
Automatically Decomposing Configuration

Problems�

Luca Anselma, Diego Magro, and Pietro Torasso

Dipartimento di Informatica
Università di Torino

Corso Svizzera 185; 10149 Torino; Italy
{anselma,magro,torasso}@di.unito.it

Abstract. Configuration was one of the first tasks successfully ap-
proached via AI techniques. However, solving configuration problems can
be computationally expensive. In this work, we show that the decompo-
sition of a configuration problem into a set of simpler and independent
subproblems can decrease the computational cost of solving it. In partic-
ular, we describe a novel decomposition technique exploiting the compo-
sitional structure of complex objects and we show experimentally that
such a decomposition can improve the efficiency of configurators.

1 Introduction

Each time we are given a set of components and we need to put (a subset
of) them together in order to build an artifact meeting a set of requirements,
we actually have to solve a configuration problem. Configuration problems can
concern different domains. For instance, we might want to configure a PC, given
different kinds of CPUs, memory modules, and so on; or a car, given different
kinds of engines, gears, etc. Or we might also want to configure abstract entities
in non-technical domains, such as students’ curricula, given a set of courses.

In early eighties, configuration was one of the first tasks successfully
approached via AI techniques, in particular because of the success of
R1/XCON [10]. Since then, various approaches have been proposed for auto-
matically solving configuration problems. In the last decade, instead of heuristic
methods, research efforts were devoted to single out formalisms able to capture
the system models and to develop reasoning mechanisms for configuration. In
particular, configuration paradigms based on Constraint Satisfaction Problems
(CSP) and its extensions [12, 13, 1, 18] or on logics [11, 3, 16] have emerged.

In the rich representation formalisms able to capture the complex constraints
needed in modeling technical domains, the configuration problem is theoretically
intractable (at least NP-hard, in the worst case) [5, 15, 16]. Despite the theoret-
ical complexity, many real configuration problems are rather easy to solve [17].
However, in some cases the intractability does appear also in practice and solv-
ing some configuration problems can require a huge amount of CPU time. These
� This work has been partially supported by ASI (Italian Space Agency).

A. Cappelli and F. Turini (Eds.): AI*IA 2003, LNAI 2829, pp. 39–52, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Page 1 of 14 FORD 1108f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

40 Luca Anselma et al.

ones are rather problematic situations in those tasks in which low response time
is required. E.g. in interactive configuration the response time should not ex-
ceed a few seconds and on-line configuration on the Web imposes even stricter
requirements on this configurator feature.

There are several ways that can be explored to control computational com-
plexity in practice: among them, making use of off-line knowledge compilation
techniques [14]; providing the configurator with a set of domain-specific heuris-
tics, with general focusing mechanisms [6] or with the capability of re-using past
solutions [4]; defining techniques for automatically decomposing a problem into
a set of simpler subproblems [9, 8]. These approaches are not in alternative and
configurators can make use of different combinations of them. However it makes
sense to investigate to what extent each one of them can contribute to the im-
provement of the efficiency of configurators. In the present work, we focus on
automatic problem decomposition, since to the best of our knowledge this issue
has not received much attention in the configuration community.

In [7] a structured logical approach to configuration is presented. Here we
commit to the same framework as that described there and we present a novel
problem decomposition mechanism that exploits the knowledge on the com-
positional structure (i.e. the knowledge relevant to parts and subparts) of the
complex entities that are configured. We also report some experimental results
showing its effectiveness.

Section 2 contains an overview of the conceptual language, while Section 3
defines configuration problems and their solutions. In Section 4 a formal defini-
tion of the bound relation, which problem decomposition is based on, is given;
moreover, in that same section, a configuration algorithm making use of decom-
position is reported and illustrated by means of an example. Section 5 reports
the experimental results, while Section 6 contains some conclusions and a brief
discussion.

2 Conceptual Language

In the present paper the FPC (Frames, Parts and Constraints) [7] language is
adopted to model the configuration domains. Basically, FPC is a frame-based
KL-One like formalism augmented with a constraint language.

In FPC, there is a basic distinction between atomic and complex components.
Atomic components are the basic building blocks of configurations and they are
described by means of properties, while complex components are structured en-
tities whose characterization is given in terms of subparts which can be complex
components in their turn or atomic ones. FPC offers the possibility of orga-
nizing classes of (both atomic and complex) components in taxonomies as well
as the facility of building partonomies that (recursively) express the whole-part
relations between each complex component and its (sub)components. A set of
constraints restricts the set of valid combinations of components and subcompo-
nents in configurations. These constraints can be either specific to the modeled
domain or derived from the user’s requirements.

Page 2 of 14 FORD 1108f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Automatically Decomposing Configuration Problems 41

has_mot(1;1)

has_cdw1(0;1)

Controller
SCSI

has_mpcb(1;1)

has_cs(0;1)

CPUhas_cpu(1;2)

RAM

has_ram(1;4)

Motherboard

CD_reader

CDR_EIDE CDR_SCSI

CD Tower

has_cdt(0;1)

CD_writer

CDW_EIDE CDW_SCSI

has_cdr2(0;7)

Main Printed
Circuit Board

MPCB_SCSI MPCB_EIDE

has_cdw2(0;7)

CONSTRAINTS
Associated with PC class
"In any PC, if there is a EIDE main printed circuit board and at least one SCSI device,
 then there must be a controller SCSI"
[co1](<has_mot,has_mpcb>)(in MPCB_EIDE) AND
 ((<has_hd1>)(in HD_SCSI(1;7)) OR (<has_cdr1>)(in CDR_SCSI(1;1)) OR
 (<has_cdw1>)(in CDW_SCSI(1;1))
)==>(<has_mot,has_cs>)(1;1)

Associated with Motherboard class
"In any motherboard, if there is a SCSI main printed circuit board,
 then there should be no controller SCSI"
[co2](<has_mpcb>)(in MPCB_SCSI)==>(<has_cs>)(0;0)

Associated with CD Tower class
"In any CD tower, there must be at least one CD reader or CD writer"
[co3](<has_cdr2>,<has_cdw2>)(1;14)

PC

has_cdr1(0;1)

Hard Disk

HD
EIDE

HD
SCSI

has_hd1(1;7)

Disk Array

has_da(0;1)

has_mon(1;1)

has_k(1;1)

has_hd2(1;7)

STRING

Keyboard

Monitor
manuf_m(1;1)manuf_k(1;1)

Fig. 1. A simplified PC conceptual model (CMPC)

We illustrate FPC by means of an example; for a formal description, re-
fer to [7]. In fig. 1 a portion of a simplified conceptual model relevant to
PC configuration is represented. The classes of complex components (e.g. PC,
Motherboard, ...) are represented as rectangles, while classes of atomic com-
ponents (e.g. Main Printed Circuit Board, CD reader, ...) are represented
as ellipses. Partonomic roles represent whole-part relations and are drawn as
solid arrows. For instance, the PC class has the partonomic role has mot, with
minimum and maximum cardinalities 1, meaning that each PC has exactly one
motherboard; partonomic role has cdr1, whose minimum and maximum cardi-
nalities are 0 and 1, respectively, expresses the fact that each PC can optionally
have one CD reader, and so on. It is worth noting that the motherboard is a
complex component having 1 to 4 RAM modules (see the has ram partonomic
role), one main printed circuit board (has mpcb role), that can be either the
SCSI or the EIDE type, etc.

Page 3 of 14 FORD 1108f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

42 Luca Anselma et al.

Descriptive roles represent properties of components and they are drawn as
dashed arrows. For example, the Monitor component has a string descriptive
role manuf m, representing the manufacturer.

Each constraint is associated with a class of complex components and is
composed by FPC predicates combined by means of the boolean connectives
∧,∨,¬,→. A predicate can refer to cardinalities, types or property values of
(sub)components. The reference to (sub)components is either direct through
partonomic roles or indirect through chains of partonomic roles. For example, in
fig. 1 [co2] is associated with the Motherboard class and states that, if has mpcb
role takes values in MPCB SCSI (i.e. the main printed circuit board is the SCSI
type), then has cs relation must have cardinality 0 (i.e. there must be no SCSI
controller). An example of a chain of partonomic roles can be found in [co1]:
the consequent of the constraint [co1] (associated with PC class) states that the
role chain 〈has mot, has cs〉 has cardinality 1, i.e. the PC component has one
Motherboard with one SCSI Controller. [co3] shows an example of a union of
role chains: a component of type CD Tower must have 1 to 14 CD readers or
CD writers.

3 Configuration Problems

A configuration problem is a tuple CP = 〈CM, T, c, C, V 〉, where CM is a con-
ceptual model, T is a partial description of the complex object to be configured
(the target object), c is a complex component occurring in T (either the target
object itself or one of its complex (sub)components) whose type is C (which is
a class of complex objects in CM) and V is a set of constraints involving com-
ponent c. In particular, V can contain the user’s requirements that component c
must fulfill.

Given a configuration problemCP , the task of the configurator is to refine the
description T by providing a complete description of the component c satisfying
both the conceptual description of C in CM and the constraints V , or to detect
that the problem does not admit any solution.
Configuration Process We assume that the configurator is given a main con-
figuration problem CP0 = 〈CM, (c), c, C, REQS〉, where c represents the target
object, whose initial partial description T ≡ (c) contains only the component c;
REQS is the set of requirements for c (expressed in the same language as the
constraints in CM1). Therefore, the goal of the configurator is to provide a
complete description of the target object (i.e. of an individual of the class C)

1 It is worth pointing out that the user actually specifies her requirements in a higher
level language (through a graphic interface) and the system performs an automatic
translation into the representation language. This translation process may also per-
form some inferences, e.g. if the user requires a PC with a CD tower containing at
least one CD reader and at least one CD writer, the system infers also an upper
bound for the number of components of these two kinds, as in requirements req3
and req4 in fig. 2, where the upper bound 7 is inferred for both the number of CD
readers and of CD writers that the CD tower can contain.

Page 4 of 14 FORD 1108f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Automatically Decomposing Configuration Problems 43

The manufacturer of the monitor must be the same as that of the keyboard
[req1](<has_mon,manuf_m>)=(<has_k,manuf_k>)

It must have a disk array
[req2](<has_da>)(1;1)

It must have a CD tower with at least one CD reader and at least one CD writer
[req3](<has_cdt,has_cdr2>)(1;7)
[req4](<has_cdt,has_cdw2>)(1;7)

It must have no more than 4 SCSI devices
[req5](<has_cdr1>,<has_cdw1>,<has_hd1>,<has_cdt,has_cdr2>,<has_cdt,has_cdw2>,

 <has_da,has_hd2>)(in CDR_SCSI U CDW_SCSI U HD_SCSI(0;4))

Fig. 2. User’s Requirements for a PC (REQSPC)

satisfying the model CM and fulfilling the requirements REQS (such a descrip-
tion is a solution of the configuration problem) or to detect that the problem does
not admit any solution (i.e. that such an individual does not exist). Since CM
is assumed to be consistent, this last case happens only when the requirements
REQS are inconsistent w.r.t. CM . A sample description of an individual PC
satisfying the conceptual model CMPC in fig. 1 and fulfilling the requirements
listed in fig. 2 is reported in fig. 4.f.

The configuration is accomplished by means of a search process that progres-
sively refines the description of c. At each step the configuration process selects
a complex component in T (starting from the target object), it refines the de-
scription T by inserting a set of direct components of the selected component
(by choosing both the number of these components and their type) and then it
configures all the direct complex components possibly introduced in the previous
step. If, after a choice, any constraint (either in CM or in REQS) is violated,
then the process backtracks. The process stops as soon as a solution has been
found or when the backtracking mechanism cannot find any open choice. In the
last case, CP does not admit any solution.

4 Decomposing Configuration Problems

Because of the inter-role constraints, both those in CM and those in REQS,
a choice made by the configurator for a component can influence the valid choices
for other components. In [9, 8] it is shown that the compositional knowledge
(i.e. the way the complex product is made of simpler (sub)components) can be
exploited to partition the constraints that hold for a given component into sets in
such a way that the components involved in constraints of two different sets can
be configured independently. While such a decomposition has been proved useful
in reducing the actual computational effort in many configuration problems, here
we present an enhancement of such a decomposition mechanism that considers
constraints as dynamic entities instead of static ones.

Page 5 of 14 FORD 1108f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

