the
desired bivariate gaussian pdf in the form

1

Xy Xp)= ———————
plx,, x2) 2o, a,V1 - p?

xex [__ o3(x, —m\) — 2p ap{x, — m)x; —my) + ai{x; — mz)z]
P 20801 - 7)
(2-1-156)

We note that when p =0, the joint pdf p(x,, x>} in (2-1-156) factors into the
product p{x,)p{x;), where p{x;}, i =1, 2, are the marginal pdfs. Since p is a
measure of the correiation between X, and X, we have shown that when the
gaussian random variables X, and X, are uncorrelated. they are also
statistically independent. This is an important property of gaussian random
variables, which does not hold in general for other distributions. It extends to
n-dimensional gaussian random variables in a straightforward manner. That 1s,
if p; = 0 for i # j then the random variables X, i=1,2, ..., r are uncorrelated
and, hence, statistically independent.

Now, let us consider a linear transformation of » gaussian random variables
X, i=1,2 ...,n, with mean vector m, and covariance matrix M. Let

Y = AX {2-1-157)

where A is a nonsingular matrix. As shown previously, the jacobian of this
transformation is J =1/det A. Since X = A7'Y, we may substitute for X in
(2-1-150} and, thus, we obtain the joint pdf of Y in the form

1
(2ny"*(det M) ? det A

ply) = exp[—4#A y-m )M {(A7y - m}]

1
= Gy e gy P (T3 M) QT ~m)] (2-1-158)

where the vector m, and the matrix Q are defined as

m, = Am,

0= AMA {(2-1-159)

Thus we have shown that a linear transformation of a2 set of jointly gaussian
random variables results in another set of jointly gaussian random variables.

Suppose that we wish to perform a linear transformation that results in

statistically independent gaussian random variables. How should the matrix A

be selected? From our previous discussion, we know that the gaussian random
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variables are statistically independent if they are pairwise-uncorreiated, i.e., if
the covariance matrix Q is diagonal. Therefore, we must have

AMA' =D (2-1-160)

where D is a diagonal matrix. The matrix M is a covariance matrix; hence, it is
positive definite. One solution is to select A to be an orthogonal matrix
(A’ = A7) consisting of columns that are the eigenvectors of the covariance
matrix M. Then D is a diagonal matrix with diagonal elements equal to the
eigenvatues of M.

Example 2-1-5

Consider the bivariate gaussian pdf with covariance matrix
13
M=y o)
i1
Let us determine the transformation A that will result in uncorrelated
random variables. First, we solve for the eigenvalues of M. The characteris-

tic equation is
det(M-AD=0
0

Next we determine the two eigenvectors. If a denotes an eigenvector, we
have

(M- ADa=0

With A, = 2 and A, = }, we obtain the eigenvectors
n = . a,=
P LVE -V

101
A=v’§[ ]
1 -1

Therefore,

It is easily verified that A™' = A’ and that
AMA' =D

where the diagonai elements of D are 3 and .
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2-1-5 Upper Bounds on the Tail Probability

In evaluating the performance of a digital communication system, it is often
necessary to determine the area under the tail of the pdf. We refer to this area
as the tail probability. In this section, we present two upper bounds on the tail
probability. The first, obtained from the Chebyshev inequality, is rather loose.
The second, called the Chernoff bound, is much tighter.

Chebyshev Inequality Suppose that X is an arbitrary random vanable with
finite mean m, and finite variance o2 For any positive number 3,

2
P(X —m,laé)sg (2-1-161)
This relation is called the Chebyshev inequality. The proof of this bound is

relatively simple. We have
s

ot~ [ G-myprar=[  c-mypas

Wepr im§

=5 p@)dx=8PUX ~m|25)
Sl B

Thus the validity of the inequality is established.

It is apparent that the Chebyshev inequality is simply an upper bound on
the area under the tails of the pdf p(y), where ¥ =X —-m,, i.e., the area of
p(y) in the intervals (~=, —§) and (8, ). Hence, the Chebyshev inequality
may be expressed as

1= [FU8) - F(-8)] < (2-1-162)
or, equivalently, as
2
1— [Fx(m, + &) — Fx{m, — 8)] s% (2-1-163)

There is another way to view the Chebyshev bound. Working with the zero
mean random variable Y=X - m,, for convenience, suppose we define a
function g(Y) as
1 (j¥Y|=8)

g(y)={e (1Y) < 8)

{2-1-164)

Since g(Y) is either O or 1 with probabilities P(lY|<$) and P(Y|=8),
respectively, its mean value is

Eg(V)]=P(lY|=8) (2-1-165)
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A quadratic upper bound on g({Y) used in
obtaining the tail probability {Chebyshey 3
bound}).

Now suppose that we upper-bound g(Y) by the quadratic {¥Y/8), i.e.,
Y 2
g(¥) s(—s-) (2-1-166)

The graph of g(¥) and the upper bound are shown in Fig. 2-1-11. It follows
that

‘Y E(YH ot o
E{g(Y)}sﬁ(g) = fsz )=g§=§

Since £[g(Y}] is the tail probability, as seen from {2-1-165), we have obtained
the Chebyshev bound.

For many practical applications, the Chebyshev bound is extremely loose.
The reason for this may be attributed to the looseness of the quadratic (Y/8Y
in overbounding g(¥}. There are certainly many other functions that can be
used to overbound g(¥). Below, we use an exponential bound to derive an
upper bound on the tail probability that is extremely tight,

Chernoff Bound The Chebyshev bound given above involves the area
under the two tails of the pdf. In some applications we are interested only in
the area under one tail, either in the interval (8, =) or in the interval {~x, §).
In such a case we can obtain an extremely tight upper bound by overbounding
the function g(Y) by an exponential having a parameter that can be optimized
to yield as tight an upper bound as possible. Specifically, we consider the tail
probability in the interval {8, «}. The function g{Y') is overbounded as

glyyse™v® (2-1-167)
where g(¥} is now defined as

g(y)={l {Y = 8)

0 (Y<8) (2-1-168)
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]
Upper bound
ir-8
L g
. . e o
FIGURE 2-1-£2  An exponential upper bound on g{¥) used in 3 3 - 4
obtaining the tail probability (Chernoff bound).

and v=0 is the parameter to be optimized. The graph of g(Y) and the
exponential upper bound are shown in Fig. 2-1-12.
The expected value of g(Y) is

E[g(Y)] = (Y = 8) < E(e"¥ %) (2-1-169)

This bound is valid for any v=0. The tightest upper bound is obtained by
selecting the value of v that minimizes £(e"¥ ™). A necessary condition for a
minimum is

% E(e"" ) =0 (2-1-170)

But the order of differentiation and expectation can be interchanged, so that
d d
“ VY -85y — 8 wr-35
B E(’dve )
_ E[(Y _ 8)ev(Y—5)}
=e Y[E(Ye") - 8E(e”")}=0

Therefore the value of v that gives the tightest upper bound is the solution to
the equation
E(Ye')~8E(e')=0 (2-1-171)

Let # be the solution of (2-1-171). Then, from (2-1-169), the upper bound on
the one-sided tail probability is

P(Y=8)<e "E(e®) (2-1-172)

This is the Chernoff bound for the upper tail probability for a discrete or a
continuous random variable having a zero mean.t This bound may be used to

show that Q(x) <e ", where Q(x) is the area in the tail of the gaussian pdf
(see Problem 2-18).

t Note that E{e*”) for real v is not the characteristic function of Y. It is called the momenr
generating function of Y.
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The pdf of a Laplace-distributed random variable.
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An upper bound on the fower tail probability can be obtained in a similar

manner, with the result that

P(Y<8)<se "E(e™ {2-1-173)

where ¢ is the solution to (2-1-171) and 8 < 0.

Example 2-1-6
Consider the (Laplace) pdf

ply)=3e " (2-1-174)

which is illustrated in Fig. 2-1-13. Let us evaluate the upper tail probability
from the Chernoff bound and compare it with the true tail probability,
which is

PlY=5)= f le Ydy=3e* (2-1-175)

&

To solve {2-1-171) for ¢, we must determine the moments E(Ye'") and
E(e”"). For the pdf in (2-1-174), we find that

o 2v
E¥Ve) = e 1y
: (2-1-176)
B = ha—w

Substituting these moments into (2-1-171}, we obtain the quadratic equation
v8+2v—58=0

which has the solutions
-1V + ¥
B 5

¢ (2-1-177)

Since ¢ must be positive, one of the two solutions is discarded. Thus
o= -1+V1i+ 8

1-17
5 (2-1-178)
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9Y)

Finally, we evaluate the upper bound in (2-1-172) by eliminating E(e
using the second relation in (2-1-176) and by substituting for ¢ from
{2-1-178). The result is

5?2 VITH
>5)< 1-Viva 2-1-179
s avis e ® ( )

For 8 > 1, (2-1-179) reduces to

P{Y-‘—'-’-S}Sge““ (2-1-180)

We note that the Chernoff bound decreases exponentially as § increases.
Consequently, it approximates closely the exact tail probability given by
(2-1-175). In contrast, the Chebyshev upper bound for the upper tail
probability obtained by taking one-half of the probability in the two tails (due
to symmetry in the pdf) is

P{Yaa)s%

Hence, this bound is extremely loose.
When the random variable has a nonzero mean, the Chemoff bound can be
extended as we now demonstrate. If Y= X —m,_, we have_
PY28)=P(X-m,=28)=P(X=m,+8)=P(X =8,)

where, by definition, 8, =m_+ 5. Since 6§ >0, it follows that 5, >m,. Let
2(X'} be defined as

_{1 (X=8,)
g(X)= {0 (X <5,) (2-1-181)
and upper-bounded as
gX)=er X3 (2-1-182)

From this point, the derivation parallels the steps contained in (2-1-169)-
(2-1-172). The final result is

P(X =8, )<e " E(e*S) (2-1-183)
where 8,, >m, and ? is the solution to the equation
E(Xe™) - 6,,E(e**)=0 (2-1-184)

In a similar manner, we can obtain the Chernoff bound for the lower tail
probability. For é < (, we have

P(X ~m,<8)=P(X<m,+8)=P(X<5,)<E(e* %) (2-1-185)

From our previous development, it is apparent that (2-1-185) results in the
bound

P(X <8,)se "=E(e**) (2-1-186)
where 8,, <m, and ¢ is the solution to (2-1-184).
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2-1.6 Sums of Random Variables and the Centrail

Limit Theorem

W have previously considered the problem of determining the pdf of a sum of
n statistically independent random variables. In this section, we again consider
the sum of statistically independent random variables, but our approach is
different and is independent of the particular pdf of the random variables in
the sum. To be specific, suppose that X, i=1,2,...,n, are statistically
independent and identically distributed random variables, each having a finite
mean m, and a finite variance ¢2. Let Y be defined as the normalized sum.
called the sample mean:

1 n
== g (2-1-187)

First we shail determine upper bounds on the tail probabilities of ¥ and then

we shall prove a very important theorem regarding the pdf of Y in the limit as
-,

The random variabie Y defined in (2-1-187) is frequently encountered in
estimating the mean of a random variable X from a number of observations X/,
i=1.2,...,n In other words, the X, i=1,2,...,n, may be considered as
independent samples drawn from a distribution Fy(x}, and Y is the estimate of
the mean m .

The mean of Y is

3 n
E(Yy=m,=~3 E(X
=m.¥
The variance of Y is
= E(Y2) - mf, = E(Y”} -m?
H

Hzl’

-

> E(X: X)) — m?
§j=1

il

=2 B0+ 53 5 BB - m

=i j=]
f#]

1 1
=— (ot m)+—n(n—Dmi—m

When ¥ is viewed as an estimate for the mean m,, we note that its expected
value is equal to m, and its variance decreases inversely with the number of
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samples #n. As n approaches infinity, the variance o approaches zero. An

estimate of a parameter (in this case the mean m,) that satisfies the conditions
that its expected value converges to the true value of the parameter and the
variance converges to zero as n — o is said to be a consistent estimate

The tail probability of the random variable Y can be upper-bounded by use
of the bounds presented in Section 2-1-5. The Chebyshev inequality applied to
Yis

2
g
P({Y-*myﬁzé)sgf

{2-1-188)
Pl‘ HZ\;X, m, =8 \asz
In the limit as n — =, (2-1-188) becomes
§1 n i
lim P(E—EX,—m,E?8)=E} {2-1-189)

i=1

Therefore, the probability that the estimate of the mean differs from the true
mean m, by more than 8 (& > 0} approaches zero as n approaches infinity. This
statement is a form of the law of large numbers. Since the upper bound
converges to zero relatively slowly, i.e., inversely with n, the expression in
(2-1-188} is called the weak law of large numbers.

The Chernoff bound applied to the random variable Y yields an exponential
dependence of », and thus provides a tighter upper bound on the one-sided tail
probability. Following the procedure developed in Section 2-1-5, we can
determine that the tail probability for y is

l!f
P(Y—my26)=P(—§_: X,-—mxzﬁ)

i=1

= P(é:, X;=zné, )= E{cxp [v(g X; —mﬁm}}} {(2-1-190)

where §,=m,+ 6 and §>0. But the X, i=1,2,...,n, are statistically
independent and identically distributed. Hence,

E{exp [v(z X~ b, )|} = e o[ exp (v 2 x,)]

Eil
= e—wr&,, “ E(ev,\’.)
i=}1

=[e " E(e*¥)]" (2-1-191)

where X denotes any one of the X,. The parameter v that yields the tightest
upper bound is obtained by differentiating (2-1-191) and setting the derivative
equal to zero. This yields the equation

E(Xe"™)—8,,E(e™¥)=0 {2-1-192)
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Let the solution of (2-1-192) be denoted by ¥. Then, the bound on the upper
1ail probability is

P(l SX= a,,,) <[e"“E(E), b.>m, (2-1-193)
n;o

In a similar manner, we find that the lower tail probability is upper-bounded as
P(Y<3,)sle "*E("®]". 8,<m, (2-1-194)
where ¢ is the solution to {2-1-192).

Example 2-1-7
Let X;, i=1,2,...,n, be a set of statistically independent random variables
defined as
¥ - { 1  with probability p <

" L=1 with probability 1 — p
We wish to determine a tight upper bound on the probability that the sum
of the X is greater than zero. Since p < i, we note that the sum will have a

negative value for the mean; hence we seck the upper tail probability. With
8, =0 in (2-1-193), we have

P( > X, a(}) <[E(e*)) (2-1-195)
i f
where ¥ is the solution to the equation
E(Xe*)=0 {2-1-196)
Now
E(Xe* )= —(1—ple "+pe*=0
Hence
¢ l -
p=1n{ /—53) (2-1-197)
Furthermore,

E(e™)=pe’+(1-p)e”*
Therefore the bound in (2-1-195) becomes

P(g; X ?B) <[pe’+(1-ple T

£[p\/1’§+(1—?)\/g]n

<{4p(1 - p)I™ (2-1-198)
We observe that the upper bound decays exponentially with n, as expected.
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[n contrast, if the Chebyshev bound were evaluated, the tait probability
would decrease inversely with n

Central Limit Theorem We conclude this section with an extremely useful
theorem concerning the cdf of a sum of random variables in the limit as the
number of terms in the sum approaches infinity. There are several versions of
this theorem. We shall prove the theorem for the case in which the random
variables X,, i =1,2,...,n, being summed are statistically independent and
identically distributed, each having a finite mean m, and a finite variance o
For convenience, we define the normalized random variable

U;»———X‘—Ti, i=1,2,...,n

o,

Thus U: has a zero mean and unit variance. Now, let

;;;—; >, (2-1-199)
Since each term in the sum has a zero mean and unit variance, it follows that
the normalized (by 1/V#) random variable Y has zerc mean and unit variance.
We wish to determine the cdf of Y in the Limit as n — .

The characteristic function of ¥ is
v U

i=1

) = wYy =
wyl(fv)=E(e”"} = E{ exp v

“ITe(z)

[%(%)T (2-1-200)

where U denotes any of the U;, which are identically distributed. Now, let us
expand the characteristic function of U in a Taylor series. The expansion yields

¢U(;V,)—1+,\/_5(U)— CE(U?) + (:/J-):;S!E(U)— . (2-1-201)

i

Since E(U) =0 and E(U?) =1, {2-1-201) simplifies to

v v o1
'ﬁu(\%;) =1-5-+-R(v,n) (2-1-202)

where R{v, n}/n denotes the remainder. We note that R{v, n) approaches
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zero as n — %. Substitution of (2-1-202) into (2-1-200) yields the characteristic
function of Y in the form

v’ R(v n)}"
=11 —— 2-1-203
i) = [ 1 -2+ L (2-1-203)
Taking the natural logarithm of (2-1-203), we obtain
v’ R(v n)}
i) = 1 ——+—" 2-1-204
R (2-1-204)

For small values of x, In (1 + x) can be expanded in the power series
Wl+x)=x—+it—. ..

This expansion applied to (2-1-204) vields

2

e v Rw,n) 1/ v Ry, )V
3n¢y{fv}-n[—2n+*—~*—n —2(—2n+—~—~n )+} {2-1-205)

Finally, when we take the limit as n—o 3= (2-1-205) reduces to
lim, .. In $,(ju) = ~iv?, or, equivalently,

lim yyjv) =e 7 (2-1-206)
But, this 15 just the characteristic function of a gaussian random varnable with
zero mean and unit variance. Thus we have the important result that the sum
of statistically independent and identically distributed random variables with
finite mean and variance approaches a gaussian cdf as a— . This result is
known as the central limir thegrem.

Although we assumed that the random variables in the sum are identically
distributed, the assumption can be relaxed provided that additional restrictions
are imposed on the properties of the random variables. There is one variation
of the theorem, for example, in which the assumption of identically distributed
random variables is abandoned in favor of a condition on the third absolute
moment of the random variables in the sum. For a discussion of this and other
variations of the central limit theorem, the reader is referred to the book by
Cramer (1946).

22 STOCHASTIC PROCESSES

Many of the random phenomena that occur in nature are functions of time.
For example, the meteorological phenomena such as the random fluctuations
in air temperature and air pressure are functions of time. The thermal noise
voltages generated in the resistors of an electronic device such as a radio
receiver are also a function of time. Similarly, the signal at the output of a
source that generates information is characterized as a random signal that
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varies with time. An audio signal that is transmitted over a telephone channel
is an example of such a signal. All these are examples of stochastic {random)
processes. In our study of digital communications, we encounter stochastic
processes in the characterization and modeling of signals generated by
information sources, in the characterization of communication channels used to
transmit the information, in the charactenization of noise generated in a
receiver, and in the design of the optimum receiver for processing the received
random signal.

At any given time instant, the value of a stochastic process, whether it is the
value of the noise voltage generated by a resistor or the amplitude of the signal
generated by an audio source, is a random variable. Thus, we may view a
stochastic process as a random variable indexed by the parameter 1. We shall
denote such a process by X(1). In general, the parameter ¢ is continuous,
whereas X may be either continuous or discrete, depending on the characteris-
tics of the source that generates the stochastic process.

The noise voltage generated by a single resistor or a single information
source represents a single realization of the stochastic process. Hence, it is
called a sample function of the stochastic process. The set of all possible sample
functions, e.g., the set of all noise voltage waveforms generated by resistors,
constitute an ensemble of sample functions or, equivalently, the stochastic
process X{7). In general, the number of sample functions in the ensemble is
assumed to be extremely large; often it is infinite.

Having defined a stochastic process X{(r) as an ensemble of sample
functions, we may consider the values of the process at any set of time.instants
>8> t:>...>1t, where n is any positive integer. In general, the random
variables X, = X{,), i =1, 2,..., n, are characterized statistically by their joint
pdf pix,, x,, ..., x, ). Furthermore, all the probabilistic relations defined in
Section 2-1 for multidimensional random variables carrv over to the random
variables X,, i=1,2,.. . ,n

Stationary Stochastic Processes As indicated above, the random variables
X, i=1,2,...,n, obtained from the stochastic process X(r) for any set of
time instants ¢, >4, >1,>... >, and any n are characterized statistically by
the joint pdf p(x,,x,,...,x, ). Let us consider another set of n random
variables X,,, =X(t; +1), i=1,2,...,n, where t is an arbitrary time shift.
These random  variables are characterized by the joint  pdf
PlX, ve Xper - . -, X%, o). The joint pdfs of the random variables X, and X,
i=1,2,...,n may or may not be identical. When they are identical, i.e..
when

P(x:,,- Kegzvo vy xf,) =p(ng+n xr;-ﬂ; L xz,,ﬂ) (2'2'1}
for all 1 and all n, the stochastic process is said to be stationary in the sirict
sense. That is, the statistics of a stationary stochastic process are invariant to

any translation of the time axis. On the other hand, when the joint pdfs are
different, the stochastic process is nonsiationary.
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2-2-1 Statistical Averages

Just as we have defined statistical averages for random variables, we may
similarly define statistical averages for a stochastic process. Such averages are
also called ensemble averages. Let X(1) denote a random process and let
X, = X(1,). The nth moment of the random variable X, is defined as

Xy~ | xiptn) dx, @22)

In general, the value of the nth moment will depend on the time instant /, if the
pdf of X, depends on ;. When the process is stationary, however, p(x,, ) =
pix,} for all & Hence, the pdf is independent of time, and, as a consequence,
the nth moment is independent of time.

Next we consider the two random variables X, =X{1), i=1,2. The
correlation between X, and X, is measured by the joint moment

EXX)= [ [ xexopte, x) dx, dx, 223)

Since this joint moment depends on the time instants ¢, and ¢,. it is denoted by
&it,, t;). The function &(¢,,1,) is called the aurocorrelation function of the
stochastic process. When the process X() is stationary, the joint pdf of the pair
(X.. X,,) is identical to the joint pdf of the pair (X, ., X,,.,) for any arbitrary ¢.
This implies that the autocorrelation function of X (¢} does not depend on the
specific time instants ¢, and 1, but, instead, it depends on the time difference
t; — t5. Thus, for a stationary stocha