
ESIGNING AND SING

ONTROLS -

!om Ar_mst~ong • Implement ActiveX controls in complex program development

• Build your own controls using Microsoft's COM and SDK's

• Make your controls Internet-aware for active Web sites
APPLE 1108 - Page 1

• SI

•
I

•
I

st

= = =
:::-:::
C.r.>

HENRY HOLT & COMPANY, INC.
NEW YORK

• SI

Is
g

APPLE 1108 - Page 2

M&T Books
A Division of MIS:Press, Inc.
A Subsidiary of Henry Holt and Company, Inc.
115 West 18th Street
New York, New York 10011
http:/ /www.mispress.com

Copyright© 1997 by M&T Books

Printed in the United States of America

All rights reserved. No part of this book may be reproduced or transmitted in any form or by
any means, electronic or mechanical, including photocopying, recording, or by any information
storage and retrieval system, without prior written permission from the Publisher. Contact the
Publisher for information on foreign rights.

Limits of Liability and Disclaimer of Warranty

The Author and Publisher of this book have used their best efforts in preparing the book and
the programs contained in it. These efforts include the development, research, and testing of the
theories and programs to determine their effectiveness.

The Author and Publisher make no warranty of any kind, expressed or implied, with regard to
these programs or the documentation contained in this book. The Author and Publisher shall
not be liable in any event for incidental or consequential damages in connection with, or arising
out of, the furnishing, performance, or use of these programs.

All products, names and services are trademarks or registered trademarks of their respective
companies.

First Edition-1997

ISBN 1-55851-503-8

MIS:Press and M&T Books are available at special discounts for bulk purchases for sales pro
motions, premiums, and fundraising. Special editions or book excerpts can also be created to
specification.

For details contact: Special Sales Director
MIS:Press and M&T Books

10 9 8 7 6 5 4 3 2 1

Subsidiaries of Henry Holt and Company, Inc.
115West18th Street
New York, New York 10011

Associate Publisher: Paul Farrell

Executive Editor: Cary Sullivan
Editor: Andrew Neusner

Production Editor: Anthony Washington
Technical Editor: Mark Bramer

Copy Edit Manager: Shari Chappell Copy Editor: Betsy Hardinger

APPLE 1108 - Page 3

Chapter 1: Component-Based Development, the Web, and ActiveX •••••••••• 1

Chapter 2: Designing Reusable Components with C++ •••••••••••••••••• 17

Chapter 3: Visual C++ and the MFC Libraries •••••••••••••••••••••••• • 77

Chapter 4: Microsoft's Component Obied Model ••••••••••••••••••••• 113

Chapter 5: COM, OLE, AdiveX, and the MFC Libraries •••••••••••••••••• 187

Chapter 6: Automation ••.••.•••••••••..••••.•••••••••••.•••••• . 221

Chapter 7: ActiveX Controls •••••••••••••••••••••••••••••••••••••• 291

Chapter 8: A Simple Control ••••.••.••.••••.••••.•.•.••.••••••.• • 335

Chapter 9: Graphical Controls ••••••••••••.••••••••••••••••••••••• 393

Chapter 10: Subclassing Windows Controls •••••••••••••••••••••••••• 453

Chapter 11 : Nonvisual Controls ••••••••••••••••••••••••••••••••••• 511

Chapter 12: Internet-Aware Controls ••••••••••••••••••••••••••••••• 549

Chapter 13: AdiveX Control Frequently Asked Questions ••••••••••••••• 583

Appendix A: CD-ROM Instructions •••••••••••••••••••••••••••••••••• 615

Appendix B: Bibliography ••••••••••••••••••••••••••••••••••••••• 619

APPLE 1108 - Page 4

To Nicole, Jessica, and Eric. Your love and support empower me to achieve things I never dreamed possi
ble.

APPLE 1108 - Page 5

Preface . • . • • • • • . • . • • • • • • • • • • • • • • • • • • . • • • . . • • • • . . • • • • • • . . • • • • • .)(Xi
Introduction •••.••••.••••••.•••••••••••.••.•.••.•..•••••••..• • xxiii

Chapter 1: Component-Based Development, the Web, and AdiveX •••••••••• 1

The Changing Development Landscape .. 2

Reuse Is What Counts ... 2

Types of Reuse . 3

Reuse and Portability .. 4
New Development Methodologies .. 4

Visual Programming .. 5

Object-Oriented Languages ... 5

C++ .. 6
Object-Oriented Systems ... 7

A Binary Standard ... 7

Objects Versus Components .. 9
COM: The Facilitator ... 11

A Brief Overview of OLE and ActiveX ... 11

Automation and ActiveX Controls .. 12
Monolithic versus Component-Based Applications 12

What's in It for Me (the Developer)? .. 13

Buy versus Build (or "Not Invented Here") .. 13

Component Builders versus Component Assemblers 14
Component-Based Development and the Web 14

Summary ... 15

APPLE 1108 - Page 6

vi + Contents

Chapter 2: Designing Reusable Components with C++ •••••••••••••••••• 17

C++, the Language .. 18

Classes (Encapsulation) ... 18
Constructors . 20

Th;i new and delete Operators .. 23

Destructors . 24
Inheritance .. 26

Public, Protected, and Private ... 31

Function Overriding ... 34
Function Overloading .. 36

Virtual Functions .. 38

Pure Virtual Functions and Abstract Classes 40
Understanding Vtables ... 41

Multiple Inheritance .. 44

Class Composition ... 45
The const Keyword .. 47

References . 47

The this Keyword .. 49
Copy Constructors . 50

Overloading Operators ... 51

Static Class Members ... 51
The Problem ... 54

Solving the Problem with a Reusable Class 54

Interface versus Implementation ... 56
The Expression Class Implementation ... 57

Infix and Postfix Expressions .. 59

A Tokenizer Class ... 67
A Stack Class .. 71

Summary ... 76

Chapter 3: Visual C++ and the MFC Libraries •••••••••••••••••••••••• • 77

Win 16 versus Win32 Development77

Visual C++ .. 78
Application Frameworks .. 78

APPLE 1108 - Page 7

Contents + vii

The Microsoft Foundation Class Libraries .. 79

An MFC Application that Evaluates Expressions 80
Using AppWizard ... 80

MFC Application Class Hierarchy .. 85

The Document/View Architecture .. 86
AppWizard-Generated Files ... 87

(Document .. 87

CView ... 89

CFrameWnd ... 90

CDoc Template ... 91

CWinApp ... 91
Editing and Adding Resources .. 97

Class Wizard ... 99

Message Maps ... '. .. 1 00

Message Types .. 1 02
Window Messages and Control Notifications 102

Command Messages .. 1 04
Adding the Expression Class .. 105

MFC Debugging Techniques .. 109

Summary .. 112

Chapter 4: Microsoft's Component Object Model ••••••••••••••••••••• 113

A Binary Standard ... 114

Component Interfaces ... 114
Standard COM Interfaces .. 117

Component Lifetimes .. 121

Multiple Interfaces .. 1 25

Multiple Inheritance ... 126
Interface Implementations .. 127

C++ Class Nesting ... 133

GUIDs .. 137

The Windows Registry ... 139

Class Factories .. 143
Where Do Components Live? .. 146

APPLE 1108 - Page 8

viii + Contents

Marshaling ... 147

Distributed COM ... 148
Custom COM Interfaces .. 149

Describing a Component ... 149

Component Categories .. 149

Type Information ... 150

COM Containment and Aggregation .. 150

The COM API ... 151
CoBuildVersion (16-bit Only) .. 152

Colnitialize ... 152

CoUninitialize ... 152

CoRegisterClassObject .. 152
CoGetClassObject ... 153

CoCreatelnstance and CoCreatelnstanceEx 154

DllCanUnloadNow ... 155

DllGetClassObject .. 1 55
Client/Server Flow ... 156

COM C++ Macros, BSTRs, and So On ... 159

BSTR ... 161

HRESULT and SCODE ... 161

An Example .. 163
The Expression Class as a COM Component 163

Register the Component .. 175
A Quick Test of the In-Process Server .. 17 6

A COM Client Application .. 177

Debugging the Client Application ... 185

Summary .. 185

Chapter 5: COM, OLE, Active.X, and the MFC Libraries •••••••••••••••••• 187

What Is COM? .. 187

What Is OLE? ... 188

What Is ActiveX? ... 188

MFC and ActiveX .. 189
Interfaces and Grouped Functionality .. 190

APPLE 1108 - Page 9

Contents + ix

Converting the Expression Examples to Use MFC 191

Converting the Chapter 4 Client Application 192

Initializing the ActiveX Environment ... 196

Converting the Chapter 4 Server Application 197

CCmdT arget .. 200

Class Factories .. 21 0

COleObjectFactory ... 211

COleObjectFactory::Register .. 215

COleObjectFactory::RegisterAll .. 215
COleObjectFactory::Revoke and RevokeAll 216

COleObjectFactory::UpdateRegistry and UpdateRegistryAll 216

MFC COM Helper Functions .. 218

A Recap of the Example Applications .. 219
Summary ... 220

Chapter 6: Automation .•••.••••.•.•.••••.•.•..•.••••.•••.••.•• • 221

What Is ActiveX Automation? .. 221

Automation Controllers .. 222

Visual versus Nonvisual Components .. 223
The I Dispatch Interface ... 223

Invoke .. 224

GetlDsOfNames ... 225
GetT ypelnfo .. 226

GetT ypelnfoCount .. 226
Automation Properties and Methods ... 226

Automation Data Types .. 228

The VARIANT Data Type ... 228
The Safe Array .. 230

A Native !Dispatch-Based Component 230
The Expression Class as an ActiveX Component 231

Building the Visual C++ Project .. 231
Updating SERVER.Hand SERVER.CPP 232

Modifying EXPSVR.H and EXPSVR.CPP 233

Using Visual Basic as an Automation Controller 243

APPLE 1108 - Page 10

x. +Contents

A Non-MFC Automation Controller ... 245

MFC and I Dispatch ... 254
An Example MFC-Based Automation Server 255
Wrapping the Expression Class .. 256

MFC' s Dispatch Macros .. 262
Local Server Differences .. 266

Type Information ... 268
Dual Interfaces .. 271

Late Binding .. 272

ID Binding ... 272
Early Binding ... 273

A Visual C++ Automation Controller .. 273
COleDispatchDriver .. 276

Automating an MFC Application ... 279

Standard Application Properties .. 287

Driving the Autosvr Example .. 288

Summary .. 289

Chapter 7: Ac:tiveX Controls •••••••••••••••••••••••••••••••••••••• 291

OLE's Compound Document Architecture 291
Compound Document Containers and Embedded Servers 292

ActiveX Controls ... 293

Types of ActiveX Controls ... 294

ActiveX Controls as Software Components 294
Some Terminology ... 295

Ul-Active Object ... 295

Active Object ... 295
Embeddable Object .. 296

Passive Object .. 296

Visual Editing and In-Place Activation 296

Outside-In Object .. 296

Inside-Out Object .. 296

ActiveX Control Containers ... 297
Container Modalities .. 297

APPLE 1108 - Page 11

Contents -+ xi

Control and Container Interfaces ... 298

ActiveX Controls and Containers: A History 299

The OLE Controls 94 Specification .. 300

OLE Controls 96 Specification ... 30 l

Control and Container Guidelines Version 2.0 304
ActiveX Controls for the Internet .. 305

ActiveX Control Functional Categories ... 305

Standard COM Object Interfaces ... 306
Compound Document Interfaces .. 306

Automation Support .. 307

Properties .. 307
Standard and Stock Properties ... 307

Ambient Properties ... 308

Control Methods ... 31 0

Properly Pages . 311
ISpecifyProperlyPages ... 312

IProperlyPageSite .. 313

IProperlyPage2 .. 313

Properly Persistence ... 314

Connectable Objects and Control Events .. 315

Standard Events ... 317
Custom Events . 31 8

Keystroke Handling ... 318

Control Containment .. 319

MFC and ActiveX Controls .. 319

Visual C++ and ActiveX Control Support 320
Visual C++ Version 2.0 (MFC 3.0) .. 320

Visual C++ Version 2.1 (MFC 3.1) .. 321

Visual C++ Version 2.2 (MFC 3.2) .. 321
Visual C++ Version 4.0 (MFC 4.0) .. 321

Visual C++ Version 4.1 (MFC 4.1) .. 321

Visual C++ Version 4.2 (MFC 4.2) .. 322

Win32 versus Win 16 Control Development 322

Extended Controls .. 322

APPLE 1108 - Page 12

xii + Contents

Control-Specific Registry Entries .. 323
Control .. 323

lnprocServer32 .. 324
lnsertable .. 324

MiscStatus ... 324
ProglD .. 325

ToolbarBitmap32 .. 325

Typelib ... 326
Version ... 326

Component Categories .. 326

Why Component Categories? ... 326
The CATID ... 327

Categorizing Your Controls ... 328
The Component Categories Manager .. 329

ICatRegister .. 329

ICatlnformation .. 332
Summary .. 333

Chapter 8: A Simple Control ••.•.•••••..••.••.••••••.•••.••••••• • 335

Our First Control ... 335

ControlWizard .. 336

Activate When Visible ... 338
Invisible at Runtime ... 338

Available in "Insert Object" Dialog ... 338

Has an "About" Box .. 339
Acts as Simple Frame Control ... 339

Which Window Class, If Any, Should This Control Subclass? 339

Advanced ... 339
Edit Names... . .. 340

ControlWizard-Generated Files .. 342

COleControlModule .. 342
AFX_MANAGE_STATE .. 346

COleControl .. 346

Control Licensing ... 350

APPLE 1108 - Page 13

Contents + xiii

COleObjectfactoryEx ... 351
Drawing the Control .. 354

Registering the Control .. 355

Testing the Control .. 356
Modifying the Default Toolbar Bitmap .. 357

Adding Stock Properties .. 357

Appearance .. 359
BackColor ... 359

ForeColor .. 360

Caption or Text .. 360

BorderStyle ... 360

Font .. 361

Hwnd ... 361
Enabled .. 361

Testing Stock Properties in the Test Container 363

COlePropertyPage ... 363

Modifying the Custom Property Page .. 366
Using Stock Property Pages ... 372

Using Ambient Properties ... 373

CFontHolder .. 375

Testing the Ambient Property Changes ... 376
Adding a Stock Event ... 377

Adding the Stock Methods .. 379

Adding a Custom Method .. 379

Adding a Custom Event .. 380

Serializing the Properties of a Control .. 381

Testing the Final Control in a Real Container 383

Adding Component Category Support ... 386
Debugging the Control .. 391

Summary .. 391

Chapter 9: Graphical Controls •••••••••••••••••••••••••••••••••••• 393

A Clock Control ... 393

MFC' s Drawing Classes .. 395

APPLE 1108 - Page 14

xiv + Contents

The CDC Class .. 395
The CBrush Class .. 398

The CPen Class .. 398

The CFont Class ... 399
The CBitmap Class ... 399

Drawing the Clock .. 400
Drawing the Tick Marks or Calculating the Tick Mark Points 400

rcBounds Upper Left Isn't at (0, O) .. 402

Drawing the Clock Hands .. 402
Drawing the Clock's Tick Marks and Hands 405

Getting the Current Time ... 406

Mapping Modes ... 406
The OnDraw Source .. 410

Redrawing the Clock Every Second ... 412
AmbientUIDead ... 415

Testing the Clock ... 415

Restricting the Size or Shape of the Control 416
Calculating HIMETRIC Units ... 417

Eliminating Control Flicker .. 419

rclnvalid ... 424
Metafiles ... 425

OnDrawMetafile ... 426

Metafile Restrictions ... 426
Win32 Enhanced Metafiles ... 427

Testing the Metafile ... 428

Drawing the Control in Design Mode .. 428
Hiding Properties .. 430

The SecondChange Event .. 431

The Date Property . 431
COleDateTime .. 431

Property Pages .. 432

MFC Control Container Support .. 433
The CWnd Class ... 433

An Example .. 434

APPLE 1108 - Page 15

Contents -+ xv

Events .. 441
Dynamic Creation .. 443

Summary .. 449

Chapter 10: Subdassing Windows Controls •••••••••••••••••••••••••• 453

Subclassing a Windows Control .. 453

The Expression Class Again ... 455
Creating the EEdit Project ... 455

Code Added by ControlWizard .. 457
The Windows Edit Control .. 460

Window Style Bits .. 461

Changing a Window's Style Bits before Window Creation 462

Changing a Window's Style Bits at Run Time 463
OleControl:: RecreateControlWindow .. 463

Modifying Control Behavior with Messages 466

Added Expression Capabilities with ActiveX Controls 468

Adding the Stock Events .. 468

Reflected Window Messages .. 468
Handling Reflected Messages .. 470

Processing a Control's Notification Messages 471

Setting the Colors of a Subdassed Control 473

WM_CTLCOLOR and Win32 ... 476

Some Problems with Control Subclassing 478
Setting Default Values for Your Control's States 480

In the Control's Constructor ... 480

In the Control's DoPropertyExchange Method 480

In the Control's OnResetState Method .. 481
Adding the Expression Functionality ... 482

How to Handle an Invalid Entry Condition 484

Enumerating Property Values .. 488

Property Pages Revisited ... 490
Using the Control .. 494

Drawing Your Controls the 3-D Windows 95 Way 495

Subdassing Windows 95 Common Controls 496

APPLE 1108 - Page 16

xvi + Contents

Subclassing the Tree View Control .. 497

Using the MFC Control Classes .. 498

The Properly Page .. 509

Summary .. 510

Chapter 11: Nonvisual Controls ••••••••••••••••••••••••••••••••••• 511

Goals of Nonvisual Controls .. 511

A Win32 Pipe Control ... 511

Named Pipes ... 512

Message Types .. 512

Asynchronous versus Synchronous 1/0 512

Pipe Names .. 513

Creating the Pipe Control Project ... 514

Drawing the Control during the Design Phase 514

CPictureHolder .. 516

OnSetExtent .. 517

Adding the Pipe Functionality .. 517

Adding the Properties ... 519

ErrorMsg .. 519

PipeName ... 521

Pipe Type .. 521

Adding the Pipe Methods ... 525

Create .. 525

Destroy .. 527

Connect ... 527

Disconnect ... 529

Write ... 530

Helper Methods ... 531

Adding the Supporting Events ... 532

MessageReceived .. 533

PipeError .. 533

Freezing Events .. 533

Using a Timer to Check the Pipe .. 535

Invisible Controls That Require a Window 539

APPLE 1108 - Page 17

Contents + xvii

Handling Errors in Controls ... 540

Run-Time-Only Properties .. 542

Design-Time-Only Properties .. 543

Using the Control : 543

Summary .. 547

Chapter 12: Internet-Aware Controls •.••••.•••••••••••••••••••••••• 549

What Are Internet-Aware Controls? ... 549

Web Terminology .. 550

HTML ... 550
VBScript ... 551

URL .. 552

Embedding Controls in HTML-Based Documents 552

OLE Controls/COM Objects for the Internet : ... 552
The Object Element ... 552

Persistent Control Data .. 553

Data Path Properties .. 554
Monikers .. 555

Asynchronous Monikers ... 555

URL Monikers ... 556
The ReadyState Property and the OnReadyStateChange Event 556

Component Categories .. 557
CATID_PersistsTo* .. 557

CATID _RequiresDataPathHost ... 557

CATID_lnternetAware ... 558
CATID_SafeForScripting ... 558

CATID_SafeForlnitializing .. 558
Component Download ... 559

A Single Portable Executable .. 559

A CAB File ... 560
A Stand-Alone INF File .. 561

Internet Search Path .. 561
ActiveX Controls and Security ... 562

Digital Signatures .. 562

APPLE 1108 - Page 18

xviii + Contents

Code Signing ... 563

Internet Explorer Security Levels .. 563

Obtaining a Certificate .. 563

MFC Support for Internet-Aware Controls 564

ReadyState Support ... 564

CDataPathProperty ... 564

An Example Control .. 565

Create the Async Project ... 565

The RichEdit Control .. 565

Implementing a Data Path Property ... 567

Drawing the Control .. 572

More Component Categories .. 573

Testing the Control .. 576

ActiveX Control Pad .. 57 6

The ActiveX Control Framework .. 581

Summary .. 581

Chapter 13: AdiveX Control Frequently Asked Questions ••••••••••••••• 583

The Sample Control ... 583

More Answers ... 614

Appendix A: CD-ROM Instructions •••••••••••••••••••••••••••••••••• 615
Appendix B: Bibliography ••••••••••...••.•.••••.•.••• o •• o •••••• e619
Index 623

APPLE 1108 - Page 19

Is
When the M&T gang decided that a new edition of Designing and Using OLE Custom Controls would be a
good idea, I jumped at the chance. I said to myself, "a second edition will be easy." Well, it wasn't. In many
ways, writing a second edition is harder than writing the first. With the software development industry
changing so rapidly, second editions are nearly total rewrites, and rewriting is harder than just writing, at
least for me. It was an arduous process, and I couldn't have done it without a lot of help. Thanks to my edi
tor, Andy Neusner, for keeping me on schedule but being flexible when emergencies came up. Thanks to
Anthony Washington for laying out these pages, and to Betsy Hardinger, who did a great job of transform
ing my prose into something a real writer would produce.

I'm most thankful for my wife, Nicole. She again allowed me to spend part (actually most) of my
evenings writing. She's just about finished with dental school, so her evenings are busy, too. Thanks also to
my children, Jessica and Eric, who, when I slipped into a TV-zone and spent too much time on the couch,
reminded me to get to work on the book. I love you all dearly.

Thanks to my technical editor, Mark Bramer. Mark and I go way back. All the way back to our first job
together when I interviewed him and didn't want to hire him. What a mistake. Smarter heads prevailed and
Mark and I have been working together ever since. Mark is a talented developer, editor, and writer. One of
these days, Mark, we'll co-author a book.

Thanks to Marc Ritterbusch, who has finally moved over to the Windows development side of our
group (better late than never!), for designing the icons for the Chapter 10 tree view example. One of these
days, Marc, you're going to catch something when you go fishing.

Thanks to Richard "Doogie" Clark. Doogie read through each chapter and provided a lot of valuable
feedback. In particular, he kept me honest when I started getting lazy. Thanks also to Bruce Allen. Bruce, I'm
going to need your help on my next book now that you're an expert on Internet Explorer and connection
points. Don't forget.

Thanks to the students who helped work out some of the presentation bugs in the examples. Thanks to
the members of the AWD development team, Chuck Reeves and Mark Clobes in particular, who spent the
week of October 21 learning about COM, OLE, and ActiveX controls. Thanks also to Dan Weiss, President of
Step 1 Training, where I teach an occasional ActiveX/MFC class.

APPLE 1108 - Page 20

xx ..

Thanks to all the readers of the first edition, many of whom have provided valuable feedback that has
been incorporated into this edition. Specifically, thanks to Stuart Bessler, John Wood, Rick Anderson, and
Bob Wilkins. Bob provided a great example of using ActiveX controls within another ActiveX control (it's
included on the CD-ROM).

I have to first thank my editor, Judy Brief, who took a chance on a first-time writer by responding to my pro
posal letter in a record three business hours. Thanks to the whole team at M&T Books: Stephanie Doyle who
designed these pages (and spent her weekends doing it) and Karen Tongish who transformed my doggerel
into something readable. Thanks also to my technical editor, John Elsbree of Microsoft.

I am thankful for the love and understanding provided by my beautiful wife, Nicole, and my wonder
ful children, Jessica and Eric. They endured my absence on the weekends, in the evenings, and even on the
summer vacation while I pounded away on these pages. I promise to love and support each of them in
whatever they choose to pursue.

To the members of the EnCorr development team: To Rob Alumbaugh, a brilliant young developer
who reviewed some of the chapters and kept me from getting too "low-level." Thanks Rob. Thanks to Mark
Bramer for his help with the design of the clock control and for providing his considerable editing prowess
even when he had only a few hours to review a chapter. Thanks to Jim Crespino, who had many ideas and
suggestions regarding the control examples, particularly the pipe control of Chapter 11. Thanks to Steve and
Doris Stava for reviewing some of the chapters, providing control ideas, and the continual encouragement.
And to Roy Lambright, Bob Rench, and Marc Ritterbusch: Thanks for your friendship and humor. When are
you going to start developing for a real operating system and forget that OS/2 stuff?

Thanks to various individuals that I've had the pleasure to attend school with or work with in my
career who have provided opportunities; stimulated intellectual growth through discussion; provided moral
support, friendship, and encouragement; or a combination: Jim Phelan, Jim Kurtenbach, David Bridges,
Chuck Reeves, Devin Sherry, Phil Brennaman, Steve Gray, Steve Luke, Danny Hughes, Mike Hudgins, and
David Cloud.

To my mother Maureen, my late father Tom Sr., my mother-in-law Millie Koschmeder, my late father
in-law Fred Koschmeder, and my grandparents Cloyd and Josephine Jenkins: Thank you for the uncondi
tional love and support that you have always provided.

To those teachers who have taught me more than the requisite material, in particular Graham Glass, an
instructor at the University of Texas at Dallas: Graham you were the one teacher who affected my life pro
foundly. Your enthusiasm, voracious thirst for knowledge, and general love of life inspired me to approach
learning (and life) in a different way. Thank you.

And finally, to that which inspires each of us to push beyond our sphere of contentment. We all have
the ability, creativity, and stamina to change the world, but we must endeavor to do it. In the words of
Gandhi: "We must become the change we seek in the world."

APPLE 1108 - Page 21

This book is for those software developers who want to participate in the burgeoning field of component
software development. Software components, specifically those based on Microsoft's Component Object
Model (COM), are having a broad impact on the development of Windows-based software. In order for
developers to remain productive and competitive, it is imperative that they understand and apply this new
technology.

Today, the Internet is having a major impact on the software development industry. To maintain its
lead in PC-based environments, Microsoft has radically altered its approach to software development.
Microsoft has embraced the new Internet-based development technologies and is moving rapidly t6 provide
developers with state-of-the-art tools and techniques. ActiveX is at the center of this movement. This book
covers one of the most important new technologies: ActiveX controls.

To build and understand the sample applications, the reader is expected to have a programming back
ground that includes work in Windows software development, using C, C++, or visual tools such as Visual
Basic. This book is not a complete tutorial on any of these languages or tools, but rather is about how to use
Visual C++, MFC, COM, OLE, and ActiveX to build robust software components, particularly ActiveX con
h·ols. An understanding of object-oriented techniques is valuable but not necessary.

The reader is not expected to understand Microsoft's Component Object Model or ActiveX, but this
book cannot cover every aspect of COM. Only those areas important to development of component soft
ware, automation, and specifically ActiveX controls are discussed. Other areas of COM will be discussed
only as they pertain to the understanding of our primary topic: ActiveX controls.

The examples were developed on a 90-MHz Pentium with 24 megabytes of memory running Windows NT
4.0. The software tools required to build and test the samples include: Microsoft's Visual C++ version 4.0 or
higher running on Windows 95 or Windows NT 3.51 or higher. The screen shots are of Visual C ++ 4.2.

APPLE 1108 - Page 22

xx.ii + Preface

Some control examples use features of Microsoft's ActiveX SDK and the August 1996 Win32 SDK, but
by the time you read this, full support for these SDKs will be available in Visual C++ 5.0. If you have any
questions as to the requirements to build the sample controls, check out my Web site at
http://www.widgetware.com

I welcome and encourage comments, suggestions, and bug reports at the email address given at the end of
this Preface. The Visual C++ compiler is updated three times a year, and as it is changes, I update the exam
ple programs and controls. You can contact me via email or through my Web site URL. The site contains any
updated examples, FAQs, pointers to other OLE/ ActiveX sites, discussions, and other material concerning
COM, MFC, and ActiveX technology.

email: toma@sky.net or tom@widgetware.com

URL:http://www.sky.net/-toma/ or http://www.widgetware.com

APPLE 1108 - Page 23

Software development is becoming more and more complex. New paradigms are needed to decompose this
complexity so that the process of developing software can be improved. Large software applications must be
broken down into smaller, more manageable pieces. During the last few years, object-oriented languages have
helped reduce this complexity explosion. The C++ language in particular has garnered a lot of industry sup
port and is currently enjoying healthy growth in many areas of software development. Smalltalk has become a ·
viable development language in several environments as well, and Java, with the popularity of the Web dri
ving its advance, is quickly becoming an important development language. However, even with these
advancements in development paradigms and languages, software development is still a very complex task.

Examples of where software complexity has overwhelmed the development process are easy to find.
Severe problems with the software that controlled the baggage system at Denver's new airport caused
months of delays and cost billions of dollars. Microsoft's Windows 95 was delayed by nearly two years
because (among other reasons) of the complexities of developing a robust operating system with more than
4 million lines of source code. While these examples are extreme, they illustrate the problems that exist in the
software development industry today.

Object-oriented paradigms and their primary implementation language, C++, cannot solve this com
plexity explosion alone. Additional technologies and techniques are required. Microsoft's Component Object
Model (COM), OLE, and ActiveX are the technologies that we will explore in this book. These teclu1ologies
are having a major impact on the development of Windows software, specifically in the area of component
software development.

The concept of component software is not new. Software developers have long hoped for a technology that
would enable them to assemble software in a manner similar to that used by hardware engineers. For more
tl1an 40 years, computer hardware designers have constructed complex hardware systems by combining off
tl1e-shelf hardware components. These components, or integrated circuits (ICs), can be assembled in endless
patterns to make practically anything (electronic) imaginable. When viewed independently, RAM, ASICs, JK
flip-flops, and other chips perform rather insignificant functions, but when combined with other IC compo
nents, complex hardware systems can be built.

APPLE 1108 - Page 24

xx.iv -+- Introduction

Each IC can be treated, from a design perspective, as a black box. The user provides the black box with a
set of inputs, and depending on the behavior of the black box, a specific result will be provided as the out
put. The designer needs absolutely no understanding of how the black box performs its functions; he only
needs an understanding of the input and output behavior. The inputs and outputs are stringently defined,
and this rigid structure allows the easy combining of hundreds of IC components, working together to
define complex hardware systems.

Component software is an effort to apply the hardware paradigm to software. This approach would
provide software ICs that could be assembled in various configurations to quickly produce robust software
systems. C++ and other OOP languages were supposed to provide this capability, but, for various reasons,
they have not achieved this goal. Microsoft's Component Object Model and its companions, OLE and
ActiveX, provide the technology to make component software a reality.

Twenty years ago, computer hardware was very expensive while software was relatively cheap. Today
the reverse is true. The reason: Massive reuse of well-specified, discrete hardware components. This leap in
productivity is currently occurring in software development, with Visual Basic custom controls providing
the impetus.

Visual Basic finally provided a platform that supported component development, not from the aspect of
building software components (ICs), but by providing the breadboard on which to assemble the various com
ponents into usable applications. If we continue the hardware analogy, Visual Basic custom controls (VBXes)
are the ICs and any Visual Basic source code is the bus or wires that c01mect these discrete components.

Custom controls provide specific, well-defined functionality. They do not provide all the advanced fea
tures of true OOP languages, such as inheritance and polymorphism, but this simplicity may explain their
success. Custom controls cannot function independently and can only provide value when coupled with
other custom controls by a controlling entity (usually Visual Basic). This controlling entity is called a con
tainer in OLE parlance; it provides the glue that ties the components together. It also provides the bus over
which the controls can communicate.

Discrete hardware components and custom conh·ols share many characteristics. They have a focused
purpose, documented behavior, and a well-defined interface (the inputs and outputs). The user of a control
only needs to understand its behavior and how to affect this behavior. Examples include simple enh-y fields
that validate dates as they are entered or more complex controls that encapsulate the functionality of a com
plete editor. Industry-specific controls are also important. A vendor in the health care industry may provide
a custom conh·ol that implements an interface to a medical device. Because the control hides any proprietary
logic, he can freely distribute the control to end users. The examples and uses are myriad, as the healthy
market for third-party controls demonstrates.

APPLE 1108 - Page 25

Introduction + xxv

While Visual Basic custom controls provided the stimulus that eventually validated component develop
ment, its VBX architecture has two major problems. The VBX architecture is inextricably tied to the
Windows 16-bit environment, and Microsoft does not publish the details of how VBXes can be used within
other applications or tools. Microsoft's Component Object Model, OLE, and ActiveX standards now provide
a solid foundation on which to build software components. ActiveX controls have replaced the VBX and
have added crucial functionality in the process. ActiveX controls can expect a much larger market, relative to
that provided to VBX developers today, because ActiveX controls are supported by many more applications
and software development tools. ActiveX controls have also been enlisted to become the central software
element in Microsoft's new Web-based strategy.

On March 6, 1996, Microsoft unveiled its new ActiveX development strategy. Central to this new strategy is
the ActiveX control: ActiveX controls can now be embedded in Web-based pages and accessed by browsers
such as Internet Explorer. The component-based software revolution has now come to the Internet, and
ActiveX controls are a major part of this new environment.

Another area of COM/OLE that enhances the viability of component software development is automation.
Automation allows Windows applications to expose, or make available, their functionality to other Windows
applications. In this way, applications like Microsoft Word become software components that can be used by
other smaller, larger, or more complex applications. For example, say a developer is faced with the prospect
of spending a few man-years developing a word processing package for his application. His users indicate
their need for this capability and want him to "make it something like Word" if he can. Today, thanks to
COM and OLE, he can choose either to spend the man-years developing a word processing package or to
incorporate Microsoft Word directly into his existing application. His users gain the use of something famil
iar, and the developer can add Microsoft Word functionality with a minimum of work (measured in man
weeks). COM, OLE, and ActiveX, with their component and application integration technologies, make this
possible.

Visual C++ and its Microsoft Foundation Class (MFC) libraries are today's most advanced development
tools available for Windows. The MFC libraries provide an application framework that removes much of the
tedious work involved with developing Windows and COM-based applications. While a lot of the tedium is
removed, there is still a lot of complexity left behind. In particular, the incorporation of COM, OLE, and

APPLE 1108 - Page 26

xx.vi + Introduction

ActiveX support within the MFC libraries adds another dimension that developers must assimilate.
Nevertheless, Visual C++ and the MFC libraries help significantly in the development of COM-based com
ponents, as this book demonstrates.

The chapters in this book are probably best read in succession, although the first three chapters can be
skimmed if you are already familiar with C++, Visual C++, and the MFC libraries. Chapter 1 discusses the
issues facing software developers today: how to achieve reuse with today's software tools, why object-ori
ented development languages haven't solved more development problems, and the concept of component
software. Chapter 2 provides an overview of the C++ language and how it can be used to effectively build
software components. Chapter 3 introduces the Visual C++ development environment and details the work
ings of the Microsoft Foundation Class framework.

Chapters 4 focuses on Microsoft's Component Object Model and how this system-level technology
enables the creation of robust software components. Chapter 5 builds on Chapter 4 by detailing the MFC
implementation of COM and ActiveX. Chapter 6 covers the use of these technologies by wrapping C++
classes with automation.

The last half of the book focuses exclusively on the development of ActiveX controls. First the architec
ture is examined, and then various ActiveX control types are explored. Chapters 8, 9, 10, 11, and 12 each
detail the development of a specific type of ActiveX control. A graphical clock control is developed in
Chapter 9. Chapter 10 covers development of controls that subclass standard Windows controls and the new
Windows 95 common controls. A nonvisual control that encapsulates the services provided by the Win32
named pipes API is developed in Chapter 11. Chapter 12 details what is required to develop and implement
an Internet-aware control. And finally, Chapter 13 focuses on answering the most frequently asked ques
tions concerning automation and ActiveX control development.

APPLE 1108 - Page 27

1

t- s De I e t, t e

Component-based software development is changing the way Windows applications are developed. In this
chapter we will look at what component software is and why it is having a tremendous impact on the soft
ware development industry. We will discuss the definitions of software objects and components as well as
the benefits they can provide the application developer. We will also describe Microsoft's Component Object
Model (COM), the primary technology we will use to construct and connect these components.

Within the past year, the popularity of the Internet has caused a major shift in the development of soft
ware. The way software is developed, deployed, and supported has been radically altered by this entity,
called the Web. Component software-from ActiveX controls and Java applets to Netscape plug-ins
abounds in Web-based environments.

Web technologies are also changing the corporate software environment. Corporate intranets, a much
larger and more lucrative market than the commercial Internet, are quickly moving to Web-based devel
opment tools and technologies. Microsoft's ActiveX is one of the most important new Web-based tech
nologies.

ActiveX is a broad term that covers Microsoft's Web-based strategy. It covers a large number of applica
tions, tools, and technologies, all of which use COM heavily in their implementation. For now, ActiveX can
be thought of as the underpinning of Microsoft's Web-based technologies. In reality, the term ActiveX has
basically replaced one that we all are familiar with: OLE. The term OLE now connotes a small subset of
Microsoft's component technologies-specifically, the old compound document technology that has been
available for several years. In this first chapter, we'll talk about COM and ActiveX in the context of compo
nent-based development.

This chapter is intended to whet your appetite by showing you the benefits that component-based soft
ware can provide the software industry and explaining why you, the software developer, should begin to
study and adopt these methods. Trust me-component software is going to make our jobs much more fun.

1

APPLE 1108 - Page 28

+CHAPTER 1

If you don't really care how we got here or why and want to get your hands dirty, jump ahead to
Chapter 2. But promise me that when you get time, you'll come back and read this chapter, because it
explains why software components are going to change the world.

Application development techniques have always changed rapidly, but within the last few years, for various
reasons, profound changes have occurred. Users are more sophisticated and demanding, and business in
general has become more competitive. And now, with the enormous growth in the popularity of the
Internet, software is developed and deployed at a frenetic pace. Effective development and deployment of
software systems is essential to the survival of most businesses. Only a few years ago, information technol
ogy was viewed as a back office requirement that meant little to the bottom line. Today, the opposite is true.

With the realization that information teclmology is crucial to the competitiveness of any business entity,
there has been an increasing demand to develop and deploy mission-critical applications quickly and effec
tively. Business environments change more rapidly than they did only a few years ago, and competitiveness
is difficult to maintain in this fast changing environment. Many books have been written on the information
age, so I will not expound on it here. Suffice it to say that to be competitive, companies, business Ul1its,
teams, and individuals must be willing to change and adapt.

In the Introduction, I described the concept of component software development. With its ability to sup
port third-party, custom controls, the Visual Basic development environment has dramatically changed
Windows software development. The practice of combining discrete software components into solid
Windows applications has also increased the productivity of many software developers. Broad reuse of soft
ware components is one reason for this increase in productivity. Software reuse is of paramount importance
if we, as developers, are to advance the state of software development. And now, with the addition of Web
based teclmologies, the job of making small, robust, and distributable components has become much easier.

It's a waste of time to build various components if they are never reused. If a similar application needs to be
built and if the components we've constructed are not generic enough or are not carefully delineated, they
cannot be reused effectively. If there is no reuse, there is no saving of time in either the development or the
building of other applications. Reuse is the primary focus of this book and the goal of component builders
everywhere. Without it, component building would provide little benefit.

Reusable software has many forms and definitions. Reuse, for our purposes, means the ability to use a
particular component many times, either within the same application or in various applications, without
modification of the original component. Object-oriented programming languages, such as C++, profess to
be replete with reuse. Although that may be true, there are other methods to obtain consistent reuse with
out resorting to building every piece of an application in C++.

APPLE 1108 - Page 29

Component-Based Development, the Web, and ActiveX + 3
-~-~~=~~~~~w~-~~~----~An~~A---A~~~~-~~,~--""',._.,,,n,,AA~""""'-~AWA~µ-A~~~"-"~'~A~-~~-~"-=~A'"'"~"""~-~~,,-A~A~~~~AAm~A--_,,~A~~-

Types of Reuse
There are many ways to reuse software when you're developing applications. I'll discuss two ways that are
in wide use today: reuse through the inheritance mechanisms provided by object-oriented programming
languages such as C++, and reuse through the development of discrete, language-independent components.
The first method, reuse via inheritance, typically requires access to the implementing source code. Source
code is required because few standards exist that allow the sharing of objects between language compilers
(such as Watcom and Borland). Reuse with inheritance typically requires that the inheritor use the same lan
guage used in the original implementation. In other words, you cannot reuse, via inheritance, a C++ class in
Smalltalk or Java. The second method, reuse by building and using components, does not depend on the
implementing language, relying instead on component standards that allow sharing across languages and
environments.

Inheritance allows a developer to extend an existing code module by augmenting the original base class
code. A great amount of functionality may already be provided by the base class, so implementation of addi
tional functionality requires only minor changes to the new subclass. This new class provides significant
functionality with only a small change or augmentation. Inheritance used in this manner provides signifi
cant reuse of existing code. The principal problem with this approach is that to continue to augment and
reuse, you must continue to use the same development language. Today's C++ compilers do not allow the
sharing of C ++ objects developed using different compilers, primarily because there is no standard method
to mangle, or decorate, the exposed function points. Mangling is a method used by C++ compilers to con
struct unique names for public functions. C ++ allows multiple definitions of functions using the same func
tion name but different argument types. Mangling "mangles" these names (by attaching an encoding of the
argument types) so that the linker can resolve the specific function at link time. This process is described in
more detail in the next chapter. Smalltalk objects are similar in that no binary standard exists to describe the
various Smalltalk language objects. You can overcome these problems by using one of the new wrappering
technologies, which allow you to wrap an existing C++ or Smalltalk class with an external, language-inde
pendent interface. The two primary standards are IBM's System Object Model (SOM) and Microsoft's COM.

Reuse through inheritance is wonderful when the dynamics of a project allow for the building of appli
cations using only one primary language, but in larger projects that require multiple languages and are
staffed by individuals with diverse programming backgrounds, this arrangement can be difficult to imple
ment. Another problem with inheritance-based reuse is that it is difficult to manage in large projects.
Inheritance-based reuse creates a large hierarchical structure of classes that can complicate the process of
code changes. If a change is made to a base level class, every class that derives from it will be affected. This
can cause massive recompiles and relinks as the changes cascade through the project.

I'm not implying that inheritance-based languages are bad, just that they have their place and purpose.
We will use C++ throughout this book to develop components. But the inheritance feature will be used
internally by the components being developed and not as the primary reuse mechanism.

The other important type of reuse is that provided by software components. A component can be
another application such as Microsoft's Word for Windows, a database management package, an ActiveX
control, an Automation server, a Java applet, and so on. These components offer reuse on a different scale
than that offered by language-based inheritance. This book focuses on building these types of components.

APPLE 1108 - Page 30

4 +CHAPTER 1

Software components can be built with various languages. The important characteristic that makes a
component reusable is that it has a well-defined binary standard interface. A binanJ standard provides shar
ing, or interoperation, of objects developed using disparate languages and tools. We'll cover this in more
detail soon. Components should also be generic and configurable. As mentioned earlier, the interface, or
exposed functionality, is the most important aspect. Today the primary interface implementation mecha
nisms are IBM's SOM and Microsoft's COM. We will use COM (which includes OLE and ActiveX) because
this book describes the development of Windows-based software and because COM is the de facto compo
nent technology on Windows machines.

Reuse and Portability
Another important aspect of reuse is portability. Portability, as used in this book, refers primarily to the easy
movement of source code among the various Windows platforms: Windows 3.x, Windows NT, and
Windows 95. Portability on a larger scale, including non-Microsoft platforms, is a valid goal, but we will
touch on this topic only briefly.

Microsoft has recently stated that it will provide multiplatform support for most basic ActiveX tech
nologies, including ActiveX controls. Versions of Internet Explorer 3 will be provided for 16-bit Windows,
32-bit Windows, the Macintosh, and certain flavors of UNIX. Portability among these operating systems will
be provided with Visual C++ and the MFC libraries. Microsoft has also licensed the technology to other
companies that are providing support on other platforms (such as IBM's MVS).

The code that we will develop will be portable across the various Microsoft Windows platforms. We
will use the MFC libraries, an application framework that abstracts many of the complexities of Windows
development and hides the differences among 16-bit Windows, 32-bit Windows, and Macintosh platforms.
The 32-bit version supports Windows 95, Windows NT, and the Macintosh. Source code is portable among
these operating environments with minor changes and a recompile and relink. Details and caveats will be
discussed in later chapters as the various items are encountered.

Many development methodologies have come and gone within the last few years. Some have confirmed
their worth and enjoy broad acceptance. Examples include structured programming, client-server-based
development, and the ubiquitous object-oriented analysis, design and development. Others, such as com
puter aided software engineering (CASE), expert systems, and artificial intelligence (AI), have proven useful
only in well-defined, restrictive settings and do not yet show promise for broad application. Component
software development is proving itself to be a viable and cost-effective method of developing applications
for the Windows environment.

There are two primary methods of developing Windows applications. The first method is based on the
visual combining of discrete software components. The most obvious example of this paradigm is Visual
Basic, but there are many others, including Borland's Delphi, Computer Associates' Realizer, and IBM's
Visual Age products. The more prevalent method is the use of object-oriented languages, typically C++.

APPLE 1108 - Page 31

Component-Based Development, the Web, and ActiveX 5
-~~~~~~~-~~~~~"~·~,~~~~~~"·~~~~~-~~,,.----~~~~~

Usually, an application framework (either supplied by a vendor, as with MFC, or developed in-house) is
used to help manage complexity in large Windows applications. Because of the dynamics of the PC market,
Windows developers must choose at least one of these methods to remain competitive. In reality, nearly all
good development tools provide a mixture of both techniques.

Visual Programming
Initially, Windows development was done using the Windows Software Development Kit (SDK) and the C
language. These tools were the only ones available to build professional, efficient Windows applications.
Then, in 1991, Microsoft inh·oduced Visual Basic, a radically different method of developing Windows appli
cations. With Visual Basic you can write a "Hello World" program with zero lines of code. Even though
there were certain deficiencies in Visual Basic development, it provided a truly visual development environ
ment in which developers could drag-and-drop controls (or components), modify their properties, and have
a fairly robust application with only a few hundred lines of Visual Basic code. Compare this to the thou
sands of lines of C/SDK code that would be required to provide similar functionality.

Visual Basic also provided a Control Development Kit (CDK) that allowed third parties to develop
generic and specialized controls that could be incorporated seamlessly into the Visual Basic development
environment. This proved to be a major event in the history of component software.

Visual Basic provided the genesis for software component building and combining. The use of the
Visual Basic custom controls (VBX)-and now the incorporation of COM, OLE, and ActiveX support-has
made Visual Basic the standard for building prototypes and commercial software. Even though the VBX
specification did not provide an open standard for component development and was restricted to its 16-bit
heritage, VBXs became the de facto "components" in many Windows development environments. Support
for VBX controls is now included in most 16-bit C++ compilers and other visual development tools. Many
vendors had to reverse-engineer the VBX architecture to enable it to work within their products, but the
large number of VBX components made this a requirement. With ActiveX control, Microsoft now has an
open standard for visual component development. Vendors can easily incorporate support for components
developed with this standard, and today nearly all of them have done so.

The new Web-based teclmologies add another dimension to this environment. Web developers and
designers must produce and publish material very quickly. Microsoft's ActiveX control technology makes
it easy for these developers to incorporate dynamic content into their products. Design and development
tools provide an efficient method of assembling these various components-HTML, ActiveX controls, and
VBScript-to produce effective, dynamic Web pages.

Object .. Oriented Languages
Object-oriented languages such as Smalltalk, Java, and C++ have recently received a great deal of atten
tion (and use) within PC and workstation development environments. All of these languages greatly ease
the task of building complex and reusable software. Various factors have contributed to the success of
these languages. C++ is a superset of the widely used C language and lets developers progress to object
oriented methods as time permits. Smalltalk has taken longer to gain momentum primarily because its

APPLE 1108 - Page 32

+CHAPTER 1

interpreted, run-time binding performance requirements make it slower. Smalltalk is a pure object-ori
ented language that started in academia for instructional purposes. Although Smalltalk has been around
for more than 20 years, only now is the hardware sufficiently fast to allow its use in typical application
development environments.

Smalltalk will not be used in this book; nevertheless, it is an important language of the future-many
people believe it to be the COBOL of the '90s. Instead, we will use Visual C++ and the MFC libraries to
develop COM-based software components. Visual C++ and MFC provide sufficient speed as well as a level
of abstraction from the underlying complexities of both the Win32 and COM APis.

Java is the newest object-oriented language, and its popularity has soared along with the popularity of
the Web. Java is a product of the new component-based software model. Its initial purpose was to facilitate
the development of small, portable applets, which are perfect for Web environments. Java removes most of
the development difficulties and complexity of C++, and this is one of its main selling points. Unlike C++,
Java is a new language unencumbered by a long history of modifications. It isn't perfect, however, because it
still has some growing to do.

Although object-oriented languages provide significant help with software development problems,
they are deficient in areas that are important to the broad application of the object-oriented technology.
C++ and Smalltalk do not provide a binary standard that would allow the sharing of objects across lan
guages or environments. Each language has proprietary, or nonstandard, methods of implementing spe
cific features of the object-oriented paradigm. Because we're focusing on C++, let's review why it cur
rently has such limitations.

(++
The C++ language was supposed to solve many of the problems caused by the increasing complexity of
building large or complex applications, and to a large extent it has succeeded. C++ is useful when you're
implementing large applications, frameworks, and systems. A good example is Microsoft's Foundation
Class libraries. Visual C++, coupled with MFC, allows much of the complexity of Windows and COM soft
ware development to be hidden. Application frameworks such as MFC provide robust, well-tested applica
tion code. The developer doesn't have to initially understand all the underlying complexity. A developer can
become productive quickly, gradually developing an understanding of the underlying architecture. There
are problems with this approach (aren't there always?), and we'll discuss them in Chapter 3.

C++ has failed in its ability to provide a standard method of describing the produced objects in a binary
fashion. For C++ objects to be effectively shared or reused across development platforms, hardware plat
forms, or even compilers, the original source code is required. There are no compiler-independent standards
for decorating or mangling C++ function names, so to share these objects, the secondary user requires either
the original source code or platform-specific (Windows, OS/2) and compiler-specific (Microsoft, Borland,
Symantec) binaries (.LIB or .OBJ files). This doesn't mean that C++ isn't an effective language. It is. But
more is required to take objects developed in C++ to the next level, where they can be shared and reused
across environments and languages.

APPLE 1108 - Page 33

We're discussing only static objects; we haven't yet raised the issue of sharing actual run-time instantia
tions of these objects or components. There are major problems here as well, particularly in the sharing of
objects across processes on local and distributed processors.

What is needed is a higher level of object orientation or a standard that encapsulates the underlying
objects to allow many of the object-oriented features to be used across development environments. Such
standards or technologies are described as object-oriented systems.

Obied-Oriented Systems
Object-oriented languages provide significant leverage in the development of software, but to incorporate or
share the developed objects across disparate languages, processes, and environments requires additional
software. Object-oriented systems enable the sharing, or distribution, of these objects across the mentioned
boundaries. Two primary standards address these requirements: Microsoft's COM, on which OLE and
ActiveX are based, and IBM's SOM and Distributed SOM (DSOM). Each standard has strengths and weak
nesses, but we will focus on what I feel is the de facto, Windows-based standard: Microsoft's Component
Object Model.

If you haven't yet heard the phrase "provides a binary standard" (I've mentioned it a few times), you soon
will. A binary standard, in the context of object and component sharing, provides the means by which objects
and components, developed using various languages, from disparate vendors, running on heterogeneous
platforms, can interoperate without any changes to the binary or executable. Whew. Let's try that again with
pictures.

Figure 1.1 illustrates a hypothetical problem that we need to solve. We've written a wonderful text edi
tor in Visual Basic, but we don't feel like implementing the spell checker, text search functions, or paragraph
formatting in Visual Basic. So we locate specialized objects through our favorife object supplier or from a
group within our organization. Great-this will save time. But wait-how are we going to get all the pieces
to work together? Visual Basic knows nothing about the binary format of Borland's C++ objects, nor does it
know about Visual C++ or Watcom binaries. In other words, there is no binary standard that describes how
different languages should store the machine language representation of the implemented language algo
rithms that would allow other languages to access this implementation.

APPLE 1108 - Page 34

8 +CHAPTER 1

Spell Checking
Engine

Written with
Borland C++

Text Editor written with Visual Basic

Text Search
Engine

Written with
Visual C++

Figure 1. 1 A hypothetical application.

Paragraph
Formatting

Engine
Written with
Watcom C

Even without a binary standard, there are certain things we can do to solve this problem. If we have the
source code to each module, we can determine which functions we would like to call from Visual Basic; then
we remove the C++ mangling by declaring them extern "C" and recompile the source. To access these
functions from Visual Basic, they must be implemented in a Windows DLL; they cannot exist in an exe
cutable (EXE).

Using a Windows DLL solves the initial problem by letting us use these functions within Visual Basic.
We must, however, explicitly declare the functions from Visual Basic. Let's use something like the following:

Declare Function SpellCheck lib "spell.dll" (...) as long

Declare Function Textsearch lib "search.dll" (...) as long

Now we can access the various functions in the component "engines" to perform the needed tasks, and we
complete the editor. This approach solves the problem, but only temporarily. Later, as enhancements and
bug fixes are added to the C++ objects, we will be responsible for implementing them in our source code.
Because we initially had to modify the source, we must also maintain any enl1ancements and bug fixes our
selves. As you can see, the C++ objects are no longer generic, but have become specific to our application.

Another problem with our approach is that the names of our DLLs are hard-coded within the Visual
Basic Declare statements. Later if we want to plug in another DLL, possibly having a different name, we
must touch the Visual Basic source and re-create the executable. A binary standard should allow a developer
to plug in different components without modifying the original code.

This is a simple illustration of the problems with existing object-oriented language solutions. There are
ways to get around interoperability problems in software development, but what we need is a standard way
to do it, one that is prescribed and extensible so that vendors can build highly interoperable software.
Microsoft's COM provides this binary standard.

APPLE 1108 - Page 35

Component-Based Development, the Web, and ActiveX + 9

Obiects Versus Components
To help in the understanding of what objects and components are, we need to define identifying character
istics for the two types. The term object will be used for the traditional software module that is produced
using object-oriented languages; the binary form of this module is typically an OBJ or LIB file. The term
component will be used for items that have a binary standard wrapping, or interface, implemented around a
language-dependent (usually C++) object, allowing the component to be reused across language environ
ments. A component's binary form is either a DLL or EXE. Following are more detailed definitions.

SOFTWARE OBJECTS

In this book, the term object will primarily pertain to C++ or Smalltalk objects as they are used within their
respective development environments. Object-oriented language objects have the following characteristics:

• Reuse through inheritance: As we've discussed, the primary method of reuse with object-oriented
languages is through the use of inheritance.

• Language dependency: The objects produced are dependent on the language or compiler in which
they are developed.

• Often, objects are dependent on other objects within their environment for part or most of their func
tionality.

• No current standard exists for use of objects outside of the programming language-that is, for pro-
prietary methods of implementing certain object-oriented techniques.

• Reuse requires an understanding of the underlying or dependent objects.

• Objects are normally pieces of a particular application and can be difficult to extract for reuse.

• To reuse objects requires substantial knowledge of the underlying programming language.

SOFTWARE (OMPONENTS

What is a software component? There are many definitions, but here I will define the components that we
will build and use in this book. The type of component that we will build does not necessarily have all the
traits of a normal object-oriented programming language object. Component objects typically will not have
the popular characteristics of inheritance or polymorphism, but they will have what I think is the most
important object-oriented characteristic of all: reusability. Inheritance and polymorphism are important
but not nearly as important as the eventual reusability of the produced object. Purists will say that inheri
tance is important to-and basically provides for-reusable objects. I agree, but only when you are work
ing within the framework of a single, inheritance-based language, such as C++. Few development organi
zations do this.

Our definition of a software component provides the following characteristics:

• Internal implementation details are completely hidden: Components encapsulate, or hide, to the
fullest extent the details of how their functionality is implemented.

APPLE 1108 - Page 36

1 0 + CHAPTER 1

• Independent of other components: Components are self-contained and shouldn't depend on other
components to provide supporting services.

• A well-defined interface: Components should provide a well-documented set of services.

" Use of a binary standard to expose external services: Components will use a language-independent,
industry-standard method of exposing services. We will use Microsoft's COM, OLE, and ActiveX.

• Reusability is achieved through binary reuse of the discrete component and not through language
based inheritance.

• Components should not require user understanding of the implementing language and, if possible,
should require minimal programming expertise to use.

• The component's behavior, and not its implementation, is what is important to the component user.

APPLICATIONS AS (OMPONENTS

Given our definition of software components, you can see that a large Windows application such as
Microsoft's Word or Corel's Quattro Pro can be a component of another application. The key is that these
component applications provide a well-defined, external interface to their underlying application functions
(sounds like a binary standard). By accessing these exposed functions, other applications can harness the
built-in functionality and provide it to their users.

Today, many such applications provide functions that most client applications will not need. But in
the future, smaller, more specialized applications (or components) will be developed for use by a broad
range of component-based applications. In later chapters, we will build both business-specific and generic
application-based components. As you can see, the distinction between applications and components can
be hard to discern. It will eventually become subjective, significant only in the context of the specific
development project.

THE (OMPONENT INTERFACE

How a component implements what it does is of no concern to the component user. The component user
asks, "What can this component do for me?" A component is completely described by its interface to the
outside world. The interface details what the component can and cannot do under various conditions. That's
the beauty of encapsulation. No one need know how the dirty work is done. The component user selects
components solely by their advertised behavior. The only implementation detail that matters to the compo
nent user is performance: whether the component is fast enough.

Figure 1.2 depicts a simple component. Its primary capability or behavior is the evaluation of algebraic
expressions. Its single interface provides four functions: SetExpression, Verify, GetExpression, and
Evaluate. These functions encompass all the behavior this component exposes. Within the implementa
tion, there are many other functions as well as internal structures to provide the external functionality, but
the component user neither has nor needs any knowledge of these details.

APPLE 1108 - Page 37

" "

Binary
Standard
Interface

Language
Dependent

Implementation
C, C++, Basic, or other language

implementation

Figure 1.2 Component interface and implementation.

The technology that allows users to build component-based Windows software is Microsoft's Component
Object Model standard. COM provides a system-level, well-defined set of services that standardizes the
sharing of data and functionality. COM provides a language-independent way of exposing capabilities from
your software, making software reusable at the binary level. COM and ActiveX provide an open, well
defined standard that applications can use to expose functionality to other applications or scripting lan
guages such as Visual Basic.

The next few sections will briefly describe COM, OLE, and ActiveX. It would require more than one book to
completely document COM in all its forms. If you need more information than this book provides, I recom
mend that you pick up a copy of Kraig Brockschmidt's book Inside OLE from Microsoft Press. It is required
reading for anyone doing serious work with COM and OLE.

OLE is constructed as a layer above the Component Object Model and provides various services to
application developers. The most familiar OLE concept is that of the compound document. OLE compound
document services let you embed component objects created by other applications within an application's
document. An example is embedding a Microsoft Excel spreadsheet within a Microsoft Word document.
One of the most important OLE technologies for component development is OLE automation, or just
Automation.

APPLE 1108 - Page 38

1 2 -+- CHAPTER 1

Like OLE, ActiveX is based on COM. Until April 1996, the term ActiveX did not exist; OLE was used to
denote all the application-level services built on top of COM. Today, however, OLE has been relegated to
use in those technologies that relate to Microsoft's compound documents (or object linking and embedding)
services, and ActiveX has taken over as the primary name for most of the technologies based on COM. In
particular, it refers to those services that are tied to Microsoft's Web-based technologies.

Automation and ActiveX Controls
Although COM, OLE, and ActiveX encompass a large area of application use and development, we will
focus primarily on two areas of COM-based development. The first is Automation, which makes it easy for
applications or components to expose various features for use by other applications. Let's say you're devel
oping an application that needs to fax a document. You could develop the routines to access the fax modem,
dial the phone, and so on, but a much easier approach would be to use an existing fax application to do the
work for you. There are many ways to do this. One is to let Microsoft Word do most of the work (along with
fax hardware and software that includes a Windows print driver). Using Automation, you can drive Word
externally, tell it to load your document perform a document conversion if necessary, and then print it
directly to the fax modem. You're depending on software that you have no developmental control over, but
it works welt and you need write only about 50 lines of code. That is reuse.

The other software component that we'll focus on is the ActiveX control. Although Automation is used
primarily for nonvisual components, ActiveX controls provide the same type of reuse that Automation pro
vides, but for visual components such as Windows entry fields, command buttons, and so on. ActiveX con
trols are also an important part of Microsoft's Web-based strategy. They play a major role in the majority of
Microsoft's new technologies.

Most Windows applications can be called monolithic applications. A monolith is defined by the Random
House College Dictionary as having a "uniform, massive, or intractable quality or character." When applied to
software, this term describes applications that have grown massive with options and features, few of which
the average user will ever use. The application is trying to be all things to all people. This type of Windows
software will eventually become uncommon. It will be replaced by software based on combinations of indi
viduat specific, and highly efficient components.

Figure 1.3 illustrates the differences between a monolithic application and a similar application built
using COM-based components.

Almost every major Windows software package is currently implemented using the monolithic model.
Microsoft Word, Excel, and Project are examples. Even though Microsoft Word and Excel may share various
pieces, or software modules (maybe the spell checker), this sharing is implemented using closed, proprietary
mechanisms. These mechanisms aren't meant to be proprietary, but the current C++ compilers do not intrin
sically support interoperability standards. As I've mentioned, existing C++ compilers cannot share objects at
the binary level.

APPLE 1108 - Page 39

Component-Based Development, the Web, and ActiveX + 13
·~~~~~·

other
Appli

cations

Monolithic Application Component Based Application

Figure 1.3 Monolithic versus component-based application.

There are also examples of small, highly functional software applications written using the new component
based approach. Microsoft's browser, Internet Explorer 3.0, is written using this approach. The main exe
cutable, !EXPLORE.EXE, is only 15KB in size. The majority of its functionality is provided by an ActiveX
control.

" I r
Why should software developers be excited about the future of component software? Many developers
spend their days solving the same old problems. Sometimes they may solve the old problem in a new, cre
ative way, but under normal circumstances, it's just the same old algorithm that we've used a hundred
times. How many ways are there to implement a linked list? In a nutshell, components allow developers to
solve new problems instead of continually solving the old ones.

With the advent of component software and object-oriented components, developers are free to tackle
the real problems in software development. They can focus their creative energy on the combining of robust
existing components into much more functional (and fabulous) applications. This technique is currently in
use in pure C++ environments. In these C++ environments, experienced and astute developers are many
times more productive than average programmers. Their productivity is enhanced through the use and
understanding of the available C++ objects and tools. They never spend time writing a linked-list routine.
Instead, they solve real problems.

I
If we are to develop applications rapidly, it is important to use applications or components that are already
available. Why spend ten worker-years developing a word processor when Microsoft Word is available for
the price of a few hours' labor? Would you develop a database management system from scratch if your

APPLE 1108 - Page 40

14 + CHAPTER 1

project required database services? Of course not-but that mentality is prevalent in many corporations. For
whatever reasons, many organizations think that if a product isn't developed in-house, it's not worth using.
In certain situations, proprieta1y development of software is necessary because it provides total control
you're not at the mercy of another vendor's bugs. But I bet these situations aren't nearly as common as most
corporate developers think.

I once worked for a company that developed a Lotus 1-2-3 work-alike, because a certain client wanted
spreadsheet capabilities. Later, we developed a messaging, or iniddleware, system even though a superior
product-one that many developers were already familiar with-already existed. This "not invented here"
mentality costs businesses millions of dollars each year. If they are to compete with other companies that
embrace component-based development, they had better change. In today's environment of robust, inexpen
sive application frameworks, C++ source libraries, and components, it is ludicrous to continue to reinvent
the wheel on a daily basis.

Component Builders versus Component Assemblers
Component development and assembly requires two types of application developers. There are those who
create the components that can be assembled into various applications, and others who assemble these com
ponents into the finished applications. Many times these two development tasks are handled by one individ
ual, but in the future these responsibilities will be assigned to separate developers, each focusing on the
specifics of the job at hand. Each developer has a very important job, and in most cases these jobs are quite
different.

The component builder focuses on building reusable components that provide either well-specified
generic functionality, specific business functionality, or methods of gluing these components together effec
tively. Component builders will typically be computer science graduates with a low-level understanding of
the problem and skills in various programming languages.

The component assembler focuses on the business problems to be solved. He or she analyzes the problem,
chooses from the various components, and then assembles them using a high-level glue or scripting applica
tion. Typically a business major, the component assembler should have a business or analysis background in
the field in which the program is being applied.

Although other individuals are also involved in building applications for the business environment, the
focus of this book is to provide component builders and assemblers with techniques needed to put this
process to work.

Development of Web pages and related software is a perfect application for component-based software tech
niques. The client-side Web browser is an ideal medium in which to use this technology. Small, easy-to-use
components such as Java applets, ActiveX controls, and Netscape plug-ins make it easy to quickly add func
tionality to Web pages. The majority of the functionality will be encapsulated within these components, and
a small amount of script coding such as VBScript will be used to tie the components together.

APPLE 1108 - Page 41

The Web server will benefit from the component-based paradigm as well. As we'll see in Chapter 12,
ActiveX controls and VBScript can be used effectively here. The server-side architecture uses ActiveX con
trols to provide nonvisual services.

In short, the Web will hasten our move to the component-based model of development. The Web will
be full of components. With the maturity of technologies such as Java and ActiveX, the Web page designer
will become an assembler of discrete components: a Java applet here, a couple of ActiveX controls there,
some HTML, and finally some VBScript to tie it all together. The Web user will be a downloader of compo
nents. As the user browses the Web, each page may install a number of small components on the local sys
tem. As all the pieces work together, a dynamic Web page is produced that not only is great to look at but
also provides quite a bit of functionality.

s
There are two general methods of developing Windows software: object-oriented and visual. Both methods
are effective, but visual programming enables quick and effective development by more individuals, includ
ing nonprogrammers. Our focus will be on developing software components (using the object-oriented
method) that can be used and reused in both object-oriented and visual environments.

For corporations and developers to remain competitive, the reuse of newly developed and existing soft
ware is paramount. Reuse can be achieved in various ways. Inheritance, the principal method used in object
oriented languages, is a powerful feature, but isn't a requirement for reusable software. Software compo
nents achieve effective reusability without it. The primary difference between a well-written C++ object (or
other language module) and a software component is the addition of a binary standard wrapper that allows
its use across various languages. Figure 1.4 illustrates this concept. For our purposes, Microsoft's
COM/OLE/ ActiveX combination, particularly Automation and ActiveX controls, will provide these wrap
pering services.

Language
neutral COM
based wrapper
that allows
interoperation
between
languages,
processes, etc.

Figure 1.4 Binary standard wrapper.

APPLE 1108 - Page 42

s •
I I
ts

In Chapter 1, we discussed the importance of reuse in software development. Software objects and their
binary standard companions, software components, were offered as an effective method to achieve reuse in
the development cycle, within both C++ and other development environments. In this chapter we'll begin
the process of developing software components.

The first step is to create C++ classes that are themselves reusable or generic. These classes should not
be specific to a particular task but instead should be general enough to be used in multiple areas of an appli
cation as well as across applications. This concept is far from new and has been used since the advent of
structured programming. But C ++ provides a fertile field in which to design and develop reusable modules
or objects.

Not all classes can be designed to be widely reusable. Determining when a class might be reusable
across· the application and across projects is an art. In many cases, the added overhead of designing a class to
be reusable is not worth the effort it requires. Designing reusable classes is like almost everything else in life:
it's best not to have too much or too little of anything. Keep this in mind. Some organizations try too hard to
make all the code they write reusable, and this added overhead can have a detrimental effect on the devel
opment process.

In this chapter, we'll go through the process of developing a general class that is composed of other
general classes. Throughout this process, keep in mind that the potential user of the classes may not have
access to the C++ language. If we design the classes with a multiple language focus, they can easily be
adapted for use outside the C++ environment. In later chapters we will use these C++ objects to develop
binary standard software components.

Before we begin developing C++ objects, we must be fairly proficient in the language, so this chapter
begins with a quick tour of C++. This overview is far from comprehensive, because we focus only on those
areas of C++ that we will use in the various projects and those that are necessary to understand various
idioms used in Microsoft's Foundation Class (MFC) libraries. Use of MFC is described in more detail in
Chapter 3, although minor references to certain MFC classes are made in this chapter. For a complete review

17

APPLE 1108 - Page 43

1 8 -+- CHAPTER 2

of the C++ language, several excellent books are listed in the Bibliography. (One of my favorites is the
Effective C++ series by Scott Meyers.)

This book uses the C++ language exclusively in the examples and sample programs. Although you may not
need the quick refresher course provided here, you might as well plod through it, because I make a few
comments on how MFC uses certain features of C++. The overview is by no means a course on C++; it only
hits the high points and provides what is necessary to understand the C++ presented in this book. There
isn't a long discourse on deep vs. shallow copies, and so on.

C++ is a supercharged version of the C language. C++ includes all the features of C and provides a way
for C programmers to ease into the age of objects. I've programmed in C for more than eight years and in
C++ for about three years. Daily, I become more aware of the power of C++. It is a profound language. It has
many levels that developers can attain as they gain experience. An experienced C++ developer who is inti
mately familiar with a powerful framework and a solid class library (either self-built or commercial) is a pro
gramming machine. The productivity of such a developer is orders of magnitude greater than that of a
beginning or slightly experienced C++ developer. This also can be said of developers who use other, non
C++ languages. Intimate knowledge of any good language and good supporting tools makes all of us pro
ductive.

This book will help you in your efforts to become a proficient C++ developer, but that's far from its
main purpose. As component developers, our goal is to make our users-visual developers-as productive
(although at a higher level) as seasoned C++ developers in much less time.

C++ endows the C language with the object-oriented characteristics of encapsulation, inheritance, and poly
morphism. The primary device for these new features is the C++ class. Classes allow the encapsulation of
data and of the functions that affect the data. The goal of a class is to capture and encapsulate the essence of
a particular thing or object and then expose to users of the class only those items that are important for its
use. The details of the internal implementation are encapsulated, or hidden, from the class user.

To make sure we're using the same terminology, let's go over some C++ terms. A class is a definition of
a C++ object and is a compile-time construct. Once compiled, a class can be instantiated to create a run-time
instance of the class definition. This run-time entity is typically deemed an object. There can be zero, one, or
many of these instantiated objects during the execution of an application. They are quite dynamic.

Items within a class are referred to with several different terms. Member variables typically describe the
class's internal variables. The MFC libraries, and programs written using them, regularly use the convention
m_variable, where variable is the actual name used to identify member variables. Another widely used
term for member variables is property. This term describes the relationship of member variables to the class;
size and color are properties of a fruit. The terms data members and attributes are also used to describe mem
ber variables.

APPLE 1108 - Page 44

Reusable

class Fruit

II Member variables, or properties, or data members, or attributes

CString m_strName;

long m_lWeight;

CString m_strColor;

II Member functions, or methods

public:

Cstring GetColor();

long GetWeight();

};

Member functions and methods are used to describe functions declared within a class. The term method comes
from its use in Smalltalk, where objects respond to messages, or methods. When discussing C++ classes and
objects, I'll use member function and member variable. Later, when we're discussing ActiveX components, the
terms property and method will be used with a slightly different meaning. This is appropriate, because when
we're discussing these items at the component level, a component property may be implemented as either a
member variable or a member function.

Now let's talk about what encapsulation is and how it can help developers. Encapsulation is important
for C++ developers as well as developers who use components. Software components provide rigid encap
sulation of functionality. A component user cannot access the source code or any of the internal structures
used to implement the component's functionality. They can use only what is exposed by the component
developer.

C++ allows the encapsulation within a class of data and functions that
operate on that data. The class can hide or protect many of these elements from external users. Users in this
context and tl1roughout this book refers to the class library user or component user and not the end user of
an application. Encapsulation inside classes is implemented by the public, protected, and private key
words. We won't discuss the protected keyword until after the inheritance section. For now, public and
private will suffice. Examine the following class declaration:

class Expression

private:

CString m_strExp;

Stack m_Stack;

Tokenizer m_Tokenizer;

void InfixToPostFix();

int Precedence();

public:

void SetExpression(CString str) ;

APPLE 1108 - Page 45

20 + CHAPTER 2

CString GetExpression();

BOOL Validate();

long Evaluate();

};

Here we have an Expression class. It appears to support expression conversion and evaluation, but the
key is that the user of the class does not know how the conversion and evaluation occur. The class members
and functions that follow the private keyword cannot be accessed by the class user. The user can access
only those items designated as public. The implementation of the conversion and evaluation routines is
hidden from the user. Later, if the class developer finds a more effective method of converting expressions,
the developer can change the implementation without affecting the class user. We will use this example
again later but, as you can see, encapsulation enables the hiding of implementation details. Other
non-object-oriented languages can also do this. C functions, Fortran modules, and other language features
allow encapsulation of functionality. But C++ provides additional features, such as the public, private,
and protected keywords, that make encapsulation more effective.

As you've probably noticed, a C++ class declaration looks very similar to a C structure declaration.
In C++, classes and structures are nearly identical. The C++ language adds all the capabilities of
classes to C structures with one minor difference. C++ class members default to private, whereas C

N o T E structure members default to public.

When a C++ class is instantiated, or created, an instance of the class is created. An instance of a class is an
actual chunk of memory in the address space of an executing application process. A class is the definition
of the characteristics of that chunk of memory. A C++ class is of no use unless instances of the class
(objects) are created and used at run time. Whenever a class is instantiated, its constructor is called. The
constructor's primary purpose is to initialize member data. Contrast this with the C technique of initializ
ing structured data.

struct Fruit

};

char* pszName;

long lWeight;

char* pszColor;

typedef struct Fruit Fruit;

If we need to create and use a Fruit structure, we use the following code:

APPLE 1108 - Page 46

Designing Reusable Components with C++ -+- 21

void SomeFunction()

II Let's create an apple on the stack

Fruit Apple;

II The structure contains members that must be

II allocated and initialized. This memory is allocated on the heap.

Apple.pszName = (char*) malloc(sizeof("Apple") + 1) ;

strcpy(Apple.pszName, "Apple") ;

Apple.lWeight = 6;

Apple.pszColor = (char*) malloc(sizeof ("Red") + 1) ;

strcpy(Apple.pszColor, "Red");

II Do something with Apple ...

II Now deallocate any non-stack allocated memory

free(Apple.pszName);

free(Apple.pszColor);

II As the Apple structure goes "out of scope" only its memory

II is deallocated

To do the same using C++ classes and constructors, you might do this:

class Fruit

private:

CString m_strName;

long m_lWeight;

CString m_strColor;

public:

II Provide a default constructor that initializes

II the class members. This cannot be done using the

II C structure method above.

Fruit()

m_strName m_strColor "";

m_lWeight 0;

II Overloaded constructor. This constructor takes parameters

II that initialize the members of the new fruit object.

APPLE 1108 - Page 47

22 + CHAPTER 2

};

Fruit(CString strName, long lWeight, CString strColor)

m_strName strName;

m_lWeight lWeight;

m_strColor = strColor;

Now when we need to create an instance of an apple, all we have to do is this:

void SomeFunction()

/ / Let's create an apple on the stack.

II We provide the parameters to initialize our

II new apple. The constructor handles the allocations

II for us. Contrast this with the C example.

Fruit Apple("Apple", 6, "Red") ;

II Do something with Apple ...

II As the Apple variable goes "out of scope"

II C++ takes care of cleaning up any memory for us.

II It does this with a destructor that we'll discuss

II in a moment.

C++ makes the creation of user-defined types very easy. You code the logic in the constructor, and it is used
whenever an object of that type is created, whether it is on the stack or on the heap. You could also do this in
C by using a function that takes the particular parameters for the structure and a similar function for the
deallocation of the dynamically allocated memory. In this case, you must ensure that you call the function
for deallocation before the structure goes out of scope. As you will see in a moment, C++ provides for auto
matic deallocation (" desh·uction") of objects as they go out of scope.

Dynamic creation of structures and classes is a fundamental element of both C and C++ programming.
Constructors allow the orderly initialization of dynamic elements as they are created. Constructors also
remove much of the tedium involved in allocating dynamic objects. You code the constructor once, and it
does the work from then on.

The syntax for declaring a constructor is the class name itself with zero or more parameters. If you do
not specify any constructors for your class, the compiler will provide a default constructor that takes no
arguments. On the other hand, if you specify any constructors at all, the compiler will not provide the
default constructor. You must implement any constructors that you will need. Constructors can be
overloaded, which provides the ability for a function to be multiply declared, and the compiler will deter-

APPLE 1108 - Page 48

Reusable

mine, by matching the parameters, which function to call. Our previous example contained two construc
tors, each with the same function name. We will discuss overloading in more detail in a later section.

In the previous example, which contrasted the dynamic creation of structures in C and C++, the objects were
initially allocated on the stack. C++ provides two additional operators-new and delete-to help in the
dynamic creation of objects on the heap. In C++, new should be used instead of the C malloc function, and
instead of using the C free function you use the C++ delete operator.

II Instead of this

void TheCWay ()

char* pszColor;

if (pszColor = malloc(128))

II Error handling code ...

II Do something with pszColor ...

free(pszColor) ;

II do this

void TheCppWay()

char* pszColor = new char[128];

NULL)

II Make sure the new worked. We only need to do this

II if we haven't installed a memory exception handler.

assert(pszColor);

II Do something with pszColor ...

delete [] pszColor;

The last example shows an important point to remember when you're using new and delete. When an
array of objects (or intrinsic types) is allocated, it's important to append [] to the delete operator so that it
knows whether one or multiple objects are being deleted.

There are other benefits of using new and delete instead of malloc and free. Instead of checking the
return from new every time you allocate a new object, you can ignore it. Most compilers (including Visual
C++) provide an exception mechanism to handle situations when memory is low. If new cannot allocate the

APPLE 1108 - Page 49

24 + CHAPTER 2

needed memory, an exception is thrown. This technique allows developers to handle memory failures in one
specific function instead of sprinkling their code with tests for a NULL return from malloc. However, the
compiler's default behavior is to return 0 if new cannot allocate the memory. You must provide a simple
exception handler to enable an exception thrown when an "out of memory" occurs. That's why I used the
assert after the new in the preceding example.

Also, you can call delete on a NULL pointer. This is defined behavior, and delete will do nothing.
There is no need to write code such as the following.

II During initialization (construction)

char *pszTemp = O;

.. . II pszTemp may be used during execution

II Sometime later, during cleanup (destruction)

if (pszTemp)

delete pszTemp;

Because calling delete on a zero pointer is defined, the if is not needed, although some developers still do
it just to be safe.

The MFC libraries override the default new and delete operators when compiling and linking in
debug mode. This enables MFC to keep track of all allocations and deallocations during the lifetime
of your application. If your application terminates without deallocating all the memory allocated,

N 0 T E MFC will dump (to the debug window) the memory address and allocating source line of each mem-
ory block that was not deallocated properly. This is a very useful debugging tool.

Just as C++ provides a method to ensure the orderly creation of objects, it also provides for the orderly
destruction of objects via a destructor. The syntax for a destructor is similar to that of a constructor except
that destructors cannot take parameters. Like constructors, destructors also cannot return a value.
Destructors are identified using the class name preceded by a tilde (~). Following is a destructor for our
Fruit object:

class Fruit

private:

CString m_strName;

long m_lWeight;

CString m_strColor;

public:

APPLE 1108 - Page 50

};

Designing Reusable Components with C++ + 25

II Provide a default constructor that initializes

II the class members.

Fruit () {

};

m_strName = m_strColor "";

m_lWeight = O;

II Overloaded constructor. This constructor takes parameters

II that initialize the members of the new fruit object.

Fruit(CString strName, long lWeight, CString strColor)

m_strName strName;

m_lweight lWeight;

m_strColor = strColor;

II Here's the declaration of the destructor

-Fruit () {

cout << "Destructing Fruit object" << endl;

Destructors don't normally do very much, and the compiler will provide one for you if you do not declare
one within your class. User-declared destructors should be used, though, when your class dynamically allo
cates memory (that lives across method calls) from the heap during its lifetime. Here's an example:

II Declaration

II CobList is an MFC linked-list class, here we are

II inheriting the functionality of the linked-list.

II We will discuss inheritance in a moment. For now,

II just treat the FruitBasket class as a linked list.

class FruitBasket : public CObList {

public:

};

FruitBasket();

II Declaration of the destructor

-FruitBasket ();

void Additem(Fruit* pitem);

II Implementation of the destructor

FruitBasket: :-FruitBasket()

II Get the position of the first element

APPLE 1108 - Page 51

26 + CHAPTER 2

POSITION pos = GetHeadPosition();

II Spin through and delete each element in the list

while(pos)

II get the element, delete it, and increment to the next element

delete GetNext(pos) ;

RemoveAll();

The destructor for the Frui tBasket class ensures that the linked list of Fruit items is deallocated just
before the object's final breath. If the compiler had provided a default destructor, any items in the list would
not be properly destroyed. Here's another use for constructor and destructor implementations:

class Fruit

static int m_nCount;

Fruit();

virtual -Fruit();

};

int Fruit::m_nCount = O;

Fruit:: Fruit ()

m_nCount++;

Fruit: :-Fruit()

m_nCount-;

We haven't talked about static items yet, but the preceding code enables us to keep a count of the number
of Fruit objects that exist at any time during execution. As each Fruit object is constructed, a counter is
incremented. During destruction, the counter is decremented.

I e
In the last few sections we discussed the first element of object-oriented development: encapsulation. Now
let's take a look at the object-oriented language characteristic that provides for our primary goal of software

APPLE 1108 - Page 52

Reusable with C++ +

reusability. As discussed in Chapter 1, the object-oriented language characteristic of inheritance provides for
the reusability of software modules. Inheritance is the primary mechanism for reuse and is one of the major
strengths of C++. The MFC libraries also use inheritance extensively, so it's important that you understand
what it's all about. Let's start with an example.

Figure 2.1 illustrates a hierarchical relationship between a set of collection classes. Class hierarchies are
essential for organizing classes of similar capabilities. Hierarchies are usually depicted as in the illustration
in a top-down manner. The top object is the most general and is usually abstract (we'll talk more about this
in a minute). As you move down the hierarchy, the classes become more specific in their function. This ele
ment is important in the design of object-oriented software, where the goal is to program the exception. In
other words, when you're developing new software, (new classes), it is desirable to derive from an existing,
tested class.

Inheritance
Hierarchy

Ordered Collection

Sorted Collection

Figure 2.1 Example collection inheritance hierarchy.

The examples we discuss initially in this section are based on the Smalltalk implementation of collections.
Smalltalk is a pure object-oriented programming environment and is useful for instructive purposes. The
examples in this section use C++ syntax, but we won't concern ourselves much with how the functionality is
provided. Our focus is on what inheritance is and what it can provide.

A collection is a group of disparate object instances. At the highest level in the hierarchy, there is no
requirement for ordering or uniqueness of the collected elements. It's a loosely associated collection of
objects. The top-level Collection class implements those functions (or methods) that are necessary for all
collections. It strives to be general and thus provides only those functions that all collections need. At the
next level are the Bag, Set, and IndexedCollection classes. These classes build on, or augment, that
functionality provided by the base class, or superclass, Collection. Again, the purpose of aligning these
classes in this way is to allow the reuse of base class code in the classes that derive from it. The Collection
class might be declared this way in C++ (ignore the virtual keyword for now):

class Collection

public:

APPLE 1108 - Page 53

28 + CHAPTER 2

};

virtual void Add(CObject) ;

virtual BOOL IsEmpty();

virtual void Remove(CObject) ;

virtual BOOL Has(CObject);

virtual int HowMany(CObject) ;

The Collection class encapsulates the basic behavior of a collection and implements the things that all col
lection classes should have. Add, Remove, IsEmpty, Has, and HowMany provide this basic functionality.
For now, let's not concern ourselves with how the methods are implemented. Here's the definition of the
Bag class.

class Bag public Collection {

};

That's it-a Bag's implementation is completely inherited from the Collection class. The functionality
provided by Collection is all that is required to implement a Bag object. What is a Bag? It provides an
unordered collection that allows duplicates and provides an easy way to count occurrences of objects. Pretty
easy, isn't it? Here's how we might use the Bag class:

void SomeClass: :SomeMethod()

Bag aBag;

for (int i = O; i <= 100; i++)

II Add an integer that is the remainder

II of the modulo division. This adds

II integers in the range [0 .. 9]

II The Add member is from the base Collection class

aBag.Add(i % 10) ;

II How many 5s are in the bag?

aBag.HowMany(5) ;

II Are there any 14s in the bag?

aBag.Has(14) ;

Now let's discuss the C++ syntax for declaring inheritance. In the Bag example, we are declaring a new class
that is publicly derived from the Collection class. The colon following the class declaration (e.g., Bag :
public Collection) signifies derivation, and the public keyword indicates public inheritance of the
Collection class. Public inheritance is almost always used, and soon I'll explain why. With the syntax out
of the way, let's look at the implementation of the Set class.

APPLE 1108 - Page 54

class Set public Collection {

public:

void Add(CObject);

};

void Set: :Add(CObject obj)

if (Has(obj))

return;

II Call our parent's Add method

Collection: :Add(obj) ;

Reusable with C++ -+- 29

A Set is similar to a Bag, but it cannot contain duplicate elements. All we do is derive from the
Collection class and override the Add member function. (We'll talk more about overriding functions in a
minute. For now, overriding a member function means to re-implement, or hide, the implementation of the
parent, or base, class.) As you can see, in the new Add method, we check to see whether the object being
added already exists. If it exists, we simply return; otherwise, we call the base Collection's Add method to
add the item to the collection. This is what object-oriented development is all about. To add this new func
tionality, we wrote five lines of code.

The IndexedCollection class is a little more complicated. We need an additional member variable
to help with the indexing, and it must be coordinated with the Collection class. We're talking in the
abstract here, so don't worry about the details. Following is the definition for IndexedCollection.
Indexed collections allow for iteration over the collection as well as direct access to specific elements via
its index, but you can't specify the index when adding new elements. (It's basically a simple linked list.)
Here's the definition for the IndexedCollection class.

class IndexedCollection : public Collection

public:

};

II New Methods

CObject First();

CObject La7t();

CObject Next(Position) ;

long IndexOf(CObject) ;

With this definition, the FixedSizeCollection is easy to implement:

class FixedSizeCollection : public IndexedCollection

APPLE 1108 - Page 55

30 + CHAPTER 2

private:

long m_lMaxSize;

long m_lCurrentSize;

public:

long Add(CObject);

};

long FixedSizeCollection: :Add(CObject obj

if (++m_lCurrentSize > m_lMaxSize

m_lCurrentSize-;

return ERROR;

II Call the parent implementation to add the object.

IndexedCollection: :Add(obj) ;

return NO_ERROR;

By now, you should see the effectiveness of reusing class code through inheritance. The goal is to build
generic classes first and then proceed with inheritance to produce specific solutions. Inheritance won't solve
all our problems, and we need to be careful not to abuse it. Let's look at what makes for good inheritance.

When should inheritance be used? This is a difficult question to answer. Typically, when we're deciding
whether an object should be derived (or inherited) from an existing class, the new object should pass the "is
a" relationship test. In our simple example, a Bag "is-a" type of Collection. There is little ambiguity here,
but in real development situations distinct delineations between objects seldom exist.

The MFC libraries use inheritance extensively. Almost all classes derive from the CObj ec t class.
Figure 2.2 shows a small part of the MFC hierarchy; in particular, this is a section of the visible objects
hierarchy. The CWnd class encapsulates most of the Windows API functionality for generic window
manipulation: SendMessage, ShowWindow, InvalidateRect, and all the others. And, thanks to inheri
tance, as you move down the hierarchy additional functionality is added. CListBox contains all the func
tionality of a standard window as well as the methods useful for listbox manipulation: AddString,
GetCurSel, GetCount, SetitemHeight, and many others. Because CListBox is derived from CWnd,
all the member functions implemented in CWnd are also available to the CListBox user.

APPLE 1108 - Page 56

Reusable with C++ + 31

CObject

CDC CmdTarget CObList

i
Etc ... CWnd Etc ...

CButton CDialog

Figure 2.2 MFC visual object hierarchy.

Inheritance is only one of the methods that can be used to reuse code by building new classes. Other meth
ods are equally effective. In a later section we will discuss class composition, another powerful method of
reusing classes that have "has-a" type relationships.

The C++ keywords public, protected, and private allow class designers to tailor the inheritance
capabilities of their classes. We'll discuss them next.

" IC, ,
As stated earlier, the concept of data hiding, or encapsulation, is an important characteristic of object-oriented
development. C++ provides the public, protected, and private keywords to allow various degrees of
visibility for class members.

Public is the easiest to understand. Anything declared public within a class, whether it is a member
variable or a function, is visible to any user of the class. This is exactly the behavior if a structure is used
instead of a class. The following declarations are equivalent:

struct Address {

};

CString m_strName;

CString m_strAddress;

CString m_strCityState;

class Address

public:

CString m_strName;

CString m_strAddress;

APPLE 1108 - Page 57

32 + CHAPTER 2

CString m_strCityState;

};

Protected indicates that the members are private, or hidden, from class users, but are public to derived
classes and their members. Private members of a class can be accessed only by other members of the same
class. There is no visibility outside the class, even through inheritance. Determining when to use each of the
three keywords is a design decision. Typically, class interfaces are declared public, and implementation
members are declared protected or private. Here are some examples:

class Fruit {

II Private members, only Fruit members can access

private:

CString m_strName;

void DoSomethingPrivate() {)

II Protected members, only Fruit and other derived class members

II can access

protected:

CString m_strColor;

long m_lWeight;

void Doo;omethingProtected () {}

II Public members

public:

II Constructors

Everybody can access these

Fruit() { m_strName.Empty();

Fruit(CString str) { m_strName str; }

void DoSomethingPublic() {}

void SetWeight(long lWeight) { m_lWeight

long GetWeight() { return m_lWeight; }

lWeight; }

void SetName(CString str) { m_strName str; }

CString GetName() { return m_strName; }

void SetColor(CString str) { m_strColor

CString GetColor() { return m_strColor; }

};

II
II Publicly derive from Fruit

II
class Pear public Fruit {

public:

II Constructors

str; }

APPLE 1108 - Page 58

Designing Reusable Components with C++ + 33

Pear();

Pear(CString strName) ;

void PearFunction();

Pear : : Pear ()

II Can't do this because name is private

m_strName.Empty(); //error

II Must do this instead

SetName("") ;

II Protected member, OK

m_strColor = "Green";

Pear: :Pear(CString strName)

11 As above

SetName(strName);

ll_StrColor = "Green";

II Can access all of the public and protected members

II But can not access private members

void Pear::PearFunction()

II We can directly access protected members

m_strColor = "Green";

II We can't to this, it's private

DoSomethingPrivate();

II We're derived so we can do this

DoSomethingProtected();

main()

Fruit* pApple =new Fruit("Apple") ;

II I'm a class user so this is illegal

pApple->m_strColor ="Red";

APPLE 1108 - Page 59

34 + CHAPTER 2

II Even more illegal

pApple->m_strName = "Apple";

II Illegal

pApple->DoSomethingProtected();

I I Illegal

pApple->DoSomethingPrivate();

pApple->SetColor ("Red") ;

pApple->DoSomethingPublic();

delete pApple;

II OK

II OK

All these examples use public inheritance. The keyword preceding the base class indicates the specific type
of inheritance. Protected and private inheritance are seldom used, primarily because they defeat or
severely hamper the notion of inheritance.

When private inheritance is declared, the members inherited from the parent all become private in
the newly derived class. Also, any pointers to this new class cannot be substituted for pointers of the base
class. Nothing inherited from the base class is exposed to the user of the derived class. In other words, the
purpose of inheritance, extending and augmenting a base class, is forfeited. Protected inheritance is simi
lar to private inheritance. All public and protected members of the derived class become
protected, and any private members remain private. Most often, derivation of new classes should
use the public keyword. Only in rare cases should private and protected inheritance be used. Private
and protected inheritance disable or hide the interface of the base class, but leave its implementation.

Function overriding allows the hiding or re-implementation of a particular member function that is inher
ited from a parent class. Continuing our fruit example:

class Fruit

};

II Ignore the virtual keyword for now.

II We'll cover it momentarily

virtual void SayName() { cout << "My name is " << GetName() << endl; }

class FrenchFruit public Fruit {

virtual void SayName () { cout << "Je m' apelle " << GetName () << endl; }

l;

APPLE 1108 - Page 60

Reusable with C++ + 35

Although this is a contrived example, it illustrates the point. By declaring a function, SayNarne, in a derived
class with the same name as one in the parent class, you hide, or override, its implementation. This tech
nique provides a method to override the default behavior of the parent class. Even though you are overrid
ing the behavior of the parent class, you need not completely hide the functionality. You can call the parent
implementation at any time during your new implementation. Using the MFC libraries, you'll do this quite
often. Here's a simple example using CObj ect, the base class for most of MFC.

II Abbreviated from afx.h

class CObject {

public:

virtual void Dump(CDumpContext& de) ;

class Fruit public CObject {

protected:

CString m_strName;

CString m_strColor;

virtual void Dump(CDumpContext& de)

II Dump the parent's members

CObject: :Dump(de) ;

II Now dump our members

de<< "Fruit contains\n";

de << \\\tName is 1
' << m_strName << ''\n";

de<< "\tColor is "<< m_strColor << "\n";

class Apple public Fruit {

protected:

long m_lNumberOfSeeds;

public:

virtual void Dump(CDumpContext& de)

II Dump the parent's members

Fruit: :Dump(de) ;

II Now dump our members

de<< "Apple contains\n";

de<< "\tNumber of seeds is " << m_lNumberOfSeeds << "\n";

APPLE 1108 - Page 61

36 +CHAPTER 2

II Do this to get a run-time dump of the objects

afxDump << pApple;

II produces this output

>

> a CObject at $2411

> Fruit contains

> Name is Apple

> Color is Red

> Apple contains

> Number of seeds is 35

>

Dump is a member function of CObj ect, the top-level object of the MFC hierarchy, and provides debugging
information for classes that derive from it. Dump provides a hierarchical dump of member variables of each
object in 'the inheritance chain. Derived classes don't need to know and sometimes cannot know about all
the members of the parent classes. The parent's Dump function is called in the implementation of the derived
member's Dump function. This arrangement provides a useful, encapsulated way of dumping all of an object
for debugging purposes.

It isn't a good idea to override functions of the parent class unless they've been declared virtual. We
will discuss virtual functions in a moment. For now, remember that declaring functions in derived classes
hides all functions with the same name in the base class.

C++ allows functions, methods, and operators to be overloaded. Overloading is an object-oriented term that
describes a type of polymorphism. C++ overloading allows you to implement a function (or method) with
the same name multiple times, but each implementation must differ by the number or type of parameters,
and it cannot differ by return type only. Here is an example from the MFC libraries:

class CRect

public:

void InflateRect(int x, int y) ;

void lnflateRect(SIZE size);

APPLE 1108 - Page 62

Designing Reusable Components with C++ + 37

The MFC CRect class provides two methods for inflating a rectangle. To make it easy for the class user,
InflateRect can be called with an x and y coordinate or a SIZE structure. This arrangement allows the
developer to pass the most convenient parameter. The compiler determines which function to call by match
ing the type to the appropriate function. How does the linker resolve the ambiguity of two public methods
having the same name?

In Chapter 1, I pointed out that C++ objects don't natively support sharing across languages or even
across C++ implementations, because there is no standard way of mangling or decorating function and
method names. Borland, Watcom, and Microsoft mangle C++ function names in proprietary ways.
Mangling provides unique public names for each C++ function, solving the problem of link-time resolution.
The mangling algorithm guarantees a unique name for all possible combinations of function names and
parameters. Both the compiler and the linker must agree on the particular technique of mangling. Here are
the mangled names generated by the Visual C++ compiler for the two InflateRect methods. To see them,
compile and link with the proper command-line switches to produce a .MAP file.

II Mangled names for InflateRect

?InflateRect@CRect@@RECXHH@Z

?InflateRect@CRect@@RECXUtagSIZE@@@Z

One obvious use of overloading is in constructors. Class constructors are often overloaded to take various
parameters during construction. This technique enables an object to be instantiated in various states depend
ing on what is known about the object at the time of instantiation.

class CRect

public:

II Overloaded constructors for CRect class

CRect();

CRect(int 1, int t, int r, int b);

CRect(canst RECT& srcRect) ;

CRect(LPCRECT lpSrcRect) ;

CRect(POINT point, SIZE size);

II Mangled names for the above CRect constructors

??OCRect@@REC@AFUtagRECT@@@z

??OCRect@@REC@HHHH@Z

??OCRect@@REC@PFUtagRECT@@@z

??OCRect@@REC@UtagPOINT@@UtagSIZE@@@z

??OCRect@@REC@XZ

APPLE 1108 - Page 63

+CHAPTER 2

The MFC CRect class has five public constructors. The constructors are overloaded so that the class user has
multiple methods to initialize a CRect object. This technique provides flexibility for class users who can use
the constructor that best fits their needs.

When you're overriding an inherited function that is overloaded, all the parent member functions,
and not just the particular one you have overridden, are hidden. Here's an example:

N 0 T E

class Base

public:

virtual long Sum(int i) { return i; }

virtual long Sum(int i, int i2) { return i + i2;

virtual long Sum(int i, int i2, int i3) { return i + i2 + i3; }

};

class Derived : public Base {

public:

};

II Overriding this function hides all implementations

II in the base class.

virtual long Sum(int i , int i2) { return SpecialSum(i, i2) ; }

main()

Derived derived;

II Error can't do this, the inherited overloaded members are gone

derived.Sum(1, 2, 3) ;

Virtual functions allow C++ programs to resolve function calls dynamically (at run time) instead of statically
at compile time. This powerful feature of C++ is what provides many of its object-oriented features. In early
binding languages such as C, the specific function to call in any particular instance is determined at compile
time. C supports run-time binding, but the developer must do much of the work (using pointers to func
tions). C++ makes it much easier. Virtual functions allow the implementation of polymorphism, which is the
ability of an object to respond differently to the same method or member function at run time depending on
the object's type.

Virtual functions don't do much if you declare only one class. The strength of virtual functions is visible
only as you augment existing base classes by creating subclasses of the original base class. The following

APPLE 1108 - Page 64

Reusable with C++ + 39

example demonstrates the power of using virtual functions, which allow the dynamic determination of
member function calls at run time instead of compile time.

class Fruit

protected:

CString m_strNarne;

CString m_strColor;

public:

};

virtual void

CString

Draw() {};

GetColor();

The declaration for our Fruit class now contains a virtual function, Draw, that returns void and does noth
ing. The base fruit class does not have an implementation for Draw, because each particular type of fruit
should implement its own Draw function. Let's derive some fruit from this base class.

class Apple : public Fruit {

virtual void Draw() { cout << "I'm an Apple" << endl; }

};

class GrannySmith : public Apple {

virtual void Draw() { cout « "I'm a Granny Smith Apple" « endl; }

};

class Orange : public Fruit {

virtual void Draw() { cout << "I'm an Orange" << endl; }

};

class Grape : public Fruit {

virtual void Draw() { cout << "I'm a Grape" << endl; }

};

Each class that is derived directly or indirectly from Fruit implements its own Draw function, which prints
that particular fruit's type. In itself, this isn't anything spectacular but look at the following code:

int main()

Fruit* pFruitList[4];

pFruitList(O] = new Apple;

pFruitList[l] = new Orange;

pFruitList[2] =new Grape;

pFruitList(3] new GrannySmith;

for(int i = O; i < 4; i++)

pFruitList(i]->Draw();

APPLE 1108 - Page 65

40 +CHAPTER 2

delete pFruitList[i];

II Produces this output

>

> I'm an Apple

> I'm an Orange

> I'm a Grape

> I'm a Granny Smith Apple

>

This code illustrates the power of virtual functions. We've declared an array of pointers of type Fruit, the
base class, and have assigned to each element the address of an instance of a particular derived fruit type. As
the line pFrui tList [i] ->Draw () is executed, the program dynamically determines which member func
tion to invoke. This dynamic binding is implemented with a virtual function table, which we'll discuss in a
moment.

Abstract classes provide a model or template for all classes that derive from them. In our Fruit example,
the base class Fruit is a very good abstract-class candidate. A "fruit" is itself an abstract thing. In real life,
we cannot instantiate a "general" fruit object, something that has the broad characteristics of a fruit but isn't
a specific kind of fruit. Abstract classes are used this way to categorize and classify things that have similar
characteristics. Our base Fruit class contains the essence of all fruits but nothing specific. This makes it a
perfect example of an abstract class.

class Fruit

protected:

CString m_strName;

CString m_strColor;

public:

void SetColor(CString str) { m_strColor = str;

CString GetColor() { return m_strColor; }

void SetName(CString str) { m_strName = str; }

CString GetName() { return m_strName;

virtual void Draw () = 0;

virtual long GetAvgWeight() = O;

};

Abstract classes provide those properties and actions that all fruits share. Abstract classes can choose not to
implement specific member functions and require deriving classes to implement those functions. In the pre-

APPLE 1108 - Page 66

Designing Reusable Components with C++ + 41

ceding example, the Draw function is declared as pure virtual by using the notation= 0. This notation indi
cates that all deriving classes must implement some form of the Draw function. By declaring a pure virtual
function within a class, the class designer also makes the class abstract, meaning that the class cannot be
instantiated. Although the class itself cannot be instantiated, pointers to the class can be used, and this
proves to be an important characteristic. Recall the preceding example with the array of Fruit pointers.

int main()

II Now we can't do this

Fruit fruit; II It doesn't make sense anyway, does it?

II But we can still do this, and it produces the same output

II as the example above.

Fruit* pFruitList[4];

pFruitList[O] = new Apple;

pFruitList[l] = new Orange;

pFruitList[2] = new Grape;

pFruitList[3] = new GrannySmith;

for(int i = O; i < 4; i++

pFruitList[i]->Draw();

delete pFruitList[i];

The ability to determine object behavior at run time instead of only at compile time is a major improvement
over C and provides the polymorphic behavior required by object-oriented development.

Virtual functions allow C++ programs to invoke functions dynamically instead of statically. Other terms for
dynamic and static function invocation are late binding and early binding, referring to binding the function
address either at run time or at compile time. Whenever you declare a function as virtual, the compiler adds
a pointer to your class structure called the vptr, or virtual pointer. The vptr points to a Vtable structure that
contains the addresses of any virtual functions in your class including its base classes. Figure 2.3 depicts the
vptr and the Vtable entries for the following class definition:

class Fruit

protected:

CString m_strColor;

public:

APPLE 1108 - Page 67

42 + CHAPTER 2

void

CString

virtual

virtual

class Apple

protected:

long

public:

SetColor(CString str) { m_strColor

GetColor() { return m_strColor; }

void Draw() = 0;

long AvgWeight () O;

public Fruit {

lAvgWeight;

II Constructor

Apple() { lAvgWeight = 10;

str; l

virtual void Draw() { cout « "I'm an Apple" « endl;

virtual long AvgWeight() { return m_lAvgWeight;

class GrannySmith

public:

public Apple {

virtual void Draw() { cout « "I'm a Granny Smith Apple" « endl; }

Apple Instance Vtable

-"

_Vptr

m_strColor

m_IAvgWeight

SetColor()

GetColor()

Granny Smith
Instance

_Vptr

m_strColor

m_IAvgWeight

SetColor()

Ge!Color()

..______!\
&Apple::Draw()

&Apple::AvgWeight()

Vtable ~---~
~

&GrannySmith::Draw()

&Apple::AvgWeight()

Figure 2.3 Vtable for fruit classes.

There is only one Vtable
for each class. The data
contained in it is static

and does not depend on
any particular object

instance.

There is an entry in the
Vtable for every virtual
function declared in the
class. This includes any
virtual functions in the
parent or base class.

APPLE 1108 - Page 68

Designing Reusable Compon~nts with C++ + 43

The Vtable provides the dynamic binding capability for C++. Examine the following example code:

main()

Fruit* pFruit;

Apple apple;

GrannySmith gsApple;

pFruit = &apple;

pFruit->Draw();

cout << "Average weight for an Apple is " << pFruit->AvgWeight() << endl;

pFruit = &gsApple;

pFruit->Draw();

cout << "Average weight for a Granny Smith is "

<< pFruit->AvgWeight()

<< endl;

This example produces the following output:

>I'm an Apple

>Average weight for an Apple is 10

>I'm a Granny Smith

>Average weight for a Granny Smith is 10

The example creates pFrui t, a pointer to the Fruit abstract class, and then assigns to it the address of an
Apple instance. Because Fruit is an abstract class, the compiler knows that pFrui t will point to a
dynamic (or polymorphic) type. When the statement pFrui t->Draw () is encountered, the compiler gener
ates instructions to access the vptr, look up the virtual function by position in the Vtable, and transfer execu
tion to the address contained in the Vtable.

This late binding of function addresses at run time is important to object-oriented languages. Some
object-oriented languages-Smalltalk and Java in particular-bind all functions late. Other languages,
including C++, leave it up to the developer to decide which functions should bind late. C++ does this for
performance reasons. There is overhead in providing the late binding necessary for polymorphic behavior.
For every class that has at least one virtual function, a Vtable is needed for the class and a vptr is needed for
each instance. The vptr must be initialized for each instance, and there is the run-time overhead of function
lookup every time a virtual function is called.

That finishes our review of virtual function capabilities in C++. I've included it here because we will
need this background as we begin to discuss COM and Automation in subsequent chapters.

APPLE 1108 - Page 69

44 + CHAPTER 2

I
Multiple inheritance (MI) is one of those philosophical topics that are best not discussed. There are those who
say MI is an important part of object-oriented development and that certain problems can be solved (ele
gantly) only with ML Others argue that anything you can do with MI can also be done using single inheri
tance. Indeed, many object-oriented languages, such as Smalltalk and Objective-C, support only single
inheritance, but C++ supports multiple inheritance. We won't use multiple inheritance for our purposes, but
in the Chapter 4 we will encounter it as we discuss the Component Object Model's concept of component
interfaces.

We've discussed the wonderful things that inheritance can do. If inheritance is a wonderful thing, then
multiple inheritance must be really impressive. You tell me. In the next example we have two classes:
Speedometer and Tachometer.

class Speedometer {

protected:

int m_Speed;

RECT m_Position;

public:

int Mph();

int Kph();

void Display();

};

class Tachometer

protected:

int m_Rpm;

RECT m_Position;

public:

int Rpm();

void Display();

};

Now, we create a new class, DashBoard, that combines the features of both classes.

class DashBoard : public Speedometer, public Tachometer {

void SpeedPos();

};

void TachPos();

void Display();

void SpeedDisplay();

void TachDisplay();

APPLE 1108 - Page 70

Designing Reusable Components with C++ + 45

DashBoard now has "name ambiguity" within itself: both Tachometer and Speedometer have member
variables named m_Posi ti on. In addition, there is a collision with the member function Display. This
ambiguity is one of the primary problems with multiple inheritance. It can be overcome either by not using
the ambiguous members or by directly addressing them using the class name:

void DashBoard: :Display()

Speedometer: :Display();

Tachometer: :Display();

The MFC libraries do not use multiple inheritance at all, primarily because MFC is structured as a hierarchy
in which almost every class derives from CObj ect. Multiple inheritance of MFC objects would imply the
inclusion of multiple CObj ect objects, and this would cause name collisions, or ambiguity, with the MFC
Dump function, among others. All this is explained in detail in MFC TechNote 16. If Microsoft developed MFC
without resorting to multiple inheritance, I think we can infer that most C++ projects can do without it.
Later, when we discuss COM interfaces, you'll be tempted to use multiple inheritance. It's a problem beg
ging to be solved with MI, but MFC uses class nesting and class composition instead.

Instead of using single or multiple inheritance, a problem can also be solved by using composition, also called
containment or embedding. Class composition involves including instances of other classes within the new
class. This approach works best when there is a "has-a" relationship between the various classes. For exam
ple, an apple "is-a" type of fruit, so inheritance is appropriate. A fruit tree, on the other hand, "has-a" fruit,
so composition is the better object-oriented approach. Instead of using multiple inheritance to combine the
needed features, we create a new class by using a combination of inheritance and composition or by using
composition alone.

Using the previous dashboard example, let's try to build a dashboard class by using class composition.
A dashboard doesn't fit the "is-a" relationship required for inheritance. A dashboard is definitely not a
speedometer, but it does fit the "has-a" relationship of class composition. A dashboard "has-a" speedometer
and possibly a tachometer. So we implement a DashBoard class as follows:

class Speedometer {

public:

int Mph();

int Kph();

};

class Tachometer {

public:

int Rpm();

};

APPLE 1108 - Page 71

46 + CHAPTER 2

class DashBoard

private:

Speedometer m_Speedometer;

Tachometer m_Tachometer;

public:

void SpeedPos();

void TachPos();

void SpeedDisplay();

void TachDisplay();

};

When using composition, we can obtain additional flexibility by storing only a pointer to the included class.
This class can be an abstract base class and will allow us to "plug in" various derived classes. If we had two
types of speedometers-say an analog and a digital type-we could implement the class as follows:

class Speedometer

public:

virtual void DisplayData() O;

};

class AnalogSpeedo public Speedometer {

protected:

void GetAnalogData();

public:

virtual void DisplayData():

};

class DigitalSpeedo public Speedometer {

protected:

void GetDigitalData();

public:

virtual void DisplayData():

};

class DashBoard {

};

Speedometer* m_pSpeedometer;

Tachometer m_Tachometer;

II Constructor that takes a speedometer as a parameter

DashBoard(Speedometer* pSpeedo)

m_pSpeedometer pSpeedo;

APPLE 1108 - Page 72

II At run time, create a dashboard with a digital or analog speedometer

II Dynamic determination of created object

DigitalSpeedo* pDigitalSpeedo = new DigitalSpeedo;

AnalogSpeedo* pAnalogSpeedo = new AnalogSpeedo;

II A digital dashboard

DashBoard* pDigitalDashBoard = new DashBoard(pDigitalSpeedo) ;

II A analog dashboard

DashBoard* pAnalogDashBoard = new DashBoard(pAnalogSpeedo) ;

At run time we can determine what type of speedometer we need for the particular dashboard that we are
instantiating. Composition is an effective method of reusing existing classes and providing the flexibility
needed to reuse code effectively.

The C++ const keyword is useful for adding rigor to your class implementations. We don't have the space
to go into much detail, so I'll hit the high spots with the next example:

BOOL Expression::IsNumber(canst CString& strToken) canst;

Here are two examples of using const. Const prior to CString& indicates, that the strToken parameter
is constant and cannot (or will not) be modified by the IsNumber function. Because we're passing by refer
ence (we'll discuss this next) to increase efficiency, we want to ensure the class user that we will not modify
the token that is being passed. The const following the function declaration ensures that the IsNumber

function cannot modify any member variables of the Expression class. In other words, the const applies
to the implicit this parameter passed to all member functions. Additionally, it ensures that IsNumber will
not call any other member functions that can or might modify a member variable-that is, other member
functions that aren't declared const.

The ampersand after CString in the IsNumber method above is called a reference. This new C++ feature
causes much confusion, especially for old C programmers like me. Let's take a quick look at why references
are useful when you're developing C++ applications. First, references clean up the syntax when you're
working with pointers, and second, their use can greatly increase efficiency when you're passing objects to
functions.

A reference behaves just like a constant pointer, but the compiler always provides the dereference oper
ator for you.

APPLE 1108 - Page 73

48 + CHAPTER 2

CString strColor = "Blue Green"; II declare a CString

CString& rStrColor = strColor; II declare a reference to strColor

CString* const pStrColor = &strColor II declare a const pointer to strColor

cout << "Reference " << rStrColor << endl;

cout << "Dereferenced Pointer " << *pStrColor << endl;

Both cout lines produce "Blue Green." References are like const pointers, because once a reference is ini
tialized, it cannot be reassigned to point to a different object. In fact, a reference must be initialized when it is
declared. The next example makes this clear:

CString strColor = "Blue Green"; II declare a CString

CString strAnotherColor ="Yellow"; II declare another CString

CString& rStrColor = strColor; II declare a reference to strColor

CString* const pStrColor = &strColor II declare a const pointer to strColor

II You can't do this

pStrColor = &strAnotherColor

II But you can do this, What do you think this does?

rStrColor = strAnotherColor;

cout << "rStrColor value is " << rStrColor << endl;

cout << "strColor value is " << strColor << endl;

cout << "strAnotherColor value is " << strAnotherColor << endl;

II Produces this output

> rStrColor value is Yellow

> strColor value is Yellow

> strAnotherColor value is Yellow

If rStrColor behaves like a const pointer, why can we assign strAnotherColor to it? We can't. The
example produces an output of "Yellow" not because we were able to reassign the reference, but because
the contents of strAnotherColor were assigned to strColor. In other words, the assignment statement
behaves as if it were this:

*pStrColor = strAnotherColor;

II or

strColor = strAnotherColor;

The assignment operator for CString is called, and it copies the contents of strAnotherColor to
strColor. Remember, wherever rStrColor occurs (outside of initialization) it really means strColor.

References are also useful for increasing the performance of object passing when you're calling func
tions. The following code must call the CString copy constructor and build a copy of the CString instance
to pass to the IsNurnber function:

APPLE 1108 - Page 74

Designing Reusable Components with C++ + 49

II return TRUE if the string is a nwnber

BOOL Expression: :IsNwnber(CString strToken

int nLen = strToken.GetLength();

for (int i = nLen - 1; i >= O ; i-

if (! isdigit(strToken[i]))

return FALSE;

return TRUE;

This may not seem too costly for CString objects, but it can get expensive on large objects. References allow
you to use the same syntax as in the preceding example, but instead of a copy, a reference to the object is
passed to the function. This technique can greatly increase the performance of an application that passes
around large objects. Here's the new function:

II return TRUE if the token is a nwnber

BOOL Expression: :IsNwnber(canst CString& strToken)

int nLen = strToken.GetLength();

for (int i = nLen - 1; i >= O; i-

if(! isdigit(strToken[i]))

return FALSE;

return TRUE;

The syntax is exactly the same when you're accessing an object through a reference, but you must be care
ful. Because we're passing a reference instead of a copy of the string, the function can modify its contents.
However, we're passing by reference for performance reasons. We don't want the function to be able to
modify the contents of the parameter. That's why we've added the const keyword.

e this
C++ defines a keyword, this, that is a pointer to the instantiated object. This keyword is similar to the self
keyword in Smalltalk and the me keyword in Visual Basic. The this pointer is in scope only within nonsta
tic member functions and is normally used when you're dealing with the copy constructor and when you're
overloading operators. As stated earlier, this is available only within member functions and operators. In
these cases, it is implicitly passed, and thus the following code is equivalent:

APPLE 1108 - Page 75

50 + CHAPTER 2

void SomeClass: :SetValue(const short sNewValue)

m_sValue sNewValue;

void SomeClass: :SetValue(const short sNewValue)

this->m_sValue sNewValue;

You'll use the this keyword when building copy constructors and when overriding the assignment (=)
operator. We haven't discussed these two topics, so let's do that now.

We've discussed the role of class constructors in C++, but a particular type of constructor, called the copy
constructor, is important in C++ class development. Whenever you develop a new class in C++, you should
include a declaration for both a copy constructor and the assignment operator. The compiler's default imple
mentations of the copy constructor and assignment operator are rarely what you want. The compiler per
forms a bit-wise copy of the instance members. If your class contains any pointers, this default will cause
problems. We'll examine the assignment operator in the next section.

The copy constructor is used whenever a copy of an existing C++ object is needed. The class it con
structs takes a parameter that is a reference to another instance of the class. Here is an example:

II Copy constructor for Apple class

Apple: :Apple(Apple& x)

II do the assignment

m_strName = x.m_strName;

m_strColor = x.m_strColor;

Apple* pApple = new Apple;

Apple Apple2(*pApple) ; II Calls copy constructor

void PrintFruitName(Fruit fruit)

cout << "fruit name is " << fruit.GetName() << endl;

PrintFruitName(Apple2); II Copy constructor called

APPLE 1108 - Page 76

Designing Reusable Components with C+.::':_~

Like member functions, C++ operators can be overloaded on either a class or global level. The assignment
operator is similar to the copy constructor and should be declared in every class that you design and imple
ment. The assignment operator is used whenever a instance assignment is performed.

Apple* pApple = new Apple;

Apple Apple2 = *pApple;

Apple Apple3, Apple4;

Apple3 = Apple2; II Assignment operator

II If you return a reference to the left hand side (lhs) you can do this

Apple4 = Apple3 = Apple2;

The assignment operator implementation is similar to that of the copy constructor described in the last sec
tion. The primary difference is that you typically return a reference to the object being assigned. Here's its
implementation.

Apple& Apple: :operator=(canst Apple& rhs)

II Ensure we're not assigning to ourselves

if (&rhs == this

return *this;

II do the assignment

m_strName = rhs.m_strName;

m_strColor = rhs.m_strColor;

return *this;

I told you that we weren't going to get very deep in C++ details, but I'll give you a couple of sentences on
deep versus shallow copies (because it's easy at this point). When making a copy of an object that contains
pointers to other objects, what should you do? If you just copy the pointers to the new object, it's a shallow
copy, but if you allocate additional memory and replicate any contained objects or data (for both) you've
performed a deep copy. The choice is, of course, implementation-dependent. (Don't you hate that phrase?)

e
In the constructors example, we encountered the use of static within a class declaration. The next example
describes a method of keeping count of all instantiated objects of a particular class by using a static member
variable. Static member variables are sometimes called class variables because they pertain to the class as a
whole and not to any specific class instance (and because that's what Smalltalk calls them). The class vari-

APPLE 1108 - Page 77

52 +CHAPTER 2

able is a single instance that is available to any and all instantiated objects of that class. Because class vari
ables reside outside class instances, there isn't a constructor to initialize them. Like global variables, they
must be initialized by a definition:

class Fruit

private:

static int m_nCount;

Fruit();

public:

virtual -Fruit();

int GetNumFruits() { return m_nCount; }

};

II Initialization (definition) of class variable (static member variable)

int Fruit::m_nCount = O;

Fruit: : Fruit()

m_nCount++;

Fruit: :-Fruit()

m_nCount-;

This example also has a member function, GetNumFrui ts, that retrieves the number of outstanding
instances of the Fruit class. We would use the function like this:

Fruit* pFl = new Fruit;

cout << "There are "

<< pFl->GetNumFruits()

<< " Fruit objects"

<< endl;

Fruit* pF2 = new Fruit;

cout << "There are "

<< pF2->GetNumFruits()

<< " Fruit objects"

<< endl;

delete pFl;

cout << "There are "

APPLE 1108 - Page 78

<< pF2->GetNumFruits()

<< " Fruit objects"

<< endl;

delete pF2;

Designing Reusable Components with C++ + 53

II How do we get the number of objects?

As you can see, we have a problem determining when there are zero objects. How can we retrieve the num
ber of objects when none is instantiated? Static member functions, or class Junctions or class methods, let us
declare functions that operate on the class as a whole outside the scope of any particular instance, just like
class variables. So if we declare the GetNumFrui ts function as follows, we can always determine the num
ber of fruit objects.

class Fruit {

private:

static int m_nCount;

public:

static int GetNumFruits() { return m_nCount; }

};

Here's the syntax for invoking a class function. You can also append the call to a class instance, but it doesn't
make sense.

Fruit* pFl = new Fruit;

cout <<Fruit: :GetNumFruits(); II The preferred method, no ambiguity

cout << pFl->GetNumFruits(); II Also works, but seems a little silly

There are many cases when you need variables and functions that operate on the class and not on an
instance of a class. The MFC library provides some good examples. Here's an abbreviated look at the MFC
CFile class:

class CFile : public CObject

public:

};

static void Rename(const char* pszFileName, const char* pszNewName) ;

static void Remove(const char* pszFileName) ;

BOOL GetStatus(CFileStatus& rStatus) const;

static BOOL GetStatus(const char* pszFileName, CFileStatus& rStatus) ;

main()

APPLE 1108 - Page 79

54 + CHAPTER 2

};

II Let's rename a file

CFile::Renarne("c:\\oldnarne.txt", "c:\\newnarne.txt");

II Now let's delete it

CFile: :Remove("c:\\newnarne.txt") ;

The static member functions (class methods) can be used without an instance of the CFile class, and this
approach is appropriate for functions such as Rename, Remove, and GetStatus. But as you can see, a
member function is also provided that is specific to an instance of the CFile object. Remember, static mem
ber variables and functions should operate on the class as a whole and not on any particular class instance.

That ends our overview of the C++ language. Next, we'll design and develop a small class that we will
use in later chapters.

Our hypothetical expression evaluator application needs to allow its users to enter an expression in a stan
dard Windows entry field in which they are currently allowed to enter only integer values. In short, we need
to provide a simple integer calculator where they may need it, within the entry field itself. This is standard
fare in a spreadsheet, but our users want something simple. To start, let's develop a C++ class that provides
validation and evaluation of simple algebraic expressions such as these:

((1 + 2) * 100 I 5) 12

5 * 17 - 3 + 3200

(1 + 22) * 7 I lO

Only integers and the binary operators +, -, *, I, and parentheses will be supported, but support for addi
tional operators, user variables, and rational numbers shouldn't require much effort. We will use this exam
ple throughout the book as we move from a C++ class to an Automation component and eventually to an
ActiveX control based on this expression functionality.

We have a problem statement, so let's design a C++ class that will provide the needed functionality.
Designing reusable classes in C++ is a difficult task. In typical development environments, because of pro
ject time constraints, developers tend to solve the specific problem first. Then, if there's time, they go back
and adapt the software (classes) to be more general so that it can be reused. There are valid reasons for doing
it this way. If the problem to be solved is unclear or complex, only development of the specific solution will
yield enough understanding to ultimately produce a general solution. Technology changes so rapidly that
we really understand the problem only when we've finished solving it. But if we approach the problems as
general problems, we will eventually gain the ability to solve them generally first and specifically second. In
the long run, this is by far the best approach.

APPLE 1108 - Page 80

Reusable with C++ + 55

Designing reusable classes in C++ for use by C++ is best done by use of the inheritance mechanisms.
The goal is to implement general behavior in a base (possibly abstract) class and then to override certain
functionality through the use of virtual functions. Other approaches include designing the base class to
allow other derived classes with their own specific behavior to be plugged in. The MFC libraries provide
many good examples of these approaches, as you will see when we build components using MFC in later
chapters.

As we discussed in Chapter 1, there are many ways to achieve reusability in software development.
One approach is by using inheritance. The other technique-reuse by using discrete specialized compo
nents-is our primary focus, so we won't spend much time discussing how to design reusable classes for
C++ developers. Instead, we will focus on designing C++ classes that can be easily converted into COM
based software components.

There are many books on object-oriented design, but this book is about component development. My
purpose here is to help in the design of C++ classes that will eventually be used outside the C++ environ
ment. In many ways, this minimalist approach makes the design process easier because binary standards
provide only a subset of the object-oriented facilities provided by C++. We have less to work with, but it
simplifies the design process. For example, a major aspect of C++ class design is to decide how, when, and
why to overload operators. Binary standards are a long way from defining overloading capabilities at the
function level, let alone the overloading of operators. Binary standards allow the standardizing only of the
interface to a component and provide only limited (if any) inheritance capabilities. These restrictions require
us to be specific in the way we design classes for use as components, and it is quite different from designing
classes that will be reused within C++ development. With that said, let's design a class to solve the problem
I've outlined.

When we're designing C++ classes that will be used as components, our focus should be on the inter
face of the class. It's important to focus on the member functions the user will use. These functions define the
behavior of our class (and component) and will eventually be exposed through a binary standard interface.
For the problem described, I've designed a simple C++ class as follows:

class Expression {

public:

II Constructors and Destructor

Expression();

Expression(CString strExp) ;

Expression(CString strExp, BOOL binfix) ;

-Expression() ;

II Here's the interface

public:

CString GetExpression();

void SetExpression(CString strExp, BOOL binfix) ;

BOOL Validate();

long Evaluate();

};

APPLE 1108 - Page 81

56 + CHAPTER 2

We're not worried about how to implement this yet. For now, we're interested in how we think the user
should interact with our class. The user needs the ability to provide an expression string; SetExpression
provides this capability. The user also needs to validate and at some point evaluate the expression, so we've
provided Validate and Evaluate functions. We've also provided GetExpression in case the user
expects us to maintain the storage for the expression (so that he or she doesn't have to). Here's how the class
might be used:
main()

Expression* pExp = new Expression;

cout << "Enter an expression: ";

cin >> strExp;

pExp->SetExpression(strExp, TRUE);

if (pExp->Validate())

cout << "The result is " << pExp->Evaluate() << endl;

else

cout << "Invalid expression" << endl;

delete pExp;

We could have designed the interface in other ways. One option is to have only one function:

class Expression {

public:

II Returns False if Validate fails

BOOL Evaluate(canst CString strExp, BOOL binfix, long& lResult) ;

This would work, but there is at least one problem. Binary standard wrappers, such as COM, don't necessar
ily support the use of C++ references or pointers. This design would preclude the use of this class as a com
ponent because of its use of references.

Next, we'll design the implementation, but first let's review interfaces and implementations.

I I
It is important to distinguish between an interface and its implementation. We touched on this briefly ear
lier. The ability to insulate the class user from implementation details is a key advantage of C++. This ability
is the essence of object-oriented encapsulation. The details of how an object implements its functionality are
hidden or encapsulated from the class user. Thus, the implementation can change without affecting the user
at all, although that isn't exactly true when C++ is used. When a C++ class library changes, it must be recom
piled. If any users of the class also want these new features, they must at least relink or recompile their appli
cations, depending on the nature of the changes. Binary standards overcome this limitation of C++ and

APPLE 1108 - Page 82

~·~Designing Re~sable Components with C++ + 57

allow dynamic changing of the method implementation without affecting the component user; there is no
need to recompile or relink. Figure 2.4 illustrates the difference between the implementation and interface in
the context of a C ++ class.

class,EXJ;lression
{

protected.;
CE1tl:ing lll..Strl!:xpression;
aooL m_binfix;
aooL xsNiimber < cstr:i.ng& ~t; J ;
'l'oken'fyi;le Get'l?oken<rype (.cstring str l ;
int);

The Implementation • How the
object implements its

~--~ behavior. Can change without
1 affecting the class user.

The Interface ·The definition
of the classes external

functionality

Figure 2.4 Class implementation and interface.

The public methods of a C++ class are what describe, to the external user, the capabilities and behaviors of
the class. This public interface is also described as an interface contract. It's a contract in the sense that once it
is defined and exposed for use by clients of the class, it shouldn't change. If the interface must change, it
should be changed by augmentation; only new methods should be added. The old methods should not
change. This arrangement ensures that users of the original interface will not be adversely affected by addi
tions (upgrades) to the class interface. The idea of an interface contract is also important to component
development. Additions and changes to a component interface should be handled in the same manner as
they are in C++ implementations.

I
We've defined how the class user will interact with our class, and now it's time to develop the implementa
tion. Here's the complete declaration of the Expression class:

class Expression

protected:

II Similar to a static, enum values are for the class as a whole

enum TokenType

APPLE 1108 - Page 83

58 + CHAPTER 2

};

BogusToken,

OperatorToken,

OpenParenToken,

CloseParenToken,

NumberToken

II Implementation variables

protected:

CString

BOOL

m_strExpression;

m_binfix;

II Implementation functions

protected:

BOOL

TokenType

int

BOOL

IsNumber(const CString& strToken);

GetTokenType(const CString& strToken) ;

Precedence(const CString& strToken);

InfixToPostfix();

public:

II Constructors

Expression();

Expression(CString str, BOOL binfix) ;

II Destructor

-Expression();

II Copy constructor

Expression(Expression& x) ;

II Assignment operator

Expression& operator=(Expression& rhs) ;

public:

CString GetExpression();

void SetExpression(CString strExp, BOOL binfix) ;

long Evaluate();

BOOL Validate();

};

The Expression class also needs the services of a Tokenizer and a Stack class, which we will cover in
detail later in the chapter. We're using the top-down approach to solve the problem. Our implementation
contains four member functions. InfixToPostfix converts a standard infix expression to postfix for easier
evaluation. IsNumber determines whether an expression token is a number. GetTokenType returns the

APPLE 1108 - Page 84

Reusable

type of the expression token, and GetPrecedence returns the evaluation precedence of the passed token.
In the next section we'll describe each of these functions.

I
We're all familiar with infix expressions (e.g., (1 + 2) I 3), but there are some difficulties in evaluating them.
The problem with infix expressions is that they're more difficult programmatically to evaluate than their
postfix equivalents. (Infix expressions require parentheses to remove ambiguity in the expression, but post
fix expressions do not.) Table 2.1 shows some examples of infix and equivalent postfix expressions.

Infix

(1+3)*5-10

100/3*5+15*10

900- 45 + 10 I 5 • 10

Table 2.1 Examples of Infix and Postfix Expressions

Postfix

13+5* 10-

1003/5*1510*+

90045-105/ 10*+

Postfix expressions place the binary operators after the two operands, removing any ambiguity in infix
expressions. There is no need for parentheses. This technique also makes programmatic evaluation of the
expression easy. This book isn't about expression evaluation, so we won't go into the details. If you're inter
ested, complete coverage of this topic is available in Intermediate Problem Solving and Data Structures, by
Helman and Veroff. (See the Bibliography.)

Here's our implementation of InfixToPostfix:

II Convert the expression from infix to postfix form.

II Use a local (on the stack) instance of the Tokenizer class

BOOL Expression: :InfixToPostfix()

CStringStack stack;

Tokenizer tokenizer;

CString strToken;

CString strPostfix;

CString strTop;

CString strPop;

tokenizer.SetString(m_strExpression);

II Tokenize the expression

tokenizer.Tokenize();

APPLE 1108 - Page 85

60 + CHAPTER 2

II while we have more tokens

while(tokenizer.GetToken(strToken))

switch(GetTokenType(strToken))

II If we have a number, append it to the new postfix string

case NumberToken:

strPostfix += strToken;

II Delimit the number tokens by appending an extra space

strPostfix += • ";

break;

II If we encounter an open paren '(', push it on the stack

case OpenParenToken:

stack.Push(strToken) ;

break;

II If we encounter a close paren ')'

case CloseParenToken:

if (stack.Peek(strTop))

II While we haven't found an open paren and

II the stack is not empty

while(strTop.Compare("("))

stack.Pop(strPop) ;

II Pop the next element and append it to the postfix string

strPostfix += strPop;

if (! stack.Peek(strTop))

break;

II Pop the paren off the stack, we don't need it

stack.Pop(strPop);

break;

case OperatorToken:

II While there is something in the stack

while(stack.IsEmpty())

II Peek at the next element on the stack

APPLE 1108 - Page 86

Reusable with C++ + 61

stack.Peek(strTop) ;

II If the top element on the stack is NOT an open paren, and its

II precedence is greater than or equal to our current token, then

II pop it off the stack and append it to our postfix string.

II Exit the loop when the stack is empty, or we encounter an

II element that is the open paren or whose precedence is lower

II than our current token.

if strTop.Compare("(") &&

Precedence(strTop) >=Precedence(strToken))

stack.Pop(strPop) ;

strPostfix += strPop;

stack.Peek(strTop) ;

else

break;

II Push the token that caused us to exit back

II on the stack

stack.Push(strToken) ;

break;

II Empty the stack and append the elements

II to our postfix string.

while(! stack.IsEmpty())

stack.Pop(strPop) ;

strPostfix += strPop;

II Everything is Ok

m_strExpression = strPostfix;

TRACEl("New Postfix expression is %s\n", strPostfix);

return FALSE;

Three other support functions are needed for the Expression class: IsNumber, GetToken, and
Precedence. Here they are:

II Determine if the token is a number.

APPLE 1108 - Page 87

62 + CHAPTER 2

II Return TRUE if it is, else FALSE.

BOOL Expression: :IsNumber(const CString& strToken)

int nLen = strToken.GetLength();

for (int i = nLen - 1; i >= O; i-

if (! isdigit(strToken.GetAt(i)))

return FALSE;

return TRUE;

II Get the token type of the passed token

Expression: :TokenType Expression: :GetTokenType(const CString& strToken)

if (strToken. Compare (" (") 0)

return(OpenParenToken) ;

else if (strToken.Compare(")" 0)

return(CloseParenToken) ;

else if (strToken.FindOneOf("+-*I") != -1)

return(OperatorToken) ;

else if (IsNumber(strToken))

return(NumberToken) ;

else

return(BogusToken) ;

II Return the precedence of the operator

II 2 is the highest precedence

int Expression: :Precedence(const CString& strToken)

if (strToken.FindOneOf("*I") != -1)

return(2) ;

else if (strToken.FindOneOf("+-") != -1)

return(1) ;

else

return(0) ;

To finish, here are the member functions that implement the interface for the Expression class, the public
constructors, and the assignment operator:

APPLE 1108 - Page 88

II Constructors

Expression: :Expression()

II Default to infix

m_binfix TRUE;

Expression: :Expression(CString str, BOOL binfix)

m_strExpression = str;

m_binf ix = binf ix;

II Copy constructor

Expression: :Expression(Expression& x)

m_binfix = x.m_binfix;

m_strExpression = x.m_strExpression;

II The assignment operator

Expression& Expression: :operator=(Expression& rhs)

II If we're assigning to ourselves just return

if (this == &rhs

return *this;

m_binfix = rhs.m_binfix;

m_strExpression = rhs.m_strExpression;

return *this;

II The destructor

Expression: :-Expression()

II Get the current expression.

CString Expression: :GetExpression()

return m_strExpression;

APPLE 1108 - Page 89

64 -+- CHAPTER 2

II Set the expression to evaluate, set the binfix flag to

II TRUE if it is an infix expression, FALSE for postfix

void Expression: :SetExpression(CString strExp, BOOL binfix

II

m_strExpression = strExp;

m_binfix = binfix;

II Validate an infix expression by balancing the parentheses

II and checking for invalid tokens. Return TRUE if the expression

II is valid, else FALSE

BOOL Expression: :Validate()

CStringStack stack;

Tokenizer tokenizer;

CString strToken;

CString strTop;

tokenizer.SetString(m_strExpression) ;

II Tokenize our expression

tokenizer.Tokenize();

II Check for validity

while(tokenizer.GetToken(strToken))

switch(GetTokenType(strToken))

case NumberToken:

case OperatorToken:

break;

case OpenParenToken:

stack.Push(strToken) ;

break;

case CloseParenToken:

if (stack.IsEmpty()

TRACEO("Too many closing parens\n");

return FALSE;

APPLE 1108 - Page 90

II

Designing Reusable Components with C++ -+- 65

else

stack.Pop(strTop) ;

break;

default:

II Invalid operator type

TRACEl("Invalid Operator Type %s\n", strToken);

stack.Clear();

return FALSE;

II If there's something on the stack, there's a paren mismatch

if (! stack.IsEmpty())

TRACEO ("Too many open parens\n") ;

return FALSE;

return TRUE;

II Actually evaluate the expression. If the expression is infix,

II convert it to postfix first. Return the result of the expression.

II You should call validate before calling this function.

long Expression::Evaluate()

CStringStack stack;

Tokenizer tokenizer;

CString strToken;

CString strOperandl;

CString str0perand2;

CString strResult;

long lResult;

char szTemp[32];

if m_binf ix

TRACEO("Converting to postfix\n");

InfixToPostfix();

APPLE 1108 - Page 91

66 + CHAPTER 2

tokenizer.SetString(m_strExpression) ;

tokenizer.Tokenize();

II While there are tokens to process

while(tokenizer.GetToken(strToken)

switch(GetTokenType(strToken))

case NumberToken:

stack.Push(strToken) ;

break;

II If we have an operator, pop the next two elements as they

II will be the operands. Use the binary operands and evaluate

II them. Push the result onto the stack for the next operator.

case OperatorToken:

stack.Pop(str0perand2) ;

stack.Pop(strOperandl) ;

if (strToken.Compare("+") == 0)

lResult = atol(strOperandl) + atol(str0perand2) ;

else if (strToken.Compare("-") == 0)

lResult = atol(strOperandl

else if (strToken.Compare("*"

lResult = atol(strOperandl

else if (strToken.Compare("I"

- atol(str0perand2) ;

== 0)

* atol(str0perand2) ;

== 0)

II If division by zero is attempted

II clear the tokens and continue. This

II will exit the while

if (atol(strOperand2 0)

tokenizer.ClearTokens();

TRACEO("Division by Zero\n") ;

continue;

lResult atol(strOperandl) I atol(str0perand2) ;

sprintf (szTemp, "%ld", lResult) ;

II Push the result onto the stack

stack.Push(szTemp) ;

APPLE 1108 - Page 92

Reusable

break;

default:

TRACEl("Invalid operator type %s\n", strToken);

//When we're all finished, there is one element

// on the stack and it is the final result

stack.Pop(strResult);

// Convert the result to a long and return it

return atol(strResult) ;

r
To convert and evaluate algebraic expressions, we need a way to break the expression string into. discrete
expression elements, or tokenize it. Let's design a tokenizer class to do this. Remember, one way to achieve
reusable classes is to break the problem into small pieces and implement each piece as an object. Small
generic objects make reusability more attainable when you're using C++.

What follows is our Tokenizer class. It takes a string either during construction or later using
SetString. When the user calls Tokenize, it parses the string into its tokens and stores them in a linked
list (CStringList again). Then the user can iteratively retrieve (or peek at) the tokens.

Ill/I

II Tokenizes an algebraic expression string

Ill//

class Tokenizer

protected:

char rn_szBuffer[256];

CStringList rn_TokenList;

public:

Tokenizer();

Tokenizer(const CString& strString) ;

-Tokenizer();

public:

void

short

BOOL

SetString(const CString& str) ;

Tokenize();

GetToken(CString& str) ;

APPLE 1108 - Page 93

68 -+ CHAPTER 2

BOOL PeekToken(CString& str) ;

void ClearTokens();

};

111111

II Tokenizer class members

111111

II Constructors

Tokenizer: :Tokenizer()

II Construct a tokenizer with a default string

Tokenizer::Tokenizer(const CString& strString

strcpy(m_szBuffer, strString) ;

II When the tokenizer is destroyed, make sure

II that all of the strings are deallocated

Tokenizer: :-Tokenizer()

ClearTokens();

II Set the string to tokenize

void Tokenizer: :SetString(const CString& str)

strcpy(m_szBuffer, str);

II Tokenize the string into its discrete elements

short Tokenizer: :Tokenize()

char *pChar;

short sCount = O;

char szTemp[128];

char *pTemp;

II Make sure the token list is empty

ClearTokens();

II Get a pointer into the string to tokenize

pChar = m_szBuffer;

APPLE 1108 - Page 94

Designing Reusable Components with C++ + 69

II While we haven't encountered the

II NULL termination character

while (*pChar)

II skip any spaces

if (*pChar

pChar++;

continue;

II Get a pointer into a temp storage

II for each token

pTemp = szTemp;

switch(*pChar)

II digit

case 'l':

case \21:

case '3 f:

case '4':

case '5':

case \ 6':

case '7':

case \ 8,:

case '9 1
:

case '0':

II While the char is a digit and

II it's not the terminating NULL

while(pChar && isdigit(*pChar)

*pTemp = *pChar;

pTemp++; pChar++;

II Back up one char

pChar-;

II Terminate the number string

*pTemp = ' \ 0 ' ;

break;

default:

II All other tokens are one character

APPLE 1108 - Page 95

+CHAPTER 2

II assign it to szTemp and NULL terminate it

*pTemp = *pChar;

pTemp++;

*pTemp

break;

'\0,;

II Count the number of tokens

sCount++;

TRACEl("Adding token %s\n", szTemp);

II Add the token to the CStringList

m_TokenList.AddHead(szTemp) ;

II Move to the next character in the Token string

pChar++;

II return the number of tokens found

return sCount;

II Get the next token in the list. Return

II FALSE if the list is empty, TRUE otherwise.

BOOL Tokenizer: :GetToken(CString& str)

if (m_TokenList.IsEmpty()

return FALSE;

str = m_TokenList.RemoveTail();

return TRUE;

II Clear all of the tokens in the list

void Tokenizer: :ClearTokens()

m_TokenList.RemoveAll();

II Peek at the top token

II Return FALSE if there are no tokens

BOOL Tokenizer: :PeekToken(CString& str

if (m_TokenList.IsEmpty())

APPLE 1108 - Page 96

Reusable 1

return FALSE;

str = m_TokenList.GetTail();

return TRUE;

The Expression class needs the services of a stack, so let's build a stack class. Stacks are normally imple
mented using arrays, but we want to build a stack that allows pushing of an arbitrary number of elements so
that we have no intrinsic limit on the length of an expression. Using a static array would limit the number of
elements that could be stored; in addition, the MFC libraries provide a linked-list class that we can reuse by
inheriting its capabilities. Should we inherit this functionality from the CObList class? Let's take a look.

The following code shows a first attempt at building a CString stack. It's implemented by inheriting
the methods from the MFC CStringList class. CStringList is like the CObList class, but it uses
cstrings as the elements of the list. The "is-a" relationship seems to fit. A stack "is-a" kind of linked list,
isn't it? Building a stack class that would support multiple data types would also be nice. The best way to do
this would be to use C++ templates, but our purpose here is to illustrate the pros and cons of using inheri
tance or composition when building new classes.

class CStringStack : public CStringList

public:

};

void Push(CString);

BOOL Pop(CString&) ;

BOOL IsEmpty();

BOOL Peek(CString&) ;

void CStringStack: :Push(CString str)

AddHead(str) ;

II Pop an element

BOOL CStringStack: :Pop(CString &str)

if (! IsEmpty())

str = RemoveHead();

return FALSE;

APPLE 1108 - Page 97

72 -+- CHAPTER 2

return TRUE;

BOOL CStringStack: :IsEmpty()

return CStringList: :IsEmpty();

BOOL CString Stack: :Peek(CString& Str)

if (! IsEmpty ())

str = GetHead();

return TRUE;

return FALSE;

This implementation works fine. In fewer than 40 lines of code, we've implemented a useful stack that sup
ports an arbitrary number of CString elements. Inheritance is great! We've just reused hundreds of lines of
MFC library code. But there's a problem. Here's how the class user might implement the code:

main ()

CStringStack stack; II Get a stack

stack. Push ("One") ; I I OK

stack.Push("Two"); I I OK

stack. Push ("Three") ; I I OK

POSITION pos = stack.Findindex(1) ; II Oh-oh, what's going on here?

II Here's a way to get at any element in the stack!

cout << "The middle element on the stack is " << stack.GetAt(pos) <<

endl;

II Mess up the stack

stack.RemoveAt(pos);

As you can see the user of the stack class can violate and corrupt our stack implementation. If we're going to
provide a solid class implementation, we can't allow this. The encapsulation of the stack object is not com
plete. What happened? When we decided to use inheritance to build the stack class, we neglected to remem
ber that all protected and public member functions of the base class are inherited. This means that all the
linked-list functions-such as Find, Findindex, InsertBefore, GetAt, and so on-are available to our
CStringStack user. Somehow we must hide the linked-list-specific functions from CStringStack users

APPLE 1108 - Page 98

Designing Reusable Components with C++ + 73

so that they don't hurt themselves (or us). We could do something like the following to keep users from call
ing the linked-list functions:

class CStringStack public CStringList

protected: II Override inherited member functions

void Findindex() {} II Not implemented

void GetAt () {} II Not implemented

II For all linked-list function we want to hide

public:

void Push(CString&) ;

BOOL Pop(CString&);

BOOL Is Empty () ;

BOOL Peek (CString&);

Now when stack users try to use the linked-list routines, they will get a parameter mismatch error from the
compiler, because the linked-list functions expect and return specific parameters. But we've hidden them by
effectively overriding them with do-nothing functions. This isn't the best solution; it requires additional
code and is basically a kludge. Another approach is to use private inheritance, but this would also hide those
functions that we want to expose publicly (such as IsEmpty). Let's try another approach.

Maybe a stack does not really have an "is-a" relationship with a linked list. It seems that it doesn't,
because a linked list has functions that can violate the integrity of a stack. But a stack could have a "has-a"
relationship with a linked list. We can implement a stack that "has-a" linked list. This means that we will use
class composition instead of inheritance to implement our stack:

II
II A Stack class that supports CStrings

II
class CStringStack

protected:

CStringList m_StringList;

public:

II Default constructor

CStringStack();

II Copy constructor

CStringStack(CStringStack& stack);

II Destructor

-CStringStack();

II Assignment operator

APPLE 1108 - Page 99

74 -+-CHAPTER 2

CStringStack& operator=(const CStringStack& lhs);

II The interface

public:

void Push(Cstring&);

BOOL Peek(CString&) ;

BOOL Pop(CString&);

BOOL IsEmpty();

void Clear();

};

II Default constructor

CStringStack: :CStringStack()

II Copy constructor

CStringStack: :CStringStack(CStringStack& stack)

II Copy the stack elements

POSITION pos = stack.m_StringList.GetHeadPosition();

while(pos)

CString strElement = stack.m_StringList.GetNext(pos) ;

II Add them in the reverse order by using AddTail

m_StringList.AddTail(strElement) ;

II When we destroy the CStringStack, ensure

II that the linked list of strings is deallocated

CStringStack: :-CStringStack()

Clear();

II assignment operator

CStringStack& CStringStack: :operator=(const CStringStack& rhs)

II If we're assigning to ourselves just return

if (this == &rhs

return *this;

APPLE 1108 - Page 100

II remove the elements of the target stack

m_StringList.RemoveAll();

II Now move all of the elements

Reusable

POSITION pos = rhs.m_StringList.GetHeadPosition();

while(pos)

CString strElement = rhs.m_StringList.GetNext(pos) ;

II Add them in the reverse order by using AddTail

m_StringList.AddTail(strElement) ;

return *this;

II Add an element to the top of the stack

void CStringStack: :Push(Cstring& str)

m_StringList.AddHead(str) ;

II Remove an element from the stack. If the

II stack is empty return TRUE, else FALSE

BOOL CStringStack: :Pop(CString &str)

if (! m_StringList.IsEmpty())

str = m_StringList.RemoveHead();

return FALSE;

else

return TRUE;

II Return TRUE if the stack is empty

II This is easy, we defer to the CStringList

II IsEmpty method.

BOOL CStringStack::IsEmpty()

return m_StringList.IsEmpty();

II Peek at the top element. If the stack

II is empty return TRUE, else FALSE

with C++ + 75

APPLE 1108 - Page 101

76 + CHAPTER 2

BOOL CStringStack: :Peek(CString& str

if (! m_StringList.IsEmpty())

str = rn__StringList.GetHead();

return TRUE;

else

return FALSE;

II Remove any elements in the stack by

II clearing the strings in the CStringList

void CStringStack: :Clear()

m_StringList.RemoveAll();

There are only two differences between the implementations. The new cstringStack class has a member
variable m_StringList of type CStringList, and all the member functions must explicitly access this
variable when performing linked-list functions. Now that we have encapsulated the linked-list functionality
within our stack class and expose only those functions that we deem appropriate, users can no longer access
functions that violate our concept of a stack. Composition is just as important as inheritance to our goal of
reusability.

On the accompanying CD-ROM, there is an example for Chapter 2. It is a Win32 console applica
tion that uses the MFC libraries that we'll discuss in Chapter 3. The example is in the
\EXAMPLES\CHAP2\EXPRESS subdirectory and contains the EXPRESS.H and EXPRESS.CPP files

N 0 T E that we have developed in this chapter. The directory also contains the appropriate Visual C++

s

make file, so it is easy to modify. We will use this example in the next few chapters as we convert it
to use the COM binary standard. It would be beneficial at this point to become familiar with the
Expression example.

That wraps up our review of the C++ language and the various object-oriented methods used for designing
reusable C++ classes. We also discussed how we might design C++ classes so that their functionality can be
exposed, using a binary standard, to other languages and processes. In the next chapter, we'll review Visual
C++ and the Microsoft Foundation Class libraries.

APPLE 1108 - Page 102

Visual C++ and
the FC Libraries

Throughout this book we will use Visual C++ and its application framework, the Microsoft Foundation
Class (MFC) libraries, for the sample code and application examples. In this chapter we'll take a quick look
at the Visual C++ environment, what the MFC libraries are, and how they can help with the building of
COM-based components. We won't actually start using COM until the next chapter. This chapter will intro
duce the tools we will use as we explore Microsoft's COM, OLE, and ActiveX using MFC. We will get this
experience by developing a simple MFC application to test the Expression class we developed in Chapter
2. For a more exhaustive treatment of Visual C++ and the MFC libraries, I recommend The Revolutionary
Guide to MFC 4 Programming with Visual C++ by Mike Blaszczak and Inside Visual C++, third edition, by
David J. Kruglinski. Once you have a handle on MFC and you want to dig into the details, pick up a copy of
MFC Internals, by Scot Wingo and George Shepherd.

s
The decision whether to develop Win16 (Windows 3.x) or Win32 (Windows 95 and Windows NT) applica
tions gets easier every day. By the time you read this, Microsoft's Windows 95 will have been generally
available for more than a year. According to the latest sales figures I've heard, it is outselling Windows 3.x
by a factor of five. I'm a big advocate for doing all new development in Win32. Windows 3.x applications
will be replaced by more robust Win32-based ones, and the limitations of 16-bit development will eventually
fade away. The fuhire lies with the Win32 API, so the applications developed in this book use the 32-bit ver
sion of Visual C++. In the previous edition, we also provided 16-bit implementations of the controls, but
Microsoft is no longer keeping the 16-bit and 32-bit versions of MFC in sync. Many of the new features of
COM and ActiveX that we will explore in this book do not have an implementation in the 16-bit Windows
environment, so we will focus purely on 32-bit development. There is a 16-bit version (1.52c) of Visual C++
and MFC that supports the development of COM and ActiveX-based applications, but it is lacking in several
areas.

77

APPLE 1108 - Page 103

78 + CHAPTER 3

We will use the integrated development environment (IDE) of Visual C++, called Developer Studio,
throughout this book. If you've been developing Windows software for a few years, as I have, you're proba
bly skeptical of integrated development environments. If you're like most SDK developers, all you need is a
good text-based editor, hand-coded make files, and the various command-line utilities to build solid
Windows applications. I agree, but there are features of the Visual C++ IDE that can be a great help, particu
larly if you are using the MFC libraries. You don't have to use the IDE to use the MFC libraries, but by using
it initially, you'll learn more quickly. Later, after you understand MFC inside and out, you can go back to
using your favorite editor and the command-line utilities. But you'll soon miss the powerful Fl key, the
App Wizard, and the ClassWizard.

One of the reasons Visual C++ is such a powerful Windows development tool is its included applica
tion framework: the MFC libraries. Before we get started, let's look at what application frameworks can pro
vide.

Application Frameworks
The MFC libraries can be described as an application framework. An application framework provides an
abstracted, high-level view of the underlying operating system, or application environment (e.g., Windows).
The primary purpose of application frameworks is to make the developer more productive. An application
framework's goals are similar to those of C++: to hide the mundane details of programming within class
libraries so that developers need not continually deal with trivial details. A second goal of application frame
works is to provide platform independence. An application framework can separate the details of a particu
lar platform (Windows, OS/2) at an abstracted level within the framework. At the framework API or C++
class level, the details of the underlying target platform can be hidden. This arrangement allows the devel
oper to target the application framework. If the developer adheres to the rules of the framework, the result
ing source is portable among the various platforms supported by the framework. It also serves the first pur
pose of increasing developer productivity.

As with most tools, application frameworks have drawbacks. First, there is a significant learning curve
involved in becoming familiar with an application framework. It takes time, and the knowledge is not
directly transferable to other frameworks. Spending two years developing applications with Borland's OWL
framework will not help you very much when your boss tells you to switch to Visual C++ and MFC.

Application frameworks also have feature lag. The implementation of new platform-specific features
does not occur at the same time that it does for the underlying operating system. For example, MFC's
ActiveX classes do not currently support the development of ActiveX controls that completely support the
OLE Control 96 specification, but such development is supported via direct COM/ ActiveX API calls. So
when you're using a framework, be prepared either to wait for new features to be implemented in the
framework or to go around the framework and implement needed features using the explicit API calls, pos
sibly providing your own subclasses until the framework is updated.

APPLE 1108 - Page 104

Visual C++ and the MFC Libraries -+- 79

MFC's implementation provides only a thin layer of absh·action above the Windows APL This arrangement
has caused some criticism within the industry, because it requires the programmer to understand many of
the esoteric Windows constructs to use the libraries effectively. Depending on your perspective, this require
ment can be a benefit or a stumbling block. Experienced Windows developers already understand the
underlying Windows API, so the MFC libraries quickly enhance their productivity. Others who have used
other application frameworks complain that MFC does not hide, or abstract, the details of Windows suffi
ciently. If you don't already have Windows development experience, the MFC libraries can be difficult to
learn. Many developers moving from other platforms, such as OS/2, may get a triple whammy. To use
MFC, they must also learn Windows, C++, and the libraries, and that is enough to cause many to consider a
new career.

I think that Microsoft did it right when it developed the MFC libraries. The abstraction is at just the
right level. It increases productivity but doesn't compromise application performance in the process. If you
don't agree, there are other options.

Borland's application framework, Object Windows Library (OWL), which comes with Borland C++,
provides a higher level of abstraction. This allows implementation of the framework on disparate GUI envi
ronments. Programs written using OWL can be ported among the various Windows environments and
OS/2, but not the Macintosh platform, which MFC supports. IBM has its Open Class libraries, which are
part of its Visual Age series of products. The Open Class framework is abstracted at a level that allows fairly
direct movement between OS/2 and various Windows platforms. However, at the time of this writing,
IBM's Open Class libraries provide very little support in the area of COM, OLE, and ActiveX.

Choosing a specific framework is difficult. The MFC libraries provide a great deal of functionality
and support target platform features that other frameworks do not support. Specifically, other frame
works lack support for our primary goal: ActiveX controls. This is a very important difference, at least for
our purposes.

In the scope of platform, or target, portability, the MFC libraries support easy movement of MFC source
code among the various Windows platforms: Windows 3.x and Windows 95 on Intel hardware, and
Windows NT on Intel, MIPS, Alpha, and PowerPC hardware. However, as I mentioned earlier, because of
their differences, it is getting more difficult to move between the 16-bit and 32-bit Windows environments
with MFC. Versions of MFC are also available for various flavors of UNIX as well as for Apple's System 7
operating environment. OS/2 is a target that the MFC libraries currently do not support.

The Internet-and its heterogeneous environment of Windows, UNIX, Solaris, OS/2, and Macintosh
machines-makes multiplatform support very important. Microsoft has stated publicly that it is committed
to providing the COM and ActiveX technologies on most of these platforms. It has also announced that the
COM and ActiveX technologies will be handed over to an open standards body so that it will be available to
all vendors that want to implement the technology on their platforms. Microsoft, however, is committed to
providing the best implementation of the standard.

APPLE 1108 - Page 105

80 +CHAPTER 3

An MF (Application that Evaluates Expressions
Before we jump into the Component Object Model and ActiveX, let's build a quick MFC-based application
to test the Expression class we developed in the last chapter. This application will give you a chance to get
familiar with the Visual C++ IDE and introduce you to the use of the MFC libraries. We will augment this
project as we move through the various chapters. For starters, we'll build a simple Windows single-docu
ment interface (SDI) application to try out our expression evaluator class. So fire up Visual C++ and let's get
to work.

The Visual C++ AppWizard allows a developer to quickly build an MFC application from scratch. It pro
vides a minimal application based on the options picked during the dialog with App Wizard. The resulting
application will compile, link, and run, but not much else. Its purpose is to create the various source,
resource, and project files necessary to build a Windows application using MFC. Once you run App Wizard
to create a particular application, you ca1mot run App Wizard again to modify an existing application. The
purpose of App Wizard is to quickly generate a template application on which to build. This aim is different
from that of the usual application generators, which generate a complete application and allow subsequent
modifications through the tool.

To start building the Chapter 3 example, start Visual C++ and invoke New from the File menu. The
New dialog box will display; pick Project Workspace and click OK, and you0 will see the dialog box shown
in Figure 3.1.

Figure 3.1 New Project Workspace dialog box.

Type chap3 in the Name entry field as shown. Make sure that the Type is MFC App Wizard (exe) and then
click Create. This action brings up the App Wizard dialog box shown in Figure 3.2.

APPLE 1108 - Page 106

Visual C++ and the MFC Libraries -+ 81

Figure 3.2 AppWizard dialog box, step 1 .

For our initial projects we will use Windows single-document interface applications because they aren't as
complex as their multiple-document interface (MDI) counterparts (remember, our focus is on COM-based
components). The dialog box-based option produces an application that does not use the document/view
architecture (we'll discuss this shortly) but instead uses a simple dialog box as the main window. We could
have used this option for our simple example, but we will use the document/view architecture in several
examples, and now is a good time to discuss it. Later, we will develop an example with MFC's dialog
box-based support. Click the Next button to continue.

The next dialog box concerns MFC database support. We're not interested in that for now, so click
Next again. The OLE Support dialog box is next. We're not going to include OLE support just yet, so
choose None for OLE Compound Document support and No, Thank you for OLE (ActiveX) Automation
support. Click Next again to move to the Application Features dialog box shown in Figure 3.3.

To reduce the complexity of the code that App Wizard will generate for us, we've turned off all the fea
tures except Initial status bar and 3D controls. Once you've done this, click the Advanced button to get the
dialog box shown in Figure 3.4.

APPLE 1108 - Page 107

82 -+- CHAPTER 3

Figure 3.3 AppWizard dialog box, step 4.

Figure 3.4 Advanced Options dialog box.

Change the caption and check the other features as shown in Figure 3.4, close the dialog box, and click Next
to move to the Source Options dialog box shown in Figure 3.5.

APPLE 1108 - Page 108

Visual C++ and the MFC Libraries -+ 83

Figure 3.5 AppWizard dialog box, step 5.

I like comments in my code so I answer Yes, please to the first option. The next option, How would you like
to use the MFC library?, allows you to either statically link with the MFC libraries or use the shared DLL
version. The DLL option greatly reduces the size of your executable file, but you must distribute
MFC40.DLL and any supporting files. This isn't a big deal, because most systems will already have these
files present. We'll use the shared DLL option.

The final App Wizard step is shown in Figure 3.6.

Figure 3.6 AppWizard dialog box, step 6.

APPLE 1108 - Page 109

84 + CHAPTER 3

There are a few things that must be done here. First, for consistency throughout the examples, select the
CChap3Doc class and change the header file name to DOCUMENT.Hand the implementation file to DOC
UMENT.CPP. Then change the CChap3View class header file to VIEW.Hand the implementation file to
VIEW.CPP. Finally, make sure that the base classes of the CChap3View class is CFormView instead of
CView.

CFormView allows easy placement of controls on the client area of a view. This is similar to a dialog
box-based application, because CFormView uses a dialog resource for the client area. Earlier versions of
App Wizard required the developer to do some of the work to derive from CFormView, but the latest ver
sions make this task painless, as you will see.

Click the Finish button, and you will see the dialog window shown in Figure 3.7. Make sure all the
options are correct and then click the OK button.

Figure 3.7 New Project Information dialog window.

As it says, the "skeleton project" has been generated, so let's go ahead and see whether it will compile and
link before we add a line of code. Then we run it. The application doesn't do much, but in a few easy steps
AppWizard has produced a fairly complete Windows application that can be enhanced with our intended
functionality.

APPLE 1108 - Page 110

Visual C++ and the MFC Libraries + 85

Our simple MFC SDI application contains the five highlighted classes in Figure 3.8. The interaction among
these classes defines the behavior of the application. In a moment we will go through each class in detail.
First let's examine how the classes interact.

CWinApp controls the application at its highest level. It is responsible for managing the relationships
among the other classes. CDocument, CFormView, and CFrameWnd are responsible for managing and
displaying the application user's data. You will add most of your application's functionality by augment
ing the CView- and CDocument-derived classes. CFrameWnd is very functional as provided.

CObject

CCmdTarget

Figure 3.8 Abbreviated MFC application class hierarchy.

CDocument, CFormView, and CFrameWnd are collectively described as a document template. The docu
ment interacts with one or more views, and all views are contained inside a frame window. When the user
selects File/New, CWinApp calls CDocTempa te to create a new document/view I frame set. Applications
can have more than one document type and thus would contain a list of document templates. This structure
is illustrated in Figure 3.9.

APPLE 1108 - Page 111

86 + CHAPTER 3

CWlnApp
maintains a list of
CDocuments If the i

application I

contains more thaj
one document

type.

"-
CWinApp

CDocTemplate maintains a list
of "document templateH

instances. Each one contains a
CDocument, CFrameWnd,

CVlew tuple. An MDI App with 2
active views would have 2

Instances of the template as

Figure 3.9 MFC application class relationships.

The Document /View Architecture
Most MFC applications use the document/view architecture that MFC supplies. When you use App Wizard
to generate an application, the SDI and MDI options automatically create both a document and a view class.
The document class (in our case, CChap3Doc) is derived from CDocument. Classes derived from
CDocument provide functionality for the handling of "document" data. Whenever File/New is chosen, a
new instance of CChap3Doc is created. CChap3Doc is responsible for storing data that our application
should maintain when the user saves the document using File/Save. This data is loaded into the CChap3Doc
class when the user reads a document from disk using File/Open. Of course, the concept of a document is dif
ferent for every application. Microsoft Word's document ·is the internal representation of the characters,
words, sentences, paragraphs, fonts, diagrams, and so on that the Word user creates. For Excel, the docu
ment is the internal representation of the spreadsheet and its figures and formulas.

The view part of the document/view architecture is responsible for rendering the document in the client
area of the frame window or to a printer. Continuing the Word example, the view class will contain the code
necessary to render the words, paragraphs, fonts, and so on of the document for presentation to the user.
The view class provided by AppWizard for our application is CChap3View; it is derived from the
CFormView class. The view is responsible for graphically displaying the data maintained in the
CDocument-derived class. For our application, this view is actually a dialog resource that contains Windows
controls. Our application has no associated data, so the document class is of little use. We will modify the
CChap3View class to add the functions needed to test the Expression class.

The document/view architecture is important to most applications developed using MFC. For our pur
poses, though, it provides more functionality than we need. In Chapter 6, we will describe it in more detail

APPLE 1108 - Page 112

Visual C++ and the MFC Libraries 87

as we develop an application that needs the architecture. ActiveX controls typically do not use the MFC doc
ument/view architecture, but the architecture can be used in the development of MFC-based ActiveX con
trol containers, and, as we'll see in a later chapter, a view can contain instances of ActiveX controls.

Now that we've generated our first MFC application, let's look at the files that were produced by
App Wizard. Table 3.1 briefly describes each file that App Wizard created. Next, we'll go through the classes
and code that were generated for our application.

Files

chap3.h, chap3.cpp

mainfrm.h, mainfrm.cpp

document.h, document.cpp

view.h, view.cpp

stdafx.h, stdafx.cpp

chap3.def

chap3.mak

chap3.rc

resource.h

res \chap3.ico

res \document.ico

res \chap3.rc2

(Document

Table 3.1 AppWizard-Generated Files

Purpose

CWinApp-derived class: CChap3App

Class for the main application window, CMainFrarne

CDocument-derived class: CChap3Doc

CFormView-derived class: CChap3View

Application framework includes

Windows definition file

Visual (++-maintained make file; you should not modify this file directly. Modifications should

be made through the Visual C++ IDE

Windows resource file; contains dialog definitions, string tables, and menu resources

Include file with application and framework-defined IDs

Icon for the application; used when minimized and shown in the default About box

Icon representing the specific document type; this is useful when there are multiple document

types within the application

User-editable resource file; Visual C++ will not touch this file. Maintains version information
and so on

The CDocurnent class and its derivatives encapsulate and maintain the data of a user document. This docu
ment is quite different from the one you are now reading. CDocurnent represents the way typical Windows
applications handle the creating, saving, and retrieving of files from the Windows File menu. When the
application user selects File/New, MFC creates a new CDocurnent object and, using the services of CView

and CFrarneWnd, displays the data contained in the document. The document class contains a pointer to the
associated CView class. When data within the document is modified, CDocurnent is responsible for notify-

APPLE 1108 - Page 113

88 -+- CHAPTER 3

ing the view that this modification has occurred. The view then determines whether the modified data is vis
ible, and, if necessary, it updates the display.

The CDocument class stores data that needs to persist after the user closes the document. Temporary
data that may be needed by the view when rendering should be maintained within the CView class. Think
of an MFC document as a file (e.g., TEST.DOC) where you store your application data before, during, and
after execution. How the data is stored is up to the developer, but MFC provides data serialization capabili
ties that simplify this process.

Our application does not require saving or retrieving data, so we don't actually need the
CDocument-derived class, CChap3Doc. Table 3.2 contains useful members of the CDocument class. The
functions that start with On are typically overridden in derived classes. Following are excerpts, with com
ments, from the DOCUMENT.H and DOCUMENT.CPP files. Our application will use the code as is.

II
II document.h

II
class CChap3Doc public CDocument

II Overrides

II ClassWizard-generated virtual function overrides

//{{AFX_VIRTUAL(CChap3Doc)

public:

II Override of the OnNewDocument function

II Called when the user selects File/New or when the

II framework initially displays the application

virtual BOOL OnNewDocument();

I I) }AFX_VIRTUAL

II Implementation

public:

virtual void Serialize(CArchive& ar); II overridden for document i/o

};

II
II document.cpp

II

BOOL CChap3Doc: :OnNewDocument()

if (!CDocument: :OnNewDocument())

return FALSE;

II TODO: add re-initialization code here

APPLE 1108 - Page 114

Visual C++ and the MFC Libraries + 89

II (SDI documents will reuse this document)

return TRUE;

II CChap3Doc serialization

II You would add code here to save and restore

II any data maintained in CDocument

II This data defines the structure of the

II "document" when written to disk

void CChap3Doc: :Serialize(CArchive& ar)

if (ar.IsStoring())

II TODO: add storing code here

else

II TODO: add loading code here

Member

IsModified

SetModifiedFlag

UpdateAllViews

Deletecontents

OnCloseDocument

OnNewDocument

OnSaveDocument

OnOpenDocument

(View

Table 3.2 Useful CDocument Functions

Purpose

Has the document been modified since last save?

Indicates that the document has changed since last save.

Notifies each view that the document has changed.

Called to clear a document (e.g., when the user opens a new document in an SDI application it
must remove the previous document data).

Called when the user selects File/Close or its equivalent.

Called when the user selects File/New or its equivalent.

Called when the user selects File/Save.

Called when the user selects File/Open.

The MFC CView classes are responsible for the visual display of the document's data. The view class typi
cally handles Windows messages that relate to the rendering of information in the client area of a window
and responds to command messages that may alter the display of the view. In our example application, the
view class is defined in VIEW.Hand VIEW.CPP.

APPLE 1108 - Page 115

+CHAPTER 3

We derived our view class from CFormView. CFormView associates a dialog resource with the client
area of the frame window in an SDI application. Later, we will modify the dialog's resource file to add an
entry field and two command buttons. Because CFormView uses a dialog resource as the view, we make
sure that the client of the frame window is sized appropriately. The framework initially creates the frame
window (and thus the client area) size using a default value stored in a static variable, rectDefault. For
our purposes, we will override the Onini tialUpdate method and resize the frame window so that it is
equal to our dialog resource. We'll do this in a moment, in our discussion of ClassWizard. Table 3.3 contains
useful members of the CView class.

GetDocument

OninitialUpdate

OnDraw

OnPrint

OnUpdate

Tobie 3.3 Useful cview Members

Gets the CDocument instance associated with this view.

Called right after the view is attached to its associated document.

Called to render the document data within the view window.

Called to print or print preview the document.

Called when the document data has changed, possibly requiring an update of the view.

The CFrameWnd class provides the functionality of a typical frame window in a Windows application. It
contains and is responsible for the title bar, menu bar, status bar, and any control bars that are needed out
side the client area. The frame window houses the application view, which in our application is an instance
of CFormView. The frame creates the view and is responsible for many aspects of it. Our SDI application has
only one frame window. It is the frame for both the application and our CDocument-derived class.

The CFrameWnd class provides much useful behavior that is standard for Windows applications. The
menu bar contains the usual File/New-, File/Open-type commands and provides member functions that can
be overridden to easily allow their implementation. The status bar and tool bars are easily maintained using
methods provided within the CFrameWnd classes. I'm not going to show you the code generated by
AppWizard for the CMainFrame class, because it is simple; however, it provides significant default func
tionality. There is one thing we should do for our CMainFrame: change its border so that it cannot be
resized. We'll do this in a moment. Table 3.4 contains useful members of the CFrameWnd class.

Create

LoadFrame

GetActiveDocument

GetActiveView

Table 3.4 Useful CFrameWnd Members

Creates a frame window.

Creates a frame window based on a resource ID.

Gets the active document.

Gets the active view.

APPLE 1108 - Page 116

Visual C++ and the MFC Libraries + 1

(Doc Template
The CDocTemplate class manages the documents of an application. Document in this context includes the
cFrameWnd-, CView-, and CDocument-derived classes. Information needed to instantiate the classes that
form an application document is maintained in a CDocTemplate object. CWinApp contains a member vari
able, m_templateList, that maintains a list of all the valid document templates for the application.
cDocTemplate is an abstract class with two standard MFC-derived classes: CSingleDocTemplate for
SDI applications and CMultiDocTemplate for MDI applications. Following is the code that creates the
document/view /frame template and adds it to the application's template list.

II
II chap3.cpp

II

BOOL CChap3App: :Initinstance()

II Register the application's document templates. Document templates

II serve as the connection between documents, frame windows, and views.

CSingleDocTemplate* pDocTemplate;

pDocTemplate new CSingleDocTemplate(

IDR_MAINFRAME,

RUNTIME_CLASS(CChap3Doc),

RUNTIME_CLASS(CMainFrame),

RUNTIME_CLASS(CChap3View));

II main SDI frame window

II Update the list of valid "documents" for the application

AddDocTemplate(pDocTemplate);

Member

GetDocString

CWinApp

Table 3.5 Useful CDocTemplate Members

Purpose

Retrieves document information from the resource file; examples include windowTi tle, docName,

filterName, etc.

Our main application class, CChap3App, is derived from CWinApp. CWinApp provides basic support for a
Windows application. Except for one function, Ini tins tance, that has been overridden, CChap3App
inherits all its functionality from CWinApp. The application instance is declared as a global object in

APPLE 1108 - Page 117

92 + CHAPTER 3

CHAP3.CPP. Global C++ objects are constructed before any application code is executed. This practice
ensures that the application object is available before MFC enters WinMain. The standard Windows function
WinMain is not provided within the CWinApp class but is provided by the framework. After MFC has set up
its environment by registering window classes and initializing variables, including our already-constructed
application instance, it calls the Ini tinstance member function, which is responsible for creating and dis
playing the main application window. Ini tinstance, as generated by App Wizard, is shown next:

II chap3.h

class CChap3App public CWinApp

II

II Override of CWinApp Initinstance

virtual BOOL Initinstance();

II chap3.cpp

II

II Global instance of CWinApp, constructed before WinMain() is called

CChap3App theApp;

BOOL CChap3App: :Initinstance()

II Standard initialization

II If you are not using these features and wish to reduce the size

II of your final executable, you should remove from the following

II the specific initialization routines you do not need.

#ifdef _AFXDLL

II Call this when using MFC in a shared DLL

Enable3dControls();

#else

II Call this when linking to MFC statically

Enable3dControlsStatic();

#endif

LoadStdProfileSettings(); II Load standard INI file options (including MRU)

II Register the application's document templates. Document templates

II serve as the connection between documents, frame windows and views.

CSingleDocTemplate* pDocTemplate;

APPLE 1108 - Page 118

pDocTemplate = new CSingleDocTemplate(

IDR_MAINFRl\ME,

RUNTIME_CLASS(CChap3Doc),

Visual C++ and the MFC Libraries -+ 93

RUNTIME_CLASS(CMainFrame),

RUNTIME_CLASS(CChap3View));

AddDocTemplate(pDocTemplate);

II main SDI frame window

II Parse command line for standard shell commands, DDE, file open

CCommandLineinfo cmdinfo;

ParseCommandLine(cmdinfo);

II Dispatch commands specified on the command line

if (!ProcessShellCommand(cmdinfo))

return FALSE;

return TRUE;

Ini tins tance is called only once; its purpose is to set up the application environment and ultimately dis
play the main window. Let's follow the preceding code.

Depending on the version of Windows that the application is running on, Enable3dControls either
does nothing (Windows 95, Windows NT 4.0) or loads CTL3D32.DLL so that the standard Windows con
trols will appear three dimensional. LoadStdProfileSettings loads the MRU list of recently accessed
files and attaches them to the File menu of the frame window if tlus feature has been enabled (in our case it
has not). Next, a document template is created and our view I document/ frame classes are associated with it.
The application resource ID, IDR_MAINFRAME, is also included in the document template. This ID is used to
load menus, toolbars, etc. for the application.

Every document type has certain resources. Typically, there are menu, string, accelerator, and icon
resources associated with a document template. They are used in the creation of the frame window and
child window areas. Pertinent sections of the .RC file are detailed next:

II chap3.rc - sections of the application resource file

II Icon

IDR_MAINFRl\ME

IDR_CHAP3TYPE

I I Menu

ICON DISCARDABLE "res\\chap3.ico"

ICON DISCARDABLE "res\\document.ico"

IDR_MAINFRl\ME MENU PRELOAD DISCARDABLE

BEGIN

POPUP "&File"

BEGIN

MENUITEM "&New\tCtrl+N", ID_FILE_NEW

APPLE 1108 - Page 119

94 + CHAPTER 3

END

MENUITEM "&Open ... \ tCtrl +0",

MENUITEM "&Save\tCtrl+S",

II Accelerator

ID_FILE_OPEN

ID_FILE_SAVE

IDR_MAINFRAME ACCELERATORS PRELOAD MOVEABLE PURE

BEGIN

"N11,

VK_F6,

END

ID_FILE_NEW,

ID_NEXT_PANE,

VIRTKEY, CONTROL

VIRTKEY

II This stringtable contains 7 substrings delimited by

II new lines (\n} that are used by the framework to define

II certain things.

STRINGTABLE PRELOAD DISCARDABLE

BEGIN

IDR_MAINFRAME "Chapter 3 Example\n\nChap3\n\n\nChap3.Document\nChap3 Document"

END

The string table contains seven substrings that are used by the framework. The first item is the caption of the
main window. The others contain the default document extension, document type name, and OLE type
name (which we'll cover in the next chapter).

The RUNTIME_CLASS macro returns the run-time class structure that allows the document template to
dynamically create instances of the document, view, and frame classes. Once the instance of
CSingleDocTemplate is created, it is added to the list of application-supported document types by calling
AddDocTempla te.

Next, an instance of the CommandLineinfo class is passed to ParseCommandLine, which parses the
command line and updates the CommandLineinfo instance. By default, MFC provides seven command
line options, each of which is indicated by an enum and two Booleans maintained in the CommandLineinfo

class shown next. Table 3.6 shows the syntax and actions provided by the default MFC implementation. The
last two are OLE-specific; we'll have more to say about them in later chapters.

class CCommandLineinfo : public CObject

public:

II Sets default values

CCommandLineinfo(};

-ccommandLineinfo(};

APPLE 1108 - Page 120

};

enum{

FileNew,

FileOpen,

FilePrint,

FilePrintTo,

FileDDE,

FileNothing = -1

m_nShellCommand;

BOOL m_bShowSplash;

BOOL m_bRunEmbedded;

BOOL m_bRunAutomated;

Visual C++ and the MFC Libraries + 95

Table 3.6 MFC Default Command-Line Support

Command Line

appname

Appname filename

Appnamne /p filename

Appname /pt filename printer_port

Appname /dde

Appname /Automation

appname /Embedding

Action

Start with a new file.

Start and open the specified file.

Print the specified file to the default printer.

Print the specified file to the specified printer.

Start the application and await DDE command.

Start the application as an Automation server.

Start the application to edit an embedded OLE item.

Finally, ProcessShellCommand is called with the updated instance of CommandLineinfo.
ProcessShellCommand then performs whatever action was specified on the command line. In most situa
tions, this action will be a call to OnFileNew. In other cases, such as when the command line specifies the
printing of a document, MFC will hide the application, print the document, and return FALSE from
ProcessShellCommand. A return of FALSE forces the application to shut down.

In our case, OnFileNew starts everything. It calls OpenDocumentFile, which causes the creation of
the document, which causes the creation of the frame window, which You get the idea. Figure 3.10 shows
the process in fine detail. If everything works correctly, ProcessShellCommand returns TRUE to indicate
that the main window has been created and processing should continue. Once this occurs, the framework
invokes CWinApp: : Run and starts processing the application's message loop.

APPLE 1108 - Page 121

96 + CHAPTER 3

global CWinApp Object

Figure 3.10 MFC application startup flow.

APPLE 1108 - Page 122

Visual C++ and the MFC Libraries + 97

Table 3.7 describes some of the useful CWinApp members.

Member

m_hinstance

m_lpCmdLine

m_pMainWnd

m_pszProf ileName

m_pszRegistryKey

AddDocTemplate

WriteProfileString

ParseCommandLine

ProcessShellCommand

Initinstance

Run

Exitinstance

OnFileOpen

Table 3.7 Useful cwinApp Members

Purpose

Handle to the application instance.

Command line used to invoke the application.

Pointer to application's main window.

The application's INI filename.

The complete registry key For the application; see the SetRegistryKey,

Wri teProfileString, and GetProfileString methods For details.

Adds a document template, CDocTempla te, instance to the list of valid application docu

ments.

Writes data to either the application's INI file or the system registry; the SetRegistryKey

method determines which technique is used.

Parses the command line that started the application; MFC provides default support For seven

basic command-line options.

Opens a new file, prints a file provided on the command line, etc., depending on the state of

the provided CommandLineinfo instance.

Initializes the application instance, used to define documents, views, and frames; sets up doc

ument templates and displays, initially, the main application window.

Starts message loop, dispatches messages, etc.

Called prior to exiting application.

Called when user selects File/New.

We now have a simple MFC application that we can run, but it doesn't do much. Let's continue our quest to
build an application that will use the Expression class from Chapter 2. We indicated to App Wizard that
our view class should be derived from CFormView. This selection allows the client area to behave like a dia
log box, which makes it easy to add controls. It isn't exactly a dialog box, but it does use a dialog resource to
identify and position the controls.

To invoke the dialog editor, click the Resource View tab in the Project View window and then click
the chap3 resources folder. This action brings up a list of the existing resource types in the application.
Click the Dialog folder, and you should see two dialog resources: IDD_ABOUTBOX and
IDD_CHAP3_FORM. App Wizard has created a default dialog resource for our CChap3View class. Double
click IDD_CHAP3_FORM and the dialog editor will look like Figure 3.11.

APPLE 1108 - Page 123

+CHAPTER 3

figure 3.11 Editing the CChap3View dialog resource.

Resize the To do static field and change the text to Enter an expression:. Increase the size of the dialog
box and add an entry field with an ID of IDC_EXPRESSION. Also, add two buttons: one with a caption of
Validate and the other with a caption of Evaluate. Set the IDs for these buttons,to IDC_VALIDATE and
IDC_EVALUATE. When you're finished, it should look something like Figure 3.12.

figure 3.12 Finished cchap3View dialog resource.

APPLE 1108 - Page 124

Visual C++ and the MFC Libraries +

Once we've modified the dialog resource and we recompile and relink, the application should have a work
ing entry field and two push buttons. The dialog controls don't actually do anything yet. For that, we must
tie a function to the specific control event using the Visual C++ Class Wizard.

Even though you can't use AppWizard to change your application source once it has been initially gener
ated, Visual C++ provides other tools to help with the management of various aspects of the application.
Class Wizard performs many of these functions.

Visual C++ 2.0 added a useful feature to Class Wizard: Class Wizard now shows all the overridable (vir
tual) functions for the selected class in your application. This arrangement makes it easy to override the
functions necessary to add functionality. In previous versions, you had to look up the function name, add
the declaration to the header file, and implement the code in the .CPP file. ClassWizard now does every
thing except write the implementation code.

As I discussed earlier, we want the initial size of our frame window to be the same size as our
CFormView dialog resource. The easiest way to do this is to override the Onini tialUpdate function of
our view class, CChap3View. Onini tialUpdate is called right before the frame (and client) windows are
displayed. This gives us time to resize the frame to match our dialog box. Start ClassWizard by pressing
Ctrl-W. Click on the Message Map tab and select CChap3View from the drop-down list. Choose
CChap3View in the Object IDs listbox. You should see a screen similar to Figure 3.13.

figure 3.13 Overriding parent methods with ClassWizard.

APPLE 1108 - Page 125

1 00 -+- CHAPTER 3

Next, select the OnlnitialUpdate method from the Messages listbox, click the Add Function button, and
then click Edit Code. Add the following code:

void CChap3View: :OninitialUpdate()

and/or call the base

While we're at it, we should ensure that our newly sized frame cannot be resized by the application user
(now that it's the right size). We do this by removing the WS_BORDER window style just before the frame is
created. Start ClassWizard again, choose the CMainFrame class, and override the PreCreateWindow

method to do the following:

BOOL CMainFrame: :PreCreateWindow(CREATESTRUCT& cs)

II TODO: Add your specialized code here and/or call the base class

Build the application to verify that its size is that of the dialog box we created for CFormView. You should
be unable to resize the window, because it does not have a border.

Message Maps
ClassWizard also makes it easy to manage MFC message maps (message maps will be discussed in more
detail in the next section), which provide a convenient way to map Windows messages to specific C++ func
tions. Let's do that for the two push buttons that we added to our application. Invoke Class Wizard (Ctrl-W)
and click the Message Map tab. Select CChap3View from the Class Name drop-down list and you'll see a
dialog box similar to Figure 3.14.

APPLE 1108 - Page 126

Visual C++ and the MFC Libraries + 101

Figure 3.14 Message Maps dialog box.

Each of the custom IDs that we added through the dialog editor (e.g., IDC_EVALUATE) shows up under the
Object IDs. When an ID is selected, the messages generated by the particular ID are displayed in the other
listbox. We're interested in the BN_CLICKED message that is generated whenever a user clicks the push but
ton. Click the Add Function button to add a member function for each button. This action should add two
methods-OnValidate and OnEvaluate-to the CChap3View class. Now when the BN_CLICK message
is generated from the IDC_VALIDATE push button, the onvalidate member function will be called. All
this occurs through the magic of MFC message maps. Let's add one more message handler for instructional
purposes. Select CChap3View in the Object IDs listbox and double-click on the WM_LBUTTONDOWN
message to add a handler called OnLButtonDown.

Windows is a message-based operating environment. Everything that occurs does so because of a
Windows or application event that is communicated through a Windows message. Anyone experienced in
Windows programming understands this concept. The MFC libraries provide a mechanism called message
mapping that hides. somewhat the handling of these messages. Gone is the standard Windows
GetMessage/DispatchMessage loop. Gone also are the enormous switch statements that SDK develop
ers are used to. In their place are MFC message maps.

Microsoft implemented message mapping primarily because of the inherent inefficiencies of using the
C++ virtual function mechanism. A good object-oriented solution would have been to provide a virtual
function for each message that a particular object could handle. Here's an example of the how the CWnd class
might have been implemented:

class CWnd : public CObject

virtual int OnCreate(LPCREATESTRUCT&) ;

APPLE 1108 - Page 127

1 02 + CHAPTER 3

};

virtual void OnDestroy();

virtual void OnMove(int, int);

virtual void OnSize(UINT, int, int) ;

As you can imagine, the virhial table (vtable) for this class would be large and inefficient. MFC uses message
maps to overcome this problem without using proprietary C++ constructs. The message map solution uses
standard C++ notation and conventions (and a few macros to make things more readable).

Message Types
Before we take a look at MFC message maps, we need to categorize the different types of Windows mes
sages. The ones we're most used to dealing with are those generated by Windows for a particular window.
Examples include WM_PAINT, WM_LBUTTONDOWN, and WM_MOVE (basically, all the WM_ messages except
WM_COMMAND). We'll classify these messages as window messages; they are, by their nature, destined to be
handled by a window.

The WM_COMMAND message is used for two purposes. The first is for Windows control notification mes
sages. These messages typically are sent from a child window to its parent. For example, in our application,
the CForrnView class contains an entry field and two command buttons. Each of these elements is a child
window to the parent (the client window). When a command button is pressed, a WM_COMMAND message
containing a BN_CLICKED notification code is passed to the parent.

The second use of WM_ COMMAND messages is in the communication of menu selections and acceler
ator key presses. These messages aren't meant for a specific window, but they can be sent to various objects
within the application as a whole. In our example application, the File/New selection generates a WM_COM
MAND containing ID_FILE_NEW. This message could be handled by the frame object, the document object,
or the view. Because WM_COMMAND messages need to be routed to various application objects, they are
treated differently from standard Windows messages and control notification messages. Next, we'll detail
how each message type is handled.

Window Messages and Control Notifications
Standard window messages and control window notifications are handled by a window. In MFC, all win
dow objects derive from the CWnd class. CWnd has default message handlers for many of the standard win
dow messages. If you were to look at the declaration for CWnd, you would see the following function decla
ration:

afxmsg void OnLButtonDown(UINT nFlags, CPoint point) ;

OnLButtonDown isn't virtual, but it provides a default implementation for the message mapping architec
ture. CWnd: : OnLButtonDown calls the default window procedure if no window overrides or contains a
message map entry for WM_LBUTTONDOWN.

APPLE 1108 - Page 128

Visual C++ and the MFC Libraries + 103

We want to implement a message handler for the WM_LBUTTONDOWN message in our view class, so let's
see how that works. Here's what ClassWizard added to the CChap3View class:

II
II view.h

II

class CChap3View : public CFormView

protected: II create from serialization only

CChap3View () ;

DECLARE_DYNCREATE(CChap3View)

II Generated message map functions

protected:

//{{AFX_MSG(CChap3View)

void,OnEvaluate();

void On Validate() ;

DECLARE_MESSAGE_MAP()

};

II in view.cpp

BEGIN_MESSAGE_MAP(CChap3View, CFormView)

·II HAF'X~r;iSG..;;.MAP (CChap3View)

. ON_BN:::.CLICKED (IDC_EVALU1'.TE, OnEvaluate)

ON,..:.BN_CLICKED(IDC.:..VALIDATE, OnValidate)

ON,..:.vlM~LBUTTONDOWN()

• ;n }AFX_MSG .. ,JlAP

END_MESSAGE_MAP()

CPoint point) ;

This code in VIEW.H and VIEW.CPP sets up a static array of message-map entries for the CChap3View

class. The DECLARE_MESSAGE_MAP macro does most of the work. It creates a message map with three
entries, each of which has its own unique signature (maintained by the framework). We're discussing the
OnLButtonDown handler for now; we'll discuss the ON_BN_CLICKED entries next, but they are in the mes
sage map. The code in VIEW.CPP initializes the message map with the function addresses for our handler,
CChap3View::OnLButtonDown, and initializes a pointer in the message map that points to our base class
(CForrnView) message map. The ON_WM_LBUTTONDOWN entry is a little tricky, because it doesn't contain the
name of the function handler. When you added the WM_LBUTTONDOWN handler using Class Wizard, it didn't

APPLE 1108 - Page 129

1 04 + CHAPTER 3

give you an opportunity to change the handler's name. The name of the handler must match that declared in
the CWnd class. It's just like overriding a parent class member.

We know that CWnd has a default handler for OnLButtonDown, but we want our handler to be called
instead. How does MFC do it? When the WM_LBUTTONDOWN message is generated by pressing the left but
ton within the client area of our application, CWnd: : WindowProc is called. If the message is not a command
message, the message map for the "most derived" class (CChap3View) is checked for an entry that matches
the message. If an entry in the map is not found in that class, the next class in the chain is checked, and so on.
This continues until the inheritance hierarchy is exhausted. If no one handles the message, it is passed to
DefWindowProc for default processing. If a handler is found, it is called and the search stops. Then it is
important to call the parent's implementation of the handler if additional processing is required. In our
example, once we process the OnLButtonDown event, we pass the message to our parent CFormView by
directly calling its implementation.

Handling window messages is wonderfully easy using MFC, once you get the hang of it.

Command Messages
In the previous example, once we reached CWnd in the search for a handler and none was found, the frame
work called DefWindowProc. Command messages are treated differently. First, if command messages
never find a handler, instead of calling a default hander, they're ignored. Second, command messages can be
routed to various framework objects and not just to windows. A special class, CCmdTarget, provides the
routing of command messages between the framework objects. Any class derived from CCmdTarget
(including, of course, a CWnd-derived class; CWnd is derived from CCmdTarget) can participate in the
receiving and routing of command messages.

What about our BN_CLICKED messages that are generated when a user clicks one of our command but
tons? Well, technically, BN_CLICKED is a control notification message and it should be handled like the
other standard Windows messages. But because command buttons can be used as tool bar buttons, the
framework treats them as if they were command messages. They can be routed like all command messages.

In reality, all control notification messages, not just BN_CLICKED, can be routed like command mes
sages. This capability is explained in detail in MFC Tech Note 21, but its use outside of
BN_CLICKED, where it has a specific purpose, is not recommended because ClassWizard does not

N o T E support this feature.

APPLE 1108 - Page 130

Visual C++ and the MFC Libraries + 1 05

Command messages from menus or tool bars are typically first received by the application's frame window.
Without the ability to route these messages using CCmdTarget and the message-mapping architecture, all
commands would have to be handled in the CMainFrame class, which is not where you would typically
want an MFC application. Command routing follows the course illustrated in Figure 3.15. When a frame
window command message is received, it is routed first to the active view. If no handler is found, the rout
ing continues all the way to the application object. If it is not processed by any object, it is discarded.

View Object

Document Object

MainFrame Object

Application Object

Message
Flow

il
Figure 3.15 Command routing in an SDI application.

Command messages that contain control notifications (e.g., BN_CLICKED, EN_CHANGED) are received by
their parent window, which is usually a dialog window. In our example, the button controls send their mes
sages to the parent window-which is the view-and not to the application's frame window. This is the pri
mary difference between command messages that are not actual control notifications and those command
messages that are.

We have taken a quick look at the MFC library message maps for processing and routing Windows
messages. Within the MFC libraries, this powerful concept of message routing is not confined to the han
dling of Windows messages. This concept is used in various MFC areas, including COM and OLE. So we've
briefly stopped to ponder what message maps are and how they work. Later, understanding various con
cepts of COM, OLE, and ActiveX in the context of MFC will be easier.

We now have all the pieces in place to add the functionality from the Expression class that we developed
in the last chapter. To do this, first copy the EXPRESS.CPP and EXPRESS.H files from the CD-ROM
(EXAMPLES\CHAP3) to the working directory for your CHAP3 project. Then, from the Insert menu select
Insert Files into Project ... and add the file EXPRESS.CPP to the project (see Figure 3.16).

APPLE 1108 - Page 131

1 06 + CHAPTER 3

Figure 3.16 Adding the file EXPRESS.CPP to the project.

Add a forward declaration for the Expression class and add an Expression class pointer member vari
able to the CChap3View class as follows:

II
II view.h : interface of the CChap3View class

II

lll

II Forward declaration of Expression class

class Expression;

class CChap3View : public CFormView

protected:

Expression* m__pExpression;

};

Now we need to do something when the user clicks the Validate and Evaluate keys on the form view.
Add the following code to VIEW.CPP to use the Expression class:

II
II view.cpp implementation of the CChap3View class

II

#include "stdafx.h"

APPLE 1108 - Page 132

#include "chap3.h"

#include "document.h"

#include "view.h"

Visual C++ and the MFC Libraries + 107

/I Include our Expression class declarations

#include "express.h"

lllllllllllllllll/l//ll/llllllllllll////llll////lllllllllllllll/llllllllll/I/

/I CChap3View construction/destruction

CChap3View: : CChap3View ()

: CFormView(CChap3View: :IDD)

/I { {AFX_DATA_INIT (CChap3View)

II NOTE: the ClassWizard will add member initialization here

//}}AFX_DATA_INIT

II TODO: add construction code here

m_pExpression = new Expression;

void CChap3View: :OnEvaluate()

II TODO: Add your message handler code here

CString strExpression;

char szTemp[128];

II Get the expression from the entry field

CWnd* pWnd = GetDlgitem(IDC_EXPRESSION);

ASSERT { pWnd) ;

pWnd->GetWindowText (strE.xpression) ;

TRACEl ("OnEvaluate: Expression is %s\n", strExpression) ;

II Set the expression to evaluate

m__pExpression->SetExpression(strExpression, TRUE);

long !Result= m_pE.xpression->Evaluate{);

sprintf (szTemp, "%ld", lResult) ;

II Update the entry field with the result

pWnd->SetWindowText (szTemp) ;

II Set focus back to the entry field

GetDlgitem(IDC_EXPRESSION)->SetFocus();

APPLE 1108 - Page 133

1 +CHAPTER 3

void CChap3View: :OnValidate()

II TODO: Add your message handler code here

CString strExpression;

II Get the expression from the entry field

Cl'lnd* pWnd = GetDlgitem(IDC_EXPRESSION) ;

ASSERT (pWnd) ;

pWnd->GetWindowText(strExpression);

TR".CE1 ("OnValidate: Expression is , strExpression) ;

m_pExpression->SetExpression(strExpression, TRUE) ;

if (l m_pExpression->Validate())

AfaMessageBox("Invalid Expression, try again") ;

II Set focus back to the entrJ field

GetDlgitem(IDC_EXPRESSION)->SetFocus{);

Once you've entered the code, compile, link, and run the application in debug. Everything should work.
Figure 3.17 shows the finished application with a complex expression about to b.e evaluated. After you ter
minate the application, examine the Debug tab and see whether there are any problems with the applica
tion. There should be, so let's review some MFC debugging techniques.

Figure 3.17 Finished application.

APPLE 1108 - Page 134

Visual C++ and the MFC Libraries + 109

The MFC libraries provide a rich set of functions and classes for debugging applications. We'll look at a cou
ple of the debugging features available to MFC developers. In later chapters, we'll use more-sophisticated
techniques as we develop complex applications. Windows application debugging is a difficult task, but
when you introduce COM into the equation-with multiple, interacting processes-it gets hairy. Luckily,
MFC provides facilities to help with this process.

First, there are the TRACE macros which allow you to display messages as your code is executing. In
the previous example, we used the TRACEl macro to update the actual expression in the OnEvaluate
and OnValidate methods. The TRACE macros work just like the old C-style printf functions, so you
can format the output however you like. To see the trace output, however, you must compile and link
your project in debug. This basically means defining the _DEBUG flag.

Second, there's the ASSERT macro, which is provided by MFC. It is a simple enhancement of the C-style
assert function. The ASSERT macro is a convenient way of checking the validity of your program's vari
ables; it provides a basic sanity check. The ASSERT macro is used like this:

II Get the expression from the entry field

CWnd* pWnd = GetDlgitern(IDC_EXPRESSION);

ASSERT (pWnd) ;

pWnd->GetWindowText(strExpression) ;

We're about 100 percent sure that we will get a valid, non-null pointer back from the GetDlgitem method,
but just to be sure, we assert that it is nonzero. If this assertion fails, the ASSERT macro will pop up a dialog
box informing us that it failed, and it will provide the file and line number where it failed. It is a good idea to
sprinkle your code with assertions like this; it helps tremendously during the debugging phase of a project.
You can't have too many, because they don't affect the size or performance of the release version of your
program. If the _DEBUG flag is not set, the ASSERT macro is defined as nothing (i.e., the code is removed).

The MFC source code is a great example of this technique. There are thousands of ASSERTS throughout
the MFC source code. There are also specialized versions. ASSERT_POINTER asserts that the parameter is a
valid MFC-based pointer. ASSERT_KINDOF tests whether a class instance is a specific type of class. There
are several other ASSERTS as well. Check out the MFC source code and the help files for more information.

Another nice feature provided by MFC is its tracking of every memory allocation (new) and dealloca
tion (delete) that your application performs. If you somehow forget to delete something that you have
allocated, MFC will dump (to the debug window) the source file and line number of the specific allocation
that was not deallocated, assuming that you adhere to the following rules:

1. Derive your class directly or indirectly from CObject. Almost all the classes in MFC derive from
CObj ect, so this shouldn't be a problem.

2. Within your class declaration, include the DECLARE_DYNCREATE (classname) macro and within
the .CPP file for your class, include the IMPLEMENT_DYNCREATE (classname, parentclass)
macro.

APPLE 1108 - Page 135

110 +CHAPTER 3

3. h1 your .CPP file, after any IMPLEMENT_DYNCREATE() macros, change the line: #define new to
be DEBUG_NEW. This is added by default when you compile with _DEBUG defined.

In the example, we forgot to delete the Expression instance that we created in the constructor of the view
class. When you terminate the application, you should see something similar to the following in the debug
window:

Loaded symbols for 'C:\WINNT\system32\MFC42D.DLL'

Loaded symbols for 'C:\WINNT\system32\MSVCRTD.DLL'

Detected memory leaks!

Dumping objects ->

strcore.cpp(76) : (159) normal block at Ox004127AO, 20 bytes long.

Data: < 2343> 01 00 00 00 07 00 00 00 07 00 00 00 32 33 34 33

D:\test\chap3\View.cpp(41) : (65) normal block at Ox004118BO, 8 bytes long.

Data: < 'A > AC 27 41 00 01 00 00 00

Object dump complete.

The program 'D:\test\chap3\Debug\chap3.exe' has exited with code 0 (OxO).

Because the AppWizard provided the DEBUG_NEW definition for us, we can immediately determine which
line of code allocated memory but did not delete it. Line 41 of VIEW.CPP looks like this:

!!lllllll!lll!l!lllllll!l!llll!ll!llllllllll!lll!lllllllll!lll!l!lllllll!!lll

II CChap3View construction/destruction

CChap3View: :CChap3View()

: CFormView(CChap3View::IDD)

m_pExpression = new Expression;

Just as we thought, we forgot to deallocate our Expression instance. MFC can do even more. If we derive
our class from CObj ect and add the DECLARE_DYNCREATE and IMPLEMENT_DYNCREATE macros, MFC
will display the class name of the object that wasn't deallocated. Classes derived from CObj ect inherit run
time type identification (RTTI) abilities. (This isn't the C++ standard RTTI, but it provides similar capabili
ties.) This arrangement allows the debugger to determine the type and name of the object that wasn't deallo
cated.

This behavior is provided by the DECLARE_DYNAMIC and IMPLEMENT_DYNAMIC macros as well as the
DYNCREATE macros we are using. The DYNCREATE macros also allow MFC to dynamically create instances
of classes at run time. We've used DYNCREATE instead of the more basic DYNAMIC macros here, because in
the next chapter MFC will need the DYNCREATE feature to create instances of COM-enabled classes. Here's
an example of adding the new macros to the Expression class:

II express.h

class Expression public CObject

APPLE 1108 - Page 136

protected:

DECLARE_DYNCRE.~TE(Expression

};

II express.cpp

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <ctype.h>

#include "express.h"

IMPLEMENT_DYNCREATE(Expression, CObject)

Visual C++ and the MFC Libraries + 111

Now we get even more information about our memory leak. In addition to the line number, MFC informs us
of the class name that caused the problem:

Loaded symbols for 'C:\WINNT\system32\MFC42D.DLL'

Loaded symbols for 'C:\WINNT\system32\MSVCRTD.DLL'

Detected memory leaks!

Dumping objects ->

strcore.cpp(76)

Data: <

{401) normal block at Ox00411D00, 17 bytes long.

235 > 01 00 00 00 04 00 00 00 04 00 00 00 32 33 35 20

D: \ test\chap3 \View. cpp (41) :

(65) client block at Ox004118BO, subtype 0, 12 bytes long.

a Expression object at $004118BO, 12 bytes long

Object dump complete.

The program 'D:\test\chap3\Debug\chap3.exe' has exited with code 0 (OxO).

To fix the leak, we need to ensure that we delete the Expression instance in the destructor of the view
class:

CChap3View: : -CChap3View ()

delete m_pExpression;

When you're developing MFC applications, I recommend that you use all the available features. You're pay
ing for them with the additional overhead, so you should take advantage of what they offer in the way of
application debugging. The use of DYNCREATE is a simple example. There are several classes designed just
for debugging. When you get a chance, check out the features of the CObj ect, CMemorySta te, and
CDumpContext classes.

APPLE 1108 - Page 137

112 +CHAPTER 3

s
In this chapter, we reviewed the benefits of developing software with Visual C++ and Microsoft's
Foundation Class libraries. Using Visual C++ and MFC allows us to be more productive as Windows devel
opers, because we can focus on the problems being solved rather than on continually solving old ones. We
reviewed the main design features of MFC, and in the process we completed a simple MFC application that
tested the Expression class from Chapter 2.

The only way to really understand MFC is to dive into the source code. It is included with the profes
sional edition in the default location \MSDEV\MFC\SRC. Next time you're debugging your code, go
ahead and step into those MFC functions. It may be confusing at first, but after some time you'll begin to
understand what's going on. Then watch your productivity skyrocket (or plummet if you get too enthralled
with what's happening).

This book is about developing COM-based components and ActiveX controls, so let's get started.

APPLE 1108 - Page 138

icrosoft's Co

In Chapter 3 we looked at Visual C++ and the MFC libraries and how they can help in the development of
Windows software. In this chapter we will take a detailed look at Microsoft's Component Object Model
(COM). Microsoft's COM provides the binary standard that we need to make our software more reusable,
and we'll provide much low-level detail about how COM provides a binary standard wrapper for software
components. You don't need to know this level of detail to use the technology, but if you understand what's
going on at this level, you'll have a much easier time. It will also help when something goes wrong and you
must do some low-level debugging. To paraphrase the great physicist Richard P. Feynman, once you under
stand the universe at the atomic level, everything else is easy. And so it is with COM: once you comprehend
it at its lowest level, the rest (OLE, ActiveX) is simple.

The sample code in this chapter, except for the two example applications at the end, is used strictly for
illustration and is not expected to be compiled and run. Instead, it's intended to demonstrate various C++
techniques used in building COM-based, binary standard components. After this chapter, we will be using
the MFC implementation of COM, OLE, and ActiveX. Chapter 5 will provide a transition from the low-level
COM to the higher-level ActiveX and MFC. So hang tight, we'll soon be doing some cool things.

There is much confusion about what COM, OLE, and ActiveX are and how they are different. COM is
a system-level standard that provides basic object model services on which to build higher-level ser
vices. OLE and ActiveX are examples of a higher-level service. OLE and ActiveX provide application

N 0 r E level features but are built using COM's services. So the terms COM, OLE, and ActiveX are somewhat
interchangeable in that their capabilities and features are closely related. However, each term
describes a separate set of technologies. OLE and ActiveX are built using COM, as are other new
Microsoft technologies, such as the DirectX game SDK. All its services are accessed through COM
based interfaces. So don't let these terms get in the way of your understanding. We'll discuss COM in
this chapter and then move to OLE and ActiveX in the remaining chapters. Just remember that OLE
and ActiveX are primarily COM-based interface definitions with a few APls thrown in to help.

113

APPLE 1108 - Page 139

In previous chapters, we discussed the importance of binary standards to the development of software com
ponents. Binary standards allow easy interoperation and reuse of components across language implementa
tions (such as Microsoft and Borland C++), between disparate languages (such as Visual Basic and C++),
and across process boundaries. COM is such a standard. We've discussed the benefits of using binary stan
dards and the benefits of developing software applications using them. Now we're ready to dig into the
details of how it all works.

In Chapter 2, we developed a C++ class, Expression, that we will continue to use in this chapter. Our
design of the Expression class allows for easy reuse within the C++ language environment. Our goal now
is to use COM to augment the Expression class so that it can be shared across various languages and
processes.

When used within C++, the Expression class is a compile-time construct. We can create instances of
Expression at run time, but the definition of Expression and how it behaves cannot change at run time.
To use the Expression class in C++, you must include its definition (for example, EXPRESS.H). If the
implementation for Expression changes, the program using it may need to be recompiled and relinked.
COM eliminates this dependency on compile-time definitions by providing run-time mechanisms to query a
component's functionality.

We will use the C++ language to implement our COM objects. COM does not require that you use C++
for its implementation, but, as you will see, because of the internal structure of COM objects C++ is the pre
ferred method.

One important aspect of a software component is its interface. The component's interface is its contract with
the user, and it describes exactly what can be done. As we've discussed, the other important feature of a soft
ware component is complete encapsulation of its implementation details. COM provides this capability by
defining a standard way of implementing the interfaces of a COM object. Recall the public interface of the
Expression class:

class Expression : public CObject

II Here's the interface

public:

CString GetExpression();

void SetExpression(CString strExp, BOOL binfix) ;

BOOL Validate();

long Evaluate();

};

APPLE 1108 - Page 140

Microsoft's Model -+- 115

Because the interface is the essence of our component, we need a binary standard way of making it available
to non-C++ users. The COM, OLE, and ActiveX specifications are composed mostly of interfaces. Once you
understand the concept of a COM interface, the rest is easy. The following example code shows how a sim
ple COM interface is implemented in C++:

II public interface definition of our Expression component

II An abstract class

class IExpression

public:

};

virtual CString GetExpression() = O;

virtual void SetExpression(CString str, BOOL binfix) O;

virtual BOOL Validate() O;

virtual long Evaluate() O;

II Inherit from the abstract Interface definition class

class Expression : public IExpression

II Class Implementation here, just as before

II Here's the interface implementation

public:

virtual CString GetExpression();

virtual void SetExpression(CString strExp, BOOL binfix) ;

virtual BOOL Validate();

virtual long Evaluate();

};

First, we declare a new class that is abstract and contains only the public functions of our class. All inter
face functions are declared pure virtual. This new class is called IExpression; the I indicates that it is an
interface declaration. COM uses this nomenclature throughout its implementation. The IExpression class
provides an external interface declaration for our Expression object. It also forces the creation of a virtual
function table (Vtable) in any derived classes.

This polymorphic use of virtual functions in a base class is central to the design of COM. It provides a
Vtable that contains only the public methods (the interface) of the class. The IExpression class contains no
data members and no implementation functions. Its only purpose is to force the derived class, Expression,

to implement, virtually, the methods of the component interface.

Because we allow access only through a Vtable pointer, access to the members of the component imple
mentation is impossible. Only those functions declared in the interface class are available to the component
user. Study the preceding example. It is fairly small and simple, and it contains the core concept of COM: the

APPLE 1108 - Page 141

116 -+-CHAPTER 4

use of Vtables to hide the implementation of component interfaces. A COM interface is just a pointer to a
pointer to a C++-style Vtable. This relationship is illustrated in Figure 4.1.

plnterface

Implementation
variables and

functions cannot be
accessed through the
pointer to a pointer to

the Vtable

Figure 4. 1 COM Vtable usage.

&GetExpression()

&SetExpression()

&Validate()

&Evaluate()

Following is an example of how a client application might use the IExpression interface provided by the
Expression class. This example isn't a true implementation of COM but rather is simplified to show, con
ceptually, how COM works.

II An identifier for our Expression class

#define CLSID_Expression 1000

II This provides a standard method of obtaining

II an instance pointer for the specified object

RESULT GetObject(OBJID objid, void** ppv)

if (objid == CLSID_Expression

*ppv = new Expression;

return (S_OK);

else

return(E_INVALID_OBJECT_ID) ;

void RemoveObject(void* pv)

delete pv;

APPLE 1108 - Page 142

Microsoft's

main()

IExpression* pIExpression;

if (GetObject(CLSID_Expression, (void**) &pIExpression S_OK

pIExpression->SetExpression("1 + 2", TRUE);

cout << pIExpression->Evaluate() << endl;

RemoveObject(pIExprBAD) ;

Model + 117

Given our previous Expression declarations, we implement a function, GetObj ect, that takes as a parameter
an object ID that identifies the specific component that we need and returns a pointer to that component object.
As illustrated in the main () section, the user of the component requires knowledge only of the IExpression
interface to use the object effectively. The GetObj ect function could possible reside outside the client's exe
cutable or even outside the client's process. The RemoveObj ect function is called when the client is finished with
the component. RemoveObj ect is responsible for deleting the component instance when all clients are finished
using it. But we're getting ahead of ourselves. .

I
The preceding example is not yet a COM object. COM requires that at least one standard interface be present
in an object to qualify it as a COM object. IUnknown is the one interface that all COM objects must support.
IUnknown serves two purposes. The first is to provide a standard way for the component user (or client) to
ask for a specific interface within a given component. Queryinterface, a method of IUnknown, provides
this capability. The second purpose is to help in the management of the component's lifetime. The
IUnknown interface provides two methods-AddRef and Release-that provide lifetime management of
a component instance. Here is the definition of IUnknown:

class IUnknown

virtual HRESULT Queryinterface(REFIID riid, void** ppv) O;

};

virtual ULONG

virtual ULONG

AddRef () = 0;

Release() = O;

As you can see, IUnknown is an absh·act class that provides the requirements for all classes that derive from
it. It mandates that the three methods be implemented in the deriving class. It also ensures that the deriving
class will have aVtable, just as in the IExpression interface we examined earlier.

Queryinterface returns a pointer to a specific interface (such as IUnknown or IExpression) con
tained within a COM object. The first parameter, REFIID, is a reference to the specific interface ID, which is
a unique identifier for the interface we are querying for. The second parameter, void**, is the location

APPLE 1108 - Page 143

118 +CHAPTER 4

where the interface pointer will be returned. The return value, an HRESULT, is a handle to a COM-specific
error structure that contains any error information. We'll get to the details later; right now we're trying to
grasp the big picture.

In our example, if a user requires the services of the Expression class, he or she would request the
IExpression interface. This request can be made through an existing IUnknown interface (on an
Expression component) or can be requested during the component's instantiation. COM requires that the
IUnknown interface be present in any COM object and that all COM interfaces also contain the IUnknown

interface. This arrangement allows a component user to obtain an interface pointer to any interface within
the component by querying any existing interface on that component. Here's what our example looks like
with the IUnknown interface added:

II public interface definition

II An abstract class that derives from IUnknown

class IExpression : public IUnknown

public:

};

virtual CString GetExpression() = O;

virtual void SetExpression(CString str, BOOL binfix) O;

virtual BOOL Validate() 0;

virtual long Evaluate() O;

II Derive from the abstract Interface definition class

class Expression : public IExpression

II Class Implementation here, just as before

II Here's the interface implementation

public:

virtual HRESULT Queryinterface(REFIID riid, void** ppv) ;

virtual ULONG Release();

virtual ULONG AddRef();

virtual CString GetExpression();

virtual void SetExpression(CString strExp, BOOL binfix) ;

virtual BOOL Validate();

virtual long Evaluate();

};

The addition of deriving IExpression from IUnknown requires us to now implement seven methods:
three from IUnknown and the four original Expression class methods. We now have a Vtable in our class
that looks like Figure 4.2.

APPLE 1108 - Page 144

Microsoft's Model + 11

Vtable

plntertace &Querylnterface()

&AddRef()

&Release()

&GetExpression()

&SetExpression()

&Validate()

&Evaluate()

Figure 4.2 Expression class with IUnknown added.

Our example now looks like this. We've added the implementation of IUnknown: : Queryinterface.

II The identifier for the COM IUnknown interface

#define IID_IUnknown 1

II An identifier for our Expression class

#define CLSID_Expression 1000

II An identifier for our IExpression interface

#define IID_IExpression 2000

HRESULT Expression: :Queryinterface(REFIID riid, void** ppv)

II Our Expression class contains both of these

II interfaces so returning a pointer to this provides

II both implementations. The client will cast the returned

II pointer to the appropriate pointer type.

switch(riid) {

case IID_IUnknown:

case IID_IExpression:

*ppv = this;

return (S_OK) ;

default:

return(E_NOINTERFACE) ;

APPLE 1108 - Page 145

4

II This provides a standard method of creating a component

II object and returning the requested interface on that object

RESULT GetObject(OBJID objid, REFIID riid, void** ppv)

if obj Id CLSID_Expression)

II Create an instance of Expression

*ppv = new Expression;

II Now query for the requested interface

((Expression*) (*ppv))->Queryinterface(riid, ppv) ;

return (S_OK) ;

else

return(E_INVALID_OBJECT_ID) ;

void RemoveObject(void* pv)

delete pv;

main()

};

IUnknown* pIUnknown;

IExpression* pIExpression;

II Create an Expression component and get its

II IUnknown interface

GetObject(CLSID_Expression, IID_IUnknown, (void**) &pIUnknovm) ;

II Now use the IUnknown interface to get the

II IExpression interface

pIUnknown->Queryinterface(IID_IExpression, (void**) &pIExpression);

II Now use the IExpression interface pointer

pIExpression->SetExpression("l + 2", TRUE);

cout << pIExpression->Evaluate() << endl;

RemoveObject(pIExpression) ;

The implementation of Queryinterface may be a little difficult to comprehend at this point. All it does is
to return a pointer to the Vtable pointer for the Expression object. Because IExpression is derived from
IUnknown, a pointer to the Expression object provides both interfaces. The preceding code won't actually
compile and run-a few things are still missing-but I hope you're getting the idea.

APPLE 1108 - Page 146

Microsoft's 121

There is a standard way of depicting COM objects and their interfaces. Figure 4.3 depicts our
Expression class with its IExpression and IUnknown interfaces. IUnknown is shown on the upper
right, because it is always required and so will be present in any COM object. Other interfaces are usually
shown on the left-hand side of the component. Remember, though, that every interface on the left contains
an IUnknown interface, too. Every COM interface implements IUnknown.

I Unknown

COM Object
I Expression

Figure 4.3 COM object representation.

We've learned that access to a component interface is obtained through IUnknown: : Queryinterface.
The other two functions provided by IUnknown are used to control the lifetime of the component object.
This process is termed reference counting.

Each component class contains a member variable, usually named m_dwRef, that maintains a count of
the outstanding references to (or clients of) its COM interfaces. The interface user has only a pointer to a
pointer to the object and so cannot directly delete the object when finished. In reality, the client shouldn't
think of deleting the object anyway, because others may be using the same component object. Only the COM
object can determine when it can or should be deleted. The object's reference count is controlled by the client
using the AddRef and Release functions of IUnknown. This is one reason every COM interface must con
tain an implementation of IUnknown. Let's use our simple Expression example to describe the reference
counting requirements.

APPLE 1108 - Page 147

class IUnkno~m

};

virtual HRESULT Queryinterface(REFIID riid, void** ppv) O;

virtual ULONG

virtual ULONG

AddRef () = 0;

Release() = 0;

class !Expression public IUnkno~

public:

};

virtual CString GetExpression() = O;

virtual void SetExpression(CString str, BOOL binfix) O;

virtual BOOL Validate() O;

virtual long Evaluate() O;

class Expression public !Expression

II Class Implementation here, just as before.

DWORD m_dwRef;

public:

} ;

II Nothing has changed here

virtual HRESULT Queryinterface(REFIID riid, void** ppv) ;

virtual ULONG Release();

virtual ULONG AddRef();

virtual CString

virtual void

virtual BOOL

virtual long

GetExpression();

SetExpression(CString strExp, BOOL binfix) ;

Validate() ;

Evaluate();

HRESULT Expression::Queryinterface(REFIID riid, void** ppv)

switch(riid) {

case IID_IUnkno~:

APPLE 1108 - Page 148

case IID_IExpression:

*ppv = this;

Microsoft's

II We're returning a new interface pointer

II so call AddRef on the new pointer

((LPUNKNOWN) *ppv)->AddRef();

return (S_OK) ;

default:

return(E_NOINTERFACE) ;

Expression: :Expression ()

m_dwRef = O;

m_binFix = TRUE;

II IUnknown: :Release implementation

ULONG Expression: :Release()

m_dwRef-;

II When the reference ·count reaches zero

Ii delete ourselves

if m_dwRef == 0)

delete this;

ii Can't return m_dwRef, it's gone

return O;

else

return m_dwRef;

II IUnknown: :AddRef implementation

ULONG Expression::AddRef()

m_dwRef++;

return m_dwRef;

123

APPLE 1108 - Page 149

1 24 + CHAPTER 4

To support the AddRef and Release functions of IUnknown we added a member variable, m_dwRef, that
keeps a count of the current references, or outstanding interface pointers, to our object. The AddRef and
Release functions directly affect a COM interface, but an interface is not an instance of the object itself. This
object can have any number of users of its interfaces at a given time and must maintain an internal count of
its active interfaces. When this count reaches zero, the object is free to delete itself. It is important that object
users diligently AddRef and Release the interfaces when appropriate. If they don't, the component will
hang around forever (or until a reboot, whichever comes first). The AddRef, Release pair is similar to the
new, delete pair used to manage memory in C++. Whenever a user obtains a new interface pointer or
assigns its value to another variable, AddRef should be called through the new pointer. You must be careful,
though, because many COM interface functions return pointers to interfaces; in these cases, the functions
call AddRef through the returned pointer. The most obvious example is Queryinterface. It always calls
AddRef after allocating a new interface, so it isn't necessary to call AddRef again. Here are some examples:

II The initial CoCreateinstance calls Queryinterface internally.

II We'll study this COM function in a moment. It instantiates a

II COM object of the requested type and returns an interface pointer

II to the created object.

HRESULT hr;

hr CoCreateinstance(ID_Expression, &lpExpression) ;

if FAILED(hr))

return;

II At this point m_dwRef = 1

II Get an IUnknown pointer (QI calls AddRef internally)

hr lpExpression->Queryinterface(IID_IUnknown, &lpUnknown);

if FAILED(hr))

II The call failed, so decrement m_dwRef to 0 by calling

II release through the initial pointer and return.

lpExpression->Release();

return;

II If everything worked, m_dwRef = 2

II Make a local copy of the interface

LPUNKNOWN lpU2 = lpUnknown;

lpU2->AddRef();

II Now m_dwRef 3

II use lpU2

II free the interface

APPLE 1108 - Page 150

Microsoft's

luU2->Release();

II The release decrements m_dwRef so it is now 2

II No longer valid, set to NULL

lpU2 = NULL;

Expression* lpExp2 = lpExpression;

lpExp2->AddRef(); II m_dwRef = 3

... Use lpExp2

II we screwed up here. lpExp2 was destroyed as

II it went out of scope, but we did not call

II Release() so the reference count is still 3.

lpUnknown->Release(); 11 m_dwRef 2

lpExpression->Release(); II m_dwRef 1

II The object lives forever

Model + 125

Like the C++ new and delete operators, AddRef and Release calls should "match up." The exception is
Queryinterface. Treat a call to Queryinterface as a call to AddRef. Queryinterface allocates a new
interface internally and so must call AddRef.

COM objects nearly always contain multiple interfaces. If a COM object had only one interface, it would
have to be IUnknown, and that wouldn't provide very much functionality. Some of the interfaces imple
mented by an object (such as IUnknown) are there to support COM's purpose of providing the binary stan
dard wrapper around the component's functionality. By exposing the component's distinct behavior, the
other interfaces are what make the component useful. In many cases, these interfaces are already defined by
the COM, OLE, or ActiveX standard. Your job is to provide a distinct implementation of the interface. In
other cases, you will create your own custom interfaces to provide specific behavior. We will discuss both
approaches in the next few chapters.

In C++, there are three ways to implement multiple interfaces in a COM object: multiple inheritance,
interface implementation, and C++ class nesting. Of the three methods, we will focus on and use C++ class
nesting, because that is how MFC implements COM/OLE interfaces. C++ class nesting is the hardest to
understand (at first), but it is the most efficient. Let's briefly look at each method. In Chapter 5, we will go
into more detail as we discuss MFC's COM/OLE implementation.

Declaring multiple interfaces within a single C ++ class doesn't sound very difficult at first, but it can be
tricky. Because COM interfaces are really pointers to a C++-style Vtable, a multiple interface class requires
multiple Vtables. Another reason that component classes and their interface implementation classes must be
closely coupled (via class nesting) is the need to maintain reference counting. When there are multiple inter-

APPLE 1108 - Page 151

1 26 + CHAPTER 4

faces on a COM object, all of them must cooperate in the reference counting scheme. There is only one refer
ence count per object, and the interfaces must share it. This coupling is maintained through multiple
IUnknown interfaces.

Multiple Inheritance
First, let's look at how multiple inheritance can solve the multiple Vtable problem. We'll continue the
Expression class example by adding an interface, IExpression2. One of the useful features of COM is
the ability it gives you to maintain multiple versions of an interface for a particular component class. This
arrangement allows easier upgrading and augmenting of components. When developers enhance an exist
ing component, they can provide a new interface that exposes the new functionality. At the same time, the
original interface can be maintained. This approach ensures that any applications developed with the origi
nal interface will continue to work, and the component user can migrate to the more functional interface as
time permits.

The new IExpression2 interface will provide a new feature that IExpression did not. Its declara
tion follows.

class IExpression : public IUnknovm

};

virtual CString GetExpression() = O;

virtual void

virtual BOOL

virtual long

SetExpression(CString strExp, BOOL binfix)

Validate ()

Evaluate()

O;

O;

II New interface derives from the old one

class IExpression2 : public IExpression

virtual CString ErrorString() O;

};

O;

The new method, ErrorString, returns a textual description (such as "Too many closing parentheses.") of
any errors that occur during the call to Validate. If Validate returns FALSE, the ErrorString method
is called to obtain a description of the problem, which is then presented to the user. We would like to pro
vide both interfaces for our COM object so that the user can choose the more appropriate one. We can
deploy the new component without breaking any existing applications that use it. Using multiple inheri
tance, we would declare something like this:

class Expression : public IExpression, public IExpression2

};

II implementation of all three interfaces

11 IUnknown

II IExpression

I I IExpression2

APPLE 1108 - Page 152

Microsoft's Model • 1

To illustrate one of the difficulties of using multiple inheritance to implement multiple interfaces, I've writ
ten the Queryinterface function for our declaration. One of the ambiguities of using multiple inheritance
is that the multiple Vtable implementations are handled by typecasting to the appropriate interface declara
tion. The value of this (and therefore its Vtable pointer) varies depending on the required casting. Both
IExpression and IExpression2 contain an IUnknown interface, so either one could be used to return
I Unknown.

HRESULT Expression: :Queryinterface(REFIID riid, void** ppv)

*ppv = NULL;

if (riid == IUnknown I I riid == IExpression)

*ppv = (IExpression *) this;

else if (riid == IExpression2)

*ppv = (IExpression2 *) this;

else

return(E_NOINTERFACE) ;

((LPUNKNOWN) *ppv)->AddRef();

return (S_OK) ;

Multiple inheritance may work in some circumstances, but in our case we have a severe "name collision"
problem. The two Expression interface classes-IExpression and IExpression2-contain method
names that are the same. (For example, GetExpression is contained in both classes.) This ambiguity
makes multiple inheritance difficult to use and complex to implement. The IUnknown interface is also
ambiguous, making it difficult to implement a COM-based reuse technique called aggregation, which we will
discuss in a moment. In other circumstances, where there are no name collisions and aggregation is not a
requirement, multiple inheritance can be an effective technique.

Interface Implementations
Another option is to use interface implementations, which use multiple classes that contain pointers to the
main class that implements the component's behavior. As you will see, the purpose of the interface imple
mentation classes is to provide a Vtable for the interface they define. They delegate all their IUnknown func
tions to the main class. To promote clarity, error handling is not included.

II Classes that implement each COM interface but

II delegate their implementations of IUnknown

class ImpExpression : public IExpression

Expression* m__pExpression;

public:

APPLE 1108 - Page 153

1 28 + CHAPTER 4

II Constructor

ImpExpression(Expression* pExp) { m__pExpression pExp; }

II Interface

virtual HRESULT Queryinterface(REFIID riid, void** ppv) ;

virtual ULONG Release();

virtual ULONG AddRef();

virtual CString GetExpression();

virtual void SetExpression(CString strExp, BOOL binfix) ;

virtual BOOL Validate();

virtual long Evaluate();

};

II Classes that implement each COM interface but

II delegate their implementations of IUnknown

class ImpExpression2 : public IExpression2

Expression* m__pExpression;

public:

II Constructor

ImpExpression2(Expression* pExp) { m__pExpression pExp; }

II Interface

virtual HRESULT Queryinterface(REFIID riid, void** ppv) ;

virtual ULONG Release();

virtual ULONG AddRef();

virtual CString GetExpression();

virtual void SetExpression(CString strExp, BOOL binfix) ;

virtual BOOL Validate () ;

virtual long Evaluate () ;

virtual CString ErrorString();

};

class Expression public IUnknown

II All basically the same as before except for the

II addition of pointers for the implementation classes

ImpExpression* m__pimpExpression;

ImpExpression2* m__pimpExpression2

APPLE 1108 - Page 154

Microsoft's

JI Only IUnknown functions are implemented in the base

JI or parent class.

virtual HRESULT Queryinterface(REFIID riid, void** ppv);

virtual ULONG Release();

virtual ULONG AddRef();

JI Make the Interface Implementation classes

JI friends so that they can access protected members

friend class IExpression;

friend class IExpression2;

};

JI The constructor for Expression

JI must create the Interface Implementation objects

Expression: :Expression()

JI Instantiate the Implementations

m_pimpExpression = new ImpExpression(this) ;

m_pimpExpression2 =new ImpExpression2(this) ;

JI Destructor must remove the Interface Implementation instances

Expression: :-Expression()

delete m_pimpExpression;

delete m_pimpExpression2;

JI Queryinterface is a little special

HRESULT Expression: :Queryinterface(REFIID riid, void** ppv)

if (riid == IID_IUnknown

*ppv this;

else if riid == IID_IExpression

*ppv m_pimpExpression;

else if riid == IID_IExpression2

*ppv m_pimpExpression2;

else

return(E_NOINTERFACE);

((LPUNKOWN) *ppv)->AddRef();

return (S_OK) ;

Model + 129

APPLE 1108 - Page 155

130 CHAPTER 4

By declaring another class as a friend class, you explicitly give that class access to your class's
private and protected members. In the preceding example, we declare the implementation
classes as friends so that they can access the implementation members of the Expression class.

N 0 T E

The Expression class now inherits only from the IUnknown interface and delegates to other classes the
implementation of the behavior-specific interfaces. These classes are made friend classes so they can access
the protected variables and methods of Expression for implementation of the exposed functionality.
Validate is implemented in the other classes but still must access m_strExpression, InfixToPostfix,
and so on. AddRef and Release are the same as before, but Queryinterface now returns a pointer to
the Vtable of the specified interface implementation class. The lifetimes of the interface implementation
objects are controlled by Expression. When an Expression instance is deleted, its destructor also
removes the interface implementation class instances.

II Classes that implement each COM interface but

II delegate their implementations of IUnknown.

class ImpExpression : public IExpression

Expression* m_pExpression;

public:

II Constructor

ImpExpression(Expression* pExp) { m_pExpression pExp; }

II Interface

virtual HRESULT Queryinterface(REFIID riid, void** ppv);

virtual ULONG Release();

virtual ULONG AddRef();

virtual CString GetExpression();

virtual void SetExpression(CString strExp, BOOL binfix) ;

virtual BOOL Validate();

virtual long Evaluate();

};

HRESULT ImpExpression: :Queryinterface(REFIID riid, void** ppv)

II delegate to the main class

return m_pExpression->Queryinterface(riid, ppv);

DWORD ImpExpression: :AddRef()

return m_pExpression->AddRef();

APPLE 1108 - Page 156

Microsoft's Component Object Model + 131

DWORD ImpExpression: :Release()

return m__pExpression->Release();

BOOL ImpExpression::Validate()

II Same as all previous examples, but we now must reference the

II base or parent members explicitly. Because we are friends, we

II have direct access to the protected members.

Tokenizer.SetString(m__pExpression->m_strExpression);

Tokenizer.Tokenize();

II Check for validity

while(Tokenizer.GetToken(strToken))

switch(m__pExpression->GetTokenType(strToken))

To maintain a correct reference count for the component object as a whole, the implementation class's
IUnknown methods defer to the parent class implementation. This practice ensures that there is only one
point where reference counting occurs. Queryinterface also defers to the Expression class implemen
tation, because the Expression class contains all the appropriate Vtable pointers. The only change required
to the implementation of the IExpression interface methods is t~ use the m__pExpression pointer to
directly access the needed Expression members. Making them friend classes of the base class makes this
change easy.

class ImpExpression2 public IExpression2

II Pointer to controlling object

Expression* m__pExpression;

public:

II Constructor

ImpExpression2(Expression* pExp) { m__pExpression pExp; }

II Interface

virtual HRESULT Queryinterface(REFIID riid, void** ppv) ;

virtual ULONG Release();

APPLE 1108 - Page 157

132 -+- CHAPTER 4

virtual ULONG AddRef();

virtual CString GetExpression();

virtual void SetExpression(CString strExp, BOOL binfix);

virtual BOOL Validate();

virtual long Evaluate();

virtual CString ErrorString();

};

HRESULT ImpExpression2: :Queryinterface(REFIID riid, void** ppv)

II delegate to the main class

return m_pExpression->Queryinterface(riid, ppv) ;

BOOL ImpExpression2: :Validate()

II Same as all previous examples, but we now must reference the

II base or parent members explicitly. Because we are friends, we

II have direct access to the protected members .

.,:oKei:u,,er SetString(m_pExpression->m_strExpression) ;

Tokenizer.Tokenize();

II Check for validity

while(Tokenizer.GetToken(strToken))

N 0 T E

strToken))

In practice, you wouldn't typically implement the common interface functions (such as Validate
and SetExpression) in both implementation classes. The only difference between the two inter
faces is the addition of the ErrorString method, so the shared class methods would be imple
mented by a common class shared by the two interface implementation classes. This would also be
the case in the class nesting example that we will demonstrate next.

The implementation of the second interface is similar to that of the first interface, IExpression, so it isn't
detailed here. I've included an implementation of Queryinterface to show that it, too, delegates to the par
ent class.

APPLE 1108 - Page 158

Microsoft's Component Object Model + 133

Interface implementations are an easily nnderstandable method of providing multiple COM interfaces.
Interface implementations are easily managed if you have only a small number of interfaces, but in a class
with more than a few interfaces, this approach can become complex. For a more detailed look at multiple
inheritance and interface implementations, see Brockschmidt's Inside OLE. Our focus is on MFC's method:
class nesting.

(++ Class Nesting
Instead of using multiple inheritance or interface implementations, the MFC libraries use a technique called
class nesting. This approach provides multiple Vtables for the single nesting class by exposing the Vtables of
the nested classes. This method also allows for easy management of reference connting. It is similar to inter
face implementations but does not require the use of forward and back pointers between classes. Class nest
ing saves eight bytes for each COM interface. Using class nesting, our example now looks like this:

class !Expression : public !Unknown

public:

};

virtual CString GetExpression() = O;

virtual void SetExpression(CString str, BOOL binfix) O;

virtual BOOL Validate() O;

virtual long Evaluate() O;

class IExpression2 public !Expression

public:

virtual CString ErrorString() O;

};

class Expression : public !Unknown

II Class Implementation here, just as before

II Only !Unknown implemented in main class

virtual HRESULT Queryinterface(REFIID riid, void** ppv) ;

virtual ULONG Release();

virtual ULONG AddRef();

class XExpression : public !Expression

public:

virtual HRESULT Queryinterface(REFIID riid, void** ppv);

APPLE 1108 - Page 159

1 34 + CHAPTER 4

virtual long Release();

virtual long AddRef();

virtual CString GetExpression();

virtual void SetExpression(CString strExp, BOOL binfix) ;

virtual BOOL Validate();

virtual long Evaluate();

m_xExpression;

friend class XExpression;

class XExpression2 : public IExpression2

public:

virtual HRESULT Queryinterface(REFIID riid, void** ppv) ;

virtual long Release();

virtual long AddRef();

virtual CString GetExpression();

virtual void SetExpression(CString strExp, BOOL binfix) ;

virtual BOOL Validate();

virtual long Evaluate();

virtual CString ErrorString();

m_xExpression2;

friend class XExpression2;

};

Using nested classes, the implementations of the COM interfaces are contained in classes that are "nested"
within the main Expression class. Each nested class has a Vtable, so there is a Vtable for each COM inter
face (just what we need). The implementations of the IUnknown methods are similar to the interface imple
mentation technique described earlier. The members m_xExpression and m_xExpression2 are embedded
instances of the nested classes. Whenever an instance of the Expression class is created, two embedded
instances of the nested class are created along with it. The embedded instances can be accessed only
within the nesting class, because they exist only within its scope. Here's the Queryinterface for the
Expression class:

HRESULT Expression: :Queryinterface(REFIID riid, void** ppv)

*ppv = NULL;

if (riid == IID_IUnknown

*ppv = this;

else if (riid == IID_IExpression

*ppv = &m_xExpression;

APPLE 1108 - Page 160

else if (riid == IID_IExpression2

*ppv = &m_xExpression2;

else

return(E_NOINTERFACE);

if (*ppv)

((LPUNKNOWN)*ppv)->AddRef();

return S_OK;

return E_NOINTERFACE;

Microsoft's Model + 135

This technique is relatively straightforward. If the user requests an !Unknown interface, the Vtable pointer for
the main class is returned. If either of the IExpression interfaces is required, a pointer to the appropriate
nested class instance is returned. The Vtable pointer, _vptr, is the first entry of any C++ instance with vir
tual functions, so the address of an embedded class instance (such as m_xExpression) is a pointer to a
pointer to the Vtable. The AddRef and Release functions for the nesting class are the same as in the interface
implementation method, but they are slightly different for the nested classes, as we will see. ·

To understand the implementation of the nested classes, we need to review a couple of C++ features. To
define a nested class member, you use the multiple scoping operators:

HRESULT Expression: :XExpression: :Queryinterface(...);

This code enables you to "scope" down to the nested class function. The other item is the C++ offsetof

macro. The offsetof macro is used to address the base class members directly from inside the nested
classes. The offsetof macro calculates the difference between a class member and the starting address of
the class. MFC uses the offsetof macro to eliminate the need for a pointer to the outer class. We will dis
cuss this in more detail in Chapter 5 when we detail MFC's implementation of OLE.

MFC defines a C macro, METHOD_PROLOGUE, that uses the offsetof macro to address back into the main
class. It is defined like this:

#define METHOD_PROLOGUE(theClass, localClass) \

theClass* pThis = \
((theClass*) ((BYTE*)this - offsetof(theClass, m_x##localClass)));

METHOD_PROLOGUE(Expression, Expression)

II Expands to the following

Expression* pThis =
((Expression*) ((BYTE*) this -

offsetof(Expression, m_xExpression)));

APPLE 1108 - Page 161

136 + CHAPTER 4

When implementing the methods within the nested classes, you use this macro to initialize the pThis

pointer, which allows access to the nesting ("outer") class members. Here is the implementation of

XExpression's Queryinterface and AddRef functions:

HRESULT Expression: :XExpression: :Queryinterface(REFIID riid, void** ppv)

METHOD_PROLOGUE(Expression, Expression) ;

return pThis->Queryinterface(riid, ppv) ;

ULONG Expression::XExpression::AddRef()

METHOD_PROLOGUE(Expression, Expression) ;

return pThis->AddRef();

pThis behaves like this for the main class, so pThis can be used to access the member functions as well as

the member variables of Expression. Figure 4.4 illustrates how the METHOD_PROLOGUE macro calculates the

pThis pointer. Here's how we implement the validate function:

long Expression: :XExpression: :Validate()

CStringStack stack;

Tokenizer tokenizer;

CString strToken;

CString strTop;

METHOD~PROLOGUE(Expression, Expression);

tpkenizer.SetString{ pThis->m_strExpression);

tokenizer.Tokenize();

II Check for validity

while(tokenizer.GetToken(strToken))

return FALSE;

APPLE 1108 - Page 162

Microsoft's

-_,____
Expression vptr

Model -+- 137

Add res~

450

§ession this

m_xExpression vptr ~ _____ ____, 550

I m_xExpression2 vptr 680

pThis =this - offsetof(Expression, m_xExpression)

450 = 550 - 100

The pThis pointer for the XExpression class contains address
450, the this pointer for the outer class. Just what we need.

Figure 4.4 pThis calculation.

XExpresslon2 this

As you can see, the pThis pointer enables us to directly access the members of the outer, nesting class. Class
nesting is the method used by MFC to implement multiple interfaces within one COM object. This is an
introduction to the technique that we will cover again in Chapter 5.

With multiple component-based applications running on a component-based operating system, there can be
hundreds of different components. In such an environment, it is imperative that there be a way to uniquely
distinguish each component. COM uses the method described in the Open Software Foundation Distributed
Computing Environment Standard for Remote Procedure Calls. This standard describes a universally unique
identifier (UUID). Composed of 128 bits, the UUID is statistically guaranteed to be unique in every situation.
It combines a unique network address (from your network card) with the then-current date and time. COM
calls this value a globally unique identifier. GUIDs are used within COM to identify interfaces, component
classes, type libraries, and property pages (we'll discuss the last two later). Here's an example of a GUID:

a988bd40-9fla-llce-8b9f-10005afb7d30

There are two primary uses of GUIDs. The first, a CLSID (class ID) is used to uniquely identify a specific
COM component class. The second, an IID (interface ID) is used to uniquely identify a specific interface type
(such as IUnknown or IExpression). The DEFINE_GUID macro is used to assign a GUID to a variable that is
easier to use programmatically.

DEFINE_GUID(CLSID_Expression,

OxA988BD40,0x9FlA,OxllCE,Ox8B,Ox9F,Ox10,0xOO,Ox5A,OxFB,Ox7D,Ox30);

APPLE 1108 - Page 163

1

DEFINE_GUID (IID_IExpression,

OxA988BD41, Ox9FlA, OxllCE, Ox8B, Ox9F, OxlO, OxOO, Ox5A, OxFB, Ox7D, Ox30);

It's important that the identifier be defined only once for the given executable or DLL. At the one point in
your program where you intend to define (not declare) the identifier, you must include INITGUID.H before
the .H file that includes the declarations. Here's what it looks like in our Expression example:

II ExpSvr.cpp

#include "stdafx.h"

#include <initguid.h>

#include "ExpSvr.h"

#include <stdio.h>

By including INITGUID.H, you change the meaning of the DEFINE_Gurn. It no longer just declares the
GUID's variable; it also defines and initializes it.

In our example, we defined two GUIDs: one is a CLSJD that uniquely identifies the specific component
class Expression, and the other is an IID to identify our new interface, IExpression. There are a few ways
to generate GUIDs for use in your applications. The easiest way is to let MFC's Class Wizard or App Wizard
generate a GUID whenever you add a new component or interface. Another way is to use the CoCreateGuid

function provided by the COM APL But if you're working on a project that will use multiple GUIDs (as
most do), you will probably want to generate a range of GUlDs. For the ex~tnples in this book, I ran the
UUIDGEN.EXE utility provided with Visual C++ as follows:

c:\msdev\bi11\uuidgen -n50 > bookids.txt

This produced 50 sequential GUIDs that we're using right now. The primary benefit of using sequential
GUIDs is that they're easier to look up in the Registry, which we'll discuss in the next section.

There is one other way to generate GUlDs. Visual C++ provides the GUIDGEN.EXE program, which
generates a single GUlD at a time. It has a neat feature that formats the GUID as a C++ define so you can
quickly paste it into your program code.

The COM API provides functions to make dealing with GUlDs much easier. Table 4.1 gives a quick
view of what COM provides. A good reference for these functions and macros is the OLE 2 Programmer's
Reference, Volumes 1 amt 2, which are also available on-line with Visual C++: position the cursor over the
function name and press Fl.

APPLE 1108 - Page 164

Microsoft's Model + 139

Table 4.1 Useful GUID Helper Functions

function Purpose

cocreateGuid (GUID* pGuid) Programmatic way of generating one unique GUID

IsEqualGUID (REFGUID, REFGUID Compares two GU IDs

IsEqualIID (REFIID, REFIID) Compares two llDs

IsEqualCLSID (REFCLSID, REFCLSID Compares two CLSIDs

CLSIDFromProgID (LPCOLESTR, LPCLSID Returns the CLSID for the given ProglD

ProgIDFromCLSID (REFCLSID, LPOLESTR*) Returns the ProglD from the CLSID

Note: 16-bit COM uses standard C style strings {LPSTR) and 32-bit OLE uses the Win32 Unicode standard {LPOLESTR) for all of

its string handling. We'll discuss converting from ANSI to Unicode strings (and back) in the next few chapters.

We have many functions for manipulating GUIDs within a C or C++ program, but what about developers
using Visual Basic (or a similar language)? Must they explicitly provide the 128-bit number to identify the
specific component class that they require? No. COM provides a more human-readable method of accessing
a component class. It's called the program ID (ProgID). ProglDs are simple text strings that are associated,
through the Windows Registry, with a specific CLSlD. For our example I've chosen a Pl·ogID of
Chap4. Expression .1. This allows a Visual Basic developer to the following:

Dim obj as Object

Set obj = CreateObject("Chap4.Expression.l"

obj.SetExpression("10 + 10 * 10")

textl =obj.Evaluate()

The CreateObject statement takes a ProglD that identifies the specific component. The number following
Expression is used to indicate a version-specific component. One of the powerful features of COM is the
ability it gives you to expose multiple versions of a component interface, thus making component upgrades
and feature additions easy. How does Visual Basic know how to find and create the Expression compo
nent? It uses CLSIDFromProgID, which queries the Windows Registry.

The Windows Registry in Windows 95 and Windows NT plays a significant role in the management and
configuration of the operating system. lt includes system configuration information, user-specific informa
tion, and information about installed hardware and software. The Registry replaces many of the files that
we're familiar with in Windows 3.1: WIN.INI, CONFIG.SYS, SYSTEM.IN!, and so on. All these files and
the software-specific .INI files that typically resided in the Windows directory have been combined into the
Registry. This arrangement makes it much easier to manage multiple machines in a LAN environment. Both
Windows 95 and Windows NT allow the use of a shared, or networked, Registry, eliminating the accumula
tion of hundreds of .INI files in the Windows directory that occurs under Windows 3.x.

APPLE 1108 - Page 165

1 +CHAPTER 4

We'll explore the feahires of the Registry because COM and ActiveX depend heavily on the functional
ity provided by it. CLSIDs, for COM objects and various options associated with them are stored in the
Registry. This provides nonvolatile storage of COM information that is required to "bootstrap" various
COM executables and DLLs.

There are several ways to update the Registry with the CLSID information of our COM objects. The first
approach is to create a text file of the form shown later in this section and then "merge" the information into
the Registry using functions provided in the REGEDIT program. The second technique is to programmati
cally update the Registry using the Win32 Registry API functions. The third method is to manually add and
edit the fields. Although this may be necessary when you're fixing a problem, it is not recommended. (A
fourth method is to let MFC do it for you, as we'll see in Chapter 5.)

The Registry orders system information in a hierarchical manner, with several predefined top, or root,
levels. The one we're interested in is HKEY_CLASSES_ROOT. This section of the Registry stores
COM/ ActiveX information, shell information such as file extension associations, and other software-related
items. Information stored in the Registry is of the form key = value. This arrangement allows easy lookup
of a value associated with a key in this hierarchical structure. The value is optional and is sometimes used
when only the presence or absence of the key is important. Examples include the Insertable,
Notinsertable, and Control keys that we will use.

An important subkey under HKEY_CLASSES_ROOT is CLSID. Under this subkey are all the public
component CLSIDs currently registered on your system. All the COM system CLSIDs, any that are installed
by third-party software, and those we will use in our projects are registered here. Figure 4.5 shows the NT
version of REGEDIT displaying the Registry entries for the Expression component that we will develop
shortly.

Figure 4.5 Windows NT 4.0 Registry.

APPLE 1108 - Page 166

N 0 T E

Microsoft's Component Object Model + 141

There are several differences between the Windows NT and Windows 95 registries. The differences
don't affect COM component information directly, but it is important to understand that the registry
implementations are not identical. Here are some of the differences:

1. Windows NT has a different security model from that of Windows 95. The Windows 95 Registry
does not contain security information.

2. The Windows 95 Registry does not completely replace the CONFIG.SYS, WIN.INI, and
SYSTEM.IN! files. Certain system information is contained in these files.

3. On Windows NT, the older INI API functions support a "pass-through" mechanism that will update
the Registry when you're using the INI API functions. This feature is not currently supported in
Windows95.

4. The Registry hierarchy is slightly different between the two operating systems. The differences are
most pronounced in Windows NT 3.5x.

The following lines show what is required to register our Expression component using the appropri
ate version of REGEDIT (see the Note). The lines are stored in a standard ASCII text file with an exten
sion of .REG.

REGEDIT

HKEY_CLASSES_ROOT\CLSID\{a988bd40-9fla-llce-8b9f-10005afb7d30} = Chap4 Expression Component

HKEY_CLASSES_ROOT\CLSID\{a988bd40-9fla-llce-8b9f-10005afb7d30}\ProgID = Chap4.Expression.1

HKEY_CLASSES_ROOT\CLSID\{a988bd40-9fla-llce-8b9f-10005afb7d30}\VersionindependentProgID =
Chap4.Expression.1

HKEY_CLASSES_ROOT\CLSID\{a988bd40-9fla-llce-8b9f-10005afb7d30}\InprocServer32
c:\chap4\Server\WinDebug\server.dll

HKEY_CLASSES_ROOT\CLSID\{a988bd40-9fla-llce-8b9f-10005afb7d30}\Notinsertable

HKEY_CLASSES_ROOT\Chap4.Expression.1 = Chap4 Expression Component

HKEY_CLASSES_ROOT\Chap4.Expression.l\CLSID = {a988bd40-9fla-llce-8b9f-10005afb7d30}

HKEY_CLASSES_ROOT\Chap4.Expression.l\CurVer = Chap4.Expression.1

The following line creates the initial CLSID subkey for our component:

HKEY_CLASSES_ROOT\CLSID\{a988bd40-9fla-llce-8b9f-10005afb7d30} = Chap4 Expression Component

The value Chap4 Expression Component is not actually necessary, but on a system with a large number
of CLSIDs it's nice to quickly associate a CLSID with a particular component. The human-readable value is
beneficial, and Registry browsers (such as OLEVIEW) will have something to show in the value field of your
component's CLSID.

HKEY_CLASSES_ROOT\CLSID\{a988bd40-9fla-llce-8b9f-10005afb7d30}\ProgID = Chap4.Expression.1

HKEY_CLASSES_ROOT\CLSID\{a988bd40-9fla-llce-8b9f-10005afb7d30}\VersionindependentProgID =
Chap4.Expression.1

APPLE 1108 - Page 167

142 + CHAPTER 4

HKEY_CLASSES_ROOT\CLSID\{a988bd40-9fla-llce-8b9f-10005afb7d30}\InprocServer32
c:\chap4\Server\WinDebug\server.dll

HKEY_CLASSES_ROOT\CLSID\{a988bd40-9fla-llce-8b9f-10005afb7d30}\Notinsertable

The rest of the lines set up various subkeys and values "below" the upper-level { a988bd40 ... } CLSID
key. Which subkeys are needed as well as their specific values depend on the type of component that is
being registered. Some of the important CLSID Registry key entries are detailed in Table 4.2.

Entry

ProgID

Table 4.2 Important Registry Key Entries

Purpose

Identifies the ProglD string for the COM class. It must contain 39 characters or fewer and can con

tain periods.

InprocServer32 Contains the path and filename of the 32-bit DLL. It does not have to contain the path, but if it does

not, it can be loaded only if it resides within Windows PATH. 16-bit versions do not include the

"32" extension.

Loca1Server32 Contains the path and filename of the 32-bit EXE. 16-bit versions do not include the "32" extension.

The ProglD of the latest version of the component class. CurVer

Notinsertable Indicates that this component will not display in the OLE standard Insert Object dialog box.

In the previous section, I showed you how a Visual Basic developer can access a specific component class by
using its ProgID. For this to work, we need an entry in the Registry that map~Jhe less specific ProgID to the
more specific CLSID of the component. The following entries create a Chap4. Expression. 1 subkey off of
HKEY_CLASSES_ROOT. Under Chap4. Expression .1, two additional subkeys-CurVer and CLSID--are
also added. As you can imagine, the CLSID subkey and its value provide a cross-reference to the
HKEY_CLASSES_ROOT\ CLSID entry, where additional component information can be obtained.

HKEY_CLASSES_ROOT\Chap4.Expression.1 = Chap4 Expression Component

HKEY_CLASSES_ROOT\Chap4.Expression.1\CLSID = {a988bd40-9fla-llce-8b9f-10005afb7d30}

HKEY_CLASSES_ROOT\Chap4.Expression.1\CurVer = Chap4.Expression.1

We will use these entries when we register our example later in the chapter.

The Registry editor program is REGEDIT.EXE in Windows 3.x and Windows 95, and REGEDT32.EXE
in Windows NT. The method used to merge the file is also different on the three platforms. Under
Windows 3.x, there is a Merge Registration file item on the File menu. Using Windows NT (3.51

N 0 T E and 4.0), you must invoke File Manager or the Explorer, locate the .REG file, and double-dick to
register the information in the Registry. Windows 95 provides a merge function within the Registry
editor, similar to the Window 3.x REGEDIT program.

APPLE 1108 - Page 168

Microsoft's Model -+- 143

Because COM objects sometimes are located outside the component user's process space and must be
accessed from various languages, a language-independent way of instantiating a component is required. In
C++, the new operator is used to dynamically instantiate an object. COM supplies a standard interface,
IClassFactory, that all components must provide if they are to be externally instantiated. Following is the
definition of IClassFactory. Like all COM interfaces, it must implement IUnknown.

class IClassFactory : public IUnknown

};

virtual HRESULT Createinstance(LPUNKNOWN pUnk, REFIID riid, void** ppv) 0;

virtual HRESULT LockServer(BOOL fLock) = O;

A class factonj is a COM object whose sole purpose is to facilitate the creation of other, more useful COM
objects. Createinstance does what it says; it creates an instance of the specified component class and
returns the requested interface on that instance. LockServer provides a way for a client to lock a server in
memory. We will define the term server in detail shortly. Briefly, a server houses one or more COM objects
within either a DLL or an executable (EXE). By locking a server in memory, the client ensures that it will be
available when needed, even when there are no instantiated components within the server. Typically, a
server is locked this way for performance reasons. Here's how the Expression class factory is imple
mented:

class ExpClassFactory public IClassFactory

protected:

II Reference count for the ClassFactory instance

DWORD m_dwRef;

public:

} ;

ExpClassFactory();

-ExpClassFactory();

II IUnknovm implementation

virtual HRESULT Queryinterface(REFIID riid, void** ppv) ;

virtual ULONG Release();

virtual ULONG AddRef();

II IClassFactory implementation

virtual HRESULT Createinstance(LPUNKNOWN pUnk, REFIID riid, void** ppv);

virtual HRESULT LockServer(BOOL fLock) ;

HRESULT ExpClassFactory: :Createinstance(LPUNKNOWN pUnk, REFIID riid, void** ppv)

APPLE 1108 - Page 169

144 + CHAPTER 4

Expression* pExp;

HRESULT hr;

II Initialize the returned pointer to

II NULL in case there is a problem.

*ppv = NULL;

II Create a new instance of Expression

pExp = new Expression;

II Query the requested interface on the

II new expression instance

hr= pExp->Queryinterface(riid, ppv);

if (FAILED(hr))

delete pExp;

return hr;

STDMETHODIMP ExpClassFactory: :LockServer(BOOLfLock)

if (fLock)

g_dwLocks++;

else

g_dwLocks-;

return NOERROR;

The user of the Expression component will first get a pointer to the Expression class factory. The user
will then use the IClassFactory function Createinstance to create an instance of the Expression
class. If the user requests it, the Createinstance function can also return the IExpression interface,
which can be used to process algebraic expressions. The component user would do something like this:

main()

LPCLASSFACTORY lpCF;

Expression* lpExp;

HRESULT hr;

II Get the class factory for the Expression class

hr = CoGetClassObject(CLSID_Expression,

CLSCTX_INPROC,

NULL,

IID_IClassFactory,

&lpCF) ;

APPLE 1108 - Page 170

Microsoft's

II Using the class factory interface, create an instance of the

II component and return the IExpression interface.

lpCF->Createinstance(NULL, IID_IExpression, &lpExp) ;

II Release the class factory

lpCF->Release();

II Use the component to do some work

lpExp->SetExpression("1+2", TRUE);

lpExp->Evaluate();

II Release it when we're finished

lpExp->Release();

Model + 1

CoGetClassObject is a COM API function that returns the class factory of the requested component
(identified by the CLSID). CoGetClassObj ect then returns the class factory interface so that we can create
an instance of the Expression component class. Once we've used the class factory to create an instance of
Expression, we call Release through IClassFactory, and Release then deletes the class factory. This
three-step process is performed often, so COM provides a helper function, CoCreateinsta~ce, that
encapsulates the steps. By using CoCreateinstance, you avoid dealing with the class factory interface;
you just call CoCreateinstance with the specific component interface (such as IExpression) that you
require.

Figure 4.6 illustrates what we've built so far. We have two COM components (the Expression compo
nent and its class factory), each with two interfaces. This is the minimum number of interfaces to encapsu
late our C ++ object in a binary standard wrapper.

IClassFactory

I Expression

(
Expression

ClassFactory

Expression

Component Housing

Figure 4.6 Binary standard wrapper for the Expression class.

APPLE 1108 - Page 171

1 +CHAPTER 4

COM objects are contained either within a Windows executable (EXE) or a Windows dynamic link library
(DLL). Multiple COM objects can be maintained using either method. The user of a component doesn't need
to know which technique is used to house the components. The component developer, on the other hand,
implements things differently depending on which housing is used.

Most of the COM/OLE components that we will develop will be housed in Windows DLLs. ActiveX
controls are almost always implemented as DLLs, because DLLs provide the best performance. OLE
automation components are sometimes implemented in DLLs and sometimes in executables. Microsoft
Word and Microsoft Excel are two popular Automation servers that are implemented as executables.

A Windows DLL that contains COM objects is called an i11-process, or inproc, server. An executable that
contains COM objects is called a local server. In the future, when distributed COM is available, an executable
that resides on another machine on a network will be called a remote server. I'll use this terminology from this
point on.

Local servers can be designed to function independently of COM. Many traditional applications have
added OLE support by wrapping and exposing their internal methods with COM/OLE interfaces. This tech
nique allows the application to be driven externally by another application or programming language.
Visual Basic developers can incorporate these applications within their own VB applications because of
Visual Basie's ability (using COM/OLE) to control and interoperate with OLE-compliant applications.

There are three reasons that, as a developer, you might implement your components within a local
server. The most important one is that local servers provide easy 16-bit-tqc32-bit interoperability. If you
develop a 16-bit local server, its functionality can be harnessed, without ch~nge, by both 16-bit and 32-bit
applications. For example, the 32-bit version of Visual Basic can interoperate with and control the 16-bit ver
sion of Microsoft Word. The reverse is also true: you can use 16-bit Visual Basic to drive 32-bit local servers.
A second reason to implement your components within a local server applies if you're exposing existing
functionality from a large application. This may be the easiest way to provide COM support in an existing
legacy or monolithic Windows application. The third reason that you may require a local server applies if
your components provide extensive visual or GUI functions that make heavy use of the Windows message
queue. In this case, a local server may be the only choice.

In-process servers depend on the process in which they are contained. Their functionality cannot be
harnessed without this context of a containing process. Visual Basic custom controls are similar to
COM/OLE in-process servers in that they must be placed on a Visual Basic form to be useful. ActiveX con
trols, the topic of focus in the last half of this book, are very similar.

The primary benefit of implementing COM/OLE components as in-process servers is their small size
and speed. The major problem is that they cannot be used in both 16-bit and 32-bit processes. (This issue will
become less important as 32-bit operating systems become more common.) If your components require use
in both Win16 and Win32 environments, you will need to produce both a 16-bit and a 32-bit implementa
tion. Another drawback of in-process servers is that they do not have a true Windows message loop and
must share the one in the containing process.

APPLE 1108 - Page 172

If you have the option of housing your components in either a local or an in-process server, you should
probably choose the in-process type. They are far more efficient and perform significantly faster than local
servers. Why? In-process servers require no marshaling, a prime factor in component performance.

N 0 T E

In certain cases, a 16-bit local server may be required if you want to support legacy products within
new 32-bit applications. Under Windows NT, there is not an easy-to-use 32-bit-to-16-bit thunking
mechanism. One way to overcome this limitation is to implement your 16-bit-dependent services
within a 16-bit COM-based Automation server. This method allows 32-bit applications (as well as
16-bit ones) to easily use older 16-bit code. If it's too much work or if you don't have source code to
convert your 16-bit applications, this is one solution. I've done a lot of it. If you need help, read
Chapter 6 and send me an email.

Marshaling is the process of transferring function arguments and return values across a process boundary.
Marshaling requires that you copy the values to shared memory so that the other process can access it.
Intrinsic types such as short and long are easy to marshal, but most others, such as pointers to structures,
are a little more difficult. You can't just make a copy of a pointer, because its value (an address) has no
meaning in the context of another process. You must copy the whole structure so that the other process can
access it. The larger the structure, the greater the decrease in component performance.

We've observed that COM objects are housed in either a Windows executable or a Windows DLL.
When the component housing is a DLL, it is called an in-process server to denote that the server component
is executing within the context of the client's address space (executable). This is the most efficient method of
interacting with a COM object, because no marshaling is necessary (both the client and server can freely
exchange pointers).

Our examples so far have been in-process. The Vtables contain the addresses of the COM interface func
tions. When marshaling is required, these values are, of course, different. COM's marshaling hides this com
plexity from the developer by using a proxy for the interface's Vtable pointer. Figure 4.7 illustrates this
mechanism. Internally, it appears to both processes that the COM object is in-process, but, in reality, COM is
managing the proxy object and marshaling the function arguments using Win32's RPC capabilities. This
mechanism allows COM objects to be distributed across networked machines. Marshaling is an interesting
and complex topic but is beyond our scope. See the Bibliography for more details.

APPLE 1108 - Page 173

1 +CHAPTER 4

Client

RPC

Process or Network
Boundary

RPC

Local Server

Figure 4.7 Cross-process marshaling with RPC.

Under 16-bit Windows, marshaling across process boundaries is done using LRPC, which means
"lightweight" RPC. Using this method, window messages are pas~i;>d back and forth between the
two communicating processes. This is why you should increase you message queue buffer size to 96

N o T E to support COM/OLE under Win 16.

Figure 4.7 shows how RPC is used to facilitate cross-process communication with COM. Initially, this mech
anism worked only between processes that were on the same machine. Today, with the release of Windows
NT 4.0, the communicating COM-based processes can now reside on different machines within a network.
This means that we can deploy a COM-based component on a machine in New York and access its services
on a client machine in Kansas City. The client machine is oblivious to the location of the server component. It
could reside locally on the client machine, in the LAN room in Kansas City, or in New York. The COM-client
software doesn't care and doesn't need to know in what address space the server is executing.

Years ago, when COM was initially released, Microsoft told developers that if they would develop their
components using the COM APis, their components would eventually work across the network without
requiring changes to the implementation. Microsoft has kept its promise. With the addition of one Registry
key entry (RemoteServerName), a component that is implemented with marshaling support (such as
IDispatch) will now work across distributed machines.

The term distributed COM is redundant and will eventually go away. COM was always expected to pro
vide dish"ibuted object services, and it took time to implement them. COM now implements this feature, but
DCOM will be used for a while for marketing and similar purposes.

APPLE 1108 - Page 174

Microsoft's Model + 149

Distributed COM support is provided by Windows NT 4.0. By the time you read this, DCOM sup
port for Windows 95, will be available as an upgrade or service pack. This will allow transparent
distributed object support on the two 32-bit Windows platforms. Additional COM parameters and

N 0 T E functions have been added to the Win32 API to support the new DCOM features.

Most of what COM (and ActiveX, as we'll see in the next chapter) provides are various interfaces that a com
ponent must implement to be binary standard and provide application functionality. We've investigated
two of these interfaces in detail: IUnknown and IClassFactory. The IExpression interface is classified
as a COM custom interface. Custom interfaces do not have COM's standard marshaling support, so we must
implement the Expression component as an in-process server because such a server doesn't require mar
shaling. We could have implemented the Expression component within an executable, making it a local
server, but writing a marshaling handler is beyond our scope.

In Chapter 6, when we use the IDispatch interface, you will see that it is easy to implement compo
nents within an executable housing when COM provides default marshaling. We will also look at dual inter
faces, which combine a custom Vtable interface with a standard IDispatch interface; the client can then
choose the most efficient interface to use. But how does a component client determine the type of interfaces a
server provides? Good COM-based components advertise such information using standard COM interfaces.

Once you've developed a COM-based component, there are certain techniques that your component
should use to advertise its behavior. COM provides system-level functions and interfaces to allow a stan
dard way of describing a component's behavior. There are two basic techniques. A component belongs to
a component categonJ, which provides a way to segregate components based on their capabilities. The sec
ond technique is to provide a type library for your component. A type library provides a granular descrip
tion of your component: which interfaces it exposes, whether the interfaces are custom or standard, the
method signatures, and so on.

Component Categories
The component category standard was introduced recently with the ActiveX SDK. Before its release, the
only way of describing a component's gross functionality was through a few Registry keys. We discussed a
few of these keys in the previous section on the Windows Registry. An ActiveX control might mark itself
with the Control key, and an OLE document server might the Insertable key, indicating its ability to be
inserted into an OLE document container.

The proliferation of COM-based components has made this mechanism too broad to describe all the
various flavors of components. The component category standard extends the key mechanism, giving a

APPLE 1108 - Page 175

1 50 + CHAPTER 4

component a comprehensive way of describing its potential services. Component categories still use the
Windows Registry, but a number of new keys have been added. The standard also allows a component to
declare new, custom categories. In Chapter 7 we will discuss component categories in more detail.

Type Information
Once a component registers its specific category type, it should also provide a type library. A type library is
a binary entity that can be shipped separately from the component (as a .TLB file) or can be tacked onto the
end of the component's housing as a resource. A type library provides explicit details about the interfaces
and data types used by a component.

A type information file is initially written using either Microsoft's Object Description Language (ODL)
or the Interface Definition Language (IDL). The ODL or IDL script must be compiled with either MKTYPLIB
(for ODL) or the MIDL (for IDL) compiler. After the type information is made available and advertised via
the system Registry, the client can query for the information and determine how it should interact with the
COM-based server. We will cover type information in more detail in Chapter 6.

As we discussed in Chapters 1 and 2, software and component reuse is very important. COM provides two
methods for reusing component class objects: containment and aggregation. ~ontainment and aggregation are
similar to the C++ reuse techniques that we discussed in Chapter 2, but COM provides binan; reuse as
opposed to the compile-time, or source-code-dependent, reuse provided by C++. We won't cover these meth
ods in detail--each one could easily fill an entire chapter-but we will encounter these terms throughout
our discussion of COM, OLE, and ActiveX, so we'll cover them briefly.

COM object containment is similar to the C++ technique of class composition that we covered in
Chapter 2. Containment and composition achieve reuse by using the services of a COM object or C ++ class
internally. The interface of the contained component is exposed only indirectly (if at all) via methods pro
vided by the containing (or "outer") component. The interfaces of the internal (or "inner") COM component
are used by the outer COM object in the implementation of its interfaces. The outer object can also, if it
chooses, expose the inner object's interfaces. The lifetime of the inner object is controlled completely by the
outer component just as in C++. A COM object need not do anything to support its use as an inner or con
tained object.

COM object aggregation is similar to COM containment except that the interface of the inner, or con
tained, COM object is directly exposed. The aggregate object doesn't need or use the functionality of the con
tained object internally; instead, it exposes the inner object's interfaces as if they were its own. The
IUnknown interface of the outer aggregate object provides access to all the interfaces of the inner objects.
This detail is what makes implementing aggregation a little complicated at times. The management of the
lifetimes of the outer and inner objects must be coordinated through the IUnknown implementation.
Successful lifetime management of the aggregate object requires that the inner objects provide support for a
controlling unknown, which is the outer object in aggregation. When an inner COM object is created as part of

APPLE 1108 - Page 176

Microsoft's

an aggregate, it is passed a pointer to the outer object's IUnknown implementation. The inner object then
defers its IUnknown implementation to that of the outer object, providing a consistent approach to the man
agement of the aggregate object's lifetime. A COM object supports aggregation if it includes support for
deferring its IUnknown implementation to that of a controlling unknown.

The I
COM is primarily a model for component implementation. It provides only a few low-level functions to "get
things going." Most of the true benefits of COM are provided when you build a rich layer on top of COM's
services. ActiveX is such a layer. As an application-level implementation of the Component Object Model,
ActiveX adds a rich set of interfaces and additional APis beyond those provided by COM. We'll investigate
features of ActiveX in Chapter 5, but first let's take a quick look at the functions provided by COM. At the
end of this chapter we will go through some examples and investigate the various API functions. Table 4.3
describes COM functions that are important for our purposes. This is not a comprehensive list, but it
includes those that are used most often when you're building software components.

Table 4.3 Useful COM Functions

Function (11Who Calls It")

CoBuildVersion (client and server)

Coini tialize (client and server)

CoUnini tiali ze (client and server)

CoGetClassObj ect (client)

CoCreateGUID (client and server)

CoCreateinstance (client),

CoCreateinstanceEx (client)

CoRegisterClassObj ect (server)

DllCanUnloadNow (in-process server)

DllGetClassObj ect (server)

Purpose

Gets the major and minor build numbers of the installed COM libraries. Used only

by local servers. (16-bit only.)

Initializes the COM libraries for use by a process. Not used by in-process servers.

Releases the COM libraries when its services are no longer needed. Not used by

in-process servers.

Gets an instance of a class factory for a specific COM object.

Creates a new unique GUID.

Creates an instance of a specific COM object, which may

be on a remote machine.

Registers the existence of a class factory for a particular COM object.

Called periodically by COM to determine whether the DLL can be unloaded (when

no objects are instantiated within the DLL housing). Implemented by in-process

servers.

Entry point implemented by in-process servers so thar its class factory interfaces can

be obtained by client processes.

APPLE 1108 - Page 177

152 +CHAPTER 4

CoBuildVersion 0 6-bit Only)
CoBuildVersion is called by both client and server COM applications if the server isn't in-process. It
should be called prior to Coinitialize to ensure that the COM libraries and DLLs are of the same major
version number as when the client or server application was compiled. The minor version number may dif
fer. If the major version numbers differ, the COM libraries cannot be used. The return value is a 32-bit inte
ger, where the high-order 16 bits are the major build number and the low-order 16 bits are the minor build
number. When you're compiling an application, the current build numbers are maintained in the COM sys
tem include file OLE2VER.H.

Co Initialize
Coinitialize is called after the COM build versions have been validated with CoBuildVersion.
Coinitialize initializes the COM libraries and DLLs so that the APis can be used. In 16-bit COM/OLE,
Coinitialize takes one parameter, a pointer to a memory allocator. 32-bit COM and OLE do not allow a
user-implemented memory allocator, so NULL should be passed. This approach uses the default IMalloc
implementation.

CoUninitialize
CoUninitialize is called to free the use of the COM libraries and DLLs. CoUn~p.itialize should be
called only if Coini tialize has been successfully called previously.

CoRegisterClassObied
CoRegisterClassObj ect is called by a server to register its class factories as available.
CoRegisterClassObj ect should be called for every class factory that a particular housing supports. This
should be done as soon as possible, even before the Windows message loop is processed.
CoRegisterClassObj ect is called only by local servers. An in-process server must export the
DllGetClassObj ect function to allow retrieval of its component's class factories. Table 4.4 lists the
CoRegisterClassObj ect parameters.

Parameter

REFCLSID rclsid

LPUNKNOWN pUnk

DWORD dwClsContext

Table 4.4 CoRegisterClassObj ect Parameters

Description

The CLSID for the component class being registered.

Pointer to a controlling unknown.

The requested context for the server housing. This can be one, two, three, or all of the

following: CLSCTX_INPROC_SERVER, CLSCTX_INPROC_HANDLER,

CLSCTX_LOCAL_SERVER,andCLSCTX_REMOTE_SERVER.

APPLE 1108 - Page 178

Microsoft's Model + 153

Table 4.4 CoRegisterClassObject Parameters (continued)

Parameter

DWORD Aags

LPDWORD lpdwRegister

Description

REGCLS Aags specify how multiple instances of the component should be created. Use

one of the following: REGCLS_SINGLEUSE, REGCLS_MULTIPLEUSE, or

REGCLS_MULTI_SEPARATE.

A value returned that must be used when deregistering the class object using the

CoRevokeClassObj ect function.

The flags parameter of CoRegisterClass controls how requests for multiple instances of your component
should be handled. This is important for local server implementations, and we will cover it in Chapter 6.

CoGet(lassObject
CoGetClassObj ect is a low-level function that allows a client to get the IClassFactory interface of a
specific COM object, thereby allowing the client to create an instance of a COM object. If the module that
contains the component is not loaded (DLL) or is not running (EXE), CoGetClassObj ect will query the
system Registry to determine the patlmame for the component housing, either an in-process server (DLL) or
a local server (EXE). Then the function loads the DLL and calls the entry point DllGetClassObject to get
the requested class factory; or, if it is a local server, CoGetClassObj ect uses CreateProcess () to invoke
a copy of the executable. Once the server is invoked and registers its class factories via
CoRegisterClassObj ect, CoGetClassObj ect returns a pointer to the requested IClassFactory.

For Windows NT 4.0, the COSERVERINFO parameter is used to allow instantiation on remote servers.
Prior to NT 4.0, this parameter was reserved and required a NULL. Table 4.5 lists the CoGetClassObject

parameters.

Parameter

REFCLSID rclsid

DWORD dwClsContext

COSERVERINFO pServerinf o

REFIID riid

VOID** ppvObj

Table 4.5 CoGetClassObj ect Parameters

Description

A reference to the CLSID for the specific component.

The requested context for the server housing. This can be one, two, three, or all of the

following: CLSCTX_INPROC_SERVER, CLSCTX_INPROC_HANDLER,

CLSCTX_LOCAL_SERVER,andCLSCTX_REMOTE_SERVER.

Pointer to COSERVERINFO structure.

A reference to an llD for the specific interface to be returned from the created class

object. This interface will normally be IClassFactory so that the client can create

an instance of the required component.

A void pointer lo return the specified interface.

APPLE 1108 - Page 179

1 54 + CHAPTER 4

(o(reatelnstance and (o(reatelnstanceEx
CoCreateinstance is used by a component user, or client application, to create an instance of the speci
fied component class. It is a helper function that calls CoGetClassObj ect to get a class factory for the com
ponent and then uses the IClassFactory: : Create Instance method to create the component instance.
You should use CoCreateinstance instead of performing the three~step process shown next unless you
need to create multiple component instances or you need to explicitly lock the instance by calling
IClassFactory: :LockServer.

II What CoCreateinstance does internally

CoGetClassObject(... , &pCF);

pCF->Createinstance(... , &pint) ;

pCF->Release();

CoCreateinstance's parameters (Table 4.6) are similar to those required by CoGetClassObject. The
primary difference is that the client using CoCreateinstance will ask for the specific interface on the com
ponent (such as IExpression) instead of an IClassFactory pointer. CoGetClassObject creates an
instance of a component's class factory, whereas CoCreateinstance creates an instance of the requested
component class. As we've discussed, a component and its class factory are separate COM objects.

Parameter

REFCLSID rclsid

IUnknown* pUnkOuter

DWORD dwClsContext

REFIID riid

VOID** PPVObj

Table 4.6 CoCreateinstance Parameters

Description

A reference to the CLSID for the specific component.

The controlling outer unknown (when you're using aggregation).

The requested context for the server housing. This can be one, two, three, or all of the fol

lowing: CLSCTX_INPROC_SERVER, CLSCTX_INPROC_HANDLER,

CLSCTX_LOCAL_SERVER,andCLSCTX_REMOTE_SERVER.

A reference to an llD for the specific interface to be returned from the created component

object.

A void pointer to return the specified interface.

CoCreateinstanceEx is used to create an instance of the COM object on a remote machine. The fourth
parameter specifies the remote machine. If the parameter is NULL and if there isn't a RemoveServerName
Registry entry, the object is created locally. The COSERVERINFO parameter allows you to specify the name
of the remote machine in UNC, DNS, or IP format. To improve efficiency, the client can query for multiple
interfaces as part of the create. The MULTI_QI structure allows you to provide an array of IIDs. Upon cre
ation, CoCreateinstanceEx returns the array filled with interfaces and the result of the queries. Both new
structures are shown next. Table 4.7 lists the parameters of CoCreateinstanceEx.

typedef struct _COSERVERINFO

DWORD dwReservedl;

APPLE 1108 - Page 180

LPWSTR pwszName;

COAUTHINFO *pAuthinfo;

DWORD dwReserved2;

COSERVERINFO;

typedef struct _MULTI_QI

const IID*

IUnknown *
HRESULT

MULTI_QI;

pIID;

pitf;

hr;

Microsoft's

Table 4.7 CoCreateinstanceEx Parameters

Pcm:ameter Description

REFCLSID rclsid A reference to the CLSID for the specific component.

Model + 155

IUnknown* pUnkOuter The controlling outer unknown {when you're using aggregation).

DWORD dwClsContext The requested context for the server housing. This can be one, two, three, or all of the fol

lowing: CLSCTX_INPROC_SERVER, CLSCTX_INPROC_HANDLER,

CLSCTX_LOCAL_SERVER,andCLSCTX_REMOTE_SERVER.

COSERVERINFO* pServerinfo Information about the remote server machine.

ULONG Number of Queryinterfaces to perform for the MULTI_QI structure.

MULTI_ QI An array of MULTI_ QI structures. This makes it more efficient to retrieve a series of

interfaces from the create call.

DllCanUnloadNow
DllCanUnloadNow is implemented by in-process servers. Its purpose is to allow COM to periodically check
to determine whether the DLL can be unloaded. DllCanUnloadNow takes no parameters and returns either
S_FALSE, indicating to COM that the DLL caimot be unloaded, or S_OK, which indicates to COM that the
DLL can be unloaded because there are no current references to it.

DllGetClassObied
DllGetClassObject is implemented by in-process servers to expose the class factories for its component
objects. When a client application requests a component housed within an in-process server, COM calls the
DllGetClassObj ect entry point within the DLL with the parameters shown in Table 4.8.

APPLE 1108 - Page 181

1 +CHAPTER 4

Table 4.8 DllGetClassObj ect Parameters

Parameter Description

REFCLSID rclsid A reference to the CLSID for the specific component.

DWORD dwClsContext

LPVOID pvReserved

REFIID riid

VOID** ppvObj

The requested context for the server housing. This can be one, two, or all of the following:

CLSCTX_INPROC_SERVER, CLSCTX_INPROC_HANDLER, and CLSCTX_LOCAL_SERVER.

Reserved. Must be NULL.

A reference to an llD for the specific interface to be returned from the created COM object. This

will normally be IClassFactory so that the client can create an instance of the requested

component.

A void pointer to return the specified interface.

Now that we've reviewed the major COM API functions, let's follow the flow of a simple client/server inter
action. Table 4.9 describes the flow between a client executable and an in-process server.

Table 4. 9 Client/Server Flow for In-Process Server

client

Initialize COM (Coini tialize ()).

Create an instance of a

component's class factory

(CoGetClassObj ect ()).

Use IClassFactory to create

an instance of the component.

Request the specific interface

we need, such as IExpression

((pCF->Createinstance () .)

COM/OS In-Process Server ·<Y

Check Registry for path

and filename of the

in-process server DLL.

If the DLL is not loaded

for the client process,

load it.

DllGetClassObj ect () is called with the CLSID of the

requested component. Create class factory and return an

IClassFactory pointer.

APPLE 1108 - Page 182

Microsoft's Model + 157

Table 4.9 Client/Server Flow for In-Process Server {continued)

Client

Release the class factory

instance (pCF->Release ()).

The interface on the

component object is used

to perform some tasks.

When the tasks are finished,

Release () is called.

At some point (such as

at idle time)

CoFreeUnusedLibraries()

is called.

COM/OS In-Process Server

COM/OS calls

DllCanUnloadNow ().

DllCanUnloadNow()

returns TRUE, and

COM unloads the DLL.

The component's class factory creates an instance of the

component object and returns an interface pointer to

IExpression.

Release () for the class factory causes the reference count

to reach zero, so the class factory instance is deleted.

Release () decrements the internal reference count to

reach zero, and the component object destroys itself. The

component object count also reaches zero because there are

no object instances in the DLL.

DllCanUnloadNow () returns TRUE.

In the next scenario, (Table 4.10), the server application is implemented as a local server. There are many
possible scenarios with local servers. The EXE may or may not be running when the client asks for a compo
nent's services, and the REGCLS flags also play a role when multiple instances of a component are required.
The scenario in Table 4.10 uses a single instance of the executable, and the executable isn't rUiming when the
client requests a component class. It should give you a good idea of what occurs when you're using a local
server.

APPLE 1108 - Page 183

1 58 + CHAPTER 4

Table 4.10 Client/Server Flow for Local Server (Server Not Running)

Client

Initialize COM (Coinitialize ()).

Create an instance of a component's

class factory (CoGetClassObj ect ()).

CoGetClassObj ect returns

with a pointer to the component's

class factory.

Use IClassFactory to create

an instance of the component.
Request the specific interface

we need, such as IExpression

pCF->Createinstance.

Release the class factory instance
(pCF->Release ()).

The interface on the component

object is used to perform some tasks.

When the tasks are finished, Release ()
is called.

COM/OS Server

COM checks to see if the

component has been

registered within its

internal tables. If it is, then

the EXE is running. If it isn't,

then query the Registry

for the pathname of the

local server EXE. Start

up the EXE and wait for

it to register its class

factories.

COM starts up the EXE.

Initialize COM (Coinitialize ()).

Register all the housed component's class factories as avail
able using CoRegisterClassObject.

·if#

A class factory instance is created for the requested component
and is returned.

The component's class factory creates an instance of the
component object and returns an interface pointer.

Release () for the class factory causes the reference count to
reach zero, so the class factory instance is deleted.

APPLE 1108 - Page 184

Microsoft's Model + 1

Table 4.10 Client/Server Flow for Local Server (Server Not Running) {continued)

Client COM/OS Server

Release () decrements the internal reference count to reach
zero, and the component object destroys itself. The component
object count also reaches zero, because there are no object
instances in the EXE. The EXE unregisters its class factories by
calling CoRevokeClassObj ect and then terminates.

Until this point, I haven't been using the standard COM/OLE macros when declaring interfaces, because for
instructional purposes they get in the way of understanding what's going on. COM, OLE, and MFC use
CIC++ macros extensively to hide the implementation details of the various platforms. We're getting ready
to write real code, so it's time I explained the macros we'll be using. There are four macros for COM/OLE
interface declarations and definitions: STDMETHOD, STDMETHOD_, STDMETHODIMP, and STDMETHODIMP -·

In an earlier example of IExpression, we declared it like this:

II public interface definition of our Expression component

II An abstract class

class IExpression

public:

};

virtual CString GetExpression() = O;

virtual void SetExpression(CString str, BOOL binfix) O;

virtual BOOL Validate() O;

virtual long Evaluate() O;

Using the COM's macros and intrinsic data types, it would be declared as follows:

class IExpression

public:

};

STDMETHOD_(BSTR,GetExpression()) PURE;

STDMETHOD_(void, SetExpression(BSTR, BOOL)) PURE;

STDMETHOD_(BOOL, Validate()) PURE;

STDMETHOD_(long, Evaluate()) PURE;

The expansion of STDMETHOD_ depends on the target platform and whether you're using C or C++. The
expansion for Win32 using C ++ is as follows:

APPLE 1108 - Page 185

160 + CHAPTER 4

II OBJBASE.H

#define STDMETHODCALLTYPE _stdcall

#define STDMETHOD(method) virtual HRESULT STDMETHODCALLTYPE method

#define STDMETHOD_(type,method) virtual type STDMETHODCALLTYPE method

#define PURE

#define STDMETHODIMP

#define STDMETHODIMP_(type)

= 0

HRESULT STDMETHODCALLTYPE

type STDMETHODCALLTYPE

As you can see, our earlier example is similar to the expanded macro version, with the exception of the addi
tional return type _stdcall. This Microsoft-specific calling convention is used by the Win32 API func
tions. It specifies that the callee will clean up the stack after the call. It isn't important to our understanding,
but it's interesting reading if you have nothing else to do. As you can see, PURE equates to= O and is just
another way of making a function pure virtual. Most COM interfaces return HRESULT, so the special macro
STDMETHOD defaults the return type to HRESULT. We didn't use it in the IExpression interface, but here is
a quick example from IClassFactory:

STDMETHOD(LockServer(BOOL fLock)) PURE;

II Expands to this

virtual HRESULT _stdcall LockServer(BOOL fLock) = O;

STDMETHOD is also used in the declaration of interface methods within the implem~ting class. The only dif
ference is that you don't need the PURE qualifier. The STDMETHODIMP macros are used when you imple
ment the interface function. Here are the declarations of our IExpression methods within the
Expression class:

class Expression : public IExpression

);

II IExpression

STDMETHOD_(BSTR, GetExpression());

STDMETHOD_(void, SetExpression(BSTR, BOOL)) ;

STDMETHOD_(BOOL, Validate());

STDMETHOD_(long, Evaluate());

When we implement the functions in our .CPP file, we use the STDMETHODIMP macros as follows:

STDMETHODIMP_(BSTR) Expression: :GetExpression()

return ::SysAllocString(m_strExpression);

APPLE 1108 - Page 186

Microsoft's

(void) Expression:

m_strExpression = bstrExp;

m_binfix = binf ix;

Expression::Validate()

STDMETHODIMP_(long) Expression::Evaluate()

BSTR

(BSTR bstrExp, BOOL binfix)

Model + 161

If you look closely, you'll see another difference in the preceding declarations. In the GetExpression func
tion of IExpression, we return something declared as a BSTR. A BSTR is a binary string and is one of the
standard data types used within Visual Basic. It is a string that stores its length in the first two or four bytes
(depending on the platform) and the string data thereafter. BSTR is a standard data type that is used exten
sively in Automation. We're using it here to return a copy of the expression as well as to set the expression
in SetExpression. The client application may not understand the structure of MFC's CString class, nor
should it have to. COM and ActiveX define many standard data types that are provided by COM's standard
marshaling support so that clients and servers have a standard way of passing data. We'll talk more about
these types in Chapters 6 and 7. Custom data types are also supported within COM and are typically used
with custom interfaces, but they're beyond the scope of this book.

One important aspect of COM interoperation between client and server processes is that the client is
responsible for deallocating memory allocated by the server. Only the client knows when it will be finished
with a piece of data returned through an interface method call, so the client is responsible for the dealloca
tion. COM provides functions to make this fairly easy. MFC also makes it easy as by providing BSTR sup
port within its CString class.

HRESULT and SCODE
Most COM interface methods and API functions return an HRESULT. An HRESULT in Win32 is defined as a
DWORD (32 bits) that contains information about the result of a function call. The high-order bit indicates the
success or failure of the function, the next 15 bits indicate the facility and provide a way to group related
return codes, and the lowest 16 bits provide specific information on what occurred. (If you are an old DEC

APPLE 1108 - Page 187

162 + CHAPTER 4

VMS programmer, this is how the system error codes work there as well. David Cutler designed them both.)
To check the gross success or failure of a function, you need only check the high-order bit of the return, and
COM provides some macros to make this easy. The SUCCEEDED macro evaluates to TRUE if the function call
was successful, and the FAILED macro evaluates to TRUE if the function failed. These macros aren't specific
to COM and ActiveX but are used throughout the Win32 environment and are defined in WINERROR.H.
Return values in Win32 are prefixed with s_ when they indicate success, and E_ to indicate failure.

II From WINERROR.H

II Generic test for success on any status value (nonnegative numbers

II indicate success).

II

#define SUCCEEDED(Status) ((HRESULT) (Status) >= 0)

II
II and the inverse

II

#define FAILED(Status) ((HRESULT) (Status)<O)

II
II Create an HRESULT value from component pieces

II

#define MAKE_HRESULT(sev,fac,code)

((HRESULT) (((unsigned long) (sev)<<31) I ((unsigned long) (fac)<<16) I ((unsigned
long) (code))))

#define MAKE_SCODE(sev,fac,code) \

((SCODE) (((unsigned long) (sev)<<31) I ((unsigned long) (fac)<<16) I ((unsigned long) (code))))

An SCODE is a special return value used for Win16 COM/OLE functions, but under Win32 an SCODE is
really an HRESULT. You should use HRESULT instead of SCODE when developing 32-bit applications.

Win 16 COM/OLE used the Function's GetScode to map an HRESULT to an SCODE and
ResultFromScode to map an SCODE to an HRESULT. Our examples will use these Functions when
providing Win 16 support. For example, to return E_NOINTERFACE from Queryinterface, which

N o T E returns an HRESULT, you would do this: return ResultFromScode (E_NOINTERFACE) .

APPLE 1108 - Page 188

Microsoft's Model + 163

Now that we've discussed the details of COM, we need some good examples to tie all the concepts together.
In the next few sections we will develop two programs. First, we will implement the Expression compo
nent as an in-process server. We won't implement it as a local server, because the custom interface,
IExpression, would require special marshaling code. As we'll see in Chapter 6, a standard ActiveX inter
face, IDispatch, provides additional functionality, including marshaling, for the Expression class.

Then we will build a simple client application that will use the Expression component as an in
process server. We will use MFC but without MFC's COM/OLE support; instead, we will use native COM
calls. We've delved into the details of COM so that we have a solid footing on which to continue. Later,
when using MFC, we won't probe into the depths of COM again because the details have been nicely
abstracted by the MFC libraries.

Throughout this chapter we've been using the Expression class and its public interface for the example
code. In this section, we'll develop a COM component that is contained within a DLL. This in-process server
will allow the Expression object to be used by any COM-compliant client process. In the next section we
will develop a C++ client application that uses the Expression component.

Start Visual C++, choose File/New, and select New Project Workspace. From the New dialog box,
select MFC App Wizard (dll) as the project type and name the project SERVER. Then click the Create button
to continue. Figure 4.8 shows the New Project Workspace dialog box.

figure 4.8 The New Project Workspace dialog box.

APPLE 1108 - Page 189

164 + CHAPTER 4

In the MFC App Wizard Step 1 of 1 dialog box, select the Regular DLL with MFC statically linked option
and take the defaults on the others. Click Finish to create the project files. Make sure the options match those
shown in Figure 4.9.

Figure 4.9 Server New Project Information dialog box.

These steps create a template DLL application that uses the MFC libraries. There isn't much code-basically
just the include files needed for MFC support. The initial AppWizard-produced code from SERVER.His
shown next:

II Server.h main header file for the SERVER DLL

II

#ifndef ~AFXWIN_H~

#error include 'stdafx.h' before including this file for PCH

#endif

#include '1resource.h"

lll!lllllllllllllllllllllll

II CServerApp

II See server.cpp for the implementation of this class

II

class CServerApp public CWinApp

public:

APPLE 1108 - Page 190

Microsoft's Component Object Model + 165

CServerApp();

II Overrides

II ClassWizard generated virtual function overrides

ll{{AFX_VIRTUAL(CServerApp)

};

I I} } AFX_ VIRTUAL

ll{{AFX_MSG(CServerApp)

II NOTE - the ClassWizard will add and remove member functions here.

II DO NOT EDIT what you see in these blocks of generated code !

ll))AFX_MSG

DECLARE_MESSAGE_MAP()

This code declares our CWinApp-derived application class. As we discussed in Chapter 3, all MFC applica
tions derive an application class from CWinApp that is globally instantiated. The code here declares the
application constructor CServerApp. Let's look at SERVER.CPP:

II Server.cpp : Defines the initialization routines for the DLL.

II

#include "stdafx.h"

#include \\Server.hi(

#ifdef _DEBUG

#define new DEBUG_NEW

#undef THIS_FILE

static char THIS_FILE[] = ~FILE~;
#endif

lll
II CServerApp

BEGIN_MESSAGE_MAP(CServerApp, CWinApp)

ll{{AFX_MSG_MAP(CServerApp)

II NOTE - the ClassWizard will add and remove mapping macros here.

II DO NOT EDIT what you see in these blocks of generated code!

ll}}AFX_MSG_MAP

END_MESSAGE_MAP()

lll
II CServerApp construction

CServerApp: :CServerApp()

APPLE 1108 - Page 191

1 +CHAPTER 4

II TODO: add construction code here,

II Place all significant initialization in Initinstance

lll/ll/l////l/lllll/lllll

II The one and only CServerApp object

CServerApp theApp;

There isn't much here either. Under Win32, when DLLs are initially loaded, the entry point DllMain is
called with the hinstance parameter. The MFC libraries encapsulate this entry point and provide the func
tion Initinstance to allow the application to perform any initializations. We don't need to initialize any
thing on startup, so we'll use the AppWizard code as provided. AppWizard has generated a basic DLL in
which to implement our COM-specific code.

In-process servers must contain the function DllGetClassObject, which provides a standard entry
point for clients that instantiate a class factory object for the specified component class (CLSID) and returns
its IClassFactory interface. If an in-process server supports multiple COM objects, the
DllGetClassObj ect function will contain code to identify the specific CLSID and will create the corre
sponding class factory. Our DLL contains only the Expression component and its supporting class factory,
so it's pretty simple. DllGetClassObj ect provides the class factories for all the components in our hous
ing, so we should add the following code to the end of SERVER.CPP.

STDAPI DllGetClassObject(P.EFCLSID rclsid, REFIID riid, ppv

HRESULT hr;

ExpClassFactory *pCF;

pCF = NULL;

II Hake sure the CLSID is for our Expression component

if (rclsid != CLSID_Expression

return (E_FAIL) ;

pCF = new ExpClassFactory;

if (pCF == NULL)

return (E_OUTOFHEMORY) ;

hr= pCF->Queryinterface(riid, ppv);

II Check for failure of Queryinterface

if (FAILED(hr))

delete pCF;

pCF = NULL;

return hr;

APPLE 1108 - Page 192

Microsoft's Model + 1

The function checks for CLSID_Expression. If the caller is requesting an unrecognized component class,
we return E_FAIL. If the correct CLSID is provided, we instantiate an Expression class factory and query
for the requested interface, typically IClassFactory. We then return the HRESULT of Queryinterface.

The second COM function that must be implemented in an in-process server is DllCanUnloadNow.
This function provides a way for COM to periodically check to determine whether the DLL can be
unloaded. Here's our implementation of DllCanUnloadNow. It also belongs in SERVER.CPP.

STDAPI DllCanUnloadNow(voidl

if (g_dwObjs I.I g_dwLocks

return (S_FALSE) ;

else

return (S_OK l ;

We're responsible for keeping track of how many COM objects are in use at any given time. The global vari
ables g_dwObj sand g_dwLocks keep track of the instantiated Expression objects and the current num
ber of LockServer calls. LockServer, a member of the IClassFactory interface, provides a way for a
client to lock a DLL in memory even if it is not currently being used. We declare these variables globally out
side any function. (They must hang around even when there are no instantiated objects.)

II Server.cpp : Defines the initialization routines for the DLL.

II

#include "stdafx.h"

#include "Server.h"

#include <initguid.h>

#include "expsvr.h"

DWORD

DwORD

g_dwObjs = O;

g_dwLocks = O;

#ifdef _DEBUG

#define new DEBUG_NEW

#undef THIS_FILE

static char THIS_FILE[] = ~FILE~;
#endif

These global variables are for a particular instance of the DLL. Under Win32, every process that loads this
DLL gets a fresh copy with the global variables initialized to zero. This isn't exactly true under Win16,
because DLLs exist at a system level and aren't owned by a particular process, but this method works under
Win16 as well. We've also added the include for the EXPSVR.H file that contains the definitions and IID for
our custom interface, IExpression. I've highlighted the changes from the Chapter 3 implementation of the
Expression class (in the file EXPRESS.H). It would be beneficial to copy the EXPRESS.H from the
Chapter 3 project to your Chapter 4 SERVER project directory and rename it EXPSVR.H.

APPLE 1108 - Page 193

168 + CHAPTER 4

II
II ExpSvr.h

II

II access to the global variables in SERVER.CPP

extern Dl'lORD g_dwObjs;

extern DWORD g_dwLocks;

PEJ;:INE"-GUID (

Ox8B.1 Ox10, OxOO, Ox5A, OxFB, Ox7D, Ox30};

OxA988BD41, Ox9F1A, OxllCE, Ox8B,Ox9F, OxlO, OxOO, Ox5A,OxFB, Ox7D, Ox30};

II
II A Stack class that supports CStrings

II
class CStringStack public CObject

protected:

DECLARE_DYNCREATE(CStringStack

CStringList rn_StringList;

public:

};

II

CStringStack();

CStringStack(CStringStack& stack) ;

-cstringStack();

CStringStack& operator=(canst CStringStack& lhs);

virtual void Dump(CDurnpContext&) ;

void Push(CString) ;

BOOL Peek(CString&) ;

BOOL Pop(CString&);

BOOL I sErnpty () ;

void Clear();

II Tokenizes an algebraic expression string

II
class Tokenizer public CObject

protected:

APPLE 1108 - Page 194

Microsoft's

DECLARE_DYNCREATE(Tokenizer)

char m_szBuffer[256];

CStringList m_TokenList;

public:

Tokenizer () ;

Tokenizer(canst CString& strString) ;

-Tokenizer();

public:

void

short

BOOL

BOOL

void

SetString(canst CString& str) ;

Tokenize() ;

};

GetToken(CString& str) ;

PeekToken(CString& str) ;

ClearTokens();

class IExpression public IUnknown

public:

STDMETHOD_(BSTR,GetExpression()] PURE;

STDMETHOD_(void, SetExpression(BSTR, BOOL)) PURE;

STDMETHOD_(BOOL, Validate()) PURE;

STDMETHOD_(long, Evaluate())

} ;

class public IExpression

protected:

enum TokenType

};

BogusToken,

OperatorToken,

OpenParenToken,

CloseParenToken,

NumberToken

protected:

CString

BOOL

m_strExpression;

m_binfix;

PURE;

Model + 1

APPLE 1108 - Page 195

170 + CHAPTER 4

II Reference count

DWORD m_dwRef;

public:

II Constructors

Expression();

Expression(CString str, BOOL binfix);

II Destructor

-Expression();

II Copy constructor

Expression(Expression& x) ;

II assignment operator

Expression& operator=(Expression& rhs) ;

protected:

BOOL

'l'oken'lype

int

BOOL

IsNtrntlJer (canst CString& str'l'oken) ;

GetToken'I'ype(canst CString& str'I'oken);

Precedence(const CString& str'I'oken) ;

Infix'l'oPostfix ();

public:

} ;

11 IUnknown

S'I'DME'I'HOD(Queryinterface(REFIID, void**)) ;

S'I'DMETHOD_(ULONG, AddRef());

STDMETHOD_(ULONG, Release());

II IExpression

STDMETHOD_(BSTR, GetExpression());

STDMETHOD_(void, SetExpression(BSTR, BOOL)) ;

S'I'DMETHOD_(BOOL, Validate());

STDMETHOD_(long, Evaluate());

class ExpClassFactory public IClassFactory

protected:

DWORD m_dwRef;

public:

ExpClassFactory();

-ExpClassFactory();

11 IUnknown

STDMETHOD(Queryinterface(REFIID, void**)) ;

APPLE 1108 - Page 196

} ;

STDMETHOD_ (ULONG, Add.Ref()) ;

STD!1ETHOD_ (ULONG, Release ()) ;

II IClassFactory

STDMETHOD(Createinstance(LPUNKNOWN, REFIID, void**));

STDMETHOD(LockServer(BOOL));

The new items expose our C++ component using COM. We now need to add the implementation of the pre
ceding functions to EXPSVR.CPP. Only a few things have changed, so I include only the pertinent code.
Items not shown are taken directly from the Chapter 3 implementation in EXPRESS.CPP. The original
implementations of CStringStack and Tokenizer and the protected member functions
InfixToPostfix, Precedence, IsNurnber, and GetTokenType have not changed.

II

II ExpSvr.cpp

II

#include "stdafx.h"

/I To support Unicode conversion in 4.0

#if (_MFC_VER >= Ox400

#include <afxpriv.h>

#endif

#include <stdio.h>

We first need to include the MFC AFXPRIV.H header file. With the release of MFC 4.0, we now must man
age all Unicode conversions ourselves. Fortunately, AFXPRIV.H provides a number of macros that make
the process much simpler.

Remember, all Win32 COM/OLE functions are inherently Unicode. Our project, however, is built using
ANSI (or multibyte) strings. As you will see, we will need to use Unicode when passing strings to and from
the COM functions. Also, the BSTR type expects Unicode strings. Here are the rest of the changes to
EXPSVR.CPP:

ExpClassFactory: :ExpClassFactory()

m_dwRef O;

ExpClassFactory: :-ExpClassFactory()

APPLE 1108 - Page 197

1 +CHAPTER 4

NULL;

if riid == IID_IUnkno~m 11 riid

*ppv = this;

if (*ppv

((LPUNKNOWN) *ppv) ->AddRef () ;

return NOERROR;

(REFIID riid, void** ppv)

IID_IClassFactor1)

return ResultFromScode(E_NOINTERFACE);

STDMETHODI!1P_ (ULONG) ExpClassFactory: :?.ddRef ()

return ++m_dwRef;

STDMETHODIMP_(ULONG) ExpClassFactory: :Release()

if (-m_dwRef)

return m_dwRef;

else

delete this;

return O;~

STDMETHODIMP ExpClassFactory: : Createinstance

LPUNKNOVJN pUnkOuter, REFIID riid, void** ppvObj

Expression* pExpression;

HRESULT hr;

*ppvObj = NULL;

pExpression = new Expression;

if (pExpression == NULL)

return E_OUTOFME!;!ORY;

hr = pExpression->Queryinterface(riid, ppvObj) ;

APPLE 1108 - Page 198

if (FAILED(hr))

delete pExpression;

else

Microsoft's

g_dwObjs++; II Increment the global object count

return hr;

STDMETHODIMP ExpClassFactory: :LockServer(BOOL fLock ..)

if (fLock)

g_dwLocks++;

else

g_dwLocks-;

return NOERROR;

II Constructors

Expression::Expression()

m_dwRef = 0;

m_binfix TRUE;

Expression: :Expression(CString strExpression, BOOL binfix)

m_dwRef = O;

m_strExpression = strExpression;

m_binfix = binfix;

Expression: :-Expression(void)

g_dwObjs-;

STDMETHODIMP_(void) E;q;iression: :SetExpression(BSTR bstrExp, BOOL b!nfix)

m_strExpression = bstrExp;

STDMETHODIMP_(BOOL) R')?ression::Validate()

Model + 173

APPLE 1108 - Page 199

1 +CHAPTER 4

Implementation the same, only the declaration is different

STDMETHODIMP_(long) Expression: :Evaluate()

II Implementation the same, only the declaration is different

STDMETHODIMP EA-pression::Queryinterface(REFIID riid, void** ppv)

*ppv = NULL;

if (riid == IID_IUnknown I I riid == IID_IExpression)

*ppv = this;

if (*ppv)

((LPUNK..~OWN)*ppv)->AddRef();

return { S_OK) ;

return (E_NOINTERFACE) ;

STDMETHODIMP_ (ULONG) Expression: :AddRef ()

return ++m_dwRef;

STDMETHODIMP_(ULONG) Expression::Release()

if (-m_dwRef)

return m_dwRef;

delete this;

return 0;

I saved GetExpression for last, because we encounter Unicode again. AFXPRIV.H includes several
macros that make dealing with Unicode easier. The macros are described in detail in MFC Tech Note 59, but
we're using just one of them here. T20LE converts an ANSI string to Unicode. The required USES_ CONVER-

APPLE 1108 - Page 200

Microsoft's Model + 1

SION line declares some local storage for the conversion macros. Once we get a Unicode string, we pass it to
the COM SysAllocString function.

Remember, too, that we will allocate storage for the returned string, and the client is responsible for
eventually releasing the memory. This is an important rule to understand when you're working with COM.

STDMETHODIMP_(BSTR) Expression: :GetExpression()

(~~FC_VER >= Ox400)

USES_ CONVERSION

LPCOLESTR lpOleStr = T2COLE(m_strExpression) ;

return ::SysAllocString(lpOlestr);

#else

return: :SysAllocstring(m_strExpression);

#endif

We need to export the COM API functions so that they can be called outside the DLL. Visual C++ creates a
default .DEF file as part of the project, but you must export the two COM-specific functions that we added
to SERVER.CPP. Open SERVER.DEF and add the highlighted code:

; server.def : Declares the module parameters for the DLL.

LIBRARY SERVER

DESCRIPTION 'SERVER Windows Dynamic Link Library'

EXPORTS

; Explicit exports can go here

DllGetClassObject @2

DllCanUnloadNow @3

We're almost finished. Next, we add the new EXPSVR.CPP file to the project. Click Insert/Files into Project
and add EXPSVR.CPP. After this, go ahead and compile and link the SERVER DLL.

Before we can use the component, it must be registered in the Windows Registry. Later, we'll do this pro
grammatically, but for now we'll need to use REGEDIT.EXE (Windows 95), File Manager (NT 3.51), or
Explorer (Windows 95 or NT 4.0), depending on your operating system. Included on the accompanying CD
ROM is a .REG file (WIN32.REG) that you can use to enter the keys into the Registry. Following is the text
of the WIN32.REG file for the Chap4 Expression Component. You will have to edit WIN32.REG and
modify the highlighted line with the path of your project.

APPLE 1108 - Page 201

176 +CHAPTER 4

REG EDIT

HKEY_CLASSES_ROOT\CLSID\{a988bd40-9fla-llce-8b9f-10005afb7d30} = Chap4 Expression Component

HKEY_CLASSES_ROOT\CLSID\{a988bd40-9fla-llce-8b9f-10005afb7d30}\P~ogID = Chap4.Expression.1

HKEY_CLASSES_ROOT\CLSID\{a988bd40-9fla-llce-8b9f-10005afb7d30}\VersionindependentProgID =
Chap4.Expression.1

HKEY_CLASSES_ROOT\CLSID\{a988bd40-9fla-llce-8b9f-10005afb7d30}\InprocServer32
c:\chap4\server\Debug\server.dll

HKEY_CLASSES_ROOT\CLSID\{a988bd40-9fla-llce-8b9f-10005afb7d30}\Notinsertable

HKEY_CLASSES_ROOT\Chap4.Expression.1 = Chap4 Expression Component

HKEY_CLASSES_ROOT\Chap4.Expression.1\CLSID = {a988bd40-9fla-11ce-8b9f-10005afb7d30}

HKEY_CLASSES_ROOT\Chap4.Expression.1\CurVer = Chap4.Expression.1

After we've registered the component, we can quickly test the server with a nice utility: OLEVIEW.EXE.

I r
Included with Visual C++ is a program called OLEVIEW.EXE (It may instead be named OLE2VW32.EXE.)
OLEVIEW is also included with the ActiveX SDK. It is good for initially testing COM/OLE components. We
will use one of its features here to ensure that our new SERVER.DLL can be loaded. We will also verify that
it has been successfully entered into the Registry.

Start OLEVIEW.EXE using your favorite method (mine is start oleview fr~ a command prompt) and
locate the entry for our server Chap4 Expression Component. If you can't find it, make sure that you are
displaying noninsertable objects. You will also need to set OLEVIEW.EXE to Expert Mode to locate the com
ponent. It will be under the All Objects tree. Once you've located our server, click on it once to highlight it.
The Registry information should display as shown in Figure 4.10.

Now, to quickly test to see whether we've done everything right, double-click or expand the entry. This
will attempt to perform a CoGetClassObj ect, which calls our DllGetClassObj ect function to instanti
ate a class factory. If this succeeds, you'll see the IUKnown interface displayed under the entry as in Figure
4.10. If it fails, you'll see something like this "CO_E_SERVER_EXEC_FAILURE" on the status bar. This
means either that the path to the DLL is wrong or the DLL isn't there. Another possibility is that you forgot
to export the DllGetClassObj ect function from your DLL.

APPLE 1108 - Page 202

Microsoft's Model + 1

Figure 4.10 Successful call to CoGetClassObj ect.

Next we'll build an application that uses the Expression in-process server that we developed in the pre
vious section. In Chapter 3, we developed an MFC application that used the original Expression C++
class from Chapter 2. Our client application is going to behave, on the surface, just as it did in Chapter 3.
The application user types an expression and then validates or evaluates the expression using the com
mand buttons.

We'll provide the same functionality, but instead of incorporating the C++ class into the application, we
will access the Expression COM object for the needed fLmctionality.

Start Visual C++, go into App Wizard, and create a new project just as we did at the end of Chapter 3.
Call this new project CLIENT. Make it an SDI application with no OLE support and be sure to derive the
View class from CFormView so that we can easily place our controls. When you get to the last App Wizard
screen, check to make sure it matches the screen shown in Figure 4.11.

APPLE 1108 - Page 203

1 78 • CHAPTER 4

Figure 4.11 Client New Project Information dialog box.

Just as in Chapter 3, edit the .RC file and add an entry field and two command buttons to the
IDD_CLIENT_FORM dialog. Name the command buttons IDC_VALIDATE and IDC_EVALUATE and the
entry field IDC_EXPRESSION. Close the resource editor and save the changes. ~ow start Class Wizard, go to
the CClientView class, and tie the IDC_ VALIDATE and IDC __ EVALUATE BN_CLICKED events to a function.
Take the default OnValidate and OnEvaluate. All this is the same as in Chapter 3. Now compile and link
the application and make sure it looks similar to the screen shown in Figure 4.12.

Read.11

Figure 4.12 Client application.

APPLE 1108 - Page 204

Before we can access our COM component, we must set up the COM/OLE environment by initializing the
various DLLs. COM provides the Coinitialize API functions to perform this task. Edit the
Initinstance member of CLIENT.CPP. Initinstance is called only once during the startup of the
application. This file provides a perfect place to initialize COM.

II client.cpp

BOOL CClientApp: :Initinstance()

II Standard initialization

II If you are not using these features and wish to reduce the size

II of your final executable, you should remove from the following

II the specific initialization routines you do not need.

II Initialize COM

HRESULT hr = : :Coinitialize(NULL) ;

if (FAILED(hr))

AfxMessageBox("Unable to Initialize COM, exiting") ;

return FALSE;

Enable3dControls();

N 0 T E

CoBuildVersion is required only for 16-bit applications. Under Win32, this call is not required
and is documented as obsolete. If you' re writing 16-bit code, you should check the version of the
COM/OLE DLLs on the executing system. Here's how:

II Check the version of the COM DLLs

DWORD dwBV = : : CoBuildVersion () ;

if (HIWORD (dwBV) ! = rmm I I LOWORD (dwBV) < rup)

Afxl1essageBox("COM Version is too old to continue") ;

return FAI,SE;

The symbols rmm and rup refer to the COM/OLE build number and are defined in the OLE2VER.H
include file.

II client.cpp

#include "view.h"

#include <ole2ver.h>

#ifdef _DEBUG

APPLE 1108 - Page 205

1 +CHAPTER 4

We also need to include the AFXOLE.H file in STDAFX.H so that we have access to the various COM/OLE

API functions.

II stdafx.h

#include <afxwin.h>

#include <afxext.h>

#include <afxole.h>

II MFC core and standard components

II MFC extensions

We should terminate and release the COM libraries when our application terminates. MFC provides
Exi tinstance, an overridable member of CWinApp that is called just before application termination.
Using ClassWizard, select CClientApp from the dropdown listbox. Select CClientApp in the Objects IDs
listbox, and all the overridable members of CWinApp are shown. Select Exi tinstance from the Messages
listbox and click the Add Function button. Then click Edit Code and add the following:

int CClientApp: :Exitinstance()

II Shutdown COM

: :CoUninitialize();

return CWinApp: :Exitinstance();

Now we have added basic COM support to our application. Go ahead and compjle, link, and run the appli
cation in debug to get a sense of what occurs. Not much, right? COM is easy.

Now let's add the functionality from the Expression in-process server. Because the IExpression

interface is a custom interface not provided by COM, we need to include the interface definition. Open a
new file in Visual C++ and call it IEXP.H. Either type in or copy the following code from EXPSRV.H.

for

II IEx-pression custom interface.

#ifndef IEXP_H_

#define IEXP..JL

#ifdef INITGUID

#include <initguid.h>

#endif

DEFINE_GUID(IID_IEx-pression,

Or.A988BD41,

class IEA-pression

public:

Ox11CE,Ox8B,Ox9F,Ox10,0x00,0x5A,0xFB,Ox7D,Ox30);

APPLE 1108 - Page 206

} ;

Microsoft's

STDMETHOD(Queryinterface(REFIID, void<»)) PURE;

STDMETHOD_(ULONG, AddRef())

STDNETHOD_(ULONG, Release())

PURE;

PURE;

STDMETHOD_(BSTR,GetExpression{)) PURE;

SetExpression(BSTR, BOOL)) PURE;

STDNETHOD_(BOOL, Validate{))

STDMETHOD_(long, Evaluate())

PURE;

PURE;

*endif // inclusion guard

Model -+- 181

The information in IEXP.H is all we need to access the functionality of the Expression component. It
defines the interface ID (IID) and each of the public methods provided by the component. In Chapter 6, we
will implement the Expression component using the standard ActiveX interface IDispatch. Using
IDispatch, we eliminate the client's need for any static component information like in the preceding code.

To use the Expression component, we need to instantiate a copy of it and obtain a pointer to the
IExpression interface. We will add code to do this in the CClientView class contained in VIEW.Hand
VIEW.CPP. First, we need to forward declare the IExpression class; then we declare a member variable,
m_pIExp, that will contain the IExpression interface pointer.

/I view.h : interface of the CClientView class

II

1111111111111111/ll

class IExpression;

class CClientView : public CFormView

protected: II create from serialization only

CClientView () ;

DECLARE_DYNCREATE(CClientView)

I I Add a pointer to IE;Ko!:essi(m

IExpression* m_pIExp;

public:

};

ll{{AFX_DATA(CClientView)

enum{ IDD = IDD_CLIENT_FORM };

II NOTE: the ClassWizard will add data members here

ll}}AFX_DATA

APPLE 1108 - Page 207

1 82 + CHAPTER 4

When the View class is instantiated, we create an instance of the Expression component using its class fac
tory. To obtain a pointer to the Expression class factory interface, we must use CoGetClassObject.

CoGetClassObj ect requires a CLSID, so we first call CLSIDFromProgID to convert
Chap4. Expression .1 to the unique 128-bit CLSID. CLSIDFromProgID does the conversion by looking
for the Chap4. Expression .1 key in the Registry and returning the associated CLSID.

CoGetClassObj ect first looks in COM's table of registered class objects. If the object isn't found,
CoGetClassObj ect queries the Registry to determine how to invoke the EXE or DLL. If the component is
housed in a DLL, as in our case, it checks to see whether the DLL is loaded. If it is not, the function calls
LoadLibrary to load the DLL. Once the DLL is loaded, the entry point DllGetClassObject is called
with the CLSID that is passed. Add the following to VIEW.CPP:

II view.cpp : implementation of the CClientView class

II

#include "stdafx.h"

#include "client.h"

#include "docurnent.h"

#include "view.h"

II Define INITGUID so that IID_IExpression is defined only once

#define INITGUID

#include "iexp.h"

II To support Unicode conversion in 4.0

#if (_MFC_VER >= Ox400

#include <afxpriv.h>

#endif

CClientView: : CClientView ()

: CForrnView(CClientView: :IDD)

ll{{AFX_DATA_INIT(CClientView)

II NOTE: the ClassWizard will add member initialization here

ll}}AFX_DATA_INIT

II TODO: add construction code here

LPCLASSFACTORY lpClassFactory;

HRESULT hr;

CLSID Clsid;

m_pIExp = NULL;

II Convert the file contents to Unicode for ver 4.0

APPLE 1108 - Page 208

Microsoft's

);

Clsid,

CLSCTX_INPROC_SERVER I CLSCTX_LOCAL_SERVER,

NULL,

IID_IClassFactory,

(LPVOID FP.R *) &lpClassFactory) ;

"CoGetClassObject failed");

lpClassFactory->Createinstance(NULL,

IID_IExpression,

(LPVOID FAP. *) &m_pIExp);

{ FAILED(hr))

AfxMessageBox{ "ClassFactory->Createinstance failed");

Model

Once we have a pointer to IClassFactory, we call Createinstance, requesting the IID_IExpression
interface. If all goes well, the interface pointer is returned. We are then finished with the class factory object
and call Release through its interface, IClassFactory. At this point SERVER.DLL is loaded, and it con
tains an instance of the Expression class.

APPLE 1108 - Page 209

CHAPTER 4

When the application terminates, we need to clean up by releasing the IExpression interface, which
allows the DLL to unload. Add the following code to the CClientView destructor:

CClientView: :-CClientView()

if (m_pIExp)

m_pIExp->Release();

When the application user clicks the Validate or Evaluate button, we need to call the appropriate function in
the Expression component. We already have a pointer to the IExpression interface, so this is easy. The
code is very similar to that in Chapter 3, where we were using the C++ class directly. The only difference is
that we now use an interface pointer instead.

void CClientView: :OnEvaluate()

CString strExpression;

char szTemp[128];

if (m_pIExp == NULL

AfxMessageBox('!No Interface to Expression" l;

return;

II Get the ex-pression from the entry field

CWnd* pWnd = GetDlgitem(IDC_EXPRESSION);

pWnd->GetWindowText();

TRACEl ("OnEvaluate: Expression is %s\n", strExpression) ;

BSTR bstrExp = strExpression.AllocSysString();

m_pIExp->SetExpression(bstrExp, TRUE);

);

long lResult = m_pIEx-p->Evaluate();

sprintf [szTemp, "%Id", lResult) ;

pWnd->SetWindowText(szTemp) ;

Set focus back to the entry field

void CClientView: : OnValidate ()

{) ;

APPLE 1108 - Page 210

CString strExpression;

if m_pIExp == NULL)

{

Microsoft's

AfxMessageBox("No Interface to Expression") ;

return;

Get .the expression from the entry field

CWnd* .pWnd = GetDlgitem(IDC_EXPRESSION) ;

strExpression) ;

TRACEl { "OnValidate: Expression is %s\n", strExpression) ;

BSTR bstrExp = strExpression.AllocSysString().;

m.:_pIExp->SetExpression(bstrExp, TRUE) ;

::SysFreeString(bstrExp);

if (! m_pIExp->Validate ())

AfxMessageBox("Invalid Expression, try again") ;

//Set focus back to the ent!"J field

GetDlgitem(IDC_EXPRESSION)->SetFocus();

After adding all the preceding code, compile and link the CLIENT application.

e

Model + 185

Because our server is in-process, it is easy to debug both the client and server pieces. When running the
client executable, you can step into the IExpression interface calls and go directly into the server code.
Debugging a local server process is more difficult, but with Windows NT you can load multiple copies of
the Visual C++ debugger and debug two processes simultaneously.

In this chapter our goal was to understand what Microsoft's Component Object Model is, what it can pro
vide, and how it is implemented. We learned that COM provides a binary standard way for various lan
guages and processes to interoperate and that this is done primarily through component interfaces.
Component class interfaces are best developed using C++ because COM's internal structure is heavily
dependent on a structure called a Vtable; Vtables are built using the virtual function mechanisms of C++. All

APPLE 1108 - Page 211

1 86 + CHAPTER 4

COM objects must implement an interface called IUnknown that provides the ability for a client process to
query for an interface on a given component. IUnknown also provides methods that help with the manage-
ment of a component object's lifetime. ·

Almost all COM objects expose multiple interfaces. To provide multiple interfaces in C++, we need to
provide multiple Vtables for our class. We looked at three methods of implementing multiple interfaces in
C++: multiple inheritance, interface implementations, and class nesting. Class nesting is the method used
byMFC.

GUIDs are 128-bit unique identifiers that are used to identify COM object classes as well as the inter
faces that these classes expose. The Windows Registry is used by COM to register component classes and
provides a mechanism to locate a component by its unique CLSID or by a ProgID, which is a less unique,
readable string that also identifies a component class.

Each COM object also must provide a class factory. The class factory is itself a COM object whose sole
purpose is to create instances of another component class. These two components-the component class and
its associated class factory-are the minimum requirements to provide a COM binary standard wrapper.
These objects must be implemented within a component housing so that the components can be executed
within the operating system.

There are two methods of housing components. In-process servers are implemented as DLLs and are
typically faster than the other housing type, the local server or executable, because in-process servers don't
require marshaling. Marshaling, the process of copying function arguments across these process or network
boundaries, can greatly affect the performance of a component.

COM is a robust, system-level system standard on which higher-level application standards, such as
ActiveX, can be built.

APPLE 1108 - Page 212

,
nd the

In Chapter 4 we discussed Microsoft's Component Object Model (COM). In this chapter, we will investigate
the relationship of COM, OLE, and ActiveX. Once we understand that, we will look deep into the MFC
libraries to see how MFC implements its abstracted view of these teclmologies. As we go along, we will con
vert the client and server applications of Chapter 4 to use MFC's COM-based classes instead of going
directly to the COM/OLE APis.

Our purpose in this chapter is to understand how MFC implements its COM support. With this knowl
edge, we can then move forward with a solid understanding of MFC-based COM teclmologies. In particular,
we will answer two questions: what exactly are OLE and ActiveX? How are they related and how are they
different?

This chapter focuses on the low-level details of how MFC implements support for COM, OLE, and
ActiveX. You don't really need to master this low-level detail to build software components, but if you
tmderstand the low-level implementation, it's much easier to understand the how to effectively implement
software based on these technologies.

Is
As the "Model" part of its name indicates, COM is a model for binary standard software development.
Other vendors are free to implement the model using whatever mechanisms they choose, as long as the
resulting implementation adheres to the model. Microsoft has provided an implementation of COM within
its Windows operating systems. Windows provides COM-based system-level services that all software
developers can use.

187

APPLE 1108 - Page 213

1 +CHAPTER 5

That's a difficult question to answer. A few years ago, OLE was an acronym for Object Linking and
Embedding. OLE version 1.0 (circa 1991) was focused only on the linking and embedding of word process
ing and spreadsheet documents, but OLE version 2.0 (circa 1993) added many features that had nothing to
do with compound documents. After the release of OLE 2.0, Microsoft stated that OLE was no longer an
acronym for Object Linking and Embedding but instead was an umbrella term to describe all the features
provided by OLE. These features include OLE automation, OLE conh·ols, and several others-technologies
that don't fit into the compound document area. The concept of a version number was also dropped. The
technology can be, and is, constantly updated without affecting existing software.

In short, OLE is a well-defined set of COM-based interfaces (and a set of API functions that facilitate the
use of these interfaces). That's it. OLE provides a robust, application-level implementation of COM that
gives developers a new tool in the struggle to provide reusable software. The COM API functions we looked
at in Chapter 4 provide the foundation on which to build this robust implementation on all the Windows
platforms.

As an architecture, OLE is highly extensible. If new features are needed within OLE or in an operating
system (such as Windows) that uses COM or OLE internally, it is easy to define a new OLE interface to pro
vide the functionality. It can be delivered to users by providing a new in-process server or by adding the
interface (and its supporting COM object and so on) to an existing system DLL (such as OLE32.DLL). This
arrangement makes it easy to augment the OLE system environment and provides easy upgrading of exist
ing capabilities. Windows 95 and Windows NT 4.0 make extensive use of OLE within their GUI shells. You
extend the shell by writing DLLs, which are OLE in-process servers. And beca:itrse of OLE's ability to expose
additional interfaces on the same object, this addition of ftmctionality in no way harms or affects existing
software that may use the augmented interface. Once the COM infrastructure is in place, extension of vari
ous operating system functions is rather easy. Future Windows operating systems will make extensive use
of this capability as Microsoft continues its quest to evolve Windows into a true object-oriented operating
system.

Another difficult question. Before 1996, the term OLE was used to describe nearly all of the COM-based
Windows development technologies. In April 1996, Microsoft unveiled its new Internet-based technology
and changed many of the terms it had previously used to describe various COM-based technologies. The
implementation and use of the teclmologies didn't change, but their names changed. ActiveX became the
term used to describe Microsoft's Web-based teclmologies. Instead of OLE controls, we had ActiveX con
trols. Instead of OLE automation, the term was now Automation.

These technologies existed before April 1996, and their implementations still contain all the OLE inter
faces from before; only the name has been changed. In addition, several new technologies were announced.
ActiveX scripting is a new technology, although it is a collection of COM-based interfaces and possibly a few
new APis.

APPLE 1108 - Page 214

COM, OLE, ActiveX, and the MFC Libraries

In a nutshell, COM is a system-level service provided by the Windows operating systems. OLE is a
series of well-defined COM-based interfaces and a few APis that provide a standard way of providing com
pound document support to applications. Similarly, ActiveX is a series of COM-base<;! interfaces and a few
APis that provide a large number of application-level services to applications developers, especially those
who focus on Web-based development. In many cases, the OLE and ActiveX interfaces intersect. Both tech
nologies may define and use the same set of interfaces.

In other words, OLE and ActiveX (and DirectX) are a way of categorizing the technologies. In reality,
they are just a collected group of COM-based interfaces and maybe a few APis. That's it. Figure 5.1 illus
trates the relationships among these technologies.

Figure 5.1 COM, OLE, and ActiveX relationships.

To make things simple, throughout the rest of the book I will use the term ActiveX because the teclmologies
that we're focusing on come from this category. Automation and ActiveX controls are our primary focus. If I
regress and use OLE, I'll explain why. I will also use the term COM when discussing functionality that sup
ports both OLE and ActiveX. It is a good general term when you're discussing COM-based software. Also,
the use of ActiveX can be confusing, because many of the interfaces and API calls are prefixed with "OLE"
and not" ActiveX." Just keep in mind that, in most occurrences, OLE= ActiveX.

Even though ActiveX is a collection of COM-based interfaces, their large number and implementation
requirements can make ActiveX a complex technology to grasp. The MFC libraries provide a way for a
developer to start using ActiveX without having to w1derstand all the details of what's going on "tmder the

APPLE 1108 - Page 215

covers." As we discussed in Chapter 3, one of the primary purposes of application frameworks is to provide
an abstracted view of the low-level implementation of system technologies. MFC does this, and in this chap
ter I'll show you how MFC does it. We'll look under the covers of MFC so that we can use what we learned
in Chapter 4.

Chapters 4 and 5 concern the low-level implementation details of COM, ActiveX, and MFC. You may
not understand everything at first, but these chapters are here when you need them. After this chapter, we'll
focus more on how to use ActiveX. As you gain experience with ActiveX, you will see more and more
opportunities to use the technology in many areas of the software you develop. It is a powerful technology.

You will also find that MFC may not provide an abstraction or encapsulated class for the ActiveX fea
tures you require. When this occurs, a good understanding of what is going on at a low level will allow you
to implement the technology yourself, with or without the help of MFC.

Figure 5.2 shows some of the important ActiveX classes provided by MFC. We will discuss the high
lighted ones in this chapter. In later chapters we will discuss some of the others.

COleTemplateServer

CDispatchDriver

Figure 5.2 Important MFC ActiveX classes.

The OLE and ActiveX technologies contain several hundred interfaces, and the number continues to grow as
new capabilities are added. Many of these interfaces are grouped to describe various application technolo
gies. Examples include compound documents, structured storage, drag and drop, Automation, ActiveX doc
uments, and others. Most developers are familiar with OLE's compound document technology but may not
be familiar with all the new things added in the latest ActiveX specification. We will focus on two technolo
gies: Automation and ActiveX controls. As you'll see, they use many of the interfaces currently described by
ActiveX. Figure 5.3 shows a view of some of the ActiveX interfaces we'll deal with when developing
Automation servers and ActiveX controls.

APPLE 1108 - Page 216

Automation

!Dispatch

ITypeLib

ITypelnfo

OLE/ActiveX Container

IPersistStreamlnfo

IConnectionPointContainer
ISpecifyPropertyPages
IOleObject

1View0bject2
IDataObject
IOlelnPlaceObject

IOlelnPlaceActiveObject

Figure 5.3 COM-based interfaces and application functionality.

To illustrate how MFC implements COM/ ActiveX, we will convert the CLIENT and SERVER applications
from Chapter 4 to use the MFC libraries. Instead of using the native COM API functions and straight C++
constructs for the implementation, we will use MFC's abstracted implementation. This arrangement will
illustrate the differences in the techniques and provide a better understanding of how MFC implements its
ActiveX support.

Because we were doing certain things at a very low level, not everything will convert directly to MFC.
MFC currently does not provide a wrappered ActiveX class for every ActiveX teclmology. This applies only
to certain functions in the CLIENT module; everything in the SERVER will convert right over. As with all
application frameworks, MFC cannot implement changes as quickly as they are added to the OS environ
ment. There are areas of ActiveX that are not implemented in MFC, so the developer must use C++ and the
APis explicitly. When we encounter such situations, we will know enough to implement them ourselves.

APPLE 1108 - Page 217

1 +CHAPTER 5

There isn't much work involved in converting the CLIENT application from Chapter 4. The most difficult
part is probably in deciding how you want to go about doing it. The changes are so minor you might simply
modify the chapter CLIENT project as the following sections demonstrate. Or you could build a new
CLIENT project following the steps in Chapter 4 and then continue with the items in the following section.

I've changed the CLSID and ProgID of the Chapter 5 server application so that we can distinguish it
from the other servers that we will create or have created. In our client application we have hard coded the
specific ProgID that we want to use. What I'm recommending is that we add a modal dialog box that allows
us to enter the ProgID before we attempt to call the CLSIDFromProgID function. Using this method, we can
modify the existing CLIENT application and continue to use it with both the Chapter 4 and Chapter 5 server
examples. Here's what we need to do.

Open the Chapter 4 CLIENT project, click the Resource tab, select Insert/Resource, and add a new DIA
LOG resource. Use IDD_DIALOG as the ID. Add a combo box with an ID of IDC_I'ROGID and a static
field that says something like Please select the ProgID to use:. The combo box should have a style of Drop
List, but first you need to set it to Simple to size it. Then remove the Cancel button. The dialog box should
look something like Figure 5.4.

Figure 5.4 Server selection dialog box.

Now we need to create a class that encapsulates the dialog box we just built. We can easily do this using
ClassWizard. If you invoke ClassWizard when editing a dialog resource, you will get a screen like that in
Figure 5.5. Click OK to get the New Class dialog box. Add a new class with the name CProgIDDlg, deriving
it from CDialog, and name the implementation files PROGDLG.H and PROGDLG.CPP. Then press
Create a new class. Figure 5.6 depicts the screen before you click Create.

APPLE 1108 - Page 218

Figure 5.5 Adding a Class dialog box.

Figure 5.6 Adding a class with ClassWizard.

We've added a new class to the CLIENT project. Now we need to fill the combo box with valid ProgIDs
when the dialog box is initially loaded. Go back into Class Wizard, select the Message Map tab, and choose
CProgIDDlg as the class name. Override the WM_INITDIALOG message by selecting it and clicking the Add

APPLE 1108 - Page 219

194 CHAPTER 5

Function button. This action adds a function called OninitDialog. Add the following code to
PROGDLG.CPP to load our combo box.

BOOL CProgIDDlg::OninitDialog()

CDialog: :OninitDialog();

II TODO: Add extra initialization here

CCornboBox* pCB = (CComboBox*) GetDlgitem(IDC_PROGID) ;

II Add the valid strings to the combo box

pCB->AddString ("Chap4. Expression .1") ;

pCB->AddString("Chap5.Expression.1");

return TRUE; II return TRUE unless you set the focus to a 'control

II EXCEPTION: OCX Property Pages should return FALSE

N 0 T E

Drop list-style combo boxes can also be prefilled using the resource editor. After choosing the drop
list style, switch to the General Properties page and you can enter the strings in a listbox on the
right. Using this method, you won't have to override Onini tDialog just to prefill the list.

We need a variable in the CProgIDDlg class to contain the combo box selection when the user presses the
OK button. Go into ClassWizard again and select the Member Variable tab ~ith CProgIDDlg as the class
name. Select IDC_PROGID and click the Add Variable button. Name the variable m_strProgID and select
a category of Value and a type of CString. Click OK. Your screen should look like Figure 5.7.

Figure 5.7 ClassWizard Member Variables dialog box.

APPLE 1108 - Page 220

Microsoft's Model + 195

Now add the following code to VIEW.CPP. This creates an instance of the CProgIDDlg class and then calls
its DoModal method to display the dialog box. After the user presses OK, the DoModal method returns with
the m_strProgID variable containing the combo box selection. We then use that value to get our CLSID.

II
II View.cpp implementation of the CClientView class

II

II Define INITGUID so that IID_IExpression is defined only once

#define INITGUID

#include "iexp.h"

II To support Unicode conversion in 4.0

#if (_MFC_VER >= 0x400

#include <af'xpriv.h>

#endif

II Include the definition of our new dialog

#include "progdlg.h"

CClientView: :CClientView() CFormView(CClientView: :IDD)

II Create an instance of our new dialog class

CProgIDDlg Dlg;

II Invoke it modally

Dlg.DoModal();

II To support Unicode conversion in 4.0

#if (_MFC_VER >= Ox400

USES_CONVERSION;

hr= : :CLSIDFromProgID(T2COLE(Dlg.m_strProgID), &Clsid);

#else

hr : :CLSIDFromProgID(Dlg.m_strProgID, &Clsid);

#endif

if (FAILED(hr))

AfxMessageBox ("CLSIDFromProgID failed") ;

return;

APPLE 1108 - Page 221

196 CHAPTER 5

We can now use our CLIENT application to connect to either the Chapter 4 or Chapter 5 server example.
Compile, link, and run the application to make sure that you can connect to the Chapter 4 server. You can
try to connect to the Chapter 5 server, but because we haven't built it yet, you'll most likely get an error.

In Chapter 4, our CLIENT application had to initialize the COM libraries before using any COM compo
nents. As we've discussed, ActiveX is the technology that provides most of the application-level functional
ity we need when we're developing software components. Instead of initializing the COM environment,
from now on we will initialize the ActiveX environment. The OLE/ ActiveX API function Oleini tialize

is very similar to Coini tiali ze. Oleini tiali ze initializes not only COM but also the ActiveX libraries.
MFC provides a helper function, AfxOleini t, that checks the version of the ActiveX DLLs and initializes
the environment by calling Oleini tialize. In CLIENT.CPP, we comment out the explicit COM API calls
and use MFC' s AfxOleini t function instead.

II Initialize COM

//HRESULT hr= :

//if { FAILED(hr))

//{

NULL) ;

I I AfxMessageBox("Unable to Initialize COM, exiting") ;

II return FALSE;

I/}

I I Call

if

MFC function instead

0)

"Unable to

return FALSE;

We also terminated the use of the COM environment by calling CoUnini tialize. We no longer need to
worry about this when we use the MFC AfxOleini t function. MFC ensures that the appropriate uninitial
ize functions are called when the application terminates, so we comment out the CoUninitialize call.

int CClientApp: :Exitinstance()

II Shutdown COM

II No need to do this if we use MFC's AfxOleinit()

I I: : Co(Jnini tialfae () ;

return CWinApp: :Exitinstance();

APPLE 1108 - Page 222

Microsoft's

That does it for the client piece. Because we are accessing a COM object with an ActiveX custom interface,
little is required in the client code to use an ActiveX component. Most of the work required is in the imple
mentation of the ActiveX server, be it an in-process server or a local server. Let's convert the server applica
tion from Chapter 4 to use MFC exclusively.

In the next few sections we will convert the Chapter 4 server application. In the process, we will investigate
how MFC implements COM and ActiveX. The first MFC class that we will encmmter is CCmdTarget, which
provides much of the ActiveX functionality we need when dealing with ActiveX interfaces. The second MFC
class that we'll explore is COleObj ectFactory. Aptly named for what it does, COleObj ectFactory

implements COM's IClassFactory interface as well as MFC's implementation of the class factory. MFC
takes care of instantiating our MFC ActiveX objects, so we don't have to write very much code to get class
factory capabilities.

Following is the EXPSVR.H file from the Expression component of Chapter 4.

II

II ExpSvr.h

II

DEFINE_GUID(CLSID_Expression,

OxA988BD40,0x9FlA,OxllCE,Ox8B,Ox9F,Ox10,0x00,0x5A,0xFB,0x7D,Ox30);

DEFINE_GUID(IID_IExpression,

OxA988BD41,0x9FlA,OxllCE,Ox8B,Ox9F,Oxl0,0xOO,Ox5A,0xFB,Ox7D,Ox30);

II implementation class declarations ...

II Token, CStringStack, etc.

class IExpression public IUnknovm {

public:

};

STDMETHOD_(BSTR,GetExpression()) PURE;

STDMETHOD_(void, SetExpression(BSTR, BOOL)) PURE;

STDMETHOD_(BOOL, Validate()) PURE;

STDMETHOD_(long, Evaluate()) PURE;

class Expression public IExpression

protected:

enurn TokenType

APPLE 1108 - Page 223

};

+CHAPTER 5

Bogus Token,

OperatorToken,

OpenParenToken,

CloseParenToken,

NumberToken

protected:

CString

BOOL

m_strExpression;

m_binfix;

protected:

DWORD m_dwRef;

public:

Expression () ;

-Expression();

protected:

BOOL

TokenType

int

BOOL

IsNumber(const CString& strToken) ;

GetTokenType(const CString& strToken);

Precedence(const CString& strToken);

InfixToPostfix();

public:

};

STDMETHOD(Queryinterface(REFIID, void**)) ;

STDMETHOD_(ULONG, AddRef());

STDMETHOD_(ULONG, Release());

STDMETHOD_(BSTR, GetExpression());

STDMETHOD_(void, SetExpression(BSTR, BOOL)) ;

STDMETHOD_(BOOL, Validate());

STDMETHOD_(long, Evaluate());

class ExpClassFactory public IClassFactory

protected:

DWORD m_dwRef;

public:

ExpClassFactory();

-ExpClassFactory();

APPLE 1108 - Page 224

};

Microsoft's

II IUnknown

STDMETHOD(Queryinterface(REFIID, void**));

STDMETHOD_(ULONG, AddRef());

STDMETHOD_(ULONG, Release());

II IClassFactory

STDMETHOD(Createinstance(LPUNKNOWN, REFIID, void**));

STDMETHOD(LockServer(BOOL));

Model + 1

We need to do quite a few things here to convert the interface, the implementation, and the class factory so
that they use MFC's ActiveX classes. You will see that much of our original code is not required when we
use MFC's implementation. Let's go through each line of code and convert it to MFC.

II
II ExpSvr.h

II

//DEFINE_GUID(CLSID_Expression,

IT Ox.l\.988BD40, Ox9F1A, OxllCE, Ox8B, Ox9F, OxlO, OxOO,

Ox5A,0xFB,Ox7D,Ox30);

DEFINE_GUID(IID_IExpression,

OxA988BD41,0x9F1A,Ox11CE,Ox8B,Ox9F,Ox10,0xOO,

Ox5A,OxFB,Ox7D,Ox30);

We comment out the DEFINE_GUID macro that defines our CLSID. We will use MFC's method of defining a
CLSID later when we convert our class factory. The IID_IExpression DEFINE_GUID macro will stay the
same, because we are implementing a custom ActiveX interface and MFC has no knowledge of the IID of the
component.

class !Expression : public IUnknovm

public:

};

STDMETHOD_(BSTR,GetExpression()) PURE;

STDMETHOD_(void, SetExpression(BSTR, BOOL)) PURE;

STDMETHOD_(BOOL, Validate()) PURE;

STDMETHOD_(long, Evaluate()) PURE;

Nothing changes here, either, for the same reasons. This is a custom interface, and the IExpression class
provides the Vtable definition for use by the component user.

The majority of the changes are to the Expression component class. The declaration for the class
changes from this:

APPLE 1108 - Page 225

200 + CHAPTER 5

class Expression public IExpression

to this:

class Expression : public CCmdTarget

This change-deriving from CCmdTarget instead of IExpression-automatically provides significant
functionality for the Expression component class. Let's take a closer look at CCmdTarget.

The CCmdTarget class is a workhorse when it comes to the implementation of ActiveX within MFC. Not
only does it provide a great deal of ActiveX functionality, but it also provides the message mapping mecha
nism we discussed in Chapter 3 and the Automation IDispatch mapping features that we will discuss in
Chapter 6. CCmdTarget provides basic mapping support for MFC in general. What we need to understand
about CCmdTarget for now is how it implements the IUnknown interface and its functions:
Queryinterface, AddRef, and Release.

Following is a partial list of the CCmdTarget class declaration from AFXWIN.H:

class CCmdTarget : public CObject

II ActiveX interface map implementation

public:

II data used when CCmdTarget is made ActiveX aware

DWORD m_dwRef;

LPUNKNOWN m_pOuterUnknown; II external controlling unknown if !=NULL

DWORD m_xinnerUnkno~m; II place-holder for inner controlling unknown

DECLARE_INTERFACE_MAP()

public:

};

II these versions do not delegate to m_pOuterUnknown

DWORD IntemalQueryinterface(const void*, LPVOID* ppvObj);
DWORD InternalAddRef();

DWORD InternalRelease();

II these versions delegate to m_pOuterUnknown

DWORD ExternalQueryinterface(const void*, LPVOID* ppvObj);

DWORD ExternalAddRef();

DWORD ExternalRelease();

II implementation helpers

LPUNKNOWN Getinterface(const void*);

APPLE 1108 - Page 226

Microsoft's 201

There are a few things in CCmdTarget that we recognize; the reference count variable (m_dwRef) and some
methods that look similar to what we need for the IUnknown interface except that they are prefixed with
Internal and External. What's this all about? We'll see in a moment. CCmdTarget supports reference
counting and the IUnknown interfaces using a technique called interface maps. Each class derived from
ccmdTarget inherits this capability, but to use it certain steps must be followed. Did you notice the macro
DECLARE_INTERFACE_MAP? It expands (via the preprocessor) to this:

private: \

static canst AFX_INTERFACEMAP_ENTRY _interfaceEntries[];

protected: \

static AFX_DATA canst AFX_INTERFACEMAP interfaceMap; \

virtual canst AFX_INTERFACEMAP* GetinterfaceMap() canst;

The DECLARE_INTERFACE_MAP macro provides a static array of interface IDs (IIDs) for a given class that is
derived from CCmdTarget. This table is used by Queryinterface to look up the interface asked for in the
REFIID parameter. CCmdTarget itself has a base interfaceMap table that is queried if the derived class
does not provide an implementation. I'm sure this is a little confusing at this point, but we had to start some
where. Back to the Expression class.

class Expression : public CCmdTarget

public:

};

STDMETHOD(Queryinterface(REFIID, void**));

STDMETHOD_(ULONG, AddRef());

STDMETHOD_(ULONG, Release());

STDMETHOD_(BSTR, GetExpression());

STDMETHOD_(void, SetExpression(BSTR, BOOL)) ;

STDMETHOD_(BOOL, Validate());

STDMETHOD_(long, Evaluate());

To provide an interface map for the Expression class, we need to use DECLARE_INTERFACE_MAP so that
we have an interface table that contains our IUnknown and IExpression interfaces. Because every inter
face must also contain an IUnknown interface, MFC provides some easy-to-use macros for declaring inter
faces. These macros use the C++ nested class idiom that we described in the Chapter 4. The preceding inter
face declaration becomes:

BSTR, BOOL) l ;

STDMETHOD_(BOOL, Validate());

APPLE 1108 - Page 227

202 • CHAPTER 5

STDMETHOD_(long, Evaluate());

END_INTERFACE_PART(Expression)

This code declares a nested class with the name XExpression and provides the declaration for the three
methods of IUnknown. Here we derive from our IExpression interface class to ensure that our Vtable is
present in the nested class. MFC's macros tend to obscure my understanding at times, so I've "pre
processed" them for you. Here's what's really going on:

#define BEGIN_INTERFACE_PART(localClass, baseClass)

class X##localClass : public baseClass \

{ \

public: \

S'I'DMETHOD_ (ULONG, AddRef) () ;

STDMETHOD_(ULONG, Release)(); \

S'I'DMETHOD (Queryinterface) (REFIID iid, LPVOID* ppvObj); \

BEGIN_INTERFACE_PART declares the nested class and provides the declaration for the IUnknown mem
bers. It also builds the nested class name by prepending an x to the outer class name. In this case, it becomes
XExpression.

Then you declare your own interface methods using the standard COM STDMETHOD_ macro as before:

S'I'Dl1ETHOD_ (BSTR, GetExpression ());

STDMETHOD_(void, SetExpression(BSTR, BOOL));

STDMETHOD_(BOOL, Validate());

STDMETHOD_(long, Evaluate());

#define END_IN'I'ERFACE_PART (localClass)

} m_x##localClass; \

friend class X##localClass;

Once all the interface methods are declared, you use the MFC macro END_INTERFACE_PART (
localClass) to end the class declaration, nest an instance of the class, and finally make the nested class a
friend of the parent class, just as we did in Chapter 4 when implementing multiple COM interfaces. MFC
always uses class nesting even if there is only one interface (not counting IUnknown). Following is declara
tion before and after preprocessing:

II Before

BEGIN_INTERFACE_PART(Expression, IExpression

S'l'DMETHOD_ (BSTR, GetExpression ());

STDMETHOD_(void, SetExpression(BSTR, BOOL));

STDMETHOD_(BOOL, Validate());

STDMETHOD_(long, Evaluate());

END_INTERFACE_PART(Expression

II After preprocessing

APPLE 1108 - Page 228

Microsoft's

class XExpression public IExpression

STDMETHOD_(ULONG, AddRef) ();

STDMETHOD_(ULONG, Release)();

STDMETHOD(Queryinterface) (REFIID iid, LPVOID* ppvObj);

STDMETHOD_(BSTR, GetExpression());

STDMETHOD_(void, SetExpression(BSTR, BOOL)) ;

STDMETHOD_(BOOL, Validate());

STDMETHOD_(long, Evaluate());

m_xExpression;

friend class XExpression;

Model + 203

There you have it. We have declared our new MFC-compatible COM interface. The declaration for the
IUnknown methods comes from our earlier, unchanged declaration of !Expression. We're not quite fin
ished with the Expression class. As we will see, CCmdTarget takes care of our reference counting, so we
can remove the member variable that was responsible for that.

class Expression : public CCmdTarget

protected:

II Remove the reference count variable

I IDWORD m_dwRef;

);

We've almost completed the conversion of the Expression class declaration to MFC. Now let's look at the
implementation.

In EXPSVR.H we declared an interface map using DECLARE_INTERFACE_MAP. This macro declared
interfaceMap and InterfaceEntries, two static member variables of Expression. Because these
variables were declared static, they must be initialized at compile time. We do this in EXPSVR.CPP:

II ExpSvr.cpp

BEGIN_INTERFACE_l1AP(Expression, CCmdTarget)

INTERFACE_PART(Expression, IID_IExpression, Expression)

END_INTERFACE_MAP ()

That's all there is to it. The BEGIN_INTERFACE_MAP macro defines the GetinterfaceMap member func
tion and begins the table entry for our interface map. BEGIN_IN'rERFACE_MAP also defines our
interfaceMap member, which points to CCmdTarget (the parent class) and to Expression (the derived

APPLE 1108 - Page 229

204 + CHAPTER 5

class). This makes it easy to search through the derivation hierarchy looking for a particular COM interface
when a client uses the Queryinterface function.

#define BEGIN_INTERFACE_MAP(theClass, theBase) \

const AFX_INTERFACEMAP* theClass::GetinterfaceMap() const \

{ return &theClass: :interfaceMap; } \

const AFX_DATADEF AFX_INTERFACEMAP theClass: :interfaceMap = \
{ &theBase: :interfaceMap, &theClass: :_interfaceEntries[O], }; \

const AFX_DATADEF AFX_INTERFACEMAP_ENTRY theClass: :_interfaceEntries[] \

{\

Each INTERFACE_PART macro defines one COM interface entry in our map. The offsetof macro is used
to directly access the address of the Vtable of the nested class instance, m_xExpression, within
Expression.

#define INTERFACE_PART(theClass, iid, localClass)

{ &iid, offsetof(theClass, m_x##localClass) },

Finally, the END_INTERFACE_MAP macro terminates the interface map with an identifiable signature.

#define END_INTERFACE_MAP()

{ NULL, (size_t) -1 } \

} ; \

After preprocessor expansion, we get the following:

const AFX_INTERFACEMAP* Expression: :GetinterfaceMap() const

{ return &Expression: :interfaceMap; }

const AFX_DATADEF AFX_INTERFACEMAP Expression: :interfaceMap

{ &CCmdTarget: :interfaceMap, &Expression: :_interfaceEntries[O], };

const AFX_DATADEF AFX_INTERFACEMAP_ENTRY Expression: :_interfaceEntries[]

};

&IID_IExpression, offsetof(Expression, m_xExpression) },

NULL, (size_t) - 1 }

For debugging purposes it's nice to go ahead and preprocess the code by hand so that you can step through
it much more easily. In the example programs for this chapter, I've provided the preprocessed output and
have commented out the MFC macro. This makes debugging much more understandable. But once you
understand what's going on, you need to use the macros provided by MFC, because their implementation
may change with newer versions of the libraries.

Figure 5.8 illustrates what the INTERFACE_MAP macros have created for our Expression class.

APPLE 1108 - Page 230

Microsoft's Model -+- 205

Pointer to parent class in the
hierarchy. This allows

Expression Class inheritance of COM-based
interfaces but not the ability to
change their implementations.

Expression members ...

I ' interfaceMap &CCmdTarget::interfaceMap
v

- interfaceEntries &Expression::interfaceEntries

Expression members ...
llD_Expression contains an
!Unknown interface, so it
isn't necessary to explicitly

~7
provide one.

!ID _Expression I

NULL

Figure 5.8 Interface maps.

To get a sense of how this works, let's look at CCmdTarget's implementation of Queryinterface. The fol
lowing code provides the gist of CCmdTarget's implementation. (Some of the details have been left out to
protect the innocent.) As you will see in the next section, your class will implement the true
Queryinterface method, but it will defer to one of CCmdTarget's InternalQueryinterface or
ExternalQueryinterface methods:

II The Queryinterface that is exported to normal clients

II This is the method we will use when implementing our

II our Queryinterface

DWORD CCmdTarget: :ExternalQueryinterface(const void* iid, LPVOID* ppvObj)

II delegate to controlling unknown if aggregated

if (m_pOuterUnknown != NULL)

return m_pOuterUnknown->Queryinterface(*(IID*)iid, ppvObj);

II If we're not part of an aggregate, call the

II InternalQueryinterface method below

return InternalQueryinterface(iid, ppvObj);

II real implementation of Queryinterface

DWORD CCmdTarget::InternalQueryinterface(const void* iid, LPVOID* ppvObj)

II check local interfaces. If the IID is found

APPLE 1108 - Page 231

206 +CHAPTER 5

II assign it to the provided void** pointer

if ((*ppvObj = Getinterface(iid)) != NULL)

II interface was found - add a reference

ExternalAddRef();

return NOERROR;

II interface ID not found, fail the call

return (DWORD)E_NOINTERFACE;

II This function spins through the InterfaceEntries of all of the classes

II derived from CCmdTarget looking for the requested interface.

LPUNKNOWN CCmdTarget: :Getinterface(const void* iid)

II Get the InterfaceMap of the most derived class

II GetinterfaceMap was implemented by the BEGIN_INTERFACE_MAP macro

const AFX_INTERFACEMAP* pMap = GetinterfaceMap();

II Walk the interface map to find the IID

do

II Walk through each interface entry for the class

const AFX_INTERFACEMAP_ENTRY* pEntry = pMap->pEntry;

while (pEntry->piid !=NULL)

if (*(IID*)pEntry->piid * (IID*) iid)

II check INTERFACE_ENTRY macro

LPUNKNOWN lpUnk = GetinterfacePtr(this, pEntry);

II check vtable pointer (can be NULL)

if (*(DWORD*)lpUnk != 0)

return lpUnk;

II entry did not match keep looking

++pEntry;

APPLE 1108 - Page 232

Microsoft's

II While there are more entries in the map

II This walks "backwards" in the map from the most derived

II class up the hierarchy eventually to CCmdTarget itself.

} while ((pMap = pMap->pBaseMap) !=NULL);

II interface ID not found, fail the call

return NULL;

Model + 207

Let's look into the implementation of each method of Expression. Following are the default constructor
and destructor for Expression. Only a default constructor is supplied, because MFC will dynamically cre
ate an instance of Expression whenever IClassFactory: : Createinstance is called. We'll discuss
IClassFactory in a moment. CCmdTarget provides the AfxOleLockApp and AfxOleUnlockApp nmc
tions, which are similar to the IClassFactory: : LockServer method. Microsoft recommends that you
call AfxOleLockApp in the constructor, and AfxOleUnlockApp in the destructor, of a COM component
class. The CCmdTarget method OnFinalRelease is called when the reference count of an object reaches
zero. The default implementation in CCmdTarget calls delete this to destroy the object.

Expression: :Expression()

II Increment the active object count

AfxOleLockApp(};

m_binFix = TRUE

Expression::-Expression()

II decrement the active object count

AfxOleUnlockApp{);

The BEGIN_INTERFACE_PART macro created a nested class named XExpression and declared the
IUnknown members, so let's implement them:

Expression::XExpression: :AddRef(}

Expression, Expression

return pThis->ExternalAddRef();

Expression::XExpression::Release()

F!ETHOD_PROLOGUE(Expression, Expression

return pThis->ExternalRelease();

APPLE 1108 - Page 233

208 -+ CHAPTER 5

STDMETHODIMP. Expression: :XExpression: :Queryinterface(REFIID iid, LPVOID far *pvvObj)

METHOD,...PROLOGUE (. Expression, Expression)

return (HRESULT) pThis->Externo,lQueryinterface(&iid, pvvObj);

J

This code should look familiar. In Chapter 4, we discussed the use of nested classes. The METHOD_PRO
LOGUE macro uses the offsetof macro to calculate the this pointer of the nesting class. In Chapter 4 we
delegated the IUnk.nown methods to the nesting class just as we are doing here, but now we're delegating to
CCmdTarget's External functions. CCmdTarget provides two implementations of each IUnknown
method: an internal and an external function. These differences concern the support of component aggrega
tion. In most cases, it's beneficial to provide aggregation ability-it doesn't cost much-so you should use
the External methods provided by CCmdTarget.

We also need to change the implementation of our exposed interface methods. Some of the implementa
tion of the expression functionality is in the outer, or nesting class, but the interface is provided via the
nested class. So we have to scope down using multiple scope resolution operators when implementing the
methods, just as we did above with the IUnknown interface. We also need to use the METHOD_PRO
LOGUE macro to access the implementation members in the nesting Expression class. Here are the changes
for our four IExpression interface methods:

METHOD_PROLOGUE

II To support Unicode conversion in 4.0 and above

#if (_MFC_VER >= Ox400)

USES_CONVERSION;

return : :SysAllocString(T2COLE(pThis->m:_strExpression)) ;

#else

return : : SysAllocString (pThi:;-?.ro_strExpresSion) ;

#endif

STDMETHODIMP_(void) Expression: :XExpression:: SetExpression(BS.TR bstrEA"P 1 BOOL binfix)

APPLE 1108 - Page 234

Microsoft's

II Tokenize our expression

tokenizer.Tokenize();

II Check for validity

while(tokenizer.GetToken(strToken))

);

pThis->GetTokenType(strToken))

.(

pThis->InfixToPostfix();

tokenizer.Tokenize();

II While there are tokens to process

while(tokenizer.GetToken(strToken)

pThis:..>GetTokenType(

: Evaluate()

) ;

))

Model +

APPLE 1108 - Page 235

210 +CHAPTER 5

By deriving from CCmdTarget, we no longer need to keep track of our reference counts inside the imple
menting class. We also no longer need to keep track of a controlling unknown for aggregation. Now let's
tum our attention to the class factory, ExpClassFactory.

As you may recall from Chapter 4, each COM object requires the services of a class factory (which itself is a
COM object). This arrangement allows client applications to create instances of your COM object. Client
applications gain access to the class factory by using the function CoGetClassObject, which uses one of
two methods. If the component object is housed within an in-process server, CoGetClassObject calls the
DllGetClassObj ect entry point within the DLL. If the component object is housed in a local server, COM
queries the active object table to determine whether the component's class factory is already running and
therefore registered. If it is, COM returns the class factory, and so on. The important thing is that the class
factories for a given housing, be it in-process or executable, are always available for a client process to access.

In our Chapter 4 server example, we provided a C++ class, ExpClassFactory, that implemented the
Createinstance function of IClassFactory that created instances of our Expression class. Here's the
declaration from EXPSVR.H:

II Expsvr.h

class ExpClassFactory public IClassFactory

protected:

DWORD m_dwRef;

public:

};

ExpClassFactory();

-ExpClassFactory();

11 IUnknovm

STDMETHODIMP Queryinterface(REFIID, void**) ;

STDMETHODIMP_(ULONG) AddRef();

STDMETHODIMP_(ULONG) Release();

II IClassFactory

STDMETHODIMP

STDMETHODIMP

Createinstance(LPUNKNOWN, REFIID, void**);

LockServer(BOOL);

MFC implements the class factory for a component by adding a static class member for each component
class in your server application. This static member is an instance of the MFC class COleObj ectFactory.

Adding a class factory to your component is easy; you just use a few MFC macros. When you're using MFC,
it isn't necessary to explicitly declare and implement a separate class factory class for each of your compo
nents as we did in Chapter 4. Let's look at COleObj ectFactory in more detail.

APPLE 1108 - Page 236

Model + 211

coleObjectFactory implements each component's class factory, provides facilities to register each class
factory with COM, and provides a mechanism for programmatically updating the system Registry (so that
you don't have to distribute a .REG file with your component).

As we discussed earlier, MFC implements its COM/ ActiveX interface classes by deriving from
ccmdTarget. Such is the case with the COleObj ectFactory class. Its declaration goes something like this:

class COleObjectFactory : public CCmdTarget

DECLARE_DYN!\MIC(COleObjectFactory)

public:

COleObjectFactory* m_pNextFactory; II list of factories maintained

protected:

DWORD m_dwRegister;

CLSID m_clsid;

II registry identifier

II registered class ID

CRuntimeClass* m_pRuntimeClass; II runtime class of CCmdTarget derivative

BOOL m_bMultiinstance;

LPCTSTR m_lpszProgID;

II multiple instance?

II human readable class ID

II Interface Maps

public:

};

BEGIN_INTERFACE_PART(ClassFactory, IClassFactory)

INIT_INTERFACE_PART(COleObjectFactory, ClassFactory)

STDMETHOD(Createinstance) (LPUNKNO~JN, REFIID, LPVOID*);

STD!1ETHOD(LockServer) (BOOL);

END_INTERFACE_PART(ClassFactory)

DECLARE_INTERFACE_MAP ()

The MFC COleObj ectFactory provides a great deal of functionality for the developer. One purpose of
COleObj ectFactory is to maintain a list of all the COM component classes within a given component
housing (EXE or DLL). We'll get to some of the details in a minute. For now let's focus on those aspects of
COleObj ectFactory that are important to our conversion of the SERVER example.

The COleObj ectFactory constructor takes four arguments. Each argument is described in Table 5.1.

APPLE 1108 - Page 237

212 +CHAPTER 5

Table 5.1 COleObjectFactory Parameters

Parameter Description

REFCLSID riid A reference to the CLSID for the component that this class factory will support.

CRuntimeClass * pRuntimeClass A pointer to the run-time class. This provides the class factory with the ability to

dynamically create instances of the associated component class.

BOOL bMultiinstance This Rag indicates whether the component class supports multiple instances within

the same housing. If it is FALSE, which is the MFC default, the housing supports

multiple instances. If this Rag is TRUE, multiple instances of the housing will be

launched for each new instance of a component class.

LPCSTR lpszProgID The ProglD for the component class. The ProglD is a readable string that makes it

easier for client applications to create instances of the component object.

You won't use the COleObjectFactory constructor directly, because it is implemented by the IMPLE
MENT_OLECREATE () macro, which is used to provide a class factory within your component class.

MFC provides a global class factory in that all the COM objects within a housing use the same method
to expose their IClassFactory interface to client applications. This is done by using a set of (guess what?)
MFC macros. So, for starters, we need to remove the ExpClassFactory declaration in EXPSVR.H and the
implementation in EXPSVR.CPP. In its place we'll add the following code to the Expression class declara
tion in EXPSVR.H:

class Expression public CCmdTarget

(Expression)

};

II macro definitions from AFX.H

#define DECLARE_DYNCREATE(class_name)

DECLARE_DYNAMIC(class_name) \

static CObject* PASCAL CreateObject();

#define DECLARE_DYNAMIC(class_name) \

public: \

static AFX_DATA CRuntimeClass class##class_name;

virtual CRuntimeClass* GetRuntimeClass() const; \

The DECLARE_DYNCREATE (classname) macro provides MFC with a way to dynamically create classes
whenever required during the execution of your application. The macro also includes the
DECLARE_DYNAMIC (classname) macro. This macro also provides certain dynamic capabilities that all
classes derived from CObj ect inherit. In particular it provides a nonstandard run-time type information
(RTTI) capability within MFC.

APPLE 1108 - Page 238

Microsoft's Model + 213

N 0 T E

What is RTII? It's a new addition to the proposed C++ standard that allows C++ developers to eas
ily determine the type of an object at run time. For example, all MFC classes that derived from
CObj ect and include DECLARE_DYNAMIC () can use the IsKindof function of cobj ect. This allows
a developer to determine at run time the identity of a class instance. For example, dynamic classes
derived from CObject can do something like this:

Expression* pExp = new Expression;

II At run time check the explicit type of the class

if (pExp->IsKindOf(RUNTIME_CLASS(Expression)))

II do something

The preferred and object-oriented method would be to use the polymorphism capabilities of C++ so
that explicit checking isn't required. That's why RTII is debatable. RTII is currently part of the draft
C++ standard. It is expected to be approved and is currently implemented in most commercial compil
ers, including Visual C++.

After we ensure that a class instance can be created by MFC, we need to declare a class factory for our com
ponent. We use the DECLARE_OLECREATE (classname) macro, adding the declaration after
DECLARE_DYNCREATE () in EXPSVR.H.

II Expsvr.h

class Expression : public CCmdTarget

DECLARE_DYNCREATE(Expression

Expression

};

II macro definition from AFXDISP.H

#define DECLARE_OLECREATE(class_name)

protected: \

static AFX_DATA COleObjectFactory factory;

static AFX_DATA canst GUID AFX_CDECL guid;

The DECLARE_OLECREATE macro declares two static members within the Expression class: a
COleObj ectFactory variable (factory) and a GUID variable called (appropriately) guid. Because these
variables are declared static, there is only one instance and they exist outside the scope of any particular
Expression instance.

That completes the modifications to EXPSVR.H. We now need to define the static variables within
EXPSVR.CPP.

APPLE 1108 - Page 239

21 -+- CHAPTER 5

As you're probably beginning to realize, MFC uses various macros to declare static members of your
classes. You use the DECLARE macros in the declaration of your class in the .H file, and you must also define
or initialize the members using MFC's IMPLEMENT macros in your .CPP file.

II Expsvr.cpp

#include "stdafx.h"

#include "expsvr.h"

IMPLEMENT_DYNCREATE(Expression, CC.rndTarget

II macro definition from AFXDISP.H

#define IMPLEMENT_DYNCREATE(class_name, base_class_name)

void PASCAL class_name: :Construct(void* p) \

{ new(p) class_name; } \

_IMPLEMENT_RUNTIMECLASS(class_name, base_class_name, OxFFFF, \

class_name: :Construct)

The IMPLEMENT_DYNCREATE (class, baseclass) macro initializes the run-time class information
needed for dynamic construction. You can see how the Construct method is implemented in the macro
expansion using the new operator. Next, we initialize our COleObj ectFactory variable. Here's the use of
the COleObj ectFactory constructor:

#define IMPLEMENT_OLECREATE(class_name, external_name, l, wl, w2, \

bl, b2, b3, b4, b5, b6, b7, b8) \

AFX_DATADEF COleObjectFactory class_name: :factory(class_name: :guid,

RUNTIME_CLASS(class_name), FALSE, _T(external_name));

const AFX_DATADEF GUID AFX_CDECL class_name: :guid = \
{ 1, wl, w2, {bl, b2, b3, b4, b5, b6, b7, b8 } }; \

The IMPLEMENT_OLECREATE macro takes three parameters. The first one is the class name Expression.
This identifies the class whose class factory object we're going to initialize. The second parameter is the
ProgID for the class. You remember ProgIDs. They provide a readable identifier for accessing the CLSID of a
component object. The third parameter is the CLSID broken up into 11 long, word, and byte chunks. I've
changed the CLSID slightly from t11e one that we used in Chapter 4, so we can have distinct Chapter 4 and
Chapter 5 versions of the Expression component and our client application can access either one. The first
parameter of the GUID assignment is now OxA988BD42 instead of the OxA988BD40 in Chapter 4.

II Expsvr.cpp

IMPLEMENT_OLECREATE(Expression, "Chap5.ExPression.1", 0xA988BD42,

Ox9FlA,Ox11CE,Ox8B,Ox9F,Ox10,0xOO,Ox5A,OxFB,Ox7D,Ox30

llAFX_DATADEF COleObjectFactory Expression::factory(Expression: :guid,

II

II

RUNTIME_CLASS(Expression) ,

FALSE,

APPLE 1108 - Page 240

Microsoft's Model + 215

II _T("Chap5.Expression.1")) ;

//const AFX_DATADEF GUID AFX_CDECL Expression: :guid = { OxA988BD42, Ox9FlA, //OxllCE, Ox8B, Ox9F,
OxlO, OxOO, Ox5A, OxFB, Ox7D, Ox30 };

COleObjedFadory::Register
The Register method registers a particular class factory with the COM environment so that client applica
tions can access it. Register calls the COM API function CoRegisterClassObject for local-server
implementations. Run-time registration isn't necessary for in-proc servers, but MFC still requires a call to the
Register function; it sets an internal variable, m_dwRegister, that indicates the factory is registered. This
requirement also provides consistency, from the developer's viewpoint, between local-server and in-process
implementations (you always call it).

COleObiedFadory::RegisterAH
The RegisterAll method is similar to the Register function except that it registers all known class facto
ries within an MFC application. Again, this is required for both local-server and in-process server implemen
tations. RegisterAll should be called as soon as possible after an application is launched, usually in the
Ini tinstance method of your CWinApp-derived application class.

To do this in our converted server application, we add a call to RegisterAll in our Initinstance.
In Chapter 4, we didn't need to do anything during startup, so we didn't override Ini tins tance, but we
need to now. To do that, go into ClassWizard (Ctrl-W), select the Message Map tab, and double-click on the
Initlnstance Message to add the function to the CServerApp class. Then add the following highlighted
code:

II
II server.cpp Defines the initialization routines for the DLL.

II

#include "stdafx.h"

#include "server.h"

BOOL CServerApp: :Initinstance()

II TODO: Add your specialized code here and/or call the base class

COleObjectFactory::RegisterAll();

return CWinApp: :Initinstance();

APPLE 1108 - Page 241

Now when our server is initially loaded, all its contained class factories will be registered with COM. In the
case of an in-process server, this call initializes MFC's internal variables, because it does not need to directly
register with COM.

Local servers that register their class factories with the COM environment are required to Revoke them as
the application terminates. MFC handles this automatically for your application by calling RevokeAll,

which in turn calls Revoke for each class factory that is registered. For in-process servers, this method does
nothing.

UpdateRegistry All
The Register and Revoke methods involve the dynamic updating of the COM running object table.
UpdateRegistry and UpdateRegistryAll allow your application to easily update the Windows
Registry. By using these functions, you don't need to build .REG files to distribute with your applications.
MFC makes it easy to populate the Registry with all the pertinent component information. Depending on
your component housing, you must use different teclmiques of performing this automatic updating. Local
servers should call UpdateRegistryAll whenever they are executed. In-process servers must export the
function DllRegisterServer. Let's update our server to use this new capability. Our Chapter 4 server
required the use of a .REG file to register our CLSID and ProgID in the Windows R13gistry. If we implement
and export the function DllRegisterServer and call UpdateRegistryAll, the component registration
can be handled by a standard utility such as REGSVR32.EXE. Here's tl1e implementation that we add to
SERVER.CPP, and the new export for the .DEF file:

II Add this to SERVER.CPP

II by exporting DllRegisterServer, you can use regsvr32.exe

STDAPI DllRegisterServer(void)

COleObjectFactory: :UpdateRegistryAll();

return (S_OK) ;

Server.def : Declares the module parameters for the DLL.

LIBRARY "SERVER"

DESCRIPTION 'SERVER Windows Dynamic Link Library'

EXPORTS

Explicit exports can go here

DllGetClassObject @2

DllCanUnloadNow @3

DllRegisterServer @4

APPLE 1108 - Page 242

Microsoft's Model + 217

If your application is an in-process server, you can use REGSVR32.EXE like this:

c:>regsvr32 server.dll

REGSVR32.EXE is a simple application (supplied with VC++ and the ActiveX SDK) that calls the DLL's
DllRegisterServer entry point. The DLL does the work of registering itself in the Registry. You can also
register your new server by using the Visual C++ Tools/Register Control menu item. The preceding com
mand calls REGSVR32 with the project's DLL as a parameter. It's a quick way to register in-process servers.
As you'll see in a later chapter, ActiveX controls are really just in-process servers with a number of standard
interfaces.

REGSVR32 isn't a very complicated program. If you're having problems registering a component
housed within a DLL and you want to really understand what REGSVR32 is doing, here's some code
that may help.

N 0 T E

II
II RegisterServer takes as a parameter the

II explicit path and filename of the OLE

II server that you want to register.

II E.g., c:\winnt\system32\clock.ocx

II This function loads the DLLIOCX and calls

II the DllRegisterServer function.

II
DWORD RegisterServer(char* szPath

HINSTANCE hinstance : : LoadLibrary (szPath) ;

if (0 == hinstance

return : :GetLastError();

typedef void (FAR PASCAL *REGSERVER) (void);

REGSERVER RegServer = (REGSERVER)

: : GetProcAddress (hinstance, _T ("DllRegisterServer")) ;

if (0 == RegServer)

return : :GetLastError();

RegServer();

: :FreeLibrary(hinstance);

APPLE 1108 - Page 243

218 •CHAPTER 5

return O;

If a server application is implemented as a local server, COM standards recommend that the local server
update the Registry every time the application is run. This is easy to do using MFC. You would do some
thing like the following. (MFC will add this function automatically when building a local server that has
COM support, but we're doing it the hard way right now.)

BOOL CMFCApp::Initinstance()

II When a server application is launched stand-alone, it is a good idea

II to update the system registry in case it has been damaged.

COleObjectFactory::UpdateRegistryAll();

We'll discuss this in more detail in Chapter 6 when we build a local-server application that uses
Automation.

MFC has certain "helper" functions that aren't members of any class but provide COM-specific functionality
for your application's use. We need to use two of these functions to complete our server application.

AfxDllGetClassObj ect provides the implementation of COM's DllGetClassObj ect function.
MFC internally maintains a pointer to a list of all class factories in your application. As we saw earlier,
COleObj ectFactory contains a member variable, m_pNextFactory, that implements a linked list of
your COleObj ectFactory instances. MFC maintains a pointer to the beginning of this list.
AfxDllGetClassObj ect searches this list for the requested CLSID, creates an instance of the internal class
factory, and returns a pointer to the requested Interface ID (IID), just as we did in Chapter 4. We need to
change our implementation of DllGetClassObj ect in SERVER.CPP as follows:

II
II Server.cpp

II

STDAPI DllGetClassObject(REFCLSID rclsid, REFIID riid, void** ppv)

I /HRESULT hr;

//ExpClassFactory *pCF;

II pCF = O;

//if (rclsid != CLSID_Expression

II return(E_FAIL) ;

APPLE 1108 - Page 244

Microsoft's

//pExpression =new ExpClassFactory();

//if (pCF ==NULL)

II return(E_OUTOFMEMORY);

//hr= pCF->Queryinterface(riid, ppv);

//if (FAILED(hr))

II delete pExpression

//return(hr);

II Let MFC do the work

return AfxDllGetClassObject(rclsid, riid, ppv);

Model + 219

AfxDllCanUnloadNow is the other MFC helper fw1ction that we need to use in our application. Because we
now let MFC keep track of the reference counts on our component objects, we don't have the knowledge to
implement the COM DllCanUnloadNow function. So we need to change our implementation of
DllCanUnloadNow in SERVER.CPP.

STDAPI DllCanUnloadNow(void)

//if (g_dwObjs I I g_dwLocks

II return(S_FALSE);

//else

II return(S_OK);

II Let MFC do the work

return AfxDllCanUnloadNow();

After making all the changes to the server, build it and test it using the client application we developed ear
lier in the chapter. You should be able to access both the Chapter 4 and Chapter 5 server programs.

We've been working with our heads down in this chapter, and I think we need an overview of what we've
done. First, we added a modal dialog box to our Chapter 4 client application that lets us choose a specific
ProgID on startup. We then removed the COM initialization functions and replaced them with a call to
MFC's AfxOleini t function. The rest of the COM/ ActiveX code we left alone, because there wasn't a
direct MFC replacement.

The server application required more changes. We first derived our component class, Expression,
from CCmdTarget instead of IExpression. In the process, we learned quite a bit about the mother of all
ActiveX classes in MFC: CCmdTarget. It provides the IUnknown interface plus an interface mapping mech-

APPLE 1108 - Page 245

220 + CHAPTER 5

anism that makes it easy to provide Queryinterface. CCmdTarget uses nested classes and encapsulates
the reference counting of our components classes, so we don't have to.

Next, we explored the MFC COleObj ectFactory class and how it provides class factories for our
component classes. COleObj ectFactory automatically keeps track of all the class factories and provides a
function, AfxDllGetClassObject, to use to expose them to client processes. COleObjectFactory pro
vides other features, including the ability to automatically update the Registry with a component's .REG
information. Throughout this discussion, we learned a great deal about how MFC provides COM/ ActiveX
support.

In this chapter, we have looked at how the MFC libraries implement COM and ActiveX support. In particu
lar, we looked at various MFC helper functions-AfxOleinit, AfxDllGetClassObject,
AfxDllCanUnloadNow, and so on-that make implementing ActiveX applications easier. We also investi
gated two important MFC classes that provide COM functionality: COleObj ectFactory and
CCmdTarget. In doing so we converted our client and server examples to use MFC's COM support. From
this point on, we will use MFC to develop all of our software components.

These first five chapter have provided a solid base for building ActiveX software using the MFC
libraries. In the next chapter, we'll use Automation. Automation and MFC make it very easy to wrap exist
ing C++ functionality so that it can be accessed by various other languages.

APPLE 1108 - Page 246

6

Auto • at1on

Now it's time to start using this wonderful technology called ActiveX. In this chapter, we'll iI).vestigate
Automation, an ActiveX technology that is a boon for developers. Automation makes it easy to wrap exist
ing software modules for use outside C and C++ and provides a powerful mechanism to expose an applica
tion's functionality to programmatic users. This makes the application an ActiveX component.

Is
Automation is many things, but it provides two broad techniques that we will explore in this chapter. The
first one, which we've been working toward since the first chapter, is the ability to wrap C++ classes and
expose their functionality to other, non-C++ language users. This feature alone provides a significant new
ability in the development of Windows software.

We will also explore the other technique: using Automation to drive another application or process.
This was one of Microsoft's original uses for automation, and it makes it easy to build a generic macro lan
guage that will work with many different application products. Microsoft's Visual Basic for Applications is
an example of using automation for this purpose.

The ability to expose an application's functionality in a standard way makes an application a software
component. If you need the services of a good word processor in your application, you can purchase a word
processor that exposes its capabilities via Automation and use it within your application. Microsoft Word,
Microsoft Project, and Internet Explorer provide access to nearly all their capabilities through automation.

Automation is one of the most important technologies in ActiveX. It allows for a truly dynamic method
whereby two applications can interoperate. In our previous examples, the user or client application had to
know just a little about the Expression component-namely, the declaration of the IExpression inter
face.

221

APPLE 1108 - Page 247

222 + CHAPTER 6

Automation removes this last constraint and provides dynamic determination and invocation of a com
ponent's interface methods. Automation provides a true late-binding mechanism not only within a single lan
guage but also between languages and between local or remote processes. This late-binding mechanism is
implemented by adding a level of indirection to a component's Vtable pointer implementation. I promised
that in these later chapters we wouldn't spend as much time covering the low-level details, and I'm going to
keep my promise, but occasionally we will drop down to investigate how MFC implements various features.

In earlier chapters we described the user of a component as the client. Clients that use and interact with
Automation components are called automation controllers. This term implies that the client is controlling the
component, and in many ways this is correct. Before the specification for ActiveX controls was complete,
Automation using the IDispatch interface allowed only one-way interaction between client and server
applications. This one-way communication constraint explains the use of the term controller.

The ActiveX controls specification added the concept (and implementation) of an "outgoing" interface
where events that occur within a component can be communicated to the controlling component. In this
realm, the concept of who is controlling the interaction blurs, as both components communicate as equals.
With the addition of ActiveX events, the relationship between controller and server becomes peer-to-peer
instead of the earlier master-slave.

In this chapter, we will use the master-slave type of automation. We will use the IDispatch interface
to build an application that also contains our Expression component class. Atfirst the idea of one-way
interoperation may seem constrictive, but in reality that is how we typically develop programs. A normal
function call in C++ is synchronous and occurs with one-way communication. You call the function, and
your program waits until it returns. The only communication coming back is the value of the return code
and any parameters that were passed by reference.

AC++ example of two-way communication is the use of a callback Function, which allows an event to
be communicated "out of band" of the normal flow of your application. A callback function takes as a para
meter a pointer to a function that you write. As the function executes, it "calls back" into your function with
specific information. This arrangement also provides a notification mechanism. A simple example of a call
back is the C run-time function qsort. For the typical use of an IDispatch interface, when only one
process is in control of the interaction, the term controller describes the use of the interface quite effectively.

The archetypal Automation controller is Visual Basic, which provides a robust controller environment.
Visual Basic isn't the only controller available, nor is its use required. The MFC libraries make it easy to
develop an application that acts as a controller and drives other applications, although MFC doesn't cur
rently provide the dynamic invocation capabilities of Visual Basic unless you write the code yourself. We'll
take a look at what is required in all these circumstances.

N 0 T E

Actually, the event mechanism is implemented using a reverse (or incoming) dispatch interface.
However, I don't want to add too much complexity here as we begin discussing the !Dispatch

interface. We will explore the concept of an ActiveX event in later chapters.

APPLE 1108 - Page 248

Automation -+-

The Expression class is an example of a nonvisual component. The services it provides have little to do
with any GUI aspect of an application. We've been using its capabilities within a Windows entry field, but
that need not be the case. The class could be used internally by any number of applications that need the
ability to parse and evaluate algebraic expressions. Nonvisual components are usually best implemented as
Automation servers. Visual components are probably best implemented as ActiveX controls. There are
exceptions, of course, but this is a good general rule to follow.

I
Automation is based on an ActiveX interface called IDispatch, which provides the ability to dynamically
invoke methods on a component within a server. This arrangement differs slightly from the earlier COM custom
interface technique of our Expression component. When you're using custom interface implementations, the
client application requires the IExpression declaration to use the component. The IExpression declaration
(its Vtable structure) is used at compile time to define the Vtable structure of the Expression interface. This
implements early binding of the component's interface. If a new method is added to IExpression, the client
application must be recompiled to use the new capability.

A server component that implements its methods using IDispatch instead of using a custom interface
provides a number of additional capabilities. By using IDispatch, the interaction between the client and
server applications uses late binding of the component's interface methods. The client doesn't require com
pile-time declarations of the server's component interface. This makes it easy for a server component to
change its interface (even at run time!) without requiring the client application to be recompiled or relinked.
Of course, any changes to the interface methods should be communicated to the client application so that it
can take advantage of the new features. To understand how IDispatch provides language-independent
late binding, we need to look at its implementation.

Another significant feature added by using IDispatch is that of standard marshaling. The default
Windows COM implementation contains a number of data types that can be used by components that use
IDispatch. Intrinsic support for these data types makes it easy to build components that work across local
and remote processes.

Most COM interfaces are like the IExpression example. They provide a structure that requires a rigid
implementation of an abstract class. COM defines the abstract class (interface), but the application developer
must provide a unique implementation of that abstract class. IDispatch is a little different, because it adds
a level of indirection to the Vtable-style interfaces that we've studied so far. One term for this new interface
type is dispinterjace, for dispatch interface. That term succinctly describes how IDispatch differs from the
standard Vtable implementation. The client does not access a component's functionality through the Vtable
pointer, as we did with IExpression. Instead, the client first looks up the function, provides a key to the
desired function, and finally invokes or dispatches the function (see Figure 6.1).

APPLE 1108 - Page 249

224 + CHAPTER 6

!Dispatch Vtable

plDisptach _Vptr &Querylnterface()

&AddRef()

&Release()

&GetTypelnfoCount()

Expression Class I Dispatch Table &GetTypelnfo()

&GetlDsOfNames()

&GetExpression() 0 &Invoke()

&SetExpression()

&Validate() 2

&Evaluate() 3

Figure 6.1 IDispatch Vtable and dispatch table.

As you can see from Figure 6.1, there's a bit more going on here with the IDispatch interface than there
was with a custom COM interface in the previous chapters. The client still gets a Vtable pointer, but now
that the Vtable doesn't have direct access to the Expression methods, the request must first go through the
IDispatch:: Invoke method. Invoke contains a parameter that maps the method call to a specific entry
in the dispatch map. This additional level of indirection is what provides for late binding to the component's
methods. Let's take a quick look at IDispatch's methods.

N 0 T E

Invoke

Remember, the server component implements the IDispatch methods, and the controller (or client)
calls that implementation through the IDispatch server's pointer. Our next example will describe
this process in detail.

Invoke provides most of the functionality of the IDispatch interface. It takes eight parameters, the most
important of which is the DISPID. The DISPID is mapped to a specific offset within the dispatch table and
determines which component class method is invoked. Table 6.1 lists the parameters of Invoke. We aren't
going to study them in detail yet. We just need to understand that the controller calls Invoke with these
parameters instead of calling a component's methods directly through a Vtable implementation.

APPLE 1108 - Page 250

Parameter

DISPID dispidMember

REFIID riid

LCID lcid

Support.

USHORT wFlags

DISPPARMS FAR* pdispparms

VARIANT FAR* pvarResult

EXCEPINFO FAR* pexcepinfo

UINT FAR* puArgErr

Automation + 225

Table 6.1 IDispatch:: Invoke Parameters

Purpose

The numeric ID of the specific member within the dispatch table that the controller wants

to access.

Reserved; must be IID_NULL.

A locale ID that indicates the locale if the component supports National Language

The type of Invoke call. This Rag indicates which type of operation it wants to perform

(access a property, invoke a method, and so on). It must be one of the following: DIS

PATCH_METHOD, DISPATCH_PROPERTYGET, DISPATCH_PROPERTYPUT, and

DISPATCH_PROPERTYPUTREF.

The parameter structure that contains an array of parameters for the function.

Where to store the result of the call. NULL if the method returns void. Ignored on

PROPERTY_PUTs.

Storage for any exception information if an exception occurs.

Indicates the array element that contains an invalid type when a type mismatch occurs.

As you can see, the controller must provide a great deal of information about the function call to the server's
component object. This is one of the drawbacks of late binding. Because the controller doesn't have this
information at compile time, it must provide it at run time to use the component's methods. This require
ment adds overhead to every method call made on a component and directly affects performance.

Late binding is great, but how can the controller obtain enough information about the component's
methods to use the Invoke method? The three other methods of IDispatch help in this regard.

Getl DsOf Names
GetIDsOfNames provides a facility for the controller to map the textual automation server property or
method name, such as GetExpression, to its numeric DISPID. The DISPID can then be used with the
Invoke function to access the property or method of the server. Calling GetIDsOfNarnes before every call
to Invoke can get rather expensive. It is recommended that the controller call GetIDsOfNarnes only once
for each property or method and cache the returned DISPID. This technique will speed the interaction. Table
6.2 lists the parameters of GetIDsOfNarnes.

APPLE 1108 - Page 251

226 + CHAPTER 6

Parameter

REFIID riid

OLECHAR** rgszNames

unsigned int cNames

LCID lcid

DISPID* rgdispid

GetTypelnfo

Table 6.2 IDispatch: : GetIDsOfNames Parameters

Purpose

Reserved, must be IID_NULL.

An array of member names for which the caller wants the corresponding DISPID. The first ele

ment is the name of the member property or method, and the subsequent names are for named

parameters.

The number of member names in the array.

A locale ID that indicates the locale if the component supports National Language Support.

An array of DISPIDs. The first element returned is the DISPID of the property or method, and the

subsequent elements contain DISPIDs of any named parameters.

Typically, a controller that provides dynamic lookup and calling of automation methods won't have all the
type information necessary to populate the Invoke dispparams structure. An automation server should
call GetTypeinfoCount to determine whether the component can provide type information and, if it can,
should then call Get Type Info to get the type information.

For a component to be useful in various development tool implementations, it should provide type
information. The type information can be provided by creating an ODL file that describes each property and
method along with its return types and parameter types. This file can be compiled into a binary form that
makes it easy for client applications to obtain detailed type information for the component. We will discuss
this in more detail later in this chapter.

MFC's current implementation of Automation support (aside from ActiveX controls) does not provide
type information and returns E_NOTIMPL.

GetTypelnfoCount
GetTypeinfoCount is used by the controller to determine whether the component object contains type
information that can be provided to the controller. Setting the passed-in parameter to 1 indicates that type
information is available, and zero indicates that no type information is available. In either case, the method
should return S_OK. Even without type information, the controller can use the other IDispatch methods.

The concept of an Automation property is very similar to the concept of a C++ member variable. To the user
of an Automation property, it will behave and act like a variable in the implementing language. Property

APPLE 1108 - Page 252

Automation 227

values can easily be assigned and retrieved. You would normally use a property if there is an internal C++
variable that it can be associated with. Here's how an Automation property is used within Visual Basic:

Dim btn as object

Dim szCaption as String

• Create an instance of a "Button• class

Set btn = CreateObject("AutoButton•

The button has a Caption property

Set the caption

btn.Caption = "Cancel"

' Get the caption value

szCaption = btn.Caption

As you can see, the syntax for working with the Caption property is similar to the syntax you use when
you're using an intrinsic data type. In Automation, properties can also have parameters. The parameters
typically are used as indexes into an ordered data type. Here's an example of a property with parameters:

Dim lbx as object

Dim szString as String

' Create an instance of a "Listbox• class

Set lbx = CreateObject("AutoListbox•

' The listbox has a "Text• property

Fill the list box

For i = 0 to 9

' Set the item text

lbx.Text(i) = "Item • + i

Next

' Get the 5th listbox item text

szString = lbx.Text(4)

Automation methods are analogous to C++ class methods. They perform some action within the component
when invoked by a controller. The addition of parameters somewhat blurs how Automation properties are
different from Automation methods. The primary syntactic difference is that you can't assign a value to an
Automation method.

Dim lbx as object

Dim szString as String

' Create an instance of a "Listbox• class

Set lbx = CreateObject("AutoListbox")

' Empty the Listbox with the clear method

!bx.Clear

' The following makes no sense, and generates an error

lbx.Clear = 10

APPLE 1108 - Page 253

228 + CHAPTER 6

Automation provides standard marshaling of parameters and return values across process boundaries. This
arrangement makes it easy to implement your components within a local server. To provide marshaling for
Automation, COM defines and limits the data types that can be used. I've outlined these data types in Table
6.3. Not all of these types are supported by Visual C++'s ClassWizard, but most of them are.

Type

BSTR

Byte, int, short,

long,BOOL, float,

double, char*

CY

DATE

SCODE

LPUNKNOWN

LPDISPATCH

Safe Array

VARIANT

Table 6.3 Automation-Compatible Data Types

Description

A binary string that stores the length of the string in the first two or four bytes of the structure and stores

the actual string directly following.

Intrinsic types.

A currency value stored in eight-byte integer. Used for fixed-point representation of a number. The inte

ger represents the value multiplied by 10,000.

A date stored in a double, where January 1, 1900, is 2.0, January 2 is 3.0, and so on. Functions are

provided by ActiveX to help in the manipulation of the date type.

A 32-bit error code.

A pointer to an IUnknown interface.

A pointer to an IDispatch interface.

An array of one of the preceding data types, including an array of Variants.

A union containing any one of the preceding types.

In certain cases, the supported types in Table 6.3 can be passed by reference, thus allowing the callee to mod
ify the parameter value. In many cases, the values are stored in Automation's VARIANT data type structure.
The VARIANT data type allows the controller and the server to communicate.

The VARIANT Data Type
The VARIANT data type is the most important Automation data type. It provides a convenient and effective
technique for passing parameters between COM-based components. Also, because of its implementation, a
variant can be used to overload Automation methods. Sometimes it's easiest to describe something by show
ing the code. Here's a condensed definition of the VARIANT structure.

struct tagVARIANT

VARTYPE vt;

union

APPLE 1108 - Page 254

} ;

LONG lVal;

BYTE bVal;

SHORT iVal;

FLOAT fltVal;

DOUBLE dbl Val;

VARIANT_BOOL boolVal;

SCODE scode;

CY cyVal;

DATE date;

BSTR bstrVal;

IUnknown *punkVal;

IDispatch *pdispVal;

SAFEARRAY *parray;

BYTE *pbVal;

SHORT *piVal;

LONG *plVal;

FLOAT *pfl tVal;

DOUBLE *pdblVal;

SCODE *pscode;

CY *pcyVal;

DATE *pdate;

BSTR *pbstrVal;

IUnknown **ppunkVal;

IDispatch **ppdispVal;

SAFEARRAY **pparray;

VARIANT *pvarVal;

PVOID byref;

CHAR cVal;

typedef tagVARIANT VARIANT;

typedef VARIANT VARIANTARG;

Microsoft's Model +

A VARIANT is just a big union of different types and an identifier indicating which type is within the union.
The vt member indicates the achial data type, thereby allowing the receiver to extract the data from the
appropriate union element. Several COM APis and macros make working with variants easier. Table 6.4
shows the most useful API calls. For a look at the macros, peruse the OLEAUTO.H file in the
\MSDEV\INCLUDE directory. MFC also provides a COleVariant class that makes using the variant data
type a little easier.

APPLE 1108 - Page 255

+CHAPTER 6

Table 6.4 Useful Variant-Based APls

Function

Variantinit(VARIANT*)

VariantClear(VARIANT*)

Purpose

Initializes a variant to VT_EMPTY.

Initializes a variant by first freeing any memory used within the variant. This is

useful when client-side applications need to clear a variant passed from a

server.

VariantChangeType (...) Coerces a variant from one lype to another. For example, this method will

change a long (14) to a BOOL and even an IDispatch pointer to a BSTR.

VariantCopy (VARIANT*, VARIANT*) Makes a copy of a variant and frees any existing memory in the destination

before making the copy.

I mentioned that variants can be used to overload Automation methods. Here's an example in a Visual
Basic-like language:

objCollection.Add("Jessica"

' objName is an automation object

objCollection.Add(objName

' txtControl is an edit control

objCollection.Add(ByRef txtControl.Text

TI1e Add Automation method takes one parameter, which is a variant. Because the method takes a variant,
the method user can pass different variant-supported data types to the method. The preceding example first
passes a BSTR, and then an Automation object, which is an IDispatch pointer, and finally a BSTR by refer
ence. TI1e Add method is implemented to handle all these types, thus making the method easy to use. TIUs
concept gives the server developers access to the powerful object-oriented technique of overloading.

The Safe Array
The safe array data type and its associated APis let you move arrays of Automation-compatible types
between local and remote processes. A number of safe array functions are provided by COM. For more
information, take a look at the on-line documentation or the OLE Programmer's Reference Guide, Volume Two.

IDispatc:hmBased Component
Now it's time for an example to solidify our understanding of the IDispatch interface. We've used the
Expression class to build a COM-based component with a custom interface, using native API calls and
then using MFC. Now let's implement the Expression class using native Automation, implementing both
the server and client sides of the IDispatch interface. After that, we'll do it again using MFC. First, let's
build the server.

APPLE 1108 - Page 256

Microsoft's Model + 231

In Chapter 4, we turned the Expression class into a COM component. We used a COM custom interface to
expose the Expression functionality. Now we'll expose its functionality via a standard ActiveX interface:
IDispatch. We've discussed the benefits of using IDispatch, so we'll focus primarily on its implementa
tion. The changes are based on using the EXPSVR.H and EXPSVR.CPP files from the Chapter 4 SERVER
project. As you'll see, only slight modifications are necessary to convert a component that uses a custom
COM interface into one that uses a standard ActiveX interface. Later, when we discuss dual interfaces, you'll
see how to build a component that exposes both interfaces, providing a component user with tremendous
implementation flexibility.

Building the Visual (++ Proiect
We'll house our new component in a DLL, making it a COM in-process server. In the MFC-based version of
the project, we will implement it within an EXE housing. By implementing a component within an EXE, you
gain cross-process and cross-network capabilities without any additional work. By using IDispatch, we
automatically get cross-process marshaling. That's one of its major benefits.

We've used Visual C++ quite a bit by now, so I'll just hit the high points of building a project. Start
VC++ and perform the following steps to create our initial Automation server:

1. Create a new Project Workspace and specify an MFC App Wizard (dll) project.

2. Name the project Server and take the provided defaults. Select Regular DLL using Shared MFC
DLL, but no OLE Automation or Windows Sockets support.

3. After you click the Create button, your screen should be similar to Figure 6.2.

Figure 6.2 SERVER project information dialog box.

APPLE 1108 - Page 257

232 + CHAPTER 6

Copy the EXPSVR.H and EXPSVR.CPP files from your Chapter 4 SERVER project or from the accompany
ing CD-ROM. What follows are changes required to convert the Expression component from implement
ing a custom IExpression interface to use IDisptl.tch instead.

Updating SERVER.H and SERVER.CPP
The initial SERVER.CPP file does not have the COM support that we added in Chapter 4. For a quick
review, here's what you need to add to SERVER.CPP:

II

II Server.cpp Defines the initialization routines for the DLL.

II

#include "stdafx.h"

#include "server.h"

#include <initguid.h>

#include "expsvr.h"

DWORD

DWORD

g_dwObj s = 0;

g_dwLocks = 0;

We need to include EXPSVR.H to define the Expression class factory and the.Expression class, because
DllGetClassObj ect, the COM function that exposes our component, needs them. The two global vari
ables keep track of the number of instantiated objects within the housing and the number of LockServer
calls made by the client. Here are the changes for SERVER.CPP:

STDAPI DllGetClassObject(REFCLSID rclsid,

HRESULT

ExpClassFactory

pCF = O;

hr;

*pCF;

riid, void** ppv

I! Make sure the CLSID is for our E}('i;>re~ssi.on .co1mpcme11t

if (rclsid !.= CLSID.:_Ex.pression

return() ;

if (nCF == NULL

hr = pCF->Queryinterface(

APPLE 1108 - Page 258

Microsoft's

/! Check for failure of Queryinterface

(F.'\ILED (hr)

delete pCF;

pCF = NULL;

return hr;

STDAPI DllCanUnloadNow(void)

if (g_dwObj s I I
return(S_FALSE);

else

return (S_OK) ;

Model + 233

DllGetClassObj ect and DllCanUnloadNow are part of Chapter 4's SERVER application. COM requires
that a DLL housing support these two functions. They allow the client (through COM) to create an instance
of our component. Also, don't forget to export these functions in you .DEF file:

; Server.def : Declares the module parameters for the DLL.

LIBRARY "SERVER"

DESCRIPTION 'SERVER Windows Dynamic Link Library'

EXPORTS

; Explicit exports can go here

DllGetClassObject

DllCanUnloadNow

Modifying EXPSVR.H and EXPSVR.CPP
That was pretty easy. Now let's do the difficult part: implement IDispatch within the Expression class.
Here are the changes to make to EXPSVR.H:

II

II ExpSvr.h - Expression header

II

II access to the global variables in SERVER.CPP

extern DWORD g_dwObjs;

extern DWORD g_dwLocks;

APPLE 1108 - Page 259

DEFINE_GUID(CLSID_Expression,

OxA988BD40,0x9FlA,OxllCE,Ox8B,Ox9F,OxlO,Ox00,0x5A,0xFB,0x7D,0x30);

//DEFINE_GUID(IID_IExpression,

II OxJt988BD41,0x9FlA,OxllCE,Ox8B,Ox9F,Oxl0,0xOO,Ox5A,0xFB,Ox7D,0x30);

const DISPID_GETEXPRESSION 1001;

const DISPID_SETEXPRESSION 1002;

canst DISPID_EVAL 1003;

canst DISPID_VALIDATE = 1004;

We don't need the GUID for the custom interface; we need only a CLSID to identify the Automation object.
Next, we've added some constants that we'll use later as the DISPIDs for the Expression object. The
Automation specification already has a DISPID_EVALUA'l'E definition so we use DISPID_EVAL instead.

//class IExpression : public IUnknown

I I {

//public:

I I STD!1ETHOD_ (BSTR, GetExpression ()) PUEE;

II STDMETHOD_(void, SetExpression(BSTR, BOOL)) PURE;

II STDMETHOD_(BOOL, Validate()) PURE;

II STDMETHOD_(long, Evaluate())

//l;

PURE;

class Expression public IDispatch //public IExpression

protected:

We're now implementing the !Dispatch interface so we can comment out the !Expression declaration
and derive our Expression class interface from !Dispatch. Like all other COM interfaces, !Dispatch
derives from !Unknown. Because we derive Expression from !Dispatch, we must declare and imple
ment seven public methods (our interface) in the Expression class: Queryinterface, AddRef, Release,
Get'I'ypeinfoCount, Get'rypeinfo, GetIDsOfNames, and Invoke. Here are the changes:

public:

II IUnknown

STDMETHOD(Queryinterface(REFIID, void**));

STDME'rHOD_ (ULONG, AddRef ()) ;

STDMETHOD_(ULONG, Release());

II IDispatch

STDMETHOD(GetTypeinfoCount(UINT* pctinfo));

STDMETHOD(GetTypeinfo(UINT itinfo,

APPLE 1108 - Page 260

LCID lcid,

ITypeinfo** pptinfo));

STDMETHOD(GetIDsOfNames(REFIID riid,

OLECHAR** rgszNames,

UINT cNames,

LCID lcid,

DISPID* rgdispid)) ;

STDMETHOD(Invoke(DISPID dispid,

REFIID riid,

LCID lcid,

WORD wFlags,

DISPPARAMS FAR* pDispParams,

VARIANT FAR* pvarResult,

EXCEPINFO FAR* pExcepinfo,

unsigned int FAR* puArgErr));

II !Expression

//STDMETHOD_(BSTR, GetExpression());

//STDMETHOD_(void, SetExpression(BSTR, BOOL));

l/STDMETHOD_(BOOL, Validate());

l/STDMETHOD_(long, Evaluate(}};

protected:

Ii Here's the classes true functionality. It is now

II exposed only through our new IDispatch methods.

BSTR

void

BOOL

long

GetExpression(};

SetExpression(BSTR bstr, BOOL binFix);

Validate (} ;

Evaluate(} ;

The IUnknown declarations are unchanged, but we now declare the four IDispatch methods instead of
the custom IExpression methods that we used previously. The class must provide its Expression func
tionality, but the methods are not part of its public interface and so are moved to a protected section. That
completes the EXPSVR.H file. Now let's modify EXPSVR.CPP.

STDMETHODIMP Expression: :Queryinterface(REFIID riid, void** ppv)

*ppv = NULL;

II if (riid == IID_IUnknown j I IID_IExpression)

if (riid == IID_IUnknown I I riid == IID_IDispatch

*ppv this;

APPLE 1108 - Page 261

236 -+- CHAPTER 6

if (*ppv)

((LPUNKNOWN)*ppv)->AddRef();

return (S_OK) ;

return (E_NOINTERFACE);

The first change is in the implementation of Queryinterface. Instead of supporting IExpression, we
now support IDispatch. That's easy enough. What else needs to be done?

{

:GetTypeinfoCount(UINT*

II Indicate that we don't expose any

*pctinfo = O;

return S_OK;

Here's our implementation of the GetTypeinfoCount method. To simplify the example, we don't support
exposing our type information. We indicate this by setting the pctinfo parameter to zero and returning
S_OK.

STDMETHODIMP Expression: :GetTypeinro(Uil\'T itinfo,

/!Not implemented

if (pptinfo)

*pptinfo = ·O;

return(E_NOTIMPL);

GetTypeinfo is just as easy. We set the pptinfo parameter to zero and return E_NOTIMPL to indicate that
type information is not supported. Here comes the essence of Automation.

STDMETHOD.IMP Expression: :GetIDsOfNarnes (REFIID riid,

II To make things simple, we

if (cNames > 1 l

OLECHAR** rgszNames,

UINT cNames,

LCID lcid,

rgdispid

1 name at

APPLE 1108 - Page 262

and return

if (strncrnp (

rgdiSpid [0 l =

Microsoft's

else if (strncrnp ("Validate", szAnsi,

rgdispid[OJ = DISPID_VALIDATE;

else if (strncrnp { "Evaluate", szAnsi, 8) O

rgdispid[O] = DISPID_EVAL;

else

return(DISPID_tn'1KNOWN);

If Everything worked!

return S_OK;

Model + 237

In Automation the client application need not have any knowledge of a server's methods at compile and
link time. As we discussed earlier, Automation enables late binding of methods and their parameters. To
provide this capability, we've implemented the GetIDsOfNames method.

The client can now call GetIDsOfNames at run time to get the specific DISPID for a method within the
Expression component. We defined our DISPIDs earlier. Our job now is to map the member name to a
specific DISPID. This is easy. The rgszNames parameter is an array of member names provided by the call
ing application. The array consists of a method or property name in the first element, optionally followed by
named parameter elements. I won't complicate the issue by discussing named parameters, but that's why
we are provided an array of member names.

All COM interface calls use native Unicode, so we convert the Unicode string to ANSI to facilitate the
comparison. Then we do a simple shfag comparison. If we get a match, we return the respective DISPID. If
we don't get a match, we return the required DISPID_UNKNOWN error.

STDMETHODIMP Expression::Invoke(DISPID dispid,

REFIID

WORD wFlags,

DISPPARAMS

VARIANT FAR* pvarResult,

APPLE 1108 - Page 263

+CHAPTER 6

switch(dispid)

case DISPID_GETEXPRESSION:

if (pvarResult)

EXCEPINFO FAR* pExcepinfo,

unsigned int FAR* puArgErr

Variantinit(pvarResult);

V_VT(pvarResult) VT_BSTR;

V_BSTR(pvarResult = GetExpression();

return S_OK;

case DISPID_SETEXPRESSION:

if (! pDispParams I I
pDispParams->cArgs != 2)

return(DISP_E_BADPARlU~COUNT);

II We don't support named arguments

if (pDispPara.~s->cNamedArgs > 0

return(DISP_E_NONF.MEDARGS);

HRESULT hr;

II Coerce the variant into the desired type

I In this case we would like a BSTR

hr VariantChangeType(&(pDispParams->rgvarg[l]),

&(pDispParams->rgvarg[l]),

0,

VT_BSTR) ;

II If we can't get a BSTR return type mismatch

if (FAILED(hr))

return (DISP_E_TYPEMISMATCH) ;

II Coerce the variant into the desired type

II In this case we would like an I4 or long

hr VariantChangeType((pDispParams->rgvarg[O]),

&{pDispParams->rgvarg[O]),

0,

VT_I4) ;

APPLE 1108 - Page 264

Microsoft's

if (FAILED(hr))

return(DISP_E_TYPEMISM .. l\TCH) ;

call our method with the correct parameters

the parameters come in right to left

pDispParams->rgvarg[l] .bstrVal,

PDlso~arams->rqvaro[OJ .iVal);

S_OK };

case DISPID_VALIDATE:

if (pvarResult

Variantinit(pvarResult);

V_VT(pvarResult

V_I4(pvarResult

else

Validate() ;

return S_OK;

case DISPID_EVAL:

if (pvarResult

VT_I4;

Validate();

Variantinit(pvarResult);

V_VT(pvarResult

V_I4(pvarResult

else

Evaluate();

return S_OK;

default:

VT_I4;

Evaluate();

return(DISP_E_MEt•IBERNOTFOUND) ;

Model +

The Invoke method provides most of the fw1ctionality of the IDispatch interface. First, we determine
which member was invoked by the client, as indicated by the specific DISPID. Our simple server doesn't
expose any type information, so the only way for the client to get the DISPID is to explicitly call the
GetIDsOfNames method.

APPLE 1108 - Page 265

240 + CHAPTER 6

Based on the DISPID passed, we call the appropriate Expression method. The only difficulty is in
how to interpret and handle all those parameters used in the Invoke method. Let's examine each one in
detail.

case DISPID_GETEXPRESSION:

if (pvarResult)

Variantinit(pvarResult);

V_VT(pvarResult)

V_BSTR(pvarResult

return s_OK;

VT_BSTR;

= GetExpression();

The GetExpression method takes no parameters and returns a BSTR containing the current Expression
value. The sixth parameter of Invoke is a VARIANT allocated by the caller for the purpose of passing the
return value of the call. The client need not provide this parameter, so we check to ensure that it is a nonzero
pointer before we do our work. GetExpression has no side effects, so there is no need to process the call if
the caller does not provide storage to return the result. If a variant is provided, we initialize it, set the variant
type, and assign its value with a call to GetExpression.

Two of the other Expression methods do not take parameters and return a result. Evaluate and
Validate are very similar.

case DISPID_VALIDATE:

if (pvarResult

Variantinit(pvarResult);

V_VT(pvarResult

V_I4(pvarResult

else

Validate () ;

return S_OK;

case DISPID_EVAL:

if (pvarResult

VT_I4;

Validate ();

Variantinit(pvarResult);

V_VT(pvarResult

V_I4(pvarResult

else

Evaluate();

return S_OK;

VT_I4;

Evaluate();

APPLE 1108 - Page 266

Microsoft's Model + 1

The primary difference between these two implementations is that they must perform some action even if
the caller does not provide storage for the result. The two methods can be called in two ways using a con
troller language such as Visual Basic:

nResult = objExpression.Evaluate()

' or

obj Expression.Evaluate

The first method uses the result and the second one does not. Make sure that you handle all the various con
ditions when mapping your methods.

case DISPID_SETEXPRESSION:

if (!pDispParams 11

pDispParams->cArgs != 2)

return(DISP_E_BADPARAMCOUNT);

II We don't support named arguments

if pDispParams->cNamedArgs > 0

return(DISP_E_NONAMEDARGS);

HRESULT hr;

II Coerce the variant into the desired type

II In this case we would like a BSTR

hr= VariantChangeType(&(pDispParams->rgvarg[l]),

&(pDispParams->rgvarg[l]),

0'

VT_BSTR) ;

II If we can't get a BSTR return, invalidate argument

if (FAILED(hr))

return(DISP_E_TYPEMISMATCH);

II Coerce the variant into the desired type

II In this case we would like an I4 or long

hr= VariantChangeType(&(pDispParams->rgvarg[OJ),

&(pDispParams->rgvarg[OJ),

0'

VT_I4) ;

if (FAILED(hr))

return(DISP_E_TYPEMISMATCH);

II Finally call our method with the correct parameters

SetExpression(pDispParams->rgvarg[l] .bstrVal,

pDispParams->rgvarg[OJ .iVal);

return(S_OK) ;

APPLE 1108 - Page 267

+CHAPTER 6

Calling the SetExpression method is the most complicated case. It does not return a value, but it takes
two parameters. The DISPPARAMS structure is allocated and passed by the caller. It contains an array of
parameters, each stored in a VARIANTARG structure. We first check to make sure that we have two parame
ters. If we don't, we return DISP_E_PARAMCOUNT. Next, we make sure that the caller has not passed any
named arguments. We don't support them in our simple example. We then coerce the parameters into types
that our internal SetExpression method supports.

VariantChangeType takes a variant type and coerces it into a type that you specify. In our first case,
we need the actual Expression string as a binary string (BSTR). Automation controllers can pass this value
in a number of ways. variantChangeType does all the work for you. For example, here are some ways
that Visual Basic might call SetExpression:

Dim objExp As Object

Dim v As Variant

Dim str As String

Set objExp = Create0bject("Chap6.Expression.l")

v = "100 * 500"

str = "100 * 600"

objExp.SetExpression str, 1

objExp.SetExpression (str), 1

objExp.SetExpression v, 1

' txtExpression is a standard Windows entry field

objExp.SetExpression txtExpression, 1

Each one of the preceding calls to SetExpression passes a different variant type for the BSTR parameter.
The first one passes a BSTR by reference (ByRef). The second one passes it as we would typically expect,
just a simple BSTR. The third call passes a variant by reference, and the fourth call passes a pointer to the
IDispatch interface of Visual Basie's standard ActiveX Edit control. Thankfully, VariantChangeType
handles the complexity of converting all these different types into the one we would like: a straight BSTR.

You might wonder how VariantChangeType can. convert an IDispatch pointer into a BSTR. An
Automation server can specify a default Value property that provides the value most appropriate for the
server. Servers need not specify this default, but many of them do. VariantChangeType will attempt to
obtain the type that you're trying to convert to by calling the Value property through the passed-in
IDispatch. In the preceding example, the standard Visual Basic Edit control has a value property that
returns the string within the edit field. This is exactly what we need, so everything works.

We've finished the hard work. All that remains is to change the return types of our previously exposed
Expression class methods. Because they are no longer directly exposed, we don't need to treat them as
COM interface functions. We only need remove the STDMETHOD macros from the declarations in EXPSVR.H
and remove the definitions in EXPSVR.CPP. Here's an example from the CPP file.

I /STDMETHODIMP _ (BOOL) Expression: : Validate ()

BOOL Expression::Validate()

I /STDMETHODIMP_ (long) Expression:: Evaluate ()

long Expression: :Evaluate()

APPLE 1108 - Page 268

Once we've made all the changes, we rebuild the project. We now have an Expression component that can
be used from a variety of development environments, one of which is Visual Basic. Let's test our component
with Visual Basic.

However, before we move on and test our new IDispatch-based server, we need to register the compo
nent. We're not using MFC, so we have to use a .REG file like we did with the Chapter 4 server. The CD
ROM contains the WIN32.REG file. Modify the InprocServer32 entry to include the path to the SERVER.DLL
on your local machine. Then use Explorer or REGEDIT.EXE to add the entries to the Registry. Here's how it
looks on my machine.

HKEY_CLASSES_ROOT\CLSID\{a988bd40-9f1a-11ce-8b9f-10005afb7d30}

\InprocServer32 = d:\examples\chap6\Server\Debug\server.dll

Visual Basic is easy to use. If you've never developed an application with Visual Basic, you should give it a
try. Many developers dismiss it because it has "Basic" in its name, but our focus as developers should be on
providing solutions to problems and not on a philosophical debate about which language is best. Visual
Basic is the de facto Automation controller, and in this section we'll demonstrate why. Visual Basic eases the
task of harnessing the functionality of ActiveX servers.

N 0 T E

If you don't have Visual Basic, don't worry. Visual C++ comes with an OLE/ ActiveX test program
that provides all the functionality we need to test our component. The file DISPTEST.EXE is in the
\MSDEV\BIN directory. To run it, just type start DISPTEST from the command line.

Start Visual Basic and build a form that looks like the screen in Figure 6.3. It's easy-just drag and drop an
entry field and two buttons from the tool palette. Name the entry field txtExpression, the Validate button
cmdValidate, and the Evaluate button cmdEvaluate. To set these values, set focus to the control and then
modify the value of the Name property in the Property window. You should also set the default Text prop
erty to a null string.

!;.valuate

Figure 6.3 Visual Basic form.

APPLE 1108 - Page 269

244 + CHAPTER 6

Visual Basic has many built-in data types, most of which map directly to the standard Automation types.
The one we're interested in is Object, which encapsulates an IDispatch pointer and so allows you to call
the various methods on that IDispatch. The first step is to define an object. We do this in the form's glob
als section, which is the area outside any function or procedure.

Dim As Object

At application startup, one of the first things to happen is the loading of the form, so we create an instance of
the Expression object and assign it to the obj Exp pointer. The Visual Basic command Crea teObj ect
internally calls COM's CoCreateinstance method to create an instance of the COM object and then
requests the default IDispatch for that object. Visual Basic stores this pointer in the obj Exp variable.

Sub Form_Load ()

Set obj Exp CreateObj ect (."Chap6. Expression.1")

End Sub

Sub Form_Unload (Cancel As Integer)

set objExp = Nothing

End Sub

Visual Basie's version of Queryinterface: : Release is to set the obj Exp variable to Nothing. This frees
the connection to the Automation object. You need not do this explicitly (as we've done here), because
Visual Basic will do it whenever the object goes out of scope. Still, it's good programming practice.

To use the object, we add the following lines of code. These methods should look familiar; we added
them to our Automation wrapper earlier in this chapter. To add code for the button click event in Visual
Basic, double-click on the button. Add the following code for each button.

Sub cmdEvaluate_Click ()

End Sub

Sub cmdValidate_Click ()

Dim

End If

End Sub

try again")

APPLE 1108 - Page 270

Microsoft's Model + 245

The syntax for calling object methods in Visual Basic is object. Method parameters if there isn't a
return value, or retValue = object. Method (parameters) if there is a return value. As you can
see, it's easy to use our Automation wrapped component. We've used Visual Basic to build an application
around our C++ Expression class with just 13 lines of code. Press FS and run the application. You can step
through each line of code using the F8 key.

r
We've taken a look at what it takes to implement an Automation server, and we then tested it by using
Visual Basic as the Automation controller. Next, let's take a quick look at what is required to implement the
conh·oller (or client) side in C++. We'll do this initially without the help of MFC's Automation support, but
later we'll use MFC. I don't want to spend very much time in this section, but I think it's important for a
solid understanding of what Automation is all about.

The accompanying CD-ROM contains the source for this simple client application in the
\Examples\Chap6\Client directory. The example is built using a simple dialog-based Visual C++ applica
tion. It is similar to the examples in Chapter 3 through Chapter 5 except that it is dialog-based and.does not
use MFC's document-view architecture. To follow along and build the application as we go, first build a
Visual C++ application with the following options:

1. Name the application Client.

2. Build an MFC App Wizard (EXE) project.

3. In App Wizard Step 1, choose a Dialog based application.

4. In AppWizard Step 2, accept the defaults of About box and 3D controls and check the OLE automa
tion support button. This action adds the OLE include files and the call to AfxOleinit for us. We
know what these options do, so we'll let App Wizard do it for us.

5. In App Wizard Step 3, choose to use the MFC library as a Shared DLL.

6. In App Wizard Step 4, change the names of the CClientDlg class to DIALOG.Hand DIALOG.CPP.

7. Click the Finish button. You should have a screen similar to Figure 6.4.

APPLE 1108 - Page 271

+CHAPTER 6

Figure 6.4 Non-MFC client application generation.

If you forget to add OLE Automation support to the application, you will get an error in the
CoCreateinstance call. The HRESULT will be something like Ox80Q,401FO, which by itself doesn't
mean much. When you get a FAILED status on a COM-based function call, you can look up a tex

N o T E tual rendition of the error in the WINERROR.H include file. The Ox800401FO error maps to
"Colnitialize has not been called," a much clearer error message.

Just as we've done in previous versions of the CLIENT application, we'll add two buttons and an entry field
to the dialog resource. The button IDs are IDC_EVALUATE and IDC_VALIDATE, and the entry field has an ID
of IDC_EXPRESSION. Using ClassWizard, we then add, for both buttons, handlers for the BN_CLICKED

event.

Once we've done all that, we start adding the code. There a few additions to DIALOG.H:

II

II Dialog.h header file

II

class CClientDlg public CDialog

II Implementation

protected:

HI CON m_hicon;

APPLE 1108 - Page 272

Microsoft's Model +

J;

};

The m_pDispatch member will hold the IDispatch to the Expression component, and the other meth
ods help implement the client-side IDispatch functionality. When the dialog box is created, the
OninitDialog method is called. This is a good place to create an instance of the Expression component,
much as we did in Chapters 4 and 5. We use CoCreateinstance to create an instance of the Expression
class, but this time we ask for the IDispatch interface instead of IExpression. The modifications below
are to DIALOG.CPP:

II

II Dialog.cpp

II

//.Use MFC's Unicode conversion functions

#include <afxpriv.h>

CClientDlg: :CClientDlg(CWnd* pParent /*=NULL*/)

: CDialog(CClientDlg::IDD, pParent)

1;11_pDispatch 0;

BOOL CClientDlg: :DestroyWindow()

II Release the dispatch interface

if (m_pDispatch)

m_pDispatch->Release();

return CDialog: :DestroyWindow();

BOOL CClientDlg: :OninitDialog()

CDialog: :OninitDialog();

APPLE 1108 - Page 273

248 CHAPTER 6

II Create the dispatch to our expression component

II It must be a Unicode string

USES_CONVERSION

LPCOLESTR lpOleStr

CLSID Clsid;

("Chap6.Expression.1");

HRESULT hr= ::CLSIDFromProgID(

if(FAILED(hr))

AfxMessageBox { "CLSIDFramErogID ~~,~~,-~ ,,.

return TRUE;

hr = CoCreateinstance(Clsid,

0,

IID_IDispatch,

J ;

{LPVOID *l &m_pDispatch);

if (FAILED(hr))

) ;

return TRUE;

return TRUE; II return TRUE unless you set the focus to a control

We added a handler for the DestroyWindow message so that we can release the dispatch when the dialog
box is closed. Most of the preceding code should be familiar by now. All the work is done in
OninitDialog. First, we convert our ProgID to Unicode and then retrieve the associated CLSID. We then
call CoCreateinstance and ask for the IDispatch ofthe component. If all goes well, we have all we
need to call the component's methods directly.

Notice that we do not have any compile-time definition of the Expression component. We did not
include EXPSVR.H. Instead, we will dynamically query for the DISPIDs of the methods and invoke them
dynamically using t11e Invoke method of IDispatch. Here's a helper function to return a DISPID of the
provided method name:

HRESULT CClientDlg: :GetDispID(canst char* szName, DISPID& dispid)

HRESULT hr;

II Get' a Unicode version of the string

T20LE (szName) ;

APPLE 1108 - Page 274

Microsoft's

= m_pDispatch->GetIDsOfNames(IID_l~JLL,

&lpOleStr,

1,

LOCALE_SYSTEM_DEFAULT,

&dispid) ;

if (FAILED(hr))

}

char szTemp[128];

sprint£(szTemp, "GetIDsOfNames for '%s' failed, HRESULT is %x",

) ;

AfxMessageBox(szTemp);

return hr;

return S_OK;

Model +

hr

This is straightforward. We pass a Unicode version of the member name (such as SetExpression) and a
pointer to a DISPID variable. We call the GetIDsOfNames implemented by the server, and, if everything
works, we get back the DISPID of the member.

We need the DISPID because we use the Invoke method to access the functionality in the Expression

component, and Invoke requires a DISPID. We could have obtained the DISPID from the type information
of the server, but we didn't implement type information. We'll cover this later. For now, the client applica
tion must call GetIDsOfNames to get the DISPID. Here's how we call SetExpression in the server. I've
added a SetExpression method to our dialog class:

CClientDlg::SetExpressiori(CString& strExpression

II OK, here we go. Get the DISPID of the SetExpression method

DISPID

FAILED(GetDispID(

TRUE;

, dispid) J)

I/ Now that we have the DISPID, call the method using IDispatch: :Invoke

memset(

dispparms.cArgs = 2;

II allocate memory for all VARIANT parameters

VARIANTARG* pArg new VARIANTARG [di spparms . cArgs J ;

dispparms.rgvarg = pArg;

APPLE 1108 - Page 275

+CHAPTER 6

memset(pArg, 0, sizeof (VARIANT) dispparms.cArgs);

11 The parameters are entered right to left

dispparms.rgvarg[O] .vt = VT_I4;

dispparms.rgvarg[O].lVal = 1;

dispparms.rgvarg[l] .vt = VT_BSTR;

dispparms.rgvarg[l] .bstrVal = strExpression.AllocSysString();

Invoke the Start method in the local server

HRESULT hr = m_pDispatch->Invoke(dispid,

!/Free up our variantargs

delete [] pArg;

if (FAILED(hr))

char szTemp[128];

IID_NULL,

LOCALE_SYSTEM_DEFAULT,

DISPATCH_METHOD,

&dispparms,

0,

0,

NULL) ;

II No return value

//No exception support

sprintf(szTemp, "Unable to Invoke 'SetExpression'. HR is %x", hr);

AfY.MessageBox (szTemp) ;

return TRUE;

return FALSE;

First, we get the DISPID of SetExpression. SetExpression takes two parameters and returns void.

Once we have the DISPID, we build the parameter list for the call. The DISPPARAMS struchire houses the
parameters that we will pass via the Invoke method. Here's what it looks like:

typedef struct FARSTRUCT tagDISPPARAMS

VARIANTARG FAR* rgvarg; II Array of arguments.

DISPID FAR* rgdispidNamedArgs; II Dispatch IDs of named arguments.

unsigned int cArgs; II Number of arguments.

unsigned int cNamedArgs; II Number of named arguments.

DISPPARAMS;

APPLE 1108 - Page 276

Microsoft's Model + 2.51

We set the number of arguments to 2 and allocate storage for two VARIANTARG structures. Next, we clear
the structures, and finally we initialize the variants with the parameter data. Arguments are stored right-to
left in the DISPPARAMS structure, so we first pass a long with a value of 1. We then set up a BSTR with the
string value by calling CString's AllocSysString member.

Once everything is set up, we call Invoke through our IDispatch pointer. The server then unpacks
everything in the DISPPARAM structure and executes the method. We implemented that code earlier, so you
should see how it all fits together. The other methods are very similar.

BOOL CClientDlg::Evaluate(long& lValue)

DISPID dispid;

if (FAILED (GetDispID ("Evaluate", dispid)))

return TRUE;

11 Now that we have the DISPID, call the method using IDispatch: :Invoke

DISPPARl'..MS dispparms;

memset(&dispparms, 0, sizeof(DISPPARAMS));

II This method returns a value, so we need a VARIANT to store it in

VARIANTARG vaResult;

Variantinit(&vaResult);

HRESULT hr = m_pDispatch->Invoke(dispid,

if (FAILED(hr))

char szTemp[128];

IID_NULL,

LOCALE_SYSTEM_DEFAULT,

DISPATCH_METHOD,

&dispparms,

&vaResult,

0,

NULL) ;

sprintf (szTemp, "Unable to Invoke 'Evaluate' . HR is %x", hr) ;

AfxMessageBox(szTemp) ;

return TRUE;

lValue = vaResult.lVal;

return FALSE;

APPLE 1108 - Page 277

+CHAPTER 6

BOOL CClientDlg::Validate(BOOL& bValid)

DISPID dispid;

if (FAILED (GetDispID ("Validate", dispid)))

return TRUE;

II Now that we have the DISPID, call the method using IDispatch::Invoke

DISPPARl'.MS dispparms;

memset (&dispparms, 0, sizeof (DISPPAR!'.MS)) ;

I I This method returns a value, so we need a V.'l.RI!>J;JT to store it in

VARIPJ~TARG vaResult;

Variantinit(&vaResult);

hr = m_pDispatch->Invoke(dispid,

IID_NULL,

if (FAILED(hr))

char szTemp[128];

LOCP.LE_SYSTEM_DEFAULT,

DISPATCH_METHOD,

&dispparms,

&vaResult,

0,

NULL) ;

sprintf(szTemp, "Unable to Invoke 'Validate'. HR is

AfxMessageBox(szTemp);

return TRUE;

bValid = vaResul t. 1 Val;

return FALSE;

, hr) ;

The code in the Evaluate and Validate methods is very similar to the earlier SetExpression, with one
exception: these methods return values and do not take parameters. We pass a blank DISPPARAMS structure
and provide a VARIANT in which the server can store a return value. After Invoke returns, we extract the
value from the VARIANT and pass it to the local caller.

After coding these methods, all that remains is to add the calls to the button handlers.

void CClientDlg: :OnEvaluate()

APPLE 1108 - Page 278

if (! m_pDispatch)

AfxMessageBox ("There is no dispatch") ;

return;

Get the expression from the entry field

CString strExpression;

pWnd = GetDlgitem (IDC_EXPRESSION) ;

pWnd->GetWindowText (strExpression) ;

(SetExpression(strExpression))

AfY..MessageBox("Unable to 'SetExpression'") ;

return;

long lResult;

if (Evaluate(lResult)}

AfxMessageBox("Unable to 'Evaluate' Expression") ;

return;

II Set the returned value in the entry field

char szTemp[128];

sprintf(szTemp, "%ld", lResult) ;

pWnd->SetWindowText(szTemp);

II Set focus back the entry field

GetDlgitem(IDC_EXPRESSION)->SetFocus();

void CClientDlg: :OnValidate()

if (! m_pDispatch)

AfxMessageBox ("There is no dispatch") ;

return;

11 Get the expression from the entry field

CString strExpression;

APPLE 1108 - Page 279

254 + CHAPTER 6

CWnd* pWnd = GetDlgitem(

pWnd->GetWindowText(

if

AfxMessageBox ("Unable to

Fe turn;

BOOL bValid;

if (Validate(bValid))

) ;

AfxMessageBox("Enable to 'Validate' expression") ;

return;

if (! bValid)

AfxMessageBox("Invalid Expression, try again");

II Set focus back to the entry field

GetDlgitem(IDC__EXPRESSION)->SetFocus();

Except for the new technique of calling the methods in the Expression component, this code is nearly
identical to that used in the earlier CLIENT examples. Now build the application. It should behave just like
the examples in Chapters 3, 4, and 5 and the Visual Basic example that we developed earlier in this chapter.

Next, we'll focus on the MFC facilities that help in the development of component applications that need
Automation support. Initially, we'll focus on the server side of IDispatch. Later, we'll build an
Automation controller similar to the one we built earlier, this time using Visual C++'s shortcut technique.
MFC provides the ability to act as an Automation controller but only in a static way. ClassWizard's
Automation tab has a Read Type Library button that reads a type library from an existing Automation
server and provides an MFC wrapper class derived from COleDispatchDri ver, which wraps each
Automation property or method with a C++ method. If the component class adds methods, you must
rebuild the COleDispatchDri ver-derived class in order to use them. Currently, there is no MFC class that

APPLE 1108 - Page 280

Microsoft's Model + 255

encapsulates the ability to dynamically query and invoke functions (as Visual Basic does) within an
Automation server, although it wouldn't be hard to implement one yourself.

MFC implements the IDispatch interface as part of the main COM class ccmdTarget. CCmdTarget

maintains a dispatch map in much the same way that it maintains a COM interface map and the Windows
message map structures. Implementing an Automation component class is easy in MFC. The only require
ment is that the class be derived from CCmdTarget so that it will contain a hierarchy of dispatch maps.
Dispatch maps implement the dispatch table (shown previously in Figure 6.1) and provide the mapping
from a DISPID to a specific method of an Automation class.

We will discuss the MFC IDispatch implementation further as we develop the examples.

I know you must be getting tired of our Expression class example, but I promise this is the second-to-last
time you will see it. In Chapter 10, we'll finish the Expression example by developing an expression eval
uation ActiveX control. For now, we're focusing on how COM and ActiveX work instead of actually using it.
In the rest of the chapters we'll develop some neat examples.

What we'll do first with our example is to wrap the Expression class with an Automation wrapper.
This is quick and easy, and it lets us access the Expression functionality from Visual Basic, C++, and other
languages that support Automation. All our previous examples have been in-process servers, but we'll
make this one a local server, for two reasons. First, we haven't learned this yet, and we need to understand
the differences between the two implementations. Second, we'll use the marshaling capabilities of COM,
which allow the interoperation of 16-bit and 32-bit applications.

Start Visual C++ and follow these steps to create the initial project:

1. Name the application AutoSvr.

2. Build an MFC App Wizard (EXE) project.

3. In App Wizard Step 1, choose a Multiple documents application.

4. In App Wizard Step 2 of 6, accept the default of None for database support.

5. In AppWizard Step 3 of 6, select None for OLE Container support and enable OLE automation sup-
port.

6. In App Wizard Step 4 of 6, take the default features but tum off Print Preview support.

7. In App Wizard Step 5 of 6, take the default Regular DLL using Shared MFC DLL.

8. In AppWizard Step 6 of 6, derive the view from CFormView and change the implementation file's
name to VIEW.H and VIEW.CPP. Also, change the document class implementation files to DOCU
MENT.Hand DOCUMENT.CPP.

9. Click the Finish button. You should have a screen similar to Figure 6.5.

APPLE 1108 - Page 281

CHAPTER 6

Figure 6.5 AUTOSVR project information dialog box.

Now we copy EXPRESS.CPP and EXPRESS.H from the Chapter 3 project into the working directory of our
AUTOSVR project. After doing this, select Insert/Files into project and add EXPRESS.CPP to our project.

In Chapter 3, we used the Expression class directly in our project to provide algebraic expression capabili
ties. In Chapters 4 and 5, we used COM and ActiveX to separate the Expression class into a component t11at
was accessed tl1rough a custom COM interface, and earlier in this chapter we implemented the component using
a native IDispatch interface. Now we'll wrap t11e existing C++ class inside an Automation (IDispatch-based)
wrapper class. This technique will expose the class's capabilities without modifying t11e implementation at all.
The Expression class will be just as useful to C++ developers as it will be to developers who use
Automation-capable tools (such as Visual Basic). Go ahead and compile, link, and nm t11e application before we
add the wrapping.

Start ClassWizard (Ctrl-W) and select the OLE Automation tab. Click the Add Class button to add a new
class to our project. In the Class Name entry field, type OExpression. The default header and implementa
tion filenames are fine. However, for this example I'm using the 8.3 names of OEXPRESS.H and OEX
PRESS.CPP. In the Base class dropdown listbox, select CCmdTarget, the class from which our new class
will be derived. As we discussed before, MFC's CCmdTarget provides the base COM functionality for all
the MFC classes. Our Automation wrapper class will be derived from it.

When we chose to derive from CCmdTarget, three additional options were enabled in the OLE
Automation frame. The second checkbox, OLE Automation, asks whether we want to enable this feature for
our class. We do, so check it. When OLE Automation is checked, the Createable by type ID option is

APPLE 1108 - Page 282

Microsoft's Model •

enabled. This option, when checked, causes ClassWizard to create a CLSID and ProgID for our new
Automation class. When your component class is to be directly exposed without going through the main
OLE class for the application, you should check this option. If you do, the entry field will allow you to enter
the ProgID for your Automation class. We want to allow direct access to the Expression class, so we check
the Createable by type ID box and enter Chap6.MFCExpression.1 in the entry field. See Figure 6.6.

Figure 6.6 ClassWizard Create New Class dialog box.

Click the Create button and then press OK in the Class Wizard dialog box. This adds two new files to our
application: OEXPRESS.H and OEXPRESS.CPP. Let's take a look at what they do. Here's OEXPRESS.H:

II
II Oexpress.h header file

II

class OExpression : public CCmdTarget

DECLARE_DYNCREATE(OExpression)

protected:

OExpression(); II protected constructor used by dynamic creation

II Overrides

II ClassWizard generated virtual function overrides

ll{{AFX_VIRTUAL(OExpression)

public:

virtual void OnFinalRelease();

APPLE 1108 - Page 283

+CHAPTER 6

ll}}AFX_VIRTUAL

II Implementation

protected:

};

virtual -OExpression();

II Generated message map functions

ll{{AFX_MSG(OExpression)

II NOTE - the ClassWizard will add and remove member functions here.

I /} } AFX_MSG

DECLARE_MESSAGE_MAP()

DECLARE_OLECREATE(OExpression)

II Generated OLE dispatch map functions

ll{{AFX_DISPATCH(OExpression)

II NOTE - the ClassWizard will add and remove member functions here.

ll}}AFX_DISPATCH

DECLARE_DISPATCH_MAP()

Most of this code should look familiar. In Chapter 5, we explored in detail most of the macros in OEX
PRESS.H. We have the requisite macros that allow for dynamic creation. There's the class factory macro
DECLARE_OLECREATE. The only new thing is the DECLARE_DISPATCH_MAP macro, we'll look at it in more
detail in a moment. First, we'll add some Automation properties and methods:

II oexpress.cpp : implementation file

II

IMPLEMENT_DYNCREATE(OExpression, CCmdTarget)

BEGIN_DISPATCH_MAP(OExpression, CCmdTarget)

ll{{AFX_DISPATCH_MAP(OExpression)

II NOTE the ClassWizard will add and remove mapping macros here.

ll}}AFX_DISPATCH_MAP

END_DISPATCH_MAP()

IMPLEMENT_OLECREATE(OExpression, "Chap6.Expression.l", Ox9b027266, Oxb3e4, Oxllce, Oxb6, Oxe, Oxf2,
Oxbd, Ox12, Ox2b, Oxbc, Ox9)

OExpression: :OExpression()

EnableAutomation();

II To keep the application running as long as an ActiveX Automation

APPLE 1108 - Page 284

II object is active, the constructor calls AfxOleLockApp.

AfxOleLockApp () ;

OExpression: : -OExpression ()

II To terminate the application when all objects created with

II with ActiveX Automation, the destructor calls AfxOleUnlockApp.

AfxOleUnlockApp();

void OExpression: : OnFinalRelease ()

II When the last reference for an automation object is released

II OnFinalRelease is called. This implementation deletes the

II object. Add additional cleanup required for your object before

II deleting it from memory.

delete this;

Except for the call to EnableAutomation in the constructor, all the code in the implementation file, OEX
PRESS.CPP, should also be familiar. All we need to do now is to add the methods and properties from the
Expression class. We'll use (guess what?) ClassWizard to do this. Start ClassWizard and select the OLE
Automation tab. Make sure that you have the OExpression class selected as well.

Using the Automation tab of ClassWizard allows you to add and remove Automation methods and
properties. For the Expression class, we'll add four methods. Click the Add Method button, type
GetExpression in the External Name field, and choose a return type of BSTR. Then press OK. This adds the
GetExpression method to the OExpression class. We need to do this for each of the four methods of
Expression. The SetExpression method takes two parameters. You add parameters by clicking in the
Parameter list listbox and typing the parameter name in the left-hand side, and the parameter type on the
right. Figure 6.7 shows the SetExpression method being added.

The two remaining methods-Validate and Evaluate-take no parameters. When you're finished
adding all four methods, the OLE Automation tab should look like Figure 6.8.

APPLE 1108 - Page 285

260 + CHAPTER 6

Figure 6.7 Adding the SetExpression method.

Figure 6.8 Adding Automation methods with ClassWizard.

ClassWizard has added four new methods to the OExpression class. It is now our responsibility to make
them do something. All we are doing is wrapping the Expression class, so we include its declarations in
OEXPRESS.CPP:

APPLE 1108 - Page 286

Microsoft's

II
II oexpress.cpp implementation file

II

#include "stdafx.h"

#include "autosvr.h"

#include "express.h"

#include "oexpress.h"

261

We also include a member of the Expression class within OExpression so that each instance of the
Expression component has its own instance of Expression. Add the following to OEXPRESS.H:

class OExpression : public CCmdTarget

DECLARE_DYNCREATE(OExpression)

protected:

OExpression();

II Attributes

public:

Expression m_Expression;

II Operations

public:

};

II protected constructor used by dynamic creation

Now we need to access the m_Expression instance in the exposed Automation methods. This is easy-it's
a one-to-one mapping of the methods and their parameters.

lll

II OExpression message handlers

BSTR OExpression: :GetExpression()

II TODO: Add your dispatch handler code here

CString s = m_Expression.GetExpression();

return s.AllocSysString();

void OExpression: :SetExpression(LPCTSTR szExpression, BOOL binfix)

II TODO: Add your dispatch handler code here

APPLE 1108 - Page 287

m_Expression.SetExpression(szExpression, binfix);

BOOL OExpression: :Validate()

II TODO: Add your dispatch handler code here

return m_Expression. Validate();

long OExpression: :Evaluate()

II TODO: Add your dispatch handler code here

return m_Expression.Evaluate();

We're finished. That's all there is to wrapping an existing C++ class with Automation. We designed the class
from the beginning to be compatible with Automation controllers by not passing structures, references, or
pointers and using only native or Automation-supported data types. The specification for Automation sup
ports passing certain types by reference, but currently there aren't any controllers that provide this function
ality. I imagine, though, that this feature will soon be available.

Compile, link, and run the application. It doesn't do much, but running the application causes MFC to
automatically update the Windows Registry with the OExpression component information. Any
Automation conh·oller can now access the Expression component.

Now we'll take a look at how MFC built the dispatch table for the four methods that we added to
OExpression. The following code was added by ClassWizard as we added the methods for the
OExpression class:

II From oexpress.h

class OExpression public CCmdTarget

};

II Generated OLE dispatch map functions

ll{{AFX_DISPATCH(OExpression)

afx_msg BSTR GetExpression();

afx_msg void SetExpression(LPCTSTR szExpression, BOOL binfix);

afx_msg BOOL Validate();

afx_msg long Evaluate();

ll}}AFX_DISPATCH

DECLARE_DISPATCH_MAP()

APPLE 1108 - Page 288

Microsoft's Model -+-

The preceding code is used by ClassWizard to declare, and keep track of, the internal methods used to
implement the Automation properties and methods. The DECLARE_DISPATCH_MAP macro declares a few
static member variables in the class to store and retrieve the dispatch map and its entries. Once the member
functions are declared in the .H file, they are placed in the dispatch map in our .CPP file (also done for us by
Class Wizard):

II From oexpress.cpp

BEGIN_DISPATCH_MAP(OExpression, CCmdTarget)

ll{{AFX_DISPATCH_MAP(OExpression)

DISP_FUNCTION(OExpression, "GetExpression", GetExpression, VT_BSTR, VTS_NONE)

DISP_FUNCTION(OExpression, "SetExpression", SetExpression, VT_EMPTY, VTS_BSTR

VTS_BOOL)

DISP_FUNCTION(OExpression, "Validate", Validate, VT_BOOL, VTS_NONE)

DISP_FUNCTION(OExpression, "Evaluate", Evaluate, VT_I4, VTS_NONE)

//}}AFX_DISPATCH_MAP

END_DISPATCH_MAP()

The DISP_FUNCTION macro and its companions, DISP_PROPERTY and DISP_PROPERTY_EX, define the
Automation property or method name, the implementing function or member variable, the return type, and
the parameters for the entry in the dispatch map.

pfnl~ember, vtRetVal, vtsParams) \

szl!!xt.eri:ial.Name) , DISPID_U!IKNOl'il:~, vtsParams, vtRetVal, \

(theClass::) (void))pfnMe,1\ber, (AFX_PMSG)O, 0 }, \

DISP_PROPERTY(theClass, szExternalName, memberName, vtPropType) \

_T{szExternalName), DISPID_U!~OWN, NULL, vtPropType, (AFX_PMSG)O, (AFX_PMSG)O, \

offsetof(theClass, memberName) }, \

#define DISP_PROPERTY_EX(theClass, szExternalName, pfnGet, pfnSet, vtPropType) \

...:T(szExternalName), DISPID_UN'KNOWN, NULL, vtPropType, \

(AFX_PMSG) {void {theClass::*) (void))pfnGet,

(AFX_PMSG) (void (theClass: :*)(void))pfnSet, 0 } , \

ClassWizard does all this for us. At first the idea of Class Wizard mucking around in your code can be a little
disconcerting, but after you get used to it you'll think it's great.

Let's take a look at how MFC uses the dispatch map to process requests from a controller application.
When CCmdTarget: : EnableAutomation is called in the constructor of the OExpression class,
EnableAutomation creates an instance of tl1e MFC class COleDispatchimp, which contains the imple
mentation of the IDispatch interface. EnableAutomation copies the Vtable of COleDispatchimp to

APPLE 1108 - Page 289

264 + CHAPTER 6

m_xDispatch, an internal variable within CCmdTarget. The following code, from CCmdTarget, illustrates
this:

II enable this object for ActiveX Automation, called from derived class ctor

void CCmdTarget: :EnableAutomation()

ASSERT(GetDispatchMap() != NULL); II must have DECLARE_DISPATCH_MAP

II construct an COleDispatchimpl instance just to get to the vtable

COleDispatchimpl dispatch;

II vtable pointer should be already set to same or NULL

ASSERT(m_xDispatch.m_vtbl == NULLI I

(DWORD)&dispatch == m_xDispatch.m_vtbl);

II sizeof(COleDispatchimpl) should be just a DWORD (vtable pointer)

ASSERT(sizeof(m_xDispatch) == sizeof(COleDispatchimpl));

II copy the vtable (and other data) to make sure it is initialized

m_xDispatch.m_vtbl = *(DWORD*)&dispatch;

(COleDispatchimpl)&m_xDispatch =dispatch;

Once this is set up, a client application's Queryinterface call for IDispatch will return a pointer to the
m_xDispatch.m_vtbl member. The client now has an IDispatch pointer that contains the methods:
Invoke, GetIDsOfNames, GetTypeinfoCount, and GetTypeinfo. All these methods are implemented
in the COleDispatchimp class. For an example, let's follow the sequence where the client initially calls the
SetExpression Automation method. MFC doesn't provide an implementation of the
GetTypeinfoCount and GetTypeinfo methods, so the client should call GetIDsOfNames to convert the
string "SetExpression" to the appropriate DISPID. The following code shows the nonimplementation of the
GetTypeinfo functions and the implementation of GetIDsOfNames:

STDMETHODIMP COleDispatchimpl: :GetTypeinfoCount(UINT* pctinfo)

*pctinfo = O;

return E_NOTIMPL;

STDMETHODIMP COleDispatchimpl: :GetTypeinfo(UINT l*itinfo*I, LCID l*lcid*I,

ITypeinfo** pptinfo)

METHOD_PROLOGUE_EX(CCmdTarget, Dispatch)

ASSERT_VALID(pThis);

*pptinfo = NULL;

return E_NOTIMPL;

APPLE 1108 - Page 290

Microsoft's Model + 265

STDMETHODIMP COleDispatchimpl: :GetIDsOfNames(REFIID riid, LPTSTR* rgszNames, UINT cNames, LCID
l*lcid*I, DISPID* rgdispid)

METHOD_PROLOGUE_EX(CCmdTarget, Dispatch)

SCODE sc = S_OK;

II fill in the member name

if (rgdispid[O] == DISPID_UNKNOWN)

sc = DISP_E_UNKNOWNNAME;

[OJ);

II argument names are always DISPID_UNKNOWN (for this implementation)

for (UINT nindex = l; nindex < cNames; nindex++)

rgdispid[nindex] DISPID_UNKNOWN;

return sc;

I've highlighted the preceding code that finds the DISPID for the given method or property name.
CCmdTarget: : MemberIDFromName does the work. Here it is:

MEMBERID PASCAL CCmdTarget: :MemberIDFromName(

const AFX_DISPMAP* pDispMap, LPCTSTR lpszName)

II search all maps and their base maps

UINT ninherit O;

while (pDispMap != NULL)

II search all entries in this map

const AFX_DISPMAP_ENTRY* pEntry = pDispMap->lpEntries;

II How many entries in the dispatch map

UINT nEntryCount

for (UINT nindex

GetEntryCount(pDispMap);

O; nindex < nEntryCount; nindex++)

if (pEntry->vt != VT_MFCVALUE &&

lstrcmpi(pEntry->lpszName, lpszName) 0)

if (pEntry->lDispID DISPID_UNKNOWN)

II the MEMBERID is combination of nindex & ninherit

return MAKELONG(nindex+l, ninherit);

APPLE 1108 - Page 291

266 + CHAPTER 6

II the MEMBERID is specified as the lDispID

return pEntry->lDispID;

++pEntry;

pDispMap = pDispMap->pBaseMap;

++nlnherit;

return DISPID_UNKNOWN; II name not found

The preceding code spins through the dispatch map, maps the external name to the internal DISPID, and
returns it to the client application (the Automation controller). The implementation of dispatch maps is simi
lar to the implementation of MFC's COM interface maps that we covered in Chapter 5. You may have
noticed the code that uses the ninherit flag. You can easily derive new classes from existing Automation
enabled MFC classes and then override or leave intact the Automation properties and methods from the
base class. This is explained in MFC Tech Note 39.

When the client wants to invoke an Automation method or manipulate an Automation property, it calls
the COleDispatchimp: : Invoke method with the DISPlD (which it obtained through GetIDsOfNames)
and any required parameters. MFC maps the DISPID to a specific method (or property) and calls it on behalf
of the client application. The code for Invoke is rather long, so I haven't included it here. Most of the MFC
implementation of Automation is in OLEDISPl.CPP in the standard MFC source path
\MSDEV\MFC\SRC.

In Chapters 4 and 5 we housed our components in DLLs because they used custom COM interfaces and
therefore could not be marshaled across process boundaries. Now that we are using a standard COM inter
face, this is no longer necessary. Most of the differences between local and in-process servers occur in the
Ini tinstance method of the derived CWinApp class.

When we built our application with App Wizard and answered Yes, please to the question concerning
Automation, App Wizard generated quite a bit of Automation specific code for us. Our application now sup
ports ActiveX Automation. AppWizard generated a unique CLSID for our application as well as a ProgID
based on the project name. The component class within our application is the CDocument-derived class, so
the generated ProgID is AutoSvr. Document. It's easy to change this ID; all you need to do is to modify the
sixth substring of the IDR_AUTOSVR_TYPE string in the string table of the .RC file. (It's easy to identify. It's
the only one with a period in it.) Following are selected lines from the Ini tins tance method in
AUTOSVR.CPP.

II This identifier was generated to be statistically unique for your app.

II You may change it if you prefer to choose a specific identifier.

APPLE 1108 - Page 292

Microsoft's Model + 267

static const CLSID BASED_CODE clsid =

{ Ox77fc5ac3, Oxb494, Oxllce, { Oxb6, Oxe, Oxfd, Ox5d, Ox8a, Oxfc, Ox39, Ox75 } };

This is the App Wizard-generated CLSID for our CDocument class. You will find it in the Registry associated
with our application's ProgID. CDocument is the only (default) application class that derives from
ccmdTarget, so it is the only class that can expose Automation methods and properties. As you will see in
our next example, this is where you will typically add methods and properties to allow your application to
be automated by an external Automation controller.

!llll///l//ll/////ll///////l///////!///!lllllll/lll//////////////////ll/ll//I

// CAutosvrApp initialization

BOOL CAutosvrApp: :Initinstance()

II Initialize ActiveX libraries

if (!AfxOleinit())

AfxMessageBox(IDP_OLE_INIT_FAILED);

return FALSE;

Initialize the ActiveX libraries, just as we did in Chapter 5:

II Connect the COleTemplateServer to the document template.

II The COleTemplateServer creates new documents on behalf

II of requesting OLE containers by using information

II specified in the document template.

m_server.ConnectTemplate(clsid, pDocTemplate, FALSE);

This is a little more complicated. You can ignore the comment about "requesting OLE containers." The
member variable, m_server, is an instance of COleTemplateServer and is declared within the
CAutosvrApp class. COleTemplateServer is derived from COleObj ectFactory and provides a class
factory for the CDocument-derived class. The ConnectTemplat'e method attaches the server to the docu
ment template class. The third parameter, bMultiinstance, is an important one. It indicates whether an
application instance should be invoked for every new document that is created. For MDI applications, this
flag is set to FALSE to indicate that the application can support multiple client connections within a single
EXE. For SDI applications, this flag is set to TRUE, which indicates that a new EXE will be launched for every
client that creates an instance of the CDocument class.

II Register all COM server factories as running. This enables the

II COM libraries to create objects from other applications.

COleTemplateServer: :RegisterAll();

II Note: MDI applications register all server objects without regard

II to the /Embedding or /Automation on the command line.

APPLE 1108 - Page 293

+CHAPTER 6

Here's where all the class factories for our local server are registered with COM. This call is the same as our
previous chapter example of COleObjectFactory: :RegisterAll. As the comment indicates, if this is
an MDI application, the RegisterAll method is called regardless of the /Automation flag on the com
mand line. This is because the application supports access by multiple controllers within the same EXE. In
an SDI application, the RegisterAll method is called only if the EXE is started with the /Automation
flag. TI1e I Automation flag tells the EXE that it was launched on behalf of a controller, as opposed to being
launched by an application user.

II Parse the command line to see if launched as ActiveX server

if (RunEmbedded() I I RunAutomated())

II Application was run with /Embedding or /Automation. Don't show the

II main window in this case.

return TRUE;

When COM starts an executable on behalf of a requesting client (or controller) via the CoGetClassObject
function, COM uses the Loca1Server32 entry in the Registry. The entry should have the /Automation
command-line option tacked on the end of the pathname. This arrangement enables the application to start
without showing its main window. When you're using an Automation server, it isn't always necessary to
see what the server is doing, so the default local server behavior is to not show its main window when
started by an Automation controller.

II When a server application is launched stand-alone, it is a good idea

II to update the system registry in case it has been damaged.

m_server.UpdateRegistry(OAT_DISPATCH_OBJECT);

COleObjectFactory::UpdateRegistryAll();

The preceding code updates the Registry with all the information that would normally be included in the
.REG file for a server. When you add component classes to an MFC application, as we did with the
OExpression class, this information will automatically be added to the Registry the next time the applica
tion is run without the /Automation switch. Let's see whether all this works by quickly building an appli
cation to test the OExpression component.

I
In our discussions so far, the controller (or client) application has required certain information about the
component before the application can access the component's functionality. In our examples, we've hard
coded the names of the members in the server and have had to know the number of parameters and their
types. In a component-based environment, this is hardly a good situation. A client application shouldn't

APPLE 1108 - Page 294

Microsoft's Model -+- 269

have to know the specifics of a component's services at compile time. A better approach would be for the
server application to somehow advertise its functionality through some well-specified technique. In this
way, generic clients could query a server programmatically for all the information needed to use a certain
piece of functionality. COM provides such a mechanism, and it's called type information.

A component's type information describes, in a binary standard way, the capabilities of the server. The
component's Automation methods and property names, their return values, and the number and types of
their parameters can all be described using type information.

The type information for a component is described using Microsoft's Object Description Language.
Visual C++ automatically maintains a file, PROJNAME.ODL, with the definition of all your control's meth
ods, properties, and events. An exhaustive discussion of the structure of an ODL file is beyond our scope,
but I've included a partial listing of the ODL file for the AUTOSVR example that we just developed.
Whenever we added a method using Class Wizard's OLE Automation tab, ClassWizard wrote a line to the
project's ODL file. Table 6.5 contains some of the important keywords used in an ODL.

II
II AutoSvr.odl : type library source for AutoSvr.exe

II
II This file will be processed by the Make Type Library (mktyplib) tool to

II produce the type library (AutoSvr.tlb).

[uuid(A7699974-0060-11D0-A61D-E8F97D000000), version(l.0)

library AutoSvr

importlib("stdole32.tlb");

II Primary dispatch interface for OExpression

[uuid(32CE8D20-0129-11D0-A61F-6C5374000000)

dispinterface IOExpression

properties:

II NOTE - ClassWizard will maintain property information here.

II Use extreme caution when editing this section.

ll{{AFX_ODL_PROP(OExpression)

ll}}AFX_ODL_PROP

methods:

II NOTE - ClassWizard will maintain method information here.

II Use extreme caution when editing this section.

ll{{AFX_ODL_METHOD(OExpression)

APPLE 1108 - Page 295

270 + CHAPTER 6

[id(l)J void SetExpression(BSTR szExpression, boolean binfix);

[id(2)] BSTR GetExpression{);

[id(3)] long Evaluate();

[id(4)) boolean Validate();

l/}}AFX_ODL_METHOD

};

II Class information for OExpression

[uuid(32CE8D21-0129-11DO-A61F-6C5374000000)

coclass MFCExpression

[default] dispinterface IOExpression;

} ;

ll({AFX_APPEND_ODL))

};

Keyword

interface

dispinterf ace

face.

coclass

default

bindable

requestedit

hidden

library

source

id(num)

version

uuid(uuidval

Table 6.5 ODL Keywords

Purpose

Standard COM-based, Vtable interface definition.

Defines an IDispatch interface. This includes the DISPIDs, properties, and methods for the inter-

Describes an implementation of a component object class.

Indicates that the interface is the default IDispatch interface. This is the one that is returned when

a client queries for IDispatch.

The property supports being bound from the client and supports notification via the

IPropertyNotifySink: : OnChange method.

The property supports the OnRequestEdit notification of IPropertyNotifySink.

When used as an attribute of a property, it indicates that the property should not be displayed by

type library browsers.

Begins the definition of a type library. This gives its name and GUID. The GUID is listed in the

Registry and provides a way for tools and components to locate the library's TLB file.

Indicates that the IDispatch interface is an outgoing one. This means that the IDispatch is not

implemented by the control but instead is called by the control. This keyword is used for the con

trol's event set.

Defines the DISPID for the associated property or method.

Version of the library, interface, or class implementation.

The GUID that identifies the library or interface.

APPLE 1108 - Page 296

Microsoft's Model + 271

As you can see, the ODL describes the Automation methods that our Expression component exposes. The
DISPID, name, and parameter types are all described using ODL keywords.

The ODL file must be compiled into a binary form for other OLE components to use. Visual C ++ con
tains a utility, MKTYPLIB, that compiles the ODL file and produces a binary file with an extension of TLB.
This file can be distributed as is, or it can be appended to a DLL or EXE file as a resource. Visual C++ auto
matically invokes the MKTYPLIB utility whenever the ODL file changes. It then binds the .TLB file into the
resources of your server's housing file (either a DLL or EXE).

Once the type information is in a binary form, it can easily be queried by OLE tools and other compo
nents. The OLEVIEW utility can display the type information of a component. Just double-dick on the
!Dispatch interface to display the details of the interface.

A client application can obtain and iterate over a server's type information in one of several ways. As
we've seen, the !Dispatch interface provides two methods-GetTypeinfoCount and GetTypeinfo
that provide access to the type information. However, this approach requires the client to instantiate a com
ponent before scanning a server's capabilities. This requirement can be expensive if the only reason for
instantiating the component is to query type information. A client application (such as a component
browser) that is interested only in a component's capabilities and does not want to use the component can
scan the type information by accessing it directly in the housing. The TypeLib Registry entry provides the
location of a component's type information.

I
We now have the pieces to understand the concept of a dual interface. Dual interfaces are implemented by a
server component and give the client application two different ways to access its functionality. We studied
custom COM interfaces in Chapter 4, and in this chapter we took a look at !Dispatch, a very useful
ActiveX interface. A dual interface combines a custom interface with the standard !Dispatch interface.
This technique allows the client to choose which interface it wants to use.

Figure 6.9 depicts what the Expression component would look like with a dual interface. It is a com
bination of our custom interface (!Expression) and the !Dispatch that we implemented earlier in this
chapter. The Expression methods are now exposed directly through our Vtable and through the
!Dispatch.

Why should we expose two interfaces that provide basically the same functionality? The primary rea
son is performance. If the server has an in-process (DLL) implementation, then no marshaling is required.
The client can directly bind to the custom interface methods and make very efficient calls. The performance
with this method is nearly identical to that of direct C or C++ function bindings: very fast. However, if the
client requires a local-server implementation of the server because of 32-bit-to-16-bit interoperation or
another cross-process requirement, the client can use the !Dispatch implementation. This method is
slower because of marshaling requirements and the added time required to use the Invoke met11od and
possibly GetIDsOfNames.

APPLE 1108 - Page 297

272 + CHAPTER 6

Expression Class Vtable

I plDisptach _Vptr ~ &Querylnterface() I"

" ~ '~ I" &Add Ref()

&Release() '"
&GetTypelnfoCount() "

&GetTypelnfo() "
&GetlDsOfNames() '"" I I Dispatch Table

'"" &Invoke()

' '" 0 &GetExpression()

1 &SetExpression() 1"1
I

2 &Validate() I"

3 &Evaluate() I"
"" '~ "

Figure 6.9 Expression class with a dual interface.

I say "possibly" because there are really three ways a client can bind to a dual interface server: late binding,
ID binding, and early binding. Each one has specific type checking and performance characteristics. Here's a
look at each one.

late Binding
The examples that we've developed so far in this example have used late binding. We have ignored any type
information provided by the server and have dynamically, at run time, determined the DISPID of the
method to call; we have called Invoke through the IDispatch interface. Basically, everything occurred at
run time. This is the most expensive technique and provides virtually no type checking. Any type checking
is performed at run time by the server. Although this technique is the slowest, it is also the most flexible
because everything is determined at run time. If the server interface changes, the client need not be recom
piled to take advantage of the changes.

ID Binding
ID binding is very similar to late binding. The only difference is that the call to GetIDsOfNames is not made
at run time. This approach saves a significant amount of time and dramatically improves performance. This
technique requires that the server provide type information. At compile time, the controller application
reads the type library and retrieves the DISPIDs of the called members. It can then statically store these val
ues for use at run time.

APPLE 1108 - Page 298

Microsoft's

ID binding also provides better compile-time type checking, because the compiler can determine the
parameter types from the server's type library. However, if the members are rearranged in the server or if
additional members are added, you must recompile to access the new functionality. Our next Visual C++
example will illustrate ID binding.

Early Binding
Early binding also requires that the server provide type information. It is the most efficient and the least flex
ible of the three techniques. As always, there is a trade-off. Early binding provides good type checking,
because the controller uses the type information to verify the parameters as it builds them, which is done at
compile time and not at run time. The binding is directly through the Vtable, so no DISPIDs or calls to
Invoke are required. If the server is implemented in a DLL, the speed of early binding is the same as that of
a direct DLL-type function call. However, as with ID binding, early binding requires a rebuild whenever the
server component's interface is changed.

Actually, we've already built an Automation controller using Visual C++, but we did it without using MFC.
Visual C++'s ClassWizard makes it easy to access the methods and properties of an Automation server.
MFC uses ID binding in its implementation. Let's build a quick application to demonstrate how to access the
functionality of the MFC-based server that we built in the previous example.

First, start Visual C++ and use App Wizard to create an application with the following options:

1. Name the application VCClient.

2. Build an MFC App Wizard (EXE) project.

3. In App Wizard Step 1, choose a Single document application.

4. In App Wizard Step 2 of 6, accept the default of None for database support.

5. In AppWizard Step 3 of 6, select None for OLE Container support, and be sure to enable OLE
automation support.

6. In App Wizard Step 4 of 6, take the default features, but tum off Print Preview support.

7. In App Wizard Step 5 of 6, take the default Regular DLL using Shared MFC DLL.

8. In AppWizard Step 6 of 6, derive the view from CFormView and change the implementation file's
name to VIEW.H and VIEW.CPP. Also, change the document class implementation files to DOCU
MENT.Hand DOCUMENT.CPP.

9. Click the Finish button.

Just as we've done in previous versions of the CLIENT application, we add two buttons and an entry field to
the dialog resource (IDD_VCCLIENT_FORM). The button IDs are IDC_EVALUATE and IDC_VALIDATE, and
the entry field has an ID of IDC_EXPRESSION. Using Class Wizard, we add, for both buttons, handlers for
the BN_CLICKED event.

APPLE 1108 - Page 299

27 4 + CHAPTER 6

Next, we'll use Class Wizard to create a wrapper class for our Automation-enabled Expression com
ponent that we added to the AUTOSVR example. Start Class Wizard and follow these steps:

1. Go to the OLE Automation tab.

2. Click the Add Class button and choose From an OLE TypLib.

3. From the Import from TypLib file dialog box, select the AUTOSVR.TLB file from the \DEBUG
directory of the AUTOSVR project.

4. In the Confirm Classes dialog box shown in Figure 6.10, change the names of the header and imple
mentation files to SVR.H and SVR.CPP, respectively. This will remove any confusion with the
AUTOSVR files from the previous project. Click OK to add the files to our project.

Figure 6.10 Confirm Classes dialog box.

What did all that do? Visual C++ opened the type library file of our AUTOSVR local-server application and
created two classes that will make it easy to access any functionality housed in the AUTOSVR.EXE applica
tion. Class Wizard created two classes: IAutoSvr and IOExpression. Every App Wizard-based application
gets a default Automation-enabled document class, and that is what the IAutoSvr class refers to. We didn't
add any functionality to that class, but we will in the next section. For now, we'll focus on the
IOExpression class. It provides an IDispatch-based interface to our Expression component within the
AUTOSVR application. Here is the definition from SVR.H:

II

II svr.h

II Machine generated IDispatch wrapper class(es) created with ClassWizard

II

APPLE 1108 - Page 300

Microsoft's Model + 275

11111111111111111111111111111

II IOExpression wrapper class

class IOExpression : public COleDispatchDriver

public:

IOExpression() {} II Calls COleDispatchDriver default constructor

IOExpression(LPDISPATCH pDispatch) : COleDispatchDriver(pDispatch) {}

IOExpression(const IOExpression& dispatchSrc) : COleDispatchDriver(dispatchSrc) {}

II Attributes

public:

II Operations

public:

);

void SetExpression(LPCTSTR szExpression, BOOL binfix);

CString GetExpression();

long Evaluate();

BOOL Validate();

Here are those methods that we're familiar with. Class Wizard read the type library and created prototypes
for the OExpression methods in the AUTOSVR application. Nearly all the work is done by MFC's
COleDispatchDri ver class, but before we look at it, here is the code from the SVR.CPP file:

II
II svr.cpp

II Machine generated IDispatch wrapper class(es) created with ClassWizard

II

#include "stdafx.h"

#include "svr.h"

void IOEA'"Pression: :SetExpression(LPCTSTR szExpression, BOOL binfix)

static BYTE parms[] =

VTS_BSTR VTS_BOOL;

InvokeHelper(Oxl, DISPATCH_METHOD, VT_EMPTY, NULL, parms,

szExpression, binfix);

APPLE 1108 - Page 301

276 + CHAPTER 6

CString IOExpression: :GetExpression()

CString result;

InvokeHelper(Ox2, DISPATCH_METHOD, VT_BSTR, (void*)&result, NULL);

return result;

long IOExpression: :Evaluate()

long result;

InvokeHelper(Ox3, DISPATCH_METHOD, VT_I4, (void*)&result, NULL);

return result;

BOOL IOExpression: :Validate()

BOOL result;

InvokeHelper(Ox4, DISPATCH_METHOD, VT_BOOL, (void*)&result, NULL);

return result;

This code is similar to the code that we developed at the beginning of this chapter in the CLIENT example.
MFC, however, has a set of routines that make it easy to call Automation methods with various parameter
types. MFC's implementation of the Automation client uses the ID binding technique that we just discussed.
The first parameter of the InvokeHelper function is the DISPID of the method or property. This value is
hard coded and is determined when the Automation wrapper class is generated. This technique eliminates
the need for COleDispatchDriver to call GetIDsOfNames, but if the server's implementation is
changed-say, by the addition of other methods-the whole class must be regenerated and the application
recompiled and relinked. Remember, that's one of the drawbacks of the ID binding technique. Let's take a
quick look at the COleDispa tchDri ver class.

COie Dispatch Driver
MFC's COleDispatchDriver class provides a basic implementation of the client side of an Automation
interface. It basically encapsulates the functionality that we developed in the non-MFC CLIENT example at
the beginning of this chapter. Table 6.6 lists some useful members of the COleDispatchDriver class. We'll
use some of them as we finish the VCCLIENT examples.

APPLE 1108 - Page 302

Microsoft's Model -+ '277

Table 6.6 Important COleDispatchDriver Members

Parameter Purpose

m_lpDispatch The IDispatch pointer that the instance is using.

createDispatch (LPCSTR ProgID) Creates an instance of an automation object and attaches it to the wrapper

class instance.

AttachDispatch (LPDISPATCH) Attaches an existing IDispatch pointer to the wrapper class. Use this

method if you have a dispatch pointer to an existing object.

ReleaseDispatch (void Releases any attached dispotch pointer.

InvokeHelper (...) A help method used to call IDispatch: : Invoke. This makes it a little eas

ier to call members in the automation server component.

SetProperty (DISPID, VT, value) Sets a property of the provided lype and value.

GetProperty (DISPID, VT, value*) Retrieves a property value of the described DISPID and type.

The IOExpression wrapper class uses the InvokeHelper method to call the Expression component's
methods. This code was generated automatically for us; all we need to do is to create an instance of the
wrapper class and use either the CreateDispatch or AttachDispatch method to create or attach an
instance of an Expression component. We'll use CreateDispatch. The AttachDispatch method
"attaches" an existing IDispatch pointer to the wrapper class, which assigns the pointer to the internal
m_pDispatch member.

We will use the component in our view class, so make the following modifications to VIEW.H:

II

II View.h : interface of the CVCClientView class

lfinolude "svr.h"

class CVCClientView public CFormView

II Implementation

protected:

IOExpression

};

m_IOExpression;

We include the wrapper class definition (SVR.H) and add an instance of the class as a member of our view
class. When the view is created, we need to create an instance of the Expression component housed in the
AUTOSVR application. Later, when we shut down our application, we will release our connection to the
component. We can handle these steps in the view's constructor and destructor.

APPLE 1108 - Page 303

+CHAPTER 6

CVCClientView: :CVCClientView()

: CFormView(CVCClientView: :IDD)

ll{{AFX_DATA_INIT(CVCClientView)

II NOTE: the ClassWizard will add member initialization here

ll}}AFX_DATA_INIT

m_IOExpression.CreateDispatch("Chap6.MFCExpression.1");

CVCClientView: :-CVCClientView()

m_IOExpression.ReleaseDispatch();

We create an instance using CreateDispatch and pass the ProgID of our component. CreateDispatch

uses CoCreateinstance and queries for an IDispatch pointer, just as we did in the non-MFC CLIENT
example. When we're finished, we call ReleaseDispatch, which releases the interface.

Now that we have a dispatch to our Expression component, we can use all the wrapper methods in
the IOExpression class. First, though, we need to add handlers for the IDC_VALIDATE and IDC_EVALU

ATE buttons, just as we've done several times before. After you've done that, add the following code to the
handlers:

void CVCClientView: :OnEvaluate()

/I Get the expression from the entry field

CString strEA'LJression;

CWnd* pWnd = GetDlgitem(IDC_EXPRESSION) ;

pWnd->GetWindowText(strExpression);

m_IOExpression.SetEA"Pression(strExpression, TRUE);

long lResult = m_IOExpression.Evaluate();

II Set the returned value in the entry field

char szTemp[128];

sprintf(szTemp, "%ld", lResult) ;

pWnd->SetWindowText(szTemp);

II Set focus back to the entr'£ field

GetDlgitem(IDC_EXPRESSION)->SetFocus();

void CVCClientView: :OnValidate()

APPLE 1108 - Page 304

Microsoft's

the entry field

(IDC_EXPRESSION)->SetFocus(};

l ;

TRUE) ;

again" l;

The code is nearly identical to what we've coded before; the only difference is the way that we're accessing
the Expression component. We're now using MFC, and the Expression component resides in the
AUTOSVR application.

When we call CreateDispatch in the view's constructor, COM starts the AUTOSVR ex.ecutable.
Because we're just using the services of AUTOSVR, we don't actually see the application. It's not in the task
list, but if you use a utility such as PVIEW you'll see that it is running. When we shut down and release the
!Dispatch pointer, AUTOSVR shuts down as well.

At the beginning of the chapter, I mentioned that there are two uses of Automation that are important to the
reuse of software. We've explored the first approach: using Automation to wrap existing code and exposing
it for other applications and languages to use. The second technique is to turn an existing application into a
component. That's what we'll do next. We'll allow our AUTOSVR application to be driven externally. In
doing so, we will implement many of the Automation properties and methods that Microsoft recommends
be exposed when an application provides Automation support. We'll also allow the controlling application
to use our Expression functionality, although a little differently from the techniques we've discussed pre
viously.

The first thing we need to do is to update the CFormView dialog box so that it has the IDC_EXPRES

SION entry field and the IDC_VALIDATE and IDC_EVALUATE buttons that we've used before. I won't lead
you through that again. Just edit the IDD_AUTOSVR_FORM dialog box and make it look like the one in Figure
6.11.

We're not going to use the IExpression method to implement the Expression class functionality;
we've already exposed it for other applications to use. We will use the Expression class internally, just as
we would any C++ object. Our focus now is to allow an external client to drive the behavior of our applica
tion.

APPLE 1108 - Page 305

280 + CHAPTER 6

Figure 6. 11 Building the AUTOSVR form dialog box.

When automating or allowing an external application to drive your application, you must expose properties
and methods that are similar to ones that you use internally. The MFC document/view architecture makes it
easy to allow your application to be automated, but only through the CDocurnent-derived class. Of the stan
dard application classes provided by AppWizard in our project, only CDocurnent and its derivatives are
derived from CCmdTarget. (Actually, the CWnd class is derived from CCmdTarget. Any true window
classes in your application can support Automation, but they're not directly exposed by Class Wizard.) As
you may recall, only classes derived from CCmdTarget have COM support within MFC. So we expose all
our application's methods and properties through the CDocurnent-derived class, which in our application is
CAutosvrDoc.

AUTOSVR is an MDI application and so can support multiple Automation clients simultaneously. Our
first step is to allow an Automation controller to set the expression in our entry field and act as though it is
pressing the Validate and Evaluate command buttons. To do this, we need to look at the document/view
architecture again. Within an MFC MDI application, whenever a new document is created, a new
frame/ document/view tuple is created. This arrangement makes it easy to manage each MDI child window
or view. There is one document instance and one or more view instances associated with each MDI child. So
we need to add an instance of the Expression class to the document class. Why not the view class? It could
also go there, but the Expression class contains the data of our application and so belongs within the doc
ument. As you'll see, this technique makes things fairly easy to implement. Add the following code to DOC
UMENT.H:

II document.h interface of the CAutosvrDoc class

II

lll

APPLE 1108 - Page 306

Microsoft's

Expressfon;

class CAutosvrDoc public CDocument

protected: // create from serialization only

CAutosvrDoc();

DECLARE_DYNCREATE(CAutosvrDoc)

//Attributes

public:

Expression* GetExp() const { return m_pExpression; }

Model + 281

Here we've added a pointer to the Expression class and have included a forward declaration for the
Expression class. This arrangement reduces the dependencies on the EXPRESS.H file. Most of .the MFC
application classes include DOCUMENT.H but don't need access to the definition of the Expression class.
Because we've forward declared the class and have implemented it using a pointer, only DOCUMENT.CPP
and VIEW.CPP need to include EXPRESS.H. We've also added a GetExp function that returns the expres
sion pointer. This pointer will be useful when we need to access the Expression instance from within the
view class. Here's the instantiation and destruction code for DOCUMENT.CPP:

// document.cpp : implementation of the CAutosvrDoc class

II

#include "stdafx.h"

#include "autosvr.h"

#include "document.h"

////////l////////////l//////////////////l///lll//////////////l////////////I//

II CAutosvrDoc construction/destruction

CAutosvrDoc: :CAutosvrDoc()

II TODO: add one-time construction code here

EnableAutomation();

AfxOleLockApp();

= new Expression;

APPLE 1108 - Page 307

282 + CHAPTER 6

CAutosvrDoc: :-CAutosvrDoc()

AfxOleUnlockApp();

delete m_pExpression;

Now go into ClassWizard and add the two functions for the BN_CLICKED event. Take the defaults
OnValidate and OnEvaluate. Add the following code to VIEW.CPP:

II view.cpp : implementation of the CAutosvrView class

II

#include "stdafx.h"

#include "autosvr.h"

#include "document.h''

#include "express.h"

#include "view.h"

void CAutosvrView: :OnEvaluate()

II TODO: Add your control notification handler code here

CString strExpression;

char szTemp[l28];

II Get the expression from the entry field

CWnd* pWnd = GetDlgitem(IDC_EXPRESSION);

pWnd->GetWindowText(strExpression);

TRACEl ("OnEvaluate: Expression is %s\n", strExpression) ;

CAutosvrDoc* pDoc = GetDocument();

pDoc->GetExp()->SetExpression(strExpression, TRUE);

long lResult = pDoc->GetExp()->Evaluate();

sprintf (szTemp, "%ld", lResult) ;

pWnd->SetWindowText(szTemp);

II Set focus back to the entry field

GetDlgitem(IDC_EXPRESSION)->SetFocus();

void CAutosvrView: :OnValidate()

APPLE 1108 - Page 308

Microsoft's

II TODO: Add your control notification handler code here

CString strExpression;

II Get the expression from the entry field

CWnd* pWnd = GetDlgitern(IDC_EXPRESSION);

pWnd->GetWindowText(strExpression);

TRACEl("OnValidate: Expression is %s\n", strExpression);

CAutosvrDoc* pDoc = GetDocument();

pDoc->GetExp()->SetExpression(strExpression, TRUE);

if (! pDoc->GetExp()->Validate())

AfxMessageBox("Invalid Expression, try again");

II Set focus back to the entry field

GetDlgitern(IDC_EXPRESSION)->SetFocus();

Model + 283

This is a little different from our previous implementations. We now must get the document associated with
our view in order to access the Expression instance. This is how typical MFC development is done. The
data is stored in tl1e document and the view must go and get it.

We've done enough that we should probably compile, link, and run. When you do, you should see
something like the screen in Figure 6.12. It shows three active documents, each with an instance of the
Expression class. On application startup, you only will see one MDI child window. You must explicitly
create the oiliers either tltrough ilie File/New menu item or by using multiple Automation controllers.

Everything should be working from ilie perspective of the application user, so now we can allow the
process to be automated by an external application. To do iliis, we expose some methods that correspond to
user actions within the application. Start ClassWizard, go to the OLE Automation tab, select the
CAutosvrDoc class, and add an Expression property. You should have a screen like that in Figure 6.13.

The External Name field holds the name iliat the controller will use to manipulate the property (or
method). The type will change depending on which implementation method you choose. The Stock imple
mentation is used for ActiveX controls, so we will see it shortly. The Member Variable implementation adds
a member variable to your class and directly exposes it to the controller. If you don't really care what the
controller is doing with ilie property, this may be the method to use. The Get/Set Methods implementation
provides C++-style Get and Set methods to wrap around the member variable. This is probably the most
typical technique used. The controller must go tltrough the Get and Set methods to access the internal vari
able, so the application knows when it changes.

APPLE 1108 - Page 309

+CHAPTER 6

Figure 6.12 AUTOSVR application with three documents.

Figure 6.13 ClassWizard Add Property dialog box.

For our example, we'll choose a type of BSTR and an implementation of Get/Set Methods. If you don't
want to allow the controller to set the property, clear out the Set Function entry field. This will put in its
place a SetNotSupported method; if the controller attempts to set the function, it will throw an OLE

APPLE 1108 - Page 310

exception. For this example, we want to allow the property to be set, so don't clear the Set function's name.
Click OK to add the property. Click Edit Code in the Class Wizard dialog box and add the following code:

lll

II CAutosvrDoc commands

BSTR CAutosvrDoc: :GetExpression()

II TODO: Add your property handler here

II Get the expression and return it to the Controller

CString s = m_pExpression->GetExpression();

return s.AllocSysString();

void CAutosvrDoc::SetExpression(LPCTSTR lpszNewValue)

II TODO: Add your property handler here

II Update the Expression instance with the new

II expression, default the type to infix

m_pExpression->SetExpression (lpszNewValue, TRUE) ;

/!Update the dialog form associated with the view

II by sending it a hint as to what changed

UpdateAllViews (NULL, VIEW_HINT_SETEXPRESSION) ;

The last section of code, which calls UpdateAll Views, needs some explanation. Now that we're using
MFC's document/view architecture-in which the data is stored in the document class and the view is
responsible for the display of this data-we must inform the views whenever any document data has
changed. UpdateAllViews causes the View: :OnUpdate function to be called for each view associated
with the document. When the document calls UpdateAll Views, the document can pass a hint that helps
the view determine what data has changed. I've set up three different hints that the view uses to determine
what to do. These hints need to be defined in DOCUMENT.H:

II document.h : interface of the CAutosvrDoc class

II

class Expression;

canst VIEW_HINT_SETEXPRESSION = 1;

canst VIEW_HINT_VALIDATE

canst VIEW_HINT_EVALUATE 3;

2;

APPLE 1108 - Page 311

286 + CHAPTER 6

The hints are used by the OnUpdate method of our view class. Here's the code that updates the appropriate
view item, depending on the hint provided by the document class. You must override the OnUpdate
method of CAutosvrView using Class Wizard and then add the following code to VIEW.CPP:

void CAutosvrView: :OnUpdate(CView* pSender, LPARAM lHint, CObject* pHint)

II TODO: Add your specialized code here and/or call the base class

switch(lHint)

II The Automation controller called the

II validate function. Simulate a push

II of the "Validate" button.

case VIEW_HINT_VALIDATE:

OnValidate () ;

break;

II The Automation controller called the

II Evaluate function. Simulate a push

II of the "Evaluate" button.

case VIEW_HINT_EVALUATE:

OnEvaluate () ;

break;

case VIEW_HINT_SETEXPRESSION:

CWnd* pWnd = GetDlgitem(IDC_EXPRESSION);

CAutosvrDoc* pDoc = GetDocument();

pWnd->SetWindowText(pDoc->GetExp()->GetExpression() };

break;

As you can see, we either simulate a press of one of the buttons or set the text of the entry field. This tech
nique makes it easy for the Automation class, CAutosvrDoc, to update the user's view as a controller
invokes these methods.

We need to add Automation methods that allow an external application to simulate the press of our
two buttons: Validate and Evaluate. Use ClassWizard to add two Automation methods-Validate and
Evaluate-that take no parameters and return void. Then add the following code:

void CAutosvrDoc: :Validate()

II TODO: Add your dispatch handler code here

APPLE 1108 - Page 312

Microsoft's

UpdateAllViews(NULL, VIEW_HINT_VALIDATE);

void CAutosvrDoc: :Evaluate()

II TODO: Add your dispatch handler code here

UpdateAllViews (NULL, VIEW_HINT_EVALUATE) ;

Model + 287

There isn't much to do here. We just route the update to the view class with the specific hint, and the view
simulates actions of a user. That was too easy. We need to add a little more to the AUTOSVR application.

Ii
When we're providing Automation capabilities for a full application, as we're doing here with the
AUTOSVR project, Microsoft recommends that certain standard properties and methods be supplied for the
external application user. Microsoft also recommends a specific hierarchy for the Automation objects that
are contained with the application. At the root is the Application object. An application contains a list of
document objects, and so on. This hierarchy is consistent with the structure of typical MFC applications. It
provides consistency among applications developed by various vendors and makes it easier for developers
when they begin using the Automation capabilities of an application; the naming and object hierarchy are
consistent. This standard is detailed in the OLE 2 Programmer's Reference, Volume Two. Table 6.7 lists some of
the recommended Application object properties in AUTOSVR to add a few more options when we're dri
ving our application via an Automation controller.

Table 6.7 Application Object Properties

Type/Properly Purpose

LPDISPATCH Application (Read-only) Returns the IDispatch for the application object.

BSTR Name (Read-only) Returns the name of the application.

BSTR FullName (Read-only) Returns the complete pathname and filename for the application.

long Top Sets or returns the distance from the top of the display to the top of the main

application window.

long Left Sets or returns the distance from the left edge of the display to the left edge

of the main application window.

long Height Sets or returns the height of the application's main window.

long Width Sets or returns the width of the application's main window.

BOOL Visible Toggles the visibility of the application windows.

APPLE 1108 - Page 313

+CHAPTER 6

The Chapter 6 AUTOSVR project on the accompanying CD-ROM implements all the standard
Application properties described in Table 6.7. They're all fairly easy to implement, and you might try
them yourself before checking what's on the CD-ROM. As you're developing the properties for the
AUTOSVR project, you need a way to easily test the new properties and methods you've added. We need
another Visual Basic application.

Now that we have added properties and methods to AUTOSVR, we need a controller to test what we've
done. We'll be using the DISPTEST tool provided with Visual C++. If you have a current version of Visual
Basic, it will work, too. Figure 6.14 shows the Visual Basic form of our VBDRIVER example, which we will
use to control AUTOSVR.

Figure 6.14 Visual Basic driver application.

The form has buttons that map to the various Automation methods and properties that we have added to
AUTOSVR. To get things going, we connect to the main application object when we initially start the Visual
Basic application.

Global Form declaration

Declared outside of any form procedure

Dim obj as Object

Sub Form_Load ()

Dim objApp As object

APPLE 1108 - Page 314

Microsoft's

Set obj = CreateObject("Autosvr.Document")

Set objApp =obj.Application

Model •

Forml.Caption = "VBDriver App (" + objApp.Name + ") - " + objApp.FullName

Set objApp = Nothing

End Sub

Here we are creating an instance of AUTOSVR. The Crea teObj ect function will start the application if it
isn't running and will create a new document if the application is running. MFC MDI applications allow
multiple concurrent clients to access its document component. Whenever a new instance is created, a new
document/view /template structure is created to service the controller.

I've added some code to test the various Application object properties we added. The
obj .Application property returns an LPDISPATCH that we test by calling the Name and FullName
properties. The rest of the code is fairly simple. Following is some of the code. It would be best to get the
source from the accompanying CD-ROM, load Visual Basic (or DISPTEST.EXE), and experiment with the
properties.

' Toggle the visibility of the main application window

as well as the caption of the command button

Sub cmdVisible_Click ()

If obj.Visible Then

obj.Visible= False

cmdVisible.Caption

Else

obj.Visible True

cmdVisible.Caption

End If

End Sub

"Toggle Visible"

"Toggle Invisible"

' Increate the width of the application window

Sub cmdWidth_Click ()

obj.Width= obj.Width+ 5

End Sub

In this chapter, we investigated a powerful feature of ActiveX called Automation. Automation can be used
to encapsulate a C++ 1anguage class in a binary standard wrapper that can easily be accessed by non-C++
languages. Automation also provides facilities that make it easy to control an application externally by
another application or programming tool such as Visual Basic.

The backbone of Automation is the !Dispatch interface and its four methods: Invoke, GetIDsOfNames,
GetTypelnfoCount, and GetTypeinfo

APPLE 1108 - Page 315

