
YZOC. OX me iyyi MBE
Int. Cod. on Tools for AI
San Jose, CA-NOV. 1991

Knowledge-based Configuration of Computer Systems Using
Hierarchical Partial Choice

B V ~ M. .Gamer*
Department of Computer Science

University of Toronto
Toronto, Ontario, M5S 1A4

hamer@ ai.toronto.edu

Abstract

As the complexity of computer systems grows, configu-
ration expert systems become increasingly important as
tools to ensure that delivered systems are workable. This
paper introduces a novel inference scheme called hierar-
chical partial choice that efjiciently generates configura-
tions from a knowledge base of structured descriptions of
computer components. This approach combines the acqui-
sition and maintenance advantages (over rule-based sys-
tems) of a declarative system with an inference scheme that
efjiciently generates solutiom, ofen with little backtrack-
ing.

The inference scheme 1s presented in the context of
XKEWB, a shell for building computer configuration
expert system. The system contains several improvements
over its predecessor Cossack. For example, the system is
designed to allow configurators to configure multiple com-
puters in a network setting, the end user interface is partic-
ularly suited to the task of specifying computer systems.

1.0 Introduction

As computer systems grow in complexity, automated
configuration systems become increasingly important.
Questions one might have to ask while configuring a sys-
tem include: is the accounting software compatible with
the word processing software, and, does the file server have
enough disk space for the application? Clearly a great deal
of knowledge is required to correctly configure a system,
and, given the large variety of hardware and software, the
potential search space is very large. Although several
approaches to the problem have been described, the prob-
lems of knowledge acquisition and maintenance of config-
uration knowledge and efficiently generating complex
configuration do not appear to have been adequately
addressed. This paper describes XKEWB, a shell for build-

*
: This work was done while the author was with Xerox Canada Inc.

ing computer configuration systems. XKEWB provides an
effective representation of configuration knowledge and
efficient generation of correct configurations. XKEWB
also provides a unique end user interface that is well suited
to configuration systems.

The configuration problem solved by X K E W is a gen-
eralization of the problem described in [7]. Given a set of
descriptions of components and constraints on the ways
instances of these descriptions can be connected, a valid
configuration is a set of instames of the descriptions and a
description of their connections that satisfies the pre-
defined constraints and some set of input constraints. Two
restrictions on the general problem are described: the func-
tional architecture restriction which states that descrip-
tions of components are decomposed along functional
lines, and the key component restriction which states that
there is some key component implementing each function.
Under these restrictions, one describes a computer system
as a component having a display function, a computing
function etc. and that the key component for the display
function is a screen. The advantages of this approach are
that there is a top down organization on how components
are selected: to build a workstation configuration one pro-
vides the display function, the computing function etc. and
that the key components identify subproblems that can be
solved somewhat independently. These restrictions are
implicit in the knowledge representation described in this
paper.

Interest in configuration systems dates back to the R1/
XCON project [5]. Configuration systems are typically
rule-based or hybrid rule and frame-based systems. The
problems with rules have been well documented (for
example, [2]). Maintenance and verification of knowledge
expressed as rules can be very difficult because related
knowledge is usually spread over several rules and
changes to rules have to be checked for interactions with
most other rules. On the other hand, rule-based systems
have the property that heuristic knowledge for finding
solutions efficiently is encoded in the rules. XKEWB uses
a frame-based representation to handle the maintenance
problem, and has an inference engine that generates solu-

368
0-8186-2300-4/91$01.00 0 1991 IEEE

Page 1 of 8 FORD 1012f

Find authenticated court documents without watermarks at docketalarm.com.

http://ai.toronto.edu
https://www.docketalarm.com/

tions efficiently enough that procedural guidance is not
necessary.

The results described here are the result of a reimple-
mentation and extension of the Cossack configurator
described in [4]. The reimplementation contains novel
solutions to several weaknesses in the Cossack inference
scheme, knowledge representation, and user interface. In
the course of this reimplementation, several new capabili-
ties were introduced, particularly the ability to configure
multiple computers in a network situation.

The paper is organized as follows: Iirst, a brief review of
Cossack is presented. Next, there is an overview of
XKEWB followed by several sections describing details of
the system. Finally, the concluding section contrasts
XKEWB with other configuration systems and summarizes
the contributions.

2.0 The Cossack System

In Cossack, components are represented as LOOPS
objects and classes of components as LOOPS classes.
Interrelationships between components or component
classes are represented by slots with associated constraints.
A constraint specifies which objects might fill the slot by
either enumerating the possibilities or specifying a class
whose instances might fill the slot. In addition, a constraint
might have an associated LISP expression that would eval-
uate to true or false given a particular candidate value for
the slot. Thus, a class describing a high end computer
might have a slot calledprinter with a constraint specifying
that the value must belong to the class Printer and a lisp
expression that evaluates to true when the value of thepag-
esperminute slot of a chosen printer is greater than 10.

The inference takes as input some constraints specified
by the user. The state of the inference is represented by a
set of goals describing components to be selected and the
set of posted Constraints which are constraints that have
not yet been processed. For each posted constraint, the sys-
tem first attempts to attach the constraint to an existing
goal. Thus, if there is already a goal to find a printer and a
second constraint requiring a printer is encountered, the
system will try to satisfy both constraints with the same
goal. If there is no component matching the constraint, a
new goal is created. When there are no unprocessed con-
straints, some goal is executed. Executing a goal involves
selecting a component that satisfies the constraints. When
the choice is made, new constraints are posted, and the
cycle continues.

If no component satisfies the constraints attached to a
goal, a contradiction is implied. Cossack then backtracks
by undoing the choice at some goal that has posted a con-

straint that is attached to the failed goal. Undoing the
choice at the posting goal has the effect of removing a con-
straint from the failed goal potentially allowing a choice to
be made there.

Cossack makes use of a version of partial choice 161.
When there are several components that might satisfy a
goal, Cossack attempts to find a constraint that these com-
ponents have in common. If there is such a constraint, the
constraint is posted and the goal is suspended. When a
component is selected for that constraint, the system can
make a choice for the suspended goal using the knowledge
derived by making a choice for the constraint. This is a
variant of least commitment in that a choice is made at ran-
dom only when necessary.

3.0 XKEWB

Cossack had several weaknesses. The most important is
that the backtracking mechanism ftequently pruned the
part of the search space containing the correct solution.
Second, the partial choice mechanism was rarely invoked
because of difficulty of determining that a constraint was
common to a set of components. Third, it was difficult to
express extra conditions on constraints using the associ-
ated lisp expression, and more importantly, the informa-
tion contained therein was not available to the inference
engine. Finally, the representation lacked the ability to
describe components that partially used other components
(such as disk space) and to distinguish components
belonging to different computers in a multi-computer set-
ting.

The XKEWB system was developed in order to address
these weaknesses. At a high level, the system bears a
strong resemblance to Cossack. Components are described
in a frame-based language, and inference consists of a
loop in which constraints are attached to goals and then a
goal is executed, possibly generating new constraints.
When a goal cannot be successfully executed, backtrack-
ing is necessary. For example, the input constraints might
specify a computer and a word processing package, hence
goals to find a computer and to find a word processing
package would be created. Executing the word processing
goal might result in a choice, Microsofi-Word’ which has
a constraint that the computer have a VGA monitor. This
constraint would then be attached to the computer goal.
Executing the computer goal would result in a choice
which would post constraints requiring disk drives, moni-
tors, etc.

XKEWB’s representation language is more declarative
and expressive than that used in Cossack. Components are

1. Microsoft Word is a trademark of Microsoft Corporation

369

Page 2 of 8 FORD 1012f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

represented using a frame representation' with multiple
and strict inheritance. Frames representing components are
called classes and are organized in an IS-A (specialization)
hierarchy. The slots of a frame have several facets, and the
combination of slot and facets is called a Constraint and
corresponds to a Cossack constraint.

Below are two partial descriptions which illustrate the
component representation

Workstation (abstract) IS-A Computer
subcomponents

display: WorkstationDisplay
number: [l , 21

keyboard: WorkstationKeyboard
disk: WorkStationDisk
memory: Memory

netwo rkco n nectio n :
requires

NetworkConnection

Ventura-Publisher2 (individual) IS-A

printer: LaserPrintingResource

Publishing Package
requires

constraint:
printer.postscript-capability

=true
disk: ExtStorResource

level: 657
consumes: bytesconsumed

constraint :
memory: MemoryResource

workstation
memory.supplied-by =

workstation: Workstation

price: 2000
properties

Here, the class Workstation has a constraint described
by the display slots that specifies that a workstation is con-
nected to one or two instances of the class WorkstationDis-
play. The following sections describe the major steps of the
inference algorithm. The discussion will make use of the
above examples, and the meaning of the various parts of
component description will be clarified.

4.0 Attaching Constraints

The first step of the inference algorithm is to attach
newly posted constraints to goals either by finding an exist-
ing goal that is compatible or by creating a new goal. The
attaching step is important because it allows components to

1. for example, FRL [8] which introduced the terms frame, slot, and facet
2. Ventura Publisher is a trademark of Ventura Software Inc., prices and
storage levels are fictitious

be described independently of other components that
might require the same resources, and yet results in config-
urations where one component is chosen to satisfy multi-
ple requirements. For example, the descriptions for several
software packages might specify that a printer is required,
and the attaching step will attempt to find one printer to
satisfy all of the packages. Notice that each request for a
printer could add additional conditions to a goal. Thus a
word processing package could request a letter quality
printer and a legal package would add the condition that
the printer must be able to handle legal size paper.

While it is frequently desirable to satisfy several con-
straints with a single component, it is often impossible to
do so. The following paragraphs describe properties of a
constraint that are used to refine the description of what
components can satisfy the constraint, and how these
properties are used in matching constraints and goals.

First, constraints fall into one of three categories: sub-
component constraints, requires constraints, and proper-
ties. Subcomponent constraints describe components that
are in some sense supplied by the containing component
and would not be supplied by a second component. For
example, a Workstation supplies a display therefore choos-
ing a second workstation would result in a second display.
Thus the inference engine will attach only one subcompo-
nent constraint to a goal. Requires constraints, on the other
hand, describe components that are needed but might be
shared. Thirdly, properties are descriptions for which no
inference is required to find the intended instance. For
example, no further inference is required to find the price
of Ventura-Publisher. Properties generally describe
objects such as numbers, booleans, or strings that are not
components.

Another important facet of a slot is the constraint
expression. The constraint expression of a constraint C
constrains the slot values of objects that can satisfy C.
Thus, the printer constraint in VenturuPublisher can only
be satisfied by printers that have the value true for the
property postscript-capubilify. The constraint expression
may involve other slot values as in the case of the memory
slot in Ventura-Publisher. Here the value of the supplied-
by slot of the memory must equal the value of the worksta-
tion slot of the publishing package. This constraint
expresses the fact that the memory requirement is on the
computer on which the publishing package is to run; not
on some other computer in the configuration. Before
attaching a constraint, the inference engine makes a simple
analysis of the constraint expression in which it checks for
equalities that might contradict slot values already bound
in the goal.

A constraint expression is a boolean expression using
the logical connectives not, and and or, comparison opera-

370

Page 3 of 8 FORD 1012f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

tors such as > and =, predicates such as instance-of, and
expressions using an assortment of arithmetic and other
operators.

For the display slot, an interval is specified for the num-
ber facet that specifies that a workstation has from one to
two displays. This is in effect two constraints. XKEWB
assumes that the values in a multiple-valued slot are
intended to be different will never attach the corresponding
constraints to the same goal.

The disk constraint is an example of a resource con-
sumption constraint. The value of the consumes facet iden-
tifies a slot in the type, ExtStorResource, and the facet level
specifies a value. The meaning of this constraint is that the
value of the slot bytesConsumed in an instance of ExtStor-
Resource is equal to the sum of the levels consumed by all
resource constraints that have that instance as a value. The
following is a possible definition of the resource:

ExtStorResource (abstract) IS-A Resource
levels

bytesconsumed: Number

Ex tSto r Resou rce 1 (individual) IS-A

diskDrive: DiskDrive

ExtStorResource
requires

constraint: diskDrive.capacity >
bytesconsumed

ExtStorResource2 (individual) IS-A ExtStorRe-
source
requires

diskDrive1: DiskDrive
diskDrive2: DiskDrive

constraint: diskDrive2.capacity >
(bytesconsumed -

diskDrive1 .capacity)

The specializations of ExtStorResource describe two
different implementations of the resource, each con-
strained to supply at least as much disk space as is con-
sumed. This allows XKEWB to configure the external
storage as either one or two disk drives. In addition, the
level slot of a resource can have a maximum facet which
resaicts the sum of the levels used by the constraints shar-
ing that resource.

The use facet of a slot is also used to control when a
constraint is attached to a goal. If the use of a constraint
attached to a goal has the value exclusive, no other
requires constraint may be attached to that goal. An exam-
ple is a printer cable that makes exclusive use of the ports
to which it will be attached.

The final attachment mechanism is a context mecha-
nism which restricts sharing of components. Every con-
straint is in a context that is generally inherited from the
object containing that constraint. However, by specifying
a container facet for a constraint, one can indicate a larger
context for a constraint. For example, the software
selected for a particular workstation would have con-
straints that could share components in the context estab-
lished by that workstation. One might, however, want to
specify the network as the context for the printing require-
ment so that the printer is not constrained to be a subcom-
ponent of the workstation. The complement to the
container facet is the setContuiner facet which indicates
that the selected component is to establish a context of a
certain type.

5.0 Executing a Goal

The properties of a goal are its attached constraints, its
current choice, and its posted constraints. The current
choice is a class in the knowledge base that satisfies all of

WorkStationCIassl

Worksta tionClass2 --A Worktation 1

WorkstationClass3

WorkstationClass4

4
3DGraphics-Capability

Works tation

I Figure 1: Multiple Inheritance in the IS-A Hierarchy

37 1

Page 4 of 8 FORD 1012f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

the attached and posted constraints. Classes in the knowl-
edge base are labelled either abstract or individual. When
the choice for a goal is an individual, that goal is satisfied.
For example, a choice of WorkStation is abstract and
requires further refinement, while a choice such as COM-
PAQ-DESKPR0_386N1, if it is an individual, would mean
that the goal is satisfied.

In order to deal with multiple inheritance, executing a
goal involves choosing a description from the most general
common specializations of the current choice and the types
of all attached constraints. The most general common spe-
cializations of a set of classes C to be a set S of classes
such that each element of S is a specialization (IS-A
descendant) of every class in C, and no element of S is a
specialization of any other element of S. For an example of
the use of multiple IS-A parents, consider a class Worksta-
tion that is specialized into WorkstationClassl, Worksta-
tionClass2, etc. Suppose also that some of these
workstations have a 3-D graphics capability which is
described by several constraints. Rather than duplicate the
definition of these constraints in each workstation which
has it, one can define a class 3DGraphcs-Capability and
make those workstations that have the capability IS-A
descendants of this class. This is illustrated in figure 1
where WorkstationClass2 and WorkstationClass4 are the
most general common specializations of Workstation and
3DGraphcs-Capability, while Workstation1 is not since
another common specialization subsumes it.

From the most general common specializations, a class
is a valid choice if it satisfies the constraint expressions of
all attached and posted constraints. For example, the goal
for printer would be satisfied by Laserprinter if an
attached constraint specified print-quality = letter. Posted
constraints are often relevant as well. For example, for the
choice Printer, the goal might have posted a constraint for
an attached computer which has been specialized to an
individual computer, say ModelX. This constraint might
have the expression port-type = computer.port-type which
specifies that the computer’s port type must be compatible
with the printer’s. Clearly, a the printer class with port type
Centronics cannot be chosen if the computer’s type is
serial. Note, that when the choices are not individuals,
there will be slots that are not bound, so evaluation of the
constraint expression will result in unknown. In this case,
the class is allowed as a choice.

Making a choice from the most general common spe-
cializations of the current choice and attached constraints
has the effect that constraints common to a group of com-
ponents are tested before each of those components is tried.
That is, the algorithm uses the structure of the component

1. COMPAQ and DESKPRO are registered trademarks of Compaq Com-
puter Corporation

hierarchy to determine common constraints. Whereas Cos-
sack searched for common constraints from among all
individual candidates for the goal, XKEWB is able to sim-
ply pick them from the current choice. For example, the
class GraphicsSoftware might have subclasses HighEnd-
Graphics and LowEndGraphics where HighEndGraphics
might have a constraint that requires a high resolution dis-
play. Rather than trying each high end graphic package
only to fail on the display requirement, XKEWB first spe-
cializes GraphicsSoftware to HighEdGraphics and posts
the requirement. If the constraint cannot be satisfied, back-
tracking will result in trying LowEndGraphics. This tech-
nique, which will be called hierarchical partial choice can
result in a great deal of pruning of the search space.

As well as the early detection of contradictions, hierar-
chical partial choice can limit the search space by provid-
ing information that restricts the choices at a goal. For
example, the goal to select a workstation might post a
requirement for a CPU chip. The goal selection heuristics
(discussed below) would favour specializing the CPU chip
goal before the workstation goal, hence when it becomes
time to select a workstation, the CPU chip will be more
tightly constrained, say to 80386’. Thus only specializa-
tions of Workstation that are compatible with this choice
need be considered. This is very important since the
choice of CPU chip might have been constrained by the
user either directly through an input constraint, or indi-
rectly through a constraint on some other aspect of the sys-
tem such as a software package.

Once a choice has been made, any new constraints are
posted. The new constraints are all constraints defined in
the choice and all of its IS-A ancestors that are not already
posted constraints of the goal. The new constraints are put
into the list NewConstraints, and the algorithm returns to
the constraint processing step.

6.0 Backtracking, Goal Selection, and
Preferences

Should there be no valid choice, it is necessary to back-
track. For the purposes of backtracking, the configuration
process is a sequence made up of the operations “attach a
constraint to a goal” and “make a choice for a goal”. If the
previous step was “attach a constraint to a goal”, back-
tracking involves attempting to make a new attachment.
Note that creating a goal counts as an attachment and can
only be tried once for a constraint. If a new attachment is
not possible, backtracking is again necessary. Similarly, if
the previous operation was “make a choice for a goal”, a

2.8086.80286,80386 are trademarks of Intel Corporation

372

Page 5 of 8 FORD 1012f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

