
Decomposing and Distributing Configuration Problems

Diego Magro and Pietro Torasso

Dipartimento di Informatica, Università di Torino
Corso Svizzera 185; 10149 Torino; Italy

{magro, torasso}@di.unito.it

Abstract. In the present work the issue of decomposing and distributing a con-
figuration problem is approached in a framework where the domain knowledge is
represented in a structured way by using a KL-One like language, where whole-
part relations play a major role in defining the structure of the configurable objects.
The representation formalism provides also a constraint language for expressing
complex relations among components and subcomponents.
The paper presents a notion of boundness among constraints which specifies when
two components can be independently configured. Boundness is the basis for
partitioning constraints and such a partitioning induces a decomposition of the
configuration problem into independent subproblems that are distributed to a pool
of configurators to be solved in parallel.
Preliminary experimental results in the domain of PC configuration showing the
effectiveness of the decomposition technique in a sequential approach to config-
uration are also presented.

1 Introduction

In recent years configuration has attracted a significant amount of attention not only from
the application point of view but also from the methodological one [12]. In particular,
logical approaches such as [13,4] and approaches based on CSP have emerged [10,3,11,
14]. In CSP approaches, configuration can exploit powerful constraint problem solvers
for solving complex problems [5,1]. From the other hand, logical approaches make use
of a more explicit and structured representation of the entities to be configured (e.g. [9]).
Logical approaches seem to offer significant benefits when interaction with the user
(e.g. [7]) and explainability of the result (or failure) are major requirements.

Configuration, as many other tasks, can be computationally expensive; therefore, the
idea of problem decomposition looks attractive since, from the early days of AI, problem
decomposition has emerged as one of the most powerful mechanisms for controlling
complexity. Ideally, the solution of a complex configuration problem should be easily
assembled by combining the solutions of the subproblems the initial problem has been
decomposed into. Moreover, decomposing a configuration problem into a set of mutually
independent subproblems allows the configuration process to be distributed among a set
of configurators working in parallel. Unfortunately, in many cases it is not obvious at all
how to perform such a decomposition.

In the present work the issue of decomposing a configuration problem is approached
in a framework where knowledge about the entities is represented in a structured way
by using a KL-One like language augmented with a constraint language for expressing

D. Scott (Ed.): AIMSA 2002, LNAI 2443, pp. 81–90, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

Page 1 of 10 FORD 1009f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

82 D. Magro and P. Torasso

complex inter-role relations (see section 2 for a summary of the representation language).
Partonomic relations provide the basic knowledge for decomposing the configuration
problem. In fact, two subparts involved into two partonomic relations can not be inde-
pendently configured if there is at least a constraint that links them together. For this
reason we have introduced a notion of boundness among constraints (section 3) which
assures that two components not involved in a same set of bound constraints can be
independently configured.

Section 4 provides a high-level description of the configuration algorithm and of the
decomposition strategy, while an example of an application of the algorithm is shown in
section 5. Section 6 reports preliminary experimental results concerning the reduction
of the computational effort. A discussion of the approach is reported in section 7.

2 The Conceptual Language

In the last few years we have developped a representation formalism called FPC [6,7]
(Frames, Parts and Constraints) for modeling configuration problems. Basically, FPC
is a frame-based KL-One like formalism augmented with a constraint language.

In FPC, there is a basic distinction between atomic and complex components. Atomic
components are described by means of a set of features characterizing the component
itself, while complex components can be viewed as structured entities whose character-
ization is mainly given in terms of their (sub)components, which can be complex com-
ponents in their turn or atomic ones. FPC offers the possibility of organizing classes of
(both atomic and complex) components in taxonomies as well as the facility of building
partonomies that (recursively) express the whole-part relations between each complex
component and any one of its (sub)components. Moreover, in any complex component,
a set of constraints restricts the set of valid combinations of its (sub)components.
Frames and Parts. In FPC, each frame represents a class of components (either atomic
or complex) and it has a set of member slots associated with it. Each slot represents a
property of the components belonging to the class and it can be of type either partonomic
or (alternatively) descriptive. Any slot p of a class C is described via a value restriction
D(that can be another class or a set of values of a predefined kind) and a number restriction
(i.e. an integer interval [m,n] with m ≤ n), as usual in the KL-One like representation
formalisms. A slot p with value restriction D and number restriction [m,n] captures the
fact that the property p for any component of type C is expressed by a (multi)set of
values of type D whose cardinality belongs to the interval [m,n].

In the following we restrict our attention to partonomic slots since in this framework
they represent the basic knowledge for problem decomposition.

Partonomic slots are used for capturing the whole-part relation among compo-
nents. In FPC this relation is assumed to be asymmetric and transitive. Formally,
any partonomic slot p of a class C is interpreted as a relation p : C → D such that
(∀c ∈ C)(m ≤ |p(c)| ≤ n)), being D and [m,n], respectively, its value and its number
restrictions; the meaning is straightforward: any complex component of type C has from
a minimum of m up to a maximum of n direct parts of type D via a whole-part relation
named p.

It is worth noting that in each configuration a component can neither be a direct part
of two different complex components nor a direct part of the same complex component
via two different whole-part relations (exclusiveness assumption on parts).

Page 2 of 10 FORD 1009f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Decomposing and Distributing Configuration Problems 83

CONSTRAINTS
Associated with C:
[co1]({<p1,q1>})(1;1) ==> ({<p2,q5>})(1;1)
[co2]({<p1,q2>})(1;1) ==> ({<p2,q3>})(1;1)
[co3]({<p2,q3>})(2;2) ==> ({<p2,q4>})(2;2)
[co4]true ==> ({<p1,q1>})(in A11 (1;4))
[co5]({<p3>})(1;1) ==> ({<p3>})(in A71)
Associated with C1:
[co6]({<q1>})(1;1) ==> ({<q6>})(in A61)

C

p1(1;2)

p2(1;2)

p3(1;2)

A7

A2

A6

C1

q1(1;2)

q2(1;2)

q6(1;2)

A1

A11 A12

A5
A4

C2

q4(1;1)q5(1;2)
A3

q3(1;2)

Fig. 1. A toy conceptual model

Figure 1 contains a toy conceptual model that we use here as a simple example.
Each rectangle represents a class of complex components, each oval represents a class
of atomic components and any thin solid arrow corresponds to a partonomic slot. In
the figure, it is stated, for instance, that C is a class of complex components and the
partonomic slot p1 specifies that each instance of C has to contain one or two (complex)
components of type C1; whereas the partonomic slot p3 states that any instance of C
has to contain one or two (atomic) components of type A7.

In any conceptual model, a slot chain γ = 〈p1, . . . , pn〉, starting in a class C and
ending in a class D is interpreted as the relation composition pn ◦ pn−1 ◦ . . . ◦ p1 from
C to D. The chain represents the subcomponents of a complex component c ∈ C via
the whole-part relations named p1, . . . , pn. In figure 1, for example, 〈p1, q1〉 denotes
the subcomponents (of type A1) of each instance of C through the partonomic slots p1
and q1. Similarly, a set of slot chains R = {γ1, . . . , γm} (where each γi starts in C and
ends in Di) is interpreted as the relation union

⋃m
i=1 γi from C to

⋃m
i=1 Di.

Besides the partonomies, also the taxonomies are useful in the conceptual models.
In figure 1 the subclass links are represented by thick solid arrows. In that toy domain
we assume that each class of atomic components Ai is partitioned into two subclasses
Ai1 and Ai2. Only the partitioning of A1 into A11 and A12 is reported in figure.
Constraints. A set (possibly empty) of constraints is associated with each class of com-
plex components. These constraints allow one to express those restrictions on the com-
ponents and the subcomponents of the complex objects that can’t be expressed by using
only the frame portion of FPC, in particular the inter-slot constraints that cannot be
modeled via the number restrictions or the value restrictions.

Each constraint cc associated with C is of the form α ⇒ β, where α is a conjunction
of predicates or the boolean constant true and β is a predicate or the boolean constant
false. The meaning is that for every complex component c ∈ C, if c satisfies α then it
must satisfy β. It should be clear that if α = true, then, for each c ∈ C, β must always
hold, while if β = false, then, for each c ∈ C, α can never hold.

In the following we present only a simplified version of some predicates available
in FPC. For a more complete description of them see [6].

Page 3 of 10 FORD 1009f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

84 D. Magro and P. Torasso

Let R = {γ1, . . . , γm}, where each γi = 〈pi1 , . . . pin
〉 is a slot chain starting in a

class of C complex components. For any c ∈ C, R(c) denotes the values of the relation
R computed for c.
1) (R)(h; k). c ∈ C satisfies the predicate iff h ≤ |R(c)| ≤ k, where h, k are non
negative integers with h ≤ k.
2) (R)(inI). c ∈ C satisfies the predicate iff R(c) ⊆ I , where I is a union of classes in
the conceptual model.
3) (R)(inI(h; k)). c ∈ C satisfies the predicate iff h ≤ |R(c) ∩ I| ≤ k, where h, k are
non negative integers with h ≤ k and I is a union of classes in the conceptual model.

For example, the constraint co5 states that if only one component playing the parto-
nomic role p3 is present in a configuration of an object of type C, then this component
must be of type A71. It is worth noting that the user’s requirements are automatically
translated into the FPC constraint language. For example, the (user’s) requirement of
inserting in a configuration of an object of type C from 1 up to 4 subcomponents of type
A11 is expressed by the constraint co4.

3 The Role of Partonomic Knowledge in Problem Decomposition

Given this framework, configuring a complex object of type C means to completely
determine an instance c of C in which all the partonomic slots of C are instantiated
and each direct component of c is completely configured too. c has to respect both the
conceptual model (number and value restrictions imposed by the taxonomy and the
partonomy as well as the constraints associated with the classes of components involved
in c) and the user’s requirements.

Configuring a complex component by taking into consideration only its taxo- parto-
nomic description would be a straightforward activity. In fact, for any well formed model
expressed in FPC in which no constraints are associated with any class, a configuration
respecting that model would always exist. A simple algorithm could find it without any
search and by simply starting from the class of the target object (i.e. the one for which the
configuration has to be built), considering each slot p of that class and, for it, choosing its
cardinality, i.e. choosing the number of components playing the partonomic role p to in-
troduce into the configuration, and the type for each such component. This process must
be recursively repeated for each complex component introduced in the configuration,
until all the atomic ones are reached. In this process the algorithm needs only to respect
the number and the value restrictions of the slots. Unfortunately, this is not realistic. The
conceptual model usually contains complex constraints that link together different slots.
In this more realistic situation a solution can’t be generally found by making only a set
of local choices and without resorting to search in a large space of alternatives.

Moreover, the requirements usually imposed by the user to the target artifact further
restrict the set of legal configurations. This means that the search for a configuration is
not guaranteed to be fruitful any more. In fact, even assuming the consistency of the
conceptual model, the user’s requirements could be inconsistent w.r.t. it and in such a
case no configuration respecting the model and satisfying the requirements exists.

Therefore, in general, the task of solving a configuration problem can be rather
expensive from a computational point of view. As we have mentioned above, in FPC
framework this is mainly due to the constraints (both those that are part of the conceptual
model and those imposed as user’s requirements) that link together different components

Page 4 of 10 FORD 1009f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Decomposing and Distributing Configuration Problems 85

and subcomponents. In these situations a choice made for a component during the con-
figuration process might restrict the choices actually available for another one, possibly
preventing the latter to be fully configured. In such cases the configuration process has to
revise some decision that it previously took and to explore a different path in the search
space. Usually, in real cases the search space is rather huge and many paths in it don’t
lead to any solution.

However, in many cases it does not happen that every constraint interacts with each
other and the capability of recognizing the sets of (potentially) interacting constraints
can constitute the basis for decomposing a problem into independent subproblems.

Once a problem has been decomposed into a set of independent subproblems, these
could be solved concurrently and with a certain degree of parallelism, potentially re-
ducing the overall computational time. However, also a sequential configuration process
can take advantage of the decomposition. In fact, if two subproblems are recognized to
be independent, the configurator is aware that no choice made during the configuration
process of the first one needs to be revised if it enters a failure path while solving the
second one.

To be effective, the task of recognizing the decomposability of a problem (and of
actually decomposing it) should not take too much time w.r.t. the time requested by the
whole resolution process.

In our approach, the partonomic knowledge can be straightforwardly used in recog-
nizing the interaction among constraints (with an acceptable precision) and in defining a
way of decomposing a configuration problem into independent subproblems. With this
aim, we introduce the bound relation among constraints. Intuitively, two constraints are
bound iff the choices made during the configuration process in order to satisfy one of
them can interact with those actually available for the satisfaction of the second one.
If c is a complex component in a (tentative) configuration, the bound relation Bc is
defined in the set CONSTRS(c) of the constraints that c must satisfy, as follows: let
u, v, w ∈ CONSTRS(c). If u and v contain both a same partonomic slot p of class(c)
then uBcv (i.e. if u and v refer to a same part of c, they are bound); if uBcv and vBcw
then uBcw (transitivity).

It is easy to see that Bc is an equivalence relation. If U is an equivalence class in
the quotient set CONSTRS(c)/Bc, every constraint in U might interact with any other
constraint in the same class during the configuration process of c. On the contrary, given
the exclusiveness assumption on parts, if V ∈ CONSTRS(c)/Bc is different from
U , it means that in c the constraints belonging to V don’t interact in any way with
those in U . This means that the problem of configuring c by taking into consideration
CONSTRS(c) can be split into the set of independent subproblems of configuring c
by considering the set W of constraints, for each W ∈ CONSTRS(c)/Bc.

4 Configuration via Decomposition and Distribution

As said in the section above, bound relation can be used for singling out independent
subproblems in the configuration process. A sequential algorithm for configuration ex-
ploiting decomposition is described in [8]. In the present paper we describe a general
configuration technique which exploits the decomposition mechanism for distributing
independent subproblems among a set of configurators working in parallel.

Page 5 of 10 FORD 1009f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

