
s

Now it's time to change gears a little. In the first half of the book we concentrated on the whys and. hows of
developing reusable software components. We focused primarily on the COM and OLE teclmologies that pro
vide us with the ability to build software components. We now understand what COM, OLE, and ActiveX are
all about. We investigated using C++, custom COM interfaces, and Automation in the creation of software
components, and now we're ready to develop the ultimate software components: ActiveX controls.

In this chapter we'll investigate what it takes to implement an ActiveX control. We'll look at the history
of the OLE and ActiveX control standards and discuss various ways ActiveX controls can be used in con
junction with visual development tools, such as Microsoft's Visual Basic and Visual C++. Once we have a
broad understanding of the technology used to implement controls, we'll use the remaining chapters to
focus on the development of various types of ActiveX controls. This chapter provides an introduction to the
technology. After this, it will be all coding.

The initial goal of OLE was to provide software users with a document-centric environment. OLE defines
COM-based interfaces that enable applications to embed software objects developed by various vendors.
This important capability has added significantly to the ease of use of various software products.

Figure 7.1 shows Microsoft Word with a Visio drawing embedded within the Word document. If I want
to edit the Visio drawing, I can do so within Word by double-clicking on the embedded drawing; Visio exe
cutes "in-place," and the Word menu changes to a Visio one. This arrangement allows me to use Visio's
functionality completely within Word. The benefit of this technology is that the user doesn't have to switch
between applications to get work done. The focus is on the creation of the document and not on t11e assem
bling of different application "pieces" into a complete document, explaining the origin of the term document
centric. The document, and not the applications needed to combine and produce it, is the user's focus.

291

APPLE 1109 - Page 1

292 + CHAPTER 7

Figure 7.1 Visio drawing embedded in a Word document.

There are some problems with this shift in paradigms. Many users initially get confused when the Word
menu changes to Visio's or Excel's. Also, most applications are large and cumbersome and experience signif
icant performance problems when users attempt to launch several large applications at once. These prob
lems will be overcome as users assimilate the changes and as developers restructure their applications to
include smaller modules of functionality that operate independently (and as a whole).

ActiveX controls are built using many of the techniques of OLE compound documents. Plenty of mater
ial is available that explains OLE as a compound document standard, so I won't spend much time on it here
except when it directly pertains to the development of ActiveX controls.

Compound document containers are those applications that allow the embedding of OLE-compliant com
pound document servers. Examples of containers include Microsoft's Word and Excel, Corel's WordPerfect,
and others.

Applications such as Visio are embedded servers that support being activated in-place within a com
pound document container application. This technique of being invoked within another application and
merging its menus is called visual editing. The user double-dicks on the server's site-its screen location
within the container-and the embedded server is launched and becomes activated in-place.

Compound document servers are typically implemented as executables and therefore are large. They
include the complete functionality of the application that is being embedded within the container applica-

APPLE 1109 - Page 2

ActiveX Controls + 293

tion. This is one reason that the effective use of compound document teclmology was initially viewed as
requiring extensive system resources. But with advances in hardware and the move to 32-bit operating sys
tems, this is no longer a serious problem.

Many compound document containers are also compound document servers. You can embed a Word
document in an Excel spreadsheet as well as embed an Excel spreadsheet within a Word document. (This is
one reason they are such large applications.) Most ActiveX controls are embedded servers that are designed
to perform quite differently from compound document servers.

ActiveX controls incorporate, or use, much of the teclmology provided by COM, OLE, and ActiveX-in par
ticular, those technologies pioneered in compound documents. Many COM-based interfaces must be imple
mented by both the client (or container) and the control to provide this powerful component-based environ
ment. Figure 7.2 illustrates the communication between a control and its client.

ActiveX Control Container
Properties Methods

Events

ActiveX Control

Figure 7.2 Interaction between a control and its client.

In Chapter 1, we discussed the importance of discrete software components to the future of software devel
opment. The underlying teclmology required to build robust software components is provided by COM and
the ActiveX control specification. Problems must be overcome, but today ActiveX controls provide the most
comprehensive solution.

In Chapter 6, we used Automation to encapsulate a nonvisual software component, our Expression
class. The ActiveX control architecture provides a robust method of building visible software components.
In addition to the visible aspect, ActiveX controls also provide a way to communicate events externally so

APPLE 1109 - Page 3

+CHAPTER 7

that users of the control can use these events to signal other programmatic actions. A simple example is a
timer control whose only purpose is to provide a consistent series of events that the control user can tie to
some other programmatic action.

Another important capability of ActiveX controls is their ability to save their state. This quality of per
sistence allows a control user to initially define a control's characteristics knowing that they will persist
between application design, running, and distribution. This capability is not intrinsically supported by the
Automation servers discussed in Chapter 6.

Is
There are three basic ActiveX control types. Graphical controls provide significant functionality by their
visual representation and manipulation of data. An example might be an image display control. The second
type is also graphical, but it implements or extends a standard Windows control. Its behavior is based on,
and uses, the functionality of an existing control provided by Windows. An example is a standard listbox
that has been enhanced to contain checkboxes. The third type, nonvisual controls, provides all their func
tionality without any graphical requirements. Examples of nonvisual controls include a timer control, a
Win32 API control, and a network services control. Their main purpose is to expose Automation methods,
properties, and events for a visual developer. Except for the timer control (whose purpose is to provide a
uniform timer event and would be prohibitively expensive to implement using Automation), most nonvi
sual controls can function as Automation servers. However, providing an implementation using ActiveX
controls makes them easier to use within graphical development environments, provides persistence of
state, and supports an event mechanism to communicate with the container. We will develop examples of
all three control types in the remaining chapters.

An additional control type is the Internet-aware control. An Internet-aware control can take the form of
any of the three control types but has additional environmental requirements. Internet-aware controls must
be designed to work effectively in low-bandwidth enviromnents and to carefully implement user services.
We will discuss these requirements in detail in Chapter 12.

We've come a long way in our quest for a technique to build robust and reusable software components, and
we've finally reached a comprehensive destination. In Chapter 6, we saw how effective Automation is at
providing reusable components by wrapping C++ classes and exposing their functionality. We also found
three limitations of Automation. First, it provides only limited outgoing notification capabilities.
Automation components are inherently synchronous and provide only one-way communication in their
basic configuration. This is one reason that Automation objects are driven by Automation controllers. The
second limitation involves the lack of a visual aspect to Automation components. Third, Automation, in con
trast to controls, lacks a persistence mechanism. Persistence of control properties is an important feature not
provided through Automation.

APPLE 1109 - Page 4

ActiveX Controls + 295

From now on we will focus exclusively on the design, development, and use of ActiveX controls. They
provide a sophisticated event mechanism so that they can notify their users of events. Events are fired asyn
chronously, notifying the user of an important occurrence within the component and allowing the control
user to harness the event and perform other actions in a larger component-based application. ActiveX con
trols also allow easy implementation of the visual or GUI aspect of a software component. This and other
features of ActiveX controls provide a rich environment on which to build visually oriented development
tools. And remember, the COM standard is an open one, and its design is completely documented for all to
use. This arrangement creates an environment where vendors will develop tools for using this technology.
The availability of third-party tools can only benefit those who develop software components.

The creation of rich, control-based development environments is important to the ultimate success of
the component-based development paradigm. One of the problems of component development is the appli
cation's dependency on many different system-level and application-level components. The ultimate success
of component-based software depends on robust tools that ease the tasks of distribution and management of
the application and its components. Today, ActiveX controls are supported by nearly all major development
tools. They have become the de facto software component.

Another important feature of ActiveX controls is that Microsoft has placed them at the center of its new
Internet-based software focus. ActiveX controls are used throughout Microsoft's new Web-based tedmolo
gies. Internet Explorer itself is implemented using a robust and feature-laden ActiveX control. ActiveX con
trols can be embedded within HTML-based Web pages to add tremendous application-like functionality to
static Web-based documents. Thousands of ActiveX controls are available, and the market will only grow as
the Internet and corporate intranets continue to flourish.

A lot of terminology is associated with the OLE compound document standard, so I'll provide you with
some short definitions to help as we move forward. The terminology for OLE changes often, and some of the
terms are equivalent. Some of the definitions are cyclical, so you may have to loop through twice.

Ul-Adive Obied
Embeddable objects are DI-active when they have been activated in-place and are being acted upon by the
user. The DI-active server merges its menus with that of the containing application (such as Word). Only one
server can be DI-active within a container at a time.

Active Obied
When embeddable objects are not DI-active, they are active, loaded, or passive. (Local server objects have an
additional state: running.) Most ActiveX controls prefer to remain in the active state, because it provides the
control with a true HWND in which to render itself. In the loaded state, an embeddable object typically pro-

APPLE 1109 - Page 5

+CHAPTER 7

vides a metafile representation of itself for the container to display and lies dormant waiting to be in-place
activated.

Embeddable Obied
An embeddable object supports enough of the OLE document interfaces that it can be embedded within an
OLE container. This doesn't mean that it supports in-place activation, only that it can render itself within the
container. The object is said to be "embedded" because it is stored in the container's data stream. For exam
ple, in our previous Visio demonstration, the Visio object, which Microsoft Word knows nothing about, is
actually stored or embedded within Word's .DOC file, which is a compound document file.

Passive Obied
A passive object exists only in the persistent storage stream, typically on disk. To be modified, the object
must be "loaded" into memory and placed in the running state. A passive object is just a string of bits on a
storage device. Software is required to load, interpret, and manipulate the object.

Visual Editing and In-Place Activation
These terms describe the capability of an embeddable object to be activated in-place. In-place activation is
the process of transitioning the object to the active state. In most compound document container applica
tions, this process also forces the object into the VI-active state if it is an outside-in object. Once the object is
activated, the user can interact with the embedded object. When the object is in-place active, the server and
container can merge their menus.

Outside-In Obied
Outside-in objects become active and VI-active at the same time. Outside-in objects are activated and imme
diately become VI-active by a double-click of the mouse. Compound document servers are outside-in
objects. You must double-click the Visio object to invoke Visio when editing within Microsoft Word.

lnside=Out Object
Inside-out objects become VI-active with a single mouse click. They are typically already in the active state
within the container. ActiveX controls are inside-out objects, although this option can be controlled by the
control developer. With the creation of the OLE Controls 96 specification, which we will discuss in detail
shortly, controls are not required to support any in-place activation interfaces.

APPLE 1109 - Page 6

ActiveX Controls + 297

ActiveX controls are discrete software elements that are similar to discrete hardware components and are of
little use by themselves. You need a control container to actually use an ActiveX control. Control containers
make it easy to tie together various ActiveX controls into a more complex and useful application. An impor
tant feature of an ActiveX control container is the presence of a scripting language that is used to allow pro
grammatic interaction with the various controls within the container.

ActiveX control containers are similar to the compound document containers that we described earlier,
but the older compound document containers lack a few new interfaces specified for ActiveX controls.
ActiveX controls can still fw1ction within compound document containers (if they're designed properly), but
many of their most discerning features will not be accessible.

Although compound document containers and ActiveX control containers share many internal charac
teristics, their ultimate goals differ. As we've discussed, compound document containers focus on the
assembly of documents for viewing and printing and are typically complete applications. ActiveX control
containers are usually used as "forms" that contain controls that are tied together with a scripting language
to create an application. Figure 7.3 shows two Visual Basic forms, each containing some ActiveX controls.
Contrast this with the Word and Visio example in Figure 7.1.

Figure 7.3 Two Visual Basic forms, each with some ActiveX controls.

In typical visual development environments, the container operates in various modes. When the developer is
designing a form (conh·ol container) or Web page, the control should behave differently than when it is actu
ally being executed. To use Visual Basic as an example, when a Visual Basic developer needs a listbox con
trol, the developer clicks the listbox icon on the tool palette, drags a representation of the listbox control, and

APPLE 1109 - Page 7

drops it on a form. The listbox representation is merely a rectangle with a name in the top left corner. During
design time, there is no need to create a window just to provide a representation of the control. When the
Visual Basic form and its associated code are executed by a user of the application, the listbox control win
dow is actually created and therefore needs to behave like a listbox and perform any special functions
through its exposed properties, methods, and events. These two modes are referred to as the design-phase
and nm-time modes.

Visual Basic also allows a developer to single-step through the application. At each break-point, you
can examine variables, check the call stack, and so on. When Visual Basic is in this mode--debug mode--the
listbox control is frozen and doesn't act on any window events.

I used Visual Basic for this example, but there are a large number of other control containers, including
Visual C++, Borland's Delphi, Microsoft's Internet Explorer, and so on. The ActiveX control standard pro
vides two ambient properties that can be implemented by the container to indicate its various modes.
Ambient properties are container states that can be queried by the contained controls. If the ambient prop
erty UserMode is TRUE, it indicates that the container is in a mode in which the application user can interact
with a control. This mode would normally equate to a run-time mode in the Visual Basic example. If
UserMode is FALSE, the container is in a design-type mode. The UIDead property indicates, when TRUE,
that the control should not respond to any user input. This is similar to the debug mode of Visual Basic.

Throughout the rest of the chapters, I'll use the terms design phase, run-time mode, and debug mode to
distinguish the differences in a container's states.

Although we haven't directly covered OLE compound document servers in this book, we understand how
the technology works. Compound document servers can be implemented as local servers, in-process
servers, or both. ActiveX controls are almost always implemented as in-process servers. Most of the compo
nents that we've developed so far have been in-process servers, so we're comfortable with them.

The primary difference between the Expression in-process server of Chapter 5 and an ActiveX con
trol is that the Expression object is missing a few ActiveX control-based interfaces. Many of these inter
faces are required for a control to be classified as a compound document server and concern themselves
with the control's visual aspect and its ability to be embedded and in-place activated in an OLE compound
document container.

The act of building a component or a container amounts to a process of implementing and exposing a
series of COM-based interfaces. A control implements a series of interfaces that a container expects and vice
versa. Figure 7.4 shows the large number of interfaces that a control typically implements. I say "typically,"
because the requirements for implementing an ActiveX control have recently been loosened significantly.
The basic concept of an ActiveX control has changed from its being a hybrid compound document server to
being a small and nimble COM-based component. The newer control specifications reduce to one the num
ber of interfaces a control must implement. We'll discuss these new standards shortly.

APPLE 1109 - Page 8

L+.1 < Ga~Conltol
:7 ~·ri~!e~1ry%~ConlaW.er

'f IDo!aObjecl
?
?
9 IOleCache
? IO!tConl1ol
? JOle!nPlaceActiveObject
? JOlelnPloceObject

?
'(IP"P''°"''''~'°w:,rng
?
?
'(1p.,,;;,tP10P'<l)'Etag
? !Per:i;\Stornge
? !PettittStreamlni\
? !P1ovideCkmtnfo
l' !P1ovideCla~drJo2
'i' !Spec~yPropertyPage;
? !Unknown
?
?

ActiveX Controls +

W.n32"' C:\W1MNT\System32\GRlD32.0CX
FLAGS" 2
HELPD!R "'C:\VB4

Figure 7.4 Control-implemented interfaces.

ActiveX controls-called OLE controls at the time-were introduced as an OLE-based technology in early
1994 as a replacement for the aging Visual Basic custom control (VBX). However, the technology was new,
and very few development tools supported the use of OLE controls. Visual Basic 4.0, the version that pro
vided support for OLE controls, would not be delivered until late 1995. Microsoft Access version 2.0 pro
vided minimal support, as did Microsoft FoxPro version 3.0. You could develop ActiveX controls starting
with the late 1994 release of Visual C++ version 2.0. However, even though you could develop controls, you
could not use them within Visual C++. This capability had to wait for the late 1995 release of Visual C++ 4.0.

The initial version of the OLE control specification, now called the OLE Controls 94 spec, required an
ActiveX conh·ol to implement a large number of COM-based interfaces. Most of these interfaces were part of
the compow1d document specification, because ActiveX controls were really in-process compound docu
ment servers with a couple of new interfaces (such as IOleControl). During this period, OLE control con
tainers were just compound document containers that implemented a few additional, control-specific inter
faces (such as IOleControlSi te).

In early 1996, after more than a year's experience with implementing and using OLE controls, Microsoft
modified the specification significantly and called it the OLE conh·ols 96 specification. The new specification
addresses a number of performance issues inherent with controls implemented using the 1994 specification.
The new specification also adds significant new features and capabilities for controls and containers.

APPLE 1109 - Page 9

300 + CHAPTER 7

The OLE Controls 94 Specification
The original OLE control architecture was specified as an extension to the existing compound document
specification. An OLE control had to implement all the interfaces required by a compound document
embedded server with in-place activation capabilities (such as IOleObj ect and IOleinPlaceObj ect). In
addition to these original interfaces, OLE controls had to implement all the control-specific interfaces (such
as IDispatch and IOleControl). In all, a control that meets the OLE controls 94 specification and pro
vides support for all control feahires would implement more than 15 interfaces. These interfaces are listed in
Table 7.1 along with a short description of their purpose.

Control-Side Interface

IOleObject

IOleinPlaceObject

IOleinPlaceActiveObject

IOleControl

IDataObject

IViewObject2

IPersistStream,

IPersistStreaminit,

IPersistStorage

IProvideClassinfo

Table 7.1 OLE Controls 94 Interfaces

Purpose/ MFC Methods

Provides the essence of the OLE compound document architecture. Through this inter

face, the container and server communicate to negotiate the size of the embedded

object (the control, in our case) as well as get the MiscStatus bits for the control.

Many of its methods are not needed in an ActiveX control.

A control must implement IOleinPlaceObj ect to support the ability to be acti

vated and deactivated in-place within the container. The interface also provides a

method to notify the control when its size changes or it is moved within the container.

A control must implement IOleinPlaceActi veObj ect lo provide support for the

use, and translation of, accelerator keys within the control. Many of

IOleinPlaceActiveObject's methods are not required for ActiveX controls.

A new interface added to support ActiveX controls. It provides methods to enhance the

interaction with the control's container. IOleControl primarily adds functionality so

that the control and container can work together when handling keyboard input.

A control implements this interface to provide graphical renderings to the container.

Implemented by controls that provide a visual aspect. IViewObject2 provides the

container with methods to tell the control to render itself within the container's client

area.

The persist interfaces are implemented by the control so that they may persist their

values within the container's structured storage. A control's properties can persist

between instantiations.

Implemented by an ActiveX control to allow a client application (usually a container) to

efficiently obtain the type information for the control. It contains only one method,

GetClassinfo, which returns an interface pointer that provides access to the con

trol's binary representation of its type library.

APPLE 1109 - Page 10

ActiveX Controls + 301

Table 7.1 OLE Controls 94 Interfaces {continued)

Control-Side Interface Purpose/ MFC Methods

rspecifyPropertyPages Provides a way for the container to query the control for its list of property pages.

ISpeci fyPropertyPages has only one method: GetPages. The GetPages

method is called by the container. The container provides a pointer to a CAUUID struc

ture that returns a counted array of CLSIDs. This enumerates all the property page

CLSIDs used by the control. The container uses these CLSIDs with a COM function, typ

ically CoCreateinstance, to instantiate the page objects.

rPerPropertyBrowsing Provides a way for the control to furnish additional information about its properties.

IPropertyPage2 Implemented by each property page component, it provides the container with meth

ods to get the size, move, create, destroy, activate, and deactivate the component's

property page windows.

rconnectionPointContainer Used to provide the container with an outgoing IDispatch interface. This enables

the control to communicate events to the container.

IConnectionPoint A control can support several event sets. For each one, the control must provide an

implementation of the IConnectionPoint interface.

IDispatch A control's properties and methods are provided through its IDispatch interface.

As you can imagine, implementing a control without the help of MFC would be an arduous task at best.
Implementation of a control container is even more difficult. It also requires a large number of interfaces,
and a container must manage multiple controls within it.

Shortly after the release of the OLE Controls 94 specification, Microsoft released a document that
described how a container and its controls should interact with each other. Much of this coordination was
already specified via the compound document specification, but there was still a need for a document that
would help developers understand the complex relationship between a control and its container. The result
ing document, OLE Controls and Container Guidelines Version 1.1, was released in late 1995.

The guidelines put forth the minimum requirements of a control or control container. They describe the
interfaces that are mandatory and those that are optional. It basically provides a set of guidelines for control
and container developers. The large number of interfaces, methods, and techniques and the inherent limita
tions of human language made it difficult to get all containers and controls to work together. This was to be
expected with a new and complex technology. However, the guidelines gave developers a good set of rules
to follow when developing a control or container.

OLE Controls 96 Specification
Although OLE controls were a wonderful new technology that validated the concept of component-based
development, they weren't perfect. The large number of interfaces and methods that a control had to imple
ment, coupled with the requirement that most controls display a window when running, made them some
what "heavy." Building an application with a large number of OLE controls could be problematic; there

APPLE 1109 - Page 11

302 + CHAPTER 7

were also some functionality holes that needed to be filled. To address these issues, Microsoft released, in
early 1996, the OLE Controls 96 specification.

The full text of the specification is part of the ActiveX SDK and is available from Microsoft. Following
are some of the new features.

" Mouse interaction for inactive objects. The previous control specification stated that most controls
should stay in the active state by setting the OLEMISC_ACTIVATEWHENVISIBLE flag. This arrange
ment required the container to load and activate a control whenever it was visible. Activating a con
trol required the creation of a window to handle any user interaction (such as mouse clicks and drag
and-drop) with the control. The new specification adds a new interface, IPointerinactive, that
allows a control to interact with the user while in the inactive state. The presence of this capability is
communicated to the container with the OLEMISC_IGNOREACTIVATEWHENVISIBLE flag.

" Drawing optimizations. The old control specification required a control to reselect the old font,
brush, and pen into the container-supplied device context whenever it was finished processing the
IOleView: : Draw call. The new specification adds a parameter to the Draw method that indicates
whether the control must reset the state of the device context. It is up to the container to support this
new feature, but the control can determine whether it is supported by checking the pvAspect para
meter for the DVASPECTINFOFLAG_CANOPTIMIZE flag. If this flag is set, the control does not have
to take the steps required to restore the state of the container-supplied device context after drawing
its representation.

• Flicker-free activation and deactivation. When a control is activated in-place by a container, the
control does not know whether its display bits are in a valid state. A new interface,
IOleinPlaceSi teEx, communicates to the control whether or not a redraw is necessary. The new
interface adds three methods to IOleinPlaceSi te.

• Flicker-free drawing. Another new interface has been added to the OLE Controls 96 specification to
support flicker-free drawing, nonrectangular objects, and transparent objects. As we'll see in Chapter
9, flicker-free drawing can be achieved by using an off-screen device context, but it consumes addi
tional resources. The new IViewObj ectEx interface adds methods and parameters to make flicker
free drawing easier to implement at the control. Nonrectangular and transparent controls were sup
ported in the previous control specification, but they required a great deal of drawing work on the
part of the control developer. The new specification provides additional drawing aspects (such as
DVASPECT_TRANSPARENT) that make implementation of nonrectangular and transparent controls
easier and more efficient.

" Windowless controls. The previous specification required in-place active objects to maintain a win
dow when active. This requirement was necessary, as we mentioned earlier, to support user interac
tion within the control. This issue has now been addressed with the IPointerinacti ve interface.
Controls that require a window also make nonrectangular and transparent regions difficult to imple
ment. Windowless controls draw their representation directly on a device context provided by the
container. There is no need for a true HWND. To support this capability, though, several issues must

APPLE 1109 - Page 12

ActiveX Controls -+ 303

be handled. User interaction beyond mouse clicks and drag-and-drop, such as keystrokes, must be
handled by the container and passed to the control. Another new interface,
IOleinPlaceSi teWindowless, which is derived from IOleinPlaceActi veObj ect, supports
these new requirements. It provides methods to handle focus, mouse capture, and painting of a con
trol without a window.

• In-place drawing for windowless controls. A windowless control draws directly on a device con
text provided by the container. Several methods in IOleinPlaceSi teWindowless enable the con
trol to get and release a device context, invalidate regions, and scroll the area in which it draws.

• Hit detection for nonrectangular controls. The new IViewObj ectEx interface has two methods
that support hit detection within nonrectangular controls. The container calls these methods to deter
mine whether the area clicked by the user is within the extents of a nonrectangular control.

• Quick activation. The process of loading a control into a container can affect performance. The nego
tiation that occurs during this process can take some time. For this reason, a new interface,
IQuickActivate, streamlines the control loading process. The new interface encapsulates many of
the calls and callbacks that are required when a control is loaded.

• Undo. The undo section is container-specific. It allows a container to implement a multilevel undo
mechanism.

• Control sizing. In the Controls 94 specification, control sizing is managed by a series of calls and
callbacks while the control and container negotiate the sizing of the control. Several interfaces and
methods are involved in this process. The new specification provides an additional method in the
new IViewObjectEx interface that makes this process more efficient. It also provides several con
h·ol sizing options.

0 Translation of event coordinates. The Controls 94 specification required controls to use HIMETRIC
units when passirig coordiriates to the container. The Controls 96 specification uses device units or
points, a technique that's more consistent with the values used in methods and properties.
Translations are necessary for containers that support both control types.

0 Textual persistence. Certain contairiers (such as Visual Basic) store control properties in a text for
mat. This arrangement makes it easy for control users to modify property values using a simple text
editor. Before the Controls 96 specification, the iriterfaces that are used to implement this efficient
mechanism of saving properties were not documented. The new specification documents a new
interface that lets you efficiently save a control's properties iri a property bag by implementirig the
IPersistPropertyBag interface.

That summarizes the enhancements added by the OLE Controls 96 specification. As you can see, most of the
changes focus on making ActiveX controls more efficient to implement and use. It will take some time for
the development tool vendors to incorporate these changes into their contairiers, but it will eventually hap
pen. Also, with the release of Visual C++ version 4.2, many of these features are supported at the control
development level. We'll cover some of them as we build the example controls. Table 7.2 lists the new inter
faces added by the Controls 96 specification.

APPLE 1109 - Page 13

304 + CHAPTER 7

Control-Side Interface

IPointerinactive

IOleinPlaceSiteEx

IOleinPlaceSiteWindowless

IQuickActivate

IViewObjectEx

IPersistPropertyBag

IProvideClassinf o2

Table 7.2 New Control Interfaces

Purpose/MFC Methods

Provides a way for the control to respond to user interaction when the control is not in

the active state.

Adds Ricker-free redrawing methods.

Supports the creation of windowless controls.

Provides a more efficient way of initially loading a control.

Adds drawing optimizations, support for nonrectangular objects, and new control sizing

options.

Adds more efficient ways of storing and retrieving text-based control properties.

The new IProvideClassinfo2 interface provides an additional method, GetGUID,

that returns the GUID specified in the GUIDKIND parameter. This is useful when the con

tainer is implementing a control's outgoing, or event, interface.

Control and Container Guidelines Version 2 .. 0
Along with the OLE Controls 96 specification, Microsoft released a document that provides guidelines for
control and container developers. By following the guidelines, developers can help make their controls and
containers work together reliably. The ActiveX control is becoming ubiquitous within development tools
and applications. The large number of controls and containers, with their specialized functionality, makes it
imperative for certain guidelines to be followed. By following the guidelines, a developer makes the control
or container useful within the maximum number of development environments.

The guideline document is currently part of the ActiveX SDK. You can look there for detailed informa
tion on each guideline. Following is a summary of the key control-specific aspects of the guidelines. Some of
the concepts presented in this summary are covered in detail later in the chapter.

" A COM object. An ActiveX control is just a specialized COM object. The only basic requirements for
a control is that it support self-registration and the IUnknown interface. These are the only true
requirements of a control. However, such a control could not provide much functionality. The guide
lines show how a developer can add only those interfaces that the control needs. The ultimate pur
pose is to make the control as lightweight as possible.

" Self-registration. control must support self-registration by implementing the DllRegisterServer

and DllUnregisterServer functions and must add the appropriate embeddable objects and
Automation server entries in the Registry. A control must also use the component categories API to
indicate which services are required to host the control.

" Interface support. If a control supports an interface, it must support it at a basic level. The document
provides guidelines for each potential ActiveX control and container interface. It describes which
methods must be implemented within an interface if that interface is implemented.

APPLE 1109 - Page 14

ActiveX Controls +

" Persistence support. If a control needs to provide persistence support, it must implement at least
one IPersist* interface and should, if possible, support more than one. This requirement makes it
easier for a container to host the control. Support for IPersistPropertyBag is highly recom
mended, because most of the major containers provide a "Save as text" capability.

" Ambient properties. If a control supports ambient properties, it must respect certain ambient prop
erties exposed by the container. They are LocaleID, UserMode, UIDead, ShowGrabHandles,
ShowHatching, and DisplayAsDefault.

• Dual interfaces. The guidelines strongly recommend that ActiveX controls and containers support
dual interfaces. If you recall from Chapter 6, an Automation server implements a dual interface by
providing both an IDispa tch interface and a COM custom interface for its methods and properties.

0 Miscellaneous. ActiveX controls should not use the WS_GROUP or WS_TABSTOP window flags,
because it may conflict with the container's use of these flags. A control should honor a container's
call to IOleControl: : FreezeEvents. When events are frozen, a container will discard event
notifications from the control.

ActiveX controls are a perfect solution to many of the problems facing Web developers. Web pages are small
applications. They need controls, such as edit boxes and listboxes, and in most regards can be developed as
regular Windows applications, especially now that most of Microsoft's technologies (such as VBScript and
ActiveX controls) are supported within a Web browser. Internet Explorer is a highly functional ActiveX con
trol container. It implements much of the new Controls 96 functionality as well as many other ActiveX tech
nologies. ActiveX controls can be used within the Web environment, but there are some additional require
ments for controls that have large amounts of data. We'll cover Internet-based ActiveX controls in detail in
Chapter 12.

ActiveX controls can be contained within Web browsers that support the ActiveX container architec
ture. Today, the most prevalent example is Microsoft's Internet Explorer. A control is typically thought of as
a button or edit box, but a control can also be a much larger entity, basically a whole application. Most of
Internet Explorer's functionality is contained within one ActiveX control. For most controls, operating
within the Web environment is not a problem. However, some controls manipulate large amounts of data.
The major difference between a local machine environment and the Web is bandwidth. The OLE-Controls
COM Objects for the Internet specification describes new techniques and interfaces to facilitate working in
low-bandwidth environments.

I
A fully functional ActiveX control typically implements around 15 interfaces. Now, with the additional
interfaces described in the OLE Controls 96 specification, a large, full-featured control might implement 20
or more interfaces. Such a control, however, would be complex to implement, at least without the help of
MFC.

APPLE 1109 - Page 15

306 -+- CHAPTER 7

The Control and Container Guidelines document reduces control requirements by requiring controls to
implement only those interfaces that they need. If a control does not want to support events, it need not
implement the interfaces (such as IConnectionPointContainer) needed for events. By following the
guidelines, a control developer is now free to implement only those interfaces that are necessary. The guide
line document categorizes the possible control-implemented interfaces by function. The next several sections
describe the major ActiveX functional categories according to the interfaces that they must implement.

An ActiveX control is a typical COM object. It must provide the most basic COM service: the IUnknown
interface. To create an instance of a control, it must also have a class factory, which requires the implementa
tion of one of the IClassFactory interfaces. The IClassFactory2 interface provides additional, license
oriented features for components that implement it. We'll discuss this in more detail in Chapter 8.

ActiveX controls are typically compound document servers. The compound document interfaces provide
support for important features such as displaying a visual representation of the control, user interaction with
the control, and in-place activation. Several interfaces are needed to support this functionality.

The IOleObj ect interface provides basic embedded object support so that the control (compound doc
ument server) can communicate with the container. There are a number of methods in the IOleObject
interface, but only a few are of interest to ActiveX controls. The SetExtent and GetExtent methods are
used to negotiate a control's extent or size, and the GetMiscStatus method returns the various
OLEMISC_ * status bits set for the control. We'll cover each of these methods in the section on control
Registry key entries.

The IOleView [xi interfaces provide a way for the container to obtain a graphical rendering of the
control. The control implements this interface and draws its representation onto a device context provided
by the container. The initial version of this interface, IOleView, was part of the original compound docu
ment specification. The OLE Controls 94 specification added GetExtent, which allowed the container to
get a server's extents through this interface instead of IOleObject. Then, as part of the OLE Controls 96
specification, the IOleViewEx interface was added. This interface includes five new methods that facilitate
flicker-free drawing, nonrectangular objects, hit testing, and additional control sizing options. MFC versions
4.2 and higher support the new IOleViewEx interface.

The IDataObject interface is used by compound document servers to provide the container with a
method of rendering data to a device other than a device context. ActiveX controls typically use the
IOleView [x] interface instead of IDataObj ect, but it can be implemented if needed.

A control must implement the compound document IOleinPlaceObject interface to support the
ability to be activated and deactivated in-place within the container. This interface also provides a method to
notify the control when its size changes or is moved within the container.

APPLE 1109 - Page 16

ActiveX Controls +

A control must implement IOleinPlaceActi veObj ect to provide support for the use, and transla
tion of, accelerator keys within the control. Many of IOleinPlaceActi veObj ect's methods are not
needed for ActiveX controls.

The compound document interface, IOleCache2, can be implemented by a control to provide caching
of its representation, improving performance in some situations.

Most ActiveX controls provide a graphical representation, so most controls should provide support for
the compound document interfaces. However, this is no longer a requirement. If a control is nonvisual and
does not require these interfaces, it is free to not implement them. A well-behaved container should still be
able to handle the control.

For a control to provide basic functionality, it needs to implement some properties and methods. As we dis
cussed in Chapter 6, Automation is a standard way of exposing member variables and member functions
from a COM-based server. A control provides services by providing an implementation of the IDispatch
interface. Once implemented, a control becomes an Automation server.

A control's Automation interface is one of its most important features. The control standards provide a
number of standard properties and methods. When designing a control, you will typically spend much of
your time working with properties and methods. Let's look at the different types implemented by ActiveX
controls.

Properties
A control property is basically a characteristic of the control. Examples include color, height, font, and so on.
In a software component sense, the properties of a control enable a developer to affect the appearance and
behavior of a control. In most cases, a property maps to a C++ class member variable that maintains the
value of a property.

Control developers can implement custom properties that are specific to the control being developed
(such as "Count") as well as use the stock properties provided by the ActiveX control standard. Certain
properties may be valid only during the execution or run-time phase of a container. An example is a prop
erty that contains the number of elements in a listbox or one that contains the HWND of the control. During
the design phase, this property has no meaning to the control user. It is useful only during the execution of
the application. Other properties may be read-only at run time or even write-only at design time.

Standard and Stock Properties
The ActiveX Control standard provides a set of standard properties that should be used instead of imple
menting custom properties for similar functionality. This arrangement provides a standard or uniform inter
face for the component user. All ActiveX controls that expose a particular functionality will use the same

APPLE 1109 - Page 17

308 + CHAPTER 7

property name. Examples include BackColor, Caption, and hWnd. These are properties that almost all
visual ActiveX controls should provide. Table 7.3 lists the standard properties currently defined by the stan
dard. We will also use the term stock properties, which are ActiveX control standard properties whose
implementation is provided by MFC.

Property

Appearance*

AutoSize

BackColor*

BorderStyle*

BorderColor

BorderWidth

DrawMode

DrawStyle

DrawWidth

FillColor

FillStyle

Font*

ForeColor*

Enabled*

hWnd*

TabStop

Text*, Caption*

BorderVisible

Table 7.3 Standard Control Properties

Purpose

Appearance of the control (e.g., 3-D).

If TRUE, the control should size to fit within its container.

The background color of the control.

The style of the control's border. A short that currently supports only two values. A zero indicates no

border, and 1 indicates to draw a normal, single-line border around the control. More styles may be

defined in the future.

The color of the border around the control.

The width of the border around the control.

The mode of drawing used by the control.

The style of drawing used by the control.

The width of the pen used for drawing.

The fill color.

The style of the fill color.

The font used for any text in the control.

The color of any text or graphics within the control.

TRUE indicates that the control can accept input.

The hWnd of the control's window.

Indicates whether the control should participate in the tab stop scheme.

A BSTR that indicates the caption or text of the control. Both properties are implemented with the

same internal methods. Only one of the two may be used.

Show the border.

• Indicates stock implementation provided by MFC

Ambient Properties
The definition of ambient is "surrounding or encircling," and this precisely describes the relationship
between ActiveX control containers and the ActiveX controls contained therein. The ActiveX control stan
dard defines a set of ambient properties that are read-only characteristics of the control container. These
characteristics define the ambiance surrounding each of the controls. A good example is the container's
ambient font. To provide a uniform visual interface to the application user, the container may define an

APPLE 1109 - Page 18

ActiveX Controls + 309

ambient font that each control should consider using. If a control in the container uses a font to display text
information, it would be nice if it would use the font that all the other controls are using.

Ambient properties are also useful from a development perspective. The developer can quickly change
the ambient property of a container and affect all the controls within it. Instead of changing the property for
every control, the developer has to change it only at the container level.

Ambient properties are provided by the default IDispatch of the client site provided to a control by a
control container. When a control is loaded, MFC calls Queryinterface for the default IDispatch on its
client site. To reh·ieve an ambient property, the control calls IDispatch: : Invoke with the DISPID of the
ambient property. These are standard, known DISPIDs, so there is no need to use
IDispatch: : GetIDsOfNames beforehand.

Not all ambient properties pertain directly to the GUI aspects of a container and its controls. Other
properties are used by the container to indicate its current state to the enclosed controls. The UserMode
ambient property is used to indicate the state of the container. Is it currently in design, run, or debug mode?
The DisplayName property conveys to the control its external name used by the container. The correct use
of ambient properties is important to the development of ActiveX controls, and we will cover each one in
detail in later chapters. The ambient properties are shown in Table 7.4.

Property

BackColor

DisplayNarne

Font

ForeColor

LocaleID

MessageReflect

ScaleUnits

TextAlign

UserMode

UIDead

Table 7.4 Ambient Properties

Purpose/ MFC Method to Access

Background color of the control. OLE_COLOR COleControl: : AmbientBackColor

The name of the control as given by the container. This name should be used when the control needs

to display information to the user. CString COleControl: :AmbientDisplayNarne

The recommended font for the control. LPFONTDISP COleControl: : AmbientFont

Foreground color for text. OLE_COLOR COleControl: :AmbientForeColor

The container's locale ID. LCID COleControl: :AmbientLocaleID

If this property is TRUE, the container supports reAecting messages back to the control. BOOL

COleControl: :ContainerReflectsMessages

A string name for the container's coordinate units (such as "lwips" or "cm"). CString

COleControl::AmbientScaleUnits

Indicates how the control should justify any textual information. 0 = numbers to the right, text to the

left, 1 = left justify, 2 = center justify, 3 = right justify, 4 = fill justify. short

COleControl::AmbientTextAlign

Returns TRUE if the container is in run mode; otherwise, the container is in design mode. BOOL

COleControl::AmbientUserMode

The UIDead property indicates to the control that it should not accept or act on any user input

directed to the control. Containers may use this property to indicate to the control that it is in design

mode or that it is running, but the developer has interrupted processing during debugging. BOOL

COleControl::AmbientUIDead

APPLE 1109 - Page 19

310 +CHAPTER 7

Table 7.4 Ambient Properties (continued)

Property Purpose/ MFC Method to Access

ShowGrabHandles If TRUE, the control should show grab handles when Ul-active. BOOL

COleControl: :ArnbientShowGrabHandles

ShowHatching If TRUE, the control should show diagonal hatch marks around itself when Ul-active. BOOL

COleControl: :ArnbientShowHatching

DisplayAsDefaul t The container sets this properly to TRUE for a button style control when it becomes the default button

within the container. This occurs when the user tabs to the specific control or the control is actually the

default button on the form, and the focus is on a nonbutton control. The button should indicate that it

is the default button by thickening its border.

SupportsMnemonics If TRUE, the container supports the use of mnemonics within controls.

AutoClip If TRUE, the container automatically clips any portion of the control's rectangle that should not be dis

played. If FALSE, the control should honor the clipping rectangle passed to it in

IOleinPlaceObj ect's Set Obj ectRects method.

In Chapter 6, we discussed Automation methods. ActiveX control methods are basically the same and are
implemented via the rnispatch interface. One of the new features of ActiveX controls (in contrast to Visual
Basic custom controls) is the ability they give you to implement custom methods. These methods allow the
control user to call specific functionality within the control. This is no different from our Automation server
examples of Chapter 6.

The ActiveX control standard currently provides two standard methods that should be implemented in
your control if it supports the behavior (Table 7.5). The Refresh method causes an immediate redraw of the
control, and the DoClick method causes the control to fire the standard Click event. (We'll cover events in a
moment.) Implementing these methods requires just two mouse clicks, and we will do so in the controls that
we develop.

Table 7.5 Standard Control Methods

Method Purpose/MFC Method

Refresh Redraw the control. COleControl: : OnRefresh

DoClick Generate a Click event. COleControl: : OnDoClick

APPLE 1109 - Page 20

ActiveX Controls + 311

Controls that support the concept of properties should also provide support for property pages. ActiveX
controls need a standard way to visually present their properties to the user of the control (the visual devel
oper). The ActiveX control standard added property page technology as part of its implementation. Each con
trol has associated with it one or more property pages that allow visual manipulation of its properties. As its
property values change, the control is notified and can act on the request.

A property page is similar (visually) to a single tab of the tabbed dialog boxes that have become popular
in Windows applications. Tabbed dialog boxes allow presentation of large amounts of data within a small
space and allow the grouping of related application features within a tab. A dialog box containing multiple
tabs is similar to a Windows 95 property sheet.

Windows 95 uses property sheets throughout its new interface. Property sheets are part of the
Windows 95 API and are one of the new common controls. Windows 95 has added many new full-featured
common controls, and we will use one of them to build an ActiveX control in a later chapter.

OLE property pages are different from the Windows 95 common control and provide additional capa
bilities. Each OLE property page is itself a component, or COM object, as we will see. Currently there are
three stock property pages that ActiveX controls can use: Font, Color, and Picture. They provide stan
dard implementations for properties that many controls will use. A control developer can also provide one
or more custom property pages for a control.

The control container is responsible for managing the design and run-time environment of which many
controls may be a part. Implementing each control's property pages as distinct COM objects allows the con
tainer to invoke or instantiate the pages independent of the control. This is important, because the user may
choose multiple controls, either of the same or of different types, and may want to modify the properties that
are common to the selected controls. It is the responsibility of the container to filter through the property
pages and display only those that are common among the selected controls. Once this is done, the property
page component is responsible for notifying its respective control. In other words, the container knows
when to display a control's property pages (at the request of a user) and is responsible for querying each
selected control to obtain its respective property pages. The container then assembles them into a property
sheet that frames the property pages. Once this property sheet is complete, the user can modify and apply
the changes to the underlying controls. As this occurs, the property page communicates directly with the
control, requiring no help from the container (Figure 7.5).

APPLE 1109 - Page 21

312 +CHAPTER 7

Figure 7.5 Control properly sheet.

The container creates the property sheet frame that contains the OK, Cancel, Apply, and Help buttons. The
property pages within this frame are individual COM objects and are manipulated by the container using
Automation. These capabilities are provided by new OLE interfaces specified in the ActiveX control stan
dard, although they can be used outside ActiveX controls. Let's briefly look at each one.

ISpecifyPropertyPages
The ISpecifyPropertyPages interface is implemented by the control. It provides a way for the container
to query the control for its list of property pages. ISpecifyPropertyPages has only one method:
GetPages. The GetPages method is called by the container. The container provides a pointer to a CAUUID
structure that returns a counted array of CLSIDs. This enumerates all the property page CLSIDs used by the
control. The container uses these CLSIDs with a COM function, typically CoCreateinstance, to instanti
ate the page objects.

typedef struct tagCAUUID

ULONG cElems;

GUID FAR* pElems;

CAUUID;

II ISpecifyPropertyPages

BEGIN_INTERFACE_PART(SpecifyPropertyPages, ISpecifyPropertyPages)

INIT_INTERFACE_PART(COleControl, SpecifyPropertyPages)

APPLE 1109 - Page 22

ActiveX Controls + 31 3

STDMETHOD(GetPages) (CAUUID FAR*);

END_INTERFACE_PART(SpecifyPropertyPages)

IPropertyPageSite
IPropertyPageSite facilitates communication between the property page component and the property
sheet frame as implemented by the container. An IPropertyPageSi te pointer is provided to each prop
erty page after it has been instantiated through IPropertyPage:: SetPageSite. The OnStatusChange
method is used by the property page to indicate to the frame that one or more properties have been modi
fied. The frame then enables the Apply button.

The GetLocaleID method is used by the property page to retrieve the appropriate language identifier
from the property frame. The GetPageContainer method currently has no defined behavior but may be
used in the future to obtain an interface on the property sheet frame itself. The TranslateAccelerator
method helps in the management of accelerator keys used by the property pages.

IPropertyPage2
The IPropertyPage2 interface is implemented by each property page component and provides the con
tainer with methods to get the size of as well as move, create, destroy, activate, and deactivate the compo
nent's property page window. The container creates a frame for each property page and uses these methods
to manage the display of the property sheet. This arrangement allows the property sheet to appear and
behave as if driven by one application, when, in fact, a property sheet comprises individual components
housed within a frame window created by the container. Each method is detailed in Table 7.6.

Methods

SetPageSite

Activate

Deactivate

GetPageinf o

SetObjects

Show

Move

Table 7.6 IPropertyPage2 Methods

Purpose/ MFC Method

Initializes the property page by providing a pointer to the IPropertyPageSi te.

COlePropertyPage::OnSetPageSite

Causes creation of the dialog box based on the property page dialog resource specified by the control

developer.

Destroys the dialog window created by the preceding method.

Returns to the property frame a PROPPAGEINFO structure that contains the title, size, and help infor

mation For the property page.

Passes to the property page a list of IDispatch interfaces for each of the controls that will be affected

by changes made via the property page.

Called by the frame with a nCmdShow parameter. This usually either shows or hides the property page

window. MFC passes the nCmdShow parameter to the ShowWindow method.

Called by the frame to move the property page window. An LPRECT structure is provided and is

passed to the MoveWindow method by MFC.

APPLE 1109 - Page 23

+CHAPTER 7

Methods

IsPageDirty

Apply

Help

TranslateAccelerator

EditProperty

Table 7.6 IPropertyPage2 Methods (continued)

Purpose/MFC Method

Called by the frame lo determine whether the Apply button should be enabled.

The Apply button was pressed, and all changes need lo be propagated lo all the affected

controls. MFC calls the DoDataExchange method implemented in the properly sheet.

The Help button on the frame was pressed. MFC calls the properly page's OnHelp

method. The default implementation does nothing.

The frame passes keystrokes to the page so that it can act on the message. MFC passes the

keystroke lo PreTranslateMessage if it is not intercepted by the properly page.

Called by the frame with the DISPID of the properly that is requesting edit. The default

MFC implementation, OnEdi tProperty, does nothing.

A control that provides property support through the IDispatch and property page interfaces may also
want to support persistence of those properties. Not all properties require persistence, but from a user's per
spective, persistence of properties makes development of applications easier.

During the container's design phase (when building an application using a visual tool), the developer
typically modifies various properties of a control. To save the resulting state of the control's properties, the
development tool and its containers ask each control to save the state of its properties. This process, called
serialization, provides persistence of a control's state. Persistence allows a control to have a unique initial
state, set during the design phase, when loaded and activated within a container. The IPersistStorage
and IPersistStreamini t interfaces provide this capability.

IPersistStorage is supported by OLE compound document containers. IPersistStorage
accesses OLE's structured storage technology, which provides a hierarchical storage mechanism above the
operating system's file system. OLE embedded servers implement this interface so that the container can ask
each embedded object to serialize itself within the container's structured storage file. For compound docu
ment objects, this requires the storage of a large and complex set of data (such as a Word document or an
Excel spreadsheet). This interface provides more functionality (and therefore larger files) than is usually
required for lighter weight ActiveX control objects.

The IPersistStreamini t interface was added with the ActiveX control specification and provides a
simpler, stream-based approach to serialization. ActiveX control containers typically support this interface
in addition to IPersistStorage. To support embedding within both container types, controls should
implement both interfaces.

Another persistence interface, IPersistPropertyBag, was added by the Controls 96 specification.
IPersistPropertyBag and the container-side interface, IPropertyBag, provide an efficient method of
saving and loading text-based properties. The control implements IPersistPropertyBag, through which
the container calls Load and Save, thereby notifying the control to either initialize itself or save its property

APPLE 1109 - Page 24

ActiveX Controls + 3 1 S

values. It does this through the IPropertyBag: : Read and IPropertyBag: : Write methods provided
by the container. The property bag persistence mechanism is very effective in a Web-based environment,
where a control's property information may be stored within the HTML document.

A control should support as many of these persistence interfaces as possible to provide the most flexi
bility to the container. Likewise, a container should support as many as possible. The more persistence inter
faces are implemented, the greater the chance that a container and control will work together efficiently.

A major improvement provided by the ActiveX control architecture is the addition of an outgoing event
mechanism. In Chapter 6, we described Automation as a primarily one-way technique of communicating
(programmatically) with another component. This teclmique was sufficient for using or driving components
or applications, but it does not provide the robust feedback needed when multiple components are interact
ing or when a higher-level entity is used to tie controls together.

Events provide a way for a control to notify its container that something is about to occur or has
occurred. The container typically provides a way for a user to perform certain actions whenever it is. notified
of these events. There is no requirement that the container actually implement or perform any actions when
it receives control event notifications. As we described earlier, a container is usually a part of a larger devel
opment environment in which there is either an interpreted script-like language (such as Visual Basic) or a
compiled language such as Visual C++. This language is used to perform programmatic actions when a con
trol fires an event.

Event communication between COM-based components is a major addition to the technology and is
used extensively by ActiveX controls. The technology is termed connectable objects, because it provides true
peer-to-peer communication between cooperating components. Events are implemented within ActiveX
controls using the IDispatch interface and the connectable objects interfaces: IConnectionPoint and
IConnectionPointContainer.

ActiveX controls implement the IConnectionPointContainer interface to indicate to the container
that they support one or more outgoing (or event) interfaces. These outgoing interfaces allow the control to
invoke Automation methods within the container. The IConnectionPointContainer interface provides
a mechanism to establish this link.

The IConnectionPointContainer interface contains two methods. EnurnConnectionPoints pro
vides a way for the container to iterate through all the connection points within the control. The
FindConnectionPoint method uses an interface ID (IID) to identify the specific interface that a container
is looking for. Each of these methods provides a way to obtain pointers to the IConnectionPoint inter
face.

IConnectionPoint is also implemented by the control, but not as part of its main interface. (It's not
available via Queryinterface.) IConnectionPoint is implemented on a different object and is used to
set up the outgoing connection with the container.

IConnectionPoint provides five methods, but we'll discuss only two of them. The other methods
provide more functionality tl1an we need for our purposes. The Advise method is used by the container to

APPLE 1109 - Page 25

316 +CHAPTER 7

establish a connection with the control. The container passes an interface pointer to one of its interfaces to
the control. (For events, this interface is an IDispatch.) The control then calls methods implemented by the
container by calling through this interface. The Unadvise method is used to terminate this connection. This
process is fairly complex, but Table 7.7 details the use of these interfaces to set up event notification between
the control and its container. The interface that we are setting up is a pointer to the container's implementa
tion of our control's event set. The Automation methods are specified by the control but implemented in the
container.

Table 7.7 Event Set IDispatch Setup

Container

Inserts and loads the control.

Upon load, it queries for the control's type information.

The control must provide a primary event set IDispatch:

pPCI = Queryinterface(IProvideClassinfo[x]

pPCI->GetClassinfo()

From the type information, determine the llD for the default

event set. For our example, we will use IID_EventSet.

If the control implements IProvideClassinfo2,

the container can call GetGUID with the

GUIDKIND_DEFAULT_SOURCE_IID parameter to quickly

determine the event set llD.

Get the IConnectionPointContainer interface:

pICPC = Queryinterface

(IConnectionPointContainer)

Control

Contains the definition of the event IDispatch.

Returns the type information for the control. This is a binary

version of the definitions from the .ODL file. The control

should implement IProvideClassinfo2, because it

makes it easier for the container to determine the llD of the

control's default event set.

Return its IConnectionPointContainer implementation.

Get the ConnectionPoint interface for the default event set: Return an IConnectionPoint pointer for the specified llD.

pICP = pICPC->FindConnectionPoint

(IID_EventSet)

The container must now implement the event set as an

automation interface. It then calls through the

connection point to set the control's pointer to the

container's implementation of the event IDispatch:

pICP->Advise(pEventDispatch)

m__pEventDispatch = pEventDispatch

Set an internal pointer equal to the container's (event)

IDispatch implementation:

When the control fires an event, it does something like this:

m__pEventDispatch->Invoke(myDispID ...)

The control knows the DISPID as well as all the parameters and

types, because it defines them.

APPLE 1109 - Page 26

ActiveX Controls + 3 1

A control's methods provide a way for the container to perform actions within the control. Control events
provide a way for the control to perform actions within the container. As we've discussed, controls are
Automation servers that expose their methods and properties using the IDispatch interface. This arrange
ment allows client to obtain the control's IDispatch and then the DISPIDs of each method and property
(using IDispatch: : GetIDsOfNames). The client can then call these methods within the control using
IDispatch:: Invoke.

Control events are implemented in a similar way except in reverse. As you add events to a control, it
builds code that will call an Automation method for each event with its parameters. The definition of this
interface is provided to the container (via IProvideClassinfo [x]) as the control is being loaded. The
new IProvideClassinfo2 interface adds the GetGUID method to make it easier for the container to find
the correct event set. By passing the dwGuidKind parameter of DEFAULT_SOURCE_IID, the control returns
the default event IID.

The container then implements the IDispatch interface based on the type information provided by the
control. The IDispatch pointer is then returned to the control through the IConnectionPoint: :Advise

method. Later, when a control needs to fire an event, it calls through this IDispatch:: Invoke with the
DISPID of the event method. (The control knows the DISPID because it defined it, so there is no need to call
GetIDsOfNames.) This call invokes the method within the container (i.e., the event fires).

Standard Events
To present a uniform event set for users of ActiveX controls, the ActiveX control standard currently provides
nine standard events that can be used to develop an ActiveX control. These events are ones that visual con
trols usually provide to notify the control user when they occur. They are listed in Table 7.8. The only one
that requires more explanation, in this short overview, is the stock Error event, which provides a simple
mechanism to report errors that occur within your control. You should follow specific rules when using the
Error event, and we will cover them in one of our example controls. As with the standard properties, the
events implemented by MFC are called stock events.

Event

Click

DblClick

Error

KeyDown

KeyPress

KeyUp

MouseDown

MouseMove

Mouse Up

Table 7.8 Standard Events

Purpose/Stock MFC Function

Fired by a BUTTONUP event for any of the mouse buttons. COleControl: : FireClick

Fired by a BUTTONDBLCLK message. COleControl: : FireDblClick

Fired by the control when an error occurs. COleControl: : FireError

Fired by the WM_SYSKEYDOWN or WM_KEYDOWN message. COleControl: : FireKeyDown

Fired by the WM_ CHAR message. COleControl: : FireKeyPress

Fired by the WM_SYSKEYUP or WM_KEYUP message. COleControl: : FireKeyUp

Fired by the BUTTONDOWN event. COleControl: : FireMouseDown

Fired by the WM_MOUSEMOVE message. ColeControl: : FireMouseMove

Fired by the BUTTONUP event. ColeControl: : FireMouseUp

APPLE 1109 - Page 27

318 +CHAPTER 7

Custom Events
MFC allows you to define custom events for your controls. The return values and parameters are the same
as those for Automation methods. The primary difference between stock and custom events is that MFC
provides an implementation for each stock event that automatically fires when the event occurs. For custom
events, the developer must implement the code that fires the event.

Ii
ActiveX controls are typically visual components that provide some kind of interaction with the control
user. If a control needs to process keystrokes, it should implement the IOleControl interface. It contains
four methods, of which two are specific to keystroke processing.

GetControlinfo fills in a caller-supplied CONTROLINFO structure. This structure defines the key
board mnemonics implemented in the control and contains a dwFlags variable that describes how the con
trol will behave if the user presses the Esc or Return key when the control is DI-active.

The container calls OnMnemonic when a keystroke matches one in the control's mnemonic table set by
a previous GetControlinfo call. A button control can handle accelerators and other button-type details by
using these two methods and the OLEMISC_ACTSLIKEBUTTON flag. The container should also expose the
DisplayAsDefault ambient property and provide an implementation of the
IOleControlSi te: : TranslateAccelerator method. A control has first crack at keystrokes when it's
DI-active, but it can call this method if it does not use the message:

interface IOleControl : IUnknown

HRESULT

HRESULT

HRESULT

HRESULT

GetControlinfo(CONTROLINFO *pCtrlinfo);

OnMnernonic(LPMSG pMsg);

OnArnbientPropertyChange(DISPID dispID);

FreezeEvents(BOOL £Freeze);

typedef struct tagCONTROLINFO

ULONG cb;

HACCEL hAccel;

USHORT cAccel;

DWORD dwFlags ;

CONTROLINFO;

The other two methods of IOleControl are important for most controls. The container calls
OnAmbientPropertyChanged to inform the control that one or more ambient properties have changed.
The only parameter is the DISPID of the property that changed. If more than one property changed,
DISPID_UNKNOWN is passed to the control.

APPLE 1109 - Page 28

ActiveX Controls + 319

FreezeEvents is called by the container to freeze and unfreeze the control's event mechanism. If
FreezeEvents passes TRUE, the container will ignore any events fired by the control until the container
unfreezes the conti:ol by calling this method with a FALSE parameter. Some containers may, for example,
want to freeze events while the other controls in the container are still being initialized.

The ActiveX control architecture allows a control to contain other ActiveX controls without making the par
ent control implement all the required container-side interfaces. The controls are /1 contained" in the usual
Windows sense of parent and child windows and not in the compound document sense. To support simple
control containment, the container must implement the ISimpleFrameSite interface. The control must
call the methods when processing its window messages. Here's the definition for ISimpleFrameSi te:

interface ISirnpleFrameSite : public IUnknown

PreMessageFilter(HWND hwnd, UINT rnsg, WPARAM wp, LPARAM lp,

LRESULT FAR* lplResult, DWORD FAR* lpdwCookie);

PostMessageFilter(HWND hwnd, UINT rnsg, WPARAM wp, LPARAM lp,

LRESULT FAR* lplResult, DWORD dwCookie);

To support simple frame containment, a control must do all of the following:

1. It must call the container's PreMessageFil ter method before processing any window messages
and must call the container's PostMessageFil ter method after processing the message. The mes
sage should not be processed if the PreMessageFil ter returns S_FALSE.

2. The control must be implemented as an in-process server.

3. The control should set the OLEMISC_SIMPLEFRAME flag.

4. The control must properly handle painting of subclassed controls. This requires treating the wParam

in the WM_PAINT message as the handle to a device context.

Visual C++ and the MFC libraries provide a feature-rich environment for implementing and using ActiveX
controls. Most of the functionality is contained in two MFC classes: COleControl and
COlePropertyPage. We'll cover both classes in detail in the next few chapters. However, I'd like to briefly
discuss COleControl in the context of all the interfaces we've described in this chapter.

The base COleControl class implements 22 COM-based interfaces. The default behavior of
COleControl is full featured. It provides all the functionality described in the "Control Functional

APPLE 1109 - Page 29

320 + CHAPTER 7

Categories" section and supports nearly all the new features described in the Controls 96 specification as
well as those discussed in ActiveX Controls-COM Objects for the Internet. This means that, by default, any
controls you build with MFC must always carry around this weight even if the functionality isn't used. This
isn't necessarily bad, because using tools such as MFC is a trade-off. There are, however, other alternatives
for developing controls.

The ActiveX SDK gives you a lightweight control framework that provides a small subset of MFC's con
trol functionality. For developers who want to build small, efficient controls, this tool gets them started. It
does require a good understanding of the implementation of ActiveX controls.

Visual C++ qlso provides an tool that makes it easy to create basic ActiveX controls. ControlWizard is
very similar to AppWizard. It provides a skeletal control project based on answers to a few questions.
ControlWizard allows a developer to write his or her first control in a matter of minutes.

Along with the specification of ActiveX controls, Microsoft's tools have provided various levels of develop
ment support. The following sections provide a brief look into the history of Microsoft's support for control
development within Visual C++.

Visual (++ Version 2.0 (MFC 3.0)
Visual C++ version 2.0 (32-bit), released in the fall of 1994, was the first version to provide support for build
ing ActiveX controls using MFC. The CD-ROM contained the Control Development Kit (CDK), a separately
installable set of components. They included a modified version of ClassWizard and a new control-based
AppWizard called, appropriately, ControlWizard, that made it easy to build a "shell" control with the
desired base functionality.

The CDK contained two new MFC classes-COleControl and COlePropertyPage-that provided
most of the CDK functionality. The CDK also included a subset of the other MFC classes to use in building
controls. The important point about the version 2.x releases is this: using Visual C ++ version 2.x, you could
only build ActiveX controls; you could not actually use them within Visual C++. There were several ActiveX
control hosting environments (such as Visual Basic and Visual FoxPro), but you could not host controls
within Visual C++ dialogs or views. This capability would have to wait until version 4.0 and higher.

The latest 16-bit version of Visual C++ (version 1.51) was also provided on the CD-ROM. A 16-bit ver
sion of the CDK was provided that was installed separately. Control projects that were initially started using
the 32-bit version of ControlWizard would easily move between the two environments: Visual C++ 2.0 and
Visual C++ 1.51. This arrangement made it simple to target both 16-bit and 32-bit platforms.

APPLE 1109 - Page 30

ActiveX Controls + 321

Visual(++ Version 2 .. 1 {MFC 3. 1)
Visual C++ version 2.1, released in early 1995, basically fixed some of bugs in the previous version CDK that
made it difficult to build usable controls. Version 2.1 was a very stable release and made it rather easy to
build effective ActiveX controls. Visual Basic 4.0, which was a great ActiveX control container, had been out
for a few months, and most development tool vendors were hard at work to provide tools to facilitate the
use and development of ActiveX controls. This support made developing ActiveX controls a worthwhile
endeavor.

The latest 16-bit version of Visual C++, version l.52b, was also shipped on the CD-ROM. The CDK was
updated with minor fixes.

Visual C++ Version 2 .. 2 {MFC 3.2)
Visual C++ version 2.2 was released in the summer of 1995. It added a few new features and bug fixes for
the CDK. It shipped with version 1.52c of the 16-bit Visual C++ environment, which is basically the same
version available today (September 1996).

Visual (++ Version 4 .. 0 {MFC 4.0}
Visual C++ version 4.0, a major release (October 1995), added significant features for ActiveX control devel
opers and users. Visual C++ now provided control hosting capabilities, making it easy to incorporate
ActiveX controls within Visual C++ dialog boxes. ActiveX controls could be created dynamically and added
to MFC-based views. Finally, all the features of ActiveX conh·ols could be used by Visual C++ developers.

As part of the major 4.0 release, the earlier CDK was integrated within the rest of MFC. The full comple
ment of MFC classes could now be used within ActiveX controls. ActiveX controls became simply MFC
based DLLs. They were no different from any other MFC-based COM server.

However, Version 4.0 removed some of the previous functionality. ControlWizard lost the ability to
import a VBX header definition and build a skeleton project. Also, ControlWizard no longer would generate
both 16-bit and 32-bit projects, so multiplatform support became harder to manage. These changes were nec
essary because parallel upgrades to the 16-bit compiler were discontinued. The 16-bit version (1.52c)
shipped with Visual C++ 2.2 was the last upgrade to the 16-bit version of Visual C++. The primary focus
was now 32-bit development.

Visual C++ Version 4.1 {MFC 4.1}
Visual C++ version 4.1 added little, except for bug fixes, that was specific to ActiveX control development.
An example and Tech Note (65) were added that showed how to convert an MFC-based Automation server
to support both the IDispatch interface and a custom interface, thereby providing dual interface support.

APPLE 1109 - Page 31

322 + CHAPTER 7

Visual(++ Version 4 .. 2 (MFC 4 .. 2)
Visual C++ version 4.2 added support for many of the enhancements outlined in the OLE Controls 96 speci
fication. These features include windowless controls, flicker-free controls, nonrectangular controls, and other
control optimizations. Internet-based enhancements were also added. CAsyncMonikerFile,
CDa ta Pa thProperty, and other classes were added to support this new Internet functionality.

As this book was going to press, Microsoft released the beta of Visual Basic 5.0 Control Creation
Edition. You can now use Visual Basic to develop ActiveX controls. The Control Creation Edition is
free, so you should definitely download it and give it a try. For details, check out my web site at

N o T E http:/ /www.WidgetWare.com.

Win32 versus Win 16 Control Development
The last version of Visual C++ to make it easy to move between 16-bit and 32-bit platforms was version 2.2.
The 32-bit version also came with the 16-bit Visual C++ version 1.52c. If you built your controls initially with
version 2.2, they could easily be moved back and forth between version 2.2 and version 1.52c. However,
these versions lack some of the important new ActiveX features. If you need to support both platforms, you
basically have three choices. You can use the older versions of Visual C++ and place a few #ifdef WIN32

lines around the bit-specific code. Another good alternative is to use the non-MFC control framework pro
vided with the ActiveX SDK, which we'll discuss in Chapter 12. The third option is to write your own frame
work. Right now, I think the best option is to use the non-MFC framework from the ActiveX SDK.

The control container is responsible for and manages the control's site, or location. There is information
about the control that only the container knows. Examples include the control's position within the con
tainer and the control's external name. The control user may wish to modify these values. The best way to
present this information to the user would be to secretly add these container-specific properties to each con
trol within the container, giving the user a seamless property interface. Each control would have a top,
left, and name property. To provide this capability, a container needs a way to "wrap" a control and aug
ment its property list. OLE aggregation makes this task easy.

The ActiveX control standard describes an extended control that is created by the container and is aggre
gated with the original control (Figure 7.6). The container-specific properties, or extended properties, are
implemented by the container in the aggregate object. Containers may also want to implement container
wide properties that, if modified, affect all the controls within the container. An example is the extended
visible property. If the container's visible property is FALSE, it would indicate that each control within
the container is not visible. Extended controls make this easy. Although the extended control can hide the
implementation of properties for a given control if necessary, the standard recommends that control devel
opers not use the extended control properties that are currently defined. These properties are listed in Table
7.9. Although the standard does not specify any extended methods or events, a container could add them
using the extended control.

APPLE 1109 - Page 32

Type/Name

BSTR Name

BOOL Visible

!Dispatch Parent

BOOL Cancel

BOOL Default

Figure 7.6 Extended control.

Table 7. 9 Extended Control Properties

Purpose

The name given to the control by the user.

The visibility of the control.

An !Dispatch for the container's extended properties.

Is the control the default Cancel button for the container?

Is the control the Default button for the container?

ActiveX Controls +

Just like all the OLE components we've studied so far, ActiveX conh·ols require specific entries in the system
Registry. These entries describe attributes of the control that potential containers will use when loading it. Each
of the following entries is a subkey under the control's CLSID. Each control typically has a ProgID registered
that points back to the specific CLSID, as do all the components that we developed in previous chapters.

Control
The Control entry indicates that the component is an ActiveX control. This entry allows containers to eas
ily identify the ActiveX controls available on the system by searching through the Registry looking only for
CLSIDs with a Control subkey. There is no value for the control entry. Its existence is all that is required.

APPLE 1109 - Page 33

324 + CHAPTER 7

lnprocServer32
This entry indicates that the control is a 32-bit in-process server. We used this subkey for the in-process
servers that we developed in earlier chapters. The only difference is that the filename of an ActiveX control
has an extension of OCX. The OCX extension isn't a requirement-16-bit MFC leaves it as DLL-but use of it
is recommended so that it is easy to distinguish between a DLL and a control. Here's the entry for the con
trol that we will develop in Chapter 8.

InprocServer32 = c:\postit\objd32\postit.ocx

lnsertable
The Insertable entry indicates that the component can be embedded within a compound document con
tainer. This is the entry used by compound document servers such as Visio, Word, and Excel. Compound
document containers populate the Insert Object dialog box by spinning through the Registry looking for the
Insertable key. ActiveX controls should add this subkey only if they can provide functionality when
embedded within a compound document container. Because ActiveX controls are a superset of visual
servers, they can always be inserted within a compound document container, and this is one way to test the
robustness of your controls.

MiscStatus
The MiscStatus entry specifies various options of interest to the control container. These values can be
queried before the control is loaded, and in some cases they indicate to the container how the control should
be loaded. The value for this entry is an integer equivalent of a bit mask value composed of optional
OLEMISC_ * flags. Many of these values were added with the ActiveX control specification and so are spe
cific primarily to ActiveX controls. Table 7.10 details OLEMISC bits of interest to control developers.

Name

ACTIVATEWHENVISIBLE

IGNOREACTIVATEWHENVISIBLE

Table 7.10 Control OLEMISC Status Bits

Purpose

This bit is set to indicate that the control prefers to be active when visible. This option

can be expensive when there are a large number of controls. The Controls 96 specifi

cation makes it possible for controls to perform most functions even when not active.

This flag should be set so that the control will work in containers that do not support the

new specification.

Added by the Controls 96 specification. If a control supports the new optimized control

behavior, it should set this Rag to inform new containers that they can safely use the

Controls 96 specification enhancements.

APPLE 1109 - Page 34

Name

INVISIBLEATRUNTIME

ALWAYSRUN

ACTSLIKEBUTTON

ACTSLIKELABEL

NOUIACTIVE

ALIGNABLE

IMEMODE

SIMPLEFRAME

SETCLIENTSITEFIRST

ProglD

ActiveX Controls 325

Table 7.10 Control OLEMISC Status Bits (continued)

Purpose

Indicates that the control should be visible only during the design phase. When running, the con

trol should not be visible. Any control that provides only nonvisual services will fit in this category.

The control should always be running. Controls such as those that are invisible at run time may

need to set this bit to ensure that they are loaded and running at all times. In this way, their

events can be communicated to the container.

The control is a button and so should behave differently if the container indicates to the control

that it should act as a default button.

The container should treat this control like a static label. For example, the container should

always set focus to the next control in the tab order.

Indicates that the control does not support UI activation. The control may still be in-place acti

vated, but it does not have a Ul-active state.

Indicates that the container should provide a way to align the control in various ways, usually

along a side or the top of the container.

Indicates that the control understands the input method editor mode, which is used for localiza

tion and internationalization within controls.

The control uses the ISirnpleFrarneSi te interface (if supported by the container).

ISirnpleFrarneSi te allows a control to contain instances of other controls. This is similar to

group box functionality.

A control sets this bit to request that the container set up the control's site before the control is

constructed. In this way, the control can use information from the client site (particularly ambient

properties) during loading.

The value of the ProgID entry is set to the current, version-specific ProgID for the control. This is no differ
ent from the entries for our components in earlier chapters.

ToolbarBitmap32
The ToolbarBitrnap32 entry value specifies the filename and resource ID of the bitmap used for the tool
bar of the container. MFC stores the control's bitmap within the OCX file's resources, so a typical entry looks
like this:

ToolbarBitmap32 c:\postit\objd32\postit.ocx, 1

APPLE 1109 - Page 35

CHAPTER 7

Type Lib
The TypeLib entry value specifies the GUID of the type library for the control. The container uses this
GUID to look up the location of the type library. The type libraries installed on the system are listed as sub
keys under the TypeLib key in the Registry. The type library information for the control is in the resources
of the OCX file, so the path and filename are the same as the InprocServer32 entry.

Version
The value of this subkey indicates the current version of the control.

As we discussed earlier, the ActiveX Controls 96 specification requires that ActiveX controls support the
concept of component categories. The control Registry entries that we just discussed are still useful and nec
essary for support of containers that have not moved to the new specification. However, as a control devel
oper you should also provide component category support for your controls. First, let's take a look at what
component categories are.

Component Categories?
Early in the days of ActiveX controls, a few Registry entries were all that were needed to specify the func
tionality of a control. The Control Registry key indicated the existence of a control, and the Insertable

key indicated whether the control could function as a simple OLE embedded visual server. Today, however,
the flmctional capabilities of all COM-based components (especially controls) continues to expand rapidly.
A more efficient and useful mechanism for categorizing the capabilities of these objects is needed.

Today, my NT machine has several hundred COM-based components installed. My Registry is filled
with CLSIDs and ProgIDs of these components, and there are only a few ways to distinguish the differences
in capabilities between these objects. Only a few Registry entries indicate their purpose. Wouldn't it be great
if I could sift through these components and get a specific view of the functionality of each one? That's
where the new component categories specification comes in. Thanks to component categories, the OLE
VIEW utility now shows me a more understandable view of the components on my system (see Figure 7.7).

APPLE 1109 - Page 36

The CATID

ActiveX Controls + 327

Component Categoriet
{ODE861\57·2BM·11CF·A229·01)1>A00307352) 1409] • Suppmt n·.
{OOE861\58·2BM·11CF·A22S·OlM003D7352)1409} • Conlrols .
{40FC6ED3·2438·11 CF·A3DB·OB0036F12502} l40SJ • Embedda '.·

OldKey = lmertab1e
{40FC6ED4·2438·11CF·.<1308·080036F12502) 1409] • Conlrols

O!dKey "' Control
{40FC6ED5·2438·11CF·A3DB·080036F12502) 1409} •Automatic/

OldKey"' Programmable
(40FC6ED8·2438·11CF·A3DB·OBD036F12502}1409} • Oocumen''

O!dKey = DocObject ,',
{40FC6ED9·2438·11CF·A3il8·080036F12502) 1409] • _Prinlabt i

O!dKey = Printable
\64454F82·F827·11CE·9059·080036F12502) [409} • OLEViewer
{73748140·977C·11 CF-9FA9·0C\OA006C42C4}

Figure 7.7 OLEVIEW with component categories.

Categories are identified using a category ID. A CATID is another name for the 128-bit GUID used
throughout COM. Along with the CATID there is a locale ID, which is specified by a string of hexadeci
mal digits and a human-readable string. The known CATIDs are stored in the Registry under the
HKEY_CLASSES_ROOT\Component Categories key. Figure 7.8 shows some of the Registry entries
under this key.

(!] COMCTL.SbarCtrl.1
(!] COMCTL.TreeCtrl.1
(!] comfile
t::l Component Categories

Li {ODE86A57-2BAA-11 CF-A229-00AA003D'.
Li {ODE86A58-2BAA-11 CF-A229-00AA003D
t::l {40FC6ED3-2438-11CF-A3DB-080036F12'

Lt::1 OldKey
t:::!U6ED4-2438-11 CF-A3DB-080036F1 2 .. ,

mttld
(!] {40FC6ED5-2438-11CF-A3DB-080036F12,
t!J { 40FC6ED8-2438-11 CF-A3DB-080036F1 2 ··
(!] { 40FC6ED9-2438-11 CF-A3DB-080036F1 2
Li {64454F82-F827-11 CE-9059-080036F1 25C.
(!] {7374B140-977C-11 CF-9FA9-00AA006C4:
(!] {737 4B142-977C-11 CF-9FA9-00AA006C4:
Li {70095801-9882-11 CF-9FA9-00AA006C4
Li {70095802-9882-11 CF-9FA9-00AA006C4'.
Li {FOB? A 1A1-9847-11 CF-8F20-00805F2CD\
Li {FOB? A1A2-9847-11 CF-8F20-00805F2CDI

(!]Control.Document
(!] cplfile

Figure 7.8 Category IDs in the Registry.

APPLE 1109 - Page 37

328 + CHAPTER 7

The old Registry enh·ies that were previously used to categorize components are supported for backward
compatibility. As you can see in Figure 7.8, some Registry entries have an OldKey entry, which provides a
way to map the older Registry mechanism to the new component categories one. Table 7.11 lists the CATIDs
associated with the old Registry entries.

Table 7.11 Category IDs for Old Registry Entries

Old Registry Entry CATID Symbol GUID
from COMCAT.H

Control CATID_Control 40FC6ED4-2438- l 1cf-A3DB-080036Fl2502

Insertable CATID_Insertable 40FC6ED3-2438-11cf-A3DB-080036Fl2502

Programmable CATID_Programmable 40FC6ED5-2438-11cf-A3DB-080036Fl2502

DocObject CATID_DocObject 40FC6ED8-2438-11cf-A3DB-080036Fl2502

Printable CATID_Printable 40FC6ED9-2438-11cf-A3DB-080036Fl2502

Categorizing Your Controls
You categorize a control in two ways: first, by the control's capabilities and, second, by the capabilities
required by its potential container. Two new Registry entries are used to communicate this information. The
Implemented Categories entry lists those category capabilities that your control provides, and the
Required Categories entry lists those categories that your control requires from a container. These sub
keys are added below the CLSID of a control. Here's an example:

HKEY_CLASSES_ROOT\CLSID\(12345678- ... }

; CATID for "Insertable"

\Implemented Categories\{40FC6ED3-2438-llcf-A3DB-080036F12502}

; CATID for "Control"

\Implemented Categories\{40FC6ED4-2438-llcf-A3DB-080036Fl2502J

;The CATID for an internet aware control

\Implemented Categories\{ ... CATID_InternetAware ... }

;Our control requires ISimpleFrame support

\Required Categories\{ ... CATID_SimpleFrameControl ... }

Currently, the component categories specification describes a few standard categories. Additional categories
will be added as the technologies require them. For example, the ActiveX scripting model uses two compo
nent categories to indicate scripting support within controls. Table 7.12 shows some of the defined categories
as of this writing.

APPLE 1109 - Page 38

ActiveX Controls + 329

Table 7.12 ActiveX Component Categories

CATID Symbol from COMCAT.H Purpose

CATID_PersistsToMoniker,

CATID_PersistsToStreaminit,

CATID_PersistsToStream,

CATID_PersistsToStorage,

CATID_PersistsToMemory,

CATID_PersistsToFile,

CATID_PersistsToPropertyBag

CATID_SimpleFrameControl

CATID_PropertyNotifyControl

CATID_WindowlessObject

CATID_InternetAware

CATID_VBFormat,CATID_VBGetControl

CATID_VBDataBound

Used by Internet-aware controls to indicate which persistence methods

they support. These can be used to indicate that an interface is required

if the control supports only one persistence method.

The control implements or requires the container to provide

ISimpleFrameSi te interface support.

The control supports simple data binding.

The control implements the new windowless feature of the Controls 96

specification.

The control implements or requires some of the Internet-specific function

ality, in particular the new persistence mechanisms for Web-based con

trols.

The control uses one or both of these Visual Basic-specific interfaces.

The control supports the advanced data binding interfaces.

As part of the ActiveX SDK, Microsoft provides the component categories specification. It describes how to
implement component categories within your COM-based components and provides (guess what?) two
new interface definitions to help with the management of component categories: ICatRegister and
ICatinformation. An implementation of these interfaces is provided by a new DLL that is part of the
ActiveX SDK. It is called the Component Categories Manager.

The Component Categories Manager
To make it somewhat easy to add component category support to your ActiveX controls, Microsoft provides
the Component Categories Manager (CCM). This simple in-process server implements the ICatRegister
and ICatinformation interfaces. Component categories are defined Registry entries, and the CCM pro
vides a simple way to maintaining these entries within the Registry. To create an instance of the CCM, you
use the COM CoCreateinstance method and pass the defined CCM CLSID:
CLSID_StdComponentCategoriesMgr.

ICatRegister
The ICatRegister interface provides methods for registering and unregistering specific component cate
gories. Here's its definition:

APPLE 1109 - Page 39

330 + CHAPTER 7

interface ICatRegister : IUnknown

};

HRESULT RegisterCategories(

ULONG cCategories,

CATEGORYINFO rgCategoryinfo[]);

HRESULT UnRegisterCategories(

ULONG cCategories,

CATID rgcatid[]);

HRESULT RegisterClassimplCategories(

REFCLSID rclsid,

ULONG cCategories,

CATID rgcatid[]);

HRESULT UnRegisterClassimplCategories(

REFCLSID rclsid,

ULONG cCategories,

CATID rgcatid(]);

HRESULT RegisterClassReqCategories(

REFCLSID rclsid,

ULONG cCategories,

CATID rgcatid[]);

HRESULT UnRegisterClassReqCategories(

· REFCLSID rclsid,

ULONG cCategories,

CATID rgcatid[]);

There are six registration methods, three of which are used to reverse the registration process. The unregister
methods do the opposite of the register methods, so we'll cover only the three registration methods.

RegisterCategory takes the count and an array of CATEGORYINFO entries and ensures that they are
registered on the system as valid component categories. This means placing them below the
HKEY_CLASSES_ROOT\Component Categories entry. In most cases, the category will already be in the
Registry, but it doesn't hurt to make sure. Here's the definition of the CATEGORYINFO structure and some
simple code that shows how to use the RegisterCategory method:

typedef struct tagCATEGORYINFO

CATID catid;

LCID lcid;

OLECHAR szDescription[128] ;

CATEGORYINFO;

APPLE 1109 - Page 40

ActiveX Controls -+- 331

#include "cornea t. h"

HRESULT CreateComponentCategory(CATID catid, WCHAR* catDescription)

ICatRegister* per = NULL

HRESULT hr = S_OK

II Create an instance of the category manager.

hr = CoCreateinstance(CLSID_StdComponentCategoriesMgr,

NULL,

if (FAILED(hr))

return hr;

CATEGORYINFO catinfo;

catinfo.catid = catid;

CLSCTX_INPROC_SERVER,

IID_ICatRegister,

(void**)&pcr) ;

II English locale ID in hex

catinfo.lcid = Ox0409;

II Make sure the description isn't too big.

int len = wcslen(catDescription);

if (len>127)

len = 127;

wcsncpy(catinfo.szDescription, catDescription, len) ;

catinfo.szDescription[len] = '\0';

hr= pcr->RegisterCategories(1, &catinfo) ;

pcr->Release();

return hr;

The preceding code creates an instance of the Component Category Manager using its defined CLSID,
CLSID_StdComponentCategoriesMgr, while asking for the ICatRegister interface. If everything
works, a CATEGORYINFO structure is populated with the information provided by the caller, and the
RegisterCategory method is called. However, we haven't yet added anything for a specific component.

To add the \Implemented Categories Registry entries for a control, we use the RegisterClassI

mplCategories method. It takes three parameters: the CLSID of the control, a count of the number of
CATIDs, and an array of CATIDs to place under the \Implemented Categories key. Here's some code
to mark a control as implementing the Control category.

ICatRegister* per = NULL

HRESULT hr = S_OK

APPLE 1109 - Page 41

332 + CHAPTER 7

II Create an instance of the category manager.

hr = CoCreateinstance(CLSID_StdComponentCategoriesMgr,

if (SUCCEEDED(hr))

NULL,

CLSCTX_INPROC_SERVER,

IID_ICatRegister,

(void**)&pcr) ;

II Register that we support the "Control" category

CATID rgcatid[l];

rgcatid[OJ = CATID_Control;

hr= pcr->RegisterClassimplCategories(clsid, 1, rgcatid);

if (per != NULL)

pcr->Release ();

To add \Category Required entries for a control, you use the RegisterClassReqCategories
method. It takes the same parameters as RegisterClassimplCategories, and the example code is
nearly identical to the preceding code, so there's no need to demonstrate it. You would register required cat
egories only if your control required some specific container capability such as ISimpleFrameSite sup
port.

The Container and Control Guidelines document requires that a control support both registering and
unregistering of categories. The other three methods take the same parameters but reverse the registration
process. If you provide component category registration for your controls you must also support unregister
ing them. All the controls that we will develop will provide this support.

ICatlnformation
The ICatinformation interface provides methods that enumerate over the available categories on the sys
tem, get the description associated with a given CATID, retrieve a list of components that support a set of
categories, and determine whether a specific class supports or requires a specific category. Two methods
return enumerators for the implemented and required categories for a specific component. Here's the defini
tion of ICatinformation:

interface ICatinformation : IUnknown

HRESULT EnumCategories(

LCID lcid,

IEnumCATEGORYINFO** ppenumCategoryinfo);

HRESULT GetCategoryDesc(

APPLE 1109 - Page 42

};

REFCATID rcatid,

LCID lcid,

OLECHAR* ppszDesc);

HRESULT EnumClassesOfCategories(

ULONG cimplemented,

CATID rgcatidimpl[],

ULONG cRequired,

CATID rgcatidReq[],

IEnumCLSID** ppenumClsid);

HRESULT IsClassOfCategories(

REFCLSID rclsid,

ULONG cimplemented,

CATID rgcatidimpl[],

ULONG cRequired,

CATID rgcatidReq[]);

HRESULT EnumimplCategoriesOfClass(

REFCLSID rclsid,

IEnumCATID** ppenumCatid);

HRESULT EnumReqCategoriesOfClass(

REFCLSID rclsid,

IEnumCATID** ppenumCatid);

ActiveX Controls + 333

The ICatinformation interface isn't really needed by a control, but containers use it extensively within
their Insert Control dialog boxes. The categories provide a useful mechanism to filter the components avail
able on the system. The container user is presented with an effective way of determining which component
provides the needed capabilities.

In this chapter we've described the teclmology used to implement ActiveX controls. The ActiveX control
standard provides a solid foundation on which to build software components. ActiveX controls provide
Automation properties, methods, and events. They also allow implementation of the visual aspect of a com
ponent. There are three basic types of ActiveX controls: graphical controls, controls subclassed from existing
windows controls, and nonvisual controls.

ActiveX controls use much of the existing technology provided by OLE, including the OLE document
standard and the interfaces used to implement in-place-capable embedded servers. ActiveX controls must
reside within a container application in order to be used. To support embedding and activation within a
container, controls must implement a number of COM-based interfaces.

APPLE 1109 - Page 43

334 + CHAPTER 7

Although compound document containers typically support the embedding of ActiveX controls, their
purpose is different from that of typical ActiveX control containers. Compound document containers sup
port the embedding of large applications that provide significant functionality and are used in the process of
document creation. Control containers support the embedding of smaller components that are tied together
to form applications. Typically, a control container exists within a visually oriented development environ
ment or tool. A good example is Visual Basic. Another example of an ActiveX control container is
Microsoft's Internet Explorer.

Initially, it was necessary for ActiveX controls to implement a large number of COM-based interfaces.
However, with the introduction of the OLE Controls 96 specification and the Control and Container Guidelines
2.0, ActiveX controls can now implement only those interfaces whose functionality they use. The OLE
Controls 96 specification also provides a number of enhancements that make controls more efficient.

ActiveX controls that provide a visual representation should implement a number of compound docu
ment interfaces. ActiveX controls implement properties, methods, and events based on the Automation and
connectable objects standards. Events provide an additional capability within ActiveX controls and allow
the container to tie programmatic actions to a control's events.

Control containers can provide the control with information about its surrounding environment
through ambient properties. Ambient properties allow controls to adapt their appearance and some behav
iors to those of the container. Control containers can also implement an extended control that aggregates
with a control to present additional properties to the control user. This approach provides a uniform, con
tainer-specific property set for all controls within the container. The container also provides the control with
a way of serializing its properties. In this way, the control can be destroyed and re-created while maintain
ing its characteristics.

Controls allow modification of their properties through custom and stock property pages. Property
pages are independent COM objects that are typically instantiated by the control's container. Visual C++
provides a number of classes and tools that make the development of ActiveX controls easier.
Control Wizard initially builds a skeletal control project with a great deal of basic functionality.

An extended control is provided by the container. It aggregates with the control and exposes additional
properties and events implemented by the container. For COM to identify controls, specific Registry entries
are defined by the standard. Recently, because the simple Registry entries do not provide a granular enough
indication of a component's requirements and capabilities, the concept of a component category was add to
the COM specification.

APPLE 1109 - Page 44

Sim

To help you get to know Visual C++ and ControlWizard and learn how MFC implements ActiveX controls,
in this chapter we'll develop a fairly simple control. The control provides functionality similar to that of the
Windows label control. Our sample contains text that you can modify (during design time and run time),
and it has attributes such as font and color and events such as Click. As we develop this control, we will
delve into the details of ControlWizard and the source code it produces for us. We will then augment the
generated source to include stock and custom properties, stock and custom methods, stock and custom
events, and ambient properties. When we are finished with this chapter, you should have a solid grounding
in ActiveX controls. Each of the remaining chapters will focus on developing specific control types. Our pur
pose here is to introduce many of the topics that we will investigate thoroughly in later chapters.

I
Our first control is a simple visual implementation of the ubiquitous Post-it note. We will implement as
many of the stock properties, methods, and events as we can, showing how each one is used within a con
trol. We will also build a custom property page and use two of the stock property pages provided by MFC.
Using the POSTIT control, we will also investigate MFC's implementation of ActiveX controls so that we can
do more neat things in the chapters to come. To give you an idea of where we are going, Figure 8.1 shows
the POSTIT control and its property pages within a container.

335

APPLE 1109 - Page 45

336 + CHAPTER 8

Figure 8. 1 The POSTIT control and its properly pages.

ControlWizard is similar to AppWizard in that it generates the project files for a skeletal control based on
the options you choose. After you use ControlWizard to generate the initial files for a control, you will not
use it again on that specific project. Instead, you will use Class Wizard to add features to your control, just as
we have in the past with projects created by App Wizard. To summarize, in Visual C++ you use App Wizard
or ControlWizard to initially generate a project. After that, you use Class Wizard to manage the addition of
features to the project.

Start Visual C++ and create a new project. Select OLE ControlWizard from the New Project Workspace
dialog box. Select a root directory for the project and name the project POSTIT. Your dialog box should like
the one shown in Figure 8.2.

Click the Create button to create the project. In the next dialog box, Step 1 of 2, set the Runtime
license check box to Yes, please to indicate that we want to use this feature in the POSTIT project. Take
the defaults on the other two options. Click Next after ensuring that your dialog box looks similar to the
one in Figure 8.3.

The second ControlWizard dialog box allows you to choose various options for your control. For our
fist project, we'll choose Activates when visible, Available in "Insert Object" dialog, and Has an /1 About"
box. Let's take a look at the possible options in Figure 8.4.

APPLE 1109 - Page 46

A Control 337

Dynamic-Link Library

Figure 8.2 New Project dialog box.

Figure 8.3 OLE ControlWizard Step 1 of 2.

APPLE 1109 - Page 47

338 + CHAPTER 8

Figure 8.4 OLE ControlWizard Step 2 of 2.

Activate When Visible
For most controls, you should check the Activate when visible flag. This adds the OLEMISC_ACTIVATE
WHENVISIBLE flag to the MiscStatus entry within the Registry. By setting this flag, you indicate to the
container that you want the control to be active, which means that you have a true hWnd whenever the con
trol is visible within the container. Containers need not support this flag, but if they don't, they won't be
very good control containers (and so won't last very long).

Invisible at Runtime
Certain controls do not require a visible representation at run time. These controls are typically called nonvi
sual controls. MFC includes an example, TIME, that needs to be visible only during the design process. If
you check this option, ControlWizard will not create a window for your control, and you will need to imple
ment only the design-time drawing functions within the framework. We will develop a nonvisual control
later in the book.

Available in 11lnsert Obied" Dialog
As we've discussed, a control is identified in the Registry by the existence of a Control subkey below its
CLSID entry. If you check this option, ControlWizard will also register the control with the Insertable
subkey. This option will allow the control to be accessed from applications as if it were a compound docu
ment server. If you want to try your control in a noncontrol container, go ahead and check this option. It's
easy to change later.

APPLE 1109 - Page 48

A Control -+- 339

Has an "About" Box
Choosing this option will provide a custom method, AboutBox, a dialog resource, and the code to invoke
the About box dialog for your control. Most containers provide a way for this method to be invoked during
design mode so that the control user can obtain version information.

Ads as Simple Frame Control
If you select this option, ControlWizard will set the OLEMISC_SIMPLEFRAME flag. This option is typically
used for controls that group other controls and treat them all as one tab stop. The simple frame control acts
as the parent window of a group of contained, or child, controls. The Windows group box is an example of
this kind of control.

Which Window Class, If Any, Should This Control Subclass?
One of the quickest and most effective ways to develop an ActiveX control is to subclass the functionality of
an existing Windows control. Much of the functionality will already be provided by the Windows control. It
is then relatively easy to augment this basic behavior. This option allows you to select the control that you
will subclass. We will cover this option in another chapter.

Advanced
The Advanced button opens a dialog box that contains a number of new options. The optimization options
presented in this dialog box are part of the OLE Controls 96 specification that we discussed in Chapter 7. It
will take some time for most control containers to support these options, but we should try to use them if
possible. For our first control, we won't use any of these special options (Figure 8.5).

Figure 8.5 Advanced ActiveX features.

APPLE 1109 - Page 49

340 +CHAPTER 8

WINDOWLESS ACTIVATION

If your control does not require a window to provide its services, you should check this option. A control
typically needs a window to call many of the Windows API functions. However, the container can provide a
window handle to facilitate making function calls within your control. Using a window will increase the
memory requirements of your control and will also require additional load time when instantiated by a con
tainer. If you choose windowless activation, the Unclipped device context and Flicker-free activation
options will be disabled. They relate only to controls with windows.

UNCLIPPED DEVICE CONTEXT

The container passes controls a device context on which to draw. The container may set up a clipping region
to ensure that the control does not draw outside its boundaries. By checking this option, you inform the con
tainer that your control is well behaved and will not draw outside its client rectangle. The container can then
act more efficiently by not setting up a clipping context to pass to the control.

FUCKER-FREE ACTIVATION

If your control represents itself the same way when in the active and inactive states, this option will help
eliminate flicker when the control is switched between states.

MOUSE POINTER NOTIFICATIONS WHEN INACTIVE

This option provides an implementation of the IPointerinactive interface. Your control will receive
mouse move messages when in the inactive state.

OPTIMIZED DRAWING (ODE

If you click this option, the control will indicate that it can take advantage of the new OLE Controls 96 opti
mized drawing options. However, the container must support the new optimizations.

LOADS PROPERTIES ASYNCHRONOUSLY

As an enhancement to support low-bandwidth environments such as the Internet, ActiveX controls can have
some of their persistent properties loaded asynchronously. For example, a control may have a property that
is a GIF file, which may take some time to load over the Internet. This option allows the control to load the
image in the background. We'll use this option in Chapter 12.

Edit Names •••
The Edit Names dialog box, shown in Figure 8.6, allows you to change the names of your C++ classes, their
filenames, and so on. The most important items here are the Type ID, which is the ProgID for our control,
and the Type Name, which the container uses when referring to the control. ControlWizard produces two
main classes for your control's implementation: the control class and the property page class.

APPLE 1109 - Page 50

A Control -+- 341

Figure 8.6 Edit Names dialog box.

Click OK in the Edit Names dialog box and then Finish in the OLE ControlWizard Step 2 of 2 dialog box.
The final dialog box is shown in Figure 8.7. Click OK, and ControlWizard will generate the control's project
files. Then go ahead and compile and link the project.

Figure 8.7 New Project Information dialog box.

APPLE 1109 - Page 51

+CHAPTER 8

Just like AppWizard, ControlWizard generates all the files needed for a typical ActiveX control project.
Table 8.1 describes the files generated by ControlWizard.

File

ReadMe.txt

Postit.cpp, Postit.h

PostiiC~.cpp, PostilC~.h

PostitPpg.cpp, PostitPpg.h

Postit.odl

PostilC~.bmp

Postit.ico

Postit.mak

Postit.def

Postit.rc, Resource.h

Postit.lic

StdAfx.cpp, StdAfx.h

Table 8.1 ControlWizard-Generated Files

Purpose

A file containing information about the project. It details the files created and their purpose.

CWinApp-derived class that provides the default MFC DLL implementation.

Contains the declaration and implementation of the control object. This is a class derived from

COleControl.

Contains the declaration and implementation of the control's property page component. As we

described in Chapter 7, a property page is itself a COM object.

An ODL file that contains the type information for our control.

Bitmap For your control that the container can use on its tool bar, and elsewhere.

This is the icon used in the About box for our control.

The project's make file.

The Windows definition file for our control. This file exports the four functions (such as

DllRegisterServer) that we need as a COM in-process server.

Resource file containing our About box dialog, a default property page dialog definition, and

the string table For our control.

A default license file for our new control.

Standard MFC include and implementation files. These files provide support for the MFC classes.

Before we start adding functionality to the POSTIT control, let's take a detailed look at the source code that
ControlWizard generated for us. As we do this, we'll also review the new MFC control classes.

COleControlModule is derived from CWinApp. CWinApp provides the framework for a basic Windows appli
cation for both DLL and EXE implementations, as we've seen in previous chapters. The POSTIT.H file inherits
all the functionality of CWinApp and overrides only the Initinstance and Exitinstance methods. The
only interesting thing in this file is the declarations of the version number variables that are available in all your
control modules. These variables are useful for maintaining different versions of your controls.

II postit.h : main header file for POSTIT.DLL

#if !defined(~AFXCTL_H~)

#error include 'afxctl.h' before including this file

APPLE 1109 - Page 52

A

#endif

#include "resource.h" II main symbols

!lllllllllllllllllllllllllllllllllllll///////////ll!l///////lll//llll/lll!l!I

II CPostitApp : See postit.cpp for implementation.

class CPostitApp : public COleControlModule

public:

};

BOOL Initinstance();

int Exitinstance();

extern const GUID CDECL _tlid;

extern const WORD _wVerMajor;

extern const WORD _wVerMinor;

The POSTIT.CPP file, which implements the CPos ti tApp class, is a little more interesting. This file con
tains the exported DLL fw1ctions fuat support programmatic registration of the control within the Registry.
As we learned in Chapter 5, COM recommends that the DllRegisterServer function be implemented
within in-process server applications to provide easy registration of components. The ActiveX control stan
dard goes one step further and recommends the use of another function, DllUnregisterServer, that
makes it easy to remove all your component-specific information from the Registry. This is a great idea. If
applications don't provide an easy removal mechanism, the Registry can easily become cluttered with appli
cations and components that you've previously removed.

I imagine that future versions of Visual C++ will also handle the steps necessary to register a con
trol's component categories. The 4.x versions, however, do not. Later in this chapter we will add
component category support to our control. The DllRegister* functions provide a perfect place to

N o r E perform this task.

Two functions are missing from POSTIT.CPP that are important to our COM-based implementation. As
you may recall, COM-based components implemented in DLLs must export two functions:
DllGetClassObj ect and DllCanUnloadNow. In Chapter 5, we implemented them in our main
CWinApp-derived class file, SERVER.CPP. Where are they? MFC has once again encapsulated some of the
complexity for us. These required entry points are provided by an MFC DLL. The code is in OLEEXP.CPP:

l/l////l/l/////////lll!!ll///I

II DllGetClassObject

extern '1C"

STDAPI DllGetClassObject(REFCLSID rclsid, REFIID riid, LPVOID* ppv)

AFX_MANAGE_STATE(AfxGetStaticModuleState());

return AfxDllGetClassObject(rclsid, riid, ppv);

APPLE 1109 - Page 53

344 -+CHAPTER 8

//////ll/////ll/ll///l/ll////

II DllCanUnloadNow

extern "C"

STDAPI DllCanUnloadNow(void)

AFX_MANAGE_STATE(AfxGetStaticModuleState());

return AfxDllCanUnloadNow();

As we described in Chapter 5, the MFC-provided AfxDllGetClassObj ect looks through a list of
COleObj ectFactory objects within the DLL. Once the object is found, it constructs an instance of the
object and returns the IClassFactory interface. So don't worry, they're still there. They've just been hid
den for our convenience. We'll cover the AFX_MANAGE_STATE call shortly.

II postit.cpp : Implementation of CPostitApp and DLL registration.

#include "stdafx.h"

#include "postit.h"

#ifdef _DEBUG

#undef THIS_FILE

static char BASED_CODE THIS_FILE[] = ~FILE~;
#endif

CPostitApp NEAR theApp;

canst GUID CDECL BASED_CODE _tlid =
{ Oxbbf8b099, Oxbe9e, Oxllce, { Oxa4, Ox3c, Oxac, Oxe7, Oxlf, Ox16, Oxdb, Ox7f } };

canst WORD _wVerMajor l;

canst WORD _wVerMinor O;

///II/Ill///

II CPostitApp: :Initinstance - DLL initialization

BOOL CPostitApp: :Initinstance()

BOOL binit COleControlModule: :Initinstance();

if (binit)

II TODO: Add your own module initialization code here.

APPLE 1109 - Page 54

return binit;

//////l/l///////////////////////////////////l/ll////////////////////////////

// CPostitApp: :Exitinstance - DLL termination

int CPostitApp: :Exitinstance()

// TODO: Add your own module termination code here.

return COleControlModule: :Exitinstance();

///lll//ll/!l/lllllll////l/!/!/!!l/l/!l!!l!!ll///////llll////////////////////

// DllRegisterServer - Adds entries to the system registry

STDAPI DllRegisterServer(void)

AFX_MANAGE_STATE(_afxModuleAddrThis);

if (!AfxOleRegisterTypeLib(AfxGetinstanceHandle(), _tlid))

return ResultFromScode(SELFREG_E_TYPELIB);

if (!COleObjectFactoryEx: :UpdateRegistryAll(TRUE))

return ResultFromScode(SELFREG_E_CLASS);

return NOERROR;

ll/l/lll/lll//////////ll///////////////ll/l/l/ll/////////////////////////////

II DllUnregisterServer - Removes entries from the system registry

STDAPI DllUnregisterServer(void)

AFX_MANAGE_STATE(_afxModuleAddrThis);

if (!AfxOleUnregisterTypeLib(_tlid))

return ResultFromScode(SELFREG_E_TYPELIB);

if (!COleObjectFactoryEx: :UpdateRegistryAll(FALSE))

return ResultFromScode(SELFREG_E_CLASS);

return NOERROR;

There are a few items that we need to cover in POSTIT.CPP. The DllRegisterServer and
DllUnregisterServer functions first call the AFX_MANAGE_STATE macro, so let's look at it.

APPLE 1109 - Page 55

346 + CHAPTER 8

AFX_MANAGE_STATE
Even though ActiveX controls are small components, they depend heavily on many aspects of the MFC
libraries. To maintain a small size, controls use the shared library (DLL) implementation of MFC. Because
the MFC code can be shared among all the control, this saves a great deal of code space when an application
uses many controls in its implementation.

MFC, when implemented in a DLL, needs to keep track of various internal variables and states that
pertain to its internal implementation. This state information must be maintained for every module (such
as a DLL) that accesses the MFC DLLs. When the MFC DLLs (such as MFC40.DLL) are being used by a
number of user DLLs, the MFC internal state data must reflect the process that is currently using MFC.
That's what AFX_MANAGE_STATE is for. It ensures that the internal state of MFC is set to reflect that of the
calling module. Your control functions must follow three rules to make sure that the MFC state informa
tion is correct:

0 If the function is exported or exposed externally, you must call the AFX_MANAGE_STATE macro
before anything else in the function. This is exemplified by the DllRegisterServer call.

• If your control contains another window's control as a child window, your control should call
AFX_MANAGE_STATE when processing any messages for the child window.

• If the function is a member of a COM interface, it should use the METHOD_MANAGE_STATE macro.

The COleControl class provides the bulk of the MFC implementation. COleControl is derived from
MFC's CWnd class, which encapsulates the functionality of a window. As you can imagine, there is tremen
dous functionality in the CWnd class, and we will focus on methods of this class in the remaining chapters as
we develop various types of ActiveX controls. Our purpose now is to understand a little about
COleControl.

COleControl contains more than 100 methods, and this number doesn't include the hundreds that are
inherited from the parent CWnd class. Table 8.2 describes some of the more important methods of
COleControl. The methods deal with control initialization, persistence, ambient properties, events, stock
properties, data binding, and drawing. They are documented completely in MFC's on-line help.

Method

SetinitialSize

SetModifiedFlag

ExchangeExtent

Table 8.2 Important COleControl Members

Purpose

Sets the initial size of the control, specified in device units (pixels). This method is usually

called in your control's constructor.

Indicates that a persistent property within the control has been changed.

Serializes the size of the control.

APPLE 1109 - Page 56

A •
Table 8.2 Important COleControl Members {continued)

Method

ExchangeVersion

ExchangeStockProperties

DoPropertyExchange

OnReset

InvalidateControl

TranslateColor

ThrowError

ArobientBackColor,

ArobientForeColor,

ArobientUserMode,

ArobientUIDead,etc.

FireClick,FireDblClick,

FireMouseDown, etc.

FireEvent[Narne]

GetBackColor,SetBackColor

SetFont

SelectStockFont

GetHwnd

GetText,InternalGetText,

Set Text

DoSuperclassPaint

OnDraw

OnDrawMetafile

OnArnbientPropertyChange

OnTextChanged

OnSetExtent

Purpose

Serializes the control's current version. The _wVerMinor and _wVerMaj or variables

are provided by Control Wizard, and can be used to identify the current version of the

control.

Serializes all of the control's defined stock properties.

Called to save or restore the persistent properties of the control.

Resets the control's properties to their initial state.

Forces a redraw of the control.

Converts an OLE_COLOR value into a COLORREF value.

Throws an error from within a control. Used to communicate a failure during the execu

tion of code outside a method or property handler function.

Returns the current value of the named ambient property.

Fires the specific stock event.

Fires a custom event.

Gets or sets the stock BackColor property.

Sets the stock font.

Selects the stock font into the current device context.

Returns the HWND of the control's window or NULL.

Gets or sets the Text or Caption stock property. InternalGetText should be

used internally by the control's methods.

Called in OnDraw to paint a control that has subclassed a Windows control.

Called by the framework to render the control on the passed DC.

Called by the framework when it wants a metafile representation of the control. This will

typically occur when printing or in design or nonuser mode and the control doesn't have

a valid HWND.

Called when a container's ambient property or properties have changed.

Called when the stock Text or Caption property has changed.

Called when the container has changed the control's extents.

APPLE 1109 - Page 57

+CHAPTER 8

POSTITCTL.H and POSTITCTL.CPP implement our control's COleControl-derived class:
CPosti tCtrl. Let's take a look at what we initially get from ControlWizard. (I haven't included every
thing-just the items that are interesting.)

II PostitCtl.h : Declaration of the CPostitCtrl ActiveX control class.

lll

II CPostitCtrl : See PostitCtl.cpp for implementation.

class CPostitCtrl : public COleControl

DECLARE_DYNCREATE(CPostitCtrl)

II Overrides

II ClassWizard generated virtual function overrides

ll((AFX_VIRTUAL(CPostitCtrl)

public:

virtual void OnDraw(CDC* pdc, const CRect& rcBounds, const CRect& rcinvalid);

virtual void DoPropExchange(CPropExchange* pPX);

virtual void OnResetState();

virtual DWORD GetControlFlags();

I/} } AFX_ VIRTUAL

II Implementation

protected:

-CPostitCtrl();

BEGIN_OLEFACTORY(CPostitCtrl)

virtual BOOL VerifyUserLicense();

II Class factory and guid

virtual BOOL GetLicenseKey(DWORD, BSTR FAR*);

END_OLEFACTORY(CPostitCtrl)

DECLARE_OLETYPELIB(CPostitCtrl)

DECLARE_PROPPAGEIDS(CPostitCtrl)

DECLARE_OLECTLTYPE(CPostitCtrl))

II Message maps, etc.

};

II GetTypeinfo

II Property page IDs

II Type name and misc status

I've left out all the message maps, dispatch maps, event maps, and so on. We will cover them a little later.
What's left are the four default overrides: OnDraw, DoPropExchange, OnReset, and GetControlFlags.
These are the only methods that are required to be implemented by the new control, but to make a control
do much of anything we'll have to override a few more.

APPLE 1109 - Page 58

A

The BEGIN_OLEFACTORY and END_OLEFACTORY macro pair provides our control with the licens
ing capability that we chose in ControlWizard. This macro pair provides the declaration of the addi
tional methods in the IClassFactory2 interface that we discussed in Chapter 7. Because we chose the
licensing option, we are required to implement the VerifyLicenseKey and GetLicenseKey meth
ods in our .CPP file.

The DECLARE_OLETYPELIB macro provides a static method that will return a pointer to the control's
type library information. The DECLARE_PROPPAGEIDS macro sets up a static function that will return an
array of CLSIDs for the property pages defined for the control. These CLSIDs will be defined later in POS
TITCTL.CPP. The DECLARE_OLECTLTYPE macro provides two static functions for our class that let us
access the ID of the type library within the resource file and return the OLEMISC status bits used by the
control.

Now let's go through what ControlWizard generated for us in POSTITCTL.CPP. We will skip the mes
sage, dispatch, and event maps, but we will get to them shortly.

II PostitCtl.cpp : Implementation of the CPostitCtrl ActiveX control class.

lll

II Initialize class factory and guid

IMPLEMENT_OLECREATE_EX(CPostitCtrl, "POSTIT.PostitCtrl.1",

Oxbbf8b096, Oxbe9e, Oxllce, Oxa4, Ox3c, Oxac, Oxe7, Oxlf, Oxl6, Oxdb, Ox7f)

This macro implements our class factory functions and should look similar to what we covered in earlier
chapters. The following code declares the ProgID for the control and initializes the class factory for our con
trol. The implementation for ActiveX controls tacks on some additional functionality. The _EX adds an over
ride of a virtual method to return the CLSID of the control.

lll

II Type library ID and version

IMPLEMENT_OLETYPELIB(CPostitCtrl, _tlid, _wVerMajor, _wVerMinor)

lllllllllllllllll/lllllllllll/lllllllllllllll/lllllll/lllllllllllll/lllllllll

II Interface IDs

const IID BASED_CODE IID_DPostit =
{ Oxbbf8b097, Oxbe9e, Oxllce, { Oxa4, Ox3c, Oxac, Oxe7, Oxlf, Ox16, Oxdb, Ox7f };

const IID BASED_CODE IID_DPostitEvents =
{ Oxbbf8b098, Oxbe9e, Oxllce, { Oxa4, Ox3c, Oxac, Oxe7, Oxlf, Oxl6, Oxdb, Ox7f } };

The IMPLEMENT_OLETYPELIB macro defines the static class methods that load the type library from the
control's resources and return it to the caller. The interface ID definitions are for the control's (incoming)
method and property IDispatch implementation and for the (outgoing) event IDispatch interface. These
IDs are also declared in the control's ODL file.

APPLE 1109 - Page 59

+CHAPTER 8

II Primary dispatch interface for CPostitCtrl

[uuid(BBF8B097-BE9E-11CE-A43C-ACE71F16DB7F),

helpstring("Dispatch interface for Postit Control"), hidden]

dispinterface _DPostit

II Event dispatch interface for CPostitCtrl

[uuid(BBF8B098-BE9E-11CE-A43C-ACE71F16DB7F),

helpstring ("Event interface for Posti t Control")

dispinterface _DPostitEvents

These IIDs provide a way for the container to specify a specific interface within the control after it gets the
control's type information through the IProvideClassinfo interface.

lll

II Control type information

static const DWORD BASED_CODE _dwPostitOleMisc

OLEMISC_ACTIVATEWHENVISIBLE I
OLEMISC_SETCLIENTSITEFIRST

OLEMISC_INSIDEOUT I
OLEMISC_CANTLINKINSIDE

OLEMISC_RECOMPOSEONRESIZE;

IMPLEMENT_OLECTLTYPE(CPostitCtrl, IDS_POSTIT, _dwPostitOleMisc)

#define IMPLEMENT_OLECTLTYPE(class_name, idsUserTypeName, dwOleMisc)

UINT class_name: :GetUserTypeNameID() { return idsUserTypeName; } \

DWORD class_name: :GetMiscStatus() { return dwOleMisc; }

When we used ControlWizard to create our control, we answered various questions concerning the behav
ior of the control. ControlWizard used our answers to initialize the dwPosti tOleMisc variable. This infor
mation is provided to the container through the control's IOleObj ect: : GetMiscStatus method. The
framework calls the virtual class methods implemented by the IMPLEMENT_OLECTLTYPE macro.

ActiveX controls are small software components that must be distributed along with the applications devel
oped using them. Commercial developers need ways to ensure that these components are licensed so that
users won't be tempted to copy the components from machine to machine without paying for their use.
Licensing is similar to copy protection but works a little differently. The distribution of the component with
an application that uses it should be easy: just distribute the appropriate .OCX files that the application
depends on. This is fine, but the developer or marketer of the ActiveX control will normally allow distribu
tion of the control only for use as a run-time component. Instead of providing two different OCX files, the

APPLE 1109 - Page 60

A Control + 351

same OCX handles both environments. The design-time capabilities of a component are reserved for those
who purchase it for use in the development of specific applications; users shouldn't be allowed to distribute
a design-time-capable OCX.

The ActiveX control standard provides a way to add licensing capability to a control. This is an optional
feature that commercial developers will use, but it can also be used for internally developed components.
An additional interface was added to the OLE specification to provide this control licensing facility.

The IClassFactory2 interface was added to provide licensing support for ActiveX controls. Three
additional methods were added: RequestLicKey, GetLicinfo, and CreateinstanceLic. During the
development cycle using an ActiveX container-based tool, the GetLicinfo method ensures that the con
trol can be used during the design process. When the tool is building a distributable version of the appli
cation that uses the control, a call is made to RequestLicKey, which returns an implementation-defined
key that is stored within the application. Later, after the application and the run-time version of the con
trol are installed on a user's machine, the application will pass the stored key to CreateinstanceLic
when an instance of the control is created.

The new methods provided in IClassFactory2 only specify a licensing API; they do not specify how
the licensing should be implemented. The keys that are passed back and forth between the container and the
control can be as simple as a text string or as complex as using a secure encryption method that requires a
licensing server. The MFC implementation provides a simple default method that depends on the existence
of a .LIC file and a text string contained within it. The MFC implementation can be extended, as always, if
you require a more stringent licensing model. Control licensing support through the IClassFactory2
interface is provided by MFC with an enhancement of the COleObj ectFactory class.

COleObiedFadoryEx
The BEGIN_OLEFACTORY macro added a nested class to CPosti tCtrl called CPosti tCtrlFactory.
ControlWizard provides the implementation of the UpdateRegistry method that either registers or
unregisters the control's entries within the Registry with the help of the AfxOle* Registry functions. Each of
the parameters supplies the information to store within the Registry. I've commented each parameter with
its matching Registry entry.

lll

II CPostitCtrl: :CPostitCtrlFactory: :UpdateRegistry

II Adds or removes system registry entries for CPostitCtrl

BOOL CPostitCtrl: :CPostitCtrlFactory: :UpdateRegistry(BOOL bRegister)

II TODO: Verify that your control follows apartment-model threading rules.

II Refer to MFC TechNote 64 for more information.

II If your control does not conform to the apartment-model rules, then

II you must modify the code below, changing the 6th parameter from

II afxReginsertable I afxRegApartmentThreading to afxReginsertable.

if (bRegister)

APPLE 1109 - Page 61

352 • CHAPTER 8

return AfxOleRegisterControlClass(

AfxGetinstanceHandle(),

else

m_clsid,

m_lpszProgID,

IDS_POSTIT,

IDB_POSTIT,

I I CLSID

I I ProgID

II Textual control name

II ToolboxBitmap32

II Threading model used by the control

afxReginsertable I afxRegApartmentThreading,

_dwPostitOleMisc,

_tlid,

_wverMajor,

_wverMinor);

II MiscStatus

II TypeLib

II Combined to create version

return AfxOleUnregisterClass(m_clsid, m_lpszProgID);

The following two methods provide the default MFC implementation of the control licensing feature. This is
a fairly simple implementation, but it can be easily enhanced by replacing the Afx functions with ones of
your own. The default implementation creates a .UC file with the name of your control project (such as
POSTIT.LIC) that contains a copyright in the initial line and then a paragraph about "severe criminal pun
ishment" and so on. The two methods that ControlWizard implemented are methods of the
IClassFactory2 interface.

lll

II Licensing strings

static const TCHAR BASED_CODE _szLicFileName[] = _T("POSTIT.LIC");

static const TCHAR BASED_CODE _szLicString[] = _T("Copyright (c) 1996 ");

lll

II CPostitCtrl: :CPostitCtrlFactory: :VerifyUserLicense -

II Checks for existence of a user license

BOOL CPostitCtrl: :CPostitCtrlFactory: :VerifyUserLicense()

return AfxVerifyLicFile(AfxGetinstanceHandle(), _szLicFileName,

_szLicString);

lll

II CPostitCtrl::CPostitCtrlFactory::GetLicenseKey -

II Returns a run-time licensing key

BOOL CPostitCtrl: :CPostitCtrlFactory: :GetLicenseKey(DWORD dwReserved,

BSTR FAR* pbstrKey)

APPLE 1109 - Page 62

if (pbstrKey == NULL)

return FALSE;

*pbstrKey = SysAllocString(_szLicString);

return (*pbstrKey != NULL);

A Control + 353

When the control is inserted into a container during design mode, the container calls VerifyUserLicense.
As you can see, VerifyUserLicense calls the helper function, AfxVeri fyLicFile, which checks for the
instance of the .LIC file in the same directory as the control's DLL. Once the file is found, the text of the first
line in the file is compared with the text in _szLicString. If any of these functions fail, the function
returns FALSE, indicating that the control is not licensed. A nonzero return indicates that the control is

licensed.

Later, the container (or tool) user creates a distributable version of an application that contains the con
trol. The container calls GetLicenseKey to obtain a key from the control; the key is stored along with the
application distribution files (including the .OCX file). After installation, when the application is executed
(in user mode), the container calls VerifyLicenseKey with its saved internal key. The control verifies that
this key is valid and returns TRUE if the key is valid and FALSE otherwise.

ControlWizard did not provide us with a version of VerifyLicenseKey. Its base implementation
calls GetLicenseKey and compares the return with that provided by the container. To provide a more
secure approach, you would need to override and implement your own VerifyLicenseKey method as
well as modify GetLicenseKey and VerifyUserLicense. When overriding these functions, you must
use multiple scope operators because your COleObj ectFactoryEx-derived class is nested within the
COleControl-derived class. Useful methods provided by COleObj ectFactoryEx are listed in Table 8.3.

Table 8.3 Useful COleObj ectFactoryEx Methods

Method Purpose

UpdateRegistry (BOOL) If the parameter is TRUE, the Registry is updated with the control's information. If
FALSE, all control-specific information is removed from the Registry.

GetLicenseKey (DWORD, BSTR *) The container calls this function to retrieve a unique key to store with the distributed
application. When the application is run, the container calls VerifyLicenseKey
to ensure that the control is licensed.

VerifyLicenseKey (BSTR) Called by the container during run-time mode to ensure that the control is licensed.

VerifyUserLicense (void) Called by the container to verify the use of the control in a design-time mode.

That sums up the basic functionality provided by the ControlWizard-generated files, except for the property
page files, which we'll cover shortly. Now let's add some real functionality to the POSTIT control.

Starting with Visual C++ version 4.0, the rclassFactory2 interface functionality was moved into
the coleObj ectFactory class. However, ControlWizard still generates code that expects the exis
tence of the COleObjectFactoryEx class. MFC solves this dilemma by doing this:

N o r E #define COleObjectFactoryEx COleObjectFactory

APPLE 1109 - Page 63

354 + CHAPTER 8

The container provides a control site in which the control renders itself. There are various conditions under
which the container will request that the control draw itself: when the control is created, when the control is
hidden by another window and then uncovered, when the container switches from design mode to user
mode, and so on. The default MFC implementation calls COleControl: : OnDraw for all these actions. It is
our job, as implementors of the control, to render the control whenever OnDraw is called. There are other
COleControl methods that pertain to drawing, and we will cover them in later chapters.

Following is the default implementation from POSTITCTL.CPP. ControlWizard provides a default ren
dering that fills the backgrow1d of the control and then draws an ellipse.

lll

II CPostitCtrl: :OnDraw - Drawing function

void CPostitCtrl: :OnDraw(CDC* pdc, const CRect& rcBounds, const CRect& rcinvalid)

II TODO: Replace the following code with your own drawing code.

pdc->FillRect(rcBounds, CBrush: :FromHandle((HBRUSH)GetStockObject(WHITE_BRUSH)));

pdc->Ellipse(rcBounds);

The OnDraw method has three parameters. The first parameter is a pointer to an MFC CDC object, which
encapsulates a Windows device context. We'll cover the details of device contexts and the methods provided
by the CDC class in Chapter 9. For now, a device context is an area of the screen that has default brushes, pens,
colors, and fonts that are used when drawing the control.

The second parameter, rcBounds, is an instance of MFC's CRect class that contains the bounding rec
tangle of our control within the container. The third parameter provides a hint as to what part of rcBounds
has changed. This information can be used to update only a part of your control if it requires a lot of inten
sive drawing. We'll use the first two parameters in this chapter.

When our control is constructed, MFC sets its initial size to 50 by 100 device units (or pixels). To over
ride this default, we call COleControl: : Setini tialSize in the conh·ol's constructor. A square of 200
pixels is fine for our POSTIT control, so add the following code to the constructor:

lll

II CPostitCtrl: :CPostitCtrl - Constructor

CPostitCtrl: :CPostitCtrl()

InitializeIIDs(&IID_DPostit, &IID_DPostitEvents);

II TODO: Initialize your control's instance data here.

SetinitialSize(200, 200) ;

APPLE 1109 - Page 64

A Control 355

When the control is initially created, the container will provide a control site of 200 by 200 units. Add the fol
lowing code to draw the control into the device context provided:

lll

II CPostitCtrl::OnDraw Drawing function

void CPostitCtrl::OnDraw(CDC* pdc, const CRect& rcBounds, const CRect& rcinvalid)

II Create a yellow brush for the background of the control

CBrush bkBrush;

bkBrush.CreateSolidBrush(RGB{ Oxff, Oxff, OxOO));

/I Fill the background with BackColor

pdc->FillRect{ rcBounds, &bkBrush);

II Draw the text

pdc->SetBkMode(TRANSPARENT) ;

II Set the text color to black

pdc->SetTextColor(RGB{ OxOO, OxOO, OxOO));

II Draw some text

pdc->DrawText{ "This is a simple POSTIT control",

-1, CRect(rcBounds),

DT_LEFT DT_WORDBREAK) ;

To draw our simple control, we create a yellow brush. We then fill the control's bounding rectangle with this
background brush. To provide a little functionality, we next draw some text in the control using DrawText.
Prior to that, we set the drawing mode to TRANSPARENT and set the text color to black. DrawText does
much of the drawing work for us; it will automatically word-wrap and left-justify our text within the bound
ing rectangle. Compile and link the project, and we'll do a little testing.

Before we can do anything with the control, we need to register it in the Windows Registry just as we regis
ter all other COM-based components. The default behavior of Visual C++ is to register the control after
every build. A Custom Build option in Project/Settings calls REGSVR32 with the path and filename of your
control. REGSVR32 calls DllRegisterServer, which updates the Registry with the control information. If
you get tired of this action being performed by Visual C ++ after every build, remove the lines in the Custom
Build section in Project/Settings. Later, if you need to register the control, you can use the Tools/Register
Control option.

APPLE 1109 - Page 65

356 + CHAPTER 8

MFC provides a rudimentary testing facility for the controls that you create. I say "rudimentary" because it
doesn't provide all the features of a commercial control container such as Visual Basic 4.0. The primary defi
ciency of MFC is that it lacks an easy-to-use scripting language to manipulate a control's methods and
events. Its method of allowing the user to modify the container's ambient properties and the control's stock
properties is also lacking, but the Test Container allows us to test basic control functionality. Later in this
chapter we will look at the features provided by commercial control containers.

The Test Container can be started from the Visual C++ environment by selecting Test Container from
the Tools menu. Start it and insert the POSTIT control using the Edit/Insert OLE Control menu item. You
should see something like the screen in Figure 8.8.

This is a simple POSTIT
control

Figure 8.8 Control inserted into the Test Container.

If you get an error such as "Unable to Insert Control" when attempting to insert the control into the
Test Container, it probably indicates that the .UC file isn't in the same directory as the .OCX file.
Visual C++ initially places the .UC file into the main project path but creates the debug version of

N o r E the .OCX file in the \PROJNAME\DEBUG directory. To quickly get around this problem, copy the
PROJNAME.LIC file, which in our case is POSTIT.UC, to the DEBUG directory.

Go ahead and play around with the control. When you move and resize the control, the container calls the
OnDraw method and the control is completely redrawn. Notice that as you resize the control, the text within
it word-wraps. You can do these things with the control only when it is outlined with a hatched border. This
indicates that the control is DI-active, which is similar to a typical window getting focus. Only one control
within a container can be DI-active at a given time. Try this by inserting a few more copies of the POSTIT

APPLE 1109 - Page 66

A Control • 357

control. (Click the toolbar button marked OCX. That's the default toolbar bitmap provided by MFC for our
conh·ol, but we will change it to something more representative in a moment.)

After inserting a few more copies of the control, you can single-click on a control to make it DI-active.
When you do so, any other control that is DI-active will go to the active state and lose its hatched border.
This single-click activation indicates that the control is an OLE inside-out object. This differs from older visual
servers, where you were required to double-click.

The default toolbar bitmap contains the text "OCX." Let's change this to something that better represents our
control's purpose. Within Visual C++, change to the resource view, open the Bitmap folder, and double-click on
the IDB_POSTIT bitmap. Edit the bitmap to resemble a yellow notepad, as we've done in Figure 8.9.

Figure 8.9 Editing the control's bitmap.

Save the changes. The next time we test the control, we'll have a nice toolbar button representation. Our con
h·ol still doesn't do much, so let's add the stock properties provided by MFC.

As detailed in Chapter 7, the ActiveX control standard specifies 17 standard properties that controls may
typically implement. These standard properties provide generic functionality and provide a way to present
a uniform set of properties that most controls will typically implement. MFC currently supplies stock imple-

APPLE 1109 - Page 67

mentations for nine of these standard properties. We'll add eight of them to our POSTIT control. Most of the
stock properties affect the appearance of the control.

Control properties are implemented using automation (IDispatch). Each control has an IDispatch
interface for its stock and custom properties and its methods. To implement them for our control, we'll use
ClassWizard just as we did in Chapter 6. Fire up ClassWizard and go to the OLE Automation tab. Make
sure the Class Name is CPosti tCtrl, and click the Add Properties button. You will get a dialog box like
the one in Figure 8.10.

Figure 8.10 Adding stock properties with ClassWizard.

Add every stock property available except Caption and ReadyState. The Caption and Text properties
use the same internal implementation. The only difference is the external name of the property. Controls
should use the Caption property to represent small amounts of textual information that typically does not
change during run time. Buttons, labels, and the like typically use the Caption property. Controls (such as
a multiline edit field) that have a lot of text that will be modified at run time should use the Text property.
We're implementing a control that may contain a lot of textual information, so we will expose the Text
property. After adding eight of the stock properties, the OLE Automation tab should look like Figure 8.11.

The stock properties are implemented with get and set functions. Each stock property has a Get and a
Set method within COleControl that allow these properties to be modified externally, usually via the con
tainer's property interface or your control's custom property pages. The only current exception is Hwnd. It
has only a Get method for obvious reasons. Whenever a stock property is modified through its Set method,
the Set method will call an OnPropertyChanged method, where "Property" is the actual name of the
property (such as OnBackColorChanged). The default implementation calls InvalidateControl, forc
ing a redraw of the control. You can easily modify this behavior by overriding any of the
OnPropertyChanged methods within your control class.

APPLE 1109 - Page 68

A Control 359

figure 8.11 Stock properties added by ClassWizard.

Most of the stock properties affect the look of a control: its background and foreground color, the font, the
caption, and so on. Next, we'll modify our control's OnDraw method to use these stock properties when
drawing. The following sections deal with each stock property and how it is used when you're drawing a
control. The last section provides the complete source for OnDraw, so don't worry about typing in until
we're finished.

Appearance
The stock appearance property provides the control developer with a standard property that controls the
appearance of a control. MFC's current implementation provides just two different options: draw the control
using 3-D or not. The implementation uses the Win32 Windows style, WS_EX_CLIENTEDGE, to control the
3-D style.

BackColor
The BackColor property can be used to specify the background of a control. The background typically cov
ers the entire area of a control; the salient features of a control are drawn on top of the background. Our con
trol currently creates a yellow background and fills the control with it. By implementing the stock
BackColor property, we make it easy for the control user to modify this attribute. To draw the control
using the BackColor property, use the COleControl: : GetBackColor method:

II Get the stock BackColor

CBrush bkBrush;

bkBrush.CreateSolidBrush(TranslateColor(GetBackColor())) ;

APPLE 1109 - Page 69

+CHAPTER 8

GetBackColor retrieves the current value of the BackColor property. The default value of the
BackColor property is the ambient property of the container. If the user does not select a specific back
ground color, the container's background color will be used. The COleControl: : TranslateColor
method converts an OLE_COLOR type into the COLORREF type needed by the CDC class methods.

The stock ForeColor property can be used in various ways. Controls that contain text typically use this
color for the text. This doesn't have to be the case. If the control contains many items that you want the user
to be able to customize via a color property, you can choose whatever attribute you feel indicates the fore
ground color of your control. If you need additional color properties, it is easy to define custom properties
for this purpose. We will do this in Chapter 9. ForeColor is similar to the BackColor property in that it
defaults to the ambient property of the container if not explicitly set. Here's the new code for the text in the
POSTIT control:

II Set the text color to the stock ForeColor

pdc->SetBkMode(TRANSPARENT) ;

pdc->SetTextColor(TranslateColor(GetForeColor())) ;

If you need to set a stock property programmatically, based on some internal state change or event, Set
functions are available for most of the stock properties. In this case, it is SetForeColor.

As we've discussed, the Caption and Text properties are basically the same. The internal methods to
manipulate them are GetText, SetText, and InternalGetText. The InternalGetText method
should be used to get the text within your control class. It returns a CString reference instead of an
automation BSTR. To draw our text, we need only change one parameter of the DrawText method. It now
calls InternalGetText to obtain the value of the Text property:

II Draw the text

pdc->DrawText(InternalGetText(),

-1, CRect(rcBounds),

DT_LEFT DT_WORDBREAK) ;

The stock BorderStyle property affects the drawing of the border around the control. The current MFC
implementation provides only two settings. A zero indicates no border, and a value of 1 denotes drawing of
a border around the control. The COleControl class supports both settings, so we don't have to modify our
drawing code to support this property.

APPLE 1109 - Page 70

A Control + 361

Font
The stock Font property provides an easy way to expose a font property for your control. If your control
uses text in its representation or in any way needs a font, the stock font property makes this easy to man
age. COleControl provides a method, SelectStockFont, for selecting the stock font into the current
device context (DC). The stock font initially contains the ambient font of the container. You can easily
change its value with COleControl: : SetFont, or the user can change it through the container's prop
erty browser, which will call OnSetFont. The default implementation of OnSetFont updates the stock
font and invalidates the control. This is fine for most situations. The following code illustrates how to use
SelectStockFont in your OnDraw code:

CFont* pOldFont = SelectStockFont(pdc I;

II Use the font

II Restore the old font back into the DC

pdc->SelectObject(pOldFont I;

This example also demonstrates how the Drawing Optimization option can make a control more efficient. If
drawing optimization is supported by a container, there is no need to select the old font back into the device
context, thus saving a little time. We'll cover this in more detail in Chapter 9.

Hwnd
The stock Hwnd property is a read-only property that exposes the HWND (handle of the window) of the con
trol. This property should also be a run-time-only property, because some containers may not create a win
dow for your control when the container is in design mode. The Hwnd property wouldn't have much use at
design time any way, because it is typically used at run time to allow the container's scripting language to
directly access, and thus provide, a way to send Windows messages directly to a control's Hwnd. I expect
that most containers will not expose this property during the design phase. A control developer need not do
anything to handle this stock property; COleControl handles it completely.

Enabled
The stock Enabled property is used to indicate, using either TRUE or FALSE, whether a control is enabled.
The Windows operating system provides an API function, EnableWindow, that controls the behavior and
appearance of a standard window. When a window is enabled, it functions normally. When a window is not
enabled, or is disabled, it does not accept user input and typically changes its appearance as an indication to
the user. An example is the standard Windows checkbox control. When it is disabled, the checkbox and the
text associated with it are "grayed out" to indicate that it does not accept input.

We'll change the background style of our control to use a diagonal hatching to indicate that it is dis
abled. We will check the Enabled property before drawing the background of our control:

APPLE 1109 - Page 71

362 + CHAPTER 8

II Create a brush using the stock BackColor

CBrush bkBrush;

II If the control is enabled use a solid brush

II otherwise use a hatched brush to indicate the disabled state

if (GetEnabled())

bkBrush.CreateSolidBrush(TranslateColor(GetBackColor())) ;

else

bkBrush.CreateHatchBrush(HS_DIAGCROSS, TranslateColor(GetBackColor()));

II Fill the background with BackColor

pdc->FillRect(rcBounds, &bkBrush) ;

Not much is new here except that we've added the check of the Enabled property and have created a
hatched brush to fill the control's background.

As promised, here's the complete OnDraw method with the new code that uses the stock properties:

lll

II CPostitCtrl: :OnDraw - Drawing function

void CPostitCtrl: :OnDraw(CDC* pdc, const CRect& rcBounds, const CRect& rcinvalid)

II Create a brush with the stock BackColor

CBrush bkBrush;

if (GetEnabled()

bkBrush.CreateSolidBrush(TranslateColor(GetBackColor())) ;

else

bkBrush.CreateHatchBrush(HS_DIAGCROSS, TranslateColor(GetBackColor()));

II Fill the background with BackColor

pdc->FillRect(rcBounds, &bkBrush);

pdc->SetBJcJ•!ode (TRANSPARENT) ;

II Set the text color to the ForeColor

II If the control is disabled, draw the

II text in the background color

if (GetEnabled())

pdc->SetTextColor(TranslateColor(GetForeColor())) ;

else

pdc->SetTextColor(TranslateColor(GetBackColor())) ;

II Select the font. SelectStockFont

II is a method of COleControl that uses the stock

II font property for the control

APPLE 1109 - Page 72

CFont* pOldFont = SelectStockFont(pdc) ;

JI Get the text and draw it

pdc->DrawText(InternalGetText(),

-1, CRect(rcBounds) ,

DT_LEFT I DT_WORDBREAK) ;

// Restore the old font of the DC

pdc->SelectObject(pOldFont) ;

A

Add the preceding code to POSTITCTL.CPP and compile and link the project.

Control + 363

When you add or remove a property, method, or event to a control, you must update the type
library before attempting to build the project. The 16-bit version of Visual C++ requires that you
explicitly make the type library apart from the build, so be sure to do this first.

N 0 T E

Now that we've added support for the stock properties and have modified the OnDraw code to use them, we
should give them a try. The Test Container works fine for testing these changes. The stock properties ini
tially default to the ambient properties of the container. Start the Test Container and select the Edit/Ambient
properties menu item. Set the BackColor and ForeColor properties to gray and red. Now insert a POS
TIT conh·ol. The control will use the ambient colors when rendering itself. It's hard to determine whether the
ForeColor property worked, because we haven't specified the text for the control, but this is easy to do.

To access the properties for a specific control in the container, make sure the control is DI-active by sin
gle-clicking on it. Then invoke the View/Properties menu item. This pops up a modeless Properties dialog
box that allows you to modify the stock properties that we added. This isn't the actual property page created
for your control; instead, it's the container's property browser. We'll define and use our own property pages
in a moment. As you modify these properties and apply them to the control, it will redraw the control using
the new values.

Add some text to the control using the Text property, and change the background and foreground col
ors. Set the BorderStyle property to 1, and a border will be drawn around the control. Set the Enabled
property to zero and watch what happens. There are many things you can do with this control even with
just the stock properties. Play with the control until you are comfortable with what's going on in the code.
Next, we will add a custom property page to our control.

COlePropertyPage
Property pages provide a way for a control to graphically present custom and stock properties to the control
user. The user can then modify the properties and apply the changes to the control. This manipulation usu
ally is done when the user configures the control during the container's design phase.

APPLE 1109 - Page 73

364 + CHAPTER 8

MFC provides the COlePropertyPage class to make it easy to implement property pages for your
control. The container usually provides a way for the control user to modify stock properties, which are
known to exist within most controls. But some containers, such as Visual C++'s Resource editor do not sup
ply this capability, so it is important to provide an interface to all the properties used in your control. This is
easy to do by implementing a combination of custom and stock property pages for your control. Let's take a
quick look at the COlePropertyPage class and the initial files produced by ControlWizard.

Each property page is itself a COM-based component with a CLSID. This arrangement makes it easy for
the container to load and activate a control's property page without bothering the control. When a control is
initially loaded, the container retrieves a list of the property page CLSIDs that should be invoked for the con
trol. When the user wants to modify a control's properties, the container instantiates each property page and
frames it to create a property sheet. We discussed this in Chapter 7. The important thing to understand is
that each property page is a distinct COM-based component object. The COlePropertyPage class does
almost all the work for us. Here's the initial POSTITPPG.H file:

II PostitPpg.h : Declaration of the CPostitPropPage property page class.

ll

II CPostitPropPage : See PostitPpg.cpp for implementation.

class CPostitPropPage : public COlePropertyPage

DECLARE_DYNCREATE(CPostitPropPage)

DECLARE_OLECREATE_EX(CPostitPropPage)

II Constructor

public:

CPostitPropPage();

II Dialog Data

ll{{AFX_DATA(CPostitPropPage)

enum { IDD = IDD_PROPPAGE_POSTIT };

I I} } AFX_DATA

II Implementation

protected:

virtual void DoDataExchange(CDataExchange* pDX);

II Message maps

protected:

ll{{AFX_MSG(CPostitPropPage)

II DDXIDDV support

II NOTE ClassWizard will add and remove member functions here.

II DO NOT EDIT what you see in these blocks of generated code

I I } } AFX_MSG

DECLARE_MESSAGE_MAP()

};

APPLE 1109 - Page 74

A Control +

There's nothing special here except the enum { IDD_PROPPAGE_POSTIT } and the DoDataExchange

declaration. The enum value contains the dialog resource for the property page. We'll modify this dialog box
in the next section. The DoDataExchange method provides an easy mechanism for moving data between
controls within a dialog box and class member variables.

COlePropertyPage derives from CDialog, which derives from CCmdTarget, so we have COM sup
port built into our new class. And the DECLARE_OLECREATE_EX macro provides a class factory for our
property page. All the pieces are there for making this class a COM-based component:

II PostitPpg.cpp : Implementation of the CPostitPropPage property page class.

IMPLEMENT_DYNCREATE(CPostitPropPage, COlePropertyPage)

lll

II Initialize class factory and guid

IMPLEMENT_OLECREATE_EX(CPostitPropPage, "POSTIT.PostitPropPage.l",

Oxbbf8b09a, Oxbe9e, Oxllce, Oxa4, Ox3c, Oxac, Oxe7, Oxlf, Oxl6, Oxdb, Ox7f)

lll

II CPostitPropPage: :CPostitPropPageFactory: :UpdateRegistry -

II Adds or removes system registry entries for CPostitPropPage

BOOL CPostitPropPage: :CPostitPropPageFactory: :UpdateRegistry(BOOL bRegister)

if (bRegister)

return AfxOleRegisterPropertyPageClass(AfxGetinstanceHandle(),

m_clsid, IDS_POSTIT_PPG);

else

return AfxOleUnregisterClass(m_clsid, NULL);

lll

II CPostitPropPage: :CPostitPropPage Constructor

CPostitPropPage: :CPostitPropPage() :

COlePropertyPage(IDD, IDS_POSTIT_PPG_CAPTION)

ll{{AFX_DATA_INIT(CPostitPropPage)

ll}}AFX_DATA_INIT

lll

II CPostitPropPage: :DoDataExchange - Moves data between page and properties

APPLE 1109 - Page 75

366 +CHAPTER 8

void CPostitPropPage: :DoDataExchange(CDataExchange* pDX)

//{{AFX_DATA_MAP(CPostitPropPage)

//}}AFX_DATA_MAP

DDP_PostProcessing(pDX);

POSTITPPG.CPP looks very similar to POSTITCTL.CPP. The IMPLEMENT_OLECREATE_EX macro con
tains the ProgID and CLSID for our property page and the UpdateRegistry method. The
DoDataExchange method is implemented but currently doesn't do anything. We will add to and discuss it
in the next section. Table 8.4 provides a list of useful COlePropertyPage methods.

Method

COlePropertyPage

IsModified

SetModifiedFlag

OnHelp

OninitDialog

OnEditProperty

OnSetPageSite

Table 8.4 Useful COlePropertyPage Methods

Purpose

The constructor takes the ID of a dialog resource and an ID of a string resource for the caption of the

page.

Indicates whether the user has modified any items on the property page.

Indicates that an item on the page has been modified.

Called when the user presses the help key on the property sheet, when the page is the current tab.

Called when the properly page is initialized.

Called when the user edits a specific property on the page.

Called when the container loads the page to display it within its properly page frame.

ControlWizard provides us with a custom property page that we can use to let control users modify our
control's stock or custom properties. The COlePropertyPage class is derived from CDialog and uses a
dialog resource to describe its appearance. We need to add a custom property that allows toggling the use of
the container's ambient properties. To add this property to the resources tab, click the Dialog folder and then
double-dick the IDD_PROPPAGE_POSTIT dialog resource. Add a checkbox with the text Use Ambients
and with an ID of IDC_USEAMBIENTS. While you're at it, add a checkbox for our stock Enabled

(IDC_ENABLED) and BorderStyle (IDC_BORDER) properties and a multiline edit field (IDC_TEXT)
for our Text property. See Figure 8.12.

We now need to create the custom UseArnbients property. Using ClassWizard, select the OLE
Automation tab, add a property of type BOOL using Get/Set methods, and call it UseAmbients. Now add
the following code to POSTITCTL.H and POSTITCTL.CPP. It adds a member variable to our control class
for maintaining the UseArnbients property. We also call InvalidateControl to force a redraw when the
property changes.

APPLE 1109 - Page 76

A

Figure 8.12 Editing the custom property page dialog resource.

11 PostitCtl. h

class CPostitCtrl public COleControl

DECLARE_DYNCREATE(CPostitCtrl)

II Implementation members

BOOL m_bUseA.rnbients;

};

II PostitCtl.cpp

CPostitCtrl: :CPostitCtrl()

InitializeIIDs(&IID_DPostit, &IID_DPostitEvents);

II TODO: Initialize your control's instance data here.

m_bUseAmbients = FALSE;

SetinitialSize(200, 200) ;

llllllllllllll/l//!l/!llll///l/ll///////////!////////////////I/////////!/////

II CPostitCtrl message handlers

Control +

APPLE 1109 - Page 77

+CHAPTER 8

BOOL CPostitCtrl: :GetUseAmbients()

II TODO: Add your property handler here

return m_bUseA.'flbients;

void CPostitCtrl: :SetuseAmbients(BOOL bNewValue)

II TODO: Add your property handler here

m_bUselmlbients = bNewValue;

SetModifiedFlag();

II Redraw the control

InvalidateControl();

II Update any property browser

BoundPropertyChanged(dispidUseAmbients);

The call to BoundPropertyChanged is an important one. It notifies any associated object, usually the con
tainer, that a property has changed within the control. It does this through the IPropertyNotifySink

interface. For example, this one call will ensure that Visual Basie's property browser will always be in sync
with both the control and the control's custom property pages.

For our custom property page to access our custom property, we must create a variable for it in the
CPostitPropPage class. Start ClassWizard and select the Member Variables tab. From the Class Name
dropdown, select CPostitPropPage. Click the Add Variable button and add a variable for the IDC_USE
AMBIENTS checkbox. When adding the variable, be sure to type the name of the associated property
(within the control) in the Optional OLE Property Name field. Adding a property name here forces the
property to be retrieved from the control. It adds a DDP _Check entry for the property. In a moment you will
see ~xactly what this does. The dialog box is shown in Figure 8.13.

While you're at it, go ahead and add member variables for the other three stock properties that we
placed on the custom property page. When adding these variables, be sure to select the correct stock prop
erty name from the Optional OLE Property Name field. The Text property is shown being added in Figure
8.14.

APPLE 1109 - Page 78

A Control + 369

Figure 8.13 Adding a member variable for the useAmbients property.

Figure 8.14 Adding a member variable for the stock text property.

The value of m_bUseAmbients is modified when the property page user changes the value of its checkbox.
This is done using the normal dialog data exchange macros. ClassWizard adds the following highlighted
code to the CPosti tPropPage class:

APPLE 1109 - Page 79

370 + CHAPTER 8

II PostitPpg.h

class CPostitPropPage public COlePropertyPage

II Dialog Data

ll{{AFX_DATA(CPostitPropPage)

en um IDD = IDD_PROPPAGE_POSTIT } ;

BOOL m_bEnabled;

CString m_strText;

BOOL m_bBorderStyle;

BOOL m_bUseAmbients;

I/} }AFX_DATA ...

};

II PostitPpg.cpp

lll

II CPostitPropPage: :CPostitPropPage - Constructor

CPostitPropPage: :CPostitPropPage() :

COlePropertyPage(IDD, IDS_POSTIT_PPG_CAPTION)

ll{{AFX_DATA_INIT(CPostitPropPage)

m_bEnabled = FALSE;

m_strText = _T("");

m_bBorderStyle = FALSE;

m_bUseAmbients = FJ\.LSE;

ll}}AFX_DATA_INIT

lll

II CPostitPropPage: :DoDataExchange - Moves data between page and properties

void CPostitPropPage: :DoDataExchange(CDataExchange* pDX)

ll{{AFX_DATA_MAP(CPostitPropPage)

DDP_Check(pDX, IDC_ENJ'.13LED, m_bEnabled, _T("Enabled")) ;

DDX_Check(pDX, IDC_ENABLED, m_bEnabled);

DDP_Text(pDX, IDC_TEXT, m_strText, _T("Text"));

DDX_Text(pDX, IDC_TEXT, m_strText);

DDP_Check(pDX, IDC_BOP.DER, m_bBorderStyle, _T("BorderStyle"));

DDX_Check(pDX, IDC_BORDER, m_bBorderStyle);

DDP_Check(pDX, IDC_USEJ\.MBIENTS, m_bUseAmbients, _T("UseAmbients")) ;

APPLE 1109 - Page 80

DDX_Check(pDX, IDC_USEAMBIENTS, m_bUsefa.mbients);

//)}AFX_DATA_MAP

DDP_PostProcessing(pDX);

A Control + 371

n1e DoDataExchange method moves property values between the dialog controls, identified with their
IDs, and the member variables of the CPosti tProgPage class. The direction of the transfer, either from the
member variables to the dialog controls or from the dialog controls to the member variables, is indicated by
the m_bSaveAndValidate member of the CDataExchange class. FALSE indicates a transfer to the con

trols.

The DDX functions actually exchange the dialog data. The DDP functions were added for controls and
extend MFC's data exchange mechanism to support synchronization of properties across automation-based
components. The DDP functions use automation to either get or set the control's property values. The fourth
parameter of the DDP function is the name of the automation property that is being affected.

When the container loads a control's property page, DoDa taExchange is called with the
m_bSaveAndValidate flag set to FALSE to indicate that the dialog's controls should be loaded. Each DDP
fwlCtion, as it is encountered, uses IDispatch:: Invoke to obtain the associated property value from the
control; in other words, the control's GetProperty method is called. The Invoke may be preceded by a
call to IDispatch: : GetIDsOfNames if the property does not have a standard DISPID (e.g., stock proper
ties). The control's property value is then stored in the property page object's member variable (such as
m_bUseAmbients). Next, the DDX method is called to transfer the property value to the dialog control.
This process is repeated for each DDP /DDX pair. Once this process is finished, the property page is dis
played.

When the user modifies a property value and clicks the property sheet's Apply or OK button, the
reverse occurs. DoDataExchange is called with m_bSaveAndValidate set to TRUE. This time the DDP
functions update an internal map of the property values, and the Invoke call is deferred until the
DDP _PostProcessing method is called. This is because the appropriate value hasn't yet been h·ansferred
from the dialog control to the property page member via the DDX function. Once the transfer has occurred,
the DDP_PostProcessing method updates each property that was changed via the property sheet by call
ing the control's appropriate Set function using IDispatch: : Invoke.

The DDP functions currently support most of the automation types. Depending on the property type,
you use the appropriate DDP function. For example, if your property is stored in a short, you could use the
DDP _CBindex to map the value of the property to a position within a combo box. We will do this in a later
chapter. The various DDP functions are as follows:

DDP_Text(CDataExchange*pDX, int id, BYTE& member, LPCTSTR pszPropName);

DDP_Text(CDataExchange*pDX, int id, int& member, LPCTSTR pszPropName) ;

DDP_Text(CDataExchange*pDX, int id, UINT& member, LPCTSTR pszPropName);

DDP_Text(CDataExchange*pDX, int id, long& member, LPCTSTR pszPropName) ;

DDP_Text(CDataExchange*pDX, int id, DWORD& member, LPCTSTR pszPropName) ;

DDP_Text(CDataExchange*pDX, int id, float& member, LPCTSTR pszPropName) ;

DDP_Text(CDataExchange*pDX, int id, double& member, LPCTSTR pszPropName) ;

APPLE 1109 - Page 81

372 + CHAPTER 8

DDP_Text(CDataExchange*pDX, int id, CString& member, LPCTSTR pszPropName);

DDP_Check(CDataExchange*pDX, int id, int& member, LPCTSTR pszPropName);

DDP_Radio(CDataExchange*pDX, int id, int& member, LPCTSTR pszPropName);

DDP_LBString(CDataExchange* pDX, int id, CString& member, LPCTSTR pszPropName);

DDP_LBStringExact(CDataExchange* pDX, int id, CString& member, LPCTSTR pszPropName);

DDP_LBindex(CDataExchange* pDX, int id, int& member, LPCTSTR pszPropName);

DDP_CBString(CDataExchange* pDX, int id, CString& member, LPCTSTR pszPropName);

DDP_CBStringExact(CDataExchange* pDX, int id, CString& member, LPCTSTR pszPropName);

DDP_CBindex(CDataExchange* pDX, int id, int& member, LPCTSTR pszPropName);

MFC provides three stock property pages that you can use to allow users to modify your control's proper
ties. The three property pages provide support for your color, font, and picture type properties. We will use
the color and font property pages to allow the user to modify our control's stock BackColor, ForeColor,
and Font properties. As mentioned previously, containers normally provide an effective way of modifying
standard (and often custom) properties, but to build a control that is useful in all control containers, we need
to provide an interface for all the properties of our control. The stock property pages give us an easy way to
provide a standard interface to Color, Font, and Picture property types.

The three stock property pages are identified by their CLSIDs. To use them within your control, you
add them using the PROPPAGEID macro. This technique adds the CLSIDs to the array of property page
CLSIDs that is maintained by the control. When the container invokes the property sheet for the control, it
determines which pages to load by asking for this array.

Add the following code to POSTITCTL.CPP. Be sure to change the page count in the BEGIN_PROP
PAGEIDS macro from 1 to 3.

II TODO: Add more property pages as needed. Remember to increase the count!

BEGIN_PROPPAGEIDS(CPostitCtrl, 3)

PROPPAGEID(CPostitPropPage: :guid)

PROPPAGEID(CLSID_CColorPropPage)

PROPPAGEID(CLSID_CFontPropPage)

END_PROPPAGEIDS(CPostitCtrl)

By adding two lines of code, we provide a nice way for the control user to modify the Font, BackColor,
and ForeColor properties. The standard property pages determine which properties to display within
their dropdowns by iterating through all your control's properties. If the supported property type is found,
the property page adds it to its list. To add a custom color property to your control-say HeadingColor
use Class Wizard to add a property of type OLE_COLOR. When the standard property sheet is loaded, it will
include your new custom property.

APPLE 1109 - Page 82

Control +

Earlier, we added a custom property, UseAmbients, that allows the control user to indicate whether the
control should use the ambient properties provided by the container or the ones specified by the user. We
need to modify our drawing code to check the UseAmbients property to determine which property set to
use. The new OnDraw code is as follows:

////////!llllll!llllllllllll!llllllllllllllllllllllllllllllllllll!llllllllll!

I; CPostitCtrl: :OnDraw - Drawing function

void CPostitCtrl: :OnDraw(CDC* pdc, const CRect& rcBounds, const CRect& rcinvalid)

CBrush bkBrush;

II Use a local color reference for increased efficiency

COLORREF crBack;

COLORREF crFore;

II Use the container's properties if the UseAmbients

II property is true

if m_bUse8.mbients

crBack = TranslateColor(8~-nbientBackColor());

crFore = TranslateColor(AmbientForeColor());

else

crBack = TranslateColor(GetBackColor());

crFore TranslateColor(GetForeColor());

if (GetEnabled())

bkBrush.CreateSolidBrush(crBack) ;

else

bkBrush.CreateHatchBrush(HS_DIAGCROSS, crFore) ;

II Fill the background with BackColor

pdc->FillRect(rcBounds, &bkBrush) ;

pdc->SetBkMode(TRANSPARENT) ;

/I Set the text color to the ForeColor

ii If the control is disabled, draw the

II text in the background color

if { GetEnabled())

APPLE 1109 - Page 83

37 4 + CHAPTER 8

pdc->SetTextColor(crFore);

else

pdc->SetTextColor(crBack);

II Select the font

CFont* pOldFont;

if m_bUseAmbients

CFontHolder font(&m_xFontNotification);

II Get the ambient font's IDispatch

LPFONTDISP lpFontDisp = AmbientFont();

II If the container doesn't have an ambient font

II use the stock font instead

if (lpFontDisp == NULL)

pOldFont = SelectStockFont(pdc) ;

else

else

II Initialize the CFontHolder with the

II ambient font dispatch

font.InitializeFont(NULL, lpFontDisp);

pOldFont = SelectFontObject(pdc, font);

II Release the font dispatch

lpFontDisp->Release();

pOldFont = SelectStockFont(pdc);

II Get the text and draw it

pdc->DrawText(InternalGetText(),

-1, CRect(rcBounds) ,

DT_LEFT I DT_WORDBREAK) ;

II Restore the old font of the DC

pdc->SelectObject(pOldFont);

The font selection code needs a little more explanation. To effectively handle changing to and from the ambi
ent Font property, we use the CFontHolder class. We'll cover that in the next section. Before we do that,
though, we need to add one more method to our control.

Whenever the container's ambient properties change and the m_UseArnbients flag is TRUE, we need to
redraw the control. The COleControl: : OnArnbientPropertyChange method is called when any of the

APPLE 1109 - Page 84

A Control + 375

container's ambient properties changes. First, we override this method in POSTITCTL.H, and then we add
the implementation code to POSTITCTL.CPP. You can initially override a method by clicking the Messages
dropdown when editing POSTITCT.CPP. Scroll down to OnAmbientPropertyChange and select it. It
will be added to both the .H and the .CPP files.

class CPostitCtrl : public COleControl

//Overrides

JI Override OnAmbientPropertyChange

virtual void OnAmbientPropertyChange(DISPID) ;

};

II PostitCtl.cpp

void CPostitCtrl: :OnAmbientPropertyChange(DISPID dispid)

/I TODO: Add your specialized code here and/or call the base class

ii If the user does not want ambients just return

if (m_bUseAmbients == FALSE)

return;

II Redraw the control

InvalidateControl();

COleControl: :OnAmbientPropertyChange(dispid);

OnAmbientPropertyChange provides the DISPID of the specific ambient that changed. If more than one
property has changed, this function passes DISPID_UNKNOWN. We don't really care which ambient changes,
so in all cases we call InvalidateControl, which forces a redraw. If the UseAmbients property is
FALSE, there is no need to deal with ambients and we just return.

The CFontHolder class encapsulates a Windows font object. It contains an implementation of the COM
IFont and IFontDisp interfaces that provides methods for communicating font information and font
property changes among COM-based components.

We use the CFontHolder class to obtain the ambient Font property. The following code is from
OnDraw:

APPLE 1109 - Page 85

376 +CHAPTER 8

if m_bUseAmbients

CFontHolder font(&m_xFontNotification) ;

II Get the ambient font's !Dispatch

LPFONTDISP lpFontDisp = AmbientFont();

II If the container doesn't have an ambient font

II use the stock font instead

if (lpFontDisp == NULL)

pOldFont = SelectStockFont(pdc) ;

else

II Initialize the CFontHolder with the

II ambient font dispatch

font.InitializeFont(NULL, lpFontDisp);

pOldFont = SelectFontObject(pdc, font);

II Release the font !Dispatch

lpFontDisp->Release();

The constructor for the CFontHolder class requires a pointer to an IPropertyNotifySink interface. The
COleControl class contains a protected member, m_xFontNotification, that implements an
IPropertyNotifySink interface for the handling of ambient fonts. We use this member to construct an
instance of CFontHolder. After construction, CFontHolder must be initialized with a call to the
InitializeFont method.

Ini tializeFont takes two parameters: a pointer to a FontDesc structure that specifies the font's
characteristics, and a pointer to the ambient font's IDispatch. Only one of the two parameters is required,
and in our case we need only a pointer to the ambient font's IDispatch. We're in luck-the ArnbientFont
method returns an LPFONTDISP-so we pass it to Ini tializeFont. This action creates a valid
CFontHolder object that we then pass to COleControl: : SelectFontObj ect. This function selects the
ambient font into the device context. If any of this fails, we use the stock font provided by MFC.

We can use the Test Container to test the addition of ambient property support to our control. Start the Test
Container and from the Edit menu choose Set Ambient Properties. Before inserting the control, change the
ForeColor, BackColor, and Font ambient properties from their default values. Now insert the control.
When the control first loads, it will use the ambient properties of the container even though the initial value

APPLE 1109 - Page 86

A

of the useAmbients property is FALSE. Remember, the initial value of stock properties defaults to the
ambient values of the container. Now, invoke the property sheet for the control by selecting Postit Control
Object/Properties from the Edit menu. This action will bring up the custom and two stock property pages
that we added to the control. Add some text for the control, check the UseAmbients checkbox, and modify
the colors and font. Now click the Apply button. Only the text that you entered will change the appearance
of the control. To use the new values for the stock properties, we need to "turn off" the use of ambient prop
erties. Do this and press the Apply button. The control will now use the values of the stock properties.

The Apply button calls IDispatch:: Invoke with the DISPID of the changed property. This calls the
specific property's Set method (such as SetUseAmbients) with the new property value. After updating
the property value within the control, the Set method will typically call InvalidateControl, which will
force a redraw of the control.

Continue to play with the UseAmbients as well as all the other stock and ambient properties. Try out
the Enabled and BorderStyle properties, too. This experimentation should give you a good sense of
what goes on as various properties are changed and what effects they have on the underlying control. But
.remember that what we are doing with the Test Container is simulating the use of the control in design
mode. The behavior is quite different during run mode. During design mode, much of the state, or appear
ance, of the control is configured, and during run time, methods and events do much of the real work.

Now let's add a stock event to the POSTIT control. As we've discussed, a control event provides a way for
the control to communicate events such as mouse clicks, internal state changes, and so on to the user of the
control. Events are communicated through the container, which normally provides a scripting language that
makes it easy to harness these events for useful purposes.

Adding events is as easy as adding a method or property. Invoke ClassWizard and choose the OLE
Events tab. Now click Add Event and choose the Click stock event. Click the OK button, and Class Wizard
will add an entry to our dispatch map and our control's ODL file to indicate that we support the Click

event. Figure 8.15 shows the Add Event dialog box.

The stock events, with the exception of the Error event, are automatically fired by MFC. By clicking a
few buttons we have added an event that will fire each time the user clicks the mouse anywhere within the
control. Here's the code added to POSTITCTL.CPP and the definition added to POSTIT.ODL.

APPLE 1109 - Page 87

378 + CHAPTER 8

figure 8.15 Add Event dialog box.

II PostitCtl.cpp

lll

II Event map

BEGIN_EVENT_MAP(CPostitCtrl, COleControl)

ll{{AFX_EVENT_MAP(CPostitCtrl)

EVENT_STOCK_CLICK()

ll}}AFX_EVENT_MAP

END_EVENT_MAP ()

II postit.odl

II Event dispatch interface for CPostitCtrl

[uuid(BBF8B098-BE9E-11CE-A43C-ACE71F16DB7F),

helpstring("Event interface for Postit Control")

dispinterface _DPostitEvents

properties:

II Event interface has no properties

methods:

II NOTE - ClassWizard will maintain event information here.

II Use extreme caution when editing this section.

APPLE 1109 - Page 88

};

l/{{AFX_ODL_EVENT(CPostitCtrl)

[id(DISPID_CLICK)] void Click();

ll}}AFX_ODL_EVENT

A Control + 379

Event maps are very similar to dispatch maps. Event maps define a table of DISPIDs and their associated
member functions. The primary difference is how they are used within a control. As we discussed in
Chapter 7, the container will retrieve the control's event IDispatch definition and implement it within the
container. The control will then use IDispatch: : Invoke to fire its events as they occur. This is easy for
the control to do, because the DISPIDs are already known.

As we covered in Chapter 7, the ActiveX standard provides two stock methods that controls should imple
ment if it's appropriate. The two methods-Refresh and DoClick-really pertain only to visual controls,
so you typically won't implement them in nonvisual controls. The Refresh method might be used forcer
tain nonvisual conh·ols, such as a database or data-feed control in which the concept of refreshing is rele
vant.

It is easy to provide these two methods for your control. Start Class Wizard, go to the OLE Automation
tab, and click the Add Method button. There are two methods present in the External Name field: Refresh
and DoClick. Add each of these by clicking OK. That's all there is to it. The default implementation for
Refresh is to invalidate the control, forcing a redraw. The default implementation of DoClick is to call the
onclick method, which in turn fires the stock Click event. This arrangement is just fine for our simple
control. We will test this behavior later using a commercial container.

To provide a little functionality for our POSTIT control user, we'll add two custom methods. These methods
will allow the control user to set a timer within the control that will go off after a predetermined time inter
val. Control users can employ this behavior any way they choose, and I'll demonstrate a simple use when
building an application with the control later.

Start Class Wizard and add a method to CPosti tCtl called SetAlarmTime. This method takes one
parameter, a short. SetAlarmTime returns a BOOL to report the success or failure of the method call. Next,
add another method and call it StopAlarm. This method returns void and takes no parameters. Next, edit
POSTITCTL.CPP and add the following code to the methods provided by Class Wizard:

#define TIMER_ID 100

BOOL CPostitCtrl::SetAlarmTime(short sSeconds)

II TODO: Add your dispatch handler code here

APPLE 1109 - Page 89

380 + CHAPTER 8

II Set the timer, return TRUE on success, FALSE on error

if (GetHvmd())

return SetTimer(TIMER_ID, sSeconds * 1000, NULL) ;

else

return FALSE;

void CPostitCtrl: :StopAlarm()

II TODO: Add your dispatch handler code here

KillTimer(TIMER_ID) ;

Our custom methods provide a way for the control user, during run time, to set an alarm that will fire after
the indicated number of seconds has elapsed. The SetAlarmTime method first checks to ensure that our
control has a valid window handle and then calls the CWnd: : Set Timer method with the number of sec
onds provided. We multiply this value by 1000, because SetTimer expects the time in milliseconds.

The StopAlarm method destroys the timer by calling CWnd: : Kill Timer. After setting the timer, the
control user may decide to cancel it later. The Windows timer mechanism will post a WM_TIMER message
after the time period has elapsed. To trap this message, we use Class Wizard to add the WM_TIMER message
to our message map. Then ClassWizard adds an OnTimer method to POSTITCTL.CPP, as shown next. I
won't go through each step, because you should be familiar with Class Wizard by now.

II PostitCtl.cpp

void CPostitCtrl: :OnTimer(UINT nIDEvent)

II TODO: Add your message handler code here and/or call default

COleControl: :OnTimer(nIDEvent);

We now need to add an event so that we can notify the control user when the timer fires.

Custom events provide a way to inform users that something happened within the control. In our case, this
event is the expiration of the timer. Adding a custom event is only slightly different from adding a stock
event as we did previously. From ClassWizard's OLE Events tab, add an event with an external name of
AlarmFired, and leave the default internal name, FireAlarmFired. Include a long parameter and call it
nTimerID. This parameter will report to the user the ID of the timer that expired. This value isn't useful in
our case, but if we wanted to let users maintain multiple timers, it would allow users to identify the specific
timer that fired. We would need only add another parameter, for a unique timer ID, to both the
SetAlarmTime and StopAlarm methods. I'll leave this as an exercise.

APPLE 1109 - Page 90

A Control + 38 1

When the control receives the WM_TIMER message, it will fire the event using our internal method:
FireAlarmFired. Once we fire the alarm event, we need to kill the timer so that it won't continue to fire.
Add the following code to the OnTimer method in POSTITCTL.CPP:

void CPostitCtrl::OnTimer(UINT nIDEvent)

// TODO: Add your message handler code here and/or call default

if (nIDEvent == TIMER_ID

FireAlarmFired(nIDEvent);

fl Cancel the alarm

Kill Timer (TINER_ID) ;

COleControl::OnTimer(nIDEvent);

When a user places a control on a container and sets the properties so that the control behaves in the
expected manner, the settings should persist. The container is responsible for causing the control to persist
between design mode and run time, but the control must decide which properties it wants to persist to the
container. This process is called serialization, and MFC provides the DoPropExchange method for this pur
pose. Here's the default implementation provided by Class Wizard:

!//l!!!ll!/l!!l//////////1////////////ll/////////////llll!//!/!//////////////

II CPostitCtrl: :DoPropExchange - Persistence support

void CPostitCtrl: :DoPropExchange(CPropExchange* pPX)

ExchangeVersion(pPX, MAKELONG(_wverMinor, _wVerMajor));

COleControl: :DoPropExchange(pPX);

II TODO: Call PX_ functions for each persistent custom property.

The default implementation serializes all the stock properties that you have defined for your control. It is
your responsibility to serialize any custom properties that you have added-in our case, the UseAmbients
property. Its type is BOOL, so we use the function PX_Bool. The PX* functions are listed in Table 8.5. The
first parameter is a pointer to the property exchange object, the second parameter is the name of the prop
erty as you would like it stored, and the third parameter is a reference to the property itself. An optional
fourth parameter can be used to set the default value for the property. By providing default parameters for
the properties, the control will have an initial state when inserted into a container. Complex property types
(such as font) require additional parameters, which are shown in Table 8.5. The table does not show the
first three parameters, because they are always the same.

APPLE 1109 - Page 91

lll

II CPostitCtrl: :DoPropExchange - Persistence support

void CPostitCtrl::DoPropExchange(CPropExchange* pPX)

ExchangeVersion(pPX, MAKELONG(_wVerMinor, _wVerMajor));

COleControl: :DoPropExchange(pPX);

II TODO: Call PX_ functions for each persistent custom property.

PX_Bool (pPX, _T ("UseA.rnbients"), m_bUsel'.mbients, FALSE) ;

Function/Type

PX_Blob(HGLOBAL&

PX_Bool(BOOL&)

PX_Color(OLE_COLOR&

PX_Currency(CY&)

PX_Double(double&

PX_Font(CFontHolder&,

const FONTDESC FAR*,

LPFONTDISP)

PX_Float(float&

PX_IUnknown

(LPUNKNOWN&, REFIID

PX_Long(long&)

PX_ULong(ULONG&

PX_Picture

(CPictureHolder&

PX_Short(short&)

PX_UShort(USHORT&

PX_String(CString&)

Table 8.5 DoPropExchange Functions

Purpose

Serializes an object in a binary format.

Serializes the property as a Boolean.

Serializes the property as an OLE_COLOR type.

Serializes the property as a currency data type.

Serializes the property as type double.

Serializes the property as a font. This function takes a few more parameters than

the others.

Serializes the property as a float.

Serializes the IUnknown pointer.

Serializes the property as type long.

Serializes the property as type unsigned long.

Serializes a picture property.

Serializes the property as type short.

Serializes the property as type unsigned short.

Serializes the property as type CString.

When the container serializes its contents, it calls each control and asks it for its property information. The
container then uses its own technique of serializing the property information, usually in some form of file.
Visual Basic serializes property information in a textual format that is easy to understand, so the following
listing shows our control after it has been serialized within a Visual Basic form. This example illustrates only
property-set persistence and not the more elaborate binan; persistence that can be used by a control.

APPLE 1109 - Page 92

A

Begin PostitLib.Postit Postitl

End

Height 3135

Left

Tab Index

Top

Width

_version

_extentx

_extenty

_stockprops

text

forecolor

backcolor

480

0

240

2895

65536

5106

5530

125

"Meet Nicole for lunch at 11:30 at Fiddler's."

255

65535

BeginProperty font {FB8F0823-0164-101B-84ED-08002B2EC713)

name "Mono type Corsiva"

chars et 0

weight 400

size 12

underline 0 'False

italic -1 'True

strikethrough 0 'False

EndProperty

borderstyle -1

useambients 0 'False

Control +

We can learn a little about what the container is doing by inspecting its serialization file. You might notice
that not all of our properties are listed, in particular the Enabled property. If a property's value is the
same as its default value, as specified in the DoPropertyExchange PX_ functions, there is no need to
store the property value. When the container loads a control, it first sets the control's property values to
the defaults provided in DoPropertyExchange. It then loads the properties from persistent storage,
which overlays only those property values that differ from their default values. This arrangement saves
space in the persistent file. ·

e
One important aspect of developing ActiveX controls is that you should strive to make them work in all
available containers. Because the ActiveX control standard is open and leaves certain aspects of its imple
mentation up to the implementor, there will be differences in the containers provided by various tool ven
dors. One thing is certain: there will be many products that will support ActiveX controls. As I write this,

APPLE 1109 - Page 93

384 -+- CHAPTER 8

many vendors have stated publicly that their tools will support ActiveX controls. For commercial control
developers, this is wonderful news. The more containers that support ActiveX controls, the more customers
there are for useful and unique controls. But the one container that will set the standard for the others is
Visual Basic. Why? Visual Basic has a very large installed base and so immediately (via upgrades) will
become the most ubiquitous, and standard-setting, container.

What I'm getting at is this: to really test your controls, you should test them in as many containers as
you can. Containers typically exist within the context of a development tool. Each tool has different goals, so
it is important to test in these divergent environments. The controls in this book have been tested with the
Test Container, Visual Basic 4.0, Visual C++ 4.2, and Internet Explorer 3.0.

Figure 8.16 shows our POSTIT control within a Visual Basic 4.0 form. As you can see, from the proper
ties window, Visual Basic has added several new properties to our control. Most containers will provide
additional properties in this manner using the extended control method that was described in Chapter 7.
Many control properties can be managed only by the container (via an extended control). Only the container
knows the position of the control within the container, so it adds the Top, Left, Height, and Width prop
erties. It also adds other properties that it can easily manage, such as Visible, TabStop, and Index. The
Index property is used for control arrays, which provide dynamic creation of controls at run time. The con
tainer, again, is best equipped to handle this situation.

0 ·None
:tNone1
"o·. M~nua!
True
(Font)
&H800000.l 2& ..

True
·:o

3255

Figure 8.16 POSTIT control in a Visual Basic form.

One thing that the Test Container lacks is a robust way to test our control's methods and events. So we'll
develop a simple Visual Basic program to exercise the control. I expect the scripting syntax and techniques
to be fairly similar among various control container tools. So although the code here is specific to Visual
Basic, it should easily translate to other control environments.

Our simple application is composed of two forms (containers) and a few ActiveX controls. It provides a
means to set up an event that will act as a reminder. When the event occurs, a dialog box will pop up and

APPLE 1109 - Page 94

A +385

inform the user with the reminder. I won't go through the steps needed to build the application. You can run
it yourself with either Visual Basic 4.0 or a 32-bit version of DISPTEST. I'll just show you the two forms and
the seven lines of code that tie everything together. The two forms are shown in Figure 8.17.

eet Nicole at Fiddler's for lunch
1:30.

Figure 8.17 Visual Basic application.

When the application runs, the Main form is shown. The user enters the text for the reminder along with the
number of minutes. Then the user clicks OK and the following code executes:

Private Sub cmdOK_Click()

'Extract the alarm time and multiply by 60

'to get the number of seconds

nAlarm = txtTime * 60

'Call the SetAlarmTime method.

frmRem.Postitl.SetAlarmTime nAlarm

'Set the text in postit control on the Reminder form

frmRem.Postitl.Text = txtText

'Hide the Reminder form

frmRem.Hide

End Sub

Private Sub cmdCancel_Click()

'Stop the timer

frmRem.Postitl.StopAlarm

End Sub

APPLE 1109 - Page 95

386 + CHAPTER 8

The code is pretty self-explanatory. We call our POSTIT custom method, SetAlarmTime, with the number
of seconds and also set the stock Text property with the text that the user entered. We then ensure that the
Reminder form is hidden from view. This code sets everything up. If the user clicks the Cancel Alarm but
ton, we call the StopAlarm method. Now let's look at the code in the Reminder form.

Private Sub Postitl_AlarmFired(ByVal lAlarmID As Long)

'The alarm fired, make sure the Reminder form is visible

frmRem.Show

End Sub

Private Sub Postitl_Click()

Unload Me

End Sub

There are two events that we added to our control. The stock Click event, which is fired whenever the user
clicks the mouse anywhere within the control, unloads the form. This makes it easy for the application user
to discard the reminder after it is no longer needed. Our custom event, AlarmFired, displays the Reminder
form along with the POSTIT control and the contained text of the reminder. Not bad for just seven lines of
code (not counting the comments).

The visual developer doesn't usually use many of the methods and events that are provided by the con
trol. In that case, the event just fires and does nothing, but it is always there ready for the developer to
employ if needed.

This isn't the most robust or useful application, but remember its purpose is purely didactic. The impor
tant thing is that we have tied a few different components together with the Visual Basic language. Most of
the work is performed in each control. Visual Basic is just the glue, wiring, or breadboard-however you
want to think about it-that ties these discrete components together.

We could easily have developed this simple little application with Visual Basie's label and timer con
trols instead of our POSTIT control, but we wouldn't have learned anything.

As we discussed in Chapter 7, the OLE Control 96 specification requires that controls provide component
category support in their implementation. Our control doesn't have any special requirements, and it is
rather simple to add component category support. POSTITCTL.CPP currently does the following when the
DllRegisterServer function is called:

ll

II CPostitCtrl: :CPostitCtrlFactory: :UpdateRegistry -

II Adds or removes system registry entries for CPostitCtrl

ll

BOOL CPostitCtrl: :CPostitCtrlFactory: :UpdateRegistry(BOOL bRegister)

APPLE 1109 - Page 96

if (bRegister)

return AfxOleRegisterControlClass(

else

AfxGetinstanceHandle(),

rn_clsid,

rn_lpszProgID,

IDS_POSTIT,

IDB_POSTIT,

afxReginsertable afxRegApartrnentThreading,

_dwPostitOleMisc,

_tlid,

_wVerMajor,

_wVerMinor);

return AfxOleUnregisterClass(rn_clsid, rn_lpszProgID);

A Control + 387

As the comments indicate, AfxOleRegisterControlClass updates the system registry with all the con
trol-specific information. These entries, such as Control, TypeLib, and InProcServer32, were described
in Chapter 7. COM-based servers must also provide a function to remove a server's Registry entries. MFC
maps our control's DllUnregisterServer call to the preceding function, which then calls
AfxOleUnregisterClass to remove the entries. Everything works as planned. Now, however, we need
to also provide component category support. Add the following code to POSTITCTL.CPP:

II PostitCtl.cpp

#include <corncat.h>

HRESULT CreateCornponentCategory(CATID catid, WCHAR* catDescription)

ICatRegister* per = NULL

HRESULT hr = S_OK ;

II Create an instance of the category manager.

hr = CoCreateinstance(CLSID_StdCornponentCategoriesMgr,

NULL,

if (FAILED(hr))

return hr;

CLSCTX_INPROC_SERVER,

IID_ICatRegister,

(void**)&pcr);

APPLE 1109 - Page 97

388 + CHAPTER 8

CATEGORYINFO catinfo;

catinfo.catid = catid;

II English locale ID in hex

catinfo.lcid = Ox0409;

int len = wcslen(catDescription);

wcsncpy(catinfo.szDescription, catDescription, len);

catinfo.szDescription[len] = '\0';

hr= pcr->RegisterCategories(1, &catinfo);

pcr->Release();

return hr;

This code, from Chapter 7, takes a category ID and a description and makes sure the entry exists in the
"Component Categories" section of the Registry. We need to make sure that the entry is there before we flag
our control. Once we ensure that the category exists, we update our control's Registry entries with the
"Implemented Categories" keys. Here's some general code to do this:

HRESULT RegisterCLSIDinCategory(REFCLSID clsid, CATID catid)

ICatRegister* per NULL

HRESULT<hr = S_OK

II Create an instance of the category manager.

hr = CoCreateinstance(CLSID_StdComponentCategoriesMgr,

if (SUCCEEDED(hr))

CATID rgcatid[l);

rgcatid[OJ = catid;

NULL,

CLSCTX_INPROC_SERVER,

IID_ICatRegister,

(void**) &per) ;

hr= pcr->RegisterClassimplCategories(clsid, 1, rgcatid) ;

if (per !=NULL)

pcr->Release();

return hr;

HRESULT UnregisterCLSIDinCategory(REFCLSID clsid, CATID catid)

APPLE 1109 - Page 98

ICatRegister* per = NULL

HRESULT hr = S_OK

//create an instance of the category manager.

hr = CoCreateinstance(CLSID_StdComponentCategoriesHgr,

NULL,

if {SUCCEEDED(hr))

CATID rgcatid(l];

rgcatid[OJ cat id;

CLSCTX_INPROC_SERVER,

IID_ICatRegister,

(void**)&pcr) ;

A

hr= pcr->UnRegisterClassimplCategories(clsid, 1, rgcatid);

if (per !=NULL)

pcr->Release ();

return hr;

Control -+ 389

Both of the preceding functions take a CLSID and a CATID and update the associated Registry entries. In
one case the entries are added, and in the other the entries are removed. All this is easy, because the compo
nent category manager does most of the work. After we add these three support functions, the code addi
tions for UpdateRegistry are straightforward:

!ll/111111111111

II CPostitCtrl: :CPostitCtrlFactory: :UpdateRegistry -

II Adds or removes system registry entries for CPostitCtrl

/lllll//l/ll/ll/llll//l/lll/llllllll/l////l//lllll/llll/ll

BOOL CPostitCtrl: :CPostitCtrlFactory: :UpdateRegistry(BOOL bRegister)

if (bRegister)

CreateComponentCategory(CATID_Control,

L"Controls") ;

RegisterCLSIDinCategory(m_clsid,

CATID_Control);

return AfxOleRegisterControlClass(

AfxGetinstanceHandle(),

m_clsid,

m_lpszProgID,

IDS_POSTIT,

APPLE 1109 - Page 99

390 + CHAPTER 8

else

IDB_POSTIT,

afxReginsertable afxRegApartmentThreading,

_dwPostitOleMisc,

_tlid,

_wVerMajor,

_wVerMinor} ;

UnregisterCLSIDinCategory(m_clsid,

CATID_Control } ;

return AfxOleUnregisterClass(m_clsid, m_lpszProgID);

After we link and register the control, the new "Implemented Categories" entry will be placed in the
Registry. Figure 8.18 shows the Registry entries for our POSTIT control.

l'.±:l {b722bcc4-4e68-101 b-a2bc-00aa00404770}
l'.±:l {87711240-A?00-11 CE-83F0-02608C3EC08A}
l'.±:l {87711241-A?00-11 CE-83F0-02608C3EC08A}
l'.±:l {89022270-0C24-1018-AE80-04021 C009402}
t::J {88F88096-8E9E-11 CE-A43C-ACE71Fl6087F}

CJ Control
~Im lemented Cate ories

CJ {OOE86A57-28M-11 CF-A229-00M00307352}
CJ {40FC6E04-2438-11CF-A308-080036F12502}
CJ {70095801-9882-11 CF-9FA9-00M006C42C4}
CJ {70095802-9882-11 CF-9FA9-00M006C42C4}

CJ lnprocSetver32
CJ lnsertable
l'.±:l MiscStatus
CJ ProglO
CJ Toolbox8itmap32
CJTypelib
CJ Version

l'.±:l {88F8809A-8E9E-11 CE-A43C-ACE71Fl6087F}
l'.±:l {88FA854A-OFOF-1100-A633-0CF8E3000000}
l'.±:l {8011A280-2E73-11 CF-86CF-OOMOOA740AF}
l'.±:l {80848380-8CA2-1069-A810-08000948F534}

P Q A r ? A~

Figure 8. 18 Component categories for our control.

The control has three other component categories registered. These categories make it easier to embed the
control in Internet Explorer. We'll cover this in more detail in Chapter 12. For now, here's the additional
code to support Internet Explorer:

#include <objsafe.h>

II Add to UpdateRegistry function

APPLE 1109 - Page 100

A Control + 391

createComponentCategory(CATID_SafeForinitializing,

L"Controls safely initializable from persistent data") ;

RegisterCLSIDinCategory(m_clsid,

CATID_SafeForinitializing) ;

createComponentCategory(CATID_SafeForScripting,

L"Controls that are safely scriptable") ;

RegisterCLSIDinCategory(m_clsid,

CATID_Saf eForScripting) ;

createComponentCategory(CATID_PersistsToPropertyBag,

L"Support initialize via PersistPropertyBag") ;

RegisterCLSIDinCategory(m_clsid,

CATID_PersistsToPropertyBag);

The component category symbols and .LIB files are part of the ActiveX SDK. If you're using Visual
C++ 4.x, you will need to install the ActiveX SDK to compile and link the examples. If you don't
install the SDK, you can just remove the references to COMCAT.H. However, by the time you read

N o r E this, the later versions of Visual C++ {5.x) will have intrinsic support for component categories.
Check out my Web site for the most recent examples and details on newer versions of Visual C++.

Visual C++ makes it fairly easy to debug DLL applications. To step through the code for the POSTIT control,
we need only set a break-point on the lines we want to debug and press FS. This action brings up a dialog
box. In Executable for Debug Session, enter the path and filename for the Test Container (or any other con
tainer). On my machine, it would be c:\msdev\bin\tstcon32.exe. After clicking OK, you will get a dialog
box complaining that TSTCON32.EXE doesn't contain any debug information and asking whether it's OK
to continue. It is. This will bring up the Test Container. You can then insert your control into the container,
and you will eventually break on your break-points.

If you make a mistake typing in the debug executable filename, you can access it from the
Build/Settings/Debug tab. The first entry field, Executable for debug session, contains the path to the exe
cutable.

We've covered a lot of material in this chapter, so let's summarize the topics. Visual C++ and MFC include a
number of classes and tools to help in the creation of ActiveX controls. Visual C++ includes a code genera
tion tool called ControlWizard that is similar to App Wizard. ControlWizard builds an ActiveX control pro
ject based on answers you supply to various questions. ControlWizard generates the initial control code, and
Class Wizard is used thereafter to make additional changes.

APPLE 1109 - Page 101

392 + CHAPTER 8

A few MFC classes are used exclusively for ActiveX control development. COleControlModule pro
vides the application-level class for a control's DLL implementation. This class provides the COM-specific
external functions, DllRegisterServer and DllUnregisterServer. MFC also provides an additional
COM-based interface, IClassFactory2, that provides component licensing methods. This interface is
implemented within MFC with the COleClassFactoryEx class and provides a default licensing model for
controls.

The COleControl class is derived from CWnd and contains hundreds of methods. It provides the bulk
of the ActiveX control functionality. One of the most important methods in COleControl is OnDraw, which
is called by the container whenever the control requires rendering within its site. Many of the control devel
opment details are handled in OnDraw. Other important COleControl methods include
SetinitialSize, OnAmbientPropertyChange, and DoDataExchange.

The ActiveX control standard defines stock properties and methods that control developers should use
if appropriate for the control's implementation. We added all of them to our control and explored each one.
Font properties require the use of MFC's CFontHolder class. This class provides methods to manage OLE's
font manipulation interfaces, which allow efficient management of fonts between COM-based components.

ActiveX controls depend on the services of another COM-based component, the property page.
Property pages provide a uniform interface to the control's custom and stock properties. Each property page
is a distinct component that is used by both the container and the control. The container loads the property
pages for a control and frames them within a property sheet. When a user modifies a control's property, the
property page, using automation, modifies the property within the control.

Ambient properties are read-only properties exposed by the container. They provide information about
the container's environment to the control. There are ambient properties for the container's visual state, such
as Color and Font, as well as ambients that indicate the current mode of the container. These latter proper
ties indicate whether the container is currently in design phase, run mode, or debug mode. This state is
important to the control, because its behavior changes depending on the container's state.

Methods and events allow the control user to use the control's functionality as well as to be notified of
changes that occur within the control. This two-way communication is an important attribute of controls.
The ActiveX control standard defines several standard events, and the stock implementations of these events
are provided by the MFC.

Serialization of a control's properties enables the container to maintain the state of a control between the
design phase and the running phase. Serialization also provides a way for the control to recognize previous
versions of itself and to adjust the loading of properties accordingly. The container is responsible for the rep
resentation of the control's property information (when you're using property-set persistence) and ensures
that it will be provided to the control in a uniform way.

Controls are COM-based in-process servers and must be added to the system Registry before being
used. Visual C++ has a menu item, Register Conh·ol, that performs this task. You should also register your
control using the new Component Categories specified by the OLE Controls 96 specification. MFC doesn't
currently provide this regish·ation by default, but it is easy to do using the provided component categories
manager component.

Testing of controls is performed with either the Test Container or with any commercially available con
tainer (such as Visual Basic or Internet Explorer). The debugging of controls is similar to debugging other
COM-based in-process servers.

APPLE 1109 - Page 102

I Co t s

In this chapter, we'll concentrate on controls that display information. Most ActiveX controls have a graphi
cal element. We'll focus on what is required to produce a control that draws efficiently and provides a useful
representation in the various environments it may encounter. We will also review the MFC classes and tech
niques that we will use when drawing the ActiveX control.

Our example control for this chapter is a clock. I know there are hundreds of clock variations available for
Windows, but by implementing a clock we'll learn how to effectively draw ActiveX controls. Figure 9.1
shows the completed clock control within a container.

393

APPLE 1109 - Page 103

Figure 9. 1 The clock control.

We'll use ControlWizard to create the project. We discussed how to use ControlWizard in Chapter 8, so we
won't spend much time on it here. Start Visual C++ and use ControlWizard to build a control project with
the name CLOCK. Choose the following options:

• In the Step 1of2 dialog box, take the defaults of No License, Yes, comments, and No help files.

• In Step 2 of 2, take the defaults.

Click Finish and create the control. After the project is created, use Class Wizard to add the following stock
properties through the OLE Automation tab:

• Appearance

• BackColor

• ForeColor

• Hwnd

" BorderStyle

APPLE 1109 - Page 104

Controls + 395

• Enabled

• Font

our clock doesn't have a caption or any text, so you might wonder why we need the Font property. You'll
see in a moment. We will use it to draw the control's ambient display name during the container's design

phase.

Before we jump into the drawing code, let's review some of the techniques used to draw graphics in the
Windows operating system. We touched on this in Chapter 8, and I'd like to expound on it a little more
before we go further. We'll explore drawing by looking at the classes within MFC that encapsulate the
Windows graphical drawing API functions.

The CDC Class
Displaying information within the Windows environment requires the use of the graphical device interface
(GDI) functions. GDI provides a device-independent interface to manipulate the devices (such as your video
card, monitor, and printer) connected to your computer. Manufacturers provide device drivers for their par
ticular hardware, and we developers use the Windows GDI API to manipulate these devices.

Most of the GDI functions work with or need a device context (DC), which provides the connection
between your program and the device the DC represents. A device context is usually an area on the screen
or printer but may also represent a memory construct called a metafile, which we will discuss in a moment. A
device context maintains a set of attributes that affect the behavior of the various GDI functions on the DC.
Example DC attributes include its default brush, pen, font, background color, and text drawing modes.

The MFC CDC class encapsulates a Windows device context and provides methods to manipulate it.
Most of the method names are identical to those of the Windows GDI API, so if you have worked with them
before, there shouldn't be much to learn. As we saw in Chapter 8, the COleControl: : OnDraw method
receives a CDC pointer in which to render the control.

The majority of the methods in the CDC class are for modifying the attributes of a device context or for
actually drawing on the device context. We can't cover them all, but we'll cover some of the important ones
that you will use when drawing your controls. Table 9.1 lists some of the useful members of the CDC class.
To get a quick listing of them all from within Visual C++, position the cursor on the text CDC and press Fl.

APPLE 1109 - Page 105

396 + CHAPTER 9

Method

FillRect(CRect , CBrush*)

Ellipse(LPRECT

used.

Rectangle(CRect

MoveTo(POINT

LineTo(POINT

SelectObject(CBrush*),

SelectObject(CPen*),

SelectObject(CFont*)

SelectStockObject(int

WHITE_BRUSH,BLACK_PEN,

SYSTEM_FONT, and so on.

SetBkColor(COLORREF

SetBkMode(int)

SetTextColor(COLORREF

TextOut (...) ,

ExtTextOut(...),

DrawText (.. .

SetTextAlign(UINT

CreateCompatibleDC(CDC*

SaveDC ()

RestoreDC(int)

SetMappingMode(int)

GetDeviceCaps(int)

Table 9.1 Useful CDC Methods

Purpose

Fills the area indicated by the CRect parameter with the brush provided.

Draws an ellipse in the rectangle provided. The default pen, fill mode, and brush are

Draws a rectangle with the default pen, fill mode, and brush.

Moves to the point provided.

Draws a line from the current position to the point provided using the default pen.

Selects the GDI object into the device context and returns a pointer to the previously

selected object. This object should be selected back into the DC when you're finished.

Selects a system-provided GDI object into the device context. Examples include:

Sets the background color of the device context.

Sets the background fill behavior.

Sets the color of the text for the device context.

Draws text on the device context

Sets the default alignment for text output.

Creates a memory DC with the characteristics of the DC provided.

Saves the stale of the device context. This includes all the attributes of the DC

(brushes, pens, and so on). The method returns an integer identifying the saved DC.

This value is later passed lo the RestoreDC method.

Restores that stale of a device context previously saved with the SaveDC method. An

integer identifying the saved DC is required.

Sets the mapping mode for the device context.

Returns various characteristics of the DC. An example is the logical size of a device

unit or pixel.

The DC provided to the OnDraw method is set up by the container, and we cannot make any assumptions
about its current attribute set. We must ensure that the DC is set up the way we need it to draw our control.
Here are some example CDC methods as they might be used in your control's OnDraw method:

pdc->SetBkMode(TRANSPARENT) ;

pdc->SetTextColor(TranslateColor(ArnbientForeColor()));

CBrush bkBrush(TranslateColor(GetBackColor())) ;

APPLE 1109 - Page 106

cBrush* pOldBrush = (CBrush*) pdc->SelectObject(&bkBrush) ;

cPen* pOldPen = (CPen*) pdc->SelectStockObject(BLACK_PEN) ;

pdc->SetTextAlign(TA_CENTER I TA_TOP);

pdc->Ellipse(LPCRECT(rcBounds)) ;

pdc->ExtTextOut(rcBounds.left, rcBounds.top, ETO_CLIPPED, rcBounds,

strCaption, strCaption.GetLength(), NULL);

SelectObject(pOldBrush) ;

SelectObject(pOldPen) ;

Controls + 397

The first five methods set up attributes of the device context. We set the background mode to
TRANSPARENT, which indicates that the background will not be redrawn the next time that we use a draw
ing function. We then set the default text color for drawing text. An instance of a CBrush object is created
and initialized to the stock background color. The COleControl: : TranslateColor method is used to
convert a color value from the OLE_COLOR type to the COLORREF type expected by the CDC method. We
then use SelectObj ect to select the new brush into the device context. We save the old brush so that we
can restore it later.

The GDI provides a number of stock objects that are available for the developer to use. The
SelectStockObj ect method selects a system-provided GDI object into the device context. A BLACK_PEN

and the control's BackColor property will be used when we use the drawing functions. Next, we set the
alignment method for text drawing using SetTextAlign. These five methods modify the DC and provide
the default behavior for the drawing methods.

The Ellipse method draws a bounding ellipse inside the rectangle provided. When it draws the
ellipse, the device context's attributes are used. ExtTextOut also uses the attributes of the DC when draw
ing the text. By setting the attributes in the DC, we need not provide a bunch of parameters to the various
drawing functions that we use, because they are maintained within the DC itself.

When we're finished drawing, we restore the DC's brush and pen to what they were before we started.
We do this because the bkBrush instance was created on the stack and so will go out of scope when the func
tion exits. If we do not select the old brush back into the DC, the DC will be left using an invalid GDI object.

Some of the GDI functions that modify a DC's attributes require the creation of a GDI object to provide
as a parameter. When you create the object, it is important to restore the old object and to delete the GDI
object when you're finished using it. The C++ language makes it easy to handle this situation. When creating
a new GDI object (such as brush, pen, or font), you should create it using the stack as we did in the preced
ing example for the bkBrush object. When the instance is created on the stack, the compiler will ensure that
it is cleaned up when it goes out of scope. The destructor is called, and the GDI object is deleted. Each of
MFC's GDI object classes behaves this way.

Creation and destruction of drawing objects every time a control draws can be very expensive. The OLE
Control 94 specification, however, required the control to maintain, and thus reset, the state of the device
context provided by the container. This meant that the control had to restore the DC to its original state after
each call to OnDraw. The OLE Controls 96 specification allows the control and container to coordinate their
efforts when drawing. If they both support optimized drawing, the control need not reset the DC every time.

APPLE 1109 - Page 107

398 + CHAPTER 9

This arrangement makes the drawing process more efficient. When we initially built the clock project, we
checked the Optimize drawing option. We'll make use of this option later in this chapter.

The (Brush Class
The CBrush class provides methods for creating, destroying, and using a Windows GDI brush object.
Brushes are used to fill regions with a particular color. Each device context has a default brush that is used to
fill the background when using various GDI functions (or CDC methods).

II Create a brush on the stack and initialize it

II to the control's current background color

II When bkBrush goes out of scope its destructor will

II free the GDI resource

CBrush bkBrush(TranslateColor(GetBackColor()));

II Create a bright red brush from the heap

II You must delete the brush to free up its resources

CBrush* pBrush = new CBrush(RGB(OxFF, OxOO, OxOO)) ;

II Use the brush ...

delete pBrush;

II Create a blue hatched brush

CBrush hatchedBrush(HS_CROSS, RGB(OxOO, OxOO, OxFF) ;

In the preceding examples, we used the RGB macro to provide the CBrush constructor with a specific color.
The RGB macro constructs a Windows COLORREF value by combining the three parameters. Each parameter
specifies the intensity of each specific color-red, green, or blue-in the resulting combined color. Following
are example colors that you can produce with the macro. If the device context in which you are selecting the
color does not support the particular hue, it will do its best to match the color using a dithering algorithm.

RGB(OxOO, OxOO, OxOO II Black

RGB(OxFF, OxFF, OxFF II White

RGB(OxFF, OxOO, OxOO II Red

RGB(OxCO, OxCO, OxCO II Light Gray

RGB(OxFF, OxFF, 0) II Yellow

The CPen Class
The CPen class encapsulates a GDI pen object and provides a convenient method of selecting pens for use
within a device context. Pens can be solid, dashed, dot, or even null. Solid pens also support a parameter
that allows the pen to be sized. The size is specified in pixels. Here are some example uses of CPen:

APPLE 1109 - Page 108

II create a solid blue pen 2 pixels wide

CPen penBlue(PS_SOLID, 2, RGB(OxOO, OxOO, OxFF)) ;

II create a dashed black pen 1 pixel wide

CPen pen;

pen.CreatePen(PS_DASHED, 1, RGB(OxFF, OxFF, OxFF)) ;

II Create a Null pen

CPen penNULL(PS_NULL, l, 0)

Controls -+ 399

The pen and brush objects provide a null implementation. You can select a null brush into a device context
to ensure that the bounding area of a CDC method will be treated as TRANSPARENT. A null pen can be
selected into a device context so that no border will be drawn when using the various CDC methods (such as
Ellipse).

The CFont Class
The CFont class encapsulates a Windows font object. The constructor creates an uninitialized font object
that must then be initialized using either the CreateFont or the CreateFontindirect method. We
haven't encountered the need to create a font for our controls to use-we've been using the stock font prop
erty-but we have used the CFont class to create a pointer to save the old font when we select our stock font
into the DC.

II Select the stock font and save the old one

CFont* pOldFont = SelectStockFont(pdc) ;

II Set up the text drawing modes in the DC

pdc->SetBkMode(TRANSPARENT);

pdc->SetTextAlign(TA_LEFT I TA_TOP) ;

II Do something with the font

II Draw the text in the upper left corner

pdc->ExtTextOut(rcBounds.left, rcBounds.top, ETO_CLIPPED,

rcBounds, strName, strNarne.GetLength(), NULL) ;

II Restore the old font

if (pOldFont)

pdc->SelectObject(pOldFont) ;

The (Bitmap Class
The CBi tmap class is similar to the CF on t class in that its constructor creates an uninitialized bitmap object
that must be initialized later using one of various class methods. LoadBi tmap loads a bitmap from an appli-

APPLE 1109 - Page 109

400 + CHAPTER 9

cation's resource file. LoadOEMBi tmap loads one of the standard, Windows-provided bitmaps, which
include checkboxes, arrows, checks, and so on. The method of interest in this chapter is
CreateCompatibleBi tmap. We will use this method later when we create an off-screen DC to remove
flicker from our clock control.

Our clock uses an analog representation, so we initially need to draw a circle to outline the clock's face. This
is easy. We just use the CDC: Ellipse method. The following code creates a brush using the stock back
ground color and selects it into the DC. It then creates a solid black pen and selects it into the DC. We then
fill the bounding rectangle with the background color and draw the ellipse using the coordinates of the
bounding rectangle.

CBrush bkBrush(TranslateColor(GetBackColor())) ;

CBrush* pOldBrush = pdc->SelectObject(&bkBrush) ;

int iPenWidth = l;
CPen penBlack(PS_SOLID, iPenWidth, RGB(OxOO, OxOO, OxOO));

CPen* pOldPen = pdc->SelectObject(&penBlack);

pdc->FillRect(rcBounds, &bkBrush) ;

pdc->Ellipse(LPCRECT(rcBounds));

The sections that follow describe the process of drawing the clock. Each section has a snippet of code to illus
trate the concepts. At the end, I'll present the complete source for the OnDraw method. So if you're typing
along, go ahead and add the source that is highlighted, but wait until later to add the source for OnDraw.

We want our clock to be round, so we set its initial size to 200 by 200 pixels in the control's constructor.
Later we will add code to ensure that our clock's bounding rectangle is always square.

CClockCtrl: :CClockCtrl()

InitializeIIDs(&IID_DClock, &IID_DClockEvents);

II TODO: Initialize your control's instance data here.

SetinitialSize(200, 200) ;

Next we need to draw tick marks for the minutes (or seconds) and the hours. This is a little more compli
cated, and we need to use a little trigonometry.

Drawing the Tick Marks or Calculating the Tick Mark Points
We need to draw tick marks for the second as well as the hour positions on the clock. The hour ticks will be
slightly larger than the seconds' ticks. We won't spend much time on the algorithms that we're using to

APPLE 1109 - Page 110

Controls + 401

draw the clock. I'll provide a quick overview and an illustration so that you can delve into it if you want to.
Figure 9.2 shows a diagram of our control. The outer circle outlines the face of the clock. The inner circle
shows how we will calculate and draw the tick marks. By drawing a line connecting the two circles, we will
create a "tick." The trick, then, is to calculate the points on the two circles and then connect them.

(-100, 100)

This tick mark is
produced by

connecting the
points between
the two circles.

(-100, -100)

Figure 9.2 Drawing the clock.

(100, 100)

(100, -100)

To get the points on both circles, we use the cosine and sine functions provided in MATH.H. The cos and
sin functions take an angle in radians as their parameter, and we all remember that 2n radians equals a full
circle (right!). MATH.H doesn't provide a symbol for n, so we need the following #defines for our calcula
tions.

#define PI 3.141592654

#define START_ANGLE (.5 * PI)

Pi to nine digits is just fine. START_ANGLE equates to n/2 radians (90 degrees), which is the 12:00 position
on our clock. We store the tick points in an array, and by starting our calculations at n/2 radians, we ensure
that our array's zero index value will be at the 12:00 position. In other words, array position 10 is equal to 10
minutes after the hour, and so on. To calculate the point on the circle, we use the usual trig functions. The
equations are shown next, first in their mathematical form and then in C++ (@=theta).

II to get the x coordinate

cosine@ = x I r or x = cosine@ * r

x =cos(angle) * r

II To get they coordinate

sine@ = y I r OR y = sine@ * r

y = sin(angle) * r

APPLE 1109 - Page 111

402 + CHAPTER 9

rcBounds Upper Left Isn't at (0, 0)
Our calculations are a little more complicated than this, because the rcBounds parameter provided to
OnDraw by the container need not, and probably will not, provide the upper left coordinates as (0,0). If you
assume otherwise, you'll probably end up drawing in the container's client area, outside the control's rectan
gle. For performance reasons, most containers will not provide a clipping region for your control. A clipping
region provided by the container would ensure that, even if your control tried to draw outside the con
tainer's boundaries, the clipping region would clip it. Most containers do not provide clipping regions, so
you need to be careful not to draw outside the bounding rectangle provided by the container. This relation
ship between the container's client area and the control's site is shown in Figure 9.3.

(0, 0)

Figure 9.3 Container and control coordinates.

Drawing the Clock Hands
Drawing the hands for our clock is easy once we understand how to draw the ticks. We again use an imagi
nary circle that is inscribed within the outer circle. The length of each hand is determined by the radius of
the smaller circle. The hour hand will be one-half the size of the outer circle, so we divide the outer circle
radius by 2. The minute and second hands are the same length and are slightly smaller than the circle used
to draw the hour tick marks. Although the minute and second hands are the same length, we will draw
them with different thicknesses.

To make drawing the hands fast, we will maintain an array of points within our control class. This array
is calculated along with the tick marks array. In our initial implementation, we calculate these points every
time we draw the conh·ol. This requirement is very expensive, but we will eliminate it in a moment.

APPLE 1109 - Page 112

Controls -+

Here's the code that handles the ticks and the size and placement of our clock's hands. This code calcu
lates all possible tick and hand positions and stores them in an array. OnDraw then uses the calculated point
arrays later to do the drawing. This teclmique makes the drawing code fairly easy to understand.

II ClockCtl.CPP Implementation of the CClockCtrl OLE control class.

#include "stdafx.h"

#include "Clock.h"

#include "ClockCtl.h"

#include "ClockPpg.h"

#include <math.h>

#ifdef _DEBUG

#define PI 3.141592654

#define START_ANGLE (.5 * PI)

void CClockCtrl: :CalcTicksAndHands(CDC *pdc, const CRect& rcBounds)

int nRadius = rcBounds.Width() I 2;

double r2x, r2y, rlx, rly;

II Calculate the size of the hour and

II minute tick marks. We use a simple

II scaling method to determine the sizes.

short sHourTickLen = rcBounds.Width() I 20 + 2;

short sMinuteTickLen = rcBounds.Width() I 40 + 1;

II Calculate the minute and second hand arrays

double angle = START_ANGLE;

II The inscribing circle must be slightly smaller than the HourTick

II circle so that we won't "hit" it. We subtract an additional 2 pixels

II to ensure this.

II The radius of the circle for the minute and second hand coordinates

int r2 = nRadius - sHourTickLen 2;

II Work ourselves around the circle in 60 unit increments

II The radian angle changes within the loop

II r3 is the size of the hour hand. Half the radius

int r3 = nRadius 2;

for (int i 0; i < 60; i++

r2x cos(angle) * r2 + rcBounds.left;

APPLE 1109 - Page 113

404 + CHAPTER 9

fl The direction of the Y axis is reversed

I I when using the !1M_TEXT mapping mode. The Y

II axis increases as you move DOWN instead of up.

II We reverse the direction by negating the sin

r2y = -sin(angle

m_MinSecHands[i] .x

m_MinSecHands[ij .y

r2 + rcBounds.top;

short (r2x) ;

short (r2y) ;

II Calculate size of hour hand

r2x = cos(angle) r3 + rcBounds.left;

r2y = -sin(angle * r3 + rcBounds.top;

II Store the hour ticks in an array

m_HourHands[i] .x = short(r2x);

m_HourHands[i] .y = short(r2y) ;

angle -= (2 PI) I 60;

II Calculate the tick arrays

/!Calculate the small ticks for each minute

angle = START_ANGLE;

r2 = nRadius - sMinuteTickLen;

int rl = nRadius;

for (i = O; i < 60; i++

rlx cos(angle) rl + rcBounds.left;

rly -sin(angle) * r1 + rcBounds.top;

r2x = cos(angle) r2 rcBounds.left;

r2y = -sin(angle) r2 + rcBounds.top;

II Each tick is composed of two points

II store them in a 2x60 array of points

m_MinuteTicks[OJ [i) .x short(rlx) ;

m_MinuteTicks[OJ [i] .y short(rly);

m_MinuteTicks[l] [i] .x short(r2x) ;

m_MinuteTicks[l] [i] .y short(r2y);

II Get the next radian angle

angle -= (2 PI) I 60;

II Calculate the hour ticks

APPLE 1109 - Page 114

angle = START_ANGLE;

r2 = nRadius sHourTickLen;

for { i = O; i < 12; i++)

II Get the point on the outer circle

rlx cos(angle rl + rcBounds.left;

rly -sin(angle) rl + rcBounds.top;

II Get the point on the inner {smaller) circle

r2x = cos(angle r2 + rcBounds.left;

r2y =-sin(angle) * r2 + rcBounds.top;

!/Each tick is composed of two points

II store them in a 2x12 array of points

m_HourTicks[OJ [iJ .x =short(rlx);

m_HourTicks[O] [i] .y short(rly) ;

m_HourTicks[l] [i] .x short(r2x) ;

m_HourTicks[l] [iJ .y =short(r2y);

angle (2 PI) I 12;

Drawing the Clock's Tick Marks and Hands

Controls + 405

Once we've calculated everything and stored it in the member arrays, the drawing is straightforward. Here
is the code to draw the tick marks. We iterate through our two-dimensional array and use the MoveTo and
LineTo drawing primitives.

II Draw the minute/second ticks

for (int i = O; i < 60; i++)

pdc->MoveTo(m_MinuteTicks[O] [i]) ;

pdc->LineTo(m_MinuteTicks[l] [i]) ;

II Draw the hour ticks

II with a larger pen

CPen penBlk(PS_SOLID, 2, RGB(OxOO, OxOO, OxOO)) ;

pdc->SelectObject(&penBlk) ;

for (i = O; i < 12; i++)

pdc->MoveTo(m_HourTicks[OJ [i]) ;

pdc->LineTo(m_HourTicks[lJ [iJ) ;

APPLE 1109 - Page 115

406 CHAPTER 9

Drawing each of the hands is only slightly more complicated. We use the time-minute, hour, or second-as
an offset within the appropriate array. The drawing of each hand is very similar, so I've shown only the
hour hand code. The only tricky part is calculating the array offset for the hour.

II Use the foreground color for the clock hands

II Draw the hour hand

int iPenWidth = 1;

CPen penHour(PS_SOLID, iPenWidth + 3, TranslateColor(GetForeColor())) ;

pdc->SelectObject(&penHour) ;

II Move to the center of the bounding rectangle

pdc->MoveTo(ptCenter) ;

II An hour spans 5 minute ticks plus the number of minutes divided

II by 12. This provides the gradual movement of the hour hand.

int wHourTick = (m_wHour * 5) + (int) (m_wMinute I 12) ;

II Draw from the center to the array point

pdc->LineTo(m_HourHands[wHourTick]) ;

Getting the Current Time
To have an accurate clock, we need to get the time from the operating system. MFC provides a CTime class
that also isolates the platform differences in time functions. So we can write the Get Time function like this:

void CClockCtrl: :GetTime()

CTime time= CTime::GetCurrentTime();

m_wHour = time. GetHour () ;

if (m_wHour >= 12)

m_wHour -= 12;

m_wMinute = time.GetMinute();

m_wsecond = time.GetSecond();

Before we see the complete OnDraw source, there is one more thing that we need to cover: Windows map
ping modes.

Mapping Modes
Figure 9.2 depicts the Cartesian coordinate system that we've all used, but the device context that we get
from the container won't provide us with such a coordinate system. We must create it ourselves. To do so,
we need a quick review of Windows' mapping modes. For a more detailed treatment, see Programming
Windows 3.1, Third Edition, by Charles Petzold (Microsoft Press), and the Win32 SDK documentation.

APPLE 1109 - Page 116

ical Controls + 407

A mapping mode is another attribute of the device context. To understand mapping modes, you must
first understand the difference between logical coordinates and device coordinates. Device coordinates are
described in terms of pixels, a unit whose size is dependent on the type of display you are using. If you spec
ify an area of 320 by 240 pixels (or device units) and if the program is running on a VGA monitor (640x480),
the area will cover one quarter of the screen (half the width and half the height). The true size of a pixel is
dependent on the underlying hardware. If you want a control whose size is always 1 inch by 1 inch, you
must use logical coordinates, and one of Windows' physical unit mapping modes.

Windows' eight mapping modes are listed in Table 9.2. Each mapping mode creates a logical space that
is mapped to the physical space of the display or printer.

Mapping Mode

MM_TEXT

MM_HIMETRIC

MM_LOMETRIC

MM_HIENGLISH

MM_LOENGLISH

MM_TWIPS

MM_ANISOTROPIC

MM_ISOTROPIC

Table 9.2 Windows Mapping Modes

Description

Maps one logical unit to one device unit or pixel. The positive y-axis extends downward.

Maps one logical unit to 0.01 millimeters. The positive y-axis extends upward.

Maps one logical unit to 0.1 millimeters. The positive y-axis extends upward.

Maps one logical unit to 0.001 inches. The positive y-axis extends upward.

Maps one logical unit to 0.01 inches. The positive y-axis extends upward.

Maps one logical unit to one twentieth of a point, or 1 /1440 inches. The positive y-axis extends

upward.

Maps a logical unit to an arbitrary physical unit specified by the developer. Both the x-axis and the

y-axis can be arbitrarily scaled. This allows stretching of the coordinate system.

Maps a logical unit to an arbitrary physical unit specified by the developer. The x-axis and y-axis

maintain a 1-to-1 ratio.

The easiest mapping mode to work with is MM_TEXT. In this mapping mode, device coordinates and logical
coordinates are the same. To put it another way, the logical coordinates map directly to pixels. In MM_TEXT,

the upper left corner is point (0,0); Y increases as you move down, and X increases as you move across the
screen. The initial view of a DC with an MM_TEXT mapping mode is depicted in Figure 9.4.

The initial setup of our device context will be like Figure 9.4. This is just one quadrant of the Cartesian
coordinate system. We need to adjust the coordinate system so that it reflects what we used back when we
were learning trig. We adjust the coordinate system by changing the mapping of the logical coordinates to
device coordinates with the CDC method SetWindowOrg. SetWindowOrg changes the mapping of logical
coordinates to device coordinates. Initially, logical point (0,0) maps to device point (0,0). Device point (0,0) is
always the upper left corner of the device. To change the coordinate system for our logical points, we use
SetWindowOrg, which takes as a parameter a logical point. After the call, the logical point provided will
map to the device point (0,0). This technique changes our logical coordinate system to that of Figure 9.5.

APPLE 1109 - Page 117

+CHAPTER 9

x-axis increases

y-axis increases

Figure 9.4 Default MM_ TEXT settings.

-y

-x
(0,0)

+x

+y

Figure 9.5 New logical coordinates.

This system is slightly different from the coordinate system we're used to. As you can see, the y-axis
increases as you move down the axis instead of when moving up. This isn't a serious problem; we just
adjust the calculation of the Y point when calculating the arrays for the clock's ticks and hands. The follow
ing code, from CalcTicksAndHands, illustrates this change:

APPLE 1109 - Page 118

II Work ourselves around the circle in 60 unit increments

II The radian angle changes within the loop

II r3 is the size of the hour hand. Half the radius

int r3 = nRadius 2·

for (int i = O; i < 60; i++

r2x =cos(angle) * r2 + rcBounds.left;

II The direction of the Y axis is reversed

I I when using the HM_TEXT mapping mode. The Y

/I axis increases as you move DOw'N instead of up.

II We reverse the direction by negating the sin

r2y =-sin(angle) * r2 + rcBounds.top;

m_MinSecHands(i] .x short(r2x) ;

m_MinSecHands[i] .y short(r2y);

II Calculate size of hour hand

r2x cos(angle) * r3 + rcBounds.left;

r2y -sin(angle r3 + rcBounds.top;

II Store the hour ticks in an array

m_HourHands[i] .x short(r2x) ;

m_HourHands[i] .y short(r2y) ;

angle -= (2 * PI) I 60;

Controls -+- 409

Once we have the device context set to a coordinate system that maps the logical coordinates to what we
expect, the calculation of the drawing points is relatively easy. The following code sets up a logical coordi
nate system like that in Figure 9.5:

II Set the coordinate system so that the point

II (rcBounds.left, rcBounds.top) is in the

II center of the control's bounding rectangle

pdc->SetWindowOrg(-(nRadius * 2) I 2, -(nRadius * 2) I 2) ;

POINT ptCenter;

ptCenter.x rcBounds.left;

ptCenter.y rcBounds.top;

APPLE 1109 - Page 119

410 +CHAPTER 9

I promised the complete OnDraw source, and here it is. It uses the other functions that we've investigated:
CalcTicksAndHands and GetTime. The source that needs to be added to CLOCKCTL.H is also provided.

I I clockctl. h

class CClockCtrl : public COleControl

DECLARE_DYNCREATE(CClockCtrl)

II Implementation

protected:

-CClockCtrl();

} ;

void

void

WORD

WORD

WORD

POINT

POINT

POINT

POINT

GetTime();

CalcTicksAndHands(CDC*, const CRect& l;

m_wHour;

rn_wMinute;

m_wSecond;

rn_HourHands[60];

rn_MinSecHands[60];

rn_MinuteTicks[2] [60];

rn_HourTicks[2] [12];

II clockctl.cpp

void CClockCtrl: :OnDraw(CDC* pdc, const CRect& rcBounds, const CRect& rcinvalid)

II Create a brush for the background

CBrush bkBrush(TranslateColor(GetBackColor()));

CBrush* pOldBrush = pdc->SelectObject(&bkBrush);

II Select a solid black pen 1 pixel wide

CPen penBlack(PS_SOLID, 1, RGB{ OxOO, OxOO, OxOO));

CPen* pOldPen = pdc->SelectObject{ &penBlack);

pdc->FillRect(rcBounds, &bkBrush);

II draw the face of the clock

pdc->Ellipse{ LPCRECT(rcBounds)) ;

int nRadius = rcBounds. Width() I 2;

APPLE 1109 - Page 120

II Calculate the tick and hand arrays

CalcTicksAndHands(pdc, rcBounds);

II Set the coordinate system so that the point 0,0 is in the

II center of the control's bounding rectangle (square)

pdc->SetWindowOrg(-(nRadius 2) I 2, -(nRadius 2) I 2) ;

POINT ptCenter;

ptCenter.x rcBounds.left;

ptCenter.y rcBounds.top;

/I Draw the minute/second ticks

for (int i = O; i < 60; i++)

pdc->MoveTo(m_MinuteTicks[O] [i]);

pdc->LineTo(m_MinuteTicks[l] [i]) ;

!I Draw the hour ticks

II with a larger pen

CPen penBlk(PS_SOLID, 2, RGB(OxOO, OxOO, OxOO)) ;

pdc->SelectObject(&penBlk);

for (i = O; i < 12; i++)

pdc->MoveTo(m_HourTicks[OJ [i]);

pdc->LineTo(m_HourTicks[l] [i]);

II Get the current time

GetTime();

II Use the foreground color for the clock hands

II Draw the hour hand

int iPenWidth = l;

CPen penHour(PS_SOLID, iPenWidth + 3, TranslateColor(GetForeColor())) ;

pdc->SelectObject(&penHour);

pdc->MoveTo(ptCenter);

int wHourTick = (m_wHour * 5) + (int) (m_wMinute I 12);

pdc->LineTo(m_HourHands[wHourTickl);

fl Draw the minute hand

CPen pen11in(PS_SOLID, iPenWidth + 2, TranslateColor(GetForeColor()));

pdc->SelectObject (&penMin) ;

Controls + 11

APPLE 1109 - Page 121

1 2 + CHAPTER 9

pdc->MoveTo (ptCenter);

pdc->LineTo (m_J1inSecHands [m_wMinute]) i

II Draw the second hand

CPen penSecond(PS_SOLID, iPenWidth, TranslateColor(GetForeColor())) ;

pdc->SelectObject(&penSecond) ;

pdc->MoveTo(ptCenter);

pdc->LineTo(m_MinSecHands[m_wSecond]);

II Restore the device context

pdc->SelectObject(pOldBrush);

pdc->SelectObject(pOldPen) ;

We've covered almost everything in the source. As you can see, we use several different pen sizes when we
draw the clock's outline, tick marks, and hands. We use the ForeColor for the hand color but have hard
coded a black pen for the clock's outline and tick marks. A nice exercise would be to provide a custom color
property to allow the user to change these. The CLOCK project on the accompanying CD-ROM provides
this feature (and others).

To make our clock tick, we'll implement a timer that will fire every second. This is similar to what we did in
Chapter 8, but we now want the timer to fire continually. Use Class Wizard to add a WM_TIMER handler to
the CClockCtrl class and add the following code:

void CClockCtrl: :OnTimer(UINT nIDEvent)

InvalidateControl();

COleControl: :OnTimer(nIDEvent);

N 0 T E

Use of the WM_TIMER message requires a true HWND for our clock control. A window for a control
isn't created unless the container activates the control. ControlWizard set the OLEMISC_ACTIVATE
WHENVISIBLE flag for our control, so control containers should provide this functionality.

Whenever the timer fires, we call COleControl: : InvalidateControl, forcing a redraw. You should
use this method instead of directly calling the OnDraw method, primarily because you don't know which
DC to pass to it.

We need to add Start Timer and StopTimer methods to the class just as we did in Chapter 8. Add
the declarations to CLOCKCTL.H and then add the following code to CLOCKCTL.CPP:

APPLE 1109 - Page 122

#define TIMER_ID 100

CClockCtrl::StartTimer()

SetTimer(TIMER_ID, 1000, NULL);

CClockCtrl: : StopTimer ()

KilITimer(TIMER_ID);

Controls + 4 1

We want the clock to run only when the container is in run mode and the control is enabled. To ensure this,
we check the AmbientUserMode and Enabled properties at various places within the control.

When and where should we start the timer? A logical choice might be when the UserMode ambient
property changes. A new value of TRUE would signal a StartTimer, and a value of FALSE would cause a
call to StopTimer. Code such as the following would take care of this. We also check to make sure that the
control is enabled.

void CClockCtrl: :OnAmbientPropertyChange(DISPID dispid)

if (dispid == DISPID_AMBIENT_USERMODE I I dispid == DISPID_UNKNOWN

if (AmbientUserMode() && GetEnabled())

StartTimer();

else

StopTimer();

The problem is that I've tried the preceding code with many containers, and it doesn't work. Apparently the
containers don't call the IOleControl: : OnAmbientPropertyChange method when switching from
design mode to run mode. (Some of the samples included with Visual C++ use this method, but don't be
fooled. It doesn't work.) The ActiveX control standard is still young, and it doesn't specify the exact behavior
of containers. There are still areas that need a more solid definition.

This code doesn't work because a control's instance is usually deleted and re-created when a container
goes from run mode to design mode, and the ambient property has no chance to change. This is an attribute
of the container and so may vary. The previous method will work for containers that maintain the instance
of a control when switching between design mode and run mode, so we should include it in our control's
code.

If a control's instance is deleted and re-created when the container switches modes, we are assured that
the control's HWND will also be deleted and re-created. To trap this event and possibly start the timer, we
override COleControl: : OnCreate. Using Class Wizard, add a handler for the WM_CREATE message. Then
add the following code:

APPLE 1109 - Page 123

414 +CHAPTER 9

int CClockCtrl: :OnCreate(LPCREATESTRUCT lpCreateStruct)

if (COleControl: :OnCreate(lpCreateStruct) == -1)

return -1;

if (J\.mbientuserMode () && GetEnabled ())

StartTimer();

return O;

N 0 T E

The preceding code is again dependent on the creation of a window for the control. As discussed in
the previous note, a container that honors the OLEMISC_ACTIVEWHENVISIBLE flag will provide an
HWND for the control. In our case, we need the actual window only at run time.

This code works in all the containers that I've tested. When the control's HWND is created, we check the
UserMode and Enabled properties. If they are both TRUE, we start the timer. To be safe, you could imple
ment both methods described previously and use a Boolean flag such as m_bTimerStarted to ensure that
you don't start the timer twice if both events occur.

To ensure that the timer is stopped when the control is desh·oyed, we trap the WM_DESTROY message
that is generated by Windows whenever a window is destroyed. Use Class Wizard to trap WM_DESTROY and
add the following code:

void CClockCtrl: :OnDestroy()

COleControl: :OnDestroy();

StopTimer();

We also start and stop the timer when the control's Enabled property is changed at run time. The following
code from CLOCKCTL.CPP, handles this situation. You must also add the declaration to CLOCKCTL.H.

void CClockCtrl: :OnEnabledChanged()

II Only start the timer if in run mode

if (J\.mbientuserMode ())

II Only start the timer if the control is enabled

if (GetEnabled()

StartTimer();

else

StopTimer ();

APPLE 1109 - Page 124

Controls -+- 1 5

AmbientUIDead
TI1ere is one other place where we need to shut down the clock. A container actually has three modes of
operation. The AmbientUserMode property handles the first two: design mode and run mode. The third
mode occurs when a development tool that uses ActiveX control containers runs in debug mode. When
debugging, the tool user may be single-stepping through its (usually) interpreted language. During this
time, it is recommended that controls disable any user input and basically act as if they have been disabled.
The AmbientUIDead method provides a way to check the container's state. To provide support for this
mode as well as the others we've discussed, the OnAmbientPropertyChange method looks like this:

void CClockCtrl: :OnAmbientPropertyChange(DISPID dispid)

if dispid == DISPID_AMBIENT_USERMODE 11

dispid == DISPID_AMBIENT_UIDEAD 11

dispid == DISPID_UNF1~0W1I)

if (AmbientuserMode () && GetEnabled () && ! AmbientUIDead ())

StartTimer();

else

StopTimer();

else

/!.Just redraw the control

InvalidateControl();

In Visual Basic when you press Ctrl-Break, the OnAmbientPropertyChange method is called with a
DISPID of DISPID_AMBIENT_UIDEAD. The AmbientUIDead method returns TRUE and we stop the timer.
When the user presses FS to run, the method is called again, AmbientUIDead returns FALSE, and we
restart the timer.

We've added quite a bit of code, so let's give the clock a test. Compile and link the project and insert it into
the Test Container. There isn't much you can do with the clock except let it run (Figure 9.6). You can change
the background and foreground colors and so on, but we've done that before. Let's add some more features.

APPLE 1109 - Page 125

416 +CHAPTER 9

Figure 9.6 Clock control in the Test Container.

Restricting the Size or Shape of the Control
To simplify the drawing of our clock, we'll ensure that the area bounding the control is square. This is easy
to do. When the user of the control (usually in design mode) attempts to change its size or extents, the con
tainer will notify the control through the COleControl: : OnSetExtent method. OnSetExtent receives
the new extents for the control. The control can leave the new extents as they are, or it can change them to
whatever it wants.

For our purposes, we require only that the resulting area be square. First we override OnSetExtent in
our control's class, and then we ensure that the returned SIZEL structure contains a square extent. The
SIZEL structure contains a width (ex) and height (cy) of type long:

typedef struct tagSIZE

LONG ex;

LONG cy;

SIZE, *PSIZE, *LPSIZE;

typedef SIZE SIZEL;

typedef SIZE *PSIZEL, *LPSIZEL;

Add the following code to CLOCKCTL.H and CLOCKCTL.CPP:

APPLE 1109 - Page 126

II clockctl.h Declaration of the CClockCtrl OLE control class.

class CClockCtrl public COleControl

II Overrides

virtual BOOL CClockCtrl: :OnSetExtent(LPSIZEL lpSizeL);

};

II clockctl.cpp

BOOL CClockCtrl: :OnSetExtent(LPSIZEL lpSizeL)

{

II Make sure the extent is a square

II Use the smaller of the sizes for the square

if { lpSizeL->cy <= lpSizeL->cx

lpSizeL->cx = lpSizeL->cy;

else

lpSizeL->cy = lpSizeL->cx;

II Call the parent implementation

return COleControl::OnSetExtent(lpSizeL);

Controls -+- 4 1 7

Most of OLE uses HIMETRIC units for all its sizes and measurements. The SIZEL structure provides the
new extents in HIMETRIC units. If your control uses some other unit, you must convert it to HIMETRIC
before modifying the SIZEL structure. In our case, we don't care about the size. We just want it to be square,
so we take the smaller of the two sizes and assign that value to the other.

Calculating HIMETRIC Units
If you want your control to be a certain size, you may need to convert the device units into HIMETRIC units.
Here's how to do it. If we wanted our clock to always be 200 by 200 pixels in size, basically not allowing the
user to resize the control, we would convert our units (pixels) to HIMETRIC units and return this value in
the SIZEL structure. We could do something like this:

#define HIMETRIC_PER_INCH 2540 II HIMETRIC units per inch

BOOL CClockCtrl: :OnSetExtent(LPSIZEL lpSizeL)

CDC cdc;

cdc.CreateCompatibleDC(NULL) ;

APPLE 1109 - Page 127

418 +CHAPTER 9

II One way to do it

long lpx cdc.GetDeviceCaps(LOGPIXELSX) ;

lpSizeL->cx = MulDiv(200, HIMETRIC_PER_INCH, lpx) ;

long lpy = cdc.GetDeviceCaps(LOGPIXELSY) ;

lpSizeL->cy = MulDiv(200, HIMETRIC_PER_INCH, lpy) ;

II Another, easier way to do it

CSize size(200, 200) ;

II Convert the device units to HIMETRIC units

cdc.DPtoHIMETRIC(&size) ;

lpSizeL->cx size.ex;

lpSizeL->cy size.cy;

II Call the parent implementation

return COleControl: :OnSetExtent(lpSizeL) ;

The preceding code creates a CDC object and then calls CreateCornpatibleDC. By passing NULL as the
parameter, we get a DC that is compatible with the main display. We then call GetDeviceCaps to deter
mine the number of logical pixels per inch for the display. We use the Windows MulDi v function to multi
ply HIMETRIC_PER_INCH by 200 and then divide the result by the logical pixels. This calculation gives us
the number of HIMETRIC units equal to 200 logical pixels. We do this for both the width (ex) and height
(cy). The result is stored in the SIZEL structure, which is passed to the parent's method. This approach
ensures that our clock conh·ol will always be 200 by 200 logical pixels. I've also shown another way to do it
using the CDC: : DPtoHIMETRIC method. I included the first method to show you how to get device capa
bilities using GetDeviceCaps.

If, on the other hand, we want our clock to always be 1 inch by 1 inch independent of the display, the
OnSetExtent method could be coded like this:

#define HIMETRIC_PER_INCH 2540 II HIMETRIC units per inch

BOOL CClockCtrl: :OnSetExtent(LPSIZEL lpSizeL)

II Set the SIZEL structure to be a 1-inch square

lpSizeL->cx = lpSizeL->cy = HIMETRIC_PER_INCH;

II Call the parent implementation

return COleControl: :OnSetExtent(lpSizeL) ;

The OnSetExtent code is easy, because the SIZEL structure is in logical HIMETRIC units. The
SetinitialSize call in the control's constructor would be a just little more complicated, because it
expects its dimensions in pixels:

CClockCtrl: :CClockCtrl()

APPLE 1109 - Page 128

InitializeIIDs(&IID_DClock, &IID_DClockEvents);

II TODO: Initialize your control's instance data here.

CDC cdc;

cdc.CreateCompatibleDC(NULL) ;

int ex = cdc.GetDeviceCaps(LOGPIXELSX) ;

int cy = cdc.GetDeviceCaps(LOGPIXELSY) ;

II Set the initial control size to a one-inch square

SetinitialSize(ex, cy) ;

Controls -+- 419

This code is similar to what we did earlier. We create a CDC object that is compatible with the display, and
we use the GetDeviceCaps method to get the logical number of pixels per inch. We then use the result to
set the initial size of our control. The actual size of the control will always be physically 1 inch by 1 inch
regardless of the resolution of the display device.

As you've probably noticed, the clock "flickers" every time the control is redrawn. The redraw occurs 60
times per minute, and the flicker is annoying. You would have a rough time selling such a control, with its
unprofessional appearance. The solution to the flicker problem is to use an "off-screen" device context.

We're familiar with the purpose of a device context. Our control currently draws into the device context
provided by the container. It draws directly on the display screen (or printer), and as the control is redrawn
each second, this drawing process can be "seen." This redraw causes the flicker. To eliminate the problem
and also to simplify the drawing code, we will draw first into a memory device context. Then we will bit-blt
the contents of the memory DC to the screen DC. The speed and directness of the bit-blt transfer will elimi
nate any discernible flicker.

Using a memory DC also makes the drawing more efficient. We will call the CalcHandsAndTicks
method only when the size of the control changes. Resizing occurs infrequently anyway, and we shouldn't
be calculating the arrays every time we draw the control. We will also eliminate the need for the array calcu
lation routine to adjust its points when the rcBounds upper left corner is not (0,0).

First, we'll add three members to the control class: a CBi tmap pointer to hold a bitmap compatible with
the control, a CSize member to keep track of tl1e control's current size, and a Boolean switch to indicate
whether the control's size has changed:

I I clockctl. h

II Implementation

protected:

-CClockCtrl();

APPLE 1109 - Page 129

420 + CHAPTER 9

};

BOOL m_bResize;

CBitmap* m_pBitmap;

CSize m_sizeControl;

II clock.cpp

lll

II CClockCtrl: :CClockCtrl - Constructor

CClockCtrl::CClockCtrl()

m_bResize = TRUE;

m_pBitmap = NULL;

m_sizeControl.cy = m_sizeControl.cx O;

lll

II CClockCtrl: :-CClockCtrl - Destructor

CClockCtrl::-CClockCtrl()

II delete the bitmap for the control

delete m_pBitmap;

Next, we move the clock drawing code to another method, Drawe lock. This new method does not use the
re Invalid parameter and can also assume that the rcBounds parameter will have an upper left corner of
(0,0). We can assume this because we ensure it when we create the memory device context and pass it to the
DrawClock method. There is now a check of the m_bResize member variable to determine whether the
control's size has changed. We recalculate the clock's tick marks and hand arrays only when the conh·ol is
resized. The resize event is caught in the new OnDraw code that we will discuss in a moment.

void CClockCtrl: :DrawClock(CDC *pdc, const CRect& rcBounds

fl Make sure that we don't get an invalid rcBounds

/I It should now always have an upper left of 0,0

ASSERT(rcBounds.left == 0);

ASSERT{ rcBounds.top == 0);

Ii Our center will now always be 0,0 after the

II SetWindowOrg call

CPoint ptCenter(0, 0);

APPLE 1109 - Page 130

//ptCenter.x rcBounds.left;

//ptCenter.y rcBounds.top;

GetTime();

I/ Only recalc the arrays when the control's size changes

if m_bResize

m_bResize = FALSE;

CalcTicksAnd.qands(pdc, rcBounds);

Controls + 421

When we call the CalcTicksAndHands method in DrawClock, we know that the upper left corner of
rcBounds is (0,0), so we can simplify the code in CalcTicksAndHands by removing the addition of
rcBounds. left and rcBounds. top in our calculations:

#define PI 3.141592654

#define START_ANGLE (.5 * PI)

void CClockCtrl::CalcTicksAndHands(CDC *pdc, const CRect& rcBounds)

II

II Calculate the hand arrays

double angle = START_ANGLE;

double r2x, r2y, rlx, rly;

int r2 nRadius - sHourTickLen - 2;

II r3 is the hour hand, half the radius

int r3 = nRadius 2·

for (int i = O; i < 60;. i++

II rcBounds.left is always zero now

r2x cos(angle) r2 + rcBounds.left;

II r2y = -sin(angle) * r2 + rcBounds.top;

r2x = cos(angle) r2;

r2y = -sin(angle) r2;

m_MinSecHands[i] .x (short) r2x;

m_MinSecHands[i] .y (short) r2y;

II Calculate size of hour hand

II r2x cos(angle) r3 + rcBounds.left;

II r2y -sin(angle * r3 + rcBounds.top;

r2x = cos(angle r3;

r2y = -sin(angle * r3;

APPLE 1109 - Page 131

422 + CHAPTER 9

m_HourHands[i] .x

m_HourHands[i] .y

(short) r2x;

(short) r2y;

angle -= (2 * PI) I 60;

Then we change the OnDraw code to look like this:

void CClockCtrl: :OnDraw(CDC* pdc, const CRect& rcBounds, const CRect& rcinvalid)

I I Our memory DC

CDC dcMem;

II Initialize our memory DC to the characteristics

II of the DC provided by the container.

dcMem.CreateCompatibleDC(pdc);

II If the bounding rectangle has changed

II We need to re-create our bitmap and

II recalculate the clock's ticks and hands

if (m_sizeControl != rcBounds.Size())

II Save the new size of the control

m_sizeControl = rcBounds.Size();

II This flag is used by the control drawing

II routine to determine if it should recalc

II the clock's ticks, hands, etc.

m_bResize = TRUE;

II delete any existing bitmap and create

I I a new one

if (m_pBitmap

delete m_pBitmap;

m_pBitmap = new CBitmap;

II Create a bitmap compatible with the current

ii DC provided by the container

m_pBitmap->CreateCompatibleBitmap(pdc,

rcBounds. Width() ,

rcBounds.Height());

APPLE 1109 - Page 132

II Select the compatible bitmap into our

fl memory DC and save the old bitmap.

CBitmap* pOldBitmap = dcMem.SelectObject(m_pBitmap) ;

II Create a bounding rectangle with upper left corner of 0,0

CRect rcDrawBounds(0, 0, rcBounds.Width(), rcBounds.Height());

II Save the memory DC's state

JI so that DrawClock can modify it

int iSavedDC = dcMem. SaveDC () ;

II Draw the clock into our memory DC

DrawClock (&dcMem, rcDrawBounds) ;

II Restore the DC

dcMem.RestoreDC{ iSavedDC);

II BitBlt the memory DC representation

II into the actual screen DC

pdc->BitBlt(rcBounds.left,

rcBounds.top,

rcBounds.Width(),

rcBounds.Height{),

&dcMem,

0,

0,

SRCCOPY) ;

II Restore the old bitmap, it will be

II destroyed when the memory DC goes

II out of scope.

dcMem.SelectObject(pOldBitmap) ;

Controls + 423

I've commented the code, so I'll just hit the high points here. On entry to OnDraw, we create an instance of
the CDC class to use as our memory-based DC. By calling CreateCompatibleDC, we initialize the DC to be
compatible with the DC provided by the container. The initial DC returned by CreateCompatibleDC can
not be used until it is initialized with an appropriate bitmap for the control (which we will do in a moment).
When we're using an off-screen (or memory) DC, the drawing of the control (using various CDC methods)
modifies or "draws into" the bitmap of the DC. Later, the CDC: : Bi tBl t method will copy this bitmap into
the screen (or printer) device context.

Next, we determine whether the control's size has changed. If it has, we set the m_bResize variable to
TRUE to indicate to DrawClock that it needs to recalculate the arrays of clock ticks and hand points. We
then save the new size of the control so that we won't execute this code unless the control's size changes
again.

APPLE 1109 - Page 133

424 -+- CHAPTER 9

Each time the size of the control changes, we re-create our CBi tmap instance. As described previously,
the rendering of the control in the memory DC occurs in the bitmap of the DC. We need to ensure that the
bitmap is of the proper size and color depth of the container-provided DC. First, we delete any existing
instance of the bitmap and create another CBi tmap instance. The next call, CreateCompatibleBi tmap,

creates a bitmap for our memory DC that is compatible with the DC provided by the container. (It has the
same color depth and so on.) All this occurs only if the user has resized the control during the design phase.
At run time, this code is executed only once: when the control is initially created.

Once we have a compatible memory DC and a bitmap that will support the rendering of our control,
we use the SelectObject method to select the bitmap into the memory DC. Next, we create a temporary
CRect object with the extents of the control. We also ensure that the upper left coordinates are (0,0). This
approach makes the drawing code in DrawClock and CalcHandsAndTicks less complicated. We save the
state of the DC and call DrawClock with the memory DC and the CRect object. DrawClock renders
directly into the memory DC (modifying its bitmap). DrawClock behaves as if it were drawing with a
screen-based DC. When DrawClock returns, the memory DC's state is restored and the memory DC (basi
cally its bitmap) is copied to the screen DC using the Bi tBl t method. The first four parameters of Bi tBl t

specify the location and size of the transfer within the destination DC (the screen). We use the rcBounds left
and top values as the starting location of the destination and use the Width and Height methods to indi
cate the size of the destination rectangle. The fifth parameter is the source DC (our memory DC). The next
two parameters provide the upper left starting points of the source DC. Because our memory DC's bounds
start at (0,0), we specify 0,0 as the starting coordinates of the source DC. We're finished. The clock is drawn
without any noticeable flicker. All that is left is the cleanup step of selecting the previous bitmap back into
our memory DC. If we forget this step, m_pBi tmap, the compatible bitmap that we are maintaining for our
conh·ol, would be deleted.

rdnvalid
The rcinvalid parameter passed to OnDraw is provided by the container, and it indicates the area of the
control's image that needs to be rendered. In many cases this parameter will contain the same coordinates
t11at are provided by rcBounds, but when the container determines that only a portion of the control needs
to be rendered, rcinvalid will contain only the invalid region of the control. Use of the re Invalid para
meter can provide an alternative way of optimizing drawing of your controls, and you may not need to add
the complexity of using a memory-based device context as discussed previously. We can also use it with our
memory-based DC approach by copying only the area of the control that the container indicates is invalid.
We do this by changing the parameters of the Bi tBl t call in the OnDraw method:

void CClockCtrl: :OnDraw(CDC* pdc, const CRect& rcBounds, const CRect& rcinvalid)

II BitBlt the memory DC representation

II into the actual screen DC

II By using the rcinvalid rectangle

II We may only copy a partial image of the

APPLE 1109 - Page 134

II clock. This will improve performance

pdc->BitBlt(rcinvalid.left,

rcinvalid. top,

rcinvalid.Width(),

rcinvalid.Height(),

&dcMem,

rcinvalid.left - rcBounds.left,

rcinvalid.top - rcBounds.top,

SRCCOPY) ;

II Restore the old bitmap, it will be

II destroyed when the memory DC goes

II out of scope.

dcMem.SelectObject(pOldBitmap) ;

Controls -+- 425

We use the rcinvalid rectangle instead of the rcBounds rectangle we used previously. Using this tech
nique, the size of the destination area may be different from the size of the bitmap in our memory-based DC.
We adjust the source DC coordinates by subtracting the left and top bounding points from the left and top
rcinvalid points. This technique ensures that the source starting corner maps to the rcinvalid-based
destination corner. Using this approach, we bit-blt only the area of the control that needs to be repainted.

There is one problem with the memory-based DC approach to drawing controls. Under certain condi
tions, a control's container may request that the control render itself into a metafile device context. As you'll
see in a moment, some of the preceding techniques won't work when we're drawing into a metafile DC.
That's the reason we separated the drawing code for the clock.

A metafile is a recording of a series of GDI function calls that can be stored in memory or on disk. These
metafiles can be "replayed" to reproduce a copy of the original image. Some containers may use a metafile
to represent the visual portion of a control. Control containers typically do this only during the design
phase, and most containers that I've used employ the metafile representation only when printing an image
of the control. Because of the difficulties of rendering to metafiles, I imagine that most control containers will
provide a true screen device context during both design mode and run mode and require the control to pro
vide a metafile representation only when printing.

A metafile representation of a visual server's image is used extensively by OLE compound document
containers. This arrangement allows the container to display an image without activating the visual editing
server. For large visual editing server applications (such as Excel), this is appropriate, but ActiveX controls
are much smaller and expect to be active whenever they are visible. This means that they will have an HWND

and device context and do not need to provide a metafile representation. But with a little forethought in the
design of your controls, it is not difficult to provide a good metafile representation of your control.

APPLE 1109 - Page 135

426 -+ CHAPTER 9

On Draw Metafile
COleControl provides a method, OnDrawMetafile, that is called explicitly when the container requires a
metafile representation. The default implementation calls the control's OnDraw method. We've added some
CDC methods that are not supported in metafiles, so we need to override OnDrawMetafile for our control.
All the code in the OnDraw method deals with setting up and drawing into a memory DC, and the drawing
code is in DrawClock. In our OnDrawMetafile method, we pass the provided metafile DC to our
DrawClock method:

class CClockCtrl : public COleControl

II Overrides

virtual void OnDrawMetafile (CDC-k pdc, canst CRect& rcBounds) ;

};

void CClockCtrl: :OnDrawMetafile(CDC* pdc, canst CRect& rcBounds)

ASSERT(rcBounds.left == 0);

ASSERT(rcBounds.top == 0);

DrawClock(pdc, rcBounds);

The metafile DC's upper left corner will always be (0,0). This is important, because we changed our
DrawClock method to require an upper left corner of (0,0). To test this assertion, I've added two ASSERT

macros that check the coordinates to ensure that they are always (0,0).

Metafile Restrictions
Metafile device contexts have a few restrictions. Because metafile DCs are not associated with a true device
(such as the display), certain DC-related functions will not work properly when used with a metafile DC.
The CDC methods that should not be used when you're drawing into a metafile DC can be described as
groups of functions that act specifically on a device (Table 9.3). The physical device context is not known
when you're drawing into the metafile DC.

APPLE 1109 - Page 136

Controls + 427

Table 9.3 CDC Methods that Shouldn't Be Used with Metafiles

Method Group Example Methods

Methods that retrieve data from the physical device. GetDeviceCaps, GetTextColor, GetTextMetrics,

This includes most Get* and Enum* methods. EnumFonts, EnumObj ects, DPtoLP, LPtoDP, etc.

Methods that appear to be GDI functions but in reality DrawText, TabbedTextOut, InvertRect, Drawicon,

are implemented by other parts of the Windows DrawFocusRect, FrameRect, GrayString, etc.

operating system.

Methods that expect the device context to be SaveDC, RestoreDC, CreateCompatibleDC,

associated with a physical device. CreateCompatibleBitmap, etc.

You can use most of these methods when drawing in a metafile DC, but they will have no effect when the
metafile is subsequently played. The main reason we separated the OnDraw and Drawe lock code is that we
wanted to place the code that is not supported by metafiles (all the code needed to draw in an off-screen DC)
in a separate routine. The drawing code that works within metafiles is placed in the DrawClock routine.
When the container needs a metafile representation and therefore calls OnDrawMetafile, we pass the DC
to the DrawClock routine.

Win32 Enhanced Metafiles
The Win32 API removes the metafile restrictions by providing a new metafile format called enhanced
metafiles. If the container provides an enhanced metafile DC, enhanced metafiles remove the problem of hav
ing two different drawing routines for your controls.

In most cases, the container passes the metafile DC to your control in the OnDrawMetafile method
and so is responsible for providing you with either a standard or an enhanced metafile DC. I expect that 32-
bit containers will use the enhanced version of metafiles, because it makes development of the control's code
easier.

The container can also request a metafile (CF _METAFILEPICT) through the IDataObj ect: : GetData

interface method. In this case, MFC creates an instance of the CMetafileDC class and passes this device
context to your control's OnDrawMetafile method. The metafile is recorded and passed back to the con
tainer as an actual metafile. The container can then play the metafile within whatever device context it
chooses.

If your control will be used only in 32-bit environments and you know that the containers that will be
used for your control all provide enhanced metafile support, you can probably get away with only one
drawing routine. Unfortunately, most control developers do not have this luxury. To be safe, you should
probably separate the drawing code that is dependent on a nonmetafile representation as we did with the
clock control.

APPLE 1109 - Page 137

428 + CHAPTER 9

The best way to test whether your control can draw its metafile representation properly is to use the Test
Container. With your control VI-active, select the Edit/Draw Metafile option. The Test Container will pass
your control's OnDrawMetafile a metafile DC and will display the result in a window (Figure 9.7).

Figure 9.7 Test Container's display of the metafile DC.

I i e
When the container is in design mode, some controls display their name somewhere within their bounding
rectangle. The container may provide an ambient property, DisplayName, that controls can display when
they draw themselves in design mode. The following code, when added to our control's DrawClock

method, will provide this ability (Figure 9.8).

void CClockCtrl: :DrawClock(CDC *pdc, const CRect& rcBounds)

II If the container is in design mode

if (! AmbientUserMode())

II Get the display name from the container

CString strName = AmbientDisplayName();

Ii If it is empty, supply a default name

APPLE 1109 - Page 138

if (strNarne.IsEmpty()

strNarne = "Clock";

/I Set the text color to the foreground color

pdc->SetTextColor(TranslateColor(GetForeColor()));

ii Select the. stock font and save the old one

CFont* pOldFont = SelectStockFont(pdc);

Ii Set up the text drawing modes in the DC

pdc->SetBkMode (TR1'.NSPARENT) ;

pdc->SetTextAlign(TA_LEFT I TA_TOP);

II Draw the text in the upper left corner

pdc->ExtTextOut(rcBounds.left, rcBounds.top, ETO_CLIPPED,

rcBounds, strNarne, strName.GetLength(), NULL);

II Restore the old font

if (pOldFont)

pdc->SelectObject(pOldFont) ;

Figure 9.8 Clock control in design mode.

Controls • 429

APPLE 1109 - Page 139

430 + CHAPTER 9

Hiding Properties
We added the stock Font property so that we could use it when drawing the control's name in design
mode. Our clock doesn't need or use the font for anything else, so there is no need to expose the property for
the control user to modify. The Object Description Language hidden keyword provides a way to hide prop
erties. Container applications and visual tools should check for this attribute and should not display it to the
user. We modify our control's ODL file and add the hidden attribute to our stock Font property as follows:

II clock.odl : type library source for OLE Custom Control project.

II Primary dispatch interface for CClockCtrl

dispinterf ace _DClock

properties:

II NOTE - ClassWizard will maintain property information here.

II Use extreme caution when editing this section.

ll{{AFX_ODL_PROP(CClockCtrl)

[id(DISPID_APPEARANCE), bindable, requestedit] short Appearance;

[id(DISPID_BACKCOLOR), bindable, requestedit] OLE_COLOR BackColor;

[id(DISPID_BORDERSTYLE), bindable, requestedit] short BorderStyle;

[id(DISPID_ENABLED), bindable, requestedit] boolean Enabled;

[id(DISPID_FORECOLOR), bindable, requestedit] OLE_COLOR ForeColor;

[id(DISPID_FONT), bindable, hidden] IFontDisp* Font;

[id(DISPID_HWND)] OLE_HANDLE hWnd;

ll)}AFX_ODL_PROP

Adding the hidden attribute will make the font property inaccessible from tools such as Visual Basic. We
don't have to do this, but if we don't, the existence of a font property on a control that doesn't display any
text at run time may be confusing for the control user. In a later chapter we will discuss other ways to hide
properties from the container's browser. We also shouldn't provide a way to modify the Font property
from the control's custom property page.

N 0 T E

We could also have used the ambient font property provided by the container when drawing the
clock's design time representation in our clock example. Instead, we added a hidden font property
to introduce this concept of a hidden property.

APPLE 1109 - Page 140

Controls + 431

To add functionality to our control, let's add a custom event. Using ClassWizard, add an event called
secondChange. Then, whenever the control's timer message fires, we should also fire the SecondChange
event:

void CClockCtrl: :OnTimer(UINT nIDEvent)

FireSecondChange();

InvalidateControl();

COleControl::OnTimer(nIDEvent);

We'll use this event in the next example to update an external field.

A control user might also want to obtain the time of day from the control. This is easy to do and will provide
an opportunity to use the Automation DATE data type. Invoke Class Wizard and add a custom property with
a name of Date. Specify a data type of DATE, use the Get/Set implementation method, and clear out the
Set method. We will not allow the user to "set" the date property, although it might be a neat feature to
add.

After adding the new property, add the following code to the implementation method:

DATE CClockCtrl: :GetDate()

COleDateTime timeNow;

timeNow = COleDateTime: : GetCurrentTime () ;

return (DATE) timeNow;

COleDate Time
The COleDateTime class encapsulates the Automation DATE data type. A DATE is an eight-byte floating
point value that indicates both the date and the time. The floating-point value can specify any date and time
from January 1, 100, to December 31, 9999, with a resolution of about one millisecond. The integer value of
the number specifies the date, and the fractional portion specifies the time. The date December 30, 1899, at
midnight is represented as 0.0. Table 9.4 gives other examples.

APPLE 1109 - Page 141

432 + CHAPTER 9

Date

December 30, 1899, midnight

January 1, 1900, midnight

January 1, 1900, 6 AM

January 1, 1900, noon

January 4, 1900, 9 PM

December 29, 1899, midnight

December 18, 1899, noon

Table 9.4 Example DATE Values

Numeric Representation

0.00

2.00

2.25

2.50

5.875

-1.00

-12.50

The DATE type is supported natively by Visual Basic and Visual C++ (through the COleDateTime class)
and most other Automation-compatible tools. The COleDateTime class has several useful methods. You've
seen one, GetCurrentTime, and we'll use another one in the next example.

We haven't discussed how to build the clock conh·ol's property pages, because nothing special is required
that we haven't already covered. The custom property page needs the stock properties that we've added to
the clock control, with the exception of the Font property discussed previously. The property page for the
clock control on the accompanying CD-ROM is shown in Figure 9.9.

Figure 9.9 Properly pages for the clock control.

APPLE 1109 - Page 142

Controls + 433

The control on the accompanying CD-ROM has additional capabilities beyond those described in this chap
ter. Included are additional color properties for specifying the colors of the clock face, outline, and ticks, and
properties that modify the sizing of the control during the design phase.

I
Visual C++ version 4.0 and higher supports the use of ActiveX controls within MFC-based applications. This
major enhancement to Visual C++ allows C++ developers to take full advantage of this new component
technology. With a couple of keystrokes, we can now use ActiveX controls on MFC dialog boxes and views.

The MFC development team added support for control containment by adding functionality to the
CWnd class. The new CWnd class is actually a complete ActiveX control container.

The CWnd Class
The CWnd class maintains an embedded instance of the COleControlContainer and COleControlSi te
classes. These two classes implement the interfaces necessary for the CWnd object to act as an ActiveX control
container. However, the classes are not documented because they are only used internally by MFC.

COleControlContainer implements the IOleinPlaceFrame and IOleContainer interfaces. One
of the characteristics of a control container is that it can contain any number of embedded objects (controls).
To handle this, COleControlContainer maintains a list of COleControlSi te objects.
COleControlSi te implements the interfaces necessary to manage the specific embedded object site.
Examples of these interfaces include IOleClientSi te, IOleinPlaceSi te, IOleControlSi te, and the
ambient property IDispatch interface.

Table 9.5 lists some of the new CWnd methods that pertain specifically to ActiveX control containment.

Table 9.5 New CWnd Methods

Method Purpose

CreateControl Lets you dynamically create an instance of an ActiveX control.

GetControlUnknown Returns the IUnknown of any associated control.

InvokeHelper Calls an automation method on the control.

GetProperty, SetProperty Gets or sets the specified property value in the control.

OnArnbientProperty Called by MFC to get the specified ambient property value. The control can override this

method and set its own ambient properties.

m_pCtrlCont An embedded instance of the COleControlContainer class.

m_pCtrlSi te An embedded instance of the COleControlSi te class. This class gives the control access

to its site interfaces. If the value of this member is NULL, then the object is not an ActiveX

control.

APPLE 1109 - Page 143

434 + CHAPTER 9

To fully understand what's going on when we're using Visual C++ as a control container, let's build a siin
ple application that uses the new CLOCK control. Start Visual C++ and create a new project with the follow
ing characteristics:

• MFC App Wizard (exe): Name the project Contain.

• MFC App Wizard Step 1: Choose a Dialog based application.

• MFC App Wizard Step 2 of 4: Take the defaults, but ensure that OLE Control support is included.

0 MFC App Wizard Step 3 of 4: Take the defaults.

• MFC App Wizard Step 4 of 4: Take the defaults.

Click Finish and create the project.

Clicking the OLE Control support checkbox adds a call to AfxEnableControlContainer to the
Ini tins tance call of our application:

II Contain.cpp

BOOL CContainApp: :Initinstance()

AfxEnableControlContainer();

This call initializes the global instance of the COccManager class. COccManager manages the ActiveX con
trols within the application. It routes control events, creates and destroys the COleControlContainer and
COleControlSi te instances, and generally controls everything about contained ActiveX controls. As with
the other new container classes, COccManager isn't documented. If you're curious, you can take a look at
the OCCCONT.CPP, OCCSITE.CPP, and OCCMGR.CPP files in the \MSDEV\MFC\SRC directory.

Once we have conh·ol support for our application, all we have to do next is to start the Component
Gallery Insert/Component and insert the control that we want to use. For our example, we'll use the
CLOCK control that we developed in this chapter. Component Gallery will display a list of all the controls
registered on your system. Figure 9.10 shows the Component Gallery dialog box just before insertion of the
CLOCK control.

APPLE 1109 - Page 144

Controls -+- 435

Circ3 Control ClkCtl 0 bject

Figure 9.10 Inserting the clock control with Component Gallery.

Select the CLOCK control and click the Insert button. A dialog box confirms that you want to generate the
indicated classes. Control containment in Visual C++ uses the static Automation wrappering technique that
we used in Chapter 6. When you insert the control into our project, Component Gallery will create two new
classes, create appropriate header and implementation files, and insert the files into the project. The Confirm
Classes dialog box is shown in Figure 9.11.

Figure 9.11 Adding the Clock control wrapper classes.

APPLE 1109 - Page 145

436 + CHAPTER 9

Here's a quick look at the two new classes:

II Clock.h

II Machine generated IDispatch wrapper class(es) created by Microsoft Visual C++

II NOTE: Do not modify the contents of this file. If this class is regenerated by

II Microsoft Visual C++, your modifications will be overwritten.

II Dispatch interfaces referenced by this interface

class COleFont;

lllllllllllllllllllllllllllllllllll

II CClock wrapper class

lllllllllllllllllllllllllllllllllll

class CClock : public CWnd

protected:

DECLARE_DYNCREATE(CClock)

public:

CLSID canst& GetClsid()

static CLSID canst clsid

{ Oxcc57abb4,

Oxad4e,

Oxllce,

{ Oxb4, Ox4b, Ox8, OxO, Ox5a, Ox56, Ox47, Ox18 } };

return clsid;

virtual BOOL Create(LPCTSTR lpszClassName,

LPCTSTR lpszWindowName, DWORD dwStyle,

canst RECT& rect,

CWnd* pParentWnd, UINT nID,

CCreateContext* pContext = NULL)

return CreateControl(GetClsid(),

lpszWindowName,

dwStyle,

rect,

pParentWnd,

nID);

APPLE 1109 - Page 146

BOOL Create(LPCTSTR lpszWindowName, DWORD dwStyle,

const RECT& rect, CWnd* pParentWnd, UINT nID,

CFile* pPersist NULL, BOOL bStorage = FALSE,

BSTR bstrLicKey NULL)

{return CreateControl(GetClsid(),

lpszWindowName,

dwStyle,

rect,

pParentWnd,

nID,

pPersist,

bStorage,

bstrLicKey);

II Attributes

public:

short GetAppearance();

void SetAppearance(short);

OLE_COLOR GetBackColor();

void SetBackColor(OLE_COLOR);

short GetBorderStyle();

void SetBorderStyle(short);

BOOL GetEnabled();

void SetEnabled(BOOL);

COleFont GetFont();

void SetFont(LPDISPATCH);

OLE_COLOR GetForeColor();

void SetForeColor(OLE_COLOR);

OLE_HANDLE GetHWnd();

void SetHWnd(OLE_HANDLE);

unsigned long GetFaceColor();

void SetFaceColor(unsigned long);

unsigned long GetTickColor();

void SetTickColor(unsigned long);

BOOL GetAllowResize();

void SetAllowResize(BOOL);

II Operations

public:

void AboutBox();

};

Controls 437

APPLE 1109 - Page 147

438 -+- CHAPTER 9

Here's the definition for the CClock wrapper class. It provides dynamic creation methods (such as Create)

and Automation wrapper functions for each of the control's properties and methods. Here's the FONT.H
file:

II Font.h

//////////////II//!/!///!/!!/

II COleFont wrapper class

///////////ll//ll!ll!////////

class COleFont : public COleDispatchDriver

public:

COleFont () {} II Calls COleDispatchDriver default constructor

COleFont(LPDISPATCH pDispatch) : COleDispatchDriver(pDispatch) {}

COleFont(const COleFont& dispatchSrc) : COleDispatchDriver(dispatchSrc) (}

II Attributes

public:

CString GetName();

void SetName(LPCTSTR);

CY Get Size () ;

void SetSize(const CY&);

BOOL GetBold();

void SetBold(BOOL);

BOOL Getitalic();

void Setitalic(BOOL);

BOOL GetUnderline();

void SetUnderline(BOOL);

BOOL GetStrikethrough();

void SetStrikethrough(BOOL);

short GetWeight();

void SetWeight(short);

short GetCharset();

void SetCharset(short);

II Operations

public:

};

The COleFont class provides an Automation interface around the OLE font object. OLE provides an IFont

interface so that fonts can be marshaled across processes. A similar interface is provided for picture objects
with the COlePicture object. The implementation files use the Automation property and method manipu-

APPLE 1109 - Page 148

Controls + 439

lation methods of the COleDispatchDriver class to provide access to the clock's properties and methods.
Here's a part of CLOCK.CPP:

II Clock.cpp

II Machine generated !Dispatch wrapper class(es) created by Microsoft Visual C++

II NOTE: Do not modify the contents of this file. If this class is regenerated by

II Microsoft Visual C++, your modifications will be overwritten.

#include "stdafx.h"

#include "clock.h"

II Dispatch interfaces referenced by this interface

#include "Font.h"

IMPLEMENT_DYNCREATE(CClock, CWnd)

lll

II CClock properties

short CClock: :GetAppearance()

short result;

GetProperty(DISPID_APPEARANCE, VT_I2, (void*)&result);

return result;

void CClock: :SetAppearance(short propVal)

SetProperty(DISPID_APPEARANCE, VT_I2, propVal);

OLE_COLOR CClock: :GetBackColor()

OLE_COLOR result;

GetProperty(DISPID_BACKCOLOR, VT_I4, (void*)&result);

return result;

void CClock: :SetBackColor(OLE_COLOR propVal)

SetProperty(DISPID_BACKCOLOR, VT_I4, propVal);

COleFont CClock: :GetFont()

APPLE 1109 - Page 149

440 + CHAPTER 9

LPDISPATCH pDispatch;

GetProperty(DISPID_FONT, VT_DISPATCH, (void*)&pDispatch);

return COleFont(pDispatch);

void CClock: :SetFont(LPDISPATCH propVal)

SetProperty(DISPID_FONT, VT_DISPATCH, propVal);

///lllllllllllllllllll/111

II CClock operations

111111111/llllllllllllllll

void CClock: :AboutBox()

InvokeHelper(Oxfffffdd8, DISPATCH_METHOD, VT_EMPTY, NULL, NULL);

With the addition of the clock control to our project, it can now be used in the resource editor. Open up the
application's main dialog resource, IDD_CONTAIN_DIALOG, make the dialog box a bit larger, and place an
instance of the CLOCK control on the dialog box by dragging it from the control pallette and dropping it on
the dialog. Give it an ID of IDC_CLOCK. Also, place an entry field below the clock and give it an ID of
IDC_TIME. This is shown in Figure 9.12.

Figure 9.12 Placing the clock control on the dialog box.

APPLE 1109 - Page 150

Controls + 441

Now start ClassWizard and add Member Variables for the two controls on our dialog box. Use member
names of m_Clock and m_Time. Be sure to add the members using the Control category; the default cate
gory is Value.

MFC provides two ways to create controls: statically and dynamically. Here, we're creating the control
statically at design time. The control properties will be stored in the .RC file, and the control will be created
(deserialized) and displayed when the application is executed. Dynamic creation of controls is also sup
ported in MFC, and we'll do that in a moment. We haven't yet written a line of code, but we can build the
project and have a functional application. Figure 9.13 displays the new application.

Figure 9.13 The initial application.

Events
To see how MFC supports control event handling, let's perform an action when the clock's SecondChange
event fires. Using ClassWizard go to the Message Maps tab and select the clock's ID, IDC_CLOCK; the tab
will list one "message" in the Messages listbox. Click Add Function and add the OnSecondChangeClock
method to the CONTAINDLG.CPP file. This is shown in Figure 9.14.

APPLE 1109 - Page 151

442 + CHAPTER 9

Figure 9.14 Adding an event method.

Class Wizard adds an event handler for the SecondChange event. When the SecondChange event fires, the
OnSecondChange method will be called. Add the highlighted code:

BEGIN_EVENTSINK_MAP(CContainDlg, CDialog)

//{{AFX_EVENTSINK_MAP(CContainDlg)

ON_EVENT(CContainDlg, IDC_CLOCK, 1, OnSecondChangeClock, VTS_NONE)

//}}AFX_EVENTSINK_MAP

END_EVENTSINK_MAP()

void CContainDlg: :OnSecondChangeClock()

COleDateTime date= m_Clock.GetDate();

m_Time.SetWindowText(date.Format("%c")) ;

Whenever the control fires the SecondChange event, we get the current date using the Date property and
assign it to an instance of the COleDateTime class that we studied earlier. We then use the Format method
to get a string representation of the time that we can use to update the text in the edit window.

How does the SecondChange event find its way to the OnSecondChangeClock method? As with
most other things in MFC, there's an event map that manages and routes events. An event map is almost
identical to the dispatch maps we discussed in Chapter 6. MFC's CCmdTarget class has a large number of
mapping capabilities. MFC's message maps, interface maps, dispatch maps, and event maps are all handled
in much the same way. The macros set up several static class and data members that allow mapping of mes-

APPLE 1109 - Page 152

Controls -+- 443

sages, events, and so on to the appropriate C++ method. In the case of contained control events, the instance
of the COccManager class handles looking up events in the event map and calling the right method.

Dynamic Creation
MFC also supports dynamic creation of controls. In the preceding scenario, we embedded an instance of a
control, which was serialized and stored in the project's resource file. In this section, we'll dynamically cre
ate two controls and position them on the dialog box at run time; first, another instance of the Clock control
and then an instance of the Postit control from Chapter 8.

When we inserted the Clock control into the CONTAIN project, it created a wrapper class for the con
trol. This arrangement made it easy for us to access the properties and methods specific to the Clock control.
The wrapper class contains a Create function that simplifies calling the inherited CWnd:: CreateControl

method. Here's a look from CLOCK.H:

CLSID canst& GetClsid()

static CLSID canst clsid =
Oxcc57abb4,

Oxad4e,

Oxllce,

Oxb4, Ox4b, Ox8, OxO, Ox5a, Ox56, Ox47, Ox18 } };

return clsid;

virtual BOOL Create(LPCTSTR lpszClassName,

LPCTSTR lpszWindawName, DWORD dwStyle,

canst RECT& rect,

CWnd* pParentWnd, UINT nID,

CCreateCantext* pCantext = NULL)

return CreateCantral(GetClsid(),

lpszWindawName,

dwStyle,

rect,

pParentWnd,

nID);

virtual BOOL Create(LPCTSTR lpszWindawName,

DWORD dwStyle,

canst RECT& rect,

CWnd* pParentWnd, UINT nID,

APPLE 1109 - Page 153

444 + CHAPTER 9

CFile* pPersist = NULL,

BOOL bStorage = FALSE,

BSTR bstrLicKey = NULL)

return CreateControl(GetClsid(),

lpszWindowNarne,

dwStyle,

rect,

pParentWnd,

nID,

pPersist,

bStorage,

bstrLicKey) ;

Because the wrapper class knows the CLSID of the control, the Create method provides a shorthand way
of calling CreateControl. The best place to create a control for a dialog box is in the handler for the
WM_INITDIALOG message. OninitDialog is called before the dialog box is displayed. We add a member
variable to the dialog class to hold the new clock instance and then create the control:

II
II ContainDlg.h header file

II
class CContainDlg public CDialog

II Implementation

protected:

HI CON m_hicon;

CClock* m_pClock;

};

II
II ContainDlg.cpp

Ill

BOOL CContainDlg: :OninitDialog()

CDialog: :OninitDialog();

APPLE 1109 - Page 154

II TODO: Add extra initialization here

m_pClock = new CClock;

m_pClock->Create(0, "", WS_VISIBLE,

CRect(200, 25, 275, 100);

this,

100);

II Make the dynamic clock look a little different

m_pClock->SetAppearance(1);

m_pClock->SetFaceColor(RGB(0, 255, 0));

m_pClock->SetTickColor(RGB(0, 255, O));

return TRUE; II return TRUE unless you set the focus to a control

Controls + 445

We create an instance of the wrapper class, assign it to our member variable, and then call Create. Create

is similar to CreateControl, and the details of each parameter are described in Table 9.6. Once the control
is created, we modify some of its properties by calling the wrapper class methods. Here we've set the
appearance to 3-D and have set the tick and face color to green.

Table 9.6 CreateControl Parameters

Parameter Description

CLSID or ProglD CreateControl is overloaded to take either the CLSID or ProglD of the control to create. In our exam

ple, the wrapper class passes the CLSID for us.

lpszWindowNarne The name of the window. For controls, this text will be used to set the Caption or Text property of the

control.

dwStyles Any initial window styles for the control. The most common is WS_ VISIBLE. Others that can be used for

ActiveX controls are WS_BORDER, WS_DISABLE, WS_GROUP, and WS_TABSTOP.

Rect The control's size and position. The rectangle coordinates indicate the left, top, right, and bottom extents

{e.g., CRect (left, top, right, bottom)).

Parent The parent window of the control. This must be supplied. In our case, the dialog window (this) is the

parent.

nid The ID for the control.

pPersist A pointer to a CFile object that contains the persistent state of the control. Because the control was created

dynamically, we must provide the location and value of the control's persistent data. If they aren't pro

vided, the control will be created without any persistence information.

bStorage Indicates whether the pPersist parameter is stored as I Stream or I Storage data.

bStrLicKey License key information. If the control requires a license, the key is provided here.

APPLE 1109 - Page 155

446 + CHAPTER 9

There are a few drawbacks in creating controls dynamically. First, they won't, by default, have any persis
tent data. Unless we fill out the pPersist parameter, the control will be created as is. We could provide
persistence support, but this would require a mechanism for storing the data prior to the control's creation.
That mechanism, however, is the responsibility of control containers. If you need to implement a full
ActiveX control container, MFC provides a great place to start.

Another problem is that the dynamic approach makes it harder to tie the control's events to a specific
handler. If you know which events you want to handle, you can write the handler and then manually enter
the events in the event map. To do this for our dynamic clock control, we create a new handler function,
OnSecondChangeDyn, and manually add it to the event map:

II
II ContainDlg.h header file

II
class CContainDlg public CDialog

};

II

II Generated message map functions

ll{{AFX_MSG(CContainDlg)

virtual BOOL OninitDialog();

afx_msg void OnSysCommand(UINT nID, LPARAM lParam);

afx_msg void OnPaint();

afx_msg HCURSOR OnQueryDragicon();

afx_msg void OnSecondChangeClock();

DECLARE_EVENTSINK_MAP()

ll}}AFX_MSG

afx_msg void OnSecondChangeClockDyn();

DECLARE_MESSAGE_MAP()

II ContainDlg.cpp

II

APPLE 1109 - Page 156

BEGIN_EVENTSINK_MAP(CContainDlg, CDialog)

ll({AFX_EVENTSINK_MAP(CContainDlg)

ON_EVENT(CContainDlg, IDC_CLOCK, 1, OnSecondChangeClock, VTS_NONE)

ll)}AFX_EVENTSINK_MAP

ON_EVENT(CContainDlg, 100, 1 , OnSecondChangeClockDyn, VTS_NONE)

END_EVENTSINK_MAP ()

void CContainDlg: :OnSecondChangeClockDyn()

COleDateTime date= m__pClock->GetDate();

m_EditDyn.SetWindowText(date.Format{ "%X"));

Controls -+- 447

You must place the ON_EVENT macro outside Class Wizard's area, or Class Wizard will get confused. In the
preceding example, we've also added a second entry field to the dialog box to hold the time from our
dynamically created control.

MFC allows you to create any control dynamically, even without the wrapper class generated by the
Component Gallery. To demonstrate this, let's place an instance of the Postit control from Chapter 8 on our
dialog box at run time. The only control-specific information required is the CLSID or ProgID of the control.
When generating a control, ControlWizard creates a default ProgID of "Project.ProjectCtrl.1." So our Postit's
ProgID is "Postit.PostitCtrl.1." That's all we need to create an instance and add it to our dialog box. Here's
the code for Onini tDialog:

II

II ContainDlg.h : header file

II

class CContainDlg : public CDialog

II Implementation

protected:

HICON m_hicon;

CC lock* m__pClock;

CWnd* m__pPostit;

APPLE 1109 - Page 157

448 + CHAPTER 9

} ;

II

II ContainDlg.cpp

Ill

BOOL CContainDlg: :OninitDialog()

CDialog: :OninitDialog();

II Make the dynamic clock look a little different

m_pClock->SetAppearance(1);

m_pClock->SetFaceColor(RGB(0, 255, 0)) ;

m_pClock->SetTickColor(RGB(0, 255, 0)) ;

m_pPostit = new CWnd;

m_pPostit->CreateControl { "Postit. PostitCtrl.1",

"A dynamically created POSTIT control!",

WS_:.VISIBLE,

CRect{ 300, 75, 375, 175),

this,

101) ;

II Set some of the stock properties

m_pPostit->SetProperty(DISPID_APPEARANCE, VT_I2, 1);

m_pPostit->SetProperty{ DISPID_BACKCOLOR, VT_I4, RGB{ 255, 255, 255));

return TRUE; //return TRUE unless you set the focus to a "control

In this case, we've added a CWnd* member variable to maintain the control instance. We create a new CWnd
object and call the CreateControl method, passing in the ProgID of the control to create. For ActiveX con
trols, the lpszWindowName parameter is used to set the control's caption or text property. The other para
meters include the size and position of the control within the dialog box, the parent window (this), and the
ID of the control.

APPLE 1109 - Page 158

Controls + 449

Because we don't have a wrapper class for this control, we must use the basic control manipulation
methods supplied by CWnd. We set the Appearance property to 3-D and set the background color to white
using SetProperty.

When creating controls dynamically, we are responsible for destroying them when the application
shuts down. In dialog-based applications, it's best to do this in the dialog's DestroyWindow method.
Override it in the CContainDlg class and add the following code:

BOOL CContainDlg: :DestroyWindow()

II Destroy our dynamic controls

l!l..PClock->Destroywindow();

delete m_pClock;

m_pPostit->Destroy¥lindow();

delete m_pPostit;

return CDialog: :DestroyWindow();

Now build the project. When we're finished, we get an application that looks like Figure 9.15.

Figure 9 .15 CONTAIN dialog box with all of the controls.

APPLE 1109 - Page 159

In this chapter we covered the graphical drawing classes provided by MFC. These classes-CBrush, CPen,
and so on-encapsulate the Windows graphical device interface API functions. They provide a layer above
the GDI and make it a little easier to work with the GDI.

We also described how to build a clock control that uses many of the MFC drawing classes. When ren
dering your controls, remember that the rcBounds parameter provided to the OnDraw method typically
does not provide an upper left corner of (0,0). Your control's drawing code must be adjusted to account for
this, or you may inadvertently draw on the container's client area. Another important item to remember is
that the device context provided to your control by the container is in an undefined state, and you must set
it up the way you need it before rendering your control.

We briefly discussed the Windows mapping modes and the differences between logical and device
coordinates. We used the MM_TEXT mapping mode when drawing our clock control, because it is the easiest
to understand initially. The coordinate system for the control's rendering area is an attribute of the device
context and can be changed.

The size of device units, or pixels, is dependent on the hardware device on which your control is ren
dered. You specify the initial size of your control in device units in the control's constructor using the
SetinitialSize method. You can control the size and shape of your control by overriding the
COleControl: : OnSetExent method and modifying the extents of the control in the provided SIZEL
structure. The SIZEL structure's extent sizes are in HIMETRIC units, and we discussed ways to convert
between device units and HIMETRIC units.

The container uses the ambient property UIDead to notify the control that it is in some sort of debug
mode and so the control should not allow user input.

Controls that often draw and update their appearance may need to use an off-screen or memory device
context to eliminate flicker. Because the clock control redraws itself every second, we modified it to use a
memory DC. Containers may require that the control render itself into a metafile device context at various
times, such as when you're printing an image of the control. We briefly discussed metafiles and the restric
tions to follow when you draw into a metafile DC. COleControl: : OnDrawMetafile is called whenever
the container requests a metafile representation.

APPLE 1109 - Page 160

Controls + 451

If you need to use a property within your control but do not want to expose it to visual tool users, you
can mark the property as hidden in the control's ODL file. This indicates to property browsers that the prop
erty should not be displayed.

Finally, we looked at using ActiveX controls in Visual C++ applications. In MFC version 4.0, the CWnd

class was enhanced to provide ActiveX container support. Several methods, such as CreateControl,

setProperty, and OnAmbientProperty, were added to make if easy to manage ActiveX controls within
MFC applications. Other useful, but undocumented, classes (such as COleContainer) were also added.
MFC provides a great deal of support for embedding ActiveX controls in dialogs as well as in view-derived
classes. Controls can be placed on dialogs at design time or created and placed dynamically at run time.

APPLE 1109 - Page 161

s s

In this chapter, we'll look at the details of developing ActiveX controls by subclassing existing Windows
standard (non-ActiveX) controls. Subclassing is an effective way of reusing existing control fundionality
within Windows. By subclassing an existing control, you automatically gain its capabilities. I was tempted to
say you "inherit" capability from the control, but subclassing a control is different from deriving a new class
based on another class (as in C++).

The Windows operating system provides many controls, and there are even more now that Windows
95 provides additional full-featured common controls. Examples of common controls include the Rich Text
Format (RTF) control and the tree-list view control. In this chapter we will cover the basics of subclassing,
and some of the issues involved, by subclassing a Windows EDIT control and one of the Windows 95 com
mon controls. Understanding the basics of this control will allow you to subclass the other controls as well.

In the SDK/C world of Windows development, subclassing a standard control is a common occurrence. It is
similar to object-oriented inheritance in that you acquire the features of the control and are able to augment
only those capabilities that you need to. If the control already provides exactly the feature you need, you just
pass the message (method) to the original implementation. One major difference is that Windows subclass
ing can be performed only on an instance of a control. Inheritance in C ++ is done using classes and not
instances of the classes.

You subclass a control because you want to provide functionality that is similar to that already pro
vided by a standard conh·ol. An edit field that accepts only numbers, a listbox that contains icons and text, a
3-D static field-the possibilities are endless. When you subclass an existing control, much of the drawing
code and control structures are already implemented for you. However, this is not the case when you imple-

453

APPLE 1109 - Page 162

454 + CHAPTER 1 0

ment an owner-draw control. Owner-draw controls provide an effective way to represent information in a
familiar Windows format (such as a listbox).

A simple Windows control (such as EDIT) is actually just a window. All controls have a window proce
dure that processes messages sent to the window. Standard windows, such as the EDIT control, have a win
dow procedure that is part of the Windows operating system. Although we don't have access to the source
code for the window procedure, the design of Windows makes it easy to subclass, and use the features of, an
existing window.

A window is subclassed by replacing its default window procedure with one written by the developer.
The new window procedure modifies the behavior of the window by discarding messages intended for the
original window procedure, performing some additional actions and forwarding the message, or modifying
the contents of the message and passing it on. To remind you what it looks like in C, the following code
demonstrates this technique. It subclasses an EDIT control window and allows the entry only of uppercase
alpha characters.

WNDPROC pfnOriginalEditProcedure;

II Create an EDIT window

HWND hvmdEdit = CreateWindowEx("EDIT", ...) ;

II Subclass the window by setting the address of its window

II procedure to that of the new subclass procedure. Save the old procedure's

II address so we can call it too.

pfnOriginalEditProcedure = SetWindowLong(hwndEdit,

GWL_WNDPROC,

(LONG) SubclassEditProcedure) ;

II Subclass procedure. All messages are now processed first by

II this procedure

LRESULT APIENTRY SubclassEditProcedure(HWND hwnd,

switch(uMsg)

case WM_CHAR:

UNIT uMsg,

WPARAM wParam,

LPARAM lParam)

II If it's an alpha character make it uppercase

if (isalpha(wParam))

wParam = toupper(wParam) ;

II otherwise ignore the character

else

return O;

APPLE 1109 - Page 163

break;

case default:

break;

Windows Controls + 455

return CallWindowProc(pfnOriginalEditProcedure, hwnd, uMsg, wParam, lParam) ;

If an existing Windows control provides a capability that you need within your control and if there are no
special requirements that preclude your use of the control, you should probably subclass it. If not, as in the
clock example of Chapter 9, you can always implement all the functionality and drawing yourself.

It was in Chapter 6 that we last saw the Expression class, and I promised you then that we would see it
one more time. In this chapter, our goal is to encapsulate the functionality of the Expression component in
an ActiveX control. We'll subclass the Windows Edit control and enhance it to provide numeric expression
evaluation. This arrangement will make it easy for the user of a visual tool (such as Visual Basic) to drag
and-drop the control in a container and instantly gain expression evaluation capabilities.

Use App Wizard to build a ControlWizard-based project with the name EEdit. Follow these steps to specify
each of ControlWizard' s options:

• In the OLE Control Wizard Step 1 of 2 dialog box, take the defaults No runtime license, Yes, com
ments, and No help files.

• In OLE Control Wizard Step 2 of 2, take the defaults Activate when visible and Has "About" box.
From the Which window class, if any, should this control subclass? dropdown, choose the EDIT
control.

• Click Finish and create the control project.

There is an option that you use when creating an ActiveX control that subclasses an existing Windows con
trol. When you subclass an existing Windows control, ControlWizard adds the needed code. Figure 10.1
shows the Control Options dialog box.

APPLE 1109 - Page 164

456 + CHAPTER 1 0

Figure 10.1 Subclass Windows control option.

ControlWizard allows you to choose to subclass any of the standard Windows controls listed in Table 10.1.
ControlWizard also allows you to subclass any of the new Windows 95 common controls. Later in this chap
ter, we will look at subclassing other Windows controls, including the new Windows 95 common controls.

Standard Control

Button

Static

Edit

Listbox

Combo box

Scroll bar

Table 10.1 Standard Windows Controls

Windows class Name and Use

BUTION: a Windows push button.

STATIC: provides the ability to display text in various ways.

EDIT: provides either a single-line entry field or a multiline entry field that has useful editor-like

features.

LISTBOX: a standard Windows listbox. Listbox controls can operate in different modes {multise

lect, single select, and so on). To modify the mode of a listbox, appropriate style bits are

applied during creation.

COMBOBOX: a standard Windows combo box. It also supports various modes by specifying

different style bits during creation.

SCROLLBAR: the horizontal and vertical scroll bars that you use in most Windows applications.

After the project is created, start ClassWizard and add the following stock properties through the OLE
Automation tab as we did in Chapter 9. When developing a visual control, you will almost always use at
least some of the stock properties.

APPLE 1109 - Page 165

o Appearance

• BackColor

• ForeColor

• hWnd

• BorderStyle

• Enabled

• Text

• Font

Because we're using the stock font and color properties, go ahead and add the stock font and color property
pages. Here's the new code needed for EEDITCTL.CPP:

II TODO: Add more property pages as needed. Remember to increase the count!

BEGIN_PROPPAGEIDS(CEEditCtrl, 3)

PROPPAGEID(CEEditPropPage: :guid)

PROPPAGEID(CLSID_CColorPropPage)

PROPPAGEID(CLSID_CFontPropPage)

END_PROPPAGEIDS(CEEditCtrl)

Compile and link the project, register the control, and insert it into a container. Right away you will see that
the control provides significant functionality. You can type text directly into the control, and you can even
change the font that it uses. It's a basic Windows edit control, but not everything works yet (from an ActiveX
control perspective). Try changing the background and foreground color properties of the control. No luck?
In the remaining sections, we'll solve this problem and add functionality in the process.

In Chapter 8 we went through the code generated by ControlWizard. When we chose to subclass a
Windows control, ControlWizard generated some additional code. In particular, it automatically provided
an override of COleControl: : PreCreateWindow. The following code is from EEDITCTL.CPP:

lll

II CEEditCtrl::PreCreateWindow - Modify parameters for CreateWindowEx

BOOL CEEditCtrl: :PreCreateWindow(CREATESTRUCT& cs)

cs.lpszClass = _T("EDIT");

return COleControl: :PreCreateWindow(cs);

APPLE 1109 - Page 166

458 -+- CHAPTER 1 0

This method provides most of what is required to subclass an existing control. The PreCreateWindow
method is called just before the creation of the (OLE) control's window. A reference to the window's CRE
ATESTRUCT is passed to allow you to modify the parameters used in the creation of the window. As you can
see, ControlWizard added a line that sets the window class to EDIT. When PreCreateWindow returns, the
framework will use the CreateWindowEx function to create an instance of the new EDIT window (or con
trol) using the parameters of the CREATESTRUCT structure. The members of CREATESTRUCT are parameters
of the Crea teWindowEx function.

typedef struct tagCREATESTRUCT

LPVOID lpCreateParams;

HANDLE hinstance;

HMENU hMenu;

HWND hwndParent;

int cy;

int ex;

int y;

int x;

LONG style;

LPCSTR lpszName;

LPCSTR lpszClass;

DWORD dwExStyle;

CREATESTRUCT;

When you're subclassing a control, MFC needs to keep track of the original window procedure so that you
can call it to pass messages through. For subclassed controls, ControlWizard adds a function to your con
trol's implementation file that indicates to the framework that the control has been subclassed. It's called
IsSubclassedControl:

lll

II CEEditCtrl: :IsSubclassedControl - This is a subclassed control

BOOL CEEditCtrl: :IsSubclassedControl()

return TRUE;

N 0 T E

It is no longer necessary to override GetSuperWndProcAddr in controls that subclass Windows con
trols. The cwnd class now does this automatically for each control class. Versions of MFC prior to
4.0 required this override in the coleControl-derived class.

The OnDraw code provided by ControlWizard is also different when you subclass a control. It contains only
a call to COleControl: : DoSuperclassPaint:

APPLE 1109 - Page 167

111

II CEEditCtrl: :OnDraw - Drawing function

void CEEditCtrl::OnDraw(CDC* pdc,

canst CRect& rcBounds,

const CRect& rcinvalid)

DoSuperclassPaint(pdc, rcBounds);

Windows Controls -+- 459

DoSuperclassPaint sets up the device context and sends a WM_PAINT message to the default window
procedure for the subclassed control, as shown next. If you look closely at the following code, you'll see that
the framework sends the WM_PRINT message instead of WM_PAINT when running on Windows 95 and
Windows NT version 4.x:

void COleControl::DoSuperclassPaint(CDC* pDC, canst CRect& rcBounds)

if (m_hWnd == NULL)

CreateWindowForSubclassedControl();

if (m_hWnd != NULL)

CRect rcClient;

GetClientRect(&rcClient);

if (rcClient.Size() != rcBounds.Size())

pDC->SetMapMode(MM_ANISOTROPIC);

pDC->SetWindowExt(rcClient.right, rcClient.bottom);

pDC->SetViewportExt(rcBounds.Size());

pDC->SetWindowOrg(O, 0);

pDC->SetViewportOrg(rcBounds.left, rcBounds.top);

BOOL bWin4 = afxData.bWin4;

_AfxFillPSOnStack();

: :CallWindowProc(

*GetSuperWndProcAddr(),

m_hWnd, (bWin4 ? WM_PRINT WM_PAINT) ,

(WPARAM) (pDC->m_hDC),

(LPARAM) (bWin4? PRF_CHILDREN PRF_CLIENT 0));

APPLE 1109 - Page 168

460 + CHAPTER 1 0

This technique works fine when the control is in the running state, but it doesn't provide a good representa
tion when the container requests a metafile representation or when the container is in design mode. We will
discuss this problem in more detail in a later section.

Selecting the subclass option also provides a default reflected message OCM_COMMAND handler to our
control code. We will look at this message handler in detail later when we discuss a subclassed control's
reflector window.

The standard EDIT control provided by Windows has a great deal of built-in functionality. It can function as
a single-line entry field that supports copy, cut, and paste (via the clipboard) or as a multiline edit control
that provides many of the features of an editor. Much of the functionality of the Windows Notepad utility is
provided via an EDIT control.

A standard control's functionality is defined by the messages it sends and receives. Table 10.2 shows
some of the messages handled by the EDIT control. This information is available for all the standard controls
and the Windows 95 common controls via on-line help or in the Win32 SDK manuals. Our focus is on the
EDIT control, but the techniques we will use are also applicable to the others.

Table 10.2 Useful EDIT Control Messages

Message Purpose

EM_GETLIMITTEXT (Win32) Returns the current text limit.

EM_GETLINE Retrieves a line of text from the control.

EM_GETLINECOUNT Returns the number of lines of text in the control.

EM_GETSEL Returns the currently selected text.

EM_REPLACESEL Replaces the selected text with the provided text.

EM_LINELENGTH Returns the length of the line specified.

EM_SETLIMITTEXT (Win32), Sets the maximum number of characters that can be entered into the edit control.

EM_LIMITTEXT (Win 16)

EM_SETREADONLY

EM_SETSEL

EN_ CHANGE

EN_KILLFOCUS

EN_MAXTEXT

EN_SETFOCUS

Sets the control's read-only mode. No input is accepted from the user.

Selects a range of characters in the control.

Sent to the parent when the control identifies that the control's content has changed.

Sent to the parent when the control loses focus.

Sent to the parent when the number of characters trying to be inserted is larger than the maxi
mum text limit.

Sent to the parent when the control gains focus.

APPLE 1109 - Page 169

~essage

EN UPDATE

WM_COMMAND

WM_ COPY

WM_CTLCOLOREDIT (Win32),

WM_CTLCOLOR (Win 16)

WM_PASTE

Table 10. 2 Useful EDIT Control Messages (continued)

Purpose

Sent to the parent when the contents of the control are about to be changed. The EN_CHl'.NGE

event is sent after the change has occurred.

Sent to the parent window with one of the control's notification messages encoded in the

WPARAM parameter.

Copies the contents of the control to the clipboard with the CF _TEXT format.

Sent to the parent by the control to allow the parent window to select the color of the control

when it is to be drawn.

Pastes the contents of the clipboard into the control.

The messages prefixed with EN_ are called notification messages. These messages are sent from the control to
its parent and are used to notify the parent of events or changes within the control. For example, the
EN_ CHANGE notification message is sent to the parent window when text within the edit control is modified.

The EM_ messages are sent to the control to force it to change its state or to set various characteristics of
the control. For example, the EM_SETLIMITTEXT message sets the maximum number of characters that the
control will accept. To find out the current text limit, you send the EM_GETLIMITTEXT message.

N 0 T E

The EM_GETLIMITTEXT and EM_SETLIMITTEXT messages are provided only in Win32. The Win 16
implementation provides only the EM_LIMITTEXT message and so gives you no way to retrieve the
LIMITTEXT value of an edit control.

The standard controls also support various standard window messages, such as WM_COPY and WM_PASTE,
which copy and paste text in the control to the clipboard. The WM_CTLCOLOR message is important for stan
dard controls, because it plays a role in the drawing and coloring of the control. The WM_ COMMAND message
is used to pass the EN_ notification messages to the control's parent. The EN_ notification messages are
passed as parameters of a WM_COMMAND message. We will cover these messages in more detail later as we
use them within our ActiveX control.

Each of the standard Windows controls has various style bits that affect the controls' behavior or appearance.
Depending on your requirements, you specify style bits by ORing them with the style member of the CRE
ATESTRUCT in the PreCreateWindow method of your control. Each control has both general (e.g.,
WM_BORDER) and specific (e.g., ES_LEFT) style bits. We're focusing on the EDIT control here, so I've listed
the EDIT control-specific style bits in Table 10.3.

APPLE 1109 - Page 170

462 + CHAPTER 1 0

EDIT Control Style

ES_MULTILINE

ES_LEFT*

ES_RIGHT*

ES_CENTER*

ES_LOWERCASE

ES_ UPPERCASE

ES_AUTOHSCROLL

ES_AUTOVSCROLL*

ES_NOHIDESEL

ES_READONLY

ES_PASSWORD

ES_WANTRETURN*

Table 10.3 EDIT Control Slyle Bits

Purpose

Indicates that the window will support the control's multi line features.

Left-justify the text in the control.

Right-justify the text in the control.

Center the text in the control.

As text is entered in the control, make it all lowercase.

As text is entered in the control, make it all uppercase.

If this bit is set, the control will allow the text to scroll when the number of characters in the edit

control exceeds the number that can be displayed. If this flag is not set, the entry field will allow

only a fixed number of characters.

If set, will allow the text to scroll vertically when used with a multiline entry field.

When set, the text that is selected will continue to show selected when the control loses focus.

The entry field is read-only. No text can be entered.

All characters entered will display as asterisks.

A carriage return will be inserted when the user presses the Enter key in a multiline edit field.

* Indicates multiline feature only

Changing a Window's Style Bits before Window Creation
One of the style bits that would be useful for our control is ES_AUTOHSCROLL. If we set this style bit, the text
will scroll left if the user types in a text string that is larger than the entry field. If this flag is not set, the con
trol will beep and will not allow any input if the text cannot be displayed completely within the entry field.

To support this ability, we add the ES_AUTOHSCROLL flag to the CREATESTRUCT style field in the
PreCreateWindow method:

lll

II CEEditCtrl: :PreCreateWindow - Modify parameters for CreateWindowEx

BOOL CEEditCtrl: :PreCreateWindow(CREATESTRUCT& cs)

cs. lpszClass = _T ("EDIT") ;

cs.style I= ES_AUTOHSCROLL;

return COleControl: :PreCreateWindow(cs);

APPLE 1109 - Page 171

Windows Controls -+- 463

Changing a Window's Style Bits at Run Time
You can also change some style bits after a window has been created. To change the style bits of a created
window, you use the GetWindowLong and SetWindowLong functions. The style bits of a window are
stored in a DWORD that is part of every window structure. The following code shows how to change a win
dow's style bit after it has been created:

void SetSomeProperty(BOOL bNewValue

II Get the current style bits

DWORD dwStyle = : :GetWindowLong(GetSafeHwnd(), GWL_STYLE) ;

II If the user turned on the property

if (m_bProperty)

dwStyle I= WS_WINDOWSTYLEBIT;

II Turn off the style bit

else

dwStyle &= -WS_WINDOWSTYLEBIT;

II Update the style for the window

: :SetWindowLong(GetSafeHwnd(), GWL_STYLE, dwStyle) ;

OleControl::Recreate(ontrolWindow
Most of the style bits that are specific to a standard control cannot be changed unless you destroy and re-cre
ate the window. COleControl provides a function, RecreateControlWindow, that makes this easy.

As part of our EEdit implementation, we decided that the ES_AUTOHSCROLL flag would provide addi
tional functionality. For instructional purposes, we'll allow the control user to either enable or disable the
AUTOHSCROLL functionality. We'll add a property that can be changed during the design phase and at run
time. Run-time support will require that we destroy and re-create the window.

Using ClassWizard, add an AutoScroll property of type BOOL with Get and Set methods as the
implementation of the EEdit control. We also need a member variable-call it m_bAutoScroll-to store
the property's value. The default value will be TRUE, because we want the AUTOHSCROLL capability enabled
by default. Add the new member variable to EEDITCTL.H and add the following code for
DoPropExchange, PreCreateWindow, and the Get and Set methods for the new property to EED
ITCTL.CPP:

APPLE 1109 - Page 172

464 + CHAPTER 1 0

II EEditctl.h

class CEEditCtrl public COleControl

II Implementation

protected:

-CEEditCtrl();

BOOL m_bAutoScroll;

};

II EEditCtl.cpp

CEEditCtrl:: CEEditCtrl ()

InitializeIIDs(&IID_DEedit, &IID_DEeditEvents);

II TODO: Initialize your control's instance data here.

m_bAutoScroll = TRUE;

lll

II CEEditCtrl: :DoPropExchange - Persistence support

void CEEditCtrl: :DoPropExchange(CPropExchange* pPX)

ExchangeVersion(pPX, MAKELONG(_wVerMinor, _wVerMajor));

COleControl: :DoPropExchange(pPX);

II TODO: Call PX_ functions for each persistent custom property.

II Store/retrieve the AutoScroll property value

II The default is TRUE

PX_Bool (pPX, "AutoScroll", m_bAutoScroll, TRUE) ;

ll///!////l!lllll////I///

II CEEditCtrl: :PreCreateWindow - Modify parameters for CreateWindowEx

BOOL CEEditCtrl: :PreCreateWindow(CREATESTRUCT& cs)

cs. lpszClass _T ("EDIT") ;

APPLE 1109 - Page 173

if (m_bAutoScroll)

cs.style I= ES_AUTOHSCROLL;

return COleControl: :PreCreateWindow(cs);

BOOL CEEditCtrl: :GetAutoScroll()

return m_bAutoScroll;

void CEEditCtrl: :SetAutoScroll(BOOL bNewValue)

m_bAutoScroll = bNewValue;

if (AmbientUserMode())

RecreateControlWindow();

SetModifiedFlag () ;

Windows Controls -+- 465

We now check and set the appropriate style bits before the creation of the window in PreCreateWindow.
Because the control's window is nonexistent or will be destroyed and re-created when the user switches to
run mode, the Preer ea teWindow method will handle design-time modification of the property.

When the ActiveX control is operating at run time, the user can now modify the AUTOHSCROLL behav
ior at run time with a call similar to this:

'Turn autoscroll off

EEditl.AutoScroll = False

This code will call SetAutoScroll, which sets the new value of m_bAutoScroll to FALSE and calls
RecreateControlWindow. RecreateControlWindow calls PreCreateWindow, and the window is cre
ated without the ES_AUTOHSCROLL bit. The framework maintains the state of the control throughout this
process. A side effect is that the user may see the control quickly disappear and reappear as it is destroyed
and re-created.

The coleControl class maintains only the "text" of our EEdit window. Other Windows control state
information, such as the m_sMaxLength property (which we will cover next), is not maintained dur
ing the call to RecreateControlWindow. We can manage this by maintaining the MaxLength

N o r E value within our control's class and resetting the value when the WM_CREATE message is received for
the newly re-created window. Other subclassed controls, such as listboxes, also require that you
maintain certain control state information if you use the RecreateControlWindow method.

Go ahead and compile and link the project and insert the conh·ol into your favorite container (not the Test
Container). Add a few of the EEdit controls and change their AutoScroll properties during the design
phase and during run time to get a sense of exactly what is going on.

APPLE 1109 - Page 174

466 + CHAPTER 1 0

You can also modify the behavior a standard Windows control by sending it messages that are defined by
the control. The standard EDIT control allows you to limit the number of characters that can be entered into
the entry field. You do this by sending it an EM_SETLIMITTEXT message. The control must exist before you
send it the message, so modifying a control's behavior in this manner requires a different approach from
that used above.

Add a new property to the control-call it m_sMaxLength-of type short. The control must have a
valid HWND before we can initialize the control with the property value. The best time to initialize this value
is when the control's window is initially created. Right after a window is created, it receives the WM_CREATE
message. Open Class Wizard and add a handler for the WM_CREATE message. We will use this event to set
the MaxLength for the control. Add the following highlighted code:

I I eeditctl. h

class CEEditCtrl public COleControl

II Implementation

protected:

-CEEditCtrl();

BOOL m_bAutoScroll;

short m_sMaxLength;

};

11 EEditctl.cpp

CEEditCtrl: :CEEditCtrl()

InitializeIIDs(&IID_DEedit, &IID_DEeditEvents);

II TODO: Initialize your control's instance data here.

m_bAutoScroll = TRUE;

m_sMaxLength = 0;

void CEEditCtrl: :DoPropExchange(CPropExchange* pPX)

ExchangeVersion(pPX, MAKELONG(_wVerMinor, _wverMajor));

COleControl: :DoPropExchange(pPX);

II TODO: Call PX_ functions for each persistent custom property.

APPLE 1109 - Page 175

PX_Bool (pPX, "AutoScroll", m_bAutoScroll, TRUE) ;

PX_Short (pPX, "l1axLength", m_sMaxLength, 0) ;

#ifdef _WIN32

#define LIMITMSG EM_SETLIMITTEXT

#else

l!define LIMITMSG EM_LIMITTEX'T

#endif

int CEEditCtrl: :OnCreate(LPCREATESTRUCT lpCreateStruct)

if (COleControl: :OnCreate(lpCreateStruct) -1)

return -1;

if (m_sMaxLength

SendMessage(LIMITMSG, m_sMaxLength, 0) ;

return O;

short CEEditCtrl: :GetMaxLength()

return m_sMaxLength;

void CEEditCtrl: :SetMaxLength(short nNewValue)

m_sMaxLength = nNewValue;

if (P.mbientUserMode())

if (m_sMaxLength)

SendMessage(LIMITMSG, m_sMaxLength, 0) ;

else

SendMessage(LIMITMSG, 32000, 0) ;

SetModifiedFlag();

Windows Controls + 467

There are differences between the Win16 and Win32 implementations of the WM_LIMIT message, so we use
the _WIN32 symbol to isolate the differences between the platforms. Once that is done, the implementation
of the new property is easy. When the control's window is created, we check the value of the property. If it is
nonzero, we use the SendMessage method to modify the behavior of the control. If the control user wants

APPLE 1109 - Page 176

468 + CHAPTER 1 0

to change the MaxLength of the control at run time, the SetMaxLength method handles this. If
m_sMaxLength is set to zero, a limit of 32000 is sent to the control, effectively allowing unlimited text entry.

When we last used the Expression class in Chapter 6, we provided an automation interface so that its
capabilities could be used from non-C++ languages. By developing an ActiveX control implementation, we
are making the Expression component's functionality more accessible to developers who use visual tools.
We also provide a feedback, or event, mechanism so that the tool user can easily tie additional actions to the
control's features.

Because our EEdit control is primarily a visual one, it should provide the stock MFC events. Using
ClassWizard, add the following stock events to the CEEdi tctrl class:

• Click

• DblClick

" KeyDown

° KeyUp

° KeyPress

• MouseDown

• MouseUp

0 MouseMove

Adding these stock events provides the control user with the ability to perform actions when one of the
events is fired by the default implementation of COleControl. We didn't add any code at all, but the con
trol user can now add behavior based on the user clicking or double-clicking within the edit field.

Standard Windows controls are usually associated with a parent window. That's one of the reasons that
they're called child windows. In most cases, the parent window is a Windows dialog box. The dialog win
dow acts a lot like an ActiveX control container, because it coordinates the behavior of its child windows. It

APPLE 1109 - Page 177

Windows Controls -+-

controls the tabbing order of the controls, notifies them of changes in the environment, and accepts mes
sages, or notifications, from the child controls when something occurs.

When a control is subclassed for use within an ActiveX control, this dialog-based environment does not
necessarily exist. ActiveX controls have their own techniques of interacting with the container. The container
and controls work together to establish the tabbing order, ambient properties provide a way for the control
to retrieve information from the container, and the control can fire events to notify the container of internal
changes. TI1e functionality is similar to that in a parent/ child window environment, but the implementation
is quite different. Instead of Window messages going back and forth, we use automation.

What I'm getting at is this; there is no parent window for the subclassed controls to post and receive the
Windows messages that define their behavior. To solve this problem, the ActiveX control standard describes
a reflector window. The reflector window is created by the COleControl implementation, but a reflector
window can instead be provided by the container. TI1e container technique would reduce overhead, because
it could use only one window that could act as the parent for all contained ActiveX controls that use sub
classing. If the control container provides this feature, it must set the MessageReflect ambient property to
TRUE. If the container does not support message reflection, the framework will create its own reflector win
dow for each ActiveX control that subclasses a Windows control. This is done by the COleControl base
class.

The purpose of the reflector window is to reflect back to the ActiveX control certain Windows messages
that would otherwise go to the parent (Figure 10.2). A control notification message such as BN_CLICKED,

EN_CHANGED, and so on will be reflected back to the ActiveX control so that it can be implemented as an
OLE event. For example, the WM_CTLCOLOR message is sent to the parent to get information about how the
child window should paint itself but instead is now reflected back to the ActiveX control for handling. The
ActiveX control can then get the container's ambient color properties and paint itself appropriately. Table
10.4 shows the messages that are reflected back to the ActiveX control.

Reflector Window
or

Container Implementation

~
Messages
reflected back
to the control

figure l 0.2 A control's reflector window.

Parent window
messages
WM_ COMMAND
WM_CTLCOLOR, etc.

APPLE 1109 - Page 178

470 + CHAPTER 1 0

Table 10.4 Windows Messages ReRected Back to an ActiveX Control

Message from Control Message Reflected Back to Control

WM_ COMMAND

WM_CTLCOLOR (Win 16)

WM_CTLCOLOREDIT (Win32)

WM_CTLCOLORBTN (Win32)

WM_CTLCOLORDLG (Win32)

WM_CTLCOLORLISTBOX (Win32)

WM_CTLCOLORMSGBOX (Win32)

WM_CTLCOLORSCROLLBAR (Win32)

WM_CTLCOLORSTATIC (Win32)

WM_DRAWITEM

WM_MEASUREITEM

WM_DELETEITEM

WM_VKEYTOITEM

WM_CHARTOITEM

WM_ COMPARE ITEM

WM_HSCROLL

WM_VSCROLL

WM_PARENTNOTIFY

" I

OCM_COMMAND

OCM_CTLCOLOR

OCM_CTLCOLOREDIT

OCM_CTLCOLORBTN

OCM_CTLCOLORDLG

OCM_CTLCOLORLISTBOX

OCM_CTLCOLORMSGBOX

OCM_CTLCOLORSCROLLBAR

OCM_CTLCOLORSTATIC

OCM_DRAWITEM

OCM_MEASUREITEM

OCM_DELETEITEM

OCM_VKEYTOITEM

OCM_CHARTOITEM

OCM_COMPAREITEM

OCM_HSCROLL

OCM_VSCROLL

OCM_PARENTNOTIFY

By default, COleControl does nothing with the messages that are reflected back to the control. To fire an
event or in any way act on one of the reflected messages, you must add it to your control's message map and
provide a message handler. The code initially provided by ControlWizard adds support for the OCM_COM
MAND message by adding it to your message map and providing a default method that does nothing. Here is
the code from EEDITCTL.CPP:

APPLE 1109 - Page 179

11 EEditctl.cpp

BEGIN_MESSAGE_MAP(CEEditCtrl, COleControl)

ll{{AFX_MSG_MAP(CEEditCtrl)

ON_MESSAGE(OCM_COMMAND, OnOcmComrnand)

ll}}AFX_MSG_MAP

ON_OLEVERB(AFX_IDS_VERB_EDIT, OnEdit)

ON_OLEVERB(AFX_IDS_VERB_PROPERTIES, OnProperties)

END_MESSAGE_MAP()

Windows Controls + 471

lll

II CEEditCtrl: :OnOcmComrnand - Handle command messages

LRESULT CEEditCtrl: :OnOcmComrnand(WPARAM wParam, LPARAM lParam)

#ifdef _WIN32

WORD wNotifyCode = HIWORD(wParam);

#else

WORD wNotifyCode = HIWORD(lParam);

#endif

II TODO: Switch on wNotifyCode here.

return O;

ControlWizard provides a default handler for the OCM_Co:t-:JMAND message, because you typically fire events
when your control receives notification messages. For example, when subclassing a BUTTON control, you
will trap the BN_CLICKED message and fire the stock Click event.

For our EEdit control, we will process the EN_CHANGED notification message and fire an event that notifies
the control user that text in the edit control has changed. First, using Class Wizard, add a custom event called
FireChange. The event requires no parameters. Figure 10.3 shows the addition of the custom event.

APPLE 1109 - Page 180

+CHAPTER 10

Figure 10.3 Adding a custom event.

Once the event is added, we need to fire it when appropriate. The EEdit control sends a notification message
to its parent, which is reflected back to the ActiveX control via the OCM_COMMAND message handler. This
message handler calls the OnOcmCornmand method with the parameters of the notification message. We
check the notify code of the message, and, if it is EN_CHANGE, we fire the change event. Add the following
code to EEDITCTL.CPP:

lll

II CEEditCtrl: :OnOcmCorrunand - Handle corrunand messages

LRESULT CEEditCtrl::OnOcmCorrunand(WPARAM wParam, LPARAM lParam)

#ifdef _WIN32

WORD wNotifyCode = HIWORD(wParam);

#else

WORD wNotifyCode = HIWORD(lParam);

#endif

II TODO: Switch on wNotifyCode here.

switch(w.NotifyCode

case R.l\f_CHA.NGE:

FireChange();

break;

return 0;

APPLE 1109 - Page 181

As you can see, the code generated by ControlWizard takes care of breaking out the notification parameter
from either the wParam or the lParam depending on the platform we are compiling for. We are interested
only in the EN_ CHANGE notification, so we add a switch statement to identify it and to fire the custom
event that we added earlier. Rather painless, isn't it? Setting the colors of a subclassed control is slightly
more involved.

When you subclass a control, it's important to get the colors to draw correctly. We've briefly discussed the
WM_CTLCOLOR message, which a standard control sends to its parent when it needs to draw itself. The
WM_CTLCOLOR message contains the DC of the child control, so when the parent receives the message it sets
the attributes of the provided DC to those appropriate for the drawing of the child window. The return
value of WM_CTLCOLOR is a handle to the brush that is used for the control's background color.

This sounds great, but who is the parent? As we've discussed, the parent of a subclassed control will be
the control's reflector window. Depending on the environment in which the control is rum1ing, the frame
work may provide the reflector window, or the container may provide a similar mechanism. In both cases,
the control itself becomes the "parent" of the subclassed control. By using the reflected message handler for
the OCM_CTLCOLOR message, we provide ourselves with the brushes for coloring the control.

ClassWizard doesn't currently let you add reflected message handlers. You must add them yourself,
but it's easy. ControlWizard initially added a handler for our notification messages, so we add another line
with the new handler. Add the following highlighted code to EEDITCTL.CPP:

lll

II Message map

II

BEGIN_MESSAGE_MAP(CEEditCtrl, COleControl)

ll{{AFX_MSG_MAP(CEEditCtrl)

ON_MESSAGE(OCM_COMMAND, OnOcmCommand)

ON_MESSAGE(OCM_CTLCOLOREDIT, OnOcmCtlColor)

ll}}AFX_MSG_MAP

ON_OLEVERB(AFX_IDS_VERB_EDIT, OnEdit)

ON_OLEVERB(AFX_IDS_VERB_PROPERTIES, OnProperties)

END_MESSAGE_MAP()

Notice that we added a handler for an OCM_CTLCOLOREDIT message and not one for OCM_CTLCOLOR. We'll
get to that in a moment. Next, we need to add the declaration for OnOcmCtlColor to EEDITCTL.H and
then implement it in EEDITCTL.CPP:

II EEditctl.h

class CEEditCtrl public COleControl

APPLE 1109 - Page 182

47 4 + CHAPTER 1 0

II Implementation

protected:

};

-CEEditCtrl();

BOOL m_bAutoScroll;

short m_sMaxLength;

CBrush* m_pBackBrush;

II Subclassed control support

BOOL PreCreateWindow(CREATESTRUCT& cs);

BOOL IsSubclassedControl();

LRESULT OnOcmCommand(WPARAM wParam, LPARAM lParam);

LRESULT OnOcmCtlColor (WPA..l'ZAM wParam, LPARAM lParam) ;

II EEditctl.cpp

CEEditCtrl: :CEEditCtrl()

InitializeIIDs(&IID_DEedit, &IID_DEeditEvents);

II TODO: Initialize your control's instance data here.

m_pBackBrush = NULL;

m_bAutoScroll = TRUE;

m_sMaxLength = O;

LRESULT CEEditCtrl: :OnOcmCtlColor(WP.i".RAM wParam, LPAR.l\11 lParam)

if (m_pBackBrush == NULL)

m_pBackBrush =new CBrush(TranslateColor(GetBackColor()));

CDC* pdc = CDC::FromHandle((HDC) wParam);

pdc->SetBkMode(TRANSPF.RENT);

pdc->SetBkColor(TranslateColor(GetBackColor()));

pdc->SetTextColor(TranslateColor(GetForeColor()));

HBRUSH far* hbr = {HBRUSH far*) m_pBackBrush->GetSafeHandle();

return { (DWORD) hbr);

APPLE 1109 - Page 183

Windows Controls -+- 475

The code in OnOcmCtlColor is what you would typically see in the parent (such as a dialog box) of many
child controls. When the message is received, we set the background mode and color and the text color just
as we would in a normal OnDraw method. The tricky part involves the handling of the background color

brush.

When processing the WM_CTLCOLOR message, we return either a handle to a valid brush or NULL. If
NULL is returned, the default system background color is used. We need to return a handle to a brush that is
the current background color, so to process this message we need to maintain an instance of the CBrush

class with the current background color of our control. We need a CBrush pointer member in our control
class, and we call it m_pBackBrush. We also need to be notified when the BackColor property is changed
so that we can update our brush with the new color. Override the OnBackColor method by declaring it in
EEDITCTL.H and add the following implementation code. You can also add it through Class Wizard.

class CEEditCtrl : public COleControl

II Overrides

virtual void OnBackColorChanged();

II Implementation

protected:

-CEEditCtrl();

CBrush* m_pBackBrush;

};

II eeditctl.cpp

void CEEditCtrl::OnBackColorChanged{)

}

delete m_pBackBrush;

m_pBackBrush =new CBrush(TranslateColor(GetBackColor()));

InvalidateControl();

Whenever the user changes the BackColor property, we delete the old brush and create a new one with the
new color. We also need to ensure that the brush is deleted when a control's instance is destroyed. Add the
following code to the control's destructor:

CEEditCtrl: :-CEEditCtrl()

II TODO: Clean up your control's instance data here.

delete m_pBackBrush;

APPLE 1109 - Page 184

47 6 + CHAPTER 1 0

WM_ CTLCOLOR and Win32
The WM_CTLCOLOR message is used only in Win16. Here is its definition:

WM_CTLCOLOR

hdcChild = (HDC) wParam; II DC of the child window

hwndChild = (HWND) LOWORD(lParam); II hwnd of the child window

nCtlType = (int) HIWORD(lParam); II type of the control

The nCtl Type parameter contains the control type: CTLCOLOR_BTN, CTLCOLOR_DLG, CTLCOLOR_EDIT,
and so on. When Microsoft moved the Windows messages from Win16 to Win32, the WM_CTLCOLOR mes
sage was one that did not make the transition. In Winl6, WM_CTLCOLOR's wParam, a WORD, contained the
child's 16-bit device context, and the lParam, a DWORD, contained both the child window's HWND (16 bits)
and the child control type (16 bits).

In Win32, the size of a HANDLE went from 16 bits to 32 bits, so the HWND and HDC parameters increased
to 32 bits. Although the wParam and lParam parameters in Win32 are both 32-bit, this did not leave room
for the control type to be passed within the message. To rectify this, the WM_CTLCOLOR message was broken
into seven different messages (one for each control type) in Win32.

This arrangement isn't really a big problem, and MFC does a pretty good job of hiding these differences
within the framework. The only exception occurs when we handle the reflected window messages using the
OCM_ * macros.

Because of the differences between the Win16 and Win32 implementations of the reflected message
macros (OCM_ *),we would like to code the message map as follows:

lll

II Message map

II
BEGIN_MESSAGE_MAP(CEEditCtrl, COleControl)

ll{{AFX_MSG_MAP(CEEditCtrl)

ON_MESSAGE(OCM_COMMAND, OnOcmCommand)

#ifdef _WIN32

ON_MESSAGE(OCM_CTLCOLOREDIT, OnOcmCtlColor)

#else

ON_MESSAGE(OCM_CTLCOLOR, OnOcmCtlColor)

#endif

ll}}AFX_MSG_MAP

ON_OLEVERB(AFX_IDS_VERB_EDIT, OnEdit)

ON_OLEVERB(AFX_IDS_VERB_PROPERTIES, OnProperties)

END_MESSAGE_MAP()

APPLE 1109 - Page 185

Windows Controls +

But ClassWizard parses the message map without any C++ preprocessing, so this code won't work. One
way to overcome this problem is to #undefine the OCM_CTLCOLOREDIT symbol under Win16 and rede
fine it to OCM_CTLCOLOR. This technique allows us to use one source file for both platforms.

ll!llllllll!I

II Message map

II

Because of the differences between the Win16 and

Win32 l'M_CTLCOLOR message, we need to modify the

#define for the OCM_CTLCOLOREDIT symbol under Wi.n16

_WIN32

OCM_CTLCOLOREDIT

OCM_CTLCOLOREDIT OCM_CTLCOLOR

BEGIN_MESSAGE_MAP(CEEditCtrl, COleControl)

/l{{AFX_MSG_MAP(CEEditCtrl)

ON_MESSAGE(OCM_COMMAND, OnOcmCommand)

ON_MESSAGE(OCM_CTLCOLOREDIT, OnOcmCtlColor)

/l}}AFX_MSG_MAP

ON_OLEVERB(AFX_IDS_VERB_EDIT, OnEdit)

ON_OLEVERB(AFX_IDS_VERB_PROPERTIES, OnProperties)

END_MESSAGE_MAP()

We've made quite a few modifications to our control, so let's go ahead and compile, link, and test the control
within a container. Figure 10.4 shows a simple Visual Basic application that uses the control. When you
modify the control's stock color properties, it will affect the control's run-time representation. But it doesn't
draw right when you're in design mode. What's going on?

Figure 10.4 EEdit control on a Visual Basic form.

APPLE 1109 - Page 186

-+-CHAPTER 10

The major problem with subclassing windows is that you must provide some form of representation during
the container's design phase. The DoSuperclassPaint method doesn't do a very good job of drawing the
control without a true window and without the reflector window that is needed to process the WM_CTL

COLOR messages. Another problem is that DoSuperclassPaint may not work at all for containers that
require a metafile representation of the control. What can we do?

For one thing, the design-phase representation of a control is not nearly as important as its representa
tion at run time. In Visual Basic 3.0, a listbox was represented as a rectangle with its name in the upper left
corner in the design phase. That was it. Because of the various requirements of control containers, it is prob
ably best to render the design-time representation of your subclassed control yourself. It can be as simple or
as complex as you would like, but don't let the problem of a design-phase representation stop you from
gaining the advantages of subclassing an existing Windows control.

As we discussed in Chapter 9, it is important to provide a drawing routine that will work with a
metafile device context. When drawing a subclassed control, as a metafile or in the design phase, I've taken
the following approach. Develop a drawing routine that best represents the control. Typical controls will
provide the name of the control in the upper left corner during the design phase, just as we did with the
clock control in Chapter 9. Represent the control with a shape that is representative of its size and location.
Use as many of the stock and custom properties as possible when drawing the control. This includes the
color, font, and border properties.

Using this approach, here are the OnDrawMetafile and OnDraw methods for our EEdit control:

void CEEditCtrl: :OnDrawMetafile(CDC* pdc, const CRect& rcBounds)

DrawDesign(pdc, rcBounds);

void CEEditCtrl: :OnDraw(

CDC* pdc, const CRect& rcBounds, const CRect& rcinvalid)

ii If the container is in design mode

II Draw the design representation

if (! AmbientUserMode ())

DrawDesign(pdc, rcBounds) ;

else

DoSuperclassPaint(pdc, rcBounds) ;

As you can see, if the container is asking for a metafile representation or it is in design mode, we call a new
method, DrawDesign. When the control is running, the DoSuperclassPaint method draws the control
its native way: by processing the WM_CTLCOLOR * messages and so on. The only purpose of the

APPLE 1109 - Page 187

Windows Controls +

DrawDesign method is to provide a good representation of the control the rest of the time (either during
design or when it is being printed by the container). This approach is fairly straightforward:

void CEEditCtrl: :DrawDesign(CDC* pdc, const CRect& rcBounds

CBrush bkBrush(TranslateColor(GetBackColor())) ;

pdc->FillRect(rcBounds, &bY~rush) ;

//Get the stock "text" property value

CString strName = InternalGetText();

/!Set the textcolor to the foreground color

pdc->SetTextColor(TranslateColor(GetForeColor())) ;

Select the stock font and save the old one

CFont* pOldFont = SelectStockFont(pdc);

II Set up the text drawing modes in the DC

pdc->SetBkMode (TRZ>.NSPARENT) ;

pdc->SetTextAlign(TA_LEFT I TA_TOP) ;

fl Draw the text in the upper left corner

pdc->ExtTextOut(rcBounds.left + l, rcBounds.top + 1, ETO_CLIPPED,

rcBounds, strName, strName.GetLength(), NULL);

II Restore the old font

if (pOldFont)

pdc->SelectObject(pOldFont);

This code is similar to the drawing code that you've seen before. The only thing is the use of the
InternalGetText method to get the text to draw in the conh·ol. The value of the Text property is initially
set in the control's OnResetState method, which is called when a control is placed within a container for
the first time. This is a good spot to initialize our default Text property to the ambient DisplayName prop
erty:

!ll!lllllllllllll

II CEEditCtrl: :OnResetState - Reset control to default state

void CEEditCtrl: :OnResetState()

COleControl: :OnResetState(); II Resets defaults found in DoPropExchange

II TODO: Reset any other control state here.

SetText(.l\mbientDisplayName()) ;

APPLE 1109 - Page 188

480 + CHAPTER 1 0

The preceding code sets the initial value of the control's Text property to the ambient DisplayName prop
erty provided by the container. Many controls that expose the Text property default its value in this way.
For our purposes here, though, a default value of EEdi tl for a control that accepts only numeric expres
sions doesn't make sense. A more appropriate default value would be zero (I just wanted to show you how
to do it).

lll

II CEEditCtrl: :OnResetState Reset control to default state

void CEEditCtrl: :OnResetState()

COleControl: :OnResetState(); II Resets defaults found in DoPropExchange

II TODO: Reset any other control state here.

SetText ("0") ;

r
When your control is initially placed in a container, COleControl:: OnResetState is called. This
method, in tum, calls your control's OnPropertyExchange method with IsLoading () set to TRUE. The
CPropExchange: : IsLoading method indicates the direction of the property exchange. When it is TRUE,
the container is loading the properties; when it is FALSE, the properties are being saved. Because this is the
first time that the control has been loaded by the container and because there is no persistent data that has
been previously stored, the default values of the PX_ functions are used.

If you haven't provided default values for your PX_ functions, garbage will be returned for each of your
properties. It is important to either set the default values of your control's properties by providing the
defaults in the PX_ functions or set them in the OnResetState method. Use the following guidelines for
help in determining where you should initialize data used in your control.

In the Control's Constructor
Control instance data that is used internally by the control and isn't directly exposed (for example, by a
property) should be initialized here.

In the Control's DoPropertyExchange Method
As I mentioned earlier, you can provide a default value for your control's properties as the last parameter of
the CPropertyExchange PX_* functions. Here is an example from the AutoScroll property that we
added earlier:

APPLE 1109 - Page 189

Windows Controls + 481

f////////ll!!l!ll!lll

II CEEditCtrl: :DoPropExchange Persistence support

void CEEditCtrl: :DoPropExchange(CPropExchange* pPX)

ExchangeVersion(pPX, MAKELONG(_wVerMinor, _wVerMajor));

COleControl: :DoPropExchange(pPX);

II TODO: Call PX_ functions for each persistent custom property.

Store/retrieve the AutoScroll property value

The default is TRUE

PX_Bool (pPX, "AutoScroll", m_bl'.utoScroll, TRUE) ;

There's another good reason to provide default values for your control's properties here. If the property's
value is the default value, there will be no need to store it when serializing the control's state. This technique
may save storage space in the container's persistence file.

In the Control's OnResetState Method
You can also initialize your control's properties in the OnResetState method. This is a good place to pro
vide defaults for stock properties that are different from those provided by the
COleControl: : DoPropExchange (pPX) method. COleControl provides the default values for the stock
properties, but you can override them when the control is initially loaded by changing their values in
OnResetState after it has called COleControl: : OnResetState. For example, if you want your control
to default to having a border, you can set its value in OnResetState as follows:

lll

II CEEditCtrl: :OnResetState - Reset control to default state

void CEEditCtrl: :OnResetState()

COleControl: :OnResetState(); II Resets defaults found in DoPropExchange

II TODO: Reset any other control state here.

II Turn off any border and make the control 3D

m_sBorderStyle = O;

m_sAppearance = 1;

You could also use the SetBorderStyle method to set the initial border style, but in this case it's rather
expensive. SetBorderStyle calls RecreateControlWindow to destroy and re-create our control's win
dow, because the WS_BORDER style can be set only before the window is created. The same goes for the
appearance style.

APPLE 1109 - Page 190

482 + CHAPTER 1 0

OnResetState is called before your control's window is created, so this is an effective way of initializ
ing your control properties that can't be effectively defaulted using the default values in the PX_ functions of
DoPropertyExchange, as described earlier.

We're halfway through the chapter, and we haven't discussed the addition of the Expression class. The
addition of expression evaluation is fairly trivial compared with what we've done to get the EEdit control to
behave in a civilized manner. Before we begin using the Expression class, be sure to copy the EXPRESS.H
and EXPRESS.CPP files from the Chapter 2 directory on the accompanying CD-ROM and then insert the
.CPP file to the project. Also, add the include to the top of EEDITCTL.CPP.

Our goal is to provide an entry field that accepts only a simple algebraic expression. This includes dig
its, operators, and the parenthesis characters. The user will enter an expression into the entry field, and the
expression will be evaluated when the control loses focus.

To add this functionality, we need to add message handlers for the appropriate control messages:
WM_KILLFOCUS and WM_CHAR. Using ClassWizard, add handlers for these two messages and add the fol
lowing code to the OnKillFocus method:

II EEditCtl.cpp : Implementation of the CEEditCtrl OLE control class.

#include "stdafx.h"

#include "EEdit.h"

lfinclude "EEditCtl.h"

#include "EEditPpg.h"

#include "Express.h"

#ifdef _DEBUG

#define new DEBUG_NEW

lll

II CEEditCtrl message handlers

void CEEditCtrl: :OnKillFocus(CWnd* pNewWnd)

COleControl: :OnKillFocus(pNewWnd);

if (AmbientUserMode() == FALSE I I AmbientUIDead())

return;

II Get the value of the "text" property and

II use it to construct our expression object

Eh1)ression exp(InternalGetText(), TRUE) ;

APPLE 1109 - Page 191

if (exp.Validate() == FALSE)

SetFocus();

else

char szTemp[128];

long lResult =exp.Evaluate();

sprintf(szTemp, "%ld", lResult);

II Set the new value of the "text" property

ii This will also update the edit control

SetText (szTemp) ;

Windows Controls + 483

Whenever the application user tabs out of the Edit control or clicks on another control, it receives a
WM_KILLFOCUS message. We first check to make sure that we are not in design mode and that the container
has not set the ambient UIDead property. Next, we retrieve the text from the control using the
GetWindowText method. Using the entered text, we construct an instance of our Expression class. If the
expression is invalid, we call the SetFocus method; otherwise, we evaluate the expression and place the
result into the control using the SetWindowText method.

By returning focus to the control when an invalid expression is entered, we require users to always
enter a valid expression. Users cannot tab to a different control within the application or even exit the appli
cation without entering a valid expression. This type of validation is called field-level validation and may not
be the behavior we want. Using the SetFocus method within a focus handler such as OnKillFocus is not
recommended. We'll provide alternative solutions in a moment.

One thing that we can do to help ensure that the application user enters a valid expression is to disallow
the entry of invalid (expression) characters. We trap the WM_CHAR message for this reason. By subclassing
the Edit control, we have an opportunity to inspect and possibly ignore any message destined for the con
trol. We allow the majority of the messages to pass through to the original window procedure. The excep
tions are WM_KILLFOCUS and WM_CHAR. We intercepted the kill focus message to perform some action, but
we intercept the WM_CHAR message to filter, or remove, certain characters that are entered by the user. Add
the following code:

void CEEditCtrl: :OnChar(UINT nChar, UINT nRepCnt, UINT nFlags)

if (AmbientUserMode() ==FALSE I I AmbientUIDead())

return;

if (isdigit(nChar) I I IsOperator(nChar) I I nChar == ' ' I I nChar '\b')

COleControl::OnChar(nChar, nRepCnt, nFlags) ;

APPLE 1109 - Page 192

+CHAPTER 10

#ifdef _WIN32

else

: :Beep(100, 100) ;

#endif

#define LEFT_P!l.REN ' ('

11define RIGHT_PAREN ') '

#define MULTIPLY

#define SUBTP4~CT '-'

#define PLUS '+'

#define DIVIDE '/'

static BOOL IsOperator(UINT nChar)

switch(nChar)

case LEFT_PAREN:

case RIGHT_PAREN:

case MULTIPLY:

case SUBTR!l.CT:

case PLUS:

case DIVIDE:

return TRUE;

return FALSE;

Again we check the UserMode and UIDead ambients and return if the container is in a state in which we
should not process messages. If it is not, we check to see whether the character entered is either a digit, an
operator, a space, or the backspace character. If it is not one of these, we use the Win32 Beep function to
inform the user that the character cannot be entered into the entry field. If the character is valid, we pass it to
the edit control and it is processed normally.

Whenever you are validating the entry within an edit field, things get a little tricky. When the user enters an
invalid expression in our conh·ol, what should we do? Here are some of the options:

APPLE 1109 - Page 193

Windows Controls 485

• Set focus back to the control. This technique ensures that a valid expression is entered by not allow
ing the user to tab out of the control.

• Display a message box with a warning message that the expression is invalid. Either continue or set
focus back to the control.

" Leave the invalid expression in the control, but fire an event that allows users to perform their own
action.

• Replace the invalid expression with a textual error message and continue or set focus back to the
control.

One of our goals as control developers is to give the control user flexible options for using the control. So
let's add a property, called ValidateAction, whose value will determine our action when an invalid
expression is entered. We will provide the control user with the first three options described earlier. Using
ClassWizard, add the ValidateAction property; its type is short. Be sure to use the Get/Set-style of
implementation. The three possible values of the property will be handled with an C++ enumerated type
structure as follows. Add the following enumerated type to EEDIT.H so that we can use it in the property
page and control files.

typedef enum

ActionSetFocus = 0,

ActionMsgBox = 1,

ActionEvent = 2

enumAction;

Our new OnKillFocus code now checks for the value of the ValidateAction property and acts accord
ingly. Depending on the value ofvalidateAction, we either return focus to the control, pop up a message
box to indicate an error, or fire the Expressioninvalid event. The following code provides this imple
mentation:

I I eedi tctl. h

class CEEditCtrl public COleControl

II Implementation

protected:

-CEEditCtrl();

BOOL

short

CBrush*

short

void

m_bAutoScroll;

m_sMaxLength;

m_pBackBrush;

m_sValidateAction;

DrawDesign(CDC*, canst CRect&) ;

APPLE 1109 - Page 194

486 + CHAPTER 1 0

};

DECLARE_OLECREATE_EX(CEEditCtrl)

DECLARE_OLETYPELIB(CEEditCtrl)

II Class factory and guid

II GetTypeinfo

11 eeditctl.cpp

CEEditCtrl: :CEEditCtrl()

InitializeIIDs(&IID_DEedit, &IID_DEeditEvents);

II TODO: Initialize your control's instance data here.

m_pBackBrush = NULL;

m_bAutoScroll = TRUE;

m_sMaxLength = O;

m_sValidateAction short(ActionSetFocus);

void CEEditCtrl: :DoPropExchange(CPropExchange* pPX)

ExchangeVersion(pPX, MAKELONG(_wVerMinor, _wverMajor));

COleControl: :DoPropExchange(pPX);

II TODO: Call PX_ functions for each persistent custom property.

PX_Bool (pPX, "AutoScroll", m_bAutoScroll, TRUE) ;

PX_Short (pPX, "MaxLength", m_sMaxLength, 0) ;

PX_Short(pPX, "ValidateAction", m_sValidateAction, short(ActionSetFocus }) ;

void CEEditCtrl: :OnKillFocus(CWnd* pNewWnd)

COleControl: :OnKillFocus(pNewWnd);

if (AmbientUserMode() == FALSE I I AmbientUIDead())

return;

II Get the value of the "text" property and

II use it to construct our expression object

Expression exp(GetinternalText(), TRUE);

if (exp.Validate() == FALSE)

APPLE 1109 - Page 195

switch(m_sValidateAction

case ActionSetFocus:

II You cannot get out of this without

II fixing the expression. Including out of the

II application!

SetFocus () ;

break;

case ActionMsgBox:

II Maybe use a Validate on LostFocus property

Windows Controls +

II or instead fire an "Invalid Expression" event

AfxMessageBox("Error in Expression, please re-enter", l1B_OK) ;

break;

else

case ActionEvent:

FireExpressioninvalid();

break;

char szTemp[128];

long lResult = exp.Evaluate();

sprintf(szTemp, "%ld", lResult) ;

II Set the new value of the "text" property

II This will also update the edit control

SetText(szTemp) ;

short CEEditCtrl: :GetValidateAction()

return m_sValidateAction;

void CEEditCtrl::SetValidateAction(short nNewValue)

m_svalidateAction = nNewValue;

BoundPropertyChanged(dispidValidateAction) ;

SetModifiedFlag();

APPLE 1109 - Page 196

+CHAPTER 10

We haven't yet added the Expressioninvalid event, so go ahead and use Class Wizard t<? add this event.
It passes no parameters. Its only purpose is to notify the control user that an invalid expression was entered.

Enumerating Property Values
So far, the properties we have used in our controls have been either textual (BSTR), Boolean (BOOL), or one
of the other OLE supported types (such as OLE_COLOR). Textual property values are easily presented to the
control user for modification, as are the stock and Boolean types. Most container applications provide sup
port for your properties if they are represented by one of the standard automation types.

But what do you do if you need to represent a property value as a short internally and want to pro
vide a range of values to the control user? For our ValidateAction property, using the methods that
we've investigated so far, the user would be required to enter either a 0, 1, or 2 value to indicate the appro
priate validate action. There is no way of ensuring that the user won't enter 195. MFC provides a mechanism
for enumerating property values to ensure that only valid property values are entered. This method is sup
ported by the COlePropertyPage DDX and DDP functions, but you must do some of the work yourself.

First, you add a property of type short. Then you edit your control's ODL file and create an enumer
ated type that enumerates all the possible values of the property. Here's how to do this for our new
ValidateAction property in EEDIT.ODL. I've also added an enumerated property for the stock
BorderStyle and Appearance properties.

II EEdit.odl : type library source for OLE Custom Control project.

II This file will be processed by the Make Type Library (mktyplib) tool to

II produce the type library (eedit.tlb) that will become a resource in

II eedit.ocx.

#include <olectl.h>

[uuid(D5F64C96-D2Fl-11CE-869D-08005A564718), version(l.0),

helpstring("Eedit OLE Custom Control module"), control]

library EEditLib

importlib(STDOLE_TLB);

importlib(STDTYPE_TLB);

typedef enum

[helpstring("Flat")] Flat= 0,

[helpstring("3D")] ThreeD = 1

enumAppearance;

typedef enum

APPLE 1109 - Page 197

[helpstring ("None") l None = 0,

[helpstring("Single")] Single= l

enumBorderStyle;

typedef enum

[helpstring ("SetFocus")] SetFocus = 0,

[helpstring("DisplayMsgBox")J DisplayMsgBox 1,

[helpstring("FireEvent")] FireEvent = 2

enumValidateAction;

II Primary dispatch interface for CEEditCtrl

Windows Controls

uuid(D5F64C94-D2F1-11CE-869D-08005A564718),

helpstring("Dispatch interface for Eedit Control"), hidden]

dispinterface _DEedit

properties:

II NOTE - ClassWizard will maintain property information here.

11 Use extreme caution when editing th.is section.

ll{{AFX_ODL_PROP(CEEditCtrl)

[id(DISPID_APPE~.PJ>.NCE), bindable, requestedit] enumAppearance Appearance;

[id(DISPID_BACKCOLOR), bindable, requestedit] OLE_COLOR BackColor;

[id(DISPID_BORDERSTYLE), bindable, requestedit] enumBorderStyle BorderStyle;

[id(DISPID_ENABLED), bindable, requestedit] boolean Enabled;

[id(DISPID_FONT), bindable] IFontDisp* Font;

[id(DISPID_FORECOLOR), bindable, requestedit] OLE_COLOR ForeColor;

[id(DISPID_HWND)] OLE_HANDLE hWnd;

[id(DISPID_TEXT), bindable, requestedit] BSTR Text;

[id(l)] enumValidate.~ction ValidateAction;

[id(2)] short MaxLength;

[id(3)] boolean AutoScroll;

ll})AFX_ODL_PROP

. };

The ODL enum keyword is similar to the one used with C and C++ except that each value can have associ
ated with it additional attributes. For our purposes, the helpstring attribute provides a way to associate a
textual description with the property value. Good property browsers will query these values from the con
trol (from its type information) and display them to the control user when selecting a value for an enumer
ated property. Figure 10.5 shows our ValidateAction property and its enumerated types in Visual Basi~'s
properties window.

APPLE 1109 - Page 198

+CHAPTER 10

1. 30
'True

&HOOOOOOOF&
0 ·None
(None)
O ·Manual
True
(Font)

. 255

0

2130

EEdit1
0
True

Figure 10.5 ValidateAction properly and its enumerated types.

We also need to provide this enumerated property functionality in our control's custom property page.
We'll do that next.

As we discussed in Chapter 8, not all development environments that support ActiveX controls will provide
a nice property browser. We need to provide, via our control's custom and stock property pages, the neces
sary interface to allow a user to change all our control's properties. The ActiveX control standard specifies
that property pages for controls can be either 250x62 dialog units (DLU) or 250x110 DLUs in size. The
default size provided by Visual C++ is the smaller: 250x62 DLUs. For the EEdit control, we need to increase
the size of our custom property page to 250x110 by modifying it in the Visual C++ dialog editor. Double
click on EEDIT.RC and change the size of the control's IDD_PROPPAGE_EEDIT dialog to 250x110 DLUs.

Next, add the following controls to the dialog for our stock and custom properties:

0 IDC_ENABLED: checkbox

0 IDC_APPEARANCE: droplist combo box

" IDC_BORDERSTYLE: droplist combo box

0 IDC_TEXT: multiline edit field

" IDC_ VALIDATEACTION: droplist combo box

" IDC_MAXLENGTH: single-line edit field

.. IDC_AUTOSCROLL: checkbox

APPLE 1109 - Page 199

When you're finished, you should have something that looks like Figure 10.6.

Figure 10.6 Editing the custom properly page.

We now need a way to list the enumerated property values that we defined in our ODL file. Because we
used droplist combo boxes, this is easy. When editing the styles of the droplist combo boxes, you can enter
the default items that will be displayed when the dialog box is loaded. All we need to do is to list the enu
merated values in the same order that they are declared. In other words, the item number within the combo
box should equate to the associated property value. Figure 10.7 shows the values as entered for our
ValidateAction property.

Figure 10.7 Setting the combo box list values.

You should also do this for the IDC_BORDERSTYLE combo box. Now that we have the enumerated types
defined in the dialog box, we need to ensure that the value is properly h·ansferred to and from the control
when the property is being edited via the property page.

APPLE 1109 - Page 200

-+-CHAPTER 10

Class Wizard will do all this for you. On the Member Variables tab, for each control add an appropriate
member variable. Use the Value category and be sure to enter the name of the property in the Optional OLE
property name file. This is shown in Figure 10.8.

figure 10.8 Adding member variables for the property page.

The following highlighted code shows the changes that ClassWizard makes to EEDITPPG.H and EED
ITPPG.CPP.

II EEditppg.h

ll

II CEEditPropPage : See eeditppg.cpp for implementation.

class CEEditPropPage : public COlePropertyPage

II Dialog Data

ll{{AFX_DATA(CEEditPropPage)

enum { IDD = IDD_PROPPAGE_EEDIT };

int m_sAppearance;

BOOL m_bAutoScroll;

int m_sBorderStyle;

BOOL m_bEnabled;

int m_sMaxLength;

CString m_strText;

int m_sValidateAction;

APPLE 1109 - Page 201

Windows Controls +

ll}}AFX_DATA

II Implementation

protected:

virtual void DoDataExchange(CDataExchange* pDX); II DDXIDDV support

};

lll

II CEEditPropPage: :CEEditPropPage - Constructor

CEEditPropPage: :CEEditPropPage() :

COlePropertyPage(IDD, IDS_EEDIT_PPG_CAPTION)

ll({AFX_DATA_INIT(CEEditPropPage)

m_sAppearance -1;

m_bAutoScroll FALSE;

m_sBorderStyle = -1;

m_bEnabled = FALSE;

m_sMa.xLength = 0;

m_strText = _T("");

m_sValidateAction = -1;

ll}}AFX_DATA_INIT}

lll

II CEEditPropPage: :DoDataExchange - Moves data between page and properties

void CEEditPropPage::DoDataExchange(CDataExchange* pDX)

ll{{AFX_DATA_MAP(CEEditPropPage)

DDP_CBindex(pDX, IDC_APPEP.RANCE, m_sAppearance, _T("Appearance")) ;

DDX_CBindex(pDX, IDC_APPEP.PJl.NCE, m_sAppearance);

DDP_Check(pDX, IDC_AUTOSCROLL, m_bAutoScroll, _T("AutoScroll")) ;

DDX_Check(pDX, IDC_AUTOSCROLL, m_bAutoScroll);

DDP_CBindex(pDX, IDC_BOP.DERSTYLE, m_sBorderStyle, _T("BorderStyle")) ;

DDX_CBindex(pDX, IDC_BORDERSTYLE, m_sBorderStyle);

DDP_Check(pDX, IDC_ENABLED, m_bEnabled, _T("Enabled")) ;

DDX_Check(pDX, IDC_ENABLED, m_bEnabled);

DDP_Text (pDX, IDCJ1.l\.XLENGTH, m_sMaxLength, _T ("MaxLength")) ;

DDX_Text(pDX, IDC_Mi'.l{LENGTH, m_sMaY.Length);

DDV_MinMaxint(pDX, m_sMaxLength, 0, 32000);

DDP_Text (pDX, IDC_TEXT, m_strText, _T ("Text")) ;

DDX_Text(pDX, IDC_TEXT, m_strText);

APPLE 1109 - Page 202

494 + CHAPTER 1 0

DDP_CBindex (pDX, IDC_VALIDATEACTION, rn_sValidateAction, _T ("ValidateAction")) ;

DDX_CBindex(pDX, IDC_VALIDATEACTION, rn_sValidateAction);

//}}AFX_DATA_MAP

DDP_PostProcessing(pDX);

Most of this code should look familiar. The only new items are the DDP _CB Index, DDX_CBindex, and
DDV_MinMaxint functions in the DoDataExchange method. The DDP_CBindex function transfers (either
to or from) the value of the property page's m_sValidateAction variable to the ValidateAction prop
erty in the control. DDX_CBindex uses the value to set or get the index of the combo box to that of the enu
merated property value. These functions make it easy to handle enumerated properties as strings in the
property page and as shorts in the control. The DDV_MinMaxint function restricts the values that can be
entered into the MaxValue property's entry field. Figure 10.9 shows the finished page.

Figure 10.9 Finished EEdit properly page.

With our new EEdit control, it is easy to write an application that provides similar ftmctionality as that of the
application we built with Visual C++ in Chapter 3. Using Visual Basic, we can create a similar application
with almost zero lines of code. On the accompanying CD-ROM, an application is provided that allows you
to test the various configurations of the EEdit control. Figure 10.10 shows the test application.

APPLE 1109 - Page 203

Windows Controls -+- 495

Figure 10.10 Test application.

Drawing your controls with the 3-D look of Windows 95 is fairly easy. When drawing the control during the
design phase, you can use the Win32 DrawEdge function. For our EEdit control, the addition of the follow
ing code to the DrawDesign method will draw a 3-D edge around the control during the design phase:

#ifdef _WIN32

: :DrawEdge(pdc->GetSafeHdc(),

CRECT(rcBounds),

EDGE_SUNKEN,

BF _RECT BF _ADJUST) ;

#endif

If you want your control to have a 3-D appearance at run time (and if it's a control that has a window),
include the new WS_EX_CLIENTEDGE extended Windows style bit in the PreCreateWindow method. This
bit is recognized only in Windows 95 and Windows NT 4.0. If you're developing windowless controls, the
DrawEdge function makes it easy to draw 3-D-style images during the design phase and at run time.

llllllllllllllllllllllll/1/llllllllllllll/111/llllllllllllllllllllll/1/llllll

II CEEditCtrl: :PreCreateWindow - Modify parameters for CreateWindowEx

BOOL CEEditCtrl: :PreCreateWindow(CREATESTRUCT& cs)

APPLE 1109 - Page 204

+CHAPTER 10

cs. lpszClass = _T ("EDIT") ;

cs.style I= ES_AUTOHSCROLL;

II Add 3-D support under Windows 95

cs.dwExStyle I= WS_EX_CLIENTEDGE;

return COleControl: :PreCreateWindow(cs);

If you need 3-D support on other platforms, the easiest way to add it is to use the standard 3-D support
DLLs (such as CTL3DV2.DLL and CTL3D32.DLL). This technique is described in detail in the Microsoft
Developer Network article "Adding 3-D Effects to Controls." You should also read MFC Tech Notes 51 and
52, because you should not add 3-D effects to controls when running on operating systems that already pro
vide this functionality (such as Windows 95 and Windows NT 4.0).

N 0 T E

Visual C++ versions 4.0 and higher handle drawing 3-D controls with the new Appearance prop
erty. It checks the version of the operating system and uses the appropriate method, either
WS_EX_CLIENTEDIT or DrawEdge, to provide 3-D support.

Subclassing the new Windows 95 common controls is just a little more involved that what we've done here
with the Windows standard controls. The primary trick is to know the Windows class names for the new
common controls. As we discussed previously, ControlWizard modifies the CREATESTRUCT class in the
PreCreateWindow method. A list of control names and functionality is provided in Table 10.5. You can
obtain additional information by studying the COMMCTRL.H and RICHEDIT.H files.

BOOL CYourCtrl: :PreCreateWindow(CREATESTRUCT& cs)

cs.lpszClass = _T("SysTreeView32") ;

return COleControl: :PreCreateWindow(cs);

APPLE 1109 - Page 205

Table 10.5 Windows 95 Common Controls

Common Control Name Windows Class
Name to Subdass

Toolbar: A standard toolbar control. Provides tooltip support, dockability,

and automatic sizing.

Tooltips: A control that makes it easy ot implement tooltips not only for your

toolbar but also for all the controls in your application.

Status bar: A cont~ol that provides status information. The status bar also

acts as a progress indicator.

Progress: A simple progress control. Used to display the progress of a

lengthy process.

Track bar: Another name for a slider control. UpDown:

The UpDown control is similar to a spin button control. It's basically an

entry field with up and down buttons.

Header: An easier way to do headings for lists of items. A much better way

than using tabs in a listbox.

List view: An icon-container-like control that supports drag-and-drop.

Tree view: Provides a hierarchical and graphical view of your data.

Rich text edit: A control that is similar to the standard EDIT control but

provides RTF functionality.

HotKey: Allows a user to enter a hot-key by typing it on the keyboard

(e.g., Ctrl+Shift+X).

Tab: Provides the strip of tabs at the top of a standard tabbed

dialog, but doesn't provide help with the page-switching, and so on.

Animate: A control that plays simple AVI files.

ToolbarWindow32

tooltips_class32

msctls_statusbar32

msctls_progress32

msctls_trackbar32

msctls_updown32

SysHeader32

SysListView32

SysTreeView32

RICHEDIT or RichEdit20A

msctls_hotkey32

SysTabControl32

SysAnimate32

To demonsh·ate how to subclass one of the new Windows 95 common controls, we'll subclass the tree view
control. It provides a hierarchical view of whatever the control user wants to provide. An example of a tree
view control is the Project Workspace viewer of Visual C++'s Developer Studio. The class, file, and resource
views all use the tree view control.

Our implementation won't have all the features of the tree view ActiveX control that comes with Visual
Basic, but it will demonstrate all the techniques to create such a control. It won't be hard to add more func
tionality to our basic control. You should be comfortable with ControlWizard by now, so create a new con
trol project with the following characteristics:

APPLE 1109 - Page 206

+CHAPTER 10

" Name the project TreeV.

• Take the default options, but be sure to subclass the tree view control. The class name is
Sys Tree View32.

" Add the Appearance, Enabled, Font, and hWnd stock properties through Class Wizard.

MFC provides classes that make it a bit easier to access the functionality of the Windows 95 common con
trols. Instead of remembering all the Windows messages (such as TVM_INSERTITEM), you can use a method
within the class (such as Insert Item). In the EEdit example, we used CWnd: : SendMessage with the win
dow messages to affect the behavior of the EDIT control. In this example, we'll use MFC's CTreeCtrl class.

Using the MFC Control Classes
Using MFC classes sounds like a perfect solution. However, Visual C++ doesn't make it as easy as it should
be. First, the project created with ControlWizard doesn't include the common control header file, so we must
add it before we get started. Edit STDAFX.H and include AFXCMN.H:

II stdafx.h : include file for standard system include files,

II or project-specific include files that are used frequently,

II but are changed infrequently

#define VC_EXTRALEAN II Exclude rarely used stuff from Windows headers

#include <afxctl.h> // MFC support for OLE Controls

II Add common control support

#include <afxcmn.h>

II Delete the two includes below if you do not wish to use the MFC

II database classes

#ifndef _UNICODE

#include <afxdb.h>

#include <afxdao.h>

#endif //_UNICODE

II MFC database classes

II MFC DAO database classes

Second, using the MFC control class within COleControl isn't straightforward. When you're subclassing a
control within COleControl, the HWND of the COleControl-derived class is actually the HWND of the sub
classed control. In our case, this is the HWND of the tree view control. However, COleControl does not con
tain the tree view-specific methods, so we can't directly use them. We could do something sneaky like this:

hitem = ((CTreeCtrl*) this)->Insertitem(&tvStruct) ;

Casting the COleControl-derived class to the appropriate control class works, but only because we're
lucky. It works because the CTreeCtrl implementation uses C++ inline methods. If MFC ever changes its
implementation to use standard C++ methods instead of inline, the preceding code will cause run-time pro-

APPLE 1109 - Page 207

Windows Controls -+-

tection faults. If casting is the only way to solve a problem, you should question whether there's something
wrong with the approach. There usually is. We need another technique.

The best solution I've found is to add a CTreeCtrl member to our CTreeVCtrl class. Then, if we can
somehow attach our subclassed HWND to this new member, everything will work great. There's just one
problem: MFC maintains a list of HWNDs that are attached to CWnd-derived objects. The HWND for our control
was added to the list when the CTreeVCtrl instance was created. We, therefore, can't do this:

int CTreeVCtrl: :OnCreate(LPCREATESTRUCT lpCreateStruct)

if (COleControl: :OnCreate(lpCreateStruct) -1)

return -1;

II TODO: Add your specialized creation code here

m_TreeCtrl.Attach(this);

Because the map already contains the HWND of the control, this code will cause an ASSERT. Here's the best
workaround I can find. First, add a handler for the WM_CREATE method. Then add the following code to
TREEVCTL.H and TREEVCTL.CPP:

II
II TreeVCtl.h Declaration of the CTreeVCtrl OLE control class.

II

class CTreeVCtrl public COleControl

II Implementation

protected:

-CTreeVCtrl();

CTreeCtrl m_TreeCtrl;

};

II
II TreeVCtl.cpp

II

CTreeVCtrl: :-CTreeVCtrl()

II TODO: Clean up your control's instance data here.

m_TreeCtrl.m_hWnd = O;

APPLE 1109 - Page 208

int CTreeVCtrl: :OnCreate(LPCREATESTRUCT lpCreateStruct)

if (COleControl: :OnCreate(lpCreateStruct) == -1)

return -1;

II TODO: Add your specialized creation code here

m_TreeCtrl.m_hWnd = m_hWnd;

return O;

We add an instance of CTreeCtrl, but we don't use the Attach or Create method to create the window.
Instead, we assign the HWND of the COleControl-derived class to the m_hWnd member of our CTreeCtrl
instance. This works just fine. However, we must ensure that the control won't be destroyed twice, so we set
the m_hWnd member to zero in the control's destructor. Now that we've fixed that problem, we can start
adding some functionality through our new CTreeCtr 1 member.

We won't spend much time on the specifics of the tree view control. You can read the MFC documenta
tion for the details. Instead, we'll focus on the issues of subclassing as we build the control. A tree view con
trol needs an image list. An image list is a new Windows 95 common control that maintains a list of images,
either bitmaps or icons. Each item in the tree view is typically associated with one of the images maintained
in the list view.

The accompanying CD-ROM contains the six .ICO files that we'll use in our control. You need to add
these to your project with the IDs listed in Table 10.6. You can quickly do this through Developer Studio's
Insert/Resource/Import menu item. Be sure to add the icons in the order shown in Table 10.6. The image list
insertion code requires that the icon IDs are consecutive.

Resource Symbol

IDI_AUTHOR

IDI_AUTHOR2

IDI_NOTE

ID I_ BOOKS

ID I_ BOOK

IDI_CARDFILE

Table 10.6 .ICO Files in the Tree View Control

Filename

AUTHOR 1.ICO

AUTHOR2.ICO

NOTE.ICC

BOOKS.ICO

BOOK.I CO

CARDFILE.ICO

We need an instance of MFC's image list control, CimageList, within our CTreeVCtrl class. We fill the
image list with our icons and then pass the list to the tree view control. The following code demonstrates
this:

APPLE 1109 - Page 209

II
II TreeVCtl.h Declaration of the CTreeVCtrl OLE control class.

II

class CTreeVCtrl public COleControl

II Implementation

protected:

-CTreeVCtrl () ;

CTreeCtrl m_TreeCtrl;

CimageList m_ImageList;

void CreatermageList();

};

II

Windows Controls + 1

II TreeVCtl.cpp

II

Implementation of the CTreeVCtrl OLE control class.

void CTreeVCtrl::CreateimageList()

m_ImageList.Create(32, 32, FALSE, 6, 0);

/I Set the background mask color to white

m_ImageList.SetBkColor(RGB(255, 255, 255));

for(int i = O; i < 6; i++)

HICON hicon : :Loadicon(AfxGetResourceHandle(),

MAKEINTRESotJRCE (IDI_AUTHOR + i)) ;

m_ImageList.Add(hicon) ;

ASSERT(m_ImageList.GetimageCount() 6);

II Set the image list for the tree

m_TreeCtrl.SetimageList(&m_ImageList, TVSIL_NORMAL) ;

int CTreeVCtrl: :OnCreate(LPCREATESTRUCT lpCreateStruct)

APPLE 1109 - Page 210

+CHAPTER 10

if (COleControl: :OnCreate(lpCreateStruct) -1)

return -1;

II TODO: Add your specialized creation code here

II Set up the HWND for our embedded CTreeCtrl instance

m_TreeCtrl.m_hWnd = m_hWnd;

CreateimageList();

return O;

In the preceding code, we create an instance of the image list control, setting the image size to 32x32 pixels.
We specify that no mask will be used and indicate that the initial size of the list is six images. The call to
CimageList: : SetBkColor sets the background color of the images to white, which is the color I used for
the background of the images. Next, we loop through and load the six icons and add each one to the image
list. Finally, we associate the image list with the tree view control.

Our simple tree view control has only four custom properties. Using ClassWizard, add the following
custom properties. Use the Get and Set implementation technique and add the appropriate implementa
tion variables to TREEVCTL.H.

" HasLines: Boolean, m_bHasLines

0 HasLinesAtRoot: Boolean, m_bHasLinesAtRoot

" Has Buttons: Boolean, m_bHasBu t tons

" IndentSize: long, m_lindentSize

Here's the code from TREEVCTL.H:

II
II TreeVCtl.h Declaration of the CTreeVCtrl OLE control class.

II

class CTreeVCtrl public COleControl

DECLARE_DYNCREATE(CTreeVCtrl)

II Implementation

protected:

-CTreeVCtrl();

CTreeCtrl m_TreeCtrl;

CimageList m_ImageList;

APPLE 1109 - Page 211

Windows Controls +

void CreateimageList();

long m_lindentSize;

BOOL !!LbHasLines;

BOOL m_bHasButtons;

BOOL m_bHasLinesAtRoot;

};

When we initially created the control with ControlWizard, it added the following code:

BOOL CTreeVCtrl: :PreCreateWindow(CREATESTRUCT& cs}

cs.lpszClass = _T("SysTreeView32"};

return COleControl: :PreCreateWindow(cs};

As you may recall from the EEdit example, we can set up any additional window styles here in
PreCreateWindow. There are several styles specific to the tree view control, and I've listed them in Table
10.7. To start, we'll use the TVS_LINESATROOT, TVS_HASBUTTONS, and TVS_HASLINES styles, which map
directly to three of the properties we added.

BOOL CTreeVCtrl: :PreCreateWindow(CREATESTRUCT& cs)

if (m_bHasLinesAtRoot)

cs.style I= TVS_LINESATROOT;

if (m_bHasButtons }

cs.style I= TVS_HASBUTTONS;

if (m_bHasLines)

cs.style I= TVS_HASLINES;

cs.lpszClass = _T("SysTreeView32");

return COleControl: :PreCreateWindow(cs};

APPLE 1109 - Page 212

504 + CHAPTER 1 0

Table 10.7 Styles of the Tree View Control

Style Description

TVS_HASLINES Display lines linking children to their parents.

TVS_LINESATROOT Display lines attached to the root item.

TVS_HASBUTTONS Show plus sign "buttons" to expand and contract the hierarchy.

TVS_EDITLABELS Allow the user to edit the text associated with each item in the control.

TVS_SHOWSELALWAYS Show the selected item even after the control loses focus.

TVS_DISABLEDRAGDROP Disable begin drag notifications.

We set the appropriate window styles based on the value of our properties. The default value for each prop
erty is TRUE. Here's the code needed to make the property values persistent. The PX function for the
IndentSize property is also provided.

void CTreeVCtrl: :DoPropExchange(CPropExchange* pPX)

ExchangeVersion(pPX, MAKELONG(_wVerMinor, _wVerMajor));

COleControl: :DoPropExchange(pPX);

II TODO: Call PX_ functions for each persistent custom property.

PX_Bool(pPX, _T("HasLines"), m_bHasLines, TRUE) ;

PX_Bool(pPX, _T("HasLinesAtRoot"), m_bHasLinesAtRoot, TRUE) i

PX_Bool(pPX, _T("HasButtons"), m_bHasButtons, TRUE) ;

PX_Long(pPX, _T("IndentSize"), m_lindentSize, 0);

The newer Windows 95 controls support changing styles at run time using the SetWindowLong API func
tion. For each of our "Has" properties, we'll use this function to update the control at run time. It's simple.
Here's the code for the HasLines property:

BOOL CTreeVCtrl: :GetHasLines()

return m_bHasLines;

void CTreeVCtrl: :SetHasLines(BOOL bNewValue)

if (GetSafeHvmd () 0)

return;

m_bHasLines = bNewValue;

DWORD dwStyle = : :GetWindowLong(m_hWnd, GWL_STYLE) ;

APPLE 1109 - Page 213

if (! m_bHasLines

dwStyle &= -TVS_H..~SLINES;

: :SetWindowLqng(m_hWnd, GWL_STYLE, dwStyle) ;

else

dwStyle I= TVS_HASLINES;

::SetWindowLong(m_hWnd, GWL_STYLE, dwStyle);

II Force a redraw and update any browser

SetModifiedFlag();

BoundPropertyChanged(dispidHasLines);

When the property is updated, we first make sure that we can get a valid HWND. If we can't get an HWND,

we're probably in design mode, which isn't a problem. Then we use the GetWindowLong function to
retrieve the existing window style bits. We check the new value of the property and either turn on or turn off
the TVS_HASLINES style. Next, we invalidate the control to force a repaint and call
BoundPropertyChanged to update any attached browsers. This same approach is used for each of the
"Has" properties. With a few Copy/Paste commands, you should have the other methods working in no
time. The IndentSize property isn't much different:

void CTreeVCtrl: :SetindentSize(long nNewValue)

if (GetSafeHwnd() 0)

return;

m_lindentSize = nNewValue;

m_TreeCtrl. Setindent (m_lindentSize) ;

II Force a redraw and update any browser

SetModifiedFlag{);

BoundPropertyChanged(dispidindentSize) ;

Instead of setting window style bits, we call the Set Indent method of CTreeCtrl to set the new indent
value. Now the control user can change the style of our tree control at both design time and run time.
Because the new controls support changing these styles at run time, there's no need to worry about saving
the state of the control, calling RecreateControl, and then restoring the earlier state. This approach
makes changing styles much more efficient.

APPLE 1109 - Page 214

506 + CHAPTER 1 0

To finish the control, let's add some items to the tree view. Typically, you would expose a method from
the control that would allow the control user to add items to the view, but for our example we'll add them
within the control. First, we need an Additem method:

HTREEITEH CTreeVCtrl: :Additem(HTREEITEM hParent,

HTREEITEM hAfter,

HTREEITEM hitem;

TV_INSERTSTRUCT tvStruct;

LPSTR szText,

int iimage,

int iSelimage)

tvStruct.item.mask = TVIF_TEXT TVIF_IMAGE I TVIF_SELECTEDIMA.GE;

tvStruct.hParent = hParent;

tvStruct.hinsertAfter = hAfter;

tvStruct.item.iimage = iimage;

tvStruct.item.iSelected!mage = iSelimage;

tvStruct.item.pszText = szText;

tvStruct.item.cchTextMax = strlen(szText);

hitem = m_TreeCtrl.Insertitem(&tvStruct) ;

return (h!tem) ;

This method takes as a parameter the parent item, the item after which it should be inserted, the text associ
ated with the item, the nonselected image, and finally the image to use when the item is selected. The imple
mentation is straightforward. We fill out the tree view TV _INSERTSTRUCT structure and call the
Insertitem method. This action adds the specific item to the tree view.

Earlier, we added the item icons to the project and inserted them into an image list control. Whenever
we add an item, we provide the index value of the image that we want associated with that particular item.
This is tricky, because when a resource is added by Visual C++, it assigns the ID. I've added an enumerated
type to the CTreeVCtrl class to ease the task of managing the IDs:

II

II TreeVCtl.h Declaration of the CTreeVCtrl OLE control class.

II

class CTreeVCtrl public COleControl

II Constructor

public:

CTreeVCtrl();

APPLE 1109 - Page 215

};

en um

} ;

ICON_AUTHOR,

ICON_AUTHOR2,

ICON_NOTE,

ICON_BOOKS,

ICON_BOOK,

ICON_CARDFILE,

Windows Controls + 507

TI1e next method inserts a series of items into the control using the AddI tern method. For each item that we
insert, we provide the following:

• A handle to the parent item or zero if there isn't one.

• A handle to the item to insert before. In our case, we use the TVI_SORT symbol, which indicates that
the control should just sort the items.

• The text to display for the item.

0 An index into the image list control specifying the image to associate with the item.

• An index into the image list control specifying the image to use when the item is selected.

J///ll!llll!!/ll/!1111

JI Add some test items

l/!!lll!llll/l!/ll/I//

BOOL CTreeVCtrl: :Testitems()

HTREEITEM hParent, hChildl, hChild2;

II Insert the root object

hParent = Additem(0, TVI_SORT,

"Authors", ICON_CARDFILE,

ICON_CARDFILE) ;

II Insert the authors, their books, and magazines

hChildl = Additem(hParent, TVI_SORT,

"Charles Petzold", ICON_AUTHOR,

ICON_AUTHOR2) ;

hChild2 Additem(hChildl, TVI_SORT,

"Books", ICON_BOOKS, ICON_BOOKS);

APPLE 1109 - Page 216

508 + CHAPTER 1 0

Additem(hChild2, TVI_SORT,

"Programming Windows 3.1, Third Edition'',

ICON_BOOK, ICON_BOOK) ;

Additem(hChild2, TVI_SORT,

"Programming The OS/2 Presentation Manager",

ICON_BOOK, ICON_BOOK) ;

Additem(hChildl, TVI_SORT,

"Articles", ICON_NOTE, ICON_NOTE);

hChildl = Additem(hParent, TVI_SORT,

"Mark Nelson", ICON_AUTHOR,

ICON_AUTHOR2) ;

hChild2 = Additem(hChildl, TVI_SORT,

"Books", ICON_BOOKS, ICON_BOOKS);

Additem(hChild2, TVI_SORT,

"C++ Program.rners Guide to the STL",

ICON_BOOK, ICON_BOOK) ;

Additem(hChildl, TVI_SORT,

"Articles", ICON_NOTE, ICON_NOTE);

hChildl = Additem(hParent, TVI_SORT,

"Jeffrey Richter", ICON_AUTHOR,

ICON_AUTHOR2) ;

hChild2 = Additem(hChildl, TVI_SORT,

"Books", ICON_BOOKS, ICON_BOOKS);

Additem(hChild2, TVI_SORT,

"Windows 3.1: A Developer's Guide",

ICON_BOOK, ICON_BOOK);

Additem(hChildl, TVI_SORT,

"Articles", ICON_NOTE, ICON_NOTE);

return TRUE;

Once you've added these methods, build the project and insert it into your favorite container. You should
see something like Figure 10.11.

APPLE 1109 - Page 217

Windows Controls + 509

Windows 3.1: A Developer's Guide

Figure 10. 11 Our subclassed tree view control.

Adding the code for the property page is easy, and we've done it several times before. Take a look at Figure
10.12 and build one similar to that. Actually, there isn't any code to write. Class Wizard does everything for
you. However, you need to add the enumerated properties for the appearance property to CTREEV.ODL in
order make your property page more robust. You may also want to add component category support so that
you can embed the control in Internet Explorer. All this is implemented in the example control on the
accompanying CD-ROM.

Figure l 0.12 Our tree view control's property sheet.

APPLE 1109 - Page 218

510 +CHAPTER 10

Our focus in this chapter was on the subclassing of standard controls provided by the Windows operating
system. Subclassing is an effective way of reusing existing functionality provided by standard controls.
Reuse by subclassing works by intercepting messages meant for the original window procedure of the stan
dard control and then either discarding or modifying the messages. This is a common technique for devel
oping applications in C using the Windows SDK.

Windows provides six standard controls and Windows 95 provides an additional 10 common controls, all
of which can be subclassed. To subclass a control, we override the COleControl: : PreCreateWindow
method and modify the CREATESTRUCT with the class name of the control being subclassed. We can make
additional modifications to the control in the Preer ea teWindow method. A control's style bits affect the behav
ior of the control. Certain style bits can be set only before the creation of the control window, and others can be
modified after the window is created. We looked at both types. COleControl: : RecreateControlWindow
provides an easy way to modify style bits that can be set only before the window is created.

Subclassed controls expect to have a parent window that helps in the management of the child control's
environment. ActiveX controls do not have a parent window, because they are stand-alone windows inserted
within a container. The ActiveX control standard specifies the need for a reflector window to reflect messages
intended for the parent window back to the child window. In this regard, the child window acts also as its pai'
ent and so is in control of all its messages. One set of messages sent by a subclassed control is its notification
messages, which signify that events have occurred. When a notification message is reflected back to the control,
it fires ai1 OLE event to alert the control user. Handling the coloring of the control also requires working with
reflected messages, particularly the WM_CTLCOLOR* messages. These messages, normally sent to a parent dialog
window, contain instructions on the colors to use for painting the child control. By responding to the reflected
WM_CTLCOLOR * messages, an ActiveX control tells itself how it should be colored.

One of the problems of control subclassing is the difficulty of providing a good design-phase represen
tation of the control. With a little thought, you can handle this problem. In many situations, a control's
design-phase representation is not nearly as important as its run-time representation. You may also need to
provide your own metafile representation of the control.

The best way to set default values for your control's property values is to provide a default value to the
property exchange functions in the DoPropertyExchange method. In some cases, you may also have to
set default values in the control's OnResetSta te method.

After you have subclassed a standard control, it is easy to intercept messages using the MFC message
map functionality. To intercept a message, use Class Wizard to add a handler for the message. Then discard,
handle, or modify the message in the handler code.

You can enumerate property values for property browsers by adding an enumerated type with the
associated helpstrings to your control's .ODL file. To add support for enumerated properties in your
control's custom property page, use a droplist combo box that is prefilled with the textual representation of
the enumerated property. The DDP_CBindex function makes it easy to convert and transfer the property
values to and from the control.

Property pages can be one of two sizes: either 250x62 or 250x110 dialog units (DLUs). You can use the
DrawEdge function, the WS_EX_CLIENTEDGE window style, and MFC's stock Appearance property to
provide a 3-D appearance for your controls.

Using MFC's Windows 95 control classes within your own controls is fairly easy to do. By subclassing
the new common controls, you can quickly take advantage of the features provided by these controls.

APPLE 1109 - Page 219

I Cont s

We've covered two of the three broad types of ActiveX controls: graphical controls and controls ,that sub
class existing Windows controls. In this chapter we will investigate the design and use of nonvisual ActiveX
controls, which provide their functionality without providing a visual element.

To illustrate how easy it is to build a simple client/server application with ActiveX controls, we will
develop a control that provides Win32 named pipes services, allowing a visual tool user to create applica
tions using Win32 named pipes. The details of interacting with the API functions will be contained within
the ActiveX control, and the control user will need just a handful of properties and methods to build appli
cations using named pipes.

The goals of a nonvisual control are similar to those that we've described for components in general. The
goal is to build controls that encapsulate the complexity of a problem and expose a more user-friendly way
of interacting with that problem. We demonstrated this in the first half of the book by converting the
Expression C++ class to an automation component. By exposing only four expression methods, we made
it easy for a component user to harness the expression evaluation capabilities of our C++ class. In Chapter
10, we converted the Expression component to work as an ActiveX control. We could also convert the
Expression component to a nonvisual control, but let's do something a little more interesting.

The example control we'll develop uses the Win32 pipes APL Pipes provide a way for processes to share
information easily. Interprocess communication with pipes can be used between processes on a single, local

511

APPLE 1109 - Page 220

512 +CHAPTER 11

machine or between processes that are on separate, or remote, machines. We'll briefly cover the features of
Win32 pipes. For a more detailed look at pipes and other interprocess communication and networking tech
niques available under Win32, see Mark Andrews's book, C++ Windows NT Programming (second edition,
M&T Books, 1996).

Two fundamental pipe types are supported by Win32. Anonymous pipes provide only one-way commu
nication between processes, do not support network communication, and are typically used by processes
that have a parent-child relationship. Named pipes allow both one-way and two-way communication
between processes and support communication between processes on local and networked machines. Our
example control will use named pipes.

Named Pipes
Named pipes provide client/server-style communication techniques. The server process initially creates a
named pipe by calling the CreateNamedPipe function. This action creates a named pipe instance with a
unique name and allows client processes that know the name of the pipe to connect to, and begin conversing
with, the server process. The client process uses either the CreateFile or the CallNamedPipe function to
connect to the pipe created by the server process. Many pipe-based applications support the connection of
multiple client processes to a single server process, the typical configuration of client/ server applications.
For our example control, the server will allow a connection only from one client process at a time.

Message Types
Named pipes support two different message-processing models. A message between processes can be han
dled as a byte stream or as message unit. The various pipe API functions take parameters that specify the
read and write mode for the specified pipe. For our purposes, we will use the message-based mode of opera
tion for our pipe control. Data sent via the Wr i teF i 1 e function will be sent and read as a unit by both the
server and the client processes. This is the most effective method of sending messages that have an inherent
structure. The byte stream mode is useful for passing unstructured data between processes.

Asynchronous versus Synchronous 1/0
Named pipes support two methods of performing I/O. Asynchronous I/O allows the process to start a read
or write operation and then to continue with other tasks. When the read or write operation completes, the
process is notified, usually via a semaphore, that the operation has completed. The process can then obtain
and use the data from the read operation or free the data used in the write operation. Asynchronous opera
tion requires the use of threads under Win32. Supporting multiple threads in an ActiveX control is beyond
the scope of this book, so we will use a hybrid approach for our control.

Synchronous operation is easier to understand and is how we typically develop programs. When we
make a function call, the program waits until the function operation is completed before returning. This is
the single-thread-of-execution model that we use when we develop most programs. To provide support for

APPLE 1109 - Page 221

Nonvisual Controls + 513

pipes in our control, we'll simulate the existence of a thread for our server's pipe. We will use a Windows
timer and the Peek:NamedPipe function to simulate this process.

Pipe Names
Pipe names must be unique to distinguish them from other named pipes in the system. They do not have to
be unique networkwide, because pipe names are qualified with the server's name in a networked environ
ment. Pipe names are not case-sensitive and can be as many as 256 characters in length. Here is the format of
a pipe name:

\\servername\pipe\this.is.a.pipe.name

The first part of the pipe name is the network name of the server's machine. On Windows NT and Windows
95, the name of a networked machine begins with"\\" followed by the machine's name. The "\pipe" part
of the name is required and specifies the global area for pipe names on the machine being addressed.
Finally, the text following "\pipe\" gives the unique name of the specific pipe: "this.is.a.pipe.name."

A fully qualified pipe name for a pipe on a local machine is as follows:

\\.\pipe\this.is.a.pipe.name

The single dot(".") is shorthand for the local machine name. When you're developing applications that use
pipes for local machine interprocess communication, this is all that is required. This approach is much better
than hard coding the local machine's name, because it will change as you move your applications to other
machines. Table 11.1 lists the named pipe functions that we will use in our PIPE control.

Fundion

CreateNamedPipe

CreateFile

ConnectNamedPipe

CallNamedPipe

WaitNamedPipe

DisconnectNamedPipe

Table 11 .1 Win32 Named Pipe API Functions

Purpose

Used by the server process to create an instance of a named pipe. The name of the pipe is

provided as a parameter. Clients cannot connect to a named pipe until it has been explicitly

created by the server process.

Used by client processes to connect to a named pipe. The pipe name passed may contain a

network pathname allowing the intermachine communication.

Used by the server process to wait for a client process to connect to the pipe.

This function is a helper function for client processes. It encapsulates multiple calls into one. It

connects to a pipe, waiting if necessary, and then writes to and reads from the pipe. It then

closes the pipe.

Used by the client to wait for an instance of the pipe to become available. The wait time can

be infinite or the default value used in the CreateNamedPipe function.

Closes the server end of the pipe. If a client is still connected to the pipe, an error will occur

when it next accesses the pipe.

APPLE 1109 - Page 222

514 +CHAPTER 11

Function

PeekNamedPipe

ReadFile

WriteFile

CloseHandle

Table 11. l Win32 Named Pipe API Functions (continued)

Purpose

Copies data from a pipe without actually removing it and also returns information about the

pipe.

Reads dota from a pipe.

Writes data to a pipe.

Closes a pipe handle, which doses the pipe.

Start Visual C++ and ControlWizard and create a new control project. Call it Pipe and use these options:

• In the Step 1of2 dialog box, take the defaults of No License, Yes, comments, and No help files.

• In Step 2 of 2, take all the defaults except one. Be sure to check the Invisible at runtime option.

° Click Finish and create the control.

The only new item that we checked is the Invisible at runtime option. This option adds the
OLEMISC_INVISIBLEATRUNTIME flag to the control's MiscStatus flags stored in the Registry. This flag
tells the container that the control will be visible only during the design phase.

All that's needed during the design phase is a simple representation of the control. It's easy for the control
user to select the control by clicking on its representation, gaining access to the control's properties, events,
and methods. Add the following code to the PIPECTL.CPP file. We set the initial size of the control and ini
tialize the pipe's handle in the control's constructor.

lll

II CPipeCtrl: :CPipeCtrl Constructor

CPipeCtrl: :CPipeCtrl()

InitializeIIDs(&IID_DPipe, &IID_DPipeEvents);

II Set the control's initial size

SetinitialSize(28, 26) ;

lll

APPLE 1109 - Page 223

II CPipeCtrl: :OnDraw Drawing function

void CPipeCtrl: :OnDraw(

Nonvisual Controls

CDC* pdc, const CRect& rcBounds, const CRect& rcinvalid)

CBitmap bitmap;

BITMAP bmp;

CPictureHolder picHolder;

CRect rcSrcBounds;

bitmap.LoadBitmap(IDB_PIPE) ;

bitmap.GetObject(sizeof(BITMAP), &bmp);

rcSrcBounds.right = bmp.bmWidth;

rcSrcBounds.bottom = bmp.bmHeight;

#ifdef _WIN32

: : DrawEdge (pdc->GetSafeHdc () ,

CRect(rcBounds) ,

EDGE_RAISED,

#endif

BF _RECT BF _1'-1lJUST) ;

picHolder.CreateFromBitmap((HBITMAP)bitmap.m_hObject, NULL, FALSE);

picHolder.Render(pdc, rcBounds, rcSrcBounds) ;

515

The preceding technique could be made more efficient by maintaining an instance of the control's
bitmap in our class and using the Bit-Blt functions, as we did in Chapter 9, but I'm using this
method for two reasons. First, it introduces you to the CPictureHolder class. Second, the render

N o T E ing of a nonvisual control occurs only during the design phase (hopefully a small percentage of its
lifetime), so its rendering doesn't really require the techniques used in Chapter 9.

We discussed in Chapter 10 most of what is shown here, with the exception of the CPictureHolder class
that we will discuss in a moment. To provide a design-phase representation of the control, we use the con
trol's tool palette bitmap image. We use the CBi tmap : : Loa dBi tmap method to load the bitmap from the
control's resource file. The GetObj ect method retrieves information about a GDI object, and we use it to fill
this BITMAP structure:

typedef struct tagBITMAP

LONG bmType;

LONG bmWidth;

LONG bmHeight;

LONG bmWidthBytes;

WORD bmPlanes;

APPLE 1109 - Page 224

S l -+- CHAPTER 1 1

WORD bmBitsPixel;

LPVOID bmBits;

BITMAP;

We then draw a 3-D border around the control using the DrawEdge function. The EDGE_RAISED flag draws
the control as a raised button on the container. Next, we get the true size of the bitmap and store it in
rcSrcBounds. Using our instance of CPictureHolder, we use its CreateFromBi tmap method to initial
ize the pichire object with our control's bitmap. We then render the control into the container's device con
text using the Render method. Figure 11.1 shows the PIPE control in the Test Container. You will need to
modify the control's tool palette image in the PIPE.RC file.

Ready

figure 11.1 The pipe control in the Test Container.

(Picture Holder
The CPictureHolder class provides methods that make it easy to manipulate and display bitmaps, icons,
and metafiles. It supplies an implementation of the OLE I Picture interface that provides a uniform way of
working with picture type objects.

A CPictureHolder instance must be initialized to empty using the CreateEmpty method or using
one of the three picture type initialization methods: CreateFromBi tmap, CreateFromicon, or
CreateFromMetafile. Once initialized, the item can be rendered into a DC by using the Render method.

The CPictureHolder class can be used to provide Picture properties for your controls. When
you're adding a property with Class Wizard, one of the automation property types is LPPICTUREDISP. This
property allows you to include in your control an instance of CPictureHolder that can be easily modified

APPLE 1109 - Page 225

Nonvisual Controls + S 17

by the control user. Visual C++ also provides a stock property page, PROP PAGE ID (

CLSID_CPicturePropPage), that you c.an use in controls that use Picture properties.

OnSetExtent
Although the preceding code allows rendering of our control's bitmap to various sizes, expanding a bihnap
image doesn't always produce a nice representation of the original bitmap. We'll override the
onsetExtent method, as we did in previous chapters, to fix the size of the control's representation. Not all
containers will honor the return of OnSetExtent, but the preceding rendering code handles the situation in
which the control user may size the control larger than we would like; it renders the image correctly, only
larger. Add the following code for the OnSetExtent method. We'll cover the changes to PIPECTL.H
shortly.

II pipectl.cpp

BOOL CPipeCtrl: :OnSetExtent(LPSIZEL lpSizeL)

CDC cdc;

cdc.CreateCompatibleDC(NULL);

CSize size(28, 26) ;

cdc.DPtoHIMETRIC(&size);

lpSizeL->cx = size.ex;

lpSizeL->cy = size.cy;

II Call the parent implementation

return COleControl: : OnSetKxtent (lpSizeL) ;

The next few sections describe the various properties, methods, and events that we will add to the PIPE con
trol's implementation. To give you an idea of what you will see, we'll take a look at what we need to add to
PIPECTL.H. This will be quicker than showing a snippet of the .H file every time we need to add a new
member variable or overriding prototype, and you'll get a quick introduction to what we'll be doing.
Following are the pertinent sections of PIPECTL.H:

II pipectl.h : Declaration of the CPipeCtrl OLE control class.

lll

II CPipeCtrl : See pipectl.cpp for implementation.

class CPipeCtrl : public COleControl

APPLE 1109 - Page 226

5 1 8 + CHAPTER 11

DECLARE_DYNCREATE(CPipeCtrl)

II Constructor

public:

CPipeCtrl () ;

II Overrides

virtual BOOL OnSetExtent(LPSIZEL lpSizeL) ;

virtual void OnSetClientSite();

virtual void OnFreezeEvents(BOOL bFreeze) ;

II Implementation

protected:

-CPipeCtrl();

void StartTimer();

void StopTimer();

BOOL CreatePipe();

void ClosePipe();

void ReadPipe();

};

HANDLE m_hPipe;

CString m_strPipeName;

short m_sPipeType;

int m_iFreeze;

CString m_strError;

II PipeCtrl.cpp

CPipeCtrl: :CPipeCtrl()

InitializeIIDs(&IID_DPipe, &IID_DPipeEvents);

II Set the control's initial size

SetinitialSize(28, 26) ;

m_hPipe = O;

m_iFreeze = O;

APPLE 1109 - Page 227

Nonvisual Controls 51

We override the OnSetClientSi te method to create a window for our control. The onFreezeEvents
method provides indications from the container about whether the control should fire events. We already
covered why we override OnSetExtent. ·

The member methods-StartTimer, StopTimer, CreatePipe, ClosePipe, and ReadPipe-are
helper functions used by the control's exposed methods. m_hPipe is a handle to the pipe instance for the
control. m_strPipeName, m_sPipeType, and m_strError are variables for properties exposed by the
control, and m_iFreeze holds the current state of the container's Freeze state. All these will be discussed
in more detail as we build the control.

Our PIPE control requires only three properties. We don't need any of the MFC stock properties, because
they are used primarily by visually oriented controls. Using Class Wizard, add the tlu·ee properties discussed
next. The first, ErrorMsg, contains a text string of any errors that occur during processing. The second,
PipeName, contains the name of the pipe. The third, PipeType, indicates the mode of the control. Our con
trol will have two general modes of operation, as indicated by the PipeType property. Each instance of the
control will operate as either a pipe server or a pipe client process.

ErrorMsg
The ErrorMsg property, type BSTR, is used to report to the user of the control a text error message. The
property is read-only, because it can only be queried and cannot be Set. The property is meaningful only
during the run phase of the container and so is also considered a run-time-only property.

To make a property read-only when using Class Wizard, you must choose the Get/Set method of imple
mentation (which we always do) and then clear out the Set Ftmction entry field. ClassWizard will add the
address of the SetNotSupported function in the dispatch map:

lll

II Dispatch map

BEGIN_DISPATCH_MAP(CPipeCtrl, COleControl)

ll{{AFX_DISPATCH_MAP(CPipeCtrl)

DISP_PROPERTY_EX(CPipeCtrl, "ErrorMsg", GetErrorMsg, SetNotSupported, VT_BSTR)

END_DISPATCH_MAP()

The COleControl: : SetNotSupported method is actually a helper function for the
COleControl: : ThrowError method, which we will discuss in more detail later. The SetNotSupported
method is implemented like this:

void COleControl: :SetNotSupported()

APPLE 1109 - Page 228

520 -+ CHAPTER 11

ThrowError(CTL_E_SETNOTSUPPORTED, AFX_IDP_E_SETNOTSUPPORTED);

This code reports the error to the container using the automation exception mechanism. You can also use
SetNotSupported to provide a run-time-only implementation of a property:

void CYourControl: :SetAProperty(short sNewValue)

II If not running report an error

if (! AmbientUserMode())

II Throw the CTL_E_SETNOTSUPPORTED error

SetNotSupported();

II Go ahead and set the property value

In a previous chapter we discussed the use of the ODL hidden keyword as a way of hiding properties from
property browsers. Another method is to check the UserMode of the container and, if it is not in run mode,
disallow the getting of a property's value. As we described earlier, the ErrorMsg property should not be
displayed during the design phase and is valid only during run time. The code for our GetErrorMsg
method uses the GetNotSupported method to enforce this requirement:

BSTR CPipeCtrl: :GetErrorMsg()

II Most containers that provide property browsers (e.g. VB)

II will trap this exception and will not display the property

II in the property browser. This is just what we want.

II If we're not in run mode don't allow anyone to get the

II property's value.

if (AmbientUserMode() ==FALSE)

GetNotSupported{);

return m_strError.AllocSysString();

GetNotSupported is implemented just like the SetNotSupported method. It throws a CTL_E_GETNOT
SUPPORTED exception.

APPLE 1109 - Page 229

Pipe Name
The PipeName property is of type BSTR and contains the fully qualified pipe name that the control uses
when creating or connecting to a pipe instance. It is the responsibility of the control user to provide the con
trol with a valid pipe name. We could easily add rudimentary syntactic checking (such as ensuring the exis
tence of "\pipe\" in the name), but I'll leave that as an exercise.

BSTR CPipeCtrl: :GetPipeNarne()

return m_strPipei~&~e.AllocSysString();

void CPipeCtrl::SetPipeNarne(LPCTSTR lpszNewValue)

/I If the pipe name is modified during run time

II it will only take effect the next time that either

I I a server calls "Create" or a client calls "Cor1nect"

m_strPipeName = lpszNewValue;

BoundPropertyChanged (dispidPipeName) ;

SetModifiedFlag();

Pipe Type
The PipeType property indicates the current mode of operation for the control. Its type is short but can
contain only two values: zero and 1. As we did in Chapter 10, we need to set up an enumerated type in
PIPE.ODL and modify the property's type so that we can present a nice interface for containers whose prop
erty browsers support enumerated property types.

II pipectl.cpp

short CPipeCtrl: :GetPipeType()

return m_sPipeType;

void CPipeCtrl: :SetPipeType(short nNewValue)

II Don't allow setting of the property at run time

II This isn't absolutely necessarz, but it's an ex&-nple

II of a property that cannot be modified when running.

APPLE 1109 - Page 230

522 + CHAPTER 11

II If you were to allow modification of the control's mode

II during run time, we would have to ensure that any active

II pipe connections were cleaned up, and so on.

if (AmbientUser!1ode ())

ThrowError(CTL_E_SETNOTSUPPORTEDATRUNTIME,

"You can't change the PipeType property at runtime") ;

m_sPipeType = nNewValue;

BoundPropertyChanged(dispidPipeType) ;

SetModifiedFlag();

II pipe.odl

typedef enum

[helpstring ("Server")] Server 0,

[helpstring ("Client")] Client 1

enumPipeType;

uuid(96612B01-D79F-11CE-86A3-08005A564718),

helpstring("Dispatch interface for Pipe Control"), hidden]

dispinterf ace _DPipe

};

properties:

II NOTE - ClassWizard will maintain property information here.

II Use extreme caution when editing this section.

ll{{AFX_ODL_PROP(CPipeCtrl)

[id(l)] BSTR PipeName;

[id(2)] enumPipeType PipeType;

[id(3)] BSTR Errorl1sg;

ll}}AFX_ODL_PROP

For containers that don't provide a nice interface to a control's properties, we need to provide one of our
own via the control's custom property page. Just as we did in Chapter 10, we'll use a dropdown combo box
to present the PipeType enumerated options in the control's custom property page. A simple entry field
will suffice for the PipeName property.

TI1e following code shows the additions to the property page implementation files. It's best to add these
using Class Wizard, but you can add individually if you want to. We've also added an enumerated type to
PIPE.H so that we can use it throughout the project.

APPLE 1109 - Page 231

II pipe.h

#include "resource.h"

typedef enum

TypeServer 0 ,

TypeClient 1

enumPipeType;

II pipeppg.h

Nonvisual Controls -+ 523

II main symbols

lll

II CPipePropPage: :CPipePropPage - Constructor

CPipePropPage: :CPipePropPage() :

COlePropertyPage(IDD, IDS_PIPE_PPG_CAPTION)

ll{{AFX_DATA_INIT(CPipePropPage)

ll}}AFX_DATA_INIT

I I pipectl. h

lll

II CPipePropPage: :DoDataExchange - Moves data between page and properties

void CPipePropPage: :DoDataExchange(CDataExchange* pDX)

ll{{AFX_DATA_MAP(CPipePropPage)

ll}}AFX_DATA_MAP

DDP_PostProcessing(pDX);

APPLE 1109 - Page 232

524 + CHAPTER 1 1

We need not include the ErrorMsg property on our control's custom property page, because it is a run
time-only property and does not need to be accessed during the design process (Figure 11.2).

Figure 11.2 The pipe control's custom property page.

Whenever you add properties to your controls, you should also ensure that they have default values and are
serialized using the DoPropExchange method in the control's implementation file. In our case, this is
PIPECTL.CPP:

llllllllllllllllllllll/lll/l/lllllll/l/lllll/llllllll/l/llllllllllll/llll/lll

II CPipeCtrl: :DoPropExchange - Persistence support

void CPipeCtrl: :DoPropExchange(CPropExchange* pPX)

ExchangeVersion(pPX, MAKELONG(_wVerMinor, _wVerMajor));

COleControl: :DoPropExchange(pPX);

II TODO: Call PX_ functions for each persistent custom property.

// Default to "TypeServer"

PX_Short(pPX, "PipeType", m_sPipeType, TypeServer);

II Provide a default pipe na.~e

PX_String(pPX, "PipeName", m_strPipeName, "\\\\.\\pipe\\OCX.PIPE");

Again, because our ErrorMsg property is needed only at run time and has no default value or any persis
tent state, there is no need to serialize it.

APPLE 1109 - Page 233

Nonvisual Controls + 525

Because our PIPE control doesn't have a visual element, most (if not all) of its functionality is provided
through the methods that it exposes to the control user. One of our goals is to hide the complexity of the
underlying API calls by doing much of the work within the control and exposing only a small number of
abstracted, high-level methods.

Our control's PipeType property indicates whether it should act as a pipe server or a pipe client. To
make this interface easy to use, we provide methods that are specific to the mode of the control. If the con
trol is configured to act as a server, the user must use the server-specific methods, and if it is configured as a
pipe client, the user must use the client-specific set of methods. The five PIPE methods-two for a server
instance and three for a client instance-are listed in Table 11.2.

Table 11.2 PIPE Control Methods

Method/ Applicable Mode Purpose

Create (Server) The Create method is used by a pipe server to create an instance of a pipe. The

name of the pipe is provided by the PipeName property. Only one instance of a

pipe is supported per control.

Destroy (Server) The Destroy method is used by a pipe server to destroy the previous instance of a

pipe.

Connect (Client) The Connect method is used by a pipe client to connect to a server's pipe instance.

The name of the pipe to connect to is provided by the PipeName property.

Disconnect (Client) The Disconnect method is used by a pipe client to disconnect from a server's

pipe instanc·e.

Write (Client) The Write method is used by a pipe client to send data to a server's pipe instance.

A Write is not valid until the client has successfully connected to a server's pipe via

the Connect method.

Using ClassWizard, add the five methods listed in Table 11.2 to the PIPE control. All the methods return
BOOL, and only the Write method requires a parameter. Write sends a message to the pipe server and
takes a parameter of type LPCTSTR. After you have added the methods, add the implementation code
described in the next few sections.

Create
The Create method creates an instance of a pipe. A pipe control that is configured to behave as a server
uses this method to create a pipe that can be accessed by a client process. The name of the pipe is provided
by the PipeName property. Only one instance of a pipe is supported per control. The following code imple
ments the Create method:

APPLE 1109 - Page 234

526 + CHAPTER 11

BOOL CPipeCtrl: :Create()

II Clear any error message

m_strError.Ernpty();

II Make sure we're the right type

if (m_sPipeType != TypeServer)

m_strError· = "'Create' should not be called from a pipe Client";

return Fl'.LSE;

II We've already create a pipe instance

if (m_hPipe)

m_strError = ".1\. Pipe has already been created, use 'Destroy', and try again";

return FALSE;

II If CreatePipe fails, it will set

II the ErrorMsg property, so all we have

II to do is return FALSE indicating the error

if (CreatePipe() == FALSE)

return FALSE;

II Start a timer to check for connections

II and writes to the pipe

StartTimer();

return TRUE;

The Create method first clears the ErrorMsg string. As you will see, we do this at the beginning of all the
automation methods of our control. This technique ensures that the error string is cleared every time the
user calls a method within the control. All our methods return a BOOL that indicates the success or failure of
the method. If the method returns FALSE, the control user should check or display the ErrorMsg property,
which will contain the specific error. The following Visual Basic code illustrates the error checking technique
that should be used:

If Not Pipe.Create Then

MsgBox Pipe.ErrorMsg

End If

After initializing the error string, we check to ensure that the PipeType property is consistent with the
method being called. We also will do this in all the subsequent methods that we discuss. If that check sue-

APPLE 1109 - Page 235

Nonvisual Controls -+- 527

ceeds, we check to see whether we already have a valid pipe handle. If we do, we again return FALSE along
with an appropriate error message.

Finally, we get to some functionality. We call the CreatePipe helper method that we will discuss in a
moment. If it is successful, we start a timer that we will use to periodically check the pipe for both connec
tions and data. We will also discuss this timer in a later section.

Destroy
The Destroy method is used by a pipe server to destroy the previous instance of a pipe. A control config
ured as a server typically calls this method before shutting down.

BOOL CPipeCtrl: :Destroy()

II Clear any error message

m_strError.Empty(J;

II Make sure we're the right type

if (m_sPipeType != TypeServer)

m_strError = "'Destroy' should not be called from a pipe Client";

return FALSE;

ClosePipe();

StopTimer();

return TRUE;

The Destroy method contains mostly error-checking cqde, which we've discussed previously. If all goes
well, we use the ClosePipe helper method and stop the timer. The Create and Destroy methods pro
vide the interface for a control configured to act as a server. The next three methods are specific to a conh·ol
that is configured as a pipe client.

Conned
The Connect method is used by a pipe client to connect to a server's pipe instance. The name of the pipe to
connect to is provided by the PipeName property.

BOOL CPipeCtrl: :Connect()

II Clear any error message

m_strError.Empty();

APPLE 1109 - Page 236

528 + CHAPTER 1 1

II Make sure we're the right type

if (m_sPipeType != TypeClient)

m_strError "'Connect' should not be called with type set to pipe Server";

return FALSE;

if (m_hPipe)

m_strError = "A pipe is already Connected";

return FALSE;

II Attempt a connect to the server's pipe

m_hPipe = : :CreateFile(LPCTSTR(m_strPipeName) ,

GENERIC_WRITE,

0,

NULL,

OPEN_EXISTING,

FILE_FLAG_\'IRITE_THROUGH,

NULL) ;

I I An error returns INVALID_HANDLE_VALUE

if m_hPipe INVALID_F-ll.NDLE_VALUE

DWORD dwError = : : Get Las tError () ;

switch(dwError

case ERROR_FILE_NOT_FOUND:

m_strError.Format(

break;

default:

"Unable to open the specified pipe %s. Error is FILE_NOT_FOUND",

LPCTSTR(m_strPipeName)) ;

m_strError.Format(

"Unknovm Error trying to open the specified pipe %s. LastError is %d",

LPCTSTR(m_strPipeName) ,

dwError) ;

break;

APPLE 1109 - Page 237

II Reset the pipe handle to zero

m_hPipe = O;

II Indicate an error occurred

return FALSE;

II Success

return TRUE;

Nonvisual Controls +

Almost all the code is for error checking. The real work occurs in the CreateFile function call. See the
Win32 help file for specifics concerning the parameters of the CreateFile function. If CreateFile suc
ceeds, we have a valid connection between a server's pipe instance and our client control.

Disconnect
The Disconnect method is used by a pipe client to disconnect from a server control's pipe instance. As
mentioned previously, the client control can maintain only one connection to a pipe at a time and must dis
connect before attempting to connect to another pipe instance.

BOOL CPipeCtrl: :Disconnect()

II Clear any error message

m_strError.Empty();

II Make sure we're the right type

if (m_sPipeType != TypeClient)

m_strError = "'Discon.~ect' should not be called from a pipe Server";

return FALSE;

II Close the pipe

ClosePipe();

return TRUE;

APPLE 1109 - Page 238

530 + CHAPTER 11

This code contains the usual error checking and finally a call to the helper function, ClosePipe, which does
all the work. For a client control, ClosePipe calls CloseHandle with the pipe's handle.

Write
The Write method is used by a pipe client to send data to a server's pipe instance. A Write is not valid
until the client has successfully c01mected to a server's pipe via the Connect method.

BOOL CPipeCtrl: :Write(LPCTSTR Message)

II Clear any error message

m_strError.Empty();

II Make sure we're the right type

if (m_sPipeType != TypeClient)

m_strError = "'Write' should not be called from a pipe Server";

return FALSE;

II Make sure we have a valid pipe

if (m_hPipe == 0)

m_strError ="Pipe is not 'Connected'";

return FALSE;

II Number of bytes written to the pipe

DWORD dwWritten;

II Write to the pipe

BOOL bRet = : :WriteFile(m_hPipe,

Message,

strlen(Message) ,

&dwWritten,

NULL) ;

II A FALSE return indicates an error

if (! bRet

II Get the error number and fire the error event

DWORD dwError = : :GetLastError();

m_strError.Format("Unable to write to pipe. LastError %d",

APPLE 1109 - Page 239

II Close the pipe

ClosePipe();

return FALSE;

return TRUE;

Nonvisual Controls + 531

dwError) ;

Again, this code is mostly error checking followed by the work. The Wri teFile function takes the data
passed through the LPCTSTR Message parameter and writes to the pipe. If an error occurs during the
write, indicated by a FALSE return, we build an error message and assign it to the ErrorMsg property. We
then close the pipe and return FALSE. If all goes well, we return TRUE, indicating success.

Helper Methods
The preceding automation methods depend on a few internal helper functions. The CreatePipe and
ClosePipe methods are described next.

The CreatePipe method is called by the control's Create method and also from the OnTimer
method that we will discuss in a moment. CreatePipe calls the named pipe API function
CreateNamedPipe with parameters that are appropriate for single pipe instance server. Parameters of note
include PIPE_TYPE_MESSAGE, which indicates that the pipe will treat the data exchanges as type messages,
and PIPE_ACCESS_INBOUND, which indicates that the pipe will only be receiving messages from client
processes and will not transfer any data to the client.

If m_hPipe contains the symbol INVALID_HANDLE_VALUE, indicating an error, the Win32
GetLastError function is called to retrieve the specific error that occurred. This return value, along with a
textual error message, is later passed to the container via our FirePipeError event.

BOOL CPipeCtrl::CreatePipe()

II Create an instance of a named pipe

II Use the name provided by the control user

m_hPipe = : :CreateNamedPipe(LPCTSTR(m_strPipeName) ,

PIPE_ACCESS_INBOUND I FILE_FLAG_OVERLAPPED,

PIPE_WAIT I. PIPE_TYPE_MESSAGE I PIPE_READMODE_MESSAGE,

1,

BUFFER_SIZE,

BUFFER_SIZE,

100,

NULL) ;

APPLE 1109 - Page 240

532 + CHAPTER 1 1

II Check for an error return

if m_hPipe == INVALID_H..;;:t<IDLE_V?.LUE

char szTemp[12B];

DWORD dwError = : :GetLastError();

sprintf(szTemp, ''Unable to CreatePipe LastError %d\n", dwError) ;

II Set the error property

m_strError = szTemp;

m_hPipe 0·
'

II Return an error

return

JI Success

return TRUE;

The ClosePipe method is called by many methods, including those that support the server and those that
support the client. If the pipe handle is valid, ClosePipe checks the mode of the control, and if the control
is acting as a server, it disconnects any clients from the pipe. Independent of the control's mode, ClosePipe
then closes the pipe handle. It completes its function by setting the m_hPipe member to zero.

void CPipeCtrl::ClosePipe()

II Close the pipe if there is a valid handle

if (m_hPipe)

II Disconnect if we are a server

if (m_sPipeType == TypeServer J

: :DisconnectNamedPipe(m_hPipe J;

: :CloseHandle (m_hPipe) ;

m_hPipe = O;

We also need two events for our PIPE control. One event reports that a control, acting as a server, has
received data from a client. The other is used to report pipe-specific errors to the control user. Using

APPLE 1109 - Page 241

Nonvisual Controls -+- 533

ClassWizard, add two events. The first, MessageReceived, passes a BSTR parameter to the container. The
second, PipeError, passes both a long and a BSTR parameter.

MessageReceived
The MessageReceived event is used to communicate the reception of a message from a client (control)
process. The MessageRecei ved event is sent only to an instance of a control that is acting as a pipe server.
A conh·ol configured as a pipe client uses the Write method to send data, and when the data is received by
the server, it is passed on via the MessageRecieved event. You will see how MessageReceived is used
in a moment, when we discuss the ReadPipe method.

Pipe Error
The PipeError event provides a way of reporting errors that occur outside the scope of a control's automa
tion methods. In a moment, when we discuss control error handling, you will see that there is a certain pro
tocol that must be followed when you're handling errors within your control. The PipeError event passes
the result of the Win32 Get Las tError function along with a text description of the error.

Visual C++ also provides the stock Error event, which can be used to communicate error information
back to the container.

ActiveX control containers may not always be in a state that allows them to receive events from controls.
When the container is initially loading its contained controls, when the container is re-creating and destroy
ing control instances, or when the container is processing an event from another control, it may not be able
to handle the firing of multiple simultaneous events.

The ActiveX control standard provides an interface method, IOleControl: : FreezeEvents, that the
container can use to notify the control when it should and should not fire events. This method is mapped to
the COleControl: : OnFreezeEvents method for your controls to use. The default implementation pro
vided by COleControl does nothing. The OnFreezeEvents method passes a boolean parameter that
indicates whether the control should fire events. If the parameter is TRUE, the control should not fire events,
and if it is FALSE, the control can process events normally.

This sounds fine, but what should a control do if it needs to fire an event and the container won't let it?
The control can do one of three things. It can fire the event normally (and the container will ignore it), it can
throw the event away by not firing it, or it can queue the event using an internal mechanism and fire it later,
when the container again allows the firing of events. The first two methods-firing or throwing the event
away-are simple to do. The third method isn't hard to implement but requires that you maintain a list of
events along with any contextual information needed to fire the event later. Some controls may even require
a priority queuing mechanism that maintains synchronization of the control's events. We will use the second

APPLE 1109 - Page 242

534 + CHAPTER 11

method. If the container indicates that the control should not fire events and if the control has an event to
fire, it will ignore the event and continue processing.

First, we override the OnFreezeEvents method. Then we maintain the state of the container's
FreezeEvent flag. This isn't difficult. Add the following code to PIPECTL.CPP:

void CPipeCtrl: :OnFreezeEvents(BOOL bFreeze)

if (bFreeze)

m_iFreeze++;

else

m_iFreeze-;

Whenever the container changes the FreezeEvent state, we either increment or decrement the value of a
member variable in our control's implementation class. We must maintain a count of the OnFreezeEvents
calls, because the container can nest FreezeEvents calls.

Now, when we need to fire an event, we check our member variable to determine whether the event
can be fired. It looks something like this:

II Fire the MessageReceived event

II If the container says it's OK

if (m_iFreeze == 0

FireMessageReceived(szBuffer) ;

You could queue events within your controls using something similar to this. This method requires a class
that contains the type and state of a given event. The control class also maintains a list of these event
instances using the MFC CObList class:

void CYourCtrl: :OnFreezeEvents(BOOL bFreeze

if (bFreeze)

m_iFreeze++;

else

m_iFreeze-;

II If events allowed

if m_iFreeze == 0)

II check the queue

POSITION pos = m_EventList.GetHeadPosition();

while(pos)

CEvent* pEvent (CEvent*) m_EventList.GetNext(pos) ;

APPLE 1109 - Page 243

pEvent->Fire ();

void CYourControl: :SomeMethod()

II If we can't fire the event, queue it

if (m_iFreeze

II Build event object

II and add it to the tail of the event list

CEvent* pEvent = new CEvent(type) ;

m_EventList.AddTail(pEvent);

else

FireEvent(...) ;

Nonvisual Controls + 535

The complexity is in the design of the CEvent class, ensuring that the events still have meaning after the
code that would have fired them has already executed.

Applications that use Win32 pipes to provide client/server services typically implement the server side
using multiple threads. The named pipes API makes it easy for a server process to provide a thread for each
client that connects to an instance of a pipe. As I mentioned earlier, it is beyond the scope of this chapter to
investigate the complexities of implementing an ActiveX control that uses multiple threads. Without the
ability to start a thread for each client connection, we must limit to one the number of client connections for
each instance of the control. We also must simulate the existence of an executing thread for the server side of
the pipe. We simulate this thread with the help of a timer message.

Using ClassWizard, add a handler for the WM_TIMER message and add methods to PIPECTL.H and
PIPECTL.CPP to support the starting and stopping of the timer. This code is identical to that used in the
CLOCK control of Chapter 9.

11 pipectl.h

II Implementation

protected:

-CPipeCtrl () ;

APPLE 1109 - Page 244

536 -+ CHAPTER 1 1

void StartTimer();

void StopTimer();

11 pipectl. cpp

#define TIMER_ID 100

void CPipeCtrl::StartTimer()

SetTimer(TIMER_ID, 200, NULL);

void CPipeCtrl: :StopTimer{)

KillTimer(TIMER_ID) ;

As you can see from the preceding timer code, we fire the timer every 200 milliseconds. Every time the timer
fires, we check the status of the pipe using the PeekNamedPipe function. Add the following code to the
OnTimer message handler:

II pipectl.cpp

void CPipeCtrl: :OnTimer(UINT nIDEvent)

if m_hPipe

BOOL bRet;

DWORD dwAvailable;

II Peek the pipe to determine if there

II is any data in the pipe. Also, we can

II determine if a client is connected to

II the pipe by the return code from PeekNamedPipe

bRet = : : PeekNamedPipe (m_hPipe,

if (! bRet)

NULL,

NULL,

NULL,

&dwAvailable,

NULL) ;

DWORD dwError = : : GetLastError () ;

APPLE 1109 - Page 245

II Depending on the error do different things

/!These error codes are defined in WINERROR.H

switch(dwError)

II This error indicates that there is

II no client connected to the pipe

II so ignore it, and continue

case ERROR_BAD_PIPE:

break;

II This error occurs"when a client

/!disconnects from the pipe. We close

II the current instance of the pipe

II and re-create a new one.

case ERROR_BROKEN_PIPE:

ClosePipe () ;

if(CreatePipe() FALSE)

II Error during create, shut down

StopTimer();

if (m_iFreeze 0)

FirePipeError(dwError,

Nonvisual Controls + 537

"Unable to Create a new Pipe after a client disconnect");

else

break;

II If we get an error that we don't expect

II we close the pipe, stop the timer, and

ii report the error. This stops us from

/!getting into an endless timer loop.

default:

StopTimer () ;

ClosePipe {) ;

if (m_iFreeze 0)

FirePipeError(dwError, "Unknown error in 'PeekNamedPipe'");

break;

II If there is data in the pipe

APPLE 1109 - Page 246

538 + CHAPTER 11

II call the read function

if (dwAvailable

ReadPipe () ;

The preceding code executes only when the control is acting as a pipe server. It.continually checks the status
of the server's pipe using the PeekNamedPipe function. The return code of PeekNamedPipe indicates
whether a client process is connected to the pipe. If there is a valid connection, we check the dwAvailable

flag, and, if there is data available in the pipe, we call the ReadPipe function.

If we encounter an error while processing the WM_TIMER message, we fire the PipeError event. We
use an event because when processing the WM_TIMER message, we are not executing in the context of an
automation method or property. The control user has not actually made a synchronous call to the control, so
there is no other way to report an error except to fire an event. We will discuss this further in a moment. As
you can see, if the container is not accepting events, we continue with the normal processing of the method.

If PeekNamedPipe returns successfully and if the dwAvailable parameter indicates that there is data
in the pipe, the ReadPipe helper method is called:

#define BUFFER_SIZE 512

void CPipeCtrl::ReadPipe()

BOOL bRet;

char szBuffer[BUFFER_SIZE + 1];

unsigned long ulRead;

//Read the pipe

bRet = ::ReadFile(m_hPipe,

szBuffer,

BUFFER_SIZE,

&ulRead,

NULL) ;

II A TRUE return indicates success

if (bRet)

JI ulRead contains the number of bytes in

II the pipe message.

if (ulRead)

szBuffer[ulRead] = '\0';

II Fire the MessageReceived event

II If the container says it's OK

APPLE 1109 - Page 247

if (m_iFreeze == 0)

FireMessageReceived(szBuffer) ;

II A FALSE return indicates failure

else

II Use the ::GetLastError function to get

II the actual error number

D\'IORD dwError = : : GetLastError () ;

Nonvisual Controls + 539

II Pass back the error number and a message to the container

if (m_iFreeze == 0)

FirePipeError(dwError, "Error while reading the pipe") ;

ClosePipe();

The ReadPipe code is straightforward. It is called only when PeekNamedPipe has indicated that there is
data to read from the pipe. ReadPipe uses the Win32 ReadFile function, and, if the return is successful,
ReadPipe zero terminates the buffer. If the container allows events, ReadPipe calls the
MessageReceived event with the data read from the pipe. If an error occurs, ReadPipe gets the error
number and passes it along with a text message to the container via the PipeError event.

Certain nonvisual controls need the services of a true HWND when working as an ActiveX control. In this
case, you need to explicitly create a window for your control.

Invisible Controls That Require a Window
Our PIPE control needs the services of a window. The default implementation provided by ControlWizard
does not create a window for the control. This is appropriate, because we told Control.Wizard that our con
trol would be invisible at run time so there is no apparent need for a window. Still, there are reasons to have
a window for a control. Our reason is that we want to use a window to handle the WM_ TIMER message.

If your nonvisual control needs the services of a window when loaded and running in a container, the
COleControl: : RecreateControlWindow method will create a default window for your control when
called. To ensure that the control's window is created as soon as possible, the best place to put this is the
COleControl: : OnSetClientSi te method. OnSetClientSi te is called as the container loads the con
trol within the container. It is a good place to initially create the default window. We need a true HWND only
when the container is in run mode, so we check the ambient property UserMode before calling
RecreateControlWindow.

II This ensures that our control has a valid HWND

II as soon as it is placed on a container at run time

APPLE 1109 - Page 248

540 + CHAPTER 1 1

void CPipeCtrl: :OnSetClientSite()

if (Ambie,~tUserMode())

RecreateControlWindow();

..
I

There are three basic ways to handle errors that occur in your controls. The first is the typical procedural
way that we are all familiar with: a return value from your class methods. The second method is to use the
automation exception mechanism. This technique is useful in automation properties, because the value
returned from a property method is the value of the property and you can't return an "error." The third
approach uses an event to communicate the error to the container. This technique should be used when the
container is not executing in the context of your control's methods or properties (it's doing something else).

The automation methods and properties that are exposed by our control are called synchronously by
the container. When you're using a scripting language such as Visual Basic, a method call like the following
one does not return until the method is complete:

' Call the pipe control's Create method

If Not Pipel.Create then

MsgBox Pipel.ErrorMsg

End If

The preceding code executes synchronously, so the most effective and efficient way of reporting errors is to
return a value from the call, as we have done. This is the preferred method of reporting errors when you're
using automation methods. In this case, the error is encountered while executing code within the control,
and the container code (such as Visual Basic) is waiting on the return from the automation call.

Automation properties return the value of the property, so the preceding method of returning an error
value won't work. Get I Set methods are typically used to implement the assignment and retrieval of a con
trol's properties, and automation provides an exception mechanism to report error conditions to the con
tainer. We have used this technique in most of the controls we have developed. The SetNotSupported
method is an example of the use of this exception mechanism. It uses the COleControl: : ThrowError
method and is similar to the C++ method of handling exceptions. For example, a run-time property uses the
automation exception mechanism to inform the container that the property can be accessed only at run time.
The following code illustrates this technique:

void CPipeCtrl: :SetPipeType(short nNewValue)

II Don't allow setting of the property at run time

II This isn't absolutely necessary, but it's an example

II of a property that cannot be modified when running.

II If you were to allow modification of the control's mode

APPLE 1109 - Page 249

II during run time, we would have to ensure that any active

II pipe connections were cleaned up, and so on.

if (AmbientUserMode())

ThrowError(CTL_E_SETNOTSUPPORTEDATRUNTIME,

Nonvisual Controls -+- 541

"You can't change the PipeType property at runtime") ;

m_sPipeType =_nNewValue;

SetModifiedFlag();

The SetPipeType method returns a void, but we are still able to communicate to the container that the
property cannot be modified during run time. This technique of using an automation exception to communi
cate with the container can be used only when the control is executing in the context of an automation prop
erty or method.

There are times, however, when an error may occur in your control's code when the container is not
waiting for a return from an automation call. For example, the OnTimer method in our PIPE control exe
cutes every 200 milliseconds and is never explicitly called by the container. In this case, errors that occur can
not be reported using the techniques described earlier. Instead, an event must be used.

The event technique should be used in any control code that is executed outside an automation method
or property. In this case, the automation content is not present, and the ThrowError method will not work
properly. Instead, your control should fire an event to inform the container that an error has occurred. We
used this technique in our OnTimer and ReadPipe methods, because they execute asynchronously and are
never called directly by the container. Here's a snippet of the code:

void CPipeCtrl: :ReadPipe()

II A TRUE return indicates success

if (bRet)

II A FALSE return indicates failure

else

II Use the : :GetLastError function to get

II the actual error number

DWORD dwError = : :GetLastError();

II Pass back the error number and a message to the container

if (m_iFreeze == 0)

FirePipeError(dwError, "Error while reading the pipe");

ClosePipe();

APPLE 1109 - Page 250

542 -+- CHAPTER 1 1

This code informs the container of the problem by firing the PipeError event with the error information.

The automation exception mechanism is used to implement run-time-only, read-only, and design
time-only properties.

Run-Time-Only Properties
Run-time-only properties are those properties that can be accessed and modified only when the container is
in run mode. An example of this type is the ErrorMsg property that is used in our PIPE control. To enforce
the use of the property only at run time, we used the SetNotSupported and GetNotSupported methods.
Each of these methods uses COleControl: : ThrowError to notify the container that the property cannot
be accessed at various times. Here is the code for the ErrorMsg property:

BSTR CPipeCtrl: :GetErrorMsg()

II Most containers that provide property browsers (e.g., VB)

II will trap this exception and will not display the property

II in the property browser. This is just what we want.

II If we're not in run mode don't allow anyone to get the

II property's value.

if (AmbientUserMode()

GetNotSupported();

FALSE)

return m_strError.AllocSysString();

If the container is not in run mode, we throw the CTL_E_GETNOTSUPPORTED exception. To enforce run
time-only setting of a property, you would do this:

void CYourControl: :SetAProperty(short sNewValue)

II If not running report an error

if (! AmbientUserMode())

II Throw the CTL_E_SETNOTSUPPORTED error

SetNotSupported();

II Go ahead and set the property value

APPLE 1109 - Page 251

Design= Time-Only Properties
To implement properties that can be modified only during the container's design phase, vou would do the
opposite of what we've just discussed. There are a number of standard error messages tl1at can be thrown
from within your control's code. Two of them are specific to not allowing the modification of properties at
run time:

void CYourControl: :SetAProperty(short sNewValue)

II If not design phase report an error

if (AmbientUserMode()

ThrowError(CTL_E_SETNOTSUPPORTEDATRUNTIME,

"Property cannot be set at runtime") ;

II Go ahead and set the property value

sProperty = sNewValue;

short CYourControl: :GetAProperty()

II If not design report an error

if (AmbientUserMode())

ThrowError(CTL_E_GETNOTSUPPORTEDATRUNTIME,

"Get not allowed at runtime") ;

II Go ahead and return the property value

return sProperty;

Containers can look for these specific exceptions and report them consistently.

To test the controls, let's develop a Visual Basic application that uses our new PIPE control. Actually, we'll
develop three application. The first one will demonstrate how to use the PIPE control by using two instances
of the control within one application. The next example will contain two Visual Basic applications: one that
will act as the server application and another that will act as the client. These applications can be run on sep
arate machines in a networked environment.

APPLE 1109 - Page 252

544 + CHAPTER 11

Figure 11.3 shows our first application, a Visual Basic form that contains two instances of the PIPE con
trol. One of the controls acts as a pipe server, and the other acts as a pipe client. This application shows how
easy it is to use the PIPE control and provides a simple way to test the control. This application basically
talks to itself.

Figure 11.3 Visual Basic form with two instances of the PIPE control.

The PIPE control instances can't be seen on the form-they are invisible at run time-but they provide the
majority of the functionality of the application. First, the Create button is clicked to create an instance of the
server pipe, and then the Connect button is clicked to connect the client pipe control to the server's instance.
You can then enter text in the entry field and send it to the server's pipe. As the server receives messages
from the client, it logs them in the listbox. Here is the Visual Basic source code for the complete application,
all of about 30 lines of code:

Private Sub cmdConnect_Click()

If Not ClientPipe.Connect Then

MsgBox ClientPipe.ErrorMsg

End If

End Sub

Private Sub cmdCreate_Click()

If Not ServerPipe.Create Then

MsgBox ServerPipe.ErrorMsg

End If

End Sub

Private Sub cmdDisconnect_Click()

APPLE 1109 - Page 253

If Not ClientPipe.Disconnect Then

MsgBox ServerPipe.ErrorMsg

End If

End Sub

Private Sub cmdSend_Click()

If Not ClientPipe.Write(Textl) Then

MsgBox ClientPipe.ErrorMsg

End If

End Sub

Private Sub Destroy_Click()

If Not ServerPipe.Destroy Then

MsgBox ServerPipe.ErrorMsg

End If

End Sub

Nonvisual Controls + 545

Private Sub ServerPipe_PipeError(ByVal dwError As Long, ByVal szError As String)

MsgBox "Error occurred " & dwError & " " & szError

End Sub

Private Sub ClientPipe_PipeError(ByVal dwError As Long, ByVal szError As String)

MsgBox "Error occurred " & dwError & " " & szError

End Sub

Private Sub ServerPipe_MessageReceived(ByVal szMessage As String)

Listl.Additem szMessage

End Sub

The next application contains two Visual Basic executables that run on separate machines in a networked
environment. It is similar to the previous application but allows communication to occur across machines.
Figure 11.4 shows the server application.

APPLE 1109 - Page 254

Hi Tom, from twa win95
Hi Tom, from twa-win95
Hi Tom, from twawin95
Hi Tom, from twa=win95

Figure 11.4 The server application.

The only difference is that you are allowed to modify the PipeName property before you create the pipe
instance. As you can see, the PipeName contains a local pipe filename. The messages received are from an
instance of the client application running on another machine (Figure 11.5).

Figure 11.5 Message received from another machine.

The combined number of Visual Basic lines of code is again around 30. By encapsulating the Win32 API calls
and providing an easy-to-use interface to our ActiveX control, we have made it easy for a visual tool user to
develop useful applications. That is the goal of building software components: provide robust functionality
that is easy to use.

APPLE 1109 - Page 255

Nonvisual Controls -+- 547

Nonvisual controls provide functionality by exposing properties and methods that supply an abstraction of
a more complex technology. Uses for nonvisual controls are numerous: wrapping a C++ class to provide its
functions to a visual tool user, abstracting a group of operating system functions, or providing an easy-to
use interface for business-specific problem. In these examples, nonvisual controls can make it easy for a
visual tool user to gain access to functionality.

Win32 named pipes provide a way to test this theory. They supply a mechanism for communication
between processes on local and remote machines. Named pipes can be used to implement basic client/ sever
techniques between processes.

Nonvisual controls require the developer to provide a design-phase-only representation of the control,
because it will not be visible when the container is in run mode. An easy way to represent a nonvisual con
trol at design time is to use its toolbar bitmap image. The CPictureHolder class provides a way to allow
the bitmap to be manipulated.

An ActiveX control container can inform its contained controls that they either can or cannot fire events.
There are various reasons that a container may disable the firing of a control's events, and it is important
that the control honor this request. COleControl provides a method, OnFreezeEvents, that is called
whenever the container requests a change in the FreezeEvents status. A simple way to implement this
behavior in your controls is to maintain a flag that mirrors the setting of the last OnFreezeEvents call.
Whenever your control needs to fire an event, you should check this flag. If it is TRUE, the simplest thing to
do is to not fire the event, effectively throwing the event away. A more sophisticated method would be to
save the events and fire them later.

Nonvisual controls are instantiated without a true window. If your control requires the use of a win
dow, you can call the COleControl: : RecreateControlWindow method. The best time to do this is
when the control is initially placed within a container. The OnSetClientsi te method is called when this
occurs.

There are three ways to handle errors in your control code. For automation methods and properties,
you should use a standard return value if possible. You can also use the COleControl: : ThrowError
method to cause an automation exception. This technique is used to implement the SetNotSupported and
GetNotSupported methods that are used to implement run-time-only, read-only, and design-time-only
properties. The ThrowError method should be used only within an automation method. When errors
occur in your control outside an automation call, you must use an event to communicate the problem to the
container. MFC provides a stock error event for this case.

APPLE 1109 - Page 256

I

ActiveX controls can be used as is in web-style applications. In most cases, this means applications (HTML
based Web pages) that use a Web browser. However, several new ActiveX specifications provide additional
techniques that can be used to make ActiveX controls more lnternet-aware. In this chapter, we will explain
these new techniques, build a control that uses them, and discuss some of the tools that can be used to build
and test Internet-aware ActiveX controls.

lnternet-aware controls differ only slightly from the controls we've developed. Internet-aware controls are
concerned with two additional issues: lack of bandwidth and the need for security. The ActiveX SDK
includes new technologies that enable controls to operate effectively in low-bandwidth environments and
provides security techniques to help with the management of component software in the Internet (or
intranet) environment.

The issue of bandwidth is addressed with a new URL and Asynchronous Moniker specification, which
allows a control to handle large property values (such as an image) more efficiently. Asynchronous monikers
provide a mechanism for the control to download large amounts of property information asynchronously.
Before the asynchronous moniker specification, the container was forced to wait while a conh·ol's properties
were loaded. ln a low-bandwidth enviromnent, such as the Internet, this wait is not acceptable.

ActiveX controls have full access to the machine on which they are executing. In an Internet-type envi
ronment, where controls are part of Web documents, a number of security issues arise. The new component
download specification allows transparent download and registration of controls to machines browsing
Web documents. In this environment, security issues must be addressed. ActiveX provides several tech
niques to make ActiveX components secure and safe in Internet-type environments.

549

APPLE 1109 - Page 257

550 + CHAPTER 1 2

This chapter contains many new terms that you may not be familiar with. Internet-based technologies are
becoming important in all aspects of development. Even if you don't write Web-based software, it is radi
cally changing the tools you use. Microsoft is rapidly changing the focus of its commercial software, operat
ing systems, and development tools to make use of Web-based technologies. What follows is a quick intro
duction to some of the terms that we will encounter. This book is about component software development,
so it is impossible to cover all the technologies that are used in Web-based environments. Several books are
listed in the Bibliography for those who need information on technologies such as HTML, Java, HTTP, and
so on. The following definitions will help introduce you to these technologies.

HTML
Hypertext Markup Language (HTML) is the language of the Web environment. The development of HTML
along with a standard protocol (HTTP) to transport HTML documents is the primary reason for the tremen
dous growth of the Web. HTML makes it easy to describe static documents for publishing in Web-based
environments.

A Web page begins as an ASCII-based HTML document. The document describes its contents using
various elements. An element is demarcated with a set of tags, usually a begin-tag and an end-tag. Here's an
example:

<P>This sentence is centered.</P>

Here we have an example of the paragraph element. Its begin tag is <P> and its end tag is </P>. An element
can also have zero or more attributes that modify the effect of an element. Here's an example of the ALIGN

attribute in our paragraph example:

<P ALIGN = CENTER>This sentence is centered.</P>

One of the most important elements in HTML is the anchor. An anchor supplies a jumping point, or go to,
within a Web page, thus providing its hypertext capabilities. The anchor element is specified with the
<A></ A> tag pair. Here's an example:

Click here to go to CNN

As you can imagine, there are a large number elements specified by HTML. We're just taking a quick look.
Here's a minimal HTML version 3.2 document:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2//EN">

<HTML>

<HEAD>

<TITLE>A Minimal Web Page</TITLE>

</HEAD>

<BODY>

</BODY>

</HTML>

APPLE 1109 - Page 258

The primary purpose of HTML is to specify text- and image-based documents in a machine- and display
independent way. HTML describes the formatting characteristics of a docmnent. Later, we'll take a look at
the OBJECT element, which allows the embedding of ActiveX controls. By adding ActiveX controls to
HTML documents, you add dynamic capabilities to Web documents.

VB Script
VBScript is a subset of both Visual Basic and Visual Basic for Applications. Visual Basic is a full implementation
of the language and is integrated into a full-featured development environment. Visual Basic for Applications is
a subset of Visual Basic that is used as the macro language for many of Microsoft's high-end applications.
VBScript is a subset that removes any commands (such as CreateObj ect, FileCopy, and Open) that provide
unsecure access to the local machine.

VBScript is used to add logic to HTML-based documents. To do this, however, the logic must be tied to
a component such as an ActiveX control. Internet Explorer provides an object model that allows a VBScript
developer to access most browser functionality. For example, here's a quick VBScript program that oisplays
information about the viewing browser. This program is quite different from a static HTML document,
because it is actually executed each time it is viewed. The HTML code is generated and interpreted dynami
cally.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2//EN">

<HTML>

<HEAD>

<TITLE>Our First Script</TITLE>

<SCRIPT LANGUAGE="VBScript">

<!-

->

document.write "<CENTER>"

document.write "<H2>" & "Here's some information about your browser" & "</H2>"

document.write "Name: " & Window.Navigator.AppName & "
"

document.write "Version: " & Window.Navigator.AppVersion & "
"

document.write "Code name: " & Window.Navigator.AppCodeName & "
"

document.write "User agent: " & Window.Navigator.UserAgent

document.write "</CENTER>"

document.close

</SCRIPT>

</HEAD>

<BODY>

</BODY>

</HTML>

APPLE 1109 - Page 259

552 + CHAPTER 1 2

URL
A uniform resource locator (URL) specifies the exact location of a resource within a Web-based environ
ment. It comprises four parts: the specific protocol of accessing the resource (such as HTTP), the address of
the machine that contains the resource (such as www.microsoft.com), the resource location on the machine
(usually a filename), and any parameters that should be passed to the resource. Here are some typical URLs:

http://www.sky.net/-toma/faq.htm

mailto:toma@sky.net

news://msnews.microsoft.news

A URL is an important and powerful attribute of Web-based environments. It specifies everything that a
browser needs to work with the given resource: the encoded data type and the exact, unique location in a
network of several million machines.

e
ActiveX controls are important to Microsoft's Web-based software strategy. Microsoft's Web browser,
Internet Explorer, is a capable ActiveX control container. By allowing the embedding of controls, a browser
can now provide access to all the capabilities of the local machine. This feahtre, complete access to the Win32
API, is what makes the use of ActiveX controls so compelling in Web-based applications.

Building Web-based applications by embedding controls and connecting them with a script language
such as VBScript is similar to building other, non-Web applications. By moving its Visual Basic and ActiveX
technologies to the Web, Microsoft has made it easy for developers to leverage their existing expertise.
We've already written a few Visual Basic applications that use ActiveX controls, and writing a browser
based application using VBScript and ActiveX controls is only slightly different.

The primary ActiveX SDK document that describes the requirements for providing Internet-aware support
for ActiveX controls is titled OLE Controls/COM Objects for the Internet. Most of this document has been incor
porated into the ActiveX SDK on-line help. It provides a good comprehensive view of the new technologies
that make COM objects, specifically ActiveX controls, useful in low-bandwidth environments. The next few
sections describe these new techniques.

The Obied Element
The HTML standard provides a special element for embedding object instances within HTML-based pages.
It is used to embed images, documents, applets, and, in our case, ActiveX controls. Here's the OBJECT ele
ment for the control that we will develop later in this chapter:

<OBJECT ID="Asyncl" WIDTH=280 HEIGHT=324

APPLE 1109 - Page 260

CLASSID="CLSID:OC7B4FD3-13Cl-11D0-A644-B4C6CE000000"

CODEBASE="http://www.sky.net/-toma/Async.ocx">

<PARAM NAME="_Version" VALUE="65536">

<PARAM NAME="_ExtentX" VALUE="7403">

<PARAM NAME="_ExtentY" VALUE="8567">

<PARAM NAME="_StockProps" VALUE="l73">

<PARAM NAME="BackColor" VALUE="16777215">

<PARAM NAME="Appearance" VALUE="l">

Internet-Aware Controls + 553

<PARAM NAME="TextPath" VALUE="http://www.sky.net/-toma/log">

</OBJECT>

The OBJECT element has several important attributes. The ID attribute is used to specify a name for the
embedded object. This name is useful when you're using VBScript to access the component programmati
cally. The WIDTH and HEIGHT ath·ibutes specify the extents of the object.

The next attribute, CLSID, is used by the container (browser) to instantiate a local copy of the embed
ded ActiveX control. (The control may not reside on the local machine, and this is a problem that the specifi
cation solves. We'll discuss this detail in a moment.) AH the container must do is call CoCreateinstance

with the provided CLSID. After the control is created, the container passes the conh·ol its persistent data pro
vided by the PARAM elements.

The PARAM element is valid only within an OBJECT element. Its purpose is to store property values of
the embedded object. The NAME attribute provides the property name, and the VALUE attribute provides any
value. The TYPE attribute, which isn't shown in our example, indicates the specific Internet media type for
the given property.

You should recognize the BackColor and Appearance properties from our previous examples. There
are several properties that we have not discussed. Properties prefixed with an underscore are internal prop
erties maintained by MFC. For example, the _StockProps entry is a bit mask that specifies which of MFC's
stock properties are used by the control. The TextPath property is a new one. It's actually a new property
type, a data path, defined for Internet-aware controls. We'll discuss this new property type in detail shortly.

Remember, an ActiveX browser is just an ActiveX control container, and the OBJECT element provides
a standard way of serializing the state of an embedded control. If you compare how Visual Basic saves the
state of a form (.FRM) to the attributes in the OBJECT element, you'll see that they are very similar.

Persistent Control Data
When a control is instantiated by a container, the container provides an interface (such as
IPersistPropertyBag) to the control through which it can load its persistent properties. In most cases,
this property data is small: a font, a color, or a small string. Each property value is usually less than 100
bytes. In our case, the control is embedded within a Web page, and this property data is stored (and
retrieved) via the PARAM element.

This arrangement works fine for most cases, but what if we have a very large property value, such as a
2-MB GIF or BMP image? Should we encode and store the BMP data in-line (via the PARAM element) in the

APPLE 1109 - Page 261

554 + CHAPTER 1 2

HTML document? We could, but loading the document in a low-bandwidth environment would be excruci
ating, especially given the fact that a control's properties are loaded synchronously. The browser would be
virhmlly locked while the 2MB+ HTML page was downloaded.

In other cases, a control's persistent data cannot, by definition, be stored locally in the HTML document.
If a control provides streaming video or audio, the data is real-time and can be supplied only after instantia
tion by the container. In addition, it must be processed asynchronously or it will never work. A major addi
tion to the ActiveX control architecture is support for these large property values through the new data path
property.

Data Path Properties
The data path property is a new property type added by the COM Objects for the Internet specification. A
data path property is simple: it is a simple BSTR that contains a link (such as a URL) to the property data.
Instead of embedding the data for the property within the HTML document, you store a link to the data.
This technique isn't new. The concept of maintaining links to document data began with OLE version 1.0.
Now, this concept has become important to Web-based documents. Figure 12.1 illustrates how a control's
small and large properties are stored within a document.

HTML Document

Control

URL

Large Property Values
(BLOBs)

,GIFlmage

Figure 12.1 Data path properties and links.

Data path properties enable a control to store property data independently of the control itself. This is an
important new capability. For example, if you write a control that retrieves and displays a weather map, the
weather map image can be accessed through a data path property. When the control is placed in a Web
page, only a link, via a URL, is needed. As the weather map is updated throughout the day, updating the

APPLE 1109 - Page 262

Internet-Aware Controls -+- 555

image is as easy as changing the file specified in the control's data path property (a URL). The local control
can then periodically refresh the image.

There are four key points to remember when you're working with data path properties:

• They enable progressive rendering of images. Asynchronous downloading allows the container to
load and instantiate several controls at the same time. This capability is important in the Web envi
ronment.

• The control is ultimately responsible for the format of the downloaded data.

" The container, in most cases, tells the control where to retrieve the data. URLs can be specified rela
tive to the container's location, so in many cases only the container can produce the absolute URL.

• Data path properties provide a mechanism to stream continuous data (such as audio data) to a con
trol.

As is usually the case, we'll see that MFC makes it easy to implement data path properties in a control.

Monikers
A moniker, in COM at least, is an object that names or identifies a particular instance of a COM object. In
Chapter 4, we discussed how to create generic instances of COM objects using the CoCreateinstance
function. CoCreateinstance concerns itself with the creation of an object type but not a specific instance
of that object. Monikers provide a way to create a specific instance of an object.

Monikers are themselves COM objects. However, they are small and encapsulate only the data neces
sary to re-create an instance.of the object from some storage mechanism independent of the moniker. In our
example of an ActiveX control, a specific control instance embedded within a Web document is identified
with a moniker. The moniker encapsulates the CLSID of the control and how and where the control's persis
tent data is stored. In other words, the container identifies a particular embedded conh·ol via a moniker. The
container and controls also identify data path properties using monikers.

The act of instantiating, initializing, and returning an interface pointer to the object named by a moniker
is called binding. Instantiating and initializing an object that contains a large amount of data (such as an
object that manipulates images) can take a significant amount of time, especially in a low-bandwidth envi
ronment. In this environment we need a new type of moniker.

Asynchronous Monikers
Before the release of the ActiveX specification, binding an object through its moniker occurred synchro
nously. The Internet's low-bandwidth environment, however, required the ability for this process to occur
asynchronously. Instantiating a large object across a 14,400-baud line can take some time. Asynchronous
monikers allow the container to instantiate a control, synchronously initialize the control with any small
local properties, and then permit asynchronous loading of the control's large properties.

APPLE 1109 - Page 263

556 + CHAPTER 1 2

Asynchronous monikers, through the IBindStatusCallback interface, also allow a control and con
tainer to communicate the progress of an asynchronous download. This technique enables the container to
display an indication to the user of how much of the data has been received.

URL Monikers
Currently, the only implementation of an asynchronous moniker is the URL moniker. A URL moniker is
named with a URL and is used to instantiate and retrieve the data stored outside the control's small proper
ties. Typically, a COM object and its persistent data are stored together locally. In the case of data path prop
erties, the data is stored somewhere across the network.

A new COM API, CreateURLMoniker, takes a URL string and returns an IMoniker interface pointer.
Because URLs can be specified relative to the current default location of the container, it is preferable that the
container create the moniker and pass it to the control. However, if the control is executing in a container
that does not support data path properties, it can do the work itself by using the new
MkParseDisplayNameEx function.

The ReadyState Property and the OnReadyStateChange Event
With the addition of data path properties, a control will now be active and running before all its properties
are initialized. For this reason, a new standard property, ReadyState, and a standard event,
OnReadyStateChange, were added.

If a control depends on data contained in its data path properties, it may not be ready to interact with a
user or with the container. The ReadyState property, whose potential values are listed in Table 12.1, is
used by the control user and the container to determine the readiness state of a control. The
OnReadyStateChange event is fired by the control to inform both the control user and the container of any
change in its readiness state. A new return code, E_PENDING, has also been added to the control specifica
tion. A control can return E_PENDING in those methods that depend on properties that have not finished
loading. For example, if the control cannot properly render its content, it may return E_PENDING from
OnDraw. However, this behavior will be correctly interpreted only by those containers that support the new
Internet-aware control standards.

Control State

READYSTATE_UNINITIALIZED

READYSTATE_LOADING

READYSTATE_LOADED

READYSTATE_INTERACTIVE

READY STATE_ COMPLETE

Table 12.1 Control Readiness States

Description

Default state after instantiation of control by the container.

Control is loading its local and asynchronous properties.

Control is now initialized. All its local, synchronous properties have finished loading.

The control supports user interaction, but some asynchronous data is still loading.

Control has loaded all its asynchronous property data and is ready to interact fully with

the user.

APPLE 1109 - Page 264

Internet-Aware Controls + 557

We discussed component categories in detail in Chapter 7. Component categories provide a way for a COM
object to describe the functionality it supports and the functionality it requires of its container. Several com
ponent categories are specific to Internet-aware controls. Each is listed in Table 12.2. Two of the component
categories-CATID_SafeForScripting and CATID_SafeForinitializing-indicate a control's
safety level when executing within a browser environment.

Table 12.2 Internet-Specific Component Categories

CATID Symbol from COMCAT.H Purpose

CATID_PersistsToMoniker,

CATID_PersistsToStreaminit,

CATID_PersistsToStream,

CATID_PersistsToStorage,

CATID_PersistsToMernory,

CATID_PersistsToFile,

CATID_PersistsToPropertyBag

CATID_RequiresDataPathHost

CATID_InternetAware

CATID_SafeForScripting

CATID_SafeForinitializing

CATID _PersistsTo*

Used by Internet-aware controls to indicate which persistence methods

they support. These can be used to indicate that an interface is required

if the control supports only one persistence method.

The control expects help from the container with its data path properties.

The container must support IBindHost.

The control implements or requires some of the Internet-specific function

alily, in particular the new persistence mechanisms for Web-based con

trols. The control also handles large property values with the new data

path property lype. This includes support for asynchronous downloads.

The control is safe for use within scripting environments.

The control can safely be initialized.

If a control supports only one of the persistent interfaces, it should indicate so by registering the correct
CATID_PersistsTo* component category in the Required Categories section. Controls developed
with MFC's COleControl class support the majority of these persistence interfaces and do not need to
specify this category.

CATID _RequiresDataPathHost
A data path property can contain either a relative or an absolute URL. It is desirable for a control's container
to help manage a control's data path properties by creating the appropriate URL moniker and passing the
bind context to the control. New control containers such as Internet Explorer support this capability.
However, older containers such as Visual Basic 4.0 do not.

APPLE 1109 - Page 265

558 + CHAPTER 1 2

A control can actually create a URL moniker and download the remote data without the help of the
container as long as the specified URL is absolute. If the URL is specified relative to the path maintained by
the container, however, the moniker creation will fail because the control does not have the complete URL.

The RequiresDataPathHost category is used by those controls that require a container to help with
the moniker creation and asynchronous downloading of data path properties. If a control requires this sup
port, it should register this category under the Required Categories section. We will do this for our
example control later.

CATID _lnternetAware
A control that is Internet-aware implements its large properties with data path properties and also handles
downloading these properties asynchronously. The control also uses the ReadyState property and its asso
ciated OnReadyStateChange event so that the control user and container can determine the readiness state
of the control. Our example control does this, so we will register this component category.

CATID _SafeForScripting
ActiveX controls have complete access to the machine on which they are executing and potentially can harm
the local system or expose capabilities that allow the control user to cause harm. Within Web browsers, such
as Internet Explorer, a control's capabilities can be used by the scripting language of the browser (such as
VBScript). The control may be safe when executing under normal circumstances, but what about when the
control's capabilities are used by an untrustworthy or malicious script?

For example, suppose you develop a control that exposes a CreateObj ect function that allows a
script writer to create 'instances of Automation objects within VBScript. The control is not safe. It would be
easy for someone to use the CreateObj ect method to instantiate an external application (such as Microsoft
Word) and use it to delete local files, install a virus, and so on.

If your control in any way exposes functionality that can be used by a malicious script to harm the local
system, it is not safe for scripting. If the control does not expose potentially malicious functionality, it can
register the SafeForScripting component category or implement the I Obj ectSafety interface within
the control. If a control is safe for scripting, it can be used within ActiveX browsers with their security level
set to high.

CATID _SafeForlnitializing
In a browser environment, a control can also cause damage to a local system if the data it downloads is from
a malicious or untrustworthy source. When the control is instantiated on the local machine, the container
provides an IPersist *interface to initialize any persistent data. Because the data's location is provided by
the script writer, the data is also a potential security problem. If a control's persistent data, even when com
ing from an unknown source, cannot harm the local machine, it can indicate that it is safe for initializing by
registering the SafeForinitializing component category or by implementing the IObjectSafety
interface.

APPLE 1109 - Page 266

Internet-Aware Controls + 559

IObjectSafety public !Unknown

public:

virtual HRESULT GetinterfaceSafetyOptions(REFIID, DWORD, DWORD = O;

virtual HRESULT SetinterfaceSafetyOptions(REFIID, DWORD, DWORD = O;

};

ActiveX specifies a new component download service that provides a platform-independent way of trans
porting COM-based components to a user's local machine. As part of the download, the service will also
verify the integrity of the component and, once it's downloaded, will register it on the local machine. For our
purposes in this chapter, a COM-based component is an ActiveX control and its dependencies (such as
DLLs). However, the component download specification provides the ability to download any COM-based
component.

Downloading and installing software on a user's machine should not be taken lightly. Security is an
important part of the component download service. Before downloading a component, the service uses the
code signing and certificate mechanisms provided by the WinVerifyTrust service, which we will discuss in
more detail shortly.

When Internet Explorer or another ActiveX-compliant control container encounters the OBJECT ele
ment with a CLSID attribute, it attempts to locate and instantiate the object using the new COM API func
tion CoGetClassObj ectFromURL. If COM cannot instantiate the component on the local machine, it
searches for the component package file specified in the OBJECT element's CODEBASE attribute. The location
of the component package can be specified in the CODEBASE value, but the local machine's Internet search
path (if defined) is ultimately used to locate the component package.

If the component is found, it is downloaded and verified as safe using the Win VerifyTrust service. If all
goes well, the control is registered on the local machine. After registration, the component is instantiated and
the requested interface is returned to the client, and finally we see the control within the browser.

A component may require the downloading of multiple files to the local machine. An ActiveX control
developed with MFC will require the MFC run-time DLLs. ActiveX provides three techniques for packaging
a component file and its dependencies. You can specify the actual executable (such as POSTIT.OCX), or you
can specify a Windows .CAB file or a stand-alone .INF file. Each one has certain advantages.

A Single Portable Executable
This is the simplest way to specify the downloading of a component. You need only specify the URL to the
executable in the CODEBASE attribute of the OBJECT element. Here's an example for the Asynccontrol that
we will develop at the end of this chapter:

APPLE 1109 - Page 267

560 + CHAPTER 1 2

<OBJECT ID="Asyncl" WIDTH=291 HEIGHT=303

CLASSID="CLSID:OC7B4FD3-13Cl-11D0-A644-B4C6CE000000"

CODEBASE="http://www.sky.net/-toma/ASYNC.OCX">

<PARAM NAME="_Version" VALUE="65536">

<PARAM NAME=" _ExtentX" VALUE="7694">

<PARAH NAME="_ExtentY" VALUE="7985">

<PARAM NAME="_StockProps" VALUE="165">

<PARAM NAME="BackColor" VALUE="16777215">

<PARAM NAME="Appearance" VALUE="l">

<PARAM NAME="TextPath" VALUE="http://www.sky.net/-toma/log">

</OBJECT>

Because Internet Explorer installs all the MFC DLLs that a control depends on, you can be fairly certain that
the MFC DLLs that your control needs will already exist on the target machine. If you specify the explicit
location of your OCX file, Internet Explorer will download it and register it on the local machine.

By using the single portable executable (PE) mechanism for component download, you lose some capa
bilities provided by the following two methods. First, you can specify only one file. If your control depends
on DLLs that will not always exist on the target machine, you will need to use one of the other methods.
Also, the file cannot take advantage of compression, and platform-independent download is not supported.

A CAB File
Using a .CAB file lets you package multiple files for download to the target machine. The format of a .CAB
file is specified using Lempel-Ziv compression, which allows for quicker downloads. To compress files and
store them in a .CAB file, you can use the DIANTZ.EXE utility provided with the ActiveX SDK.

The primary reason for using a .CAB file is to save download time by packaging multiple files in a com
pressed format. You still need an .INF file to actually install the components on the target machine. Here's a
sample .INF file that uses a .CAB file:

ASYNC.INF - Demonstrates CAB file support through INF

[Add.Code]

ASYNC.OCX=ASYNC.OCX

MFC42.DLL=MFC42.DLL

[ASYNC.OCX]

file=http://www.sky.net/-toma/ASYNC.CAB

clsid={OC7B4FD3-13Cl-11DO-A644-B4C6CE000000}

FileVersion=l,0,0,0

[MFC42.DLL]

APPLE 1109 - Page 268

file=http://www.sky.net/-toma/ASYNC.CAB

FileVersion=4,2,0,0

Internet-Aware Controls + 561

The preceding example illustrates storing two files-ASYNC.OCX and MFC42.DLL-in the ASYNC.CAB
file. The ASYNC.INF file is specified in the CODEBASE attribute:

<OBJECT ID="Asyncl" WIDTH=291 HEIGHT=303

CLASSID="CLSID:OC7B4FD3-13Cl-11DO-A644-B4C6CE000000"

CODEBASE="http://www.sky.net/-toma/ASYNC.INF">

<PARAM NAME="_Version" VALUE="65536">

<PARAM NAME="_ExtentX" VALUE="7694">

ASYNC.INF is downloaded first, and then ASYNC.CAB is downloaded and the components are installed
on the local machine.

A StandaAlone INF File
In the previous example, we used an .INF file to install the components. By using a stand-alone .INF file,
you gain cross-platform capabilities. You specify an .INF file in the CODEBASE attribute as shown previ
ously, but you add platform-specific entries to the file. After the browser downloads the .INF file, it down
loads the platform-specific binaries based on the options provided in the .INF file. Here's an example:

Sample ASYNC.INF for ASYNC.OCX where multiple platforms are supported

[Add.Code]

ASYNC.OCX=ASYNC.OCX

[ASYNC. OCX]

file-win-x86=http://www.sky.net/-toma/x86/ASYNC.OCX

file-win-mips=http://www.sky.net/-toma/mips/ASYNC.OCX

file-win-alpha=http://www.sky.net/-toma/alpha/ASYNC.OCX

clsid={OC7B4FD3-13Cl-11DO-A644-B4C6CE000000}

FileVersion=l,0,0,0

Only the target machine knows its platform. After downloading the .INF file, it can download the platform
specific binary. For more information regarding component download, check out the ActiveX SDK.

Internet Search Path
Even though the CODEBASE attribute specifies the location of a component, there is another step involved.
When CoGetClassObj ectFromURL determines that the component must be downloaded before instantia-

APPLE 1109 - Page 269

562 -+- CHAPTER 1 2

tion, it first searches the Internet search path (ISP). A machine's Internet search path is located in the
Registry under the HKEY_LOCAL_MACHINE key.

HKEY_LOCAL_MACHINE\Software\Microsoft\Windows

\CurrentVersion\InternetSettings\CodeBaseSearchPath

First searching the ISP makes available additional administration options to the local machine administra
tors. In local area or intranet environments, the ISP can be used to specify the location of an object store
server, where most components can be found. Using this technique, components can be located and down
loaded without specification of the CODEBASE attribute. This behavior can also be used to disallow the
downloading of components from unknown or untrusted servers.

The search path takes this form:

<URLl>;<URL2>;CODEBASE;<URL3> ...

The position of the CODEBASE keyword within the ISP affects how components are located. The component
download service searches the ISP in the order specified. If CODEBASE is not specified in the ISP, code will
not be downloaded from sources other than those explicitly indicated in the ISP. This approach is helpful in
those environments where additional security is needed.

Is
In the previous section we discussed how controls are located, downloaded to the local machine, and exe
cuted. In such an environment, security is of major concern. An ActiveX control has full access to the Win32
APL This arrangement provides the highest degree of functionality for control writers, but it also creates a
potential security problem. Java takes the sandbox approach of not allowing direct access to the local hard
ware. This technique helps with security, but it reduces functionality significantly. To maintain a high level
of functionality, Microsoft uses the new WinVerifyTrust service to protect local machines from malicious
components.

Microsoft's approach to security in the Web environment is like that used in software retail channels.
There is no guarantee that the software you buy from a local retailer is benign. There is no guarantee, but
there is significant trust. When you purchase a software package from a vendor, such as Microsoft, you
know where the software came from, and you're pretty confident that it will not harm your machine.

Microsoft has taken the steps to set up such an environment of trust on the Web by providing technolo
gies that ensure the authenticity and integrity of a component. A component is marked with a digital signa
ture based on Microsoft's Authenticode technology. The component's signature is then maintained and veri
fied by a trusted authority.

Digital Signatures
To ensure authenticity and integrity, each component is marked using a public-private key mechanism. This
digital signature, which you can view as a complex checksum, is attached to a component. If the component is
compromised in any way, the digital signature will become invalid.

APPLE 1109 - Page 270

Internet-Aware Controls -+- 563

Code Signing
To sign your components using Authenticode so that they can be trusted in the Internet environment, you
must register and obtain a certificate from one of the certification authorities such as VeriSign or GTE. After
receiving your certificate, you can use the MAKECERT, SIGNCODE, and CHKTRUST utilities provided
with the ActiveX SDK to sign your controls.

Internet Explorer Security Levels
Internet Explorer will not download components that have not been properly signed. Internet Explorer
allows the user to specify the security level. If the security level is set to high, your controls must be signed
(if they do not already reside on the local machine) and they must be safe for scripting and safe for initializ
ing (Figure 12.2). Your control specifies these characteristics through the component categories that we dis
cussed earlier.

Figure 12.2 Internet Explorer security levels.

Obtaining a Certificate
Individual software developers can obtain certificates for $20 per year through VeriSign. The charge for soft
ware development companies is $400 per year. VeriSign can be reached at www.verisign.com.

APPLE 1109 - Page 271

564 + CHAPTER 1 2

I
Selecting the Load properties asynchronously option in ControlWizard does three things. ControlWizard
adds the stock ReadyState property to your control, implements the ReadyStateChange event for you,
and initializes the ready state of your control to READYSTATE_LOADING in the control's constructor. This
setup sets up your control to use MFC's support for data path properties

ReadyState Support
COleControl contains a member, m_lReadyState, that maintains the current ready state of your control.
By default, this member is set to READYSTATE_COMPLETE. In our case, we indicated that our control loads
properties asynchronously, so AppWizard set our control's state initially to READYSTATE_INITIALIZED.
We're now responsible for updating the readiness state of our control as it moves through its various states.
MFC provides three new methods pertaining to ReadyState and asynchronous download support.

COleControl: : GetReadyState returns the current state of the control. Because the control's state
can be modified through the asynchronous arrival of data, you should check the current state of the control
when performing operations that depend on the existence of certain property data. For example, if your con
trol downloads and displays an image, you may want to check the current ready state in your OnDraw code.

You use the InternalSetReadyState method to update the current readiness state of the control.
You will typically call this method in the asynchronous download code, as you'll see in a moment. The Load
method is used to force downloading of an asynchronous property. The Load method takes as a parameter
the URL for the property.

CDataPathProperty
The CDataPathProperty class is derived from MFC's new asynchronous moniker class:
CAsyncMonikerFile. The CDataPathProperty class is specifically used for ActiveX controls to encap
sulate the asynchronous download process. Most of the functionality is provided by CAsynMonikerFile,
and the control developer need only implement the OnDataAvailable method. Table 12.3 details some of
the important CDa taPa thProperty members.

Table 12.3 CDataPathProperty Members

Member

CDataPathProperty(pControl),

SetControl(pControl)

Open(szPath, pControl

SetPath(szPath) I GetPath()

Description

The constructor takes an optional pointer to the associated control. If you do

not provide the control instance in the constructor, you must later call

SetControl to set up the association.

Associates a control with the data path instance.

Opens a file (usually specified as a URL) for asynchronous downloading.

Sets or gets the path, usually a URL.

APPLE 1109 - Page 272

Internet-Aware Controls + 565

Table 12.3 CDataPathProperty Members (continued)

Member

COleControl* GetControl()

ResetData()

Description

Returns the ActiveX control instance associated with the data path property.

Notifies the container that the data associated with this property is no longer

valid. The default behavior is to restart the download process.

To demonstrate some of the techniques discussed in this chapter, let's build a simple Internet-aware control.
The control subclasses the RichEdi t common control. It uses the ES_MULTILINE style so that it can dis
play a large amount of data. The control will retrieve and display the contents of any data specified via its
data path property. The data is downloaded asynchronously using the new data path property and MFC's
CDataPathProperty class. It also demonstrates the use of the new ReadyState property and
OnReadyStateChange event.

Use App Wizard to build a ControlWizard-based project with the name Async. Follow these steps to specify
each of ControlWizard's options:

• In the OLE Control Wizard Step 1of2 dialog box, take the defaults of No runtime license, Yes, com
ments, and No help files.

• In OLE Control Wizard Step 2 of 2, take the defaults of Activate when visible and Has" About" box.
From the Which window class, if any, should this control subclass? dropdown, choose the EDIT
control.

• In OLE Control Wizard Step 2 of 2, click the Advanced button and enable the Loads Properties
Asynchronously option.

• Click Finish and create the control project.

• Using ClassWizard, add the following four stock properties: Appearance, BorderStyle, BackColor,
and Font.

• Add the stock color and font property pages to the control.

The RichEdit Control
In Chapter 10, we focused on useful techniques for subclassing existing Windows controls. Toward the end
of the chapter we also discussed subclassing the new Windows 95 common controls. ControlWizard lets you

APPLE 1109 - Page 273

566 +CHAPTER 12

subclass most of them, but conspicuously absent from the list is the new RichEdit control. In our example,
we'll use this new control, but a few additional steps are required to get everything to work We'll cover this
first.

The RichEdit control is a big improvement over the basic EDIT control. RichEdit provides an edit-type
control with complete font, paragraph, bullet, text color, and embedded OLE object support. Using RichEdit
you can implement a good editor without much effort. Actually, Microsoft did-WordPad uses the RichEdit
control. It's also written in MFC, and the source is included on the Visual C++ CD-ROM.

To subclass the RichEdit conh·ol, we first fix the code added by Class Wizard:

BOOL CAsyncCtrl: :PreCreateWindow(CREATESTRUCT& cs)

I
ES_AUTOVSCROLL 'ES_REF.DONLY I

I WS_HSCROLL;

return COleControl: :PreCreateWindow(cs);

You've seen this before. We change the window class name and set the appropriate styles for our control. To
use the RichEdit control, you must load the RICHED32 DLL. You might expect MFC's call to
Ini tCommonControls to do this, but there must be some reason that it doesn't. This extra step is probably
why Microsoft omitted the RichEdit control from the subclass window option, but it's easy, so let's do it.
Here's the code to add to ASYNCCTL.H and ASYNCCTL.CPP:

I I AsyncCtl. h

11111111111111111

II CAsyncCtrl : See AsyncCtl.cpp for implementation.

11111111111111111

class CAsyncCtrl : public COleControl

II Implementation

protected:

-CAsyncCtrl () ;

m_hRTF;

};

I I AsyncCtl . cpp

APPLE 1109 - Page 274

CAsyncCtrl: :CAsyncCtrl()

InitializeIIDs(&IID_DAsync, &IID_DAsyncEvents);

m_lReadyState = READYSTATE_LOADING;

Internet-Aware Controls + 567

II TODO: Call InternalSetReadyState when the readystate changes.

II TODO: Initialize your control's instance data here.

m_hRTF = LoadLibrary("RICHED32 .DLL") ;

CAsyncCtrl::-CAsyncCtrl()

II Release the richedit dll

if (m_hRTF)

FreeLibrary(m_hRTF);

m_hRTF = 0;

Once we've finished that, we can focus on making this control Internet-aware. Our control is fairly simple.
To demonstrate how to use a data path property, our control will download and display a remote file whose
filename is specified using a URL. The file can be big or small. Either way, the data will be downloaded
asynchronously and eventually displayed within the RichEdit control.

Implementing a Data Path Property
Using Class Wizard, add a data path property to the control. The type is BSTR. Name it TextPath and use the
Get/Set method of implementation. The implementation of a data path property requires you to derive a
class from CDataPathProperty and implement the OnDataAvailable method. You must then contain
an instance of this class within your COleControl-derived class. First, we create the class.

Using ClassWizard, click Add Class, and add the CAsyncText class. Be sure to derive it from
CDataPathProperty. You should specify the files as ASYNCTXT.H and ASYNCTXT.CPP. We will need
two member variables to manage the downloading, so let's add them next:

II
II AsyncTxt.h header file

II

class CAsyncText : public CDataPathProperty

DECLARE_DYNAMIC(CAsyncText)

APPLE 1109 - Page 275

568 + CHAPTER 1 2

II Attributes

public:

II Operations

public:

CAsyncText(COleControl* pControl NULL);

virtual -CAsyncText();

II Implementation

protected:

};

CString

DWORD

m_strText;

m_dwReadBefore;

Next, we embed an instance of the new class within the COleControl-derived class (CAsyncText) and
associate the two instances by passing a pointer to the control class to our CDataPathProperty-derived
member. We then use the CAsyncText instance in the Get and Set methods for our TextPath property:

II
I I AsyncCtl. h

II

class CAsyncCtrl public COleControl

DECLARE_DYNCREATE(CAsyncCtrl)

II Implementation

protected:

II

-CAsyncCtrl();

CAsyncText m_ddpText;

HINSTANCE m_hRTF;

11 AsyncCtl. cpp

II

#include "Async.h"

II Include our new CDataPathProperty-derived class

#include "AsyncTxt.h"

#include "AsyncCtl.h"

#include "AsyncPpg.h"

APPLE 1109 - Page 276

Internet-Aware Controls + 569

CAsyncCtrl: :CAsyncCtrl()

InitializeIIDs(&IID_DAsync, &IID_DAsyncEvents);

rn_lReadyState = READYSTATE_LOADING;

II TODO: Call InternalSetReadyState when the readystate changes.

II TODO: Initialize your control's instance data here.

II Associate our control with our CDataPathProperty member

!lLddpText.SetControl(this);

rn_hRTF = LoadLibrary("RICHED32.DLL");

BSTR CAsyncCtrl: :GetTextPath()

CString strResult = m_ddpText.GetPath();

return strResult.AllocSysString();

void CAsyncCtrl: :SetTextPath(LPCTSTR lpszNewValue)

Load(lpszNewValue, m_ddpText);

SetModifiedFlag();

The CAsyncText class will manage the downloading of the asynchronous data. We expose the Get/Set
methods for the TextPath property, which sets and retrieves the path property of CAsyncText. When the
control is instantiated, the smaller, synchronous properties are loaded first. Once they are loaded, the con
tainer creates an asynchronous moniker with the URL specified through the TextPath property and passes
the data to the CAsyncText member. To retrieve the data and store it within our control, we override the
CDataPathProperty: :OnDataAvailable method. Do this with ClassWizard and then add the follow
ing code:

void CAsyncGetText: :OnDataAvailable(DWORD dwSize, DWORD bscfFlag)

II TODO: Add your specialized code here and/or call the base class

if (bscfFlag & BSCF_FIRSTDATANOTIFICATION)

m_strText = "";

m_dwReadBefore = 0;

GetControl () ->InternalSetReadyState (RE.J:\DYSTATE_LOADrnG) ;

APPLE 1109 - Page 277

if (dwSize)

DWORD dwArriving = dwSize - m_dwReadBefore;

if (dwll.rriving > 0)

int nLen = m_strText.GetLength();

LPTSTR psz = m_strText.GetBuffer(nLen + dwArriving);

Read(psz + nLen, dwArriving) ;

m_strText.ReleaseBuffer (nLen + dwArriving);

m_dwReadBefore = dwSize;

if (GetControl()->GetReadyState() < READYSTATE_INTERACTIVE

GetControl()->SetText(m_strText);

GetControl()->InternalSetReadyState(READYSTATE_INTERACTIVE) ;

II Tell the control and the container that

II all of the data is here.

if (bscfFlag & BSCF_LASTDATANOTIFICATION

GetControl()->SetText(m_strText);

GetControl()->InternalSetReadyState(READYSTATE_COMPLETE);

CDataPathProperty: :OnDataAvailable(dwSize, bscfFlag) ;

Here's where most of the work gets done. OnDataAvailable is called periodically as data arrives from the
remote system. OnDataAvailable signals the arrival. You then read the data using Read, which is inher
ited from CFile.

The data will arrive in chunks, and the preceding code manages the arrival and storage of the data. The
first parameter contains the number of bytes that have been received, including the count of the data cur
rently in the buffer. The second parameter specifies one of three potential states of the download.
BSCF _FIRSTDATANOTIFICATION indicates that this is the first piece of data, BSCF _INTERMEDIARYNOTI

FICATION indicates that we're in the middle of the transfer, and BSCF _LASTDATANOTIFICATION tells us
that the transfer is finished.

APPLE 1109 - Page 278

Internet-Aware Controls + 571

When we're notified that the transfer is starting, we set the m_strText member to null, set the byte
counter to zero, and inform the container that the control is in the loading state. Then, as the data arrives, we
calculate its size and call the Read method, storing the data in the m_strText buffer.

If this is our first time through and if we have some data, we call SetText, which is a method in our
control that places the data in the RichEdit control. This approach quickly provides some data for the user to
view. By setting the control's ready state to interactive, we indicate that the control can handle keystrokes.

When all the data has been received, as indicated by the LASTDATANOTIFICATION flag, we update the
RichEdit control with all the text and notify the container that the control has completed downloading and is
fully operational.

There are a few miscellaneous functions that I've not shown you yet. First, we have a method to set the
text in the RichEdit control. I've also implemented the BackColor property for our control. Setting colors
for some of the newer common controls is different from what we did in Chapter 10. The RichEdit control
uses a message to set its color, so we override OnSetBackColor and send the new color to the control. We
need to set the color right after the control is created, so we trap the WM...:.CREATE message and set the color
there, too. Here are the required methods:

void CAsyncCtrl: :SetText(CString& str)

SetWindow1'ext(str) ;

InvalidateControl();

void CAsyncCtrl: :OnBackColorChanged()

II If we're running, set the background color

if (AmbientUserMode())

SendMessage(EM_SETBKGNDCOLOR,

FALSE,

TranslateColor(GetBackColor()));

COleControl: :OnBackColorChanged();

int CAsyncCtrl: :OnCreate(LPCREATESTRUCT lpCreateStruct)

if (COleControl: :OnCreate(lpCreateStruct) -1)

return -1;

II Set the background color of the edit control

SendMessage(EM_SETBKGNDCOLOR,

FALSE,

TranslateColor(GetBackColor())) ;

return O;

APPLE 1109 - Page 279

572 + CHAPTER 1 2

Drawing the Control
We also need to modify the control's OnDraw code to draw a simple design-phase representation, as we've
done in earlier chapters:

void CAsyncCtrl: :OnDraw(

CDC* pdc, const CRect& rcBounds, const CRect& rcinvalid)

II If the container is in design-mode

II Draw the design representation

if (! AmbientUserMode ())

DrawDesign(pdc, rcBounds);

else

DoSuperclassPaint(pdc, rcBounds) ;

void CAsyncCtrl: :DrawDesign(CDC* pdc, const CRect& rcBounds l

CBrush bkBrush(TranslateColor(GetBackColor()));

pdc->FillRect(rcBounds, &bkBrush) ;

CString strName = J>.mbientDisplayName () ;

II Set the textcolor to the foreground color

pdc->SetTextColor(TranslateColor(GetForeColor()));

II Select the stock font and save the old one

CFont* pOldF?nt = SelectStockFont(pdc);

II Set up the text drawing modes in the DC

pdc->SetBkMode(TRANSPARENT) ;

pdc->SetTextAlign(TA_LEFT J TA_TOP);

II Draw the text in the upper left corner

pdc->ExtTextOut(rcBounds.left + 1, rcBounds.top + 1, ETO_CLIPPED,

rcBounds, strName, strName.GetLength(), NULL);

II Restore the old font

if (pOldFont)

pdc->SelectObject(pOldFont) ;

APPLE 1109 - Page 280

Internet-Aware Controls + 573

More Component Categories
There are several component categories that pertain to Internet-aware controls. We discussed them previ
ously in the "Component Categories" sections of this chapter. All that remains is to write the code to mark
our control as being Internet-aware, safe for scripting, and safe for initializing. We developed code in
Chapter 7 that makes it easy to register control-implemented control categories. However, we also need to
mark our control as requiring the RequiresDataPathHost category. Our control requires the services of
the container to initiate the download of the TextPath property.

You should recall that a control can specify its component categories under two different subkeys:
Implemented and Required. All our controls so far have added categories under the Implemented sub
key. We now need to add a category under the required section. Here is the new code:

HRESULT RegisterCLSIDinReqCategory(REFCLSID clsid, CATID catid)

ICatRegister* per = NULL

HRESULT hr = S_OK ;

II Create an instance of the category manager.

hr = CoCreateinstance(CLSID_StdComponentCategoriesMgr,

NULL,

if (SUCCEEDED(hr))

CATID rgcatid[l];

rgcatid[OJ = catid;

CLSCTX_INPROC_SERVER,

IID_ICatRegister,

(void**)&pcr);

hr= pcr->RegisterClassReqCategories(clsid, 1, rgcatid);

if (per != NULL)

pcr->Release();

return hr;

HRESULT UnregisterCLSIDinReqCategory(REFCLSID clsid, CATID catid)

ICatRegister* per = NULL

HRESULT hr = S_OK ;

II Create an instance of the category manager.

hr = CoCreateinstance(CLSID_StdCornponentCategoriesMgr,

APPLE 1109 - Page 281

+CHAPTER 12

if (SUCCEEDED(hr))

CATID rgcatid[l];

rgcatid[OJ = catid;

NULL,

CLSCTX_INPROC_SERVER,

IID_ICatRegister,

(void**)&pcr) ;

hr = pcr->UnRegisterClassReqCategories(clsid, 1, rgcatid) ;

if (per !=NULL)

pcr->Release () ;

return hr;

This code is similar to the RegisterCLSIDinCategory that we've used before. The only difference is that
we call ICatRegister: : RegisterClassReqCategories. Using the functions that we developed previ
ously plus the preceding two functions, we can now code our update Registry function:

/ll/////////////////I/!!/

II CAsyncCtrl: :CAsyncCtrlFactory: :UpdateRegistry -

II Adds or removes system Registry entries for CAsyncCtrl

!//////////////////II!!/!

BOOL CAsyncCtrl: :CAsyncCtrlFactory: :UpdateRegistry(BOOL bRegister)

if (bRegister)

CreateComponentCategory(CATID_Control,

L"Controls");

RegisterCLSIDinCategory(m_clsid,

CATID_Control) ;

CreateComponentCategory(CATID_SafeForinitializing,

L"Controls safely initializable from persistent data");

RegisterCLSIDinCategory(m_clsid,

CATID_SafeForinitializing);

CreateComponentCategory(CATID_SafeForScripting,

L"Controls that are safely scriptable");

RegisterCLSIDinCategory(m_clsid,

CATID_SafeForScripting) ;

APPLE 1109 - Page 282

Internet-Aware Controls + 575

CreateComponentCategory(CATID_PersistsToPropertyBag,

L"Support initialize via PersistPropertyBag"

RegisterCLSIDinCategory(m_clsid,

CATID_PersistsToPropertyBag);

CreateComponentCategory(CATID_RequiresDataPathHost,

L"Requires Data Path Host");

RegisterCLSIDinReqCategory(m_clsid,

CATID_RequiresDataPathHost);

CreateComponentCategory(CATID_InternetAware,

L"Internet-Aware") ;

RegisterCLSIDinCategory{ m_clsid,

CATID_InternetAware);

return AfxOleRegisterControlClass(

AfxGetinstanceHandle(),

m_clsid,

else

m_lpszProgID,

IDS_ASYNC,

IDB_ASYNC,

afxRegApartmentThreading,

_dwAsyncOleMisc,

_tlid,

_wVerMajor,

_wVerMinor);

UnregisterCLSIDinCategory(m_clsid,

CATID_Control);

UnregisterCLSIDinCategory(m_clsid,

CATID_SafeForinitializing);

UnregisterCLSIDinCategory(m_clsid,

CATID_SafeForScripting) ;

UnregisterCLSIDinCategory(m_clsid,

CATID_PersistsToPropertyBag) ;

UnregisterCLSIDinCategory(m_clsid,

CATID_InternetAware);

UnregisterCLSIDinReqCategory(m_clsid,

CATID_RequiresDataPathHost);

return AfxOleUnregisterClass(m_clsid, m_lpszProgID);

APPLE 1109 - Page 283

576 + CHAPTER 12

Build the project, and let's test our new Internet-aware control using ActiveX Control Pad and Internet
Explorer.

The best way to test the control is to embed it in a Web page and set the TextPath property to point to a
large file on a remote system. If you want, you can point it to http:/ /www.sky.net/ ~toma/log, which is a
text file that logs the hits to my Web site. The quickest way to build a test Web page is to use Microsoft's
ActiveX Control Pad.

ActiveX Control Pad
Microsoft's ActiveX Control Pad utility makes it easy to add ActiveX controls to HTML-based Web pages. It
allows you to build simple Web pages, embed ActiveX controls, and add code to tie everything together
with VBScript.

We'll test the functionality of our Async control ~y developing a simple Web page. Start ActiveX
Control Pad and perform the following steps. Figure 12.3 shows the control within ActiveX Control Pad.

1. Using Edit/Insert ActiveX Control, insert an instance of our new Async control.

2. Set the BackColor to white using the property editor, and set the TextPath property to point to a
URL of your choice.

Figure 12.3 Inserting the Async control with ActiveX Control Pad.

APPLE 1109 - Page 284

Internet-Aware Controls -+- 577

When you close the control edit window, Control Pad will insert the OBJECT element code into the new
HTML document. When you're finished, you should have something like this in the editor:

<HTML>

<HEAD>

<TITLE>New Page</TITLE>

</HEAD>

<BODY>

<OBJECT ID="Asyncl" WIDTH=324 HEIGHT=335

CLASSID="CLSID:OC7B4FD3-13Cl-11DO-A644-B4C6CE000000">

<PARAM NAME="_Version" VALUE="65536">

<PARAM NAME="_ExtentX" VALUE="8573">

<PARAM NAME="_ExtentY'' VALUE="8855">

<PARAM NAME="_StockProps" VALUE="165">

<PARAM NAME="BackColor" VALUE="16777215">

<PARAM NAME="Appearance" VALUE="l">

<PARAM NAME="TextPath" VALUE="http://www.sky.net/-toma/log">

</OBJECT>

</BODY>

</HTML>

This HTML code defines a basic Web page with an embedded instance of our control. Let's make it a bit
more intelligent. Using Control Pad, add two listbox controls. A number of basic controls come with Internet
Explorer. They are listed under the Microsoft Forms* controls. Insert one control before the definition of the
Async control and. one after the definition. Then use Control Pad to add some VBScript code to the Web
page. Select Tools/Script Wizard to bring up Script Wizard.

Script Wizard is easy to use. Select the control or window that you want to add code to and start typing
the code. We need to add code to the Window OnLoad event, the ListBoxl Change event, and our Async
control's ReadyStateChange event. Figure 12.4 shows how to add the OnLoad event code with Script
Wizard.

APPLE 1109 - Page 285

578 + CHAPTER 1 2

Sub uindou _ onLoad ()
ListBox1. idditem "http I /uuu. sky. net/ ~toma/faq. htm"
L1stB0%l. Additem "http I /utn1. sky. net/ ~toma./faqauto. htrn"
ListBoxl. Additem "htcp //uuu. sky. net/ ~toma/faqgen. htm"
ListBo:.:1. Additem "hctp //uwu. sky. net/ ~toma/faqgen2. htm"
L1stBoxl. Add!tem "http //uuu .sky. net/ ~tome;,/faqsub. htm"

Figure 12.4 Adding VBScript with Script Wizard.

Following is the complete code for our simple example. Notice that we're using a table to house our embed
ded controls. The HTML specification does not provide a good method of aligning embedded controls,
applets, or even images. For our example, we're using a table to align the controls, but a better solution
might be to use Microsoft's HTML Layout control. It provides complete 2-D layout capabilities similar to
those you have when laying out a Windows dialog box or Visual Basic form.

<HTML>

<HEAD>

<TITLE>New Page</TITLE>

</HEAD>

<BODY>

<CENTER>

<Hl>Our Async Control in Internet Explorer!</Hl>

</CENTER>

<SCRIPT LANGUAGE="VBScript">

<!-

Sub window_onLoad()

end sub

ListBoxl.Additern "http://www.sky.net/-torna/faq.htrn"

ListBoxl.Additern "http://www.sky.net/-torna/faqauto.htm"

ListBoxl.Additem "http://www.sky.net/-toma/faqgen.htm"

ListBoxl.Additern "http://www.sky.net/-torna/faqgen2.htm"

ListBoxl.Additern "http://www.sky.net/-torna/faqsub.htm"

APPLE 1109 - Page 286

->

</SCRIPT>

<SCRIPT LANGUAGE="VBScript">

<!-

Sub ListBoxl_Change()

Asyncl.TextPath ListBoxl.Text

end sub

->

</SCRIPT>

<TABLE CELLP~.DDING 10>

<TR>

<TD>

<OBJECT ID="ListBoxl" WIDTH=199 HEIGHT=264

Internet-Aware Controls

CLASSID="CLSID:8BD21D20-EC42-11CE-9EOD-00AA006002F3">

<PARAM NAME="ScrollBars" VALUE="3">

<TD>

<!-

<PARAM NAME="DisplayStyle" VALUE="2">

<PARAM NAME="Size" VALUE="5239;6984">

<PARAM NAME="MatchEntry" VALUE="O">

<PARAM NAME="FontCharSet" VALUE="O">

<PARAM NAME="FontPitchAndFamily" VALUE="2">

</OBJECT>

<SCRIPT LANGUAGE="VBScript">

Sub Asyncl_ReadyStateChange(NewState)

Select Case NewState

Case 0

ListEox2.Additem "Initialized"

Case 1

ListEox2.Additem "Loaded"

Case 2

ListEox2.Additem "Loading"

Case 3

ListBox2.Additem "Interactive"

Case 4

ListBox2.Additem "Complete"

End Select

end sub

->

APPLE 1109 - Page 287

580 + CHAPTER 1 2

</SCRIPT>

<OBJECT ID="Asyncl" WIDTH=291 HEIGHT=303

CLASSID="CLSID:OC7B4FD3-13Cl-11DO-A644-B4C6CE000000">

<PARAM NAME="_Version" VALUE="65536">

<PARAM NAME="_ExtentX" VALUE="7694">

<PARAM NAME="_ExtentY'' VALUE="7985">

<PARAM NAME="_StockProps" VALUE="165">

<PARAM NAME="BackColor" VALUE="16777215">

<PARAM NAME="Appearance" VALUE="l">

<PARAM NAME="TextPath" VALUE="http://www.sky.net/-toma/log">

</OBJECT>

<TR>

<TD>

<OBJECT ID="ListBox2" WIDTH=227 HEIGHT=95

CLASSID="CLSID:8BD21D20-EC42-11CE-9EOD-00AA006002F3">

<PARAM NAME="BackColor" VALUE="16777215">

<PARAM NAME="ForeColor" VALUE="255">

<PARAM NAME="ScrollBars" VALUE="3">

<PARAM NAME="DisplayStyle" VALUE="2">

<PARAM NAME="Size" VALUE="5979;2512">

<PARAM NAME="MatchEntry" VALUE="0">

<PARAM NAME="FontCharSet" VALUE="O">

<PARAM NAME="FontPitchAndFamily" VALUE="2">

</OBJECT>

</TJl.BLE>

</BODY>

</HTML>

After adding all the code, save the HTML document and fire up Internet Explorer. You should see some
thing like Figure 12.5.

APPLE 1109 - Page 288

Internet-Aware Controls -+- 581

Figure 12.5 The Async control in Internet Explorer.

Notice the progress indicator in the lower right-hand comer. In Figure 12.5, the control is downloading a
very large (>500 KB) file. The progress functionality of asynchronous property download provides this feed
back to the container.

The ActiveX SDK includes an ActiveX control framework (also known as BaseCtl). This framework is some
times called the Light Weight Control Framework, because its purpose is to allow the developer to build small
ActiveX controls. The framework isn't currently supported by Microsoft but is provided for those developers
who have a solid understanding of ActiveX controls and don't want the overhead of MFC when developing
their controls. For more information on developing controls using this framework, visit my Web site.

Internet-aware controls differ only slightly from the controls developed in previous chapters. Internet-aware
controls are concerned with two additional issues: low bandwidth and security. The ActiveX SDK provides
new technologies that enable controls to operate effectively in low- bandwidth environments and supports
security techniques to help with the management of component software in the an Internet (or intranet)
environment.

HTML is the language of the Web, and a few HTML elements are useful for ActiveX controls. VBScript
is Microsoft's Visual Basic implementation for browser environments. ActiveX browsers, such as Internet

APPLE 1109 - Page 289

582 + CHAPTER 1 2

Explorer, are ActiveX control containers. A control is embedded within a Web page using the HTML
OBJECT element.

Nearly all of the new technologies that allow controls to operate in the low-bandwidth Internet environ
ment are outlined in the OLE controls/COM objects for the Internet specification. The primary new addition
for controls is the concept of a data path property. Data path properties use URL monikers to enable asyn
chronous downloading of a large property value such as an image. During the download process, the con
trol indicates its state through tl1e new ReadyState property and OnReadyStateChange event.

A number of new component categories were added specifically for Internet-aware controls. A few of
them are required for controls to operate safely within the Web environment. When browsing Web pages, a
user may not have the embedded ActiveX controls on his or her local machine. In this case~ the new compo
nent download specification enables a browser to locate, download, register, and execute the component on
the local machine.

ActiveX controls have full access to the machine on which they are executing. In an Internet-type envi
ronment, where controls are part of Web documents, there are a number of security issues. The new compo
nent download specification allows transparent download and registration of controls to machines browsing
Web documents. Microsoft has specified a mechanism for ensuring the authenticity and integrity of compo
nents in the Web environment. As a software developer, you must register for this service in order to digi
tally sign your components.

MFC provides support for the new Internet-aware control techniques. The new CDataPathProperty

class makes it easy to provide asynchronous property download support to your controls. Testing your
Internet-aware controls is easy using Microsoft's ActiveX Control Pad.

APPLE 1109 - Page 290

trol
s

As developers, we sometimes spend hours, even days, trying to determine how to implement a particular
feature of our software or to fix a bizarre bug. The software development universe is expanding so fast that
it requires long days and nights of study and research just to stay current. That's why collaboration among
developers is important. Internet newsgroups, forums, list servers, and FAQs all help increase our produc
tivity. Instead of knocking your head against the wall for two days, you can find an answer, usually with
sample code, that will allow you to implement a feature in much less time. It all comes down to collabora
tion and the management of information. That's what makes the Internet, as embodied in the Web, an
important tool for software developers.

I know-you're probably skeptical of all the hype. A year ago, so was I. But after using the Web and
building my own Web site, I really believe that it is changing the way we develop software and will also
change the way we conduct day-to-day business.

My Web site is devoted to ActiveX development, particularly controls, and contains an ActiveX control
FAQ that I maintain. This chapter will answer a few of the most frequently asked questions concerning
ActiveX controls. Along the way, I will provide an explanation of what is going on under the hood in hopes
of providing you with additional insight into the development of ActiveX controls.

e
As part of this chapter I've developed a control that demonstrates the techniques that we will discuss. It
even has an appropriate name: FAQ.OCX. The control doesn't do anything, but it demonstrates several
techniques that you should find useful when developing your own controls.

All the questions are answered in the context of using the Microsoft Foundation Class libraries. A part
of Visual C++, the MFC framework makes it rather easy to develop ActiveX controls. However, using MFC

583

APPLE 1109 - Page 291

584 +CHAPTER 13

can sometimes obscure the w1derstanding you need to solve some of the problems you'll encounter during
development. The sample control was developed with Visual C++ version 4.1.

How do I restrict or change the size of my control?

This question, and its variations, is the most frequently asked ActiveX control question. I see this question
posted regularly to one of the OLE, ActiveX, or control-based newsgroups, so let's address it right away.
Regular windows are typically sized using the various Windows API fw1ctions (such as SetWindowPos).
You can restrict the size of a window by trapping the WM_WINDOWPOSCHANGING message and modifying
the WINDOWPOS structure.

ActiveX controls, however, differ from regular windows, because they provide their functionality only
when contained within an ActiveX control container. The container endows ActiveX controls with signifi
cantly more capabilities than regular windows have, but this power comes at a cost. To reside within an
OLE container, a control must implement several COM-based interfaces. If the control wants to muck with
its environment (of which size is an attribute), it must negotiate these changes with its container.

The container provides the control with an area in which to work, and the control must respect this
area. Changes to the conh·ol's size must be negotiated with the container. The MFC COleControl class pro
vides four methods to facilitate control sizing: SetinitialSize, SetControlSize,
OnSetObjectRects, and OnSetExtent.

Developers face two common situations in which control sizing is an issue. First, you may want to
restrict your control's size (or its extents) so that users cannot produce an invalid condition during the
design phase. You might, for example, have an analog clock that should always be square or a fixed-size
icon that serves as the control's representation (typically for a nonvisual control such as a timer). Second, as
the control's developer you may need to affect its size based on one of its properties. An example would be
an image control that needs to size dynamically based on the extents of the image. We'll cover both scenar
ios.

Nonvisual controls typically display a small bitmap during the design phase, often the toolbar bitmap
that the control provides to containers that support it. The bitmap image is a set size, and there is no need for
the user to size the control, but the container provides sizing handles by default. To restrict the size of the
bitmap image, we need to do two things. First, we set the initial size of the control to its static size using the
COleControl: : Setini tialSize method. This code should be placed in your control's constructor:

ll
II CFAQCtrl: :CFAQCtrl - Constructor

CFAQCtrl: :CFAQCtrl()

InitializeIIDs(&IID_DFAQ, &IID_DFAQEvents);

SetinitialSize(28, 28) ;

SetinitialSize takes as a parameter the size of the control in pixels. It converts the unit to HIMETRIC
(OLE's favorite) and sets the extents maintained within COleControl. This technique takes care of the ini-

APPLE 1109 - Page 292

ActiveX Control Asked Questions + 585

tial size of the control when it is created, but how do we stop the user from sizing the control during the
design phase? To do this, we need to understand how the control and its container interact.

The container provides a control with its site, or location within the container. The container is responsi
ble for allowing the user to size the control's site and will inform the control of its new size. If a control, an
in-place OLE server, wants to be informed about these size changes, it sets the OLEMISC_RECOMPOSEONRE

SIZE bit in its MiscStatus flags. For App Wizard-generated controls, MFC turns this bit on by default and
delivers it to the container via its implementation of IOleObj ect: : GetMiscStatus. If this bit is set, the
container will notify the control of any change in size by calling the IOleObj ect: : SetExtent method.

COM-based interfaces are just declarations; you must provide the implementation. MFC supplies a
default implementation for all the interfaces required of an ActiveX control. The default implementation of
IOleObj ect: : SetExtent resizes the control. Actually, it does a bit more-because various things must
occur depending on the state of the control-but first it gives us an opportunity to augment the default
implementation by calling COleControl: : OnSetExtent. We can override OnSetExtent and do one of
two things. We can return FALSE, which tells the container that the control cannot be resized, or we can
modify the extents passed via the SIZEL structure and return TRUE. For our purposes, we want to disallow
any sizing of our iconic representation, so we return FALSE:

BOOL CFAQCtrl: :OnSetExtent(LPSIZEL lpSizeL)

return FALSE;

That's all there is to it-just two new lines of code to implement a control of fixed size.

As I mentioned, we can also modify the extents in the SIZEL structure. One option available in the FAQ
control is to ensure that the control is always square. To do this, we need only pick one of the extents and
assign it to the other:

BOOL CFAQCtrl: :OnSetExtent(LPSIZEL lpSizeL)

II Make sure the control is a square.

II use the smaller of the extents for the sides.

if (lpSizeL->cy <= lpSizeL->cx

lpSizeL->cx = lpSizeL->cy;

else

lpSizeL->cy = lpSizeL->cx;

return COleControl: :OnSetExtent(lpSizeL) ;

This is easy, too, but you must remember one thing. The extents provided in the SIZEL structure are in
HIMETRIC units. If you are working in something other than HIMETRIC, such as pixels (device units), you
will need to convert the unit. The following code ensures that a control's size is always 200x200 pixels:

APPLE 1109 - Page 293

586 + CHAPTER 1 3

BOOL CFAQCtrl::OnSetExtent(LPSIZEL lpSizeL)

II Ensure that the control is always sized

II at 200x200 pixels. Get a DC and convert

II the pixels to HIMETRIC.

CDC cdc;

cdc.CreateCompatibleDC(NULL) ;

lpSizeL->CX = lpSizeL->cy = 200;

cdc.DPtoHIMETRIC(lpSizeL);

return COleControl: :OnSetExtent(lpSizeL) ;

This method isn't the most efficient way of doing the conversion. A faster implementation, one that does not
require a DC, is left as an exercise for the reader.

We understand how to handle situations in which the user or container is manipulating the size of the
control, but what about when you need to change the control's extents from within the control? It's easy.
MFC provides another size-related method: SetControlSize. The FAQ control demonstrates all these siz
ing scenarios. It has a property, ControlSize, that allows you to change its sizing behavior and its size. I
won't spend much time on the control-you can experiment with it yourself-but you need just a bit of
understanding for this section. ControlSize is a dynamic enumerated property (we'll discuss this in a
moment) that provides the user with a list of potential control sizes, one of which is "Draw Iconic."
Whenever this property is set, the control must negotiate its new size with the container by calling
COleControl: :SetControlSize:

void CFAQCtrl: :SetControlSize(short nNewValue)

POSITION pos = m_lstSizes.GetHeadPosition();

while(pos)

CCtrlSize* pSize = (CCtrlSize*) m_lstSizes.GetNext(pos) ;

if (nNewValue == pSize->m_sCookie)

m_pControlSize = pSize;

II SetControlSize forces a redraw so no need

II to call SetModifiedFlag or InvalidateControl.

COleControl: :SetControlSize(pSize->m_sizeCtrl.cx,

pSize->m_sizeCtrl.cy) ;

BoundPropertyChanged(dispidControlSize) ;

break;

APPLE 1109 - Page 294

ActiveX Control Asked Questions + 587

COleControl: : SetControlSize does different things depending on the in-place state of the control. If
the control is in-place active, SetControlSize calls OnPosRectChange through its IOleinPlaceSi te
interface, which is implemented by the container. This call informs the container of the new extents, and the
container has an opportunity to accept, ignore, or modify the new extents. The container informs the control
of any modifications by calling IOleinPlaceObj ect: : SetObj ectRects. You can act on this call by
overriding COleControl: : OnSetObj ectRects. This negotiation takes place when your control is in
place active, which typically means at run time, although some containers (such as Delphi) in-place activate
controls while in design mode.

During the design phase, a call to SetControlSize resizes the window through OnSetExtent, which
changes COleControl-maintained extents. OnSetExtent also calls COleControl:: InvalidateControl,
which informs the container, through IAdviseSink: : OnViewChanged, that the view of the control has
changed. The container then calls IOleObj ect: : GetExtent to obtain the control's new size and finally forces
the control to redraw through IViewObj ect: : Draw. Whew! I told you that functionality comes with a price,
and it's more than just processing time; it is also this complexity thing. That's why frameworks are so popular.
They shield us (a little) from this complexity.

That should cover sizing of your controls. I haven't talked about changing the coordinates of a control,
but this question comes up much less frequently because the default implementation works fine .. Seldom
does the control implementation need to manipulate its position within the container. If you need to,
though, take a look at COleControl: : SetRectinContainer.

One other thing. The behavior I've discussed depends on a solid container implementation. Without it,
the sizing scenarios will not work as desired. Both the container and the control must work together. If one
of them does not follow the standard, all bets are off. Of course, your control should do its best when it
encounters hostile environments. I've tested these techniques with various containers. Visual Basic and
Visual C++ support them all; Delphi and Visual FoxPro still need some work. Let's get to some more ques
tions.

Can I access my control from its property page?

This question is posed in different ways, all of them concerned primarily with how to obtain better, more
direct communication with a control from its property page. MFC's DDP function mechanism is limited. The
DDP functions allow communication only of a small number of automation types. That's it. When you're
developing even modestly complex controls, the DDP functions don't provide enough (direct) communica
tion with the control.

An ActiveX control and each of its property pages are implemented as separate COM objects. Property
pages can be instantiated independently of any associated control. For this reason, property pages use
automation to communicate with controls, most often to get and set property values. This design allows a
container to associate a property page with multiple controls. A user can select two or more controls, and the
container will intersect their properties and show only those pages included in this intersection. This
arrangement allows a control user to quickly set a specific property (say, the font) of a group of controls.

MFC-provided DDP functions, which use automation, do not always provide enough flexibility to
effectively manipulate a control's properties. As we'll see in the next question, it would be nice if we could
access the associated control instance within the property page. Well, MFC makes this access rather easy.

APPLE 1109 - Page 295

588 + CHAPTER 1 3

When the container constructs a property sheet by assembling the control's various property pages, the
container provides each page instance with a list of control instances that should be affected. This informa
tion is provided through IPropertyPage: : SetObj ects. Upon construction of a property page, an array
of IUnknown pointers is provided to the property page. The property page's implementation of
SetObj ects will typically call Queryinterface for the IDispatch pointers of any associated controls.
The property page can then easily get and set a control's properties through this interface.

MFC's COlePropertyPage: : GetObj ectArray method makes it easy to access a property page's
array of IDispatch pointers. Once you have this pointer, you can use CCmdTarget: : FromIDispatch to
obtain the actual COleControl-derived instance of your control. FromIDispatch checks to ensure that
the IDispatch Vtable pointer that you provide is the same as MFC's IDispatch implementation. In other
words, this technique will work only if your control was written using MFC's CCmdTarget-based classes
(such as COleControl). This technique also requires MFC version 4.0 and above.

Enough talk. Let's see some code:

LPDISPATCH CFAQPropPage: :GetControlDispatch()

II Get the property page's IDispatch array

ULONG ulObjects;

LPDISPATCH* lpObjectArray = GetObjectArray(&ulObjects) ;

ASSERT(lpObjectArray != NULL) ;

II I'm assuming there is but one control, ours

II This is a pretty straightforward assumption

II Most containers don't even support multi-control

II selection of custom property pages.

II Return the dispatch

return(lpObjectArray[O]) ;

The preceding code retrieves the IDispatch pointer of our control by returning the first element of the
page's object array. We make the assumption that this is our control's IDispatch, and today this is a fairly
easy assumption to make. With just this information, we can now directly interact with our control but only
through its IDispatch. The following code sets the Filename property of our FAQ control:

void CFAQPropPage: :SetControlFilename(const CString& strFilename)

II Needed for Unicode conversion functions

USES_CONVERSION;

II Get the dispatch of the control

LPDISPATCH lpdispControl = GetControlDispatch();

II Update the control here using automation calls

COleDispatchDriver PropDispDriver;

APPLE 1109 - Page 296

ActiveX Control

DISPID dwDispID;

II Get a Unicode string

LPCOLESTR lpOleStr = T2COLE("Filename");

if (SUCCEEDED(lpdispControl->GetIDsOfNames(IID_NULL,

(LPOLESTR*)&lpOleStr,

1, 0, &dwDispID)))

Asked Questions + 589

PropDispDriver.AttachDispatch(lpdispControl, FALSE);

PropDispDriver.SetProperty(dwDispID, VT_BSTR, strFilename) ;

PropDispDriver.DetachDispatch();

The preceding code could probably use a little explanation. USES_CONVERSION is a macro provided in
AFXPRIV.H that facilitates the conversion of ANSI strings to Unicode strings. In MFC versions before 4.0,
ANSI-to-Unicode string translation was provided by default. In MFC versions 4.0 and higher, you must do
the conversions yourself. All Win32 OLE calls expect Unicode strings. T2COLE converts an ANSI string to a
const Unicode string. For additional details, check out AFXPRIV.H and MFC Tech Note 59: "Using MFC
MBCS/Unicode Conversion Macros." The rest of the code retrieves the IDispatch of our control and
attaches it to an instance of COleDispatchDri ver. This makes it easier to use the IDispa tch methods.

The preceding steps mimic how the standard DDP functions update and retrieve property values from
a control. The DDP functions use the COlePropertyPage:: SetPropText methods. Several
SetPropText methods are implemented within COlePropertyPage. Each one is overloaded to take a dif
ferent property type. The SetPropText methods aren't documented, but by using them we can shorten the
preceding code to this:

void CFAQPropPage: :SetControlFilename(CString& strFilename)

SetPropText("Filename", strFilename);

If you need to access only the automation properties or methods of your control, the preceding techniques
will work fine. However, if you need to access non-automation aspects of your control or would rather use
straight C++ bindings (it's faster), you can do this:

CFAQCtrl* CFAQPropPage::GetControlinstance()

LPDISPATCH lpdispControl = GetControlDispatch();

ASSERT(lpdispControl !=NULL);

return (CFAQCtrl*) CCmdTarget: :FromIDispatch(lpdispControl);

APPLE 1109 - Page 297

590 + CHAPTER 1 3

The FromIDispatch method of CCmdTarget allows you to retrieve the C++ instance associated with an
IDispatch pointer. This technique requires that your property page and control implementation use MFC,
but it works. Another requirement is that the COM object be implemented in-process. ActiveX controls are
always implemented as in-process servers-I haven't yet found an exception-so this requirement isn't a
problem.

By retrieving the instance of our control, we can do just about anything with our control within the
property page. In the answer to the next question, we will use this new flexibility to manipulate an array of
properties.

How can I implement a property array?

Why, you ask, would I want to access my control instance from its property page? There are a few reasons.
One is that the DDP functions provided by MFC don't always give us the functionality we need, especially
when it comes to property arrays. A good example of a property array, or parameterized property, is a list
box control that allows the user to prefill the listbox, during the design phase, with strings. This list of strings
can be manipulated via one property name and index (the parameter) like this:

Dim str as String

str = Listbox.List(1)

Here, List is a property array that holds the strings contained within the listbox. The DDP functions do not
allow you to get and set property values stored within arrays, so we must do something else. We communi
cate with our conh·ol directly using the technique described in the previous section:

void CFAQPropPage: :DoDataExchange(CDataExchange* pDX)

II Set or retrieve the string list

II from the control instance

if (pDX->m_bSaveAndValidate

UpdateList();

else

RetrieveList();

DDP_PostProcessing(pDX);

Within our property page implementation, whenever DoDataExchange is called we check the state of the
data transfer. If the page is updating the control's properties, as indicated by m_bSaveAndValidate, we
update an associated list within the control. When we're retrieving the control's properties, the reverse
occurs. The code for each method retrieves the control instance and either queries or updates a multiline edit
field within the property page:

II

APPLE 1109 - Page 298

ActiveX Control Asked Questions + 591

II Spin through the multiline edit box and update the control's list

II
void CFAQPropPage: :UpdateList()

II

CStringList strList;

CEdit* pEdit = (CEdit*) GetDlgitem(IDC_PROPERTYLIST) ;

II Get the number of lines

int nLines = pEdit->GetLineCount();

for (int line = O; line < nLines; line++

char szLine[128];

int nCount = pEdit->GetLine(line, szLine, sizeof (szLine) - 1) ;

II GetLine doesn't null terminate

szLine[nCount] = '\0';

if (nCount)

strList.AddTail(szLine) ;

II Get the control instance

CFAQCtrl* pFAQCtrl = GetControlinstance();

II Pass the list to the control

pFAQCtrl->SetPropertyArray(strList);

II Get the property array list from the control

II
void CFAQPropPage: :RetrieveList()

CStringList strList;

CEdit* pEdit = (CEdit*) GetDlgitem(IDC_PROPERTYLIST) ;

II Clear any existing data in the edit box

pEdit->SetSel(0, -1);

pEdit->ReplaceSel("") ;

II Get the control instance

CFAQCtrl* pFAQCtrl = GetControlinstance();

II Get the list from the control

pFAQCtrl->GetPropertyArray(strList);

APPLE 1109 - Page 299

592 +CHAPTER 13

II Fill the entry box

POSITION pos = strList.GetHeadPosition();

while(pos)

II Add a CRILF pair when inserting into the

II multiline EDIT.

CString str = strList.GetNext(pos) + "\r\n";

pEdit->ReplaceSel(str);

II Clear any selection

pEdit->SetSel(-1, 0) ;

Within the property page, a CStringList instance is maintained that contains a list of strings for the
droplist. A private method within the COleControl-derived class, which takes a CStringList reference,
is used to pass the data to the control instance. Most of the preceding code deals with getting the control's
instance and is described in the property page section. The important part is that we're not using the
DDX/DDP functions but instead are doing the work ourselves. A similar approach is needed within the
control too:

11111111111111

II Property array implementation

11111111111111

void CFAQCtrl: :GetPropertyArray(CStringList& rList)

rList.RemoveAll();

POSITION pos = m_lstStrings.GetHeadPosition();

while(pos)

rList.AddTail(m_lstStrings.GetNext(pos));

void CFAQCtrl: :SetPropertyArray(CStringList& rList)

m_lstStrings.RemoveAll();

POSITION pos = rList.GetHeadPosition();

while(pos)

m_lstStrings.AddTail(rList.GetNext(pos));

APPLE 1109 - Page 300

ActiveX Control Asked Questions + 593

These methods are called from within the property page to update the control's string list member. Now we
can maintain a property array both within the control and within the property page.

But that's only half the problem. Another FAQ is, "How can I serialize (or persist) a property array?"
This isn't a straightforward question. The default control persistence (PX) functions don't handle property
arrays either, so we do something similar to our property page solution. Again, we check the direction of the
property exchange in our control's DoPropExchange method and call the appropriate internal method:

void CFAQCtrl: :DoPropExchange(CPropExchange* pPX)

ExchangeVersion(pPX, MAKELONG(_wVerMinor, _wVerMajor));

COleControl: :DoPropExchange(pPX);

II Save or restore the list of strings

if (pPX->IsLoading()

LoadPropArray (pPX) ;

else

SavePropArray(pPX) ;

void CFAQCtrl: :LoadPropArray(CPropExchange* pPX)

II Make sure the list is empty

rn_lstStrings.RernoveAll();

II Get the size of the list

short sListSize;

PX_Short(pPX, "ListSize", sListSize, 0) ;

II Read in the list

CString strPropNarne;

CString strValue;

for(int i = O; i < sListSize; i++

strPropNarne.Forrnat("%s%d", "List", i) ;

PX_String(pPX, strPropNarne, strValue,);

rn_lstStrings.AddTail(strValue);

void CFAQCtrl: :SavePropArray(CPropExchange* pPX

short sListSize = rn_lstStrings.GetCount();

APPLE 1109 - Page 301

594 + CHAPTER 1 3

II Write out the list size

PX_Short (pPX, "ListSize", sListSize) ;

II write out the strings

int i = O;

CString strPropName;

CString strValue;

POSITION pos = m_lstStrings.GetHeadPosition();

while(pos)

strPropName.Format("%s%d", "List", i++) ;

strValue = m_lstStrings.GetNext(pos) ;

PX_String(pPX, strPropName, strValue);

The trick here is to generate appropriate property names and store the strings there. The PX function prop
erty name parameter need not be a valid property name for your control; any value will do. I've added a
ListSize property name and ListO through Listn property names to store any number of strings that
the user may enter during the design phase.

I'll be the first to admit that this method may not be the most efficient way to do this, but it works. A
better solution would probably be to use the PX_Blob function and store the strings in a binary format, an
approach that would require less storage. This technique adds some complexity though, because MFC
based classes cannot be directly serialized using PX_Blob.

How can I provide a list of valid options for my properties?

Many control properties have a valid range of values. The default ClassWizard implementation does not
provide a range limit for your properties. The primary technique of ensuring valid values for your control's
properties is to use enumerated properties, which provide a way to prevent entry of invalid property values as
well as providing a more user-friendly representation. Figure 13.1 is the property page of our FAQ control
with three enumerated properties. You should also recognize the multiline entry field from the previous dis
cussion.

APPLE 1109 - Page 302

ActiveX Control Asked Questions + 595

Figure 13.1 FAQ control property page.

There are two ways of implementing enumerated properties: statically and dynamically. Static enumerated
properties are the easiest to implement and should be sufficient for most control properties. The control
developer basically hard codes the potential property values with the control's type information via the
.ODL file. The enumerated type's HelpString parameters can be queried by property browsers via the
ITypeinfo interface. You define an enumerated type and then change your property definition to use the
enumerated type instead of the default short value. Here's a simple definition for the stock Model prop
erty from FAQ.ODL:

II

II FAQ.ODL

II

[uuid(D09D8510-B240-11CF-A58E-0000837E3100), version(l.0),

helpstring("FAQ ActiveX control module"), control]

library FAQLib

importlib(STDOLE_TLB);

importlib(STDTYPE_TLB);

typedef enum

[helpstring("Festiva")] Festiva = 0,

[helpstring ("Escort")] Escort = 1

[helpstring ("Tempo")] Tempo = 2

APPLE 1109 - Page 303

596 + CHAPTER 1 3

[helpstring("Probe") J Probe = 3

[helpstring("Taurus")) Taurus 4

enumModel;

II Primary dispatch interface for CFAQCtrl

[uuid(D09D8511-B240-11CF-A58E-0000837E3100)'

helpstring ("Dispatch interface for FAQ Control") , hidden)

dispinterface _DFAQ

properties:

II NOTE - ClassWizard will maintain property information here.

II Use extreme caution when editing this section.

ll{{AFX_ODL_PROP(CFAQCtrl)

[id(l)] short ControlSize;

[id(2)] BSTR Filename;

[id (3) J enumModel Model;

ll)}AFX_ODL_PROP

In property browsers (such as Visual Basic, Visual C++, and Delphi) that support this technique, only the
five enumerated options are shown. The user is able to choose only from this list. You should also use these
options in your control's custom property page. (Remember, not all tools provide property browsers, and
that's one reason for custom property pages.) You can add the enumerated options using the
DDP /DDX_CBindex functions within the DoDataExchange method:

void CFAQPropPage: :DoDataExchange(CDataExchange* pDX)

ll{{AFX_DATA_MAP(CFAQPropPage)

DDP_CBindex (pDX, IDC_MODEL, m_sModel, _T ("Model")) ;

DDX_CBindex(pDX, IDC_MODEL, m_sModel);

ll}}AFX_DATA_MAP

DDP_PostProcessing(pDX);

There are two techniques you can use to initialize the combo box with the valid strings. First, you can over
ride Onini tDialog and add the strings there. Second, you can enter the strings within the Developer
Studio resource editor at design time. Combo boxes with the droplist style allow the entry of a default list of
strings. To keep things nice, you may also want to add an enum to your control class and use it in your con
trol code. The sample control demonstrates all these techniques.

APPLE 1109 - Page 304

ActiveX Control Asked Questions -+ 597

BOOL CFAQPropPage: :OninitDialog()

COlePropertyPage: :OninitDialog();

II Here's one way to populate the static enumerated

II property combo box. The other is to add the strings

II in the resource editor.

CComboBox* pWnd = (CComboBox*) GetDlgitem(IDC_MODEL);

pWnd->AddString ("Festiva") ;

pWnd->AddString ("Escort") ;

pWnd->AddString ("Tempo") ;

pWnd->AddString ("Probe") ;

pWnd->AddString ("Taurus") ;

return TRUE; II return TRUE unless you set the focus to a control

II EXCEPTION: OCX Property Pages should return FALSE

class CFAQCtrl public COleControl

II Enumerated property members

short m_sModel;

enum

Festiva = 0,

Escort l,

Tempo 2,

Probe 3,

Taurus = 4

);

);

You can also provide enumerated property values dynamically. This approach is a little more complicated
and is best used when the enumerated values can change or are dependent on other properties within your
control, or when a targeted container (or tool) does not support static enumerated properties.

For controls to provide dynamic enumerated properties, they must implement the
IPerPropertyBrowsing interface: MFC's COleControl class provides a default implementation and
allows your derived-control class to augment this implementation via the OnGetPredefinedStrings,
OnGetPredefinedValue, and OnGetDisplayString methods.

APPLE 1109 - Page 305

+CHAPTER 13

We will look at the implementation first from the control side and later from the property page side. To
provide dynamic enumerated properties, the three IPerPropertyBrowsing methods must be imple
mented within your control's class. For demonstration purposes, the FAQ control enumerates its
ControlSize property dynamically. What follows will describe what is required to implement
ControlSize as a dynamic enumerated property. The following definition describes a small CCtrlSize
class. Each CCtrlSize instance contains a single ControlSize property definition.

II ControlSize dynamic property support class

class CCtrlSize : public CObject

public:

CCtrlSize(CSize, short, CString) ;

CCtrlSize();

public:

CSize m_sizeCtrl;

short m_scookie;

CString m_strDisplayString;

};

The control maintains a linked list of valid ControlSize values. The potential property values are dynamic
and can be added to this list throughout the lifetime of the control. The control instance also maintains a
pointer into the linked list that identifies the current value of the property. This makes it easy to obtain the
value in the various control methods. Here's a snippet from FAQCTL.H:

class CFAQCtrl : public COleControl

II Dynamic enumerated property overrides

virtual BOOL OnGetPredefinedStrings(DISPID dispid,

CStringArray* pStringArray,

CDWordArray* pCookieArray) ;

virtual BOOL OnGetPredefinedValue(DISPID dispid,

DWORD dwCookie,

VARIANT FAR* lpvarOut) ;

virtual BOOL OnGetDisplayString(DISPID dispid,

CString& strValue) ;

CCtrlSize* m_pControlSize;

CObList m_lstSizes;

en um

APPLE 1109 - Page 306

};

};

IconicCookie = 0,

SmallCookie = 1,

MediumCookie = 2,

LargeCookie = 3,

XLargeCookie = 4

ActiveX Control Asked Questions + 599

There are the overrides, a CCtrlSize pointer to maintain the current value, and a CObList to maintain a
list of valid values. When the control is constructed, this list is initialized with potential values.

CFAQCtrl: :CFAQCtrl()

II Build a list of valid control sizes

CCtrlSize* pSize;

pSize = new CCtrlSize(CSize(28, 28) ,

IconicCookie,

" Draw Iconic") ;

m_lstSizes.AddTail(pSize) ;

II Default is to draw iconic

m_pControlSize = pSize;

pSize =new CCtrlSize(CSize(100, 100),

SmallCookie,

"100 x 100") ;

m_lstSizes.AddTail(pSize);

pSize =new CCtrlSize(CSize(200, 200) ,

MediumCookie,

"200 x 200") ;

m_lstSizes.AddTail(pSize) ;

pSize = new CCtrlSize(CSize(300, 300) ,

LargeCookie,

"300 x 300") ;

m_lstSizes.AddTail(pSize) ;

pSize = new CCtrlSize(CSize(400, 400) ,

XLargeCookie,

"400 x 400") ;

m_lstSizes.AddTail(pSize);

APPLE 1109 - Page 307

600 + CHAPTER 1 3

The default property setting is to "Draw Iconic," but it is reset if a different persistent value has been set for
the control. Also, COleControl: : SetControlSize is called after the correct ControlSize value is
obtained, so you must be careful when using dynamic properties. If you set a persistent value, you must
ensure that the value is there when you're constructing the control later or that you provide an effective
default mechanism for the value.

void CFAQCtrl: :DoPropExchange(CPropExchange* pPX)

ExchangeVersion(pPX, MAKELONG(_wVerMinor, _wVerMajor));

COleControl: :DoPropExchange(pPX);

II If loading the property, find the correct entry in the list

II and initialize the current property value

if (pPX->IsLoading()

II Get the cookie value and find the appropriate entry in the list

m_pControlSize = O;

short sCookie;

PX_Short(pPX, _T("ControlSize") , sCookie, IconicCookie) ;

POSITION pos m_lstSizes.GetHeadPosition();

while(pos)

CCtrlSize* pSize = (CCtrlSize*) m_lstSizes.GetNext(pas);

if (short(sCookie) == pSize->m_sCookie)

m_pControlSize pSize;

break;

ASSERT(m_pControlSize != 0);

II When loading the size property, update the control's size

COleControl: :SetControlSize(m_pControlSize->m_sizeCtrl.cx,

m_pControlSize->m_sizeCtrl.cy);

else

ASSERT(m_pControlSize != 0) ;

II Save cookie value of the dynamic ControlSize property

PX_Short (pPX, _T ("ControlSize") ,

APPLE 1109 - Page 308

ActiveX Control

m_pControlSize->m_sCookie,

IconicCookie) ;

Asked Questions + 601

Now that we understand the internal management of the potential property values, let's implement the enu
merated property methods. The OnGetPredifinedStrings method is called by the container, via
IPerPropertyBrowsing: : GetPredefinedStrings, to get a list of potential property values. The
DISPID of the specific property is provided along with a pointer to a string array and a DWORD array. If the
container is asking for our ControlSize property, we fill both lists with values from our CCtrlSize list
and return TRUE. A TRUE return indicates that the arrays have been filled with values. The cookie array
allows the container to later ask for the specific property value associated with the cookie. In our case, the
cookie is the position of the value within the list. Later, this approach will make it easier to implement our
custom property page, because we will use the cookie as an index into our combo box:

BOOL CFAQCtrl: :OnGetPredefinedStrings(DISPID dispid,

CStringArray* pStringArray,

CDWordArray* pCookieArray)

if (dispid == dispidControlSize)

POSITION pos = m_lstSizes.GetHeadPosition();

while(pos)

CCtrlSize* pSize = (CCtrlSize*) m_lstSizes.GetNext(pos) ;

pStringArray->Add(pSize->m_strDisplayString) ;

pCookieArray->Add(pSize->m_sCookie);

return TRUE;

II If it's not ours, let our parent handle the request

return COleControl: :OnGetPredefinedStrings(dispid,

pStringArray,

pCookieArray) ;

If a user now selects a specific property value string, the container will ask for its associated value.
OnGetPredefinedValue, via IPerPropertyBrowsing: :GetPredefinedValue, provides the DISPID
and cookie for the requested value and a VARIANT for the return. All we have to do now is to spin through
our list, match the cookies, and return the property value. In our case, the cookie value is the same as the
property value, so we fill out the VARIANT and return TRUE, indicating that the value was found.

APPLE 1109 - Page 309

602 + CHAPTER 1 3

BOOL CFAQCtrl: :OnGetPredefinedValue(DISPID dispid,

if (dispid == dispidControlSize)

DWORD dwCookie,

VARIANT FAR* lpvarOut

POSITION pos = m_lstSizes.GetHeadPosition();

while(pos)

CCtrlSize* pSize = (CCtrlSize*) m_lstSizes.GetNext(pos) ;

if (short(dwCookie) == pSize->m_sCookie)

Variantinit(lpvarOut) ;

lpvarout->vt = VT_I2;

lpvarOut->iVal =short(dwCookie);

return TRUE;

II Call the parent implementation

return COleControl: :OnGetPredefinedValue(dispid, dwCookie, lpvarOut) ;

OnGetDisplayString returns the current "string" setting for the DISPID provided. This method is called
by the container whenever it needs to update its display. Here is its implementation:

BOOL CFAQCtrl::OnGetDisplayString(DISPID dispid, CString& strValue)

if (dispid == dispidControlSize)

II This should never happen, we're just being safe.

if (m_pControlSize == 0

strValue = "Unknown";

else

strValue = m_pControlSize->m_strDisplayString;

return TRUE;

That finishes the control-side implementation. Now let's move on to our custom property page. In our solu
tion for static enumerated properties, we used a combo box filled with strings that we defined when compil
ing the control, or we added them during initialization of the dialog box. For dynamic properties, we need to

APPLE 1109 - Page 310

ActiveX Control Asked Questions + 603

retrieve the possible values from the control at run time. Thanks to the previous discussions, we should be
able to do this rather easily. The cookie that we used to identify a specific property value can also be used to
indicate the property's index within our combo box. So, within our property page, we will use the technique
that a typical property browser would use to retrieve the property's potential values:

void CFAQPropPage: :GetControlSizeStrings()

II Get the dispatch of the control

LPDISPATCH lpdispControl = GetControlDispatch();

II Using IDispatch, query for IPerPropertyBrowsing

LPPERPROPERTYBROWSING lpBrowse;

HRESULT hr = lpdispControl->Queryinterface(IID_IPerPropertyBrowsing,

(LPVOID*) &lpBrowse) ;

if (SUCCEEDED(hr))

CALPOLESTR

CADWORD

castr;

cadw;

II Get the property .strings associated with our

II ControlSize property. This also returns an array

II of "cookies," but we don't actually need them.

hr= lpBrowse->GetPredefinedStrings(CFAQCtrl::dispidControlSize,

&castr,

&cadw) ;

if (SUCCEEDED(hr))

II
II Move the strings to our combo box

II
CComboBox* pWnd = (CComboBox*) GetDlgitem(IDC_CONTROLSIZE);

for (ULONG i = O; i < castr.cElems; i++)

II

II Must include AFXPRIV.H

USES_CONVERSION;

II W2A converts the OLE (Unicode) string to ANSI

pWnd->AddString(W2A(castr.pElems[i])) ;

II Free any memory allocated by the server

II

APPLE 1109 - Page 311

604 + CHAPTER 1 3

CoTaskMemFree((void *)cadw.pElems);

for (i = O; i < castr.cElems; i++)

CoTaskMemFree((void *)castr.pElems[i]);

CoTaskMemFree((void *)castr.pElems) ;

II We're finished so release IPerPropertyBrowsing

lpBrowse->Release();

We get our control's IDispatch and query through it for IPerPropertyBrowsing. We then call
GetPredefinedStrings to get our array of strings and cookies. Next, we iterate over this array and popu
late our combo box. That's all there is to it. The standard PX_CBindex function handles updating the con
trol when the user changes a property value. There are some tricky parts. You must deallocate the arrays
using COM functions, but once you've done it (and you've now done it once), you've done it a hundred
times.

How can I set up a custom property dialog box and access it from Visual Basie's
browser using the " •.. " option?

When developing custom property pages for your controls, you can manipulate and validate those values
entered by the control user. However, most visual tools (such as Visual Basic and Delphi) provide their own
property browsers. The default behavior of these browsers allows the control user to enter property values
that are limited only by the range of the property's intrinsic type. For example, if you have a property that is
of type short, the user can enter any value that is within the range of a short. What do you do if you need
to provide more stringent property validation? What if you would like to provide a more user-friendly inter
face that helps the user select the correct property value? One solution, as we discussed earlier, is to provide
enumerated properties, but what if the values can't be enumerated? One example of a property that is diffi
cult to enumerate is a filename. To provide a nice, user-friendly interface for these types of properties, you
must implement per-property browsing.

From a user perspective, per-property browsing enables modification, via a control-specific property
page, of a property from within a tool's browser. In Visual Basic and Visual C++, this additional capability is
identified by the appearance of ellipses(" ... ") beside the property. When the ellipses button is clicked, a con
trol-specific property sheet is displayed. This approach allows custom property manipulation within any
tool that supports per-property browsing.

The IPerPropertyBrowsing interface that we described earlier is used to implement per-property
browsing-specifically, through an implementation of the MapPropertyToPage method.
MapPropertyToPage does basically what it says. The browser passes the DISPID of a specific property,
and, if the control wants to provide per-property browsing, it returns the CLSID of the supporting property
page.

APPLE 1109 - Page 312

-·~~·-~~·-··,~---"~~-~- ActiveX Control Frequently Asked Questions + 605

To demonstrate per-property browsing, let's implement a custom property page for the Filename
property of our FAQ control. The Filename property doesn't do much; it has the usual Get/Set methods
and a PX_String function for persistence, but that's it. We'll use it to demonstrate per-property browsing
and to answer another FAQ that I often get: "How can I pop up a standard file dialog box from within the
property browser?"

I've added a second custom property page to the control (the process for doing this is described in the
MFC documentation) and have provided an entry field for the filename. We have placed a button on the
page to invoke a standard file dialog box (Figure 13.2).

Figure 13.2 Filename property page.

The ellipses button invokes a standard file dialog box that allows the user to browse for a specific filename:

void CFAQPropPage2: :OnSearch()

CString strExt = "All files (*.*) * · * I I";

CFileDialog fileDialog(TRUE,

* *"

NULL,

OFN_SHAREAWARE OFN_LONGNAMES,

strExt,

this) ;

fileDialog.m_ofn.nFilterindex = 0;

fileDialog.m_ofn.lpstrTitle = "FAQ Filename Dialog";

APPLE 1109 - Page 313

606 + CHAPTER 1 3

fileDialog.m_ofn.lpstrFile = m_strFilename.GetBuffer(_MAX_PATH);

BOOL bResult = fileDialog.DoModal() == IDOK ? TRUE : FALSE;

m_strFilename.ReleaseBuffer();

if (bResult == IDOK)

CWnd* pWnd = GetDlgitem(IDC_FILENAME) ;

pWnd->SetWindowText(m_strFilename) ;

SetControlStatus(IDC_FILENAME, TRUE);

We invoke a modal file dialog box and allow the user to choose a filename. When OK is pressed, we update
the filename entry field and call COlePropertyPage: : SetControlStatus, which marks the property as
"dirty" and enables the Apply button on the property sheet. Now everything is handled just like any other
property in a custom property page. When OK or Apply is pressed, the DDP function is used to update the
property within the control instance.

To enable per-property browsing, we override the default implementation of OnMapPropertyToPage.

When a well-behaved property browser enables editing for a specific property, it calls
IPerPropertyBrowsing: : MapPropertyToPage to see whether the control supports per-property
browsing. If per-property browsing is supported, the GUID of the associated property page is returned.
When a container calls MapPropertyToPage, COleControl gives the control a chance to handle the
method through OnMapPropertyToPage. The DISPID of the specific property is provided. Here's our
implementation from the FAQ control:

II
II Support for VB's " ... "browser option. Displays a specific

II property page based on the provided dispid. In our case we

II will pop up our "Filename" property page.

II
BOOL CFAQCtrl: :OnMapPropertyToPage(DISPID dispid, LPCLSID lpclsid, BOOL* pbPageOptional

II Return our custom "Filename" property page if

II the client asks for it.

if dispid == dispidFilename

*lpclsid = CFAQPropPage2: :guid;

*pbPageOptional = FALSE;

return TRUE;

return COleControl: :OnMapPropertyToPage(dispid, lpclsid, pbPageOptional);

APPLE 1109 - Page 314

ActiveX Control Asked Questions 607

In Visual Basic, when the user clicks on the ... button, Visual Basic calls MapPropertyToPage to get the
GUID of the associated property page. If one is provided, the container builds a property frame with the spe
cific property page. This technique allows control-specific editing outside a control's custom property pages.

The pbPageOptional flag indicates to the property browser whether or not the property can be edited
outside its property page. Our filename property can be edited within an external browser, so we set the flag
to TRUE.

The three other IPerPropertyBrowsing methods that we used earlier to implement dynamic enu
merated properties are not needed here. It's not possible for us to enumerate all the valid filenames,
although we could check the filename for syntactic validity. Oh well, yet another exercise for the reader.

When I change a property's value through its property page, the tool's property
browser isn't updated. Why not?

You've already seen code from the FAQ sample that answers this question. If you want your design-time prop
erty changes via your control's property pages to immediately update an external property browser (such as
Visual Basic or Delphi), you need only call the BoundPropertyChanged method after setting the new value:

void CYourCtrl: :SetSomeProperty(short nNewValue)

m_sSomeProperty = nNewValue;

II Update the property browser

BoundPropertyChanged(dispidSomeProperty);

SetModifiedFlag();

BoundPropertyChanged informs the browser, via IPropertyNotifySink: :OnChanged, that a con
trol's property value has changed. The browser then retrieves the new value through the control's
IDispatch. The parameter provides the dispatch ID of the property that changed. DISPID_UNKNOWN can
be used to force an update of all known properties.

Why can't I set the colors on my subdassed BUITON control?

Button controls do not pay attention to the reflected OCM_CTLCOLORBTN message. If you want to create a
button control that provides custom color capabilities, you will have to use an owner-draw control.

How can I provide F 1 support for my properties within Visual Basie's property
browser?

To add support for Fl help within various browsers, you need to modify your control's .ODL file. The mod
ifications specify the help context IDs for your control's properties, methods, and events. The steps and key
words required to modify the .ODL file are explained in Microsoft Knowledge Base article Q130275.

APPLE 1109 - Page 315

608 + CHAPTER 1 3

How do I add support for the Help button in my properly page?

First you need to create a .HLP file for your properties. Then for each of your custom property pages, add a
call to SetHelpinfo in the constructor of your property page class. You must provide a short comment for
tooltip support, the filename of your .HLP file, and the help context ID to be passed during the WinHelp
call. The default implementation of the Help button calls WinHelp with the parameters provided via
SetHelpinfo. If necessary, you can change this default behavior by overriding and implementing the
COlePropertyPage: : OnHelp method.

How do I return an array of items from my control?

To return an array of items, you can use an automation safe array. There isn't room to discuss all the features
of safe arrays here, so I'll briefly cover how to use them in an automation method. A tremendous amount of
documentation comes with Visual C++ that covers the various safe array APis and so on.

Add a method to your control that takes a VARIANT pointer as a parameter. A variant is a generic data
type that can hold values or pointers to other, more specific automation types. One of the data types that can
be contained within a variant is a safe array. You can have an array of shorts, longs, BSTRs, Dates, and so
on. In the method, allocate a SAFEARRAY, allocate space for the items, and then populate the array with
these values. Then initialize the VARIANT structure. The following code creates a SAFEARRAY of BSTR ele
ments. As with all automation data, the server allocates the storage, and the client (for example, Visual Basic)
is responsible for the deallocation.

void CMyControl: :GetArray(VARIANT FAR* pVariant

II Get the nwnber of items

int nCount = GetCount();

II Create a safe array of type BSTR

II cElements of the first item indicates the size of the array

SAFEARRAYBOUND saBound[l];

SAFEARRAY* pSA;

saBound[OJ .cElements = nCount;

saBound[O) .lLbound = O;

pSA = SafeArrayCreate(VT_BSTR, 1, saBound) ;

for(long i = O; i < nCount; i++)

BSTR bstr;

II Get the next item, create a BSTR, and

II stuff it in the array. Getitem returns a CString.

bstr = Getitem(i) .AllocSysString();

APPLE 1109 - Page 316

ActiveX Control

SafeArrayPutElement(pSA, &i, bstr) ;

: :SysFreeString(bstr);

II Init the variant

Variantinit(pVariant);

II Specify its type and value

pVariant->vt = VT_ARRAY I VT_BSTR;

pVariant->parray = pSA;

Asked Questions

The Visual Basic code to access the elements of the array would look something like this:

Dim t As Variant

Dim i as Integer

MyControll.GetArray t

For i = 0 To MyControll.Count - 1

ListBox.Additem t(i)

Next i

How can I communicate with other controls in the container?

To communicate with other ActiveX controls within a container, use the IOleitemContainer: : Enum
Objects method. COleControl provides a method, GetClientSite, that provides access to the
IOleClientSite interface. Through this method you can get a pointer to the IOleitemContainer interface.
Once you have a pointer to this interface, you can enumerate over the contained controls:

void CMyCtrl: :EnumControls()

LPOLECONTAINER pContainer = NULL;

II Get a pointer to the IOleitemContainer interface

HRESULT hr= GetClientSite()->GetContainer(&pContainer);

if (SUCCEEDED(hr))

II Types of objects to enum

DWORD dwFlags = OLECONTF_ONLYIFRUNNING

OLECONTF_EMBEDDINGS

OLECONTF_ONLYUSER;

LPENUMUNKNOWN pEnumUnknown = NULL;

hr = pContainer->EnumObjects(dwFlags, &pEnumUnknown) ;

APPLE 1109 - Page 317

610 +CHAPTER 13

if (SUCCEEDED(hr))

LPUNKNOWN pNextControl = NULL;

II Loop through the controls

while(SUCCEEDED(hr) && pEnurnUnknown->Next(1, &pNextControl, NULL) S_OK)

LPDISPATCH pDispatch = NULL;

II Get the IDispatch of the control

hr = pNextControl->Queryinterface(IID_IDispatch, (LPVOID*) &pDispatch) ;

if (SUCCEEDED(hr))

COleDispatchDriver PropDispDriver;

DISPID dwDispID;

II Use automation to access various properties and methods

USES_CONVERSION;

LPCOLESTR lpOleStr = T2COLE ("SomeProperty") ;

if (SUCCEEDED(pDispatch->GetIDsOfNames(IID_NULL,

(LPOLESTR*)&lpOleStr, 1, 0, &dwDispID)))

PropDispDriver.AttachDispatch(pDispatch, FALSE);

UINT uiCount;

PropDispDriver.GetProperty(dwDispID, VT_I4, &uiCount) ;

PropDispDriver.DetachDispatch();

pNextControl->Release();

pEnurnUnknown->Release();

The preceding example demonstrates how to access the IDispatch of all the controls within the container.
There are many other things you could do. To identify the controls you're looking for, you could implement
a custom interface within the (target) control and then call Queryinterface to find it. You could also look
for a specific CLSID of a control after retrieving the IOleObject interface. You should be able to do almost
anything once you've found the control you're looking for.

APPLE 1109 - Page 318

ActiveX Control Asked Questions -+- 611

Why does AmbientUserMode always return True?

You're probably checking the value of AmbientUserMode in your control's constructor, destructor, or
OnSetClientSite method. The value of AmbientUserMode is always TRUE if the control hasn't yet set
up its ambient !Dispatch connection to its container. You won't get a valid return from
AmbientUserMode in either the constructor or destructor of your control, but you can in
OnSetClientSi te if you first ensure that the ambient !Dispatch has been set up. The following code
demonstrates how to check AmbientUserMode during the call to OnSetClientSi te:

II Ensure the control has a valid HWND as soon as it

II is placed on the container

void CYourCtrl::OnSetClientSite()

II We only need the window at run time

II Only call recreate when there is a valid ambient dispatch

if (m_ambientDispDriver.m_lpDispatch && AmbientUserMode()

RecreateControlWindow();

The m_ambientDispDri ver member of COleControl maintains the ambient dispatch of the container.
Only if m_lpDispatch is valid is there an appropriate connection to the container, thus allowing retrieval
of ambient properties. The preceding code ensures that RecreateControlWindow is only called once,
when the control is initially created as the container loads the control.

How do I change the actual Name value of my control (VB's Name property)?

The Name property that Visual Basic uses is the control's actual coclass name. To quickly change this
exposed name, modify your control's coclass interface name. The following example shows where this
name is located in the .ODL file. I've changed the name from Ccc to SomethingElse.

II Class information for CCccCtrl

uuid(3B082A53-6888-11CF-A4EE-524153480001)'

helpstring ("Ccc"), control

coclass SomethingElse

[default] dispinterface _DCcc;

[default, source] dispinterface _DCccEvents;

};

APPLE 1109 - Page 319

612 +CHAPTER 13

I'm having trouble registering my control. What can I do?

The most common problem you'll encounter when attempting to register a control is the absence of DLLs
that the control depends on (such as MFC40.DLL). If you're still having problems after ensuring that the
right DLLs are installed, you can simulate what REGSVR32.EXE does with the following code. This tech
nique allows you to trace through and see exactly where things are going awry.

II
II RegisterServer takes as a parameter the

II explicit path and filename of the OLE

II server that you want to register.

II E.g., c:\winnt\system32\clock.ocx

II This function loads the DLLIOCX and calls

II the DllRegisterServer function.

II
DWORD RegisterServer(char* szPath

HINSTANCE hinstance : :LoadLibrary(szPath);

if (0 == hinstance

return ::GetLastError();

typedef void (FAR PASCAL *REGSERVER) (void);

REGSERVER RegServer =
(REGSERVER) : :GetProcAddress(hinstance,

if (0 == RegServer)

: :FreeLibrary(hinstance);

return : :GetLastError();

RegServer();

: :FreeLibrary(hinstance) ;

return O;

_T ("DllRegisterServer")) ;

Can I create an instance of my control with Visual Basie's CreateObject function?

I've included this question because it was asked four times in a matter of days. It's also nice to know that
you can use your ActiveX controls as automation servers if necessary. The main attraction of this approach is

APPLE 1109 - Page 320

ActiveX Control Asked Questions + 61 3

that it provides dynamic creation of the control. Using most tools, your control must be placed on a form
during the design phase. If you use Visual Basie's Crea teObj ect function, there are no design-time depen
dencies within your Visual Basic project. This flexibility, however, comes with a significant cost. Using your
control as an automation server will negate two of the most important features of ActiveX controls: events
and persistence.

Visual Basie's CreateObj ect function creates an instance of an automation server. It uses the standard
COM APis to create the instance and then query for the server's !Dispatch. ActiveX controls are automa
tion servers. However, they also implement a number of other COM-based interfaces and expect to be active
within a container. The primary difference between a standard automation server and an ActiveX control is
that the control natively supports events and provides a persistence mechanism for its properties (through
its container).

By default, a control expects to have a control site containing various interfaces, but Crea teObj ec t
cannot provide them. COleControl does, however, provide a way for a control to behave as just an
automation server; you need only override COleControl:: IsinvokeAllowed and return TRUE. This
technique allows you to use CreateObject on your control, although you must be sure that everything
will still work without any persistence or event support. You can check for this condition by testing the state
of the rn_binitialized flag. If it is FALSE, the control has not been initialized via the standard .container
persistence mechanism. The following code allows your control to behave as an automation server and
exposes a property, IsControl, that indicates its state:

BOOL CFAQCtrl: :IsinvokeAllowed(DISPID dispid

return TRUE;

BOOL CFAQCtrl: :GetisControl()

II If in design mode don't display the property

II in the property browser. Throw the

II CTL_E_GETNOTSUPPORTED exception instead.

if (! AmbientUserMode()

GetNotSupported();

II m_binitialized indicates whether the container's

II persistence mechanism was used to load the control.

II If it is FALSE, we are acting as an automation server.

return m_binitialized;

Once you've set up your control to work as an automation server, you need to instantiate it. By default,
ControlWizard creates a ProgID for controls as PROJECT. PROJECTCtrl .1. This is specified in the IMPLE-

APPLE 1109 - Page 321

614 +CHAPTER 13

MENT_OLECREATE_EX macro, so it's easy to change. To create an instance of your control in Visual Basic,
you would do something like this:

Dim objFAQCtrl as Object

Set objFAQCtrl = CreateObject ("FAQ. FAQCtrl.1"

' Do something with the control instance

objFAQCtrl.IsControl

' Now release it

Set objFAQCtrl = Nothing

If you have other ActiveX control questions, be sure to check out the FAQ I maintain at
http:/ /www.sky.net/-toma/faq.htm. If the answer isn't there, send your question to me at toma@sky.net
or tom@widgetware.com. I'll do my best to answer it in a timely manner. I also encourage you to contribute
any specific issues that you've encountered or special tricks that you've learned while grappling with
ActiveX control development. As product development timelines continue to shrink and the technologies
that we use become more complex, we must do what we can to maintain our productivity.

APPLE 1109 - Page 322

t s
The CD-ROM contains the source code for all the example programs discussed in the book. The structure of
the CD-ROM is illustrated in Figure A.1. I have not included a setup program to copy the files from the CD
ROM; a simple XCOPY command will allow you to select those items that you are interested in. For exam
ple, to copy the complete CD-ROM contents to your hard drive, create a directory (e.g., XBOOK), and issue
the following XCOPY command. Of course, you will have to substitute your actual hard drive and CD-ROM
device letter.

c:\Xbook\XCOPY d:*.* /s

This will create the directory structure shown in Figure A.1 under your XBOOK directory. The contents of
each directory are detailed here.

\(Root)

\Win16 \Misc \www

y
\chap2 \chap2

\chap3 [\chap3

\Multi

\chap11

\chap12 I \chap13

Figure A.1 CD-ROM hierarchy.

615

APPLE 1109 - Page 323

616 + APPENDIX A

I
I've included the source files and projects from the first edition of the book for those interested in developing
16-bit ActiveX controls. Each chapter directory contains a Visual C++ version 1.52b make file for the exam
ple projects and controls.

The \examples subdirectories contain all the Visual C++ project files for the example programs. Table A.1
details the contents of each directory.

Path

\examples \chap2\express

\examples \chap3

\examples \chap4\server

\examples \chap4\client

\examples \chap5\server

\examples \chap5\client

\examples \chap6 \Autosvr

\examples \chap6 \server

\examples \chap6 \client

\examples \chap6 \ V cClient

\examples \chap6 \ vbclient

\examples \chap6 \ vbdriver

\examples \chap8 \postit

\examples \chap8 \vb

\examples \chap9\clock

\examples \chap9\contain

\examples \chap 1 0 \eedit

\examples \chap 10 \vb

\examples \chap 1 O\treev

\examples \chap 11 \pipe

Table A.1 \Example Directory Contents

Description

Contains the initial EXPRESS.H and EXPRESS.CPP files. The make file included here works with
Visual C++ and is built as a Win32 console application.

Visual C++ project files for the Chapter 3 project.

Visual C++ project files for the Chapter 4 SERVER project.

Visual C++ project files for the Chapter 4 CLIENT project.

Visual C++ project files for the Chapter 5 SERVER project.

Visual C++ project files for the Chapter 5 CLIENT project.

The project files for the MFC-based automation server we developed in Chapter 6.

The project files for the non-MFC automation server.

The project files for the non-MFC automation client.

MFC-based automation client.

Visual Basic automation client example. This Visual Basic example uses the non-MFC automa
tion server.

Visual Basic automation client driver example. This Visual Basic example demonstrates access
ing the MFC-based local server.

Visual C++ project files for the POSTIT control.

Project files for the Visual Basic example program that uses the POSTIT control.

Visual C++ project files for the analog CLOCK control.

Visual C++ project files for the CONTAIN container example.

Visual C++ project files for the EEDIT control.

Visual Basic project that uses the EEDIT control.

Visual C++ project files for the TREEV control.

Visual C++ project files for the PIPE control.

APPLE 1109 - Page 324

Path

\examples \chap 11 \vb

\examples \chap 12\async

\examples \chap 12\htm

\examples \chap 13 \FAQ

CD-ROM Instructions + 617

Table A. 1 \Example Directory Contents (continued)

Description

Project files for the three Visual Basic example programs that use the PIPE control.

Visual C++ project files for the ASYNC control.

HTML files using the sample control.

Visual C++ project files for the FAQ control.

The \WWW directory contains an HTML-based page that contain references to ActiveX resources on the
Web. Just load up the DEFAULT.HTM file in your browser.

The \misc directory contains additional sample control source not directly discussed in the text. For starters,
there is great example of a control acting as a container for other controls in the \Misc\ Wilkins hierarchy.
Bob Wilkins (bob@havana.demon.co.uk) developed this example, and it demonstrates several useful tech
niques for embedding controls within another control. For the latest information on this example, check out
his Web site at: http:/ /www.netlinkco.uk/users/havana/projects.html.

The \Multi directory contains a control that demonstrates embedding multiple Windows controls
within one ActiveX conh·ol.

Path

\Misc\ Wilkins \xwdcell,
\Misc\ Wilkins \xwdgrid,
\Misc\Wilkins\vbtest

\Misc\Multi

Table A.2 \Misc Directory Contents

Description

The XWDCELL directory contains Bob's cell control. The XWDGRID directory contains the grid
control that is actually a control container that contains a number of XWDCELL controls.
The VBTEST directory contains a Visual Basic executable that implements a crossword puzzle.

A simple control that demonstrates how to embed multiple Windows controls within one ActiveX
control. The control contains a multiline EDIT control and a BUTTON control.

APPLE 1109 - Page 325

s
The ActiveX SDK contains several documents that are instrumental to understanding ActiveX control and
related technologies. Following is a list of the major documents:

OLE Controls/COM Objects for the Internet

Internet Component Download Specification

Asynchronous Moniker Specification

Component Categories Specification

OLE Controls 96 Specification

OLE Control and Container Guidelines Version 2.0

URL Monikers Specification

ActiveX SDK On-line Help

Armstrong, Tom, "Frequently Asked Questions-With Answers-About ActiveX Controls,"
Component Builder, (July and August 1996).

Andrews, Mark, C++ Windows NT Programming, New York, NY: M&T Books, 1994.

Blaszczak, Mike, "Implementing OLE Control Containers with MFC and the OLE Control
Developer's Kit," Microsoft Systems Journal (April 1995).

Blaszczak, Mike, MFC 4 Programming with Visual C++, Chicago, IL: Wrox Press Ltd., 1996.

619

APPLE 1109 - Page 326

620 + APPENDIX B

Brockschmidt, Kraig, Inside OLE, second edition, Redmond, WA: Microsoft Press, 1995.

Brockschmidt, Kraig, "OLE Integration Technologies," Dr. Dobb's Special Report: The Interoperable
Objects Revolution (Winter 1994/1995).

Cargill, Tom, C++ Programming Style, Reading, MA: Addison-Wesley, 1992.

Chappell, David, Understanding ActiveX and OLE, Redmond, WA: Microsoft Press, 1996.

Cilwa, Paul, and Duntemann, Jeff, Windows Programming Power with Custom Controls, Scottsdale, AZ:
The Coriolis Group, 1994.

DiLascia, Paul, "OLE Made Almost Easy: Creating Containers and Servers Using MFC 2.5," Microsoft
Systems Journal (April 1994).

Eckel, Bruce, C++ Inside & Out, Berkeley, CA: Osborne McGraw-Hill, 1993.

Entsminger, Gary, The Tao of Objects, New York, NY: M&T Books, 1990.

Goodman, KevinJ., Windows NT: A Developer's Guide, New York, NY: M&T Books, 1994.

Harris, Lawrence, Teach Yourself OLE Programming in 21 Days, Indianapolis IN: Sams Publishing,
1995.

Helman, Paul, and Veroff, Robert, Intermediate Problem Solving and Data Structures, Menlo Park, CA:
The Benjamin/Cummings Publishing Company, Inc., 1986.

Kruglinski, David J., Inside Visual C++, second edition, Redmond, WA: Microsoft Press, 1994.

Lang, Eric, "Building Component Software with Visual C++ and the OLE Control Developer's Kit,"
Microsoft Systems Journal (September 1994).

Meyers, Scott, Effective C++, Reading, MA: Addison-Wesley, 1992.

Microsoft Developer Network (MSDN) CD-ROM, Redmond, WA: Microsoft, 1995.

The MSDN CD-ROM is produced every quarter and distributed to MSDN members. It contains a
tremendous amount (600 MB) of developer-oriented material: white papers, complete books, numer
ous program examples, back issues of MSJ, and so on. Every serious Windows developers should
subscribe to this service. Following are some example items:

APPLE 1109 - Page 327

Bibi • 621

OLE Control Developer's Kit: User's Guide & Reference, Redmond, WA: Microsoft Press, 1994.

OLE Programmer's Reference Volume One, Redmond, WA: Microsoft Press, 1996.

OLE Automation Programmer's Reference Volume Two, Redmond, WA: Microsoft Press, 1996.

Petzold, Charles, Programming Windows 3.1, third edition, Redmond, WA: Microsoft Press, 1992.

Prosise, Jeff, "Wake Up and Smell the MFC: Using the Visual C++ Classes and Application
Framework," Microsoft Systems Journal Gune 1995).

Richter, Jeffrey M., Windows 3.1: A Developer's Guide, New York, NY: M&T Books, 1992.

Williams, Sara, and Kindel, Charlie, "The Component Object Model," Dr. Dobb's Special Report: The
Interoperable Objects Revolution (Winter 1994/1995).

APPLE 1109 - Page 328

A
I Automation switch, 268

_stdcall, 160

abstract class, C++, 40, 115

ActiveX, 188-189

compared to OLE, l, 12, 113, 151, 187-
189

compared to COM, 187-189

ActiveX Automation. See Automation

ActiveX Control Pad, 576-581

ActiveX Controls, xxv, 291-334

and component categories. See
component categories

adding custom events, 380-381

adding custom methods, 379-380

adding stock events, 377-379

adding stock methods, 379

adding stock properties, 357-363

and Automation, 294, 307-310

as software components, 294

debugging, 391

drawing, 354-355

drawing in design-mode, 514-516

error handling, 540-542

events, 315-318

custom, 318, 380-381

freezing, 319, 533-535

maps, 379, 442

standard, 317

stock, 377

functional categories, 305-319

interfaces, 298-299, 306-319

Internet-aware, 294, 305, 549-582

licensing, 350-353

methods, 310-311

Refresh, 310, 379

DoClick, 310, 379

properties, 307-310

ambient, 298, 308-309, 373-377

data path, 554, 567-571

design-time-only, 543

enumerating values, 488-490

extended, 323

read-only, 519

run-time-only, 542

persistence, 314-315

serializing, 381-383

standard, 307-308

stock, 307-308

Appearance, 359

BackColor, 308, 359

BorderStyle, 308, 360

Caption, 308, 358, 360

Enabled, 308, 361

Font, 308

ForeColor, 308, 360

Hwnd, 308, 361

ReadyState, 556

Text, 308, 358, 360

property pages, 311-314, 490-494

modifying custom, 366-372, 490-494

stock, 372

property sheets, 311

reflected window messages, 468-471

registering, 355

registry entries, 323-326

serialization, 381

subclassing. See subclassing Windows
controls

testing,

ambient properties, 376-377

in the Test Container, 356, 363, 428

metafile representation, 425-428

toolbar bitmap, modification, 357

types, 294

ActiveX Scripting, 188

AddRef. See !Unknown::AddRef

AFX_MANAGE_ST ATE macro, 344-346

623

AFXCMN.H, 498

AfxDllCanUnloadNow, 219

AfxDl!GetClassObject, 218, 344

AFXOLE.H, 180

AfxOlelnit, 196

AfxOleLockApp, 207

AfxOleUnlockApp, 207

AFXPRIV.H, 171-175, 589

AfxRegisterControlClass, 387

AfxUnregisterControlClass, 387

AfxVerifyLicFile, 353

AFXWIN.H, 200

aggregation. See Component Object Model,
the ambient properties. See Control
Containers and ActiveX Controls

applets, 6, 14-15

application frameworks, 6, 78-79

application generators, 80

applications as components, 10-13

App Wizard. See Visual C++

ASSERT macro, 109

ASSERT_POINTER macro, 109

ASSERT_KINDOFmacro, 109

asynchronous monikers. See monikers.

Automation, xxv, 12, 221-289

B

(See also !Dispatch)

and inheritance, 266

automating an MFC application, 279-287

controllers, 222, 245

data types, 228-230

properties and methods, 226, 230

standard application properties, 287

wrapping C++ classes with, 256-262

Beep, 484

BEGIN_INTERFACE_MAP macro, 203

BEGIN_INTERFACE_P ART macro, 202

BEGIN_MESAGE_MAP macro, 103

APPLE 1109 - Page 329

624 +INDEX

BEGIN_OLEFACTORY macro, 349, 351

BEGIN_PROPP AGEIDS macro, 372

binary standard, 4, 7-8, 56, 114, 145, 187

Binding

in Automation, 222-223, 271-273

late vs. early in C++, 38, 41

BITMAP structure, 515

black box, xxiv

BN_cLICKED, 101-104, 282, 469-471

Browser. See Internet Explorer

BSTR, 161, 171, 240

c
C++, the language, 17-76

and application frameworks, 78-79

and interface implementations, 127-132

and reuse, 3, 9, 17, 54-56

and software complexity, xxiii, 6

class composition, 31, 45-47, 71-73

class nesting, 133-137, 202-208

classes, 18-20

abstract, 40, 115

static members, 26, 51-54

constructors, 20-23

copy constructors, 50

destructors, 24-26

inheritance, 3, 26-31, 55

multiple, 44-45

when to use, 30-31

interface vs. implementation, 56-57

keywords,

const, 47

friend, 130

private, 19-20, 31-34

protected, 19-20, 31-34

public, 19-20, 31-34

static, 26, 51-54

this, 49, 127, 136

mangling 3, 6-8, 37

methods, 19

offsetof macro, 135-137, 204

operators

assignment, 50

delete, 23-24

multiple scoping, 135

new,23-24

overloading, 51

overloading, 36-38

overriding, 34-36

problems with, 6-7

references, 47

structures, 20

virtual functions, 38-41

in COM, 114-121

pure, 40, 115

Vtable, 41-43, 115

CAB files, 560-561

CAsyncMonikerFile, 564

CA TEGORYINFO structure, 330-331

CATID,327

CATID_Control, 328

CATID_DocOJ;>ject, 328

CATID_lnsertable, 328

CATID_InternetAware, 329, 557-558

CATID_Persists*, 329, 557

CA TIO _Printable, 328

CATID_Programmable, 328

CATID _PropertyNotifyControl, 329

CA TID _RequiresDataPathHost, 557, 573

CATID_SafeForlnitializing, 557-559

CATID_SafeForScripting, 557-558

CATID _SimpleFrameControl, 329

CATID_ VBDataBound, 329

CATID_ VBFormat, 329

CA TID _ VBGetControl, 329

CATID _ WindowlessObject, 329

CAUUID structure, 312

CBitmap, 399, 419, 515

CBitmap::CreateCompatibleBitmap, 400

CBitmap::GetObject, 515

CBitmap::LoadBitmap, 515

CBrush, 397-398, 475

CComboBox, 194

CCmdTarget, 104, 197-210, 256-266

CCmdTarget::EnableAutomation, 263-266

CCmdTarget::External* methods, 205

CCmdTarget::From!Dispatch, 588, 590

CCmdTarget::Internal* methods, 205

CCmdTarget::OnFinalRelease, 207

CCmdTarget::Member!DFromName, 265

CDataPathProperty, 564, 567-571

CDataPathProperty::OnDataAvailable, 564,
569-571

CDC, 354, 395-398, 423-425

CDC::BitBlt, 423-425

CDC::CreateCompatibleDC, 418, 423-424

CDC::DPtoHIMETRIC, 418

CDC::DrawText, 355, 360

CDC::Ellipse, 397, 400

CDC::ExtTextOut, 397

CDC::FillRect, 355

CDC::GetDeviceCaps, 418-419

CDC::LineTo, 405

CDC::MoveTo, 405

CDC::SelectObject, 397

CDC::SelectStockObject, 397

CDC::SetBkMode, 355

CDC::SetTextAlign, 397

CDC::SetTextColor, 355

CDC::SetWindowOrg, 407

CDialog, 192, 246, 365

CDialog::DoModal, 195

CDialog::OnlnitDialog, 194, 248, 444, 596

CDocTemplate, 85, 91

CDocument, 85-89, 280

CDocument::UpdateAllViews, 285

CF _METAFILEPICT, 427

CFile, 53-54, 570

CFont, 399

CFontHolder, 374

CFontHolder::InitializeFont, 376

CFormView, 84-86, 97, 177, 279

CForm View::OnlnitialUpdate, 90, 99

CFrameWnd, 85, 90

ClmageList, 500

ClmageList::SetBkColor, 502

class identifier (CLSID), 137, 214, 553

Class Wizard, See Visual C++

clipping region, Windows, 402

CListBox, 30

CloseHandle, 532

CLSIDFromProg!D, 139, 192

CMainFrame, 90

CMainFrame::PreCreateWindow, 100

CMetafileDC, 427

CMultiDocTemplate, 91

CObject, 30, 35, 45, 109-111

CObList, 71, 534, 599

CoBuildVersion, 152, 179

COccManager, 434, 443

CoCreateGuid, 138

CoCreatelnstance, 145, 154, 244, 248, 553,
555

CoCreatelnstanceEx, 154

code signing, 563

CODEBASE attribute, 559-562

CoGetC!assObject, 144-145, 153, 176, 182,
210, 268

CoGetClassObjectFromURL, 559-562

Colnitialize, 152, 179, 196

COleControl, 319-322, 346-350

COleControl::AmbientBackColor,

COleControl::AmbientDisplayName, 428,

APPLE 1109 - Page 330

479

COleControl::AmbientFont,

COleControl::AmbientForeColor,

COleControl::AmbientUIDead, 415

COleControl::AmbientUserMode, 415, 539,
611

COleControl::BoundPropertyChanged, 368,
607

COleControl::DoPropExchange, 348, 381-
383, 480-481, 504, 524, 593

COleControl::DoSuperclassPaint, 458-459,
478

COleControl::GetBackColor, 359

COleControl::GetClientSite, 609

COleControl::GetNotSupported, 520, 542

COleControl::GetReadyState, 564

COleControl::GetText, 360

COleControl::InternalSetReadyState, 564

COleControl::InternalGetText, 360, 480

COleControl::lnvalidateControl, 358, 366,
375

ColeControl::IslnvokeAllowed, 613

ColeControl::IsSubclassedControl, 458

COleControl::OnAmbientPropertyChange,
318, 374-375, 413

COleControl::OnCreate, 413

COleControl::OnDraw, 348, 354-355

COleControl::OnDrawMetafile, 426-428

COleControl::OnFreezeEvents, 519, 533-534

COleControl::OnGetDisplayStrings, 597,
601-604

COleControl::OnGetPredefinedStrings, 597,
601-604

COleControl::OnGetPredefinedValue, 597,
601-604

COleControl::OnMapPropertyToPage,
604-606

COleControl::OnResetState, 348, 479-481

COleControl::OnSetClientSite, 519, 539, 611

CO!eControl::OnSetExtent, 416-419, 517,
584

COleControl::OnSetFont, 360-361

COleControl::OnSetObjectRects, 584, 587

COleControl::PreCreateWindow, 457,
461-465, 495-496, 566

COleControl::RecreateControlWindow,
463-465, 505, 539, 611

COleControl::SelectFontObject, 376

COleControl::SelectStockFont, 361

COleControl::SetControlSize, 584-586, 600

COleControl::SetlnitialSize, 354, 418, 584

COleControl::SetNotSupported, 519, 542

COleControl::SetRectlnContainer, 587

COleControl::ThrowError, 519, 540-543

COleControl::TranslateColor, 360, 397

COleControlContainer, 433

COleConh·olSite, 433-434

COleControlModule, 342-346

COleDataTime, 431-432, 442

COleDispatchDriver, 254, 274-279, 439

COleDispatchlmp, 263-265

COleFont, 438

COleObjectFactory, 197, 211-218, 267, 344,
351, 353

COleObjectFactory::Register, 215

COleObjectFactory::RegisterAll, 215, 268

COleObjectFactory::Revoke, 216

COleObjectFactory::RevokeAll, 216

COleObjectFactory::UpdateRegistry, 216

COleObjectFactory::UpdateRegistryAll, 216

COleObjectFactoryEx, 351-353

COleObjectFactoryEx::GetLicenseKey,
352-353

COleObjectFactoryEx::VerifyLicenseKey,
352-353

COleObjectFactoryEx::VerifyUserLicense,
352-353

COlePicture, 438

COlePropertyPage, 319-322, 363-366, 488,
608

COlePropertyPage::DoDataExchange,
365-366, 371, 596

COlePropertyPage::GetObjectArray, 588

COlePropertyPage::OnHelp, 608

COlePropertyPage::SetControlStatus, 606

COlePropertyPage::SetPropText, 589

COleTemplateServer, 267

COie Variant, 229

COLORREF, 360, 397

COM. See Component Object Model, the

COMCAT.H, 391

command messages, 104-105

CommandLinelnfo, 94-95

COMMCTL.H, 496

component,

assemblers, 14

-based development, 1-15

builders, 14

building with C ++, 54-57, 113-114

hardware, xxiii-xxiv

interfaces, 10-11, 114-121

lifetimes, 121

software, xxiii~xxiv

visual vs. non-visual, 223

component categories, 149, 326-333, 343,
386-391

INDEX + 625

component download, 559-562

Component Gallery. See Visual C++,
Component Gallery

Component Object Model, the, 113-62,
187-190

aggregation, 127, 150, 322

and C ++ abstract classes, 115

and C++, 114-117

and C++ class nesting, 133-137, 201-208

and component software, xxiv, 11

and interface implementations, 127-132

and multiple interfaces, 125-137

and Vtables, 114-121

AP!, 151-156

as a binary standard, 7-11, 114, 187

class factories, 143-145, 210

class identifier (CLSID), 137, 214

client/server flow, 156-159

containment, 150

custom interface, 149

distributed (DCOM), 148

dual interface, 271-272, 305

GUID. See globally unique identifier

housings, 146

IID. See interface identifier

interfaces, 114-125

marshaling, 147-148

standard, 223

reference counting, 121-125, 203

standard interfaces, 117

compound documents. See OLE Documents

connectable objects, 315-318

contract, interface, 57

CONTROLINFO, 318

Control Containers, 297

ambient properties, 305, 309-310

extended controls, 322-323, 384

freezing events, 305, 319, 533-535

history, 299-305

interfaces, 298-299

MFC Support. See Microsoft Foundation
Classes

modalities, 297-298

Control, registry entry, 149, 323, 338

control notifications, 102, 461

controlling unknown, 150

ControlWizard, See Visual C ++

CoRegisterClassObject, 152, 215

COSERVERINFO structure, 153-155

CoUninitialize, 152, 180, 196

CPen,398

CPictureHolder, 515-517

APPLE 1109 - Page 331

626 +INDEX

CPropExchange::JsLoading, 480

CREATESTRUCT structure, 458, 462

CreateFile, 512, 528-529

CreateNamedPipe, 512, 531

CreateObject. See Visual Basic statements

CreateURLMoniker, 556

Create Window Ex, 458

CRect, 37, 424

CSingleDocTemplate, 91, 94

CSize, 419

CString, 47-49, 71

CString::AllocSysString, 251

CStringList, 67, 71-76, 592

CStringStack,59, 71-76, 171

CTime,406

CTreeCtrl, 498-509

CTreeCtrl::lnsertltem, 506

CurVer, registry entry, 142

custom controls, xviii

CView, 84, 89, 285-286

CView::GetDocument, 286

CView::OnUpdate, 285

CWinApp, 85, 91-92, 165, 342

CWinApp::AddDocTemplate, 94

CWinApp::Enable3dControls, 93

CWinApp::Exitlnstance, 180, 343

CWinApp::Initlnstance, 92, 166, 179, 215,
218, 267, 342

CWinApp::LoadStdProfileSettings, 93

CWinApp::ProcessShellCommand, 95

CWinApp::Run, 95

CWnd, 30, 101-102, 433-448

CWnd::CreateControl, 433, 443-445

CWnd::GetDlgltem, 108-109

CWnd::GetWindowText, 107-109, 483

CWnd::KillTimer, 380

CWnd::SetFocus, 483

CWnd::SetProperty, 448

CWnd::SendMessage, 467, 498

CWnd::SetTimer, 380

CWnd::SetWindowText, 107, 483

CWnd::WindowProc, 104

D
_DEBUG, 109-110

data path properties, 554, 567-571

DDP functions, 371-372, 492-494, 587, 590

DDP _PostProcessing, 371

DDV _MinMaxlnt, 494

DDX functions, 371-372, 492-494

DEBUG_NEW, 110

debugging

and in-process servers, 185, 391

and MFC, 109-112

ActiveX controls, 391

DECLARE_DISP A TCH_MAP, 258, 263

DECLARE_DYNAMIC macro, 110, 212

DECLARE_DYNCREATE macro, 109-111,
212

DECLARE_INTERFACE_MAP macro, 201

DECLARE_MESSAGE_MAP macro, 103

DECLARE_OLECREATE macro, 213

DECLARE_OLECREATE_EX macro, 365

DECLARE_OLETYPELIB macro, 349-350

DECLARE_PROPPAGEIDS macro, 349

decorating, See C++ mangling

DefWindowProc, 104

DEFINE_GUID macro, 137, 199

delete. See C++ operators

DestroyWindow, 248, 448

Developer Studio, 78

development methodologies, 4-6

device context (DC), Windows, 354

device coordinates, 407

device units, 354

dialog units (DLUs), 490

DIANTZ.EXE, 560

digital signatures, 562-563

DirectX, 113, 189

DisconnectNamedPipe, 532

dispatch map. See Microsoft Foundation
Classes

DispatchMessage, 101

DISPPARAMS, 242, 249

DISP _FUNCTION macro, 263

DISP _PROPERTY macro , 263

DISP _PROPERTY _EX macro, 263

DISPID, 224, 234, 249-251, 309

DISPID_AMBIENT_UIDEAD, 415

DISPID_AMBIENT_USERMODE, 415

DISPID_UNKNOWN, 375

dispinterface, 223

DISPTEST.EXE, 243, 385

Distributed COM, 148

Dl!CanUnloadNow, 155, 167, 343

DllGetClassObject, 155, 166, 176, 182, 210,
343

Dl!Main, 166

DllRegisterServer, 216, 343, 355, 386

DllUnregisterServer, 343, 387

document/ view architecture. See Microsoft

Foundation Classes

Draw Edge, 495

dual interfaces, COM. See Component
Object Model.

E
encapsulation, 19, 31

enumerated properties, 488-490, 521-522,
594-604

embeddable object, 296

EM_GETLIMITTEXT, 461

EM_SETLIMITTEXT, 461, 466

EN_ CHANGE, 461, 469-471

Enable Window, 361

END_INTERFACE_MAP macro, 204

END _INTERF ACE_F ART macro, 202

END_MESSAGE_MAP macro, 103

END_OLEFACTORY macro, 349

ES_AUTOHSCROLL, 463

events. See ActiveX Controls

Expression class

accessing with Visual Basic, 243-245

as a C++ class, 19, 57-76

as a COM object, 163, 191

as an ActiveX control, 455

as an Automation component, 231, 255

as an MFC application, 80, 279-287

expression evaluation

infix vs. postfix, 59

extended controls. See Control Containers

extern "C",8

F
FAILED macro, 162

Feynman, Richard P., 113

flicker-free activation, 302

flicker-free drawing, 302, 419

friend. See C ++ keywords

free, 23

function overloading. See overloading

function overriding. See overriding

G
GD! functions. See CDC

GetLastError, 531

GetMessage, 101

GetScode, 162

GetWindowLong, 463, 505

globally unique identifier (GUID), 137

GUIDGEN.EXE, 138

APPLE 1109 - Page 332

H
has-a relationships. See C ++ class
composition

HIMETRIC units, 303, 417-419, 584-586

HKEY_CLASSES_ROOT, 140, 327

HRESULT, 118, 160-162

HTML, 5, 15, 295, 315, 549-553, 576-580

and ActiveX controls, 551-553

object element, 552, 559, 577

param element, 553

IBindStatusCallback, 556

ICatinformation, 332-333

ICatRegister, 329

ICJassFactory, 143, 166, 183, 197, 207, 306

IClassFactory::Createinstance, 143-145, 183,
207

ICJassFactory::LockServer, 143-145, 167,
207

IClassFactory2, 306, 349-353

IConnectionPoint, 301, 315-317

IConnectionPointContainer, 301, 315-317

IDataObject, 300, 306, 427

!Dispatch, 149, 200, 223-226, 301, 307, 588

and ambient properties, 309

and dual interfaces, 271

and events, 315-318

binding, 222-223, 271-273

MFC implementation, 254-273

non-MFC implementation, 231-243

IDispatch::GetIDsOfNames, 225-226,
236-237, 249, 309, 371

IDispatch::GetTypelnfo, 226, 236

IDispatch::GetTypeinfoCount, 226, 236

IDispatch::Invoke, 224-225, 237-243, 250,
309, 371

IFont,375

!FontHolder, 375

!Moniker, 556

IMPLEMENT_DYNAMIC macro, 110

IMPLEMENT_DYNCREATE macro,
109-111, 214

IMPLEMENT_OLECREATE macro, 212-214

IMPLEMENT_OLECREATE_EX macro,
366, 614

IMPLEMENT_OLETYPELIB macro, 349

in-place activation, 296

in-process server, 146

INF files, 560-561

InitCommonControls, 566

infix, expressions, 57

inheritance and reuse, 2-4, 9, 55

INITGUID.H, 138

InprocServer(32), registry entry, 142, 324

Insertable, registry entry, 142, 149, 324, 338

inside-out object, 296

instance, 20

integrated circuit (IC), xxiii-xxiv

INTERF ACE_F ART macro, 204

interface contract, 57

interface identifier (!ID), 137

interface implementations, 127-132

interface maps, MFC, 201-210

Internet,

and ActiveX controls, xxv, 14-15, 188,
305, 549-582

and MFC, 79, 564

and software development, 1, 14-15

-aware controls, 294, 549-582

Internet Explorer, 13, 295, 305, 509, 549,
563, 581

Internet Search Path, 561-562

IObjectSafety, 558

IOleCache, 307

IOleClientSite, 433, 609

IOleContainer, 433

!OleControl, 300, 318, 533

IOJelnPlaceActiveObject, 300, 303, 307

IOJelnPlaceFrame, 433

IOlelnPlaceObject, 300, 306

IOlelnPlaceSite, 302, 433

IOlelnPlaceSiteEx, 302

!OlelnPlaceSiteWindowless, 303

!OleltemContainer, 609

!OleObject, 300, 306, 610

IOJeObject::GetMiscStatus, 350, 585

!OleObject::GetExtent, 587

!Ole View, 302, 306, 326

IPerPropertyBrowsing, 301, 597-607

IPersistPropertyBag, 303, 314, 553

!PersistStorage, 300, 314

!PersistStream, 300, 314

IPersistStreamlnit, 300, 314

!Pointerlnactive, 302, 340

!PropertyBag, 314

IPropertyNotifySink, 368, 376

!PropertyPage::SetObjects, 588

!PropertyPage2, 301, 313

!PropertyPageSite, 313

!ProvideCJasslnfo, 300, 317, 350

IQuickActivate, 303

INDEX

is-a relationships, 30, 45, 71-73

IsEqualCLSID, 139

IsEqualGUID, 139

IsEqua!IID, 139

627

!SimpleFrameSite, 319, 332

!SpecifyPropertyPages, 301, 312

!Unknown, 117-137, 150-151, 200

!Unknown::Querylnterface, 117-125

!Unknown::AddRef, 117-125

!Unknown::Release, 117-125

IViewObject::Draw, 587

IViewObject2, 300

IViewObjectEx, 302, 303

J
Java, 1-6, 15, 43, 550

l
local servers, 146-148, 266

Loca!Server32, registry entry, 142

LRPC, 148

M
Macintosh, 4, 79

malloc,23

mangling. See C ++ mangling

mapping modes, Windows, 406-407

marshaling. See Component Object Model,
the

memory management,

in C++, 20-25

metafiles, 395, 425-428

metafiles, enhanced, 427

METHOD_MANAGE_STA TE macro, 346

METHOD _PROLOGUE macro, 135-137,
208

MFC - See Microsoft Foundation Class
Libraries

Microsoft Foundation Class Libraries, xxv, 6

ActiveX container support, 433-449

and ActiveX, 187-191

and ActiveX controls, 319-322, 433

and ASSERTs, 109

and class nesting, 125, 133-137, 202

and COM-based interfaces, 125, 187-191

and !Dispatch, 254-255, 266-268

and inheritance, 30, 45, 125

and OLE, 187-191

and portability, 4, 79

and Visual C++, 78

application class hierarchy, 31

APPLE 1109 - Page 333

628 +INDEX

as an application framework, 78-79

classes. See "name" of class

debugging techniques, 24, 109-111

dispatch maps, 255, 262-266

document/view architecture, 81, 86-91,
280-287

drawing classes, 395-400

interface maps, 201-210

message maps, 100-104

window message flow, 105

MIDL.EXE, 150

MiscStatus, registry entry, 324-325

MkParseDisplayNameEx, 556

MKTYPLIB.EXE, 150

MM_ TEXT, mapping mode, 407

monikers, 555

asynchronous, 549, 555

URL,556

multiple inheritance

and C++, See C++ inheritance

and COM, 126-127

andMFC,45

multiple scoping operator, C++, 135

MULTI_QI structure, 154

N
named pipes, Win32, 511-513

new. See C++ operators

Notinsertable, registry entry, 142

0
object. See software object

object HTML element. See HTML.

Object Description Language (ODL),
149-150, 268-271, 430, 595, 607, 611

Object Linking and Embedding See OLE

object-oriented languages, xxiv, 5-6

object-oriented systems, 7

Objective-C, 44

OCM_COMMAND, 470-472

OCM_CTLCOLOR, 473-476

OCM_CTLCOLORBTN, 607

OCX. See ActiveX Controls

ODL. See Object Description Language

offsetof, C macro, 135-137

OLE, 1, 188

compared to ActiveX, l, 12, 113,
187-191

compared to COM, 113, 187-191

Compound Documents. See OLE
Documents

OLE Automation. See Automation

OLE Control specifications, 78, 299-302, 305

OLE Documents, 11, 188, 291-299, 306

OLE_ COLOR, 360, 397

OLE2VER.H, 179

OLEVIEW.EXE, 142, 176

Olelnitialize, 196

OLEMISC bits, 306

OLEMISC_ACTIV A TEWHENVISIBLE,
338, 412, 414

OLEMISC_ACTSLIKEBUTTON, 318

OLEMISC_INVISIBLEATRUNTIME, 514

OLEMISC_RECOMPOSEONRESIZE, 585

OLEMJSC_SIMPLEFRAME, 319, 339

OnReadyStateChange, 556

out-of-process server. See local server

overloading

C++ constructors, 37

C++ functions, 36-38

C++ operators, 51

overriding

C++ functions, 34-36

outside-in object, 296

p
param HTML element. See HTML.

PeekNamedPipe, 536-539

pipes, Win32. See named pipes.

pixels. See device units

polymorphism, xxiv, 38, 115

postfix, expressions, 59

program ID (Prog!D), 139, 142, 214, 447

Prog!D, registry entry, 142, 325

Prog!DFromCLSID, 139

property pages. See ActiveX Controls,
property pages.

pThis pointer, 136-137

PURE macro, 160

pure virtual functions. See C ++ virtual
functions

PX_* functions, 382-383

Q
Querylnterface. See !Unknown

R
rcBounds, 354, 402, 420

rcinvalid, 420, 424-425

ReadFile, 538-539

Release. See !Unknown::Release

reference counting. See Component Object
Model, the

reflector window, 469

REGEDIT.EXE, 140-142, 175

REGSVR32.EXE, 217, 355, 612

registry, the Windows, 139-142, 355

remove procedure calls (RPC), 139, 147

remote server, 146-148

ResultFromScode, 162

reuse, 2-4, 9-10

and is-a relationships, 45, 55, 71-73

and portability, 4

types of, 3

via C++ classes, 54-56

via inheritance, 3

RGB macro, 398

Rich Edit control, 453, 565-567

RICHEDIT.H, 496

RTF control. See Rich Edit control.

RTTI. See runtime type identification

run-time type identification, 110, 212-213

RUNTIME_ CLASS macro, 94, 213

s
SafeArray, 230, 608-609

SCODE. See HRESULT

self registration, 304

serialization. See ActiveX Controls

SetWindowLong, 454, 463, 504

SetWindowPos, 584

SIZEL structure, 416, 585

Smalltalk, 3-6, 43-44, 49

software component (See also component)

and reuse, 3

defined, 9-10

software object, 9

and C++, 18, 114

SOM. See System Object Model

static members. See C++ classes

STDMETHOD macro, 159-161

STDMETHODIMPmacro, 159-161

subclassing, Windows controls, 339,
453-455

problems with, 478

Windows 95, 496-509

SUCCEEDED macro, 162

SysAllocString, 175

SysFreeString, 185

System Object Model, 3, 7

SysTreeView32, 498

T
T2COLE macro, 195, 589

T20LE macro, 171, 248

APPLE 1109 - Page 334

Test Container, the, 356, 363, 428

this. See C++ keywords

Tokenizer class, 67-71, 171

Too!BarBitrnap32, registry entry, 325

TRACE macro, 109

Tree View control, 497-509

TV _INSERTSTRUCT, 506

TVS_ styles, 503

type information. See Object Description
Language

TypeLib, registry entry, 326

type library. See Object Description
Language

u
VI-active, 295, 356

Unicode, 171-176, 237, 589

UNIX,4,79

universally unique identifier (UUID), 137

USES_ CONVERSION macro, 175, 248, 589

URL. See uniform resource locator.

uniform resource locator (URL), 549

UUIDGEN.EXE, 138

v
VARIANT, 228-230, 240, 252

VariantChangeType, 241-242

Variantl:nit, 240, 251-252

VBScript, 5, 14-15, 305, 551, 576-581

VBX. See Visual Basic custom controls

Verisign, 563

Version, registry entry, 326

virtual functions. See C ++ virtual functions

Visual Basic, 139, 146

as a control container, xxiv,

as an automation controller, 222,
243-244, 288

as glue, xxiv

statements and keywords

CreateObject, 139, 227, 244, 289,

558, 612-613

Declare, 8

Me,49

Nothing, 244

testing ActiveX Controls in, 383-386

Visual Basic custom controls (VBX) , xxiv, 5

Visual C++, xxv, 77-78

a history, 320-322

App Wizard, 80-87

building a Dialog-based EXE, 245,
434

building a DLL, 163-164, 231-232

building an MDI EXE, 255-256

building an SDI EXE, 80-84, 177,
273-274

generated files, 87

Class Wizard, 99-104

and Automation, 254-262, 273-279,
283

and message maps, 100-104

Component Gallery, 434-441

Developer Studio, 78

editing resources, 97-99, 279-280, 357,
440, 491

ControlWizard, 320, 336-342

generated files, 342

options, 336-341

visual editing, 292, 296

visual programming, 5

Vtables,

and message maps, 101-102

and multiple COM interfaces, 125-137

in Automation, 223-224

in C++, 41-43

use in COM, 114-121

w
Web, The. See Internet

Win16 vs Win32

ActiveX Control development, 5, 320-
322

INDEX + 629

and Visual C++, 77, 320-322

development, 77, 320-322

DLLs, 166-167

EM_LIMITTEXT, 467

interoperability using COM, 146-148

WM_CTLCOLOR, 461, 476-477

windowless controls, 302

window messages, 102

Windows controls,

EDIT, 460-461

standard, 456

Windows 95,497

Windows Registry. See registry

window style bits, 461-463

WINERROR.H, 162, 246

WinHelp, 608

WinMain,92

Win VerifyTrust, 559

WriteFile, 512, 530-531

WM_ CHAR, 482-483

WM_COMMAND, 102

WM_ CREATE, 413, 465-466, 499, 571

WM_CTLCOLOR, 469-477

WM_DESTROY, 414

WM_INITDIALOG, 193, 444

WM_KILLFOCUS, 482

WM_LBUTTONDOWN, 101-104

WM_P AINT, 102, 319, 459

WM_ TIMER, 380-381, 412, 535, 538

WS_BORDER, 461, 481

WS_EX_CL!ENTEDGE, 359, 495

APPLE 1109 - Page 335

About the CD-ROM

With the ever increasing pace of change in the software development industry, there comes the difficulty of
providing samples program that are current as of the latest release of the compiler, SDK, and so on. Luckily,
we now have the Web to make distribution of software rather easy. Please check out my Web site for the
most recent samples at:

http:/ /www.WidgetWare.com

If you need assistance with the samples included on the CD-ROM, or have other questions, check out the
ActiveX control FAQ that I maintain at the URL above. You can contact me with questions and comments
at: tom@WidgetWare.com. I'll do my best to respond promptly.

Tom Armstrong,

November, 1996

APPLE 1109 - Page 336

DESIGNING AND USING
ACT/VEX CONTROLS

> Master component
automation to transform
any COM/OLE program
into a reusable component
in your project.

> Learn the MFC application
framework to eliminate
the need to build a
foundation for your
projects from scratch

> See how the C++ language
and the Visual C++
development environment
can be used to effectively
build software components

> Use the COM to enable
robust component
creation at a system level

> Wrap C++ classes with
Automation

> Explore the architecture
ofa control

> Create each of the control
types for desktop and
Internet applications

> Access FAQs for many
automation and control
development problems

ISBN 1-55851-503-8
us $39.95

CAN $55.95

,,.. 'iii iiiii1i iil\i illlll I II 11111 I II I I II I Ill
XOOOZYBPDD
DESIGNING AND USING ACT\\
Used, Very Good
502 UTR1 992

Praise for Tom Armstrong's Designing and Using OLE Custom ca
I'm reading your book from cover to cover currently and I hav
to say it is exactly what I've been looking for. .. I will be
recommending it to all of my colleagues as *the* book to getfi
OLE control development, especially if you want to do it via
MFC. I think that chapters 4 and 5 are worth the price of the
book alone. Congrats on a great book. Jerrl Z

Microsoft created ActiveX controls as reusable components tha
can bring Web pages and static programs to life by fusing new
functions into existing projects. Designing and Using ActiveX
Controls teaches you all about component-based development
using Visual C++, the MFC libraries, and the Component Obje
Model.

Learn to build a variety of components from the ground up: a
simple control, a graphical clock, subclassing standard Windows
controls, new Windows 95 common controls, non-visual control
encapsulating the Win32 Named Pipes API, and Internet-Awar
controls.

The companion CD-ROM includes the source code for all the
example programs in the book, projects and files for 16-bit Activ
controls, links to ActiveX resources on the Web, and several oth
useful reusable controls that demonstrate more advanced concep

TOM ARMSTRONG is a software developer and project leader ti
DST Systems' Advanced Technologies Group, where he
incorporates ActiveX controls into many programs. He is the
author of the acclaimed Designing and Using OLE Custom
Controls (M&T Books, 1995), which served as the foundation ti
this book, and his Web site (www.WidgetWare.com) is a popul
resource about OLE and ActiveX development and Visual C+

Level M&T Books, A Division of MIS: Press, Inc.
A Subsidiary of Henry Holt and Company, Inc.
115 West 18th Street M&f
New York, New York 10011 ~
http://www.mandt.com -

Cover art © Westlight
Cover desig11 by Gary Szczeci11a

Intermediate/ Advanced

Programming

Windows 95/NT

APPLE 1109 - Page 337

